From a8fb6e7ce5c2805c6b7a7a30de28f08b5f7d0052 Mon Sep 17 00:00:00 2001 From: Tyler Burch Date: Sat, 27 Apr 2024 07:40:31 -0400 Subject: [PATCH] Add polynomial regression example (#809) --- docs/_quarto.yml | 2 + docs/changelog.qmd | 10 + docs/notebooks/gallery.yml | 8 + .../notebooks/orthogonal_polynomial_reg.ipynb | 3366 +++++++++++++++++ docs/notebooks/polynomial_regression.ipynb | 2061 ++++++++++ .../thumbnails/orthogonal_polynomial_reg.png | Bin 0 -> 48523 bytes .../thumbnails/polynomial_regression.png | Bin 0 -> 75013 bytes docs/objects.json | 2 +- 8 files changed, 5448 insertions(+), 1 deletion(-) create mode 100644 docs/notebooks/orthogonal_polynomial_reg.ipynb create mode 100644 docs/notebooks/polynomial_regression.ipynb create mode 100644 docs/notebooks/thumbnails/orthogonal_polynomial_reg.png create mode 100644 docs/notebooks/thumbnails/polynomial_regression.png diff --git a/docs/_quarto.yml b/docs/_quarto.yml index 87ba502de..7d504524f 100644 --- a/docs/_quarto.yml +++ b/docs/_quarto.yml @@ -62,6 +62,7 @@ website: - notebooks/shooter_crossed_random_ANOVA.ipynb - notebooks/t_regression.ipynb - notebooks/predict_new_groups.ipynb + - notebooks/polynomial_regression.ipynb - section: Generalized linear models contents: - notebooks/logistic_regression.ipynb @@ -83,6 +84,7 @@ website: - notebooks/hsgp_1d.ipynb - notebooks/hsgp_2d.ipynb - notebooks/survival_model.ipynb + - notebooks/orthogonal_polynomial_reg.ipynb - section: Tools to interpret model outputs contents: - notebooks/plot_predictions.ipynb diff --git a/docs/changelog.qmd b/docs/changelog.qmd index b5ec3eb5b..4213db1aa 100644 --- a/docs/changelog.qmd +++ b/docs/changelog.qmd @@ -11,11 +11,21 @@ pagetitle: "Changelog" * Add configuration facilities to Bambi (#745) * Interpet submodule now outputs informative messages when computing default values (#745) +* Bambi supports weighted responses (#761) +* Bambi supports constrained responses (#764) +* Implement `compute_log_likelihood()` method to compute the log likelihood on a model (#769) ### Maintenance and fixes +* Fix bug in predictions with models using HSGP (#780) +* Fix `get_model_covariates()` utility function (#801) +* Upgrade PyMC dependency to >= 5.13 (#803) +* Use `pm.compute_deterministics()` to compute deterministics when bayeux based samplers are used (#803) + ### Documentation +* Our Code of Conduct now includes how to send a report (#783) + ### Deprecation ## 0.13.0 diff --git a/docs/notebooks/gallery.yml b/docs/notebooks/gallery.yml index cbce285e2..fbc30268f 100644 --- a/docs/notebooks/gallery.yml +++ b/docs/notebooks/gallery.yml @@ -41,6 +41,10 @@ subtitle: With Hierarchical models href: predict_new_groups.ipynb thumbnail: thumbnails/predict_new_group.png + - title: Polynomial regression + subtitle: Learning gravity with Bayesian stats + href: polynomial_regression.ipynb + thumbnail: thumbnails/polynomial_regression.png - category: Generalized Linear Models description: "" tiles: @@ -115,6 +119,10 @@ subtitle: Model censored data href: survival_model.ipynb thumbnail: thumbnails/survival_adoption_times.png + - title: Orthogonal Polynomial regression + subtitle: Polynomials that avoid multicollinearity + href: orthogonal_polynomial_reg.ipynb + thumbnail: thumbnails/orthogonal_polynomial_reg.png - category: Tools to interpret model outputs description: "" tiles: diff --git a/docs/notebooks/orthogonal_polynomial_reg.ipynb b/docs/notebooks/orthogonal_polynomial_reg.ipynb new file mode 100644 index 000000000..e325152e3 --- /dev/null +++ b/docs/notebooks/orthogonal_polynomial_reg.ipynb @@ -0,0 +1,3366 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "571eb8ac", + "metadata": {}, + "source": [ + "# Orthogonal Polynomial regression\n", + "\n", + "This example has been contributed by Tyler James Burch ([\\@tjburch](https://github.com/tjburch) on GitHub). While the content in this notebook can stand alone, it is a companion to the [polynomial regression notebook](https://bambinos.github.io/bambi/notebooks/polynomial_regression.html), which contains additional useful examples. " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "5eb463de-d10c-4b9c-9a87-516b0fe8af2c", + "metadata": {}, + "outputs": [], + "source": [ + "import arviz as az\n", + "import bambi as bmb\n", + "import formulae\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import scipy\n", + "import seaborn as sns\n", + "from typing import Optional\n", + "\n", + "plt.style.use(\"arviz-darkgrid\")\n", + "SEED = 1234\n", + "np.random.seed(SEED)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "d66f940b-8fd2-4860-a800-f2e237355b4d", + "metadata": {}, + "outputs": [], + "source": [ + "# Temporary fix to make outputs cleaner\n", + "import warnings\n", + "warnings.filterwarnings(\"ignore\")" + ] + }, + { + "cell_type": "markdown", + "id": "0167e139-db8e-45d6-b6c0-9acb0c820755", + "metadata": {}, + "source": [ + "## Revisiting Polynomial Regression\n", + "\n", + "To start, we'll recreate the projectile motion data defined in the [polynomial regression notebook](https://bambinos.github.io/bambi/notebooks/polynomial_regression.html) with $x_0 = 1.5$ $m$ and $v_0 = 7$ $m$/$s$. This will follow:\n", + "\n", + "$$\n", + "x_f = \\frac{1}{2} g t^2 + v_0 t + x_0\n", + "$$\n", + "\n", + "Where $g$ will be the acceleration of gravity on Earth, $-9.81$ $m$/$s^2$. First we'll generate the data." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "5cfe8fdf-1fd8-4884-955c-6a2b6464359d", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtsAAAHrCAYAAAAe4lGYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACjiElEQVR4nOzdd3hU1dbH8e+ZkgKhBEjoiHSQIlWagDQLqKBYrp1iBRQ7iqKiCBa8IogdEPVVbICIoBQFAZHeiwjSSwKESEiZzMx5/5ibQEibTDKZSfL7PA9PYObMOSublDX7rL22YZqmiYiIiIiIFDhLoAMQERERESmulGyLiIiIiPiJkm0RERERET9Rsi0iIiIi4idKtkVERERE/ETJtoiIiIiInyjZFhERERHxEyXbIiIiIiJ+Ygt0AP4QFxcXkOuWK1eO+Pj4gFy7qNFY5Y3Gy3saK+9prLynscobjZf3NFbeC8axioyMzPUYzWwXIItFw+ktjVXeaLy8p7HynsbKexqrvNF4eU9j5b2iOlZFM2oRERERkSJAybaIiIiIiJ8o2RYRERER8RMl2yIiIiIifqJkW0RERETET5Rsi4iIiIj4iZJtERERERE/UbItIiIiIuInSrZFRERERPxEybaIiIiIiJ8o2RYRERER8RMl2yIiIiIifqJkW0RERETET2yBDkBERPzL5TLZtBlOnoKKFaBFc7BajUCHJSJSIijZFhEpxpYuM3l7kkls7LnHoqJgxHDod33g4hIRKSmUbIuIFFNLl5mMGm1mejw2FkaNNildOoU2rQMQmIhICaKabRGRYsjl8sxo52T864m4XDkfIyIi+aNkW0SkGNq0mQylI1k5dtzNps2FE4+ISEmlZFtEpBg6eapgjxMREd8o2RYRKYYqVijY40RExDdKtkVEiqEWzT1dR3JSpbKFFs0LJx4RkZJKybaISDFktRqMGJ5zL+2RT5VSv20RET9Tsi0iUkx17WIwdoyRaYY7OhrGjjHo1TM0MIGJiJQg6rMtIlKMde1i0LkT2kFSRCRAlGyLiBRzVqtBq5aBjkJEpGRSGYmIiIiIiJ8o2RYRERER8RMl2yIiIiIifqJkW0RERETET5Rsi4iIiIj4iZJtERERERE/UbItIiIiIuInSrZFRERERPxEybaIiIiIiJ8o2RYRERER8RMl2yIiIiIifmILdAAiIkWFy2WyaTOcPAUVK0CL5mC1GoEOS0REgpiSbRGR/8kpmV66zOTtSSaxseeOj4qCEcOhaxcl3CIikjUl2yIi5JxMA4wabWZ6TWys5/GxY5Rwi4hI1pRsi0iJt3SZmWMyXbZszq+fONmkcyfP31VmIiIi51OyLSIlmsvlmdHOyb//5nyOmBiY8bnJDz8SkDIT1ZKLiAQvJdsiUqJt2pwxQfbVJ9MyP1YYZSaqJRcRCW5q/SciRY7LZbJ+g8nCxZ6PLlfOM9M5OXmqAAPLxsTJ+YsxO2nlLxe+WUhL8pcuK/hriohI3mhmW0SKlIKeya1YoQCDy0ZMjGcGvVXLgjunN+UvabXkKikREQkczWyLSJHhj5ncFs09yXpOclsg6Y2CnkH3pvwlLckXEZHAUbItIkWCtzO5eS3XsFoNRgzPeeb36ScMxo4xMiXl0dEweKB31ynoGXRvk/fCKJMREZHsqYxERIoEb2dy1613Ur9e3s7dtYvB2DFkKk+JjoZHhhnp5SmdO2Vu7Qfww4+ZZ9vPFx197tiC4m3yXhhlMiIikj0l2yJSJHg7Qxt7wp3nZBs8CXdWyfT59c5Wq5Fl3fWI4VlvepPmkWFGgddNp5W/FHaSLyIieaMyEhEpErydoY2q5PuPNU8ybdCrh+ejtwmyZ2Y86zKTsWMMv7Tg86b8xR9JvoiI5I1mtkWkSPB2Jrd1K1uum9D4gzcz4/64pjflLyIiEjhKtkWkSPDM5BZ+uUZeZFdm4k+BSPJFRMR7SrZFpMgoiJnc4ri1eSCSfBER8Y6SbREpUvIzkxvMW5sXxzcBIiJShJLtDz/8kAkTJgAwc+ZMLr300sAGJCIB48tMbtqGOBdK2xBn7JjAJdzB/CZARETyp0h0I/nrr7+YNGkSpUqVCnQoIiWKy2WyfoPJwsWej3ndMCZY+GtDnILgj10xRUQkeAT9zHZqaiojR46kcePGXHTRRfzwww+BDkmkRChOs6152dq8MGufvX0T0LmTSkpERIqqoJ/Zfv/999m9ezevvvoqVqs10OGIlAjFbbY1GLY2z+ouQV7eBIiISNEU1DPb27Zt4/333+fhhx+mXj0ftoQTkTwrjrOtgd7aPLu7BFd09e71/n4ToIWZIiL+E7TJtsPh4Omnn6ZRo0YMGTIk0OGIlBgFVXIRTEmcX7Y2N92QHI+ReAoj8SRG0iksiScxEuMgNRHDmQSpycQeTaLMjmTG1ksirGEyIVYHbtOCaRq4jlnp09mC2zRwY8FtWkh2hZOQWpqzzggSnBEkpEbQLDEC27aymKFlMEtHYUZEY5auBJb8/QhfuCiFseOLR6mQiEiwCtpke+LEiezbt4/vv/8+z+Uj5cqVw2IJTIVMZGRkQK5bFGms8qawxis5JQVI8OK40kRGhmb53MJFKYx7PZHjx93pj1WubOGZp0rRq2fWrylIWY3VqJEpPPqE5/Myz5u4N/6XUz77dASVKp2LzXS7IP4wZtwBOLUP89R+zLj9ELcfM/4oJJ4EtyvXWKoB1ark69OB3f/7cz7DgNJRGGWrQJkqno/la2JUrINRqS5UvBjDlv1YL1zkGQ/zgpsYJ07Acy+Y/PfN0oXyf1WU6GdW3mi8vKex8l5RHKugTLY3bNjA1KlTGTZsGA0aNMjz6+Pj4/0QVe4iIyOJi4sLyLWLGo1V3hTmeIWFelePHRZ6lri4xEyPZ9di7/hxNyMeT2DsmLN+nTXNbqzatIZXXjIyb4gT5WbkkMNcVnYXZ+ftwhK7C8vJ3Rj/HsFwO3O9nhlaFrNUBcxSFT1/wiMxQyIw7eEcjgll5qwwkl3hJLnCSHaFkeq2Y2BiNdwYhhuLYWLgxmq4sBhuwq3JlLYlUNqeQIQtgSvan6VqxQSMlASM5HiMs7GeP24nJMRgJsQAm7lwxE3Dglm2Gu7Ii3FH1vb8iWqEO7oRLks4Y8ebmRJtOPdG5NXXEmh56VmVlPyPfmbljcbLexor7wXjWHmT/Addsu10Ohk5ciQNGzbkvvvuC3Q4IiVOfkougr3eu+vlJl0a7ubo2o3YTuygYuouyib9hbE1EbZmPt602jHLVsddribucjUxy//vY5kqmKUqYZaKBGtIttfbtNhk5r7c37zcPAB+XUqWu2JW6GKQeGFJTjM3tpQ4jLMxGAnHMRJisJw5jvHvISyn9mGJ+wfDkYARfwhL/CHY9/u5z8mwkBh+MQ/XuIQdEU3YHt+EXfGNSHKVzhBTILqziIgUR0GXbCcmJrJv3z4AmjZtmuUxt9xyCwDvvvsuPXv2LKzQREoEq9VgxHCynJ1O88gwI8tkOeha7KUmYj26GcuR9ViPbMR6dCNGyhnKXHCYaQ3BXak+7koNcUc1xF2pAe7IizBLR4PF9y5I3i647NzJYOiDWe+KmfXiSoMRwyvStUsliG6S+YSmiZF4AuPUP1ji9nn+nNqDJWY7lrMnKJ24h2tr7uHamp5Wqm7TYO+Zuqw/2Zq1J9uy7mQbTqZE5bowM5jq8kVEglXQJdshISEMGDAgy+fWrl3Lvn376N69OxUqVKB69eqFHJ1IydC1i8HYMWQuufjfbGt2ZSABb7HnTMH991JCti7Aemg1lpidGGbGumrTXgpX1ea4KzfDHdUQV1RDzMja+V5smJW83CXIaldMn3e9NAzPQsrSUbhrtsv4VEIM//yxjd+/2Ubj8ttoUm470eEx1Cv7N/XK/s3NF88EYF9CbUJj2mLb0RZXjbaYZTIWnhdEH3Yl6yJSEgRdsh0WFsbYsWOzfG7kyJHs27eP+++/X9u1i/hZ1y4GnTtlPduanUJvsWeaGKf2Ytu/HOu+FVgPrcHlTOb8wg53maq4qrXEXa0VruotcVdq4JfEOiv5uUvgr5IcMyKamt2j+P7DrpzY7anRrhgaS/PIzbSuuIY2ldbQoOwuakfsg6P74Og3ALgjL8ZZpxuui7vy696WjHox8xjm+ibgPMVp0yQRkZwEXbItIsEjq9nWnPilxd6FnA6sB/7Atmcx1n3LsZw5mvH5MlVIrdUR10UdcVVvhVmmaj4uln++3iXwZ0lO2puA517wJPMnU6L49VgPfj3WA4Ay9njeGr6BFuXWYj20xlN+EvcPIev+gXXT6OqM4PXWnfg9pgvLj19OnKNihvPn9ibA5xl7EZEiSMm2iBSY/Mzk5ig1Geu+37HtXoht768YjnOtCU1rCK4abXBd1BlX7U6UrdeOhNOnffwM/MOXuwT+Lsnp2sXgv2+WZuz4hCzeBJSncZfuOOjueTD5X6wHVmLbuxRz9zJKc4re1X+md/WfcZsGW+Oasehob345ciXHkqrl+CYg2BfRiogUtCKVbI8fP57x48cHOgwRyYGvM7nnc7lMtqw/S8j+ZVyc9DOV4n73bBLzP+7SUTjr9cJVpxuuGm3AHn7uOTes32AGXR1wXu8SFEZJTq+eobS89GzubwLCyuJqcBWuBlex0Obiu8lb6FL5Ny6vvIzG5XfQvMJmmlfYzGOXvMnGU5ey4PA1JBy/EojOdM2gW0QrIuJnRSrZFpGiwZeZXABMN1vn/UHCijl0ilxEuO1cgp0YUhVbsytx1u+Nu2oLMDJvXLV0mck7757m+PFzM6dFtQ64UEpy8OFNQEULW083Z+vp5kzZ9TDRYcfpVmUJvastoFXFdVxaYSOXVtiIuX0crjPtcDa8Gmf93hDu6UUb8EW0IiKFTMm2iPhFXpI4I+4f7Nvm4No4h/aOYxDlefxAQi0WHu3N4iO92B5/CWObW+haLbc64IwlCkW1DthvJTn5dOGbgJjkyny97z98ve8/RIcdp1e1n+lz0QKalNmE7eCf2A7+iblkLM56PXA2HUDFyPZA7jEX2CJaEZEAM0wzqz3EirZA7S4UjDsbBSuNVd4Uy/FKScC26yfs22ZhPbox/eF/HWVZcORq5h68ni1xzTk/MYuOhm++zJxgulwmA241c50Fzuq1wS6rrh15KcnJiTdfV1m151u+Iuc3AWPHGHRrcQTbX/Ox7fwJa+yO9OfcZarx2fb+/N+O/hxPznrxqr//r3xpOVgsvwf9SOPlPY2V94JxrIrkDpIiUrwZJ//GvvH/sG+fg5Hq2e7dNCyciuzMa79cz2/HrsDhDs3ytdnV8hbnOmCfS3IKQPbt+QzGjjFyfBNgUp3UtkNIbTsES8wObFu/w75jLpYzR7i75rvcWWMKK2M6MfvADfx2rDtO055+Hn/O2KvloIgUNiXbIiVYoW0q4nZi/XsJ9k3/h+3gn+cerlCH1KY34mzUl2V/RvHLkdxvtGVVy1vc64DzWlddEHJvz2fw7VeGV18/7ujGOLo/h+PyJ7D9vQjb1m+xHfyTzpWX07nycmKSopm57z8sPXsTAx+o4LekVy0HRSQQlGyLlFCFMcNnnD2Bbcs32Dd/jSXhGOCZxXbV7U7qpbfhqtkeDM+1KlbwrqItq1reQt9Mp5jzvj2fQauWefhasYfhbNwXZ+O+GHH7sW75DmPzLKKJYXjjiQyzvo8z5TpST9yJu1L9fH4WGanloIgEipJtkRLI3zN8Rtw+QtZOxbZ9NoYrFQB3eAWczW4itfnNmGWrZXpNfrpvFFbnjpKiMMpyzMiLcHZ5DDoNw9y1APv6T7HGbMe+5RvsW77BeVFHUlveheviy7PsPJNXxbnUSESCm5JtkRLGnzN8luPbsK/5GNtfP2P8ryuIq0pzUi+9HWeDq8AWku1r89N94/zXGoZnC3JvXyuZFWpZjjUEZ5PrcDa+FsuR9YSsn4H170XY9q/Etn8l7siLcbS7F2ejvmC1536+fMZaVEuNRCR4KdkWKWEKfIbPNLEeXOVJsvevTH/YeXFXHO3uxV29tdex5WdDnLTXvvOuwfHj7jy9VjIKSFmOYeCu3prk6q0x4g9j3/gF9q3fYon7h7Cfn8X9x2Qcbe/FeUl/sGW9gLYgYlWpkYgUNCXbIiVMgc3wmSbWPYsJ+fMDrMe3eh4yrDgbXUNqmyG4oxr4FF9+um907WJwbd/y/LY0Luh2kCxKAl2WY5arjqPrUzg6DMW+eSb2tdOw/HuEsMUv4V71HqltB5Hc5CY27Qj3+v850J+TiJRcSrZFSph8z/CZJtZ9ywlZ+c65JNsWRmrTAaS2vgezXPV8x5if7hue1yq5zo+g2VAnpDSpbQaR2uI27Fu/w77mYywJxwj9bTyJCz9kw+67+HrffzjrjMh1cW9BfU6F1sFHRIoNbWpTgIKx2Xqw0ljlTUGOV342gLEeXE3IiolYj6wHwLSXIrXlnTha3QWlguP+u762vJfbWPlzQx2fuBzsnT2HyO0fUbP0QQDiUsrzye77+HrfrTjcoYwdk/OdEV8/p8jISGbPOZVt33GVKWWk70Pvaay8F4xj5c2mNkq2C1AwfhEEK41V3hT0eGXXjSTN2DEZkwfLkQ2ErHgH28FVAJjWUFIvvR1H28FBk2Sn0deW93zdQTJQM7lpbxRPnXByZfX53Fv/Ay4u8w8ARxOr8P6uYSz791psIbYcE2JfPqe160ox4vGEbJ+/8HumpNP3ofc0Vt4LxrFSsl3IgvGLIFhprPLGH+PlzQyfJfYvQpZPwPbPMgBMi53U5jeT2u4+zIjoAo2noOhry3tFbazWbzB5+NFzv7KshpNra87hgYZTqBLu6eO+50wdJu8Ywa/HugMZk19fE2KXy+Tm2zIuvL2Qv7eYL2qK2tdWIGmsvBeMY6Xt2kUkWzktRDTOniBk5SRsW7/FMN2ehY+X9MfR/gHMsp6a7GCa8ZSS4cJFuy7TxuwDNzL/UB9uvvgrBtf/kLpl9vLfdg+z+VRz3tnxKGtPtks/3teWlps2k2OiDerRLSLZU7ItUozllhBnWoiYmox93QxC/vwAIzXR81CDq3B0GoEZeVH6YYWx+6TIhbJbtJviDuOzPfcwa/+N3F1vKnfU+YzmFTbzcaeB/Hr0CiZse4pDibV8TojVo1tE8kPJtkgxlaeE2DSx7fqJkN8nYDlzFABX5WakdBuJu3qrTOf15+6TItnJrX1fgrMM7+58hK/+uY37GrzPDRd9yxVVf6VT9HI+33sXH/91PydPReR6nQvfpEaW967aUj26RSQrqtkuQMFYSxSsStpY5bfkIq/jlZcFkJYjGwn9bRzWY5sBcEdUwXH5Yzgb9cm0TXZ+OpkUlpL2tZUfRXGscvvaPt/FEXt4sul4OkZ7NluKTa7EqUsfo/rV12e7BXxWb1IrVQJnqsHp+OyvG+iv+2BTFL+2AkVj5b1gHCvVbIsEgcIuufB2O/bLW8URvmIC9m3fA542fo5295La6m6wh2f5ugLffVIkj7LbZTQqClJS4N9/zz32T0JdHlr1IV0q/8YTTV+jVumDRO18Ftfpr0i54lncVVtkOHd2ifyJEwA5f08VSt9xESmSlGyL+FEgSi5yS4gN3HQK+57wqW9hd8YDkHrJDTg6PZJrhxHVrkphyeluUHaLe5evyGrTGoNlx6/gj9hOzLj/cxrFvIf12GZKfXkrqU2uJ6XLU1CqQq5vUg0DypSB0FCCp++4iBQJSrZF/MTbGWZfuiPkJKdEt2HZHTzb/GVaVNgETnBVakhKzxdwV/NuGjrfu0+KeMGbu0FZ7TLatQtZznp7EuJQanYZQmLCdYSseBv7tlnYt8/Btvc3Uro8xXpHvxzfpJqmZ9b87QlgsRjqwiMiXlOyLeIngSq5yCrRLW1L4KGGk7i1zv9hNdycdZbiWKPhVO57B1i8/zGQ2wI18CQ2LZr7ELgI+b8blFNLSwAzIpqUK18ltfkthC58AeuJXYT9MorGpWdzUekX2H/24hzjiztt0KuHkmsR8V7WK0REJN8CVXKRlhCn6VH1F2Z178vtdT/Harj55fCVDNn0I5X63J2nRBs8CcuI4TknGqpdFV95ezfI5cr5GM+stycpbtUy669Hd9UWJN3+DSmXP4FpCyPq7Bq+6daf+xtMwW5xZHtu3bURkbxSsi3iJ4EquUhLiCNDTvJGm0eZ0PZRosNiOZBQiwf/+ICn1r3FHfdX8Tkh9ixQMzIk9OCZ0daW1ZIfebkbVCCsdlLbDibx7rmkXtSZEGsqDzZ6l6+73kDrimsyHGoYumsjIr5RGYmInwSs5MI06RE1j159xxLiPI3TbWX634P58K8HKF8ptEAS4txu1Yv4IlB3g8xyNUi54UO2zJlPre2vcnGZf/ik0z18u+8m3tr2JImu0oDu2oiIb5Rsi/iJZ4Y5q+4I5xT0L28jIYbQxS9h27ME8CyA3FR7LBVbNuHNAk6Is1qgJpIfAV2Aaxg06HcNK8p2JHXBf+lb5WsG1P6GjtEr+O++V+jzYA/atE70w4VFpLhTsi3iR9n1BC7wdmGmiW37bEJ/G4+R8i+mxY6j/QOkth1CQ2sIDQvmKiJ+FQwLcDt1L4+r64tsWnoN9baPohqHeaPJICzJg/g3dSjYS/nv4iJSLCnZFvEzf5dcGAkxhP7yHLZ9vwPgqtyUlN5jcUc1KJDzixSWQNwNyi6Out0vw+w8h9Rlb2DfPBP3n1MptWsRyVe+irt6a79eX0SKFy2QFCkE3nRH8Om8uxdSasb12Pb9jmkNIaXzYyT950sl2lJkBdUC3JDSpPR8kaQbPoay1bCcPkD4zDsJWfoapCYXXhwiUqRpZlukKHKcJfTXV9O3WndFNyH56tcxK9YNcGAi+RdsC3BdtTthG/YrSXOewb7te0LWTcf2zzKSr34dd+VLAhKTiBQdSrZFihjLkY2EzX8aS/wBTAxS2w7B0XEYWEMCHZpIgQm2BbhGeDlSrhyLs35PQheOxnJqL+Ff/gfH5Y+R2uouMHSjWESypp8OIkWF24n9j3cJn3kHlvgDuMtUJemm6Tguf0yJtkghcdW5gsS7fsBZtweGO5XQpa8RNusBjLMnAh2aiAQpJdsiQc7lMtn429+kfHgnoX9MxjBdpDbqS+Kds3HXbBfo8Hzicpms32CycLHnY247AooElfBIkq+bRHKPFzCtodj2/U74Z/2w7lse6MhEJAipjEQkiC1dZrLuiwU8Wmc0ZewJnEmNYNK+52nR5lq6hhXNzTWWLjMztUKMioIRw9Huk1J0GAbOFrfirt6a0J+ewHriL8K/vxdH63twdHoUbLrbJCIemtkWCVK//5bCv1+/wuiGj1HGnsCGky25+bdZfL2jL6NGmyxdVvRmg5cuMxk12szURzk2liL7OUn2SsIdDHel+iT9ZyaOS28HIGTddMK/uhXj1D8BjkxEgoVmtkWCkPvUQeose5SGdbYBMHX3YKbsHI7TtKcfM3GySedOnr8HS9eGnLhcnhntnKR9TsEYv+RNibqDYQ/D0f05XBd1IuznZ7HG7KDUFwNI6f0KzoZXBzo6EQkwJdsiQca6eyFh80fRMOIMpx3leH79OH6P6ZrpuJgYmPG5yQ8/UiQSmk2bc94ZEDyf06bNBFUXCsm7tDsYF0q7gzF2TPB9fRYEV90rSLxrDqE/PYnt0GrC5j2G48gGHF2e0CJmkRJMZSQiwcLlIOS3cYTPfRib8wybTl3KrUu/zTLRTvPJtMwJbLCWZJw8VbDHSXDy9g5GcSwpATAjokke8AmOtvcCELLhM8K/vhvjzLEARyYigaJkWyQIGGeOenamWz8DgIM172HwiukcS6rm8zmDLaGpWKFgj5PglJc7GMWWxYbj8sdIuv5dzNAyWI9uJPzzG7HuXxnoyEQkAJRsiwSY5eBqwj8fgPXYZszQsiRd/y5lb3iKyEr23F+cg2BLaFo0J9MW3BeKjvYcJ0WX7mCc46rbncTbv8MV3RhL0inCvhuC/c/3wXQHOjQRKURKtkUCxTSxr/+M8G8HYUk6hSuqMYl3fI+rbnesVoMRw/Nf0xpMCY03n9MjwwwtjizidAcjI7N8TZJu+T9Smw7AwCR0xUTCZj8EyfGBDk1EComSbZFAcKYQ+vOzhP726v82qbmWpFu/wCxXPf2Qrl0Mxo4xMs0GR0fD4IHeXSbYEpqcPqexY4xiuWiupNEdjCzYw0jp/TLJvcd6NsH5Zyml/u9mjJN7Ah2ZiBQCdSMRKQAul+l1+z3jzFHCfngY6/GtmIYFR5cnSW11NxiZj+/axaBzJ9j7Txn27T+Tfm6AH37M3K/6fMGa0KR9TkWhXaHknecOBll2I0lTUu9gOJvegDu6MWE/DMNy+gClvryF5GvexFWnW6BDExE/UrItkk956SdsObiasB8fxZJ0CjOsPMl938JVq0OO57daDdq1tVO/XsZzFeWExmo11N6vGPPcwSDT90V0tOfrsiTfwXBHNybxtm8I/3EE1kNrCJv9EI7Oj5LadkiWb7hFpOgzTNMMnnYFBSQuLi4g142MjAzYtYua4jJW2fUTTpNeGmGa2Df9HyG/jcdwO3FFNSb5ukkZykZykt14ZZXol/SEprh8bRUGf49VXu74BLsCHytXKqG/vYp901cApDbsQ0rvl8EeXnDXCCB9H3pPY+W9YByryMjIXI/RzLaIj7zeEbGDk/Bl4wjZ9CVQsL9UVZIhwUx3MHJgtZPS4wVclRoS+utY7LvmYcTtY23dSRxNrKLvZZFiRMm2iJcunKVzu3OumQZIPHUG1xdPEHJqOSYGjssfI7XN4AK9XayERqTocra4FXeFOthmPUJIzDbqHbiJ99ZMZFNcy6DdDVZE8kbJtogXsirXKFMm59dUCz/MO5c9RIVTf2Pawkm+5nVc9Xr6N1ARKXJ+/act7y6YydvthtOg7F981HEgozeOZcHhPsV6e3uRkkKt/0RykVaXfeEs9pkz2b+mWeQmPuvyH+qV/ZuUkGiSbvlMibaIZJJWjnYksQZ3//45S472IMSayvjWTzG4/oeAGXS7wYpI3ijZFsmBN3XZF7qy2k983PEeKoae5O+zjUi54yvclS/xU4QiUpSdv719kqs0T6z5LzP23A3A8MYTGd3iBU7FpgbVbrAikjcqIxHJwfm/CHNncl+D93io0bsA/Hr0ClKueZ0q5SP8Fp+IFG0X7vLqxspb257i8NkaPNVsHDdc9B1Vw49yIva/QNmAxCgi+eNzsn3o0CHWrFnDjh07OHXqFGfOnKFMmTJUqFCBxo0b07ZtW2rUqFGQsYoUOm+3O48sm8qjdV7gulpzAPjmyD2UuvZxunbV+1kRyV52u7zO3HcbR5Kq8XrrJ+gQvZKz/9wB/76PWbZa4QYoIvmWp0wgPj6eWbNm8c0337B3714AsmrTbfyv00LdunW56aab6NevH+XKlSuAcEUKlzfbnYdbz/Jt/8eoGLccN1b+bvg8vR+5WS27RCRXadvbZ3UH7ffj3Ri4YgbvdniIiuzG/eWtJPd7T2VpIkWMV8l2UlISH3/8MVOnTiUpKYmwsDBat25Ns2bNqFOnDuXLlyciIoIzZ84QHx/P3r172bx5M1u3bmXcuHG8/fbbDB48mMGDBxMeXjwa9kvJkNMvQoDIkJO83/lBKsZtw7SFk9L3Lapp62UR8VJu29vvjG/CxtZf0u3Ig1hP7ib867tI7vMWrjpdCzlSEfGVV8l2z549OXnyJJ07d+a6666jZ8+elCpVKtfXJSYm8ssvvzB37lwmT57MV199xfLly/MdtEhhyekXYY1SB5jS4T5qlT6IGVaepP7v467aIgBRikhRltv29pd1qU5SyheEzX0E24E/CJszlJQrX8HZpF/AYhYR73mVbF966aUMHTqUJk2a5OnkpUqVol+/fvTr149t27YxZcoUn4IUCaSsfhE2LreNKR0eJDLkJO6y1Um68SPMyIsDG6iIFFm57gYbWobk/h8Q+stz2Hf8QNiCZ0hJOk1q63sCGreI5M4wsyq6LuLi4uICct3IyMiAXbuoKYpjlbaDpHXfctofeASrKwlXVGOSb/gAs3SUX69dFMcrUDRW3tNYeS9oxsp0E7LsDULWTQfA0WYwjssfL9BdaQtC0IxXEaCx8l4wjlVkZGSux6hVgoiXrFaDdqFzCN3/HIbbibNWe5KvnQShau0nIh5pb8qznJ0uCIYFR5enMEtVJPT3CYSs/QQjKY6UXi+BJftf6X6PS0SypWRbxEv29TMI/W0cAKmN+pJy5ViwhgQ4KhEJFkuXmZnqrqOiYMTwAt5u3TBIbTsEM7wCoQufx77te4zk0yRfMwHsYYGLS0SylK9ke/Xq1axevZrY2FgcDkeWxxiGwauvvpqfy4gElmli//M9QldOAsDR6m4cXZ8CQxuwiojH0mVmlgupY2M9C6zHjsl/Ypt5dro/Znh5wn58DNueJbhmDOH3mu9SNqps+sx1YcQlIjnzKdk+ffo0w4YNY926dVn22T6fkm0p0kyTkGVvErJuKgApHYeTetmDQVcfKSKB43J5Zo5zMnGySedOvpduZD87fQWR9T6i+bahlItfR4ODd/HgHx9iKRvFw0NN3nk35/PmNy7IukRFRM7xKdkeN24ca9eupX79+tx8883UrFnTq1aAIsEs0y+Mpi5K/fYy9i1fA5DSbSSpre4OcJQiEmw2bc6+F3+amBjPca1a5v38uc1OQ2vql/2UKe3vo0HZv/ik0z3ct/ITnn+xSq7nzk9cabFl9SZg1MgU2rT27ZwixY1Pyfavv/5KlSpV+OqrryhdunRBxyRS6C78hWEzUnm9w7N0r/QTJgYpvcbgbDbAb9fX4iWRouvkKe+Oiz1hsn5D3r7PvZk1B9j9b0PuWf45H3UcRO2IfUzrdBf3/jGVI4k1Ciz+C+X0JuDRJxJ45SVDJSoi+Jhsu1wuLr30UiXaUixc+AsjxJLC620eo1ul30h129hS7zUaNLvGr9fX4iWRoqtiBe+OmzQZTsef+1njzfe5N7PmaQ4n1mTQik/5sMNgakUcYFqnu7hv5SfsP5vzHgDexn++wiidESkufFrhdckll3DixImCjkWk0F34CyPcepZJlz1Ityq/kewK5dHVkxj5f1fhcvmnHX1aon/hL9O028NLlxW7NvgixU6L5p7EOTen4zP+25vv87zOOh9LqsagFTPY829dKocfZ2rnu6lX5q9sj4+O9q3GOrc3AaZ5rkRFpKTzKdl+8MEH2bhxI8uWLSvoeEQK1fm/MErbEni/w31cFvUnZ52lGLrqA5bHdPHbLwxvZ4b8leiLSMGwWg1GDPd99jan73NfZp1PpEQxZOV0dsY3omLoST7udA+Ny23L8thHhhk+zTx7+ybA1xIVkeLEpzKSDh068Oabb/L000/TtWtXOnbsSOXKlbFYss7d27Ztm68gRfwl7RdBhO0M77a/nxYVNhHvKMvQVR+w9XTzTMcVpLwsqurRveCvLyIFp2sXg7FjyFQSVr48nD6d82tzWqSYNmvubSlJmjhHBe5dOZUPOz9A4zKb+bjTIB764302xXkuEh3tSbR9LVXz9k2AL28WRIobn/tsJyYmYrPZmDNnDnPmzMnx2B07dvh6GZEMCnohYcUKUMb2L1M63EezyC2cdpTj/pWfsOvfxpmOK2iaGRIpXrp2MejciQw/o2JPmLw8NvfXZvd97pk1J8uFiLk5k1qO/V0+oUHMg5Q+vJap3e5lZe0pmLUuy/fPztzeBBiG53m1ARTxMdn+/vvvGTVqFKZp0qRJE2rUqKHFkuJ3/lhI2KJBPB93GULDiG3EpZTngT8+zpRo+1rTmBvNDIkUP1arkWGGev0GgNwT5Zy+z7ObNU+bnYbsn+vcJYKk1A8J+2EYtv0r6bz/QZJbvo/LelnePrELePMmwNcSFZHixqdk++OPPyYkJIQPP/yQyy7L3zesiDf8sgtacjwRsz2J9qmUSO7/4xN2/9sw02H++oXhze1hfyX6IlI4Cur7PKtZ8/Nnp3N6Dns4yddPIWzuw9j+WUbY7AdI7v8BrprtvPocsrujmNObgGefjqBN60Svzi9S3PmUbB8+fJi2bdsq0ZZC4ZcWU0mnCf9uMNaY7ZjhkWxtMo3T6+tnOCS/NY250cyQSPFXkN/nF86ae/scALZQkq99h7AfhmPb9zthsx4g6YYPcNfIeU1VbncUs3sTUKlSKHFxSrZFwMduJJUrVyY8PLygYxHJUl4WEnolKY7wbwdhjdmOO7wCSTdNp9VVDfn2K4N3/mvwwvOej9986f8NGTwzQ0amtmHR0TB2jDaEECkOgub73BZK8nWTcF7UGcOZRPisB7AcWpvt4d62JvUk+ga9eng+aoJAJCOfZravv/56Pv30U06fPk358uULOCSRjAp0IWFaoh27E3epSiTdNA2zYj3Ai5khP8nt9rCIFH1B831uCyX5+smEzXkI2/6VhM+6n7P9PmT9iVYZ4gK0aY1IAfEp2X7ggQfYuXMnd911F6NGjaJdu3YYhr7ZxD8KbCFh8r+EfzfkvER7OmbFuvmOryAEKtEXkcITNN/ntlCSr3vXk3Af+APLV/fxycoP09sCRkXBdX29v6MYFJ+TSBDzKdnu3bs3AEeOHOGee+7BZrMRFRWVZcJtGAaLFi3KX5RSohXIAiPHWcJn3ZehdCRYEm0RkUJnD2NhxclUWPcQl0X9ybvt7+fBVR+xJa4FsbHwyTTvTqPWpCK583mB5PlSU1M5cuRIgQQkktXK9xHDDd8XGKUmET77QaxHN+EOLcuGpp9wYGMdKlYwVa4hIiWSy2Xy1pQwzpx6l3faPUS7qNVMaX8fD/zxMdtON/P6PGpNKpI7n5LtnTt3FnQcGaSkpPDWW2+xdetW9u/fT3x8PGXLlqVmzZrcdNNNXHfdddjtdr/GIIGR/cp3zwKj7HrJZrvAyJlC2A/DsR5aQ6o1ghFrPmLFNw1I63ub3z7dIiJF0bmF5+E8vPpdJl/2EG0qrWFK+/sYvOJT/j7TINdzqDWpiHd86kbib2fPnuXLL7/EMAy6devGwIED6dmzJzExMTz77LM88MADuN3uQIcpBSy3le9A3jqGuFIJ+/FRbPtX4LSEM+S391mxr2mW505bVS8iUhKcX/6R7CrF8D/fZdOpFpQL+Zf3OwyhVun9uZ5DrUlFvOPzdu3+VL58edauXUtISEiGx51OJwMHDmT58uUsW7aMbt26BSZAKXDe99L2tJbKldtJ6PynsO39FdMayjObJ6cv/sn+3CopEZGS4cLyjyRXaYb9+R4fdxxIw3K7+KDDIAau+Iw+t1bjhx/J2x1FEcnAq5nt3bt3F8jFvD2PxWLJlGgD2Gw2evXqBcD+/bm/65aio0B7aZtuQn8ehf2vBZgWO1sveYeFe9oXzLlFRIqBtIXn5zuTWo4H/viIf85cTNVSx/ik82Du7n8iIHsQiBQnXiXb1113HY899pjPtdrbt2/nkUce4frrr/fp9Wncbje///47AA0a5F5PJkVHgfXSNk1CF4/BvuMHTMNKct+3+Nu4vEBjEBEp6jw7W2ZOmOMcFbn/j485kliN6uEHKD37XqyOeG1aI5IPXpWRDB06lKlTpzJ//nwaNGhAnz59aNeuHU2aNMlyBjolJYXt27ezevVqfvzxR/7++2/Cw8MZOnRonoJzOBx88MEHmKbJ6dOn+eOPP9i7dy833HADHTp0yPZ15cqVw2IJTDl6ZGRkQK5blLhcJqvXpBJ7ohRRlSy0bmWj9kVO4N9cX1v7ojJERma/ONb1y1jcm2eCYWAb8C5lm/ejNqkFcu5A09eW9zRW3tNYea+4jVW/66F06RTGvZ7I8ePn1kFZylXjQLevqLbjJqwn/qLM3Iew3vMNRmhEns5f3MbLnzRW3iuKY2WYpunVyrCTJ0/y3nvvMWfOHM6cOYNhGFitVqpWrUrZsmUpXbo0Z8+eJT4+nmPHjuFyuTBNkzJlynDDDTdw//33U6FC3noEnT17llatWp0L1jAYOHAgjz/+ODZb9u8T4uLi8nSdghIZGRmwaxcV2XUbeXgovPNu7r20v/ky+1kV+9pphC57HYDkXmNwNrsJ8CT3A27NvPAyL+cONH1teU9j5T2NlfeK81hl1W7VajWwnNhN+Nd3YSSfxlWjLUn9PwR7mFfnLM7jVdA0Vt4LxrHyJvn3OtlOk5yczPz58/n1119Zv349J06cyHRMpUqVaNOmDd26dePqq68mNDQ0L5fIxO12ExMTw5IlS/jvf/9LvXr1+Oijj4iIyPpdtpLt4JTWbSQ7t90K//dV9q8fOyb7OkHbttmE/fwMACmdHyO13b15unZO5w4G+trynsbKexor75XUsbIc30b4N3djOM7ivLgLyddNBmvudwBL6nj5QmPlvWAcK78k2xc6deoUJ0+e5MyZM5QpU4aKFSvmeQY7L+bPn8+IESMYMmQITz75ZJbHKNkOPt7OLg9/KPMMd24r3617fiXsh+EYpgtH64E4ujwJWexmmtWselFZVa+vLe9prLynsfJeSR4ry6G1hH9/L4YzmdTG15Jy1Xgwci7VLMnjlVcaK+8F41h5k2znu/VfhQoV/JpcX6hz584ArF69utCuKfnnbbeRcuUMvv2KLG9pZsVyaA1hPz6KYbpIbdIv20QbPBvXdO7k/blFRATcNdqQfO1EwmY/hH3HXMxSUTi6Zj3ZJSKZBWWf7ZzExMQA5FizLcEnL91GrFaDVtm3xE5nidlB+OyHMFwpOOt2J6X3y9km2mm8PbeIiJzjurgLKVe+QtiCZwhZNxWzdEVS2wwKdFgiRUJQ7iD5999/k5SUlOnxpKQkxo0bB0DXrl0LOyzJhws3UMjvcUbcfsK+vw/DkYCrehuSr5kAFr0BExHxF2eTfqRc/gQAocvewLZ9ToAjEikagjI7mT9/PtOmTaN169ZUr16diIgIjh8/zrJlyzh9+jRt2rThnnvuCXSYkgdpGyjkVrPdonnu5zISYgj/fgiWxBO4ohqR1G+K1yvkRUTEd6ltBmEkniBk3XRCf3kOMzwS18VdAh2WSFALymS7W7duxMTEsGHDBjZu3EhiYiIRERE0bNiQPn36cOONN6qMpIjxbKBAjh1BHhnmReu9lATCZt2PJf4Q7nK1SL7hIwgtU8DRiohIlgwDR5cnMc6exL5zLmFzR5B00zTcVVsEOjKRoBWUGWuzZs1o1qxZoMOQAta1i8HYMfjeEcSVStiPj2CN3Ym7VEWSbvwYs3Ql/wYtIiIZGRZSrnwFIykO2/7lhM96gMRbv8CsUCfQkYkEpaBMtqX4SusIsvefMuzbf8b7jiCmSejC0dj2r8S0lyK53/uY5WsWTtAiIpKRNYTka98m/JuBWI9vIfy7ISTd+iVmmcqBjkwk6ATlAkkp3qxWg3Zt7fTqYdCqpXe7NoasnIR9+2xMw0pyn7dwV2laCJGKiEi2QkqT1P993JG1sZw5Stis+yElIdBRiQQdn5LtHj168MYbb+R63IQJE+jZs6cvlxBJZ9v8NSF/vgdASs8XcNVRJxoRkaBQqgJJN3yMu3QlrCd2EfbjCHClBjoqkaDiU7J9+PBhTp3KvXFyXFwchw8f9uUSIgBY9y4ldPEYABztH8LZ7KYARyQiIuczy1Un+fr3MG3h2PavIHTxGPK5ObVIseLXMpKkpCR1DRGfWY5tPbc75CX9cXQYFuiQREQkC+4qTUnuMwHTsGDf+i3uZZMCHZJI0PBLsu12u9mzZw9//vkn1apV88clpJgzTh8kbPYDGM4knBd1JKXnS7nuDikiIoHjqnsFjiueBcC96FVsO+cFOCKR4OD1tHPjxo0z/Hv27NnMnj07x9eYpsnNN9/sU2BSgiWdJnzWfVgST+KKakxy34lgtQc6KhERyUXqpbdjxB/ybHrz8zO4I6Jx12gb6LBEAsrrZLtq1arpfz969ChhYWFERkZmeazdbic6OpoePXpw55135j9KKTlcDsLmPoIlbh/uMlVJ7v8+hEYEOioREfGSo8uThCbFwvZ5hM8ZTuJ/vsSscHGgwxIJGK+T7SVLlqT/vVGjRlx11VWMGzfOL0FJCWWahC56Cduh1ZghpUnu/z5mRHSgoxIRkbwwLFgHTCblo0NYj24ifNb9JP3nS8xSFQMdmUhA+FSzPWPGDO69996CjkVKOPvaT7Bv+x7TsHh6aVdqEOiQRETEB4Y9nOTr38VdriaW+IOEzX4IUpMDHZZIQPiUbLdr1446dbQtqxQc6+6FhPz+FgCObs/gurhLgCMSEZH8MEtVJOmGDzDDymE9tpnQX54FtQSUEihfffkOHjzIunXriImJweFwZHmMYRgMHTo0P5eRYs5yfBth85/GwMTR4jZSW94R6JBERKQAmJEXk3TdJMK/HYR913zcFeqS2kE5gZQsPiXbDoeD5557jrlz5wLk2LxeybbkxDhznLDZD/2vxV9nHFc8E+iQRESkALlrtCWlxwuELXye0D8m465YF1eDqwIdlkih8SnZfuedd/jhhx8oW7Ys1113HbVr16Z06dIFHZsUd6mJhM15EMvZGFwV65Lc9y2waBMkEZHixtlsAI6TfxOy/lPCFjxDUtkauKs0DXRYIoXCp8zmxx9/pGzZssyaNYvq1asXdExSAphuN2E/PYU1Zgfu8Aok93sfQssEOiwREfETR5cnscT9g+2fZYTNGUrSbV9jlqkc6LBE/M6nBZInT56kdevWSrTFZ+5Fr2LbsxjTGkLy9ZMxy9UIdEgiIuJPFivJ10zAVbEulrMxhP0wDFKTAh2ViN/5lGxrC3bJD9uOubh/nwxASu+xuKu1DHBEIiJSKEIjSL7+Pcyw8liPbyVkwbOsX+9m4WKT9RtMXC51K5Hix6dk+8Ybb2T16tWcOnWqoOORYs5ybCuhvzwPgKPd/Tgb9w1wRCIiUpjM8jVJuu4d3IaNkN0L2Pb+FF562eThR00G3GqydJkSbilefEq2hwwZQpcuXbjrrrtYtWpVjt1IRNIYZ2MJ+2E4hisFo2EvHJ0eDnRIIiISAL/ubcOYDaMBeLDRu/SuNh+A2FgYNdqTcLtcntluzXpLUefTAslevXoBcOTIEQYOHIjNZiMqKgrDMDIdaxgGixYtyl+UUvQ5HYTNfQRLwjHcFeoQMuBdSHIFOioRESlkLpfJ25NMYmNvpE6ZPdxV91NeuvQ59ifUZte/jQF47U2Ttyd5ku80UVEwYjh07ZI51xAJZj4l24cPH87w79TUVI4cOVIgAUkxZJqELnkZ65ENmKFlSLp+MqFhZSEpLtCRiYhIIdu0+VwS/fa2x6kTsYfOlZfz33YPc9uyrzntiOTffzO/Lm3We+wYJdxStPiUbO/cubOg45BizL7p/7Bv/RbTsJB8zQTMyIsDHZKIiATIyfOWe7mx8sz61/miyy3UKn2Q11o/zkOrPsRlZp+eTJxs0rkTWK1KuKVo8KlmW8Rb1oOrCfl1HACOyx/HdfHlfr2eavxERIJbxQoZ/30mtRyPrp5EojOcy6L+ZESTCTm+PibGMzsuUlRouz7xGyP+MGFzH8EwXaQ2upbU1gP9er2ly9LqAM89pho/EZHAcblMNm32zGZXrAAtmnv+REVlrMfec6Y+z294lQltH+XOujPYEd+Enw5dm+15T6oZmhQh+ZrZXr58OUOHDuXyyy+nadOmPPvss+nP/f7774wbN47jx4/nO0gpglITCZszFCP5NK7Kl5DSawxksYC2oCxdZjJqdMZEGzKubBcRkcKzdJmnld/Dj5oZWvstXwEjhmf+fbD4aG8++us+AEa3eIFG5bZne+4LZ8dFgpnPyfYrr7zCvffey+LFizl79ixOpzNDC8CoqCg+/fRT5s+fXyCBShFimoT+8hzWE7twl6pE8nWTwR7mt8ulrWzPycTJKikRESksCxel5DgBAjB2jEFUVMbnvz05jD9OdiHMmsJbbR8mMiTzFHZ0tGd2PDcqK5Rg4VMZyezZs/n8889p2rQpL7/8Mo0bN6ZRo0YZjmnUqBFVq1ZlyZIl3HPPPQURqxQR9g0zsO+aj2mxkXzt25hlqvj1euevbM9OWo1fK21WKSLiVy6XybjXE3M8ZuJkk2++NOjcybigzMTGqqWvs3/5LVwUsZ/X2zzGg398hNO0p7/2kWFGrosjVVYowcSnme0vv/ySsmXL8uGHH9K4ceNsj2vYsCGHDh3yOTgpeiyH1hKy9A0AHF2ewl29td+v6W3tnmr8RET8b9NmOH7cneMxaRMgVqtBq5YGvXp4PlqtBp26l2PfZZNIdJWibaU1PNrkTcAzoz12jJFrsqyyQgk2PiXbf/31Fy1btqRChZyLpiIiIjhx4oRPgUnRYyTEEPbjo/9bENmX1JZ3FMp1va3dU42fiIj/FcQESOsr62NePx6A2+t+zldPz+WbL3NPtFVWKMHI55rtrHaLvFBMTAxhYf6r1ZUg4nIQ9uMILIkncFVqQEqvl/y6IPJ8aSvbc+JtjZ+IiORPQU2AmA164bjsQQAa7n4R+6nduZ4zL2WFOVG9txQkn2q2a9euzbZt20hNTcVut2d5TEJCAjt37qRevXr5ClCC04XtnC479Xr6DpHJ174D9lKFFovVajBi+LlFN1nxpsZPRETyr0VzqFzZkmMpibcTII4OQ7Ec24Jt/3LC5j5M4u3fQGiZbI8viFl11XtLQfNpZvuqq64iNjaWCROybzz/1ltvcebMGfr06eNzcBKcLmzntODNuYRu+gKA5Ktew4y8qNBj6trFyHJlu7c1fiIiUjCsVoNnnsp5wsXrCRCLleRrXsddpiqW0/sJ+/lZMLOfWMnvrLrqvcUffJrZvvvuu5k3bx6ffvopGzZsoEePHgAcPHiQ6dOns3DhQtatW0eTJk246aabCjRgCay0H0Rp6pfdxfMtXgDgw133U/1wN7rWDUxsXbsYdO5Epg0UNKMtIlK4evUMZeyYs5lmiKOjPYl2niZAwiNJvnYi4TNvx/b3IuzrppHaZlCWh2a1Yc6FsptV97beW1vFS175lGyHhYUxffp0Ro4cybJly9i82VP8tHbtWtauXQtAp06deOONNwgJCSm4aCWgLvxBVMb2LxPaPkK4LZkVMZ14f9dQKgX4B5FnZXtALi0iIucpyAkQd5VmpHR7hrDFYwj5/S1cVZrhrtE203H5KStUG1nxF5+3a69QoQIffvghO3fuZPny5Rw+fBi3202VKlXo1KkTzZtrNVpxc/4PIgM3L7d6hlqlD3IksRrPrnsdN1b9IBIRkXQFOQHibH4rqUc2YN8xl7B5j5F0+3eYEdGZjvOUFZLnWXW1kRV/8TnZTtOoUaNMG9pI0XDhIsfcZhzO/wFzd71pdKvyGymuEB5f8zbxqeWzPE5ERKRAGAYpPV/EErMT68ndnoR7wDSwZm7U4MusutrIir/kO9mWosmX1dZpP2AurbCOYY0mAvD61mfYEX9JlseJiIgUKHspkq+bSKkvbsJ6eB0hy9/G0fXJLA/N66x6fuq9RXKSr2T70KFDrF27lpiYGBwOR5bHGIbB0KFD83MZKWAXLnJMk7baeuyYrBPuFs2hXtVTvN70CWwWF/MO9eW7/RkXwOoHkYiI+JMZeTHJV75K+NxHCFk3FVe1Frjq9873edVGVvzFp2Q7JSWF5557jh9//BEAM4c2PEq2g0t+VltbLSZTejxD9L8x7D1Th1c2jQYyHqMfRCIi4m+u+r1JaTWQ0PXTsM17li1tG9Cw/UX5/v3ja723SE58SrbfeOMN5s6dS8WKFbn22mupWbMmpUoV3iYm4rv8rLa2r/6Q6H+X47KEMW7PWyS5Sqc/px9EIiJSWJYuM3nn3RG82mAzrSuuI+Lnx/nPxC8YOiw037+H1EZWCppPyfb8+fOJjIxk9uzZROW2T7YEFV9XW1sP/EnIykkApPZ8njeHN9APIhERKXTnSiFtPHPmdWZ2vZEm5bdzZ/QbjBo9KttSyLxQG1kpSD7tIJmYmEjbtm2VaBdBvqy2Ns6eIHT+Eximm9RL+uNsesP/fhAZ9Orh+ahEW0RE/O3CUsiY5Co8v2EcAP+p8390r7qQiZNNXC7t9CjBw6dku379+iQkJBR0LFII0lZb5yTDIke3i9CfnsRy9gSuivVI6f6832MUERHJSlalkMtjujD974EAvHTp89gSDrFpcwCCE8mGT8n2wIEDWb16Ndu3by/oeMTPPKutc56FPn+RY8iqKdgOrsK0lyK579tgDy+EKEVERDLLrhRy8o5H2HTqUsrYz/B668c5dSLrDmkigeBTzfbVV1/N8ePHGThwIHfccQcdO3akcuXKWCxZ5+7VqlXLV5BSsLxdbW3dvxL7qvcASOnxAmbFuoEIV0REBMi+FNJp2hm57g2+6nojTSO3Uj7uv8DIQo1NJDs+99lu2LAh5cuXZ8qUKUyZMiXb4wzD0Ax4EMpttbWnTvtpDExSmw7A2eS6AEcsIiIlXU4bzxxNqsYLG8fydrvh1Dj0KUl72uGq273wgxS5gE/J9q+//srw4cNxOp1ERkZSrVo1tf4LQrltx57tamvTTeiCZ7Ak/q9O+4pRhRe0iIhINnLbeOa3Y93ZG30XdWJmELbgWRLv/B6zrO6uS2D5lGxPmjQJ0zQZN24c/fr1wzDUiSLY+LIdexr7uk+x7V+OaQ0lpc8EsIf5OVoRERHv5FYKGd3pcVxfbcB6fAth8x4n6eYZYLUHLmAp8XxKtvfs2UObNm3o379/QccjBcDX7dgBLMe2ErL8vwCkdBuJu1IDv8YqIiKSVzmXQoaQ3PctSn1+A9ajGwlZ+Q6Oyx8PdMhSgvnUjSQyMpLIyMiCjkUKgLfbsWfZg9RxlrB5j2O4U3HW64Wz+S1+ilJERCR/ctrvwSxXg+RerwBgX/MJ1gN/BCpMEd+S7SuvvJK1a9eSkpJS0PFIPuVlO/YLhS5+CUv8AdxlqpLcawyoPEhERIooV4PepDa7GQOT0PlPQ1JcoEOSEsqnZHvEiBFUr16dBx98kAMHDhR0TJIPvm7Hbts+B/uOuZiGheRr3oDw8gUem4iISGFK6fY07gp1sJyNJeyX58DUzpJS+Hyq2b7//vuxWCz88ccfXH311VSvXp3KlStnuVDSMAw+/fTTfAcq3vFpO/a4fYQuHgOAo/1DuKu3zrWTiYiISNCzlyL5mjcJ//IWbHuWYNv8Fc4W/wl0VFLC+JRsr169Ov3vLpeLAwcOZDvDrU4lhSunHqRpMmzH7nJ46rRTE3FVb0PqZQ/kq5OJiIhIMHFHN8Zx+eOE/jae0N9ew129De5K9QMdlpQgPiXbixcvLug4pIDk1oMULtiOffl/scZsxwwrR/I1b7B0ucXnTiYiIiLBKLXlnVj3rcC273dCf3qCpNu+BltooMOSEsKnZLt69eoFHYcUIK+3Y9+3gpB10wFI7j0WZ6nKXnUy6dxJJSUiIlKEGBZSrnwVy2f9sJ74i5Blb+Lorg3bpHD4vF27BLfctmMnKY7Qn0cC4GjxH1z1erBpg+l1J5Msd54UEREJUmbpSqRc+Srhs+4nZOPnuGp3wlWnW6DDkhIgX8n233//zddff83mzZuJi4ujR48ePPXUUwCsX7+erVu3ct1111G+fPmCiFXyKPvt2E3CFr6A5ewJ3BXq4OjyJOB7JxMREZGiwHVxFxyt7iJk/QzCfn6WxDtnY0ZEBzosKeZ8TranTZvGhAkTcDqdgGchZFxcxh6W48aNIyQkhFtvvTV/UUqBsm37HtvfCzEtdpKvfh3s4YBvnUxERESKEkfnx7EeXI01diehPz9D8g0fgeFTJ2QRr/j01fXbb7/x2muvUaVKFSZPnszKlSsxL+hd2apVKypUqKDFlEHGOH2A0F9fBcDRcTjuypekP5fWySQnGTqZiIiIFDW2EJKveQPTFoZt/0rs62cEOiIp5nxKtqdNm0Z4eDjTpk2jZ8+eVKiQ9VRno0aN+Oeff/IVoBQgt5Ow+U+da/PXZlCGpz2dTHJe+Hh+JxMREZGiyKxYj5SunrLXkOX/xXJid4AjkuLMp2R727ZtXHrppdSsWTPH4yIjIzlx4oRPgUnBs//5AdajmzBDy5B89WtgsWY6xtPJxMg0wx0dDWPHGF63/XO5TNZvMFm42PPR5dKuXSIiEjyczW/FWftyDJfDs527yxHokKSY8qlmOzU1ldKlS+d63KlTp7BaMyd0UvgsRzYSsuo9AFK6j8YsWy3bY3PtZJILbYojIiJBzzBI6f0K1hnXY43dQcgf7+Lo/Gigo5JiyKeZ7Ro1arBz584cj3E4HOzatYvatWv7cgkpSI6zhM1/GsN0kdqwD87GfXN9iaeTiUGvHp6PeUm0R43O3EIwbVOcpcs0wy0iIsHBjIgmuddLANjXfIzl8LoARyTFkU/Jdvfu3Tl8+DDTpk3L9piPP/6YU6dO0bt3b5+Dk4IR+tt4LPEHcJepSkqP0X67jstlerUpjkpKREQkWLjq9ya1ST8M003Y/KchJSHQIUkx41OyPWTIECpXrszrr7/OiBEjmDdvHgAnT55k4cKFPPXUU0yaNIkaNWpw++23F2jAkjfWvxdh3/otJgYpV42HsLJ+u9amzXi9KY6IiEiwSLliFO6y1bD8e5jQ38YFOhwpZnxKtsuVK8e0adOoV68eCxYs4IknngDg999/5+GHH+aHH36gbt26fPzxx0RERBRowOI94+wJwhZ6ZrJT2wzCVbOdX6+nTXFERKRICo0g+arxmBjYt32P9e9FgY5IihGfN7W5+OKLmTNnDkuWLGHFihUcPnwYt9tNlSpV6NixI1deeaUWRwaSaRK66EWMpDhclRri6Piw3y+pTXFERKSoctdoS2qbQYSs/YSwhaNJrHopZulKgQ5LioF8bddusVjo2bMnPXv2LKh4pIDYdvyAbc9iTIudlKvHgy3E79dM2xQnp1ISbYojIiLBytHxYaz7V3h2l1z4PMnXTwFDXbQkf7Q/aTFknDlK6K9jAXB0GIo7qlGhXFeb4oiISJFmCyHl6tcwrXZse3/DtuWbQEckxYBPyfYvv/xC//79+eOPP7I9ZuXKlfTv359Fi1T3lJMC3/zFNAn95TmMlDO4qjQnte3gggnUSwW1KY6IiEgguCs1wNH5MQBCl76GcfpggCOSos6nMpLvv/+eI0eO0Lp162yPadOmDYcPH+a7775TmUk2/LH5i23zV9j2r8S0hZF81Xiw5KtSyCf53RRHREQkkFJb3YVtzxKsh9YQ9ssokm6aDoaKAcQ3Pn3l7Ny5k4YNGxISkn0dcEhICI0aNcp185uSyh+bvxinDxC69A0AHJ0fw6xwcUGE6hNfN8UREREJOMNCcu+xmPZSWA+twb7hi0BHJEWYT8n2yZMniY6OzvW4qKgoTp486cslijW/bP7idhG24BkMZxLOGu1Iban+5iIiIr4yy9ckpYuntXHI8rcw4vYFNiApsnxKtsuWLcvRo0dzPe7YsWOUKlXKl0sUa/7Y/MW+/lOsR9ZjhpQm5cpXdbtLREQkn5zNb8FZqz2GM5mwn0eB2xXokKQI8ikja9asGRs3bmTXrl3ZHrNr1y42btxIs2bN8nz+48ePM336dAYNGkS3bt1o2rQpnTp1Yvjw4WzatMmXkINKQW/+Yjmxm5AVbwOQ0nUkZrnqvgUmIiIi5xgWUnq/ghlSGuuR9djXzwh0RFIE+ZRs33bbbbhcLu6//34WLFiQ6fkFCxZw//3343a7ue222/J8/s8++4xx48Zx8OBBOnXqxMCBA2ndujWLFy/m1ltv5aeffvIl7KBRoJu/uFIJXTASw5WK8+KuOJvemK/YRERE5ByzbHVSuj4NQMiKtzFO7Q1wRFLUGKZp+tRrbvz48UyfPh3DMChbtiw1atQA4NChQ/z777+Ypsmdd97JqFGj8nzuX375hfLly9OuXcbtxdeuXcs999xDqVKlWL58ebYLNOPi4vL+CRWAyMhIr67tcpkMuDXz4sjzRUfDN1/mvrDQ/se7hP4xGTO0HIl3/4AZkXstfTDwdqzEQ+PlPY2V9zRW3tNY5U2xGy/TJOz7+7DtX46rSnOSbv2iwLp9Fbux8qNgHKvIyMhcj/G5sHfkyJG89tprXHzxxcTHx7Nt2za2bdtGfHw8derUYfz48T4l2gC9e/fOlGiDp53gZZddRnx8fI4lLMGuoDZ/scT+RcifHwCQ0v25IpNoi4iIFCmGQUrvlzFDy2A9thn72mmBjkiKkHy9Lbv++uu5/vrriYmJ4dixYwBUqVLFq04lvrLZbBk+FlWezV/I1Gc7OtqTaOfaZ9vtJPSXZzHcqTjr9sDZqI9/AxYRESnBzDJVSOn2LGE/P0PIH5Nw1emKu1KDQIclRUCBZKzR0dF+TbDTHDlyhJUrVxIVFUWDBkX/Czw/m7/Y107FenwbZmg5UnqMBkN9rEVERPzJ2eR6nLt/xrb3N0IXPEPSf74Cqz3QYUmQ87lmu7ClpqYycOBA1qxZw2uvvUa/fv2yPdbtdmOxFN/Wd2bMLpxTeoHLgfWGd7C0vDnQIYmIiJQI5pnjOCd1haTTWHo8jbXbo4EOSYJcvma2165dy+LFi9m/fz9nz54lq7zdMAw+/fTT/FwGt9vNyJEjWbNmDTfffHOOiTZAfHx8vq7nq0Ip3He7CP9mOFaXA+fFXUi4qCcE2WIBbwTjIodgpvHynsbKexor72ms8qZ4j1cItm7PEjb/KVy/vUVC9U64K9X3+WzFe6wKVjCOlTcLJH1Ktk3T5Nlnn2X27NnpCbZhGBmS7bR/G/ksb3C73Tz77LP8+OOPXHfddbz00kv5Ol9RZ1//KdZjmzFDIkjp+ZLKR0RERAqZs1FfnDvnYftnKaG/PEfSrf8HFmugw5Ig5VOtxZdffsmsWbO45JJLmDZtGr179wY8/bU/+ugj+vfvj8ViYfDgwSxatMjn4NxuN8888wyzZs2ib9++jB8/vliXh+TGiPuHkBXvAJDS9WnMMlUCHJGIiEgJZBik9HwRMyTC051kw2eBjkiCmE+Z66xZswgPD+ejjz6iQ4cOlC5dGoDatWtz+eWXM27cOCZMmMDUqVPZsWOHT4GlJdqzZ8/mmmuu4fXXX8dqLcHvGt0uwn5+DsOVgvOiTtq8RkREJIDMMlVI6fIkACErJmLE7Qc8e2ms32CycLHno8tVJJbGiR/5VEayZ88eWrVqlalOxeVypSfEV111FR9//DFTp06lZ8+eeTp/WunI7Nmzueqqq3jjjTdKdqIN2Dd+gfXIekx7KVJ6jUkvH3G5TJ+6mYiIiEj+OJvdhHPXT9gO/knowtH8XHkqb082MrT0jYqCEcPJvaWvFFs+12yXL18+/d/h4eGAZ2FihQrn9hi/6KKLWLp0aZ7P/+677zJr1ixKlSpF7dq1ee+99zId07NnTxo3bpz34Isg4/QBQpb/F4CULk9ilq0GwNJlZqY+3fqmFhERKSSGQUqvMVhn9MN2aDXr531DbGzGDmGxsTBqtMnYMfrdXFL5lGxHR0cTExOT/u9q1TzJ344dO+jUqVP64/v27fNpRvrw4cMAJCYm8v7772d5TPXq1UtGsm26Cf3leQxnMs6al+Fs7vkmXrrMZNTozLem9E0tIiJSeMzytUju+Ajhy8bzaJM3WX78co4nV8103MTJJp3/lyKdf0e6W1eVmRR3PiXbl1xyCX/88Ud62Ujnzp158803eeONN6hSpQqVK1fmq6++Ytu2bXTo0CHP5x8/fjzjx4/3JbRix7blW2yHVmPawknp9TIYFlwuz4x2TtK+qVVSIiIi4l9rLLdT7tQCWlTYyHMtxjD8zylAxt+/MTEw43OTH34kwx3pypVP8/BQUxNkxZhPCyS7d+9OXFwcv/32GwCNGjWiT58+7Ny5k759+9K2bVsmTJiAzWbj0UfV7N1XRkIMocveBGBL9MOs+6dGeo32+d+oWYmJ8bxzFhEREf86GWflxY1jcLjsXF55GdfU+DHL4z6Zlvn3d0yMm1GjTZYu0wx3ceXTzHbfvn3p3bt3hhKR8ePH07BhQxYtWkR8fDwXX3wxQ4YMoXnz5gUWbEnz79evUNpxhq1xTbnnh9txYxIVBVd09e71J0/5Nz4RERHxlIP8k1CXD/96kGGN3+GppuNYFduBUymVcn1t2hYluiNdfPm8g2RISEiGf9vtdu677z7uu+++fAclsHPOQtqcXkiq28aYTS/hxvPGJjYWvv7Wu3NUrJD7MSIiIpI/LZp7GhRM/3sQPav9QqNyOxnZ9FWeWveW1+dIuyPdqqUfA5WAKLk7xAQxV2I8F+94GYBP/x7EX/82ynRMbnv7REd7vvlFRETEv6xWgxHDDZymnRc2vILTbaV39Z/pVmVJns6jO9LFk5LtIHT2h7eoGBLLvoTafPjXA1ke43bnfI5Hhhm6FSUiIlJIunYxGDvG4FRoY2bsuQeAZ5q9Qu2qCQwe6N05dEe6ePKqjKRHjx4+X8AwjHxt2V7SWA6todqRrwF4edOLONyh2R578wD4dWnGxRbR0Z5EW6uaRUREClfXLgadO8GWDQ+RsOoXKnOQmUPeIbnbKH740cyxuYHuSBdfXiXbaX2vxc+cKYQtfAGA7/YNYN3Jtjke3rmTwdAH0Q6SIiIiQcJqNbi0TSmsUS/Cd4MJ2fR/uJpcy4jhzbPcH8MwPIskdUe6+PIq2d65c6e/4xAg5M/3scT9g7tUJT6LeTzHY9PeAVuthhZTiIiIFJK0Fry5TXK5LupIapPrsW+fQ+jC0XS9/VvGjrFl2vm5crSF4eqzXaz53I1ECpYl9i/saz4GIKXH89zbpFyW74DT6B2wiIiIb7xNmC+0dJmZKVmOioIRw7PetTml69PY9i7FeuIv7Oum07XLvXTudOEOkuX599/TBfjZSbBRsh0M3C5CFz6P4XbirNcTV/3edK0PY8eQ6ZtaNdkiIiK+y2vCfP7rspoEi42FUaNNxo7J4vXhkaR0G0nYgpGE/PEuzvq9sUZelOGOtCbOir98JdsxMTF8//33rF27lpiYGACio6Np06YN/fv3p3LlygUSZHFn3/h/WI9txgyJIKX78+mPpy20UE22iIhI/vmUMOOZCX97Us47PGa3KY2z8XU4t8/BduAPQhe/SPKNUz2F2lJi+Jxsz5o1izFjxpCcnIxpnvsC/Ouvv1ixYgUffPABzz33HDfeeGOBBFpcGWeOEbLibQBSujyBGRGd4XnVZIuIiORffhLmTZszb7N+oWw3pTEMUnq+iPXT67AdWIVtxxycTfrl/ROQIsunZHvp0qU8++yzWCwWrr76avr06UP16tUBOHLkCPPmzWPBggU899xzVKpUia5dvdxfvAQK/fVVjNREXNVa4mx2U6DDERERKZbykzB7u9lMdseZ5Wvh6DCU0OVvEfrbazhrd4FSaqpdUviUbL///vsYhsGUKVMyJdKNGjWie/fuXHfddTzwwAN88MEHSrazYd37K7a/F2JabKT0eBEM7TEkIiLiD/lJmL3dbCan41Jb34Nt5zysJ3YRuvQ1Uq5+zbuTSpHnU3a3c+dOWrdunWMS3bVrV9q0acOOHTt8Dq5YS00kdLFnS/bUVnfjjmoQ4IBERESKr/wkzC2aexZR5iTXTWmsdlJ6jcHEwL7jB6z7VngXkBR5PiXbISEhREdH53pcdHQ0ISEhvlyi2Av5410sZ47iLlsNR4eHAh2OiIhIsZafhNlqNRgxPOdFjd605HVXbU5qyzsACF08BlKTcw5IigWfku127dqxefNm3G53tse4XC42bdpE27Y574JYEllid2Ff9ymAp/uIvVSAIxIRESne8pswd+1iMHaMkSlhj46GsWO8b8nr6PQI7tLRWOIPELLmI69eI0WbT8n2Y489xunTpxk1ahRnzpzJ9HxCQgLPP/88//77L4899li+gyxWTDehi17AMF046/fGVadboCMSEREpEfKbMHftYvDtVwbv/Nfghec9H7/5Mo97X4SUJuWKZwGwr/kI88SevH4aUsT4tEBy3rx5XHHFFcyaNYtffvmFTp06pXcjOXz4MCtWrCAxMZFrr72Wn376KcNrDcNg6NCh+Y+8iLJt+Qbr0U2YIaVJ6fZsoMMREREpUfK7h0VBtOR11e+Ns/bl2Pb9jmvuSLj+A/XeLsYM8/wm2V5q1KgRhmHgw0sxDMPviybj4uL8ev7sREZG5nht42wspab3wUg5Q0q3Z0ltdWchRhdcchsryUjj5T2Nlfc0Vt7TWOWNxit3xukDlPr0OgxXCsnXvImzUZ9AhxT0gvHrKjIyMtdjfJrZHjdunC8vK/FCfnsNI+UMrsqXkHrpbYEOR0RERALELF8Lx2X3E7ryHUKWjsdZ+3IIKxvosMQPfEq2+/fvX9BxFHvWfSuw75qHaVg8PbUt1kCHJCIiIgGU2mYwoX/9hOXE34SsmIijx/OBDkn8QLuoFACXy2T9BpN581NYv8HE5bqgvMaZ4mnxA6S2uA13laYBiFJERESCii0E67XjAbBv+hLLsa0BDkj8waeZ7aSkJOLi4ihfvjylSp1rWxcfH89HH33E7t27qVq1KoMGDaJWrVoFFmwwWrrM5O1J5v+2gE0APH08RwwnfXWyfc3HWOIP4C4djaPTI4ELVkRERIKKpU5nkhtdi33nXEIXv0jSf2bq7ncx49PM9pQpU+jRowd79+5Nf8zhcHDzzTfzySefsHTpUr766ituueUWYmJiCizYYLN0mcmo0WmJ9jmxsTBqtMnSZSbG6YOErP4QAEe3kRAaEYBIRUREJFg5uj6FGVoG6/Ft2Dd/FehwpID5lGyvWrWKWrVq0bTpuXKIOXPmsH//fi677DI++eQT7rzzTuLi4pg+fXpBxRpUXC7PjHZOJk52E7JkLIbLgbNWB5wNriqk6ERERKSoMEtXIqXTCABClr+NkVB8JypLIp+S7aNHj3LRRRdleGzJkiUYhsG4cePo1KkTo0aNonbt2vz+++8FEmiw2bSZTDPaF2ps/Ip931JMi52U7s+ph6aIiIhkydn8FlyVm2I4EghZ+nqgw5EC5FOyHR8fT5kyZdL/bZom69evp2HDhlStWjX98UaNGnH06NH8RxmETp7K+fkwaxJPN/O0SExtfQ9mhTqFEJWIiIgUSRYrKT1fxDQs2HfNw3rgj0yHpDVkWLjYzLohgwQlnxZIRkVFcfjw4fR/b926lfj4eK677roMxxnFeCa3YoWcnx9U7yOqlTpCcmgVnO0fKJygREREpMhyV76E1Bb/IWTjF4QuGUvind+DNQS4sCGDx4UNGSQ4+TSz3ahRIzZv3syiRYtISEhgypQpGIbBFVdckeG4/fv3Ex0dXSCBBpsWzT1f5FmpVXo/99SbCoCr5zNgL5X1gSIiIiLncXR8GHd4BSyn9mDf8DngXUMGCV4+JdtDhgwBYPjw4bRt25Zff/2VRo0a0b59+/RjTpw4wc6dO7nkkksKJtIgY7UajBie1TtJk6ebjSXEmkpM2c6YDXoVemwiIiJSRIWVxXH54wCE/PEu7vjjXjRkUElJMPMp2W7VqhWTJ0+mdevW1KlTh+uuu4733nsPi+Xc6X788UdKly7N5ZdfXmDBBpuuXQzGjjEyzHB3r7qITtErcBl2St84SosiRUREJE+cl/TDVbUFRmoiyXPfyLUhQ0yMp3GDBCefarYBunfvTvfu3bN9/p577uGee+7x9fRFRtcuBp07eb7IUxMNOm0cDyngajcYM7J2oMMTERGRosawkNL9ecK/uInomHm0qTiAtSfb5fiS3Bo3SOBou/YCYLUatGpp0Cv0PcJSjuEuWx1Hu/sCHZaIiIgUUe7Kl+BsfjMATzd7FZuRmuPxuTVukMBRsl1AjFN7ca94D4CUK54Fe3iAIxIREZGiLKXTCNxh5alfdje3XPxltsdFR3saN0hw8qqMpEePHhiGwbRp06hZsyY9evTw+gKGYbBo0SKfAywqQlZOAlcqzou74qpzRe4vEBEREclJeHkcnR8lbNELPNDwXRYcvpqTKZlboT0yzMBq1RqxYOVVsp3WU9vpdGb4t5xjlqoEkbVIuUKLIkVERKRgOJsNwLXlW8oc38LIVm/x5B/j0p+LjvYk2l27GLhcJps2e2q3K1bwzHQrAQ8Ohmmaxa5XTFxcXECuGxkZGbBrFzUaq7zReHlPY+U9jZX3NFZ5o/Hy3vljlV3CbDm2hfD/uwUDk40tP+Mfd+sMz2e/4Y1RrDa8Ccavq8jIyFyP8bkbiYiIiIgUjJx3iGyGs+mN2Ld+S7ODr1Dvjm/BYkt/3ajRmedN0za8GTtGO0wGmhZIioiIiASQNztEplz+GGZoOawndmHf9BXgmQnXhjfBz6eZ7fXr1/Pnn3+yZ88e/v33XwzDoFy5ctSrV4/LLruMFi1aFHScRZrqqERERCQr3ibMnb8sT0rnRwhbPIaQle+Q2vAaNu2K9HrDm1YtCzBoyZM8Jds7d+7k2WefZceOHQBcWO5t/G9hYPPmzRk7diz16tUroDCLrpxvCynhFhERKcnWrXd6nzC3uBnX5m+wxu4gdOU7nDRe8Ooa2vAmsLxOtjdv3szdd99NUlIS4eHhdOnShcaNGxMZGYlpmsTFxbFjxw5+//13Nm3axC233MJnn31GkyZN/Bl/UFMdlYiIiOQk9oTbq+NOngIsVlKueIZSX9+FbfPX1GpzM9Ao19dqw5vA8irZdrlcPPnkkyQlJTFgwABGjhxJRERElscmJCQwbtw4vvvuOx5//HF++umn9BnvksTr20KdVFIiIiJSUkVV8m75XFrC7K7RltQGV2H/awEtjo4jKmo6sbHZ5xHa8CbwvPofXrx4Mfv37+eaa67hlVdeyTbRBoiIiGDs2LFcddVV7Nu3jyVLlhRYsEXJps14fVtIRERESqbWrWxEZd6nJoMLE2ZHlycxbWHYDq/ltdt/zvG12vAm8LxKtn/99VcsFguPPvqo1yd+/PHHAUrE7pFZ8bY+SnVUIiIiJZfVajBieM7J8IUJs1m2Go62QwC4NPZNxr2QnClhj46GsWOKV5/tosqrMpKtW7dy8cUXU7NmTa9PXLNmTerUqcO2bdt8Dq4o87Y+SnVUIiIiJVvXLgZjx5CpocL5O0ReKLXNIOxbv8Ny5ijdw6bR8auH1PksSHmVbMfGxtK6des8n7x27dqsW7cuz68rDlo093QdyamURHVUIiIiAp6Eu3MnvE+Y7eE4ujxJ2LzHCFnzMc5L+tOqZbXCDVq84lUZSUJCAmXKlMnzySMiIkhISMjz64oDX24LiYiISMlltRq0amnQq4fnY245grPBVbiqt8FwJhPy+5uFFKXklVfJttPp9KmjiMViweVy5fl1xYXntpChOioREREpeIZByhXPYhoW7LvmYzm0JtARSRZ82kFSvJfn20IiIiIiXnJHN8bZ7Cbsm2cS+us4km7/BizWQIcl5/E62Z49ezazZ8/2YyjFl+e2UKCjEBERkeIopePD2Hb9hDV2B7at3+FsfnOgQ5LzeNdJHc/W7L78ERERERE/KlUBR4dhAISueBuS/w1sPJKBVzPbO3fu9HccIiIiIuKj1Bb/wb75ayyn9hCyagqObiMzPO9ymSppDRDVbIuIiIgUdVY7Kd1GEv79vdg3/h+pLW7FjKwNwNJlZqYe3lFRMGI4XjVrUKKeP0q2RURERIoBV+3OOGtfjm3f74Que5Pk6yezdJnJqNGZy3pjY2HUaJOxY3JOuPObqEsearZFREREJLildH0K07Bi27MY9v/J25NyXj83cbKJy5X1MWmJ+oUb9KUl6kuXaW2eN5Rsi4iIiBQTZsV6pP6vG4n582ucjM15v5OYGE974gu5XGa+EnU5R8m2iIiISDHi6DAMM7QMZRJ20LfmD7kef/JU5sc2bSbTjPaFskvUJSMl2yIiIiLFSakKOC57AIBhjScSbj2b4+EVK2R+LKsEPCveHleSKdkWERERKWZSL70DV7maRIfFck+9adkeFx3t6S5yoawS8Kx4e1xJpmRbREREpLixheC4/AkA7qo7jeiwY1ke9sgwI8s2fi2ae7qO5CS7RF0yUrItIiIiUgy56vfCVb0N4bZknmw5McNz0dEwdoyRbfs+q9VgxPCcW/tll6hLRuqzLSIiIlIcGQYp3UZS6osB9Ir6gakv3c5+ZzOvN6bp2sVg7Bgy9dmOjvYk2uqz7R0l2yIiIiLFlLvyJaQ2uR779jm0OPoaDW75HAzvk+SuXQw6d0I7SOaDkm0RERGRYszR6VFsf/2C9ch6rLt/wdXgyjy93mo1aNXST8GVAKrZFhERESnGzDKVcbQdDEDo72+C0xHgiEoWJdsiIiIixVxqm4G4IypjiT+EfdP/BTqcEkXJtoiIiEhxZy+Fo+PDAISseh+S4wMcUMmhZFtERESkBHA2uR5XpQYYKfGE/PlBoMMpMZRsi4iIiJQEFmv6Rjf2jZ9jxB8KcEAlg5JtERERkRLCVbszzlodMFyphCx/O9DhlAhKtkVERERKCsPA0eVJTAzsu+ZhObY10BEVe0q2RUREREoQd3RjnE2uAyB02etgmgGOqHhTsi0iIiJSwjg6PoxpDcF6aA3Wf34LdDjFWtAm23PmzGH06NHccMMNNG3alIYNG/L9998HOiwRERGRIs8sW43UVncBELpsAridAY6o+AraZHvixInMnDmTI0eOEB0dHehwRERERIoVR7v7MMPKYzm1B9tWTWj6S9Am26+88gpLlixh1apV3HrrrYEOR0RERKR4CS2Do/1DAISsnASOswEOqHgK2mS7Y8eOVK9ePdBhiIiIiBRbqS1uwV2uFpbEE4SsnRbocIqloE22RURERMTPrCGkXP4oAPa1UzESYgIcUPGjZFtERESkBHPVvxJX1RYYziRC/pgc6HCKHVugA/CHcuXKYbEE5n1EZGRkQK5bFGms8kbj5T2Nlfc0Vt7TWOWNxst7wTBW7j5jcH18PfZt3xN+xSMYUfUCHVKWgmGs8qpYJtvx8fEBuW5kZCRxcXEBuXZRo7HKG42X9zRW3tNYeU9jlTcaL+8FzViVbUBYnSuw7f2V5PljSL52YqAjyiRoxuo83iT/KiMRERERERydR2BiYNv9C5ajmwMdTrGhZFtEREREcFdqgLPJ9QCELH9L27gXECXbIiIiIgKAo+MwTKsd28E/se5fEehwigUl2yIiIiICgFm2OqktbgMg5PcJYLoDHFHRF7QLJL/55hvWrVsHwF9//ZX+2OrVqwFo3bo1N910U8DiExERESmOHJfdj33rd1hjd2Lb+RPOxn0DHVKRFrTJ9rp165g1a1aGx9avX8/69evT/61kW0RERKSAhUfiaDuY0BUTCVn5Ds4GvcEaEuioiqygTbbHjx/P+PHjAx2GiIiISImT2uou7Bu/wBJ/EPvmb0hteXugQyqyVLMtIiIiIhnZS+Fo/5Dnr6umgONsgAMqupRsi4iIiEgmzqYDcJevhSXpFPZ10wMdTpGlZFtEREREMrPacXR6BICQtVMxEk8GOKCiScm2iIiISAnncpms32CycLHno8vl2dDG2eAqXJUvwUhNxP7nBwGOsmgK2gWSIiIiIuJ/S5eZvD3JJDb23GNRUTBiOHTtYsHR+THCvxuMfdNXpLa6C7NcjcAFWwRpZltERESkhFq6zGTU6IyJNkBsLIwabbJ0mYnroo44a3XAcKcS8sfkwARahCnZFhERESmBXC7PjHZOJk72lJQ4Oj8KgG3HXIyTfxdGeMWGkm0RERGREmjTZjLNaF8oJsZznLtKM5x1e2CYbkJXTiqcAIsJJdsiIiIiJdDJU3k7ztHpYUwMbLt/wXJsq/8CK2aUbIuIiIiUQBUr5O04d6UGOBv3BSBkxUQ/RVX8KNkWERERKYFaNPd0HclJdLTnuDSODsMwLTZs+5djObTGvwEWE0q2RUREREogq9VgxHAjx2MeGWZgtZ47xixfC2fTGwEIXTERTDPbHt3ioT7bIiIiIiVU1y4GY8eQqc92dLQn0e7aJXMy7rjsQWzbZmM9vI7tPy5j1IzLs+nRnXMiX1Io2RYREREpwbp2MejcydN15OQpT412i+ZkmNE+n1mmMqmX3k7IuqmUWTORE7GdOL9YIq1H99gxSrhBZSQiIiIiJZ7VatCqpUGvHp6P2SXaaZJbD+asszSNy++gZ9WFWR6T1qO7pFOyLSIiIiJ5snF3JJ/tuRuABxtNxmo4Mx2T1qO7pFOyLSIiIiJ5cvIUfLbnbk47ylGnzF761Jib7XElnZJt8Um/fv3o169foMMIamPGjKF9+/YcOXLEr9c5cuQI7du3Z8yYMX69TqCuJyIiwadiBTjrjGDq7nsBeKDhFOwWR5bHlXRaICmsW7eO77//ni1bthAXF0d4eDi1a9fmiiuu4IYbbiA0NDTQIZYI7du3z/Dv0NBQSpcuTY0aNWjTpg1XXHEF9evXD1B04i/t27enZcuWvPfee4EORUTEa2k9umf+8x/uqDODaqWOcEOtb5i57/b0Yy7s0V1SKdkuwZxOJ2+++SazZ88mPDycDh06UKNGDRISEli9ejUTJ05k1qxZTJgwgZo1awY63BKhXLlyDBgwAPD8/8THx/PXX38xdepUpk6dyrXXXsuTTz5JSEhI+muio6P56quviIiICFTYIiJSwnh6dMOo0WF8+NcDPNdiDPc2+IA5B28g2RUOZO7RXVIp2S7B3nvvPWbPnk2TJk0YP3480dHR6c+5XC6mTp3KJ598wqOPPsqnn35K6dKlAxhtyVC+fHnuvffeTI/Hxsby+OOPM3fuXFJTU3nxxRfTn7PZbNSuXbvwghQREeFcj+7Jk/tz+OwnVC99mJtqz+TnM/dk26O7JFKy7Wcul+l138rCdODAAb788kvKli3LG2+8QcWKFTM8b7Vauffeezl48CC//PILX3zxBffdd1+m85w5c4Z3332XZcuWkZCQQO3atbnjjjvo3bt3huNSUlL49ttvmT9/PkePHsXtdlOuXDkuueQS7rnnnkzlEcuWLePrr79m165dpKSkUKNGDfr06cOtt96K1WpNP+7HH3/klVde4bnnnqNcuXLMmDGDPXv2ULZsWV588UUeeOAB+vbty3PPPZcp9lOnTnHttdfSpEkTPvroo/THz549y//93/+xZMkSjhw5gt1u55JLLmHgwIFceumlmc6zd+9e3n33XTZs2IBhGDRv3pxhw4Z59f/grQYNGjBx4kRuu+02FixYwE033cQll1wCeGqob7jhBq655hpGjx6d/poTJ04wY8YMVq5cSWxsLHa7nYoVK9KqVSuGDh2aPhM+ZswYfvrpJ7777juWLFnCnDlziImJoWLFivTt25e7774bmy33HxU7d+7kxx9/ZP369Rw/fhyn00mNGjW48sorue2227I8x6lTp/jss89YsWIFx48fJzQ0lBo1atCjRw9uv/32DMfu3r2bTz/9lA0bNhAfH0+lSpXo3Lkz9957L+XKlUs/7tChQ/To0YNrrrmGO++8k8mTJ7Np0yYMw6B9+/Y8/vjjlC9fni1btvDBBx+wfft2rFYr3bp147HHHiM8PDxTnBs2bODzzz9n69atJCYmUrlyZXr27Mk999xDWFhY+nHr1q1j6NChDB48mM6dOzNlyhS2bduGYRi0adOGRx55hGrVqmU4Nu3855cRPffcc/Tt2zfXMRcRCTRPj+5Qjv38IOx8juGXfsyQITdjDdfd1jRaIOlHS5eZDLjV5OFHTV562fNxwK0mS5cFvufkvHnzcLvd9OvXL1Oifb5BgwYBMHdu5lXGTqeT4cOHs2HDBq6++mr69u3L8ePHGT16NF9//XWGY8eMGcOkSZMA6Nu3L7fffjvNmzdn48aNbN++PcOxU6ZM4amnnmL//v1069YtvW580qRJPP/881nGuWTJEkaOHEmFChW44YYb6NChAy1atKBq1ar8+uuvpKSkZHrNwoULcblcXH311emPxcfHc++99/LJJ59QpkwZ+vfvzxVXXMHOnTsZOnQoS5cuzXCOPXv2cO+99/LHH3/Qvn17BgwYQGpqKvfdd1+BL4yMjIykf//+ACxatCjHY5OTk7nvvvv45ptvqFGjBgMGDKBPnz7UqlWL+fPnExcXl+k1//3vf/nss89o27YtN910EyEhIXz00UfZjvmF5syZw9KlS6lbty79+vXj2muvxTRNpkyZkuWbnf3793PXXXfx5ZdfEhkZyU033UTv3r0JCwvj008/zXDssmXLGDx4ML///jutWrXilltuoW7dunz77bcMGTKEf//9N9P5jx49yn333YfD4eC6666jXr16LFy4kKeeeoqNGzcybNgwwsPD6devH9WrV2fu3LlMmDAh03m+++47HnroIbZs2UKnTp24+eabiY6OZvr06QwfPpzU1NRMr9mxYwcPPPAAdrudfv360bhxY5YuXcrDDz+c/rVYtWpVBg8eDECVKlUYPHhw+p8GDRp4NeYiIsHAajWoftX1uMvXIiQ1jrAtXwY6pKCimW0/WbrMZNTozEl1sOyqtGXLFgDatGmT43G1a9cmKiqK2NhYjh8/TuXKldOfO3HiBDVr1uSjjz7CbrcDcM8993DXXXcxefJkunXrRnR0NAkJCSxZsoRGjRrxySefYLVaiYyMJC4uDpfLRWJiYvo5//zzT2bMmEH79u0ZN25c+iyjaZq8/vrrzJo1iyVLltC9e/cMca5atYq3336bdu3aZXj8qquuYtq0afz+++/07Nkzw3Pz58/HbrfTo0eP9McmTJjA3r17eeaZZ7j++uvTH3/wwQcZOHAg48ePp3379umLRt98803Onj3Liy++yFVXXZV+/HvvvZcpYSwIrVq1YurUqezYsSPH49asWcORI0e49dZbGTFiRIbnEhMTs5xl3rZtG59//nl6OdEDDzzAww8/zK+//prlmF/o7rvv5oknnshw58E0TV599VXmzp3Lpk2baNGiRfpzL774IidOnGDkyJGZOtvExMSk/z0+Pp6XXnqJcuXK8eGHH1K1atX05xYuXMjzzz/Phx9+yBNPPJHhHBs2bODRRx/llltuSY/l8ccfZ+XKlTz55JO8/PLLdOnSBfC8cbznnnuYP38+Dz74YPob0H/++Ye33nqLevXqMXny5Awz6DNmzGDKlCl8/fXXmWbhV65cycsvv0yvXr3SH3vppZeYP38+y5Yto1evXlSrVi39jV3VqlWzLB8SESkyLDYc7YcStuBpQtZ+QmqL/0CoZrdBM9t+4XKZvD0p59nrQO+qdPLkSYAMyXN20pKvEydOZHoubfbu/GNvvvlmHA4HCxd6dpQyDAPTNAkJCcFiyfglZ7VaKVOmTPq/v/32WwBGjhyZ4Xa+YRgMHToUwzDSz3u+yy+/PFOiDaTPWi9YsCDD4//88w87d+6kY8eO6QnU6dOnWbx4MW3atMmQaANUqFCB22+/nbi4ONasWQPAsWPH2LBhA/Xq1cuQaIMn8Tz/8yoolSpVSo/VG1l1kilVqlSGBZZp0mZs09jtdu6//37AcyckN1WqVMmQaIPn/+3GG28ESB838CT2O3bsoGXLllm2kDw/jp9++omzZ8/y0EMPZUi0AXr16kXDhg2znOmvUaMGN998c4ZY0pLfBg0apCfa4Kl77969Oy6Xi3379qU/PmvWLFwuF48//niGRBvgjjvuIDIyMsuvx5YtW2ZItIH0spAL7+SIiBQXzkZ9cFeog5Ecj33DjECHEzQ0s+0HmzZ7ZrBzkrarUquWhROTP1itVpo1a5bp8bS65r/++guA0qVL07FjR1auXMndd99N9+7d6dq1KzVr1sw0w7p161bCw8OzLFsBT/K4f//+TI+n1S9fqFatWjRp0oRVq1Zx+vRpypcvD5xLvs9Pkrdv347L5cLhcGSo4U5z8OBBwFP+0LlzZ3bv3g2QYbY2TalSpahfvz7r16/PMi5/a9myJZUqVWLGjBns3r2bTp060apVK2rXro1hZH1HJat69GbNmmG1WtP/L3OSmprKN998w6JFi9i3bx9JSUmY5rk3lOe/WUtLOLN6g3ShrVu3Ap4E/dChQ5medzgcnD59OsP/L0DdunUzfa5pM9ZZtVBMey72vG/etGuvWrUqw5uFNDabLcuvx4YNG2Z6LO0NREJCQqbnRESKBYsVR4ehhM17nJB100m99HYIK5f764o5Jdt+4O1uSYHcValixYrs37+f48ePc9FFF+V4bNot/bRZ1TTly5fPNFMNnllgyJhUvPrqq0yfPp1ffvmF999/n/fff5/SpUvTt29fHnzwwfRFZv/++y8ul4tPPvkk23iSkpKyvWZWrr76arZv386iRYsYMGAApmny888/U7ZsWTp16pR+XFrd7+bNm9m8Ofv9ZdOun/b5RUZGZnlcTjH5Ki1hze6aaSIiIvj444/58MMPWb58OStXrgQ8dzLuvPPO9PaCucVrtVopV64cZ8+ezTW2Z555huXLl1OrVi169uxJZGQkNpuNhIQEZs6cicNxbrODtLGLiorK9bxp/y9pdz2yk5SUlCHZzqp7TtrMe07POZ3nthxOu/b06dNzjfN8OZ3f5XLl6VwiIkWJs8FVuFa9j/XkbkLWTcfR6ZFAhxRwSrb9wNvdkgK5q1KzZs1Yv349a9euzXF2cd++fcTGxhIVFZWp5OT06dO43e5MCfepU553Eef3fQ4LC+OBBx7ggQce4MiRI+zYsYMvvviCmTNnkpKSwsiRIwFPkmIYBj///HNBfar06tWLiRMnsmDBAgYMGMCGDRs4duwY/fv3z1BOkZYg3XbbbTz88MO5njft88tqsSGcG4eClDZT3rhx41yPrVKlCqNHj8btdvP333/z559/8vXXX/Pmm29StmzZTB1jTp06lemNl8vlIj4+Ptc3Dtu3b2f58uW0b9+eCRMmZCgn2bp1KzNnzsxwfFqJTWxut4A49//yxRdfULdu3VyPL0hp1168eLFaX4qIeMOw4Og4jPC5j2BfPwNHq7sgPOcJouJONdt+kLarUk4CvavSNddcg8ViYc6cOdkmi3BuRu/aa6/N9JzL5UpfaHm+jRs3AmTbUaFatWoMGDCAKVOmUKpUKX7//ff05y655BLi4+M5cOBAHj6bnJUvX5727duzdetWDh48mF5CcuWVV2Y4rkmTJhiGkeXnlJW0UoRNmzZlei4xMTG9zKSgxMXFMWvWLIBM9cA5sVgsNGjQgDvvvJOXX34ZIMOYp0n7fzvfli1bcLlcuXbHOHz4MAAdO3bMVLed1XmbNGkCwOrVq3ONP61EyNv/l4KUdu20chJ/sFgsuN1uv51fRKSwuer1whXdGCM1kZC1UwMdTsAp2fYDz65KOXcaCfSuShdddBE333wz8fHxPPHEE5kWP7rdbqZOncqCBQuoUaNGpm4Lad5///0Mrc9iYmL4+uuvCQkJSU8I4+Li2LNnT6bXnjlzBofDkWF2OW1B29ixY4mPj8/0mpMnT/LPP//k+fNNWyj5ww8/sGTJEqpVq5ap1rpixYr06NGDLVu28Pnnn2eoN06zdetWkpOTAc/MccuWLfn7778zLcD89NNPOXPmTJ7jzM7u3bt55JFHiIuL45prrsl1Znvv3r3pi2DPlzbbntUCya+//jpDF5DU1FQ++OADAPr06ZPj9apUqQJkfuOxd+9eZszIvEimSZMmNGnShA0bNjB79uxMz58fR9++fSlVqhQffPABe/fuzXRscnKy35LhG2+8EavVyltvvcWxY8cyPX/mzBl27dqVr2uULVs2w+crIlLkGQaODsMBsG/4AiMx8++jkkRlJH6StqvS25PMDIslo6MJml2Vhg0bxtmzZ5k7dy433XQTHTt2pEaNGpw9e5Y///yTgwcPUrNmTd56660sb6FXqlSJpKQk7rjjDjp37kxSUhKLFy8mPj6exx57LH1BWGxsLHfddRf169enXr16REVFkZyczMKFC3E6nRkS+Q4dOjBo0CCmTp3KgAEDaN++PVWqVCE+Pp5Dhw6xadMm7r//fi6++OI8fa6dO3cmIiKCL7/8EqfTyc0335zlQsEnn3ySAwcOMHnyZObPn0+zZs2IiIggJiaGHTt2cPDgQebNm5deY/7EE09w3333MWbMGJYtW0bNmjXTO21ceumlWc7q5uT06dPpizPTSjh27dqVvqDwuuuu48knn8z1PKtXr2bSpEk0b96cWrVqUa5cOQ4fPszy5csJDQ3Nsmb7kksu4Y477qBnz56Eh4ezfPny9F7nubX9S0ueFy9ezMmTJ7nkkks4fvw4v//+O506dWLJkiWZXvPiiy8ydOhQxo8fz4IFC2jatCkOh4O9e/fy119/8csvvwCe+vSXX36ZZ599ljvvvJP27dtz0UUX4XA4OHr0KBs2bKB58+a8/fbbuY5LXtWtW5cnn3ySN954g1tuuYUOHTpQvXp1EhMTOXLkCBs2bKBPnz48/fTTPl+jdevWLF68mKeeeooGDRpgsVi4/PLLs1zEKSJSVLjqdMNVpTnWY5uxr/kYR1fff04WdUq2/cizqxJBuYMkeDopjBo1il69ejFnzhw2b97M0qVLCQ8Pp3bt2vTv358bbrghww55F77+nXfeYcqUKcyfP5+EhAQuuugiHn/88Qz1wFWrVmXIkCGsW7eONWvWEB8fT2RkJA0bNkxPYM533333cemll/L111+zdu1azpw5Q7ly5ahWrRqDBw/OVP7hjdDQULp3784PP/wAkKlVX5q0Xs7ffvstixYt4ueff8btdlOxYkXq16/PoEGDMrSAq1u3Lh9++CHvvvsuq1atYtWqVbRo0YIPP/yQL774Is/Jdnx8fPri0JCQEEqXLk3NmjUZNGgQV1xxhdcJ2GWXXZaeiP72228kJSURFRVFjx49uPPOO7N8s/Loo4+yePFifvjhB44fP07FihUZMmQId999d67Xs1qtTJgwgSlTprBq1Sp27NhBjRo1GD58OB07dswy2a5VqxbTp09nxowZLF++nJkzZxIeHk7NmjUZOHBghmM7derEjBkz+Pzzz1mzZg2rV68mPDycqKgo+vbtm+3/Z0Ho168fDRo04Msvv2Tjxo0sX76ciIgIKleuzK233so111yTr/M/9thjgGdHyeXLl+N2u4mOjlayLSJFm2Hg6Dic8O/vxb7xS1JbD8SMiM79dcWQYWZ1r7yIy6kG2Z/SNmqR3Gms8saf45W2Xfv333+fvpV4UaavLe9prLynscobjZf3ivVYmSbhM2/HemQDjkvvwNF9VL5OF4xjlVt3MFDNtoiIiIj4g2Hg6Ojp7mXfMhPjzNFMh7hcJus3mCxc7PkYyA3//EVlJCIiIiLiF66al+Gq0RbroTWE/PkBKT1fTH9u6TIz09q2qCgYMZygWNtWUDSzLSIiIiL+YRikdBgGgG3r9+mz20uXmYwabWbacTs2FkaNNlm6rPjMcCvZFinhRo8ezapVq4pFvbaIiAQfd812OGu0w3CnYl/9ES6XZ0Y7JxMnF5+SEiXbIiIiIuJXqR2GAmDf+i07Vh/LNKN9oZgYTze34kDJtoiIiIj4latmO1w12mK4Uon662OvXnPylJ+DKiRKtkVERETE7xztPbPbF5/6huiw47keX7GCvyMqHEq2RURERMTvXDXb4areGouZykPNcp7djo72bARYHCjZFhERERH/Mwwc/+tMcm21b3Oc3X5kmBE0O27nl5JtERERESkUrpqX4areGqvp4IM7PiEqKuPz0dEwdoxRrPpsa1MbERERESkchoGjw1DCvx1E7ZPf8N3H97JxbzQnT3lqtFs0p9jMaKdRsi0iIiIihcZVsz2uaq2wHllP2PpPaHXFs4EOya9URiIiIiIihed/s9sA9s1fYyTEBDgg/1KyLRIkfvzxR9q3b8+PP/4Y6FBERET8ylWrA65qLTFcKdjXfhLocPxKZSQlUPv27fN0/KpVq/wUie9+/PFHXnnllWyfr1+/Pp999lkhRpS7I0eOcMMNN3DNNdcwevToQIcjIiISOIaBo/1Qwr8fgn3TTFLbDMaMiA50VH6hZLsEGjx4cKbHZs6cSUJCQpbPBbM2bdrQokWLTI9XrFgxANHkT7du3WjatCmVKlUKdCgiIiJ+57qoI66ql2I9uhH72qk4uo0MdEh+oWS7BLr33nszPTZv3jwSEhKyfC6YtWvXjrvuuivQYRSIiIgIIiIiAh2GiIhI4UjrTPL9vdg3fUVq2yGYpYvfhJNqtiVbR44coX379owZM4Z//vmHp59+mt69e9O+fXuOHDmS4fmstG/fngcffDDT42fPnuWdd97hP//5D127dqVnz5488sgjbNy4scA/h48++oj27duzbt26TM9lVSN9/ud08OBBnn76aXr16kW3bt0YNmwYu3fvzvI6p06dYuLEidx888107dqV3r17M2jQIL744ov0a91www0A/PTTT7Rv3z79T1psOdVsr1u3jscee4zevXvTpUsXbrnlFj766COSk5MzHZs27idPnmTMmDFceeWVdO3alcGDB2c5DiIiIv7icpms32CycLHno8tlZnz+ok64qjT31G6vmxagKP1LM9tZMU1wJuX9ZY4QSE30Q0AXsIWDUXg9KA8dOsSQIUOoW7cuffr0IT4+HrvdTmpqap7PFR8fz4MPPsjevXtp3rw5/fv35+zZsyxbtoyhQ4fy6quv0rVrVz98Fnlz9OhRhgwZQp06dejbty+HDx9Oj/HLL7/MUKayf/9+hg4dyokTJ2jRogVdunQhOTmZvXv38umnn3L77bfToEEDbrnlFmbOnEn9+vXp0qVL+uurVq2aYyyLFy9m9OjR2O12evbsSWRkJH/++SeffPIJq1atYsqUKYSGhmZ4TUJCAvfffz8RERFcffXVnDp1isWLFzNixAimT59O3bp1C3bARERELrB0mcnbk0xiY889FhUFI4ZzbtMaw8DR/kHCZz+IfdNXONoOgfDIwATsJ0q2L2SahM+8HeuRDXl+qRMojCIAV7VWJN3yeaEl3Js3b2bw4MGZSkyOHDmS53NNmDCBvXv38sorr9CzZ8/0xx988EEGDhzI+PHjad++fabkMTurV68mJSUl0+M33HBDvuq2N2zYwEMPPZShROWDDz5g2rRpzJs3L8PjL774IidOnGDkyJH069cvw3liYjztjBo0aEBERER6su1tuc7Zs2cZN24cVquVjz76iPr16wOe8Ro9ejSLFi3iiy++YNCgQRlet3v3bm688UYef/xxLBbPDaw2bdrw6quv8u233/L000/neUxERES8tXSZyajRZqbHY2Nh1GiTsWPOJdyui7viim6MNWYHIetn4Oj0SGGH61cqI8lS8dq5KL8qVqzIPffck+/znD59msWLF9OmTRtuuummDM9VqFCB22+/nbi4ONasWeP1OdeuXcsnn3yS6c/JkyfzFWu1atW44447Mjx27bXXArB9+/b0x7Zt28aOHTto2bJlpkQbIDo6fyurly1bRkJCAjfeeGN6og1gsVgYNmwYVquVefPmZXpdeHg4Q4cOTU+0Aa655hqsVmuG+EVERAqay+WZ0c7JxMnnlZQYBo7LHgDAvuFzSP7X3yEWKs1sX8gwPLPGPpSRlC9fntOnTxd8TBcq5DKS+vXrY7fb832e7du343K5cDgcTJo0iaSkjGN88OBBwFOW0blzZ6/OeeHsc0GpX79+hkQVziXOCQkJ6Y+lJa7t2rUr8BgAdu3ale35q1SpQvXq1Tlw4ABnz56ldOnS6c/VrFmTUqVKZTjeZrNRoUKFDPGLiIgUtE2byVA6kpWYGM9xrVp6/u2q1xNXxXpYT/6NfeMXpLbPvOarqFKynRXDAHup3I+78GUhpcHu8ENAgVWhQoUCOc+//3reqW7evJnNmzdne9yFSXggnJ+4prHZPN8uLpcr/bG0xDUqKsovcZw9exYg23aAFStWzDLZzip+AKvVmiF+ERGRgnbylA/HGRZSL3sA609PELL+U1Jb3QUhWf8uK2qUbIvP0mZ+s0respo9TUsAb7vtNl544QXi4uL8GyA5x5iWyOZHmTJlAIjN7S28j9LG7MSJExnKSNKcOnUqw3EiIiKBVtHLOboLj3M2uAr3yklYTu//XyvAorX3R3ZUsy0+yynRTCt/OF+TJk0wDIMtW7b4PbY0eY0xr5o0aQJ4Fmrmxmq1AuB2u70+f8OGDbM9//Hjxzl06BDVq1dXsi0iIkGjRXNP15GcREd7jsvAYsVx2f0AnjaAqZnb2xZFSrbFZ6VLl+aiiy5i06ZN6fXW4Jkxfu+99zIdX7FiRXr06MGWLVv4+OOPMc3Miye2bt2aZe9oX6Ulw/Pnz8+Q5G7ZsoWff/65QM7fpEkTNmzYwOzZszM9n9aNBDyJv2EYHD9+3Ovzd+nShYiICL7//nv27t2b/rhpmrz77ru4XC769OmTr89BRESkIFmtBiOG57y27JFhBlZr5mOcjfriLlsdS+JJ7Fu+8VeIhUplJJIv//nPfxg/fjz33nsv3bt3xzRN/vjjDxo3bpzl8U8++SQHDhzgjTfe4Pvvv6dZs2ZEREQQExPDjh07OHjwIPPmzSMsLKxA4mvatCnNmzdn7dq1DBkyhJYtW3Ls2DGWLVtG586dWbp0ab6v8eKLLzJ06FDGjx/PggULaNq0KQ6Hg7179/LXX3/xyy+/AFCqVCkaN27Mxo0befHFF6lZsyaGYXD11Vdn22u7dOnSPPPMM4wePZrBgwfTs2dPypcvz5o1a9i5cydNmjTh9ttvz/fnICIiUpC6djEYO4ZMfbajoz2Jdnqf7QtZ7Tja3UvYohexr/2E1Oa3gC2kcIL2EyXbki/9+vXD6XQyc+ZMfvjhBypVqkSfPn0YOHBglh1FypUrx4cffsi8efOYO3cuP//8M263m4oVK1K/fn0GDRpEuXLlCjTGN954g4kTJ7J8+XL27NlD/fr1efPNN4mNjS2QZLtWrVpMnz6dGTNmsHz5cmbOnEl4eDg1a9Zk4MCBGY598cUXefvtt1mxYgUJCQmYpkmLFi1y3NimR48e1K5dm8mTJ/Pbb7+RnJxM1apVGTRoEHfeeafXPclFREQKU9cuBp07ebqOnDzlqdFu0ZwsZ7TP52zSH/eq97AkHMe69f/bu9eoqK6zD+D/AVEyoAiIN0KUooMYQ4iCRYIBRcWoLUYxalrUENQoulCj1SSaqKuG2A8aNdiIl7gkCkIosVEUX0XwxsWARo2m1huXgQhBQJAqlznvBzpTyAwKcmbmDP5/a/ll7zNnnvNwOD7s2bP3P3BBmI6y+0D/fnX4nbPw1NdLjUzQ9Vm+iTPEF+90sbW1Ndp7mxrmqm2Yr9ZjrlqPuWo95qptmK/WY650s8iNQZe0z1D8yBF/+L8jqBcalyBu3IHyCSPjBmZr+/TdLjlnm4iIiIgkJbVyKsoe26OPpRITXjysaVfvQJl+2nTGillsExEREZFkNDQI2LTdEvtuzgEAvDdwJ8zQfAnfZjtQShyLbSIiIiKSDPUOlAl3p6Oi1gb9rPMwzvFYs2PUO1CaAhbbRERERCQZ6p0laxqs8M2tWQCAsIHRkEGl8zipY7FNRERERJLRdGfJg3feQXWdFQZ0u4k3eqW1eJyUsdgmIiIiIslougNlVX03xN+dAaBx7jbQOE9b5w6UEsVim4iIiIgk47c7UH5zexYeNXSBu91leNpnA2jcGAcAci8K+L+TAnIvSvcLk9zUhoiIiIgkpfkOlD3wXf4UzHCOxcKXd6J4jDcAIHhG890pG9fghmTW4FbjyDYRERERSY7fGzJ8GyfD1s0y2E4IhSAzx9DuGbB5eAUff9K80AakuwY3i20iIiIikiRzcxmGvibD62++CLNXpzQ2nt35xNdIbQ1uFttEREREJHnmIxdDgAy+9ifwO+ubLR4ntTW4WWwTERERkeTJeipQbBMAAHh34O4nHiulNbhZbBMRERGRSfhlwFwAwJuOR9D3BWWLx0lpDW4W20RERERkElx8X0FOhQ86mTVg9oA9Oo+R2hrcki62L1++jLlz58LT0xMeHh54++23kZycbOywiIiIiMgIzM1lqB0+DwAw+aV/wL5LqdYxEYtkMDeXzvJ/ki22MzMz8c477yAnJwdvvvkmZsyYgV9//RVLly7Fnj26/5IhIiIioo7tlYnDUW71KrqY1+JPv4vRtPfsCWxYL5PcOtuS3NSmvr4ea9asgUwmw/79++Hm5gYACA8PR3BwMDZt2oTAwEA4OjoaOVIiIiIiMiiZDJZj5gOHFmLWoDj0nByGbj1t8Ko7JDWirSbJke3MzEzk5+dj0qRJmkIbALp27Yr3338fdXV1SEpKMmKERERERGQsDb/zQ0MPBTo1PMRYm1gMfU1aU0eakmSxnZ3duO+9r6+vVp+67cKFCwaNiYiIiIgkQmaGOq/GlUk6X4wB6mqMHFDLJFls3717FwDQr18/rT4HBwfI5XLk5eUZOCoiIiIikop61/FQ2bwE2X/KYfZry5vcGJsk52xXV1cDaJw2oou1tTWqqqpafL2tra1e4moNY763qWGu2ob5aj3mqvWYq9ZjrtqG+Wo95qr1tHK1vHE2hI0RYmktSY5sExERERF1BJIstq2trQGgxdHr6urqFke9iYiIiIikQpLFdv/+/QFA57zs0tJS1NTU6JzPTUREREQkJZIstr28vAAAZ8+e1epTt6mPISIiIiKSKkkW2yNGjICTkxMOHz6M69eva9qrqqrw1VdfwcLCApMnTzZegERERERErSATBEEwdhC6ZGZmIiwsDJ07d8bEiRNhZWWF48ePQ6lUYuXKlQgNDdV7DJcvX8a2bdtw8eJF1NfXQ6FQYM6cOZgwYUKrz1FbW4vo6Gj885//RHFxMWxsbDBq1CgsWbIE9vb2eozesNqTK0EQcPr0aaSmpiI3NxdFRUWor69Hv379MGHCBLz77rvo0qWLAa7CcMS4t5qqrKzEpEmTUFJSAl9fX+zevVvkiI1HrFyVlZVhx44dSEtLQ3FxMeRyOfr374+goCC88847eoresMTI1b1797Bz506cP38eRUVFkMvl6NevH6ZPn44//OEPMDc31+MVGMahQ4eQk5ODq1ev4saNG6irq0NkZCSmTJnSpvOoVCrs378f8fHxyMvLg1wuh4+PD5YuXQonJyc9RW9YYuTqhx9+wIkTJ5CdnQ2lUomamho4OjoiICAA8+fPR7du3fR4BYYl1r3VVG1tLaZNm4aff/4Zzs7OOHbsmIgRG4+YuaqursaePXtw/PhxFBQUwMLCAk5OTggICMCiRYv0EH3bSHLpPwDw9vbGgQMHsHXrViQnJ2v+41i+fPkzFyRt0VKxv3TpUvzyyy+tKvZVKhUWLFiAs2fPwsPDA+PGjUNeXh4SEhKQkZGB+Ph42NnZ6f1a9K29uaqtrcW8efPQuXNnDB8+HL6+vqitrcXZs2exefNmnDhxAjExMXjhhRcMdEX6Jca99Vvr16/XLJnZkYiVq+vXryM0NBQPHjyAn58fAgMDUVNTg1u3buHUqVMdotgWI1cFBQWYNm0aKioq4Ovri1GjRqG6uhonT57EypUrkZWVhcjISANcjX5t2bIFSqUStra26NmzJ5RK5TOd55NPPkFCQgIGDhyIkJAQlJSU4OjRozh37hwOHjyo+f6RKRMjVxERESgvL8ewYcMQFBQEmUyG7Oxs7Nq1CykpKYiLi0OPHj30EL3hiXVvNRUVFYX8/HwRopMWsXJVVFSE2bNno6CgAD4+PvDz80NtbS3y8/ORkpIiiWIbAmmpq6sTxowZIwwZMkS4du2apv3BgwfCuHHjhJdfflkoLCx86nm+/fZbQaFQCMuWLRNUKpWm/cCBA4JCoRDWrFmjl/gNSYxc1dbWCtu3bxcqKiq02ufPny8oFAph586deonf0MS6t5o6duyYoFAohG+++UZQKBRCaGio2GEbhVi5qqqqEvz9/QVvb2/h+vXrOt/H1ImVq08//VRQKBTC3r17m7VXVlYK/v7+gkKhaPP9KUXnzp3TXMeOHTsEhUIhJCYmtukcGRkZgkKhEP70pz8Jjx8/1rSnpaV1qN9DMXK1Y8cO4ZdffmnWplKpNPfb2rVrRYvX2MTIV1M//vij4Obmpnm+BwYGihWq0YmRq7q6OmHKlCmCu7u7kJGRobNfCiQ5Z9vYMjMzkZ+fj0mTJsHNzU3T3rVrV7z//vuoq6tDUlLSU8+TkJAAAFi2bBlkMpmmfcaMGXBycsL333+PR48eiX8BBiRGriwsLLBgwQLY2Nhotc+fPx8AcOHCBfGDNwKx7i21+/fvY+3atQgKCoKfn58+QjYasXJ14MABFBUV4YMPPsCgQYO0+jt1kuwHfK0mVq4KCgoAQOte6tatG4YOHQoAKC8vFzFy4/Dx8YGjo2O7zqF+vkdERKBz586adj8/PwwfPhxnz55FUVFRu95DCsTI1bx589CrV69mbTKZDAsXLgTQcZ7vgDj5Unv8+DFWrlyJYcOGdYhP335LjFylpKTg6tWrCA0Nhbe3t1a/VJ7vLLZ1yM5u3I3I19dXq0/d9rSHw+PHj/Hjjz/C2dlZ62aSyWTw8fFBTU0Nrl69KlLUxiFGrp5E/YvSEeaJAuLn69NPP4W5uTk+/vhjcQKUELFylZycDJlMhsDAQNy+fRsxMTHYuXMnTp48idraWnGDNhKxcqVQKAAA6enpzdofPHiAixcvwsHBAQMGDGhvuB1CVlYW5HK55o+QpkaOHAngfz8X0q2jPd/FtmnTJhQXF2PDhg3NBuzof5KTkwEA48ePR3FxMWJjYxEdHY2jR4/i4cOHRo7uf6RR8kvM3bt3AUDnWt4ODg6Qy+U61wBvKj8/HyqVqsU5e+r2u3fvwtPTsz3hGpUYuXqSxMREAMDrr7/+zOeQEjHzdejQIRw/fhxRUVGwsbFpcRMoUyVGrmpra3Hjxg3Y2dkhJiYG27Ztg0ql0vQ7OTkhKioKrq6uosZuaGLdV++99x5SU1MRGRmJM2fOwNXVVTNn29LSEl9++SUsLS3FDt/k1NTUoLS0FAqFQmehqP45tOfZ9zzoaM93MV24cAH79u3DqlWr8NJLLxk7HMn66aefADR+Cffzzz9vNoBiZ2eHL774Ar///e+NFZ4GR7Z1UH/RrKVdKq2trZ9a2Kj71bth6jpH0/cyVWLkqiXp6ek4ePAgXFxcMG3atGeOUUrEyte9e/ewYcMGTJo0CWPGjBE1RqkQI1eVlZVoaGhARUUFtm/fjhUrVuD8+fM4ffo0Fi5ciMLCQixYsACPHz8WPX5DEuu+6tGjBw4ePIiRI0fizJkz2LVrF+Li4lBVVYXJkyfrnIbzPGrt872j/QEspuvXryMqKgr29vYICwszdjiSUlNTgw8//BAeHh4ICQkxdjiSVlZWBgDYsGEDZs+ejfT0dGRkZGD16tWoqqpCeHg4SkpKjBwli22SqMuXL2Pp0qXo2rUrtmzZ0mxOJAGrV69Gp06dOuT0ETGpR7EbGhowc+ZMhIaGwt7eHr169UJERATGjx8PpVLZYZbSaq+8vDzMnDkT9+/fx/79+5Gbm4v09HSEh4dj+/btmDNnDhoaGowdJpm4goICzJs3Dw0NDdi0aVOHWJVLTBs3bkRJSQk+++wzmJmxTHsS4b+rV/v7+2P58uXo3bs37OzsEBISgtmzZ6OqqgrffvutkaNksa3T00YlqqurWxxBUlP3tzRyrW5vaWTEVIiRq9+6cuUK3nvvPZiZmWHXrl0YOHBgu+OUCjHylZSUhNOnT+OTTz7p0P9Jifl7CACjR4/W6le3mfp3J8T6PVy1ahWKiorw1VdfwdPTE1ZWVujduzfmzZuHP//5z7h48SKOHDkiauymqLXP97Y++54HBQUFmDVrFsrLy7F161adX2p7nmVlZSEuLg4RERFwdnY2djiSp372Sf35zmJbB/V8al3z7UpLS1FTU6NzbmRTTk5OMDMz08yl/C11u6mvwypGrpq6cuUKQkNDoVKpsHv3bri7u4sVqiSIka9r164BaFwFwdXVVfMvICAAAHD27Fm4uroiKChI3OANTIxcyeVyzSoIujbOULeZ+jQSMXJVXV2N3NxcuLi4wMHBQatfPe+x6a6+zyu5XA4HBwcUFhbqHOlX/xza8ux7HqgL7dLSUnzxxRcYNWqUsUOSHPXv19/+9rdmz3f190ru3LkDV1dXk/6ul5jUf5BI/fnOYlsHLy8vAI1Fy2+p29THtMTS0hLu7u64c+eO1kLtgiDg/PnzkMvlGDJkiEhRG4cYuVJTF9oNDQ3YtWsXXn31VfEClQgx8vXaa68hODhY6596s6fevXsjODgYY8eOFTl6wxLr3lKPnN28eVOrT90m1lJdxiJGrurq6gC0vLTf/fv3AYBTuv5r+PDhqKmpQW5urlbfmTNnALT+2fc8aFpob968ucN+16S9FAqFzud7cHAwgMZPS4KDgzF58mTjBioRJvN8N/ZC31JUV1cnBAQEPHGDiIKCAk37vXv3hJs3bwoPHjxodp7nZVMbMXJ15coVwdPTU/Dw8BB++OEHg8VvaGLlS5eCgoIOtZmGWLnKyckRFAqFMHHiRKGyslLTXlJSIowcOVIYNGiQcPv2bf1fkB6JlavAwEBBoVAI8fHxzdorKyuF8ePHCwqFQjh37px+L8bAnraZRllZmXDz5k2hrKysWfvzsqlNU8+aq/z8fMHf318YPHiwkJKSYohQJeFZ89WSjrapTVPtubeGDBkijBgxotnGSVVVVUJQUJCgUCiE8+fP6zX21pAJwn9nl1MzLW19rFQqsXLlymZbH69atQpJSUmIjIzElClTNO0qlQpz587VbNfu5eWF/Px8HD9+HI6OjkhISOgQc27bm6uKigqMGzcOlZWVGDlypM4R7a5du2LOnDmGuiS9EuPe0qWwsBABAQHw9fXF7t279X0ZBiFWrj7//HN8/fXX6NOnD0aNGoX6+nqcPHkSZWVlWLZsmWbzJFMmRq7S09OxcOFC1NfXY8SIEXBzc8ODBw+QmpqK+/fvIzAwEFu3bjXG5YkqISEBOTk5AIAbN27gp59+wtChQzXTPoYNG6ZZAWnbtm348ssvsWjRIixevLjZeVavXq3Zrt3Pzw+lpaVITk6GlZUV4uLiOsScWzFyNXr0aCiVSnh4eOhcCx6AVm5NlVj3li6urq5wdnbuMF/oFitXMTEx+Otf/4ru3btj7Nix6Ny5M9LS0qBUKjF9+nSsX7/esBemA9fZboG3tzcOHDiArVu3Ijk5GfX19VAoFFi+fLnm4/qnMTMzw9///ndER0fj0KFD2Lt3L7p3747g4GAsWbKkQxTaQPtzVV1djcrKSgCNH7+qP4JtytHRscMU22LcW88LsXK1atUqKBQK7N+/H0lJSZDJZHBzc8O6detMfrqNmhi58vPzQ2xsLHbv3o2cnBxcuHABnTt3houLC8LDwzFz5kw9X4Vh5OTkaO2omZub22xKSGuWG12/fj0UCgXi4+Oxb98+yOVyjB07FkuXLu0wayOLkSv1VMpLly7h0qVLOo/pKMW2WPfW80CsXIWEhMDR0RG7d+/GkSNH0NDQgAEDBmDBggWSyTVHtomIiIiI9IRfkCQiIiIi0hMW20REREREesJim4iIiIhIT1hsExERERHpCYttIiIiIiI9YbFNRERERKQnLLaJiIiIiPSExTYRERERkZ6w2CYiIiIi0hNu105EpEeurq5tOt7R0RGpqakICQlBdnY2Tp48iRdffFFP0enPhx9+iKNHj+LkyZOwt7dv8+uvXbuGt956C8uXL8fcuXP1ECERkWGw2CYi0qO33npLqy0nJwf5+fkYNGgQ3NzcmvXZ2toaKjS9+de//oXvvvsO77777jMV2gAwePBgjB49GtHR0Zg2bRq6d+8ubpBERAYiEwRBMHYQRETPk1WrViEpKQmLFi3C4sWLdR5TVFSE//znP3jppZdgYWFh4AjbZ8GCBThz5gzS09OfudgGgEuXLmH69OkICwvDihUrRIyQiMhwOGebiEiC+vbtCxcXF5MrtIuLi5GWlgZfX992FdoA4OHhgX79+iExMRG1tbUiRUhEZFgstomIJCgkJASurq4oLCxs1u7q6orRo0ejvr4eUVFRGDt2LNzd3fHmm28iMTFRc1xGRgZCQkIwdOhQeHl54S9/+QvKy8t1vld9fT0OHDiA6dOnY+jQoXB3d0dQUBD27t2L+vr6NsWdmJgIlUqFiRMn6uy/ceMGli9fjoCAALzyyivw9vZGUFAQNmzYgJKSEq3jJ06ciPLycpw4caJNcRARSQWLbSIiE7RkyRJ8/fXXUCgU8PLyQmFhIT766CMkJibi2LFjCAsLQ0NDA3x9ffHCCy/g0KFDCA8Px29nDj569AihoaFYt24d7t69Cw8PD/j4+KC0tBSRkZFYvHgxVCpVq+M6deoUAGD48OFafVevXkVwcDC+//57WFlZISAgAB4eHqivr8e+fftw584drdeoz5OWltaG7BARSQe/IElEZGKUSiWsrKxw/Phx2NnZAQAyMzMxe/ZsbN68GXV1dYiKioK/vz8AoLq6GjNmzEBOTg6ysrLg7e2tOdfGjRuRlZWFCRMmYP369ejatavmNcuWLUNqaioOHjyImTNnPjWuhw8f4vr16+jZsyd69eql1R8TE4PHjx9j5cqVCA0NbdZ369YtzXs39corr8DMzAwXLlxodX6IiKSEI9tERCboo48+0hTaAODt7Y3BgwejtLQUb7zxhqbQBgBra2u8/fbbANCsaC0rK0NCQgL69OmDyMjIZsWutbU1NmzYAAsLC8TGxrYqplu3bqGhoQHOzs46++/fvw8A8PHx0epzcXFBz549tdqtra3h4OCAoqIiVFZWtioOIiIpYbFNRGRiLCwsdE7TcHJyAgC8/vrrLfaVlpZq2rKyslBXV4eRI0fC0tJS6zUODg7o378/bty4gUePHj01rrKyMgCAjY2Nzv6XX34ZALBu3TpkZWW1ej64+nzqYp2IyJRwGgkRkYnp0aMHzM3NtdrlcjkA6JzCoe5ruqqHUqkEAMTHxyM+Pv6J71lZWamzIG+qqqoKAGBlZaWzPywsDDk5OcjOzsasWbMgl8vx2muvwc/PD1OmTNE5jQRoHN1uen4iIlPCYpuIyMSYmT35Q8mn9aupvyzp5uaGQYMGPfHY1ixBqC6WHz58qLPf2toa+/btQ05ODk6dOoXs7GxkZmbi3LlziI6Oxv79+9G/f3+t11VXVzc7PxGRKWGxTUT0nFKPgA8bNgxr1qxp9/nU62pXVFS0eIxMJoOnpyc8PT0BNE49+eyzz3D48GFs3rwZW7Zs0XqNeq520znqRESmgnO2iYieU97e3jA3N8epU6dQV1fX7vMNGDAAnTp10rmEX0vs7e2xaNEiAMC///1vrf7q6mqUlJSgb9++Lc4FJyKSMhbbRETPqV69emHq1KlQKpX44IMP8Ouvv2odk5eXh5SUlFadTy6Xw83NDaWlpbh3755Wf2xsLAoKCrTa09PTAQB9+vTR6rty5QoEQYCXl1erYiAikhpOIyEieo59/PHHUCqVSElJwZkzZzBo0CD07dsXNTU1uHXrFvLy8hAQEIDAwMBWnc/f3x9XrlxBVlYW/vjHPzbri4uLw9q1azFgwAC4uLjA3Nwct2/fxs8//4wuXbpg4cKFWufLysrSnJeIyBRxZJuI6DlmaWmJnTt3YuPGjXB3d8ft27eRkpKCq1evws7ODosXL8aKFStafb6pU6fC3Nwchw8f1uqLiIjA1KlTIZPJkJGRgVOnTuHRo0eYNm0avvvuOwwbNkzrNUeOHIGtrS3GjBnTruskIjIWmfDbvXuJiIjaITw8HGlpaUhLS4ODg8Mzn+fixYuYMWMGwsLC2lTwExFJCUe2iYhIVBEREVCpVNizZ0+7zhMdHY1u3bph7ty5IkVGRGR4LLaJiEhUCoUCkydPRmxsrGZXyba6du0aUlNTMW/ePHTv3l3cAImIDIjTSIiIiIiI9IQj20REREREesJim4iIiIhIT1hsExERERHpCYttIiIiIiI9YbFNRERERKQnLLaJiIiIiPSExTYRERERkZ6w2CYiIiIi0hMW20REREREevL/GO4b+8e8LaUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "g = -9.81\n", + "v0 = 7\n", + "x0 = 1.5\n", + "t = np.linspace(0, 2, 100)\n", + "x_projectile = (1/2) * g * t**2 + v0 * t + x0\n", + "noise = np.random.normal(0, 0.2, x_projectile.shape)\n", + "x_obs_projectile = x_projectile + noise\n", + "df_projectile = pd.DataFrame({\"t\": t, \"x\": x_obs_projectile, \"x_true\": x_projectile})\n", + "df_projectile = df_projectile[df_projectile[\"x\"] >= 0]\n", + "\n", + "plt.scatter(df_projectile.t, df_projectile.x, label='Observed Displacement', color=\"C0\")\n", + "plt.plot(df_projectile.t, df_projectile.x_true, label='True Function', color=\"C1\")\n", + "plt.xlabel('Time (s)')\n", + "plt.ylabel('Displacement (m)')\n", + "plt.ylim(bottom=0)\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "e5a72df1-e841-401e-8ff1-699694edada7", + "metadata": {}, + "source": [ + "Putting this into Bambi, we set $\\beta_2 = \\frac{g}{2}$, $\\beta_1 = v_0$, and $\\beta_0 = x_0$, then perform the following regression:\n", + "\n", + "$$\n", + "x_f = \\beta_2 t^2 + \\beta_1 t + \\beta_0\n", + "$$\n", + "\n", + "We expect to recover $\\beta_2 = -4.905$, $\\beta_1 = 7$, $\\beta_0 = 1.5$ from our fit. We start with the approach from the other notebook where we explicitly tell formulae to calculate coefficients on $t^2$ and $t$." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "a3078924-f334-42ab-a924-1a95e913c540", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Auto-assigning NUTS sampler...\n", + "Initializing NUTS using jitter+adapt_diag...\n", + "Multiprocess sampling (2 chains in 2 jobs)\n", + "NUTS: [x_sigma, Intercept, I(t ** 2), t]\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "31dcb455e32042308473e1b29bab6fbb", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 7 seconds.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ffc140ab45214424a1fe8b515f8bde02", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "We recommend running at least 4 chains for robust computation of convergence diagnostics\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
meansdhdi_3%hdi_97%mcse_meanmcse_sdess_bulkess_tailr_hat
Intercept1.5180.0681.3921.6430.0020.0011147.01321.01.0
I(t ** 2)-4.8710.113-5.083-4.6540.0040.003950.0987.01.0
t6.9560.1906.5557.2850.0060.004972.0992.01.0
x_sigma0.2030.0170.1700.2330.0010.0001168.0996.01.0
\n", + "
" + ], + "text/plain": [ + " mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk \\\n", + "Intercept 1.518 0.068 1.392 1.643 0.002 0.001 1147.0 \n", + "I(t ** 2) -4.871 0.113 -5.083 -4.654 0.004 0.003 950.0 \n", + "t 6.956 0.190 6.555 7.285 0.006 0.004 972.0 \n", + "x_sigma 0.203 0.017 0.170 0.233 0.001 0.000 1168.0 \n", + "\n", + " ess_tail r_hat \n", + "Intercept 1321.0 1.0 \n", + "I(t ** 2) 987.0 1.0 \n", + "t 992.0 1.0 \n", + "x_sigma 996.0 1.0 " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model_projectile_all_terms = bmb.Model(\"x ~ I(t**2) + t + 1\", df_projectile)\n", + "fit_projectile_all_terms = model_projectile_all_terms.fit(idata_kwargs={\"log_likelihood\": True}, random_seed=SEED)\n", + "az.summary(fit_projectile_all_terms)" + ] + }, + { + "cell_type": "markdown", + "id": "25f0b4d8-9702-4ba3-afbb-9992f344c214", + "metadata": {}, + "source": [ + "The parameters are recovered as anticipated.\n", + "\n", + "If you want to include _all_ terms of a variable up to a given degree, you can also use the keyword `poly`. So if we want the linear and quadratic effects, as in this case, we would designate `poly(t, 2)`." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "3bbd8d1c-174b-4a7b-ae22-c3e761269b04", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Auto-assigning NUTS sampler...\n", + "Initializing NUTS using jitter+adapt_diag...\n", + "Multiprocess sampling (2 chains in 2 jobs)\n", + "NUTS: [x_sigma, Intercept, poly(t, 2)]\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "aa031ee3e3d7472195e1f533bcf4ec14", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 3 seconds.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "74828cacea974be390527a9eb521ca4a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "We recommend running at least 4 chains for robust computation of convergence diagnostics\n" + ] + } + ], + "source": [ + "model_projectile_poly = bmb.Model(\"x ~ poly(t, 2) + 1\", df_projectile)\n", + "fit_projectile_poly = model_projectile_poly.fit(idata_kwargs={\"log_likelihood\": True}, random_seed=SEED)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "1d84e8ad-52b0-433f-a222-1f04f0aaf0e7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
meansdhdi_3%hdi_97%mcse_meanmcse_sdess_bulkess_tailr_hat
Intercept2.8710.0232.8312.9150.0000.0002662.01715.01.0
poly(t, 2)[0]-3.8860.198-4.216-3.4610.0040.0032725.01830.01.0
poly(t, 2)[1]-8.7690.200-9.154-8.4220.0030.0023265.01775.01.0
x_sigma0.2010.0170.1690.2320.0000.0002876.01458.01.0
\n", + "
" + ], + "text/plain": [ + " mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk \\\n", + "Intercept 2.871 0.023 2.831 2.915 0.000 0.000 2662.0 \n", + "poly(t, 2)[0] -3.886 0.198 -4.216 -3.461 0.004 0.003 2725.0 \n", + "poly(t, 2)[1] -8.769 0.200 -9.154 -8.422 0.003 0.002 3265.0 \n", + "x_sigma 0.201 0.017 0.169 0.232 0.000 0.000 2876.0 \n", + "\n", + " ess_tail r_hat \n", + "Intercept 1715.0 1.0 \n", + "poly(t, 2)[0] 1830.0 1.0 \n", + "poly(t, 2)[1] 1775.0 1.0 \n", + "x_sigma 1458.0 1.0 " + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "az.summary(fit_projectile_poly)" + ] + }, + { + "cell_type": "markdown", + "id": "a976e431-694a-4dc1-bb24-6b6e9f67eb86", + "metadata": {}, + "source": [ + "Now there are fitted coefficients for $t$ and $t^2$, but wait, those aren't the parameters we used! What's going on here?\n", + "\n", + "## The `poly` Keyword\n", + "\n", + "To fully understand what's going on under the hood, we must wade into some linear algebra. When the `poly` keyword is used, instead of directly using the values of $x, x^2, x^3, \\dots, x^n$, it converts them into _orthogonal polynomials_. When including the effect from multiple polynomial terms, there will generally be correlation between them. Including all of these into a model can be a problem from the fitting perspective due to multicollinearity. By orthogonalizing, the correlation is removed by design. \n", + "\n", + "As it turns out, it's difficult to get any information on _how_ the orthogonalization is performed. [Here is the implementation for `poly` in formulae](https://github.com/bambinos/formulae/blob/b00f53da4b092ea13eeeabe92866736e97d56db0/formulae/transforms.py#L400-L426), but to fully understand, I went into the [source code for the R Stats library](https://svn.r-project.org/R/trunk/src/library/stats/R/contr.poly.R) where `poly` is defined as a function for use on any vector, and took a look at its code. \n", + "\n", + "Here's a step-by-step summary, along with a toy example for $x^4$.\n", + "\n", + "- The data is first centered around the mean for stability" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "c8d578d2-442c-4e69-999f-ccdd579a924e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Array: [1 2 3 4 5], mean: 3.0.\n", + "Centered: [-2. -1. 0. 1. 2.]\n" + ] + } + ], + "source": [ + "X = np.array([1, 2, 3, 4, 5])\n", + "\n", + "mean = np.mean(X)\n", + "X_centered = X - mean\n", + "print(f\"Array: {X}, mean: {mean}.\\nCentered: {X_centered}\")" + ] + }, + { + "cell_type": "markdown", + "id": "e4a8d568-e13f-417e-9571-ac9c9e98f408", + "metadata": {}, + "source": [ + "- A _Vandermonde matrix_ is created. This just takes the input data and generates a matrix where columns represent increasing polynomial degrees. In this example, the first column is $x^0$, a constant term. The second is $x^1$, or the centered data. The third column is $x^2$, the fourth is $x^3$, the last is $x^4$." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "b57063f8-c0a9-402f-a817-e0c2ff8c5b09", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 1., -2., 4., -8., 16.],\n", + " [ 1., -1., 1., -1., 1.],\n", + " [ 1., 0., 0., 0., 0.],\n", + " [ 1., 1., 1., 1., 1.],\n", + " [ 1., 2., 4., 8., 16.]])" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "degree = 4\n", + "simple_vander = np.vander(X_centered, N=degree+1, increasing=True)\n", + "simple_vander" + ] + }, + { + "cell_type": "markdown", + "id": "7ec453d8-8171-450e-800a-3f7c0a42170b", + "metadata": {}, + "source": [ + "- QR decomposition is performed. There are [several methods to doing this in practice](https://en.wikipedia.org/wiki/QR_decomposition), the most common being the [Gram-Schmidt process](https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process). Here I just take advantage of the [Numpy implementation](https://numpy.org/doc/stable/reference/generated/numpy.linalg.qr.html). We take the above matrix and convert it into two components, an orthogonal matrix $Q$, and an upper triangular matrix $R$." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "004f5052-c55a-41fe-a496-cf60165e35ef", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Orthogonal matrix Q:\n", + " [[-0.4472 -0.6325 0.5345 -0.3162 -0.1195]\n", + " [-0.4472 -0.3162 -0.2673 0.6325 0.4781]\n", + " [-0.4472 0. -0.5345 0. -0.7171]\n", + " [-0.4472 0.3162 -0.2673 -0.6325 0.4781]\n", + " [-0.4472 0.6325 0.5345 0.3162 -0.1195]]\n", + "\n", + "Upper triangular matrix R:\n", + " [[ -2.2361 -0. -4.4721 -0. -15.2053]\n", + " [ 0. 3.1623 0. 10.7517 0. ]\n", + " [ 0. 0. 3.7417 0. 16.5702]\n", + " [ 0. 0. 0. 3.7947 -0. ]\n", + " [ 0. 0. 0. 0. -2.8685]]\n" + ] + } + ], + "source": [ + "q, r = np.linalg.qr(simple_vander)\n", + "print(\"Orthogonal matrix Q:\\n\", q.round(4))\n", + "print(\"\\nUpper triangular matrix R:\\n\", r.round(4))" + ] + }, + { + "cell_type": "markdown", + "id": "b8a35275-5629-4b68-a231-2d57fd223bea", + "metadata": {}, + "source": [ + "- Last take the dot product of $Q$ with the diagonal elements of $R$. $Q$ is then scaled to the magnitude of the polynomial degrees in $R$. This serves as our transformation matrix which transforms input data into the space defined by the orthogonal polynomials.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "08d42b63-e4fc-4ad2-bb39-377202981669", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 1. -2. 2. -1.2 0.3429]\n", + " [ 1. -1. -1. 2.4 -1.3714]\n", + " [ 1. 0. -2. 0. 2.0571]\n", + " [ 1. 1. -1. -2.4 -1.3714]\n", + " [ 1. 2. 2. 1.2 0.3429]]\n" + ] + } + ], + "source": [ + "diagonal = np.diag(np.diag(r)) # First call gets elements, second creates diag matrix\n", + "transformation_matrix = np.dot(q, diagonal)\n", + "print(transformation_matrix.round(4))\n" + ] + }, + { + "cell_type": "markdown", + "id": "0399a658-bfca-42c0-a044-de7f0aacb971", + "metadata": {}, + "source": [ + "- From the transformation matrix, we get squared norms (`norm2`), which give us the scale of each polynomial. We also get the value by which we need to shift each polynomial to match the centered data (`alpha`).\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "f0bdab71-9ce8-4ce2-a1c6-a7f2a6aa6968", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Norm2: [ 5. 10. 14. 14.4 8.22857143]\n", + "alpha: [3. 3. 3. 3.]\n" + ] + } + ], + "source": [ + "norm2 = np.sum(transformation_matrix**2, axis=0)\n", + "\n", + "weighted_sums = np.sum(\n", + " (transformation_matrix**2) * np.reshape(X_centered, (-1, 1)),\n", + " axis=0\n", + ") \n", + "normalized_sums = weighted_sums / norm2\n", + "adjusted_sums = normalized_sums + mean\n", + "alpha = adjusted_sums[:degree]\n", + "\n", + "print(f\"Norm2: {norm2}\\nalpha: {alpha}\")" + ] + }, + { + "cell_type": "markdown", + "id": "9c7e2171-ace4-4385-b590-7f1c63002c52", + "metadata": {}, + "source": [ + "- Finally, we iteratively apply this to all desired polynomial degrees, shifting the data and scaling by the squared norms appropriately to maintain orthogonality with the prior term." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "40fead32-10c3-48ee-8c96-63ef466633a3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 4.47213595e-01, -6.32455532e-01, 5.34522484e-01,\n", + " -3.16227766e-01, 1.19522861e-01],\n", + " [ 4.47213595e-01, -3.16227766e-01, -2.67261242e-01,\n", + " 6.32455532e-01, -4.78091444e-01],\n", + " [ 4.47213595e-01, 0.00000000e+00, -5.34522484e-01,\n", + " 2.34055565e-16, 7.17137166e-01],\n", + " [ 4.47213595e-01, 3.16227766e-01, -2.67261242e-01,\n", + " -6.32455532e-01, -4.78091444e-01],\n", + " [ 4.47213595e-01, 6.32455532e-01, 5.34522484e-01,\n", + " 3.16227766e-01, 1.19522861e-01]])" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "transformed_X = np.full((len(X), degree+1), np.nan)\n", + "transformed_X[:,0] = 1\n", + "transformed_X[:, 1] = X - alpha[0]\n", + "for i in range(1, degree):\n", + " transformed_X[:, i + 1] = (\n", + " (X - alpha[i]) * transformed_X[:, i] -\n", + " (norm2[i] / norm2[i - 1]) * transformed_X[:, i - 1]\n", + " )\n", + "\n", + "transformed_X /= np.sqrt(norm2)\n", + "transformed_X " + ] + }, + { + "cell_type": "markdown", + "id": "a9ce557b-b43b-473a-99c9-4eb0ca95f1b0", + "metadata": {}, + "source": [ + "This is now a matrix of orthogonalized polynomials of X. The first column is just a constant. The second column corresponds to the input $x$, the next is $x^2$ and so on. In most implementations, the constant term is eliminated, giving us the following final matrix." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "5b868eb5-9fa2-412f-b704-5b1c1ceeabd2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-6.32455532e-01, 5.34522484e-01, -3.16227766e-01,\n", + " 1.19522861e-01],\n", + " [-3.16227766e-01, -2.67261242e-01, 6.32455532e-01,\n", + " -4.78091444e-01],\n", + " [ 0.00000000e+00, -5.34522484e-01, 2.34055565e-16,\n", + " 7.17137166e-01],\n", + " [ 3.16227766e-01, -2.67261242e-01, -6.32455532e-01,\n", + " -4.78091444e-01],\n", + " [ 6.32455532e-01, 5.34522484e-01, 3.16227766e-01,\n", + " 1.19522861e-01]])" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "transformed_X[:,1:]" + ] + }, + { + "cell_type": "markdown", + "id": "f5bca7b6", + "metadata": {}, + "source": [ + "The approach shown in this derivation been reproduced below as a Scikit-Learn style class below, where the `fit` method calculates the coefficients and the `transform` method returns orthoginalized data. It is also [at this gist](https://gist.github.com/tjburch/062547b3600f81db73b40feb044bab2a#file-orthogonalpolynomialtransformer-py), including the typical `BaseEstimator`, `TransformerMixin` inheritances." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "ab8e0ebe", + "metadata": {}, + "outputs": [], + "source": [ + "class OrthogonalPolynomialTransformer:\n", + " \"\"\"Transforms input data using orthogonal polynomials.\"\"\"\n", + " \n", + " def __init__(self, degree: int = 1) -> None:\n", + " self.degree = degree + 1 # Account for constant term\n", + " self.norm2 = None\n", + " self.alpha = None\n", + "\n", + " def fit(self, X: np.ndarray, y: Optional[np.ndarray] = None) -> 'OrthogonalPolynomialTransformer':\n", + " \"\"\"Calculate transformation matrix, extract norm2 and alpha.\"\"\" \n", + " # Reset state-related attributes at the beginning of each fit call\n", + " self.norm2 = None\n", + " self.alpha = None\n", + "\n", + " X = np.asarray(X).flatten()\n", + " if self.degree >= len(np.unique(X)):\n", + " raise ValueError(\"'degree' must be less than the number of unique data points.\")\n", + " \n", + " # Center data around its mean\n", + " mean = np.mean(X)\n", + " X_centered = X - mean\n", + " \n", + " # Create Vandermonde matrix for centered data and perform QR decomposition\n", + " vandermonde = np.vander(X_centered, N=self.degree + 1, increasing=True)\n", + " Q, R = np.linalg.qr(vandermonde)\n", + " \n", + " # Compute transformation matrix and norms\n", + " diagonal = np.diag(np.diag(R)) # extract diagonal, then create diagonal matrix\n", + " transformation_matrix = np.dot(Q, diagonal)\n", + " self.norm2 = np.sum(transformation_matrix**2, axis=0)\n", + " \n", + " # Get alpha\n", + " # Normalized weighted sum sqared of transformation matrix\n", + " weighted_sums = np.sum(\n", + " (transformation_matrix**2) * np.reshape(X_centered, (-1, 1)),\n", + " axis=0\n", + " ) \n", + " normalized_sums = weighted_sums / self.norm2\n", + " adjusted_sums = normalized_sums + mean\n", + " self.alpha = adjusted_sums[:self.degree]\n", + " return self\n", + "\n", + " def transform(self, X: np.ndarray) -> np.ndarray:\n", + " \"\"\"Iteratively apply up to 'degree'.\"\"\"\n", + " X = np.asarray(X).flatten()\n", + " transformed_X = np.empty((len(X), self.degree + 1)) # Adjusted to include all polynomial degrees\n", + " \n", + " transformed_X[:, 0] = 1 # x^0 \n", + " if self.degree > 0:\n", + " transformed_X[:, 1] = X - self.alpha[0]\n", + "\n", + " if self.degree > 1:\n", + " for i in range(1, self.degree):\n", + " transformed_X[:, i + 1] = (\n", + " (X - self.alpha[i]) * transformed_X[:, i] -\n", + " (self.norm2[i] / self.norm2[i - 1]) * transformed_X[:, i - 1]\n", + " )\n", + "\n", + " transformed_X /= np.sqrt(self.norm2)\n", + " \n", + " # return without constant term\n", + " return transformed_X[:, 1:self.degree] \n", + "\n", + " def fit_transform(self, X: np.ndarray, y: Optional[np.ndarray] = None) -> np.ndarray:\n", + " self.fit(X, y)\n", + " return self.transform(X)" + ] + }, + { + "cell_type": "markdown", + "id": "ca28098e", + "metadata": {}, + "source": [ + "An example call is shown below. It's worth noting that in this implementation, the constant term is not returned, the first column corresponds to $x$, the second to $x^2$, and the third to $x^3$." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "ab4cd520", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-6.32455532e-01, 5.34522484e-01, -3.16227766e-01],\n", + " [-3.16227766e-01, -2.67261242e-01, 6.32455532e-01],\n", + " [ 0.00000000e+00, -5.34522484e-01, 2.34055565e-16],\n", + " [ 3.16227766e-01, -2.67261242e-01, -6.32455532e-01],\n", + " [ 6.32455532e-01, 5.34522484e-01, 3.16227766e-01]])" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X = np.array([1, 2, 3, 4, 5])\n", + "poly3 = OrthogonalPolynomialTransformer(degree=3).fit(X)\n", + "poly3.transform(X)" + ] + }, + { + "cell_type": "markdown", + "id": "c18db18a-0b66-4104-980c-4839fa8ea34b", + "metadata": {}, + "source": [ + "This matches what you may get when calling the same function in R:\n", + "\n", + "```{R}\n", + "> poly(X, 4)\n", + " 1 2 3 4\n", + "[1,] -6.324555e-01 0.5345225 -3.162278e-01 0.1195229\n", + "[2,] -3.162278e-01 -0.2672612 6.324555e-01 -0.4780914\n", + "[3,] -3.288380e-17 -0.5345225 9.637305e-17 0.7171372\n", + "[4,] 3.162278e-01 -0.2672612 -6.324555e-01 -0.4780914\n", + "[5,] 6.324555e-01 0.5345225 3.162278e-01 0.1195229\n", + "```\n", + "\n", + "or, most relevant, from formulae," + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "6aea71ac-3d90-47a8-9e6a-dce2e08eee2c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-0.63245553, 0.53452248, -0.31622777, 0.11952286],\n", + " [-0.31622777, -0.26726124, 0.63245553, -0.47809144],\n", + " [ 0. , -0.53452248, -0. , 0.71713717],\n", + " [ 0.31622777, -0.26726124, -0.63245553, -0.47809144],\n", + " [ 0.63245553, 0.53452248, 0.31622777, 0.11952286]])" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "formulae_poly = formulae.transforms.Polynomial()\n", + "formulae_poly(X, 4)" + ] + }, + { + "cell_type": "markdown", + "id": "639a9fef-5053-46bb-8d7c-85f8f8441e54", + "metadata": {}, + "source": [ + "For an example, applying this function to x over a domain from 0-10," + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "d4d4ce45-3ffb-4177-99e5-817752170893", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtoAAAHrCAYAAADxIDqmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnR0lEQVR4nO3dd3hU5bbH8d+kASkkQIoQQmgGItKUFgQBpXgoUqRKEZAmROkCKlUUPQgqRRAB6SAovYmgIgihH5ooSkmAUAKhpABpc//gZiQkgZSZJJN8P/eZ55C93/3uNbnjZM2atd9tMBqNRgEAAAAwK5vsDgAAAADIjUi0AQAAAAsg0QYAAAAsgEQbAAAAsAASbQAAAMACSLQBAAAACyDRBgAAACyARBsAAACwABJtAAAAwAJItAEAAAALsMvuAAAAAICMWrdunQ4dOqQTJ07o9OnTio2N1aRJk9SmTZt0zZOQkKClS5dq5cqVCg4OlqOjo2rXrq3BgwfLx8cnQ7GRaAMAAMBqffnll7p06ZIKFSokT09PXbp0KUPzjBkzRqtWrdLTTz+trl276tq1a9qyZYt+//13fffddypZsmS656R1BAAAAFZr4sSJ+vnnnxUUFKSOHTtmaI6goCCtWrVK1atX1+rVqzV8+HBNnjxZM2fO1K1bt/Thhx9maF4q2gAAALBatWvXzvQcq1atkiQNHDhQDg4Opu316tVTjRo1tHv3boWGhqpYsWLpmpeKNgAAAPK0ffv2ydHRUc8991yyfXXr1pUk7d+/P93zkmgDAAAgz4qOjlZYWJiKFy8uW1vbZPt9fX0lScHBwemeO0e2jvQzFMzuEJDLuNnxmRLmdysuIbtDQC4zO+pCdoeA3MjRNVtOa858brbxjtnmelRERIQkydnZOcX9idsTx6VHjky0AQAAYN0ocfE7AAAAQB7m4uIiSYqMjExxf+L2xHHpQUUbAAAAZmdjMGR3CGni6OgoDw8PXbx4UfHx8cn6tBN7sxN7tdODijYAAADMzsaMD0urUaOGoqOjdfjw4WT7du3aJUmqXr16uucl0QYAAECeEB4erjNnzig8PDzJ9vbt20t6cJfJmJgY0/adO3dq//79qlOnjry9vdN9PlpHAAAAYHY2WdQ5smrVKh06dEiSdPr0adO2xHWvn3/+ebVr106StHTpUs2YMUOBgYF6++23TXPUqlVL7dq106pVq9SmTRvVq1dPYWFh2rx5s9zc3PTBBx9kKDYSbQAAAFitQ4cOac2aNUm2HT58OEkbSGKi/TgTJkyQn5+fVq5cqUWLFsnR0VGNGjXS4MGDVaJEiQzFZjAajcYMHWlBrKMNc2MdbVgC62jD3FhHGxaRTetoD7E133mnxt8221xZiYo2AAAAzM5aVh2xJMp8AAAAgAVQ0QYAAIDZUc0l0QYAAIAFZNWqIzkZHzYAAAAAC6CiDQAAALOjmkuiDQAAAAswsOoIHzYAAAAAS6CiDQAAALOjmkuiDQAAAAtg1RE+bAAAAAAWQUUbAAAAZkc1l0QbAAAAFmDDqiN82AAAAAAsgYo2AAAAzI5qLok2AAAALIBVR/iwAQAAAFgEFW0AAACYHdVcEm0AAABYgI3oHeHDBgAAAGABVLQBAABgdlwMSUUbAAAAsAgq2gAAADA7qrkk2gAAALAAWkf4sAEAAABYBBVtAAAAmB3L+5FoAwAAwAJoHaF1BAAAALAIKtoAAAAwO6q5JNoAAACwAFpH+LABAAAAWAQVbQAAAJgdq46QaAMAAMACaB2hdQQAAACwCCraAAAAMDsK2lS0rVLZurXVf/13+uTSX5ptvKPKLZtld0jIwWq91Usj/j6mDyOuqP/v21W8+nOpjrWxs9PL77+r4X8e0YcRVzTw0G75NX45yZgRfx/TJ7G3kj1aTpts6acCK8N7FVIzffYcvdK6naoEvKjqL76s7n0H6OjxE5me98Chw+o3cIjqNGqqclVraPsvv6Y47szZc+o3cKier9tAVQJe1Gud31Do5SuZPj+SsjGY72GtMp1ob9my5Ylj4uPjNXkyf4TNJZ+Tky4ePaEVA4ZmdyjI4Sq1a63mkz/S9omfanqNerp87ITe3LRaTh7uKY5vPOED1ejdXesHvavPK9VU0Jz56vr9EhWrUsk0ZkZAA00s7md6zG3SUpJ0/Pt1WfKcYD14r0JqSvqW0JgRw7Vh1XIt+3aOvIsVVc/+bys8/Gam5o2+e0/l/J7W2FHDUx0TcuGiXu/ZW6VL+WrxN7O1fuUy9e/9pvLlc8jUuYGUGIxGozEzE5QvX16vvfaaPvjgAxUoUCDZ/uDgYA0dOlQnT57UqVOn0jRnP0PBzISUp8w23tGsVp10dN2m7A4lR3Ozy5tf3vT/fbsuHjys9QPflSQZDAaNPHdSe2bO0c7JXyQb/17wKf38yRQFzZpr2tblu0WKvXdX373RN8VzNJ8ySeWbNtFn/qlXynOrW3EJ2R2C1eC9Km1mR13I7hCyRWRkpJ6v+5IWzJ6hgJo1JEmXr1zVJ1O/0O9798nGxkbPV62i998douLFiqVpznJVa2jm1P+qYYP6SbYPHvG+7OztNHnieDM/ixzM0TVbTrvI1dNsc3W7fc1sc2WlTGcfderU0Q8//KA2bdokS6RXr16t1q1b648//lDfvin/kQZgGbb29vJ+ror+2bHTtM1oNOqfn3fKt1aNlI/Jl09x9+4n2RZ7765K1g5I9RxVX2+vgwuWmC9wAHlKTGysvlu9Vi7Ozirn5ydJio2N05v935GTo6OWzp+j5d9+I0fHAuo1YKBiYmMzfK6EhAT9uvt3lSxRQm/2f1sBLzVRu649Um0xQebQOmKGRHvu3LkaOXKkLl68qPbt22v+/Pm6c+eOhgwZovfff1+urq5atGiRBg0aZIZwAaSVo3sR2drZKfJa0ipA5NVrcn4q5SrD39t2qO7A/ipStrQMBoPKvlxfFVq1kEtRrxTHP9OymfK7uerQomVmjx9A7vbLb7tUtXY9VapZRwuWLNf82TNUuJCbJGnztp+UYEzQR2M/ULmny6pM6VKaNH6MLl+5ov0HD2X4nDfCwxUdHa1vvl2ourUDNH/WdDVqUF+BQ0do/8HD5nliwEPMsupI9+7dVbNmTQ0dOlSTJ0/WtGnTdP/+fTVq1EgTJ05UwYK0ggDWYMOQkWoze5qGnjggo9Go8DPndGjhUlXr3iXF8dV7dNXprdsVwUVEAFKxfvNWjZ04yfTzNzO+ULXnqqpm9Wpau2KJbt66pZWr12rQu6O0avG3KlK4sP48/bdCLlzUcy/UTzLX/fsxCrlwUQfzHVHvwEGm7eM/GKVXm77yxFgSEh50y75c/0V17/K6JMm/nJ8OHz2mFd+vVo1qea8FzpLyZtNmUmZb3q98+fKqX7++zp49q3v37qlQoUJ65513SLKBbBJ9/Ybi4+Lk7Jm0eu3s5anIKyn3ukVdv6HFbTvLLl8+ORYprDuhl/XKx+MUfvZ8srFuJXxU9uX6WtKuqyXCB5BLvFSvrio/W8H0s5enhyTJsUAB+ZbwkW8JH1WpVFGNX31N369Zr75vdld0dLQq+JfXZx9NSDZf4UKFZG9vp7Ur/m1ZK1KkcJpiKVTITXZ2tipTulSS7WVKl9ShI0cz8vTwGFbc8WE2ZvmwcfnyZXXu3Fnffvut/P391bdvX0VERKht27Zavny5OU4BIJ3iY2N16fD/VPaleqZtBoNBZRu8qOCg/Y89Nu7+fd0JvSwbOzs92/pV/bFhc7Ix1d7orMhrYfpz849mjx1A7uHs5GRKqH1L+Ch//vwpjkswJigmNkaSVMG/vIJDLqhI4UJJjvUt4SMXF2flz58/yTZnJ6c0xeJgb6+Kzzyjc8EhSbafDw6Rd9GnMvdEgRSYZXm/li1b6siRI+rWrZu+++47DR48WEuXLpW7u7smTJigAQMG6NatW2YIF9KDJbOKV66o4pUrSpLcS5VU8coVVcineDZHhpxm9xczVf3Nbnquayd5lPdTq5lT5eDkpEMLl0qS2n87W00mjjGN96nxvCq0aqHCpXxV8oUA9dz0gww2Ntr52bQk8xoMBj3/RmcdXrxcCfHxWfqcYD14r0JKou/e1dTpX+l/x47rUuhlnfjjlEaN+1BXr4XplUYP1u1v8Z9XVMjNVW8NHq6Dh4/owqVL2nfwkCZ++pmuXL2a6txR0dE69ddpnfrrtCTp4qVQnfrrdJI1st98o4u2/PiTVq5eq+CQC1qyYqV++W23OrVva9knngfZGAxme1grsyzvV6RIEX3yySeqW7dukn1RUVEaN26cNmzYIC8vL+3cuTOVWZJieb/H86tXR0N+TV5h3LtgqRb2eCsbIsr58uryfpIU0L+3Xhzyjlye8lTo0ePaMHiELux/cDFRn+0bdTM4RKve7C9JKlX3BbWaMUWFS5dUTGSU/tr6k7a8Ny5ZD/bTDRvozS1r9Nkzz+v632ey/DnlFCzv93i8V6VfXlje7/79+xr63mgdPX5SN2/dkpurqypWeEZv9e6pShWeMY0Lu35dn305Qzt371FUdLS8PD0UUKO6Rgx+R87OzinOve/gIXXrnfy11bpFM30yYazp5+/Xrtec+Qt15do1lfItobf79VHDBvWSHZdrZNPyft8VSvlC+ozocDP1D1g5WaYT7T59+mjSpEkqUqRIqmPWrVunDz/8UAcPHkzTnCTaMLe8nGjDcki0YW55IdFGNsimRHulGRPt9laaaGf6Ysg5c+Y8cUzLli31/PPPZ/ZUAAAAsBLW2/BhPllW5itenJ48AAAA5B1mW94PAAAASERFm0QbAAAAFmCw4tVCzIUrxAAAAAALoKINAAAAs6OeTaINAAAAC6Btgt8BAAAAYBFUtAEAAGB2XAtJog0AAAALMNClTesIAAAAYAlUtAEAAGB21LNJtAEAAGABJNq0jgAAAAAWQUUbAAAAZmdDSZtEGwAAAObHqiO0jgAAAAAWQUUbAAAAZkc9m0QbAAAAucCxY8c0ffp0HTlyRHFxcfLz81P37t3VtGnTNM9x9epVffPNN9qzZ49CQ0Pl6OgoX19fdejQQS1atJCtrW26YiLRBgAAgNll5S3Yg4KC1KtXLzk4OKhZs2ZycnLStm3bNHjwYF25ckU9e/Z84hwXLlxQu3btdOvWLdWpU0cNGjRQZGSkduzYoREjRmjfvn2aNGlSuuIyGI1GY0aflKX0MxTM7hCQy7jZcTkCzO9WXEJ2h4BcZnbUhewOAbmRo2u2nHabRzGzzdU4LDTVfXFxcfrPf/6jK1euaOXKlfL395ckRUREqG3btrp06ZJ+/PFHeXt7P/Yc48aN0/Lly/Xee+/pjTfeMG2/c+eOWrZsqdDQUP38889PnOdhZB8AAACwWkFBQQoJCVHz5s1NSbYkubi4qF+/foqNjdWaNWueOM+FCw8+6NarVy/J9oIFC+q5556TJN28eTNdsZFoAwAAwOxsZDDb43H2798vSapTp06yfYnbDhw48MR4/fz8JEk7d+5Msv3OnTs6cuSIPDw8VLZs2TQ990T0aAMAAMDssqpF+/z585IkX1/fZPs8PDzk6Oio4ODgJ87z5ptv6ueff9akSZO0a9culStXztSjnT9/fs2YMUP58+dPV2wk2gAAALBakZGRkh60iqTE2dlZERERT5zH3d1d3333nYYPH67ffvtNu3btkiTlz59fHTt2VPny5dMdG4k2AAAAzC4rVx0xh+DgYPXr10+Ojo5aunSp/P39FRERofXr1+uLL77Q7t27tXTp0nQt8UeiDQAAALPLqjzb2dlZklKtWkdGRsrV9ckrr4wcOVKhoaHavn27PDw8JElOTk7q06ePrl+/roULF2rTpk169dVX0xwbF0MCAADAapUsWVKSUuzDDgsLU3R0dIr92w+LjIzU4cOHVaZMGVOS/bCaNWtKkk6dOpWu2Ei0AQAAYHYGM/7f41SvXl2StHv37mT7ErcljklNbGyspNSX7wsPD5ckOTg4PP5JP4JEGwAAAGZnYzDf43ECAgLk4+OjjRs3Jqk4R0REaPbs2bK3t1erVq1M269du6YzZ84kaTUpVKiQSpUqpdDQUK1atSrJ/Hfu3NH8+fMl/VvZTivuDIk8gTtDwhK4MyTMjTtDwiKy6c6Qv3kVN9tcL169+Nj9qd2C/dKlSxoxYkSSW7CPHDlSa9as0aRJk9SmTRvT9p07d6p///6Ki4tTQECA/P39defOHf38888KDw9XkyZNNG3atHTFzcWQAAAAMLusXHSkVq1aWrZsmaZNm6bNmzcrLi5Ofn5+GjZsmJo2bZqmOerVq6fly5dr3rx5OnTokA4cOCAHBweVKVNGAwYMUKdOndIdFxVt5AlUtGEJVLRhblS0YRHZVNHebcaKdp0nVLRzKrIPAAAAwAJoHQEAAIDZPWm1kLyARBsAAABmZ213hrQEWkcAAAAAC6CiDQAAALOjmkuiDQAAAAugc4QPGwAAAIBFUNEGAACA2Rm4GpKKNgAAAGAJVLQBAABgdtSzc2iize2yYW7cKhuWwHsVzC1+z7rsDgG5kG3DbtlyXhJtWkcAAAAAi8iRFW0AAABYNy6GJNEGAACABdiQZ9M6AgAAAFgCFW0AAACYnYGSNok2AAAAzI8WbVpHAAAAAIugog0AAACzo6JNog0AAAALYHk/WkcAAAAAi6CiDQAAALOjoE2iDQAAAAugdYTWEQAAAMAiqGgDAADA7Chok2gDAADAAmzItGkdAQAAACyBijYAAADMjoI2iTYAAAAsgFVHaB0BAAAALIKKNgAAAMzOQDmXijYAAABgCVS0AQAAYHb0aJNoAwAAwALIs2kdAQAAACyCijYAAADMjtYREm0AAABYAHk2rSMAAACARVDRBgAAgNnZUNIm0QYAAID5kWfTOgIAAABYBBVtAAAAmB2rjpBoAwAAwALIs2kdAQAAACyCijYAAADMjoo2iTYAAAAswGBDpk3rCAAAAGABVLQBAABgdrSOkGgDAADAArgzJK0jAAAAgEVQ0QYAAIDZUdBOR0U7ISFBp0+f1tWrV5Pti42N1YEDB8waGAAAAKyXwWAw28NapSnRvnTpklq0aKFXX31V9evXV79+/XTz5k3T/tu3b6tbt24WCxIAAACwNmlKtCdPnixPT09t375dq1ev1r1799SpU6ck1W2j0WixIAEAAGBdDAbzPaxVmnq0Dxw4oHnz5ql48eKSpPnz52vMmDHq3LmzFi1aJAcHB6su6+cUtd7qpXpD3pHzU566fOyE1g96VxcPHE5xrI2dnRqMGKLnunZSQe+iun76H20ZNVant+0wjRnx9zEVKlki2bF7Z32jde8Mt9jzgPUpW7e2Gg8fqBLPV5FbsaKa1aqTjq7blN1hIYfivQqWsGznQc3fHqTrdyJVzttL77dvrEolvVMcu+r3I1q377j+CQ2TJD1T4ikNerV+kvHvLdqgtfuOJTmujn9pzQnsZLknATwiTYn23bt3ZW9vb/rZxsZGEydO1NixY9WlSxd99tlnFgswr6jUrrWaT/5IawYM0YX9B/XCO2/pzU2r9VmFaooKu55sfOMJH6jq6+21ut9Ahf11Wk83flldv1+iWS82Uej/HryxzAhoIIOtremYpyr4q9eP63T8+3VZ9rxgHfI5Oeni0RPaM3+x+q1Zlt3hIAfjvQqWsOXQH/p09XaN7fgfVSpZTIt/2a8+M1Zo09h+KuLilGz8/tPBalbtGVUpVVz57O0096e96j1judZ/0EdebgVN4+o8U1ofdWlh+tnB3jbZXLAcirBpbB0pVaqUTpw4kWz7+PHj9eKLL6pfv35mDyyvqTNogPbPW6hDC5fq2qm/tLb/YMVER6ta9y4pjn+ucwf98ulU/bX1J4WfC9a+r+frry0/qe7gAaYxUddvKPLqNdOjfLNXdP2fszr72+6selqwEie3/qT1oz/U/9ZuzO5QkMPxXgVLWLBjn9rVrqI2AZVVtqiHxnZsqvwOdlq992iK4yf3aKVOL1aTv89TKv2Uuz7s3EwJRqOC/jqfZJyDnZ08XJ1ND1fHAlnwbJCI1pE0JtqNGzfWxo0p/wEeN26cmjZtSo92Jtja28v7uSr6Z8dO0zaj0ah/ft4p31o1Uj4mXz7F3bufZFvsvbsqWTsg1XNUfb29Di5YYr7AAeQpvFfBEmLi4vXHhcuqVb6UaZuNjUEB5Uvpf2cvpmmOezGxiotPSJZIH/g7WHVGfK6m42dp/PItuhUZbdbYgSdJU6Ldt29fffPNN6nuHzdunP7880+zBZXXOLoXka2dnSKvXUuyPfLqNTk/5ZniMX9v26G6A/urSNnSMhgMKvtyfVVo1UIuRb1SHP9My2bK7+aqQ4toCwCQMbxXwRJuRUYrPsEo90daRIq4OOn6nag0zTFl7c/ydHVWwEPJep1nSmtSt1c1/53OGtLqJR34J0R9v1qh+IQEs8aP1LG8XybvDLl3715zxYF02jBkpK7/c1ZDTxzQxOgwtfxysg4tXCpjKm8g1Xt01emt2xVx+UoWRwogL+O9Cpb2zbY92nzoD03r01b57P+99KxptQp6qZKf/Lw91bByOc16q72OB1/W/tPB2Rht3mKwMd/DWmUq9L59+2rLli3miiXPir5+Q/FxcXL2TFoRcvbyVOSVaykeE3X9hha37awxrsX0aZmKmvJsdd2PjFL42fPJxrqV8FHZl+vrwPxFlggfQB7BexUswc3ZUbY2Bl2PSFq9vhERJfeCyS+EfNj87UGau22P5gZ2UjnvlL8lSeTjXkiFnB0VEnbzseMAc8pUol2qVCkNHTpUS5ak3kt3584dTZ48OTOnyfXiY2N16fD/VPaleqZtBoNBZRu8qOCg/Y89Nu7+fd0JvSwbOzs92/pV/bFhc7Ix1d7orMhrYfpz849mjx1A3sF7FSzBwc5Wz/gUTXIhY0LCgwsbq5Qunupx837aq9lbdmvOgE561rfYE89z5eYd3YqKloersznCRhrQOpLG5f1Ss3TpUg0YMEAfffSRrl+/rkGDBpn23b9/XwsXLtTcuXMVERGh4cNZC/Vxdn8xU+3mz9LFQ0d04cAh1XnnLTk4OenQwqWSpPbfztbtS6H68YMJkiSfGs+rYLFiunz0mAoWK6aGY0bKYGOjnZ9NSzKvwWDQ82901uHFy5UQH5/lzwvWIZ+TkzzKljb97F6qpIpXrqio8Ju6eSFtFyMhb+C9CpbQ/eWaGrVovZ4tUVQVSxbTop/36+79WLWuVUmSNHLhenm6uWhIywaSpLnb9mj6pt80uXsrFSvsqrDbkZIkx3wOcsrvoKh7Mfpq8y41rlpe7gWdFBJ2U1PW/qwSHoVVx790qnHAzGysN0E2l0wl2s7Ozpo7d65Gjhyp2bNn68aNGxo9erTWrl2rGTNm6Nq1a3J1ddXQoUPNFW+udWzVGjl5uKvR2Pfk8pSnQo8e1/zmryny2oPF+N18iifpabTLl1+Nx7+vwqVLKiYySn9t/Unfde+re7dvJ5m37Mv1VcjXhyv48Vi+1apqyK//VhjbfT5JkrR3wVIt7PFWdoWFHIj3KljCf55/RuERUZq+caeuR0SpvLeXvh7QUe4FH1SfL9+8LZuHqpordh1WbFy8Bs39Ick8/ZvWVWCzF2VrY9Dp0Gtat++Y7ty9J09XF73gX0pvN68nB/tMpT7IwY4dO6bp06fryJEjiouLk5+fn7p3766mTZuma54bN27o66+/1q+//qrLly/L0dFRJUuWVMuWLfX666+nay6D0Uzr8n366adasGCBnJycFBUVJWdnZ73xxhvq3r27nJ3T9zXNSHs3c4QEmNyK4ypzmJ+bnRVfoYMc6aMt0548CEgn24bdsuW8txtUMdtcrr/877H7g4KC1KtXLzk4OKhZs2ZycnLStm3bdOnSJY0YMUI9e/ZM03lOnTqlnj176s6dO6pXr57KlCmj6OhonTlzRvb29o9dhS8lZvlYd+DAAR0/flxGo1GRkZFyd3fX2rVr5e7ubo7pAQAAYGWyqrc6Li5Oo0ePlsFg0NKlS+Xv7y9JGjBggNq2baupU6eqSZMm8vb2fuw8kZGR6t+/vyTphx9+UPny5ZOdJ70yVY45evSoevTooW7duunw4cNq1aqVevTooevXr2v48OGKikrb+pcAAABARgQFBSkkJETNmzc3JdmS5OLion79+ik2NlZr1qx54jzLli1TaGiohg4dmizJliQ7u/TXpzNV0e7QoYMkqX79+hoyZIj8/PwkSd7e3vr444/VtWtXzZkzh8o2AABAXpNFF0Pu3/9g1aM6deok25e47cCBA0+cZ/PmzTIYDGrSpInOnj2r33//Xffu3VPp0qVVt25dOTg4pDu2TCXaVapU0bBhw1StWrUk27t06aLChQtrxIgR6tSpk+bOnStfX9/MnAoAAADWJItaR86fPy9JKeaaHh4ecnR0VHDw429UFBMTo9OnT6tw4cJavHixpk+froSHLuz28fHRzJkzVa5cuXTFlqnWkRUrViRLshM1bdpUc+bM0Y0bN9SpU6fMnAYAAABIUWTkg+UdXVxcUtzv7OysiIiIx85x+/ZtxcfH69atW/rqq680fPhw7dmzR7/99pv69++vixcv6q233tL9+/fTFZtFL5kPCAjQ4sWLZWPDlfkAAAB5icHGYLaHpSVWr+Pj49WpUyf17NlTRYoUkZeXlwYOHKhXXnlFly5d0tatW9M1r8Uz4AoVKmj58uWWPg0AAAByEoPBfI/HSFxGOrWqdWRkZKrV7kQP73/ppZeS7U/cduLEicfO86gsKTX7+PhkxWkAAACQx5QsWVKSUuzDDgsLU3R09BOvFXR0dJSXl5ckqWDBgsn2J27LUa0jAAAAyJuyqnWkevXqkqTdu3cn25e4LXHM49SqVUuS9M8//yTbl7jtSWtxP4pEGwAAAFYrICBAPj4+2rhxo06dOmXaHhERodmzZ8ve3l6tWrUybb927ZrOnDmTrNWkY8eOkqRvvvlGd+7cMW0PCwvTokWLZGNjo8aNG6crNrPcGRIAAABIIouW97Ozs9PEiRPVq1cvde7cOcVbsBcvXtw0furUqVqzZo0mTZqkNm3amLY/99xz6tGjh7799lu9+uqratCggeLi4rRjxw7duHFDQ4YMUalSpdIXm9meJQAAAJAoi25YIz1o+1i2bJmmTZumzZs3Ky4uTn5+fho2bJiaNm2a5nlGjhwpPz8/LV26VGvWrJHBYJC/v7/Gjx+vRo0apTsug9FoNKb7KAsbae+W3SEgl7kVl/DkQUA6udnRfQfz+mjLtOwOAbmQbcNu2XLeyBa1zDaX84Ygs82VlahoAwAAwOwMWdQ6kpORaAMAAMD8srB1JKfie08AAADAAqhoAwAAwPxoHSHRBgAAgPkZ6JugdQQAAACwBCraAAAAMD9aR0i0AQAAYH4GVh2hdQQAAACwBCraAAAAMD9aR0i0AQAAYAG0jtA6AgAAAFgCFW0AAACYnYHWERJtAAAAWACtI7SOAAAAAJZARRsAAADmR+sIiTYAAADMjx5tWkcAAAAAi6CiDQAAAPPjYkgq2gAAAIAlUNEGAACA2dGjTaINAAAAS6B1hNYRAAAAwBKoaAMAAMD8aB0h0QYAAID5GWgdoXUEAAAAsAQq2gAAADA/WkdItAEAAGABtI7QOgIAAABYAhVtAAAAmB03rMmhifatuITsDgG5jJsdX97A/HivgrnZ1m6Z3SEA5kPrCK0jAAAAgCXkyIo2AAAArBytIyTaAAAAsAASbVpHAAAAAEugog0AAADzo6JNog0AAAALsKFxgt8AAAAAYAFUtAEAAGB+tI6QaAMAAMACSLRpHQEAAAAsgYo2AAAAzI+KNhVtAAAAwBKoaAMAAMD8WN6PRBsAAAAWQOsIrSMAAACAJVDRBgAAgPlR0SbRBgAAgAWQaNM6AgAAAFgCFW0AAACYH6uOkGgDAADAAmgdMU+iHRMTo+3bt+v48eOKiIhQfHx8sjEGg0Eff/yxOU4HAAAA5HiZTrQvXbqknj17KiQkREajMdVxJNoAAAB5CBXtzCfakyZNUnBwsFq2bKnXXntNTz31lGxtbc0RGwAAAKwViXbmE+2goCAFBATo008/NUc8AAAAQK6Q6UQ7ISFB/v7+5ogFAAAAuYSBVUcyn2hXrlxZZ8+eNUcsAAAAyC1oHcn8DWuGDh2qoKAgbd261RzxAAAAALlCuivaM2bMSLatZs2aGjx4sJYtW6YKFSrIyckp2RiDwaABAwZkLEoAAABYFyra5km0E+3fv1/79+9PcR+JNgAAQB5Cop3+RHvRokWWiAMAAADIVdKdaNeoUcMScQAAACA3YdWRzF8MGRoaqsjIyMeOiYyMVGhoaGZPBQAAAFiNTCfaL7/8shYuXPjYMYsXL9bLL7+c2VMBAADAWhgM5ntYqUwn2kajUUaj8YljAAAAkIdkcaJ97Ngx9e7dW9WqVVOVKlXUvn17bd68OcPh3759W3Xr1lW5cuX05ptvZmiOTN+wJi2uXLmS4pJ/AAAAQGYFBQWpV69ecnBwULNmzeTk5KRt27Zp8ODBunLlinr27JnuOSdMmPDE9ugnyVCi/egSf/v3709x2b+EhARdvnxZmzdvVuXKlTMWIQAAAKxPFrV8xMXFafTo0TIYDFq6dKn8/f0lSQMGDFDbtm01depUNWnSRN7e3mme88cff9TGjRs1ZswYTZgwIcOxZTrRNhgMj10/W5I8PT01bNiwjJwKAAAA1iiLVh0JCgpSSEiI2rRpY0qyJcnFxUX9+vXTyJEjtWbNGgUGBqZpvvDwcI0bN04tW7ZUvXr1MhVbhhLtxLW0jUaj3njjDbVu3VqtW7dONs7GxkZubm4qXbq0bFjiBQAAAGaWWOytU6dOsn2J2w4cOJDm+caOHStbW1u9//77ioiIyFRsGUq0H15LOzAwUDVr1lT16tUzFQgAAABykSxqHTl//rwkydfXN9k+Dw8POTo6Kjg4OE1zrVu3Ttu2bdPMmTPl6uqaPYn2w2bMmKFz586RaAMAAOBfWZRoJ16w6OLikuJ+Z2fnNCXMV69e1UcffaTmzZurYcOGZokt0/0cLi4uKlq0qDliAQAAALLFBx98IDs7O73//vtmmzPTFe2KFSvqzz//NEcsAAAAyC2y6Po8Z2dnSUq1ah0ZGSlXV9fHzrFmzRr99ttv+vLLL1W4cGGzxZbp38Dbb7+toKAgrV271gzhAAAAIFfIohvWlCxZUpJS7MMOCwtTdHR0iv3bD/vjjz8kSQMHDlS5cuVMj8Q7m+/evVvlypVTy5Yt0/UryHRF+/fff1fNmjU1atQoLV68WBUrVpS7u3uycQaDQQMGDMjs6SCpbN3aajx8oEo8X0VuxYpqVqtOOrpuU3aHhRyq1lu9VG/IO3J+ylOXj53Q+kHv6uKBwymOtbGzU4MRQ/Rc104q6F1U10//oy2jxur0th2mMSP+PqZCJUskO3bvrG+07p3hFnsesD68V0GS5sxfqCnTZ6rb6x31/vAhKY5ZuXqt1m7cpL//OStJquBfXkPe7q9Kz1bI1LmvhV3Xp1O/0Ik/Tin4wkV17dQhWQxde/XT/kPJ3xPr1XlBc6Z/nqnzI2tUr15dX3/9tXbv3q1mzZol2bd7927TmMepWrWqoqOjk22Pjo7W5s2b9dRTT6lOnTrpbpc2y8WQiU6ePKmTJ0+mOI5E23zyOTnp4tET2jN/sfqtWZbd4SAHq9SutZpP/khrBgzRhf0H9cI7b+nNTav1WYVqigq7nmx84wkfqOrr7bW630CF/XVaTzd+WV2/X6JZLzZR6P+OSZJmBDSQwdbWdMxTFfzV68d1Ov79uix7XrAOvFfh2Mk/tOKH1Sr3dNnHjtt38JCavdJEz1WuJAcHB81dsEg933pbm35YIS9PzwyfPyY2RoUKFdJbvXpqwdLlKY6ZPuVTxcbGmn6+dfu2WnboolcavZzh8+L/ZdHFkAEBAfLx8dHGjRvVrVs301raERERmj17tuzt7dWqVSvT+GvXrikiIkKenp6mCyibNm2qpk2bJpv74sWL2rx5s8qWLauPPvoo3bFlOtFOXFMbWefk1p90cutP2R0GrECdQQO0f95CHVq4VJK0tv9glf9PY1Xr3kU7J3+RbPxznTvo50+m6K//f33t+3q+nn6pvuoOHqDv3ugrSYq6fiPJMeXfHazr/5zV2d92W/bJwOrwXpW3RUVHa/h7ozVx9PuaNXf+Y8dO+fjDJD9PHPO+ftzxi/buO6BWLR5UKGNiYvT5jFnauHWbIiIi9HTZMho2MFA1qz2f6rzFixXTB+8OlST9sG5DimPcHund3fTjT8qfPz+JtjlkUaJtZ2eniRMnqlevXurcuXOSW7BfunRJI0aMUPHixU3jp06dqjVr1mjSpElq06aNZWPL7AQPr6kNIOewtbeX93NV9Oun/371aTQa9c/PO+VbK+X/bm3z5VPcvftJtsXeu6uStQNSPUfV19tr1xczzRc4gFxhwqT/ql7dF1S7Vo0nJtqPunvvnuLi4uTqWvDf+T6ZrH/OntPnn0yUp4eHfvrlV/UaMFAbVi5TSd/k7WwZ9cPa9WrWpJEcCxQw25ywvFq1amnZsmWaNm2aNm/erLi4OPn5+WnYsGEpVqqzSqYT7URXr17VtWvXJD245bqXl5e5pgaQAY7uRWRrZ6fI///vMlHk1WvyKPd0isf8vW2H6g7sr3O7flf4mXMq81I9VWjVQjYPtYo87JmWzZTfzVWHFtEWAOBfm7Zu0x9//qXvlyzI0PGffTlDnh7uql3zQVEg9PIVrV6/Ub9sXi8vTw9J0pvdumjX73u1ev1GDXm7v1niPnbipE7/c0Yfjf3ALPPleVl8V/BKlSpp7ty5Txz3ySef6JNPPknTnMWLF9dff/2V4ZgylWhHRUVp/vz5+uGHH3T16tUk+7y8vNS2bVv16NFDTk5OmTkNgCyyYchItZk9TUNPHJDRaFT4mXM6tHCpqnXvkuL46j266vTW7Yq4fCWLIwWQU12+clUfTZ6q+bOmK1++fOk+fs78hdr8409a9M0s0/Gn//lH8fHxeqVV2yRjY2Jj5Ob2oPWjau16pu0tmr6iCR+MSve5v1+7Xn5Pl830RZj4f1nUOpKTZTjRDgkJUe/evRUSEiKj0ShPT0/TlZiXL1/WlStXNHPmTG3YsEFz586Vj4+P2YIG8GTR128oPi5Ozo9cSOTs5anIK9dSPCbq+g0tbttZdvnyybFIYd0JvaxXPh6n8LPnk411K+Gjsi/X15J2XS0RPgArdfLUKd0ID1eb17uZtsXHx+vA4SNa+t0qHd+3W7apfEs2b9ESzfl2ob6dPUPl/f795i06+q5sbW31w7JFsn2kSuro+KDFY+2KJaZtzs7pL/BF372rTT9u0ztv9U33sUBqMpRox8TEqE+fPgoODlbz5s3Vv39/lS5dOsmYs2fPatasWdqwYYP69OmjdevWycHBwSxBA3iy+NhYXTr8P5V9qZ7+WP9gSTWDwaCyDV7Unq++eeyxcffv607oZdnY2enZ1q/q+Pdrko2p9kZnRV4L05+bf7RI/ACsU60a1bVhVdIVPkaNnaDSpUqqd/duqSbZ3yxYpNnzvtW8mdNUscIzSfb5l/dTfHy8wsPDVe25qike71sicwW9rT/tUExMrF5t+kqm5sFDqGhnLNFetmyZzp8/r8DAQAUGBqY4pnTp0po8ebJKliyp6dOna/ny5XrjjTcyFSweyOfkJI+y/36wcS9VUsUrV1RU+E3dvHAxGyNDTrP7i5lqN3+WLh46ogsHDqnOO2/JwcnJtApJ+29n6/alUP34wQRJkk+N51WwWDFdPnpMBYsVU8MxI2WwsdHOz6YlmddgMOj5Nzrr8OLlSoiPz/LnBevAe1Xe5OzkJL+yZZJscyxQQG6urqbt734wVl6enhr6zoNlf+d8u1DTZs3RlI8/lHexogq7/mD5UUdHRzk5OqqUr69aNH1F744ep5FDBsm/vJ9u3rylvfsOqJxfWdWvWyfVeE79dVrSg1VQwm/e1Km/Tsvezk5lyyQtEH6/dp0a1q+nQm5u5vpVwJC1Pdo5UYYS7W3btsnX1zdN62L3799f69ev19atW0m0zcS3WlUN+XWz6ed2n0+SJO1dsFQLe7yVXWEhBzq2ao2cPNzVaOx7cnnKU6FHj2t+89cUeS1MkuTmU1zGhATTeLt8+dV4/PsqXLqkYiKj9NfWn/Rd9766d/t2knnLvlxfhXx9dHDBEgGp4b0Kqbl85apsHmoBWbFqtWJjY/XO8JFJxgX27aW3+/WRJE0aN0az5s7XJ1O/0LVrYXJzc1OVSs+q/oupJ9mS1Krjv9eYnDz1pzZu+VHeRYvq583/rv1/9nywDh05qvmzppvj6QEmBqPRaEzvQTVr1lSzZs00ZsyYNI3/8MMPtXHjRu3bty9N4/sZCj55EJAObnZ8qob53YpLePIgIB1mR13I7hCQGzm6PnmMBcTPHvnkQWlk2y9tq4TkNBnKPqKjo0130kkLZ2fnFG9rCQAAAORWGWodKVKkiIKDg9M8PiQkRIULF87IqQAAAGCN6NHOWEW7SpUq+u233xQWFvbEsWFhYfr111/13HPPZeRUAAAAsEYGg/keVipDiXbHjh0VHR2twMBAhYeHpzru5s2bCgwM1L1799S+ffsMBwkAAABYmwy1jtSqVUvt27fXypUr1bRpU3Xo0EG1atVKcsOaoKAgrVy5Ujdv3lTbtm0VEBBg1sABAACQg2XxLdhzogzfGXLs2LFycnLSwoULNWfOHM2ZMyfJfqPRKBsbG3Xv3l3Dhw/PdKAAAACwIlbc8mEuGU60bW1tNWLECHXo0EFr1qzRkSNHdP3/F5h3d3dX1apV1apVK5UqVcpswQIAAADWIsOJdqKSJUtq8ODB5ogFAAAAuQWrjmQ+0QYAAACSoXUkY6uOAAAAAHg8KtoAAAAwP1YdIdEGAACABdA6QusIAAAAYAlUtAEAAGB+rDqS+Yr23r17zREHAAAAchMbg/keVirTiXbfvn21ZcsWc8QCAAAA5BqZTrRLlSqloUOHasmSJamOuXPnjiZPnpzZUwEAAMBaGGzM97BSmY586dKlql69uj766CN98cUXSfbdv39fc+bMUcOGDTV//vzMngoAAADWwmAw38NKZTrRdnZ21ty5c9W0aVPNnj1bo0ePVkxMjFauXKlGjRpp6tSpMhgMGjp0qDniBQAAAKyCWVYdsbe315QpU+Tp6akFCxZoy5YtioqKkrOzswIDA9W9e3c5Ozub41QAAACwBlbc8mEuZlve78CBAzp+/LiMRqMiIyPl7u6utWvXyt3d3VynAAAAgLWw4tVCzCXTHzWOHj2qHj16qFu3bjp8+LBatWqlHj166Pr16xo+fLiioqLMEScAAABgVTJd0e7QoYMkqX79+hoyZIj8/PwkSd7e3vr444/VtWtXzZkzh8o2AABAXmLFFzGaS6Yr2lWqVNGSJUs0e/ZsU5ItSV26dNFnn32mv//+W506dVJwcHBmTwUAAABYjUxXtFesWJHqvqZNm6pQoUIaMGCAOnXqpD179mT2dAAAALAGXAyZ+Yr2kwQEBGjx4sWyseGXDQAAkGdwC3bLJ9qSVKFCBS1fvjwrTgUAAADkCGZb3u9JfHx8supUAAAAyG60jmRdog0AAIA8hFVHsqZ1BAAAAMhrqGgDAADA/GgdIdEGAACABVjxaiHmwkcNAAAAwAKoaAMAAMD8aB0h0QYAAIAFsOoIrSMAAACAJVDRBgAAgPnZUM8l0QYAAID50TpC6wgAAABgCVS0AQAAYH6sOkKiDQAAAAugdYTWEQAAAMASqGgDAADA/Fh1hIo2AAAAYAk5sqI9O+pCdoeAXCZ+z7rsDgG5kG3tltkdAnKZfk4+2R0CcqHZxjvZc2J6tHNmog0AAAArx6ojtI4AAAAAlkBFGwAAAOZH6wiJNgAAACyA1hFaRwAAAABLoKINAAAA87OhdYREGwAAAOZH6witIwAAAIAlUNEGAACA+bHqCIk2AAAALIDWEVpHAAAAAEugog0AAACzM9A6QqINAAAAC8ji1pFjx45p+vTpOnLkiOLi4uTn56fu3buradOmTzzWaDTqt99+088//6zDhw8rNDRUcXFx8vX1VdOmTdWjRw/ly5cv3TGRaAMAAMCqBQUFqVevXnJwcFCzZs3k5OSkbdu2afDgwbpy5Yp69uz52ONjYmLUp08fOTg4qEaNGqpTp45iYmK0e/duff7559q+fbsWL16sAgUKpCuuTCfaMTEx2r59u44fP66IiAjFx8cnG2MwGPTxxx9n9lQAAACwFllU0Y6Li9Po0aNlMBi0dOlS+fv7S5IGDBigtm3baurUqWrSpIm8vb1TncPGxkaDBg3S66+/LldXV9P22NhYvf322/rll1+0dOlS9erVK12xZSrRvnTpknr27KmQkBAZjcZUx5FoAwAA5DFZdGfIoKAghYSEqE2bNqYkW5JcXFzUr18/jRw5UmvWrFFgYGCqc9jb2+utt95KcXvfvn31yy+/6MCBA1mbaE+aNEnBwcFq2bKlXnvtNT311FOytbXNzJQAAABAmu3fv1+SVKdOnWT7ErcdOHAgw/Pb2T1IlzOS42Yq0Q4KClJAQIA+/fTTzEwDAACA3CaLWkfOnz8vSfL19U22z8PDQ46OjgoODs7w/D/88IMk6YUXXkj3sZlKtBMSEpKU6AEAAABJWXZnyMjISEkPWkVS4uzsrIiIiAzNvXPnTn333XcqU6aM2rVrl+7jM/VRo3Llyjp79mxmpgAAAABynGPHjmnw4MFycXHRl19+KQcHh3TPkalEe+jQoQoKCtLWrVszMw0AAAByG4ON+R6P4ezsLEmpVq0jIyNTrXan5vjx43rzzTdlY2OjuXPn6umnn07X8YnS1ToyY8aMZNtq1qypwYMHa9myZapQoYKcnJySjTEYDBowYECGAgQAAABSU7JkSUlScHCwnn322ST7wsLCFB0drUqVKqV5vuPHj6tnz55KSEjQ/Pnz03XsozKdaCfav3+/6arPR5FoAwAA5DFZ1KNdvXp1ff3119q9e7eaNWuWZN/u3btNY9IiMcmOj4/XvHnzVLly5UzFlq5Ee9GiRZk6GQAAAPKILFp1JCAgQD4+Ptq4caO6detmWqgjIiJCs2fPlr29vVq1amUaf+3aNUVERMjT0zNJS8mJEyfUs2dPxcXFae7cuapatWqmY0tXol2jRo1MnxAAAAAwFzs7O02cOFG9evVS586dk9yC/dKlSxoxYoSKFy9uGj916lStWbNGkyZNUps2bSRJt27dUs+ePXXnzh3VrVtXe/bs0Z49e5Kcx8XFRd27d09fbJl5YqGhoSpYsKCpCT0lkZGRunPnjooVK5aZUwEAAMCaZNGdISWpVq1aWrZsmaZNm6bNmzcrLi5Ofn5+GjZsmJo2bfrE4yMjI3X79m1J0q5du7Rr165kY7y9vdOdaBuMj7t3+hP4+/srMDDwsf3Xs2bN0rRp03Tq1Km0Txx9O6MhASmK37Muu0NALmRbu2V2h4Bcpp+TT3aHgFxotvFOtpw34dgvZpvLplIDs82VlTLVPGM0GvWkPD0TeTwAAABgtTLVOpIWV65cSXHJPwAAAORiWbTqSE6W7kT70SX+9u/fn+KyfwkJCbp8+bI2b96c6aVRAAAAYGWyaNWRnCxTibbBYHjs+tmS5OnpqWHDhmUsOgAAAMBKpTvRTlxL22g06o033lDr1q3VunXrZONsbGzk5uam0qVLy8aGTzQAAAB5Cq0j6U+0H15LOzAwUDVr1kzz3XYAAACQR9A6krmLIWfMmKFz586RaAMAAACPyFSi7eLioqJFi5orFgAAAOQWtA5nLtGuWLGi/vzzT3PFAgAAgFzCQI925m5Y8/bbbysoKEhr1641UzgAAABA7pCpivbvv/+umjVratSoUVq8eLEqVqwod3f3ZOMMBsNjb9MOAACAXIaLITN/MWSikydP6uTJkymOI9EGAADIY2gdyVyinbimNgAAAICkMpVoP7ymNgAAAGBC60jmEu1EV69e1bVr1yQ9uOW6l5eXOaYFAACAtaJ1JOOJdlRUlObPn68ffvhBV69eTbLPy8tLbdu2VY8ePeTk5JTpIHOr6bPnaNOPP+nKlauyt7dXBf/yGhz4lipXfDZT8x44dFjzFi3RiT/+VNj165o59b9q2KB+snFnzp7T5C9n6MDhw4qPi1eZ0qU0/bNPVazoU5k6P3KWZTsPav72IF2/E6ly3l56v31jVSrpneLYVb8f0bp9x/VPaJgk6ZkST2nQq/WTjH9v0Qat3XcsyXF1/EtrTmAnyz0JZJk58xdqyvSZ6vZ6R70/fEiKY1auXqu1Gzfp73/OSpIq+JfXkLf7q9KzFTJ17mth1/Xp1C904o9TCr5wUV07dUgWQ9de/bT/0OFkx9ar84LmTP88U+dHzle2bm01Hj5QJZ6vIrdiRTWrVScdXbcpu8MCUpWhRDskJES9e/dWSEiIjEajPD09TTeuuXz5sq5cuaKZM2dqw4YNmjt3rnx8fMwadG5R0reExowYLp/i3rp3/54WLFmunv3f1k/rVqtw4UIZnjf67j2V83tar7VsocChI1IcE3Lhol7v2VuvtXpV77zVR85OTvr7zFnly+eQ4fMi59ly6A99unq7xnb8jyqVLKbFv+xXnxkrtGlsPxVxSf4heP/pYDWr9oyqlCqufPZ2mvvTXvWesVzrP+gjL7eCpnF1nimtj7q0MP3sYG+bJc8HlnXs5B9a8cNqlXu67GPH7Tt4SM1eaaLnKleSg4OD5i5YpJ5vva1NP6yQl6dnhs8fExujQoUK6a1ePbVg6fIUx0yf8qliY2NNP9+6fVstO3TRK41ezvB5YT3yOTnp4tET2jN/sfqtWZbd4eBJuGFN+hPtmJgY9enTR8HBwWrevLn69++v0qVLJxlz9uxZzZo1Sxs2bFCfPn20bt06OTiQwD2qxX9eSfLzqKGD9P3a9frr778VUPNB//vlK1f1ydQv9PvefbKxsdHzVavo/XeHqHixYqnOW69ObdWrU/ux5/58xiy9WOcFvTvoHdO2Ej7FM/FskBMt2LFP7WpXUZuAypKksR2baueJf7R671H1bpz8NTK5R6skP3/YuZl++t+fCvrrvFrWrGTa7mBnJw9XZ4vGjqwVFR2t4e+N1sTR72vW3PmPHTvl4w+T/DxxzPv6cccv2rvvgFq1aCbpwd+Kz2fM0sat2xQREaGny5bRsIGBqlnt+VTnLV6smD54d6gk6Yd1G1Ic4+bqmuTnTT/+pPz585No5xEnt/6kk1t/yu4wgDRL90eNZcuW6fz58woMDNRnn32WLMmWpNKlS2vy5Ml6++23de7cOS1fnnJlAv+KiY3Vd6vXysXZWeX8/CRJsbFxerP/O3JydNTS+XO0/Ntv5OhYQL0GDFTMQxWd9EpISNCvu39XyRIl9Gb/txXwUhO169pD23/51UzPBjlBTFy8/rhwWbXKlzJts7ExKKB8Kf3v7MU0zXEvJlZx8QlydSyQZPuBv4NVZ8Tnajp+lsYv36JbkdFmjR1Zb8Kk/6pe3RdUu1b6L3K/e++e4uLi5Or677ceEz6ZrCPHjuvzTyZq/cpleqXRy+o1YKDOB4eYM2z9sHa9mjVpJMcCBZ48GEDWMhjM97BS6U60t23bJl9f3zSti92/f3/5+vpq69atGQouL/jlt12qWrueKtWsowVLlmv+7BkqXMhNkrR5209KMCboo7EfqNzTZVWmdClNGj9Gl69c0f6DhzJ8zhvh4YqOjtY33y5U3doBmj9ruho1qK/AoSO0/2Dy3kdYp1uR0YpPMMr9kRaRIi5Oun4nKk1zTFn7szxdnRXwULJe55nSmtTtVc1/p7OGtHpJB/4JUd+vVig+IcGs8SPrbNq6TX/8+ZeGvp2x+x189uUMeXq4q/b/fxMXevmKVq/fqC//O0nVnquqEj7F9Wa3Lnq+SmWtXr/RbHEfO3FSp/85o3atW5ptTgBmZLAx38NKpbt15MyZM2rWrFma7l9vMBhUp04dbdxovjdWa7V+81aNnTjJ9PM3M75Qteeqqmb1alq7Yolu3rqllavXatC7o7Rq8bcqUriw/jz9t0IuXNRzL9RPMtf9+zEKuXBRB/MdUe/AQabt4z8YpVebJm1HSUlCglGS9HL9F9W9y+uSJP9yfjp89JhWfL9aNao9l/knDKv3zbY92nzoDy0c1EX57P99q2ha7d8L3vy8PVXO21NNxn6l/aeDkyTksA6Xr1zVR5Onav6s6cqXL1+6j58zf6E2//iTFn0zy3T86X/+UXx8vF5p1TbJ2JjYGLm5PWj9qFq7nml7i6avaMIHo9J97u/Xrpff02UzfREmAFhKuhPt6Ohoubi4pHm8s7OzoqP5WvmlenVV+aE/Bl6eHpIkxwIF5FvCR74lfFSlUkU1fvU1fb9mvfq+2V3R0dGq4F9en300Idl8hQsVkr29ndauWGLaVqRI4TTFUqiQm+zsbFWmdNKkqEzpkjp05GhGnh5yIDdnR9naGHQ9Imn1+kZElNwLPn41oPnbgzR32x7Ne/t1lfN+/HKdPu6FVMjZUSFhN0m0rdDJU6d0IzxcbV7vZtoWHx+vA4ePaOl3q3R8327Z2qZ8seu8RUs059uF+nb2DJX3e9q0PTr6rmxtbfXDskWyfeRiKMf/b0N6+L3L2Tn9q1NF372rTT9u0ztv9U33sQCyiBW3fJhLuhPtIkWKKDg4OM3jQ0JCVLhw2hLA3MzZyUnOaVjqMMGYoJjYGEkPlszasm27ihQuJGfnlC888y2R/hVdHOztVfGZZ3TukV7J88Eh8mZpv1zDwc5Wz/gUVdBf59WwcjlJD77NCPrrvF6vVy3V4+b9tFdfb/1d3wR20rO+qV90m+jKzTu6FRXNxZFWqlaN6tqwKul1NKPGTlDpUiXVu3u3VJPsbxYs0ux532rezGmqWOGZJPv8y/spPj5e4eHhqvZc1RSPz8h718O2/rRDMTGxafoWD0B2IdFOd6JdpUoV/fbbbwoLC5OHh8djx4aFhenXX39V/fr1MxpfrhV9965mz/1WL9WrKw93d928dUtLV36vq9fCTFfPt/jPK5q3cLHeGjxcA9/qIy8vT4VevqKfdvyiXt276qlUbgwUFR2tkAv/Xux28VKoTv11Wq4FC5rWyH7zjS4aPOJ9VX+uqmpWe1679uzVL7/t1qJvZln+ySPLdH+5pkYtWq9nSxRVxZLFtOjn/bp7P1ataz1YQWTkwvXydHPRkJYNJElzt+3R9E2/aXL3VipW2FVhtyMlSY75HOSU30FR92L01eZdaly1vNwLOikk7KamrP1ZJTwKq45/8gujkfM5OznJr2yZJNscCxSQm6urafu7H4yVl6enhr7zoId7zrcLNW3WHE35+EN5FyuqsOvXHxzn6CgnR0eV8vVVi6av6N3R4zRyyCD5l/fTzZu3tHffAZXzK6v6deukGs+pv05LevA+Fn7zpk79dVr2dnYqWybp6+v7tevUsH49FXJzM9evAlYgn5OTPMr++1pwL1VSxStXVFT4Td28kLaLvIGslO5Eu2PHjtq6dasCAwM1a9asVKvVN2/eVGBgoO7du6f27dtnOtDcxtbGRmfPn9eaDZt089Ytubm6qmKFZ7R0/hw9XebBH7cCBfJrybyv9dmXMxQ4dISioqPl5emhgBrVH1sdP/HHKXXr/Zbp50lTvpAktW7RTJ9MGCtJavRSA417f6TmzF+oif+dolK+JTRt8ieqVrWKxZ4zst5/nn9G4RFRmr5xp65HRKm8t5e+HtBR7gUfVJ8v37wtm4e+2lux67Bi4+I1aO4PSebp37SuApu9KFsbg06HXtO6fcd05+49ebq66AX/Unq7eT052JvlRrPIgS5fuSqbh1pAVqxardjYWL0zfGSScYF9e+ntfn0kSZPGjdGsufP1ydQvdO1amNzc3FSl0rOq/2LqSbYkterYxfTvk6f+1MYtP8q7aFH9vHmdafvZ88E6dOSo5s+abo6nByviW62qhvy62fRzu88fXPu0d8FSLezxVmqHIbvQOiKD0Wg0pvegMWPGaOXKlXJzc1OHDh1Uq1atJDesCQoK0sqVK3Xz5k21bdtWEydOTN8Jom+nNyTgseL3rHvyICCdbGuz2gXMq58TN3iD+c023smW8xovnjLbXIbi/mabKytlqAQ1duxYOTk5aeHChZozZ47mzJmTZL/RaJSNjY26d++u4cOHmyVQAAAAwJpkKNG2tbXViBEj1KFDB61Zs0ZHjhzR9f/v0XN3d1fVqlXVqlUrlSrFCgQAAAB5E60jmWqqLFmypAYPHmyuWAAAAJBb0KOd/jtDAgAAAHgylgkAAACA+VHQJtEGAACAJZBp0zoCAAAAWAAVbQAAAJgfF0OSaAMAAMACSLRpHQEAAAAsgYo2AAAALICKdpor2gkJCTp9+rSuXr2abF9sbKwOHDhg1sAAAAAAa5amRPvSpUtq0aKFXn31VdWvX1/9+vXTzZs3Tftv376tbt26WSxIAAAAWBmDwXwPK5WmRHvy5Mny9PTU9u3btXr1at27d0+dOnVKUt02Go0WCxIAAADWxmDGh3VKU6J94MABjRgxQsWLF5e/v7/mz5+vatWqqXPnzgoNDZUkGaz40wYAAABgbmlKtO/evSt7e/t/D7Kx0cSJE/XCCy+oS5cuCgkJsViAAAAAsEK0jqQt0S5VqpROnDiRbPv48eP14osvql+/fmYPDAAAAFaMRDttiXbjxo21cePGFPeNGzdOTZs2pUcbAAAAeIjBmBMz5Ojb2R0Bcpn4PeuyOwTkQra1W2Z3CMhl+jn5ZHcIyIVmG+9ky3mNYeZrLTZ4lDDbXFkpU3eG3Lt3r7niAAAAQC5iMBjM9rBWmUq0+/btqy1btpgrFgAAACDXyFSiXapUKQ0dOlRLlixJdcydO3c0efLkzJwGAAAA1oaLITOXaC9dulTVq1fXRx99pC+++CLJvvv372vOnDlq2LCh5s+fn5nTAAAAwOpww5pMJdrOzs6aO3eumjZtqtmzZ2v06NGKiYnRypUr1ahRI02dOlUGg0FDhw41V7wAAACAVbDL7AT29vaaMmWKPD09tWDBAm3ZskVRUVFydnZWYGCgunfvLmdnZ3PECgAAAGthxS0f5pLpRFt6cIv248ePy2g0KjIyUu7u7lq7dq3c3d3NMT0AAACsDYl25lpHjh49qh49eqhbt246fPiwWrVqpR49euj69esaPny4oqKizBUnAAAAYFUyVdHu0KGDJKl+/foaMmSI/Pz8JEne3t76+OOP1bVrV82ZM4fKNgAAQJ5DRTtTFe0qVapoyZIlmj17tinJlqQuXbros88+099//61OnTopODg404ECAADAirC8X+YS7RUrVqhatWop7mvatKnmzJmjGzduqFOnTpk5DQAAAGB1MpVoP0lAQIAWL14sGxuLngYAAAA5Dctom2fVkcepUKGCli9fbunTAAAAIEex4gzZTLKk1Ozj45MVpwEAAAByDItXtAEAAJAHWfFFjOZC8zQAAABgAVS0AQAAYH5UtEm0AQAAYAkk2rSOAAAAABZARRsAAADml8WtI8eOHdP06dN15MgRxcXFyc/PT927d1fTpk3TPEdMTIzmzJmj9evX6/Lly3J1dVWDBg00aNAgFSlSJN0xkWgDAADA/LIw0Q4KClKvXr3k4OCgZs2aycnJSdu2bdPgwYN15coV9ezZ84lzJCQk6K233tLu3btVpUoVNW7cWMHBwVq1apX27t2rlStXqnDhwumKi0QbAAAAVisuLk6jR4+WwWDQ0qVL5e/vL0kaMGCA2rZtq6lTp6pJkyby9vZ+7Dxr1qzR7t271bx5c3322Wcy/P8HheXLl2vcuHH64osvNGHChHTFRo82AAAALCBr7sEeFBSkkJAQNW/e3JRkS5KLi4v69eun2NhYrVmz5onRrlq1SpI0ZMgQU5ItSR07dpSPj482bNige/fupemZJyLRBgAAgPkZDOZ7PMb+/fslSXXq1Em2L3HbgQMHHjvH/fv3dfToUZUqVSpZ5dtgMKh27dqKjo7WiRMn0vMbINEGAACA9Tp//rwkydfXN9k+Dw8POTo6Kjg4+LFzhISEKCEhQSVLlkxxf+L2xHOlVc7s0XZ0ze4IkMvYNuyW3SEAwBPNNt7J7hAA88mifC4yMlLSg1aRlDg7OysiIuKxcyTud3Z2TnWOh8+VVlS0AQAAAAsg0QYAAIDVSqw2p1a1joyMTLXanShxf2oV68TtqVW8U0OiDQAAAKuV2D+dUh92WFiYoqOjU+zffpiPj49sbGxS7cFO3J5aD3dqSLQBAABgtapXry5J2r17d7J9idsSx6Qmf/78qlSpks6dO6dLly4l2Wc0GrVnzx45Ojrq2WefTVdsJNoAAACwWgEBAfLx8dHGjRt16tQp0/aIiAjNnj1b9vb2atWqlWn7tWvXdObMmWStJu3bt5ckTZ06VUaj0bR9xYoVunDhglq0aKH8+fOnKzaD8eGZAORJRqPRtDh/QkKCbGz4DA4AsB6p3YL90qVLGjFiRJJbsI8cOVJr1qzRpEmT1KZNG9P2hIQE9e7d23QL9urVqyskJETbtm2Tt7e3Vq1ale5bsPPXFIDu3btnutsVSTYAwNrUqlVLy5Yt03PPPafNmzdr+fLlKlKkiD7//PMkSfbj2NjYaNasWXr77bcVHh6uBQsW6PDhw2rbtq2+++67dCfZEhVtqxYfHy9bW9vsDgNWbu/evVqwYIGuXbumfPnyafz48SpXrhyVbQAAMom/olZq2bJlOnLkSHaHASu3a9cuDRgwQP7+/mrXrp0cHR01YMAA3b9/nyQb2YoaEIDcgL+kVmjHjh2aMGGCzp49m92hwIoFBwdr6tSp6t+/vwYNGqTXX39dM2fOlCRt27Ytm6NDXmU0GpNcM3D27FkdP35cBw8eVExMTDZHh9wmISHB9O/ED3d8yIM55cxbsOOxihQpIltb2yfeThR4nJCQEDk4OKhRo0aSHvxxKVCggNzc3HTr1q3sDQ55yq1bt3T06FHVrVtXNjY2SkhIkMFg0JYtW/TRRx/p5s2bio+P10svvaTWrVubXrNAWjz8we3hn+Pi4mRn9yANunPnju7cuaPixYubxj56HJARJNpWyNXVVQ4ODjp27JgkVolAxtStWzfJIv6xsbFycHCQl5eX4uPjk4zlDw4sJSYmRj179lRoaKjGjx+vRo0aycbGRjt27NDw4cPl6+urxo0bKywsTL/99pv+/PNP3b59W23bts3u0GElHv52pFixYsqfP79iY2Nlb28vSRo/fryCgoIUHBysRo0aqVmzZmrQoIHs7e1570OmkZ1ZoVKlSsnb21uXLl1SfHw8STbSLfHr0iZNmkh6kEg7ODhIenCR7fXr101jv/zySx09ejTrg0SeYGNjo65du8rGxkZffvmltm7dKunBRbpVq1bVxx9/rDFjxui///2vpk6dqtu3b+vLL7/UqlWrsjlyWJPNmzfrtdde05o1a3Tv3j1Tkv3OO+9o+fLlcnBwUPny5fXbb79pwoQJWrJkiWJjY2UwGGglQaZQ0bYCa9euVWRkpPz8/OTk5KSiRYvK0dFRt2/fVlRUlAoWLGgam/jpm0/heJxHP5w9/JoxGAympHvUqFHasGGDunXrlh1hIg+ws7NT8+bNTSvezJgxQzExMdq5c6dat26typUrS5Ly5cunl19+WV988YUGDRqkadOmSZLatWuXneHDSri4uMjJyUlz5syRra2tWrZsqePHj+vw4cMKDAxUjx49ZDAYdPjwYY0ePVrTp09XfHy83njjDSrbyBSW98vh1q5dq5EjRybZ5u/vr8uXL+vWrVsaNmyYPDw89Oyzz8rZ2VleXl6S+KofafNw21Hiv4cMGaJKlSrp4sWL2rJli9atWyd3d3eWk4RFxcbG6qefftK4ceNMr7cJEyaoZs2aiomJMX34kx6sljNo0CA5Ojpq0KBBeu2117IxcliDhIQE7d+/X++//77u37+voUOH6urVq1q/fr0WL16sIkWKmMb+8ccfCgwM1K1bt9S/f3+SbWQKiXYOFxYWpoSEBJ07d05XrlzRiRMndObMGV26dEkhISGmcXZ2dsqXL598fX3l4uKiunXrqmfPnrSVIFUPJ86XL19W0aJFJUlDhw7Vpk2b5OXlpe+//14eHh5JLhoCMurRROXR11VMTIy2b9+ujz/+WNevX1fHjh01btw4ScmvRdm1a5eGDRum2NhYjRw50nTrZCA1CQkJ2rdvn95//30ZjUaVLFlSJUqU0Pjx45N9mCPZhrmQheVwHh4e8vLyUq1atdSqVSt98MEH+vbbb9W7d29JUmBgoCZMmKCuXbvqxRdf1L179xQaGqoGDRqQZOOxEpPsbt26acWKFabtTk5OcnJy0rp160iyYVaJCcrVq1clyfS62rlzpy5duiQHBwc1bNhQo0ePlru7u7Zt26YNGzbIaDSaViNJVLduXX366adKSEiQj49P1j8ZWAWj0ai4uDhJD1rmatSooY8++kj29vbau3evjhw5oqioKDk4OCTpxX7mmWc0c+ZMFSpUSF9//bW++uorxcXFkWQj3cjErEziG0bVqlUlSc7Ozmrfvr1GjBihzz//XMuWLdPq1atVpkyZ7AwTVuLcuXPav3+/PD09TdsmTJignTt3ys3NjSQbZvff//5Xw4YNM62atH79evXt21fLly83rXzToEEDvf/++4qPj9dXX32lH3/8McVku379+vr5558VEBDABWuQ9O/fyMT/NRgMpvewkJAQ2draqnr16ho/frz8/Px0+vRpLVu2THfv3k124aO/v79mzpypmJgYHTlyhNY5ZAiJtpVJfMNwdnaWnZ2dTp8+LUmm5djc3Nzk4uKSbfHBehiNRtPrKDw8XJJMNwRxdnZWQkICSTbM6t69e4qMjNSBAwe0ZMkSzZgxQ++++64aN26sxo0bm1aCSKxsjx07VuHh4fryyy9TTbYLFy6cXU8HOVDi+9mIESP0yy+/mLZ37NhRffv21Y0bN2RnZ6fq1atr1KhRKlGihBYuXKgNGzbo3r17yZLt8uXLa926dZo7dy4rkCBD+CtqhRISEuTh4aGSJUvqxIkTiomJISHCEz3a42owGOTs7KwCBQro9u3bkpSkR5HWI5hb/vz5NXjwYBUvXlxTp06VJNWoUUMDBw40fQuX2ANrb29vujHN+PHj9eWXX8pgMJjW2X4UX+kj0S+//KJNmzYpPDxcBQsW1Jw5c/TXX3+pV69eypcvn6QHCXnNmjU1fvx4jR49WtOmTZPRaFTLli2VP3/+JL3YJUuWlCQuCEeG8JfUCtnY2MjW1lZPP/20qdeRpAiP8/B663fv3jVVZRISElSgQAFFRUVJ4tbDsJzEb90KFSqk4sWLm7YbDIZkN0hKlJhsjx07Vnfu3NHHH39sWmcbSE2jRo00btw4HThwQAMGDNDvv/+ugQMHqmfPnnJ2dja9z9nY2KhmzZr68MMPlT9/fk2fPl3r169PsbItiSQbGUJ2ZoUS/+PPnz+/bt++rcjIyGyOCDld4h+Inj176tVXX9W7776rvXv36ty5cypRooTu3LkjSakmPEBmGI1G02twx44dOn36tHr06KEWLVpo3759mj59uqlnOzHBSXyfs7e3V8OGDTVixAhFRETI3d09254Hcr74+HgVLFhQr732mjw9PXXr1i0VLVpUJUqUUIECBSQlLSg8nGwXKFBAM2fO1IoVKxQTE8O3JDAL+g2sUOJ//C1atNCbb75JjyLS5MyZMzIYDMqfP782bNigDRs2qFixYgoNDVWlSpUUGRmp+Ph4ubq6mo55tN0EyIjE96wff/xRAwcO1AsvvKBPPvlEjo6O8vLy0ty5c2U0GtWvXz89++yzSRKcxAskX3nlFdWqVUuenp4ssYYUPdzasXHjRpUrV06lSpVSUFCQvv32WxUoUEABAQGysbFJ8hp6ONnu16+fgoKC9MYbb2TnU0EuwjraQB4TExOjQ4cO6fDhwwoKCtLJkycVHR2tp556SoULF9Zrr72mUqVKqXbt2snWlgXS4+Fk5tatW+rZs6c8PT3VtWtXvfDCC5Kkmzdvau7cuZo3b54aNmyovn37qmLFipKko0ePauvWrerSpYu8vb1TnBd41Jtvvql9+/Zp7ty58vPz05YtWzRp0iRVqVJFAwYMUEBAgKR/13FPfD3FxcXpzz//VPny5ZNsBzKDijaQhyQkJMjBwUEBAQEKCAhQ8+bN9d577yk4OFjPP/+8tm/frg8//FCS5OnpqQEDBqhDhw7ZHDWsVWKScubMGYWFhenatWvq16+fKcmWHvRsJ94XYN68eYqLi1OvXr1ka2urr7/+Wr/++qsaNGiQJNEm+cHDHv7m7euvv9Yff/yh119/XU8//bQKFy6sVq1aKSYmRlOmTNGMGTMkSQEBAbKzs9Pdu3e1a9cu+fr6qly5cnr22WclceEjzIdEG8hDEv8YJVZqSpQoITs7OxUrVkxTpkzRn3/+qYsXL2r16tWytbXl1tbItH379umNN95Qw4YN5eLiotq1a0tKmsi4ubmpd+/esrW11Zw5c7R37145OTkpKipKM2bMUI0aNbLzKSAHezjJDg8P1/nz51WtWjW9/fbbpqVunZyc1KFDBxkMBn322WemZLtatWr68ccfNWrUKNWrV0+zZ882zUuSDXMh0QbyoIcrgnZ2dqYLasuXL6/y5curdu3acnR0lERlB2n3cNKT+O/ChQurSpUq2r59uyTp77//VtWqVZO9ptzc3BQYGKiSJUtq5cqV8vb2Vrt27VSrVi3TxWtUsvGoxNfbO++8I0k6ceKEevfuLRcXlyQ33HJ0dFT79u0lSZ999pneffdd+fj46O+//1aFChU0bdq07HkCyPW4ygnIoxKr2gULFtTdu3eVkJBguptaYpL98GoRwKMevcQnNjbWdDOZxASodOnSmjhxol566SVJ0rfffqvQ0NAU53NwcFCbNm20cOFCffLJJyTZSOLh19vD/w4PD1dUVJS2bdum0NBQ3b17V5KS3V/C0dFRr7/+uj799FPFxcXpxo0bqlOnjpYvXy4HBwfT+x9gTlS0gTwqMXFxcXFRdHS07t+/b7qZw6NjgEc9fKHYzp07dfDgQW3btk2S5OXlpapVq6pFixYqW7asypQpoyFDhuj+/fvavn27Spcurc6dO8vDwyPFuR9+HfIaROK3Iw+/Fh7+d+HChTV+/Hh9/fXXWrVqlX744QcFBATI398/2VwODg5q1qyZateuLaPRqEKFCpkuhOTGb7AEXlVAHufg4KCYmBjZ2tqylB/S5OEk+4svvtDy5ct17949FStWTHFxcfrjjz+0f/9+LVmyRBMmTFCTJk1UtmxZvffeexo/frzmzZsnSY9NtgHp39a16OhoHTx4UPv379fVq1cVHx+vF198UX5+fnrmmWdUvHhx9evXT7GxsVq7dq2WLFmivn37qkSJEsnmTEywEyUkJJBkw2J4ZQF53M2bN1WsWDHZ29tndyiwEolJ9qeffqoFCxaoefPm6tKli5555hndvXtXoaGhWrZsmVauXKkRI0YoPDxcXbp0UenSpTVmzBh9+OGHmjdvngwGgzp37sxNaJCixCQ7PDxco0aN0sGDB3X37l3ly5dPd+/e1ebNm1WgQAG99957atOmjby9vTVw4EDFxsbqhx9+kL29vXr27Jks2X70WxIKDLAk1tEG8riDBw+qSpUqsrOz4wY1SLO1a9dq/PjxatWqlXr16iVvb+9kF87OnTtXM2fOVGxsrD7//HM1atRI8fHxOnfunD788EMdO3ZMnTp1Uo8ePahsI4nE96IbN26oU6dOun//vl5++WW1a9dOdnZ2On/+vIKCgrR06VJJUr9+/dS7d285OTkpNDRUU6ZM0aZNm9SxY8cUk20gq5BoA5DE6iJIG6PRqLi4OA0fPlwHDhzQvHnzVL58+SRjHn4tff311/r888/l5uam7777Tr6+vpIerK09atQoHT9+XJs3b1apUqWy/LkgZ4uKilL//v0VHBysYcOG6T//+U+y96hVq1bp888/V3h4uIYOHWpak/3SpUuaOnWqNm/erE6dOpm+UQGyGq0jACSxbizSxmAw6MqVK9qzZ48CAgKSJdnSg9dSYkWyb9++OnPmjNavX6/ff//dlGiXKVNGH3/8saKiokiykUTiNQB79uzR4cOH1aNHD1OSnfi6Svww165dOzk4OOi9997TlClTVL58edWtW1fe3t4aNmyYDAaDli1bJm9vbxJtZAu+IwYApEtERITu37+vAgUKSHpQwX5UYjIkSa+++qqkBzevkf5dmq1s2bKqXLlykm1AYg91UFCQEhIS1KNHjyRJtvTvhzlJatmypQYNGiRJWrFihaKjoyVJRYsW1aBBg9S/f39169Yt658IIBJtAEA62djYKCEhQadPn1Z0dHSq34Ykbvf19ZWrq6spAUppyT6W8UOihIQExcTE6PTp08qfP78kKS4uLtn1I4mvQ0nq2LGjnn76aZ06dcq0TZKKFy+ud955R/b29qyTjWxBog0ASJfSpUurXLlyOnfunA4cOJDquMSEJ1++fIqPj2dlG6SJjY2NHBwc5OTkpLt37+r27dupLr+XmHy7uLioWLFiCg0N1e3bt1McyxJ+yA4k2gCANEtISJCDg4OaN2+uu3fvaunSpQoPD082zmg0mpKgHTt26N69e2rUqJFpH/AkJUqUUEJCgrZu3aqYmJhUxyXuc3FxkfSg+s1rDDkFiTYAIM0Sk+cGDRqoSpUq+u233zRx4kRdu3bNlNzExsaaWkGOHDmidevWqUSJEqZ+bNpE8DiJr6PmzZurcOHC2rRpk86fP5/qWAcHB927d0/Hjx9XrVq15Ovry2sMOQaJNgAg3Xx9ffXBBx/I19dXmzdv1siRI7V582ZFRUWZWkS2bNmizz//XCdOnNDIkSNZ9QFpkpgklyxZUi+88IL+/vtvffjhh7p06ZJpjNFoVHx8vAwGg+7evaslS5boypUrCggIyK6wgRSxjjYAIN0Sl2A7efKkPv30Ux05ckSxsbHy9vaWh4eHoqKidO7cObm5uWnChAl66aWXkty6HXnLw/+/T8uNsRLHX758WYMHD9b//vc/ValSRX369FHlypVVpEgRSVJkZKS+//57ff3113r66af17bffytbWltcacgwSbQBAEmlNUhLHXbx4UYcPH9batWt1/vx5xcTEyMvLS/Xq1VPDhg31zDPPmNoBSH7yprt378pgMJhWEUmLxIT80qVLGjNmjH7//XcVLFhQPj4+CggI0P3793Xw4EEFBwerXLlyWrRokezt7bn5FnIUEm0AQIr2798vLy8v001mnsRoNOrGjRuKjY1VkSJF5ODgYOEIYQ327t2rBQsW6Nq1a8qXL5/Gjx+vcuXKpamynTjm+vXr2rBhg3bs2KGDBw/Kzs5OcXFxqlixol544QUFBgaatrG6CHISEm0AQDK7du1S7969tXTpUj3//PNPHJ9S0pSWRAq5265duzRw4EB169ZNnp6e2r59u0JCQrRp0ybly5cvTXM8/DpKSEjQ4cOHZTAYZDQaVb58eTk7O0sSlWzkSHzsAwAkc+PGDUmSo6NjmsanlFCTZOdtwcHBmjp1qvr3769evXpJklq3bq0WLVpo27ZtatGiRZrmSXwdJS4ZWa1atWRjjEYjSTZyJN4FAQAmiV9yJn79HhERkWQ7kFYhISFycHBIsn56gQIF5Obmplu3bqV7vsf199P7j5yKijYA5GGPXviY+G83NzdJ0p07d5JsB9Kqbt26io6ONvX4x8bGysHBQV5eXoqPj08yllVCkFtR0QaAPCwxuTlx4oTOnj2r+/fvS5IKFiwog8Gg6Ojo7AwPViohIUGS1KRJE0n/3lhGetBLff36ddPYL7/8UkePHs36IIEsQEUbAPK4HTt2aMCAAbK1tZW/v7+aN2+u+/fvy93d3ZR4S1QdkXaP9ucnXrxoMBhkMBhMSfeoUaO0YcMGdevWLTvCBCyOVUcAII87fvy4jh49qqCgIB05ckQ3btyQo6OjoqOjVb9+ffXq1UteXl7y8fFJchyJN57k0RVDbGxsNGTIEFWqVEkXL17Uli1btG7dOrm7u7NqCHIlEm0AgEl4eLj27NmjXbt2adu2bbp7964kydnZWU2aNFHFihVVq1Ytubu7m5ZVA1LycOJ8+fJlFS1aVJI0dOhQbdq0SV5eXvr+++/l4eHB+tfItUi0AQDJ1rw+ceKEunXrptatW8vLy0s///yzjh07poSEBLm6umrp0qUqW7ZsNkYMa9GtWzdVrVpVgwcPliSNGTNGmzZt0o4dO+Tm5kaSjVyNVzYAIMlaxQaDQa6urjIYDCpUqJD69Omjzp07KyQkRLt27VLlypVJspEm586d0/79+00XRUrShAkT9O6778rZ2ZkkG7ker24AgEliz3X+/Plla2trWt4vf/788vf3l5+fn2xtbenPxhMZjUY5OzvLzs5O4eHhkqSYmBg5ODjI2dlZCQkJJNnI9VjeDwCQjI2NjWxsbBQTEyNJpl7bxP8lycajEpf0S2QwGOTs7KwCBQro9u3bkmRabUTizqHIG3iVAwCScXZ2lqOjo+kOflzOg8eJj483Jc537941vV4SEhJUoEABRUVFSeJ1hLyH72wAAMnky5dPRqNR9+7dk0QFG4+X+E1Hz549deHCBVWpUkVt2rSRi4uLSpQoYWpBio+Pp10EeQqvdgBAMjdv3pSDg4Nat26d3aHASpw5c0YGg0H58+fXhg0btGHDBhUrVkyhoaGqVKmSIiMjFR8fL1dXV9Mxj652A+Q2LO8HAEhRWFiYPDw8uPAR6RITE6NDhw7p8OHDCgoK0smTJxUdHa2nnnpKhQsX1muvvaZSpUqpdu3aposjgdyKRBsAAJjFoxXq4OBgvffeewoODlbNmjW1fft23b9/X5Lk6empAQMGqEOHDtkVLmBxtI4AAACzeHQ99hIlSsjOzk7FihXTlClT9Oeff+rixYtavXq1bG1t9dprr2VzxIBlkWgDAACzerjVyM7OTpGRkZKk8uXLq3z58qpdu7YcHR0lJb1VO5DbcAUCAAAwu8SqdsGCBXX37l0lJCQoLi5OkkxJttFoJMlGrkaiDQAAzC6xqu3i4qLo6Gjdv38/2QojXGSL3I5EGwAAWIyDg4NiYmJka2vLUn7Ic3jFAwAAi7l586aKFSsme3v77A4FyHIs7wcAACzm4MGDqlKliuzs7LhBDfIcEm0AAGBxrC6CvIhEGwAAALAAvr8BAAAALIBEGwAAALAAEm0AAADAAki0AQAAAAsg0QYAAAAsgEQbAAAAsAASbQAAAMACSLQBAAAACyDRBgAAACyARBsAAACwABJtAAAAwAL+DxuAjshPB4Y6AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Generate data\n", + "x = np.linspace(0, 10, 100)\n", + "x2 = x**2\n", + "\n", + "# Orthogonalize\n", + "transformer = OrthogonalPolynomialTransformer(degree=2)\n", + "x_orthogonalized = transformer.fit_transform(x)\n", + "x_orth = x_orthogonalized[:, 0]\n", + "x2_orth = x_orthogonalized[:, 1]\n", + "\n", + "# Make a correlation matrix\n", + "data = np.vstack([x, x2, x_orth, x2_orth]).T\n", + "df = pd.DataFrame(data, columns=['x', '$x^2$', '$x$ Orth', '$x^2$ Orth'])\n", + "correlation_matrix = df.corr()\n", + "sns.heatmap(correlation_matrix, annot=True, cmap='Reds')\n", + "plt.xticks(rotation=45)\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "id": "57e6e8e8-0ced-4add-9efa-dd86ef622e10", + "metadata": {}, + "source": [ + "We now see that the orthogonalized version of $x$ and $x^2$ are no longer correlated to each other. Next, we construct a response variable and plot against it." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "87bd479f-83ed-4457-90fb-aa7e6dca81e7", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxMAAAJOCAYAAADMPVrNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC7YUlEQVR4nOzdeXwU9f0/8NfsnU02yQYSwRAIVYIgh5wCQtEqnmgVDSo3FESRVmnx/KKlwK9aj7aKIoggcngQi2JVWqpt0cgRICCiESqayCkBcmyym+wx8/tjmc1OdpPsbpI9X8/Hw4dkZnZ3Zlg+m/d+3u/3R5AkSQIREREREVGQVJE+ASIiIiIiik0MJoiIiIiIKCQMJoiIiIiIKCQMJoiIiIiIKCQMJoiIiIiIKCQMJoiIiIiIKCQMJoiIiIiIKCQMJoiIiIiIKCQMJoiIiIiIKCSaSJ9ALKqoqGjV49PS0lBVVdVGZ5MYeM+Cx3sWGt634LX2npnN5la9Psfk8OM9Cx7vWWh434LXmnsWynjMmYkIUKl424PFexY83rPQ8L4FL9bvWayffyTwngWP9yw0vG/BC/c9498QERERERGFhMEEERERERGFhMEEERERERGFhMEEERERERGFhN2ciIgoJHaHHhaLBkePOWA0JsNkckKnrY/0aRERJaRIjckMJoiIKGhWazIWLq7D9h02z7YRw7VY+EQyjMbaCJ4ZEVHiieSYzDQnIiIKit2hP/+h5VBs377DgYWL62B36CN0ZkREiSfSYzKDCSIiCorFovH50JJt3+GAxcJJbyKicIn0mByVI359fT3+/Oc/4+DBgygrK0NVVRVSU1ORk5OD/Px83HLLLdBqtYrH1NTUYOnSpdi6dSvKy8uRlZWF6667DnPnzkVycrLPa4iiiA0bNmDjxo0oKyuD0WjEiBEjMG/ePOTk5ITrUomIYordoUd1tdDsMTU1EjpkhOmEiIgSjFwbUVMjISVFgMXS/PHtPSZH5cxEbW0t3nrrLQiCgCuvvBLTp0/HNddcg9OnT+Pxxx/HvffeC1EUPcdbrVZMmjQJa9aswc9+9jNMmzYN3bt3x+rVqzF16lTU1/sWnzz55JNYsmQJJEnC5MmTMWrUKGzduhV33HEHSktLw3i1RESxwWpNxoInnai2SM0el5LSfLBBREShkcfhX46zYOKUGvxynAX19uYf095jclTOTKSnp2PPnj3Q6XSK7U6nE9OnT0dhYSE+++wzXHnllQCA1157DSUlJZg1axbmz5/vOf65557DypUrsWbNGsyePduzfefOnSgoKMCQIUOwevVqz+uMHTsW99xzDxYvXoxVq1a1/4USEcUI75zcvn00GHa5Fjt3+U6rjxiuhcnkjMAZEhHFt6ZqI4qKnBg+TIsdOyMzJkflzIRKpfIJJABAo9FgzJgxAICysjIAgCRJKCgogNFoxJw5cxTHz5kzB0ajEQUFBYrt8s8PPPCA4nVGjx6NoUOHorCwECdOnGjTayIiimXeObnr1tsweaIBwy5Xppu6O4cY2B6WiKgdNFUbsW69DZMmGDBieGTG5KicmWiKKIr4/PPPAQB5eXkAgNLSUpw+fRojR46E0WhUHG80GjFw4EAUFhbi5MmT6Ny5MwBg165dnn2NjRo1CkVFRSgqKsKtt97avhdERBQDGtdJWG3AQ49YMHlSEiZPMsBeL6FrjgrmDAd0WraFJSJqC4HWRshj8psbUiHAAKtVgNEonV9nov3H5KgOJux2O1asWAFJklBZWYkdO3bg+++/x7hx4zB8+HAADTMUubm5fp8jNzcXhYWFKC0tRefOnWG1WlFeXo68vDyo1Wqf47t166Z4XiKiRCb3Lp84QflxYbUBK1Y29DPfvMnEGQkiojbib92IVStNTR9vAwRI6JBRi4svMqOioiIcpwkgyoMJh8OBl156yfOzIAiYMWMGfve733m2Wc6HaSkpKX6fQ95eU1MT1PGWlkrjiYjiXKB1EleMYJ0EEVFbidbaiKZEdTCRnJyMQ4cOQRRFnD59Gv/+97/xl7/8Bfv378fKlSubDAjaW1paGlSq1pWbmM3mNjqbxMF7Fjzes9Dwvrn98IPL863YuvU2PPsn97di3gHFFSO0WPT7ZFyQpQZg9Pc07Y5jcmTwngWP9yw0iXbfvMdeb/I4LAhQBBr+xuFw3rOoDiZkKpUKnTp1woQJE2A2m/Hggw/ilVdewUMPPQSTyf3hJs88NCZvlwOPQI+Xj/OnqqoqtAs5z2wO7/RTPOA9Cx7vWWh439zsDj0qKhuK+Zqrk7ggS92qe9baDz2OyeHHexY83rPQxPt9a1wXYTI5UVXtm4YP+NZGeD9Gp62GfJtac89CGY9jIpjwNnLkSABAUVERgIYah6bWhpC3yzUVRqMRmZmZOHbsGFwul0/dhFwrIT8vEVGiCb5OIjIzEkREscxfXcSI4Vo8/Dvfjqaex3jVRkTL4qBR2Rq2OadPnwbgbhMLuIOErKwsFBcXw2q1Ko61Wq0oLi5Gly5dPJ2cAGDo0KGefY3J3aKGDBnSXpdARBS1vHN1Dxxw+rR/lXE9CSKi0DVVF7F9hwNfHnD6tHmVRePYG5XBxHfffQebzTdXzGaz4amnngLgXhMCcBdl5+fnw2q1YtmyZYrjly1bBqvVivHjxyu2yz+/8MILsNsblg3ctm0bioqKMHLkSGRnZ7fpNRERxQKuJ0FE1P6aWjMCAP70bC0WPG6M2LoRwYrKNKctW7bg9ddfx6BBg5CdnY2UlBT89NNP+Oyzz1BZWYnBgwdj2rRpnuNnzpyJTz/9FCtXrkRJSQl69+6Nb775BoWFhejbty+mTp2qeP5hw4YhPz8fBQUFGDduHEaPHo3y8nJ8/PHHSE9Px4IFC8J8xUREkcf1JIiI2kega0YA7rG3qsqFJYs0sFga10ZE39gblcHElVdeidOnT2Pfvn3Yv38/rFYrUlJS0LNnT9x00024/fbbPWlOgLsOYv369Vi6dCm2bt2KXbt2ITMzEzNmzMD9998Pg8Hg8xqLFi1CXl4eNm7ciLVr18JoNGLMmDGYN28eunbtGs7LJSKKOK4nQUTUPoJdMwIAjEYBOm09OmTUR01tRFOiMpjo27cv+vbtG9RjTCYTHn/8cTz++OMBHa9SqTBlyhRMmTIllFMkIoobga4nEY25ukRE0SzW1owIRVTWTBARUfiwToKIqH00VRuxbr0NkyYYYqYuojlROTNBRETtT87hraxknQQRUVsItDai+TUjYmusZTBBRJSAvHN4X16qzN1lnQQRUfCCrY2IxjUjQsE0JyKiBNM4h5frSRARtU5LtRH+xMv4ymCCiCiB2B16VFbqFB94rJMgIgqe3aHH2XPJKPvR6DOuyuKpNqIpTHMiIkoQ8hR8/u1q5fZGdRIpyQLS06WYzN0lIgqHxilNf3kuxf9xcVQb0RQGE0RECcB7Cn7iBN+1d7zrJDZvMqFDRnx8yBERtTV/KU06vdDk8fFSG9EUpjkRESUA7/aErJEgIgqdv3aviTyuMpggIopzdoce1dUN35qxRoKIKHDetRFnzyX7bfeayOMq05yIiOKYnNc7cULDcO9vLYlu3dRIT7fHTQ4vEVFbCLTdq/e4+vB8I2w2V9zVRjSFMxNERHHKO6+38RS8XCNx/68tKPhb/flAIn6/OSMiClaw7V6tNuCrg06kp9vRrasVHTJqE2JcZTBBRBSnvPN6E3kKnogoFP5qI4DEaPcaDKY5ERHFocZ1Ev5Sm7rmqGDOcMT9FDwRUSDsDj0sFo2nfau/2gggMdq9BoPBBBFRnPFXJwEo278C7hawifYNGhGRP4HWRniOj/N2r8FgmhMRURxprk7CW7y3KiQiClSwtREAx1BvDCaIiOKE3aFHZaWOdRJERM1o3Oq1ulrL2ohWYJoTEVEckKfo829XN2xjnQQRkYK/dKaXX/SfzsTaiMAwmCAiinHeU/QTJxgU+1gnQUTk1lQ6EwT/xwOsjQgE05yIiGKcd/tC1kkQEfnXVKtXjputw2CCiCiGNW4ByzoJIqIG3vUR3mOlN3ncZG1EaJjmREQUo/y1gPVXJ9Gtm/r8CtfM8SWixNG4PuLlpc3XRry7MRUOB2sjgsWZCSKiGNRcC1i5TuL+X1tQ8Lf684EEv1kjosThrz6iuXSmyy7TwmBwoENGLbp1taJDRi3HzQAxmCAiikHeub9MbSIiUvJXH8Gxsn0wzYmIKMY0rpNgC1giSnR2hx4Wi8aTomSx+B7jPVY+9Nsk1NWLTGdqAwwmiIhiiL86CYAtYIkocflbO2LVyqbrI1astOHGGzTodoE1XKcY15jmREQUI5qrk/DGVoZElCiaWjuiqMiJ4cM4RoYDgwkiohhgd+hRWaljnQQRJTTvVq9nzyWjulrrd+2IdettmDSB7V7DgWlORERRTp7Cz79d3bCNdRJElGD8pTO9/GLz7V7f3JAKAWz32p4YTBARRTHvKfyJEwyKfayTIKJE0VQ6E/yvQwfAPUYKkNAhoxYdMtr3/BIZ05yIiKKYd3tD1kkQUaLy1+oV4LgYDRhMEBFFITkvuLKy4Ws31kkQUSKxO/T44QcXyn40Ktphe5PHRdZGRA7TnIiIoox3XvDLSxvygf3VSXTrpj6/wjVzgIkofjSuj/AeCxXHnR8X392YCoeDtRGRwJkJIqIo0jgvuPEUvlwncf+vLSj4W/35QILfvBFR/PBXH9FcOtNll2lhMDjQIaMW3bpa0SGjluNiGDGYICKKEo3bvwJMbSKixODd8rXxOAhwLIxmTHMiIooC/tq/Ar6pTSnJAtLTJU7hE1HcaJzS9JfnUnyP8RoLH/ptEurqRaYzRQnOTBARRZj3lL5O71tk6J3alJ4ucQqfiOKGv5Qmf+Mg0DAWarQS05miCIMJIqIIapzaxDaHRBTPAlnBmuNgbGGaExFRhPhLbVq33oZn/+TuWrJzV8MHbENeMKfziSg2BbqCNcfB2MJggogoAppa2ZrtX4koHgWzgrX3OPjIfCOsNhfrI6IY05yIiCKguZWt2f6ViOJNsCtYW23AVweduOACFesjohyDCSKiMLM79IrVXNnykIjikXd9RKgrWKel8VfVaMc0JyKiMJJzhidOaBh+mdpERPGm7Vaw1oXxrCkUDPeIiMLEO2eYqU1EFK+4gnViYTBBRBQGjVvAMrWJiOIJV7BOXExzIiJqZ/5awPpLbeqao4I5w8HUJiKKKVzBOrExmCAiakdNtYAFGlKbZJs3mfjtHBHFlFBWsL7xBg26XWAN1ylSO2OaExFRO+Hq1kQUj1pKaeJYl1gYTBARtQOrNRkLnnSirMzl2cacYSKKdfLY9stxFkycUqMY42Qc6xIL05yIiNoYV7cmongUaEqT91j38HwjbFzBOq5xZoKIqI1xdWsiikf+VrFuaQXr9HQ7273Guaicmfjpp5+wZcsWfPbZZ/j+++9x5swZpKWlYeDAgZg5cyb69+/v85iamhosXboUW7duRXl5ObKysnDddddh7ty5SE5O9jleFEVs2LABGzduRFlZGYxGI0aMGIF58+YhJycnHJdJRHHI3+rWz/7JvVjTzl0NH8IN0/38lo6IopfdoYfFokFNjQRR9J2F4BhHURlMrFu3DitXrkTXrl1xxRVXICMjA2VlZfjkk0/wySef4Pnnn8eNN97oOd5qtWLSpEkoKSnByJEjcdNNN6GkpASrV6/G7t27sWHDBuj1esVrPPnkkygoKECPHj0wefJknD59Glu2bMEXX3yBd955B7m5uWG+aiKKdVzdmojiSSCrWDOliaIymOjXrx/WrVuHoUOHKrbv2bMH06ZNw8KFC3HNNddAp3Mvsf7aa6+hpKQEs2bNwvz58z3HP/fcc1i5ciXWrFmD2bNne7bv3LkTBQUFGDJkCFavXu15nrFjx+Kee+7B4sWLsWrVqjBcKRHFC+9c4r59NBh2udbzLZ13C9gRw7VYskjD6X4iimrNrWLtPQMBNKQ03TkeyMrk2JZoorJm4tprr/UJJABg8ODBuPzyy1FVVYVDhw4BACRJQkFBAYxGI+bMmaM4fs6cOTAajSgoKFBsl39+4IEHPIEEAIwePRpDhw5FYWEhTpw40daXRURxiqtbE1E84CrWFIqonJlojkajUfy/tLQUp0+fxsiRI2E0GhXHGo1GDBw4EIWFhTh58iQ6d+4MANi1a5dnX2OjRo1CUVERioqKcOutt7bvxRBRzOPq1kQUD7iKNYUqKmcmmnLixAls374dmZmZyMvLAwCUlZUBQJM1DvL20tJSAO76ivLycnTp0gVqtdrn+G7duimel4ioKd5pAI3bI3p3bZo3vwYarcRv7YgoKoWyirVGK7FLEwGIoZkJh8OBhx9+GHa7HfPnz/cEAhaLBQCQkuIbQXtvr6mpCep4+Th/0tLSoFK1Lg4zm82tenwi4j0LHu9ZaFq6b1VVIs6dk1Bvlzzf4jWVSwwAV4zQIrOjBmlp8fv3Ecn3GsfkyOA9C1403TN5HLPUiDDoBc9YJoumMS2a7lusCOc9i4lgQhRFPProo9i9ezfGjx8f8fSjqqqqVj3ebDajoqKijc4mMfCeBY/3LDQt3beGVACHIg2gufaIv19ggChWIV7/Olr7Xmvthx7H5PDjPQteNN0z73EM8J/SFC1jWjTdt1jRmnsWyngc9cGEKIp4/PHH8eGHH+KWW27BH/7wB8V+k8n9RpdnHhqTt8szDoEeLx9HRCRrnArgnQbAFrBEFAu4ijW1taiumRBFEY899hjee+89jB07Fk8//bTPVLZc4yDXRDQmb5drJ4xGIzIzM3Hs2DG4XC6f4+VaCfl5iYgA345NAFe3JqLY0FKXJq5iTa0RtcGEHEi8//77uPHGG/HMM8/4LZjOzc1FVlYWiouLYbVaFfusViuKi4vRpUsXTycnABg6dKhnX2Off/45AGDIkCFtfEVEFKus1mQseNKJsjLlFxBsk0hE0U4ev345zoKJU2p8xjGAYxm1TlQGE3Jq0/vvv4/rr78ezz77rN9AAgAEQUB+fj6sViuWLVum2Lds2TJYrVaMHz9esV3++YUXXoDdbvds37ZtG4qKijBy5EhkZ2e38VURUSxqqWPTQ49Y0L+fBi8vNWHdmlRs3mTCkkUaGI1MAyCiyAo2pal/Pw02FaRhw9oUjmUUsKismXj55Zfx3nvvwWg0Ijc3F6+88orPMddccw169eoFAJg5cyY+/fRTrFy5EiUlJejduze++eYbFBYWom/fvpg6dariscOGDUN+fj4KCgowbtw4jB49GuXl5fj444+Rnp6OBQsWhOU6iSi6NaQ2Nd2xSU5t4srWRBQN7A49LBYNamokJCWpA+7SxFWsKVRRGUwcP34cgDtNafny5X6Pyc7O9gQTRqMR69evx9KlS7F161bs2rULmZmZmDFjBu6//34YDAafxy9atAh5eXnYuHEj1q5dC6PRiDFjxmDevHno2rVr+10cEcUEf4vRNdfdxJ0KwG/wiChyAll4juMYtTVBkiQp0icRa1rbooxtzoLHexY83rPQmM1m/HTaigVPOrF9hwMvLzXh/l83rDtjTAImT0pCv36aRh2bEvebvEi3huWYHH68Z8Fr73tmd+g945as8fglk8ex667VNerSFH3jGN9rwQt3a9iorJkgIoqUqipR0e2EHZuIKFqxSxNFAwYTRETnWa3JmP+IstsJu5wQUTRilyaKFlFZM0FEFG7eXU8mTmios+JidEQUbbjwHEUTzkwQUcJrvCAdU5uIKNowpYmiFYMJIkpo/hakY2oAEUUTpjRRNGOaExElLKY2EVG0Y0oTRTvOTBBRQmJqExFFMzmtqeKclilNFNUYTBBRwmFqExFFM++0ph+Pij77OV5RNGGaExElFKY2EVE0a5zWxJQminacmSCihMHUJiKKRs11amJKE0U7BhNElBCY2kRE0ailTk0cpyjaMc2JiOJeMKlNud3USGNqExGFQSCdmhqPU6kmAampElOaKGpwZoKI4lqwqU0XXKDiN31E1K6C7dQkj1Mb3qxDdraDKU0UVRhMEFHcCiW1KS2NwyIRtR92aqJ4wzQnIopLoXdt0kXupIkorrFTE8UjfgVHRHHFX/oAuzYRUaTIY9KBrxzs1ERxKeRg4qWXXsKpU6fa8lyIiFqlqfQBpg0QUSR4j0l3T6pmpyaKSyGnOb300kt45ZVXMGrUKOTn5+Oqq66CSsWJDiKKjObSB7ggHRGFGzs1UaII+bf/Bx98EJ07d8Z///tfzJ07F6NHj8Zf//pXHDt2rC3Pj4ioRY07NgFMbSKiyGCnJko0IQcT9957Lz755BOsXr0a119/PSorK7F8+XJce+21+NWvfoV//vOfcDqdbXmuREQ+/HVsApg+QEThx05NlIha3c1pxIgRGDFiBCoqKvD+++/j3XffxRdffIHt27cjIyMDt912G+644w7k5ua2wekSETVoqmMTwPQBIgovdmqiRNVmRQ5msxnTp0/HRx99hDfffBM33XQTzp49i1WrVuGGG27A1KlT8a9//autXo6IElxLi9EBTB8govbXVFoTOzVRomjziukff/wR//nPf7Bz507Ptk6dOmHXrl34zW9+gzvuuAMnT55s65clogQSymJ0/LAmorbWXFoTxyRKFG2yaJ3D4cDWrVuxceNGFBUVQZIkpKenY/r06bjzzjuRm5uLffv2Yfny5di2bRsWLVqEV155pS1emogSiN2hR12dFkv+aAthMToiotaxO/SwWDSoqZFgNqs8YxHATk2UuFoVTBw5cgQbN27E5s2bUVVVBUmSMGDAANx111244YYboNM1rCQ7YMAArFixAuPHj8fu3btbfeJElFis1mQsXFyHiRM0PqlNO3e5f5bTmgD3t39LFmn47R8RtQl5DNq+wz3GvLzU5DetSR6PgIYxacRwLZ77UwpEsSrs503U3kIOJu6++27s378fkiQhJSUFd999N+666y7k5eU1+7iLL74YX331VagvS0QJyLuwMf92vWf7uvU2PPsnEwAoPsAb0gj47R8RtZ6/NSPs9ZLimJbGo7Q0FSoqwnO+ROEUcjCxb98+9O7dG3fffTfGjh2LpKSkgB6Xn5+PIUOGhPqyRJRgGgqt3d8GcjE6IgoXOa3J6RA8Y5As+LQmHYjiUcgF2O+++y42bdqE/Pz8gAMJwJ3udNttt4X6skSUQPwVWnMxOiIKh5bWjGAHOSK3kIOJPn36tOV5EBEpeKcVeH8DyA4pRNTeAlkzgmMRkVubdHMiImpLjVObvAsbG6cSQAKyswWkpjqY2kRErdJUWlNTxdUPPWLBIw8l49GHk1BbK3IBOkpIbb7OBBFRawSyhoR3KkGPi4GOHWr4LSARtUooa0ZcdpkWw4ep0LFDDRego4TFmQkiigpcQ4KIwk2eiZAg4JlnuWYEUSg4M0FEESd/I/hDqeSzhoTnGBZaE1Eb8p6JOH5c8rtmhOJ4FlcT+cVggogiyrvQ0btvO4sbiai9NC6w9rdmBMcfosAwzYmIIoZrSBBRODVVYM20JqLQcWaCiCKCa0gQUTg1V2DNtCai0DGYIKKw4xoSRBROLa0bwbGHKHRMcyKisPGXYsA1JIiovQS6boT32DNrpgF6HWAygWlNRAHgzAQRhUVTKQZcQ4KI2kOw60ZYbcBXB53IyQZyu9UyrYkoQJyZIKJ21Xj9CICF1kTUPrhuBFH4cWaCiNqNv/UjABZaE1Hb47oRRJHBYIKI2kVT60cALHYkorbFdSOIIodpTkTU5ppbPwJgigERtQ2uG0EUeZyZIKI2Fcj6EQBTDIiodbhuBFF0YDBBRG3C7tCj2pLC9SOIqN3YHXqcPZeMM+dSuG4EUZRgmhMRtZrVmoyFi+swcYLG8+HO9SOIqC3J48z2HTa8vNTkt8Ca60YQhR9nJogoZI1nI7yLHrl+BBG1hcbjDBBYgTXXjSAKD85MEFFI/M1GcP0IImpL/sYZgAXWRNGEMxNEFLSm2r5y/QgiaivNtZdmgTVR9GAwQURBaWj76jsbwaJHImotuci64pyWBdZEMSBq05w2b96MvXv34uDBgzh8+DAcDgeeeuopjBs3zu/xNTU1WLp0KbZu3Yry8nJkZWXhuuuuw9y5c5GcnOxzvCiK2LBhAzZu3IiysjIYjUaMGDEC8+bNQ05OTntfHlFMklMO8m9Xe7ax0JqI2op3kfVfnkvxbGeBNVH0itqZiRdeeAHvvPMOTpw4gaysrGaPtVqtmDRpEtasWYOf/exnmDZtGrp3747Vq1dj6tSpqK/3/YbiySefxJIlSyBJEiZPnoxRo0Zh69atuOOOO1BaWtpOV0UUm4Jp+8pCayIKlr8i65ZmPVlgTRQdonZmYsmSJejWrRuys7Px6quv4vnnn2/y2Ndeew0lJSWYNWsW5s+f79n+3HPPYeXKlVizZg1mz57t2b5z504UFBRgyJAhWL16NXQ6HQBg7NixuOeee7B48WKsWrWq/S6OKIaw7SsRtaemiqw5zhDFhqidmRgxYgSys7NbPE6SJBQUFMBoNGLOnDmKfXPmzIHRaERBQYFiu/zzAw884AkkAGD06NEYOnQoCgsLceLEiTa4CqLYxbavRNRe/C0+11K7V44zRNEpamcmAlVaWorTp09j5MiRMBqNin1GoxEDBw5EYWEhTp48ic6dOwMAdu3a5dnX2KhRo1BUVISioiLceuut4bgEoqjDtq9E1F6aWnyO7V6JYlPUzkwEqqysDACQm5vrd7+8Xa6DsFqtKC8vR5cuXaBWq32O79atm+J5iRJFS98Usu0rEbVGS4vPsd0rUWyK+ZkJi8UCAEhJSfG7X95eU1MT1PHycf6kpaVBpWpdHGY2m1v1+ETEexa8QO/ZqVMuPLGwttlvCtett+HZP5kAwNNRBQCuGKHFot8n44IsNQDl7GCs4nsteJG8ZxyTIyOYeyaPMc0tPpcIYwzfZ6HhfQteOO9ZzAcTkVBVVdWqx5vNZlRUVLTR2SQG3rPgBXrP7A49nljobPabwpYLIKsRL389fK8Fr7X3rLUfehyTwy+Ye+Y9xuTfrlfsS6Qxhu+z0PC+Ba819yyU8Tjm05xMJve3GPLMQ2PydnnGIdDj5eOI4lnjBeiA5tsxsgCSiAIVyuJzHGOIYk/Mz0zINQ5NrQ0hb5drJ4xGIzIzM3Hs2DG4XC6fugm5VkJ+XqJ45W8BOoDtGImo9bj4HFHiiPmZidzcXGRlZaG4uBhWq1Wxz2q1ori4GF26dPF0cgKAoUOHevY19vnnnwMAhgwZ0r4nThQhzS1AB/CbQiIKHRefI0o8MR9MCIKA/Px8WK1WLFu2TLFv2bJlsFqtGD9+vGK7/PMLL7wAu93u2b5t2zYUFRVh5MiRAa1xQRRrrNZkLHjSiR9KJZ8F6DzHnP+msH8/DVatNGH9GyZs3mTCkkUaGI38ppCI/PM3vgDKMcZ7fHl5qQkvv2jC+39L5fhCFMOiNs2poKAAe/fuBQAcPnzYs62oqAgAMGjQIOTn5wMAZs6ciU8//RQrV65ESUkJevfujW+++QaFhYXo27cvpk6dqnjuYcOGIT8/HwUFBRg3bhxGjx6N8vJyfPzxx0hPT8eCBQvCeKVE7c/u0KOuToslf7T5FEH666Aif1N4+238gCei5jU3vgC+Y4w82zliuBYLnzDAaPRfw0hEsSFqg4m9e/fivffeU2wrLi5WpCbJwYTRaMT69euxdOlSbN26Fbt27UJmZiZmzJiB+++/HwaDwef5Fy1ahLy8PGzcuBFr166F0WjEmDFjMG/ePHTt2rV9L44ojLgAHRG1l5bGF4CLzxHFO0GSJKnlw8hba1uUsc1Z8HjPgqdSpaGyyuX5tvAvz6Vg3nz3N4CzZyXhywNORS932YjhWixZpEnYnGW+14IX6dawHJPDj+NL8Pg+Cw3vW/DYGpaIWs1qTcb8R2oUucstFUEC8KQdJOIHPREFhuMLEXmL2jQnIgpec7nLbPlKRKGyO/SwWDSQIOCZZzm+EFEDzkwQxQl/nVS4AB0RtZY8tvxynAXHj3N8ISIlzkwQxTjORhBRe2g8tgCAvb6hzJLjCxEBnJkgimmcjSCi9tDUmhEcX4ioMc5MEMUgzkYQUXtoac0Iji9E1BhnJohiDGcjiKg9tDS2ABxfiMgXZyaIYgA7qRBRewl0phNQLkA3a6YBeh1gMoEL0BElMM5MEEU5dlIhovYS7Ewn4B5fDn7tRE42kNutFh0yajm+ECUwzkwQRanWdlLp0kUFk8nObwuJyK+6OiMWLq4LaaYzK1MNUayK4NkTUbTgzARRFGqLTioXX6Tht4VE5JfVmoyyo0LIM51pafz1gYjcODNBFEXatpOKLjIXQURRy3uMYd0VEbUFfrVAFGF2hx7nKpJRWWliJxUianNNjTGsuyKitsCZCaIIslqTsXBxHfr2Ab484MTOXeykQkRtp7kxhrMRRNQWODNBFAF2hx7VlhRP8WO/fhpPwBBIJ5WvDrKTChE1LZAxhrMRRNQWODNBFGbyN4UTJ2hC6tLEbwuJqDnBjDHe44u9XkJqmoBuORIMBo4vRBQYzkwQhUnjbwq9P9yZu0xEbcG73WsgY4w8vtz/awsK/laPnGzAYLBG4tSJKEZxZoIoDPx9U+j94c7ZCCJqLas1GUePg2MMEYUVZyaI2lFzsxHyhzvA2QgiCp33OFNdxTGGiMKLMxNEbczu0KOmRgOVoMIf/2RtcjZi3Xobnv2TCQAUucvuLk0CTCaJXZqIqEkOpx42mw5L/tgwzkycYPDs5xhDROHAYIKoDQXT6rX5VAN+Q0hETbNak7Fjp4gt/7SG2O6VYwwRtQ2mORG1kt2hx9lzyThzLvhWr0w1IKJgeKc0dcxUsd0rEUUcZyaIQtA4lWn7DhteXmpiq1ciahf+UpqamvVku1ciCicGE0RB8pfKBKDZNozeecvyN4Ujhmux8AkDjMaa8F4AEcWUplKamhtnVqy0AYBnnGG7VyJqLwwmiAJkd+hRV6fFkj/aPIWO8gc2wDaMRNT25HUjJk4w+KQ0cZwhomjAmgmiZtgdepyrSEZlpQkLnnTih1LJbyoTwDaMRNQ2vMedsqNCk22lOc4QUTTgzARRE1rqzOQ9EwGwDSMRtV7jcefO/KZTmtbBz2zEhSqkptk5zhBR2HBmgqiRxgvNNdWZyXsmAoAnzaB/Pw1WrTTh1eUm3HiDBt1zncjtVoMOGbX8lpCImiSnNHmPO41TmgDlWPPsMyb066tB9oUCevVyomNHC8cZIgorBhNECDydqblUJsD9If/VQSdysoHcbrUMIIioRQ6nHtWWhpQmoGHcYUoTEUU7pjlRwmrc3jWQdCamMhFRW5Hbve7e7cSWf1o9KU2Act0IpjQRUTRjMEEJyV89hHd3ptA6M/FbQSIKjHe718mT3J2aJk8yePY3t26EwYDz60ZYIngFRERuTHOihNJcPUSg6UxMLyCi1pBrI+QVrBunNAHKcUcec+7/tQUFf6tHTja4bgQRRQ3OTFBcszv0sFg0sFolpKWpFavHAoEvNMd0JiJqLTmt6eQpUbGCdeOUJoDjDhHFDgYTFHca10Js32HD7FlJ+PJAfbP1EExnIqL20FRthL/F5xqnNKWmCedTmhhAEFF0YpoTxYXG3Zg++tiJJU9ZPTMQgbR3ZToTEbUluUvTZ5+psGiJ1ZPW1DiIYEoTEcUyzkxQzGupmBrwXw+xc5eDaQVE1C78FVjLMxLeQQQ7NRFRrOPMBMWsQIupAd96CO9vAZULzaVyoTkiahW7Q++3wNq7NmLyRAP69dP6Lj7XWcXF54gopnBmgmJK43qIQIqpAdZDEFF4OJx6VFXpsH2HzafAmu1eiSgecWaCop7doUdpqctvPURTAYR3LQTAeggial/e9REnTogAfIMI1kYQUTzizARFpeZWpw5kcbnGtRDybMQjDyXj0YeMqLW6kJIisB6CiFqtpjYFu3a5PPURMtZGEFEiYDBBUSPQAKL1xdQWdIzIFRJRPHE49aiv12HhImWR9beHXC0HEZ3lIIIzokQU2xhMUMT4W1AukAAitMXl+IFNRG1Hno3o0kVUdGrS6YVmg4gLO6uQxiCCiOIIgwkKq5YWlAskgGAxNRFFUq3V5JmNqK5Wdmo6cMDp6dLkXWANAGfOiOjd2wmthmMTEcUPBhPULpSzDio4HIBaJfikLwHuBeWCCSD81UOsWGnDiOFaLHzCAKOxJoxXSkSJwOHUo65OCwECjp9omI3wV2Qtz0p4r3Ujj09aja2JVyAiik0MJqjNNJ512L/f/aH6wlIb+vfTBLSgXKABBBeXI6JwqbWm4MQJoKzMhZwclWI2gkXWRJToGExQqzRXND17VhLWbajDzl0OTJ7kP30JaIsAgikDRNQ+aq0m7NjhxD+22j1pTd6zEd8ecmLyRAPrI4goYTGYoIAEmrbkPesQSPoSEFgAcc9MA3QMIIgoTJznOzUdOy4iM0ulSGtqPBux8d069O+nUSxAl5MtwGjkAnREFP8YTJBf/jotBZK25B00BJK+BATWkSmzowaiWBWOSyeiBFdrTUFtjYCKStGT0gQ0pDX5m43o108DSEBurpqzEUSUUBhMJLjmZhwad1oKJG3JO2homwXl3B/IaWlmVFSE444QUaKSZyN27HR6aiMaj2PfHnJi/B0G39kIPZDTRcXZCCJKOAkdTBw4cABLly7Fvn374HQ6kZeXh2nTpuHGG2+M9Km1ueaChqZmHABlqlKwXZe4oBwRxYraWhNqa4GKSndakxxIHDjgROdOKp+0pkt6atCvnwb2egmpaQLTmogoYSVsMLFz507MnDkTOp0ON910E5KTk7F161bMmzcPp06dwowZMyJ9igFrHCjY7YDNJgYcNDQ14wAEn7bkHTSwgJqIop3TqcexY07FbASgTGka0N+A2bOSsGKlb1pT91w1V7ImooSWkMGE0+nEE088AUEQsGHDBvTq1QsAcP/99+OOO+7An//8Z1x33XXIzs4O+7k1FxjY7UBtrQiTSYAxSYLVJvhtw3rggCOooKGpGQcgtLQl76AhySDgyQVJsNuTUFsr+qQvERFFitVqgigBx48rZyMAZUrTWxvr0LePBvMeSIKAJNjqgLRUgUEEEREAVaRPIBJ27tyJH3/8EWPHjvUEEgBgMplw7733wuFw4L333mvz17U79Dh7LhkHv3ag2pKCM2dTcPSYEdWWFJw9l4LKShMWPOnE3RMtOHdOwKIlNkyYVO358623V2PW7BocPQos+H09PvrYiSVPWbF9hwOTJ3kHCg1/7tdPo0hZkv8cyIwD0BA0NP7zuvU2TJ5owLDLtZ6ah/79NFi10oRXl6fixhs06J7rRNecGqSaatCxQw26dbWiQ0YtP3yJKOJqrSacPCmixgJUV0uw1zekNZWfFhW1EZf01KBXLw1OnBBhqZHQuZOAjh0tHMuIiJCgwURRUREAYOTIkT775G27d+9u09e0WpM9gcKZM5JPoPDxFkeLgQGAgAKFYIMGfzMOMu+gIdAAIrdbDYMGIopaNlsKzp2TkGRUwVLjDiK805o6XaDCtClJ/msjurA2gojIW0IGE6WlpQCAbt26+ezLzMyE0WhEWVlZm72e3aHHwsV1Ic0geP+58c9NBQrBBg1NzTgA8AQNN1ynw5vr0pCRIeHJBUl4/2+pWLkihQEEEcUcS42AujqgtlZCcrLvbMRbG+uwt9iBOfcm4eqrtEhJFtA9V43uuU4YjTWRPn0ioqiSkDUTNTXuDwOTyeR3f0pKCiyWtvvmyWLRYPsO3/qEpmoVmvpz45+bChSC7a4UTKclbx07hHAziIgizGKRkGwEIAgoL3fh0GF3kfW0KUlYs9amSGtipyYiouYlZDDRWmlpaVCpAp/UOXqsYWYh2BmExjUMgQQKwQYN98w0wGAQ8PsnjLDbAatVgilFhYwMAWlp8nXqABgDvub2YDabI/r6sYj3LDS8b8GL5D0Ldkw2mZxwOCTYrCI++Hs95v3GiL+8aEWfSzWYc28SBAC2OiC1swoXZKnOj4N8TzTGfyfB4z0LDe9b8MJ5zxIymEhJSQGAJmcfampqkJaW1uTjq6qCW4nZaEz2/DnYGYTGq0UHEii0trtShwz3/0URUbNQnNlsRkW0nEyM4D0LDe9b8Fp7z1r7oRfsmJxsNKFojwu53dS4f44RLy+zIv92PTIz1aitlWBKEdC5E2A0WqJqHIwm/HcSPN6z0PC+Ba819yyU8Tghg4nc3FwAQFlZGfr06aPYV15eDqvVin79+rXZ65lMTowYrsX2HcHPIDQODOSfBQHYsbPpQMFmE1sMGpimRESJSKuVMHiQFqdPizh40Im5c4ywO4CaGgmpqQJMKWBaExFRgBIymBgyZAhWrFiBwsJC3HTTTYp9hYWFnmPaik5bj4VPJGPh4tBmEBoHBiYTsHihHrVWA2pqpBbXbmDQQETUQKergdOVitRUoEMHDerqzqd3mgSkpADGJAYSRESBSshgYvjw4cjJycGHH36IKVOmeNaasFgsWL58ObRaLW699dY2fU2jsRZLFulhsRhQVxfcDII378DAYGhISSIiosAZk6ohIAWWGndXJ5NJgClFQlISuzUREQUjIYMJjUaDJUuWYObMmZg4cSJuuukmJCcnY+vWrTh+/DgeeeQRdOnSpc1fV6etR4eM+iZz2TiDQEQUPklJNUhKAnrmMSebiChUCRlMAMCwYcPw5ptv4sUXX8THH38Mp9OJvLw8zJ8/HzfeeGOkT4+IiIiIKOolbDABAP369cNrr70W6dMgIiIiIopJCbkCNhERERERtR6DCSIiIiIiCokgSZLU8mFERERERERKnJkgIiIiIqKQMJggIiIiIqKQMJggIiIiIqKQMJggIiIiIqKQMJggIiIiIqKQJPSidW3lwIEDWLp0Kfbt2+dZSXvatGlBraRtt9vx6quv4oMPPsDJkyeRlpaGq666Cg8++CA6dOjQjmcfXj/99BO2bNmCzz77DN9//z3OnDmDtLQ0DBw4EDNnzkT//v0Dep5du3ZhypQpTe5/6qmnMG7cuLY67Yj7xS9+gePHj/vdN3ToUKxbty7g5/rggw+wdu1afPfdd9BqtRg4cCB+85vf4NJLL22r040KmzZtwmOPPdbsMcOGDcMbb7zR7DHx+l7bvHkz9u7di4MHD+Lw4cNwOBzNXktNTQ2WLl2KrVu3ory8HFlZWbjuuuswd+5cJCcnB/Xan3/+OVasWIGvv/4agiDg0ksvxZw5czB8+PC2uLSAtMW4HW+CHZ+XLl2Kl156qcnn+/TTT9GlS5f2Pu2IC3Z8TpTP++YEOz4n2nutvcdnURSxYcMGbNy4EWVlZTAajRgxYgTmzZuHnJycoM+XwUQr7dy5EzNnzoROp8NNN92E5ORkbN26FfPmzcOpU6cwY8aMFp9DFEXcd999KCwsxGWXXYZrr70WZWVlKCgowI4dO7Bx40ZkZGSE4Wra37p167By5Up07doVV1xxBTIyMlBWVoZPPvkEn3zyCZ5//vmgPsyHDh2KoUOH+mzv1atXW552VDCZTJg6darP9uzs7ICf45VXXsFf//pXZGdn46677kJtbS0++ugj3HXXXVizZg0GDRrUlqccUb169cLcuXP97vvnP/+J//3vfxg5cmTAzxdv77UXXngBx48fh9lsRlZWVpO/DAGA1WrFpEmTUFJSgpEjR+Kmm25CSUkJVq9ejd27d2PDhg3Q6/UBve7mzZvx8MMPIyMjw/PB+PHHH2P69On461//iuuvv75Nrq85bTFux6NQx+fbbrvN7ziUmpoajtOOCoGOz4n0ed+cUMfnRHmvtff4/OSTT6KgoAA9evTA5MmTcfr0aWzZsgVffPEF3nnnHeTm5gZ3whKFzOFwSNdcc43Up08f6ZtvvvFsr66ulq699lrp0ksvlY4dO9bi87z77rtSXl6e9Nvf/lYSRdGz/c0335Ty8vKkJ554ol3OPxL++c9/Srt27fLZvnv3bunSSy+VhgwZItXX17f4PDt37pTy8vKkF198sT1OM+pcddVV0lVXXdWq5/jhhx+k3r17S9dee61UXV3t2f7NN99Iffr0kW644QbJ5XK19lSjXn19vTR06FCpd+/eUnl5eYvHx+t77YsvvvCMTytWrJDy8vKkv/3tb36PfeGFF6S8vDzp2WefVWx/9tlnpby8PGn58uUBvWZlZaU0ePBg6fLLL5dOnjzp2X7y5Enp8ssvly6//HLJYrGEeEWBaatxOx4FOz6/+OKLUl5enrRz585wnmbUCWZ8TqTP+1A0NT4n2nutPcfnHTt2SHl5edLEiRMV/57/+9//Snl5edKMGTOCPl/WTLTCzp078eOPP2Ls2LGKbydNJhPuvfdeOBwOvPfeey0+T0FBAQDgt7/9LQRB8Gy/6667kJOTg7///e+oq6tr+wuIgGuvvdbvt7uDBw/G5ZdfjqqqKhw6dCgCZxb/Nm3aBKfTifvuuw8mk8mzvVevXhg7diyOHDmCvXv3RvAMw+OTTz5BZWUlrrzySnTs2DHSpxMxI0aMCGhWS5IkFBQUwGg0Ys6cOYp9c+bMgdFo9IxhLfnHP/6B6upqTJo0CZ06dfJs79SpEyZNmoSKigp88sknwV1IkNpq3I5HHJ/bXyJ93oeC47Nbe47P8s8PPPAAdDqdZ/vo0aMxdOhQFBYW4sSJE0GdL4OJVigqKgIAv1Nx8rbdu3c3+xz19fX48ssv0b17d583jiAIGDFiBKxWKw4ePNhGZx29NBqN4v+BKC0txZo1a7BixQq8//77+Omnn9rr9CLObrdj06ZNWL58OdavX48vv/wyqMfL79crrrjCZ5/8fpWPiWfvvvsuACA/Pz+oxyXSe81baWkpTp8+jYEDB8JoNCr2GY1GDBw4EEePHsXJkydbfK5Axsz2fg+2xbidiJobn3fv3o1XX30Vr732Gj755BPU1taG+/QiLpDxmZ/3LWtpfOZ7TSmU8XnXrl2efY2NGjUKQPDjMGsmWqG0tBQA0K1bN599mZmZMBqNKCsra/Y5fvzxR4ii2GR+mry9tLQUgwcPbs3pRrUTJ05g+/btyMzMRF5eXsCP+/DDD/Hhhx96ftZoNJg0aRIefvhhqNXq9jjViCkvL/cpWOvbty/+/Oc/o2vXri0+vrS0FEajEZmZmT775PdwS+/XWHf8+HHs2LEDnTp18gyagUqk95o3+T3R3BhVWFiI0tJSdO7cudnnam7MDNd7sC3G7UTT0vi8dOlSxc+pqan4v//7P9x6661hOsPIC2R85ud98wIZn/leUwp2fLZarSgvL0deXp7fz61Qx2EGE61QU1MDAIqUEW8pKSmwWCzNPoe8PyUlpcnn8H6teORwOPDwww/Dbrdj/vz5Af1ilpGRgd/97ne46qqrkJ2dDZvNhn379uH555/HmjVrIAgCHn300TCcfXiMGzcOgwYNQl5eHoxGI0pLS/H6669j8+bNmDZtGj744IMm30OympqaJgv75Me29H6NdZs2bYIoirjtttsCDgAS7b3WWFuOUc2NmeF6D7bFuJ1ImhufL7nkEvzxj3/E0KFDkZWVhfLycvz3v//Fiy++iEcffRQmkwlXX311BM8+PAIdn/l537zmxme+1/wL9j0V6PHBjoEMJiiiRFHEo48+it27d2P8+PEBf7vQo0cP9OjRw/Oz0WjENddcg/79++OWW27BunXrMGvWrLhps9e460WvXr3wzDPPAHB3xykoKMD06dMjcWoxQxRFbNq0CYIg4Pbbbw/4cYn2XiOStTQ+jxkzRvFzly5dMGnSJFx00UWe7lyJ8Asex+fWa2l85nsturFmohVaiuBqamqa/PZLJu9v6psIeXtL3zrHIlEU8fjjj+PDDz/ELbfcgj/84Q+tfs7MzExcffXVcDqdQdcUxKI777wTAFBcXNzisc1949rSt7XxYPv27Thx4gSGDRsWUh/txhLlvdaWY1RzY2a43oNtMW4ngtaMz8OHD0fXrl1x+PDhhP2WHfAdnxP5874loY7Pif5eC/Y9FejxwY6BDCZaQc5R85dbVl5eDqvV6jcv11tOTg5UKpUnj7cxeXvQPX+jnCiKeOyxx/Dee+9h7NixePrpp6FStc3b0Ww2AwBsNlubPF80k6/VarW2eGxubq4nX7Ix+T3c0vs1lskdLIItvG5OIrzX5PdEW4xRzY2Z4XoPtsW4He/aYnxOhH8bLWk8Pifq530gWjM+J/J7LdjxWa6bPHbsGFwul8/xoY7DDCZaYciQIQCAwsJCn33yNvmYphgMBvTr1w8//PCDz6IkkiRh+/btMBqN6NOnTxuddeTJH1Tvv/8+brzxRjzzzDNtWsAqf0sczGJuserAgQMAArtW+b34xRdf+OyT36/+2kLGg4qKCnz66adIT0/3mS5vjUR4r+Xm5iIrKwvFxcU+QavVakVxcTG6dOnSYvE1ENiY2d7vwbYYt+NZW4zPVqsV//vf/2A0Gj2/6CWixuNzIn7eB6I143Oiv9dCGZ+HDh3q2dfY559/DiD4MZDBRCsMHz4cOTk5+PDDD1FSUuLZbrFYsHz5cmi1WkWO6enTp3HkyBGf6fXx48cDAP785z9DkiTP9rfffhtHjx7FzTffDIPB0L4XEyby1Pn777+P66+/Hs8++2yzH1Tnzp3DkSNHcO7cOcX2plrnvfHGG9i1axdyc3PRt2/fNj33SDly5Ijfb1yOHDmC5557DgBw8803e7ZbLBYcOXIEp0+fVhw/btw4aDQavPLKK4r3YElJCT788ENcdNFFcbUCtrfNmzfD4XDg5ptvVvTV9sb3mn+CICA/Px9WqxXLli1T7Fu2bBmsVqtnDJPZbDYcOXLEp1f5DTfcAJPJhPXr1+PUqVOe7adOncL69ethNptxzTXXtN/FIPhxO5EEMz7X1NTghx9+8NleV1eHJ554ArW1tbj++uuDavUdi4IdnxPp8z5QLY3PfK81LZTxWf75hRdegN1u92zftm0bioqKMHLkyKC/IBMk73czBW3nzp2YOXMmdDodbrrpJiQnJ2Pr1q04fvw4HnnkEcyYMcNz7KOPPor33nsPTz31FMaNG+fZLooiZs2ahcLCQlx22WUYMmQIfvzxR2zduhXZ2dkoKChosgtPrFm6dCleeuklGI1GTJkyxe8//muuucazmJR8/Ny5c/HrX//ac8wvfvELaDQa9OnTBxdccAFsNhu+/PJLfPPNN0hNTcWqVavQr1+/sF1Xe1q6dClef/11DBkyBBdeeCGSkpJQWlqKzz77DA6HA7Nnz8Zvf/tbz/GbNm3CY489httuuw1PP/204rleeeUV/PWvf0V2djauvfZa1NbW4qOPPoLD4cCaNWviNpi4+eabcfjwYXzwwQfo2bOn32MS7b1WUFDgWaTw8OHD+PrrrzFw4EDP9PagQYM8KQdWqxV33303vv32W4wcORK9e/fGN998g8LCQvTt2xfr169X/AK0a9cuTJkyBUOHDsW6desUr7t582Y8/PDDyMjIwI033ggA+Pjjj1FRUYG//OUvuOGGG9r92oMZtxNJMOPzsWPHcM0116Bv37646KKL0LFjR5w9exbbt2/HqVOnkJeXh7Vr18b9t8XBjs+J9HkfqJbG50R8r7Xn+AwACxYsQEFBAXr06IHRo0ejvLwcH3/8MZKTk/H222+je/fuQZ1v4oVxbWzYsGF488038eKLL+Ljjz+G0+lEXl4e5s+f7/mgbIlKpcIrr7yCV199FZs3b8aaNWuQnp6OO+64Aw8++GBcDSzy1K7VasXy5cv9HpOdna1Ymdafu+66C4WFhdi9ezcqKyuhUqlw4YUXYurUqZgxY4Zidd1Yd/nll+PIkSMoKSnBnj17UFdXB7PZjJ///OeYMGGC38W3mnLfffchOzsbb7zxBt566y1otVoMHjwYDzzwAC699NJ2vIrIOXDgAA4fPox+/fo1GUg0J17fa3v37vVZ6bm4uFgx9S1/WBmNRqxfvx5Lly7F1q1bsWvXLmRmZmLGjBm4//77g/om9Ze//CXMZjNWrFiBTZs2AQD69OmD++67DyNGjGiDK2tZW4zb8SiY8Tk9PR0TJkzAgQMHsG3bNlRXV0Ov1+Oiiy7C5MmTMWnSpIT4hj3Y8TmRPu8DEcj4nIjvtfYenxctWoS8vDxs3LgRa9euhdFoxJgxYzBv3ryA1q1qjDMTREREREQUEtZMEBERERFRSBhMEBERERFRSBhMEBERERFRSBhMEBERERFRSBhMEBERERFRSBhMEBERERFRSBhMEBERERFRSBhMEBERERFRSLgCNhEREVEYffzxx3j//ffxzTffwGaz4ZJLLsG8efMwePDgSJ8aUdC4AjYRERFRGN11113o1q0brr76ahiNRmzatAlbt27Fu+++i0suuSTSp0cUFAYTRERERGFUUVEBs9ns+VkURdx8880YOHAgFi9eHMEzIwoeayaIiIiIwsg7kAAAlUqFHj164NixYxE6I6LQMZggihMPPvggevbsiWeeecZn3w8//IABAwZgwIABKC0tDf/JERFRk1wuF7766it07do10qdCFDQGE0Rx4g9/+AM6deqE119/HTt37vRsdzgcmD9/PqxWKx5//HHk5uZG7iSJiMjH+vXrcfLkSUyYMCHSp0IUNAYTRHEiLS0Nf/rTnwAAjzzyCKqqqgAAL730Eg4ePIhrrrkG+fn5kTxFIiJq5Msvv8Tzzz+P++67Dz179oz06RAFjQXYRHHmmWeewapVq3DDDTdg0qRJmDx5Mjp06IAPPvgAGRkZkT49IiI679ixY7jzzjsxePBg/PWvf4UgCJE+JaKgcWaCKM48+OCD6NWrF7Zs2YLZs2dDkiQ89dRTDCSIiNrJ7373O/Ts2RPLli3z2bdv3z70798fl19+OY4cOeLZXl1djdmzZyM7Oxt/+tOfGEhQzGIwQRRndDodnn76aQBATU0N7rrrLowaNSrCZ0VEFL8eeOABaLVarFmzBhaLxbO9tLQU9913HwDglVdewUUXXQQAsNvtmDt3Lmw2G5YtWwaDwRCR8yZqCwwmiOLQli1bPH/+9ttv4XK5Ing2RETxrWvXrrj99ttRVVWFNWvWAADOnTuHWbNmobq6Gs8//zwGDhzoOf4Pf/gDdu/ejTlz5uDYsWPYv38/9u/fj2+++SZCV0AUOtZMEMWZPXv2YMqUKcjIyECPHj2wfft2/PrXv8bcuXMjfWpERHHrp59+wrXXXgutVouPPvoIv/71r/Hll19i0aJFuPPOOxXH/uIXv8Dx48d9niM7Oxv//ve/w3XKRG2CwQRRHKmpqcEtt9yC48ePY+XKlejduzduvvlmVFdX480330T//v0jfYpERHFLboBhNptRUVGBOXPm4IEHHoj0aRG1K6Y5EcWRRYsW4fjx45g0aRJ+/vOfo2PHjliyZAmcTiceeughWK3WSJ8iEVHcmjZtGlQqFSoqKjBu3DgGEpQQGEwQxYktW7Zg8+bNuPjii/HQQw95tl999dUYP348ysrK8P/+3/+L4BkSEcUvSZLw9NNPQxRFAIBarY7wGRGFB4MJojjw008/4fe//z20Wi2ee+45n84gjz32GHJzc/Huu+/iX//6V4TOkogofj3zzDP46KOPMHr0aGRmZuK9995DaWlppE+LqN2xZoKIiIioFd544w388Y9/RL9+/bB27VoUFBTg//2//4cbb7wRf/nLXyJ9ekTtisEEERERUYi2bNmCefPmIScnB++88w4yMjJQX1+PMWPG4PTp03jvvffQq1evSJ8mUbthmhMRERFRCHbv3o2HH34YZrMZr732GjIyMgAAer0es2fPhiRJnJmguMdggoiIiChI3333HebMmQO1Wo3ly5ejW7duiv35+fno3Lkztm3bhj179kToLInaH9OciIiIiIgoJJyZICIiIiKikDCYICIiIiKikDCYICIiIiKikDCYICIiIiKikDCYICIiIiKikDCYICIiIiKikDCYICIiIiKikDCYICIiIiKikDCYICIiIiKikDCYICIiIiKikDCYICIiIiKikDCYICIiIiKikDCYICIiIiKikDCYICIiIiKikDCYICIiIiKikDCYICIiIiKikDCYICIiIiKikDCYICIiIiKikDCYICIiIiKikDCYICIiIiKikGgifQKxqKKiItKnENPS0tJQVVUV6dOIe7zP4cN73Tpms7lVjw/nmMy/68jgfY8M3vfIiOR9D2U85swEhZ1KxbddOPA+hw/vdeLg33Vk8L5HBu97ZMTafefMBBEREUUlu92OP//5z0hKSsJ9990HnU4X6VMiokYYTBAREVFUcjgceOaZZwAAM2fOZDBBFIViax6FiIiIiIiiBmcmiIgoJKIo4fD/gKoqIC0NyOsBqFRCpE+LiIjCiMEEEREFbW+xhPVvSvjxR8DhBLQaoGtXYNIEYNBABhREROFmd+hhsWhQUyMhJUWAyeSETlvf7q/LYIKIiIKyt1jCs89LsFqB1FQgVQs4HMCR74Fnn5fw0O8YUBARhZPVmoyFi+uwfYfNs23EcC0WPpEMo7G2XV87KoOJ+vp6/PnPf8bBgwdRVlaGqqoqpKamIicnB/n5+bjlllug1WoVj6mpqcHSpUuxdetWlJeXIysrC9dddx3mzp2L5ORkn9cQRREbNmzAxo0bUVZWBqPRiBEjRmDevHnIyckJ16USEcUUp1PEipVAZRWQYQb0evd2vR7oqAPOnAXWvylhwGVMeSIiCge7Q38+kHAotm/f4cDCxcCSRfp2naGIygLs2tpavPXWWxAEAVdeeSWmT5+Oa665BqdPn8bjjz+Oe++9F6Ioeo63Wq2YNGkS1qxZg5/97GeYNm0aunfvjtWrV2Pq1Kmor/e9gU8++SSWLFkCSZIwefJkjBo1Clu3bsUdd9yB0tLSMF4tEVFs2FssYc6vgW8PAVYrcOIkcPSY+88AIAiAyQT8+CNw+H+RPVciolhnd+hx9lwyyn404uy5ZNgder/HWSwan0BCtn2HAxZL+84dROXMRHp6Ovbs2ePTAs7pdGL69OkoLCzEZ599hiuvvBIA8Nprr6GkpASzZs3C/PnzPcc/99xzWLlyJdasWYPZs2d7tu/cuRMFBQUYMmQIVq9e7XmdsWPH4p577sHixYuxatWq9r9QIqIYIac2VVYBAgD1+U+P+nrg1E9ApwsAoxHQaQGLxV2UTdRaBoMBn3zyCVJTU2EwGCJ9OkRhE0zaUk2N1Oxz1dRI6JDRLqcJIEpnJlQqld9e0hqNBmPGjAEAlJWVAQAkSUJBQQGMRiPmzJmjOH7OnDkwGo0oKChQbJd/fuCBBxSvM3r0aAwdOhSFhYU4ceJEm14TEVGscqc2uQOJlGRAUAGS5J6J0GgAUQTOnnMfa3e4i7HT0iJ7zhQf1Go1Bg4ciCFDhkCtVkf6dIjCoqpKbCZtqc5nhiIlpfmU0pb2t1ZUBhNNEUURn3/+OQAgLy8PAFBaWorTp09j4MCBMBqNiuONRiMGDhyIo0eP4uTJk57tu3bt8uxrbNSoUQCAoqKi9roMIqKY0Ti1qfyMO3hwudwBBQCo1YDdDths7lmJrl3dbWKJiMgt0JQlADh3TgoqbclkcmLEcK3f40cM18JkcoZ+4gGIyjQnmd1ux4oVKyBJEiorK7Fjxw58//33GDduHIYPHw6gYYYiNzfX73Pk5uaisLAQpaWl6Ny5M6xWK8rLy5GXl+f3W45u3bopnpeIKFE1ldrkdLoDCqfTHUgIgvvnigr3jMSkCQKLr6lN2O12LF++HEajEVOmTOEK2BSTgu20ZKkRfbZ5a5y2pNPWY+ETyVi4GIogxP0aBui0CdjNSeZwOPDSSy95fhYEATNmzMDvfvc7zzaLxQIASElJ8fsc8vaampqgjpePIyJKRN5dm1KSgbo690yESgVoz7eCBdzbXC73n3NygNmzBLaFpTbjcDiwcOFCAMDdd9/NYIJiTiidlkwpzScO+UtbMhprsWSRHhaLodE6E+0bSABRHkwkJyfj0KFDEEURp0+fxr///W/85S9/wf79+7Fy5comA4L2lpaWBpUqpjLEoo7ZbI70KSQE3ufwiad7vXOXAy+8aMW3h5wQBKDOBojnU5pUKvdMhFbjDiKyMgVYaiR076bBujdM0GjCPzaGe0yOp7/raOcdPJjNZr+t3ql98f3etKoqEefOSbDUiDCZVMgwC0hLU45FP/zgUsxIeNu+wwFrbTIu6K5M01epRFwxQosvtvumOl0xQovMjhqkpfn/e7kgy/snHQCj3+PaUlQHEzKVSoVOnTphwoQJMJvNePDBB/HKK6/goYcegslkAtAw89CYvF0OPAI9Xj7Onyq2KWkVs9mMioqKSJ9G3ON9Dp94utc+qU3ns0HF86lNDodXapMEWCwS0tKAX81wwWIJbWxs7S8r4RyT4+nvOhbU1jZ8q1pRUQG73R7Bs0k8fL83rSF1yTetyDt1qaq6+V/mq6qdqKioVmwzm834/QKD37Sl3y8wQBSr0F5/LaGMxzERTHgbOXIkgIYCabnGoam1IeTtck2F0WhEZmYmjh07BpfL5VM3IddKyM9LRJQoRFHC+jfdK1tnmIETTG0iIvIRTOpSqJ2WIpm2FKyYy9U5ffo0AHebWMAdJGRlZaG4uBhWeeWk86xWK4qLi9GlSxd07tzZs33o0KGefY3J3aKGDBnSXpdARBSVDh2WcOR7d+AAADqdezZC7tqk0bhnJDp2cK8pcUlPYNlSMJAgooQSzCJxrem0pNPWo0NGLbp1taJDRm27rmLdGlEZTHz33Xew2Xzzy2w2G5566ikA7jUhAHdRdn5+PqxWK5YtW6Y4ftmyZbBarRg/frxiu/zzCy+8oJgy3bZtG4qKijBy5EhkZ2e36TUREUUzd3oTUFnpbv964qR79kGA+//i+eYikgTU1gLpae4ZiUjUSBARtYdA27cGskiczN1pyeATUDR0WorOACEYUZnmtGXLFrz++usYNGgQsrOzkZKSgp9++gmfffYZKisrMXjwYEybNs1z/MyZM/Hpp59i5cqVKCkpQe/evfHNN9+gsLAQffv2xdSpUxXPP2zYMOTn56OgoADjxo3D6NGjUV5ejo8//hjp6elYsGBBmK+YiChy5DqJ6mr3zINcZO08/4WZ5nyxNVObiCheBdO+NdjUpVhKWQpFVAYTV155JU6fPo19+/Zh//79sFqtSElJQc+ePXHTTTfh9ttv96Q5Ae46iPXr12Pp0qXYunUrdu3ahczMTMyYMQP3338/DAaDz2ssWrQIeXl52LhxI9auXQuj0YgxY8Zg3rx56Nq1azgvl4goIkRRwreHJLz8ClBtAS64ADh+AqivdxdZazTugEKlcncIOVcBdM1xpzZpNAwkqP0ZDAZ88MEHMJlMfj/LidpCsO1b5dQlf6lOTaUuuVOW6hXrQ8QLQZKk5udqyAc7G7QOu0OEB+9z+MTivd5b7C62PnLEvZaEIAB6PZBsdP8siu4gAnD/OTkZSDUBD/2u7WckWtvNKZz3Phb/ruMB73tkxMN9tzv0sFg0jWYElKlFZ88l45fjml5fbPMmEzpkKGcRAu3mFIpI3veE6OZEREStI6c1Wa3uYms5tam+3t2xKT0NqLUCdru7RkKSgE4XAPffx9QmIoodgaYuBVID0XhGId5Tl4LBYIKIKIF4r2ydYXYHEsL5+EBOa6q1Al2y3cGFrQ5wOoD5vwV692IgQeHlcDjwxhtvwGg0Ij8/H1qt/644RI2Fo31rPKcuBYPBBBFRgthbLGHFSuDbQ+6f6+rcMxNqtTuIEAT3n+12dyCh1wOWGuCii4BLejKQoPCz2+14+OGHAQC//OUvGUxQQGlLgNy+temVpy0WAzpkuB8XSg0ENWAwQUSUAHxWtj4/+svdseUWsCqVu0bCVucOJIxJwKQJAlQqBhNEFFnBdFwKJnXJ3b412e+K0+72rYmXuhQMBhNERHHOO7UpJdk9IyGvbC2nNqk17lmJ+nr5McBFP3MHEqyTIKJIC7bjEtu3hg+DCSKiONY4tclma1jRWq6XUKvdsxJZmUBVtbvY+qHfAT3zOCNBROHRUvpSMGlLANu3hhODCSKiONVUapPT6U5lcjrdgYQguH+urATS0txdm3pdwiCCiMIjkPSlYDsuMXUpfBhMEBHFoeZSm7RadwtYwL2NK1sTUaQEmr4USsclpi6FB4MJIqI4E0hqk0bjDiI6dgBqakNc2dplh2A9ByklCxBUbX8hRBTTAum8FGj6Uqgdl5i61P4YTBARxZFgUpskCaitdS9SN3uWEHggIYmArRJCfTWA5lMPiFpDr9fj7bffRkpKCvR6faRPh4LQ1gvGMW0pejGYICKKE2FJbaq3QLBVAJKrfS6CyItGo8G1114Ls9mMioqKSJ8OBai9Foxj2lJ0YjBBRBQH2j21yVEHwXYWcNmV2+trINSecac6EVFCaMvOS8GmLzFtKfowmCAiinHtmtrkcrhnIhzKb/4E6zlo978JzeF/AIIKdbcuhyv3iva5QEpYDocDBQUFSE5Oxo033sgVsKNAW3deYvpS7GMwQUQUw9ottUmSgLpKCHVVUNRFOKzQHtwE7cFNEJx1548VoT66k8EEtTm73Y65c+cCAI4ePcpgIsLaq/MS05diG4MJIqIY1W6pTfU15+sivNILRCc0h7ZAt/8tCHWVisPF9G5w9L+rbS+OiMKucfqSSiUq9rdn5yWmL8UuBhNERDGoXVKbHHUQbOcAl1frRkmCuvRz6PauhcpyQnG4pE+F/bIJcFw+G9AY2udCiSgs/KUvXTFCi98vCD59ialLiYXBBBFRjGnz1KYm6iJUJw9At2c11GcOK7ZLGj0cl94GR587AJ0RUOva4zKJKEyaSl/6Ynvo6UtMXUocDCaIiGJIm6Y2iS53ylK9Bd51EcK5H6DbuwaaY7sVh0uCCs4e18ExYCIkI3MRiGJFW3VfYucl8ofBBBFRjGiz1CZJAuqqzhdXN+RECzXl0O5bB813n0JotBids+tw2AdNg5Se0/4XSkRtpi27LzF9ifxhMEFEFAPaLLXJX3F1vQXaAwXQlnwAodE6Eq6sXrAPngHxgkv9n5hKC3doQ0TRpj26LzF9iRpjMEFEFOXaJLXJYTtfXO0VLDjt0Hz7IXRfvg3BXqN4TTEtB/ZBU+HqOtz9Ao2ptJAMaYAuxf9+ojag1+uxevVqpKSkQK/XR/p0og7TlygaMJggIopirU5tctkh2CqVxdWSCM2R/0BbvBaq2nLF64lJZjgGTIKzx7WASu17QoIGUlI6gwgKC41Gg1tvvRVmsxkVFRWRPp2oEo70JXc3J6YvUfMYTBARRSFRlPDtIQkvvwJUW4AMM3AimNSmARJgrYBQXw1PcbUkQX2iGNo9r0N97nvF60naJDj63AHHpbcBWj9tXgWNeyZCb2IQQRRh4UpfyuyogShWtcs1UPxgMEFEFGX2FktY/6aEI0fcNRKC4A4c1Gr3TESLqU2uGghVFYDk8jyn6sz/oNvzOtQn9yteS1Jp4Ox5I+yX3Q0Y0nxPhkEERZDT6cSHH36IlJQUXHnlldBoEufXluZSmMKVvpSWZgYnhKglifOvkogoBshpTVare/ZBENwzEfbzpQ4C3AGESuWb2nTfjHporcq6CMFyErritdB8v83ntZzdR8M+cAqk1M6+J8IggqJAfX09ZsyYAQA4evRowgQTLaUwsfsSRZPE+FdJRBQDvDs2ZZgbZiAA9yyE0+mumVCr3cGFnNqUm+PAnCmV6HexFZAnI+qqoNv/FjSHPoYgKr99dHXuD/vg6RA75vmehKA+H0SkMoggioBAUpjYfYmiCYMJIqIo0LhjU12de2bCO7VJrXYHEBdkuY+pqBDRu1sVnv1DNdRyrbSzDtqvN0P7VQEEh1XxGi5zdzgGT4cre5BvoMAggihsWpvCxO5LFE0YTBARRVhTHZv8pTaJIlBXD2ilWuRlnsOv7hbdgYToguZ//4J233qobOcUzy8mZ8IxcAqcP7vSt0MTgwiisGqbFCamL1H0YDBBRBRBzS1G1zi1qb4e0KrsMKvOoke3etxys4BLe0tQ/7gLuj2vQ1V1VPHcki4F9n53wtnrZkCja/TKKkiGVHfRtaAK3wUTJbC2TGFi+hJFCwYTREQREshidHJqU6dMF2CrQG6nGvxqOvCz7gLUZ0qg27Ia6p++VjyvpNbC0esWOPqNdxdQK5wPIvSp/teRIKJWCWcKE9OXKBowmCAiioBgFqMzqqphqK9EWpqIiXcLuLjjMej+swaaH7crnlOCAOfFV8MxYBKklKxGryhA0p+fiWAQQdQumMJEiYjBBBFRmDWX2uS9GJ1OsCFdWwGtyo7szsDkWyvQp+pNaHb/A4IkKp8zezDsg6dDyuje6NUEQG9y10WoOORTbNHpdHjppZeQnJwMna5xql50YQoTJSp+shARhVEgqU16rROp6gp0yayF1QrkXmjFwps3QXfwPQjOOsXzuTr2gH3wDIid+/u+mC4FkiEdUGvb96KI2olWq8WECRNgNptREQWrpzGFicgXgwkiojAQRQmb/y7hjbWA1dZUapOEDEMV0nRVcLkk2G1O3NztH8jv+ia0B6qUz2fqBPvAqXB1H+VbQK1NhpSUDqij+5tcoljCFCYi/xhMEBG1s73FEtZtkHDgAOBwNqxcLYjuugitFtCItTDrKqDTOOFySbgisxDTeq5FpvYE4NUyXtKnwn7ZBDh73uA746BNds9E+HRuIopNTqcT//73v5GSkoKhQ4e2+wrYTc08MIWJqGkMJoiI2pFcaF1dDbhEd7tXwF0X4XS6W712NJyDXlUHlwgMyz6AcZ1ex8UphxXPI2n0cFx6Gxx97gB0RuWLaIzumQiNPjwXRRQm9fX1uOuuuwAAR48ebddgormZB1sdmMJE1AQGE0RE7cS70DrJANRaG+oiDDonjEIlUjQ10ApAV2MpJnR/HYM77FE8hySo4OxxHRwDJkIyNvrNQ2OAZDADWkMYr4oo/rQ08zDn3ub/jTGFiRIZgwkionbgr9BaFAGVICLNUI1UbRUkUUK6uhwTL1qPqzp9CpWgzLl2dh0O+6BpkNJzlE+u1kNKMgPapDBdDVF8aCqNqaXi6fm/NfrdJ2MKEyUyBhNERG3M3xoSkiQhSahBuq4COrWIFI0Ft3UpwA0X/h16tV3xeFdWL3eHpgsuVT6xWnc+iGj+Fxsi8tVcGlNLxdMqtcQUJqImMJggImpD/taQMKhqkaGvhBoOQLTjpgs/RH7uOzBpaxSPtRlyIIyYBlfXYe5cKJlK566J0CWH92KI4kRLaUwPz29+lk8lSFj4hIEpTER+RGUw8dNPP2HLli347LPP8P333+PMmTNIS0vDwIEDMXPmTPTv79tPvaamBkuXLsXWrVtRXl6OrKwsXHfddZg7dy6Sk30/gEVRxIYNG7Bx40aUlZXBaDRixIgRmDdvHnJycnyOJyJqSePUJld9PTJ156BX10MriBh1wX9xd7e1yDSUKx5X7crA2YsmIWv0GOXq1CqtuzuTPiV8F0EUw0JNY9LpkpqdeUhJcT8PU5iIfEVlMLFu3TqsXLkSXbt2xRVXXIGMjAyUlZXhk08+wSeffILnn38eN954o+d4q9WKSZMmoaSkBCNHjsRNN92EkpISrF69Grt378aGDRug1yu7nDz55JMoKChAjx49MHnyZJw+fRpbtmzBF198gXfeeQe5ublhvmoiimXeqU0awYkOSRVI1tTC6ZLQP70Y0y5+Hd1NPygeY3MloTTjDuTcdBuy9F4FnoLm/ExEinKGgoia1Jo0pqoqMaCZB6YwEfmKymCiX79+WLduHYYOHarYvmfPHkybNg0LFy7ENddcA53O3Uv9tddeQ0lJCWbNmoX58+d7jn/uueewcuVKrFmzBrNnz/Zs37lzJwoKCjBkyBCsXr3a8zxjx47FPffcg8WLF2PVqlVhuFIiigfu1CYJlVUSOqdVwamqgkqQ8DPT/zAxdw36m/crjneIGuyouREpo+9Gz8vSGnYIakiGNECfyiCCCIBOp8MzzzwDo9Ho+az2p7VpTEajwOJpohBFZTBx7bXX+t0+ePBgXH755SgsLMShQ4fQt29fSJKEgoICGI1GzJkzR3H8nDlzsGHDBhQUFCiCiYKCAgDAAw88oBicRo8ejaFDh6KwsBAnTpzAhRde2A5XR0TxZG+xhFWrLfjxu1qY9efgtLiQqT+FST9bi59fsM3n+O1nfo7/1E3Brx/rDLVGDhhU7iDCkOq7mjVRAtNqtZg5cybMZjMqKiraLY1JLqDmzANR8KIymGiOvGCN/P/S0lKcPn0aI0eOhNGo7HBiNBoxcOBAFBYW4uTJk+jcuTMAYNeuXZ59jY0aNQpFRUUoKirCrbfe2r4XQ0QxSRQlHP4fsGevhL9vrofBdQ6Zhnqk66twe9d3cN2FH0Grcioec6CiP945Oh3lqh6YOUOAWgO4g4hUwJDGIIKoBeFIYyKi4MVUMHHixAls374dmZmZyMvLAwCUlZUBQJM1Drm5uSgsLERpaSk6d+4Mq9WK8vJy5OXlQa1W+xzfrVs3xfMSEXnbWyxh/ZsSjpY5IdVWwKCqhcFQhxu6bcZtXd9FssaqOL60Jhdrj0xH8blB+Fl3ATPHC7j0UgGS/nwQofIdh4gSmffsQ1KSiK+/3gadVof3PhiAnbtExbFMYyKKvJgJJhwOBx5++GHY7XbMnz/fEwhYLBYAQEqK/24n8vaampqgjpeP8yctLQ0qFb9FbA2z2RzpU0gIvM9ta+cuB57/qwXq+irkmKpQYXfgF50+wZ25G9BBf1ZxbHldJt76YTIOOq5CjU2FvIvVeOZPKdCkpANJZggMItpMuMdk/rtqP6dOufDEwlrP7IMo1uLbgzcAAC7pUwaVyrc74/YdDuj1RlwxQosvtvumMV0xQovMjhqkpbn/3i7I8t6rA8B1W5rD93tkxNJ9j4lgQhRFPProo9i9ezfGjx8f8fSjqqqqiL5+rJNzX6l98T63LadTxLIXLDBYK5GR7kTf5F24pfsa5CQfVRxncaRg04/j8Y8TN8Pm1MFoAFJMAm6904gaTRpgVwP26ghdRXRq7YdmOMdk/rtqP3aHHk8sdPqta2hJZaULv1/gP43p9wsMEMUq8K8teHy/R0Yk73so43HUBxOiKOLxxx/Hhx9+iFtuuQV/+MMfFPtNJhOAhpmHxuTt8oxDoMfLxxER7dtdi4K1FTj7ox09U0swNft19E77WnGMXdTio2O3YPPxfFTbTRDPZ2OkXZCMu6eZ0W9w051oiBKNv0Lq5oqoW8I0JqLIiepgQhRFPPbYY3j//fcxduxYPP300z5T2XKNQ2lpqd/nkLfLNRVGoxGZmZk4duwYXC6XT92EXCshPy8RJTCnHV8VncW612xIcRzDo33WYFjmDsUhoiTgvz9djY0/TsRP1ix07ABkqYET55KRdkEanvqrDhoN0yKJZE0VUs+5V9vs4y4fqsXuPb7b2Y2JKLKi9hPOO5C48cYb8cwzz/gtmM7NzUVWVhaKi4thtSoLH61WK4qLi9GlSxdPJycAGDp0qGdfY59//jkAYMiQIW18RUQUM0QnhNozECuO4R8Fx5Hf8WU8e9l9PoHE3rOD8WDRUiz9dh5O29yJ2LXOZHxfcSHEpEzMnKVnIEHkpbn1IOrtzXdkeuQhI0YMVwYcDd2Y6tv8XIkoMFE5MyGnNr3//vu4/vrr8eyzz/oNJABAEATk5+fj5ZdfxrJlyxSL1i1btgxWqxX33nuv4jHjx4/HRx99hBdeeEGxaN22bdtQVFSEkSNHIjs7u/0ukIiikyQBdVUQ6qpQcqAGZz/9Gx7t/B6SNHWKw76z9MC6H6bj68r+cLoArRaoshlR40pHikGHbt2BSRMEDBrIhecocQWbylRU5GxyLQgAMBjsWLIomWlMRFEmKoOJl19+Ge+99x6MRiNyc3Pxyiuv+BxzzTXXoFevXgCAmTNn4tNPP8XKlStRUlKC3r1745tvvkFhYSH69u2LqVOnKh47bNgw5Ofno6CgAOPGjcPo0aNRXl6Ojz/+GOnp6ViwYEFYrpOIooi9FoKtApLdhu/+vgU9yt/C4PRKxSGnbJ2w9rup2HFmJFQqFQQBsLmSUC2YoUnRYcptwOBBAvJ6ACoVAwlKXKGkMq1bb8PGt9Lwxz9Z/QYUWk09dFoN05iIokxUBhPHjx8H4E5TWr58ud9jsrOzPcGE0WjE+vXrsXTpUmzduhW7du1CZmYmZsyYgfvvvx8Gg8Hn8YsWLUJeXh42btyItWvXwmg0YsyYMZg3bx66du3afhdHRNHFWQ/Bdg5w2HDy88+Rfmgt+mtOAF6/81TZU/Hu0bvxr5M3oM7h3mFzGXCuzgy7qEefS9X41XSRMxGUkBrPQCQbpSZTmX41w/fzWGa1AaIkYskijWf2QafT4+23l8CUooNW23xNBRFFhiBJUvNJiuSDbdJah63mwoP3uQUuBwRbBeCoherUV3B9tgoptYcVh9S59Nj8423YVHY7HIIRKhVQ5zTgXF06UjMMqKkFuuYAb603w2Jhy+hQtbY1bDjf5/x3pdQwA9EQOKxaacKvZvlfq2n2rCR8ddB/+9cRw7VYskjjt/6B9z0yeN8jg61hiYiimSQCtkoI9dUQzn0P3d410BzbrTjEJanw6alrsbFsIirqM+BwAXZRhxrRDLuUBKcLUNcC6WnA7FkCi6wpITVVTF1d1fR3lE2lMjUUUrP+gSjWMJggosQgSUC9BUJdJQTLKWj3rYPmu08hQPmLz87y4Vh7ZCpO1edApQKc0KHCmQZLfTLUavfTAEBOjjuQYGoTJYJgiql1+qb/TfhLZWqukNrlcuHLL79Eamoqunfv3mQzFiKKHAYTRBT/HFYI1grAdg7aAxuhLfkAgsuuOKSksjfWl07Ht1W94XACTlGLGjEd9UgGAKhUQIYZsNW5U5uWLQU0GgYSFP+CLaY+cMCJYZdrsXOX/1SmlBRnwOtB1NXV4ZprrgEAHD16FMnJyaFfCBG1CwYTRBS/XHYI1nNAXRU0334I3ZdvQ7DXKA45WtsF676fhl3lw6BWCxChRbWYhkpbCgB321cAEASg3u6d2sRAguJPWxRTr1tvw7N/MkGlAlOZiBIAgwkiij+iC0JdJVBXCc2R/0BbvBaq2nLFIRX2DLz1w0T859QYiFDDIWpwti4NdUiBWi1AowGcTkAU3f9ptUBeD2DyRKY2UXzyNwOxaqWpyXUfmloXwmoD3t1Uh0W/16PWyjUhiOIdgwkiih+SBNRXQ7BWQH1iD7R7Xof63PeKQ+rEJGw+dgc+PXcryisNgKBCtTMd1Q4THE53kCAI7rQmQQD0OsBoBKZNAW65WeD6ERSX2rqY+rGHDTAYamEwgGtCEMU5BhNEFB/OLzqnOl0C3Z7VUJ/cr9gtChoUVt2I1w7chWpHGiQIqKxPg1VMhUqtgkoFxWyEJLmDidxcFlpT/GmcziRJQrsXUxNRfGIwQUSxzWGFYKuAUPkjdMVvQPP9Np9Djhl/jhd2TcGPls6odwioFVNRbU9FvcPdGUYDQK12/yeKLLSm+OYvnenlF01+j23LYmoiik8MJogoNjnt7pWra05B9+Xb0Hz7EQTRqTik2tQP60tn4N/besDhEmBxmlBtTwVUGqjV7joIh8M9GyGcjxdYaE3xxnsWwmxWYckfbb51EE28zVlMTUQtYTBBRLFFdLlXrraWQ/v1Zmi/KoDgsCoOsSV3xy71NLzx2SDU1alQYTehxpkGEWo4RQCi+zi1Giy0prjWeBbi5aX+C6qbmoGIdDG1VqvFww8/jKSkJGi1/lvRElFkMZggotggSUBdFQTrOWi++ye0+zZAZT2rOKRel4m/l0/Gx/uuREWVBlX1JlilNNidamg0gErwnY1goTXFk5ZmIez1/guqm5uBiGQxtU6nw6OPPgqz2YyKiorwvjgRBYTBBBFFv/oaCNZzUP/4BXR7Xoeq6qhit6RLwdEL7sTT/xgLi1UPh9qE41b3TIQ84yCK7pkIFlpTvApkFqKpgmqrDXjoEQve3ZgKh4PF1EQUOAYTRBS9HHUQbOegOrnf3aHpp68VuyW1Fo5et6Cudz7++kwqjp5LhjolHU5RA5fUEDzY7e7gQZ6FYKE1xRt/rV39zUI0V1B92WVaGAwOpJqip5haFEUcOnQIaWlp6NSpE1QqVaRPiYgaYTBBRNHH5XB3aDpzCLq9a6Ap267YLUGA8+Kr4RgwCQfLsvD600bsLUmHU9JCZXHPPADuWQfvmQin0x1IACy0ptjnndKUlKT2ae3qbxZCTmcCoAgoorWg2maz4YorrgAAHD16FMnJyRE+IyJqjMEEEUWP8ytXCxVl0O7fAM3hf0CQRMUhzuzBsA+eDjG9O7b814hVb6Wh2qqDS2oIIux2dyAhpzDJMxFaLeByuf9joTXFssYpTX95LsXnGH+zEHI60yMPJePRh5NQWysynYmIWoXBBBFFnlxcbTkJ7cF3oT24CYKzTnGIq2MP2AfPgNi5Pw58m4w1y1Kx74AOjvOF1JIECOfrIuQia0lyBw6C4P7PnO7+ZUqnZaE1xZaWCquDmYW47DIthg9TwWisQccO7X/uRBTfGEwQUWTV10CoLYfm279Dt/9NCHVVit2iqTPsg6bClTsKoiYZH/w7Da+v08FWB7jEhtkIuUMToGz5qtG496lVgCgBPfOASRM4G0GxI5DCas5CEFGkMJggoshwWN0dmo58Ct3etVBZTih2S/pU2C+bCGfP6wF9GvZ+m4a1b+tw4AA8sxGi2JDG1Ljlq7wInVYDpKUC424DBg8SkNcDnI2gqBZKe1fOQhBRpDCYIKLwOr9ytepYEXS7V0F95rBit6TRw3HpbXD0uQMwdoBkSMfer/R49q8SqqsbZiMkyR1MeK8X0bjlKwB07cqWrxQ7Qm3vKs9CTJ6UhIfnG2GzuTgLQURhwWCCiMJDdLo7NP10ELo9r0NzbLditySo4OxxHRwDJkIydYaUZAa0SXA6RaxYKaGyCkgyALXWhpkHuVbC6QR0OrZ8pdjW2vauVhvw1UEn7hwPZGXWt/v5EhEBDCaIqL1JIlBXBdWZ76Ddtxaa7z6FAOUvSM6uw2EfNA1Sh4vOBxFGAMDeYgkrVgLfHnIfZ7MpU5vkeojGhdZs+UqxRE5rcjqEuGzv2hparRZz586FwWCAVquN9OkQkR8MJoio/dRbIFQehfbLt6At+QCCy67Y7crqfb5D02WQktIBnbuHvChK2Px3CW+sdX/bKgBQaxqCBu9C68adm9jylWKJd1oT27v60ul0WLRoEcxmMyoqKiJ9OkTkB4MJImp7DhsEyylovt4E3ZdvQ7DXKHaLaTnnOzT9HJIxwxNEAO7ZiHUbJEWhtb+2r3KtBOCulzAY3GlQbPlK0U6eiZAg4JlnG4qr2d6ViGIRgwkiajsuO4Tas9Ac+gja4rVQ1ZYrdotJGXAMmARn3g3uIEJv8kQE3rMRgbZ9FcWGxeh6XcLZCIp+3jMRjYurE30Wwh9RFHHs2DFUVVXBZDJBpVJF+pSIqBEGE0TUeqILgq0C6h+2QbtnNdTnvlfslrRJcPTNh6P3OEimCwBDWsO0AvzPRjTX9lWlcv9frwOMRs5GUHRraiaicXE1ZyF82Ww2XHbZZQCAo0ePIjk5ufkHEFHYMZggotBJElBXCfWxvdDtXQX1if3K3YIazktugv2yuyGldwP0qYBK7dnf1GxEIG1fBQHIzWXbV4puzc1ENE5r8m7vOnmSAakmAampUsLMQhBRbGIwQUShqbdAdboEur2rofl+m89uZ/efwz5wKqTMnpAMaYBKOdw0Nxshzzyw7SvFKrtDj7o6rWLBucYzEU2lNa1YacOI4VosWaSBTssWr0QU3UIOJl566SXccccd6NSpU1ueDxFFO4cVQkUpdMVrofn2IwiiU7Hb1akf7EN+BfHCge4OTV5BhChKOPw/YM9eCZved7d69TcbodWy7SvFLnk2YuIETbMzEYnU4pWI4lergolXXnkFo0aNQn5+Pq666ioWRhHFM2c9BMtJaL98G9qvCiA4rIrdojkX9sEz4Oo+2r1WhFrZE35vsYT1b0ooKwPOVTS0cZVTlvwtQse2rxQr/NVF5N+uVxzTeCbCO61p1kwD9DrAZALTmogopoQcTDz44IN499138d///hfbtm1Dx44dcfvtt+OOO+5Aly5d2vIciSiSXA4IteXQlGyGdt8GqKxnFbvF5Ew4Bk6Bs+dNkJI7AGqdcr9XXYTdASS716ODWq3syNTUInRs+0rRrqm6iEBmIuRVq2+/TQOjkQEEEcWekIOJe++9F/feey+2b9+OgoICfPLJJ1i+fDleffVVDB8+HOPHj8fVV18NjYZlGUQxSXQBtkpovvsXdHtWQ1V1VLFb0qXA3u9OOPuOd3do0uh9nqJxXYRKBdTXu4MHjcb9s93uDipUKvd//mYj2PaVolFLdRGciSCiRNDq3/RHjBiBESNGoKKiAu+//z7effddfPHFF9i+fTsyMjJw22234Y477kBubm4bnC4RtTtJAuqqoP5xB3R7VkH909fK3WotHL1ugWPAJEjpXQGt0ecpmurSJAjuQKHxbITT6f5Pfb7RE2cjKNoFUhfBmYjW02g0+NWvfgW9Xs8vJ4milCBJktTyYcEpLi7Gm2++iQ8//BDC+V7yQ4cOxaRJkzBmzJi2frmwq6ioiPQpxDSz2cx7GAYh3ef6GqhOHYBuzypoyrYrdkkQ4Lz4ajgGTYeY2VOxarW3pro0aTTuYEGS3LMRgLsuQg4wtFr3TIQ8G9Gvb+zMRvA93Tpms7lVjw/nvVep0lBZ5fLMRvzluRTMm9+wwvvsWUn48oDTEzwYk4DJk5LQr58GkIDsbAGpqQ52aQoS/41FBu97ZETyvocyHrd5mP/jjz/iP//5D3bu3OnZ1qlTJ+zatQtFRUW49NJLsXTpUnTu3LmtX5qIQuWwQnX2CLR710Bz+B8QJFGx25k9GPYhMyFmDwR0KYoF57ztLZbw7PMSqqsDWzNCTm8SBMCc7v7WVqflbARFJ/dsRA0mTjAEXBfh3ep14RMGGI01Ps9LRBTL2iSYcDgc2Lp1KzZu3IiioiJIkoT09HRMnz4dd955J3Jzc7Fv3z4sX74c27Ztw6JFi/DKK6+0xUsTUWs46yFUHYf2yw3QHtwEwVmn2O3q2AP2ITPhyv25z6rVPk/lFLFiJVBZ5U5PqrU23aVJXjNCq3HPXqhVgCgBPfOASRNiYzaCEovdoT9fZK3s0sS6iPYlSRLOnj0Lp9MJtVrtyXYgoujRqmDiyJEj2LhxIzZv3oyqqipIkoQBAwbgrrvuwg033ACdrqGry4ABA7BixQqMHz8eu3fvbvWJE1EruBwQak5Dc/Bv0H35JoS6KsVu0dQJ9oHT4ex1E5BkBoTm2z7vLZawYiXw7SH3zzZbwwJ0TXVpEgRApwfS0oBxtwGDBwnI6wHORlBUqq7WYvsOGwDWRYST1WpFXl4eAODo0aNITvafXklEkRNyMHH33Xdj//79kCQJKSkpuPvuu3HXXXd5/tE35eKLL8ZXX30V6ssSUWuILgi2CqgPbYFu7xqoLCcUuyV9KuyXTYCz352QkjMBlbr5p/MqtLbaAAGAWtMQNDjPr2enVvvv0tQzL3bqIihxWa3JOH7cf5cm75mIyZMMjeoiGEgQUfwLOZjYt28fevfujbvvvhtjx45FUlJSQI/Lz8/HkCFDQn1ZIgqFJLo7NP3wubtD05nDyt0aPRyX3gbHwKmQUrN9Fpzz5r2K9bbPgO+ONNRDSBIgiMrgQd4HsEsTxZ66OuP5rk0GzzbWRRARNQg5mHj33XfRp0+foB83YMAADBgwINSXJaJgSBJQb4HqxD53h6ZjyhRDSVDB2eM6OIbMhNjhYkCja+KJ3ORVrL/7DqiqdqcyAcq2r96zEXKhtdwKlmtGUKxwOPWw2XQ4eUrE9h0O9O2j4WwEEZEfIQcToQQSwdi8eTP27t2LgwcP4vDhw3A4HHjqqacwbtw4v8fX1NRg6dKl2Lp1K8rLy5GVlYXrrrsOc+fO9ZtjKYoiNmzYgI0bN6KsrAxGoxEjRozAvHnzkJOT067XRhQOUn0NVCf2Qbv3dWi++xQClF2gnV2Hwz70Hoid+wPa5mcWvdOZ6u3uoEGuh5DTmbRa39kIuVOTXgcYjZyNoNhgtSZjx04RW/5pxZ357mJrzkYQEfkXtSvAvPDCCzh+/DjMZjOysrJw/PjxJo+1Wq2YNGkSSkpKMHLkSNx0000oKSnB6tWrsXv3bmzYsAF6vXJ13ieffBIFBQXo0aMHJk+ejNOnT2PLli344osv8M4773CRPYpdDhuEyjK4vnkXSfsLILjsit2urF6wD7kHrtyRgD6lxafzt26EJLkDCUFwBxNAQx2E92yEJLmPyc0FZs/ibARFP++0pp27HO6ZB8BnNsJeL0GnF9A9V2AgQUQJLWqDiSVLlqBbt27Izs7Gq6++iueff77JY1977TWUlJRg1qxZmD9/vmf7c889h5UrV2LNmjWYPXu2Z/vOnTtRUFCAIUOGYPXq1Z6uU2PHjsU999yDxYsXY9WqVe13cUTtwWmHYDkFzcEC6L58G5K9Bt6/uotpObAPmg5n3vVAUnqzbV6Bplexllu8Op0N6U3yWhJykCGKQIbZ/biuOcCypYBGw0CCopvVmoyjx6Fo/9q42HrFSpvn+BHDtViyKGo/RomIwiJqR8ERI0YEdJwkSSgoKIDRaMScOXMU++bMmYMNGzagoKBAEUwUFBQAAB544AFF+9rRo0dj6NChKCwsxIkTJ3DhhRe2wZUQtTPRCcF6FpqSv0NbvBaq2nLl7qQMOAZMhLPP7ZCMHVvs0AQ0vYq13NLV89xiQ9tX+Wf5mHo7kJ7mnpFgIEHRTp6RkIMIuf2rv9avADzpTayRaF8ajQZ33303dDodNJqo/ZWFKKHF/L/M0tJSnD59GiNHjoTRaFTsMxqNGDhwIAoLC3Hy5EnPqtu7du3y7Gts1KhRKCoqQlFREW699dZwXAJRaEQXUFcFzff/gXbPaqjPfa/crzPC3ucOOPpPgJTaGVA3X1zt3aVp0/vutSL8rWLdeDZCo2lIbfJu+5rXg4XWFBu8ZyTkrk3eMxKN05tS0wR0y5FgMDCQaG96vR4vv/wyzGYzKioqIn06RORHzAcTZWVlANBkjUNubi4KCwtRWlqKzp07w2q1ory8HHl5eVCrfb+h7datm+J5iaKOJAJ11VAf2wPd3lVQn9iv3K3SwNnzRhiu+g3smo6ARu//ebzIXZrKyoBzFQ0BgVzz4L2KtcvlOxshioBe7y601ulYaE2xQ17ZunFaU+MZCTm9SZ6RMBisETtnIqJoEvPBhMViAQCkpPgvJJW319TUBHW8fJw/aWlpUKmaXxGYmmc2myN9CjFHkiSgrgrSqUMQC1+BdPhfPscIeddAPfI+aC/sD0GfgpbusihKKHi3HstftaLeLiAlGQAkaNTKlq7y7IO86JwkwX2Mq2FF6+RkAZfkafCrGUkYdnnT61TEK76nI6c1Y/L/vnNi+w6bZ0ZCDiLWwV/7VxWyMlVIS1MBaH6mj9qGJEmwWq2ora1Feno6hBZqvajtcWyLjFi67zEfTERCVVVVpE8hpnG6OgT1NRAqy6Dbtw6abz+CIDoVu12d+sE+ZCZcOZcDehNgdcCsR7P3uXFdhEoF1NV5BQ8qwG53BxUqlfs/71Ws5XUjLr4IGP1zYPAgIK+HEypVDRLtr5fv6dZp7YdmqGOy3aHH8ePuj8Hm0poMBpxPa7IgLY1/1+FUW1vradd+9OhRv63eqf1wbIuMSN73UMbjmA8mTCb3NLQ889CYvF2ecQj0ePk4ooiy10KwnIL2qwJovyqA4FCmVojmXNgHz4DzoqvPd2hq+dvZpro0yYvOybMR3ovOOZ3unwGuYk3xo7pK516yHb6F1kxrIiIKTMwHE3KNQ2lpqd/98na5psJoNCIzMxPHjh2Dy+XyqZuQayXk5yWKCGc9hNpyaL79O7T7NkBlPavYLSZnwjFwCpyXjIWU3BFQBfZPubkuTSqVO3jwno2Q27xqte50JrmWgqtYU6yzO/Q4fkLEga9YaE1E1BoxH0zk5uYiKysLxcXFsFqtio5OVqsVxcXF6NKli6eTEwAMHToUH330EYqLizFkyBDF833++ecA4LOdKCxcdgjWCqi//zd0e16HquqoYrekS4G9351w9rsTkumCFjs0yZpbM0Lu0uQdUMizEfIK1uZ096JdOi1nIyg+yLMSTc1IDLtciycXGGEwNF0/R0REcRBMCIKA/Px8vPzyy1i2bJli0bply5bBarXi3nvvVTxm/Pjx+Oijj/DCCy8oFq3btm0bioqKMHLkSGRnZ4f1OijBiU4Itkqoju2Gbs8qqH/6WrFbUmvh6HULHIOmQ0rLATQtBxGiKOHbQxL27JWw7TPguyMNQYP3bITcpcnpdHdi8sxGaNyzF2oVIEpAzzxg0gTORlDs856V6NdP63dl6zPlIpKS7C0/GRFRgovaYKKgoAB79+4FABw+fNizraioCAAwaNAg5OfnAwBmzpyJTz/9FCtXrkRJSQl69+6Nb775BoWFhejbty+mTp2qeO5hw4YhPz8fBQUFGDduHEaPHo3y8nJ8/PHHSE9Px4IFC8J4pZTQJBGoq4Lqp6+h2/s6NGXblbshwHnx1XAMngExsxegNQT0tHuLJbyz0YKSbyVUVbuDA8A96wA0zEZotcouTXJnJkEAdHogLQ0YdxsweJCAvB7gbATFBYtFAwjKzk3eK1vLsxJaDWcliIhaErXBxN69e/Hee+8pthUXF6O4uNjzsxxMGI1GrF+/HkuXLsXWrVuxa9cuZGZmYsaMGbj//vthMPj+ArZo0SLk5eVh48aNWLt2LYxGI8aMGYN58+aha9eu7XtxRJIE1FugOvc9tPvWQXP4HxAkUXGIM3sw7EPvgZg9ENAF1sHEO53J7nDAbncHBmq1O1BovOicPBvh3aVJrovomce6CIpPFou7exNnJYiIWk+QJEmK9EnEGrZJa52EbzVXXwOh+gS0X70D7cFNEJx1it2ujj1gHzILrp9dCehS3L/5B8Cn1avgTk9Sqxs6NQENhdXyz3Jw4XIBSUns0hSKhH9Pt1JrW8MGe+9Pl5swaUqVe1ZiQx127nJ49g27XIsn/i8ZaanVTZ4r/67Dp66uDvfeey90Oh1efPFFv18OUvvh+z0y2BqWiPxzWN0dmr7ZDN3+tyDUVSp2i6ZOsA+cDmevm4CkjICDiKaKqyEBLqfvbIS8joS/2Qh2aaJEIAhoclai/LQIh4PfsUULg8GANWvW8JdaoijGYIKovTnrIVjPQf3dv6Db+wZUlhOK3ZI+FfbLJsDZdzyklMyA2ryKooTD/0OLxdUNxzfURsg/y8dwzQhKNJIITJ5o8FsrMXmiAaIrcudGRBRrGEwQtRenHUJdJVQ/7oBuz2qozxxW7JY0ejguvQ2OyyZDSu8ScJvXvcUS1r8p4bvv0GJxdePZCLntK2cjKJHp9cDGd+vQv59GMStx4IATG9+tw8O/M7b8JEREBIDBBFHbczkg2CognP4auj2vQ3Nst2K3JKjg7HEdHIOnQezQA9AmtfiU3jMRm953LyxXV9dycXXj2QhRdP8ipde5C685G0GJyOmSMG1KElastPnMTMyelQSni2lO0aK2thY5OTkAgKNHjyI5ObBmFEQUPgwmiNqK6HK3eT17BNp9a6H57lMIUP5S4uw6HPbBv4LYuT+gT2n+6bwCiM8+B8rPABUV7sBBp2tYVA5wb3M/RtnqVZIagg257asxCbj4Yq4ZQYlLFAXU14m4/lqdT71EfZ0EUVS1/CRERASAwQRR60kSUFcFoeoYtAfegbbkAwguZVtJV1Yv2AfPhKvbcMCQ3mJxdeNUJklypyTJwYHD4X/hOX/F1aLo/vnii4DRP+eaEUQA8NbGOlzSU4PMrIbA4eQpEf/ZZseDv2GaExFRoBhMEIVKkgB7DQTLaWhK3ofuy7ch2GsUh4hpObAPmgbXxWMgGc0tFld7d2aqt7sDAjmVyelsCBbkVapdLvef/RVXq1lcTeSXJEoYf4cB6zbU+S3AdjkBqzUFRmNNM89CREQAgwmi0NhrIVjPQfO/f0JbvBaq2nLFbjEpA44Bk+DsdQuk5ExA03RxdXOdmeSZCDmdSQ4gGhdXq1QsriYKlCGp+QLsOfcm4ehxCd1z9dBp6yN9ukREUY3BBFEwHFZ3m9ejO6Hd8zrU575X7Ja0SXD0zYejTz6ktAsBbfPpEi11ZnI6GwIL+T+5FkKejfCul/Aurr7v3mSMudrK2QiiRpKSHM0WYH9e6MBFP1OjqkqH9HRAq2FAQUTUFAYTRIFw1kOwVUB16gB0e16H+uR+xW5JpYGz542wXzYBkjkX0Kc2WxfRXDqTd2cmmTzT4B1AqFTKGQlAWVx9zdUGVFTY/J8AUQLTaurRqZOuyQLs1a/b8OwzJpw4IeLAARWGD0uG0Vgb6dMmIopKDCaImuOyQ7BVQjh3BLriN6D5fpvPIc7uo2EfOAVSxzxISWZApfb7VIGkMwlCw0yD3H1JTmWSpIaCa7nAWq0C0tKAzI7Az0exuJooUAaDHYKg7Np08pSIZ56rRb9+Whw44ES/fhp0zFRh4eI6LPq9EQaDNUJnm7jUajXGjBkDrVYLtdr/2EpEkcVggsgflwNCXSVQfRy6L9+G5tuPIIhO5SGd+sE+ZAbETv0hJWU0WxcRaDqT9zoRciqTPOsgrxOh07mLqrWpwLjbGEAQhUKrqcfll6fgD4tt2LHT4dkuF2FvfLcOAHBJTzW273Cg7KgBnTuZoFKJkTrlhGQwGPDOO+/AbDajoqIi0qdDRH4wmCDyJjoh2CoB6xlov34f2q8KIDiU30a6zN3hGDwdrpzh7g5NuqYXUQo2ncl7nQhZ43UikgxcJ4KoLaQk1+D3T5hw/LiI6mplEfb4Owx46BELnn3GBACorpKw8jUrbrheh+GXM+2JiEjGYIII8Cw4J9gqoPluK7T7NkBlPas8JDkTjoFT4PzZLyAld2iyLqK16UwajbIzE9eJIGo/er0dx46p0DFTBXu9hH793B+LDz1i8aQ7AYBOL2DnLgcmTzIw7YmIyAuDCUps8oJztkqoj+6Abs/rUFUdVR6iS4G9351w9roFSO4AyZCuqIuQg4eqKuDESXcAceRI69OZvDszcZ0Iovah1dRj+LBkLFxch+07fNOdHnrEgmGXNwQV9npJkfaUlGRnt6d2VFtbi549ewIADh06hOTkpmeCiSgyGExQYpIXnLNVQvXTV9DtWQ31T18rD1Fr4eh1Cxz9xgMpnSAlpQNqZV2EXAvx44+A1QZYz39RKc8+tCadybszE9OZiNqP0ViLJYv0qK4y4vgJERCAAwecntkJOagA3DMUgFfa03U6DBpogiiJSElxcl2KdmC1cgaIKJoxmKDEY6+FYKuAUPEDdHvWQPPjdsVuCQKcF18Nx4BJkNJy3MXVWoPiGO9aCLsDMKcDFkvDTIPL1TD7wHQmouin09ajY8d6pKQYUXZUwCU91Xj2GZMnqLDaoJih8E57WvKUFf37afDVQScWPsF6CiJKLAwmKHE4rO4gwnIK2v1vQnP4HxAkZWcWZ/Zg2AdPh9Shh7vNqz7Fs6+pWgiVCrCfL66WOxfKa0F4r1TNdCai6GcwWJGTnYyFq+sDTnuSg4oVK21YuBhY8HgKDAYHZymIKCEwmKD456iDUFcB2M5Be3ATtAc3QXDWKQ5xdcyDffB0iJ0HQDKkAYY0QBAUAcRnnwMnTgLVjWoh5GBCFBtWqQbcwYN8DNOZiGJHKGlP9nr3P/jtOxz4odSADW86seBxE6qqXDAaBZhMTIEiovjEYILil9MOwVYB2KuhObQFuv1vudeO8CKaOsE+cCpc3X8O6FMhJaVDhBqHDwN79oo+AYTq/BpX3rUQWq37Z1H0nY0QRfc+pjMRxZZQ0p5kcpH2oiXu9KcVK20YMVyLxx9hbQURxR8GExR/zq9aDXsN1KWF0O19AyrLCcUhkj4V9ssmwNnzhvNBhHvROX+Ly8kBhHeKkncxtXd9hJzOpFa7j5VnK5jORBSbgk17AhoCCzn9CXDPWHjXVnDWgojiBYMJih/ygnP2GqhOfunu0HTmsOIQSaOH49Lb4OhzB2BIdy86pzW6C6o3iz6Ly3kHEN5LSjQupgYa0pnkgmudriEFCmA6E1GsUqQ9nXT/g28q7alxYCGnPwFQ1FY0nrVg4bZ/KpUKV1xxBTQaDVTyNztEFFUYTFDskxecq6+GcO576PaugebYbsUhkqCCs8d1cAyYAMmY6U5n0ppw+DsBe/aKzS4u53kZr1ptf8XUguAOHuTH6PXu1ao7dgR+PorpTESxTE57yspKQ/kZJ9JStRg6VIOiImXak3dgASjTn4CG4KLxrMXCxcDDD6VAgMSZCi9JSUn4+9//DrPZjIqKikifDhH5wWCCYpckuoOIumoINT9Bu28dNN99CgGS4jBn1+GwD5oGKT0HoiYFh46bsadYdb4eQvIpqAaUi8t5Xk5qCDQA5cyF3A5WqwX69gGuGg107iwgLQ0MIIjiSFqaCqJYiw4ZgN2hR4cMLfr11SiKtK0297GNZykA39oK2fYdDhw/bsD9v7ZgxHAt06CIKGYwmKDYI69aXV8N1FVCe6AA2pIPILjsisNcWb1QP2gGjlgvRdUxA8q+NOM/n+sUq1P7K6huXA/hHUCoVA1pTHKKE2shiBKTTluPjh3qYUxqfgVt723+aitk3h2hGqdBPbkgBXa7BItFQkoKAwwiih4MJih2eK1aDYcVmm8/hO7LtyHYaxSHiWk5ONplKrafGoYdy3QoLTejotboszp1cwXVTa0NIbd+FQR3dhXY2pUo4ck1FRaLATU1EpKNanzpZ5aiudoKQBlcNE6D+sNioF9fd3ABIGECjNraWlx22WUQBAH79u1DcnJypE+JiBphMEGxob7G3dbVVQ/Nkf9AW7wWqtpyxSEOXQb26SZg45fX4sS/tDh2Lh0Whwk6nQBI/lenljUXQADKAEIQgFQTcOGFrIUgIjedth4dMurRIcP986hRelx2mQkWi4B6u9RibYW/4MI7DWrHTgcmTTR4fk6kAOPs2bORPgUiagaDCYpu9TUQ6qoAVz3UJ4qh3fM61Oe+VxziEJLwr3N34G/f34oz1UmorjfB4kyDCLWnw5IoNgQQcselxvUQjQOIxovLMYAgokB5Bxd2hx4dO2jw81EpAc1aeJ6jiTQoWSIHGEQUPRhMUHSy17rTmUQ7VGe+g27vaqhP7Fcc4pQ0+PT0jdjwv7tQWZ+GeikJFfVmiIIOzvMF1Wq1ckE5OYDwLqJuqqCai8sRUVtoetbC3Yrae9ZC1lIalIwBBhFFGoMJii4Om3vValc9BMsp6IrfgOb7bT6Hff7Tz7HuyBScru8Mh6hDpcOMWnsSAHfwIHO5Gn5uHEDIsxEOR8N+FlQTUXvzDi6s1mSsOuj0CSQCSYMC2jbAWPhEMrQ6J6qrNaipYZBBRIFhMEHRwVEHyVqB0u/qYKuoQvezb6PDiY+gkpQfnl+e64+130/HEUsPSIIKZ21m1DhNigDCez0IUWwouPa3OrW8jwXVRBQJgRRvDx+mxaQJvmlQbR1gLFwMXDdGh98vangdBhlE1BIGExQxoijhf9/Ww3a2AmdO2bB/Tx36ujbjhqx3YdRYFcf+UNMd645Mw/7KQXA6VbA4TLC40uF0qc4/V8OxjdeDAJQBBKBcnZr1EEQUSU2lQcm/uCcZBDz1jE0xe9EeAcb2HQ5MnGDw2dZckGE01sLu0MNi8Q00mtpORPGFwQSFlShK+PobJ7b924b9OyphrbbBUefCcPMn+HXuBnTQK7t2lNdlYsP3k/Hfk1dChBp2KQlnbBlwSlpFN6bGAYS/9SC02obZCa5OTUTRqnFwAQBP/J8eD/7GEPYAA2g+yFj4RAoWLrZh+46GExkxXIsn/s+EZ56z4j//VW5vKQBpTKVSYcCAAVCr1VDJCwMRUVRhMEHtQhQlHP4fUFUFmEwSBAHYWwxsL7TDevY7OK21kCQJwy/YhYk91iAn+aji8TWOZGwsvRMfHbsZTkkHh6jFObsZ9aLREzA0F0D4Ww8iJRm46CLgyp9zdWoiii2RDDCApoOMo8cNisX65O2LlljRr68G//mvQ7G9uQDEf6CRjC3/KMQFWUZUVFQ0e4+IKDIYTFCbkQOIPXslfPY5cOYsYLMB9XWACnaY1FVIUtdCpQJ6ppZg6sWvo3fa14rnsLu0+PDYLXj/WD4q60wQJRWqHGmwOFIBuD/kAg0gmL5ERPEsXAEG0HSQUV3lG2QAvjUZsuYCkOYCjcULXdDr0eKMBlOriMKPwQQFralZh88+B06cBKqrGzolqWFH2vkgAgC6JB/D5J+twfCsHcrnlARs++kXWPfdJJypz4JaLcDiSEGVPR0i1AwgiIgCEGqAMWK4FrNmJuH+udU+zxlKkAH4n80Amg5Amgs0nvxDLX6/oPkZDas1GQsX1zW5H2CwQdQeGEyQX94BQ1oacPFFEr47IviddRDPryotSe5f9AHAoLUjRahEksYKtRowqc/h7u5v4doL/wG1SlS81p4zg7H2yDQcq+sOpxOocyWh2m5GvVMH+SNHLqAGGEAQEQUjkADDZHLC5ZRw2WVaxS/zzQUZI4Y3HWQATQcazQUgjQMNUbTiyKEr8L8SYMLdB7B9h0uxX57RWPR74/lAwv+Mx5JFejgdmlYHGwxGiHwxmEhwzc0ynDl7fgG38wu+iaIEq61h1kEU3f95zxioJDvSdVVINdTC6QSS1Fbc1m0TfpnzHpI0dYrXPlyVhw2l07D/bH9IEuASdDhXb4bNmQStVrkGBAMIIqK24y/AgLZe0aa2pSDj9wuS8PSzNt8nhzuVyl+gEXwAIsHhcNfUVVeKvg+AO2Cothh9AgnF/uokPPOcrVXBRiAzH0BgAQeDEoonDCYSREtBQ+NZBsDd8SglGaisaZgVUKncswTyL/lq9fmVpQU7zLqGdCaITtzY5R+4q/tbSNdVKs7lpK0T1n03FV+cHgmNRgWoVDhnNcMqmjxF1fI5qFSARg04GUAQEbW7YIIMnbYGjz2cjPp6+AQaT/6fEX96Ttniu6UApKVAQ6sXAPhPkbJY/G9v2I9WBRuBzHzotPUBBRwMSijeJHQwceDAASxduvT/t3fn8TFe+x/AP7MmmWwSYmmsVRORpaEokS6WVstFq1TVrlpLddVr+akWrdKr5YVbXFU75VJLuVrRUkQpJRVKFyGyULSymiSznd8f05nMmEkymcxkEvm8X6+8XpNzzpznPCecme9zznkeJCcnQ6/XQ61WY+TIkejVq5e3m1YhjgKFvDyJ00GDo1kGmcz0DIa/ik1f4uXyv2cp/v6ybyYVWoT45EIlNw+AAl3qJ2FYy3W4R3XVpp252iBsvjwY315/EkU6BQAJcrRByCkOhlQmhVRqql+pBAx6ABLewpWIqDpwGGTA/qF7JV9o8x0upSorACkr0ACAc+f0ABzfHjYwsOzPBJVf2edXbrBRzsxHfr4vAgNRbsABlF/G3UEJ4HzQcWc5qdTxbBCRtVobTBw/fhxjxoyBUqlE79694e/vj8TERLzxxhv4448/MHr0aLcfs7wv/c6+Lm8PAySATCZg0JcfNEil9rMMQMmToq2XGZnThQDkEh2ClTnwl5cMWFF1zmLUfaugDv7N5ryLDD7YnfE0tqU9g0KDCkoFoDH4I1cXAoNR7vC2rXeeLwMIIqLqqbRAo+IBiONAw+xiqh6A0i49vrMCQYEGxHdWOHxffGcF/FRln0P5wUbZMx8FBQKA3OaLvTVzwGF6XXYZdwYlgPNBh6NyXeIVePdt9wUnZc2ccJal5qqVwYRer8eMGTMgkUiwceNGREZGAgBefvllDBgwAAsWLEDPnj0RHh7utmOeOi2wYZNAejqgcfCl39nXPj4CclnpexjMX/a1WtvjlxU0mFk/RdpoLNlMba4TAKQwIESZAz9JAczTzc0C0jC85Rp0qHfS5pgGoxT7rz2Ozy8NQa7e9GlilPogsyAUWqNPOUuWGDgQEd2tnA00pFIp7o815b31hi+MRpndjMbMGb7w9b2NmTP8MfM9+xmPmTN8oVDqKhVslDfzERAg+TugKF15+SVl3BOU1A01PYXcmaCjtHJHv3dvcFLazIknZllcKV+d6vZ0e9ypVgYTx48fR3p6Ovr3728JJAAgMDAQ48aNw9SpU7Fjxw5MnDjRLcc7dVpg/scCGo3pKcxFRSV3P9JqS676l/daIjEtNbpzT8GdexiEg/GqtKDBOt3R+8ykMCDEJw+B8jzI5QIGAxCq/BND7t2Aro2+hUxiOxV6/GZnrE8dgUxNE1ObpAoUSuoACn+om8kRH6/nkiUiIrJjHWjcvl3yRdLP7zbenx3qYEbDVKb0GQ9TfmWCjfJmPgID9SjvK1VAQPmfde4MSuqGAvn55QcmdUOLnS5X2eDE0cxJRcpWJOioaPnqVLen2+NutTKYOHHiBAAgISHBLs+cdvLkSbs8VxiNphkJjQaoWxfIumr6Mm99q1PrfQilvQZMsw/mGYfS9jBYL2Gy5mzQYP08B4kEkEqMCJDnoa5fLoQQEALwkxXgmRZb0Tv8S/jIbKdALuRGYm3qaGTq26B+Q2BQewki4urAqAhCXr4UwcHAgx2DkJubU37nERFRrSaRSBAREQGZTAaJRFLqjIZZWfmVCTbKm/lQKm4jMBBOBBzOlHFPUAKUH3iYgw5ny7k7OAGcr7MiQQdQsSClOtUNALm5Ro+1xxNqZTCRlpYGAGjWrJldXlhYGFQqFa5cueKWY/32O5CeDgQFmQIBrdZ2+ZBZea+FsJ1RsM53NlCwdmfQYNl4LTXdOQkQCJTnwV+ZC6nECKMR8JVr0a/F/9C34WYEKAps6rta2Bjbro1EmrQTOjwuwZAoCZqrAyDxDwWkMpuynIkgIiJnqFQqHDt2DCEhIcjOzq50fZUJNsrLVyqKyw04gLKDFvcGJeUHHuZ8Z8u5OzipSJ0VCVCAipWvTnUDwK1botwN/662xxNqZTBRUGD6IhwYGOgwPyAgAPn5+aW+Pzg4GFKp4ztK3Mlg0MJgLICfnwQaDQBhhFTmODDwhFKDBquZEevXRiEQ7FOAEN8c0wMdAPj7GZEQ9h0GNl6Hej43berX+4TiVqtRuFnnSfQJVqLlvVJIlb6Afz1IFL6ltiskJMSdp0mlYD9XHfa191RkTHYH/q29o6r6vUF969+UAFRO54eEAB99KMetWwL5BUYEBkgRGipBcLAU5s3jzpR5b6YB78y6jaPfl3yh7BKvwOx3/dGgvszJMipIpUZ0iVfYlLEuG1ZPjuDgEKfL5eQY7PKtBQfJERLifDkATpfNyHT85dpMo5HgvpYl/0YqUr461e3p9nhCrQwmKis3N9fpsjKZgEwqUFho/kbvnkDCvIfCUaBgfm2+pat5P4VUWrLXwrzB2voZDoHK2wj1zYbKRw8fH9OA1yf2NDoZVsPv9iWb4wuFH3TRA6CLehr+Cl/cBy0gMSLPGAIIf6CgEIDjKNldV5iobOznqsO+rpzKfkmsyJhcWfxbe0dN6/c6dUw/gOnz1lHTyyrj4wO8N8vRLEiepZwzZQDg3bcdz4S8+7YvjMZcS1lH5Ux3cyopp/L3KXNGROVfjOzsYqfLARWoU+Vv34lWVCph82+kIuWrU90AEBgQ5LH2lMeV8bhWBhMBAQEAUOrsQ0FBAYKDg91yLHUroGlTIPUSUDfU9AyF4mLTF/nyggHr1xJJyfIoc7r13grrQMGawWAfNMhkpjTzMxzCw26je+dcxEaa9j8U3JYgTFxEi2urIL/2k019QiqHPqIXtHGDAV9zH0kgfINNv0uq7uogERHd3TQaDbp37w6ZTIbExESoVOXcdukuUt7+EGfLlLc8q6xyYfXkMBpLgnVnl3I5W64iZQMD9U4t7TKrSPnqVDcAhIZKPNYeT5AI4ewq+7vHggUL8J///AcLFixA7969bfJu3ryJhIQEdOrUCWvXrnX4/opeHbHczanQNFOQnV1yNydnNl+bX5t/l0hKNnHXCQYKbpv2YpifDWG+w1NpD35r19ZUx+1sDUJ9c3BvU50lBpDk/wHl6bWQXzpkdx76Fo9A2244RFCjkkRlAIRfCCB1Pi6taVeYair2c9VhX1dOZWcmqrLv+beuWrdv30aTJk0AABkZGfD3L/sKLLlXaf/evfWciZI7FtkHHWXf4aj88tWp7pCQEGRlaT3WnrK4Mh7XymDiyJEjGDNmDPr374+5c+fa5O3YsQNTp07FK6+8UuqtYV35ICn9OROwep5E+a99fGB5zoRMZpoIkMvsAwVHD7qz3IZVexuSohzAYHUnpqJcKM9shvyX/0FitI1gDQ1joe0wGsZ66pJEuS+EX11Abv8AofLww7hqsJ+rDvu6chhMUGkYTHhXdfz3Xp2eBeGpus397o3nTHCZk5M6d+6MJk2aYM+ePRg+fLjlWRP5+flYvnw5FAoFnnrqKbce84F2ErSNg9ufgJ2bizKeEH3H746CCH0RFD/vguLsVkh0GpvixpDm0LYfBUN4+5JpEanCNBOh5IBOREREVcuZpV2ulq9OdXu6Pe5UK4MJuVyO999/H2PGjMGQIUPQu3dv+Pv7IzExEVlZWZgyZQoaN27s9uNKpRK0jjD/Zv1Fv6KvTb+X1FWO4gJIinIBo1UQYTRAfnE/FMkbIdX8ZVPc6B8GXdth0LfsanVbV6nVvgje2pWIiIiIamkwAQCdOnXCpk2bsHjxYuzduxd6vR5qtRpvvfUWevXq5e3muYf2NiSFObZBhBCQZfwA5ak1kOak2xQXygBoYwdBH9nHdvmSMhDCr06F9kUQERER0d2vVn87jI2NxcqVK73dDPdztJwJgPTGBSh/XAXZ9Z9t0oVMAV1kX+hinwV8rJ69IfeF8AsF5D5V0GgiIiIiqmlqdTBx19EVQlKYDRhsN9tIcjOhPLUG8ivf26QLSKC/rzt0bYdCBFg9hUcih1CFcl8EERF5lUQiQZMmTSCVSiHhEluiaonBxN1AX2wKIvS2D4mTaG5B8dMmyH/7GhJh+6Q8fXh7aNuPgghtYf2Ov/dF1OG+CCIi8jqVSoUzZ85Uy7sKEZEJg4mazKA17YnQ3XH/YJ0GinPboTi3HRJ9ke1b6rWC9oFRMN4TZ/seF54XQURERES1G7851kQGnWlPhLbANt2oh/zXr6D86XNTvnVWYENo242AocVDtk+plvlAqOpyXwQRERERVRiDiZrEaDAFCcX5AKyeNSgEZGlHoDy1DtL8qzZvET5B0MY9D33Ek4BMUZIhkZtmInwCqqTpREREFVVYWIh//OMfkMlk2LVrF/z8/LzdJCK6A4OJmsBoAIpyISnOg00QAUD6x1koT34G2Z+/2aQLuQ90UU9DFz0AUKqsciRWz4uQgoiIqLoyGo1ITk62vCai6ofBRHUmjKYgoigPgO0gKrl12XSHpsyTtm+RSKFv1RO6ts+bli9ZU/ibZiOsZyiIiIiIiFzEYKI6KiuIuP0nFMnrIb/4rf0dmpp2hvaBkRB1mtjWJ1NC+NUFFL4ebjgRERER1SYMJqoTYQSK8kzLmYTBNq+4AIqzW6E4vwuSOx5GZ6gfCW370TA2iLJ9j0T2976IQBARERERuRuDiepACKA4D5KiXPsgwqCD/MJuKFO2QFKcb5NlDG4M7QMjYWja+Y7nQkggfIIAvzrcF0FEREREHsNgwpuEAIrz/w4i9HfkGSG79B2Up9dBWnDDJsvoFwJd26HQt3ockMps38d9EURERERURRhMeIs5iDDq7LJkWaeh+HEVZLcu2aQLhR900QOgi3rafv+DTAnhFwooeNs8IiK6e9StWxcSm9l3IqpOGExUNYMOkoIbgFFrlyX98yKUp1ZBdvUnm3QhlUMf0QvauMGmW7pak8ggfOsAvkGeazMREZEX+Pv74/fff0dISAiys7O93RwicoDBRFUzGuwCCUn+H1CeXgv5pUN2xfUtHoa23QiIoEZ35Py9L8I32H6pExERERFRFWAw4U1FuVCe2Qz5L/+DxGi7Z8LQMNZ0h6Ywtf375CoIVQggU1ZRQ4mIiIiI7DGY8AZ9ERQ/74Li7FZIdBqbLGNIc2jbj4IhvP0dd2gCIFWaggiFCkRERHe7wsJCPPvss5DL5di0aRP8/LgvkKi6YTBRlYQR8p+3Q3l8KaSav2yyjP5h0LUdBn3Lrg6WLUkh/OoAPkH2AQYREdFdymg04ujRo5bXRFT9MJioQsrv/w3lD8ts0oQyANrYQdBH9gHkDpYtKQNNt3rlvggiIiIiqmYYTFQh6Y2fLa+FTAFdZD/oYgc6fkK13M90q1dHAQYRERERUTXAYKIKabu8BhgNEH51oIsZCBFQ376QVGGaiVD6V30DiYiIiIgqgMFEFTLWb4Oivv+GpOCag1wphG+w6Vav3BdBRERERDUAg4nqgPsiiIiIiKgGYjDhTXJfCL+63BdBRERUCpWKt0Mnqs4YTHgD90UQERGVy9/fH5mZmQgJCUF2dra3m0NEDjCYqGpyJURQOPdFEBEREVGNx2Ciqkmk3m4BEREREZFb8JstERERVUtFRUUYNGgQevfujaKiIm83h4gc4MwEERERVUsGgwH79++3vCai6oczE0RERERE5BIGE0RERERE5BIGE0RERERE5BIGE0RERERE5BIGE0RERERE5BIGE0RERERE5BKJEEJ4uxFERERERFTzcGaCiIiIiIhcwmCCiIiIiIhcwmCCiIiIiIhcwmCCiIiIiIhcwmCCiIiIiIhcIvd2A+juVlBQgCVLliAxMRE3b95E/fr10bNnT0ycOBH+/v5O17N+/XqcP38e586dQ2pqKgwGA9atW4cHH3zQg62vXlJSUrBkyRIkJydDr9dDrVZj5MiR6NWrl9N1aLVarFixAl9++SWuXbuG4OBgdO3aFa+//jrq1q3rwdbXHJXt5/T0dOzatQs///wzfv75Z9y4cQPh4eE4cOCAh1tO7sSxy7M4nnkHxzfvqEy/CyFw+PBhHDhwAKdPn8bVq1eh1+vRrFkz9OrVC6NGjYKPj08VnEXpeGtY8hiNRoPnn38eFy5cQEJCAiIjI3HhwgUkJSUhJiYGGzdudPo/QEREBAAgLCwMAHDz5s1a9YF8/PhxjBkzBkqlEr1794a/vz8SExORlZWFKVOmYPTo0eXWYTQa8eKLLyIpKQlxcXHo0KEDrly5gv3796Nx48b473//i9DQ0Co4m+rLHf28fft2TJs2DTKZDC1btsTFixfRqFEjftjWIBy7PIvjmXdwfPOOyvZ7cXExYmNjoVQq0bFjR6jVami1WiQlJSEtLQ0xMTFYv349/Pz8quiMHBBEHrJo0SKhVqvF/PnzbdLnz58v1Gq1WL58udN1HTx4UNy4cUMIIcSMGTOEWq0Wx48fd2t7qyudTid69OghoqOjxfnz5y3peXl54vHHHxdRUVEiMzOz3Hq2bdsm1Gq1ePPNN4XRaLSkb9q0SajVajFjxgyPtL+mcFc/p6eni+TkZFFYWCiEECI6Olp07drVY+0m9+PY5Tkcz7yD45t3uKPftVqtWLp0qcjJybFLHzt2rFCr1eLTTz/1SPudxT0T5BFCCGzduhUqlQoTJkywyZswYQJUKhW2bt3qdH2PPvqo5cpebXP8+HGkp6fjH//4ByIjIy3pgYGBGDduHHQ6HXbs2FFuPeb+fvPNNyGRSCzpzz33HJo0aYLdu3ejqKjI/SdQQ7irn5s0aYK4uDj4+vp6srnkIRy7PIvjmXdwfPMOd/S7QqHA+PHjERwcbJc+duxYAMDJkyfd3/gKYDBBHpGWloYbN26gXbt2UKlUNnkqlQrt2rVDRkYGrl275qUW1hwnTpwAACQkJNjlmdPKG0iKi4tx5swZtGjRAuHh4TZ5EokE8fHx0Gg0OHfunJtaXfO4o5+p5uPY5Vkcz7yD45t3eLrf5XLT1meZTOZyHe7AYII84sqVKwCA5s2bO8w3p6elpVVNg2owcx81a9bMLi8sLAwqlcrS36VJT0+H0Wjk36MM7uhnqvk4dnkWxzPv4PjmHZ7u9y+++AIA0KVLF5frcAcGE+QR+fn5AICAgACH+eb0goKCKmtTTWXuo8DAQIf5AQEBlv4uDf8e5XNHP1PNx/8rnsXxzDs4vnmHJ/v90KFD2LJlC1q2bImBAwe63EZ34K1hqUzz5s2DVqt1uvzw4cNLvVpERFRVOHYR0d0qJSUFb7zxBgIDA7Fo0SIolUqvtofBBJVpy5Yt0Gg0Tpfv2bMnmjdvbonCS7syZE4v7coSlTD3UWlXLwoKCuw2Zt2Jf4/yuaOfqfrg2FU9cTzzDo5v3uGJfj979ixeeOEFSKVSrFy5Eq1atap0OyuLwQSVKTk52aX3mdcHlrZm1ZzOK4HlM/fRlStXEB0dbZN38+ZNaDQaxMbGlllHkyZNIJVK+fcogzv6maoPjl3VE8cz7+D45h3u7vezZ89i9OjRMBqNWLVqVbX5m3HPBHlE8+bNUb9+fZw+fdru6qBGo8Hp06fRuHFjNGrUyEstrDk6dOgAAEhKSrLLM6eZy5TG19cXsbGxuHz5MrKysmzyhBD4/vvvoVKp7Aa72sQd/Uw1H8cuz+J45h0c37zDnf1uDiQMBgNWrlyJ+++/330NrSQGE+QREokEAwcOhEajwdKlS23yli5dCo1Gg2effdYmvbCwEKmpqbh69WpVNrXa69y5M5o0aYI9e/bgwoULlvT8/HwsX74cCoUCTz31lCX9xo0bSE1NtZtWNff3ggULIKwefL9582ZkZGSgT58+tfre4e7qZ6rZOHZ5Fscz7+D45h3u6vdz585h9OjR0Ov1+PTTT9G2bduqOgWnSIT1/0IiN9JoNBg8eDB++eUXJCQkoE2bNjh//jySkpIQExODDRs22Az2P/zwA4YPH46OHTti/fr1NnWtWLECly5dAmBavpCWloaEhATLw6B69OiBHj16VN3JVbHjx49jzJgxUCqV6N27N/z9/ZGYmIisrCxMmTIFo0ePtpSdOnUqduzYgblz56J///6WdKPRiBdffBFJSUmIi4tDhw4dkJ6ejsTERISHh2Pr1q0IDQ31xulVG+7o51u3buFf//qX5fddu3bB19cXPXv2tKRNnjy51vd1dcaxy7M4nnkHxzfvqGy/5+Tk4PHHH0dubi4eeughhzMSgYGBGDlyZFWdkh3umSCPUalU2LBhA5YsWYLExET88MMPCAsLw+jRo/Hyyy9X6KrRkSNHLA9/MbOeNgwPD7+rP5A7deqETZs2YfHixdi7dy/0ej3UajXeeust9OrVy6k6pFIpli1bhhUrVmDXrl1Ys2YN6tSpgwEDBuD111/n4A/39LNGo7F7oumdaRMnTmR/V2McuzyL45l3cHzzjsr2e0FBAXJzcwGYxpMjR47YlQkPD/dqMMGZCSIiIiIicgn3TBARERERkUsYTBARERERkUsYTBARERERkUsYTBARERERkUsYTBARERERkUsYTBARERERkUsYTBARERERkUsYTBARERERkUsYTBARERERkUsYTBARERERkUvk3m4AEREREZEr9u7di507d+L8+fMoLCxE69at8cYbb6B9+/beblqtwZkJqhZycnKwZMkS9O/fHx06dEBsbCy6deuGKVOmIDk52WPHzczMREREBIYNG+axY9ytIiIi0K1bN6fTvWXJkiWIiIjA9u3bvd0UIiJys3Xr1iEkJATvvPMOFi1ahAYNGmDkyJH45ZdfvN20WoMzE+R1x44dw2uvvYbc3FzUqVMHDzzwAPz8/JCamoqdO3di586dGD58OKZNmwaptGLxb2ZmJrp3746OHTti/fr1HjoDIiIi8oZly5YhJCTE8nt8fDz69OmDjRs34r333vNiy2oPBhPkVSkpKXjxxReh1+vx6quv4qWXXoJCobDk//jjj5g0aRLWrVsHmUyGqVOnerG15Iy9e/fa/A2JiIg8xTqQAACpVIpWrVohMzPTSy2qfbjMibxGCIGpU6dCp9Nh4sSJePnll+2+hLZv3x6rVq2Cj48P1qxZg59++sk7jSWntWzZEk2bNvV2M4jISVxmWvNwmWnpDAYDzp49y8+hKsRggrzm8OHDSE1NRf369TF27NhSy7Vs2RJDhgyBEAKrV6+2pFt/EBUUFGDu3Lno1q0boqKiMGfOHCxZsgTdu3cHAJw4cQIRERGWH0czHEVFRfjoo4/QtWtXREdH47HHHsOKFSsghHDYruTkZIwfPx6dOnVCdHQ0unXrhpkzZ+L69eulnktiYiKeffZZ3H///XjwwQfx6quv4sqVK2UOuBU5jnWfVOR8vvvuO0ybNg1PPvkk2rVrh7i4OPTt2xfLly+HVqst9XwcufPDrFu3bjZ97+jnTteuXcPs2bPRo0cPxMTEoGPHjhg7dixOnz5d6nG//fZbDBo0yNK3r7zyCi5fvlyhtptNmjQJERERWLp0qV1ecnKy5Ripqaku1U9UXRw7dgyPP/44/v3vfyMrKwsPPPAAunfvjoCAAOzcuRPPPfcc5syZA6PRWOG6GSyQN2zYsAHXrl3D888/7+2m1Bpc5kRe89133wEAnnjiiXKXxfTp0werVq3C0aNHYTQabfZOFBUVYejQobh69So6dOiAqKgoBAcHo3Xr1ujZsyf27duHevXq4aGHHrK854EHHrCpX6fTYfTo0UhNTUXHjh2h0Whw8uRJfPzxx7h9+zbeeOMNm/K7du3CtGnTYDAY0K5dOzRq1Ag///wzPv/8c+zfvx/r1q1Dy5Ytbd6zdu1afPDBB5BKpWjfvj3CwsJw5swZDBw4EF27dnV43q4cx5XzmT59OoqKitCqVStEREQgPz8fZ8+excKFC3Hs2DGsWrUKMpmszL9RaXr27Ins7Gy79Js3byIpKcluH0xycjLGjh2L3NxctGjRAo8++ihu3bqFpKQkHDlyBB999BF69epl857PP/8cM2fOhEQicbpvy/Laa69h3759WLNmDYYNG4bAwEAAQFpaGsaPHw/AtE7XUd8T1RRcZnr3qe3LTM+cOYOPP/4Y48ePd3ihijxEEHnJc889J9Rqtdi5c2e5ZXU6nYiKihJqtVpcuXJFCCFERkaGUKvVQq1Wi0GDBonc3Fy795nLDB061GG91nUMHTpU5OfnW/JSUlJEZGSkuP/++0VBQYEl/erVqyI2NlZERkaKb775xpJuMBjEnDlzhFqtFv3797c5Tnp6uoiKihJRUVHi2LFjNuc1depUSxu++OKLSh3HlfMRQoj9+/eLwsJCm7T8/HwxduxYoVarxY4dO+z6Tq1Wi65duzqdbq2oqEgMGDBAqNVq8emnn9ocs0uXLiIyMlLs2rXL5j0pKSmiQ4cOIi4uTvz111+W9MzMTBETEyOioqLE4cOHLelarVZMmjTJYd8645133hFqtVosXrxYCCHEX3/9JXr06CEiIyPF/v37K1QXUXVjNBrFk08+KdRqtViyZEmp5S5evChiYmJERESESE5OrtAxnB1/S8un0jkzzlYHixcvdmn8dUVGRoaIj48Xr776qjAajR4/HpXgMifympycHABAaGhouWXlcjmCg4MBwOFV7unTpyMoKMjltkilUsyaNQsBAQGWtJiYGDz88MMoLCzEuXPnLOlbt25FUVERnnzyScsyKnMdb731FurXr49z587h1KlTlrxt27ZBp9OhX79+6NSpk815TZs2DSqVyq5NrhzHlfMBgB49esDX19cmLSAgANOmTQNgWkLkTm+//TZSUlLQr18/jBkzxpK+bds23Lx5EyNGjEDfvn1t3hMTE4MJEyZAo9Hgyy+/tKR/8cUXKC4uRu/evW1mnxQKBaZPnw4/Pz+X2jhhwgT4+vpi7dq1uH79OsaNG4f09HS8++676NGjh0t1ElUXXGbKZaZ30zLTvLw8jB07FuHh4fjwww8hkUhcOja5hsucqMYLCwtDTExMpeq45557cO+999qlN2/eHIBpSY7Zjz/+CMC09OpOSqUSTzzxBNatW4dTp05ZllOZB+EnnnjC7j1BQUFISEhAYmKiTborx3HlfMzS0tJw6NAhpKenQ6PRQAhh+eBLS0uzK++qFStW4Msvv8T999+P999/3ybv6NGjAIDHHnvM4XvN55mSkmJJM/fTnUufANNdPrp06YJvvvmmwu1s0KABhgwZgs8++wz9+vVDdnY2JkyYgEGDBlW4LqLqhstMucz0bllmqtVqMXHiRBQWFmLt2rV2F8bI8xhMkNfUqVMHAHDr1q1yy+r1euTm5gKwvw3cPffcU+m2NGzY0GG6v78/ANhcHbpx4wYAIDw83OF7zOnWV67MX94bNWrk8D2O0l05jllFzkcIgQ8//BBr1qwp9Srg7du3HaZX1MGDB7Fw4UI0bNgQn3zyCZRKpU1+VlYWAGDw4MFl1mP94ehsP7li5MiRWL16NbKzs9G/f3+89tprLtdFVJ2YH+gVHR1dblm1Wg2FQoH8/HxkZmba3CUnJSUFbdu2xTfffGM3O9y6dWvs27cP9957L+bNm1dq/cnJyejYsSO+/fZby2zq2bNnMWjQIKxduxYvvfSSZey6du0a3nnnHQDA0qVLLbMfRqMR8+bNw9q1azF58mR88cUXlvozMjIwf/58KBQKrFy50jI7rNfrMWPGDIczEq4cx5XzAYBZs2YhISHB5ktwQUEB3nrrLRw8eBC7d+/GU089VWr/lWXKlCl2acXFxRg6dCgA0yyA9TFfeeUVFBQUYP78+Tazw2fPnsULL7yA6dOno1OnTpYVBVlZWZg7dy4UCgWWLVtmCRp1Oh2mTZtmM4vsrKZNm+KZZ57B5s2bsWbNGrzyyiu4desWXnzxReTl5WHx4sVo166dpfysWbNw8uRJvPfee8jMzLTcElapVKJNmzYVPj5VHJc5kde0bt0aAOyW3Djy+++/Q6fTITAwEI0bN7bJ8/HxqXRbKvowvLJU1fRqWcepyPns3bsXq1evRsOGDbF48WIcPnwY586dw6+//oqzZ8+6o6kAgIsXL2LSpElQKpX45JNPEBYWZlfGfMeYnj174umnny71p3Pnzm5rV2mEEJg3b56lTa5eGSSqjrjMlMtM75ZlpseOHYPRaMT06dMxaNAgy8/EiRNdOjZVHGcmyGseeeQRbNq0Cfv27cPkyZPLnGrfvXs3AKBLly5u/eLvivr16+Py5cu4evUqWrVqZZdvvrreoEEDS1pYWBguX76Ma9eu4b777rN7zx9//OGW47hi//79AICZM2fi0UcftcnLyMioVN1m2dnZGDduHG7fvo2FCxeWejW0YcOGuHz5Ml566SWnrpgCJX2blZXlsG+vXr3qUpv/9a9/4X//+x8eeeQRnD9/Hjt27MCYMWMsS8WIiMtMuczU+8tMDxw4UOH6yb04M0Fe8/DDD+Pee+/F9evXsWLFilLLXbp0CRs3boREIsGoUaMqdAxzgKLX6yvVVmvt27cHAOzZs8cuT6vV4uuvvwZguy7YPCV75wcWAOTn5yMpKcktx3FFXl4eAMdLo7766qtK1Q2Y+v61115DRkYGxo8f7/BDxyw+Ph5ASYDjDHM/mfvDWk5OjuUDsiLWrl2LVatWITY2FosWLcJLL70EvV6PRYsWVbguouqIy0xLeHuZ6bx58/DEE0/ggw8+wIYNG7B9+3bs2LEDO3fuBOCdZaaONmoPGDAAQNUuM5VKpVxmWgMwmCCvkUql+PDDD6FQKLBkyRIsX77c7kv/6dOnMXr0aBQVFWHEiBGIi4ur0DFCQkKgUCiQkZEBg8HglnYPGDAAvr6+2Lt3r2UTI2BaorNw4UJcv34dUVFRNl/yn3nmGSgUCuzcuRMnT560pBsMBsybN8/hh4Urx3GF+WrZli1bbPZM/Pjjj/jss88qVTcAvP/++/jhhx/Qo0ePcj8MnnvuOdStWxefffYZtmzZYvegLL1ejyNHjuC3336zpPXv3x9KpRK7d+/G999/b0nX6XSYO3cuNBpNhdr71VdfYe7cuWjatCn+85//wM/PD4MGDUKDBg3w1Vdf4cKFCxWqj6g64jJTzx2Hy0wrj8tMaxYucyKvio2NxYoVK/D6669j4cKFWLNmDdq2bQtfX19cunTJsklw2LBhDjeSlUepVCIhIQEHDx5Ev3790KZNGygUCrRr1w7PPPOMS22+5557MGvWLEybNg3jxo2zucvH5cuXUa9ePcyfP9/mPU2bNsU///lPfPDBBxg+fDg6dOiAevXqISUlBbm5uejbty++/PJLm6VerhzHFcOGDcOOHTuwadMmyy0cr1+/jlOnTmHUqFFYtWqVy3Vfu3YNn3/+OQDTh4F5DfCdzJszg4KCsHTpUowbNw7vvPMOli1bhlatWiEoKAh//vknzp8/j7y8PHzyySdQq9UAgCZNmmDq1KmYPXs2XnjhBcvdRH766Sfk5eWhT58+lmVy5Tl58iQmT56MkJAQrFy50rKe3MfHB2PHjsXs2bOxcOHCMmfSiGoCLjMtwWWmJlxmSq7izAR5XXx8PPbt24eXX34ZjRo1wokTJ/DNN98gLy8P/fr1w+bNm/H222+7/CE2Z84c9OvXDzk5OdizZw+2bdtmMzvgiqeeegobN27Eo48+itTUVOzbtw/FxcUYPHgwtm/f7vB2gSNGjMDixYsRHR2NM2fOICkpCZGRkfjvf/9rubpnXnpQmeNUVIsWLbBt2zZ07doV2dnZOHDgADQaDWbPnu1SAGfNejZo37592LFjh8Mfa3Fxcdi9ezfGjBmDgIAAnDx5Et9++63l1pPz5s2zuzI2ZMgQfPLJJ4iJiUFKSgqSkpLQunVrbNmyBc2aNXOqrRcvXsSECRMgk8mwfPlyu/cNHDgQjRo1wqFDhyzrhIlqKi4zNeEy0xJcZkou88qj8ojIQq/Xi169eomIiAhx48YNbzeHiGqJM2fOiKioKBERESGWLVsmdDqdTf6pU6fEI488ItRqtfjggw9s8px5enVxcbGIiooSXbp0EXq93i6/vDocPT05KytLxMbGijZt2oiDBw9a0g0Gg5g3b55Qq9Xi6aeftqnnypUrIioqSkRHR4sTJ05Y0vV6vfi///s/oVar3XIcV85n1qxZQq1Wi5kzZ9o8tfnkyZMiLi6u1CddO5v+7rvvCrVaLSZMmFDuU6Fzc3NF586dRVRUlNi8ebMwGAw2+TqdThw+fFj8+uuvlrT09HQRHR0toqKixNGjRy3pWq1WTJ482WHflmXv3r0iIiJC9OjRQ/z1119CCCGKiorEQw89JCIiIsT58+edqoeqFpc5EVWR9PR01KlTx+YWilqtFgsWLMDFixcRHx/vcB0rEZEncJkpl5kCXGZKlcdggqiKfP3115ZlTg0bNkRBQQF++eUX3Lx5EyEhIZgxY4a3m0hEtYx5men69etx8OBBnDhxAlqtFvXq1UO/fv0wePBgtG3b1uX658yZgw8//BDff/899uzZA4PBAIPB4HIwAZiWfzZt2hQrVqxAcnIyUlJSEBYWhsGDB2P8+PEO9zGMGDECDRs2xMqVK3HmzBn4+PjgwQcfxJtvvmm50YSjZaYVPU5FmZeZzp8/HykpKThw4ABatGiB2bNn49lnn61UMHHnMtPSWD9Q0LzMdM2aNTh06JBlSXBYWBg6dOiAxx57zOEy0wYNGmDFihVISUmBj48P2rdvj0mTJmHv3r1OtdWZZaaffvqpZZmpeXkVVQ8SIUp55C0RuVVKSgrWrFmDn376CdnZ2dDr9WjQoAESEhIwduzYUm9bSEREnmEwGNC3b1+kpqbiyJEjnB0mcgGDCSIiIrqrlbXMdPXq1YiPj8fq1au92EKimovLnIiIiOiuxmWmRJ7DmQkiIiK6q3GZKZHnMJggIiIiIiKX8KF1RERERETkEgYTRERERETkEgYTRERERETkEgYTRERERETkEgYTRERERETkEgYTRERERETkEgYTRERERETkEgYTRERERETkEgYTRERERETkEgYTRERERETkEgYTRERERETkEgYTRERERETkEgYTRERERETkkv8Htq0c7mVkYrMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "y = 3 * x2 + x\n", + "\n", + "fig, axs = plt.subplots(2, 2, figsize=(8, 6), sharey='row')\n", + "\n", + "# Plot configurations - variable, label, linear fit tuple\n", + "plots = [\n", + " (x, 'x', False),\n", + " (x2, '$x^2$', False),\n", + " (x_orth, 'Orthogonalized $x$', True), \n", + " (x2_orth, 'Orthogonalized $x^2$', False)\n", + "]\n", + "\n", + "for ax, plot_data in zip(axs.flat, plots):\n", + " x_val, xlabel = plot_data[:2]\n", + " if len(plot_data) == 3 and plot_data[2]: # Check if regression line is needed\n", + " sns.regplot(x=x_val, y=y, ax=ax, line_kws={\"color\": \"C1\"})\n", + " else:\n", + " sns.scatterplot(x=x_val, y=y, ax=ax)\n", + " ax.set(xlabel=xlabel, ylabel='y')\n", + "\n", + " # Check if this is the $x^2$ Orth vs y plot to add a vertical line at 0\n", + " if plot_data[1] == 'Orthogonalized $x^2$':\n", + " ax.axvline(0, color='k', linestyle='--') # Add vertical line at x=0\n", + "\n", + "plt.tight_layout()\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "id": "e698deab-38bc-4a88-9fd6-d39f2c1cdcfb", + "metadata": {}, + "source": [ + "The top half shows the response variable against $x$ and $x^2$, this should look familiar.\n", + "\n", + "The bottom half shows the new orthogonalized polynomial terms. First, you'll notice the domain is centered at 0 and more compressed than the original scale, which is done within the orthogonalization process. Otherwise, the $x$ term is the same. Remember in the construction, the first order is untouched, then subsequent terms are built orthogonal to the first degree polynomial. \n", + "\n", + "I've shown a linear fit on top of the first order term. What you'll notice is that the orthogonalized $x^2$ correspond to the residuals of this line. At the lowest values of $y$, the fit is poor, and this is where the orthogonalized $x^2$ is highest. As the first order term crosses the linear fit, you see the orthogonalized $x^2$ cross zero, then go to negative values as it dips under the linear fit. It crosses 0 one more time and then is once again poor at the highest values shown. Since the $x^2$ is proportional to the residuals of the first order term, if we plot the orthogonalized $x^2$ term against the residuals, we should see a linear trend." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "a4e155a4-b42f-4ba0-80a6-6f9763a3881f", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAHqCAYAAAAZLi26AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADGeUlEQVR4nOzdeVhU1RsH8O8MMMAoIKhogEpp4oYK7ktpLrmmooJkmkq4BLiVmVqZ2aK5laK4m7kLJWJukVYi7gpuSWoauCsqojDAwMz9/TG/mRwZYAYGZga+n+fpsTn33HvP5TLceeec8x6RIAgCiIiIiIiIiMjoxKZuABEREREREVF5xaCbiIiIiIiIqJQw6CYiIiIiIiIqJQy6iYiIiIiIiEoJg24iIiIiIiKiUsKgm4iIiIiIiKiUMOgmIiIiIiIiKiUMuomIiIiIiIhKCYNuIiIiIiIiolJibeoGEBERERGp7d+/H7/88gv++usvpKWlwcPDA4MGDcLw4cNhY2Nj6uYRERlMJAiCYOpGEBEREREBQEBAANzd3dGtWzdUrVoViYmJWL58OXr16oVvv/3W1M0jIjIYg24iIiIiMhuPHz+Gi4uLVllERAQWL16MI0eOoFq1aiZqGRFR8XBONxERERGZjRcDbgBo3LgxAODBgwdl3RwiohLjnG4iIiIiMmunT5+GjY0NateuXaz9BUHAvn37sHfvXly4cAGPHz+GnZ0d3Nzc0KFDBwwbNgxubm5GbrU2Ly8vAMDly5dL9TxlqUuXLrh9+7ZWmY2NDVxcXNC4cWMEBATgjTfeMFHrVNRtPHjwIDw8PEp9P2Mzl3ZQyTDoJrNjDg9GoHw+HM1VSR4opXGf1O2ZM2cOBg4caNA+FfGhqOtD14umT5+OkSNH5tunIv68iMgw//zzDzZs2IAhQ4agcuXKBu9///59hIWF4fz58xCJRGjcuDF8fX2RlZWFs2fPYu3atdi4cSOmTZuGd955p1htrOh/03x9fVGnTh0AwLNnz5CUlITff/8dv//+O0aOHInp06ebuIVEpsWgm8xKWTwYAT4cLQXvk2V5/kPXi+rVq6fXMXjPieh5jx8/RmhoKGrXro0PP/zQ4P3T09Pxzjvv4ObNm2jUqBHmzZuHV199VbM9Ly8PGzZswIIFCzB79mwoFAq8++67xryECsHf31/rS+q8vDzMmTMHmzZtwvr169GnTx80bdrUJG1bv349cnNzUaNGDZOcnwhg0E1mhA/Giqs8PBDLwzWU1IsfugrDnxcRFSUjIwOjR49Gbm4uNmzYAKlUavAxZs+ejZs3b8LDwwM//vgjHB0dtbZbW1sjKCgItra2mD17NubNm4cOHTqgbt26xrqMCsna2hpTp07Fzp07kZGRgT/++MNkQXdxpyQQGRMTqZHZePHB+HzADfz3YPzkk08AAPPmzcO1a9dM0VQystq1a6Nu3boWvf5qebiGssSfF1HFEBERAS8vLwQEBOjcvmDBAnh5eaF///5IT0/XlMvlcoSEhOD27dtYs2ZNsb6gu3nzJvbu3QsA+Pjjj/MF3M8bOnQoGjRogNzcXKxZs0Zrm5eXl2Yq088//4whQ4agRYsW8PLywo4dO+Dl5aWZYtO1a1dNfS8vL5w4cULn+X799Ve8/fbb8PX1RfPmzREYGIhDhw7pfW3Xrl2Dl5cXWrVqhZycnALrDRw4EF5eXjhw4IBWeXJyMqZPn44uXbqgSZMm8PHxwRtvvIExY8bg559/1rsdhbG1tdWMfnr06FGB9bKzs7Fu3ToEBASgZcuW8Pb2Ro8ePTBv3jykpaXlq29o27t06QIvLy/cunUr37Z//vkHEyZMQJs2bdC0aVP07dsXa9euhUKh0NnWW7duwcvLC126dCnwego63/nz5zFv3jwMHjwYHTp0QJMmTdC+fXuMGzcOR48eLfB4BSmLe0jGw6Cbiq24D1JdjPVgBMrfw9EYf1Rv3LiBhg0bolWrVsjKyiqwXp8+feDl5VXktQmCgDZt2qBBgwb5Hojnz5/X/Dw3b96cb1/1z/zmzZuashcfUKa6TyVR0EP2+d9HQ9tn6AcRoHgP9cLeM7o+pBiDse45EZm3oKAg1KxZE+fOncOvv/6qtW3lypVYvXo1Xn75Zaxbtw5OTk4AAIVCgcmTJ+PChQtYtWoVXnnllWKd+/fff4dSqYSjo2OhQRIAiEQi9O/fX7OfrhV1v/zyS3z66aewsrJC586d0axZM3h4eMDPz0/TC9+jRw/4+flp/tO1vNmSJUswceJEAECnTp1Qp04dJCYmYuzYsfjtt9/0ura6devCx8cHT58+zRdQq12+fBl//fUXqlWrhs6dO2vKr1y5gkGDBmHHjh2QSCR444038Prrr6NGjRo4deoUNmzYoFcb9JGZmQkAqFq1qs7t9+/fh7+/P7799lukpKTA29sbnTp1Qm5uLtauXYtBgwZp5QwxZttPnz4Nf39//Prrr3BwcEC3bt1QvXp1fPfdd5g8eXLJLlyHRYsW4YcffkBOTg4aN26Mrl27ombNmvjjjz8watQo/Pjjj3ofqyzvIRkHh5dTsQUFBWH79u2aB2mPHj002wp6kBakOA/Gv//+W/NgFIlE+ep9+eWX2LJlC3x8fNC5c2dNL7qfnx9+/fVXyGQy9OjRQ2u4WkEPx4iICPj4+KBTp064fv265uEYHh6O7t27F/Wj0jwcExMTceDAAfTp0ydfHV0PxytXruDtt99GRkYGXn75ZbzxxhsQi8W4f/8+Tp06hfv372PQoEFFnr927dro1KkT/vjjD/zyyy86vyg5fvw4/vnnH9SuXRuvv/56occTiURo27Yt9u/fj2PHjqF3796abc8HdseOHdOae3/z5k3cunULHh4eqFWrVqHtNcV9Kk2Gtu/+/fsIDg7GlStXUKVKFXh7e6NSpUq4dOkS1q5di/3792Pjxo1wd3fX2m/RokU4ceIE6tWrh8aNG8Pe3h43b97EH3/8gT/++AMzZszAiBEjdLZR13tG13urNBTnnhOR+bOzs8PkyZPx8ccf47vvvkPXrl1hbW2NLVu2YNGiRZrRbc8HZV988QUOHDiAiRMnQqlU4uzZs5pt9erV0zuZ2l9//QUAaNiwIayti/7I6+3tDQB48uQJbt26le85tXPnTmzduhXNmzfXKm/dujVOnjwJmUyGqVOnFpmPYuPGjdi+fTuaNWumKQsPD8fSpUuxYMECvZ9XgwYNQmJiInbs2KHzc8WOHTsAAP369dO6/h9++AEZGRmYNGkS3n//fa19srOzceHCBb3OX5Rr165pvmDX9dlOEARMmjQJV65cweDBgzF9+nTNvc3Ly8PChQuxbt06TJ8+XRNEGqvtOTk5mDJlCmQyGUaMGIGPP/4YVlZWAIC///4bI0eOLPDL7eIaNWoU5s2bB1dXV63yxMREBAcHY/78+ejZs6deozrK6h6S8TDopmIrzoO0IMZ+MALl4+FozD+q7777Lv744w9s3rxZZ9C9ZcsWAKqRBPoEWu3bty8w6LaxsUGtWrVw4sQJKBQKzYNMHZC3b9++0GO3bNkSLVu2NMl9Ki2GtK84H0TUSvJQL+g9UxaKc8+JyDL0798fGzZswF9//YWffvoJUqkUs2fPRo0aNbB+/fp8f4/i4+MBAIsXL8bixYu1tm3YsAFt2rTR67yPHz8GoP+Xds9/XklLS8v32SIoKMgofx8nTJig9SwAgLFjx+LHH39EcnIy7t69i5deeqnI4/Tq1Qtff/01jh49ivv372v9HHNzc7Fr1y4AyJdrQz3Uu1OnTvmOaWdnh1atWhl8Tc979uwZzp07h6+//hoKhQLvv/++5nPb8w4fPoyEhAQ0bNgQX3zxhdbnP2tra3z00UeIj4/HiRMncOXKFdSvX99obf/11181P+ePPvpI8zkFABo0aIBx48Zhzpw5hl56oXS1GQB8fHzwzjvvYOXKlThw4IBeiYJL+x6S8XF4OZVI//790bhxY/z777/46aefsGvXrkIfpAUp6YNRl9J+ODo4OGgejvro1asX7O3tNQ/H5xX0cDTmH9X27dvj1Vdfxd9//43Tp09rbbt37x4OHjwIe3t7vXrO1ccDtHu2s7OzkZiYqBkC//TpU1y8eFGzXV23Xbt2erdbX8a6T6XFkPa9+EHk+V4d9QeR+vXraz6IPK9Tp075Am7gv4d6bm5ugUMRS/qemT59utaQcPV/w4cPL/YxicjyiUQifPzxxwBUo3GmT58OZ2dn/PDDDzq/NP/9999x+fJlnf/pG3AXh64h5c/r2bOnUc6ja91qiUSi+Vm8+BmhIJUrV0aPHj2gVCqxc+dOrW2HDh3C48eP0bRp03w5ctQJzWbNmoXDhw8XOu1NX8///W/ZsiXee+89pKSkYP78+Zg0aZLOfdTTq958802dHS5isRgtW7YEoPri2JhtP3nyJADVZzNduUX8/PyKddyipKWlYefOnZg3bx4+/fRTTJs2DdOmTdO0599//9XrOKVxD6l0saebSkT9IH333XexaNEiZGZmFvogNZaiHoxA2TwcL126hPv37+v1jbT64bhz507s3LkTY8eO1Wwr6OHYtGlTHDp0CLNmzcL48ePRunVr2NraFvtahg8fjpkzZ2Lz5s2aBxkAbNu2DXl5eRg4cGCh8+mfV6tWLXh4eODWrVu4ceMGateujdOnT0Mul6N9+/bw9vbG2rVrcfToUTRr1gyCIOD48eMQiUSlEnQb6z6VFkPap+8HkStXriAxMRH169fX2p6WloZDhw7hypUrePr0KfLy8gCo8gMABT/US/qeKWjJsOLOxySi8qNNmzaaaVaVKlXCunXrSj1DuLOzMwDg4cOHetVXdwA8v+/zXpzOU1xubm46y9VfsBoSQA0aNAg7d+7Ejh07tD5XqHO+6FpR4r333sOZM2dw9OhRBAcHw8bGRpN3pnfv3sXKMv783//Hjx/j9OnTyMzMxKxZs+Dp6anzmOqh57pGNLxIfW+M1fZ79+4BQIEjqpycnODg4IBnz57pdTx9REZGYs6cOZDJZAXWUc+BL0pp3EMqXQy6qcSM8SA19oMRKB8PR2P/Ue3Xrx8WLlyI3377DQ8ePICrqyvkcjmioqIAwOC1z9u3b4/IyEgcPXoUtWvX1vRkd+jQAfXr14dEIsHRo0fx/vvv49KlS3jy5AkaNWpU4D0rCWPep9JgSPuK80FErSQP9ZK+ZwxZMoyIKpaff/5ZMzdbLpfrPS+7JBo3boxdu3bh0qVLyMvLK3L62vnz5wEAVapU0RmM2dnZGaVdYrHxBpq2atUKtWvXRnJyMhISEuDr64tHjx4hLi4Otra2Oqez2dvb44cffsD58+dx+PBhJCYmIjExERcvXsQPP/yAoUOH4vPPPzeoHS/+/X/27BlCQ0Nx4sQJTJo0CXv27IG9vb3WPkqlEgDQokWLIpf1UndIlEbbjU19Xc+7ePEiZs6cCSsrK0yZMgVdunTBSy+9BHt7e4hEImzfvh0zZ87Uq1MJsIyfA2lj0E0lZowHqbEfjED5eDga+4+qvb09/P39sWbNGkRGRiIsLAyxsbF4+PAhWrZsiQYNGhh0Pe3atdME3YGBgTh27BicnJzQpEkTiMVi+Pj4ICEhAVlZWaU6tBww7n0qDYa0rzgfRICSP9SN9Z4hInrevn378Nlnn8HJyQnt27fH3r17MX/+fCxZsqRUz9ulSxd8++23ePbsGQ4ePKiV8PVFgiAgJiYGgGpkUlklkSwpkUgEPz8/LF68GDt27ICvry927dqFvLw89OzZs9DRa02bNtV8eZ+Xl4cDBw7g448/xpYtW9CjRw+0bdu22O1ycHDA999/j169euH27dv44YcfEBISolVHPbqra9eueO+99ww6fknbrp7+WNAKHU+fPtXZy60eil7Ql9e5ublITU3NV75//34IgoBhw4Zh9OjR+barR6IZqjTvIRmXeX9KJbP3/IO0d+/eyM3Nxfz58w0+TpcuXSAWizUPxsJY6oMR+O/hCPyXOE39cOzevXuBD8emTZsiNDQUa9aswYkTJ7B48WLY2dlhy5YtOH78uEFteOedd2BlZYXt27cjNzcXmzZt0pQbql27dhCJRDhx4gQePXqEpKQktGnTRhNgtm/fHrm5uTh16hSOHTumKaPCPf9BZO7cuYX+161bN81+Lz7U69atC6lUqnmPFPehTkRUXIcOHcJHH30Ee3t7rF27Fl988QWqVKmCX3/9FQkJCaV67tq1a6NXr14AgHnz5uHp06cF1t2yZQsuX74Ma2trgwNA4L9grKD1nUvTwIEDIRaLsW/fPmRlZWk+X+ibowVQ5Qvp2bMnOnbsCECVwbukXFxcNElg161bl+/nr14pRf3sKq7itF2dE2f//v3Izc3Nt/3FOfJqLi4usLGxwZMnT3SuPR4fH6+Z0vU89dK5uka95eTkIDY2tsg2F6U07iEZD4NuKjZjPkjL8sEIWPbDsaR/VN3c3NCtWzc8ePAAS5YsQWJiIlxdXfHmm28adiFQDe1v2LAhnjx5gjVr1kAQBK2gWv3/f/75J86cOQOJRKI1l7woprxPplTcDyJl8VAvbRX1nhOVRydPnsSECRNgZWWFFStWoEmTJnB0dNRMr5o7d26pt2HmzJlwd3fHrVu3MGLECFy9elVre15eHn744Qd8/fXXAIApU6bkSzymD3XP6YvHLws1a9ZE+/btkZGRgUWLFuHKlStwc3MrsJdz8+bNuH79er7y1NRUTfLTgqZEGWro0KFwc3PDs2fPsG7dOq1tXbt2hbe3N86fP4/p06fnmy4FqJ5rW7du1QSyxmq7ehWPO3fuYNGiRVpDwq9cuYLly5fr3M/GxkYTsH///fda+/3999/48ssvde6nnna5c+dOZGRkaMpzcnIwa9asAnvcC1KW95CMg8PLqVh0PUgBVTbmb7/9FnPnzkVkZKRBx5w5cybOnj2reTDOmzdP68GXl5eHjRs3anrSi/tgBFQPx+TkZFy9elVn4qfSpH44xsfHF/lw3Lx5M9q1a5cvEVVJ/6i+++67+PXXX7Fq1SoAwJAhQ/Raqk2Xdu3a4dKlS9i8eTMA1XxuNfUHrJ9++gk5OTlo06aNQUOYTXmfTOnFDyJTp06Fi4uLVp309HTs3bsX/v7+mnv3/EN90KBBWvPFi/NQN4WKes+Jypvz589j3LhxUCgUiIiI0FptY9iwYdi0aRPOnTuHPXv26Jx3bCxVqlTB1q1bERISgosXL+Ktt95CkyZNULt2bWRlZeHs2bN4/PgxbGxs8PHHH2PEiBHFOk+PHj1w4sQJfPTRR+jYsaNm5Np7771XJskkBw0ahPj4eM0ykn5+fgVOa4qMjMTs2bPh4eGBV199FZUrV0ZaWhpOnz6N7OxstG3bVue62sUhkUgQFhaGGTNmYMOGDRg5ciSqVKkCQDXtatmyZRg7diyio6Px66+/wsvLC25ubsjNzcXNmzdx5coVKBQKDBw4ENbW1kZru52dHRYsWIAxY8Zg3bp1OHDgALy9vfHkyROcPHkSb7zxBv766y/cvn07376TJk3CqVOnEBkZiZMnT8LLywsPHjzAxYsX0bdvX5w8eTLffgMHDsSGDRtw6dIldO3aFS1btoSVlZWm3e+++26+JUALU5b3kIyDQTcZrLQepGX1YAQs5+FYWn9UW7ZsiUaNGuHSpUuwsbHBkCFDin0t7du3x9q1a5GTkwMPDw+tOchisRht2rTBb7/9pqlrCFPfp4iICGzbtq3A7Z9//jkaN25s9PMW54MIYPyHuimY+p4TUcldvnwZo0ePRnZ2NhYtWqQZvaMmkUgwYcIEfPzxx1i4cCG6d+8OiURSau2pUaMGoqKisG/fPuzZswcXLlzA33//DVtbW7i5uWHAgAF45513CswRo4+3334bmZmZ2LVrFw4dOqRJjtmvX78y+dvVrVs3VKlSBU+ePNGayqbL5MmT8eeff+LcuXM4d+4cnj17hqpVq6Jp06YYNGgQ+vTpU+wv4nUZMGAA1q1bh3/++Qdr167Fhx9+qNlWo0YNREZGYseOHdi7dy8uX76MCxcuwMnJCa6urggMDESXLl00K7cYs+2tW7dGZGQkwsPDcfLkSfz222+oVasWJkyYgKCgoAJHADZr1gybNm1CeHg4zp49i3v37sHT0xMzZszA22+/ja5du+bbR90BER4ejvj4eMTFxaFKlSro0KEDwsLCcObMGYN+pmV9D6nkeDfIIKX9IC2LByNgOQ/H0vyj2qFDB1y6dAk9evRA9erVi30tLVu2hEQi0SwV9qJ27doVO+g29X26efOmJpO4Ls8PETM2Qz+IAMZ/qJuCqe85EZWcl5cXTpw4UWidAQMGYMCAAWXTIKi+zOzTp0+xetUvX76s1/HHjBmDMWPGFPs4GzduNLhtahKJpMifuVrnzp3RuXPnYp/reb///nuRdaysrLBnz54Ct0skEgQGBiIwMLDIYxWn7YW1sX79+ggPDzd4v+bNm2Pt2rUG7efi4lJg8ts6deoUuPqHruMZ8x5S2RAJJclcQEQWSaFQoHv37rh9+za2bdsGHx8fUzeJiIiIiKhcYiI1ogpo+/btuH37Nnx8fBhwExERERGVIg4vJ6ogrl+/jrVr1+Lhw4c4fPgwxGIxpk6daupmERERERGVawy6iSqI1NRU/PTTT7CxsUG9evUwfvx4+Pr6mrpZRERERETlGud0ExEREREREZUSzukmIiIiIiIiKiUMuomIiIiIiIhKCYNuIiIiIiIiolLCoJuIiIiIiIiolDB7uZGkpaWZugkVlpOTE9LT003dDNIT75fl4L0yLWdnZ1M3oVwy9fOa7yvLxvtn2Xj/LJu53j99ntfs6SaLJxbz19iS8H5ZDt4rIuPj+8qy8f5ZNt4/y2bJ989yW05ERERERERk5hh0ExEREREREZUSBt1EREREREREpYRBNxEREREREVEpYdBNREREREREVEoYdBMRERERERGVEq7TTURERCbVpUsX3L59W+e21q1bY+PGjVplcrkcq1atwq5du3D37l04OTnhjTfewKRJk1C1atWyaDIREZHeGHQTERGRyTk4OGDEiBH5yt3d3bVeK5VKvP/++4iPj0fz5s3x5ptvIiUlBVFRUTh27BgiIyPh4uJSVs0mIiIqEoNuIiIiMjlHR0eMHz++yHrR0dGIj49H3759sWDBAohEIgDA1q1bMWvWLHz//feYPXt2aTeXiIhIb5zTTURERBYjKioKAPDBBx9oAm4ACAwMRK1atfDLL78gOzvbVM0jIiLKhz3dREREJaRQCDh3Hnj0GKjqAjRrClhZiYrekTTkcjl27NiBBw8eoHLlyvD29kazZs206uTk5ODcuXN4+eWX8w07F4lEaN++PbZv346LFy+iZcuWZdl8IiKyEHK5EtExwO07gLsb4NcfkEhKty+aQTcREVEJHIoT8H24gNTU/8qqVwcmjQc6vc7AW1+pqamYPn26Vpm3tzcWLVqE2rVrAwBu3LgBpVIJT09PncdQlycnJzPoJiKifCJWKLEtElAq/ytbthwIDFAiZFzpBd4cXk5ERFRMh+IEfDJTO+AGgNRU4JOZAg7FCaZpmIUZOHAg1q9fj6NHj+Ls2bPYuXMn+vfvjwsXLmDkyJHIyMgAADx79gwAULlyZZ3HUZer6xMREalFrFBiyzbtgBtQvd6yTbW9tLCnm4iIqBgUClUPd2EWLxXQsQOHmhclLCxM63XDhg0xb948AEBMTAyioqIwatQoo5zLyckJYrFp+xycnZ1Nen4qGd4/y8b7Z9mKe//kciW2RaYVWmdbJPDRh06lMtScQTcREVExnDuPfD3cL3rwQFXP16ds2lTeDBkyBDExMUhISMCoUaPg4OAAoOCebHV5QT3hAJCenm78hhrA2dkZaWmFf/Aj88X7Z9l4/yxbSe7f9ihlvh7uFymVwLr1aRjib1jQrc8XARxeTuXC7Nmz0bZtW9y5c6dEx3n//ffRtm1bI7VKP3fu3EHbtm2NssTN7t270bZtW+zevdsILSOiwjx6bNx6lJ/6g4xMJgMA1KpVC2KxGMnJyTrrq8sLmvNNREQV0209QwR96xmKQTeVuTNnzuCTTz5Bv3798Nprr+HNN9/EmDFjsHXrVuTk5Ji6eRXemTNn0LZtW6xevdrUTSEyWwqFgMeP9ZuvXdWllBtTjp0/fx4ANJnK7ezs0LRpU/z777+4ffu2Vl1BEHD06FFIpVI0adKkzNtKRETmy93NuPUMxaCbykxeXh7mzp2L0NBQHD16FE2aNMHbb7+Nbt264fHjx1i8eDGGDx+OmzdvGnzskJAQbNu2Da6uriVq4+eff45t27aV6BhEVL4dihMwOFBA+LKi67q6qpYPo4Jdu3YNWVlZOssXLFgAAHjrrbc05QEBAQCARYsWQRD+++Jj27ZtuHnzJt566y3Y2dmVcquJiMiS+PUHikrnIRar6pUGi5jTnZOTg0WLFuHixYtISUlBeno6HB0dUatWLfj7+6Nfv36wsbHR2icjIwPh4eGIjY1FamoqXF1d0aNHD4SFhaFSpUr5zqFUKrF582ZERkYiJSUFUqkU7du3x+TJk1GrVq2yutRybfny5di5cycaNWqEuXPnagXICoUC69atw9q1azF58mT8+OOPOu9TQapVq4Zq1aqVuI01a9Ys8TGIqPxSZyvX18QwEZOoFWHv3r344Ycf0KpVK7i5ucHe3h7JycmIi4tDbm4uxo4di1atWmnq+/n5Ye/evdi9ezdu3bqFVq1a4caNG4iNjYWHhwcmTZpkuoshIiKzJJGIERigyl5ekMCA0luv2yKC7szMTGzduhVNmzZF586d4eLigvT0dBw+fBgzZszA3r17sXr1ak02UplMhmHDhiEpKQkdO3ZEnz59kJSUhHXr1uHUqVPYvHkzbG1ttc4xc+ZMREVF4dVXX8Xw4cPx4MED7Nu3D0eOHMH27ds5P6yEbty4ga1bt8LR0RHz589H1apVtbZbWVlh9OjRuHnzJmJjY7F582aMGTNGs33AgAEAgI0bN2LlypWIi4vDo0ePMH36dAwfPhyzZ8/G3r17sWPHDri5/TcuJC8vD5s3b8auXbs0X7689dZb6NatGwYNGoTevXtj5syZmvrvv/8+EhMTcfz4cU3Z7t278dVXX+HTTz9F9erVsWbNGly5cgW2trbo2LEjJk6cCCcnJ63r+eWXXxAXF4erV6/i8ePHsLOzQ8OGDfHuu++iRYsWJf55pqenY8WKFfjzzz8hk8nwyiuvYMSIEQXW17c9q1evxtq1awEAa9eu1fw/AM3P9saNG4iJicGpU6dw7949ZGdno0aNGujcuTNGjRoFqVRa4usjMkf6ZCtXc3VVBdxcp7tobdq0wbVr15CUlITTp08jOzsbzs7OeP311zF06FB07NhRq75YLMby5cuxatUqxMTEYP369ahSpQoGDx6MSZMmwcWF4/mJiCg/1Trc+dfpFotVAXdprtNtEUF3lSpVcPr0aUgkEq3yvLw8jBo1CvHx8YiLi0Pnzp0BAGvWrEFSUhJGjx6NKVOmaOovWLAAq1evxvr16zF27FhN+fHjxxEVFYVWrVph3bp1mvP07dsXY8aMwZdffqkVfJgzhULAufOqxD1VXVTDGs2hl2XPnj1QKpUYMGBAvoD7eUFBQYiNjcUvv/yiFXQDQG5uLkJDQ5GVlYXXXnsNVlZWRX64+vrrr7Fv3z64u7tj0KBByM3NxbZt23DhwgWDr+Hw4cM4evQoOnbsCG9vb5w9exZ79+7FrVu3sGrVKq26CxYsQL169dCqVSs4OzsjNTUVhw4dwvjx4zF37ly8/vrrBp9fLTs7GyEhIbh27Rq8vb3h4+OD+/fv49NPP0WbNm107qNve3x9fXH37l3s3bsXPj4+8PX11RxDnTX4zz//xC+//IIWLVrA19cXgiDg4sWL2LhxIxITE7FixQpYW1vEnxYig+iTrRwAxocCgweyh1tfrVu3RuvWrQ3aRyKRICwsLN9SY0RERIUJGSdGcJAS0TGqpGnubqoh5aXVw61mEZ+MxWJxvoAbAKytrdG9e3ecPHkSKSkpAFSJVKKioiCVShESEqJVPyQkBJs3b0ZUVJRW0B0VFQUAmDhxotZ5OnXqhNatWyM+Ph537tzR6kE1R4fiVL0wz38orF4dmDQeJu9tUQe5LVu2LLSep6cnqlevjtTUVNy/fx81atTQbHv06BFeffVVzJ07V6/5eqdOncK+fftQv359rFq1SrPPyJEj8e677xp8DfHx8YiIiECzZs0AqIbEjx8/HgkJCbh48aJW4p6tW7fm+315+PAhRo0ahfDw8BIF3Rs3bsS1a9fQv39/TJ8+XVPeq1evAodV6tseda/33r174evri9GjR+c7Vs+ePfH222/nm9Kxdu1arF69GgcOHEDPnj2LfX1E5krfLOQuLgy4iYiIzJVEIsYQ/7I9p0UnUlMqlTh8+DAAoH79+gBUy4U8ePAAvr6++Ya5SqVS+Pr64ubNm7h7966m/MSJE5ptL3rttdcAACdPniytyzAK9TzDF3thUlOBT2YKOBSn/xzE0vDo0SMA0AqiC6Ke6/3w4cN820JDQ/VOkLN//34Aqt7z5/epVq0ahgwZotcxntejRw9NwA2ohsT37t0bAHDp0iWturq+oKlWrRo6d+6c7/fPUPv27YONjU2+kQBt27Yt8EsNY7bH1dU1X8ANAIMHDwag+rKDqDxyrsJs5URERGQ4i+jpVpPL5Vi5ciUEQcCTJ09w7NgxXL9+HQMHDkS7du0AQNPjXdAcbE9PT8THxyM5ORkvvfQSZDIZUlNTUb9+fVhZWeWrX6dOHa3jmiN95hkuXiqgYwfzGGpeXLa2tqhXr57e9a9evQoAWoGyWtOmhqcT9vLyylem/oIgIyNDq/z27dv48ccfcebMGaSmpkIul2ttf/jwIV566SWD25CZmYk7d+7g5Zdf1jlMv3nz5jh9+nS+cmO2RxAE7N69G3v27MH169eRkZEB5XMTY3R9WUJk6Q7FCfhuSdH1mK2ciIiIXmRRQXdubi6WLl2qeS0SiRAUFIQPP/xQU/bs2TMAQOXKlXUeQ12uDpL0ra+uZ470mWf44IGqnq9P2bTpRVWrVkVKSgru37+v+SKjIA8ePACAfNnInZ2dIRLp/6WBTCaDWCxGlSpV8m0rTqIdXdnU1V/UKBQKTdnNmzfx3nvvITMzE76+vujYsSMqVaoEkUiEhIQEJCYm5gt69ZWZmQlA9bPQRdd1Gbs9CxcuxE8//YQaNWqgY8eOqFatmqbne+3atcW+NiJzZUjGcmYrJyIiKn1yednPyy4Jiwq6K1WqhMuXL0OpVOLBgwf4/fff8d133+Hs2bNYvXp1gYFzWXByctJkTy9r2Tk5ADL0qFcJzs62RdYrDa1bt9bMfe7Ro0eB9a5du4bU1FTUqFEDDRo00JSrg9uCgk11NnonJydNHUdHR9y6dUvnfv/8849mv+e3qYPH58vUwXalSpXyHUedXMze3l6zbcmSJXj69CnmzZuH/v21F/ubOXMmEhMT4eDgoKmvDqRfbIsu6vY9ffpUZ131WrfPt9XQ9ui6JrVHjx7h559/hpeXF7Zv3w57e3vNttTUVKxduxY2NjZFXkdR28l8VPR7pVAIWLLsCYDCg+6aNUSYNrUSunczzd9YIiKiiiJiRf4M5MuWA4EBylLNQF4SFhV0q4nFYtSsWRNDhw6Fs7MzJk2ahOXLl+Ojjz7SBAwvDvdVU5erA3R966vrFSQ9Pd3wCzESO1v9emDsbDORliYr5dbo9sYbb2DVqlXYvn07/Pz8Cvwgv2SJavxmnz59kJaWpilX9yQ/X6bm7OyMnJwcAKr7oA6SX375ZVy6dAlxcXHo1KmT1j5Hjx4FoFoD/vlj5ubm5juPOijOzMzMd371CIisrCzNtuvXrwNQJSV7vr4gCJqh38+ePdNsU//uvNiWgri5uSElJQX//PNPviHmx44dy9dWQ9sjk8kKvN5Lly5BEAT4+voiOzsb2dnZmm2HDh0CoPoZFnYdzs7Oel0nmR7vFZCQKOD+/aL/xk6bKqBlC5lR/8ZW9C88iIiIXhSxQvda20ol/l9unoG3+bXIQOr1O9WJztRDl5OTk3XWV5er53xLpVJUr14dt27d0hoirKaey13UkGhTatZUlaW8MKaeZ1inTh0EBAQgPT0dU6ZMyTfvV6lUYt26ddi/fz88PDzwzjvvlPic6h71tWvXagWHjx49wvbt20t8/ILUrFkTAHDu3Dmt8g0bNuDatWslPn6vXr2Qm5ubb5myEydO6JzPbWh7HB0dAQD3798v8FgXLlzQmsf94MEDLF++3MArITJ/+mYsT3vCIeVERESlSS5X9XAXZlukqp65scie7uep5/+q1wX29PSEq6srEhISIJPJtDKYy2QyJCQkwMPDQytpVOvWrbFnzx4kJCSgVatWWsdXZ0d/sdycWFmJMGk8Cp1zaA7zDMPCwpCZmYlffvkF/v7+aN++PTw8PJCZmYkTJ07g5s2bqFWrFhYtWqRz/rShWrdujTfffBOxsbEYNmwYXn/9dcjlchw8eBCNGzdGfHx8qUwJ8PPzw+7duzF9+nR07doVTk5OuHjxIq5cuYIOHTrgyJEjJTr+sGHD8OeffyImJgbXr1/XrNN98OBBncc3tD116tRB9erVceDAAUgkEk2yuICAAFSrVg1vvPEG/vjjD4wcORKtWrXC48ePceTIEbRs2VIznJ+oPFAoBDx+zIzlRERE5mDb9hytIeW6KJVAdAzKfEmwolhET/c///yjmav6vKysLMyZMwcANMOHRSIR/P39IZPJEBERoVU/IiICMpkMAQEBWuXq14sXL9ZKAnXo0CGcPHkSHTt2hLu7u1Gvydg6vS7C17NF+Xq8XV2Br2eLTL5ON6D6YuSTTz7BkiVL0L59e5w/fx6bN2/Gr7/+iipVqmDChAnYuHEjatWqZbRzzpw5E2PGjIFSqURUVBSOHTuGwMBAjBo1CoDu5Ggl5eXlhcWLF8PLywt//vkndu/eDQcHB6xcuVJrnnpx2dvbIyIiAgMGDMCtW7ewfft2pKSk4KuvvsIbb7xR4vZYWVlhzpw5aNy4MWJjY7Fq1SqsWrUKT58+BQB89tlnGDp0KJ49e4aoqChcvHgRgYGBmD17domvjchcHIoTMDhQQPiyouuaeiQRERFRRXDjVv5RybrcvlPKDSkGkSAIpl3AWQ/h4eH44Ycf0KJFC7i7u6Ny5cq4f/8+4uLi8OTJE7Rs2RJr167VrMUsk8nw9ttv4++//0bHjh3RqFEjXLp0CfHx8fD29samTZvyrfX86aefIioqCq+++io6deqE1NRU7N27F5UqVcK2bdvw8ssvF9pGc5n3qFAIOHdeNSSyqovqg6Cpe7hLW3HmncbExGDOnDn46KOPMGjQoFJqGenCecKWo6LeK0OylQOl98Um53SXDlP/TlfU91V5wftn2Xj/LNsvu+3w7YKic6eMDwWG+Jdd37I+z2uLCLovXLiAyMhIJCYm4v79+5DJZKhcuTK8vLzQp08fDBo0SDO8XO3Zs2cIDw9HbGwsHj58iOrVq6Nnz54IDQ3VmeVcqVRi06ZNiIyMREpKCqRSKdq3b4/Jkyejdu3aRbaRb2DTKewP6KNHj+Di4qK11NiDBw8wZswYpKamYseOHahRo0ZZNZXAB54lqYj3SqFQ9XAXtQwjoOrhnhhWeiOJGHSXDlP/TlfE91V5wvtn2Xj/LFulSk5o0Sat0CHmYjFwYH/ZLh+mz/PaIuZ0e3t7w9vb26B9HBwcMGPGDMyYMUOv+mKxGO+++y7efffd4jSRzNSGDRtw5MgRNG/eHM7Ozrh//z7i4+Mhk8kQHBzMgJuItJw7D70C7vGhwOCBps+VQUREVFFIJGIEBkBn9nK1wADzXK/bIoJuouJq27Yt/v33Xxw5cgTPnj2DRCJBvXr1MGjQoELXCyeiiknfbOUuLgy4iYiIyppqObD863SLxaqA2xyXCwMYdFM5165dO7Rr187UzSAiC8Bs5UREROYvZJwYwUFKRMeokqa5uwF+/c2zh1uNQTcREVV4h+IEfB+u/1xuZisnIiIyHYlEbHbLghWGQTcREVVohmYrnxjGoeVERESkPwbdRERUYSkUqh5ufZR2tnIiIiIqnxh0ExFRhcVs5URERKYhl1vWvOySYNBNREQVkkIh4EyCfr3czFZORERkPBEr8mcgX7YcCAxQmm0G8pJg0E1ERBWOIYnTAGYrJyIiMpaIFUqda20rleo1uMtf4F2+roaIiKgI6sRp+gbczFZORERkHHK5qoe7MNsiVfXKEwbdRERUYRiSOE2N2cqJiIiMIzpGe0i5Lkqlql55wuHlRERUYeibOA1gtnIiIiJju33HuPUsBXu6yaycOXMGbdu2xerVq03dFJ1Wr16Ntm3b4syZM3rVHzBgAAYMGKBVtnv3brRt2xa7d+8uhRYSUWEePdav3ojhQNRWBtxERETG5O5m3HqWgj3dVCbu3LmDgQMHFlrnt99+K3CbOnDduXNnvm0nTpzAu+++i/feew+jR48uSTOJqJxzrqLf0PIWvhxSTkREZGx+/VVZygsbYi4Wq+qVJwy6qUx5eHigR48eOrdJJBI0btwY27ZtQ5UqVcq2YWWoc+fOaNKkCapVq2bqphBVKIfiBHy3pOh6TJxGRERUOiQSMQIDdGcvVwsMKH/rdTPopjLl4eFRZG+0p6dn2TTGRCpXrozKlSubuhlEFYo6Y7k+mDiNiIio9KiWA8u/TrdYrAq4y9tyYQCDbjIzZ86cQWhoqGao+IvD0tu2bav5//feew8AsHbtWs2/6v8HgB07dsDNTTUhJDc3F1FRUdi/fz9u3LgBsViMV199Fe+88w5ef/31fO24f/8+li5dihMnTiA3NxcNGjTAmDFjjHKNu3fvxldffYVPP/0Uffv21bo2Hx8ffPXVV1i2bBmOHDmC7Oxs1KtXDyEhIWjRokW+Y2VmZmLLli34/fffcefOHdjY2KBx48YYNWoUmjdvbpT2Elk6fTOWu1YHJo7nPG4iIqLSFjJOjOAgJaJjVEnT3N1UQ8rLWw+3GoNuMmsODg547733sH37dgDAkCFDNNt8fX0BAI8fP0Z0dDR8fHw0Zep9AUAul2PSpElISEhA/fr18dZbbyEvLw9Hjx7F1KlT8eGHH8Lf31+z38OHDxEcHIzU1FS0bdsWXl5eSE5OxoQJE3QGvsaUkZGBsWPHonLlyujVqxceP36MgwcPYtKkSVi/fj3q1q2rqZueno73338f169fR9OmTeHn54fMzEzExcUhNDQU33zzDTp16lSq7SWyBPpmLJ8xDWjZggE3ERFRWZBIxBjiX3S98oBBt7kQBCAvy9StKJi1PSAq+YfRW7du6cxM3q5dOzRp0iRfuYODA0aPHo09e/YAgM6h6Q4ODoiOjoavr6/O7WvXrkVCQgKCgoIwevRoiP5/HZmZmQgLC8OSJUvQuXNnVK9eHQAQERGB1NRUjB07FqNGjdIcZ+fOnZg7d27xLlxPV69exaBBg/Dhhx9CLFZ909eyZUt88803+Omnn/Dxxx9r6i5cuBDXr1/H9OnT0b//f9km3n//fYwaNQpz585F27ZtYWtrW6ptJjJ3+mYsT3vCgJuIiIiMj0G3ORAE2G9/B1Z3Ek3dkgIp3HyRNWRTiQPvW7duaQ0BV3NwcNAZdJeUUqlEdHS0Zi656Ln2V6pUCUFBQfjoo4/w559/wt/fH7m5uTh48CCcnZ0xdOhQrWP169cPmzdvxs2bN43eTjV7e3uEhoZqAm4A6N27N7799ltcunRJU/bkyRMcPHgQLVu21Aq4AcDFxQXvvPMOFi1ahFOnTqFjx46l1l4ic6dQCHj8WL+53FVdSrkxRERE5ZBcXnGGiRcXg26zUTF6WNq2bYvvv/++zM6XkpKCp0+folq1alizZk2+7U+ePNHUU/+bk5ODFi1a5OshFovFaNq0aakG3bVq1YJUKtUqs7a2houLCzIyMjRlly5dgkKhgFwu1zlyQN3GlJQUBt1UYR2KU83l1mdoOTOWExERGS5iRf6EaMuWA4EBynKZEK24GHSbA5FI1YtcAYaXl7WnT58CAK5fv47r168XWC8rS/WzVwe2zs7OOuu5uJRuV1ilSpV0lltZWUGhUGheq6/r/PnzOH/+fIHHU18XUUVjSLZygBnLzc2qVauwcOFCAMD27dvzJYbMyMhAeHg4YmNjkZqaCldXV/To0QNhYWEF/h0lIiLjilihe+kvpRL/L2fgrcag21yIRICNtOh6ZBD1h6833ngDc+bMKbK+eimvtLQ0ndsfP9ZzcmgpU1/X0KFDMWHCBBO3hsi86JutHFD1cE8MY8Zyc3LlyhWEh4dDKpVCJpPl2y6TyTBs2DAkJSWhY8eO6NOnD5KSkrBu3TqcOnUKmzdvZi4LIqJSJperergLsy0SCA5Scqg5AP4EyCJYWVlB+fy4lRe2AdC53dPTE5UqVUJSUhLy8vKKPE/t2rVha2uLpKQk5OTkaG1TKpW4cOFCMVpvfI0aNYJIJDKb9hCZE32zlY8PBaK2MuA2J7m5uZg2bRoaNmyIbt266ayzZs0aJCUlYfTo0Vi7di2mTJmCtWvXYvTo0bhw4QLWr19fto0mIqqAomO0h5TrolSq6hGDbrIQjo6OSE9PzxcIA4CTkxMA1draL7K2tsbAgQNx7949LFmyRGfgfe3aNU0PtkQiQdeuXZGWloYtW7Zo1du1axdu3LhhjMspsapVq6Jr1664cOECNm3aBEHI36t38eJFZGdnm6B1RKajUAg4k6BfL7eLC4eUm5sVK1bg6tWr+OabbzRfqD5PEARERUVBKpUiJCREa1tISAikUimioqLKqrlERBXW7TvGrVfecXg5WYQWLVogKSkJkydPRvPmzWFtbQ0fHx/4+PjglVdeQfXq1XHgwAFIJBK4uroCAAICAlC5cmWMHj0aly9fRmRkJI4ePYrmzZvD2dkZqampuHbtGq5evYo1a9Zo5muHhITg1KlTWLlyJc6dO6dZp/vo0aNo06YNTpw4YcofhcZHH32EGzduYOnSpdi3bx+8vb1RuXJlPHjwAElJSbh58yb27NkDOzs7UzeVqEwYkjgNYLZyc/PXX39hxYoVmDBhAurVq6ezTnJyMh48eICOHTvmSzoplUrh6+uL+Ph43L17Fy+99FJZNJuIqEJydzNuvfKOQTdZhKCgIDx79gxHjhzBuXPnoFAo8N5778HHxwdWVlaYM2cOli1bhtjYWM0cwJ49e6Jy5cqQSCT47rvv8Msvv2Dv3r34448/kJubCxcXF3h6esLPzw9169bVnKtatWpYvXo1li5dihMnTuDs2bNo0KABlixZgtOnT5tN0O3k5IRVq1bhp59+woEDB/Drr79CqVSiatWqePXVVxEUFKQZBUBU3hmaOI3Zys2LXC7Hxx9/jAYNGiA4OLjAeuqVJjw9PXVu9/T0RHx8PJKTkxl0ExGVIr/+qizlhQ0xF4tV9QgQCbrGpZLBCkq8RaXP2dmZP38LwvtlOSzlXikUAgYH6t/DDQBfzzb/udwFraJQHs2fPx8//vgjduzYgfr16wMApk2bhujoaK3s5b/88gumTJmCcePGYfLkyfmO891332HFihVYunQpunfvrvNcSqUSYjFn1xERldSCRZn44ceCpzKOGmGHKR9wRQmAPd1ERGTh9E2cBjBbuTlKTEzEunXrEBYWpgm4S1N6enqpn6MwlvJlFunG+2fZeP+M671RQE4O8q3TLRYDgQHAe6PkSEuTG+185nr/9PmSnEE3ERFZtEd6ruQ3YjgQNJLJ08xJXl4epk2bBi8vL4wZM6bI+g4ODgBU63Troi5XL/9IRESlK2ScGMFBSkTHqJKmubuphpRzmTBtDLqJiMiiOVfRb5ZUC99SDLgFAdbnt0GUlYbctiFF1ycAqjW3k5OTAQBNmjTRWWfIkCEAgGXLlmnyb6j3eZG6vKA530REZHwSiRhD/E3dCvPGoJuIiCzWoTgB3y0pul6pJk7LlcH2109gc2U/BJEVcn3eBWzZ06oPiUSCwYMH69x2+vRpJCcno0uXLnBxcYG7uzs8PT3h6uqKhIQEyGQyrQzmMpkMCQkJ8PDwYBI1IiIyKwy6iYjIIhmSsXxiWOn0coue3oFdTBisUpMgiG2Q020WA24D2NnZ4euvv9a5bdq0aUhOTsbYsWM1idQAwN/fH8uWLUNERASmTJmiKY+IiIBMJsO4ceNKu9lEROWSXM5h4qWFQTcREVkchUK1JndRXKsDE8eXTuI08e0E2O0aD3HWYyjtXZDdbwmU7i2Mfh7SFhwcjIMHD2L16tVISkpCo0aNcOnSJcTHx8Pb2xsjRowwdROJiCxOxAplvoRoy5YDgQFKhIxj4F1SDLqJiMji6JuxfMY0oGUL4wfc1heiYHvwS4iUuVBUb4js/kshOLoZ/TyUn1QqxaZNmxAeHo7Y2FicOHEC1atXR1BQEEJDQ2FnZ2fqJhIRWZSIFUps2Za/XKnE/8sZeJeURazTff/+fezbtw9xcXG4fv06Hj58CCcnJ/j6+iI4OBjNmjXTqh8eHo6lS5cWeLyDBw/Cw8MjX/nhw4excuVK/PXXXxCJRGjcuDFCQkLQrl27IttojunrKwpzXT6AdOP9shzmeq8UCgHr1gv4cWPRdT//TITuXY0YdCvzIPnzW0jObgIA5NbviZweXwM20iJ2NFxFWqe7LJn6d9pc31ekH94/y8b7l59crkS3nto93C8Si4ED+00/1Nxc71+5WTJs48aNWL16NWrXro0OHTrAxcUFKSkpOHDgAA4cOICFCxeid+/e+fbz8/ODu7t7vnJHR8d8ZTExMZg6dSpcXFwwcOBAAMDevXsxatQofP/99+jZs6fxL4yIiAxyKE41rFzfdbmruhjx5FlPYLdnMqxvHAcA5LSfgNw24wARlyAjIiLLFB1TeMANqLZHx4AZykvAIoLupk2bYuPGjWjdurVW+enTpzFy5EjMmjUL3bp1g0Qi0dru5+eHNm3aFHn89PR0fPXVV3B2dkZ0dDRq1qwJABg9ejQGDBiAWbNmoWPHjlz3k4jIhAxJnAYYN2O5+OFV2MWEQZx+A4KNFNm9voWiXjfjHJyIiMhEbt8xbj3SzSIG57/55pv5Am4AaNmyJdq0aYP09HRcvny52Mffv38/nj59imHDhmkCbgCoWbMmhg0bhrS0NBw4cKDYxyciopLRN3Ha84yVsdzq2h+w3xoIcfoNKJ08kBW4lQE3ERGVC+56piPRtx7pZhFBd2Gsra21/n3eqVOnsGrVKqxZswYHDhxAZmamzmOcPHkSANCxY8d829Rl6jpERFT29E2cBqh6uL+ebYSM5YIAm5OrYBcTClGuDHkerSEbGgll9folOy4REZGZ8OuvmrNdGLFYVY+KzyKGlxfkzp07OHr0KKpXr4769fN/CAoPD9d67ejoiE8++QQDBgzQKk9OTgYA1KlTJ98x1GUpKSnGaTQRERns0WP96o0YDgSNNEIPd24WbGM/hc3lvQAAebO3Ie88HbCyKdlxiYiIzIhEIkZggO7s5WqBAaZPombpLDbozs3NxdSpUyGXyzFlyhRYWVlptjVo0ADffPMNWrduDVdXV6SmpuLPP//EkiVLMG3aNDg4OKBr166a+hkZGQAABweHfOdRz+N+9uxZKV8RERHpolAIePxYv6HlLXxLHnCLnt2FXUwYrB5cgiC2Rs4bnyCvWWCJjklERGSuVMuB5V+nWyxWBdxcLqzkLDLoViqVmDZtGk6dOoWAgIB8Pdfdu3fXeu3h4YFhw4ahbt26mmzkzwfdxuDk5ARxUWMzqNRwaR3LwvtlOUx9r347kIM582S4f7/woFskAmq4itG5U5USBd3KG6eg2BoEZKQCUhdYv70WEs+il40kIiKyZCHjxAgOUiI6RpU0zd1NNaScPdzGYXFBt1KpxIwZM7B7927069cPX3zxhd77tmvXDrVr18aVK1eQkZGh6cV+vjf7xQ+YhfWCPy89Pd2QyyAjMtc1+0g33i/LYep7ZUi2ckEAxocKePr0SbHPZ31xB2wPzoJIkQtFNS9k918GwckdMNHPwNRfeBARUcUikYi5LFgpsaivLpRKJaZPn47o6Gj07dsXc+fONbh3Wf0hJisrS1Pm6ekJQPe8bXWZrvneRERUOgzJVl7ixGnKPEj+nAO72E8gUuQir153ZAVuVgXcRERERCVkMUG3OuDeuXMnevfujXnz5mnN49aHTCbD1atXIZVKtXoQWrVqBQCIj4/Pt4+6TNeSZUREVDr0zVY+PhSI2lqCgDs7HXbRYyFJ2AAAkLcNQfZb3wOSSsU7HhERkRmQy5XYHqXEosWqf+VyZdE7UamxiKBbPaR8586d6NmzJ+bPn19gwJ2RkYF///03X3l2djY+++wzZGZmomfPnlpLjPXq1QsODg7YtGkT7t27pym/d+8eNm3aBGdnZ3TrxjVZiYjKgkIh4EyCfr3cLi7FT5wmenQN0i0BsE45CsHaHll9v4e8/XhAZBGPRiIiIp0iVijRrScQvgzYEa36t1tPVTmZhkXM6V62bBmio6MhlUrh6emJ5cuX56vTrVs3NGzYEE+ePEGvXr3g7e2NunXrolq1anj06BGOHj2Ke/fuoX79+pg6darWvk5OTvjss88wdepU+Pn5oXfv3gCAvXv34smTJ/juu+80876JiKj0HIpTDSvXd03uqi7FO4/V9UOw2zsFInkGlA4vIbv/MihdGxbvYERERGYiYoXu5b+USvy/XMls5CZgEUH37du3AaiGh69YsUJnHXd3dzRs2BBVqlTB0KFDcf78eRw6dAhPnz6Fra0t6tati+HDh2PYsGGws7PLt3///v3h7OyMlStXYseOHQCAJk2a4P3330f79u1L7+KIiAiAYYnTANVc7mZNDTyJIMDm9DpIDi+ECAIU7i2Q/dZiCNKqBh6IiIjIvMjlqmW/CrMtEggOUjIreRkTCYKg/yccKhCzMZuOqTMsk2F4vyxHWd4rhULA4ED9e7iBYiRPy82G7W8zYfP3L6qX3v7I6fIpYCUxsLVlg9nLS4ep//7wb6Bl4/2zbOX9/m2PUiJ8WdH1xocCQ/wtL+g21/unz/PaInq6iYiofNM3cRqg6uGeGGZYwC16dh92u8bD6v4FCCIryDtPR27zoaoFvomIiMqB23eMW4+Mh0E3ERGZXOpD/QZdjRgOBI00LHma+O552O0KgzgzFYKdE7L7fg9F7bbFbSoREZFZcnczbj0yHssbV0BEROXKoTgBS5bqV7eFr2EBt/WlGNhHDoc4MxWKqvUgGxrFgJuIiMolv/6AuIjoTixW1aOyxaCbiIhMRp08LT296LoGJU5TKiA5NB92+6dBpJAjr24XZL29DUKVWiVqLxERkbmSSMQIDCi8TmAAmETNBDi8nIiITEKhUC0Ppq+JYXr2cmc/hd3eKbBOPgwAkLcZx/W3iYioQlAtB6bKYq58bllusVgVcHO5MNNg0E1ERCahb/K0KlWAjz7QL3GaKO1f2O8MhTjtXwjWdsjp8TXyvHqXvLFEREQWImScGMFBSkTHqJKmubuphpSzh9t0GHQTEVGZUygEnEnQr5d7fCj0CritkuNht+cDiHKeQVm5JrL7L4WyRuOSNpWIiMjiSCRiDPE3dStIjUE3ERGVqUNxqmHl+i4RVr1aEQG3IMAm4UdI4uZDJCihcPNB9ltLIFSqVvLGEhEREZUQg24iIioz6sRp+ioyeVpeDmwPzILNpZ0AgNzGA5HT9XPAWlKyhhIREZkBuZzDxMsDBt1ERFQmDE2cBhSePE2U8QB2v0yA1d1zEERiyDtNQ67PMECk/5JiRERE5ipiRf6EaMuWA4EBSiZEszAMuomIqEzomzgNUPVwTwwrOHma+N5F2O0KgzjjPgRbR2T3XQRFnQ5GbC0REZHpRKxQYsu2/OVKJf5fzsDbkvBOERFRmXj0WL96I4YDUVsLDrit/94D++3DIM64D6XLK5AN3c6Am4iIyg25XNXDXZhtkap6ZBkYdBMRUalTKAQ8fqzf0PIWvgUMKVcqIDm8CHZ7p0CkyEHey50ge3sbBGdP4zaWiIjIhKJjtIeU66JUquqRZeDwciIiKlWGZCsvMHFaTgbs9k6B9b+HAADyVqMh7zAREFsZt7FEREQmdvuOceuR6THoJiKiUmNotnJdidNEaSmwjwmF+PE1CFa2yHnzK+Q17GvsphIREZkFdzfj1iPT4/ByIiIqFYZkK3d1Bb6enX8et1XKUUi3DIH48TUoK9dA1pBNDLiJiKhc8+sPiIuI0sRiVT2yDAy6iYioVOibrXx8qI7EaYIAm4SNsNsxBqKcdChqNkXW0EgoazYpvQYTERGZAYlEjMCAwusEBnC9bkvC4eVERGR0CoWAMwn69XK7uLwwpDxPDtuDX8Dmrx0AgNxG/ZHT7QvA2rY0mkpERGR2VMuB5V+nWyxWBdxcLsyyMOgmIiKjMiRxGgBUdfnv/0WZD2H3ywRY3UmEIBJD/toU5LYYCYh0Lx9Gli8nJweLFi3CxYsXkZKSgvT0dDg6OqJWrVrw9/dHv379YGNjo7VPRkYGwsPDERsbi9TUVLi6uqJHjx4ICwtDpUqVTHQlRETGFTJOjOAgJaJjVEnT3N1UQ8rZw215GHQTEZHRGJo47fls5eL7f8EuJgzijHsQbB2Q3XshFC+/VkotJXORmZmJrVu3omnTpujcuTNcXFyQnp6Ow4cPY8aMGdi7dy9Wr14N8f8nOMpkMgwbNgxJSUno2LEj+vTpg6SkJKxbtw6nTp3C5s2bYWvLURFEVD5IJGIM8Td1K6ikGHQTEZFRGJI4TU2drdz68l7Y/voJRHnZUDq/jKz+yyC4vFxKLSVzUqVKFZw+fRoSiUSrPC8vD6NGjUJ8fDzi4uLQuXNnAMCaNWuQlJSE0aNHY8qUKZr6CxYswOrVq7F+/XqMHTu2LC+BiEhvcjl7risi3mEiIjIKfROnAc9lK39NgCT+e9jt+RCivGzkeb4G2dvbGHBXIGKxOF/ADQDW1tbo3r07ACAlJQUAIAgCoqKiIJVKERISolU/JCQEUqkUUVFRpd9oIqJiiFihRLeeQPgyYEe06t9uPVXlVL4x6CYiIqNIfahfL/eI4f/PVt5WBrtd4yE5uRIAIG8ZhOwBywE7x9JsJlkIpVKJw4cPAwDq168PAEhOTsaDBw/g6+sLqVSqVV8qlcLX1xc3b97E3bt3y7y9RESFiVihxJZt2knRANXrLdsYeJd3HF5OREQldihOwJKl+tVt4SuC9bNbsIsJgdWjfyBYSZDTfTbyGnHB0YpMLpdj5cqVEAQBT548wbFjx3D9+nUMHDgQ7dq1A/Bfj7enp6fOY3h6eiI+Ph7Jycl46aWXyqrpRESFkstVWcgLsy0SCA5Scqh5OcWgm4iISsSQ5GmuroCv8wlIt0yCKDsdykrVkd0vHMqXmpVyK8nc5ebmYunS/765EYlECAoKwocffqgpe/bsGQCgcuXKOo+hLs/IyCjwPE5OTpqkbKbi7Oxs0vNTyfD+WTZT3L8NG7OgVMoKraNUAr/GSvHucPsyapVlstT3H4NuIiIqNsOSpwlYFLAdlaK/gUhQQFHDG9n9wiE41CjVNpJlqFSpEi5fvgylUokHDx7g999/x3fffYezZ89i9erVBQbahkpPTzfKcYrL2dkZaWlpJm0DFR/vn2Uz1f27ek2/oeNXr8mQlpZdyq2xXOb6/tPniwCOXyAiomLTN3laNWc5YoK+QJMbX0IkKJDb4C1kBWxgwE35iMVi1KxZE0OHDsXs2bORkJCA5cuXAwAcHBwAFNyTrS43VoBORGQM7m7GrUeWh0E3EREVi0Ih4ExC0b3czpLH2NojGHUeRkGACDmvfYicXt8CNnZl0EqyZB07dgQAnDx5EgBQp04dAKqEarqoywua801EZAp+/YGiZrWIxap6VD4x6CYiIoMdihMwOFDAjxsLr1ff8W9sfn0IqsvOQJBURvaACOS2CgZEorJpKFm0Bw8eAFAtHwaogmlXV1ckJCRAJtOeHymTyZCQkAAPDw8mUSMisyKRiBEYUHidwACu112e8c4SEZFB1InTihpW3vWlWPzYcRjcpHegcKoN2dvboHilc5m0kSzHP//8g6ysrHzlWVlZmDNnDgCgU6dOAFTJ1fz9/SGTyRAREaFVPyIiAjKZDAEBRXyyJSIygZBxYgwNzN/jLRYDQwNV26n8YiI1IiLSmz6J00RQYqzXcozzUgVFqY7tYf/OIsDOqSyaSBZm3759+OGHH9CiRQu4u7ujcuXKuH//PuLi4vDkyRO0bNkSI0eO1NQPDg7GwYMHsXr1aiQlJaFRo0a4dOkS4uPj4e3tjREjRpjuYoiIChEyTozgICWiY4Dbd1RzuP36s4e7ImDQTUREeisqcZq9VSa+9JmBbm4HAADXXd+F69CPADEfN6Rb586d8eDBAyQmJuLs2bOQyWSoXLkyvLy80KdPHwwaNEgzvBwApFIpNm3ahPDwcMTGxuLEiROoXr06goKCEBoaCjs75gogIvMlkYgxxN/UraCyxk9BRESkl6ISp7nZ38Z3rcPg5XQFebCBvNvncG06qAxbSJbI29sb3t7eBu3j4OCAGTNmYMaMGaXUKiKiosnl7LUm/TDoJiKiIh2KUw0rL6iXu0XVU5jfcjJcbNPwMLsqbrVfgnpNfcu2kURERGUkYoUS2yIB5XNLcC9bDgQGKDk/m/KxiKD7/v372LdvH+Li4nD9+nU8fPgQTk5O8PX1RXBwMJo1a5Zvn4yMDM3Qs9TUVLi6uqJHjx4ICwtDpUqV8tVXKpXYvHkzIiMjkZKSAqlUivbt22Py5MmoVatWWVwmEZFZUidOK8igOpGY5v01bMR5uPSkEb6+vgQRH3OxUSIiKp8iViixZVv+cqUS/y9n4E3aLOK3YePGjZgzZw5u3ryJDh06YNSoUWjRogUOHjyIwMBA7N27V6u+TCbDsGHDsH79erzyyisYOXIkXn75Zaxbtw4jRoxATk5OvnPMnDkTX331FQRBwPDhw/Haa68hNjYWgwcPLnA9UCKi8q6wxGnWolxM9/4SnzX7AjbiPOy71QtBRzZg6Bg3WFlxSTAiIip/5HJVD3dhtkWq6hGpWURPd9OmTbFx40a0bt1aq/z06dMYOXIkZs2ahW7dukEikQAA1qxZg6SkJIwePRpTpkzR1F+wYAFWr16N9evXY+zYsZry48ePIyoqCq1atcK6des0x+nbty/GjBmDL7/8EmvXri2DKyUiMi+JZ3UPKa8iScP8lpPRqtopKAURliZNxO6nwfjsczE6vc6Am4iIyqfoGO0h5boolap6TJhGahbR0/3mm2/mC7gBoGXLlmjTpg3S09Nx+fJlAIAgCIiKioJUKkVISIhW/ZCQEEilUkRFRWmVq19PnDhRE3ADqnVBW7dujfj4eNy5c8fYl0VEZNZ+O5CDz2blL6/rcBWbXgtEq2qnkJknxeSTS6BoNxpRWxlwExFR+XZbz5BA33pUMVhE0F0Y9TIi6n+Tk5Px4MED+Pr6QiqVatWVSqXw9fXFzZs3cffuXU35iRMnNNte9NprrwEATp48WVqXQERkdg7FCZg8JQPPnmmXd675Oza8NhQelW7hZmYtvHt4Kw7d74IWviIOKScionLPXc+UJfrWo4rBooPuO3fu4OjRo6hevTrq168PAEhJSQEAeHp66txHXa6epy2TyZCamgoPDw9YWVnlq1+nTh2t4xIRlXfqedyC1lRuAcGvrsT3rcejkrUMJ1LbYFjcNlx7Vg+urkCzpqZqLRERUdnx6w+Ii4igxGJVPSI1i5jTrUtubi6mTp0KuVyOKVOmaALmZ//vlqlcubLO/dTlGRkZBtV/9mJ3zwucnJwgLuodSKXG2dnZ1E0gA/B+mbeTp3KRmvpU89rOSoYvmn+GHu77AQBbrw/Fwr+mIk+wgUgEzPi4MqpVszVVc4mIiMqMRCJGYIDu7OVqgQFcr5u0WWTQrVQqMW3aNJw6dQoBAQEYMGCAqZuE9PR0UzehwnJ2dkZaWpqpm0F64v0ybwqFgD8P/dfFXdP+Dr5rNQENqyQhV2mNOec/xY4bqswwjo7Ax1NEaNlChrQ0mamaXG7xyykiIvOkWg4s/zrdYrEq4OZyYfQiiwu6lUolZsyYgd27d6Nfv3744osvtLY7ODgA+K8n+0XqcnUPtr711fWIiMqrQ3GqYeXqbOXNXRKwsNUkVLV9hMc5Lvjw1PdIfNxCU3/250DLFpzHTUREFU/IODGCg5SIjlElTXN3Uw0pZw836WJRQbdSqcT06dOxc+dO9O3bF3Pnzs03pFs9B7ugtbXV5eq53VKpFNWrV8etW7egUCjyzetWz+VWH5eIqDw6FCfgk5n/9XAPqP0zPmk6GzbiPPyd3gCTT4bjbtZ/WWFcXQGf5gy4iYio4pJIxFwWjPRiMV/FPB9w9+7dG/PmzdOZ+MzT0xOurq5ISEiATKY93FEmkyEhIQEeHh546aWXNOWtW7fWbHvR4cOHAQCtWrUy8hUREZkHdeI0ALAS5WFqkzmY1XwmbMR5+O3OmxgZv1Er4AaAiWHMVk5EROWLXK7E9iglFi1W/SuXF7EgN5GeLCLoVg8p37lzJ3r27In58+frDLgBQCQSwd/fHzKZDBEREVrbIiIiIJPJEBAQoFWufr148WLI5XJN+aFDh3Dy5El07NgR7u7uRr4qIiLzcO48kJoKONo8wbK24zD0lU0AgIi/Q/HR6UXIVvy3/KKrK/D1bBHX4yYionIlYoUS3XoC4cuAHdGqf7v1VJUTlZRFDC9ftmwZoqOjIZVK4enpieXLl+er061bNzRs2BAAEBwcjIMHD2L16tVISkpCo0aNcOnSJcTHx8Pb2xsjRozQ2rdt27bw9/dHVFQUBg4ciE6dOiE1NRV79+5FlSpV8Omnn5bJdRIRlTWFQsCZBAGvVP4H37cJQ+1KNyHLs8cnCXPxx71uWnVHDAeCRrKHm4iIypeIFbqzkSuV+H+5ksnRqEQsIui+ffs2ANXw8BUrVuis4+7urgm6pVIpNm3ahPDwcMTGxuLEiROoXr06goKCEBoaCjs7u3z7z549G/Xr10dkZCQ2bNgAqVSK7t27Y/Lkyahdu3bpXRwRkYmoE6c1FP+BDa99jMo2mbid6Y6JJ5fin2f189Vv4cuAm4iIyhe5XJWFvDDbIoHgICWTpFGxiQRBEIquRkXhEkimwyWoLAvvl3lQJU5TYlS9NRjfcDHEIgGnH7bClNPf4Yk8/1JVrq5A1FYG3WWJS4aVDlP//eHfQMvG+2fZdN2/7VFKhC8ret/xocAQfwbdpmSu7z99ntcW0dNNRETGo1AIWL5Mhjm+M9HLYy8AIDJ5COZdmI48wUbnPkycRkRE5dHtO8atR6QLg24iogom6eQ9fOs1Ho2r/IVcpTXmXZyOqORAnXVdXVUBNxOnERFReeTuVnQdQ+oR6cIxEkREFcmtRHgf90fjKn8hLacK3j+2usCAe+xoO0RtZcBNRETll19/QFxERCQWq+oRFReDbiKiCuLajh2QbBuBSsIjXHlaH+8c3o7Tj1oXWL9tGwmHlBMRUbkmkYgRGFB4ncAAMIkalQiHlxMRlXfKPDzYugDN7v8IiIGDd7vh04RvkKWoVOAurq5AC19rPH1ahu0kIiIyAdVyYKos5srnluUWi1UBN5cLo5Ji0E1EVJ5lp8N294d45f4RAMCKyyFYefl9CEUMdGLiNCIiqkhCxokRHKREdIwqaZq7m2pIOXu4yRgYdBMRlVOix9dhvzME4icpyMqzx2eJX+PA3R6F7sPEaUREVB7I5fkD6KJIJGIM8S/9tlHFw6CbiKgcsvo3DnZ7PoRInoF72S9h4vFwXH7asNB9RgwHgkayh5uIiCxbxIr8Q8WXLQdGDM/Ee6NM1y6quBh0ExGVJ4IAmzM/QBK3ACIISHjkiw9PfY80edUid23hy4CbiIgsW8QKJbZsy1+uVAI//JiNnBzO0aayx984IqLyIi8HtvunwTZuPkQQsOf+YIw5ulavgNvVFWjWtAzaSEREVErkclUPd2G2RarqEZUlBt1EROWAKOMB7CPfhU3SLggiK1x99VN8cmIW8gSJXvszcRoREVm66BjtIeW6KJWqekRlicPLiYgsnPjuedjtCoM4MxWCnRMye3+H3Qfb6LWvoyPw8RQmTiMiIst3+45x6xEZC4NuIiILZn1pF2x/+wwihRyKqvVwyG0Z5nzkgdRU/faf/TnQsgUDbiIisnzubsatR2QsHF5ORGSJlApI4ubDbv/HECnkyKvbBb/V3ooPvtY/4HZ1BXyaM+AmIqLywa8/IC4iuhGL9Vs+jMiYGHQTEVmanGewiwmB5PQ6AIC89Vhk9lmChRFSgw7DedwVS3JyMnbu3ImbN29qlZ89exYBAQHw8fFB7969ERsba6IWEhGVjEQiRmBA4XUCA1T1iMoSf+OIiCyIKO1fSLcMgfW/cRCs7ZDdZyGy2k3ET9Eig3q4v57NedwVzbp16zBjxgzY2Nhoyh4+fIj33nsP58+fR3Z2Nq5fv47Jkyfjr7/+MmFLiYiKL2ScGEMD8/d4i8XAqBF2XC6MTIJzuomILIRVcjzs9nwAUc4zKCvXRHb/pfjjciN8/6mgd8A9YjgQNJI93BVRQkICGjRogJo1a2rKfv75Z2RmZmLUqFGYPHky4uLiMH78ePzwww9YsGBBmbTr/v372LdvH+Li4nD9+nU8fPgQTk5O8PX1RXBwMJo1a5Zvn4yMDISHhyM2NhapqalwdXVFjx49EBYWhkqVKpVJu4nIfIWMEyM4SInoGFXSNHc31ZDyGjUqIS1NburmUQXEoJuIyNwJAmwSfoQkbj5EghIKNx9kv7UYf56phk9mCgYdqoUvA+6KKjU1Fa1bt9YqO3z4MCQSCcLCwiCRSNCtWzc0a9YM58+fL7N2bdy4EatXr0bt2rXRoUMHuLi4ICUlBQcOHMCBAwewcOFC9O7dW1NfJpNh2LBhSEpKQseOHdGnTx8kJSVh3bp1OHXqFDZv3gxbW9syaz8RmSeJRIwh/qZuBZEKg24iInOWlwPbA7Ngc2knACC38UDkdP0cCpENvg83LOB2dQWaNS2FNpJFyMnJgfi58ZZyuRwXLlxAs2bNtHqH3d3d8ffff5dZu5o2bYqNGzfm+0Lg9OnTGDlyJGbNmoVu3bpBIlGtOb9mzRokJSVh9OjRmDJliqb+ggULsHr1aqxfvx5jx44ts/YTUdmRy/P3XnN+NlkC/pYSEZkpUcYD2EeNgM2lnRBEYuR0no6cN78CrCU4dx56DylXY+K0iq1GjRq4fPmy5vXRo0eRk5ODNm2013TPycmBvb19mbXrzTffzBdwA0DLli3Rpk0bpKena9otCAKioqIglUoREhKiVT8kJARSqRRRUVFl0m4iKlsRK5To1hMIXwbsiFb9262nqpzI3DHoJiIyQ+J7F2G/JQBWd89BsHVEtt8q5Pq+C4hEUCgEnEnQv5ebidMIANq2bYuUlBR8/fXX+P3337FgwQKIRCJ069ZNq96VK1fw0ksvmaiV2qytrbX+TU5OxoMHD+Dr6wupVDtbv1Qqha+vL27evIm7d++WeVuJqPRErFBiyzZA+UJ8rVQCW7Yx8Cbzx6CbiMjMWP+9B/bbh0GccR9Kl1cgG7odCs8OAIBDcQIGBwr4caN+xxofCkRtZcBNwNixY+Ho6IhNmzYhNDQU//zzD3r16oUGDRpo6ly9ehU3btyAr6+vCVuqcufOHRw9ehTVq1dH/fr1AQApKSkAAE9PT537qMuTk5PLoIVEVBbkciW2RRZeZ1ukqh6RueKcbiIic6FUQHJkMSSnVgMA8l7uhOze8wFbBwCqgNuQxGmursDggRxSTipubm6IiYlBVFQUHj9+jMaNG2PgwIFadS5duoSuXbuiZ8+eJmqlSm5uLqZOnQq5XI4pU6bAysoKAPDs2TMAQOXKlXXupy7PyMgo8NhOTk5ac9tNwdnZ2aTnp5Lh/StbGzZmQamUFVpHqQR+jZXi3eFFT43h/bNslnr/GHQTEZmDnAzY7fsI1tf/BADIWwVD3mESIFYFGwqFYHDiNM7hphfVrFkT48ePL3B7//790b9//zJsUX5KpRLTpk3DqVOnEBAQgAEDBhj1+Onp6UY9nqGcnZ2RlpZm0jZQ8fH+lb2r1/Trwb56TYa0tOxC6/D+WTZzvX/6fBHAoJuIyMREaSmwjwmF+PE1CFYS5Lz5FfIavqVVJ/Gs/mtxu7qqAm4OKSdLo1QqMWPGDOzevRv9+vXDF198obXdwUE16qOgnmx1eUE94URkedzdjFuPyBQYdBMRmZDVjWOw+2UyRDnpUFZyRXb/pVDW9NaqcyhOwNz5+h1vxHAgaCR7uEk1J7ok3NzK9hOsUqnE9OnTsXPnTvTt2xdz587NNwy8Tp06AAqes60uL2jONxFZHr/+wLLl+ZOoPU8sVtUjMlcMuomITEEQYHN2MyR/zoVIUEBRsymy+4VDqOyqVc3QedwtfBlwk0qXLl0gEhXvd0EkEuHSpUtGblHBng+4e/fujXnz5mnmcT/P09MTrq6uSEhIgEwm08pgLpPJkJCQAA8PD7PJvk5EJSeRiBEYoMpeXpDAAK7XTeaNQTcRUVlTyGF78EvYXPwJAJDbqD9yun0BWNtqVzNwHrerK9CsqVFbShasVatWpm6CXtRDynfu3ImePXti/vz5OgNuQPVlgL+/P5YtW4aIiAhMmTJFsy0iIgIymQzjxo0rq6YTURkJGScGoMpi/nyPt1isCrhV24nMF4NuIqIyJMp8CLtfJsLqTgIEkRjy1z9Cru8I4IUeSYVCwE879J/HDTBxGmnbuFHPdeVMbNmyZYiOjoZUKoWnpyeWL1+er063bt3QsGFDAEBwcDAOHjyI1atXIykpCY0aNcKlS5cQHx8Pb29vjBgxoqwvgYjKQMg4MYKDlIiOAW7fUc3h9uvPHm6yDAy6iYjKiPjBJdjFhEH87C4EWwdk914Ixcuv5at3KE7Vw61vwO3oCHw8hYnTyDLdvn0bgGp4+IoVK3TWcXd31wTdUqkUmzZtQnh4OGJjY3HixAlUr14dQUFBCA0NhZ2dXZm1nYhKRi43LIiWSMQY4l+GDSQyEpEgCIatQUM6mWP6+orCXJcPIN0q6v2yvrwPtr/OgCgvG0pnT2T1j4Dg8nK+eobO4QaA7xcCLVsY/5v+inqvzIWlrkVq7kz9O833lWXj/TOeiBVlP1yc98+ymev945JhRESmJighORoOyQlVD15enY7I7rMQsHPMV7U4a3G7ugI+zdnDTYa5evUqUlJSClx6C4DR18cmIlKLWKE7MZpSif+XKzlPm8oVBt1ERKVFngm7fR/D+tpB1csWoyB/7UNArDtJ1LnzMGgON8B53GSYo0eP4osvvsCNGzcKrCMIAkQiEYNuIioVcrmqh7sw2yKB4CAl52tTucGgm4ioFIie3IRdTCisHl2FYGWDnO6zkddoQIH1FQoBZxIMy1Q+MYzzuEl/Fy5cwJgxYyASidC3b19cuXIFV65cwZgxY3Djxg0cPXoUT58+xcCBA8t8jW4iqjiiYwpfcxtQbY+OAedvU7lhMUF3TEwMzpw5g4sXL+LKlSvIzc3FnDlzMHDgwHx1w8PDsXTp0gKPdfDgQXh4eOQrP3z4MFauXIm//voLIpEIjRs3RkhICNq1a2fUayGi8s3qxgnY7Z4IUXY6lJWqIfutcCjdmhdY39DEaeNDgcED2cNNhlm1ahUUCgXWrFmDDh06YPr06bhy5QomT54MAHj69ClmzpyJP//8Ez///LOJW0tE5dXtO8atR2QJLCboXrx4MW7fvg1nZ2e4urpqsp0Wxs/PD+7u7vnKHR3zz6WMiYnB1KlT4eLiognk9+7di1GjRuH7779Hz549S34RRFTuWZ/bCts/voFImQdFjSbI7rcUgkONAusbmjjN1ZUBNxVPYmIiGjZsiA4dOujc7ujoiHnz5qFLly74/vvv8e2335ZxC4moInDXcyCNvvWILIHFBN1fffUV6tSpA3d3d6xatQoLFy4sch8/Pz+0adOmyHrp6en46quv4OzsjOjoaNSsWRMAMHr0aAwYMACzZs1Cx44dUbly5RJfBxGVUwo5bP/4BjbntwMAchv0RU73LwGbgpcvKk7iNM7hpuJ68uQJWrdurXltY2MDQLVUl1QqBQBIJBK0aNECR44cMUkbiaj88+sPLFte+BBzsVhVj6i8sJjsBO3bt9fZa20M+/fvx9OnTzFs2DBNwA0ANWvWxLBhw5CWloYDBw6UyrmJqByQPYb9T+/B5vx2CBAhp+MHyOk1r9CAGwASz+o/pNzVFfh6NudwU/G5uLhoZStXL3Fy8+ZNrXo5OTmFZjUnIioJiUSMwIDC6wQGFL5eN5GlKde/zadOncKqVauwZs0aHDhwAJmZmTrrnTx5EgDQsWPHfNvUZeo6RETPE6f+DekWf1jdPg1BUgnZA5Yht/VoQFR4cHwoTsBns/Q7x4jhQNRWBtxUMnXq1MGtW7c0r5s2bQpBELB9+3ZNWUpKCo4fP45atWqZoolEVEGEjBNjaKCqR/t5YjEwNLD01ukmMhWLGV5eHOHh4VqvHR0d8cknn+RbBiU5ORmA6gPJi9RlKSkppdJGIrJcVldiYbd/GkR5WVBWqY2s/hEQqtYtcj9D53G38OWQciq5119/HYsWLcK1a9dQt25dvPbaa3Bzc8PWrVtx4cIF1KxZE8ePH0dOTg4GDRpk6uYSkYWSy5WIjlElQnN3Uw0T19VrHTJOjOAg/eoSWbpyGXQ3aNAA33zzDVq3bg1XV1ekpqbizz//xJIlSzBt2jQ4ODiga9eumvrqYXQODg75jqWex/3s2bNCz+nk5ATxi1/XUZlRD5Mky2Dp90tQKqH8cxGUfywAAIjqvg5JwErYSou+LoVCwJJlTwAUHXSLREANVzE6d6pisqDb0u8V/WfAgAFwcHCA8v8TKSUSCZYvX45JkybhwoULuHDhAsRiMfz9/TFixAgTt5aILFHECtUa3M/P1162HAgMUOrsvZZIxFwWjCqEchl0d+/eXeu1h4cHhg0bhrp162qykT8fdBtDenq6UY9H+nN2dkZaWpqpm0F6svj7Jc+E3a8zYH01VvXS913IX/8IyAGQU/h1KRQCftoh4P59/U4lCMD4UAFPnz4pWZuLyeLvlYUz9hce1atXR2BgoFaZl5cX9u3bh2vXruHp06eoU6cOXFxcjHpeIqoYIlYosWVb/nKlEv8v1x14E1UE5TLoLki7du1Qu3ZtXLlyBRkZGZpe7Od7s1/8kFNYLzgRVSyi9NuwiwmF1cPLEMQ2yOn2OfKa6DcM19C1uB0dgY+ncB43lY26dYueFkFEVBC5XNXDXZhtkUBwkJLDx6lCqnC/9eqgOisrS1Pm6ekJQPe8bXWZrvneRFRxiG+dViVMe3gZSmlVZPmvNyjg/mSm/gE3AMz+HAy4iYjIIkTHFL4EGKDaHh1TNu0hMjcVqqdbJpPh6tWrkEqlWj3arVq1wu7duxEfH4/mzZtr7RMfHw8AWmubElHFYn0+Era/fwmRMg8K10bI7r8UgsNLeu1bnLW4XV0Bn+YMuMm4pk+frnddkUiEb775phRbQ0Tlye07xq1HVN6Uu6A7IyMDqampePnll7XKs7Oz8dlnnyEzMxMDBw6EtfV/l96rVy8sWLAAmzZtwuDBgzVrdd+7dw+bNm2Cs7MzunXrVqbXQURmQJELyZ9zITm3BQCQ69ULOW9+DdjY67f7/+dwG9LDDQATw5itnIwvOjq6yDoikQiCIDDoJiKDuLsZtx5ReWMxQXdUVBTOnDkDALhy5YqmTL1+dosWLeDv748nT56gV69e8Pb2Rt26dVGtWjU8evQIR48exb1791C/fn1MnTpV69hOTk747LPPMHXqVPj5+aF3794AgL179+LJkyf47rvvNPO+iaiCyEqD3e7JsL55AgCQ02EicluPLXL9bTVD53ADqh7uiWGcx02lY8OGDTrLlUol7t27h/j4eOzduxcjR47EG2+8UcatIyJL5tdflaW8sCHmYrGqHlFFZDFB95kzZ/J9S5+QkICEhATNa39/f1SpUgVDhw7F+fPncejQITx9+hS2traoW7cuhg8fjmHDhsHOzi7f8fv37w9nZ2esXLkSO3bsAAA0adIE77//Ptq3b1+6F0dEZkX88ArsYkIhTr8FwUaK7N7zoajbRe/9DV2HGwDGhwKDB7KHm0pPUdOkBgwYgM6dO2PatGno0kX/33ciIolEjMAA3dnL1QIDuAY3VVwiQRAM+2RIOnFZHdPhskaWxdzvl9U/B2G3bypEuTIonWohu/8yKKu9qvf+CoWAwYGG93BHbTW/gNvc71V5Z6o10gcMGABHR8cCe8Ytnal/p/m+smy8f4XTtU63WKwKuM1huTDeP8tmrvdPn+e1xfR0ExGVKkGAzcmVsD2yGACQV6stsvsuAuz1D3w4h5vKgzp16uDw4cOmbgYRmRG5XInoGFUiNHc31TBxXb3WIePECA7Sry5RRcKgm4goNwu2v86AzZX9AAB582GQd5oKWNnofQjO4abyQKlU4vLlyxCL+QGZiFR09V4vWw4EBih19l5LJGIM8S/DBhJZAAbdRFShiZ7egd2uMFg9SIIgtkFOl0+R1zTAoGNwDjdZuqysLCQnJ2PlypVISUlB586dTd0kIjIDESt0z9NWKvH/ct2BNxFpY9BNRBWW+HYC7H6ZALHsEZT2Lsh+azGUHi0NOkZx1+FmwE1lrWHDhkXWEQQBLi4u+Vb5IKKKRy5X9XAXZlskEByk5PBxoiIw6CaiCsn64s+wPfAFRMpcKKo3QHb/pRAc3Q0+TuJZzuEmy/DSSy8VuM3Gxgaurq5o1aoV3nnnHVStWrUMW0ZE5ig6pvAlwADV9ugYcDg5UREYdBNRxaLMg+TQPEgSNwIA8l59E9k95wA2UoMPdShOwNz5+tfnHG4ypd9//93UTSAiC3L7jnHrEVVkxR4LsnTpUty7d8+YbSEiKl1ZT2C3Y4wm4M5pF4bsvt8VO+D+ZKaAZ8/0qz8+VLUsGANuIiKyBO5uxq1HVJGVKOju2rUrxo0bh4MHD0JZ1PgTIiITEj36B9ItQ2B94xgEGymy3lqM3HahgMjwP4OGzuPmHG4iIrI0fv1Va2wXRixW1SOiwhV7ePmkSZPw008/4c8//8ShQ4dQrVo1DBo0CIMHD4aHh4cx20hEVCJW1/+A3d6PIJJnQunohuz+EVBW9yrWsYqzFjfncJMpLF26tNj7ikQihIaGGrE1RGRpJBIxAgN0Zy9XCwzgGtxE+hAJgmBY2t0XHD16FFFRUThw4AByc3MhFovRrl07BAQEoGvXrrC2rhjTxtPS0kzdhArL2dmZP38LUqb3SxBgc2oNJPHfQQQBCo9WyOr7PSB1KdbhDF2L29ER+HiK5Q4p53vLtJydnUu0f4MGDSASifDiY14k+u/3Ub3txTKRSISkpKQSnd9cmfp3mu8ry1YR75+udbrFYlXAbWnLhVXE+1eemOv90+d5XeKIuH379mjfvj3S0tKwc+dO/PTTTzhy5AiOHj0KFxcX+Pn5YfDgwfD09CzpqYiI9JebDdvfPoPN37tVL5sOQc4bnwBWNsU6XHHW4p79OdCyhWUG3GT55syZk68sMTERkZGRqFmzJnr06AF3d1XG/jt37iA2NhZ37txBQEAAfHx8yrq5RGQCcrkS0TGqZGjubqqh4i/2XIeMEyM4qOh6RFSwEvd065KQkIAtW7Zg9+7dmm/PW7dujWHDhqF79+7GPp1ZMMdvXSoKc/3Wi3Qri/slenYPdrvCYHX/Lwhia+S8MQN5zd4u9vEUCgGDAw0bUu7qqkqcZsnDyvneMq2S9nS/6Pz58xg2bBhGjhyJCRMm5BuJplAosGTJEqxbtw6bNm1Cs2bNjHp+c2Hq32m+ryxbebp/5akHW1/l6f5VROZ6//R5Xhv9HXXjxg388ccfOH78uKasZs2aOHHiBCZMmIDBgwfj7t27xj4tEREAQHznLOy3+KsCbrsqyBq0tsQBt6FzuAHO4ybzs3jxYtSuXRsffPCBzqlfVlZWmDx5MurUqYMlS5aYoIVEVFYiVqjmar+YB1mpBLZsU20nIuMxyoTr3NxcxMbGIjIyEidPnoQgCKhSpQpGjRqFIUOGwNPTE4mJiVixYgUOHTqE2bNnY/ny5cY4NRGRhvVfO2F7YCZEilwoqtVHdv9lEJyKn9jR0DncANfiJvN1/vx5vP7660XW8/LyQlxcXBm06D8xMTE4c+YMLl68iCtXriA3Nxdz5szBwIEDddbPyMhAeHg4YmNjkZqaCldXV/To0QNhYWGoVKlSmbadyNLI5aoe7sJsiwSCg5QcQk5kJCUKuq9du4bIyEjExMQgPT0dgiDAx8cHgYGB6NWrFyQSiaauj48PVq5ciYCAAJw6darEDSci0lDmQXJ4ISRn1gMA8up1Q3bPuYCk+B++izOHe3wolwYj86VQKHDr1q0i6926dQsKhaIMWvSfxYsX4/bt23B2doarqytu375dYF2ZTIZhw4YhKSkJHTt2RJ8+fZCUlIR169bh1KlT2Lx5M2xtbcuw9USWJTomfw/3i5RKVb0h/mXTJqLyrthB99tvv42zZ89CEARUrlwZb7/9NgIDA1G/fv1C96tXrx4uXLhQ3NMSEWnLTofdnimwTokHAMjbhkLeLqRY628DquHkiWcFfDvfsP24FjeZu6ZNm+LEiRPYuXMnBgwYoLPOzp07ce7cObRt27ZM2/bVV1+hTp06cHd3x6pVq7Bw4cIC665ZswZJSUkYPXo0pkyZoilfsGABVq9ejfXr12Ps2LFl0Wwii3T7jnHrEVHRih10JyYmolGjRnj77bfRt29f2Nvb67Wfv78/WrVqVdzTEhFpiB7/C/uYEIjTkiFY2yO75xwo6vco9vGKM5xcjXO4ydyNHz8ep0+fxvTp07Fjxw707t0bbm5uAFTZy/ft24eTJ0/C2toa48ePL9O2tW/fXq96giAgKioKUqkUISEhWttCQkKwefNmREVFMegmKoS7m3HrEVHRih10//TTT2jSpInB+/n4+HApEiIqMat/42C350OI5BlQOryE7P5LoXRtVOzjFWc4OcA53GQ5WrRogfDwcMyYMQMnT57MN9VLnY/l66+/RosWLUzUysIlJyfjwYMH6NixI6RSqdY2qVQKX19fxMfH4+7du3jppZdM1Eoi8+bXH1i2vPAh5mKxqh4RGUexg+7iBNxERCUmCLA58wMkcQsgggCFewtkv7UYgrRqsQ+pUKh6uA3FOdxkad544w0cOHAAv/76K06fPo0HDx4AAKpXr46WLVuiZ8+eZp2ILCUlBQDg6empc7unpyfi4+ORnJzMoJuoABKJGIEBquzlBQkM4DrcRMZklOzlRERlIi8Htr99BpukXwAAuU0GI6frZ4CVpIgdC5d41vAh5ZzDTZaqUqVKGDhwYIGZwc3Zs2fPAACVK1fWuV1dnpGRUWZtIrJEqnW4K9463USmwqCbiCyCKOMB7HaNh9W98xBEVpB3no7c5kMBUcmC3kNxAuYamDQN4BxuIkvl5OQEsdi0AYWzs7NJz08lY+73Ty5XYtv2HNy4pUBtDysEDrHV2Wv9yXTgow/1q1uemPv9o8JZ6v1j0E1EZk987wLsYsIgznwAwc4J2X2/h6J2ybMrF2ceN+dwk6W4c0eVerhGjRqwsrLSvNaXOsmaOXFwcABQcE+2urygnnAASE9PN37DDODs7Iy0tDSTtoGKz9zvX8SK/L3X8xfJCu29fquv+v9ykZmZjczMUm+myZj7/aPCmev90+eLAAbdRGTWrC/tgu1vn0GkkENRtR6y+0dAqFKrxMc1dB63oyMw+3PApzl7uMkydOnSBWKxGHv27MHLL7+MLl26QKTnyBCRSIRLly6VcgsNV6dOHQCqhGq6qMsLmvNNVJ5FrNA9T1upxP/LlRw2TmQiDLqJyDwpFZDEfwfJ6bUAgLy6XZDdax4gKXmSJ4VCwE87DJvH/fEUEVq2YLBNlkO9PKd6Sc/ysFynp6cnXF1dkZCQAJlMppXBXCaTISEhAR4eHkyiRhWOXK7q4S7MtkggOEhZ7oePE5kjBt1EZH5ynsFu7xRY/xsHAJC3GQt5+wmAqOQfFAxdi9vRURVwczg5WZqNGzcW+toSiUQi+Pv7Y9myZYiIiMCUKVM02yIiIiCTyTBu3DgTtpDINKJjCl8CDFBtj44BhviXTZuI6D8MuonIrIjS/oX9zlCI0/6FYGWLnB5fI69BH6McuzhzuGd/DvZwE5WyqKgonDlzBgBw5coVTdnJkycBqNYY9/dXRQrBwcE4ePAgVq9ejaSkJDRq1AiXLl1CfHw8vL29MWLECNNcBJEJ3dYzZYO+9YjIuBh0E5HZsEo+Ars9H0CU8xTKyjWQ3X8ZlDUal/i4CoWAxLMCvjUwS7mrq2oON1F59+zZMyQnJ6NmzZqoXr16mZ//zJkziI6O1ipLSEhAQkKC5rU66JZKpdi0aRPCw8MRGxuLEydOoHr16ggKCkJoaCjs7OzKtO1E5sBdz7yH+tYjIuMSCYJgWLcP6WSOmfQqCnPNZEi66bxfggCbhB8hiZsPkaCE4qXmyO63BEKlkn/4N3Q4+fO+nl2xh5XzvWVaxl4WJT4+Hnv27MHw4cPRqFEjTfnGjRsxf/585ObmQiQSYdiwYZgxY4ZRz21OTP07zfeVZTPX+yeXK9GtZ+FDzMVi4MB+VOg53eZ6/0g/5nr/9HleV9x3HRGZhzw5bGM/ge2hbyESlMht7Ics/x+NFnB/MtPwgNvVlQE3lT9RUVHYv3+/JgM4AFy+fBnffPMNlEolmjVrhsqVK2Pjxo04cOCACVtKRIaSSMQIDCi8TmBAxQ64iUyJw8uJyGREmamw2zUBVnfPQhCJIX/9I+T6jgD0XNaoMIYuCaY2PhQYPJDLglH5c+nSJTRs2BCVKv23AoB6SPecOXPw1ltv4ebNm+jTpw+2bt2Kbt26maqpRFQMquXA8q/TLRaj0HW6iaj0MegmIpMQ3/8LdjFhEGfcg2DriOw+i6Dw7GC04yeeLV4PNwNuKq8ePnwIb29vrbJjx47B0dERffqokhXWqlULrVq1wrVr10zRRCIqglyuRHSMKiGauxvg11+79zpknBjBQYXXIaKyx6CbiMqc9d97YPvrJxApcqB0eQVZ/ZdBcPY02vEPxQmYa2DSNACYGMaAm8ovKysr5OTkaF4/efIEV69eRefOnSEW//eB3MXFBadOnTJFE4moEBEr8vdiL1sOBAYotXqxJRIxlwUjMjMMuomo7AhKKH6bA7u4xQCAvJdfR3bvBYCtg9FOUZxlwVxdVQE353BTeebu7o7ExETk5ubCxsYGv/32GwRBQIcO2iNMnjx5gipVqpimkUSkU8QKJbZsy1+uVOL/5UoOHycyYxYTdMfExODMmTO4ePEirly5gtzcXMyZMwcDBw7UWT8jI0OznEhqaipcXV3Ro0cPhIWFac1nU1Mqldi8eTMiIyORkpICqVSK9u3bY/LkyahVq1ZpXx5R+ZeTAbt9U6G8/gcAQN4yCPKOHwBiK6McvjjLgjk6qtbh9mnOHm4q/3r37o3vvvsOw4YNg4+PD3bs2AFra2utuduCIOCvv/7Cyy+/bMKWEtHz5HJVD3dhtkUCwUFKDiMnMlMWE3QvXrwYt2/fhrOzM1xdXXH79u0C68pkMgwbNgxJSUno2LEj+vTpg6SkJKxbtw6nTp3C5s2bYWtrq7XPzJkzERUVhVdffRXDhw/HgwcPsG/fPhw5cgTbt2+Hp6dnKV8hUfklenIDdjEhsHp0DbC2RXa32chr1M9oxy/usmAfTxGhZQsG21QxDB8+HAcPHsS5c+dw7tw5iMViTJ06FTVq1NDUOX78OB4/fozAwEATtpSInhcdU/hSYIBqe3QMOKycyExZTND91VdfoU6dOnB3d8eqVauwcOHCAuuuWbMGSUlJGD16NKZMmaIpX7BgAVavXo3169dj7NixmvLjx48jKioKrVq1wrp16yCRSAAAffv2xZgxY/Dll19i7dq1pXdxROWY1Y1jsNs9GaLsdCgrucJm2I/Iq+RptOMXZzi5o6Mq4OZwcqpIpFIptm3bhlOnTuHx48do2LBhvi+UxWIxpk+fji5dupimkUSUz+07xq1HRGXPYsagtG/fHu7u7kXWEwQBUVFRkEqlCAkJ0doWEhICqVSKqKgorXL164kTJ2oCbgDo1KkTWrdujfj4eNy5w79kRAYRBNgkboLdz6Mhyk6HomZTZL0TBbGHj9FOUdxlwWZ/DgbcVCGJxWK0adMGvXr10jmCq02bNhgxYgSnVRGZEXc349YjorJnMUG3vpKTk/HgwQP4+vpCKpVqbZNKpfD19cXNmzdx9+5dTfmJEyc021702muvAQBOnjxZug0nKk8Uctj+NhO2f3wNkaBAbsN+yArYAKGyq/FOoRDw047iLQvm05wBN1FycjISExPx77//mropRFQIv/6qtbYLIxar6hGReSp3QXdKSgoAFDgHW12enJwMQDX/OzU1FR4eHrCyyp/QqU6dOlrHJaLCiWSPYP9TEGwu/gRBJEbO61OR03MuYG1b9M56OhQnYHCggPBlhu/LZcGoIpPL5Vi0aJGmt3vo0KFYtWqVZntMTAz8/PyQlJRkwlYS0fMkEjECAwqvExjAtbiJzFm5e3c+e/YMAFC5cmWd29XlGRkZBtVX1yOigokfJMF+sz+sbp+BIKmM7AHLkdtyFCAyXpCrnsNdnB7ur2dzHjdVXNnZ2Rg+fDhWr14NGxsbdOrUCYKgPT2jbdu2+Pvvv7Fv3z4TtZKoYpLLldgepcSixap/5XLtzGkh48QYGpi/x1ssBoYGgsuFEZk5i0mkZu6cnJwgLmrsD5UaZ2dnUzehwlNe3AXFjolAbhZQtS5s3vkRkur1dNYtzv1SKAScOp2LeQszDNrPyVGERQsqo1VLG/ZwFwPfW+XHmjVrcO7cOQwePBifffYZbG1t0aBBA606NWrUQL169XD06FF88MEHJmopUcUSsUK1JNjzGcqXLQcCA7TX3g4ZJ0ZwkBLRMaqkae5uqiHl7OEmMn/lLuh2cHAA8F9P9ovU5eoebH3rq+sVJD093fDGklE4OzsjLS3N1M2ouAQlJEeXQnJiOQAgr05HZPdZAFg7ATruS3HuV3GXBAOAqVMAr/qZePrU8H0rOr63TMvYX3js3bsXbm5umDVrFqytC378v/zyy0hISDDquYlIt4gVSmzZlr9cqcT/y7UDb4lEzGXBiCxQuftqTD0HWz1n+0XqcvXcbqlUiurVq+PWrVtQKBT56qvncquPS0TPkWfCbtcETcAtbzEK2X7LATsno52Cw8mJjOPWrVto0qRJoQE3ANjY2PCLZKIyIJerergLsy0S+YaaE5HlKXdBt6enJ1xdXZGQkACZTKa1TSaTISEhAR4eHnjppZc05a1bt9Zse9Hhw4cBAK1atSrdhhNZGFH6LdhvGwrrawchWNkgu8ccyDtNBcTGG0Ajlysxf6HhS4KNDwWitjLgJnqenZ2dXsH0rVu34ORkvC/OiEi36BjtIeW6KJWqekRk2cpd0C0SieDv7w+ZTIaIiAitbREREZDJZAgI0E4BqX69ePFiyOVyTfmhQ4dw8uRJdOzYUa81wokqCqubJyHd7A+rh1egrFQNWf4bkNd4gFHPcShOgJ8/8MTADjdXV2DwQGYoJ3pRgwYNcPHiRTx+/LjAOjdv3sSlS5fQpEmTMmwZUcV0+45x6xGR+bKYOd1RUVE4c+YMAODKlSuaMvX62S1atIC/v2qSS3BwMA4ePIjVq1cjKSkJjRo1wqVLlxAfHw9vb2+MGDFC69ht27aFv78/oqKiMHDgQHTq1AmpqanYu3cvqlSpgk8//bQMr5TIvFmf2wrbP76BSJkHRY0myO63FIJDDaOeQz2kvDi4JBiRbgEBAZgyZQo++OADLFq0CC4uLlrbnz59ihkzZiAvLw9DhgwxUSuJKg53N+PWIyLzJRJeXC/ETE2bNg3R0dEFbvfz88PcuXM1r589e4bw8HDExsbi4cOHqF69Onr27InQ0FCdy4MplUps2rQJkZGRSElJgVQqRfv27TF58mTUrl27yPYx2ZDpMNlTGVHIYfvHN7A5vx0AkNugL3K6fwnY2Bl0mKLul0KhWoO7OHO4J4ZxSLkx8b1lWqWROf7DDz/Enj17IJVK4ePjgyNHjqBOnTp45ZVXcOrUKWRkZGDAgAFaz9PyxtS/03xfWTZj3j+5XIluPQsfYi4WAwf2M0O5sfD9Z9nM9f7p87y2mKDb3JnjL0BFYa5vwHJF9hj2uyfB6tYpCBBB3nEyclsFF2v97cLul0Ih4KcdAsKX6X88R0dg9ueAT3P2cBsb31umVRpBtyAIWLt2LdauXZvv3jo4OCA4OBhjxoyBqBjvbUth6t9pvq8sm7HvX0HZy9W4Brdx8f1n2cz1/unzvLaY4eVEZBri1MuwiwmF+OltCJJKyO69AIpXOhv9PMVdFuzjKSK0bFF+AwQiYxKJRAgODsaoUaPw119/4fbt2xAEATVq1IC3tzckEompm0hU7sjlBa+trQqo86/TLRYDgQEMuInKCwbdRFQgq6uxsNs/HaJcGZRVaiOrfwSEqnWNfp7izOGuUgX46AMOJycqDisrKzRt2hRNmzbNt+3Ro0f44YcfMGXKFBO0jKh8iViRP6BethwIDPhv/e2QcWIEBxUcmBOR5WPQTUT5CUrYHF8O22NLAQB5tdshu88iwL6KUU+jUAhIPCvg2/mG7VelCrAjEpBIGHATGcvdu3exZs0a/Pzzz8jJyWHQTVRCBQ0dVyrx//L/Am+JRIwh/mXaPCIqQwy6iUhbrgx2+2fA+uqvAAC5z3Cjr78NFH84OaDq4WbATVQ0pVKJPXv2ID4+Ho8ePULVqlXx+uuvo1evXhCLVR/27969i6VLlyImJgYKhQIA0L17d1M2m8jiyeWqHu7CbIsEgoOU7NEmqgAYdBORhujpbdjFhMEq9W8IYhvkdJ2JPO/BRj9PcZcEY4ZyIv3l5eVhzJgxOHbsGJ7Pmbpr1y7s378f4eHhiI6OxuzZs5GdnQ1BENCtWzeEhYWhQYMGJmw5keWLjik8Kzmg2h4dA/ZwE1UADLqJCAAgvnUadr9MhDjrMZTSqsh+awmU7r5GPYdCIeD4CTm+nW94wD0+FBg8kBnKifS1efNmHD16FLa2tvDz88Orr76KzMxMxMXF4cCBA5g5cyaioqIgCAI6dOiAKVOmoGHDhqZuNlG5cPuOcesRkWVj0E1EsD4fCdvfv4RImQeFa0Nk91sKwdHNqOf4bzj5M4P3dXVlwE1kqL1798LKygobN27USpg2ZswYfP7559i+fTtEIhGmTp2KoKAgE7aUqPxx1/MRqm89IrJsnERCVJEpciH5/SvYHfgcImUecuv3RNaQzaUScH8ys3jztwHVkHIG3ESGuXbtGnx8fHRmKA8ODgYAvPLKKwy4iUqBX3/Vsl+FEYtV9Yio/GNPN1FFlZUGu90fwPrmcQBAToeJyG09FhAZN7iVy5WYv7B4+3ION1HxZWZmwt3dXec2Dw8PAODcbaISKmgNbolEjMAA3dnL1QIDuCwYUUXBoJuoAhI/vAK7mFCI029BsJEiu9c8KOp1Nfp5DsUJmLcQSE83bD9HR2D254BPc/ZwExWXIAiaDOUvEv3/yzWJRFKWTSIqV4pag1u1HFj+OmKxKuBWLxdGROUfg26iCsbqn4Ow2zcVolwZlE4eyO6/DMpq9Y1+nuJmKAeAj6eI0LIFg20iIjJP+q7BHTJOjOAg3b3hRFRxiITn1xGhYktLSzN1EyosZ2dn/vz1IQiwObkStkcWAwDyarVBdt/vAHtno55GoRCQeFbAzFnAUwNzpnE4uXnhe8u0nJ1L9t5s0KCBpkfbUCKRCJcuXSrR+c2VqX+n+b6ybM7Ozrh//xG69Sx8STCxGDiwn8G1ueH7z7KZ6/3T53nNnm6iiiA3C7axn8Dm8j4AgLz5O5B3+hiwsjHqaf7LUG7YfhxOTlQ6ivu9uiV8H3/+/HmEh4cjMTEReXl5qF+/PkaOHInevXubumlUznENbiIyFINuonJO9Owu7GJCYfUgCYLYGjldPkNe0wCjn4fDyYnMy99//23qJpSa48ePIzg4GBKJBH369EGlSpUQGxuLyZMn4969e8zITqWKa3ATkaEYdBOVY+I7ibDbNR5i2SMI9s7IemsxlB6tjHoO9XDyb+cbvm+VKsBHH3A4ORHpLy8vD5999hlEIhE2b96Mhg0bAgBCQ0MxePBgLFq0CD169CgwcztRSXENbiIyFCeaEJVT1hd/hn3kCIhlj6Co5gXZO1FGD7gPxQkYHChg0oeGz9+uUgXYEQkG3ERkkOPHj+PGjRvo27evJuAGAAcHB4wbNw65ubmIjo42YQupvOMa3ERkKAbdROWNMg+SP76BXeynEClzkVevO7ICN0NwNG6vj3o4uaHzt9V5nT76QMQEM0RksJMnTwIAOnbsmG+buuzUqVNl2iaqWFRrcBdeh2twE9HzOLycqDzJegK7PR/A+sYxAEBOuzDktn0fEBn3wS+XKzF/YfH2reEqxvhQgT3cRFQsycnJAIA6derk21a9enVIpVKkpKQUuH9mZmaB26ysrGBnZ6dXXbFYDHt7+2LVlclkBSarE4lEkEqlxaqblZUFZSEZvipVqlSsutnZ2VAoFEapK5VKNVn1c3JykJeXZ5S69vb2mnXp5XI5cnNzS1xXLldif6wd7t6zgrsb0KeXHBJJJjIzMzFiuGr7Tz8Dyv/fHpHIDlZWVggMAEa/p0BmZlaBbbC1tYW1tepjeG5uLuRyuV518/LykJOTU2BdiUQCGxsbg+sqFApkZ2cXWNfGxgYSicTgukqlEllZBf8cDKlrbW0NW1tbAKpkjzKZzOC6Eokk33vVkPc9/0borltWfyNevH+m/hsBQOv3oTAMuonKCdGjf2C/MxTi9BsQbKTI7jkHilffNPp5DsUJmLcQSE83bD91hvIub1TB06dPjN4uIqoYMjIyAKiGk+tSuXJlPHtW8HyXWrVqFbite/fu2L59u+a1l5dXgR/sO3TogF9++UXzunnz5nj06JHOuj4+Pjh48KDmdbt27XDz5k2ddb28vHDs2DHN665du+Ly5csFXsu5c+c0r/v27YvExESddatWrYqrV69qXgcEBODIkSM660qlUty6dUvzesSIEfjtt9901gWAx48fa/5/3Lhx2LVrV4F1b968qfkA/sEHH2Dr1q0F1r1y5QqqVasGAPj000+xdu3aAuuePXsWtWvXBgB89dVXWLp0aYF1jxw5opmasGjRIsybN6/Aui/Xi4W91BcAMOuLlbh/54sC607+YCc+ntoREokYa9asw9SpUwusu23bNrz5puoZHRUVhbCwsALrrlu3DgMGDAAA7N69u9BEgUuXLsXQoUMBAL///jsCAwMLrDtv3jwEBwcDAI4dO4Z+/foVWHfWrFmYMGECAODcuXPo1q1bgXWnTp2KadOmAQAuX/5fe3ce31SV/3/8lbRNQ2kpBQtKQYpoEVlkKyh0VAQBQagwChWVAcQFKIsb6M/B3RE3dkEZv4rghihMAVEZRNGqDChVBBEVbREEqVKgpUva5v7+qK2UbkmaNE3yfj4ePGZ677knn3Awt5+ccz9nL3369KmybXJyMg8//DAABw4coEuXLlW2vemmm3jqqZICMn/88QdxcXFVtr3uuut49tlngZKktLr/7ocNG8ayZcvKftZnRAl9Rjj2GbFp0yb69etX5flSSrpF/EDQTx9i3XA3JttJ7I1akJ+4GHt0O7e/jjsqlGtLMBGpr0JCQhzeHz04OLhc2+r2RA8KCirX1lzNA8Gntw0KCqqyrdlsdrityWQq17Z05rQqp7YtnQ11pG3prGV1bUt/oa6pbePGjcv6Lp21rEpkZGRZ25pmnk5te+rsYk2MGrYJGzY0kubNmwKUm12sTHh4eFkMp84C1tQ2PDy82rYNGzZ0uG1YWFhZ26q+xKqsbaNGjapt26BBg7K2kZGR1ba1Wq1lbY/X8G1+aGhoWdvqZjSh5N9Wadua/p2d2rYm+oz4iz4jStT030Mpk+ELm3H6gPq4UXugiIqKCty/f8MgZPsLWFLnYsKgOKYHeUPnQ1gTt75MaYXy+x90vmBas2YwLfmvCuUBPV4+RmPlXY7+Yhdopk6dyvvvv8/bb79Nx44dK5zv2rUrkZGRfPTRR5Vef+rszOnqYuloVFQUBw8e1NJR6ufycpvNztCryy8ZN5lKEhXDbsOgELMJ1v2n4jPbVqu1LKlxZsm4lpfX3fLyyu5rWl7+l/r+GXH6+NWX5eWls+3V0Uy3iK8qzCf0v7MI+W59yY+dR1HQ9/9BUPXfCjpry8cG8xY6XzCtdDl51y6a3RYR94mNjQUgIyOjQtKdmZlJbm4unTt3rvL6mmYV66JtTbOgrrZ1ZtbWmbaOPrPobNvQ0NAaZ6dcaWuxWGqcIauq7foNdjCBuZLblslswURJ242bYNS1Vc9GhoSE1Dj750rb4ODgGmcgXWkbFBTk8L9hZ9qazWaPtDWZTC61bdiwYbVfcJS2cZQ+I0rU1WdEdeNXV58RrlJZRREfZMr+jQZv3kjId+sxzMHkXz6Lgv4Pui3hLi422JFmsGCR3aUK5VC6nNyshFtE3Co+vmTrw9TU1ArnSo+VthFx1sFf3dtORAQ00y3ic8y/foV13RTMJ3/HsDYm/6p5FJ/dy239uzqzXapx45LtwFSdXEQ84eKLL6ZVq1asX7+eMWPGlBW7yc7O5rnnniMkJKSs6JSIs2JauLediAgo6RbxKcG7/0PopvsxFRdS3PQ88q9ejBHZ0m3916ZQGpQk3KvfBItFCbeIeEZwcDCPPvooEyZM4Prrr2fIkCE0bNiQjRs3cvDgQWbOnEnLlu77XJTAMjwRnl0C1TzKitlc0k5ExFFKukV8gb0IyyfPYPlyGQBFbfuRf+UTYHH8+aDqlBZKe+Kp2vVz9x0mJdwi4nEXXXQRr732GgsWLGDDhg0UFRURFxfHXXfdxeDBg70dnvgAm83OmpSSZeIxLUqSaIvFjMViJmmkndfeqPrapJEVi6iJiFRHSbdIfZd/Aus7dxKcUfKsoq3XRGy9k8Hknht+bZeTQ8UK5SIinta5c2deeOEFb4chPmjxc3beeLP8bPazSyBppJ1Jt5mZdJsZqNjGbIZ/3GjlpnHVF+ISETmdkm6Resx09GcapEzCnJWOEWwlf9DjFMcNclv/tV1OrgrlIiLiSxY/V/kstt3On8f/SrwnjK84G968eUOyspR0i4hzlHSL1FNBP3+CdcOdmAqysUecRX7iIuzNLnBb/zabnaeeqV0fJRXKlWyLiEj9Z7OVzF5X5403YcJ4e9lS81HX1k1sIuLf9ECKSH1jGIR88RLW/9yGqSCb4hbdyLt+lVsT7i0fGwy/Fo4dd+36Zs3gsYe1nFxERHzHmpTqC6RByfk1KXUTj4gEDs10i9QnRQWEbnqAkG9L7viFHf9OQb/73bL/dnGxwdc7IfVTgzffcq2PkddAQh8TF3ZGy8lFRMSnaA9uEfEWJd0i9YQp5wjWtVMIOrwTwxSE7dKZFHa9AUy1T25rWyxNhdJERMTXaQ9uEfEWJd0i9YD58DdYU5IxnzyCERpJ/lVzKG7d2y1916ZYmgqliYiIL6psSzDtwS0i3qKkW8TLgvesI3TjPzEV2yhu2pb8Yc9iRLWudb/u2HtbhdJERMTXVL0lWMkf7cEtInXNb5Puyy+/nIMHD1Z6rmfPnqxYsaLcMZvNxtKlS1m7di2HDh0iMjKSvn37Mn36dJo2bVoXIUugsRdjSZ2L5Yv/A6DonMvIv/IpCA2vdde1XU7euDHcfYeWk4uIiG+paUuw0UklfyrbgztpJH/u0S0i4l5+m3QDRERE8I9//KPC8ZiYmHI/2+12Jk6cSGpqKl26dGHAgAFkZGSwatUqPv/8c958802aNGlSV2FLICjIxrrhLoJ//hgAW89bsPWeCuYgl7t0R6E0KEm4V78JFosSbhER8R2Obgm26T2YMJ4Ky881wy0inuLXSXejRo2YMmVKje3WrFlDamoqV111FU8//TSmPwtXvf766zz44IPMmzePhx9+2NPhSoAwZaXTIGUy5qM/YQSFUjDwMYrOH1KrPms7s32qu+8wKeEWERGf48yWYKOu1R7cIlJ39JUesGrVKgDuuOOOsoQbICkpiVatWrFu3Try8/O9FZ74kaCMTwl7bRTmoz9hD29O3qhX3JJw33d/7RNu7b0tIiK+TFuCiUh95dcz3TabjdWrV3PkyBHCw8Pp1KkTF154Ybk2BQUFfP3117Rp06bCsnOTyUTv3r1ZuXIlu3btokePHnUZvvgTwyAkbQWWLU9gMuwUn3Uh+UMXYIQ3q1W3Npudp56pXWjae1tERPyBtgQTkfrKr5PuzMxM7r333nLHOnXqxJw5czj77LMB2L9/P3a7ndjY2Er7KD2enp6upFtcU2Qj9IOHCNm9GoDCDsMp6PcgBFtq1e2Wjw2efAaOH3fteu29LSIi/kRbgolIfeW3SfeIESPo3r07cXFxhIWFkZ6ezksvvURKSgpjx45l7dq1hIeHk52dDUB4eOUVo0uP5+Tk1Fns4j9MJzOxrp1K0KGvMExmbJfOoLDrGDC5lui6o1ia9t4WERFfV9k+3BaLmaSRlVcvL6UtwUTEG/w26U5OTi73c/v27XnyyScBSElJYdWqVYwbN85trxcZGYnZrA9xb4mKivJ2CBUYv+6k6PWxcOJXsEYSPOp5LOde5nJ//91UwONP5vLbbzVUialCaZ7/8APhXNE/1OU43KE+jpdUTmMlIvVN1ftw2//c8qvieW0JJiLe5LdJd1VGjRpFSkoKO3bsYNy4cURERABVz2SXHq9qJrzUcVfX+EqtRUVFkZWV5e0wygneu4HQ9+/DVJSPvck55CU+ixEVC07G6a5twACio0uWk/fonktWVm7tOquF+jheUjmNlXfpCw+RimrahxtKEu8J4yufCRcR8YaAS7pLf4nJzS1JOlq1aoXZbCY9Pb3S9qXHq3rmW6Qcw47l0wVYtj0PQFHs38gf8gyERjjdlbu2AVOhNBER8QeO7sM9Ybwdi0VbgolI/RFwSffOnTsByiqVW61WOnfuzFdffcXBgwfLVTA3DIPPPvuMsLAwOnbs6JV4xYcU5GB9bybB+zYDYOtxE7aE28Ec5HRXpduA1UbjxiV7bqtQmoiI+APn9uGum5hERBzhl+ts9u3bR15eXqXHn376aQCGDh1adnzkyJEAzJkzB8P4K9F54403+OWXXxg6dChWq9XDUYsvMx3bT4M3riN432aMIAv5g57AdsldTifcxcUGX3xp54mnap9wr34TJdwiIuI3tA+3iPgqv5zp3rBhAy+99BLx8fG0aNGCBg0akJ6ezscff0xhYSG33nor8fHxZe2HDx/Ohg0bWL9+PQcOHCA+Pp79+/ezceNGWrZsyfTp0733ZqTeC9r/Odb1t2PKP469YTPyExdhP7OT0/24azk5lMxwWyxKuEVExH9oH24R8VV+mXT36tWLffv2sWfPHr744gvy8/OJiorikksuYfTo0SQkJJRrbzabWbJkCUuXLiUlJYVly5bRuHFjrrnmGqZPn06TJk289E6kXjMMQr56DctHj2Myiik+szP5wxZihDdzqpviYoPlrxj830u1D0l7b4uIiL84fVuwIVdqH24R8U0m49T11OIyVfj1Hq9UWC62Ebr5UUK+WQVAYfthFFzxMAQ7txXXlo8N5i4w+P332oXjS8XSVBHbd2isvEvVyz3D2/+m9d+VYyrbFsxshnZxsOe7qq8bneTZbcE0fr5N4+fb6uv4OXK/9suZbhFPMuX+gXXdNIIOfomBCdsld1HYfdxfG2HXwJ3bgGlmW0RE/E1124Lt+Q7anw97v9c+3CLiO5R0izjBfGQP1pTJmLMPYVjCyR/8NMXnXOrw9doGTEREpGqObAu293vYsBbeeVf7cIuIb1DSLeKgoO/fx/revZiK8rA3bk3e1YsxmpxT43Wa2RYREXGMo9uCvfMujLpWSbaI+AYl3SI1MexYPluE5X9LAChqnUD+kKfBGlnjpe6a2W7UCB5+ALp2MWlmW0RE/Ja2BRMRf6SkW6Q6tpNY351J8L4PSn7sPhbb3+4Ec/X/6bizIjnAzLtM9OiuZFtERPybtgUTEX+kpFukCqbjB7CmTCbo9+8xgkIo6P8QRR2G13iduyqSAzSLhmlTtJxcRET8k7YFE5FAoKRbpBJBv2zDum4apvxj2BueQf7QBdhbdK2yvTuf2y510zgYc4OWk4uIiH+qbFuwZ5fUvC1Y0kgVTRMR36KkW+Q0wV+/TuiH/8JkL6K4eQfyhy3CiDizyvbuem67lIqliYiIv9O2YCISSJR0i5QqLiT0w8cI2bkSgMJ2QygY8CiEWCs29cDMtrYBExGRQKBtwUQk0CjpFgHIy6LBumkEHdiOgQlbwu0Uxk8AU0nyW5pk/3EUDhwwWLsezWyLiIi4QNuCiUigUdItAc+cuRdrymTMJw5iWBqSP/gpis/pW3be3cvHS2lmW0QC3Z49e3j33XfZvXs3u3fvJisri549e7JixYpqr1u7di3Lly/nxx9/JCQkhG7dujF16lQ6dOhQR5FLbWhbMBEJNEq6JaAF/fBfrO/dg6kwF3vk2eRd/SxG03MB92/7VUoVyUVESmzatInnn3+ekJAQ2rRpQ1ZWVo3XLFmyhHnz5hETE0NSUhInT57knXfeISkpiWXLltG9e/c6iFyccXqF8jObO3adtgUTEX+hpFsCk2EnZOsSQj9fBEDR2ReTP2QONGgMuHfbr1OpIrmIyF8GDRrE5ZdfTlxcHMeOHSMhIaHa9unp6SxatIjY2FjeeustIiIiABg9ejQjR45k1qxZrF+/HrNZS5Lri8oqlJscuAVqWzAR8SdKuiXwFOZife//EfzD+wDYut6I7dIZFBtBfJ1muLU4Wik9ty0iUtF5553nVPvVq1dTVFTExIkTyxJugPbt23PVVVexevVqvvzyS+Lj490dqrigqgrlhlHztdoWTET8iZJuCSimEwexpiQTlPkdhjmY7+Me4Fv73zmwwmDtej23LSJSn23btg2APn36VDiXkJDA6tWr2bZtm5LuesCRCuVQMqOtbcFExN8p6ZaAYT7wBdZ10zDnHaUguCkzv5rHR//pBjjwlbuTNLMtIuJ+6enphIWFER0dXeFc69atAcjIyKjrsKQSjlQoB7j1ZggO1rZgIuLflHRLQAje+Sahmx/BZC/isKk9Y99dwOE891do0cy2iIjn5OTk0KRJk0rPhYeHA5CdnV1tH5GRkV5/5jsqKsqrr18Xfv8jByiosd2x46H8895wzwfkRoEwfv5M4+fbfHX8lHSLXyu22chZ8wQxB18D4P2Dg3jgq0fJL27g1tfRzLaIBKrZs2djs9kcbj9mzBhiY2M9F1ANjh8/7rXXhpJfGB2p0u7rzmjqwDQ3cEbTArKyCj0cjfsEyvj5K42fb6uv4+fIFwFKusVvfbY5i+gtt9M18n8ALNozlRd+uAWofWIcfQYMGwotW5po2gTNbItIwFq5ciW5ubkOtx84cKDLSXd4eHiVM9k5OTkA5QqsSd05fVuwIVfCs0uqX2KuCuUiEiiUdItfKS42+Hon7P3kewYdn0KryF/ILWrAfTue4MPD/dzyGtr2S0TkL2lpaXX2WrGxsaSlpZGZmVnhue7SZ7lLn+2WulPZtmDPLoF2cbDnu6qvU4VyEQkUSrrFpxUXG2zbXkh6hsGBAwZr18MF5s38q/tMGjbM5cDJlkzftpAfs+Nq/VpaQi4i4l3x8fGkpaXx6aefcvXVV5c7l5qaCkDPnj29EFngqmpbMLu9JOFufz7s/V4VykUksCnpFp+15WODeQsNMjNP/HnEYMJ5S0luvwCA7b/Hc/cXczlmq13BBRVHExGpH0aMGMGLL77IkiVL6NevX9lS8j179rB+/Xratm1L9+7dvRxl4HBkW7C938OGtfDOu6pQLiKBS0m3+JziYoPlrxj830t/HbMG5fFgl1kMinkXgJU/J/HUrnsoMkJcfh3NbIuIeNa+ffv497//DUB+fj4AP/30E/fcc09Zm9mzZ5f9/zZt2pCcnMy8efNITExkwIABnDx5knfeeQeARx55xOuVyQOJI9uC2e0lCfeoazUuIhK4lHRLvVf6nPYfR+HAAYOUdfD773+db249xNyeU7mg8bcU2oOZ/c19vJ0x0unXiY6GYVepOJqISF35/fffWbNmTbXHTk26ASZOnEhMTAwvv/wyr7/+OiEhIfTo0YNp06bRoUOHOolbShz81b3tRET8lZJuqXdOT7LXrofMzMrbXhiVxjPx0zjD+gdHC6K4a/s8dhzt4dTrafm4iIh39OrVi7179zp93bBhwxg2bJgHIpKanFql/MgRx66JaeHZmERE6jsl3eJ1ziTZp0pstYb7Oj+EJaiQvcfjuH3bIn7Ni3H4dbV8XERExHGVVSmvibYFExFR0i1eUppop35qsPG/cOy449cGmYqYfsEz3Nh2OQD//fUK7k97jLzihjVe27gxDOivmW0RERFnVFWlvCbaFkxEREm31BFXZ7NPFxFynCe738XFzT4DYMl3k1n6/W0YVH9D1xJyERER1zhSpfx02hZMROQvSrrFI9yVZJ+qTfg+5vdM5uzw/eQVNeCfaf/ig0MDqr1GS8hFRERqx5Eq5QAJfUruu9oWTESkPCXd4haeSLJP9bdmW3i8+92Eh5zk19wWTN+2kO9PnF+hXfQZMGyoKpCLiIjUxqkF0378wbFrmjWDO6Yp0RYROZ2SbnFZbZ7LdpzB2HNfZGr7uZhNBl/83oO7v5hLlq1JhZY3jYMxN5iUZIuIiNSCKwXTQFXKRUSqoqRbHObp2ezThZrzub/LAwxpuR6AVekjeeKbeykyLOXandnczJTJhpaQi4iI1JKrBdNUpVxEpGpKuqWcUxPrqMYGAFnHTHWSZJ+qmfU35sZPoUPUborsQTyx6/+xKj0JgOhoGHbVX0vIL7u0MSdOHKubwERERPyUKwXTSqlKuYhI1ZR0B5hTk+qmTaBjB4Ndu001zF4bdRpjx8Y7mdNzKs2smWQVNOaxH+fQum8vHqjiOW0tJxcREak9RwumnUpVykVEaqak+zQ7d+5k4cKFpKWlUVRURFxcHGPHjmXw4MHeDs1hzsxWm81gt9dtUl2dq1qmcH+XB7GYbRy3nscPFy1i1oxWSqxFREQ87OCvjrXr1BHOO09VykVEHKWk+xRbt25lwoQJWCwWhgwZQsOGDdm4cSO33347hw8fZvz48XUWS1WJ8+mz07WdrXb2G21PadK4mH9dNoeL7MsAKGrbj6Arn+ACS0PvBiYiIuLHTq1SfuSIY9dcdimMulaJtoiIo5R0/6moqIhZs2ZhMpl49dVXad++PQCTJ0/mmmuuYc6cOQwcOJCYmBiPvL5jRcpKEufTZ6fr22y1I059LrtZxAl6/nIXIRmpANh63Yat9xQw6YYuIiLiKa5UKVfBNBER5ynp/tPWrVvZv38/I0aMKEu4ASIiIrjtttu45557WLNmDcnJyW5/7S0fG8xbaDhcpOz0m2N9ma2uzunFz0qfyzYd/ZkGKZMwZ6VjBFspGPgvitpd6e1wRURE/JqrVcpVME1ExHlKuv+0bds2ABISEiqcKz22fft2t7/ulo8N7rvft2apHVFVkn2qoJ8/wbrhTkwF2dgjziI/cRH2Zhd4KWIREZHA4EqVchVMExFxnZLuP6WnpwPQunXrCueio6MJCwsjIyPDra9ZXFwyw+0vGjeGAf0hoY+p0iS7jGEQ8uUyLJ88jcmwU9yiK/lDF2A0PKNO4xUREQlEjlYpT+gDzZqpYJqISG0p6f5TTk4OULKcvDLh4eFkZ2e79TW/3ll3+157giOz2RUUFRC66QFCvk0BoLDDCAr6PQDBljqIWEREJHCVFk17Z4Nj7Zs1gzumKdEWEaktJd1uEhkZidns3I0pv6AAyPFMQB7QvJmJa/4eSuvWwUSfYaZ7t2CntvIyThym+M3xGAd2gDkI85UP0aDXTYSZar8dWFRUVK37kLqj8fIdGisR/+BK0bSYFp6LR0QkkCjp/lN4eDhAlbPZOTk5REZGVnn98ePHnX5Na6j3l5aXVD7/6+dTZ69P36qsZCbbBtgAOHHCidc5/A3WlGTMJ49ghEaSf9Ucilv3hmPHav0eoqKiyMrKqnU/Ujc0Xr5DY+Vd+sJD3MWVommqUi4i4j5Kuv8UGxsLQEZGBh07dix3LjMzk9zcXDp37uzW17ywc0mSW5dLzE9fEn76nt/ll4jXfgYaIHjPOkI3/hNTsQ17k7bkJT6LEVXx2XkRERFxL1eKpoGqlIuIuJOS7j/Fx8fz/PPPk5qaypAhQ8qdS01NLWvjTkFBJqZPwenq5afPTjs/W31qMm2iW9davInq2IuxfDoPy/YXACg65zLyr3wKQsM99IIiIiJyKkeLppVSlXIREfdT0v2niy++mFatWrF+/XrGjBlTtld3dnY2zz33HCEhIVx99dVuf91LLzHx2MNU2Ke7usT59NnpupitdlpBDtYNdxH88xYAbD1vwdZ7KpiDvBOPiIhIgCgtmHbwV/jxB8euOacNDBmsKuUiIp6gpPtPwcHBPProo0yYMIHrr7+eIUOG0LBhQzZu3MjBgweZOXMmLVu29MhrX3qJiYQ+JdXMHUucT5+d9uBstQtMWek0SEnGfHQfRlAoBQMfo+j8ITVfKCIiIrXiSsE0KEm4R12rZFtExBOUdJ/ioosu4rXXXmPBggVs2LCBoqIi4uLiuOuuuxg8eLBHXzsoqH4lzq4KyvgU6/o7MBWcwB7enPxhi7Cf2bHmC0VERKRWXCmYBiqaJiLiaUq6T9O5c2deeOEFb4fhewyDkLQVWLY8ickopvisC8kfugAjvJm3IxMREfF7rhZMAxVNExHxNCXdUntFNkI/eIiQ3asBKOwwnIJ+D0KwxbtxiYiIBACbzc79Dzm/pFxF00RE6oaSbqkV08nfsa6bStCvaRgmM7ZL7qaw2z/A5KUCbiIiIgHE2We4O3WE886DmBYqmiYiUleUdIvLzL/txrp2CubsQxihjcgfMofi2D7eDktERCQguPIM92WXqmCaiEhdU9ItLgneu4HQ9+/DVJSPPaoNeVc/ixHVxtthiYiIBARXnuFWwTQREe9Q0i3OMexYPl2AZdvzABTF/o38Ic9AaISXAxMREQkca1Kcf4ZbBdNERLxDSbc4riAH63szCd63GQBbj5uwJdwO5iAvByYiIhIYbDY7a1LgnQ2OX6OCaSIi3qWkWxxiOrYfa8pkgv74ESPIQsEVj1B0wTBvhyUiIhIwnC2aBpDQBx5+QDPcIiLepKRbahS0fyvW9dMx5R/H3jCa/GELsZ91obfDEhERCRiuFE0zm5Vwi4jUB0q6pWqGQchXr2H56HFMRjHFzTuRn7gII7yZtyMTEREfV1hYyObNm9m8eTM7d+7k8OHDAJx77rkMHz6cUaNGERRU+eNLa9euZfny5fz444+EhITQrVs3pk6dSocOHeryLdQZV4qmgZ7hFhGpL/RJLJUrthG66QFCP3wUk1FMYfuh5I1croRbRETcYv/+/UydOpWNGzfSpk0bRo8ezdChQzl8+DAPPfQQkydPxjCMCtctWbKEu+++m6NHj5KUlMSgQYPYvn07SUlJfPnll154J55ls9m5/yHnlpSbzTA6Sc9wi4jUF5rplgpMuX9gXTeNoINfYmDC9rc7KewxHkwmb4cmIiJ+Ijw8nPvvv5/hw4cTFhZWdjw3N5cbb7yRDz/8kPfee48rr7yy7Fx6ejqLFi0iNjaWt956i4iIkp0zRo8ezciRI5k1axbr16/HbPaPZNPZZ7jPaQNDBpdsC6YZbhGR+kOfyFKO+cgeGrx6bUnCbQkn/+olFMbfpIRbRETcqnnz5lx//fXlEm6AsLAwxo0bB8D27dvLnVu9ejVFRUVMnDixLOEGaN++PVdddRX79u3zm9nu0me4nZnhHjIYRl1rVsItIlLP6FNZygR9/z4N3rgec/Yh7I1bkzt6JcXnXOrtsEREJMAEB5csxDv9me5t27YB0KdPnwrXJCQklGvjy1x5httsLpnhFhGR+kfLywUMO5bPn8WydTEARa37kD/kGbBGejkwEREJRG+//TbwVyJdKj09nbCwMKKjoytc07p1awAyMjI8H6AHufIMN6homohIfaakO9DZTmJ9716Cf/xvyY/dx2L7251g1j8NERGpeytXruTjjz/moosu4tJLy6+2ysnJoUmTJpVeFx4eDkB2dna1/UdGRnr9me+oqKhKjz895yQvr8h3umjaP260ctcdDd0UndSkqvET36Dx822+On7KrAKY6fhBrCmTCfp9L0ZQCAX9H6Kow3BvhyUiIj5k9uzZ2Gw2h9uPGTOG2NjYSs99+OGHPPLII8TExPDUU0+5KcLyjh8/7pF+HRUVFUVWVlaF467sw53Qp3QfbhtZWY6PgbiuqvET36Dx8231dfwc+SJASXeAMv+yjQbrp2PKy8Iedgb5wxZgb9HV22GJiIiPWblyJbm5uQ63HzhwYKVJ95YtW5g6dSpNmzbl5ZdfplmziltUhoeHVzmTnZOTA1CuwJovsNnsrHobpxNus7k04daSchGR+k5JdwAK3rmS0M2PYrIXUdy8A/nDFmFEnOntsERExAelpaXVuo+PPvqIKVOmEBUVxfLly2nVqlWl7WJjY0lLSyMzM7PCc92lz3KXPtvtC5zdEuxUeoZbRMR36NM6kBQXEvrBQ1g3PYjJXkRhu8HkjVyhhFtERLymNOGOjIxk+fLl1SbN8fHxAHz66acVzqWmpgLQs2dPzwTqZq5sCQYlM9yjk2DSbfoVTkTEV+gTO1DkZWF9ewIhX7+BgYmChNspGPw0hDTwdmQiIhKgtmzZUi7hrupZ71IjRowgODiYJUuWlFtmvmfPHtavX0/btm3p3r27h6OuvZwcO6+vdP66hD6w6T0l3CIivkbLywOAOfN7rCmTMJ84iBESRv7gpylu29fbYYmISADbt28fycnJ2Gw2evbsyTvvvFOhTUxMDCNGjCj7uU2bNiQnJzNv3jwSExMZMGAAJ0+eLLv2kUce8Xpl8po8PeckL73s/HV6hltExHcp6fZzQT9uwvruTEyFudgjW5Gf+Cz2M87zdlgiIhLgfv/997Kq55Ul3FCyVPzUpBtg4sSJxMTE8PLLL/P6668TEhJCjx49mDZtGh06dPB43LVRsqQ836Vr9Qy3iIjvUtLtrwyDkP8tIfSzhQAUtbqI/KvmQAPf3NtORET8S69evdi7d69L1w4bNoxhw4a5OSLPcnVJudlcknBrSbmIiO9S0u2PCnMJff8+Qr5/DwBb1xuxXToDzBpuERGRuubKHtwAk26Da0ZohltExNcpC/MzphO/Yk1JJihzD4Y5hIJ+syjqdK23wxIREQlIribco5NgdJKSbRERf6Ck24+YD36Jde1UzHlHsYc1JX/oAuwx3bwdloiISEByZUm5yQTXjdJychERf6Kk208Ef7OK0A8ewWQvpDi6PfmJizAatfB2WCIiIgHJ1Rnud9dBeLgSbhERf6Kk29cVF2LZ8gSWr14FoDBuEAUDH4OQMC8HJiIiEpgWPmtn5SrnrxudpIRbRMQfKen2ZXlZWNffQfAvWwEo6D2Fwl4TS9amiYiISJ1bsMjOm285d42WlIuI+Dcl3T7K/PsPWFMmYz7+C0ZIGPlXPkHxuf29HZaIiEjAWvis8wk3aEm5iIi/U9Ltg4L2fYh1w12YCnOxN4ohP3Ex9ug4b4clIiISsFyZ4QYtKRcRCQRKun2JYRCy/d9YUudhwqC4ZTx5Q+dDgyhvRyYiIhKwXJnh1pJyEZHAoaTbVxTmEbrxn4Ts3QCA7cLrsF12LwSFeDkwERGRwGSz2bnjbvjqa+ev1ZJyEZHAoaTbB5iyD2Ndm0zQb7sxzMEU9L2PoguTvB2WiIhIwHK1QjloSbmISKDxy6R74cKFLFq0qMrzH3zwAS1btqxw/JNPPuH5559n9+7dmEwmOnTowKRJk7j44os9GW61zL+mYV07FXPu7xgNosgbOh97y3ivxSMiIhLobrrFzt7vXbv2HzdauPmmIvcGJCIi9ZpfJt2lhg8fTkxMTIXjjRo1qnAsJSWFGTNm0KRJE0aMGAHAhg0bGDduHPPmzWPQoEEej/d0wbtWE/rBg5iKCyk+ox35ic9iRFZ8PyIiIlI3xt1s54cfXLt25DUw464IsrKy3BuUiIjUa36fdPfq1avGdsePH+fRRx8lKiqKNWvWcOaZZwJw8803c/XVV/Pggw+SkJBAeHi4p0MuYS/C8vHTWHa8DEDRuVeQP+hxsDSsm9cXERGRCm66xfWEe9S1MGWylpSLiAQiffoD7733HidOnOCGG24oS7gBzjzzTG644QaysrLYtGlT3QSTfxzrmtvKEu6Ci5PJHzpPCbeIiIgXLVjk+pLykdco4RYRCWR+fQfYvn07S5cu5YUXXmDTpk2cPHmy0nbbtm0DICEhocK50mOlbTzJ9Mc+wl4bRXDGpxjBDci7aj6FF08Gk18Pk4iISL1ms7m2BzeUzHBPTdZ9XEQkkPn18vKFCxeW+7lRo0bcd999XH311eWOp6enA9C6desKfZQey8jI8EiMZQw7DVbfjDn7EPZGLchPfBZ79PmefU0RERGp0ZoU167TDLeIiICfJt3nn38+//rXv+jZsyfNmjUjMzOTjz76iAULFnDPPfcQERFBv379ytrn5OQAEBERUaGv0ue4s7Ozq33NyMhIzOba3ViLzr0EbCexDJ1NaMMzatVXoImKivJ2COIEjZfv0FiJwMFfnb9mdBJMuk0Jt4iI1OOke/bs2dhsNofbjxkzhtjYWACuuOKKcudatmzJDTfcQNu2bcuqkZ+adLvD8ePHa99J3wdL/tcG2FTZ1FFRUVGqBOtDNF6+Q2PlXfrCo/6IaeF424YNYd0asFiUcIuISIl6m3SvXLmS3Nxch9sPHDiwLOmuysUXX8zZZ5/N999/T05OTtks9qmz2af/klPdLLiIiIj4v+GJsGgxGEbNbZVwi4jI6ept0p2WluaRfqOiosjIyCAvL68s2Y6NjWXXrl1kZGRUSLpLn+Wu7HlvERER8X8Wi5nrRtl57Y3q241OUsItIiIVBdSdITc3lx9++IGwsLByyXV8fDwAqampFa4pPdazZ8+6CVJERETqnUm3mRmdVPV5PcMtIiJV8bu7Q05ODj///HOF4/n5+cyaNYuTJ08yaNAggoP/muS/8soriYiI4JVXXuHw4cNlxw8fPswrr7xCVFQU/fv3r5P4RUREpH6adJuZzRth4q3QqSN07giTboPNG5Vwi4hI1ert8nJXHTt2jCuvvJJOnTrRtm1bzjjjDP744w8+++wzDh8+TFxcHDNmzCh3TWRkJLNmzWLGjBkMHz6cwYMHA7BhwwaOHTvG3Llzy5aii4iISOCyWMxcfx1cf523IxEREV/hd0l348aNGT16NDt37mTLli2cOHGC0NBQ2rZty4033sgNN9yA1WqtcF1iYiJRUVE8//zzrF69GoCOHTsyceJEevfuXddvQ0RERERERPyA3yXd4eHh3H///S5de8kll3DJJZe4OSIREREREREJVHoASURERERERMRDlHSLiIiIiIiIeIiSbhEREREREREPUdItIiIiIiIi4iFKukVEREREREQ8REm3iIiIiIiIiIco6RYRERERERHxECXdIiIiIiIiIh5iMgzD8HYQIiIiIiIiIv5IM90iIiIiIiIiHqKkW0RERERERMRDlHSLiIiIiIiIeIiSbhEREREREREPUdItIiIiIiIi4iHB3g5AxFE5OTksXLiQjRs3kpmZSbNmzRg4cCDJyck0bNjQ4X5WrFjBt99+y65du9i3bx/FxcUsX76cXr16eTB6/7Rz504WLlxIWloaRUVFxMXFMXbsWAYPHuxwHzabjaVLl7J27VoOHTpEZGQkffv2Zfr06TRt2tSD0Qee2o7X/v37SUlJYffu3ezevZsjR44QExPD5s2bPRy5iO/RPcs36D7m23Rf8221GT/DMPj444/ZvHkzO3bs4Ndff6WoqIjWrVszePBgxo0bR2hoaB28C8doyzDxCbm5uYwePZo9e/aQkJBA+/bt2bNnD6mpqXTq1IlXX33V4f+w2rVrB0B0dDQAmZmZ+gXGBVu3bmXChAlYLBaGDBlCw4YN2bhxIwcPHmTmzJmMHz++xj7sdjs333wzqampdOnShfj4eDIyMvjvf/9Ly5YtefPNN2nSpEkdvBv/547xWr16Nffeey9BQUG0bduWH3/8kbPOOku/nIicRvcs36D7mG/Tfc231Xb8CgoK6Ny5MxaLhZ49exIXF4fNZiM1NZX09HQ6derEihUraNCgQR29oxoYIj5g/vz5RlxcnPHUU0+VO/7UU08ZcXFxxnPPPedwXx9++KFx5MgRwzAMY9asWUZcXJyxdetWt8br7woLC43+/fsbHTt2NL799tuy4ydOnDAGDBhgdOjQwThw4ECN/bz11ltGXFyccccddxh2u73s+GuvvWbExcUZs2bN8kj8gcZd47V//34jLS3NyMvLMwzDMDp27Gj07dvXY3GL+Crds+o/3cd8m+5rvs0d42ez2YzFixcbx44dq3D81ltvNeLi4ox///vfHonfFXqmW+o9wzBYtWoVYWFhTJo0qdy5SZMmERYWxqpVqxzu77LLLiubMRDXbN26lf3793PVVVfRvn37suMRERHcdtttFBYWsmbNmhr7KR23O+64A5PJVHY8KSmJVq1asW7dOvLz893/BgKMu8arVatWdOnSBavV6slwRXya7lm+Qfcx36b7mm9zx/iFhIQwceJEIiMjKxy/9dZbAdi+fbv7g3eRkm6p99LT0zly5AjdunUjLCys3LmwsDC6devGL7/8wqFDh7wUYeDZtm0bAAkJCRXOlR6r6YOuoKCAr7/+mjZt2hATE1PunMlkonfv3uTm5rJr1y43RR243DFeIuIY3bN8g+5jvk33Nd/m6fELDi4pWxYUFORyH+6mpFvqvYyMDABiY2MrPV96PD09vW4CkrK/69atW1c4Fx0dTVhYWNm4VWX//v3Y7XaNax1wx3iJiGN0z/INuo/5Nt3XfJunx+/tt98GoE+fPi734W5KuqXey87OBiA8PLzS86XHc3Jy6iymQFf6dx0REVHp+fDw8LJxq4rGte64Y7xExDH6bPMNuo/5Nt3XfJsnx2/Lli2sXLmStm3bcu2117oco7tpyzCpM7Nnz8ZmszncfsyYMVV+eywiIuJJumeJiPiWnTt3cvvttxMREcH8+fOxWCzeDqmMkm6pMytXriQ3N9fh9gMHDiQ2NrbsW7CqvikuPV7VN83ifqV/11V9C5mTk1OhsMXpNK51xx3jJRJodM/yb7qP+Tbd13ybJ8bvm2++4aabbsJsNvPCCy9w3nnn1TpOd1LSLXUmLS3NpetKn/eo6pmo0uOaYag7pX/XGRkZdOzYsdy5zMxMcnNz6dy5c7V9tGrVCrPZrHGtA+4YL5FAo3uWf9N9zLfpvubb3D1+33zzDePHj8dut/Piiy/Wy7HXM91S78XGxtKsWTN27NhRYdYhNzeXHTt20LJlS8466ywvRRh44uPjAUhNTa1wrvRYaZuqWK1WOnfuzM8//8zBgwfLnTMMg88++4ywsLAKH8biPHeMl4g4Rvcs36D7mG/Tfc23uXP8ShPu4uJiXnjhBS688EL3BepGSrql3jOZTFx77bXk5uayePHicucWL15Mbm4uI0eOLHc8Ly+Pffv28euvv9ZlqAHj4osvplWrVqxfv549e/aUHc/Ozua5554jJCSEq6++uuz4kSNH2LdvX4VlRKXjNmfOHAzDKDv+xhtv8MsvvzB06FDtnekG7hovEamZ7lm+Qfcx36b7mm9z1/jt2rWL8ePHU1RUxL///W+6du1aV2/BaSbj1E8IkXoqNzeX6667ju+++46EhAQuuOACvv32W1JTU+nUqROvvPJKuZva//73P8aMGUPPnj1ZsWJFub6WLl3KTz/9BJQsH0xPTychIYHo6GgA+vfvT//+/evuzfmorVu3MmHCBCwWC0OGDKFhw4Zs3LiRgwcPMnPmTMaPH1/W9p577mHNmjU8/vjjjBgxouy43W7n5ptvJjU1lS5duhAfH8/+/fvZuHEjMTExrFq1iiZNmnjj7fkdd4zX0aNHefLJJ8t+TklJwWq1MnDgwLJjM2bM0JhJwNM9yzfoPubbdF/zbbUdv2PHjjFgwACOHz/O3/72t0pnuCMiIhg7dmxdvaVq6Zlu8QlhYWG88sorLFy4kI0bN/K///2P6Ohoxo8fz+TJk536FvmTTz5h27Zt5Y6durwlJiZGv8A44KKLLuK1115jwYIFbNiwgaKiIuLi4rjrrrsYPHiwQ32YzWaWLFnC0qVLSUlJYdmyZTRu3JhrrrmG6dOn6ybnRu4Yr9zcXNasWVPtseTkZI2bBDzds3yD7mO+Tfc131bb8cvJyeH48eNAyefkJ598UqFNTExMvUm6NdMtIiIiIiIi4iF6pltERERERETEQ5R0i4iIiIiIiHiIkm4RERERERERD1HSLSIiIiIiIuIhSrpFREREREREPERJt4iIiIiIiIiHKOkWERERERER8RAl3SIiIiIiIiIeoqRbRERERERExEOCvR2AiPiHY8eOsWLFCj788EN++eUXCgoKOOOMM4iPjycpKYmuXbt65HUPHDhAv3796NmzJytWrPDIa4iIiNQ3GzZs4D//+Q/ffvsteXl5nH/++dx+++306NHD26GJyGk00y0itfb5558zYMAAFi1axMGDB+nevTv9+vUjPDyc//znPyQlJfHYY49ht9ud7vvAgQO0a9eOG2+80QORi4iI+Kbly5cTFRXF/fffz/z582nevDljx47lu+++83ZoInIazXSLSK3s3LmTm2++maKiIqZOncott9xCSEhI2fkvvviCO++8k+XLlxMUFMQ999zjxWhFRET8w5IlS4iKiir7uXfv3gwdOpRXX32VRx55xIuRicjpNNMtIi4zDIN77rmHwsJCkpOTmTx5crmEG6BHjx68+OKLhIaGsmzZMr766ivvBCsiIuJHTk24AcxmM+eddx4HDhzwUkQiUhUl3SIB6M4776Rdu3YsXry4wrm0tDQuvPBCevXqxb59+6rt5+OPP2bfvn00a9aMW2+9tcp2bdu25frrr8cwDF566aWy46cuHc/JyeHxxx/n8ssvp0OHDjz22GMsXLiQfv36AbBt2zbatWtX9qeyGfP8/Hyefvpp+vbtS8eOHbniiitYunQphmE4+lcjIiLik4qLi/nmm284++yzXbr+2LFjLFy4kBEjRhAfH0/nzp25/PLLmTlzJmlpaW6O9i96jEwCgZJukQA0bdo0QkJCWLZsGdnZ2WXH09PTmThxIlCybK1t27bV9vPRRx8BMGjQoAoz3KcbOnQoAJ9++mmFZ7vz8/O54YYbWLNmDe3bt+fyyy8nMjKS9u3bM3DgQADOOOMMhg8fXvane/fu5fooLCxk/PjxrFq1io4dO9KrVy9+++03nnnmGebNm1fj34mIiIgve+WVVzh06BCjR492+lrVZhHxLD3TLRKAzj77bP7+97/zxhtvsGzZMqZMmcLRo0e5+eabOXHiBAsWLKBbt2419lNarKVjx441to2LiyMkJITs7GwOHDhQ7pv4nTt30rVrVzZt2kSjRo3KXXf++efz/vvvc8455zB79uwq+09LS6Nnz5588MEHhIeHA/DNN98watQoXn75ZW655RYaNmxYY5wiIiK+5uuvv+aZZ55h4sSJtGvXzqlrVZtFxPM00y0SoCZNmoTVauXll1/mt99+47bbbmP//v088MAD9O/f36E+jh07BkCTJk1qbBscHExkZCQAWVlZFc7fd999FRJuZ5jNZh566KGyhBugU6dOXHLJJeTl5bFr1y6X+xYREamvDhw4wKRJk+jbty/JyclOXavaLCJ1Q0m3SIBq3rw5119/PdnZ2SQmJvL1118zadIkRo0aVeexREdH06lTp1r10aJFC84555wKx2NjYwHIzMysVf8iIiKe5Eq9lRMnTnDrrbcSExPDE088gclkcuo1VZtFpG4o6RYJYGPHjsVsNpOVlcWIESOYNm2aU9c3btwYgKNHj9bYtqioiOPHjwMVK662aNHCqdetzJlnnlnp8dIl5TabrdavISIi4inO1lux2WwkJyeTl5fH4sWLsVqtTr+marOI1A090y0SoAzDYPbs2WU3zqCgIKf7OP/889mxYwe7du0iMTGx2rY//PADhYWFRERE0LJly3LnQkNDnX7t05nN+g5RRER8l7P1Vh566CG2b9/OI488woEDB8q2CrNYLFxwwQUOvaZqs4jUDf2WKhKgnnzySd555x0uvfRSoqOjWbNmDenp6U71cemllwLw/vvvU1hYWG3bdevWAdCnTx8lyCIiIpVwpt7K559/jt1u57777mPUqFFlf5x5rlu1WUTqhn7zFQlAL7/8Mi+++CKdO3dm/vz53HLLLRQVFTF//nyn+rnkkks455xz+O2331i6dGmV7X766SdeffVVTCYT48aNc+o1Spe7FRUVOXWdiIiIr3Gm3srmzZvZu3dvhT+bN2+u87hVm0Wkekq6RQLMu+++y+OPP87ZZ5/N888/T4MGDRg1ahTNmzfn3XffZc+ePQ73ZTabeeKJJwgJCWHhwoU899xzFZLjHTt2MH78ePLz8/nHP/5Bly5dnIo3KiqKkJAQfvnlF4qLi526VkRExNfUtt6KM1SbRaRuKOkWCSDbt29nxowZREVF8cILL5QtJwsNDeXWW2/FMAzmzp3rVJ+dO3dm6dKlNGrUiLlz55KQkMDEiRO5/fbbSUxM5LrrruPQoUPceOONzJw50+mYLRYLCQkJZGZmkpiYyIwZM7jvvvt4++23ne5LRESkPnNHvRVnnH/++QAOLd1WbRYR1+lft0iA+PHHH5k0aRJBQUE899xztG7dutz5a6+9lrPOOostW7bwxRdfONV37969ef/995k8eTJnnXUW27ZtY9OmTZw4cYLExETeeOMN/vnPf7p8Q33sscdITEzk2LFjrF+/nrfeeovt27e71JeIiEh95Y56K85QbRaRuqHq5SIB4txzz602UbVYLGVbh7giKiqKqVOnMnXqVIevadmyJXv37q2xXdOmTXnyySdd6mPKlClMmTLF4ZhERES84fR6K6tWreKxxx5j/vz5Tq9Cc1RpbZaffvqJpUuXMnny5ErbqTaLSO3oayoRERERES9yZ70VZ6g2i0jd0Ey3iIiIiIiX1FRv5eGHH2bu3LnV7hJSG6W1WaZPn87cuXNZtmwZXbt2xWq18tNPP5Xt5V3b2iwffvghiYmJXHDBBYSEhNCtWzf+/ve/u/vtiNRLmukWEREREfECT9ZbcYZqs4h4lskwDMPbQYiIiIiIiIj4I810i4iIiIiIiHiIkm4RERERERERD1HSLSIiIiIiIuIhSrpFREREREREPERJt4iIiIiIiIiHKOkWERERERER8RAl3SIiIiIiIiIeoqRbRERERERExEOUdIuIiIiIiIh4iJJuEREREREREQ9R0i0iIiIiIiLiIUq6RURERERERDxESbeIiIiIiIiIhyjpFhEREREREfGQ/w8QDd2NIrUsBwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Perform linear fit on x_orth vs y\n", + "slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(x_orth, y)\n", + "\n", + "# Calculate the residuals\n", + "y_pred = intercept + slope * x_orth\n", + "residuals = y - y_pred\n", + "\n", + "# Plot x_orth vs y with linear fit\n", + "plt.figure(figsize=(10, 5))\n", + "plt.subplot(1, 2, 1)\n", + "plt.scatter(x_orth, y, label='Original data')\n", + "plt.plot(x_orth, y_pred, color='C1', label='Fitted line')\n", + "plt.xlabel('$x$ Orth')\n", + "plt.ylabel('y')\n", + "plt.title('$x$ Orth vs y with Linear Fit')\n", + "plt.legend()\n", + "\n", + "# Plot x2_orth vs residuals\n", + "plt.subplot(1, 2, 2)\n", + "plt.scatter(x2_orth, residuals)\n", + "plt.xlabel('$x^2$ Orth')\n", + "plt.ylabel('Residuals')\n", + "plt.title('$x^2$ Orth vs Residuals')\n", + "plt.axhline(0, color='black', linestyle='--')\n", + "\n", + "plt.tight_layout()\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "id": "6b8c0ccd-21fc-4b76-b936-ec328409744e", + "metadata": {}, + "source": [ + "And, in fact, the linear trend bears out when plotting the orthogonal $x^2$ vs the residuals.\n", + "\n", + "We can take this a degree higher and look at a cubic term." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "2aaeaaff-3eae-4036-bba0-bc822d663c9e", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKMAAAMWCAYAAAAtWkVZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXhTZfrG8TvdmzYtLYtIocCgILIoyFoRRHHBDQFBheKIigviggvqjCDbjBsqiD8RN5TFUVAQVFQGVBTLJiC4jShaEBRBKW3aFJrS/P6oCU2TtEmbJmny/VzXXGPPOU1OjvE+6ZP3fV6DzWazCQAAAAAAAAiAqGCfAAAAAAAAACIHxSgAAAAAAAAEDMUoAAAAAAAABAzFKAAAAAAAAAQMxSgAAAAAAAAEDMUoAAAAAAAABAzFKAAAAAAAAAQMxSgAAAAAAAAEDMUoAAAAAAAABAzFKAAAAAAAAARMTLBPAAAAIFJ88MEHeuedd/TNN98oLy9PzZs319ChQzVq1CjFxsYG+/QAAF5atWqV5s2bp59++klFRUU64YQTNGDAAI0dO1apqanBPj0g5BlsNpst2CcBAAAQCYYPH66MjAwNGDBADRs21LZt2zRnzhwNHDhQjz76aLBPDwDgpSVLlmjv3r3q1KmTTCaTdu7cqWeeeUannHKKXn311WCfHhDyKEYBAAAEyKFDh5Senu607dlnn9WsWbP0+eefq1GjRkE6MwBAbS1evFgTJ07Uxx9/rGbNmgX7dICQRs8oAACAAKlciJKkDh06SJIOHDgQ6NMBAPiRfXpeaWlpkM8ECH30jAIAAAiiL774QrGxscrMzAz2qQAAfHTs2DGVlpY6pun169ePPAe8QDEKAAAgSH788UfNnz9fV155pZKTk4N9OgAAH/Xs2VNms1mS1KdPH82cOTO4JwTUE/SMAgAACIJDhw7p6quvVlxcnN544w0ZjcZgnxIAwEffffediouLtXPnTs2ZM0ctW7bUvHnzFB0dHexTA0IaxSgAAIAAKyws1N///nfl5eXpP//5j0444YRgnxIAoJa2b9+u4cOHa9asWbrwwguDfTpASKOBOQAAQA08++yzateunYYPH+52/4wZM9SuXTsNGjRI+fn5ju0lJSUaO3as9u3bpxdffNHnQtSuXbvUrl07de/eXUePHvV43JAhQ9SuXTutXr3asS03N1cPPPCAzjnnHHXs2FFdunRR//79deONN+qtt97y6vn37Nmj9u3bq3v37iouLvZ43MUXX6x27dpp7dq13r84AAiCmuZ5ZaeeeqoMBoP27Nnj1fOS54hkFKOAIJo2bZratWunESNGuF1146mnnlK7du00ePDgKm9QUnnzxL59+6pdu3b68ssvPR736KOPql27dvr3v//t2FZSUqIXX3xRQ4YMUZcuXdSxY0edeeaZGjp0qB577DEdPny42tdSWFiorl276tRTT9Vvv/3m8bgxY8aoXbt2WrRoUbWPCQCh7LrrrlPTpk21fft2ffjhh0775s6dqxdeeEGtW7fWyy+/7Fhh6dixYxo/fry++uorPf/88/rb3/7m8/O2adNGXbp0UUFBgdMfJhV9//33+uabb9SoUSOdffbZkqSdO3dq6NChWrp0qeLi4tS/f3/17dtXJ5xwgjZv3qz58+d79fyZmZnq16+fCgoK9M4777g9ZsOGDfrxxx+VmZmpvn37+vwaASCQapLn7mzdulU2m03Nmzf36nnJc0QyilFAEN13333q2LGjtmzZ4tLs8NNPP9XcuXOVnJysmTNnKj4+vsrHio6O1uWXXy5JWrp0qdtjSktLtWLFCknS0KFDJUllZWW68cYb9fjjj2v37t3q1q2bLrjgArVt21Z5eXl66aWXqiwu2SUnJ2vIkCE6duyYXn/9dbfH7NmzR5999pmSk5Md5woA9VVCQoLGjx8vqfzLA/uXCq+99pqefPJJNW/eXK+++qoaNmzo+J0pU6Zo9erVGjNmjMrKyvTll186/ldYWOj1c9sz3FPe27dfdtlliokpX69m3rx5Kiws1J133qkPPvhAs2fP1qxZs/T6669r/fr1evDBB71+/muuuUaSPH6x8Nprr0mSRowYIYPB4PXjAkAw1CTPr7/+er3wwgv65JNPlJOToxdffFF33nmn2rVrpwEDBnj93OQ5IhU9o4Ag++WXXzRkyBCZzWbNnTtX/fr10/79+3X55ZcrLy9PM2fO1MCBA716rNzcXF1wwQVKSUnRunXrXApYa9as0dixY9WhQwfHjW3z5s3Kzs7WqaeeqgULFris5vTVV1+pefPmSktL8+r5L7zwQqWnp+uTTz5RXFyc0/5HH31UL7/8skaNGuXTTRIAQpXNZtPQoUP1zTffaMqUKTIajZowYYKaNGmiRYsWqUWLFk7Hn3POOdq3b5/bx5o/f7569uzp1fMWFhaqT58+Onr0qD755BOnqX5Wq1V9+/bVoUOH9O677+rkk0+WJN14441au3atli1bplNPPbWGr/i4Sy65RD/88IMWLVqkbt26Obbv379f5557rmJjY/Xpp58qJSWl1s8FAHXN1zyfOXOm1qxZo71790qSmjdvrvPPP1+jR4/2aXVU8hyRipFRQJC1aNFCDz/8sGw2myZMmKBffvlF48ePV15enrKzs70uRElSq1at1K1bNxUUFOi///2vy357Acr+DYwk/fHHH5KkM844w+2Ns1OnTl4VouzP37dvX/355596//33nfYdOXJEb731lgwGg0aMGOH1awKAUGYwGHTfffdJkp588kk98MADSktL07x581z+cJGkjz76SN9//73b/3lbiJLKR6NecMEFKisr09tvv+20b+3atTp06JA6d+7s+MNFkjp37ixJmjx5sj777LNqp39XZ9SoUZJcv01//fXXVVpaqksvvZQ/XADUG77m+Z133ql33nlH27Zt07Zt2/TOO+/otttu86kQJZHniFwUo4AQMGDAAI0ePVqHDx/W4MGDtXXrVnXs2NFxQ/TFkCFDJEnLli1z2n7o0CGtXbtWcXFxuuSSSxzbO3TooOjoaL311ltatGiRDhw4UKvX4mmo7zvvvKP8/HxlZWXVqEcKAISqnj17qkuXLsrPz1d8fLxefvlltWnTps6f19PUDnvjWvv9wO76669XVlaWtm/frhtuuEFnnHGGhg4dqkceeUQ7duzw+fkvu+wypaam6r///a/j3lFSUqIlS5ZIkkaOHOnzYwJAMJHn5DkCh2IUECLuuecenXTSSTKbzTIajZo5c6bLNDdvDBw4UEajUTk5Odq/f79j+4oVK2S1WjVgwACnxouZmZl64IEHVFpaqqlTp+qss87SOeeco7vuuksrVqxQSUmJT89/5plnqk2bNtq+fbu+/vprx3b7fHNuZgDCzVtvveVYOKKkpMTnb8Vrqnv37srMzFRubq62bt0qSfrzzz/16aefKj4+XhdffLHT8YmJiZo3b56WLFmi22+/Xb169VJubq7mzZunYcOGacqUKT49f2JiooYNGyar1arFixdLklatWqU//vhD3bp10ymnnOKfFwoAAUKek+cIHIpRQIjYvn27cnNzJUkWi0U7d+6s0eMYjUYNHDjQZaiv/ZuWyt+sSOVDcz/++GNNmzZNl19+uaKiovTee+/p3nvv1cUXX+zTaCmDwaDs7GxJx0dHbdu2Td9++60yMjLUv3//Gr0uAAhF77//viZOnKjU1FRddNFFslqtevzxxwPy3AaDQYMHD5Z0PONXrFih0tJSnXfeeR6nVHTu3Fm33nqrXnzxRW3cuFGzZs1SQkKCXnvtNW3YsMGncxg5cqSio6P1xhtvyGq1auHChY7tAFCfkOfkOQKLYhQQAg4dOqS77rpLpaWlGjJkiAwGgx544AGPTW6rU3mq3jfffKPvv/9eTZs21Zlnnun2dxo1aqThw4fr0Ucf1erVq7Vy5Up16dJFe/bs0RNPPOHT819++eVKSUnRe++9p7y8PMfN7Oqrr1ZUFLEDIDysXbtW9957rxITE/XSSy9pypQpatCggT788EPHN9t1bciQIYqKitL777+v4uJit70BqxITE6MLL7xQffr0kST973//8+n5mzVrpgEDBujAgQN6+umntW3bNjVp0kTnn3++by8EAIKIPCfPEXj8VQgEmb1xuX0FvYcfflijR49Wfn6+xo8fL6vV6vNjduvWTa1atVJubq62bNniuJnZRz15o02bNrrhhhskSd99951Pz280GnXFFVfo6NGjmjt3rj788EPFx8friiuu8O2FAECI2rRpk26//XZFR0frueeeU8eOHZWSkqKbbrpJkvTII48E5DyaNm2qrKwsFRYW6sknn9TOnTvVrFkz9erVy+XYRYsW6aeffnLZfvDgQce06mbNmvl8DvZegc8//7wk6corr3QsPw4AoY48P448RyBRjAKCbO7cufrss8900kkn6aGHHpIk3X333erSpYu2b99e4+HB9m9RXn/9db377ruS3E/RW79+vdauXetS9LLZbPrkk08k1exmNnLkSEVFRWnevHmyWq26+OKLvV6VDwBC2Y4dO3TzzTfr2LFjmj17trp37+7Yl52drYyMDG3fvl3vvfdeQM7Hnvfz58+XJA0ePNjtFw+LFy/WwIEDde655+rmm2/WPffco+uvv14DBgzQ/v371atXL51zzjk+P3+3bt0cS4vHxsbqyiuvrMWrAYDAIc+dkecIJIpRQBBt3rxZTz/9tBITEzVr1iwZjUZJ5cNsn3zySTVo0ECvvvqqVq9e7fNjDxo0SNHR0VqxYoUOHz6s7t27q2XLli7Hff/997rxxhvVq1cvjRo1SnfffbfGjRunc889V0uWLJHJZNIdd9zh8/M3b97c6SZo7yMFAPXZ999/rzFjxujIkSOaMWOG+vbt67Q/Li5Ot99+uyTpiSee8HkRiJoYMGCAGjRoIMm570hl48eP19VXX62UlBRt375dH3zwgX788Ud17txZjz76qF588cUafwNunwJ+wQUXqHHjxjV6DAAIJPLcPfIcgWKw2Wy2YJ8EEIkOHTqkQYMG6cCBA3r44Yfdjlr66KOPNHbsWKWkpGjp0qVq3ry5T89x4403au3atZLk8Tn27NmjFStW6IsvvtDu3bv1559/KiEhQU2bNlW/fv00cuRINW3atEav8T//+Y8mT56sLl266PXXX6/RYwAAQtuxY8d03nnnad++fXr99dfVpUuXYJ8SAKAGyHMEEhNAgSBJT0/XZ599VuUx55xzjs/NByuyz/euSmZmpsaNG1fj56jKihUrJDEqCgDC2RtvvKF9+/apS5cu/OECAPUYeY5AohgFoE6sXbtWW7duVbNmzXTBBRcE+3QAAH70008/6aWXXtIff/yhzz77TFFRUZowYUKwTwsA4CPyHMFCMQqA3+Tl5WnGjBkqKChwTA+89957FRsbG+QzAwD408GDB/Xmm28qNjZWJ510km677TZ17do12KcFAPAReY5goWcUAL/Zu3evzj33XMXExKh58+a67rrrWIUDAAAAAOCEYhQAAAAAAAACJirYJwAAAAAAAIDIQTEKAAAAAAAAAUMxCgAAAAAAAAFDMQoAAAAAAAABExPsE4gUeXl5Nf7d1NRU5efn+/FswhvXy3tcK99wvbxXm2uVlpbm57PxPzI9MLhWvuF6eY9r5Rsy3TPeS97jWvmG6+U9rpVvQiXTGRlVD0RF8a/JF1wv73GtfMP18h7XyjOujfe4Vr7henmPa+UbrpdnXBvvca18w/XyHtfKN6FyvULjLAAAAAAAABARKEYBAAAAAAAgYChGAQAAAAAAIGAoRgEAAAAAACBgKEYBAAAAAAAgYChGAQAAAAAAIGAoRgEAAAAAACBgYoJ9AgCA8FFijZfZHKNf9lplNCbJZCpVXOzRYJ8WAKAGyHQACB+hlukUowAAfmGxJGnytCPKWV/s2JbVO1aTJybJaCwK4pkBAHxFpgNA+AjFTGeaHgCg1kqs8X/d4KxO23PWWzV52hGVWOODdGYAAF+R6QAQPkI10ylGAQBqzWyOcbnB2eWst8psZiAuANQXZDoAhI9QzXSKUQCAWisstNVqPwAgdJDpABA+QjXTKUYBAGotOdlQq/0AgNBBpgNA+AjVTA/ZYtTy5cs1adIkDRkyRB07dlS7du20dOlSt8fOnj1b7dq18/i/vXv3uv29zz77TNnZ2erSpYu6du2qUaNGaf369R7P6eeff9Ydd9yhnj17qnPnzrrsssv02muvyWbj2yEAkc1kKlVW71i3+7J6x8pkKg3wGQEAaopMB4DwEaqZHrITvmfNmqV9+/YpLS1NTZo00b59+6r9ncGDBysjI8Nle0pKisu25cuXa8KECUpPT9eQIUMkSStXrtTo0aM1c+ZMXXjhhU7H//jjj7rqqqt05MgRDRw4UE2aNNHatWs1ZcoU7dq1SxMnTqzhKwWA+i8u9qgmT0zS5GlympNevkpHguJiWXkJAOoLMh0AwkeoZnrIFqOmT5+uli1bKiMjQ88//7yeeOKJan9n8ODB6tmzZ7XH5efna/r06UpLS9OyZcvUtGlTSdKYMWN0+eWXa/LkyerTp4+Sk5MdvzN58mSZzWY9//zz6tevnyTpjjvu0OjRo7Vw4UJdcskl6tKlSw1fLQDUf0ZjkaZPjZfZnCCLxSCj0SaTqZQ/WgCgHiLTASB8hGKmh+w0vaysLLejnPzhgw8+UEFBgbKzsx2FKElq2rSpsrOzlZeXp9WrVzu2//zzz9q8ebN69uzpKERJUlxcnO644w5J0uLFi+vkXAEg1JVY4/XnoSTt3mOU2Rwjk6lUnTvFqmF6keJijwb79AAA1aiY438eSnIs8x0Xe1QN04vIdAAIcZ5yvKJQy/SQHRlVE5s3b9b27dsVFRWlVq1aqXfv3kpKSnI5btOmTZKkPn36uOzr06ePZs+erU2bNunyyy+v9vgzzjhDRqNRmzdv9uMrAYD6wWJJ0uRpR5SzvtixLat3rKZNPqZ413sgACDEeMrxyROTZDQyCgoAQl19zfGwKkbNnj3b6eeUlBT985//dBSV7HJzcyVJLVu2dHkM+7bdu3d7dXx0dLSaN2+uH3/8UaWlpYqJCatLCgAelVjj/7rxWZ2256y3atKUIk2bEh/0b1wAAJ5VleOTp0nTp5LjABDK6nOOh+w0PV+ccsop+ve//63Vq1drx44dWrNmjSZOnCiDwaD7779fa9ascTq+sLBQkmQymVwey94nymw2e3W8JCUlJamsrExFRaFbdQQAfzObY1xufHaf51hlNlOcB4BQVlWO56wnxwEg1NXnHA/dM/PBeeed5/Rz8+bNlZ2drTZt2jhWxzv33HODdHblUlNTFRVV89pfWlqaH88m/HG9vMe18g3X67hf9rq/8dlZLAad1CY8rxeZHjhcK99wvbzHtfItx8P5epHpgcO18g3Xy3uReq1q+nk8FK5XWBSjPOndu7cyMzO1c+dOFRYWOkY9VRz9VPlfgrtRUO5GS1VUVFQkg8Hgtj+VXX5+fo1fR1pamvLy8mr8+5GG6+U9rpVvuF7OjEbPmVe+31aj6xUKN8fqkOmBwbXyDdfLe1yrct7meG2uF5kOO66Vb7he3ovka1WTz+OhkulhMU2vKvaLVVx8vJlXq1atJDn3hbKzb6vYH6qq448dO6a9e/eqefPm9IsCEFFMplJl9Y51u+/MrFiZTKUBPiMAgC+qyvGs3uQ4AIS6+pzjYV2Mslgs+uGHH2Q0Gp0qeN27d5ckrVu3zuV37Nt69Ojh1fFbtmyRxWJxHAMAkSIu9qgmT0xwuQFm9Y7V1IeSQrZZIgCgXFU5PnliAjkOACGuPud4vR/KU1hYqIMHD6p169ZO248cOaKJEyeqqKhIQ4YMcRq1NHDgQM2YMUMLFy7UFVdcoaZNm0qS9u/fr4ULFyotLU0DBgxwHP+3v/1N3bt318aNG7V27Vr169dPklRSUqJZs2ZJkoYNG1bXLxUAQkaJNV5mc4wsFpse/EeiSkoSVVRUpuRkg0ymUp3QJFoROloaAEKWPbsLC22OvDYaizR9arzM5gSn7XGxLMwDAKHAXXZXLDLV1xwP2WLUkiVLtGXLFknSzp07Hds2bdokSTrjjDM0bNgwHT58WAMHDlSnTp3Upk0bNWrUSH/++adycnK0f/9+tW3bVhMmTHB67NTUVE2cOFETJkzQ4MGDddFFF0mSVq5cqcOHD+upp55y9Imye+ihh3T11Vfr1ltv1UUXXaTGjRtr7dq1+uGHH5Sdna2uXbvW9SUBgJBgsST9tYTs8enP9m9fjEb7Tc8YnJMDALjlObuTZDQWqWH6UTVMD+IJAgBcVJfddnGxR+tdjodsMWrLli1atmyZ07atW7dq69atjp+HDRumBg0aaMSIEdqxY4fWrl2rgoICxcfHq02bNho1apSys7OVkJDg8viDBg1SWlqa5s6dq6VLl0qSOnbsqFtuuUVZWVkux5988slavHixZs6cqbVr18pisahVq1aaNGmSRowY4edXDwChqcQa/9cN0Xnljpz1Vk2eJk2fGh/Sw4EBIBKR3QBQ/4R7dodsMeqRRx7RI488Uu1xycnJmjRpUo2eo2/fvurbt6/Xx//tb3/T008/XaPnAoBwYDbHOH0zU1HOeqvM5gQ1TK+/N0UACEdkNwDUP+Ge3WHdwBwA4F+FhbZa7QcABB7ZDQD1T7hnN8UoAIDXkpMNtdoPAAg8shsA6p9wz26KUQAAr5lMpS5Lx9pl9Y6VyVQa4DMCAFSH7AaA+ifcs5tiFADAa3GxRzV5YoLLjdG+ml59bqIIAOGK7AaA+ifcsztkG5gDAEJLiTVeZnOMLBabHvxHokpKElVUVKbkZINMplLFxRZV/yAAgDpnz+vCQpsjo43GIk2fGi+zOcFpO9kNAMHjLq8rFpnCObspRgEAqmWxJP21tOzxFT3s38oYjfX/ZggA4cJzXifJaCxSw/SjapgexBMEAEiqPq/t4mKPhmV2M00PAFClEmv8XzdKq9P2nPVWTZ52RCXW+CCdGQCgIvIaAOoH8ppiFACgGmZzjMuN0i5nvVVmM4NsASAUkNcAUD+Q1xSjAADVKCy01Wo/ACAwyGsAqB/Ia4pRAIBqJCcbarUfABAY5DUA1A/kNcUoAEA1TKZSlyVl7bJ6x8pkKg3wGQEA3CGvAaB+IK8pRgEAqhEXe1STJya43DDtq+lVXH4WABA85DUA1A/ktRT+XbEAADVWYo2X2Rwji8WmB/+RqJKSRBUVlSk52SCTqVRxsUXVPwgAoE7YM7qw0ObIZaOxSNOnxstsTnDaTl4DQOC5y2l7oSnS85piFADALYsl6a8lZ4sd2+zf1hiNkXGTBIBQ5Tmjk2Q0Fqlh+lE1TA/iCQJAhKsup6XyEVKRmtdM0wMAuCixxv9183RecjZnvVWTpx1RiTU+SGcGACCjASC0kdPVoxgFAHBhNse43DztctZbZTYzsBYAgoWMBoDQRk5Xj2IUAMBFYaGtVvsBAHWHjAaA0EZOV49iFADARXKyoVb7AQB1h4wGgNBGTlePYhQAwIXJVOqy1KxdVu9YmUylAT4jAIAdGQ0AoY2crh7FKACAi7jYo5o8McHlJmpfTc++JC0AIPDIaAAIbeR09eiaBQBwUmKNl9kcI4vFpgf/kaiSkkQVFZUpOdkgk6lUcbFFwT5FAIgo9lwuLLQ5sthoLNL0qfEymxOctpPRABAY7rK5YpGJnK4axSgAgIPFkvTXMrTFjm32b3CMRm6cABBonnM5SUZjkRqmH1XD9CCeIABEoOqy2S4u9ig57QHT9AAAksq/3Sm/qTovQ5uz3qrJ046oxBofpDMDgMhELgNA6CGb/YNiFABAkmQ2x7jcVO1y1ltlNjOYFgACiVwGgNBDNvsHxSgAgCSpsNBWq/0AAP8ilwEg9JDN/kExCgAgSUpONtRqPwDAv8hlAAg9ZLN/UIwCAEiSTKZSl+Vn7bJ6x8pkKg3wGQFAZCOXASD0kM3+QTEKACCpfLWPyRMTXG6u9tX0Ki5VCwCoe+QyAIQestk/Qraz1vLly7VlyxZ9/fXX2rlzp6xWqx5++GENGTLE6Tir1aqPPvpIH330kXbs2KH9+/dLkk466SQNHjxYV155paKjo51+Z+/evTr33HM9Pve4ceN02223uWw/cOCAZs6cqU8//VT5+flq1qyZLr/8ct1www2KjXVfGQWA+qDEGi+zOUYWi00P/iNRJSWJKioqU3KyQSZTqeJii6p/EABArdizuLDQ5shfo7FI06fGy2xOcNpOLgNA3XKXyfZCE9lceyFbjJo1a5b27duntLQ0NWnSRPv27XN73J49e3T77bfLaDSqd+/eOuecc2Q2m/Xxxx9rypQp+vTTTzVnzhwZDK7zNk855RQNGDDAZXuPHj1cth08eFDDhw/X/v37dd5556lly5bavHmzZs6cqR07dujZZ591+xwAEOoslqS/lqctdmyzf7NjNHJDBYBA8JzFSTIai9Qw/agapgfxBAEgglSXyVL5CCmyueZCthg1ffp0tWzZUhkZGXr++ef1xBNPuD0uOTlZkyZN0uDBg2U0Gh3bLRaLRo0apY8//lgffPCBBg4c6PK77du3dzsCyp0ZM2bot99+0+TJk3X11VdLkmw2m+6++2699957eu+993TJJZfU4JUCQPCUWOP/utE6L0+bs96qydOk6VPjGWoMAHWMLAaA0EEmB0bI9ozKyspSRkZGtcedcMIJGjlypFMhSpKMRqNGjx4tSdq8eXOtzqWwsFArV65UixYtdNVVVzm2GwwG3X333ZKkxYsX1+o5ACAYzOYYlxutXc56q8zmkP3OAgDCBlkMAKGDTA6MsL6KMTHlL69yzyi7AwcOaNGiRTKbzWrYsKF69uypzMxMl+O+/PJLlZSUKCsry2UqXkZGhlq3bq2tW7fq2LFjHp8LAEJRYaGt2v0MPQaAukUWA0DoIJMDI6yLUW+99ZYkqU+fPm73f/755/r8888dPxsMBl166aWaMmWK00ir3bt3S5JatWrl9nFatWqln3/+Wb/++qtatGjhp7MHgLqXnFx1r7vq9gMAao8sBoDQQSYHRtgWo9544w19+umn6tWrl/r16+e0LzExUWPHjtWAAQOUmZmpsrIyffvtt3rqqae0YsUKHTlyRLNnz3YcbzabJUkmk8ntcyUlJTkd505qaqqiomo+KzItLa3GvxuJuF7e41r5JtyuV1RUmc7MitXnOa5Dkc/MilXjRjFKTa3Zaw63a1URmR44XCvfcL28F0rXqi6z2F9C6Xr5G5keOFwr33C9vOfPa1UfMrm2QuG9FZbFqI8//ljTpk1TRkaGHn/8cZf9DRs21B133OG0rXfv3jr99NM1ePBgrVq1St988406dOjgt3PKz8+v8e+mpaUpLy/Pb+cS7rhe3uNa+SbcrleJNV6FhTF6YIJR/37U4jQ3Pqt3rB56MEFlZfmqyUuuzbUKhZtjdcj0wOBa+Ybr5b1QuFYVlww3mQya+M9ETZ0uv2axv5DpnoXCe6m+4Fr5huvlvZpeq4o5nJxskMlU6mhM/tCDSZo8LTQzubZCJdPDrhi1du1a3X777WrYsKFeffVVNWnSxOvfTUxM1KBBgzRz5kxt3brVUYyyj4jyNPKpqKjI6TgACHUVl6s1JkqjshN1/XUJio8zyGSy/XUzLgr2aQJAWHK3ZHj/s2M1eWKiio8kVPrDiCwGAH9zl8NZvWM1eWKSjMYiGY1Fmj41XmYzmVxXQnY1vZr45JNPNG7cOKWlpWn+/Pk16t9kr/QVFx9/U7Zs2VKSlJub6/Z3cnNzFRsbqxNPPNH3kwaAAKu8XK2lWJr7QrGuH2PWs88VO30rBADwL09Lhn/8iVWTp5VncMtMixqmF5HFAFAHPOVwznqrJk87ohJrvCQpLvaoGqYXkcl1JGyKUZ988oluu+02paamav78+Y4Ckq+2b98uqXyVPLvTTz9dsbGxysnJkc3m3Fl/3759+vnnn9W1a1fH6n0AEMpYrhYAgocMBoDgIodDQ1gUo9auXetUiPK06p3dt99+61JUkqRVq1bp7bffVmpqqvr27evYnpycrIsvvli//PKLXn/9dcd2m82mJ598UpI0fPhw/7wYAKhj3ixXCwCoG2QwAAQXORwaQrbkt2TJEm3ZskWStHPnTse2TZs2SZLOOOMMDRs2TLt27dK4ceNUUlKiHj166L333nN5rIyMDA0ZMsTx88MPP6w9e/bo9NNPV9OmTXXs2DF9++232rJli+Li4vTwww+79H+6++67tXHjRk2ZMkXr169XZmamNm/erC+//FL9+/fXxRdfXFeXAgD8iuVqASB4yGAACC5yODSEbDFqy5YtWrZsmdO2rVu3auvWrY6fhw0bpj/++EMlJSWS5LYQJUk9evRwKkZddtll+vDDD7V9+3Z98sknKisr0wknnKBhw4Zp9OjRatOmjctjNGnSRIsXL9bMmTO1du1affTRR8rIyNAdd9yhG264QQYDb1gA9YPJVKqs3rFuhydn9Y6VyVQahLMCgMhABgNAcJHDocFgczdfDX5Xm2U5WdbTN1wv73GtfBMO16vEGq/CwhhFGaL070ctLsvVTp6YIKOx9quEhMqSsXWFTA8MrpVvuF7eC+S1qrx0eEpKqawlMS7Nc/2Zwf5GpnvGf3fe41r5huvlPU/XqnL+Vlyk5/hqevUjh/0pVDI9ZEdGAQD8q+IStsZEaVR2oq6/LkHxcQaZTDaWqwUAP/O0dPiUSTGaPjWGJcMBoI54yt/JE5NkNBbJaCzS9Knx5HAQhUUDcwBA1SovYWsplua+UKzrx5j17HPFTt8UAQBqr6qlwx+aekSSWDIcAOpAVfk7edoRlVjjJUlxsUfJ4SCiGAUAEYAlbAEgsMhdAAgO8rd+oBgFABGAJWwBILDIXQAIDvK3fqAYBQARgCVsASCwyF0ACA7yt36gGAUAEcC+hK07LGELAP5H7gJAcJC/9QPFKACIAHGxRzV5YoLLjdm+hC0NGwHAv8hdAAgO8rd+oHMXAIS5Emu8zOYYWSw2PfiPRJWUJKqoqIwlbAHAz+x5a18mPCWlVNOnxrB0OADUkRJrvH7++ZjyC4wVMvaojMYiTZ8aT/6GMIpRABDGLJakv5a2LXZss38rZDRyMwYAf6kqbxumF6lhehBPDgDCkOfcTZLRWKS42KNqmH6U/A1RTNMDgDBVYo3/6wbtvLRtznqrJk87ohJrfJDODADCC3kLAIFF7tZ/FKMAIEyZzTEuN2i7nPVWmc0MjgUAfyBvASCwyN36j2IUAISpwkJbrfYDALxD3gJAYJG79R/FKAAIU8nJhlrtBwB4h7wFgMAid+s/ilEAEIZKrPGKjTW4LGlrl9U7ViZTaYDPCgDCQ4k1Xn8eStLuPUb9eShJSUYbeQsAdaBy3tp7QZlMpeRuPcdESgAIM/aVRb78sliPP2pSWZm0YePxOfX21Z1Y2hYAfOdu9ab+Z8dq4j+NmvYvi1MPE/IWAGquutXyJk9M0uRpInfrKYpRABBGKq8scu99Zo3KTtSo7ATJJmVkGJSSYuUGDQA14Gn1po8/sUqyaOpD8SqyJKiw0KbkZINMplLyFgBqoOrV8qTpU+NlNBZp+tR4WYqSlF9QSu7WMxSjACCMlK8scvzbI0uxNPeF4z8vX2pSXOzRYJwaANR7lTO2oo8/serO2xPUML1IDdMDfGIAEGaqytvy1fIS1DD9qOJij+qE1kbl5RUE+AxRW/SMAoAwwsoiAFB3yFgACAzyNvxRjAKAMMLKIgBQd8hYAAgM8jb8UYwCgDDCyiIAUHfIWAAIDPI2/FGMAoAwUWKNV2FhjP5xn9Hl5n18ZRH6RQGALyouK15YGKNJDyaSsQDgRxVz9s9DSSqxxisu9qgmT0wgb8MYDcwBIAxUXPrWmCiNyk7U9dclKD7OIJPJxsoiAFAD7pYV7392rCZPTFTxEVbNA4Dacpez5QWnJMdqeWYzeRuOGBkFAPVc5aVv7SvoXT/GrGefK/7rps23RwDgC0/Lin/8iVWTp5Vna8tMixqmF5GxAFADnnI2Z71Vk6cdcYyQapheRN6GIYpRAFDPlS99a3W7r3zpWwbBAoCvyFYAqFvkbGSjGAUA9RxL3wKA/5GtAFC3yNnIRjEKAOo5lr4FAP8jWwGgbpGzkY1iFADUcyx9CwD+R7YCQN0iZyMbxSgAqKfsy+D+/nu0HvyHkaVvAaAWKi8tbjCIZcUBwE8qZ6y9OTk5G7lCtiPY8uXLtWXLFn399dfauXOnrFarHn74YQ0ZMsTt8YWFhZo9e7ZWrVqlgwcPqkmTJrrgggs0btw4JSUluRxfVlamRYsWafHixdq9e7eMRqOysrI0fvx4tWjRwu1zfPbZZ5o7d66++eYbGQwGdejQQWPHjlXv3r39+toBoDqVl8E1Jkr33ZukCXcbVWQ5xtK3AOADT0uLT5kUo+lTY1hWHABqwVPGTp6YJKOxSNOnxpOzEShkR0bNmjVLb7zxhn799Vc1adKkymMtFouys7P1yiuv6G9/+5uuvfZatW7dWi+//LL+/ve/6+hR14rqpEmTNH36dNlsNo0aNUpnnXWWVq1apSuuuEK5ubkuxy9fvlw33HCDdu3apSFDhmjw4MH68ccfNXr0aH3wwQf+etkAUC13y+BaiqWHphbpsScsOvHEYyx9CwBeqmpp8YemHpEklhUHgBqqKmMnTzviGCFFzkaekB0ZNX36dLVs2VIZGRl6/vnn9cQTT3g89sUXX9R3332nMWPG6J577nFsnzFjhl544QW98soruummmxzbN2zYoCVLlqh79+56+eWXFRcXJ0m65JJLdOONN2ratGl66aWXHMfn5+dr+vTpSktL07Jly9S0aVNJ0pgxY3T55Zdr8uTJ6tOnj5KTk/19GQDARfkyuMVu95Uvg5ughuncxAHAG2QqANQdMhaehOzIqKysLGVkZFR7nM1m05IlS2Q0GjV27FinfWPHjpXRaNSSJUucttt/vuOOOxyFKEnq16+fevTooXXr1unXX391bP/ggw9UUFCg7OxsRyFKkpo2bars7Gzl5eVp9erVNXqdAOArlsEFAP8hUwGg7pCx8CRki1Heys3N1YEDB9S1a1cZjUanfUajUV27dtUvv/yi3377zbF948aNjn2VnXXWWZKkTZs2ObbZ/7lPnz4ux9u3VTweAOoSy+ACgP+QqQBQd8hYeFLvi1G7d++WJLVq1crtfvt2ex8oi8WigwcPqnnz5oqOjnY5vmXLlk6PW/F37fuqOx4A6kqJNV6xsQaWwQWAWsjPL3Os6kSmAoB/uFsxz2QqJWPhVsj2jPKW2WyWJI/9muzbCwsLfTreflzF3zWZTF4d705qaqqiompe+0tLS6vx70Yirpf3uFa+Ceb12r//mCZOLtKXXxbr8UdNKiuTNmw83gzyzKxYTX0oSSc0iZZk9PxAARLO7y0yPXC4Vr7helWvPEsLHc10jYnSs8+kSJJTg91Qy9RgC+f3FpkeOFwr39Sn62X/nFqxP9SZWbGaNjlJ0ybHa9KUIn2eU3cZW5+uVSgIhetV74tR9UV+fn6NfzctLU15eXl+PJvwxvXyHtfKN8G8XiXWeE2cXOr4Q+ne+8walZ2oUdkJkk3KyDAoJcWquNgChcK/0tpcq1C4OVaHTA8MrpVvuF7Vq5ylUvlqpGPHFei+e5M04Z5EFRWVVVhaPDQyNdjIdM/47857XCvf1Kfr5S5bJenzHKsefKhI/5oWo2lTYmQ2J6iw0Ob3jK1P1yoUhEqm1/tilH20kn30UmX27fYRTN4eX3EUVMXRT5UvflWjpgDAXyqvRGIplua+cPzn5UtNLIMLANXwtKqTpVh6aGqRli81qWWmJQhnBgD1V3Ur5hUUJKhhepEaph9Vw/QAnxxCVr3vGWXv2WTv61SZfbu9d5TRaFTjxo21d+9eHTt2zOV4e++niv2h7L/rri+Uu+MBwN9YiQQAao8sBQD/I1tRE/W+GNWqVSs1adJEW7dulcXi/E2WxWLR1q1b1bx5c5144omO7T169HDsq+yzzz6TJHXv3t2xzf7P69atcznevq1Hjx61fzEA4AErkQBA7ZGlAOB/ZCtqot4XowwGg4YNGyaLxaJnn33Wad+zzz4ri8Wi4cOHO223/zxr1iyVlJQ4tq9du1abNm1Snz59lJGR4dg+cOBAmUwmLVy4UPv373ds379/vxYuXKi0tDQNGDCgLl4eALCCHgDUQsXVnchSAKgdVsyDv4Rsz6glS5Zoy5YtkqSdO3c6tm3atEmSdMYZZ2jYsGGSpBtuuEFr1qzRCy+8oO+++06nnnqqvv32W61bt06dOnXS3//+d6fH7tWrl4YNG6YlS5ZoyJAh6tevnw4ePKiVK1eqQYMGevDBB52OT01N1cSJEzVhwgQNHjxYF110kSRp5cqVOnz4sJ566imPq/MBQG1YLEmaPO2IxxX0snrHavLEBMXFFgXxLAEgNNkz1N7LxJgo/d9s15XzyFIAqF7lTJXK83PKpARNnhijydPIVnjPYLPZQnIC5/33369ly5Z53D948GA98sgjjp/NZrNmz56tVatW6Y8//lDjxo114YUX6tZbb3VbKCorK9PChQu1ePFi7d69W0ajUVlZWRo/frwyMzPdPuenn36quXPn6ttvv5UkdezYUbfccouysrKqfT216e7P6gC+4Xp5j2vlm0BfrxJrvB6cVOq0/Pio7ER17hxTaQW90GtcHiqrdNQVMj0wuFa+4Xo5q5yhdsZE6b4JSTqtc3SllfNCL0tDBZnuGf/deY9r5ZtQu16eMlUqLzr9a1qMbLbyZubOK+bVfbaG2rUKdaGS6SFbjAo33OQCh+vlPa6VbwJ9vf48lKRBQ8we9y9falLD9ND8pilUbnJ1hUwPDK6Vb7hezupzhoYaMt0z/rvzHtfKN6F2vUI5U0PtWoW6UMn0et8zCgDCFSuTAEDNkaEA4D9kKvyNYhQAhChWJgGAmiNDAcB/yFT4G8UoAAhBrKAHAL6pvMJTktHmMUPPzCJDAcATVsxDIITsanoAEKlYQQ8AfONuhaf+Z8dq4j+NmvYvi8vqTlMfSlJcbEEwThUAQhor5iFQKEYBQAgpscb/9QGg/CZ/731mjcpO1KjshEor6HHDBwDJNTftPv7EKsmiqQ/Fq8iS4LS60wlNokWvWwBw5ilPc9Zb9dBU6V/TYjR9aozM5oRKK+bxuRS+oxgFACHEbI5x+ibKUizNfeH4z8uXmlh+HAAqqJybFX38iVV33p6ghulFaphecY8xIOcGAPVJVXmas96qggJ7nh6tlKmA7+gZBQAhhJVKAMA35CYA+Ad5ikCiGAUAIYSVSgDAN+QmAPgHeYpAohgFACGCFfQAwDsVV3oiNwGgZnxZhZQ8hb/RMwoAQgAr6AGAdyqv9GRMlP5vdookVngCAG/5ugopeQp/oxgFAEHGCnoA4B13Kz1ZiqVbbyvQffcmacI9iSoqKmOFJwCoQk1WISVP4W8UowAgyFhBDwC842mlJ0ux9NDUIi1falLLTEsQzgwA6o+arUIK+Bc9owAgyFi5BAC8Q14CQO2RpQgFjIwCgCAqscYrMTG6ymNYuQRAJCuxxstsjlFhoY28BAAfVcxQ+5Q7Vs1DKKAYBQBBYm8c2amj1KtnrFPDcjtWLgEQySo32L1pTKJ694rV+g3kJQBUx12T8vJm5LHK6h3r0jPKvp8sRSAwTQ8AgqBi48gFC4s1amSCevV0Xkr3+Mol9IsCEHncNdhdsLBY2SMS1LsXeQkAVfHUpDxnvVUPP1asSQ8mKqs3WYrgYWQUAARBxcaRlmLnFfRKjtrUsmW0GjQoYeUSABHLXYPdinl5791GFRcfY6UnAHCjuibl4+9I0PSpMTKbWTUPwUExCgCCoHJjyMor6C2an6wmjflWCkDk8tRA156Xfc+KZuU8APCguibkZrNN6WlH1TD9KKvmISiYpgcAQUDjSACoGjkJADVHhiLUUYwCgAArscYrNtbgMk/fjsaRACJViTVefx5K0u49RnISAHxQMT//PJSkJKONDEVIY5oeAASQfVWTL78s1uOPmlRWJqdV9I43jmS+PoDIUnnVJ2Oi9H+zUyTJqQEvOQkAztytmtf/7FhN/KdR0/5lIUMRkihGAUCAVF7VpGLTctmkjAyDUlKsfDgAEHHcrfpkKZZuva1A992bpAn3JKqoqIwGuwBQiadV8z7+xCrJoqkPxavIQpNyhB6KUQAQIJVXNanctHz5UhNL6QKISJ5WfbIUSw9NLdLypSaalQOAG9Wtmnfn7QlqmF5Ek3KEHHpGAUCAVLeqSXX7ASBckY8AUDPkJ+orRkYBQACUWOOVmBhd5TGsagIgkpRY42U2x6iw0EY+AoCXKmZncrJBSUmsmof6qcYjo5555hnt37/fn+cCAGHJYknSg5NK9eGqEvXqyaomAGDPxUFDzBp5TaE+XFWi3r3IRwCoSuXsHDTErO3bj7FqHuqlWhWjzj33XN18881as2aNysrK/HleABAWKjaVXLCwWKNGJrgUpI6vakK/KADhz12z3QULi5U9IsGlIEU+AkA5T43KH328SGOuT3QpSJGfCHU1nqZ355136s0339Qnn3yitWvXqlGjRho6dKiuuOIKNW/e3J/nCAD1VsWmkpZi5xX0So7a1LJltBo0KGFVEwARw12z3Yr5eO/dRhUXH2PVJwCooKqFHm69rUBvLk6R1cqqeag/alyMuvnmm3XzzTcrJydHS5Ys0erVq/Xcc8/p+eefV+/evTV8+HCde+65iokJTFuqpUuX6oEHHqjymF69eunVV1+VJM2ePVvPPPOMx2PXrFnjtqj22Wefae7cufrmm29kMBjUoUMHjR07Vr17967dCwAQlio3jay8gt6i+clq0phvrABEDk/NdO352PesaFbOA4BKqmpEbimW8vLK1DLTwqp5qDdqXSnKyspSVlaW8vLy9Pbbb+vNN9/U559/rpycHKWnp2vw4MG64oor1KpVKz+crmft27fXuHHj3O778MMP9cMPP6hPnz4u+wYPHqyMjAyX7SkpKS7bli9frgkTJig9PV1DhgyRJK1cuVKjR4/WzJkzdeGFF9byVQAIJzQtB4ByNCsHAN/k55fpz0NJNCpH2PLbsKW0tDSNHj1ao0eP1tatW/Xaa6/p3Xff1UsvvaSXXnpJPXr0UHZ2ts477zx/PaWT9u3bq3379i7bS0pKtHDhQsXExGjw4MEu+wcPHqyePXtW+/j5+fmaPn260tLStGzZMjVt2lSSNGbMGF1++eWaPHmy+vTpo+Tk5Nq/GAD1nsWSpMnTjqhTR6lXz1ht2Gh1OYamkgAigT0P7dNLbhqTqN69YrV+A7kIAO6U52ahU3+oKZOSlNU71qVnlER2on6qcQNzT/bs2aOPP/5YGzZscGxr2rSpNm7cqNtvv11XXHGFfvvtN38/rUerV6/W4cOHdfbZZ6tRo0Y1fpwPPvhABQUFys7OdhSipPLXlp2drby8PK1evdofpwygnqNpOQCUo1k5APiGRuWIFH4ZGWW1WrVq1SotXrxYmzZtks1mU4MGDTR69GhdeeWVatWqlbZt26bnnntOa9eu1dSpUzVnzhx/PHW13nzzTUnSsGHD3O7fvHmztm/frqioKLVq1Uq9e/dWUlKSy3GbNm2SJLdT/fr06aPZs2dr06ZNuvzyy/138gDqJZqWA0A5mpUDgG9oVI5IUati1K5du7R48WItX75c+fn5stls6tKli6666ioNHDhQcXFxjmO7dOmiuXPnavjw4dq8eXOtT9wb+/bt0/r169W0aVOdddZZbo+ZPXu2088pKSn65z//6VJUys3NlSS1bNnS5THs23bv3l37kwZQ79G0HADK0awcAHxDo3JEihoXo66++mp9+eWXstlsSk5O1tVXX62rrrpKbdu2rfL3TjrpJH311Vc1fVqfLF26VGVlZRo8eLCio52bZZ5yyin697//rR49eqhJkyY6ePCgPvnkEz399NO6//77ZTKZdO655zqOLywslCSZTCaX57H3iTKbzR7PJTU1VVFRNZ8VmZaWVuPfjURcL+9xrXxT3fXKzy+TMbGsymNSU2Ii4rqH82sk0wOHa+WbULhe+fllOnTIJnNhmYyJVTfUDWYehsK1qk/C+XqR6YHDtXJVMTNNpiglJ3suRkmR8znSV1wT34TC9apxMWrbtm069dRTdfXVV+uSSy5RYmKiV783bNgwde/evaZP67WysjItXbpUBoNBQ4cOddlfuZF68+bNlZ2drTZt2jhWx6tYjKqt/Pz8Gv9uWlqa8vLy/HYu4Y7r5T2ulW+qu17Hm5bHVNm03Jh0VHl54T0yqjbvrVC4OVaHTA8MrpVvQuF6HW9WXp5/1TUrD1YehsK1qk/IdM94L3mPa+WqcmZK1Tcqj4TPkb7iveWbUMn0Ghej3nzzTXXs2NHn3+vSpYu6dOlS06f1Wk5Ojn799Vf17t1bLVq08Pr3evfurczMTO3cuVOFhYWOUU8VRz9V/hdQ1agpAJGhYrPJL7+06vFHy/OgYkHqeINJ5vUDCD+empXb87BiQYo8BBDpqmpU/n+zUyTJaR+5iXBT42JUTQpRgbRkyRJJnhuXVyUtLU27d+9WcXGxowjVqlUrff3119q9e7dLMcreK8pdPykAkYGm5QAiHc3KAcB71TUqf2tJqkpKymhUjrBV88nRISwvL09r1qxRgwYNXKbjVcdiseiHH36Q0Wh0KjrZpxauW7fO5Xfs23r06FGLswZQn3lqWn7rbWaNv6dQxcXHWHIXQFirrll5cfGxv5ruFpGHACJedY3KDx+2qWF6EbmJsBWWxajly5fLarXq0ksvdVrRz66wsFA///yzy/YjR45o4sSJKioq0oUXXqiYmOMDxwYOHCiTyaSFCxdq//79ju379+/XwoULlZaWpgEDBtTNCwIQ0kqs8UpMjK7ymOTkqpv4AkB9VWKN15+HkpQQX/XHSnIQQKSz5+XuPcZqPzuaksPyT3XAocbT9ELZW2+9JcnzFL3Dhw9r4MCB6tSpk9q0aaNGjRrpzz//VE5Ojvbv36+2bdtqwoQJTr+TmpqqiRMnasKECRo8eLAuuugiSdLKlSt1+PBhPfXUU44pfQAix/Gm5aqyabnJVBqEswOAunW8+W6xbhqTSA4CgAcV81KqfoGH9HSDyqpeoBmo18KuGLVjxw7t3LlTnTt3Vrt27dwe06BBA40YMUI7duzQ2rVrVVBQoPj4eLVp00ajRo1Sdna2EhISXH5v0KBBSktL09y5c7V06VJJ5b2zbrnlFmVlZdXp6wIQemhaDiCSVW6+W7FZOTkIAMfVZIGH1NQosUAcwpnBZrN5nqwKv6nNUpMsVekbrpf3uFa+qXy9/jyUpEFDzI6fjYnSqOxEde4cU6lpeeTN8Q+VJWPrCpkeGFwr3wT6elXOQMk5B1NMBqWk2P5quhtaOch7yzdkume8l7wXydfKXV5KxzPzgvPjKi3wcDSir5evuFa+CZVMD7uRUQAQKJ6altstmp+sJo1D6w8wAPAXd813K+bgovnJaphuCfRpAUDIqW6Bh75nRatlJnmJyEIxCgBqgKblACJRiTVeZnOMCgttZCAAeFAxK5OTDUpKqjoPyUtEIopRAOAjmpYDiES+Nt8lAwFEospZKUlTJiUpq3esU88oO/ISkYr1IgHABxUbUC5YWKxRIxPUq2es0zHHm/UyRQ9AePDUfDd7RIJ69yIDAUByn5WS9OjjRRpzfaKyepOXgB0jowDAB2ZzjOObLkuxdO99Zo3KTtSo7IRKTctZNQpA+KiYfXYVM/Deu42Vmu+SgQAij7uslMrz8tbbCvTm4hRZrQmO6XvkJSIZxSgA8FJ+fpkKCpzn9NO0HEC4qtjzpKzMfT8Tmu8CiHTeZKVUnpd5eWVqmWlRw/QAniAQopimBwBesFiSdM99hSowu18NxY4GlADCgcWSpAcnlWrQELNGXkP2AYA7ZCVQcxSjAKAaFef/79hR6tIjyo4GlADCgbueJ2QfADgjK4HaoRgFANUon/9f/kGDpuUAwl3FzLMj+wDAGVkJ1A49owCgGoWFx4dcu2tantkiSmnpVhpQAggLFTPPzqlZ+V2JOnK0jOa7ACIaWQnUDsUoAKhCiTVeiYnRTtsqNy1fvtTEN10A6j17E96E+KqblV80MEYtT6BZOYDIU7FZeeXPh3ZkJeAdpukBgAf2ppQfriph/j+AsFaxCe+q1VYyDwAqqdys/MNVJerdi6wEaopiFAC4UbEpJfP/AYSzyk14yTwAcOauWfmChcXKHpHgUpAiKwHvME0PANwob0pZPhXPXZ+oli2j1aBBCfP/AdR7FfNOcs28FJNBKSk2ep4AiFiVc1Kq1B/qbqOKi4/RHwrwAcUoAKikxBqvggLnnimV+0Qtmp+sJo35xgtA/VSx70lZmWuPqIqZt2h+shqm0/cEQGSpLiel41nZ96xotcwkJwFfME0PACqw9wMoMLuukFJRcrL7DyUAEOoq9z0h7wDAGTkJ1D2KUQDwl4r9AHbsKKWBL4Cw467vCXkHAMeRk0BgUIwCgL+U9wOggS+A8FUx5+zIOwA4jpwEAoOeUQAg1z5R7pqWZ2ZGKy2NpuUA6h9775PDh933h3I04b0rUUeOltGEF0BE8aaPHjkJ+BcjowBEPE99ouxNKW+9zazx9xQqPs7AN18A6p2KvU8Ki9z3PbHnXUysTS0zLWqYXkTeAYgI3vaHIicB/6IYBSCi+dInKj2d5pQA6pfKvU/oewIAx9EfCggeilEAIpovfaJSU4lMAPVL5d4n9D0BgOPoDwUEDz2jAEQsr/pEtYhSWrr1r34AccE7WQDwUlW9TyrnXHKSQQ0a2Oh7AiBi0B8KCA0UowBEJIslSZOnHdHIEc4xaO8HYLd8qYlvwADUG/Zsy1lfnmP/N9vkekyFnFu+1KSG6fxxBSAyeJOR0vGcvGhgjFqeYAnkKQIRgzknACKOL32i6AsAoL7Izy+j9wkAeEB/KCC0UIwCEHF86RPFqCgA9cWhQzZ6nwCAB/SHAkIL0/QARBTf+0QBQGiz9z85fLjMZR+9TwBEMvpDAaErrIpR55xzjvbt2+d2X48ePbRgwQKnbSUlJXr++ee1YsUK/fbbb0pNTVX//v115513qmHDhm4fZ8WKFZo/f75+/PFHxcbGqmvXrrr99tvVoUMHv78eAP5FnygA4aZi/xN6nwDAcfSHAkJbWBWjJMlkMunvf/+7y/aMjAynn8vKynTLLbdo3bp1Ov3003X++edr9+7dWrJkidavX6/FixcrPT3d6XfmzJmjmTNnKiMjQ1dddZWKior03nvv6aqrrtIrr7yiM844o05fG4Caq9gnoFPHGPXqGasNG60ux9EfAEB9Ubn/ib33CdkGINJV1R+KjARCQ9gVo1JSUnTbbbdVe9yyZcu0bt06XXLJJZoxY4YMhvJhm//5z380efJkzZw5U1OnTnUcn5ubq2eeeUatWrXSm2++KZOpvLI+YsQIDR8+XBMnTtS7776rqCjacAGhqLxPQPk3YwsWFuvxR8v/G674geR4fwCGZQMIfRVzTSLbAMCucj5KZCQQasKuGOWtJUuWSJLuuusuRyFKkq666iq99NJLeuedd/SPf/xDCQkJkqSlS5eqtLRUt9xyi6MQJUnt27fXJZdcoqVLl2rLli3q3r17YF8IgGrRJwpAODneI8q5/0nlbEtOMqhBAxu9TwBEDE/5KNEfCgg1YTeMp6SkREuXLtVzzz2nhQsXavv27S7HHD16VNu3b1fr1q1dpu8ZDAZlZWXJYrHo66+/dmzftGmTJOnMM890ebw+ffo4HQMgdFgsSXpwUqkKzDbn7X/1B7j1NrPG31OomFgbfaIAhDx7pg0aYlZhkc11f4Vsa9DApobpRWQbgIhQXT5KxzMyJtamlpkWMhIIorAbGXXw4EE98MADTts6deqkJ598UpmZmZKkPXv2qKysTK1atXL7GPbtubm56tatm+OfjUajGjdu7HJ8y5YtJUm7d+/206sA4A/0iQIQTugRBQDukY9A/RNWI6OGDBmiV155RTk5Ofryyy/19ttva9CgQfrqq6907bXXqrCwUJJkNpslScnJyW4fx77dfrz9nytOz3N3vP1xAQRfiTVehw/HOT6ULFhYrFEjE9SrZ6zTccf7BPCtGIDQU2KN15+HkrR7j9Ep0yRyDQDsGZl3KJZ8BOqZsBoZNW7cOKef27dvr8cee0yStHz5ci1ZskSjR48OxqkpNTW1Vs3N09LS/Hg24Y/r5b1wvFb79x/TxMlFGjY02rHNbZ+ozGid2DRKqalRkuK8euxwvF51JZyvFZkeOJF8rexZZm/C+9QM5y/RKueaKdmg9LQopacbfMq1SBXJ762aCOfrRaYHjj+vVcWMDNd85L3lPa6Vb0LheoVVMcqTK6+8UsuXL9fWrVs1evRoxwiniiOfKrJvrzhyKjk52ePIJ/vxnkZOSVJ+fn6Nzl0qf6Pk5eXV+PcjDdfLe+F4rUqs8Zo4uVQ5660aOSLBaZ+9T4Dd8qUmlZWZ5e0lCMfrVVdqc61C4eZYHTI9MCL5WlXMMru4ePcNee259u7bDdSgQYHKyuR1rkWqSH5v1QSZ7hnvJe/581pVzsjq8nH5UlO9y0feW97jWvkmVDI9rKbpeWK/YBaLRZLUokULRUVFKTc31+3x9u0Ve0q1atVKFotFBw8edDne3ivK3jsKQPCUL+Xr3C/AHfoFAAhlFbPMrrpMS093/WMMAMJR5YzkMx9Q/0REMWrHjh2S5Fg5LyEhQZ07d9bPP/+sffv2OR1rs9mUk5Mjo9Gojh07OrZ3795dkvT555+7PP66deskST169KiT8wdQPXvPgIpL+dIvAEB94y7L7KrLtPKpJwAQnir20CsocM5IPvMB9U/YTNPbtWuXmjVrpsTERJftM2bMkCRdeumlju3Dhw/Xl19+qSeffFIzZsyQwVAeaK+//rp++eUXXXnllUpIOD7FZ8iQIXr55Zc1Z84cnXvuuY4ped99953effddtWnTRmeccUZdv0wAblgsSX+toFKs/5t9fLqsuz5RLVtGq0GDEsXFFgXxjAHAlacsc+yvkGkT7jGquPiYkpMNMplK/8q0+tEDBQB8VTEfJblkZOXPfCkmg1JSbBXyEUCoCZti1MqVKzVv3jx1797dUZTKzc3Vp59+KqvVqptuuskxukmSBg8erJUrV+rdd9/V3r171b17d+3Zs0erVq1S8+bNdeeddzo9fuvWrTVu3DjNnDlTgwYN0vnnn6+ioiK99957kqRp06bVqvEhgJqpbinfiv0CsnrHavrUGL4dAxByvF2W3FIsffV1qa4cLjVpTJYBCH+V81Fyn5H2z3x83gPqh7ApRvXs2VO7du3Sd999py+++EJHjhxRWlqa+vbtqxEjRqhPnz5Ox0dFRWnOnDl6/vnntXz5cr3yyitq0KCBrrjiCt15551KT093eY5bbrlFGRkZevXVV/Wf//xHsbGx6tatm+644w516NAhUC8VwF9KrPF/LXV+vCn5goXFevzR8m/LKn5AOT5Mm2/HAISOEmu8zOYYlVoNZBkAVOApHyUyEggHYVOM6tGjh889m+Li4jRu3DiNGzfO69+57LLLdNlll/l6egD8zD5ce9jQaOftlYZpJycZ1KABw7QBhJ6K006qW5acLAMQSarKR8k5I++9K1FHjpZVmrYMINQxrwxAvVNxuHZVS/neeptZDRrY1DC9iKHaAEJK5WknZBkAlPMmH6XjGRkTa1PLTAsZCdQzFKMA1CvHp+Y591Vxh6V8AYQa+2pQeYdiWZYcACogH4HIQjEKQL1hsSTpwUml2r37mGMbS/kCqC/sGTZoiFl7filz2keWAYhk5CMQecKmZxSA8FZxyPbIEQmO7ZX7qpQctally2g1aFBCzwAAIaO6aScsSw4gUpGPQGRiZBSAkFfd1LyKfVWWvHX0r0IU35IBCD5fpp3Ys2zRa0eUkWGl/wmAsEY+ApGNYhSAkMbUPAD1FdNOAMA98hEA0/QAhCym5gGor5h2AgDukY8AJEZGAQhRTM0DUB8x7QQAPKv8+U4iH4FIRTEKQMhhah6A+ohpJwDg2f79x1w+30nkIxCpmKYHIKQwNQ9AfcS0EwDwrMQar4mTi1w+30nkIxCpGBkFIGQwNQ9AfcO0PADwzF1Gko8AJIpRAEIEU/MA1DdMywMAzzxlJPkIQGKaHoAQwNQ8APUN0/IAwLOqMpLPdwAkRkYBCDKm5gGob1gNCgDc83bqMp/vAFCMAhA0TM0DUN+4yy2J7AIApi4D8AXT9AAEBVPzANQ3nnJLYloegMjG1GUAvmJkFICAY2oegPqE1aAAwDOmLgOoCYpRAAKKqXkA6hNWgwIAz5i6DKCmmKYHICBKrPE6ciRW0/9dzNQ8ACGtxBovszlGNhn02OPFrAYFAJVU9blOcj8tL61BlIxJR8lIAJIYGQUgAOzfmv2ca2NqHoCQVnEk1L59NlaDAoBKvPlcJ7lOy2vdOpqMBOBAMQpAnSmxxqvAnOxoaFly1ObYx/BtAKGkcl5JcsosidwCELnsvfP+OMTnOgD+wTQ9AHXCYknS5GlHNHJEDFNcAIQ0d3klsRoUAEjHMzJnfbH+b7aJz3UA/IKRUQD8ruLyvhW/NWOKC4BQ4ymvJFaDAoCKGSmJz3UA/IZiFAC/qry8b8VvzRjCDSBU2Kec5B2KdZtXEpkFILJV/kwn8bkOgP8wTQ+A39iHcQ8bGu3YZv/WbMNGq8sQbtmkjAyDUlKsDOEGEDAVp5w8NSPZsb1iXknO007G3JCg+DjJZBLT8gCEPXef6SQ+1wHwH0ZGAai1yo1/q/rWrOIUl5NPkho1LOSbMwAB4a5JeXXf8luKpa++LlWLDKlVyyKm5QEIa1V9ppP4XAfAfxgZBaBW3DX+5VszAKHGU5Ny8goAylX3mU5ixCgA/2FkFIAaqfzNWVXL+/KtGYBgqG4pcom8AgBfPtNJjBgF4B9hMTLq999/1/vvv69PP/1UP/30k/744w+lpqaqa9euuuGGG3Taaac5HT979mw988wzHh9vzZo1at68ucv2zz77THPnztU333wjg8GgDh06aOzYserdu7ffXxMQytx9c8byvgBCiTdLkUuueZViMiglxca3/AAiAp/pAARLWBSjFixYoBdeeEGZmZk688wzlZ6ert27d2v16tVavXq1nnjiCV100UUuvzd48GBlZGS4bE9JSXHZtnz5ck2YMEHp6ekaMmSIJGnlypUaPXq0Zs6cqQsvvND/LwwIMSXWeB05Eqvp/y5Wznqrhg2Nd+xzN4x77gvFkspXVZk+NYZvzQDUuco5JblfityeVdLxvCKrAESSI0eMjtFQfKYDEGhhUYzq3LmzFixYoB49ejht/+KLL3Tttddq8uTJGjBggOLi4pz2Dx48WD179qz28fPz8zV9+nSlpaVp2bJlatq0qSRpzJgxuvzyyzV58mT16dNHycnJ1TwSUH9V983ZgoXFevxRkyQ5/ZF3fHlfvj0DULc89YUiqwDAmcWSpF/2ic90AIImLIpR559/vtvt3bp1U8+ePbVu3Tp9//336tSpU40e/4MPPlBBQYFuu+02RyFKkpo2bars7GzNnj1bq1ev1uWXX16jxwdCmbejoWj8CyAYSqzxMptjZJNBjz3umlMSWQUAdhU/1/GZDkAwhX0D85iYGKf/r2jz5s16/vnn9eKLL2r16tUqKnIfrps2bZIk9enTx2WffZv9GCCcWCxJenBSqX7OtXm1DDqNfwEEkj2jBg0xa98+9zklkVUAILl+ruMzHYBgCouRUZ78+uuvysnJUePGjdW2bVuX/bNnz3b6OSUlRf/85z9dRjjl5uZKklq2bOnyGPZtu3fv9s9JAyGA0VAAQpmvfaFYihxAJPP0uY7PdACCKWxHRlmtVk2YMEElJSW65557FB0d7dh3yimn6N///rdWr16tHTt2aM2aNZo4caIMBoPuv/9+rVmzxumxCgsLJUkmk8nleex9osxmcx2+GiBwGA0FIJS5yyip6pySWIocQGSq6nMdn+kABJPBZrPZqj+sfikrK9O9996rd999V8OHD9e0adO8+r3169dr9OjROvnkk/XOO+84tl9wwQXKzc3VN9984zLdz2q1qmPHjmrXrp1WrFhR5TlFRYVt7Q9hID+/TPkFZZr2L4ty1lv11Ixkjb+nvBB705hEbd9R6hhlYEyURmUnqnPn8v8emmdEqXGjKKWm8h5HZCDTA6+qjJLIKQA1F66ZfuDAMf1zUlGVn+sqZmXJUZtSUw1q3SpaTZpEV/PoAFA7YTdNr6ysTP/4xz/07rvv6rLLLtOUKVO8/t3evXsrMzNTO3fuVGFhoWPUU8XRT2lpaU6/U9WoqYry8/N9eRlO0tLSlJeXV+PfjzRcL+9FRaXqjz9LFWWI0r8ftWjkiASvVlWpuAz65IkJMhrNKiuTwv2y897yXm2uVeWcDUVkemB4m1ESOSXx3vIF18o3ZLpnofhespbGq7g4Tr/tL/Pqc93cF4olHV8tLza2oE6yMhSvVSjjenmPa+WbUMn0sCpGlZWV6YEHHtDbb7+tSy65RI888ojP33KkpaVp9+7dKi4udhShWrVqpa+//lq7d+92ufj2XlHu+kkBoax8CfRCdeoY4/h2jN5QAEKFLxkl0RcKAKTy7Fy/oUzvf2jRlcP4XAcgdIXNeNSKhaiLLrpIjz32mFOfKG9YLBb98MMPMhqNTkWn7t27S5LWrVvn8jv2bT169KjF2QOBU2KNV4E5WZOnHVHOeqs6d45x/DFHbygAwVbTjJLoCwUgclXMzkaNo7RhI6vlAQhtYTEyyj417+2339aFF16oxx9/3GMhqrCwUAcPHlTr1q2dth85ckQTJ05UUVGRhgwZ4tQbauDAgZoxY4YWLlyoK664Qk2bNpUk7d+/XwsXLlRaWpoGDBhQdy8Q8JPykQZHNHJETLUrUPGtGYBAI6MAwHeVs5PV8gDUB2FRjPq///s/LVu2TEajUa1atdKcOXNcjhkwYIDat2+vw4cPa+DAgerUqZPatGmjRo0a6c8//1ROTo7279+vtm3basKECU6/m5qaqokTJ2rChAkaPHiwLrroIknSypUrdfjwYT311FOOKX1AqCmxxstsjpFNBj32uPOSvpKvvaEKXR4fAGrL07LjEhkFAFU5csToGElqz86Kq+WRmQBCVVgUo/bt2yepfJrdc8895/aYjIwMtW/fXg0aNNCIESO0Y8cOrV27VgUFBYqPj1ebNm00atQoZWdnKyEhweX3Bw0apLS0NM2dO1dLly6VJHXs2FG33HKLsrKy6u7FATVQYo1XYWGMo+lvzvpi/d9sk9smlnxrBiAYKudUxdFQZBQAVK2qJuUVc7NiZpYctSkl1aCWLWxKSCAzAQRXWBSjHnnkET3yyCNeHZucnKxJkybV6Hn69u2rvn371uh3gbpW+Q+7Th3ltMy5p6kufGsGIFCqyilPzcnJKAA4zl6E2ry51GOT8upWy0tIsATl3AGgorAoRgGRzt4roOIfdiNHJDg+fEhVT3VxXoHKIJPJxgpUAPyqupwiowCgahVXyhuVnaANG63lo0T/Ys/OBXIzirRZlFJSS8hNACGDYhRQj1Xus1LxD7uKI6EkX6a6sJIKAP/xNqfIKADwzN4bauSI8iKUfURUtdnZjOwEEJqign0CAHxTYo3XobwkHT5s0oOTSvVzrs3tqlMVRxlILOkLILCspfEqMHufU2QUALiyZ+nuXwzKWW91ZGjFJuVkJ4D6iJFRQD3gbZ8VT01/JTl9W1Y+1UVqkBotY9JRhmwD8IuKWbVla3k/E29zyt03+s2bR8lkYloJgMjjqTcUTcoBhAtGRgEhqvIIqPdWlmr6wxblrLeqc+cYR5HJ3R92kus3ZVJ5Qeqrr0vVIkNq1bJIrVtH820ZgFrxlFWNGkf5nFOVv9E/qU0MGQUg4hQWJevTT6M0dfrxLK1chKqYn/bsvPU2s5a8dVQtMkSTcgAhj5FRQAipagSUN31WaPoLIFDs39pP/7f7rHK3wpPvORUXpFcHAIFnLY3X0aNxmjz1eIPyyr2haFIOIFxQjAKCrCYFqJqtOsXoAgC142kanrusIqcAwHuFRcnauPGYmjcvcypCVewN5bEIdaK9CEWGAqg/KEYBQVDbAhSrTgEIJHejoOzf2kvus4qcAoDqVR4NVVDgXNCvqjdUQoL+6g1lDuZLAIAaoWcUECDe9oCqrgAlsXIKgLpXMbPsvUsq5lV1WUVOAUDV7L2h9u0rc+QqvaEARApGRgF1yJ8joOgHBSAQvB0FVV1W0c8EANyrajQUvaEARAqKUYAflFjjZTbHyGKxKTU1SlarFB1lCGABitEFAGrGXjS3yaCY6Ch98YXVpRdUxWbk7qaOkFUAUL3Sv4r9mzaXOvWGqpir//u+VKNGJrgtQjU7MUqp9IYCECYoRgE1VHnU05dflv8xNmt2sU7rHEMBCkDIqphfT8y06IohMTp48Jg+WFXs9SgosgoAvFdkSVZRoUGPPVH9aKjFbx7RaZ1jnHpDtcgwyGikNxSA8EExCvBBVdPubhqTqAWLjmjDRqtGZVOAAhB63E3BO61zjBYsOuKyjLhU9SioqqeOkFUAYFdkMWn9+lK1aBHl9Wiozp1jJJvUqlU0o6EAhCWKUYAbNZl217lzDAUoACHFmyl49uJ55WXEJUZBAUBtlP7VG2rvvjI1bhLFaCgAqIBiFCJaVUUnX6fdUYACEApKrPEqKopRdHSUHn+i+il4lafiMQoKAGqntDReR47EyWKR8g6XORWhJEZDAYBEMQoRoHLBqaREKi4uU2pqtKb/23PRyddpdxSgAARD5dFPM54s0s03xuqpWRavpuC5W0aczAKAmrH3htrxVfm0vIICm8ecZTQUgEhGMQphw1502verVSZTssdRTvZC0/YdR6ssOvk67Y4CFIBAqWr002mdY1RYaHPKtKqm4Pm2jDiZBQCeWCwmbdhQqubNoxzT8uxT8k5sGsVoKACogGIU6h1vptY9NeuIx1FOknOhyVPRyddpdxSgANSlygUoT6OfKq7S5M0UvMVvHvG4jHjGiRShAKA69t5Qh/JsatTYtTfU/74vVZfTEnTtNYl6ZX4xo6EAQBSjEMJq0s/Jm1FOkndFp5pMu0tMMGjSg4kqKUlUUVGZkpMNFKAA1FhVBShPo59Kjtp8noJnTJLun2BUWZlksZTJZBLZBQBe+P33YyoujtP+38sUFWVwymB7IWr4FQn6z+Ij6tQxRmNvTpRBUvERKZWCP4AIRjEKQeG5j5P/ik6eCk6Sd0Wn2k67a9TQ/9cNQPizlsbr6NFY2cqi9NgTRR4LUJ5GP1VcpYkpeABQd0qs8fpsnVUdTo1RQYFNGc0MshQ7T8sbfkWCFr95RKe0i1H79jH69dcypaQY1KJ5FKOhAES0qGCfAMJbiTVefx5K0i97jSowJ+vPQ8k6fNikByeV6uqRZh06ZNDU6cUakV3g+OeV71s1/WGLctZbNSr7eNGpc+cYp2l2lVeEqvzPngpO0vGiU+V/XrCwWKNGJjj+eLP/s6W4/A+40zrH6KUXTHr+uRRdNDBGrVuVqlXLQjVML+IPOQC1Uloar8JCk/bsiZWlyKAp04vU9uTjBajOnWOcClCeRj9VXKXJ/v+dO8c6Muzxx0zq3ClGGSdGqX37UjVqZCa/AKAGCvLj1KhxlMyF5Zlsk3TwQJn+932pmp4QpWuvSXQUojp3jlHJUZtSUg1q0ZxpeQDAyCj4RW2n1NVmpJOvo5wked3riWl3AOpaxSXAd3xVKklq0SLK7Qgob0Y/LX7ziNM38dHR0h3jEhUbZ9SRIzb61wGAH1gsJhWYbSo5alPjRuWZ3TwjSq1bR6tly/LeUEzLAwDPKEbBJ3XVx6kuik5VFZzsI53uuzdJ999rVPGRY9UWnZh2B8CfKhehWrQoX31JklcFKPuoJ3cNyKOjpbE3Jyo21iCLpUzGJJtMJit/AAGAHxw5YlRhoWQ0GmQuNOjgwWP6fmd5k3JJ2rv3mKMIZSmW4uOlE0+UjImMhgIAO4pRcKuuik6eCk11VXTybpST8wcDik4A6lqRJVlFhQanIpS9ACV57v9UsQBV/egnik8AUBcKzNEyF9qUnm7QwQNlyllfovG3G/XU0xZ17BCjs/rEHh8NlWpQKqOhAMAFxagI5rmJeLSm/7tuik6eCk2BKToxyglA8O3bV6oNG46peXPnIpS7HKyuAHXzmETFxhl05IiN0U8AEABHjhhlNtuUnGzQvr3HHNPy/m+ORcOGxqtx42gVFdlkMhl0YlPRGwoAPKAYFWFKrPEqLIxRlCHKZZSTvdC0fcfRgPdx8mfR6YQmRuXl5Umi6AQgtBQVmXQoz6ZGjV2LUPbVlyRRgAKAEFVgjpbJJFmtNi1bflS33mLU9q9Kdf11f03Ls9iUkCCZTBSiAKAqFKPCVFXT7Dp1lNtRTlLw+jj5d6ST0Q9XEAD8y2Ixae++MkVFGZx6QVVcArzLaQlKNBoczW8pQAFAaDGbbWrSxKB5rxTrjtuSNGt2kS67NF4Gg6F8RFSyQSkpFKIAoDoUo8JIVaOeKk6zGznC/SgnKbh9nIqLy5heByAslVjjVWAub0ye0cwgS7HBpQh17TXHV1/q1zdW94w36miJVFxsU6JRSkmh5wgABJvJZNAve45pzA1GzZlbpOtGJyomxqDCQptSUwxKTpbi4o4F+zQBIORRjPLRjh07NHv2bG3btk2lpaVq27atrr32Wl100UVBOZ/KBShPo54qTrPzVHCSgtvHqSKKTgDCSUF+nMzm8tFQNkkHD5S5LUI5Vl+ySLExUno6BSgACCXGROmtZUc1bqxRQ4ckyGAwqKDApqQkgwrMZUpKjlZMjCXYpwkAIY9ilA82bNigG264QXFxcbr44ouVlJSkVatWafz48dq/f7+uu+66gJxHVQUoT6OevBnlJNE8HAD8rXxUVPkfKhs2WtU8I8rR8LZyEar4iJSaYlCjxhShACAURUVJt4416plnLbrs0ngZ/+oOEWWQTmwapegoW9UPAACQRDHKa6WlpZo4caIMBoMWLVqk9u3bS5JuvfVWXXHFFXryySd1wQUXKCMjo06e39sClDfT7DwVnKS67OMEAJGpoCBWRqNBv/9+TN/vLB8NJUl79x47PhKqWIqPl048UTIm0mcEAEKVTeUFqauvSpDRGKWiovIvGwqLypSYGCUZqn0IAICkqGCfQH2xYcMG7dmzR5dccomjECVJJpNJN998s6xWq5YtW+bX5yyxxutQXpJ+/rlUD04q1XsrSzX9YYty1lvVuXOMo4DkS28nqbzINGpkgnr1jHX6Z6n8D6J77zNr4AVxem1BqtLTbZr0YKLefitFL8xN1kUDY9S6VakyWxQqxVSoRg0L1TLToobpRXyLDwBumAvKC03LVxzV+NuNen3JEW3+wqq2baOPj4ZKNeiEE6wyJhYG+3QBAFUoq6YdVHX7AQDlGBnlpU2bNkmS+vTp47LPvm3z5s1+ez6LJUmTpx3xagSUr72dvB/l5PztPCOdAMB3RqNB+/Ye09VXJer/5lg0bGi8GjeOdqy61KihZDQeUywFfQAIeYYoKe9P91PxDuXZ1LgxQ6MAwBuMjPJSbm6uJKlly5Yu+xo3biyj0ajdu3f75blKrPGaPO2I1yOgvBn1ZB/xdFrnGL30gknPP5fCKCcACID4BGnp20fVMN2grKw4yWDQvn3HZCm26etvSxUdY1BsLM1uAaA+KCuTGjQwKHd3mQ7+UabDh8v/P3d3mdIaGFRWFuwzBID6gZFRXiosLJ86YTKZ3O5PTk6W2eyfPh9mc4xy1ns/Asqfq9gBAPzLYJCuvipRzzxr0aDL4tW4UZRjVFSrzCjZbDS7BYD6wmaTDh+2qVXLKKeeUUlGKe+wTenpjIwCAG9QjAqQ1NRURUV5NxDtl71Wxz/7WoC68YYExcUZ1CA1SunpBqWmunvOOEnG2ryckJeWlhbsU6g3uFa+4Xp5L5yvlS+Znl9QqqgoKav38VFRcfEG7d59TK1bR6tRI0NYX6va4tr4huvlPa6Vb8L5evma6WVlUm5umRo3Kf/i2FJs0MEDZWrdOlpSeF+r2uLa+Ibr5T2ulW9C4XpRjPJScnKyJHkc/VRYWKjU1FSPv5+fn+/1cxmNSY5/9nYEVHycQSaTzWnUU1mZlJfn9dOGjbS0NOVF4guvAa6Vb7he3qvNtQqFm2N1fMn0qKjkavbbeF95wH9zvuF6eY9r5Rsy/Tgyveb47843XC/vca18EyqZTjHKS61atZIk7d69Wx07dnTad/DgQVksFnXu3Nkvz2UylSqrd6xy1vtegAIAhJaEBKukWPc7Dfb9AID6gEwHAP+ggbmXunfvLklat26dyz77NvsxtRUXe1STJyYoq3fVjcdbtSyk2TgAhLjYmKNqdqJNhkptRAwGqVlTm2JjyHAAqC/IdADwD0ZGeal3795q0aKF3n33XV1zzTVq3769pPJpe88995xiY2N1+eWX++35jMYiTZ8aL7M5QRaLQUYjI6AAoL5KTCzSWWfFy2yOksUSJaPRpvanlCkutjjYpwYA8BGZDgC1RzHKSzExMZo+fbpuuOEGjRw5UhdffLGSkpK0atUq7du3T/fdd5+aN2/u1+eMiz2qhulHdVIb5sACQH1HpgNA+CDTAaB2KEb5oFevXnrttdf09NNPa+XKlSotLVXbtm11zz336KKLLgr26QEAAAAAAIQ8ilE+6ty5s1588cVgnwYAAAAAAEC9RANzAAAAAAAABAzFKAAAAAAAAAQMxSgAAAAAAAAEDMUoAAAAAAAABAzFKAAAAAAAAASMwWaz2YJ9EgAAAAAAAIgMjIwCAAAAAABAwFCMAgAAAAAAQMBQjAIAAAAAAEDAUIwCAAAAAABAwFCMAgAAAAAAQMDEBPsEItGOHTs0e/Zsbdu2TaWlpWrbtq2uvfZaXXTRRV4/RklJiZ5//nmtWLFCv/32m1JTU9W/f3/deeedatiwYR2efWD8/vvvev/99/Xpp5/qp59+0h9//KHU1FR17dpVN9xwg0477TSvHmfjxo265pprPO5/+OGHNWTIEH+ddlCdc8452rdvn9t9PXr00IIFC7x+rBUrVmj+/Pn68ccfFRsbq65du+r2229Xhw4d/HW6QbV06VI98MADVR7Tq1cvvfrqq1UeE27vr+XLl2vLli36+uuvtXPnTlmt1ipfQ2FhoWbPnq1Vq1bp4MGDatKkiS644AKNGzdOSUlJPj33Z599prlz5+qbb76RwWBQhw4dNHbsWPXu3dsfLy3o/JH74cLXfJ89e7aeeeYZj4+3Zs0aNW/evK5PO6h8zfdw/4xQFV/zPVLeX3Wd72VlZVq0aJEWL16s3bt3y2g0KisrS+PHj1eLFi3q+uUFXCRmeqCyO5w+DwQiu8PhM3ugcru+vbdCMbf9fQ0pRgXYhg0bdMMNNyguLk4XX3yxkpKStGrVKo0fP1779+/XddddV+1jlJWV6ZZbbtG6det0+umn6/zzz9fu3bu1ZMkSrV+/XosXL1Z6enoAXk3dWbBggV544QVlZmbqzDPPVHp6unbv3q3Vq1dr9erVeuKJJ3y64ffo0UM9evRw2d6+fXt/nnbQmUwm/f3vf3fZnpGR4fVjzJkzRzNnzlRGRoauuuoqFRUV6b333tNVV12lV155RWeccYY/Tzko2rdvr3Hjxrnd9+GHH+qHH35Qnz59vH68cHl/zZo1S/v27VNaWpqaNGni8QOUJFksFmVnZ+u7775Tnz59dPHFF+u7777Tyy+/rM2bN2vRokWKj4/36nmXL1+uCRMmKD093XGDXblypUaPHq2ZM2fqwgsv9MvrCxZ/5H44qWm+Dx482G2WpaSkBOK0g87bfI+EzwhVqWm+h/v7q67zfdKkSVqyZIlOPvlkjRo1SgcOHND777+vzz//XG+88YZatWpVx68wcCI10wOR3eH4eaAusztcPrMHIrfr43sr1HK7Tq6hDQFjtVptAwYMsHXs2NH27bffOrYXFBTYzj//fFuHDh1se/furfZx3nzzTVvbtm1td911l62srMyx/bXXXrO1bdvWNnHixDo5/0D68MMPbRs3bnTZvnnzZluHDh1s3bt3tx09erTax9mwYYOtbdu2tqeffrouTjOk9O/f39a/f/9aPcbPP/9sO/XUU23nn3++raCgwLH922+/tXXs2NE2cOBA27Fjx2p7qiHr6NGjth49ethOPfVU28GDB6s9PtzeX59//rkjg+bOnWtr27at7a233nJ77KxZs2xt27a1Pf74407bH3/8cVvbtm1tzz33nFfPefjwYVu3bt1sPXv2tP3222+O7b/99putZ8+etp49e9rMZnMNX1Hw+Sv3w4mv+f7000/b2rZta9uwYUMgTzOk+JLvkfAZoSY85XukvL/qMt/Xr19va9u2rW3kyJFO/+1+8skntrZt29quu+46P7+a4InkTK/r7A7HzwN1md2R8JndX7ldX99boZTbdXUN6RkVQBs2bNCePXt0ySWXOI2YMJlMuvnmm2W1WrVs2bJqH2fJkiWSpLvuuksGg8Gx/aqrrlKLFi30zjvv6MiRI/5/AQF0/vnnux1p0q1bN/Xs2VP5+fn6/vvvg3Bm4W3p0qUqLS3VLbfcIpPJ5Njevn17XXLJJdq1a5e2bNkSxDOsW6tXr9bhw4d19tlnq1GjRsE+nYDLysryahSdzWbTkiVLZDQaNXbsWKd9Y8eOldFodORUdT744AMVFBQoOztbTZs2dWxv2rSpsrOzlZeXp9WrV/v2QkKIv3I/nJDvdSsSPiPUBPled/lu//mOO+5QXFycY3u/fv3Uo0cPrVu3Tr/++qsfXkXwRXKm13V2h/vnger4mt2R8JndX7ldX99boZTbdXUNKUYF0KZNmyTJ7TBD+7bNmzdX+RhHjx7V9u3b1bp1a5c3p8FgUFZWliwWi77++ms/nXXoiYmJcfp/b+Tm5uqVV17R3Llz9fbbb+v333+vq9MLqpKSEi1dulTPPfecFi5cqO3bt/v0+/b36Jlnnumyz/4etR8Tjt58801J0rBhw3z6vUh5f9nl5ubqwIED6tq1q4xGo9M+o9Gorl276pdfftFvv/1W7WN5k4v1+T3nj9yPJFXl++bNm/X888/rxRdf1OrVq1VUVBTo0wsqb/KdzwieVZfvkf7+sqtJvm/cuNGxr7KzzjpLUv3O8YrIdPf8kd3h+nmgrrI7Ej6z+yu3w/W9ZReI3K6ra0jPqADKzc2VJLVs2dJlX+PGjWU0GrV79+4qH2PPnj0qKyvzOPfevj03N1fdunWrzemGpF9//VU5OTlq3Lix2rZt6/Xvvfvuu3r33XcdP8fExCg7O1sTJkxQdHR0XZxqUBw8eNClAWCnTp305JNPKjMzs9rfz83NldFoVOPGjV322d+31b1H66t9+/Zp/fr1atq0qSOEvRUp7y87+3ugqhxat26dcnNzdeKJJ1b5WFXlYji85/yR+5GiunyfPXu2088pKSn65z//qcsvvzxAZxhc3uR7pH9G8MSbfI/095edr/lusVh08OBBtW3b1u39LhxyvCIy3ZW/sjtcPw/UVXaH+2d2f+Z2uL637AKR23V1DSlGBVBhYaEkOQ2lrCg5OVlms7nKx7DvT05O9vgYFZ8rnFitVk2YMEElJSW65557vPojPz09XXfffbf69++vjIwMFRcXa9u2bXriiSf0yiuvyGAw6P777w/A2de9IUOG6IwzzlDbtm1lNBqVm5urefPmafny5br22mu1YsUKj+8bu8LCQo+Nbe2/W917tL5aunSpysrKNHjwYK8LSJH0/qrInzlUVS6Gw3vOH7kfCarK91NOOUX//ve/1aNHDzVp0kQHDx7UJ598oqefflr333+/TCaTzj333CCefd3zNt8j+TNCVarKd95fznx9D3l7fLjkHJnuzJ/ZHY6fB+oyu8P9M7s/czsc31sVBSK36+oaUoxCvVBWVqb7779fmzdv1vDhw73+pvLkk0/WySef7PjZaDRqwIABOu2003TZZZdpwYIFGjNmTFgsdV15FYr27dvrsccek1S++sGSJUs0evToYJxayCsrK9PSpUtlMBg0dOhQr38vkt5fQF2pLt/PO+88p5+bN2+u7OxstWnTxrGCS7gXC8j3mqsu33l/ATVDdleP7K4Zcjty0DMqgKqrGhYWFnr8psXOvt/Tt5r27dWNgKlPysrK9I9//EPvvvuuLrvsMk2ZMqXWj9m4cWOde+65Ki0t9bmvUn1z5ZVXSpK2bt1a7bFVfaNX3beB9VlOTo5+/fVX9erVSy1atKj144X7+8ufOVRVLobDe84fuR/OapPvvXv3VmZmpnbu3BlxI33sKud7JH5GqE5N8z1S31++voe8PT5cco5ML1cX2R3unwcq8kd2h/Nndn/ndri/twKR23V1DSlGBZB9Hqe7+ZQHDx6UxWJxOw+zohYtWigqKsoxb7My+3ZPc0brm7KyMj3wwANatmyZLrnkEj3yyCOKivLP2zYtLU2SVFxc7JfHC1X212mxWKo9tlWrVo55xJXZ37fVvUfrI/uKEr42Lq9KOL+/7O8Bf+RQVbkYDu85f+R+uPJHvofzf2feqJzvkfYZwRu1yfdIfH/5mu/2njV79+7VsWPHXI4PhxyviEyvu+wO988DFfkju8P5M7u/czvc31uByO26uoYUowKoe/fukqR169a57LNvsx/jSUJCgjp37qyff/5Z+/btc9pns9mUk5Mjo9Gojh07+umsg8d+s3v77bd10UUX6bHHHvNrM2j7iBVvlsysz3bs2CHJu9dpf/99/vnnLvvs71F3y/rWZ3l5eVqzZo0aNGjgMuy3NsL5/dWqVSs1adJEW7dudSlyWiwWbd26Vc2bN6+2ebnkXS7W5/ecP3I/HPkj3y0Wi3744QcZjUbHh89IUznfI+kzgjdqk++R+v6qSb736NHDsa+yzz77TFL45FykZ3pdZne4fx6oyB/ZHa6f2esit8P9vRWI3K6ra0gxKoB69+6tFi1a6N1339V3333n2G42m/Xcc88pNjbWab71gQMHtGvXLpfhcMOHD5ckPfnkk7LZbI7tr7/+un755RddeumlSkhIqNsXU8fsw3/ffvttXXjhhXr88cervNkdOnRIu3bt0qFDh5y2e1q++tVXX9XGjRvVqlUrderUya/nHgy7du1y+83trl27NGPGDEnSpZde6thuNpu1a9cuHThwwOn4IUOGKCYmRnPmzHF633333Xd699131aZNG51xxhl19CqCY/ny5bJarbr00ksVFxfn9phIf39VZjAYNGzYMFksFj377LNO+5599llZLBZHTtkVFxdr165d+vXXX522Dxw4UCaTSQsXLtT+/fsd2/fv36+FCxcqLS1NAwYMqLsXU8d8zf1I4Eu+FxYW6ueff3bZfuTIEU2cOFFFRUW68MIL3S4nHi58zfdI+IzgrerynfeXq5rku/3nWbNmqaSkxLF97dq12rRpk/r06RM2X8xEcqbXdXaH2+eBus7ucP3MXhe5HW7vrcoCkdt1dQ0NtorvdtS5DRs26IYbblBcXJwuvvhiJSUladWqVdq3b5/uu+8+XXfddY5j77//fi1btkwPP/ywhgwZ4theVlamMWPGaN26dTr99NPVvXt37dmzR6tWrVJGRoaWLFnicXWF+mL27Nl65plnZDQadc0117j9IDhgwAC1b9/e6fhx48bptttucxxzzjnnKCYmRh07dtQJJ5yg4uJibd++Xd9++61SUlL00ksvqXPnzgF7XXVl9uzZmjdvnrp3765mzZopMTFRubm5+vTTT2W1WnXTTTfprrvuchy/dOlSPfDAAxo8eLAeeeQRp8eaM2eOZs6cqYyMDJ1//vkqKirSe++9J6vVqldeeaVe3tiqcumll2rnzp1asWKF2rVr5/aYSHl/LVmyRFu2bJEk7dy5U9988426du3qGHZ7xhlnOIZMWywWXX311frf//6nPn366NRTT9W3336rdevWqVOnTlq4cKHTh6aNGzfqmmuuUY8ePbRgwQKn512+fLkmTJig9PR0XXTRRZKklStXKi8vT0899ZQGDhwYiJdfZ3zJ/UjgS77v3btXAwYMUKdOndSmTRs1atRIf/75p3JycrR//361bdtW8+fPD+uRK77meyR8RvBWdfkeSe+vusx3SXrwwQe1ZMkSnXzyyerXr58OHjyolStXKikpSa+//rpat24d2BdchyI10wOR3eH0eSAQ2R2On9nrKrfr43sr1HK7Lq5h5HzVEyJ69eql1157TU8//bRWrlyp0tJStW3bVvfcc4/jX2p1oqKiNGfOHD3//PNavny5XnnlFTVo0EBXXHGF7rzzzrD4kGkfomqxWPTcc8+5PSYjI8NRjPLkqquu0rp167R582YdPnxYUVFRatasmf7+97/ruuuuU9OmTf1+7sHQs2dP7dq1S999952++OILHTlyRGlpaerbt69GjBihPn36eP1Yt9xyizIyMvTqq6/qP//5j2JjY9WtWzfdcccd6tChQx2+isDbsWOHdu7cqc6dO3ssRFUl3N5fW7Zs0bJly5y2bd261WkIr/2mZzQatXDhQs2ePVurVq3Sxo0b1bhxY1133XW69dZbfRp5MWjQIKWlpWnu3LlaunSpJKljx4665ZZblJWV5YdXFlz+yP1w4ku+N2jQQCNGjNCOHTu0du1aFRQUKD4+Xm3atNGoUaOUnZ0d9qN8fM33SPiM4A1v8j2S3l91ne9Tp05V27ZttXjxYs2fP19Go1HnnXeexo8fr8zMzLp9cQEWqZkeiOwOp88DgcjucPvMXpe5XR/fW6GW23VxDRkZBQAAAAAAgIChZxQAAAAAAAAChmIUAAAAAAAAAoZiFAAAAAAAAAKGYhQAAAAAAAAChmIUAAAAAAAAAoZiFAAAAAAAAAKGYhQAAAAAAAAChmIUAAAAAAAAAiYm2CcAAAAA/1q5cqXefvttffvttyouLtYpp5yi8ePHq1u3bsE+NQCAj5YtW6YFCxZoz549Ki0tVevWrXXDDTfo4osvDvapATVGMQoAACDMzJ8/Xy1bttSkSZNkNBq1dOlSXXvttXrzzTd1yimnBPv0AAA+yM/P14ABA9S+fXvFx8dr9erVuuuuuxQfH68BAwYE+/SAGjHYbDZbsE8CAAAA/pOXl6e0tDTHz2VlZbr00kvVtWtXTZs2LYhnBgDwh6uvvlqNGzfW008/HexTAWqEnlEAAABhpmIhSpKioqJ08skna+/evUE6IwCAPzVo0EClpaXBPg2gxihGARHizjvvVLt27fTYY4+57Pv555/VpUsXdenSRbm5uYE/OQBAnTp27Ji++uorZWZmBvtUAAA1VFpaqsLCQq1cuVI5OTm68sorg31KQI3RMwqIEFOmTNG2bds0b9489e3bV7169ZIkWa1W3XPPPbJYLJo+fbpatWoV3BMFAPjdwoUL9dtvv2nEiBHBPhUAQA0cPHhQffr0kSRFR0froYceUr9+/YJ8VkDNMTIKiBCpqal69NFHJUn33Xef8vPzJUnPPPOMvv76aw0YMEDDhg0L5ikCAOrA9u3b9cQTT+iWW25Ru3btgn06AIAaSEtL05tvvqlXX31Vo0eP1rRp0/Thhx8G+7SAGqOBORBhHnvsMb300ksaOHCgsrOzNWrUKDVs2FArVqxQenp6sE8PAOBHe/fu1ZVXXqlu3bpp5syZMhgMwT4lAIAfPPjgg9q8eTMFKdRbjIwCIsydd96p9u3b6/3339dNN90km82mhx9+mEIUAISwu+++W+3atdOzzz7rsm/btm067bTT1LNnT+3atcuxvaCgQDfddJMyMjL06KOPUogCgBBRk0yvrH379vrll1/q8jSBOkUxCogwcXFxeuSRRyRJhYWFuuqqq3TWWWcF+awAAFW54447FBsbq1deeUVms9mxPTc3V7fccoskac6cOWrTpo0kqaSkROPGjVNxcbGeffZZJSQkBOW8AQCufM10d7Zu3aqMjIw6P1egrlCMAiLQ+++/7/jn//3vfzp27FgQzwYAUJ3MzEwNHTpU+fn5euWVVyRJhw4d0pgxY1RQUKAnnnhCXbt2dRw/ZcoUbd68WWPHjtXevXv15Zdf6ssvv9S3334bpFcAALDzNdNHjRqlhQsXKicnRx9//LEefPBBvfvuuxozZkyQXgFQe/SMAiLMF198oWuuuUbp6ek6+eSTlZOTo9tuu03jxo0L9qkBAKrw+++/6/zzz1dsbKzee+893Xbbbdq+fbumTp3qsrz3Oeeco3379rk8RkZGhj766KNAnTIAwANfMv1f//qXPv30U+3fv1+JiYk66aSTdP3116t///5BOnug9ihGARGksLBQl112mfbt26cXXnhBp556qi699FIVFBTotdde02mnnRbsUwQAVMG+CEVaWpry8vI0duxY3XHHHcE+LQBADZDpiGRM0wMiyNSpU7Vv3z5lZ2erb9++atSokaZPn67S0lLde++9slgswT5FAEAVrr32WkVFRSkvL09DhgzhjxYAqMfIdEQyilFAhHj//fe1fPlynXTSSbr33nsd288991wNHz5cu3fv1r/+9a8gniEAoCo2m02PPPKIysrKJEnR0dFBPiMAQE2R6Yh0FKOACPD777/roYceUmxsrGbMmOGyqtIDDzygVq1a6c0339R///vfIJ0lAKAqjz32mN577z3169dPjRs31rJly5Sbmxvs0wIA1ACZjkhHMQqIACeccII2bdqkr7/+Wu3bt3fZbzQa9eGHH+r777/XeeedF4QzBABU5dVXX9XLL7+szp07a9asWbrxxhtVWlqqWbNmBfvUAAA+ItMBGpgDAACEtPfff1/jx49XixYt9MYbbyg9PV1Hjx7VeeedpwMHDmjZsmVuv2gAAIQeMh0ox8goAACAELV582ZNmDBBaWlpevHFF5Weni5Jio+P10033SSbzaannnoqyGcJAPAGmQ4cRzEKAAAgBP34448aO3asoqOj9dxzz6lly5ZO+4cNG6YTTzxRa9eu1RdffBGkswQAeINMB5wxTQ8AAAAAAAABw8goAAAAAAAABAzFKAAAAAAAAAQMxSgAAAAAAAAEDMUoAAAAAAAABAzFKAAAAAAAAAQMxSgAAAAAAAAEDMUoAAAAAAAABAzFKAAAAAAAAAQMxSgAAAAAAAAEDMUoAAAAAAAABAzFKAAAAAAAAAQMxSgAAAAAAAAEDMUoAAAAAAAABAzFKAAAAAAAAAQMxSgAAAAAAAAEDMUoAAAAAAAABAzFKAAAAAAAAAQMxSgAAAAAAAAEDMUoAAAAAAAABAzFKAAAAAAAAAQMxSgAAAAAAAAETEywTwAAACAYPvjgA73zzjv65ptvlJeXp+bNm2vo0KEaNWqUYmNjg316AAAfrFq1SvPmzdNPP/2koqIinXDCCRowYIDGjh2r1NTUYJ8egEoMNpvNFuyTAAAACLThw4crIyNDAwYMUMOGDbVt2zbNmTNHAwcO1KOPPhrs0wMA+GDJkiXau3evOnXqJJPJpJ07d+qZZ57RKaecoldffTXYpwegEopRAAAgIh06dEjp6elO25599lnNmjVLn3/+uRo1ahSkMwMA+MPixYs1ceJEffzxx2rWrFmwTwdABfSMAgAAEalyIUqSOnToIEk6cOBAoE8HAOBn9ul5paWlQT4TAJXRMwoAAOAvX3zxhWJjY5WZmVmj37fZbHr//fe1cuVKffXVVzp06JASEhLUrFkznXnmmcrOzq7zb+fbtWsnSfr+++/r9HkAIBQdO3ZMpaWljml6/fr1I9OBEMQ0PSBAQuFmJnFDAwBPfvzxRw0dOlRXXHGFJk6c6PPv//777xo3bpx27Nghg8GgDh06KDMzU8XFxfryyy+Vl5enuLg43X///Ro5cmSNzvGcc87Rvn37tGbNGjVv3tztMeQ8gEjWrVs3mc1mSVKfPn00e/ZsGY1Gnx+HTAfqFiOjgABwdzPr2rWr42b20ksvacGCBbW6mUne3dAAAK4OHTqkW2+9VZmZmbr77rt9/v38/HyNHDlSv/zyi0499VQ99thjOvnkkx37S0tLNX/+fM2YMUNTp07VsWPHdM011/jzJQAAJC1YsEDFxcXauXOn5syZo5tvvlnz5s1TdHS0149BpgN1j2IUUMe4mQFAaCssLNSYMWNktVo1f/78Gn2DPnXqVP3yyy9q3ry5Xn31VaWkpDjtj4mJ0XXXXaf4+HhNnTpVjz32mM4880y1adPGXy8DACCpffv2kqSuXbuqffv2Gj58uP773//qwgsv9PoxyHSg7tHAHKhjlW9mFQtR0vGb2T//+U9J0mOPPaZdu3YF41QBoN569tln1a5dOw0fPtzt/hkzZqhdu3YaNGiQ8vPzHdtLSko0duxY7du3Ty+++KJOOOEEn5/7l19+0cqVKyVJ9913n8sfLRWNGDFCp5xyiqxWq1588UWnfe3atXNMx3jrrbd05ZVX6owzzlC7du20dOlStWvXTvv27ZMknXvuuY7j27Vrp40bN7p9vg8//FBXX321unbtqtNPP11XXXWV1q5d6/Vr27Vrl9q1a6fu3bvr6NGjHo8bMmSI2rVrp9WrVzttz83N1QMPPKBzzjlHHTt2VJcuXdS/f3/deOONeuutt6p9/j179qh9+/bq3r27iouLPR538cUXq127dj69NgChq6aZXtmpp54qg8GgPXv2eP3cZDqZjsCgGAVU4q+bn+S/m5kUfje02t7MJG5oAI677rrr1LRpU23fvl0ffvih0765c+fqhRdeUOvWrfXyyy87Vlc6duyYxo8fr6+++krPP/+8/va3v9XouT/66COVlZUpJSVF55xzTpXHGgwGDRo0yPF77lp3Tps2TQ8++KCio6N19tln67TTTlPz5s01ePBgx6itCy64QIMHD3b8r1GjRi6P8/TTT+uOO+6QJPXr108tW7bUtm3bdNNNN+m///2vV6+tTZs26tKliwoKClz+KLH7/vvv9c0336hRo0Y6++yzHdt37typoUOHaunSpYqLi1P//v3Vt29fnXDCCdq8ebPmz59f7fNnZmaqX79+Kigo0DvvvOP2mA0bNujHH39UZmam+vbt69XrAhDaapLp7mzdulU2m82n9hVkOpmOwGCaHlDJddddpzfeeMNx87vgggsc+3y5+Uk1u5n973//c9zMDAaDy3HTpk3Ta6+9pi5duujss892jLoaPHiwPvzwQ1ksFl1wwQVO00w83dCeffZZdenSRf369dNPP/3kuKHNnj1b5513XnWXynFD27Ztm1avXq2LL77Y5Rh3N7SdO3fq6quvVmFhoVq3bq3+/fsrKipKv//+uzZv3qzff/9dQ4cOrfb57Te0jz/+WO+8847bAiI3NCAyJCQkaPz48brvvvv01FNP6dxzz1VMTIxee+01Pfnkk47RqQ0bNnT8zpQpU7R69WrdcccdKisr05dffunYd9JJJyk5Odmr5/7mm28klU8NiYmp/qNVp06dJEmHDx/W3r171aJFC6f9b7/9tv7zn//o9NNPd9reo0cPbdq0SRaLRRMmTKj2j6sFCxbojTfe0GmnnebYNnv2bD3zzDOaMWOGVzkvSUOHDtW2bdu0dOlStzm/dOlSSdJll13m9PrnzZunwsJC3XnnnbrlllucfufIkSP66quvvHr+a665Rh9//LEWLVrkNudfe+01SeVf6ri7bwKof2qS6ddff7169eqlk08+WXFxcfr222/10ksvqV27dhowYIDXz02mk+kIDIpRQCU1ufl54u+bmRQeNzR/3cwkbmgAjhs0aJDmz5+vb775Rm+++aaMRqOmTp2qE044Qa+88orLFLx169ZJkmbNmqVZs2Y57Zs/f7569uzp1fMeOnRIkvvCvzsV7x95eXkuWX/ddde5ZHxN3H777U4ZL0k33XSTXn31VeXm5uq3337TiSeeWO3jDBw4UP/617+Uk5Oj33//3ek6Wq1WrVixQlL5KNiK/vzzT0nl3+BXlpCQoO7du3v1OrKysnTyySfrf//7n7744gt169bNsW///v1as2aNEhMTvfoSA0D94Wumd+rUSStWrNDevXslSc2bN9eIESM0evRoxcXFef28ZDqZjsBgmh7gxqBBg9ShQwf9/PPPevPNN7VixYoqb36e1PZm5k5d39BMJpPjhuaNgQMHKjEx0XFDq8jTDc1fNzPJ9YZWETc0ILIYDAbdd999kqQnn3xSDzzwgNLS0jRv3jy3xf2PPvpI33//vdv/eVuIqgl30zgq8qXJblX69+/vsi0uLs5xLSpntifJycm64IILVFZWprfffttp39q1a3Xo0CF17tzZpSdi586dJUmTJ0/WZ599VuV07uqMGjVKkrRo0SKn7a+//rpKS0t16aWXVjkVHkD942um33nnnXrnnXe0bds2bdu2Te+8845uu+02r0e51hSZ7jsyHRLFKMAtX29+/lLdzUwKjxuaP29mEjc0AMf17NlTXbp0UX5+vuLj4/Xyyy/X+epGaWlpkqQ//vjDq+PtX1RU/N2KMjIy/HJezZo1c7vd/oeZL9lrL+jbR7va2Xv8Vf4GXSqfMpOVlaXt27frhhtu0BlnnKGhQ4fqkUce0Y4dO7x+bql8dG1qaqr++9//6sCBA5LKm88vWbJEkjRy5EifHg9A/UCmH0emI9xQjAI88MfNz983Myk8bmj+vJlJ3NAAHPfWW285ej+VlJTU+TfiktShQwdJ0rfffqvS0tJqj7fnXIMGDdxOqU5ISPDLeUVF+e9jXvfu3ZWZmanc3Fxt3bpVUvko108//VTx8fFup2knJiZq3rx5WrJkiW6//Xb16tVLubm5mjdvnoYNG6YpU6Z4/fyJiYkaNmyYrFarFi9eLElatWqV/vjjD3Xr1k2nnHKKf14ogJBCph9HpiPcUIwCPPDHzc/fNzMpPG5o/ryZ2R+PGxqA999/XxMnTlRqaqouuugiWa1WPf7443X+vOecc46ioqJkNpu1Zs2aKo+12Wxavny5pPIRqvWll53BYNDgwYMlHf/iYcWKFSotLdV5551X5ejTzp0769Zbb9WLL76ojRs3atasWUpISNBrr72mDRs2eH0OI0eOVHR0tN544w1ZrVYtXLjQsR1A+CHT6w6ZjlBAMQpww183v0i4mUk1v6H562YmcUMDIt3atWt17733KjExUS+99JKmTJmiBg0a6MMPP3QUyetKZmamBg4cKEl67LHHVFBQ4PHY1157Td9//71iYmJ0/fXX+/xcsbGxkqRjx47V7GRrYciQIYqKitL777+v4uJiR9770pMvJiZGF154ofr06SNJ+t///uf17zZr1kwDBgzQgQMH9PTTT2vbtm1q0qSJzj//fN9eCICQR6bXPTIdwUYxCqjEnze/QN7MpPp9Q6vNzUzihgZEsk2bNun2229XdHS0nnvuOXXs2FEpKSm66aabJEmPPPJInZ/DpEmTlJGRob179+rvf/+7fvjhB6f9paWlmjdvnv71r39Jku655x6X5rDesC+gUfnxA6Fp06bKyspSYWGhnnzySe3cuVPNmjVTr1693B6/aNEi/fTTTy7bDx48qK+//lqS5ynjnlxzzTWSpOeff16SdOWVV3q1Wi2A+oNMDwwyHcHGv2mgAnc3P6l8lblHH31UjzzyiGMamLcmTZqkL7/80nEze+yxx5xuVqWlpVqwYIFj5FVNb2ZS+Q0tNzdXP/zwg1q2bFmjx6gp+w1t3bp11d7QFi1apN69e+tvf/ub0/ba3Myk8hvahx9+yA0NiCA7duzQzTffrGPHjunZZ591Wo0zOztbCxcu1Pbt2/Xee++57YHhLw0aNNB//vMfjR07Vl9//bUuvfRSdfx/9u47zK3yTB//fc6RjtpoZjQz7gV3g8G4YWM7QCohpNASCBhDgISElrYEyGaBNYb9JhvKktBCICQhhtACgU3YLMlvAwnYxsaNjo3BDY/LdPVyzvv74x31MtKMpki6P9fFZfvoSHNmGJ0j3Xre5znmGEyePBnBYBBbt25FR0cHrFYrrrvuOnzta1/r19c55ZRT8Oqrr+Kaa67BCSeckKg8/frXv551Th0MX/7yl/Hyyy/j4YcfBgCceeaZeZd9P/HEE1i9ejUmTpyImTNnoq6uDp2dnXjttdcQCoWwdOlSfOpTnyrp6x933HGYM2cO3n77bVitVnz1q18d8PdERCMHz+k8p1Pt4Ls0ol6DdfEbqosZUDkXtMG4mAG8oBHVmvfeew+XXnopQqEQ7rjjDpx00klpt+u6ju985zu47rrrcPvtt+Pkk0+GruuDdjxjxozBk08+if/5n//Bn//8Z7zxxht49913YbPZMH78eJxxxhk4//zz8/YELMZ5550Hv9+P5557Di+99FJi2MRpp502JOf5z3zmM2hsbERXV1faEu1cvv/97+PFF1/Etm3bsG3bNni9XjQ3N+PYY4/Fl7/8ZXzhC1/o1wcGH/vYx/D222/jlFNOwahRowby7RDRCMJzOs/pPKfXFkUUM0ueqMq99957uPDCC+H1enHHHXfgc5/7XNY+f/zjH3HddddhwoQJ+Mtf/lLyxc80zbSLWWdnZ+JidsIJJ/R5MZs9e3biWAt9jQcffBDPPfcc9uzZk7igPfzwwzj++OOLepwLLrgAGzZsSLtPsSKRCE488cTEBe2vf/0rJk2alLXfiy++mLiYHThwIHExmzx5cuJiFl9yWKrbbrsNDzzwAL74xS/i9ttv79djEBHRyGQYBk4++WR89NFHeOyxx7BgwYLhPiQiIuonntNrG8MoIqoavKAREVW3Rx99FDfddBMWLFiAxx57bLgPh4iIBoDn9NrGZXpEVDUef/xxfPTRR1iwYAGDKCKiKvHBBx/gV7/6Fdra2vDPf/4Tqqri2muvHe7DIiKifuA5neIYRhFRReMFjYiouh0+fBhPPfUUrFYrZsyYgW9/+9tYuHDhcB8WERH1A8/pFMdlekRU0V599VVceOGFsFqtmDZtGr797W/j5JNPHu7DIiIiIiIiojwYRhERERERERER0ZDJnrlOREREREREREQ0SBhGERERERERERHRkGEYRUREREREREREQ4bT9IZIZ2fncB9CRWpoaEB3d/dwH0bV4s93cPHn2z8ej2e4D6FPQ3VO5+/Q0PD7/Zg0aRIAYO/evXC5XMN8RNWPv9tDazh/3jynlx+fP9WN16TaUYnP5XKe01kZRSOaqvJXdDDx5zu4+POlgeLvEFUr/m4PLf68qwv/fxJVh1p/Ltf2d09EREREREREREOKYRQREREREREREQ0Z9owiIiKimtfc3AxFUYb7MIiIiHhNoprAyigiIiKqaS6XCzt27MDhw4fZKJaIiIYVr0lUKxhGERERERERERHRkGEYRUREREREREREQ4ZhFBEREdW0YDCIL33pS/jEJz6BYDA43IdDREQ1jNckqhVsYE5ERGVjmgLbdwDd3UBDAzBrJqCqbMBJI5tpmnjllVcSfyciied0oqHHaxLVCoZRRERUFps2C6x5VGDPHiAaA6wWYPJkYOUKYNFCvnkhIqokPKcTEVWXSNQGr9cCn0+grk6B2x2Dbg0P2/FwmR4REQ3Yps0Ct94usHMn4HAAzU3yz50fALfeLrBpsxjuQyQioiLxnE5EVF0CAReuvzGG08/y4vwLfTj9LC+uvzGGQGD4JjYyjCIiogExTfnpeSAAtLQANhugqvLPlmYgEATWPCpgmnzzQkQ00vGcTkRUXSJRG1bdHMLaddG07WvXRbHq5hAiUduwHBfDKCIiGpDtO4A9e4D6ekDJWLmhKIDbLW/fvmN4jo+IiIrHczoRUXXxei1ZQVTc2nVReL3D071pxPaMevbZZ7Fp0ya8+eab2L59O6LRKH784x/jrLPOytr3rrvuwt133533sf6//+//w8SJE7O2//Of/8T999+Pt956C4qi4Oijj8YVV1yBZcuW5XycDz/8EHfeeSfWr1+PYDCIKVOm4Nxzz8V5550HJfNqTURUI7q7ZT+Remvu23Ur4PXK/YiIaGTjOZ2IqLr4fIUrWX0+geamITqYFCM2jPrZz36Gjz76CB6PB6NHj8ZHH33U533OPPNMTJgwIWt7fX191rZnn30W1157LZqamhIB1/PPP4+LL74Yd955Jz73uc+l7f/+++/j3HPPRSgUwqmnnorRo0fjpZdewk033YSdO3fihhtu6Od3SkRU2RoaZGPbaFQu48gUicrbGxqG/tiIiuV0Oof7EIhGBJ7TiYYfr0lUTnV1hQtn+rp9sIzYMOqWW27BEUccgQkTJuCXv/wlbr/99j7vc+aZZ+L444/vc7/u7m7ccsst8Hg8eOaZZzB27FgAwKWXXoozzjgDq1atwgknnIC6urrEfVatWgWv14tf/vKX+PjHPw4A+O53v4uLL74Ya9aswRe/+EUsWLCgn98tEVHlmjFdoLkZ2LsX8Hhkk9s4IeQn6NOnyZHgRCORy+XCvn374PF40NnZOdyHQzRoTFNg+w5Z1dTQIM/Lqpr+JmTWTDk1b+cHQIuevlSP53SiwcdrEpWb2x3D8mXWnEv1li+zwu2ODcNRjeCeUcuXL89Z5VQOf/nLX9DT04OVK1cmgigAGDt2LFauXInOzk787W9/S2z/8MMPsXHjRhx//PGJIAoAdF3Hd7/7XQDAE088MSjHSkQ0km3aLHDND4HWVsAfAPbuA3bvAXw+IBQG2toBpwNYuULJesNDRERDZ9NmgauvFfi3GwT+4yfyz6uvzZ6Mp6oKVq5Q4HTIc3goDJgmz+lERMMhErWhvcOF3XucaO9w9avZuG4NY9UNdixflr7+evkyK1bdYIduDZfrcEsyYiuj+mPjxo3Ytm0bVFXFlClTsGzZMrhc2aMKN2zYAAA44YQTsm474YQTcNddd2HDhg0444wz+tx/0aJFcDqd2LhxYxm/EyKikS8++jsQkJ+wO51AewcQiQCtB4CGemDGDPmmZdFCvmkhIhou61+NJs7X9fWyH1Q0Kqufbr1d4JqrkXaeXrRQwTVXy6l5e/bIaiirRVZE8ZxORDQ0AgFX7xS8YGKbDJBccDr9JT2W0+nHLatt8Hrt8PkE6uoUuN0x6NbSHqecqiqMuuuuu9L+XV9fj3/7t39LhEpxu3btAgAcccQRWY8R37Z79+6i9tc0DRMnTsT777+PWCwGi6WqfqRERDlljv5WFNlbxOUCQiGgoxMYNw649SeAxcI3LTSyhUIhfO1rX4PVasWDDz4Iu90+3IdEVDamKfCrh4Jp52tAnrNbdFnttOZRgQXz05fsLVqoYMF89Lmsj4jKi9ckAmRFlAyi0pfWrV0XxaqbgVtW20quaNKtYTQ3hYelWXkuVZGcHHnkkfh//+//YcmSJRg9ejQOHz6MF198ET//+c/xwx/+EG63G5/+9KcT+/t8PgCA2+3Oeqx4nyiv11vU/oBc12uaJvx+PxrYzZGIakC+0d+KIntGNatAezvw/k4FR84evuMkKoZhGPjrX/+a+DtRNdm+A/hwl5F1vgbkv91ueT7fvgNZ52tV5TmcaKjxmkQA4PVa0iqiUq1dF4XXa0dz0/AsryuXqgijTj755LR/T5w4EStXrsT06dMT0/FSw6jh0NDQAFUdsS26RjSPxzPch1DV+PMdXNX68zWMCAzTB4cjd98Qpyrg9wsYRh08Hn0YjnBwDeU5vVp/h0YSXU/+jno8npxL/Kn8+Ls9NAwjgmjMh8ZGtSbP18WoxNfpfP5UL16Taku+5/LefdnNxlMFAgpmTK/s80BVhFH5LFu2DJMnT8b27dvh8/kSVU+p1U+Z//NzVUHlqpZK5ff7oShKwRNFd3d3/7+RGsYpEoOLP9/BVc0/X00T0FSBYFDkHP0dCgOaCmiaD52dpS3pqIQX2EN1Tq/m36GRxO9P9kvo7OxEJBIZxqOpDfzdHjqaJmC1KAgGzbKfr4vBc3r58flT3XhNqh2FnstOZ+EQ0ukUw3IeKOc5vbI+AuiH+A8rGEyWuE2ZMgVAel+ouPi21P5QhfY3DAP79u3DxIkT2S+KiGrGjOkCzc1yKV4wo4I4Pvp78mSO/iYiGkymKfDuewKvbpB/mqbI2mfWTGDqFA09Xnl+TsXzNRHRyOR2x7Km38UtX2aF2x0b4iMqv6oOowKBAHbs2AGn05mW4C1evBgA8PLLL2fdJ75tyZIlRe2/adMmBAKBxD5ERNVu02aBa34ItLYC/gCwdx+wew/g83H0NxHRUNm0WeDqawX+7QaB//iJ/PPqawU2bU5PnFRVwdcvccDpkOfnUBgwTZ6viYgGWyRqQ3uHC7v3ONHe4UIkmqM8NQ/dGsaqG+xZgZScpmcvuXn5SFTxYZTP58OHH36YtT0UCuGGG26A3+/H5z73ubSqpVNPPRVutxtr1qzBgQMHEtsPHDiANWvWwOPx4DOf+Uxi+7Rp07B48WK8+uqreOmllxLbI5EIfvaznwEAzj777MH49oiIRpRNmwVuvV1g5045WWncWDmRKRIBWg8APd1y9Pc1V3P0NxHRYEk9FzscQHOT/HPnB8Ctt2cHUkuPt+KaqxVMnwaEgkB7h/yT52siosERCLhw/Y0xnH6WF+df6MPpZ3lx/Y0xBALF9wBzOv24ZbUFzz7txiMP1+HZp924ZbUFTqe/7ztXgBG7ruzJJ5/Epk2bAADbt29PbNuwYQMAYNGiRTj77LPR1dWFU089FXPnzsX06dPR0tKC9vZ2rF27FgcOHMCsWbNw7bXXpj12Q0MDbrjhBlx77bU488wz8fnPfx4A8Pzzz6Orqwv/9V//legTFffv//7vOO+883DllVfi85//PEaNGoWXXnoJO3bswMqVK7Fw4cLB/pEQEQ0r0xRY86hIGw9uswEuFxAKAR2dwLhxwK0/ASwWvrEhIhoMuc7FgDwft+iy2mnNowIL5iOt2mnRQgUL5suped3d8gOFWTPBiigiojKLRG1YdXMIa9elNyFfuy6KVTcDt6y2FV3ZpFvDaG4Ko7lpMI50eI3YMGrTpk145pln0rZt3rwZmzdvTvz77LPPRmNjI1asWIHXX38dL730Enp6emCz2TB9+nRccMEFWLlyJex2e9bjn3766fB4PLj//vvx9NNPAwCOOeYYXH755Vi+fHnW/jNnzsQTTzyBO++8Ey+99BICgQCmTJmCG2+8EStWrCjzd09ENPJs3yHHf2eOB1eU3k/mVdlD6v2dHAVOlcXlcqGjo4NNgaki5DsXA/Lfbre8ffsOZJ2LVZXnZ6KRjtekyuf1WrB2XTDnbWvXReH12tHcVPnL7AZqxIZRP/nJT/CTn/ykz/3q6upw44039utrnHTSSTjppJOK3n/atGn4+c9/3q+vRURU6bq7gWgMqM/dSxG6VTbCrbChREREFYXnYiKikc3nyx4mkXl7NVY6lWrEhlFERDSy1NfLC2tPD2C3y/9SRaKA1SKXfhARUelMU/S5jK6hQZ5ro1G5NC8Tz8VERMOrrq7w8ue+bq8VDKOIiKhPmzYL/O4RwOeVn8irqnwT1NwEOJ3J8eDTp3E8OFWeUCiEyy67DLqu4+c//3nO5f1Eg23TZtkLas8eeZ61WoDJk4GVK5DWYHzWTLl95weyR1TqUj2ei4kqH69JI0ckaoPXa4HPJ1BXp8DtjhXV68ntjmH5MmtWzyhATsNzu2ODcbgVp+Kn6RER0eCKT2364APA4wEsFvmGJxSSE/S6ujgenCqbYRh47rnn8NRTT8EwjOE+HKpBpUzHU1UFK1cocDrkuTcUBkxT/slzMVHl4zVpZBjINDzdGsaqG+xYvix9PfXyZVasusFedPPyasfKKCIiyivX1CarDnR0AJEIYBhAZxdw7FzggvM5HpyIqFT9mY63aKGCa65GopLK65WVVNOnySCK52Iiov4rxzQ8p9OPW1bb4PXaMyqr/IN56BWFYRQREeWVa2qTyyk/eQ+HgWAIiEWBb34DmHMU3/wQEZWqv9PxFi1UsGA++uwxRUREpSnXNDzdGkZzU5jNyvNgGEVERHnlm9qkKLKBua4D7R2A18s3P0RE/TGQ6XiqqqQFVERENHCchjc02DOKiIjySp3alAunNhERDQzPs0REIwun4Q0NhlFERJTXjOkCzc1AezsQzKhWjk9tmjyZU5uIiPIxTYF33xN4dYP80zTTP3GPT8fr8crzaiqeZ4mIhl58Gl4unIZXPlymR0REOckx40BrK+APAD6/bKjb3ARYepeNcGoTEVF+8jwqm4xHY7LCafJkYOUKJJqMy+l4cmpeW7vsEaVbZUUUz7NERP0Xidrg9VoyGogX1+tp1Q0urLoZaU3Mk9Pw2IS8HBhGERFRlviY8UBALg1xOmVvqEgEaD0ANNQDM2ZwahNVB6fTib1798Lj8SAc5rhlKo/U82h9vewJFY0COz+QwdM1VycDKU7HI6I4XpPKIxBw9U7ES5b2yzDJBaez7zCJ0/AGH8MoIiJKk2vMuM0GuFxAKAR0dALjxgG3/gSwWPgGiSqfoihwuVxwuVyIRCLDfThUBXKdRwF5Lm3RgbZ2GTwtmJ+cfsfpeEQE8JpUDpGorTeISm/Gt3ZdFKtuBm5ZbSu6QorT8AYPwygiIkqTb8y4ogAOB9Csyh5S7+/kFCciolzynUcB+W+3W96+fQfSzqOcjkdENHBeryWtIirV2nVReL12NDex6my4sYE5ERGliY8ZtxYYMx6N5R4zTlSJwuEwrrzySlx00UVcEkFlwfMoEfUXr0kD5/OJAd1OQ4NhFBERpeGYcao1sVgMv//97/Hb3/4WsRgn5NDA8TxKRP3Fa9LA1dUVXt7c1+00NBhGERFRmhnTBZqb5VK8YEaFM8eMExHJnlDvvifw6gb5p2mmf8o+a6Y8T/Z45XkzFc+jRESDy+2OYfmy3KWpy5dZ4XYz5BsJ2DOKiIgS5BhyoLUV8AcAn1823G1uAixWjhknIpLnSTn1LhqTFU6TJwMrVySn46mqgpUr5NS8tnbZI0q3yooonkeJiIoXidrg9VoyJtoVXr6oW8NYdYMLq25GWhNzOU3Pzol4IwTDKCIiApA+hryhAXA6gfYOIBIBWg8ADfXAjBkcM05EtSv1PFlfD9Rb5VK8nR/I4Omaq5OB1KKFCq65GongyuuVwdX0aTyPEhEVIxBw9U7FS5bqy0DJBaezcKDkdPpxy2obvF57RpDFIGqkYBhFREQ5x5DbbIDLBYRCQEcnMG4ccOtPAIuFb6CIqPbkOk8C8lzZogNt7TJ4WjAfiYqnRQsVLJgvp+Z1d8ugf9ZMsCKKiKgPkaitN4hKb763dl0Uq24GblltK6pCqrkpjOamwTxS6i+GUURElHcMuaIADgfQrMoeUu/v5NhxIqpN+c6TgPy32y1v374DaedJVeV5k4ioVF6vJa0iKtXadVF4vXY0N3HaYCVjA3MiIuIYciKiPvA8SUQ0dHw+MaDbaeRjZRQREaG+Xl7Qe3oAu13+l4pjyKmaOZ1ObN++HY2NjdA0bbgPh4aJaYqCy+kaGuR5MBqVS/My8TxJROXAa5JUV1d4OXNft9PIxzCKiKjGbdos8LtHAJ9XfqqvqskJek5ncgz59GkcQ07VSVEUtLS0wOPxoLOzc7gPh4ZBMRPyZs2U23Z+IHtEpS7V43mSiMqlmq9JpUzGc7tjWL7MmtUzCpBNzN3u2GAfLg0yLtMjIqph8clQH3wAeDyAxSLfVIVCcoJeV5dsyssx5ERUreLnwZ07e3vkNck/4xPyNm2WlaOqqmDlCgVOhzwvhsKAaco/eZ4kIiosEHDh+htjOP0sL86/0IfTz/Li+htjCARcOffXrWGsusGO5cvS10bLaXr2PpuX08jHyigiohqVazKUVQc6OoBIBDAMoLMLOHYucMH5HENO1SscDuP666+HzWbDDTfcAFuuNVhUlUqdkLdooYJrrkaiisrrlVVU06fJIIrnSSIaqGq8JvV3Mp7T6cctq23weu0Z1VT+oTp0GkQMo4iIalSuyVAup/x0PxwGgiEgFgW++Q1gzlF8g0XVKxaL4Ve/+hUA4F//9V+r4oU/Fac/E/IWLVSwYD4K9pciIuqvarwmDWQynm4No7kpjOamwTxCGg4Mo4iIalR8MlR9xmQoRZENzHUdaO8AvF6+wSKi6pTvPBinW2X1U+aEPFVVEuEUEREVVsxkPIZNtYdhFBFRjeIEPSKqBYWm5HFCHhHR4ONkPMqFYRQRUQ3iBD0iqgV9TcnjhDwiov7hZDwaKE7TIyKqMZygR0S1oJgpeZyQR0RUOk7Go3JgZRQRUQ3hBD0iqgWlTMnjhDwiouJxMh6VC8MoIqIawgl6RFQLSp2Sxwl5RETF4WQ8KheGUURENYQT9IiyORwObN26FQ0NDXA4HMN9OFQG/ZmSxwl5RDQSjPRrEifjUbkwjCIiqiGcoEeUTVVVTJ48GR6PB52dncN9OFSEQhPyAE7JI6LKNdKvSZyMR+XCMIqIqEZwgh4RVYO+JuQB4JQ8IqIScDIeDQdO0yMiqgGcoEeUXyQSwY033ohrrrkGkUhkuA+HCihmQh4ATskjooo11NckTsaj4aIIIQov+qSyGIkllpVgpJanVgv+fAfXSPn5mqbA1dfKN2/xqVL+QPoEPat15EzQ83g8w/r1izFU/19Hyu9QtfP7/Zg0aRIAYO/evXC5cr8Ap/Lpz+92rnNZnBAyZJo+Dbj9p8mQKX8V1fCf64bScJ5LeE4vP14bqttQXpMiURuuvzGWt8rpltWWvOFSKdVUlFslPpfLeU7nMj0ioirHCXpEVA1KnZAHcEoeEVEhnIxHw4lhFBFRleMEPSKqBv2ZkAdwSh4RUT6cjEfDiWEUEVGV4wQ9IqoUhabkcUIeEVF5cTIeDSeGUUREVYwT9IioUvQ1JY8T8oiIildMTydOxqPhxGl6RERVihP0iKhSFDMljxPyiIiKU+yEPE7Go+HEyigioipkmrLCIBBITp2y6ukT9Dq7Rs4EPSKqXbnOV4Cs4mzRZdC05lGBBfNlhdQ1VyNRQeX1ygqq6dNqb0IeEVEukagNq24OZVU7rV0XxaqbgVtW29JCJqfTj1tW2+D12jOqqPxDfehUYxhGERFVoWGdoCdMAEr2uCuiEcrhcOCVV15BQ0MDHA7HcB9OzSl1Sh4n5BFRNRvoNak/E/I4GY+GA8MoIqIq1NUlEAwBmiaX5sWblg/6BL1oEIq/DaJ+HKDwEkOVQVVVHHXUUfB4POjs7Bzuw6lKmY3Jj1+SnODUnyl5nJBHRNVqoNckTsijSsF3CkREVWbTZoGHfgP4fPI/VZXhU7xpOTAIU6eEgBLsAMI9ZXpAIqoWuRqTT5/mxVfPEVi0UOGUPCKiIhXTlJwT8qhSMIwiIqoi8SbAfr8MoKJRWQ0VDgMHDgJjx8imwGWdOhUNQQm0AWb2JBaiShCJRHDHHXfA4XDg8ssvh67rw31IVSN+TgoE5DK8eqs8L723I4Zbbxe45mpgwXxOySMiist3TQoEXL29oJJL8GSjcReczmR/J07Io0rBaXpERFUitQnwqFGyEbCqymlTqiqblh9uA9rayjR1SggogXYovlYGUVTRotEofvrTn+Kmm25CNMrf5XLJbExus8lzkc0GjBmtIBCUjcgBcEoeEVGvXNekwk3JQ4hEk2WlnJBHlYKVUUREVSKzCbDLCYwZk5ygB8g/p00FvnXpAKdORYNQAu0MoYgor8KNyZW0xuSckkdElF+pTck5IY8qAcMoIqIqkasJcOoEvWgU8PmBi7+G/r+xEyaUQAcQ8ZbnoImoapXamJxT8oiIcutPU3JOyKORjmEUEVGVqK+XL1R6euTEvMwJelAAhwF4PP18Y9c7KQ+CvQaIKClzUl48QOpPY3JOySMiysam5FSNGEYREVWBTZsFfvcI4PPKSoR4X5b4BL0BNQFmNRQR5ZFrUt7kycDKFX01JhdsTE5ElCI+Ke/w4ewqKDYlp2rEBuZERBUuPq3qgw8AjwewWGT4FAoBrQeArq4BNAGO+KF0f8QgioiyxM89O3fKKZ3NTfLPnR8At94usGVr/sbkBw8JNiYnIuoVCLhw/Y0xnH6WF5dc6ktsDwZdANiUnKoTK6OIiCpY5rQqRQGserJpuWEAnV3AsXOBC84voQmwGZPVUNHSG10q3lYokQDMMUeXfF8iqgy5zj2ArMhs0WX4tOZRgdt/quCaq5WsxuSzZ1rw1XNibExORDUv36Q8APiPn4Twnz9ugG4Nsyk5VR2GUUREFSzXtKrUpuXBEBCLAt/8BjDnqCLf9IV9clIezNIOJtQN/bVfw7rjBfnPU/4fYkefWdpjEA0Du92Ov/3tb6ivr4c93myNCio8KQ9Zk/IyG5Mfv8SN7u6u4Th0IqIRJXNSnqLYMXWGfC21YaMGr9eSmJTHpuRUTRhGERFVKNMUePMtgUAQ0PX02+JNy3UdaO8AvN4igigzBsXfDsQCpR2IMGHZ8Vforz0EJZxczqcefre0xyEaJpqmYeHChfB4POjs7Bzuwxkx8jUmB0qflJfZmJxL84iIpMxJeYqiweFcmHY7wyeqRgyjiIgqULxp8M6dgN8PBALpDcvjck2ryinil9VQwijpOJSOD2Fbdze0Q++kbTdaZiN63NdLeiwiGjkKNSZftLB/k/KoQgmRXf5GREWLNyZPX1qX7PHESXlUq0ZsGPXss89i06ZNePPNN7F9+3ZEo1H8+Mc/xllnnZVzf5/Ph7vuugsvvPACDh8+jNGjR+OUU07BVVddBZfLlbW/aZp45JFH8MQTT2D37t1wOp1Yvnw5vv/972PSpEk5v8Y///lP3H///XjrrbegKAqOPvpoXHHFFVi2bFlZv3ciokLiTYMDAbkUJhSSDYFDIeDAQWDsmBIm6JmGDKFK7Q0VDUDf8ggsbz8LRSSX8wmLA5EF5yO67ErAwuVOVBkikQh+8YtfwOl04sILL4SeWWpYY1LPMfX1svopGk02Jr/m6r4m5Q1geieNHLEIlHAPEAtBNEwc7qMhqkiBgKu3H1RyGZ5sOu6C0ylfe2VOyhNmBO1t9wMAvvDFqzgpj6rWiJ2m97Of/QyPP/449u/fj9GjRxfcNxAIYOXKlfjNb36DadOm4aKLLsLUqVPx0EMP4Wtf+xrC4ezpAjfeeCNuueUWCCFwwQUX4MQTT8QLL7yAr3zlK9i1a1fW/s8++yy+8Y1vYOfOnTjrrLNw5pln4v3338fFF1+Mv/zlL+X6tomICspsGmy3A03NgKbJN4OGkZxa1ecEvWgASs9HpQVRQkDb9TIcT18G61vPpAVRsSknIHjW/YgdcxagjtjPOoiyRKNRrFq1Ctdeey2i0ewGsrUk8xxjswGq2tuYvBkIBGVjciD/pLx+T++k4SeE7BvYsx+Kt3eSqiixfyARAcjfmHztuihW3RxCJCrLSjMn5QlEcejATTh04Cb867UaJ+VR1Rqx7xZuueUWHHHEEZgwYQJ++ctf4vbbb8+774MPPoh33nkHl156KX7wgx8ktt9222144IEH8Jvf/Abf+ta3EtvXr1+PJ598EosXL8ZDDz2U+AT0i1/8Ir75zW/i5ptvxq9+9avE/t3d3bjlllvg8XjwzDPPYOzYsQCASy+9FGeccQZWrVqFE044AXV1deX+MRARpcnXsHzMGDlBLxyW/8WrElauyDFBT5hyUl7Em/0FClC8rdDX3QfLR6+lbTfdYxFZegWMiccN5FsjohGg1Mbk11yNrEl5ec89NHIZEdnzL+xDycMriCinzMbkqdaui8LrtScak6dOyjt8WMHy3oU3DocfQPYqH6JqMGLDqOXLlxe1nxACTz75JJxOJ6644oq026644go88sgjePLJJ9PCqCeffBIA8N3vfjetFP/jH/84lixZgpdffhn79+/H+PHjAQB/+ctf0NPTg29/+9uJIAoAxo4di5UrV+Kuu+7C3/72N5xxxhn9/XaJiIqSr2lwfIJeMAh0dgEXrgTOOiNHVUI0KJflmSVUfxhRWN94EtbXn4BiRBKbhWpB9NhzEJ17NmDJ0TSGiCpOqY3Jc03KS210TiOYELJCtncpHhGVV2Zj8ly3pzYmj0/Ks9tKHCRDVKFG7DK9Yu3atQuHDh3CwoUL4Uzt2gvA6XRi4cKF2Lt3L1pbWxPbX3311cRtmU488UQAwIYNGxLb4n8/4YQTsvaPb0vdn4hosNTXyxc2PT2yR1QqRQFUTQZTxxydEUQJASXQDsV3oKQgSt2/FY4/XgF9y5q0IMoYPx/BM+5FdMFKBlFEFcg0Bd59T+DVDfJP05TnltTG5LnkakwuJ+UpOH6J/JNB1AhnRIFAB5TuvVD8hxhEEQ0SNiYnKmzEVkYVa/fu3QCAKVOm5Lx9ypQpePnll7Fr1y6MGzcOgUAAhw8fxqxZs6BpWtb+RxxxRNrjAkj0kIrf1tf+RESDYdNmgd89Avi8snIh3sclPkEvb9PgaAhKoK2kEEoJdEDf+AAsH7yUtt10eBBZ8k0YU0/idCWiClVoUh4bk1cnIYScmhr2ArHcy4aIqH/yTcvLbEyeavkyKxuTU82r+DDK65U9T/L1a4pv9/l8Je0f3y/1vm63u6j9c2loaICqVnwh2rDweDzDfQhVjT/fwVWun+/6V6O4/U4f/H6guQVoaxOyWXDvBL2WFgWRiPyU7bJv1qG52SrffATaASMA1Dn7/iIAhGlAvPFHmGvvByIpjc0VFcqxZ8G67FLotiL64zV6oGgVf4nJayjP6XyODr7UJfsejyfnFN5qkXouaWxQoOtAJAJ88KHA7Xcq+Pfr63DZN4GbbvGhvUOk7dPVLdLOMQPF3+3BJ4wYEO4BOvegUYsBTh1AidMiVQ1Klf+/qsTX6Xz+jAwHDhi4YZU/rTfUx5Zbsfrf6zF2rIabVxm48SY/XlkbzbjdhTGjNQDZr89q6ZpEtf1crt53CiNMd7y5ApXE4/Ggs7NzuA+javHnO7jK9fM1TYFf/FLA55XTrRRFTs/r6JBvEGMxoL1d4Ni5wAXnA7Nn+dB5OAzF3waYkb6/QC+1bTv0tXdDa38/bbvRMguRZVfCbJkJhA0g3Pf5TCid/Z6oVwkX5aE6p/M5OjT8/mTw2tnZiUik+OdNJck+l8hQ22KRFZZt7QK/+GUPbv+pgqu/F29MLhLVU9Omyuqp2bN8GOivJX+3B1k0KKugeqelNtQ3oLunn+ctRZPn9H7iOb38+PwZGSJRG25YFcuqfHplbRQ3rPLjltUW2Gxh3HyTbEyeXjnVk/c8WivXJKrM53I5z+kVH0bFq5Xi1UuZ4tvjFUzF7p9aBZVa/ZT5wy9UNUVEVA75Jug5HXJyXjAExKLAN78BzDkSshdIEYFRQtgHffPDsLz7ZyhINtsUuguRRRchNutzshkVUZWy2+147rnn4Ha7Ybfbh/twBk2pk/LYmLzCCBMI+2QIVcIHEUTUP8VOy4s3Jk9tVl5IrVyTiCo+jIr3bIr3dcoU3x7vKeV0OjFq1Cjs27cPhmFk9Y2K935K7Q81ZcoUvPnmm9i9e3dWGJVrfyKicurqEgiGZDWUEED8dYmiyL/rOtDeAfi6o1B6SqiGEgLaBy9C3/gg1GD6pzKx6Z9EePE3AMfI/0SbaKA0TcMJJ5xQkZ9Q5mKaImeIVOqkPNmYfOiOm/rJiMgAKuwDYA730RDVjFKn5RWr2q5JRPlUfBg1ZcoUjB49Gps3b0YgEEibqBcIBLB582ZMnDgR48aNS2xfsmQJ/vznP2Pz5s1YvHhx2uP985//BIC07YsXL8af/vQnvPzyy5g/f37a/i+//HLiMYmIym3TZoGHfgP4fPI/VZXhU7xpOQBEogJN9m6M0ruLfh+idO2Fbf290Fq3pW03GyYhvOwKmOPmlfcbIaIhUag5eeqkPFuOIZi5JuXRCCUEEA2wITnREMjXoJzT8ogGprI69eWgKArOPvtsBAIB3HvvvWm33XvvvQgEAjjnnHPStsf//bOf/SxtDe5LL72EDRs24IQTTsCECRMS20899VS43W6sWbMGBw4cSGw/cOAA1qxZA4/Hg8985jOD8e0RUQ3btFng1tsFWltlAKUo8r9wWDYtDwQADRE4I604clIXphZToBkLw7rpt3A8e2VaECU0GyKLvobg6XcPPIiyOACFy/qockSjUTz44IO45557EI0WP3VypImfM3buBBwOGVo7HHIy3q23C3i9ApMnAz1emWWkik/KmzyZk/JGNCMKBDuhdO+F4j/EIIpokAUCLlx/Ywynn+XF+Rf6cPpZXlx/YwyBgCsxLS+XgUzLq5ZrElFfFCEyX46MDE8++SQ2bdoEANi+fTveeustLFy4MLEcbtGiRTj77LMByAqo8847D++++y5OOOEEzJkzB2+//TZefvllzJ07F2vWrMlab3v99dfjySefxMyZM/Hxj38chw8fxvPPPw+Xy4XHHnsMU6dOTdv/2WefxbXXXoumpiZ8/vOfBwA8//zz6OzsxH/913/h1FNPLfj9sMSyf1ieOrj48x1cA/n5mqbA1dfKN5UtLUAgCBw8CJimrI4yDKDF2YUx7m44HALfuETB0UcXfkxt70bo6++D6juQtj02aQkix18G4R7br2NNUHUIpwewFje5L59KaHY7VM8bPkeHht/vx6RJkwAAe/furcjJRZnnjNSeUEIAbe3A9GnAinOB2/9LnlPcbrk0LxKVQZTTAVxztYJFCwf/03z+bpcgUQXlA2KBfj3EgBuYN07u333Bc/pg4PNnaESiNlx/Y3aDckCGTf9xswXRiAWrbg6l7bN8mRWrbrDD6fRn3a8Y1XBNouJU4nO5JhqYb9q0Cc8880zats2bN2Pz5s2Jf8fDKKfTiTVr1uCuu+7CCy+8gFdffRWjRo3CJZdcgiuvvDJn47fVq1dj1qxZeOKJJ/Dwww/D6XTi5JNPxve//31Mnpx9wT399NPh8Xhw//334+mnnwYAHHPMMbj88suxfPnycn7rRERZjYZdTmDMGDlBz4xGMMreBl2JYNQo4NxzCgdRiu8w9Ffvh2XP2rTtpmsUIsd/C8bkZdndjEuhaBAOD2DjIAei4VJsc3K3W8E1VyOxlM/rlUvzpk8DVq4YmiCKimTGgLBXhlCifxUWRNR/fTUo7+mxo7nJj1tW55qW178giqiWjNgw6ic/+Ql+8pOfFL2/2+3Gj370I/zoRz8qan9VVXHhhRfiwgsvLPprnHTSSTjppJOK3p+IqL9yNS13OYFRrm7YjC4YMQF/EPjymcgfRJkxWN56FvrWR6DEQonNQtEQPfoMROevAKyOARylAmFvAOwNgFLxq76JKkauBuWlNCc/fgkn5Y1o0QCUkLffVVBEVB7FNigvdVoeEUkjNowiIqpVuZqWO2xRzBjdhgZnGLAAYQWwm0B9fe43j+rBt2Bbdw/Uzl1p243RcxBediVE09Sc9yua7oZwNAIqLyNEQylfg/KPn1hac3JOyhthzBgQ9smG5KyCIhpyuZqUs0E50eDiuwgiohEk3oDY75dNy6NRwG3tQb3aiZ4OAV2VVVJ+PzB5EjB1SsYDhLqhv/ZrWHe8kLZZ2OoRWXwJYjM+M7AqJosDwtEEWPT+PwYR9Uv8/BAIyOV49VZ5jtj5AbB/P9DYCBxuA1r07J5RXq9cisfm5CNMNCgDqGgAwIhs40pU9QIBV2/fp+SSPNn3yYrly6x5e0b1t0E5EUkMo4iIRgjTlBUPgQAwahQQCsYQ62qHTQ1CVQDDBDo6AYddBlKnfUlJ5krChGXHX6G/9pB8Y5MiOusURBZdDNjr+39wmi5DqAEt6yOi/ko9P6Q2KLfZZPjU1g7U1ckm5G3tuZuTr1yhcCneSGAaQKS3CsrkpCyi4RSJ2rIakAOyJ9SPfwrceL0Dq29Bzgbl7AtFNDAMo4iIRoj3tgvs/ACwWgE16sOUhnaEbEL2gul9DRSNApMmpjctVzo+hG3d3dAOvZP2eIZnKiLLroQ5Zk7/D0qx9DYnr+v/YxBR0XL1g1JVpagG5V1dwMrzgX/8E2xOPhJFQ1DCPayCIhpBCjUp//uLUXz/u3bcstrCBuVEg4BhFBHRCLBps8A99wHe7hg8egci4QAO+oDGBmDsGCASAWJRpDctjwahb3kElrf/CEWYiccSFgciC1cidtRpgKr184jUlObkfANL1c1ms+Gxxx5DXV0dbLkaLg2RfP2gVq4AYrHiGpSPH6fg9p+yOfmIkaiC8gFmZLiPhqjmZfaG8noL7+/1CjR5hrZB+Ui5JhENNoZRRETDLN4HxvB7Md7ZAYsqoCgygGprk0tyHHa5r90E6t2Atutl6K/+EmqgLe2xYlNOQGTJNyFcLf0/IN0tq6H6HWQRVRaLxYLPfvaz8Hg86OzsHJZjKNQP6tbbBc49p/gG5WxOPgJEAzKAYhUU0YiRqzfUrx5wF7zPcDQpHwnXJKKhwDCKiGgYmabAo49G4Yy1Yez4EA4ekiGUpgCaBhgG0NWdbFo+b0orjtr5C1g+ei39cdxjEVl6OYyJi/t/MBYnhNMDaGxOTjSUiukH9eI/gEmTgA8+ZIPyEcuIJqugOBGPaETJ1xtqw4YYli21Yt16NiknGmoMo4iIhtHOt72IHGxHS72AqsiqhvY22axcVeR/kQjQ2R7FWUf8AaeNehzqR8mlHkK1IDr3bESPPQew9LOUW7PJSig2J6caFY1G8eSTT8LlcuHzn/88rNY8a+EGSTH9oPbulf2gDhxgg/IRRYjeKigvEMvdd4aIhl++3lC/WxPErf/phqKMnCblw31NIhoqDKOIiIaDEYUSaEewLYBwBLBociGH0w6gBYmm5UIAcxu34so592GMvi9ttYcxbj7Cy66AaJjYv2NQrRD2RjYnp5oXiURw1VVXAQD27t07qC/8czUo7+4uvh/UNVcj0VeKDcqHUaIKygsIY7iPhoj64PPlXi4bCALXXOfFo4/UQ8HIaFI+lNckouHEMIqIaKiFeqAEO/HWWyaeehoIBOR/qion6cWbltuNDpw56kEs9byUdnfT4UFkyTdhTD2pn83F2ZycaDjka1D+8ROL7wd15GwFC+azQfmwSFRB+YBYYLiPhogKyGxU7nLlP0cGgoACgeYm/5A1KScihlFEREOntxoKsSDeegt48CGBYFAGULEYoEAuyetoM3DWrOdxxuiH4dCSb3iEoiJ25BcQWXghoLv6cQAKYHPLaig2JycaUoUalO/fDzQ2AofbiusHxQblQ8yMAWEve0ERVYhcjcpvutGF5cusWT2jAPaGIhouDKOIiIZCqBtKsBOAgDCB5/5bIBQCmpqAYEj2iTIFMNO9A9+ceTdm1L+fdnejZRYiy66E2dLP7sRWF4Sjkc3JiYZBMQ3K6+pk3yf2gxpBogEoIS+roIgqSL5G5f95qx/33FUPYOT0hiKqdQyjiIgGkxGB4m8DjHBi04e7gP2tQJ1LVkM57YBjtA+fb3wYJ499HqqS7GsQ01wwFn8Nsdmn9q+aSbNBOJoAq33g3wsR9UsxDcq7umSD8n/8E+wHNZxYBUVU0fI1Kg8EgSu/3YOnnqhHNDoyekMR1TqGUUREg0EIiEAHlJ79SOs6DsDrFQiFAU0FBASWN72I05sfRL2lK22/Q55PwnXKNwCHp/Svr1rlhLx+Lecjov4aaIPy23/KflDDIt4LKhpA5jmbiCpHvkblgAykOjtNHDE5wN5QRCMAwygionKLhaEE2gDTgcw3NW+9hUTTcg/24luT7sOxnm1p+7SGJ+J3e6/AqV+fj2mOEr+2osnm5LYcJRhENKjK0aCc/aCGkGnIKqiIDzCz+8gQUWVIbVbucBSuIq+r42sjopGCYRQRUbkIAQQ7oYS7ezekJ0nxpuWxUBgXTH8cp038A6xqchlIxLThfzvPxdO7zsSEiVZMnVLKF1cgbPWAoxFQ1AF+I0S1xWaz4aGHHkJdXR1sudKiIpSzQTkNsmgQStjLKiiiKpDZrPxblzqwbKkV69ZXbqPyclyTiCoBwygionKIBuWkvDyfrsebls+ybcRFs+9Di/Vg2u0b25bgNx9+C15lLOx24LQvKcVnSlaXXJKn5VkDREQFWSwWnHHGGfB4POjs7Cz5/mxQXgFMA4j45FI8MzLcR0NEZZCrWfnv1gRx63+6ASAtkKqkRuUDvSYRVQqGUUREAyFMKIEOIOItuNvedw7hdP2XWDxzbdr2tvAoPLjjW1h/eCkABdOmAueeo+Doo4v42ha7bE5u4admREMpsy+UEIINykeqaAhKxAtE/GAVFFF1ydWsPBAErrnOiwtWOnDN1U4EgwYblRONUAyjiIj6KxqUk/IKTVwyY2j/v+cwbfca2DyhxOaYqeH/6zgDf+s5Dz7NgVHNgD8IfPlM9B1EqTqEo5HNyYnKJBaL4U9/+hPq6urwiU98AhZL/pdHufpCNTTIN0D19bnvwwblQ0yYQNgnQyiDVVBE1SbeI6qrK/e5MxAE7n8giJNO1HDE5MAQH93AlXJNIqpk/M0mIipVkdVQYv/rUP70n5gc3AWkLLl7p/to/GL7FdgXmIKWFsBhl9vtJlBfX+BNqaJB2BsBm5vNyYnKKBwO45JLLgEA7N27N+8L/3x9oQ4clEMJerxAY0P2/digfIjEIlDCPb1VUOZwHw0RDYLUHlH33OUuuG+lNisv9ppEVOn4m01EVIpoAIq/vXA1VKgb+mu/hrHjBThTNvdE6/HbnZfgH4c+DaGoMAXQ1Q3Y7YDfD0yehDxNyxU5Ic/ewObkRMOkUF+oMaOBD3cB7e1AQz0blA8pIXp7QXkBIzzcR0NEgyizR9Trr8ew9Hgr1r9auc3KiWoZwygiomIIUzYoj/gK7mPZ8Vfor/1afjqf4uXOU/CHgxdhz8F6mAJQFflfJCInbNW58jQt1+tkc3KVp2uioZLZE2rWTLm0Ll9fKFUFmppkGHXgIODxsEH5oItF5DK8sA+sghpERhRqxw6YUCAaJw330VCNy+wRldqsPDWQqqRm5US1jO9uiIj6UkQ1lNLxIWzr7oZ26J207R/6puIX712JHb6jYLXKRsbBkFzaI4T8b1QLcP55GU3LLY7e5uT6IH1TRJTLlq0Cf3gmvSfU5MnAooXy3/V5hlY21APBIDB2jAyx2KB8EAgBRPwyhIqF+t6fSidMqO0fQGvdCnX/VmgH34JihCE0K4Ln/A7muHnDfYRUg/L1iEptVn7BSjvqXAoaGwWblRNVCIZRRET5FFMNFQ1A3/IoLG//EYpIfjofMhx46qPz8cyHpwHQElVQsSjQ3AxoGhAKA0YM+PrFwPTpvXfUdFkJZXXm/HJENLju/LlAJJLeE2rnB8Du3bIvdjQql+ZlikRlBdQP/kX2hWKD8jIyIr0NyX2AMIb7aKqLEFC8rdD2b4XWuhVa6+tZlb0AoBhRqIffYxhFQ66vHlHxZuUA8OzTbjQ3MYQiqhQMo4iIcumrGkoIaLtfgf7q/VAD7Wk3vRn6GB5475tQ60fBYpVvbDVFBlCGAXT3yOqJeJ+oaVMVQLHIEMpWNwTfHBHlEwwCY8ak94Rq0eVyWsMAenrSe0YB6X2hjpzN5XhlIYQ8D4d7WAVVbsFOaK3bEgGU6jtUcHeh2RCb9VnEZn9+iA6QSGKPKKLqxjCKiCiVaUAJdhSshlK8rdDX/wKWfRvT7+oei91HXI6f/uY4WCyAI6KgoUGgvQ0wzNx9or50mga4GiFsORrRENGgSe0Lpesisd2dY1iloshKqZ5uwGIF2trlfuwLNQiMKBD2sgqqnKIBmB++Bf39V2T41Lmr4O5CUWG2zIYxfh6M8Qtgjp4D0TxjaI6VKAV7RBFVN4ZRRERxfVVDGVFY33gK1tcfh2JEEpuFakF07tnYZj0Hax7X0eOV27VuE5Y8faJamhV89cIGHH18IyfkEQ2xTZvlZLx4XyhNtWLBorvQ3QPYbLn7tOlW+VQ96wxg02bZzJx9ocokUQXlBWLBvvenwowo1MPvJqqf1MPvwRQG8rQ7AwCYjUfAGDcPxvj5MMbOBXRX8kZFG/RDJsoUidrQ01ObPaJ0Xcfdd98Nl8sFXWfvUKpeDKOIiIqohlL3b4Vt/b1Qu/elbTfGzUd42RV4c99EPPiQgM8nqyhURf6Zq0+UN+TCyis9mHM0X2AQDbVNmwVuvV0gEEjtC2VFOHIeXCbg8wONDdn3i0Rl8HTcIgUrzkXWtD1WRPWDEQUiPihhX8EBEdQHYULt+BBq6zZo+7dAO/gmlFi44F1MZ4sMnsYvgDluHoSzaYgOlqhv8T5R56/IfqtaCz2irFYrVqxYAY/Hg87OzuE+HKJBwzCKiGpbxC+blOdZDqIEOqBvfBCWD15M2246PIgsuRTG1I9DCAXP/bdAKCR7yRw8JEMoTU3vE9U0yob9HU2YPNWGI4/iG1eioWaasiIqEEjv+2SzAWNGA7t2A+3tcjJevp5Q8eDpyNnD8z1UhYgfoicEpad1uI+kYsmm473hU+u2nE3H09jciI2dC2P8Ahjj5kHUT+DScBqRUvtEzT3Gwh5RRFWMYRQR1SYzBiXQAUTzfKJmGrC89zz0zQ9DiST3EYqK2JFfQGThhYllDB98ILBnL2CxyKV4DQ2QfaIMWSFlwIqPehrRGnGh3s2+MkRDJbUvVEMDIIRcmlefETaZZgyHDv4fIBSY5idx4KAFHg97QpWVGZO9oOJVUFqO8jPKL9SdnHi3fxtU34GCuwtNhzlmDoxxC2CMn4e6KQvh9xWYDEs0QqT2iarVHlGxWAz/93//h7q6OixZsgQWC9+yU3XibzYR1Z6wTy7Ly1MNpbZth77uHmhtO9K2Gy2zEFl2JcyWmYltb70FPPJ7JPpEqSpg7e0TFQipOORrhDfqhhAKZowBrrycfWWIhkJmXyirRQZSgaAMo1KZZhjrXlkBADhu6W6MHWNBdzd7QpVFNCADqGgAgOhzd+oVDUI7+Kbs+dS6DVrHBwV3F4oKs3mGXHo3bj7M0XMAS3IpuKKy7xONfJl9ojJ7REXCApMnqfA0Ras2iAKAcDiMc889FwCwd+9ehlFUtfibTUS1w4jKJXn5GuSGfdA3PwzLu3+GkvKmSeguRBZdhNiszwEpL+jfegs5+0SFwwraA/VwtTSiwalAD8m+UT/4F2AOl+cRDbrcfaGAAweBQECGx7n6QgGyAuoH/yKX4rEnVD+ZRnIinpm9vIZyMGNQD7+XqH5SD70LpY9pgmbDpN7waR6MsccCtrohOlii8svXJyq1RxQg+0Tp1sI90YioMjCMIqLaEOqGEuxEzk/mhYD2wYvQNz4INZjeKDI2/ZMIL/4G4PCk38VEVp+ocFhBSLjQE2tEOGpBsF3BhPECXh8wfTpw5Gy+mSUabH31hfpwV+6+UHETJ8rnKsOnfogG5UQ8VkH1TQgonbt6l91thXbgTSh9TBI0nc0wxs2DGe/75GoZooMlGlzsE0VUmxhGEVF1i0WgBNoAI/enaErXXtjW3wutdVvadrNhEsLLroA5bl7O+33wYXqfKJvbiT09jYgYOlRVLtcLhwQOHAT7RBENomL7QgHyednUJMOoAweR6AsVSjk9nHsOn6slMY3kRDwzMtxHM6IpvoPJyqfW17M+/MgkdBeMsXMTfZ9EwyQ2HaeqxD5RRLWJYRQRVSchgFAXlFA3cn5CHwvDuu0xWN/8AxQz+Smb0HRE552H6DFnAZo150On9omKGDq6Y00QFjvq6gF/QE7SE0L+N5Z9oogGTSl9oeIa6oFgUD43432hUrOnBfP5XC1KLCwnuEX8YBVUHqEeaK3bEtVPqrfw9EChWmCOniOX3o2fD7N5ZtrScKJq5fUm/16rfaKIahHDKCKqPtGQ7A2V51N6be9G6Ovvy5pGFJu4GJGll0O4x+Z96HifqG6vBe1hD0LCBUWRhVfRqFwGpGlAMASYhoIf/ItgnyiiQdDfvlCRaHZfKF1X8Om/D/33UHGEACJ+GULlqTatabEQtINvQd2/FVrrNqjtO9P6D2YSUGA2T4fRu+zOHDMHsNiH8ICJhl8g4EI44+Ua+0QR1QaGUURUPYQp+0KFe3LerPgOQ99wPyy716ZtN50tiCy9DMbkZQWXQAgT+ON/K2jt8cDe6IbhV2CGZfhksQCxGNDRCUycAHh9wJGzLDhyNnsbEJVbf/tCCSE/gZ8+Lb0vlN/PwLggMyYbkoe9eaeQ1iTTgNq2A9r+LTJ8OvR2WqVtzrvUj0+ET8a4eYDNPUQHSzTyxHtFsU8UUW1iGEVE1SEa7K2GyjG5yYzB8vZz0LesgRILJTYLRUX06DMRnb8CsDr6+AIKdnzkxqs7GmCxqFAjsvfMwYOAYSDZJyqMRJ+or1/igKr6yvt9EtWo1N5QnV0Cu0vsCxWJyiDK6cju4abrOn7605/C6XRC1/Uh/s5GMDYkTycElO69Mnzavw3agdehRAMF72I6PDDHzeudejcfom70EB0s0cgX7xW1dWuUfaJS8JpEtYJhFBFVNmFCCXQAEW/Om9WDb8G27h6onbvSthuj5yC87EqIpql9fw29Dq+904h77tfQ2dX7uCqg63IZUL4+UUuPt6KzcH9aIipCZm8o0wD8fsA6WlZDZcrVF8pqkRVRK1dk93CzWq34xje+AY/Hg85af9IKEwj7ZAjFhuRQfIdlz6fWrVD3b4Ma7Ci4v7A6YIydB2P8PBk+NU5m03GiPOK9onL1idJtCiZMUOB01t6HerwmUa1gGEVElatQNVSoG/prv4Z1xwtpm4WtHpHFlyA24zOAohZ+fIsDwtGETa9bcet/CfT0yPcUqir/DOfoExWLyl407BNFVB65ekP5fLIn1MFD8vnodKbfJ1dfqIYGYNZMcFJePkZEBlBhHwBzuI9m+IS90FpfTzYd7/mo4O6JpuO91U9myyw2HScqQmavqMw+UYDsFUVE1YthFBFVnkK9oYQJy46/Qn/t17LJbororFMQWXQxYM8zZitO0yEcTYDVkdabZswY4KP9MoTK1ydq+nTZi4aIBi5fbyi3G+jukdVPbe3A5JQwKl9fqEIMw8C6devgdrtxzDHHQNNqKEyI+GUIFQv2vW81ioWhHnob2v7e6qe29/tuOt40TQZP4+fDGH00YGXTcaJSsFdUYTV9TaKa0u8w6u6778ZXvvIVjB2bf+oUEVHZRQNQ/O2AyH6BonR8CNu6u6Edeidtu+GZisiyK+WkokIUC4TDA9jqEpve2y6w8wPAapVL8frqE5XZi4aGF69VlaeY3lCKIp+LBw4AoRDQ0wPU1RXuC1VIKBTCaaedBgDYu3cvXC7XYHxrI0eiIbkv57m0qpkG1Pb3k5VPh96GYuSork29i3scjHHzYUxYAGPssX1/oEFEBbFXVGE1d02imjWgMOq+++7DiSeeiLPPPhuf/OQnoap9LHkhIuov05BL8qI5XphEg7BufRTWt56BIpLLS4TFjsiClYjNOb2PZRMqhL0BsDekvePdtFngnvuArq7evYroE5XZi4aGF69VlaWU3lAup1wie/CQXCIbjhTuC1XzhJBhftjXWwVVIw3JE03Ht8kA6sDrUCKF3+AKe2Oi55Mxbj6Ee8wQHSxRbfD55PmHvaKIalu/w6jvfe97eOqpp/Diiy/ipZdeQktLC7785S/jK1/5CiZOnFjOYySiWhf2QQl2ZI8UFwLa7rXQX70faqAt7abYER9D5PhvQbhaCjywAmGrlyFURlgV71PDPlGVjdeqytGf3lAWK9DkAb55KeBpVNgXKpcarIJS/G3QWrdBjS+9C7QX3F9YHDDGHpOceOeZwqbjRIPI5Uy+5mKvKKLapQghBvTR2Nq1a/Hkk0/ib3/7G6LRKFRVxbJly3DOOefg05/+NCwWtqUCwEkI/cQpEoNrxP98jaishsrRy0TxtkJf/wtY9m1M2266xyKy9HIYExcXfmyrSy7J06xZN8ViJq74NrBnL+BpBNo7kn2iFEX2ibLZZJ+otnZZiXH7T7OXBI34n+8I5fF4yv6Y5b5WDdX/12r+HUpdjud2C/zyQeCDD9J7QwkB7PtI9oay24HJk5L3F6Lw868Ufr8fkybJB6+aJRHRAJSQF4gFhvtIcmqob0B3T3d5Hizsg3bgdWit2+TSu+69BXcXigZz9JGy8mn8fJijZgNqdb9eHdDPW9HkVMB+GoxzerlV2nm2kq8NkagN//yniv/530jeXlG3rLZAt4aH4ehGhqq8JlFOlfhcLuc5fcBX3uXLl2P58uXo7OzEH//4Rzz11FN45ZVXsHbtWjQ1NeHMM8/EV77yFUyZMqUMh0tENSPUI5uUZ051MqKwvvkHWLc9BsVIjmERqgXRuWcjeuw5gCXHrPc4zQbhbM67z6bNAvc/ALz7Xu9hhHpDKLBPVCXjtWpkyVyOBwH4/IDHM7i9oaperVRBxSKy6XjrNmj7t0Btfz9tiXYuhmeqbDg+fj6MMccAVscQHSwRpfJ6LfjPW705e0UtPd6K63/khG71DtfhEdEQGnBlVC6bN2/Go48+ij/96U9Qel9VLlmyBCtXrsTJJ59c7i9XESot8RwpKjEtriQj8udrRHqroUJZN6n7t8K2/l6o3fvS7zJuPsLLroBoKLDsKkdz8kzxZUJd3UAwAGi9cb3RuzrQYpF/j/eJmjG9cJ+oEfnzrQBD9Sn6QK5VrIzqv8zleFarDJkOHZbB77ix2cvxfD65VK+uTobBVgsweXL5ekNV9KfQab2gRmYVVC4lVeqYBtSOncmJdwffTvswIudd6sYklt0Z4+YBjsaBH3QFY2VUYZV2nq3ka8Ou3XVY+bUeOB3ABSsdOPZYS6JX1Ouvx/CJj2uYNLFyzmWDoaKvSVSSSnwuj6jKqEx79uzB3//+d6xfvz6xbezYsXj11VexYcMGHH300bjrrrswbty4cn9pIqpkQgChbiihLmQ21lUCHdA3PgjLBy+mbTcdHkSWXApj6scL9PdQUpqT529cnTpCvskD7A/JQ1JVGULFYvLvY8ewT1Q14LVqeKQ+z1KX49ntMogyTbkslr2himBEgYivOqughIDS81Gi8klrfR1KpHAzY2GrhzFuHozxC2CMnwfh5nOXaKSJRG0IR5LNyzN7RQHA509lvyiiWlGWMCoajeKFF17AE088gQ0bNkAIgcbGRlx88cX46le/iilTpmDLli34xS9+gZdeegmrV6/GfffdV44vTUTVIBaBEjgMZH7SbRqwvPc89M0Pp00/EoqK2JFfQGThhYBe4NOiAn2hMr23XWDnB7JKA5BT88Jh+WZZUeQb5WhUBlSxGDB9OnDk7Bp+I1yBeK0aHqm9oTq7BHbvkRVRqfmxzSafc6GQfN6FQjKgAuRzzuuVvaE++5nBWZJntVqxatUqOJ1OWK19ny+GVcRfcVVQxVACHVAT4dM2qP7DBfcXFhuMMcfAGDcf5vj5MJumFvzAgYiGn9drwYYNMSw93pq3X5TbXWXhej9U1DWJaAAGFEbt3LkTTzzxBJ599ll0d3dDCIEFCxbg3HPPxamnngpd1xP7LliwAPfffz/OOeccbNy4scCjElHNEAIIdkIJ9yCzGkpt2w593T3Q2nakbTdaZiKy7CqYLTPzP65mg3A0AVZ7UYexabPAPfcBXV29X1vN7hOlKLJqo7MTaGhgn5pKwmvV8MnsDWUagN8PWEfLACou3hvq4EEZ9gZDMpwaqt5Quq7jO9/5zsgtl6/CXlAi7Ie259Vk+NS1u/D+igpz1JG9S+/mwRx1ZFEfNBDRyOHzCfxuTTBvv6gfXcd+UUAFXJOIyqTfYdR5552HrVu3QgiBuro6nHfeeTj33HMxa9asgvebMWMG3njjjf5+WSKqFtGg7A1lZnwyFvFD3/RbWN79M5SUgEroLkQWfg2x2acCqoaciugLlSnev6anR74hjgdPsd73e/E+UfG+UZMmAd+6tDx9amjw8Vo1fDJ7Q9VbZe+nHq/s/6Sq6cvxXE7ZwLyrUz7/2jtkb6jp08rXG6rixHtBRf197zvSGVGoh9+V4dP+bTDatsMujIJ3MRuPkOHT+PkwxswFdGfB/YloZKurUxAIAtdc58UFKx24YKU9rV+U2ccgAiKqLv0Oo7Zs2YI5c+bgvPPOwxe/+EU4HMVNJTn77LOxeHEfI9eJqHoJU07JC/dkbBfQPngR+sYHoQbTPwWKTfskIou/DuFsyvOgakpfqOLfsMZiJu5/AOjqBjyNQMyQS4Q0Lb1P1JjRQEenHCt/712AxVKDb4orFK9VQyu+JK+zU+DXvwX8AWBUSm8otxvo7gGCQaCtHZicki3El8AeeyzwrUuBnp6h6w1lGAa2bduG+vp6TJ06FZqWJ/AeCmYMCPtkj6TMsL6SCBNqx4dy2l3rNmgH3oRiFB7VbrpGyZ5P4+bBHDevwDmfiCqRyymwbKkV69ZHs/pFLVtqxdlfHsZz7wgyoq5JRIOo32HUU089hWOOOabk+y1YsAALFizo75clokqWpxpK6doL2/p7obVuS9tuNkxEeOkVMMfPz/OACmBzQ9gb81dL5bFps8D9DwDvvif/HQplL81TVSASkWFVY4OsiGIQVVl4rRo6qUvygiFZBaXrMniKV0DFl+MdOCCfcz09ckJe6nK8C85XcNSRQ/s8C4VC+MxnPgNgGCcXJaqgAshctlwRhIDiPQCtdWuy6Xjmhw6Zd9HrepuOy6l3on58SR8oEFFlCQQVrFxhhxDZS/RWrrAjEEz2C6xlI+KaRDQE+h1G9efFPRHVKGFCCXQAkYw+ALEwrNseg/XNP0Axk31QhKYjOu9cRI/5cv6eIFYXhKMR0PTctxcQXz7U1S3DJ633TJi5NE8I+d/YMcCVl9foMqEKx2vV0MhckqdpgN8nw9wDB+VzKB5IuZyy2vDgIRlahSM1vBzPNGQvqEqtggp29YZPW2XfJ9/BgrsLzQZjzNEwx8+DY+aJ6LGNZtNxohri9Qpcc50v5xK9a67z4oH769BUvqnxRDTClWWaHhFRXhG/DKIymu5qezdCX38fVN+BtO2xiYsRWXo5hHts7sez2GVzcost9+19SF2aV+eS1RlCyCqo1KV5Y8fIN8qxKPCDfwHmHFVDb5CJilBoSZ4QMmNQexv/t3ek94eyWIEmD/DNSwFP49AtxxsxokEoYW/lVUFFA9AOvJkIoNTOXQV3F4oKs2VWb/XTApijj0p8wOCsbwB6uofgoIlopHC5VASCyFqil3o7EdUOhlFENDjMmAyhMhrvKr7D0DfcD8vutem7O1sQWXoZjMnLci/TUHVZCaX3v1Q5c2leMCjfNAPySyqKrOiIRpP9a6ZPB46cXSNvkImK1NeSPJtN/jscTi53DYXk8gsh5JK86dOAz36mhqZSGlEg4oMS8VdOFZQRhXr4PRk+tW6DeuhdKH02HZ8MY1xv0/Gxcwd0ziai6qLrckle6hK9uKXHW6GXXuxORBWsqsKoT33qU/joo49y3rZkyRL87ne/S9sWiUTwy1/+Es899xxaW1vR0NCAT37yk/je976H5ubmnI/z3HPP4eGHH8b7778Pq9WKhQsX4jvf+Q6OPvrosn8/RBUr7JVBFFKmopgxWN56FvrWR6DEQonNQlERPfpMROevAKw5mksrmuwJZXMPqJdIoaV5pin/1DT5JUwT6OwEGhoGd5w8USUqdkleUxNw8KB8PgkhQ14oyd5QNfHcEkJWh0a8QMp5b8QSJpTO3b09n7ZBO/BG2vk6F9PZkph4J5uO5379RETU3W3igvNlU6jMnlEXnG9HVxdQ7x6mgyOiIVdVYRQAuN1ufO1rX8vaPmHChLR/m6aJyy+/HC+//DLmz5+Pz372s9i9ezeefPJJrFu3Dk888QSamtKnuNx333248847MWHCBJx77rnw+/3485//jHPPPRe/+c1vsGjRokH93ohGPDMGxd8OxAJpm9WDb8G27p6sJR3G6DkIL7sSomlqjgdTIez1vRPyBla2XWhpntXa+yYZcpvR+6H/pEmyYXlN9a8hyqM/S/JcTmDMGKCtTQZVPj/gMGqkN1QsIgOosA9pofwIlGw6LquflFDhpXNCr4Mx9thEACXqJ7DpOBEVxelU8PVLvXl7Rt31czciURt0a+HJm0RUHaoujKqvr8e3v/3tPvd75pln8PLLL+OLX/wibrvtNii9L6R+//vfY9WqVbjzzjuxevXqxP67du3C3XffjSlTpuCpp56C2y1j+xUrVuCcc87BDTfcgD/96U9QVa51phoV6oES7ETaG69QN/TXfg3rjhfSdhW2ekSOuwSxmZ/JHTTpbrkkTx34KaqYpXnxhuUtzfIN8+RJwL13gZPziDCwJXlOB+BwANOmApdcBDQ2KtXbG0qYsgoq7AWMEfxGKtSdCJ60/Vuz+vZlEpoOc8ycxNI7s2l6ydNLiYgAwO2OYf58a86eUUuPt2LDhhhami1obhrB51AiKpuqC6OK9eSTTwIA/uVf/iURRAHAueeei1/96lf47//+b/zoRz+CvXe+6NNPP41YLIbLL788EUQBwFFHHYUvfvGLePrpp7Fp0yYsXrx4aL8RouEWi0AJtKW/+RImLDv+Cv21X2eN9o7OOgWRRRcD9vrsx7I4IZyefk3Iy6WUpXlCAH4/0NggK6IYRBGVZ0meyznyqwytViuuvfZaOBwOWK15JnjmEwvLACrix4isgooGoR18E9r+bVBbt0Lr+KDg7kJRYTbPkJVP4+bDHD0HsLCRCxENnG4N40fXuXHLjwM5l+ldc50XJ55Qj+amAg9SAwZ0TSKqIFUXRkUiETz99NM4dOgQ6urqMHfuXMybNy9tn3A4jG3btmHq1KlZy/cURcHy5cvx+OOP480338Rxxx0HANiwYQMA4GMf+1jW1zzhhBPw9NNPY8OGDQyjqHYIAYS6epd0JKdBKR0fwrbubmiH3knb3fBMRWTZlTDHzMl+LE2XE/Jy9YzqJy7NI+qfWlySp+s6fvjDH8Lj8aCzs7PvO5ix3l5QPsCIDP4BlsKM9TYd3wZt/xaoh9+DYsYK36VhYnrTcRubthDR4DCFiXnHWnIu0wsEgXBE1PxSvZKvSUQVqurCqMOHD+Nf//Vf07bNnTsXd9xxByZPngwA2LNnD0zTxJQpU3I+Rnz7rl27EmHUrl274HQ6MWrUqKz9jzjiCADA7t27y/RdEI1w0SCUQHv6RKhoEPqWR2B5+49QRLI6QFgciCxcidhRp2Uv7VAsEA4PYKsr6+FxaR5R/3BJXgFCANGArIKK5R5LPiyEgNK5S4ZPrVuhtb4BpY/jMx1Ncsnd+AUwxs2DcLUM0cESUa2rq4vhjTdjXKpHRNUVRp111llYtGgRZs2aBafTiV27duHXv/41nn32WVx00UV47rnnUFdXB6/XCwCoq8v9Bji+3efzJbb5fL6shuaZ+8cfN5eGhgb2k+onj8cz3IdQ1Ur5+QrTAPztgBEE6pxymxAQO1+C+dLPAN+htP2VGZ+EdtJ3YHWPTn8gRQUcjYCjMW2ZbDmsfzWK2+/0obNTJEInCCCasjTPYkn22w0EgaYmFVd/vw6jRpW/FJq/v9VpKM/pQ/U7FH/uyOWqCnRdwO8XiESAg4eAceNU1LkUjBol0LrfhNGbORumglhMQVe3gNut4Orv12Hp8ZW1rMA0TbzzzjvYv38/jjrqqLT/tyIaAsK9zcg1E3DqAIZ32ZroOQCx9zWIPa9B7NsEBDoK30F3QZm4AMqk46BMXgzNcwT0EdB0vKG+YbgPoab0++etalCq/FpWia/TK/n1xY+ui/W5VG/G9Mr9/gaq0DWJqk8lP5cHqqrCqKuuuirt30cddRR++tOfAgCeffZZPPnkk7j44ouH49DQ3V14Og3lxvLUwVXSzzfsgxLsAISR2KR4W6Gv/wUs+zam7Wq6xyKy9HIYExfLFXw9Kb//uhvC0QCEAYS7Bvw9JL6mKfDuewK33QF0dQGeRlnNYZrZS/NMU/4HABMnAN+6VGD2LB/K/avG39/+qYSL8lCd04fidyjzuTN2DKAoArGYDG1VVVYRHj5swm4D7DZgdMqSvJ4eAYddYNpUYOUKDMpzabD5/X4cc8wxAIC9e/fC5XTIc17EOzKW4YV6oB14Hdr+LbL3k3d/wd2FaoE5ek5i4p3ZPDO9MtXbk//OQ6ShvgHdPXxtNFQG9PNWNAil/09qntPLr9JfX5jC1edSvYOHAjW7VC/rmuRyDfMR0WCpxOdyOc/pVRVG5fPVr34Vzz77LDZv3oyLL7440YA8tfIpVXx7auVUakVVvv1TG5sTVQ0jKpfkpS77MKKwvvkHWLc9BiXljZpQLYjOPRvRY88BLLb0x7HYIRzNg9IIN760aOdO2SNKUWTwpGlIvKHm0jyibLmeO/s+Apqb5JK7WlySpwTaoUQEhrUZeSwE7eDbUPdvgda6DWr7TigpvfkyCSgwm6fDGL9Ahk+j52Sfg4mKoshJtqomQyjVUpbJtkSpilmq19xkRUtzbYZRRLWiJq4u8fQuEAgAACZNmgRVVbFr166c+8e3p/aUmjJlCrZs2YLDhw9n9Y2K94qK944iqhqhbijBTqQ2KFf3b4Vt/b1Qu/el7WqMm4/wsisgGiamP4ZigXA2AfrgfKqTOu3Lak1WckR6MzIFMoBSVU7NI0qV77kTDicn5VX6lLyiRQIpf/cBlvINUyiKaUBt2yF7Pu3fCvXQ2303Ha8fn9J0/NjcE0qJ0sSDJhk2CdUCKJocNav0BlCZvR2JBkExU/WOnWuB0+GC0+kfxiMlosFUE2HU66+/DgCJyXl2ux3HHnsstm7dio8++ihtop4QAmvXroXT6UyURwLA4sWLsWXLFrzyyis444wz0h7/5ZdfBgAsWbJkkL8ToiESi0AJtAFG8hMpJdABfeOvYPng72m7mg4PIksuhTH148lGTAAAFcLeANgbMraX8TBTJuY1eZIVUICsgorF5GtsTZPhFKfmUa3LNykvHM5+7rR3AJMmVvaUvILMGBD2Qon4oQSGeNmaEFC690LbL8Mn7cDrUKKBgncxHR6Y4+bDGD8Pxrj5EHWjC+5PtSg1bLIkq5pUC+AZBaHl721KNNT6mqoHBVh1cwi3rK7tyXpE1axqwqidO3di/PjxcDgcWdtvu+02AMCXvvSlxPZzzjkHW7duxR133IHbbrst0UT5sccew969e/HVr34Vdrs9sf9ZZ52Fhx56CPfddx8+/elPJ5bkvfPOO/jTn/6E6dOnY9GiRYP9bRINLmECwS4o4ZTeCaYBy3vPQ9/8MJRI8tMpAQWxo76IyMILs6ue9Do5JW8QS/szJ+aFQrK6I3VpnqbJAGpM73u2jk4uzaPaVWhSXuqSvPhzJ74sr+qW5EUDUMI+IBoACix9KzfF3yaDp9YtUPdvgxos3HRcWB0wxh4LY9w8GOPnQzQeMWjBPlWKHJVNqlX+Wyu8nE7RquYlP1WJvpbqvf56DGvXRdHT4+ByPaIqVTVXpueffx6//vWvsXjx4kQotWvXLvzjH/9ANBrFt771LSxevDix/5lnnonnn38ef/rTn7Bv3z4sXrwYe/bswQsvvICJEyfie9/7XtrjT506FVdddRXuvPNOnH766fjsZz8Lv9+PP//5zwCAm2++mZMOqLJFA1D87YBILg1R23ZAX3c3tLYdabsaLTMRWXYlzJZZ6Y+h2SCczYPaq8Q0BZ79b4HfPiwn4SmQr8GB3EvzTBMIhWVAxaV5VGvilVCvbRJ4+o9ymV1DvQyb/D75nMlckpf63AmGAK+vCpbkGVEg4pMhlCi8/K1swl5oB96QTcdbt2Utbc4kVAvMUUf2Nh1fALNlJnv11JwCYZOqAVplTakkKkS3hrHqBhdW3QysXZd7qR4AfPSR4HI9oipVNa9yjj/+eOzcuRPvvPMOXnvtNYRCIXg8Hpx00klYsWIFTjjhhLT9VVXFfffdh1/+8pd49tln8Zvf/AaNjY34yle+gu9973toamrK+hqXX345JkyYgN/+9rf4/e9/D6vViuOOOw7f/e53cfTRRw/Vt0pUXqYhG5RHUy7yYR/0zQ/D8u6f05rmCt2FyKKLEJv1ufS+EopFVkLZ6jCYNm0W+N0jAq+/DkRjyR5QiinfXGcuzQv3fpAWi1XJsiKiEsQroXbvllWBhiGbj9e5entEqYCqyNApdUleR0eVPHdMQ4bsER8QCw3+14tFoB56Oxk+tb8PReRvgi6gwGyaJhuOj5sHY8wxgNWed3+qdGoyVErt16RqKdur5mU5UVGcTj+u/1EdPtyVZ6kekFiut/rfnbDbCy9nJqLKUjVXvSVLlpTcs0nXdVx11VW46qqrir7PaaedhtNOO63UwyMakUTIC6XnI0D0NlMSAtoHL0Lf+CDUYPqY0dj0TyJy3NdlM/IEJaUv1OBWBsabLff0AIYpgydAVnrEegsdNC25NG/0KKC7R1Z8XHM1MHuWUrnLiohKlNqc3NZbqBhfenfgoFy6mmtSnssJOOzAwUMV+twRJhAJyCXFsSCKXYZntVhw1TcugM1mg9VS5Esj04DavhNa6xZo+7dBPfQWFCNa+C7uccmm4+OOledOqg5KMlBK9GqKNwbXLIN+jSSqVHZ7FI88GkurjopLXa63e68dkybURoWU1WrFVVddBbvdDquVFZFUvaomjCKiEpgxuSTPsCaCKKVrL2zr74XWui1914aJCC+7Eua4eemPYXXJaqghWDaQ2qjcYZdNl+PNyq3WZCAV32aaQFcX0NAAXHm5gqOOrJA30kRlkNnYPz4JT9Pk8yMWk5VShSbl1bsr7LkzwD5Qum7Fzf/6PTTUN6C7pzv3TkJA6fkovel4xFfwcYW9MdFw3Bg3H8I9puRjo5Eg3/I5Lbmd/byI+qXY5Xo93QKrHgrXRENzXdexevVqeDwedHZ29n0HogrFMIqo1oS6oQS7AJgAGoBYGNZtj8H65h/SRokLTUd03nmIHnNWeuCk6RCOJsA6NKPPMxuVB4PyzXO8ybKqJpfnxd9UA5yYR7UpV2P/eKGPEOnNyTW1wiflDUEfKCXQDm3/Vqit2+SfgbaC+wuLHcbYub2VT/MhPFMYUoxYSu8yOVX+qai9S+dUGTIpKpfPEQ2RYpbr6TYFa9dF0dXlRGMjqj6QIqoFvLoS1YpYBEqgDTCSF2/zw7Vw/N/tUH0H0neduBiRpZdDuMcmNypab18o95Acbr5G5ULIZXiZS/NMU1aBBEOcmEe1JbNJeSCQ3dhfiGQYFe+1ZhiA01lhk/IGqQ+UaZrYt/8A6vQDaPa/D+vBN2T41L234P2EosEcfWRi6Z3ZMotNpodNRrikahCKlh4uxW9XuWyOaKQpZrkeAOzebeC2O2JYdUP1LtkzTRP79u1Dd3c33G43h2RR1WIYRVTthACCnVDCPYgvX1H8bdBfvR/m7leQenkznS2ILL0MxuRlKZ/mKxC2esDROGQv3vtqVJ65NA+Qf4YjnJhHtSVXk3JdB9D7nFHV5PMlHkDFnzOGAbS1V8ikvGhInsP6uQwvr96m45EPX8O8C+8DAHReOxpWPf/PwvBMhTl+HoxxC2CMPWbIqkRrlqKlNPrOaPzNcImoahS7XC9eIbXqZuD6H9XBbo9WXZVUMBjE/PnzAQB79+6Fy+Ua3gMiGiQMo4iqWTQAJdABmL0XdTMGy9vPQd+yBkpKVYFQVMTmnIHIgvPT31hZnBBOD6DpQ3bIxTYqT12aZ5ryDfesmcAF54/wN9VEZZKvSXk8eEqthIo/XywWebumyufXiF6SZxpyGV7EBxiRsj2m2rET2v5t0Fq3Qj34FhQjAjOSP+Ay68Yklt0Z4+bJYJ4GTlEAVS8QMmnsxURUY5xOP1b/uxO799rR0529XC+1Qmrtuig+3GXHI49Wd5UUUTVjGEVUjUwDSqAdiCYvzOrBt2Bbdw/Uzl1puxqj5yC87EqIpqnJjUPcFyqulEblqir/tOlyqdFFFwKnfamCpn4RDUChJuWpgZRhJJ8rAGC1AA31wFlnAsctGoFL8oRINiMvYRpeocdTevZDa+1tOt66re+m4zY3YkcsSPZ9qh83sGOoSan9lrTkdDlVS0ydU5pbIFQ25iWidHZ7AJMmuLDqoXDBCikAiIRFokqqFhqbE1UbhlFE1SbshRLsTEzJQ6gH+msPwbrjhbTdhK0e2olXwj/xY8nlDYoFwtE4ZH2hUvWnUbmiAFOmVMASI6IyKqZJefy5YrUAMUOGUgAwefIIfL7EA6hoAIgEIIcr9J8S6JANx3sDKNV/uPCXt9gQazkSgDxHBs7+NRQuiShASZkklztogqoN90ESUQVzOv24ZbUNXV1O7N5t5GxoDsglewDY2JyoQjGMIqoWmQ3KhQnLjr9Bf+2h3n5RSdFZpyCy6GI0jJ4E9HRjOPpCxbFROVFx8j1XgNxNyhUFaG6Wz5uOzhH2fDENIBaCEvED0SAGFEBFAtAOvJEMn7p2F9xdKCrMltmy8mn8fJijjkQ4HEM8jGLvIchlcpoVUC29YZO199+cLEdEQ0O3htHYCNx2R99NzYHaaGxOVG34ioKo0gkTCHZBCXcnNikdH8K27h5oh95O29X0TEF42VUwx8xJbrQ4IJxNQ9oXKo6NyomKU+xzJbNJuWnK4HbYny/ClNPvoiEoseDAekAZUaiH35XL7vZvhdr2HhRROMwyG49IhE/GmLmA7szYI5bzflUtLXCyJv4OzcpAjohGhGKbmgO10dicqNowjCKqZGFf75K83jdS0SD0LY/A8vYf096cCYsDkQXnIzbn9OTyCcUCuMdAaNmfNg221AqPYIiNyonyMU2BZ541S3qujJgm5UZULr+L+JMVm/0hTKgdH0Ldv1VWPx18E0qs8OOZrlGJnk/muHkycK85SnaFk2btrXLi9DkiqgzxJXs9PQ589JEAFGQt2WNjc6LKxDCKqBIZETklL9Z7FRYC2p510Nf/AmqgLW3X2BEfQ+T4b0G4Wnq3JJfkKbY6IDC0DWRzVXik9oZio3IiadNmgcce78GmzcU9V4a9SXl86V1vBRTMflY/CQHFe6B32d0WaK2vZy01zrqLXgdj3LzeAGoeRP2EkqawWTQNX195NnSrDotWCf2OcjQIT51Ax+V0RFRFdGsYLc1hOB0urLo5VFJj82uvqYMCAbc7VjGVUhaLBV//+tdhs9lgsfBcTtWLv91ElUQIINQFJdSN+JQpxdsKff0vYNm3MW1X0z0WkaWXw5i4OLnR4oRweoZlSV6+aigh5Bvs1PCJjcqp1m18zcSPfwr4fTHEjOKfK8AQNikXpuz3FAsPfOldsAta67be8GkbVN/Bwl9a02GOmQNjnJx6ZzZNG1DTbJtNx203/RAN9Q3o7unu+w6DKREqWdMbhCtqcnsJQRsRUbXoT2Pzjz6y48pve7F8mbViKqVsNhtuvfVWeDwedHZy6ihVL4ZRRJUiGpDVUGbvp0FGFNY3/wDrtsegpLwJFKoF0blnI3rsOYDFJjequgyhrJl9UoZGoWqoeOWTEPJNta6zUTnVto2vmfj3mwCvL/lcEUI+L4b1uRLv+xQLQ4kGB7b0LhqEduBNaK1b5fK7zg8Lf2lFhdkyE8a4eNPxowDL0IfqAxIPmXonzglVS9mWUtXEoImIKK9SG5tHwvKTmkqulCKqVgyjiEY604ASaAeiyU9y1P1bYVt/L9TufWm7GuPmI7zsCoiGifE9IRyNgK1+WN7gFFMNZbUme9ykNl9mo3KqRRtfM7H6P2QQpakyrI2YyeeGqso/h+S5krrsLhYaWOWTGYN6+L1k5dOhd6EIo/BdGibBGL9ALr8bOxew1fX/6/dBCIH2ji5EIjFYrRqUks6XiqxaSgRKKdVMqf8xZCIiKotSG5vHVUqllBAC7e3tiMVi0LRSr0lElYNhFNFIFvZBCXYAvW/alEAH9I2/guWDv6ftZjo8iCz+Boxpn0i+4dHdMogapr4hpVZDZU4DY6NyqjXxiqie3tfQMUNOy4s/V+L/DepzxYgA0SCUaEAGUP0lTCiduxPhk3bgDRlqFWA6m2X4ND7edLy5/1+/RIFgCDOXfAYAsO+Nl+FyOuQNmUvmlHhPJjVR4TSQ5YFERNQ/pTY2j6uESqlAIIBZs2YBAPbu3QuXyzXMR0Q0OBhGEY1EmQ3KTQOW956HvvlhOZmql4CC2FFfRGThhYDee6Eaxr5QwMCqoVQVsNsBh52Nyqm2ZFZEGb3DMON9oOJME1DL+VwxIkA0pfqpj2qlQhTvwd6m41uhtW6DEuoquL/Q62CMPVY2HR8/v+Sm4wOT0QDcTJ4vRd04iLo6VjMREY1wpTY2ByqzUoqoWjGMIhpJhABC3b1v4uS7ULVtB/R190Br2562q9EyE5FlV8FsmSk3qFYIhycZSg2DclRDHXUkq6GotmRWRBkie594JiKEDKr69VwRJhALy7A7Fh5w+IRQN7TW13vDp61Qva2Fv7xmhTn6aBjj58EYNx9m84xBripSAM0qz42aVQb0iWVzmV835c2HRZf3IyKiihCvkvJ67fB65dL1DRuyG5tXaqUUUbViGEU0UkRDsjdUfBx6xA9988OwvPtnKMJM7CZ0FyILv4bY7FN731ApEPYGwN44bJ/isxqKqH/yVURlEqL3dgHU1wOXXtLHc8U0ZNVTPHgyIsnhB/0VDUE7+CbU1m0ygOrYWXB3oagwm2fInk/jF8AcfVRyqEK5xZfPaVYITQc0m/xarGwiIqoJujWM5qYwmpuAQMCFX70ZywqiWClFNLIwjCIabqYBJdgJRHovjkJA++BF6BsfhBpMH+cam/5JRI77OoSzSW6wOOXfh/FTfFZDEfVPMRVRqUwB1LuBVTcAi49TezfGACMKGFEoZhQwYjJ0Gmjw1PvY6uHtiaV36uF3oZixwndpmJiYeCebjrsHfhw5qYBFh7A45JTQSpusR0REg4aVUkSVgWEU0XAKe2UQFW9Q3r0PtnX3QGvdlrab2TAJ4WVXwBw3T25QLDKEGsYleayGIuq/TZsFfvyfsiJKVeVzJh9NBSBiGN0UwY9+EMHCowygJyqDqIEss8skBJSu3Ylld9qBN6BEgwXvYjqaYI6fB2OcbDwuXC3lO574MjtN751OZ01UP7FpOBERFcJKKaKRj2EU0XCIRaAE25PTqmJhWF9/HNY3nkqrPBCajui88xA95qxk9ZPulkGUog75YZumwPYdwGubBF76B/D+Thk6sRqKqHixmIk77gTa2pMT8pIENMWAVY1CV8OwqRHYLGHUuwx85ypg7pEKECnfsSi+Q8nKp9ZtWdWYmYTV2dt0XC69Ew2TyrcUTrEAFhuExQZY7LLHE5fZERHRAJWzUur6H9Whs9NEXZ3CaimiAWIYRTSUhAkEu6CEexBvUK7t2wh9/X1QvQfSdo1NXIzI0ssg3OPkBlWXo86t9iE+aGnTZoE1jwq8/z7Q3ZOs5LD0nkVYDUXUt02bBe6808CBfVE41BisliisShRWNQpNjUFBMpnS1N6lefXAlZcBc+eW4fkS9kKL93xq3Qq1Z3/B3YVqgTl6jlx2N26+HJhQlqqk3qonix3CYpf9ndThe0lisVhw3nnnQdd1WCx8aUREVG3KVSn14S47rvy2DwCwfJkV1//Ije5uA05n+cIpXpOoVvC3m2ioRPxQAh2AkJ+4KP426K/eD8vuV9J2M50tiCy9DMbkZb1VASqEoxGw1Q9LlUDqcrxwRIZMigJomgyaYjEZPrEaiqiwTZsFbr89ArXnI4xx9L2/KYC6OgVXXib6H0TFQtAOvg01Hj6170wLvDIJKDCbp8vgafx8GGPmyCqlAVFklZOm9061G3nNxW02G+655x54PB50dhauDiMiospWjkopQIZTq28JYN6xFtz/QLBsS/l4TaJawTCKaLAZERlCxXqvbqYBy9vPQt/yCJRY8oonFBWxOWcgsuB8wNr7TlWvg3A0DXl/lELL8YSQQZSiyJBJ7s9qKKJCTFPg3l8IHDwoMKbIgXL19cA1/+LE9OmBEr6QAbV9h6x82r8V6qG3+2467h4vK5/Gz4cx9ljAXl/818uiyN5O8al28aqnERQ8ERERlaNSCgDWvxrFBSvlhzZcykdUGoZRRINFCCDUBSXUjfiSPPXg29DX3QOt88O0XY3RcxBediVE01S5QdMhnC2DNwa9gL6W48Vi2dVQ8TCK1VBEuT333wI73gfUPibmxTkccmnewgVWdPcU2FEIKN17k03HW1+HEi0cXgl7o+z5NG4BjPHzIOrGFP+NpFEBq6M3dNITIVQlEkIgEAhA13UIIaAwPCMiqhkDqZQCsqulMpfy3Xh9HSIRAa9XFBVQ8ZpEtYJhFNFgiPjllLz4ePVQD/RNv4Z1+/+m7SZs9YgcdwliMz/T25C8d0mevWHID7nY5XjJ/ZPVUPF/sxqKKJtpCjz2hHyOFPNUUFXg3HPy94hS/G29Dcd7q5+CHQUfT1gcMMbNhTFOVj+JxiP6X6mkWmUAZXXKqqcqeYEcCAQwadIkAMDevXvhcg3fpFIiIhp6/a2UArKrpTLDqZtuBo6dK5fyAehzOR+vSVQrGEYRlZMR7V2S11uZIExYdvwN+msP9TYtT4rO/Cwix12SXBJjcUK4moe0ia9pCrz7nih6OV58+V1qNZTFIu/Daiii3N7bLtB6oO/9APmcO2IScPKnU547YS+0A28km4537yv4GEK1wBx1ZG/T8XkwR80e2HlFs8nwyeqUFVBERERVLLVSyucTcLlUbNtmZFVKAbmrpTLDqXXro1h5frL/IpfzEUkMo4jKIceSPKXjQ9jW3QPt0Ntpu5qeKQgvuxLmmKPlBsUC4WwC9KH91GPTZoHHn/DinXdF0cvxhEiGT4C8j2kCNhtg02XjclZDEaX7y/8mA91CFAVoaQbO/2oU2oG3obVuRezgG3Aeeg+KMAve12iaBrO38skYc8wAp24qgMUBoTtl/7phnHJHREQ0HFIrpQBg2VIX5s+3Yu26aGKfXNVSxSzlAwpP5iOqFXyFSTRQGVPyEA3CuvVRWN96Ju0NpLDYEVmwErE5pyXe3AlbA+Bo7F2iNzRSl+NFolFEIqUtxwOS+8YrpZwOYMYMYOUKVkMRpTJNgX++XHgfFQamuXdi2cSt+OyR21C/5W0oRiRxe65nlOkem1h2Z4ybN/ClvYpFLr/TnYDFUTXL74iIiMohq1rKqWHb6+l9pUpZygfkn8x33/3Z9yeqRgyjiPorFoESTJmSJwS03Wuhv3o/1EBb+q5HLEdkybcg6kbJDRY7hKN5SJa8xCfjdXcD+1sFXnwJeOMNIBqT/WvMfizHM025HG/GdODjJwHHLVIwayZYDUWU4b3tAu1ZLZ0EJjg/wrGerZjftBVzPa+jztrbNyJPs3Jhb4Axbl5vADUPwj1u4Aen6r3VT85hGZZARERUSTKrpU480Yb58939WsoHFJ7MF+f11aGt3cGlfFSVGEYRlco0oIS6gJQeUIr3APT198Gyb2P6rnVjEVl6OYxJi3t31CAcHsDmHtxD7A2gXtsk8I9/Am3tQDAIBOKtrHqX20EABpfjEQ2at95OhrwN1i5ceeTP8Mlx/4dR9raC9xMWO4yxc6FPXQp/8/TnxQAAQRJJREFU02yYninlqaDUdAirC9CdgMb+T0RERP1VzFK+ZUutWLkiu1qq2OV8u3YL/ODa/k/mIxrJGEYRlSLslVPyRLyEKArrm3+AddtjactqhGpB9JgvIzrv3GTFge6WQZSqDcqhZQZQ+1uBnh4ZLOk6AJEMmoSQE7tUNfX+XI5HVHYprym/NftenDP1iZy7GdCA0bPlsrvxC2C2zAI0K+z1DTB7ugd2DPEG5LoL0KwDeywiIiLKKXMpX12dAoddwY9/Guz3ZL5oEZP5GFBRpWIYRVSMWBhKoB0wkid2tXUbbOvuyZpsZYybh/CyKyEaJvbuqEM4mwfYUDi3fAGUaSaDpnjAFA+bFEX+2zCSy/O4HI9ocKROY+6KNKbd9qF3KrZ1zsO2jvk44vijcfYXyjjEQLNB6C65BI8BVJ80TcNpp50GXdehaYPzgQEREVW/zGopALjh32z43ndKmcynwd1wGgDA7rAASH5SnGsyX66AKt4M3elkOEUjF8MookJMQ1ZCRVI+uQh2wrbhQVg++Hv6rg4PIou/AWPaJ3qb/yoQ9gbA3ljWZsDFBlDxJXaaJv8zTRlAWa3ZAVS8GorL8YjKy+dP/v3B7d/CHt9keGydeLNzLrqjjYnb3vk7cNY5ApplAM8zBlD9Zrfb8Zvf/AYejwednZ3DfThERFRFSp3Mp6p2TDriISw93op330sPo4DspXy5Aqp4M/T7HwiyeopGLIZRRPlkLskzDVje+x/om38LJZJ8hymgIHbkFxBZeCFgq5MbNRuEq6VsPVlKDaBSs694BRQgA6j4vqnVUVyORzQ4Up+LJjT8rfWzGO/cn7VfIAh8/wfApV8XmDu3hOecpkPodXIJnspLOhER0Ug32JP5gPRm6FzeRyMVX7kSZcq1JK9tO/R190Br25G2q9EyE5FlV8r+LnJP2RfKXj/gwxhIAGWa6X/PXI4X7xdl0+VUPS7HIxocc45Khr19OdwG/PR24ORPC1xwvpK/XzmbkBMREVW0wZ7MB6QHVFzeRyMRwyiiONOAEuwAIr7ktrAP+uaHYXn3z1BSOhEL3YXIwq8hNvvUZENyixPC1Tyg6oRyBVBCJMOnOE2T90tdijd2jIL2DgHdyuV4RIPhyNkKmpsEDh0ubv9YDPif/wU2bxH4wueBs86IlzPaZRNyLsEbFH6/H5MmTQIA7N27Fy5XGft3ERER9SE1nPL7/Tj7K/KadOQxu6Gq8ppU6mS+zICqP8v7GE7RYGIYRQQAoR65JA+9iY4Q0D58CfqGB6AG0/uHxKZ9EpHFX4dw9n6UoWgQjqbkEr0SDVYAparJaozUZuTxaXoWCxAKKZg9S3A5HtEgUVUFK1cI3PGz0u538BDwi4dsePzPVnzhjAk47TQrg2IiIqIa8/ijbpimM+9kvlICqv4s72PvKRpMDKOotsXCUAJtgBFJbFK698G2/l5o+7em7Wo2TER46RUwx89PbrS65KQ8te/pS/HQqbsbcLsFFAXYtBmDFkApSvI/0wCgAHUuYPp04BMnAePGKZg0yY2xY3r4JpdoEJ1xuoI1vxc4dKjvfSOmDn/MhUDMBUNYcGAX8O7PgMeeFDjnbIEjZwNer4KGBnApLRERUZVr8vjTJvOmTubLF1Dl6jfV3+V9xfSeYvUU9RfDKKpNuabkxcKwvv44rG88BcVMnqyFpiM671xEj/lycnmMYpGVUXrhpRyZVU9t7UAwCIRDgClkcCTE4AVQigLUu4Hx44GTTszuBeXxWNDZyTezRINJVRX867UC1/wQQI7eUTHTCl9vABUT2UvwhAD2fQTccSdg0QCHU8DhAFqagZNOFOzxRkREVCMye00B6QFVrmbo5VzeV9LSPocKqw50d5sMqignhlFUe8I+2RtKJN8Vavs2Ql9/H1TvgbRdYxMXI7L0Mgj3uORG3S2DqJTuwsVUPcWXxsV7NqWGSfGwaSgCKCIaeouPU/GtS038+iH5bwEF/pgL/mgdwqa98J1TxAzA7wdCIeDwYeDd94DHnhAYPy4ZTM2YLvD+TgXd3WAFFRERUZUr1Ax9MJb3Fb+0z5eo0vr6pV7Mn88qKkrHMIpqRywCJdgOxEKJTYq/Dfqr98Oy+5W0XU1nCyJLL4MxeVkyIVIsskG51Sn3KbHqSdOAaDT599R+TomvywCKqGqd91UVM6ZpuP/uZry32wWBfOPyCosH2vFwu6cH6OqSwdSaRwRUFdA0AUWV+7CCioiIqHb0VT010OV9pSztW/+qfPNzwUoH7n8gmFVF9aPr3DBNAYuVFVS1iGEUVT9hAsEuKOEeID4Rz4zB8vZz0Lc8AiWWPAsLRUX06DMRnb8CsDoSd9+5z4W2UBPc9SoUxexX1ZOa8r4zM3RK/TsDKKLqtXixFYt+XY+77hX447PJgLq/4ueS+PnH50/+u7FBnp/iFVSPPyEwfTrw8ZMExo9L9p0CkKjsZCUVERFR9enP8r6B9J4qFE6lVlHd8mMZTm17PZZVQeVwRGC1MJSqZgyjqLrlWJKnHnwbtnV3Q+3clbarMXoOdk66Em2Yiro9AoDAm2+r+Nv6Zuxrcw246slI6RUj0qtbGUAR1RBVVfDdqxQsX2rizp8De/elB9TFSj2npJ5D4sFUe4fcHv+3PwBs2Sr/czoFnA6gsVHep6sLiMYAqwWYNKn2AitN03DyySfDarVC0/oeSEFERDRYhuqaVGh530B7TxUKp3IFVfGG6KkVVKeeomPhQrd8vaMIqIpAXR2rpqoJwyiqTrEwlEA7YIQhTODDXUCwqwczDj6EpgMvpO9qqccm+0V4YsPJ6HhBRTgkEAkDvpgThwPNMKGVreopVeqbR01Lb1zOAIqo+i0+TsXvfiPw3H8LPPaErLQsJZTKPL/E/x0/t8QrNlVV/j0SSZ5bjJisE93xvrzPqBaguQno8QJbt/UdWE2eDKw4V8DtTu9NBWSHVrm2jbTzl91ux+OPPw6Px4POzs7hPhwiIqphw3VN6k/vqf4s7csXVOWqoPqPjMqpp56O4Zqr3TAMEy4Xg6lKxzCKqoZpCmzfbiDY1oEGuw8A8NbbwGuvmTha/RvOHvdruK09aff5+6HP4tFdF+Owv16+cdOAmKmiLdgMf0xOylPV8lU9pQVQqmxGHN/OAIqo9qiqgjNOV3Dal3KHUqnnjFSZ55VUqcFUXPwcZem96keicglf/P5eH2C1Ah0dya+dL7CKRuWyvx/+G+B0yN5UVkvu0CpfkLVyBbBgfu6QKnUgxEgNr4iIiKrdYCzt6yuoyqygyqycmnesBTf/RwDf+44Dd9wZw3U/cKOuLr1SiyoHwyiqCLmm1fX0KGmT6za+4kWspxPRsIlIGDABTLTvwmWz78GcxrfTHm+Xbwru334l3uqcAwC9DX8Bb9iB9nAzoCafGoUajOf6O1C46im+3exd5mfRZCjFAIqodhUKpeJVmPmCbUvKlTwzmAKywylFkeFUJCLvG6+aamuXX8dqlX/mCqwaGuR9g0H5p6IAEyfI23JVWeUKsnZ+ANz8/wSam7JDqiWLBTZsBPbsKU94xWCLiIiofEpd2pcaThVTRZWrgiqzcur+B4L4xiV2zJppwU23BLDqBjdcLgZSlYhhFA27QkFTfX0UL75kZk2rgyKnRRkxQFMiaNDaYdPCsGgy5NGVIFZMeRSnT/ojNDWZIAUNO57YdT7+uPs0GMICi0UGRYapojPajO6QrIZS+hE6FVP1hN4G5Zom32DabIDDDrS0MIAiouxQ6s//o+HgQQORqAyMTLO3ykkkl98BybBKUYD42SNRbWmm/zt1UEI8vEoNp+L75gqswmHZiyq+BDAWkwGT15u8Xzy0yrXNZgOcMRm0dXUBE8YD9Xqy2mrzFsDpAJqbgXrrwMIrAFjzqMh526KF6SGWrvvxpS8eCQB477334HA4C4ZYDLmIiGiw+P1+zJ49G4C8JrlcrmE+ovwKhlMuFboup+Q9+ruGPquo8lVQ5aqc6ukROLZ3Kt++j0xMnlQHh8M3RN81lQvDKBpUxVQ0FQqaTNGTtrwk3rNJCCAWMdBo60SdRZ54FAWIxgSWjlqHS2f9EqPsh9OO5ZVDH8Ov378UndFRMFJCpUDMhY5wE1RLskFgrmUxceWoelq4AImfBd/IEFGmeCj1tQsb8OqGTnR3A/X1AkLIwOYf/wT275fVR4YB6DpQ5wK6upPnHECek+JhVLwHqmnKYCYaS55PM8OpXNtMU56nI5H0x4pvSw2tery5gyy7HejIaH8RD+Zjsd6wzZTfj6IMLLwC5LLn+vr02269XeD009JDLFURCAQCAIAtWwX+8Ez+EGvTZlF0yNWfIItBFxERxa9JlSbX0r56t/zzxBNtmDevHl4vEIkKbNiQDKfyVVDlq5zSbUpaMOX1qXA4huzbpDJhGEVlkSt06jtoQt6gKRJJf/z0vk0Cbks36q3dUJBMjUbZDuCbs36BxS0b0+57IDgGv3jvCmxuPy7xtQDAFCraQs3oCff2hsr4nlj1RETDTVUVHDk7UesEAJhzlGwevn0H8NomIc+zbfK85K6T51XTBALBZFBlmjLsiU8BbRkl+0OFQvK8lRpOAfkDKyD593g1Vuq2+H1j0exthiG/XjzMSlR5QW6PRuX21OAKKD28atGBDz6U+06dkhwwEb+t9QDw4EMyxGpokEFVMKUZ63/eJqAgf4j17HNAIFBcyFVqkNXX7XEMtIiIaLhEojZ4vZZEY3O3WzYSz9xeXx+DEIDXa0EgINDQoOGntwWwdWsUF1/kwKc/pWPesRY01Cuob1Dw0T4Tt/7Ujdd7K6iOPTZ35VT8z2OPlW/qdJsCr1dg9Kjh/KlQfzCMoj71p7qp/0FT7qqk+DaH5keTrROakkzILUoUZx7xB5wz5XHYtOSDR00Lnt79FTy56xxETFva44UMB9pCLdCsWlGhk6omvx9WPRHRcJMhFXDkbCURTMWDhxnTBd7fqaQFVcFQsseTxyODcnedDIGEAOp7l9WFw3KfXIGVzSYDongQZZrp21JDK4s1e1t8AET83/FtQHJ7fJ/UkKrU8CocTp7HI5HkdqC3gjYKRCOAe7Q8fiD5JwB0dwHTp2eHWG1twO/WyK85alQyaCsUcpUaZBW6/ZqrhzbQKnafUvYjIqKRJV+wlOu2+voYohELVt0cwtp1yU9xPvkJK679gRs3/0cgsd3pAO65qx4P/CqIteuC+NalDmx7PYz1r8o3fbEYcMedgcS/r7rCgZZmFUcfbcGypVYsWWzBho3ZlVNPPBVK/AkkA6pTPqsP5Y+NyoRhFAHIfiGZ9WamhOqmePAElBY0yePIvY9FicBj64BdC6Vtn+vZhstn34uJrn1p27d1zMP92y/HPv8kAMk3RaZQ0RFuQleorvdx0z/Z7yt0YtUTEY008WAqKXdQ1doq8OI/gL17Zd8nqwWYOUPeo6tLnsMjkfyBVV2dPPdZLDLwsViApibA4ZCVSamhVb1bNj9P3WazyfsB8jxrtydDIE1Lr7bKDKmKDa8y75O6HUiGWKm9tDLFPzTJDLFsNrkMcszo7EbxhUKuYoKsPm9vl/2vTFPg9v8a/EALQNGhVn/Dr+OX5F4Pz2CLiCipo9OFtnZnVlAUVyhM6uv2QMCVFSwtX2bFTTe6IASybrvpRhf+968hrF0XTTuGWTMtuOnmZLAEABesdOD+B4KJbfH+TnGZ/z7qKAuu/LYX/3VbHf7tBh8uWOnApz9lxQkfs8LhUBCNCHT3CBw524InngrhnK8kg6kn/xDCWWcyjKpEDKNqTF/L6WIxQJjxZR4CgWCyUW0p1U3xNwDFBE2FGoSrSO8LFdeod+KSGQ/iE+NeTNveGW7Er3Zcin8c/DgsWvLFq6oCvrATHZEmCMUCVU2+edA0oLEB8PmTb8TyhU6seiKiSpIeVMnG6Jlv9AEUHVi1d8hzohAygIpXLGWGVkLk3gYl+eFAkycZutjtcopfKCTDrdSQCig+vEq9LfX+cfGgKj5BNZ/MEAvI7qGVqlDIVUyQ1dftbjewew/wwK9k0NTSMniB1jVXy/vdersoKtQqdr/MwGr6NC++eo7oV7AFlBZaMeAiosHWVyjU332/usILtXcY0/JlVqy6wQWn0w8gf5gU36fQ7RZrrPe29GBp7boo1q7T8b9/jWTd1jJKzdoGZAdLubbF+zv19W/dpiAQBO5/IIhjj7VAU4GeHhMtLSrq6hSc/GkdnzjJmgimnvxDCNf9wAWbnvvnRyMbw6gaEH8RlqvKKbWyyWbrbYDrSzbljr9gL7W6Kdf2Qk3Bczwi6q3daNS7gd6+UIoCKMLAKRP+BxdMfxh1Vn/yawoFz+/7An6/60J4I67ebfL4FVXF4UAz/DEXNE0uv7PZZMWTYfS+mRLyk3yGTkRUzbKrqKRSAis5KU/g0cdkbySvN3dolW/b9Gny74EgoFkA3QpEovJDj/g1JxyR20sNrwD59/h+esYHpfEJhBZL+n0y5QqqUpu6Z+or5CoUZBVzu24FOjtl0/rGxkEMtNqB3z0iv8FC+6x5VGDesQJrHu17v3zh13s7Yv0KtoDSQqvBCriIqPKUEgKVsn9foVCp+0aiuS9Qa9dFsepm4JbV8vZ8YdKqm4HV/+4sePu1P3CkHUOqfKFTZoBUaHvmttSJeIX+He8Jtf7VKF5/PYZxY1X8/aUIzjvHDne9AlUT0FUFDgfw2ZN1fO6zVui6AYuFYVQlYhhVRQpVPe1vlUsmUqucUiuV4n032nv7hcRHdme+OO5PdVM++Xo11Vl9aLB2wqIasGjyxSMAzKjfgW/NvBezGranPc77PTNw3/arsNs/E7GUT8lVBYhpLgTVJkwer+UMmeLLEfnCk4hI6juwAgAFixb2HVrl27ZlKxIBQTzMOnI2sGQxEg3A49tLCa8iUXk/T6P8GKO9Q4Yw8dt8PhlQWa3p35uiqGhuWS6XFapqVoglhFxiWOcCQmHAnXFt7CvkKhRkFXN7JCq/hmlmH3vyexh4oOV29zZ/FzIQyrfPnj3A3/5P/llov0Lhl9Op4MBBUVKwtWC+/N0pJbQajIALYGUW0XArNVgqJTAqZf9I1FYw9LlltS2tB1Mx+wYCOpyu5b23qln7er323r/nDpPWrouix+vMGSglHyP/6Ll8oVNmgFRoe+a21JCp0L9/tyaIW/9Tjt/73Zog7rjVjYsudOA3Dwcx9xgLTjzBmhhgpalAfUO04P93GtkYRpXo9ddfx1133YUtW7YgFoth1qxZuOiii/D5z39+WI6nmKqn+Ke1QHaVU+pyutTbUvsolTNoSn2xbLEkv56qAhYRgsfWAZsWSexvmECd1Y+V0x/GKeOfh6Yky678MRd+/+GFeKH1VFh0De562edk8XHAnDkqYvZmdAXq+njhl/tNFxERFVZcaJV726KFwIL52SGVqir46tnZb9xLDa9WrpDn+8z7TJ8u7/Psc/J6GQ+qojEHjjrmOVgsCkxTZIVYXi/gdAKnn5Z930IhF9B3kFXM7V4vMH6cXIoXjfYv8Com0NJ7wxohCu/j9QIHD8rQpr7AfoXDL6WkYGvPHuC97cWHVoD8e7kDLmDwKrMABldUmUoNhgZ631KDpVICo1L393otBUMhr9eO5qbS9o3F7Jgy/bm837/P1/cbMq+38D7O/FlU3tApM0BK3b5sqRXr1kfz7psaMq1/NZr4t6IA69Yn/71GAa65zosLVjpwwUoZuo0do+C6HzgRDMoWMm430DKKIVQ1YBhVgvXr1+Mb3/gGdF3HF77wBbhcLrzwwgv4/ve/jwMHDuCSSy4ZtK89kKqn+IvP+N+Tj5n+9/htmQFUIaVOoktlGL19mSxRuLVOOLRAoqJJ1QAzJvCx0S/houkPwqN3pt23c/Qn8P7Yb2DJpzxYAsDnV+Cuk2O8FZsLwtksH4SIiEakfGFWru2lhlfxN+/57jNrpsgOqqYBl33TDZ/Pm/O2lSsULFqY5755Qq5igqyibncAl34dePQxGZC06IMTaEWivSGU6GMfCzBmjPyz0H7FhF/FBlteL/DW28WFVtt3yG3lDrhUtfTlhIMVcsWVGl4x7KJ8+hsolRoMDfS+pQZLQGmBUan79xUM+XwCzU0oad+6usLPyb5uBwC3u/A+Dqf8Weeqnmo7bOa87XdrgrjnrnqoKtJu274jhhuvd/ZO04vm3DcQlCHTdde48MNrnPAHDLjdwM2rbPAH7PD5RNa/6+qQ9ntYX9/nt00VhmFUkWKxGG644QYoioJHHnkERx11FADgyiuvxFe+8hXccccdOOWUUzBhwoSyfc1yVj3FpYZCfQVO/aluKmYSnaYBRgxQFBOj67rQ7PKiySOw+Djg6Dny/rH2jzDzo3vg7tqW/jNpmIjw0iugj5+POVkHrEE4myF0V+FvjIiIKk4p4VVfty1aqOQMqpqbrejszH1b/A17vvsWCrkKBlkl3K6qMtwYrEDL6wWmTZX//uDD/PtMnwZ85lPA/75Q+LGKCr+KDLasva9YiwmturuL37eUgCv+/6fclVmlhlxxpYZXQxF2UekGUlVUrsfob6DUn2BooPctNVgCSguMSt2/lOCo2H3d7ljeoGj5Mivc7lji7/n2qXcbBW93OKJYdYMdq25OD5aWL7Ni+TIVy5Zm3zZ/vhUTJwjcstoCr9ee8fvmxS2rbWnb6+ujefdtSTkeux1pP//Mf1P1YhhVpPXr12PPnj0466yzEkEUALjdblx22WX44Q9/iGeeeQZXXXVVWb5e/AXD++8D3QOseiq0zC4zZEoETUhfqtdXdVOu0CnvJLpuoNHRA2u0S6bgdcDUKQoUFUAsDOvrj8P6zlNQzFjyuDUd0XnnInrMlwEtxytLK6uhiIioeKlBld/vx+zZ86EoCrZs2QKXy1VwCXepIVcxQVaxt19zdY7lh+UKtBzABefLr1Von5UrFFgsClauKPxYhcMvUVKwNX0aMOeo4kKrhgb573IHXNt3lL8yq9SQK/67UGp4tf7V6KCHXbWmHCHSQKqKyvUYAwmU+hMMDfS+pQZLQOmVRqXsX2xwVMq+0UgHnn5yAQIBgSkzNkNVXYl9Vt1gh947xGnVDa6cYdKqG+yw2/0Fb7da/LBawlkBkvw9lo9f6LbmpnDWz1m3hnNuz7WNCGAYVbQNGzYAAE444YSs2+LbNm7cWJavFX+B4fcDwZB8UaKqA6t6KmY5Xeq+sd4pc40NgM8vm5vnqm6CUiB0yjWJLhqAEugEzEjW963t2wh9/X1QvQfStscmLkZk6WUQ7nHZPyxFg3A0Aba6Aj9RIiKiwtrb28vyOIUqtcpx+1AEWgCK2qeYx8oXfvl8oqRga+UK+XOZPFn0GVrFG+dPnlzegKu7u/yVWaWGXEfOltVKpYRXpinwq4eCgxp21ZpyhEgDCYHK+RgDCZT6EwwN9L79WcJWSmBU6v66NVww9NFTpn+Xsm9HRxsA4PFH3TBNZ1YYBABOp79gYNTX7fFjyhcWFbqNqBwYRhVp165dAIAjjjgi67ZRo0bB6XRi9+7dA/46qS8w3G7A60uveJL7JP9ebNWTpsnpeJnbcy2nczqSgZMpgHp37qAp3rsqZ+iUyYhCCXQAsUDWTYq/Dfqr98Oy+5X079PZAssnv4/wqPm5xwNZnBCuZkDlrzEREdWOwQ60it2nmP3yBVazZ1rw1XNiJQVbgKzK6Su0in/tYvYtJeDavqP8lVn9CblKDa+27wA+3GUMWthVa8oRAAEDC4HK+RgDCZQG0tuov/ctNVgCSguB+rN/MaFPf/YFgCaPH64CHUj6CowYKNFIxnfxRfL5fADksrxc6urq4PV6B/x1Ul9gxGLJJXKlLLXLVfUUX4KnKABE4eV0xy1SMGO6wPs7lT56BBTxAkSYQKgbSqhbfuFUpgHL289C3/IIlFjyQioUFbE5ZyCy4Hw0NI+V6/rSqHJJHquhiIiI+qWvwKrYfYrZL1dgdfwSN7q7u/rcL1dIVkxoVcq+xQZcs2aKoqqtSqnM6k/IVWp4JfeXzYCL2b/UsKvWlCMAAgYWApXzMQYSKPUnGBrofUsNiuJKDYFK3b+U0IcBEZHEMGqINDQ0QM0sccrBMCIwTB8cDgXhMKAqsgwq14uBYqqeNC15u6LIFzKTJljw6U/rOH6J/N/f3S3g8ag46kgt7QXfqFED+55FyAsEOgBdAHr6+AOx/w0Yf78NaHs//U7j5sLyyR/AOmoG4hNHG+obkrfrTsA1CorGX91y8Xg8w30IVY0/3+pU7Dm9HPg7NPh0XU/83ePxwFXoY2jqt2XN6f/O97uduV+mz3wa+NQnBd5510Bnp5nzNUwp+37m00BdXRS/eiiID3cZ8PsFrBYFR87S8PVLHFh6fDL1ueybUdx0iw/tHQKNDQp0XbYy6OqWb1Yv+2YdmputJe17vEdg+jQv3tsRg9OpQEl50SeEgM8nMHumBccvcUNVFUyaFINN98I0AV3P/p5DIQGbDkya5IbHY8GkSTFYLV6YplLU/qmvRXP9TJ2qgN8vYBh18Hj0rNsrUSnn9L37ssOTVIGAghnT+z5vd3XlaMaaekz1loLnf4/HM+DHAABVNfGx5Va8sjb7+/rYcitGtVjQ0JD/MW5eZeDGm/xp9//YcitW/7sLY0ZrAJxlv6/HA9z2nxZ0dAh4fSbcdSqamhQ0NKgACv9Ojhmd+i+94PH1Z/9y4DWpttTy6zy+oy9SXe/HSfmqn3w+HxoaGnLeBgDd8Y+b+qBpApoqEAwK6Dpg1eW4ZlUtX9XTrJkGVDWU+Jr/f3t3Hh11df9//DUzmUkyCUvAiEAQhJKwJbIYQKRVhIoH5BfFBZVqMQUDARdwQUv9eizl61aliEVESlHUg4ICSlHjViXIZkEWARUwhCAF+iUbZJlM5vP7I01gzDaTTGYymefjHM6B+/nM/dy5Ce87eed+3p+4zpVj9GiI9XOWylT0f1J5Db8VKimQ7etlsv6Q4dZshLeW47JUOXuOkkzmqt1QbVq3UX5Bvqp2Q1kipILG70BDhZiYGOXm5gZ6GC0W89swwbAoexrTG4vvIf84e/bcb7pzc3PlcFSvawjf8sX3dqeOFX+k+j/D1HduQrz01P+e/+Q4Q/E9nTKbz+j8YSbESw/cX1nY26gq7N39koodVgnx58735twJt1TUaPr3CaPG3VkTbnFW7SS7qIOhuLj/3lrYvvquq9y8il1XF3UoUG6uSRd1MHRJtzAd+L7Mo/PP/yxa006tktKKz6EWyxnl5ta/S76lxXS7ve7EgN1uePS9bY8Kr3NnkD2qVLm5Ne+wqvz/05g+zvf4H2reafT4HyLkcuWrrrcTHi7NfaKmHUQFdb6usa+VpLZtK/5IFWVMWspyyZoUOoLxc54vYzrJKA9169ZNknTkyBH169fP7dipU6dUVFSkpKSkRl8nvud527rbS+3aSSdOVATY859oV1Otp9atpE6dPCgi3lTKy2QqzpXKati+argUdvAT2bYvk6m0wO1QWc9r5LjsLimilmQetaEAAEAT8/S2RE/raXlzrje3H5rNJq9qZ5nNJv0uNVKPP1Hm0flun0U9uB0x1DTm1rTzNfR2M1/3IXl/S1pN42jobWfcsgaELn6691BycrJefvllZWZmauzYsW7HMjMzq85prJo+YFwYK/3f6epPtKt511MAiknWVRdKkun0jwrf/FdZTu5za3fFdFPp5dPl6tC3lo7NUnSsDEvdW5ABAGgMs9msAQMGyGKx+O32SwQ3TxNX3pzrbZLL0+SVJA0dYtVDD5iaJNkVanyVAJIanwTyVR+V74ukUPPAmoRQYTKMn5fDRk2cTqeuvfZanThxQm+//bZ69+4tqeK2vZtuuknHjh3Thx9+qLi4uBpf7+32u3/tMKo+MJQ5K3ZA1fREO7/teqpN6ZmK3VBGDb8FKiuW9Zs3Zf12jUzGuUcAGmERcgz4jZx9/l/tu53+uxsqpn1s0G1dDCbBuDU0mDC/DRMMt3T46+vK95B/Md/+w1z7hstleJS8qpxvT8+Xqn8WtYZV7JiqKdlVl5Ya0x1l4SosDPtZAqj+W+J8gf8/oYGvc8sXjF9jbtMLgLCwMP3pT3/S5MmTNXHiRI0dO1ZRUVHKyMjQsWPHNHv27FoTUQ3hzW/HAqKsRKbi0zXXhTIMWbI3y7b1ZZnPnnI75Ow6TI7BaTKia6uOzpPyAAAAPOHNDi1vz2/2n0UDjJ1EANA4JKO8MHToUL355pt64YUXtGHDBjmdTsXHx+vBBx/UmDFjfH49bz9g+EVddaEkmQr/LduWlxSWs92t3RV9kRxDp6m8Sx23MlIbCgAAoNlolp9FAQAtAj/1eykpKUlLly4N9DD8z1VeUReqtEA11YVSeZmse9+VdddKmc7bLWWYw1TW70aVXTpBCouopXN2QwEAAqeoqEiXX365zGazNm3aJLu96R/dDQBATViTECpIRqFuhnFecXJXjaeYj+9S+OZFMucfdWsv73ipSoemy2jbpfb+2Q0FAAgwwzB09OjRqr8DABAorEkIFWQAULvSQpmK82ouTi5JxbkK375UYYc+d2t2RcbIkTxZ5d2vcn8esBt2QwEAAAAAEIpIRqG6siKZinIll6Pm465yhX3/oWz/elUmx5mqZkMmOXuNlWPgnXUnmdgNBQAAAABAyCIbgHOcjoon5DmLaz3F/J8fZNv8V1n+871be3n7X8gxbIZcF8TXcQF2QwEAAAAAEOpIRkFyOSuekHfeLqdqHGdl2/Gawg78QybjXO0ow2qXY9Bv5UwYI5kttb+e3VAAAAAAAEAko0Kb4TqvOHktxfEMQ5Yfv5Bt2ysyF+e6HXJ2v0qO5Mky7O3quAi7oQAAAAAAwDkko0KRYVQUJy/Jk4zyWk8z5ecofPMiWY5/49buahOn0qHpcnXqX/d12A0FAAgCJpNJCQkJslgsMtX64A0AAJoeaxJCBVmCUOM4W/GEvNqKk0uSs1TW3W/LumeVTK5zT9IzLDaVXXqryvrdKFmsdVzEXLFbKryVz4YNAEBTsdvt2rx5s2JiYpSbm1v/CwAAaCKsSQgVJKNCRVmJTCW5krOkztMsOdtl2/KSzIX/dmt3xiXLMXSqjFYd674Ou6EAAAAAAEAdyBi0dOWOip1QZWfrPM109j+ybVuisKxMt3aX/QI5hqSpvOswqc5touyGAgAAAAAA9SMZ1VK5ys97Ql4txcn/e17YvnWy7XxDJmdxVbNhMsvZ53o5BkyUrJF1XysssqJIeZ237gEA0DwVFRVp5MiRslgsysjIkN1uD/SQAAAhijUJoYJkVEtjGFJJnkwlBZJcdZ5qPrFPts1/lSX3R7f28gt7q/TyGTLaXVLPxcwyImOkiNaNGzMAAAFkGIa+++67qr8DABAorEkIFSSjWpLSMxW7oQxn3eeVFMj2r7/L+v1Hbs1GeGs5LkuVs+coyWSuuw9qQwEAAAAAgAYgk9ASlBXLVHxaKq/jCXmSZLgUdvAT2bYvk6m0wL2LntfIcdldUkSbei5GbSgAAAAAANBwJKOCmdNRkYQ6r9ZTbUynf1T45r/KcnKfW7srpptKL58uV4e+9V+P3VAAAAAAAKCRyCoEI5fzvOLk9SgrlvWbN2X9do1MxrkaUkZYhBz9J8rZN8WD5BK7oQAAAAAAgG+QjAomhiGV5MtUkq/6ipPLMGTJ3izb1pdlPnvK7ZCz6zA5BqfJiI6t/5rshgIAAAAAAD5EhiFYeFqcXJKp8N+ybV2ssKPb3Npd0RfJMXSqyrsM9uCC7IYCAIQGk8mkLl26yGw2y2QyBXo4AIAQxpqEUEEyKgiYCn6SykvrP7G8TNa978q6a6VM551vmMNUlniTypJukcIi6u8nLEKG/QLJYm3EqAEACA52u127du1STEyMcnNzAz0cAEAIY01CqCAZFQzqe0qeJPPxXQrfvEjm/KPuL+14qUovny6jTZwHFzLJiIzx4Il6AAAAAAAADUMyKtgV5yp8+1KFHfrcrdkVGSNH8mSVd79K8mR7p8UmIypWstiaZpwAAAAAAAAiGRW8XOUK+/5D2f61XCbH2apmQyY5e42VY+CdUni0Bx2ZZES0kSLaepa0AgCghSkuLtZ1110ni8WidevWKTIyMtBDAgCEKNYkhAqSUUHI/J+Dsm1+UZb/fO/WXt7+F3IMmyHXBfEedmSTEXWBFBbeBKMEACA4uFwu7dy5s+rvAAAECmsSQgXJqGDiOCvbjtcUduAfMhnnApNhtcsx6LdyJoyRzBbP+gpvLSOyHbuhAAAAAACAX5GMCgaGIcuP/5Rt2ysyF7s/UcHZ/So5kifLsLfzrC9TWMVuKCvbPQEAAAAAgP+RjGrmTLk/KiJjjiw/7XRrd7WJU+nQdLk69fe8M1u0DHt7yWT27SABAAAAAAA8RDKqGTOf3KfIlRNlcpZUtRkWm8qSJqgs8SbJYvWsI5OlIglli2qikQIAAAAAAHiGZFQzZjnylVsiyhmXLMfQqTJadfS8E2tURSLK01pSAAAAAAAATYhkVDPm7DVOYd9nSGVFKrv0VpV3HeZFwXFzRRIqPLpJxwgAQEvQvn17mXioBwCgGWBNQiggGdWMGa06qHji2zLlZkkyPH9hWGRFkXIzX14AAOoTFRWlH374QTExMcrNza3/BQAANBHWJIQKshUtiklGZDsponWgBwIAAAAAAFAjklEthSW8YjeUxRbokQAAAAAAANTKHOgBoLFMMiJiZLTuRCIKAIAGKC4u1rhx43TVVVepuLg40MMBAIQw1iSECnZGBbOwiIoi5SShAABoMJfLpU2bNlX9HQCAQGFNQqggGRWUzDLs7aTwVoEeCAAAAAAAgFdIRgWbMLuMqPY8KQ8AAAAAAAQlMhpBw1xxS154dKAHAgAAAAAA0GAko4JBVW0oa6BHAgAAAAAA0Cgko4KA0eqiQA8BAAAAAADAJ0hGAQCAkGe32wM9BAAAJLEmITSYAz0AAACAQIqKilJOTo7Onj2rqKioQA8HABDCWJMQKkhGAQAAAAAAwG9IRgEAAAAAAMBvSEYBAICQVlJSogkTJmjs2LEqKSkJ9HAAACGMNQmhggLmAAAgpJWXl+vjjz+u+jsAAIHCmoRQwc4oAAAAAAAA+A3JKAAAAAAAAPgNySgAAAAAAAD4DckoAAAAAAAA+A3JKAAAAAAAAPgNySgAAAAAAAD4jckwDCPQgwAAAAAAAEBoYGcUAAAAAAAA/IZkFAAAAAAAAPyGZBQAAAAAAAD8hmQUAAAAAAAA/IZkFAAAAAAAAPwmLNADACTpzJkzWrhwoTIyMnTq1CldeOGFGj16tGbMmKGoqCiP+1mxYoX27dunvXv36tChQyovL9drr72mIUOGNOHom4/du3dr4cKF2rlzp5xOp+Lj4zVp0iSNGTPG4z4cDoeWLFmi9957T8ePH1ebNm00YsQI3X///Wrfvn0Tjr75a+z8Zmdna926dfr222/17bff6uTJk+rcubM+++yzJh45mjtioO8RD/2L+OhfjZlvwzD05Zdf6rPPPtOOHTv0008/yel0qmvXrhozZozuuusuhYeH++FdwBO+WB+ysrL04YcfauPGjTpy5Ijy8vLUvn17DRkyRGlpaerRo0cTvwtIrEuhgNjsHZNhGEagB4HQVlRUpNtvv1379+/X8OHD1bt3b+3fv1+ZmZlKTEzUG2+84fF/vISEBElSbGysJOnUqVMh84PYli1bNHnyZNlsNo0dO1ZRUVHKyMjQsWPHNHv2bKWmptbbh8vl0pQpU5SZman+/fsrOTlZR44c0ccff6y4uDi9/fbbateunR/eTfPji/l999139eijj8pisahHjx46ePCgOnbsyA9bIY4Y6HvEQ/8iPvpXY+e7tLRUSUlJstlsGjx4sOLj4+VwOJSZmamsrCwlJiZqxYoVioyM9NM7Qm18tT7MnDlTGzZsUHx8vAYOHKjo6Gh9//33+vLLLxUREaGlS5cqOTnZD+8odLEutXzE5gYwgABbsGCBER8fbzz77LNu7c8++6wRHx9vLF682OO+Pv/8c+PkyZOGYRjGY489ZsTHxxtbtmzx6Xibo7KyMmPUqFFGv379jH379lW1FxQUGNdcc43Rt29fIycnp95+Vq9ebcTHxxuzZs0yXC5XVfubb75pxMfHG4899liTjL+589X8ZmdnGzt37jSKi4sNwzCMfv36GSNGjGiycSM4EAN9i3joX8RH//LFfDscDmPRokVGXl5etfa0tDQjPj7eeOWVV5pk/PCOr9aHd955x/j222+rta9fv96Ij483xowZ45PxomasSy0fsblhqBmFgDIMQ6tWrZLdbld6errbsfT0dNntdq1atcrj/q666qqqHQGhZMuWLcrOztZ1112n3r17V7W3atVKU6dOVVlZmdasWVNvP5VzPWvWLJlMpqr2W2+9VV26dNH777+vkpIS37+BZs5X89ulSxf1799fERERTTlcBBFioO8RD/2L+Ohfvphvq9WqadOmqU2bNtXa09LSJEnbt2/3/eDhFV+uD+PHj1efPn2qtY8dO1bdunXTwYMHdfr0aZ+MG9WxLrV8xOaGIRmFgMrKytLJkyc1cOBA2e12t2N2u10DBw7U0aNHdfz48QCNMDhs27ZNkjR8+PBqxyrb6gtepaWl2rVrly655BJ17tzZ7ZjJZNKwYcNUVFSkvXv3+mjUwcMX8wvUhBjoe8RD/yI++ldTz3dYWEU5WYvF0uA+4Bv+Wh+sVqukc197+B7rUstHbG4YklEIqCNHjkiSunXrVuPxyvasrCz/DChIVc5P165dqx2LjY2V3W6vmuvaZGdny+Vy8bWogS/mF6gJMdD3iIf+RXz0r6ae73feeUeSdMUVVzS4D/iGP9aH3bt364cfflBiYqJat27d4H5QN9allo/Y3DAkoxBQhYWFkqTo6Ogaj1e2nzlzxm9jCkaV89OqVasaj0dHR1fNdW34WtTOF/ML1IT/d75HPPQv4qN/NeV8f/HFF3rrrbfUo0cP3XzzzQ0eI3yjqeNQYWGhZs+eLbPZrIceeqhhg4RHWJdaPmJzw7AfEz7x1FNPyeFweHz+nXfeWWtmHwCCDTEQQDDbvXu3Zs6cqVatWmnBggWy2WyBHlKL0RzXh5KSEk2fPl2HDx/WzJkzQ+6Jq0CwaOmxmWQUfOKtt95SUVGRx+ePHj1a3bp1q8oe15bFr2yv7bcAqFA5P7Vl3M+cOVOtGN7P8bWonS/mFy0bMbD5IB76F/HRv5pivvfs2aPf/e53MpvNWrp0qXr27NnoceKc5rY+lJaWKj09XVu3blVaWpqmTp3q1evhPdallo/Y3DAko+ATO3fubNDrKu+rre3+5sp2dhDUrXJ+jhw5on79+rkdO3XqlIqKipSUlFRnH126dJHZbOZrUQNfzC9aNmJg80E89C/io3/5er737Nmj1NRUuVwuLVu2jK9VE2hO60NJSYnS09O1adMmTZ48WbNmzWrQ2OAd1qWWj9jcMNSMQkB169ZNF154oXbs2FHtt0ZFRUXasWOH4uLi1LFjxwCNMDgkJydLkjIzM6sdq2yrPKc2ERERSkpK0o8//qhjx465HTMMQ1999ZXsdnu1ABsKfDG/QE2Igb5HPPQv4qN/+XK+K3/YKS8v19KlS3XppZf6bqBoNF+vD+cnolJTU6kT5UesSy0fsblhSEYhoEwmk26++WYVFRVp0aJFbscWLVqkoqIi3XLLLW7txcXFOnTokH766Sd/DrVZu/zyy9WlSxetX79e+/fvr2ovLCzU4sWLZbVadf3111e1nzx5UocOHaq2lbRyrp9//nkZhlHVvnLlSh09elTjxo1TRERE076ZZshX8wv8HDHQ94iH/kV89C9fzffevXuVmpoqp9OpV155RQMGDPDXW4CHfLk+VN6at2nTJt11112aPXt2k48f57AutXzE5oYxGed/JwMBUFRUpNtuu00HDhzQ8OHD1adPH+3bt0+ZmZlKTEzU66+/7hZYt27dqjvvvFODBw/WihUr3PpasmSJDh8+LKliW3RWVpaGDx+u2NhYSdKoUaM0atQo/705P9qyZYsmT54sm82msWPHKioqShkZGTp27Jhmz56t1NTUqnMfeeQRrVmzRk8++aTGjx9f1e5yuTRlyhRlZmaqf//+Sk5OVnZ2tjIyMtS5c2etWrVK7dq1C8TbCzhfzO/p06f1zDPPVP173bp1ioiI0OjRo6vaHn744ZCd41BFDPQ94qF/ER/9q7HznZeXp2uuuUb5+fn65S9/WeNv3Vu1aqVJkyb56y2hFr5aHyq/D2JjYzVhwoQar3XDDTcoLi6uyd9TqGJdavmIzd6jZhQCzm636/XXX9fChQuVkZGhrVu3KjY2VqmpqZo+fbpXGf6NGzdq27Ztbm3nb5fs3Llzi/1BbOjQoXrzzTf1wgsvaMOGDXI6nYqPj9eDDz6oMWPGeNSH2WzWSy+9pCVLlmjdunVavny52rZtq5tuukn3339/SC9wvpjfoqIirVmzps62GTNmhPQ8hyJioO8RD/2L+OhfjZ3vM2fOKD8/X1JFzNi4cWO1czp37tyifuAJVr5aHypv6zp16pRefPHFGs8ZPHgwyagmxLrU8hGbvcfOKAAAAAAAAPgNNaMAAAAAAADgNySjAAAAAAAA4DckowAAAAAAAOA3JKMAAAAAAADgNySjAAAAAAAA4DckowAAAAAAAOA3JKMAAAAAAADgNySjAAAAAAAA4DckowAAAAAAAOA3YYEeAICmkZeXpxUrVujzzz/X0aNHVVpaqgsuuEDJycm69dZbNWDAgCa5bk5OjkaOHKnBgwdrxYoVTXINAAhGGzZs0Nq1a7Vv3z4VFxerV69emjlzpi677LJADw0A4KU1a9ZoxYoVys7OltPp1CWXXKLJkydr7NixgR4aEBRIRgEt0ObNm3XfffcpPz9fbdu21aBBgxQZGalDhw5p7dq1Wrt2re688049+uijMpu92yBJsgkAGua1115T165d9T//8z+y2+169913NWnSJK1evVq9evUK9PAAAF7Iz8/XqFGj1Lt3b4WHh+uTTz7RrFmzFB4erlGjRgV6eECzRzIKaGF2796tKVOmyOl06t5779Xdd98tq9Vadfzrr7/WAw88oNdee00Wi0WPPPJIAEcLAKHjpZdeUkxMTNW/hw0bpnHjxumNN97Q3LlzAzgyAIC3Jk2a5PbvYcOGaf/+/XrvvfdIRgEeoGYU0IIYhqFHHnlEZWVlmjFjhqZPn+6WiJKkyy67TMuWLVN4eLiWL1+ub775JjCDBYAQc34iSpLMZrN69uypnJycAI0IAOBLbdu2ldPpDPQwgKBAMgpoBh544AElJCRo0aJF1Y7t3LlTl156qYYMGaJDhw7V2c+XX36pQ4cO6cILL1RaWlqt5/Xo0UMTJ06UYRj6+9//XtWek5OjhIQE3XHHHTpz5oyefPJJXX311erbt6/mzZunhQsXauTIkZKkbdu2KSEhoepPTTusSkpK9Oc//1kjRoxQv3799Otf/1pLliyRYRieTg0AtFjl5eXas2ePLr744ga9Pi8vTwsXLtT48eOVnJyspKQkXX311Zo9e7Z27tzp49Gec/5aAQChzul06syZM9qwYYO++uorTZgwoUH9ENMRakhGAc3AfffdJ6vVquXLl6uwsLCqPSsrS9OmTZNUcXtHjx496uznn//8pyTp2muvrbYj6ufGjRsnSdq0aZNcLpfbsZKSEv3mN7/RmjVr1Lt3b1199dVq06aNevfurdGjR0uSLrjgAt1www1VfwYNGuTWR1lZmVJTU7Vq1Sr169dPQ4YM0YkTJ/Tcc8/pL3/5S71zAgAt3euvv67jx4/r9ttv9/q1mzdv1jXXXKMXX3xRx44d06BBgzRy5EhFR0dr7dq1uvXWWzVv3rxq8d0T/GACAJ45deqU+vbtq0GDBunBBx/U73//e1155ZVe90NMRyiiZhTQDFx88cW68cYbtXLlSi1fvlz33HOPTp8+rSlTpqigoEAvvPCCBg4cWG8/Bw4ckCT169ev3nPj4+NltVpVWFionJwct9/M7969WwMGDNAnn3yi1q1bu72uV69e+uijj9S9e3c99dRTtfa/c+dODR48WJ9++qmio6MlSXv27NGECRP06quv6u6771ZUVFS94wSAlmjXrl167rnnNG3aNCUkJHj1WmoDAkDzEBMTo9WrV+vs2bPauHGj5s6dq7Zt21b98tYTxHSEKnZGAc1Eenq6IiIi9Oqrr+rEiROaOnWqsrOz9fjjj3tcBDEvL0+S1K5du3rPDQsLU5s2bSRJubm51Y7PmTOnWiLKG2azWU888URVIkqSEhMT9atf/UrFxcXau3dvg/sGgGCWk5Oj9PR0jRgxQjNmzPDqtdQGBIDmIywsTImJiRo6dKgeeughXX/99Xr++ec9fj0xHaGMZBTQTHTo0EETJ05UYWGhUlJStGvXLqWnpzf4vvPGiI2NVWJiYqP66NSpk7p3716tvVu3bpIqtjUDQDBrSL2/goICpaWlqXPnznr66adlMpm8uia1AQGgafiihmvv3r119OhRj69JTEcoIxkFNCOTJk2S2WxWbm6uxo8fr/vuu8+r17dt21aSdPr06XrPdTqdys/Pl1T9CU+dOnXy6ro1ueiii2psr7w1z+FwNPoaABBI3tb7czgcmjFjhoqLi7Vo0SJFRER4fU1qAwJA0/BFDdcdO3aoc+fOHl+TmI5QRs0ooJkwDENPPfVU1eJisVi87qNXr17asWOH9u7dq5SUlDrP/eGHH1RWVqZWrVopLi7O7Vh4eLjX1/45s5lcN4CWzdt6f0888YS2b9+uuXPnKicnRzk5OZIkm82mPn36eHRNagMCQNPwNqbfcccdGj16tLp3767S0lJ9+umnWr9+vebOnevxNYnpCGX8tAg0E88884z+8Y9/6Morr1RsbKzWrFmjrKwsr/qofHrHRx99pLKysjrPff/99yVJV1xxBYkjAGggb+r9bd68WS6XS3PmzNGECROq/nhTN4ragADQdLyJ6b169dKKFSs0bdo0Pfroo8rKytLixYt1yy23eHw9YjpCGTujgGbg1Vdf1bJly5SUlKQFCxZo1apVmjdvnhYsWKD58+d73M+vfvUrde/eXYcPH9aSJUs0ffr0Gs87fPiw3njjDZlMJt11111ejbVyC7HT6fTqdQDQElXW+/vb3/6mlJQU5ebm1lrv77PPPgvACGtGbUAAqM6bmD5nzhzNmTMnAKOsjpiOYMR2CCDAPvjgAz355JO6+OKL9fLLLysyMlITJkxQhw4d9MEHH2j//v0e92U2m/X000/LarVq4cKFWrx4cbWk0Y4dO5SamqqSkhL99re/Vf/+/b0ab0xMjKxWq44ePary8nKvXgsALVFj6/15g9qAANC0iOnuiOloKiSjgADavn27Hn74YcXExGjp0qVVW3TDw8OVlpYmwzC82hklSUlJSVqyZIlat26t+fPna/jw4Zo2bZpmzpyplJQU3XbbbTp+/LjuuOMOzZ492+sx22w2DR8+XKdOnVJKSooefvhhzZkzR++8847XfQFAsPNFvT9v9OrVS5I8ul2C2oAA4B1iOuA/fMcBAXLw4EGlp6fLYrFo8eLF6tq1q9vxm2++WR07dtQXX3yhr7/+2qu+hw0bpo8++kjTp09Xx44dtW3bNn3yyScqKChQSkqKVq5cqT/84Q8NXnTmzZunlJQU5eXlaf369Vq9erW2b9/eoL4AIJj5ot6fN6gNCABNh5gO+A81o4AA+cUvflFnAsdms1U97rUhYmJidO+99+ree+/1+DVxcXH67rvv6j2vffv2euaZZxrUxz333KN77rnH4zEBQHPlq3p/3qA2IAA0DWI64F+kVAEAALzky3p/3qA2IAD4HjEd8D92RgEAAHihvnp/f/zjHzV//nwtWbKkSa5fWRvw/vvv1/z587V8+XINGDBAEREROnz4sA4cOCBJja4N+PnnnyslJUV9+vSR1WrVwIEDdeONN/r67QBAQBHTgcBgZxQAAICHmrLenzeoDQgAjUdMBwLHZBiGEehBAAAAAAAAIDSwMwoAAAAAAAB+QzIKAAAAAAAAfkMyCgAAAAAAAH5DMgoAAAAAAAB+QzIKAAAAAAAAfkMyCgAAAAAAAH5DMgoAAAAAAAB+QzIKAAAAAAAAfkMyCgAAAAAAAH5DMgoAAAAAAAB+QzIKAAAAAAAAfkMyCgAAAAAAAH5DMgoAAAAAAAB+QzIKAAAAAAAAfvP/AaTfFYQyibR/AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x3 = x**3\n", + "x2 = x**2\n", + "# Creating a cubic function with an up and down pattern\n", + "y_cubic = 2.5* x3 - 15*x2 + 55 * x \n", + "\n", + "transformer = OrthogonalPolynomialTransformer(degree=3)\n", + "x_orthogonalized = transformer.fit_transform(x)\n", + "x_orth = x_orthogonalized[:, 0]\n", + "x2_orth = x_orthogonalized[:, 1]\n", + "x3_orth = x_orthogonalized[:, 2]\n", + "\n", + "fig, axs = plt.subplots(2, 3, figsize=(12, 8), sharey='row')\n", + "\n", + "# Plot configurations\n", + "plots = [\n", + " (x, 'x', 'x vs y', False),\n", + " (x2, '$x^2$', '$x^2$ vs y', False),\n", + " (x3, '$x^3$', '$x^3$ vs y', False),\n", + " (x_orth, '$x$ Orth', '$x$ Orth vs y', True), # Indicate to add regression line for this plot\n", + " (x2_orth, '$x^2$ Orth', '$x^2$ Orth vs y', True), # Indicate to add regression line for this plot too\n", + " (x3_orth, '$x^3$ Orth', '$x^3$ Orth vs y',False)\n", + "]\n", + "\n", + "for ax, plot_data in zip(axs.flat, plots):\n", + " x_val, xlabel, title = plot_data[:3]\n", + " if len(plot_data) == 4 and plot_data[3]: # Check if regression line is needed\n", + " sns.regplot(x=x_val, y=y_cubic, ax=ax, line_kws={\"color\": \"C1\"})\n", + " else:\n", + " sns.scatterplot(x=x_val, y=y_cubic, ax=ax)\n", + " ax.set(xlabel=xlabel, ylabel='y', title=title)\n", + "\n", + " # Check if this is the $x^2$ Orth vs y plot to add a vertical line at 0\n", + " if title == '$x^2$ Orth vs y':\n", + " ax.axvline(0, color='k', linestyle='--') # Add vertical line at x=0\n", + " # Check if this is the $x^3$ Orth vs y plot to add a vertical line at 0\n", + " if title == '$x^3$ Orth vs y':\n", + " ax.axvline(0, color='k', linestyle='--') # Add vertical line at x=0\n", + "\n", + "plt.tight_layout()\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "id": "e39bb73d-abff-439d-8523-70866c12e086", + "metadata": {}, + "source": [ + "At a cubic level, it's a bit more difficult to see the trends, however, the procedure is still the same. We can model each subsequent term against the residuals of the prior, and we can see that since this data was constructed from a cubic function, the $x^3$ plot against the residuals of the $x^2$ term is linear." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "7fe443d4-9703-45fe-ae4e-13730e8c9157", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdIAAAHqCAYAAAAAkLx0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1QU19sH8O9sA5aOigVsMYKKGkWxhYSINbEbUWOLGktsUWMSU/0ZUzRGjS2a2GM0KsSuaOwFC6hYIwZLUKyg0nfZOu8fvrtxpQgILAvfzzk5J3vv3ZlnZnDv7LN37hVEURRBRERERERERERERETZklg7ACIiIiIiIiIiIiKikoyJdCIiIiIiIiIiIiKiXDCRTkRERERERERERESUCybSiYiIiIiIiIiIiIhywUQ6EREREREREREREVEumEgnIiIiIiIiIiIiIsoFE+lERERERERERERERLlgIp2IiIiIiIiIiIiIKBdMpBMRERERERERERER5UJm7QCIiIiIiPJr9+7d2L59O/7++28kJSXB29sbb7/9NgYOHAi5XG7t8IiIqBTas2cPVq5ciRs3biAjIwMVK1ZE27ZtMXr0aLi6ulo7PCIiKmKCKIqitYMgIiIiIsqP3r17w8vLC23btkW5cuVw9uxZLF68GG+++SZ++OEHa4dHRESlUFhYGG7fvo0GDRrA2dkZsbGxWLhwIerUqYPffvvN2uEREVERYyKdiIiIiGzO48eP4eHhYVG2aNEizJs3D8eOHUP58uWtFBkREZUloaGh+Oqrr3Dw4EFUqVLF2uEQEVER4hzpRERERGRznk2iA4Cfnx8AICEhobjDISKiMso0pYter7dyJEREVNQ4RzoRERERlQqnT5+GXC5HtWrVCvR+URSxa9cuhIeH4+LFi3j8+DHs7e1RpUoVvPrqqxgwYECRjzb09fUFAPzzzz9Fup/iFBwcjDt37liUyeVyeHh4wM/PD71790br1q2tFN0Tphj3798Pb2/vIn9fYSspcRCVFQaDAXq93jy1S1BQEPueEiguLg6rV6/GyZMncffuXRgMBri7u6NChQp45ZVX0Lx5c3To0MHaYZYIL9KPlIS/4ZLWD/Lep+hZKw4m0smmlIQPaKD03miURC/y4VgU18kUz/Tp09GzZ898vcfaHY01ZHcD8azPPvsMgwcPzvKesni+iKjgrl27htWrV6NPnz5wcnLK9/sfPHiAsWPH4sKFCxAEAX5+fvD394darca5c+ewfPly/P777/j000/Rv3//AsVY1j/f/P39Ub16dQBAWloaYmJicODAARw4cACDBw/GZ599ZuUIiYjypnnz5khLSwMABAYGYu7cuQXaDvueorNnzx5MmjQJWq0Wbm5u8Pf3h7u7O1JTUxETE4O1a9di586dTKS/oOL4G7ZlvPcpfZhIJ5tRXB/QZfVGw9bwOtmWp28gnvXyyy/naRu85kSUk8ePH2PMmDGoVq0aJk2alO/3p6SkoH///oiPj0e9evUwc+ZM1K5d21yv1+uxevVqzJo1C9OmTYPBYMCgQYMK8xDKhJCQEIsfofV6PaZPn441a9Zg1apV6NSpExo2bGiV2FatWgWdToeKFStaZf9EZFt+//13qNVqxMbGYvHixXj//fexcuVKSKXSPG+DfU/RefjwISZPngytVouhQ4diwoQJsLOzs2hz6dIl/PXXX1aKsHTg3/Dz8d6n9GEinWwCP6DLrtLw4V4ajuFFPXsDkRueLyLKj/T0dAwfPhw6nQ6rV6+GUqnM9zamTZuG+Ph4eHt747fffoOLi4tFvUwmw9ChQ2FnZ4dp06Zh5syZePXVV1GrVq3COowySSaT4ZNPPsGWLVuQnp6OgwcPWu3LZEGnZCCisqlu3boAngwWqVu3Lnr37o29e/eiY8eOed4G+56ic/DgQahUKnh6emLy5MnZtqlfvz7q169fzJGVLvwbzj/e+9g+LjZKNuHZD+ink+jAfx/QX3zxBQBg5syZuH79ujVCpUJWrVo11KpVC3K53NqhFFhpOIbixPNFVPYsWrQIvr6+6N27d7b1s2bNgq+vL7p164aUlBRzuVarxejRo3Hnzh0sW7asQD/AxcfHIzw8HAAwefLkLF8Cn9avXz/UqVMHOp0Oy5Yts6jz9fU1Tym2ceNG9OnTB02aNIGvry82bdoEX19f81RXbdq0Mbf39fVFZGRktvv766+/8M4778Df3x+NGjVC3759cfjw4Twf2/Xr1+Hr64uAgABoNJoc2/Xs2RO+vr7Yt2+fRXlcXBw+++wzBAcHo379+mjcuDFat26NESNGYOPGjXmOIzd2dnbmJ5YePXqUY7vMzEysWLECvXv3RtOmTdGgQQN06NABM2fORFJSUpb2+Y09ODgYvr6+uH37dpa6a9eu4YMPPkDz5s3RsGFDdO7cGcuXL4fBYMg21tu3b8PX1xfBwcE5Hk9O+7tw4QJmzpyJXr164dVXX0X9+vXRqlUrvP/++zh+/HiO28tJcVxDIltV0L7nWfXq1YMgCLh161ae982+p2j7HlN/kt3C5HmR3z7HRK1WY9WqVXjnnXcQEBCA+vXro3Xr1nj//fexffv2LO3v37+Pb775Bu3bt0eDBg3QpEkT9O3bF+vXr8+xj3n6muf3WuW3P8tNYf0NP3tMz/4dP91PFjT+glzPvMZUEHm59ylIzLz3eaKo732YSKciUVg3JUDxfUDb4o1GYXxA3Lp1C3Xr1kVAQADUanWO7Tp16gRfX9/nHpsoimjevDnq1KmT5QP+woUL5vO5du3aLO81nfP4+Hhz2bMftta6Ti8ipw7jRW6CCtKxFqSDKsobiJwU1jUnItsxdOhQVKpUCefPn8/ymPWvv/6KpUuXombNmlixYgVcXV0BPFnobeLEibh48SKWLFmCl156qUD7PnDgAIxGI1xcXHK9+QcAQRDQrVs38/tEUczS5ptvvsGXX34JqVSKN954A6+88gq8vb3Ro0cP82j5Dh06oEePHub/ypcvn2U78+fPx/jx4wEAQUFBqF69Os6ePYuRI0di7969eTq2WrVqoXHjxkhNTc2SqDD5559/8Pfff6N8+fJ44403zOWxsbF4++23sWnTJigUCrRu3Rqvv/46KlasiFOnTmH16tV5iiEvMjIyAADlypXLtv7BgwcICQnBDz/8gJs3b6JBgwYICgqCTqfD8uXL8fbbb1usx1GYsZ8+fRohISH466+/4OzsjLZt26JChQr46aefMHHixBc78GzMmTMHK1euhEajgZ+fH9q0aYNKlSrh4MGDGDJkCH777bc8b6s4ryGRLSpI35Od6OhoiKKYr6kH2fcUbd9TuXJlAMDVq1dx4sSJPL3HJL99jsm9e/fQq1cvTJ8+HTExMWjQoAHat2+PKlWq4PTp0/jpp58s2l+4cAHdunXDmjVroNPp0LZtWzRu3BiXL1/G//73P4wYMQJarTbHOPN7rQq7Pyvsv2Eg+79jQRBeKP6CXs+8xPQicrv3KUjMvPd5ojjufTi1CxWJoUOHYsOGDeabkqcX8MjPTQlQsA/oK1eumD+gs/uQ++abb/DHH3+gcePGeOONN8yj3Xv06IG//voLKpUKHTp0sHg8PKcbjUWLFqFx48YICgrCjRs3zJ3XggUL0K5du+edKvONxtmzZ7Fv3z506tQpS5vsbjRiY2PxzjvvID09HTVr1kTr1q0hkUjw4MEDnDp1Cg8ePMDbb7/93P1Xq1YNQUFBOHjwILZv357tjx8nT57EtWvXUK1aNbz++uu5bk8QBLRo0QK7d+/GiRMn8NZbb5nrnk7WnjhxwmIu+/j4eNy+fRve3t6oWrVqrvFa4zoVpfzG9+DBAwwbNgyxsbFwc3NDgwYN4OjoiMuXL2P58uXYvXs3fv/9d3h5eVm8b86cOYiMjMTLL78MPz8/ODg4ID4+HgcPHsTBgwfx+eef49133802xuz+zRTGDUReFOSaE5Ftsbe3x8SJEzF58mT89NNPaNOmDWQyGf744w/MmTPH/ETa0182vv76a+zbtw/jx4+H0WjEuXPnzHUvv/xynhcc/fvvvwE8eUxfJnv+rXGDBg0AAMnJybh9+3aWPmvLli1Yt24dGjVqZFHerFkzREVFQaVS4ZNPPnluwuX333/Hhg0b8Morr5jLFixYgIULF2LWrFl57rvefvttnD17Fps2bcr2HmPTpk0AgK5du1oc/8qVK5Geno4JEyZg1KhRFu/JzMzExYsX87T/57l+/br5B/Ts7vNEUcSECRMQGxuLXr164bPPPjNfW71ej9mzZ2PFihX47LPPzF+OCit2jUaDjz76CCqVCu+++y4mT55snv/4ypUrGDx4cK4jEwtiyJAhmDlzJjw9PS3Kz549i2HDhuHHH39Ex44d8/T0RXFdQyJbVZC+57333kOLFi1Qu3ZtKBQK8/23r68v2rZtm+d9s+8p2r6nbdu2qFixIh48eIAhQ4YgICAALVu2hJ+fHxo0aJDjSPWC9DkAYDQaMXbsWFy7dg2BgYH48ccfLfah0Whw8uRJ82utVosJEyYgOTkZffv2xZdffml+Gjc+Ph7vvvsuIiIi8PPPP+eYuMzPtSqK/qyw/4aBnP+OCxp/Qa9nXmJ6Ebnd+xQ0Zt77PFEs9z4iURHZvHmz6OPjI3bo0EHU6XSiKIri2rVrRR8fHzE4OFi8f/9+nrbz8ccfiz4+PuLAgQPz1D4qKkr08fERfXx8xFu3blnUmcr9/f3Fs2fPZvv+1q1biz4+PmJ8fHyO+zBtp2nTpuK5c+cs6ubPny/6+PiI7du3z1O8oiiKoaGhoo+Pjzh06NBs67///nvRx8dHnDFjhrns008/FX18fMRFixZlaa9Wq8WoqKg87//YsWOij4+P2LVr12zrx40bJ/r4+IgrVqzI0/bWr18v+vj4iF9++aVF+cCBA0U/Pz+xY8eOYtOmTUW9Xv/c9+R0PaxxnZ7e78aNG/P9nmdjLUh8RqNR7Nu3r+jj4yN+/vnnYlpamrlOp9OJM2bMyPHfy6FDh8QHDx5kKY+Ojhb9/f1FPz+/LP8u8/JvJjeFeb7ycs2JyHYZjUaxR48eoo+Pj7hu3Tpx69atoq+vr/jaa69l6c9F8b/PhOz+O3nyZJ73+95774k+Pj7ixIkT89T++vXr5v2cP3/eXG4qW7hwYY7vzU/ftXr16ix1Go1GbNKkiejj4yPevXs3T/GmpaWJr7zyilinTp0sn/FarVZs0aKF6OPjI8bGxlrUDR8+XPTx8RH//vvvPO0nN9n1BampqeLRo0fFjh07ij4+PuJPP/2U7XsPHz4s+vj4iN26dTPfTz7NYDCInTt3Fn18fMR//vmnwLFnd222bt0q+vj4iEFBQaJWq83ynpUrV5qv19Pvi4+PF318fMTWrVvna3/PM3v2bNHHx0dcs2ZNnrZXmNeQqLTKb9/z008/iZ07dxYbNWokNmrUSOzcubM4f/58i3vyvGDfU/R9z/Xr18WQkJBs7xO6desm/vHHHxbfR0WxYH2OKIri3r17RR8fH/HVV18V09PTnxvbli1bRB8fHzEwMFDUaDRZ6nfv3i36+PiIjRs3FjMzMy3qCnKtCtqf5aaw/oafPqac/o4LGn9Br2deYnqegt77FDRm3vs8URz3PpzahYpMt27d4Ofnh3///Rd//vkntm3bhmnTpqFixYpYtWpVnucxffz4MYC8jzp9esRATr+UDR06tFB+Ufzggw8sfgEGgJEjR8LZ2RlxcXG4d+9enrbz5ptvwsHBAcePH8eDBw8s6nQ6HbZt2wYAFos1mubSCgoKyrI9e3t7BAQE5Pk4WrVqhdq1a+PKlSs4ffq0Rd39+/exf/9+ODg45GmEu2l7gOUI9MzMTJw9e9Y8/UxqaiouXbpkrje1bdmyZZ7jzqvCuk5FJT/xHT16FNHR0ahbty6+/vprixGXMpkMH3/8MXx8fBAZGYnY2FiLbQYFBWX5lRcAGjdujP79+0On0+X4+OWL/pv57LPPLKZjMf03cODAAm+TiEoXQRDMC4LNmTMHn332Gdzd3bFy5cpsRy0dOHAA//zzT7b/NW/evMjiFHN4HNkkPwvN5aZ169ZZyhQKhflcPHu/kBMnJyd06NABRqMRW7Zssag7fPgwHj9+jIYNG2ZZf8a08NXUqVNx9OjRXKefy6un+4KmTZvivffew82bN/Hjjz9iwoQJ2b7HNM1Z+/btsx3xJpFI0LRpUwBPRi4VZuxRUVEAntynZbduR48ePQq03edJSkrCli1bMHPmTHz55Zf49NNP8emnn5rj+ffff/O0naK4hkSlTX77ngkTJmD79u04e/Yszp49i+3bt2PcuHF5fgqqoNj35N9LL72E0NBQhIWFYcyYMQgMDDSPEo+JicHUqVMxbNgwi+lTCtLnAE++owFAly5d4Ojo+NzYTJ/nnTp1gkKhyFLfvn17uLq6IiMjw+I789Pyc62s1Z897Xl/w0DOf8cFjb+g1zMvMeVVfu99Choz732eKI57H07tQkXGdFMyaNAgzJkzBxkZGbnelBSWF/mAzq/cOq/Lly/jwYMH5vnZcmO60diyZQu2bNmCkSNHmutyutFo2LAhDh8+jKlTp2LcuHFo1qwZ7OzsCnwsAwcOxJQpU7B27VrzBzMArF+/Hnq9Hj179sx1fvqnVa1aFd7e3rh9+zZu3bqFatWq4fTp09BqtWjVqhUaNGiA5cuX4/jx43jllVcgiiJOnjwJQRCKJJFeWNepqOQnvrx2rLGxsTh79ix8fHws6pOSknD48GHExsYiNTUVer0ewJP59oGcO6gX/Tfj7+9vXlDlaQWd05iISqfmzZubpztzdHTEihUrUKtWrSLdp7u7OwDg4cOHeWpv+oH/6fc+7dlptQqqSpUq2ZabkjX5+WLw9ttvY8uWLdi0aZPFPYZpPZWnf6g3ee+993DmzBkcP34cw4YNg1wuN6/p8tZbb5m/qOTH033B48ePcfr0aWRkZGDq1KmoUaNGtts0Pfo8b948zJs3L9ftm65NYcV+//59AMhxKgRXV1c4OzsjLS0tT9vLi9DQUEyfPh0qlSrHNqZ5VZ+nKK4hUWnEvuc/pbHvadiwofl9oiiap+PZuXMnjh8/jtWrV2PYsGEACtbnAMDdu3cB5P27jSnJnVP/IggCvL29kZKSkuOPF/m5VkXRnxX23zCQ899xQeMv6PXMS0x5ld97n4LGzHufJ4rj3oeJdCpShXFTUpwf0PllzRuNwv6A6Nq1K2bPno29e/ciISEBnp6e0Gq1CAsLAwCL+czzolWrVggNDcXx48dRrVo184jzV199FT4+PlAoFDh+/DhGjRqFy5cvIzk5GfXq1cvxmr2IwrxORSE/8b3IzcCLdFAv+m8mJCQk25tlIqKnbdy40TzXuVarLfIRfgDg5+eHbdu24fLly9Dr9c+d5/PChQsAADc3t2y/ZNjb2xdKXBJJ4T04GhAQgGrVqiEuLg7R0dHw9/fHo0ePcOTIEdjZ2WU7f62DgwNWrlyJCxcu4OjRo+bRl5cuXcLKlSvRr18//O9//8tXHM/2BWlpaRgzZgwiIyMxYcIE7Ny5Ew4ODhbvMRqNAIAmTZqgWrVquW7fNOCgKGIvbKbjetqlS5cwZcoUSKVSfPTRRwgODkblypXh4OAAQRCwYcMGTJkyJU+DRgDbOA9EJQH7nv+Uxr7naYIgwM/PD3PmzIFarcaBAwewb98+cyK9IH2OtRTmtSqIwv4bBgrv79ikMK7ni8aU33ufgsZsC31+abn3YSKdilRh3JSU5A9oa95oFPYHhIODA0JCQrBs2TKEhoZi7Nix2LNnDx4+fIimTZuiTp06+Tqeli1bmhPpffv2xYkTJ+Dq6or69etDIpGgcePGiI6OhlqtLtJpXQDr32Q8T37iK2jH+qIdVGHf1BARPWvXrl346quv4OrqilatWiE8PBw//vgj5s+fX6T7DQ4Oxg8//IC0tDTs37/fYoH0Z4miiK1btwJ48jRRcS26/KIEQUCPHj0wb948bNq0Cf7+/ti2bRv0ej06duyY6xNnT4/k0+v12LdvHyZPnow//vgDHTp0QIsWLQocl7OzM+bOnYs333wTd+7cwcqVKzF69GiLNqYnstq0aYP33nsvX9t/0dhN0xDevn072/rU1NRsR2SZHoXO6cdpnU6HxMTELOW7d++GKIoYMGAAhg8fnqXe9PRYfhXlNSSydex7ik5J7XtMAgMDceDAAYvpYAva55jed+PGjTy1N/UvpkFS2TH1PXmdEjcv+8tvf5ab4vwbLmj8L3IPUVSed+/zojHz3ueJovwMKdnZJbJpT9+UvPXWW9DpdPjxxx/zvZ3g4GBIJBLzB3RubPUmA/jvRgP4bxVz041Gu3btcrzRaNiwIcaMGYNly5YhMjIS8+bNg729Pf744w+LlcHzon///pBKpdiwYQN0Oh3WrFljLs+vli1bQhAEREZG4tGjR4iJiUHz5s3NSeNWrVpBp9Ph1KlTOHHihLmMcvd0xzpjxoxc/2vbtq35fc92ULVq1YJSqTT/GyloB0VEVBgOHz6Mjz/+GA4ODli+fDm+/vpruLm54a+//kJ0dHSR7rtatWp48803AQAzZ85Eampqjm3/+OMP/PPPP5DJZAX6cmP6kmEwGAoW7Avo2bMnJBIJdu3aBbVabb7XyOv6J8CTtTg6duyIwMBAAMCVK1deOC4PDw+MGjUKALBixYos5//1118H8F8/VlAFid203szu3buh0+my1D8776+Jh4cH5HI5kpOTzWvaPC0iIsI8tdrTUlJSAGT/pJpGo8GePXueG/PzFMU1JLJV7HuKnrX6nrz0F6bpWCpVqmQuK2ifY3rfjh07cn3616RZs2YAgPDw8Gyfjt67dy9SUlLg6OiI+vXr5zmOnBS0P8tNcf4NFzT+wrqHKGy53fsUZsy893misO99mEinIlGYNyXF+QEN2PaNxot+QFSpUgVt27ZFQkIC5s+fj7Nnz8LT0xPt27fP34HgybQ6devWRXJyMpYtWwZRFC0S5ab/P3ToEM6cOQOFQmExN/vzWPM6WVNBO9bi6KCKWlm95kSlXVRUFD744ANIpVL88ssvqF+/PlxcXMzTnM2YMaPIY5gyZQq8vLxw+/ZtvPvuu7h69apFvV6vx8qVK/Hdd98BAD766KMCPdJtGuXz7PaLQ6VKldCqVSukp6djzpw5iI2NRZUqVXIckbN27dpsR9YlJiaaFz7LaWqy/OrXrx+qVKmCtLQ0rFixwqKuTZs2aNCgAS5cuIDPPvss2zlMU1JSsG7dOvMXtMKKvWPHjqhYsSLu3r2LOXPmWDySHBsbi8WLF2f7Prlcbv4iOnfuXIv3XblyBd9880227zNNf7hlyxakp6ebyzUaDaZOnZrj6LCcFOc1JLI17HuKh7X6nj/++AOTJ0/ONvcgiiL27NmDtWvXAoDFk98F6XOAJ4P/6tWrh4SEBIwfP95ilDvw5HPctNYV8GQhxypVqiAhIQHTp0+32FZ8fLz572/gwIEvtA6aSUH7s+cprr/hgsZf0OtZHHK69ylozLz3eaI47n04tQsVuuxuSgBg5MiR+OGHHzBjxgyEhobma5tTpkzBuXPnzB/QM2fOtPgA1uv1+P33380j3gv6AQ08udGIi4vD1atXs10csSiZbjQiIiKee6Oxdu1atGzZMsuCJi/6ATFo0CD89ddfWLJkCQCgT58+z51OJyctW7bE5cuXzTcpr776qrnOdLP6559/QqPRoHnz5vmaPsSa18manu1YP/nkE/Pq8yYpKSkIDw9HSEiI+do93UG9/fbbFvOvF6SDsoayes2JSrMLFy7g/fffh8FgwKJFi8w34AAwYMAArFmzBufPn8fOnTuznUu1sLi5uWHdunUYPXo0Ll26hC5duqB+/fqoVq0a1Go1zp07h8ePH0Mul2Py5Ml49913C7SfDh06IDIyEh9//DECAwPNT5u99957xbL48ttvv42IiAisXr0aANCjR48cpxcLDQ3FtGnT4O3tjdq1a8PJyQlJSUk4ffo0MjMz0aJFCwQHBxdKXAqFAmPHjsXnn3+O1atXY/DgwXBzcwPwZPqzn3/+GSNHjsTmzZvx119/wdfXF1WqVIFOp0N8fDxiY2NhMBjQs2dPyGSyQovd3t4es2bNwogRI7BixQrs27cPDRo0QHJyMqKiotC6dWv8/fffuHPnTpb3TpgwAadOnUJoaCiioqLg6+uLhIQEXLp0CZ07d0ZUVFSW9/Xs2ROrV6/G5cuX0aZNGzRt2hRSqdQc96BBg8zXLi+K8xoS2RL2PaW/79HpdNiyZQu2bNkCDw8P1KtXD25ubkhLS8O1a9fMn79du3ZFr169zO8rSJ9jet/ChQvx3nvv4ciRI2jdujWaNGkCNzc3PHjwAFeuXIGLiwsOHDgA4Em/N2/ePAwfPhzr1q3DkSNH8MorryAjIwMnT56ERqNBYGAgxowZ80Ln3uRF+rPcFNffcEHjL+j1LA453fsUNGbe+6BQz0NumEinQlVUNyXF9QEN2M6NRlF9QDRt2hT16tXD5cuXIZfL0adPnwIfS6tWrbB8+XJoNBp4e3tbzOktkUjQvHlz7N2719w2P6x9nRYtWoT169fnWP+///0Pfn5+hb7fgnashd1BWYO1rzkRFa5//vkHw4cPR2ZmJubMmWN+4sZEoVDggw8+wOTJkzF79my0a9cOCoWiyOKpWLEiwsLCsGvXLuzcuRMXL17ElStXYGdnhypVqqB79+7o379/juuv5MU777yDjIwMbNu2DYcPHzY/zt21a9di+Rxr27Yt3NzckJycbDGlXHYmTpyIQ4cO4fz58zh//jzS0tJQrlw5NGzYEG+//TY6depUqF84u3fvjhUrVuDatWtYvnw5Jk2aZK6rWLEiQkNDsWnTJoSHh+Off/7BxYsX4erqCk9PT/Tt2xfBwcHmUXuFGXuzZs0QGhqKBQsWICoqCnv37kXVqlXxwQcfYOjQoTk+tffKK69gzZo1WLBgAc6dO4f79++jRo0a+Pzzz/HOO++gTZs2Wd5jGmCwYMECRERE4MiRI3Bzc8Orr76KsWPH4syZM/k6p8V9DYlsAfuestH39OrVC97e3jh58iTOnz+Pa9eu4dGjR5BKpfD09ETnzp3RrVu3LNcfyH+fY+Ll5YWNGzfijz/+wF9//YWzZ89Cp9OhQoUKCAgIQJcuXSzaN2zYEFu2bMHSpUtx5MgR7N27FwqFAvXq1UO3bt0sBkUVhoL2Z89THH/DLxJ/Qa9nccjp3qcgMfPep/DPQ04EsSRNFEQ27Z9//sGgQYOQlpaGOXPmoGPHjlnabNmyBZMnT4aXlxd2796d75sSo9Fo8QGdlJRk/oAODAx87ge0r6+vOdbc9rFs2TJs27YNt27dMt9orF69Gs2bN8/TdgYOHIioqCiL9+SVVqvFa6+9Zr7RMH1oPevQoUPmD4j79++bPyCqVatm/oAwTYWRX7NmzcLSpUvRuXNnzJ49u0DbAIDMzEwEBARAq9Wid+/eWR7nWbt2LaZNmwYACAsLMy8G8bTg4GDcuXMH+/fvt7i21rpOpnie5+lt5nQMLxKfVqu16FjT09PNHau/vz+Cg4PNU/yYPH782NxB3b9/H25ubmjRooW5g/rss8/Qo0cPi0dZ8/JvJjemY58+fbrFauV5eU9BrjkRERERERERUVFgIp2ILBgMBrRr1w537tzB+vXr0bhxY2uHREREREREREREZFVcbJSILGzYsAF37txB48aNmUQnIiIiIiIiIiIC50gnIgA3btzA8uXL8fDhQxw9ehQSiQSffPKJtcMiIiIiIiIiIiIqEZhIJyIkJibizz//hFwux8svv4xx48bB39/f2mERERERERERERGVCJwjnYiIiIiIiIiIiIgoF5wjnYiIiIiIiIiIiIgoF0ykExERERERERERERHlgol0IiIiIiIiIiIiIqJcMJFORERERERERERERJQLmbUDKKuSkpKsHUKZ4+rqipSUFGuHQbngNSr5eI2Kn7u7u7VDoP9nzb6b//ZsD6+ZbeJ1sz0l8Zqx7y45SuP37pL4N1/S8Bzljucndzw/uSut5yevfTdHpFOZIZHwz72k4zUq+XiNiKyD//ZsD6+ZbeJ1sz28ZlTW8G/++XiOcsfzkzuen9yV9fNTto+eiIiIiIiIiIiIiOg5mEgnIiIiIiIiIiIiIsoFE+lERERERERERERERLlgIp2IiIiIiIiIiIiIKBdMpBMRERERERERERER5UJm7QCIiIiIACA4OBh37tzJtq5Zs2b4/fffLcq0Wi2WLFmCbdu24d69e3B1dUXr1q0xYcIElCtXLtvtbNu2DatXr8a1a9cgl8vh7++PDz74AH5+foV+PERERERERFR6MJFOREREJYazszPefffdLOVeXl4Wr41GI0aNGoWIiAg0atQI7du3x82bNxEWFoYTJ04gNDQUHh4eFu9ZvHgx5s6dCy8vL/Tt2xcZGRnYuXMn+vbti1WrVqFJkyZFemxERERERERku5hIJyIiohLDxcUF48aNe267zZs3IyIiAp07d8asWbMgCAIAYN26dZg6dSrmzp2LadOmmdvHxcVh4cKFqFGjBv788084OzsDAPr164fevXvjq6++wo4dOyCRcNY7IiIiIiIiyorfFomIiMjmhIWFAQA+/PBDcxIdAPr27YuqVati+/btyMzMNJdv2rQJer0eo0aNMifRAaBu3bro3Lkzrl+/jjNnzhTfARAREREREZFNYSKdiIiISgytVotNmzbhl19+wZo1a3D+/PksbTQaDc6fP4+aNWtmmfJFEAS0atUKKpUKly5dMpdHRUUBAF599dUs2wsMDLRoQ0RERERERPQsTu1CRERUiARBgFwmAoIRBoMcBoPB2iHZlMTERHz22WcWZQ0aNMCcOXNQrVo1AMCtW7dgNBpRo0aNbLdhKo+Li0PTpk3N/69UKlGhQoUs7atXrw4AuHnzZiEdBRER2ZKn+269Xgaj0WjtkIiIiCgXEokEMtmT79p6vbTY+m4m0omIiAqJ0j4TMiEOUK+BIGZAtOsE0a4F0tXOEEXR2uGVeD179kSTJk3g4+MDpVKJuLg4rFy5Elu3bsXgwYOxbds2ODk5IS0tDQDg5OSU7XZM5enp6eay9PT0LIuPPtvetN2cuLq6WnUOdXd3d6vtmwqG18w28brZnhe5ZqIhEdDHQFStBUQdBIe3AUVTCNKKhRghERERFRZHBxWkxksQMp9M9yna94FBUg8ZamWR75uJdCIiokLgYJcJuWYBkPmnuUzQHocgrQon11VIy8g+6Uv/GTt2rMXrunXrYubMmQCArVu3IiwsDEOGDLFGaACAlJQUq+3b3d0dSUlJVts/5R+vmW3idbM9L3LNHB3UkKq+gaDdby4TtREQZXUgOi9GmqpgX8j5YwwREVHRcFKqIEn/CILuv/WtBO0RSOXN4ej4AzLUDkW6f86RTkREVAjkknsWSXQzQzwE9RrI+dN1gfXp0wcAEB0dDQDmxUKfHnH+NFP50yPWnx7JnlP7pxchJSKi0k0QBEjFqxZJdHOd/goE7R5IpVIrREZERETZkUqlkOgjLZLoJoIuElJjdJE/QcxEOhER0QuSy+UQNJtzrBcyN8FOnlGMEZUuppF9KpUKAFC1alVIJBLExcVl295U/vQc6jVq1IBKpUJiYmKW9qa50U1zpRMRUeknl4lA5h851guZ66GQZ/+DLRERERU/uUwNIbe+W/0HFHJNkcbARDqVCmfOnEGLFi2wdOlSa4dSJixduhQtWrTAmTNZfwXMq7t376JFixaYNm1aIUZGZEWiNpdKPQDOkV5QFy5cAAB4eXkBAOzt7dGwYUP8+++/uHPnjkVbURRx/PhxKJVK1K9f31weEBAAADh27FiW7UdERAAAmjVrViTxExFRCSQYIYi6XBroIbDvJiIiKjEEGAFRn0sLHYCiXXSUiXQqsUyJ1gkTJlg7FKsz/VDQokULDB48OMd2x48fN7cbNWpU8QVIVMbp9XqIdl1ybmDXHlq9Y/EFZIOuX78OtVqdbfmsWbMAAF26/HeOe/fuDQCYM2eOxUKu69evR3x8PLp06QJ7e3tzec+ePSGTybB48WKLKV5iYmKwY8cO1KpVC02aNCn04yIiopJJr5dBtO+ZY71o1wk6Pdc3ISIiKim0eiVEu6451ot2PaDTF+2Co5yxlUoFPz8/rF+/Hm5ubtYOpUhJpVJcuXIFV69eRe3atbPUb9++HVKpFAaDwQrREZVdoijCINSEVN4cgi7SslJwhah8H9oMwTrB2Yjw8HCsXLkSAQEBqFKlChwcHBAXF4cjR45Ap9Nh5MiR5lHlANCjRw+Eh4djx44duH37NgICAnDr1i3s2bMH3t7eWX6ErVmzJsaOHYu5c+eiW7duaN++PTIyMrBz504AwDfffFPk8+kREVHJYTQaYZQ0gkRWB4L+imWlpCJE+17QZRTtqDYiIiLKO4PBCFHZDkLmWsAQb1kprQFR/joMqqLNh9lMIn3r1q04c+YMLl26hNjYWOh0OkyfPh09e2YdRbBgwQIsXLgwx23t378f3t7eWcqPHj2KX3/9FX///TcEQYCfnx9Gjx6Nli1bZrudf//9F3PnzsXJkyehVqtRo0YN9O3bF++88w4EgQmT4mRvb28xF25p1aJFC5w4cQI7duzAxIkTLeqSk5MRERGBVq1a4ejRo1aKkKjsylAr4eT0AyT6wxDUawBjBkS7toDDAKSr3MCpXXLXvHlzXL9+HTExMTh9+jQyMzPh7u6O119/Hf369UNgYKBFe4lEgsWLF2PJkiXYunUrVq1aBTc3N/Tq1QsTJkyAh4dHln2MGjUKXl5e+O2337Bu3TrI5XI0bdoU48ePh5+fX3EdKhERlRAZmU5wcl4MaPdAyFwPQA/RrhNE+17IULuiqB8PJyIiovxJVzvDyXUVhMytEDRbAAgQ7XtCtOuCdJUTivp7t80k0ufNm4c7d+7A3d0dnp6eWeZEzU6PHj3M86k+zcXFJUvZ1q1b8cknn8DDw8OcnA8PD8eQIUMwd+5cdOzY0aL9tWvX0LdvX2RmZuLNN9+Ep6cnDh8+jK+//hrXr1/HV199VcAjpYI4c+YMxowZg/feew/Dhw83l3fv3h0A8Mcff+Dnn3/Grl27kJKSgmrVquG9995DcHBwlm3pdDqEhYVh9+7duHXrFiQSCWrXro3+/fvj9ddft2h769YtbN26FadOncL9+/eRmZmJihUr4o033sCQIUOgVFo+UjJq1CicPXsWhw8fxsqVK7F3717cv38fgwcPtog7J56enmjWrBn++usvjB07FnK53Fy3e/du6HQ6dOnSJcdEenJyMlauXIkjR47g4cOHcHJygr+/P4YOHYpatWplaf/gwQMsXLgQkZGR0Ol0qFOnDkaMGJFrjGfPnsWaNWtw6dIlqFQqVKxYEW3btsXgwYMtplkgKo3SVQ6QSjtBoXwDgmCETq+ELgNgEv35mjVrlu85yhUKBcaOHYuxY8fm+T1du3ZF1645Pw5IRERlhyiKSFMpIZW+DYVTBwgQodM7/f9IdCbRiYiIShpRFJGW4QSZdAAUTj0AAFqdE/QZRhTH926bSaR/++23qF69Ory8vLBkyRLMnj37ue/p0aMHmjdv/tx2KSkp+Pbbb+Hu7o7NmzejUqVKAIDhw4eje/fumDp1KgIDA+Hk9N8ceVOnTkVaWhqWLFmCoKAgAMD48eMxZMgQrFmzBp07d0bjxo0LeLRUmAwGA8aPH4+MjAy88cYb0Gg02Lt3L7744gvMnTvX4m9Eq9ViwoQJiI6Oho+PD7p06QK9Xo/jx4/jk08+waRJkxASEmJuf+jQIWzfvh1NmjSBv78/RFHEpUuX8Pvvv+Ps2bP45ZdfIJNl/Wf22Wef4erVq2jRogWcnZ1RpUqVPB9P586dcfLkSRw9etTih4Dt27fjpZdeynFUZVJSEoYPH47bt2/D398f7dq1w927d3Hw4EEcO3YMc+fORaNGjcztHz58iGHDhiExMREtWrSAr68v4uLi8MEHH+Q4j/DGjRsxa9YsODs7IzAwEO7u7oiJicGqVatw5swZLFq0yCL5T1QaCIIAO4UGEkELoyiHRmsPtYY/GhEREdkKg8EAtcHh/18xgU5ERFTS6Q0i9AbT4NXi67ttJpHeqlWrItv27t27kZqainHjxpmT6ABQqVIlDBgwAAsWLMC+ffvMo5v//fdfnDp1Cs2bNzcn0YEnI+PGjx+PgQMHIjQ0tEgT6aIoQqVSFdn2X5RSqSwx09skJiaibt26+OOPP5CRkQEAaN++PcaNG4d169ZZJNKXL1+O6OhoDB06FMOHDzcfQ0ZGBsaOHYv58+fjjTfeQIUKFQAAHTt2xDvvvJMlObx8+XIsXboU+/bty/I0A/AkSb1mzRq4urrm+3iCgoLg6uqKHTt2mBPply9fxvXr1/HBBx/k+L6ff/4Zt2/fxrvvvmuxEOnx48fx4Ycf4ttvv0VoaKh5juBFixYhMTERI0eOxJAhQ8ztt2zZghkzZmTZ/r///os5c+bg5ZdfxsKFCy2ObfXq1Vi0aBFCQ0PRv3//fB8zUUllp9BBIb0OQ/pPgP46pLIacHKcAJ3og0yNwtrhEREREREREVEhsZlEekGcOnUK58+fh0QiQY0aNdCyZUs4OjpmaRcVFQUAWeZfNZUtWLAAUVFR5kR6bu2bNGkCpVKJU6dOFeKRWBJFEW+++aY5jpKoefPmCA8PLzHJ9AkTJkChUJgT6QEBAahUqRIuX75sbmM0GrF582Z4e3tbJNEBwNHREUOHDsXHH3+MQ4cOmUele3p6Zru/Xr16YenSpTh16lS2ifRhw4YVKIkOAHK5HB06dMDGjRuRmJiIChUqYPv27ZDJZHjzzTdhNGb9JU6n02Hv3r1wdXW1SIoDT36katasGaKionDhwgU0atQIOp0O+/fvh7u7O/r162fRvmvXrli7di3i4y0Xdti8eTMMBgMmTZqU5dgGDBiAdevWYe/evUykU6khkwFyHIIh6VNzmahLgiH5Xcicp0Iu6wSdnotXEhEREREREZUGpTqRvmDBAovXLi4u+OKLL8wJcZO4uDgAQPXq1bNsw1R28+bNPLWXSqXw9vbGtWvXoNfrs53WozCUlAS1Lchp6hRPT09cunTJ/PrmzZtITU1F+fLlsWzZsiztk5OTze1MRFHEjh07sHPnTty4cQPp6ekWieyHDx9mG9OLLmrXpUsXhIaGIjw8HH379sW+ffvw6quvwt3dHY8ePcrSPi4uDhqNBv7+/tnOU96kSRNERUUhNjYWjRo1ws2bN6HRaNCkSRPY2dlZtJVIJGjYsGGWRLrpXJ48eTLbH5JkMpnFuSOydfaKNBiTvs22zpg2A3YeQdDps67JQURERERERES2p1Qm0uvUqYPvv/8ezZo1g6enJxITE3Ho0CHMnz8fn376KZydndGmTRtz+/T0dABPEq7PMs2LnpaWlqf2wJPRy0ajERkZGQUedZwbQRAQHh7OqV3yKLunEIAnP3o8nfROTU0FANy4cQM3btzIcXtqtdr8/7Nnz8aff/6JihUrIjAwEOXLlzdP87J8+XJotdpst+Hh4ZHv43ha7dq14evrix07dqBixYpIS0tDly5dcmxvGomf037LlStn0c70N+7u7p5t++y2Yzp/q1atyttBENk4QUwCxPQcajMhiI8AMJFOREREREREVBqUykR6u3btLF57e3tjwIABqFWrFoYMGYK5c+daJNKtwdXV1TwXdUG9aDK2pDMldWUyWY4JXRPTjxoODg4WbaVSKYD/EsJP15kS3qayypUrAwA6dOiA+fPnPze+R48eYePGjfD19cWGDRvg4OBgrktMTMTy5cshl8uz3Wd+r53p+BQKhXl7ffr0wbRp07B48WJ4enrirbfeglQqhV6vN+/r2WNLS0vL9lyafhyoUKEC3N3dzSP409PTs21vujbOzs7meldXV9y+fRtnzpyxWJg3J6Zt2NnZWezjedearI/X6Amj7h4MudRLJHKeKyIiIiIiIqJSolQm0nPSsmVLVKtWDbGxsUhPTzcn+54edf5s0iO70efZjVJ/WkZGBgRByHEkNACkpKQU/EDKCNM50uv1SEpKyrWt6Vqo1WqLtgbDkzRXUlIS3N3dLep0Op25DniS3HZ0dMT58+eRmJj43Gl5Ll++DFEU4e/vj8zMTGRmZprrDh8+bN5HbvvMK9PxabVa83tfe+012NnZ4cGDBxg0aJB5RLjpvD29bw8PD9jZ2eHChQu4d+9eluldjh07BuDJj05JSUlwc3Mzt79//77F9C5GoxGnT582x2Xah6+vL/7++29ERERYLOCaE1OcGo3GvI1nrxGVPLxG/3F0cAYkFQHjg6yVknLQG92QUQjnisl4IiIiIiIiIusrc6ugmRIST0/PUaNGDQDIdv5mU9nT86Hn1t5gMOD27dvw9vYusvnRqWjIZDL07NkT9+/fx/z5880ju592/fp1PH78GABQqVIlAMDFixctpohJSEjA4sWLizxeZ2dnzJ07Fz/88AP69u2ba1u5XI527dohOTkZv/32m0XdiRMncPLkSXh7e6Nhw4YAnox8b9OmDZKSkvDHH39YtN+2bRtu3bqVZR9vv/02pFIp5syZg/v372epT0tLwz///JPfwyQqsdQaF0hd5wFQPFMjh9R1LjI12U//RURERERERES2p0xlelUqFa5evQqlUmkxwi8gIAA7duxAREQEGjVqZPGeiIgIAECzZs0s2pvqRowYYdH+zJkzUKlU6NixYxEdRdlz/fp1TJs2Ldu6GjVqYNCgQYW2r+HDh+Off/5BaGgojh8/jkaNGsHd3R2JiYm4fv06rl69imXLlsHDwwPly5dH69atcfDgQQwePBgBAQF4/Pgxjh07hqZNm+L27duFFldOGjdunOe2Y8aMwdmzZ7Fy5UpcvHgRfn5+uHfvHvbv3w97e3t8+eWXFtMNjR49GqdOncKvv/6K8+fPw9fXF3FxcTh+/DiaN2+OyMhIi+3XqlULH3/8MX788Uf06dMHLVu2hJeXF1QqFe7evYuzZ8+iU6dOmDx5cqEdP5E1GY1GqLW14eARDlGzDdBfBKT1INh3h1rjDoNRtHaIRERERERERFRISl0iPT09HYmJiahZs6ZFeWZmJr766itkZGSgZ8+eFqPF33zzTcyaNQtr1qxBr169zCON79+/jzVr1sDd3R1t27Y1t3/ppZcQEBCAyMhIHD58GEFBQQCeTLsxb948AEBISEhRH2qZkZiYiPDw8GzrGjduXKiJdIVCgZ9++gnbt29HeHg4Dh48CJ1OBw8PD9SoUQM9evRArVq1zO2/+uorVK5cGQcPHkRYWBgqVqyIvn37YtCgQThw4EChxVUY3N3dsXz5cqxYsQJHjhzBuXPn4OTkhKCgILz33nsWxwUA5cuXx9KlS7Fw4UJERkbi3LlzqFOnDubPn4/Tp09nSaQDQPfu3eHj44N169bh3LlziIiIgJOTk/m8vPXWW8V1uETFQm8A0lTukEmHQqIwwGiUQq/KbeZ0IiIiKgoSiQT2inRIJBpAlEGjc4FOzx+1iYiIqPAIoijaxN1FWFgYzpw5AwCIjY3F33//DX9/f/OUK02aNEFISAhu376Ntm3bokGDBqhVqxbKly+PR48e4fjx47h//z58fHywevXqLHPObt26FZ988gk8PDzMyb7w8HAkJSXhp59+wptvvmnR/urVq3jnnXeQmZmJt956CxUqVMDhw4dx9epVDBgwAF999VWux8M5hosf53Yu+XiNSj5eI0AuM8JOkQZRfAgBchjhDo3GpchGoHOO9JLDmn/7/Ldne3jNbBOvm+1xd3eHKuMBFMI5GNJnAIabgOAIicMAwH4A0lVKq8REJUNp/PfMz6nn4znKHc9P7nh+cldaz09e+26bGZF+5swZbN682aIsOjoa0dHR5tchISFwc3NDv379cOHCBRw+fBipqamws7NDrVq1MHDgQAwYMCDLQosA0K1bN7i7u+PXX3/Fpk2bAAD169fHqFGj0KpVqyzta9eujdDQUMydOxeHDx+GSqVCjRo1MGXKFPTr16+Qj56IiEoCe4UGgnEH1I9+AKABAAiS8rB3XQiNri70HIxORERUrERRhAKRMKRMeKowA0bVrxD0l+GgnAF1Ztbvf0RERFQ8BEGAIAgW6wvaKpsZkV7alMZfb0q60vqrWWnCa1TyleVrJJFI4CA/g8zkwdnUKuBQ7i+kqzwKfb8c1VZycEQ65QevmW3idbM9bi4aaB/2AIwPsq2XemxHmqpKscbEvrvkKI3/nvk59Xw8R7nj+ckdz0/u8nN+ZDIDHBTpEPWXADEDgrwhdAZ3ZGrsijjK/Ct1I9KJiIisSSFXQZsxJ4daLfSZ2yGTvQe9Xl+scREREZVlojE9xyQ6AIi6S5BIvEvFKDgiIiJbIZfpYS+NhOHxJAA6c7nUviscHSYjQ22bT4tJrB0AERGRLZBIdDDq43KsFw0XIRH4kBcREVFxEgQFcvtaK0jKgQ9hExERFS97RTIMKePxdBIdAMTMbRD0+yGVSq0T2AtiIp2IiCgPjEYFpLJaOdYLskYwikIxRkRERESQuEOwa5d9neAAUVqbiXQiIqJiJJPJIGq2A8i+/zWqlsBOnlq8QRUSJtKJiIjyQKO1h9zpoxxq7SCz68RpXYiIiIqZIHGGxOlTCNKaz9QoIHVbCrXGxSpxERERlVWCIEA03My5gSEBgo0+zc050omIiPJAFEXojT6wc5kBTdq3gJgOABCkVWDvugBqDRcWIyIisoZ0lSuULr9BKv4Lo+4MBKk3BFlTqDUuMBisHR0REVHZYjAYICheh5i5PfsG8kYwGBXFG1QhYSKdiIgojzRaBWSyN2Hv8SogJkGADEa4QqVx4SJmREREViKKIjLUjhCEBpBIXoGoF2HUsl8mIiKyBqPRCMgCAEkFwJj4TK0AqdMnUGfaIaepX0oyJtKJiIieQyqVQCFPhSCIMBjtoFK7QhSfflScX9aJiIisTRRFGDgEvVht3boVZ86cwaVLlxAbGwudTofp06ejZ8+e2bZPT0/HggULsGfPHiQmJsLT0xMdOnTA2LFj4ejomKW90WjE2rVrERoaips3b0KpVKJVq1aYOHEiqlatWtSHR0REBaTKdIWj2x8wpk+DqD36pFBaHVLnr5Gpr2az65cwkU5ERJQLR6UKOs0mqFJWQDQmQ6ZoCaXzp9BovaDXc6kRIiIiKrvmzZuHO3fuwN3dHZ6enrhz506ObVUqFQYMGICYmBgEBgaiU6dOiImJwYoVK3Dq1CmsXbsWdnZ2Fu+ZMmUKwsLCULt2bQwcOBAJCQnYtWsXjh07hg0bNqBGjRpFfIRERFQQRqMR6epysHP4ETKndAB6GEVHZGicbPppbibSiYiIcuBgr4Y6bTz02pPmMr32CNIeHYezxyYYDC/Z7C/pRERERC/q22+/RfXq1eHl5YUlS5Zg9uzZObZdtmwZYmJiMHz4cHz00X8LuM+aNQtLly7FqlWrMHLkSHP5yZMnERYWhoCAAKxYsQIKxZP5dDt37owRI0bgm2++wfLly4vu4IiI6IWIoohMjRzA0+uJ2W4SHQA4lI6IiCgbgiBAEG5bJNH/o4c67WvYKTKLPS4iIiKikqJVq1bw8vJ6bjtRFBEWFgalUonRo0db1I0ePRpKpRJhYWEW5abX48ePNyfRASAoKAjNmjVDREQE7t69WwhHQURElDdMpBMREWVDKpVCrzmUY71edwZSqbr4AiIiIiKyUXFxcUhISIC/vz+USqVFnVKphL+/P+Lj43Hv3j1zeWRkpLnuWa+99hoAICoqqmgDJyIiegoT6URERNkQRRGCxDWXFnYQRXajRERERM9z8+ZNAMhxTnNTeVxcHIAn86knJibC29sbUqk0S/vq1atbbJeIiKg4MANARESUDYPBAJkiOMd6hcPb0OmdizEiIiIiItuUlpYGAHBycsq23lSenp6er/amdkRERMWBi40SERHlQKtzhYPLd1CnfmFRLpHWhJ3jGGRkCFaKjIiIiIiex9XVFRJJ6Rs/6O7u/vxGZRzPUe54fnLH85O7snx+mEgnIiLKgU4nh0LxJpzLNYMucwuMxvuQ23WEIK0PlcoZgGjtEImIiEoViUQCO0UGJBI9jEYJtDoXGAwGa4dFL8jZ+clTfKYR588ylZtGmue1valdTlJSUvIfbAnn7u6OpKQka4dRovEc5Y7nJ3c8P7krrecnrz8OMJFORESUDbncCKlUDaNRAZW6MqTSsRCkAjQ6A4waI5hEJyIiKlz2Cg0kOAtd2o8w6q9BkFaFneMHEOWvQ51pb+3w6AWY5jQ3zYH+LFO5aa50pVKJChUq4Pbt2zAYDFnmSTfNjW7aLhERUXEofc84ERERvQCZzAClw11oNV8hNaUP1OpxsLO7BIlEBZ1OB6PRaO0QiYiISh2ZDBCMu6BJGQmj/hoAQDTEQ5P6MUTNKijkeitHSC+iRo0a8PT0RHR0NFQqlUWdSqVCdHQ0vL29UblyZXN5s2bNzHXPOnr0KAAgICCgaAMnIiJ6ChPpRERE/08ikUAmu4xHjzoiM3MLDIZ/odUcRdLj3jAaNkHOL/FERERFwk6RCm36zGzrdKolUMi5qKQtEwQBISEhUKlUWLRokUXdokWLoFKp0Lt3b4ty0+t58+ZBq9Wayw8fPoyoqCgEBgbCy8ur6IMnIiL6f5zahYiI6P/Z2aUiJfkjAFnnYk1Lm45y5TtApyu7C6sQEREVGTEZEDNyqDRANN4HwD64pAkLC8OZM2cAALGxseayqKgoAECTJk0QEhICABg2bBj279+PpUuXIiYmBvXq1cPly5cRERGBBg0a4N1337XYdosWLRASEoKwsDD07NkTQUFBSExMRHh4ONzc3PDll18W45ESERExkU5ERPSUVBgMt3Oo08NguAFBaApR5PzoREREhUkQFM9p4FA8gVC+nDlzBps3b7Yoi46OtpiOxZRIVyqVWLNmDRYsWIA9e/YgMjISFSpUwNChQzFmzBjY22edB3/atGnw8fFBaGgoVq9eDaVSiXbt2mHixImoVq1a0R4cEVEZIggC7BRqyKSpEMV0CIIrdAYXaDRya4dWoggiswFWURpXuC3pSuvKwqUJr1HJV9qvkYPDfTx+1CbHejf3tdBqGxdrIj2vq4dT0bPm335p/7dXGvGa2SZeN+txsFdBnzbQPD/60wRJeSjctkClds5SVxKvGfvukqOk/W0UhpL4N1/S8Bzljucnd2Xx/AiCAEdlKjSpH8KojTKVQmr/JuSOXyJD5WhuW1rPT177bs6RTkRE9P9E0QVSWa0cau0gldbkaHQiIqIioNE6wc51ASC4WlYI9rB3+xUajYt1AiMiIirl7O3U0KSMeSqJDgAiDJnh0GX8ADsF1wozYSKdiIjo/2m1TnB1/QlA1keLXVxnQKt1Kv6gyrglS5bA19cXvr6+OHfuXJb69PR0TJ8+Ha1bt0b9+vURHByMH374ARkZ2c+zazQa8fvvv6NLly5o2LAhWrRogQ8//BDx8fFFfCRERJQbo9EIVaY3HDx2wM5lFmQO/aBw/gYOHn9BrX0ZBiN/yCYiIioKUkkSjLrz2dYZMrdDLkst5ohKLs6RTkRE9P+MRiO02pdQrvweqNVroddFQyKtDqXyPej1laHXS60dYpkSGxuLBQsWQKlUQqVSZalXqVQYMGAAYmJiEBgYiE6dOiEmJgYrVqzAqVOnsHbtWtjZ2Vm8Z8qUKQgLC0Pt2rUxcOBAJCQkYNeuXTh27Bg2bNiAGjVqFNPRERHRs4xGI9JVLpBIOkAiexN6UYRBlXUBcCIiIio8oiExl1ojRDEdgEdxhVOiMZFOREQEQC43QirNAARAqy0HqXQ85HINRFEBtdra0ZU9Op0On376KerWrYvq1atj27ZtWdosW7YMMTExGD58OD766CNz+axZs7B06VKsWrUKI0eONJefPHkSYWFhCAgIwIoVK6BQPFnYrnPnzhgxYgS++eYbLF++vOgPjoiIcmU0GmE0Gq0dBhERUZkgSCvkUiuBIPDJbBNO7UJERGWaRCKBUpkMtXYGEh+3R+LjjtDqf4JCkQKdzg46nbUjLJt++eUXXL16Fd9//z2k0qxPAoiiiLCwMCiVSowePdqibvTo0VAqlQgLC7MoN70eP368OYkOAEFBQWjWrBkiIiJw9+7dIjgaIiIiIiKikslgdINE3jDbOql9Z+j0XKfEhIl0IiIq0+ztk/DgURdkqNbAKKbAaExCWsZSJDzuBXsHzgVnDX///Td++eUXjB07Fi+//HK2beLi4pCQkAB/f38olUqLOqVSCX9/f8THx+PevXvm8sjISHPds1577TUAQFRUVJY6IiIiIiKi0ipTo4Sd68+QKAIsyqV2HSB3/BQaLSc0MWEinYiIyiyZTECGeh2MxkdZ6gyG29Bo9kEiYVdZnLRaLSZPnow6depg2LBhOba7efMmAOQ4p7mpPC4uDsCT+dQTExPh7e2d7Qj36tWrW2yXiIiIiIioLBBFERkqV0iVC+FQbi/sPTbDodwBCPbfIUPlaO3wShT+pEBERGWWVJqB1IxdOdarMrfCxbEztFp5MUZVts2bNw9xcXHYtGlTtglvk7S0NACAk1P28/WZytPT0/PV3tQuO66urlb9YcXd3d1q+6aC4TWzTbxutofXjIiI6MWIoohMjT0AewCe1g6nxGIinYiIyiwREgiCMsd6QVBC5MNbxebs2bNYsWIFxo4dCx8fH2uHk0VKSorV9u3u7o6kpCSr7Z/yj9fMNvG62Z6SeM2Y2CciIiqdmB0gIqIyS69TwslxaI71Tsr3oNfxN+fioNfr8emnn8LX1xcjRox4bntnZ2cA/404f5ap3DTSPK/tTe2IiIiIiIiInsbsABERlVlGoxEOdq1gb/c6MjVHLOqU9l0hkdSFKIpWiq5sUalU5vnM69evn22bPn36AAB+/vln1KpVC8B/c6A/y1RumitdqVSiQoUKuH37NgwGQ5ZpY0xzo5vmSiciohcnCAIkEglEUYTRaLR2OEREREQvhIl0IiIq09RqR7g6zYGz4w2o1KGAIIOjQx8A1aDJdLB2eGWGQqFAr169sq07ffo04uLiEBwcDA8PD3h5eaFGjRrw9PREdHQ0VCoVlMr/puhRqVSIjo6Gt7c3KleubC5v1qwZdu7ciejoaAQEWK5If/ToUQDIUk5ERAXjYK+CgHjodacgkVaE1L4pMjWuMBj4UDQRERHZJibSiYiozBEEAQqFCoIkBUZRDUjcAH092Cu+hyAI0Gr0HIlezOzt7fHdd99lW/fpp58iLi4OI0eORKNGjczlISEh+Pnnn7Fo0SJ89NFH5vJFixZBpVLh/ffft9hO7969sXPnTsybNw8rVqyAQqEAABw+fBhRUVEIDAyEl5dX4R8cEVEZ46hMhyp1JAy6C0+VyuHovgxaNGIynYiIiGySzSTSt27dijNnzuDSpUuIjY2FTqfD9OnT0bNnT4t2Op0OBw4cwIEDB3DhwgXcv38fAPDyyy+jR48e6NOnT5bHuW/fvo02bdrkuO+xY8di3LhxWcoTEhIwd+5cHDlyBCkpKahSpQq6d++OYcOGQS6XF8JRExFRYRMEAXYOj/AgaQw05i/4crg5DoaLciQy1RyFbiuGDRuG/fv3Y+nSpYiJiUG9evVw+fJlREREoEGDBnj33Xct2rdo0QIhISEICwtDz549ERQUhMTERISHh8PNzQ1ffvmllY6EiKj0kMtFaFWLnkmiA4AOGUnD4FzuADJUbtYIjYiIiOiF2Ewifd68ebhz5w7c3d3h6emJO3fuZNvu1q1b+OCDD6BUKtGyZUsEBwcjLS0NBw8exNdff40jR45g8eLFEAQhy3vr1KmDtm3bZilv1qxZlrLExET07t0b9+/fR7t27VC9enWcOnUKc+fOxYULF7Bo0aJs90FERNZlZ5+Ge4/6QWeIf6pUh+SMpZBK3GAnGwy93mrhUT4olUqsWbMGCxYswJ49exAZGYkKFSpg6NChGDNmDOzt7bO8Z9q0afDx8UFoaChWr14NpVKJdu3aYeLEiahWrZoVjoKIqHSRy1KRnhqWQ60OBt0pSCQdOGf6C7p+/TquXr2KypUr45VXXrF2OERERGWCzSTSv/32W1SvXh1eXl5YsmQJZs+enW07JycnTJkyBT169MgyX+rAgQNx8OBB7N69G2+++WaW99atWzfbkefZmTVrFu7du4epU6finXfeAQCIoohJkyZh586d2LlzJzp37lyAIyUioqIiCAIMxlvPJNH/k5T+C7zL94Re71LMkVFuZsyYgRkzZmRb5+zsjM8//xyff/55nrYlkUgwaNAgDBo0qDBDJCKi/ycIegCZOdYbjQkccJRH4eHhWL9+PSZNmmSRLP/hhx+watUq8+vg4GDMnz8/y5PXREREVLhsZnK6Vq1a5Wne0ooVK6J///4WSXTgyai1IUOGAABOnTr1QrGkp6cjPDwcVatWRd++fc3lgiBg0qRJAIDQ0NAX2gcRERU+QRCg1V/Lsd4opkHM5cs/ERER5c5otIdEWjPHepk8gKPR82jbtm24cuUK6tatay6Ljo7GypUr4ejoiLfeegteXl44cOAAtm/fbsVIiYiIygabGZFeGGSyJ4eb0y/1CQkJWLt2LdLS0lCuXDk0b94828e8z507B61Wi1atWmUZTeHl5YWaNWsiOjoaBoOBowKIiEoQURQhl9fIsV4QlBBgV3wBERERlTIarTMcnP+HjOTBWeqk8oYQ4c0FvfMoNjYWvr6+5sWxgSdrhwmCgLlz5yIwMBDJyclo06YNwsLC0L17d+sFS0RExU4qlcBOkQIgDYKggMHgDI3Wnv1sESpTifSNGzcCAAIDA7OtP3bsGI4dO2Z+LQgCunTpgq+//tpihPvNmzcBADVq1Mh2OzVq1MC///6Lu3fvomrVqoUUPRERvShRFCGT1IRMWgl6w/0s9W6OQ6DXuVohMiIiotLBaDTCIDaAo9sqqNO+htHwLwB72DmEQKEcjQyV8rnboCceP36Mxo0bW5RFRkaiXLly5u+0bm5uCAgIwKVLl6wRIhERWYlCoYUUJ5GRPBWiMREAIJM3hdLlR6gzPfn0VxEpM4n0DRs24MiRI2jRogWCgoIs6hwcHDB69Gi0bdsW1apVg9FoxOXLl/HTTz9h27ZtyMzMxIIFC8zt09LSADyZlzU7jo6OFu2IiKjk0GpcUaXcOtx7PAw6/fX/LxXgouwNZ4fByFRbNTwiIiKbp9UqIJEEwMFlHSQSDURRCp3eBRkqzo2eH3Z2dsjIyDC/TkhIQFxcXJb1vpydnZGamlrc4RERkZVIJBLIJDFITxpjUa7XnUZ6Ugic3LciQ8V1v4pCmUikHzx4EN988w28vLzw448/ZqkvV64cxo8fb1HWsmVLNGrUCD169MCePXvw999/w8/Pr9BicnV1hURiM1PUlxru7u7WDoGeg9eo5LPla2Q0amEU0yAIXqjm+Sf0hkcwiumQScpDKq0AqcQZDvbWjpKIiMj2GY1GqDMdAThaO5Q8MRqNUKlUcHJysnYoZlWrVsXp06eRmpoKFxcXbN++HYIg4NVXX7Vo9/DhQ5QrV85KURIRUXFTKDKgTvsu2zrR+BAGfTQkkmCOSi8CpT6RfvjwYXzwwQcoV64cfvvtN3h6eub5vQ4ODujWrRvmzp2L6OhocyLdNBI9pxHnplEDOY1YB4CUlJQ8x0GFw93dHUlJSdYOg3LBa1Ty2eo1kkpFyOwe41H6Kqi0JyGTVEB55/chgw+0msrQAAD0AEresdnyDxdERES2YM2aNfjggw8AAPfu3YOdXclYL6VHjx745ptv0LNnT9StWxeHDh2CUqlEmzZtzG10Oh0uXbqE+vXrWzFSIiIqTlKJHgZ9TI71Bu1JSOXtmEgvAqU6kX7o0CGMGzcO7u7uWL16dYHmKzclMNTq/571r169OgAgLi4u2/fExcVBLpejcuXK+Q+aiIgKlSAIkCjicS3hbYhi5v+X/oN0TQQqOI+Bs3wI9DpFrtsgIiKi0qlLly4W62SVpKRD7969ERkZiT179uD27dtwcHDAtGnTLH5kP3ToENLS0tCiRQsrRkpERMXJaBQgkVSG0Xgv23qJrBb0Jag/K01KbSLdlER3dXXF6tWrzcnv/Dp//jwAwMvLy1zWqFEjyOVyHD9+HKIoQhD+m+vvzp07+Pfff9G8eXPIZKX29BIR2Qy5Qo07yZ8/lUT/T2Laz3Cr+Db0uvJWiIyIiIisJS0tLct3xLNnz8LBwcFKEWUll8sxf/583L59G48fP8ZLL72UZeoZb29vLFy4EI0aNbJOkEREVOy0OlfYOY6GOu2rbGrlkCnaQKMyFHtcZUGpnKT78OHDFkn0GjVq5Nr+8uXLEEUxS/mePXuwZcsWuLq64vXXXzeXOzk5oVOnToiPj8f69evN5aIoYs6cOQCejB4gIiLrEyQZUGvP51iv0pzmmhVERERlyKlTpyyS6DKZDAkJCQUefFXUvL290bBhw2znb69bty7atm2L8uU5KICIqKwwGAyQyDtA4dDXskJwhJP7KmRqOD1oUbGZIdNhYWE4c+YMACA2NtZcFhUVBQBo0qQJQkJCcP36dYwdOxZarRbNmjXDzp07s2zLy8sLPXv2NL+ePn06bt26hUaNGqFSpUowGAy4fPkyzpw5A4VCgenTp2eZ73zSpEmIjIzE119/jRMnTqBatWo4deoUzp07h9atW6NTp05FdSqIiKhQCc9vQkRERKXCd999h9mzZ5tfjxgxAjNmzLBiRERERPmnVjvATvExnJUjYdTHAhInSCQ1kKlxgYGD0YuMzSTSz5w5g82bN1uURUdHIzo62vw6JCQEDx8+hFarBYBsk+gA0KxZM4tEeteuXfHXX3/h/PnzOHToEIxGIypWrIiQkBAMGTIEtWrVyrINT09PhIaGYu7cuTh8+DAOHDgALy8vjB8/HsOGDbOY7oWIiKxHNDpBqfCHShudTa0ApV1TaFScP46IiKg0MxqNqFu3LhITE81lmzdvRlBQkBWjsrRw4cICv1cQBIwZM6YQoyEiopJOo1VAoy0PQagAANnOtkGFSxB5lq0iKSnJ2iGUOe7u7jzvJRyvUclni9dIEATI7e/gRmJPGEWVRV1Fl0lwlPWDXie3UnTP9/SCYmRd1vzbt8V/e2Udr5lt4nXLmUwmgyAIMBgMJWpBzrxcs3v37sHPz8+i7Nq1a/Dw8CiymAqiTp06EAShQIkQQRAQExNToP2WZqXx3zM/p56P5yh3PD+54/nJXWk9P3ntu21mRDoREVFBSKVSiPpqeNlzFx6r1iFDcwIyiSfKO42AFDWg1ZTcJDoREZG1KRQaSKUJyFSHwig+gr1dZ0ikDZGZ6WwTI9927NiBQYMGmV/7+fnhyJEjJfIJ4unTp1s7BCIiIsoFE+lERFQqyRUaiNKHSFHvgQgdXKXt4e4wHK6K9wDIoddKYbCBBAAREZG1KBRaGAwbkJL8g7ksU70VMtnLcHVbA5XKOZd3W9/w4cOxceNG8+vvvvsOo0aNsmJEuevRo4e1QyAiIqJcMJFORESljtwuEw8zf0Fi+m/msvtpi+Hu0AmVnb6ANlMCgEl0IiKi3MhkjyyS6CZ6/TWoVUsgk02CXm+FwJ5Do9GgcuXKFmURERGoV6+elSIiIiKi0kBi7QCIiIgKkyAI0OOGRRLdJEm9E2r9aUgk7P6IiIhyI5PJkKnekWO9Wr0OcnlaMUaUNzExMVmS6Hfv3mUSnYiIiF4YR6QTEVGpIpUbcC9jZY71CRnLUc2lGYwau2KMioiIyPaIYmoudZkoadOML1myBJ9++qn5dffu3bFixQorRlQ4Tp8+jf379+PmzZvIyMjIdm56QRDw229ZBxEQERFR4WEinYiIShUBBhiMKTnW640pAAzFFxAREZENMhgMsLPvCJUq+0S0nd0bMOjtizmq7ImiiNatW+PChQvmspUrV6Jbt25WjOrFiaKIzz//HFu2bDEnzwVBsEikm16XxMVTiYiIShs+205ERKWK0WAHV7u2Oda72rWGaFAWY0RERES250mytgbk8oBsau3g5Pw5tDpFcYeVRVJSEsqVK2eRRL948aLNJ9EBYN26ddi8eTP8/PywcuVKtG/fHgCwe/duLF26FD169IBEIsF7772Hffv2WTlaIiKi0o+JdCIiKlUMBiPcHDpCJqmQpU4iOKGC06ASuTAaERFRSZOZ6QgX10Vwcv4UEklFCIID7Ow7olz5cGg0lbOdYqQ4RUREwMPDw/za3d0dDx8+hJeXlxWjKjybN2+Gg4MDli5dipYtW8LR0REAUKNGDbz22muYPn06Zs+ejRUrViAmJsbK0RIRUV4pFAYolclwcEiAvX0GpFKptUOiPGIinYiIShWJRAKjrhx8K4TCw6EbBMgASOBq3xZ1KmyCLtPd2iESERHZDJVKCeBduLptg7vHQdjb/wCVqhIMButOJfLFF1+ga9eu5tcTJ07E9evXS9WC4tevX4e/vz/c3S3vXQyG/6ao69ixI/z8/ErFXPBERKWdIAhwVKZCkzkFjx4G4fGj1khN6QmZLAIKhdba4VEecI50IiIqFSQSQGaXijTtGai1N+CExqjiMhmVnScBAIwGB+gy5VYfPUdERGRrDAYjDAYna4cB4EkSuVq1alCr1eay8PBwtGjRwopRFQ1RFOHm5mZ+7eDgAABISUmxGIlfvXp1HD58uLjDIyKifLK3T0dy8kDo9dfMZQbDbSQnDYO7+2pIJAEwGo1WjJCeh4l0IiKyeRIJICpu4NyDwTCK/32xVkgrws9zNfTqcv+fQGcSnYiIyFbFx8fjlVdesShLTk4utUkHT09PJCQkmF9XqVIFABATE4NXX33VXB4XF8dpAYiISjhBECAab1gk0Z+WljYNzi5/IDPTsZgjo/woPc+9ERFRmSW1S0dM4kiLJDoAaA0PcO3xZ5ApNFaKjIiIiArDxo0bLZLozZs3x+PHj+Hq6mrFqIqWn58frl27Zp7KJTAwEKIo4scff8T169eRnp6OZcuW4e+//0a9evWsHC0REeVGIpFAq4vMsV6vvwaJhNO7lHQckU5ERDZPZ7wHvTE527o0TTRESSqA8sUaExERERWO/v37Y9euXebXP/30E959910rRlQ8goODER4ejkOHDqFNmzaoU6cOOnXqhJ07d6Jz587mdjKZDBMnTrRipERE9DyiKEIqqZJjvSA4QhT5dFFJx0Q6ERHZNEEQoDOm5tpGFDkinYiIyNaoVCp4e3tblEVGRqJ27dpWiqh4de7cGe3bt7eYtmXGjBnw9fXFvn37kJKSgpo1a2LYsGFo2LChFSMlIqLnMRqNsLdvCUAOQJel3kE5EDqdKzgdacnGRDoREdk0URThIKuRY71M4gKp4AJD8YVEREREL+jixYsICgqyKLt//z4UCoWVIrKOZ49XLpdjxIgRGDFihJUiIiKigtJoXOHuvgpJSUMB/DfYS6FoBQeHoVCpmEQv6ThHOhER2TzR4AxPZY9s66q7ToJB61LMEREREVFBzZ8/3yKJ3r9/fzx+/LjMJdGJiKh0MRgk0OlfQbnyB+Dq9gucXb6FR7lwODrNh0rFRUZtAUekExGRTZNKJQAkqOo6EQ7yl3EnbRn0xiTYy6qimuskOEqbQqfhL/tEREQymRFyRRqMxjsAJJBIKkOrcYHBIFg7NABPnjJr3rw5rl27Zi5bv3492rdvb8WoiIiICo/BIEClcoNE8uQHY7XaaOWIKD+YSCciIpskkUggtUvBo8y9eJRxADKpB6o7v49yyo4QRREQ5TDqnKHTcFIXIiIihUILg3EPHiROgYhMAIAgKOHhNgsySSD0Out+NXz48CF8fHwsyq5cuQJPT08rRWR9devWzXNbQRBw+fLlIoyGiIgKk9HIBLotYiKdiIhsktT+Mc4+6A+d8ZG57KFqD7ydB6Oy/VDotQqAM6MTERFBEAQIkpt4nPSJRbkoqvAoaQwqlv8Lep13Du8uevv370dISIj5dbVq1XD27FkIQskYKW8tlStXzrZcFEUkJiZCr9cDAKpUqVKcYREREZVZTKQTEZHNkcmN+DdlnkUS3eR22ipUcuwBoGLxB0ZERFQCyeU6pKXPz6FWRHrGUjjYfQ2drljDAgBMmjQJK1euNL/+4osvMGnSpOIPpAQ6cOBAjnVGoxEnT57Ed999Bx8fH8yZM6cYIyMiIiqbmEgnIiKbI8gy8FC1J8f6h+r9KC8dCIOBI9KJiIgEQQudIS7Her3hOgRBA8Cu2GLS6XSoWNHyR+/9+/ejcePGxRaDLZNIJGjVqhV++eUXdO3aFUuXLsWIESOsHRYRUZkjl8shCAIMBgO/f5YBEmsHQEREVBAicp5TThT1Zf5xcCIiIhNRtIdC5pdjvVzWCEajfbHFc+PGjSxJ9Pj4eCbRC6Bq1apo1KgRNm7caO1QiIjKFFGQQaUTcO1OCs7G3se/99OQoRUgCEy1lma8ukREZHNEgz087ANzrC/n0No8bygREVFZp9VK4OI0Dtl//ZPDyfFd6PViscSyZs0aNG3a1Py6TZs2ePz4MRwdHYtl/6WRvb097t27Z+0wiIjKDKMgRZpKixMX47Dt8EVs3n8Bj5IzcPjMNaSqDZBImG4trTi1CxER2RyDToFabp8g5UE0DGKGRZ2n8i3IRE9YYZpXekEajQZz5szBpUuXcPPmTaSkpMDFxQVVq1ZFSEgIunbtCrlcbvGe9PR0LFiwAHv27EFiYiI8PT3RoUMHjB07NtukjNFoxNq1axEaGoqbN29CqVSiVatWmDhxIqpWrVpch0pEVOx0ukqo4PEbHidPgsGYAACQSr1Rzm0utJpyxRJD9+7dceTIEfPrxYsXo0+fPsWy79Lqzp07OH36NMqXL2/tUIiIygRRkCEhWYWthy/i3qNUvORVHu1a1MHSzScQ5F8Lpy7H4/XGNSHjA9KlEhPpRERkMwRBgFSuhShNB0Q5mlQOw520P/BYfQQyiSuqOg+Fk6wxdJnFN8crFZ6MjAysW7cODRs2xBtvvAEPDw+kpKTg6NGj+PzzzxEeHo6lS5eaR3ioVCoMGDAAMTExCAwMRKdOnRATE4MVK1bg1KlTWLt2LezsLP8WpkyZgrCwMNSuXRsDBw5EQkICdu3ahWPHjmHDhg2oUaOGFY6ciKjo6fVSSIwBKO+xHUAynoxOd4VW4wKjMefp0gpDWloaqlevblF29uzZLGVkacuWLTnWZWRkIC4uDtu2bUN6ejr69etXfIEREZVRUpkcemMSKrqrMLx7TUT/o8bsPyLw54Fz+GbEW/jlzwiM6f0aMtQ6uCo5Kr00YiKdiIhsgkQigWCXiEuPv0GS5gwAwFFWE69U+B5ejoMhGuQw6h2gyyzaZAAVHTc3N5w+fRoKhcKiXK/XY8iQIYiIiMCRI0fwxhtvAACWLVuGmJgYDB8+HB999JG5/axZs7B06VKsWrUKI0eONJefPHkSYWFhCAgIwIoVK8z76dy5M0aMGIFvvvkGy5cvL/oDJSKyEqPRiEy1MwDnp0uLdJ+nT59G+/btza9lMhnu3r0LmYxfRZ/n008/zXXNF1F8Mh1P9+7dMW7cuOIKi4ioTJIp9DAaz0GtngqdPhaC4ID6NXtjw7fv4/0fjmDhn0fRO7gR0jM0MIrFM10aFT/evRARkU2Q2KXg5IPB0BmTzWUZ+n9x/F4/tKi0FhJdNYgik+i2TCKRZEmiA0+SLu3atUNUVBRu3rwJ4EnyICwsDEqlEqNHj7ZoP3r0aKxduxZhYWEWifSwsDAAwPjx4y32ExQUhGbNmiEiIgJ3795FlSpViuLwiIjKnBkzZmDmzJnm18OHD8cPP/xgxYhsy5gxY3JMpMvlclSoUAEBAQGcmoyIqIhJZHIA55GU8t/TP6KohkbzGwz6s/hpwmJ0+WgLKng4Q68zwE4utV6wVKSYSCciohJPKpXikea4RRL9PyKuJi9AXZfvYNDKs6knW2c0GnH06FEAgI+PDwAgLi4OCQkJCAwMhFKptGivVCrh7++PiIgI3Lt3D5UrVwYAREZGmuue9dprryEqKgpRUVHo3r170R4QEVEpZzQa4efnhwcPHpjLNm3aZH6iiPKGo8yJiKxPL0qQqXoAifi/7OsNF+Agu4v6L1WCKIqoXtkdLko59Hqu2lUaMZFOREQlnkQCPMo4kWN9iuYiBIkWgPUT6Tdv3sSECRNw7949HDhwIEuSl55Pq9Xi119/hSiKSE5OxokTJ3Djxg307NkTLVu2BADzyPSc5jSvUaMGIiIiEBcXh8qVK0OlUiExMRE+Pj6QSrOOEDHN02vaLhERFcz9+/dRr149i7Jr167Bw8PDShEREREVlBQP09Rwd9IgUx2bYyut9gRefSUQFT2c4epozyR6KcZEOhERlXiiKMBBlvNjy3YyT0C07mIuoihiw4YN+OSTT5Ceng4PDw/odLyBKgidToeFCxeaXwuCgKFDh2LSpEnmsrS0NACAk5NTttswlaenp+ervakdERHlX3h4OAYMGGB+XbduXUREROQ6zzcREVFJpDEIiEtIwup9pzG2ay04yuwhIjPbtlKJJ5r71UCV8s6AQVvMkVJxYiKdiIhKPL1eDy/HbohL/Q1A1oVbXnJ5D6LeCYCh2GMDgOTkZEyaNAmbN28GADRv3hy//PILXF1drRKPrXN0dMQ///wDo9GIhIQEHDhwAD/99BPOnTuHpUuX5pgML2qurq6QSKz3g427u7vV9k0Fw2tmm3jdCmbAgAFYu3at+fXs2bPx4YcfFsu+S8s1a9OmTYHfKwgC9u3bV4jRFJ3g4GDcuXMn27pmzZrh999/tyjTarVYsmQJtm3bhnv37sHV1RWtW7fGhAkTUK5cueIImYjKGIMoYE/0Nczd/GR6yQqucozo+DZ0urXZtJbBURmIKhJHJtHLACbSiYioxJPJBAiiK14pPwMXHn4BEXpznbdTL7jLm0OXaZ0kekREBN5//33cvXsXUqkUkydPxoQJEyCTsYt9URKJBJUqVUK/fv3g7u6OCRMmYPHixfj444/h7OwM4L8R588ylZuS7nltb2qXnZSUlIIdSCFwd3dHUlKS1fZP+cdrZpts7boJgmDub/R6PUQx64/NRU2j0ZjXojA5evQo/Pz8iuVclsRrVtDEfk7J5dwIgmCV6/6inJ2d8e6772Yp9/LysnhtNBoxatQoREREoFGjRmjfvj1u3ryJsLAwnDhxAqGhoZw2iIgKlVqtRbrOiCoVXDH9vbewNzoWe878i95BA+FidwEGw8WnWkvh7vor9Dp3SKw0qIuKF7/lExFRiSWRGSHKH+NaaihSdFfh7dgRgV6bkK69Dr1RDVdFPcDgAl1m8c+NrtVq8f3332PBggUQRREvvfQSfvnlFzRt2rTYYykLAgMDAQBRUVEA/pvTPC4uLtv2pnLTHOpKpRIVKlTA7du3YTAYssyTbpob3bRdIqKSzs5ODVGIR6oqFIABzg4hkAg1oMksvrU5rly5glatWlmU3b17F/b29sUWQ2ly5cqVLGXffvstNm3ahP79+6NTp07w9vYG8CTpvnPnTqxduxY9evTAl19+WdzhvhAXF5c8Laa6efNmREREoHPnzpg1a5Z5mqB169Zh6tSpmDt3LqZNm1bU4RJRGZFpkCD8+CWs2HsKj9NUcLCTo3Ozuvj63Y4Yu3A/pvSfhpcqp8FRcQ4qrTvKu7WGTucOo4FTmJUVTKQTEVGJJJEKUAmXcfLORIj//+v+48zzEB7J0KrSIriiOQxq6/zqHxsbi5EjR+L8+fMAgIEDB+K7776z2pQjZUFCQgIAmEde1qhRA56enoiOjoZKpbJY1FWlUiE6Ohre3t4WoySbNWuGnTt3Ijo6GgEBARbbP3r0yWObz5YTEZVEdvYqJGV8g3T1NnNZqioUSrtglHeegcxMxyKPYenSpZg8ebL5dZcuXfDbb78V+X7LktWrV2P9+vVYt24dGjRoYFHn6+sLX19ftGvXDu+88w68vb0xePBg6wRahMLCwgAAH374ocVc+3379sXy5cuxfft2fP755/zxhohemEQqw66oGCzYdsxcptboEHb0Au4/TkPvoFcwackJuDraY9aIdyAVAEd7Z0hEoxWjpuJm3ZXZ8mHr1q2YMmUKevbsifr168PX1xebNm3KsX16ejqmT5+O1q1bo379+ggODsYPP/yAjIyMbNsbjUb8/vvv6NKlCxo2bIgWLVrgww8/RHx8fI77OHr0KAYMGIDGjRvD398fAwcOxIkTJ174WImICBAU6TiT+JU5iW4iQo/TiZMBeWqxxySKIpYvX47WrVvj/Pnz8PDwwOrVqzFv3jwm0QvBtWvXoFars5Sr1WpMnz4dABAUFATgyaPsISEhUKlUWLRokUX7RYsWQaVSoXfv3hblptfz5s2DVvvf/IWHDx9GVFQUAgMDszxSTkRU0giCAL3xskUS3USlOQCN4VSRrucgiiKCg4MtkugrV65kEr0IbNiwAc2bN8+SRH9agwYN0Lx5c3PC2VZotVps2rQJv/zyC9asWWMenPA0jUaD8+fPo2bNmln6Z0EQ0KpVK6hUKly6dKm4wiaiUkoikSI5U4fqFd3xae/W8PWuYFF/9O9/Ub9mJUgEAW5ODqjg6ojq5Z2YRC+DbGZE+rx583Dnzh24u7vD09Mz1/njVCoVBgwYgJiYGAQGBqJTp06IiYnBihUrcOrUKaxduxZ2dnYW75kyZQrCwsJQu3ZtDBw4EAkJCdi1axeOHTuGDRs2mB8NN9m6dSs++eQTeHh4oGfPngCerFI/ZMgQzJ07Fx07diz0c0BEVJbojMnQGrOfk1pjSIIeqRBQ9CPuTBITEzFu3Djs2bMHANC6dWssXLgwy7ywVHC7du3CypUr0aRJE3h5ecHJyQkPHjzAkSNHkJycjKZNm1qMths2bBj279+PpUuXIiYmBvXq1cPly5cRERGBBg0aZJl7tUWLFggJCUFYWBh69uyJoKAgJCYmIjw8HG5ubjb3WDwRlU0yuR5JGctzrE/JWIbyzi2h1djl2KagkpOT8dJLL1mUXbx4kT9CFpH4+Hj4+vo+t52rqytOnz5dDBEVnsTERHz22WcWZQ0aNMCcOXNQrVo1AMCtW7dgNBqzfBc3MZXHxcVxaj0iKjC1QcD+s1excv9pPEpTwcvDBQNb+yMlPRO/hp80t3uQlI5yLkp81a8tXOylEI2cE70ssplE+rfffovq1avDy8sLS5YswezZs3Nsu2zZMsTExGD48OH46KOPzOWzZs3C0qVLsWrVKowcOdJcfvLkSYSFhSEgIAArVqyAQqEAAHTu3BkjRozAN998g+XL/7tZTUlJwbfffgt3d3ds3rwZlSpVAgAMHz4c3bt3x9SpUxEYGMjRiUREL0BE7gtniaIRxTUT3Z49ezBu3DgkJibCzs4O//vf/zBixIgiHfFXFr3xxhtISEjA2bNnce7cOahUKjg5OcHX1xedOnXC22+/bbGIq1KpxJo1a7BgwQLs2bMHkZGRqFChAoYOHYoxY8Zk+5j3tGnT4OPjg9DQUKxevRpKpRLt2rXDxIkTzV/ciYhKMgEGGMXsn7IFAKMxAyiCBc+OHTuGLl26mF+7ubnh2rVr7AuLkKurK06dOgWNRpNlIJiJRqPBqVOn4OLiUszRFVzPnj3RpEkT+Pj4QKlUIi4uDitXrsTWrVsxePBgbNu2DU5OTkhLSwOAHL9Xm8pzWkgceHIOS+PfaEEXtC1LeI5yx/PzRGJSGpbtOYmNJ/97suXO41TM2HgIo95sicD6NRFx6V8AQEV3Z/w6vhe8PV0he2a9pbKmLP/92Ewi/dlFbHIiiiLCwsKgVCoxevRoi7rRo0dj7dq1CAsLs0ikmx6DGz9+vDmJDjx5fLxZs2aIiIjA3bt3UaVKFQDA7t27kZqainHjxpmT6ABQqVIlDBgwAAsWLMC+ffvQvXv3gh4uEVGZp5C4QSY4Qp9NskAucYJccCvyddFVKhX+97//mX9MrVevHpYsWYJ69eoV8Z7LpgYNGuT6+Hp2nJ2d8fnnn+Pzzz/PU3uJRIJBgwZh0KBBBQmRiMjqDAYHONl3Qab2TLb1Tg5vwWhwBJ7zg3R+fPXVV/j555/NrydMmIApU6YU2vYpe+3atcMff/yBDz74AF999ZV5oVGT27dv49tvv8XDhw/xzjvvWCnK/Bs7dqzF67p162LmzJkAnjz5HRYWhiFDhhTKvlJSsn+60Za5u7sjKSnJ2mGUaDxHueP5eUIqlUKjN+JhugqO9gpkZGot6lcfPIOv32mPiEv/opyLEjUquMFJAaSlFv8UoyVJaf37yeuPA6Xup9m4uDgkJCTA39/fYuEx4MnINX9/f8THx+PevXvm8sjISHPds1577TUAQFRUlLnM9P+BgYFZ2pvKnm5PRET5JzG44JXyn2Zb90q5zyHqivapnwsXLiA4ONicRB81ahT27dvHJDoREVmVwWCAo30HyKRVstRJJeXg7NAben3hJNENBgO8vb0tkujh4eFMoheT8ePH46WXXsLhw4fRoUMH9OnTBxMnTsTEiRPRp08fdOzYEYcOHULNmjUxfvx4a4f7wvr06QMAiI6OBvDkx3Ig5xHnpnI+CU5E+ZVpFHDlfjKW7Y+Ch4sSU99phzGdWkHy1KLGGZlaiKIIZwc7/DSiK5ztS10KlQrAZkak59XNmzcBINd51CIiIhAXF4fKlStDpVIhMTERPj4+kGbzaEb16tUttgs8SdY/Xfe89kRElHdSOw0yxQe4rT4Bd7t6eL3KSsQmr0Ca9l84K16Cr+swyIyVYdQV3ki7pxmNRixcuBDfffcddDodKlWqhIULFyI4OLhI9kdERJRfmWpXeJX7E8kZS5Gm2gjACCeHrnB3Gg1NpjuAF1/8LD4+Hq+88opFWVxcnE1NIWLrXF1dsX79esyePRtbt27F+fPnLRbltLe3R8+ePTFp0iS4urpaMdLCYRoNqFKpAABVq1aFRCIxf/9+lqk8p+/+RETZyTRKMO3P/Th25b+83abIS+jYyAcTur2GOVuOmMurlHPGmo/7ws1BBoOBc6JTKUyk53cetby2N7V7+r2mX8if1z47pXWutpKuLM/jZCt4jUq+orxGav1DRD74Fg/UkeYyhcQVLSpOg6viJcilzpBLim6B0fj4eAwaNAiHDh0CAPTo0QNLlixB+fLli2yfRERE+SWKItQqVzgpJsHFYSQEAdDrHaFWSVAYSfSNGzdi+PDh5tfNmjXD7t27X3i7lH8uLi74+uuv8emnn+Lvv/9GQkICAKBChQrw8/PL8hS2Lbtw4QIAmBevtbe3R8OGDXHu3DncuXPHYlFbURRx/PhxKJVK1K9f3yrxEpHtkUikMBjuY1jb6mhW2w2/H76Gh6lPphLdfS4WgXVroryLIx6mZqCOdwVUcFZCIRiZRCezUpdItxWlca62kq60zuNUmvAalXxFeY2kUgnu6HdZJNEBQGtMwZF749HOaw006XYAtNlv4AVt3rwZH374IVJSUuDo6Ijvv/8eAwYMgCAIVv275I9LRESUE51OAHRZB/e8iP79+2PXrl3m13PmzMHgwYMLdR+Ufw4ODmjatKm1w3hh169fR5UqVeDg4JClfNasWQBgsaht7969ce7cOcyZMwezZs2C8P/TLqxfvx7x8fHo06dPtouLExE9y16pQqrqd6gzf4OTIgWt6wWgTYOPMX/nA+w5fwsA8Ne5WLzuVxOHLt3At/07wE4iQiyaB6HJRpW6RHp+51HLa/unR58/Per82QRHbqPViYgoZ6IsA1cfb8ix/mb6TrxsPxx6vb5Q95uamorJkydjw4Yn+/b398evv/6KWrVqFep+iIiISjKVSpVlMcvIyEjUrl3bShFRaRQeHo6VK1ciICDAnFCPi4vDkSNHoNPpMHLkSAQEBJjb9+jRA+Hh4dixYwdu376NgIAA3Lp1C3v27IG3tzcmTJhgvYMhIpshs1PhQdJoaHSnzGUa3SlA1xfj3lqLCzeTcD85DSqNFm8F+WNw6ybwcJQX+ndPsn2lLpFumqM8r/OoKZVKVKhQAbdv34bBYMgyT7pprvOn50OvUaMGLl26hJs3b2ZJpGfXnoiI8kAQoTXk/LSO2vCw0HcZGRmJ999/Hzdv3oREIsGHH36Ijz/+GHK5vND3RUREVFJdvHgRQUFBFmX379+HQqGwUkRl08KFCyEIAvr37w83NzcsXLgwz+8VBAFjxowpwugKR/PmzXH9+nXExMTg9OnTyMzMhLu7O15//XX069cPgYGBFu0lEgkWL16MJUuWYOvWrVi1ahXc3NzQq1cvTJgwAR4eHlY6EiKyFZlGAXrVVYsk+n+MgDgDQ4InY/qms2jfyAcNqleCWp3BJDplq9Ql0mvUqAFPT09ER0dDpVJZzBmnUqkQHR0Nb29vVK5c2VzerFkz7Ny5E9HR0Ra/fgPA0aNHAcCiPCAgADt27EBERAQaNWpk0T4iIsK8TSIiyjvBqICnQxPcUx3Ltt5L+QaMxhef9xUAdDodfvzxR8yZMwdGoxHVqlXDL7/8ghYtWhTK9omIiGzF/PnzMXXqVPPrfv365SuBS4XHlEh/6623zIl0QRAg5mFeAVtJpDdr1izf35UVCgXGjh2LsWPHFlFURFRaSaVS3E9Kg5sy+++YAJCpPY+63o6o5OaM1+pWh729Amp1RjFGSbak1CXSBUFASEgIfv75ZyxatAgfffSRuW7RokVQqVR4//33Ld7Tu3dv7Ny5E/PmzcOKFSvMIy8OHz6MqKgoBAYGWixs8uabb2LWrFlYs2YNevXqhUqVKgF4MmpjzZo1cHd3R9u2bYvhaImIShGDHeq7j8IDVSSMsPz131HmBXe5HwyZL55Iv379OkaOHIno6GgAQJ8+ffDDDz/AxcXlhbdNRERkK0RRRPPmzXHt2jVz2fr169G+fXsrRlW2TZ8+HcCThUSffk1ERPkjCAK0OgH3k1SAAChkHtDqcmgLO7g4KLF89NtwkgnFGyjZHJtJpIeFheHMmTMAgNjYWHNZVFQUAKBJkyYICQkBAAwbNgz79+/H0qVLERMTg3r16uHy5cuIiIhAgwYN8O6771psu0WLFggJCUFYWBh69uyJoKAgJCYmIjw8HG5ubvjyyy8t2ru6uuKrr77CJ598gh49euCtt94C8GS+t+TkZPz000/medSJiCh3gswAUZ6OeNVJyAz2eMPrF5x/NB+PMi9AAjmqOXVAXbf3YMx0BFDwlV5EUcTvv/+OL774AhkZGXB1dcXs2bPRs2fPwjsYIiKiFyAIAiQSCYxGY55GIRfUo0ePssx9fuXKFXh6ehbZPun5evToketrIiJ6PkEQkKoT8duh09h1MRYG0YjNE4MACMju+6STMgQOsipPZnnhyqL0HDaTSD9z5gw2b95sURYdHW0eUQjAnEhXKpVYs2YNFixYgD179iAyMhIVKlTA0KFDMWbMmGxX9Z42bRp8fHwQGhqK1atXQ6lUol27dpg4cSKqVauWpX23bt3g7u6OX3/9FZs2bQIA1K9fH6NGjUKrVq0K89CJiEoticyABGMUjsd/B9NNjYO0PBp6DEJAhSmAUQrBoIRBnf1NT149fvwYEyZMwI4dOwAAgYGBWLRoUZZF1YiIiKxBIhEgt0uBxnAFmfp42Cv8IBOqQqtxKvQv9fv37zd/bwKAatWq4ezZsxAEjsIjIiLbl2EARizbjNuP/1t/a9He6xgR/D3UmZ9ZtJVLa8PdaSw0agHiC3zfpLJDEPlzi1UkJSVZO4Qyx93dnee9hOM1KvkK/RrZJ2Pb7QHILknu59YfPvb9YdC/WDd18OBBjBkzBvfv34dcLscXX3yBMWPGZFlcuqR6dlFrsh5rfj7x89H28JrZJmtcN4lEgFTxL/59OABGMdVcbierherlfkOmqvCmHps0aRJWrlxpfv35559bTIVpi0riv7Wi7rv1ej3CwsJw9epVVKpUCX369IGrq2uR7tNWlbS/jcJQEv/mSxqeo9yV5vMjlUqx53Icpm7cn6Xu7WYvYVTbmtAb9sJgeACJJAjuTg2h1zhb/Ghdms9PYSit5yevfbfNjEgnIqLSRSqVIk4VgZxGmsembkZtpx6A3qFA28/MzMS0adPwyy+/AABq166NJUuW4JVXXiloyERERIVObpeKGw/ftUiiA4BGfx33UqbA0/FH6LTyF9qHTqdDxYoVLcr279+Pxo0bv9B2qWgtXLgQP//8M1avXo2AgAAAgNFoxMCBA3Hu3DmIoghBEBAWFoaNGzdyvRciKtOkUim0IpCYpoLSTg6VxnJS9I1RNxB17RGm9gqBQipFJXdH6DWczoXyR2LtAIiIqGwSBAGZhsc51uuMKhR0OpfLly+jbdu25iT60KFDcfDgQSbRiYioxNEbb8NgzH5kV1rmQUikaS+0/Rs3bmRJosfHxzOJ/jSjgMwULdTJGhh1JSehcvz4cVSqVMmcRAeA3bt34+zZs/Dx8cG0adPQpk0bxMfHY+3atVaMlIjIeqRSKdL0wOZzV/Fp2F7EPUzCd306YEBg1n7OXiGDm0yBlyu4wB4ik+iUb0ykExGRVRgMBlRRtsixvrx9fUDM3wg8o9GIxYsXo02bNrh8+TIqVKiA9evXY9asWVAqlS8aMhERUaESBAF646NcWogQoSnw9teuXYumTZuaXwcHB+Px48dwdHQs8DZLE0EQoHqciRWT1+G9uhMxxGc8Fry/HCn30iHA+nPGx8fH46WXXrIo27t3LwRBwJw5c9C7d28sWLAAlStXxl9//WWlKImIrEcikSAhQ4t+izdg5s4jOHH1Fnacu4IJa3ZAaSdHjwA/i/bdG9VDOWcl9Hq9lSImW8dEOhERWYVECrjIveGmqJWlToAETcuNhahV5Hl79+7dQ69evfDFF19Ao9Ggffv2OHr0KNq3b1+YYRMRERUaURRhJ8vaD5pIBVcIKFjSu3v37hg3bpz59aJFi/Dnn38WaFullTopEx+3/hq7VxyATqOD0WDEsS1RGN/yC6QlZlg7PCQnJ2eZs/XUqVOoXr06atV68ncjCAIaNGiAe/fuWSNEIiKrytAYMXPnYSRlqLPU/XowCu0a1oZpLe2Al7zRtuHLkEoNxRwllSacI52IiIqVRAoY5Mm4lLoVyck30cLzE/yb+heupe2EQdSgnF1dBJT7AHZ6rzw/ardjxw5MmDABjx8/hr29Pb755hsMHToUgmD90WRERES5MrrDyT4Y6ZkHslR5ukyEQeeK/Ex1lpaWhurVq1uUnT17NktZWSeVSnF693kk3s76RIAqTY3N88IxcFoIILHeY//u7u548OCB+fW1a9fw8OFDBAcHW7STy+XQarXFHR4RkVVJJBI8TEnH8Wu3cmxz/cEjDGsdgGa1qqJGOVfYW/EznUoHJtKJiKjYSCQSZEj/xe7bH8IoPln85X78OdRweg0dvRdDBkcIBgVEnV2ekujp6en44osv8PvvvwMAGjZsiF9//RW+vr5FehxERESFRauxRxXX7/FIthSPM9ZCFDMhk1RARZdJcJAFQ6vJ+5f+06dPWzyJJZFIcP/+fchkpf9rn1QqRUaSGrpMHWRyGZRu9hCFnM+dXmPA0Y0nc6yP3BmN3p90hZ1L3p+OK2y1atXCqVOncPnyZdSrVw8rV66EIAgICgqyaHfnzh14enpaKUoiouIlkUiQoTciRZUJvQyY+c5bCD15Aadu3M7SVhAEDA/yh1ar5XzoVChK/x0VERGVGKJchSP3vzcn0QHACD1upB/EzYzj6OG9CkatAnkZeXfmzBmMHDkSN27cgCAIGDt2LL744gsoFNb7wktERFQQmSolXOUfwKPCYIjQQoA99FpXaDXGPG9jxowZmDlzpvn18OHD8cMPPxRFuCWOPtOAc0cuY/nn65Bw6yHsHBR4c1gw3p7wFhTO2a+3IpEKcC7nlOM2HV2VkEitOxPq4MGDceLECfTq1QvOzs5ITU2Ft7c3XnvtNXObtLQ0XLp0KcsodSKiUkkiQapBhbiH8XiQpsaGyDu4/TgZo4NboqanB0JPXrBo3qJWVWg0BV9rhOhZnCOdiIiKjQ7pSNdnP4enQdQgw5Dw3G0YDAbMmjULHTt2xI0bN1ClShVs2bIFX3/9NZPoRERks/R6ARq1K7TqCtConWEw5C2JbjQaUbduXYsk+qZNm8pMEt1oNOLcvr8xfcACJNx6CADQqLXYsmA3Zr33K3QZOSwoJwG6ju6Y43Z7TugEexe7ogg5z4KCgvDVV1+hYsWK0Gg08Pf3x8KFCy3ud7Zs2QK9Xo+WLVtaMVIioqInlYqQ291DpnYq3B2Hwa/KV5jeS4XvQwIwa/cRBLzkjYqu//1A2qVxXXgorfs5TqUPR6QTEVExyn2kuYjcF365efMm3n//fURGRgIAevTogdmzZ8PNza2wAiQiIrIZ9+/fR7169SzKrl27Bg8PDytFVPwe3U3C8s/XZVt3/tDfSH6QigovZT0foiii8sue6PHBm9g8f5dFXbNO/mjctj4MBusvSNe/f3/0798/x/qQkBB0794dSqWyGKMiIipegiCBRH4TNxJ6QMSTNSEMxiRo9V+jimsbfNFlKNacOIt+rV7BrvOxeCegIVr5VIMceX+yiygvmEgnIqJiIxecoJSVh0r/MEudRJDDSVYZT836YiaKIkJDQ/Hxxx8jPT0dTk5O+PHHH9G7d28uKEpERGVSeHg4BgwYYH5dp04dHDt2zOb7RalUClVyJox6IyRSCZTu9rkmtNXpmXh8PznH+uvnb6Liy+VhNGZNpsiVMvT6pAvaDXoDh8OOQ5epQ2CvFvCsXh4KR9v4qmxvbw97e3trh0FEVGQECNDp0pCY+bU5if60TN1++FcfhkX7U/H6yzXQtvZLcLGXQ5AwiU6FzzbuDoiIyKZJJBKIcjWMMCDQ8xPsvfspxGdGBzQvNxaCziHLmPXk5GR89NFH2LRp05N2zZvjl19+QfXq1YspeiIiopLl/fffR2hoqPn1tGnTMHbsWCtGVDh0agPOHonBb1//iftxifCo7IZ3JndFi86NIVdKs32PXCGDRCqBMYepcNwruua6wJzcQYbyNd3R5/NuAJ5MIVfSFqTT6/U4dOgQLl68iKSkJDRs2BC9evUCADx48ABJSUl4+eWXy8SiskRUthgFASkaA+zkaVCpo3JsJ4oRaPVyI7g62kEBI8CR6FRE2NMSEVGRkshEpAo3cPjeT0jW3UZNp1bo4DULsSk78UgTC2d5FTR0HwCl6AWjznLpjoiICIwaNQp37tyBVCrF5MmTMWHCBH5RJCKiMkmj0aBy5coWZUeOHEH9+vWtFFHhEUQBR0KjsPSz/6ZpeXwvGT9PWI271x4g5OM3IZFnXeLLtYILAns0w5E/T2apc3CyR7W6XnlKjOv1OcylbmWnT5/GJ598gnv37kEURQiCAJ1OZ06knzt3DhMmTMC8efP+j737Do+i6h44/p3Zks2mB0INvXfpoCBIEQRUQJqKBaQpCKLAa0dFQVERAaUoqAiigBQFlC4QAelFWuiQ0ALpbdvM7w9+WViTUNM5n+d5n9e5987sWTa7s3vmzrk8/PDDuRytEEJkHV1R+PdiNEN++p3v+jyASTUCmX1WW+lcrwYWFTK4AUmILCOLjQohhMhWNkM0v0WMJNYRAcDJxM0sjxiNqgbQtsQnNA16A6ujLLrjWnLcbrfz/vvv8/jjjxMZGUn58uX5888/GTFihCTRhRBC5AtGo4LJkojZkkhWnLoOHz6cLokeGRlZIJLoAMmxqfz44aIM+5Z+vYrkOFuGfVY/b/qOfZKyNUp5tFusXoxZOgrvwPxb9uTYsWP079+fS5cu0bt3byZOnJjuosBDDz2ExWJh5cqVuRSlEEJkjwSnxtCfl+HUNFYeuITVK/MFogOsrSkT7JdhGS8hspJkI4QQQmQb1aSxM3puujIuDj2Vf2N/x9sQTDWvzmj6tf7w8HAGDhzI3r17AXjmmWf46KOP8PX1RQghhMjrFEXB7J3AleSfuRK/EHSNIOtjhPg8iyM18I5+5H/77beMGjXKvd2pUydmz56dlWFnCwUVW5Idg8mA0Uu94czwhJgkUpMyTpZrms6VczH4FvbOsN8a5MUHv43k4skoDm87RpHShancoDzWIG9Q8laZltvx9ddfY7PZmDFjBs2aNctwjNlspkaNGhw6dCiHoxNCiOyjKAqHzl/C7ry6RsavO4/Tvf4gTIYdOFwXPMYW8X8diyEElyv/ft6L/EMS6UIIIbKNptq5ZDucaf+5lL1UtXYC19Uf19999x3vvPMOKSkpBAUF8eWXX9KpU6ccjLjgO3XqFHv27KF+/fqUKnVt9t6ePXsYO3YsR48epXjx4rzyyityi7gQQtwBs3cCx648jc15xt12KXEmMSnLqFx4AbZkv1s+lq7rtGnTht27d7vbZs2aRefOnbMy5CynoJAQlczymevZte4AAYX96DbsEcrVCs281rmX6YbHtPh4Zdqn6zpefibK1ClJubql0HX9/y9Y5O+kyj///EPt2rUzTaKnKVq0KIcPZ/59Swgh8hOD0YiO58LZKQ4ng+Zs5/MeM/Dz2otB3YBBCcHP3AuzKRR76o3PIUJkFUmkCyGEyDaKbsTHWJgEx8UM+/2MxVB0I1FRFxk6dKj7tuSWLVvy1VdfpbuFXdy9WbNmsXDhQtatW+duu3z5Mi+88AJJSUkoisKJEycYPnw48+fPp0aNGrkYrRBC5C8Gg4F4218eSfQ0DtdFolMW42947pZmzcXGxlK+fHmPtn379hEaGppl8WYHRVG4cjaOV9t85DHDfN+mwzw6oDU9R3bEaElfYdQn0Jsy1UM5fTAiXV9wsQACQvxv+ti6ruNyue7uCeQh8fHxFCtW7KbjkpOT82yNdyGEuFVOReVSYgoLdu/iQnwCD1Qow9dPP874Pzdw6kos5+MSeOqbv6hSrDDNKj5Djzq1cWoGKDgf+yIfkBrpQgghsoWiKBgwUz/4qUzH1Ap8nD9XrKRZs2asXLkSs9nMRx99xMKFCyWJnk127dpF1apVPX6Y//rrryQlJdGnTx/27t3LlClT0DSN7777LhcjFUKI/Ec1pBKTvCTT/pjk31GNyTc9zt9//+2RRA8ICODy5ct5PokO4EhxMW3UTxmWafl9xloSopMy3M/L18QbP7yIfyHPUm4WHy/enf8K1sDMZ6QXVIUKFeLMmfQXZf7rxIkTt5RwF0KIvMruUlh16ARPfDOPn3fs46/wk3z0x1+8uXQVb3Z8iEDva+tdHLlwmftCSxHk44VRJqKLHCaJdCGEEFlOMTtJMkWyMWYKSc5Y6gb1hOtuz1Mx0tj3Jd4ePp6ePXsSFRVFtWrVWLduHS+++CKqKqen7BIVFUXJkiU92jZt2oTZbGbIkCGYzWbatGlDnTp12LdvXy5FKYQQ+ZWKqmS+uOXVPiXTfoB3332XRx991L09bNgwTp48mevnRlVVbykGW5KdfZsyLzOye+0BDIb05V10XSe4VABfbnqPN2a/RNeh7Xl1Wj++/mcMxSsVvicXkGvSpAmHDh1i69atmY5ZvXo1p0+f5oEHHsjByIQQIusYDAZiUm18tHJDur6Y5BS+27yTno1qA1CxSCFmPNOZ2iVC5E4ckSuktIsQQogspRhdhCev5e/LswAIT9hArcAOPBr6CamuOAyYiDyYzDOdh3HkSDgAgwYN4t1338ViyTz5ILKGzWbzSITY7Xb2799PnTp18PHxcbeXLFlS6q0KIcRtcjlNhPg+R7zt7wz7Q3yfQ3P6kNF96C6Xi7Jly5KUdG3G9ooVK2jSpEl2hXtLdBckx9k4uvsUCTHJVGtYnoAivpi8M651fpPrBCiGzJPxmqbhHWim7sPVqd++JpqmoWnaDRcpLcj69+/PihUrGDx4MK+99hpt27Z198XFxbF69WrGjx+Pt7c3zz//fO4FKoQQd8GWorH9+Fm0TD7rt5w8w1sdWtLlvmqYVAUfg3pPXlwVeYMk0oUQQmQppzHZnURPsz92Bftj/6CiT3P2/OhkzPtjcTgcFCtWjClTptCqVatcivbeU7RoUY4cOeLe3rx5MzabjcaNG3uMs9lseHt753R4QgiRr2mahpdagwBLW+JSV3v0+Xo1wcd0P/aU9En0iIgIateu7dF26tQp/P1vXhc8O+lOnYNbTvJxvxk4HdfibvRwLYZMeDrDhUO9fMzUa1WDXesOZHjMug9Vv2kd87QE+r2uQoUKTJgwgZEjRzJmzBjGjBmDoigsWbKEJUuWAODl5cXnn3/usYC4EELkFyaTCTQd5QZXYXUdFF3H33j1QqycH0RuknvnhRBCZBlVVYlM2Z9hX8z5FF7tMYF3334fh8NBp06d2LRpkyTRc1iTJk04ffo0H330EevWreOzzz5DURTatGnjMS48PFzq1AshxB2wp1op6fc+lQrPIci7I0He7alY6DtK+3+OPcWabvyiRYs8kugNGjQgOjo615PoAIkxqYztM80jiQ6wbdV+1v7yT4alXkwWAwM+fhKfgPTPtfsrj+AbnL5dZK5NmzYsW7aM3r17U758eby8vDCZTJQqVYqePXvy22+/0bp169wOUwghbotDUUjUbWw7d5xfDh6gaIg/Yzs/jK+XOd3YykULYzXJPGCRN8hfohBCiCyl6elr1e3+4wIL3z9ESrwTq9WbsWPH8cwzz6AoN7n/W2S5gQMH8ueffzJnzhzmzJmDrut06NCBqlWrusccPXqUM2fO0Lt371yMVAgh8i97qjeKUpNi3mMBcDp07Bncst67d29WrFjh3v7888/p06dPjsV5IwaDgX/+3IumZXyr/ZKvV9OyW0Msfp4rvem6TlAJPyZvHM2an/5m55p/CQjxo+uQdpSsXBSjl8zlul0lS5bkrbfeuuEYp9OJ0Sg/74UQeZ/BK5Vk+yGSHLMp5h9HiYBm6Hobpmw4zcdd2/Hyz7+Tdso0qArvtG+Jt6pkej4SIifJmVYIIUSW0XWdUOu1WXWpiU4WfXiYHb+dB6B87SLMn/0b5UtXzq0Q73klSpRg6dKlLFiwgOjoaGrUqEHXrl09xhw8eJDWrVvTvn37XIpSCCHyP13XcTgy/tGfkpKSbuHnrVu3Urly9p4fFUXBZdewJV+96O3lY0LN5BehoihcPHMl02PFXUmETO6u13Uda7AXj7/chg79WmAwGlBNyj1b6zw72Ww2fvnlF77//nvWrVuX2+EIIcQNmcw2olKmcjlp9nWtuzGqc3jloe9Yc+gKXe+rwbojJ7ivRFFeatGEEn5WKeci8gxJpAshhLhriqKgm23Eui7gdKRSO7AjS9fNZe7/9hMdmYqiQtsBFflm3GL8CZUf0rmsWLFivPzyy5n2P/744zz++OM5GJEQQtw79u/fT4sWLTzaLly4gNmc/nb2rKQoCrHnk5j1wa9sX3MARVW4v8N9PPfm4/gXSZ+k0DSNug9VZ9nMvzI8XqX7ymAw33h2ua5rGC2G//9vOfffDrvdTnx8PIGBgRnONE9MTOSnn37ihx9+IDo6OhciFEKI26OqBjBE/yeJfpVTi8GpT0WjJ883rMszdWoR4GPBYlLI9KqtELlAEulCCCHummZJYWHEe1yxn8Xl0Dn5oy/ff7ETTdMoHOrL65Of47l2IzE6AtBd8kNapHfx4kX++OMPNm7cyIkTJ7h8+TIBAQHUq1ePfv36UadOnXT7JCYmMnnyZFatWkVUVBRFihShXbt2DBkyBB8fn3TjNU1j7ty5zJ8/n9OnT2O1Wrn//vsZPny4LNImhMgRkyZN4r333nNvP/nkk3z11Vc58tiJV1J59ZFPSE5MBUB36YT9vov9m8P54s/X8Q70LNGiaRrla5WiaKlCXDybfmZ6vzHd8fIxySzBLBYeHs7HH3/Mtm3bcLlcqKpKkyZNePPNN6lQoQK6rvP9998zbdo04uPj0XWd6tWr3/ACuRBC5DaHDU4ePU+RKn9mOibRtpom5Qbi7W3E18f0/xdg5bejyFskkS6EEOKuKCad9ZdmccV+liunk/jlf3uJ2B8HQLvuDzBt8jcEW4vhSgVdvgjluHPnzt3V/iVKlMiiSG7sxx9/5JtvvqF06dI88MADBAcHc/r0adasWcOaNWv4/PPP6dChg3t8cnIyvXv35tChQzRr1oyOHTty6NAhZs2axfbt25k7dy5eXl4ej/Huu++yYMECKlWqxDPPPMOlS5f4448/+Pvvv/nll18oW7ZsjjxXIcS9R9d1GjduzLFjx9xt8+bNo127djny+Aoqy2ZtcCfRrxd3JZGNS3fwSJ8H0iXFvf1NjF3yKjPfW8jW5XvQNJ0S5Ysw6ONelKxcRJLoWSwiIoKnnnqKpKQk9wx+l8vF33//zXPPPceiRYv43//+x9atW9F1nWrVqjFkyBBZbFQIkaelagoRcXFc8nZS1HCjkToB3ha8DSq6nF9EHiWJdCGEEHfFaUjmSMJmdiw6y7Jxh7CnuLD4Gek8uia1H/HHYYlHcxVHZhPkjlatWt3xoq6KonDw4MEsjihjtWvX5scff6RRo0Ye7Tt27OD555/nvffeo02bNu7SB99++y2HDh2if//+jBgxwj3+s88+45tvvuH7779n4MCB7vatW7eyYMECGjZsyKxZs9zH6dSpEwMGDGDMmDHMnDkzB56pECK/MhoVMCSioKA5fXG5bu1H/pUrV6hUqZJH26FDhyhatGiWxKWqV8ur3CipbUuys2PtgUz7//lzH216Ncbwn4VAdV3HGmRm8GdP0Xf0E7icLiw+Zix+ZkmiZ4MZM2aQmJhIw4YNGTlyJBUrViQpKYmNGzcyfvx4nnzySSIjIwkKCuLtt9+mY8eOuR2yEELcUCoK49ZtYuXhY1iMRha80ASYlOFYX3NL/C2FUJ1yfhF5lyTShRBC3JWoy5eY88pODq65CEC5hsF0H1ubwBLeACS5YilikAXGckvDhg1zO4Rb8vDDD2fY3qBBAxo3bkxYWBhHjhyhVq1a6LrOggULsFqtvPTSSx7jX3rpJebOncuCBQs8EukLFiwAYNiwYR51iFu0aEGjRo0ICwvj3LlzOTYDXwiRfyiKgsmSQFTyr0TFLQVUivh0pbD1MRwpfjc8v61bt45u3bq5t0NDQ9m7d+8dX+C8nuaA5Hgb4XtOobl0qtQri0+AF6op/bFVo4pfkDXTY/kF+2AwGcjsordqAp/ga3f5SBI9e/zzzz8EBwczdepUfH19AbBarTzxxBOYTCZGjRqF0Whkzpw5VKhQIZejFUKIG1MNBlb8G87Kw1fvxkp1Ovn7hI3GZTuTZF/iMdag+BEa+DoumwVdaqKLPEwS6UIIIe7Y+vXreWnwS1y8cBGDUaHNy5Vo3qc8quHaj/iiXuXR7PJlKLf8+OOPuR3CXUtbZC3t/0+dOsWlS5do1qwZVqtnYshqtVKvXj3CwsI4f/48xYsXB64mJ9L6/qt58+Zs27aNbdu20blz5+x9MkKIfMfkncCBqN7YnJHutjNxXxCVtJhqhb/DnuKb4X4jRoxg1qxZ7u033niDkSNHZklMTpvGhl938d1HS9C0q8lvRVHoOexhOjzXDKPFc2a52dvIEy+15cM+0zM8XpdBbVAMINe8c9eFCxdo2rSpO4l+vebNmwNXL5BLEl0IkR8kOl3M2rrTo238mr2Me6w71Yu1wKXPxemKxd/SksI+T+NMDZKSLiLPk0S6EEKI25aamsoHH77PtK+v/iAvWzGUjuNKU7J6gMe4MtY6WAjI6BBC3JJz586xefNmQkJCqFy5MgCnT58GyLSmedmyZQkLC+PUqVMUL16c5ORkoqKiqFy5MgZD+sKMZcqU8TiuEEKkMRhUriSv8Eiip0lxniLOFoavoSMul8vd7nA40pVtWbNmTYYX8u6EoihcOhvLzDGLPdp1XefniSup2aQSFe4r4TFTXtM0KtcrS+vujVm74B+P/R4f0IrQiiFy51geYLPZCAoKyrAvrT2rSgIJIUR204DLScmebbrO/5ZuIzQwgDdav0VIKgSUK4c9WRYWFfmDJNKFEELcloMHDzJgYH8OHjgEQIOeZXln7P8oGRjKP1cWEue4hEnxok5gexoGdUZPMeVyxCK/cjgcjBo1CrvdzogRI9xJ8ISEBIAMZ+xd356YmHhb49PGCSFEGsWQRFTCb5n2X0pehJ9/K3BdLRl18uRJ6tev7zHmzJkzmX7+3Aldg8XT12Xav3DKakZ8/Uy6Ei8mq8pz7zzO4wNbs/XPvRiMBpq0q41/YZ90M9hF3pUVZYGEECK7uBSFRKeGzenEYjLyVP3a/LRzX7pxEbFxXIlRqFaqFChIDl3kG5JIF0IIcUs0TePLL7/kf//7HzabDZ9gM4+NqUvlB4uyK/kPzmsVaFSoJyW9K+GFFYPTipYi34jysqNHj3L69Gl3wjkjuVXqRNM0Xn/9dbZv306PHj3yRMmVgIAA96J+uSGzWYoi75LXLH+6/nVzuEBVMr8grCpeeFt8MPr48t1339G3b19338MPP8zKlStv67FTk23YbQ68fSyYzBn/VEuMTeZyZEymx7hyMQ5VNRIU5J++MwiKlChM5fvK3lZceV1Beq+dOXOGJUuW3FF/XjhXCiHuXckoTPhrM38cPopT0/C3eDHo/ka81roZn68N8xhbzN+XJpVL42s2yLobIl+RRLoQQoibunDhAoMHD2b9+vUA1G1VhVbvlMG3sMU95nzqcZadO045nzo8HjIMzSlJ9Lxq8+bNvP/++5w5cybTMbquoyhKrvwo1zSNN998k2XLlvHYY4/x/vvve/T7+fkBZHoBIK09bQborY5PG5eZuLi4W3wGWS8oKIiYmMwTZyLvkdcsf/rv62YwGCjm+zTHot/IcHwxn6dJSnTx2GMt2Lhxo7v966+/plevXrf8N+Cy61w6G8uv09dz8ewVqtUvy6PPN8evkDconudTVVGpdX8ljuw+leGxajSqAKp+z/z95cX32t0k9nft2sWuXbsy7d+5c2em/ZJIF0LklhRdYfjvf7In8ry7LT7Vxvh1mxjVqjmP16rK0v2HUYDmFcvyVtsWBBhVSaKLfKfAJtIXLVrEG29k/IU3TZMmTfjhhx8AmDx5MlOmTMl07Nq1awkNDU3XvmnTJqZPn86BAwdQFIUaNWrw0ksv0bRp07t7AkIIkUcsX76cYcOGER0djbe3N2PGvodvpwucTz2e4fhEZzSa4kJBbhPPi/bv38+AAQNQFIVOnToRHh5OeHg4AwYM4MyZM2zevJn4+Hi6du1KiRIlcjw+TdN44403WLJkCZ06deLjjz9ONws8rab5qVOnMjxGWntaDXWr1UpISAgRERG4XK50ddLTaqOnHVcIIdK4XC78ve/Hz1yXBPtuj75Ay/1oqRUILBLo0b5r165M13DIiO6CzX/8y9S3F7rbjv8bwcp5Wxn3y2BCKxf2SDRouka7p5qy7LuNpCbbPI5l8jLSeeBDoEhiIj/q0qVLbocghBC3RVEUbMk60Y4UUh2ODMdM27yNhc/1on/TBhgNKj4GI2ZFl7U5RL5UYBPp1apVY8iQIRn2rVy5kqNHj9KsWbN0fV26dKFkyZLp2v39098auXTpUkaNGkVwcDBdu3YFYMWKFfTp04eJEyfSvn37u3wWQgiRexITE3nrrbf48ccfAahduzY///wzpUqHsjl+UaaJ9DLWGhg0M5oUusuTZsyYgcvl4ttvv+WBBx7gjTfeIDw8nOHDhwMQHx/Pu+++y19//cWvv/6ao7Fdn0Tv0KED48ePz3Bx0LJly1KkSBF27dpFcnIyVqvV3ZecnMyuXbsIDQ2lePHi7vZGjRqxfPlydu3aRcOGDT2Ot2nTJoB07UIIAWBPsVIpeCLJzn+5mDQfBZWiPr3YvzOZ2i2ruMepqsqFCxcwGm/vJ1ZyvJ0Z7y1K1+6wO5k4Yh4f/jQIs9Xzs9C3kIXxS15hyqifCd9z9WJg+RqhDBnfC//CVqTYbP40bty43A5BCCFumaIoGMyJpKb8i9m6l3GdQoBWfLHhCBuPX1ukOz7VRqrDSVGvtFJpGpJDF/lVgU6kV6tWLV273W5nzpw5GI3GDK/4d+nShcaNG9/0+HFxcXz44YcEBQWxePFiihUrBkD//v3p3Lkz7733Hs2aNcvShYWEECKn7Nq1iwEDBnDixAkURWHo0KG8+fYbGPw0dsWupap/Y3bErMCupXrsZ1TMNAruiJYq34zyqt27d1OtWjUeeOCBDPv9/f0ZP348rVq1YuLEiXzyySc5EldaOZclS5bQvn17Pv300wyT6HD1S3v37t356quv+PrrrxkxYoS77+uvvyY5OZlBgwZ57NOjRw+WL1/Ol19+yaxZszCbry4MuGHDBrZt20azZs0yvJAuhBBwNZluVptQxrch6AofffiJx+dj//797+jzUlEUzh67iMuZ8QzyiOOXSE6wYb7ugiFcLb8VUjqAt77rR2qiHV3X8fY14+VjktvkhRBC5AizdzwHovqQ6jwN/3+DlIKJ/7WeiNOls/nUOQAMioLlNi8yC5FX3XN/yWvWrCE2NpY2bdpQuHDhOz7On3/+SXx8PC+//LI7iQ5QrFgxevfuzeTJk1mzZo3UqRNC5Csul8udPHU6nZQoUYJp06bRvEVzLuonmHNkHBouSsZXoFvoSDZG/UJESjgAJSwV6VB8EGaHn8yDy8NiY2Np1KiRe9tkujoz5PqZ3Wazmfr16/P333/nWFxfffUVixcvxmq1UrZsWaZOnZpuTJs2bdwXyfv168fatWv55ptvOHToENWrV+fgwYOEhYVRq1YtnnvuOY99mzRpQvfu3VmwYAFdu3alRYsWREVFsWLFCgIDA3n77bdz5HkKIfIvTdNwpurUqFGdixcvutsXLVpEy5Yt043XNQVbkgNdB4vViHKnv7wyOanquo7JomKyXFuvRJLoQgghspuqqjgNdk7EjLuaRL+OjoNLSa8yrMUcdyK9Q7XK+JoMIOcoUQDcc4n0hQuv1h7s3r17hv3bt29n7969qKpK2bJladq0KT4+PunGbdu2DSDD8jDNmjVj8uTJbNu2TRLpQoh848yZMwwaNIitW7cCVxesmjBhAoGBgThNKfx8/DM0XABEphxnUcRUGhV6mBZFniTAWBiT5o3iMEmtuzwuODjYY9HNtAXRzp49S5Uq10oU2Gy2TBfnzA6RkVdv/0xOTmbatGkZjilZsqQ7kW61WpkzZw6TJ09m1apV/PPPP4SEhNC3b18GDx6M5brEUpoPPviAypUrM3/+fGbPno3VaqVt27YMHz6c0qVLZ9+TE0IUCBcuXKB69eoebceOHSM4ONijTVVVEq6kMveLlWxavgdd02nctibPj+qAf4gVXb+WSNB1nVIVi2IwqhnOSi9ZLgSrn1f2PCEhhBDiDsS6XMQnRxBrW5thv6bbsBhPU9TXhxIB/gxvcT8GSaKLAuKeSqRHRkayZcsWihUrRvPmzTMcM3nyZI9tf39/3nrrrXQJ8bSFzDJamCytLW3xMiGEyMt0XWfBggWMHDmShIQEfH19+fTTT+nRoweKoqAoCtH2C+nKuCQ4Y1h78RcAhlb8EuxGdJmLnueVKVOGiIgI93bt2rXRdZ1ffvmFd999F7h6/tq6dSulSpXKsbg+/vhjPv7449vax8/PjzfffJM333zzlsarqsqzzz7Ls88+eychCiHuYStWrKB3797u7apVq/L333+jKEq6sUmxdkZ2m0zs5WsXI7es3M++Lcf48vfhWANNHuO9/cz0ffNxvvlgsUe70WRg2GdPYvGTci1CCCHyBk1VmRq2lV51g4DMz00WYyKTO3WgaJAvFvmNKAqQeyqRvmjRIjRNo0uXLunqrlatWpWxY8fSqFEjihQpQlRUFH/99ReTJk3i9ddfx8/Pj9atW7vHp83S8/PzS/c4aXXRExISsvHZCCHE3YuLi+O1115j0aKri5w1btyYadOmpbtImKol3/A4Lt2ZbTGKrPXggw8yYcIEjh8/ToUKFWjevDklSpRg3rx57N+/n2LFirF161ZsNhtPPPFEbocrhBDZTlGUG95NNWjQIObPn+/e/uCDDxgyZEiGY1XVQNjynR5J9DRJ8SmsmLuF7kNaesxKV43w4ON1qFSnFAunruVSRDRV65Xl8RdaEBDiLUl0IYQQeUayS+P3g0d4qGIjgqzFsbnOZzjO7KhKcW8rZkmiiwLmnkmka5rGokWLUBQlw8RA27ZtPbZDQ0Pp3bs3FSpUoE+fPkycONEjkX63AgICUFU1y44nbk1aCQORd8lrlHM2bNjAM888w9mzZzEYDLz33nu8/vrrGP+zEEyqK5mijsxnJvsZg/Ax+RPgI69dftC5c2f8/PzciRmz2czUqVN55ZVX2L9/P/v370dVVbp3756uzrgQQhQUqqpg8ErArp3HoSXibSwDLs8JMjabjeLFi3u0bdy4kZo1a2Z6XEeqky2r/s20f9vaAzzW5wHMVs9JPQazQqkqhRn2WU8cdidmiwkUSaALIYTIe1yaxtTNxxnf6TUuJo1I1x9oaYGfT0lczvR3bQmR390zifTNmzdz7tw5mjZtelu3qjdt2pTSpUsTHh5OYmKie7b59bPO/5v4u9Fs9TRxcXG3+xTEXQoKCiImJia3wxA3IK9RzrDb7YwbN45Jkyah6zrly5dn2rRpNGjQwPNOGgMkGeJYdXE+xSyh1Alswd7YDemO16F4H5RUEzFJ8tplh6y+uBQSEkKvXr082qpUqcIff/zB8ePHiY+Pp0yZMulq/gohREFhMCg4jUfZe2kwTi3tO7lCcZ/uVPB6BVA5cuQITZs29djv1LGzoBmIv2zD29eM2VtNN5NdNar4BXpn+ti+AVZUY8aTaXRdRzGA2dvAjW6XF0IIIXKKqqokahrxdjsOl0aAxcKQZo35ctNWFu6rQrfak0mwf0my4xgG1Y+ivs9SzNoTe0r69YqEKAjumUT6ggULgMwXGb2RoKAgTp8+TUpKijuBXrZsWf79919Onz6dLsmRVhs9o/rpQgiRm8LDwxk4cCB79+4FoHfv3owdO9b92ZZGURTi1Ci+Pj4al+7iUMIungjtR4hXKNujVxLvuEJx73I8XLQ3hdVQXA5XbjwdkcUqVKiQ2yEIIUS2U82x7Lv4Appuu65V53zSfHy9KjF/VhQjRlybYdep06N88v4kxg3+mdPhFwCoUL0EQ8d2o0ipAPTrkt6qATq/0ILt6w5l+Nhd+7fAbDFIuRZxS4YMGUJISAijR4/O7VCEEPcg1WDkTGISw1es4FRMLAC+ZjMjmjfjpfsb8fXmbfx1PIj+jd+ibLAVL6OZQFNp7ClyjhMF1z1RWyQmJoa1a9cSGBiYroTLzSQnJ3P06FGsVqtHwrxhw4YAhIWFpdsnra1Ro0Z3EbUQQmQdXdf57rvveOihh9i7dy9BQUHMnj2bSZMmpUuiA2gmJ0vP/4BLv5og19FZGPEN++N30iykKy9XmsiTJf5HEb0cOAzp9hdCCCHyIoPBQKxty3+S6Ffpus7DzQd7JNFnzZrFlAkzeP2pqe4kOsDxg+cY9eQ0EmJS0x0jtEIIHXrfn+74Dz5alyp1S0sSXdyyDRs2EBsbm9thCCHuQYqicjnFxjMLFrqT6ACJdjvvrV1H7RLFeKV5U1yaxtxdZzgX601hSylUp5zjRMF2T8xIX7p0KQ6Hg0cffRSz2ZyuPzExkaioKMqVK+fRnpqayjvvvENSUhJdu3b1qBv8yCOP8NlnnzFnzhy6detGsWLFALhw4QJz5swhKCiINm3aZO8TE0KIWxAVFcXQoUNZuXIlAC1btuSrr75KV/f1ek7Fzpnko+nazyQf50zycdoV6UFjn7a4NJmJnt+88cYbtzxWURTGjh2bjdEIIUTOUhSFZPuJdO2J8S4er3Pco23fvn2EhpZm9viVOOzpz3e2FDsrf9lG9xdboOnX+k3eKj1fbk37J5uw+Y99OF0aD7SvTXBRP0ze98Q8JpFFQkNDSUlJye0whBD3IEeqxprDR0m02zPs/yLsb77p/Bidq1VBVcCqqnKhWNwT7olE+q+//gpkXtYlNjaWRx55hFq1alGhQgUKFy7MlStX2Lx5MxcuXKBy5cqMGjXKY5+AgADeeecdRo0aRZcuXejQoQMAK1asIDY2li+++CLDWZ5CCJGTVq9ezZAhQ4iKisJsNjN69GgGDhx408WOFVRUDGhknCj3MmRe/1XkbYsXL77pGEVRrtbqlUS6EKKA0TQNf6+6kDjb3bZ3azKvPhnh3g4I8OfYseMYDAbsKQ4O7jyd6fH+3XaSx/s8gNHLc0E1k0WlcKgfXV9sAYDT6cziZyLuBR07dmTWrFlERUUREhKS2+EIIe4RqqoSdSGWw/HRmY45diUap6bj+/+nP0mii3tFgU+k79u3j/DwcGrXrk2VKlUyHBMYGMhTTz3Fvn372LBhA/Hx8Xh5eVGhQgWeeeYZevfujcWSfqGExx9/nKCgIKZPn86iRYsAqFmzJi+++CL335/+dk4hhMgpycnJjB49mpkzZwJQrVo1ZsyYQY0aNW68o0HHYbSRrCVRO7Axe2I3Zzissm9tXDaZjZ4fzZ49O8N2TdO4cOECYWFhrFixgueff56HHnooh6MTQojspWkavl41MamFcGhXmD42ivnfXFss++VXezLm3enuhIDRZKBQUX/OHLuY4fFCSgRgNKmAnmG/JNDF3Rg4cCD79u2jd+/ejBgxgpYtW2IymXI7LCFEAaWqKgavBFzEUaS8kyElKxCZEMeucxfSjS0dGIBByeAgQhRwBT6RXrt2bY4cOXLDMb6+vrz77rt3dPwHH3yQBx988I72FUKI7LBv3z4GDBhAeHg4cPVH2OjRozO8IOjBqHPcfoifTkzDoBh4odxwTieFE+O47DHs8eLPYXbJjPT86mbrd3Tu3JmWLVvy+uuv06pVqxyKSgghco7uCKJm0HeUKFqD1JRrF4UXLHuXRx56Gbvt2qw6g0mh28CW7P47fbkzgM59H0QxgJ5xHl2Iu9K+fXt0Xef8+fMMHToURVEIDg7Gy8sr3VhFUVizZk0uRCmEKAhUE9iVfzkS9Tp21yUATGoQHz/yLtP/8eHXfz3Ln73cpAk+Us5F3IMKfCJdCCHuFZqmMWXKFD766CMcDgdFixblq6++uuVkaLKawJwzX6Gj49Kd/HRmBk+EPkus/TKnkg8TYAymcaHWeLl8UBxS47Ug69SpE99++y2TJ0/OdAa7EELkV4f/PU6j++t6tP21ZhV/zj5OqOUS1RqUdCcGdF2nVMUQnh7Wlp8mrUH//4y5qir0fb0jRUMD3G1CZLXIyEiPbV3XuXz5ciajhRDiDqkqTvUC/14agM61O6kcWgyn4l/lxaZzWRl+lkS7HZOq0q9+AxqFlpAkurgnSSJdCCEKgIiICF566SXCwsKAqzU1J06cSKFChW5pf4PRwNbo9ejX3Zoe54hm1smJFLWUpKZ/PVoGd8TfO4CYmJgbHEkUFGXKlGHTpk25HYYQQmSpxYsX88ILL7i3A7yK07RUbz4etBqAyxcS+PC7vpivWxTU6KXQ/smGtOh0H8f+jUBRVSrWKIm3nwlVfk2JbHT48OHcDkEIcQ9wqhrnEuZ4JNGv0Ym3/8C8rq9yOiqFUsGBhPh5Y5IkurhHyVc/IYTI5xYtWsRrr71GXFwcVquVsWPH8swzz6Aot160Tld0LtsvZdh3MTWSRGc8TQNbAwFZFLXIyzRN48iRIzddlFYIIfKT3r17s2LFCvd29ZC2lA64z2NMxIkoXM70M8wNJgXfYDP1WlZE13WZhS6EEKLAsGkpOLTwTPuT7Eeo6K0SEBKCj58JTZckurh3SSJdCCHyqfj4eF5//XV+/vlnAOrVq8f06dOpUKHCbR1HNapoBhcVfKpyMH53hmNKe5fHqMviVgVdSkoKp06dYvr06Zw+fZqWLVvmdkhCCHHLVEUlOcFBcpIds9mAt58Zo0khKSmJ0NBQj7HNSvfF15z+rq2gwr7c6Bqi3MYuhBCioLE7DRiVssCeDPutpnJYLFaMBoMk0cU9TxLpQgiRD23dupUXX3yR06dPo6oqw4cPZ9SoUZhMt5fs1rxc/B2znrVRK+lX7kW8DVZSXMkeYxQUHinWHcUps5MLgmrVqt10jK7rBAcHM2rUqByISAgh7p7TrrM77Cg/TFqF0WggNdlOxZoladGlLO06tvYYe+JIBMO6fIXDnv4W9h4DHsLbz4ymudL1CZFbwsLCmDdvHvv27SMmJobHHnuMsWPHArBp0ybCwsLo27cvRYsWzeVIhRD5ga7rJOqQ5HDgZTTgZfDClx5Epy4F0t9xVcpvAC67McM+Ie41kkgXQoh8xOFw8OmnnzJhwgQ0TaNUqVJMnz6dJk2a3PaxdKPOiktL+PvKBgAWRc7nmTIv88f5BZxNOQFAsDmE7iX74q8HyW3sBUTx4sUz7TOZTBQpUoSGDRvy9NNP33KNfSGEyE0Gg4F/d58mITmK975rg009gZEApk9cQbuO1+qhP/nkk3z11VcoKIyZ1ZcxL84mKSHV3f9wt4a0ePQ+NC2jGrFC5I4PP/yQuXPnous6VqsVp9Pp8Z0sJCSEH374geLFi/P888/nXqDZbN++fUyePJndu3fjdDqpXLkyzz//PB06dMjt0ITIV1I02HjwEB9vDuNiUiKqotC2fAXeaN6IUL/xnE98H5eeCICqeFMu4C1Meimc8ltQCEAS6UIIkW+cOHGCAQMGsGvXLgB69OjB+PHj8ff3v6Pj2QypbL6y0b0dmXKWH0/PokVIa9oW60KwuRDeuhWzyxuXU2bmFRTr1q3L7RCEECJLJSc48C/iwFTjd446N6JrOgPbHCPypN09Zt68ebRr1w4AHZ0ylUOYtGQoUediSYxPoVT5EKz+XgQV9pNFtUWesWTJEubMmUPNmjUZM2YM1apVo2rVqh5jqlatSvHixVm3bl2BTaRv3bqVfv36YTab6dixIz4+PqxatYrhw4dz4cIF+vbtm9shCpEvqIqBXRciGb76T3ebpuusPH6M8OgrfPf4YwRbvsdijMegKgR4FUdxBeC03/raW0IUdHecSJ8yZQrdunWjWLFiWRmPEEKI/9B1nTlz5vDmm2+SlJSEv78/n3/+OU888cRdHTfBEYf+n9vzYh0xLD23EID/VR6NwWnGhSTRhRBC5F2qAfSQdUQ7NxIX7eSpBkc8+nfv3UT5srVxua6dz3Q0vP0MlK5SCEVR5K4rkSfNmzcPf39/ZsyYQXBwcKbjqlSpQnh45gsF5mdOp5N33nkHRVGYO3euu0Td4MGD6datGxMmTKBdu3aULFkylyMVIu+Lczj5fNuWDPtOxsRwOiaBqsGlsblcmBUVgx05PwrxH3dc8HbKlCm0bt2aQYMGsXbtWll4RwghskF0dDTPPfccw4YNIykpiQceeICwsLC7TqJjBLPB64ZDTKr57h5DCCGEuEuqaiA1SSMx1kFKogs1g5VAvXyTuORayM6NiR5J9JDiJpYdr05AiSgUJfPZdJIkEHlVeHg4devWvWESHcDX15fLly/nUFQ5a+vWrZw5c4ZOnTp5rPPi5+fHoEGDcDgcLF68OBcjFCL/SHY4OB0Xm2n/jnOReCkKPoqCSdfl/ChEBu54Rvorr7zCwoUL+euvv9iwYQOFCxfmiSeeoFu3boSGhmZljEIIcU9av349Q4YM4fz585hMJt566y0GDx6MwWC442MqqkKSMYnfL/xODf/qFDaHcNkelW5cKe8yWLDeTfgij5gyZcod76soCoMHD87CaIQQ4tY57Do7Nh5mztfriL6cgI+fhS697+fhrnUxeV1LjKtGjS/fCmfFT9dKsjz9SghPDS0CgF05J8kAkW/d6CJQmkuXLmGxWHIgmpy3bds2AJo1a5auL61t+/btme7vcDgy7VMUBaPRmKtj4eoaNXcy9r/18vPiWKPR6P4bzq6xLpfLY2Lnf49xo7H/ZTAY3Bds88JYTdM87qb6L1VV3b8NMxurqipmbw0UJwG6iSCLhZjU1HTjAEL9/HE4HOi6ftPjZhSDrus4nZmvM3I7Y69/H2XXWEj/nrv+7weQz4gMxt5sfF7/jLjR2Ftxx4n0QYMGMWjQIDZv3syCBQtYs2YN06ZNY8aMGTRt2pQePXrQunVrjz8OIYQQN5eamsqYMWOYOnUqAJUqVWLGjBnUqVPnro+daExkzOEx2DU7xxOP82zZ55h9agYJznj3mCBTMH3LvojRbkxX+kXkP1OmTMmwbMH1XxbS+v7bJol0IURuUVBZ//sevvtylbstKSGVOVPXcT4imj6vtMFguvqDMji4nMe+XywuT+U63u7tIEsdNIfcPSvyn7Jly3LgwAEcDke6JEaaxMREDh8+TMWKFXM4upxx6tQpAMqUKZOuLyQkBKvVyunTpzPdf8aMGZlOQilTpgyPPPKIe/uHH37INAFXokQJHnvsMff23LlzSc0kGRkSEuJx9+j8+fNJSEjIcGxQUBA9e/Z0by9atCjTdRr8/Px4+umn3dtLly4lKir9hBgAi8XiUTN/xYoVnDt3LsOxRqORfv36ubdXr159w3/TQYMGuf973bp1nDhxItOx/fr1c+eENm3axJEjRzId+9xzz+HtffWze8uWLRw4cCDTsU8//TR+fn7A1Qspe/bscfeZzWZee+01Zs+ejd1up0ePHu67Onbv3s2OHTsyPe4TTzxBSEgIAPv372fr1q2Zjn3ssccoUaIEAIcOHSIsLCzTsY888oj7b/jYsWOsX78+07Ft27alQoUKAJw8eZLVq1dnOvahhx6iSpUqAJw9e5Y//vjDo7/HM4/j5X+Bo3HfYXNdJsirIX8+05thK3ayNfK8x1izwUCdkBBmzJhBkyZNuO+++wC4cuUKv/76a6YxNGjQgAYNGgAQExPD/PnzMx1733330aRJE+DqZ9fcuXMzHVujRg2aN28OXP19/MMPP2Q6tkqVKjz00EPA1aTpzJkzMx1bvnx5Hn74Yff2f8de//dTvHhx+Ywg/WcE4H5/ZSSvf0b81/WfEbdC0bNoekZMTAxLlixh4cKFHD9+HEVRCA4OpkuXLnTr1o2yZctmxcMUGLKIUc4LCgqSf/c8Tl4jOHjwIAMGDODgwYMAvPDCC7z//vtYrVkwO9wEc87NYVfcLndTMUsxupTsjM2VQpIrkVKW0hQxF8Ps8Mrwqq28RjkvKCjorvbP6Hbn3bt3M3/+fIoVK+ZRV/TcuXOsWrWKc+fO0aNHD+rWrUuXLl3u6vELktz825f3Xv4jr9ndSUlw8VK3r0hNyfhH2oylQ7kcG0n9+vU92hfur4q3z7WkmdVYivoh3+JMubXzqLxu+U9efM3u9tydZvr06XzxxRc8//zzvP7668DVxUW7dOnCuHHjAPjggw+YN28eb7/9tkcCpaDo27cvf//9N6tWrcowmd68eXOSk5PZuXNnhvsnJCS4kylC3EvibVc4ETeDc0meyWpVMXNf4Vl0+2U75/4/eettNDK1w6M0KV0Ks0yGFeKGsuwdEhQURJ8+fejTpw+7du3ip59+YtmyZcycOZOZM2fSqFEjevfuTdu2bbPqIYUQosDQNI0ZM2bw/vvvY7PZKFy4MJMnT6Zdu3ZZ9hgOxcHe+L0ebRdSLzD1+DQCTAG0DGlJWVMF7DY7GjJzr6D4byJ83759jB49mgEDBjB06NB0d46NHDmSSZMmMWvWrLuvxS+EEHcoMSE10yQ6wMyZs/hg7Jvu7YdateCHxa9wJOYL7NoVQCHEuxlVg97AleIDcoeVyIeee+45li9fzg8//MDu3btp3bo1cHXm6ffff8/q1avZuXMn1atXp3v37rkcbd6UkpKS6axQRVE8ZqvfrBxEdowFz9IRtzI27eKRy+W6aWmDNLk11mAweJRXyI6xmqalK+1SuHBhLl++7C5RktnY2zlubozVdf2mZVXSysBcP1ZVVTTvy+mS6ACabud43Djmd/2MPw+eJ8TPlxrFi+KvqsT9/0XJzI57OzHc7djr30fZNRbSv+eu//sB8uVnRJrset8HBQW53193e9zc+IzIbOytXgTP8ktNZ86cYf369R63wBQrVox//vmHbdu2UaNGDSZPnkzx4sWz+qGFECJfunDhAkOGDGHdunXA1dv5Jk+eTJEiRbLsMVSDiq7qmFUzKa6UdP1xjjhSnCmycPQ94Msvv6R06dK8+uqrGfYbDAaGDx/O2rVrmTRp0g1vjRRCiDuhKAouB9htTlSDirePMd2PXi+vzH+mbD/5EyvHnnJvf/XVVzz55JMYUGlcpAEuklAVM7h8cSYbkSS6yK8sFgvff/89r7/+Ohs3bmTfvn0A7Nixw12e4oEHHuDTTz/FbC6Yi8T7+voCZFr2IDExkYCAgEz3z6wkTkZupyxtXhh7O+smFeSx1ydnb3aMzMbeznFzcux/a2nf8lijkfNJma8dEGc/gE8hB52rVsFgVNC0/z8Hq+kf645jyAdjIfP3XEZ/P3nhfZ8XPiNuZ3xe/oy4U1mSSHc4HKxatYr58+ezbds2dF0nMDCQPn360LNnT8qWLcvu3buZNm0aGzZs4IMPPnDX/hVCiHvZ8uXLGTZsGNHR0VgsFsaMGUPfvn1va7GLm3F6ufgnZisXUy/ROLgJf0VlXJOvSXCTm17hFvnfvn37ePDBB286rkqVKmzcuDEHIhJC3Et0Da5cSmL2V+s4uOcMgYV86d6nGXWblPNYQNTqZ6ZanVIc2nvW3eZ02Vl76DOP4+3atctdQtLl0sDlA/iQ+Vw0IfKX4OBgZsyYweHDhwkLCyMyMhJN0yhWrBgPPPAAtWvXzu0Qs1Xa+/v06dPUrFnToy8qKork5OQC/28gxO1y6Bo6N0406igoqobMoxLi9txVIv348ePMnz+fpUuXEhcXh67r1K1bl169evHII494XBWvW7cu06dPp0ePHjdcVVsIIe4FSUlJvPXWW8yePRuA2rVrM336dPdiMVnFaXYy9eRMjiYeQ0Xl1SpDOJJwmPOpnovLPFL0EfwV/yx9bJE3uVwuIiIibjouIiLihrdFCiHE7VJVlTMnovlf/+/RXFd/uScmpPLF6CW07lSH54e2xvj/Px9MXiqvjunKmwO+J+pCHLHJ5/jnxPcex7pw4cJtzcwSIj+rWrUqVatWze0wclzDhg2ZPn06YWFhdOzY0aMvbXHHhg0b5kZoQuQpqsFAguZCB8xAIUs9ziYqZHRXVpBXAwy6LzKFSojbd8dz25988kk6derkXrX2ySef5LfffmPevHk8/vjjmd5aVrFiRZKSku44YCGEyO927dpFy5YtmT17NoqiMHToUFatWpXlSXRFUbjoiOJo4jEANDSmHZ/Fo8Ufo3fp3tQPqs+DhR/k7apv0zq4Naoj6253EnlX7dq12bdvH0uWLMl0zJIlS9i7d6/M8BJCZKnUZBdTxi5zJ9Gvt3bZXhLirtUx1nUdvyAz4797gbKNEz2S6P369efy5cuSRBfiHtC0aVNKlSrFsmXLOHTokLs9ISGBadOmYTKZ6Ny5c+4FKEQekITCvPDDdF30C61++p5X1qzE5vSjtN+QdGONqh9Vg9/AZbv1skdCiGvu+Nvn7t27qV69ujuh7u3tfUv7de/eXa4YCyHuSS6Xi4kTJ/LJJ5/gdDopUaIEU6dOpXnz5tnyeAaDgR1RuzzaEp2JfH38W4p6FaGCbzk6F+sCqVI79l7y8ssvs2PHDt544w0WLVpEhw4dKFGiBADnzp3jjz/+YNu2bRiNRl5++eVcjlYIUZCkJjs4fexSpv0Hdp/mwfbV3Ot1aJpGg8a1OXfunHvM4sWLadGiRbbHKkRuuNFF7ltREBPKRqORDz/8kH79+vH000/TsWNHfHx8WLVqFZGRkfzvf/8jNDQ0t8MUItckafDGxtWERZ5xt209d5Y2P/3Mmqe7Uz2oLlGpP+PUovAxNaS03+P4mUOJT4nPxaiFyL/uOJG+cOHCdDXKbkXdunWpW7funT6sEELkS2fOnGHQoEHuhZi7dOnC559/TmBgYLY8nmpQcRidWIyWDPsv2i4R54jjieKdMWX9utMiD6tfvz6TJ0/mzTffZNu2benKraWtc/LRRx9Rv379XIpSCJEfKYqCgoqOjqKQbgFrg0FFURR0PeMLuBZvL/d/X7x4kWrVqnn0/7SzBTXLpWK02HCmev13dyHyvddff/2O1snRdR1FUQpkIh2gSZMm/PTTT0yaNIkVK1bgdDqpXLkyI0aMoEOHDrkdnhC5RkHlTHS0RxI9jabrDP5zPd8+8jhlfN9GwYkRC6RqGCy3t7CkEOKaO86e3EkSXQgh7jW6rrNgwQJGjhxJQkICvr6+fPrpp/To0SNLFxS9ntOssS1uJ7+fW0O/8r0yHfdg4WaYNTM6ssLMveahhx5izZo1rFy5kh07dnDp0tUZoiEhITRo0ID27dvj4+OTy1EKIfITh00n8kw0yxbuwJbqoHXH2lSrFYrFqroT594+Ruo1rcDOzcfS7a+qCtVqh6JpGn/88QdPP/20uy+0ooWJf1RBUeLYF/0J5fxPUcH6Ai67XAgWBcvgwYPTfT88c+YMv/32G97e3jzwwAOULFkSuHoXWVhYGCkpKTz22GOULl06N0LOMbVr1+bbb7/N7TCEyFMcNo0tEemT6GkOXY4i1eUkSFMBE+DKoGK6EOJ2yLdPIYTIJrGxsYwYMYJFixYB0KhRI6ZNm0bZsmWz7TEVo8L6K3/za+QKAA7FH+Xhoq1ZdXGtx7hilqK0K9oG3SZJ9HuVj48PXbt2pWvXrrkdihAin7PbdGZNWstfK/91t23/+yhlKxbh/S+exMv7amLQYFIYOOoRRvWdRWy055pJL7/9KN6+Rl588UV++eUXd/tzr5fgsX5FPMaejJ9PBb9eQED2PSkhcsF/S6qdOnWK7t2789hjj/Hmm2+mu5MxLi6OsWPHsn79eo/3jRCiYDOYHWiGBDAn0rNeUQw+dZi28wA2l+fyoUZVxZBNk7eEuFdJIl0IIbJBWFgYL774IpGRkRgMBkaNGsXw4cOzfWG0FNXGb+dXu7eXnV/LYyUe5uVKL7EnZi8prhQaBzegvLUcZrsJXeYkCCGEuAuKonDuTLRHEj3NqWOXWP/nv3R4og6apqHrOgHBXkyY3Y/dW0+wPewoRYoH0K5LPSw+KoVDgj32//z3KpStltE6TDpJznNYJJEuCrgJEybg7+/PuHHjMBjSl2IICAjgo48+ol27dkyYMIHJkyfnQpRCiJyiKAqqdxJ7r4whKuUfd3v90Bb8ULIvz/223iOZ3r5cJXwNRnC5ciNcIQokSaQLIUQWstvtjBs3jkmTJqHrOuXKlWP69Ok0aNAgRx4/yZWMQ3N4tP12bhVeqhe1AqrQI/QxAl1+aDZNkuj3iLRF+ooWLYrBYPBYtO9WpC1EKoQQGVEVAysW7cy0/49FO3mofQ28vFXgat10b18DzdtVpXm7aigKHDhwgKZVm3rsd+7KfrbEPJPpcU2qNWuegBB52D///EOzZs0yTKKnMRqN3HfffYSFheVgZEKI3OAy29gTNZpom+d5NyplA0W8VfrXfYQpO/YBEOrnz2uN70eVJLoQWUoS6UIIkUXCw8MZOHAge/fuBaB3796MHTsWX1/fbH9szQipqg20jG/ds2k2dsTso2uJDukWfxMFW6tWrVBVleXLl1OuXDlatWp1y/X5FUXh4MGD2RyhECI/UNWrtc7/u1Cojo7d5sxkL3A4nGS0tqjr/3/Yz5w5k5EjR7rbO3XqxOzZszF42QgwVyHOfiTdvmY1CLNSGEkNiILOZrO51zG5kaioKOx2ew5EJITILQ5VIcF+KV0SPc2llL/oVnUAEbF27g8JpVGZUgQaDPLbT4gsJol0IYS4S7qu89133/HOO++QkpJCUFAQEydO5NFHH82Rx3eaNFZfDmPxuVX0Kv0oFXzKcDzpdLpxhc3B+Ko+SObh3tKwYUMAvL29PbaFEOJWOO2QEG/j6KFz+PpZKFuxCFYfIyhp2XGdNp3qsHVj+oQ3QPM21fH2MaHr6U8+bdq0YdeuXe7tmTNn0qVLFwA0u4X6IR/y94UB2Fwx7jEGxULjop+j231B7qwSBVyVKlXYuXMnmzdv5v77789wzJYtW9ixYwe1a9fO4eiEEDkpweUk2RV9gxE6PkYHb933AKpJQVE1SaILkQ0kkS6EEHchKiqKoUOHsnLlSgBatGjB119/TfHixXPk8VVV5WTqGX49d/Xxl59fz9CKz/LNiblctl/7ouVn9GFk5RexuMxoyBeqe8mPP/54w20hhMiMwwbfTFrLxtUH3G0ms4E3x3ajas1iKKqOpmlUqlacilWLc+zweY/9AwKtPNazcbokelxcHOXKlfNo27dvH6Ghoe5tXddRbSE0LzabWPu/xNj242cqT2FLQ3S7P5omSXRR8A0YMIDBgwczcOBAOnXqRIcOHdwl186dO8cff/zB77//jq7r9O/fP5ejFUJkp2SHA8Xgd4MRCiajL5qXjlxoFiL7SCJdCCHu0OrVqxkyZAhRUVGYzWZGjx7NwIEDUVU1x2KwG5z8evpP93acI4Gpx3/i6TKPo+kaV2zRlLGGEmopjsVhRtMliS6EEOLmVNXAprX/eiTRARx2F2P+N5/pPw/CL8AEgJe3wjuf9iBszUGWL9qJw+6kWavqPNqjIb4BJo8ZcZs3b6ZTp07ubV9fX06ePJlhDWhN0yDFhwC1KUGWB9B1HVeKC0kQiHtF69atGT16NB9//DGLFy9myZIlHv26rmM2m3n77bdp3bp17gQphMg2ukElSbt6MTrY25v1Z5IoGViHGNvedGOLWR9EcWV/SVEh7nWSSBdCiNuUnJzM6NGjmTlzJgDVqlVjxowZ1KhRI0fjMBgMpKgOLttiPNov22P48ugP+Jt8ub9QXVp7lUW3y+Ki4uYSEhI4deoUxYoVIyQkJMcff+nSpezcuZN///2X8PBwHA4H48aNo2vXrhmOT0xMZPLkyaxatYqoqCiKFClCu3btGDJkCD4+PunGa5rG3LlzmT9/PqdPn8ZqtXL//fczfPhwSpUqld1PT4h8JSXJycI5WzLs01w6WzaE80iX2u5a517eCm0fr02zNtXQAW9vIzqet5WPHj2ayZMnu7eHDh3Ke++9d9NYNE1uTxf3rieffJIWLVqwcOFCdu7c6a6ZHhISQoMGDejatavH3RxCiPxPVVWiNRff7NnK8pPhGBSFbpVr8miFqiiMQuFzom3XSqOFWO6nZvAoXMmS4hMiu8m7TAghbsP+/fvp378/4eHhAAwcOJDRo0djsVhyNA6HWWNnwhEu22Mo5xPK7tj0C0LGOxIJNgWiaoqURRduYWFhLF++nGeeeYbq1au723/88Uc+/fRTHA4HiqLQu3dv3nzzzRyN7csvvyQyMpKgoCCKFClCZGRkpmOTk5Pp3bs3hw4dolmzZnTs2JFDhw4xa9Ystm/fzty5c/Hy8vLY591332XBggVUqlSJZ555hkuXLvHHH3/w999/88svv1C2bNlsfoZC5B+6rhNzJTHT/vMRMaiq6k6kA2iaCy/vq3dl6deVEXO5XJQrV47ExGvHW758OU2bNs2GyIUoONauXYvRaKRFixYMHTo0t8MRQuQARVGI0Vw88ftPRKemuNtn7NvOHyfDmdLqUc7EPk+9ooNRlBSspkD8TSG4kk25GLUQ946cqz8ghBD5mKZpTJo0iTZt2hAeHk7RokVZsGAB48aNy/EkutOk8f2Z3/jy6FyWRK7n4aIPoqKkG2dRvWgaXM8jySHEggUL+PPPPylTpoy77ciRI4wdOxZN06hTpw6+vr78+OOPrFmzJkdj+/DDD1m3bh1bt26lV69eNxz77bffcujQIfr378/MmTMZMWIEM2fOpH///uzfv5/vv//eY/zWrVtZsGABDRs2ZNGiRYwcOZJPP/2Ur776itjYWMaMGZONz0yIvEdVVVJTdGKu2EiIc+J0KCjKtXOJwahSsWrm633UbVTuls4vERERhISEeCTRT58+zQMP1QFLDKolEYNJ7pgSIiNDhgyRtU2EuIeoqootRWPDmZP4mb3S9Z9NiOPAlYu0KV0LAyWxqlXxV0JRbZJEFyKnSCJdCCFuIiIigi5duvDee+/hcDjo0KEDYWFhuVaLMk5LYtPlq7fyJTlTWHtpG4MrPkuIV7B7TFlrKB/UGI7Vmf4LmLi3HTx4kGrVqnmUPlm8eDEA48aN4+eff+bXX3/FZDIxb968HI3t/vvvp2TJkjcdp+s6CxYswGq18tJLL3n0vfTSS1itVhYsWODRnrY9bNgwzGazu71FixY0atSIsLAwzp07lwXPQoi8z+WEvTsieHXQbAY98w39npzGx+/9Rlys3b3Oh5dFpd/QNhnuX7iIH5Wrl7hpuZVFixZRu3Zt93b9+vWJTbyIK+BfNlzoz6rInqyK7MGhxMkYvVNucCQh7k3BwcEEBATkdhhCiBygqgq6MZ5Yw99ULvoXEx4qzPzHHqZiYLDHuN+OH8akKxQzmglUVFSXlD4TIidJIl0IIW5g8eLFNG/enE2bNmG1Wpk4cSI//vgjhQoVypV4jEYje+PCPdo2X97LrxHr6VLiEUZU7s/ntd/k9YoDKeTyR9dklp/wdPnyZYoVK+bRtmXLFvz9/enYsSMApUqVomHDhhw/fjw3QrypU6dOcenSJerVq4fVavXos1qt1KtXj7Nnz3L+/Hl3+z///OPu+6/mzZsDsG3btuwNXIg8QFVVzpyK4cO3F3ElKsHdvn/3af43ZC7JiVdnmWuaRmiZIEZ/1pMixa4m8hQF6jUuz8dfPYO3z41/Rjz77LP069fPvf3ZZ5+xdu1aop072RY1mhRX1NXHwcmpxGVsiXoDg1dqVj9dIfK1Ro0asW/fPnRdvs8JUZCpqorLfIF1F59lT/wHnEn8mWMJY4lMfo3JbeoS6nftgprVaEJV0t+NLITIGZJIF0KIDMTHx/PSSy/xwgsvEBcXR7169diwYQPPPvusx63vOUVRFGxmF2f/P/HwX6eSIply7Gc+PvQdZsWM0aHKjy6RIYPBgM1mc2/HxsZy9OhR6tev756JCldnwUVHR+dGiDd1+vRpgExrmqe1nzp1CrhaTz0qKorQ0FAMBkO68WllbtKOK0RBZkvV+HbK2gz7oq8kcuhApPuzwGCEmnVLMH76M0ybN4hvFrzEa6M74RdoyvQck5KSQnBwMMuWLXO3bd26lb59+4I5kf3RUzLcL8Z2kFT90l0+OyEKlmHDhhETE8PYsWM9zt1CiIJDURWc5iT+vjgKh+a5Noldi+NEwke8Wr+mu+25GnUxyALcQuQaWWxUCCH+459//mHQoEGcPn0aVVUZPnw4o0aNwmTKvdpzSSY77xyYzsXUK7xXs3+m4xoVqoVFkxp5InMlS5Zk9+7dOBwOTCYTq1evRtd1HnjgAY9xsbGxBAYG5k6QN5GQcHUWra+vb4b9ae1pNZlvdXzauMwEBAR4XGzIaUFBQbn22OLO5MXXLOpiHMePXsi0f9+u07R6uJZHm7//rR1779693HfffR5tNpvNXU4p3h5PiivzZHmcM5xKQXVu7cGyUV583cSNFdTXbNmyZbRo0YI5c+awYsUKmjZtSokSJTxKlKVRFIXBgwfnQpRCiDulqConUhLxcp4n2Xk+wzGJjjNUD7r6nn+sfFUqBQTJXcdC5KICnUhv1aoVkZGRGfY1atQo3cItdrudGTNm8Ntvv3H+/HkCAgJ46KGHeOWVVzIt4/Dbb78xe/Zsjh07hslkol69egwdOpQaNWpk+fMRQmQvh8PBZ599xueff46maZQuXZpp06bRpEmTXI3LZdSZfmIx51MvAxAWtZcepdox/+xKj3GBJj+eK/0oiiM3ohT5RYcOHfjiiy/o3bs3devWZdGiRRiNRtq0uVYLWdd1Dhw4QLly5XIx0rwnLi4u1x47KCiImJiYXHt8cfty8zUzGAykpDjRNR1vq9GjlrnLpRNc2M+jrMv1SpQKJj4+/rYXqp48eTKjR492b/fq1Yuvv/6apKQkkpKSAFAtKiomNDI+UXkphYiNjc3VO6rkvZb/5MXXLKsS+1OmTEFRFHRd58qVKx53evyXJNKFyH/idRd9Vy/mx0fSlx68nsUEcx/uRvmgICySRBciVxXoRDqAn58fzz33XLr2/y5mpmkaL774ImFhYdx33308/PDDnD59mgULFrBlyxbmz59PcLDnIg9Tp05l4sSJlCxZkl69epGUlMTy5cvp1asX33//PfXr18/W5yaEyDonTpxg4MCB7Ny5E4AePXowfvx4/G91Gl42SlHs7Ig55N5edfEfHivRnDeq9WPr5X3EOxNpFFSDuoHVsDrNaMitfiJzzzzzDGvXrmXv3r3s3bsXVVUZNWoURYsWdY/ZunUr0dHR9OrVKxcjzZyfnx9wbcb5f6W1p800v9XxaeOEyM9sqbBz2zF+X7wTm83Bgw9Vo12H2vj4XU2oW32N9HymKV9PWJVuX4NBpWmzSreVRNd1nSZNmnD06FF329y5c3nkkUfSjVVcPpT2bc+pxN/TP7ZiIcBcCS1FEgRCpBk3blxuhyCEyEaRSQnE2FJwaD4oGNBJf/5VFTO+jgACLYEYJYkuRK4r8Il0f39/Xn755ZuOW7x4MWFhYXTq1InPPvvMXQN53rx5vPfee0ycOJEPPvjAPf7UqVNMmTKFsmXLsnDhQveP76eeeooePXrwzjvvsGzZsly9BVwIcXO6rjN37lzeeOMNkpKSCAgI4LPPPuOJJ57I7dBAVUkx2EnWbOh4fmn67dwmVl74h4bB1egW+jBlDEVw2p2SRBc3ZbVa+fnnn9m+fTvR0dFUq1YtXa1xVVV54403aNWqVe4EeRNpNc3TaqD/V1p72vOyWq2EhIQQERGBy+VKVyc9rTZ62nGFyK9sqTqffPA7/+4762776Ye/+XPZXr74+uoCoS6Xi/sfrMzRQ+dZ/cd+9ziLxcRbH3XFx88E3NoP9StXrlCpUiWPtkOHDnlcmLuey6FQPbAf8Y7jRNsOutuNijfNik0Ee8bll4S4V3Xp0iW3QxBCZBNFUYixpQAw/8hpHq/YkzNJP6UbV9X/OSym4HsgeydE/iBvxf+3YMECAF599VWPhQR79erFzJkz+f3333nzzTexWCwALFq0CKfTyYsvvugxg61atWp06tSJRYsWsXPnTho2bJizT0QIccuio6N55ZVX3LfJNmvWjK+//prQ0NBcjgw0g86+5ONMCF/A0MpPEGDyJc7hOZvWptkJu7yXJ0s9jNPpzKVIRX6kqiqNGzfOtL9x48Y37M9tZcuWpUiRIuzatYvk5GSsVqu7Lzk5mV27dhEaGkrx4sXd7Y0aNWL58uXs2rUr3bl506ZNAHLOFvmaoiicPH7JI4meJvpKIr8t2kmvZxuj6xomMzw/qAXdezflxLFL+Ph4UapMIbx9jHCLF2TXrVtHt27d3NslSpRg//79N12Q25niTeNCn2AjihjbISyGwgSYK4HdF+32qskIIYQQ+YqqqsTrLuIddlQFqgSHUM4/iHlHjlC3yANUDCpCZNJcUlxReBuLUj2oP0VMTXDZZIKmEHlFgX832u12Fi1axLRp05gzZw579+5NN8Zms7F3717KlSuXruSLoijcf//9JCcn8++//7rbt23bBpBucTa4moy7fowQIu/566+/aN68OcuWLcNkMjF69GgWL16cJ5LoAJf1RD48NIdkl40V57fSLbR1huMaB9fAT/HO4ehEQXLq1Cl2797NyZMnczuUW6YoCt27dyc5OZmvv/7ao+/rr78mOTmZHj16eLSnbX/55ZfY7XZ3+4YNG9i2bRvNmjVL9x1AiPxEVQ2sXL4v0/71aw6SknwtU200QUCQmXqNSlGlRhG8fVRuNYn+2muveSTRX3/9df7999+bJtHTuGxeGG2hFFXb4a/VQ0uRJLoQGYmPj2f16tVMmjSJ999/n/fff59JkyaxevVq4uPjczs8IcRtcKkKJ2xJfHNoB6M2/8kjv8/mhbWLGN30IRoVK8moTX/z0VYdVX+XUtbpVPGfSFFjG1y29IsLCyFyT4GfkR4VFcUbb7zh0VarVi0mTJhA6dKlAThz5gyapqW7tT1NWvupU6do0KCB+7/TbhX/r7Rbw9NuFRdC5B2pqal8+OGH7uRbpUqVmDFjBnXq1MnlyK7RjQrzT693b++LPUF1/7K8WKEbv0as45ItGqvBi07Fm9Oh6P0Y7QX+mqjIYna7nSlTpvDLL7+4f4h37tzZXYt16dKlfP/994wdO5Zq1arlWFwLFixwr1MQHh7ubku7MF2/fn26d+8OQL9+/Vi7di3ffPMNhw4donr16hw8eJCwsDBq1aqVbn2UJk2a0L17dxYsWEDXrl1p0aIFUVFRrFixgsDAQN5+++0ce55C3C2DwYCu6x6LiAIYjJmfD1RV4WrJFs9k9+0s7OlwONKVbVm9evUdrwv03/iFEFclJiby+eefs3jxYmw2G3DtvZp2wcrLy4uuXbvy6quvutcEEULkTarRhcMYS2LyMh4qe4kO5WtjoD3/C9vGoPVL+aV9L579cyE7L53n3D+JjKzfjHLWQjivm/whhMgbCnQivWvXrtSvX5/KlStjtVo5deoU3333HUuXLuX555/nt99+w9fXl4SEBIBMv4CktV+/SFliYmK6xUf/Oz7tuEKIvOHgwYMMGDCAgwev1mXt27cvH3zwgUdZiNykKAp2g0aq4uBM8iWPvp/PrKOSb0m6hbahiCWIUpbCWF1e6HZJQojbk5qaynPPPce+ffsoVKgQLVq04K+//vIY06RJE15//XX++OOPHE2k79y5k8WLF3u07dq1i127drm30xLpVquVOXPmMHnyZFatWsU///xDSEgIffv2ZfDgwe5SbNf74IMPqFy5MvPnz2f27NlYrVbatm3L8OHD3RfXhcjL7Da4dCmBw4fOUbiwH5WrFMPqYwB0NM1Fh8fuY+O6Qxnu275THbytRnT9zs4bJ0+eTJcwP3PmjMf3Z0VRUI0AOrpLlUS5EHfg/PnzPPvss0RERKDrOlWqVKFGjRoUKlQIuLo2wcGDBzl8+DDz5s0jLCyMH3/8MdO1CYQQuUs1alzWdxEW8T7X1iD5Cy9DIJNafsyzKzew8kw4K7s8R7LDgZeq4q8ab2vhbyFEzinQifQhQ4Z4bFerVo3x48cDV2fbLViwgD59+uRGaAQEBMhCpLkgKCgot0MQN5Edr5GmaUyZMoVRo0Zhs9kICQlh1qxZdOrUKcsf626cT4nmwwPzKGktRKi1CCeSznv0H02MZGL4r7Qr2pBXqnTDbDDlSpzyPsrfvv32W/bu3Uu3bt1455138PLyomrVqh5jihYtSsWKFdm8eTOvvvpqjsX28ccf8/HHH9/yeD8/P958803efPPNWxqvqirPPvsszz777J2GKESusaXCB+8tIfzwtXOD2Wzkw4+7U658ELquE1o6mAcerMLfG4947FsyNIiHO9S+4yT63Llzefnll93bLVq0SHfRS/WykaCdJjx+ES7dRjnf9oRYaqPbrLc1612Ie5nT6WTAgAGcPXuWJk2a8NZbb6Vb0DfN0aNHGTduHJs3b6Z///4sXrw43WLaQojcpSgKmjGJzREf8t+FvG2uWM4kT6NvjSfYFHmevpXrEqwYQEeS6ELkYQU6kZ6Znj17snTpUnbt2kWfPn3ci4VeP+P8emnt18+4uX4me2bjr1+E9L/i4uLuKHZx54KCgoiJicntMMQNZMdrdOHCBYYMGcK6desAaNu2LZMnT6ZIkSJ56u/BZtIYtX8Wp5MvcSzxHO/VfJqwqH1o//nCpaLQNfRBkuITScqFOOV9lPOy+sLFihUrKFGiBO+99x5GY+ZfA8qVK+cxE1wIkZtU5sze5JFEB7DbnbzzxgKmz3oBHx8VsxleHNaa9p3qsHThDux2J63b1aRug7J4W9U7Smh36dKFDRs2uLe/+uornnzySc/ovGzsjv2K00lr3W3nkrcRYC5Hq6Kf4kqRtTyEuBW//vorR48epV27dnzxxRc3nHhVqVIlZs6cySuvvMKqVav49ddf060PIoTIRZpKtC0VTQ9Hw5nhkKjUPTQp3p/IRCcmFOSysxB53z05JTotKZGcnAxAqVKlUFWVU6dOZTg+rf36Guply5YlOTmZqKiodOPTaqOn1UoXQuSO5cuX06xZM9atW4fFYmH8+PH8/PPPFClSJLdDSyfKEc/p/y/nkuKy88f5HbxapQcBJh/3mECTL+/X7EMQeaMUjcifIiIiqFmz5g2T6AAmk0ku+gqRRyQnOVm7+kCGfTabk2PhF9wJN7OXQtUaRRj5TkfefP8xmrWsiMVbue0keloZw+uT6Lt27UqXRFcUhUTtrEcSPU2c/SQnklZiMNyTPzmEuG1//PEHFouFDz744JbuXlYUhQ8++AAvLy+WL1+eAxEKIW6FXVUIuxLBW/vWcdkee8OxOhrPVKmDLrPQhcgX7skZ6fv27QOgZMmSAFgsFmrXrs2ePXuIjIx0t8PVRV02b96M1WqlZs2a7vaGDRuye/du/v77bzp37uxx/LCwMAAaNWqUzc9ECJGRxMRE3n77bWbPng1cXWB4xowZVKlSJZcjS89lBJvi4ky850W5vy7tJyo1jhcrdsFLNVLYK4BAgxWry4zukpqz4s5ZLJZbSpBHREQQEBCQAxEJIW7G6dRwODL/gX3lSqJ7AUK4+v1VUXQUw53dHr5z507atm3r3lYUhYsXL2Z4Ac5gVDiasDTTYx2L/52yRduDK/26BUIIT+Hh4dSvX/+2zr8BAQHUr1/fvQaQECJ3qQaV9edP8vrWlRgUBR/jw5mO9TOVpJBXMP5YQJP56ELkBwV2esjx48dJSUnJsP2zzz4D4NFHH3W3p90GN2HCBI8ZOz///DNnz57l0Ucf9Vi4rGvXrhiNRqZOnepR4uXQoUMsW7aMChUqpFuQSQiR/Xbu3EnLli2ZPXs2iqLw8ssvs2rVqjyZRLebdGaeXUffbZPxUtPXOz8Qf4YxB+bxwYF5+Bu88XYY0WXhNnGXqlatyr///kt0dHSmY86ePcvBgwc9LiALIbKXoqgkJ2vExNhJSnJx/dd0s5eBIkX9M923StUSWVZPdfz48R5J9H79+nHlypUb3sWi6Y6b9ElyQIhbkZCQcEcl3QIDAzMtUyqEyFlxmotPdm8EwKXrrDl7iVDrIxmMVGhYeATBaiEMkkQXIt8osDPSV6xYwXfffUfDhg0pUaIE3t7enDp1io0bN+JwOBg4cCANGzZ0j+/SpQsrVqxg2bJlRERE0LBhQ86cOcOqVasIDQ3llVde8Th+uXLlGDJkCBMnTuTxxx/n4YcfJikpyX1L3ZgxY2QxUSFykMvl4osvvuCTTz7B5XJRokQJvv76ax588MHcDi1DqkHlj4s7+C1yGwAOzUVRSyAXU2PTje1YvBE+uhcgSXRx93r06MGIESN49dVXmTBhAsHBwR798fHxvPnmmzidTnr27JlLUQpxb7HbYfXqf5n/yz8kJdkwmQw8/HAtnnq6KV5eOj4+RgYMasWH7y9Jt2/VaiUIKeKb/qC3Sdd1atasyfnz1+qw//rrrzz00EM33E9zQXnfDpxN2pRhfxnf1qgub+SGdSFuLjAwkAsXLtz2fhcvXpS7yITIAwwGAy7NQbLz2gXmSXt383nztlQLqEZk8kKSnZcp7FWduoUG4OUqhuaUM6QQ+UmBTaQ3btyY48ePc+jQIXbs2EFqaipBQUE8+OCDPPXUUzRr1sxjvKqqTJ06lRkzZrB06VK+//57AgMD6datG6+88kq6RAPAiy++SMmSJfnhhx+YN28eJpOJBg0aMGzYMGrUqJFTT1WIe96ZM2cYNGgQW7duBaBz585MmDCBwMDA3A3sBpJUJz+fuZZ0+Ob4av5XvRuTwpdyNvlamZeWIbV5qlQLsEsSXWSNTp06sX79epYvX06bNm2oW7cucLX28Ysvvsj27dtJTEykc+fON02gCSHunqKorFixhzk/bna3ORwuli/fw+XLCQwf3hZwUaNWcd55rzMzpq3n4oU4TGYDbR+uxVO9m2I2310MFy9epFq1ah5tx44dy/D7739pmkaQpTKFvKpxxXbIo89iCKKq/xO40t8kKoTIQI0aNQgLC+PChQsUK1bslvY5f/48e/bsSff7VgiRcwxeTmxKLCeTtqCjsbhDK/6KjObTXTvQgVc3baB6UBF6V32JBwqH4q/4otrNaHewCLgQIncp+u2uPCSyRExMTG6HcM8JCgqSf/c87nZfI13XWbBgASNHjiQhIQFfX1/Gjx9Pz549PWrF5iUOg068biNZs/HijqkefUW8AuhdriVFLQGoKJS0FMKKCaMz7zwXeR/lvDu5xftmdF1n5syZzJw5M93r6efnR79+/RgwYECefR/lltz825f3Xv5zq69ZUpLGgP6zsNmcGfZ/++0LBAZdLf9lMBhISnJitzkxGg1YfYzc7d1Kf/75J0899ZR7u0qVKmzevPm23/8G71QikjdxJH4xLt1GGZ9WVPbvDDY/tHxUlkzea/lPXnzN7vTcvWLFCl599VUaNmzIt99+i5eX1w3H2+12XnjhBXbs2MHnn39Ohw4d7uhxC7K89reRFfLi33xek5P/RrrFzr9xcwiPX+LRXt63AxcTm/PGlr/dbf4mL3596ElCvC3oeu6dG+Vv6Mbk3+fGCuq/z62euwvsjHQhRMEWFxfHiBEj+PXXX4Gri/tOnz6dMmXK5HJkmbMbdBZf2MGsE3/xbq0nCDT5EOtIcvdfssUx4fDVBds+r9OXAJcXcq1TZAdFUejXrx99+vThwIEDREZGous6RYsWpVatWpjvdnqrEOKWJSfZMk2iA1y4GEdQcAi6ruNyubBYFCyWtHU17u5H+ODBg5k3b557+4MPPmDIkCF3dCxXioVQY3tKFGkO6KguK64U/a5jFOJe0qFDB+bNm8f27dvp1q0bI0eOpHnz5hle2Nq0aROffvopR48epUGDBpJEFyIXaAaVKNuxdEl0gBOJK2hUuDElffyJTIrHy2BkRosuFM7lJLoQ4u5IIl0Ike/8/fffDBo0iMjISAwGA6NGjWL48OE3XAgttymKwkVnHLNO/AXA8shdPFHqfmaeWJ1ubGEvf0pbC6E7JIkuspfBYKB27drUrl07Xd+VK1f47rvvGDFiRC5EJkTBo6oGbHYXBlXBYMB9odTLkn6x6esFBHhn+UVVu92ermzExo0b73qBYZfLBS7L1f+WBUaFuCNfffUVL7zwAvv372fgwIEEBARQvXp190y5mJgYDh48SFxcHLquU7t2bb7++utcjlqIe5PT4OBk3KJM+88kLWZM44FEpbhoXLQUAaiQj+7SEkKkl3ezTkII8R92u51x48YxadIkdF2nXLlyTJs2zWPh4LxIVVWcJlhw9B93287ok7QoUp0epZqxJHIrdu3qbMRKfiV4r0YvfFwmNJnFJ3LB+fPn+fbbb/n111+x2WySSBfiLimKQmKSi9Vr9vPPthP4+1vo1rUhZcsEYzKB1WqiQYNy7NhxMt2+RYr6ExRkzdJ4wsPDadKkiUdbZGQk3t7eme5jMCpohhQU3QBOr3xVqkWI/Mbf35958+Yxa9YsfvzxR6Kioti8eXO6cYULF+bZZ5+lb9++eXoyiRAFWaIjBZsWn2m/zRXPg0WKoDvSzp1ykVmI/E7OuEKIfCE8PJyBAweyd+9eAJ5++mnGjh2Ln59fLkd2Y3YjHEqK5GjUBWLsSR59Ew4v5+HitXmv5lPo6JT0DsZfseDlUtHkdj+RhTRNY/ny5YSFhXHlyhUKFSrEgw8+yCOPPIKqqsDVBPqUKVNYunTp1VmlQNu2bXMzbCEKhLg4B0OHzyUhIdXdtmPHKR57tC5PPdkIk1Fn2CsPM/rdRZw4cW2x6eBgHz76sBtWqyHLEtezZs3yuDjWqVMnZs+enel4VVXRveI5GL+Us0mbMak+1AjsThFLHbRUKQElRHYxGo0MGDCAF154gYMHD3L48GFiY2MBCAwMpGrVqlSvXh2DwZC7gQpxLzIYiNcd2FwuvA1WCns14LLtcIZDS1gbg8ssF6CFKEAkkS6EyNN0Xef777/n7bffJiUlhaCgICZOnMijjz6a26HdlGZQ+P3CLqYeW0uNgFAeLFKFbVeOeYxZdX4fq87v49ES9Rhctg2KU0eXmQoiCzmdTgYMGMCWLVs8ykP89ttv/Pnnn0yePJnFixfzwQcfkJqaiq7rtGnThiFDhlC1atVcjFyI/E/TFL6dtdEjiZ7mt99307FDHQoX8sJqVRnz4RNcuZLE2bNXKFIkgGLF/PHxyboketu2bdm5c6d7e+bMmXTp0uXG8XvF8nvEIOxaorttw8UxlLY2o3HwK2g2SaYLkZ0MBgO1atWiVq1auR2KEAJIMSrMCt/GT0f3kOJyEGi2sKT9Y5xMXIpNS/AYa1J9qOL/6P+vFyKEKCgkkS6EyLOioqIYNmwYf/75JwAtWrTgq6++okSJErkc2a1JUhx8c3w9AAfiIuhXsSWFvfy4bPP8kuWlmuhdtjmKS75kiaw3d+5cNm/ejJeXF126dKFSpUokJSWxceNG1qxZw7vvvsuCBQvQdZ0HHniAESNGUK1atdwOW4gCIdWmsWXrsUz7t2w9RufHauNyufDyghIlfAgN9UPXdXRdz5Ikenx8PGXLlvVo27dvH6GhoTfcz2DS2R79nUcSPc2Z5DBqBT2Jt1JaFsUWQghxT9C9dOJsF2hfOoCHS7Xl91Nn+PnYQfr9tZZvW37BobjviEzego5OCe9GNCj8Eka7Py4p1ylEgSKJdCFEnrR69WqGDBlCVFQUZrOZ0aNHM3DgQHcZirzMboAk3c65lFic15Vo+fTgct6p+QSLz25nU9QhXLpGw+AKDKvyCIG6F1IzT2SHFStWYDAY+PHHHz0WFR0wYACjR4/ml19+QVEURo0aRd++fXMxUiHyN0VRADwTyzo3TDRn1JWVt39v2bKFjh07urd9fX05efLkLZWD0AypnE7ckGn/ycR11LK+gNPpzJJYhRBCiLxK9bax9cpMjiWsR0dDxcD9JVrTOrQ9AzaspPuqlSx8+BXK+vTBajRhUf3wsptxSUkXIQqcvJ+REkLcU1JSUhg1ahQ9e/YkKiqKatWqsXbtWl588cV8kUS3meCrE+vpHjaVZJfdo+9cSgwjd8/D32xlTO2e/PLAK7xXrStFdCtokkQX2eP48ePUrVvXI4mepl+/fgCUL19ekuhC3DGV5BSd8GPR7NxzjphYBw7n1aS6l5dKk0YVMt2zaeMK7jUJstr777/vkUQfMmQIZ86cua2ayoqS+XlXVaQ2sxBCiIJPVxxsiprC0YS16P8/u1zDxfHEVSRpv/N8ldpEpSYRZ9MpaSxBgFYIk90oddGFKKBkRroQIs/Ys2cPPXv2JDw8HICBAwcyevRoLBZLLkd2awwGA2sv/cvSiN3A1ZmGvkYLic5rtXFTXHYWn93Bzisn+brecxidSE10ka2SkpIoWbJkhn1ppR2kFroQd0hROHU6lrfeX0Ry8rWLpy2bV2Hoi20xGqF/vxbs+zeCpCSbx66PtK9NYFDWn980TaNcuXIkJFwrI7Zs2TLuv//+2zqO6rRQwe9hwuOXZdhfzrc1TpvMRhdCCFFwJek6qimBU0mbM+w/lbiBdqUe45tDe7AYDHKXlhD3gLw/vVMIUeBpmsakSZNo1KgR4eHhFC1alIULFzJu3Lh8k0TXDSqxqp3vjoe52+ac2Myo6p0w/mdGn7fBzJja3bFqci1TZD9d1zO9myOtFIXZLAsGCnEnkpJc/O/tBR5JdIC/Nh1hxaq9KIpKYKAXU6c8S88ejShXNoQ6tUvz4QdP8NwzTTFl8WkgIiKCwoULeyTRT548edtJdACXU6F24NNYjYXT9VX274RFL3RXsQohhBB5WZIRhu5YysXUS5mO0dFQFBuNQkLxU005GJ0QIrdIFkcIkasiIyMZPHgwGzduBKBjx45MnDiRQoXyxw90RVFIMLiYFv4XLYpXJuq6hUT3xUbgH+nNhHrPsOXyUc6lxFA7sBStilTHXzPL7X5CCJGPqarKnn2nsTsyLs0y/9fttGpRFW+Lgo+PSs8eDej82H0YDComk5Ll54AlS5Z4lGiqV68ea9asuatjKjY/OpaYwpnkvzmVtAGz6kv1gG74q6XRbHIBTgghRMHkMih8vHcde6PPoyp1bzjWpHrzSeMOWHRF7jQW4h4giXQhRK5ZsmQJr776KrGxsVitVr788ku6du3qniWbHyQaXPTfOoezyTGU9w+hkl9RjiZcdPeHXTrK5kvHaFi4HC9WfIhKlsI4HA53fT0hcsKSJUtYsmRJhn2KomTarygKBw8ezN7ghMinVFUl8lxMpv3xCalomg78/yKkmguzWQH0/2/POs8++yzLll0rwTJ+/Hj3Ggh3Q9M0SLFSxtie0kGtUFDRnCraDRZQFUIIIfIzVVWxGRRiHSkYFIV90fGEeFUiynY03dgS3rUp7l0Uo81ww8XFhRAFh5R2EULkuPj4eAYPHkzfvn2JjY2lXr16/PXXX/Tr1y9fJdEVo5EDcRc4m3w1kbLw9C6eK98s3TgNneMJlwjx8sPhcOR0mEKg6/od/U/umhDi6gUlp0shMUkjMUnD6VJQFAWXy0XN6hmvPwAQWjIIozF7v2qnpKQQHBzskUTfsmXLbSXRVVW96bnX5XKhOQy4HIokCoQQQhRIiqKAdyrn9T3sjp3GC9VSWdC2I8fj46ni/zKFvMp5jA/xqkyrov/DaDPLuVGIe4jMSBdC5Kht27YxcOBATp8+jaqqDB8+nFGjRmEy5Z+aci6DwiVXMtsunuZg3Dl3+5mkaPbGRPJ6jY58c2wDV2yJANQNKs27tR7HTzOiyUx0kcMOHz6c2yEIkW8pisqVmFSmzFjPrr1nAKhXpzRDBrSiUJAX5coWpkiIH5eiEtLtO6jfQ3hb1Gy7IHXgwAGaN2/u0Xb+/Hm8vLxuaX/F7MChJHDJFo6X6kshr3IoDiu6K/9c0BaioGnduvUd76soyl2XcxLiXqUoCk5LIksj3iDecfG6nvm0L/0y848fp27hvjQL8cKmxVLSEoq3FgipFkmiC3GPkUS6ECJHOJ1OPv30Uz7//HM0TaNUqVJMnz6dJk2a5HZot0UxqOxNOMfL2+bTNKQ85f09a7nPO7md+4JCGValHb4mM2V8CuGHGS9NQdMliS6EEPlJQqKTISPmkZxybTHRXXvPMGTET8z48hn8fA18Pq4nE79azc7dpwEICrQy8IWW1KlVCqcjJVvimjJlCu+++657u0ePHkybNu2W91ctdrZEz+BYwnp3m0Ex8XDxdyhkqIbukptWhcgNkZGRt72PosidIkLcLbvJxeZLs/6TRAfQ2Xp5Ct3Lf0a3Nb9hVFTuL1KGMbXrYTCo8t4T4h4kiXQhRLY7ceIEAwcOZOfOncDVH/zjx4/H398/lyO7PaqqEq+4eHvP7+jA9suneKZiY346uc1j3J6YCPbERDC8Wmsa+ISiuVyy8IwQQuQzimpg+aq9Hkn0NMkpdpav2k+vJ+rh5wuvv9ae5GQnDocTq9WMj9WIn6+FmJisTaTruk7Tpk0JDw93t82ZM4cOHTrc8jEMBpXjyRs9kugALt3Bn+feo1eZmaiu/HV+FqKgyOgusg8//JBFixbx9NNP07FjR0JDQ4GrSffly5czd+5cunTpwttvv53T4QpRIBgMBmK0aE4lbc6wX0cjRTtOZf8QqgYWYUStB7E6kSS6EPcoSaQLIbKNruv89NNPvPHGGyQmJuLv78/nn3/OE088kduh3RZFUUg0aOyLicDXbCbWfjUx4tA1Vp87xLCqrfny8FqPfZoULkeHEjXRHK7cCFkIIcRdstlcbN91KtP+HbtO0aVTHcwmMBrA388AGADQtKz/7I+OjqZixYoebYcOHaJo0aK3dRyXMZk9l+Zn2KejcTJxM5W9OuJyyflLiNw2e/Zsfv75Z+bNm0etWrU8+qpUqUKVKlVo27YtTz75JKGhoTz//PO5E6gQ+ZRqMJCiarg0F/oNSnCaVDvfNu+Gl65gcEoCXYh7mSTShRDZIjo6mldeecW9ANoDDzzA1KlT3bNo8pMkg8aLWxdwJP4Sk5t4XgRYdHoPj5WqxdTGT7MvJgIdneYhFSlq9sUi64oKIUS+oKoqLg10wKiCpmkYjSqBAd6Z7hMQ4I3RoEIOrH2xfv16j4vQxYsXZ//+/ajqHZRgUXSSnNGZdsc7IlG9VUmkC5EH/PLLLzRu3DhdEv16tWrVonHjxixYsEAS6ULcIlVVSTHqnEiM5HDcFaoGBFLIqyxXbKcyHB9qrY3FBshdxkLc86QAohAiy/311180b96cZcuWYTKZGD16NEuWLMmXSXSD2cSSs/9yJP4SAKkuJ8Fmq8eY387uZ9CWn9gadYoepetTxuCHRRZrE0KIfMFmh/2HLzHuy9V8OGEl/+yOINV+dZZ5z64NM92vV9eGGAzZ/4N65MiRHkn0//3vfxw4cODOkuiAohkpYqmcaX+oT31JoguRR5w9e5aAgICbjgsICCAiIiIHIhIi/zMYVGzmBHbH/crR5Bn4Wdbja3LQpNAAlAxSZGV8GmIlOBciFULkRTIjXQiRZVJTUxkzZgxTp04FoFKlSsyYMYM6derkcmS3z2aA8/ZErsQm8cup3e72H49tY2TNtry16ze0/8xI6F2+EWZnTkcqhBDiTtns8NnUNWy7roTLzr2nqVA2hLFvPU6ZUkF071yfBUt2euzXo0sDypQOytb6qE6nkyJFini0rVq1igYNGtzVcRWnF00LD2RpxKvp+nyMhQkxV0FLlcWxhcgLAgIC2L59OzabDS8vrwzH2Gw2tm/fnu/WHhIiNyiKQrLxCnNPj8SuXVvH5FjiFtoWHU7Hkh+zO/pHzqccxNsYQFX/x6gZ0BotRVJnQoir5NNACJElDh48yIABAzh48CAAffr0YcyYMVit1pvsmffYDbDg7H4mHdzI+/XaY9euZcf3xZxn9bkjfN30SX4/u5+TiZep4FuY5ys0oYjBGzRJPgghRH6gqirHTl3ySKKnOX4qik1bj9P+ocr06FKPR9rWYueeq+Pq31cWf18zRmP2JdFPnjxJ/fr1PdpOnz6Nn5/fXR9b0zT8DKF0KPEhm6Imk+C4CCiUsjagecgQVLsPWg6UqxFC3Fzbtm356aefGDp0KO+88066uzsjIiL48MMPuXz5Mk8++WQuRSlEPmJ2subSNI8keprVF7+gU/HPqeg7iNqBCj5GLyz4oaRIORchxDWSSBdC3BVN0/jmm2947733sNlsFC5cmEmTJtG+ffvcDu2OaAaVWC2VSQc3ArAj6iwPFq3IkjP73GNWnwtn44UTtC1ZhXdqd6CM2R+crpwokyuEECKLuDRY+sfeTPt/X7WPB5uUx8usEBxoon3rqlf3c7nIzhqp8+bNY/Dgwe7tFi1asHjx4ix9DN1hoLChJo8X/wInyaiKCYPmjW4zoulyMhMirxg2bBhbt25lw4YNhIWFUbNmTUqUKAHAuXPnOHDgAE6nk/LlyzNs2LBcjlaIPExViFUc2B0xnE3+N9Nhl2yHsDmq0iK4DA6HI1vvPBNC5E+SSBdC3LELFy4wZMgQ1q1bB0CbNm2YMmVKulvR8wNNVbjkSmXFqcNcX3Z2ZeRhpj/Qg78uHCXWfm3mgk1zcjL+CoVN1qtJdCGEEHmeqqpoaXcO6eB0ZZ40dv3nsz0n6oZ37dqVv/76y709ZcoUnnrqqTs6lsFgQFEUnM6Ma465XC5weWHgarmIq/8SkjAQIi8JCAjg559/5vPPP2fp0qXs3buXvXuvXQC0WCx07dqV11577ZZqqQtxL1IVAxdcyUwJ30CfStVuOFbXXVQPKILdbs+h6IQQ+Y0k0oUQd2TFihUMHTqU6OhoLBYLH3zwAS+88AKKkv8W2VRVlYPJ0fTZ+DN1gktQL6SEu8+uufhwzyomNOzC8oiDbLx4DIvBSK9y9ehQojpWqYkuhBB5mqqqJKVoXLqSwKXLCYQWDyI40BtvL+jQugY7957OcL+2LarjbTGiadmfQE9MTKR06dIebTt37qRcuXK3fSzF5MShJhKetBWHlkI538ZYlRCwmbIqXCFEDvL39+f999/n9ddf58CBA1y6dAmAkJAQatSokS/LKAqRU1STQqoSz5n4zbQseRE/U3WKW6pwPvVIhuPL+NTGiiGHoxRC5CeSSBdC3JakpCTeeustZs+eDUCtWrWYPn06VatWzeXIbp+iKKQqOimKkzd3rMCl6xyKvUT/ao2ZdfQf97jjCVcYEPYLbUtW4Y1aD1MnqDj+uhFNZqILIUSepqoql2NtjByziKgrie72yuWLMGbko9SqXoKK5UI4djLKY78ihf1o16p6jiTRd+3aRZs2bTzaLl26hNF4+1/TFbOTw0kr2XJltrtte/TPlPVpyEMhw9BTJZkuRH7l7e1914sNC3EvMRhVLmknmXd2DC796uyn00l7eLTkIJZEjMWpe846rx/UmSBjMAZbbkQrhMgv1JsPEUKIq3bt2kXLli2ZPXs2iqLw8ssvs2rVqnyZRNdVhQhXCi9t+Y0jsVFEJMUBkOJycDz+Cg8Vq+Qx3qFrrD13lPK+wfi5VLQcuMVfCCHE3UlO1Xj9oyUeSXSA8BOX+OKbdRgNKh+9+Tgv93uIsqUKEVoiiD697mfSRz2wWrL/DqtPP/3UI4net29foqOj7yiJDpDCFY8keppTSds5nfwPBoPMshNCCFHwpTjtJBgSWBDxiTuJDhDvvMLGqF/pUfoDagW0I9gcSilrLbqFvkejgC4YbDLXVAhxY/IpIYS4KZfLxcSJE/nkk09wOp0UL16cadOm0bx589wO7Y4oikK07qT76jmkupzpytFM3L+JMQ3b07hIGRad2kucPZWmRcoyoEpTCitmdE1qyAohRH4QHZvMhaj4DPv+2X2SpBQH/j4G2rWsTPPGFQDdXc4lOxcY03Wd2rVrExkZ6W5buHAhrVq1uuNjGo1G9setyLR/V+wiShdrCC6vO34MIUTOs9vtLFu2jO3btxMVFZVp7WZFUfjhhx9yODoh8h5FUTgWH0WSdhqblpyu/2zyYWafep9epcZzJaUWbYvUwstuQrfJbzwhxM1JIl0IcUNnzpxh0KBBbN26FYDHH3+cCRMmEBQUlMuR3QFVIR6NaFsyC07uI9V1dXbCuaR4KvgX4nj8FQCcusYb21ZQJSCEx8rUol1oZQIwobg0kJXbhRAiX1AUhdj4lEz7dR1SU534+xhwuVx4mQGUbC/ncunSpXR3ch09epRChQrd1XF1RSPFFZtpv82ViK7o5L+VTIS4d128eJHnnnuO06dP3/TiXn5cp0iIrGYwGHCYUrE4UlC0zN8TLt3JFVssTpcXBocpWy+eCyEKFkmkCyEypOs6CxYsYOTIkSQkJODr68snn3xCr1698ucXdVXhHpTy4QAAoNtJREFUpC2R59ctoF/1Rvxz6Yy76/sjO3irXite2boUm+varX9H4qIo7GXFXzeiaFpuRC2EyAb79u1j8uTJ7N69G6fTSeXKlXn++efp0KFDbocm7pCiKNgcOsmpTnRNx9vbhNVLoViIf6b7eJmN+FjNORglrFy5kieffNK9XalSJbZu3Zol51XdBRV87+dE4tYM+0tZ62LQvJCzmRD5x/jx4zl16hR169alT58+lC1bFh8fn9wO645NnjyZKVOmZNq/du1aQkND07Vv2rSJ6dOnc+DAARRFoUaNGrz00ks0bdo0O8MV+Yxm0oh0hvPHqVnEOS7zbLk3Mx3rYwiguCWEcsX9MbgkiS6EuHWSSBdCpBMXF8drr73GokWLAGjUqBHTp0+nTJkyuRzZ7VMUBbsCSWg8v24B8Q4bCY5UQiw+nIiPBuBMYizfHPqHac26sTbyKIdiL1LaJ4jnKtenmNGKKqVchCgwtm7dSr9+/TCbzXTs2BEfHx9WrVrF8OHDuXDhAn379s3tEMXtUhQuRafyybTVHDl+EYBSJYIYNbAtocUCaHRfGbbtOZ1ut+6d6uFjNYCeM6nlIUOG8NNPP7m333//fV5++eUsO76maZS01MHPGEKC03PxVINiolGhp9BS8+GFcCHuYWFhYZQoUYLvv/8eL6+CU5apS5culCxZMl27v3/6i59Lly5l1KhRBAcH07VrVwBWrFhBnz59mDhxIu3bt8/2eEXepxtULrlOMe/MJ+62owl7qB3wEPvi1qcb36bI8wQ4/NEV+Z0nhLg9kkgXQnj4+++/efHFF4mIiMBgMDBq1CiGDx9+xwuf5SaXohDpSGbGgX94sGR54h1Xl2BffuoIr9R5gH8unXWP3REVSd/183mweDner/cwxUxWcLpAkuhCFBhOp5N33nkHRVGYO3cu1apVA2Dw4MF069aNCRMm0K5duwx/3Iu8KzHZxeB3fiEl1eFuO3suhlc+WMi3459m1EttmfnzFlZtOITLpeFtMdHzsQZ0alMjR5LodrudYsWKebRt3LiRmjVrZvljKTZvupYaz7YrczkS/xcaTkpZ76N5yABMjkB05JwmRH5it9tp2rRpgUqiw9VEeuPGjW86Li4ujg8//JCgoCAWL17s/izt378/nTt35r333qNZs2b4+vpmd8gij3OZ7aw7O9ejbcvlFTxWcgCFvUqyI+ZP4h2XKepVhoeKPEtRY1l0u5wThRC3L/9lxoQQ2cJut/Pxxx/z5Zdfous65cqVY/r06TRo0CC3Q7sjJpOJwwlXeHr1L5T1C6JacFF337nkeK6kJtOrwn38fHyPu92l69QpVIIgg9fVJLoQokDZunUrZ86coWvXru4kOoCfnx+DBg3i9ddfZ/HixQwZMiQXoxS3QzUYWL3poEcSPY3LpTFn0TaG9XmQQU/fT++ujbDbnVgsJny9Deg5kEQPDw+nSZMmHm2RkZF4e3tny+Ppuo6SYqVpQH8aB/dGR0fVvMBulPqvQuRDlStXJiYmJrfDyDV//vkn8fHxvPzyyx4XJIsVK0bv3r2ZPHkya9asoXPnzrkXpMhVmhnsagroTs6lnPDo09FZGjmdUO+KdCz+EslOK16qFyFqIbBLoTMhxJ2RRLoQgvDwcAYOHMjevXsB6N27N2PHjs2XszvsCsRpDqITEnjnn9Vous755ATKBwR7jPtk9wZeqNaAWS178G/0BYK9vGkUUgp/1YhZvlcJUSBt27YNgGbNmqXrS2vbvn17pvs7HOmTtWkURfG4cyc3xsLVi4h3MtbpdN4w0ZoXxhqNRnctcfdYp87uAxGZ7nMg/DwpqU5MBhcWE1hMCuDEbr+2Hsb1x3W5XGg3WBPjVscqisLUqVN56aWX3G2PPPII33//PZD+tTEYDKiqetPjGo1GdEsqDv6PvfuOjqJ6Gzj+nS3pnYQSWui9Sm9KUXqTKiAiooBEFAXBVxERUVBBpEizoAiI0qQ3kd577ySBkJDek63z/hGzsL8k1BTK8zmHc5h778zcLdmdfebe56ahUxzQmp0wp6mZnzcTgA6tVouq0QAqVqsViyX7m8QajQatVgvwWLRVVRWz2Zwjbe/8O7pb2//NVf8gxwX5jMiPtnd+Jmi12syfEdnI8vPkPto+yGdETnjzzTd59913OXnyJNWrV8+x4+a3Q4cOceLECTQaDQEBATRs2DDL3O/3+t6eMWMGBw8elED6M8riYOFk0j4231pK16Kv46r1JNkSn6ndjdTLhKdep5zb8zhYFDRm+bEnhHh4EkgX4hmmqioLFizgk08+ITU1FW9vb6ZNm0bHjh3zu2sPxaCBxVdOM/3EPma90InL8dEApJpNRKQkU92nMCdjwm3tfzp3mAXnjzCjSSea+hbHbDIhq7AJ8fQKCgoCyHK9Bz8/P1xcXAgOzpxLO8O8efNsgbv/VbJkSdq2bWvb/vXXX7MNwPn7+9OpUyfb9qJFi0hLS8uyrZ+fH926dbNt//nnnyQmJmbZ1tvbm169etm2V6xYke1IRnd3d/r27Wvb/vvvv4mMjMyyrZOTEwMGDLBtr1+/nps3b2bZVqfTMWjQINv2li1b7vqcDhkyxPb/bdu2cfXq1WzbDho0CL3ekRSDhaioWC6cO4VOp6NggewX3vP1cSPiVhgbN6zJtk3fvn1xd3cH0oM7x48fz7Ztz5498fFJvzF77NgxDh8+nGW7uXPn2j3uTz75BBcXF3766acs23fq1Al/f38Azp07x+7duzO1afxCPfQlEzgQuZRUSwIKGsq61aeWrhtr/txMampqpn1efPFFypQpA8C1a9fYsmVLto+tefPmVKhQAYDr16+zYcOGbNs2adLElpomPDyc1atXZ9u2QYMG1KxZE4Do6GiWL1+ebds6derYZsLFxsby559/Ztu2Zs2attH+SUlJLFq0KNu2VapUoWnTpgCkpaXx66+/ZtnOwcGBDz74wLZtsViyfc0ASpcuzUsvvWTbvltb+YxIl9OfERmv2W+//Ub//v1tNxV27drFhQsXsj3ua6+9ZpsZsm/fPs6cOZNt24f9jMgJlStXZsCAAbz22mu8/vrrNGrUiMKFC9tuvP2vjM+Rx92MGTPstj08PPj4448zBcTv9r2dUXa39494emk0GsLMQawP/x2Ao7G7qOPTih2Rmb9jNGio6FEHhzRAUpwJIR6Roj6F8zxv3brFhg0b2LlzJ1evXiUqKgpPT09q167NoEGDqFGjhl37/Fg9/FmeopdfvL295Xm/Q2RkJO+++y4bN24E4IUXXmDWrFkUKVIk3/r0sK+RSaOQbLVwKy2Z3hv/AGBOi84M3b7Kdqnkpnfg+6YdWXntNBtDLmJWrRRwcuGD6k1pXjgAJwmg3xf5O8p73t7e+d2Fp8bAgQPZs2cPmzdvzvJHedOmTUlJSeHIkSNZ7p+YmGgLpoi8Fx4Zz/JNx9mw4ywAbZpWplvbWqSkGHjt/awDo9/838s0fK50nvUxPj4eLy8vu7Lg4GBKlCjxSMdVVZVTcVtZF/ZdpjpfxwBeKfEFbvqcC94JIR4PFStWRFGU9LRN9xjprigKZ8+ezaOePZwtW7aQkJBAvXr1KFiwIJGRkWzfvp3p06eTkJDArFmzaNmypa1969atCQoK4syZM5nWazKZTFStWpUKFSrc9Wbe03jd+qxfj1sdNJg0ySy9PpPrqVds5X1KDON03G4uJN6+ya1T9HQvPoISuopYTU9d6OuhPevvoXuR5+funtbn535/dz+VI9IXLlzI/PnzKVGiBI0bN8bHx4fg4GC2bt3K1q1bmTJlCu3atcu0n6weLp4VW7ZsITAwkMjISBwcHPj0008ZMmRItqNbHmdJGvjswDa8HZ1INBts5YfCb9DMvxQ7bl5Lb2cy8vaOv+lcqhIzmnYmwN0LV60eT0WH9S7TzIUQIkNqamq2o0IVRbEbrX6vdBAP2jbjgvVubQG7QMODtLVYLPdMbZCfbY0WLe98vozwqNsjbRevPczWfReYOa4Howa3YuqP27BY0u+KKgr07VKP0iV8iIqKumsf7kwHYbVa75q24W5t9+/fbzeK2M3NjWvXrqHVaomOjn7o4wJoXEzsiMz6ZkGUIYjotBukxVszPc47j6uq6j3TqmRcBzxtbe/8m7tbW0VR8PX1tf04fJDjQs7/3ed0W3j6PiMyXrOoqCg0Go1dCpb7/bt/kLb3+xmRUzfB69atmyPHyUmTJk3CaDTed/v+/fsTEBAApM+SuVOxYsXo168fZcqUsf2OvjOQnhM8PT2fyN849/KsDrSINcZyJGYHnnoPoozhdnV/hMzhxUJdqevzEtHGMDz0vvg5FsdDVwBXfe6sTfIke1bfQ/dLnp+7e5afn6cykF69enUWLlxIvXr17MoPHz7MgAED+Oyzz2jVqhUODg529bJ6uHjapaam8tlnnzF//nwAKlWqxLx586hSpUo+9+zBKIpCmgIGVN7fsYHDEaEMqFKLkOQ4W5u/Lp9m5gudOBcbSURqEgAGi5k/L5+iXsHi+God0VlVrEgQXYhnRcb3cnZpD5KSkvD09Mx2/ztz9d7L/46ce9zbZpey5nFoq9Fo2bzjvF0QPUNEdCLbD1yiw/OVqF21OJeDozCbLZQvVRAXZx06jQrcfx/uDM4+SNvx48fz/fff2+oCAwOZMWOGLSD7sMfNYFZSSTLHZLtPuOEKlRwC7hn0vd/3hLR98LbwePwtP4ufEVnV5VYfHuRvOScsXLgwz851v5YuXUpKSsp9t2/durUtkJ6dhg0bUqJECS5evEhSUpLt+/rO7+3/DdokJaVf399rplh8fOac2U+6p3U06L2ojgpHE3axLmwJLxXqQkGHogSnXrTVW7Gw6dYytIqW1gX7UMKtOhhMGNPSMJL1QIhn1bP6Hrpf8vzc3dP6/DzTI9LvzFV4pzp16lC/fn12797NhQsXqFat2kMdX1YPF0+iU6dO8dZbb9nyRQ4ePJhx48bh5OSUzz17MBZFITg1iYn7tzO0dgMOR4QCcC46kucKF+XgrfRF5xKMBv5v7yYm1H+R4MQ4jkfdpLibJ11LVaaALj2ILoR4tmT8kA8ODrbld84QGRlJSkrKU7WY29MizWjhn70Xs63fuucCLzYqh5uzhlqVCgH8N7o09z/nrVYrpUuXJiEhwVa2du1aGjVqlKPn0Sg6dIoDZjXrUaCeer+7jpIVQoiccuzYsVw5rre3N8HBwaSmptoC6AEBAZw+fZrg4OBMAY6M3OhZpWoTTx+TkxmTmsqWW6sAOBCzky5FXyE4JPP1gYKGSp41wWC662wTIYR4GE/fHKd7yBh5kdUIjEOHDjFv3jx+/PFHtm7dSnJycpbHuNfq4Xe2ESK/Wa1WZsyYQatWrbhw4QKFChXir7/+4quvvnqigugajYY0jcK11CR6rP2DKwmxRKbc/hs9EH6DeoWK4e14e9rejaQEBm9bxZqr5xhbpwWBFepQSOMgQXQhnlEZU+SzWsgxo+xxnEb/rFEUBUWjxYoGrVaLVqPB0SH7sR+Ojjo0mtvpS/LqR3NoaCi+vr52QfRr167leBAdQGd2prpn1gNFHDTO+DmUlmCBEM+A6Ohozp49y9mzZ4mOjs7v7uSYlJQULl26hIuLi13A/H6+t/93Frp4+pgdzawLX8EtQxhp1vSFteNNMVxLvkyHIv1w1Nz+/eepL8CgUv+Hj95PvheFELniqRyRnp2bN2+yd+9e/Pz8KF++fKZ6WT1cPG1CQ0MZNmwYO3fuBKB9+/ZMmzaNAgUK5HPPHkyyRuHvy2dx1OlYc/U8VlUlxWTEx9nFrt2E/duZ1qwDv5w9wo7Qq6hA/ULF+bRecxwtKmarpHER4lnWsGFDihcvztq1a+nfvz+VKlUC0qeMz5kzB71eL7PJ8pnJonAzKpHlm04Qm5hCk9plaPpcafp3rssH50Oz3KdHm5o46BSseXiTdNWqVQwcONC2Xbt2bbZu3Zpr57OaoZ53N2KMNwhKOW4rd9K40aP4eLRGF9Q8GIEvhMgfixYt4rfffiMkJMSuvGTJkvTv358+ffrkU8/uX1JSEpGRkZQqVcquPC0tjbFjx5KcnMzLL79sN+Ctbdu2fPvtt/z+++90797dNhs8PDyc33//HW9vb1q1apWnj0PkLYuTyvW0IA7E7Ka293MoKLbvu52Rm6joXo0exYagKOCu88ZN64WTyRlHnSMp3H8KIiGEuF/PTCDdZDLx4YcfYjQaGTlypF0uvIoVK/Lll19muXr4mDFjcHd3t1v05G752O6VfzXD07royePuWVoQ4a+//mLw4MHExsbi4uLC999/zxtvvGFbLOlxdedrFJeWSoLBwLAtazgVeYsfXurIicj0RWVMVitRKcmU9vTmanx6fq4r8TEEbltD93JVePOlnhR188DbyRlPR1lcJic9S39H4umi0+n44osvGDRoEH379qV9+/a4urqyefNmQkNDGT16NMWKFcvvbj6zzBaFFVtP8evft2f1HTlznYWrD/LD2J48X7csOw5dttunXo2SVClXOE/Tmrz22musWbPGtv31118zaNCg3D9xmgNt/N4jTUkgyhCMi9YLb70/GqMzqsy0EuKpZLVaee+999iyZQuqquLh4YG/vz+KonDz5k2CgoKYMGEC+/fv5/vvv3+sr/Pj4uJo27Yt1apVo0yZMvj6+hIdHc3evXsJDw+nfPnyfPjhh3b7eHp6MnbsWD788EO6du1Ku3btAFi/fj1xcXF89913si7ZU8zsbOFMwmmOxO4B4HzCWSp71OZMwhFbm/OJpzifeAp3nSdDy3yKg8ERiyqDp4QQueeZCKRbrVbGjBnDoUOH6NmzZ6bRZvmxevjTuOjJ4+5pXRDhfyUmJjJmzBiWLFkCpI+Smzt3LmXKlCEuLi5/O3cPGa+RUVG4GB/Lb6dO0KpMGU5F3gLAZLXgotOTYjYBMOPoPr5+oQ2f7fvHFkxPMBo4GxPJG5Vr42oFa0oasSmyuExOeVb+jh4ncuMiZzVo0IDFixczffp01q9fj9lspnz58owcOdL2A13kj/gUo10QPUNMfArzl+3lvddfoOtLNVi77TQqKh1aVKVkES8c738N2EeSlpaGv7+/XdnevXupWLFijhxf0YNZk4JBTcVBcUJvdUY1/c+gC6MeJwpQQuOHalVR01QZiS7EU2zp0qVs3ryZUqVK8eGHH9K8eXO7+u3bt/P111+zZcsWli5dSu/evfOpp/fm5eVFnz59OHnyJDt27CAhIQFHR0fKlCnDq6++Sr9+/bJMO9m5c2e8vb2ZO3cuK1asAKBq1aoMHTo0V1JpiceD6gJn488Qa4ohxZKeznNv9E7eLB1InDGa0LQgW1tXnTtvlR6Nm9kVqyrrhQghctdTH0i3Wq383//9H2vXrqVTp06MHz/+vvfNzdXDhcgNBw4cYOjQoQQFBaHRaBgxYgQffvghen0eRRkegaIoJBjSSNVo2Bp8lXE7t9GubHl2hgTZ2my4eonOZSux5PxJAG6lJPHh9o0E1mpAQVc3dIqCv6sHXno9TnINJYTIRvXq1fnxxx/zuxviDlqtlr1Hs19QdPvBSwzp1ZjyJb0YOeh5UMFqteRZ/tMzZ87QtGlTu7KwsDAcHR1z5gROJvbGruJI7CYsqhkFhfLudWld8A2UtMznkIVFhXg2rFixAjc3NxYuXIivr2+m+hdeeIEqVarQpk0bli9f/lgH0t3c3Pj0008fat9mzZrRrFmzHO6ReFyZXaxcSLjIzqiduOncKOdWkdDU6xisBn66Npsu/t3x0HsQZQjHz6kI/k4lcDQ4y3ejECJPPNW5RaxWKx999BErV66kQ4cOTJo06YHTqWQEylNTU21lAQEBQNZ50GX1cJEfTCYTX331Fe3btycoKIjixYuzZs0aPv744yciiI6icNNo4J2N6zgZFcGkvek53U0WK0535EncGnSFliXKUNmnoK3sVkoSn+7ZSkJaKjU8fSmslSC6EEI8CRRFQafT2dLtmczZT8W2WFVUNX0xUYvZjMVizrMg+qxZs+yC6D169CAmJibHguiKHvbF/s3BmHVYVDMAKioXEg+yKux7VAdzjpxHCPHkuXz5Mg0aNMgyiJ7Bz8+Phg0bcvny5WzbCPGksDpBtCGGaGMUqZZUTsWfoqpnLVy0rgCkWlJYcv03fgmaz6GYIxRxLClBdCFEnnpqR6RnBNFXrVpFu3bt+Prrr+3yot+Pu60evnbtWnbv3k3NmjXt9pHVw0Veu3r1KoMHD+bIkfRccT179uTrr7/Gw8Mjn3t2d4qiYACSLBYMVgtdly3BaLHQu0o1Us3pQYP9oSFMatGa5RfPAGC2Whnxz3o+bvQCDlotp6PCKeziTosSpfHU6NDKyuxCCPHYUxSFVKPKtZsx7D1xDR8PF16oW5YX6pXjx+X7stynbrUSODloIA/TmKiqSuPGjTl//rytbOHChbRv3z5Hz2PWpHAkdmOWdSEpZzEoSTjhlaPnFEI8Oe4n7/njnBtdiAeRoqYSb0rgStI1KrlXIiwtjCUhSxhYahg7I7dyKv4YCgpVPKrT0b8bziZnLFbJiS6EyDtPZSA9I53LqlWraNOmDd988022QXRZPVw8qVRVZdGiRXz00UckJyfj4eHBlClT6NatW3537Z60Wi1RZhMf//MPZQv4EJ6chNGSfgGkvWPWSKLRyMWYKHpUqMpfF07bysZs30z9IsWY2aoDjlYrFosFJIguhBBPhBQjjPpuNVeuR9vK5i3fx5iBrRj+6vNMX7jDrr2To453+j6PXpt3H/UxMTGULVvWruzs2bO2a76cZFBTbSPRsxJvisRZ8c6zEfhCiMdHqVKl2L9/PzExMfj4+GTZJiYmhv3792f6PSvEk0aj0ZBkTkGv0XEi7jQjKw7nQMwBbqaFMevyDzQs0JA3SgWiVXQUcy6Ok8kJs0VmbQkh8tZTGUifNWsWK1euxMXFhYCAAGbPnp2pTatWrahUqZKsHi6eSDExMbz33nusXbsWgEaNGjFnzhyKFSuWzz3LnqIoJKsqESkp6HU63lrzN+FJSXStXJmVu7bZ2iUaDPi5uBKZkr6ozPSD+3i3XkNmvtiRrUGXSTWb6FK2EtV8C6I3m7FIYEEIIZ4cipbFGw7ZBdEzTPp5K4u/6s+4YS4sWXeEhKRU6lUL4JX2tfFy1aPm0QJi27dv5+WXX7ZtFylShFOnTj1wesD75aA4oaBku2iom84L1SjfdUI8i7p27crEiRMZMGAAH330EQ0bNrSr379/P5MmTSIpKcnuc0uIJ5GqqjhqHTifcJFybmX5PfgPBpcZwo6IHRyPP8auqF2kWdLo6N8RB4MDZqsE0YUQee+pDKSHhoYC6alZ5syZk2WbokWLUqlSJVk9XDxxtm/fzrBhwwgLC0On0/Hxxx8TGBj4wKmL8opGoyHNqpKmqgxds4Yko5Eh9eoS/t/CvGkmEx6OTiSbTAD8dPwI45o25/0tGzBaLajAtIP7KODkwqIu3fF3dsFqNmO1WrMNOgghhHg8pRgsrNlxJtv6vSeu0eWFStSq6I/FYsXJUYuiWvMsiP7hhx/aLUQ7atQoPvroo1w9p97qTEX3BpxLzJzWpoCDPy6KZ66eXwjx+OrTpw+7du1i586dDBw4EB8fH/z9/QG4efMmMTExqKrK888/T58+ffK5t0I8GlVVcde6YrSa6Vi0HX+FrOD7iz/QsEB9BpV6C72ip4RLcRwMesmJLoTIN4oq80TzRWxsbH534Znj7e39RD/vaWlpTJgwwTbDoly5csydOzdTnv7HhaIoJKoq265ew6KqbA+6xp6QEBoVL06AjzeLTp0EoF6xojzn788PRw7a9m1QtDiDn6vLnuvBXIuLpapfQTqWq4C3Vo8iF0356kn/O3oS3blGh8hf+fnef5L/9hRFQaPRoKoqCakWeoxckG3bfh3q8Fr7WpjNeTvKzGw2U6hQIbv0KZs3b6ZOnToPfcwHec1UJyN/h31PcMrtmwwFHIrSu/j/oTe4SVqXPPQk/609qx7H1ywnv7utVisLFixg4cKFhIWF2dX5+/vTr18/BgwYkGuzZp50j9t7Iyc8ju/5nKJoFeK0SeyKOoivgyd+jgWIN8VTwMGHwk4FcTW73Nc1wtP8HOUEeX7uTp6fu3tan5/7/e5+KkekC/G0OXv2LIMHD+bMmfQf2K+//joTJkzAxcUln3tmT1EU0oBEowmtVstbK1cRFBvHnK6d2RMSAkBMaioN3UvY9jl4I5TXatTiucL+HAm/CcD+0OscCL3OlFZtGFKzNg6qkn7BJEF0IYR4YiiKQopRJTgslnNBtyheyIuKAQVp17Qy63edzXKfhtUD0te9yENBQUHUrl3briw4OBh3d/ccPY9Wq8GiMaNBi2rGLjiupDnQpdAI0pQkEkxRuOq8cFE80BgcJYguxDNOo9EwcOBABg4cSFhYGBEREQAULFiQIkWK5HPvhMhZqkXFU3HjpYLNSDQnkWJJpbRraVy0zjgZ9ZLORQiR7ySQLsRjzGq1Mm/ePMaPH4/BYMDX15fp06fTpk2b/O6aHY1Wi1lVSTRbGLN+C1qtQq2iRQiKjQOwLSQKcD4qilF+TXHQam3lIzdt5KNmzXi1ek2OhIXi5eRE2zLl8dHr0ZgsyOWSEEI8WRRFIT7VwrvfrCQsKsFW7uKkZ9oHL3MpJIJLwVF2+1QpUxh/P/c8DRz/8ccfvP3227btZs2asWrVqhw9h0ajweSQwsmEfVxIPIKLzp2GPu3x1hZGMd5xKW7U4YRX+sKi/+VElxRmQog7FSlSRILn4ulnVnEwaymo9UGj02A2m1FNKlZkUJUQIv9JIF2Ix1R4eDiBgYFs25a+EGerVq2YMWMGhQoVyuee3aZoNMSZLaw+eZrKRQrx1bYdhMTF836zRqw6d87WTqMoOOl0pP03DW/uoUN8+1Ib/u+fLSQZjaSazXy6bRt9q1XnvfoNcFDV9BHoEj8QQognktECk375xy6IDpCSZuLD6auZ8389+PrnbRy7cANXZwe6tapB1xbVcNLl3Qd/9+7dbd+xADNmzKBv3745fh6DQyI/Xh1LsiXeVnYu4SCNC3SkgWcHFJP95biMQBdCZIiKiuLEiROUL1+e4sWLZ9nm+vXrXLx4kZo1a1KgQIE87qEQucdiseT5LDUhhLgXCaQL8Rhav3497777LtHR0Tg5OfH555/zxhtvoChKfncNNBoSzRbiUg1otAqvLlqOTqPwyUvNCYmLz3KX9ecv8Eq16vxy7CgAB2/cwGCxMLnVS1j/CxiU8/GhkLs71tRUGYEuhBBPuORUE0fP38iyLi4xlbjEVMYPfQmjxYqiKLg6alDzKH1XcnJypoDU4cOHKV26dI6fS9GrbL212C6InmFP9Bpqer2AM145fl4hxNPhl19+4eeff2bt2rXZtjEYDAQGBvLWW28xYsSIPOydEEII8eyRFUmEeIwkJyfz3nvv0a9fP6Kjo6latSrbtm1j0KBB+RpE12q1JFshWVU4EHqLLj8uYefVYMZv/Jdko5HC7u4ExdxebGJ3UDAvli1j215/4SIlvbx4q05d3BwcADgXEcHuoCBqFSpE40KF8NPp8HRyyvPHJoQQImcoioJWq0Wj0WA03X0EWUJyGg46cHVQcNGTZ0H0Y8eOZQqi37p1K1eC6ABmjYFzCQezrT+feBitVpsr5xZCPPl27txJ2bJlKVOmTLZtypYtS9myZdm+fXvedUwIIYR4RkkgXYjHxNGjR3nhhRf47bffUBSFd955hy1btlCxYsV86Y9Wq8WiaDAoGv4+d5kBi1ZwKSqG95avI9lopEJBX06EhQMQnZJCEY/bi7IdDAmllr8/Ad5etrLxW7dxOSqaae3asbZfPzb068f79evjrKoyjV0IIZ5giqKQZoYr4Qn8tf0MO06G4Oik5/na2Qd+ihX0yvPP/ilTptCyZUvb9uuvv05MTAx6vT5Xz3u3POdWZMq6ECJ7N2/epFSpUvdsFxAQQFhYWB70SIgHp9Fo0Ol0aDQSfhJCPPkktYsQ+cxisTBt2jQmT56M2WzG39+f2bNn07Rp0zzvi1arRVEUYo1mtp27hE6r4WTYLf4+eY6OVSuy9vR5WzjgzsBAVHIK7o6O+Dg7E5OaCsD/bdjChDatuBgVxT9XrqDTaGhXvhzlvb1xydgxj0YgCiGEyD0pJhg1cy0XQyJtZTqthi+HtifFYOLQmRC79i3rlcfdRU9eLYShqio1atTgxo3bqWaWLVtGixYtcv3cWqsDZd1qcinpWJb1Fd3rYDFKMF0IkTXrfV4rK4qC0WjM5d4I8WA0Gg3JMWmcP3SNy6dCKFu9BBXrlMLVx+m+39tCCPG4kUC6EPkoJCSEIUOGsH//fgA6d+7Md999h5eXV571QVEUjCokmswcuhRC1aKFGLL4b2KSU5ndtzMTNm0HoKC7K4dCQm37XY+Np7xfAS5GRgPw/c59TO7QmrEbtxKemERMSirDVqxhaMN6zOjYHr0KThpFLpqEEOIpoipafl673y6IDmC2WPl4znp+/rg3o777m4jYJNxcHOn1Yk06PV8FvSZvgugRERGZZnZdvHgRX1/fPDm/YtbSunB/gq+ew2hNs6ur4dkUFzzzpB9CiCdTsWLFOHbsGGazGZ0u65/uZrOZY8eOUaRIkTzunRDZ02g0RATFMqbTFJITUm3lbp4uTFr9AX4lveR3oRDiiSSBdCHyyV9//cXIkSNJTEzEzc2Nr7/+ml69euVJLnRFUUixqsQkGzBbrRy7EcbXG3fSu151dl4OIiophQKuLty4Y/HQm/GJlPH14eTN9HQuiw+fZPSLTRmxaj0mq5Wr0TFM3Lyd4Y0b4u/pjlVVKeLuhrtOh8N/0/etVknhIoQQT5PkNDPr957Lss5ktnA1NIofP+1FqsGMXqvg6qTNs3zomzdvpnfv3rbtcuXKsX///lz5nlUUBUUHVqxorToslvRR5qqq4mzy5O0y37Avej2Xk47jrHWjsW8nijmWRzHIpbgQInstWrRg3rx5TJkyhQ8//DDLz68pU6YQFRVFp06d8qGHQmQtNcHIxNfm2AXRAZLiU5j42hy+Wv0+jm7yHSiEePLIJ5cQeSw+Pp6RI0eyfPlyAOrVq8fcuXMpWbJkrp5XVTQkmiwkpBpwcXJgxOJ13IiN55ve7fh6404A6pcqzgfL1wNgMJtxc3C07f/PhSv80KsTa06fx2y1ciMunkWHTjC7R2dWnjzDybBb+Lq64OviTGkvT5zuSAIjhBDi6ZIxMtKaZsRkzj41SVR8Ms56BYf/8qLmVRA9MDCQxYsX27Y/++wzhg8fnivnUh0sRFsi2BO5gWRLIpU9nqOqe93b9VYVXZoLz3v2oLF3JxS0aM16rAYZiSeEuLvXX3+dVatWsWDBAvbs2UP37t0pUaIEkD6zddmyZVy6dAlfX1/eeOONfO6tELclxaYQHhyVZV1YUCRJsSk4unnkca+EEOLRSSBdiDy0d+9ehgwZwo0bN9BqtYwaNYr3338/26maj0Kj0ZBkshKfakCv17H93CV+2Lqfd1s3Zs2Jc1yOiKZl5TJsO3fFto+iKFj+GzWeZDDiqNfh6uBAstGI0WJh4aHjfNXxJb7+ZxeRScnsD7pOcEwc373cFj9XFxwUBUdJ3yKEEE8tk1UhJimNzQdPkZxmpHntsox/qy1fLdhCmtGcqX2Ncv620dl5wWg0UrhwYbuyHTt2UK1atVw5n6q3sDtuAzuj1trKriafY3vkGgLLfo6W2zekrWYVDQ7p/0e+J4UQ9+bl5cXPP//MsGHDuHjxIl999ZVdvaqqBAQEMGPGDHx8fPKpl0JkZkwz3b3ecPd6IYR4XEkgXYg8YDQamTRpEt9//z2qqlKqVCnmzJlD3bp1773zfciY5mmwQqLBRJrJjBUY9ft6HPU6+jSpybSNewAo6efNubD0XLaujo7EpNyebnfm5i3qlSzGweD0Bdl+2XOE8e1b8tHqzZgsFnZcukZkYjJjWjWjhI8XGgU8nRzx0Gr+C56rkr5FCCGeUkYrLN9xmp/XH7SVLd9xkhpl/flsUBvG/LDWrn2V0oUp5OWaZ/27dOkS9evXtysLDQ3F2dk5186ZqiTZBdEzJJnj2RD2Bx18+4Mp91O2CSGeXmXKlGHdunVs3ryZffv2ERYWBkCRIkVo2LAhL730ElqtNp97KYQ9T1839A46TFncZNc76PAs4JYPvRJCiEcngXQhctmlS5cYPHgwx48fB6Bv3758+eWXuLu7P/QxtVotiqJgMFtJMpq5eiuGkgW9+ebvney5EMyMNzozeskGkg1G3m/flMX7TgCgURTSTLfv/l8Kj6RNjQpsv3AVgOVHTvPly605eTOcNJOZEzfCcDqiY1bPjpy/FcnN+ATqlihKDf9CeOg0tpHnMgJdCCGefpHxaXZB9AwnLt+kSbXStGlQkY37z+PooKNTkyq82uY5HHV5c3N1wYIFvP/++7bttm3bsmjRolw9p1ar5WzikWzrT8UfoE3B3ujuGJUuhBAPQ6vV0rZtW9q2bZvfXRHivjh7ONJ9eGuWfLsuU12P99rg7CHfjUKIJ5ME0oXIJaqqsmDBAj755BNSU1Px8vJi2rRpD7UQkEarxWxR0WgU4tNMHLwYgr+PB0eCQvnln8P0aVaTVYfOsudCMOWKFODyrWiSDUYACnu6ERwZC4BVVXFx0NuOey4skrdbNcTP3ZXIxGRiklOZvf0As3p3YuXxsxwNCSUhNY2ElFS6VauEoyY9aJ7xTwghxLNBp9Px9+7T2dYv23GCOR90442O9dFqFdwcdaDmTUqXNm3acPDg7QD//Pnz6datW66fV1EULHd5jKqsESKEEOIZpWih7evNKFi8AIsmryHqZiy+Rb3pN7ojz7WsgiKTKIQQTygJpAuRC6Kionj33XfZsGEDAM8//zyzZs3C39///g6gaEgxWdFoFIxmK+sPnSbVaKJC8YKMXbSJwl7uDGpTn5+2HgKgXrkS/L7rbwAKe7kTFBljO1RYXCKlCnpzKTwagGNBN2lWvhQ7L14D4Ks12/my60ssPnCCHRevceJ6GHO272dcx5Y46RqgUxSctQpWqxmzxM6FEOKZotFoMZgtqFZQyD5FSXKqEY0Cbs7pi4rmRRA9ISGBgIAAu7KTJ09SrFixXD83gNlsppJ7bbZGLM+yvoJ7TXRWfZZ1QgjxIHbv3s2SJUs4efIksbGxdOzY0ZYvfdeuXezevZuBAwdSqFChfO6pELfpnTU06lyDWi9UxGK2otVrcfF0zNO1U4QQIqdJIF2IHLZlyxbeeecdIiIicHBwYOzYsQwdOhSNRmPXTlEUNBoNqqpiMKskGcxYrCoOei0Ltx7k2OWbvNetKWN+Xk+KwcT3Qzsz4sc1WKwqbetUZMX+U7ZjGc0W1P8Gvt2KS6J26aK2upWHzjDg+ecYt2IrAL/uOsrXr7TF1VHP5jOXuBmXwIdLNzCqbTNGtWkKqoqzVouTJn1UveQ9F0KIZ49GoyHRYOWfoxf45+glXBwd6P58dcoU82XqH//aFqbO0LhaAE56LeTRIpr79++nXbt2tm1XV1eCgoLyPE+wu+JJDc+GnIjfZ1fuoHGkg39flDStjEwXQjySL774gkWLFqGqKi4uLpjN9jmn/fz8+PXXXylSpAgDBgzIn04KkQ2r1Yqj++2byhJEF0I86TT3biKEuB+pqamMHj2aXr16ERERQcWKFdm6dSvDhg1Do9Gg1WpJM0OaGQwWhau3Elmz/xK3EgyMX/gPPT5byK3YJN6cuowVu0/Tvn4lZq/dR4rBRMmC3lwNj8H8XzoVbzdnwuMSbefWazVoNekjBS+GRVGuiC+ujg4ABEXGEhqTwLBWDXHW6zCaLYxavIFiXp6sCOzHsrdfYfHgnjQrUwwvrYKXToOjov4XRBdCCPEsSkiz8MY3fzF9xW7OBN3i0IXrjJ63joPngnn75SZ2bR0ddAxsXx9NHgXRP//8c7sg+rBhw7h+/XquBdE1Gg0WBxPJDgkkOyRgcTDZbo4rRh3tC/alb/HhFHcuQwGHQjTyeYl3y35FQcei8l0qhHgkq1at4vfff6dKlSqsXLmSo0ePZmpTsWJFihQpwrZt2/Khh0IIIcSzRUakC5EDTp06xVtvvcWFCxcAGDJkCB+PHYcZHRFxBlxdHNl98jKrd51meK9mzFy+m/MhEYzu24JPf97IpdBo6lQozpFLN4hKSAagZCFvzl2PAMDVyYH4lDTb+YIj46jgX5CI+PT0LHvOB9GqWjk2nbgIwKyN+5j8SlsmrtpGWFwi87cd5MVqZfnpze6oqDhoNXg6O+Km02C1/hd4UCVvixBCCEDR8NvmQ0TFJ2eq2n7iKl2bVaeglyvRCSk0rlaKt7s2xsdVn+vfI1arlTJlyhAfH28rW7NmDY0bN869k2ogUrnJH8HziDSEA+DnWJjexd6igLYwWEAx6CitrUpJ//JYFSs6qyNqmorGWcarCCEezZIlS/Dw8GDevHn4+Phk265ChQpcvHgxD3smhBBCPJskkC7EA1IUBUVRUFUVsxWmfT+dr7/6ApPJRAFfP7r0f5/At19jxrKD7DhymU/fasOSLUc5HxxB6wYV2XjgPOdDInDU6/DxcOVSaHru8mqlC7PvfHCW5wyOiKX/i3Vs2xsOn2di/zbsOR+EVVVZsf80k15th6qqbD11mXM3IpiyeidjOr1AIS83zBYL3q7OuOu1KHcEOmTBUCGEEP8rxWhl06EL2dbvOH6ZhZ/0Jc1owlGvQaeoqLkcRA8NDaVatWp2ZVevXsXLyytXz5umT+KHixPtFhWNNITzw9UvGVX+S5wsbkD696li1aFFFhkVQuScixcvUq9evbsG0QHc3NyIiorKo14JIYQQzy4ZKiNENhQlPVWKioZUg4rBDGkmhcvX49l1JJgzF4Op1+gFJn4+DpPJRLFytSn5fCANm7zArKW72X74MkX9vEhJM3I+OH1k+fO1y7DlUPpoEW93Z8Kib4+qM5jMODvezh8XGZdEyYLeACSnGYlNTKFaycIAJKYaWLXvDF/0aY2/twdmi5UxC9dTqWhBlo3sx6LhvZg2oAPVivpS1M2Rkp4ueOgUuyC6EEIIkUFRFIxWhUSjillVaV23PI76rFOlWFVw1IGLHrRYcz19yd9//20XRK9VqxbR0dG5HkRXdAo7ozbZBdEzWFQzOyM3oeiyX4BVCCFyQsZvkruJiIjAyckpD3ojhBBCPNtkRLp4Zt15UWq2gNFkRa/TYDSphEXEYzJbKVzQg0Wr9nHqfCgjB7/EpLmbCYtMoHlVhW++HIvJkIJe70inPm9z3VQURVGoWKog81buBaBmxaLsPnnNdh6NomAwpS8QlJCchq+Xm61ux/Gr9G9Th6OXQgH4c8cJ3u7YiI8XbMBstTL9791MfK0Ne84Fs/bwObadvIyCyvdvdAJUtBoFNwc9zjoFq1NG8ENGxQkhhLg7KwqhMSlMWbaDU9fC0eu0vFi7PN++3YlxP28iJjHFrn37+hUzLXaXWwYMGMDq1att25MnT+bNN9/Mk3ObFRPBKZezrQ9OvYxZMaGVy2khRC4JCAjgzJkzmEwm9Hp9lm2SkpI4f/48ZcuWzePeCSGEEM8eufIXT7WMFCwajYa4uGTS0lT0ei2pBjM3QmPxcHcCRcMvf+wBFbq0r8XE6RswGMxM+rgrQ/9vCUkpBgb3a8rsxbu4fjOCW+fW8eVf+wBw9SnGd9Pn8Mf2ayhmI44OOhKSbucyt1pVdNrbEz8iY5MpUciLkFtxpBhMmM1WCnm7cSs2idCoeFSrSrOqpdl5+ipBt2JZs+8M04Z0YuXe05wNiWDh1iO817Up/VvURlVVHHQKLjrNHSlaVKxWCZ4LIYS4P4qicCs+jUFT/rItaG0yW1h/8Bynrt1kZO8X+L/5623tn69RGv8C7rk+Cj0tLQ1/f3+7sr1791KxYsVcPe+ddOjw0fsSmpp12jUfvS86dHLLWgiRa9q0acN3333HlClTGDNmTJZtpk6dSmJiIu3bt8/j3gkhhBDPHgmkiyfencHylBQLoKLTaUlINHDjRgwlSvhy5VokS/7cT6MGZXF0duCX33cTUMKXHl3r8NX0DagqfPVJVz6buo40g4lWzSqxacdZklIMAAQUK8ChGb9z6eBiDMkxKIqGIpWaU6zqS5QqXZbUjenpWowmM26ujra+HTwdzNCeTdhx7AoAK7ef5PV29Rn/yyYA5q3eyyevvsikxdsIjYrn26XbGda1MV0aV2H3mWuoKrg66BnVrRlmiwW9VoOjVvkvcJ4+ol7ynAshhHhYJivM+HuPLYh+p+uR8ZgsFhpXDSAxxcArLWtRrVQhHLW5Gzo+e/YsTZo0sSsLCwvD0dExmz1yiVmhecEOnEo4kmV184Idwawgs7+EELnltddeY926dfz6668cO3aMli1bAnD9+nUWLFjAli1bOHLkCJUrV6ZHjx753FshhBDi6SeBdPHYs+UqV1VUq4Y0gxm9ToPFohIZkURcfAoBAX5s2XqSLZtPE/jOi6xdf5wDB6/SvVtd9h28ysatp/H0dKZUgB/jJ68BoEuHWvy4aDeqCsX8vbkRFkeawQRAtYr+LFiWPupctVr4cc40Tv/7A6Di7uXHa0P/j8PX0nOmnrsaznOVinHo7HVUFW5GxFO2uC+Xr0cRFZdMSqqRRtVKsffUNa7ejOb4xVDGvd6aBesPEnwrlilL/uWjPs1xd3EiPjmVQt7ueLo4UKdsej50s9mMqlpx0KX/WJcR50IIIXKCoiiYLXDscmi2bQ6cD2b8gBcxmcw46pRcv3k7a9Ysxo4da9vu3r078+bNy9VzKoqCVWfFpBhQUdGrDmjNOlRVxVvx4+Wir7Eq9HespH/vaxUtnf374a345vrIfCHEs83JyYkFCxYwZswYdu7cycmTJwE4fPgwhw8fBqBx48Z88803ODg45GdXxVNIo0mfWS0Dt4QQ4jYJpIvHiqIomE0qJqMVvYMOo8HMzRuxaLUaPL1dWfTrbm4ERzPk3Rf5ZvI6Im4lMHZ8Vz75ZBk3bsTQ7PmKHDx0lQMHr6LRKNSqVZKPxi0HoHmzSmzYcsp2Lg93JyKiEgHw8nAmIirBVmc0WXBy1JOaFMXFQ0vYGxsCgG+J2pSr043e3Tpy+NtVAKzbcYZP327D8Ys3MZkt/Pr3QT4d0obvl+zgamg03y/ewbt9XqB1gwpsOXiB8KgEPGuWZtrwLlis1vTc5k5asFop6p2xSJAVk0kuWIQQQuQGhSSTlZDIOFKNJr4b0ontJ6/y144TmVr6ebqhU1TQ5O6NXFVVady4MefPn7eVLVy4MNdTFWg0GpJ1iSy/uYSzCadQUSnjWo6exV7F0+oNJg3VnetRqUINbhluAlDI0R+9xRFMstCoECL3+fj4MG/ePM6fP8/u3bsJDQ3FarVSuHBhGjduTPXq1fO7i+IpY06zkBSTyqk9F9DptVRtXAEXT0e0Dpp77yyEEE85CaSLPKcoChaTisWionPQkpJkIjI8Hk8vVxLiU/n9x+34FfLkuYZlmf71ehwcdXz4aWfeefMXjEYzI0a3Z+q3G4i4lUCp0n6Eh8dz40YMAE2bVeDbqRsAKFzIk+CQaNt5vb1cOHoyxK4fGcJuxdPupWq27Z37L+FsvsrxbdOwmg04Obvycp/hXEsoAMD2g5cZ2qsJs5fuJj4xld/XHGbyex1ZuukYh89eZ+rCfxnZvwXubo7EJqTg5+WGl7sjDSsXw6qq6DQZd/b/uxiRu/xCCCHygBWFE8GRfLxgI2n/LX6tKNC1YTXe79aMqct32rVvW7dCri8sGhMTk2mRvDNnzlCkSJFcPS+AQZ/KlIsTSbYk2cquJF/i24sT+KjiBJwtLmBW0JudKK6UAUA1yCh0IUTeq1ixYp6uEyGeTaYUC398s451P26zlSmKwsDPe9C8dwN0ThJMF0I82ySQLnKFoijodOlvL6PBTEqSiZQkA67uTly/GsmK3/fR9MUqREcl8edvu6lZtxS165dl/vQtaDQKn3/XlLEf/oHVotKhWx2W/XEAo9GMVqvB3dOZsJtxAFStXpxDh67azqvVKKSlpadnMZut6PVaW13ozVjKlvIj+Hp6cP1GaCzlShfk0tUIomOTcdTrKFLQk5AbN/nz10lE30yfOunhW5rydXrTo2dPwiLjWbnlJOv+PU2nFlWZN/4VTl0MJSnFgIeLIx+90QqLxYoCuDppsVotFPbKyOlqBTU9dC5xcyGEEPkhPtXMqB/XYb0jJYmqwoq9p/iw+wuULlKAq2Hp35NjejfHy8WB3MwBvn37dl5++WXbdqFChThz5oxtOnlu0mg1HI0/bBdEz2BSTWyN2ECnAt1RzemPX9K4CCEeFwaDgYSEBLy9vW2/uYR4VBqNhguHL9sF0SH9+++nsX9StXEFipQrkE+9E0KIx4N864ocoVG0pCQZUS0qikbDrdBYtq89TvNOtdi1+Qwblx+m16DnCb0ezfYNpyhasgAanYYlP6ePfGvT5TmmTlgNQLVaJTl66CpWS/oP1oqVi7Lsj/0AODrpSUxMs53XbLLg6HD7bZyaasLb25XY2GQiIhMoWsQLrVaDxWJlx+4LfD62K9v3XMRisbJizVHeD3yJz6esJSXVyOxfdtCigTtjlnxPcmIsiqJhwKDh9H3tLXYdvML5y+H0aF+bDi2qYjJZcNBrcXPRUrJwhfRR9hYLqmqF/2L3VqslL556IYQQ4r7odDrWHjxtF0S/07I9p/igWzOuhUfTsFJJ3J106WldcsmHH37Ijz/+aNseNWoUH330Ua6d739ZNRbOJGROZ5PhQuJZTH5GdOjzrE9CiGdbUlISV69exd3dnVKlSmWqDwoKYsKECRw4cACLxYJer6dly5Z89NFHFCxYMB96LJ4mxhQTf323Ptv6v+ds4e0pfbAio8KEEM8umZcj7puiKGi1OnRaHRYjJEQZuHYmguQ4M2t+28/wLjM4cySY6eNW8tHrP2EyW9m+/iRrlx5Aq9NQplIRtm9Iz1HeqmMt1v51yHZsjUYhNcUIgIe3CxERt/OVWyxWdP+NLE9NMVCggJut7uD+KzRtVsG2vWHDCbq/XMe2vX7jSd4a+DwABoOZ5X8f4eOR7SlcyJPIqER+/G0XEz/qwuu963P94nreGfoqyYmxlC5TlmUr1zNh/FjqVivKB4NeILB/Y3w8dLg5KXi763B1UlCtViwWy38LgspINSGEEI8nKxoSDRbK+PtSpkjWo8luxSYSUMiTjnXL4e2szbUgutlsxtfX1y6Ivnnz5jwNogNoVC2eOs9s69117mhUuVQWQuSdv//+m169erF9+/ZMdZGRkfTt25e9e/fafnsYjUY2btxI//79SUtLy3xAIR6AxWQl7o7f4f8rJiwOi1mC6EKIZ5v8OhDZ0mq1GFMspCWaMSRZuHb6FrM/WcnlU2HM/Xw1Q1p/y5UzN5k1biWLZmzFt5AnCXEpHN93BYBGraqwdfUxAMpW9uf0kSDbsX383Aj/Lz0L2OcrvxkSQ5lyhWzbB/Zc4vnmlYD06eeXLoRRu3ZJAKKjk0hJNtKoUXpu1dOnbmAxW3nt1Sa4ujqye/dFgq5GMuXLXnTpUAsFMJvMTPmiBz/NfI3/e78tSfGhTP1qGIf3rQXg9ddfZ+eO7TRvVg8XJ+W/QLkJk8mU48+xEEKIdOfOnWPq1Km88cYbNGjQgAoVKvDqq6/ec7/Vq1fTvXt3atasSd26dRk8eDBnzpzJtv3Jkyd58803qVOnDjVr1qRnz56sX5/96KsnnapoiEox8/Xfe3h12p/8su0wnRtX5f96t0Sj2C+WWbFYQXT/zbDKLUFBQRQsWPC/dULSBQcHU6dOnbvslXPuvN5QLSov+L2UbdsXC7ZDZ5HR6EKIvHPw4EE0Gg2dOnXKVPfDDz8QHR2Nh4cHP/zwA0ePHmXlypVUrVqV4OBglixZkg89Fk8TR1cHqjWpkG39cy2ryoKjQohnnnwKCiD9h6WChtQEE9E3EkmJM7F/w1n+r/dsju64wOxPV/J/fWZjMVvZvf4kuzecwsFRR9HSfhzfdxmARi9V5d91t6dIWy1WTKasf4yHh8ZRsrSfbTsl2YDPfyPNr1wMp3TZQrh7OAOwa9tZWrxUlcL+XgAs+XUPnbvWoXmLSmi1Gub+8A+1agYw4YvutGhRmcuXblHnuQBmz+zPvNkDeKVXPUqW8GL42y/y0QetaVivJK4uCj5eepb/tYDWrVtw+vRpfH19Wbx4MVOmTMHFxSU3nmYhhBDZ2Lp1K3PnzuXAgQP4+fndewdg9uzZjBo1ipiYGHr37k2bNm04dOgQvXv35siRI5na79+/nz59+nDkyBHatm1L7969iYqKYsSIEfz88885/ZDynaIohMal8MqUJWw8eoGohGQu3Yzi25U72H8xhEFt69u1D+zUEAdtNgfLAX/88Qe1a9e2bTdt2pSYmBjc3d1z76SkPw9mBzPR2mguWy4Tr4vH4mBBVVW8NT50LPxypn0aFXieAKcydgF/IYTIbRcuXKB8+fIUKGA/c8hqtbJu3ToUReH999+nRYsWuLi4UKlSJWbOnIlWq2Xr1q351Gvx1NCo9BjRDr1j5pvI7t6uNH25rnwvCiGeeZIj/Rmk0WjQaDRYzFZS4tIID47G1cOZSyev8+uk1TR/uS5Go4VNf+ynYFFvNFoNB/9JH93XpF1Npn64FIDCJQpw7XyY7bgOjjrS/kvPAqDTa9FoFKxWlUtnQuk+oCkrft8HwJZVR3njg9acO3UDgBWL9jH4/dZ8+9kqTCYLP07fwphxXVgwfzuXzofx7YTVDB/djqREA3t3XeDIoav069+E/q83xWA04+ykx9VNT9WqhYH0/OSqquLqmrHQp4pGo6CqFiwWuHXrFoGBgfzzzz8AtGrVipkzZ0puQSGEyCdt2rShRYsWlC9fnri4OJo0aXLX9kFBQcycOZOAgACWLVtmC8b26dOHnj17MnbsWNauXWtbtNJsNjN27FgURWHRokVUqpQ+02nYsGF0796dqVOn0rp1a4oWLZq7DzQPGSwwefm/mMyZb2pvPXGJjvUq4aDT4uXmzJgeL1DU2y3X0pR1796dbdtuL142ffp0+vXrlyvnupOiKCTrk/n+yvdEGiJt5WVdy/JmwJvoDXoaeDSjllddziedxWI1U9G9Ci64ojHm4l0FIYTIQkxMTJbffxcuXCAhIQGdTkf79u3t6goVKkSNGjW4cuVKXnVTPMU8C7rx7aaPmPX+Qi4evQZAreZVGDL5FdwKOEsgXQjxzJNA+jMgI3Cu0WiIj0ji4rEgjGlmnFwcmTJ8AUVLF6Tta8/zw0dLURSFui2rMm7APADqtqzCrnXH7ziWgiEtPcVJWrIRV3cnW9354yHUbFCG0KAoAI7tvUzD5pXY889ZjAYzl86E0qJddbatP0lURAKnDwcx5IM2LPpxB1cvhrNx5REmTOvD0QNXuXopnMsXbvLR+K6YzRYsFgsurg64uTvQsGlpFCU9KALg9t/qnhlB8nvZsGEDw4cPJzo6GicnJz7//HPeeOMNu+neQggh8la5cuUeqP2KFSswm80MHTrUbkRzpUqV6NChAytWrODIkSPUrVsXSB+NHhISwssvv2wLogO4u7szZMgQxowZw8qVKwkMDMyZB/QYMKsQGpOYbX1QRCxLP+qHXqvg5qDJlR/HycnJFC9e3K7s8OHDlC5dOsfPlRWT3pQpiA5wOfkyf9z4g37+/dCYNDjjSh3nBgBYsplNJ4QQuS0lJcX2G+dOp0+fBqBChQq4ubllqi9cuDAnTmS/eLIQ902jUrhsAcb+EUhakhGNRsHJ3QGdo1aC6EIIgQTSn0rpaVoUVIuKIcXE5WPBnNhxnsZd6zCh3w+kJhv4bEkg4/rMxGpVaftqU1bMTp8K6OHjSkRorG1Eml6vw5h2Oze4yWjGzcOZpIRUIm7GUqREAfQOWkxGCwe3n+fz+QPZufEUiXEpbFp2iI+mvkJSQionDl1jybztvPF+a2o3Kss/a49z4XQo5aoUZdovg0hJNqDVaXB1d6BnpQaYTRa0Og0Wi5n0DETp08uyurC8X8nJyYwYMYJff/0VgKpVqzJv3jwqVqz40McUQgiRPw4ePAhA48aNM9U1adKEFStWcPDgQVsgPaN9ViP9MsoOHTqUqe5JoygKKWaVsLgkLoRF8U6HRrg5OTJ3434uh0XbtXXW6/B2Tv9hnBs/jo8dO0bLli3tym7duoVen3d5xxOsCZmC6BmOxx+ne9HuOJOeSi43c8MLIcT98PHx4erVq5nKjx49iqIoVK9ePcv9DAZDrqfJEs8OVVXRO2vROzvblQkhhJBA+iM7efIkM2bM4NixY5jNZsqXL8+AAQNo165dnvZDq9FiNlqwmKyEB0Wxds5W2g1qwayRCwk+G8q7M15n6rAFJMWn8FyLKhzaehqrNf3L0MvPg/CQ9B/XJoMZJxcH23HPHr5Kg9bVOHMofVrXthWH6dCvIX/8kD49e/WC3Qz7rCvTx67AarEy54u/GfNNL7b+fZS9/5xl+riVBH7WhcFj2hMTmYintwtePq7UblQas8mCo5MOq2rB1eN2TnKz2QQKWCw596P+2LFjDB06lIsXL6IoCsOGDePjjz/G0dHx3jsLIYR47AQFBeHi4pJlPvWSJdMXpA4ODrZrf2fdnfz8/HBxcbFr/6RKNKkE/riaaxExtjJPFye+eKU1363exbXw2+V1yxXLtdFlU6ZMYeLEibbtAQMGMHXq1Fw5V3YURSHBlJBtvYqKwWqwBdKFECK/1ahRg61bt7Jt2zZatGgBpKd72bx5M5D1zWOAy5cvS4pKIYQQIg9IIP0R7N+/n0GDBuHg4ED79u1xdXVl8+bNjBgxgvDwcAYOHJhr51YUBa1WCyrEhSWw9fddFCjqw/WL4ayevYV6bWqwZ/Vhgs+GAuBd0JNbIekpV7z8PIgIvf1DOi3FgLu3K4mxyaQkpeHorMfZ1ZHUZAMXT4TQ652XKFyiAOEh0Rzefo66zSvRZUAT1i/Zz9HdF9HqtXy5YBBXz4URGR6HyWzm9fdb8+q7LwIqTq56wIq3n9Mdj8CK3lHBqubu6C+LxcL333/PpEmTMJvNFClShNmzZ9OsWbNcPa8QQojclZSUhI+PT5Z1GdPeExMT7doD2Y7Yc3Nzs2ufFU9PT1vO9fzg7e191/qE1DS+/G29XRAdID4ljXFLtzCyUzM+XrgRgPe7NKOglztuzjl7Q1lVVUqVKmV3U2Ljxo20bt06R89zv/xSsl+4VqfocHNww9v97s/ro7jXayYeT/K6PXmeltesb9++bNmyhXfffZe2bdvi4+PD5s2bSU5Oxt/fnxdeeCHTPtevXycoKIjOnTvnfYeFEEKIZ4wE0h9Sfi5aZkgwEXzmOke2nKJu65qM7zEFgP9b/C6zRiwEoFGnOvwyfhmQHnQ3GW+nRLl59Ra1mldh/4b0PHrb/jpA236N+XNG+kiHVfO28fbEHkwbuRiL2crMj5YyYkofDu84z+71J1gyYzMDPmzPzLUjSEsx4uCkw8XdkdJVCgHpwWtVVdGREWzIn1xq169fZ8iQIezbl77AaY8ePZg0adJTc6EthBCPm0mTJmE0Gu/d8D/9+/cnICAg9zqUw+Lj4/Pt3N7e3sTGxt61TZzBwp7zWY+qj0lKwcVJT/dGVenaoCoFPZwxpaUQm5aSY32MiIjIlC7t4sWL+Pr63rPvj0pRFMw6C2mkoaLipDjhYNbjpHOioltFziedz7RPy4It0Rv1xKbkTt/u5zUTjx953Z48j+Nr9rC/Nxo0aEBgYCCzZs1i9erVKIqCqqo4OTnx5ZdfotNl/vm+ZMkSIOvUZUIIIYTIWRJIf0j5tWiZIdHEpH7TObPnAsN/eJOZ7/6CMc1Ejecrc/zfs7Z2egcdaSkGIH10mKOzHq1Oi8Vs4dyhq7wyqiMu7s6kJKZyfOd5WvZsQJOOtdi95hhnDlzB2dWR8QsGc/5YEDeuRBAZHke3wc3pOqgZKuDs5oCKFTef22lgHiV/eU5btmwZI0eOJCEhATc3NyZPnszQoUOJi4vL764JIcRTa+nSpaSk3H9gtnXr1g8dSL/bCPKsRp9nNUr9f/fx9PR8qL7kN0WjIdFoIclo5vuBnbhwM5I/dp8gJsn+tVBVlffaN0xPoUbO5jrdsmULvXr1sm2XLVuWAwcO5MlC3opGIU4Tz89BC7mWHARAEafCvB7wKoUtBRkYMJBlocs4FHsIFRW9oqdlwZa09G2JapCcr0KIx0tgYCDNmzdn8+bNxMbGUrhwYTp27Jhp4eYMDg4O9O/fn6ZNm+ZxT4UQQohnjwTSH1J+LFqm0Wg4sOYIZ/ZcAMCniDdhV28BoNVp7Uadn91/iedaVGXv2qMA7Fl9hDb9m7Lu5+0ALPh8BaPnvMGCL1dx7cwNpg7/lX4fdqDnO62JvBGDm5czfkV9KP9cMRRFwWq1/rcIV/pbRs2nUeb3Eh8fz8iRI1m+fDkAdevWZc6cOZQqVSpPfswLIcSz7NixY3l2roCAAI4dO0ZkZGSmPOkZaUXuzIeeEbAPDg6matWqdu0jIyNJSUnJdhG3x5lRVdh9Npip63aT8N8N9OolCjOxb2u+WLaN0Ojbo+iLF/D8L4ies9555x0WLVpk2x43bhzvvvtujp8nO6n6NCae+Zo0q8FWFpYWzuQLUxlf+WM80tzpVagXXYp0wWA14KRxwsnqJEF0IcRjq0qVKlSpUuW+2r733nu52xkhhBBC2ORfos8nXH4sWpaWYGD1D5tt29Y7FuO8eOQqNZ6vbNve9sde2r/RAifX9Nynm37bScnyhXn1/zrjXdCDq6evs+jr1QROfoUfdn7K9K3/R/Me9SlY0pPKjQIoXqkgTh46zGYzJpPpvyD6423v3r00bdqU5cuXo9VqGT16NOvWraNUqVL53TUhhBA5rG7dugDs2bMnU93u3bsBqFevXqb2GXVZtc9o86TQaDScuh7JZ3/9YwuiA5wMCeeTJZsZ0fH26MSmlQLwdHbI6jAPzWg04uPjYxdE3759e54G0bVaLfuiD9gF0TNYVAtrwzaADhSzgpPRCU+zJ45GR1SzBNGFEEIIIYQQD0ZGpD+kR1207GEWLItOi8Vwxw/ltKQ0vAp6EhcRT1JcMjE3Y6jdsgpH/zlDalIaCz77i7G/v8OGX7dzdNsZ/vh2LQM+68bUjWNAUdA76ihQ2OuJH6ltNBoZN24ckydPRlVVSpcuzaJFi2jQoEGmtpIf/fEnr9HjT14j8Th4+eWX+fnnn5k9ezYtW7a0fR+fO3eOtWvXUqZMGZ577jlb+4YNG1K8eHHWrl1L//79bWnZEhMTmTNnDnq9ni5duuTHQ3loyWYr09ZnvjEAEJWYTExiMqUL+dCgXHFee6E2DkrOBY8vXbpE/fr17cpu3LiBi4tLjp3jfpgVC+cSL2ZbfznpKibFhB59HvZKCCGEEEII8TSSQHo+eZgFy7ROGhp3rceKaesAWDN7EwPG9+T7t39EVVV++r/FvDf3LWo1r8rWxXuIvRXH/vVHGfRFL/gvVu7i5YjVensk+5OeM/zSpUsMHjyY48ePA9CnTx+++uor3N3dMy069DguRCTsyWv0+JPXKO89Kzcurly5wvz58wFIS0sD4OrVq4wZM8bWZtKkSbb/lypVisDAQKZNm0bnzp156aWXSE5OZt269O/ICRMm2N2w1ul0fPHFFwwaNIi+ffvSvn17XF1d2bx5M6GhoYwePZpixYrlxUPNGRoNRpOF4e2acDM2gb/2niQkKs6uSUhUHHMHd8VBA1hzbmbZggULeP/9923bbdu2tRuVnpe0aPB19IFsxi54O3ihRZu3nRJCCCGEEEI8lSSQ/pDyY9EyFSud3m7N1oU7SYhO5NyBSxQpU4hP/3qfdfO2EnTmOht/2sYbk/rQtHs9QMXJzRE0t0eg3RlEf5KpqsqCBQv45JNPSE1NxcvLi2nTptGpU6f87poQQoiHEBUVxcqVK+9admcgHWDo0KEULVqUX3/9lSVLlqDX66lTpw7vvvtulrllGzRowOLFi5k+fTrr16/HbDZTvnx5Ro4cSbt27XLngeWCFKvCz/8eZtWhMxjMFsoWKsDQNg3YfS6IdUfO29qVKuiNs5YcTc/Wrl079u/fb9ueP38+3bp1y7Hj342iVUjTGkmwJIGq4qFzx8niwIsFW7A7al+W+3Qs0g6dRYf1MV3bRQghhMhJiqKgqpK+TAghcosE0h9Sfi1a5urrzPd7v2DZlDXsXLafY/+cpnilYrw7+w1UFXSOWnRO2ju+PJ++L9GoqCiGDx/Oxo0bAXj++eeZNWsW/v7++dwzIYQQD6t+/fpcuHDhgffr1KnTA91ErV69Oj/++OMDn+dxkWqFEQvXcTY0wlZ2+VY0Y5ZsZNIrbTgVHE5IVByOei31yhbPsSB6QkKC7donw8mTJ/NsFL+qUzmXdoV5134n1ZI+Y8FZ68SbpfpSwaU0r5fsx28hS7Co6Y9XQaF94daUcCyG1ShBdCGEEE8vRVFIjTMQExZPQnQiRUoXxNXLGZ2zzMgSQoicJoH0h1S3bl3mzp3L7t27ad++vV1dbi5apqoqrr7OvDaxJz1Hd0ZRFFy8nLCqVrs2T6stW7bwzjvvEBERgYODA2PHjmXo0KEPnG9eCCGEeNIoisKN2AS7IPqdfvr3ED0aVmP+1oN8/3pHPB20qOqjB5H3799vN2I/Y0F1rTbvfqDHkcj0yz+h3jFAINWSxvTLP/FllTHUdKlOpSoVCUm9jlm1EOBSAierIxqjXB8IIYR4emk0GiKvxTK267fEhN9OH9uw03MM/bYvDm4S8hFCiJwkvy4e0p2Llp07d85WnmeLlmnA2csRJ08HuyD60yo1NZXRo0fTq1cvIiIiqFChAlu3bmXYsGESRBdCCPFMMKNBr9Mx9dUOvPb8c3i6ONnVXwqPpmGFkvzxXm/K+rrnSBD9iy++sAuiDx06lBs3buRpEF3RaVgbttUuiH6n1WFbUBQNTkZHKujKUdWhEi5GZzRmuT4QQgjxdEuOSWNM+8l2QXSAfauPsHLmZhRVyaeeCSHE00luTz6kp27RssfYqVOneOutt2xT/t966y3GjRuHs7NzPvdMCCGEyH0ajYZrETF8s24nOy9cA6BBmRJM7tOW79bv5sLNSACc9DpcHHS4aR99dprVaqVs2bJ2i5KvXr2aJk2aPNJxH4ZJMRGaGp5t/c20cMyY0ZGe2u5pnpknhBBCZFAUhevnb5IYk5Rl/fof/6Xj4Ja4eDvmcc+EEOLpJYH0R/C0LFr2uLJarfzwww988cUXGI1GChYsyMyZM2nVqlV+d00IIYTIM3FGC31/+IP4VIOtbN/lEE5eD+e7fh14+6eVWKwqXetWwU2vBeuj5UUPDQ2lWrVqdmVXr17Fy8vrkY57v7RaLWkaI1ZUHFQdelVHCZeiBKVcz7J9Ceei6NFlO2JdCCGEeBopikLYtazTvQEYUgyYDWZAAulCCJFTJJD+iJ70RcseV6GhoQwbNoydO3cC0LZtW77//nt8fX3zuWdCCCFE3lG0WlYfOm0XRM+QbDDyz+nLNKtUmoj4RAY0q/3IQfTVq1czYMAA23aNGjXYtm0bipI3U8NNDlYOJpxibdg2kswpVPUsT4+i7WhfpCW7og5kCpYrKHQo0grVLEF0IYQQzxZVVSlVtXi29Z6+7jg46/OwR0II8fST5JHisfP333/TtGlTdu7ciYuLC1OnTuX333+XILoQQohnikajIdlkpWbJInz3agfGd2tFxSJ+dm2OBIUy7MUGfNevHS6aRwsmDxw40C6IPmnSJP799988C6Kb9VZ+DF7KvGt/cDMtggRzEnujj/LhqUloFC2jKgzFQ+dua++uc2Nk+SF4qu53OaoQQgjxdFJVlUIBvhQtWzjL+lfGdMbF2ynLOiGEEA9HRqSLx0ZiYiJjxoxhyZIlANSqVYu5c+dStmzZfO6ZEEIIkcc0GkISUvh4+RYuR0QDUMTTneEvNuLfs1fZcuoSAF4uThRwdUT3CAuLpqWl4e/vb1e2Z88eKlWq9PD9fwixlniOxJ3OVG5Szcy/tpQRpV7ni8qjSLKkoAJuWheczY5YLU//outCCCFEVpw8HJiw6gO+D/yFE9vPAuDs5kTvDzvSuMtzWK3yHSmEEDlJAunisXDw4EGGDBlCUFAQiqIwYsQIRo8ejV4vU9GEEEI8e+KNFgb8uIxUk9lWFhafyMfLNzOjXyf2XwohMc3A682ew0EB60MORj979mymBUTDwsJwdMzbfKparZajsWeyrT+bcIk0DDgbHfDBM73QAlYkQCCEEOLZpaoqrgWcGPXzW6QmpGFINeLi4YyrlxOqImnPhBAip0kgXeQrs9nMt99+y5QpU7BYLBQvXpw5c+bQsGHD/O6aEEIIkS+0Wi3bTl6gRAEvwuOTiE9Ns9VZVZWlB07SvlZFLBYLFQsXeOjRZrNnz+bjjz+2bXfv3p158+Y9cv/vl6pTMComFFXBTeOAkzb74L1W0aCQNylmhBBC3J9z586xYcMGzpw5w5kzZ4iNjaVevXosXLjwrvutXr2a3377jcuXL6PX66lduzbDhw+nSpUqWbY/efIkM2bM4NixY5jNZsqXL8+AAQNo165dbjysJ46qquicNLg7ueCOS3qZLMAthBC5QgLpIt9cu3aNwYMHc/jwYQB69OjBN998g4eHRz73TAghhMgfiqIQb7Lg6+lKiyplKFnAG6tV5btNu4lMTAbgQngko9o2wU2vxeEhRpupqkqTJk04d+6crWzhwoW0b98+xx7HXWkVEjWp/HVjM8fjLuCmc6GL/wvU8q7CwpBVWe7SyOc5nKwOIIEBIYR4bGzdupW5c+ei1+spVaoUsbGx99xn9uzZTJs2jaJFi9K7d2+Sk5NZt24dvXv3ZsGCBTz33HN27ffv38+gQYNwcHCgffv2uLq6snnzZkaMGEF4eDgDBw7MrYcnhBBCZCKBdJHnVFVl8eLFfPTRRyQlJeHh4cGUKVPo1q1bfndNCCGEyDcajYabyWkM/HUFcSm3R6EX9/ZkYveXGPXHBuJT0yji5Y67gw79QwSVY2JiMq09cubMGYoUKfLI/b8fiqIQoyQx6sRUjFYTAHGmRGZeWcqbpV7mleIdWXJ9jd0+BRy86VWsPRgliC6EEI+TNm3a0KJFC8qXL09cXFymVGH/KygoiJkzZxIQEMCyZctwd09fLLpPnz707NmTsWPHsnbtWjQaDZA+e3ns2LEoisKiRYtsa3cMGzaM7t27M3XqVFq3bk3RokVz94EKIYQQ/9HkdwfEsyU2NpYBAwbwzjvvkJSUROPGjdm9e7cE0YUQQjzzEs1Whi5abRdEB7geG8/s7Qfo07AmAINfqIfDQ2Q52bFjh10QvVChQkRFReVZEB3ArLXyS9DftiD6neZfW0Ed7+pMqvohLQs2oo53NYaW7svnld7D2eSQZ30UQghxf8qVK0eVKlXue12rFStWYDabGTp0qC2IDlCpUiU6dOjAlStXOHLkiK18//79hISE0KFDB7sFsN3d3RkyZAgmk4mVK1fm3AMSQggh7kEC6SLP7NixgyZNmrBmzRp0Oh2ffvopq1atolixYvndNSGEECLfpZktDG/ZiEnd2vBy7So46W9PHDwacpMqRQsS2LIBFQv5oKoPNjp7zJgxdO3a1bY9cuRIzp07Zxv1l1dMipnjceezrd8ZcYTCSgFeLdSZt4v3pZ5LNRyNugd+vEIIIR4/Bw8eBKBx48aZ6jJGs2e0ufP/WY10zyg7dOhQjvdTCCGEyI6kdhG5zmAw8MUXXzBr1iwgfeTC3LlzqVmzZv52TAghhHgMKIpCokVl6ZFT/H3iHCaLhefLlWZmn05M3riDS7eiAfB1d6Vn7UpoHyCli9lspnDhwnYLkm7atIm6devm+OPIilUHKYqBJHMqzlpHHDR6dIoWs2rJsr2j1gFVVbFYsq4XQgjx5AoKCsLFxQU/P79MdSVLlgQgODjYrv2ddXfy8/PDxcXFrr0QQgiR2ySQLnLVuXPnGDx4MKdPnwZgwIABTJgwAVdX13zumRBCCPF4SLKoDFy4kuux8bayjWcvsudqMNN6tGfo76vQajR4Ojk8UBA9ODiYWrVqZSq7czp9bjI6WPktZD3bI49g/a/fr5ZsS1O/2vwbkfUIwno+1bCYJYguhBBPo6SkJHx8fLKsc3NzAyAxMdGuPZDt95abm5td+6x4enrm+eyrvODt7Z3fXXjsyXN0d/L83J08P3f3LD8/EkgXuUJVVebPn89nn31GWloavr6+TJ8+nTZt2uR314QQQojHhlar5VDQdYp6eVDM25OToeEkG4wAJKYZWH/6Ai0rlaVcwQJ46LVwx8jyu1m6dClDhw61bTdp0oTVq1fnymPIiqqDpaFb2BZ52L5f17cyoepgTsdfJtIQa1f3SvE2uOGcZ30UQggBkyZNwmg03nf7/v37ExAQkHsdymHx8fH3bvSE8fb2JjY29t4Nn2HyHN2dPD93J8/P3T2tz8/93hyQQLrIcbdu3SIwMJB//vkHgFatWjFjxgwKFSqUzz0TQgghHi/JVhUfNxdKFfQBVaVX3eoER8cyfdteLFaVvVdDmNy1NWX9CoDJcF/H7NGjh+07GGD69On069cvtx5CllIUI1tuHcxUbrSa+Ob8Qr6s9jbnEq6yN/oEXnp32hRuTAGNBzrzQ6yiKoQQ4qEtXbqUlJSU+27funXrhw6k320EeVajz7Mapf6/+3h6ej5UX4QQQoiHIYF0kaM2bNjA8OHDiY6OxsnJifHjxzNo0CAURX4YCyGEEHdKUxVm7DzA8hNnbGWLj5ykVYUyfNy2OZ+v24argwPFPd3xcXMhNvbugfTk5GSKFy9uV3bo0CHKlCmTK/2/k0ajIVVjwogFraIhzWrMNg96lDGe6ym3aOhWjfruVVBUJT2dy/0NthdCCJGDjh07lmfnCggI4NixY0RGRmbKk56R6/zOfOgZAfvg4GCqVq1q1z4yMpKUlBSqV6+eu50WQggh7vD0JQsT+SI5OZkRI0bQt29foqOjqVq1Ktu2bePNN9+UILoQQgjxPxRF4WJUDBvPXcLPzRXtHd+VWy9cQdFAcW9P+targavu3pdrx48fzxREv3XrVp4E0S1alXOmUEafmc/rhyfz5pFvSbOa0CrZ97uAgxdmsxmrySo50YUQ4hmRsdD1nj17MtXt3r0bgHr16mVqn1GXVfu8WjxbCCGEAAmkixxw7Ngxmjdvzq+//oqiKAQGBrJlyxYqVqyY310TQgghHksWRYNWq2FcuxYMblKXH3p34u2m9dH9tyDamlPnGdCwNs+XLYnFcvdA85QpU2jRooVtu3///sTExKDX63P1MUD6SPRLhpt8fOpHbqRGAmCwmtgUfohmfrWz3KeES2G8tLLouBBCPGtefvlldDods2fPtkvXcu7cOdauXUuZMmV47rnnbOUNGzakePHirF27lnPnztnKExMTmTNnDnq9ni5duuTlQ8gZVoXk6DSigmJJjEjBarz/hcSFEELkL0ntIh6axWLh+++/Z9KkSZjNZooUKcLs2bNp1qxZfndNCCGEeHxpNFyLS2DEivUkpN1O19KyXGkmdW7NqJUbSEgz0KxcAM5K9j+uVVWlRo0a3Lhxw1a2dOlSXnzxxVzt/p1StSZmX8m8iOnm8MN8XLkfJquJ3VEnbOVl3YoxpsJrOJp0qEjgQAghnmRXrlxh/vz5AKSlpQFw9epVxowZY2szadIk2/9LlSpFYGAg06ZNo3Pnzrz00kskJyezbt06ACZMmIBGc3usn06n44svvmDQoEH07duX9u3b4+rqyubNmwkNDWX06NEUK1YsLx5qjjElm1kxbQNr5mzBZDChKAoNOz3HkG/74+iZ+zfAhRBCPBoJpIuHEhISwtChQ9m3bx8AnTp14rvvvrvvVW6FEEKIZ1WC2cJbf6zC1cEB1RESDenB9H8uXaWEjxdNywZQsaAv7loF1Zp1sDkiIiLTzK+LFy/i6+ubq33XaDSkas0kWw2YrRYc0BGaGpWpnVm18OXZ3/m86kD6l2hHgjkFF60jrooTDiYtqipBdCGEeNJFRUWxcuXKu5bdGUgHGDp0KEWLFuXXX39lyZIl6PV66tSpw7vvvkuVKlUynaNBgwYsXryY6dOns379esxmM+XLl2fkyJG0a9cudx5YbrHCyukbWfH9eluRqqrs/fsw8ZGJfLQoEL2rhGiEEOJxJp/S4oH99ddfjBw5ksTERNzc3Jg8eTK9e/eWXOhCCCHEPWg0GiITEpn6cjtC4uJxd3TEWa/n531HOBEaxvITZxjXtgXVihREtWa9+uaWLVvo1auXbbts2bIcOHAg97+HNQrhJPDF6T8ITo4A4Itq/dErWkxZLCxqUi3EGZOooPfHTXUEc3q5jEQXQoinQ/369blw4cID79epUyc6dep03+2rV6/Ojz/++MDnedwkx6ax+ofNWdad2XuBhKgkCrh65W2nhBBCPBAJpIv7Fh8fz6hRo1i2bBkAderUYe7cuZQqVSqfeyaEEEI8GVJVWHT0BOvOXbSVuTo4MKFtS5Ye0XIw+AYVC/nhqdVkOWp7+PDh/P7777btcePG8e677+ZJ35O1Jt49PJcUy+10NLsiT/N8wZpsvXUkU3u9oqWyR0mspqxvCAghhBDPktTEVEwGU7b1ESFR+AZ4y6wtIYR4jEkgXdyXvXv3MmTIEG7cuIFWq2XkyJF88MEH6HTyFhJCCCHuh0arZe2Zi5yPjKJFudLEpKRyIjSMZKOR0Ws3M+vlDtyMT8A5iyC6yWTCx8fHrmz79u1Ur149d/us0WDSWHHQ6NkTedIuiA7wb8RJJlR7latJYVxNvmkr1ylaPqs6ABer5HsVQgghAJxcHNFoFKzZpG3zLuQlQXQhhHjMSRRU3JXRaGTy5MlMmzYNVVUJCAhgzpw51KtXL7+7JoQQQjxRUq0qZXx96F6jKucjIilf0Je3G9fn10NH2XMthLO3IvmsbQvcdVosltupUi5fvpzpe/fGjRu4uLjkWl8VRSFZZ2Zv9Fn+jThJY99KnE0MztTOaDUz4cwS3inXicJOXpyOv4avgwfVPEvjYnVAsUhAQAghhABw8XKmUee67F55MFNdkdKF8C7smQ+9EkII8SAkkC6ydenSJQYPHszx48cB6NOnD1999RXu7u752zEhhBDiCaMoCvFGE2M2bCYmJdVWrtdo+KrdS6SazEQlJ1OlkB8W8+1p37/++isjRoywbbdt25ZFixblen+TdGbeOTqPCEP8f/3UUda9UNZtzWksvb6LrysPoEyBQqiq+l86FwmiCyGEEBk0DgpvfdOP+OhETu08Zyv3L1OI8StH4eTpICPShRDiMSeBdJGJqqr8+uuvfPzxx6SmpuLl5cV3331H586d87trQgghxBMpTYXvd+3l9bq1KenthcFsZsP5i2y/EsS4zf8wqV1rFFVFa7WQkVG8Xbt27N+/33aM+fPn061bt1zro0ajQavVYtXA0uDttiA6wNGYK7xSsikrbuzBombOeT6gZCscrVos1syLjgohhBAinaOHntG/DSMxOomIkCi8C3riVdgTJw8JogshxJNAk98dEI+XqKgo+vXrx/vvv09qairPP/88u3btkiC6EEII8QjSrFbaV6nAhosXeWfNWj77Zxv+Xh7M7NoBq6piNJupUtgPq9VKQkICPj4+dkH04ODgXAuiK4pCqt7KsdQbTLq8lgup4WwKP27XxorKsut7+bBiD1y0jrZyraKhf0BLKrsWw2qVRUWFEEKIe9G7aPEp7kmlJmUpVM4XR3e9BNHFfdu9ezc+Pj5MmjQpX87fsWPHTOv2PIlq1KhBjRo18rsbT5SM995nn32Wa+eYNGkSPj4+7N69O9fO8ahkRLqw2bJlC++88w4RERE4ODjwySef8Pbbb6PRyP0WIYQQ4mFpNBpC4mIZs3ET9YsX50XPspwMC2fhseOcDr/FyBea4KDT4qHVsnfvXtq2bWvb19nZmZCQEHx9fYmNjc2V/qXorIw8/juXk24B0NivQpYjy/dFXSDZnMZX1V9HAQwWE/7OPjhb9WjNudI1IYQQ4qklwfOnV0hICDVr1rQr0+v1+Pn50bBhQ9577z2qVKmSP537z7Bhw1iyZAnHjx+nRIkS+doXkbXFixcTGBjIzJkz6dOnT353R/xHAumC1NRUPvvsM+bPnw9AhQoVmD9/PlWrVs3nngkhhBBPvmSrlQuRkUxp344d166RajbzbpNGKMDEbdvxc3Wlgm8Bxo8fz9SpU237DR06lIkTJ+ZKnzRaDcmKGa2iYWXoQVsQHeBgzGWa+FVm660TmfY7GReMqqqU0vqiKiqYMjURQgghhBBAqVKl6NGjBwDJyckcPnyY5cuXs3btWlauXEmDBg0e+Ji1a9dm//79FChQIKe7K8RdZbz3ypQpk99dyVcSSH/GnTp1irfeeosLFy4A8NZbbzFu3DicnZ3zuWdCCCHE08GowvWEBKbs3UMxT08MZjN/nz9HVb+CfN2uDafDwujXuCExMTG2fVavXk2TJk1ypT9pepUN4cdYfv0QQ8u3ZNWNw3b1W8NO8W3tfhyKuUS8KcWurkGB8vg7eKOaZRSdEEIIIcTdlCpVijFjxtiVTZw4kSlTpjBx4kTWrFnzwMd0cXGhfPnyOdVFIe5bxnvP29s712bKPgkkZ8czymq1MmPGDF588UUuXLhAoUKF+Ouvv5g0aZIE0YUQQogcFJuWireLM7M6daRr5coMrPMcP3bpgp+7G9tPnuCD55vZBdGvXr2a40F0RVHQarWk6lVGnVjCrEtbCE+LQ0EhzWK0a2uwmvn23Fo+rfoKPYo3poSLLxXcizK2ck9Gle+Ko1kuH4UQQgghHsabb74JwLFjx2xlZrOZWbNm0bRpU/z9/SlZsiSdOnVi48aNmfbPLkd6Rs7vpKQkxowZQ+XKlSlcuDBNmjTh77//tmsbEBDAkiVLAKhZsyY+Pj74+PjQsWPH+34cJpOJSZMmUaNGDQoXLkzdunX56aefMrUbNmwYPj4+hISEZKq7Wz7svXv38sorr1C2bFkKFy5MnTp1mDhxIikpKZna3s369etp2bIl/v7+VKhQgXfffZe4uLhs2xuNRqZOncoLL7xAsWLFKFGiBO3atWPDhg3ZPrbg4GDmzp1L/fr1KVy4MNWrV2fy5MlZrh90v6/1sGHDCAwMBCAwMND2Gv1vfvrExES++uorGjZsiL+/PwEBAXTr1s1uraUM4eHhjBkzhjp16tja1q9fn/fff5+EhIR7PpfZ5Uh/kPdehhs3bjBo0CBKly5N8eLF6dChA3v37r3r+e/nPXH16lVKlChBlSpV7H5f3avuQciI9GfQzZs3GTZsGDt27ACgXbt2TJs2DV9f33zumRBCCPF00ev1pCQkcCk6mp+OHaFcgQIYzGauxsTwktHMV6NG2dpWq1aN7du3oyhKjvYhTady0xDH5cRb+Di6ci7hpq3uVNx16hUoy67I83b7BCdH8d7hX/mx3mB6F22MgoKTVYvVJAuKCiGEEEI8qozrPVVVGTBgAOvXr6ds2bK88cYbpKSksHLlSvr06cMXX3zB22+/fV/HNJvNdOvWjbi4ODp27Gg7zsCBA/nrr79o0aIFAO+99x4//fQTp0+fZvDgwXh6egI8UK70QYMGcfToUVq1aoVWq2XVqlWMGjUKnU7Ha6+99oDPhr2ff/6ZUaNG4enpSZs2bfD19eX48eNMmTKFXbt2sXr1ahwcHO55nD/++IO3334bd3d3evbsiaenJ5s2baJr166YTCb0er1de4PBQI8ePdi9ezfVqlWjX79+mEwmNm/eTN++fZk8ebLtRsidPv30U/bu3ctLL71E8+bNWb9+PZMnT8ZkMvHJJ5/Y2j3Ia92uXTvi4+NZv3497dq1yzL1cmxsLO3bt+f8+fPUr1+f5s2bk5iYyIYNG+jUqRO//PIL7du3ByAlJYW2bdsSEhJC8+bNad++PUajkZCQEP78808CAwPx8PB4oNfpTvf73oP0gH7r1q0JCwujRYsW1KhRg4sXL/Lyyy9nO5joft8TpUuXZtKkSQQGBvLuu++ycOFCIP3Gz5tvvklKSgqLFi16pAVzJZD+jPn7778ZMWIEcXFxuLi4MHHiRPr375/jP9qFEEIIkf4j6VxUJLX8i9CxUgVOhIfjotezcsIXzFi33tbuq6++YvDgwTl6bo1GQ5LWwsijSzmbcJM2/lVRsQ+Er795nEk1e3Mo5gppFvuE5xU8/Cmgd7WNQLciQXQhhBBCiEeRMWq7du3aACxdupT169fTuHFjli9fbgsQjxgxgubNm/PZZ5/Rrl07AgIC7nnssLAwatWqxZo1a2zH6d69O127duWHH36wC6QfPHiQ06dPM3To0IdabPTmzZvs2bPHFnwdPHgwjRs35ocffnikQPr58+cZM2YMVapUYdWqVXYBz2nTpvH5558zb94822jt7CQkJDB69GhcXV35559/KFu2LACffPIJXbt2JTw8nOLFi9vt880337B7927Gjh3Le++9Z4uTJSYm0qVLF8aOHUuHDh0oUqSI3X4nT55k165dFC5cGIBRo0ZRp04d5s2bx4cffmh7LR7ktW7fvr1dID2rxUZHjx7N+fPnmTZtGv3797eVR0ZG0qJFC0aMGEHLli1xcnJi586dBAcHM2TIEL788ku74yQlJWW6qfCg7ve9BzBhwgTCwsL4+OOP+eCDD2zlCxYs4P3338907Ad9T/Tp04dt27axYsUKfv75ZwYOHMgXX3zBsWPHGDFiBE2bNn2kxypzc58RiYmJDBs2jNdff524uDhq1arFv//+y2uvvSZBdCGEEPnKZDKxadMmRo8eTdu2balVqxa1atWiR48eLF68GIvFku2+q1evpnv37tSsWZO6desyePBgzpw5k237kydP8uabb1KnTh1q1qxJz549Wb9+fbbtH1W8yURxT092hFxj2oG9qGYT7zZoxPY7guj7Dh7MsSC6oiikalWuWuI5lXqLH6/s5Ox/I9BNVguOGvsxFMlmA3MubWVyzb68UKgKLloHfB3dGVymJZOqv4KTpHERQgghhHgo165dY9KkSUyaNIlPP/2U9u3b88033+Dk5MTHH38MpI+aBvjss8/sRlkXK1aMoUOHYjab+euvv+77nBMnTrQ7zvPPP0/x4sXtUsnkhE8//dRuBHO5cuWoX78+ly5dIjEx8aGPu2DBAsxmM5MnT840anj48OH4+vqyYsWKex5n/fr1JCYm0rdvX1sQHdJni945SjyD1Wrl559/plSpUowfP94uTubu7s6oUaMwGo2sXbs2074jR460BdEBChQoQLt27UhKSuLy5cu28px8raOjo1m5ciXNmjWzC6ID+Pn58c477xAVFWXLRJEhq1TObm5uODo63td57+Z+3ntGo5GVK1fi5+fHsGHD7Pbv379/lguZPsx7YurUqZQoUYKxY8cyb948Zs6cSe3atfnoo48e+XHKiPRnwMGDBxkyZAhBQUEoisKIESMYPXr0I99xEkIIIXJCSEgIw4cPx8XFhYYNG9KiRQsSExP5999/GT9+PDt37mT27NmZbvzOnj2badOmUbRoUXr37k1ycjLr1q2jd+/eLFiwgOeee86u/f79+xk0aBAODg60b98eV1dXNm/ezIgRIwgPD2fgwIE5/tg0Gg3noyPpWrEykYmJDK3f0K5+37WrVPX1w2QyZXOE+zyPVosRC6mKhcBDf3AlMZIpdbqzNvSErc3BqGt8Wr0T68OO2+17Jj6UUceW8Hm1brxXrg2o4KrqsZqyv4EhhBBCCCHu7tq1a3z99ddAegDXz8+P7t27895771G5cmUgfZCHi4tLputWwJbm4tSpU/d1Pk9PT0qWLJmp3N/fn0OHDj3sw8hSjRo1sjwPQHx8PO7u7g913MOHDwOwbdu2TEFgSH8eL126dM/jnD59GoAGDRpkqqtbty46nX049NKlS8TFxVG4cGHGjx9PamqqXX10dLSt3f+qWbNmprI7n4sMOflaHz16FIvFgsFgyJQvH9LzgQNcvHiR1q1b06hRIwoXLsy0adM4ffq0raxChQo5Mrj2ft97ly9fJi0tjaZNm+Lk5GTXVqPRUK9ePa5cuWJX/jDvCQ8PD+bOnUuHDh0YM2YMbm5uzJ8/P9Pr/jAkkP4UM5vNfPvtt0yZMgWLxUKxYsWYM2cOjRo1yu+uCSGEEDZubm58+umndO3aFRcXF1t5SkoKr776Kv/++y8bN26kbdu2trqgoCBmzpxJQEAAy5Yts12s9+nTh549ezJ27FjWrl2LRpM+otpsNjN27FgURWHRokVUqlQJSF/Ip3v37kydOpXWrVtTtGjRHH1sRquFIm7urLxwFq/424v4PN+hPSOmfIOnq+sjXbxqNBriFTObwk7jpNWzK+ISVxIj0+sUBaPVbGubaE4jKCmKdv41WX/zuN1xijp7UdHdH2dTel+sSBBdCCGEEOJRtGjRgmXLlt21TWJiYrbXnxmjnO93hHd2Oa51Ol2WC18+iqzOlRGkfJRzZSwEOmXKlIc+BmBbPNPPzy9TnVarzTSyOTY2FkhPIzJ+/Phsj5ucnJypLKubBlqtFsBuZm1OvtYZz9OBAwc4cOBAtu0yFuL08PBg8+bNfPXVV2zcuJEtW7YAULRoUd577z3eeOON+zpvdu73vZfxumS3RmPBggUzlT3se6JGjRoUL16coKAgWrVqRalSpR5o/+w8dYF0k8nEtm3b2LZtGydPniQ8PByAsmXL0rVrV3r16mV7Q2e4ceMGLVu2zPaYgYGBvPPOO5nKIyIimDZtGjt37iQ+Ph5/f3+6dOnCoEGD8n20d1BQEIMHD7bd+enevTvffPONbREJIYQQ4nFRqFAh+vbtm6ncxcWF119/nQ8++IBDhw7ZBdJXrFiB2Wxm6NChdhevlSpVokOHDqxYsYIjR45Qt25dIH00ekhICC+//LItiA7pF75DhgxhzJgxrFy58p75Fh+UFgWdVkPXipX5N+QqTT8YTpfGTalQvRqOWi1WVCwPGEdXNBoSFQvRhmScHRx4Y/dCog3JzGzQi72RV23tItOSKOHqQ0jy7VXpf7j4L2+Xb86XNXqxO/ICKWYD7YrUoKK7Py5mDSpqTj10IYQQQghxD+7u7kRFRWVZd+vWLVubJ1XGgBGz2ZypLiOoeqeMxxocHPxIjzsjsBsZGZmpzmKxEBMTY5frPKN9x44dWb16tS2wnpNy8rXOaDds2DAmTJhwX/sUK1aMWbNmYbVaOXPmDP/++y9z585l1KhReHl50a1bt/s6zqPIeJ6zex4iIiIylT3se2LcuHEEBQXh4+PDqlWreOWVV3jxxRcfotf2nrrElxnTwzdv3kypUqXo06cPHTt2JDw8nPHjxzNs2DBUNesfiRUrViQwMDDTv3r16mVqGxkZSc+ePVmxYgW1atXitddew8vLi2nTpjF8+PBsz5HbVFVl8eLFNGvWjEOHDuHh4cG8efOYN2+eBNGFEEI8cTJGtvzvTfCDBw8C0Lhx40z7ZEyNzGhz5/+zWgk+oyynp7wCuOp0hCclcz4mkucK+9OxZ3dOOabnKzepFoxWC8lW611HpWu1WsxWC4laK7cwcMWUQM+dC1gWcpxZ53YQbUgfGWO2WuwC4X8GHWFgmWZ2x1JRmXVxG38FHeK9cq0ZV74zdVxLpAfR8+naRQghhBDiWVW9enVSUlI4cuRIpro9e/YAUK1atRw/b8aszbutRZQTvLy8gPTFKP9XVmlMMtKeZKTzeFhVq1YF0gfT/K9Dhw5lCuyXL18ed3d3jh8//sgpF7PzoK91VqPaM9SqVQtFUR7q94tGo6FatWoMHz6cH3/8EYANGzY88HEeRpkyZXBycuL48eOkpaXZ1Vmt1iwfz8O8JzZv3sz8+fNp3Lgx27Ztw8vLi8DAwCwD9Q/qqQukZ0wP37NnDz/88AOjRo3i888/Z9OmTVStWtU2PTwrlSpV4p133sn0r379+pnafvvtt4SFhTFu3DhmzJjByJEj+eOPP2jfvj3btm1j3bp1uf1QM4mJieH1118nMDCQpKQkGjZsyK5du+jevXue90UIIYTICcuXLwcyB8CDgoJwcXHJcrpmRn6+4OBgu/Z31t3Jz88PFxcXu/Y5RQdUK1iQiOQkbqUkkWYx07BYSdYHXcBBq+NMzC3OxtwizGokSQcJGpU0nYYErUqcxko4RnbF3WD99XN03fYLN1LiGbRnMdGGZBoXKs2/4Rds57Kq4KK7vcDP5cQITsSE8ln1LpRwTZ++6qjR0aNEHcZX74rGYMFiNuf4VF8hhBDiaaAoChaDlbR4I2kJRlvgUYic1Lt3bwAmTJhgF8C9ceMGP/zwAzqdjh49euT4eb29vQEIDQ3N8WPfqVatWgAsXrzYrvzvv/+2BY/vNHDgQHQ6HWPGjOHGjRuZ6uPj4zl58uQ9z9uuXTvc3d1ZtGiR3YKfJpOJiRMnZmqv0+kYOHAg169fZ+TIkVkG08+ePZvlCPf79aCv9d1eo0KFCtGlSxcOHjzI9OnTsxwQc/jwYVtql3PnzmUZRM4oy4nFRu+Ho6MjXbp0ITIyklmzZtnV/fbbb3avVYYHfU/cunWLwMBAvLy8mDNnDiVKlOC7774jMjKSt99++5EHDz11qV0eZnr4g0pKSmL9+vUUL17c9ocA6V+0H3zwAevWrePPP/+kQ4cOD32OB7Vjxw7efvttwsLC0Ol0fPTRRwwfPjzTCD4hhBDiSbF06VJ27txJgwYNeP755+3qkpKSMuU2zODm5gbY5xhMSkoCsp8u6ebmdt85CR+E2WymgIsLL5Uux9wTB3ilcg3WX7tA57KV+f74bkbUbsKSCyd4pUINtoVepmHhkuyPCMbLwZlki4GlV44zvXEXhuxZSgk3b26kxJFsNgKgoGC940Jw9fUT9CtVn3mXdtnK/go+yrGYGwRWeIly7n7o0eCq6FFMEjwXQgghsmWFyOAYfvlkCSe2n8Xdx40u77Sh+SuNcXDP3zSu4unSq1cv1q5dy/r162nSpAmtW7cmJSWFlStXEhsby4QJEwgICMjx8zZt2pSZM2cyYsQIOnbsiIuLC8WLF6dXr145ep527dpRqlQplixZws2bN6lWrRoXL15k165dvPjii7Zc3RkqV67MN998w8iRI6lXr54tt3VSUhJBQUHs3buXV155halTp971vB4eHkyaNIlhw4bRsmVLXn75ZTw8PNi0aRPOzs62nOR3GjNmDCdOnGD69OmsWbOGhg0b4ufnR1hYGGfPnuX06dNs2rQpy4E89+NBX+u6devi7OzMnDlziIuLs+UVHzlyJJA+wPfy5ct89tln/Pnnn9StWxdPT09CQ0M5fvw4V65c4dy5c7i4uLB9+3bGjRtH/fr1KVOmDD4+PgQFBbFx40acnJwYNGjQQz2mh/Hpp5+yY8cOJk6cyP79+6levToXL15ky5YtNG/enH///deu/YO8J1RVZejQoURFRbFgwQJbTvrOnTvTr18/fv/9d2bNmvVI6TyfukD63WQ3PTxDREQEixYtIjExkQIFClC/fn1KlCiRqd3x48cxGo00atQo01TsokWLUqpUKdsKurkdyDYYDHzxxRe2Ozlly5Zl7ty5trt+QgghRF6ZNGkSRqPxvtv3798/2x8G//77LxMmTKBo0aJ88803OdTDR+Pp6flQo9ES4uPQaTR0KleZ+acO80mDFxj67yrmt3yZt3es4utGbRl3aAvtS1Zg1bXT7I8I4av6bRm+byWdS1ZhdfBpVMDX0Y3Q5DjbcQ9FhdCkUFl23kpfpX57+CXq+gYwrEJzfr+6n3hTKo4aHXV9S1LLpzgFnbNeBEjknoyRROLJIq/bk0deM5GTFEUh/Eok7zUZi8WcnlIh+mYMP320mCNbTjLyl6E4uEkwXeQMRVFYsGABc+bM4Y8//mD+/Pno9Xpq1KjB22+//UiDQO/mxRdf5LPPPmPhwoXMmjULk8lE48aNczyQ7uzszMqVK/n444/ZsWMHhw8fpk6dOqxdu5ZNmzZlCqQDvPbaa1SrVo0ffviBffv2sWnTJjw8PChWrBhDhw61G9B6N6+88goeHh5MmTKFP/74Aw8PD9q0acP48eMzDdKB9NHSf/31FytWrODnn39mzZo1GI1G/Pz8qFChAq+//jqVK1d+6OfiQV9rb29vFixYwOTJk1m4cCGpqanA7UC6t7c3GzduZP78+axatYply5ZhtVopWLAgVatWZeTIkRQoUABIX/g2JCSEffv2sXbtWpKTkylSpAhdu3blnXfeoWLFig/9uB5U4cKF2bRpE+PGjWPbtm3s27ePGjVqsGLFCnbu3JkpkA73/56YOXMm27dv59VXX6VTp052x/jqq6/Yv38/X3zxBc2aNaN69eoP1X9FfYYSYr755pvs3LmTefPm2f3RZLfYqKIodOzYkfHjx+Pi4mIrX7RoEZ9//jmjR49m4MCBmfYbMmQI//77L1u3bqV48eJZ9iUnFi44f/48b731FqdPnwZgwIABTJgwAVdX10c+9tPI29s7VxaMEDlHXqPHn7xGee9JCg7UqlXLNn3wfvz2229Zpk/bsWMHgYGB+Pj48Pvvv2f5XdqgQQMMBgPHjh3LVHf69Gm6detG586d+frrrwEYPnw4mzZtYvny5bacif/bd09PT7Zv355tfx/2va/VarmWlkxoUgJTj+7h5fKVOXjrOgEe3uy/FULXMlX46ui//NKiBwO3/0nngMqYVSsbbpxjcKUG7Iu8xunYMAo7uzOsclM+PZaePs5d78i0+i/z/sFlJJkNtvM19CvFwHKNKOjkhpOiw03Ro5hlBHpek8/LJ5O8bk+ex/E1e5K+u592D/PeMKdamNhzGmf2Xsiy/rvdEyhWuXC+rS3yOL7nHzfyHN2dPD93J8/P3T2tz8/9fnc/MyPS7zY93NnZmbfffptWrVpRokQJrFYrZ8+e5bvvvmP16tWkpaUxY8YMW/uMqd/ZTQ/PCGTnxhTxDGlpaXTs2JHo6GgKFCjA9OnTc+1OpRBCCHE/sgpqP6jt27fzzjvv4O3tzW+//ZbtDemAgACOHTtGZGRkpumVGbnO78yHnjHyPTg4OFMgPTIykpSUlIcelXAvFouFgk4uRKQmU9zdk6jUFCp6+7E3PJjafv7sDruGq86ByNT09DOuegdCktMvTm+mJFDKrQCnY8MIT03EXe9IIWd3bqUmkmgy8PXJrUyt14OtN89xMCoIT70TPUvWpoxLAZxsayhJEF0IIYS4X8YUU7ZBdIBDG/6/vXuPq6rK+zj+5XIAAcVLYAZeKRQVwgtQZjVeRhtJMRq1shxlNBJR0yxqnGZejmOaTV6yx4wcR6UaS0srs5HMvOC9gbxhFzFEyEnmURRF5bafP3hgYsAjB88BzvHzfr14FWvvvfbaZwm/xW/vvVa62oc8WG2xQgCA42u0ifT6fD28VatWmjp1apWyu+++W2FhYXrooYeUkpKio0ePqlu3bhZdgzl1fT28gmEYuv/+++Xu7q4FCxbUOL8TquPpkMaPPmr86CPYSkUS3cfHR6tXr65xYdAK4eHhSk9P165duzR8+PAq21JTUyVJERERVfZ/8803lZqaqqioqBr3Dw8Pt9KVVOdRWqaQln6KvDVArb28deDMKbXy8NTV0hJ5urrpammJmrl5SJIyzv6kfv6B2v1Tlj7P+U7/c0+MPj11VGUy9MqhrXqp11AtztimQ+d+1LcX8jR934d6qeeDGn97H7kZTvIwnFXGE+gAANSJk7OTTG6uKi6qOVHu3dyrwZ5GBwA0rEabSH/vvfcsej188ODBNSbSt2/frilTpqhVq1ZatWqV/Pz8al1nkyZNFB0drUWLFiktLa0ykV7xJPq1nji/dOlSlf1qcv78+Vq341qWL19e+f+O+FqFtTnq6yeOhD5q/Oij+nez3LjYvn17lST69RZViomJ0YoVK/TGG29owIABlTH32LFj2rhxowIDA9WrV6/K/e+++261bdtWGzdu1JgxYxQcHCypPJYvW7ZMJpOpWkLe2jxKy/Rgx87KvHBO3509q8eD79SfDnyhP0QM0OZT36mg6KraeDbV1/97Wgkh98jXw0t5Vy7p/RNfa07vB/XKoS+UW3hez+7/WL8NitQfw34lyZCPq4eayVXG/yfPy3gCHQCAOmvSzF39R9+rzX+rPk+vJEX8qodKS0vruVUAgMag0SbS6/P1cHMqEhgVk/pL/3lVPCsrq8ZjsrKyZDKZ1KZNG8sbDQDATSYzM1MJCQkqKipSRESEPv3002r7+Pv7KyYmpvL7jh07KiEhQYsWLVJ0dLQGDRqkS5cuVR47e/bsKm9+ubq66s9//rPGjx+v0aNHKyoqSl5eXkpJSVFubq4SExMVEBBg0+s0DENepVLXZi31l3sf0MH//ZeiO3XV6UsXFN2hq/7nyB7NifiVZuz5RLO+2qL5kUP19+Pp2pL7nX66XKCXw4fJx81DLnJSCzcPeRuuUlmZVCoZJM8BALAOF+mxmTE6vOOYfsz8V5VN8YvGyquV5zUOBAA4ukabSL9Rlrwebs7Bgwcllf8BXyEsLEwmk0m7d++WYRhycnKq3Jabm6sffvhBkZGRcnV12I8XAACr+fe//105nVtNSXSpfJqWnyfSJWnixIny9/fXqlWr9Pe//10mk0m9e/fW1KlTa5yO7a677tK7776r1157TZs2bVJJSYmCgoI0Y8YMDRkyxPoXdg2upWXykZPuvSVAYa3a6HJpscJuuU0jbw/V/n9la0nf4SoovqqTF85pcrd7lHjnL+Tq4iK3UsmtrDwhr1KJuc8BALANz5Yemvf57/XdV5natf6AWt3WQgMfv1c+fk3l4lb3KVoBAPbNITO9lr4enpGRoeDg4CoJcUlKSUnRhg0b5OPjo/vuu6+y3NvbW1FRUdqwYYPWrFmjRx99VFL5H7YLFiyQJI0cOdK6FwUAgIOKjIzUt99ee1Evc4YNG6Zhw4bVev/Q0NAqU6M1JKfSUjWT1MzJpDae7pKkO++4RVL5AqVqVj62MEoNtWjWXOfOnRMzsgIAYHuGYcjDx01hv+ymXg+EyjAMFhcFADheIr0ur4fPnTtX2dnZCgsL06233qrS0lJlZGTon//8p9zc3DR37txq850/88wz2rdvn2bNmqU9e/aoXbt2OnDggL7++mv169ev2kJmAAAA11JWVlblvwAAoOGVlZURmwEAlRwukV6X18OHDRumzZs36+DBg9q2bZvKysrUunVrjRgxQuPGjVNgYGC1Ovz8/PT+++9r0aJF2r59u7Zu3Sp/f39NnTpV48ePr/Z0OwAAAAAAAADAPjlcIr0ur4ePGDFCI0aMsPhcfn5+eumllyw+DgAAAAAAAABgP1glAwAAAAAAAAAAM0ikAwAAAAAAAABgBol0AAAAAAAAAADMIJEOAAAAAAAAAIAZJNIBAAAAAAAAADCDRDoAAAAAAAAAAGaQSAcAAAAAAAAAwAwS6QAAAAAAAAAAmEEiHQAAAAAAAAAAM5wMwzAauhEAAAAAAAAAADRWPJEOAAAAAAAAAIAZJNIBAAAAAAAAADCDRDoAAAAAAAAAAGaQSAcAAAAAAAAAwAwS6QAAAAAAAAAAmOHa0A0ArO3ixYtasmSJUlJSlJeXJz8/Pw0ePFgJCQny8vKqdT3JycnKyMjQkSNHlJmZqdLSUq1evVqRkZE2bL1jOXTokJYsWaL09HSVlJQoKChIY8eO1ZAhQ2pdR1FRkZKSkvTxxx/r9OnT8vHxUb9+/fT000+rVatWNmz9zeFG+yg7O1sfffSRjh49qqNHj+rMmTPy9/fX1q1bbdxywDERwxovYpp9Is7ZnxvpM8MwtGPHDm3dulVpaWn68ccfVVJSovbt22vIkCEaN26c3N3d6+EqAOuwxrggKytL//jHP7Rz506dPHlS+fn5atWqlSIjIxUXF6fAwEAbX4XtMG4qxxjFPMYC5hF3LeNkGIbR0I0ArKWwsFCPPfaYjh07pr59+yo4OFjHjh1TamqqQkJC9M4779T6h7hz586SJF9fX0lSXl6eXQXThrZ3716NHz9ebm5uioqKkpeXl1JSUpSbm6vExETFxsZet46ysjJNmDBBqampCgsLU3h4uE6ePKnPP/9cAQEBev/999WyZct6uBrHZI0++vDDD/XCCy/IxcVFgYGBOn78uNq0aeMwgwqgPhHDGi9imn0iztmfG+2zq1evKjQ0VG5uboqIiFBQUJCKioqUmpqqrKwshYSEKDk5WU2aNKmnKwLqzlrjgmnTpmnTpk0KCgpSz5495e3tre+++047duyQh4eHli9frvDw8Hq4Iuti3FSOMYp5jAXMI+7WgQE4kMWLFxtBQUHGK6+8UqX8lVdeMYKCgoxly5bVuq4vv/zSOHPmjGEYhvHiiy8aQUFBxt69e63aXkdVXFxsDBw40OjevbuRkZFRWX7hwgVj0KBBRrdu3YycnJzr1rNu3TojKCjImD59ulFWVlZZ/u677xpBQUHGiy++aJP23wys1UfZ2dlGenq6cfnyZcMwDKN79+5Gv379bNZuwJERwxonYpp9Is7ZH2v0WVFRkbF06VIjPz+/WnlcXJwRFBRkvPXWWzZpP2Bt1hoXfPDBB8bRo0erlW/cuNEICgoyhgwZYpX21jfGTYxRroexgHnE3bphjnQ4DMMwtHbtWnl6eio+Pr7Ktvj4eHl6emrt2rW1ru8Xv/hF5R1pWGbv3r3Kzs7Wgw8+qODg4Mrypk2b6qmnnlJxcbHWr19/3Xoq+mv69OlycnKqLH/kkUfUtm1bffLJJ7py5Yr1L+AmYK0+atu2rcLCwuTh4WHL5gIOjxjWeBHT7BNxzv5Yo89MJpMmTpwoHx+fauVxcXGSpAMHDli/8YCVWXNcEBMTo65du1Yrj4qKUocOHXT8+HGdPXvWKu2uL4ybyjFGMY+xgHnE3bohkQ6HkZWVpTNnzqhnz57y9PSsss3T01M9e/bUqVOndPr06QZq4c1j//79kqS+fftW21ZRdr1fplevXtXBgwfVsWNH+fv7V9nm5OSkPn36qLCwUEeOHLFSq28u1ugjANZDDGu8iGn2iThnf2zdZ66u5cuDubi41LkOoL7U17jAZDJJ+s/Ph71g3FSOMYp5jAXMI+7WDYl0OIyTJ09Kkjp06FDj9oryrKys+mnQTaziM27fvn21bb6+vvL09Kzsr2vJzs5WWVkZ/Wkj1ugjANZDDGu8iGn2iThnf2zdZx988IEk6Z577qlzHUB9qY9xwaFDh/T9998rJCREzZo1q3M9DYFxUznGKOYxFjCPuFs3JNLhMAoKCiRJ3t7eNW6vKL948WK9telmVfEZN23atMbt3t7elf11LfSnbVmjjwBYD7/zGi9imn0iztkfW/bZ9u3b9d577ykwMFAjRoyocxuB+mLruFFQUKDExEQ5Ozvr2WefrVsjGxBxtRxjFPMYC5hH3K0b+3p/BzeFefPmqaioqNb7jxkz5pp3TwEAqE/EMABoXA4dOqRp06apadOmWrx4sdzc3Bq6SbiJNMZxwZUrVzRp0iSdOHFC06ZNU2RkpE3PZ05j/HwA3BhHj7sk0tHovPfeeyosLKz1/oMHD1aHDh0q76Jd605pRfm17rTCeio+42vdvbx48WK1xSj+G/1pW9boIwDVEcMcDzHNPhHn7I8t+uzw4cP67W9/K2dnZy1fvlx33HHHDbcTsERjGxdcvXpV8fHx2rdvn+Li4vTUU09ZdLy1NbbPx94wRjGPsYB5xN26IZGORic9Pb1Ox1XM63StubsqyrmDbXsVn/HJkyfVvXv3Ktvy8vJUWFio0NBQs3W0bdtWzs7O9KeNWKOPAFRHDHM8xDT7RJyzP9bus8OHDys2NlZlZWVasWIF/Y0G0ZjGBVeuXFF8fLx27dql8ePHa/r06XVqmzU1ps/HHjFGMY+xgHnE3bphjnQ4jA4dOsjPz09paWnV7moXFhYqLS1NAQEBatOmTQO18OYRHh4uSUpNTa22raKsYp9r8fDwUGhoqH744Qfl5uZW2WYYhnbv3i1PT89qv/BRO9boIwDWQwxrvIhp9ok4Z3+s2WcVf8yXlpZq+fLluvPOO63XUKAeWHtc8PMkemxsrF3Oi/5zjJvKMUYxj7GAecTduiGRDofh5OSkESNGqLCwUEuXLq2ybenSpSosLNTIkSOrlF++fFmZmZn68ccf67OpDu/uu+9W27ZttXHjRh07dqyyvKCgQMuWLZPJZNLw4cMry8+cOaPMzMxqrxRV9NeCBQtkGEZl+Zo1a3Tq1CkNHTpUHh4etr0YB2WtPgJgHcSwxouYZp+Ic/bHWn125MgRxcbGqqSkRG+99ZZ69OhRX5cAWI01xwUV07ns2rVL48aNU2Jios3bb2uMm8oxRjGPsYB5xN26cTJ+/lMC2LnCwkI9+uij+uabb9S3b1917dpVGRkZSk1NVUhIiN5+++0qAWDfvn0aM2aMIiIilJycXKWupKQknThxQlL5K2dZWVnq27evfH19JUkDBw7UwIED6+/i7MzevXs1fvx4ubm5KSoqSl5eXkpJSVFubq4SExMVGxtbue/zzz+v9evXa+7cuYqJiaksLysr04QJE5SamqqwsDCFh4crOztbKSkp8vf319q1a9WyZcuGuDyHYI0+Onv2rObPn1/5/UcffSQPDw8NHjy4suy5556jn4BaIIY1XsQ0+0Scsz832mf5+fkaNGiQzp8/r3vvvbfGJ+KaNm2qsWPH1tclAXVmrXFBxc+Kr6+vRo0aVeO5HnroIQUEBNj8mqyJcVM5xijmMRYwj7hrOeZIh0Px9PTU22+/rSVLliglJUX79u2Tr6+vYmNjNWnSJIvuou7cuVP79++vUvbzV178/f0bbTBtDO666y69++67eu2117Rp0yaVlJQoKChIM2bM0JAhQ2pVh7Ozs9544w0lJSXpo48+0sqVK9W8eXP9+te/1tNPP22XgaoxsUYfFRYWav369WbLEhIS6CugFohhjRcxzT4R5+zPjfbZxYsXdf78eUnlvwd37txZbR9/f3+H+oMejsta44KK6Try8vL0+uuv17hPRESE3SXSGTeVY4xiHmMB84i7luOJdAAAAAAAAAAAzGCOdAAAAAAAAAAAzCCRDgAAAAAAAACAGSTSAQAAAAAAAAAwg0Q6AAAAAAAAAABmkEgHAAAAAAAAAMAMEukAAAAAAAAAAJhBIh0AAAAAAAAAADNIpAMAAAAAAAAAYAaJdAAAAAAAAAAAzHBt6AYAuDnk5+crOTlZX375pU6dOqWrV6/qlltuUXh4uB555BH16NHDJufNycnRgAEDFBERoeTkZJucAwCAxmrTpk3asGGDMjIydPnyZXXp0kXTpk1T7969G7ppAACgBuvXr1dycrKys7NVUlKijh07avz48YqKimropgE3PRLpAGxuz549mjp1qs6fP6/mzZurV69eatKkiTIzM7VhwwZt2LBBY8aM0QsvvCBnZ8telCFRDgDAta1evVrt27fXH/7wB3l6eurDDz/U2LFjtW7dOnXp0qWhmwcAAP7L+fPnNXDgQAUHB8vd3V1btmzR9OnT5e7uroEDBzZ084CbGol0ADZ16NAhTZgwQSUlJZoyZYqefPJJmUymyu1fffWVnnnmGa1evVouLi56/vnnG7C1AAA4ljfeeEMtWrSo/L5Pnz4aOnSo3nnnHc2ePbsBWwYAAGoyduzYKt/36dNHx44d08cff0wiHWhgzJEOwGYMw9Dzzz+v4uJiJSQkaNKkSVWS6JLUu3dvrVixQu7u7lq5cqW+/vrrhmksAAAO6OdJdElydnbWHXfcoZycnAZqEQAAsFTz5s1VUlLS0M0Abnok0gFU88wzz6hz585aunRptW3p6em68847FRkZqczMTLP17NixQ5mZmfLz81NcXNw19wsMDNTo0aNlGIb+9re/VZbn5OSoc+fOeuKJJ3Tx4kXNnTtX/fv3V7du3TRnzhwtWbJEAwYMkCTt379fnTt3rvyq6cn2K1eu6C9/+Yv69eun7t2765e//KWSkpJkGEZtPxoAAOxaaWmpDh8+rHbt2tXp+Pz8fC1ZskQxMTEKDw9XaGio+vfvr8TERKWnp1u5tf/x8zEBAAA3g5KSEl28eFGbNm3S7t27NWrUqDrVQ+wGrIdEOoBqpk6dKpPJpJUrV6qgoKCyPCsrSxMnTpRU/qp4YGCg2Xq2bdsmSXrggQeqPYn+34YOHSpJ2rVrl8rKyqpsu3Llih5//HGtX79ewcHB6t+/v3x8fBQcHKzBgwdLkm655RY99NBDlV+9evWqUkdxcbFiY2O1du1ade/eXZGRkfrpp5/06quvatGiRdf9TAAAcARvv/22Tp8+rccee8ziY/fs2aNBgwbp9ddfV25urnr16qUBAwbI29tbGzZs0COPPKI5c+ZUi+O1wR/bAAD8R15enrp166ZevXppxowZ+t3vfqf777/f4nqI3YB1MUc6gGratWunhx9+WGvWrNHKlSs1efJknT17VhMmTNCFCxf02muvqWfPntet55tvvpEkde/e/br7BgUFyWQyqaCgQDk5OVWelDt06JB69OihLVu2qFmzZlWO69KlizZv3qxOnTpp3rx516w/PT1dERER+uKLL+Tt7S1JOnz4sEaNGqVVq1bpySeflJeX13XbCQCAvTp48KBeffVVTZw4UZ07d7boWNY8AQCg/rRo0ULr1q3TpUuXtHPnTs2ePVvNmzevfJCsNojdgPXxRDqAGsXHx8vDw0OrVq3STz/9pKeeekrZ2dn64x//WOsFTvLz8yVJLVu2vO6+rq6u8vHxkSSdO3eu2vaZM2dWS6JbwtnZWbNmzapMoktSSEiI7rvvPl2+fFlHjhypc90AADR2OTk5io+PV79+/ZSQkGDRsax5AgBA/XJ1dVVISIjuuusuPfvssxo+fLgWLFhQ6+OJ3YBtkEgHUKPWrVtr9OjRKigoUHR0tA4ePKj4+Pg6z8t2I3x9fRUSEnJDddx2223q1KlTtfIOHTpIKn91DgCAxq4u65hcuHBBcXFx8vf318svvywnJyeLzsmaJwAA1J011iALDg7WqVOnan1OYjdgGyTSAVzT2LFj5ezsrHPnzikmJkZTp0616PjmzZtLks6ePXvdfUtKSnT+/HlJ5a+x/dxtt91m0Xlrcuutt9ZYXjGdS1FR0Q2fAwAAW7N0HZOioiIlJCTo8uXLWrp0qTw8PCw+J2ueAABQd9ZYgywtLU3+/v61PiexG7AN5kgHUCPDMDRv3rzKQOri4mJxHV26dFFaWpqOHDmi6Ohos/t+//33Ki4uVtOmTRUQEFBlm7u7u8Xn/m/Oztw3BADYP0vXMZk1a5YOHDig2bNnKycnRzk5OZIkNzc3de3atVbnZM0TAADqztLY/cQTT2jw4MHq1KmTrl69qi+++EIbN27U7Nmza31OYjdgG2SWANRo/vz5+vTTT3X//ffL19dX69evV1ZWlkV1VKwqvnnzZhUXF5vd95NPPpEk3XPPPSS9AQAww5J1TPbs2aOysjLNnDlTo0aNqvyyZJ501jwBAODGWBK7u3TpouTkZE2cOFEvvPCCsrKytGzZMo0cObLW5yN2A7bBE+kAqlm1apVWrFih0NBQLV68WGvXrtWcOXO0ePFiLVy4sNb13HffferUqZNOnDihpKQkTZo0qcb9Tpw4oXfeeUdOTk4aN26cRW2teE2tpKTEouMAALBXFeuY/PWvf1V0dLTOnTt3zXVMtm7d2gAtrBlrngAAblaWxO6ZM2dq5syZDdDK6ojdQFU89gmgis8++0xz585Vu3bt9Oabb6pJkyYaNWqUWrdurc8++0zHjh2rdV3Ozs56+eWXZTKZtGTJEi1btqxawjstLU2xsbG6cuWKfvOb3ygsLMyi9rZo0UImk0mnTp1SaWmpRccCAGCvbnQdE0uw5gkAADeO2F0VsRv2iEQ6gEoHDhzQc889pxYtWmj58uWVr4G5u7srLi5OhmFY9ES6JIWGhiopKUnNmjXTwoUL1bdvX02cOFHTpk1TdHS0Hn30UZ0+fVpPPPGEEhMTLW6zm5ub+vbtq7y8PEVHR+u5557TzJkz9cEHH1hcFwAA9sAa65hYokuXLpJUq1evWfMEAIDqiN2AY+BfMwBJ0vHjxxUfHy8XFxctW7ZM7du3r7J9xIgRatOmjbZv366vvvrKorr79OmjzZs3a9KkSWrTpo3279+vLVu26MKFC4qOjtaaNWv0+9//vs4Bds6cOYqOjlZ+fr42btyodevW6cCBA3WqCwCAxs4a65hYgjVPAAC4McRuwDEwRzoASdLtt99uNvns5uambdu21bn+Fi1aaMqUKZoyZUqtjwkICNC333573f1atWql+fPn16mOyZMna/LkybVuEwAADcla65hYgjVPAACoO2I34Di41QQAAADYAWuuY2IJ1jwBAKBuiN2AY+GJdAAAAKCRu946Jn/605+0cOFCJSUl2eT8FWuePP3001q4cKFWrlypHj16yMPDQydOnNA333wjSTe85smXX36p6Ohode3aVSaTST179tTDDz9s7csBAMDmiN2A4+GJdAAAAKARs+U6JpZgzRMAAGqH2A04JifDMIyGbgQAAAAAAAAAAI0VT6QDAAAAAAAAAGAGiXQAAAAAAAAAAMwgkQ4AAAAAAAAAgBkk0gEAAAAAAAAAMINEOgAAAAAAAAAAZpBIBwAAAAAAAADADBLpAAAAAAAAAACYQSIdAAAAAAAAAAAzSKQDAAAAAAAAAGAGiXQAAAAAAAAAAMwgkQ4AAAAAAAAAgBkk0gEAAAAAAAAAMINEOgAAAAAAAAAAZpBIBwAAAAAAAADAjP8D0MHPnmMyJWkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Perform linear fit on x_orth vs y\n", + "slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(x_orth, y_cubic)\n", + "\n", + "# Calculate the residuals\n", + "y_pred = intercept + slope * x_orth\n", + "residuals = y_cubic - y_pred\n", + "\n", + "# Perform linear fit on residuals vs x2_orth\n", + "slope_res, intercept_res, r_value_res, p_value_res, std_err_res = scipy.stats.linregress(x2_orth, residuals)\n", + "\n", + "# Calculate the second order residuals\n", + "residuals_pred = intercept_res + slope_res * x2_orth\n", + "second_order_residuals = residuals - residuals_pred\n", + "\n", + "# Plot x_orth vs y with linear fit\n", + "plt.figure(figsize=(15, 5))\n", + "\n", + "plt.subplot(1, 3, 1)\n", + "sns.scatterplot(x=x_orth, y=y_cubic, hue=np.arange(len(x_orth)), palette=\"viridis\", legend=False)\n", + "plt.plot(x_orth, y_pred, color='black', label='Linear Model')\n", + "plt.xlabel('$x$ Orth')\n", + "plt.ylabel('y')\n", + "plt.title('$x$ Orth vs y with Linear Fit')\n", + "plt.legend()\n", + "\n", + "# Plot x2_orth vs residuals\n", + "plt.subplot(1, 3, 2)\n", + "sns.scatterplot(x=x2_orth, y=residuals, hue=np.arange(len(x2_orth)), palette=\"viridis\", legend=False)\n", + "plt.plot(x2_orth, residuals_pred, color='black')\n", + "plt.xlabel('$x^2$ Orth')\n", + "plt.ylabel('Residuals')\n", + "plt.title('$x^2$ Orth vs Residuals')\n", + "plt.axhline(0, color='grey', linestyle='--', zorder=-1)\n", + "plt.legend()\n", + "\n", + "# Plot x3_orth vs second order residuals\n", + "plt.subplot(1, 3, 3)\n", + "sns.scatterplot(x=x3_orth, y=second_order_residuals, hue=np.arange(len(x3_orth)), palette=\"viridis\", legend=False)\n", + "plt.xlabel('$x^3$ Orth')\n", + "plt.ylabel('Second Order Residuals')\n", + "plt.title('$x^3$ Orth vs Second Order Residuals')\n", + "plt.axhline(0, color='grey', linestyle='--', zorder=-1)\n", + "plt.annotate('Point hue denotes index', \n", + " xy=(0.99, 0.05), ha='right', xycoords='axes fraction', fontsize=14, color='black')\n", + "\n", + "plt.tight_layout()\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "id": "de3057b7-b0ce-4739-8f3c-f3ad8a54edaf", + "metadata": {}, + "source": [ + "The main takeaway of this deep dive is the following: **The `poly` keyword when used in a formula creates orthogonal polynomials. This is well-suited for fitting statistical models, since it eliminates the risk of multicollinearity between terms.** \n", + "\n", + "This wasn't used in the other notebook since we were trying to recover parameters associated with each term. However, if you're building a statistical model, especially one in which prediction is the focus, they may be the appropriate approach.\n", + "\n", + "As one final note, the formulae version of `poly` does include a `raw` argument, which allows you to get the non-orthogonalized versions of each polynomial term. You can call that in Bambi like `bmb.Model(\"y ~ poly(x, 4, raw=True)\", df)`." + ] + }, + { + "cell_type": "markdown", + "id": "aeb61d52-6a8f-47e7-9dff-0b37a4d11cfb", + "metadata": {}, + "source": [ + "## Orthogonal Polynomials in Practice" + ] + }, + { + "cell_type": "markdown", + "id": "c81c9c60", + "metadata": {}, + "source": [ + "In order to see the `poly` keyword in action, we'll take a look at the cars dataset. This dataset, preloaded into Seaborn, includes information on cars manufactured between 1970-1982. First we'll load it in and take a look at the included variables." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "3d94ca31-49aa-40f1-a3ea-1bb856d2765e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
mpgcylindersdisplacementhorsepowerweightaccelerationmodel_yearoriginname
018.08307.0130.0350412.070usachevrolet chevelle malibu
115.08350.0165.0369311.570usabuick skylark 320
218.08318.0150.0343611.070usaplymouth satellite
316.08304.0150.0343312.070usaamc rebel sst
417.08302.0140.0344910.570usaford torino
\n", + "
" + ], + "text/plain": [ + " mpg cylinders displacement horsepower weight acceleration \\\n", + "0 18.0 8 307.0 130.0 3504 12.0 \n", + "1 15.0 8 350.0 165.0 3693 11.5 \n", + "2 18.0 8 318.0 150.0 3436 11.0 \n", + "3 16.0 8 304.0 150.0 3433 12.0 \n", + "4 17.0 8 302.0 140.0 3449 10.5 \n", + "\n", + " model_year origin name \n", + "0 70 usa chevrolet chevelle malibu \n", + "1 70 usa buick skylark 320 \n", + "2 70 usa plymouth satellite \n", + "3 70 usa amc rebel sst \n", + "4 70 usa ford torino " + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_mpg = sns.load_dataset(\"mpg\")\n", + "df_mpg.head()" + ] + }, + { + "cell_type": "markdown", + "id": "f68a049f", + "metadata": {}, + "source": [ + "In this example, we'll take a look at how a car's fuel efficiency (`mpg`) relates to it's `horsepower` (hp).\n", + "\n", + "To start, we'll just plot the joint distribution, as well as the distribution of the response variable as well." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "7d083c73", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABW4AAAJOCAYAAAAnP56mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXhU5d3/8feZJctkX9hDwCAJICoEwVpxo1qte92lWKt1adX2sSJ1qVWrbdWqT+tjXbHoryDWUvettW5VqgISQZElEITIGhJCtskyM+f8/riZ7IEEksyEfF7XletM5pw5c88dNDOffM/3thzHcRARERERERERERGRqOGK9ABEREREREREREREpCUFtyIiIiIiIiIiIiJRRsGtiIiIiIiIiIiISJRRcCsiIiIiIiIiIiISZRTcioiIiIiIiIiIiEQZBbciIiIiIiIiIiIiUUbBrYiIiIiIiIiIiEiUUXArIiIiIiIiIiIiEmUU3IqIiIiIiIiIiIhEGQW3IiIiIiIiIs1MmzaNvLw8XnzxxT0ed8kll5CXl8fDDz/c4v5FixaRl5fHJZdc0pPDlAhat24d11xzDUcddRRjx45t999Be26++Wby8vLIy8vjrLPO2uOxX3zxReOxeXl5fPbZZy32P/zwwy325+XlMXbsWKZMmcL06dOZO3cugUCgw/MHg0FeeeUVfv7znzNt2jQmTpzI+PHjOfroo/nhD3/IQw89RGFhYecmRER6hCfSAxARERERERGRtl588UVuueUWvv/973PvvfdGejiym9/v56qrrmLz5s2MHz+eqVOn4na7GTt2bJfOs3r1alasWMH48ePb3f+Pf/yjU+fJzMzkmGOOASAQCPD111+zdOlSli5dyhtvvMGcOXPw+XwtHrNy5Ur+53/+h+LiYizL4uCDD2bs2LHExcVRXl7OihUrWLRoEY8++iiXXnopt956a5dem4h0DwW3IiIiIiIiIt3osMMO48033yQ+Pj7SQ5Ee8OWXX7J582YmTpzI3/72t306x/jx41mxYgUvvPBCu8FtXV0db775JgMGDMDtdrNt27YOz5WTk9Mm2H/vvfe47rrr+Pzzz5k9ezb/8z//07hvxYoVzJgxg9raWk444QRuvvlmRo4c2eLxtm3zySef8MQTT1BUVLRPr1FE9p9aJYiIiIiIiIh0o/j4eEaNGsXQoUMjPRTpAVu3bgVoE3Z2xfHHH09mZiZvvPEG9fX1bfb/85//pKqqirPPPhu3293l80+bNo0zzzwTgLfeeqvx/kAgwP/8z/9QW1vLySefzKOPPtru63C5XBx99NH89a9/bRH6ikjvUsWtiIiIiIiISDdatGgRP/zhD5kyZQpz585tsW/FihU89dRTFBQUsHPnTmJiYkhLS2PcuHGcddZZnHjiiYAJ3jZv3gzASy+9xEsvvdR4jtbnra2tZe7cubz11lts2LAB27bJysrixBNP5PLLLyclJaXdcX722Wc89thjLF++nFAoRE5ODpdccglnn302eXl5AKxZs6bFY5rf/8ILL/D3v/+ddevWUV1dzbvvvktWVhabN2/mjTfeYOHChRQXF1NaWkpcXByjR4/mrLPO4oILLsDlallHtmnTJr7zne8wbNgw3nnnHebNm8eCBQsoLi4mKSmJadOmccMNN5CamkpDQwOzZ8/mtddeY8uWLSQnJ3PKKadwww03tGkJ0BkfffQR8+bN44svvqCqqorU1FSOOOIIfvzjH3PooYc2Hhf+uYa1/rm0nqs9cbvdnHnmmcyZM4d///vfnH766S32v/DCCwCce+65vPnmm11+TQCHHHIIL730UuO/I4DXXnuNTZs2ERMTw5133tnm59Ceww47bJ+eX0T2n4JbERERERERkV7wySefcOWVVxIIBBgzZgwTJkzAtm22b9/OBx98QCgUagxuTz75ZJYtW0ZBQQHZ2dlMmjSp8Tw5OTmNt3ft2sWPfvQjVq1aRWJiIt/61rfwer0sXryYxx9/nNdff53/9//+H1lZWS3G8sYbb3DjjTdi2za5ubnk5uayfft2brnlFtatW7fX13L33Xczf/58Jk6cyPHHH88333yDZVkAvPLKKzz00ENkZWUxcuRI8vPz2bFjB59//jkFBQX897//5f/+7/8aj29t1qxZvPPOO0yePJns7Gw+//xznn/+eb788kueffZZrrjiCtasWcOUKVMYOXIkn332GXPnzmXjxo3Mnj27Sz+TP/3pTzz22GNYlsXEiRMZOnQoRUVFvPXWW7z99tvcddddnHfeeYDpJfv973+fjRs3tvtz6arzzjuPOXPm8MILL7QIbouLi1myZAn5+fkcdNBB+3z+6upqAGJiYhrve/fddwGYOnUq6enp+3xuEekdCm5FREREREREesFjjz1GIBDg/vvvb7yMPayqqqpFL9GbbrqJF198kYKCAiZNmtTh4mS/+c1vWLVqFYcffjhPPPEEaWlpANTU1HD99dfz4YcfcuONN7boxbp9+3Zuu+02bNvmV7/6VYsq0iVLlnDVVVft9bW8/PLLPPfcc0yYMKHNvqlTp3LiiSeSm5vb4v7t27dz1VVX8fbbb/PPf/6T733ve20eu3nzZtxuN2+++SbDhg0DoLy8nIsuuoiVK1dy4YUXEhcXxzvvvNP4Wr/55hvOPfdcPvzwQ5YuXdrpMPXDDz/kscceIzY2lscee4yjjz66cd+CBQu47bbbuPPOOzn88MMZPXo0o0aN4t577+3Uz6UzRo0axcSJE/n000/ZsmVLY2uNF154AcdxGgPjfeE4Du+99x5Ai0XTvvrqK4AWlcQiEr3U41ZERERERESkHbfccgt5eXkdfi1evLhL5ysrKwPguOOOa7MvKSmp3RB0T7Zs2cI///lPLMvirrvuagwyARISEvjtb39LbGxsY6Vr2D/+8Q/8fj8TJ05sEdoCTJ48mYsuumivz3355Zd3ON7DDjusTWgLMGjQIGbNmgWYHq4due222xpDW4C0tDQuvvhiANauXcvvfve7Fq91+PDhjUH4J598stexh82ZMweA6dOntwhtAc4//3xOOOEEAoEAf/3rXzt9zq4699xzsW2bF198ETCLgr388sv4fL52g+29CQQCrFu3jpkzZ/LFF18AcOmllzbuLy8vB+iw2vbNN9/k5ptvbvO1c+fOLo9FRPafKm5FRERERERE2pGfn8+IESM63P/RRx9RWlra6fMddthhrFu3jhtvvJGrr76aCRMm4PHs+8fyJUuWYNs2hxxyCGPGjGmzf9CgQUydOpV3332XRYsWkZ+f3/g4gDPOOKPd84Z7r+7JKaecssf9DQ0NLFy4kC+//JKysjICgQCO41BTUwPA119/3e7jPB5PmxAVaPw5DB06tN1QOLy/pKRkj+MKCwaDjWH297///XaPOe+883j//fdZtGhRp865L773ve/x+9//nhdffJFrr72Wjz76iG3btnHuued2ul/v4sWLG3sPN+f1epk5cyYnnXRSp8fz5ZdftujbG3bdddeptYJIBCi4FREREREREWnH+eefzznnnNPh/ksuuaRLwe0NN9zAmjVr+PDDD/nwww+Ji4tj3LhxTJkyhTPPPJNRo0Z1aXzbt28HaNO/trns7OwWxwJs27YNoEVVa3Md3d/ZY5YtW8YvfvELtmzZ0uEx4f6rrQ0YMKDdMDscYg4ZMqTdxyUkJAAmMO6MXbt2UV9fD3Q8f8OHDwdazl13S0xM5OSTT+all17i008/bbEoWWdlZmZyzDHHAGBZFomJiRx88MFMmzaNAQMGtDg2LS2NrVu3dlhBe9NNN3HTTTc1fj9u3DhCoVBXX5aIdBMFtyIiIiIiIiK9YMCAAbzwwgssXryYjz/+mIKCAr744gsKCgp44oknuOGGGzrVX7a7dLQ4WEf3NxcXF9fu/bW1tVx77bWUlpZyzjnncPHFFzNixAgSExNxu918/fXXe6zWdbn23NFxb/v7onPPPZeXXnqJp556ikWLFnHQQQd1adGznJycTvfaHTduHFu3bmXFihX7OlwR6UUH3v/xRERERERERKKUZVkceeSR/OIXv2Du3LksXryYO++8E8uy+OMf/0hxcXGnzzVo0CDALM7VkfC+8LHNb2/atKndx2zevLnTY2htyZIllJaWcsghh3DPPfdw2GGHkZKSgtvtBmDjxo37fO7ulJqaSkxMDNDx/LU3dz1h8uTJjBgxgoULFxIIBPZY5b2/pk2bBsDChQvVt1akD1BwKyIiIiIiIhIhsbGxXHzxxeTl5WHbNmvWrGnc5/V6AdOPtT2TJ0/G5XKxatUqVq9e3WZ/SUkJH330EQBHHnlki8cBvPHGG+2e97XXXtu3FwNUVFQAHbc0ePXVV/f53N3J4/E0VrW219MVaGxb0HzuespFF11EamoqGRkZnH322T32PGeeeSbDhg2jvr6eu+66C8dxeuy5RGT/KbgVERERERER6QV/+ctf2u37WlRU1FiJOnTo0Mb7Bw8e3Li/PUOHDuWUU07BcRxuv/12ysvLG/f5/X5uv/126uvrmThxYuPCZGAW3YqPj2fp0qU8++yzLc65dOlS5s+fv8+vMdyn95NPPmHdunUt9j3//PO8+eab+3zu7nbZZZcB8Nxzz/HJJ5+02Pfiiy/y3nvv4fV6+eEPf9jjY7n88stZtGgRH3/8MQMHDuyx54mJieFPf/oTsbGxvPXWW1x77bUdVkEXFBQo2BWJMPW4FREREREREekFjz32GH/4wx/Iyclh1KhRxMbGUlJSQkFBAcFgkLPPPptDDjmk8fjDDz+cgQMHsnLlSr7//e+Tm5uLx+PhoIMO4oorrgDg9ttvZ/369SxfvpyTTjqJI488ErfbzZIlS9i5cydZWVk88MADLcYxePBgfvOb33DzzTdz11138fzzzzN69GhKSkr47LPP+NGPfsScOXMaK367Yty4cXznO9/h3Xff5eyzz+bII48kJSWFVatW8fXXX3P11Vfz+OOP799EdpPjjjuOn/70pzz22GNcdtll5OfnM2TIEL7++mu++uor3G43d955J6NHj470ULvVYYcdxrPPPsv111/Pu+++y3vvvcfo0aMZMWIE8fHxVFVVUVhY2Ngy44QTTiAtLS3CoxbpnxTcioiIiIiIiPSC22+/nU8++YQVK1awZMkS/H4/AwYM4Nvf/jYXXngh3/nOd1ocHxMTw1/+8hf++Mc/smzZMlavXo1t20yZMqUxuE1LS+Nvf/sbc+fO5c033+S///0vtm2TlZXFBRdcwOWXX05KSkqbsZx11lkMGTKExx9/nOXLl1NcXExOTg533303Rx99NHPmzCE1NXWfXudDDz3EX//6V15++WWWLl1KbGws48eP57bbbmPEiBFRE9wCXH/99eTn5zNv3jyWL1/O8uXLSUtL45RTTuHHP/4xhx12WKSH2CMOPfRQ/vnPf/LGG2/w7rvvsmLFCj766CNCoRDJycnk5ORw+umnc/rpp5Obmxvp4Yr0W5ajuncRERERERER2e3ll1/mpptu4oQTToiqkFVEpL9Rj1sRERERERGRfmbLli3s2LGjzf1Lly7lvvvuA+Dcc8/t7WGJiEgzapUgIiIiIiIi0s98+umn/OpXv2LMmDEMGTIEt9tNcXExq1evBuCcc87hpJNOivAoRUT6N7VKEBEREREREelnioqKmDNnDp999hllZWXU1taSlJTE2LFjOffcczn99NMjPUQRkX5Pwa2IiIiIiIiIiIhIlFGPWxEREREREREREZEoo+BWREREREREREREJMoouBURERERERERERGJMp5IDyAalJeXR3oIe5WSkkJFRUWkh9GnaM66RvPVdZqzrtOcdZ3mrOs0Z13Xl+YsLS0t0kOIWn3hPW1YX/o3F2maq87TXHWN5qvzNFedp7nqPM1V1xxo89XZ97QKbvsIl0vF0V2lOesazVfXac66TnPWdZqzrtOcdZ3mrGf9+9//Zv78+axcuRK/38+AAQOYMGECs2bNYsiQIY3HVVdX8/DDD/P222+zY8cOBg4cyMknn8x1111HQkJCBF9B99O/uc7TXHWe5qprNF+dp7nqPM1V52muuqa/zpeCWxERERGRHuA4DnfccQfPP/882dnZnHrqqSQkJFBSUsKSJUvYvHlzY3Dr9/uZMWMGq1atYurUqZx22mmsWrWKOXPmsGTJEp599lliY2Mj/IpEREREpDcpuBURERER6QF//etfef7555k+fTq33XYbbre7xf5gMNh4+6mnnmLVqlVceeWV3HjjjY33P/DAA8yePZtnnnmGq6++utfGLiIiIiKR1z/rjEVEREREelBdXR2PPPIIw4cP51e/+lWb0BbA4zE1FI7jsGDBAnw+H9dcc02LY6655hp8Ph8LFizolXGLiIiISPRQxa2IiIiISDdbuHAhFRUVnHPOOdi2zdtvv82GDRtISkri29/+NiNGjGg8dsOGDZSUlDB16lR8Pl+L8/h8PvLz81m4cCFbt25t0RNXRERERA5sCm5FRERERLrZV199BZiFNM444ww2bNjQuM/lcvGjH/2Im266CYCNGzcCMHLkyHbPNXLkSBYuXMiGDRsU3IqIiIj0I2qVICIiIiLSzcrKygB45plnSEpKYsGCBRQUFPDss88ycuRI5syZw/z58wGoqqoCIDExsd1zhe+vrq7uhZGLiIiISLRQxa2IiIiISDdzHAcAr9fLI488wqBBgwA44ogjeOihhzjrrLN4+umnmT59erc9Z0pKCi5X36nLSEtLi/QQ+gzNVedprrpG89V5mqvO01x1nuaqa/rjfCm4FRERERHpZuEq2fHjxzeGtmG5ubkMHz6cjRs3UllZSVJSEtBxRW34/o4qcsMqKir2d9i9Ji0tjfLy8kgPo0/QXHWe5qprNF+dp7nqPM1V52muuuZAm6/OhtB950/yIiIiIiJ9RE5ODkBjKNta+P66urrGhcqa98FtLnx/Rz1wRUREROTApIpbEREREZFuduSRRwKwfv36NvsCgQDFxcX4fD7S09MZMGAAAwcOpKCgAL/fj8/nazzW7/dTUFBAVlaWFiYTERER6WdUcSsiIiIi0s2ys7OZOnUqGzduZMGCBS32Pfnkk1RWVnLiiSfi8XiwLIvzzz8fv9/Po48+2uLYRx99FL/fzwUXXNCbwxcRERGRKKCKWxERERGRHnDHHXdw0UUXcdttt/HOO++Qk5PDypUr+fTTTxk2bBi//OUvG4+94oorePfdd5k9ezarVq1i3LhxrFy5koULF3LooYdy6aWXRvCViIiIiEgkqOJWRERERKQHZGdn88ILL3DOOefw1VdfMXfuXDZu3MgPfvADFixYwIABAxqP9fl8zJs3j0svvZSioiKefvpp1q9fz+WXX84zzzxDXFxcBF+JiIiIiESCKm5FRERERHrIkCFDuOeeezp1bFJSErfeeiu33nprD49KRERERPoCVdyKiIiIiIiIiIiIRBkFtyIiIiIiIiIiIiJRRq0SpEfYtkPhWqiogJQUyB0NLpcV6WGJiIiIiIiIiIj0CQpupdstLXCYN9+huBgCQfB6IDsbZkyHSfkKb0VERERERERERPZGrRKkWy0tcLj/QYeiIoiPh4x0sy1aD/c/6LC0wIn0EEVERERERERERKKeglvpNrZtKm39fsjMhNhYcLnMNjMD/LUwb76DbSu8FRERERERERER2RMFt9JtCtdCcTEkJ4PVqiOCZUFSktlfuDYy4xMREREREREREekr1ONWuk1Fhelpm+xtf3+MF6qqzHEiIiIiItJ1mzZtoqysLNLD2CcZGRlkZWVFehgiIiJ9hoJb6TYpKWYhskDAtEdorSFg9qek9P7YRERERET6uk2bNnHkkd+ittYf6aHsk/h4H4sWfarwVkREpJMU3Eq3yR0N2dlmIbLMmJbtEhzHVNuOyjHHiYiIiIhI15SVlVFb6+fi6Y8xcFBurz6340BdXQyVVfFUVcXREPAQCroJhlx43DYxMUFiYoIkJdWSkuzH6w21eHzJ9kKem/9TysrKFNyKiIh0koJb6TYul8WM6XD/gw6lZaanbYzXVNpWVYEvHmZMt3C5rL2fTERERERE2jVwUC5ZWYf3+PPYNpSUwIaNsHGjWWy4s1JTYeQIyDlIV9yJiIjsKwW30q0m5VvMmgnz5jsUF5vA1usxlbYzpltMyldoKyIiIiISzYIhWLcOVnxl3s+HuVyQlgrpGZCYAF4veHa3Squrg5oa2FFqHrNrFyzbBcuWw4BMGDokGdBnARERka5QcCvdblK+xcQJULjWLESWkmLaI6jSVkREREQketm2eQ+/bDnU7q6ujfGadmgjR8LQIeB27/08dXWweYtpobZliwlzd5QeRM7oD/h8WSKHHeZgWfpsICIisjcKbqVHuFwWY/IiPQoREREREemMsjL4+FMoLTXf+3ww/hBTgOH1du1ccXHmirtROSYAXrkKvloZIi7+EJ56GpZ/6TDzesjKUngrIiKyJ65ID0BEREREREQiw7bh82Xw2hsmtPV64cgpcN45cMi4roe2rcXHw6R8OOboVezY/gAej82Sz+CHlzn8dZ5DKOR0y+sQERE5ECm4FRERERER6Ydqa+Htd0xrBMcx7RDOORvGje1cS4Su8HpD7Nh+L7+6eS2TjzALGD/5lMMNsxzKyhTeioiItEfBrYiIiIiISD9TWgqvvAZbt5oFxo49Bk44zrRI6EkDBzTwv/db3HqTRVwcLC2AH13h8NlShbciIiKtKbgVERERERHpRzZvgbf+ZSpuU1PgjNNMP9reYlkWp37P4i9PWIzKgfJymDnL4bXXFd6KiIg0p+BWRERERESkn1j/NbzzLgSDMGQInH4apKZGZiwjRlg8+ZjFd0+EkA33PeDw+JM2tq0AV0REBBTcioiIiIiI9AtF6+E/H5oFyUaOhJO+s/+Lj+2v2FiLX//K4rJLzffz5sPv7nEIBhXeioiIKLgVERERERE5wBUXw0cLze28XDjumO5fgGxfWZbFjy9z8atbLNxu+Ne/4Te/VXgrIiKi4FZEREREROQAtmUrfPAfcBzTy/aob4ErCj8Jfu9ki9/+xsLrhfc/gNvucGhoUHgrIiL9VxT+upYDmW07rF7jsGix2ap/lYiIiIhIzykvh3ffMz1ks4fD1KPBsiI9qo4dM9Xint9axMTAwv/CHXep8lZERPovT6QHIP3H0gKHefMdioshEASvB7KzYcZ0mJQfxe8eRUREROSAsmnTJsrKyiI9jE5JTk6msrISgMLCwi49tq4O3nnPLEQ2eDAcd1x0Vtq29q0jLf5wD/zyZoePFsJ99zvcchO4XPrMICIi/YuCW+kVSwsc7n/Qwe+H5GRI9kIgYBZIuP9Bh1kzFd6KiIiISM/btGkTRx75LWpr/ZEeyj6rqdn72G3btEeorobERDjhOPBESU/bzjhiksVdd8Kvfu3w1r8gIcHhf35m+uGKiIj0Fwpuo4BtOxSuhYoKSEmB3NEH1l+TbdtU2vr9kJnZdGlWbCxkxkBpGcyb7zBxwoH1ukVEREQk+pSVlVFb6+fi6Y8xcFBupIezV3GxsdTV1wOwetU7/Ouf91BfV7fXxy35DLZuA48HvjMN4uJ6eqTdb+rRFrfeDHf/3uEfL0JGBlzyg0iPSkREpPcouI2w/tA+oHCtWcU2ObltPy3LgqQks79wLYzJi8wYRURERKR/GTgol6yswyM9jL2Kj4+ntrYWgJLtnWuVsLEYVq4yt4+dCulpPTW6nnfydy0qq+Chhx2emO0wZDCc+J0D43OSiIjI3vSBDkcHrnD7gKIiiI+HjHSzDbcPWFpwYDThr6jYHUp7298f4zX7Kyp6d1wiIiIiIgeamhr478fm9vhDYMSIyI6nO5x/rsUF55nbv7/XYfkXB8bnJBERkb1RcBshrdsHxMaahQJiYyEzA/y1pn2Abbf/psS2HVavcVi02Gw7Oi4apKSYSuJAoP39DQGzPyWld8clIiIiInIgcRz4aCHU15uikPyJkR5R97n2pxbHTDWfHW65zWHL1uj9/CMiItJd1CohQvanfUBfa6+QO9qMr2i96Wnb/PU6DlRVwagcc5yIiIiIiOybFV819bU97lhw96HFyPbG7ba44zb42fUOq1bDrbc5PP4IxMVF3+cfERGR7qKK2wjZ1/YBfbG9gstlMWO6hS/eLERWV29Wua2rN9/74mHGdEsLk4mIiIiI7KOKCvj8c3P7yMkH5tVscXEWv7vLIi0N1hXBfQ84OE70ff4RERHpLqq4jZDm7QNiY9vub699QOv2CuHK1dhYU8laWmbaK0ycQNSFoJPyLWbNpLFSuKrKvL5ROSa0jcZKYRERERGRvsBx4ONPIGTDsKEwOoqvZCss7NwCa3ty6YwE/u+Rg/j3OxbJSZuZdnwZAMnJyVRWVu73+duTkZFBVlZWj5xbRESkIwpuI2Rf2gfsT3uFaDAp32LiBDO+igoTSueOjr6QWURERESkL1m7FrZtNy0Sjjqq7WeFaFBZuR2wuPrqq7vlfOkZVzJ42D3848WBPPjAT/HX/LdbztuR+HgfixZ9qvBWRER6lYLbCDHtA0x7g9IyE7rGeE2lbVVV++0Dwu0VkvfQXqGqqm17hWjicllRGSqLiIiIiPRFfj8s+czczp8ASYkRHU6H6morAIdTT7uP0blH7Pf5HAe+WrmTrdvSGT3mH3xrylpSU1zU1dfv/2BbKdleyHPzf0pZWZmCWxER6VUKbiMo3D5g7rMO69eb0DbGCzk5cMkP2rYP2Jf2CiIiIiIicuBa8pn5HJCZAWPHRno0e5eRkUNW1uHdcq4hQ+CNt2DnTi+rVo/jnO/HEQjUdcu5RUREooEWJ4sW1u5LmvZwWVO4vUJllfkLc3Ph9grZ2S3bK4iIiIiIyIFpewms/9rcPuoocPWzT3ceD0w7wRS1lJbBRwsDkR6SiIhIt+pnv9qjy9ICh/sfNNW2yUkweJDZrv/atFBYWtAynTXtFSx88eaNSV092LbZlpa1315BREREREQOPI4Dixeb27mjTcVtf5SUCMcfa4pgVq0OUVQU6RGJiIh0HwW3EWLbDvPmO/j9kJlp3njV1pptZgb4a2HefAfbbhnemvYKFqNyoK4Wynaa7agcmDWzbXsFERERERE58BStN8UbXi/kT4z0aCJr6FCYsLv7wsefRveaHyIiIl2hHrcRUrgWiovBGwObNkNDgwltLQtiYsxfjouLzXGtF/OalG8xcYLZV1FhetrmjkaVtiIiIiIi/UAo5GLpUnP7sEMhPj6y44kGhx0KJSUuNm+x+eA/cNpp4HFHelQiIiL7RxW3EVJRYapqy8qgvt70o/J4zLa+3lTS+ms7/muxy2UxJs/iyClmq9BWRERERKR/KNkxHH+tKfY4ZFykRxMdXC448TsxxMXBznJYsiTSIxIREdl/Cm4jJDnZoX53j1qPZ/fCZJitx2Pur683x4mIiIiIiAC43KlsK8kGID8f3KoqbZSQYHHsVHN79RrYsCGiwxEREdlvCm4jxHEAp9nt1vsw+1vvExERERGR/isj8xps20NaGhw0MtKjiT7Dhpm2CQALP4aqqsiOR0REZH8ouI2QqiqL2DjzF/JQyFTYOo7ZhkLm/tg4c5yIiIiIiEggGEtG5lUATJzQdNWetDRxAgwcCIEAfPAf8/lKRESkL1JwGyEpKeCLh/Q0iI01oW0oZLaxsZCWZvanpER6pCIiIiIiEg127MjD5U7EF19J9vBIjyZ6uVxw3LHmc1VpGSwtiPSIRERE9o2C2wjJHQ3Z2RAIwrCh5mvI4KbbwaDZnzs60iMVEREREZFI8/uhdOfBAAwd8rWqbfciMQGmHm1uf7USvtkU2fGIiIjsCwW3EeJyWcyYbuGLh7KdgAXx8WZbttNU286YbuFy6R2ZiIiIiEh/t+IrcBw3/ppPSU7aGenh9AnZw2HcWHP7o4VQUxPZ8YiIiHSVgtsImpRvMWumxagcqKs1gW1dLYzKgVkzLSblK7QVEREREenv6uthTaG5XVryR1XbdsERkyA93czhhwvNmiIiIiJ9hSfSA+jvJuVbTJwAhWuhosL0tM0djSptRUREREQEgFWrTSu1uLhdVFe9C/wk0kPqM9xuOP44ePU12LYNvvgSJhwe6VGJiIh0joLbKOByWYzJi/QoREREREQk2gQCDqtWm9sDM1dHdjB9VEoyfPso+PAjWLYcBg+CwYMjPSoREZG9U6sEERERERGRKLV6TYi6OkhMhNQUrbC1r0blwMGjwHHgPx9BXV2kRyQiIrJ3Cm5FRERERESikG3DsuVBAMYfApblRHhEfdu3jjTVt34/LPyvCXFFRESimYJbERERERGRKFRcDFVVDnFxMPrgSI+m7/N64bjjwO2CbzbBylWRHpGIiMieKbgVERERERGJQit3t7TNywWPVifpFhnpMHmyuf3ZUigti+x4RERE9kTBrRzQbNth9RqHRYvN1rZ1PZSIiIiIRL+dO2H7dnC5THAr3WdMHmQPN60oPvgPBAKRHpGIiEj79HdbOWB9uijA4086FBdDIAheD2Rnw4zpMCnfivTwREREREQ6tGp3te1BB7lJSAhFdjAHGMuCqUfDK69BVRV8/CkcO9XcLyIiEk1UcSsHpKUFDr/5bTVFRRAfby6Jio+HovVw/4MOSwtUeSsiIiIi0am+3rxvBThsvDuygzlAxcbCcceasHb9elhTGOkRiYiItKXgVg44tu0wb75DTY1DZqZ5U+ZymW1mBvhrYd58tU0QERERkehUuBZCIUhPh8GD9ZGtpwwaCJPyze1Fi2HHjsiOR0REpDW9C5ADTuFaswJvaorV5nIny4KkJLO/cG1kxiciIiIi0hHbhtVrzO2xY8DS9fs9avwhMGKEmff3PoDa2kiPSEREpImCWzngVFSYnrYxMe3vj/Ga/RUVvTsuEREREZG92boVqqvNe9mcgyI9mgOfZcExR0NKCvj98MGHJsQVERGJBgpu5YCTkmIWImtoaH9/Q8DsT0np3XGJiIiIiOxN+KqwUaPAo6Wke4XXC9OON/O9bRss/TzSIxIRETEU3EqPsG2H1WscFi02297sJ5s7GrKzYVeFg9PqaR3HrBybnW2OExERERGJFrW1UPyNuZ17cGTH0t+kpsLUo83tFStgw8aIDkdERAQA/Q1Xut3SArM4WHGxaUng9ZigdMZ0mJTf8z26XC6LGdPhwT9ZlJY5JCWZ9ggNARPa+uJhxnQLl0v9wkREREQkehStN5fpZ2aahcmkdx000ixQ9tVK+GihCXNTdZWeiIhEkCpupVstLXC4/0GHoiKIj4eMdLMtWg/3P+iwtKB3Km8n5VvccVsio3KgrhbKdprtqByYNdPqlQBZRERERKSzHKepTYKuDIucIybB4EEQDMK770F9faRHJCIi/ZkqbqXb2LaptPX7TZVAeAHc2FjIjIHSMpg332HiBHql2vVbR3oZfbBF4VqzEFlKinkTrEpbEREREYk2JTvMe1aPR4uSRZLLBccfB6+9AZWV8P4HMG5spEclIiL9lYJb6TaFa6G4GJKTm0LbMMuCpCSzv3AtjMnrnTG5XFavPZeIiIiIyL4qLDTbg0aaxbIkcuLj4cRp8MZbsHUbuFxZkR6SiIj0U2qVIN2momJ3T9sO3mjGeM3+ioreHZeIiIiISDQLBJoWwxqtNglRIT3dVN5aFmzekkHGgOsiPSQREemHFNxKt0lJMQuRBQLt728ImP0pavAvIiIiItKo+BvTUzUpCQYOiPRoJGx4Fkw+wtweNOROFi1Jjeh4RESk/+kzwe2TTz5JXl4eeXl5LFu2rM3+6upq7rnnHk444QTGjx/PtGnTuO+++6ipqen9wfZTuaMhOxsqq8ziCs05DlRVmf1abEFERET6g2nTpjW+f239dckll7Q5vqGhgT//+c9897vf5dBDD2Xq1Kn8+te/pqysLAKjl95UtN5sR+W0bTkmkXXIOMjOLgFg3vwsPl3UO4sti4iIQB/pcVtYWMjDDz+Mz+fD7/e32e/3+5kxYwarVq1i6tSpnHbaaaxatYo5c+awZMkSnn32WWJjYyMw8v7F5bKYMR3uf9ChtMxUDMR4TaVtVRX44mHGdEuLg4mIiEi/kZSUxKWXXtrm/mHDhrX43rZtfvrTn7Jw4UImTJjAd7/7XTZu3MiCBQv45JNP+Pvf/056enpvDVt6UW0tbNlibufkRHYs0r7cg7fyxfL/kJp2Prfd4fCnB2H8IfpMIyIiPS/qg9tAIMDNN9/M2LFjGTFiBK+++mqbY5566ilWrVrFlVdeyY033th4/wMPPMDs2bN55plnuPrqq3tz2P3WpHyLWTNh3nyH4mIT2Ho9pnpgxnSLSfl6gyMiIiL9R3JyMj/72c/2etxLL73EwoULOf3003nggQewdpddPvfcc9x555386U9/4q677urp4UoErP/aXJ02YACkJEd6NNIey4Itm37OUUedwqrVScz8pQlvx47RZxsREelZUd8q4fHHH2ft2rX8/ve/x+12t9nvOA4LFizA5/NxzTXXtNh3zTXX4PP5WLBgQW8NVzDh7YN/sPjd3Ra/utlsH/yDQlsRERGRjoTfr95www2NoS3ARRddxPDhw3nttdeoq6uL1PCkBzVvkyBRzAlw5eUbmXA41NTAL250WFOotgkiItKzojq4/eqrr3j88ce57rrrOPjgg9s9ZsOGDZSUlJCfn4/P52uxz+fzkZ+fzzfffMPWrVt7Y8iym8tlMSbP4sgpZqv2CCIiItIfNTQ08OKLL/L4448zb948li9f3uaY+vp6li9fzkEHHdSmhYJlWXz729/G7/ezYsWK3hq29JJdu6CszFR0HjQy0qORvYmNdfjDPRaHjofqahPerl6t8FZERHpO1Aa3DQ0N3HTTTYwZM4Yrrriiw+M2btwIwMiRI9vdH75/w4YN3TxCEREREZE927FjB7fccgt//OMfufvuu7ngggs477zzKC4ubjymuLgY27b1frYfClfbZg2DuLjIjkU6x+ezeOA+i3FjobISfvYLh6UFCm9FRKRnRG2P24ceeogNGzbw4osvttsiIayqqgqAxMTEdveH76+uru7wHCkpKbhcUZthN0pLS4v0EPoczVnXaL66TnPWdZqzrtOcdZ3mrOs0Z93vnHPOYdKkSeTm5uLz+diwYQNPP/00r7zyCj/60Y949dVXSUxM7Jb3s9B33tOGRerfXHKyaSQbFxtLfHx8RMYApuXbho31gMOYMV7i4zv+aBYeZ0xMDADeGG9Ex74vemvsPXHuuN0LXScnJ5OWlkZaGjzzF4efXV/JosVBbrzJ4YH7EjjxO31vQWz9v7/zNFedp7nqPM1V1/TH+YrK4Pbzzz9nzpw5XHfddeTm5vb481VUVPT4c+yvtLQ0ysvLIz2MXmHbDoVroaICUlIgdzT71GqhP81Zd9B8dZ3mrOs0Z12nOes6zVnX9aU560tv2K+77roW348dO5Y//OEPALzyyissWLCAyy67rNuery+8pw2L5L+5yspKAOrq66mtrY3IGMC0SKisBLcbBg0MUFsbaPe4+Pj4xnE2NDQAEGgIRHTs+6I3xt58rrpTXX09YP7tNP93+/u7HX7zW/jwI/jFjdX89OoaLrqAFn2qo1lf+n9/pGmuOk9z1Xmaq6450Oars+9po+5P8sFgkJtvvpm8vDyuuuqqvR6flJQEdFyBEL6/owoGiS5LCxxm/tLhV792+N29Zjvzl7r8SERERA4cF154IQAFBQWA3s/2V19vMNusLPB6IzoU2UexsRZ33WFx5hlg2/DIYw733OfQ0KDPLiIi0j2iruLW7/c39u8aP358u8eE3+w+8sgjjBo1Cui451f4/o56hkn0WFrgcP+DDn4/JCdDshcCAdP76/4HHWbNhEn5feOv1yIiIiIdCVdY+P1+AIYPH47L5dL72X7EcWCDWaqDkSMiOxbZPx6PxawbzOJyDz/i8OY/YcNGhztvh6FD9NlFRET2T9QFtzExMZx33nnt7vvss8/YsGED06ZNIz09nWHDhjFy5EgGDhxIQUEBfr8fn8/XeLzf76egoICsrCyGDBnSWy+hT+mutgTdMY55801om5lpVtYFiI2FzBgoLYN58x0mTojM+ERERES6yxdffAHAsGHDAIiLi+Owww5j2bJlbN68ufF+MH1QP/74Y3w+X4dFDdL37NwJVVWmTcLwrEiPRvaXZVmcf64J4X99p8PKVXDZFQ433gAnfUefXUREZN9FXXAbFxfH7373u3b33XzzzWzYsIGrr76aCRMmNN5//vnn88gjj/Doo49y4403Nt7/6KOP4vf7+clPftLTw+6TlhaYsLS4GAJB8HogOxtmTN+3ytb9CYEL10Jxsam0bd0SyrIgKcnsL1wLY/K6PDQRERGRXlVUVMTQoUPbLJRUVFTEAw88AMAZZ5zReP8FF1zAsmXL+N///V8eeOCBxh6Zf/vb3/jmm2+48MILiYuL670XID1KbRIOTJOPsHjmKfjNbx2+XAG/udvh408cfn6tRVqaAlwREem6qAtu98UVV1zBu+++y+zZs1m1ahXjxo1j5cqVLFy4kEMPPZRLL7000kOMOt3dlmB/Q+CKCvO45A7euMZ4TVVCH1pzQ0RERPqxN998k6effprJkyc3BrgbNmzgww8/JBAIcPXVVzN58uTG47///e/z5ptv8vrrr7Np0yYmT55McXExb7/9NllZWVx//fWRezHSrdQm4cA2eLDFw3+C/zfX4f/NhX+/A58ucrjmajjtVF09KCIiXXNABLc+n4958+bx8MMP8/bbb7No0SIGDBjA5ZdfzrXXXqvqhFa6uy1Bd4TAKSkm7A0EzDhaawiY/Skp+/CCRURERHrZkUceSVFREatWreKzzz6jrq6OtLQ0jj32WKZPn87UqVNbHO9yuXjsscd48skneeWVV3jmmWdITU3lvPPO4/rrryc9PT1Cr0S6m9okHPg8HosfX2Zx1LfM56S16+C+BxxeehWuvgKmTKaxqr63bNq0ibKyshb3JScnU1lZ2avj2BcZGRlkZek/FhHpn/pUcHvvvfdy7733trsvKSmJW2+9lVtvvbWXR9X3dGdbgu4KgXNHmwrdovXmcc3H5Tjmze2oHHOciIiISLSbMmUKU6ZM6dJjYmJiuO6667juuut6aFQSDcLVtmqTcOAbN9Zi9uPwjxfhL087FBbCzF86TDgcfnAxHDmldypwN23axJFHfovaWn+PP1dPiI/3sWjRpwpvRaRf6lPBrXSP7mxL0F0hsMtlMWO6qdAtLTOPi/GaStuqKvDFw4zpli4tEhEREZE+bWOx2Y7Ijuw4pHd4PBYXXQAnfxeene/w4kuwbDksW+6QlQXnnA0nfYce7YFbVlZGba2fi6c/xsBBuY33x8XGUldf32PP2x1Kthfy3PyfUlZWpuBWRPolBbf9UHe2JejOEHhSvsWsmTT2yq2qMuMYlWNC231ZME1EREREJFpUVJr3xZZlKm6l/0hLtbjuGosLznN4foHDG2/Cpk3wf392eORRmDTJ4YTjLKZMgUEDe+Zzz8BBuWRlHd74fXx8PLW1tT3yXCIi0j0U3PZD3dmWoLt7007Kt5g4wVToVlSYx+WOVhN/EREREen7indX2w4ZDLExkR2LRMbAgRY/u9bix5c5/PNtePMth9VrYPESWLzEAWD4cNNOYewYizF5pjo7Nlafh0RE+iMFt/1Qd7Yl6InetC6XtdfeuiIiIiIifU3xN2abrTYJ/Z7PZ3HO2XDO2RabNjm8+z58/InDqtXwzTfm67XXncbjB2Q6DBkCQ4ea4H/oEIuMDEhLg/Q0U/Di8SjcFRE50Ci47ae6qy2BetOKiIiIiOxdbS2UlJjbw4dHdiwSXbKyLC69BC69xKKqyuHzZfDVSlOJu6YQqqthR6n5+uLL8KOcFuewLEhJdkyQm94U6KalWVRXp5GQeCy1tV5sG1yu3n6FIiKyrxTc9mN7aktg206n2xWoN62IiIiIyJ59s8lsMzIgMSGyY5HolZRkcewxcOwx5jOU4zhUVMCWrbB1q9lu2eqwdSuUl8POcvOZzbZhV4X5+npD8zM6QBYjcl5k4cfw8afm8116GgwaFCA9zfybVJgrIhKdFNz2c+21JVha4DSGsIGgCWGzs2HGdNqEsOGANxiEq64It0ewOgx7g0Gbd96D7dth0CA4cRp4PAfGu4SuhN0iIiIi0r+E+9tmq9pWusCyLFJTITUVxo1tvLfFMaGQCXd3lpswNxzo7ix3KN8JG4ur+PzzrcTFH4xtuxqPKVofBMDjgUEDzYJ52dn6w4KISDRRcCstLC1wuP9BB78fkpMh2WsWHitab9ohzJrZFN7uKeAdk9c2sHzueZu586C6xgS8lgX/9zBcMsPm4gv7dnjblbBbRERERPqXQMBUSoL620r3c7st0tNNi4SWzOeQ5cs3cMIJJ/Dz698lNe1wE+zuhPJdLrZssWlogM1bzNeixZCZAaMPhpwciNEieiIiEaXgVhrZtgkf/X7IzGxaaCw21iw8Vlpm2iFMnACfL6PTAS+Y0PbxJ80lPG63uRTHtqGqGh5/EqDvhrddCbtFREREpP/ZshVCIUhKhLTUSI9G+ivLMv8GkxJN5Xd8fCx+fy3l5Sa0Lf7G9GEuLTNfiz+DnINg/CGm4ldERHpf30zKpEcUrjWXcCUnN4W2YZZlFh4rLoaVqxyemO2wqwISE02w63LtDngzwF9rAl7bNg3zg0FTaWvb4PWa4NayzNbrNffPnWeO62tah917mwsRERER6X/C/W2HD2/7PlskkizLVOoeOh5O+x5ceAFMmQypKeaPDWvXwUuvwHvvmzBXRER6l4JbaVRRsfsyf2/7+2O8Joj8/b2weg34/aZ64JtN5ja0DHgL15r73nnPtEcIB7bNhQPc6hpzXF/T2bA7PBciIiIi0r84DmzaHdxmZUV2LCJ744uHQ8bB2WfBqd9rau2xsRheex0+/AhqaiI7RhGR/kStEqRRSorpzRoImIrR1ioqTUAbCpluSe7d/3rq62Hbdhg8CHw+E/BWVZkgGMxCZI7T8UqlLpc55/btPfKyelQ47E7eQ9jdfC5EREREpH/ZuRNqa80CUIMHRXo0Ip1jWWbBskEDYdcuWP4lrF9v2sFt2AiHHWqqdN3uSI9UROTApopbaZQ72vxFtbLKBK3N2bZ502lZpgWA5WpaYMzjMfvLdppjGwImAE5JMd8PGmSOszvohGDbu98Y9ME3ss3D7va0ngsRERER6V82bTbboUMUcknflJoKxx0DZ5xmgtxQyKx58tobsKM00qMTETmwKbiVRi6XxYzpFr5407+ort6EqnX1sL3EBLUZGRAXZ1YXte2mgNfthoYGU01QVWUC4NzRZt+J0yAxwfyCbx0IO465PyEBsobBosUOq9f0nZ6wewq7HaftXIiIiIhI//KN2iTIASIzE753iglxY2OhvBzeeBOWFnRcpCMiIvtHwa20MCnfYtZMi1E5UFdrqmjrapvaICQnNTWwD7c4CP+Stm3zy9sXD9MvMn1dFy12WFdkMWO6OT4QaApwQyHzvWWZitQ7fgO/u9fhV792mPlLh6UF0R/e7insLi0zczFjuoXLpVUoRERERPqbujrYscPczhoW2bGIdAfLgpwcOOdsyDnIfK774kv457/U+1ZEpCeox620MSnfYuIEE7xWVJhQ1XEcbru9qf9tgs+0Nti501TahkLmscOHwwnHw/y/QXGxYxY785iq09NPhfc/MAuRhULml358vGm14K8xC3wle81zFK2H+x90mDXTjCeambAb5s13KC42VbZeD4zKMaFttI9fRERERHrG5i1mm5ZmrjATOVDExcFxx5rPfx9/Yq7QfOU1c9+woZEenYjIgUPBrbTL5bIYk9f0vW1DdrZD0XrIjDGha4LPVJTW1cHOcsgeDj++DP74kPlra1wcxMWav8KuK4KtW+GOX0P5LrMQ2YAB8OJLpu9XYoppv2BZJhjOjDEVq/PmO0ycQNRXrLYXdueO7p5x27bTI+cVERERkZ61KdwmQdW2coDKOcisgfLBh1BWBv9+B6ZMhrFjzGc7ERHZPwpupVNMSwBTBVtaBklJEOM1i29V10BqClz5Y1NpW1EBIRuqqpsWMIuJgWAQ/vZ3ePAPFp8vgydmm0DSArbUmWPS000gbFnmOYqLTRjaPESOVq3D7u6wtMBprORtXr08Y3r0VyKLiIiI9Ge23VRxO1z9beUAlpwMp33PVN6uK4JFi2HXLvjWkaZdnoiI7Dv9b1Q6raP+t6NyYNZMi6Qki3XroLYO6utN+Op2m219vVm4bN06eOU1h/sfdCj+xpzX7Wk6Zvt2qPGb+2O8JqysqIjca46kpQVmnoqKTEuJjHSzDbeR6As9gEVERET6qx2l5v1tTIy50kzkQOZ2w9Sj4YhJ5vs1hfDue6Z4R0RE9p0qbqVL9tQS4JNP7cYq23BgC2ZrWaavbWUVvPo6+P2QnmbaLID5S2z4mJ07TQuGhoCpME1JidjLjRjbNpW2fr9ZvTU8l32xjYSIiIhIf7Rld7Xt0CGqOpT+wbLg0PHm89sH/zEt8f71Npz4HfM5RkREuk5vIaTLTEsAiyOnmG04OKyoNJeEhYPa5sL32bapqk1ONtWjMTFNC5tZlnlT29BgAt2qKtMWIHd0L7/AKFC41rSJSE5ufy6bt5EQERERkegTbpOghZqkv8keDid/13zWK9kBb/4T/LWRHpWISN+k4Fa6TWoKuF0mnG2PbYPLMhW5Xq+5LyPdhLXBYFM/XNs2i5354mHGdKtfVpRWVOzuaettf39/byMhIiIiEs3qG6C01NwequBW+qFBA+HUU8xnul274J//MlddiohI1yi4lW6TmmqRmNgyiAWzDQbN/fG7Fx6rrDRVtT4fDB5kLp2x7aYeSNnDTd/c/roAV0qKaRMRCLS/vz+3kRARERGJdlu3mvfAKcmQmBjp0YhERloanPo9SEgwBSdvKbwVEekyBbfSbXJHw8EHN7VACAextm2+93rBwixSVrLD9Dz6ZpN57PAs0/8rwQdj8uDRh+m3oS2YuczONj2BnVZrkDlO/24jISIiIhLtGvvbqtpW+rmkJPjeySa8raw04W2t2iaIiHSaglvpNi6XxYzpFinJEB8HAzLNJTIDMsHjNr1rwSxK5vGYALKuDrZuM5fPVNeYCtKrr7TwePr3P83wXPrizUJkdfUmAK+rN9/35zYSIiIiItHMcdTfVqS5pCT43imQuDu8ffvfpp2IiIjsXf9Ox6RDtu2weo3DosVma9vO3h+EqZKdNdNi1KimoDFkm9ter7lcJjUVBg2CuDjTPiEUgvJdkHNQ/26P0FrjXOZAXS2U7TTbUTmaJxEREZFoVVUF1dXmfe7gwZEejUh0SEo0C5bFx5n1TN55p+O2cCIi0sQT6QFIZNm2Q+Fa03MoJcVcev/5Mpg336G4ePcCWR5zWf6M6Z1rXzAp32LiBChcC58tdfjX27Bjh+ltu2WraZuQkQ5Zw6C+HmrrIBiAq66AcWOtdse0p8rS1scfPMphXZFFKNSA2+3s9fH7Y3/Hurfjm89lZx8jIiIiIpETrrYdOKDjhWZF+qPkZPjud+Gtf5rWee9/ACd+x/yRQ0RE2qfgth9bWuC0CWhTU01lpx0yv1iTveYvoUXr4f4HHWbN7Fx463JZ1NQ4vP4G7KoAlwXu3f/a6uth23azKJnPZ4Lcsp1QVWW1O6Y9hcatj3dsU8Hrdju4PdW4XU6XQuf9nb+ujLWzgbjLZTEmr1uHLiIiIiI9RP1tRTqWngYnnQj/etv8keOTT+HbR5kiHxERaUt/2+qnlhY43P+gQ1GRWUwsI920LihaDzt3mkA1Ntb89TM2FjIzwF9rKnE70zbBtk1I6febX86Wy/T7sizT39a2TVgL0BAwIeaWrW3HFB/fFBovLWj5vK1fQ3wcVFU3fcXH7/nx3T1/XRnr3o4XERERkb7Hts36DaD+tiIdGTgAjjvWfDYsXAtfroj0iEREopeC236oeaiamdkU0Da3s7zl95ZlmsoXF5tfrntTuNYcm5xsAuGYGPNG1tmdT7p3L1ZWW2v6gA0fDv/5kDZj6ig0bv0aYmJMn1zHMZekOY4JoLsaOnemt29H89fZse5PIC4iIiIi0au01FytFhsL6emRHo1I9MoeDlMmm9tLC+DrDREdjohI1FKrhH6oeaja/JKUUMgEnuFQta7OhK5hMV4TslZU7P05KipMO4Bkr3mO9HTYvt08h8tl7rNtKC83fVuPPxbmPtt2TNA2NB6T1/Y11NWZMYfP7XZDQ73T+BpaP749nW1l0NH8dXasezteRERERPqmcLXt4MHq2ymyN+PGms+XK1fBRx+Zqz4HDYz0qEREooveTvRD4VC19WIJbndTsOg4JmRtLtzSICVl78+RkmKODa8UmuCDQYNM9YHjQDBo7h8+HGbNtBgyxGp3TGExXjPmcGjc+jWEQ+fw+C0LHJpeQ+vHt9aVVgYdzV9nx7q340VERESkb9qy1WyHDI7sOET6islHmM+EIRvefQ8qKyM9IhGR6KLgth9qHaqGxcaalgPhsNPtbtrnOOavodnZkDt678+RO9ocW1nV1B4hwQdZw2DoEPPX1DF58OjDppq1ozGFtQ6NWx8fDp3Dz+U4YDV7DXsKnbvaymB/x7q340VERESk7wkGYUeJuT1kSGTHItJXuFxw3DGQkWEWsf73u+ZqShERMRTc9kPthaqwu6VBWtNtdrczqKuH0jLwxcOM6RYu196X/HS5LGZMt/DFm8fW1Ztz1TdAdQ2kpsDVV1p4PK49jgnaD41bHx8OncN9dEMhiIm1iIvbe+jclVYG3THWvR0vIiIiIn1PyQ5TNeiLh5TkSI9GpO/weuHEaZCQYCpuP/jQfK4TEREFt/1SR6FqXb2pLk1Ph1E5UFcLZTvNdlSOaWnQvNfr3kzKt5g10+rUufY0pvZC49bH1zdAWqoJWgOBpr66nQmdu9rKYH/HurfjRURERKTv2RpukzCkbTGAiOyZzwcnfgc8HvPf0tKCSI9IRCQ6aHGyfsqEqjQuxlVVZS7XH5VjQsSJE0yFaUWFuYQ/dzT7FCxOyu/8ufY2ptahcevjA0FISjTVtm431NaC29Xx48OatzKIjW27v71WBvs71r0dLyIiIiJ9S3hhMvW3Fdk36Wkw9Wj44D+w4iuz7khMTKRHJSISWQpu+7E9harhfq7dweWyGJO3/2Pq7PEHj3JYV2QRCiXidlfvNXQOtzIoWg+ZMS0rJMKtDEbltG1l0B1j3ddAXERERESiR0MDlJaa2+pvK7LvDhoJZWXw5QpY+DFMnhQX6SGJiESUgtt+rr1QdWmB06KK1esxweaM6fRYZahtO/scaLZ9Deb7tLQYyss7248X7n/QobTM9LSN8ZpK26qqPbcy6EooLSIiIiIHpu0l5g/+SUmQmBjp0Yj0bfkTTZu9LVtg+RcjcbvTIj0kEZGIUXArLSwtcLj/QQe/3yzWlew1LQSK1ptgc9bM7g9vIxEUt9YbrQyi4XWKiIiISPdr7G+rNgki+83lguOPhddeh6rqWIZlP0koFOlRiYhEhoJbaWTbJlj0+yEzs6llQGysaSFQWmaCzYkTuu/y/kgExR3pyVYG0fQ6RURERKR7Nfa3VZuEA1phYWGkh7BP+uK4Y2Nh2gnw2hshEpNO4LU3dpCfH+lRiYj0PgW30qhwLRQXm2Cx9Uq4lmUu/SouNseF2wPsT4uDSATFe9MTrQ+i8XWKiIiISPeor4edO81tVdwemCortwMWV199daSHsl9qavyRHkKXpKfDIeM28eWKEfz73QEcf5zDccfq85KI9C8KbqVRRYW5hD/Z2/7+GK9pIVBRYb7f30v/9yUo7ov6y+sUERER6Y+2bTfblBSIj4/sWKRn1NVWAA6nnnYfo3OPiPRwumz1qnf41z/vob6uLtJD6bLBg3bx/vuvkTngOn5/n8OoHMjKUngrIv2HgltplJJiwtdAwFSDttYQMPtTUrrn0v+OgmLHMZULgQDU1kF5uQP03V/OXQ3ERURERKTv2L47uB08KLLjkJ6XkZFDVtbhkR5Gl5Vs73utEpor2fpbpky5jPVfJ/DrOx0efwRiY/vu50MRka5wRXoAEj1yR5uK2coqE5425zgmXMzOhoNHtbz0PzbWNJCPjYXMDPDXwtxnHVattlm02GH1Ggfbdto8X/OgOKzGD5s2w+Ytpnqhuhqe/n8mKO6r2nudzTUPxEVERESkb9m2u7+tgluRnhLk8h8Vk5oCa9fB//257342FBHpKgW30sjlspgx3cIXb/qu1tWDbZttaRn44mHGdIt1RdYeL/33eOCLL+CmW+F39zr86tcOM3/ptAlfWwfFNX5TsVBf33TemBjzZvj+B9s+fn/YtgmU9xQsd5fOBuK5o3tsCCIiIiLSAxoaYGe5uT1Y/W1FekxaapDbb7OwLHjlNXj73wpvRaR/UHArLUzKt5g102JUDtTVQtlOsx2VA7NmWkzKtxov/fe2c+l/jR/Ky5t63makm15f4RYKzcPX5kHxjlIoLTVBscsFoRC4LEhJNlW9/lqzgFd3BKxLC0yQ/KtfO3sMlrtLZwNxLUwmIiIi0rdsLzF/iE9KAp8v0qMRObBNmWzxox+a2/c/6LBho8JbETnwqcettDEp32LiBLNYVkWFuYQ/dzSNwWJHvXAdx6yoGwqZ8NXlgtpacLtNC4XSMhO+TpxgzmXbDgkJcPpp8K+3Ydcucx7b3r3FBMdV1ZCU2D0LeHVHb959YQJxGhdzq6oyczgqx4S2PfGcIiIiItKzGtskqNpWpFf86IcWX3zpsLQAbrvDYfZjEB+vz1IicuBScCvtcrmsDgPS8KX/ReshM6aprUF9vblcLNwOYEepuW1ZpuVB8/C1psZpDDEDQRPWWhbggIMJey3LPL6uzpw3Pn7/FvCy7Za9ecPjjo01r6N1sNzdJuVbHH6YwzvvmZYQgwbBidPA49EbDREREZG+SP1tRXqX221xx21w2RUOGzbAA390uO0WsFr38BMROUCoVYJ0WUeX/tfWmWrbcHDrcpl+ty6XCXXLdpqWB58tNVWvRUUmjM1Ih/g4c45wJ4Rg0FTCBoPmfKGQOUdy8r5fDlO4lj325k1KagqWe8LSAodZN8Psp+CFl8x21s19e+E1ERERkf4qEDDvb0HBrUhvSk+3uPN2C5fLXLn5xpuRHpGISM9RcCv7pL1euIGA2WdZpv9tOBwNL1hm26Z69l9vw64KSEw01a4ul6nIDWtvAS/HATvUdl9X7Kk3L0CM1+zfn6rejoRbNLQIqzvo/SsiIiIi0S/c3zYx0XyJSO+ZOMHiyh+bD5z/+5DD2nX6PCUiBya1SpB91roX7s5yhz880FR127yqNRy+BgKwYaPZV1dnAtuM9Ka+ts2FHx8Oax06F6ratkPhWgiFGnC7ncb+vB315g1rCJj9KSldnYm9jyeSLRpEREREpPupTYJIZP3gYvjiS/jkU/j1HQ5/eRISEvR5SkQOLApuZb8074W7aDHExTnU1TUtUBbuU9u8hUK4AhdM+4Nt203/29aat1wIn6eics/jWVrQ1Ds3ZFfjdjlkZ8OM6TBxQvu9ecPPVVVlFgvLHb1fU9JGV1o07M/CayIiIiLSe7ZvN1sFtyKR4XJZ3HYLXH6Vw6bNcO/9DnfdoX63InJgUasE6TYpKeCLh/Q0U03aXmDbPIRt3kKhxt/yXG43eNxmv9drjne7IHUP1bCt2xEMyLRatCP4fBnt9uatqzff++LN/r1Vvdq2w+o1DosWm61t7/mynM62aNi1q2vnFREREZHICAbN+0cwC86KSGSkpFjcdYeF2w3vfwAvvhzpEYmIdC9V3Eq3yR3dVNE6bCg0NJjgNhiCHTvMMbGxJrCtrzdbyzIhbTBoQt1wy4RQqOm8waA5JjERUlPbD1Xba0fgcllt2hE8+AfTmzdclVtVZdojjMoxoe2k/D2Hts0regNB89hwRW9Hj+1MiwbHhjnPQFmZ0+nzioiIiEhklJaa963x8ebqKRGJnEPGWVzzE3j4EYc/P+pwyDgYk6fPUCJyYFDFbQQEKyuxGxoiPYxu53JZjRWtZTsBy7yZtW3z5XJBZgakp5vboVBTUNtej9vmbBsGDuy4jUFX2hFMyrd48A8Wv7vb4lc3m+2Df+hcaLsvC4yFA+3KqvYXXtu5E/y1sHWrFi4TERER6Qu2l5jtoIFt33uKSO+74Dw4Zqoplvn1nQ5VVfoMJSIHBgW3EWA3NFC/dSsNZWU4zUtLDwCT8k1F66gcqKs1AW4wYNoEZGSAzwcJPnNJWbidQjBo3vDGeJsqcD2epi+3e+9viDvbjiC8uJnpzWtx5BSz7Ux7hOYVvbGxJnyOjTVhtL/WVPS2196geaDdpkVDqalMjvHCgAFdO6+IiIiIREZjcKs2CSJRwbIsbrnJYshgUxBz7/0OTuuqGRGRPkjBbQSFqqup27KFYGXlAfVLpXVF672/h8MONX/9DL/MBB9kDYOhQ0yYOyLbVMUOHNDUTiB8bGysCUt37TIVs+1p3o6gPQ0Bsz9lDz1y96QrFb3taS/QrquFwYNNb92MjH07r4iIiIj0LtuGkmYVtyISHZKTLO6608Ljgf98CP94MdIjEhHZf+pxG2m2TaC8nGBVFd60NNw+X5dPEQzavPOeWdl20CA4cRp4PJHN5E1Fa/g7i0t+YNoMlJaZMDLGa8LU6hqz4NjJ34W//wNSU024Wl9vWim43U2VuWU7mypmm7NtU5GakgLbtpuVfZuHoI5jetmOyum41cLehCt6k/dQ0VtV1f74wiblW0ycYELYigrzOsvLHe75w54rhfd2XhERERHpPbt2mWIBrxfS0iI9GhFpbuwYi2t/Cg897PDIY6bf7bix6mciIn2Xgtso4QSDNOzYgSs2Fm9aGq72VrFqx3PP28ydZwJQxzGB5f89DJfMsLn4wugpqDYVp3S4KFhCArz0stO4gFdcXMvH1ze0XzHbfLEwfy34/bD+a9MnNj3doa7ePJcv3jzP3loidKQzC4x1pqK3ZaANq9eA1+Ps93n3h207FK6FUKgBt9shdzT7PE8iIiIiB7pt2812wADT4kpEost558Dy5fDBh3DHbxz+MttU44qI9EUKbqOMXV9P/bZtuBMS8KamYnna/xHZtsPDjzq88KK5XCvcF9a2oaoaHn8SIPrC29YVp+GQ0LYdsrPNglyZMZ2rmA0vFub3mxYGyclQWWkqc0vLoK7OIS6uKRze2+JjexJeYKwr44vkeTurefAdsqtxu8zPYcZ09mu+RERERA5UapMgEt0sy+LmX0LhOoctW+Ceex1+/1tzv4hIXxM9qZ60EKqpoW7LFgK7duHYdot9Swscbpjl8I8XTFALZus4JsD1es33c+eZNgrRpKNFwfa4gFdZ24rZjhYLS02Fg0ZCQgIMHerit3fBg3/Yv9B2X8YX6fN2Rjj4LiqC+HgYkGkRH29C5PsfdFhacOD0Xe4rbNth9RqHRYvNVovSiYiIRBfHMe3JQAuTiUSzxESLu++08Hrho/+atnwiIn2Rgtto5jgEKypMgFtVBTSFbatWNy3etftQAgET+lmWCXCra+Cd9yI09n3Q0QJeo3Jg1syW4eueFgtzuUy/sV27HCyr+0LProwvGs67J+0H35ZZCC7DtJ2YN1/BYW9aWuAw85cOv/q1w+/uNduZv1SALiIiEk2qq837JJcLBmRGejQisid5uRY/u9Z8lnr0cYcVX+l9tYj0PWqV0BeEQtSXluKv8fPc3FT8/jji4qCmpim0DIe4waCpuHW5zOJe4YqAvmJP7RSa68xiYTU1Trcv6tXZ8UXLeTuyp+DbsswCcsXF5rjmPXmlZ7Rp++E1f4gJVz/PmqnWFSIiItFg++42CRkZpk2ZiES3758Fny+D9z+AO+5yeHo2JCfrfbWI9B16u9HLSt95h50ffUTKpEkkHXZYl/rsfL22gfKvtzPY56MilAZ4GhcksywT3jb/sqy+eQlX6wW8wsKLaFVUQPkuB08Hi4U5junza4fMcbbdvQFoR+OL1vO2pzPBd1UV3R58S1utq5/D/0uIjTV9j0vLTPXzxAlaNE5ERCTStqu/rUifYlkWN8+CtWsdNm2G393rcO/v1O9WRPoOBbe9qH7bNlbfeivYNiVvvEHiuHEMvfhiksaN69Tjq6ogGIJElx+fp5ZKkqh2ksFytzjOcUy1bVIinDitJ17JvmsevnalqrT5IlqBIHjcUFcHtbUwZHBT2FXjh507zT632+HJp+BfbztabKuVlBTwdhB8AzQEzP6UlN4fW3+j6mcREZG+Y8cOsx2o4Fakz0hIsLj7Trj6Gof/fgzPPQ/TL4r0qEREOkfBbS9yxcfjjo8nVFMDQPXKlRT++tckH344Qy++mITRo/f4+KQkE1gGgxAT4zAktZLSnTXU2snUktSY+gSDpsftJTPA44meNsatw1evB7Kz2Wuo2tFl5LV14PfD1m2Qng7BgKmCCIWaFipzu6CoSJebt5Y72sx90XpT1dk8MHQc80eCUTnmOOlZqn4WERHpGxoaoLzc3B44ILJjEZGuGT3a4uc/gwf+1+GJJx0OHQ+HjtdnQxGJftGT6vUD3pQUDp09m+SJE1vcX7l8Oatvvpl1996Lf8OGDh8/cgQMHWoWHXMcSEmGzPQQiZST5mwhxvEDptL2J1fBxRdGz483HL4WFUF8PGSkm224h2fzBZhs22H1GodFix1WrrKZ+2zrRbTMdshg8PnAwgS44dA2rLwcdpSagLeiUottNedyWcyYbuGLN5fi19Wbea+rN9/74mHG9O5b2E061rz6uT2qfhYRObA8+eST5OXlkZeXx7Jly9rsr66u5p577uGEE05g/PjxTJs2jfvuu4+a3X/4l8jZUWq2iYnmfayI9C1nnQEnfgdCNtzxG4ddu/TZUESinypue1libi5j7rmHXYsWsfm556hZvbpxX8WSJVQsWULa0Ucz9IILiMvKavFYl8vizDPgL3McyndBQoIJaePioLw8SIp7B8efGMcPr04lJqH73k3uS3uD5o9JSnKY+6wJVzMyTLVCba2pCs5Ih7KdTT08P18Gc591WP+1CbIsC+pqIS29/cvI09Oh1g9nnA7P/92EtGDO7XKBbZvnCwRg3bruv9x8X1s/9KTOjmlSvsWsmTRWQdfUOLhdptJ2xnRL1cm9RNXPIiL9R2FhIQ8//DA+nw+/399mv9/vZ8aMGaxatYqpU6dy2mmnsWrVKubMmcOSJUt49tlniW2vx5H0isY2Caq2FemTLMvilzNhTaHDN9/Ab37r8MB94Hbrc4+IRC8FtxGSNH48eb/9LZXLlrHluefwFxU17iv/738p/+QTMo49liHnn0/s4MGN+8aPs/jx5fDqaw5btkBNyLRPOHgUnHmGxfhxDYRKS2ioTcCbmoq1n8vd7kt7g9aPwTFVwgkJsHmLCVLDi6fFxJiqheJi85qemQu7djUtsAYmfN1RYs6TmtryuWK8UBUClwX19eYx3maXnFsWjYuYVVez+6+q3fOLeV9bP/Skro5pUr7FxAkm0A6FEnG7q6MifO5PTPWzqTwvLTMtUWK8ptK2qkrVzyIiB4pAIMDNN9/M2LFjGTFiBK+++mqbY5566ilWrVrFlVdeyY033th4/wMPPMDs2bN55plnuPrqq3tz2NJMifrbivR5Pp/F7+6Cq37qsOQzmPOMw5U/1vtsEYle0XMtfT9kWRYpEycy5r77yPnlL4nLzm7aaduUffABK37+czY+8QR14T/xY8Lbm2dZ3HC9xU+vMtubZ1mMH9f0CydUU0Pdli0Edu3Cse19Gl9X2hu0fsy6dabiNW53UUi4J1hdnQlT3W6zra839/tr4W9/NwuL2bbZ73ab2wC2Y1ohfLPJVO6GhS8jtx1zyYurg3/RLpfZv6ub+oTuy9z0tH0dk8tlMSbPYurRMYzJU0AYCab62WJUjqkwL9tptqNyYNZMVT+LiBwIHn/8cdauXcvvf/973G53m/2O47BgwQJ8Ph/XXHNNi33XXHMNPp+PBQsW9NZwpRXHaaq4HaCKW5E+Lecgi1/eaN5f/7+58N+P1TJBRKKXKm6jgGVZpB15JKlHHEH5xx+z5fnnqd+61ewMhSh9+212vv8+md/9LoPPOQdvaioul0XOQXs5seMQrKggWF2NNyUFd2IiVut+Ax2wbVO5Ge4tG35YbKy5nLu0rKm9QTjoCz+mosKEpFXVLStndw+pMVy1LPMVDJrWCeFA1us1gW0w2HZcdXWwbTsMHmRCyeaXkbtcTc/X+nLz8POmJHfq5Xf73PS0aByTdE3z6udoar0hIiL776uvvuLxxx/n5z//OQcffHC7x2zYsIGSkhKmTp2Kz+drsc/n85Gfn8/ChQvZunUrQ4YM6Y1hSzMVFaYQweOB9LRIj0ZE9td3T7T46iuHF16Cu3/v8JcnYdhQve8WkeijitsoYrndpB9zDIc89BAjrr2WmGZ/zrcDAUreeIMV11zDprlzCVZVdf7EoRCBnTup37qVUDv91NpTuNa0L0hObr+3bFKS2V+4tuVj1q0zfWbr61tW1oa1DnLD+xzHLCwWLkAJhdoGsOHjQyGzOERpqbmMfPpFJiQOV/cGgyb4dRyzDYV2jzkR0tL2/5fxvsxNT4vGMUnXhaufj5xiqfpZROQA0dDQwE033cSYMWO44oorOjxu48aNAIwcObLd/eH7N+xhIVvpOeE2CZkZHV/hJSJ9y3XXWIw/xLTUu+12h/p6Vd6KSPTR244oZLndZE6bxiEPP0z2lVfiTU9v3GfX17P95Zf58qc/ZcvzzxPqwgrDTiBAw44d1G/bhl1fv8djKyp290j1tr8/xmv2VzRrPVBe7jRW2YYXB7Ostm9uw+0PHKdpAbLmVwyGA9dwANk6+AVT8TB4MJx1Jsz/Gzz5lAmLw+cOhZrC39hYU5178MHds8DTvsxNT4vGMYmIiAg89NBDbNiwgXvuuafdFglhVbv/KJ+YmNju/vD91dXV3T9I2asStUkQOeB4vRZ33WGRmgpr18GDf3RwHIW3IhJd1Cohirm8XgaccgoZJ5xA1YcfsmH+fIKVlQDYtbVs/fvfKXnzTQaffTYDvvc93HFxnTqvXV9P/bZtuBMS8KSm4mpnAbOUFNM7NhAwwWdr4d6yKSlN91VUmuA0HNh2+Px2U0UsNAW1YKplw59p2vud6XZDcpIJIY85Gl551bRYSE4G70DTBzcUMmNISwW3xwS6Cb7uW+BpX+amp0XjmERERPq7zz//nDlz5nDdddeRm5vb48+XkpKCqw+Vg6alRabnQHKy6Z0VFxtLfHx8px5TWloHOGRlxRAf33EA31PC44yJiQHAG+Pt9NijRW+NvSfO3ZfnHfY8/mh/PXG7P9wkJyf3yP8z0tLgwT8EuPInlbz5T5g82ccF57X/uTpS/8/qizRXnae56pr+OF8KbvsAV2wsw887j8SpUyl56y22v/xyY6VtqLqazfPmsf211xh8zjkM+O53ce3+xbw3oZoaQn4/nqQkPMnJWM2qQHJHQ3a2WdgqM6Zt1Wvz3rJhqSng3r0IWPOCknAv23AQm5wM1VVg07QAmddrAtZwy4SO2LYJiBMT4KP/0qKna2ysCWxLy0wv3J3l5rlG5cAlP+i+BZ72ZW56WjSOSUREpD8LBoPcfPPN5OXlcdVVV+31+KSkJKDjitrw/R1V5AJU9KFLa9LS0igvL4/Ic1fuLoSoq6+ntrZ2r8fX715kFyA1pYFOPKRbxcfHN46zoaEBgEBDoFNjjya9Mfbmc9Wd+vK8Q8fj76n56k51u68Urays7LH/Z+TlwlVXWDz+pMPv760ha5ifsWNafnaM5P+z+hrNVedprrrmQJuvzobQfedP8gcQq50K185wx8cz5JxzGP/YYww5/3xczf46GqyoYNPTT7Pi2mvZ8fbb2IFA507qOAQrK6nbupVgZWXjpSEul8WM6Ra++N1B6O42BHX15ntffNsK1tRUi8REE54Gg+33srUsE7baTlNo63KZ8HXY0JYBb2ter3lMKGQqS0vLOu7palm7+9u2s8DZ/tqXuelp0TgmERGR/szv97NhwwZWrVrF+PHjycvLa/x66aWXALjwwgvJy8vjnXfeYcSIEUDHPWzD93fUA1d6zo7dbRKSkqCTF7iJSB/zg4vhmKnmc+Ztdzjs2qWWCSISHVRxGwHe1FTcPh/Bysou9agN8yQkMPSiixh46qlse+UVSt58Eyf8V9SdOyl+4gm2vfQSQy+8kPRjjmlRSduhUIhAeTnBqio8qal4EhKYlG8xaybMm+9QXGyqNr0eU7k5Y3rbCtbc0aaP7Oo1JrgNBJoWGAtfvu+yzOJlFk39Z9PTTSsDgIEDTNDYuuo2nHWHFzCzLFNVm5LcdIzfD9u2m8AyHArHx8P6r+H+Bx1mzaTbqm67Oje9IRrHJCIi0l/FxMRw3nnntbvvs88+Y8OGDUybNo309HSGDRvGyJEjGThwIAUFBfj9fnw+X+Pxfr+fgoICsrKyGDJkSG+9BNktHNwOVH9bkQOWZVn86ma44mqHTZvhrt853H8vuN36DCUikaXgNkJcMTHEZGZip6YSrKgwAW4XGqHbtkNxWRJVh88g+bDTiFnyIqX//jdO0JSYNpSUsOHhh9n24osMufBC0o46CqsTPc+cYJBAaSnBqiq8qalMyo9j4gQoXGsWtkpJMQFte5WbpurThKR+vwljHUxIa9vg88H3ToG5z5rq2Rgv+BLAsU0IGxtrKmhr/LtD1zioqYFgqGlqYmNN79qqalOp27yna9lO8ziPZ3clr2WqIlJiTRg8b77DxAntj70z8916DiblWy3mJjnZaWxLsHqN0+E89aTWY9rTz0tERER6TlxcHL/73e/a3XfzzTezYcMGrr76aiZMmNB4//nnn88jjzzCo48+yo033th4/6OPPorf7+cnP/lJTw9b2lFSYrYKbkUObImJFr+9C66+xmHxEpjzjMOVP9bnKBGJLAW3EebyeIjJyMBJSSFYXU2wqqpppa4OrFjp8OprDlu2mFDT405l6NDLOeP6s0he/gKl773XWLJat3kzX//v/7JtxAiGXnwxKUccgbWnlcN2c+rradi+HZfPhzctjTF5nfunMinf4qwzHebOg+qaporbxATTg3X+cyakraszx5ftNPvdboiJgcREE+himcvRMjJM79twpW1srOkzFhdr2its2256utbXQ0ODOSbcJ9frbXr+pCQoLjaB5pi8Tr2URksLnMYq1kDQVLFmZ8OM6eb1jskzxzz5FLuPcdoc05tcLqvLr1FEREQi74orruDdd99l9uzZrFq1inHjxrFy5UoWLlzIoYceyqWXXhrpIfY7jgM7Ss3tAQMjOxYR6XkHj7L45Uy4+/cO/28u5OY6HHeMwlsRiRz1uI0SlseDNzWVuKFD8aSktFzdq5kVKx3+MseEiHFxZkGwuDgo/gbmvJBB1bFXM/7//o/0445r0fy1duNGiu69l9U330zlsmWNvWz3xvb7qd+yhUB5Oc6eVg3bbWmBwyuvmuEPGghDBpttQwA+/sRU07bmOOarvh5KS00gm3MQVFaZ/XFxkJDQ1FOsqgpGjIArf0xjT9faOpN327YJcG3bVONu2QrfbIJgwISuXV2zY2mBw/0POhQVmbYLGelmW7TeVBYvLXA6dYyIiIjI3vh8PubNm8ell15KUVERTz/9NOvXr+fyyy/nmWeeIU4NVnvdrl3mPaXHY676EpED38nftTj/XHP7t793+HqDPs+JSOQouI0yltvdFOCmprYIcG3bVNrW1kJamqlQdbnMNi3VhJevvubgHTiIg37+c8b98Y+kHnVUi/P7161j7d13U/jrX1P11VedG1QHC5i1ZtumMtXvhwEDTNuDpCRTRbu7Ba95je38wTLUrB2CZZnm8HtbaGvyES5mzbQYldO0GNruThF4PGZewr1wt26DQAMkJXWtHUX49WRmmmpfl8tsMzPAXwtzn3WY++yej5k338G29cteREREjHvvvZc1a9a0aJMQlpSUxK233soHH3zAihUreP/997nppptITEzs/YEKJbv72w7INO/xRKR/uPanpgVdbS3ccptDVdWer4oVEekpevsRpSyXC29KCnHDhuFNT8dyu9mwEbZsMUFo6/DTskxV6pYtsGGjuS9++HBG3XgjYx94gJQjjmhxfPWqVRTefjtr77qLmrVrOzeo3QuY1W/ZQsjftnS2cK1pFZCc3HJ8VdUtuz90VOzr8Zg3xbt2QVKS1RjK1tWalgp1tWahrVkzmxbampRv8eAfLO75remJC6ZFgtttwuBgsKkSt7oGnnyKTlfAdvR6oKn9wvqvYf36PR8TbtEgIiIiIn1LuL/tAPW3FelXPB6Lu+60GDgQNm2Cm26tVjGOiESEetxGOcuy8CQl4UtNpaoAGuxdJHqC7R7r9UBNyLQSaM530EEcfMst1BQWsvlvf6Nq+fLGfZXLl1O5fDkpkycz9KKL8I0cudcxOcEgDTt24IqNxZ2SyrriWCoq4JtNDg0BE2I2Fwx09Np2n2/377/kJPPYsp2mpcGRUzq30JbLZe3uf2uePxzUtu7sYFnmXPc/6DDzFw5JSdYez1tRYdorJHvbH3+M11w65zgmLO7omKqqrrdoEBEREZHI27G74nag+tuK9DtpqRa/vxuu+ZnDfz4MMOcZuOJy9bsVkd6l4LaPsCyL1MGJ+OMS8FBDklWJ22locUwgCB63qfJsT0JuLrm3307VV1+x5bnnqF61qnFfxZIlVCxZQtq3v83QCy8kLitrr2P64vM6Xn1tKxu2JVDppOJYHmqqTViZmtp0nKeDULM1r9f0wvV6TJgKnV9oq6ICLJfpp7uz3FzSEuZymQpc24akRKiohDt+A3FxDsFQ28XGwlJSzL5AwLQ+aK0hsDuwdfZyTLPXIyIiIiJ9Q329ed8I5qowEel/xuRZ/PJG0+v2mb/C6NFarExEepdaJfQhuaNNwFjmT6A6Zgh+7wBCLpMWOg7U1MDQoTByxJ7Pk3TIIeTefTcH33YbvlGjWuwr//hjvvrFL/j64Yep37atw3M0XyQtOaaGkYlbGBC/C9t22FFqxtL4fIkte4K1rrQFsz8xyVSnZmeb19oV4ZDV6zVvrN3upj63Xq95TssyrRNqa6G62hyzp4XEwvNdWdW2vYPjmLHmHAQ5OXs+Zl9ej4iIiIhEVri/bXJy0yK5ItL/nPJdixk/MP8T0GJlItLbojK4ra+v55577uEHP/gBU6dO5dBDD+Xoo4/moosu4oUXXiAQaHvtfXV1Nffccw8nnHAC48ePZ9q0adx3333UNE8Q+ziXy2LGdKtx0a7qoI8qz2B2OgPZURFHfByceYbV5pL/9liWRcrEiYy57z5G3XQT8dnZTTttm50ffMCKn/+cjU88QUNZWYvHtrtImuWQ7K4gN30LsU4127abxdJs21SdNq9Gbd4LNhx2pqRAWbOFxzrzGpprHrKGWyS43U3PFQqZcYb77Vq7q3D3tJBY6/lub5G0S35gcckP9nzMvrweEREREYmscH/bgepvK9Lv3fgLX4vFyqqrFd6KSO+IyuC2pqaG5557DsuyOP7447nssss48cQTKSkp4dZbb+UnP/kJdrPVrvx+PzNmzOCZZ54hJyeHH/3oRxx00EHMmTOHSy+9lPr6+gi+mu41Kb/tol3V9fEMzB3EFTcM5rD8+C6dz7IsUqdMYeyDD3LQL35B7NChTTtDIUrffpsV117LN3PmENi1C2CPi6QlxAfJTikjzdlGXUVd46Ji4w+Bs84wfWxbPj/4fKa9QuuFx7qiechaVW3ucxzzFQyagDYpERoazG3LMsFt83G0t5BYe/PdepG0zhwjIiIiIn2L+tuKSJjXaxYrGzTILFZ21+8cLVYmIr0iKnvcpqam8tlnnxETE9Pi/mAwyGWXXcbChQv58MMPOf744wF46qmnWLVqFVdeeSU33nhj4/EPPPAAs2fP5plnnuHqq6/uzZfQoybld7RoVzwQT6iujmBFBXZdXafPablcpE+dStpRR1H2n/+wdcECGnaXGTiBACVvvEHpO+8w4Hvfo3L0WQRDiXg6+NeTmAjBUD1nn76dISMSSBmWRt5YDy6Xxc+utXn4Edi0BYYOhkPGQlk5DBoEJ04zq3fatrPXBck6mpdZM2Husw5ffGH6zrpcplVCUiI47K62tUyVbeuetOGFxFZ85bR47o7nu2mswSBc+WNz7spKq0vjFhEREZHoYtuwo9TcHqCKWxGhabGyn17n8PEnMOcZR4uViUiPi8rg1uVytQltATweDyeddBKLFy9m48aNADiOw4IFC/D5fFxzzTUtjr/mmmt49tlnWbBgwQEV3MKeF+1yx8XhjovDrq8nUFGB3Xylrr2w3G4yp00j/ZhjKHvvPbb+4x8Edu4EwK6vZ/vLL0Psvzgi5nSK4k6D+IQ25wgETTWrLwGo92OX1hIoT+LFt5OYO99NdY2phF3qwOtvmp5hyUnwr7dhymSbxUtM5Wsg2PHCYR0Jh6yvvObwlzkWVdUOgYCpggXzJtzthvT0ttXClZWm9+1f5wKW0+a5W8/30gKHefOddsc6Jk+/wEVERET6ql27zB/mvV5I1SKzIhFXWFgY0edPTk6mstKsVnjxBan8v3nDeeav4PV8zYTDKzt8XEZGBlmdWPhbRKQjURncdsS2bT766CMAcnNzAdiwYQMlJSVMnToVn8/X4nifz0d+fj4LFy5k69atDBkypNfHHEmu2FhiBw40AW5lJbbf3/nHer0MOPlkMk44gR1vv822F18kWFFhdtbXMrF+AWOr32JV2llsGHAKtts0a3ccU5VqAc//HUIhB4/bwRtTwbaSKgKkYLmSsB2r8fjaWhPerl4DBZ+bvrAZGZDsNVWz4YXDZs3sXHjrcllkD4eYWLB2h8TNQ1rbxpTfNlNTY6oqXC7TMiEmZs/PvbTA4f4HHfx+s2DFvo61uX2tNBYRERGR7hWuts3MbLnIroj0rsrK7YAVdYVYg4b8lowBP+Hx2Rl8ve5iGurbD5bj430sWvSpwlsR2WdRHdw2NDTwxBNP4DgOu3bt4pNPPmH9+vWcc845HHXUUQCNlbcjR45s9xwjR45k4cKFbNiwod8Ft2Gu2FhiBwzADgQIVlQQ8vubVgXb22NjYhh0+ulkfuc77HjrLTa/+ArUmiaycU41E3c+S17563yV9n2KUk+ivCqG2lqIjzNfHo+pRt2yBcAm2V1O0K6iykkj4PI1DqOiwoSltg0h29wOtzTIjDELfc2b7zBxwt7DTNs2lbChkMVBI01f21DIVNoGg7B1G2zbDsOGmfYIDQHzPcDgQU2rBnf03OHz+/3mzXw4FN6XsYbtqXpXPXJFREREeldjm4TMyI5DpL+rq60AHE497T5G5x4RsXHExcZS12ztHNuGgs+rKd+VyGET3mfK5EK8XrvFY0q2F/Lc/J9SVlam4FZE9llUB7eBQIA///nPjd9blsXll1/OzJkzG++rqqoCIDExsd1zhO+vrq7uwZH2DS6vl5jMTJxgkEBlJaHq6k4HuO74eErHfJ/nB57EwaVvcJj/dbyOacHgcyqYvPMZxu56laW+81gdezwZA7yNgWagoek8tg2WEyTF2kHAjqPGSiVALLZtAla322zr65sC1NYLh3XUIiKscK05NjXFwuVyGs8TlpkJu8pNP9vGubEgIxMSWnV+aO+5w+dPTm7bbqGrY4Weqd4VERERkX0XXpgsU8GtSFTIyMghK+vwiD1/fHw8ta1aEA4cCK++DjU1saxbfygnTmv7+VBEZH9FdXCbkJDAmjVrsG2bkpIS3nvvPf74xz+ybNkyZs+e3WFY21UpKSm4+sA1UGlpad13sgEDcEIhGioqCFZW4uwlwLVthzffrKEqkEhxzkVsC57O6NJXyCl9A49j/vKYaO/kuOonmVT/MmviL2RT6rE4lptQs94EzZ/GSx2pzjZqnQT8Viq27cHrNdWx4MLjsXAch7o6sEMO9Q0OgUACaWmxbcbXXCjUQMiuJiYGXC53m/0Z6Q6hkM3VV/oYke1mY3GIJ2b7SU93tVsh63M51NQ4hEKJpKXFNJ4/Pt7q1PF7m9fn/15FbV2QwYMtrN2/6WNiwOdz2F7i8PzfPUw7IalX2iZ067+xfkJz1nWas67TnHWd5qzrNGciRiBgetyCKm5FpGNxcTDtBHjzLdi0CT5fBvkTIz0qETnQRHVwG+ZyuRg8eDDTp08nLS2N66+/nscee4xZs2aRlJQEdFxRG75/TyFvRbh3axRLS0ujvLy8+09sWThJSQSrqghWVYVT0zbWf+1Q/I1Dgs+EqHWWjy8HXExh2vfIK32JnJ1v4yYIQGKghEmbHia35AVWDriACtdRQMtgvHmAG0cNsY6fWpKpb0jGcrsAm4pK2LnTVODau686efiRahoaavZYgep2O7hdDg0NFh5P29dTVw8eN+QcVMuYPAu328Hjhtpam9h2MuG6enC7wO2uprzcajx/ba3TqeP3ZPUah6L1DkmJph9wa4mJULQ+wKLF5T2+4FmP/Rs7gGnOuk5z1nWas67TnHVdX5ozBczS08rKzDYhAVotoSEi0kJmBhx9FHy4EJZ/ARnpMGJEpEclIgeS6C8zbWXq1KkALF68GIARu/+vuGHDhnaPD9/fUQ9cAcvlwpuSQtywYXjT07E8bfP8qioIhkzP2ubqPal8Mfgy3hr1MCvjTiREU4VrUsMWjtz8J84q+SUHh5bssS2DhYPPqSAltIUEq5Jg0GH7dtMyIXy5SUwMbNtm2gcsLej4XLmjTX/YXRVOm6d0HPNasrPNcc2Pr6xqO8TuOH5PKip297T1tr8/xmv294G/LYiIiIgcEJovTCYisjejRsG4seb2hwubKvZFRLpDnwtuS0pKAPDsThBHjhzJwIEDKSgowO/3tzjW7/dTUFBAVlZWv12YrCssy8KTlETs0KF4MzKwmqWJSUmmSjUYbP+xlVYmn2ZezTt5D1EYfxwOTdWhqfUbObv+D/yg/hZGhJa3G+BalvlyESI2UE6wZAueUA0ul6m2dbvNpWqZmeCvNYt/2Xb74a3LZTFjukVCgkVpmamAtW2zLS0DXzzMmN7U5iB8vC+eHjl+T1JSzEJkgUD7+xsCZn9Kyl5PJSIiIiLdoFQLk4lIF00+AgYPNp+X333fXDUqItIdorJVwrp16xg2bBjx8fEt7q+treWee+4B4LjjjgNM2Hj++efzyCOP8Oijj3LjjTc2Hv/oo4/i9/v5yU9+0nuDPwBYloUnMRFPYiLBmhqClZWMHFHP0KFQ/A2keVs2XXccqKmB7OFw+mmDePqZ61hW/X2OrH2eEdWfNB43xC7i/Prf8o1rLP/1XsQm97jdzwcul6k6jYkx57IDQRIpxaaKQGwqKRlxjZeqdWbxr0n5FnfclsjjT1ZSXGyqYL0eGJVjQtXWrRYm5VvMmmkC4Z44viPh6t2i9ZAZ03Zeq6rMOTtTvSsiIiIi+2+HglsR6SKXC044zixWVlkJHy1s+gxXWFgY2cHto4yMDLKysiI9DJF+LyqD27feeounn36aSZMmMWzYMBITE9m+fTsffvghu3bt4ogjjuBHP/pR4/FXXHEF7777LrNnz2bVqlWMGzeOlStXsnDhQg499FAuvfTSyL2YfWDbDoVrzeXxKSnth3btHdMTi1d5EhLwJCQQqq3lzO/v4i9P1lG+y/T88nrMZfw1NRAfB2eeYTF+nMWPL3d49bVhvLflBpLjvmZy9fNk1y1tPOdwexUX1d/B5rjD+DL9IkpjR+NyQWysqVwNBU2laUwMxHjrSUnZTtDto95OxXZ5ifGaQLOj9gHhuQmFHK66IhyAWi3mqb35m5RvMXECe53X8GODQfjxZaYR/fYSGDQITpwGHk/nfw6mete0fygtM6F0jNe8/qqqrlXvioiIiMj+8fvNe1vLgoyMSI9GRPqSuDiYdrxZrKz4G7BtH2Bx9dVXR3po+yQ+3seiRZ8qvBWJsKgMbo8//nhKSkr4/PPPWbZsGX6/n8TERPLy8jjttNM499xzG1slAPh8PubNm8fDDz/M22+/zaJFixgwYACXX3451157LXFxcRF8NV2ztMBprOIMBE04mp0NP7kqQF7uno+ZMZ1OV3p2lTs+nsknxWMl1vLis7vYvqmOmpBpn5A9vCm0BRg/zmLcGNiwEaqqckhKuoUBDYVsff55qpYvbzznsLovGLblC7YkTmLlwAup4CDKd5lWCI5j2gfUALsqIC3NT0pyLQ3uRCpCKXg97nbbBzSfm5BdjdvVNDfhxb32Nn8dVfG2fqy/FurrAMuEzr54+NfbMGO606WfQ3dV74qIiIjI/gm3SUhJ6XgNAhGRjmRmwre+Bf/9GDZtPpiExBM47riTGZ17RKSH1iUl2wt5bv5PKSsrU3ArEmFRGdweeuihHHrooV16TFJSErfeeiu33nprD42q5y0tcLj/QQe/H5KTIdlrwsui9fCb31Yz83rT07WjY+5/0GHWzJ4LbwGOOCqe/CPjWPNVPRVbK0mK8TNyRNuqVJfLIueg5vfkkXT77VSu+IpFDzxHetWqxj1Dq5cytHop6+OP4gPnAhxXy18MjgM7dwI4JCdV4dpVw6icZEYfnALNeum2nr/4eIvaWqfF3MC+z1/z83u9UFcHoZDZZ9tm1eF9/Tl0ttpXWuqtynMRERHpH9QmQUT2V+5o80egNYUWWdlPkJi4mqyswyM9LBHpo6IyuO2PbNtUcvr95q904V6nsbGm92nZToe5z5rgtqNjSstM1ebECT0bXrlcFmMPjYND47ADAYIVFYT8/nYXHWstefwhDJ51F28+upzDyp5jYKCocV9O7SeM5FNWe47h07gL2GkPavHY8nLTRsEXb3P+KRUEttbgpKbiSUxsd/5cLqvF3OzP/DU/f0YGbN5iwlqPx5wnGDSVslnD9v3n4HLtudpXWopE5bmIiIgc2MIVt5kKbkVkPxw5Bb75pgx/bQZFG8YzMd98dhQR6SpXpAcgRuFas+BWcnLLBarAfJ+aYrF+Paz/uuNjmi/a1VtcXi8xmZnEDh2KOymp7cDaceghLk67dgKfT7iHdzJ+SZknu+l8OIwLfsil1f/DyYEnSHZKG/c5DiQlw48vN20ZnFCIQFkZddu2searuj3OX1IS+zV/zX8+DQ3my+VqOo/bbe6rr4/Mz6G/CVc/FxVBfDxkpJttuOJ5acHe/4ggIiIi0pzjNAW3AwZEdiwi0re53TAi+xOCwR3U1ibx8SedqnMSEWlDf/OJEhUVpmowuYNeWjExZsEqy+q439beFu3qSS6Ph5j0dJyUFIJVVQSrqkxJagdMH1wXGzZOobLyCIpe/5jkz58n3dkKgJsQhwbeYWzgA76MOYnF3u9T5aRx1JE09tINc+rrqdiwndi6eGITU4G2ExRe8Gtf56/5z6d2dw9eV7M/e1iWuS8UMgFipH4O/cHeqtN7q/JcREREDiyVleb9otsNaamRHo2I9HUx3lo2bbyCkaNeomi9iwEDYOyYSI9KRPoaBbdRIiXFXOodCJgAqrWGBhMsYu3hmIA5R3uLdvUWy+3Gm5qKJzmZUHU1wcpKnHAj2Faa+uC6qaw+midWf4tD7I/4VsPfSbF3AOAhyMSGtxjf8B6fe08hM/EsoO0LTEqCeJefOH8txCdQ70kF3I37GwL7N3/Nfz5ud1NQGw4Nw7fd7n3/Oahfa+fsrTq9ecWzWk+IiIhIZ4X722ZktPwDvYjIvvLX/JesoevZtOVgFi2G9HQYNDDSoxKRvkTBbZTIHW36cxatN1WDzQMpx4FdFQ45Oeb79V+3f0xVFYzKMeeKNMvlwpOcjDspiVBNjQlwA4EOj//2t2DuXDcr/MdTmHg0hwQ+YErdP0h0dgLgpZ4pgVdwPfM2W0pPZ9AZZ+BOSGh8/MgRMHQoFH/jkOatxhvyEyKVIAk4uKiqYr/mr/nPJyPdVEDX15tzWJaptI2NNV+lZV3/Oahfa+fttTo9gpXnIiIi0neVamEyEekBAwd8gzfmYL7eAO9/AGeebha2FhHpDP0tOUq4XBYzplv44k3wV1dvOg3U1ZvvExIsLvmB+eroGF88zJhuRVWVpmVZeBITiRs6lJiBA7HaK3UFPG4XZ51pQtCGkJflnpN4JulhPoj9ETXNKmzt2lq2LljAl9dcw7YXXyRUVweY+TvzDIv4OCjfBQ0NNjGBXXirt1K5oxpfPPs1f81/PmU7ITHRVGIEg6YK17IgKXHffg7q19o1zauf2xMNleciIiLS9+wwF3xpYTIR6VaWBUd/G1JTTdu99/9jCn9ERDpDwW0UmZRvMWumxagcqKs1AWFdranevOO2RCblW3s8ZtZMK6qrM93x8cQNHkzMoEG44uLa7D/9VBcXXwgJPhOo1odiWOo5jecyH6byiOm4ExMbjw1VV7P52WdZcc01bH/9deyGBsaPs/jx5RbZw6G+DnaWOwRqg4wdWsbMS7cyYWzdXudv4gRYvcZh0WKH1WscbLspNG3+WAuIiwOP26wOGh9vjunqz6F1v9bYWBMIx8ZCZgb4a02/1ubj6O/C1c+VVW0b/Icrp7Ozo6PyXERERPqGUAh2lpvbqrgVke7m9cK0E8y2pAQ+WxrpEYlIX6FWCVFmUr4JD1v3Os3I8FJevudjoqnSdk/ccXG44+II1dURrKzErq1t3Hf6qS5OOdnm40+hrBQyMuHb34rH4z6XUM0pbH/9dba/9lrjY4IVFWx6+mm2v/IKQ847j3HTppF7g5vXXofyci9paQ2ccTrEeIM0lJTgiotj4iGpTPxDTOP8JSU5WJapfH38Sdi23VTSer2QcxBc8oOmdgWt5z782MpKq8XPoaN+ta3vt22nsV+rA+wsa+rHm5Zu+rVuLIa333FIS+17P+ueYKqfTTVyaZmZo/Dic1VV0Vl5LiIiItFt505TOBAba66sEhHpbinJcOxUePd9WLkKBg+CESMiPSoRiXYKbqOQy2XtdVGlzhwT7cIBrl1fT6CyEtvvB0zbhGOPbuf4hASGXnghA089lW0vv0zJm2/iNDQAENi5k+Inn2T9/Jf4yDqfz0PH4lhm3z//BWedaXP6qS7sujrqt23DnZBA7qhUPv/Czey/wLp1sKuiqYLTskzl67LlsGGjw69vbQpvW85923Cwo361UyY7LF5Ci/tTUkxVbW2dWcm4udIy0/so0AB/fgRcbicqe99GYlE1U/1M4zxXVZn5HJVjQttomRsRERHpG3Y062/bevFTEZHukp0Nh4yDr1bCwv+axcqSkiI9KhGJZgpuJeJcsbHEDhiAHQgQrKgg5Pe3vQa+GU9SElmXXMKg009n20svsePttxsXPvNU7+AEHuVw18ssiruA1a6jqPG7eO55ABPeAoRqali+pIZHnklkZ30y1TXuFk/pOOZNu22bCoxHH3eY/fjeA8lwv1q/31TRJntNL9bVa6Dgc1MNmpHRdP+27VBd3fHL3Z1lEx9vqj8Cgabet7NmRj68jeSian298lxERESiR3hhMvW3FZGedsQkKNlh+mq//wGceqppwSci0h71uJWo4fJ6icnMJG7oUDzJyabkdQ+8aWkMv/xyxv/5z2SceBIhmn7bpdtb+J7/T8zw/5LRzhIc2+GVVyEYsgFTJfrqazZOTSVDY7fiCVSC47SosAiFTP9agK83wJrCPfeZ7ahfbUyMOZdtQzDUso/toIF7zKgbJSRGX+/baFhUzVQ/Wxw5xWwV2oqIiMi+aKy4HRDZcYjIgc/lguOPM5/tynbCkiWRHpGIRDMFtxJ1LI8Hb1qaCXBTUsC95z8/xmRmUnzYVTwd/xArPcdhN2tfMMDeyJn+P/CDulvIrFzOx5+YMHHDRtiyxVSxNtSHSLDLSWcLMU5NY3jrOObL7TY9b79auedxF66lsV9t8wC4vh4aGsx5AgGoq2vaF+5bvDe7mh1nWeZymuJi85yRoEXVRERE5EBRX9/UsiozI7JjEZH+ITHB9LsFc3Xm+q8jOx4RiV4KbiVqWW433tRU4oYOxZuWhrWHALesFCpcg/h3wnU8m/S/FHqParF/sF3EefW/xf3sHVR99RVVVab61dOsWYibIMlOKSn2NrxOHV1VUbG7XYC35f2hkAmAXS6zDYWa9jUEOnfu1sfFeM1zVVSY723bYfUah0WLzbanA9OOQmqIjmBZREREpLNKy8w2KQni4iI7FhHpP7Ky4LBDze3/ftz02U5EpDn1uJWoZ7lceJKTcSclEaqpIVhZ2djTNixjdz8y24Zydxb/TLiBpaENTKn9O6OCTdeexJWsovD22/HkHsbg4EVUB0cTF2vCxnBfWy/1pDjbaXDiqbfTCDhePG4YN3bP40xJMT1eAwFTeRrmdjf1y7WslgXEMa1C3ubVvs21Pq4h0LS4WST6zIZD6mRv+/tjvGbBML35EBERkWhX2mxhMhGR3jRxAmwvge3b4f3/wOmntiwuEhFRxa30GZZl4UlMJG7oUGIGDsTVLB399rcgwWfC0XDoWeoZyRuJv+RvCb/na/fhLc4VLPyCM3bcyre/uZcB9teNVbLh9ggAMdSSFNhCQqiMnJFBxuTtOQTNHW0C08qqlsFrbGxTn1uvt2UlR1paR6+15fdp6U23HceEotnZUFUVmT6zzUPq9jQPlkVERESi2Y4dZquFyUSkt7lccPyx5jNieTl8tjTSIxKRaKPgVqJaRy0A3PHxxA4eTMygQbji4/G4XZx1pgk8g8Gm9gShEGxmNC/F30bZqb8hcWzLstkR9Us56etfclrd/5Jub2p3DHFUc/KkrYQqK3Bsu8PxFa6F6ReBL95ccldXb4Lk+t39bV0u89fT8P119aYZfUJC0/nCwXHz4DcmxvTIDT+mtMw8x/SLYP7f2GOf2bnPOqxabXd7C4WOQurwawgHy7mju+XpRERERHqE46jiVkQiy+eDY3b3u1212rScExEJUxG+RK3OtABwx8XhjovDbmjgrPMrgSpeeRVq/CboBFOJe9aZ8N1Tx+M4d1O1fDmbn3sO/7p1jc81qu4TDuJTVrmP4WPv+VS6B5u2CV4Ttn7xhc2pJ+8iVF2NJzUVT2Jih+M760xYvMT8wq2qMvePyYMpk9vePyoHZky3eO99h9ffbNn/1u2GI6eYqtb2HpOQAMXFTod9Zs244aZbAZxubaHgclnMmG6qekvLTE+4GK+ptK2qMsHyjOkWLlfPtGoQERER6Q41fqitM++d0tP3fryISE/IGgaHjDMLYi/8GM7KaFngIyL9l4JbaZdtmwrSigpzuXvuaHo1hFtaYFoA+P1mAaxkrwkwwy0AZs1sGT66YmKIyczk3CtTOe2ccj56t4bq6lgSE+v49rfA4zbF5ZZlkTxhAkmHH07FZ5+x5bnnqN240ZwDh0NCHzI29F+Kkk7gq/RzCSVkUt8AW7bAho2Qc1CI+h2lvPHCLua9nEpNyEd6Wsvxbd0Kv/gfKN9lehUNGgQnTgOPx8VZZ9j87h7YvBWGDYFf3QI+n8WkfItrf9rePleHP4tFi50O+8zW+M2lNsHdgXJy8p7nb19MyreYNZPG8Lp1sNxT/XVFREREukvZ7mrbtDT1lRSRyJqUD1u3wc6d8NFC+O5J5opKEenf9PZE2ojEYlfN2bZ5/nALgHA1aWwsZMaYVgHz5jtMnNA2THZ5PPgGDeC7F6SRYFmUbd7c9lp+TICbOnkyKZMmsez5Tyh76XnSQpvNOQgxuuodcqo/4Ou0k1iZ/n1qQmlUVcGKlQ6vvOqwZk2AYGgHHlccOwMppGTE4fOZ8W3dBr+5G+Lim4LTf70Nfr/NVyubxrBuHfznI/j2UTYTJ8DceVBdY4a7fj2cdyFcMsPm4gtdjMlrO08dLYbmOOaXfShkftHHxTVrobCX+euqSfkWEycQ0ZBfREREZF+VlpltZkZkxyEi4nabfrevvm4+U674Cg47NNKjEpFIU3ArLXS10rUnFK41rQE6agGQlGT2F66l3UATwPJ4iE1LI85xCFZVEayubuqd0Pw4l4uUb32bOZ9MYUzgIw4tX0BCoAQAtxPk4J1vMbL8XVYlfI8d35zFG+8nUV0NIdv8YvVYdXhq66jZ6sM1OJWQ5aW21oSmCQmQkm7mb9nyjhfy+vgT+ORTczvcC9e2oaoaHn8SwIS3rYX7zBatN4FseK7q601PXDBhbfPF0Do7f13hclndcp59EenKcBEREenbwv1ttTCZiESDlBTTLu+/H0PB5zDk/7N33/Ft1efixz/naFqWZTu248TZewdwIIxCKZACZVNGSAhllNVAx70Bbgvtr+PeFgqlvSVAKLS9lAQCpRQKtIwGWiCMBBICCUmcPZ1425KtrXN+f3wtS7Ylx46H7OR5v15+ydZZ3/OVZFuPnvM8Q6CoKNOjEkJkkiTeixZtM11TNbta9kzPNbhKp6GhOdM3RQkAULVUI1G13qFoViu2/HycJSVYc3NVZLSN0aNg6DAL6y1f4fVx/8vaoTfjtyaKnFnNMDMa/0bOk7cxpfI58rKa1L61RC1Za8xPtLKcUFU1mhFF0xJBWLs9fdA2zjTV+VostGxrs6kA7tJlEI22DzqrOrNau2ZogWAi27YgRa22rsxff7Zmrcmiu0zu+ZHJz+9Tt4vuMlmztnefn0IIIYQ4MphmIuO2QDJuhRD9xITxMHq0+h3173cTSTlCiKOTBG5Fi65kuvam5BIAqYQjanlubuf3qVks2PLycJaUYMvPR0sK4Oq6xkUXamQ5obbBxubsr/La2MWsKbwOv544iNUIMKvpL1y67zZmh1/EagQwTRUs1TT1B1ULNTHILCeHWqx6FICKys6NMbkxGSQCuI1NsOLt1NuoOrMa48ZCMAA1tRCNqKBvQYHqUNrW4cxfRwzDZHOZyarV6ra3A/uQyAzfvh2yslSAOisrkRkuwVshhBBCHEogYCccVh925+dlejRCCKFoGpxyMrizobERPlqV6REJITJJSiWIFvFM11TNrkBlavp8vZ+pma4EAEAgoJpujRgB48eZQNcui9d0HavHgyUnh1hjI9GGBsxYjOlTNb55A7z8ikl5OTTF7Hid51N33FmcM+h1Yu/9DYKNADiMJk4NP0Np+FVW2S9lneVsYpodUJ+KappJjsNHkdZIKJJDNOwB2mf6tpWiFC+6rgK6FRXpt2tbZzYnx+Tx38OOnfHxtD6Gz6caiE2c0IWJSyMT9ZC7UwNZCCGEaKu8vByXy0VeXl6H6zU0NNDU1ERJSUnfDEz0Oq9XfcI9aFDKi7KEECJjHHb48pfhtdfV++KRI1QWrhDi6CMZt6JFb2S6Ho5UJQAaG2H3Hti7D5r8cOAA3Pl9DjuzUtM0rDk5OIYNw1ZQgGa1Mn2qxvfv1PjP72l862Z1e+f3szj21q+Td88jfOq5koiW1bIPF17OCP+JG4Pf5pjIm+immjjTjGe6mjhiXor0clxmPZoZSz2YljG1vy+ezVtc3PH5qDqzGifO1pg6Reeaq9uXUAiG1M+uLFgwX+t2UDNTWa/9JTNcCCHEkeGss87i/vvvP+R6DzzwAHPmzOmDEYm+4vWp/+ukMZkQoj8qHgwzpqvvP/gI/P7MjkcIkRkSuBUt4pmuXl/77M94pubIkT2TqXkoySUAvA2qq2Y4pLIqhw5RweOeCBBqmobV7cZRUoKtoACLw87YMRrHzNQYOyYR3BwzOZvKyVewfPAjbBp0CREcLfvIMWv5auQJvhn8LtOj/0IzYzQ1JY5ROMjAZTaQbx4gy/SmTq2lfaaHaapsW3c2zDmza+eVqoRCMKAybe9cpHU7GzaT9ZB7sgayEEIIYZomZpq/zanWFUeOhuaMW2lMJoTor449Rl0VEArB+x+mfSsphDiCSakE0UJluqpgaHWNyly021Smrc/Xc5manTWrVOOYmSYLv60CcYPywelMZFn25GXx8QCu1e0m2tRE1OvFTKoCr+rgwh/+mMM7TVfzjut8Toy+yIzwm1hRtWxzzSrODT/KbO1FPjDmUuM7GVe2TiSqgpoYMbLNOpz4aCKPsJbdagyRSKKhmWEkGoxdswCs1q5/xtK2hEJurgq698Tj15Ws18mTun24VpIzwx2O9sv7KjNcCCHE0aWurg6n05npYYgeo+OTjFshRD9nscCXT4WXX4V9+2DrVpg4MdOjEkL0JQncilZUpiYtdUt9PhUEGzdWBW17q25pOtu2a9TUmBQWtA/S9VaA0JqdjTU7m5jfT8TrxQyFAFrq4D79jMnupjzetl3PJ7YLOTn6AlND/0JHlUIYZB7ggtD/UnPgr6zJmcs+1wm4sjT8ARWQtRDFY1YTMRtp0vLQ7A6Ki1VwtalJBWw1DXLcKmg7b+7hJ8arEgo9Mi2tZLIeckc1kHu6hq8QQogj08cff9zq5+rq6nb3xUWjUXbu3MnKlSsZP358XwxP9AG7YzyxmAWrfNgrhOjn8vOh9Dj4ZA2s+hiGDlXvg4UQRwcJ3PahaNRgxduq0VRxsbr8/XAyKXtbb2ZqGoaZcr/J93s8ZnMATmPvPrPLAcL4PHu9fjweI+U8Jx8vJ8dE08Dr1VodOzc3i4kTsjBDQaINDRihENOnatx4g8kDvwarBRyOQsoct7AvfAmTq55nVMO7aKjrVwqiezi77gFi9nGsMK+itvgYrDaN2loV9MyxBhk/6CB+w0V9KI/777XxyRrYXw7DSuDqeWC362nnpicfl67qy6zXVM+ZBfO1fpMZLoQQYuC55ppr0JI++Vu5ciUrV65Mu75pmmiaxg033NAXwxN9ICvrWEDV6Nf737/jQgjRyrSpqt9LRQW8txLOPUd+dwlxtJDAbR9Z/pzB0mXQ2KSyAjUNHloM1ywwupVR2Vt6I1NzzVqzJZM3ElWBvZEjYfYJJqs/Vpmz/oCq34MJDqeJzarmzGaDvBRBwLYBwtbzHEg5z8nj8AcgFAQ0sFpMorHEsV1ZanwL5juZVZpFLBgk6vUyZrSfkSNM9uyFHLs6bpO9mDXDbqes4FLGlz/HuOCHLWO0VGznHH5OVdNkNg6+Cr1wWqtzcOGnqTHAkl9lU9mUSzhmxWaFz9fD7BOMtHOTGB99ngndV1mv6Z4zC+arGr79JTNcCCHEwHLJJZe0BG5ffPFFRo4cSWlpacp1bTYbgwcP5owzzmDatGkp1xEDT5brOEDq2wohBgZdh9O+BC+9DBWV8MXGROMyIcSRTQK3fWD5cwaPPd58mXxSDVNfIzz2OED/DN72pDVrTR54UDWz8nhUBm0kApvLYO2nKkvSlQ2B5nICAGYQsvLUz1VVKjCXnVQWtm2AsO08Wyyq7EDyPE+coLWMw2aDYFCtY5oQDqsApKapY7uyEg3Q7lwEs0qdWJxObOEwF1/RwBOPNlFXb5Kd3Zx9GoXawDCqhv4nk7+2G9fHz9GQdNllUWAzp+/+CRXZM9hYdBW1LlWcqLERggETb0UjxblNxLI9NBoeNpfpLXNjs4O/CQyzo/H1XbCyL+ohp3vOJM5Z48H7tV7JDBdCCHFku++++1q+f/HFFyktLeXee+/N4IhEX3PGM26lvq0QYoDIyYETZ8P7H6j30MOGqT4wQogjmwRue1k0qjJADUMFCuOZifEAbiQCS5fBFZcZ/bJsQk8wDJU16ferrIb4HDgcEI02N+IywOtVAVSbTd3GYipztngwHDgIByvUH6dUAULDMNvNs6a1nuenlsHECWocBQWqJIFhgLX5kn9Q21itiYDvsBKoqW3dAE232zn+jCLIzuMvyxqo2ttIU5OJ1QIjR8BFF2pMnzoGzvo+TVu3sn/5cnyffdYyH8VN6yluWs8B9yw2FM1lT8MYNE2NSddNMBpw0Ig34iEWzaGxSYOm1h1EOxpfX+nNesgdPWdaN6XTmDxJArVCCCEO3+bNmzM9BNHHYjFwZqlUNcm4FUIMJBPGq6sx9+6DlSvhgvOlZIIQRzoJ3PayFW+r4KPF0vpyckgEFhub1Hrnnp2ZMfa2LVvVHxePp/UcBIMqYGqxNJcAQH0Paj1dV1mwVqv6p7q+TgUHoX2A8PU3zUPOc1OT6sI5aJDabzic+CMXD4rGs33jxw6H0zdAO362jdLjCyjbnEvDAR851kZGjzRaBU+zJ0xg4v/7f3z+jy/Yt2w5xaFNLcuGNq5haOMaRllOYkPhlZj6iJZlkVAMa7COfNOH38glpLlbzss01Vco1PH4+kJv1UNO95yB3mtKJ4QQQoijQ/kBJ7qehdUaw5NjyfRwhBCi0zQNTjkZXvybSuDZ8AXMnJHpUQkhelO3ArdnnXVWp9az2Wzk5eUxdepULrzwQo477rjuHHZAqahQQbZ0n4LpuvrUv6Kib8fVlxoaSNlgLF6iwGJRmbfQOkinac3ZuDHI9agg7zcWwIjh7RtzdXaewxGVkRsIJNaPB201LREUTT52Vlb7BmiJ/WpMmWqDqYMwY7lEfT6iPl8iAtxs5nnT0Eb9jA+e/oxRO5ZTFNnesmxi7CMmVKxiV9OpbC6+Ar9jKLFYc8kHouSYNWSZPvx6HhEtq2WcsZiaN5er9fjSNYDrLb1RDzndcyYuVVM6IYQQ4nCFw2FeffVVPv74Y6qqqgiHwynX0zSNP/3pT308OtHT9uzJAsCT40fTpDW7EGJgcblg9gmw8n1Yt05d9ZmXl+lRCSF6S7cCt/v37+/S+uvWrWP58uUsWLCAe+65pzuHHjCKixNBQEuKD/QNQy0vLu77sfWV3NzmGrARdal7XDw7Nj4HkAiaJn9vsaiAq90G06elvjS+M/MMYNFVSQYtKdM2+XiQCOAmHzu5AVo6msWCLS8Pq8dD1OttF8CdMU1n2v8cy85dx+Bd8wnhfz6LtWa32haTMY3vMarxfbbnnMG6nMuAopZtrYTJNSsJm078Wh4R1ETGjNbjS9/Mq+8bmHVHuudMXKrHpK8D1kIIIY4MFRUVXHvttezevRszuS5RClrby0DEgLR7b3Pg1hMAJHArhBh4xo+Dnbtg/35Y+QGcd66UTBDiSNWtwO3mzZv5xS9+wYsvvsjVV1/NeeedR0lJCQAHDhzgH//4B08//TQXXXQRN954I2vWrOH+++9n2bJlHHvssZx//vk9chL92Zwz4aHFqh6prrfOKI1nTea41XpHqokTVPBw+w5VnzQ+B05nokFYVlaiQZjVqr43DBW0s9vVZSDxJmSpHGqeo9FEELaySn0fn3+rNRGsjf+x68qx29J0PW0AV9c1xo3V2BA8gac+KmVI9CNm+Z4j3yhXyzGY4HuLsb53+Mz6VVbZLsWv57ech10LYjMOEsKFX8tD12wtDdp8PpMHf0MHzbwGTvA23XMG2jelgyMnYC2EEKLv3X///ezatYvjjjuO66+/ntGjR5Od3A1VHHH27HEB4PH4MzwSIYQ4PJoGp5wEL72sGnlv2gzTpmZ6VEKI3tCtz2Sefvppli9fzlNPPcX3vvc9Jk6ciNvtxu12M2HCBL773e/y1FNP8eyzz7JixQrOP/98HnvsMTRN4/nnn++pc+jXrFadaxYkGmTFywPEYupnXYdrFnDENiYDFaxcMF/DlaWaSgVDKo4ZDKmgqa6rQKonR/0BikRUoFXXwe1WgdN4E7J0GZQdzXP8ake7XdW3tVjU8ePB4XhjMkgEebty7HTiAVznsGFYc3NbosKGYfLyKyaBoE59ySn8Y9SvecN5G/Xa4JZtLUQpjb7GjYHb+XJ4KS68LeMDcOBnEOWY3mrczijzr4JnnqWlmZfDoQ7ncEBhAfgDqpmXYXScSdRfdPScqa5p/ZisWWvywIMm27erDwAKBqnbeMB6zdqBcc5CCCEyY+XKlZSUlPDkk09y9tlnM3HiRIYNG5b2SwxsoZDJ/nInoEolCCHEQOV2w/Gz1Pdr1qorS4UQR55uRQufffZZZs+ezZQpU9KuM3nyZE466SSeffZZAKZMmcK0adPYtGlT2m2ONPPm6tx6s8qsjQcKDUP9fOvNavmRblapxp2LNMaNhWBABUSDAdVY6tabEw2msrJUMNdqURm5Giqz8s5F2iEzJ9vOczisArcWi9rviOGQlwtDh6h9J19KYrWqWkE22+EduyPJAVw9x8PKj3R27VKBZABnloWqkq/wTN5vWeG4GZ9W0LKtjTAnRF7mm0238aXIszhpSozZApNGNvEf1xwg26hj7+5Yp5p5DRTpnjPJj4lhqEzbIyVgLYQQou+Fw2FmzpyJI1VtHnHE2b4DDEMjGq3G6YwcegMhhOjHJk2EIUPU+973P0wk+gghjhzdKpWwZ88eJkw49PXjHo+Hjz/+uOXn4cOHH1WBW1BBxSsuM1jxtmqkVVysLu8/kjNt25pVqnHcsaSsQzr3ikR9Uo/HbL4cXiMnx0TT1KeHm8vMQ9YtnTdX57JLDZ5eDtXVdiDMhx+poGw8oOlyqa9gEAJBiEZg4a2Qn6/hdpvs2QuVlTB4sCr03tjYuWOnE6+9+skaePe9XMrLcwj7fbgDPnyNMfLyIMsJWUOtVIa+yt8ipzOm9p+cFH0RS1B137IT5OTIC5RGX2dd1kVszv0aF16axVlnaOg6rF3nxeptJBLJIeTwkJOrkzzS/trM61B1aTt6zgCUbTHZvkMF3EMhFXCPaxuw7ukGakIIIY4MEydOpK6uLtPDEH1k02Z1G/B/ipZ0tZMQQgxEmgannqJKJhw8CGVb5H2PEEeabgVuPR4Pa9asIRwOY4+nD7YRDodZs2YNHo+n5b7GxsZWPx8trFadc8/O9CgyS9e1lH9IWt+vgnJr1po88Qea65aanapbqmqdqm1iRoRoBJqaVGCvbSKN05moYZufr2G1wu//qLb1ByAUVENxOExcWYdXMzVee3XbNmjwqk9AbTadqJ5LRMvBEfERrvYxuDBGllONMaTZ2ZJ3Pud/aw57XnwN+5qXcJoq09ZhNnGifznHG39nlP/rEDmbV9+y8dcXIRg0INCAQSMNlblkF7gZNEiNtbMN1vpSZ+vSpnvOrFlr8sgSqK+Pr6cez4JBKjAP/TdgLYQQov+46aab+O53v8vnn3/OzJkzMz0c0cvKylQ6WjDwGfDVzA5GCCF6QE4OzCqFVavh409g+HBwS6l2IY4Y3Ur3PPPMM6moqOA///M/KS8vb7f84MGDLFq0iMrKSs4666yW+7dv386IESO6c2hxhDucuqVttykq1MjKgpgBFZWq/mtb8YDmgQOJbUFl40Zjqt5tIABoXa+ZGh/Ptm0qs1fTVEmGlvq7pk7YlkstJZR78zCwYJoq0FxSAk1RBy/XXMLywkdY57mCsJbVsm9L0Mu+J5/kkxtv44tlbxAKJC7104nhitUSrSzHV9PU0sxr5MjON1jrbd2tSxvf/uBBNa8WiwrchkJwsCLxWPfHgLUQQoj+ZerUqVx33XVce+21PPTQQ3zyySfs27eP8vLylF9iYEvOuBVCiCPFlMkwuEi9f/1olZRMEOJI0q2M2+9973t89NFHrFixgn//+99Mnz6doUOHAnDgwAE2bNhANBpl1KhRfPe73wXgiy++oLq6mssuu6z7oxdHpLZ1S+MlDhwOKLSr5lTLnjE57tjEJfOpttF1jZwclekaCKjtRroSx4kHNMeOgX+/q4J9BQWwv1zVyLVa1X6iUbXe8GGpj32oc8jJAV+jCizGvyKRRPM0TdfxRnPZH8pBD/rIc/q44PwYr/5djTu/MJvt2pXsjX6NCTUvM772NaxmCACLv445/J4TtL+xynEF67UvY2oWtYwokepqQmEfOe48FszPOqxSDz3tcB7fdNsXF6vHKxRSwVurVT1eNbUqEOzzqZq4/SVgLYQQov8588wz0TQN0zRZsmQJS5YsSbuupmls3LixD0cnepLfb7J7j/o+GFiX0bEIIURP0jQ45WR4+VXYuxd274HRozI9KiFET+hW4DY/P59nn32WX/3qV7z66qusW7eOdevWtSx3OBxccsklLFq0iPz8fACmTZvG559/3q1BiyPblq2qXEFnGm3FL6FPt42mwaBBqt5PMKhq5brdKhPT5wNXFpz+ZVj2tNo2HFZfup7Yj8Wi7guFOl8zNXk80agK0rZthhaLqRIO8WZ1waDOhAm5XH2VB5feyP4DXtzuaMs4wtYcvii+mm0F5zO+4kUmNLyJhSgAuWYVZwcf5Xj9RT6wzWWzfjJoOqYJ+Tkhrr2mkukjsjEieeg2Wzcfoe45nMc33fa6rh7figo1n/HAeDzz1pMDC+Zr/SJgLYQQon864YQTMj0E0Ue2blP/c+XlRohGKzI9HCGE6FH5+TB9Gny+HlatgpKhiYbYQoiBq1uBW1DB25///Ofcc889fPHFF1RVVQFQVFTEtGnTcLlch9iD6I8O1TSqNzU0qJqnnjTxxVR1SzvaJtsFxYNVuYRAEEJhdfn8uLEqqBeNqhq6HpvKcG0bZNW0RHZsPIvzUDVTk8djmol9xG/jXwUFYMTUuG5fCGfP0dB1nVWrPVTjZqizEavpRTejLfsOWfNYP/R6PuRCjmv6KzOib2MhBsAg4wAXhP6Xk/QX+MB+FVu0Ezj5RI3pUzUMv59QIIDF7cbm8aBZu/3yPyyH8/h2tH22S2Xe1taqAHt8bocUw23f0rpUk1gIIcTRZ+nSpZkegugjm8vU7ciRfj7I7FCEEKJXHDMTdu5S76fWrIWTT8r0iIQQ3dVjkRuXyyUZC0eIzjaN6i25ueqYkUj7hmKQum7pobax2mBQPtx8E+Tnaa2C0ZvLzJZtLZbWQVZIfG+xdL5matvx2O3NdXOjresNVVerZZMnxYO2WmJ7m0aTmUPU7sZmNOGIetFNVcs2EoWQo5C3ojez1nExJ4WfZ3LkXXTUzguNvVwUfICD+jjyGudimqVozScW8/mINTZizcnB6vGgWSydfmx6wuE8vofaPtulsqdDIRUEj0bgjv+EqVMkaCuEEEIIZdNm9X/SqJGBDI9ECCF6h9WqSia88ab6sGrcOFX7VggxcHWrOVmycDjMZ599xj//+U/++c9/8tlnnxEOh3tq96KPdLdpVE+YOEEFir2+9kXV0zXa6sw2o0ap4OiJszUmT0oESZO3tdvVl2Ek9hOLqfscjs43+UreJ4DL1XqfceGwqq07u/kzj81lJqtWm5imyYgRzeeDRsTiptFRgt9WRFRz0NSkaha5sqCOYv7pup2nc37DFtsprfY/xNiO88VfUPbDH+LbsKHVpES9XoLl5UTq6zFjsY5PqAcdzuPbme01TT1G0aj6B2XyJAnaCiGEECKhJeN2hARuhRBHrpKh6upSgA8+VO9DhRADV7czbpuamnjooYf4y1/+gj/eyr2Zy+Xisssu4zvf+Q5ut7u7hxK9rLtNo3qKrmssmK8CxdU1quap3da6Lm3buqWptnHpJsFQ+m1SbVtTq2rgRiIqAKiWQ45bnX9H+0m3z6pqVYJB1xOX8YPK4HU41O2Kt2DVapO9exNZznl5apvkOWiMuvD5XHjcQS6+rIFdW4Msf06NtVofxmuu/2BV5OucHHqW8bFPWsbTtHkzW378Y3JmzKBk/nzcEyeqBYZBtKGBqM9H2GLBNAw0vcc+zznk3HT28e3J7eMyWQ5ECCFE//Hwww93el1N07jtttt6cTSit/h8Jvv2qe9HSsatEOIIN/sE2Lcf6upgwxcwc0amRySEOFzdCtz6fD6uueYaysrUx9eTJ09m2LBhAJSXl7Np0yaWLl3KRx99xNNPP01OTk73Ryx6TXebRvWkWaUady6ipWSDz9e6Lm2qkg1tt2lqMrHoHW+TblunE0JBQEtcjt+Z/aTa5++eMFsyPHRdNSRzu9Xl/Q4H1DfAtu2Qna3KOXiaG5ZVVav1iwqhvr7tHGQxq9RF6alBTFs9L78QoMmvPk2t1EaxYtB/kXfyVsbu+TPepIaBvvXrKfvBD8idNYuSq67CNbb5o1jDIFxfTzC5hELbJ0EPOpzHtye3z3Q5ECGEEP3Hww8/jKZpmG0vA2kW/3tomqYEbgewsi3qduhQcGf33ZVGQgiRCU4nnHA8rHwf1n0GY0ar9/NCiIGnW4Hb3/72t2zevJmTTjqJH/3oR4wbN67V8u3bt/M///M/fPTRR/z2t7/lhz/8YbcGK3pXd5tG9bRZpRrHHUuXsiJnlWrMmG7y9HKorrZRWBjm6nlgtx86GNf2eNnZKjOjolI1v5pzJlitXQvqzSrVuOE6k5/9HNzZKmjrdCaWmyY0+lTANcetfg4EVBZuYYHKtnW74fKvQ2VV+3FYnE6uvHEIF1wR4ImHGqgsD1BcBKedBqHgRPjSPfgnbEJ/dznOik0tx21Ys4aGNWvIO/lkSubOJWvECLUgFiNaX0/M58Oam4vF7e61AO6sUo1jZpqseBsqKro+x4fz/IBEORC/X31IEQ+Ux8uB3LlIgrdCCHE0uffee1PebxgGBw4c4IMPPmDt2rVcffXVTJ8+vY9HJ3rKps3qdsrkzI5DCCH6yvhxKkHo4EH48CP46pz2CVpCiP6vW4HbN998k8LCQpYsWUJWVla75ePGjWPJkiXMmTOHN998UwK3/Vx3m0b1Bl3XupTdu/w5g6XLoLEJTDOMpsHzf4FrFhjMm3voEgDx461Za/KH/6NVRuYbb8KC+WaXg3p5eRpZTrOlTm6yUAhCYfUHtKZWzX28GZrDAQ47rF+vOoNC6nGoc3bQ2DQYLRbGZTbwr3f8WCxmc7mHKWD+lNHOzzkt+izF0W0tx6//8EPqP/qIQaedxoRvflNFiQEzFiNSW0u0oQFrXh6W7OweD+CqrNfuzXFXnx/9pRyIEEKI/uPSSy/tcPntt9/OE088waOPPsqVV17ZpX2HQiF+/etfs2HDBnbv3k1DQwMej4cRI0ZwxRVXcNFFF2Gztf7EvLGxkcWLF/Pmm29SVVXF4MGDOeecc7j99tvJzs7u8vkJpaxMZVRLDXwhxNFC0+CUk+Cll2F/OezeDaNHZ3pUQoiu6lYxy/r6embPnp0yaBvndDo54YQTaOirNE1x2LrbNCrTlj9n8Njj4GtUJQbsdnXra4THHlfLO+NwG7QZhtnSXGxzmYlhqPU6mtdoVGXbGgYEg6oRmmGoW78f6uoTAfNU40g+Z4CYZsenF1HLUJqirsSBNI1d+jEstf2CFx3/RWTQqMQy06T23XdZff317F6yhHBVVWJRLEakpoZQeTnRxsZOzV9nZKoJXlfKgQghhBBxN910E8XFxfzmN7/p0nZNTU0sX74cTdP4yle+wvXXX8+cOXOorKzk7rvv5tZbb8VI6hrj9/tZsGABTz75JGPHjuW6665jzJgx/PGPf+Taa68lFAr19KkdNTY1l63q7XJfQgjRn+Tmwozmi0VWfawShYQQA0u3Mm5HjBjRqYCsz+dj+PDh3TmU6AM91fQpE6JRlWlrGKocgaapL4tFBW8jEVi6DK64zMBqTf95xeFmZB6qZmpH85oczI0fr22A1+lU55E8jqVPm5SVqXO2WhPN1KA5gKsV4TfDuEwvDppaDrDdcjy/M0p54D9WUfHn5wju36+OaRhUr1hBzb//TeFXv8rQyy7Dlp+vlkWjRGpqiHq92PLysLhcHK5MZr32t3IgQgghBo6JEyfy4YcfdmmbvLw8PvnkE+x2e6v7o9Eo119/PStXruTdd9/lK1/5CgC///3v2bRpEzfddBN33HFHy/q/+tWveOKJJ3jyySe55ZZbun0uR5u6OpOKCvX9pImwbVvH6wshxJFk5gyVINPYqOrdnnB8pkckhOiKbmXcXnnllaxevZpNmzalXWfTpk189NFHXHHFFd05lOgjqumTxrixEAyoy/eDAdX06c5FnW/M1ddWvK3KI1gsqTMpLRa1fMXbHe/ncDIyO5M9mm5eS0o6d37Jcdz4OLZsTZwztA/2QjwDt5A6rYQgicsrg2GdLzgZ4+Zf8/nY2/FaihPHikapeu011i9cyL4//Ymo15tYFokQrqoiePAgscDhdWTOZNZrcjmQVDJRDkQIIcTAsHfvXqLJn5J2gq7r7YK2AFarla9+9asA7N69G1DNz55//nlcLhcLFy5stf7ChQtxuVw8//zzhzn6o1u8SezIEZCd3T//lxVCiN5itcJJJ6rvv9gIdXWZHY8Qomu6lXF77bXXsmfPHr7xjW+wYMECzjvvPEqaI1Hl5eW89tprLFu2jKuuuorrrruuJ8Yr+sDhNn3KpIoKFbjU03wUoeuq/EA82yKdrmZkdiV7NNW8rl9vUrYlEXRN09CaYBCykpqa2W2Jeri6nn67uJhmo1ErJEAeWUY9DvysXm1SXq4TCJzOxtFfYlLg30ys/AvZ0Ro1lnCYipdfpurNNym+4AIGX3QR1ubaemYoRLiyEt3hwJafj56qKHIayXNsmqrObyymAtAOR+9mvcbLVmzfoR6f5MBxvBzIuLH9txyIEEKIvtfQ0MCSJUvYtGkTJ554Yo/s0zAM3nvvPUBl8gLs2rWLyspKTj31VFxtrmxxuVyUlpaycuVKDhw4wNChQ3tkHEeLeOBWGpMJIY5WI4arD6/27IUPV8HXzpFGZUIMFN0K3E6ZMgVQGQKPPfYYjz32WLt1TNPk6aef5umnn251v6ZpbNy4sTuHF72oq02fMq24WP3hMYxEBmoyw1DLi4vbL0vW1QZtXckenTyp/bxu+MJE01Tw1TAOHYBtNQ6bCujGz60zDM1Ko16I34yybX8DWrCJ/HwTTbOy23UOuzxfZkzdCiZW/RWXoSKnRjDIgb/8hcrXXqP44osZfN55WJrrWhuhEKGDB9GzsrDl5aGnyCpqKz7HXq+qzRsOJxqy2e2qP1pvZb0O5HIgQgghesdZZ52Vdpnf76e+vh7TNHE6nSxatOiwjhEOh/nd736HaZrU19fz4YcfsmPHDr7+9a9z8sknA4nM29FpOseMHj2alStXsmvXLgncdtGmzeofrEnSmEwIcRQ7cbZqUlZRATt2wLhxmR6REKIzuhW4lX8aRX8x50x4aHGiMVnbTMpYDHLcar2OdDUjs7s1U6dNTdSntdlaZ97GYomfk7Nt4+OYOAHKylS5BKtVjbWzgV9Ds1IfKyB3UC4Rixd7TDUeM3Q72wvOoyz7TMbWvMHsyEuYfrUs1tRE+TPPUPnqqwy59FKKzjmnJdPWCAQIBQJYsrOx5uWhW9P/apk4AfLyYOs2WoLW8azhUEgFoyeM772sV1W2gpaaxD6fChSPG6uCtv21HIgQQojesb+51nsqVquVoUOHcsIJJ3DTTTcxfvz4wzpGJBLh4YcfbvlZ0zRuuOGGVoFgn88HgNvtTrmP+P2NHTQLzc3NRU93+VE/lN9cS783mabJlq11gMnsE3LIz7fh8XgAcDocHTZZ7k/i44yX3rDZbQNm7HF9Nfbe2PdAnnfoePz9/Xz609x39fj9aeygyvkdPyvCqtVRPl4DEyY4cThSv/dxNr/P83g8h/W7ui9+vx8pZK665micr24Fbt9++xAFQ4XoI1arzjULDB57XGXLWizqKxZTX7oO1yygw8Zk0PWMzK5m6LY1aaLGmNEmW7ep4G1yADYWU+tYLEBzNnHyOK65WmPLVpPHHlfbdiZwG19eWNjc1MxuJagPImT14MKPJVYPmOh2J+tcF3PStWczeOffqXjlFQy/H4Co18u+P/2JildeYehll5F/xpnsKbfh80FOTiOjRzdhy3Fjy81F6yCAGx9PvJFc8vh620AsByKEEKJ3bN68udePkZ2dTVlZGYZhUFlZydtvv81vfvMb1q1bxxNPPJE2WNtVnWka3F/k5+dT1weFFisrTaqrTSw6DCn2UVen4W2u3x8MhQgcZs3+vpSVldUyznA4DEAkHBkQY0/WF2NPnqueNJDnHdKPv7fmqyf1l7k/nLnqL2NPNmkibN4MDV744MNgS+3btoKhEABer7fLv6v76vf7kUDmqmuOtPnqbBB64HwkL8QhzJurc+vNKrPWMNQl+Iahfr71ZrW8M7rSoC2eoev1tQ86xjNjR45Mnz2q6xoLb9UYNChRhzcSSdR8zfXA+HHpx5F8zp2VmwvXXdO6SZepWQnZ8vE5hhGyeAhHdawW8BS6KLnySmY8+ihDvv71VrVsI7W17HniCT667ju8/PO3eex3UX79vyb33W/w2WofwfJyIvX1mPEIdLMtW6G+HoqKwOlUj1E0qm6dTigqVMt7ozlZMlW2QuPE2epWgrZCCCF6m67rDBkyhPnz5/Ozn/2MtWvXsmTJEgBycnKA9Bm18ft7Ksh7tIjXtx09BpxO+VsvhDi6WSxw0knq+81lqieLEKJ/61bGbdy+ffv45JNPqKysbPlUKZXbb7+9Jw4nOmAY5lGdRThvrs4VlxmseBu83iw8ngBzzmyfaXuoeeooI7PttvOvggd/Q7sM3bo6VbP1y6d1fNxZpRo/uhuWPm2yY6cKptpsMHaMyqo9VGbovLk6l15ssPgR2FcOw4bCuWfD5xvgnXdVAfr4PidPgm8sUPt85z2zXUkIU7MQtOZTE/IweaSP0WMaARNrTg7Drr6aweefz8EXX6TqjTcwm6O+WeEqTgs/yrG2F1k/6Eq+2HMKf/ijzjdvMJg+tYGoz4fV48Gak4Om6y3lJQoGQV6uKo0QD1THA7k1tb3TnKynxB/HWCyMxWIeda8zIYQ40sUzV3N7o+B6s1NPPRWA1atXAzBq1ChANSlLJX5/uhq4IrVNZeqT9YHUu0EIIXpTyVAYMxp27oKPVsH5X5NGZUL0Z90K3IZCIX74wx/y6quvAqqGVDqapkngtpetWWu21O2MRFVG5ciRsGA+R1XdTqtV59yzIT/fRV1dqN3yzs5TqgZt6ba9+CJY/bFqRFZbq2q1Yqqs22VPw7vvmcw+wWxZJ9VxOwrQdvRmY/lzBkuXqVq3pgmfavDvd+CMr0B2NjiaA7N2W+IPcqqSEC7dJBhqLsXgsnDldfm4hucS9fmI+nxgGNjy8hhx/fUUXXAhr/2/vzC88m10VEZtTuQAp1T8lmmOv7I6NJeXX57N1Mk6OgbR+nqiPh82jwePx92qvITT2fp8DlVeItOSnwMxoxGLbh6VrzMhhDjSvPPOOzz11FOsXbuWYDAIgNPppLS0lG984xucfvrpPXq8yspKQNXRBRWQHTx4MGvXrsXv9+NyuVrW9fv9rF27luHDh0uPiS6KV8KYIo3JhBCixQnHw959UFUljcqE6O+6Fbh94IEHeOWVVygoKODCCy9kxIgRrf7JFH1nzVqTBx408fvB41HNsiIR1WTrgQdN7lwkQSXo3jx1tO2BA7DoP2D/fnjyKdCA/HyVcRuJqMtQ1n6qatMWFKQ/blezQZY/p+r6GobKWNV19b3XB397RTU1Ky5W2baRCOzY2fp4yU26mppU/bfWTbos2PLysObkEPV6VQDXNClvLOAt+80UjLqYmfV/YVTDO2ioD25yQ3v5auhXVK8by9bXr2Li10rRNA1iMSJ1dYzKbmBsSS5lu7MpLNQO2QCuP2n7HMjK0ggETHmdCSHEAPeLX/yCpUuXtiQh5OTkoGmqFur777/PBx98wDe+8Q1+8IMfdGm/27ZtY9iwYe2a0gQCAe69916AloCwpmlcccUVPPLIIzz66KPccccdLes/+uij+P1+br311u6c5lHHNM2WUgmTJ2d2LEII0Z9kZ8MxM2HNWvh4jUoosqVpuC2EyKxuBW5fe+018vPzeemllygqKuqpMYkuMgyVAej3q6ZT8UCYw6Eug6+uUcG54449ui/n7s48dWbbp5fH14UhQxLr2O2qFIBhQDSWaGLW3ccnGlWZtoah/sjGj2exqJqxAKGwWqbrqY+XnOkbi7mxWBpTXvavWSzY8vOxejxEvV58jV6iMZOQu5g12bdRVngJU6v+zAjvBy3bFEZ20PiHX1C2chLD5s0jZ8YMtS/D4Mpzann8jw3UVeXhyM3usAFcf5HqOaDrmrzOhBBigPvHP/7BU089RUFBAd/61re4+OKLW9Wb/dvf/saSJUt46qmnOOaYYzjvvPM6ve/XXnuN//u//2PWrFkMGzYMt9tNRUUF7777LvX19Rx//PFcd911LevfeOONvPXWWzzxxBNs2rSJqVOnsnHjRlauXMmMGTO49tpre/r0j2jl5ep/C5tNfSgshBAiYepU9T7Q54PPPofjZ2V6REKIVLoVuPX7/Zx22mkStM2wLVvV5fceT/vaNJqmLoPfs0etdzTX9+rOPHVm2x07AbP9OqGQapRmsais12AwUR6gO4/PirdVeQSLhXZZq3GGAb5G1eQs3fHiJSHy8+3U1XUccIwHcHPHuonZvUSjPux2k0bHMFYP/w82B7/OtKrnKPF93LJNU1kZW37yE3JmzKBk3jzckyYxfarGzTfEePmVavYe8OI188Ce1Sbbt3+R15kQQhyZnnnmGRwOB8uWLWPMmDGtlrndbq6++mpOOeUULrnkEpYvX96lwO1XvvIVKisr+fTTT1m3bh1+vx+3282kSZM4//zzueyyy1pKJQC4XC6WLVvG4sWLefPNN1m1ahVFRUXccMMN3HbbbTjb1hcSHdrUXCZh/Diw2frf/xZCCJFJVgvMPgHeehu+2AgTJiTeNwoh+o9uBW4nTJiQtvOt6DvxZk+eNJc22G3qU7T+3OypL3RnnjqzbSSigqZtLzGJxdT9Fov6PhZLfdy6OnU5X2cby1VUqP3qrfuu0bbUdDTS+fPsrEmTrRSNyWfH9hyGOX04DB9g4nWO4oPhd2Gp3MZp0WcpbPisZRvf+vWUrV9P7qxZlFx1FdOnjmXqZNi1O4LPV0VOgYOJx+Zhc2WlP3AGyetMCCGOTJs3b+akk05qF7RNNmbMGE466STWrFnTpX3PmDGDGc1XnHRWTk4Od999N3fffXeXthPttTQmkzIJQgiR0ojhMGyYKvm3+mP46lmZHpEQoq1uBW6vv/567rzzTjZu3MjUqVN7akyii3JzadXsqa3+3uypr3Rnnjq1rQ0w268Tz4g1DHVrsbTf1jTg//4ENTVmpxvLFRcn9pu8z7bZoNY2gcaeeD4kmptZ2efNx+POIUf3oQV9NDWZZHnGM+yGHzGKTZQvX07jxo0t2zasWUPDmjXknXQSQ66cC4xoHliIcEUFRrYLW24ueqqJziB5nQkhxJEpEom0q0GbSlZWFpFI5JDrif5DGpMJIUTHNA1OPAFeLId9+1TDshHDMz0qIUSybgVuv/a1r1FRUcH111/PggULOOWUUyguLkZvmwLYrKSkpDuHE2lMnKCCfNt3qFqbA6nZU1/qzjx1ZtuxzYk6O3a2XsfhUHVuA4FEwK+pucSB3Q61taqUwoGD6tKUzjZMm3MmPLRYlULQ9cTxksem65Dj7vx5dkXr5mZWvNF87JYcxo/xctnXmpg+FWAqE3/2M3yff0758uU0bd3asn39Rx9R99EqdrhO5ZPsK/A7hlJSAhdd6Gf61AC6qzmAa7d3b6A9RF5nQghxZBo5ciQff/wxfr8/bZPdQCDAxx9/zMiRI/t4dOJwxWImW7ao7yXjVggh0svNhWlTYcMXKuu2ZGimRySESNatwC3ApEmTyMvL49FHH+XRRx9Nu56maWxMyroTPSeR/WhSXaNqbQ6EZk99rTvz1Jltr7labZdqnXjWbSQC+/Yn9qtp6svpgKIuNkyzWnWuWWDw2ONqvxaLCtQaRmIdh0Mdv7eeD8nNzVSJBxsTJxSAkUe0vp5YUxOapuE55hhyZs6kYc0aypcvJ7Brlzp/TMb532OM/312er7C6tDl/OGPRXzzBpg+1U/I71cB3Lw89Ay3OU31HHDpJsGQvM6EEGIgO/fcc1m8eDG33XYbP/7xjxk9enSr5Xv27OGnP/0ptbW1XH311ZkZpOiy3XsgEIQsJ4ySeLsQQnTomJmwfTt4vbBxE+TnZXpEQoi4bgVu//Wvf/Htb3+baDRKfn4+JSUlaTMVRO9qnf3Y3EHXSr9u9pQJ3Zmnzm6bap2SoXCwQmXamqb60jR1axjgch1ew6t5c3XAYOky1agsFlPbeXLgjK9A+QF6/fkQb27W+k4r9sJCjNxcIvX1GH4/mqaRd/zx5Bx7HE/e8xGjdj5HfkxFsXUMxnnfZgzvsKlpDq+/cBlTJw9C1zUMvwrgWrKzsebmZjSA2/Y50NRkYtHldSaEEAPZN7/5Td566y0+/PBDzj//fKZOncqwYcMAKC8v54svviAWizF9+nRuuOGGDI9WdFa8TMLEiWCxyN9nIYToiN0Os2bByvdh3Wdw8kndzvETQvSQbr0aFy9ejGma3HvvvVxyySVobSNPok+1z348dIOrgcQwzC6fW6ptujNPndl2VqnGMTNNVrytGogNHgxvvAlVVaqcQiikAqwWC0SjKrjq86l9tX0JddTwKn5uY8do/PJek48/UfsaVgJXzwO7XScaNRLjKFKX+jc2wuYys2Xc8f3EYmEsFrPLz5mOHhfdZsNRVIQRChFpaMAIBNi9V+fT4MlsHj2bsYH3mVr1Z9yRCrU+Mab532DSurdZdd+5ZJ15KZ5iD6NHAU1NxJqaVAA3Lw/dmpl/JpKfA7GYG4ul8Yh6nQkhxNHG6XSydOlSfv3rX/PCCy+wfv161q9f32r5VVddxX/+53/idDozOFLRFdKYTAghumb8OCgrg6pq2LZN6iUI0V90K/Kxfft2jj/+eC699NKeGo/oppTZj0eANWvNlizHzjbv+mhVhMceT7/N4c7ToeZYjZWW42KqbNj8/OayCEnv+YJBVd4gFFYB3bbvB9M1vEqeD39AbYsJDqe6ZP/z9TD7BIPVH5NiHRNXlpqL2SeYLevEjEYsunnIeU03jo4eF93hwDF4MLFgEN+mOqKxIBabhb2OL7Mv9xRG1f+bKVV/wRWtAcBKBNa8QmDtP1njPp+aCRdy3qVupk/ViDU1EfP7sbjd2DwetAwEcOPPgfx8O3V1ErAVQoiBLjs7mx/96EfccccdfPHFF1RWVgIwePBgpk2b1qnmZaJ/2VymbqUxmRBCdI6mwYknwqt/hwMHB5HlOiHTQxJC0M3AbX5+Pvn5+T01FiFSWrPW5IEHTfx+8HSyedeatSYP/m8jjb7Ob9NbY/V61bFralQGbXI1EadTXZYSDKrs22TpGl4lH8PW3PQsXtfWDKrA7eYyWPup+t6Vfeh1CgogK0sjEDA7PUeH87hYnE7yxgwh6PATijWQpYcwNSu78uewJ/d0hletYGrtX8k26wGwm0GO9b1A6NPX+WjnRZi3nceM41xgmsR8PmKNjVhzcrB6PGgWy+E+bEIIIY4yH374IRUVFUyfPp3x48e33J+VlcXxxx/fat1t27axYcMGhgwZwkknndTXQxWHIRIx2bZNfT9FMm6FEKLTigphwnjYug2GlNzbqn+KECIz9O5sfM455/DJJ58QCoV6ajxCtGIYKqPT74fCQtVsS9ebm3cVqEzSZc+YGIbZbpumJrPT2/TmWJ1OVRbBMKCmtv12nhy1nq8RgiG1XjCkGpO1bXjV9hg+nwrw2mxgtaptvT6IRdX30VjqdXyNKlAcX0eNVev0HB3O4xI3cQKUjM6iPDSEJmshhqZq1sY0G6vMr/H7rIdZmbWAkCWnZRuH2cRxdcvx3XcbB//2Mkb8d45pEvV6CZaXE6mvx4zFuvkoCiGEONIdOHCAW265hSVLljBkyJBDrj9kyBCWLFnCrbfeSkVFRR+MUHTX9h3qw+ScHCgpyfRohBBiYJlVClZLjCzXsXy4ShL1hMi0bgVuv/e97zFs2DC+9a1vsWfPnp4akxAttmxVl/F7PIdu3tV2m7xcrdPb9OZYHQ6VVQuqXEEwmFhmmqrEwPhxKqAZDKjgbjCgMm3vXNS64VXyMUIhCIdVUDh+brqu7gs13x9uLsHQdp3kbSOR1mPqzBwdzuMSp+saC+ZruLLgYH021eZQmiwFeP1WQiEwLA52Db2Y18c/zBdFc4noictTHVEv+5/6Extuv53K118nGgqzY6fJZ+tibFlXj3/ffhXAlY+GhRBCpPH8888TiUS48847cbvdh1zf7XZz1113EQwG+ctf/tIHIxTdFW9MNnkS0oNDCCG6KCsLxo49CMDLrwzB5+vZhCchRNd0q1TCLbfcgq7rfPjhh3zta19j2LBhFBcXp/wHSdM0/vSnP3XncOIo1NCgApseW+rlqZp3xbex20l5aUdHDb96Y6yaBoMGqQZh0SgEgmps4YgahysLFt7auYZpyccIBFTgN/nlpmnqPkg0P4vfn26dWEx9JTvUHB3O45JsVqnGnYtg6dMmW7ZqVEbcaGRjsXgZPshHljNGFBebiy5n+6BzmFj9CuNr/4HVVJm2kdpa9j7xBFv+9BKrnZez0XY6VpuFESNiXHxRPdNnNJdQyMlB07v1+ZQQQogjzAcffMCgQYOYM2dOp7c566yzKCws5L333uO2227rxdGJniCNyYQQontGDK9m/fomYCJPLTO57VvyIZgQmdKtwO3q1atbvo/FYuzZsydt5q182i0OR26uangViajM1bZSNe+KbxMOq9IAndmmt8ea7VLNyerrVDC1platO26sKoUQz6o9VMO05GNYLIkgbPzllfy9YaS+P9U6bcvDHmqODudxaWvLVpOyMtW4TQWSNTQtl4PRHEZYvdijPjQMIpYcviiezxc55zOp+kWmB9+EaASArHAVp4eXMFN7iQ/sV7Kp8RT2l+ssvDXK9Kn1RH0+CeAKIYRoZceOHZSWlnZ5u+nTp/Ppp5/2wohET5PGZEII0T26DhUHfsTIMc/x/Atw8YUmw4fL71QhMqFbgdu33nqrp8YhREoTJ8DIkapWWaG9deZouuZd8W127DQpGNS5bfpirNEozJwJt9wEXq+WNqu208coUJm7oZAKUJumCsTa7aChMnudTjWOtus4HOr7YPM6TmfrsR5qjg7ncUm2/DmDxx5XY7FY1D8G8czfunodizWPwvwc7FEvjpgP0zSpC+Wyf+p1XHnDhbzyg78yuu4tLKhU4XzzAOeHfsuJkb/yfmQuzzwzm//5mY5OjGi9BHCFEEIk+P3+TpVIaMvtdtPU1NQLIxI9KRg02bVTfS+NyYQQ4vA1+t5iymQfmzbn8OjvTH7x3xK4FSITuhXBGDZsWJe+hOiq5Hqo1TWHbt6VvE12ttbpbfpqrNdcrTFlss6JszUmT+r6GNoeI8etgqaRiAoM67qqL2uxqu+t1tTruN1qWXwdNVaz03N0OI9LXDRqsHSZWt9mS2QOW62JDOnqagiELQQs+VRRwkGvG6dT46ILNfZ7C3g1dhN/zPotG21fwSBxjEJjLxeHfsWpZd+n7LW1mPGaEDEVwA2WlxNpaJAauEIIcRTLzc2lpqamy9vV1NSQ29OX64get2UrxAwoGKQaqAohhDh8X7/kABYd3n0P1n4qtW6FyARJPRP9nqqHqjFu7KGbdyVv8+Mfuru0TabG2p1jgCoeH89atVpVFYFJE+HWmxOlF7KymgOjluYsXNSy+DrBAFRVm10a6+Ge64q3VXmEeMA2Wfw8AOrq1D4DQStDJxRw053DOOYEN9u2QzQGTbZiVmTfxrKc31Bm+1Kr/RQbO/D/8ReU3XMPvvXrEwskgCuEEEe9cePGsW7dOoLJnTkPIRAIsG7dOsaNG9eLIxM9oaUx2WQp1SaEEN1VMjTERRep7xc/YhKLSfBWiL7WrVIJQvSVWaUax8w0WfG2avJVXAxzzgSrNf0/5CedaGPCeO2QDb96imGYbNmqslq/eT3s2wcVlTC4SJUVaGyEzWVm2jHEt+/MWGeVJpqZfbLG5N334OBB1TAsnoA6cYLG3CsSDc88HrO5jEHrMg1zr1DHjcXcWCyNXZqj5HG0HXe686moUOUU4gFa00zU3Y1n3obDcOYZcNqXksdqAwqJ5boJaw1k4Qeg3jKMN7K/xyexSzkp8Bzjoh+3jK+prIwtP/kJOTNmUDJvHu5JzZHsWKKEgs3jweJ2SwkFIYQ4SpxxxhmsXr2aJUuW8B//8R+d2mbJkiUEg0HOPPPMXh6d6K54Y7IpkyVoK4QQPeGb12n8858mW7fBa2/ABedlekRCHF0kcCsGhDVrTZY9A3v2qOCkzQpvvAkL5psdZobqunbIhl89Nz6TPXvAH4BQEGhu+hVrDqY6HCauLBXEXTCfVuNO3j5+fqnWa3tuTU0mr/4d/H7weFTpgUgEduyEBx4022S+pt/P5EmQn2+nrq7rb3JSzXFH51NcrAK0sVii5m5iX2qZrsP0aXDi7PbjmTbTTsBeRCASIpd6bKiMqRrLKP7uvotBwW2cGn2W0dHPWrbxrV9P2fr15M6aRclVV+Ea25yuHIsRqasj4vVKDVwhhDhKXHXVVfzhD3/g8ccfx+FwcOutt6Kn+d1vGAZLlizh8ccfp7CwkLlz5/bxaEVXxRuT9cX/f0IIcTTIy9O47lp4+FGTx58wOfMr4HLJh2NC9BWJUIh+b81akwceNNm+XV3yXzBI3W7foYKTa9Zm9nKN+Pi2bVNBU79fBSvDYQgE1PfRqPoerf24D/f8DEMFR/1+VcPN4VABT4dDNS7zB2DZMyaG0bfzc6jzyc9T5RpiMRW0jWfaapr6ORZTy+ekSWqaNFFjzGiIag5qjGLqtWIiODFNNf8VlvGsmfhDJvzsZ7inTm21bcOaNWy68062P/AAgT17EgukhIIQQhw1srKyeOihh7Db7SxevJizzjqLX/7yl7zyyiu8//77vP/++7zyyiv88pe/5KyzzuLhhx/G4XCwePFisrKyMj180QGfz2TvXvW9BG6FEKLnXHYpDB8GtXWw9BkplyBEX5KMW9GvtQ1OxkuVORxQaFeNsJY9Y3Lcsb1XAqEz42toUAHHQFBlkbZls6ngrc+n/uDFx33MTJVJfDjnt2WrykD2eNrXitU01aRszx61Xl+9eenM47X8ORiUr84ZUs/XoEHpH09d11h4K/z3L0zq6yFkOAmaTuwEyLY0UJATYv48Dc/UaeT87Gf4Pv+c/cuX49+6tWUf9R99RP2qVQw67TSGXnklzqFD1YKkEgpWtxurxyMZuEIIcQQqLS3l2Wef5a677mLr1q08+eST7daJN7icMGECDzzwAJMnT+7jUYquKtuibocOURliQggheobNpt6D3f0jk+eeg4svMBkyRH7PCtEXJHAr+rX+GJxsO75t21TA1jBSByHjNVwtFpWFGwolxr3i7cM/v4YGlc3rsaUem92mAsUNDT1zrukk17KtqzfZvbvj89mxA9AgPw/qG1rPmaaperiRcMeP6axSjR/dDUufNtmxU2Xa2mxZjBmTxYLLAkwf48UMh9E0Dc8xx5AzcyYNn3xC+bPPEti1S+3ENKl9911qV66k4IwzKLniCuxFRWpZLEa0oYFoY6OUUBBCiCPUlClTeOWVV3j33Xd555132LRpE/X19QDk5eUxZcoUTj/9dL785S9ndqCi0zYlNSYTQgjRs047FUqPg7WfwpLfmfz0xxK4FaIvSOBW9Gv9JTiZTl2dia8x0Wwrfuk/tA5IGoYK3JqmyszNylLjrqg4/PPLzVW1YyMRldEaDKp9Wyyq1EA4opbn5nZ8DvHAaywWxmJJ3zwtlTVrzVbBU0wVxLbZ1JhSnU84oubIk6OC2MFQojmZ0wHZLrWPQz2m6RujZQPZRJuaiDY0YEYiaJpG3gknkDtrFvUffUT5s88S3L8/PgHUvPUWte+8Q+FXv8rQyy7Dlp+vliVn4EoAVwghjkhf/vKXJTh7hNgsjcmEEKLXaJrGtxfCDTebvPUvuPwykxnT5fetEL1NAreiX2sbnGyrs8HJ3tLgVUFZXVdfHYkHJy2WxLiLiw///CZOUA2/NpepMgyRSOIYNhtYrSpjdeKE9GNKbiIWMxqx6OYhm6IlbxsvVxDPKgY1HwcrYKiugrBtz8duU8HqispEJrKmqe9DYXV/jrtzj2lHzees2dlYs7OJNjaqAG40iqbr5J9yCnknnkjte+9R/uc/E66oAMCMRql67TWq33qLweeey5BLL8Xq8aidSQBXCCGE6PekMZkQQvSuCRM0zv+ayav/gIceMfndI5kpWSjE0UQiD6Jfiwcnvb72ZQhMU2WjjhzZcXCyN+XlgiUp01bXU5dL0DSVDWu3qwBtfNxzzjz889N1jdknqFqxwaC6z2JRt8Ggun/2Cen/kLZtIlZUqHXYFM0wTDaXmaxabbJps8EjS0xqaxPZxPFgMahzrapqfU7x8xkzJrGOxaLmLD53Fou6PxaD8eN6pui91e3GUVKCbdAgtOYJ0iwWCr7yFaY/9BAjb7kFW0FBYpzhMBUvv8z6b32L/cuXE21qSuxMmpgJIYQQ/VJdnUlFhfqfYtLETI9GCCGOXDd9U71v3LQJ/rki06MR4sgngVvRr+m6xoL5Gq4s1dgqGFKBwmBI/ezKggXztYx9ypeXp+F2q6BjNJq6TAIklrmzVTaqrsHpp7U+v6pqlcHr86nbquqOz88wTFZ/rNaJN7mOxdRtVha4XLD6Y7Veqm2Tm4g5HGosDgcUFoA/oJqixbdds9Zk0V0m9/zI5Of3mfzXD2DrNnWeNlvivOPZvqDKIHh97R+vM04HqyURpI3PVbyMhKV52bbtPfeYapqGNScHx7BhWPPyWtKjNauVorPPZvrDDzPim99Uy+JzFAxy8C9/YcO3vsWBF14gFggkdtgcwPXv2UOkvr5fB3CTA+6by8yUzwchhBBioIvXtx05ArKzJftLCCF6S0GBxjcWqN+zjz1uEgjI+wshelO/LJVQUVHBa6+9xrvvvsuOHTuorq4mNzeX0tJSbrzxRo455ph22zQ2NrJ48WLefPNNqqqqGDx4MOeccw6333472dnZGTgL0VNmlWrcuYiWS/p9PlU+YNxYFdQ81CX9vWniBBg/HjZ8obJc02XbWq3qq74eaC4LsPRpeOc9kwXzNS6+CJYug8qGRLkDdzZcfFH6kgXxxm0FBSqTNxRKBD4dDlV2IF1js640fWtqUpm5fr9a32ODmtrWpRGSqwYkZ842NqqGbMmPVzQKmm5SPBjq6tXy+Dk7HKppWWdq3B4OTdOw5eZidbuJ+nxEvV4wTXS7ncHnnUfhWWdR+dprHHzxRWKNjQDEmpoof+YZKl99lSGXXkrROeegN9e1ME1TNTFLLqEQT3vuB5JLYUSi6nHobCkMIYQQYiDZtFn9YyKNyYQQovddeTn87WWVlLT8ObjhukyPSIgjV78M3C5dupQnnniCkSNH8qUvfYlBgwaxe/duVqxYwYoVK3jwwQc577zzWtb3+/0sWLCATZs2ceqpp3L++eezadMm/vjHP/Lxxx/z9NNP40hVQFQMGOkbUWU2+KTKFZis/VT9bLUAGmBCNKaCmF+/RAXLnlqqgpTZ2Ymartu3w3//Qr3RsFhhUD7EY7+RCDz3Z3A6DS6+sH3WbXLjtlTB144amyVvawI+L8RiBhYL5HgS29bWmjz5FNQ3qLHFX0bWpN8c0WjrrFs1L+r8LrwAji/VWj1em8tMbFa1zfDh6tjxoGKORwWgbdHerVusWSzY8vKwut1EGhpagrS6w8Hgiy6madJX8a74O8ZHr0DQr87T62Xfn/5ExcsvM+Tyyyk866zEDg2j3wVw46UwkgPukUiiFMadiyR4K4QQ4sgRr28rjcmEEKL3ORwa37oVfvxTk2eeNbnwfCgqkt+/QvSGfhm4nTlzJkuXLmX27Nmt7v/kk0+47rrr+MlPfsKcOXOw2+0A/P73v2fTpk3cdNNN3HHHHS3r/+pXv+KJJ57gySef5JZbbunTcxA9r6NGVJmSXK4gZrTOHnW5VObprt3qKxRSwdyq6tZNxMJhtS+bTQVBDaN1s6/FD8M775pcc3XrQFu8cZvXp4Ksyce221WDr3SNzeLbVteoIK660l8dsKKyeRsTlvwOdu9R2wSDar8FgyDLmQg+x7+Sy0TEYiqIfcbpMHVK6z/gbZuqJY+7vqFzTdV6ima1Yi8owPB4iNTX8/knTbz8ikl5eRbR2OW4Bp3DyeYrjK3+B0RCAETq6tj7xBNUvPQSY7/xDVwnnpgI0vaTAG7bUhjxx8bhgEK7etyXPWNy3LGZ//BDCCGE6C7TNKUxmRBC9LEzvwJ/eQHWb4Df/d7khz+Q9xVC9IZ+WeP27LPPbhe0BTj++OM58cQTaWhooKxM/XdmmibPP/88LpeLhQsXtlp/4cKFuFwunn/++T4Ztzj6JJcrGFaigmT5eep2WAkMGgQ7dkDZFnX5fzisslGtVnUbL28QiyUCuMlBW1DB3i1b2zcMmzgB8vJUE7BgsPV+g0EVIM7LSx0AnThBBWHr6uJB20RwzzDU/V6f2rdG6/EerFBB6ubPTVq2MU11G6+zO2YMTJ7U/o93vKlaUxMEAmr9+HaBgLq/o6ZqvUG32diwt5D/fWowO/Y6cTpV4zndlcNbzOf5oY9gOeUCtHgBXyBcVcXmBx/ki+9+l9r33sOMnzi0BHCD5eWqBm7ysj7QlVIYQgghxEBXUan+d7FYYML4TI9GCCGODpqm8Z3b1ZuN199IlKwRQvSsfhm47Yi1+Rrt+O2uXbuorKyktLQUl8vVal2Xy0VpaSl79+7lwIEDfT5WceSLlxyIRGB/OVRXq7qt1dXq52gEwhHw+1Vw0mpt3cgrORnTYkkEQDWtdSA1x92+YViydNmv6RiGSU1N6/va1ueNxSB/EGh6Yp9WqxpPbS0UFSXGH8+yNQy13qBBsPDW9E3VVryVuh5wfF8r3krdVK23xDNUfUEnjiHFRLOLwGLDbleB+PpILv+IXsvUxQ9TdM45aEm1IkIHDrDzf/+XjYsWUffRR5jJJ5YcwK2rw4xG++R84s/LpDhzK3abWt4bdYSFEEKIvra5uTHZ2DHq8l0hhBB9Y8pkjXPOVt8/9LDZ+r2QEKJHDKjAbXl5OR988AFFRUVMnDgRgN27dwMwevTolNvE79+1a1cfjFAcbXJzwTRUpkcolAjGapr6uaKyORjbpoFXXJsYX0vgs62Y0T5LcstW1eysqFBdAh8Pnppm8yXxhWp5qqzKFW9DMKTGlCojMy4SVpm18YAyqPMLh0FvLgeRkwO5HsjKUrfHHgM/ujt907jNZSY7dyZKRbT90jTYuVOt11faZqhGLS4aHSUEbAWYupXsbCgvh/LGAkbefDPTHnqIgjPPbPWgBvfuZccDD7D5rrtoWLOmfQDX6yVYXk64trbXA7jxUhiRSOrl4Uj6MhpCCCHEQCONyYQQInNuuVHD6VQlE/71TqZHI8SRp1/WuE0lEolw1113EQ6HueOOO7A0p/r5fD4A3G53yu3i9zc2Nx9KJTc3Fz1VVK2fyc/Pz/QQBpzenrMTjjcwzHpiMRO7vX2Drnj9Vt2SCHymy4Zt++Fk8s82m4YrS6OpySQWc5OfbycWCxMzGikq1CgoUOURYjEVWHU61fZV1Yn1k3m9fkwz0FLuIDlT1zBU7VkAw9AoKtI4UG607Due3VvfAPn5Ov/vnmw8Hp26OoP8fJ0pky0dljnYtTtANOZvKb/Qlqap4+/a7eJLp2Sl3U9Pis9lVlbrLGHTmkvQ7sFqayAWaCAWc+LJtUNuLkV3343/mmvY+dRTVP773y0PmH/HDrb94hd4pk5l7PXXk3/cce0P2NiILScHe35+r9TAPXG2ybixPsq2RnG5NLSkJ51pmjQ2mkyaYOXE2TkZqXErv8u6Tuas62TOuk7mTAxU0phMCCEyZ/BgjflXwR+fNHnscZMLz5esWyF60oAI3BqGwfe//30+/vhjrrzySi655JIe3X/DALheOD8/n7q6ukwPY0DpiznbXGaiayYWiwo2Jgc244FOq1U16goE1TrxLNd4Tdi4eKC2bQBX10HXTPwBE4sOFksjdXUaFouJRTcJBEwcjkTGKqhjB0O0Wj+Zx2OgabQKxup6+zILFouJ02EyuFiVRwiHE2MePgxuuclk8qQmAEqGqvsP9XLy+42W80x1JU38Pr/fT11dsOOd9ZC2c9lWYySHkN2F1ePD6/W2DNIzYgQjbr+dwgsvpPzZZ6lfvbplG+/Gjay7805ypk+nZN483G3TgBoaYP9+rB5PrzQxm3ulyQMPmhysMMnJUeURwhFVA9Buh5NPjlBXV9fngVv5XdZ1MmddJ3PWdQNpziTALJIZhklZPHArjcmEECIj5s2Fv72irlJc/lyQiy7I9IiEOHL0+zRTwzC4++67efXVV7nooov46U9/2mp5Tk4OkD6jNn5/uoxcIbqjoUHVgC0erMoTxLNVDUP9XDxYBVOHDlWlBNqWNHA6E4HcVJm4mqbWcTjA54ORIxPNxiZOUD97famzdduun2zOmeDOTowjHbd6eZHtUoHakqGqPMLkSfDoYtKWQ+jItKkqmJ2uX1csppZPm9rlXR+2zszliFEWJs/Kx1FSgiU7u9U6WaNGMe6//ovJv/wlnjYZtr4NGyi75x62/vzn+HfsaLfzVk3MkiP53TSrVOPORRrjxkIwoJrKHTigvg+FYNnTsOiu1g3vhBBCiIFm335obFIfSo4Zk+nRCCHE0SkrS+OmG9R7w8ceD+D1ynsMIXpKvw7cGobBD37wA1588UUuuOAC7rvvvnYlDUaNGgWkr2Ebvz9dDVwhuiNeS9RmgxHDYVgJDB2ibkcMB6tNLb/oAlX/NV57tniwunU4VOOxeImCtqUDTBMcdqiuAVcWLJifuJRf1zUWzNdwZanlwZDaRzCUev1kVqvONQvU8SKRRAA3FktkBefmQk3SfkNh9cYoLxduuUnDalWDNQyTzWUmq1ar20M1FZs0UWPMaPV9JNI60zhek3XMaLVeX+nKXOpWK9ZBBezyDWHtBis7dibOOXv8eCb88IdM+p//wT1tWqtjeNeuZdOdd7L9/vsJ7NnTegDJTcwaGnosgDurVOPB+zWuuVo9j5wO9SHCkGL1QcL2HfDAg50P3nb1sRZCCCF6W7wx2YTxYLVKqQQhhMiUr52rmkR6vSZ/WibvE4ToKf22VEI8aPvSSy9x3nnncf/997fUtU02evRoBg8ezNq1a/H7/bhcrpZlfr+ftWvXMnz4cIYOHdqXwxdHiXim5vYdUGhX2bFx8UzNcWPhogs1RoyAZc+Y7NkDwagK6I4bq9YxyiESVYHLeBmFuKYmmDkTrrm6fcMvlVWZ2K/Pl9jvgvnpG4QBzJurAwZLl6mAbCymjp3jhmsWwMQJ2iH3u2at2bJOpPmcRo6EBfPTZ+PqusbCW+G/f2FSX58IGsfLNeTnwcJbUwece1Nn5zJxzjZihh0HOuOG1HPp+WGmT1XruKdMYeJPf4rv888pX76cpq2JDnH1q1ZRv3o1g049laFXXomzpCQxiFiMaH09UZ8Pa06OKqHQA/W333lPBaKHDElkdjsc6jlbXaPO+bhj6XDOD+exFkIIIXpbvDHZFGlMJoQQGWWxaNz2LXVV3wt/ha9fYjKsRN4nCNFd/TJwGy+P8NJLL3HuuefywAMPpAzaAmiaxhVXXMEjjzzCo48+yh133NGy7NFHH8Xv93Prrbf21dDFUUZlaqqsxepqFQyLB15DIVVWIJ6pOasUZkw3eXo57C9XWbknzIIf/0yt52tMBGx1XWXxZmWp72+5KX3DjVmlGsfMNFnxNlRUQHGxKoVgtWoYhsmWraqkQ26uCjQnB+fmzdW58HyDu38IVdUaRYUmv/gfcLtVsPC4Y0m7/Zq1qoaq3w8eD3hsKvAcz+K8c1EioNd2HMcdCz+6W2Pp0yY7dqrtbDb1Ce01V2scd6yqH5xu3L1lVqnWpXPOytIIBJxsKB/C3qea+M71DUyfpGpAaJqG55hjyJk5E+/atexfvpzAzp3qQKZJ7XvvUfv++xSccQZDL78cx+DBiYH0YAB3y1bYs0eNt205Dk2DnBy1fMtWVQIjla481kIIIURfijcmmyyNyYQQIuNOnK1xyslWPvgwwu+eMPnZj+V3sxDd1S8Dt4888ggvvvgiLpeL0aNHs2TJknbrzJkzhylTpgBw44038tZbb/HEE0+wadMmpk6dysaNG1m5ciUzZszg2muv7etTEEeRWaUaF19ksnQZ1Dckskfd2XDxRYmA1vLnEtmt8XWWP9tcniDWuuZrPPAbjaqgrtd7qExIWmVCvvEmzD7BYPXHdJghedcPDD74sOWo7N0H514Ap5xscP+9OrqupQzmGYbKvvT7VcmHjrI4P11HmkxNjV8/oLULkn66Tn1Km6nMzq6cs65rSeeczTNvuPjl7EZijb6WB1TTNHJnzcJz3HHUr1pF+bPPEty3L75Tat56i9p33qFwzhyGXHYZ9kGDEgdNDuC63Vg9ni4HcBsa1Dx6bKmX220quzhdU7muPNZ9nSUthBDi6BaNqg+GQRqTCSFEf3HHf7q47MoG3v4XXHm5yfRp8h5BiO7ol4Hb/fv3A6rUwWOPPZZynWHDhrUEbl0uF8uWLWPx4sW8+eabrFq1iqKiIm644QZuu+02nMnXrwvRw9asNfnby2CxqNq18YzbYAj+9jJMnGCyZavJY4+ry9UtFpVFaxjgD7TeV3JGZLzmbCAAOTkm0P4PXrpMyM1lsPZTVZu1oCB1huRzz5tJQdvWPvhQBXXvvzd1kLCzWZwvv2Ly7J/pIFOzdTmH/pzZ2alz3quxo8LDpPFuol4vUV+i25mm6+SffDJ5s2dT+/77HHjuOUIHDwJgRqNUvf461W+/zeBzz6X4kkuw5eYmDhCLEW1oINrY2OUAbrwOcySigq1thSNqefLhunzeh8jYFUIIIXrDzp3qg+7sbBgxItOjEUIIATBpopXzvgZ//wc8ssTk0cUqmUUIcXj6ZeD2vvvu47777uvSNjk5Odx9993cfffdvTQqIdpLzkYsKmod2MoxVTbiU8tUNohhqHIA8XXi1T+iUXWbKigWD96aKWq7d5QJGY2q48UM1WVZ01pnSP5pqcnaTzs+tw8+hGDQwOlsHyDsbBbny6/S6UzN/p7Z2ZXMVc1iwZafjyUnh2h9PbGmppb1NIuFgi9/mUGnnELNv/9N+fPPE6muBsAMh6l4+WWq3nyTweefT/FFF2F1uxMHiQdwk0sopCkjE9e2DnPbDwfidZgnTuj+eQshhBB96YtN6nbKZLnqQwgh+pMbr9d4622T9RvgnXfhK6dnekRCDFzd73ojxFGsM9mIW7dBU6MK1Hb0QWPb4Gzyz5s2d/7YwaDKrrRYIBxWmShtx7RxU+fOb/Ejqe9PzuJMJdx8f3V1x3Ozeze8ucJk1WqTN1eY7N7duczOTOjMObfNXNWtVuyFhTiGDEFvk+6qWa0UzpnD9IcfZsQ3v4k1L69lmREMcvCFF9iwcCEH/vIXYoE2qdmGQbShgWB5OZG6Osx49D8FVYdZw5Wlgt/BkArqB0PqZ1dWog5zT523EEII0Rc2blL/LE2dkuGBCCGEaKWoSGPeXPX9Y4+bRCIpMpGEEJ0igVshuiGejWjrIBsxEgETVR6hI/EM2/iXroPVmj7Ym+7Y8QxdXU9k7EJz+YYgRMLpg3Bt7StPfX88i9PrSx1w9vmgsECdd7q5iUagtg5++xD85L9NfvuQ+jnd2Ow2db6ZyuzszDmPHJk6c1V3OHAMGYJ98GC0NhOi22wMPu88Zjz6KMO+8Q0sOTkty2JNTZQvX86GhQs5+Le/YSRH4UEFcL1eguXlhKurMdJM3qxSjTsXaYwbC8EA1NSq23FjaVeuoifPu/VQTTaXmax8P8zmMhPDkH/ehBBCdE/8g+ipUyXbVggh+pt5czUG5cO+/fDSy5kejRADV78slSDEQNGp+qE2CAUT9W2TJQdldV0tjzcuA1XywGpJnUmS7tjxzF7DULcWCzT5obZWZeAahvrqjOElqe9XWZyq7mx1jcqGtdvU+fp8Kovzwgtg2dOp56bJDwcrVFC5yZ+43zDU/UN1yHa13ibTmZ2pztmlmwRDiXPuKHMVwJKVhSUri2hjI5H6+lYd6XSHgyEXX0zR2WdT+fe/U/G3vxHzq8mJer3sf+opKl95hSGXXUbhnDnoyQFg0yTW1ESsqQnd5cKWm4tut7c69qxSjeOOpV0zuENdWtqZx/pQ560a6KmGczGjEYtu9mnDOSGEEEeepiZ1pQ7ANMm4FUKIfsfl0rjxm3D/r0z+708m554NOTnyv78QXSUZt0J0Q2eyESeMh2x36lq1bbNp40Hb5EzZMWNg8qT2f+DSHdvpVMHiWEzVt43FoKJClUyIH8+ZIsicyrdvS7/sUFmcF1+opRyfaUJVVeL8rFY1Xmvzx0ixmFredpvOZnb2prbnXFVtdjpzNZnV7cZZUoI1N7fdk8CSlcXQyy9n+qOPMuTrX0dPaq4Yqatj7+9/zxe33071ihUpSyQYfj+hAwcIVVa2y9DVdY3JkzROnK1uO1sPsDsZu/GGc9u3Q1YWFBVqZGUlGs6tWSuZt0IIIbpu02b1/8HQIZCfL4EAIYToj847F8aMBq8Xlj4t//cLcTgk41aIbuhMNuI3Fmhs2Wry2OOJ2rO63tw8LKa+dzoT2bBxmgb5+bDw1tQBto6ObbWq/eq6qmNqGIljWiyqkVpNrWocls4pJ5OyMVmyQ2VxphqfrzFRdze5WZumqZ8jEbXc64Mcd9cyO/tC8jnHYm4slsZOZa62pek6trw8rG43kTYNzACsOTkMu/pqBl9wAQdffJGq11/HbC6FEK6uZveSJex9/kVGzL+SglNPbdekzAgECAUC6FlZKgM3VUr4YZ53ZzN2UzWc03Wt3zScE0IIMXC1lEmQbFshhOi3rFaNhd+CO//L5PkX4NKLTYYOlf/7hegKybgVops6k404b67OrTerQKRhqOCkYaifv3UL3Ps/GsceA7kelZWY64Fjj4Ef3d1xNmO6Y0+eBLfeDCNHqIBwvG6uwwFDisHlghHD1bFSOeVkuP/ezv166CiLM9X4GhvVsngAu/W+EuUkGhu7ltnZVfGaq6tWm12uuRo/51O/ZO9S5moqWryB2dChrbJr42y5uYy47jqmP/II+uxzMLREgNaoPsjuhx7i09v+k7oPP8Rsm9INRJv8bPrwAB+9WcGm9YFu1ZbtasZuZ5r3ZbLhnBBCiIGrpTGZ1LcVQoh+7aTZcPws9R74d7+XrFshukoybsVRyTDMLtf67EhnshHnzdW59GKDxY+opl/DS1QpgnhW6zEzTVa8rcoaFBfDnDPVJ5SdOXbqbXVGjjD4yX+rDFyHHQYNah1AGz5MZT1muyAYgsJB8OtfgcfT+c90wmGDp5fD/nIYVgJXzwO7PbF927n5ZK3Js88lgrbxoLKmxTMy1c9fOkUFnrsyF52VXHM1ElW1c/uy5mrK55/djqO4mFggQKSuriW7Nm5LxSCeqroRS8FFnBj6C2N8/0ZD/eNjVu1jx69+RdaYMQybNw9PaSmaprFho8nLr5iUl0M05sdq8VM83MnXr87j+JPTRO17ULyBnqe5HG8wCCYmGirL3G5T2dSZajgnhBBiYDJNk40b1feScSuEEP2bpmncdivccLPJirfgystNpk6RD92E6CwJ3IqjTm8F7VQ2Yvrly58zWLoMGptUYPLTT+Ff/4ZrFhhMnKCx7BlajemNN2HBfPOQY1Ln037bkqEGK96CQECt5wNq66CgAAblq/sOHFSZrXV16ufqarjwUrjgPIM7Fx06ePvAgwav/qNVjy2efKr99slzk5Nj8sILaqzQupZtclB59Wr4+JOuzUVnxGuu+v0qE9TTXJ4hXnP1zkW9G7w91PMvVQMzw1AB2EAA8osG86m2kK2hS5hS9WdGeD9oCeAGdu5k2y9+QfakSYRPuYr/+/d0AgFwu1XwPhqF/buD/P7XBzFvcVL6pTws6dKue0C8gZ7XpwK04TCAqgdit6uM80w2nBNCCDEwHTyo/qexWDJb+14IIUTnTJig8bVzTP7xOjyyxOTh36qArhDi0KRUgjiqtG2UVDCIPmmUtPw5g8ceV/VddV3VctV19fOS38H/++nhjSnd+Wz4Av72CjS1qWFrGKrxV21dImjbViymtn3gQaP9wiQPPGjwt1daB207s/3kSRqDixOZtsmSs289np5/fNrWXHU41OPgcEBhAfgDquZqd8oJdKQrz7/kBma79miUl6sAbPz/m0ZHCR8P/x4rxj7A3uzZrY7TVFZG5P9+ypn7f8J4Rxl2uzpPux3y8yAQhJf/GiR4sILgwYPEOip23A0TJ0BennrOBYNqDPH6y8EgVFWr5fKmWwghRFfE69uOHwcOh7zxF0KIgeDGG1Svi88+h/dWZno0QgwcknErjhqpGiUBvd4oKRpVmbaG0boZl8Wivo9E1KXiEyaA3oUxpTsfuz3R/EvTVKCszVX3VFenz3SN3//qP+C73zZalT2IC4dVpu3hbp/tUtukKMkKqDHHy7325OPTlZqrHWVPH47Def7FG5j57Nk0mfW4re0j7V7nKD4acSefVG3n6/nPYm5b17KsJPwFJbt/yEH3cXxRNJf6rHFoGmRnQ3k57NoNY8eECFdVodntWD0erNnZPXvizeKPd3JwPt3j35/0dFkVIYQQ3Zeob5vhgQghxBFuy5YtXd7G4/Hg9XpTLjvj9GJef3Mw//tQEHf2Ftr0V+4xBQUFDB8+vHd2LkQfk8CtOGr0dtAuXYBnxduqPEI8UJtOo0+NrbNjSnc+Xp8KEkMiQGazqcvk44GydEHb+M+mqTJnn14O11/bfqxPL09k2nZ1+y1bob4eBhepscabp4Eat66r22AwEbztqaBq25qrbfVmzdXNZSrT1mZTgXWHIzF3hzq/vEFWIo4C6rQccvV6rEag1fJIFBqzxpF36w8ZHCpjyxPPYO76omX5kMZPGdL4KftzTmRj0ZXU20fSFFPnGmeGw0Sqq4nW12PNzcWSnd3ty5fij3VRocouD4cTzxuHQ2UQ19f3TqC8J2S6FrIQQojU4hm306QxmRBC9AqvtwLQuOWWW3p0v7ruZvyk1VRWDeaKucuoq/lDj+4/LivLxapVH0nwVhwRJHArjhq9GbTrKMBTUaECk/ohCpPEa752dkzJ52OaKhgYi0GwdUyv5dg2WyLbMZriWKnsL+/a/Z1ZLz7ugkEq6OxrhGhEjb2+QWXbxmLtSzD0RFA1XnM1ElGBw7bCkd6pubpmrckjS9T5xZuw2ZubxWW71Dodnd/ECer5tH2HHWvBYKxmEGekDosZxjShqUk1chs9CnR9Mrm3/YRnf7me433LKQxtbdnPMN8qSnyr2eb4Ep9kX4nLNRRo/abXjEaJ1NQQbWhoF8DtavZp8mOdmxvPBNcBA4dDPRdravtnc7JM10IWQgiRWjRqUtacACaNyYQQoncEAw2AyXnn/5IJE4/v0rZOh4Ng/BLQFPbtC7GpDEaO/jnz5y/Aau24RF9XVVZsYfkz36KmpkYCt+KIIIFbcdToraDdoQI8p5+uAnWGQYeXgthSvBo7GlNL4ydvIpsxVd3Y5KxOTVMB0c5epj6spGv3d2a9dOOGRFBZ19vPVU8EVRMBUFWeoG2JB58Pxo3t2Zqr8eeH16eOFw/gh0IqqF9crIK3HZ2frmssmK+eT9U1kJPjJGIbihlsJOZtINsZ5aILtZYg6pjRGtrYGby4ZzpTrGuZVv0c+cGdAGiYTAitZFzoA1b9+HS2XXQ5X5s7pN0x2wZw15W5eHo5Xco+bfuaczrBatVaPjgIhftnc7JMlVURQghxaNu2q/8dcnJghLwfF0KIXlVQMJbhw4/p0jZZWVkEAoG0y0tKoPwANHit1NbNoPS47o5SiCObNCcTR4140M7rS90Uy+dTy7sStOtMs6uyMhWYi8U6Dpa6c7o2ppbGT9UqCKhpKtjZNuDZNjgZi6lL1OMBxFRzAWo/V89LPdar5yWO09Xt0407Pp54uYR4mYTOzEVnqQCohitLBd+CoeayDCH1sysLFszXeiwYl/z8GFKsnhfx87NY1Pe1ter2UOc3q1TjzkUa48aqrOqaWvCF3RROKOHG7+QzfXrigdd1jYsu1MjK0tgUm8Xznvv4m30R1VriHa6OwZTgvyj483d494ePE66tTXlcMxrl0/eq+d19+9m7tZEsp9nppnG98ZrrC10pqyKEEKJvxcskTJksHcmFEGIg0nWYVaq+/2Ij9FKfZCGOGBK4FUeN3gjadSbAs3cvnHuu+gMViSQCuLFYIrs0NxdqujGmeC3b+FeyeG3bWEwdX9fhGwvgwvNbb982W/eC80jZWAzU/Recd/jbpxt3fOyxGASCvRNUTRUADQZUpu2di7Qevfy97fOjYJCa/3jGqa43Z95Wdu78ZpVqPHi/xs//W+Oe76vbBx/QOf60PJwlJVjc7pZ1p0/V+OYNGsOHga9JZ6v1JP7k/BV/d3yHeq24ZT0LMbI3vcGGhQvZ++STRNrULTAMk5dfMQkHogz31FCgleMwG3HYzZYPJ5Y9Y2IY7YO3qV9zZq8FyntKvMSDrYOyKpFo/yzxIIQQR7p4Y7Jp0phMCCEGrJEjVc+TaBQ+/SzToxGif5NSCeKoooJ2tNSj9fnUpdrjxqoAUleDdp2tm3vSbI3BRSZLl6lGZfFyBTluuGYBTJygdXlMLY2fitQ28ZIDmgYulwoKNjWp4KdhtD7evLnxgKrBq/9oXU/WYlFB1zsXdRx0Vcu7vn1H487KUlmpTU2qWVuj1r3HJ51ZpRrHHUuX6rUejrbPD5dLZd7W1KrzjjeRG1IMt32rc+en61rKRl6axYK9oADD4yFSV4cRCDB9qkZNjcnGTfEsXwvbtdPY6TyZyeF3mB38Cx6zGgAzEqHylVeo/uc/GXzeeRRffDFWt5tdu6G8XGVpaxpoZpSsSA0OrYGQNZccdzZ79mhpG4y1fc01NZlY9J5/THtSpmohCyGEOLSNG9Xt1Cn97++HEEKIztE0OH4W/ON12LpVfRiXJ/9bC5GSBG7FUacng3ZdCfDMm6tzxWUGK95O1DadcyZYrSrA2dUxJTd+ysuFYFAFUC0WVWbAMFSA8JyzwZ3d/niggqvfvs1g8SNQWWll8OAo374NnM7OJePfuUjnu982eHq5akQ2rESVR+go07ZVwyqPKhUQjqgg96BBiSDuNxbAiOFarwVV0wVAOyPepCsWC2OxmGnHl+r54XJBlgt83kRW8aL/6LnO2LrNhmPwYGLBIJG6Omprg4B6XsRrG0dNK1/Yz6LM/mWmht7ihNALuM16dW7BIAf/+leqXn+d4osvxjvqPKIxJ9Y2fy305gCu3WzgQNhDfX0ObRudxc0q1ThmpsmKt8HrdeLxBJqfi/3zTXcmaiELIYQ4NK/PZM9e9f2UyZkdixBCiO4pLoYRI9QVqmvWwllnZHpEQvRPErgVR6XuBO2SdTXAY7XqnHt2z4wpVeOnZPGg8VlnaEyelDpAtmatybJn1OX8MSPGjp2qUPyC+WanMyHtdp3rr+36uKtrVBA3nnUKUFunltttMH1a+nFnkpozs3nOGrHoZtomXameH36/CqiHmsti2KzwxB/gmqs7P+edYXE6sQwdyqDRXgytgVgs2q6cRVSz8an1XD7Xz+DW498ke91LRL1eAGJ+P+XLl6O5XuVY2yXszDoHnO0/nYhGonioJSfsJerLw+J2t6s52Pp5FsSiwxtvdu15Fg+W92aGdFz7ZnDqORmOqNd0fy3xIIQQR7rNm9XtsBLIy5PfwUIIMdAdXwr79qn3CRWVUDw40yMSov+RGrdCdENfN7tK1t3GT2vWmjzwoMn27apEQVGh1qmGUz0xbrsd6uoSQdt4nM8w1P12e//MZuzqnLV9ftTXw4GDKjvaNMFqhfx82LGz9+Z8znluAlkl+Mw8DFNvVU/YNNWcW5wOZt9+IdMffZSSefOwuFwt25t+Hyc0LOWCXbcztuY1dCOSWGaqshYlJTB6eIxIbS2h/fuJ+nyYzU/KnnierVlrsuguk3t+ZPLz+9Ttort67zkKfVsLWQghROfEG5NNlfq2QghxRMjLgwnj1fefrOm4mbcQRysJ3ArRTZkK8HQnaGwYKmvU74fCQpWxq+saDgeHbDjVXYZhUlPT+r62f6BrauiVY3fH4c5Z/PkxdgzU1atyFrquMqSLi9U/K70557quMahAI6DlUquV4MeDYWqt5jwvD3RNw5KVxdDLL2f6kiUMuewy9KQ0bpdRz3EVf+Tsbd9mVO1bhENR6uohywkXXZh4npmxRAA33OBl2dNGt55nbQO/BYPokw8YIE0zuPslaCuEEJmycaP6nS/1bYUQ4shx7DGqrFtlpSqbIIRoTUolCNED+qrZVarjHk6ztS1b1eUoHk/r8g7Q3MQsRy1P13CqO1a8rYLLuk67S/fjmaDBkFovXVmJTOjOnM0q1cjKMvn+3WCzqaCtw5HYT2/O+ZatEAlDfh40eC00GfkEyMFl1pOlNeF2q+W7dsPYMWobq9vNsPnzGXz++VS89BKVr7+OGQ4DkB2t4fiDjzHR8iK7Rl3J8deeyvSp7f+UmLEYWz+tpWFHA4XZHjTcJNfA7cw5tw2Wx+fL4VClJ6pr1HP/uGN7t2xCT78GhBBCdJ1pmi0Zt9Mk41YIIY4Y2dnq9/rn6+GTtTB8uHqvKIRQJHArRA/JVIDncILG8QZhHlvq5XabCgI3NPT8eCsqVLDW1nzstoFbUHV7Kyp6/tjd0d058/k00Ew8ntT/iPTWnMfHXViovnyNEI1YsdoKyXV5cEbraKwL4vO139aWm8vwa69l8IUXcvCFF6j+5wrMWBQAT6yCmTsWoz/xInVXXUXeiSeitTkxnw9i0Sh51ELYS9jiwbAk2sUe6pwz+QGDEEKI/qX8ANQ3qP8fxo/L9GiEEEL0pBnToWyLel+wbRtMnJjpEQnRf0jgVogjQHcbm7UVb2yWm9t+WXcVF6ugm2GoS2LaBuRiMXVfcXHPHztZV5tddXfO+nLOk8+trt7EakkcN9eTvKad+lgxUUeAnPwGIJJyf/ZBgxh5000UX3wxB/7yF2r+9a+WAsXBffvY8atfkTVmDMPmzcNTWtrSnCwnB6wWiEbBrkdxRmvRacSPm7DFTTiidXjOmfyAYaDry2ZuQgjRF+LZthPGg90uv8+EEOJIYrfDMTNh9cfw6ToYO1b1AxFCSOBWiKNSvLHZ9h3qkvPk4Gm8sdm4sb3TIGzOmfDQYpX5qevtjx2LQY5brddb1qw1W8pLRKIqYDpyJCyYT9ryEt2ds76a87bnZrWqZmiBIAwdku64WUw5xYXhbyJaX48Zi6Xct2PwYEYvXMiQSy7hwJ//TO3KlS0p04GdO9n2i1+QPWkSJfPm4Zkxg9GjVOOyPXsh39ZcCsOM4YzVYo968Xo9jBznZuKE1HOeyQ8YBrLDeX4LIUR/11LfVsokCCHEEWnyJPUhXWOjup05I9MjEqJ/kMohQhyFUjc2MzvV2Ky7rFadaxaooG0kogK18YBtJKLuv2aBWq83HG6zq+7OWXeayXXn3FxZYAJ+Pxw42PFxrW43jpISrLm5HRaWcpaUMOZ732Pqr39N3okntlrWVFbG1p/8hC0//jH+LWVcdKFGllM1ZguFVY3CUBjq66IU2GqZf3Y5RlMjZooWsvFgt9fXvoFdPOg8cmTvfMAwUGWymZsQQvSmDRvVrTQmE0KII5PFAqXHqe8/X6+ST4QQErgV4qilGptpjBsLwQBUVZsEAyrr885F6Rub9YR5c3VuvVll1hqGCtgahvr51pvV8t7QttmVw6Hikw4HFBaAP6CaXRlG6uBWd+es7fY1taTd3jBMNpeZrFqtbtONqTPnNnQIuFyqNVjA3/FxNV3HlpeHc+hQLG53h8fMGjmScXfdxeT778dTWtpqmW/DBsruuQfHX3/O9efsYOQICAWhts4kFISRI+CbN2hMn2wQqa0ltH8/kYYGzOYSDNA3we4jSXef30II0V+FQiZbtqjvZ0zL7FiEEEL0nrFjYNAg9f7ws88zPRoh+gcplSDEUSy5sVks5sZiaeyzWpjz5upccZnBirdVI7LiYlUeobcybaFnml11d84600zucC51P9S5DRoEgQDcfCPk52mHrHuqWa3YCwowPB4idXUYgUDac8oeN44J99xD4+bNlC9fjm/DhpZl3k8/hU8/5coTT8ScOxcGT8Zi8TN6VOtjm7EY0fp6oj4fVrcba04OmsXSHOymZT58PjUf48aqoK1c+p8gzdyEEEeqzWXqypzCQhgyJNOjEUII0Vs0DY4vhTdXqN/9U6eo/2GFOJpJ4FaIo5xhmOzaDV5vFI/HZPy4rgVuo9HDD77qusboUZCfpwKYHVyd3yN6qtlVvBlcfr6durquBw47aiYXv9Td71cBOI9NfeIcv9T9zkWpg7edPbfGRjXfnR6rzYZj8GBiwSCRujrMcDjtuu7Jk5n405/iXb+e8uXLaSorS4xv1SrMVaupKzkN//GXM3z+UOypnmexGNGGhlYB3Fml1kMGu/urvmwSlvwcME0IhVSgw2JRWbfSzE30NGmCJ/rK5+vV7fRptDTAFEIIcWQaNgxKhkL5AVi7Dk4/LdMjEiKzJHArxFFs+XMGS5dBYxOYZgBNU43DrllgdKpcQevt6dL2mWig1N+bXbW91D3+3tThUA3NqmtU5ulxx7YPjhzq3LxeFbR9aimgmV2eb4vTiWXoUKJNTUQbGjAjkbTrembMYLc+jTXL1jJ657MURHYCoGEyqPxd8l5eyfJ/nI522uV84/Y0qVOGQdTrJerzYcnOxurxMHlSmqh0P9XXz/H4c8DrVc3/wuHE69JuB7dbmrmJniNN8A6toqKC1157jXfffZcdO3ZQXV1Nbm4upaWl3HjjjRxzzDHttmlsbGTx4sW8+eabVFVVMXjwYM455xxuv/12srOzM3AW/cOGL1SJl5nT5bklhBBHg1mzoPxV2LEDpk+FgoJMj0iIzJEat0IcpZY/Z/DY4yrAo+sqsKPr6ufHHlfLu7K9zdb57TPVQKm/N7vqyqXubXV0bk1NUFXdXEc4p3vzbc3OxjF0KLaCAjSLJeU6Gzaa/PH/YK23lOc8v+Rv9juo1ka0LNcxmB79F5P/9R1e/8/HCdfWpj+gaRJrbCRUXk6oqgojFOr0WDMpE8/xiRMgL0891qGQes5YLOo2FILqarVcmrmJ7pImeJ2zdOlS7r33Xvbu3cuXvvQlrr/+embNmsVbb73FVVddxT/+8Y9W6/v9fhYsWMCTTz7J2LFjue666xgzZgx//OMfufbaawkNkN9/Pc00TeIVeKZPz+xYhBBC9I3CAlXvFuCTtZkdixCZJoFbIY5C0ajKlDUMFXCNB3csFvWzYcDSZWq9nt4+kw2U+nuzq/il7rYOyh1Eoqkvde/o3A5WqHWGFIPT2f351jQNq9uNY9gwbPn56oFvZhgmL79iEgioIKE/oLHVeiJ/cj7A3+3foU5LZNhaiFG0+w02LFzI3iefJHKIa/gNv5/QwYOEKiqI9eM2s/2hSVg80zb+1TaYL8Th6g/P74Fi5syZLF26lH/+85/8/Oc/Z9GiRTz00EM89dRTWCwWfvKTnxBOKj/z+9//nk2bNnHTTTfxhz/8gTvuuIM//OEP3HTTTaxfv54nn3wycyeTQXv3QoNXfcA8YXymRyOEEKKvlB6n/scoYf1H7QAAgFlJREFUL1dfQhytJHArxFFoxduqvEE84JosHoBtbFLr9fT23ckq7Qmq2ZXGuLEQDEBNrbodNxbuXJTZZlfJ5Q5SOVQph1Tn5vOBrkFRIbS9yra7861pGlaPB2dJCdbcXNA0du1W/1i53eqS/ThTs7DJehr/5/wNr9tvxasVJpZFIlS+8gobFi5k/zPPEG1s7PC4RjBIuKKC0MGDxDpompYpmXqOb9kK9fVQVKQC9IYB0ai6dTrVc6C+vvdeW+LokOnf4QPJ2WefzezZs9vdf/zxx3PiiSfS0NBAWXMtcNM0ef7553G5XCxcuLDV+gsXLsTlcvH888/3ybj7m/VfqNupU8Bmk1IJQghxtMjJSTTU/XiNJCKIo5fUuBXiKFRRof7wpWsGpuuqqVFFRc9v31MNwrpjVqnGMTPNFE3VMvuGMF7uYPsOVdM2OSgSL+UwbmzHl7rPKtVaNfLau8/kT0tVkCWV+HzX1ZlsLuu4yVC6RkSarmPLy8PqduMrqyMaa8RqVY9zW4ZmZYP1LDZZvsyM6FucFHkBN/VqWTDIwRdeoOq11yi++GIGn38+lqystOdqhEKEKyvR7HasHg/WflL/MVNNwuLHLRgEebkQDCaOGw/k1tT2fnMyaVh1ZOsPv8OPBFartdXtrl27qKys5NRTT8XlcrVa1+VyUVpaysqVKzlw4ABDhw7t8/Fm0vr16p369GkZHogQQog+d8xM2LoNamth565E+QQhjiYSuBXiKFRcrIKChtHqKvcWhqGWFxf3/Pb9oUGYaqpDq6Y6b7wJC+abGc24VeUOVI3I6hr1KbPdpubE5+t8KQdd11o+nc7NBbvN7HC+TQP+709QU2OmbTLUmUZEmtVK3shCAs4cnEY9Nmv6bNiYZmOd7Vw2WM/gG1PeoGjrS8R8PrXM76d8+XIqXn2VIZdeyuBzz0VPNfhmZjhMpLqaaEMDVo8HS3Z2RruOZ6pJWNvXltPZennfvbakYdWRrD/8Dh/oysvL+eCDDygqKmLixIkA7N69G4DRo0en3Gb06NGsXLmSXbt2HXWB2w3NGbfTpTGZEEIcdZxO9cHdp+tg7acwelT65CEhjlTylBfiKDTnTHBnq2y8VE26YjG1fM6ZPb99phuE9femOj1dyuFQ811bq2pSHjiYfj66MmcTJ8CwUXYOBAdjKSwmir3D8RkWB6ffdREzliyhZN48LEmZZjGfj/1PPcX6hQup/Mc/MNLVkIifTyRCpKaG0P79RL1eTKPjBnu9JVNNwuS1JfpCpp9nA10kEuGuu+4iHA5zxx13YGn+9NPX/MGV2+1OuV38/sZDlJI50ni9JrtUTJvpUzM7FiGEEJkxbaoK4Pp8UopJHJ0k41aIo5DVqnPNAoPHHldZUxaL+orF1JeuwzUL1Hqd3V7XVabtobbvqazSw9G2qU48KdPhUKUJqmtUU53jjs3spd1tyx1053Lzjubb61XZoHabqn+aaj6WPq0iM52ds+TjVdY7iXqGEvA1km02oNO+dsIZp4PdpoMti6GXX07RuedS8fLLVP797xjNDcii9fXs/cMfOPi3v1FyxRUUfOUraNb0f77MWIxIXR0Rrxer2401JwctVWp4H0huEhb/ubfIa0v0hUw+zwY6wzD4/ve/z8cff8yVV17JJZdc0uPHyM3NRR9AqUj5+fkdLv98fRjwMWa0zpgxHa/bFZ7m+kFOh4OsDkry9Cfxcdrt6gNRm902YMYe11dj7419D+R5h47H39/Ppz/NfVeP35/G3lXdHXtPnm9WFhw/K8rK9yN8/jlMn+bssOa5s/mSII/Hc8i/M/3BQBhjf3I0zpcEboU4Ss2bqwMGS5epRmKxWHNjGbcKuqrlvbO9yiql5ZJqn09dWjturHrD31uXVHelqU681ECmJJc76K508z10CBw4oALD6eZjx07A7NqctT1efcRNbTCbLLy4TC8aBrqugrY33tD6eWJ1uxk2fz6Dzz+fgy++SNUbb2A2d12PVFeze8kSDr74IkPnzmXQl77UcUA2FiPa0EDU50sEcDsI+PaU5CZhPl/rUglOp3qNxJuE9fTzTF5boi9k6nk2kBmGwd13382rr77KRRddxE9/+tNWy3NycoD0GbXx+9Nl5MY1DKDiwvn5+dTV1XW4zoer1JUTU6YYh1y3K7zN3TODoRCBftjksq2srKyWcYbjfxPDkQEx9mR9MfbkuepJA3neIf34e2u+elJ/mfvDmav+MvbD0Z2x98bzauwYWLdOve/8dF2QGdPTrxsMhQD1u74n/3b0hs78LRQJR9p8dTYILYFbMWBEo0aKZlIDJ6ukP5o3V+eySw2eXg7V1XYKC8NcPQ/s9s7N67y5OldcdniPSyYahPWXpjqZaN6UKou3vt7kF78EWwfzEYmooKPNBibg8yZql+Z40s9Z2+NZdPjNb3Opr3czNKeBn9/diCcn/TnbcnMZcd11FF94IQf/+leqV6zAjKqM3dDBg+z67W85+MILlFx1FXknnojWUYaZYRD1eon6fFiys7F6POjpTrrdpl1/rJKbhOXmtp8zs5ebhPVkxnZntX1ttW2M1tOvLWmAlnmZeJ4NVIZh8IMf/ICXXnqJCy64gPvuu69dVuyoUaMA1aQslfj96WrgHqnWr1e3M6W+rRBCHNUsFjjuOHhvJXy+HiZOBEfHFdmEOGJI4FYMCMufS2R2xjPXHloM1ywwDpkZKtJLbtIVMyJYdPWHsCtNuqxWnXPP7t6x+6pBWH9oqpPJ5k1ts3g3l4HN2nHjMpsNMNWl7g0NqhxGXEVlvPlZ6jmLH++WhQZfbIzfa6HBN4grb8vhuAn13PujYIdjthcUMPKmmyi++GIOPP88Nf/+d8sggvv2seNXvyJrzBiGzZuHp7S046ZkpkmssZFYY2MigGtP/x/f4T5WLc3JfO0zbhu8KuO2t59nPZmx3RkdnbPd3rPnLA3Q+o++fp4NRMlB2/POO4/777+/pa5tstGjRzN48GDWrl2L3+/HlVTv2+/3s3btWoYPH35UNSaLRk02bVbfT+8gs0oIIcTRYewYWL9BXbm2YQPMKs30iIToGxLxEv3e8udULVVfo6qdarOpW18jPPa4Wi66rm0joaJCrc8aCWWqiVGmm+r0t+ZNnZmPsWPA5YK6ukTQNh4bNQx1v92efs5aB20TYpqNT7YVsejeIrRUUeM2HIMHM/q225j2298y6LTTWl2PH9i5k22/+AVld9+N9/PPO3PqxJqaCB04QKiyEqP5cqpk3XmsWpqTVanMU10Hq1XdBoOqaVlvNCfLpL465/72GhKiI/HyCC+99BLnnnsuDzzwQMqgLYCmaVxxxRX4/X4effTRVsseffRR/H4/V155ZV8Mu9/Yuk01dPR4YOSITI9GCCFEpuk6lB6nvt+4STVYFuJoIBm3ol+LRlWmrWGogG08VhNvhhWJwNJlcMVlhpRN6IJUjYR0XeuTRkKZbGIkzZta68x8zL8Kfvj/Wm/XNshbU6POr+24/f7UQdtkn292Ynic2M0A0fr6lnII6ThLShjzve8x5Otfp/zZZ6lftaplWdOWLWz96U9xT5vGsPnzcU+efMg5MAIBQoEAutOJNTcXi9PZo4+VpiXmK56B2psNyvqD3jrnrjwuQvQHjzzyCC+++CIul4vRo0ezZMmSduvMmTOHKVOmAHDjjTfy1ltv8cQTT7Bp0yamTp3Kxo0bWblyJTNmzODaa6/t61PIqPUb1O30qVKCQwghhDJyhOojUVUFn30GJ5+U6REJ0fskcCv6tRVvq/IIFkvqhjcWi1q+4m0O63L9o1UmGwlluomRNG9q7VDzUVVtEgypD0pMs3UATtPUVzCU+jX483s7N4af3ws//+9sLC6XqkXr9bauyZBC1siRjLvrLpq2b6f82Wfxrl3bsqzxiy8ou+cePMcdR8lVV5E9fvwhx2AEg4SDQXSHgx2VuezZ4zjsx6qlOVmhujIgHFano2kqyOjuxeZkmdIX59yV19DJBd09IyG6b//+/YAqdfDYY4+lXGfYsGEtgVuXy8WyZctYvHgxb775JqtWraKoqIgbbriB2267DafT2Wdj7w82fKH+4EyX+rZCCCGaaZoqkfD6G+p/vunT1P+AQhzJJHAr+rWKChUoStd3SNdVA5yKir4d10CXySZd/aFBWH9o3tRWXzVGS6Wj+fjTUrOlORm0D9yCynxP9Rrcf6Bzx9++E1atNpuP68HqdhOpryeWprt6suxx45hwzz00bt5M+fLl+DZsaFnm/fRTvJ9+St7s2ZRcdRVZzc1/OmKEQjTsrsAZdOB052LSPlByqMeqbXOyUCjRqMvhUHPYm83JMqEvzrk/v4aESOW+++7jvvvu69I2OTk53H333dx99929NKqBwTTNlsZkHXUOF0IIcfQZOgRKSqC8HD5dB18+LdMjEqJ3SeBW9GvFxSo4ZBgqANBWPKOruLjvxzaQZbJJV39oEAaZa96U6fNOJ918tH0Nts10jMXSvwaHDYVt2w597Koq+Pl9ZlKTKZ1ZpQUYOTlE6uowgh03MANwT57MxJ/+FO/69ZQvX05TWVnLsvrVq6n/+GPyv/QlSubOxVlS0uG+cnLAqQdx+INYnA5CllyilqyW5Yd6rNo+1m2T5ELhzD7WvaEvzrm/v4aEED2nolLVxrboMOXQVW+EEEIcZWaVqsDt9h2qgeWg/EyPSIjeI0VBRb8250xwZ6vgUKrmSbGYWj7nzMyMb6DKZJOuTDcIy5SBet7deQ3e84POHaN4cOomU7rdjqO4GHtREZq1c58zembMYNLPf874u+8ma8yYVoOtW7mSL777XXY98gihysq0+xg9Sn2K39gEeiyEK1JJdvgg1ligU4/VQH2su6MvzvlonFchjlbxiycmTACnU0olCCGEaK2wQP3PDpBUMU2II5IEbkW/ZrXqXLMg0YgsHjyKxdTPug7XLEAak3WRakql4cpSDX2CIdX4JxhSP/dmk67Ux6ZPjp1JA/W8u/MadLl0pk3teP8OhwrY6npzk6kC1SF22TMmhqGicxaXC0dJCda8vPR1U5JomkburFlMeeABxt55J84RSe3IDYOat9/mi29/mz2PP064pqbd9rqucdGFGllOqKtX2aJaNISlqZJQxUE8jkCHj9VAfay7oy/O+WicVyGOVus3qN//UiZBCCFEOqXHqSv/9u5TV2oIcaSSaJfo9+bN1bn1ZshxqzfpkYi6zXHDrTer5aLrVFMqjXFjIRhANaEKqKZUdy7qvSZdqY5dU0ufHTuTBup5d+c1+LtH0wdv7fbEJ+VxbZtMJe7XsOXm4hw6FIvb3alxa5pG/kknMfXBBxnzve/hGDKkZZkZjVL1xhtsuP129j75JJE2hVGnT9X45g0aI0dAKAj1Dep27PAQ3/1GFdNKKogFAmmPPVAf6+7oi3M+GudViKPR+i/UrTQmE0IIkU5uLkxo7kG8Zk37K7KEOFJIjVsxIMybq3PFZQYr3lZNkIqL1aXZkmnbPclNqWIxNxZLY6836Up17L5qENYf9NZ5G4Z5yH12Zp10OvsaTHWM3z2qU1lpcMNN0ORXTaRsdigqbH0ME/B5Va3SYBBqa02g9fg0qxV7QXP92/p6jA6Cpy371XTqh59K9KaTcZX9m8jbzxOprlbLwmEqX3mF6n/+k8HnnUfxxRdjbQ4MT5+qMXmSyQcfQU01FBTCKSeB1aJhhkKEKyvR7HasHg/W7Ox2x+3uYx2Nqvn2ev14PMaA+J3XF6/rI/F3R3dem93ZFgbm80wc2fx+k+3N9dFnTMvsWIQQQvRvxx4D27erjNv9+2H48EyPSIieJ4FbMWBYrTrnnp3pURx54k2p8vPt1NX1beCjrxuE9Rc9fd5r1pose8Zkzx6IRElq8kVLBmJn1jmUQ70G0x1j9x6T5JKykQjgh8ZGlSkJUFsHNTUqkzfup/8N111rpMzo1e12HIMHEwsGidTVYYbDKce0YaPJy6+YlJdDNKZjtZzJsNGncd5Jb6O9/wKRujoAjGCQg3/9K1Wvv07xRRcx+Pzz2bQri5dfoXlbsFpg5Uq46EKT6VPVnJnhMJHqaqINDVg9HizZ2WhJHdwO97Fe/pzB0mWqzq5pBtA0eGgxXLMg9Xz0J33xuj6Sfnd057XZ3df1QH6eiSPXps0QM9QHhIMHD9wPZIQQQvS+7GyYMgU2fAFrPoVhwzI9IiF6nvxXLoQQA9iatSYPPGiyfbuqFZuqyVdn1umtcaxZC+n6gEWjsGOnCtpWVbUO2oLKzn3scRVcSsfidOIcOhRbQQGaxdJq2YaNJn/4owpqOZ2Ql6tud++38eQX56Dd/jDDr70Wq8fTsk3M76f82WdZd8tCPvz1S+zfHWq17Z698Ic/mmzY2HrOzEiESE0Nof37iXq9mG1PpguWP2fw2OPga1Qlfe12detrPPR8iIGlO6/N7r6u5Xkm+qvP16vb6ZJtK4QQohNmTAebDWprYeeuTI9GiJ4ngVshhBigDENl2/n9UFiomnu1bfK19GmTpU93vE5yI7CeHIfN1j4Y21YkooK2bdlsKpBkGLB0mbqcuyNWtxvHsGEtDcwMQ2XaBgKQn58IStntkJ8HgSC88oadogsuZPqjj1Iybx4WlyuxQ7+P0rplzK++jSmNr2El0mrbl19JPWdmLEakro7g/v1E6usxY7FDzl+yaFRlQBqGmgOLRdX9tVgS89mZ+RD9X2dev+lem93ZFuR5Jvq3dZ+p5+2xx0i2rRBCiENzOhMf9q399NDvP4QYaCRwK4QQA9SWraqJl8ejgi7J4k2+duxQWa0drdO2EVhPjWP//q7vS9NU4EjXE4GkxiZY8XZntm1uYFZSwu6qHMoPaLjdqc87O1uVQNi1GyxZWQy9/HKmL1nCkMsvB4ezZV1nrIFjD/6Rc7Z9m9F1K9CJtto2LcMg2tBAcP9+wjU1GJFIp85/xdvqfOOBtLbj7sp8iP6tM6/fdK/N7mwL8jwT/VckYrKhuTHZMTMzOxYhhBADx7SpKoDr80F5+aBMD0eIHiWBWyGEGKAaGprrWtpSL7fbVKOvSKTjdSJRta+eHkck2vl9WK1q+3jQNk7XVYfYiorO70uzWPAxiBqGgj0r5To2q6pb6/MljcHtZti8eVi+/QifZV9ITEuckCtaw6wDv+Psbd9jXNO7xKKxVtumZZrEGhsJlZcTqqrCSFOLN66iQp2vnuav8+HMh+ifOvP6Tffa7M62IM8z0X+VbYFQCHI9MHpUpkcjhBBioLDZEh/47dg1BE1L/R5AiIFIArdCCDFA5eaqAGS6ZM5wRAVwbLaO17FZ1b56ehy2Lra/jGfZJjMMdV9xcdfHZLHZaNAG02QvJqbZWy2PRFWzsZyc9tt6huSyNv8bvDLqYbbnn4NBonauO1LBiQcWc3n1Ihw7PuxSLVvD7yd04AChigpiwWDKdYqL1fmm2+3hzofofzrz+k332uzOtiDPM9F/ffa5up05UzUhFEIIITpr0kRwZ0MoZGNQ4Y2ZHo4QPUYCt0IIMUBNnKA6yHt9KjsumWmqbNKxY2HsmI7XGTlS7aunx9HZrq5OJ8RiqccXi6l/wOacefhjimpOmhxDCdgKMDQrpglNTVBSkjqja/QotawqNIhPh9zIG+MXszPvTIykP5l50f00LX2QTXfdRf0nn2C2HXwHjGCQcEUFoYMHiQUCrZbNOVOdb0/Ph+h/OvP6Tffa7M62IM8z0X999rnUtxVCCHF4LBY47jj1fWHRd/D7JdwljgzyTBZCiAFK1zUWzNdwZUF1DQRDKlMuGFI/u7Lgmqs1rrm643UWzNe6ldmUbhzhSPpLseNGjYJvXq/Wi0QSgaRYTP2s63DNArBau/bnKtWYQpqbarOEcm8eTqfORRemPm9d17joQo0sJ9TVQx1FfDLkW/x95P9v777jo6rSP45/7sykTToJJaG30BGpgljA3kBRZFVce8O2ruiqq/52URd2baso9rKKBVEQC66sYgOkSFMgGgRpCRBKep1yf39cMyQkgbTJTJLv+/XKK8k9d+597smZzM2TM8/5N5vDT8Dk0GOKfvuNLdOn88u995K7fn3tErglJZRmZlK8ezfuggLAus7LJzd8f0jwqcnzt7rnZn0eCxpnEpw8HpMff59xq/q2IiJSF926QmRkEXZHPF9+1TrQ4Yg0CN2Ri4g0YUMGG9x1p0H3blBcBAcOWp+7d4O77jQYMtio0T7+imPIYGjTpurHdO4Mb/3HxiWTbNx4PURHWcknl8v6HB0FN14Pl0yq20tVlTEVG7TvGct1f2nPMcOrqJPwu/59Da652qBTRygphuwc2O9NYuvA2wi95Qnijjuuwv4Fmzezedo00v7v/8hPTa1VnGZpKa79+ylOT8edn88fLjYq9EdpacP0hwSf+jw36/u8Pvx5p3Emgbb1N2tRvIgI6NE90NGIiEhTZLNBj+57AFj8dQIHD9Z8UoVIsKplBUIREakLr9ckbbO1WFBUlMmOHZC5z6oheerY+s1sGzLY4NhB+I4fG2u9Rbr8bLshgw2OGWjyxWJrwaFD56150tbt9lbx+ENxHymO/fu9XHsD5OVbiaGXX4DExEOPvWSSjYkXVn/88v1X1fVVt0/1MTmABLzR0biysvBWUXO2f1+D3r1Mli2HA/shIRFGHQcOeycYcxcFW7aQ8e675K5Z43tM/saN/HL//cQMGkTyJZcQ1rVbFY+v+mdtut24DhzAnZ3NxLNiGHeOk3/800Zmpo02bbz89V5wOoM/mVaTn5UcUp/nZk2e+0dS/nmXmxtBTExRvX8fidRVWX3bAf1r99okIiJSXuvEXAoLfgCG8sZskz/dptcUadqUuBUR8bPVa0xmv20la3PzoLjYeluyYVgfT8+Eyyd76zXDzWYz6N3raDHAjh2/r0bvgM8XweRLzRrNuH1njpc3Z1uzocpiryruquK4+14vy74/9H1JCZx/EYwa6eVf0w891uGwcebp1cVuVoi9UyeYfCm+2I+2T3V9YwsNJaxtWzyFhbiysjDdbl/bhk0mH30MGRng9liLmS1ZAuPOM+nf1yCye3d6/vWv5P/8MxnvvkveTz/5Hpu7bh2569bxW+gwvrVPYr/NKqb75pswfpyXc8+u/mdtejw89/gBFn+TRYEZTRHRpP5iZ8kyOPdsL3fdGbxJtZr8rKSi+j43j/bcP5qy5118vJOsrJK6H0ikntatV31bERGpP8OAzD2P0KX7fD78CCZNNElK0muLNF3B+9efiEgzsHqNyaOPm2zZYtV8LSo6tBhQWQI0Lx+ef9FKjvo7hogISGhlfd6yFR593GT1miO/heidOV6ef9GK02aDkBDrc03iPjxpW96y7632+sZe3+sDsDudhCUn44iLA5uNDZtMXnnVSkCGh0NcrPV5x0545VWTDZsOHTOqd29S/vY3ev7tb0T2qphB61q6ij8W3cW5pf8mgXQKCuGdOfDJwuqv++VXvXz5FZheL04zh1ZmOlHeA5huNws+hkcf9884qa+G+Dm0NOozEYtpmr4Zt6pvKyIi9VVY8B29U/Jwu+HV13U/JU2bErciIn7i9VqzDwsLISHBeitzGeP3f/qappUI9XrhzdlWOQJ/xZCYCGFhVtI1LAwSE6CwCGa/beL1Vn1D43ZbM229XitOu92K3W4/etzFxdUnbcss+97ar66xv/mWyZtv1f36yjMMg5DYWELbtuODzyIpKoL4eAgNtY4ZGgrxcVBUDB99XPmYMQMG0OuRR+h6733sc3Q9dFxMermW8seCOzir9FmiPXtZ8BG4PZWvu9Tl5atvyscENsMkwsinlZlOtHc/n31aSmlpcCVv6zvOWiL1mcghO3dCVhaEhkCf3oGORkREmoNx5+4F4L+LYOtvup+SpkuJWxERP0nbbL39OSbGmp3q/T3XVpa0NYxD2+x2qwzBF4v9F4Nx2DuEDAOio632tM1VP/6LxVZcZQnbwx9/pLhnPluzGKvbryaxb91qLWhT1+uryubfHGzekwDx7fDawysdMzLSKp+wbXvlxxqGwYaSY3kj9J98FD6VA7aOvjYbJn1dX3N10e0cl/US3//vQKXHf/xJ5XFS/txhFBDj3s2cl/biqaIub6DUd5y1ROozkUPWrLM+9+0LoaF6O6uIiNRf585FnHSiNVHmpVeUuJWmS4lbERE/ycn5vWZlCLhd1e9nmtZMO9O0FifyVwxVCQ2x2svPBi5v795D8VXlSHHvyqhZjNXtV5PYS13gctX9+o50XltYGAWhbSkMScRrHCoJH+Kwat7m5VX9+AP7AcPgt7ARvB39KP913k6WLcnXbsfDIPciIl65lZ2vvYarXHB7M2sWY2Z6MaV791K8Zw/ugoKaX5yf1HectUTqM5FD1q61/qAefKyStiIi0nCuu8bAZoPvlsDGTUreStOkxK2IiJ/ExlpJPpcLHNUkZ+DQzFvDsFaU91cMVSl1We2xsVW3t21bcWbw4Y4Ud4fkmsVY3X41iT00xEp81fX6anJetz2S/NBkih1xmNhwua2FyqKjq358QqL12esF07CTFjqa2dFP8kXETeQaib79DK+LzE8+YcNNN5H+1lu48/Jo26ZmMZbtZ5aU4Nq/n+KMDNz5+ZhmYG5I6zvOWiL1mYjFNE3WrrO+PnZQICMREZHmpktnw7f48YsvK3ErTZMStyIifpLSEzp1gtw8iI46NGu1/OJkZds8HoiKhFPH+i+Gw3N6pmnNGu3UydqvKqeOteLyeKp+/JHivvXmmsVY3X41ib1bN+jWte7XV+PzGgaljljyQpM5WBRFcjJ06Vz140cdB5HO3xO3ZT9rw86msLG8Ef00X4ReS4Et3re/t6SEPfPm8dOUKQwvmUu4UeiL//DrAWvMnHfuYW0uF64DByhJT8eVk4NZXabdT+o7zloi9ZmIZfsOOJhl1RHv2yfQ0YiISHNz9ZUGISGweg2s+kHJW2l6lLgVEfETm81g8qUGzgg4cBBiYw61lSVqDMOacWezweWTweFo2F/L5WPYfwCKS6yEYnGJ9b0zAiZfamCzVf32VIfDxuWTrfhcrkMJXI/n6HGHh9sYNfLI8Y0aae1X19gvv8zg8svqfn21Pe++g3aISmD8le1xRDqr7jO7jfHjrJ+t212xz0o8IfwYega5l8+kw5VX4og5NCi8hYVkzn2PG0tvZphrASFmMaaJ76PMmJMgNKTqPjM9HtzZ2RSnp+PKzsZ0u2t83fVR33HWEqnPRCxr1lqf+/eDsDCNdxERaVjt2hmMH2d9/eLLZsDeoSZSV0rcioj40ZDBBnfdadC9mzWbKCKi4uJkpmnNxr3xerhkkn9+JZePobjISiIXF0H3bnDXnQZDBh/5D+VLJtm48XorTq/XSth6vTWL+1/Tq0/ejhpptdc39vpeX13OO3R4KGFt2hDapg1GaGilx597to1LJh2aeet2W58jnXDJJDh3XARtzzuP/rNmkXzppdgjI32PdbjyOck1m2uLb+FY10LsZilgJclPGQPXXl2DceL14s7JoTgjg9IDB/A2QgLXHz+H5k59JgJr16m+rYiI+NcVkw0iwiH1Z/j2u0BHI1I7jqPvIiIi9TFksMGxg6zV4XNyICrKZMcOyNxn1YY9dWzDz7Q9WgyxsdZbsGs6m++SSTYmXujli8XWQmS1iftf020UF3uZ+SxkZjpo08bNrTdXP9O2LrEfaR+v16zTddfsmOHExrajW1I+3twcTI/H9/hzz7Zx5hleli23FixLSLTKKDjsh67bHhFB0oUX0vrMM8n86CP2fvIJ3uJiACLNHE5xvcYJ9o/IHXghJ986hrCIykniqrg95c+by6jjcgmLicYRHY0tLKxGx6iL+o6zmqrrzzQYNVafVaesLz2eUux2s0n3pTQ9qm8rIiKNIT7eYNLFJq+/AS+9YjL6eLDbdb8jTYMStyIijcBmM+jdq+w7g359Ax1D7TkcNl9x/9oKD7dx150QHx9LVlZWrR9fk9ir2mf1GpPZb1uJcpfbWuypUyeYfCk1ms1Y82NGctkfnBzTIw93bq6vtoHDbuPE449+fY7ISJIvuYQ255zDnvnzyfzvfzFLrZm2ocUHSFzxImnbFpB88cW0OuEEDLu92mN9stDLgo+goPDQtjffhPHj8jj37AJs4eE4YmOxh4cfPbA6qO84O5r6/kyDkb/7rDrl+9LjzcduM5t8X0rT8ttvkJ0NYWHQp3egoxERkebsDxcbzPvQZNt2+HwRnH1WoCMSqRmVShARkWZp9RqTRx832bLFKlGR0Mr6vGUrPPq4yeo1ta9vdaRjPvakwY9bYwlPTq5Q+qA2HDExdLjiCgbMmkXrs87CcBz6/2rp3r1smzmTTXfcQdayZVUuQPbJQi/vzLGStjYbOBzW54JCeGeO1e4tLqZ0716K9+zBXVBQpzgDxR8/05bq8L5snWioL6XRlc22HdAfQkP1zwIREfGfqChrfQGAV143KS3VvY40DUrciohIs+P1WjMJCwshMdGazWWzWZ8TE6CwCGa/beL11vyGrabHNG12QhMTCUtKwlbHWa0h8fF0uvZa+s2cSdJZZ1kn+l1xejpbH3+c1LvuInvVKt8CC26PNdPWNK2Erd1u1VG2263vTRMWfGTtB2CWlODav5/ijAzc+flBv1CDP36mLVXVfWmoL6XRrfm9vu2xg5S0FRER/7vwAmidaJV++/CjQEcjUjNK3IqISLOTthl27ICYmEOLwZUxDIiOttrTNvvvmLbQUMLatrUWMAsJqdN1hLVpQ+8776Tf00/T6sQTK5y4aNs2tsyYwc/33kvu+vUs+970zbStKr6ymbfLlldsM10uXAcOUJKejjs3t8qZvMHAHz/Tlkp9KcHA6zVZt876evCxAQ1FRERaiLAwgyuvsG5+3phtUliof1JL8FPiVkREmp2cnN/rn1aTLw0Nsdpzcvx/THtEBOHJyYQkJByxNu2RhCcl0fX22+n7xBPEjRxZoa1w82Y2T5uG/e3/o70ntfzk3ArKth/YX3W76fHgysqiOCMDV05O0CVw/fEzbanUlxIM0jZ7yMmFiHDVtxURkcZzzlnQob1VY/299wMdjcjRKXErIiLNTmystWiVy1V1e6nLao+NbbxjOqKiCEtOxhEbW3maYw1FdOpE96lT6fPoo8QOGVKhLXxvKn8ofpDx+Q/Txv1rpceW5WETEo9yEo8Hd3Y2xenpuLKzMT2eOsXa0PzxM22p1JcSDJYvtwbgoEHgcKhUgoiINA6Hw+Daq63XnXfmmOTkaNatBDclbkVEpNlJ6QmdOkFunlXbtTzThLw8qz2lZ+Me07DZCImLq9cCZgDObt3ocd999PrHP4geMKBCWxfPev6Qfy/n5P+LBM92X3xeL0Q6YdRxNTyJ14s7J8dK4GZlYbrddY63IfjjZ9pSqS8lGHy/wkrcDh2ipK2IiDSusWOgZw8oKLDq+osEMyVuRUSk2bHZrFVjnRGw/wAUl1iJy+IS63tnBEy+1MBmq3nCoCGPaTgc9V7ADCCqVy9S/vY3Uv72NyJ7V3yvcXf3Ki7Lm8oZ+U8SU5qOYcD4ceCw1/Kl3zRx5+ZSnJFB6YEDeAOUwPXHz7SlqrovTfWlNJrSUpPVq8sStwEORkREWhybzeD6a637nA/mw759St5K8FLiVkREmqUhgw3uutOgezcoLoIDB63P3bvBXXcaDBlc+6RUQx+zIRYwA4geMIBeDz9Mj/vvpzSxW4W2Xu5lXFF0BzcmPcNpQ/bV+RyYJp78fErS0yndvx9vaWndj1VH/viZtlSH9+W+/ab6UhrNxk1QVAzx8dCta6CjERGRlui4ETBwAJSWwmtvKHErwcsR6ABERKT583pN0jaDx1OK3W6S0pNGmc03ZLDBsYMgbbO10FJsLPU+tz+OaY+IwB4RgTs/H3cd68oahkHsscdy3POD2P/9Cn595V1Cs3cCYMPEufkbNty6hMRTTiHpoosITUioc7yeggI8BQXYIiJwxMRgr8es4dryR//XVNk4ruq8R2oLVuX70uOJwm7PbxJxS9P3w2rrD+ShQ6zfXSIiIo3NMAxuuA5uvs3k00/hkkkmHTvoNUmCjxK3IiLiV6vXmMx+22THDvB487HbTDp1gsmX0iiz+mw2g969gv+YYC1gZnc6cefm4s7NrVyAtAY2psJH3w0nI3IonfieoflziHXvtho9HvYvWsSBr76i9Rln0O6CCwiJi6tzvN6iIkqLijDCwgiJicHudNb5WLXhr/4/kvLj2OW2Fu8qG8dAtW3BPnO1rC/j40PJygruWKX5+GG19Vn1bUVEJJCOGWgw8jiT75fDy6+a/P1BvS5J8FGpBBER8ZvVa0wefdxkyxaIiIDWiQYREbBlKzz6uMnqNXpb0uHqs4DZhk0mr7xqJRDDI2wcbHc8n3V+km9ip5DvaO3bz3S5yPzkEzZMmUL67Nm48/LqFbNZUkLpvn0UZ2Tgzs/HrEPCOZgdPo4TWuEbxw/9w+Shf1TdpjEuUll+vknqz9bXQwYHNhYREZHrr7GStV8uhs2bdd8mwUeJWxER8Quv15qhWFgIiYkQFmbN7gsLg8QEKCyyZil6vbpBqkrZAmYRyck1WsDM6zX56GOToiKrbmRoKNhsEBJmZ1/yGOYkPsWmztcSEt/q0GNKStgzfz4/TZlCxnvv4SksrFfMpsuF68ABStLTcefmYnq99TpeMKh6HOMbx9nZ1kdCQuU2jXGRytausxYW7NLZRru2mtkkIiKB1bOnwSljra9feFn3bBJ8lLgVERG/SNsMO3ZATAwcXsLQMCA62mpP2xyY+JoKe1hYjRYw27YdMjIgKqrq/o6ICmGF5wwi755JhyuvxBET42v3Fhaye84cfrrpJvZ8+CGe4uJ6xWx6PLiysihOT8dVx5q9weJI47ikxKpmYZrWwhblaYyLVK2svu2IEXVfkFFERKQhXXu1gd0Gy1fA+h+VvJXgosStiIj4RU7O7/U+q/nbPDTEas/Jady4mip7RAThycmEtGoFdnul9rw8cHvAUU31+hCH1Z5fHEbb886j/6xZJF92WYVyDJ78fNLffJMNN99M5qef4nW56he014s7J4fi9HRKDx7E63bX73gBcKRx7PEcKkNcVW5aY1yksrL6tiOVuBURkSDRsYPBuedYXz//otnsyn5J06bErYiI+EVsrJUsrC73V+qy2mNjGzeups4RHU14crI1Y7bcFNDoaHDYobrcqMtttUdHW9/bIyJImjCB/s89R9JFF1Uox+DOzmbnq6+y4ZZb2Pe//2HWN+Fqmnjy8ijJyKB0//76J4Qb0ZHGsd1+6EdQRS5dY1zkMHv2mGzfYZUUGT5ciVsREQkeV/7RIDQUftoA3y8PdDQihyhxKyIifpHSEzp1gty8Q7MSy5imNUO0UydrP6kdw2YjJD6esORkbE4nAF06Q3Iy5BdU3d8FBVZ7l84V2xyRkSRfcgkDnnuOtuPHY4SG+tpc+/ez4/nn2XDbbRz4+uv6lzwwTTwFBZRkZFCybx/ekpL6Ha8RHGkch4VZiVvDsGoKl6cxLlLZilXW5359ITZGf4aIiEjwaN3a4KIJ1tcvvqw1CiR4BO0d04IFC3jwwQeZMGEC/fv3p1evXsybN6/a/fPz85k+fTpjxoyhf//+jB07ln/+858UFBQ0YtQiIlLGZjOYfKmBMwL2H4DiEmuhp+IS63tnBEy+1MBm0+I0dWVzOAhr3ZrQtm2xh4cx7jyDiHDIyoaSUmsBoJJS6/uIcBh3XvX97YiJocMf/8iAWbNoffbZGOVqLpTu3cu2mTPZ9Oc/k7VsWYMsOuYtLKRkzx5K9u6td01df6p6HOMbx/FxEBcHBw5WbtMYF6lo5arf69sO13NCRESCz2WXGERGwq9b4MuvAh2NiCVoE7dPPfUUc+bMISMjgzZt2hxx38LCQiZPnszrr79Ot27duPLKK+natSuvvvoqV1xxBSVNYEaPiEhzNGSwwV13GnTvBsVFsG+/SXERdO8Gd91pMGSw/nhvCPbwcMKTkjj2hESuucZBp45QUgzZOdbnTh3hmqsN+vc9en+HxMfT6Zpr6P/MMySeeqr1nubfFe/axdbHHyf1rrvIXrWqQep/eYuLKd27l+Ldu3EH6T9bDx/HBw7iG8f332fwwH1Vt2mMixzidpu++rbDhwU2FhERkarExhpcMsm6d3vxZZPSUs26lcCrZgmTwHv44Yfp3Lkz7du358UXX+Txxx+vdt+XX36Z1NRUrrvuOqZOnerb/thjj/HSSy/x+uuvc8MNNzRG2CIicpghgw2OHQRpm8HjicJuzyelJ5qF6AeOqCiGnu5k4LBsft2QR16uSXS0VR6htv0d2ro1nW+6ibbnn8/u997j4Hff+WoFFG3bxpYZM4js2ZPkSy4heuBADKN+P0+ztBTX/v24s7NxxMZij4ys9TG9XvP3cVaK3W426DgrP45zcqy6teWPf6S2msZdl8eKNBUbN1klW2JjoFdKoKMRERGp2qSJMP9D2L0bPlwAF08MdETS0gVt4nbUqFE12s80TebOnYvT6WTKlCkV2qZMmcJbb73F3LlzlbgVEQkgm82gdy+Ijw8lK0sJKX8ybDbCElrRZ1Q0ruxsvIWF9TpeeFISXW+/nXYXXEDGe++R/f33vraCzZvZPG0aUf360f6SS4jq06e+4WO63bgOHLASuDEx2KOja5TAXb3GZPbbJjt2gMebj91m0qkTTL6UBpv1WjaOa9t2JOXjdrmtxcwaOm6RYLB8pfWPn2HDwG7X2BYRkeAUEWFwzdXwr8dMXn/T5KwzITpar1sSOEFbKqGmtm3bRmZmJoMHD8b5+wItZZxOJ4MHD2bnzp3s3r07QBGKiIg0PltIiK/+rXH4yll1ENGpE92nTqXPo48SO2RIhbb8jRv55f772fzQQxT8+mu9zwVgejy4srIoTk/HlZNzxLq6q9eYPPq4yZYtEBEBrRMNIiJgy1Z49HGT1WuC821uh8ed0IomEbdIXaxcaX1WfVsREQl2Z59pvWMtNxdmv637MQmsJp+43b59OwBdunSpsr1s+7Zt2xonIBERkSBSVv82pFUrsNvrfTxnt270uO8+ev3jH0QPGFChLXfdOn7+y1/4dcYMChvqddfjwZ2dbSVws7Iw3e4KzV6vNWO1sBASEyEszJr9GhYGiQlQWGTdcAfbysBVx03Qxy1SF1lZJr+kWV8PHxrYWERERI7G4TC46QbrH41z34c9e3U/JoETtKUSaiovLw+AqKioKtvLtufn5zdaTCIiIsHGER2NPTISd04O7rw8X73auorq1YuUv/2NvJ9+Iv2ddyj45RdfW86qVeSsWkX88ceTfPHFhHfoUN/wwevFnZuLOy8Pu9OJIyYGW2goaZthxw6IiYHDKyoYBkRHW+1pm6lTKQN/aapxi5S3a9cuDhw4cNT9Vq6KAzrSoX0Ru3b9yq5dEBMTQ25urt9jrEpaWlpAzisiIk3HqJEw6BhYtx5eftXk/nv1jhEJjCafuG0IsbGx2GzBP/k4Pj4+0CE0Oeqz2lF/1Z76rPbUZ7XXoH2WkIC3tJSSgwfxFBXV+3Axo0eTfPzxHFy1it9ef528cgmRrKVLyfr+e9qdeipdJk8mIjm53ufzKSzE7vXiLnTi8XqIiDAqLOjlcFizi502k4ICE48nivj4+peMaCgeTykeb36luMsEIm49N6U2du3axYgRx1FUdPQ62skdnyMuviPr1r7AmDEPN0J0NVNQUL8a4CIi0nwZhsHNN8F1N5p8vggmXWTSs6eSt9L4mnziNjo6Gqh+Rm3Z9upm5ALk5OQ0fGANLD4+nqysrECH0aSoz2pH/VV76rPaU5/Vnt/6LCwMj2niOngQ0+Wq9+FCevWi5z/+Qc7KlaS/+y7FO3ZYDV4vexYtYs+XX5J4yikkXXQRoQkJ9T4fADk5GDkmcd5QXPkx2H+vde9w2HG7PQAUl4DdBnZ7flAtjGe3m9htJkVFJmFhldsbO+6m9NxUgjk4HDhwgKKiQi659DnatE2pdj/ThG++64fLBWeceS6t4scAEB4WRnFJSWOFW8HPqV/w+X+nU1JcHJDzi4hI09Cnt8EpY02+XAzPvWjyxKPBcy8pLUeTT9x27twZqL6Gbdn26mrgioiItFT28HBsSUl48vNx5eSAx1Ov4xmGQdyIEcQOG0bWsmVkzJlDSUaG1ejxsH/RIg589RWtzziDdhdcQEhcXL2voUtn6NiuhB079xFpC6E0JAbTHgNYCaO8POjeDVJ61vtUDSqlJ3TqZC1ElhhasVxCMMctcrg2bVPo0OGYatv3ZoLLBaGh0L9fD8re5BYREUFRA8z6r4vMvSqVICIiNXP9tQbffGuychWsXGUyfJiSt9K4gr8+wFF06dKFNm3asGbNGgoLK77dqbCwkDVr1tChQweSkpICFKGIiEjwMgwDR3Q04UlJ2KOjKxdcrcsxbTZajR5Nv3//m84330xo69a+NtPlIvOTT9gwZQrps2db9XbrwWYzGHeeQUQ45GS5sBUcwFmcjrcwj/37TZwRMPnSqssRBJLNZjD5UgNnBOw/YM2w9Xqtz/sPELRxi9TWrl3W5/bJ0AQqk4mIiFTQPtlgwvnW17OeN/F4tFCZNK4mf/tkGAYTJ06ksLCQWbNmVWibNWsWhYWFXHzxxQGKTkREpGkw7HZCW7UiLCkJW0REgx0zcexY+s2cSafrriOkVStfm7ekhD3z5/PTlClkvPcensK615rs39fgmqsNOnWEkmLIPujCln+QgcnpTL0xl8GDgvMGe8hgg7vuNOjeDYqL4MBB63P3bnDXnQZDBitpK03fzt8Ttx07BjYOERGRurricoOoSPh1C/x3UaCjkZYmaEslzJ07l9WrVwOHVn6dO3cuK1euBGDIkCFMnDgRgGuvvZYvv/ySl156idTUVPr27cumTZtYsmQJAwYM4IorrgjMRYiIiDQxtpAQwtq0wVNUhCsrq0Hq39pCQmh95pkkjBnDvkWL2DNvHu7fV5P3Fhaye84cMj/9lHbnn0/rs87CHh5e63P072vQtzds2w4ejxO7vZAunb3YbDkUp+fhiI7GER2NYbfX+3oa0pDBBscOgrTNkJMDsbFWeQTNtJXmID8fsrKsifwd2gc6GhERkbqJjTX44+XWjNsXXzIZcxI4nbpXk8YRtInb1atXM3/+/Arb1qxZw5o1a3zflyVunU4ns2fPZubMmSxatIgVK1bQunVrrr76am6++WbC6/AHoIiISEtmj4jAFh7eYPVvAWxhYezrfi7/7TmW+M2f0T/vI8LMAgA8+fmkz57N3o8/pt2ECbQ+/XRsoaG1O77NoFtXiIkNJTenXO1Mrxd3Tg7u3FzsUVE4YmKwOYLnFshmM+jdK9BRiDS8stm2bVpT5SJ8IiIiTcVFE2DBR5CeAW++bXLDtUrcSuMInr9aDjNjxgxmzJhR4/2jo6O57777uO+++/wYlYiISMtRVv/WHhmJOzfXmiVr1r3swIZNJq+8alJUFMG+NhPY2fYMeuz/mJTsTwk1rdXd3Tk57HrtNfZ+9BFJF11E4tixGA2VZDVNPHl5ePLzsTudOGJjsYWENMyxRaQSlUkQEZHmIjTU4JYpcO/9JnPmwHnnmCQnKXkr/tfka9yKiIiIfxk2GyFxcYQlJ2OPjKzTMbxek48+Nikqgvh4a4V5T0gkvyT9gf/2eJb1kePw2A7NsHUdOMCOF15gw223ceDrrzEbYMavj2niKSigJCODkn378JaUNNyxRQQAlwt277a+7tghsLGIiIg0hNHHw5DBUOqyyiaINAYlbkVERKRGbA4HoYmJhLVrh62W73veth0yMiAqyqp3WZ4rJIaNSZczt+0zhI0+q8IM29K9e9k2cyab7riDg0uXYnq9DXEpPt7CQkr27KFk7148xcUNemyRlixjN3i91nM+NjbQ0YiIiNSfYRjcdouBzQZffwPr1it5K/6nxK2IiIjUii0sjLB27Qht3brGZQzy8sDtgep2D3FAHvF4TrmG/s88Q+Kpp4Lt0G1KcXo6vz3xBKl33UX2qlWY9SjZUBVvcTGle/dSvGcPnsLCBj22SEvkK5PQofI/a0RERJqq7t0Mxp1rff30MyYej5K34l9K3IqIiEid2J1OwpKTCYmPB7v9iPtGR4PDDm531e0ut9UeHQ2hrVvT+aab6Pf007Q68cQKWZ+ibdvYMmMGP997L7nr1zd4AtcsKaF03z6KMzJw5+c3+PFFWgKvF3butL7upPq2IiLSzFxztUFUJKRths/+G+hopLlT4lZERETqzDAMHDExhCcn44iJqXZqXZfOkJwM+QWV1zczTSgosNq7dD60PTwpia63307fJ58kbuTICo8p3LyZzdOmkfbgg+Rt2tTQl4XpcuE6cICS9HTcublK4IrUQmYmFBdbtazbtQt0NCIiIg0rPs7gyiuse94XXjYpKNB9oviPErciIiJSb4bNRkh8fLULmNlsBuPOM4gIh6xsKCm1ZuWVlFrfR4TDuPMMbLbKid+Ijh3pPnUqfR59lNghQyq05W/aRNoDD7B52jQKNm9u8OsyPR5cWVkUp6fjys5u8Bq7Is3R9h3W544dK1Q8ERERaTYuvMB6ncvKgjdmK3Er/qNbKREREWkw5RcwMw5bwKx/X4Nrrjbo1BFKiiE7x/rcqaP1lrP+fY9cCNPZrRs97ruPXtOnEz1wYIW23PXr+fmee/h1xgzyt25t8OvC48Gdk2MlcLOyMKur+SDSwpnmocRt506BjUVERMRfQkIMbrnJund9733YsUPJW/GPmq0oIiIiIlILtrAwwtu1w11QgDs725fo7N/XoG9v2LbdWrAsOtoqj1DVTNvqRKWkkPJ//0fehg2kv/MOBT//7GvLWbWKVatWET9qFMmTJhHeoUPDXpjXizs3F3deHvbISByxsdhquECbSEtw4KBV+sRuh/bJgY5GRERaqrS0NL+fI9IJfft0YVNqNNMezuWWKdtqtSBnTEwMubm5FbYlJCTQoaHvX6VJ018aIiIi4jeOyEjsTieevDxcOTng9WKzGXTrWv9jR/fvT6+HHyZ33Toy3nmHwi1bfG1Zy5aRtXw5CSeeSNLEiYQ1dKFN08STn48nP99K4MbEYAsNbdhziDRBO36fbdu+Peh/GiIi0thyc/cCBjfccEOjnC8ktAvdU5bwc1o051/wFLk5H9breBERTlasWK7krfjodkpERET8qmwBM3tkJK6cHDx5eQ167NhjjyVm0CByVq4k/d13KS7LHHm9HPj6aw589x2Jp5xC0kUXEZqQ0GDnLuMpKMBTUIAtIsK6zvDwBj+HSFOhMgkiIhJIxUU5gMnZ5/yTnilDG+WcW7Zms/W3dnTr+RzHj7wdh6NmayKEh4VRXFLi+z5zbxrvvH0TBw4cUOJWfJS4FRERkUZh2O2EtmqFNzoaV1YW3qKihju2YRA3YgSxw4ZRvG4dW157jZKMDKvR42H/okUc+OorWp9+Ou0mTCAkLq7Bzl3GW1REaVERtrAwHLGx2CMiGvwc0rQsWLCA1atXs2HDBtLS0nC5XEyfPp0JEyZUuX9+fj4zZ85k0aJF7Nu3jzZt2nDGGWdwyy23EFnFon/BJicHsrPBMKCj/t4UEZEASkjoRocOxzTKudolwf4DkJsbwt7MAYwYXrPHRUREUNSA98PSPGlxMhEREWlUtpAQwtq0IbRtW4wGLi9g2Gy0HTOGfv/+N51vvpnQNm18babLReann7JhyhR2vfkm7gac+Vuet6SE0sxMinfvxl1Q4JdzSNPw1FNPMWfOHDIyMmhTbixWpbCwkMmTJ/P666/TrVs3rrzySrp27cqrr77KFVdcQUm5GTnBqmy2bVI7OGxtQhERkWbLYYfjfk/Wpv5s1XsXaShK3IqIiEhA2MPDCU9KIiQhAcNub9BjG3Y7iWPH0u/pp+l0/fWEtGrla/OWlLD3ww/56aabyJgzB4+fkqtmaSmu/fspzsjAnZ+PaWq14Zbm4YcfZvHixSxfvpw//OEPR9z35ZdfJjU1leuuu45XXnmFqVOn8sorr3Ddddfx008/8frrrzdO0PXw2zbrc5cugYxCRESk8bVvb73+mSZ8v9z6LNIQlLgVERGRgHJERRGWnIwjNpZaLcVbA7aQEFqfcQb9n3mGDldeiSMmxtfmLSpi93vv8dOUKeyZPx9PcXGDnruM6XLhOnCAkvR03Lm5mN6a1T2Tpm/UqFG0b9/+qPuZpsncuXNxOp1MmTKlQtuUKVNwOp3MnTvXX2E2iJxcOHjQegqrvq2IiLREw4daC3Pu2webNwc6GmkulLgVERGRgDNsNkLi4ghPTsbuh1qetrAw2p53Hv1nzSL5ssuwR0X52jz5+aTPns2GKVPY+8kneEtLG/z8AKbHgysri+KMDFzZ2Zgej1/OI03Ptm3byMzMZPDgwTidzgptTqeTwYMHs3PnTnbv3h2gCI/ut9+sz0lJoPX5RESkJYqMhMGDrK9/WAN+mhMgLYwStyIiIhI0DIeD0MREwpKSsPkh+2OPiCBpwgQGzJpF0sUXYyu3gJg7J4ddr73GhptvZt+iRXhdrgY/PwAeD+6cHCuBm5WF6Xb75zzSZGzfvh2ALtXUGCjbvm3btsYJqA7KyiR07RLIKERERAKrTx+Ij4eSElj1Q6CjkebAEegARERERA5nCw0lrG1bPEVFVnKzgZOo9shIkidNos1ZZ7FnwQIyFy7E/H2mrevgQXa88AJ75s8n+eKLaXXiiQ1egxcArxd3bi7uvDzskZE4YmKwhYQ0/Hkk6OX9vlBeVLmZ4OWVbc/Pzz/icWJjY7HZGmdeRszvZUfCw8IoKgojO7sEmw169QonPKxmJU8iyv3jpDGF/r4oYkhoSMBiqK2yOJti7GUaK3Z/HLsp9zscOf5gv55g6vvanj+YYq+t+sYeyOsNhn4fc5KHeR+W8usW6NUrlM6dqr+PLB9j+O8re8bExBAfH+/3OJuiltgvStyKiIhI0LJHRGCPiMCdn48rOxsauLyAIyaGDpdfTttzz2XPvHnsW7TINwO2NDOTbc88w+5580j+wx+IHzkSwx9JMdPEk5+PJz//UAL39z86RGojJyen0c6Vm5sLQHFJCTvTSwBITgbTW0xR0dEfHxERQVFNdvSD0rJ/0pS6AhZDbZTvq6YWe3mNEbu/xlVT7neoPv5APg9rKlj6vi59FSyx10V9Yg/0uAqGfo+NhX59YeMm+OrrUi4YD1Xd2h3eV8Ul1utpbm4uWVlZjRVukxEfH9+s+qWmSWiVShAREZGg54iKItxPC5gBhMTH0/Gaa+j/7LMknnYalJthW5KRwW9PPEHq1Klkr1qF6cdlgj0FBZTs3k1JZqbfFkuT4BMdHQ1UP6O2bHt1M3IDyTRVJkFERORwg4+F6GgoLISVKpkg9aDErYiIiDQJ/l7ADCA0MZHON95I/6efptVJJ1VIEhdt386WGTP4+Z57yF23zq8JXG9REaV791KyZw+eJjZLR2qvc+fOQPU1bMu2V1cDN5Dy88PJyQGbDTp1DHQ0IiIiwcHhgNHHW19v3gzp6YGNR5ouJW5FRESkSfH3AmYAYe3a0fW22+j75JPEjxxZoa3w11/Z/NBDpD3wAHkbN/rl/GW8JSWUZmZSvHs37oICv55LAqdLly60adOGNWvWUFhYWKGtsLCQNWvW0KFDB5KSkgIUYfV277He5tehfdVvAxUREWmp2rWFvn2sr5csg9+rOIjUihK3IiIi0iSVLWAW2ro1hp8W9Yro2JFuU6fS57HHiB0ypEJbfmoqaQ8+SNq0aRSkpfnl/GXM0lJc+/dTnJ6OOz/fr7N9pfEZhsHEiRMpLCxk1qxZFdpmzZpFYWEhF198cYCiOxIbe/Zaidvu3QMcioiISBAqXzJhlUomSB1ocTIRERFp0uxOJ7aICDz5+bj8tDiTs2tXetx3HwVpaaS/+y5569f72vLWr+fn9euJHTqU5D/8AWfXrn6JAcB0u3EdOIA7OxtHTAz2qCj/LJgmDWLu3LmsXr0agLTfk/tz585l5cqVAAwZMoSJEycCcO211/Lll1/y0ksvkZqaSt++fdm0aRNLlixhwIABXHHFFYG5iCOIjDqBkpIQQkOhY4dARyMiIhJ8QkJg9Cj47HNI2wxdOkP79oGOSpoSJW5FRESkyTMMA0d0NPbISEIAcnOtVZMaWGRKCikPPkjexo1kvPMO+ampvracH34g54cfiB81iqRJk4jo4L9Mlunx4MrKwpWbiyMqCkd0NEa5BdUkOKxevZr58+dX2LZmzRrWrFnj+74scet0Opk9ezYzZ85k0aJFrFixgtatW3P11Vdz8803E+6nsiD1ERtvzQLu2qXCen4iIiJSTrt20Kc3pP4MS7+H88epvJDUnBK3IiIi0mwYNhth8fGEeb24srLwHlYvtKFE9+tHykMPkbd+PenvvEPhr7/62rKWLSNr+XJanXgiyRMnEtaunV9iAMDjwZ2Tgzs3F0d0tJXAdej2LljMmDGDGTNm1Hj/6Oho7rvvPu677z4/RtUwiktsxMScA0APlUkQERE5oiGDYdcuyMuHFSvhhNGBjkiaCr23TkRERJodm8NBWOvWhLZtixEW5pdzGIZBzKBB9J4xg+5/+QsRnTodavR6Ofj112y47Ta2P/88pfv3+yUGH9PEnZtLcUYGpfv343W5/Hs+afHW/xiDzR5FREQJrVsHOhoREZHgFhJiJWsNA37dAlu3BjoiaSqUuBUREZFmyx4eTni7doQkJPitlIBhGMQNH06fxx+n65//TFhy8qFGj4f9//sfG26+mZ2vvIIrK8svMfiYJp6CAkoyMijJzMRTXOzf80mLtXJVHABJ7bIwjMDGIiIi0hS0bQvHDLS+XrYccnO9gQ1ImgQlbkVERKTZc0RFEda+PY64OPDTYl6GzUar44+n37//TZdbbiG0TRtfm+l2k7lwIT9NmcKuN9/EnZfnlxjK8xYVUbp3LyV79uDxU8kIaZkKC01+SYsCICnJz/+MEBERaUaOGQitW4PLBV986cKr3K0chRK3IiIi0iIYhkFIbCzhSUnYo6L8dx67nYQxY+j39NN0uuEGQlq18rWZpaXs/fBDfrrpJjLefRdPQYHf4ijjLSmhdN8+ijMycOfnY/ph0TZpWUJDYWD/XPbvewZnRGmgwxEREWkybDY46QSrdMKevV7WrA10RBLslLgVERGRFsVwOAhNSCAsKQlbRITfzmMLCaH16afT/9ln6XDVVThiY31t3qIids+dy09TprBn3rxGKWlguly4DhygOD0dV3Y2psfj93NK8+RwGFx/7Q4yd/8t0KGIiIg0OdHRcPwo6+ufNsDOnYGNR4KbErciIiLSItlCQwlr04bQNm0wQkP9ep62555L/2efJfmyyyrM9vXk55P+1ltsmDKFvZ98gre0EWYvejy4c3IoTk+n9OBBvG63/88pIiIiIj5du8CA/tb6C98ugbz8wMYjwUuJWxEREWnR7BERhCclEZKQAH5awKzsPEkTJjBg1iySLr64wmxfd04Ou157jQ0338y+zz/H63L5LQ4f08STl0dJejrFe/fiLSnx/zlFREREBIBRI0NITITSUvj6a/B4tNqnVKbErYiIiAjWAmbhyclWSQPDfzfO9shIkidNYsBzz9H2/PMrzPZ1HTzIjhdfZONtt7F/8eJGK2fgLiykZM8eLWQmIiIi0kjsdoMxJ0FYGOw/AD//0iHQIUkQUuJWRERE5HeGzUZIXBzhycnYIyP9ei5HdDQdLr+cAbNm0ebsszEcDl9baWYm2599lo1/+hMHly7FbKQlh7WQmYiIiEjjiYqCk0+05gxk7G5Fq4TrAx2SBBklbkVEREQOYzgchCYmWguYhYf79Vwh8fF0vOYa+j/7LImnnVahXENJRga/PfEEqXfeSfbKlY2WSNVCZiIiIiKNIzkZhg21vm6bPI2ff/Hv5AFpWpS4FREREamGLTSUsLZtCW3dGiMkxK/nCk1MpPONN9L/6adpdfLJYDt0m1a0Ywdb/vlPfv7LX8hZu7bxZsIevpBZY9TeFREREWlh+vaBpKSDGIaDl1/rzLbteteTWJS4FRERETkKu9NJWFISIa1a+XUBM4Cwdu3oeuut9H3ySeJHjqzQVrhlC78+/DBpDzxA3saNfo2jgrKFzDIyKNm3D09xceOdW0RERKSZMwzo02sXhQUrKSqyc9dfTA4eVPJWlLgVERERqRHDMHBER1sLmMXE+HUBM4CIDh3oNnUqfR57jNhhwyq05aemkvbgg6RNm0ZBWppf4zict7CQ0r17KdZCZiIiIiINxm432bntclonlrB7D9x9r0lRkZK3LZ0StyIiIiK1YNhshMTHE9YIC5gBOLt2pcc999B7xgxijjmmQlve+vX8fO+9/Dp9OoXbtvk9lvLM3xcyU/kEERERkYbh8Rxgyo3biIuFn3+BB/9u4nIpeduSKXErIiIiUge2sgXM2rXDCAvz+/kie/ak54MPkjJtGlF9+lRoy/nhB1LvvJOtjz9O8a5dfo9FRERERPyjTetSZvzDICwMvl8OD/3DxONR8ralUuJWREREpB5sYWGEt2tHSGIihsPh9/NF9+tHykMP0fOBB3D26FGhLWvZMjbecQe/zZxJyZ49fo9FRERERBpe/34Gj0wzcDhg8Vfw2BNm4y1OK0FFiVsRERGRBuCIjCQsOZmQ+Hiw+fcWyzAMYgYNoveMGXS/5x4iOnc+1Oj1cvDrr9lw221sf/55Svfv92ssIiIiItLwjhth8LcHDGw2+PhT+PfTSt62RErcioiIiDQQwzBwxMQQnpyMPTra7wuYGYZB3LBh9HnsMbr++c+EJScfavR42P+//7Hh5pvZ+coruLKy/BqLiIiIiDSsk08yuOcuA8OAD+ZbM2+9XiVvWxIlbkVEREQamGG3E9qqFWFJSdicTv+fz2aj1fHH0+/f/6bLrbcS2qaNr810u8lcuJCfpkxh15tv4s7L83s8IiIiItIwzj7L4N67reTtgo9hxqOqeduSKHErIiIi4ie2kBDCWrcmtG3bRlnAzLDbSTj5ZPrPnEmnG24gJCHB12aWlrL3ww/56aabyHj3XTwFBX6PR0RERETq7+yzDB74q1U2YeFn8H/TTEpKlLxtCZS4FREREfEze3i4tYBZQgKG3e738xkOB61PP53+zzxDh6uuwhEb62vzFhWxe+5cfpoyhT3z5uEpLvZ7PCIiIiJSP6efavD3Bw1CQuDrb+DOu01y85S8be6UuBURERFpJI6oKMLat8cRF+f3BcwAbKGhtD33XPrPmkX7yZOxR0X52jz5+aS/9RYbpkxh5wcf4C0t9Xs8IiIiIlJ3Y042ePxfBpGRsG493HyrScZuJW+bMyVuRURERBqRYRiExMZaC5iVS6T6kz08nHYXXMCAWbNIuvhibBERvjZ3Tg6/PvccG26+mX2ff47X5WqUmERERESk9gYfa/Ds0waJifDbNrjuBpM1a5W8ba6UuBUREREJAMNuJzQhwVrALDy8Uc5pj4wkedIkBjz3HG3PPx8jNNTX5jp4kB0vvsjG225j/+LFmB5Po8QkIiIiIrXTo7vBi7MMeqVATi7ccafJ+/NMTFMJ3OZGiVsRERGRALKFhhLWti2hbdpghIQ0yjkd0dF0uPxyBsyaRZuzz65w3tLMTLY/+ywb//QnDi5diun1NkpMIiIiIlJzbdoYzJppcMZp4PHCv582eeBvJnmqe9usKHErIiIiEgTsERGEJSUR0qoVNMICZgAh8fF0vOYajvvPf0g87bQK5y3JyOC3J54g9c47yV65UjM4RERERIJMWJjB/fcZ3HqzgcNhLVp21bUmGzbqvq25UOJWREREJEgYhoEjOprwpCQcMTFgGI1y3vA2beh84430f/ppWp18coWF04p27GDLP//Jz3/5Czlr1yqBKyIiIhJEDMNg0kSD554xSE6GPXthyq0mz73gpaRE921NnRK3IiIiIkHGsNsJiY+36t+WW0jM38LataPrrbfS98kniR81qkJb4ZYt/Prww6Q98AB5Gzc2WkwiIiIicnR9ehu8+qLB6aeC1wtvvQNXX2fy0wYlb5syJW5FREREgpQtJISwNm0Ibdu2wkJi/hbRoQPd7ryTPo8/TuywYRXa8lNTSXvwQdKmTaMgLa3RYhIRERGRI4uKMnjwfhv/eMigVTxs3wE33WLyj396ycpSArcpUuJWREREJMjZw8MJT0oiJCGh0erfAji7dKHHPffQe/p0Yo45pkJb3vr1/HzvvaTefTeunJxGi0lEREREjuzEEwxm/8fg7DOt7xd+BpdcbjJnrqnyCU2MErciIiIiTYQjKorw5GQcsbGNVv8WIDIlhZ4PPkjKtGlE9elToS3ru+/Y8fzzjRaLiIiIiBxdTIzBfffYeO4Zg5SekJ8PM581ufSPJp/918TjUQK3KVDiVkRERKQJMWw2QuLiCEtOxuZ0Nuq5o/v1I+Whh+j5wAM4e/TwbQ+Jj2/UOERERESkZgb0N3jpeYN77jJonQh798IjM0wuu8Lk089M3G4lcIOZI9ABiIiIiEjt2RwOwlq3xlNcjCsrC7O0tFHOaxgGMYMGEX3MMeRv3IgRGkrimDGNcm4RERERqT273eDcc+C0U+H9efDWOya7dsH0f5q8+jpcMB7OPRvi4hrvHV1SM5pxKyIiItKEla9/azRi/VvDMIju35+Ek0/GcGgugIiIiEiwCwszuOwSg/ffNZhyo7WA2d698PyLJhMmmjw83cvGTSamqVm4wUJ32SIiIiLNgCMqCrvTiTs3F3duLuiGW0RERESq4HQaXPoHuPAC+GIxzJtv8ksa/Pdz+O/nJr1SYPw4OPkkiInWLNxA0oxbERERkWairP5teHIy9sjIQIcjIiIiIkEsLMzgnLMMXn7B4MXnDM48A0JD4Jc0+NdjJuMuMLnnr16+XGxSXKxJAYGgGbciIiIizYzhcBCamIg3OprSrCzMkpJAhyQiIiIiQcowDPr2gb59DG65yWThf+Hz/5ls2QJLlsKSpSYR4TB6tMmYkwyGDYWICM3EbQxK3IqIiIg0U7awMMLbtcNdUIA7KwvT4wl0SCIiIiISxOLirDIKl/7BYOtvJl98afLFYsjIgP99Af/7wiQ0BIYOMRk92mDUSEhMUBLXX5S4FREREWnmHJGRVv3bnBzceXng9QY6JBEREREJct26Glx/rcF115hsSoXFX5l8t9RK4i5bDsuWW+UT+vQxGT3K4ITjoWtXawavNAwlbkVERERaAMMwCImLwxEVhSs7G09BQaBDEhEREZHDpKWlBTqEap04Gk44HnbvCePHn2L4aUMM27Y7SU2F1FSTl16BhIRS+vfLZUC/PHr2KMDhaJjauDExMeTm5jbIsaqSkJBAhw4d/Hb8ulLiVkRERKQFKV//1pWVhVf1b0VEREQCLjd3L2Bwww03BDqUWnE42hIVczrRMWcSGXUiBw5E8M23iXzzbSIeTx4FeYvJy/2c/Lwv8XgOBDrcakVEOFmxYnnQJW+VuBURERFpgWxhYYS1a4ensBCbSieIiIiIBFRxUQ5gcvY5/6RnytBAh1NrP6d+waLPr+OkMa/gCB3M/v0xlJZGExM3npi48YBJbGwhrRNzaZ2YQ2RkCbWpqBAeFkaxnyYcZO5N4523b+LAgQNK3IqIiIhI8LA7nUTExVHg9eLKzQUtYCYiIiISMAkJ3ejQ4ZhAh1FrmXvTMM1COnZwMPCYBEwT9u+Hnbusj4MHDXJyIsnJieTXLUlERUHHDtC5M7RtAzbbkY8fERFBUVFR41xMEFHiVkRERKSFMwwDR0wM9shI3Lm51gJmZsPUIxMRERGRlscwoHVr62PwsZBfALt2wo5dsGc35OdD6s/WR0S4lcDt0hnatj16ErclUeJWRERERAAw7HZC4uOxl9W/LSwMdEgiIiIi0gxERULv3taHywUZu2HnTti+A4qK4edfrI/wcOjcCbp0gXZK4ipxKyIiIiIV2RwOwlq3xlNcjCs7G1MLmImIiIhIAwkJsZKznTvByONg9x7Ytg127ITiYvglzfoID7dm4XbvBp06tcx3gylxKyIiIiJVsoeHY2/XDndBAe7sbEy3O9AhiYiIiEgzYrdDh/bWh9cLu3fDb9thxw4riVs2Ezc2poRu3aB7d4iOCnTUjUeJWxERERE5IkdkJHanE09enhYwExERERG/sNmgfXvrw3uclcTd8hts3w45uSZr18HadVYd3B7drdm4oaGBjtq/lLgVERERkaPSAmYiIiIi0ljKJ3FdI2D3nhA2pbrYvRv27rU+lq+wyi306AHJSdaCaM2NErciIiIiUmPlFzBzZ2cHOhwRERERaeZCQqBXioNOHV3kF8DWrfDrFsjJga2/WR9RUZDSE3r2AKcz0BE3HCVuRURERKTWbA4HoYmJgQ5DRERERFqQqEgYOAAG9IcDB2Dzr7BlK+Tnw5q1VimFjh0gJQXaJ1szd5syJW5FRERERERERESkyTAMSEy0PoYNhd+2QdpmyMyEHTutj8hIawZuz55WwrcpUuJWREREREREREREmiSH4/cEbQ/IzoZf0qxZuAUFsG49rP/Rmn2bkmLNxm1Ks3CVuBUREREREREREZEmLy4ORgyHIUNgx3b4ZTPs2QO70q2PiAgrwZuSAtFRgY726JS4FRERERERERERkWbDYYdu3ayPnFyrjMKvv0JREfz4k/XRvj306mmVXQhWStyKiIiIiIiIiIhIsxQbA8OGwOBBsHOnVUohYzekp1sfoaF9iYo+PdBhVkmJWxEREREREREREWnW7Hbo0sX6yP19Fu7mX6G4OISY2PMCHV6VmlA5XhEREREREREREZH6iYmBoUPg4otg6JBf2ZPx10CHVCUlbkVERERERERERKTFsdshPq4Arzc30KFUSYlbERERERERERERkSCjxK2IiIiIiIiIiIhIkGlWidsff/yR6667jqFDhzJo0CAuvvhiFi5cGOiwRERERERERERERGrFEegAGsry5cu59tprCQ0N5ZxzziEyMpJFixZxxx13sGfPHq6++upAhygiIiIiIiIiIiJSI80icet2u3nggQcwDIO33nqLPn36AHDzzTdz0UUX8cQTT3DGGWfQvn37AEcqIiIiIiIiIiIicnTNolTC8uXL2bFjB+eee64vaQsQHR3NjTfeiMvlYv78+QGMUERERERERERERKTmmkXiduXKlQCMHj26UlvZtlWrVjVqTCIiIiIiIiIiIiJ11SwSt9u2bQOgc+fOldpat26N0+lk+/btjRyViIiIiEjtacFdEREREYFmUuM2Pz8fsEojVCUqKoq8vLxqHx8bG4vNFvw57Pj4+ECH0OSoz2pH/VV76rPaU5/Vnvqs9tRntac+Cw5acFdEREREyjSLxG195eTkBDqEo4qPjycrKyvQYTQp6rPaUX/Vnvqs9tRntac+qz31We01pT5rzglmLbgrIiIiIuUF/zTTGoiKigKodlZtfn5+tbNxRURERESCgRbcFREREZHymkXitkuXLgBV1rHdt28fhYWFVda/FREREREJFlpwV0RERETKaxaJ22HDhgGwZMmSSm1l28r2EREREREJRlpwV0RERETKaxY1bkeOHEnHjh355JNP+OMf/+h7a1leXh7PP/88ISEhnH/++YENUkRERETkCOq74G4gZO5Nq9PjwsPCKC4paeBoaubgwR0AHDiwlV27WgUkhtoo31dNLfbyGiN2f42rptzvUH38gXwe1lSw9H1d+ipYYq+L+sQe6HHVlPr98L5qSrFXxd/x+3Ns1fV+pjEYpmmagQ6iIVS3Am96ejp/+ctftAKviIiIiAS1q6++mqVLl7Jo0aIqZ92ecMIJFBYWsnr16gBEJyIiIiKNrVnMuAU47rjjePvtt3n66adZuHAhbreblJQUpk6dytlnnx3o8EREREREjqgmC+7GxsY2ZkgiIiIiEkDNJnELMHDgQF5++eVAhyEiIiIiUmvlF9zt379/hbayBXcHDhwYgMhEREREJBCaxeJkIiIiIiJNnRbcFREREZHylLgVEREREQkC5RfcTU1N9W3XgrsiIiIiLVOzWZysqRo7dizp6elVtg0fPpw333yzwrbS0lJefPFFPvroI3bv3k1sbCxjxozhT3/6EwkJCY0RckDNmzePe++994j7HHfccfznP/8BYObMmTzzzDPV7vvll1/SoUOHBo0xUBYsWMDq1avZsGEDaWlpuFwupk+fzoQJE6rcPz8/n5kzZ7Jo0SL27dtHmzZtOOOMM7jllluIjIystL/X6+Wtt97ivffeY/v27TidTkaNGsUdd9xBx44d/X15flHTPnO5XCxevJjFixfz448/smfPHgB69OjBBRdcwKRJk7Db7RUes2vXLk455ZRqz33LLbdw6623NvxF+Vltxlldn3/fffcdL7zwAhs3bsQwDPr168eUKVMYOXJkg15LY6lNn/Xq1euox/v6669JSkoCmuc427t3L5999hnffvstW7duZf/+/cTGxjJ48GCuvfZajjnmmEqPaem/z2rTZ/p9Fvya+oK7/r4faU4a4zW1OWiM14XmpLb91ZLHVklJCU888QQbNmxg+/bt5OTkEBMTQ8eOHZk4cSLjxo0jJCSkwmNa6tiqbV+15HFVnRdffJHHH38cgDlz5jBo0KAK7S11bFXlSH3VEsdWs6px21RFR0dzxRVXVNrevn37Ct97vV5uuukmlixZwqBBgzj99NPZvn07c+fO5fvvv+e9996jVatWjRV2QPTp04dbbrmlyrbPP/+czZs3M3r06EptF1xwQaX+BIiJiWnwGAPlqaeeIj09nfj4eNq0aVPtPwQACgsLmTx5MqmpqYwePZpzzjmH1NRUXn31VVatWsVbb71FWFhYhcc8+OCDzJ07l549e3L55ZeTmZnJZ599xtKlS5kzZ46vLl9TUtM+27FjB7fddhtOp5ORI0cyduxY8vLy+Oqrr/j73//Ot99+y3PPPYdhGJUe27t3b0499dRK24cPH97g19MYajPOytTm+bdgwQLuvvtuWrVq5fvDdeHChVx11VX8+9//5swzz6z/RTSy2vRZdb/ftm/fzscff0yPHj18SdvymtM4e/PNN3nppZfo1KkTxx9/PK1atWL79u188cUXfPHFFzz++OMVFh3V77Pa9Zl+nwW/pr7grr/vR5oTf7+mNheN8brQnNS2v8q0xLFVUFDAO++8w8CBAzn55JNp1aoVOTk5fPfdd9x3330sXLiQl156CZvNeqNySx5bte2rMi1xXFUlLS2NmTNn4nQ6KSwsrNTeksfW4Y7WV2Va1NgyJaDGjBljjhkzpkb7vv/++2ZKSor55z//2fR6vb7tb7/9tpmSkmI+8MAD/goz6JWUlJjDhw83+/bta+7bt8+3/emnnzZTUlLM5cuXBzC6xrF06VJz165dpmma5gsvvGCmpKSYH3zwQZX7PvXUU2ZKSor56KOPVtj+6KOPmikpKebzzz9fYfv3339vpqSkmJdddplZUlLi2/7111+bKSkp5tVXX93AV9M4atpne/bsMWfPnm0WFBRU2F5QUGBOmDDBTElJMRcuXFihbefOnWZKSor5l7/8xX8XEAC1GWe1ff5lZ2ebQ4cONUeMGGHu3r3bt3337t3miBEjzBEjRph5eXn1v4hGVps+q860adPMlJQU89VXX62wvTmOs88//9xcsWJFpe2rVq0y+/XrZw4bNqzC7yH9Pqtdn+n3mfibP+9Hmht/vqY2J/5+XWhuattfLXlseTyeCn1RxuVymZMnTzZTUlLMr776yre9JY+t2vZVSx5XhystLTUvuOACc+LEiebUqVPNlJQUc+3atRX2acljq7ya9FVLHFuqcduEzJ07F4A///nPFWbC/OEPf6Bjx458/PHHFBcXByq8gPriiy/Izs7m5JNPJjExMdDhBMSoUaOq/I/T4UzTZO7cuTidTqZMmVKhbcqUKTidTt9YK1P2/e23305oaKhv+0knncTw4cNZsmQJGRkZDXAVjaumfda2bVsuu+wynE5nhe1Op5OrrroKgFWrVvklxmBT0z6ri//+97/k5uYyefJk2rVr59verl07Jk+eTFZWFl988YVfzu1P9e2zkpISPv74Y0JCQhg/fnwDRhacTj/99CpncA4dOpQRI0aQk5PDL7/8Auj3WZna9Jl+n4m/+fN+pLnx52tqc+Lv14Xmpjb91dLZbLYK9wJlHA4Hp512GmC96wk0tmrTV1LR888/z+bNm/nHP/5RqRwVaGyVd7S+aqlUKiEIlJaWMm/ePDIzM4mKimLAgAGVag+VlJSwfv16unbtWukGzzAMRo0axZw5c9iwYQNDhw5tzPCDwvvvvw/AxIkTq2xftWoV69evx2az0aVLF0aOHNni6sSU2bZtG5mZmYwePbrKP9wHDx7MkiVL2L17t+8t2StWrPC1He6EE05g5cqVrFy5skUumOJwWL9Gq3thyczM5K233iIvL4+EhARGjBhBp06dGjPEgKvp82/lypUAVZY7GT16NDNnzmyR42zRokXk5ORwxhlnVFsOp6WMs7LnW9ln/T47usP7rCb76veZNIa6PH9F97SHa4jXhZbkSK8JGluHeL1evvvuOwBSUlIAja3qVNVX5bX0cbVx40aef/55brvtNnr06FHlPhpblpr0VXktaWwpcRsE9u3bV2nBrQEDBvDEE0/4/iDasWMHXq+32rp7Zdu3bdvW4hK36enpfP/997Rr144TTjihyn1mzpxZ4fuYmBj++te/Nps/zGuj7D+hRxpLS5YsYdu2bSQlJVFYWMi+fftISUmp8o/5zp07VzhuS/PBBx8AVScbAZYuXcrSpUt93xuGwXnnncff//73Si/MzVVNn3/btm0DDo2p8lryODvaP6agZYyzjIwMli1bRuvWrX1/GOj32ZFV1WdHot9n0phq+/wVi+5pD2mI14WW5GivCS15bJWWlvLCCy9gmibZ2dl8//33bN26lQkTJvgWx9XYstSkr8pr6ePqL3/5C7179+baa6+tdj+NrZr3VXktaWwpcRtgEyZMYMiQIaSkpOB0Otm2bRuvvfYaCxYs4Morr+Sjjz4iKiqKvLw8AKKioqo8Ttn2/Pz8Ros9WMybNw+v18sFF1xQ6Q/x3r17849//IPhw4fTpk0b9u3bx9dff83TTz/NPffcQ3R09BFXym6OajuWarp/2X4tyZw5c/j222857rjjOOmkkyq0RUREMGXKFE499VQ6deqE1+tl06ZNPPnkk3z00UcUFxdXerFpbmr7/Csbc9HR0ZWO1VLH2c6dO1mxYgXJyckcf/zxldpbyjhzuVzcfffdlJaWMnXqVN/vev0+q151fVYd/T6TxqZ729rRPW1FDfW60FIc6TVBY8vqn/Kr1BuGwdVXX82dd97p26axZalJX4HGFVgLUG7bto158+Yd8T5MY6vmfQUtc2wpcRtgh68g3qdPH/71r38B1urqc+fO9dWck8q8Xi/z5s3DMAwuvPDCSu1l9XbKdOjQgcmTJ9O9e3ffKvXN7UktjeOrr77ioYceon379jz66KOV2hMSErj99tsrbBs5ciSDBg3iggsuYNGiRWzcuJF+/fo1VsiNTs+/+vvggw8wTZMJEyZUWqUXWsY483q93HPPPaxatYqLL764Wf4XvaHVts/0+0wk+Ok19RC9LtTO0fpLYwsiIyP55Zdf8Hq9ZGZmsnjxYp588knWrVvHSy+9VG1CrSWqaV+19HG1du1aXn31VW655ZYaveupJattX7XEsaXFyYLUpEmTAFizZg1waAZadf9lKdve0l5Uli1bRkZGBscddxwdO3as8eNGjhxJp06dSEtLa9b/uapKbcdSTfevapZkc/XNN99w2223kZCQwH/+8x/atGlT48dGRET4Fpgqe363NNU9/44027EljjOv18v8+fOx2WxV/mPqSJrLOPN6vdx333188sknjBs3jr///e8V2vX7rLKj9dnh9PtMAkX3tg2jpd3TNvTrQnNX29eE8lra2AJrAa527dpx6aWXMm3aNNasWcNzzz0HaGwd7kh9dSQtYVy53W7uueceevXqxfXXX3/U/Vvy2KptXx1Jcx5bmnEbpOLj4wEoLCwEoGPHjthsNl8NyMOVba+uLkpzVba64pFqP1YnPj6e7du3U1RU1Cx/CVanrIZjTceS0+mkdevW7Nq1C4/HU+mtC2U1eaqqS9ocff3119x6663Ex8fzxhtv1OofBmXKnt9FRUUNHV6TUdXzr0uXLmzYsIHt27f7+qhMSxtnAN999x179uxh9OjRJCcn1/rxTX2ceb1e7r33Xj788EPOPfdcZsyYUWnWsX6fVVSTPitPv88kkGr7/JXqtZR7Wn+8LjRntX1NqEpLGVtVKav3XrZ4rsZW9Q7vq6Np7uOqsLDQNx769+9f5T5lE/WeffZZunfvDrTMsVXbvjr11FOPeLzmOraUuA1SP/74IwDt27cHIDw8nIEDB7Ju3TrS09N92wFM02TZsmU4nc5qB3tzlJWVxZdffklcXFyl6fJHU1hYyObNm3E6nZUSRM1dly5daNOmDWvWrKGwsLDCgjKFhYWsWbOGDh06VCh8Pnz4cD799FPWrFnDsGHDKhyvbBXRw7c3R2VJjtjYWN544406J3fWr18PUOF53JJU9/wbNmwYn3zyCUuWLGHQoEEVHrNkyRLAGostRU0WJTuSpjzOyv+xefbZZ/Ovf/2rynpX+n12SE37rIx+n0mg1eX5K5W1lHtaf74uNEe1fU2oSksZW9XJzMwEwOGwUiYaW9U7vK+OpCWMq9DQUC666KIq23744Qe2bdvG2LFjadWqFe3bt2/RY6u2fXUkzXlsqVRCAG3ZsqXKGSpbtmzhscceA+C8887zbb/44osBeOKJJzBN07f93XffZefOnZx33nmEh4f7OergsWDBAlwuF+eddx6hoaGV2vPz8/ntt98qbS8uLuaBBx6goKCAM888s0YvMM2JYRhMnDiRwsJCZs2aVaFt1qxZFBYW+sZambLvn3rqKUpLS33bv/nmG1auXMno0aOb/R/t33zzTYUkx9H+47lp06YKz9MyixYt4sMPPyQ2NpYTTzzRT9EGXl2ef2eddRbR0dHMnj2bPXv2+Lbv2bOH2bNnEx8ff9T/sjYXBw8e5KuvvqJVq1aMHTu22v2a4zgre1vnhx9+yJlnnsmjjz5a7R+b+n1mqU2fgX6fSXCoy/O3pWrp97T+fl1obmrTXy19bP36669V/j1eVFTE9OnTAXwLdrb0sVWbvmrp4yo8PJxHHnmkyo9jjz0WgBtuuIFHHnmEPn36tOixVdu+aqljq3ldTROzcOFCXnvtNYYNG0ZycjIRERFs27aNb7/9FpfLxQ033FBh1s8FF1zAwoUL+eSTT9i1axfDhg1jx44dLFq0iA4dOvCnP/0pcBcTAB988AFQ/Wy07OxszjrrLAYMGED37t1JTEzkwIEDLFu2jD179pCSksLdd9/dmCH71dy5c1m9ejUAaWlpvm1lb1kZMmSIr6+uvfZavvzyS1566SVSU1Pp27cvmzZtYsmSJQwYMIArrriiwrGPO+44Jk6cyNy5c5kwYQInnXQS+/btY+HChcTFxXH//fc34pU2nJr22ZYtW7jlllsoLS31zdY7XPv27ZkwYYLv++nTp7Njxw4GDRpEu3bt8Hg8bNq0idWrVxMaGsr06dObZB3NmvZZXZ5/sbGxPPDAA9x9991ccMEFnH322YD1uzI7O5snn3yySb7lpTbPzTIffvghLpeL8ePHV/mPqTLNcZw9++yzzJ8/H6fTSZcuXaqsl3bqqafSp08fQL/PoHZ9pt9n4m/+vB9pbvz5mtqc+Pt1obmpTX+19LH12Wef8dprrzFkyBDat29PVFQUe/fu5dtvvyU7O5uhQ4dy5ZVX+vZvyWOrNn3V0sdVXbTksVUbLXVsKXEbQCNGjGDLli2kpqbyww8/UFxcTHx8PCeeeCKXXnqpr1ZMGZvNxnPPPceLL77IggULeP3114mLi+Oiiy7iT3/6E61atQrQlTS+H3/8kbS0NAYOHEivXr2q3CcuLo5LL72UH3/8kW+++Ybc3FzCwsLo3r07l19+OZMnT25WM5RXr17N/PnzK2xbs2ZNhQVjyv5QcjqdzJ49m5kzZ7Jo0SJWrFhB69atufrqq7n55pur7Jdp06aRkpLCe++9xxtvvIHT6eS0007jjjvuoFOnTv69OD+paZ/t37/fNzOvqiQHWG+/Lp/oGDduHJ9//jnr16/n66+/xuv10rZtWyZOnMhVV13lq2XU1NS0z+r6/Bs/fjzx8fG88MILzJs3D7DqHd10002MGjXKvxfnJ7V5bpapaZmE5jjO0tPTAevtTs8//3yV+7Rv3973B7p+n9Wuz/T7TPzN3/cjzYm/X1Obi8Z4XWhOatNfLX1snXzyyWRmZrJ27VrWrVtHYWEhUVFR9OrVi3POOYcLL7ywwsy9ljy2atNXLX1c1UVLHlu10VLHlmFW9d43EREREREREREREQkY1bgVERERERERERERCTJK3IqIiIiIiIiIiIgEGSVuRURERERERERERIKMErciIiIiIiIiIiIiQUaJWxEREREREREREZEgo8StiIiIiIiIiIiISJBR4lZEREREREREREQkyChxKyIiIiIiIiIiIhJklLgVERERERERERERCTKOQAcgItKYdu3axSmnnMLw4cN58803Ax2OiIiIiEiz0atXL9/X7777Lscee2yV+y1cuJA77rgDgPbt27N48WJfW9n9enk2m42YmBj69evHpEmTOOOMM6qNYdmyZSxYsIA1a9awf/9+XC4X8fHx9OrVixNOOIFzzz2XhISE+lymiEijUeJWRERERERERBrUxx9/XG3i9qOPPjrq451Opy9B63K52Lp1K0uXLmXp0qVcd911TJ06tcL++fn5TJ06la+++gqAbt26MWrUKMLCwti3bx8//PAD3333Hf/+9795/vnnGTFiRD2vUETE/5S4FREREREREZEGYbfb6d69OwsXLuS+++7D4aiYdsjKymLJkiX069ePjRs3Vnuc+Ph4ZsyYUWHbvHnzuPfee3n55Zc577zzfDN83W431157LWvXruWYY45h2rRp9O7du8JjS0tL+eSTT3jmmWfYs2dPA12tiIh/qcatiIiIiIiIiDSY8847z5egPdzChQtxuVyMGzeu1sedMGECI0aMwDRNvvzyS9/2V199lbVr15KSksIbb7xRKWkLEBoayoQJE/joo4845phjan1uEZFAUOJWRFqs4uJiHnvsMcaMGUP//v057bTTePHFFzFNs9K+v/76K3feeSejR4+mf//+nHDCCdx9991s3bq10r4rVqygV69e3HPPPezbt4+//vWvnHjiifTt25fXX38dsP7j/9Zbb3HhhRcyYsQIjjnmGMaOHcsNN9zAp59+WumYbrebt99+m0mTJjF48GAGDhzI+PHjef3113G73ZX2Hzt2LL169cI0Tf7zn/9w9tlnM2DAAE444QQefvhhcnNzq+yToqIinn32Wc4991wGDhzIkCFDuOyyy6qM6fLLL6dXr17s2rWrwvbXX3+dXr160b9/f4qKiiq0/fOf/6RXr17897//bbDre/PNNxk3bhzHHHMM48ePr/K6RERERKTxnHfeeRiGUWVJhI8//hin01mpjm1N9e3bF8A3a9btdvOf//wHgHvuuYfw8PAjPj4qKoouXbrU6dwiIo1NpRJEpEVyuVxcffXVbNmyheHDh1NYWMiqVat4/PHHKSgo8C2WAPD9999z4403UlxcTN++fRk+fDhbt25lwYIF/O9//+Oll15i6NChlc5x8OBBLrroIjweD4MHD6a0tJSIiAgApk6dyueff05kZCRDhw4lKiqKvXv3snr1agoLCznnnHN8xykuLub6669nxYoVxMXFMWjQIEJDQ/nxxx+ZPn06K1as4Nlnn8Vmq/y/uIceeoj33nuP4cOHk5KSwqpVq3jzzTdZuXIlb7/9NlFRUb598/Pz+eMf/8jGjRtp1aoVJ598MkVFRSxfvpwffviBtWvXcv/99/v2HzZsGCtXrmTlypV06NDBt33FihW+Pl67di2jRo2q0GYYBsOHD2+Q6/u///s/5s2bx7Bhw+jevTsul+vIP3gRERER8bukpCSGDRvG4sWLKSgoIDIyEoCdO3eydu1axo8ff9QEa3UKCgoAawYtwKZNm9i/fz/x8fEV7jtFRJoDJW5FpEVau3Ytw4cP58svv/QlL3/66ScmTZrEf/7zH66//noiIyMpLCxk6tSpFBcX8+CDD3LZZZf5jvH6668zffp07rzzThYtWkRYWFiFc3zzzTecdtppPP744xXadu7cyeeff0779u354IMPiI+P97WVlJSwadOmCsf55z//yYoVKzj77LOZNm0a0dHRgJVo/fOf/8zixYuZM2cOl1xySaXrXLBgAe+++y79+/cHrBvdKVOmsHz5cp566in++te/+vZ98skn2bhxIyNGjGDWrFm+ftmyZQuXX345b775JscffzxjxowBYPjw4Tz77LOsXLmSCRMmAOD1elm9ejU9e/Zk8+bNrFixwncDnZeXR2pqKj169KBVq1YNcn2LFi1i/vz59OzZs4qfsoiIiIgEyrhx41i5ciX/+9//OP/884FDi5LVpUwCWPfKS5cuBfDVt/3ll18A6NOnD4Zh1DNqEZHgolIJItIi2Ww2/v73v1eYcTpgwABOPPFEioqK2LBhAwCfffYZ+/fv59hjj62QtAW48sor6devH3v27OHzzz+vdI7Q0FAeeOCBSgndrKwswLq5LJ+0BQgLC6uw+u6BAweYO3cuSUlJTJ8+3ZfUBOttXo888gghISG88847VV7n5MmTfUlbgMjISB544AEMw+D999+npKQEgMLCQt5//31sNhv/93//V6Ffunfvzk033QTAG2+84dt+7LHHEhoaysqVK33bfv75Z3Jychg/fjzt27ev0LZq1Sq8Xi/Dhg1rsOu77rrrlLQVERERCUJnnHEGoaGhfPzxx75tH3/8Ma1bt2bkyJG1OpbL5eKXX37htttuIz09nbi4OM4880zg0L314ffVZT744APuueeeCh8vvvhiHa9KRKRxKXErIi1ScnIy3bp1q7S9rN7Vvn37APjhhx8Aq05XVcpmC5TtV16/fv1o27Ztpe3dunXD6XTyzTff8PLLL7N3795q41yxYgUul4sTTjihyreTtW7dmi5dupCWlkZxcXGl9rPPPrvSth49etC7d28KCwt9s3s3btzoKwXRvXv3So8pqx27Zs0avF4vYCWZBw4cSHp6uq/ObVmidsSIEQwfPpyffvrJV+e2rK18mYT6Xt/YsWMrbRMRERGRwIuJieHkk0/m+++/Z9++ffz444/89ttvnHPOOdjt9qM+Pj09nV69evnWThg3bhxff/01iYmJzJo1q8I//I9kzZo1zJ8/v8LHd999V9/LExFpFCqVICItUrt27arcXlZ/q7S0FIDMzEwA2rdvX+X+ZbVdy/YrLykpqcrHREVF8dBDD/HAAw/w6KOP8uijj9KlSxdGjBjB+PHjGTJkiG/f9PR0AN577z3ee++9I15TTk5OpeRndXG3b9+e1NRUX9xHu86YmBiio6PJy8sjJyfHN6Nh+PDh/PDDD746tytWrCAqKop+/foxfPhw5s+f76tzW1Xitr7Xl5ycfMTHiIiIiEjgjBs3jkWLFvHpp5/6/tFf0zIJTqeTM844A7DeLRcTE0Pfvn057bTTfOtGwKGZtmUzbw/3yCOP8MgjjwCwbt06Jk2aVOfrERFpbErcikiLVNVCVw3t8BIJ5Z177rmMGjWKL7/8kiVLlrBq1SrmzJnDnDlzuOqqq7jnnnsAME0TsMoq9O7d+4jnCwkJabjgq1BVzbDhw4cza9YsVq5cyfnnn8/q1asZMmQIdrvdl6BdsWIFAwYMIDU1le7du5OQkOB7fH2v70h9LCIiIiKBddJJJxETE8OCBQvIzMyke/fu9OvXr0aPjY+PZ8aMGUfdr6zWbWpqKqZpqs6tiDQrStyKiBxBmzZtgEMzQw9Xtr1sv9po1aoVEydOZOLEiZimyXfffccdd9zBa6+9xoUXXkjPnj19pRaGDBnCAw88UOtzlL3F7HAZGRkV4i77XLb9cHl5eeTm5hIeHk5sbKxv+7HHHktISAgrV6701bctS9h26NDBV+f2mGOOwev1VphtC9T7+kREREQkeIWGhnLmmWf63ll1+eWXN/g5+vbtS2JiIvv37+f777/3LYwrItIcqMatiMgRDB06FIBPP/20yvaylXHL9qsrwzA48cQTOfnkkwHYvHkzAMcddxx2u52vvvoKl8tV6+N+9tlnlbZt2bKF1NRUnE4nffr0Aax6vOHh4WzcuJFt27ZVekzZdQ4ePLjCbOXw8HBfndt58+YBVn3bMmV1br/55hvf9+XV9/pEREREJLiNHz+euLg44uPjq103oj4cDgdXXHEFANOnT69yXQQRkaZKiVsRkSM466yzSExMZPXq1cyZM6dC2xtvvMGGDRto27atr/5WTWzatIlFixb56uiWyc7OZv369cCh+rht27blwgsvJD09nTvvvJP9+/dXOt727dv5/PPPqzzX7NmzfQuQARQVFfHwww9jmiYXXnihr2as0+nkwgsvxOv1Mm3aNAoLC32P+e2333juueeAqmdJlCVj33vvPaKjo+nbt2+FNpfLxfz58yvsW6a+1yciIiIiwW3o0KGsWLGC5cuXV7ueQn1dddVVHHvssaSlpfHHP/6R1NTUSvt4vV7fvbaISFOhUgkiIkfgdDp57LHHuPHGG3nwwQeZM2cOXbt2ZevWrWzatAmn08kTTzxRq1qrGRkZ3HrrrURHR9O/f38SExPJy8tj1apVFBQUMGbMGI499ljf/n/9619JT0/n888/57vvvqN3794kJydTWFjIli1b2L59O6ecckqVyeNx48Zx8cUXM2LECKKjo/nhhx/Yt28fPXv25Pbbb6+w75///GfWrVvH0qVLOfXUUxk2bBhFRUUsX76ckpISLr/8csaOHVvpHMOHD+e5556jpKSEkSNHVlgluCxRW1JSQrdu3UhMTKz0+Ppcn4iIiIhISEgIL7/8MnfeeSdff/01559/Pt26daN79+6Ehoayb98+fv31Vw4ePEhERASnnXZaoEMWEakRJW5FRI5i5MiRvP/++zz//PMsX76ctLQ04uLiGDduHDfddBPdunWr1fGOOeYY/vSnP7F8+XJ+++03fvjhB2JjY+nVqxcXXXRRpZV2w8PDeemll/j444+ZP38+P//8Mz/99BPx8fG0b9+ecePGcc4551R5rvvvv58OHTowd+5cdu3aRWxsLJdddhm333470dHRFfaNiopi9uzZvPrqq3z22WcsXryYkJAQ+vfvz6WXXsq5555b5TnK6ty6XK5KM2rL6tymp6dXamuI6xMRERERAete9oUXXmDp0qUsWLCANWvWsGTJEtxuN3FxcfTt25fjjz+e8ePHV1gsV0QkmBlm2ZLeIiLSbIwdO5b09HR++eWXQIciIiIiIiIiInWgGrciIiIiIiIiIiIiQUaJWxEREREREREREZEgo8StiIiIiIiIiIiISJBRjVsRERERERERERGRIKMZtyIiIiIiIiIiIiJBRolbERERERERERERkSCjxK2IiIiIiIiIiIhIkFHiVkRERERERERERCTIKHErIiIiIiIiIiIiEmSUuBUREREREREREREJMkrcioiIiIiIiIiIiAQZJW5FREREREREREREgowStyIiIiIiIiIiIiJB5v8BG4XNWgmG6n0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df_mpg = df_mpg.dropna(subset=[\"horsepower\", \"mpg\"])\n", + "\n", + "\n", + "plt.figure(figsize=(14, 6))\n", + "plt.subplot(1, 2, 1)\n", + "sns.regplot(data=df_mpg, x=\"horsepower\", y=\"mpg\", line_kws={\"color\": \"firebrick\"})\n", + "\n", + "plt.subplot(1, 2, 2)\n", + "sns.histplot(df_mpg[\"mpg\"], edgecolor=\"black\", kde=True)\n", + "plt.xlabel('MPG')\n", + "plt.ylabel('Count')\n", + "plt.title('Histogram of MPG')\n", + "\n", + "plt.tight_layout()\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "id": "8438031b", + "metadata": {}, + "source": [ + "Immediately, we see that the linear fit doesn't seem to model this data perfectly, it exhibits some nonlinearity. We'll use a polynomial regression in order to see if we can improve that fit and capture the curvature. We will first fit a linear model as a benchmark." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "43e534c1", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Auto-assigning NUTS sampler...\n", + "Initializing NUTS using jitter+adapt_diag...\n", + "Multiprocess sampling (2 chains in 2 jobs)\n", + "NUTS: [mpg_sigma, Intercept, horsepower]\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e6e0f90c197a47a7a720cf04308ddcc1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 3 seconds.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4fe66832f2c74af1960c669f470f1f33", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "We recommend running at least 4 chains for robust computation of convergence diagnostics\n" + ] + } + ], + "source": [ + "mpg_hp_linear_mod = bmb.Model(\"mpg ~ horsepower\", df_mpg)\n", + "mpg_hp_linear_fit = mpg_hp_linear_mod.fit(idata_kwargs={\"log_likelihood\": True}, random_seed=SEED)\n", + "mpg_hp_linear_mod.predict(mpg_hp_linear_fit, kind=\"pps\")" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "d7c64860-d4d5-4d3f-a793-911b323d76d7", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Default computed for conditional variable: horsepower\n", + "Default computed for conditional variable: horsepower\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtsAAAHrCAYAAAAe4lGYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD07klEQVR4nOy9eXhb5Zn+/znnyLIs2ZJlO4uzOitkAwJJSCCsdkShQGlLlxSmQAtNKZAECtMA7Xzn18I0QNomUJawTGEKDS3MQBsoM07CEgIxJCRAVrI6m514k2VLtmxJ5/z+OJEtWYtlS7al5P1cl69gne09r4x9n0f3ez+SpmkaAoFAIBAIBAKBIOXIAz0AgUAgEAgEAoHgVEWIbYFAIBAIBAKBoI8QYlsgEAgEAoFAIOgjhNgWCAQCgUAgEAj6CCG2BQKBQCAQCASCPkKIbYFAIBAIBAKBoI8QYlsgEAgEAoFAIOgjhNgWCAQCgUAgEAj6CMNADyAdcDqdAz2EhLHZbLhcroEeRkYj5jB5xBwmj5jD5BFzmDxiDpNHzGFqyNR5tNvt3e4jKtsZhiyLtyxZxBwmj5jD5BFzmDxiDpNHzGHyiDlMDafyPJ66dyYQCAQCgUAgEAwwQmwLBAKBQCAQCAR9hBDbAoFAIBAIBAJBHyHEtkAgEAgEAoFA0EcIsS0QCAQCgUAgEPQRQmwLBAKBQCAQCAR9hBDbAoFAIBAIBAJBHyHEtkAgEAgEAoFA0EcIsS0QCAQCgUAgEPQRQmwLBAKBQCAQCAR9hBDbAoFAIBAIBAJBHyHEtkAgEAgEAoFA0EcIsS0QCAQCgUAgEPQRQmwLBAKBQCAQCAR9hGGgByA4ffB6c3A6s3C5JGw2Dbvdh8nUOtDDEggEAoFAIOgzRGVb0C+4XHncfHM2U6YoXHCBzJQpCjffnI3LlTfQQxMIBAKBQCDoM4TYFvQ5Xm8OCxYolJdLYa+Xl0ssWKDg9eYM0MgEAoFAIBAI+hZhIxH0OU5nVoTQDlJeLuF0ZlFcLOwkAoFAIDj9mD17do/2r6io6KOR9J633nqLhx56qON7SZLIycnBZrMxfvx4Zs6cyRVXXIHNZkv6Wrfffjtbt25Ny3mIhRDbgj7H5YoutEO3Fxf302AEAoFAIEgjfvzjH0e89te//hW32x11WzozY8YMzj77bABaW1upra3l888/58MPP+T555/nF7/4BaWlpQM8yv5HiG1Bn2OzaUltFwgEAoHgVOW2226LeO3tt9/G7XZH3ZbOzJo1ix/+8IdhrwUCAf75z3+ybNky/u3f/o3c3FzOP//8ARrhwCDEtqDPsdt9OBxyVCuJw6GnkggEAoFAIIhNVVUV3/rWt7jqqqv4l3/5F5555hm2bt1KU1MT//M//wPQsf3f/u3fIo6fPXs206dP5+mnnw573ePx8Je//IV3332XqqoqsrKymDJlCrfccgvnnHNO0uNWFIVrrrkGWZb5zW9+w4oVK3jllVeQJF0THD58mL///e9s3bqVo0eP4vV6GTJkCJdeeim33HILZrM57B6i/XfoPa9evZr169ezd+9eGhoaMJlMTJo0iR/+8Iecd955Sd9PbxALJAV9jsnUysqVARyO8Aq2w6GxcmVAxP8JBAKBQJAgR48e5dZbb8XpdPL1r3+dq666iqysrF6dy+Vycdttt/HCCy+Ql5fHN7/5TS677DJ2797NHXfcwQcffJCycV955ZUMHTqUAwcOsH///o7X33//fVavXs3IkSO56qqr+OY3v4nVauXPf/4zCxcuxO/3d+z74x//mKFDh3b8d/Drkksu6dhn2bJlNDQ0MHPmTL7//e9z4YUXsm3bNu666y7Wr1+fsvvpCaKyLegXbLZmXnxR5GwLBAKBYOA4Ffo9fPnll/z4xz+OsJhUVVX1+Fy/+93vOHDgAPfffz/f+MY3Ol6//fbbueWWW1i6dCmzZ88mOzs76XHLssz06dN555132LVrF+PHjwfga1/7GvPnz2fw4ME4nc6O/V944QWee+451q5dy9e+9jVAt9xs2bKF48ePx7TYrFq1imHDhoW9VldXxy233MITTzzBxRdfnPS99BRR2Rb0GyZTK8XFTZx5povi4qaM+wUnEAgEgszlVOn3UFhYyM0335z0eRobG1m3bh0zZswIE9oABQUF3HDDDTidTjZt2pT0tYIUFRV1XDvI4MGDo1bmr7/+eoAeX7+r0A5e99JLL+XIkSNUV1f36HypQFS2BQKBQCAQnNJ01+/hxRdzMqYANGHChF7bRkLZuXMngUCA9vZ2nnvuuYjtR44cAeDQoUPMnTs36evFQtM03nrrLf7v//6PPXv24Ha7UVW1Y3tdXV2Pznfs2DFeeuklPvvsM2pra2lvbw/bXldXR3E/R6AJsS0QCAQCgeCU5lTq91BQUJCS8zQ1NQG6LeXLL7+MuV9ra+rmJSic7XZ7x2u/+93veP311ykuLmbu3LkUFRV1PEy88MILEWI5HkeOHOHHP/4xHo+Hc889l7lz52KxWJAkiS1btrB169YenS9VCLEtEAgEAoHglOZ06Pcgy7ozOBAIRGxzu90Rr1ksFgB+8IMfsHDhwr4dHKCqKlu3bgVg0qRJADQ0NPDf//3fjB8/ntdffx2v19uxf319PS+88EKPrvHqq6/S1NTE//t//48rr7wybNsjjzzScf3+Rni2BQKBQCAQnNKcDv0e8vJ073ltbW3Etq+++iritcmTJyNJEtu2bevzsQG88847HD9+nHHjxjF27FhAX9SpaRozZ84kJycnbP/PP/886nkURQGiP1QcO3YMIGIRpKZpcav3fY0Q24IBx+vNobrayu7dNqqrrXi9Od0fJBAIBAJBguj9HqIL6lOl34PFYmH06NF88cUXHX5r0HO0u2Zrg77QsrS0lG3btvHyyy+jaZHzs3379rBqc28IBAK89dZbPProoyiKwqJFizoytoMxftu2bQvzadfU1EQdM4DVagXgxIkTEduC5/viiy/CXv+v//qvsLjB/kbYSAQDisuVF7FoxeGQWbnSgM3WPIAjEwgEAsGpgt7vwRDl782p1e9h/vz5LF26lNtuu43LL78cTdPYuHFjh22jK/fddx+HDx/mj3/8I++88w7Tpk0jNzeXmpoadu3axZEjR3j77bcxmUwJXf/TTz+lra0NAK/XS21tLVu3bqW2thar1cr/+3//j1mzZnXsX1RUxGWXXcZ7773Ht7/9baZPn05DQwMfffQRM2bM4OjRoxHXOO+883j33Xe5//77mTNnDkajkQkTJnDRRRfxzW9+k7feeov777+f0tJSbDYb27dvZ8+ePVx44YV89NFHvZjV5BFiO404FfI/e8KptDpcIBAIBOnN6dDv4brrrsPv9/PXv/6Vf/zjHxQVFfH1r3+dW265JWqiiM1m49lnn+X1119n7dq1/N///R+qqlJYWMiECRP40Y9+hM1mS/j6mzdvZvPmzUiSRE5ODjabjTPOOIMf/vCHXHHFFR1V6VB+9atfUVxczAcffMBrr73GkCFD+P73v88Pf/hD3n333Yj9v/GNb1BdXc3atWv585//TCAQ4KqrruKiiy7ijDPOYMWKFaxcuZL3338fRVGYNm0aK1eu5MMPPxwwsS1p0T43OM0IDVEfKKJXePUn7tAKr91uT4vxpoLqaitTpigxt+/YEaC4uCnl1z2V5nCgEHOYPGIOk0fMYfKIOUweMYepIVPnMTRZJRbCs50GdFfhjedhzmS/cyKrwwUCgUAgEAgyGSG204BE8j+jkendsE6H1eECgUAgEAhOb4TYTgN6U+FNphqeLpwOq8MFAoFAIBCc3gixnQb0psLb22p4OqGvDg9ECO5TbXW4QCAQCASC0xeRRpIG6BVeOap4jlXhPVW6YZ0Oq8MFAoFAIBCcvgixnQaYTK08+6yB8nKF4mIJrxdycqCqSsPhiF7hPZX8ziZTK8XFrRnxcCAQCAQCgUDQE4TYThM0DV5/HcrLO19zOGDevOj796YaLhAIBAKBQCDoX4RnOw3ozWJH4XcWCAQCgUAgSH9EZTsNSGSxY3FxNCuJ8DsLBAKBQCAQpDNCbKcBjY3xP2BobJRj+pmF31kgEAgEAoEgfRE2kjQgNze57QKBQCAQCASC9ESI7TRAUTRKS6NvKy3VtwsEAoFAIBAIMg8httMAWdZYtIgIwV1aCosW6dsFAoFAIBAIBJmH8GynAfn5Pp5/Xmb2bInFi8HrBZMJKirg+ec1nnlGxPgJBAKBQCAQZCJCbKcBJlMrK1YYWLBA4eGHO1NJRIyfQCAQCAQCQWYjxPZA4W9DPr4NzTIILXcwNhsixk8gEAgEAoHgFEOI7YFC9SM3HICGA/r3RgtmyyBycgdRXDgYjJaBHZ9AIBAIBAKBIGmE2E4X2j3I7R5wVurfZ5nRLEWolkFolkFgsg7o8AQCgUAgEAgEPUeI7XTF14LUeBil8bD+vSEbtWAsmvWCgR3XKYLXKyw7AoFAIBAI+h4htjMFfxtyzS609lqkvHFo9tEDPaKM5cgRuPXWbMrLQxejyqxcacBmax7AkQkEAoFAIDjVEDnbmUZ7C8qRT1D2vwutzoEeTcbh9eZw662ECW3Qv1+wQMHrzRmgkQkEAoFAIDgVEWI7Q5E8dRj2rkE+ugn8bQM9nIzB6cyivDz6tvJyCaczq38HJBAIBAKB4JRGiO0MR244iOGrfyLX7QFNHejhpD0ul5TUdoFAIBAIBIKeIDzbpwIBH3LV50gNB1CLp6PlDRnoEUUlHRYl2mxaUtsFAoFAIBAIeoKobJ9CSN4mlIMfoFR+BO2egR5OGC5XHjffnM2UKQoXXCAzZYrCzTdn43Ll9es47HYfDkf0bQ6H/gAgEAgEAoFAkCqE2D4FkZqOYfjqHeRjnyF5agd6OHi9OSxYoKTFokSTqZXnn9eFdSgOh8bKlQER/ycQCAQCgSClCBvJqYqmItfvh/r9kGVGtY1AtY+GHHu/D0VflBjdCx1clFhc3H8id+RIePHFtgG3tAgEAoFAIDj1yZjK9rPPPssZZ5zBGWecweeffx6x3e1289vf/pbLLruMqVOncvnll/PII4/g8aSXnWJA8LUg1+3BsHeNvpjy+Hbwuvrt8um4KNFkaqW4uIkzz3RRXNwkhLZAIBAIBII+ISMq23v27OGJJ57AbDbT0tISsb2lpYUbb7yRXbt2MXfuXL7+9a+za9cu/vM//5NNmzbxyiuvkJ2dPQAjT0Pa3Mg1O5FrdqKZbGj5I1FtoyA7t88uKRYlCgQCgUAgOF1Je7Ht8/lYsmQJkyZNYvTo0fzjH/+I2Of5559n165d3Hbbbdx7770dry9btoznnnuOF198kQULFvTnsDMCyetCOu5CPr4dLceOZhuOZsxDM1rAaAFDah5Q9EWJclQriViUKBAIBAKB4FQm7W0kzzzzDHv37uU//uM/UBQlYrumabz22muYzWZ+9rOfhW372c9+htls5rXXXuuv4WYsUqsT+fh2lMMbMexbi2Hn3zFs/2+UPf+LcvBD5GNbkGu/QnId1TtX+tsTPrfJ1MrKlQGxKFEgEAgEAsFpR1pXtnfs2MEzzzzDwoULGT9+fNR9KisrqampYe7cuZjN5rBtZrOZc889lw0bNlBdXU1xcXF/DPvUQQ0geZvA20RUV7Uhm0DxWWj2Md2eymZr5sUXBz5nWyAQCAQCgaA/SdvKdnt7O7/4xS8488wzufXWW2Pud+jQIQBKSkqibg++XllZmeIRCvC3oRzZhHLgfWhzd7u7WJQoEAgEAoHgdCNtK9srVqygsrKS//mf/4lqHwnS3NwMQG5u9AV+wdfd7thi0GazIcv9+9yhtRnRulTiE8XSy+P6DNUNxz5EKp4GQ6cg9dFcOp1w4gS4XJCfD4MHg72XSYb23h4o6EDMYfKIOUweMYfJI+YwecQcpoZTdR7TUmxv3bqV//zP/+TOO+9k4sSJfX49l6v/YvA6aPdgiJKs0h0WsxlPL47rF/Z+jHZkB+qIGWjmwpSe2uXKi2iME/R822zNPTqX3W7H6XSmdHynG2IOk0fMYfKIOUweMYfJI+YwNWTqPCbygJB2NhK/38+SJUs444wz+MlPftLt/nl5ervvWJXr4OuxKt+C1CJ5XSj71iEf2wKBxBdRxiOdOlAKBAKBQCAQ9IS0q2y3tLR0+KunTp0adZ/vfe97ADz55JOMGzcOiO3JDr4ey9MtCEE24LHNoCFQgqtZId8awC5XYnFtBtXfs1M5K2llKA3aeFzurKQWRKZbB0qBQCAQCASCREk7sW00Grn++uujbtu8eTOVlZVcfvnlFBQUMHz4cEpKShg8eDBbtmyhpaUlLJGkpaWFLVu2MGLECJFE0h2ygfqib7BgUQHlazo/8HA4prJy+XAK6/6euOCOeS6ZlSsN0W0fPi+SzwPtHqT2zn/VwvG4XLa4l3O5JMTbKxAIBAKBIB1JO7FtMpl4+OGHo25bsmQJlZWVLFiwgHPOOafj9e985zs8+eSTPPXUU2FNbZ566ilaWlr46U9/2tfDzng8thkR4higvFxhwWI7Lz02A4uzIslz6baPF59qxdy6SxfVvpPiWg1EPZfiPoGtYDxgink90YFSIBAIBAJBupJ2Yrs33Hrrraxbt47nnnuOXbt2MXnyZHbu3MmGDRuYNm0aN91000APMe1pCJREiOMg5eUKDUtLsJCY2I5/Lglnk4Xcpn0Jj61A+wqHYxrl5ZHnFB0oBQKBQCAQpDNpt0CyN5jNZl5++WVuuukm9u/fz5/+9CcOHDjAj370I1588UVMpthVUYGOqzl2vCJAU3PiPyqpPBeAxbWZlcsbcDjUsNdFB0qBQCAQCATpjqRp2mn/GfyARM20ezDsfrvHh/VV9N8R6/eZcm5sb/SOLS5GNr3a7+fqILh4k/G4PCZsNnq94DJT44XSCTGHySPmMHnEHCaPmMPkEXOYGjJ1HjMy+k8wMBQolTgc0X3TDkeAAqVyQM7VgerH4qxgpPNlpuS8Q/EQp6hoCwQCgUAgSHuE2BYAQauGM0IkOxwBnl3RiCTLHLF+n+3SDRy1fR+PfTbI0S3/cc+13KlHCSaB5DqGUrkeAsKrLRAIBAKBIL05JRZIClKA6qew7u+89NgMGpaW0NQsY81TKTAcpo1ifnjPlO4jAUNzumsVfv+YH+MKH846H7kWlQKlEktdl8xugwlX0ZU0eAtpdEnY8zXs2fXY6t4BvzfmcCV3LcqB9wmMuRgM2X01KynF683B6czC5ZKSyh0XCAQCgUCQOQixLejkpFWjI3WkCTz22fxkYQKRgDGztQOsXO6OntNtMFEz+AZ++jOFtWs7m9aUlQ3imaduYHDNK/EFd6sTw/538Y+5GIyW5O+/D4nebj5O7rhAIBAIBIJTAmEjEcSlu0hAp1aCxz6b44NuYMHiwpii3GObEXG8q+jKCKENsHatxE9/puAqurL7AbY1Y9j/HnibEr+pfka0mxcIBAKB4PRFiG1BXOLF+FksIBlzueneaXy1zxSnpbpCQ6Ak4vUGb2GE0A6ydq1Eg7cwsUH6WjAceBdaGhLbv59JpN28QCAQCASCUxMhtgVxseVFTxUBWLwYFi2WKV8j443t9gCiZ2s3uqIL0CCubraH4W/HcOB9pIaDoKnd79+PdHcfPbpPgUAgEAgEGYXwbAviosf4TaW8PLLCffnlGg8/rAvF7voGWa0qHnm2vniyWSHfGiC/m0c9m03DI4UfY5cr9TSTrv5vANWPcnQT1OwkMHgSmr0EpIF/nuyunbxoNy8QCAQCwanLwCsRQVoTL8Yv29hZQa6ogNLS6OdwOFTMuVncdO80ppxr44JLcpk83YbTCWVl0YVmWZmGNU+NOOam+6ZSX/SNmLGDALR7UI5uxrD7n0j1+we80m23+3A4ot+naDcvEAgEAsGpjRDbA4Tfr+H1ZkBFsyMScDs7trjY+EEzO7a4eOmx7dhz3R27LV8OixZFCm6HI8Azf2zjFw+YmDlLZvVqeO01eOst+PhjmccfjxTcZWUaTz8NR6sMzJwlYwkJGom34DICXwvKsc9Oiu59oMa2xPQlJlMrK1cGIgR3KtvNe705VFdb2b3bRnW1VSy6FAgEAoEgTRA2kgHC54MDeyArS8NmBatVX3Aoy2no340SCQiAnQ6LiccD8+frPu7FiwE0xoxqp5DdNHpLuPFfclixAh5+uPO0paVw7rkSK5/x43ZLuFwyuXlw9KjEhRdCTY2+z6pV+rk9Hv248nKFhqUlnePpDl8LyrEtULMLddAZaIkI9RRjszXz4ot9k7MtYgUFAoFAIEhfRGV7gPH5oK4eDhyEHTuhslKjoUHD70//qndXi4nHo4vpJ54IMG1cPaNcL2NxVhBAF9rr1oUfv24dPPYYtLYEGCxt56GHNM49V+Laa3WhHdxnxYqggO8k2oLLbvG1Ild9jvblG8i1e6L7vvsQk6mV4uImzjzTRXFxU8oq2iJWUCAQCASC9EVUttMIVQVXk/4FYM7RsJ6seufkpGfFO2rXyS6dIgOqEiG0g6xbBwHVQIMaO8973bpIsW3NUzsr7D3F14pc/Tly7S7UwvGo1uGQk9/Lkw0sicQKFheLLpUCgUAgEAwUQmynMS2t+tfxE7rdJD8fRo5Is4p3LItJCO7mABA7r9vtBlXNi3uZ0GhBhyNAgVLZ87F2xd+GfGIH8okdYLSgWoehWYejWYrSIsUkERKJFSwu7qfBCAQCgUAgiECI7QzB54PaWnC5/GQbNQoLwWYFpDSseHchP7cVMMbc7m2TaWmJfx/BaEGHI8Czy5165TyVtHuQ6/ZC3V5QstDyinXxnTcUlNhjH2hErKBAIBAIBOmNENsZSLNb/8rKgsICjYICyMrqQ9EtG/DYZiSed92FArkSh2Ma5eWR1eKyMo1339XHXloa6esGPbVjzOh2dmzxRlhU+oSAD6nxMErjYZAkNMsgNOsw3W5itHR/fD+ixwrKUa0kIlZQIBAIBIKBR4jtDMbn0y0mJ06A1aZRVAi5uUmI7iiiusBwmFZlGAsW2cM81Q7HVFYuH05h3d+7Fb76QsrhLFhsD2uO43DAnXdKzJ+vf79qlf5vqOAOVrILGt7Gk3cODYESDmrjyLclIPhD7qfZo1A4yEBbm4Tb5cdq8yf2wKBpSO4aJHeNvrjSZEPLK0azFqOZi7r9ZMHr7XkCSU+O0WMFDVHSSFIXKygQCAQCgaD3SJqmnfafMzudzn6/ZqvLzYHVb/f4OKPRSHt7e8zt2dlQWAgFdlCUHghv2UB90TdYsKggTFQ/+6zK669LMSqnAV56bDsWZwIRfCeFbz1ncvCwEZAoKoKyss5IP4tFXwg5e7bu0R4/LsBQZTuW5s+pL/h6xNgcjgArlzujC/6Q+/noY5lVq4hIRIl7fCIoWWi5Q1CtxWi5xZAV3kYzeiSfLoJjRfL15hjonahPBrvdPiD/35xKiDlMHjGHySPmMHnEHKaGTJ1Hu93e7T5CbHNqie0gsqwL7iFDwGDoXnR77LO56d5pEYkgq1fDNdfEPm7HFhcjm17t9vxBjli/z5RzbT06d6yxQWzBH3rMgw/qHS6jW1QSfGBIwEqj5eSj5ek+71Z5BDffYopp73jxxbYIMez15nDzzdk9OmagyNRfiumEmMPkEXOYPGIOk0fMYWrI1HlMRGxnRuSCoMeoqp7fvXs31NZqdPdM1RCIHr0XmgISjZ7mXbuaO20k8Vu8dyaOxBobnGxwEyiJeD30mNmzowvteMeHcbJK3l3reKm1EblmJ8r+d3HW+LqN5OtKIjF+AoFAIBAIMgshtk9xAipUVcPur6CxMbbgDhXBoZhMUV/uwJqn9mg8trzOlunxWrw/u9ypV43jjC1INMEfekyyDwwe24wICwvEbx3vaop/zmiRfYnE+AkEAoFAIMgshNg+TWhvh0OHYd9+jZaWSNEdKoJDSbT6nCgFSmVYx8n58/XK8+rVsHq1xvYv2njpse0UhPioY40tSDTBH3pMsg8MvamsdzfmaJF8IsZPIBAIBIJTDyG2TzM8Hti7Dw4f1mhv7xRvoSI4lOXL4Ze/1HA4woVe1+pzoiTa4j10wWKssQXHEU3whx6T7ANDbyrr8cesYre2RLyux/hFF9Qixk8gEAgEgsxEiO3TFGcjfLUHjh/XUFUtQgQHufDCAOOK63nhiTq++DzA+g9UvvwiwAuP11PQ8HbPUzw6WrxvZ8cWFxs/aGbHFldENRvQFyXaZ+PUSlixnB4J/tD7SdSuEoveVNZjzad+zQZyK19Hrv4CAp2LXfUYv0CU+xQxfgKBQCAQZCoijYRTM42kJ2QZYOgQKBhkwGObSUOghKZmGWueSmFWrJztJGPzuqNLFGEwFvDyyzVM2Sr5FjcFPcjZdntk7EVZtLfrOdt5uX69QU4CjXk89tncdN/UsIzwIHHTTEKuH5zPiGsajKiDJ6MWjgdJpqkpj/JyheJiCa9Xt8BUV2s4HAGs1tjRf/1Npq4aTyfEHCaPmMPkEXOYPGIOU0OmzqOI/kuQ011sB8kygGIAWdKjA2UZTOPncNevY8fuvfjodnIbTwrNJDtNhtKbuL9EsZjNeFoibRwxCQr/iKY8JxvupOKBIzsX91AHNy8oEtF/pwliDpNHzGHyiDlMHjGHqSFT5zERsS06SAo68Pn1r1DUrPiLA0/8uoSWmo0UDTHgjNIUpyedJkPpdlHi0hIs9E5s95gO68sMGpZ2qVKnqnV8mxun09ht9F9xcXqIbYFAIBAIBIkhxLYgLt3F4jW5ZdzHwVs0k3vixOO99NiMHlWiuy5K7Npd0ifl4rHP7lXVvFeofizOik6B35T6S3S3ENPlguLiHp5U9UNbM5K3CamtGanNhWbMQy0+q/cDFQgEAoFAkDBCbAvi0l0snjVXxQ34zPEr0c5HS8BOwhaT0EWJFgsd7dYffjj4qtLrqnlcUmiF6SndxgWa3Bi+egfNXIhqKULLKQCTDSQJAu1Ibc3gbUJqazoprpug3RNxHgnA70UdMVM/ViAQCAQCQZ8hxLYgLoqnEse8qZSvibI4cF4AxVMJxK+AWywgGXO5adG0hC0menSevihx8WJdaHftAqlXzQt6XDWPSZdFmYmMM5WE3nNXOiIK25qR2ppRnJX6BiVL72Dp65m9RHZWIql+AqNmgyRCiQQCgUAg6CuE2BbEpXnPJlYsHc4i7GGC2zEvwIpHnDR8sgmIXwFfvBgWLZYpXxNeRY0Qy6FV5UaF3y2DjRUqI0fKLF8ODz7YaSPJyYGNG2H5cpkGNTX+7e46RaZM1MfA4trMsyuGU/5hAcXFcsd9VlWpXHGRE0ttlIjCgE//6gWS6yjKwQ8JlFzY0XJeIBAIBAJBahF/YQVxUX1+Gj59k2VLZhL4TQlNbhlrroriqaThk02oJ1dUxquAX365xsMPx1r4J9PwSAkWeXOMqrLG449r/PWvEn/4Q6iNRM/NXrUKmltyUnKv6bAoU9MkXn9dory88zWHQ2Le3L6xe0juEygH1xMomQuKsU+uIRAIBALB6YwQ24JuUX1+XDs2AhuRAXeUfeJVwLONEiedwlFxunNRCm9g4aLsKNVvifXrNf72t0gbSfD7J580wPFe3VoYvekUmUr0yro96hwsWJzfZ5V1yVOHcuB9AmMuAUN2ys8vEAgEAsHpjBDbgpQQrwKu5U6Ne2xbu8zeAybK10TfXlwssXZt9G3r1kFbWwIDDLGoNLsNWG3+iIWPCXWK7IMUkiADWVmXWhsx7H8X/9hLIMvcJ9cQCAQCgeB0RIhtQcqIVQG3XXQmpaVKRGUaoKwM3n1X4pxzYp/X641/3ebuBHCCCx8TWqDYHUmkmXRfWVfw2Gf3XVJKWzOG/e/hH3MJZOcmfz6BQCAQCASIGAJBn6P5vCxapHusQ3E4YOFCWL5cb0sei3jbAPKt8RcIdrfw0WObAegLFFcud+JwhFe4g50iLa4oCxRDOSnqb7p3GlPOtXHBJblMnm7jpvumUl/0jW4XIXZXWbfk5/T63AnT7sGw/11obUzN+QQCgUAgOM0RYlvQ50jNlTz/XIDZs2H1anjtNf3f/+//g/nzweOBiopIMR6kulrD4dCibnM4NGym+KXtbu0ZgRL9m45OkdvZscXFxg+a2bHFxUuPbU+oJXuioj4WemU9uuB2ODQqPpF6fe4e4fdiOPA+tDSk7pwCgUAgEJymCLEt6HOa92zikX93sunTANdcA9/5DlxzDbS0aHhO9lxZvpzo1e95AS69RGXxYol588K3zZsHCxdKNLfGT9Ho0cLHk50iRza9yhTtL4xselVflJiATSNhUR+DeJX1Pz6hcvfdvT93jwm0YzjwPpK7JrXnFQgEAoHgNEN4tk8hDDkmCmZeRatWiMslkZ+vYaKehk3/xN/ajfG5D4m1eNJsasMxr4jyNTIej17lXrxY/wKNUcPbkZy7OXFsLN/5Th6LF+u2E69Xt5ZUVMD3vgf/+w+ZwjaNHHOXxJOT/mmLFj8aMFULH5NOM+morM+gYWkJTc0y1jyVAqWSQzXj8Hhi+6j7JClF9euxgMOmo1kGQXYu3jYLTmcWe/ZAXp4Vu92HydSzhjoCgUAgEJxOCLGdwchZBvImziRgKaHZrZA72MIHFXD33VJHxbisbBBP//FG6j58ecAFd9fFky1ZBlYsva4jLtDj0XO0OxvmvInq85M7q6RjWzRyLSp7doDdrjF0CBiNUtiiyJmzZEpLI6MDoQcLHxMgJWkmJyvrHakjJ/fPs5Ykf+7eoKkoxz7rnM/FRsrLg8JeweGQWfmMAVt+cx9cXCAQCASCzEfYSDIUOctAwazruHfpNKbPtnFxWS7TzpL4618lVq3SW6QDrF0rcfudCgUzrxrYAUehs+K9na0VLj5Y28zWChfLlmzvENoQbJgTw8sc0jLe6YRdu6HykIbL3OmfjmlRSXThY4LE91wnJ+r78tyJ0OFHL+/qGZdY8FOZtqpqlMqPkI9vQ2o80qdt7QWx8XpzqK62snu3jepqK15vaho+CQQCgaD3iMp2hpI3cSaLlkQuxgtWbxcv7qwEr10r0aoV9u8AEyTZhjmhLeODuFwQ8Hf6p7taVLxemDghwGBpO5a6FMXmEfRcD2fBYntYfGCHqK/rvajvy3MnQnw/ukxD+3AsTR8iNR3TX1SyUPNHoRaMhRx7n45NoONy5bFggUJ5eaedyuGQWbnSgM0mPnkQCASCgUKI7QHkSL2N4XYXci8+XwhYYoufdeuCvudOXC4pYz/GiNcwp/GzrR1WmqDHWfFU4nTH909rGvGaWvZyoLE910mL+r48dwL02I8e8CHX70eu34+WY0ctHIeWPyp1EYWCMLzenAihDSc/eVig8OKLOcJbLxAIBAOE+Ms3QNTVw0NvzMOU5WPWuMNcMPEQJYMakBIUgN0tiOvaCMZm00jH2lao7zxULDfv2dRhI4HoFfCglaZrhd8xbyqPPdZ5DYsFVq2CFStCfd8KDsdZrFw+gsK6N1MnVmN4rtP+3N2QjB9danWiHN0MVZ/r1e7CcaLanWKczqwIoR2kvFzC6cyiuFiIbYFAIBgIhNgeIN5ZYwAkvD4j63ePZ/3u8eRbPMyZcIhZ444wzB5fSVnz1LjbQxvBlJVp5Ej1aSe244nlFUuH0/Bpp287mig3m9q4674oudZrFK7/VMXh0Cgvl1i8WBfaXRdIlpdLLFhcwEvLZmFp+LivbzejSUl3TdWP3HAAueFAZ7XbNhKUrNQP+DTD5Yr/lO5ySRQX99NgBAKBQBCGENsDxPXf8NNeuZ3/+/JMnB4zAI0eC+98Ppl3Pp/MsPxGZo0/wsxxhynKa4k4Xl80ODXMwxyktFSPxQNdaD/9ZIC69f9M2dgTrUZ3d4zZ1MZ9v9LTQu46GemXkwMbNyr84t/tPLR4Jq4dG3VRfv43WfSLAsrXdIqKdeu0sO9DuftumS2fBbjrLpg9W4mZZFJeLlEXmIhZ+wgp0Y8VEiWJ1u19Tg/HlmrPeHi1eySauQiyc9GMuZAlFvX1FJstetOnRLcLBAKBoO+QNE077X8LO53Ofr9mq8vNgdVvo2mwu2owa7dNZPvRoUQzEo8ZXM+ssYc5b+wRBuVrtLe3h1SFuywadGg88QTUnNDIy9Mr2qnM2Y5djQ6wYqkzrBodekzh7OtYv6mA4mK5Q1QPGaJRXS1FVJ1LS/X0kNFDXTRVrCJ/2gX8/LfTIj4mf+01vUFOLD58rxmbegBX1llcdHFsIf3hepWsHc9SVAiFhaAoKRDdIdGDYfPkCLByuZPCBDpS9hm9HVuIQG92G8jL9eue8VQ/PMgGXXSfFN9adt4pKcTtdnvKfvd4vTncfHN2VCuJw6Hx4ottp6RnO5VzeLoi5jB5xBymhkydR7u9e1ukqGwPMJIEk4bXMGl4DbVNFt7bOZ6PvhqD1xf8aF3jYE0hB2sKee2Ts5k5vopLJ33FmEENMRcN1r27CXx+miHl1pFYKSjlaxQWYWfZkpknvdWd2CadT3VjIX/9qxQmqjdtihTa0Pn9H5bpXhjVdkZUERFqlYlGbo6K69ONWC6cCsRe4GfJ1fD4oPo4nKiBArtGURFkZ/dedHfXuv2lx2bonSkHgF6PLcQzbjGb8TRFfuKSElQ/krcRvI2Rj54nhbiWOwjVXiK83ycxmVpZudIQJY1EY+XKwCkptAUCgSBTEGI7jRhk9fDd2V9w7Xnbqdhbwns7xnPcZe3Yrmoyn+wdwSd7RzC6qIHLp+zlPO8nZCmxY/NSTbwUlPI1CoHflADhYtswaAIPLZQiRLUkRW80A/rrqmTENmUOLnd0T29FBbGb1cwLkOU9jG3KHDSDxOrV+vU2btRbwweb/pSWgjnbx8lvUVV98WpdPVitGoOKIDe356K729btS0s6Fzr2M+k8tm45KcQlbyNy3V40kw3NXoKaPxqyunn6OsWx2Zp58cUcnM4sXC4Jm00THT4FAoEgDRBiOw0xZQW4dPJ+Lpm0n13HBvPujglsP1KM1lHn0zhUV8CfPjif1z85m4sn7eeSSQewmfu+Q2R3KShNbjkiYrDFmxVVENfXx7/WiRMSv1s2lceWRRe7y5frKSOKAuXlna875gV4/DEnmjqMe35hDxOWpaX6MfPnw+zZ8Mtfavhr90a/lyb9K8ekUTQI7Pkk7OtOunV7H5LOY+spkteFVP0FcvUXaHnFqPbRaNbhIMe/x1MVk6mV4uJWsRhSIBAI0gghttMYSYLJI2qYPKKGGpeFdTsm8PGeMbT7DSe3qzR7Tby9dQrvfD6J88Ye5fIpexnTgwjBntJdCoo1V42osLs90Qfj88W/ls93MlnkE41582DNmvDtHg+sXAl33gl33aUvsBw/TkNxbsfnlPj5f0yN2vRHUeD992HrVo3ignrqP/4k7jhavXDkCByvhny7htJVx0VZ9ZA7NgWt2/uIlLSVT0Ok5mqU5mq9oY5tBJq9BM0yaKCHJRAIBILTnMwpYZ3mDLZ5mH/B5/zuh+VcN2MbNnMrmqa/fRIaqiazaf8oHvlHKUv/UUrF3lH4Aql/exNtnR6KLTe6qt64MbKFepDSUn07wN13SyxfrkXsW1oKCxboVeprrtEXS0qSimvHRvw5o+NYJTj5MKJB/GeHMHx+qK2F48e7fJ2I/KIpzjz1Q3v1eAx06/c+J+BDbjiIsv89DLvfRj6xA9o93R8nEAgEAkEfIMR2hpFr8nHlObv5j++9zS2Xfcao4vYQewlIkkZlrW4xWbLqav70/kw+3TcSt9eYkuvrrdOdEUIy2Dq9ec+miGNk11c4HJHl3+XLdRtH120OB/zhDzB3Ljz4oP6ay6nyve+pbN0Kq1frX7Nn60I71H8to6didGeFOHgQfvITmYX/aidv4swE7z46cpYB25Q55M6ajzrpBnJnzUeSJR5/NMo8OTQeXw6NlOCxzx6Qjop6jJ8zQnB3xPi5+rb1e7/S7kE+sQPD7rdR9r+LVL8f/O0DPSqBQCAQnEaI6D8GNvqvpxiNxrDov4W/sPNxRYDCIi+51s4KsiKrBNROwSmhUTKogSkjjzN1RDWjBzmRe2k1CcvMDklBiZWzbcgxUXTxjfzsToU1a8KTEp56Cj74AM45R6KpCQIBeO+9zkWMoTGAUnMlFE2l8pDSbVxg7qz5TJ9ti3kPq1fr1XCArRUu3J+u6vVcxIxCfKSRQFMVPtMoPO25tPlk3n1X6ri3AY0BDInxC2v9nmCMn8VsxtPSR2kkfY0ko1mLUfNL0KzFIA1MzSFTY67SCTGHySPmMHnEHKaGTJ1HEf13ChOM4FuzVgYUPG4j2dl+CgZ5sRe0hQhtDYOi4g8oHKwt5GBtIW9tmUKuqY3Jw48zdeRxJg8/Tl5O4tW+aK3T42EZO52f3ysza5bEwpPNa0wmGDpUYvFijbfekvjHP+Dxx2Ht2vBj163Tq/VPLmujZsdGbFPg+eemMnu2wuLFneeqqIDnnwvw0OJKIH7Tn69/HTRNF9xeL2DMwzZlTtymPLGIH4WYz7IlR1E8lfx66bSIBjzBqL3/XDoDa1M/p38MYOv3AUdTkVzHUFzHQDHqTXXyR6NZigZ6ZAKBQCA4BRGVbTKzsh2vcqsYVJbc18jGDa6w6MAgElq49QSN0YOcTB1RzZyJlVE7ViZDrLFu3gwzZuj//dZbcPXVsc8RrD7HbOZz0sbS8IneVCfWfl//OixdCosXh1fG4zXl6c29hY4b6HYfZfcqhgyGHHMfrWxNMRld2Y6F0YKaP1rP787O7fPLZWoVJ50Qc5g8Yg6TR8xhasjUeRSV7VOYeJ7kgF/GUZrF14r/j6aWbPYeH8Se44PYUz2IKqctTGgDaEhU1hZQWVvAW1snc9aoai6bvI8zh5/okdUkVht3V0v0sTaFVFNbu4kCDkYKqj5/zGY+DZ90VqZD99OWTePwYX0MmhYptKGzKc/vHpiFpmoJt6JPJAoxWlpJxL01gatJz/YeOgRycjJDdJ9StHuQa3Yi1+xEMxeg5Y9CtY08pbpWCgQCgaD/SUux3dbWxu9//3u2b9/OoUOHcLlcWK1WRo4cyXe+8x2uvfZasrLCG5243W6eeOIJysvLqa2tZfDgwVxxxRXceeedWCyWAbqTviPRCD6ruY3zxh7lvLFHAWhuNeriu3oQe48P4mhDfpcjJb48PIwvDw/DbvFQNnUPF55RSY4xfrU3tnd5Kk88ARZL50LGjjGGFN276wYZGimYqI2lY7+pY9G0PFasiC60g5SvUVAfm8J990kR97Bi6fCoVe9E3ofuCL23YLa33a6LbqNRiO6BQGppQGppQK76XO9WmT8azToCDKlZaCwQCASC04e0TCPxeDysWrUKSZK49NJLueWWWygrK6OmpoYHHniAn/70p6hqp4hpaWnhxhtv5MUXX2Ts2LHcfPPNjBkzhv/8z//kpptuoq2tbQDvpm/oTQQfQF5OO+eOOcb3L/icX31rDb+/8U1un/cRpVP3MNzeGLav02PhtU+mc8+fv8Ef/nkx+44XxhxPPO/yXQtl/vCHSNFZVQVlZXrZN9gNsqf3kwi5ZrWjiU1uN+6Aw0fk6P7rJdFTSxJ5H3rzXjmd8NVXUFWlEfCf9k6vAUVy16Ic3Yxh199RKjcgOQ/1/4JWgUAgEGQsaVnZzs/PZ/PmzRiN4VUkv9/PLbfcwoYNG1i/fj2XXnopAM8//zy7du3itttu49577+3Yf9myZTz33HO8+OKLLFiwoD9voc/RI/iGs4hY3uXICL5oWEw+zhldxTmjqwBwenLYcWQoXxwuZuexofgDCqoms7tqCLurhmDK8jF1ZDVlU/eEJZrEbeNeLvHYoyqOeYGwsb785wArV8ocOaJhtUrccINeeQ7rBunQWPGIk8bNW7FNmZOwvSMUxVPJhRdM5eGHFWbP7m5GoleSy9coaI+cSe6s8Ot7DmyN/T486iTgkgmYR7F8OSy+W6O8XArfJ857pWpQWwcNDTB4sEZREci9jZARJI+mITVVoTRVwTEFzToMNX8UWt7AJZoIBAKBIP3JuAWS//Vf/8XDDz/MAw88wE033YSmaVx88cW43W4++ugjzGZzx74tLS1ceOGFFBYWsrZrzEUImbhAEnoewddT/AGJfSeK+HD3WLYfGYrXF/7wk23wMWXEcS6bvI9xlzu41BG5GDPIhvfcDLK30KoV4nJJ5OdrmGUnkimfn/5MYe1aCYtFF9uXXaZ3efR4oKpK5eJZTtA0Fv5rlHi9BBY1hi6WnDlLoaIiupXE4dCYOVPi4Yejn2f1ao1rrukilpc6adzyFpax08PeB0PrIbLyh3WMOXhvl1+ukZ2lYjG6e/xeZWXB0CFQYIc+axGaIKfkAsneohjR8oaiGUygZIFsQDv5L7IBlCw02QByVsd2ZCVjFwOlE2IOk0fMYfKIOUwNmTqPiSyQzCixraoqCxYsYP369bz44ovMmTOHgwcP8rWvfY25c+fywgsvRBzz4x//mA0bNvD+++9TXFwc9byZKrb7m4M1dt7aMpndVUPwq+GRegYDFBYoTJ6cha/NyKq/KDSfXDxoscCWzwLcdVcXL7RD4/774eqrpQg/d2mpbvt4+GF9v+uv1/jJTyKrh455AZYt2X7Swx2b4IOJVHgmksHIPfdIYRX00lJ44gldbHcdS5DQbO7urm+bMod7l06LWu1PdMyx7kHNLcHTImPPV7HLiWdjpxIhtpNEVsgdN4tG03BRFU+CTP3jnE6IOUweMYepIVPnMePTSNrb21m5ciWaptHY2MjGjRs5cOAA3/rWt5gzZw4Ahw4dAqCkpCTqOUpKStiwYQOVlZUxxbYgMcYMdnLX1z7CF5DZtH8k7+2cQFVjPn6/hN8PJ2oCnKgJAF5GjgG/T6K1xUBZmcKttxmoqDCgR3PoVdnycolAQK/4dq0mr1unvx7c7667Yts7Ar8pAeIL1+BiydxZJcwtzWbxYrjrrvCc7tdek7jwwnCrR5DSUn2fRK8f11aT4JhDibkA1TGVlcuHD0xjHEHvUQNox77AENhOYPh5aLmDB3pEAoFAIOgj0lps+3w+/vjHP3Z8L0kSP/rRj/j5z3/e8VpzczMAuTFWvgVfd7tjt16x2WzIcv9Wl4xSVoQnPeFje3lcqjACl06t5upvj2Dxw2N4f72GvbANq7WdLKPa4XAwZGnk2Xx8sknvbDlhErS3ybgas2lqNNLWZggT1V3Jy9PbtS9ffrL5zEmClozZszub0hRMu5CW/VtR/fEFZ7NbweOJFPfB8276VGXx4sgK/J13SsyfH/uc2V3ek2Z3ZDOd7o6JR+4ZMRaglissWFzAH//tfAJHN2FQJAwGMGSBQQGDQTr5RceXnCILiiXEsiXoHRYlAMc/hcIxSCPPQxIxgz0mkaqSID5iDpNHzGFqOFXnMa3FtsVi4auvvkJVVWpqanj33Xf5wx/+wOeff85zzz0XU2D3FJfLlZLz9IRWl7tXdpCBtJF0pT1nFGvW6qKyptpATbUFg0HFlt+Gzd6GKaczgSNoVjJmqwwa0sqgIa14WxVcjdlUVxuBSHHa3KxXk1et0kUi6IJ41SpYsSJUMMs45k1mxdLibv3bebnRU0FA94j7PG6WLakMy/DOycvmvFmmmPaSvNwA7i7vSbzrxDomHu05o+IsQJXx/Hok7roNCZ1LUfRqvin75L8nvwyGxEW4sJEkT9gctuyAqj0Ehk5DKxg34J78TCFTP3ZOJ8QcJo+Yw9SQqfOYyANCRpgFZVlm6NCh/OAHP+DXv/41W7Zs4emnnwYgLy8PiF25Dr6eKmEu6CRaQxe/X6a+LocDe/N58OcG5k37inybrh2C+kFVdfFtygkwpLiF5X9spGScC3thK4pBjwgM2jbWrYPHH9cwm/XXFy/WhXbUpjQx4vlC0WP4omdfO+YFkJorce3YqHer3PkK7k9X0X78Ky68oGfRfb2NZoxFQs1zEiQQ0B8s6hvgWBXsPwA7dsL2HRr79mscPapRV6/h9mj4Rexg/xHwoRzbgrJvLbRm3h8cgUAgEEQnI8R2KHPnzgXg008/BWD06NEAVFZWRt0/+HosT7eg93TX0GXyGXD9+V/y1L8dpSjfQqPTSCAAstwpvIP/mi1+ioe3MHGSk3POa+LCuV5WPK6ff+1aCXu+hmNegNmz4zelCVhK4o6pec8mHn/UGSGEgzF8zXsiY/j0mMW+PyYeqWie0x1hIvwY7N/fKcJ379bYu1fjwEGNw4c1Dh0OcPy4Rm2tRkODhsuli3OvVwj0ZJFanRj2rkGu2gqB9PgUSyAQCAS9J61tJNGoqakBwHDSV1BSUsLgwYPZsmULLS0tEdF/W7ZsYcSIERm3ODJW6/O2g19AtOi/HmZPpwK9ejs1LF86SGj11rNvEyv/MJxFS+ysWZtLnrUda34bVpuP0Cwco1G/tXafj9ff8DFitAd3k5GGehONdW089YREda2ZWFnY0NnWvSuhc1XTYOCxR/w8vtxHbY2P3JzOdu9A1Dzvxi1vsWzJ9Lgt4rtep8Et89STGp4WlcZGyM/XMFFPw6Z/9vj9SXSu+4JAQP8KxdOiEs8FY7FoFBaAzSaywXuLXLcXufEIgWHnoOWPGujhCAQCgaCXpKXY3rdvH8OHDycnJ3yxUGtrK7/97W8BuOSSSwB90eR3vvMdnnzySZ566qmwpjZPPfUULS0t/PSnP+2/waeAeK3PH390BO0VbwDE3CdWa/FUk2hjHdXnp+HTN1m2ZGaIWNVorT3G+jUn+HTPcL6qHtIh3jRNt5ooCljz27Hmt/ObZTLuJhP33N2ZZhKN0NbnQWLPZ4AVS90dcxVv3jvnNHaL+NDjP/pYZtUq+Ldfh1fiHfMKWbH06h6/P6lqYtRfeDz6l1Klt54vLACTKQ1Et2zAY5tBQ6AEV7NCvjUwYPGJCeH3ohyuQGs4iGovQTMXQrawxAkEAkEmkZY520888QR/+tOfOO+88xg+fDi5ubmcOHGC9evX09jYyIwZM3jhhRcwmUyAXsGeP38+u3fvZu7cuUyePJmdO3eyYcMGpk2bxssvv9yxbzTSLWc7fkazyrIl2wBSnuPcG1LVWCcw4kLuXzaW4zU+cszhCytD14opCmRnZbPtSxNt3vBnxWQzr5PNxg49/sEHid08J8mc7b5qYtQTerNQ12KGgkLIH6hqt2ygvugbLFjUNT4xwMrlzn6PT+z1IlODES2nEM1cgGYuQjPbQRnYhKKBIlMXVKUTYg6TR8xhasjUeczYpjbbtm3jb3/7G1u3buXEiRO0tLSQm5vLGWecwde//nW+/e1vd9hIgjQ3N/PEE09QXl5OXV0dgwYN4mtf+xp33HFHt4sj001s586az/TZtpjHbq3Q01O628f96arkBtmPhHZ5fO8D9EST/DayTZ1eZFXV/d5BPG4DznoTTU1GHGXqyQpvZMU4kfl0f7oq4f1iEXp8tAY4PTlXupNMKo4ig90OBQWQk9N/ottjn81N98Z4mHIEeOmx7VicUcLU+4hUJrpoJitaTgGapQgtpwBMttMi0SRT/zinE2IOk0fMYWrI1HnM2KY206ZNY9q0aT06Ji8vjwceeIAHHnigj0bVfySUPNHNI1Is73K6Es1qkmeR2Luthn9uHM6nm3wdQjtY7bbk+rHkurFZJWae5WLfuo/Iz46sTCYyn3IP9ou5PeT40Fzw3pwrGgPt0U8VARXq6vWvnByNogKw5YOi9K04bAjEaTRUrtCwtAQL/Se2U4nkbULyNoGzUn9BNqBZBqFai9HyisFoGdDxCQQCwelMWort051UJE9E8y6nO8Euj6D7oj3AMODuhbdx3gyJ/II27AVejNnh1W5Xk8Yba6z8XbqCs0ZVcfGkA0wafoKgUyGR+XT3YL+Y20OOj+NaSuhcXUnMT545gjtIayscOQbHqiEvT6PArjczkvqgKutqjt9oqLuHrYxC9SM1V6M0VwOgmWxoecVo1mI0c9FpUfUWCASCdOEU+uty6hA/o1mvZqY6xzmdyZHquewyifraHPZ9lc+hA3k0ubLQtE5biSKrqJrM54dG8Pj/Xsyv/nYl73x+Jq6W7ITnKt5+114TwGxqI3fWfNRJN5A7az62KXOQszqfV0OPr6jQs8K7u2ai5E2M0UEywXzxdEdVweWCg5V63OCxYxotLal1uNny4jca6u5hK5ORvC7k2t0o+9/DsOvvKIcrkBoPi2hBgUAg6AdEZTsNiZc88fijjdRX6MkTmZROkQwNm/7J03+8kdvvVFi7VsLjNuJxG7nssgCXXd7K//6zkUZPZ3KNLKnUNefy5uZp/OOzKUyvqObHNzXy7evtDBsm4/VCTg5UVWlcfL6T+o/1ueo678G28KWlGkajzLGGQaxbJ7F8uZ604XCcxYqlI2j45A1Unz/s+OXLFVadtGSHp5Ho70/jZ1ujRgx6DmzFMnZ6xOtaXgkffawvvAy2qc/JgY0bYflyBc1+Jrmz0ttekqgNJhDotJlkGzXy7VCQD8bs5KqxBUolDsdUysujxCc6AhQolUmdP2PwtyM1HkZpPAySpC+ytBaj2kYKu4lAIBD0AWm5QLK/SbcFkhA7eaLt4Bd4Ty6qSqd0ir7GkGOiYOZVtGqFuFwSNptGjqRnVrd52th2uJgPdo1j17EhaB3RgOExgYoiU3XURGNDNoGAzLx5Gk/9MUDd+pfxt+om6+CcanklZFlyWXy3THl55zlKS2HRIpg/Pyi4NX53/zYat30cdnzAUoK7VWbQ4Cza2iRcDT7ycgMdgjr/3KsjKtXXXhPgd49p3HGXHBlRuAIOHFT4/e/DxXtwPAaDxlVXSeHHLHX2mb2kpwsk48cvJjZOixny7XqaSU9ay3cO4mQayWJ7mOB2OAI8u9xJQaakkfQhWv5oAoPP1BdYZgCZuqAqnRBzmDxiDlNDps5jxqaR9DfpKLZjkUwKxOmA05PDp/tH8um+0RxtyI+6j6ZCU5MRZ72JObMVnvpdHTXr/ydsn3gxgKWlenX54Yf177/Y0kbThj8lPMZY537wQfjkE421ayOFpMOh8e1vSyxYEHm+0lJYuhRmdnGS9GUEZE9/DpONVQxFAsaOgdy83gnuYM52sLpeoAxMznY6iu0gmnU4gSGTIaf7PyIDSab+cU4nxBwmj5jD1JCp85ixaSSnA7KsR6AFTl2b6IBgt7RyxVl7uOKsPRytt/HJvlFsOjIJZ2PnM6Ukgy2/HVt+O5VHZf77HQvnGrKwZPs69glYYidXrFun20uCNLmzejTGWOfWBXx0AVleLnHXXdHPt24dtLVFOWaNQuA3JYAuYgcyzSTefHYdZ3dowOEjMHGi1vMKt+rH4qzoTB1p6tnhpwtS0zEMTcfQcoegDpmMZhk00EMSCASCjEWI7QEiO1ti8mSor4faWjjFXB9pwYhCFyMKt/GNH8/m6mtVbPlt5NnaUEIsu9nZKi+v8vKqfDXnjz/CpZP3MaqosdtkitBoP0uuhqcH44p17u7iAuNtP348xrVORgwOdJpJsrGKXfH54cgRGDMmuXEJ4iO5T6C4T6BZilAHT9JjBAUCgUDQI4TYHkBkWWLQICgq0nA6oaY2eoVSkBx2O3jcWXjcWUjHLORZ27HZ28jN83UkoPlVAx/tGcNHe8YwZlA9VwT8SJKGpkWvnAaj/RwOMGf7eiS2Y6VedBcXGG97dnaMa52MGIybZoKdZUtm9mnH0WRjFaPR1Ax1dRpFRSLGrq+RPHUoBz9Ey8lHHTwZzTZioIckEAgEGYMQ22mAJEkUFOgd9ZqaNGpqwJOeVs60oKd2iBypnrKyQaxdK6FpEk2ubJpc2SiKyszzveTktHCitlOwHawt5Jk/qUye1kBtjQlngwlfe2c5vLS0M9rv/vs15EBzj8Ypew/jmDc5LEUG9HOWlcX2bFdXQ+iCzyBlZRoVFVGOCYkYjGfj+OhjBePQM8jtQ3uJHos4NeKeu46zp1RXg8Wi9WsnytMZqbUR5dDHkJ2HWjgOTckGWdG/JP1fTQp+L4Ns6Nwmsr0FAsFpihDbaYbVKmG1gseji+6m6DquX0mnzoW9sUN0jQ4MctllEk8/aaTmg7/x5d583t85ju1HijvSTDSgaLCXwkFe3M1ZJxdUZvG730kcPaqf4+qrJTasM4aNL16aiWPeVFY80sgTy5x88EkBxcWdUYQ1NSo/ulll3XsKxcVSWEThpRe4MJhtvP++Rm6uRFMT2GzQ3KwxciTcfbdKaGx+1wjIWDYOiwVWrYKFi7MpX2MKOT619pJ4cZbJRFWqGhw6DBMnaMiyEHP9RlszctXnPTtGMRIYOhWtcHyfDEkgEAjSFZFGwsCkkdDuwbC7+zQSr1ejphYanbr46+80klREtqWS3qZaxIsODMb+AdQ1m1m/axwbvhqDpy3Sm5FjkjhxPJvGxixa3AZUVeaDtc3IO18Jm6uZs2QqKsJj+oJce02AZY+0c+ciE+VrQoS4Q+PJJ+Gee2D16s7X583TeOYZUAMqt/9MDntgKCvTePrJAL4TX9FmHBEzAjJ31nymz46Mc3vwQWKOM9589ubnsC+jKgsKYOSIBMR2SBqJq1kh3xrALos0kv5EMxcSGDEjJfGCmZpekE6IOUweMYepIVPnUUT/JUg6i+0gPp/GiRPQ7O5fsZ3KyLZUEEs0Btla4cL96aq450hEKPr8Mp8dHMH7O8dzsLYw6j6aBt5Wme98U2Wc9AHnXjaeB38/lfI1MqtXwzXXRD/3gw/Cpk1aWMU7SFmZxvnnSx2xgkHef1/joYeIajEpK9N4clltRHxhKPr7GGnjiDdOiD2f6RhBWTIabLY4gjuYs72oy4OjI8DK5U4KRc52/yFJqIMmoQ6epNtMekmm/nFOJ8QcJo+Yw9SQqfMoov9OIbKyJEaMAEkysG9fO+6erMhLglRGtqWCVKdaxCLLoDJ7wmFmTzhMvfViHnpqJO6W9o728KBbUHPMKm/9H8AlSP8HXq+LYSMNbPrMiMWSxeLFckTHxzlzYkf8rV0rsWhR5Ou5uRJr10Yf69q1Eq1a9AeCILFsHF0b/3QlVfMJfW9HOnIUcnI0jMbo9+OxzYgQ2gDl5QoLFtt56bEZWJwVSY9DkACahlyzE9l1hMCIGSJaUCAQnNKk6u+ooJ8w50iMGydRMhqMxu73T5ZExG1/0l2qha3QjG3KHOSs1D1HDmr9mD8/3caIIVaOHbFQV2OiuSkLRZaQpM4PhjRNjxLMt7fz+v+4GT3OyZur6/nZXU384AcBrr5at2xYuumIHS3ir6mbPGiXK76FQvX5afj0TZYt2c7WChcfrG1ma4WLUcPjV6etuakJgg9abO5dOo3ps21cMi+P6bNt3Lt0KgWzrkvJ+xUI6PnbxPiwriEQ58GxXKEhUJL0GAQ9pK0ZZf97yEc3QSC9PikRCASCVCEq2xmKzSaRl6dRVwcnakDto+Y4fRHZlgzxUi1KS+G11xU2fZraxX1Bofr7B0L9xhqK5wgNOz+jui6H6sY8DnMBf39bxpitoii64NOAPKuP3LxG2ttkPt1kxu/PIt5zbrSIP6s1/hhtNo3u1tKqPv9Jy89GZMCNbi/pi5SQrvRX9KDHA8drYOiQyG2u5vh2he4eLAV9h9xwELmpmsCw6Wj5Iwd6OAKBQJBSxF+XDEaWJQYPljjzDCjoo67KurgNRN2WSjGWKLodwhkxptJSWLQIli8/KeCW2MmbODP6SXpBUKi6P12FvPMV3J+uwrVjI4rWzohCFzPHHeVH1x5hwpg8vtpRwH/82s6hg7k0Oo2oqm45yTapjCxx8/NfOJk1240kRT7I6DF+kdd3uzXKyqJXbMvK9MWevSHWfAZTQpr39C4lpCvd2pEsJSm5DsCJE3qaT1dsedF/joN092Ap6GP8XpTDG1EqN4DvNPWyCwSCUxJR2R4A3O48nM58GqXbsOdr2LPrsdW9A/5uWgjGICtLYuRIKCrUOFatV/dSRV9FtgWJ5+MFQtIrFPILssjO1qiv8/H4ch9tPok9e2VMJt2eMX9+57139ZN3TSPJz9cwEZlGEjoed4vMoCFZtLVJuBp82E5ev/aEj1xzpN84dK58PgVPczae5myqjmjYC7wUDW4ly6jh94Pb38akaW24mw0cr7LQ3mbA4dD4/e8lfvGL8DkqLQWvV+LppzVuv12LTCN5KkD78RpyZ80Pm6dY4wyl014yk8BvwlNCGj5JXbRjf3ntQX8PG8wzabCGJ44USIdxOCZTXh6liu8IUKBUpmgEgmSQmqowuGtQh05DLZow0MMRCASCpBFpJPRvGklDQz4//SkRgumZpwIMrnmlW8GdSIJBY6NGVTX4fCkZcp9FtsWNFXykEUnSWPiv4duCFez58+HVVzWuuSa2VzkYyWfIMVF0UWTOdlmZxtN/DFD34cv4W71h4/noY5lVq2DFivBYvNDrX3hBZPxhcK7UgqmcMz1S1JlyfAwZ1kJurj/MWjy4CL59XTa/ecjCbbdJHYsqgw8Sy5fDujUBvO0SubkyTU26taSlRWXYUJWf3SHHnKdo40yWnqaRpCJFJhFi/kw5Ajy7wommSSxYnB8muB2OAM8ud1Ig0kjSDi1vKIGR54MheovUTE0vSCfEHCaPmMPUkKnzKKL/EqS/3ly3O48f/UiJGd/2pz/WYjv+RtxzJPoHWlU1GhqgwQmtrb0ecp8SN1bQoXH99Ro/+UnkttJSmD1b/0oktm7wxd/ijnsHdRubFzqeePnTwes//HDs+MNYUXugH/PvC3fw4p+9fLp3NO2Bzg+YAgFochlpqM2hrU0hNClk3TqN0tLwe3jwQfjkk+hdJxMZZ2/pqdjubj5SNbb4P1MB/ut3O9FUlYZA5ycpBYrI2U5rDCYCo2aj5Q6O2JSpf5zTCTGHySPmMDVk6jwmIraFZ7sfcTqjC23QK90N3vjxbT1BliWKiiQmTpA4YyIMGdw/6SU9Ia6Pt1yiuDj6tnXrdBEZbJkejVA/eatWGHfeg7F5oeOZPTu60A69PsT2G3fnhdaOfsq/zN3C4ze/wb/M3URhrhvQUBSwF7Qz7gwXZ0xpYMSoJnLz2iibp/Luu5H3MGdO9Ozt4DjnzIk/zv4iLbzh5Qr1vlFYnBWMbHqVKdpfGNn0qh73189CW9AD/F6UA+8jH98eM2lGIBAI0hnh2e5HGhvjb+8uvq23mEwSQ4fC0KH6wjGnUx9LYIDXg3Xn440WgRe6bflyvdW4omhdWqKH+8m7m1eXS0LuMp541+66PZrfOFEvtCTB3DMrmXtmJUddBby543K27dTHqyhgzfdhzfdxvBa2fmnge/ON/O87RlyNMiCRlRV/nKHbQ8fZ15nXXUkbb7hIHMlY5JqdSJ5aAqPOhyzzQA9HIBAIEkaI7X4kPz/+dptNg8a+HYPFImGxwLBhGs3N4HTqGc4DUS/qLv0hWgRe6DaPR/ckf/ZpG63NbTEFnM0W++4sFhgyFFpN82lut/DWW3rjme6ysEPHFiv+MFrUXjxG2BpYeMmbWH48ky0HR/JWucLefX4Cqh7tWHnID/gZPqqFIcUyTa4sDh8xIklZaFr0B4rCkA9LguOM7ZVPbWRiV3o6H72hu58pi1mltVYjxywl3brd79fwePSfw9ZWMGaDOUf/MuWAJPXNw/PpjOSpxbC3nMCIWWjWYQM9HIFAIEgIIbb7Ebs9QFlZbM92gal38W29QZYlbDaw2SDg13C6wOXSRUMgfkJayoiXme1waFRXa0RzOpWW0hGPd+EFAdqPf4V7R2wBlyPVU1YW6dm2WOCttzQWLpQoL+9cvFdaCtdeC1//Orz9duT5Qq+f6vhD1eeneddGZkyBV13T2P6FRJ61DXthG2aLn6B+M2SpFBS18YfH25g8DRoasmmsz6a11UDQ511a2rlINnSc/ZV5PRDE/ZmaF4CmSvbsg6xsBfv53+Cue7supJzKyuXDo7Zub2/XxbX7pMBua+tyAQ80nPxPWYJsk9YhvnPM+gOaEOApwN+OUrkBtWgCmu3SgR6NQCAQdItYIEmapJE8HWDwidSkkSSL36/hbdOtEm1e8Lbp/6a62NlZYY0SK/ioEwlY+K/h20pL4Z57YNMmuOgiDWOWSm62G8Ud2wJhyDFRdPGN3H5H+IPOs89qvP46YRaU0OssXQpLlkSmkdx9N3z2Gcydm9j1E5mHiLhBn5E9e+WOFu/Ll4PXq2LNb8eW78Vsif5E5G1VaGzI5uyzsrn7bhmDAZb/QbfVNH3xv+RPd9DKIM45J7boSyQZpKcLJFNFd/aXuD9Tjzhp/OwtLGOnYxx6BgsXZ1O+JnIeHI4ALz22HaV6oy6s3eBpST7dR5Z0wW026+J76BAz7e1puno5Q7AUjcBVeBZk5w70UDKWTF2Ulk6IOUwNmTqPIo0kQfr7zdVzthVcjRo2m17RTjRneyATDAIBLUyAt3qhxQNqEj9B8WIFoTNnu9mtYCvIwmTSUMli0WI50qcdI95OzjJQdMF1VDsLwmLzZFnj3HPjiM4tAXKyfbS1STR7DGQZZQwGiexsXXCvWdO5b7zrd3f/PYkbDOaIv/aajy8+d/NRRYATtZH3IMtgzjHyr/fITLDvw3tkGwVzvs/tdyosWCDxne/EHlMwMjEeAyG240ZFhsx9rJ8pz4Gt5J97NYuWFHDXQjmhJJu+JDvbiDGrnfx8/RMmRRFV755iMZvxeNsJDD8PzT46/s6aBv5W8HmR/K3ga4UcO5o5dQvTM5FMFTjphJjD1JCp8yjEdoIMyJvb7sGwO4pHoRvSLS4sENBoaoJGF7ibkxPeiRA32i1uDF/kMa+9RkKiM9FIwN5E2PUmbhA6xWD+tAvZ8NUZPPu8F2+bj2guhcHWZr52pYX/W1fAe+8qrF6dWGRiPAZCbPfmvY91fKLvfV8SOocSkGeF/JPWLlkWwjsRQn8fqgVjdB+3z4vkawV/K5LPe/LfVvB39f0Akkxg5PmndYv4TBU46YSYw9SQqfMoov8EfY6iSNjtEmNKJKZMgVEjwWbVPzLvC3rT9jvWMfEWYIK+oLDr8fEiAXsTr9ebuMFQ/7U/ZxT3/tzIVVdYuf9f87nowhzMOeHH1jTl8V9/lTle28iI0c38/R/tXH559KeiVHvQU0myLd9Dj0/0ve8vNPSFyoePwI6dUHlIo7FRQ+3rp9dTCLnhIErlRyjHPkOu2YnccBCpuRqptTG60AbQVJTDG5FrdvXrWAUCwemFWCAp6J4EUxtkWcJuB7tdb6rjcoGrCZqb9TSNVNCbtt+xjgnmdMeqUgdFZ08iAXvadryncYNdYw2bmmU8nmDFWwHMSFIOVls79kIvZkvn+yNJYLW18/En7RTYZc6fY2Lzp9kEAvoYup473Ui25Xvo8Ym+9wOBquqLlV0u3Q5ks2rk54M1D6J+dCFIGvn4Nmh3ow4/DyRRgxIIBKlFiG1BfGQD9UXfYMGixFMbIFJ4B60mzU3JWU26i3aLFsMX65hEc7pDj0+kItqTSLvQc+fkxNkROGNigCceq6fFm41//Pew5qnk5GVhsXR6uQE0TcLVmI2rMZv/+Wsj/3xtH5sOjulY4Kdp0OBUgRYmTWth8plGvvXNbCYV7kpp5nWq6c17H+v44HsP4YI73R44VBWcjfqXyQTDizVy84Tg7gvkhoNI7S0ERs8BJc06gAkEgoxGPMIL4uKxzYgQ2qB341uw2I7HNqPbc8iyRH6+RMloicmTYPiw7kVrLPRot+hJHLEqkrGO8Xjg+ecCPPFoLVsrXHywtpmtFS6WLdlOwyedCx1Dj0+0a2Vv7kdVoaws+n5XX62RY1K5674ips+2ccm8PKbPtrHw7mzeekuLmgvumBdgfNEhbrp4M88vD2C15NDeJocVR1UVtu9s59cPN/OTB4pYtX4KTS3pKTR6897HOj6Y0T57NqxeDatXa3yxpS3ive+KnGXANmUOubPmo066gdxZ87FNmYOc1fd1C68X9h+Eg5UabW3CXtIXSO4TKPvfg3ZP9zsLBAJBgogFkogFkvE4Yv0+U861xdy+Y4uLkU2v9urcLS0aDQ0962bZXbRbNKHUm2NiHf/Rx0rUxJBEzxXv3IvvVvD7o6eRLF0KDz6oRY0pdDg0rr9e4yc/6ZLQETIeQ46Jootu5Kd3yHz0sYrZ4sNs8WG1Rcuz07DmeDlrVDUzxh5h7OB6srPCRe7AppEk/z4md3z8NJRESWYOJaCwCIYOBsVw+la6++z3ocGEf8xFkNP9wqdMJ1MXpaUTYg5TQ6bOo0gjSRAhtmOzXbqBCy6JnWG78YNmpmh/SeoaQX93fUO4HSIW8eICY4kdY14uhXO+idtrxuXSu3lasluo3/gG7c3dGz9Cr9nSLjNkaA6eFpnGRsjP1zBRT8Omf+Jv7T6+Mda5G7OmceWVMosX6xVXr1f/BKCiAubMgauvjn68xQKfbfbj9Uq4XFLM8Zjs+RTO+RZN7iyam2HQIPB6NfZ+1ULlEYn3PvBx+Eggwl8vSSoTh9Zy3tijnD2qinyLd8Bytg05JgpmXkWrVojLJWGzaeRIic99b352giSbhtKVVMyhosDQIXqn0NOxYU6f/j6UFQKj5pzynSozVeCkE2IOU0OmzqMQ2wkixHZs+rKyHY32No36Br2NfKqsw8Gq7u13KhHNhJ7+Y4C6D19OWCT3trrZXTMWgNxZ85k+O/pcv/46XH995OsWi+49/uMTWliDlq7jCZ2DjRuljur8tm16Ff3uu2HtWgAVq83HmHGt+AMBov12GFXUwKzx1Zw18jBDbH3RdD06qa4s95R47w/0PJs7lQ8s2dkwrBis1tNLcPfH70N12HTUogl9eo2BJFMFTjoh5jA1ZOo8iug/QdIUKJU4HDF8so4ABUplSq9nzJYoLta93WNK9Oqr3Q65ubqgUHrxE1sw86oIoQ16F8/b71QomHlVwueK2+p8iZ28iTMjjgmKxHuXTgvzW9+7dCoFs67r8PvG8ySPHBn9mXjxYl00d+2E2HU8oXMQPGbdOnj++VChDSDT5Mrmiy35DC7M51/mKxTmhgvqw3UFvF4xhX977Ur+/e/X8fctZ1FZa48qzFNJb+Y+lSSShjJQtLXBwUrYf0DD6z3t6ycpRa7aily1lT7/ARcIBKcsIo1EEBeLazMrlw9nwWI75eUhPldHgGeXO7HUbe6bC0sSVqve6bErqqrh9+mVb58P/Cf/9fnB7Y5sq92qFUYI7SBr10q0aol3kOs26/k3JUC4lSCuSMTOsiUzce3YSPOeTaxYOpxFRHqK821y1Ki60EY38cYTOgehxwwbFiq0w3nvXYU//N7GheZXOd5sZ2dbKf/zloI/xGBfXZtFde0Z/HPLGdjMLUwvqeKc0ceYWFyLIqdWnAQsJXz0sd78J2iz6WxnH8zZTtzG0VOSTUPpD9xu+GoPFBZoDB0KhtPYz51K5Lq9elLJqPNBFn82BQJBzxC/NQTxUf0U1v2dlx6bQcPSTgtEgVKpC+0osX99jSxLGLPBmB1luKrG8RNQV6s3CgFwueILDpdLSvgjnt5kPScq0FWfn4ZP32TZkpkEfhPuKa6pmcaiRfp9xGp8E288oXMQmufd1BT/eJdLb1B05pwzeX5pAV9ulTFm+7Ha2rHa2jHldFbiXS1m3t85nvd3jseS7WXmuCPMGneYsYMbUhIP7W7pbGcf+oBRWqpbadytfVtZ1j95mBr2IBRkoLO5u1LfoL+3I0Zop521pK+Qmo5h2P0WWu4Q1NyhaHlDIMs80MMSCAQZgBDbgu5R/VicFVio0L/vRqANJLIsMawYCuwaR45ASyvYbPErrDabRnOC5+9NdbMnAl31+U8ustuIDB3nyrtoKl+7UreNLF7cuXiyO6tYcDyhcxAauxjtk4NQbDZoJvyBob3NQF2NgboaM0ZjgDxbO+ef30Ll4c7jPG0m3t85gfd3TsBu8TB7/GHOP/MYZ84+M65vPR6DhmTx7w9HPmwEv3/y8Sxquz1L74n3yUM6ZXMH8fl1a0lhgcawYaIFfErwtyM1HkFpPAKAZrKi5Q45+TVYVL0FAkFUxG8GwSmJySQxYbxGXT34pXrKygZFtZKUlelpFomK7d5UN1NhP8iR6pkzZxAPPxx+Dw8+qN9DtHsLHU9OyByEdk+sqtKzvaNZScrKNHJNLTQT+4GhvV2hvjaHXyz20/DJG2w5OILNB0ZyqK6gYx+nx8I7X0zinS8mYXhd5thRI02NRnw+Bce8qaxYOjyhxY1tbVLcdvZtbX0rJuN98pDOzYDqG6DZDaNGalgsQnCnEsnbhORtgrq9IEloliK03KGoeUNPi9hAgUCQGCKNhFM0jSTBFuunAz4pm4ahN3L7HVHSSJ4MULe+M42ku9SQ7rKaGz97C8vY6WHHm01t3HVfUfTIOIfGskfaCbR5UTyVeA5sjThe8VTSengbBXO+H7HQ8+qrNf7wB7jjDo3y8vg524MvuZEjVQp5eRItLbq3feNG+MY39Gp5qOAuK9N4+mlo2PAK7c3uHidx1DZZ2HxgJJ/uH0mVMz/qMS0eBVejiXPPUfjDAzu7jc1TJ9/IJWWxYyjXr3Uj7Xw57jkGmtCfr2a3Ql5uoEfV/WQZMhiGDDl1YgL7O52pRxiMaJbBaOYCNJMdLccOhvRrGJWpCRDphJjD1JCp8yii/xLklBPbMVusB1i53BmzxfopjcFEQ8GVNLbFzmdONFouVlaz58BW8s+9OuL4a68J8LvHNO64Sw57vaxMY+FCifnz9XzxWPsFr9/05f+SP90RkTHduLWcnFHT4mZHG3JMFF0c+cDhcGg8/rie1+zxSLhcunVEklRy5AZqN+j3rGdMx67ox8uYrnLm8aX3Sv76PxLG7Mgqv6bBeWfDRcM+YNLwmpj+7lRH7/U3Ax1dGCQnB0aN1D/9yXTSWmxHw2hBy8lHyylAywkK8CiLT/qRTBU46YSYw9SQqfMoxHaCpKXYlpWOX8b6VwFyczV5rr3d/nHx2Gdz070xmm84Arz02HYszopk7yAjUVWNxkYTR45G5mon27Qk3vHXXhPgsd/U0+LNxt2WQ7s/i3fflVi+vLORz4MPwiefxLaE9LRpSiiDL/4Wd9wb20qzcKHEtdfGvmay3RfVSTdwybxcTDkBrLY2bPY2srIif/UU5Lopm7KXC86oJMcYfr5kBH86kOqmOMkgSzC0GAYVZbbgzjixHY0s88nf8flo5kK03CGkZEVxgmSqwEknxBymhkydRyG2E2TAxXaEsLZDtjXqL9x8fz3unfHjKPq7EU2mYTGbqavzcOQYtLZ2vp5s5TTR42Ptt3o1XHNN7HF/8akLqbmyVwsM8y66jXOmR4rUIJs3w4wZsccMyVkgIu9ZI8fsx5rfji2/DYMh/NeQIgeYMeYIV5z9FcMLmjqun4zgH2jSsTKfa4GRI8FozEzRfUqI7S5opnzU4rP1tJN+IFMFTjoh5jA1ZOo8JiK2xQLJgULJIjByJlpOQUxhHQ1p0HgCo70ohzeCFn3hnas5tqiC7tMxTgdyzBITx2vU1sHxE6CqvYv1C9ue4PGx9vPGaWJpsUCWJZfFD07rYkFIbIFhd/GHsSIAYyWlZBuNuHvQ/TByYalEa0sWrS1ZnDU5mxuv28+a8la+ODycgCoTUBU+2V/CJ/tLGGJr4spzdjFr3BEat7zFE491tmsPbU2fzkIbkv/56gvcHtizB4YP17DbM1Nwn2pI3kaUgx+g5Q0lUHw2mGI/oAkEgsxAiO2BQjGi2cf06lDNNpxAyUUohz6K6r225UXvQhjEmqemdXxfvyFJDBqkx+IdPQpakqkhiaaOxNrPZNJF9eLFkU1bjEZYfLccvVNkSGOcWHQXfxgrAjBVjVrix+Y10vDJh4wt89PabuCzAyN4d+cEjjXkA3DCZeXFD87nlY/O48JZCrv/YuPd90LPUciKpVf3m+e5t6RrU5yACoePwPETWo/cC5IEBgUUA2QZwBDjS1GEiO8NUvNxDM3HUQvGoA6ZBlmm7g8SCARpiShxZiha3hACYy8BJXJ1e3+3WM90jEaJsWMl7FLsdumJNC2J12499PhY+23ZAm+9pVFRodtJvvMduPpqqKiA66/X+Oij6KKlfE2we2Js9Oi/6IK7rEyjqir+mJOlMzZvO1srXHywtpmtFS6WLdkeZv/IMfqZe2Yl//atNTz03X9SNu0rzEa9gu7zG3j/Y4nquibGTXRSUNiKYlD7rV17siT68zFQtLfrbd8T/fJ69cq4ywV19fonREePQeUh2Lcfdn8F23fAl19q7NylsW+/htt92rsWe4zccBDDV/9EPrHj9FvYLhCcIiTl2S4tLU1ov6ysLPLz85k8eTLXXHMN06dP7+0l+4RM8ghFeJq8LgwH14MvxHwcTCOJ0WK94FRKI+lFxKEl10pN1uTIY5o/p97+dRbc3WXeEvQEJ+oplrMMFM6+jvWbCiguljsq2FarykMPSZSXR1kg6dCYOVOK2Zr9g7XNyDtfiTqmvIkz0fJKMOZaWbSYsPOXlWk88wx89JFGQYE+FrMZLBaVwgKNhppWrCe92aGxhL2JresuVjEWmgZ7q4v43wOXsX1XpOPK2yrjbc3m2ac0iot8uD1Kjxvm9AeZ7jlPFQV2GFYMSgpayZ+Knu24ZOUQGDIVzV6SskWUmeqTTSfEHKaGTJ3HPl8geeaZZ/b4GEmSuPHGG3nwwQd7e9mUk0lvbtQfxnYPhgPvQ7un87UQERrWYv1UytnuTcShbMA5+Jvcdld+9GMa3saTdw51vhKcjTJ5UWL04g4pRixg6PFyloGC87/Jol8UhNlC1q3TKC2N/Qc03gLKaIvrukbNBS0ql1+u21LMZvB4VIqHqtxxhxI2lp7GEnZn4UhF7J066QYudeRiL2ylcJA3apqJzyfhbjbibsri/JkKTzzamFb2koHO2U4XFAWGDyNpn/hpJ7ZPkspFlJkqcNIJMYepIVPnsV/SSP7jP/6DN954gxtuuIGrrrqKYcOGAVBdXc0///lPXnnlFa699lpuvfVWPvvsMx599FFqampYtmwZX//615O5dMrIpDc35g+jz4tycD2St7HfxzRQ9Cbi0GOfzU33TQtrABPrmEBAo7pa78DXG2QZsrP1j9zVELturAi4117TrSOxWL1a45prEo8FjBc1V1qq+8IhdtxgcJ+HH04+ljAVsXfhaR4allwfRUNasVh0kapp4cU+TQWTycD3rqpjovFjBlk9kScdQIxGI+09WGR6KpKbCyOHgzG7d6L7dBXbQbS8oWjmQv2HX1MBTf/vsH9V0DQkAE1DMxg7cr4xWTNW4KQTYg5TQ6bOY5+L7VdeeYWlS5fyt7/9jUmTJkXdZ/fu3Vx//fUsWbKEG2+8kV27dvHtb3+bWbNm8eKLL/b20iklk97cuD+MgXaUyg1Inrr+HdQA0ZuIw94c4/FoHDmqi+ZYyDLkmCDHrFtCzDlgygYkSc/2doHTCW537Ai4bqP/Pg9w330kbEHoLmpu9Wr933jXDI6pu7GlKhYxHrFytp96ysd/POLFausUrqqqvyehTBp2gkunVTJ33nCw9jw+MdUIsa0jy3pny0GDet7Z8nQX20mjZGEZNILmwEkBbi4Ao2WgR5VxZKpITDcydR77PPrv1VdfZdasWTGFNuhWk9mzZ/Pqq69y4403MmnSJKZMmcKuXbuSubQgGoqRwJiLUQ59jNR8fKBH0+f0JuKwN8dYLBITJ2jU1EBNDUhBYZ2ji+tQYR0NWZYosOteVZ9PY1dL9HXJFRV6NXldlBh1x7wAsnMHy5ZoBH4TblFp+CS6UOwuai5e1GDXfbrbN1WxiPFo3rOJFY+O0O03Ib7zkSMNHD2UhzHbT9EgLzZ7W4fQ9rXLjB6tUlWtsatqCLuqhvDnDRKzz8/i7LNMDBksU1U1jYtnD6e+In3sJqcTqgrVx8HZCCOGa1gsIr2k3wj4oOkEcugDi8Got5c3F+gC3GTVF+Irxn5ttiMQnEokJbYPHz7MhAkTut3ParWyadOmju9HjBghxHZfIRsIlMxFOfIJUuORgR5Nn9KbiMPexiLKssTQoVBUpGFQ6PUfnawsCbs1egTc8uWwahUoihYmJjur15+eFIMbkaHbmLjuouZMCSSJBffpbt9UxSLGQzYYyDLbuP56uOsu/QHAZILBg/Xt7W0Gqo7mUnsih4JBXuwFXrKMKlXVkG9uxZyXRZ0zC7dHY+27raxZ10qzy0jJaBPjxxcweNL5OL/8qJtRCPoKr1dPMSks0CguFpGBA4a/Hcl9Asl9InKbbNBja5UsULI6RLgW/G85S++EmTu4/8ctEKQxSUX/Wa1WPvvss7gfhba3t/PZZ59hDQnydbvdYd8LUowkExg5m8CIGfqq9ey8FJ9f0n+h2kYMaKWjNxGH+jHRhV8isYgGg5T0Pccat8cDzz8X4IlHa+PG4yVKvKi50lK9kl5RQcxIwOA+EH+/VMYixqNg5lX89A6Fn/xE6ohGvOYa+Mc/pLCx+XwKJ6os7N1lJ8+SjSVHpbHFTNWJLEJ/VUkSWPPbaXA1cdfdjaxaO5rm1qxuxyHoW+ob4KuvoLFRw+fTUFURF5g2qH7wtSB5XUieOqSmKiRnJXLdXuQTO5CrP0c5+MEpX+gRCHpKUpXtyy+/nL/+9a/cc889PPDAAx2LI4McP36chx9+mJqaGr73ve91vL5//35GjhyZzKUF3SFJaAVjCRSM1b8PtCO1NCC11CO1OpFa6sEfx4QcRFbQTLbwVvImm+6lAPA2oVR9huSu7bt7iYHFtZlnVwyn/MPwCL2qKpUrLnJiqd0c9ZjnHh/JbQttUWMRLXWRx6SEkHSY5iaFJ5+AO+7qUsF2aDz6CPhas1E8lRj2bsIdIrB7Gp3XtZFMMI3kssv0NIiWFjhxQuWWm1R+dkd4ykhoGgnAti8DPP2kxh13RkkjecRJwyebiEf8pjZOGj/bim3KnLj31qoVRl2gqX8iICHL4fNZernGike8VG14i31HbZywXsHKlSqmnADG7ED4YkpN441/+HiDb5BramNicS1XnLWbkkGNce9L0Df4/HDocOgrGoqi/9zKsv6vIoPZHMDn69xmt+ufHgkGEE1DOVJBQJLRbMMHejQCQVqQ1AJJp9PJ97//fQ4dOoTBYGDq1KkUFxcDehrJ9u3b8fv9jB49mldffRW73c6OHTuYP38+CxYs4I477kjZjSRDJhnyU7qAoN0TIsAbkNqa0bKtetU6KKwTbCUvOQ+iVH8B/n5c8CUbqC+6jgWLCyJE68rlDRTWvRk15jA0Z7tfYhG7RBRaLPC3v8GxYxrDhklYLBAIwHvv6cLR49HF/4ql4dncvYnOC83ZzrLk6l0ou8zVikcaCLiq8JlGdXjBzaY2vO3ZNDZ1esNTmrPtDj9v/rlXd3tv6lk/4ZJLo38YZ7HAxo9VAq3NMSMXtXN+wsUX68dLkka2yY8pJ0BOjh9Lro9sk0rX34Z5Ji8zxx7mirN3k29J4OG0B4gFksnTdQ6zsmDsGDCZhOBOlD5bZCpJBEZfgGY99QV3pi7sSzcydR77JfrP6XSybNky3nrrLdq6xDVkZ2dzzTXX8POf/zyhwQwUmfTmpvUPo78d+fgXyA0H++VyvYn+g/5PMPDYZ7Pgl9OYdpbM7Nl6xrXBAO++q//3+vUxFkU6Aix/YDv1X25MOjovFdF7oaRSKCY6NuvFP+Hsc2I73774XKVp/bMxt1vn3sLZ52bH3L5lUyvv/fld3t81jgM1hWha+LVs5hbOG3OUc0ZXMW5IHQYlOXuDENvJE20OFRlGj4a8PCG4E6FPfx9KEoHRF6JZh3W/bwaT1n+XM4hMncd+EdtBWlpa2LFjB7W1up1g0KBBTJkyBbPZnIrT9ymZ9OZmwg+j5KlDPvYZktfVp9fpTYwf9L/YPpr/ffYdtrFiRbioLi2FFSvg/PP1anY0dmxxoe1YhW9CctF5qYjeC6U3QjGWDUbLK+HsWd2Prfhrt7L4HgNnn63nfwdtQxs3whdfwPLf+6n+3+djnid/2gX8/LfTYnbo/N3922jc9jEAPr/M54eG8e6OCVTWFqB2Ed5Zip8zh9UwecQJpow4zmCru8dWfiG2kyfWHErAiBFQUCAEd3f0+e9DSSZQciFaXnHfXWOAyYS/y5lAps5jn0f/hWI2m5k5c2aqTifIYDRLEYEJ85Dr9iCf2AFq/ASQ3tKbGL+BQJVzIoQ26N/fc4/uo47Vhr2pWWbKSIkvY8QFduzXD9F7yXQ/jNU10+E4ixXLVSyW2A8cwbHVnmjl97/P42c/C5+vsjJ46imorWmNf4+7Pz3pG4+0Ha14pJ6Gik87XssyqMwcd5SZ447i88us3z2Wtdsn0uDWM4h9AQPbjgxj2xG9YleY6+GckmPMGneY0UVOkZA2wGjAkaPQ3q4xdKh4MwYUTUWp/IhAyVy0vKEDPRqBYEBImdhub29n165d1NTUADB48GAmTZqE0WhM1SUEmYQkow46E9U2EqVqK1JTVcov0dsYv/4moCpRbSIA5eV6jF0sgvdgz08uOi/Z6L3YnvGprFg6PMwzHq2Cbc5p475fhQttgPJyiUWLZe67D/793+OPzV6Qxe23Rz60rF0Lt98OTz6eRbxluqrPT8Mnb7DsFzMJ/LpLVnlF7AeGLINK6dR9XD5lH/tPFLJuxwS2Vg4PsZlo1LstrNs+kXXbJzLI6mbG2MPMGneEYfY0+AE8jTlRowvukSN73jBHkEI0FeXQRwRGz01Ji3mBINNIWmx7PB4ef/xxXn/9dVq6fBRlNpv59re/zcKFC8nNzU34nCdOnOCdd95h/fr1HDhwgLq6Omw2G+eeey633norZ599dsQxbrebJ554gvLycmpraxk8eDBXXHEFd955JxaL6Ig1YBgtBErmIrmOoVRtBV/qPq7UI/SmhqWKBEkkxq+/cDcHgPhV+CDBxBC9lbqGppjw2GdTKB/m2msnM22aEmGh2PZl99F5ZlMbZWXR262XlWmYTW1xxXbexJkRQhv0bpaLsLNsyUxcOzbGFuUOjTvvlFi3LrKCXV4u8ZvfaPz7v0dvBR+8t7Y2KeZDy7p1+vbuUH3+k970xLLKQ5EkGD+0nvFD62lw5/DBrnF8uHssnrZQH7hGbVMu73w+mXc+n8xweyMzxh1h5tgjadcuvif0NAknnXA2gs8HJSWayO4eSNQAyqENBEouEjncgtOOpDzbzc3N/Mu//AtfffUVoHeLHD5cX3lcVVXV0bhmwoQJvPLKK+TlJZb3vGzZMp577jlGjRrFrFmzKCgo4NChQ6xduxZN0/jd737HVVdd1bF/S0sLP/jBD9i1axdz585l0qRJ7Nq1iw0bNjBt2jReeeUVsrNjL4zKJI9QpnqaAFD9SI1HkJ0HU9NSPpjysdgeNcavoO7v0dNI+tmzfcQ2nynTY+fKb94Mv/iFnmX917/qiSRr13Zudzg0Vq5womZZ+entCmvWdLFArIB2dxNSU2zxY509n0PHo/vGFy2C0UNdNFUk5/lWPJUYh57BwsXZERXs4LVmz45umfnwQ43f/FqN24penXwjl5TFfmhfv9aNtPPlmNv7gna/wqf7RrFx3xgO1hQQUGOLuZEFTmZPPMSMMUfIt3gzxrPd2ySc/qAnc5idrSeVGI1CcIfS7y3vZeWUE9wZ/Xc5jcjUeezzBZIPPfQQL7/8MrNnz+ZXv/oV48aNC9u+f/9+HnroISoqKrjhhhv45S9/mdB5y8vLyc/PZ9asWWGvb968mZtvvhmz2cyGDRs6LCqPP/44Tz75JLfddhv33ntvx/5B0X7PPfewYMGCmNfLpDc3U38YI/A2ITsPIjsPgT+BvuGxCMmvTjTGr7//uLiGfpNb7hwUs6r81JMB/UFENnDHXUrMBXzXXw8/+UlsEbvp09jiR518I1d9I7ejah7svlhRoYv7d/4eX6hqk2/k4jhCd8OHAX79a4m7Fspcc03suVi9mqjbt25RUZzbImIBQx8eUr3IM1UExehd/2pn4ycBLLk+zBY/ZkssAaoxNL+JedMOMnv8vqRTTfqaVCfZpJKePrAYDDCmBMxmIbiD9LvYBr3T8ZiL0CyD+ve6fcQp83d5gMnUeexzsX3xxRejqipr1qwhJycn6j5er5eysjJkWWb9+vW9vVQHP/7xj9mwYQOvv/4606ZNQ9M0Lr74YtxuNx999FFY+klLSwsXXnghhYWFrA0tFXYhk97cTP1hjImmIjVXIzdUIjVXERF03AcMRBrJwWM2jh6FYcM6LSDHjumJCWOGuxjR+CqH7Tcz9ezYn8DEEqqh2xyOAE/8ajut+zaiqnp+t6qCaVb82LsvtrTRtOFPMbfbLr6Vs86J7Tpbt06jtFTitdf0zo6xiLa9tBSefNxL7boXYx8IDLnk29x5X1HMh5E/PlbHiQ/+O+45+oJYYlSWVS6c286c6cf5/As/xxry0QgfuyIHmDT8BNedt52RRX2b3tNb0vUhB3qZiiPD6FFgtQrBDQMktuGk4L4YzVLU/9dOMafc3+UBIlPnsc/TSBobGykrK4sptAFMJhMzZ87k3XffTeZSHRgMhrB/KysrqampYe7cuRExg2azmXPPPZcNGzZQXV3d0XBHkEZIMpp1OAHrcPB5kRsPITccgLbmgR5ZymhqVtA0XWiGPvPNm6dbOJpPJoU4XfFbhXvjfAAQ3FZeruBfWsLYMeH54sdzNEpLo+d5l5ZCdnb8hxyjSY55vMMB776rCxeTKe5p6Po7qbQUfvlLDX/t3vgHAlpWHvffLxEIRFph7r9fQstKzKaWagKWkqhVX1WV+XC9iccftXPNuFW0tGWx93gRXx4axpdHimlqzSGgKmw/MoztR4aRm93GzHGHufCMg4wocKVNokkqkmzSCVWFg5UwfJhGUVGaTPLpiOpHqfxQF9zmwoEejUDQpyQltkeOHInL1X01prm5mREjRiRzKUD3gX/88ccMGjSIiRMnAnDo0CEASkpKoh5TUlLChg0bqKysjCm2bTYbspw5fy7SuUFQ0gwuBmajuWvR6vZB3QHQ4idp9AZLP+a/F1mzePDfI4XqmjX6H/6VTxqxNJnJja+14wrZ0G3NbkPE/TXWB1i0SP/vaJ7tuhp/3OSg2hpiHr9sGcyZo39fUUEcUa5hMGisXi132Fiqq1WGFThp2rS12+SiFq+Rq6/WF5AuXhxuhbn6atjwoXFA0o+a3fEXvza7FbKNRoxGmJlXz8wJ9cA2jjea+cemM9lysJg2vwF3Wzbv7ZzAezsnYDN7mTX+GOeNrWbC0HoG8teTMS/+g5g1V6N9AFOnevue19ZBs1siQm7H0d+ypHepzDJKGI1gzJIwnvzvrCyQ0+UJqYf05+/DCKorwDIIKX8E5I9Ayon9KUo6c0r/Xe5HTtV5TEpsf/e732XZsmXs2rWLSZMmRd1n165dVFRUhHmpe4PP5+Nf//VfaW9v595770VR9D9wzc16BTRW2knwdbc7du5AIg8M6UKmfszScwxgOxNJzUE58klKz9zfH5t6s6OLT9Bf97aBp6UFy5B2SktNUfedNw+qq6Ofo7RUF5xB8nL9eJrC789i9TP/iuhCdf58+GR9ADm3HWej/gDQlbw8ja9dGf34o0c7E0aWL4dVqzrvLUhwsWPAVY1tUGdb+NHmSuo+TizRos2tXydWJrnbDQzAgsO83PgRlHm5AdxRxjU0H26+pIKbLoYvDg1j9ZbJHG3Q/9C4Wkys+XIca74cR252G2eNruK8MUeZPPx4vwvvHM9BHPOmhi1eDeJwaOTkGVEmnDcgySTJLjJN9Y9LlgEMWWDMgiyjbhcrsKe3AB8wG0koHg/UVOr/bbSgWoehWYfrFhMp/Qthp8/f5b4lU+exz20kN910E4cPH+aHP/whN954I1dddRXDhulNHqqqqnjnnXd4+eWX+f73v8/NN9/c6+uoqsqSJUvYtGkT3/3ud7nuuuuSGbYgg9DsowmoPpRjWwZ6KL2mqdEHxPZLNzf6ALD69/LLX04FpIjq8a9+pTF0KJSVSWFWlLIyXeBefrn+fazIwwKlkgsvnMrDD0ePSSw0VGIZITFsmEaDExrqoTXEtpIj1TNnziAefjhSODz7rIbDoUf4eTy6eA+KctAYNbwdybmbxs1bsYydrh/UC2u+LTf+PFpzfQMSq654KmOL0XnhsYyxGgOda9zEOSVVnHDlUv7lRDbuLSGg6udzt2Xz8Z4xfLxnDPnmFuZMrOTCiZX9FiXYvGfTyWZA9rB7LC2FO++UOG+WiQsviMxbj0Umxwh2h8+vf7WG9FfyeDRGDBc53wnT7kGu2wt1e0HJQssbipo3TO9Aaej7T1Ck5mqQDafM4k1BepDUAslgNVvTtJi/SGJtkySJnTt3dnsNVVV54IEHeOONN7j22mt55JFHwiwf77//PgsWLODGG2/kV7/6VcTxv/nNb3j55Zd58cUXmRP8rLsLmfQklalPfski1+5Grv4yJefq9+i/RNvKywYaBn2D8g8LKC4Ot1pcUdrGffebuPFGiWHDoKkJbDZ9keVLL8GZZ8KmTXEiD3sRk9jSolFfD40uMOSYKJh7I7ffoYSlqpSVaTzzdACt1cUd9+aHnzskug9IOj6uJ+3W+5POaDx73OjCnkToub1GPtw9lvd2jMfVGlwToxHqcZhYXMOFEw9y7phjGA1906U19B7zJs5Es5/J4WNGQOpIsgl+qpFIMkmqYwQzJT4xLxdGjyYtc77TorKdCJKEZi5Csw5DtY0AYwr7Z2gqkvMQct1XSN4mMBjxj5+X8DVO17/LqSZT57HP00guD5bTekl3iyZVVeX+++/nzTff5Oqrr+bRRx/tsI8EOXjwIF/72teYO3cuL7zwQsQ5gukl77//fkzPdia9uZn6w5gK5OPbkGt2JX2e/v7j4rHP5qb7plFeHiU6zaHy0mPbsDhP+kCMuTgHX0ej20yjC/LzId/SgscTYN8ha8yc7DElAYq07XEjDzGYcBVdSYO3EJdLIj9fw55dj61hDR7LVBoCJbiaFfKtAexylPjE3CE0FF6DyyV3jM1mVSmoXw0t9RERjHa5Eu3YJhqdfrRhc7jnt4nFx8WqfHoObCX/vGt0odal3frjjzTgd1XhM40akGpp2JhjRBf2JkLPH5DYfGAk7+2cQGVtQdRrZyl+Zow9wiWT9lMyqG9bxSebTJLqGMFMEdugPziPHQNZWekluDNGbHdBsxSh5o9Cs40EQ+xPvOISaEeu369X0rtE0GrmAgLjLk/IxnI6/11OJZk6j30utvuSUKF91VVXsWzZsgihDSQU/VdQUMC6WKZZhNjOJOSqrfovxiTo9z8uBhM1g2/gpz+LXhUefOIV/Rd9nP3+8AdYvDh6B8XSUljxh3ZGNcSO7uuobC/q2tlR5ak/qtzzc5l/rA59PcDK5U4KgxVvUz4nCr/L7bcTMbann4Yh9X8Db2PMy3dX3Q+KtO4qn41b3sIydnqYqDW0HiIrfxgL/zX9mq6EkqxQdXpM7Dg6lO1Hitl5dAht/sgVtXkmL+ePP4TjrN3YzKkXoeqkG7hkXuzUlw/WNiPvfCXm9lTHCGaS2Abd0z1mDOTkpI/gzlSx3YEkoeUOPSm8h4OcgDu23YNctwe54WDs4gSgFoxFHTGj29Od7n+XU0WmzmMiYjstVx4ErSNvvvkmX/va13jssceiCm3Q7Sjf+c53aGlp4amnngrb9tRTT9HS0sJ3v/vd/hi2oB9Qh01Hs5cM9DB6hCfvHO75ucz550usXq1HAK5eDeefL3HPzyU8eecA4Cq6MkJogy5ufb74iywDWvw/MB7bjAihDVBeLvPTnylMO6vr6woLFtvx2PQ/NA2DvxkhtINju/12fXs8XM3xEzua3Pr147aFX2LHMnY6rh0bdWG+8xXcn65CU7UIoR16TN7EmXGv3V8kEqEXD7vFy9wzKvlp2UZ+/y9/556r3mfetN0U5nYu/m72mli7/Qz+9S/XsmTVVby84VyqGlIXiWjNi58MZM2Nvz3ZOch0fH7Ytx+amtOyxpWZaBpSczXKkU8w7Pw7yuEKpKaq6ClWrU6Uwxsx7H5bL9rEEdoAcsMBJOfBPhq44HQiqQWSQY4ePcrmzZupqamJW2W48847Ezrfk08+yRtvvIHZbKakpISnn346Yp+ysrIOz/itt97KunXreO6559i1axeTJ09m586dHe3ab7rppt7dmCAtCYyYiaL6kVxHB3ooCdEQKOEfq2X+sTraVoXf/nsJFipo8BZG7TIJUFsbvxLW3Bx/e0MgehY06II5GOsHYLFwstOkwj7XNAptJcjtWWzcGP0aa9dKuJqyiG5y0LHlxfcU59tU3HLszGrQxbP2cAmDLy6mVeu0wpjNGp9/EfuYwG9KgIHpcBhKIkI1dmZSOAZF44xhtZwxrJbrz99GgzuHLZXD+XjPGKoabGhIOD0WPtw9jg93j8No8FMyqJ4LJhzivLFHMBp6F6fZk8Wg0UjFHMRaZJopCyxVFQ4ehBHDNQoL06fCfUqgBpAaD6M0HgaDEdU2Ei1/FAR8uh/bXdvjUypHP8NvyoecUzOSTtA/JCW229ra+OUvf8lbb70F6JaOWEiSlLDYPnbsGKDbQJ555pmo+wwfPrxDbJvNZl5++WWeeOIJysvL+eSTTxg0aBA/+tGPuOOOOzB112lDkFlIEoFRs1EqNyA1Hx/o0XRLt1Xdk9W+RlfsP7w+X/xrWCwqxEmw7G4MwaY4Fose3bdiRTBiTwZsOBwaq1bpSSOeKCEYjd2kZxYolTgcU8MWUAZxOAIMNlYy8kzY0RK7smmxgDHXyh0LI60s69bpdpqamsjj0qXpSrJCNR4Fua2UTd1H2dR9+AIyFXtH8/GeEg7X2/EHFNr9BvZUD2FP9RBeXD+TojwPZ42qYu6ZBxiW35ywzztWMknnYtBNcY9Pdg5i24wST0NJF44eg7Z2jWHFQnD3CX7dj039/uTOo6kYDn2sL5jshzQUwalJUp7thx56iJdffpnCwkKuueYaRo4cGdHFMZRvfjP+R80DRSZ5hDLV09QnqH6Ugx8ieXpWrUjXNJKD+bdy9jnRRfGDD8KmTVBeHrmttBSe/qOXoSde6vUYgu3eH3xQz86O5Q2fPTt6zvUXn2uMaXw25vkTTUOJN84HH4RPP9VYsyZSnJSVwcKFcO21kccNZDvxUBJNLUklmgaVtXbe2zmeXceG0NRqomvXlmwjTCxpZc7oLzln5BEUOf6fhEQWg8Y7Npk5SPUCy3TAZoNRI0GWB0Z0Z7xnu5/Q8oYSKLmIaE+m4u9yasjUeezznO133nkHu93Om2++yaBBIpNS0M/IBgIlF6Ic+ACpNX3/B+2uqhvMxS4w1VNWNiiqleTLLzUeeQQCgcgM7l/+UsPqj79oNN4Yyso0Kir0a8YS06ALcD07O/J4m9UHjXEGoPoprPs7Lz02g4alnSkjBUollrrO1JN447z8ci1qzjfA2rWwdGnk68lWjLuSTEa06vPT8OmbLFsyk8Bvwi0QDZ/0jQVCkmDMYCdjBusVZ4/fzGfuq/jrGwo+v4okQVs7bNuTw7Y955OlnMe5Jcf45qwvsVs60xm63nfAot+3Ye8m3D0Yd9c5CBXricxBdzajdLEM9QSXCw74oWS0hsEgqtzpitR8HPnEDtShUwd6KIIMJCmx3dLSwkUXXSSEtmDgUIwExlyMcuA9PR81WWRDR4Rd3Bi8HmBxbWbl8uExq7qWus0A2Ore4Zmnb+BndygR0XbLfx/AoDbxve/ZWbxYCsng1hhb3IC55tNux/DsiuFhGd45OVBVpVJWqvL+BwqrV0tYuo2VDc96LivTeOYZKKh5o/uJMJhot4zH7zbTDvgVaLeMx+LZDu3ubufKaIxvBmluDh+bw6Hp1dKK+NaGREmFhUH1+U9WXjeSbTRG7SzZ3RiSaQgz7Oyz+f3SAr7cKgMallwf9kIvFosPxQC+gIFP9o/mk/2jGJTn5rIp+5g75SjDZ12dMutG6BzIkLBPHRJbYJkOlqGe4vHAvn0wdoyGMTtScGuahqbpfm9N09f+qZr+3+mUbHKqI9fsRDMXoFmHDfRQBBlGUmJ7woQJcdugCwT9giGbwJhLMOx/F9qT6KoXMx5vKiuXD++MwespCVZ1QZeK118Pd91FiKDWK5S64StcUIIWd61EKJom8frrUpgV5dprJS67TGHVKlizRreTxGP4cNi8WW+qY7XqLdIlie7nxZjLiUE/4PafdvVbm3n66R8wpPYvuuCOM1c12lQgtvc8P18ff+iDSCplSNykFOwsWzKzTy0MqRD74ZVhCY/biMdtBDRMOX6+9a0mtu0IEFAVapvz+FvFdF775Byy/iuLg/t9yHIWqqof31/3HUoqF5mmG23t8NVeUBQNVQVOimm1m/+9820ao0aJDpX9hXLkU/zjyyA7d6CHIsggkhLbt9xyC/fddx87d+5k8uTJqRqTQNBzsnLwj70UpWorqD4I+JFUP6gBXQiq/uhRUCHEjsfTY/BeemxGZ/OZnqL6sTgrsHDy+ChFeFfRlSy4PTL6DySefVbh9dftUbonyjgc3Y9Nvzc75V38ztOmSdx+u9ZxzYoK3ZoSzbNdVqbx3/8tdbGZSJSVabzwzHXYj74c8/rOwddFCG0IRgd2OT7GXOWPGE9ZmTmqzaasTOPIEamLZ1vGMS91YnCgLQypEPuxK8MS3tYsFtxiRNv+Cut3jaN82xk0uC1omkS7z8/wUW5UFTxuA02NJpqbsvrdumE2tVFWpsX8GTCb2jJCbMf7hMLXQztRowv8B2FMiTZgvu/TikA7yqGPCYy/PLFMb4GAJMX2lVdeyYkTJ7jlllu48cYbueCCCxgyZEhYO/VQhg0TH70I+hCjhUDJ3NjbNQ1UH5I1D39DHah+pLZmlOPboN0TNx6vvFyhYWlJpwDsKQnYU+JF/xUXS1EXRyY6tlj3pnu0O6+5fLmeRgLhgtvh0LjzTon58yPPvXatRKPbTLwlIo3u6CI50eMBWlr8/OEPEnffrXu0g5SVwfLlEtEa2qZSDA6UhSEozNSCqdz2E5mFi2DjxvBW6YneZ0KVYRkum7Kfy6bsp7I2n3985WD7Lg1JAlmGPKufPKsuvJsas9m+G0pScaMJ4G3PZuFCCU2L7KS6cKGEt72XnQT7kb5IVHG79fzusWOE77s/kLyNKMe2EBg5a6CHIsgQkn4sO+OMM8jPz+epp56KaCoTiiRJ7Ny5M9nLCQS9R5JAMSIZzZCtN/rQcuz4bSOQ6/bhOp5YRF+PSdCeEi/6z+uNuSmhsbmalZD8bDo824WFeqReULR5PHq83+LF+pfVqlGU10TAYGXOnOixf9B99F+y2wGcToUf3KQ3BVq2TF9YZrOB2QwOR/TYP0idCB4IC0MsYVZaSkQUYyL32dPovZJBjTzwdYWZF+VSWOTFXuBFPnmoLEN+QRu//T2MG3M9jjM2c9awSmLUWsLuqbe+80aXHPbzGbQMVVToc/HPv6e/Z7uv7EitrbB3H4yL4fsWpBbJWYlkLkArHD/QQxFkAEmJ7ffee4+77roLv9+P3W5n2LBhcaP/BIK0RJJRB03E5oufx27NU6PaP7ojUXtKvi22ObO7qPjuxpZvC3TJz9ZxOCJFm8fTuc8Xn6uMbHyVg/k/iSm09fMTN40kP3bqYELHB+/h8cdhyZKuVXd4/PHYGeCpEsF9mZMdi1jCLHj/ixd3vleJ3GdvcrIVTyWXXzqV8jUWPO4cfnp7G/9b7kVVOx8+9h+UePrgTIyG6Uwefpx5075i7JAGuroakq3qWvPUsJ/PiO0Z4NnuSztSezvsObnQ0mwWgruvUaq2EsixQwLRb4LTm6TE9hNPPIGmafz2t7/luuuuEws0BBmNvcCPw6FE8UWHR/T1lETtKfGi/6qrNRwOej22PFMbjz+usW5d+PHl5aCqGosXd/Vi6x7YAlM9APm5LXH90vm5LfHFdpLH9/YeUimCk23o0hviCbPQKMZE77M30Xuh9z1zlkJFRQ7bPzdhyfVhtvix5LaTYw4gSdDuN/D5oRF8fmgEBjnA2CH1TB1ZzcShdYwqcmJLsqo7EA88qaav7UiBAOw/oEcJ5uWJv8l9iqahHPoYbfCIgR6JIM1JqqnN2WefzTnnnMNLL8VuppEJZFKIeqaGvqcT8ebQ5cpjwYKu0XvhjVd6ynbpBi64JPbK9Y0fNDNF+wsYTNQMvoGf/kyJ6JC48pkAsq+JBYtscZvCxOKI7ftMmR67vLx2rUZZWZdIv6cDDD7xCvi9nWkit0d2b3zmaRgcTBOJRbLHJ3AP69ZplJaGvG990CwmmYYuXY9PpNW4OukGLpmXF/N8778Pe/aoXDyrgfqNfdc9scM3XngW55wTKeAkSSPH7OP677Sy7ctW2vxZEfsYDX7OmpbFm3+34G4yoqqR5+muAZGcZaBw9nWs3xQZYdnXc5AqcmfNZ/rs2D/HqWrCJAEjR4LdHl9wi6Y2yWPJs+FW8lFtI9DyhtLhtRL0iEzVN33e1MZutyd0EYEgU7DZmnnxxRyczixcLgmbVcNuriX3+Lpe52zb8gJxt3dYQPxeBte8wp/+eCUN3kL9+ja9umw7/g6o/oTiA6Phaor/yz/HpPLF54Rf88Q7utBGH1u2Ws/vfleApkkdfmlJ0jCqDZ37xaLdzZDav/DCM9fR6DbT6NKtI/m5Ldhr3uxWaOv3EP/XVY7Rx+eftOJq7lmjlJ6QTEZ0bywU3fnEm5vh9dclLprRtxXM4H2rZ02jawdK0GMlWzxGfnyzAemLVew8Opi3P5/M/hOdPRja/QY2b9UYcTLVxN1spMllDBPeiVR1NU3i9dckytd0vuZw9GwOks0rT4b+qs5rwOEj4PdrDBokKtx9SsCH1HwIpfEQyAY0azGqdQSatVgklgiAJMX2FVdcwdtvv01bWxvZ2em/ClwgSASTqZXi4laKi4OvZOPPm4dc+xVy3Vd6nGAPSLSDJAB+L7bjb9BR92oM37+7+MBYdCf4881uRja+GvWaoPvOb70z8uP/RKMHAWh3Yz/6cmfqSGP0a8UiLz/+75g8q8yIulUcrAR3GhbqerMwLp4wKy3VFwaWl0ss0vL7Je86P7/77U0STBlZw5SRNZxw5fLujvF8/NUY2gP6nxtN0xdXWm3tWG3tJ4V3Fk2ubLIMAeL9pOZNnMmiX0RGWPZkDvoiDaQn9LcdqaoafD6NYcOE4O4XVD9S4xGUxiMgK2h5Q08K72GgRH7iIzg9SGrh9uLFixk+fDi33347hw8fTtWYBIL0Q8lCHToV/5lXEyiZizpkiv7L09DNykWCXRGdOBzhMqKjg6Rrc1+NugNd8EeXMYl4vrv1nQdKkhxh92Rly5SWRt9WWqpvVxSJsWNJoBNm/9PtwjhLScTrujBz4pgX/t6VlsKiRXr8X7zjU43FrFJWFn1bWZm+PZQhNjfzL/icR37wFt85/3OGFvkIXdqjqkHh7WPEKDe33+Pn6TUX8Om+kXjbI2tBvZnDrsR96FliJ2/izG7PkQydvvntbK1w8cHaZrZWuFi2ZHtKLU+h1NbB4cOJN8ASpAg1gOQ6hnLkEww7/45SuQHJeRACPescK8h8kqpsL1iwAFmW2bhxI1deeSXDh///7d13fJvV3f//16VlWZYsy3sksRMncnZCQpxBCCQEwi6zvSnQ0v46oAto+bXcd8f97bi/0BtKC7Ss9kdXoIVQZgslbAhkkQSyt0e84j1l2ZZ0fn8odux4yZZkSfbn+XiY4EuXpHMdDX90dK73ySEjI2PAEyU1TYv5ud1CYIhDJWb3Xa63qx2tvR7N1eD/t70ePL3eTEewgmS4BLpk/GCaWsIUizgCNTX+AhP6ZyzffjvU1kA2oNNpTJuqOF40eFThaAUz/WA0J8b1PqHRc+9cjh3X94m66318ocz5Huw4a0628+tf2wbJOoeTVe0D3p4lrou1846w9qwiTliu4v7fGmnv8PTEBGqA1apoadX4pCSHT0pyMOi9nJVbzgVzjzA1vd5/jCE4uTDSixNBcNORRquhEbo8kJGu8Hrp+Wk0emlr67XNd+pfj///jQbIzoHEM0+2DGDtANGL8qE1V6BvrgDtY5QtC1/SFP/fEplqMu4F9Qhv27at5/+9Xi+lpaWDjnBLUokYt4zxKGMOKjHn9LbONrT2BjRXHbqGIvB0jnoKSEgEWfAHPO88jBJtiosvHjxj+aMPVc+0lHAU3KGIrRvKYLF13YWZtTCP668f/MS6UMXeDXWcDz8M6y72Ry3eey80N0NiIlRUwJo18PrLw7TB4yG3/UX+9MslVLbn8uobis3bfLS2QUurhl7nJTOphfZOI/WtCWw/PoXtx6cwNb2OC+Yc5txFwzwPA+iDSC1OFA1aW/0/vZlMPjqHGGjt6ISiIn/mfk4W/gzvANcOEINQ6nThrTOgEnPwOaagrJkgtdK4FFSx/dZAazoLIcCUgDIloOyT8KXPRld3BF3N4ch+fRjAkvGDGdG88zBJNtexfHlanxUvu/WOKezWXXAXFUFrCAruYBcjCfbEuJFcP5gR+KGO89vfUfzXf/m48sr+5ehI4geb9m3Gwmauy4crc3VsPz6Fd/fnU1qbTHl9EgCZSU2YjR5O1Dkoqk7hD9XLeX5XB8tWtLFtazw+b982BHr/kVicaDxobobWFkhLU1hnBrZ2gAiAz4PWeOrkSkMcPvtkVNIUVEJqpFsmQiio6L/xIpaiZmI1GieaRKwPvZ3oao+gqz0M3q6xv/9g6Aw0pH+GoqpkrFYdzc3+NJKWFh/TMutJqg5gJMtgpinVn7TS2KThSFI44uqw1742fJrJqesPFo3YJ6bwDD6forraP8LtavfPEx6NYCPbTo8YD3Zi3NAj44Fef/CRaS8P3tsw7Aj8cMf56Sdetm7TQh69pxQU1yTz7v58Pj4+GY/v9DEa9R6Upsfj8T/uJhOcvyqO5UvjmT5dT0uLIiuljtpNw9+/fc5y7rp38A8t99+9N+wnmgYrlGkqJpOJzqGGtgdgLbyBlRfY+61Iu3mzfzrRtg+amNz89xHdZiwLS3yiKQFf0hR8SVPAPMyqYOPEaP82u929EsTsCoejC7N54Clt4RBIKp8U20ixPdFEvA+9nehqDqOrOxI7RfdQhe4jXtKrBy50Q3Z9GLDgT0yE1lYfUzPrcQRS8CuFuwNcbdDm8hff7gDqfBg+8/q9N1vQ7X9q6EMYYc72UNcfLOfbX0zOG3BeciDF5HDHuekDLz/7ma5PIshFFykevLee+q0vhOQEv+b2OLYcyeVARQbHqlLp8Az+Jay73UB2ppkn/z8jDR8+TWfL0OPSwX7oibRgP0ydaTTFNnNvpKHVxoMPDnz+RIajhVnep0d2mzEs3FnlymyHOCtKHwd6k//cIYMJ9HH+/9fHgcHkvyyGjeZv88BrYygef9yL3d4S6iYOSIrtAMVS8RrxQnEciJo+9HSiqz2ErvZI1M9vbMq8mi99a+DVLdeuVfzxtzXYq14I2/UB2hzL+OJdgxSRF3n58317R/XVtdercLno+Wlz+U8QO1OoFyMZVZETgGDbOdz1z1w8qFu4RoUTZi7nzv+Zxd79Xv+qlZauAdcM0TQ471wdl01+nsT4oT/EBrs4USQF+2HqTKN5HqZdcAvf/I6ZgWaSXnABPPpbN5knJ04gQtQsDKRpoDehDGZ86bNQSVMi3aIRGenfZrc7nltuiRtkZWXFn/7UMSYj3GFf1EYIEQSDCV/mPHypTnQ1B9HVHR1xhvdYqXenDFgog39FyHp3CkN90Rns9SHwZe9HSq/XsNnA1mswt7NT0dGB/6cTOtxgbI+NpcKDPQFwyLnhFynefnvgxzFcSR5aYh7vvecfsauriQcU8RYPlgQPVlsntkQPPp9/Gsq77/t4l8+Qm1rPdYW7cWbXDnibkUgDCZVoSFPp6NAGLLTBP9Ld2Skn+UWEUuDpQPN0oC/dgs9Vhy9rAWjj85TfhgbjgIU2+LP3GxqMZGWN3XSSoUixLUSkGeLwZS3AlzYTXfUBdPXHo26ku7Fp6D+eTcNcHuz1YWzjB00mDZOpbwGO7mMef3ASX78jud9Xlg/9soHGbdvR6/wr9412XngoBHsC4FCLrvzm17CkcODHISEB9HFmrIU3DDmPeKTzjfs/rhrtLiPtLiN1NfH8/e+KL/8/XaSkubEndeHzaZTUpvCrV1eTGN/O2rmHWD3nGCZDBB+UEGpu0ZGQwKDzpcciTaWxvgsYfJGpxrouktsVCZYwJpFJ9OCwdLVH0Fz1eHOXg9ES6eaE3HB/N5qatF6L00WWFNtCRAtDHL7shfgyZqNrKPZPL+kMYVB0nA1f8jSUIQ59xScjSkZJsg8928xuV0OuBhns9SE64gc1TXHddYpvf1vriR6srFSYzTB7lga+vm/+Pp869a9/0EkpQIFPQUeHjvJyf/ZxKAWbetI729v7877TLLra8mhr6/8dREIC/O1vcNcPTGzceLoIOzMWMRxL1ick+JeKd7WZeH67l78/9BHvHphOe6eJ5vZ4nt++kJd2zOOsvDKuXLyfDHssjWP3l2T38be/wYMPwv/8z+ntF1zgfwySEn1hTxZNtA79WkyweDm2F/Q6sNoUiae+OTIaQ1R4S/RgwDRXHYYjG/FOXo6yZUS6OSFlD+TvSpQYn98tCBHL9CZ8qU48My/Dm7cSZQ3iDVKnRyXl4s1fjafgEnxpBShHHh7nuhHdbrK5jrVrB37jGih2L9TXh+BXwQxWm/1svvadZL72NR1XXAHXXw9XXAFf+5qOr93uoM1+dr/r6HQaOp2GwaBhNGr+EfM4DbNZIztLz6xZkDsltCteDrbqZPcJgC2Hh18OvHuaReu2v6Hb/xSt2/5G077NaC3F/W4X/KOsDz2k+n2le+aqjKNZvdH/4WHgx717yXrwP48cNjdXLdnHr29+ia9f8BEZdn/Z6fXp+fh4Lj/ZcAk//ceFbD82CY83Nqc6mE0dPPSQ6jeN4623/I+B2dQR9jYM9Zj0/kDn9UFTE5wog/0H4PARRVWVoq2t+5Pn6LTZh44eHOi1OKF5OtEXvYfu5L5ItySkHI4uLrpo4OfRRRf5U0mihZwgiZwgOdHEZB92tPhjAxuKAxqxUeYkVPJUfI7cIc9Q19UcRle1G9QwX7GPMnYvZNeH06NZg6yCmRzm0awTif/BnEWDzyzft3NkcWdnnlTV3q6orYPGxuCnoYTrBMDBkjwGO2myW/dJmaM5eXOw++xOvrjhBli+XPHoo1C/6al+aSTldTY2bFvIwfIMFKfbaDZ2sbLgOEvyT5Cb2hAza4lEw4m6oUh00evpGfG22/0fTAMV6tdisKLmBMkAKFsW3slL/eklUUbSSMa5WCq8YrJQDLPWVhsNDXoaG8HhgKQkL1br4C+ymO5Db6d/ikndUeg44+twnQFf0mRU8jSUJSXw22xvRH9iK5q7aej9TFYa0q+isdVCYxMkJUFSggtH9YvQGcBX871ytrvzUJPNI8jZHuA2kkaa1R2EvdqNrDjPOujlm99rYY4KPO5ssD/QXo+ivgFq6+i3sl8o85VHa6BCvtUdz7nnD/7HuzsWcbTxib3vs7XdhD3FjMkENTX++MfEREXr7tdoLDkx6G03ucy8umsWHx6eSpe37xQbs7GLGZk1nFNQxPwpleh14f2zGMzjGIoIyt5Gm4oTyg90ej0kOyA15dQKlcMI9WtxSAHMDY+lYhsAUwKe3BUQP3yR2IerHl1zBVpLhf/vhSkBZbKh4qyoOBuc+n9Mo/uqbjznbMucbRHT6uuTuPVWzhgt1fPYY0kkJzdGrmHhcmqKiS/VidZS6Z/X7enAl5KPsk8GvXHktxmfhHf6WnRVu/23NxCdgbqkdXz9tvgz8pXNPP6bdYHNkfS4sVe9cDp1pHGE7dQZqEu+jK9/+8x5mik8/pvLwj5Pc6zmjOsNGmlpkJaqaG7xF90tLcEvFx8qAyV5WAtvAAYvtrtPykxMHLqITbSpIZest6QdIfPsa7nttjNf8/Doo5dicf0DV83ACSR2i5sbztnF1YW72XRoKv/+ZBYtbjMA7i4je05ks+dENhqKVFsbs3KqOMdZxJS0RkYw6DqsYB/HaFkBM5SJLl4v1NT6f2xWRUoK2BMZdOlye+Iwr8VEHwwzdhCQ8To3vLMNw9G38GafhUrJH3w/nwet5SRaczm6lqr+AxodrWgdrWhnjm1pulNF9+lCXFlSwrY4j9ncTlZWe9ScDDkQmbMtYlZrq61foQ3+32+91X/5eKZsWXinrsI740JU8rTRFdrddHp82WfhnXoeGOP7XRwNcyQj3YYxnzOuaSQmakybqjGrADIWjHy+81gJdA6vza4fcu6+zT504kzy0qv6Fdrg//222/yXD8ds9LJ27lH+9/Ov8KOrN/K5ZTspyDqJ2egf3VVo1LRYef/gdO55+UK++eS1/PQfF/GPrfM4UJ6O1xdc5T2aeeu9WcwdQ/ahxRz+Odvh1NIKxSWw/yCcrFZ4PP2PNTF+6D5IjA9NH0T6PSeslA99+Q70J7b1/cDQ2Yau9gj64+9h2Pci+pIP/dMXR/LNofKhuZv9RXrNIfRlH2M4/Dq6qr3DT1kcp2RkW8Sshgb9kNnNDQ16rIN/0ygGoGwZeGasQ1/+MVpTWc/2cGVcj0Sk25DQ9DGP/yZn0DnjCbUfh+2+TXEaHebI5ysPZqi4QP8cXv9Jma4OM9/5joZS/Vce/M53NFwd5iHvp6l56Nd8S6se+5zlAU3P0OlgckoTk1OaWDP3mP/220xsPprHruJJlNfb6fIa8CkdFQ12KhrsbNwzE5PBw6K8MpY7i3Fm1qAb4ZBVsDnZ7s64IfvQ3Tl4JF8s6eqCqio4WeVPlUhN9SfPALS4h+6DFnfcsLn9gYj0e85Y0BqK0bc3oGxZp6aHhC/LRle9H621Cu/kZRA3sf44S7EtYlZj49CXNzXB5Mlj0pTxxWDCm7sCraEIffku8HnGNON6MBFvg89DSu1L/Pm+s6m/93Qxl6wv9hfaYf46edjjH4N85cEMFRdYv/V0odvQoHHDDf70kjvuoCc+ccsW/4mOr/5LG/IYmoaYGpCQAAYD3HHG6oojmWZjT+jk4gWHuXjBYZSCsjo77x+axp7SbBra/DnFnR4DW47mseVoHvGmTpZMK2XZjFKmptcFNN0k2EWHGpt0Q/fhS5F7HoSDAhqb/D9ms3+KSSND98Gbr+qYFIL7jvh7zhjR3E3Dn7MTqvty1fujCLPPQiVPHZP7jAZSbIuYlZQ09OX28EwPmzCUYyoeSxr6il3YdcPMEx2DjOtoyNnG5yGhYcvp0axw318vwx3/WOQrDyWQObx2u6KtrW8+9JmXD5UfMNRrurvwGnB6Bg7uv3vJiJYx1zSYnNrEjam74Jxd1LVY2HF8Eh8cmkZ1s3+KWnunifcPTuf9g9Oxmd0snVHC0vxSJqc0DppuEuyc60Sbb8g+HKs525HgdkN5OVhzhumDEL0XRMV7znjk86Av245qqcCbsyQqk1FCbXx8LBMTksPhHXLensMRnUufx5Q4K96p5+LIMA2RZxr+jGuIfM52pA13/OlxxcyaCRkZYAxi+n44xWtD563Ha0PnrdsTB3/Nr17dP+e728Y39HgT8kbU1jOl2FxctOAwP//sv/npdf/mkgX7SYw/nXjQ4jbz5p4C/ufFC7n7b5fx4sdzqGhI7Hc7gc5vH0yw1x8PhuyDi7zYKQ7J/Uz095xw05rKMRz+N1rLyUg3Jewk+g+J/otlA6eRKB57jEHTSKQPR2fQPNNH3Dg8u9Da69HaG0O76mVvEc7ZDrURx4WN5PiVor4RKivBE2CXBBpHF0xsnSHeTOq5N3Hbt/rnrT/6Oy+176/H0+4e9H7MviriMp2UloLVqtHc7B/tbmlRGAywcuXg8zg++ECRbquhfvurPfcxWt1t81hy2bNfY8cnHj7a6sXl7j/tICupiVUzj1M4vRSruROd0UDKsqt4f3syWVm6nuXWKyp8rCqsp27z0NNdQpFxbYg3k7zkUtrV6QhNM3Uh6ZuxEEgf6JWHhARIsII1AcxxDJpuMvgdBfaai7nov27BLnkf7PXhdJxrR+qp5+Lw8b3RRnK2AxRLhZcUiv1152w3Nfn/8Doc4zhnO8K680xbWvTYbN6B80y7XP7c7taa0Deg15t7nznTI3lzjxKj+gM9wuP3ehVVVf74wCFvdtA4Oi8P3tsQwHLrffcbypmFnt3uH9HuXegNej8X+fjd7zTuvBP++c++xfoDD8D8+YMXU6+8Ag8+qHj0t15qP1g/6qJysLZduNbD//OFRv790gl2Hc+my9t3lqZO8zFvciUrZ59g1XXL+N4Pk8+I0VQ8eG899VtfGLYPg8m4HvIDT5B9M5ZG2gc6nf9DjcUCCRb/vwEtHx/Aay4mi+1BYw29PP6bhuFjDYO9Pgy92NkQA2bRRortAMVS4SWFYvCkD4M3bB8qha5qD7qag2PXqBgzln+g212KsnJwDbLOg33Ocu4648TCbhdd6OX+u/fStG9zwPsFa6j7WbtWsXSp1m++7hNPKJ57jgGnklxwASxb5p/ju3at4nf311D9/vMhb1t3H9R8upU9J7L44MBUDlRkAn3bpNM0aqrjaGyIo8Nt6Hf9UPThYNJXXcM370obMNUl2L6JNUajv+i2xIMlwf/vSFay7BaLxXabYxlfvGuQ5/FFXv58314SGgZPWgn2+gBNmVfzpW8N/lx88snYGOEOpNiWOdtCiNDTNHxZ8/HmnRNc/rcIiXiLxowZGpNz/Kv1nWnYOLpT850D3S9YQ93Pm29qLFvWf/udd2o8/DD95vJ2L+v+m9+cvn67GsEKqyNoW3cfmAw+Fk8t545LN/E/n3uVixccwGI6nf3sU4qUNDf5ziamzWgkObUdvd4X0j4cTLtKGTI+MZi+iTVdXf6Em8oqOHYM9u6Fw4cV1dWK8T4OOWysoTcvrNcHqHcP/VxsaBg6DSaWSBqJECJsVGIOnhkXoS/50D+fW0RUcop/2kZlFdTVn94eaBxdsLF1gRruftwDzHJoa4Pqarj/7r14fjmfY8e0PnFwbb1OJWhqGjpiMJi2ndkHqTYXVy/Zy+WL9rOrKId3ipdxvPj05eZ4L5nxLjKyXLQ0G/lgC8xHC9uS8U1NQ4/cBtM3sU4B7W5or4KGRpg8SWGxhHD50CgSbKxhKGIRG4d7LjYqJk9SI59rH4Wk2BZChJcpAW/+BegqdqKrL4p0ayY8vUFj0iRIST49tSTQOLqxWip8uPsxD7L2jc0GTe9vxnbuXK6/fvBiYLiIwWDaNlgfGPU+CqefYM3nV7Ls/AQcyW7sjo6ebxo0DRLtXTz2JNjMl7NsRgnnOIvIcoT2a3S7fegiPpi+GU/cbjhy1P86ycoCvT72C77ego01DEUsYlIAz0V92Xa8kwuHvqEYMFE/wAohxpJOj2/SEryTl4Bu/Hw1GMt6Ty0xugKLkxur2Lmh7mftWsWWAaaCrl2rsNv9hXCwEYOjbVug0X3nnatRVWHlyIFkKssScLf3fU20uM28saeA//OPi7nnpTVsOjiV9s7QjI2Fs2/Go7p6OHQIGhvH17SSYGMNQxGLmGwe+rmYbK5DayhGV75z2NuKdnKCJHKC5EQjfRi8oPqwvRFD6UfQMV6X3ghMwCdV9UpDaGnTk5xmxt2ho7ERkpIUjrg67LWvgWf0CRIepacu5Sq+edcZEWdnxMnpjAaSl17tT+I4IwLywV/WUb8lNLFzg0a7XeTj0Uc1ysr8S3f3jv6bMgWadrxIa+XJYSMG6z/6O/FT5g0ZXzhYxGHb8V0kLbp81NF7A0X/mc2KHTu7qKluZuvWLlyd/Rf50Ou8LMyt4PzZR5k1tZWUwtFF9xnizaSffxMnyvX94hMn53ipfjcG00hGGEE5WjYbTMoBk6nvKHcsniCJzkB92mfY+EH/CMp159bjqAkwjSSYKNah0kge9ZJ+8qme9zVf+ix8mfOCOuRwkTSSAMVS4SWFYvCkD4MXdB96O9GXbUdrKg9do2JMQH+ge8VrffiRjr/9DR58EN566/Qua9cqHnvES3r1U0EV3H0yc5t12Kw+LF3FuI5tp63ZQ5dnsEIRKit9rFpST90wxfZIYucGinYzeyowZMzkttv6Z+s/+ig0bnkGd0Njz30NFDHYuGsjifMvHjK+EBgy4rBx5z9JmHbWqKL3ej6w/GDg6L+azS9ypMzO7tJsdhblUNdq7XcbNquGz2ti1454PB79oH04EJPNSvLKGwftw/pNT9HZEt0fhEMRQTnq+9ZBRjqkpYF2ai5xrBbbdalX8fU7+n9wfvw39aTUvjh8sRyKKNbunG336ddpsnngAQRf1nx8aTNHeKDhJ8V2gGKp8JJCMXjSh8ELVR/qag6jq/oUJuDbUCB/oHvHa/3wh/6T/XoX2t3WrlX88bc12KteCFNroatL0Zq0nK/+1+ij/4KNncu59Mt87VbjoNd/4rEuyl99csjjCCS6DwhbxOFI4hOVgqpGG5+UZLPt2BQqGuz0jhFUCjo7dZystNDaHBdQH2ZddDO3fssyaB8+9lsXlRv/OqpjGytjFUE5FLMZJk8Ci0WLyWI7FNF9oRZIP3pzFqNS8seoRYGR6D8hRFTzpTnx5q/BlzIdZUmR+dxn6B2vtWzZwIU2+Eco693hjWwzGjVa9cFF/wUbO9fcOnCh3X395tbhYyYDie4LZ8ThSG5b0yDL0cIlCw/x39e+wf9+/hVuudlMe7sedSqkIS7Ox5S8Vpyz69n5iZs2b/KQ99/qHrjQBn8ftrotoz62sTJWEZRD6T6BsqxM0dml8HoUHo+iq0vR2Xnqp0Phdvt/2tsV7S6Fy+X/PdJCEd0XCfryHWiNpZFuxohJGokQIqKUJcVfaIN/qK6jBc3diNbe4P9xN4KnM6JtjJTe8VoDxd312XeYGK1QGC7uy92hwzkDXK5TP+192x1s7FxT0zDtaxp+BCmQ6D6GqYWCiTgMJj7Rbulg6fx4vv//JqBpiqRkN6lp7RhNCoNBkZnt4pavQuG0xVy1eC/2hI5+txGKPoy0sYqgDERdPbS0eugc4VuUw6HIzgKDITIpJ6GI7osU/YmteHUGVGJ2pJsSMCm2hRDRQ9PAnIgyJ6KSppze3tmG1t54ugh31U6IArx3vNZgcXc9+9oVNI5dewaSaPMRrzTi4yHl1Ocnr1fR7oLWNnAFGTtntw/TPjvDxtYFEt03nGAiDoONT+yO7lNKo6Eunoa6eCwJnWRmu4gze/F44KPD0/jo8FScWTVcsWgfMzJre6KKQ9GHkTZWEZTh1NAAzc2QnaVITh77gjsU0X0RoxT6ko/wTl2FsqZHujUBid6PLkII0c2UgLLn4MuYgzdvJZ7ZV+GZcRG+7IWoxJxxu0pl73itLVv8qyEOpDsmayzbc6bB4r70eg2rTSMzUyM5PrjYuURr15DXT7R2DX0ABBbdF86Iw2Bve6DoPlebieNHkshIsTN/tkJDARqHK9P51b9W819/v5R3903D3WnAanYN2YdWc/TPPR6rCMpw83rhRBkcPTb2U0tCEd0XUcqHvngTuOqH3zcKyAmSyAmSE430YfCirg+VAncjutaTaK3VaG21gZ8NHyEjSiO5w8GHH+oHTyM5IyYrbIKN+xoi6uvR33mpfX/oJA2zI4mkZZ8LKI1k0EMYLFawV3QfMOQ+jTt6pZGMMHZuqPt/6L4Guhoq8MTnDnq7w8Ua1r6/ntpaeH7bfLYfn4xPnR5TM+g9LJlRxZzlTl54Qc9HHxrwenV9+jDQNJJAIhzDJZDHMFRpJIFEDJpMJjpHOo/kDBqQnu7/0enGYKQ7FNF9IWpHT7Rpq4FEmweHbgSJJnoTnvzVYB7mK5swkjSSAEVV0TCMqCtyYpD0YfCivg+VD81Vj9Z6Eq3tVPEdZW91o8nZbm3T4+iVsz1UTFbYBBv31Svqq7FJw57oH9EOtEgzO5JIWX4Nza1Gmpr80x4SrV3UbX5+2EK75xAGiBUcMme71z6nc7ZHHzs30G0b3aXoE7O5/QeOYW93sFjDM/uwpd3Ea5/M4r0D+Xh8A8/RjY+HSTl6nNMV2ewiM/4kmUnNGPSDv15GEuEYLoE8hqG4j0AiBkNRbHeLM/mzvK22sSm4g47uC/L+u6NN+/TvRV4e/00DKYEW/AYznvw1ENc/JnMsSLEdoKguGs4Q9UVODJA+DF7M9WFHi/8s9tbqSLekRyzGhYWDx6OorIL6UXwbHMoiJ1Dhip0LZ5xdm9vIW/tm8OYeJx2eQKZcKazmDtJsbUxNq+OCeYdJtbX3XBpshGOsCPQxCcfz0JEE2dmRO4FyLIQyflAlpOLNXxPqJgZEiu0AxVLREHNFThSSPgxerPah1lCCvvIT8PRPaRhrUmz35XIpysv9CSaBikSxbS28gbOWDf6V9a4tTbRu+1vU3G5vHV16yurt1DRbqWmxcrLRRmWTndrmeNxd/VetPE3hSHBxTkERF8w5SsbaW1h41uBpFp/s8tLywe+Dams0CPQxCdfzUK+H7ExIThmfBfeJxP9gzqLB+3ffziYmN/89oNtSZjte57pQNW1EAim2JY1ECDFhKEcunsQsdFV70NUdi3RzRC8Wi8aMGVBfp6io8p88Fo3CFTs3FnF2cUYv+Rn15Gec/hqhu1Ds6NJT25JAdbOV0tokSuscVDfZqG1JwKd0NLQl8M+dc/nnzjnkvNWM3RFPU2McqP6F4HARjrEi0hGDXi+cKIf6BkV6OiQmjq+iO5bjB0dKim0hxMSiN+HLWYxy5KEr34HW3hjpFoleklP8c5CrqqHdBT4FKH/0tfKd+lf5f/R6//LZqFP7jYFwxc5FOs4uzuglJ7mZnORmzsqr6Nne5dGx+Ugub++bQWVjIqBRXuEjZ3IbWTltuNoM1FbH42oz0r265XARjrEi0o9JtzYXFBVDnEmRmgrJyWN0EmWYxXT84AhJsS2EmJCUJQXv9AvR1R5Bd3Jv1KeXTCR6g0ZOAOtVJFiMtLlOx/1VVSlOhnlavj92bm6fFIxuwcTOhet2g2U0+Fg1q4hVs4podRt5c6+TrSWzqG/Q0OnAavNgtbXg9UJrs4np08zEaw3jotiOtsekoxPKK6CqCpKT/YW3yRS7Rbc/fnBunzSUbjERPzgCMmcbmbM90UgfBm/c9WGXC33FLrSm8jG7S5mzPUrDRIVVViqqa8J492GKnRvLOLveRjPf2BBvpnP6DTz0aCfHi7ro6OhbRiRbXaybf4BVs44TywOwgT4m4Tx3YKjoQYDUuUvois+juU1PUqJ3ZLF5kRbC+MFon7MtxTZSbE800ofBG699qLVUoi/fCZ1tw++sN4LO4P8B6BjZWJ4U26MQYFRYRYWipjaMzQhT7NxYxNmdaTSFos5oIHnZ1dz+g2Q2boR4i4fUjHZstr6LChl0XuZPqWDtvMNMS6/vWcUylgTymISr2B4yevCXjWia4jvfDzI2L9LO+PBss3pGFT8oxXYMiKWiYbwWOWNJ+jB447oPfR60xhP+6ac6E+gMqO7Cuve/Z9Baq9FV7w84XlCK7ZEbSVRYeYWiNowF93gxmkJx8Eg8xTnntBMX10xVrYHuOdwANrObZTOKWZJ/gikpjTFZeA8mXMX2kNGDFymuu07xta8N/Fr4/+7Zi715M7HU0cG8J0Z7sS1ztoUQojedAZU8dcRXU9Z0vNZ0NFcdupP70Voqw9C4ia3emzdg4QGwcaOe+nvzSMBfbOdka6AUteFfxX7C8SYM9jhofPihhV1bujj+xss8s2Uh+8oyUUpHi9vMG3tm8saemaQltnD2tBMsmXaCbEdzLNWDY2rwfoaNGzW+/e2BO27jRj21P8ujdN9m4uMVlniwWPw/sTzHO5ZJsS2EECGkLCl4p54L7Q3oqw+gNZVFuknjxkijwnJyNJRS1I1iwRwxuEAi8dLtbXx73Yc0ueJ4/dMC3jswvWcVy5pmG699MpvXPplNVlIz5ziLWFFQREJc15C3O9EM18/uIRbpbG7VofNBW5v/p5vRoHoK7+6f8ZBsEu2k2BZCiHCId+DNXQHu5lNFd2nULRkfa0YTFTZpkoZCjWqFSjGwkUTi2S0dfHb5bi496yBv75vBW3un91pAR1HZmMhz2xbw8s45LJtewuo5R8l2jJO8tyAN189m8xDXHSSWsMsDTc3+n9O3o0hKgrRUKbzDJWoTw1966SV+8pOfcM011zB37lwKCgp4/vnBl39tbW3lnnvuYfXq1cydO5c1a9bwy1/+kra2AE50EkKIcDEn4p2yFI/zEnzJ02JqDmW08UeFDVxwDxUVNnmSRvLw0ypFgPyReIM8DoNE4lnNnVy5eB/33vAvrjp7D1ZzB6fndCs6PQbeP5jPT/+xjgdeXcUnJdn4hq41x70h+/kiRWXlwB000lhCt9sfJ3jgINTWKuRUvtCL2mL7wQcf5JlnnqGiooL09PQh93W5XNx000386U9/Ytq0adxyyy1MnTqVJ598ki9+8Yt0dER+aWYhxAQXZ8U36Ww8My/DlzoD9PLF4kglNH3M479p6Fdwd0eFJTR9POh1J0+CAM5jEgFoObydB+9t6FcIdkfidcfSDSTe5OGShQf5v5/7F9cv/YQUaxu9T6QEOFSRwaNvnMMP/nY5//6kgLaO/ickTwRD93Mdq5bUj+oxGIzH48/xPnjIv2qlfBMXOlGbRvLRRx+Rm5tLTk4OTzzxBL/61a+45557uOaaa/rt+9BDD/G73/2Or371q9x111092++//35+//vf893vfpevf/3rg95XLKUqjOsUiDEifRg86cPgJdkSaC7aha7uKHSMxTp040QwUWFKUXoCGhrHpKUxYbRJGqGKKVQKKhsT2XMik70nsjhSmYo6YxxQp/nIz6jjsrP2MSsnjCHqI9D7+Fta9dis3rDENA7Vz0BQj8FQGd6+Lg9mM2RmgN0+Nt/Gjec0kqgttnsbqthWSrFq1SpaW1v58MMPsVgsPZe5XC7OOeccUlJSePPNNwe9/VgqGqTICZ70YfCkD4PXuw+1lkp0tUclwWSERvXHWSmKS6GpKTxtijXhXJBlNNo7Dewvz+DTkmw+LcnB3dV3VDvO0MX8KRVctWQvqbbIRGcOmX99bwP128KzAFEojeQYLPGQlQVWa3iL7vFcbMf895jFxcVUV1ezcuXKPoU2gMViYdGiRWzatInKykqysrIi1EohhBicsmXhtWVBRyu6uiPoGorBK8kMYaFp5E5RlISo4DYawWQ64+fUNk2D4mJwtQd/PxNFvMnD4qnlLJ5ajk9tp7Q2ifcO5PNJcQ6uThMdHiPbj+ey/fgUMhJbWLfgIMtmlKLXjd24oc25pF+RCrDxDT234+D+u5fQtG/zmLVnNEZyDK52OHYcbFZFZiZYLHLeyUjFfLFdUlICQF5e3oCX5+XlsWnTJoqLi6XYFkJEtzgrvuyz8GXOQ2soRld3FM0tyQyhpp0quBsaAR/4AE7VaurUf7q/81Xq9DZNA2OvYtpo9N/WUPLzFaWlfdMfRGB0GuSlNZKXtoMvrtpBSY2dl3fO5UBZJl6l42RzIn/5oJCnP1zMwrwyLj9rP1mO8E/JGjL/+g093p/nAdFdbI/mGFpaoeUo2O2K9DQpukci5ovtlhb/EslWq3XAy7u3t7YO/gK02+3odFF7rmg/gXxlIYYmfRg86cPgDdmHKWkwfQmquRJVfQgay0FN8HiGASSc8Y3mSFgTQtiQIcyerSgr93HyZHQ+fiaTafidosCMnHa+l7OdLo+ON/dMZePufBrb4vH49Hx8PJePj+eSntjKuoVHOaegjDjj0FGRo9XSOnTee0urnrgo79NgjqG9HUpKwWTUsNv9Pzabhj4EsYGjfj3HJ6CL4r9JMV9sh0JTDE3ek7mywZM+DJ70YfAC70MzpCwAxxy0thq0liq01mo0d+y8b4VLLC15n+wAn09RXh7plvQVbXO2A3XBnANcMOcAxTUOXvx4Lgcr0lFKR3Wzlb++v5CnN81jYW4FF80/RG5qQ0gTN23WoYt4m9VLa5T3aSiOobMTWtv8CSY6nf/Da2Ki/8doHHmHBzVn22fEG6G/SRNizrbNZgMGH7nu3j7YyLcQQsQEnQFly0LZTk2H62pHa61G13oSrfUkdMnE4GiXmqJhMvrni0/0DOlQyUtr4I5LPsDVYeTtfdN5Z/90Wt1mvD49O4oms6NoMonx7SyYUsHcKVUUZFUTbwru5EV//vVcNr7Rf3R4pBnXkRLqY/D5oLnF/0M5xMcrEm3+wlumm4yDYjs3Nxfwnyg5kO7tg83pFkKImGSMRzly8Tr874G4m9G1nhr1bq0ePgZPRERiosb0fEVRMXTJObAhY4nr4vJFB7jsrAMcqEjnXztnc/RkKqDR3B7PB4fy+eBQPpoGU3M6mJVRxMzMSqam12PUj+yTjz//OofbcfQpVrszruu3jjzjeqyF+xja2/0/J6v9S8RbbWCOg7hTPybTxFqtMuaL7by8PNLT09m5cycul6tf9N/OnTuZNGmSnBwphBjfzIn4zImQ6vTP7XY3o3W50DpbobMNrdPl/7erTZJOIiw+XmPGdEVREbS7I92a8UXTYHZONbNzqmnssLK57mJe/rcOn89/xqtScLwsjuNlM/kXMzHqPTizapiVXc3MnJPkJDcxXA3o6/JQv+1F7r97Cd6f983Zrt8a2pztcDnzGHrndIf6GLo8MNAMD6NR+YtvE8SZocvuQ/kUJhPjbqXdmC+2NU3j+uuv53e/+x2PPPJIn0VtHnnkEVwuF7feemsEWyiEEGNM00F8Eio+iQED0bydPQW41tkKXS40dyNaW52chDlGjEaN6dMVxSVw6jx/EWK5i+bx8L3J7P1EIy7Oi83eiT2pgzjz6ed4l9fAvrIs9pX5B+Ss5g5m51RxTkERzqyaQQtvX5fnVDTeZuJMpqifoz2Q3segA8Z6aa2uLv9P9/3W1nrp7PSvJxpnVqSlgCN5+MSfWBC1i9ps2LCBHTt2AHD48GH27dvHokWLeqaNLF68mOuvvx7wj2DfcMMNHDx4kJUrVzJ79mz279/Ppk2bmDdvHuvXr8dsNg96X7F0opecmBY86cPgSR8GLyr70OdFa6tFOzUPXGuPsvadIZZOkByUUpSVQ119ZO4+Vk+QDIS18AbOWmbvt90U5yUxsYMlhe2UnOh9iaL30vHpiS2sLChiubOYxPiOQe9nPPfhWBqoH00myEgbvuiWRW1GaceOHbzwwgt9tu3cuZOdO3f2/N5dbFssFtavX8/DDz/Mxo0b2bp1K2lpaXz5y1/mm9/85pCFthBCiFN0epQtA2XL8P/u6URrq0ZrPYmupQo62yLbvvFI05g0CeLiFBWygGhINbcMHOnb2aGntsbC3Xd6qdvyIjuLc9hZNInimpQ++1U323h++3xe/Hgu86dUcP7sYxRkVw87zUSETmcnnCiHkzWQka5wOGJzpDtqR7bHUtSNLg0hKkfDYoz0YfCkD4MXk33Y2dYrAaUaPJGdcDwuRrZ7aW5WtLWBT/ln83T/q5Q/7aHP76e2BXuS5XgelR1sZLvbri1NtG77W8/v9a3x7CyaxO4TWRytSsPr61+sJ8R1sGxGMRfNO0RSgn+0ezz34VgKpB9NJshIp1/RLSPbQgghxgdTAip5Kt7kqf7fvZ3Q0YrW0YLW6f+XU/8vJ2GOXGKiRmLiyK7T2qI4Ue4fARR9jTTeLtnaztp5R1g77wjuTgOHKtPYeyKLT0uzaXLFA9DWEcdbewt4a6+TVGsby2aUcPGiYoyaPABjobMTTpT5U04yMhTJScTEyZQyso2MbE800ofBkz4M3rjvQ08HWkczdLaiuVvQOprRWipPr4MeAuNtZHu0fD7FyZNQU8PAJ8QOYTyPyuqMBpILr+L2uweLt3sxoNQNpeBkk41PSrLYejSPyoZEFL0LPIXd4qYgq5plM4pxZtZiNMiJxiM1mueiyQQZGeDItOMtuDhMLRtaICPbUmwjxfZEI30YPOnD4E3IPuxyoas9iq7+WEhGvqXY7svtVpSVQdsIumQ8F9vgL7htziV4E/rG27UcHn28XadHz0eHc3n/QD4VDfYzCm/QNEWGvZmFuRUsyK0gN7UBvW7Cl1rDCua5aE6yk3+5FNtRLZb+4E3IP9AhJn0YPOnD4E3oPvR2oWsoQld7JKiTLqXYHoBS1NZDVSV4AxhcHe/Fdrh1evRsPZbPlsPZFNc68Hj7z8416LzkptWzMLecWTnVAWV5T0TBPBf1CXZmXh29xbbM2RZCCDG29EZ8qU58KTPQmsrQ1R5Cc0Uo+2680TRSU8CeqCivgKamSDdofDMZvFwwr5hzCw7jU1Bam8RHh/PYcyKb+tYEADw+PcdOpnHsZBoAccYuVs08xsULDmE1ywediUCKbSGEEJGhaaikyXiTJqO11aCrOYzWXB7pVo0LRqNGXq4/4aSsXJaGHws6DfLSGslL+wT4hCZXHHtOZLH96BSOnkzF4/PPG+/oMvLGnpm8s28Ga+YcYZ0U3eOeFNtCCCEiTiWk4U1Ig44WdLWH0TUUg88b6WbFvMREjZlWRVUV1NRGujUTi93SwcqCYlYWFOPxahw9mconJdlsO5JLW2ccHp+ejXtm8va+GayZe4R186XoHq+k2BZCCBE94mz4chbjy5iLvuj9qF/FMhbodBrZ2eBIUtTWgdsNHR2BzekWoWHQK2Zm1zAzu4Zrl+zh/QPTeGXXHNo7Tf6ie/dM3t7rH+m+aP4hbPFSdI8nUmwLIYSIPoY4vNPOQ1/0AZqrLtKtGRfiLRqTLad/7+pS6HQGGho76eiADje4O2TKSbgZDT4umHeUc2cV8e6+fP71yWzcXcbTI937TxXd86ToHi+k2BZCCBGd9Ca8U1ehL96E1lYT6daMO0ajRoJFQ6/vG43h86mewrulFSZqaE64mQxeLlpwmFWzj/HOvum89sksOjxGPN5TI937pOgeL6TYFkIIEb30RrxTz/UX3K3VkW7NhKDTacRbIN7iXxY7OUlWqQwns9HLJQsPcf7sY7y1dwav7y6g84yie8WMYpZOL2FaRp3EBsYgKbaFEEJEN50Bb153wX0y0q2ZcKw2jQKnourUKpUiPOJNHi5fdIA1c47yxh4nb+xx0uU14PHqef9gPu8fzMca18GS/FLOnXmcnOTmSDdZBEiKbSGEENFPp8ebtxJ9yUf+Zd/FmNLpNLKzwGH3j3K3t0e6ReOXJa6Lz5y9jwvmHmHjbidv73XSdSo2sLUjjnf2z+Cd/TOwxnUwb0oF6+YfJMvRGuFWi6FIsS2EECI26PR4885BX7oZrUnyuCMh3qIxY7qipgZOVoNPEk3Cxmru5JrCvVy+aD/HTqay50QmnxbnUNtqBfyF9+YjU9l8ZCrxxk5mZNWwevZRZmZXo9NFuPGiDym2hRBCxA5Nh3fKcvQntkKnpJREgqZppKdD0qlR7lYZVA0rk8HHrJxqZuVU89llu2l1m/ikOIvNR6ZSXJuMx6unvcvE7tIcdpfmoNN8TEpuZPG0EyzMrSTD3oIm87wjSoptIYQQsUXT4Z28DJoOQOneSLdmwjLFaeRPg/p6RUUleGUNojFhNXeycmYJK2eWoBQcrUrhrb1ODlam095pwqd0lNYlU1qXzAvbF2A2dlGQVc3CvHJmZleTbJU5QGNNim0hhBCxR9PQ8lbga21DV18U6dZMaMnJGomJivJyaGyKdGsmFk2DGVl1zMjaDEB5nY039xWw90Qmze3xALi7jHxamsOnpTkAJFlczJtcyaxJJynIqpFVK8eAFNtCCCFikqZp+CYtAU2Hru7Y4Dsa4lDmRJQ5CWW2g9mOiktEc9WjL9kky8KHgMGgkZsLKa2K+npoapb53JGQk9LCF1d9DEBti4VdxTlsO5rLibokFP65JI0uCx8cyueDQ/mAIie5kYW5lZw/6yiJlo4Itn78kmJbCCFETPPlLPYX3PVFp4rqUwW1OQkVlwhG84DXU7aMnkVz8MqyiaFgtWpYrf6FcRqb/AviyJzuyEi1ubhw3hEunHeE9k4D+8oy2Vk0ib0nMunwGE/tpVFe76C83sFrn8xk6fQSLl+0n1SbK6JtH2+k2BZCCBHzfNln4cs+a8TXUwlpeKadj6HoPfDI1+mhotNpJDsg2eFfFr6x0V94t7sj3bKJKd7k4expZZw9rQyvT+PYyRQ+LclmV3EOdafSTXxKdyrdJI8pqQ1ctXgPcybLQlKhIMW2EEKIiS3egWfaagzH3wOPVIOhZjRqpKVBWhq43Yr6BmhshC75MiEi9DqFM6sWZ1Yt1y3dTVWjjU9Kstl8JI+TTYmARmltMg+9fh5mYydnTzvB6tnHyEluklSTUZJiWwghhDDb8eSvwXD8XeiSr9DDxWz2L46TnalobYP6BmhuAq/M744ITYMsRwtZjkNcsvAQDW3xvLV3OpuP5NHqNuPuMrHpUD6bDuVjt7RTmF/KWXnlTE2XZeNHQoptIYQQAiDOiid/tX9KSYdMNA4rzT+322oFNUnR0uJPMpHCO7IcCe1ct3QP1y3dw9GqFP6xbT7Hq1MAjSZXPG/sKeCNPQXYLe2cPe0Ehfml5KY2yIj3MKTYFkIIIbqZEvBMW42+6H00t+TYjQVN00hMhMREKbyjyfTMOn5w5TvUtlh47ZOZfHQkD9+pZeObXPG8tdfJW3udZNibKcwvpTC/lHR7W4RbHZ00pZSKdCMiraGhIdJNCJjD4Yip9kYj6cPgSR8GT/oweGHtQ08n+qL30NrH92OUYLHQ5orOaTNKxUbhbTKZ6Owc/yfXNrnieGuvk3f35/dKM1HA6WHtqWl1FOaXcva0EyOOEQymH/UJdmZeffGorhssh8Mx7D4ysi2EEEKcyWDCO+089MWb0NpqI92aCWmwEe+2NpgAtW3UsVs6uKZwD+sWHGTbsSlsPpxHSW1yrz0URTUpFNWksGHrAmbmVLM0v4SFuRWYTZ6ItTsaSLEthBBCDERvOpXD/SFa68lIt2ZC6114gz/Hu8MN7R3gdp/+kYST8EuI62L17GOsnn2MigYbm4/kse1oLo2u+J59fErH/rJM9pdlYtR7WJhbweo5R8nPqItgyyNHim0hhBBiMDoD3ryV6Eu3oDWXR7o14hSdTiPeAvGWvtu9XoXbzelCvN2f7e2VRULDItvRwrWFe7j67D0cqMhg8+E8PinJocurP7WHostrYPvxKWw/PoX8jFrWzT/IvCmVEyrNRIptIYQQYig6Pd7c5eiq9qCrPy6rTUYxvV4jIQESEvpud7sVrnZwtUGbyz8KLkJHp4M5k04yZ9JJ2jsNfHx8MpuP5HHsZGqvvRTHTqbyyBsrSUts4ZKFB1maX4JBP/5PHZRiWwghhBiOpsOXtQBfxly0phPo6ovQ2moi3SoRILNZw2z2r2gJ/mkoLpe/8O4uwGX0OzTiTR7OnVnEuTOLqG5KYMvRPLYfm0x1s61nn5pmG395fwnPbF7I8hnFXLloLyZTBBsdZlJsCyGEEIHS6VGOPLyOPOhoQVd/HF1DMXhGlrwgIkunO53z3a2zQ9Hmgrp6/0mYInjp9jauXLyPKxbt42STjd2lWewqzunJ7u7oMvLu/hm8u386OcnNrJl9mLOnlY27Eyol+g+J/ptopA+DJ30YPOnD4EVNHyofWnMFurpjMXciZTRH/0WMUlRVw8kAH8qJEv0XSm1uI5+WZvPe/nxKapNRveIDNRRT02tZPqOURVPLsJqH71uJ/hNCCCHGM02Hsk/Ca58EnW3o6ovQNRRBV3ukWyZGQ9PIzABrgqK0FLrG1yBrVEgwd7HCWcIKZwldXo2Nn87kvYPTaXKZUWgcr07jeHUaT394FtMzazmnoJiFueXEx+iItxTbQgghRKiYEvBlzsWXMcc/p7uzFc3TAR73qX/9P5rHDd4OkC+Xo5bVquF0+gvultZIt2b8MuoVly06wFVLj7GvNJFXds7hcGU6AAodR6rSOVKVjqb5mJ5Rw3mzjrMgtxKTIXYm2UuxLYQQQoSapqGs6UA6Q5bTnk5/Ie7tgC43upZKtKYy8MXmCN54YzBoTJuqOFkDVVWRbs34pmngzKrle5e9R22LhU9Lstl+bArFNf5pJkrpOFKVwZGqDHSaj/yMWlbPPsL83Cr0w998REmxLYQQQkSKwQQGU09B7k2aDDmL0JrK0TUUx9wc8HFJ08hIh4TuaSWS/Bh2qTYXF8w9ygVzj9LmNrLnRBZbjuZyuDINr0+PT50e8dZpPvKzGnn4Qh9Wqy7STR+QFNtCCCFENNEZUI5cvI5c6GpH11iK1lCC5m6MdMsmNGuChnOGovQEtLSM7jbizWCKg6am0LZtPEswd7FsRinLZpTS5dVxqCKNTYemsr8skw6PEZ/ScazSgdkc6ZYOToptIYQQIloZ4/GlFUBaAbQ3omssQddQAh5ZlSUS/NNKoLpaUVXF0FOE8BfXCVawJvh/9AZ/6kZDg6KsDHwyZX9EjHofcyefZO7kkygFxTUO3j0wHXQmDIZJkW7eoKTYFkIIIWJBfBK++CR8mfPRWqv900yay8AXhhPFdAZ8jlwwJaA7uS889xHD0tM1EhIUJaV9tw9WXJ/J4dCIi1MUF0vayWhpGkxNb2Bq+nb0CXZAim0hhBBChIKmoWwZeG0Z4F2E1lSGrqEIra02+NuOs+FLycfnyAO9f0k/n30y+rJtaK2yYmZvCQkaBTMUrW3+ecJDFdcDsVg0ZsxQFBVDu6REjmtSbAshhBCxSm9EJU/FmzwVOlrRNRT5V7QcYca3SszBl5KPsmX2v9CUgHfaarS6o+grd0tSSi96g0Z2lp42V+BFdm9Go8b0fP+UkobG0LZNRA8ptoUQQojxIM6KL3Mevoy5aK0n/aPdTeWgfAPvbzBB1hw8xnQwJQx78yplOh5bFvqy7Wit1SFu/MSl02lMmQJms6JS4gXHJSm2hRBCiPFE01C2TLy2TPB2ojWW+ud3u+oBUPEOfKnTUfYp6FJSYSRL3psS8E47H63+OPrKT8ErOXihkp7un8ddegJ8g3w+ErFJim0hhBBivNKbUCnT8aZMB3eT/0RHS3LQN6uSp+GxZqAv34HWIsOxoWK3a8yI88/j7uyMdGtEqERn+rcQQgghQstsD0mh3cOUgHfqKryTloDeGLrbneDMZo0Z0yFh+Jk9IkZIsS2EEEKIUVPJU/E416FsWZFuyrhhMGjkT4PkEH42EpEjxbYQQgghgmO04J16Lt5JZ/sDkEXQNE1j8iSNnBwwyqTfmCYPnxBCCCFCQiVPwxuXiL7kQ/B0RLo540JqikZKsqKlBerqobk50i0SIyUj20IIIYQIGZWQimf6WlR8UqSbMm5omkZiosbUPI3ZsyArE0ymSLdKBEqKbSGEEEKElikBb/4alD16l9COVUajRnq6xqyZGvn54HCATqq5qCbTSIQQQggRejoD3twV6E7uQ3dyX6RbMy5ZEzSsCeDNVjQ0Qn29LP0ejaTYFkIIIUTY+DLmoMx29Ce2+nO+Rcjp9RqpKZCaAu3tisZGaGqGDpk2HxWk2BZCCCFEWCn7JDwmK4biTdDlinRzxrX4eI34eMjKArdb0dwMjU0y4h1JUmwLIYQQIvzik/DMuBB9yYdobbWRbs2EYDZrmM2Qng5dXYqmJv+Id1srqEg3bgKRYlsIIYQQY8MQh3fa+ejKd6CrL4p0ayYUo1EjNRVSU8HrUTS3QFMTtLSCzxfp1o1vUmwLIYQQYuxoOnyTloDZjq7yU1AyxjrW9AYNh8OfZOLz+Ue8a2vBJVNNwkKKbSGEEEKMOV+qExWfjNZ0Aq2tBq29MdJNmpB0utOFt8ulqK2DxgaZZhJK46rY3r17Nw8//DC7du3C4/HgdDq55ZZbuPTSSyPdNCGEEEKcQSWkohJS/b94u9Bcdf7Cu60WzVUHSuY3jCWLRWOKBbKzFHV1UFcHXZ5Ityr2jZtie8uWLXzlK1/BZDJx2WWXkZCQwMaNG7nzzjupqqriy1/+cqSbKIQQQojB6I0oWybKlun/XflOFd+1p4rvWvB2RbaNE4TBoJGRAenp/hjBujpokxCZURsXxbbH4+HHP/4xmqbx1FNPMWvWLAC++c1vct111/HAAw+wbt06cnJyItxSIYQQQgRE06ES0lAJaf7flQJ3I/qT+9CaKyLbtglC0/pPMWlqBJ/MMRmRcbHA55YtWygtLeXyyy/vKbQBbDYbt956K11dXbzwwgsRbKEQQgghgqJpEO/Am7cS75TlYDBHukUTisWiMWWyxqxZkJkBxnExXDs2xkVXbdu2DYCVK1f2u6x72/bt28e0TUIIIYQID5U0GY8tA13lbnT1xyPdnAml9xSThkZ/ioksmDO0cVFsFxcXA5Cbm9vvsrS0NCwWCyUlJWPcKiGEEEKEjd6Eb9LZKEcu+rKPoaMl0i2aUDRNI9kByQ5obVPU1vgXzBH9jYtiu7W1FfBPGxmI1WqlpWXwF6Hdbkeni50ZNQ6HI9JNiHnSh8GTPgye9GHwpA+DF/N96HCgsqdD5R5U1T7wece8CQkWy5jfZzRJsEBGGnR0KqqrfdTW+fCO4mEwmUyjun+DOS6qn8fjotgOVlNTU6SbEDCHw0FDQ0OkmxHTpA+DJ30YPOnD4EkfBm9c9aFlCmQnoS//eEyXg0+wWGhzSVRHt+RkSEpS1NdDTS10dgZ2PZPJRGegO5/B6+6I2PM4kCJ/XBTbVqsVYNDR69bWVux2+1g2SQghhBBjzZyIN38NWt0x9FW7RxYVqGn+ky59HokYDJJOd2pp+BRFUzM0NPgTTDT83YzW///N8To63KDp/MvHN9SPn4V1xkWxnZeXB0BJSQlz587tc1lNTQ0ul4v58+dHoGVCCCGEGGsqJR9PYjb6il1ordVgiEMZzWCIRxnMYDT7/zXEowxxYIwHQ5z/yl1u9JWfojXKuV5B0zTsdghkvDPBoqfNpfX8npKsKCkNfGQ8mo2LYnvJkiU8/vjjbNq0icsuu6zPZZs2berZRwghhBAThDEeb+6KUVzPjHfKUrTkqejLd8iJlxFisWgUOBVl5f6R8VgWO2cFDmH58uVMnjyZf/7znxw4cKBne0tLC4899hhGo5Grrroqcg0UQgghRExR1nQ8znX4MueCTh/p5kxIOp0/23vKZNDHcMU6Lka2DQYDv/jFL/jKV77CjTfe2Ge59vLycn7wgx8wadKkSDdTCCGEELFE0+FLn40vKRd9+U60lspIt2hCcjg0EhIUJSXgisFM73FRbAMsW7aMp59+moceeohXX30Vj8eD0+nkrrvu4tJLL41084QQQggRq0wJeKeei9ZUhr5iF3TFYMUX40wmjenTFVVVUF0T6daMzLgptgHmz5/PH/7wh0g3QwghhBDjkLJPwmPNQHdyH7q6I6DGS15GbNA0jawssNkUpaXQ5Yl0iwITwzNghBBCCCHGmN6IL3shnukXoiwpkW7NhGS1ajidkJgY6ZYEZlyNbAshhBBCjIn4JLzTL0CjBV/lcbT2erT2RsnoHiMGg8bUPKitU1RH+TLxUmwLIYQQQoyS5piCD9vpDe7mU4V3Q89PJJaQnyhSUzQS0yPdiqFJsS2EEEIIESrmRJQ5EeXI8/+uFLibThXe9ehaqyW7O8SMRo1o/jgjxbYQQgghRLhoGsQnoeKTUEzF5/OiL92C1lwe6ZaJMSInSAohhBBCjBWdHm/uclRSbqRbIsaIFNtCCCGEEGNJ0+GdshRfSn6kWyLGgBTbQgghhBAR4MtZjC9tZqSbIcJMim0hhBBCiAjxZc3Hlzkv0s0QYSTFthBCCCFEBPnSZ+HNWRTpZogwkWJbCCGEECLCVMp0vJMLI90MEQZSbAshhBBCRAHlyMObew5ooyvPlCUZX9Z8lH1SiFsmgiE520IIIYQQUULZc/DmnYu+ZFNAK0+qhDSUPQeffRIYLT3btbYadBWf+FewFBElxbYQQgghRBRRtgy8U89DX/wBeLv6XqhpqIR0fPZJqMQcMJoHvo2ENLwzLkRrKEFftQe6XGPQcjEQKbaFEEIIIaKMSkjFM+18DEXvgdeDsmbgS5qEsuWAwRT47Thy8dhz0NUcQldzMKDRchFaUmwLIYQQQkSjeAeeGReBzgD6wAvsfnQGfBlz8CVPQ1e1B11DcciaKIYnJ0gKIYQQQkQroyW4QrvPbcXjm1yIZ8aFKGtaaG5TDEuKbSGEEEKIiSTegXfaan/ySZw10q0Z92QaiRBCCCHEBKTsOXgSs9AaS9DVHpXkkjCRYlsIIYQQYqLSdCjHVLyOqdDegK7uKLrGUjmRMoSk2BZCCCGEEBDvwDdpCb6sBegaitHVHYOOlki3KuZJsS2EEEIIIU7Tm/ClOvGlOtFaq9HVHUVrLgelIt2ymCTFthBCCCGEGJCypuO1pkNXO7r64+jqi2SBnBGSYlsIIYQQQgzNGO/P6k6fDe5G/zZN5/9BA007/Xuf/9eBpwN95adoEzTfW4ptIYQQQggRGE2DeMfIrmOIwzu5EM2Rh65iJ5q7OTxti1KSsy2EEEIIIcJOWdPxzrgIX+Y80Okj3ZwxI8W2EEIIIYQYG5oOX/osPM6LUbasSLdmTEixLYQQQgghxpYpAe/Uc/2rWBotkW5NWMmcbSGEEEIIERHKnoPHlgGuUijaMS7jBaXYFkIIIYQQkaMzoJu8GI8+GX35DjRXXaRbFFIyjUQIIYQQQkRefBLe6RfgnXQ26I2Rbk3ISLEthBBCCCGihkqe5j+BMjEn0k0JCSm2hRBCCCFEdDHG4807B++U5WCIi3RrgiLFthBCCCGEiEoqaTIe5yWopNxIN2XUpNgWQgghhBDRy2DCO2Up3qnnxmRMoBTbQgghhBAi6ilbFh7nOnwp+ZFuyohIsS2EEEIIIWKD3ogvZzHe/NUQZ410awIixbYQQgghhIgpKiENz4x1+NJmgqZFujlDkkVthBBCCCFE7NHp8WXNh87onlYiI9tCCCGEECJ2mRIi3YIhSbEthBBCCCFEmEixLYQQQgghRJhIsS2EEEIIIUSYSLEthBBCCCFEmEixLYQQQgghRJhIsS2EEEIIIUSYSLEthBBCCCFEmEixLYQQQgghRJhIsS2EEEIIIUSYSLEthBBCCCFEmEixLYQQQgghRJhIsS2EEEIIIUSYSLEthBBCCCFEmEixLYQQQgghRJhIsS2EEEIIIUSYSLEthBBCCCFEmEixLYQQQgghRJhIsS2EEEIIIUSYaEopFelGCCGEEEIIMR7JyLYQQgghhBBhIsW2EEIIIYQQYSLFthBCCCGEEGEixbYQQgghhBBhIsW2EEIIIYQQYWKIdAOE35o1aygvLx/wssLCQv7617/22dbZ2ckTTzzByy+/TGVlJXa7ndWrV3PHHXeQkpIyFk2OKs8//zz/+Z//OeQ+y5Yt489//jMADz/8ML/97W8H3fett95i0qRJIW1jNHnppZfYsWMHe/fu5fDhw3R1dXHPPfdwzTXXDLh/a2srDz/8MBs3bqSmpob09HTWrVvHt771LRISEvrt7/P5eOqpp3j22WcpKSnBYrGwYsUK7rzzTiZPnhzuwxsTgfZhV1cXb7/9Nm+//Ta7d++mqqoKgOnTp3P11Vfzuc99Dr1e3+c6ZWVlXHDBBYPe97e+9S2+/e1vh/6gxthInoejfc1+8MEHPP744+zbtw9N05gzZw7f+MY3WL58eUiPJVJG0ocFBQXD3t67775LVlYWMDGehydPnuS1117j/fff5/jx49TW1mK321m0aBFf+cpXWLBgQb/ryPthXyPpw4n6fijFdhSx2Wx88Ytf7Lc9Jyenz+8+n4/bbruNTZs2sXDhQi666CJKSkrYsGEDmzdv5tlnnyU5OXmsmh0VZs2axbe+9a0BL3v99dc5cuQIK1eu7HfZ1Vdf3a9/ARITE0Pexmjy4IMPUl5ejsPhID09fdAPegAul4ubbrqJAwcOsHLlSi677DIOHDjAk08+yfbt23nqqaeIi4vrc52f/OQnbNiwgRkzZnDzzTdTXV3Na6+9xocffsgzzzxDXl5emI8w/ALtw9LSUr7zne9gsVhYvnw5a9asoaWlhXfeeYef/vSnvP/++zz66KNomtbvujNnzmTt2rX9thcWFob8eCJhJM/DbiN5zb700kt8//vfJzk5uaf4fPXVV/nSl77Eb37zGy6++OLgDyLCRtKHg71HlpSU8MorrzB9+vSeQru38fw8/Otf/8rvf/97pkyZwjnnnENycjIlJSW8+eabvPnmm/zqV7/i0ksv7dlf3g/7G0kfTtj3QyWiwurVq9Xq1asD2ve5555TTqdTffe731U+n69n+9NPP62cTqf68Y9/HK5mxpyOjg5VWFioZs+erWpqanq2P/TQQ8rpdKotW7ZEsHWR8+GHH6qysjKllFKPP/64cjqd6h//+MeA+z744IPK6XSq++67r8/2++67TzmdTvXYY4/12b5582bldDrVjTfeqDo6Onq2v/vuu8rpdKovf/nLIT6ayAi0D6uqqtT69etVW1tbn+1tbW3qmmuuUU6nU7366qt9Ljtx4oRyOp3qBz/4QfgOIAqM5Hk40tdsY2OjOvvss9XSpUtVZWVlz/bKykq1dOlStXTpUtXS0hL8QUTYSPpwMD/72c+U0+lUTz75ZJ/tE+F5+Prrr6utW7f22759+3Y1Z84ctWTJkj7vY/J+2N9I+nCivh/KnO0YtGHDBgC++93v9vn09x//8R9MnjyZV155BbfbHanmRZU333yTxsZGzj//fFJTUyPdnKixYsWKAUcHz6SUYsOGDVgsFr7xjW/0uewb3/gGFoul5/nYrfv322+/HZPJ1LP9vPPOo7CwkE2bNlFRURGCo4isQPswIyODG2+8EYvF0me7xWLhS1/6EgDbt28PSxujXaB9OBr//ve/aW5u5qabbiIzM7Nne2ZmJjfddBMNDQ28+eabYbnvsRRsH3Z0dPDKK69gNBr5zGc+E8KWxYaLLrpowJHRs88+m6VLl9LU1MShQ4cAeT8czEj6cKK+H0qxHUU6Ozt5/vnneeyxx1i/fj2ffvppv306Ojr49NNPmTp1ar83WE3TWLFiBS6Xi717945Vs6Pac889B8D1118/4OXbt2/niSee4A9/+ANvvvkmbW1tY9m8qFdcXEx1dTWLFi0a8M1x0aJFnDhxgsrKyp7tW7du7bnsTOeeey4A27ZtC2/DY4TB4J/Jd+YcxW7V1dU89dRTPPbYY2zYsIHS0tKxbF5UCvQ12/0cG2j6WPc2eR7Cxo0baWpqYs2aNYNOP5yoz8Pu12f3v/J+OHJn9mEg+47H90OZsx1Fampq+p3kN2/ePB544AGmTJkC+Oc7+Xy+Qed4dW8vLi7m7LPPDmdzo155eTmbN28mMzOz503tTA8//HCf3xMTE/nhD3/IVVddNQYtjH4lJSUAQz7fNm3aRHFxMVlZWbhcLmpqanA6nQO+Yebm5va53YnuH//4BzBwQQjw4Ycf8uGHH/b8rmkaV1xxBT/96U/7/bGfKAJ9zRYXFwOnn3O9yfPwtOEGJGBiPg8rKir46KOPSEtLw+l0AvJ+OFID9eFQxvP7oRTbUeKaa65h8eLFOJ1OLBYLxcXF/PGPf+Sll17illtu4eWXX8ZqtdLS0gKA1Wod8Ha6t7e2to5Z26PV888/j8/n4+qrr+73Rjdz5kz+7//9vxQWFpKenk5NTQ3vvvsuDz30EHfffTc2m23Is58nipE+3wLdv3u/ieyZZ57h/fffZ9myZZx33nl9LouPj+cb3/gGa9euZcqUKfh8Pvbv38+vf/1rXn75Zdxud7+ic7wb6Wu2+zlps9n63ZY8D/1OnDjB1q1byc7O5pxzzul3+UR9HnZ1dfH973+fzs5O7rrrrp6/H/J+GLjB+nAw4/39UIrtKHHmWeKzZs3if//3fwH/GfUbNmzomc8khufz+Xj++efRNI1rr7223+UXXnhhn98nTZrETTfdRH5+fk9SgRTbIlzeeecdfv7zn5OTk8N9993X7/KUlBRuv/32PtuWL1/OwoULufrqq9m4cSP79u1jzpw5Y9XkiJPXbOj94x//QCnFNddcg07Xf1bpRHwe+nw+7r77brZv385nP/tZ+ZZzFEbahxPh/VDmbEe5z33ucwDs3LkTOD1KM9jIdff2wT5JTxQfffQRFRUVLFu2bEQ5psuXL2fKlCkcPnxYvh1g5M+3QPcfaLRxonjvvff4zne+Q0pKCn/+859JT08P+Lrx8fE9J7F1vydMdIO9ZocaNZTnob8geuGFF9DpdAMOSAxlvD4PfT4f//Vf/8U///lPrrzySn7605/2uVzeD4c3XB+eaaK8H0qxHeUcDgfgz/YEmDx5Mjqdrmc+4pm6t8d6bmewus8AH2oe4mC6+7y9vT2kbYpF3XMKA32+WSwW0tLSKCsrw+v19tu/e27iQPNoJ4J3332Xb33rWzgcDv7yl7+MakELeX72N1CfdD8nB5oPO9Gfh+Bf7KeqqooVK1aQnZ094uuPt+ehz+fjP//zP3nhhRe4/PLLuffee/uN9sv74dAC6cPeJtL7oRTbUW737t3A6YVtzGYz8+fPp6ioqN/iBUopPvroIywWC3Pnzh3ztkaLhoYG3nrrLZKSkvp99Twcl8vFkSNHsFgsPS/iiSwvL4/09HR27tzZ84Gvm8vlYufOnUyaNKnPQhiFhYU9l53pgw8+AGDJkiXhbXgUevfdd/n2t7+N3W7nL3/5y6j/wHanFIUrMi/WDPaa7X6Obdq0qd91urfFxGIYYRLIiZFDGU/Pw+4i8cUXX+TSSy/lf//3fwecYyzvh4MLtA+7TbT3Qym2o8CxY8cG/FR27Ngx7r//fgCuuOKKnu2f/exnAXjggQdQSvVs//vf/86JEye44oorMJvNYW519HrppZfo6uriiiuu6JNr2q21tZWioqJ+291uNz/+8Y9pa2vj4osvDiiqaLzTNI3rr78el8vFI4880ueyRx55BJfL1fN87Nb9+4MPPkhnZ2fP9vfee49t27axcuXKqH9jDLX33nuvzx+W4b552r9/f5/XdreNGzfy4osvYrfbWbVqVZhaG31G85q95JJLsNlsrF+/vmdJaICqqirWr1+Pw+EYcDW6iaC+vp533nmH5ORk1qxZM+h+E+F52D3t4cUXX+Tiiy/mvvvuG7RIlPfDgY2kD2Fivh9qaqAjEGPq4Ycf5o9//CNLliwhOzub+Ph4iouLef/99+nq6uLrX/863/3ud3v29/l8fPWrX+1Zrn3JkiWUlpayceNGcnJy2LBhw4Rbrr23K664gsOHD/Pyyy9TUFDQ7/KysjLWrl3LvHnzyM/PJzU1lbq6Oj766COqqqpwOp385S9/Gdcj2xs2bGDHjh0AHD58mH379rFo0aKe0YXFixf3jHi5XC5uuOEGDh48yMqVK5k9ezb79+9n06ZNzJs3j/Xr1/f7cPejH/2oZ3ni8847j5qaGl599VUSEhL4+9//ztSpU8f2gMMg0D48duwYV111FZ2dnVx22WUDHntOTk7PcuIAN998M6WlpSxcuJDMzEy8Xi/79+9nx44dmEymcXMyYKB9ONrXbO/l2ruXi3711VdpaGjg17/+NZdccsnYHnAYjOS13O3JJ5/kl7/8JV/60pe4++67B73tifA8fPjhh/ntb3+LxWLhC1/4woCDLGvXrmXWrFmAvB8OZCR9OFHfD6XYjgLbtm3j6aef5sCBA9TW1uJ2u3E4HMyfP5/Pf/7zA2ZOdnZ28sQTT/DSSy9RWVlJUlIS559/PnfccceEXilx9+7dXH/99cyfP7/fSl7dWltbeeCBB9i9ezfl5eU0NzcTFxdHfn4+69at46abbhr33wzcfffdvPDCC4NefvXVV3Pvvff2/N7S0sLDDz/Mxo0bqa2tJS0tjYsvvphvfvObA56M6/P5WL9+Pc8++ywlJSVYLBZWrFjBnXfe2ZMZH+sC7cOtW7fyhS98YcjbKiws5K9//WvP7xs2bOD111/n6NGjNDQ04PP5yMjIYNmyZXzpS18iPz8/ZMcRSYH2YTCv2ffff5/HH3+c/fv3AzB37lxuu+02VqxYEZZjGmsjfS0DXHrppRw7doxXX311yOfSRHgeDtd/APfcc0+f4k/eD/saSR9O1PdDKbaFEEIIIYQIE5mzLYQQQgghRJhIsS2EEEIIIUSYSLEthBBCCCFEmEixLYQQQgghRJhIsS2EEEIIIUSYSLEthBBCCCFEmEixLYQQQgghRJhIsS2EEEIIIUSYSLEthBBCCCFEmEixLYQQI1RWVkZBQQE333xzpJsihBAiykmxLYQQQgghRJhIsS2EEEIIIUSYSLEthBBCCCFEmEixLYQQQXC73dx///2sXr2auXPncuGFF/LEE0+glOq379GjR/ne977HypUrmTt3Lueeey7f//73OX78eL99t27dSkFBAXfffTc1NTX88Ic/ZNWqVcyePZs//elPAHR2dvLUU09x7bXXsnTpUhYsWMCaNWv4+te/zr/+9a9+t+nxeHj66af53Oc+x6JFi5g/fz6f+cxn+NOf/oTH4+m3/5o1aygoKEApxZ///GcuvfRS5s2bx7nnnssvfvELmpubB+yT9vZ2fve733H55Zczf/58Fi9ezI033jhgm26++WYKCgooKyvrs/1Pf/oTBQUFzJ07l/b29j6X/fKXv6SgoIB///vfITu+v/71r1x55ZUsWLCAz3zmMwMelxBCjIYh0g0QQohY1dXVxZe//GWOHTtGYWEhLpeL7du386tf/Yq2tjbuvPPOnn03b97MrbfeitvtZvbs2RQWFnL8+HFeeukl3njjDX7/+99z9tln97uP+vp6rrvuOrxeL4sWLaKzs5P4+HgA7rrrLl5//XUSEhI4++yzsVqtnDx5kh07duByubjssst6bsftdvO1r32NrVu3kpSUxMKFCzGZTOzevZt77rmHrVu38rvf/Q6drv8YzM9//nOeffZZCgsLcTqdbN++nb/+9a9s27aNp59+GqvV2rNva2srX/jCF9i3bx/Jycmcf/75tLe3s2XLFj7++GN27drFj370o579lyxZwrZt29i2bRuTJk3q2b5169aePt61axcrVqzoc5mmaRQWFobk+P77v/+b559/niVLlpCfn09XV9fQD7wQQoyEEkIIMSInTpxQTqdTOZ1OddNNN6mWlpaey3bv3q1mzZqlFixYoFpbW5VSSrW1takVK1Yop9Op1q9f3+e2/vjHPyqn06lWrVql3G53z/YtW7b03Mc3v/nNPpcppVRpaalyOp1q9erVqr6+vs9lbrdb7dy5s8+2//N//o9yOp3qjjvuUM3NzT3bW1pa1Fe/+lXldDrV008/3ec6q1evVk6nUy1atEjt2bOnZ3tra6v6whe+oJxOp/rFL37R5zo/+9nPlNPpVDfffHOffjl69Khavny5cjqd6u233+7ZvnnzZuV0OtUPfvCDnm1er1ctWbJEXXbZZcrpdKoHHnig57Lm5mY1c+ZMddlll4Xs+JYuXaoOHz6shBAiHGQaiRBCjJJOp+OnP/1pn5HdefPmsWrVKtrb29m7dy8Ar732GrW1tZx11lnceOONfW7jlltuYc6cOVRVVfH666/3uw+TycSPf/xj4uLi+mxvaGgAYNasWTgcjj6XxcXFcdZZZ/X8XldXx4YNG8jKyuKee+7BZrP1XGa1Wvmf//kfjEYjf/vb3wY8zptuuom5c+f2/J6QkMCPf/xjNE3jueeeo6OjAwCXy8Vzzz2HTqfjv//7v/v0S35+PrfddhsAf/nLX3q2n3XWWZhMJrZt29az7eDBgzQ1NfGZz3yGnJycPpdt374dn8/HkiVLQnZ8X/3qV5kxY8aAlwkhRLCk2BZCiFHKzs5m2rRp/bbn5eUBUFNTA8DHH38MwBVXXDHg7Vx55ZV99uttzpw5ZGRk9Ns+bdo0LBYL7733Hn/4wx84efLkoO3cunUrXV1dnHvuuZjN5n6Xp6WlkZeXx+HDh3G73f0uv/TSS/ttmz59OjNnzsTlcrF//34A9u3b1zNNJj8/v991uudC79y5E5/PB/g/GMyfP5/y8vKeedvdxfXSpUspLCxkz549PfO2uy/rPYUk2ONbs2ZNv21CCBEqUmwLIcQoZWZmDrg9ISEB8J/ACFBdXQ1ATk7OgPt3z1Xu3q+3rKysAa9jtVr5+c9/jtFo5L777mPVqlWsW7eOn/zkJ+zYsaPPvuXl5QA8++yzFBQUDPhz5MgRlFI0NTX1u6/B2t29vbvdwx1nYmIiNpsNt9vd5366C+fuQnrr1q1YrVbmzJlDYWFhz7zt3vv0LraDPb7s7OwB2yuEEKEgJ0gKIcQoDXSyXaidOX2kt8svv5wVK1bw1ltvsWnTJrZv384zzzzDM888w5e+9CXuvvtugJ5klFmzZjFz5swh789oNIau8QPQNK3ftsLCQh555BG2bdvGVVddxY4dO1i8eDF6vb6nqN66dSvz5s3jwIED5Ofnk5KS0nP9YI9vqD4WQohgSbEthBBhlp6eDpwegT1T9/bu/UYiOTmZ66+/nuuvvx6lFB988AF33nknf/zjH7n22muZMWNGzzSUxYsX8+Mf/3jE91FeXk5BQUG/7RUVFX3a3f1v9/YztbS00NzcjNlsxm6392w/66yzMBqNbNu2rWe+dneRPWnSpJ552wsWLMDn8/UZ1QaCPj4hhAgnmUYihBBh1h3pN1DONMDLL7/cZ7/R0jSNVatWcf755wNw5MgRAJYtW4Zer+edd94ZVazda6+91m/bsWPHOHDgABaLhVmzZgH++eVms5l9+/ZRXFzc7zrdx7lo0aI+3wqYzeaeedvPP/884J+v3a173vZ7773X83tvwR6fEEKEkxTbQggRZpdccgmpqans2LGDZ555ps9lf/nLX9i7dy8ZGRmsW7cu4Nvcv38/Gzdu7JkX3q2xsZFPP/0UOD3fOyMjg2uvvZby8nK+973vUVtb2+/2SkpKBkxDAVi/fn3PSZDgX7TmF7/4BUoprr322p6TEi0WC9deey0+n4+f/exnuFyunusUFRXx6KOPAv6FbM7UXUA/++yz2Gw2Zs+e3eeyrq4uXnjhhT77dgv2+IQQIpxkGokQQoSZxWLh/vvv59Zbb+UnP/kJzzzzDFOnTuX48ePs378fi8XCAw88MKK5wxUVFXz729/GZrMxd+5cUlNTaWlpYfv27bS1tbF69eo+8X8//OEPKS8v5/XXX+eDDz5g5syZZGdn43K5OHbsGCUlJVxwwQUDFvxXXnkln/3sZ1m6dCk2m42PP/6YmpoaZsyYwe23395n3+9+97t88sknfPjhh6xdu5YlS5b0LGrT0dHBzTffPGD6R2FhIY8++igdHR0sX74cvV7f5zKAjo4Opk2bRmpqar/rB3N8QggRTlJsCyHEGFi+fDnPPfccjz32GFu2bOHw4cMkJSVx5ZVXcttttw0YITiUBQsWcMcdd7BlyxaKior4+OOPsdvtFBQUcN111/XECXYzm838/ve/55VXXuGFF17g4MGD7NmzB4fDQU5ODldeeWWfFSd7+9GPfsSkSZPYsGEDZWVl2O12brzxRm6//fY+mdbgT0lZv349Tz75JK+99hpvv/02RqORuXPn8vnPf57LL798wPvonrfd1dXVb+S6e952eXl5v8tCcXxCCBFOmuo+jVsIIYToZc2aNZSXl3Po0KFIN0UIIWKWzNkWQgghhBAiTKTYFkIIIYQQIkyk2BZCCCGEECJMZM62EEIIIYQQYSIj20IIIYQQQoSJFNtCCCGEEEKEiRTbQgghhBBChIkU20IIIYQQQoSJFNtCCCGEEEKEiRTbQgghhBBChIkU20IIIYQQQoSJFNtCCCGEEEKEyf8PJer3NFQz/T0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure()\n", + "for p in [.68, .95]:\n", + " bmb.interpret.plot_predictions(\n", + " mpg_hp_linear_mod,\n", + " mpg_hp_linear_fit,\n", + " \"horsepower\",\n", + " pps=True,\n", + " legend=True,\n", + " prob=p,\n", + " ax=plt.gca()\n", + " )\n", + "sns.scatterplot(data=df_mpg, x=\"horsepower\", y=\"mpg\", color='blue', label='True Data');" + ] + }, + { + "cell_type": "markdown", + "id": "433969dd", + "metadata": {}, + "source": [ + "Looking at this plot with the 68% and 95% CIs shown, the fit looks _okay_. Most notably, at about 160 hp, then the data diverge from the fit pretty drastically. The fit at low hp values isn't particularly good either, there's quite a bit that falls outside of our 95% CI. This can be accented pretty heavily by looking at the the residuals from the mean of the model." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "47a65748", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Residuals for linear model')" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtsAAAHrCAYAAAAe4lGYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChZklEQVR4nOzdeXhTVfoH8G/apk1uk5QWAQUEFAkgUBWkCyIjiD9wZRMdocVdR0VHHRdUKFBQQBxHxWUUt2FRAUVxRhHcFYGCgFQBRVF2EKTQJk3TpM39/RGTNk1utpub9ft5Hh9pbpaTk5ub9577nveoRFEUQUREREREEZcW6wYQERERESUrBttERERERAphsE1EREREpBAG20RERERECmGwTURERESkEAbbREREREQKYbBNRERERKQQBttERERERAphsE1EREREpBAG20QEABgyZAi6d+/u8V/v3r0xaNAg3Hbbbfj8889j1raKigp0794dpaWlIT/W9V5iaf/+/ejevTuGDBmi6OuIooiXX34Zl112GfLz8+Pivfv77OKhfRSc0tJSdO/eHRUVFRF5Pn72lEoyYt0AIoovffv2RefOnQEAJpMJO3bswGeffYbPPvsM1113HR566KEYt5CkvPHGG5g7dy70ej0GDRoEnU4X6yYREaU8BttE5GHs2LEYPXq0+++GhgbMmjULixYtwuuvv45LL70U+fn5UW1Tfn4+PvzwQ2i12qi+bqL56KOPAABPP/00zjvvvBi3JrAPP/ww1k0gIlIc00iIyK+MjAw88MAD7lHSWKSTaLVadO3aFe3bt4/6ayeSgwcPAoD7ykS869q1K7p27RrrZhARKYoj20QUUFZWFjp37oxt27bh2LFjPu+zbt06LF68GN999x1OnDgBvV6Pvn374qabbsI555zjdf/du3fjxRdfREVFBY4cOQK1Wo1WrVqhW7duGDZsGMaMGeO+b0VFBSZMmICCggIsXLjQ67m2bNmC5557Dt999x0aGxtx2mmnYdy4cbjyyit9tnX//v248MIL0aFDB3z22Wc+7zNkyBAcOHAAn376KTp27Oi+/ZdffsGHH36ItWvX4sCBAzh+/Diys7PRs2dPXHXVVbjkkkv89qWcfpBSWlqKDRs2uP++8MIL3f+eOHEi7rzzTvffX3/9NRYtWoTKykqYTCa0atUK5557Lm688Ub06dNH8rkXLFiA9PR0vPzyy+7P+LHHHvO4ChIqV87uTz/95HF7877fv38/XnrpJXz//feor69H165dce2112LkyJGSz/vRRx9h2bJl2LZtG8xmM3Jzc1FYWIi//e1vOOOMM7zuv3btWnz66af49ttvcfjwYdTW1iIvLw99+/bFDTfc4PNKzrx58/Dss89i4sSJGDNmDJ599ll88803+OOPP3D55Zdj9uzZft97833wk08+waJFi7Bs2TLs3bsXer0eQ4YMwb333otWrVrBZrNh/vz5+O9//4uDBw/CYDBg+PDhuPfeeyEIgs/n/+CDD7B06VLs2LEDFosFbdq0QVFREW655RacdtppPh9z6NAhPPPMM/j6669RXV2NU045BRdffDFuu+02v+8lnD4nSiUMtokoKLW1tQCA1q1be22bM2cOXn31VaSlpaF3797o168fDh06hE8//RSff/45ZsyY4RE07ty5E9dccw3MZjNOO+00DB48GGlpafj999+xceNG/P7770EFmQCwcuVK/OMf/0BjYyOMRiOMRiMOHTqEyZMn45dffonMm2/mtddew9tvv43TTz8dRqMRBoMBhw4dQkVFBdatW4etW7cGndceqX44//zz0aFDB6xatQoWiwXDhg1zB2E9e/Z03++pp57CCy+8AJVKhXPOOQft27fHrl27sHLlSqxevRrl5eWSJygfffQR3nrrLZx++ukYMGAAqqurkZmZGdT7DNc777yDF154AWeeeSbOP/98HDhwAN999x0efPBBnDhxAtddd53H/RsaGnDfffdh5cqVyMzMRK9evdCuXTvs3r0b//3vf/Hxxx9j3rx5GDRokMfjpk6dikOHDqFbt27o27cvMjIy8Ouvv2LlypX4+OOP8eSTT2LYsGE+27h7926MGjUKarUaffv2hSiKyM3NDel93n///fjkk0/Qv39/dOrUCVu2bMGSJUvw/fffY/Hixbjpppvw008/oaCgAF26dMG3336LhQsXYs+ePZg/f77Hc4miiEmTJuG9995DRkYGzj33XLRu3Rrbtm3D8uXLsXLlSjzzzDNefbBr1y6Ulpbi2LFjaNOmDYYMGYK6ujq8/vrrfidFhtvnRClFJCISRXHw4MGi0WgU33nnHa9tv/zyi9izZ0/RaDSKlZWVHtuWLFkiGo1G8aKLLhJ37NjhsW3Dhg3iOeecI/bq1Uv87bff3LdPmjRJNBqN4vPPP+/1WnV1deKGDRs8blu/fr1oNBrFkpISj9uPHDkinnPOOaLRaBRfe+01j21r164V+/TpIxqNRtFoNHps27dvn2g0GsXBgwcH7I99+/Z53F5RUSHu3bvX6/67du0SBw0aJBqNRnHr1q1BvV6o/RCIVJtFURS//PJL0Wg0in369BHXrFnjsW3p0qWi0WgUe/XqJe7cudNjW0lJibsPFy1aFFJ7RFH6sxNF0edn0/x99OrVS/zss888tr3zzjui0WgU+/XrJ9bV1Xlse/LJJ0Wj0SiOHTvW6zNauXKl2LNnT7F///5idXW1x7aPP/5YPHHihFc7Pv74Y/HMM88UCwoKvF7rmWeecbf/vvvuE+vr6/13RAuufcJoNIpDhw4V9+/f795WVVUl/t///Z9oNBrFyy67TLzyyivFqqoq9/a9e/eK/fv3F41Go/jtt996PO8bb7whGo1GsbCwUNy+fbv7dofD4W7zueeeKx47dszjcWPGjBGNRqP497//XbRare7bDxw4IA4dOtTd1vXr13s8Ltw+l/rsiZIRc7aJSJLJZMKaNWswceJENDY24rbbbvNINXA4HJg3bx4A4Mknn0SPHj08Ht+/f3/cfvvtsNvtWLJkift2VyrKX/7yF6/X1Gg06N+/f1Dte/vtt1FbW4uzzz7ba5SzuLgYV199dVDPE4qCggKceuqpXreffvrpuP322wE0TVQMJFL9EIxXX30VADBu3DivyZNjx47F4MGDYbfbsWDBAp+PLyoqwvjx4yPWnmCUlJRg8ODBHreNHj0ap59+OkwmE3744Qf37SdOnMDrr7+OrKwszJs3z+szGj58OK6++mpUV1fj/fff99g2dOhQ5OTkeL3+0KFDMXz4cJw4cUJydLdVq1YoKyuTNco/efJkdOjQwf13bm4urrnmGgDAzz//jEcffdRjtPzUU0/FFVdcAcCZvtWc63O+4447PK5qqFQqTJw4Ed27d0dNTQ2WLl3q3rZp0yZ8//33EAQBU6dORVZWlntb+/bt8eCDD/pst5w+J0olDLaJyMNDDz3kroHryuXds2cP5s6di7vvvtvjvtu3b8eRI0fQqVMn9O7d2+fzFRQUAHDmVbu4cmCnTZuGr7/+GvX19WG11ZWnfPnll/vcPmrUqLCeN5Da2lqsXLkSTz75JKZMmYJJkyZh0qRJWL16NQDgt99+C+p5ItUPgTQ0NGDz5s0ApPvElT4iFVRKpVEoqWWg7eKaVPn777+7b6uoqIDVakXfvn3Rrl07n4/ztS+6/P7771i6dClmz56NRx55xP2Z/vzzzwCkP9Pi4mLo9frg31QLGRkZPivHuCa5tm/fHkajUXL7kSNH3LcdPnwYe/fuBeD7c1apVO4c++afs+t7dP755/tMgbnwwgt9vke5fU6UKpizTUQemtfZrqqqwrfffova2lpMmzYNXbp08Zgstm/fPgDA3r17Ay5QUVVV5f73jTfeiE2bNmHt2rW46aaboFar0b17d/Tv3x+XXHJJ0KUFDx8+DAAeExibk7pdjs8++wwPPfQQTpw4IXkfs9kc1HNFqh8COXHihDuQl+oT16hk8wC2ueYjr9EiVX3GVRmn+cmJa19ct25dSPsiADz77LP497//DbvdLvkYqc9Ubr+0adMGGRneP8WunPtTTjnF5+Oys7MBADabzX2b67Nr1aqVZI31Tp06edwXaPoeSb0XlUqFDh064Mcff/S4XU6fE6USBttE5KFlnW2TyYQ77rgDFRUVuPvuu/HBBx+4612LogjAGTAMHDjQ7/M2HzHTarV47bXXUFlZia+//hpbtmzBli1b8MMPP+C1117DuHHjMHXqVAXeXfAcDofXbb///jvuueceWK1W3HTTTbj88svRsWNHCIKAtLQ0rFmzBjfeeGPQr5EI/eCi0Wii/poqlSro+7o+r86dO6Nv375+73v66ae7/7169WrMmzcPgiBgypQpKCoqQtu2baHRaKBSqfDkk0/ixRdfdO/rLcntl7Q0/xeYA22PpXD7nCjVMNgmIr/0ej2eeuopXHzxxThw4ABee+01d27yySefDMA5khao1Jkv+fn57tHbhoYGfPLJJ3jwwQfxxhtvYNiwYSgqKvL7+Hbt2uHXX3/FgQMHfG6Xul2tVgNoqrDSkt1ux9GjR71u/+yzz2C1WnHRRRfh/vvv99q+Z88ev+2VIrcfAmnVqhUyMzNhs9mwb98+r9x6oGmUUiodIN65RoBPO+20kPbFlStXAgDuuecenzn+u3fvjkj7osH12Z04cQJms9nn6Lavz9n1b6nvC9BUw725cPucKNXE7ykzEcWNvLw8d63dV199FTU1NQCAPn36IDc3F7/88os7tzVcGRkZGD58uHuEvOUla19cEwj/+9//+tz+3nvv+bw9Ly8ParUaJ06c8Fk3fM2aNWhoaPC6vbq6GoDv9AZRFCXbEYpw+iGY5+zXrx8A4N133/V5n3feeQcAUFhYKPv1YqG4uBhqtRobNmyQrAXvi7/P9NixY1i7dm3E2qi0k08+2Z0msnz5cq/toii6P//mn7Mrr/rrr7/2mR716aefur/zzYXb50SphsE2EQVl3LhxaN++PUwmk7vigVqtxsSJEyGKIiZOnIhvv/3W63GNjY1Yt24dvvvuO/dtixcvxq+//up136NHj7orTASzWuSVV14JQRCwZcsWryoaFRUVeOutt3w+Tq1WuwP1p556yiNl5Mcff8SMGTN8Ps41MW/VqlUeE9MaGxvx9NNPhzwJLFL9EIzrr78eAPDmm296VbBYvnw5PvvsM6jVakyYMCEirxdtJ510EkpLS2GxWPC3v/3Na6EcwJnf/Omnn2LXrl3u21zpDUuXLvXIfzaZTHjwwQdhMpmUb3wE3XDDDQCA559/3uNETRRFPP/889ixYwcMBgOuuuoq97Zzzz0XvXr1gsViQXl5uUc/HDp0CI8//rjP1wq3z4lSDdNIiCgomZmZmDhxIh5++GEsWLAA1113HVq1aoWSkhIcPHgQr7zyCsaPH49u3bqhU6dO0Gg0OHr0KH788UfU1NRg2rRpOPvsswE4A5vy8nJ07NgR3bp1g06nw/Hjx/Htt9/CarWiqKgIQ4YMCdimdu3aYebMmbj//vvx6KOPYtmyZTAajfj999/x7bff4tprr8Xrr7/u87F33303Nm7ciKVLl2LDhg3o3r07jhw5gh9++AGXXXYZNmzY4HVZffDgwejVqxe2bduGYcOGoaCgAFqtFpWVlThy5Ahuvvlmr0VG/IlUPwTjL3/5C2677Ta88MILuP7669G3b1+ccsop+O2337Bt2zakp6dj2rRp6NatW0ReLxb+8Y9/4MiRI/jf//6HkSNHokePHjj11FORnp6Ow4cP48cff4TFYsH8+fPdJ07XXnstVqxYgS+//BJDhw7F2WefDbvdjo0bN0Kj0WDMmDHuUf9E8Ne//hVbtmzBihUrMGbMGPTv39+9qM1vv/0GjUaDJ554Anl5eR6Pe/zxx1FaWooPPvgAGzduRL9+/WC1WrF+/Xp0794d55xzjs+TyXD6nCjVcGSbiII2cuRInHHGGaitrcUrr7zivv2BBx7Am2++icsvvxwWiwVff/01vvjiCxw5cgQFBQWYOXOmxzLm99xzD6655hoYDAZs3boVH330EX755Rfk5+djzpw5ePnll31WaPDl0ksvxYIFCzBw4EAcPHgQn376KWprazF9+nS/KzmeddZZWLRoEQYOHIg//vgDX375Jerq6vDwww9j1qxZPh+TkZGBhQsX4m9/+xvatWuHdevWYcOGDejZsyfeeustnH/++UH2ZOT7IRh333035s+fj0GDBmHXrl346KOPcOTIEQwfPhxvvfWW5OqRiSIjIwP//Oc/8dJLL2Ho0KE4duwYPvvsM6xZswbV1dUYPHgw/vnPf3rULz/11FPx7rvv4vLLL0d6ejo+//xz/PTTT7j00kvx3nvvSVYDiVcqlQqPP/44/vnPf6Jv377Ytm0bVq1aBavVitGjR+Pdd9/1Wdf9jDPOwDvvvIPRo0fD4XDgk08+wS+//IKSkhK8/vrr7nkOLYXT50SpRiVKTbEmIiIiIiJZOLJNRERERKQQBttERERERAphsE1EREREpBAG20RERERECmGwTURERESkEAbbREREREQKYbBNRERERKQQriAZIcePH491EwLKyclBdXV1rJuRkNh38rD/wse+Cx/7Lnzsu/Cx78KXiH2Xm5sb8D4c2U4haWn8uMPFvpOH/Rc+9l342HfhY9+Fj30XvmTtu+R8V0REREREcYDBNhERERGRQhhsExEREREphME2EREREZFCGGwTERERESmEwTYRERERkUIYbBMRERERKYTBNhERERGRQhhsExEREREphME2EREREZFCGGwTERERESmEwTYRERERkUIyYt0AokBs9iyYTBkwm0XodCro9Q3IVNfHullEREREATHYprhmsWRj2gwr1q6rc982oFiNaVOyIQi1MWwZERERUWBMI6G4ZbNn/Rlo2z1uX7vOjmkzrLDZs2LUMiIiIqLgMNimuGUyZXgF2i5r19lhMvHCDBEREcU3BtsUt8xmUdZ2IiIiolhjsE1xS6dTydpOREREFGsMtilu6fUNGFCs9rltQLEaen1DlFtEREREFBoG2xS3MtX1mDZF4xVwO6uRaFj+j4iIiOIeZ5hRXBOEWswsz4LJpGlRZ5tl/4iIiCj+MdimuJeprkfrvHq0zot1S4iIiIhCwzQSIiIiIiKFMNgmIiIiIlIIg20iIiIiIoUw2CYiIiIiUgiDbSIiIiIihTDYJiIiIiJSCINtIiIiIiKFMNgmIiIiIlIIg20iIiIiIoUw2CYiIiIiUgiXa6eEZbNnwWTKgNksQqdTQa9vQKa6PtbNIiIiInJL2mB7xYoV2LRpE3744Qfs3LkTdrsds2bNwujRo73uO2/ePDz77LOSz/Xpp5+iY8eOSjaXQmSxZGPaDCvWrqtz3zagWI1pU7IhCLUxbBkRERFRk6QNtp9++mkcOHAAubm5aNu2LQ4cOBDwMaNGjUKHDh28bjcYDEo0kcJks2f9GWjbPW5fu86OaTOAmeVZHOEmIiKiuJC0wfbMmTPRuXNndOjQAS+99BL++c9/BnzMqFGjUFhYGIXWkRwmU4bHiHZza9fZYTJp0DqPwTYRERHFXtIG2wMGDIh1E0ghZrMYcHvrvCg1hoiIiMiPpA22w7Fx40Zs3boVaWlp6NKlC4qLi5GdnR3rZlELOp1K1nYiIiKiaGGw3cy8efM8/jYYDHjkkUcwcuTI2DSIfNLrGzCgWO2Vsw04J0nq9Q0xaBURERGRNwbbAHr06IHHHnsMBQUFaNu2LY4ePYovvvgCzzzzDCZNmgS9Xo8LL7zQ73Pk5OQgLS3+y5bn5ubGugkRMWNaI8qm1+KbtU0B93kD1Cifmo12bdMBCBF/zWTpu1hh/4WPfRc+9l342HfhY9+FLxn7jsE2gIsuusjj744dO6KkpARdu3bF9ddfj6eeeipgsF1dXa1kEyMiNzcXx48fj3UzIiIrC5gxPQsmk6ZFne0aKPEWk6nvYoH9Fz72XfjYd+Fj34WPfRe+ROy7YE4OGGz7UVxcjE6dOmHnzp0wm83Q6XSxbhI1k6muR+u8ek6GJCIiorgV/3kPMeY6Y6mr811qjoiIiIhICoNtPywWC37++WcIgpCUOUREREREpKyUD7bNZjN+++03r9utViumTJmC2tpaDB8+HBkZzLghIiIiotAkbQS5bNkybNq0CQCwc+dO920bNmwAAPTr1w9jx47FiRMncPHFF6NPnz7o2rUrTjrpJBw7dgxr167F4cOHYTQa8cADD8TsfRARERFR4kraYHvTpk149913PW7bvHkzNm/e7P577NixaNWqFcaNG4fKykp8+eWXqKmpQVZWFrp27YrS0lKUlJRAo9FEu/lERERElARUoij6X/uagpIIpWoSsaROvGDfycP+Cx/7Lnzsu/Cx78LHvgtfIvZdMHP6Uj5nm4iIiIhIKQy2iYiIiIgUwmCbiIiIiEghSTtBkoiIvNnsWTCZMmA2i9DpVNDrG5Cpro91s4iIkhaDbaIQMFChRGaxZGPaDCvWrmtaEXdAsRrTpmRDEGpj2DIiouTFYJsoSAxUKJHZ7Fl/7r92j9vXrrNj2gxgZnkWTxyJiBTAnG2iIFRXO/wEKlbY7FkxahlRcEymDK/912XtOjtMJo69EBEpgcE2URCqqkQGKpTQzGb/SyoE2k5EROFhsE0UBJPZ4Xc7AxWKdzqdStZ2IiIKD4NtoiDodf6/KgxUKN7p9Q0YUKz2uW1AsRp6fUOUW0RElBoYbBMFIS9PxUCFElqmuh7Tpmi89mPnJF8NJ0cSESmEiaZEQcjJScO0KRpMmwGP3O2mQIXVSCj+CUItZpZnwWTStChfyf2XiEgpDLaJgsRAhZJBproerfPq0Tov1i0hIkoNDLaJQsBAhYiIiELBnG0iIiIiIoUw2CYiIiIiUgiDbSIiIiIihTDYJiIiIiJSCCdIEhEREVHCstmzYDJltKgUFj9rBzDYTnHxvoMSERERSbFYsjFthhVr19W5b3OugZENQYiP0rwMtlNYIuygRERERL7Y7Fl/xjF2j9vXrrNj2gxgZnlWXAwgMmc7RfnfQa2w2bNi1DIiIiKiwEymDK84xmXtOjtMpvgYU2awnaISZQclIiIi8sVsFmVtjxZGVEkklPzrYHZQrpJIRERE8UqnU8naHi0MtpNEqPnXibKDEhEREfmi1zdgQLHa55X6AcVq6PUNMWiVN6aRJIFw8q9dO6gv8bSDEhEREfmSqa7HtCkar3jGOdioiYvJkQBHtpOCM/+6zuc2Z/61Bq3zPHc45w6ajWkz4BGkN+2grEZCRERE8U0QajGzPAsmk6ZFGm38xDEMtpNAuPnXibCDkjJYX52IiJJFproerfPq43auGYPtJCAn/zred9BUp0RQzPrqRERE0cOc7STA/OvkZLFkY3JZA0aMNmH8BDNGjDZhclkDLJbssJ+T9dWJiIiii8F2EkiUCQIUPKWCYtZXJyIiii7+siYJ5l8nl3AmvQaD9dWJiIiii8F2EmH+dfJQKihmfXUiIqLoYhoJxT2bPQvHqrKxZ6+AY1XZKZFXrFRQzPx+IiKi6GKwnUSSMShVYpJgIlAqKGZ+PxERUXQxjSRJJGM5N/+TBIGZ5VlJGxwquegQ8/uJiIiih8F2EkjWoFSpSYKJQsmgmPn9RERE0cFgOwkka1DKyhkMiomIiBIdc7aTQDBBaSJi5QwiIiJKdAy2k0B2tv+PMdD2eMXKGURERJToEjMKIw+ZmUBRoe+gtKhQjczMKDcoQiJVOSMZq7QQERFRYmDOdhKornagdLwGALC+ommSZFGhGqXjNaiudsCgj1Xr5JE7STAZq7QQERFR4mCwnQQEQYUbbzahtESL0hINbPUiMrNUqKxswP0PmvDm4gSNtP8U7iTBZK3SQkRERImDwXYS0OsbcPbZarw437siSSrnNidrlRYiIiJKHEmbs71ixQqUlZVh9OjR6N27N7p3747ly5dL3t9sNmPWrFkYPHgwevfujSFDhmDOnDmorY3/VAOuCuhbslZpISIiosSRtCPbTz/9NA4cOIDc3Fy0bdsWBw4ckLyvxWJBSUkJduzYgYEDB+LSSy/Fjh078Oqrr2Ljxo1YvHgxsrLie1IdVwX0xtKBREREFGtJO7I9c+ZMfPbZZ1i/fj3++te/+r3vyy+/jB07duDmm2/GK6+8gvvuuw+vvPIKbr75Znz//fd4/fXXo9NomZy5zbXo3MmC1nm1KTui7ZJKpQNZcYWIiCg+JW2wPWDAAHTo0CHg/URRxLJlyyAIAm6//XaPbbfffjsEQcCyZcuUaiYpKFXSayyWbEwua8CI0SaMn2DGiNEmTC5rgMWSHeumERERpbykTSMJ1u7du3HkyBEMHDgQgiB4bBMEAX379sWaNWtw6NAhnHLKKTFqJYUr2dNrWHGFiIgoviXtyHaw9uzZAwDo0qWLz+2u23fv3h2dBlHEJXN6jbPiit3nNmfFlZQ/nyYiIoqplP8lNplMAACdTudzu+t2s9ns93lycnKQlhb/5y65ubmxbkLCise+27ffd6DtYrGocEbX+Gh3PPZfomDfhY99Fz72XfjYd+FLxr5L+WA7Uqqrq2PdhIByc3Nx/PjxWDcjIcVr3wmC/7xsQRDjot3x2n+JgH0XPvZd+Nh34WPfhc5qFVBjSofJJMJgUEGva4RGY4l1s4ISzMlBygfber1zdUWpkWvX7VIj30Sx5Kq44iuVJNkqrhARUfIxmfWYPsOC9RVNv2PFRWqUTdZDrzPFsGWRE/95Dwrr3LkzAOmcbNftUjndRLGUKhVXiIgo+VitglegDQDr1ttRPtMCq1WQeGRiSfmR7S5duqBt27bYvHkzLBaLR0USi8WCzZs3o2PHjqxEQlFjs2fBZMpoUT1FOmhO9oorRESUnGpM6V6Btsu69XbUmARoNFFulAJSfmRbpVJh7NixsFgseP755z22Pf/887BYLLjqqqti1DpKNeHWzE7miitERJScTCZR1vZEkbQj28uWLcOmTZsAADt37nTftmHDBgBAv379MHbsWADATTfdhE8//RTz58/Hjh07cOaZZ2L79u1Ys2YN+vTpg2uvvTY2byKFhTq6mwxYM5uIiFKJXq+StT1RJG2wvWnTJrz77rset23evBmbN292/+0KtgVBwKJFizBv3jysXr0aFRUVaNOmDW644Qbccccd0CTDNYwEYrFk/xl01rlvc+YgZ0MQkjc1wlkzu87nNmfNbA1a5zHYJiKi5GDQN6K4SI11671TSYqL1DDoG2PQqshTiaKYHGP0MZYIZX4SoRyRzZ6FyWUNktU1ZpZnxGR0Nxp9t2evgPETpOu5L16gQ+dOvkshxfuVgETY9+IV+y587Lvwse/Cx74LjcmsR/lMi0fAXVykxtTJAnQJUI2Epf8o4aTy6K5O5/9ymdT2VL0SQEREiU+vM2HGNAE1JsE9YGTQN0Kjif9AO1gpP0GS4ovZ7P9CS6DticxVM9sXqZrZ/vO8rbDZsxRpKxERkYvNnoVjVdnYs1fAsarskH97NBoL2rYxoV9fNdq2MSXMgjbB4sg2xZVwR3eTgbNmdjamzYBH8NxUM9t7lDrerwS40lv27bdDELLjLr2FiIjk4dXVwBhsU1wJZUXERF7eVUqoNbODuRLQOk+JlgbGAzARUXJjFa3gMI2E4kqwKyKazHpMnlqP0WOrce0NNRh1ZTWmTKuHyayPRbMjKpSa2fF6JYDpLUREyc95ddX3ojTOq6sc0wU4sk1xKNDobqDlXWdMExJ+hDtYoVwJiKZ4T28hIiL54vnqajzhyDbFJX+ju4GXd02PVjMDkjtpJJBgrwREWypPdCUiShXxenU13nBkmyImWrWeg1netW2biL9syKKVsxxqnnc08ABMRJT84vXqarzhyDZFhMWSjcllDRgx2oTxE8wYMdqEyWUNsFiyI/5awSzvquRocjCinbMcSp53NIRTxpCIiBJLvF5djTcc2SbZoj0bOdDyrqYaB669sakYfiwqYKR6znI4ZQyJiCjxxOPV1XjDYJtki3ZgqdFYUDbZ9/KuD08ScN0N1V5tiHYJIk4a8TwAWywqCILIAzARURJyXl2tT/rftXAx2CbZIhVYhpLz3Xx5V5NJhF6vgiAA40urcazK+/7RHk2Ods5ytPLlQ+U6AJ/RNRfHjx+PdXOIiMiHeP0NSRYMtkm2SASW4Uwm1Ggs0GjgngzpzNGWfo1wRpPDXQExmpNGuHgMERGFi78hyuMESZJN7mS4SEwmtNmzoNWm419P6PD8PD1uvVkLQet5n1BHk5tP+rympCakSZ/RmjQSqO+sViHmk0WJiCg+cQGy6ODINskmdzKc3JxvX2flRYVqzJ2jx/0PmmCpC2002WbPgtWqxszH6mRN+ozGpJFAfbdnnwY33hzbyaJERBSfUn0yf7Qw2KaI8BdYBsoFk5PzLXVW7lr0prREi+9/aAi6AoYrcB8/LtAStMEdgJSeNBKo72qqPbfHYrIoERHFJ07mjw4G2xQxvgJLqVyw6WXZSM9ogMmUAU2W//SO7Ow0HKvK9hms+zsrX19hxwP3Cbj6KgQVaDcP3MeO8X/pLF4OQIFSYzJ99C1HK4iICIifBcjCnR+VKBhsk2KkRp2/+86O/Qe0mP9KA9auq8OtN2tRVKj2uQT7gGI1tm5txNTyWo/bXKkQgc7K6+oa0bZNcF/Y5oG7ryC1uXhZAdHfRMyiQjUqK32nzsTLyQIREcVOPKwAmQoTNDlBkhTjDF69v8ClJVq8OL8pH3rhojqUjtegqNB7MuHNN2kxZ67nl635xI1InpU3D9wrKxu82tO8XfGyAqK/iZil4zVYuMj3qH+8nCwQEVHsxHoFyFSZoMmRbVKM1Khzfn4GXpzfFARa6oD7HzShtESL0hINDHoVDAYRarUKpdfWoLREi/z8DNjqRWRlqbC1sgELF9XBZNJE9Ky8eQC6cFEd5s7RA4DHiHs8roDoK18+WxDx6GwrLD5i7Xg6WSAiotiK5QqQqTJBk8E2KUZq9NRW7x2EW+rgDsAXL9ChdZ4F+/YLKJ+mx8LFVo/g3FVpxGIR0TovcsuCNw/cW54AAECH9ioYDPa4CrRdfOXLP/RANurrI7dcOhc9ICJKTrFaATJVJmgy2CbFSI06B5sPnZOThqfn1Xnlcrv+LpvsLKQd6Kw82CCxZQlD1wnAgGI1ZkzLRlZWTXgdESORHK1IhZw6IiKKrniZoKk0BtukGKn6238cdQSV+mGzweekScB5u82m9apS0vJyU6hBolSA2q5tOhJxtfFIjFb4z6lL3jKCHMknIlJWPEzQjAYG26QoX8GrwdCA4iJNwNSP2lqH3+c+cEDEHXdJL9gSbpDoO0AVQnznySNVcuqa40g+EaWSWA0uyF0UL1Ew2CbF+Qpe1Rn1AVMcAl4+arG5ZRCdikGiElIlp84lVUfyiSg1xXpwofmgnMWigiCIUZugGS0s/Ucx4wzCa9G5kwWt82q9AhjX5SVfpGpIO4No5zlkMEEiBZYqOXUuUiUrAc/9i4go0cVL6T1XPJDfR+0zHkh0DLYpboVbQ9oVREczSLTZs3CsKht79go4VpUd8gFK7uOV5O+kJ5ly6lx4kkZEqYKDC9HBXqS41jLnOzs7DeoMFcb+tdpnDWmgKYiO1sQLuZfgYn0JL5BUyalzSbWRfCJKXamWJhgrHNmmuOe6vNTmJBUef6IO7//Phvz8wCOt0VgZS+4luHi5hBeI86QnAyuW67F4gQ4rlusxszwjLk4GIi3VRvKJKHVxcCE6OLJNCaF5UPrdd/agV3dUemUsuZMwE2kSZ6wWPYi2VBvJJ6LUlSql92KNwTYlhOZBacvVHW31Ijp3TkerVjafgZCSQaLcS3C8hBefYrl8MRFRtHBwIToYbFNCaBmUNl/eHXAu8d62TfRHgOVeguMlvPiVKiP5RBS8ZFzsioMLymOwTQkhXoNSuZfgeAmPiCgxxPtkdjk4uKAsTpCkhBCvk9bkTsKMxiROIiKSJ1Ems1N84sg2JYR4ziuTewmOl/CIiOJbIk1mp/jDYJsSRrBBaSxy6uReguMlPCKi+MXJ7CQHg21KKIGC0mTOqSMiotiI13lDlBiYs01Jgzl1RESkhHidN0SJgcE2JQ1nTp13VQ/AlVPHCzlERBQ6TmYnORh9kOKilUPtK6dO0AKlJVrk52fgxAkVgOyQXt/V9n377RCE0B5LRETJg5PZKVwMtklR0cyhbpkzJ2iBuXP0WLjY6rEATrCvz/xvIqLEEY2BHU5mp3AwjYQUE+0c6pY5daUlWixcbMX6itBfn/nfRESJw2LJxuSyBowYbcL4CWaMGG3C5LIGWCzZsW4aEYNtUk60c6hb5tTl52d4BdrBvn4s879t9iwcq8rGnr0CjlVlM7AnIvKDgyMU75hGQoqJRV3S5jl1zhzt8F4/VjVVmbpCRBQaLjhD8Y7BdjNDhgzBgQMHfG4rKCjAwoULo9yixNIyXy47OzZ1SV05daKo83u/7GzpCzuxqKnqf3QGmFmexcmZREQtcMEZineygu3du3fju+++Q79+/XDqqae6b//uu+/w2GOP4eeff8Ypp5yCu+++G//3f/8nu7HRoNfrce2113rd3qFDhxi0JnH4GpGdXpaNAcVqn+kY0ahLmpkJ/GWQGj26ZyA/PwO2ehFZWSpsrWzAjz81IDNT+rGu/O9otp2jM0REoeOCMxTvZAXbr776Kt5++2189tln7tv++OMP3HjjjaitrYVKpcKvv/6Ke+65B0uXLkWvXr1kN1hpBoMBd955Z6ybkVCkRmTnzK3Fc/MMAOCxrakuqbJpESaTA/f+XcCsxy0e1UiKi9SYdL8Ak6kRBr3vxzrzv7MxbUb02s7RmfgSrZKVRCRPLAZHiEIhK9jevHkzevTogZNPPtl92zvvvIPa2lpcf/31uOeee/DVV1/hzjvvxGuvvYYnnnhCdoMp/kiNyFrqgDvurMHbSw2w25WtS+orMNLr01A+0+I1SXLdejtmPW5B2WSt3+dsnv9tsaggCKKiNVU5OhM/mDtPFLpYnaBmqusx5RE9ymdasG590/G+uEiNskcEZKpNireByB9ZwfbRo0dRUFDgcdvXX3+NzMxMTJw4EZmZmRg6dCjOOussVFZWympotNhsNixfvhxHjhyBTqdDnz59cNZZZ8W6WXHN34ispQ44ftyBzp0sio3KSgVG9/8jU7IayfoKO2w2/8E20JT/fUbXXBw/fjxibfaFozPxgbnzRKGL5QmqzZ6Fx5+wIL9PBkrGa2CrF5GZpUJlZQPmPGHBlEf4naXYkhVs19fXIy2taZKZzWbD999/j7POOgvZ2U21LTt06IAff/xRzktFzdGjR/HQQw953NanTx88+eST6NSpU4xaFd+UHpH1N1riLzA6eNDh93lrax04qXVwrxcNsUhdIW/MnScKTaxPUE2mDHz+RR0+/8L34Mrdd/E7S7ElK9hu164dfvrpJ/ffa9euRX19PQoLCz3uV19fD6028ChirI0ePRr9+vWD0WiEIAjYvXs3XnvtNaxYsQLXXXcd3n//feh0vitc5OTkeJx4xKvc3NyIP2damgPnDVDjm7XeB7rzBqjR5qQM5OQEft3qageqqkSYzA7o9WnIy1Whrk7ElGm1HsHPeQPUKJ9qwMknp+O33xolAyMEiPFzDBle/XH4cKPE6zXi5JMj33ct5eYCT8zJaOoHXRry8lTIyUkD4GdGZwJQYt9Twr79vn+wXSwWFc7oGt33kih9F4/Yd+ELtu/8HYfXrrPDUpuNdqcJkWyaB35nk0sy9p2sYLuoqAhLly7Fo48+iuLiYjz55JNQqVQYOnSox/127tyJU045RVZDo2HixIkef/fs2ROPP/44AGDFihVYtmwZrr/+ep+Pra6uVrx9cuXmKpcKMXWy9Iistd6Ko7v85/E1XYJsevz0smys+tjmNVryzVo7pkyrxczyDFTXpEu2qbLSf1qGkF2P48eb2mGzZ2HKtAafr1c2vRYzpmdE7VJkq1bO/wDA4QAUzmBRnJL7XqQJgv8V5wRBjOp7SaS+izfsu/CF0nfVNf4D6eqaBhw/XhOJZvnE72zySMS+C+bkQFawfeutt+Kjjz7CokWLsGjRIoiiiEsuuQQ9evRw3+fnn3/G3r17UVJSIuelYurqq6/GihUrsHnzZslgO9U1n0zoCqoNhgbYbcDksga/eXxSlyBPapMWYBVHDSQuNAAAFi6qw9tLWmHGY7VBTZrxlz7wzdrYpA+kckWMWL135s4ThUanU0HQAqUlWq8yqwsX1Sk+uZvfWYp3soLt9u3bu0d8q6qq0KtXL4wePdrjPtu3b8eFF16I4cOHy2poLLnOWiwWS4xbEt9ckwldEyGDzeOTCnJt9f5L4ZlMQF6eSvIge/bZamzeYg960ky8ld5L5YoYsXzvzJ0nCo3B0IDn5hnw4vw6jzKrRYVqPDfPAIPBf5qHXPzOUryTvYLkySef7Lcu9YgRIzBixAi5LxNTrkoqXNgmNMFONJMKcjOz/I+G1NuAK6+qwdw5ejgc8Kg8MqBYjckPC7jyqmpYJFK6W06aaTn60nKkRhDSYbNHZ1Z7rCccxVI8vHdfV2qULPtIlMhEEZj/Sp1X9af1FXakpQEzy5VfrJrfWYpnXK79T7t27UL79u29JnLu2rXLXR/88ssvj0XTElawI8VSlxgrKxtQVKj2Wb6vuEiNDRsaYKkD7n/QhNISLUpLNIAIdOiggsFgx++/N0oG2s1f36X5pUhBC8ydo8fCxVaPkZpoja6mckWMeHnvLa/UEJFv/M4S+RdSsH3w4EFZL9a+fXtZj1fShx9+iNdeew39+/d3B927d+/GV199BbvdjltvvRX9+/ePdTMTSrAlAaXy7RYuqsNz8wxIUwFr13uOWo+/RoP7H3TmXFvq4BEQr1iuR6a6PuCkmZbta34psk/vDCxcbPUK9KM1uhpvKS3RlMrvnSgR8Tsbe6k8vycRhBRsDxkyBCpVeBMdVCoVtm/fHtZjo6GwsBC7du3Cjh078O2338JqtSI3NxeDBg3CuHHjMHDgwFg3MeEEO2lFKt/u7LPVqLeKOOecDIxvlnOd10qFG2+pkRy1dh3Yw5k047oUeeJEpkcA31w0RmoiVbs8EQ/AXEmTKLHwOxtbqTy/J1GEFGwn88huQUGB12qYJE8ok1Z85dup1SpceZV3UP3cPL3f9BDXgT3cSTOZ6nrU1UmXFAQiM1LjLxCOxOz6RD0As7IAUWLhdzZ2IjXHJREHZhKJShRF/9d/KCiJUBcyVvUrw/0S2+xZf5YN9DyI3HqzFpXfN3iU83MZUKzGzHLPetjhvP4fx3QYOUa6Lux77xhwUmtzwPcgxVddcddJgCsQDuY+UqT6zvUcLftIaaHue3Lee6ji/UcmEevOxgv2Xfji+Tsb75Tc71oer6QGpVxWLNejdZ7//o+nzy4Rv7PB1NlmsB0hibBzJOJO7OsgMPgCNR64T8CMRy2yDg7+gqwakw7lM71n1wPOclZlk7Uw6MMLtkMJhMMNBI9VZWPEaJPk9mAOwJEUzr4XjSA4nn5kpCTi9zZeJGLfxcvJX7x+ZxOBUvud1PHKNYfJV8C9eIEOnTtJly1O9IGZeKD4ojZESpMu52SSVeYpUIpFdbUDpeM1ADxLChYVqlE6XoPqagcM+vDeUygz98OdXZ8ME5aUriwQyuVXBhEUDYma+uXCaiDK8Xe8cjicZWp9zTMKlC8fL5Vkkl3Egu2ff/4Ze/bsgdksPdo3cuTISL0cpRCpA3i4B/ZggixBUOHGm5tKCjZfEOf+B014c3GYkTaiEwhzwlJgwf7IJHoARIkhHurLU/zyd7xaX2F3lr5tIZh8+WQYmEkEsoPttWvXYvr06di7d6/kfURRhEqlYrBNcSGYIEuvb8DZZ6t9jhTInfATjUCYE5YCC+ZHRq9nAETRwRFG8ifQ8QotNge7eiYHZqIjTc6Dv//+e9xyyy04ePAgLrvsMhiNRgDALbfcguHDh8NgMAAARo8ejTvuuEN+a4kiIJggy1nJRIMBxWqPbU0HsPB/9FyBsC+RCoSVbH+yCOZHxhkA+V5q2hkAMROPIiOY4xKlrkDHqw4dVFixXI/FC3RYsVyPmeUZQV15i8bvEckc2X7ppZfQ2NiIl19+Geeddx4eeugh7Ny5E/fccw8AoKamBmVlZfjiiy/wzjvvRKTBRHIFeybfPF/cYlFBEMSILP8bbknCUHH5Yv+CGf0/dEj5EpBEAEcYyb9AxyuDwf5namVozxut36NUJyvY3rJlC3r27InzzjvP53aDwYDHH38cQ4YMwVNPPYU5c+bIeTmiiPB30Bp8gRrZgohjVdkeAeoZXYWIzpD2FwhHcjIeJyxJC+ZHRqcLbRVSonAx9SsxxGqytJJBMQdmlCcr2D5x4oTHQjBqtfNShMVigSAIAIDMzEz069cP33zzjZyXIgpby4OjwdCAaVM0XgctV0nBsuneJQVnTGtEVlZk2+UrEOZkvCbR+FELdNKjVqsYAFFUcIQx/sX6+KxkUMyBGWXJCrbz8vI8qo+4ag3u27cP3bt3d99eX1/vt0oJkVKkDo6PTMrE5Ie1sNm0qK11QKdTIVsQvQJtwPnDN2VaLSY/rINGY1dsFIPVCJpE80fN30nPd9/VYe4cPRwOzxKQwQRALBdIoeIIY/yKl+Mzg+LEJCvY7ty5M/bv3+/+Oz8/H6IoYsmSJSgrKwMA7NmzB+vXr8epp54qr6VEIfJ3cJzxmAVn5Wfg+x8a3AuYHKvK9jsZ7rfdGix+o0GxUQxWI3CK9Y9ay9e//8GmEpAQnRORnPmR0vtArEfAKHExmAqfkie4PD6THLKqkQwaNAi//fYbdu3aBQA4//zz0b59e7z55psYO3Ys7rzzTlx55ZWor6/HmDFjItJgomD5qySxvsKO/PyMPwM4K2z2rICz/W31osf9I43VCJxiXQGk5etb6oAX59fhjjtNuOMuE1Qq0e8PuP+TBWX2HaJUZ7FkY3JZA0aMNmH8BDNGjDZhclkDLBb/8y6CxeMzySEr2B45ciSmTp0Kh8MBwJmf/cILL6BLly74/vvv8fHHH6O2thZjx47FtddeG5EGE7nY7Fk4VpWNPXsFHKvK9gpiTNKrlTsfX+88OLoCuECT3TKzVB73D6UtwWA1AqdY/6jJff1YnyxQaovEsSjRROMEl8dnkkPWUb9Nmzb461//6nFb9+7dsXLlSuzatQs1NTXo3Lkz8vJ4PYwiK5jL9ILg/1zSFTwDzgDqlFMaJSfDFRWqUVnZ4HF/12XeSKUMsBqBU6x/1OS+fqRWZHNdEt+33w5ByGbONwWUqulL0Ujx4PGZ5JA1su1P165dcc455zDQpogLdhQjLV1EUaHvYv0tg2edTiW5EExRoRql4zV4+5063HqzFs/N08PhSMOxqmxYrQJmPR6ZERUuROMU60UW5L5+JE4Wml8Sv6akJuKXxCn5pHL6UjSuhvH4THLweiYlHJMpA9995wx88/MzYKsXkZWlwtbKBixcVOcexUhTiSgdrwHgWUnCFTzf/6Azz6R5AOWqBlBTo8WBAyKgAiorG1A2zYTyaXosXGz1WMJ9QLEa46/RoKLCDkuLgZW16+yoqdFCpQp+wk6kqxEkYkWMWJdAk/v6ckfAYj1BlBJTKk/gi9bVMFaLoXDJCrYfeuihoO+rUqnw2GOPyXk5IgCAxSJi7hzvwLeoUI25c/SwWJyX6XW6Bry9vAFn5Wfgztu1aGgEGhpEbNjYgPsfNMFS53zMzTdpoVI1BTaZ6nqkpTm/GgsXWbG+wo5bb9Zi4WKrR9AOOH/EHA6gtETr0RaXAwdE3HFXU/J4MJd0I1WNwN8lZXVmA2pqAgfhUsG60kF8rH/U5Ly+3GA9lYMmCl+k0pcSUTRTPFgthsIhK9h+9913A95HpVJBFEUG2xQxOTlpeHpenVfg6/q7bLIWgPOg+NADzoAzPz8D9z/gLOGWn5+BR2fokJmlQmVlA+6YWIM3F+s9AhiTScT9D5rdJd/atFb5DKZdr1taovHd2BYDKrEqX9fy9YddlImp5f5PAnwF686Ff/SY8ahF8bzQWP+oyXl9OcF6KgdNFL5Yz3WIpVhfDSMKRFawvWDBAp+3OxwOHD58GGvWrMGHH36I6667DoMHD5bzUkRuNhu8Am2X9RV22Gxa99+uoOfAAZW7hJsvLQMYnc7z/v96Que/TfXeAVLLvHCXaIxOBhodHT9O43Vb85MAqWDd2C0D02dYfI7wx1uKQ6xTaMIN1lM5aKLw6fUNGHyBGsZuGV7pdTt/bkj6CXyxvhpG5I+sYLv5Uu2+jBw5EhdccAEmTZqEIUOGyHkpSmEtg6bApdcAg6Ep6MtU18Ng8L+rtwxgWl6WbF65xBdDjud2Vy63Ky+8JX+jk5EIEoOpGd5S85MAqWA9Pz9D8oQlnlIcErkqA6seUDgy1fV44D49ps+weHxHi4vUKJssIFMdoBZqEoj11TAiKYpVI3G57LLLcMYZZ2DevHlKvxQlIV8LFdTb/D+mxiR6VW4ItcJEy5nnlZUNkpVNBhSr0flUESuW67F4gQ4rlusx+WGtOy/cF6nRyUgtzKDTqSBo4a6e8q8ndHh+nh633qyFoJU+eXAF6VLBuq8g3dfjYynRqzIkatWDeKrv7GpL5ff2mLclWmz2LMx41Puq07r1dsx41JISfUAUr6JSjaRz5874+uuvo/FSlERs9izMetyKPr0zMH6cxn1Z1FonorhIjXXrpetht0xrCCenr/llSatVhRFXZGLmYxafj9doaqHRwD2iYrNn4eyzgx+dtNmzYLWqMfOxuohUoTAYGvDcPANenF/nNYn0uXkGbNrsOw3HdRIgdTIQaIQ/HlIckmGCYfN9z2JRQRDEuL4kHukrCXKu7iTyVQ05kmG/J0pWigfbDocDP/30E9LSFB9EpyRjNmfgytEZXlVH/jJIjUn3C5jzhGfg27KkX8sfmHBy+lyXJXNzc3H8+HGUTxVQYxJgMonQ61Uw6Buh0Xg/PpTg3hUcjB8XaOXB4H8sGxrUmP+K70mkaWnAOWd7f/WbnwRIpTJUVjZInujES4pDskwwdO17Z3R17nvxKtKlCuUEy6lcNjFZ9nuiZKRYsF1XV4fdu3fjxRdfxJ49e3DBBRco9VKUpByiCgsXeweMX35lB2DB5IcF1FlE7N3ncFcWaZm60fIHRk5OX1MQ0DJ49h0EBBPcNw8Oxo7xf5k3lDzvjHQVvvtOOnC/8QbPCZItTwKkThZ2/tyAssnCn9VI4nPWPycYRlckR1TlBsupPLrL/Z4ofskKtnv27BnwPqIoIi8vDw888ICcl6IU5GhUSVYd+fIrO/5+J5ChFnHPfWbJ54jUD0x1tSOsICBQcN88OAg3RUNqJHDuHL1k3nhmhgorluv9jvBLnyyY4nrWPycYRlckR1TlBsupPLrL/Z4ofskKtk855RTJbWq1Gm3btkX//v0xfvx4tG7dWs5LUQqyWBwBt7dvH51yV1VVYsRSPJprHhy4JmH6OsGQ+rH0NxLob7GdbJ0KrfPMAQMPqZOFeJ71z5q70RXJEVW5wXIqj+5mqusx5RE9ymdaPNK8iovUKHskNaqREMUrWcH2Z599Fql2UIoIZeKTXu//ufT66JW7Mpn9B/7hjpg1//FfuKgOc+c433TzgNtfkOhvJFBqsZ3iIjX0uthXDVESa+5GTyRHVOUGy6k8umuzZ+HxJyzI75OBkvHOCeWu9Lo5T1gw5ZHkzVcnindRqUZCBIQ+8SnQD6egVaG6Wo9HZ0uXu4rUhCi9zv8E33BHzJq/R0sdcP+DJveqlRCBDh1UMBjsyFTX+jxRCVhqr8Vm50lINrTamrDam0jiefQ9mUTySoLcYDmVR3dNpgx8/kUdPv/C9xW4u+8K7uqb1SqgxpSOXb/aYTDoodc1QqOxRLq5Scl1jN633w5ByI76QloUv1SiKCb3EFeUxHO1ABdXRY1YsNmzMLmsQfJHdGZ5hs+DktSkxCmPZGP247W4aqwGd9wp/QO6YrkerfPkj2ampeXgvgfNIbc/GNITLzXukxCp+zzwDwEjr6yWfO733s6BQ4S7eopeJ0Krlc5xV0os971Elyh91/xkMDs7DZmZzrkOghBu6T7p74O/Nsx4tMEjrcw1urvz5wZMeST872m827NXwPgJ0t/txQt06NzJf9BsMuu9Voh1XSXU65L3RCUS5Oy31CRRjnfN5ebmBrxPSCPbzz77bNiNUalUuOOOO8J+PCW2cCc++UoHELQqzJxViy+/smPkFeFX8AhFTk4apk3RKJIHHCjlwV9e9tZK/yOBhhwbMtX1aNsm7OYRBcV1JUGryca0GXU+vifB1bmWkwIUqdHdRCQ3BcdqFbwCbcB5lbB8pgUzpgkc4ZaQyiUnKTghB9sqlQotB8NVqqYvsWtby9sYbMc/1+VDk0mEwaCK6OVDOROfWqYDHDmq/7P8X3QXWfEXBMhdYt1fyoO/E5U5c2vx9tIcycV2UjlHORLL3lNoIhV0hJsCFIlqJIm638hNwakxpUtWf1q33o4akwCN9xQQQmqXnKTghBRsz5o1y+u2LVu2YOnSpTj55JMxbNgwdOjQAQBw8OBBrF69GgcPHsRVV12Fc845JzItJkVIXz7UR+TyoZxRl5Y/fiaTvAoecvgKApResc5fAGGpA6qrGzGzPMPnSYCSJ1DxLFVXEYy1WAcdckd3E3m/kZs73/y4KrWdV8h8S+WSkxSckILtUaNGefxdWVmJqVOn4pZbbsFdd92FjAzPp7v//vvxzDPP4NVXX8WYMWPkt5YUEY3Lh+GOuvj68Xt7SY773+FU8IikaFw+DBQgCILK50mA0idQ8YqXdGMn1kGHnNHdZNhv5KTg6PWBKr0kb9lEuVK55CQFR9Ya6k8//TQ6deqEe++91yvQBoD09HTcc8896Ny5M5555hk5L0UKCnz5MF32azhHXTQYUKz2uL0pKPb+EZP68fv990YUFzmfx1XB46z8DDw3T4/nntHjvXcMmFme4R6JstmzcKwqG3v2CjhWlQ2b3X+edyicI3n+6m/LL/jjCiB8kQogAp1AWa2C7HbFq2h8JuRbrIOOcI4zLvGy38g9XjlPvGvRuZMFrfNqgz5BMOibjqstFRepYdA3htSOVBLOMZpSi6yjR2VlJQYNGhTwft27d8dXX30l56VIITZ7FhwO4F9P6NyLwSxcVOex6mCkLh+GOuoidUm6bJoZr87Pwey5zvJeljrgxfl1KC5SY+pkAbpmo7axTPFwbZc7khfO5eFUzr+M9ehqKouHOtfNjzMWiwqCIAY1uhsP+00s01g0GgvKJvsumzh1sgCNJnmvhsnFhbQoEFnBdmNjI/bv3x/wfvv370djI8+K442vA3tRofcy35G8fBjKxCepH79jVcANN1dj4X9yYLU2lbUz6Bs9fhDiIcUjUiN5gU5ULHV6mM3OvjDoVSmdfxnr0dVUFi9Bh+s4c0bX4MuIxXq/iYc0Fr3OhBnTBNSYBPdxpuVxlXwL9ySPUoOsYDs/Px8VFRV47733MHLkSJ/3ee+997B161YUFRXJeSmKMKkDu2s01LXMdywvH/r7cTtWBdjtDrRtUysZNEZislagRQqiOZIndaJiMhswfUatx0j222/lwJ9kzr/U6xsw+AK1R61l11WbnT838JKuwhJ19c5Yj8rHenKpi0ZjgUYDdDcmXr3jWAvnJI9Sg6xg+84778S3336Lhx56CMuXL8cll1yC9u3bA3BWI1m5ciU2bNiAjIwM3HnnnRFpMEVGMMt8x/ryYSg/fr7KdVksnqO7gtZ5EuEKwBoaVLDZpUeLgrmk628kb3qZBkADjlVlK1ZGzFKn9wq0AeD3I878y+aXg12SPf8yU12PB+5zTg59cX7TZ+danCOZVxGMF4m4emesR+XjIY2FiJQhewXJzz//HA8//DCOHz/uUVsbcNbXbtWqFR599FFceOGFshoa7xLhLLb5ykyBVhtb+JoBp5ziiHmZODmrK05+WMCVV1XDUucMtOfO0WPhYqvPqiUt8yFDXfGyZbBvMDTAbstQfEWxI0f1GD3WewXJ1nnwyGt38ZXXHmxdYTn1h6O5Kli4q5XGq0RcUS3WXPuq5+X84D7zWNXZPlaVjRGjlV8NN5C6Oh1MZpU7JU0Xo1VnExm/s+FLxL4LZgXJiCzXXltbi1WrVuHbb7/FkSNHAABt2rTBueeei+HDhyM7O1vuS8S9RNg5mu/E8XJgD4bUj5/VKsBkTsfBgw6oVPCa3DmgWI1hF2Vianktbr1Zi62VDZL1uFsGYHL7R4mAz1c/HDigRul1NT7v3zoPWPBaDuptLfPam06ggl1iWO5SxNE8gCbSvh2MRPzxiaVEXTY7Hk4SfaWkOa8IZUOv832cIW/8zoYvEfsuasE2JV6wHQ8H9pZCGVHyVUO6qFCN0vEaj8md772dg8f/acH4cRrccWfwAVigkf/FC3To3Mn3qL/NnoUTJzKxZ0+jZIWX994x4KTWvp8/lFHyRx7KxtirT3g8d3PLl+WgbRvv922zZ6GmRo0DB0TJExXXPhCJfSWaB1A5n108SsQfn1iJx+NaKGJ5olBXp8OUaXU+BySKi9Qon6rlCHeQ+J0NXyL2XTDBNgvOpqhY5ye2FErJK6ka0i0ndwJArcW5uuKBA/4nBLbMhwy3MkGwFV5MJuCk1sE9fnpZNlZ97LtKwaOzavHA/dmYVu79eRUXqaHThdfG5hOy4mXiVrBiXVWC5As3lSPR9tWWYjm51GRW+S0XajIL0Gr9P0eqrlhLFEhIwfbBgwcBAO3atUN6err772C5Jk9SfIiXqgGhlrzyV0PaNbnTRadzrq5oMPjf1VsGYOFUJgi2wgvgzCEP9vEntUnzu9jG/f8QvNo6oFiNKY9kQ9B6XvoNpY2uE5BEm7gV66oSJI+cWtOJtq/6EqvJpXLLhabqirVEwQgp2B4yZAjS0tLwwQcf4LTTTsOQIUO8JkVKUalU2L59e1iNJOXEQ9WAUEejAv0oZAsq3Hqz1qPMW6gBWDgj/8FUeAGco8haHws4Sj3eVu///dbWihh2USbGj9PAVi8iM0uFP446kJHeCHtDFmpqmkYIRVHlt43XlnqeqDT/v5R4GymOt6s2FDy5taYTbV+NJ3KWaw+0Yu2MaQJHuCmlhRRs9+/fHwCg/fNakutvIjn8jUYJWkCEyqN83kmtVRC0kMxTrrWIqPy+waPMWzgBWKiLFAQaVbPViygqVOPWW7TQar2DfqnHZ2b5/xGst4mY6iONpGmCaNOo0isv6f0+V0ZG02PDPVGJB/Fy1YZCIzcNJBH31Xih14l+y4XqddLHt1ResZYoGCEF2wsXLvT7dzKorKzEvHnzsGXLFjQ0NMBoNOK6667DJZdcEuumJS2p0SZXub7H59Z5BcjPzTPgjjtrvALuokI1KisbsG69HTMetWBmeRYcjemoMaWjtlbEIw8JsNtF1NY6ggrAQlmkINCoWadO6bjtFg06dBChzvAMGGz2LGi16T4fV1nZgKJCtWQllQ0bfAcQa9fZMX6c5y+cXp/mt405OWleJyCJOlIcD1dtUkkkSubJTQNJ1H21uViVHtRqzSibbED5zFqvcqFlk7Oh1UpXI0nlFWuJgsEJks2sX78eN910EzIzM3HppZciOzsbq1evxj333IPDhw/jhhtuiHUTk5LUaFRpidarLjbQ9CPacmJg82okrvtVVwuYM9dXHqEQ8TxCf6NqRYVqrP7Yhu9/aMC0KZ4BsCtHtU9v+AyqFy6qw3PzDEhL8w4gHn5QwFXXeNfZdmmZgtLYIEoG7kWFaqjV+LNig7NfXROewjlRodQhJ8+6uUikgSTystmR6sdw6XU1KJ+qg8ksuMuF6nWi30AbkJeCQpQKFCv9ZzKZsHv3bpx88slo0yb+T2kbGhpw8cUX4/Dhw1i6dCl69uwJwPk+rrzyShw4cACrVq1Chw4dfD4+EUrVxHNJHV8lr16Zr8eNN0sHxO+9Y0Bjgwp79zUiM0uFSh8l9p57Ro877vJ+juIiNWZMywo6jzDYvvP1PlqWJJQqqydogSfn6nH4dwfatE1zLzN+9KgD5w1IQ1p6g9eIl9mcgStGSffRc/P0HiUP//2cHo2N8DqJcbXx1FOBvFznj7r0hKfQT1Tied+Ld/Hed5Estxfp0n3x3nfNxVvZwlD6zmoVMGVavWQKSijH2mSQSPtdvEnEvlO89N+aNWvwwQcfoLS0FGeeeab79oULF2Lu3Lmw2+1QqVQoKSnBww8/LOelFLd+/Xrs3bsXo0ePdgfaAKDX6/G3v/0NkyZNwrvvvouJEyfGsJXJy1eOrSlAPOcaYb3nPj+1XyUGVILNI3SN7O761Q6DQR+wlJXrfZw4IWDPnqaTgOZl//yV1XOIwKqPbR4/WgOK1Sgu0kCj8U6L0OngdzS9stIzxWTLdw348acGnJWfgdKSpgmVlZUNeHu5FVMeyXC/71hPeIrV5XQKTSTL7SVDGki4ItWPsSi/p9FYUDZZj/KZvles1WhYjYRSm6xge9myZfjqq68wefJk920//fQTHnvsMaSnp+Oss87Cr7/+ioULF6KgoABDhw6V3WClbNiwAQAwcOBAr22u2zZu3BjVNqUa7xxb/yuPugIwfxOiWgabzSlVyipTXY+6unS/JwG+yuqVlmixYJHvtBmpSgz+gpObb9Lijomel39dKSnzX6lzl/hz3b95MBPrCU+RuJwuN1hnsB+cSJfbS9XJrZHox1iW39PrTJgxTUCNqSkFxbliLQNtIllpJBdddBHatGmDN954w33b7Nmz8Z///AePP/44Lr/8cuzbtw+XXnop+vfvj1deeSUijVbCXXfdhVWrVuGdd95B7969vbafc845yMnJwRdffOHz8UajEWZzfK+ulZaWBofDEetmhECF6hrAZvPeRTMzVcgxAIAIUUxDjUn0uF9mpgoGvQrHjjkgtYO3zktDWppUf6Shukb089oqANJ96XCk4ViV9HbXaze/X6tWaThxIvBjfFPB4VBBFAGVCkhLEyGKKsl+UalEr/ujWU81Nqah6rh0W/Jy05CeHvy+FNq+F9zn7o+/fSLQe3c93mYTkZaucm5SAY5GEZmZKqhU0f0Oxfv3Nth9PZpEMQ2iCPdn7PwvfvsQiEQ/yjtmeT1bnO938Yx9F75E7Ltg1pyRNbL9xx9/oE+fPh63rVu3DgaDAZdeeikA4NRTT0X//v2xa9cuOS+lOFegrNf7Lo2m0+lg8pPX8PPPPyvSLvKtwQ5Y/Ax0BdoOAL//rsxrB8PXa/9xNPTHhCoSbQeAI0fkP0c45LQ/Uu+dQhOJ/Zbk9SP3faLYkhVsp6eno76+6bLqiRMn8PPPP+OCCy5AWlpTibG8vLykT8Ho1q0bR7ZD4H/ksWUbvUdtA41shvc6TSIxshvsa7vuJwgqGSPbwb9mcO2K1ChZ6J+d3L6XGiHMzlbBbg/vSknz+wXadyItNt/b0D43V5/ZbSJyctJgqQv9Oxcuqf1Z0KpQXd10ZSsWn12owj1eAbG+GpVowv9NCUZy952ykrXvZAXbHTp0wJYtW2C326FWq/Hxxx9DFEWcd955Hvc7ceIEWrVqJeelFKfT6QBAcvTabDYjJydH8vEVFRWKtCuS4mWWb7Rn3TefMNSUR+h/wtCRo3qMHitdUm/5shy0bRM4FzHYvF+bPQtWqxozH6sLu1+C6VcAQfe9ySw94UkXRP6nr8osrtxwf3nXx6qyMWK09POvWK5H6zzpx+/ZK2D8BO8T35aVWaSe9/ffdRhztXSps3eWGNCuXfROrKP9vQ33c7PZs2Cty8TMWRaf+5cSVSn87fNFhWqclZ/hMTch2O9tLIU7VyBSxyyXcPa7RJjnEO7+HYp4+a1NRMnad/5XuAjgkksuQVVVFUpKSjB79mzMnTsXGRkZHhMhRVHEtm3bcOqpp8purJK6dOkCANizZ4/XtqNHj8JisaBz585RblVycs669z35zjnrPrLl3zUaC9q2MaHr6Wa0bWMK6sfeoG9EcZHa57biIjUM+sagXts56bMWnTtZ0DqvVvKHJ1NdD4PejGlTNBhQ7Pm6TZMX/f9oBdOvofS9c8JTFpYvy8F/XjVg+bIczJiWBZ3OBKtVwJGjeuz6VYejf+hhtXquP+9/2W0rbPYsyffhmvTqSzCrAErVYg607L1rgprUyqQugbYnMjmfW6a6HtZ6SO5fzom1vhduCpe//Xl9hR35+Rkt7q9IpduICvaY0VKkjlnhsliyMbmsASNGmzB+ghkjRpswuawBFov/ie7RJGf/JpJDVrBdWlqK/Px8bN26Fa+//jrMZjP+8Y9/oF27du77rF+/HlVVVSgsLJTdWCW5lp5fs2aN1zbXbcm4PL3NnoVjVdnYs1fAsarsqBxsgpl1H2vOUlaC149XUykrZUppOSsxZGDFcj0WL9BhxXI9ZpZnBDXiEky/htr3vk5UzLV6rPlGxKHDDlRVOXDokANr1oow1zbNd5BzQuWssBL+SYdUsB5o2XtXkC4xbaPZ8/vfHkgsvnPBknsiHMxKgpEUaH9ueYIVjcVVYvX5xuqYBSROEBvtgR4iF1l7liAIeOutt7Bx40ZUVVWhZ8+e7hFil7S0NDz00EMYMmSInJdSXHFxMU499VT873//w4QJEzwWtfn3v/8NtVqNkSNHxraRERar1coisUpcNDQvZeW6LBqNUlbhLjMeiX71dx+bPQv11kwc/l3ER6ttXovidO6Ujk6nCsjKssguYyan/JtUOcQ/jjr8lol0jZgbDHa/9zMYfP9YByPWKwQGIvdzi/ZKgoH26eYnWMVFauh1yp7Ix/rzjVX5vUjWWldSpMtUEgVL1sg24AymCwsLcfHFF3sF2gBQWFiIa6+9Nu7TSDIyMjBz5kyIoojx48djypQpmD17NkaMGIHdu3fj3nvvRceOHWPdzIiJ5UiE3DSBaHKN7Pbrqw46BSVWgunXcPvedYm4xiTixfl1XjW411fY8eL8OlitzjSBSAT+4V5OB3xfIRg0yBHUiLnckXUpiTD6J/dzi3Yqg7/9ufmiTs5a09nQapXLtY/U5yt3ZDyctDm5EuFqJZA4Az2UfCK6XPvu3btx/PhxtGrVCqeddlqknjaqKisr8cwzz2DLli1oaGiA0WjE9ddfj0suucTv4xIhob/5xAO5k9DkisYklUiK90kbrolJJpMKNhtQscHuXrq+Zb+G0vdWq4D6+nQ8Ots56W3pGwZcNU568uDbS3JwcjtT3C093Vwok1YjOdkr1O+c6/UtFhUEQYzKZDO5n1tDQxZqTJmYNcd7Yu3DkwTodTZkZET2PUjtz488lI2qKgeys1XQ60RFA20gMsfUeDouhnLMi/XvSbCidVyK99+LeJaIfaf4cu0AYLPZ8Oyzz2LJkiWoqXH+CI8cORKzZs0CAKxYsQKvv/46HnvsMY9l0ONVfn4+Xn755Vg3Q3GxvpyWqqvEKUHq0vXSN3PgEB3Q6Tz7Ndi+d61GV1qicf841QYYJKuzOPereFh2W2rZ6mDTdMJN55ESyncuVukIcj+36poM3HBTNcqn6XDP3wXU1orIzlbh6NFGXHdDNV59WR/xdALp/bkGXTpH74db7jHV/8i47xVk40WglXzj5WplPByXKDXJCratViuuvfZaVFZWonXr1vjLX/7itcJiUVERJk2ahJUrVyZEsJ0q4uFyWqSDmVTk7wf6sTkWyZGaQH1vtQruZZ+vHtt0GVvt+4q9m97Q9O/mQZDn6KzyP2ixXLZaSrDfuVgHXXJOhM1mEceqgDvu8j2KrNRJfDwcS+QeUxMl79mXRApiOdBDsSArZ/vll1/G1q1bMWbMGHz66af497//7XWfdu3a4YwzzsDatWvlvBRFWCLlTZM3V17n8Srfo0mAvNn1NaZ0d6DafJLZuvV2v/tNy8mDrrzr/D7qkPOuw9X8RKG5devtKJ9p8SpTGC3BfufioWJCuPny8XASDwCWOj2OHNXj2012HD2qh6VOZgmZIMg9piZK3rMUOZWUok3OfBCicMgKtj/88EO0b98e06ZNQ1aW9CSO0047DYcPH5bzUhRhSk0CI09KlAFrXs927z7/K22F+wPdvERbZWUDigqd+8lrr9ehZJwGA4rid79pfqLQkhK1noMV7HcukYOueDiJN5kNKJtmweix1bj2hhqMGluNqdMtMJkNgR8sg9xjarycqMjBIJbIN1lDJPv378cFF1yAjAz/T6NWq1FdLb2yFcUGL6cpS4m825YpBv5qRwtaIDc3Dceqsr0m+QWa/Ne8RNvCRXWYO8c5Mri+wo77HjChtESLG2/UICtTBb1emfSQcCcoBlPruW2bSLUyNMF85yIRdMVqJb9YpxNY6vSYPqNW4qpGLaZP1UPQKpdGJOeYmih5z0QUOlnBtkajCSqI3r9/v9+lzil24iHXMdnY7FmoqVHjwAERJeM06NM7w10ZRG7ebcu8Tteoc8vgQtACz80zeC3/PvgCNR64T48Zj1r8ngS4SritW2+HpQ64/0FngF1aogFEoEMHFQwGu2IBnJwTlWjXeg5VoO+c3KAr1rWeY3kSbzZD8qrG1q122G3AsTrvk89ICveYGusTFSJSjqw0kh49euCHH35AVVWV5H327duH7du3o3fv3nJeiigilF7dzZXiMXJMDe64y4Tb7zRha2UD5s7RQ9A67yMn77ZlCsHCRXWYUOKd1vHg/dmY/0qdV8Bm7JaB6TMsAWsBt1yNzlIHvDi/DosWW9H19DSc1NqsWKAtt15xrJetlktOOkK81PKWm04Q7vdU6qqGoAXmztHj0dmWuF5O3F/eczyvPEpE/ska2b7qqqtw33334d5778WTTz6JvDzPU/mamho8/PDDaGhowNVXXy2roURyKTniZ7NnwWpVe40kA00jbaUlWrw43/na4VZl8JVCkKYC/u+iTIwfr4GtXkRmlgp5uSpMLfce4cvPz3C3oaWWFQ/8rUanZJqC3KoMzhMFA8pn1nrVei6bnA2NRrpOeLwIt5JLtCtaKLEfKHFVo7REi4WLrV6j3vFYVs/XyHisr1YQkTyygu3LLrsMn3/+OT744AMMHToU55xzDgBg8+bNuO2227Bx40aYzWaMHDkSgwcPjkiDicKhZDk11w/h+HHSVSTWV9idKRh/CneyU8sUg9ISLV5f6B1E/OsJnc/H2+pDqwWs0Vig0cAjx1npH/5I1Ct+6plalIzL8qr1/NQztXjw/vgJrPxxBV1ndA2+VnQ06+dHY06CS7DfU50O7vSn5kI5yYw3sS4FSUTyyV6u/YknnsB9992HrKwsfPPNNwCAPXv24PPPP4dKpcI999zjXuCGKFaUKqfW/IcwUCDr2i5nslPLFIP8/AyfOapSEyf9TagEAp8ERCNNIRL1ilettuOOu8y46ppqXH9TDa66php33GXGqtXRKZ0XK9GqaBFoP7BahTDTQOR9TwWtCWWTs73TiAIUcKmpUcWsJGQg8VAKkojkkf0tValUuOmmm3D99ddj27ZtOHDgAERRRLt27dCnTx9kZmZGop1Esig14tf8sn2gQDYzSxWRyU7NUwxOnPD9mtu3+55kV1nZ4HPkDwjuJCAaaQpyJwjGenXUWIpWRYtA+8GefRrceHNT1Y9gR7wj8dnpdTWYPlUPsxnu9Ke0AOcYNSYRz/+7PqaLHklJ5f2ZKFnIHtl2SU9PR35+Pi6++GJccskl6NevnzvQPnbsGJ544olIvRRRyJQa8Wv+Q9i8HnVLA4rVOK2LKmKLPLgmoLVq5fuHWKUCbr5R69WeH39qwEMPCkFPvrNaBRw5qseuX3U4+oceanWa3x/2SNSAjkS9YkEL3HqzFs/N0+NfT+jw/Dw9br1ZC0GbGPWKw+HKn779b1q8Ot/gfr9A5OugB/qca6o9twd75SNS31NBa0LbNiac20+Ntm1MMOTYJOt/FxWqUVnZEPKiR9GasJgM9beJUp2i158OHTqEl19+Ge+88w7q6+tx3333KflyRJICjfip1SrY7N65j1argBpTOnb9aofBoIde1wiNxuLe3vyHrmU96ubPP22KBoLgewlrOaTeV8+eGbjjzhp3uT7XxMnKygZcf2M1/vNaDhobHX5Ls0ktef7q/BzccHM1jvkoQhSpH/5A5eP8TcwzGBrw3DwDXpxf55GnW1SoxnPzDF6rXCYDqfzppW/mwCE6oNNFtvReoM/Z11We776zw2rVBqjvrszIvFRZvaJCNUrHa3D/g87RbOeiRwI0GqlncormhEXW3yZKfCpRFEMainI4HPjggw+wZs0aHDt2DK1bt8agQYNw8cUXIy3NOVB+6NAhPPvss1ixYgUaG51lti666CI888wzkX8HcSLYCUyxlJsb/ESrZNT0A+n7x/bss11BsfPHUirYLJssuC812+xZmFzW4H5OQeuctJifn+FVj1qpCh6+3tdzz+hxx13Sl8MXvm7AaV2kg3+rVcDkqfU+88GLi9QoGZeFO+7yfPyAYjVmlmd4vCfXe/asqBGpahW+TmhqvT6TQG2Md4G+t7F4v/5es6hQjbNaTEh0ld5b/Kb05+ZiMktXktHrQqsk07LvbPYsVFVlYt++RvfJp6sGvst/XjWg6+nS341Y9HegfV4Jqf57IQf7LnyJ2He5ubkB7xNSsN3Q0IBbbrkF69atQ/OHqVQqDB06FPPmzcO7776L8vJyWK1WiKKIoUOHYuLEiejRo0d47yJBJMLOkYg7caQ1X3AGKnj92Lp+LB2N6X6DzRnTstwj3MH8ECr9Y9kykBdFFUaOkQ5M3nvHgJNaSwcUR47qMXqs9IJVby/JwZVXN2339V6UeM/BBDomUwZGjJY+0VixXI/WeYlTLi3Q9/ZYVXZM3q/U5zv+GufJa/MA9tabtdha2eDz+9Q8QLVaBcx4rB49umcgPz/D44rMTzsbMPmhLI8rS5Jtq2vK2TboVcjWwb1yZKB9e/myHLRtI92fservaK8Kyt+L8LHvwpeIfRdMsB1SGsnixYuxdu1aZGVlYdSoUejWrRtqa2vx1Vdf4ZNPPkFZWRmWLVsGURRx3nnn4b777kPPnj3DfgNEkZaprodKlSE56uua5NfYmCa5El3LS83+Uh781d+OZOmulrV5bfYsv5eeA6VSBFryvLZWxIrlesk0FKXKlQUzQTPVJpTF6v362u+zBRGPzrZ6BNpA8KX3akzp+PIrO778yvf+edfEwCkeJrPBa8l258i4AXpdjcfqqC0Fs+hRrPqbq/0SJa6Qgu0PP/wQ6enpWLhwIfLz892333LLLZg6dSqWLFkClUqFBx54ADfccEPEG0sUCcH8WDY0BA42ba28R5qaV+IIpv62UjV+5S79HMyS563zzJI//EpVLQnms0u1CWWB3o9Wm+5zPkIk+AoAH3ogG/X1nvtdoNJ7rgA10EmeySR61HxvyVKn9wq0Afw5+bEW06fq/ywPqEf5TItXqsrUyQI0Gv/VSFJt/yIi+UIKtnft2oVzzjnHI9B2uemmm7BkyRKcfvrpDLQprgXzY9nYKH0fQQvk5aX9mc7ge4JU85HdsWP8VymI5shjMKsQAghp9M/X5W2lRv+C+exSbUKZv/dbVKjGqtU2fP9DQ9RWG/S134licAFqMCd5/pjN8HtFymx2fn/lrI6aavsXEckXUum/2tpadOjQwee2jh07AkDS52ZT4nP9WPri+rF0BZu+PHB/Nh6dVet3YZfmC1HIXUhGDleJwM6dLGidVxv06KZzyXPBqw+aRv+a8tUnlzVgxGgTxk8wY8RoEyaXNSBbSPf7/HJX0PTF9dnJLR2YaKTer2vy78JFdRFddCjYNjXf7wwGe8DPDYDf752vk7yWpfdqawOPjLtoNBa0bWNC19PNaNvGBI3GIrk/WyzZHu8tlfYvIpIvpJFtURTdFUdaUqmcP55cxIbiXVApFmpIXmo+Kz8D08p9jxD6yht21d+WmhwWryNhgUb/XBNNS8Zp0Kd3hnui6dp1dmytjG4Jt5bpMWlpwK03aXD3XU3LtddZHJA4fCU812jyiRMC9uxpqrTRfKJiLJclD/Zzc57kBU7xkCq998hDWRC08MoZd/E3Mh7KPINA8zSiOZGRiOIf13lNcan6wxBMikXzYNN1H4O+Eb8fCTyBKpT62/7SOmL9+Wg0Fmg08MiT9RXoFBWqMXeO3h3czZlbi7eX5mDmY5awcsYB6fce6LOzN2Rh334VXpxf59HfRYVq3HqzFl26ZEGdkXz7eKa6HnV16bjnPukqMy3Td6K5fwWb1uTvJM/VZqmg+NFZtXjg/myfJ8PFRWrodNLtC3Wega989WjW3yaixBFS6b8ePXq4R7BDfiGVCtu3bw/rsYkgEUrVtCypE4varYmqed8FU/pLr28Iuv62lHj8fEKpr/zmIh3atWsMq862nPdeY9KhfGadzysJRYVqlE3WwqCP/AJDSgmlFFYoZenicf8KRqD3+O7bOXj8Ce+R8UB1uvfsFTB+gvR+sXiBDp07SZcdTLX67iSNfRe+ROy7YEr/hXxRVRTFsP5zOBxhvQlShv9LptHL7YyGSC+rHE7esKUOeHF+HRa/YUW3M4CTWpv9/vDGy+fTsu9qanynhgDOUfv8/KaLZYKgcufu5vdRB50zLve911mkJ8mtr7CjLnCZ5oiI1nLezQWzb7raFg/7VzgCTb61WBoxfaqA5cty8J9XDVi+LAfTpwoBF8SRW2Wk+TyNlpwj47yQTJSqQvr2//jjj0q1g6JMqdJs8UaJy7rB5p/KqQYSD5+Pr7577hm938fY6p2BkJy8bGdAL/3ea2q0OKm1nysCEvm6wW6PhFilEwS7b8bD/hWuYIJiQWuCoAW6G4MfJZNbZSTV6rsTUfB4qp2ikvmHwZWHajIBNpsKfXpn4Lvv7B4TxYJdWMX1XPv22yEI2UHnDbuEuxBFqJ9PJHNv/U1+RIAssswsVUh52b6Y/Jc5hskEnNRaerve//lAwO1yKbWgT7CC2TcT+fuvVOk9ubXpWX+biKQw2E5SvoKv5pL1hyGYyXtAcKN3gUYnQw2kQwmIQ/l8IjmKGqj/AlVWOa2L6s/c1PBHbwWtvO2uMnPhrp4pVzyMGgfaNxP5+y83KPZHztUo1t8mIikMtpOQVPA1Y1ojsv5MxUzGHwapEUVXYFhaovVYMtrf6F2kRydDDYiD/Xz8tXPW48AjkwTUWlRBBfjB9J+rskpamu9ARxDkTzzUCpAM6IsK1dAK/h8fKBhTqRpwrCpbsQockRo1lrqqEgmJ/v0PFBRb6vQwm4Fdv9ph0OuRrQMEbYBLJn8K92qUkicBRJTYQqpGQtLiZfasvxnx5w1QY8b0phnxiVqNwKXlSLFarcKVV9VI5uQ+N0+PO+5s+sFtXpmhpVCqOgTTznCqFEh9Pg8/KMAhOqDTNcBkyvDZTkELzJ2jx+I3g/98A71nV/8JWuDtpQbY7WLQAWsoM8ztDVnYvVvtu3TfLVp06WwPqnSfrysJjQ0ZmFqu7D4fiX0nGt/NRP/+SzGZDV5LtgdTjSRSYl2uM1ISsSpEvGDfhS8R+y6YaiQc2U4y/i5hf7PW8xK2nEumsSY1UtwyXaQ51+Q91339jd5FMqc13LSC5p+PyaRCvU3Ehg0NuOqaaljqnO/h9r/5rjxRWqLFwsVWr9FhfyPzgd6zq//OPlsNjcYOgz700T+fz+sjODm1o4iLh2WitEQDW72IzCwV/jjqQMf2YtA1sluOUNrsWV6BNhD5XGq5o8bRyvlO5O+/FEud3ivQBpxLtZfPrMX0qfqgR7jDFe7IOBElLwbbSSbUIDEaPwyRHunxF4w4HN7pIi6uZdODuawbyZxWOYF7proeej0wZ673yPjadXbceIPG5+Pym9W7bkkqwA/0niIx+bEl6fSaDAwa5EBNTRrMZkCnA3r2cCBTHX4pkWjlUstNJ4hmzneyBYZms3TZx3Xr7TCbA+f8ExFFGoPtJBNvE5+UKIHmLxhZX2FHaYl3ADqgWI0OHVTuBWcCBTyRzGmNTP1e3+93wwbf7Ww+iu+LrwA/0HuOxORHjzYGHMHNQOu82ogFgtGswCFn1DiRK4XEmsnkv+9MJtFjNVQiomgIeVEbim/+FrU4b0B0Jz4ptXBGoGAELTa7RhRPyjMHvbBKy0VpWj5XKCPzwS40IsXf+124qA4PPyh4Pb8hJ/QAP9B7Nuj9L8Tji2thl8rv7V4Lu0R7EZBon4i6FvTp3MkS9H4XTDviuVJIrOn1/vsm0HYiIiVwZDvJ+LuEXT41G5lq5ScIuSh1OTxQsOEawfY1ohhKSkvz0UnP5cZDG9lVsn6vpQ4Q4UD51CzUmASYTCIMBhV02SIGX6DG51+ENjIfyTzeQFc1oj2CmygVOBKlnfFIp3NOhmy+VLtLcZEaOl0MGkVEKY/BdhKSCpjatU1HNCf5KhVMBQpGDAb7n6OKntvCSWlx5bSe0VXeDOlAQay/kwB/73fwBWqo1SqUTfeuKjHlEQGAxSPgDibAb57H29Su9JDy7QOliJRPFaDVpvt9DiVGmhOhNFuitNOfWFXkELQmlE02oHxmrUfA7apGImijN9hAROTC0n8RkgilaqJdUieS5fNaCrVsWbjl91yU7Ltg3ov0fbSYNqNO8n2VT80Kus52OO2SEuizf2W+Hhs2NGBrZYPkAjmBPhOXUAO7RCnN5mqn51WV+GtnS/FQUtBVZ9tkEqHXq6ALoc42OSViCbZ4wb4LXyL2HUv/UUwpeTk81HSHeFjVz5dgy7xJvV+TSfSb91xr0YQ1yVBu+blAVzVqqkX3AjmAZwWJUEZwpa5WTC/LRnpGg8+gOlEqcETqqko0xXqpehdB66wH392YOH1HRMmLwTYpRunL4aEETeGmtFitAmpM6c6V6Ax66HWN0GgsYbbYWygnAb7er9nsPxUj3FQduScnwZQRtNQB9z9oQmmJ1l1Pu3PndLRqZQtq35AK7L77zo79B7SY/0pDRKvgUGCROql1fe9ccxAi/b0jIoomBtukqHhZOCOcCg8msx7TZ1h8rESnh14XmUvScvPalapcIbdd/q5qFBWqUVnpvKphqYNHPfDFC3Ro28YZjAVK95AK7Fx11kNZ0IciIxLzNKLxvSMiiiaW/iPFhVsCLZJCLb9ntQpeP/iAayU6C6xWISLtkhssyy0rqFS7MtX1mPJINoqLvMsIlo7XYOEi36Ofrue1WLIxuawBI0abMH6CGSNGmzC5rAEWS7b7vlKBXX5+huTCJmvX2VFTo8axqmzs2St4lSMkeeTuN9H63hERRRODbUoJodbNrjGl+12JrsbkP30jWKEEy66a1c2DxEjWAw+3Xb5YrQJmP16L/D4ZeG6eHv96Qofn5ukx/posLHvHCouPWNv1vMHWZ5cK3AIt6FNdDb9BPPnnaz90kbvfROt7R0QUTUwjoZQRSkpLtFaiCzavPVDZwkin6sjNt68xpePLr+z48ivPwEnQAnPn6GGzST/vsarsoPJ+pVJVMrP8j55qWywwmozpJUpVXAm0H8pfqp4rQBJR8mGwTSkl2EmV0VyJLpga3MFUeIh0hQ2VChh2USbGj3NOXszMUuGPow6ognjrUkGTa1Lk4gU5SEt3+Hy/web9SgV2fxx1+M0X9/XsSlSkiVWJwXDqyQdDbuWcYE7+uAIkESUjBttEPhj0jX5XojPoGz1ukxtY+QuWY1G20GbPwtRy78AKcNXA9j8K7C8ocq56CcmShKHk/foK7HTZIrp00cLh8CwpWFSoxq03a/H1Gt9pCpFcsVKpgDcQJUvvya2cE4xQv3dERImAOdtEPmg0FpRNFrwm+BUXqTF1suBRhiyYyXxyBDPSG2nOwEp6kqHJ5P883RU0+RIoaAo177flBNysLAvatVNh+LBMj3zxi4dlot4q4tXX/E/OlCvYnHMlyP3c/InGfhjK946IKFFwZJtIgl5nwoxpAmpMgnvU1KBvhEbTVH4sGot4yKnwEO6Iu9wSbs6gSY/ymRavZbOdQZN0CTe5eb82exbmzLXA2C0Dbdo0jSecdJIKby3zPzkzEmK5gFIkSu9JUarMZEvNv3euFSBbfu+IiBIJg20A8+bNw7PPPiu5/dNPP0XHjh2j2CKKFxqNBRqN9Ep00Qiswl2JU04qQyQCq2BOVqTIyfs1mTLw+Rd1+PyL0CdnRoKSAW8gSgbEoeyHctOqXN87ToYkomTAYLuZUaNGoUOHDl63GwyGGLSGEkE0AqtwRnrljriHG+C3FOhkxZ9w836lPhPX5Mw3FhuggnKLLEVrBNiXSH1uvkSqcg4RUaphsN3MqFGjUFhYGOtmUAKJVmAV6kiv3BF356I0vtNAyh4RkKmO30v6/vrcUgeoIEpOzowEJQPeQOSm4AQSqco5RESphME2kQzRDKxCGemVO+Jus2fh8ScsyO+TgZLxTaX/KisbMOcJC6Y8Er9Bk17fgMEXqGHsloH8/AzY6kVkZamwtbIBO39uUDTYBZQPeANRou56c/FWOYeIKN4x2G5m48aN2Lp1K9LS0tClSxcUFxcjO5sry5G0WAVWgXJi5Y64S+U9u9x9V3BBk6VOD7MZ2PWrHQa9Htk6QNAqOyqeqa7HA/fpMX2GBS/Obwr8iovUKJscnVF5pQPeQJSoux6MWOarExHFKwbbzcybN8/jb4PBgEceeQQjR46MTYMoIUQ7sAomJ1buiHskgiaT2YDpM2o9al07A14D9Loa/w+WwWbPwoxHLV7Lfq9bb8eMRy1RS2WIVcAbS7HMV2/OdTK6b78dgpAdtQWFiIh8UYmiGPkivQnm448/Rk1NDQoKCtC2bVscPXoUX3zxBZ555hnU1NTgueeew4UXXuj3ORwOB9LSWLaclFNd7UB1jQMzHrX4DKLPG6DG3Nk65OQ498PDhxtRNr0W36y1e9ynfGo2Tj453e9r/fZbIy4beUJy+//ea4XTTpN+joMHGzBlmnfACzgD7vKpAtq393+uf+hQA2pMztUoDXoV9HrglFMCjw/IbTuFr7ragfsnmT32OZeW+6dSDh9uxJRptR7fkWD3eyIiJSRNsD179mzYbLag7z9hwgR06dLF733WrVuH66+/Ht26dcN///tfv/cNtdJCLOTmhl4Rgpxi3Xeu0ezx4zS4407pNIgVy/Vondc0oh5uCTabPQuTyxr8rCCZ4fd5jhzVY/TYasnty5floG0b6fchPSqeHXBUfM9eAeMnmCW3L16gQ+dOibM4Sqz3vVA1XXnxTqtSuhqJ3P2WmiTafhdP2HfhS8S+y83NDXifpEkjWbJkCSyW4H9Ahw0bFjDYLi4uRqdOnbBz506YzWbodDqZrSQKjc2eBatVjZmP1WHtOjvGjvG/+mCkcmLl5qKbTP7P4U0mUbKGcl2dzivQBpxpIOUza1E+VQetVjqYjrdUhnBrTSeqWOarc4ImEcWjpAm2t2zZosjz5ubmYs+ePairq2OwTVHVNJrdtAR3ZlbwgaRUbvfDD+rhEB3Q6fwHf/6CpkCBpF7vv53+tpvMKp/pJ4Az4DaZBWi1/p47dqX3XFK91jQnaBIRNWGSsR8WiwU///wzBEEI6jIBUaTY7FmY9bgVfXpnoE1rFf71hA7Pz9MDooi/DFL7fEzzQNJfveOZsyz44MMGTC5rgMXiv9qOM2iqRedOFrTOq0Wmuh4WSzYmlzVgxGgTxk8wY8Rok9dz6XTOtA9fiovU8HfeGsyoeKA2T3kk2+v1i4vUmPJItuKjy/5rTVths/u/OkHhi5erGkREzaV8sG02m/Hbb7953W61WjFlyhTU1tZi+PDhyMhImosAlADM5gxcOVqDrZUNuGpcDe65z4zb7zRh4eJ63Pt3wSvgbkrvcAaSzsvpvkeH11fYkZ+fEVbwF2wgKWhNKJvsO+Atm5ztt/yfnFFxALBaBcx+vBb5fTLw3Dw9/vWEDs/N0yO/TwbmzK2F1Sr4fbxc/vremcrAY4lSXFc1fInWVQ0iopZS/qh/4sQJXHzxxejTpw+6du2Kk046CceOHcPatWtx+PBhGI1GPPDAA7FuJqUYh6jCwsV1XukU6yvsmPW4BaXjs3DVWA0gAh07qpAtOFBrAY7+IUCnU0EUVRC0zhUTfbHVO0eHQ81jDSUnVq+rwfSpzjrbJpMIvV4FnQ4QtP4nOOp1IoqL1B4rV7oUF6mh1/kf2a4xpePLr+z48ivfAe9dEwVoNH6fQhamMsROrBcUIiLyJeWD7VatWmHcuHGorKzEl19+iZqaGmRlZaFr164oLS1FSUkJNEr+MqeAZJooFq334miUzlteX2FHaYkGi9+wYnqZBqIoomx6vVdwMXeOHvc/aPIZcDfP/fYX/LV8vyI8g3hBC5SWaN0rNTY0qGCzN9WxFrQmCFqguzH4GeZarRllkw0on1nrvVT85GxoAwTrciZnRgJTGWKr+VwDi0UFQRCjuqAQEVFLKR9s63Q6lJWVxboZSSuZJopF871YLA6/2w16FWaWZwBo8FnqbO06O0TRGQg3X0URAIoK1aisbLqcLhX8Sb1fVxAPAHPn6LFwsdXjNSLRJ3pdDcqn6mAyC+5Rcb1ODBhoA/LTUOSKhwmaqc41QfOMrolXRoyIkk/K52yTcpJpolh1tSOq70Wv97/dYBCRqa73mx+8br0dBf09z6eLCtUoHa/BwkXO4Fgq+PP32S16w4rSEi1KS7RYuNjqNQLfvE/q6nQ4clSPbzfZcfSoHnV1wVf00WrNaNvGhK6nO//vr9xfcwZ9o9/JmQZ9Y9BtCIczlUHjlTvcMq+eiIhSQ8qPbJNykqnmbVWVGGDSW2TfS7CjoybpeYYAgPR0FV54Vg+tVoXGRhEbNja4U0v85bH6++zWrbfjphs1sFrhNWrusnadHdXVAubMtUR9uXaNxoKyyXqUz7R4paFMnSxAownQaREQy1rTREQUXxhsk2KSaaKYyew/rSPS7yXYiV6C4P/ilE6nwnU31rhzqwsKMnD+QAP0ev95rIE+u6xMIFPtPx3j4EFH2AvTyKXXmTBjmoAaU1MaikHfGJVA2yVWtaaJiCi+MNgmxSTTRDG9LnBQG2kqFTDsokyMH6eBrV5EZpYKfxx1QNXspdLSRRQVqn1OpiwqVEPQOpdGN5lEGAwq6HWN0GgCj64Gej/ONBf/ATkkniKYhWkiQaOxQKOBopMhiYiIAmGwTYpJpolieXmqqL4Xmz0LU8u9c6Zdrzez3FnxI00lonS8s1pO84C7qFCNhx4QMPdJCz7/ouXIeODJi8F+dv7u03wSZktKVwRJdVargBpTeouTLEusm0VElJI4QZIUE+8TxWz2LByrysaevQKOVWX7neSYk5MW1fcS7MIoOl0D3l5uxVn5ngu4lI7PwpNPewbarscGM6EzmM/O330eeSjbPQnTF6UrggChfb7JxGTWY/LUeoweW41rb6jBqCurMWVaPUzmALNuiYhIERzZJkXF60SxcMr4RfO9BJvvnqmux0MPON9L88mKr8zXY+NGO269uakGdlaWClsrG7BwUV1QEzr9vV/XyGltrYhHHhJgt4uorXW47+NodOCss8JfmEauZCo5GSybPQvWukzMnGWRyJW3YMY0gSPcRERRphJFUdlfvRQRzVqu4V4izs1lzVnAGZT4qk0NuFI0MrxGqqPdd8eqsnHNeJPHgjHNg+U3F+vROq8paGy5+ExtLXD8OLxK87lK/+XliTi1Y3hBl8msx/QZvqqMCNDrTM3uJ70wjZLVSML5fONZMPue6+Ri/DgN7rhTehLo8mU5aNsmepNEY43HvPCx78LHvgtfIvZdbm5uwPtwZDvBSAc6eo9Ah6QlQklCg6EBz80z4MX5dR4j1kWFajw3zwCDwTOQbFn5Qq3W4ZlnfS/3DgBlk8ObnWi1Cl77H+B75FTOwjRyJMLnG0nNa6KPHeM/VYa58kRE0cec7QQSKNCxWoUYtSyxBJOiEWuiCMx/xXewPP+VOgS6HmWzwe9y7zZbeO2qMaVLPu+69XbUmNI9bnMtTHNuP3VIC9PIkQifbyQ1z+/PzIrt6plEROSNwXYCCTXQId8SoSRhsBMkpR8f6PmDa0fLSYa1tf4DVZMp9oFsIny+kdT85KGysgFFhbFbPZOIiLwx2E4ggQKZeAh0EoGrrJ0v8VKSMNTRWatVwJGjeuz6VYejf+iRne0/oBSCyCKxWLIxuawBI0abMH6CGSNGm2Cz+29XPIycJsLnG0nNTx4WLqpD6XiNV8DdtHomJ0cSEUUbg+0EEiiQiYdAJxHEe0lCILTRWV+l3r7/XjrgLCpUQxsg46h5HnBzGzY0oLgo+JFT18h45ff2qJXfS4TPN5Kan1xY6oD7HzS5S0E+94we776dgxnTsqDjnA4iopjgBMkEYtA3orhIupwaLxEHL15LEroEu6iMVB7/nLm1eG6eARCBtes9q5HceosWWq3vFBUXqUmGCxfVYe4cPVQqz2Xkm0ZOmwK6WJbfi/fPN5KcJxfZmDbD+ZlY6oAX59e5Ty4EgUE2EVEssfRfhESrVI3JrEf5TItXObWpk4WAI1eJWFInXsSi75qC1ZYrQGrcweqRo3qMHlvt8/GCFlj4HwMO/y56LPc+oDgNWq3/oHPPXgHjJ/iezChogTcWGeBwqNxVRgx6z/KTyVZ+L5aC3fdaln90nlykdh/zmBc+9l342HfhS8S+Y+m/JKTXmTBjmoAak9Ai0OHoVbIJZnTWX56+pQ6wWICOHQCzGdDpgJ49HMhUS6/s6OIvjcVSB6hUItq2MUuWkYtE+T0uOR6aluUfiYgoPjDYTkAajQUaDVgvNwUECqAC5elnZ6vQOs8ccgCm1zdg8AVqGLtleC2qs/PnhoCTDINdAVMK68kTEVGyYLBNKSsRLrsHaqNSefyZ6no8cJ8z4G2+qI5rpchMtf+AV075vVAWzvEnET5fIiJKfgy2KSXFcvJesIJpo0ZjQdlk6Tz+cNOLbPYszHjUd8A741ELZpZn+Q1cg53g6UvgevICNBr/7U+Ez5eIiFIDS/9RypEqa7d2nR3TZlijUp4ukFDa6Mzjz8LyZTn4z6sGLF/WVOqt5aI0wb43uYvqyCm/J7eefCJ8vkRElDo4sk0pJxKT95QWaht95fHLGd2Vm3MNeE7wtFhUEAQxqPJ7cuvJJ8LnS0REqYMj25RyQl2dMRbktlHu6G6kljx3TvCsRX4fNVrn1QaVM+3KQ/clmDz0RPh8iYgodTDYppQTqUBSSXLbKDcNJJZLnjvz0AWvgDvYJccT4fMlIqLUwTQSSjlyJu9FS6htbFmTurZWXhpIy1UJm7+2M+da2UmGcurJJ8LnS0REqYPBNqWcWAeSwQiljb5qUr/ykt7v8wczuhuJJc9dJwG7frXDYNCHtDBNuPXkE+HzJSKi1MFgm1JSJAJJpQXTRqma1Bs2NkjW3w5ldFfOqoSxXJgmET5fIiJKDczZppTlmrzXuZMl6Ml70RaojVI1qRcuqkPJuPBK70VCoIVprFZB0dcHEuPzJSKi5MeRbfKJq+8lBqma05Y64P4HTVi8IAdp6Y6oj+5GYmEaIiKiZMBgm7xw9b3E4a/mtKUOEAG0zqsNKw1EjmAWpgk1F5uIiCgRMY2EPHD1vcQitya1UuQuTENERJQsGGyTB7n1mSm65NakVkq8ngQQERFFGyMn8hCJZbopuuTUpFaK8yRAj/KZFo+KKE0nAbFrGxERUTQx2CYPXH0vMYVbk1pJzU8CXBM0Y30SQEREFG0MtskDV9+LL4leFcZ1EtDdmIvjx4/HujlERERRx2CbPHD1vfjBqjBERESJj8E2eeHqe7HnvyoMMLM8K6FGuImIiFIVg23ySc4y3SSfsypMnc9tzqowGrTOi/9g25UGs2+/HYKQnXBpMERERHIx2CaKQ8lQFYZpMERERKyzTRSXEr0qDBdHIiIicmKwTRSHXFVhfEmEqjBcHImIiMiJwTZRHHJWhdF4BdxNVWHiO+85mDQYIiKiVMDhJaI4lchVYRI9DYaIiChSGGwTRYBSi88kalUYLo5ERETkxGCbSCZW3fDGxZGIiIickjLY3rFjB1auXIlt27Zh27ZtOH78OAoKCrBw4UK/j3v//fexYMEC/PLLL1Cr1ejbty/uuusu9OrVK0otp0TDxWekNU+DsVhUEAQxYdJgiIiIIiUpJ0h+8sknePHFF1FRUYE2bdoE9ZgXXngB999/P6qqqvDXv/4Vw4cPx8aNG/HXv/4VmzZtUrjFlKhYdcM/ZxpMLfL7qNE6rzZlTzyIiCh1JWUkMHz4cAwZMgRGoxEnTpzAwIED/d5/9+7dePbZZ9GlSxe8/fbb0Ov1AIBx48bhqquuwpQpU/C///0PaWlJeW5CMiTD4jNERESknKSMHrt164ZevXpBrfZdp7il5cuXo6GhAbfddps70AaAnj174rLLLsOuXbs4uk0+seoGERER+ZOUwXaoNmzYAAA477zzvLa5RsVd9yFqLtEXnyEiIiJlMdiGM41EEASf+d2dO3cGAOzZsyfazaIEkOiLzxAREZGykjJnO1Rmsxl5eb4Ta3U6HQDAZDL5fY6cnJyEyOnOzc2NdRMSllTf5eYCT8zJQFWVCJPZAb0uDXl5KuTkpAHIjG4j4xj3vfCx78LHvgsf+y587LvwJWPfxW2wPXv2bNhstqDvP2HCBHTp0kW5BgVQXV0ds9cOVm5uLo4fPx7rZiSkYPquVSvnfwDgcADs6ibc98LHvgsf+y587Lvwse/Cl4h9F8zJQdwG20uWLIHFYgn6/sOGDQs72NbpdJIj12azGQA8Jk4SEREREQUjboPtLVu2RO21unTpgi1btuDo0aNeeduuXG1X7jYRERERUbDiP8k4Cvr37w8A+Oabb7y2rVmzBgBQUFAQ1TYRERERUeJjsA1g9OjRyMjIwAsvvOCRTrJjxw7873//Q9euXdGvX78YtpCIiIiIElHcppHIsWvXLsyfPx8AYLVaAQC//vorJk2a5L7P7Nmz3f8+7bTTMHHiRDz11FMYMWIE/u///g+1tbX44IMPAAAzZsxIiEojRERERBRfkjLY/uOPP/Duu+/6va15sA0At912Gzp06ID//Oc/ePPNN6FWq3Huuefi73//O3r16hWVdhMRERFRcknKYLuwsBA//fRTyI+74oorcMUVVyjQIiIiIiJKRcyNICIiIiJSCINtIiIiIiKFMNgmIiIiIlIIg20iIiIiIoUw2CYiIiIiUgiDbSIiIiIihTDYJiIiIiJSCINtIiIiIiKFMNgmIiIiIlIIg20iIiIiIoUw2CYiIiIiUgiDbSIiIiIihTDYJiIiIiJSCINtIiIiIiKFMNgmIiIiIlIIg20iIiIiIoUw2CYiIiIiUgiDbSIiIiIihTDYJiIiIiJSCINtIiIiIiKFMNgmIiIiIlIIg20iIiIiIoUw2CYiIiIiUgiDbSIiIiIihTDYJiIiIiJSCINtIiIiIiKFMNgmIiIiIlIIg20iIiIiIoUw2CYiIiIiUkhGrBtAFCtWq4AaUzpMJhEGgwp6XSM0Gkusm0VERERJhME2pSSTWY/pMyxYX2F331ZcpEbZZD30OlMMW0ZERETJhGkklHKsVsEr0AaAdevtKJ9pgdUqxKhlRERElGwYbFPKqTGlewXaLuvW21FjSo9yi4iIiChZMdimlGMyibK2ExEREQWLwTalHL1eJWs7ERERUbAYbFPKMegbUVyk9rmtuEgNg74xyi0iIiKiZMVgm1KORmNB2WTBK+AuLlJj6mSB5f+IiIgoYlj6j1KSXmfCjGkCakwCTCYRer0KBn0jNBqW/SMiIqLIYbBNKUujsUCjAdq2iXVLiIiIKFkxjYSIiIiISCEMtomIiIiIFMJgm4iIiIhIIQy2iYiIiIgUwmCbiIiIiEghDLaJiIiIiBSSlKX/duzYgZUrV2Lbtm3Ytm0bjh8/joKCAixcuNDn/ffv348LL7xQ8vkmTpyIO++8U6nmEhEREVGSSspg+5NPPsGLL74ItVqN0047DcePHw/qcT169MDQoUO9bi8oKIh0E4mIiIgoBSRlsD18+HAMGTIERqMRJ06cwMCBA4N6XM+ePTmCTUREREQRk5TBdrdu3WLdBCIiIiKi5Ay2w3XkyBEsXrwYJpMJrVu3RmFhITp16hTrZhERERFRgmKw3cw333yDb775xv23SqXC5ZdfjunTp0MQBL+PzcnJQVpa/Bd3yc3NjXUTEhb7Th72X/jYd+Fj34WPfRc+9l34krHvGGwD0Gq1uP322zF06FB06tQJDocD27dvx7/+9S+8//77sFqtmDdvnt/nqK6ujlJrw5ebmxv0ZFHyxL6Th/0XPvZd+Nh34WPfhY99F75E7LtgTg5UoiiKUWhLyGbPng2bzRb0/SdMmIAuXbp43X706FEMHDjQb+k/KXV1dRg1ahR+++03LF++HL169Qrp8URERESU2uJ2ZHvJkiWwWCxB33/YsGE+g205tFotRowYgaeeegqbN29msE1EREREIYnbYHvLli2xbgKApssDdXV1MW4JERERESWa+J/RF2Nbt24FAHTo0CHGLSEiIiKiRMNgG8D27dvhK3V99erVeO+995CTk4NBgwbFoGVERERElMjiNo1Ejl27dmH+/PkAAKvVCgD49ddfMWnSJPd9Zs+e7f73rFmzsHfvXpx99tk4+eST0djYiO3bt2PTpk3IzMzErFmzoNfro/smiIiIiCjhxW01EjkqKiowYcIEv/f56aef3P9etmwZVq1ahV9++QXHjx+Hw+FAu3btUFRUhOuvvx5du3ZVusmyDRkyBAcOHPC5zVclFpvNhpdeegnvv/8+Dh06hJycHAwePBh33303WrduHY0mx4Xly5fjoYce8nufoqIi/Oc//wEAzJs3D88++6zkfT/99FN07Ngxom2MtRUrVmDTpk344YcfsHPnTtjtdsyaNQujR4/2eX+z2Yx58+Zh9erVOHr0KNq2bYthw4Zh4sSJyM7O9rq/w+HA4sWLsXTpUuzZsweCIGDAgAG45557cOqppyr99hQVbN/Z7XZ89tln+Oyzz1BZWYnDhw8DAM444wyMGjUKV199NdLT0z0es3//flx44YWSrz1x4kTceeedkX9TURLKfhfu9/Lrr7/Giy++iG3btkGlUqFXr164/fbbUVxcHNH3Em2h9F337t0DPt8XX3yBU045BUDy73e///47Vq5cia+++gq//vor/vjjD+Tk5KBv37646aabcNZZZ3k9hsc8p1D6LtWOeUk5sl1YWOgRTAcyduxYjB07VsEWRYder8e1117rdXvLfHOHw4HbbrsNa9aswdlnn43/+7//w549e7Bs2TKsW7cOS5cuRV5eXrSaHVM9e/bExIkTfW5btWoVfv75ZwwcONBr26hRo3zm8RsMhoi3MdaefvppHDhwALm5uWjbtq3kSR0AWCwWlJSUYMeOHRg4cCAuvfRS7NixA6+++io2btyIxYsXIysry+MxZWVlWLZsGbp164bS0lIcOXIEK1euxDfffIMlS5ZEvMpQNAXbd3v37sVdd90FQRBQXFyMIUOGwGQy4fPPP8f06dPx1Vdf4YUXXoBKpfJ6bI8ePTB06FCv2wsKCiL+fqIplP3OJZTv5YoVK/DAAw8gLy/PHYR++OGHuP766/HUU09h+PDh8t9EjITSd1LHvz179uC///0vzjjjDHeg3Vyy7ncLFy7E/Pnz0alTJ5x33nnIy8vDnj178Mknn+CTTz7BP//5T1xyySXu+/OY1ySUvku5Y55ISWHw4MHi4MGDg7rv22+/LRqNRvHee+8VHQ6H+/Y33nhDNBqN4pQpU5RqZsKor68XCwoKxDPPPFM8evSo+/ZnnnlGNBqN4vr162PYuuj65ptvxP3794uiKIovvviiaDQaxXfeecfnfZ9++mnRaDSKc+fO9bh97ty5otFoFP/973973L5u3TrRaDSK48ePF+vr6923f/HFF6LRaBRvuOGGCL+b6Aq27w4fPiwuWrRIrK2t9bi9trZWHD16tGg0GsUPP/zQY9u+fftEo9EoPvjgg8q9gRgKZb8L9Xt54sQJ8dxzzxULCwvFQ4cOuW8/dOiQWFhYKBYWFoomk0n+m4iRUPpOSnl5uWg0GsVXX33V4/Zk3+9WrVolVlRUeN2+ceNGsVevXmL//v09jlU85jUJpe9S7ZjHCZIpaNmyZQCAe++91+Os8a9//StOPfVU/Pe//3XnuqeqTz75BCdOnMAFF1yAk046KdbNiakBAwYEVY1HFEUsW7YMgiDg9ttv99h2++23QxAE977n4vr773//OzIzM923/+Uvf0FBQQHWrFmDgwcPRuBdxEawfdeuXTuMHz8egiB43C4IAq6//noAwMaNGxVpY7wKtu/C8dFHH6GmpgYlJSU4+eST3beffPLJKCkpwfHjx/HJJ58o8trRILfv6uvr8d///hdqtRojRoyIYMvi3//93//5HCE999xzUVhYiOrqaveVcx7zPIXSd6l2zGOwnURsNhuWL1+Of//731i0aJG7bGFz9fX12Lp1K0477TSvg7FKpcKAAQNgsVjwww8/RKvZcentt98GAMn0oo0bN+Kll17Cyy+/jE8++QS1tbXRbF5c2r17N44cOYK+ffv6PID27dsX+/btw6FDh9y3V1RUuLe1dP755wMANmzYoGzD41xGhjPbr2X+osuRI0ewePFi/Pvf/8ayZcuwd+/eaDYvrgT7vXTtU75SxFy3pfJ+t3r1alRXV2PIkCGSKYWpuN+5vouu//OYF7yWfRfMfZPpmJeUOdup6ujRo16T/fr06YMnn3wSnTp1AuDMk3I4HJI5Ya7bd+/ejXPPPVfJ5satAwcOYN26dTj55JPdB7+W5s2b5/G3wWDAI488gpEjR0ahhfFpz549AOB331qzZg12796NU045BRaLBUePHoXRaPR5UO3cubPH86aqd955B4DvwBAAvvnmG3zzzTfuv1UqFS6//HJMnz7dKwBIdsF+L3fv3g2gaR9rjvtd4MEGIPX2u4MHD2Lt2rVo06YNjEYjAB7zguWr7/xJxmMeg+0kMXr0aPTr1w9GoxGCIGD37t147bXXsGLFClx33XV4//33odPpYDKZAAA6nc7n87huN5vNUWt7vFm+fDkcDgdGjRrldUDs0aMHHnvsMRQUFKBt27Y4evQovvjiCzzzzDOYNGkS9Hq939nSySzUfSvY+7vul4qWLFmCr776CkVFRfjLX/7isU2r1eL222/H0KFD0alTJzgcDmzfvh3/+te/8P7778NqtXoFn8kq1O+lax/0VdI11fe7ffv2oaKiAu3bt8d5553ntT0V9zu73Y4HHngANpsN9913n/t3gce8wKT6TkqyHvMYbCeJljPKe/bsiccffxyAc9b9smXL3HlQJM3hcGD58uVQqVQYM2aM1/aLLrrI4++OHTuipKQEXbt2dVcxSNVgmyLr888/x4wZM9ChQwfMnTvXa3vr1q3x97//3eO24uJinH322Rg1ahRWr16Nbdu2oVevXtFqcszwexk577zzDkRRxOjRo5GW5p1pmmr7ncPhwKRJk7Bx40ZcddVVKX31MlSh9l0yH/OYs53krr76agDA5s2bATSN5EiNXLtulzrzTnZr167FwYMHUVRUFFK90+LiYnTq1Ak7d+5M2asCoe5bwd4/FReU+vLLL3HXXXehdevW+M9//oO2bdsG/VitVuue1Ob63qcqqe+lvxHEVN7vHA4H3n33XaSlpfkcbPAnGfc7h8OBhx9+GP/73/9wxRVXYPr06R7becyTFqjvWkr2Yx6D7SSXm5sLwFkLFABOPfVUpKWluXMWW3Ldnqh1PuVyzRQPp+66q6/r6uoi2qZE4co3DHbfEgQBbdq0wf79+9HY2Oh1f1feoq+82mT2xRdfYOLEicjNzcWCBQvCWuQi1ffF5nz1hWsf9JUbm6r7HeBc5Ofw4cMYMGAA2rdvH/Ljk2m/czgceOihh/Duu+/isssuw+zZs71G+nnM8y2YvmsuFY55DLaTXGVlJYCmhW00Gg3y8/Px22+/eS10IIoi1q5dC0EQ0Lt376i3NdaOHz+OTz/9FK1atfK6LB2IxWLBzz//DEEQ3F/6VNOlSxe0bdsWmzdvdp/cuVgsFmzevBkdO3b0WCCjoKDAva2lr7/+GgDQv39/ZRseR7744gvceeedyMnJwYIFC8L+0XVVIlKqdF6ikPpeuvapNWvWeD3GdVtcL5ChkGAmRvqTLPudK1h87733cMkll+Dxxx/3mWvMY563YPvOJVWOeQy2k8CuXbt8ns3t2rULTzzxBADg8ssvd99+1VVXAQCefPJJiKLovv2tt97Cvn37cPnll0Oj0Sjc6vizYsUK2O12XH755R71T13MZjN+++03r9utViumTJmC2tpaDB8+PKjSRslIpVJh7NixsFgseP755z22Pf/887BYLO59z8X199NPPw2bzea+/csvv8SGDRswcODAuD14RtqXX37p8aMT6OrS9u3bPb6/LqtXr8Z7772HnJwcDBo0SKHWxo9wvpcXX3wx9Ho9Fi1a5F4mGgAOHz6MRYsWITc31+cKdcmsqqoKn3/+OfLy8jBkyBDJ+yX7fudKf3jvvfcwfPhwzJ07VzJY5DHPUyh9B6TWMU8l+mo5JZR58+bhtddeQ//+/dG+fXtotVrs3r0bX331Fex2O2699Vbce++97vs7HA7cfPPN7uXa+/fvj71792L16tXo0KEDli1bljLLtTd3+eWXY+fOnXj//ffRvXt3r+379+/H0KFD0adPH3Tt2hUnnXQSjh07hrVr1+Lw4cMwGo1YsGBB0o1sL1u2DJs2bQIA7Ny5E9u2bUPfvn3dIxD9+vVzj4RZLBZcc801+PHHHzFw4ECceeaZ2L59O9asWYM+ffpg0aJFXidykydPdi9d/Je//AVHjx7Fhx9+iOzsbLz11ls47bTTovuGIyjYvtu1axdGjhwJm82GSy+91Od77tChg3tZcQAoLS3F3r17cfbZZ+Pkk09GY2Mjtm/fjk2bNiEzMzPhJwUG23fhfi+bL9fuWkL6ww8/xPHjx/Gvf/0LF198cXTfcASF8p11efXVVzFnzhxcf/31mDRpkuRzJ/t+N2/ePDz77LMQBAETJkzwOXgydOhQ9OzZEwCPec2F0nepdsxjsJ0ENmzYgDfeeAM7duzAH3/8AavVitzcXOTn52PcuHE+a1XabDa89NJLWLFiBQ4dOoRWrVrhggsuwN13352SKyZWVlZi7NixyM/P91rxy8VsNuPJJ59EZWUlDhw4gJqaGmRlZaFr164YNmwYSkpKkvKKwKRJk/Duu+9Kbh81ahRmz57t/ttkMmHevHlYvXo1/vjjD7Rp0wbDhw/HHXfc4XPircPhwKJFi7B06VLs2bMHgiBgwIABuOeee9z14RNVsH1XUVGBCRMm+H2ugoICLFy40P33smXLsGrVKvzyyy84fvw4HA4H2rVrh6KiIlx//fXo2rVrxN5HLATbd3K+l1999RVefPFFbN++HQDQu3dv3HbbbRgwYIAi7ylaQv3OAsAll1yCXbt24cMPP/S776T6fgcAs2bN8ggCecxzCqXvUu2Yx2CbiIiIiEghzNkmIiIiIlIIg20iIiIiIoUw2CYiIiIiUgiDbSIiIiIihTDYJiIiIiJSCINtIiIiIiKFMNgmIiIiIlIIg20iIiIiIoUw2CYiIiIiUgiDbSKiCNu/fz+6d++O0tLSWDeFiIhijME2EREREZFCGGwTERERESmEwTYRERERkUIYbBMRKchqteKJJ57A4MGD0bt3b1x00UV46aWXIIqi131/+eUX/OMf/8DAgQPRu3dvnH/++XjggQfw66+/et23oqIC3bt3x6RJk3D06FE88sgjGDRoEM4880y8/vrrAACbzYbFixdjzJgxKCwsxFlnnYUhQ4bg1ltvxQcffOD1nA0NDXjjjTdw9dVXo2/fvsjPz8eIESPw+uuvo6Ghwev+Q4YMQffu3SGKIv7zn//gkksuQZ8+fXD++edj5syZqKmp8dkndXV1eO6553DZZZchPz8f/fr1w/jx4322qbS0FN27d8f+/fs9bn/99dfRvXt39O7dG3V1dR7b5syZg+7du+Ojjz6K2PtbuHAhrrjiCpx11lkYMWKEz/dFRORLRqwbQESUrOx2O2644Qbs2rULBQUFsFgs2LhxI/75z3+itrYW99xzj/u+69atw9/+9jdYrVaceeaZKCgowK+//ooVK1bg448/xvz583Huued6vUZVVRWuvPJKNDY2om/fvrDZbNBqtQCA++67D6tWrUJ2djbOPfdc6HQ6/P7779i0aRMsFgsuvfRS9/NYrVbccsstqKioQKtWrXD22WcjMzMTlZWVmDVrFioqKvDcc88hLc17jGbGjBlYunQpCgoKYDQasXHjRixcuBAbNmzAG2+8AZ1O576v2WzGhAkTsG3bNuTl5eGCCy5AXV0d1q9fj2+//RZbtmzB5MmT3ffv378/NmzYgA0bNqBjx47u2ysqKtx9vGXLFgwYMMBjm0qlQkFBQUTe39SpU7F8+XL0798fXbt2hd1u9//BExE1JxIRUUTt27dPNBqNotFoFEtKSkSTyeTeVllZKfbs2VM866yzRLPZLIqiKNbW1ooDBgwQjUajuGjRIo/neu2110Sj0SgOGjRItFqt7tvXr1/vfo077rjDY5soiuLevXtFo9EoDh48WKyqqvLYZrVaxc2bN3vcNm3aNNFoNIp33323WFNT477dZDKJN998s2g0GsU33njD4zGDBw8WjUaj2LdvX/H777933242m8UJEyaIRqNRnDlzpsdjysvLRaPRKJaWlnr0yy+//CIWFxeLRqNR/Oyzz9y3r1u3TjQajeKDDz7ovq2xsVHs37+/eOmll4pGo1F88skn3dtqamrEHj16iJdeemnE3l9hYaG4c+dOkYgoHEwjISJSSFpaGqZPn+4xstunTx8MGjQIdXV1+OGHHwAAK1euxB9//IFzzjkH48eP93iO6667Dr169cLhw4exatUqr9fIzMzElClTkJWV5XH78ePHAQA9e/ZEbm6ux7asrCycc8457r+PHTuGZcuW4ZRTTsGsWbOg1+vd23Q6HR599FGo1Wq8+eabPt9nSUkJevfu7f47OzsbU6ZMgUqlwttvv436+noAgMViwdtvv420tDRMnTrVo1+6du2K2267DQCwYMEC9+3nnHMOMjMzsWHDBvdtP/74I6qrqzFixAh06NDBY9vGjRvhcDjQv3//iL2/m2++Gd26dfO5jYgoEAbbREQKad++PU4//XSv27t06QIAOHr0KADg22+/BQBcfvnlPp/niiuu8Lhfc7169UK7du28bj/99NMhCAK+/PJLvPzyy/j9998l21lRUQG73Y7zzz8fGo3Ga3ubNm3QpUsX7Ny5E1ar1Wv7JZdc4nXbGWecgR49esBisWD79u0AgG3btrnTZLp27er1GFcu9ObNm+FwOAA4Twzy8/Nx4MABd962K7guLCxEQUEBvv/+e3fetmtb8xQSue9vyJAhXrcREQWLwTYRkUJOPvlkn7dnZ2cDcE5gBIAjR44AADp06ODz/q5cZdf9mjvllFN8Pkan02HGjBlQq9WYO3cuBg0ahGHDhqGsrAybNm3yuO+BAwcAAEuXLkX37t19/vfzzz9DFEVUV1d7vZZUu123u9od6H0aDAbo9XpYrVaP13EFzq5AuqKiAjqdDr169UJBQYE7b7v5fZoH23LfX/v27X22l4goGJwgSUSkEF+T7SKtZfpIc5dddhkGDBiATz/9FGvWrMHGjRuxZMkSLFmyBNdffz0mTZoEAO7KKD179kSPHj38vp5arY5c431QqVRetxUUFOD555/Hhg0bMHLkSGzatAn9+vVDenq6O6iuqKhAnz59sGPHDnTt2hWtW7d2P17u+/PXx0REgTDYJiKKsbZt2wJoGoFtyXW7636hyMvLw9ixYzF27FiIooivv/4a99xzD1577TWMGTMG3bp1c6eh9OvXD1OmTAn5NQ4cOIDu3bt73X7w4EGPdrv+77q9JZPJhJqaGmg0GuTk5LhvP+ecc6BWq7FhwwZ3vrYryO7YsaM7b/uss86Cw+HwGNUGIPv9ERHJwTQSIqIYc5X081VnGgDef/99j/uFS6VSYdCgQbjgggsAAD///DMAoKioCOnp6fj888/DKmu3cuVKr9t27dqFHTt2QBAE9OzZE4Azv1yj0WDbtm3YvXu312Nc77Nv374eVwU0Go07b3v58uUAnPnaLq687S+//NL9d3Ny3x8RkRwMtomIYuziiy/GSSedhE2bNmHJkiUe2xYsWIAffvgB7dq1w7Bhw4J+zu3bt2P16tXuvHCXEydOYOvWrQCa8r3btWuHMWPG4MCBA/jHP/6BP/74w+v59uzZ47MaCgAsWrTIPQkScC5aM3PmTIiiiDFjxrgnJQqCgDFjxsDhcKC8vBwWi8X9mN9++w0vvPACAOdCNi25AuilS5dCr9fjzDPP9Nhmt9vx7rvvetzXRe77IyKSg2kkREQxJggCnnjiCfztb39DWVkZlixZgtNOOw2//vortm/fDkEQ8OSTT4aUO3zw4EHceeed0Ov16N27N0466SSYTCZs3LgRtbW1GDx4sEf5v0ceeQQHDhzAqlWr8PXXX6NHjx5o3749LBYLdu3ahT179uDCCy/0GfBfccUVuOqqq1BYWAi9Xo9vv/0WR48eRbdu3fD3v//d47733nsvvvvuO3zzzTcYOnQo+vfv717Upr6+HqWlpT6rf/x/e3esmmgQhQH0W4Jgp4KdVmnSBNIFbFOLVSp9AqvkAfIeEQQrOwULC7vUFulsjI2NPoRY7BaLy0rCwpL92RTntMMwM93HcOfO7e1tnp+fczgc0mq1cnFxcTaWJIfDIZeXl6nX6+/mf+Z8AJ8hbAN8Aa1WK9PpNIPBIMvlMpvNJtVqNZ1OJ/1+/8MWgn9yc3OTx8fHLJfLbLfbvL6+plKp5OrqKvf397/aCZ6Uy+UMh8PM5/PMZrOs1+usVqvUarU0Go10Op2zHyd/9/T0lGazmclkkt1ul0qlkl6vl4eHh7Oe1snPLinj8Tij0SiLxSIvLy8plUq5vr5Ot9tNu93+cI1T3fbxeHx3c32q297v9+/G/sX5AD7j2/fTM20A+At3d3fZ7/d5e3v731sB+LLUbAMAQEGEbQAAKIiwDQAABVGzDQAABXGzDQAABRG2AQCgIMI2AAAURNgGAICCCNsAAFAQYRsAAAoibAMAQEGEbQAAKMgPb07LDgkZzFgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "predicted_mpg = mpg_hp_linear_fit.posterior[\"mpg_mean\"].mean((\"chain\", \"draw\"))\n", + "residuals = df_mpg[\"mpg\"] - predicted_mpg\n", + "sns.scatterplot(data=df_mpg, x=\"horsepower\", y=residuals)\n", + "plt.axhline(0, color='black', lw=2)\n", + "plt.ylabel(\"Residuals\")\n", + "plt.title('Residuals for linear model')\n" + ] + }, + { + "cell_type": "markdown", + "id": "96305784", + "metadata": {}, + "source": [ + "This is definitely not flat like we would ideally like it.\n", + "\n", + "Next we fit a polynomial regression, including a square term." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "03bcd1d2", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Auto-assigning NUTS sampler...\n", + "Initializing NUTS using jitter+adapt_diag...\n", + "Multiprocess sampling (2 chains in 2 jobs)\n", + "NUTS: [mpg_sigma, Intercept, poly(horsepower, 2)]\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5d3e0021025e4b4eb76224aa2cfd2a71", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 4 seconds.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "98ac48705caf412483407d6e7a2a52ec", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "We recommend running at least 4 chains for robust computation of convergence diagnostics\n" + ] + } + ], + "source": [ + "mpg_hp_sq_mod = bmb.Model(\"mpg ~ poly(horsepower, 2)\", df_mpg)\n", + "mpg_hp_sq_fit = mpg_hp_sq_mod.fit(idata_kwargs={\"log_likelihood\": True}, random_seed=SEED)\n", + "mpg_hp_sq_mod.predict(mpg_hp_sq_fit, kind=\"pps\")" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "b7e53bd3", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Default computed for conditional variable: horsepower\n", + "Default computed for conditional variable: horsepower\n" + ] + }, + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Quadratic Fit')" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtsAAAHrCAYAAAAe4lGYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD/tklEQVR4nOzdeXiU5dX48e/zzCSZZJJMJglgCEtkFQEVBAziSiC2WqrW+nvl1delrcUdarV16dtaWytWbcEdra1WLVp93XBpw1J3VgFl3wMBAmSZTCaTTJKZeX5/PCSZyazJTJJJOJ/r4pLMPMs9d4I5c8+5z1E0TdMQQgghhBBCxJ3a0wMQQgghhBCir5JgWwghhBBCiC4iwbYQQgghhBBdRIJtIYQQQgghuogE20IIIYQQQnQRCbaFEEIIIYToIhJsCyGEEEII0UUk2BZCCCGEEKKLSLAthBBCCCFEFzH29ACEECLRaJrGxx9/zEcffcSmTZuorq7GZDIxcOBApk2bxjXXXMPAgQN7ephRueeee3jnnXd4+OGH+cEPftDTw2k1ffp0Dh06xPLlyxk0aFCX3GP16tVce+21EY9bu3YttbW1FBUVkZ+fz4oVK7pkPEKIE5ME20II4ePo0aPcdtttfPvttyiKwtixY5k4cSINDQ1s3LiRF198kVdeeYV77rmHq6++uqeHm5ASMcC//PLLQz6XlJQU9tzueGMghOi7JNgWQojj7HY7V199NWVlZZx66qn88Y9/ZOTIka3Pu91u/v73v/PYY4/x4IMP4vF4olo5FYFeeuklmpubGTBgQLfcb/78+WGfHzBgAB999FHEwFsIITpKgm0hhDjuwQcfpKysjEGDBvHyyy+TmZnp97zRaORHP/oRKSkpPPjgg/zxj39k2rRpDB8+vIdG3HsNGTKkp4fgJykpSb6PQoguIRskhRACKCsr46OPPgLgl7/8ZUCg7eu///u/OeWUU2hububFF1/0e+6ee+5h9OjRvP3220HPffvttxk9ejT33HOP3+PNzc289957/PznP+c73/kOEydO5LTTTuOiiy7i97//PUePHg05npqaGh566CEuvPBCxo0bxwUXXMCDDz5ITU1NyHN8x7lz507mzZvHOeecw5gxY3jyySc7NaaDBw8yevRo3nnnHQDuvfdeRo8e3fqn5bqgp2aMHj2agwcPBoxN0zRKSkqYM2cO06ZNY9y4cUybNo3Zs2fz/PPP43K5Qr6uzmoZ+/Tp01sfa/leHTp0CICioiK/17N69eq4j0MI0ffIyrYQQgArVqzA6/WSmZnpF3AFoygKl156Kdu3b2fFihVomoaiKDHdv6qqil/84hdkZGQwfPhwRo8eTUNDA9u2beOVV17hww8/5PXXX2fo0KF+51VWVnL11VdTWlqKxWLhwgsvxOv1smTJEj7//HNGjBgR9r4bNmzgN7/5Df369WPSpEm4XC7MZnOnxpSWlsbll1/O119/zYEDB5g4caLfeMeMGRNxHpqbm7nzzjspKSlBVVVOO+00CgsLsdls7N69m8cff5yLL764W3KnhwwZwuWXX86///1v6uvrueiii0hLS2t9Pjc3t8vHIITo/STYFkIIYMuWLYAeEBqNkf/XOH78eABsNhuHDh2KOfhLT0/nmWee4dxzzyU5Obn18ebmZp588kkWLVrEQw89xPPPP+933oMPPkhpaSmTJk3iueeeIyMjA9BXu3/6059GrKzxz3/+k5/+9Kf87Gc/Q1X9P+zs6Jiys7OZP38+99xzDwcOHODKK6/s8AbJxx9/nJKSEvLz83nmmWc45ZRTWp/TNI1Vq1ZhsVg6dM3OmjRpEpMmTWLNmjXU19fzi1/8QjZICiE6TNJIhBACqK6uBqJfrczJyQk4Nxbp6ekUFRX5BbWg5xLfeeed9O/fn88//5y6urrW58rLy1m6dCmKovDb3/62NdAGyMrK4re//W3E+xYUFDBv3ryAQLuzY4pFVVUVr776KgBPPPGEX6AN+icKU6dO9Xud0fJN//D9EyrdRwgh4kVWtoUQohM0TWv9u9frjdt1t2/fzsqVKzl48CD19fWt9/F4PHi9Xg4cOMCpp54K6PWhvV4vY8eODZouMmbMGEaPHs2OHTtC3m/GjBkYDIa4jSkWq1evprm5mbFjxzJu3LiYr+crVOm/RNuoKYToeyTYFkIIwGq1AnoOdDR8V7Ozs7Njvn9LmsLSpUvDHue7inzkyBGAsKkNgwYNChts5+fnx3VMsWjZiDhs2LC4XM9XpNJ/QgjRVSSNRAghgLFjxwKwdetW3G53xOO//fZbADIyMjqUxxtqFfxPf/oTS5cuZdiwYTz99NN89tlnbNq0iR07drBjxw4mTJgA+K+ox4PJZAr5XE+NSQgh+hIJtoUQAr0UnaqqOBwOli9fHvZYTdN47733AL0cnG++c0tTFKfTGfTcw4cPB338448/BuDPf/4zM2bMYMCAAX650qWlpQHntDSEaVkRDibcc5F0ZkyxGDhwIAB79+6N63WFEKInSbAthBDoubvf/e53AfjjH/9IbW1tyGP/8Y9/sGPHDpKSkvjJT37i91xLALxnz56A8zRN47PPPgt6TbvdDgRP6/j888+x2WwBj0+ePBlFUdi6dWvQ+23fvj1sCkkknRkTtL3h8Hg8HbpfYWEhSUlJbNmypbU6TCLo7OsRQgiQYFsIIVr9+te/Jj8/n4MHD3Ldddexa9cuv+fdbjd/+9vfeOihhwD43e9+59fOHWDq1KkAvPfee+zevbv18ebmZh599FE2bdoU9N4tecqvvPKK3+N79+7lN7/5TdBzBg4cyMyZM/F6vTzwwAN+udN2u50HHnggphSPzowJ2t5wtJ+/SHJycpg9ezYAc+fOZefOnX7Pa5rGypUrcTgcHbpurDr7eoQQAmSDpBBCtMrKyuIf//gHt9xyC1u2bGHWrFmMGzeOIUOG0NDQwMaNG6muriY9PZ1f/OIXQStcnHnmmRQVFbF8+XKuuOIKzjzzTFJSUti6dSt1dXVce+21/P3vfw8477bbbuOOO+5g4cKFfPzxx4wcOZKqqiq+/vprzjzzTPr378+GDRsCzvv1r3/N9u3bWbNmDUVFRUyZMgVN01i9ejVZWVlMnz49Yq3tUDo7phkzZvD000/zyiuvsGvXLk466SRUVWX69OkUFRWFvefdd9/NwYMHWbFiBZdeeimnn346+fn51NTUsGvXLo4ePcry5cs7Vf6vsy666CJWr17N3XffzTnnnNPaXfTHP/5xl2zmFEL0LbKyLYQQPk466STeeustHn/8caZPn87Ro0cpKSlhxYoVVFdXk5qayjvvvMN//dd/hbzGggULuPnmm+nXrx9r1qzhm2++YdKkSbzzzjshuygWFxfz6quvMnXqVCoqKlrvd9ttt/HCCy+0pjK0169fP/75z3/yP//zP5hMJv7zn/+wadMmLr74Yt54442YGsB0dkynnHIKTz75JGeccQbffPMN77zzDm+99RZbt26NeM/k5GSeeeYZHn/8cc4++2z27dvHv//9b3bs2MHgwYP5xS9+Qb9+/Tr9mjpj9uzZ/PznPyc/P59PP/2Ut956i7feeouKiopuHYcQondSNNlGLoQQETkcDq699lq2bt3KOeecw7PPPhvQ7EUIIYRoT1a2hRAiChkZGbz44osMHz6cL774gnnz5kVVIlAIIcSJTVa2hRCiA44ePcqbb76Jpmmcd955nH766T09JCGEEAlMgm0hhBBCCCG6iKSRCCGEEEII0UUk2BZCCCGEEKKLSLAthBBCCCFEF5FgWwghhBBCiC4iHSQBm83W00OImsViwW639/QwejWZw9jJHMZO5jB2MoexkzmMncxhfPTWebRarRGPkZXtXkZV5VsWK5nD2Mkcxk7mMHYyh7GTOYydzGF89OV57LuvTAghhBBCiB4mwbYQQgghhBBdRIJtIYQQQgghuogE20IIIYQQQnQRCbaFEEIIIYToIhJsCyGEEEII0UUk2BZCCCGEEKKLSLAthBBCCCFEF5FgWwghhBBCiC4iwbYQQgghhBBdRIJtIYQQQgghuogE20IIIYQQQnQRCbaFEEIIIYToIsaeHoA4cbhcqdhsSdjtChaLhtXajMnU0NPDEkIIIYToMrKyLbqF3Z7B9denMHasgbPPVhk71sD116dgt2f09NCEEEIIIbqMBNs9RfOCpvX0KLqFy5XKnDkGSkoUv8dLShTmzDHgcqX20MiEEEIIIbqWBNs9pbkBw75PwN3Y0yPpcjZbUkCg3aKkRMFmS+rmEQkhhBBCdA/J2e5BSl0Fxl1LcRdMg1RrTw+ny9jtwQNt3+fz8rppMEIIIUQCKSws7NDxq1at6qKRdN4HH3zA73//+9avFUUhNTUVi8XCiBEjmDx5MhdddBEWiyXme918881s2LAhIechFAm2e1pzPcbdy/EMOhPNenJPj6ZLWCzh02UiPS+EEEL0VT/+8Y8DHnvjjTeoq6sL+lwimzRpEqeffjoADQ0NVFRUsHHjRj7//HP+8pe/8Mtf/pKioqIeHmX3k2A7EWheDGVr8dbb8A48A5S+ld1jtTZTXKwGTSUpLtarkgghhBAnohtvvDHgsQ8//JC6urqgzyWyKVOmcO211/o95vF4+Oijj3jsscf49a9/TXp6OmeddVYPjbBnSLCdQNSq3SguO54hUyHJ1NPDiRuTqYFFi4wBmySLizUWLfJI+T8hhBAigsOHD/ODH/yAiy++mP/5n//hueeeY8OGDdTW1vL2228DtD7/61//OuD8wsJCJkyYwLPPPuv3uNPp5B//+AcrVqzg8OHDJCUlMXbsWG644QbOOOOMmMdtMBiYNWsWqqryu9/9joULF/Laa6+hKHo8cODAAd577z02bNjAwYMHcblcDBgwgAsuuIAbbriBtLQ0v9cQ7O++r3nJkiV89tln7Nq1i+rqakwmE2PGjOHaa6/lzDPPjPn1dIYE2wlGcVZg3L0Uz9Cz0dJyeno4cWOxOHjpJamzLYQQouf0hX4PBw8e5Cc/+QnDhw/nkksuwW63k5SURHNzxz8lttvt3Hzzzezdu5fTTjuNyy+/HKfTyWeffcatt97KH/7wB84///y4jPu73/0uL7zwAnv37mXPnj2MGDECgE8++YQlS5YwdepUTjvtNDRNY/Pmzbzyyits2LCB5557DqNRD1d//OMf8+GHH3LkyBG/FJtRo0a1/v2xxx5rzRO3Wq1UVFTw6aefcvvttzN//nzOO++8uLyejpBgOxE1N2DY8x88+RPRsof19GjixmRqIC+vQTZDCiGE6HZ2e0aQT1hVFi0yYrE4enBkHfPtt9/y4x//OCDF5PDhwx2+1uOPP87evXu59957ufTSS1sfv/nmm7nhhhuYP38+hYWFpKSkxDxuVVWZMGECH3/8Mdu2bWsNtr/zne8we/Zs+vfvj81maz3+xRdf5IUXXmDZsmV85zvfAfSUm/Xr13PkyJGQKTaLFy9m4MCBfo9VVlZyww038OSTT/ZIsN23koP7Es2L4eA61IPr9JrcQgghhOiUvtTvIScnh+uvvz7m69TU1LB8+XImTZrkF2gDZGdnc/XVV2Oz2Vi7dm3M92qRm5vbeu8W/fv3JykpsATwD3/4Q4AO3799oN1y3wsuuICysjLKy8s7dL14kJXtBKdW79XzuIeeDUm9538GQgghRKKIpt9DXl7vSCcZOXJk0OC0o7Zu3YrH46GpqYkXXngh4PmysjIA9u/fzznnnBPz/ULRNI0PPviAf//73+zcuZO6ujq83rZFxsrKyg5d79ChQ7z88st8/fXXVFRU0NTU5Pd8ZWUled38EbsE272AUl+FcddSPIOngLXv1uMWQgghukJf6veQnZ0dl+vU1tYCelrKt99+G/K4hob4vQlpCZytPrHM448/zltvvUVeXh7nnHMOubm5rW8mXnzxxYBgOZyysjJ+/OMf43Q6mThxIueccw5msxlFUVi/fj0bNmzo0PXiRYLt3sLtwrDvM7zuKsgYAcbY86eEEEKIE8GJ0O9BVfXMYI/HE/BcXV1dwGNmsxmA//7v/+aOO+7o2sEBXq+XDRs2ADBmzBgAqqur+b//+z9GjBjBW2+9hcvlaj2+qqqKF198sUP3eP3116mtreU3v/kN3/3ud/2ee+SRR1rv390kZ7u3qdqHcefHKLZ9PT0SIYQQolfQ+z0ED6j7Sr+HjIwMACoqKgKe27FjR8Bjp556KoqisGnTpi4fG8DHH3/MkSNHGD58OMOG6cUfDh8+jKZpTJ48mdRU/1TZjRs3Br2OwWAAgr+pOHToEEDAJkhN08Ku3nc1CbZ7I3cThrK1GPZ+Ao2B71aFEEII0Ubv9+AJCLj7Ur8Hs9nM0KFD+eabb1rzrUGvo92+tjboGy2LiorYtGkTr776KpoW+GZk8+bNfqvNneHxePjggw/44x//iMFgYO7cua01tk866SQANm3a5JenfezYsaBjBsjMzATg6NGjAc+1XO+bb77xe/zvf/87e/bsiel1xELSSHoxpe4Yxl3/xjtgLN7cUX2u86QQQggRLydCv4fZs2czf/58brzxRqZPn46maaxcubI1baO9u+++mwMHDvDUU0/x8ccfM378eNLT0zl27Bjbtm2jrKyMDz/8EJMpukZ7a9asobGxEQCXy0VFRQUbNmygoqKCzMxMfvOb3zBlypTW43Nzc7nwwgv5z3/+wxVXXMGECROorq7myy+/ZNKkSRw8eDDgHmeeeSYrVqzg3nvvZerUqSQnJzNy5EjOPfdcLr/8cj744APuvfdeioqKsFgsbN68mZ07dzJt2jS+/PLLTsxq7CTY7u28HtTyb1FsB/AMmgRp8dk40Z36QpMBIYQQia+v93u47LLLcLvdvPHGG7z//vvk5uZyySWXcMMNNwStKGKxWHj++ed56623WLZsGf/+97/xer3k5OQwcuRIfvSjH2GxWKK+/7p161i3bh2KopCamorFYmH06NFce+21XHTRRa2r0r7+93//l7y8PD799FPefPNNBgwYwFVXXcW1117LihUrAo6/9NJLKS8vZ9myZbzyyit4PB4uvvhizj33XEaPHs3ChQtZtGgRn3zyCQaDgfHjx7No0SI+//zzHgu2FS3Y5wYnGN8i6t2myYlx+4cdPs2cloazvj7k897ckXhPGg9q73gfFbzJgP6xXlc1GbBarT3zPe9DZA5jJ3MYO5nD2Mkcxk7mMD566zxao6gSJ3kHfYxauQvjzn+jOLq/aHtH9aUmA0IIIYQQwfSO5c8TgWrEaZlEtacAu8NAVqYHq1qK2b4OvO6OXavJiWHf53hPGoe3/6ldM9446EtNBoQQQgghgpGV7USgGqnKvZTr7hrP2IkWzj4/nVMnWLju7nFU5V7a6ZQQ9chmlNrDcR5s/ETTZEAIIYQQojeTYDsBOC2TmDM3m5Kl/t+OkhIDc+ZZcVomBT9RNeK0FlKWeRWblas5aLkKp7XQLzg3lK1O2PKAJ0KTASGEEEKc2CTYTgDVnoKAQLtFSYmBak9B4BPRroZ7mjHs/7LjqSjd4ERoMiCEEEKIE5sE2wnA7jCEfb7WEfht6shquOKyYzi4Nj6DjaMTocmAEEIIIU5sskEyAVgyAluO+srM8EKt/2MRV8PnF2BmVetjSk0Zamo23n6jYx5vPJ0ITQaEEEIIceKSle0EkG0opbg4eMBdXOwh21Aa8HhnVsPV8m9Q6o51aoxdSW8yUMspp9jJy6uVQFsIIYQQfYasbCcAs30dzy/Mp+TzbPLyVFwuSE2Fw4e9XHSuDXPFuoBzOrMaDmA48BXuETMh2Ryv4QshhBBCiBBkZTtBaJrCW28pzJoFV14J3/sevPWWglcLXv6uM6vhALibMOz/Crzhg3UhhBBCCBE7CbYTgL7Z0Rq8k+K8rKCl/8z2dSxaYAsIuIuLPTy/wKY3wwlBabChHl4fn8ELIYQQQoiQJI0kAXR0syMAXjc5le/x8qOTqJ5fQK1DJTPDS7ahFHNl5K6TavU+tNRstJzh8XoZQgghhBCiHQm2E0DkzY4hnve6MdtWtQXiQXK0wzEcXo8nNQstLadjJwohhBBCiKhIGkkCyMxKCvt8RoTnO03T9PztZlfXXF8IIYQQ4gQnwXYCSE7WKCoK/lxRkf58l2luwHBgJWjerruHEEIIIcQJSoLtBFBd6WbuXAIC7qIimDsXbJVd27ZccVagln/TpfcQQgghhDgRSc52Asgweyj6Dsybp/9xucBkglWrYPZsWPN58JrZ8aRW7kIzWdCyh3XtjYQQQgghTiASbCeAbEMp06aN46GHAjdChq2ZHWeGg+vwNjrwnnQaKMHrewshhBBCiOhJGkkCiKVmdrypFTswlH4BnqZuu6cQQgghRF8lK9s9xO3WUL0aqqrEXDM73hRHOcbdy3EXnAMpGd16byGEEEKIvkSC7R7S3AwVh2HwoOMPxFgzO+4aHRh3L8MzZCpaxkk9PBghhBBCiN5J0kh6UHU12O1dWNYvVp5mDPs+Q63Y0dMjEUIIIYTolSTY7mFlB6G5OYEDbkAt/wZD2RrweiIfLIQQQgghWkmw3cM8HjhwANASO+BWbKUY9v4Hmht6eihCCCGEEL2GBNsJoM4Jxyp6ehSRKfXVGHcthfrqnh5KzFyuVMrLM9m+3UJ5eSYuV2pPD0kIIYQQfZAE2wniyBFoqE/s1W0A3C6Me1ag2Ep7eiSdVlYG11+fwtixBs4+W2XsWAPXX5+C3S6VV4QQQggRXxJsJwgN2H8AvN5eEHBrXgxla1APb+x1edwuVyo/+QmUlPg37SkpUZgzxyAr3EIIIYSIKwm2E0hjExw63NOjiJ5auRPjrn+j1B3r6aFEzWZLoqQk+HMlJQo2W1L3DkgIIYQQfZoE2wkm4csBttdYh2HvJ3q1EndjT48mIrs9fBv6SM8LIYQQQnSEBNsJqDeUA2xPsZVi3Pkxim1fTw8lLIsl/LxGel4IIYQQoiMk2E5AvaUcYAB3E4aytRj2fgKNdQFPJ0IFEKu1meLi4M8VF2tYrc3dOyAhhBBC9GkSbCeo3lIOMBil7hjGXf9GPbYNNC8AdntGQlQAMZka+Mtf9MDaV3GxxqJFHkwmqSMuhBBCiPgx9vQARGhHjkBGukZqWi/MI/Z6UI9sQqk5gDPvIubMMYSsAPLSS6ndGuQOHgwvvdSIzZaE3a5gsegr2hJoCyGEECLeJNhOYC3lAEeN0lDVXhhwA4rLjq1KDQi0W7RUAMnL695A12RqIC+vgby8br2tEEIIIU4wkkaS4HpbOcBg7A5D+OelAogQQggh+qheE2w///zzjB49mtGjR7Nx48aA5+vq6nj44Ye58MILGTduHNOnT+eRRx7B6XR2/2DjrNeVA2zHkhG+8Y1UABFCCCFEX9Urgu2dO3fy5JNPkpaWFvT5+vp6rrnmGl566SWGDRvG9ddfz8knn8xf//pXrrvuOhobE7/+cyRlB8Hp7J1BabahlOLi4AG3VAARQgghRF+W8MF2c3Mz99xzD2PGjGHGjBlBj/nLX/7Ctm3buPHGG3nxxRe56667ePHFF7nxxhvZtGkTL730UvcOugt4PLB7D+zZ66axsXcF3Wb7OhYtsAUE3FIBRAghhBB9XcIH28899xy7du3iD3/4AwZDYO6vpmm8+eabpKWlccstt/g9d8stt5CWlsabb77ZXcPtcrYajR074OBBDbe7lwTdXjc5le/x8qOb2bLezspPHWxZb+flP23HYq7s6dEJIYQQQnSZhK5GsmXLFp577jnuuOMORowYEfSY0tJSjh07xjnnnBOQZpKWlsbEiRP54osvKC8vJ6+PlJ7QgKpqsNVA/34a/fqR+NVKvG7MtlWYWaV/Xav/R6uz4Bl2ARhTemxoQgghhBBdJWFXtpuamvjlL3/JKaecwk9+8pOQx+3fvx+AgoKCoM+3PF5aWhrnEfY8rxeOHIXt26GqSut9HSfRSwMa9n0KnqaeHooQQgghRNwl7Mr2woULKS0t5e233w6aPtLC4XAAkJ6eHvT5lsfr6gLbh7ewWCyoave+70hWkkhOTu7cuUHOO1YBtQ6F/IEq1qyEfQ8VQhMcW48yegaKIalb7mi1WrvlPn2ZzGHsZA5jJ3MYO5nD2MkcxkdfnceEDLY3bNjAX//6V2677TZGjRrV5fez2+1dfo/2Gux1NDV1fDU3OTk55HlNTVBbC2YzDMyDtN7UebL+AFr9+3hOPg/U4D+WLldqXLo+Wq1WbDZbrCM+ockcxk7mMHYyh7GTOYydzGF89NZ5jOYNQsItgbrdbu655x5Gjx7NT3/604jHZ2RkAKFXrlseD7Xy3Rc5nbBrN5Tu13C5ek9qieKsxFD6OXjdAc/Z7Rlcf30KY8caOPtslbFjDVx/fQp2e0YPjFQIIYQQIjoJt7JdX1/fml89bty4oMf813/9FwBPP/00w4cPB0LnZLc8Hiqnuy+z2/U/2VaNAQMgOTnCSrdqxGmZRLWnALvDQFamB6taitm+LmgA3BWUugoMpV/iKTgHVD19yOVKZc4cQ0DL95IShTlzDLz0UqqUDxRCCCFEQkq4YDs5OZkf/vCHQZ9bt24dpaWlTJ8+nezsbPLz8ykoKKB///6sX7+e+vp6v4ok9fX1rF+/nkGDBvWZSiSdUW2DmhrIydHo3x+MxiBBt2qkKvdS5szNpmRp2wcexcXjWLQgn5zK9zoWcMcQuCt1RzEcWIln6NmgqNhsSQGBdouSEgWbLYm8PAm2hRBCCJF4Ei7YNplMPPTQQ0Gfu+eeeygtLWXOnDmcccYZrY9feeWVPP300zzzzDPcddddrY8/88wz1NfXc9NNN3X1sBOeV4OKSr1kYL9+Gv3blQt0WiYFBNoAJSUG5syz8vKjkzDbVkV3szgE7krtYQwHVuEZUojdHn5F3m5XOIHfSwkhhBAigSVcsN0ZP/nJT1i+fDkvvPAC27Zt49RTT2Xr1q188cUXjB8/nuuuu66nh5gwvF44ehQqK2HAAI2cbD3orvYUBATaLUpKDFTPL2irkR1BvAJ3xX4Qw+5lWDJ/QLjtBRZL78lLF0IIIcSJJeE2SHZGWloar776Ktdddx179uzhb3/7G3v37uVHP/oRL730EiaTqaeHmHA8Hjh8GLbvgOpqDbsj/I9CbYTnfUUM3D0FUV9Laagh27uN4mJv0OeLi/WqJEIIIYQQiahXrWzPnz+f+fPnB30uIyOD++67j/vuu6+bR9W7NTdD2UFIzw8ezLbIzPC2dn2MxO4IXRcdOha4A5hr1rJowUDmzMumpMQ3LUVj0SKPbI4UQgghRMLqVcG26DqGulKKZ46jZGlgoFxc7CHbUBr1tSwZnrDPdyRwB8DrJqfyPV5+dBLVj5yMvd6EJcvQ6TrbQgghhBDdpU+kkYjYOXauZeF8G8Uz/QPl4mIPzy+w6VVEopRtKKW4OHjA3dHAvZXXjdm2isH2xYxr/hv5nuWYkh0dv44QQgghRDeSlW0BgLfZTfWad3nsnsl4fldAfYNKlsVLtqEUc2XH6myb7etYtCCfOfOslJS0rZS3Bu6V0QfuoajV+1DrjuEZUoiWlhPz9YQQQgghuoIE26KVt9mNfctKYCUAGUPAnKXoNbOthdHXzPZN+5hfQK1DJTOjc4F7WE1ODHtW4O1/Kt7+p4LSi9rTCyGEEOKEIMG2CGn/AUA14BkRZc3s9o1svHrKyGBlHdSGCLCNJuy536XalUONXcGapWFNqcJS+TG4XZEHqWmoR7egOMrxDC6ElPTYX3gXcblSsdmSsNsVLBZNcs6FEEKIE4DkbIuwasyTw9bMdlom6Q8cb2Rz3V3jGTvRwtnnp3PqBAvX3T2OqtxLQQ3yvs5o4lj/q7nhtn6cfoaB889XOe10Azfc1o9j/a8GY/QlG5X6aoy7SlBqD8fycruM3Z7B9denMHasgbPPVhk71sD116dgt2f09NCEEEII0YUk2O4h5Ufh56/O4uu9+T09lLA85vA1s21aAU5rIUf6Xc2ceTmRg3If9tzvctMtBpYt80//WLZM4aZbDNhzv9uxwXrdGPZ/heI42rHzupjLlcqcOYaAlvMlJQpz5hhwuVJ7aGRCCCGE6GoSbPeQXz1oos5l4vkVU1m7Z1BPDyekcDWxzWZQktO57q7x7NhtCggmW4RqZFPtygkItFssW6ZQ7erExkfNi2H/FyjOio6f20VstqQwc6NgsyV184iEEEII0V0k2O4hf/i1i2SjG1D4y38KWbVrSE8PKajMjNDNbubNg7nzVEqWqrgipFcHC9pr7OE3NNojPB+S14Oh9AtosHXu/DiL9Do6/TqFEEIIkfAk2O4hAwbAb674d2vA/bdPp/DZtpN7elgBDM7SgNrbLaZP11pXbE0R0quDBe1ZFi3sOZYIz4flaca471NoqOn8NeIk0uuI6XUKIYQQIqFJsN2DcjPq+d/L2wLu1748k6WbRvb0sPyEa3aTktwWQK9aBUVFwa9RXOwh23gAp7WQssyr2KxczUHLVWSlu5gxI3igOWOGRnZqdcA5Tmth8M2WwbibMO77DBp7tvmN1dpMcXHw11lcrFclEUIIIUTfJMF2D+tvqee+y5aSZNAD7rdWn8GSr09FS5DFzrZmN5vZsMrOp8scbFhl57FfbiYzta71uAULYO7cwIC7uNjD8wtraEzKC6hUcvd9Jp59loCAe8YMjeee9eDVlI5VNwnG7cK491NocsY4E51nMjWwaJEnIOAuLtZYtMgj5f+EEEKIPkzRtEQJ63qOzdb9ub0N9jr2Lvmw9euySgvz3y/C7dU7Lk4fu5MrC79BbZfOm5ycTFNTU3cONSTL2Knc9ci41i6RZrOex11YCKBx8pAmctiOoqr89L6xjD9NpbAQXC5ITYWVK+HAAQ+//42LmjqTXn86C9LNXiorvDgbkli+XGHBAnD6xMrFxR5efnQzZtuq6AebbMY9fDokpWK1Wnvke96Vdba7u4Z3T81hXyJzGDuZw9jJHMZO5jA+eus8Wq3WiMfIynaCGJxr5+ff+wSDqqdrrNgyipc/m4zHm7ib5xw717Lw4bYUE6cTHnoInnzSw/jhVQyxv4rZtopqzxB+cqPKqlUwaxZceSV873t66smVVxpw1rk5ufYlBver5u67YPgII2dNTWb6dIVVq2DxYj2QbxGquklYTU4M+z4Fd2P8JqCDTKYG8vJqOeUUO3l5tXELhqWGtxBCCJG4JNhOIMP6V3P7RV+gKnou9KpdBSxaNpVmd2J+m9qnmHy2zMGmdXZefnQz2T6dJb1qKgsXwvLl/ucvXw4LF4JXNeG0TAraPKflmHnz/M8NV5IwFMVVi2Hfp2juxPhkIB6khrcQQgiR2BIzijuBjck/xpwZK1HQA+5vDuTz5L/PpaEpyhzlbuZtdmPfspK6NYtRtr5GzVeLqdi4kubGtk1/Hq8hINBusXw5eLxGqj2hm+csX96SmtImXEnCcJSGGrRdK8DTNzYlSg1vIYQQIrFJsJ2Azhh6mOvPX9v69Y7y/vzpo/NxNCT34KiiZ7fDjh1QWamBplHnCF46sIXT4cHuMIQ9xreOd3Gxh2xDaecHWFeBYf8X4A0/rt5AangLIYQQiU2C7QRVOPIAs89e3/r1gcpsHv1gOkft5jBnJQ6PFw4dhp27wZIWPjc5M1PDbAmf7tBSx7u42MPzC2yY7etiGp9SV4Fh/1egdW6FPFFIDW8hhBAisUmwncAuOHUPl03a1Pr1UXsGv3vrPHYc7teDo+qYhgbw1pRSXBw8qC0u1vhqdRL/fNMQpk63xslDG9myPjAfPBaKoxzDnhUo9VUxX6unSA1vIYQQIrFJsJ3gvnP6dopP2976tbMxmQUfn8fn2xOv22QoetWS6iCNcTTuvRd+9jM1fJ3uBVUMqXmVwbWv6+X+4hBot1DqqzHsXq6vcjfWRT4hwUgNbyGEECKxSZ1tEqPOdjiaBm+vHU/Jt6f4PV40bic/nPINapzeMqlJRjJGTcZjLqDWoZKZ4cXgLMW5dwPmYRMCHnfsXIu3ObrAt+Xa3vQCGlwGMrKSMKYkceaZamsNbd863S4XjBrpob+yuTVlxGmZRLWnALvDQFamB6taqj8XKvhWja3nOJwGcvoZaWxUqLO7ycxwB56vKHhzRuDtPxaM8cmP70z96+46Jxa9tR5qIpE5jJ3MYexkDmMncxgfvXUeo6mzLcE2iR9st/hmfx4vfTqF+qa2QHDcoHJ+Mn0VqcmxrfaqSUayp1zG3Hv8y+99f5aHxx/VuPV21e/x4pkeFs63Ub3m3agD7pb79J92Gbf+PJsbf6py5ZWhj135qYOx2j9ANVKVe2lAacDiYg+LFtjICZZW4nPOl1+pLF5MQPnBkOcbkvH2H4M3dyQonXgno3lRnJXUuAYy5zYzJSW+Y9ZXnC2W4C3k7faMgFJ+kc7pCb31f4qJROYwdjKHsZM5jJ3MYXz01nmUpjZ9zOlDy3nwvz5h+IDK1sc2H8xj/vtFVNTGtnEyY9TkgEAbYPxpBm6+zRDweMlSA3PvsZIxanKH73Prz/X7tGx6DKWlvF+oGtwlJQbmzLPitEwKONf3nHnzAgPtsOd7mlDLv8G442OUmrLoXpjXjWI/hKFsDcat7+OyuZhzq3+grd8zdP1rqZkthBBC9D0SbPcyORkN/PyST/ju6dsA/UOJIzWZ/OHdGewsz+30dT3m4HWuCwth2bIQdZyXGvCYCzp9n1WrAnO0W/iW9wtXgztUN0nfcwoLAwPtSOcDetfJAysx7F6GUl+Jy5VKeXkm27dbKC/PxFWfjFJzAEPplxi3vodh/5cotlLwNEUYc/D611IzWwghhOh7JNjuhQyqxmWTNzP3O59hTtELUNc3JfPnj87ny50FnbpmqI6MvvWtg55X17EfId/7hN8U2VbeL1IN7mBj9z0n4muI0I1ScdVSU2vl+uuT/Vui/yiVGlc+St3RgJrdkcYcrP611MwWQggh+h4JtnuxUwcd4zdXlDDqpKMAeDWVv382mTdWno63g+WjQ3VkjJjqkd6xG/nex+mE2bP1leclS+DNN+GbjZ6A8n6WjPDNZ4KN3fecaNNVQmlNSQlICVFDprFEGnOw+tdSM1sIIYToeyTY7uUsaY387OLP+P7ETbSklazYMoo/fXQBrg60eDc4SwNK84Ge6jFjRog6zjM9GJylHRpv+/s4nfDQQzBrFrzwwvHqI+3K+2UbSikuDh68huom6XtOtOkqoXQmjSX8mIPXv5aa2UIIIUTfI8F2H6CqcMnE7dz1vU9IS24EYNeRfvz6re9Q5YhuU51j51oWzrcFBNybvvXw7NMeimf6r/4Wz/Sw8BEbjp1r6YhQ9wnXGdJsX8eiBbaA4DXac6JNVwmlM2ksocccuv611MwWQggh+h4p/UfvKf0HkJycTFNTU8jn61zJPFNyNnuO6V0mk41ufn7JfyjoVxPx2n51tutUMtP1etoNBzaRNaGYBi0Hu10hK0vDRBXVaz/C3RAhITrK+5hcpQxU16J4Q6Rf+NTMbqn1nW2Ivs52nVPFmptEU5NeZzsj3R35/OPKMq9i7ERLyOe3rLczuPb1qMZszazDlJ0W9n7dXTO7M3priaZEInMYO5nD2Mkcxk7mMD566zxGU/ov+jwD0Sukm5q4e9YnvLtuLP/6ZgxNbiOPvF/EnKKvOKOgPOy53mY39i0rgZWoQB1t9bdvv7tdjeuZOSyc/70O19kOdZ86gFzIH+izCdAnWLU7DGR59ZSPwco6qI3inl43ZtsqzKzSv9ZT2zGnpeGsrY96vHpKyDhKSgJXuMOmobS/fy3gTMZtuRgM8WmaI4QQQojEJmkkfZCiwOWTt/Cj81ej4MWrqTy7bBrLNo3o8LVC1d/ubJ3tcCorwW4//kHL8aY01901nrETLZx9fjqnTrBw3d3jqMq9FNTue5/YmTSWkDxNqJW7Qj5tt2dw/fUp/lVPrk/Bbs/o7PCFEEII0YMk2O7DzhpZxl3f+w9G1QMovLl6Av/4cgIdSRwKVX8bAutsq0lGLGOnkj5lNt4xV5M+ZTaWsVNRk6IPjMvKoKlR61Qjmy7jdZNT+R4vP7qZLevtrPzUwZb19oCqKdFSK3eCJzAVSJraCCGEEH2PBNt93IiTqnngh/8iLUXfOPnpthE88a9z8Hijq9kcqQZ1S53tlnSTu+aPZ0KhhfNnZjCh0MJd88eRPeWyqANujxdKD3SuAkiXOp4SMrj2dcZq/2Bw7esBVVOi5mlGrdgZ8LA0tRFCCCH6Hgm2TwD9Muv5/ZUf0z+zFoCth/L4/TszoyoNGKkGdUud7XimmzQ0QLXN/zpmM9x/f1s97mYlHae1sFvTSeJJrdoFbv/VbWlqI4QQQvQ9EmyfIMymZn59xVJGnnQMgMM2C//75new1YXv+BKq/jb419mOlG6iZRR0KMUk3dwW5JvNsHixXi971iy48ko4Y4KhR/K348bTjFq5w+8haWojhBBC9D0SbJ9Akgxefn7Jp5w9ai8AtQ2p/Pqt73KgMnRZu5B1sdvV2Q6XbmI2Q5I5vUMpJr5B/rx5sHAhLF/uf0yX5G+rRpzWQsoyr2KzcjUHLVd12Qq6WrkL3I2tX0tTGyGEEKLvkTrb9K0629H6eONo3l03HlBQFS83zfiK04cGLw0Yqv62Y+fa1rJ/6VNmM6EweNB+//2wdq0WNB+5eKaXx+7ZhH3Lynb3MWDtl8qq1QqDBqlcfHHo1xKyznUI5rQ0nPVBSv8dr4DSfmNmcbGHRQts5HRiM2Qk3n6n4M07rfVruz0jYJNkS1Mbi8UR13vHorfWQ00kMoexkzmMncxh7GQO46O3zqPU2RYhffeMHfTPrOOF/xTi1VSeWTqN/1e4kaJxuwOODVYXuz19JXocJUsDa1FPn67x0EMhNv4tVfH8rgA1aS3ZUy4LyPsuLtZYuECjf3+FG2+EwkJwuSA1FVauhAULoDZCh8doRaqA8vKjk/RNkXGkVu3G2280GFMAsFgc/OUvGdhsBmpqwGqFrCwP6emJE2gLIYQQInqSRnICO3PYIe75/nKSDG5A4Z+rJvDPVadFPC+YcOkmKcnhPzypa0wNvcGyROGX9+gbI31ztr/3Pf3rxYvBYo1PlY4eqYDidaNWbG/90m7P4Cc/MXD66Qrnn69w2mkKP/mJQepsCyGEEL2UBNsnuIJ+NTx45cekm/S268s3j+Zvn0zuUC1u0Fe/q9e8y2P3bGbDKjufLnOwYZWdx+7ZTEZ6+ItlZhnxZo8LGeiOH6/wq18F5mwvXw5PPAHJJgP792s4HBodHrgPe4QV8khlEDtLrdoNzS6psy2EEEL0QZJGIshOd/G7Kz/m9+/MpKounVW7C3A2JnPLzC9ROxBfhko3sZx7CkVFhoBgGaC4GFavVrBaQ9+osBAeeij4c8uWgaNOoc4ONXbIyYZBg4Ic6NP63VFnJNPixqqW6t0fj+dhWzKCV11pkZnh1Vuux5vXg1qxHZtyXsQ623l5DV0wACGEEEJ0FVnZFgCkpbh54Icl5GXZAdhUNpDHPrwAtyf22s5as4u5c6GoyP/xmTPh3nvhZz9TMIWpQOhyhb9+XV3bGKuqobKy3ep2u9bvheeZg7Z+zzaUBrRkb1Fc7CHbUBp+IDFQq/dgrwm/Ki91toUQQojeR4LtHqIk4MwnGz3cf/kyCnKrANhztB9/eHcGjc2xbUBUHKX85QUPhYVtTWmWLIE//EHPvXY69fzr9sF4i+zsCGko6f4l8Q4fhjpH2znRtn4329exaIEtIOAuLvbw/AKbvgoeSWdLB3o9WNLDV5mxWDRcrlTKyzPZvt1CeXmmpJYIIYQQCS4BQ74TgylFITenp0cRKMng5Rff/w+j844CcMiWxe/eKcbp6vwmRMfOtTzygI21azytGxxnzYIjRzScTv2YBQsIuvpdPNPD0HxX2PrThtpdfo9p6C3fGxv1c6Le+Oh1k1P5Hi8/upkt6+2s/NTBlvV2Xn50M9nRlP1rt4J+9vnpQVfQQ8lWdod9nWlpcP31KYwda+Dss1XGjjVw/fUpsnlSCCGESGASbPeggQP1EnaJxqBqzPvuZ5w25BAAFbXp/Pb/LsJeH77bZCihNk8OyW9byXU6YfZs/Fa/N27w8Ng9m2k6tpf77tPTTnzNnAn33wd6eO3P44F9peDxaB3b+Oh1Y7atYnDt64zV/sHg2tf1cn9R1NeOdgU9FHPNWhY9VRcQcBcXazz3nMbcuapsnhRCCCF6GQm2e5CiKBQMBUN8ykTHlarCLTO/4qwRpQDYG1J54P+Kqag1d+p6LZsn69YsRt36GnVrFqPYtvuVCnQ69Y2Qs2bBC897UKs3Y9+yksbkQVxyicKUKf5pKFOmwMWXKDSbhgS9Z2Mj7N8f5cbHOIi5dKDXTc7RN3n5iX1s+baRr77ysGWLh5deasTl0nj//fCbJ4UQQgiReKQaSQ9LTlYYMlhjX2ns1zKmmsiefDENWg52u0JWloaJKqrXfoS7IcIuwyAUBW44fy1pyU38Z+so6htT+N3bM7l71n8YnGOPebx6be585mL1a4bT0gq+enVbK/iWQDyY2jo16LtGNcmIOnQyhpQUiotDdLCM48bHuJQO9DRjPrIUMzDYkIzXk4/mHkppzYjw97Yr5OV1YLBCCCGE6BYSbCeAzEyFfrkaFZUdO8+3vbmjzkB6fzOfrtKre7TkQs+Y0Y9nn7qGys9f7XTAfdXZ35Ca7OajjafS6E5i/ntFzLv4U0aeVNXh6/lqSy+ZjOd3/q3gq1e3tYKPtPKcme4N6GqpJhlbO1J++ZXK4sV6aolv+cHWjY+VUWx8jELcSwd6mlCr90H1PiyWPCAz9L0tna8v3hEuVyo2WxI7d0JGRiZWazMmk5QjFEIIIUKRNJIEkZcH5g5kaLQEk3fNH8+EQgvnzUhn/GkKb7yhsHhx27WWLVO4+TYD2ZMvjml8l07awhVTvgHA7TXwpw8vYNOBATFdE4Knl9i3rGwNtKGlFXyIknwzPRicpQGP+3akbJ8PvmSJxuZvGqPf+BilriwdmK3uC3NtDau1Oehz8WS3Z7Ru0CwsRDZoJiCpViOEEIlHgu0EoSgKQ4dEn78dqr358uWwcCHMm9f22LJlCg1a7KVPik/byTXT1gEaXk3l6ZJz+c+W4bE0bYxKuFbwCx+x4di5NuAcj9k/f9o3H3zWLAXF44p642O04lI6sMPX9rLomQZMKc5OXzsa0t0y8fm+GZJqNUIIkTgUTevqUCnx2Wy27r9pkxPj9g8DHnY4NPbuC31acnIyTU1NpE+ZzYRCS8jjlizRA8sWn37iRf32+VhG3Grt7sH85ZOzAD3wGjGgghsuWENuRn1crh+Mb8qMb7qJY+dav1XwFt4xV3P+zNBBxspPHYzV/tEFA23rVFnrUMnM8JJt8O9U2SXXVo14+43Gmz0MDPHfLFlensnYsaHfCW7Z4iEvryvaa/ZdVqs1bv/vcblSuf76lBD7EjReeqmxT6b7xHMOT1Qyh7GTOYyP3jqPVqs14jGSs51gMjIUBvTXOHos/HGRNtu177posWg4Yhxbi8kjykhJaua55Wfj8RrYfbQfv3nrO1wx5VsuOHU3ahc0OgzVCl5NMmIZO1UPwo8HoAZnKR6zf5632ayv9hcW6nNjzkrDSWF8gmC/geqlA82s0r+OZ/wZ7tpeN2r5N6jHtuHNGYE3dyQYU+J260jdK2WDZs+y2ZKCBtrQVq0mL6/vBdtCCNEbSBpJAjppAKRHyN+OtGnQt/35jBkaqUpsmxnbO23oEf738qX0z9RDeLfHwBsrJ/DYBxdw1J4e9XVaguX0KbPxjrma9CmzsYydipoU+X1g+7z182dmMKHQwl3zx5FhSaJ4pj5HZjMsXqx3qWxpqnPa6Yaom830Kp4m1GNbMW7/APXwBmiKT3pJpA2Y3bVBUwQXzZshIYQQPUOC7USkKAwdCuHizXCbBouK9MAS9ED72ac9VK/9KO7DzLM6+N8fLOXskXtbH9tztB8Pvl3M0m9H4Y1QvjpcsJw95TK/gDtYUJ479ftB89ZLlhq48xcpPLmgkeKZHubN0/PYfSuRQEuzmeyIzWZ6Ja8HtXIXxh0fYShbA67YSjVarc1hu1t2xwZNEZq8GRJCiMQlOdskVs62r7o6jT17/R9rydluK23XrkZ1scaTT8KxoxoZGfqKdmfrbIfilz99PHXjy0+O8cIbmTR72gLkk/tVce15axlodQQ9J83UyN3/m8v409TW9I7UVFi5EjZ96+H38/SmNmqSkeyzLmfuL7MpWdq2Qrd8uUZRUegVu2/W2FEcpXizx3HGhDD5xhvsDLa/Hp/J8eWTY213GMjK9GBV45S/3Qla5kC8/cegpembZVvK+NntChaLFrGMn92eEbBJsrhYY9EiDxZLvJKUThySsx273prjmUhkDmMncxgfvXUeJWe7l0tPVzhpgMaRo4HPhatRXbliLTS7cUDc8rRb+Nav9l1RLp6ZzmMP2njkMTuHbRZAY19FDg+9M5NZk7cz+8ZTufN+/3M++UTjJzcqLFzo37CmqAjmzjWgZRQAK8k8Zcrx+/kHEtXV4T8ar6lVUbeuhNPGAKGDbVttKnluDaMxjh+1q0aqci8NaN9eXDyORQvyyYljycFoKbWHMdQeRssaQnXmDObcZGwXOKssWmQMGThbLA5eekkP0B0OAxkZHqmznSBMpgYWLTKGfDMk3yMhhOg5EmwnuAEDFJz1Go4g8U+oTYNdKVTJQX113crD9xzm+Rer+HLnMECvyf3O6rF8tMHAtKlebr9DbV3BzsxU+N3vAtM7Wr7+82N64rnXMjroip1vXnowLc1uMizh6ymmZxrY/iUMGKCRm6uXYYyV0zIpINCGltQVKy8/OkkvPdgD6pWBzLkpdBm/l15KDRmcmUwN5OU1cOqpVmw2qT6SSHzfDEX7aYUQQoiuJznbvcCQwZAU/2pundK+frWvkqUGjNahXHve19xw/mqSDPrKrQI0NnlY8amd63/UwJVXanzve/o57QPtFsuXg/f4e0F7XfAXv2qVvgoejG+zGxV3yOOKivTnPV44XA47d0GdI/bMqmpPmHkqMVDtKYj5Hp1V7SmgpCTU2PTKFaJ30t8M1XLKKXby8mol0BZCiAQgwXYvYDTqDW8SoZ5ApJKDtXX684UjD3D/ZcsYaLXjG7oOyKtnQF49oFFREf5edXUqlrFTyUgPHvwuWABz50Jxsf/jLc1unHs3YBk7FQ0jv/qVHsDff39bd009XQW05rZ8dpcL9uyD0v0aTU2dD7rtjvCr6ZHmsStFGptUrhBCCCHiR4LtXsJsVhg1Sv9vT4pUcjAzve35PKuDey9dzgXnJfsdk9PPxcBBTlyu8MFsjV3Ry/hlKkFXpp1OWLQIbrtNb+Lz5puwYb2Xx+7ZTM3XH5A18XvcNX88p08wcOGFenC9dq2+AfOjj/Sa2395wYPiKA24tt0OO3bC0aMaXm/Hg25LRvBKMS0izWNXijQ2qVwhhBBCxI8E272IyaRwymgD+QNB7aHvXLiSg76pGy2SjR5m/zCFQwfSW0sBahpkZTey8CkH06cHD+yKivSguGSpgTvvVHjsMS0g4C4qgjlzYPbstvrZKs3Yt6zEPGxC8NzyEvjZz+DLL2HtWo1HHgze7h3A64UjR/Wgu7a2YwFotqE0oLV6i+JiD9mG0g5dL57Cj82L1RK/yjVCCCHEiU6C7V5GQSE3V2H0KMiIvndM3Dh2rmXhfFtAwN2SuhEscE03NWCvSWHvLguuBgOKogfcR442k5pey4wZ/tdqSe9YsED/+v33FYwGL//1X142btRXsZcs0VemZ8/WV7hbzktJ0YPicLnly5fD5ZfDD3+oRZWa09QE+0ph7z6Nxsbogm6zfR2LFtgCgtriYg/PL7Dp5f96SPixVZN+4F0UR5ASOEIIIYToMKmzTeLW2Q7GnJaGs76+9WubTePQYfCEzwyIK7+a2T4lBx071+JtDixnZxk7lbvmj6dkqYqiaJyU78Sa3dj6/JBBGr+820JlZRImk77xccGCtiAa4LNldWQpe6hNGU91tRrQpKYlQLdmOGDTa3jHXM35MzNCvoY339RXwotnenjsns3Hq7pE8dpVGJQPVmsUYbpPne2W2uLZhp6rs93RsXlzR+HNOw2UwDctvbUeaiKROYydzGHsZA5jJ3MYH711HqXOdl+nGkkeNgnL0AKqbSrp5vBBb7x0tOSgY+daFj4yiLlKNiUlCuUH06mvSyJ/iH7mgYMK//tbB99usHD7bQYKC+Gll9oa3CxYABnpHuxrVpI+pYCLZluYNw/mzdM3NLYE6LNnwxfL9XJ/0bazL1lqwPO7AiC6YNvrhQNl4HRq5OcfLxMYpnmN2bYKM6v0Ywz6Mfu04WRZerbBDV5329gAglTxUyt3ojiP4cmfBKlZQYNuIYQQQoQnwXZvFappysxxLJyfT/Wad7s04O4oRdH44Q81br9dOR4gp7Bzl8rH/67jcLmX6mqNEaPtfP55Jg891PZjWVQEH3ygkeQ6AOg549POHsdDDwVW1PDNGddzy8f5ddf0veYqnxLXjjpDhyu9VFVDQwMMHWbA0T9C8xpIuAY30VIaajDuXgaKgpaSASkZaCkWNO8gaNQgJQNU+d+IEEIIEYosVfVSIZumLDUw914rGaMm99DIAmWMmswdv8jmpz9VWzcyzpoFI0ck4XVbqLHp1UpcLo2Kajvm9KbWc5cvh4cfhpZsp2hzxkMdV1QEd96p1y1vqWBi6ZeGZexU1KSOBY31DXBEmRy2eY3TMiligxunZVKH7tsjNA3FVYtiP4R6bCva3i8w7lqKcfPbGLd9gGHfZ6iHN6BU7YGGmp4erRBCCJEwJGeb3pmzXZZ5FWMnWkIet3mdnYb1i3ElQGGJ9CmzmVAYONZ162DS8Tjz3vtdvPu+s3Xz5NHyNKorU1uP3bDKTt2axUD0OeMtx2m54zlwQA9016+HM8+EP//ZP+e7eKaHhfNtHf5EINRra7FlvR0g7Pdqy3o7g2tfj/qeiaD93gE/qgH3yGJ91VuE1FvzExOJzGHsZA5jJ3MYH711HiVnuw+L1JjE4VQZOxJq7Hr5usbGsIfHhV8QfHzTncFZir0++AcotT55whPPMPGnxw0UDK/FYNCb36SmujlUlg4o1NaprR/DRJsz3nrcuGFoWgYLF+oVTNoH2nD8EwGsPH7fFDSvFvAaQuXBR2zy41CJVPOkJxvcdAmvB8PBtXiGXQiKNMgRQghxYutjv+VPHFE1TVEUsrIUThmlt3xPSem68ahJRrKnXMZd88czodDC+TMzmFBo4a754+g/MK21a6PfGDPb/m4yQaMriV3brDQ1qSgKWKxNDB9VQ1Kyx69ZTkelp3mZPVsPtC+/PHSL+JKlBrzWsUFfQ/aUy4KmmURs8pPhTegGN11FcVaiVu7s6WEIIYQQPS4hg+3GxkYefvhhrr76as455xzGjx/PtGnTuOqqq/i///s/mpubA86pq6vj4Ycf5sILL2TcuHFMnz6dRx55BKdv/bg+pENNUxQFq9Un6E4OelpMMkZNDt5EZqmB2+9Q+fOfAwPKw4dhxgw9i2nVKj2f2utV2b09C2edHtimmLyMPKWGd/+vEo+3c6uk+qZKDw89BPv2hT/2QJkaPA/+nuB58GGb/Bz/PiRyg5uupB7ZBK4gZU6EEEKIE0hCBttOp5PFixejKAoXXHABN9xwAzNmzODYsWPcd9993HTTTXi9bcFbfX0911xzDS+99BLDhg3j+uuv5+STT+avf/0r1113HY3dkUPRzTrVNKUl6B4NgwdDchyD7nBNZEpKFM6aogUEpa++4uHZZ/WAe8ECvU623iVSYf/eTKoqTK3HvvnvLB54q5gDlVkdHpvvZkmTKdLRwQP6kqUGPOaCsNf2VTzTw1OP2kitWZvQDW66lObFcHCNnoQvhBBCnKAScoOk1+vF7XaT3C4adLvd3HDDDaxZs4ZFixZxwQUXAPDEE0/w9NNPc+ONN3LXXXe1Hv/YY4/xwgsvcOeddzJnzpyQ9+uNGySBmJumaJqGrQaOHtW7JMYiUhOZlqY07Tc1Nh/bhXXy96mtS8LhgP79odEFthoNS6bGvp1VPPy4hzpX289C0fkKV/9QJc29P+qa4i355MknjeaOn6VQUhIYVBcXa0yerPDQQ8Gv8fmnTaSnNATkcgNBN2w6924gc8QE3OYCnA0quf2TaGpUcNibyczwJE6Dm04Iu0GyHe9J4/H2H9PFI+p9eutmoEQicxg7mcPYyRzGR2+dx167QVJV1YBAG8BoNDJz5kzWrFnD/v37AT1gfPPNN0lLS+OWW27xO/6WW27htdde48033wwbbPdaUTQmCUdRFLKtYM3SsNn0jZRBMnSiEinv2JLpAcfxL46/vVMNBiwTL+OnNxlYtqwt+NW7QSpcfDFMOzuHZx6v4akXNdas149Z/qnGxyVeBg4YzaI/R1dTvGWzpHHvBp5+8hpuvtX/njNmaDz1JEyYGPoaTe4kJpzf9nPpW9O8/YbNlhz29qk1xTM9PPFHB+4t7+IwunGn6vnqKcn02c2E6tEteDMHgil0RRYhhBCir0rINJJQvF4vn3/+OQCjRo0CoLS0lGPHjjFx4kTS0tL8jk9LS2PixImUlZVRXl7e7ePtLRRFITtbYeSIjudzq0lGvUZ1soklSzQ++ADuvx+/DZHfn+XBZE4O2Hh45x/GUnbYwMqV/kHm8uWwcKHeIbJkqYH7fpfN1KlWDh1IpyV7KDlFo7LGyf/cnAz5Z0U9XvOwCfz8LpWzzlJa62wvWQJnnaXwxZca06YF/6BnxgyNFSv8xxkulztcDvsdv7DizZvM0WNQuh+274BNW2DnLo2yMo3GxhAfNqlGnNZCyjKvYrNyNQctV+G0FiZ+UxnNi6FsNWh9byOoEEIIEUlC/5Zuampi0aJFaJpGTU0NK1euZO/evfzgBz9g6tSpAK0r3AUFBUGvUVBQwBdffEFpaSl5eXndNfReKSlJYfhwjd17oksrCbV6W1QEixfr7dOnne3hT39s5JY7TEGauih4PHpQ3T51Y/ly/fGW426/3YC9xkB9vZFBQxykpun5z/WuZu6cP5D/N2kwk4eXRVwc9pgLeH+JyvtLAp8zm1XWf+3h9tvx6zxZXKxx220Ks2cHnhOq3XvYHPYg53i9ekfKhga9XOPgQRpZWT4vJlTH0F7QhRL0TpTqsW14B4zt6aEIIYQQ3Sqhg+3m5maeeuqp1q8VReFHP/oRP//5z1sfczj03IT09PSg12h5vK4uVDVmsFgsqGr3LvJrbjNaVj9o6ni1FHO7Ffx4Gz9OY8cOD03N4dP500cHX71dvhwMBo2v1zThObaTutqhIQNP36C6vYwMfZV8wQJam/M0Nxk4Vm5h5kUN7NzdAICjDl78pJC1+4bxP+dtJDejIeSYHXWh65M7nVBR3sCf79tH0++G4qhTyUj3YkgxMfWcZEIVtnHUGUhpl/YU7j6hzvFVfgTcbpXBg1RUVcFmPpM580J1oczmH3+eitX5ddh7xluHfw7r9qMMORUlLbtrBtQLRZPrJ8KTOYydzGHsZA7jo6/OY0IH22azmR07duD1ejl27BgrVqzgz3/+Mxs3buSFF14IGWB3lN1uj8t1OiyvEEPp5ygdaG/dkY1pscjP19izF9xhFkubUoeErUDS4HBRt+lLvGMKwt4rVJdLh0MvCbh4MRiP/6SazbB4scLChWmU7kkif4iDpCT9TcG3+/vzq8UXcvPMrxiTfyzoNTPSw9e8Nqd6qF7zJfAlCnr+dfqU2TidoQPjjHQPde0+Coh0n2DntHfoMFRXw9ChcMyYT0lJqLlWOdqYT3L952GvF0+d/TnUNi3FM3IGKL0qg61L9NbNQIlE5jB2MoexkzmMj946j9G8QegVv/FUVeWkk07iv//7v3nwwQdZv349zz77LAAZGXoFjFAr1y2Pxyswj6ukVDzDp6NlDuzpkQQwmRSGDwNDmAXaiN0T6/TnI22eDFaOr6hID7SXL4cnntBIS9OvMW+ens+9fDnUO5PYuzOLWntbINzoTuKJf53L13sHBb2XXhc7+HiKZ3owOEtDnBOiTnYczwmmwQU7d0GNPXKnyt5AcdWgHt3a08MQQgghuk3v+A3t45xzzgFgzZo1AAwdOhTQN0oG0/J4qJzuHqca8Qydhjd3ZE+PJIDJpDD8ZDCE+CmJ2D3xeNfH8I1fNMrL/dNV9GokevoIwLJlCtYsvU53YaF/B0iPR+Xg/nQOHzS3bp70airPryjk063DAu7n2LmWJ/4YvC72wkdsraX82p8TqpZ2PM8JxeuFtNTInSp7C7ViGzT0vtULIYQQojMSOo0kmGPH9PQA4/G8goKCAvr378/69eupr6/3q0hSX1/P+vXrGTRoUGJvjlQUvAMnQJIZtXyj/phPDW27w0BWpgerWoq52WdVMNQxcazdnJqmMGyYnlLibRfP6UH0OL/NhC18V2/1wDOfuVj9Nx7O9PDEIzWoBi8bNuSye7eCyaSvaM+ejV+OtL3KxTNPQnlFGoGNZxRqqk00OI1MLrRTbdMf+8dXZ+JwpXDJhG0Yko2ttbCPVRt59BE3TyxopuJYM+mpel3s6tV6AGwZO1Wvme1TT7tm/Qc8ds8EPL/zr6Vdvdq/zndLPW+PuYDqOpVnntZw1nupqYGsLA0TVVSv/Siq2uBRz3Vv60KpaRjKVuMZMRPU8LntQgghRG+XkMH27t27yc/PJzU11e/xhoYGHn74YQDOP/98QN80eeWVV/L000/zzDPP+DW1eeaZZ6ivr+emm27qvsHHwNtvFFqyGcOhdVRlfy9o5YkXnhiMtf4dgG6rTpGWpnDyyRr79vkH3OGC6IWP2FqDV2+zm+o17/LYPZMDgtWqVXqwmj5lNldeGboOc1ZuGjfdptffDqWx0cjv7zfw6CPH2FeRA8CS9eOoa0rllp8N42f3Bda8Xji/rrVOd+ja2G31tL3NbbW02/M9/8uvVBYvhl8/6L8SXzwzh4XzvxdVbXBfIee6pQtlZe/qQqm4avX623mn9fRQhBBCiC6VkB0kn3zySf72t79x5plnkp+fT3p6OkePHuWzzz6jpqaGSZMm8eKLL2I6nuxbX1/P7Nmz2b59O+eccw6nnnoqW7du5YsvvmD8+PG8+uqrrccGk2gJ+S4HXH+jJeiGuOJiLy8/ugmA6+4aH3SDYnGxh5cf3YzZtiqu43I4NEpLwevzE+O7kusbREfb2bGFZexU7pofauVW44c/hJ/+VOH++9tyuQOOm+nhsXs2U/HNal76dApf7xvc+pwp2cj6rzNBU4KeY9+y8vgYQsypz3HhX4N+fjTjDHetYNrPdVaml37JpaTXdn8Xynht1PWMKEJLy4nDiKLncqVisyVhtytYLBpWazMmU+gKNl2lt24GSiQyh7GTOYydzGF89NZ5jGaDZEIG25s2beKf//wnGzZs4OjRo9TX15Oens7o0aO55JJLuOKKK1rTSFo4HA6efPJJSkpKqKyspF+/fnznO9/h1ltvjbg5MtG+ueXlmYwdG/rj9S3r9eopYyeGXgnest7O4NrX4z622lo94I73D03bqnDgKvmTT6lMnKjgdLZUI2nbJOl7nL6arq8YezVY8vVYPtp4ausxdQ4jZfsz0bz+AfeGVXbq1iwmfcpsJhSGntOW40LxPX/JEpg1K/TrjXStaKWaID8fzObu7T4Zt6o4KRm4RxZ3WzqJ3Z7BnDkGSkra5qu4WGPRIg8WiyPMmfHXW3+xJBKZw9jJHMZO5jA+eus89tp27ePHj2f8+PEdOicjI4P77ruP++67r4tG1X3s9vCBU61DRQvIWw48pitkZioMGaKx/0B8rxsu1eTY0fE4nfrrdTr1fO558/Q/LhcMH65htG32y59WFbh00hYGWBy8/PlZeL2QnuGmYJidA/sy8Xja5qe2TkUluuoq4Y7wPT9UOcNorxWtBhfs3gOpqRr9ciErS0+t6jUaHahHvsXbbwwYkro06Ha5UgMCbdDLVM6ZY+Cll1J7ZIVbCCFE35aQwfaJzmIJv24cTeWJzAwv1MZrRP6yshQ0TeNAWXyv6212H0+t8M+Lzjh3nN9xTqd/x8mNG7whUzIKRx5g0JSzeWC+F4NBIzXNw8kj7JTuzcTdrAd2mele6oiuukro1kj+54fJWorqWh3V0AAHyqC8HHJyNHJywGjsHUG3WrkLtXKX/oWiHA+6k9DUpON/N4IhCc3n717LEEjpWDlPmy0pINBuUVKiYLMlkZcnwbYQQoj46nWl/04EVmszxcXBA+7iYi/ZhlKyDaUUF4cqp9f11SmsVoUhg0OXBYynVKWKGTOCz8eMGRqpSlXY88cO3E9+/3SaGvXBJqd4GTbCTnKK269qSqy1sX3PX7VKL2HY2WsFoyYZsYydSvqU2XjHXE36lNlYxk5FTWp7z9zshiNHYds2KCvTaGhIuCyx8DQN3E3Q5ERx1aA4K1Ac5Sg1B1Cr9qBW7EA9shnjrhKU6n0dunSkT4wiPS+EEEJ0hgTbCchkamDRIk9AwF1crPGXJ2ow29dhtq9j0QJbQMDdWp3C3vXVKaxWhVNOgZwu7r5dvfYjnn3KExBwz5ih8ezTHqrXfhT2fMfOtTz9WC0Fg9Kpd+qBqTFJY+RoO7fc2FbzOtba2L7nL1ig1wpvH3B3ps42tOW03zV/PBMKLZw/M4MJhRbumj+O7CmX+QXcoG9irbbpDXF279Gw2zU9kO0rvG4MB9di2P+lHpxHIdInRpGeF0IIITojITdIdrdETcgPVjXhJFMFdZv+BZrXr852S03obEN862xHq6FB49Bh/9rY8WRMNZE9+WIatJzW+UhV9JrV7oYICdK0VfJoTBnKMy9qrP5aT/lQFS/fn7iFovG7SDZ6QlZXce7dgHnYhID62+2rrvieX9eg0q9/Eo2NCvbqZjLSPZ2q1ALEXCkFIDkZcnMgJwdUNbZV3LhtkIwHownP4CloGSeFPczlSuX661OCppIUF2u89FJjt+Zs99bNQIlE5jB2MoexkzmMj946j722Gkl3603fXKvVSk3ZDn1Fz9Pc08MJUFOjcbgcmhNsaL7Bek0NfPK5i3++1UBLgxxzSiOXTdrMtNH7MKj6Pwm/wLkpnWa3yvLlCgsW6G8qios1Fs6vpnr1Ox0Onv2Cep/gPVRQr2UUcPaFFubNg8JCfQNmaiqsXKl32vzq80a8Ta6wbwRaZKTDsJPR86M7KaGC7eO8uSPxnnRa2E2WUo2kb5E5jJ3MYexkDuOjt86jBNtR6k3f3NYfxgYbxn2fgzvyqm5383o1KirgWEVg18meYEw1kXvuNdx8m4Fly9qCrGnnuHA1O2nwWczMTa/jssmbmTy6nNyzAhvctLSSb+lwWVys8fi9m6jZ9FXU4wnVPOf7szw8/qjGrbergc13FsLefQb+9Cf/koct4zEaNS6+WPE/Z74tZPOc/v0gL6+bg+1u6HiqmSx4Bp8FqVkhj5E6232HzGHsZA5jJ3MYH711HiXYjlJv+ub6/TA21mHc9yk0dVHuRoyamzXKy8FW07Pj6H/eD7j1rn5+gXaL6dM9nDa+mpL/KPi2gR86sIm6+mw+/yyZ9u3hi4r01eWWiijfrG+k9ou/RT2eUCkh998Pq1drQcdZXKxxxRUKc+YEXq+oCObPh8mT250TIb2kYChYLJ0LuDscbKvGEB1PPSxaYItrx1MUFe9Jp+HtNyo+1+sivfUXSyKROYydzGHsZA7jo7fOYzTBtmyQ7M1S0nEPL0IzZfX0SIJKSlIYMkRhxHA95aGnNGg5QQNYgBUrDFx/fTb3XrqcwTlt/8j3H06mqqaOocNqSU3zz4lZvlwPtlvU1iV1aDwec0HQ3OvCQkKOs6REYeDA4NdbvhwaG4Ocs9SAx1wQchxlZdDY2D3vtZ2WSQGBNkBJiYE586w4LZPidzPNi1q+EcPeT6BZSvkJIYToWRJs93ZJJjzDL0Az9+vpkYRkNiuMGqkwOL9n7h9NybeCfjbuu3QZV529HlOSHlxrGpjT3Zw8opbBBbWkmNpWXn2b1pjTOxawhmqeE6kRTrjnjxwJca+6tnu1Lx2YOmk2FSlT8Spd372x2hP8DQboAXe1pyDu91TqjmHc+W8U+8G4X1sIIYSIljS16QsMyXhOPg/DgVUotYd6ejQhZecouD0a5SECw64STck3B6CqcOGpe5hYcJB3d1/KV2v08zQNMjKbSc+wY69J5lh5GiaTHqAWFUFaSjMdSeQJ1TwnUiOccM+npIS41/HmOaHyxItnjuPJR/PJq41jGkcQdkf4gL6rOp7iacKw/yu0VCuaORctNRstLafDDXGEEEKIzpKV7b5CNeAZejbe7JN7eiRh9e+vkJnRvffsaFMcS1ojd8wuI9dqptGlthbtUBTIsjYxeqydt/6vkRkz4MknNbxVezo0nlDNc1atIuQ4i4s1ystDv4ZVq4Kc49M8J2PU5IBAG/RUk9vvtlKZFMc0jiAsGcGbBbWIpitqLJQGG2rlLgxlqzHu+Ajj1ncx7Psc9egWFMcR8ERXq1sIIYToKAm2+xJFwTtoMt7+Y3p6JGENGazXfO6saDop+upMUxzHzrUs+lMdw4ZkcKw81a+qiqZprF1fh2J0cPfdXjye4IFkqHE6924I2jxn07cenn3aQ/FM/8CzeKaHJ/5oY/r0wGB8xgyNZ5+FTZsCz/FtnhMqTxzgy68MNGWO5kD6VWxWruag5Sqc1kK9NXqc9HTH0wDuJhRHOerRLRj2fYZxy7sYd3yMoWwNStVuaLDpteyFEEKIGEk1EnpxNZIw1MqdqIc3xuemXVCyraFeY/cevdNhh4YSMh0ifKm7zjTFaamF7c0ex5q18K+lTrbvaMvnVhRoblb41V0Kw5xv+J2jZRSQZE5n3s9U/5rOx8dZ++2/yJpQ3DqerCwNE1W49q4i84yLsdcasNshKwsyMzxUr34XgOyzLgt4rubrJRiyhwU04vGts+0dczXnzwz8SMFshsWL4aknNUqW+taeDl8lpNPVSOZZKSlpSylp6XiaHc9qJPGiGvT0k+OpJ1paNiSb43b53rrzPpHIHMZO5jB2Mofx0VvnsctL/xW170UdQlJSEllZWZx66qnMmjWLCRMmdPaWXaI3fXM78sOo1B7GcHAtuIOUqohWF5Zsq6zSONTBFPP4dFJMpqkp+rSBtkBVw5LVxEn5TgwGrTXgBjh/zG6unLaVvGmzmHtPNpOnqKxa5V8Tu8X3Z3l4dH4Tt89LaTenXp5+WuFnP4MPPmgLfGfM0Fi0CLxuDzff6l8rfMYMjWef8lD5+athO2mmT5nNhEJLwOP330/IcRYXe3j50c2YbYE5KrHW2e7pjqedZjS1Bt56EG4FQ+c+pumtv1gSicxh7GQOYydzGB+9dR67PNg+5ZRTOnyOoihcc8013H///Z29bdz1pm9uh38Y3Y0YDq7r9MZJp7WQ6+4KEdyGCcaideCA1qE63KGCxhYbVtmpW7M47DU6Gmy3v2dSkof8IXWkmf0DxJP6NePxZPPpJ8ksWQKzZgW/3v33w9q1WtC24TNmaJx1ltJaw7vFJ59o/P73wUsDzpih8fRjFRz77O2Qr0F/kzKOkqX+GxXDjRNgy3o7g2tfD3g8ETtIRqULPqXRTJl64J3eHy19ACRFV+eyt/5iSSQyh7GTOYydzGF89NZ57PI629u3b+faa68lIyODm266iffff59169axbt06lixZws0330xmZibXXHMNn3zyCY8//jj9+/fn1Vdf5cMPP4zl1iJaxhQ8BdPwDJoUto11KF1dsm3QoMhVOHxFqlrhW+ouXtpvaGxuNlC6J5NjR9qCKkXxcqQiiWNVDvoNqMfpDP0etrCQoIE26MG0bw3vFunpSsga3MuWKTRoOWFfg2Pn2qB54hD+vXaXVQnpCcc/pbnurvGMnWjh7PPTOXWChevuHkdV7qWdzlFXXLWotlIMZWswbluCccdHqIe+Rqkpi+1TJSGEEH1CTDugXnvtNRYvXsw///lPxozx35Q3cuRI5s6dy0UXXcQPf/hDCgoKuOaaaxg2bBhXXHEFb775JpdccklMgxfR07KH4Tb3x1C2CqW+Ourzurpkm6oqDB2isWt3dK3dI1WtaCl1F096oJrPXKw+K8MKE09P4daf1vPnJ5wcs+ul5BQF+g1o4MWXmrBkpXPbrUYKC/Ua2ampsHJl8AY0voLV066tDX+O3a6EfefsbXZTveZdHrtnMp7fteV2q8kmIETdQI7Pd4R7R60b2rWHE6mxzsuPTorpU5pWjXWojXVwvEqNZrIcX/Xur9fD72TaiRBCiN4ppkjp9ddfZ8qUKQGBtq9TTjmFwsJCXn9d/yh6zJgxjB07lm3btsVya9EZKel4hhfhHTC2Ldk4gu4o2WYyKQweFN2xocrmgV4eLzUjJWxlks5oC1Q3s2GVnU+XOdiwys5j92wmt/Jd7r+shGmj9rYer2lw6LCHguF2lq9oYNYsjSuvhO99T8+PHjYs/GpysJX+zMzwY4xUS7zlddi3rKRuzWLUra9Rt2Yxim176Pmc6cGqlEa8blS6aFW5I3qisQ6A4rLrZQdLv8S45V0Mu5ehHt2CFs27SyGEEL1eTMH2gQMHsFhC58+2yMzMpKysrPXrQYMG4XR2pA2IiBtFwTtgLJ7h06Nq7NFdJduyshRyw2dCAKHTIYqK4LbbFM6cYuKu+ePInnJZ3APu9oGqfctKvM1uTEkerj3va+68oRJVUVrfxzQ3Q62zniEFDlSDHlgtXw7r1ulvDIIJVTO7rk7rUK3waIWaz5bSgZWb1+rvHmLUre3aQ+ixxjrtKPXVerC9e0Xv2RgqhBCi02L67ZKZmcnXX38ddrNZU1MTX3/9NZk+S3N1dXV+X4vup6Xl4B5ZHLEJjtm+jkULbAEBd0vJNrN9XdzGNHAgpEXYW+a7yvzN+kaWLNFYskTPg549G5xOvVHL3HusZIyaHLexRWOM6XMWPe4lJbktyNc0SM9sZthIO6bj7d5/9jOFJ5/wBga4xRpPPAEbN/pft6gIjEZ49tnAgDtcrfBohFu1r179Lnabm9L9cOSIRkWFRnW1ht2u4ajTcLk0mps1vFHUb+ypVWVfPd1YJ4C9HMPeT8AtDXWEEKIvi2npb/r06bzxxhvceeed3HfffQwcONDv+SNHjvDQQw9x7Ngx/uu//qv18T179jB48OBYbi3iQTXiHTQZLXPg8RKBQX7pe93kVL7Hy49Oonp+u5JtlfHNtVUUhaFDNXbughB9YvQhHV9lTp9SwKxZwfONS5Ya8PyuAAhfBjCevM1u1F3v8reHJ/POVyN5480GVFUPuJOTvRSMsFN+yIzdZuJYeT2P3bPXL386NSOF8y4wceONcNNNeu62yaSnnlx0kcKqT2t5+rHGgFrhlZ+FrhUe7bj1cokrUSEg591eq//xlZzsxvc9tqpoGAz6HlyjUX/TlJ4O5jQwGJWEWFXWP6UZ51fnu0WPNNZBX+U27F2B5+TzICmt2+8vhBCi68UUbM+bN49Vq1axbNkyPvnkE8aNG0deXh4A5eXlbN68GbfbzdChQ5k7dy4AW7ZsobKykiuuuCL20fdSdXUZ2GwGamrAaoWsLA/p6Y4eG4+WmY97ZA6GspUodRWBB3jdmG2rMHM8vyFeG+YgcNNcPw/51lIOrtM7H2aMmny8WYuBrOwkUlI0Ko42k57mpc4Vfhm8tk5t/eimfVObliYy7ZvatDSl8ZgLqKtX6TcgicZGBXt1M5Z292/fOAb0wNWxbSWXXVTA/IctDBxUR2qa/s5BVSF/sJPUVD31xL7eP8CtHXM1x46ZAsr+tbDVGMhSytHMKdCsojV6aXSWA3ppv1DzFGyc8ebVjr/vcusbQJ1OqKjUnzOZNMxnRLGq3NUbMR0bWbQgP2RjHXNl/D6l6QjFVYtx9wrcw86HlMDGQ0IIIXq3mIJtq9XK66+/zmOPPcYHH3zAxo0b2ejzGXhKSgqXXXYZP//5z1vrEI4dO5Zvv/02pkH3ZtXVWdx0E+0akxh47rkssrNrem5gSSY8g6di3Pkv8HTTx9ohG+aM4+nHBuHxaNzxC//niopg7lwT35kF778fPn2hpTKJMdVE7rnXcPNt7RvC9OPZp65pbQjj253yy69UFi+GBx5qafiSEnD/aWePY+H8/KBdKw3OUs4/dxwlSy1Yc1z0P6keg0Ff5c7ObeS3Dzfy03NMWM1tgX6kNAZLbip33e1f8/z7s8bx+GNjufU2g18HyJkzoxtnd3C5IMVRSvHMwDrfEOdV5TA/U4sW5JNT/SEvP3pGl39K02HN9Rj3rMB98nmQGrlmqxBCiN4jbu3a6+vr2bJlCxUV+spov379GDt2LGlpif/RaHcVUa+ry+BHPzKEbEzy179GXuHu6qLvim0fhrK1XXZ9X+Eb5mj88IcaP/1p4HNFRbTWol69Wgs6n77dJPuf9wNuvatfxIYwvt0pw3VWbLn/Qw+F7lrZFrjr5QKNRi8DBjqxZLW9kTElNXHLzC8ZPVBfAg7VeCbcfDzwAHz5pcbSpUHmoBjOPls/JtrumtHqaGOg9vPROsaZHp74o43syncxJYVf/Y5GVzdhiqegjYEMSXiGTkNL798zg+plemsTjEQicxg7mcP46K3z2OUdJPuK7vrmlpVlcfrpoUvuffONxuDBNWGv0R0/jIZ9n6E4jnTpPQDKMq9i7MTQ1WzCdTdcsgSuugoWL4annvLvxthSSaN6tb6Sm3HujZwxIXTO8MYNHhyfv+DXKTJSZ0Xf50N1rfRNSWnJy978dTnP/yONKof5+FEa3zl9G5dN2oIhOXRA+uSTMPFMA+2L+HzxBZxzTuhx+j4fTXfNaHU02Ibg89GS4mJU3IwcAUZjdCUpQ4n0MxWqI2ZPCNmFU1HxDJmKZsnv/kH1Mr31l3MikTmMncxhfPTWeYwm2I5bbbSmpia2bdvGsWPHAOjfvz9jxowhOVkaOLSoqQn/vN0OibBv1JN/Jsad/+7yj9UjbZoL1tzF9zmnU69AsvKLJjwPuvwCuOrVbTnKdnv4AK6lIYzvJr1w927/vG9uuK9gGw8LgN9eofLhhlP51zenoKHwr29O5dsDA/n5JZ+AT+MZR52hNU/82LFk3nhDb4qzYAGtQXdzc/hx+j7vO06/wPd4OkVX53aH24jZBOzdByOGa6hq5wPuRNiIGTPNi2H/l3gGT0azhq8WJIQQIvHFHGw7nU6eeOIJ3nrrLerbrdKkpaVxxRVXcMcdd5CeHrmmc1+XlRX++ShKlnePZDOevNMwHFrfpbeJVIotXBv3luecTlA8LtL3L8bQAI66wE6U4Rq+mM0w4CRoMM3G0WTmgw/0gNZsDnlKwNg62rUyyejlssmbKRxZyjNLp3HUnslhWxa/+Mcsrjnna85uXomatJZ+Uy5j7i/TAnLWFy9uK3MY6Z+V7/Mt4/TNTffLa57Zs7ndDQ2w/wCcPFSLuulSe1GV92vZiNnDHS0jMZStxetuwttvdE8PRQghRAxiWuZxOBxcffXV/P3vf6e+vp5TTjmFoqIiioqKGDNmDPX19bzyyiv893//Nw5Hz1XbSBRWqydsYxKrNfac1XjRckboraW7UPiGORrl5cE3DBYV0dr4pbjYQ25SKQMGKBQUKAwK8sl7qlIVdN7NZvjgA4077lCYUGjhvPPU1i6POTlwySXBx+13/5keDM7SSC81qJOy6vjtD//NrImbURQNj9fAy59N4dEPLkAbeFZAMAx6DvnChTBvnv94Qo2zhe84M0ZNDnrtnqpP7qu2Fg4d7vz5UTdhSoCOltFQy79BLT9xN5QLIURfEFOwvXDhQrZv385ZZ53FBx98wDvvvMNTTz3FU089xdtvv80HH3xAYWEhu3btYuHChfEac6+Vnu7guecI2pjkuefo0fJ/wXgGTQKl6z52D9swZ2E1xedWBzynVwPRUymCNdaxWpWATwiq137Es08FvtH58581Hn4Yv3xv0APa++7TNxa2D2T97n88N9yxs/MbShUFvjdxGw9c8TGWNP2Tod1H+nHrbwcycXITS5Zo3H+//0r78uVtG0Q3bfLyq19pQcf5q1/BRx8FjtNjDtNgZqkBj7mg068nHiqroKKic1tJom3ClAgdLaOlVmxHPbgW3I09PRQhhBCdENMGyfPOOw+v18vSpUtJTQ1e89jlcjFjxgxUVeWzzz7r9EC7Uncn5LfU2bbb9dQRqzX6OtvdvYFArdjetStrPh/l+5Vi8wmK9OcMZGQlkZystda8bmpSqK1pDvj43+PW2LETfDMhkjPSyZl6OXWutNZ5VxWN004P/WZiw3oPqSnNep1tm5usnBSSTSpVlZCTC00uLzWVLjLSPTHlO7fkTzenDuWF11Q++7wt0breaWDo4Ax+fqehNXUE4NNPvGSaHCS5DmC0DuSz1dnk5SmtjXDKyzXOO9dLo6MOxaGPTTUayZ58Mcdq+3HueaHTND5d5kDd+lrYMXdmg2RHDR0CWVntxhlN6kcUP1PHtHGcfkbo/O7u2EgZcoNkGFpaDlrmQLwZeZCa1TUD60V664aqRCJzGDuZw/jorfPY5Rska2pqmDFjRshAG8BkMjF58mRWrFgRy636lPR0B+npibEZMhJv7miUmjKUhi76BxChYY7fczZANZKUeylz7jAfX5XU61+31lGufA+D0c3gwRp79+mnqUlGMk/7DrfcnupXi3rJkvBDq62up27ra6hJRj1/+u7U1vrbv/4NLF+uAnpSdGfznX3zpydPUdm1HUr3NDFoaB1Go0aa2cOxyhoeejiNuXNN/OEP+vgzTQ7q1ixGTTKSU3gZoAG+gakGLht1X+vj8a01Pndu+Hzojuagd5WyMkhK0jCbj483Ug3tyvf0gDvUz5TP+TcGKSnpK1E3Uir1VSj1VahHNkFSGt7MPLSMPLT0AXr7TiGEEAknpt8ogwcPxm63RzzO4XAwaNCgWG4leoqi4Bk0udMb1uIt2o//MzIUcnP150LlKPsHp4Ey070B58+bp+dMt6+/3dl8Z99rFxbq1613JrN7exa19iR9lCo4nPWs+dpOcoo7IP/6jl9k89OfqsyaBVdeqZck/OlPVe74Rdt4sidf3NrUZ9Wq0HneseSgx5tXg32l0Niof/gWa+qH7/nhNt9C5AZDCaG5HrVqD4bSLzBufRfDvs9RqnZDc8dWy4UQQnStmILt//f//h9r1qxh27ZtIY/Ztm0bq1at4sorr4zlVqInpWbh7Temp0cBQLUnTL5xiYFqT0Hr13knQUpK6BzlaINO3/NbAuKg9+9EvrPvtX3LCXq9Kgf3Z1K234z3ePrx4XIPI0bbmTbVhm3buoDzw42nQctpbeqzYIGed97+tccjBz3ePB69JKDbrXXoex+M7/lhv/fx7GjZXbweFEc5hkPrMW77AMPOEtRjWyXwFkKIBBBTGsl1113HgQMHuPbaa7nmmmu4+OKLGThwIACHDx/m448/5tVXX+Wqq67i+uuvj8d4RQ+pt0zC1ngG9lqlR0ukdaSOsqoqDB2ssT1ESsCCBXoZPYMhVFOctQHXjFR/O1TN7WjGG2y11WE3sduZRP6QOszp+ly/8a7CJ5bp3HD+WoZGSHdoGY9vrfGW+uTz5ul/XC4YPlzDaNvsV588UTQ1wb590GiMLfXD92en5XsP/m+eWjdSVq6jN1NcNShHalCPbEZLH4A3+2S0zPz4pJpoGkp9FXib0TLyYr+eEEL0cTEF22PG6Kudmqbx3HPP8dxzzwUco2kar732Gq+95r/hSlEUtm7dGsvtRTex2zOYM8fgH5C2z5PtJh2qowykpilYzcFTAlqCzq/XNNLgaAzZFMc3pSBi+kEH8519r/3113qL9ZIS/2PcbgOjhmcw4+x9vPpuJh5N5ag9k/nvT+c7zmYURUPTgqfEtIynfa1xp1NvN99i4wZv3Fq5d4X6BshMC5/a0f57357vz06wNxyjRnror2zWA+0EqLMdL0rdUQx1R8GQjDdrMF7ryZCW3bGLNLtQ6spRHUdQHEfB06SnmA27oMtLhAohRG8XU7CdlyerGn2dy5UaEGhDW57sy49Owmxb1W3j0esoj6OkJHCFLtTH//2SQ58z7WwPTUd2ULclsKthC4OzlOKZ4yhZamhNPwiWStKZfGffaysK3Huvnjrhe/2iIrjvPoUBBhfjR7lY8MpJHDwMoPCv5Rrjz7Cxe0cG9fVJIcej1xrv15pK4mvGDI1UpYrEKjwZSHF0/Hvvq/3Pju8bjuJiDy8/urlbf5a7nacJtWoPatUeNJMFzXoyXutQMKYEHnt89VpxHEFxHEZpqAl6jGH/StwjiyEpwrtQIYQ4gcVU+q+v6E2lZrq7NE55eSZjx/ZsiTQ/LRUl5ln9gq6Wj/+zg620q0Yqcy7lpnlWSpb6nNOaLhK+gkhbxRArX35lYPHiwE2S0V4r3LVvv8PAVVfpK62FhbSW8Vu1Cl54AT7/zMPttyuULFPoP6CenH4uv32rlcdMVBxNQ9OUgPH4ViPxDbhnzNB49mkPlZ+9irshQo6Mj+4o/dde61zd24Hvvd8FOvGzE+Qa8eo62ZnSf3GnKGgZA/FmF6ClZqPUHfFfvY6Clt4Pz8kX9Mgm6t5aKiyRyBzGTuYwPnrrPEZT+k+CbSTYDmf7dgtnnx06F3blpw7Gav/otvEA4esohwp4VCPVKZOwaQU46gwdro3dUgvbYy6grkGlX/8kvf52dXPc6mzXJI3nvPOCz/X998PaNZpf6cK0tGYGDnGQnNz2Tzg3B+66zUBB1v6A8RhTTWRPvpgGLQe7XcFi0Ve0q9d+1KFAG3om2Ia2udIyCnDWq1gyo/je+12gEz87PucGLz3oYdECW4dTqhIi2I4Tb/8xeE8a3+337a2/nBOJzGHsZA7jo7fOY5fX2W5x8OBB1q1bx7Fjx8L+Ar7tttvicTvRjdrn+rYXKU+2S0SozR2UasRgyUNtSEdzKagmjRRTHk6jMaoA2dvsPp7TvBI1yUiTdzJecwGaFns95pZrZ0wpACxBjykshIce8l85rK9PYs8OKycNdDEgr56mJr374r0Perj4fAvfPyX0PVUVTKkKja5stNFXkjfQhNOpUlMDWVlgTqmnauU7NDkSoeJ2IK8XmpvB7Ybm8Gn87U7sxM/OcZFKD3Z3SlUiUY9ta224I4QQwl9MwXZjYyO/+tWv+OCDDwB9M2QoiqJIsN0LWa3NFBerATnbAMXF3t5RIs1o4lj/q7nplvYpFP149qlrqPw8+hQK3yY0fqubEZra+K6Mt6yotl8N983fbk9R2jet0aWlKSx6NpWFC5PZsq0Ba47e0vvDTzL4Yv1l3Fz0KSfnVPilkaxcqbB4MTzwW9i0SWX5ciM33QTLlrVdd8aMNJ599mqqv3gtYQLucHP/xB/zSSt7F0uGG6WL0hkilh6cX9AWxJ+ADGVrcI+cCcnmnh6KEEIklJiC7UcffZQlS5aQk5PDrFmzGDx4MGlpafEam0gAJlMDixYZg1Qj0Vj0bDOpnka8hlEo7kZwN4C7EcXdAO7uTzEIxZ773YBAG2DZMoWbbzPw9GMXc+yzt6O6VqgGOSVLDczFymP3TA6o6hFtgO7YuZaF8/OZS2Bu+ZAhwYO8tiY7BiCdqkoT+UPqSEvzYK9VmP/O+YwbdIRf3Ne/NV/7/vvbcs7ffx9+9jP/QLt1bm7WeO6pyykveaX1dbS8YehMKk6sws39Hb/Q5/7w9pX0y9XIydFLP8ZTR8pOnpA8TRj2f4lneJF0sxRCCB8x5WxPmzYNr9fL+++/T79+vbf8U2/KEeqpnCaXKxWbLak119dqbcZkagh9guYFt0svGeZ2gduF0lSPWrENunmbwL6sn3D6GaF/+W/c4MHx+QtRXSt9ymwmFAZP9QDYsMpO3ZrFfo9Zxk7lrvnjg66KFs/08Ng9m1sDdL8VcJ9ShMn547n1VjWgCsqSJXrHyIBxZjaSP7gOw/GXbTBA+cFUqipTef99pfWcdetgUpjGixs3ajg+WxTmDYOHhfNtHW5T3xkdmXuDCtk50C8XkpLiE3SXZV7F2Imh79/RzcJ9KWfblzf7ZLyDOtZJtbN6a45nIpE5jJ3MYXz01nns8pzt+vp6zj333F4daIvomEwN5OU1EHW1R0WFpDRISqMltNYALcmE4dD6LhplcDX28MGW3a5E3Ygm0uplsKY2Ebs8/q4A0INtv9xwfEoRJo1n7lz9r6E6WPqqq01hx5YkbrjBzuqvPXg8Cv3zGrDmuli9xgwkAwq1EXKW7Xa9zWxnVvTjrdahYjb7V2tJTYWVK/UmNb5z7/FCRQVUVkCWVSM7Sz/WYOx84N2ZspMnIrV6H5o5F816cucv0ujAUP4NeD36tcz90NJyZMVcCNErxRRsjxw5krq6xMjnFL2DljMCb4MNtXpft90zK8ImT4tFi7rGtG8TmqDPB2lq05kAvb2MDI3vfNe/CYvJBOHfUKvcMUdl0wf/5rlPi6mxayQlabz9Xh2DC4wcPphBZmb4O1ss4KBjbxi6SpbF21p20bchT1GR3g0yK9MbsN9RA2w2/Q9AUpJGWiqYUiHVpAfgycnRBeBm+zoWLcgPWTqwt3edjCfDofW4TVZIzerYiV436tGtqJU7Wj8BU+qO6s8pir4JMy0XLf148C2EEL1ATMH2DTfcwN13383WrVs59dRT4zUm0cd5889EcdXqLZ+7QbYpfg1dwm1iDNXUpjMBenupShVTp/YLqEhy//36awj22lrGc3L/Gp573M2Pbk+jvkHfQJmR6WbEaBv/LjEzY4YpIGcb9Oumm+pxEJ83DNFsEg3HlNzIE09oLF/u/1qXL9c3kD79WGPE4iLNzWBvBrvPgQaD1hp4t/wxpRBYN9rrJqfyPV5+dBLV89uVDuxjXSdj5vVg3P+lvmHSkBzVKUrNAX01uzlEepqmoTgrUZyVULFdv01uPippegBu7ifNdYQQCSmmHT3f/e53ueuuu7jhhht48skn+frrrzl48CCHDx8O+kcIABQVz9Czwdg9vxgtlR/z3DMeZszwX+GeMUPjuWc95NR8hDnKAgr6JkYbxTP96821NJFx7FwbcI4eoAevTxdt18nqtR/x7FOBr+GbbzSefVavDBNuPM5vPmLxyyZysjJwN+v/7A0GeO11J4MLHEyf7n/+jBn6datWvgNE94YhnJac77vmj2dCoYXzZ2YwodDCXfPHkT3lMtSkyO/7610pQd9UgL6hs94VpBNiFDweqHNCRSUcKIMdO2HzFjhQpmG3a3i9PnN+vHTg4NrXGav9g8G1r+vl/iTQDtTkxFAW+O8hQEMNhr3/wXBgVehAO5R6G2rlLgwHVmLc9j6Gvf9BqZXfNUL0es310OQEb0dquyaumJvarFy5kgceeIADBw6Ev5GisHXr1lhu1WV6U0J+RzYQdHhTYzdT6qsw7PmPvpmyqxlN2HO/S7WrraFLtqkKS+XH+kZOTeNYBRyrMpIeYfU11CbGlsC2/eptkusAhsyBzP1lln+VkWKNJ5/wcuxwPelp+jWcezdgHjYh6P1VozFoU5qaDSWkDhkfdDy+K8YmaxY5U39AZbWRxW80ULLM1bpX1WxWmHe7mUH5yVgskJneTNXKt3HZaoCWTZ6hV/R9N3kG05FNoqF4x1zN+TMzQj7/6TIH6tbXwl6jM1QVMjIgywKZmTFWOfFpquOoM5KZ4e50B8rewpt3Ot5+owOf8DShHt2CWrW705umQ20y1UyZeHNHoWUNlTzvCHrrprREInMYH1arFVv5fgzHtqLU+MSUhmS0JJO+QGdMPf73VDRjCiSlohlNkJQKhqQeG3ckMQXb//nPf7j99ttxu91YrVYGDhwYtvTfK6+80tlbdane9I8k2n/UdntG8HJ9izxYLNEmTXQ9pXovhoPdm+sasgqEaqQy+1Ju+lnnKm6Eq9jxxB9tNNccxp06FEedAUtuKqvXKPzsZypOp37c92d5ePxRjVtvV+Ne8SNYu/bkFDennFqH26OvHGga2G3JlB9KZ+YMr989fdvKd6blfWequHTFNWKlKpCeDpYssGR0cMNlnDtQ9hqKgmfYBXqaR8tD1fswHPkW3I0xXTpiRRdjCt6cEXhzRoCxc5989HUSKMZO5jAOXLVYGspwlm3p1OmayYJn1EVxHlR0ujzY/sEPfsCOHTv4/e9/z2WXXdZlzSS6Wm/6RxLNP2qXK5Xrr08J0YhG46WXGhNqhVs99DVq1Z5uu1+oX9BOayHX3dX51ddoV29DHXf//bB6dej862hWf0Ppf94PuPWuYHnrGoVnu6hvqMd9/NM6t1uhrDSdc6cZQpYl7Gid7XisSse6uh5vCnrgnWnRV72NEQLvsD9fxR5efnRz3+1AaTTp+dvNDRgOr0epr47LZaMun6ga8FoL8OaOhpT0uNy7r5BAMXYyhzFw1bauZMdSDjXRg+2Ycrb37NnDpEmTuPzyy3ttoN0X2WxJQQNtgJISBZutZz5qCcU7cILfqldPCdshcKkBj7kg7PkRK3YcPz/UcYWFhMxJjub+4TRoOSGurbDqq1QW/slKnUP/uTAaNQqGO9i8vZ4m05DWI1vKEtatWUzK7n9St2Yx9i0ro1ptjzXnGzqXL9+VNMBRB4cOwZatsHu3xrFjGi5X8PWLiB0oPQVdN9ie5nZh3L0c4+5lcQu0O8TrQa3ag3HHRxhKv0RxVnT/GIQQbVx2fa/Fzn/5p4z0UTFVI7FarVFF9KJ72aOoKx11vezuoKh4hkzFuHuZvimih0TsEBih4ka0FTtCHeeK0DG+rkHFMnZqp6p5RPqZ0DSVA/sy/ZrhZFmbmHMn3HxhP0YPjC046UwVl/a8zW6q17zLY/dMxvM7//z06tXd08UyHGe9/qf8CKQka2RawJIJ5jRAUaQDZQ/+2/al1B7CUHsILS0bb/ZwtIyT9HxPIUTXc9mPr2SX9fRIulVMwfZFF13Ehx9+SGNjIykpkg+XKCxR1JVOOEkm3AXTMO5e3j0bJoOwZITf9RypRF+0Jf5CHWcKU5zFbIb+eWncfvt4wrV8DyXS9zwzU/9vXW0KO7YmMWhIHRmZzTQ0wJ8+Op9B2TX8YMq3jB10LOx1QgnXil7P+e7EqnQC/hi3aGzSm+pUVIDRCJkZGhljIvx8ZXiJWLtQxI1SX43h+Cq7ZspCy8xDyzgJLS03sOyjEKLjNE3fh+J16ylkFdtR7Ad7elQ9IqZge968eWzcuJGbb76ZBx54gCFDhkQ+SXQ5q7WZ4mI1ZM621drcA6OKQqoVz6BJGMrW9MjtI3UI7J9SipoBtSH2l0a7ehvquFWr4Hvf0zj9dCWgQ+Lw4V5uv12lZKn/9zTaDo6pSvha44cP+zyuqRzcn8l557mob3RQ36BysNrKE/86H3NKIxeM2c2syfvoSDgSj1Xp0BtQo3vD0VPcbqi2gcUe5udDOlD2KMVVg+KqgWPb9MoHGQPwZuShZeTJxkoh2mtuQD22DcXT1BZMe93g9aB43eBt1kv29ZGyffEQ0wbJa6+9lubmZjZu3IiqquTn5zNgwICg+duKovDyyy/HNNiu0ps2NvS1aiTBqIc3oFbu6rLrh6tGUpV7acgOgdnHq0XU1GgcPgzt47poK3aEOu7/XenhoT+o3Hyzf+72jBkaTz8NEycqrZVL2otUiSNYNZKWaz/7LNx/n5d/vhk45oqv3uXjr0ewYstIHK62pXdV8XJq/lG+N3ELBf1s3bIQGI/ygT0p5M9Hu58vEb1YNlRFS0vLRstoWfXue10rZXNf7E6kOVTqjmE4sDLmSkLB9OUNkjEF26ecckrUxyqKwrZt2zp7qy7Vm/6R9KU62yFpGoZ9n6LURZGy4FO32O4wkJXpiVi32JyeybGkU4OfA63X8+sQ2O56Ho9GeTlUtdvrFa4Gt++qqzHV5FczOytLw2xyccvtqSGqVWhMnqz4tSn3Faqah+94nA0G+uWl4mpUqanRW7Gnm+qxb/iY9DHnBYzFWeumxt6WG7720wP839pJlB7y7whoTXcyY+xOpo7ajzkl9KcmsXaQDFf6z2yGr9e4aHA0dura3SVYRZfcpFIszr5bZ7srdUew7UtLzcIzdBokR9kFqxc4kQLFrpIQc9jcgFJfpXdZbbDpn870OwWU+O0FUY9tRT2yOW7Xa0+C7RAOHTrUoePz8/M7e6su1eP/SDogIf5Rdwd3o75hsinEUi50rm6xasTW/3JuvD0rLrWO6+s1Dh6EhgibG/2GECIdYvlyjaKi0EvES5bArFnBnwu2sh3qPkVFMHcuzJ4NRdOD1/aeMUPjjjsUZs8Gp9O/BviKTzQG5NWTaWnyW9FWFS8TCg5y/pi9jMqr8H8uTA3yaGuIhyofaDbD4sXw1JOaX5pNPOqTd6Xk5GSamppQFcgfCNk5kifcUd0dbANgTMYzeCpaxoDuvW8XOWF+p3Shbp9DrwelwaYH1/VVeoWfYBuQUzLw5J+Jlt4/tvu5GzGUrUZxHIntOhH05WA7ppztRA2eRR9gTME99GyMe/4TMvh1WiYFBNqgl1GbM8/Ky49OCqhb7LRM4sY7sjp0TjhpaQqjRmpUVMKRo+CNYm9nxqjJAUEnQHV1pGBLgyCZ0qGqeYS6z/Ll+n/nzQMwcPNtgbW9ly1T0DT9mIcegvGn+R936EAG5aqX7H4uBpzUoO+D0VS+3jeEr/cNoSC3imvPW0d+dm3YsUSbcw6hN5bOmwcLF8Ly5Z3LZ+9pXg3KDkFdvcag/Bg7VIqu527CsO/T0J0xu0tzA0pTHXi9aMZkMLT8SazSriIOmhtQ6o6hNFTrwXWDLbquq40ODHs/QbMW4Mk7vVP7D5T6Kgz7VyZMNaHeKqZgW4gulWrFU3AOhn2fBa1QErFu8fwCzKwKPKekY+dEpCj066dX/Dh8GOwRKkqEqrMdrhoJwJDBXopnEnU1j3B1v5cvbwm24aGHggd3vscUFgYe5/WqVB5No+pYKo//0cbb79RRXad/vF5amcPv3p5J0bhdzDpzC+mRapD/rgAIHxCH2liqjy34OdFeOxHYbOBqgIKhGskpEnAnOrX8G5QGG55Bk0Dtol+lniaURgc0OlAa61Ca2v4e8hM4RdEDbkMKmqEtCG8JyLW03D6zKt+nuZtQ7GWoNQdirguv2Eox1h7Gk3caWvawqM9TK3aiHvkmusBehCXBtkhoWnp/PEOnYtj/VcA/+M7ULe7KWsfJyQoFBWC3axw6DM0h0pdD3WPVKj3Fo2Xl2VfxTA+qbQuP3aNFXc0j0muJVNfb95hwx2qawpkTkjgz+SO+PTCQd9aO50hNJhoqyzaPZs2eIcxWINTKPESuYQ6hyweGu277a8eaN97VGlywcxcMHqxhsUjAneiUmgMYXLV4CuKQx+11o9QcQHVW6gF1kwPcTR2/jqbp57mb/P5V+P5dM2Xh7TcKLUsqiPnRvPpeIa8HLXNg95eA9LpR7If0ALvuSHyDXE8ThoPr0GyleAZOhNSsCMeuRbF3LFVYhCbBtkh4WmY+nkFTMJSt9ns8Yl3sIHWLO3NOR1ksChkZGkeOQEVliHsEsWCBnntsMGj+VWRaV6/XHA8IV6JC2Jrf4e7TItJKuu8xkY7NTPdSp8AZQw8zfnA5K7aM4L1142n2GKhtSGXRS24GF9Ry5FA6zc2Bb3gi1TAHvXxg7bf/4pknL6fOlYbdrrdJV5TwwXbLtdUkIzmFl/HZ2mzy8lRcLnA0wuHD4zmvMJ+qVYmR2+3xQul+6NdPY+BJSM3nBKe4ajDuXtr5PO4mJ2rlLlTbPvB0T1lWxVWjl1g9sgnt5ImQ1E9fAT8RNbtQHOWojsMojqNtnxgkpeHNHYE3e1jXzo3m1e9fU4ZSe6jLy+UpzkqMu5fizR2Fd8DYwE9lGmwY938Vfr+U6DAJtkWvoFmH4vE2Yzi0vvWxSHWxg9Ut1s8ZHzSVJJ61jlVVYeBAyM7WqK/XywS6m/X/JjUGT4dwOuEvL3h48o9V1D+YEnOHxHB1v4uK9JV00DdDBqu/7XvMqlWhj2ufM25QNWaO38WZJx/k9ZUT+Ga/vrcjI9ONOb2GiqNpVFWaQFOCnh+KMdVE9tSruKld+cLnn9ertQStK+9zbcuYsyivyeGNNxS/Tw+KilRGjsyh35izsH37ZcRxdJeKCqivh6FDNJKSJOBOaK153KfpFSCioNQdQ63a1bOrh80NaAc3YHQ14c0+GW/uqD5VaSWkBhtq7WEUR7m+uTCY5nrU8m9Rj27Bay3Q5yYlcIN2p2gairMCpWY/qv0QeDrxCUaM91crdqDWlOHJn4CWqf8/Wqneq/+O7aHGcn1ZTNVI+oretBP7RN857ld6KMq62P4XOF6N5A5L9OfE/UWEHvczj9mwrXkXV33sYwhV1zmgGsljGrfeFkU1kiDHta8hHsy3B/J47Yszqalva4nd6FIpP5TOOWerEc9v0f+8H3DrXYGNecxm+OADjYcfJsQnAvq1+xVdz613mIKm6RQVwdNPuKhY/lLYMcRTSzWSSJKMMHQomM0ScLfXI9VIItCyBuMZNDl4HrfXo6eKVO7Sm+gkgPZzqFkG4el3CqRl9+Co2mmsa90YqG8O9IIxBc2YAoaU439P1vPUjSZ9I6DvZlGvW99gWHsY1VEOzZ0rgatl5OHNHYmWcZLf4xF/L2telPrqttJ89ZVdUqe6s7TMfFCNKDX7e3QcfbkaiQTbSLDd26jl36BW7Dj+hTGquti+fOtsR3tO/F9E6HF7mpspOwh2exxu067Odu5JJhqb9DrbWRYNE1XUbCghdch4v9rgaaZGXE0p1NS2ra47927APGyCX43oaPOdG5sNfPTtWEo2jsKrtQWN50x0cvn4T0hPivw/2Ixzb+SMCcFz7s1m+PprLw01jpD1zc3TbmTimaFz9tev9+D84oWI44iXaINt0JNkcnNhwAAwGCTobpGIwTYc/8VfcE7bKnFzA2rVHtTq3Z3Lw+5CoeZQM+fizR2NZunmqmPN9Sj1tuOVN6r14LqzK7+Kqgfenqa4pmdopky8ucdz3lVj4O/lZtfxwLrCp3qIrBZH0peDbUkjEb2ON+908DSjVu/1e1xDiS691evGbFvVVnUkxhztqLRrvmO1eEhPaYQGUFSF5LQUqhpPYZ82nKxsD/1yS8nYt5bDZW68x98Od2Zzn7fZjX3LStSkteRMuYw77khrtzKdw8L53zlei7otF7wlf7p9brheQm8lKcnJ1EUZKAKkJHm4/MxvOWtYKX///Ez2HcsF4Iv1ZtZuKubyKVu5+NIcDFmhX5vdHvqb63TC0SOgfrs4ZD57nTP8D4ezLnGDWA09/7+mBvLyNKzWxB2rAMVlx7hrKZ6801DrjqHYy3pdRQfFWYnBWannLmcNwZs1JPymus7QvCh1FSj1lcfrRleDuwNNC6K4fmdXscNRXLUYDq6DI9/itQ5DSzoVpaoU1Vmlr1pLvrNoR4Jt0St5889EwUu18cwgTW3GsWhBfocb1HSZds13WpqwPPGExsqVCosXw/0PtFQh0eugtryGkWnvUrrPTbM3VFOYcSycnx+xcUs86lzHw0BrLb+Y9R9W7irgzVWn09CUTGNzEq9/eTpvfAXlh5KwVaWiaUrAa7NYwgcrFouGI9zz6c20zG8wmenN3fK+KxbNbjhQBlXVek1uk0mC7oR1vPpDr9dcj1qxHbViO5rJgtYSeHc2t9vdiOI4fDxn+mhi/D+6s9xN+rw4D2BIwE9YROKIXx9PIbqTouDMOY8580I3tXFaJvXQ4Pw5LZOY+8tsJk9RWbIE3n5bT3s46yyFX/yipSGL/zktr8EzYDKjRkK/8WGC5XusZIyaHHYM4Wpulyw14DEXxPISO0RVYNqoUn7//z5m6sh9rY9rGpw0sIFRY6rJzq1n6TLV77Wlp7qYMSN4wD1jhkZ6avgVMdW+g+Li4OcXF2uo9h2dfEXdz+mEnTvh8GENj6d3rZiK3ktx2VGPbMK4/UMMe1agVO2OLve4oQb12FYMu5dj3PoehrLjZeV6c6AtRAfIyrbotWw1yfFvUNMFbFoBP7lRZeFC/+YrRUV6oP3HPwY/r+U1DFZX0ZwWW1OYSDW3o6lzHav2aTAnZXiZe2Yps6oN3HKnAUuW3v7dYNSD7v4nNbDhWxNOw1BgJQ11bhYuVPjyS8jL02t/p6bC4cNwzjkKDXXhf3HXbl9zvE53tv9GymKNhY9UUb1qTRfPQHxJaonoSa1pJoc3oKWfhDdriJ7frRr1jaDOCn1DYu1h6T4oTngSbIteK1wOL8TWoCaevGpq0NXr5cvhzjvbWqIH0/IaIjbjiRAsR6q5HU2da99guaMbJNUkI9lnXc7cX2ZTstQ30D2NhQu82KsNHD3sxZrtIqefC4NRQ1Wh3wAXP/0ZnD1iIj8YDh4F3nwTli7F5xowaBBkpIb/fnub3VSvfofHfjkZz4PtGgOtSoymNp0hqSWiR2kaiqMcg6McDhnQ0rJR6m2yai2EDwm2Ra8VKYc3Hg1q4sHjNQQtNwdQUgK33x763JbXELEZT4Rg2diw/3h98SC1qIs1jA3hSz61lRHsXM545ilTjp/rf/+SEoW581TuvhseeEClsiKNyopUMixN9B9QT4rJi8cDn+8Yzpf3u0ky1vLtBjNg8LkGeDzw9BNJRGpq3LJhNNrGQL1JS2pJbq4mVUtEz/B6UOpiay0uRF+UGEt/7Rw9epSXXnqJH/3oR1xwwQWMGzeOadOmcfvtt/PNN98EPaeuro6HH36YCy+8kHHjxjF9+nQeeeQRnE7ZFdxXWa3NYXJw49egJlZ1js6VnPJ9DXoznuDXiaYpjKIo3Huvnrriq6gI7r1Xfz6csBss2+WMq0lGLGOnkj5lNt4xV5M+ZTZJJ53Kl18Gv0dJicJ3v+v7fVRw2FPYs9NKf2s6pw53ARpeLzQ2NTPq1BqGDrOjqm2r9cuXQ2OjBJctqSU7dkBFhUZzs+RzCyFET0vIle1XXnmFF154gSFDhjBt2jSys7PZv38/y5YtY9myZTz++ONcfPHFrcfX19dzzTXXsG3bNs455xwuueQStm3bxl//+lfWrl3La6+9RkpK6CoEoncymRpYtMjInDmGgBzc55+oxXwsMSoBZKU3AKHb/ebl6UHv8uX6xsl582D6dI2UZLB5C8AKZsdGnl+YT8nnba3G9XxlLxdOtVH55dqwY2g2DeF7RQrz5unXd7n0FuyrVsH3vqfwxfIhQOjuiRE3WB7PGQ+5Al6ssXgxrU1y2mtq0t80+Dbf0ZvSOKhe/TE1dpU3tl3O2vVeFAXM6W5G///27ju+rfpc/PjnHA3LGpbllTjOHs4OJJAFYSaETRmXcinQW/q7LaMUaMttaUt7S8ctvdAWStm8ughQCJsWLmnYgSwSVgYkZMdZnrIlWdY45/fHsRzLlmTZsmzZft6vV16Oj3Sk7/lq+NFXz3me6fXUVNuoPpQPqHjrwimatg8t4QgcOGj8c7l0ijxQUGB0Nu2RDqUrCwuieNQ+rk0vhBADVE4G27NmzeKxxx5j3rx5cds/+OADvva1r/Gzn/2MJUuWYLUaAcyjjz7K1q1b+cY3vsEtt9zSdv277rqLRx55hL/85S9cc801fXoMom+43U385S/51Ndb8HoV3G4djyeMzQZR23zUw5tRmhv6dYxFpr2tbeUTp3DY80I88EedSERBNZu58SaVX/1KwUiVcLN06SweumcUigLPPKOwYkX7/RVOWuTBveBSbM27qdu8nuYE3Scbm1T8/hS54V3kfHeV/97kM1E4fSHW4ZO58ea8hOki0Wjy/HSnQ+euWzcR/cXYhG3qC+zwnetUZi9wM6w8QFFJC4oCpWVBPEUt7N/rxOWM9ltaSE9qoPeVpibjn0mFwkIdj6eb3Sg7lK6MWbp0Bg/+voKS2hwpsSmEEDkqJ9NIli5d2inQBjj++OOZP38+Xq+Xzz83ynTpus7y5cux2+1cf/31cde//vrrsdvtLF++vE/GLfqHzdZMeXkjU6Z4KS9vxGYzmhjoBRVEJy0lOvZE9N5uxtANikLKFI4itjH88F/x6Nu48Sa1U1C+YoXCNTd5WPGOJ+FlN3zbxOPL3Vz73zMoPuFCJk4yU+gmbpU3nRMkU15e0EWN65J8brljJtt32joF2jGvvw4LFnTevngx5OeF8G5ejW/dk6hbHse37km8m1fHBapG3rnC4YNOPt/iIeA3oetgNuuMHd/E7b/209Sc/BuEbImt5t9yx0xmL3BzyhkuZi9wc8sdMyiadyGqJTfWNKIa1NbBFzvgs890Dh/RCYWSP666rhMI6NRaj+8UaINRLefamz1Um49H0yRdRQghksnJYDsVs9kc93P37t0cOXKEOXPmYLfb465rt9uZM2cO+/bt4+DBg30+VpEbjgbdi9Dzu26r2ttqw6O57DKFm26CDz6AN96ADRvgppvgsssUasOjjevplQlXv8EIqsvLUwexsdrcjJjLmDEK06ZB+XCwWsFua0lZo9puS10r1+U2Jd3/jDN01q5TWfEvI72lOxYvhttu04lUb+/yuiaTibvvhiVLQIuq7N5RyJ5dLtTWfPNtu/L4/hPn88yaWWh92Bm5O/nsuaIlBIcOwdbPYMdOnfp6nWDQ+Fl1QGf7dp1Nm2D7F9BA6hSiRnUsn30ODQ0ScAshRCK5seSSpgMHDvD+++9TWlpKZWUlAHv2GFUUxo4dm3CfsWPHsmrVKnbv3k15eXlfDVXkIL1gBNGCESiKH337aqM1cB9o8pt49NHOzWsWL4ZHHwWf3whk6r2WlLeTKpCNXda+vrjZrFBWBmVlsE/L48YbFXS98xhuvFEhGEp9TkOgxZZ0/9//XmH+fON3my3lzVBWpvPyy0pbzvjBgxrlnjpqV69NvSOgFk/ge/9l3NdNN8Xyzq2sXu3hzbcDNPmDaJrKvzZN5v3tY7n61HXMHHWoy9vNVLr57LnK5zP+JZNWjfYw7NkLtbU6FVJ+UAgh4gyYYDscDvP973+fUCjELbfcgslknEjV1GQ0aHY6nQn3i233pfhr4na7UdWBs8jv8fT96uzg4qFg7qXo3ir0/R9BloPukgJLu3bsR8V+f+g+K45GO87UsXbKQLb9ZU0+M44O3/I0+cxcfjkJT5C8/HJ49UUTedbkKRj19UrS/bdtO3rS45o1R0/27GjpUg2PrRZraR5NPhWXU2O8cw9NH3yIWVGNJfgUmlus/POf8M9/drxEARy8804ev/vVDrYdLMbfkscfX1vE+LJ6vn32OgodaXS566EmX+oa6E2+5HNr7eKYc4HV1UWJTadOqPU4QmHYtRtKS1UqRqiY+6D8YMfnuug+mcPMyRz2jh7PY74DNYdjowERbGuaxq233sr69ev58pe/zIUXXtirt+/1env19rLJ4/FQX1/f38MY0I7OoR3KF6LWfoF6eBNEw1m5v2Be4uATjO3BFvAHAjiGhVi82JbwumecAckyoRYvNoLcGJczgr8xvmObqyCS8gRJlzOKLxRKegxut550/5dfPvr/u++GJ588emwxS8+Ics8d9VS//yJaOIJC92tct3Sxg4LK9859k88OlPLoGwtoCtrYeaSI7/5tKadM2cG/zf8Yi7n3Ux1cztSlHZPNrdVqJZRiznNFvn8XS8+YEVcpJmbpUp18lxXTpOPiTgatqjLSVIYPh5IijBMXssBht+MPSHfCTMgcZk7msHdkMo+6ZiHaT7FROgugOb+cq2kaP/rRj/jHP/7BBRdcwO233x53ucvlApKvXMe2J1v5FkOcoqCVTCJSeRZ64ais3EVjQ+ogvqn18oLIdm67TU94IuVPfqJz6qk6S5bEX7ZkiZGe8sgjxu/J6otnWqc7X6lNmrN98KDeVu/c7zdWyhcsMILwl1/W+XhjC3fduom6takb33TF7Uw9jwWtl08ZUc2dV7zMOcduRlU0dF3lra2TuPGvF3P/vxZS5+si16WbTP7dLD2j53Ob65q2reeeO+o7HePixXDDDQrHzbMlPBk0GjWC7m1fgN8v+dxCiKErp1e2NU3jhz/8IS+88ALnnXced9xxR6d0jzFjxgDGiZKJxLYny+kWAgBLPtHRC1E84zBVbYBQ7zVD6rL7oysKjWCvX8e44eVcdlkRN9+sxuU1j6lo4dvfsXXIVzZWtH/wA/jGN2D9+igP312Po6ZzfXGH9wMeuruCa272sGJFx1rW9dStTV2nu279Kzzwxyu57gYTK1ceXaVcskTn9FOjnDTXy016ISv+ZWpbAT9620aQHWt209PyeKr385RdMFXv522/Kwp86fgtLJm5nYdWLuTzg2VousrHe0by8Z4KRhY1cMm8T5g28kiX99sVIxit4CY8CeqEx89tJi3v+4sWjlC37gXuunUu+m+msLfKCihtKUh+f+vJoHi469a5rR06j2puNiqguN06TifYHWa04XOp16RmtxBiaFB0Xc/JJYf2gfY555zDXXfd1Zan3Z6u65x88sn4fD7ee++9uIokgUCgrSnO68m+x4cBlZYhaSSZ63IOtSjqka2o1VuhF14efs8C/uO/ZsQFuTFLl0b5652bcNS35oG0ax4SC0iLTLup08Yyb5Gbm282Vo1jTW1WrzZSN95/L0qZsil1wJLgtk1Nu6ndkl6gZ863UTT3HJr14raa5vlKLXXrX0GLRI7WmW5XJzsWRCZv926kl3TV7h1aS+zNv8i4jQ5NjO75TS11a5Lfhi9o5anVx7Bx1ygi2tHHwWULsnTWZ5w+/QvMpp4/1nF1thMcf9v4M5yD/uacdzmzF7iTXv7hGi++dU8mvTx506MoD/6+vts1u+Xr+8zJHGZO5rB39HQeQyGdWr+b0lPOysKoupZOGklOrmzHUkdeeOEFzjrrLO68886EgTYYbaYvvfRS7rvvPu6///64pjb3338/gUCAa6+9tq+GLgYD1YQ2fAZa4WhMBzag+KozujljVXkk19zcOUh8+J4GHNXtVqJVM5G8ciJBJyEUoiadSF45TdVmnnzSSBlpnze9eLGRIx1sCuCItkvc7oKOgqKAqwAarWZsaTRkMdtsWJyFNPtUUEBRFSyOQsw2G8H6htYVzdWodM7HTlker8OKaKoGMXVrn+euH8wl+vP4oLbhgw9TNpVx2kL8v9PW87WT1/PaJ1NYuakSf0seTUEbz647lhc/mMncCXv50nGb8Di7Wb8QY/U31fF3dw5yVVqVSVJcnnQOWmt2//bW4wntXE1+PtjyociTQddLIcSgFonoHDkCtbWg2KG0vweUQk6ubN9777388Y9/xG6389WvfrWtpnZ7S5YsYerUqYCxgn355Zfz2WefsWjRIqZNm8aWLVtYtWoVM2fOZNmyZdhSlHIYSCvFsrKdue7OoVK/G9PBjyHSw4oWqpm60i/FtVqPpYcsPamOourW1TyzjSNlV3Dt9Z1TNe67D66/Xkl48uTixfDAfUGGH/pryjEk7gKocd8fNb73PZWXXk6+2mrzFFK44DKuu45OY3vgAWhY8xTB+oakd5/uimhPVn97so+uwyd7y3l23SwOe10cbQGkM76sli8d/ymTy2t69by+TFeFc0Gmx9Dd/S0WGFkBBQWJHwhZUcyczGHmZA57R7rzqGk61dVQXW006wIwOdxMuUhWtrulqqoKMILoBx98MOF1Kioq2oJtu93OsmXLuPfee1mxYgVr166ltLSUr3/963zrW99KGWgL0RXdM5aIawTqoU9Q63Z2e3+/+3i+eWPn1TxQWbrUw1/vPB5H/Rq8JWd3CrTBCG4bGvSUFU1aWlK/lP3uZF0AVa67XmH+fIWX2lUV6bjaWrzwYr55LQnHdt11Og8/eDFVr/wp6f2nuyLak9XfnuyjKHDMmIMcM+YgB+pdPLV6Np8fKENHYeeREn7/ymkU2gOcdexWFk7ag82SOu8+HZmuCucC42TQJJVJ0jgZtLtzEG4tJeguMOp3Wyyyyi3EUKXrOrW1cOQI5HjGXSc5GWzfcccd3HHHHd3ax+Vy8aMf/Ygf/ehHWRqVGNLMVrSRx6MVT0Ct24Xq3Zf2SnddNEXTk3ZNaOqCxZ2C2Zh9+1IHGd7G1EFMqjGsXGl0t+w0tnYNWRp9lqRjW7lSodGXukh4Ou3ifXTdIEb/1Vjc04lLF7G68njv/Z43lRnhaeI757xDY3MeL30wndXbxxLRTDQE7Pz9/eN4du0xnFi5i1On7aDc05TyOFIeY5pzkMu6czJoIj2dA28jNPlg+HCd0mKyVkpQCJGb6ut1Dh2GAVAtNaGcDLaFyFn5HrQKD9qI2Si+w6gNe1Eaq1LW6PY2pW56Elvta/AmDyDyUjd4xOHQoTH55V2NoX13SoeDthMxG4MuCuZdjqoa2/1JirR4vanriKa7Ippq5dPhAIvDyc0/nsWKf8Xnvj/1FFx2WeLxpbtiXJDfwpUnbeTSBR+z8tNK/u+TKYQiZsJRM29tncRbWydRWX6Y06bt4JgxBzCp3cvAy3RVOBe0r0wS/UV83nzd2q5PtM1kDjQNDhwAb5OZ0llzaVTG0uQzU+COZKWaiabphELG6nooZPxTFKMjq+SRC9E3Gpt0Dh2E5u6fSpNTJNgWoicUBd01nKhrOGhRlMYDRuDddBD0+NW7rkv/adAIhe7kwduaNbB0KaxY0fmyxYvBkR9OGWx3NYZYppXDQYcTMVXAzdKlOk8+ebTUW6fbd0OqNd90V0RTrXzefDPc/B01LtAG2k46/a//gp/9rPN+3V0xzrNEOXfOVhbP2M7rmyfy2idTaAkbK/fbDg5j28FhFNoDnDx1JydN3kmBPb1vODJdFc4V6ZwMmkymc6BazOTPupD/16mayQweuruC4ppuVDPR9bYgOhQyul+2/z3Z54a6Oigv1/F4JOAWIhVd1wk2gz9glABFMc6OUVXjg6uigtr6U1GguVkjGNSJVXiuqQFf71Xh7Vc5eYJkXxtIJxzKCZKZy+ocRkMo3irUhj0oPqOGc7ql/7zDL+LqG0oTpmucf77Oz38Ot9wSf5Lk4sVw2206U0s2Ya99P+mwUo1hyRKd+fMVfvUr+PGPjcA+UX54++t13P7wg+GUOduQXnk89/SF3HJH4pXP11/XWbw4eYCzahUsWhS/bekZUe66dVNGVT6aQ2ZWflrJvzZVtgXdbcekaBw3fj+nTv2CCcNqu8xuyIU626mqvfTFGNJ5HiRjPD9mJkw16lRGsx1N0wkGjT/4sX/BFmO1vKccDuPkTZttYAfdcnJf5mQODdGIjj8AgYCxKBNo7t5rLJOuurl+gqQE20iwPdT02RyGm1Hrd6Me2WpUAunYUGap0YSmKLYal6IayUMPRDFHvbz2jqdTRZMzT6rDU93Fil6sGkmnMWjcf5/Gd7+n8NJLJl5+Gc4/P/nNrFyps2RJ96uRpOtoZZHOK58//anKopOSBzZvv61zyilK3D7tm+pkyh+08K/NU3lj8yRaQp2DvbGltZx97GfMGn2AdLIM+qNde09rffd3gB7TVTWTzRu9jKh7kuZYYN36syUI2fhDpwDFJTB8GJhMAzPolkAxc0N1DoNB3QisW4Prlh4W7IqRYHuQG0jBqwTbmetqDoPBfOrrLW2NWzyeMDZbc4/vT63ehnp4U8JmNZ3yTG2F1JVdhLfRQoMXCgvB7QpTdOR5iATxlpxNXfBoU5kiWy3umlchkkZCm9kWt39hoY4nrxZ347vUF51Fg89Og5e4gLWj997TcTiMHO3CQigo0Gn88B807j/Q5d1bXU6KF16EL2hv29+RF6B29fOEmo4mIyRb+Yx6ZjB7TvLc8w8/1FHQOjXcifRSsl8sUL3h+4Vs2tKCpzjY9nWnoujoujFvIzxezpz1GXMn7EuZ192TPyyZBr0pV4aTfAuQS814tKlXcMoZrqSXv7OyCWXL430ylvbMZigvh6IBmFoyVAPF3jSU5lDTdGpqoLoGIr38sh/MwbbkbAvRjtfr4pprTB2az6g89JAZt7tnlSi00koINeGoXYOD1q+4E+VXm20cKbqEa7/ZcWXbwkMPXIIaaeSabxd2yFUt5qG7z+06V1U1U1t0Ltd8Oz5guuCCEn7724u5rrWs38svJ78JMFYJTzyx/djggQfOJ+h9PC5g7sjqclK06Aqu7VSn284DD1xB3aqj+yfLCS5dPJnFi01Ja40rChx7bPvV8GLuueO8XgsGYyUGX39dBczUVudTXNaMpyjY7oQ5nQP1bv789nxe2jCdM2d9zgmVu7GYM8hXaJU86J3BPXdUpHWcXVV7SVS5JZea8XRVzcTVTxVdIhHYtw/q6nQqRkB+/sALuoVIZSCX3csFuV7WVYg+Ewzmdwq0wTgB75prTASD+T2+bW3EHHTX8JTXSVVn+/U3TVxzkydh571rbvbgdx+f8raT1dmeOVONa1SzZo0RuCayZInOm28mqrMNxQsvSnn/xQsv6tQQpzv7A6jRJm67Te80vlje+osvdnjc/mXipls9uCrndnnb6egYqEYiKocPOPji80JqjtgoKYajzXGg1ufkifeP4/tPnMf/fTSZ5lBmaxspg940jzOdOtcddRmgO8Z2eb+9xW5rYcmSxN8WLFmiY7dl+D12hvx+2LYdqqp0otEh/6WxGAx0nbo6na2fQdUBCbR7Sla2hWhVX2/pFGjHrFihUF9voby8h+kkikJ09EJMO95ACXoTXiVVne3yciVhJRJjbEdrdSeTrM72ggXwq18dvc+77zaqkUD8SZJLl+rccIPC5Zd3vu2VKxV8QXvS+wbwBe0p63R3tT9Ac9BKIKDw5S8blUmO5q1DIKDwv//beZ906mynK1mgGgmbOHLIwdOPRdn91mus2zGKDTtH0RQ0SrwEQnk8/8EsXt44nfkT93DR3E9x5Xf/q9KerEp31JM617nUjCcYyuPGGxV0nU4nCt94o0Iw1EWNzD5SUwsNXigr07G0/pVVlNby4AqoJjORsrk0MhZvk4q7QMPNbvLq1vdKAyUhekNDg1HbOtNcbCHBthBtvCnqXMcuLy/v+e0HwwXUOy/B2xKisKBzbeBUdbaDXaQddxUQeZtMcfWzg0HIz4fi4vj62X6/Ud7v5puNfwUFOsXORjRLAQsX9rzOtjfx54u09wdo8KpcfTU8+qiRH9vYaJQcHDcOTj89+dh6KxjsKlB1u3QmDKtlwrBavrzgYz4/UMbaHaPZsHMk4aiZiGbivW3jeW/bOMaW1nHpgq1MHHawy/uN5WlHLE6WLzcet9WrjQ9G7Y85nePsSZ3rjsfd8XlUWOrEdvLFaefHZ5J33uBV456fsQ9ca9YYz9tXXsydLpyRiFEXvKOu0oECH79AsTtCoUfqeYv+0dikc+hQa7k+0Ssk2BailTtFnet0Lk8lPhfcKB/XsTZwqjrbsTrYycRqdSdT6I52qJ9N6xjoVD/b7z96nY8/0hjd8Hd2FX4zaTBr3D5YS4wVkJaWzl2+3MkLSLRd3lVGfKFb49FHjWOIX3U3AvBkNcB7qzNjdwJVk6ozbeRhpo08zJUnbuDTfcP516eT2XWkGB2F3dXF3PnyImyWMLPH7ufc2VsoLeh8glWywGzx4s6PWzrH2ZM61+2Pu3MddgCFJUtKeeCPV1Lz7rKUAXemeecFLi3u+dnp8gHQhTOdHPh9m1dz4BCUFOuUlIDZLEG3yD6/X+fgoeQLF6LncmURQIh+5/GEWbo0ccC7dKlRlaQnkueCx+dbF9lqk+ajHjyopxhblCLT7pRjcNla+MMf9E4nF65YAX/4g87NN3feZ8kSo9oJQKEzkDJXttAZoGKEwvhxClOnKEyfBmPHQGkpOOzgtKXe32nr+kx+m7X7x9CbnRmNQLWepWfEf80fC1SbtiVuyGIxa8wZd4AfXPAmv7vqBZbO3Iojz/heNhi2sHr7OG57+lxuffJc/vnhFLyBo6kQyQKz1183At7YMad7nEc7QG7iwzVe3l7ZxIdrvNx166akJRLbH/fNN3f+sAOtufc3mCiae07K+88079wI/BOnWQyULpzp5sBHo3D4CGzdCvv26QSDgzMH3O/XCQR0pDBalujG+QOhkN5aqk/H16Tj9erU1evU1OgcOaKzc5fOFzsk0M4WKf2HlP4balLNYeJqJDoPPRTtcTWSgwcLmD49ecm6zRu9jGr8e+o62w9GUcONXHOTO3Wt7iT2uf+d6bOTLy8nqp/94ANRyg4/bpQVtDo5XPqVTic5GteDsuonIJR8TVGzOKguuyLh/g88QFw1kmS6qrHcselNb9fZhswasnS0r66MZ9dO5vMDZWh6++BLZ2RRA6dM3cHJ/zafkxYXJr2Nl1+Ge//Q+8fZUey4teJZHHts8lXWjz6M0vTuI0kv7+ox/HCNF9+6J1OOI1kd9mzPQW/pqnzh2yubUJOUL3Q5oaQUClw9W+nWdd04hbdd96X+LFt35IixkgpGJ8H8fLDbjX8OB1gsA2NFv7/mMBzWCXfsfBo2uqFGIkZDmUwaN/W1wVz6T4JtJNgeavq6zvZnn7k54YTkXyKtfruJ6foTxi8damHH1dLWIunV6k5gk3IFJ5ziTHr5e6uiOJ2krt9tdVJfdmFbPe5Ct7Hi7TnyQspAO9X+bnuA4Kbnqd7f9f5dBSnvvh3CmdeccRDcV2J/WMIRlVWfj2PlpkpqmuIfI0WBpkYL3vo8mhotaFr88+jddzTc4U/77Di1Wd/klFOTP5fffktD/eTh5PtnEGjG5EIXzkxk+oEDjLSy0mLi8ro1zWg/H4m0BlthI/BqC77CRiUJqxVKSqDIYzTi6Y9AUdN09u+HrvpgWSytgXdrAJ6fn5t57NmYQ03TibQ+dqEwhEOt/28NqiNh0AZZ9DaYg23J2RaiA5utmfLy5oxOhmyvq1zvArcCDa2/RIK4Dz1P25/ihvjrOuq7qNWdbAyu1BUOCu0+RjX8PeF9tokEsfq/wKyNJU8xY9EjWP2702uoAxDy4dm/jLa3pYbWf0VgicKBLs4V7OoERWdeM751T8bV5s41yQLFxfnrOW36DqrqCnjtk0o27BxNRDOh6+B0hXG6wug6+H1mmhqNwDsSNuFy6VDXd+NP57yGVN//9KQaSjb0Z0fMnpyk2lEwCPuq4MAhsFh0wiGIprmCGQoZJ24ePgRFRTqjR/dtxBYO6+zand7Jd+GwcfJ07ARrBcjP1zFbjJVwVTX+Ka0/27YpR7eZVKN7aGyVN6qB3vpT00CLGkFr+/+D0ajIYgGLGcytP2O/m3ohh779qnTsA1H733u7YYzoXxJsC5FlRi64mrCs4NKlOp4SBT3oTloSsDcUmXazdOmMuBSUo2PoOue7rd17h1rdHU/y7KnSUoVIROdIdfLrWIL7WLq0IOk8WoL7enz/fSGdkwMrihr5+qkfcMWJH7J+5yje3HYM+w9bAWOV2+mK4HRFKK8As8nE7b+0Ul87hfvurKDhg+ynUOSrtSxZUpqwjOOSJTr5am3KYDvTQLM3Gvv0xm1koicnqSYTjRr/eiKqGV0AvY0R8vN1SkvA4cjuqrHfr7NnT89rNetAoBno5yoZqqK3BeBmCzgcUZqbdTQNdN0I5mMBvJ7kpxhaJI0ESSMZavpjDrvMBQ/5MX/xevqrxN0VC5Zv9vQo59vvWcB/3JKkzffSKH+9cxOO+uR1vtO1b79OXZKV2mGnXkJVbQm//KXSqcbybbfpVBTXcPitZzMeQ7b0tFV6XemF3P6/efgCobb28B2pqsKp85qYWvARU0YcxtoLHSsTKT72JCiZxo03KqxceXT7kiXGSarUbKH2o3eT7p9pznVP5jAbt5Gp3sz9z1T7r+7t+cZJzW43KErvBt519TpV+wdf6gNklv4gjhrMaSQSbCPB9lDTX3PYZS54cz3mHW8Y32Vmg2rucc73voJ/Z/qc5HmmbSd5ZkrX2b03cV1u10nf4MRFprgaz7Eay3ffbeSdpzo5r7/1NFc3Fpg1mKfx9LNh1n8QpMlnvG3rOqAbX5nHWEwRplUc5tixVRw3bj95vdgkxTnvcs68wM2jj8KIEUat84ICIy3hP/8TXnup63zjTALN3sh37o3bGEwSBTgWC5QUG3X4TaYMg25d58BBYxV9sJJgu3cM5mBb0kiE6CNd5oLne4iOWoBpz3vZGYAW6XHOt7cpeTUV6LqpTtoUhdGjdHZFwdchedfrVVLWWPZ6lazXMs0k17ennRi1cATv5tXoU8fzxz+4QMnH7Q5RVNpMfn60rUO8pxAiwSBNQRsf763g470VPLV6NvMm7GXRlJ2MKWnI+Di9AZUjR+CCC7p3DImOB1Z3O7++N7pZ5lJHzFwVDsPBQ0bpwUK3jtMJLleHet/tPrx7m0wUFkQ7NeqKRo20kS4KDQkx6EmwLUQO0d0VREfOxbQ//bzNvtDVCZZdNdXpDlVVGDfWqPna/iSqTE/Oy3hcvdCQJZWuTg5s219X8Dbk4W2wYrdHKCoN4ioItVZ2sFHs9DGiyMuhejfVTU7e+WwC73w2gVHF9Zw0eSfzJu4l35p8nKmO89574zuOdvcYMtUbJ1jmykmaA4GmQV298Q8g32YE3gWFZlrGpj6HIxgIs3s3tMiCrxBD/gO8EDlHLxqHNmJ2fw8jjnGCZZJmIumcYNlNqqowfhzkHe3vQr6SvOnPkiU6+Uptr46ho/5uyNJ5f4VAwML+PS7KS1ycc0oTNkuYWp+TT/dW0NBsZ+xoqChXMJlgX62HJ94/jv96/Hz+8vZcvjhUTKIkwlTH+e0bVX7/+8TBal80lemNpjaDoTFOf2kOGukgNXlzOwXacLRRV33+8XzxhQTaQsRIsC1EDtJKJqENn9nfw2jj8H7AQ3fXdwq4YydYOrwf9Pp9ms1GwG0xuttTt/4VHvhjtFPAvWSJzgP3Ralb/0qvj6G9dDv/JdPTDpTp7H/fbxu5aNpK7rj8H/z7iR8zrFQnHFHZvReqDuptFSvy8nTCUTOrt4/lzn+czu3PLmXlp5PwBa3pHecKhfnz9B4fQ6YyncPeuo2hLvVzxERddGzapQiFGArkBEnkBMmhZiDNoXroU9QjW/t7GIaOTWkKodDRjaY27Rr2NHgVPIU6nrwEzXM6CAaNlJJoFKwuJ8ULL8IXtOP1GlUTnLYAtauf77IDZaZyoSFLOicXuqcv5Hu/nsE77+rYnWEcjgh2ZxizueNbvU4s4dukahw7pop5E/cydcmpLDm7IOkY3nndx7DiAM260XipsFDHRi11618h0pydajpx8+Y34ymzY7FAdbVxgqbLEaZ29XMEu+qSkuD2+rsaSE/0Zp3wnpyUpk29gnMudMWdrJyfD6tXGycrv/Ji16+FwUROkOwdPZnHtteCczzNUUevNKLrLqlGkqaBEnjBwAoUc9VAm0P1wIeoNdv7dxApWsk/eH+UsiOPpy5bmOH+gYDOrn1mCo9PlEsc5Z476rNeH7m3q1hk6w904nHq5NmiOBxhzjuvma1bgvhb8hLub7XCkcNWGhvy8PksoMdXo/j4oyj/9V9Knz0GyXLIFy+Gm26Cyy+HhQt1HngA6lY9nvUPXf0teU59zx6DnjwPCxZczp5Dbu65h05lOG+6CcYM99K4ZmhXdBHd1915TPpaaF9Wtw+kE2xLGokQOU4bMRutaFy/jsFbcnanQBlg5UqFa6834S05O6v72+0KFXMyy5nO1EDJ9U1cbUOhJWimrjaf/3eVhbuufInbLlrBpQs+4pgxVdjM4bZrhkJQ6AkxelwTU6bVUT6yCYczBOgsXaqzdp3Sp49Bshzy11+He+6Bm282nkfXXQfFCy/q9fvPNZmeO9AbbNYW/vAHPS7QBuMx+cMfdGzWlqyPQYikr4UVCtdcYyIYzO+nkXUmwbYQA4BWcTx64eh+u/+6YHHCroFgBDp1weKs7g/QZMosZzpTAyXXN51qG6oCo4q9LJmxnevPeJ/ff/UF/uu8Nzh16nYceUcDJdUEnqIQY8Y3Mf2YOiqnNvHDH0UwUlDiZesxSJUf/PrrRhoDGM8jX9De6/efazI9d6A3BIJ5KV/PgWDib02E6E1dnV9SX2/p4xElJ6X/hBgIFIXoqHmYtChKY1Wf332DN3VjC28Xl2e6P6RR6zvL9ZG1cISGjf/g3jvPactXdruNKih161/JmVzfnrREV1WYOLyWicNrueyEj9hZM4yPa+bw/odOfAHjOroOb7wZZtiIMCXDFLwNVupqbIRajD8jDgeY8mw4512eMo+4u/nGXdXFDrbLPvJ6B/8KUmOTisNB0nzpvqgTngu1ynszb10MTF09D71eJXlfiz4mwbYQA4WiEh2zENOud1F8h/v0rgvTqHFNQ/b2hzRqfWe5PrJqMVM45zy+/V8dc2WLueeO87KeM54uYwW+gptI1hI99Qq8qsDE0sNMLH2ViybDF4dL+GDnSNbvGE0gZKxYmkw6RcUteIpaCDab8Nbb+cufrdzyAysrVhxd1exYg7wntcq7Wqm32Y7+3+0mq7XWc0GhW+PJJ40UmvYNnhYvhiefhMICrbdK3ifV37XKM615LwaHrp6HXfVm6EuDfRFAiMFFUYmOPRHdUdqnd1tkS13jusiWusZ1pvtDF7W++yBnOhdyZdOhhSPUrXuBu27dxIdrvLy9sokP13i569ZN1K3tXhCiqlBZXsNXTvyI3175Ej/91hHsNgvR1ptQFMi3Rxle0cQPf1LLJ5v92PKPppl0nJuezGGqXPnFi2FNa0PUJUt0nLZA2sc2UOVCvnR/n78wUF6LIrtSPg+XGlVJcoUE20IMNKqZ6NhF6PldnwHdW9w1r/Lg/YlrXD/4QNQo35fF/SF1re+H7qnH1bgeqzXJzr0gF3Jl0xVrie5b9yTqlsfxrXsS7+bVGa32qSqM0t7jsQdCjB7hZtcXBdTX5hGNGClAug5FxS2Mn+SlsvXESldBCytfV9rmpidzmCxXPlb54u67W2utPwC1q5/v8fENFLmQL93f5y8MpNeiyJ6kz8PWaiR9Wf6vK1L6Dyn9N9D5fC7q6000NIDHA4WFUZzO5F8mD5o5jIQw7XwTJejtm/vrxTrbsXznIlvXdbZT3UZhx1rduk6D16i/HOjl99neqLPdXkY1ZfsxTzVRjeoPN1m4/ddh7PYISoc4UNdh8iSFmUUfMf3U4/n3K13E6nt3lGwO29+nr9mKu9iG1Xq0znZBgY7vk1dp2LMvC0fc+zJ5HHPheQj9W6u8t+cglXQeKyn91zsGc51tydkWA1pdXSHXXkuH2s0mHnywkKKihv4bWF8wW4mOOwW1ZhtoYZRoBLQIaGHQIijRcOvvEYhm+HWaaqa28EyuuS6fFf86OtdLl9p46O4zKa550bifVCJB3Ieep60CdEMPxlB0Ltd8u2NN1WIeuvvctjEUFhofBPx+nSPV0NhLCaySp2qIrZrDalTAB8yedzl7drixWKIUlzXjKWppC7oVBbZ9obONY3h2XZiJkxtoarLia7QQ8FvQ29XxLnDpCecwdp/20u0MP/4Srruu42seHnjgHOyBZwlU12Tz8DOW6ePY38/DmETPg77SV3OQK685kVzseWhybGHKRWf193CSkmBbDFg+n6tToA2ttZuv1fnTn1wpV7gHBYsNrXxWetfVIhCNoAQbUA9vQgnUpX03fvfxXHNTonqmJq652cNf7zweR/2a7oy827o7BodDYZzD6EDp8xlBn6oa/5TWn2q7bWq7beEIHDwI7RsS9qTKR29KmaeKh7tundsa/PS99nNzqMpJzWE7xaXNeIqDqK3DzTOHCUUtWPM0ivOCFJcE0aLg81nwNVmZfYwFl9uUMkgqmn8h3/hm4tf8ddfpPPLwhQT+8Wj2DrQXZPo42m0tLFmiJ0wlWbJEx25r6dPAtz/01Rzk8mtODCySsy0GrPr6zk1SYlauVKivT10qbshRzWCxobuGE524hOiYEyAv+Vex7dVFU9UzNVEXHduLA+3dMdhsCiUlCsXFCh6PgtutUOBScDoU7HYFm03BalUwmxVUVQFFwWJRGD1aYeIEo6waSJ5qKh3nJhJROXzQQcWwAi4+T8dmCdMSsdAxaVE1QYE7zIiRfg7XNvC1a1p4+PX5rP1iJM2hzq9fb2Pq17y3Mfdf85k+jsFQHjfeqLB4cfz2xYvhxhsVgqHBX+O6r+Ygl19zIl6uJ0TLyrYYsBoaUl/u9cKoUX0ylAFJd48kUlCBUr8b0+HNEE5eyaHLGtdd1DvtDf0xBodDoXIS1NXrHDoYq/Ixl+gv4vNU69ZmP081F2obJ3O0AkrnuWnatp5F/67wwY5RHLScwD9f0SgbphEMRol0mLK6ep26+tFs2GU0cHLktTBr9AHOPnYrw9x+vF2cnjAQ6mxn+jg2eFUuv9yos33zzUadbZvNqMpy+eXwyov99zzoK301B7n8mhNGgP3F4RLe2TqePJuJX1/c3yNKToJtMWAVFqa+3O1OfbkAFAW9aByRwtGotTtQq7dApPMJKl3WuHZpZLu4b3+OocijUOjWOXw4Qs2W1Wj64M1T7alUObyOPDhl2k5cJy3mvntN7N4BoGO2aFitGlZrlDxblHnzwxzc30wgZAEU/C15rN4+jtXbx+HIa2HOVh9Waz6hUOI/XR4PMH1hTjc6yfRxLHBp+P3xNba7s/9g0FdzkOuvuaHKH7Sw5osxvPvZBA42FABgNkVpatJxubpukNYf5EOZGLA8ns6l5GKWLNHxeFIHZ6Id1YRWWklk8rloZdOMlJN2Uta4XhqlyLQ760Ps7zGoqkJ5ucLkSnAXZPWuEurv2sa9IV9pX29dIRI2EfBbaKi3MXO6nbt+FuL3X32R+65+lmsWv8fk8sOYVeOY/S15vPteiIlTjNKCI0Y1YbUeDaDPO0/Hbodb7pjJ7AVuTjnDxewFbm65YwZF8y5EteTG2lKmj+NgeB5kqq/mQOY6d+g6fHGomD+/NZcfPHk+T6+ZzcGGAkxqFFd+kAnDG3I20AYp/QdI6b+BLHE1Ep0HHyRpNRKZwzREWlCPbEGt3QG6ZlQCKfkS19zsYcWKdl0Jl0Z5+O56itKpRpKpXBhDO74mnaqD8e3Cu6O7Za6OVkZI1hky9ysjmPNtlJx0JdfdYOr0mn3gvig17ywj0hw/oboOm/eXsfLTyew4UkooEp9OFI0oOOxmfvFzG3f/zsS/ViY+gfWuWzflxMlsmT6Ovf08GIhl6/rqtZDu/QzEOcxFieYx0BJbxR7PgfqjX1eb1ChR7ehjYjVH+b9XzFitfR9wp1P6T4JtJNge6GJ1tr1eI3XE4xkidbb7QshvBN31e0BR8buPpy46liafGZczQpFpNw7vB30X5KrmtjHE0gT6fAzt6To1tXDoMES7+UVKxnW2+7i2cW8x59somnsOzfrReuv5Si1161/pFGgnstM3kX99fjybNkUJdahoqWkQCpkINpsI+M2EQ2bCYYVIWOWD9xrxr/97lo6qezJ9HHvzeTBQA8W+ei2kcz8DdQ5zTWweNQ12VRfz7mfj+GDnKMLR2LdSOu1r9JvVKJUjqpk1+gCzJ/s48T9O7Y9hS7CdroEUeEmgmDmZwx4IB1Hrdhgr3ZEgDrsdf2Dwt8ZOVzRqBN3V1ekH3bn2BzrdRit91Vgn2f3o3j0UzD6XhgaFtevDvPV2kK2fRQh3UUo+zwpFHp0Ccy1umx+3PUiRM0B5YSMjPF4K8ls6NeTp7th6FCz3Q255xw88hYU6NtL/wCPi5dprOV258Dw259twHHMOm3e4+ejjCF/sDLNzZ4SWUOIXo8sWZMaog8wafZBpFYextaaSmRzufquzLcF2mgZS4CWBYuZkDjOgaygNeykIHsRfPTC69fUlTdOpbQ26u/pbk0t/oJM374hyzx31bc070r1e1sazVOO++xS+8x34xz+O/jFevFjja1eH+a/vh8m3R7DmaZhM3fvT5shraQ28Gyn3NCYNwjOdg76aw2RSpvL8MUrNu51TeURqufRaTld/Po/r/TY+3FXBZ4dHUNVYTk1t6tdqeaGXY8YcYNboA4wrrWur3d+eBNsDwEAKvCRQzJzMYeY8Hg8N+7eh1mxH8e7v7+HkHE3TqauHI0dIuuKaS3+g3dMXcssdMxPWFG6f75zu9bI5niVLdObPVzpVonj4YZ1nnoEVK4wA0mKJ4nCFcbrCFLg7z7PLFiTPEiEYNuML5pGshbwjr4VyTyMjChupKPJy4pJy7nhoWo/noK/mMJmyky/mW7eUJm0Ic99d1Rx557ms3f9glEuv5XRl+jxMZ/+6T1azu6aIz6rK2HmkmAP1brzNtrhc6450DUJhlQKXylVfDjEu/Colrq6/RZVgewAYSIGXBIqZkznMXNwchvyotV+g1u2C6MD6g5Ntuq5T3xp0t3SYmlz6A+2cdzmzFySvlfnhGi++dU+mfb1sj+fll+H88+O3ORywcaPOt2/Q4k5mW7wYbrhB5//9ZwSTOYzTFSLfnirXR8diiqKjEImqJArCA34zjV4rjV4rkXB84NDVHPTVHCbjOukbHDs7ebDz0YdRmt59JGv3Pxjl0ms5XZk+D2P7K4qOxRrFao2S74iQnx/BatVwujRCofgc6/YUdFwulYMHTTQHzAQCZkJBM6HQ0ddcd56LuR5s50YtJCHEwGV1oJUfgzZsutEgp2Y7tCQ/QXUoURSFoiIjV7i+AY5U97x6STal27yjr5p8dHU/iebQ7zc+1Nx16yYiv5nFjh1KW6OTK69U8PstgIXqw3ZefinCZ/9awd5aDw3+fBr8+dQHjJ+arrY7ISsxuyOC3RFh+IhAp8C7qzno70YpXm/qxHSvV5GawENAT56HDX4b2w+V8PmBMnb+M8Lk6XVJ07WMzx7Gc82kRnHkhRjhaaRyeDXHjq1ihKcR/ZhvcsqpyccxmJ6LEmwLIXqHakYvnkikaDxq9eeohzcb3wkKUBQ8HqPpiterc/hI96uXZFO6zTv6qslHV/djsyXe7nKB953VuE6awaWXJl+9HTVKoXDSXhZM2hu3XdOgsdlGvT+fer/dCML9+dQH7NT78zlYX4C/Jb4VeFzgHTDx3mqd6aZ8ipzNPTq2bDdKcbtTf5ntduvIR+XBL9XzUFF0mhojfPrZWD4/WMb+Ojc1TU5CkfiQsWOgresQCSu0tJi47JIoY/V3qCw/gs2a+L4KhtBzUYJtIUTvUlS0sqloBRWY9q9HCdT294hyitut4HZDOGxi1y7IhXPRjOYdM+LSL2LaN+9I93rZHM+SJTpr1iTON3a7NZqINc9Jnpecr9Qm/COuqlDoCFLoCDKOzqlmmgZ17pP5zcNjOHQkQr49EnfypN0eZdlygPMYWdTAgom7GVdWx/DCJpy2UJfH1heNUno6N2JwCRzZyymnVPLRx2DNi2K1RrDajG6uJhN8/2cAc5Pun5+nEYlaOHTQSAEJNlsIt6aALD0jylVnb8K7+VDKMQyl56LkbCM520ONzGHm0p5DXUet2Y56+FPQcmgpNwfEyic2NBgr3f2ZXpJu845+byaSpBrJkiU6DzwAvo9ewHfwcI+a5/RkbCtfV3A4jZMwi0ta0FL8NVUVDbOqYTZpWGwWmnwqgUBsbApOh0758Cge8yFGFdUxuqSB0cX1eBzNaZckTEc252aoyrWc7VDEhC9opd6fz4H6Ag57XdQ0Oanz2fEGbPha8ohEk3/zc5SOIy9EicvH6JJ6Jg2vocLTSLHLj8NBxu8FvflczPWcbQm2kWB7qJE5zFy357DFh6lqPYqvOnuDGmDiapXrRk734cOdT6RsX8vW12yidLiNlpBKQz29Wh853SYhmTalSbfGc7LxWKK12Caditer4PVCYSEUFOg0f/Y6tdt3pDVOLRLpsj5wqhrCQKexqb7dbF/3GZ/uKuGjvSPYcagETc884zTf2sLoknrGtAbfo0saKB8WoWRez+tk20tLKJp/Id5G09E5dEWpW/sCgeqajMfcF/q7Vnl7fRlsazo0NduobnRQVefmQEMB1Y1O6v12mprzCIQsKat9pGK1wrjROhMLtzNlWBXjSuuwmJOnm/RGY6FM309iJNgeAAZS4CWBYuZkDjPX0zlUandgOvQJRLvoQDIEJGwMpOvUNRhBdygUX8v2vfdVnnwS7rkHXn/96C59WR8509q8mdZ4tnkKKVxwGdddR+f9H4CGNU8RrG/I+BiAjGthhyIq+2o9RKIqoYiJOp+dOr+d+oADL6PYvkMlEtV7tGqtqqDrCs0BlWhUQQeKPDB9mk6k4QCKHgV0dF0hqqlEdQVNU9E0BadD49hFY/jnPyy887aZ2ElssTmsW/U4oaZsZo1nrr9rlXfUW8G2rkMgZKHeZ+dIo5N9tYUcbHBR0+SgqdlGIGQlFDGRrMJHIoqiYTVFybeGceSFcOUH8TiaKS4IMnzqFJ59ycHHH5sIh1VagiaWnqH1yxxCZvMowfYAMJACLwkUMydzmLmM5jDkx1S1AaUpdT7fYJeqC6eu69TVQaBoId/5H6OW7Y9/bFTWaB9ox/RVfeRMa/NmWuO54pyv881rLUn3f/jBMFWv/CnjYwCyVgs77v4VHas1Sl5elDxblLFjI0wc00RjXQB/ixV/i4VAi5XuBFfdoWkQCauEQirhkIlRoxQuvCBCYMdGVFXDpOhYzVGKXX5KC3x4HM2Y1P4PGfq7VnlH3QkSfUEre2s81PrsVDc6ONRQQI3PgTdgI9Bi7ea3ITp55gj51jBuexCPI0CZu8lozFTYxDB3E/nWxAFzrs0hDO5gW06QFEL0LauD6LiTUep3YTrwsdTmTkBRFIqLIVAwtu2P4YIFdGrkErNypUKzXpz1cUUdYxP+cQZY8S8T0V+MBZL/gW7WixMGypDeMTT6Egfasf0bfZaU+0O6x0BGx5n2/esKoRYzoRYzTY1QcwQe+YOOb93LbdfXdGgOGUG3v8VKdOIFfPd7OjabhjUviqrqKKqOqugoKuTn6122ro9RVbDmaVjzNCCCLwDL/g4wK/H1FY0Sl5+SAj+lLh+lLj8lBUd/2izx52VoGgRCxrh9QSv+ljz8QSu+Fiv+YB7+FivNIQsF9iClBT7KWv8VOQMpg/pMn4e9TdehOWRue5wCIQvNIQv+oJXDjU4O1LupbnTS4M+nOWxN+3ZNahS7NYzb3kyRM0BZgY/ywkZGFnkpcgVw2lpQe/g5LNfmcLCTYFsI0S90zzgizuGYqjaiNFb193BykrfpaO5lVydQ9kVN2kxrRGda49nrTbk7Xi9dzkE6x0AXi7eZ1MLu7hyqCjjywjjywpTiRxuTR11N8tt4+y0N/aNHCLRY8LdY24Jdf9BKoMVKc8kJPPqoUd7NYtGxWKJYrBoWi4bS4WbNahSbNUxUUwmGzGi6ypFGF0caXQnv22UzUhSCYbNx3y1W9B6syseC+rICH2VuX1sgXlrgoyA/SMMBBbMliqoYx6GorT8VUFWdd1ZDdPdIIpqJcFTFYtJw2YIU5Lfgyjd+dneFPtBioabJQXWjk+p2P2sandS31mfvCYspgtveTIkrwPDCRsYU11HuaaKswIfDlr10u/6u9z7USLAthOg/lnyiY09EqduF6cBGqVjSgdt1dD6S1ZZuu24f1KTNtEZ0pjWe3ckb3rVd3tUcpHMMXcmkFnafzKGq48oP4cpP0Kb+5MXc8T+JAmAdW36EH/04zCfv72LHoRJaImZ8wdQn2ymKjpEfrtIUtNEU7PxEtZqNfGGnrQWXLYTDFsKR14IzL4TNGsYbyOdIo5PqRieHvU6imuloUL8/0b2GqZzakHRMD/0ZYGHKcVtMEfKtEWyWMPlW45/dGiLfGkJVwNtso7HZRlNzHk3BPEKRrr81MT6lxc+tomgU2FoocgYYVthIhcdLkbOZYqc/6wF1Kv1d732okWBbCNHv9KJxROzFmPauQQk29PdwckaRaTdLl85gxQoTa9YYrceT5Wz3RU3aTGtEZ1pXt8AZZsmS5DnbBc5wl3OQ7jFkqxZ2f8+h0xZgyRJ7gv0VFp1o5iv/FuK0gneJagq7qz3sry2ksTXwbGy2GUFowPh/OGpC1xW6yikPRSyEIha8gXycthZjhdnWgj+/BUdeiKbmPLyBfJqa83pcSaO7wlEz4WYzjc1dfIrtFoVCezMThtUwflgtE8pqGFXcgDlJl8X+1N/13ocaOUESOUFyqJE5zFzW5lCLoh76BLVme+/fdo5JdYJkG9VMbcmXuOZmD++9Z0pejaSP6iNnWmc707q6vVuNJPkxQOY1hDO5/2zOodXlpGjRFUnnMN1qJLoOwbD5aCAesNHYnIe32YYvmEdTu1XhpmAezaH0c5VtljAlLj/FLj/FTj/FrgAlTj8epx+zSUM1mbFPXcydf3DxwQYFRQVV0Zk5U+PSC/00fPEpLSGFcMREOGoiElXRYpVZNIVQxERLxEwobKYlYiIUMbddz/gAAVZzlDxLhDxzBJslgs0axmLSUBUdtTVHXlU0VFUnP09nlKeGCcNqKXIGerUuerb0Vc387hjMJ0hKsI0E20ONzGHmsj2HSmMVpv3rITJ4T55MK9gGUM343cdTFx2Lz2/CU2oj2KLS0GCkDPRWne10ZVpbN9O6ujZPIcULL6bRZ8HrNVJHCpxhalc/12Wg3Z1j6I0awpncfyqZzqHV5aR44UX4gva2OXTaAtSufj5rZf/CURVf0GoE4cG8tkDcH8zDmd9CiTMWXAew53WdWpHNx6e7cq2pTbpyaQ5Bgu1BbyAFXhIoZk7mMHN9MofhAKZ9awdtI5y0g+0ueL06e/cZlR+Gmv4KcrLVUKU/GrX0dA7TbU400KXzmAzUYDsXtJ/fJp8JlzPao+d8rgfbkrMthMhNFjvRcaeiHtmCenhzf48mZ7ndCpPydHbvgZaW/h7N4Je8ocoM7rmjosfNQLJ1u9mQPJWllAf+eGWfNFjqCwPpMRmIhtL8SmUXIUTuUhS0YdOJTjgdLPb+Hk3OstkUKid1Xa1DZM5VObdTcABGbeKbbvXgqpybU7ebDUVzz+kUaIORA37dDSaK5p7TTyPrXQPpMRmIhtL8SrAthMh5uqOESOVSdHdFfw8lZ6mqwtgxCiPK+3skg1uXzUAcY3PqdrMh0+ZEA8VAekwGoqE0vxJsCyEGBpOV6JgTiVYcB2rflAcbiEpLFSaMB0s6ZYFFt6XVFCeHbjcb0mlONBgMpMdkIBpK8zt4jkQIMSToxROIVJ6F7hzW30PJWU6nwpTJMKIcTPK5pFf1RlOcvrzdbEinsc5gMJAek4FoKM2vBNtCiIHH6iA6/hSio+aCOf36vUOJqiqUlipMnQJlpaD24ru92Qzugt67vYHEaAaSuNNpJs1AsnW72WA01kkcUMca6wwGA+kxGYiG0vxKsC2EGLB0zzgilWejF47u76HkLJNJobzcWOkuKur57ShAQQGMHQPTpsLYsQqTK4de0N20bT333FHfKUiINQNp2rY+p243G+rWv8IDf4x2CrhjjXXq1r/STyPrXQPpMRmIhtL8Sp1tpM72UCNzmLlcnEOl6SCm/RsgnHnt6r7QW3W2uysY1Dl0GLze9K6flwdFHvB4wGJJnIvr9+scPAj+Pjic3qrL21tj6M1mIP3RZKSnNaI7NsYpLARHXnYb4/SHdB6TbNbZTlXnG+jzuuy9bajU2ZZgGwm2hxqZw8zl7BxGw6iHNw2Idu/9FWzHBAI6Bw6C39/5MlU1gqciDzgc6Z/s5vXqHDyUvXrfyevyRrnnjvpBVZe3r/QkUJTHIV62gu2U8/ybBhRF58bvD57HYDB3kJQ0EiHE4GGyoI2YTXTiYnSbFJ1OxW5XmDhBYdw4sNmMbQ4HjBoF06fBqJFKtwJtMBrsTKmEURVgyULLtKFUlzeXyePQN1LPcxHvrJfHYKCQYFsIMejo9mKik85AGzYdFHmbS6XApTB5EkydAhMnKBR5FFQ1g9JtikJRscKUKTB8OJh6cfqHUl3eXCaPQ99IOc8rFMrL5TEYKKRduxBicFJUtGHT0dyjUGu3o4SbIRxACQcgkp38ygFLUbD2clEXVVUYVgbFRTqHj0BtDWSas5hOXV75aJV98jj0ja7mORhMsa88BjlFgm0hxOBmK0CrOC5+m65BuNkIvMPN7QLx1p+hAERS/CUTaTObFSpGQGmJTkMDNHihublnt5VOXd7Bc2pe7pLHoW90Nc+x9K+E+8pjkFMk2BZCDD2KClYHutUBJFlxDTejNNe3/mtAaa4fMJVOcpHVqlBWBmVlEArpeL3Q0ACBbgTeRl3eGaz4V+dOPYOtLm8uk8ehb6Sc56U6Bw/qJMoGlscg9+RssP3iiy+yYcMGNm3axLZt2wiHw/z617/m4osvTnh9n8/Hvffey4oVK6iurqasrIwzzzyTG264AYfD0cejF0IMeJZ8dEs+esGIo9siLe0CcOMfoQTlPERKVqtCaSmUlrYG3o3gbei6dKBRl7eCm/DEBSCxurx1awdPXd5cJo9D3+hqnhVg6RnyGAwEOVv67/TTT6eqqgqPx4PdbqeqqippsB0IBPjKV77C1q1bWbRoEVOnTmXr1q2sWrWKmTNn8vjjj5OXl5f0vnKyhFkSOVtybQCROcyczGE70RBKoBb10KcozQ1p79bfpf9yUTjcuuLtTVySEHKjzvZg0tNya/1REzxX9Vmd7Q7zDAyqx2Awl/7L2ZXtX/7yl4wZM4aKigoefvhhfvvb3ya97qOPPsrWrVv5xje+wS233NK2/a677uKRRx7hL3/5C9dcc01fDFsIMdSYrOiucqKucpS6XZgOfSr53j1ksSiUlEBJiRF4V1dDbS1o7ZaEtHAE7+bVwGryrFZ8WQpyRGrtHwcVhlx+cF996OtqnjN5DFI1zBmIwXouy9mTVU844QQqKiq6vJ6u6yxfvhy73c71118fd9n111+P3W5n+fLl2RqmEEK00YvGEZl8NlrpFCk5mCGLRWHECIXJrW3mMyhGKESvijWbueWOmcxe4ObkJU5mL3Bzyx0zKJp3IWo2isz3so7HcMoZrgF3DO2pOf52O7BmM4Hdu3dz5MgRFi1ahN1uj7vMbrczZ84cVq1axcGDBykvL++nUQohhgyTBa18FlrxBEwHP0LxVvX3iAY0q1Vh1EgoK9U5dMhIMckGkwomM5hNYDYf/X/7beEwHDwYv9Iuhp6UzWbwcNetc1tXnHNXrh+DSQWLtfNrsO1fbHvrP/IVov022q4N+GB7z549AIwdOzbh5WPHjmXVqlXs3r1bgm0hRN+xOoiOORHFdwT1wEcowYb+HtGAlpenMGYMlDUbQXdjU89ux2QClxNcLrDbWwNrEyhKemvndrvO7j1G4C2Gpi6b+vxiLJDbwXauHYMCOJ1GvX+XE+z5QJqvSci8hn+2Dfhgu6nJeMd1Op0JL49t9/mSZzO53W7UXP8Oop10kvFFajKHmZM5TJPHgz6yEmq+QK/6CMJH87kdHb6NE11z2KGkGJr8OlVVUXy+rrvxOB0KBW6FApeKwwFKBkkpDju43To7d0bx+XP9T3x6rL3d0WiQa/J1LsXX8fK8HJ/TXDgGW56Cq0DBXaDgciqYTAo9DkvzHag5/DdpwAfbvcHrzdL3klkgVSAyJ3OYOZnDHjCXwMiTUY9sRa3ZhiM/X6qRZEBVYEqlnUOH/Rw8FN8ox2IxVq4LXOB00vpH3NBbUz5ypE5VFdTW9c7t9ZdsVtIYrFzO1AkLLmc050/c7Y9jMJmM12OBE5wuI0UsJtiSWYUmXbMQ7ae/SQO6Gkm6XC4XkHzlOrY92cq3EEL0GZMVrfwYtKLxcGRj70V+Q5jLpeBygderEwobX0HbbNk/nVJRFEaOhPx8I+geHGvcIh2DoalPNo/BYgZrHlitkGc1ftryIL+bqSGDyYAPtseMGQMYJ0omEtueLKdbCCH6XJ4LZeqZ6B++1K3a3CI5t7t//ogXFyvYbDp79oBUSxsaBkNTn0yPIc9qBNRxP1v/qerQDKhTGfDB9tixYykrK2Pjxo0EAoG4iiSBQICNGzcycuRIOTlSCJFTFEs+0fGnYdrzHorvSH8PR2TA4VCYNEln1+74dJbusFqNr9gDAQhKmfZek41a0lo4Qt26F7jr1rlEfxFfZ7tu7cCoUd3xGNo3xel4DBazcTJx+38SUHfPgA+2FUXh0ksv5b777uP++++Pa2pz//33EwgEuPbaa/txhEIIkYTJQnTcyZj2rkHx7u/v0YgMWCwKEyfo7K+CdFJHFcDhgIICI7+8fepLIKBTVwcNDRDVsjbkQS9WS7pjibulZ8zgnjsqqFv3QkYB90BvrpSoYY6qGuke9kLjZGC73Xhui8zkbLC9fPlyNmzYAMC2bdvatq1btw6A4447jksvvRSA//zP/+T111/nkUceYevWrUybNo0tW7a0tWv/j//4j/45CCGE6IqiEh29EPXARtTaHf09GpEBVVUYPQrs+ToHDnTO4zabj5646XLFn7jZnt2uYLfDiBE6DV6oq0vevl4kl+u1pHOBxWJ8oxILrPNtDNm86mzK2WB7w4YNPP/883HbNm7cyMaNG9t+jwXbdrudZcuWce+997JixQrWrl1LaWkpX//61/nWt76FzWbr07ELIUS3KApaxXFgtqEe3tzfoxEZKilpzePeC1YLuAqMANtu714Qo6oKRR4o8kAwqFNXb6yaR3I/SyFthW7QdSN9prezL3KtlnQuMJvB6TACbKfTqF8vsk/RdX3In0Q9kEqYScm1zMkcZk7mMHPJ5lCp3YGpakM/jGjgyaRUWJ/Q9V5fJdR1ncZGY7U7UWOfWCdMk+noP3O7/zc3x3fh7K/SfyYTjBoZf2JrKKQTCBiBd6DZGKuWQRqNNvUKTjnDlfTyt1c2oW55vOd30CqXyyfGyu3FAuy+qNTTUxmV/rO5iVae2csjSs+QKP0nhBCDiV48gajZhmnvatAlYXdAy8LX8Yqi4HaD2w3hsE44bATTamtQnc59lviNNJdAD0/mzJTLCaNGdc4FtlqNDoKFhcbvuq4TbAZ/M21BeEtL+vdT4Er9+ilwaiRvd9f7FIx8aFu+8UGipyfTpmJSj65a53pwPZRIsC2EEDlGd1cYJ07ueQ+i0hdcJGaxKFgs3d/PqJ4C9fU6dXUKfbUoqyowvBxKS9ILABVFId8O+Xag2NgWjeg0+YzV+aam1CvfPa0lbVJ758RUixnsjnb50PnxVTyiUR2/H3w+aPL1rAqNSTVOtI2tXg/lWta5TIJtIYTIQbqzjMj4UzHvehciUgtO9D6PR6G83MTuPVBdnVnKRldsNhg9CvLzMwsETWaFwkJj9VvTdHw+8HrB2wjRDk0R060lbbO1y2N2GPehaTqhEETCEApDOPYzZOSWh0Lx86VgrFg72gXX7TskJjwWk0JBgVGRBiASMY7H5wOfP/EqvhoLrlvHa5fgekCQnG0kZ3uokTnMnMxh5tKew5Af8863ICTlKDrK+ZztASA2h+GwzsFD6ZUt7K6SYigvz3JtZl3H5zeCbq/XCI6hQ53t1lrS1ubdqIfX47BFcDrBbO7ZuKJRI40nL8+Orgd6/fjCYSP49vuP1mHPzzdW/AcjydkWQgjRP6wOIhOXYDrwIUrD3v4ejRikLBajbGFJsZHP7e+FzzBms3ESZEFBHwSHitKWp1wxwqhVbqx4R2jevhqnYzVjneDUW3PFh4OxHt1zJpOCyQQOu4I/0PvHaLEoeDyQRiwncpwE20IIkevMeURHL0ApmYR64COUQG1/j0gMUna7wsSJ0NCgc+Dg0RXi7nK5jLSRnq4aZypWq1yaR4tcIMG2EEIMELq9mOjExSgNezEd/ATCkkIhsqOwUKGgwCgzGIlAJGrkREejEI0YPyPtfo/lo6qKEeCWpHkSpBBDgQTbQggxwOiFo4kUVKDWfI565DPQBlGXE5EzVFVpK8PXFU3TiUSMc/WkvbcQ8STYFkKIgUg1oZVNQ/OMQz28CbVuV3+PSAxhqmrUyBZCdJa4j6kQQoiBwZKPNnIukUlnoDtL+3s0QgghOpCVbSGEGAzyPUTHn4bircJ06GNo6eXeeCYLur0E3VmG5igF1Yx555sQ6UZLPyGEGIIk2BZCiEFEd1cQKShH8VVDqAml5ei/btXq7hhc53s6Nc+IjDvFqAEe7aMWhEIIMQBJsC2EEIONoqK7hgHDiOtapmvQ4kMJNaG0+KClyfh/sAl0Dd1Rgu4oRXOWga2w6850+YVEx52EaefbcpKmEEIkIcG2EEIMFYoKtgJ0WwG91TpYtxcTHbsI0+53QYt2vYMQQgwxcoKkEEKIjOjOMqJjTuh6JVwIIYYgCbaFEEJkTHeVEx29sL+HIYQQOUeCbSGEEL1Cd48kOmpufw9DCCFyigTbQggheo3uGYc2YnZmt2FzEx05F61kkpFnLoQQA5icICmEEKJXaSWTQIugHvq0W/vpzlK00inornLjd0ArnYx65DPUup1GNRUhhBhgJNgWQgjR67SyqUbAfWRrl9fV3SOJlk4Be1HnCy12tIo5aGVTJOgWQgxIEmwLIYTICm34TCPgrtne+ULVhOYZh1ZSCXnOrm8sLujeilq3q/cHLIQQWSDBthBCiKzRRsyGaBi1frexwWxFK56EVjwRzHndv0GLHa3iOGPlvHk/7PkY9N6qGi6EEL1Pgm0hhBBZpY2cC6oZ8lxoReOM/2fKYkctm0/EVoFaHUsvkaBbCJF7JNgWQgiRXYqCVjEnO7dtdRgr3aVTUGt3oDbsgXBzdu5LCCF6QIJtIYQQA5/VgVY+C234TBTfYdT63SiNVdJCXgjR7yTYFkIIMXgoCrprOFHXcIiGULz7jcDbX9PfIxNC9DbVbPyz2Pt7JClJsC2EEGJwMlnRi8YTLRoPLU2o9btR6/dAONDfIxNCJGN1oBVPRLfYQTWBakaPBdWtv7f9f4CQYFsIIcTgl+dCGz7TSDNpak0z8R2ESKi/RyaEACgYRrRsBLprBChKf4+mV0mwLYQQYkjRXcOIuoYZv2hRCDejhAPGz0hz/O/hZjnhUgwsZitEIwOj+ZOioheOJloyCXXEePT6+v4eUVZIsC2EEGLoUk2Q50RvbayTsHigrkMkiBKoxXTgI0lDETlLK55gNJMKBTDtW4sS9Pb3kBIz56EVT0QrmgAWW3+PJusk2BZCCCFSURSw5KO7RxJxDkM99Clq7Rf9PSoh2uj5HqIVx4G9yNiQbyU6cQnqoU8Sd3DtJ7qtEK10EnrhGFDU/h5On5FgWwghhEiXyYJWMQe9cDSm/euhpam/RySGMpOV6PCZ6EXjO+c5qya0EbPRXeWY9q2DSLDvxqUoYLIaJymbrMZJj0Xj0Z1lfTeGHCLBthBCCNFNuqOEyKSlqEe2olZvza3ulYpqrMSbbWCxoZvzjZ+WfJRICKXxAIq/ur9HKTKkecailR8D5ryU19Ndw4lUnomp6gMUb1Xmd5znQiuoAHOeEUibrGCyGP83t/7eG11iBxGZDSGEEKInVBPa8Blo7pFGIBOo67v7tjrQHaXoeS50iw3MseDabgQ8SegApZMh0oLSdAC0Rgh+Ic1/BhDd5ja+XXGUpr+TOY/omBNR6nZhOvAhaJHu3alqQnePQisa1737FYAE20IIIURm8guJTliMWrMd9fCn2QlcrQ40Z5kRYDtKwerI7PbMeeiecageDxHPdBTfYZTGA6iNByDS0jtjzhWKapwIq5haf6robb+r7bab0BUVJdiA0tzQ36PuTDWjDZuBVjKpx6Xx9KJxRBylmPatSevDoZ5faKR/FI42VqxFj0iwLYQQQmRKUdBKK9HcFZj2f4DiO5zZ7eW50FoDa91Zmt0OeaoZvaACvaACTddRAjWtgXcVtPiyd7/ZoCjotkJ0Rwm6vQTdUQKW/O7dhq6j1mxDPbwpZ1b89cJRRMuP7f6xJJLnND4cHtmCemRL5xQokwWtcDRa0XjI92R+f0KCbSGEEKLXWB1Ex5+CUr8L04GPIRpq7XpnAsWMbjK3rqTGd8SLdcjT8z09CxB7i6K0rZ5r5cdAiw8lUI3ir0H11/TaCaG6rQA9vwjyC42UhlCgtbZ5ACUUSD/NwWRBzy8ygmtHKbq9KPN8YUVBK52MVlCBqWo9iq8P8ttVE1js6BY7uiXfSBOy2I1tVge0lqbsNYqCNmw6ums4pr1rIORHd5QYaSLuUZJz3ctkNoUQQohepnvGERkM5c1aa5DrnnFoYOR6+2tQ/NXGCnhzfdcnh1odxocIe7HxM98DJkvqfSIhCPtRYsF3ONDWaAiLHc1Rgm4vBlth9roN5jmJjj8NpW4npoMfQzSc+W2arGiFoyCvAN1qbwuouzrJMVt0ezGRSUuNebUV9MsYhgIJtoUQQohsGOiBdiLmPHR3Bbq7wvhdi6IEao3A21+DEmw0Vq1jgbW9uGeBpNmobKHnexI3GupDetF4Iq7hmKo2ojQe6Nlt2IvRiie0rhqbenmEGTJZuv7wIzIiwbYQQgghekY1oTvLBn/9ZIud6NhFKA17MR3YaKy8d0U1o3nGGF0S8wuzPkSRuyTYFkIIIYRIg144mohzGKYDH6I07E18HVuhsYpdOFpWjAUgwbYQQgghRPrMeURHL0ApHI2paqOxLVaHuniCkTojRDsSbAshhBBCdJNeMIKIoxSFJiK6M2UzITG0DcKzN4QQQggh+oDJglIyQQJtkZIE20IIIYQQQmSJBNtCCCGEEEJkiQTbQgghhBBCZIkE20IIIYQQQmSJBNtCCCGEEEJkiQTbQgghhBBCZIkE20IIIYQQQmSJBNtCCCGEEEJkiQTbQgghhBBCZIkE20IIIYQQQmSJBNtCCCGEEEJkiQTbQgghhBBCZIkE20IIIYQQQmSJBNtCCCGEEEJkiQTbQgghhBBCZIkE20IIIYQQQmSJBNtCCCGEEEJkiaLrut7fgxBCCCGEEGIwkpVtIYQQQgghskSCbSGEEEIIIbJEgm0hhBBCCCGyRIJtIYQQQgghskSCbSGEEEIIIbLE3N8DEIbTTz+dqqqqhJfNmzePxx57LG5bKBTi4Ycf5qWXXuLgwYO43W5OO+00br75ZoqLi/tiyDnlueee44c//GHK6yxYsIC//vWvANx777388Y9/THrd119/nZEjR/bqGHPJiy++yIYNG9i0aRPbtm0jHA7z61//mosvvjjh9X0+H/feey8rVqygurqasrIyzjzzTG644QYcDken62uaxuOPP87TTz/Nnj17sNvtnHDCCXznO99h1KhR2T68PpHuHIbDYd544w3eeOMNPvnkEw4dOgTAxIkTueiii7jsssswmUxx++zfv5/Fixcnve8bbriBb3/7271/UH2sO8/Dnr5m3333XR566CE2b96MoihMnz6d66+/noULF/bqsfSX7szh5MmTu7y9t956i/LycmBoPA8PHz7Mq6++yjvvvMPOnTupqanB7XYzZ84c/vM//5Njjjmm0z7yfhivO3M4VN8PJdjOIS6Xi//4j//otL2ioiLud03TuO6661i1ahXHHnssS5cuZc+ePSxfvpzVq1fz9NNPU1RU1FfDzglTp07lhhtuSHjZa6+9xvbt21m0aFGnyy666KJO8wtQUFDQ62PMJffccw9VVVV4PB7KysqSftADCAQCXHnllWzdupVFixZx7rnnsnXrVv70pz+xfv16Hn/8cfLy8uL2+elPf8ry5cuZNGkSV111FUeOHOHVV1/lvffe46mnnmLs2LFZPsLsS3cO9+7dy4033ojdbmfhwoWcfvrpNDU18eabb3L77bfzzjvv8MADD6AoSqd9p0yZwpIlSzptnzdvXq8fT3/ozvMwpjuv2RdffJHvf//7FBUVtQWfr7zyCldffTV33303Z511VuYH0c+6M4fJ3iP37NnDyy+/zMSJE9sC7fYG8/Pwscce45FHHmH06NGceOKJFBUVsWfPHlauXMnKlSv57W9/yznnnNN2fXk/7Kw7czhk3w91kRNOO+00/bTTTkvrus8884xeWVmpf/e739U1TWvb/sQTT+iVlZX6T37yk2wNc8BpaWnR582bp0+bNk2vrq5u2/6HP/xBr6ys1NesWdOPo+s/7733nr5//35d13X9oYce0isrK/Vnn3024XXvuecevbKyUr/zzjvjtt955516ZWWl/uCDD8ZtX716tV5ZWalfccUVektLS9v2t956S6+srNS//vWv9/LR9I905/DQoUP6smXLdL/fH7fd7/frF198sV5ZWam/8sorcZft27dPr6ys1H/wgx9k7wByQHeeh919zTY0NOjHH3+8Pn/+fP3gwYNt2w8ePKjPnz9fnz9/vt7U1JT5QfSz7sxhMj//+c/1yspK/U9/+lPc9qHwPHzttdf0tWvXdtq+fv16ffr06frcuXPj3sfk/bCz7szhUH0/lJztAWj58uUAfPe734379Pfv//7vjBo1ipdffplgMNhfw8spK1eupKGhgVNPPZWSkpL+Hk7OOOGEExKuDnak6zrLly/Hbrdz/fXXx112/fXXY7fb256PMbHfb7rpJqxWa9v2U045hXnz5rFq1SoOHDjQC0fRv9Kdw2HDhnHFFVdgt9vjttvtdq6++moA1q9fn5Ux5rp057An/u///o/GxkauvPJKhg8f3rZ9+PDhXHnlldTX17Ny5cqs3HdfynQOW1paePnll7FYLHzpS1/qxZENDEuXLk24Mnr88cczf/58vF4vn3/+OSDvh8l0Zw6H6vuhBNs5JBQK8dxzz/Hggw+ybNkyPv74407XaWlp4eOPP2bcuHGd3mAVReGEE04gEAiwadOmvhp2TnvmmWcAuPTSSxNevn79eh5++GEeffRRVq5cid/v78vh5bzdu3dz5MgR5syZk/DNcc6cOezbt4+DBw+2bV+7dm3bZR2ddNJJAKxbty67Ax8gzGYjk69jjmLMkSNHePzxx3nwwQdZvnw5e/fu7cvh5aR0X7Ox51ii9LHYNnkewooVK/B6vZx++ulJ0w+H6vMw9vqM/ZT3w+7rOIfpXHcwvh9KznYOqa6u7nSS38yZM/nd737H6NGjASPfSdO0pDlese27d+/m+OOPz+Zwc15VVRWrV69m+PDhbW9qHd17771xvxcUFPDjH/+YCy+8sA9GmPv27NkDkPL5tmrVKnbv3k15eTmBQIDq6moqKysTvmGOGTMm7naHumeffRZIHBACvPfee7z33nttvyuKwvnnn8/tt9/e6Y/9UJHua3b37t3A0edce/I8PKqrBQkYms/DAwcO8P7771NaWkplZSUg74fdlWgOUxnM74cSbOeIiy++mOOOO47Kykrsdju7d+/mz3/+My+++CJf+9rXeOmll3A6nTQ1NQHgdDoT3k5su8/n67Ox56rnnnsOTdO46KKLOr3RTZkyhf/5n/9h3rx5lJWVUV1dzVtvvcUf/vAHbr31VlwuV8qzn4eK7j7f0r1+7HpD2VNPPcU777zDggULOOWUU+Iuy8/P5/rrr2fJkiWMHj0aTdPYsmULv//973nppZcIBoOdgs7Brruv2dhz0uVydboteR4a9u3bx9q1axkxYgQnnnhip8uH6vMwHA7z/e9/n1AoxC233NL290PeD9OXbA6TGezvhxJs54iOZ4lPnTqV//3f/wWMM+qXL1/els8kuqZpGs899xyKonDJJZd0uvyMM86I+33kyJFceeWVTJgwoa1SgQTbIlvefPNNfvGLX1BRUcGdd97Z6fLi4mJuuummuG0LFy7k2GOP5aKLLmLFihVs3ryZ6dOn99WQ+528Znvfs88+i67rXHzxxahq56zSofg81DSNW2+9lfXr1/PlL39ZvuXsge7O4VB4P5Sc7Rx32WWXAbBx40bg6CpNspXr2PZkn6SHivfff58DBw6wYMGCbtUxXbhwIaNHj2bbtm3y7QDdf76le/1Eq41Dxdtvv82NN95IcXExf/3rXykrK0t73/z8/LaT2GLvCUNdstdsqlVDeR4aAdHzzz+PqqoJFyRSGazPQ03T+NGPfsQ//vEPLrjgAm6//fa4y+X9sGtdzWFHQ+X9UILtHOfxeACjtifAqFGjUFW1LR+xo9j2gV63M1OxM8BT5SEmE5vz5ubmXh3TQBTLKUz3+Wa32yktLWX//v1Eo9FO14/lJibKox0K3nrrLW644QY8Hg9/+9vfetTQQp6fnSWak9hzMlE+7FB/HoLR7OfQoUOccMIJjBgxotv7D7bnoaZp/PCHP+T555/nvPPO44477ui02i/vh6mlM4ftDaX3Qwm2c9wnn3wCHG1sY7PZmDVrFrt27erUvEDXdd5//33sdjszZszo87Hmivr6el5//XUKCws7ffXclUAgwPbt27Hb7W0v4qFs7NixlJWVsXHjxrYPfDGBQICNGzcycuTIuEYY8+bNa7uso3fffReAuXPnZnfgOeitt97i29/+Nm63m7/97W89/gMbq1KUrZJ5A02y12zsObZq1apO+8S2DYhmGFmSzomRqQym52EsSHzhhRc455xz+N///d+EOcbyfphcunMYM9TeDyXYzgE7duxI+Klsx44d3HXXXQCcf/75bdu//OUvA/C73/0OXdfbtv/9739n3759nH/++dhstiyPOne9+OKLhMNhzj///Li6pjE+n49du3Z12h4MBvnJT36C3+/nrLPOSqtU0WCnKAqXXnopgUCA+++/P+6y+++/n0Ag0PZ8jIn9fs899xAKhdq2v/3226xbt45Fixbl/Btjb3v77bfj/rB09c3Tli1b4l7bMStWrOCFF17A7XZz8sknZ2m0uacnr9mzzz4bl8vFsmXL2lpCAxw6dIhly5bh8XgSdqMbCurq6njzzTcpKiri9NNPT3q9ofA8jKU9vPDCC5x11lnceeedSYNEeT9MrDtzCEPz/VDREx2B6FP33nsvf/7zn5k7dy4jRowgPz+f3bt388477xAOh7nmmmv47ne/23Z9TdP4xje+0daufe7cuezdu5cVK1ZQUVHB8uXLh1y79vbOP/98tm3bxksvvcTkyZM7Xb5//36WLFnCzJkzmTBhAiUlJdTW1vL+++9z6NAhKisr+dvf/jaoV7aXL1/Ohg0bANi2bRubN29mzpw5basLxx13XNuKVyAQ4PLLL+ezzz5j0aJFTJs2jS1btrBq1SpmzpzJsmXLOn24u+2229raE59yyilUV1fzyiuv4HA4+Pvf/864ceP69oCzIN053LFjBxdeeCGhUIhzzz034bFXVFS0tRMHuOqqq9i7dy/HHnssw4cPJxqNsmXLFjZs2IDVah00JwOmO4c9fc22b9ceaxf9yiuvUF9fz+9//3vOPvvsvj3gLOjOaznmT3/6E7/5zW+4+uqrufXWW5Pe9lB4Ht5777388Y9/xG6389WvfjXhIsuSJUuYOnUqIO+HiXRnDofq+6EE2zlg3bp1PPHEE2zdupWamhqCwSAej4dZs2bxla98JWHNyVAoxMMPP8yLL77IwYMHKSws5NRTT+Xmm28e0p0SP/nkEy699FJmzZrVqZNXjM/n43e/+x2ffPIJVVVVNDY2kpeXx4QJEzjzzDO58sorB/03A7feeivPP/980ssvuugi7rjjjrbfm5qauPfee1mxYgU1NTWUlpZy1lln8a1vfSvhybiaprFs2TKefvpp9uzZg91u54QTTuA73/lOW834gS7dOVy7di1f/epXU97WvHnzeOyxx9p+X758Oa+99hpffPEF9fX1aJrGsGHDWLBgAVdffTUTJkzotePoT+nOYSav2XfeeYeHHnqILVu2ADBjxgyuu+46TjjhhKwcU1/r7msZ4JxzzmHHjh288sorKZ9LQ+F52NX8Afz617+OC/7k/TBed+ZwqL4fSrAthBBCCCFElkjOthBCCCGEEFkiwbYQQgghhBBZIsG2EEIIIYQQWSLBthBCCCGEEFkiwbYQQgghhBBZIsG2EEIIIYQQWSLBthBCCCGEEFkiwbYQQgghhBBZIsG2EEIIIYQQWSLBthBCdNP+/fuZPHkyV111VX8PRQghRI6TYFsIIYQQQogskWBbCCGEEEKILJFgWwghhBBCiCyRYFsIITIQDAa56667OO2005gxYwZnnHEGDz/8MLqud7ruF198wfe+9z0WLVrEjBkzOOmkk/j+97/Pzp07O1137dq1TJ48mVtvvZXq6mp+/OMfc/LJJzNt2jT+8pe/ABAKhXj88ce55JJLmD9/Pscccwynn34611xzDf/85z873WYkEuGJJ57gsssuY86cOcyaNYsvfelL/OUvfyESiXS6/umnn87kyZPRdZ2//vWvnHPOOcycOZOTTjqJX/7ylzQ2Niack+bmZu677z7OO+88Zs2axXHHHccVV1yRcExXXXUVkydPZv/+/XHb//KXvzB58mRmzJhBc3Nz3GW/+c1vmDx5Mv/3f//Xa8f32GOPccEFF3DMMcfwpS99KeFxCSFET5j7ewBCCDFQhcNhvv71r7Njxw7mzZtHIBBg/fr1/Pa3v8Xv9/Od73yn7bqrV6/m2muvJRgMMm3aNObNm8fOnTt58cUX+de//sUjjzzC8ccf3+k+6urq+Ld/+zei0Shz5swhFAqRn58PwC233MJrr72Gw+Hg+OOPx+l0cvjwYTZs2EAgEODcc89tu51gMMg3v/lN1q5dS2FhIcceeyxWq5VPPvmEX//616xdu5b77rsPVe28BvOLX/yCp59+mnnz5lFZWcn69et57LHHWLduHU888QROp7Ptuj6fj69+9ats3ryZoqIiTj31VJqbm1mzZg0ffPABH374Ibfddlvb9efOncu6detYt24dI0eObNu+du3atjn+8MMPOeGEE+IuUxSFefPm9crx/fd//zfPPfccc+fOZcKECYTD4dQPvBBCdIcuhBCiW/bt26dXVlbqlZWV+pVXXqk3NTW1XfbJJ5/oU6dO1Y855hjd5/Ppuq7rfr9fP+GEE/TKykp92bJlcbf15z//Wa+srNRPPvlkPRgMtm1fs2ZN231861vfirtM13V97969emVlpX7aaafpdXV1cZcFg0F948aNcdt+9rOf6ZWVlfrNN9+sNzY2tm1vamrSv/GNb+iVlZX6E088EbfPaaedpldWVupz5szRP/3007btPp9P/+pXv6pXVlbqv/zlL+P2+fnPf65XVlbqV111Vdy8fPHFF/rChQv1yspK/Y033mjbvnr1ar2yslL/wQ9+0LYtGo3qc+fO1c8991y9srJS/93vftd2WWNjoz5lyhT93HPP7bXjmz9/vr5t2zZdCCGyQdJIhBCih1RV5fbbb49b2Z05cyYnn3wyzc3NbNq0CYBXX32VmpoaZs+ezRVXXBF3G1/72teYPn06hw4d4rXXXut0H1arlZ/85Cfk5eXFba+vrwdg6tSpeDyeuMvy8vKYPXt22++1tbUsX76c8vJyfv3rX+Nyudouczqd/OpXv8JisfDkk08mPM4rr7ySGTNmtP3ucDj4yU9+gqIoPPPMM7S0tAAQCAR45plnUFWV//7v/46blwkTJnDdddcB8Le//a1t++zZs7Faraxbt65t22effYbX6+VLX/oSFRUVcZetX78eTdOYO3durx3fN77xDSZNmpTwMiGEyJQE20II0UMjRoxg/PjxnbaPHTsWgOrqagA++OADAM4///yEt3PBBRfEXa+96dOnM2zYsE7bx48fj91u5+233+bRRx/l8OHDSce5du1awuEwJ510EjabrdPlpaWljB07lm3bthEMBjtdfs4553TaNnHiRKZMmUIgEGDLli0AbN68uS1NZsKECZ32ieVCb9y4EU3TAOODwaxZs6iqqmrL244F1/Pnz2fevHl8+umnbXnbscvap5Bkenynn356p21CCNFbJNgWQogeGj58eMLtDocDME5gBDhy5AgAFRUVCa8fy1WOXa+98vLyhPs4nU5+8YtfYLFYuPPOOzn55JM588wz+elPf8qGDRvirltVVQXA008/zeTJkxP+2759O7qu4/V6O91XsnHHtsfG3dVxFhQU4HK5CAaDcfcTC5xjgfTatWtxOp1Mnz6defPmteVtt79O+2A70+MbMWJEwvEKIURvkBMkhRCihxKdbNfbOqaPtHfeeedxwgkn8Prrr7Nq1SrWr1/PU089xVNPPcXVV1/NrbfeCtBWGWXq1KlMmTIl5f1ZLJbeG3wCiqJ02jZv3jzuv/9+1q1bx4UXXsiGDRs47rjjMJlMbUH12rVrmTlzJlu3bmXChAkUFxe37Z/p8aWaYyGEyJQE20IIkWVlZWXA0RXYjmLbY9frjqKiIi699FIuvfRSdF3n3Xff5Tvf+Q5//vOfueSSS5g0aVJbGspxxx3HT37yk27fR1VVFZMnT+60/cCBA3Hjjv2Mbe+oqamJxsZGbDYbbre7bfvs2bOxWCysW7euLV87FmSPHDmyLW/7mGOOQdO0uFVtIOPjE0KIbJI0EiGEyLJYSb9EdaYBXnrppbjr9ZSiKJx88smceuqpAGzfvh2ABQsWYDKZePPNN3tU1u7VV1/ttG3Hjh1s3boVu93O1KlTASO/3GazsXnzZnbv3t1pn9hxzpkzJ+5bAZvN1pa3/dxzzwFGvnZMLG/77bffbvu9vUyPTwghskmCbSGEyLKzzz6bkpISNmzYwFNPPRV32d/+9jc2bdrEsGHDOPPMM9O+zS1btrBixYq2vPCYhoYGPv74Y+BovvewYcO45JJLqKqq4nvf+x41NTWdbm/Pnj0Jq6EALFu2rO0kSDCa1vzyl79E13UuueSStpMS7XY7l1xyCZqm8fOf/5xAINC2z65du3jggQcAo5FNR7EA+umnn8blcjFt2rS4y8LhMM8//3zcdWMyPT4hhMgmSSMRQogss9vt3HXXXVx77bX89Kc/5amnnmLcuHHs3LmTLVu2YLfb+d3vftet3OEDBw7w7W9/G5fLxYwZMygpKaGpqYn169fj9/s57bTT4sr//fjHP6aqqorXXnuNd999lylTpjBixAgCgQA7duxgz549LF68OGHAf8EFF/DlL3+Z+fPn43K5+OCDD6iurmbSpEncdNNNcdf97ne/y0cffcR7773HkiVLmDt3bltTm5aWFq666qqE1T/mzZvHAw88QEtLCwsXLsRkMsVdBtDS0sL48eMpKSnptH8mxyeEENkkwbYQQvSBhQsX8swzz/Dggw+yZs0atm3bRmFhIRdccAHXXXddwhKCqRxzzDHcfPPNrFmzhl27dvHBBx/gdruZPHky//Zv/9ZWTjDGZrPxyCOP8PLLL/P888/z2Wef8emnn+LxeKioqOCCCy6I6zjZ3m233cbIkSNZvnw5+/fvx+12c8UVV3DTTTfF1bQGo0rKsmXL+NOf/sSrr77KG2+8gcViYcaMGXzlK1/hvPPOS3gfsbztcDjcaeU6lrddVVXV6bLeOD4hhMgmRY+dxi2EEEK0c/rpp1NVVcXnn3/e30MRQogBS3K2hRBCCCGEyBIJtoUQQgghhMgSCbaFEEIIIYTIEsnZFkIIIYQQIktkZVsIIYQQQogskWBbCCGEEEKILJFgWwghhBBCiCyRYFsIIYQQQogskWBbCCGEEEKILJFgWwghhBBCiCyRYFsIIYQQQogskWBbCCGEEEKILPn/yaTXJvNaSWgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure()\n", + "for p in [.68, .95]:\n", + " bmb.interpret.plot_predictions(\n", + " mpg_hp_sq_mod,\n", + " mpg_hp_sq_fit,\n", + " \"horsepower\",\n", + " pps=True,\n", + " legend=True,\n", + " prob=p,\n", + " ax=plt.gca()\n", + " )\n", + "sns.scatterplot(data=df_mpg, x=\"horsepower\", y=\"mpg\", color='blue', label='True Data')\n", + "plt.title(\"Quadratic Fit\")" + ] + }, + { + "cell_type": "markdown", + "id": "9788688a", + "metadata": {}, + "source": [ + "Visually, this seems to look better. Particularly at high values, the model follows the pattern in the data much, much better, since we allow for curvature by including the polynomial term. Generating the same residual plot gives the following," + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "b1dfdf33", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Residuals for quadratic model')" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtsAAAHrCAYAAAAe4lGYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACkLUlEQVR4nOzdeXhTVfoH8G/aps3a0iKLoCwiAUSqonRBRUEccGVRdEZaXMZlVHTUn7IoFGhRRNRRUWcQFbXgAgrijKKIAspWEJAqoAjIKkgFSpMmadL2/v6ISZtmu8nNzfr9PM88I/dmOTlN7n3vue95j0IQBAFERERERBR2KdFuABERERFRomKwTUREREQkEwbbREREREQyYbBNRERERCQTBttERERERDJhsE1EREREJBMG20REREREMmGwTUREREQkEwbbREREREQyYbBNFGcGDRqEHj16uP3v3HPPxYABA3Dvvfdi5cqVUWtbRUUFevTogeLi4qCf6/ws0XTo0CH06NEDgwYNkvV9BEHA66+/jmuvvRa5ubkx8dkTxeLFi9GjRw9MmDAh2k1xM2HCBPTo0QOLFy+OdlNiRnFxMXr06IGKioqwvB5/RxSr0qLdACIKTd++fdG5c2cAgNFoxM6dO/H111/j66+/xm233YaJEydGuYXky7vvvotZs2ZBr9djwIAB0Ol00W4SSbB48WJMnDgRI0aMwNNPPx3t5hBRjGGwTRSnRo0ahZEjR7r+XV9fjxkzZmD+/Pl46623cM011yA3NzeibcrNzcVnn30GtVod0feNN59//jkA4MUXX8TFF18c5dZQJDzyyCO466670LZt22g3hYgijGkkRAkiLS0N48aNc42SRiOdRK1Wo1u3bujQoUPE3zue/PbbbwDgujNBia9t27bo1q0b9Hp9tJtCRBHGkW2iBJKRkYHOnTtj+/btOH78uNfHrF+/HgsWLMD333+P6upq6PV69O3bF3feeScuuOACj8fv27cPc+bMQUVFBY4dOwalUolWrVqhe/fuGDJkCG644QbXYysqKjBmzBjk5eWhvLzc47W2bt2KV155Bd9//z0aGhrQtWtX3HLLLbjxxhu9tvXQoUO44oor0LFjR3z99ddeHzNo0CAcPnwYX331Fc444wzX9t27d+Ozzz7DunXrcPjwYZw8eRJarRa9evXCTTfdhKuvvtpvX0rpB1+Ki4uxceNG17+vuOIK13+PHTsWDzzwgOvf3377LebPn4/KykoYjUa0atUKF110Ef7+97+jT58+Pl/7nXfeQWpqKl5//XXX3/ipp55yuwviz8cff4zy8nLs3r0bGRkZ6NOnD+699140NDR4/dsGSqHw9zdct24dvvrqK3z33Xc4evQoamtrkZOTg759++KOO+7weWemvr4e8+fPx0cffYR9+/ZBq9WiX79+GDt2rM/P1bydEyZMwCuvvIKVK1fi6NGjuOCCC1yfKdg2Ob9/ALBkyRIsWbLEta95X02YMAFLlizBjBkzvP4tfvzxR5SXl2PTpk2oqqqCWq1G+/btcfHFF6OoqAgdO3b0+dm89fWKFSswf/58LFq0CAcOHIBer8egQYPwyCOPoFWrVrDZbJg7dy7++9//4rfffkNmZiaGDh2KRx55BBqNxuvrf/rpp1i4cCF27twJs9mMNm3aoKCgAHfffTe6du3q9TlHjhzBSy+9hG+//RanTp3C6aefjquuugr33ntvwM/z+eefY9GiRdi+fTtMJhOys7ORn5+Pf/zjHzj77LMDPp8oVjDYJkowtbW1AIDWrVt77Js5cybefPNNpKSk4Nxzz8WFF16II0eO4KuvvsLKlStRVlbmFjTu2rULf/vb32AymdC1a1cMHDgQKSkp+P3337Fp0yb8/vvvooJMAFi2bBn+7//+Dw0NDTAYDDAYDDhy5AgmTZqE3bt3h+fDNzNv3jx8+OGHOOuss2AwGJCZmYkjR46goqIC69evx7Zt20TntYerHy699FJ07NgRX3zxBcxmM4YMGeIKbHr16uV63AsvvIB///vfUCgUuOCCC9ChQwfs2bMHy5Ytw/Lly1FaWurzAuXzzz/H+++/j7POOgv9+/fHqVOnkJ6eLupzTp8+HeXl5UhJScGFF16Itm3b4ueff0ZxcTGKiopEvUYwpkyZgiNHjqB79+7o27cv0tLSsHfvXixbtgxffvklnn/+eQwZMsTtOY2NjfjnP/+JFStWQKlUIj8/H5mZmdi2bRtGjRoV8O9w8uRJ3HDDDTAajbjwwgvRu3dvKJXKkNs0ZMgQfP/999iyZQs6deqECy+80LXvrLPOEtUPr7/+Op577jk0NjaiS5cuuOKKK2C1WnHgwAG8+eab6N69u+iLJafHHnsMK1asQL9+/dCpUyds3boVH3zwAX744QcsWLAAd955J37++Wfk5eWhS5cu+O6771BeXo79+/dj7ty5bq8lCAImTJiAjz/+GGlpabjooovQunVrbN++HYsXL8ayZcvw0ksvYcCAAW7P27NnD4qLi3H8+HG0adMGgwYNgsViwVtvveV3UmR9fT0effRRLFu2DOnp6ejduzfatWuHffv24b///S++/PJLzJ492+P9iGKWQERxZeDAgYLBYBA++ugjj327d+8WevXqJRgMBqGystJt3wcffCAYDAbhyiuvFHbu3Om2b+PGjcIFF1wg9O7dW/j1119d2ydMmCAYDAbh1Vdf9Xgvi8UibNy40W3bhg0bBIPBIBQVFbltP3bsmHDBBRcIBoNBmDdvntu+devWCX369BEMBoNgMBjc9h08eFAwGAzCwIEDA/bHwYMH3bZXVFQIBw4c8Hj8nj17hAEDBggGg0HYtm2bqPcLth8C8dVmQRCE1atXCwaDQejTp4+wZs0at30LFy4UDAaD0Lt3b2HXrl1u+4qKilx9OH/+/KDaIwiCsHLlSsFgMAjnn3++sGnTJrd9//nPf1yv3fJv+9FHHwkGg0EYP36819f19zf88ssvherqaq/bzznnHCEvL0+wWCxu++bPny8YDAahf//+wu7du13b7Xa7MGXKFFc7W7bH2U6DwSDceuutgtFo9NreUNoUqA8EQRDGjx/v9Xe7YsUK19/7008/9XjeL7/84vY5/XH2tcFgEAYPHiwcOnTIte/EiRPCX/7yF8FgMAjXXnutcOONNwonTpxw7T9w4IDQr18/wWAwCN99953b67777ruCwWAQ8vPzhR07dri2NzY2Ci+99JJgMBiEiy66SDh+/Ljb82644QbBYDAI//znPwWr1erafvjwYWHw4MGutm7YsMHtec8//7xgMBiEUaNGefyGly1bJvTq1Uvo16+fcOrUKbd93o4hRLGAOdtECcBoNGLNmjUYO3YsGhoacO+997qlGjQ2NmL27NkAgOeffx49e/Z0e36/fv1w3333wW6344MPPnBtd6aiXHbZZR7vqVKp0K9fP1Ht+/DDD1FbW4vzzz8ft912m9u+wsJC3HzzzaJeJxh5eXk488wzPbafddZZuO+++wA0TVQMJFz9IMabb74JALjllls8Jk+OGjUKAwcOhN1uxzvvvOP1+QUFBRg9enTQ7/v2228DAEaPHo2LLrrIbd8999zjNvIeLoMHD0ZWVpbX7UOHDkV1dbXHCKiznWPHjkW3bt1c29PS0jBx4kS0adPG73sqlUqUlZX5rAATSpukcP4uH374Ya+pTWeffbbb5xRr0qRJbqkn2dnZ+Nvf/gYA+OWXX/Dkk08iOzvbtf/MM8/E9ddfD8CRatac8zt5//33u30PFAoFxo4dix49eqCmpgYLFy507du8eTN++OEHaDQaTJkyBRkZGa59HTp0wPjx4722u7q6Gm+99RYyMjIwe/Zsj9/w0KFDcfPNN+PUqVP45JNPguoTomhhGglRnJo4caJHGkRqaipmzZrlOmk67dixA8eOHUOnTp1w7rnnen29vLw8AI68aqfc3FysXr0aU6dOxQMPPIC8vDy3k6ZYzjzl6667zuv+ESNG+AwepaitrcU333yDnTt34uTJk7Db7QCAqqoqAMCvv/4q6nXC1Q+B1NfXY8uWLQAcfeLNjTfeiJUrV/oM+FqmXYh9382bNwOAx3fHafjw4di5c2fQrx3I77//jtWrV2Pv3r0wGo1oaGgA4AgIAcffyHmR8/vvv2P//v0+25mRkYGhQ4d6nS/g1KtXL68XYaG2SYqqqirs3LkTKSkpPtOCQpGWlua1yo1zQm6HDh1gMBh87j927Jhr29GjR3HgwAEA3r+TCoUCI0eOxIwZM1BRUYF//OMfAJp+85deeqlbUO90xRVXQK/Xw2g0um2vqKiA1WpFYWEh2rVr5/Xz5eXl4d1338XWrVtlSW8iCjcG20Rxqnmd7RMnTuC7775DbW0tpk6dii5durhN5Dp48CAA4MCBAwEXfThx4oTrv//+979j8+bNWLduHe68804olUr06NED/fr1w9VXXy26tODRo0cBwG0CY3O+tkvx9ddfY+LEiaiurvb5GJPJJOq1wtUPgVRXV6Ourg6A7z5xBoq///671/1iJtKF8r5y/I1efvll/Oc//3FdBHnT/G/k/B5lZ2dDq9V6fXygdgbqn2DbJMWRI0cAAG3atAlrlZI2bdogLc3z9O6cH3D66ad7fZ6zT202m2ub83vWqlUrn3cDOnXq5PZYoOlv5au/FQoFOnbsiJ9++sltu/NYtX79+qCOVUSxjME2UZxqWWfbaDTi/vvvR0VFBR566CF8+umnrnrXgiAAcJyEL7nkEr+v23wUSq1WY968eaisrMS3336LrVu3YuvWrfjxxx8xb9483HLLLZgyZYoMn068xsZGj22///47Hn74YVitVtx555247rrrcMYZZ0Cj0SAlJQVr1qzB3//+d9HvEQ/94KRSqaLdBDfO715Ly5cvx+zZs6HRaDB58mQUFBSgbdu2UKlUUCgUeP755zFnzhyfzw+Vv/6JVpvCLSXFf4ZooP3R5Pw9d+7cGX379vX7WLETUImijcE2UYLQ6/V44YUXcNVVV+Hw4cOYN2+eKze5ffv2AByjU6GscJebm+sava2vr8eKFSswfvx4vPvuuxgyZAgKCgr8Pr9du3bYu3evq0RaS762O6tEOCustGS3210pIc19/fXXsFqtuPLKK/HYY4957HemIgRLaj8E0qpVK6Snp8Nms+HgwYMeufVA08ifr1vsUt/38OHD6N69u8djDh065PW5gf5Gvv62y5YtA+DIVfaWs79v3z6Pbc7PfPLkSdTW1nod3fb1fmKE0iYpnCPMVVVVMBqNMVmD29nn1dXVMJlMXke3vX0nnf/t7+/hrDffnLNPunbtytU4KWHE7uUtEQUtJyfHVb/2zTffRE1NDQCgT58+yM7Oxu7du115p6FKS0vD0KFDXSPkLW8De+OcQPjf//7X6/6PP/7Y6/acnBwolUpUV1d7rRu+Zs0a1NfXe2w/deoUAHhdXEcQBJ/tCEYo/SDmNZ2l45rXa27uo48+AgDk5+dLfr/m7+scRfTVN74mozmDqr1793rdv3r1aq/b/f2Njh8/jnXr1nlsb9++vSuN5n//+5/HfpvNJnrSa7jaBDRdcHj7LvrTpk0b9OzZE42Nja6/a6xp3769K01k8eLFHvsFQXB9V5t/J51zQL799luvqVxfffWV6/jUXGFhIZRKJTZu3OhzrQCieMNgmyjB3HLLLejQoQOMRqOrioBSqcTYsWMhCALGjh2L7777zuN5DQ0NWL9+Pb7//nvXtgULFngNoqqqqvDjjz8C8B6YtHTjjTdCo9Fg69atHhMhKyoq8P7773t9nlKpdAXqL7zwglvKyE8//YSysjKvz3NWb/jiiy/cJns1NDTgxRdfdJsEKka4+kGM22+/HQDw3nvveVSFWLx4Mb7++msolUqMGTMmLO/ndOuttwIAysvLXZM0nebOnYvt27d7fV5ubi50Oh12797tcdG0bNkyn5MVnSkACxcudMsRNhqNGD9+vMfEuZbtnD17Nvbs2ePa3tDQgJkzZ7r9vYMVapucd46at0cs50I8//rXv/DFF1947N+9e3dIrxtOd9xxBwDg1VdfdbuoFAQBr776Knbu3InMzEzcdNNNrn0XXXQRevfuDbPZjNLSUrf+PHLkCJ555hmv73XaaaehuLgYZrMZ//jHP/Dzzz97PMZms+Grr76Ker8QicU0EqIEk56ejrFjx+Lxxx/HO++8g9tuuw2tWrVCUVERfvvtN7zxxhsYPXo0unfvjk6dOkGlUqGqqgo//fQTampqMHXqVJx//vkAHEFHaWkpzjjjDHTv3h06nQ4nT57Ed999B6vVioKCAgwaNChgm9q1a4fp06fjsccew5NPPolFixbBYDDg999/x3fffYdbb70Vb731ltfnPvTQQ9i0aRMWLlyIjRs3okePHjh27Bh+/PFHXHvttdi4caPHreqBAweid+/e2L59O4YMGYK8vDyo1WpUVlbi2LFjuOuuuzwW7vAnXP0gxmWXXYZ7770X//73v3H77bejb9++OP300/Hrr79i+/btSE1NxdSpU72mekgxaNAgjB49GgsWLHCV/3MuarNnzx6MGTPGa8UYlUqFBx54ADNmzMD48ePx/vvvo23btti7dy92796Ne++9F6+++qrH82699VYsXboUq1evxuDBg3H++efDbrdj06ZNUKlUuOGGG7yO9o4ePRpr167FypUrMWzYMOTn5yMrKwvbtm1DVVUV/va3v+G9994LqQ9CbdN5552Htm3bYseOHRgxYgQMBgPS0tLQtWtX3HnnnX7f88orr8TDDz+MF154AQ8++CDOOuss9OzZ07Woze7duzFjxoyQyv+Fy1//+lds3boVS5cuxQ033IB+/fq5FrX59ddfoVKp8OyzzyInJ8ftec888wyKi4vx6aefYtOmTbjwwgthtVqxYcMG9OjRAxdccIHXC9//+7//w7Fjx/C///0Pw4cPR8+ePXHmmWciNTUVR48exU8//QSz2Yy5c+dGtV+IxOLINlECGj58OM4++2zU1tbijTfecG0fN24c3nvvPVx33XUwm8349ttvsWrVKhw7dgx5eXmYPn26W63fhx9+GH/7299cK/R9/vnn2L17N3JzczFz5ky8/vrrXqseeHPNNdfgnXfewSWXXILffvsNX331FWprazFt2jS/Kzmed955mD9/Pi655BL88ccfWL16NSwWCx5//HHMmDHD63PS0tJQXl6Of/zjH2jXrh3Wr1+PjRs3olevXnj//fdx6aWXiuzJ8PeDGA899BDmzp2LAQMGYM+ePfj8889x7NgxDB06FO+//35Yy8Q1V1JSgqeeegq9evXCtm3bsHr1arRp0wZvvfUWBg8e7PN5t912G2bOnInevXtjx44dWLt2LVq3bo0333zT54qOZ555JpYsWYLrrrsOqampWLlyJX7++Wdcc801+Pjjj31WzEhJScHLL7+MCRMmoHPnzti4cSPWrl2LHj16YOHChZIqw4TapvT0dLzxxhsYNGgQjh49ik8++QQffvihzxSalv7xj3/g/fffx7XXXova2lp8+eWX2LJlC9LS0nDnnXdKngsglUKhwDPPPIPnnnsOffv2xfbt2/HFF1/AarVi5MiRWLJkiddSiGeffTY++ugjjBw5Eo2NjVixYgV2796NoqIivPXWW24rdzaXlpaG5557Dq+99hoGDx6M48eP4+uvv8aaNWtw6tQpDBw4EM8991xY69sTyUkhxPq0aiIiirqKigqMGTMGeXl5futYExGRO45sExERERHJhME2EREREZFMGGwTEREREcmEOdtERERERDLhyDYRERERkUwYbBMRERERyYTBNhERERGRTLiCZJicPHky2k0IKCsrC6dOnYp2M+IS+04a9l/o2HehY9+Fjn0XOvZd6OKx77KzswM+hiPbSSQlhX/uULHvpGH/hY59Fzr2XejYd6Fj34UuUfsuMT8VEREREVEMYLBNRERERCQTBttERERERDJhsE1EREREJBMG20REREREMmGwTUREREQkEwbbREREREQyYbBNRERERCQTBttERERERDJhsE1EREREJBMG20REREREMmGwTUREREQkk7RoN4CIiCLHZs+A0ZgGk0mATqeAXl+PdGVdtJtFRJSwGGwTESUJs1mLqWVWrFtvcW3rX6jE1MlaaDS1UWwZEVHiYhoJEVESsNkz/gy07W7b1623Y2qZFTZ7RpRaRkSU2BhsExElAaMxzSPQdlq33g6jkTc6iYjkwGCbiCgJmEyCpP1ERBQaBttERElAp1NI2k9ERKFhsE1ElAT0+nr0L1R63de/UAm9vj7CLSIiSg4MtomIkkC6sg5TJ6s8Am5HNRIVy/8REckkYWfELF26FJs3b8aPP/6IXbt2wW63Y8aMGRg5cqTHY2fPno2XX37Z52t99dVXOOOMM+RsLhGR7DSaWkwvzYDRqGpRZ5tl/4iI5JKwwfaLL76Iw4cPIzs7G23btsXhw4cDPmfEiBHo2LGjx/bMzEw5mkhEFHHpyjq0zqlD65xot4SIKDkkbLA9ffp0dO7cGR07dsRrr72G5557LuBzRowYgfz8/Ai0joiIiIiSQcIG2/379492E4iIiIgoySVssB2KTZs2Ydu2bUhJSUGXLl1QWFgIrVYb7WYRERERUZxisN3M7Nmz3f6dmZmJJ554AsOHD49OgwiAY5lpozGtxYQuVk4gIiKi2MdgG0DPnj3x1FNPIS8vD23btkVVVRVWrVqFl156CRMmTIBer8cVV1zh9zWysrKQkhL7lRSzs7Oj3YSgHD3agMlTa7FuvcW17eL+SpROyUT79qkRbUu89V2sYf+Fjn0XOvZd6Nh3oWPfhS4R+47BNoArr7zS7d9nnHEGioqK0K1bN9x+++144YUXAgbbp06dkrOJYZGdnY2TJ09Guxmi2ewZmDy1HuvW2922r11nx+SptZhemhaxEe5467tYw/4LHfsudOy70LHvQse+C1089p2Yi4PYH4qNosLCQnTq1Am7du2CyWSKdnOSjtGY5hFoO61bb4fRyGtFIiIiim0MtgNwXrFYLJYAj6RwM5kESfuJiIiIoo3Bth9msxm//PILNBpNQuYQxTqdTiFpPxEREVG0JX2wbTKZ8Ouvv3pst1qtmDx5MmprazF06FCkpTFlIdL0+nr0L1R63de/UAm9vj7CLSIiIiIKTsJGkIsWLcLmzZsBALt27XJt27hxIwDgwgsvxKhRo1BdXY2rrroKffr0Qbdu3XDaaafh+PHjWLduHY4ePQqDwYBx48ZF7XMks3RlHaZO1mJqGdxyt/sXKjF1sgrpytooto6IiIgosIQNtjdv3owlS5a4bduyZQu2bNni+veoUaPQqlUr3HLLLaisrMTq1atRU1ODjIwMdOvWDcXFxSgqKoJKpYp08+lPGk0tppdmwGhUtaizzUCbiIiIYp9CEATOMguDeChVE48ldWIF+04a9l/o2HehY9+Fjn0XOvZd6OKx71j6j4iIiIgoihhsExERERHJhME2EREREZFMGGwTEREREcmEwTYRERERkUwYbBMRERERySRh62xT4rPZM2A0prWov10X7WYRERERuTDYprhkNmsxtcyKdestrm2OlSW10Gi44A0RERHFBqaRUNyx2TP+DLTtbtvXrbdjapkVNntGlFpGRERE5I7BNsUdozHNI9B2WrfeDqORN2yIiIgoNjDYprhjMgmS9hMRERFFCoNtijs6nULSfiIiIqJIYbBNcUevr0f/QqXXff0LldDr62V7b5s9A8dPaLH/gAbHT2iZH05ERER+MbmV4k66sg5TJ2sxtQxuuduOaiQqpCvlqUbCCihEREQULAbbFJc0mlpML82A0ahqUWdbnqD31KlGPxVQgOmlGazxTURERB4YbFPcSlfWoXVOHVrnyP9eJ04IASqgqNA6h8E2ERERuWOwTSSC0dTod7/JJEQk6A8Xrr5JREQUGQy2iUTQ6/zPJY6nCijMPSciIoocViMhEiEnRxG1CijhxNU3iYiIIovBNpEIWVkpmDpZ5RFwN1VAiY8UDK6+SUREFFk8sxKJFOkKKHIQs/pmPOWeExERxToG20RBiGQFFDlw9U0iIqLIYhoJURKJ5uqbREREyYjBNlEScay+Gf+550RERPGCaSRESSYRcs+JiIjiBYNtohgm1+Iz8Z57TkREFC8YbBPFKC4+Q0REFP+Ys00Ug7j4DBERUWJgsE0Ug7j4DBERUWJgsE0Ug8QsPkNERESxj8E2UQzi4jNERESJgcE2UQzi4jNERESJgcE2UQzi4jNERESJgbOsiGIUF58hIiKKfwy2iWIYF58hIiKKb0wjISIiIiKSCYNtIiIiIiKZMNgmIiIiIpIJg20iIiIiIplwgiRRArDZM2A0prWoWsLygERERNHGYJsozpnNWkwts2Ldeotrm6MetxYaDcsEEhERRRPTSIjimM2e8WegbXfbvm69HVPLrLDZM6LUMiIiIgIYbBPFNaMxzSPQdlq33g6jkTeviIiIoolnYqI4ZjIJAfdHc0EcZy75wUN2aDRa5pITEVHSYbBNFMd0OoWk/XJiLjkREVECp5EsXboUJSUlGDlyJM4991z06NEDixcv9vl4k8mEGTNmYODAgTj33HMxaNAgzJw5E7W1DAoodun19ehfqPS6r3+hEnp9fYRb5MBcciIiIoeEDbZffPFFfPDBB/jtt9/Qtm1bv481m80oKirCW2+9hbPOOgu33XYbunbtijfffBO33nor6up425tiU7qyDlMnqzwCbscIsipqKRvMJSciInJI2DPe9OnT0blzZ3Ts2BGvvfYannvuOZ+Pff3117Fz507cddddePTRR13bn332WcydOxdvvfUW7rnnnkg0myhoGk0tppdmwGhUtaizHb27MrGeS05ERBQpCTuy3b9/f3Ts2DHg4wRBwKJFi6DRaHDfffe57bvvvvug0WiwaNEiuZpJFBbpyjq0zqlF505mtM6pjfokxFjOJSciIoqkhA22xdq3bx+OHTuGvn37QqPRuO3TaDTo27cvDh48iCNHjkSphUTxJ1ZzyYmIiCItYdNIxNq/fz8AoEuXLl73d+nSBWvWrMG+fftw+umn+3ydrKwspKTE/rVLdnZ2tJsQt9h3wSmb2oCSabVYu64pd/vi/kqUTtGiXdtUABrfTyY3/O6Fjn0XOvZd6Nh3oUvEvkv6YNtoNAIAdDqd1/3O7SaTye/rnDp1KrwNk0F2djZOnjwZ7WbEpUj2nbM2tXv+tf+0kFCeI7eMDKBsmiOX3GxWQKMR/mxXDfg1FI+/29Cx70LHvgsd+y508dh3Yi4Okj7YJoolodSmjuV61o5c8jqc3S3+DqBEREThEPt5DzLT6/UAfI9cO7f7GvkmCpdQalOznjUREVFsS/pgu3PnzgAcEyW9cW73ldNNFC6h1KZmPWsiIqLYlvTBdpcuXdC2bVts2bIFZrPZbZ/ZbMaWLVtwxhln+J0cSRQOYmpTh+M5JI7NnoHjJ7TYf0CD4ye0vEtAREQhSfpgW6FQYNSoUTCbzXj11Vfd9r366qswm8246aabotQ6Siah1KZmPWt5mM1aTCqpx7CRRoweY8KwkUZMKqmH2ayNdtOIiCjOJOw95kWLFmHz5s0AgF27drm2bdy4EQBw4YUXYtSoUQCAO++8E1999RXmzp2LnTt34pxzzsGOHTuwZs0a9OnTB7feemt0PgSFRSxW6vDGWZvaW1qIr9rUoTyH/POfBw9ML82Iye8PERHFpoQNtjdv3owlS5a4bduyZQu2bNni+rcz2NZoNJg/fz5mz56N5cuXo6KiAm3atMEdd9yB+++/HyqVKqJtJ3dSguVYrtTRUrqyDlMnazG1DG6BnqO9Kq/Lr4fyHPLPkQdv8brPkQevQuscBttERCSOQhAEJnWGQTyUNYvH+pVNwbJnIBkoWLbZMzCppN7nqO/00jTRQTvrbEsTT9+9/Qc0GD3Gd139Be/o0LmT2ef+cIunvos17LvQse9Cx74LXTz2nZg620mfs02xS2pZu3it1OGoTV2Lzp3MaJ1TKypoDuU55B3z4ImIKJwYbFPMkhoss1IHhcKZB+8N8+CJiChYDLYpZkkNljlCSaFw5MGrPALupjx43jUgIiLxYvM+OhGkB8vJVKnDV852rOdyxyqNphbTSzNgNKpa9B0nnBIRUXAYbFPMkhosJ0ulDl8VVyY/occzz5qxclV4KrEkW+DuyIOvQ+ucaLeEiIjiGauRhEk8zJ6Nx1m+UqqROIUjSIzVvvNXcaWwQIncPmmYM9e9jF2wlVgA6X+HWO2/eMC+Cx37LnTsu9Cx70IXj30nphoJR7YppoXjdn4ij1D6qwm9foMdRaM9a8QHWyuai7wQERGFjsE2xbx4DpblTr0INEnUVud9v8kkiO5PLvJCREQUOgbbRDKJxOqVgSaJpmd43x9MJRYxVWHi8UKIiIgoElj6j0gGUhfkEctfTejCAiUqKz0nkQZbiYUlFImIiELHYDvJ2ewZOH5Ci/0HNDh+Qhu2IDDZRWr1Sn81oadM0mDXL/Ue24OtFc1FXoiIiELHNJIkFok0h2QVydQL35NIjZj8RAYeelBarehkKaFIREQkBwbbSYoVJuQV6dQLX5NIwzW5lIu8EBERhYZpJEkqUmkOySoRUy8cgXstOncyo3VOLS/GiIiIRGCwnaTEpDlQ6PzlUgebM01ERETxi8OXSYoVJuTH1AsiIiLiyHaSSsQ0h1jE1AsiIqLkxmA7STHNgYiIiEh+TCNJYkxzICIiIpIXg+0kF67ScESJxmbPgNGY1uJClHd8iIgoOAy2ifxwBlwHD9mh0WgZcCUJLvhEREThwmCbyAcGXMmJCz4REVE4cYJkArHZM3D8hBb7D2hw/IQWNntGtJsUt/wHXFb2bQLjgk9ERBROPGskiEQbhY1mvqzNnoHq6nS3vmzOEXCp0DqHo5uJSMyCT5zjQEREYjHYTgCJdttb7IWD1apBjTEVRqOAzEwF9LoGqFTmsLz3qBtS/T4u3AEXJ+PFDi74RERE4cRgOwE4bnsnxiis2AsHo0mPaWVmbKhoelxhgRIlk/RQq2w4VRN84Nr8vUffovL72HAGXIl2VyLeORd88pZKwgWfiIgoWMzZTgBibnvHCzH5slarxiPQBoD1G+wonW7G/v1pGDbSiNFjTBg20ohJJfUwm7VBvXdlZT0K8uVfYZO54bGHCz4REVE4cWQ7ASTSbW8xFw4NDakegbbT+g12PPxPjds2sek0zd+7fL4Fs2bqAcDtvZoCrvCMOCfSXYlEwgWfiIgoXBhsJ4BEuu0t5sKhutp/QF5b67lfTODa/L3NFuCx8UYUF6lRXKSCrU5A586paNXKFtaAi5PxYhcXfCIionBgGkkCSKTb3s4LB2+cFw56vf+AXKv1vj9QYNvyvc0WYM5cC+5/wIgPF9f9GWiHty8T6a5EuLGUJRERJQKObCeIRLnt7bhw0GJqGdxG6punb2TqU1FYoMT6DZ4j+YUFSlRVNXh97UCBq7/3Lp2iRbqyxudzQ60mkkh3JcKJk0aJiChRKARBiJ/ZczHs5MmT0W5CQNnZ2XHRTiBw8Go06VE63ewWcBcWKPH4BA1uu+MUjp9wf73+hUpML00TXZWk5Xu3a6vx2XdNgaHnxYGYwFDq8+NBMN89mz0Dk0rqfV6AiP07Jop4+t3GGvZd6Nh3oWPfhS4e+y47OzvgYxhsh0k8fDni8UvsT/M623q9AhoNUF0twGwGKjbaUT7fArMlPIGrr74LV2CY6HW2g/nuHT+hxbCRRp/7ly7Wo3VOYlyEiJFov9tIYt+Fjn0XOvZd6OKx78QE20wjSSCJHrC1pFKZoVIBOq0WU8ssHiPDC9/LQqPQCJ1OvnSacFUT4WS8JpGeNCrmd5Nsvy0iIgofBtsJIllzXP3VqX5qpln2lANWEwm/SE4aFfO7SdbfFhERhQerkSSAZF4YRcwiOHJiNZHwE1ORJhzE/G6S+bdFREThwWA7AUQ74IymaK+eGanAMJlEqpSlmN9NMv+2iIgoPHimSADJnMoQaORYr1fImm8rplQhBS8SpSzDcaGWyL8tIiIKDwbbCSBRUhlCCYr91akeeLkS6emKP6uFyJdvmyg1zmON3JNGw/G7iZffFhERRQ/TSBKAViOgsMB7KkNhgRJaTexXdzSbtZhUUo9hI40YPcaEYSONmFRSD7NZ6/d5/lIOJo5To3S6JSL5to7AsBadO5nROqdW0sg5V06MDHGrlYaeJsS/IxERARzZTghmiwJFt6ggCMCGiqbAsiBfiaJbVDBbAJUqig0MwP8kNGB6aYbf4NXXyLLRKATItxVXli+SWPkicvylAE0rUQGoh8mUhsfHp+Opmeag0oT4dyQiIicG2wnAaBTw2HgTiovUKC5SwVYnID1DgcrKejw23oi5c3TICVxzPWoC1aquqVFDofCfXuIt5cBkSvX7vrGWbyv1ooOC5+1CLTOzHnYbXOlHGjVQXKTG3+9QISNdAb1e8JsmxL8jERE1x2A7Aeh0CpgtwJy53gPWWM8rDTQR7fBhAfc/2LSioNgRwnjLZQ/XAjkUnJYXai2DZedva85ccauC8u9IRETNMWc7AcR7+blAQW9WlgKvzNbjX8/q8OpsPfqcm4bnXrDCatX4zYmNt36JdhlDcpBa7o9/RyIiao4j280MGjQIhw8f9rovLy8P5eXlEW6ROLFSfi7UEnv+Kor0L1Ri9+4GTC1r+gwF+UpMHKfBk0+bsXJVy8/bNOIdK/0iVryNxCcqqaU0w/V3dP6eDh6yQ6PRcol4IqI4xWC7Bb1ej1tvvdVje8eOHaPQGvGiXX5OyoQwf0HxXX9X4/4Hatwev6HCjqdnmZHbJ80t2PaWExvtfglGoIuOWBuJl5uc9dH9kRosh+PvyAmWRESJQyEIAu9p/mnQoEEAgK+//jro5548eTLczQm77OxsWdpps2f8OZnMe3DhK8e1eTCl1yugUQuoNStcwVVaagpG/fUUzN7TX/HKbD3uf8DosX3pYj1a54Q3IJGr71pqCrI8R+LjOcgKtv+i2Q+hfp+bk9L+cLw/OUTqd5uI2HehY9+FLh77Ljs7cAUKjmyTZKFMCPM9cqdC6xwzAGDffq3PQBsAbHXerxPDWWUk0rfyW47Ea7UpSE8Hjp9ohMUa/PtHa3RYimhX8whH+pGUOyqcYElElFgYbLdgs9mwePFiHDt2DDqdDn369MF5550X7WbFtEA5rkYjAGhdQYdWI4gKpvR6/++bnuH9dn64cpujdSvfWR1DrdJiapnFS8An7v3jNRUhFoLNcKQfhboCptSccSIiii0MtluoqqrCxIkT3bb16dMHzz//PDp16hSlVsW2QMFtnQ0oGtmU7vHGXL2oxWb85b4WFihRWemZ+xqu3OZoj65Kff9ot1+KWAk25V4u3hdOlCUiSiwMtpsZOXIkLrzwQhgMBmg0Guzbtw/z5s3D0qVLcdttt+GTTz6BTqfz+tysrCykpMR+JUUxuUXBSklpxMX9lVi7zntQvHGje/Bbc8p/MGU2K3B2N0c7y6Y2oGRardtr9y9UYvLjWjzznPso48X9lSidokW7tqkANCF+Godff23wO7pqrtWiXVdp7yHn+0e7/d6I/e5VVzf43Z+VmSbL9zhW+Ps9XdxfiTanpSErK3E/f7gl8ndFbuy70LHvQpeIfcdgu5mxY8e6/btXr1545plnAABLly7FokWLcPvtt3t97qlTp2Rvn1RyTjyYMsl7juvov6nw2Hj3SYy+0j+cNBrB1c6MDKBsmuN2vtGoQJ1NwMaN9Si6tRo33qBG0eiWq/rVIBwf8VSN/0D0VE09Tp6s8fuYaL5/tNvfUjDfPY02w281D422DidPxuaofLj4+j1NmaRCY+OpsHzHk0E8TraKFey70LHvQhePfccJkmFy8803Y+nSpdiyZYvPYDvZectxFaDALaNrPCY5VlbWoyBfiQ0V4kqjOfO3Z85yr9Dga1W/cEwKjPatfKnvH+32SxGu+ujxODnUqfnvyWxWQKPxv0Q8ERHFLgbbIjivWsxmc5RbEtta5rgeP+G9mkj5fAtmzdQjJUV8MCV20ly4JgVGu+a11PePdvulkjpBMV4nhzbn/D2d3S3+RnqIiKhJ7CcZx4DKykoAsb+wTazxtVy62QJ8uNiK0ikZWLpYjwXv6LB0sR7TS9N8BkJiJs35nxRo9VjO3R/H6KrKo/1NFwTyjpBKff9otz8cHMFmLTp3MqN1Tq3oNofze0Di2ewZOH5Ci/0HNDh+Qst+JiL6E0e2/7Rnzx506NABarXaY/uzzz4LALjuuuui0bS45S8dYOI4FVSqWqhUEFXtQUxahLfRb40aKC5SIzc3DYcPK5CZmSY6nSDat/Klju7G0+qZ4RQLpQOTTSLcSYgV8Zz+RETeMdj+02effYZ58+ahX79+rqB73759+Oabb2C323HPPfegX79+0W5m3AlXwCcmLeLIkVT391YDs2bqUb7AijlzQwsCon0rX2r5uWiVr4umWCkdmCziucxkrOFFC1FikpRGsm/fPnz88cc4ePCg2/bvv/8eN910Ey644AJcffXVWL58uaRGRkJ+fj4GDBiAffv24ZNPPsHbb7+NyspKDBgwAG+88QYeeeSRaDcxboWaDtDyNQKlRbQc/S4uUqN8gdVjImaspBPwtrs84nlyaDxy3EnwVzc/+DGdZPxtMP2JKHFJGtl+88038eGHH+Lrr792bfvjjz/w97//HbW1tVAoFNi7dy8efvhhLFy4EL1795bcYLnk5eUhLy8v2s0gPwKNkrcc/c7NTXMb0W4u2ukE8T6CFcu3uuN9cmi8CfedhHj/bYSK6U9EiUvSyPaWLVvQs2dPtG/f3rXto48+Qm1tLW6//XZs27YNL7/8MhobGzFv3jzJjSXyN0recvTbbgscBHgj96havI9gmc1aTCqpx7CRRoweY8KwkUZMKqmH2ayNdtMAJMbk0HgSzjsJ4fptOH/DlT/Y42ZkXMxFCxHFJ0kj21VVVR6jwd9++y3S09MxduxYpKenY/DgwTjvvPNcFT2I5NR89Luhwf+1pFbrud/XqFrZ1AZkhOl8HU8jWC1HsLUaIS7yc5N1cmg0hPNOQjh+G/E6Ms70J6LEJSnYrqurc1ui3Gaz4YcffsB5550HrbZplKtjx4746aefpLwVkWjOSYE1Rh0uG6BEzx5pyM1Ng61OQEaGAtsq6/HTz/VIT3d/nr9RtZJptSibFp5AMl4m8HkLWt6Yqw+Qnxs7FwrJODk0GsK1CBEg/bcRz5M1mf5ElLgkBdvt2rXDzz//7Pr3unXrUFdXh/z8fLfH1dXVeZTUI5Kb0diIR/6pwYxnzG6524UFSkx4TAOjsQGZ+uaP9z2qtnZd+ALJQCNUWm0Kjp/QypoPHSjn2lfQUnMqPi4UKLJa3knQalOQng4cP9EIi1Ur+jssdXQ3nu4atRTOi5ZoieW5HETRJCnYLigowMKFC/Hkk0+isLAQzz//PBQKBQYPHuz2uF27duH000+X1FCiYOn1KSidbvaoRrJ+gx0znjGjZJL7BWDLUbXmNbptdQLq6xWw2aWPjAUawdq2rQFTSmvdtoV6C9zbya+hPg1TSv3fZvcVtKRnxM+tbp74I8t5J0Gt0mJqmcVLwBj4Oyx1dDde7hr5Es/pT/GavkMUCZImSN5zzz3IzMzE/Pnzcf/992P37t246qqr0LNnT9djfvnlFxw4cAB9+/aV3FiiYNhs8Ai0nTZU2GGzuW9rHig6a3Rvq6zH/Q8Y8fCjJtxwU01YJgL6m8B3151qzJzlfmIKdeKkr4mMhw4r8P33/ieg+QpaKivrUZDvuSqos/2xcqs71idxJiqpExylTm5NhLzncJRKjbR4n/RNJDdJI9sdOnTA0qVLsWjRIpw4cQK9e/fGyJEj3R6zY8cOXHHFFRg6dKikhhIFq7a2MeD+01o3/bv5qJr/Gt3Scz+9jWAplQrceFMNzF7uggd7C9zfya+x0TFi37IsYvP38BWUlM+3YNZMPVJSYvdWdzzn7ca7cKRxSBndZd5zdMRz+g5RJEheQbJ9+/Z44IEHfO4fNmwYhg0bJvVtiIIW7ChX85zJSNTobjmBb/8BjddA2ymYW+D+Tn4bKuwoLlL5fQ9fQYvZAny42IrSKRmoNcfmrW6e+KMnXGkcoU5uTVfWYfITepRON2P9hqbvbmGBEiVPaJCuNAb3giRKvKfvEMlNUhoJUazwVhvbGTB642uUyzGqlobMgBOxwtJsN+G8BR7o5Ger877f+R7+budPHKeCSmWO2VvdrFccPdFO47DZM/DMs2bk9knDK7P1+NezOrwyW4/cPmmY+ayZ6QwyifbfnSjWBTWy/dtvv0l6sw4dOkh6PpE3vibmTCtRoeSJdEwLcpQrXVkHrS7d6z4njSb816nhvAWu0yk8Jng6yx6Wz7d4nejY8j3idbIWT/zRE+00DqMxDStXWbBylfe5Gg89yLsactDr6zHwciUM3T3LrO76pZ7pO5T0ggq2Bw0aBIUitBOVQqHAjh07QnoukS/+8nOnlAJXD01Hbp80FI1WwVYnID1DgcrKesx81ozJT/jO3U1JFVCQr/Q6wbIgX4mU1PCPjoaz9FdmZj1emZ2JOXMtbukwBflKvDI7E4cPN7g93td7xGOtap74oyfa5euYzhAd6co6jHtUj2llnmVWSyYxfYcoqGC7X79+crWDKCSB8nNH36LCpCneT/D+RrlSFAKKRzvympsH3AX5ShSPViFFIU8qQrhGk+vrlZj7hsXjYmFDhR0pKcC0Eg2WLtbH1Yi1WDzxR1c074jwrkZ02OwZKHvSe5nVsifNnJRMSS+oYLu8vFyudhCFJNTcZOdzfY1y6XT1+HBxPc7LTUNxkfuo+IeLrZj8hOS5xT6FYzTZaFT4X+nRBLRtU5uQo3w88UdftO6IRDuNJVlxUjKRf/JFDER/knNxkUAjVf4WYfH33HRlHSaOc+SCNx8djaUSd/4Yjf4vQoxGAW3bRKgxEcYTf/KKdhpLLIjGYk6xkr7DhawoVjHYJlnJvapYoJGsP6q819oeeLkSWo3gd1n05rfDzWYFNBohbtIt9Hr/FyGB9sezWDnxU3RI/d3Gc8AWrVUcYyF9hytYUiwLW7D9yy+/YP/+/TCZTD4fM3z48HC9HcWBcC0u4uvkZ7NnwGRKw+Pj0/HUTLPXkSyFAh7B+MDLlRj3qAYl07w9x/3A7Lwdfna3bJw8eVJKd4gWysm+5XN0OuDyy5RYtdrzIqSwQAm9LnHL38XCiZ+iK9TfbTwHbNFczCna6TtcyIpineRge926dZg2bRoOHDjg8zGCIEChUDDYTjLhuJ3v6+Q3+Qk9nnnWjJWrLK4Sd3+/Q4WMdAX0eveRrJaTtbQawSPQdrZpxjPAExM0qDUr3ILdQPxdEAQTOIdysvfdR1oAtW4Bt2OSoBZqdU3AzxSvon3ip/gU7wFbNNOnop2+w9QxinWSgu0ffvgBd999NxQKBa699lrs2rULu3btwt13340DBw5g3bp1qKmpwciRI1ljOwlJvZ3v7+RXOt2xcMXKVXaYLfizxJ3j4D69NM3tpNhystbxE1qvgZhGDdw4UoWSaVaPE8bj4+vRKGih03kGy2IuCJpv9xU4h3Ky9/ecsidrMbVEgwfHOnK09XoF9DohoQNtIPonfopP8R6wRTt9KppVaKL92YkCkRRsv/baa2hoaMDrr7+Oiy++GBMnTsSuXbvw8MMPAwBqampQUlKCVatW4aOPPgpLgyl+BHs7v+UosCAofJ781m+wo2i055LjYk6Kvg7MxUVqlC+welSxWLfejukzzDgvNw0//FjvFiyLvSBovt1b4GyzZ6C6Oj3ok32gAMFiaUTbNrUJOxnSl3hdkIccpOZNO59/8JAdGo1W1PPjPWCLhfSpaFWhiYXPTuSPpGB769at6NWrFy6++GKv+zMzM/HMM89g0KBBeOGFFzBz5kwpb0dxJpjb+d5Gh195Se/39X2V9Qt0UvR14M3NTXOrPNLchgo7iotUmDPX4hYs+wt2xV4QOD/7qBtSfTfax+eK9wBBTvG4IE88C9fEQql506E+P94DtmRezImpYxTrJK05XV1djS5durj+rVQqAQBms9m1LT09HRdeeCHWrl0r5a0oDjlu56vQv1Dptr3pdr7jROxrdBgBzm2+yvoFOik6D8wt+avJDQAN9QLuuUuN0beocPiwEsdPaCHAsSy6L/4uCAD3z+6vTCHg/XPFe4BAicFs1mJSST2GjTRi9BgTho00YlJJPcxmbVCv4z+VygqbPUO25/s6LgDxEbA5FnPSYFtlPe5/wIiHHzXhvgeMqPyhHuMe1cR0vrlU6co6TH5Cg8IC979fYYESJU+E97Pb7Bk4fkKL/Qc0OH5CG/A7SQRIDLZzcnLcqo9kZ2cDAA4ePOj2uLq6Or9VSihxOW7np2HpYj0WvKPD0sV6TC9NcxthcowOe45IVFbWoyDf+8mvsECJykrPk5+Yk6Kvi4DMLN+BqUYNdO6U6jqRFd9Wg2EjjXhmlgWzZup9BtyBLgiaf3Z/n7d/YVOpwuYHeX8BwpC/KKFRK3CsSo89e3Wo+kMPq1Xj8zMShUJqgNycr2OB8/WMRv83Y6U8X+zgQKwKtJhTIgeFNnsGnnnWkbb3ymw9/vWsDq/M1iO3TxpmPhu+zx6ui0pKPpLSSDp37oxDhw65/p2bmwtBEPDBBx+gpKQEALB//35s2LABZ555prSWUszzdRs50O18X6kQ5fMdgWxKivtEt4J8JSY8psELs81ujw9mApy3nF6tRvB5K3Lco1o8PcvzRLZuvR2C4Mj3bpmCIuaCoPlnd35ewH2J+P6FjtGZJ582u+V/9y9UYlqJClMnp3lMBhzyFyUeelCLyVNr3V7LUY1ED70u+CXL47n+cCiS7fOGKpwTC6WmRUl9fjzn+sf7BE8pjMY0rFxlcTs+NvfQg9I/e7xXq6HokhRsDxgwAM8//zz27NmDbt264dJLL0WHDh3w3nvv4YcffkD79u2xYcMG1NXV4YYbbghXmykGScmz9JXqYLYAj403Yt4bmRh9i/uS6XfcdQrlb2fioQeDOyl6C6CaH4S9VbEoyFfinHPSMLXM+2uv32DHnX9XYc7cpm3OAHnms/4vCJp/dufnLS5Su5aI79w5FZn6Bo9AG3C0cUop8GRZGqaXprkFCBq1wiPQdra1dLoZZVM1UKnc2+ZPPNYfllKO0WLRYt36RpzWBrDVAadOAVVVKehfqIVaHZufN1rCOW9AalpUONKq4jXXP5nnb0TisyfzxQxJJynYHj58OPR6PRobHav0paen49///jceeugh/PDDD/jhhx+QkpKCUaNG4dZbbw1Lgyn2SL3i9ze55bzzlPh6pd1j1Lh/oRIqlR2Z+sAnRWdwZTQqYLMBFRvtKJ9vgdniGTA6R7ZOVWtwqkZAQ4OAjZvq8dtvDX7fIyMdWLpY3yKAM2LyExl+LwhafnZnGUPnZ3QE0Wk+R2zWrbejpkaF1jm1bgHCsSq9R6DttH6DHTVGDVQq9/7xFXzG44iOt4sDx2JGepQ9afZ70WCvz8Chwwos+8Lm1ocF+Up06qRGly4ZUKbF1ucNt2BG9cM5b0DqRLdkniiXzPM3IvHZk/lihqSTlLPdpk0b/PWvf0X37t1d23r06IFly5bh008/xXvvvYc1a9agtLQUCkXi/tCTnb88ye+/t8NqVfqdUOIvV3LKJA12/VLvsV1sDmXzHLuiW2twx1012FZZ78qz9pZXmq6sg9nSgPvG1mDjpnrk5qahw+n+fyp6PdA6pxadO5nROqfW1TbHKJnndjGf3fkZxRzkWzIa/T/HuV9MDqLUPNpI83VxYOiehmll3hczav4dsFiUmDPX4nGxsqHCcdFnsXjPkU8Uwealtpw3oFED99ylxiuz9XjlJT2ExhTRcwWk5k3He961FPE+wVOKSHz2ZL6YIelkO0t269ZNrpemGOMrGNSogVkz9Zj+lCXgsui+cyUDjw774ivocgZRzjxrb7cAdTqF2yjzPXepUZCv9DpaLPVgHihPNJSDvF4fqCKLQvSIdbRGdELNmfZ1u9dfacfm3wGLGT7vCmyosMNiViPTf1VKv2I5FzyUuxjNFxH6/ns7Zs3Uo3yB1a2vg5krIDVvuvnzzWYFNBohbvKupXBU5NCjdLoZ6ze0mKfxhAbpyuDnacSLSCxklcx3TUi62BqSorjkKxj0t0iMtxO3r1zJUHMoa2qUPnPsnHWznVoGjC0PrP4mL4bjYO7vMwY6yGdm1sNs0cNkcoxYZ+oV0OkcJ9nmJ12nwgIl9DoB1dXpGHVDKopuUWFbZb0rtQZwDz6jMaIjJUfc18VBoNKOzu+A2ftXpqltAfb7fW6M576HmpfqDHCtFg2mz/BeESOYuQJS86adzz+7WzZOnjwZ2ovEmeYVOYpGu89xmfmsGZOfiL10r3CSe3IrV6YlKSQF2xMnThT9WIVCgaeeekrK21GM8hUMih1JlIsxwEBO8+CrZcDY8sDqnLw4/jEtJjymQa25IWKVCvwd5KeVqGC1pmJamftkyCFXKlEySYvS6bWeo1yTtHhqZq1bHnhBvhKzZurx2HijK5h0Bp+RHtGRmiPuK/gXW8dcH2DUOtB+X+Ih913KXYx0Zd2fq6CKmytA3km5oyN3RY5YJ/fk1niuVkPRJSnYXrJkScDHKBQKCILAYDuB+QoG4f+8LfuEEn+LzQBNwZevgNHb7WitRoDZ0ihHc/3ydZBvqE/xCLQB4Isv7QBqMW2KxjXirdcroNcJHoE24JlaAzQFn5Ee0ZE669/XxUFlZb3P0f7m34HMTHuAOwneg5lA4qGagdS7GGLmCrRtE3SzkoYcd3Sa7+cEPunitVoNRZekYPudd97xur2xsRFHjx7FmjVr8Nlnn+G2227DwIEDpbwVxThvwaAgRHdCiVoDn3nWBflK1yIyd92phkLhPYBqfjv68GEbSqbVBcw/l4u3g/yx6nSf+cVffGnHPXcDbdsYXQHO8RNanyNfGyrsuLXYMezoDD6tVg1qjKmorRXwxEQN7HYBtbWNso7oSA0afF0c7PqlHiWTNH9WI/F90SDXxUWwn8s5wnnwkB0ajTYiud3Sq4EEnisQCRaLDkaTAnv22pGp10OnE6BWx/bCanLd0RG7n4jkIynYzsvL87t/+PDhuPzyyzFhwgQMGjRIyltRHGgZDNrsGVGdUKJW23HPXY7h7ZZ51uP+T4OjvztGqO8fW4P3Fuj9jiqeOtUYkykAwY4kBkqtSUtrCiptthRMLTV7WRRHE9KiOGKFI2jwN+FWzG1gOW4XB/O5opXbLfVCI1Pf4HeuQKbefwnNUDVPvdBqU/H99/V45tlaV0qU43ubCb2uRpb3Dwe57ugAnMBHiS+WJ54DgEIQhAA3+6UbPnw4MjMzfY6EJ4J4mISTnR35yUJNQYPniVtq0BDM4iS9eqbi8G+NrglDzScDAsCCd3To3Mn3xK3q6kxcO7za5/6li/VonRP5vL1jVXqMHHXK5/7Fi7LQto0xqMe3amWD0JiKJ0rqvI6aFxYoUTY1Q9REN+ffyL0qhP8DoM2egUkl9T6DhumlaTF1EBVL7OeKhc8v5cRlNGX6nCsgR7Dr7RhTkK9E8WiV2xyEwgIlSqeoY3aEe/8BDUaP8d22QMcoILzH22icLxIF+y50ofSdnHGGGNnZ2QEfE5FqJJ07d8a3334bibeiGCPXhBKxI39qdS0uvTQD1dVpePhR3yeygLmoJv952pHIh/QWAOn1/quO6HSO1BHnc1JSBL+pNSmpAtKVdUEtiuNLqKOziTrrX+znioXc7lDzUm32DLzwUi2KbsnAw//UoLZWgFarQFVVA154qRbjHwvvHSCx5T0Bx/fWaNJAHWAuR7TIe0cnPn8zRIHEw8RzIALBdmNjI37++WekpEhaP4fiWLgnlAT740pX1qFVK0jLRdX5/v5q1EB2dopbUBvuW1i+A9c0TJnsqDrSMoCb/IQWM1pMhpz3hh7Fox1RcsvVEYtHq5CicNzokjrRTeoBMBxBgzPf3GgUkJmpgF7XENQS9XIQ87nieaKb0ZiGL5Zb8MVy7xdq9/0jvBcK/i5MWpb3dDw+didohisNROrx1vm72bPXjsxMfUz8boh8iYXBCTFkC7YtFgv27duHOXPmYP/+/bj88svleitKMqH8uKSOlubkKLyeCDVq4JXZmaIW7glVoMB1aokaQ65Mx+hbmmrr/lHViGPHGlHRchXEDfX4eVc9zstNQ3GRey3eDxdbMfkJxyFB6kS3cBwApQQNRpMe08q85ZuLW1hFToE+VzhGOKOVvxjpC4VA79eytnqkJmiGIhbu6MTy74bIm3gZnJAUbPfq1SvgYwRBQE5ODsaNGyflrYhcTCYBGrXjFnFubhpsdQIyMhSuhVl8/bikjJZmZaVg6mSVx4lw/GNazH3DEtZbWC0DJUFQ+A1cDx5SYUqp52coyFe63UYHmhbnWfCe+wp/LU/oUie6RfMAaLVqPAIGIPiFVaJF6ghnNBfOiXRFjECv17y2unMxp1gWzTSQeP/dUHKKlyo8koLt008/3ec+pVKJtm3bol+/fhg9ejRat24t5a2IXPR6hdcloZ0Ls/hbdETKaKmv8oZTSr3fMg/lFpa3QOmVl/yvolJzynsA4e02unNxnncXZEIB3yd0lcqMkknel36eVqIB0IBjVXqfKRrRPADWGFMl55tHk5QRzmjnL0a6Ioa/93OW9wSaJmiq1bFbjcQpWnWc4/13Q8kpXqrwSAq2v/7663C1g0g0jVpA+QLPShkbKuxQKIApkzWw2eUJKlqeCPcf0PhpJyBAITqX21eghABxqb+VEb0tUW62AAoIaJ1T6/eErtcZUTZVgxqjxrUoTqusBtjswLq1Atq0bYStTkBtrQLbqgQU5Ouh0zpuNUfzAJgIC6t4W1BJzAhntPMXI50K4e/9npioxYkTjRjyl3TodUJcBNrRlAi/G0o+sZB+JUZEqpEQhVOtWeF3BObXXxtRvqA+qrfNNWpg1kw9npklPpfbV6DkXHzH22fuX9g0eueNt0B84OVKaDWCqIsAlcoMlQquk2xdnQZHjgj4fLnNY4Jl506p6HSmBhkZ5qgeAGNlYRWpmi+oJLYUVizkL0Y6FcL3+9WgS2eWYBMrUX43lHzioQoPg22KO4ECCqtViPpt8+IiNcoXWD0CZH/t8vW5nHnWKSmegeuUSWo8Pcv7SGb/QiX+qHIvWTjwciXGPapByTRvqyj6vzix2TNgtaZizlzPvE7nvyc/rkFGhmNbqKOzzd8vlEl+0VpYJRZEOn3H198o0qkQibSEdrQmtybz74Zif1GYQGL9GBBUsP3yyy+H/EYKhQL3339/yM8nchI7KSqat83z8tLc8smbW7fejpoaNU5r7d4uX5/LmWf94cJM2O0tr9xNmDhOi7o67yPIyvR6LF2sdz1HqxE8Am1nm/xdnDhzyR96wPsIO+AIuC1WICvLvX+CHZ1t/n6hTPJz5Jv7XlhFpUrMdAKbPQOCoMArL+mhUMA1Ydi5qEu403eiOREzUUWzT/3N05gySQOVitVIEhV/y/ILagXJnj17QqFQoOVTFIqmIMG5r+U2hUKBnTt3Sm1vzIqHW5WJsqqVvxX2CvKVOC+3KdAVs+qaGIH6ruWoQE2NAsW3+Q7qyt/KRNcuJrfnW61KjxKCToFWDnRfrjoF6emOJeY1GvcRiuMntBg20vdJs+VKmFarBnV1qXjyaUeAPu/1TNx+p5/PNS8TXbt6Lh4UzHdP6gqKNnsGZs6qx/XXZqBNm1S3hVU++V8dxj8WXytQium7QKsonn9+eFdTk3uVS6mjbGaLHiaTI884U6+AVgdo1LEdLMbCyqFAU51tZ99n6llnO1jxdK6Nle+dUzz1nVPYV5CcMWOGx7atW7di4cKFaN++PYYMGYKOHTsCAH777TcsX74cv/32G2666SZccMEFwbwVkUvLE29mZr3XMnzNgwunSJX9aX4Ly2bPQENDOv71rM6tJGHz5eE1zVaxcwZK339vwfOz9PjL4HS0aZviKmlYVdWI/oUpftMvnO+vVmkxtcx3nngwOb3OmrvFRSrX6ymV/vtBn+l/vxhSJ/lFemGVaPO3imJKCvDhwkyoVPaw5i8G+hvV1KihUIQWLEsdZTOaMjGtrNZLrehMWZaLbynUC4VoT251cs7T6GGIv6An3lMhoiFWvneJLqhge8SIEW7/rqysxJQpU3D33XfjwQcfRFqa+8s99thjeOmll/Dmm2/ihhtukN7aCKisrMTs2bOxdetW1NfXw2Aw4LbbbsPVV18d7aYlJV8n3mklaZhemoaaGjV++81Rfk6pBH7/vRHPPqPHtsp67PqlXvJtc+fB++AhOzQabcCDt7f2OksSPjbeCLPF8W+1pun1nYGSRg00CsAXX9rcbuP2L1SisCBwzS0xZd/E5vQ2r7l786gM1/71G+x+q4xkZnoPcIMhdZJfLEwSjKRAJ0u7XYVMfXhPloH6+PBhAfc/2HTRKzZYllq60GzRewTagLNWdC2mTdHLOsIt5UIh2b634cZUiNDwexcZkiZIvvjii+jUqRMeeeQRr/tTU1Px8MMP46uvvsJLL72EN954Q8rbyW7Dhg248847kZ6ejmuuuQZarRbLly/Hww8/jKNHj+KOO+6IdhOTis2egRnPWNHn3DTX6ojOkeKnZjpWOzyttQkZGb5WPdMgXRn6iTXYg7e/EUbAMWlyW2U97rlbDbXasa15oFRcpMY784ObVNmcmBEKsSX5mtfcbV7RZN5bFjz7jB4QgHUbPHPEwzF6KnWSn06n8LvoUawschAu0ThZBuzDFrvD+R32N8pmMsHnnIJt2+yw24DjFnGlOIMl9UIhXhbniEXRri8fz8L1veNdBf8kBduVlZUYMGBAwMf16NED33zzjZS3kl19fT0mT54MhUKBBQsWuFbHvP/++3HjjTfi+eefd0uTIfmZTGm4cWSa18VrikerYDIBOh1Q9qT3Vc/KnjSHfJAN5eDtL1DYUGHHIw9p0OH0FJzRQYAyre7Pz9gUKOXm+p9UGTjQEBN0iSvJ17zmbvPSg2YL8Og4I4qL1Bg9WgUIQMeOCmRmhi9NQWqN7szMerwyOxNz5lo8vjevzM4My+h7LIlGkCZ2MZnmvv/eDqtV7feELPXCwVetaGcpTufcA6dwjnxKvVCIlcU5LBYdjCYF9uy1I1Ovh04nQK32nIcRS5gKEbpwfO94VyGwFClPbmhowKFDhwI+7tChQ2hoiO2yQRs2bMCBAwdw7bXXui1Dr9fr8Y9//AN2ux1LliyJYguTT6Og8Fo+b0OFHeULrGgUFH8eZP2t4Bja9WQorxsoUKirE3BxfwXU6qaDT/NAyNsCNMG8vtigy1GSLw1LF+ux4B0dli7WY3ppmttBsXlN3fL5FhSPVqEg35GwbbYAc+ZasOBdK7qfDZzW2hTWEQxHhRcV+he6J4g3XRDUwWbPwPETWuw/oMHxE1rY7E2pLoIAzH3D4vV7M/cNC8RPCY8PzpOlN/0LlVAqFW79Ew7+/kbFo1Uon+8e+DiD3elPWTBspBGjx5gwbKQRk0rqYTZrXY+TeuHgqxa0sxSn94tna1j6R8yFgj9ivvdyM5oyMXmqBSNHncKtd9RgxKhTKJlmgdEUhskYMpLa98lM6vfO/8BUeH5biUDSyHZubi4qKirw8ccfY/jw4V4f8/HHH2Pbtm0oKCiQ8lay27hxIwDgkksu8djn3LZp06aItinZNTb4XrxmQ4UdQqMGNQGyREK9hR7KCFugQKDGKODfc+rcrvabjyr4WwlSzOsHM0IRqCZp85q7ztKDxUVqx/LvMoxmt+RvkYJAoyjJNsrlq/xkQb4So/+mwo031fxZjSS8o0ze/kZKpQI33lTjNhkYEF93Xuoom04Hr7Wipd41EiMcdxjCsTiHs5qI0eiYy6LXiasmYrHo/Oa7l07RxewIN1NwpJHyvUu2422ogir919LmzZtx6623oqGhAf369cPVV1+NDh06AHBUI1m2bBk2btyI1NRUvP3227jwwgvD1vBwe/DBB/HFF1/go48+wrnnnuux/4ILLkBWVhZWrVrl9fkGgwEmU2weiJxSUlLQ2NgY+IExoqEhBSdO+m5vq6wUQAFUV/t+TOucFKSkCGhsVEAQAIUCSEkRAPj/2jc2puD4iUCv23K/AqdqAJvN87XT0x0TOGtrBaSnK5CVCVcbBCEFNUYBSiVgt/t+fvPneFK4PqMgADa7AHOtAOHP52bqFVAogvvbO9vVvD1NrxVcn4bvu+e/j7MygYYGhd/vTU52ClJT4+d3IL7vHN+BhgYACsDe7DsAiPkOhYP3v0+rVikifqeO/f6/d4H7wdvzW2WloPqU3N+JwN9NefteWt+FdsyLFdHv++bi7VwrRaDztPjfVgoaG9HsnAIA8dGHv/32W8DHSAq2AWDlypV4/PHHcfLkSbfa2oCjvnarVq3w5JNP4oorrpDyNrK74447sHbtWixfvhydO3f22H/ppZfCbDZj8+bNXp/f8rMTERERUWITE0ZLXq594MCBWLFiBb744gt89913OHbsGACgTZs2uOiiizB06FBotdoArxL/unfvzpHtsAs8UmyuFZCVlQKzxftojtEooO7P7QoAGq3jVjcEIDXV/4hs6KNE/kcYgUBX+4ogRo1DHdEJ5j2kv1+4vnviRlGEmBrlkiqYvgt+lCnU70Eg7q8LQNSoabhHV5v6LvCxxG5HSHeAPEnt09CeL7Xv4ntk20mu73Nw4u9cK4XUuwopOFUj+Hm+AvEywu2P5GAbALRaLUaOHImRI0eG4+WiQqfTAQCMRu9JwCaTCVnN16FuoaKiQpZ2hVM8rszkbWW8/oWOXFRn3eqWZd7OPDMVOTk2mExpuH6E4+/pnKDVMm/UOQnEVy6rs5yR2ayARiOILmcU7EqNoQrlfXz1qZgVBkP9XOH67ol9fymfMVzCVQormL4L5u8TyT4Su0rdnr063HqH74Vn3n4zE93OEj+o0bzvAq2yabY48r3LpmZEbcVEKX8TqX1nsehQMs3ike8OOPqldIo6ZnO2Y008nmulHK+kfG+PVekxctQpn/sXL8pC2zaxvfqrGGEJthNBly5dAAD79+/3yNmuqqqC2WxGbm5uFFqW3LxN3EhLTcGov55yTcJyVsdwWrwoC+nKOhiNqa5tYidoteScSHh2t+AOnnKX8XIeGKurfacvadSAAAWOn2iqK6zVCJLq0QY7cTTYRYECEduvKSnAPXeq8NCDGtdy7RZz4595gPKLVikssf0T6brEviZxtiw56auaiFOg/f44jyXV1Rrs39+A9AwFKivrXYE24JgMWGPUQBV4Damwk/o3kdp3arUJJZMyUTq91i3gdqxZoIVaLf/qmxQdUo9X0iZY+j+nGI0C2rYJ/BliXVDBtjMJvF27dkhNTRWVFN6cc/JkLOrXrx/mzJmDNWvW4JprrnHbt2bNGtdjKPJaVs6wWjU47zzPigOA48SQqXeUmWw+Az0S1QhatllMcBGK5gfGV2brvT7GOZL/zCz3pdvfmKsPUNLQvR9aVjZo3RponQMcP+G9bc37XI6AU0y/2uszcPCQAnPmupf/K8hX4p671OjSJcNV51wO0VxgQ+z3LhoVBMSckJtXwWmp+W87ELNFD5MJrlrRWh2gURv/vAhX4uFHfY/QRuvkLvVvEo6+0+tqUDpFB6NJA6NRgF6vgF4nMNBOYOE6XgWqcOWLnBfYsSSoYHvQoEFISUnBp59+iq5du2LQoEGiJwYqFArs2LEjpEZGQmFhIc4880z873//w5gxY1y1to1GI/7zn/9AqVT6LG9I8mp5eysrsx4lkzQonW72GIGZMkkDlcpxy6n5KJ+YGtbhXmUvHGW8Wmp5YGy+4Exzvkbya06J7wejyfvKnPPeyMLtfz/lEXBHauQ0UL9aLEqPQBtoWlmwZJIayjAvX95ctEthifneRWuJ5kAnZJXKjJJJ+oC/bX+MpkyPEnaO0dlM6HU1MXtyl/o3CUffAY4RbrUa6GGIv1QICl60j1fhusCOdUEF286RXbVa7fbvRJCWlobp06fjzjvvxOjRo92Waz98+DDGjx+PM844I9rNTDq+RkdLp6ShbGoGaoyONIGcbAXs9QKOn2hAna0pXcE5yhdqDWvnyO6evXZkZupF16x1CvVq35eWB8by+Y7l01MU7sun5+V5H8kX2w9Wq8Yj0AYct9lnzDTj+Vl63Pr3ppO3HCOn/nII/fWrxex7ye4NFXZYzGpker8hEBbhCmSlpOAE+t7Fcl1ivc6Isqka1BibRlcz9Q0ewaK370dDQ7rfWtHTpuhj9uQejr+J2L6TS6g1vuNJoi1LHq0Lb6dwXSTGuqCC7fLycr//jncFBQV499138dJLL+Gzzz5DfX09DAYDHn30UVx99dXRbl7S8Tc6WjINmF6ahrZtzDBrtZhaZvFy21zrGuWzWhVB51D7GtktmaSHXhedA4C3A2OKAvjLlekYPVoFW53gCKh9HD99jYQD7v1QY0z1GbCu32DHY/+nwdLFetlGTqWkoLRcUCXY/VKFI2iSO+c7VpYG90WlMkOlgs90Dl/988TEDFRW+v7emkxA2zbhObmHO+gK198kUN/JJRaPl+GWiMuSx8KFd/OLROfvKZIXiZEguc42OcTD7bZYmCEdzAlKTGUFvb5eVJUDILgZ01arBpOm1HkNOKNZsaBln9xzlxrbKus92vnKbD3uf8Cz75y53Ave898PwVQ28PY3NRrTQq7GIrZyhS9/HNdh+A2+2/7xR5k4rbV8VRWktl/q88WKhYotoQjUP33O9T0/o/n3tvkobNMIsLjftFx9F0t/k2DOF7F6vAynYH6XsXCuFStSxxux4qnvnLKzswM+RrZqJEajEfv27UP79u3Rpk0CTCUlyYIdFRAzOgqIT1cIJoc60MhutCoWtBz98jXxc8cO76NkZgvw4WIrSiZpUFfX6LMfxOa1+v6bKkMepZM8USzT7ve9dbpGtwot4b4NLHVybKRyKOWYUxAJgfpn9C2+f5jNv9ehjgBHcz5CrIrV42U4RTu3WS5yTuanJpKC7TVr1uDTTz9FcXExzjnnHNf28vJyzJo1C3a7HQqFAkVFRXj88cclN5biVygnKH+3r1rnAK1bp6LWBPzrWR0yMhTYVlmP8vkWtzSBlukKYnOoY7UcUcsDo6+JnwoFcNff1WhshEdFjjFFatTZBLTOqfXZD/7yWi+/TAm9TsAfx3U4fFhA0S0q9Dk3zdX369bbMeMZx0TE0unBH8B9lLp32+/v7+fv5FHyhAZPzjBj5SrvKUfhIiVoimQOZbjnFERCoP7xlUJVWKDEn8sp+BXo7pvcQVc8/k1i9XgZTtHObZZTvF7kxRNJwfaiRYvwzTffYNKkSa5tP//8M5566imkpqbivPPOw969e1FeXo68vDwMHjxYcoMpPoVygvKVw9g6B5j3Rhamlpo9AslZM/VudXN1OkVIk3ZitWIB4H5grLd7b0evXmm4/4EaFBepUVzUlMtdWVmP+x+owfx3fC/QBPietHL5ZUqMf0yLKaW1HouDNO/7lavsePifKkwvTYPRqGqxKJD/A7hG478YdqD9jsd4njy0GgFPPu0eaAPy1pYOJWiKhRzKWBbo83fokOJxoeisFa0JUMJOzN23RA66QhXLx8twSfTfZTxe5MUTScH2jh070KtXL7fl2JcsWQIAmDFjBq677jocPHgQ11xzDd577z0G20kslBOUrxHK52fp8dTTnpUyNlTYkZICvPVGJr5aaceuX+qhykjBpCnBT9qJ1YoFTs4Do82e4fWCxFYneCz205zZHHj5W2+VDfQ6wSPQBppGz4uL1K73NBoF5GQHvyhQSqrgcxJnQb4SKanippm0PHkcP6H1CLSdYuk2cKxPXoy2QP2TlWXDtCkamExwfW91OgQMtMXefYtW0BXLVTBi/XgZDvxdkhSS1lP7448/0L59e7dt69evR2ZmpmthmDPPPBP9+vXDnj17pLwVxblQT1COEco0LF2sx4J3dI5JkZkpPvMD1623o+q4gMof6jHuUS2e+5f38nWl082wWjU+2+MY2dWgsEDptr2pYoG4yT42ewaOn9Bi/wENjp/QwmbPEPU8sRwXJCr0L3RvZ2ZWoJEmca+vUpnRto0R3c4yoW0bI8wWweeiOBsq7MjNbbp+DzXoSFEIKB6tQkG++2dyLq2doghtTre4OQDR5+tv2pSCExsBVrSI6R+N2oi2bYy46EIl2rYxQqMWUZ/bmBZgwSfHd9sZdHkjV9BlNmsxqaQew0YaMXqMCcNGGjGppB5mszbwkyMgXMfLWMbfJUkhaWQ7NTUVdXVNX7Dq6mr88ssvuPzyy5HSbF3knJwcbNq0ScpbUZyTMirQcoRyz17/iZe2OgHrN9hR9mQt+pybBsDzPcVM2pFajihSZaJ8pUzIMQoTKCB15pBLeQ+drh4fLq7HeblpHikwHy62YvIToR224uk2cPO/aTApOMlCjhxTsXffIj2hLJorkgYj2jW+I4G5zRQqScF2x44dsXXrVtjtdiiVSnz55ZcQBAEXX3yx2+Oqq6vRqlUrKW9FcS6cJ6hA+X/OhVsCVSYQM2nHWbEg2NXUIn2C9JZvJ0dAECggTc9QBP0e3m6PPz5ehSmlVrc0GKltj7fbwM6/aTApOMnEX46pr+Xa/QnmYiySQVc8VcGIVo3vSGJuM4VCUrB99dVX41//+heKiopwwQUXYPHixUhLS3PLzRYEAdu3b0fXrl0lN5biW7hOUP7yAwvylaisbAqa/C3TLtekHZs9A9XV6Rh1QyqKblF5VEmJ1AkyHP3dMhAONGLetYviz7qs4t7D9+h/Gp4sS0NNTfiCGZa4ipxo5hcHWq7dl2AvxiIVdHFCJlH8kxRsFxcX46uvvsK2bduwbds2pKSkYNy4cWjXrp3rMRs2bMCJEyfw17/+VXJjKf6F4wTlq1KGM6f3sfFNI1iZmd4Darkm7XgLHr1VSYnUCVJKf3v7LAMvV2LyExqUPWn2sfCG+MViAo/+p/ktTxgK3gaWXzRX2TNb9AGXa/c1wh2ui7FwX2jEU/oTEXknKdjWaDR4//33sWnTJpw4cQK9evVCly5d3B6TkpKCiRMnYtCgQVLeipKAr5OUt+3O/ECjSYPffmsEFI6lyJsHtP0LlTijo/cyYMEsyxxM+70Fj94qdcT6CdLXZ3FU8zCjdEoGas3SAtZw3R4P5nuTrqzjbWAZRTu/2GSC38VVTCbHKqq+SL0Yk+NCI57Sn2K5YgpRNEleQTIlJQX5+fk+9+fn5/vdTwT4HkUd96j+z1FU7ycvlQrQavwtcRyZSTvO1BFfweOGCjuKi1SutsXSCbKlQGkwK1fZ8dCDKsmjzuG4PR7q94bkEe384nAsrhLqxZhcFxrxkv4UzTsaRLEurMu179u3DydPnkSrVq2Yo02i+TpJGbqnYVqZZ+m+lievQKNRck/acZ5kRt2Q6vdxtjoh5k6QLYU7DcY50nXwkB0ajdZtpEvq7XGp35tEFq0RxmjnF0dzcRU5LzRiPf0p2nc0iGKd5GDbZrPh5ZdfxgcffICaGsfkk+HDh2PGjBkAgKVLl+Ktt97CU089hV69ekl9O0pAvk5SublpPhdlaXnyilZqQPOTjL/KJwDQuXNqUJMHIy3caTD+RrqU6fVQKhWSbo+H+r2pqVFDoZA/EI1WwCv3CKO/zxWu/OJQVn11vD78Lq4iZrn2UMl9oRHL6U/RvqORTJiqE58kLWpjtVpRXFyMuXPnQqlU4rLLLoMguB9wCgoK8NNPP2HZsmWSGkqJy9dJyl8lEX/Pi6TmC2FUVtZ7LMTi1L/QMSHTaEyTbYEbqfwt6tF8wRoxgbD/kS4rvvkmBTfeVIPRf/NcvEbsIhGhfm9OnYLsi4NEaxGSQP0u9TsX6HOFY8EXo0mPSVPqMHLUKdx6Rw1G3HgKk6fWwWgKvBKTRm1EySSt18VVHMu1y1fzOZknMsbLglHxLtYXNyLfJAXbr7/+OrZt24YbbrgBX331Ff7zn/94PKZdu3Y4++yzsW7dOilvRQnM10nIWS872OdFUvOTSPl8i9eVD/sXKlHyhAZPPl0X0wdJMQvWiA2EA63Gd1qbFJgtwGPjjTgvNw2vzNbjlZf0+PijTEwvTYNGUxtw9c1QvzfqFjcgwhWIOskd8PojdhXEUIj5XFJX2bNaNV5TgMSs+uqk19Vg2hQNFi/KwttvZmLxoixMm6LxW/YvHKKxsmSsSOYLjUgJ9PuzWjWyrlYsN+fxvvIHe1y2PxBJaSSfffYZOnTogKlTpyItzfdLde3aFVu2bJHyVpTAfM22r6ys93lLOFZOXs1PIs7gsbhI7Vr5sHPnVGTqG/Dk0+Y/K3k0EZPPKPaWYbAVOQJ9Fm+CSYMRu9Kk2QK3lI+li/VIV9aJSoUI5XtTkK+Et5aF81Z3NG+py5nKIPZzSckvrjGm+q0mEmjVVyeN2giNOvjFqKSIl4mMcoiniinxKtDvb/9BFf5+V9Odm3ianJoMk2sljWwfOnQI5557rt9AGwCUSiVOnTol5a0ogfkaDdv1Sz1KJmlCHiWLhJajWc7g8f4HjFj0UR0y9Q2oMaZ6BNpO/kYbxd4y9Pa4sifrHbfjg7jlGGhkrlUrm+g+F7PSpDcmkyB6ZNjf92bieI3HHYaCfCXuuUuNb9d4/1uE61Z3NG+pyznCGMzncuQX16JzJzNa59SK/t6IqSYSyxwXGmlYuliPBe/osHSx3nWnJpFJvaNBgQX6/dWcct8fiTtp4RDNO4GRJGlkW6VSiQqiDx06hKysLClvRQnO92iYMaZn4fsbzXKkjphx/bX+DxbeRhvFzu4PZ0WOcI7M+RvparnKZ3M6nSKokWFf3xu7HRg6JN11hyE9Q4E/qhpRZxXw5jzvrx2uW93RvKUu5whjJD5XNKuJhEssT2SUU6xXTIl3oQxgxMPk1GSZXCsp2O7Zsyd+/PFHnDhxAjk53o8sBw8exI4dO3DxxRdLeSuKgFArAISLr5NUrJ+8vJ1ktBrBlTpy4w3+73t7O4iKPQCFo5KLr89iNgvIykqBzQZU/dEInU4reuZ7urIOk5/IROn0Wrd0jv6FStx1pxr3j/XMn3UGg0eO+C+h2PLipOX3w2bPwNPPmGHonoY2bZpu3p12mgLvL7K6yhd6e+9wiOYtdTlTGSLxuTL1DX6ricix6iuFT6wfq+NZqAMYkVqtOFTRLhcaKZKC7ZtuugmPPvooHnnkETz//PMeAXdNTQ0ef/xx1NfX4+abb5bUUJKX0aT3GAl1zODXQ6+TbwZ/omh5kjl+QutKHXFWKfGWi+orSBF7AJJSycXXAcz5WdQqLaaWWbwEbYHz6KxWDZ5+pha5fdJQNLppdHnHjnqkKIDzz1f6DAZ1Ov+TRgON8BiNaVi5yuKRuqNRA7Nm6mGzyZtTG+3cXblGGIP5XKGWJ1OpzCiZpEfpdHNEVn0lihf+fn+j/6bCY+O9/zZifXJqskyulRRsX3vttVi5ciU+/fRTDB48GBdccAEAYMuWLbj33nuxadMmmEwmDB8+HAMHDgxLgyn8AlUAKJuqiegIt5yCDQKco/179tqRmakXPdrfskrJrJmOsmXN+9hf8CX2ACRXJRepi1TUGFOx+hs7Vn/jeYEx7y0LFr2fhfqGRq/BoNQRVF8XIM4JrO8uyIQC8t7qjvYtdblGGMV8LqmTnfS6yKz6ShRvfN9Flf+OnVySZXKt5EVtnn32WfTq1QtvvPEG1q5dCwDYv38/9u/fD71ej4cffhh333235IaSfMJVASBYkS7OH2wQEGi0X+ziHr6qlDgmHHoPPgIdgJRKBWz2DNkquUjNo/M3kc1sAf44LqDbWd6Xe5c6MuzvQsJsARQQJC81L0ai3lL397nCtZKg3Ku+EsnB34q54eLt9zdxnBZ1dfFZBSfadwIjRSG0XIUmRA0NDdi+fTsOHz4MQRDQrl079OnTB+np6eF4+ZgXqfJSUmRney+DtWevDrfe4bsG7dtvZqLbWaawtqUp8PX8cckxc99mz8CkknqfwaujpF3TQdFq1WDSlDqvFyGXX6bEhMc0KH3S7LP9wb6fN976qCBfieLRjluG55+vxLQSFQQBHo8beLkS4x7VoMxPG/3Zf0CD0WN8/80XvKND506+R/iPVekxcpTvydOLF2WhbRv/I5WhXozZ7Bkoe7Iehu5pyM1Ng61OQEaGAtsq67Hrl3pMfiJw38cSX7/bWHT8hBbDRvr+uy5drEfrnMidPOOp72IN+y44kT6ntRTvK0s62282K6DRCHHV/uzs7ICPCVuw7c/x48cxb948PProo3K/VdTEw0HJ18EzHIFRMMIRiAYr2CDAX5/cc5caP/wYuP3hOPja7BmoqVHi8GEBUDhGrMvnW1y3DPsXKvFUWRrq61O9Tm4N9QAsNWiyWjWYPLXO50S3sqkZsqYm+b4roYm7OQjxFPRIvUgLt3jqu1jDvhMvGue0RBWP3zsxwbbkNBJ/jhw5gtdffx0fffQR6urqEjrYjlc2ewZSUgS88pIeCgWwrUUwJ0cFgGiU+gl2xrO/NAixlT7CkbebrqyDQpGG+x/0HiB+/70dZosG05/yNoLtSI8JJZVBah5dNCe6OUa2vc9BKHvSLDqVIRztiOeRplAky2QnouaSpXwdhS7oYLuxsRGffvop1qxZg+PHj6N169YYMGAArrrqKqSkOMpsHTlyBC+//DKWLl2KhgZHoHbllVeGt+Ukmbcc5oJ8JWbN1DuW0T5PnsAoGqV+Ap3k1epU13LTgP96vsFU+mieX9cUfKUGFXz566/iIrVHoA0EnyPbUjjy6JpPdHMGnJGY6BYLJ75kWBHNm2SZ7ETUXLKUr6PQBRVs19fX4+6778b69evRPPvkk08+weeff47Zs2djyZIlKC0thdVqhSAIGDx4MMaOHYuePXuGvfEUOl8TmTZU2JGSAix6PwsZGfIERtEY/QpUo/SL5Tb88GO9KxjyV+83MzP49ksJvvz1R6j1tMVQKIAhV6Zj9C3uC8MogvjzOCe6RXLZ7Gif+MI1STAeJctkJ6LmeEeHAgkq2F6wYAHWrVuHjIwMjBgxAt27d0dtbS2++eYbrFixAiUlJVi0aBEEQcDFF1+MRx99FL169ZKr7SRBoNG/+oZGZMmUUxuN0S9fQUDzCYdmC1zBkL80iDM6pgTVfqnBl7/+QoAZF6EGljZ7BqaUerYZcOYgxm7AGO0TXyyMrEdTtMseEkUa7+hQIEEF25999hlSU1NRXl6O3Nxc1/a7774bU6ZMwQcffACFQoFx48bhjjvuCHtjKXyiOfoXrdEvZxBQXa3B/v0NSM9QoLKy3hVoA+7BkL80iGDaLzX48tdfHTuk+HweEHpgGQsBo8Wig9GkcEz61Cug0wlQqwNXxYn2iS/aI+uxIFHLHhJ5wzs6FEhQwfaePXtwwQUXuAXaTnfeeSc++OADnHXWWQy040C0R/+iNfqVrqyDxZKKhx/1HbQ1D4Z8pUEE0/5wBF++3g+wyRJYhitgNFv0MJngWBRIr4dWB2jUgVOTjKZMTCur9VJNJBN6ne8ylYDvpeILC5SY/IQW6Ur/z5cq2r8tIoq85sdo9/J18RFoJ+OE7kgKKtiura1Fx44dve4744wzAIC52XEi2qN/QPRGv8IVDIltv5j3E3Og8/V+coyohKOPQg2YLRadx/MA54qmtSidovM7wu1rqfjKynrMnFWLSRPlXRE1Fn5byS4Si4sQteQ8Rp/dLb7K1yXrhO5ICirYFgTBVXGkJcWfs6aSZRGbeJfMt70iHQwFej+1SvFnjdbQDnRy3CWQ2kdmi95vwDxtit7nCLfRpPC7oqnRpIFa7fu9/S0VDwAPjpVnRVSnZP5txQIGDhQIR3GbJPOE7kiStc42xbZkncgUTDAUjhEyf+83ZZIaM56xSD7QhfsugSMVw/sE0ZInNEhX+k8FMZngN2A2mQCNj4DZX41z535/y3hLfX44JOtvK9oYOFAgvBhzFwvzc5JB0MH2xx9/jI8//tjrPoVC4XO/QqHAjh07gn07klmyTmQSEwyF86Ds6/1MJgErV3kPSlse6EIZjZGy5Pkzz5q9p2I8a8bkJ/wHLVICXn81ziOxP1yS9bcVTQwcyB9ejHnihO7ICDrYDnV19wisCk8UFH/BkBwHZW/vZzSm+n2O80AXSuAv5WLBaEzDylUWnxcCDz3oP2iREvDqdYLPGueFBUrodf6PJf5qpMuxIirFDgYO5A8vxjxxQndkBBVs//TTT3K1gyimROqgLHbyZLCBv9SLBalBi04HvwGvTuf7uWq1CSWTvFcTKZmkhVrtv5pINJeKjxVWqwY1xlRH2cRMBfS6BlknhcYKBg7kDy/GPHFCd2QwZ5vIi0gdlMUc6EIJ/KVeLEgNWjRqo9+AWRMgYNbralA6RQejSQOjUYBer4BeJwQMtJue31Qj3fn8SCwVHwuMJj2mlZm9VIHRQ69L7M/PwIH84cWYJ07ojgwG25TwQslbjtRBWcyBzmQSl2rScluwz2kuUNCi1Qg4fkLrt0/1uhpMm+Kos+0MeHU6BAy0ndRqE9RqhDyZ0VkjXe7JkLHCZs+A1ZKO6TPMPqrAmFE2Vd6yh9HGwIH84cWYd5zQLT8G25TQQs1bjuRBOdCBLpTAX+rFgr+gpeQJDZ582uyWz+2rTzVqIzRqz0WBKLyc3/PRt6R5/c4CjoC7xihv2cNYEO+Li5B8eDHmGyd0y4vBNiUsKXnLkT4o+zvQhRL4h+NiwdtFgFYjeATaQHLP5o+25t/zUTdk+H1sJMoexoJ4XVyE5MdRXIoGBtuUsKTmLcfKCFkogX+4LhZaXgQcP6F1C7Q1aqC4SI3c3DTY6gScOpWKrCzERMCdLAtXNP+ep2fERtlDoljGUVyKNAbblHCcQVZ1tQKvztZjW2U9yudbYG4Rd4uZ5BgrI2ShjMbIMYLTPBdcowZmzdSjfIEVc+Z6T9OxWHQwmhTYs9eOTL0eOp3gd6n1cEmmhSua/00qK+tRkK/0uqAQyx4SEUUHg21KKN6CrIJ8JWbN1OOx8Ua3gDveZp43H41pGrVNFT9qKyhgtSrx+++p0GhCWxQnO1sBjRowWxwj2uULrB6BnTOlZMokPaaUequKkQm9TtwkyVAk28IVzb/H5fMtmDVTDwAe/Z4sZQ+JiGINg21KGL6CLGfQUVykdo3AxvPMc7Gjtr4uPIpHq/D3u4w4//zQFsV5ZXYm7n+gBrm5aW4j2s2tW2/HocONPqpi1KJ0ik62Ee5kW7iieX6+2QI8Nt6I4iI1iotUgAB06JDyZ51tBtpERNGQEu0GxILZs2ejR48ePv936NChaDeRRHAEWd4rMWyosCM313Ft2ZS3HDjgslo1OFalx3eb7aj6Qw+rVRPWNgfL/6itFTZ7ht/Hbaiwo3yBFcVFao/niH2fuW9YMP4xLWx1/ssL1tR4379+gx1Gk3x3FcSUPUwkjvx8FfoXKgE47jrMmWvBgnet6H420OY0Y0KX+yMiinUc2W5mxIgR6Nixo8f2zMzMKLQmMhJpElmgIEqnVWDpYr3ovOVYWxzEZs9AdXW6qFFbf6O7GyrsjlFPhL4ozrhH1WhsDFA+0M9kPTmrYiTjwhWssEBEFLsYbDczYsQI5OfnR7sZEZNok8gCBVHZ2QJ0unpRuc5Wq8Yj0AZ8Lw4i90WL82816gZxC9wEuvBoPiodyqI4tbWNOP30Br/lBSsrfafpyFkVI1kXrmCFBSKi2MQ0kiQlNh0hnjiDLG8GXq5EeroCk0rqMWykEaPHmDBspBGTSuphNms9Hl9jTPVa0QFwLg7SFPSazVrRrxuK5n+rQKXdnBccWq3/n3bz1wl1UZyW6QtOzoVvft7lPagtLFBCr5MvlcNfu8SmDxEREYULR7ab2bRpE7Zt24aUlBR06dIFhYWF0GrDEzDFmkSYROZtNHlaiQpTSj1rS08cp8bUMovoChVGo/9g0JkGIXfli5apI95KuzlrXeflpcFoBAAtVCoFLhugxOpvPC8YCvKbRp2lLorjO33BiPGPZaKurhbrN7RMw9FCLXLJ9lAxrYKIiGIFg+1mZs+e7fbvzMxMPPHEExg+fHh0GiQjMZPIYvl2tO8UmDQ8WZaGmhr3IMtoFHxOnvR2cREozcG5X86LFm+pIy1Lu/mrdT3+UQ0As1vA7axG8th4Y8iL4kwrUaGxUcCxKj2MRgGZmQrodQ1oneM+CU+vq0HpFB2MJg2MRgF6vQJ6nSB7oN38MzCtgoiIok0hCEJiTc0PwZdffomamhrk5eWhbdu2qKqqwqpVq/DSSy+hpqYGr7zyCq644gq/r9HY2IiUlPjJyvn11wZcO7za5/7/fdwKXbv6zw+OllOnGvHoeJPX4Pni/krMelqHrCz3v0XlD3b8rch3kPfe/Ezk9mlKOzh2rAGPT3YflXUqLFDiqTIt2rZNDfp1xTp1qhFPlJhg6J6GKwal4/DhBmRkKLCtsh4ffmTBjTc4Vm3MaaXA7Fc9R+wBZ2CdASgUsNsEnHZaCpRK4PffG3HmGalo1y7Fo5+8tePECQFGUyP0uhTk5ChQYxQwtbTWs47zZC3OPCM2vzNERETRkjDB9tNPPw2bzSb68WPGjEGXLl38Pmb9+vW4/fbb0b17d/z3v//1+9hori4oVnZ20yqINnsGJpXU+0wTmF6aFrO5rcdPaDFspO9qIEsX69E6x320NpTnGE16lE43e6RBTJmkge7PaiShvK4YJ05qcfAgPBaNaT4ybbYA817X4/Y7fb//v1/W496x7vul/H2tVg0mTanzuUJh2dQMr2Xmmn/3KDjsu9Cx70LHvgsd+y508dh32dnZAR+TMGkkH3zwAcxm8bVkhwwZEjDYLiwsRKdOnbBr1y6YTCbodDqJrYwd/tIEfKUWxIpQUmBCqVCh1xlRNlWDGqPGlZKSqXdfHESuyheNggLlCyweQW3zBXp++LEeSqX/dBeNRoFXZuthqxOQkaFAVVUj+hemhPz3DTxxVAOVKqSX9mC1alBjTHVLVQmmXnQilbUkIqL4lTDB9tatW2V53ezsbOzfvx8WiyWhgm0gfieRhVJHOdSLC5XKDJUK6GHwfrUt10VLY4PCZ1C7ocKOcY9qcPNNQHW1/76obxBw/wNNFwf9C5UoLAg9GhY7cdTJGfAePGSHRqMVHfBKrXGeaGUtiYgofiVMsC0Hs9mMX375BRqNRtRtgngUj5PIQh1NluviQo7XNZsbA+5v26YOKalKj+okToUFSmzc6N4XwVZJaTk6nJkpbuKoo42hBbzB1jj31mY5K8QQEREFI35m9MnEZDLh119/9dhutVoxefJk1NbWYujQoUhL43VJrJBSR9lxcVGLzp3MaJ1TG7agK9yvq9eL25+iEFA8WoWCfM++KB6tglIJvDJbj389q8Ors/W45y41vv/eDqMx8PfZW/3wykrftcwLC5TI1DcAkFbHPZga5944KsT4qzzD3zIREUVO0p91qqurcdVVV6FPnz7o1q0bTjvtNBw/fhzr1q3D0aNHYTAYMG7cuGg3k1qI1xQYscSO3ut09fhwcT3Oy01DcZEKtjoB6RkKtM5RoPqkgO821+PlV5tGlgvylZg1Uw+z2X9pR1/B8sxZtXhldiYA97QZ58RRZz67lJKIwaaqtBTvZS2JiCixJH2w3apVK9xyyy2orKzE6tWrUVNTg4yMDHTr1g3FxcUoKiqCKlwzviis4jEFRiyxueDpyjpMHOdI12heZ3vxwky8VW71OcGyZJLa7/v7CpbNFuD+B2rw4QdZsNbBVT+75cRRKQGv2BrnvoSS009ERCSXpA+2dTodSkpKot0MIg8KBTDkynSMvqVpxPqPqkYoWsSK3kb5hUb/EyxtNv/Btr9g2WwBTlY3oHMns88RZikBb6a+AYUFSp81zp2pKr7IVSGGiIgoFEkfbBPFIps9A1NKPdM4AGedbPdJfi1H+X/d579yjtEInNba936po8NSAl6VyoySSb5rnDcfQfcmnstaEhFR4mGwTRSDpC4Dr/E/cB1wv15fj4GXK2Honobc3DRXne5tlfXY9Ut9wNFhqQFv8xrnvlJV/H6+BM/pJyKi+MFgmygGSZ3kp9bAZ0nAgnwl1Br/75+urMO4Rx21rpvngjtqXWuQrgwc9DYPeM1mBTQaIaiA11nj3N9kyECfIVFz+omIKH4w2CbZcSW/4Ol0CmjUjpUiW44sl8+3eKRxeK62KODeexzD1y2Xe7/nbjXUau/53E42ewbKnvRe67rsSbPoWtXOgPfsbvG3BC8REVE4MNgmWXElv9BkZtbjldmZmDPX4jayXJCvxCuzM5GZ2RQE+1ptccpkLa69Ot2tJOAfVY04o4MAZZr/QFlqGgsRERE5JP2iNiQfKQubxCqbPQPHT2ix/4AGx09oZfsMggDMfcPitXTf3DcsEP7MMvG32uK0slrk56XijI5A27bAGR2BSy9thFod+CJHTBqLGFarBseq9Phusx1Vf+hhtQbIXyEiIkowHNkm2STa6GgkR+nF9l2g1RaNJg3atjEFnbccjlrVvkbcSybpodeJm+hIREQU7ziyTbIJ1+hoLDh1qjGio/Ri+07MaouhcJbu80ZMrWp/I+6l080c4SYioqTBYJtkk0gr+Z04IXitGQ04R5rDe5NIbN9JXW3RF0fpPpVHwN1Uus//HYlAI+41xtSQ2kVERBRvmEZCskmklfyMpka/+wOV4guW2L4LtNqiXifg+AltSJVgpNSqFjPiHmpJPyIionjCke0kJ+eEP6mjo7FEr/P/Uwn3KL3YvnOstqhBYYH74xy50Vo8NdOCYSONGD3GhGEjjZhUUg+zWRtUO1rn1KJzJzNa59SK/pvJNeJOREQUbziyncQiMeEvUVbyy8lRRHyUXmzfeVttUa8T8NTMWqxc5S3HHKLrZIcq0Ih7pr5BtvcmIiKKJRzZTlKRLMsX6uhoLMnKSonpUXqVyoy2bYzodpYJbdsYYbYIHoG2kxw55t7a42vEfcokDVQqs6zvT0REFCs4sp2kEq0sXyREepReyp0Hqcu9h0PzEXdnf2XqG6BSsewfERElD45sJ6lEKssXSZEapZd65yFWKsE4R9wv7KtE2zZGjmgTEVHSYbCdpGIlGCPvHHcexKeBOFdq3LNXh6o/9NCoFZLqZBMREVF4MI0kSSVSWb5EFEwaiLeVGi+/TInJT2hR9mSt29+4Kcc8viaoEhERxSsG20nKUVpOi6llYDAWg8TeefC1UuOq1XYAtZhWoobZEr1KMDZ7BozGNBw8ZIdGow2qzjcREVEiYLCdxBKlLF8iEnvnwd9KjatW2/HgWA3atjHJPhnSm0iUliQiIop1zNlOcolQli9Uci7oI5XYRW3ErNQYDZEsLUlERBTLOLJNSSkeRl3F3HmI1ZUaWVqSiIjIgSPblHTiadQ10J0H50qN3kRzpUaWliQiInJgsJ2gYjlFItqCLasXy2J1pUaWliQiInKIn6iCRPOVIlE2tQEZjLljYnXFcGq+UqPRKECvj/5KjSwtSURE5MCR7QTjL0WiZFotR7iRmKOuzpUau51liomVGsVO8CQiIkp0HNlOMP4mpq1dx4lpAEddI6X5BE+zWQGNRmBpSSIiSjoc2U4wnJgWGEddI8c5wTO3jzLpSksSEREBHNlOOImYIiEHLuhDREREkcCR7QTjTJHw5uL+TJFoLpkX9CEiIqLIYLCdYPylSJRO0TKgjDMs4UhERBTfmEaSgHylSLRrm4qTJ6PdOhIrHla5JCIiIv84sp2gmCIRWCyPGsfTKpdERETkG0e2SXY2ewaMxrQWExGjG/zH+qixvxKOjlUuWcKRiIgoHnBkm2RlNmsxqaQew0YaMXqMCcNGGjGppB5mszZqbYqHUWOWcCQiIkoMDLZJNrEa1DpGjT0XtAGco8bRv+HDEo5ERESJgcE2ySZWg9p4GDX2V8KRq1wSERHFDwbbJJtYDWrjYdSYq1wSERElhujfL6eEFatBrXPU2NuoeyyNGnOVSyIiovjHkW2STaymQsTTqDFLOBIREcU3jmyTbBxBrRZTy+A2itwU1EZvhJajxkRERBQJDLZJVrEc1DpGjevQOifaLSEiIqJExWCbZMegloiIiJIVc7aJiIiIiGTCYJuIiIiISCYJmUayc+dOLFu2DNu3b8f27dtx8uRJ5OXloby83O/zPvnkE7zzzjvYvXs3lEol+vbtiwcffBC9e/eOUMuJiIiIKJEk5Mj2ihUrMGfOHFRUVKBNmzainvPvf/8bjz32GE6cOIG//vWvGDp0KDZt2oS//vWv2Lx5s8wtJiIiIqJElJAj20OHDsWgQYNgMBhQXV2NSy65xO/j9+3bh5dffhldunTBhx9+CL1eDwC45ZZbcNNNN2Hy5Mn43//+h5SUhLw2oTCw2TNgNKa1qLjCmthERETJLiGD7e7duwf1+MWLF6O+vh733nuvK9AGgF69euHaa6/F4sWLsXnzZvTr1y/cTaUEYDZrMbXMinXrLa5tjlriWmg00S9xSERERNHDoVoAGzduBABcfPHFHvuco+LOxxA1Z7Nn/Blouy/9vm69HVPLrLDZM6LUMiIiIooFDLbhSCPRaDRe87s7d+4MANi/f3+km0VxwGhM8wi0ndatt8NoTMibR0RERCQSIwEAJpMJOTneV1zR6XQAAKPR6Pc1srKy4iKnOzs7O9pNiFve+u7gIe+BtpPZrMDZ3djnAL97UrDvQse+Cx37LnTsu9AlYt/FbLD99NNPw2aziX78mDFj0KVLF/kaFMCpU6ei9t5iZWdn4+TJk9FuRlzy1Xcajdbv8zQagX0OfvekYN+Fjn0XOvZd6Nh3oYvHvhNzcRCzwfYHH3wAs9ks+vFDhgwJOdjW6XQ+R65NJhMAuE2cJHLS6+vRv1DpNZWkf6ESen19FFpFREREsSJmg+2tW7dG7L26dOmCrVu3oqqqyiNv25mr7czdJmouXVmHqZO1mFoGt4DbUY1EhXQlq5EQEREls5gNtiOpX79+2Lp1K9auXYvhw4e77VuzZg0AIC8vLwoto3ig0dRiemkGjEZVizrbDLSJiIiSXezP6IuAkSNHIi0tDf/+97/d0kl27tyJ//3vf+jWrRsuvPDCKLaQYl26sg6tc2rRuZMZrXNquaANERERAUjQke09e/Zg7ty5AACr1QoA2Lt3LyZMmOB6zNNPP+36765du2Ls2LF44YUXMGzYMPzlL39BbW0tPv30UwBAWVlZXFQaISIiIqLYkpDB9h9//IElS5b43dY82AaAe++9Fx07dsTbb7+N9957D0qlEhdddBH++c9/onfv3hFpNxERERElloQMtvPz8/Hzzz8H/bzrr78e119/vQwtIiIiIqJkxNwIIiIiIiKZMNgmIiIiIpIJg20iIiIiIpkw2CYiIiIikgmDbSIiIiIimTDYJiIiIiKSCYNtIiIiIiKZMNgmIiIiIpIJg20iIiIiIpkw2CYiIiIikgmDbSIiIiIimaRFuwEUPKtVgxpjKoxGAZmZCuh1DVCpzNFuFhERERG1wGA7zhhNekwrM2NDhd21rbBAiZJJeuh1xii2jIiIiIhaYhpJHLFaNR6BNgCs32BH6XQzrFZNlFpGRERERN5wZDuO1BhTPQJtp/Ub7KgxaqBShee9bPYMGI1pMJkE6HQK6PX1SFfWhefFiYiIiJIEg+04YjQKAfe3bSP9fcxmLaaWWbFuvcW1rX+hElMna6HR1Ep/AyIiIqIkwTSSOKLXKyTtF8Nmz/gz0HYfQV+33o6pZVbY7BmS34OIiIgoWTDYjiOZ+gYUFii97issUCJT3yD5PYzGNI9A22ndejuMRt4MISIiIhKLwXYcUanMKJmk8Qi4CwuUmDJJE5byfyaT/1SVQPuJiIiIqAmHKeOMXmdE2VQNaowaGI0C9HoFMvUNUKnCU/ZPp/OfihJoPxERERE1YbAdh1QqM1QqhGUyZEt6fT36Fyq9ppL0L1RCr68P/5sSERERJSimkZCbdGUdpk5WoX+he6qKoxqJiuX/iIiIiILAkW3yoNHUYnppBoxGVYs62yz7R0RERBQMBtvkVbqyDq1z6tA6J9otISIiIopfTCMhIiIiIpIJg20iIiIiIpkw2CYiIiIikgmDbSIiIiIimTDYJiIiIiKSCYNtIiIiIiKZMNgmIiIiIpIJg20iIiIiIpkw2CYiIiIikgmDbSIiIiIimTDYJiIiIiKSCYNtIiIiIiKZMNgmIiIiIpIJg20iIiIiIpkw2CYiIiIikgmDbSIiIiIimTDYJiIiIiKSCYNtIiIiIiKZpEW7AUTRYrVqUGNMhdEoIDNTAb2uASqVOdrNIiIiogTCYJuSktGkx7QyMzZU2F3bCguUKJmkh15njGLLiIiIKJEkZLC9c+dOLFu2DNu3b8f27dtx8uRJ5OXloby83OvjDx06hCuuuMLn640dOxYPPPCAXM2lCLNaNR6BNgCs32BH6XQzyqZqOMJNREREYZGQwfaKFSswZ84cKJVKdO3aFSdPnhT1vJ49e2Lw4MEe2/Py8sLdRIqiGmOqR6DttH6DHTVGDVSqCDeKiIiIElJCBttDhw7FoEGDYDAYUF1djUsuuUTU83r16sUR7CRgNAoB97dtE6HGEBERUUJLyGC7e/fu0W4CxTC9XiFpPxEREZFYCRlsh+rYsWNYsGABjEYjWrdujfz8fHTq1CnazaIwy9Q3oLBAifUbPFNJCguUyNQ3RKFVRERElIgYbDezdu1arF271vVvhUKB6667DtOmTYNGo4liyyicVCozSibpUTrd7BZwFxYoMWWSBioVq5EQERFReDDYBqBWq3Hfffdh8ODB6NSpExobG7Fjxw7861//wieffAKr1YrZs2f7fY2srCykpMT+GkHZ2dnRbkJMyM4GnirTorpagNEkQK9ToFUrBdq2TQXgvY/Yd9Kw/0LHvgsd+y507LvQse9Cl4h9pxAEwf9ssSh5+umnYbPZRD9+zJgx6NKli8f2qqoqXHLJJX5L//lisVgwYsQI/Prrr1i8eDF69+7t87FiK55EU3Z2dly0Mxax76Rh/4WOfRc69l3o2HehY9+FLh77TszFQcyObH/wwQcwm8XXOh4yZIjXYFsKtVqNYcOG4YUXXsCWLVv8BttERERERC3FbLC9devWaDcBQNMVi8ViiXJLiIiIiCjexH6ScZRt27YNANCxY8cot4SIiIiI4g2DbQA7duyAt9T15cuX4+OPP0ZWVhYGDBgQhZYRERERUTyL2TQSKfbs2YO5c+cCAKxWKwBg7969mDBhgusxTz/9tOu/Z8yYgQMHDuD8889H+/bt0dDQgB07dmDz5s1IT0/HjBkzoNfrI/shiIiIiCjuJWSw/ccff2DJkiV+tzUPtq+//np88cUX2LZtG1atWoXGxka0a9cOo0aNwu23345u3bpFrO1ERERElDgSMtjOz8/Hzz//LPrxo0aNwqhRo2RsERERERElI+ZsExERERHJhME2EREREZFMGGwTEREREcmEwTYRERERkUwYbBMRERERyYTBNhERERGRTBSCt6UTiYiIiIhIMo5sExERERHJhME2EREREZFMGGwTEREREcmEwTYRERERkUwYbBMRERERySQt2g2g8Bg0aBAOHz7sdV9eXh7Ky8vdttlsNrz22mv45JNPcOTIEWRlZWHgwIF46KGH0Lp160g0OSYsXrwYEydO9PuYgoICvP322wCA2bNn4+WXX/b52K+++gpnnHFGWNsYbUuXLsXmzZvx448/YteuXbDb7ZgxYwZGjhzp9fEmkwmzZ8/G8uXLUVVVhbZt22LIkCEYO3YstFqtx+MbGxuxYMECLFy4EPv374dGo0H//v3x8MMP48wzz5T748lKbN/Z7XZ8/fXX+Prrr1FZWYmjR48CAM4++2yMGDECN998M1JTU92ec+jQIVxxxRU+33vs2LF44IEHwv+hIiSY712ov8tvv/0Wc+bMwfbt26FQKNC7d2/cd999KCwsDOtnibRg+q5Hjx4BX2/VqlU4/fTTAST+9+7333/HsmXL8M0332Dv3r34448/kJWVhb59++LOO+/Eeeed5/EcHvMcgum7ZDvmMdhOIHq9HrfeeqvH9o4dO7r9u7GxEffeey/WrFmD888/H3/5y1+wf/9+LFq0COvXr8fChQuRk5MTqWZHVa9evTB27Fiv+7744gv88ssvuOSSSzz2jRgxwqNfASAzMzPsbYy2F198EYcPH0Z2djbatm3r86IOAMxmM4qKirBz505ccskluOaaa7Bz5068+eab2LRpExYsWICMjAy355SUlGDRokXo3r07iouLcezYMSxbtgxr167FBx98gC5dusj8CeUjtu8OHDiABx98EBqNBoWFhRg0aBCMRiNWrlyJadOm4ZtvvsG///1vKBQKj+f27NkTgwcP9tiel5cX9s8TScF875yC+V0uXboU48aNQ05OjisI/eyzz3D77bfjhRdewNChQ6V/iCgJpu98Hf/279+P//73vzj77LNdgXZzifq9Ky8vx9y5c9GpUydcfPHFyMnJwf79+7FixQqsWLECzz33HK6++mrX43nMaxJM3yXdMU+ghDBw4EBh4MCBoh774YcfCgaDQXjkkUeExsZG1/Z3331XMBgMwuTJk+VqZtyoq6sT8vLyhHPOOUeoqqpybX/ppZcEg8EgbNiwIYqti6y1a9cKhw4dEgRBEObMmSMYDAbho48+8vrYF198UTAYDMKsWbPcts+aNUswGAzCf/7zH7ft69evFwwGgzB69Gihrq7OtX3VqlWCwWAQ7rjjjjB/msgS23dHjx4V5s+fL9TW1rptr62tFUaOHCkYDAbhs88+c9t38OBBwWAwCOPHj5fvA0RRMN+7YH+X1dXVwkUXXSTk5+cLR44ccW0/cuSIkJ+fL+Tn5wtGo1H6h4iSYPrOl9LSUsFgMAhvvvmm2/ZE/9598cUXQkVFhcf2TZs2Cb179xb69evndqziMa9JMH2XbMc85mwnoUWLFgEAHnnkEberxr/+9a8488wz8d///hdWqzVazYsJK1asQHV1NS6//HKcdtpp0W5OVPXv39/raGFLgiBg0aJF0Gg0uO+++9z23XfffdBoNK7vnpPz3//85z+Rnp7u2n7ZZZchLy8Pa9aswW+//RaGTxEdYvuuXbt2GD16NDQajdt2jUaD22+/HQCwadMmWdoYq8T2XSg+//xz1NTUoKioCO3bt3dtb9++PYqKinDy5EmsWLFClveOBKl9V1dXh//+979QKpUYNmxYGFsW+/7yl794HSG96KKLkJ+fj1OnTuHnn38GwGNeS8H0XbId8xhsJxCbzYbFixfjP//5D+bPn49t27Z5PKaurg7btm1D165dPQ7GCoUC/fv3h9lsxo8//hipZsekDz/8EAAwatQor/s3bdqE1157Da+//jpWrFiB2traSDYvJu3btw/Hjh1D3759vR5A+/bti4MHD+LIkSOu7RUVFa59LV166aUAgI0bN8rb8BiXlubI9muZv+h07NgxLFiwAP/5z3+waNEiHDhwIJLNiylif5fO75S3FDHntmT+3i1fvhynTp3CoEGDfKYUJuP3zvlbdP4/j3nitew7MY9NpGMec7YTSFVVlcdkvz59+uD5559Hp06dADjypBobG33mhDm379u3DxdddJGczY1Zhw8fxvr169G+fXvXwa+l2bNnu/07MzMTTzzxBIYPHx6BFsam/fv3A4Df79aaNWuwb98+nH766TCbzaiqqoLBYPB6UO3cubPb6yarjz76CID3wBAA1q5di7Vr17r+rVAocN1112HatGkeAUCiE/u73LdvH4Cm71hz/N4FHmwAku9799tvv2HdunVo06YNDAYDAB7zxPLWd/4k4jGPwXaCGDlyJC688EIYDAZoNBrs27cP8+bNw9KlS3Hbbbfhk08+gU6ng9FoBADodDqvr+PcbjKZItb2WLN48WI0NjZixIgRHgfEnj174qmnnkJeXh7atm2LqqoqrFq1Ci+99BImTJgAvV7vd7Z0Igv2uyX28c7HJaMPPvgA33zzDQoKCnDZZZe57VOr1bjvvvswePBgdOrUCY2NjdixYwf+9a9/4ZNPPoHVavUIPhNVsL9L53dQr9d7vFayf+8OHjyIiooKdOjQARdffLHH/mT83tntdowbNw42mw2PPvqo67zAY15gvvrOl0Q95jHYThAtZ5T36tULzzzzDADHrPtFixa58qDIt8bGRixevBgKhQI33HCDx/4rr7zS7d9nnHEGioqK0K1bN1cVg2QNtim8Vq5cibKyMnTs2BGzZs3y2N+6dWv885//dNtWWFiI888/HyNGjMDy5cuxfft29O7dO1JNjhr+LsPno48+giAIGDlyJFJSPDNNk+1719jYiAkTJmDTpk246aabkvruZbCC7btEPuYxZzvB3XzzzQCALVu2AGgayfE1cu3c7uvKO9GtW7cOv/32GwoKCoKqd1pYWIhOnTph165dSXtXINjvltjHext9THSrV6/Ggw8+iNatW+Ptt99G27ZtRT9XrVa7JrU5f/fJytfv0t8IYjJ/7xobG7FkyRKkpKR4HWzwJxG/d42NjXj88cfxv//9D9dffz2mTZvmtp/HPN8C9V1LiX7MY7Cd4LKzswE4aoECwJlnnomUlBRXzmJLzu3xWudTKudMcX+5ir44+9pisYS1TfHCmW8o9rul0WjQpk0bHDp0CA0NDR6Pd+YtesurTWSrVq3C2LFjkZ2djXfeeSekRS6S/bvYnLe+cH4HveXGJuv3DnAs8nP06FH0798fHTp0CPr5ifS9a2xsxMSJE7FkyRJce+21ePrppz1G+nnM805M3zWXDMc8BtsJrrKyEkDTwjYqlQq5ubn49ddfPRY6EAQB69atg0ajwbnnnhvxtkbbyZMn8dVXX6FVq1Yet6UDMZvN+OWXX6DRaFw/+mTTpUsXtG3bFlu2bHFd3DmZzWZs2bIFZ5xxhtsCGXl5ea59LX377bcAgH79+snb8BiyatUqPPDAA8jKysI777wT8knXWYlIrtJ58cLX79L5nVqzZo3Hc5zbYnqBDJmImRjpT6J875zB4scff4yrr74azzzzjNdcYx7zPIntO6dkOeYx2E4Ae/bs8Xo1t2fPHjz77LMAgOuuu861/aabbgIAPP/88xAEwbX9/fffx8GDB3HddddBpVLJ3OrYs3TpUtjtdlx33XVu9U+dTCYTfv31V4/tVqsVkydPRm1tLYYOHSqqtFEiUigUGDVqFMxmM1599VW3fa+++irMZrPru+fk/PeLL74Im83m2r569Wps3LgRl1xyScwePMNt9erVbiedQHeXduzY4fb7dVq+fDk+/vhjZGVlYcCAATK1NnaE8ru86qqroNfrMX/+fNcy0QBw9OhRzJ8/H9nZ2V5XqEtkJ06cwMqVK5GTk4NBgwb5fFyif++c6Q8ff/wxhg4dilmzZvkMFnnMcxdM3wHJdcxTCN5aTnFl9uzZmDdvHvr164cOHTpArVZj3759+Oabb2C323HPPffgkUcecT2+sbERd911l2u59n79+uHAgQNYvnw5OnbsiEWLFiXNcu3NXXfdddi1axc++eQT9OjRw2P/oUOHMHjwYPTp0wfdunXDaaedhuPHj2PdunU4evQoDAYD3nnnnYQb2V60aBE2b94MANi1axe2b9+Ovn37ukYgLrzwQtdImNlsxt/+9jf89NNPuOSSS3DOOedgx44dWLNmDfr06YP58+d7XMhNmjTJtXTxZZddhqqqKnz22WfQarV4//330bVr18h+4DAS23d79uzB8OHDYbPZcM0113j9zB07dnQtKw4AxcXFOHDgAM4//3y0b98eDQ0N2LFjBzZv3oz09PS4nxQotu9C/V02X67duYT0Z599hpMnT+Jf//oXrrrqqsh+4DAK5jfr9Oabb2LmzJm4/fbbMWHCBJ+vnejfu9mzZ+Pll1+GRqPBmDFjvA6eDB48GL169QLAY15zwfRdsh3zGGwngI0bN+Ldd9/Fzp078ccff8BqtSI7Oxu5ubm45ZZbvNaqtNlseO2117B06VIcOXIErVq1wuWXX46HHnooKVdMrKysxKhRo5Cbm+ux4peTyWTC888/j8rKShw+fBg1NTXIyMhAt27dMGTIEBQVFSXkHYEJEyZgyZIlPvePGDECTz/9tOvfRqMRs2fPxvLly/HHH3+gTZs2GDp0KO6//36vE28bGxsxf/58LFy4EPv374dGo0H//v3x8MMPu+rDxyuxfVdRUYExY8b4fa28vDyUl5e7/r1o0SJ88cUX2L17N06ePInGxka0a9cOBQUFuP3229GtW7ewfY5oENt3Un6X33zzDebMmYMdO3YAAM4991zce++96N+/vyyfKVKC/c0CwNVXX409e/bgs88+8/vdSfbvHQDMmDHDLQjkMc8hmL5LtmMeg20iIiIiIpkwZ5uIiIiISCYMtomIiIiIZMJgm4iIiIhIJgy2iYiIiIhkwmCbiIiIiEgmDLaJiIiIiGTCYJuIiIiISCYMtomIiIiIZMJgm4iIiIhIJgy2iYjC7NChQ+jRoweKi4uj3RQiIooyBttERERERDJhsE1EREREJBMG20REREREMmGwTUQkI6vVimeffRYDBw7EueeeiyuvvBKvvfYaBEHweOzu3bvxf//3f7jkkktw7rnn4tJLL8W4ceOwd+9ej8dWVFSgR48emDBhAqqqqvDEE09gwIABOOecc/DWW28BAGw2GxYsWIAbbrgB+fn5OO+88zBo0CDcc889+PTTTz1es76+Hu+++y5uvvlm9O3bF7m5uRg2bBjeeust1NfXezx+0KBB6NGjBwRBwNtvv42rr74affr0waWXXorp06ejpqbGa59YLBa88soruPbaa5Gbm4sLL7wQo0eP9tqm4uJi9OjRA4cOHXLb/tZbb6FHjx4499xzYbFY3PbNnDkTPXr0wOeffx62z1deXo7rr78e5513HoYNG+b1cxEReZMW7QYQESUqu92OO+64A3v27EFeXh7MZjM2bdqE5557DrW1tXj44Yddj12/fj3+8Y9/wGq14pxzzkFeXh727t2LpUuX4ssvv8TcuXNx0UUXebzHiRMncOONN6KhoQF9+/aFzWaDWq0GADz66KP44osvoNVqcdFFF0Gn0+H333/H5s2bYTabcc0117hex2q14u6770ZFRQVatWqF888/H+np6aisrMSMGTNQUVGBV155BSkpnmM0ZWVlWLhwIfLy8mAwGLBp0yaUl5dj48aNePfdd6HT6VyPNZlMGDNmDLZv346cnBxcfvnlsFgs2LBhA7777jts3boVkyZNcj2+X79+2LhxIzZu3IgzzjjDtb2iosLVx1u3bkX//v3d9ikUCuTl5YXl802ZMgWLFy9Gv3790K1bN9jtdv9/eCKi5gQiIgqrgwcPCgaDQTAYDEJRUZFgNBpd+yorK4VevXoJ5513nmAymQRBEITa2lqhf//+gsFgEObPn+/2WvPmzRMMBoMwYMAAwWq1urZv2LDB9R7333+/2z5BEIQDBw4IBoNBGDhwoHDixAm3fVarVdiyZYvbtqlTpwoGg0F46KGHhJqaGtd2o9Eo3HXXXYLBYBDeffddt+cMHDhQMBgMQt++fYUffvjBtd1kMgljxowRDAaDMH36dLfnlJaWCgaDQSguLnbrl927dwuFhYWCwWAQvv76a9f29evXCwaDQRg/frxrW0NDg9CvXz/hmmuuEQwGg/D888+79tXU1Ag9e/YUrrnmmrB9vvz8fGHXrl0CEVEomEZCRCSTlJQUTJs2zW1kt0+fPhgwYAAsFgt+/PFHAMCyZcvwxx9/4IILLsDo0aPdXuO2225D7969cfToUXzxxRce75Geno7JkycjIyPDbfvJkycBAL169UJ2drbbvoyMDFxwwQWufx8/fhyLFi3C6aefjhkzZkCv17v26XQ6PPnkk1AqlXjvvfe8fs6ioiKce+65rn9rtVpMnjwZCoUCH374Ierq6gAAZrMZH374IVJSUjBlyhS3funWrRvuvfdeAMA777zj2n7BBRcgPT0dGzdudG376aefcOrUKQwbNgwdO3Z027dp0yY0NjaiX79+Yft8d911F7p37+51HxFRIAy2iYhk0qFDB5x11lke27t06QIAqKqqAgB89913AIDrrrvO6+tcf/31bo9rrnfv3mjXrp3H9rPOOgsajQarV6/G66+/jt9//91nOysqKmC323HppZdCpVJ57G/Tpg26dOmCXbt2wWq1euy/+uqrPbadffbZ6NmzJ8xmM3bs2AEA2L59uytNplu3bh7PceZCb9myBY2NjQAcFwa5ubk4fPiwK2/bGVzn5+cjLy8PP/zwgytv27mveQqJ1M83aNAgj21ERGIx2CYikkn79u29btdqtQAcExgB4NixYwCAjh07en28M1fZ+bjmTj/9dK/P0el0KCsrg1KpxKxZszBgwAAMGTIEJSUl2Lx5s9tjDx8+DABYuHAhevTo4fV/v/zyCwRBwKlTpzzey1e7ndud7Q70OTMzM6HX62H9//buJiSKP47j+GdZFpbFZSsXhXUvFeJDhqS4aofoQQhBlmDVg9GhWx1Cq4tQdoiO0bENgoLYy1a0UAcxyAgLfAQjHwszofFSh2hJWgT3f5CZHHfpn62DHd6vy+JvfrMzvz19GL+/7/z8abuOGZzNID0yMqKioiIdOHBAkUjEqtveOGdj2C50faFQKO/9AsCfYIMkADgk32a77ba5fGSjtrY2HT58WC9evNDr1681NjamZDKpZDKps2fPqre3V5KszihVVVWqrKz87fU8Hs/23XweLpcrZywSiej27dsaHR3VqVOnNDExofr6erndbitUj4yM6ODBg5qdndX+/ftVXFxsnV/o+n73GwPA/yFsA8AOKykpkfTrCexm5rg5byv27Nmjjo4OdXR0KJvNamhoSBcvXtT9+/cVi8VUXl5ulaHU19err69vy9cwDEMVFRU548vLy7b7Nj/N8c3S6bS+f/8ur9erQCBgjR86dEgej0ejo6NWvbYZssPhsFW3XVtbq7W1NdtTbUkFrw8ACkEZCQDsMLOlX74+05L09OlT27y/5XK5dOTIER09elSS9OHDB0lSU1OT3G63Xr58+Vdt7fr7+3PGFhYWNDs7K5/Pp6qqKknr9eVer1fT09P69OlTzjnmOuvq6mz/FfB6vVbd9pMnTySt12ubzLrtV69eWX9vVOj6AKAQhG0A2GGtra0KBoOamJhQMpm0HXvw4IGmpqZUWlqqkydP/vF3zszM6Pnz51ZduOnbt296+/atpF/13qWlpYrFYjIMQ5cvX9bXr19zvm9paSlvNxRJSiQS1iZIaf2lNTdu3FA2m1UsFrM2Jfp8PsViMa2tren69etaWVmxzllcXFQ8Hpe0/iKbzcwA/fDhQ/n9flVXV9uOra6uKpVK2eaaCl0fABSCMhIA2GE+n083b97UuXPndO3aNSWTSe3du1cfP37UzMyMfD6fbt26taXa4eXlZV24cEF+v181NTUKBoNKp9MaGxvTjx8/dOzYMVv7vytXrsgwDA0MDGhoaEiVlZUKhUJaWVnRwsKClpaWdOLEibyBPxqNqrOzU42NjfL7/RofH9eXL19UXl6u7u5u29xLly5pcnJSb968UUtLixoaGqyX2mQyGZ05cyZv949IJKJ4PK5MJqPm5ma53W7bMUnKZDLat2+fgsFgzvmFrA8ACkHYBoB/QHNzsx4/fqw7d+5oeHhY79+/165duxSNRnX+/Pm8LQR/p7a2Vj09PRoeHtbi4qLGx8cVCARUUVGh9vZ2q52gyev16u7du3r27JlSqZTm5ub07t077d69W2VlZYpGo7Y3Tm509epVhcNhPXr0SJ8/f1YgENDp06fV3d1t62ktrXdJSSQSunfvnvr7+zU4OCiPx6Oamhp1dXWpra0t7zXMuu3V1dWcJ9dm3bZhGDnHtmN9AFAIV9bcpg0AwBYcP35chmFofn5+p28FAP5Z1GwDAAAADiFsAwAAAA4hbAMAAAAOoWYbAAAAcAhPtgEAAACHELYBAAAAhxC2AQAAAIcQtgEAAACHELYBAAAAhxC2AQAAAIcQtgEAAACHELYBAAAAh/wHQ1hXG6rgCcIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "predicted_mpg = mpg_hp_sq_fit.posterior[\"mpg_mean\"].mean((\"chain\", \"draw\"))\n", + "residuals = df_mpg[\"mpg\"] - predicted_mpg\n", + "sns.scatterplot(data=df_mpg, x=\"horsepower\", y=residuals)\n", + "plt.axhline(0, color='black', lw=2)\n", + "plt.ylabel(\"Residuals\")\n", + "plt.title('Residuals for quadratic model')\n" + ] + }, + { + "cell_type": "markdown", + "id": "a9c9ca02", + "metadata": {}, + "source": [ + "This is far closer to flat than before.\n", + "\n", + "For a true comparison, we can look at the elpd difference between the models." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "71a474f4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
rankelpd_loop_looelpd_diffweightsedsewarningscale
Quadratic0-1137.4695484.4170180.0000000.91614818.1256600.000000Falselog
Linear1-1181.9786123.51064444.5090650.08385215.12913810.337188Falselog
\n", + "
" + ], + "text/plain": [ + " rank elpd_loo p_loo elpd_diff weight se \\\n", + "Quadratic 0 -1137.469548 4.417018 0.000000 0.916148 18.125660 \n", + "Linear 1 -1181.978612 3.510644 44.509065 0.083852 15.129138 \n", + "\n", + " dse warning scale \n", + "Quadratic 0.000000 False log \n", + "Linear 10.337188 False log " + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "az.compare({\"Linear\": mpg_hp_linear_fit, \"Quadratic\": mpg_hp_sq_fit})" + ] + }, + { + "cell_type": "markdown", + "id": "c984f24b", + "metadata": {}, + "source": [ + "The quadradic model performs better by LOO-CV.\n", + "\n", + "### Cautionary Tales\n", + "\n", + "Last, we're going to investigate a couple of pitfalls with polynomial regression. \n", + "\n", + "#### Fitting too many polynomial degrees\n", + "\n", + "Typically, when fitting a statistical model, you want to come to your data with a hypothesis and motivate your polynomial degree based on domain knowledge and expertise with the data. Instead of being principled, we're going to throw caution to the wind and iteratively fit models from degree 1-10 and then see which performs best." + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "9d4f395c", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Auto-assigning NUTS sampler...\n", + "Initializing NUTS using jitter+adapt_diag...\n", + "Multiprocess sampling (2 chains in 2 jobs)\n", + "NUTS: [mpg_sigma, Intercept, poly(horsepower, 1)]\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f6090a529b484117b8e53bf3752565e5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 3 seconds.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "eb583e61ffc146379c2d4341c9a5bfd9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "We recommend running at least 4 chains for robust computation of convergence diagnostics\n", + "Auto-assigning NUTS sampler...\n", + "Initializing NUTS using jitter+adapt_diag...\n", + "Multiprocess sampling (2 chains in 2 jobs)\n", + "NUTS: [mpg_sigma, Intercept, poly(horsepower, 2)]\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2635839a67a44167a33bc403fee15bd8", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 4 seconds.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2faca7259cf7480abd7647c0013d506e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "We recommend running at least 4 chains for robust computation of convergence diagnostics\n", + "Auto-assigning NUTS sampler...\n", + "Initializing NUTS using jitter+adapt_diag...\n", + "Multiprocess sampling (2 chains in 2 jobs)\n", + "NUTS: [mpg_sigma, Intercept, poly(horsepower, 3)]\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e1604e1abbdb48429c44e16fe19c516a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 5 seconds.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f847983bd08f40f39c0500bd7ef9fcdc", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "We recommend running at least 4 chains for robust computation of convergence diagnostics\n", + "Auto-assigning NUTS sampler...\n", + "Initializing NUTS using jitter+adapt_diag...\n", + "Multiprocess sampling (2 chains in 2 jobs)\n", + "NUTS: [mpg_sigma, Intercept, poly(horsepower, 4)]\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "dcdc84066d804ddda2edc0e43f7d79b4", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 6 seconds.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7ddfea18c1cd40a3a1f82f3d5111ab9f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "We recommend running at least 4 chains for robust computation of convergence diagnostics\n", + "Auto-assigning NUTS sampler...\n", + "Initializing NUTS using jitter+adapt_diag...\n", + "Multiprocess sampling (2 chains in 2 jobs)\n", + "NUTS: [mpg_sigma, Intercept, poly(horsepower, 5)]\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "03d5fbcda2174427bfbce8dd6f7e2db0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 6 seconds.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "40ad9d92b1214f248a69942d099c91d0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "We recommend running at least 4 chains for robust computation of convergence diagnostics\n", + "Auto-assigning NUTS sampler...\n", + "Initializing NUTS using jitter+adapt_diag...\n", + "Multiprocess sampling (2 chains in 2 jobs)\n", + "NUTS: [mpg_sigma, Intercept, poly(horsepower, 6)]\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3fc9052e081b4dcbae8796aa494c0d70", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 8 seconds.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "28970bafa18046579e7a450db4a37782", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "We recommend running at least 4 chains for robust computation of convergence diagnostics\n", + "Auto-assigning NUTS sampler...\n", + "Initializing NUTS using jitter+adapt_diag...\n", + "Multiprocess sampling (2 chains in 2 jobs)\n", + "NUTS: [mpg_sigma, Intercept, poly(horsepower, 7)]\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "adfd78002da848f89f173b9af9bf8362", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 7 seconds.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d5b09c9250a8462ea30d21b9305de7f2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "We recommend running at least 4 chains for robust computation of convergence diagnostics\n", + "Auto-assigning NUTS sampler...\n", + "Initializing NUTS using jitter+adapt_diag...\n", + "Multiprocess sampling (2 chains in 2 jobs)\n", + "NUTS: [mpg_sigma, Intercept, poly(horsepower, 8)]\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4190f7d2dbdb4a4485b50d777795410f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 7 seconds.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a9a5a28657064556ac707ed5ef146682", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "We recommend running at least 4 chains for robust computation of convergence diagnostics\n", + "Auto-assigning NUTS sampler...\n", + "Initializing NUTS using jitter+adapt_diag...\n", + "Multiprocess sampling (2 chains in 2 jobs)\n", + "NUTS: [mpg_sigma, Intercept, poly(horsepower, 9)]\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d009b8dccc3c48399c6285417acc7ccf", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 7 seconds.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5d32b1dd746644be95b91e5edd57520d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "We recommend running at least 4 chains for robust computation of convergence diagnostics\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
rankelpd_loop_looelpd_diffweightsedsewarningscale
Poly70-1133.1968569.3924750.0000000.65300518.8856620.000000Falselog
Poly61-1134.1777188.8232710.9808620.00000018.5486571.854360Falselog
Poly82-1134.27636610.5883971.0795100.00000018.8627050.625819Falselog
Poly53-1134.9932407.8057411.7963840.00000018.4744713.508298Falselog
Poly94-1135.20763011.9395312.0107740.00000018.9327101.654552Truelog
Poly25-1137.4694244.4168954.2725680.00000018.1256246.480073Falselog
Poly36-1138.1293645.5295504.9325080.28190218.4035237.003267Falselog
Poly47-1138.6252986.8016405.4284420.00000018.2981316.161024Falselog
Poly18-1181.9367903.44098148.7399340.06509215.11013611.013637Falselog
\n", + "
" + ], + "text/plain": [ + " rank elpd_loo p_loo elpd_diff weight se \\\n", + "Poly7 0 -1133.196856 9.392475 0.000000 0.653005 18.885662 \n", + "Poly6 1 -1134.177718 8.823271 0.980862 0.000000 18.548657 \n", + "Poly8 2 -1134.276366 10.588397 1.079510 0.000000 18.862705 \n", + "Poly5 3 -1134.993240 7.805741 1.796384 0.000000 18.474471 \n", + "Poly9 4 -1135.207630 11.939531 2.010774 0.000000 18.932710 \n", + "Poly2 5 -1137.469424 4.416895 4.272568 0.000000 18.125624 \n", + "Poly3 6 -1138.129364 5.529550 4.932508 0.281902 18.403523 \n", + "Poly4 7 -1138.625298 6.801640 5.428442 0.000000 18.298131 \n", + "Poly1 8 -1181.936790 3.440981 48.739934 0.065092 15.110136 \n", + "\n", + " dse warning scale \n", + "Poly7 0.000000 False log \n", + "Poly6 1.854360 False log \n", + "Poly8 0.625819 False log \n", + "Poly5 3.508298 False log \n", + "Poly9 1.654552 True log \n", + "Poly2 6.480073 False log \n", + "Poly3 7.003267 False log \n", + "Poly4 6.161024 False log \n", + "Poly1 11.013637 False log " + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "poly_fits, poly_models = {}, {}\n", + "for degree in range(1, 10):\n", + " model = bmb.Model(f\"mpg ~ poly(horsepower, {degree})\", df_mpg)\n", + " fit = model.fit(idata_kwargs={\"log_likelihood\": True}, random_seed=SEED)\n", + " poly_models[f\"Poly{degree}\"] = model\n", + " poly_fits[f\"Poly{degree}\"] = fit\n", + "\n", + "az.compare(poly_fits)" + ] + }, + { + "cell_type": "markdown", + "id": "326d6cfb", + "metadata": {}, + "source": [ + "Wow! A 7th degree polynomial seems to do better than the quadratic one we fit before. Let's see what those residuals look like!" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "bd65c0ab", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtsAAAHrCAYAAAAe4lGYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACiEElEQVR4nOzdeXhTVfoH8G/Sps3a0pZNQBaRACIFQUqLygjigNsoKDoDhRHXUcARRwGVtUURcdyqzigKKuAMoCjOKCM/cUEECrJVAQVRdpFCoU2atkmb+/sjJm2am+QmN3u+n+eZZ+TeLCenyb3vPfc971EIgiCAiIiIiIhCThntBhARERERJSoG20REREREYcJgm4iIiIgoTBhsExERERGFCYNtIiIiIqIwYbBNRERERBQmDLaJiIiIiMKEwTYRERERUZgw2CYiIiIiCpPUaDeAiOQZOnQojh8/7rZNpVIhOzsbvXr1wq233oohQ4ZEpW2lpaUYP3488vLysHTp0oCe2717dwDADz/8EI6mSXLs2DFcddVVaN++PT777LOwvY8gCHjjjTfwwQcf4MiRI6irqwMQ3c/uj5y/bbIqKSnBSy+95PdxHTp0wPr16yPQosgbN24ctm7dirfffhsDBw6U/XqxcJwg8ofBNlGC6NevHzp16gQAMJlM2LdvHz777DN89tlnuP322/Hoo49GuYXkzTvvvIOFCxfCYDBg8ODB0Ov10W4ShUHPnj0xcuRIr/s/++wzVFZWhiQIJaLYwWCbKEGMHj0ao0aNcv27vr4e8+fPx7Jly/Dmm2/iuuuuQ25ubkTblJubi48//hgajSai7xtv/ve//wEAXnjhBVx22WVRbg2Fy7BhwzBs2DDRfb/++is+/PBDAMAtt9wSyWYRUZgxZ5soQaWmpmLq1KmuUdLPP/884m3QaDTo2rUr2rVrF/H3jicnTpwAANedCUo+H3zwARoaGnDBBRegX79+0W4OEYUQR7aJElh6ejo6deqEPXv24MyZM6KP2bx5M5YvX45du3bh3LlzMBgM6NevH+666y5ccsklHo8/dOgQXn31VZSWluLUqVNQqVRo0aIFunXrhuHDh+Pmm292PdZfXu/OnTvx8ssvY9euXWhoaECXLl0wZswYryN7UnKonTns69evR4cOHVzbf/zxR3z88cfYtGkTjh8/jrNnz0Kn06Fnz5649dZbce211/rsSzn94I0zf9Xpqquucv33pEmTMHnyZNe/v/rqKyxbtgxlZWUwmUxo0aIFLr30Utx5553o3bu319d+++23kZKSgtdff931N37yySfd7oL48sEHH2Dp0qX48ccfkZ6ejt69e+O+++7z+7xff/0VixcvxoYNG3DixAkolUpccMEFGDlyJP74xz8iNdXz9GOxWPDaa6/h448/xokTJ9CiRQtcccUVePDBB7Fy5Uq89NJLHv3izIOeNGkSbr75Zrz00kv4+uuvcfr0adxwww146qmnXI/93//+h1WrVmHPnj0wm83IysrCwIED8Ze//AUXXnih6OeorKzEW2+9hfXr1+PIkSOw2+3o2LEjrrnmGkyYMCFkd21Wr14NIPBR7aa/iU8//RTLli3DqlWrcOTIERgMBgwdOhQPPfQQWrRoAavVikWLFuE///kPTpw4gYyMDIwYMQIPPfQQtFqt6Ot/9NFHWLlyJfbt2weLxYJWrVohPz8f99xzD7p06SL6nF9++QUvvvgivvrqK1RWVuK8887DNddcI+l7E8zfiCjWMdgmSnDV1dUAgJycHI99CxYswOLFi6FUKnHxxRejf//++OWXX7B+/Xp8/vnnKC4udgsa9+/fjz/96U8wm83o0qULhgwZAqVSiV9//RXbtm3Dr7/+KinIBIC1a9fib3/7GxoaGmA0GmE0GvHLL79gxowZ+PHHH0Pz4ZtYsmQJ3n33XVxwwQUwGo3IyMjAL7/8gtLSUmzevBm7d++WnNceqn644oor0L59e3zyySewWCwYPny4K+jp2bOn63HPP/88/vGPf0ChUOCSSy5Bu3btcPDgQaxduxbr1q1DUVGR1yDtf//7H/7973/jggsuwKBBg1BZWYm0tDRJn3PevHlYunQplEol+vfvj9atW+OHH37AuHHjUFhY6PV527Ztw8SJE1FZWYn27dtj0KBBsFqt+Pbbb1FcXIzPP/8c//znP6FSqVzPsVgsGD9+PL799ltotVpcfvnlSE9Px1dffYUvv/wSv/vd73y29dChQxg5ciRUKhX69esHQRCQlZUFwJFS9fDDD2Pt2rVIS0tDr1690KZNGxw6dAj/+c9/8H//938oKSnB4MGD3V7zxx9/xF133YVffvkFrVq1Qv/+/ZGamopvv/0WL7zwAtatW4elS5fCYDBI6k9vvvnmGxw6dAgqlQo33XRT0K/zyCOP4NNPP8WAAQPQsWNH7Ny5EytWrMC3336L5cuX46677sIPP/yAvLw8dO7cGd988w2WLl2Kw4cPY9GiRW6vJQgCpk+fjg8++ACpqam49NJLkZOTgz179mD16tVYu3YtXnzxRY8+O3jwIMaNG4czZ86gVatWGDp0KGpqavDmm2+itLTUa9uD/RsRxQWBiOLakCFDBKPRKLz33nse+3788UehZ8+egtFoFMrKytz2rVixQjAajcLVV18t7Nu3z23f1q1bhUsuuUTo1auX8PPPP7u2T58+XTAajcIrr7zi8V41NTXC1q1b3bZt2bJFMBqNQmFhodv2U6dOCZdccolgNBqFJUuWuO3btGmT0Lt3b8FoNApGo9Ft39GjRwWj0SgMGTLEb38cPXrUbXtpaalw5MgRj8cfPHhQGDx4sGA0GoXdu3dLer9A+8Efb20WBEH48ssvBaPRKPTu3VvYuHGj276VK1cKRqNR6NWrl7B//363fYWFha4+XLZsWUDtEQRB+PzzzwWj0Sj07dtX2LZtm9u+f/7zn67XFvvb5uXlCd27dxeWL18uNDQ0uPZVVFQI48ePF4xGo1BSUuL2vCeffFIwGo3CtddeK/z666+u7bW1tcLkyZNd7/fiiy+6Pe/FF1907Xv44YeFuro6j8/y7LPPCkajURg9erTHd2Dt2rVCz549hQEDBgiVlZWu7TU1NcKwYcMEo9EoPPfcc26va7FYhIceekgwGo3C9OnT/XWlX87v08SJEwN+rvM7ajQahWHDhgnHjh1z7auoqBB+//vfC0ajUbj++uuFW265RaioqHDtP3LkiDBgwADBaDQK33zzjdvrvvPOO4LRaBQGDhwo7N2717Xdbre7+vzSSy8Vzpw54/a8m2++WTAajcJf//pXoba21rX9+PHjrv40Go3Cli1b3J4XzN9IEATR4wRRrGHONlECMplM2LhxIyZNmoSGhgbcd999bqkGdrsdJSUlAIBnn30WPXr0cHv+gAEDcP/998Nms2HFihWu7c5UFLFRRrVajQEDBkhq37vvvovq6mr07dsXt99+u9u+goIC3HbbbZJeJxB5eXk4//zzPbZfcMEFuP/++wE0TlT0J1T9IMXixYsBAGPGjPGYPDl69GgMGTIENpsNb7/9tujz8/PzMXbs2IDf96233gIAjB07Fpdeeqnbvnvvvddt5L35886dO4exY8dizJgxUCobTzNZWVl4+umnoVKpsHz5cgiCAACora3FypUrAQCPPvooWrdu7XpOeno65syZ4zddo0WLFpg1a5bHqP25c+fw5ptvIj09HSUlJR7fgREjRuC2225DZWWla4IiALz//vs4cuQIhgwZggcffNDtdTUaDYqKipCTk4MPP/wQlZWVPtvmi9lsdn3v5E6MnDFjBtq3b+/6d1ZWFv70pz8BAA4cOIAnnnjCNdoPAOeffz7+8Ic/AHCkkzXl/N5NnDjR7W+tUCgwadIkdO/eHVVVVa6/GwBs377ddWdi9uzZSE9Pd+1r164dpk2bJtruYP9GRPGCwTZRgnj00UfRvXt3dO/e3ZXLe/jwYSxcuBAPPvig22P37t2LU6dOoWPHjrj44otFXy8vLw+AI6/ayVnNZM6cOfjqq69c9aAD5cxTvuGGG0T3+yqPJkd1dTXWrl2LZ599FjNnzsT06dMxffp0rFu3DgDw888/S3qdUPWDP/X19dixYwcA733iDNC83aIfPnx4UO+7fft2AHAFY815S3f48ssvAQDXXHON6P42bdqgU6dOqKiowKFDhwAA3333HSwWC7KysnD55Zd7PCc7OxuDBg3y2eaCggLRdI7S0lLU1taiX79+aNOmjehzxb7r/j6HTqfDxRdfjPr6enz77bc+2+bL2rVrYbFY0Lp1a1xxxRVBv05qaqpoJRvnpNt27drBaDR63X/q1CnXtpMnT+LIkSMAxL93CoXClfPf9Hvn/F1fccUVbkG901VXXRXSvxFRvGDONlGCaFpnu6KiAt988w2qq6sxZ84cdO7c2a3s39GjRwEAR44ccS0K4U1FRYXrv++8805s374dmzZtwl133QWVSoXu3btjwIABuPbaayWXFjx58iQAuE1gbMrbdjk+++wzPProozh37pzXx5jNZkmvFap+8OfcuXOuQN5bnzhHAX/99VfR/U1HOkP5vt62O79bUkbTKyoq0KVLF1fbfbXV3+fwtt/Zns2bNwf0XXc+b+rUqZg6dark5wXqvffeA+AIalNSUoJ+nVatWolOOnXOATjvvPNEn6fT6QAAVqvVtc3592jRooXXmu8dO3Z0eyzQ+Lv29rdQKBRo3749vv/+e7ftwf6NiOIFg22iBNG8zrbJZMLEiRNRWlqKBx98EB999JHrVrzz9n2rVq1ERxKbajpCpdFosGTJEpSVleGrr77Czp07sXPnTnz33XdYsmQJxowZg9mzZ4fh00lnt9s9tv3666+YMmUKamtrcdddd+GGG25Ahw4doNVqoVQqsXHjRtx5552S3yMe+sFJrVZH9P2c/d90sqc3LVq0cPu3QqHw+lhf+wDvn9PZnk6dOvktqXfBBRd4PO+KK65Ay5YtfT4v2NKWBw8edI3USp1Y7E3TdJ1g9kdTsH8jonjBYJsoQRkMBjz//PO45pprcPz4cSxZssSVm9y2bVsAjmCnaWk0qXJzc12jt/X19fj0008xbdo0vPPOOxg+fDjy8/N9Pr9Nmzb46aefPJaZd/K23Vm9wllhpTmbzYby8nKP7Z999hlqa2tx9dVX45FHHvHYf/jwYZ/t9UZuP/jTokULpKWlwWq14ujRox659UDjqKC32+9y3/f48ePo1q2bx2OOHTsm+tzzzjsPhw4dwt133y1aklCMs+3e/u7+9vniHNHt0qVLQN/18847Dz/99BNuueUWjBgxIqj39sc5qp2XlxdTNdadf49z587BbDaLjm6Lfe+k/B2dNeWbCvZvRBQvYvdSl4hky87OdtW2Xbx4MaqqqgAAvXv3RlZWFn788UccOHBA1nukpqZixIgRrhHy5reIxTgnEP7nP/8R3f/BBx+Ibs/OzoZKpcK5c+dE64Zv3LgR9fX1HtudE9jERiAFQfDajkAE0w9SXrN///4AHBP2xDgDtlAu8Z2amuoaYfTWN94mqjnzjteuXSv5/Xr16gWNRoOKigps2rTJY7+37VIUFBRApVJh69atXmvNi3GWmAvkcwSivr4ea9asASB/VDvU2rZt60oTcdb/bkoQBNf3sen3zplX/dVXX4mma61fv951DGoq2L8RUbxgsE2U4MaMGYN27drBZDK5KgyoVCpMmjQJgiBg0qRJ+Oabbzye19DQgM2bN2PXrl2ubcuXL8dPP/3k8djy8nJ89913AKTdUr/lllug1Wqxc+dOjyoapaWl+Pe//y36PJVK5QrUn3/+ebeUke+//x7FxcWiz+vatSsA4JNPPnGbCNbQ0IAXXngh4ElXoeoHKSZMmAAA+Ne//uVRMWL16tX47LPPoFKpMH78+JC8n9Of//xnAMDSpUtdkzSdFi1ahD179og+76677kJGRgbefPNNLF682C0X2Ono0aOuQBNwpOU4J3rOnz8fp0+fdu2zWq0oLi6GxWIJ6nO0bNkS48aNg8ViwV/+8hf88MMPHo+xWq1Yv349Dh486Np26623on379vjf//6HhQsXiubzl5eXu1XjCMQXX3yB06dPw2AwhG3kXI477rgDAPDKK6+4XTgKgoBXXnkF+/btQ0ZGBm699VbXvksvvRS9evWCxWJBUVGR29/+l19+wdNPPy36XsH+jYjiBdNIiBJcWloaJk2ahMceewxvv/02br/9drRo0QKFhYU4ceIE3njjDYwdOxbdunVDx44doVarUV5eju+//x5VVVWYM2cO+vbtCwBYuXIlioqK0KFDB3Tr1g16vR5nz57FN998g9raWuTn52Po0KF+29SmTRvMmzcPjzzyCJ544gmsWrUKRqMRv/76K7755hv8+c9/xptvvin63AcffBDbtm3DypUrsXXrVnTv3h2nTp3Cd999h+uvvx5bt271uI09ZMgQ9OrVC3v27MHw4cORl5cHjUaDsrIynDp1CnfffbfHoh6+hKofpPjd736H++67D//4xz8wYcIE9OvXD+eddx5+/vln7NmzBykpKZgzZ45oqoccQ4cOxdixY7F8+XJX+T/nojYHDx7E+PHjRcsNtm3bFq+88gomT56MBQsW4PXXX0e3bt3QqlUrmM1mHDx4EEeOHEGfPn1w4403up43ZcoU7NixA3v27MHVV1+N/Px8pKenY/v27bDZbBg5ciTef/99t4VwpPrb3/6GU6dO4b///S9uuukm9OjRA+effz5SUlJw8uRJfP/997BYLFi0aJHrwkyr1eLVV1/Fvffei9dffx0rV65E9+7d0aZNG9TW1uLQoUM4ePAgcnJy3AJOqZx3JK677rqI59VL8cc//hE7d+7EmjVrcPPNN2PAgAGuRW1+/vlnqNVqPPPMM8jOznZ73tNPP41x48bho48+wrZt29C/f3/U1tZiy5Yt6N69Oy655BLRi9tg/kZE8YLBNlESuOmmm7B48WL8+OOPeOONN/C3v/0NgKPSwrBhw/DOO+9gx44d+Oqrr6BSqdCqVSvk5eXhyiuvxO9//3vX60yZMgVffPEFdu/ejd27d8NkMiEnJwe5ubm4+eabcd1114lWRBBz3XXXoU2bNvjHP/6BXbt24ejRo+jSpQvmzp2L2267zWuw3adPHyxbtgwlJSXYtWsXTp48ic6dO+Oxxx7Dn/70J7clz51SU1OxdOlSvPbaa/jkk0+wefNm6PV6XHLJJXjxxRdRXV0dULAdyn6Q4sEHH0S/fv2wbNky13tmZWVhxIgRuPPOO0NW/aS5WbNmoVevXli+fDl2796NtLQ09O7dGzNnzgQAr7W9BwwYgI8++gjLli3Dl19+iW+//RZWqxU5OTk477zz8Ic//MHtewU4qmI4/0YfffQRvvrqK7Ro0QKDBg3Cgw8+iJdeegkAREvK+ZOamoq///3v+MMf/oB3330Xu3fvxoEDB6DRaNCqVSsMGTIEQ4cO9aiP3q1bN3z44Yf497//jU8//RQ//PADdu3ahRYtWqBt27a44447cPXVVwfcntOnT2PDhg0AYi+FxEmhUODpp5/G4MGDsWLFCuzZswc1NTVo2bIlRo0ahbvvvlt0suKFF16I9957DyUlJdiwYQM+/fRTtG3bFoWFhZg4cSLuuece0fcL9m9EFA8UgrMsARERUQyy2Wy4/vrrcejQIaxevRq9evWKdpOIiCRjzjYREcWE7777zqN0Y3V1NYqLi3Ho0CF0796dgTYRxR2ObBMRUUwYOnQoampqYDQakZOTgzNnzuD777/HuXPn0KJFCyxZsgQXXXRRtJtJRBQQBttERBQT3n77bfzf//0ffv75Z1RWVkKpVKJdu3a47LLLcOedd3pdBZGIKJYx2CYiIiIiChPmbBMRERERhQmDbSIiIiKiMGGwTUREREQUJlzUJkTOnj0b7Sb4lZmZicrKymg3Iy6x7+Rh/wWPfRc89l3w2HfBY98FLx77TspCWxzZTiJKJf/cwWLfycP+Cx77Lnjsu+Cx74LHvgteovZdYn4qIiIiIqIYwGCbiIiIiChMGGwTEREREYUJg20iIiIiojBhsE1EREREFCYMtomIiIiIwoTBNhERERFRmDDYJiIiIiIKEwbbRERERERhwmCbiIiIiChMGGwTEREREYUJg20iIiIiojBJjXYDiIgocqy2dJhMqTCbBej1ChgM9UhT1UW7WURECSthg+01a9Zg+/bt+O6777B//37YbDbMnz8fo0aN8nhsSUkJXnrpJa+vtX79enTo0CGczSUiCjuLRYc5xbXYtLnGtW1QgQpzZuqg1VZHsWVERIkrYYPtF154AcePH0dWVhZat26N48eP+33OyJEj0b59e4/tGRkZ4WgiEVHEWG3pvwXaNrftmzbbMKcYmFeUzhFuIqIwSNhge968eejUqRPat2+P1157DX//+9/9PmfkyJEYOHBgBFpHRBRZJlOq24h2U5s222AyqZGTzWCbiCjUEjbYHjRoULSbQEQUM8xmwe/+nOwINYaIKIkkbLAdjG3btmH37t1QKpXo3LkzCgoKoNPpot0sIiLZ9HqFrP1ERBQcBttNlJSUuP07IyMDjz/+OG666aboNIiIKEQMhnoMKlB55GwDjkmSBkN9FFpFRJT4GGwD6NGjB5588knk5eWhdevWKC8vxxdffIEXX3wR06dPh8FgwFVXXeXzNTIzM6FUxn7Z8qysrGg3IW6x7+Rh/wUvVH1XPKcBs+ZW4+tNjQH3ZYNUKJqtQ5vWKQC0IXmfWMLvXfDYd8Fj3wUvEfuOwTaAq6++2u3fHTp0QGFhIbp27YoJEybg+eef9xtsV1ZWhrOJIZGVlYWzZ89GuxlxiX0nD/sveKHsu/R0oHhuOkwmdbM621VIxD8Pv3fBY98Fj30XvHjsOykXBwy2fSgoKEDHjh2xf/9+mM1m6PX6aDeJiEiWNFUdcrLrOBmSiChCYj/vIcqcVyw1NeIls4iIiIiIvGGw7YPFYsGBAweg1WoTMoeIiIiIiMIr6YNts9mMn3/+2WN7bW0tZs6cierqaowYMQKpqcy4ISIiIqLAJGwEuWrVKmzfvh0AsH//fte2rVu3AgD69++P0aNH49y5c7jmmmvQu3dvdO3aFS1btsSZM2ewadMmnDx5EkajEVOnTo3a5yAiIiKi+JWwwfb27dvx/vvvu23bsWMHduzY4fr36NGj0aJFC4wZMwZlZWX48ssvUVVVhfT0dHTt2hXjxo1DYWEh1Gp1pJtPRERERAlAIQiC7zV8SZJ4KFUTjyV1YgX7Th72X/DYd8Fj3wWPfRc89l3w4rHvpMzpS/qcbSIiIiKicGGwTUREREQUJgy2iYiIiIjChME2EREREVGYMNgmIiIiIgoTBttERERERGGSsHW2icg7qy0dJlMqzGYBer0CBkM90lR10W4WERFRwmGwTTGPgWFoWSw6zCmuxabNNa5tgwpUmDNTB622OootIyIiSjwMtimmMTAMLast/bf+tLlt37TZhjnFwLyidF7IEBERhRBztilm+Q4Ma2G1pUepZfHLZEr16E+nTZttMJl4/U1ERBRKDLYpZjEwDD2zWZC1n4iIiALDYJtiFgPD0NPrFbL2ExERUWAYbFPMYmAYegZDPQYVqET3DSpQwWCoj3CLiIiIEhuDbYpZDAxDL01Vhzkz1R796ph0qubkSCIiohBj0ivFLEdgqMOcYrjlbjcGhqxGEgytthrzitJhMqmblVNkfxIREYUag22KabEWGCZKze80VR1ysuuQkx3tlhARESU2BtsU82IlMGTNbyIiIgoUc7aJJKistLPmNxEREQWMI9tEElRUCH5qfquRkx36dJJESVshIiJKVgy2iSQwme0+95vNQsjTXJi2QkREFP+YRkIkgUHv+6cS6prfXKqeiIgoMTDYJpIgO1sR0ZrfXKqeiIgoMTDYprhltaXjTIUOh49ocaZCF9bR3sxMZUQXg+FS9URERImBw2MUl6KRzxzJmt9cqp6IiCgxcGSb4k4085kdNb+r0amjBTnZ1WGrDMKl6omIiBIDg22KO8mQz+xYqj5yaStEREQUHvEflVDSkZLPHO3VJkMh1paqJyIiosAx2Ka4k0z5zLGyVD0REREFh2kkFHeYz0xERETxgsE2xR3mMxMREVG8YBoJxSXmM7uz2tJhMqU26wtedBAREUUbg22KW8xndohGzXEiIiKShmkkRHEsmjXHiYiIyD8G20RxLBlqjhMREcUznomJ4lis1xx35pIfPWaDVqtjLjkRESUdBttEcSyWa44zl5yIiIhpJERxLVZrjjOXnIiIyIHBdgKx2tJxpkKHw0e0OFOhY0CTBGK15jhzyYmIiBx4xksQvGWfvGKx5nis55ITERFFCke2EwBv2ZOj5ng1OnW0ICe7OuqTEGM5l5yIiCiSGGwnAN6yp1gTq7nkREREkcZgOwFIuWVPFEmxmktOREQUaRzyTAC8ZU/OetbuOdvRDWib5pJbLApotULUc8mJiIgijcF2AnDeshdLJeEt+8QXy5NjHbnkdbiwaxbOnj0b1bYQERFFQ8KmkaxZswazZs3CqFGjcPHFF6N79+5YvXq118ebzWbMnz8fQ4YMwcUXX4yhQ4diwYIFqK6O/VE43rJPXpwcS0REFNsSdmT7hRdewPHjx5GVlYXWrVvj+PHjXh9rsVhQWFiIffv24fLLL8d1112Hffv2YfHixdi2bRuWL1+O9PTYDlpisfwbBSeQlBDH5Nga0X2OybFq5GTzYouIiChaEjbYnjdvHjp16oT27dvjtddew9///nevj3399dexb98+3H333Xj44Ydd25955hksWrQIb775Ju69995INFsW5y171i+OX4GmhLCeNRERUWxL2DSSQYMGoX379n4fJwgCVq1aBa1Wi/vvv99t3/333w+tVotVq1aFq5khxRUk41swKSGcHEtERBTbEjbYlurQoUM4deoU+vXrB61W67ZPq9WiX79+OHr0KH755ZcotVAai0WHGbPqceMoE8aON+PGUSbMmFUPi0UX7aaRRMHUS2c9ayIiotiW9MH24cOHAQCdO3cW3e/cfujQocg0KAicJJcYgqmXzsmxREREsS1hc7alMplMAAC9Xi+637ndbDb7fJ3MzEwoldG5dvn55wafk+Qs1Tq06eIYtc/Kyopk0xJKuPvu3LkGn/szM1JF25CVBTyzIBUVFQJMZjsMeiWysxXIzFQCSAtTawPH717w2HfBY98Fj30XPPZd8BKx75I+2A6VysrK6L13ldbP/nqcPVuFrCzWOg5WJPpOq0v3WS9dq6vD2bPeR6pbtHD8DwDsdiCW/tT87gWPfRc89l3w2HfBY98FLx77TsrFQdKnkRgMBgDeR66d272NfMcCTpJLDEwJISIiSjxJP7LdqVMnAN5zsp3bveV0xwKdVkBBvgqbt3iOiBbkq6DT+s4FptgR6nrpsbiMOxERUTJJ+mC7c+fOaN26NXbs2AGLxeJWkcRisWDHjh3o0KEDzjvvvCi20jdLjQKFY9QQBGBLaWPAnT9QhcIxalhqALU6ig2kgARTL10sqG6oT8XsotAt487AnYiIKHBJn0aiUCgwevRoWCwWvPLKK277XnnlFVgsFtx6661Rap00JpOAR6aZ0Cc3FS+XGPDcM3q8XGJAn9xUPDLNBJOJI9uJzFvZx2PHFdi1KzQValhakoiIKDgJO7K9atUqbN++HQCwf/9+17atW7cCAPr374/Ro0cDAO666y6sX78eixYtwr59+3DRRRdh79692LhxI3r37o0///nP0fkQEun1ClhqgFcXiVckYc524vJV9tFuB8YVajy+F4Eu4+67tCQwryg9IUe4OZJPREShkLDB9vbt2/H++++7bduxYwd27Njh+rcz2NZqtVi2bBlKSkqwbt06lJaWolWrVrjjjjswceJEqGM8B8O5sIm3KhZc2CRxORbCEb/I2lJqw7hC8e9uIMu4+3qPQAP3eGGx6H67wAhNCg4RESWvhA22n3rqKTz11FOSH28wGPDYY4/hscceC2OrwsNRxUKHOcVwC7gbq1gwOEhU/hbCsdaJ7w/kboeUxXYCyS+Pdck6kk9EROGRsMF2sgl1FQuKD/6C5rR0z/2B3u1IttKSyTiST0RE4ZP0EyQTiaOKRTU6dbQgJ7ta0uib1ZaOMxU6HD6ixZkKHZd2jzPOFCIxgwpUOF1u99gWaM1uf++RaGlKUkbyiYiIpOLIdhJjXmr885dCpEqrx5rVBll3O5ItTSnZRvKJiCi8GGwnKealJg5/KUSB1uwO5j0SCSccExFRKDGNJEk58lI9gwnAmZfK67B4EkwKUSy+RyxwjOSrPVJngknBISIiYkSVpJKtwgRRIJJpJJ+IiMKLwXaSYl5qZHBhlPjlGMmXn4JDRETJjcF2kmJeavhxAioRERExZztJMS81vHxPQK1liUUiIqIkwZHtJMa81PDhwihEREQEMNhOesmQlxqNvGlOQCUiIiKAwTYluGjlTXMCKhEREQHM2aYEFs286WRb4pyIiIjEMdimhBXNhXs4AZWIiIgAppFQAot23jQnoBIRERGDbUpYsZA3nQwTUImIiMg7ppFQwmLeNBEREUUbg22KeVZbOs5U6HD4iBZnKnSSJzYyb5qIiIiijWkkFNPklu5j3jQRERFFE0e2KWaFqnSfI2+6Gp06WpCTXR2TI9rBjt4TERFRbOPINsWsZFnyPFoL75Bv0Vh5lIiIEg9HtilmSSndF++iufAOeWex6DBjVj1uHGXC2PFm3DjKhBmz6mGx6KLdNCIiijMMtilmxULpvnCL5sI7JI4XQEREFEoMtilmJUPpvmQYvY83vAAiIqJQYrBNMSsZSvclw+h9sKI1aZQXQEREFEocoqGYFu3Sfc5JckeP2aDV6kI+Sc45ei82kpooo/fBiOakUV4AERFRKHFkm2JetEr3NZ0k96fCqrBMkkuG0ftARTtnOhnSl4iIKHI4sk0kwnfAB8wrSg9ZIBzt0ftYE+2Sj44LIB3mFMPt7994AZScfxciIgoOg20iEZEO+Byj93XIyQ7ZS8YtKTnT4e4nXgAREVGoMNgmEhELAV+yipWcaV4AERFRKDBnm6gZqy0dGk2Kz8dwklz4MGeaiIgSCYNtoiackyI/WWdF/kDpAV+0ytQlIk4aJSKiRMI0EqLfNJ0UuWuXDQsXGAAAW0p9T5KLZpm6RMWcaSIiShQMtol+03RSpKUGeGSaCeMKNRhXqIa1TkCnTilo0cLqFvCFo2qJs7a3e5CZfKO5kcqZZn8TEVE4Mdgm+k3zSZGWGuDVRY2j1cvf1qN1K/cgLNRVSzhKHlnsbyIiCjfmbBP9JpgqGKFc2jvai7kkm0D6mzn5REQULI5sE/3G19Lplw0Sr4IRyjJ10V7MJdlI7W+OfhMRkRwc2Sb6ja8qGEWzdaJ5vKEsUxfKUXLyT0p/824DERHJxZFtoia8VcFo0zoFZ896Pj6US3uHYzEXTv7zTkp/824DERHJxWCbEo7cAFO8CobW6+NDVabOVxpLMIu5xHv6Q7gvFKT09y+/+F7ciCuJEhGRPwy2KW7V1mpRZUqBySQgI0MBg74BgAKz5kY+wAxFmbpQjpKHoyRhJEXiQkFKf+v1Op+vwZVEiYjIHwbbFJdMZgPmFlvcFpwpyFfh0Wla/PBDfAaYgOcouU6nRFoacKbCjppaneTR3XhOf4jkhYKvuxJWWzpUKkVI7zYQEVHyYbBNMclXCkFtrdYj0AaAzVtsmL/AgqI5ekx8wOy2L9YDzKaco+QatQ5zimtERl39j+5KmfwXq+kPkb5QELsr4RxZ37WrBgsXGGC3+19JlIiISAyDbYo5/lIIqkwpHoG20+YtNkz5q3h+dSwHmM3JHd0Nx2TLSIn2hULzvm+6kigEoH17BTIybH4DbU5OJSIigMG2m6FDh+L48eOi+/Ly8rB06dIItyj5SAkyTSbfwVh1tfj+WA4wm5M7uhvqyZaRFO0LheZ933wl0TWrDX6D5nifnEpERKHDYLsZg8GAP//5zx7b27dvH4XWJB8pQabB4DvY0uk898d6gNmc3NHdUE62jLRoXyjI7ft4n5xKREShxWC7mYyMDEyePDnazUhaUgKdNq0bUJCvwuYtnsFYQb4KNRa727Z4CDCbC8XobqhKEkZatC8U5PZ9PE9OJSKi0GOwTTFFSqCjVldj1gwDiuZZ3ALugnwVZs/QQq22Ys1qQ1wFmM2FanQ3FCUJoyGaFwpy+z7aOedERBRbGGw3Y7VasXr1apw6dQp6vR69e/dGnz59ot2spCE10DHoTSieo0WVSQuTSYDBoIBWC1RWNqDOmgqDoT6uRw+jPbobC6J1oSC376Odc05ERLGFwXYz5eXlePTRR9229e7dG88++yw6duwYpVYlj0ACHbXaArUa0OuCL5EXy2I5DSQeKm3IaaOcvg/VXQln+48es0GrlV5jnYiIYotCEATf9zyTyEsvvYT+/fvDaDRCq9Xi0KFDWLJkCdasWYP27dvjww8/hF6vF32u3W6HUqmMcIsTV2WlHRUVAkxmOwx6JbKzFcjM9Ozfyko7Hp5mFg1sLhukwsKnHH8v12sZlMjOEn8t8uT2d/it72pqBMycU+3W55cNUqFotg5t2/pe3jxSTp5siGobT55swKy51fh6U3DvH+32ExFR6DDYlmDq1KlYs2YNpk+fjgkTJog+5uzZsxFuVeCysrLiop2BOFOhw42jTKL7tBrg3ZWZmPekRXSUPJBR70TsO38ay9c19t3cWTp88n9Wr6O284pSRUdfI9l/Vls6ZsyqD7iN4WhHMCPrsdL+RJCMv9tQYd8Fj30XvHjsu6ysLL+P4fCeBLfddhsAYMeOHVFuCTXnazLauEKNR6ANOEuw1cJqS/f7+lZbOs5U6FD2rQ1nKnSSnpMIvJWva9lKKRoEAs5KG9HPTHNUA4l+Gx0559Xo1NGCnOxqyQFyrLSfiIhCg0dtCZxXLRaLJcotoeZ8TTbLzU11W4ykKSkl2MK9MEk08579vbe38nXWutivtBHv1UDivf1EROSOwbYEZWVlALiwTSzyNRkNfhKkfAUt4V6YJFIrDIoF1Q31qZhd5Pu9vQV8aemxX2kj3quBxHv7iYjIHdNIfnPw4EHU1HiO5B08eBDPPPMMAOCGG26IdLPID0f1EjUGFajctg8qUKF9O99fb19BSzhv5fsO5KWlt0hhsegwY1Y9bhxlwtjxZtw4yoQZs+px7LgCu3b5fm9vfVNWVo/8gSrRfbGySqfzAkxMrLTRl3hvPxERuePI9m8+/vhjLFmyBAMGDEC7du2g0Whw6NAhbNiwATabDffeey8GDBgQ7WaSCG9l2gBr0CXYwnkr398Kg1VVGigU8tJLfAX0drsjn715ik3T1BpvdwyWLqvByyUZUCpjt/53vNcoj/f2ExGROwbbvxk4cCAOHjyIffv24ZtvvkFtbS2ysrIwePBgjBkzBpdffnm0m0g+eFsAJdigJZy38v0F8sePC5j4QGOFlWDSS3wF9FtKbRhXqPbatpxs7wFf374qdGgvYF5RakzW/3aK5RrlUjRtv8WigFYrxFX7iYioEYPt3+Tl5SEvLy/azUhq4ZgwGGzQFaqFScT4DdSb7Q4mT9xfQO9tomPTtvnru1hfBj5el6p3crb/wq7xVwqLiIgaMdimmOBrwqAqrR5VVZ5BuNTgPJigK5y38n0F8vkDVSgr8wzkpVRPaUqvV0CrcaSL5OamwlonID1dgd1l9Vi6rEZ0oqPYRUS8B6xE8SYeVmclosAw2KaQkbOIh6/KH8OvTsPsosa0iiFXqjD1YQOKn7CEtZpHuG7l+wrkx/5JjUemiS/SE0ieeEZGPV4uycCri2rccrPzB6rwckkGjh9vcHs884GJoi9SVYqIKLK4gmSIxMNt3nCuzCS22qDUlRp9rQIJAMveykBlleAanRUEASvfrcOXGyK3wl44+q75xYlKpcAtt1bBIp5qjTWrDcjJlnbCranVY/bcGq9pMHNnaWGpsUds9Cwaq4IlyghhvKyoFov9HS99B8TeyqHx1Hexhn0XvHjsOykrSHJkm2STW5PaX35xZaXnhMGxf1Jj2zabR2AaaLpFNDVP0bDa0tG3b2jyxE0mhe/ShWagdavqhE0P4QhhZLG/5fNXpShejmtE5Il1tkk2uTWpg5kwuHR5LcYVakQf7i94j1W+aoY7Ujykn2hNJt994G9/PItUHXNyYH+HhpRyo0QUnziyTbLJrUkdzIRBX+Xr4nmFvVCVrDMYfPeBv/3xjCOEkRWO/o7FlJRw48qhRIlL1sj2oUOH8MEHH+Do0aNu23ft2oVbb70Vl1xyCa699lqsW7dOViMptgV7krDa0nGmQodff03BjMe0oiO648aqsXSZ+IlcrHxdKFbYc7br8BEtzlToIj4y50gvqUanjhbkZFdLnmTatM16PXDl78RXISzIV8GgT9xRMo4QRlao+9vbyqcWi07yazh/D2Xf2qLyGw4GVw4lSlyyRrYXL16Md999F5999plr2+nTp3HnnXeiuroaCoUCP/30E6ZMmYKVK1eiV69eshtMsSeYmtTNczy1GmDaIzpM/ZsW1ZYGSRMGMzLdg3hnuoVCUY8zFbqgRsW85Z4Wz2lAeoyer721eebjOgDV+OLLxr9LQb4Ks2booNFURaGlkcERwsgKZX/Lnf8BxG/+OFcOJUpcsoLtHTt2oEePHmjbtq1r23vvvYfq6mpMmDABU6ZMwYYNGzB58mQsWbIEzzzzjOwGU+zxd5JoHvzqtILHCdVSA8wuqnabde9vwmD7dkp88F4GqqvtrqC6oR54fGa9RxDfJ9fgCuK9Bd++TvSz5lajeK70RWUixVebi5+oxpxZWjwwyZGjbTAoYNALCR1oA46LvyFXqmDslupRY3z/gXqOEIZYKBeAkpuSEopgPZrifeXTZEz/IZJCVrBdXl7useriV199hbS0NEyaNAlpaWkYNmwY+vTpg7KyMlkNpdjm7STRPPgFgDcWGfxMqHScUL0F8fkDHdVIRt1Sib59G8sLWm3pmF3UeKLVaoCFCwxYurwWs4saT1beRrman+ibLwpTWZmCzEyE/eQRyAnLX3BSU2NH61bVaN0qnC2OLWmqOkx92IC5xRa3GuOOUX0t0lTey0xS4EI5Iit3/kci5OvH60JS8XpHgSgSZAXbdXV1UCob076tViu+/fZb9OnTBzpdY35d+/bt8f3338t5K4oDYqXsmga/TlWV0k+oziC+qkqD48cFQAGUldXjkWkmWGrcR6yan2jHFWqwdHkttpRKG+VqeqJvGqg3DdjCffII9IQlNzhJRFZbOoqfsHj83TdvsaH4CUvMj27Go+YX2zqdEmlpwJkKO2pqdZJHOOWmpPD3EB3xfkeBKNxkTZBs06YNfvjhB9e/N23ahLq6OgwcONDtcXV1ddBoxMu0UeLyVhJQbKnwppqfUNNUdVAoHLW2J0424dVFNW553M7ygs1PtLm5qR4BV/PneHtf34F6eMqZBVNCjfnJnuSWoqTgOCf2tmqpwNPP1ODaG6rwp8LAJjjKnSTI30N08DdH5JusYDs/Px+HDx/GE088gc8++wzPPPMMFAoFhg0b5va4/fv347zzzpPVUIo/3kaZysrqkT8wsBOqlBGr5idSsWolvl6z6Yk+0EA9FII5YfkKTob/XgWtRoFT5QYc/EmP8tMG1NZqg25ftKu0SMVqJNEjt+a23FrzrOgRHfzNEfkmK2K499578b///Q/Lli3DsmXLIAgCrr32WvTo0cP1mAMHDuDIkSMoLCyU3ViKL95GkZYuq8HCBQYoldJzPKWMWDWfqKVWBz6C7sw99Reom0wI6e1oqy0dVVW+22syAYBnlRWxfNnhv1fhwQd0mDmn2u2iwZG3bIBBH1jecjzlY3J0M3pCkTMtZ5JgmqoOMx83oGieBZu3NPveP858/XDR6xUec1yck5KXLqvhb46Snqxgu127dlizZg1WrVqFiooK9OrVC6NGjXJ7zN69e3HVVVdhxIgRshpK8cdblQJLDfDu6loUzU5HtUXaCVVKxYPmgafdLuDK36nQ3ehZleKH/fXQaT0DaueJ/ty5FJ+fTauVdlNIymRHZyA7dozvn2OdFSgc5b5svTPYbR6caDUKj0AbcOQtF82zoHiOFmq1RVIb4y0fM5TVMSgwocqZDnaSoNWWjqefsSC3dyoKx6phrROQlq5AWVk9FjxjwczHY+u7migyMurxckkGXl1U4zbHJX+gCi+XZCAjQ/yOHVGyUAiCwPs7IXD27NloN8GvrKysiLezcUTUcwQ70BFRqa/lDB7tDQoolQrMf9riMbo7/REtlCl2ZLUQb8PpCj2eWlAjmkqSP1CF6dM0aJltlt1eqy0dM2bVY9NmG+69W4PdZfWi71mQr0Ju71S3E5nz9ZylEps6VW7AqNGVXtu2elUmWrcySWrjmQodbhzlfURwzWoDcrJ9/y0j/d0L5fcu2qLxuw1WKL4r8fz+iSSQ713T41hz3o5RiSyefrOxJh77Lisry+9jOGuBwiqUdWOlvpZzVOx0hR7zF4hXpZj/tAXTp3mftKtUCBg31rEcfNPn5w90rGqpVPi+RpU6Gtz0trszvab5ew4qcJQ6fGSaZxDh7da8yeQvDUZAixbS2hiPFR7ivV5xvIr2XYV4/K4mglgpucg63xSrAgq2T5w4IevN2rVrJ+v5FJ9CWTc2kNeyNyi8TnLcUmqDvcH7ZEG9vh7vrq5Hn9xUjCt0vx397upazHzc/afT/CCvUimwa5f/k0/T4MBSAzwyzYRxhRrXe3Y8X4kUFTBmrPeVNMUCCIPBd45kRoYC586lYfTNKSgco3blVjrfo2kb4zUHOl7rFcezaK+CGK/f1VCKRsAZCxc58TSvhJJPQMH20KFDoVAEd7BSKBTYu3dvUM8lCobFYg96f5qqDo9OdRy8PetsuwcN3g7yCxcYXPXAm3OefJqf/C01cHu/NasNru3eGAwKWGoMMJsdI9YZBgX0ekfqSdNJYk3bVlZW77bQT/5Az/Y62xjt0UqKL9G8q5Ds39VoBZzRvsiJ5LwSjp5TMAIKtgcMGBCudhCFnMEgb3/ToMFiUUCrFTyCBl8HebvdMTu/eZ410HjykRoceHvMkCtVUKlSMKvZZMjhV6swa4YORfOq3QLuQQUq3H2XBhMnuS/Z7nxu0/Y62xjt0UqKP9G6qxCK72q8BlPRnMgc7YucSKWxcPScghVQsL106dJwtYMo5EJxAnAGDRd2FZ+04esgv6XUhnGFap/vLTU48PaY6Y9oMbvIs+rIJ/9nA1CNubO1rhFvg0EBdTpwy22VoiPlTdvbvH+iMVoZr0EPRZeUi2Rv4jmYimbedLQvyCORxhJvVZkotnCCJCWsSNTc9btYQ7PdYicfKYGst8ecOweveemf/J8N994DtG5lQutWjm2Hj2h9pqTYrIJbG2trtagypTjSUzIUMOgbkJNt8f2ZQyAUQQ+D9eTl7yJZTLwHU9HOm45m+lAk0lhiZRIoxScG25SwQlFz1xmwHT1mg1ar8wjY/B3E27dXYM1qg9+Tj5Tb7mKPMZnEV8tr3C+4Am0A0Ol81wfv1CnltzJd1TCZDZhb7Fk2MZhFcQIRiqDHW7A+d5YOKan1koJwBuvJJd6DqWjnTQPRSx+KRBpLtC9mwo3Hu/AKWbB94MABHD58GGaz99rDN910U6jejsiN2IHCbE7F51/U4PMvPA/AWg1QW6sRPbg4X8tkUsBqBUq32lyVOpqPrvo7yGdk2H47AYXnc/utOmJQ4ExF46qTaSoF8geqvNYPT08XkKaqQ22t1iPQBsQXxQk1uUGPt2B91y4bjh3XYNEb9X5HzGtqdNi02Y6WrQBrHVBZCZSXKzGoQAeNJrbTCSg48R5MGQz1GHKlCsZunot47T9Qn9CTQyNxFzMWLmbCJZ7Tp+KF7GB706ZNmDt3Lo4cOeL1MYIgQKFQMNimsPB2oHhsWhq0Gs9KHloNsHCBAfOerHELyIZcqcLUhw0ofsLi9lrOSh2z5pjQ++JUHD0OpKfpYDA4TnBzZ6kxuyhapc78VB351r3qyD9fMvisH15ZaUeGAagypXhNT9m8xYYqkxZqz3R0D/7uDIiRG/R4C9adkz+bf67mI+a2+nQcO67A2k+sHn3UsaMGnTunQ5XKEZ9YFsz3Lt6DqTRVHaY+7Lgb1XRStuNuVGIvVR+JlUOjPQk0XOI9fSpeyAq2v/32W9xzzz1QKBS4/vrrsX//fuzfvx/33HMPjhw5gk2bNqGqqgqjRo1ijW0KC18HiicXWESrgYwr1GDp8lqPoMvYLVV0NHdLqQ3p6cDLJRl4/sUakVKAqXiiOBVVVeHNVRQbvddqTJg1IwPFT1R7BPv33q3BfRPdq440CJ61vJ0npUemmfCv5Y4SLVIWxWmaniIm2NESuUGPt2A9N9dzBU6npiPmNTUq0aDc+e9ZMzRQGXjyCSc5t7SD/d7FezBltaWj+Anxu1HFT1gSOmgymbzfxQSABx+QnwIU7Umg4RLv6VPxQlaw/dprr6GhoQGvv/46LrvsMjz66KPYv38/pkyZAgCoqqrCrFmz8MUXX+C9994LSYOJmvJ3oLjzDjVeXeS+3VvQ5SsY69E9FS++5GtUNBU52dVhu83sK4BQpTZg+NVpGDumMXg+XW5HjcUz6Cwrq0durkr0czYNKPylp/jbL2e0RG7Q4y0Yt9ZJGzGvsXifdLql1IYaiwYZfspGJqNQ5XzKuaUt53sX78FUMgdNkUoBSsSVaeM9fSpeyAq2d+7ciZ49e+Kyyy4T3Z+RkYGnn34aQ4cOxfPPP48FCxbIeTsiD/4OFOlpCs/AzctTfAVjUkdFw8FfADH86jS3VBGn/IEqj5F955LwSqXvgCLD0OA1PWX41Sro9cCpcoNblZKmOdxyTvxygx5vwXpaurQRc1/VWqTsT0ahyvmUe0tbbsAZz8FUMgdNkUwBSrSVaUPVd5xg6ZusYPvcuXPIy8tz/VulclRGsFgs0GodS2GnpaWhf//++Prrr+W8FZEofwcCg0HAvKJUt5OnIIg/x1cwJnVUNBz8BRBjx4gnT4vV+XYuCf/uygzYbN4DCrXaglkzPCccDb9ahQf/qvNYRKd5lRK5J345QY+3YP10uV3SiLncxZCSTShzPuUGy6EIOOM1mIr3nHM54j0FKJpC0XecYOmf7zpgfmRnZ7tVH8nKygIAHD161O1xdXV1PquUEAXLeaAQ4zxQOE6e1ejU0YKc7GpkZNhEn1NWVo+CfPHXysiI3onMXwDh60JAbN/AgSqkqXwvZQ8ABr0JxXPSsXpVJt5anIHVqzLxt4e0eOrpavTJTcXLJQY894wer5QYkNs7FQsWWlBb67jIDsWJv/nfLZBREkewnoo1qw1Y/rYea1YbMHiwHXNmqj3+9o0j5o7X9/b9cD42I0M8xSRZOQJk8T5xBMjSx3SkBMu+MOD0fSxMVI4LbP+/bfIkt+98X2zXwmpLD3mb45Gske1OnTrh2LFjrn/n5uZCEASsWLECs2bNAgAcPnwYW7Zswfnnny+vpUQigkk58Pac/QfqMWuG9rdqJO6vdV5bZcRGTprfjtPpfAcIvkbkMzLd9zkqrmgxa67nZxQbhVCrLVCrgdatHO2qrEzDrbeosXR5rVt6irOaicmshFodGyNNYiOUqtQ6vyPm4c7dTbTbraFMX5AbLMfC9y5aIlH+LpbFcwpQtMnpu2SeKxAIWcH24MGD8eyzz+LgwYPo2rUrrrjiCrRr1w7/+te/8O2336Jt27bYsmUL6urqcPPNN4eqzRRnwhVcOF/XYhEw4zENrFYNqqvtkg4U3g8uJswrSse5c1ocPtzgqtQx7vZKFM0xwG53nzwX6slTYrfj5s7S+QwgTpeLj1IPKlCh0/mC26I6Oq3gEWgD/m/5O9s1+X6VaCUX57+nPfxb+lgMTDYTW/1SrbZIShMI14k7Xm63BvKbDeVostxgORa+d9ESifJ3sS5eU4BiQbB9l8xzBQKhEATBz3rT3pWXl2P9+vXo378/unXrBgD44Ycf8OCDD+Lnn38GACiVStxyyy2YO3cuFIrEvYUndUngaMrKkr50cag0BheeJz45wUW4XtfJakvHjFn1bq+v1TjKBublpSJN5RhxzjA0hGxxF7H3dL7vyyUZWPRGjejnVSiA2UWeffHYNC3sgh16fWOgdKZChxtHeR/hWrPagJzsxv6rrdWiri4FTzzlCNBX/isTt/6p0uvzV6/KROtWja/feEGkgFYrRGwU1/vql9qwrn7pi7e/L+D4ezlW7vTsm0j/bgP9bTX/XM7fSW5uKiAA7dspoddL/52E4rcdre9dKAQ7OBHob9ufaJwvEkUy9R2/d40p1L7ICrZ9OXjwIKqqqtCpUydkZyf+ZU08fDki/SUONrgQex23tAqtgCeeqhOtqRrI6/ojdtIvyFehcIwaj0wzNVlRMjQBvq+DllaD3yY1CqIn4aarXtZZBWzdWt9s1UtHGw8f0WLseO/zJ5a/rUenjo6gyBmwjitUY+JkR7te+6cB9/zF+4F12VsZ6NzJ8/Uj+d2rrdVixuw60fJ9BfkqFM9JD9vql74Ee1KKZN8F+5t1/lZ27bJh4QKDx92PQC90QnU3LN5O3HIuNAL5bUsRb30XS5Kp70J1nneKx76TEmyHbLn25rp27Rqul6Y4EYpcLm+33cf+SY3SUptHGTZ/rxvISdw9lUCB2jpHEOsMtJ3vF6pVtnzdjrPUAGfP2n+bLOi5P01VB4MBWLDQ86DXtI1Sb/k3Xa79ttGNE1wa/KS8Ggyhu3YPNuAK1eqXoRYPt1uD/c06fyu1NVrMmy++sErRPAuK52glXegkYzqA3KouyTw5lOQL9nibzKlbgQhbsE0kN7jwdfKx2yG6OqSv1w0mX9Z50k9RZmDsTedEH7Nrlw21tRrZI3FyT5ZSAiWpObFNA9amEzB37a5H/kCVaDAbyglocnKbQ7H6ZTgE+vcNZslxueT8ZtNUdTh3Ls1rZZJIXujU1OhhMitw8CcbMgwG6PUCNJrYrogld3AimSeHkjxy55Jwcqp/soLtRx99VPJjFQoFnnzySTlvR3EmnMGjWA1pb69rtaWjqkqF48cFFI5Ro/fFqa4UC8mLZZjFJyFqNcDCBQbMe9Izn3ruLB1SUuslB+FyT5bSAiVpoxBNA9ayssYA27koDhC+iaJyR/jkrn4ZLoH8faM1kVL+bzb6FzomcwbmFovVgc+AQV8V3jeXQe7gBEcYKRihqpOfjHejAiEr2H7//ff9PkahUEAQBAbbSUAstzqQ4LH5801+0jvFakhLCVryB6qwcIHBlQ4iadRIL16SflyhRrQ6x65dNhw7rsGiN+olBUxWWzrM5lQ8Pj0N32yvR8tWSljrBKSnK1BebsegAqXfk6XUQEnKKETTgLR5gP3INBPGFWpw911qpKcpYDAIIR3FkDvC52v1y4J8FTIMDSFpZ6CkBkOhXCQmUHIv+KJ1odN0zoLVakef3FSUlTWmmTnSWKpRNFsfsyPcoUgD4QgjBYql+yJDVrD99ttvi2632+04efIkNm7ciI8//hi33347hgwZIuetKMaJBbVDrlRh5uPidaubj7SIPf+NRb6X6mteQ1pq0OIMjJumofgbNcrOFln2Hd6XcXe+dvMgXCxgapxcVoNnnjbgf+usboHioAIVCvL933sPJFDyNwrRNGB1rjo5rlDjuJsgAO3bK5CRYQtL0Cd3hM+x+mUGiuZVe9YbnqGDWh290U0pwVA0T35yR0ejcaEj5YIacATcJrMWGk3ImxASoUoD4QgjBSIe5pIkAlnBdtOl2sXcdNNNuPLKKzF9+nQMHTpUzltRDPMW1DqqhVhQNDsd1RbvwYW352/dWu/1xJ0/UIX27ZRuNaQDCVqap6H4GzXKzFRizky1RxACL8cpb0E44Hh+VZUGLXPq3D77vXdr8PYyz1FyqSOaobyN3Hy5dksN8OqiGhTkqzBnphaqNOtvdyFSQr4wi9wRPqstHc+/WI3CMemY8lctqqsF6HQKlJc34PkXqzHtkejWG/YXDEX75CdndDTSFzqBXFAD0cvXlyJW0kCc9ekP/mRDRobBVZ+eEhMn1kZG2CdIXn/99Xj99ddRUlLidSSc4puvoPbzL2x48AE1crKrvQYI3p7vTF9QKNxPPs7VCs+ebcD5HcSrczhe13e7nWkoUkeNxIIQQRA/EPlaQt3ZtpY57p/dX4AutcrKtIc1UKVpUFlph1Yb/G1kx3LtWlSZtDCZBBgMCmRmNKChwf5bqafw5BPLHeEzmVLxyboafLJOfKLe/X+J7duisXDyC3Z0NNIXOoHO64hWvr5U0U4D8V6f3hC1+vQUXpxYGxkRqUbSqVMnfPXVV5F4K4oCuSNx3p7vTF9447UMjB3jviLaI9NM+Ndy32kmWq14nrVTWroC+QNVuPsuDRQK8cDM4znNghCrLV30QOVrCXXAMbEScP/s/gL0wKuseK/NK7XMU9Pl2p3PmzPHd3lBucGU3BG+aI8MyxWKk1+0loSP9IWOv791099UQb4KBn1YlpUIqWilgTQt99lUoGUbKb7wjkpkhD3Yttvt+OGHH6BU+g58KH7JHYnztd9SA1ScE1yLqjhJCTqUKYLPMnUtcxTok5uKiZOq8K/lhqCCgOYHKufqedlZCrz8omNUfndZ4wIzgGNkXuNY1dzts/sL0MX6KZjJdPLK6kUmn9jfCJ+vYFKvV7itYuicaOr8O8T6bVG5J79oLgkf6Qsdf39L52/Kmcai0cRuNZJoi9X69BR+vKMSfmELtmtqanDo0CG8+uqrOHz4MK688spwvRVFma+RuCFXqqDTCjhTofM6yuZvJO90ud1jm5SgQ6kQMG6s4+zQ9EecP9CxKM6EO6tcAbCcIMB5oDKb1VAqlHhygcUtHaTpZK3cXBXuvUcDjcbRnqafvWmJvea8XVz4Cn7F6n/rtIKsSheRDKa8jfD5CyYzMurxckkGXl1U4/F3eLkkAxkZ0u5iRFPTk5/7kuO+v/PRrGQCRD4Fxt+xo11bJVavyoRBLzDQ9iMWyjZS9PCOSnjJCrZ79uzp9zGCICA7OxtTp06V81YRU1ZWhpKSEuzcuRP19fUwGo24/fbbce2110a7aTHL20jckCtVmPqwFrPmilUjaRxl8zeSp0qr9zkR0hu9vh7vrq5Hn9xUPPSgFsePN7iloTRdfVJuEJCmqoNeD9Fla7eU2qBUAkveyMD33zegQzsBqtQ6j88eTA1rb8Gvt/rfbywyeF10RGxk2nlrz2QSkJGhQE4OkJMNnKkQ74dwL8wiJZgEgEVveFaCcf4d5hXFx1pezpPfhV2lL18c7TJekc7/9HfsaN8+Ne6Wfo5WClCs1qenxJYsd1RknXXOO+88r/tUKhVat26NAQMGYOzYscjJyZHzVhGxZcsW3HXXXUhLS8N1110HnU6HdevWYcqUKTh58iTuuOOOaDcxZondhtJpBY9AGxAfZfN3GyuYK+40VR0eneoYBQUc6RzhXPnQX6Dz8ENaXDZIAbXaPWh2H8UUMGuGBlarBtXVdq8XF84TstpL6om3+t9VldJHpr3d2lvyRiYm3FnpEXBHYmEWKcGk47+Ts25stPPVo5H/6fvYkRby9wunaKYAxWp9ekpsyXJHRVaw/dlnn4WqHVFXX1+PmTNnQqFQYPny5a5R+4kTJ+KWW27Bs88+i+HDh6N9+/ZRbmnsan4b6kyFLqBR1HDcxmpM8UjFDdel4ckF/mt+B8tfoHP4cANWvVcneuIU++wtvVyfNj0h33u3RjT1xFtlE6l54b5u7c1fYMGzCw34852NuXSRWphFSjAp5TVieYKkHLFQySQa+Z+JUFs62ilAzct9OhXkqzB7hhZqdeznzkbrrgAFL1nuqMTH/dQI2LJlC44cOYJRo0a5pccYDAb85S9/wfTp0/H+++9j0qRJUWxlfIn2KJtTmqoO2VmOA244gwApk7Xknjibn5CXLnMshKNUAJuajkh56XqpeeH+bu098jdt0DXO5YwuhyKYjPUJknJEOo3DW3AT7eDXUmOA2QxHZQODATo9oNXEdrAY7RQgwL3cp/NvmmFoiItAO5p3BSh4yXJHRSEIQuzXQoqAZ599Fq+++iqeffZZXHfddW77ysvLcfnllyM/Px9vvfWW6PONRiPM5thcBthJqVTCbrf7f2CI2O1KnKnw/n452UoolXLao4DdroAgAAoFoFQK8BplyiSt7xSorAKsVs82pKUpoFIB1dWOfcF+9uZ9qgDQooUSDQ0ClCkKx8dXAEoFUHHW8/UVcCzQY6kR3NqZlqZAhkEBhcLxnIYGpejznbKzlEhJ8b5f7vO9893HmRmO//b/mPg57En/3Tb+HgQBsNoEWKoFCPD8+4aCIChRZfL9PQpe8L/t8LZLiuDaHr7fTHAifb6QR8pxIXK/+fjqu+iL/m9WnhMnTvh9TEAj2y+99FLQjVEoFJg4cWLQzw+3Q4cOAXDUBG+uVatW0Gq1OHz4sNfnHzhwIFxNS1i//hrtFkROfbOL9lB+9vLywB5/+rTntnobYAlg8OfUqcDeM9TPFyPlMwT6ORNFpD53rPZvrLYrEOH4zSSDRPjbJ6NE+7sFHGwrFAo0HwxXKBpvyzr3Nd8W68G2c1TaYBBfKEWv18PkY0nCbt26cWRbRHiuWCMzihF82x0jWw0NABSArckIo1OoRrZbtFDi3DnP19HrFFClKVBd7dl+nU6BFCX8fAYlKqsEH32sAGD32UfNt7s/H/D/N/I1Quhv9FCJhgbHPrvgGOkXBCAlBQBif6SkKf+/28iP6vm7a5XVQomzTb6X0n/z8j6Lr3YpAOTkKF0j/6G/Gyb37xAbo7OC4N5Hjv/F9m+GdwUSRzB9Fw8j4wEF2/Pnz/fYtnPnTqxcuRJt27Z1m0B44sQJrFu3DidOnMCtt96KSy65JDQtjlGlpaXRboJfWVnSS4iFUqgnrZyp0OHGUd4vfNasNiAnW94lsdWWLlrGD3DkAc4rSvX5GeQ+X+rrPveMHlMe9rzIe7nEgEemmtwWdnGWPVy6rAZL38xAmza+Lw5NZvHJUnNmaqFKs6KqSoXjxwXRhXuGXKnCtEc0KJpXIzoh1V8OZWP+ZeDPtdWn49AhFV5dVONRX/3euzXo3NnmKr0YD/z9biPxe2ju8BEtxo73/v0R+15K+d7L/SwHf9Ljz3d41tN2lsJc/q/gvlNShOLvIOd7HwomcwbmFleLLC6ig0Efu3XKo/Eb8CVa59pEEGjfhetcG2oBBdsjR450+3dZWRlmz56Ne+65Bw888ABSU91f7pFHHsGLL76IxYsX4+abb5bf2jDS6/UA4HX02mw2IzMzM5JNShihnixlNgs+VwgMxcRLuZOVwlUCrfnreqsuYq0TYKmBaEUSAG41xr1pOlnKZBJgMCiQmdGAhgb7bwc38YV7LDXA51/YMOWvaswrSo34wiw1NZ6BNtBYu3zWDA1UhugffEMlGhORpa7c2JTYIkvNL7zlfhZvlQu8lcIMZaWPUPwdQlHJpXltfKnLXtfU6D0CbcC5uEg1imbrodHE5t3bSE8MptgRCxOLpZBVjeSFF15Ax44d8dBDD4nuT0lJwZQpU7B+/Xq8+OKLeOONN+S8XVh17twZAHD48GFcfPHFbvvKy8thsViQm5sbhZZRcwaDAgsXGLB0ea3oSo1arRJWm7yTZ6ycOP29rgCF6EnGX4k/L9lSHtRqC9RquOqcWm3pmDNHfOEewBHUOP8mJpOA7KzIL8xSY4HXSipbSm2osWiQIfHzxwN/ga9GkyL799Ccr+Amf6AKZWXuwY23RZaaV4uQW21Gr4doZQNvpTCB0J2QQ1V2Uc7ghJxlr01mhc8KRCazFhpN4G2KhEjWd2d5wdgSK1XP/FHKeXJZWRm6d+/u93Hdu3dHWVmZnLcKuwEDBgAANm7c6LHPuc35GIourUYQHaXaUmrDsndqceJEA2bMqofFogv6PUJ74qxGp44W5GRXh+yg7HzdltlmzJmpxqACldv+0+V2j21OgwpUQS9Z7giEvQeyubmN1+/BltjzMTVC0n5/o/ZSRvXjiTPwFZM/UIVP1lll/x6acwQ3nt+7QQUqjBurxtJl7p3sHFkWv1tRC6st3e9nkTJCqdWYMGuGDgX5zV7DT6qzlPrs/shtu1z+lr2urdX6fL6UxUVimWMQIhVrVhuw/G091qw2YF5RakjTbywWHWbMqseNo0wYO96MG0eZQv7bosDEwtoCUsgKthsaGnDs2DG/jzt27BgaGmK7VmJBQQHOP/98/Pe//8W+fftc200mE/75z39CpVLhpptuil4DyaXa4nsERqlUeJzEAxXtE2cgxE4ygwfbvQZDjpGe4IJ+f0GJtU5wvU+wfaTV+j4s+dvvb9Re6qh+vPAW+OYPbAx85f4exIh974pmp+Pd1bUeFzS5ualef7OOkeVU12eZ+bhnsFyQr8LMx3WSvrcGfRXmztZi9apMvLU4A6tXZaJ9O9/fGY0mxW8w6o+vC5BAfnNWWzrOVOhw+IgWZyp0kv9m/pe9TvH5/ERYXCRcgxuAv/S20P62SLp4OVfLSiPJzc1FaWkpPvjgA6+B6AcffIDdu3cjPz9fzluFXWpqKubNm4e77roLY8eOdVuu/fjx45g2bRo6dOgQ7WYS/Ad8tbWO/XJuD0dj2Wk5xG49q1LrZKexNL9lqtP5z9WV20fKFMHrwjv5A1VQpvj++2dk2HzmbwY7qh+oSN5udqYWnTunxeHDDa7JsM4ceiA8+Yti37tHp+pQV+f+u5EyspyT7RidferpauT2TkXhWLXbxN4FC6sx41GtpPxjrcYErQbobnSkL1lt6T7TXj5ZZ0XZt/WS0i18vq/M1DE5C7PIXfbaoBd8Li5i0Mf2yHa4xUtucLKJl3O1rGB78uTJ+Oabb/Doo49i9erVuPbaa9GuXTsAjmoka9euxdatW5GamorJkyeHpMHhlJ+fj3feeQcvvvgiPv74Y9TX18NoNOLhhx/GtddeG+3m0W8CmZwlJ1+r6YkzkAl+sURO/qfYiX/uLJ3PQLZLZ8Vvs7+D7yOlQsC4sWoA8KgmMm6sGkqF75O+v4OvQlGPMxW6sAbB0VjNLk1Vh5qaFNHqNE6RyF8UCzgFQdqt3ipTCr7cYMOXG8QviB6YpIVaHXibvH0nnN8p50VJ0TwLiudIC+h9vVcwvzm5E4PljkxrNGbMmpGBonnVHhWIZs3QQaOJ3WokkRAvucHJKFzzo0JJVrDdv39/lJSU4LHHHsPWrVuxbds2t/2CIKBFixZ44okn0L9/f1kNjZTc3Fy8/vrr0W4G+RDI5Cy5+VrOE2cgE/wSgbcT/4KF1Xi5xLFMo3h5ssCrFXiMnmsFfPjfOvTJTcW4QvfRzXdX12Lm4/4PW94Ovg31wOMz68MaBMsNmuQINH8xXKPvzQNOXyPLTW/1yh2d9UXK6L8j3SK4gF4uuSOnoVj22qCvQtFsPUzmxgpEBr2Q9IE2EPu5wck+cTPUVc9CTVawDQBDhgzBp59+ik8++QTffPMNTv22zFWrVq1w6aWXYsSIEdDpOHmAQsfXyOXUv2lx8lc77r1bg/0H6mMmXyueWG3pOHcuDaNvTkHhGLVbDW1LDTBxchXeXZkBm03+KIK3EeCZj2vx9DMWtwoSgd4WFAv4ZheFPwiO5u3mQEqgRXL0Xeqt3lDlDVtqDDCbgYM/2ZBhMECnd6SWpKnqYDKpfI7+ywno5ZA7cqpWWzBrhnht/NkztFCrpaXHaDRmaJqk4JBDrJQXFAuqG+pTfzu2Re5OGgVGITRfDpKCEg8HpUQrtO886JhMCtTVCdi6rTEodNz61MrKvwSCr1kbr8QW1Wh+qx0Alr+tR6eO0vtB7LvnbzGCotnpqLYo4moxJMD/gi+h6DtfpCyMEq2FIPyNvtXWajFzTp3X0dniOel+f3/+FmY5VW7AqNGVXp+/elUmWreSd9wIRqi+n02PWQaDAhmG4I5ZwZwvEv14KXXRoXCda729/913ajBxcpXHxORYWtRFqniMU7Kysvw+RvbINlG4eTtBp6nqYDAACxZ6Bg2bt9hQ/IQF84ocM8SDub0mp2atv7bHIm/pD2I1tENxy9TfCHC1RY2c7OqQLobkb38o3itUt5ud352jx2zQanWSvztS8hejNfru71ZvIKOzoiN8DWk+F2aZO9sQknQLb+8v57cdqpHT5rXxIyUUx8tYF83cYF/paXa7+/G56T5O3IwNAQXbJ06cAAC0adMGKSkprn9L5Zw8SSSVv1vd/oKGqkotnv67BZs217hWnczLS0V6mgoGg+D1BOmvZq2USVTRmCQnh6++3FJqw7hCRyJrICd+XwFjpCccRSrnMhRBk9zvjr+gNpYne4mtXOoYnW0M2Lz1z+OPpqOszHv5O7MZaN1KfrpFOH7b8VJVQUwojpfxIlq5wVKPz81x4mZsCCjYHjp0KJRKJT766CN06dIFQ4cOhUIh7QSlUCiwd+/eoBpJyclqS8f8p2vR++JUjB2jdluWff7TtZj5eLrfoOH4CTs2bba5VrBrvuqktxOk/5q1vidRRXOSXLCk1NAO5MTvKyBRpdVDo/Fd9zfUE44ilXMpN2iKxHcn1id7+Rqd9dU/T8yvFh3hc3LmY0sJ6L0J598nHqoqiJF7vCT/pK5x0Fy0f8vkEFCw7VxBUfPbmq1cUZHCyWxOxS2jUkWXZR9fqEZdrdL/8sG/HWecK9g1PyF4O0HKrYoQKzVZA7nV7e+g3KlTiuSyfv4CkuFXp+HEL1av9bSDGT339xkjOXIoJ2iKxHcnViZ7BcNf/4wd4z2qazrBMth0i3D/fWK9qoKYcFaRIYdASt46xfpvOZkEFGwvXbrU57+JQskuKLB0eY3osuxKpTNgs/sM2JxlAHNzU72OdomdIOVURbDa0lFvU+C5Z/SukXjnxE2nUN/aax5wZmTUw2ZNDehWt78ArEULq+QROykB0YKF1Vi4wLGcY9O/XyhGz+fO0iEltd4jCI/kyGGwQVMkUjziOWXB79LqXnYX5Kug1/t/fX8Xb7GcghMtibD6ZKzzd3w+XW732Bbrv+Wmgp2jEi84QZJilr3B+7LsUgK2GY9pccutjqoD3m6xOTU/QQY7iUos+MsfqMLCBQa3ah6BTpLzNWrrbfGZT/4vsFvdzQMw9xx3xW+32yHpACjllqelBnhkmgnjCjWuetqdOqX8FtQHP3q+a5cNx45rsOgN7/W0Y3nkMFIpHvGasuDv87drp/T47TqrkWj91IuWkosdrRScWJ5sHapJp+SdvwtkVVo91qw2xNVv2Sne5jcFI2zBtslkwqFDh9C2bVu0asX7RxQ4i8Xuc7+/gE2hsKJvX8dIgNgttqaanyCDqVkrtZpHKCfJeXvPlq2UoiMggO9b3c4AzGxWQ6lQ4skFYrWu/R8Apd7ytNTA7fWXv61H61Z1rs/mK7jwNnru7GepKUOxJpIpHvGYsuCvfzIzrZg7WwuzGa58bL0efgNtqbnY0UjBifVgJFQ1vsk3fxfI8fZbBuJzflMwZAXbGzduxEcffYRx48bhoosucm1funQpFi5cCJvNBoVCgcLCQjz22GOyG0vJxWDwvd9bwPbW4gxXwOYcCSgrqw84P7jpJCpXeoaPSVT+ZotPul/6KLHUA5C39wx0JL+pNFUd9HqI1mGWvnS09FU+m3IG6VKCC2+j5/5ShqqqNGiZE7sH73hO8YgEKf2TpqqDNsCFWaTmYkf67xMvwYicSackXTxeIPsSK/Obwk1WsL1q1Sps2LABM2bMcG374Ycf8OSTTyIlJQV9+vTBTz/9hKVLlyIvLw/Dhg2T3WBKHsEGbE3zAxtHalNxw3VpeHKBJaATpHMSlZSTtr/UicpKARMfaDzx+BqZknoA8vaegY7kB/v+3qSp6jDz8QwUzat2G+kaVKDC3XdpMHGS5yij86JHanDh7TP4u9AwmQCFQheTt+Odmo5gWSwKaLVCXN0WDrdwpMAEkosdyRSceApGolXjm+SLVppSssyBkBVs7927Fz179nRbjv39998HAMyfPx833HADjh49iuuuuw7/+te/GGxTQHyNIDlXzGpOLD8wTVWH7CzHQSNcJ0irLd1vKTs0iw19jUxJPQB5CziDGckP5v29qa3V4qmnq5HbOxWFYx3pPWnpCuzdWw+lAq70nqZtcl70nKnQSQouvF2M+bvQSE9X4MZRjd+dWLod35RzBOvCrvG3olokhHqEL9Bc7EiNMCZLMELRE800pVgvQxoqsoLt06dPo3fv3m7bNm/ejIyMDFx33XUAgPPPPx8DBgzAwYMH5bwVJSlvI0hWqwJ9+jgm5Lgm8g1IRVqaAtUWAcoU8Vur4ThBOg9UvS+G1wDX20i8t5EpqQcgbwHn0mU1eLkkA0plcLe65R4Aq0wp+HKDDV9u8OyLJW/WYNW/M1HfYBe96JEaXHi7GDtdbvd5R0QQ3F8/1m7Hk3yWGgPMZuDgTzZkGAzQ6QGtxnc6Q6hysUM9QpgswQhFR7TTlOK5DGkgZAXbKSkpqKtr/COcO3cOBw4cwJVXXgmlUunanp2djW3btsl5K0piYgFymqoOxXO0MJm1SE0F5gc5kU+upgeqXbtsXiujjP2TGo9MEz/Zi41M+TsAqVQKWG3pXgPOvn1V6NBewLyi1KBG8uUeAH3V3bXUAKfPCOh6gfhS7IEEF2IXY3qdgM6dNbDb3f8O+QNVuPduDb7a6PmZYu12PAXPZM7wWLLdUY0kAwa990mSocjFDscIYTwFI7FcMYXERTtNKVnmqMgKttu3b4+dO3fCZrNBpVLh//7v/yAIAi677DK3x507dw4tWrSQ81YUAbW1WlSZUmAyCcjIUMCgb4iJJXa9HcDVaguUKel+J/LZG1LC9rmaHqi8VUZJTwNG/7HSrc52U2LBpbcDUP5AR+B+y61V6Nu38SReNLtxYlLjZwx+hrrcA6CcuruBBhdiF2Nt2hgwYnia6++Qlq7A6XI76moFLF4i/ofg7fjQiVbQZakxeATagHPZ8GrMnW3wOcItJxc7XCOE8RKMxHrFFBIXC2lKyTBHRVawfe211+K5555DYWEhLrnkEqxevRqpqaluudmCIGDPnj3o0qWL7MZS6DlPilVVCthsQOlWq2sBFsdokAEGffRmk/s7gPu7Kq+s1GLBQovIKFdoPlfzA1Xzyigvv2hA2bf1yM0NPH/aeQCqqtLg+HEBUDhysZ31ujdttmH+08C0R/QomlcjciKWd5JrHsQ3Vhfw/5py6u6GYrnzBQstMHZLRatWjXfYevRIwYQ7qwK66JEjWUf5ohl0mc3wuWy42Qxo/aw6G2yqWThHCGO9Jnq0UxEoeLGSppToc1RkBdvjxo3D+vXrsXv3buzevRtKpRJTp05FmzZtXI/ZsmULKioq8Mc//lF2Yym0/C3A4hgNsqB4jjYqI9y+DuB/fx54eIre70qNJ07YvYxyheZz+T0QKRz508GulJimqoNCkepWxaQpY7dUj0AbCM1JrvH7EXgQL7furtzlzj//ogaff+HeJ/ferQnqoicYyTrKF+2gK5rLhod7hDCWS75FOxWBghdPaUrxTFawrdVq8e9//xvbtm1DRUUFevbsic6dO7s9RqlU4tFHH8XQoUPlvBWFmNQFWDZvsaHKpIVaHbr3lTra5+0AnpMN3H+vFjPnWDxycpuv1Ni8AohTqD6XlPKEcldK9HUSD3QZeqlCETQFWqe8uVAvd+686Al20qhU0Q44oynaQVc0lw2PlRHCaIiFVIRYEI9LjsdLmlK8k72CpFKpxMCBA73uHzhwoM/9FB3+FmAZV6hu8tjQjAYFOtrn7QBeNEeP+U9bPEYot5TaoFQCb76RgfWf27D/QL3XWtxAaD6XrwNV00mRvlZK9MfXSVrO4jW+hCpoCqROeah46y/nRc+7KzNgs4Xvdny0A04g/mvmBjt/RK+Hz/Qlvd7/ewcrmUcIk/lCwyme72bFeppSIgjpcu2HDh3C2bNn0aJFC+Zoxzh/J8WmQVwoRoOCGe3zdoBu1SrFa17mps02jB2jRtm39Zj1uA6Ffz7ntU2hGuUSO1CpVArccmto8oN9ncQzMsNzkovnkSqDoR5DrlTB2C0VubmpsNYJrjSj/QfqoVbbkGEI3+34aPdduE/6vgL5UARdJrMBc4uDm2eh1Zgwa4bnYkqO5+v8LtkuRzKPECbzhQaQGHezYjlNKREo/T/EN6vVimeffRYDBw7ENddcgzFjxuC1115z7V+zZg1GjhyJffv2yX0rCiF/Jz3nwiD+JrNJ5Rjt8x4gm0ye133OA3hz1dX+LxQ2b7Gh+MlqTJ6kE31MqD6Xk+NAVY1OHS3Iya6GWm1D376ebQcCP/k4TuJqj74YVKDC+e0Von0UzPs0FaqRKkuNAafKDfhmuw3l5QZYagxBtScQaao6TH1Yi91l9Zg42YQpD5tx/2QTyr6tx9SHtWE/6UVzlM/3Sb8WVlu6rNe3WHSYMaseN44yYex4M24cZcKMWfWwWBy/M2+/WUDa97G2VusRaAON8yxqa7V+22jQV2HubC1Wr8rEW4szsHpVJubO1vos+xcqjgvvVKxZbcDyt/VYs9qAeUWpMT+yKZevY5TjQiO2A025gjm/UXKRFWzX1tZi3LhxWLRoEVQqFX73u995LBiRn5+P77//HmvXrpXVUAotXydFZ65x42Q2+ZMjpYz2NeftAO5vRNp5obBpsw19clNRkO/+/FB+Lq9taNZ2rcYxQe+NRQbc/xcNTKbUgAIf7ydxc1hOcnKDJsBR73jWHAtGja7En++owsjRlZg91wKTOSOoNklltaWj+AnxgK34CYvsgNOfUPRdsMJ50pcSyMsNuqpM3u9aOeZZ+Fml9TdajQmtW5lwaX8VWrcy+V3QJpSaX3gneqDplKwXGkBw5zdKLrIut15//XXs3r0bt9xyC2bOnIn09HT06NHD7TFt2rTBhRdeiE2bNuGhhx6S1VgKHV+3PB+dpkV9PTD65hTJk9n8CXa0TyxFQ6sRvOZlNl+p0WJpQPGcdJHydfI/l7+8WGfbzWY1lAolnpS58I6323zhyLdTKIC77xRfGObuuzRQKMQDIie59Y4BoKZGD5NZ4cjbNSig1wvQaMx+2x7tnOlophOEM4VFar/KqyQTvWoiJF+ypiIwZ538kRVsf/zxx2jXrh3mzJmD1FTvL9WlSxfs2LFDzltRGHg/KYZ+FEhOTp/YAVysrFz+QBXGjXVfqVGvV0CtroZajZCepKXmxaap6qDXw+/CO3JHv7yd5IKdKFdVlYqJk6vcKqikpStQVlaPiZOq8K/lBp8Bq9x6x8GuAuh47+jnm0drwlE4T/qB9GuwQVc0q4kQBSvZc9bJP1nB9rFjx3DllVf6DLQBQKVSobKyUs5bUZhEaiQi1KN9zrJyJrMWJ07YPRZ8cb52OA5ygU6GidZIq5yJcmaz4FFBpfl+X98ZOSOUNTV6n6PiRbP1Pke4Y2WUKRqjfOE86UeiX+UshkQULck8OZakkRVsq9VqSUH0sWPHkJmZKeetKAGEerTPWVZOp/W2+Ir8g5yzBNnBn2zIyDDAoG9AtUURUPAsZUTQYPA/Ah3IKLXc2fFyAys5I5Qms8LnqLjJrIXGx6h4Mo8yhfOkH4l+lbsYElG0JMOS4xQ8WcF2jx498N1336GiogLZ2eLDN0ePHsXevXtx2WWXyXkrShDhGO0L1y17byXI7v+L7/Wem4/6+gtMddoUzJhV53MEOtBRarmj6XIDKzn1juXm7aap6jDzcfHybzMf1yFNFf6qFNEUrt9DIIG8nDrfTRdDCvU8C6JwSvQlxyl4sqqR3HrrraiursZDDz2EiooKj/1VVVV47LHHUF9fj9tuu03OW1ESs9rScaZCh8NHtDhToROtJhHqCgC+SpBZrb6DwebBtb/qFLvLvOVzOyo8BFPOTe7seH9VJRQK+PybOOod60QrwTjqHXsPnOTm7dbWavHU09XI7Z2Kl0sMeO4ZPV4uMSC3dyoWLKyWVD4uFKR8b8MlXBUxpFSc8FceUAq12oLWrUzoeoEZrVuZwlo5iIgo3GSNbF9//fX4/PPP8dFHH2HYsGG45JJLAAA7duzAfffdh23btsFsNuOmm27CkCFDQtJgSlzNR8MyMuphs6ZGZVUuXyXItm4LbNTX14jgjMe0uOVW8VQs5wi0478DG6UORX6ttxHShnrg8Zn1fv8mjnrHBpjNcI1Q6vXwu7CIQe+92kxBvgoGve8LhSpTCr7cYMOXG8T/fg9M0kKtFt0VMvG8mpw/vu5OJcLiHkREoSZ7UZtnnnkGDz/8MNLT0/H1118DAA4fPozPP/8cCoUCU6ZMwfz582U3lBKb2GjYhg3KsC7Q4YuvVIaly2rw6DRtQLWEvY0IVlY2eF1lEnCMQAczSh2qWs/NR0gBYHaR9L9JMPWONRqzz1Fxf+X/pKShhFO4F5aJZVzcg4jIk+wjn0KhwF133YUJEyZgz549OH78OARBQJs2bdC7d2+kpaWFop2UwLwFJy1bKf2cuAOv4iE1l9RXqoKlBqivB+YVpQaUFys2IqjV+r61LmUEWuwx4ZooF6nKKgZ9FYpm62EyN+btGvQCNBKW2452+bho1/mOplgou0hEFGtCNsyQkpKC3Nxc5Obmeuw7c+YMlixZgocffjhUb0cJxFtwYq0L7Yk7kFv7/kqQGfQNIZnsKXUiYjCTFcMxUa55MKXVAOMKNcjNTYW1TkB9vcK1kqBcGo0ZGk3g9dGjXT4umQPOWCm7SEQUS2Snkfjyyy+/oLi4GFdddRXeeOONcL4VxTFvwYlz2XVvAjlxB3pr31GCTBv2pd6lLG8tdwlsF0GB2loVjh6TPmGv+SS/rCylazEarQZYuMCA3WX1mDjZhCkPm3HzrVVuk+FqavQ4VW7AN9ttKC83oKbGRxmSEInU386bZA44o7lUPZFU0Zy8TMkp4JFtu92Ojz76CBs3bsSZM2eQk5ODwYMH45prroFS6Yjdf/nlF7z00ktYs2YNGhoco0hXX311aFtOCcNb8FFWVo/8gSrRiYqBnrj93do/d06LFi3gFrg2LUHmmrQZhhJkUkagmz9Gp1MiLQ04U2FHTa1ONB1GbCTfucrmnXeb0Lev7wl73u4EvFyS4VpdcunyWo+/j3My3OwZBswu8iydKGUVSLmiWT6Odb65uAfFrkSevEyxSyEIguTZQvX19bjnnnuwefNmNH2aQqHAsGHDUFJSgvfffx9FRUWora2FIAgYNmwYJk2ahB49eoTlA8SKeKipmZUVm7U/rbZ00eXMtRrg5ZIMLHqjRvTEHciB8fARLcaO9z6x7rln9Fj1Xp3X142lvms8WXjvE299CjgC7j65qXh1UQ0GFagwryhVdAEdb88fVKDC8KvT0LKVEhMnew9e33jNgDvv8dxfkK9C0WyN34mO8UzK30iqWPruSSWnznYoxWPfxYpE7Dt/xzWxY2EwErHvIiUe+y4rK8vvYwIa2V6+fDk2bdqE9PR0jBw5Et26dUN1dTU2bNiATz/9FLNmzcKqVasgCAIuu+wyPPzww+jZs2fQH4CSg7fRsL59VejQXgh4IqIYf7fu09IVcVGeTGppNV8j+VtKbRhXqHY9T2zCnr87AVMf1sDkZ5C4qkr8Ol7KKpDxLlwLy8SLaCxV35Qz2D96zAatVvzODyWfZJ68TNEVULD98ccfIyUlBUuXLnWbCHnPPfdg9uzZWLFiBRQKBaZOnYo77rgj5I2l0IuVESh/wUk4JyLmD1ShrMxxaz/WD7hSTxb+Juk1nXwqNmHP3/Orq+3IyPB/AeONv1UgE0G0A85kxTQB8iaZJy9TdAU0QfLgwYO45JJLRCuO3HXXXQCACy64gIF2nAjFSm+hFK5V75yvLTbJ0JnDvHRZ44m56QHZOZGm7Ftb1CfSWG3pqKryHeA6267T+f5pNw2ExUb9pUzy8zcZznkBIybc5fcAToJKRslc45z8S+bJyxRdAQXb1dXVaN++vei+Dh06AEDC52YnimQ8KTkXllm9KtO1hHef3FQ8Ms3ktrCM84Db9GLkT4VVUb0Ycbalys+CLM62p6U5LiTENB3J9zZhT0pVCV9VUmY9rsUP+8WDbSmrQMoVaxeSFBlcVId8YbUcipaAgm1BEFwVR5pTKJwneS5iEw+S9aSUpqpDixZWrHqvDhMnm/Dqohq3QNt5wI2li5GmbXFWaGlKqwHuvVuDNxYZYDIBZyp0qLcBt49Tezy26Ui+r9KBvgLpubPUsNtTcKrcgF9PKfD4o1p88F6G28qYer0J0x4JfhVIOWLpb0eRFcxqq5Q8QlZGlShAiRlRkV+xkLsWrXxxKeXJzlToYmIijdWWjnPn0lxtWbqsBgsXGAA4Jjo6a10vXV6LVxe556gWjlHj0v6pGFeohs0qoGVLJVQq4Ndf7Vj2diZatLD6nLAnlkefkVGPulol5swRK+mnhUHfOGtSziqQcnASVPJimgD5k+yTlyk6Ag62P/jgA3zwwQei+xQKhdf9CoUCe/fuDfTtKEyifVKK9iQmfwfcWLgYcfbR6JtTGrfVAI9MM2FcoQbjCtXIbqFAySs1orWuBQHI7Z3qUZ4vkBJXzSf51dZqMafY4vF+m7fYUDTPguI57ovGOFeB7G6MXDmnWPjbRVttrRZVphSYTAIyMhQw6BvCvphPLEjmGuckHScvU6QFHGwHUJY7JM+j8IjmSUlq+bpw83XAjfbFSNM+GjtG7bbPUgPXKPY/XjJ4TQfavMWGv05uXEo9PV2B8nI7BhUogx7FqTKliC4y5Hy/KpMWarXo7oiJ9t8u2kxmA+YWi915MLjdeUhEXFSHiGJRQMH2999/H652RFVJSQleeuklr/vXr1/vmgCaKKJ5UoqH2/zRHiEzmVKxa1cN7r1bg8wMBV5+0QCFAthdVo+lyxrzzP1NkThzRsDEBxoDrEEFKhTkBx8Nm/xM0IyFkn7R/ttFi9WWjtqaNMybL/3OQyJqetfKYlFAqxWYJkBEUcWc7SZGjhwpWm0lIyMjCq0Jv2jlrsXDbf5oj5BZLIJoLnb+QBUWLjDgkWmO5dazsvzMcW42iBvo3YPmefX+ams3L+kXjcVFov23iwZnytHYMd4nPsfKnYdIcN61urBr/K1GR0SJh8F2EyNHjsTAgQOj3YyIikbuWrzc5o/mCFlmphIvlHjmYm8ptUGpBFb9OxMarRVVJgH5A1WiqR35A1WAIODlEoMrjcQ5Mi7l7oFYXv3cWTqvo8YF+SpkGBp8Pj+QvHw5ecfJNAmqacrR6Jt9V1qJhTsPRETJhsF2ghKr9BEr4uk2v9QRslBXVrFa4TU3etNmG2z1AjJVdVAqUjFurGOosunjBxWoMO1hLZ59wYIvNzRud46MWyy+7x54y6tfsLAaL5dkuNrhVJCvwuwZWqjVJp/PlzqyHoq842SZBNU0LcvXqp1AZBYTIiIidwy2m9i2bRt2794NpVKJzp07o6CgADpd/C2C4W1EsXhOA9JjoMRwot3mD0dllepqu9/9LXMAvb4e766uR59cR4k/a52AtHQFOnZQ4pnn3ANtoDEgnzVD4/P1veXVW2qAiZOr8O6KTNTWwVXSL8PQ4Aq0fT0f8J+XX1ur9Qi0geTKOw5E07QsZx12sQu15nceiIgoMhhsN1FSUuL274yMDDz++OO46aabotOgIPgaUZw1txrFcyNT6cOfeLnN70xlOPiTDRkZBo9UhnBVVpGaapOmqsOjUx3BftPc7n8vz/AItJ22lNpgtfoOtn3l1VtqgLPnGtCpo8VrSoKcvPx4qHgSS5p+V5rXYXdqfueBiIgih8E2HEvMP/nkk8jLy0Pr1q1RXl6OL774Ai+++CKmT58Og8GAq666yudrZGZmel1dM5J+/rnB64ji15tssFTr0KaLNsKt8q5N66b/SgMQ+rZVVtpRUSHAZLbDYFAiO0uBzEz/f6ujxxowp6jaM2iZmYHzOzhqX/vq702bg+9vpdKOywap8PUmz6DzskEqtGqZiszMLABAVhbwzILUxs+oV+Jcpb+RcaDbhVle958753sENDMjFVlZ4Xn+wZ/EA20ns1lAd6P393YK9u8ei3z1ddPvSvM67BCAdu2UaJGpQOvWKQD891ui8dV35Bv7Lnjsu+AlYt8lTLD91FNPwWq1Sn78+PHj0blzZwDA1Vdf7bavQ4cOKCwsRNeuXTFhwgQ8//zzfoPtysrKgNscDpVVvgO7yqp6nD0b3hX8YkljiodnuoqvFI/aWi3mFNWJpjLMLa5G8Zx0qNWWsPb37BniqTazZ6hht1eieQp5ixaO/wGA1Wbw+doajcJnDrpWl44hV6pg7JbqVqd7d1k99h+oh1ZXh7NnvY/Ya3XpPvPyfT3fYPDddr3ed9uB4P/usSgry39FjabfFWcd9sbP6xjNTsaiHFL6jsSx74LHvgtePPadlIuDhAm2V6xYAYtFeh7n8OHDXcG2NwUFBejYsSP2798Ps9kMvV4vs5XhFy+VPiJBToqH1FSGcPa3QgEMvzoNY8c05mKfLrdDIeEllSm+q5QoU3yneaSp6jD1YcckxabpKc5l2dNUvtMR5OTlZxgaUJCvwuYtweUdx8qiSZEUL2lZRETJKGGC7Z07d4bldbOysnD48GHU1NTERbDtq9LHZYNiq9JHuMmZpCd18ZZwVVax2tIxu8gzYHS+rr+AUakQRKuU5A9UYdxYNZQK35/PaktH8RPikxSLn7BICliDLZ2oVlswa4YBRfMsbgG31LzjeFg0KRySpfoKEVG8SZhgOxwsFgsOHDgArVYbNzlEvkYUi2brkKZKnhQSOZP0/JVIc+4PV2WVQAPG5jWp9ToBH/63xqNKSVlZPd5dXYuZj/v+6YcqYA12cRGD3oTiOVpUmbReK554Ew+LJhERUfJI+mDbbDajvLwcXbp0cdteW1uLmTNnorq6GqNGjUJqavx0lbdbym1apyRF3qaz5rXdrsArJQaPJc6dfKV4BJLKEI5b+GazAK0GGFeo8ciZXrqsxi1g9F6TWoenn6l2SwORehEQCwGrWm2BWo2AF2FhKhUREcWS+Ikgw+TcuXO45ppr0Lt3b3Tt2hUtW7bEmTNnsGnTJpw8eRJGoxFTp06NdjMDJn5LOXaqkISLWM3rpkucOwNufykegaYyhPoWvsGg8Llcu3MOoe+a1NUomq3Bgw8EfhEQqoDVX+nEcIinRZOIiCjxJX2w3aJFC4wZMwZlZWX48ssvUVVVhfT0dHTt2hXjxo1DYWEh1CzqGxe8TYxzBqJ3TNDAZgPy8lKRnqb4LT0BXnOPm6YyOINVqakMcmk1ApYu96yGsqXUBoUCKJ7jWJ3I30ROk1mL1q3MAV8EhCJgDcUqkMFItEWTiIgovikEQfB9v5gkiWSpmub5uVJHC+OxpE4gzlTocOMo8SBOqwFWrcjEE/MtQZWDi3Tf+fosALBmtQE52dU4+JMef77Dex7+W4sz0PUCc1BtkFM+r7ZWixmzPS8WAEfA7SydGE7OdCL3Uf34mxiZ6L/bcGLfBY99Fzz2XfDise+SqvRfsojWaGE88JVnPK5Q4xFoA7FbDk5qzrS/iZwZGQqcqdAFFXDKyUWPhVUgWZ2DiIhiQXwup5akfOfnWlBbG3hOttWWjjMVOhw+osWZCh2stvRQNTfifOUR5+amiqZEAM7qGrF13Sk1Z9o5kVPMoAIVysrqceMoE8aON+PGUSbMmFUPi0UnuR2OgLUanTpakJNdLTlQl1I6kYiIKBkw2I4j/kcLUwJ6PYtFhxmz5AVjscSZZyzKT2znbyQ50nx9lqY5046JnFqPgHtQgQp336XBgoXuo9COkfzasF9USS2dSERElOgYbMeRUI4W+l5lL/zBWDg4JsapPYLUQQUqtG/n+6sea+XgfH0WxyS/xhFmx0TOdKxelYm3Fmdg9apMzHhUi4mTqjzKHQKRGcn3NeIuZRVIIiKiRBFb987Jp1COFibqKnve8owBa9yVgwskZ7p5TerDR7SigbZTuOtky10FkoiIKFEw2I4jgSy04k8sLFoil7dqE94mxsVjObhgJ/nFwsIu0SydSEREFCsYbMeRUI4WxkIwJofY4jWOwFnntSxdOFZ6DLdgy9fFysIuzhH37sb4K+dEREQUCgy240zT0ULHoizBjRbGSjAWDN/55r7L+MVTObhALiia117PMDRgzszUuBvJJyIiSjQMtuNQ8/zcYMTzKnuJmm/eVCAXFN5qr8+eqcW8otS4GsknIiJKNAy2k1g8plUA0c03j9SqhFIvKHzVXp9bbEHxnHTkZFdHbSTf2V9Hj9mg1eridhVHIiKiYDHYTnLxlFbhFK1882DyxIMl9YIiFlZq9CaS/UVERBSrWGeb4o7UBV9CqbLSHtG65FIvKGJ1pcZErONOREQUDAbbFHcCWfAlVCoqhIgu9y71giJWV2p0pMFErr+IiIhiFc94FJcinW9uMtt97g91nrjUCayhrL0eSolQx52IiCgUGGxT3IpkvrlBH/nl3qVcUMTqSo3xXsediIgoVBhsE0mQna2ISl1yKRcUoaq9HkrxXMediIgolJizTSRBZqYy4nnigVCrLWjdyoSuF5jRupUJarUlqu2JRl49ERFRLOLINpFE8VqXPFqa9pfFooBWK7C/iIgo6TDYJgpAPNYljyZnf13YNQtnz56NdnOIiIgijmkkRERERERhwmCbiIiIiChMmEZCYWe1pcNkSm2W58wJckRERJT4GGxTWFksut+W7a5xbXNUpNBBq+VEOX94oUJERBTfGGxT2Fht6b8F2u61ljdttmFOMTCvKJ2Bow+8UCEiIop/zNmmsDGZUkUXNQEcAbfJxGs9b3xfqNTCakuPUsuIiIgoEAy2KWzMZkHW/mTGCxUiIqLEwGCbwkavV8jan8x4oUJERJQYGGxT2BgM9R7LdTsNKlDBYKiPcIviBy9UiIiIEgODbQqbNFUd5sxUewTcjkl+6qhPjrTa0nGmQofDR7Q4U6GLqTxoXqgQERElBiZ+UlhptdWYV5QOk0ndrHxddKtpxHqlD8eFig5ziuGWu914oRL9NhIREZF/DLYp7NJUdcjJrkNOdrRb4hAvJQlj9UKFiIiIpGOwTUnHUemjRnSfo9KHGjnZ0Q+2gdi7UCEiIqLAMGebkg4rfRAREVGkMNimpMNKH0RERBQpDLYp6bDSBxEREUUKg21KOrFekpCIiIgSBydIUlJipQ8iIiKKBAbblLRY6YOIiIjCjWkkRERERERhwmCbiIiIiChMmEZCSctqS4fJlNosZ5uTI4mIiCh0GGxTUrJYdL8t2d64kqSjGokOWi0nSRIREVFoMI2Eko7Vlv5boG1z275psw1zimthtaVHqWVERESUaBhsU9IxmVI9Am2nTZttMJl4w4eIiIhCIyGjin379mHt2rXYs2cP9uzZg7NnzyIvLw9Lly71+bwPP/wQb7/9Nn788UeoVCr069cPDzzwAHr16hWhllMkmM2C3/0sB0hEREShkJAj259++ileffVVlJaWolWrVpKe849//AOPPPIIKioq8Mc//hEjRozAtm3b8Mc//hHbt28Pc4spkvR6haz9RERERFIl5Mj2iBEjMHToUBiNRpw7dw6XX365z8cfOnQIL730Ejp37ox3330XBoMBADBmzBjceuutmDlzJv773/9CqUzIa5OkYzDUY1CBSjSVZFCBCgZDfRRaRURERIkoIaPHbt26oVevXlCpVJIev3r1atTX1+O+++5zBdoA0LNnT1x//fU4ePAgR7cTSJqqDnNmqjGowP374ahGog6q/J/Vlo4zFTocPqLFmQodJ1kSERERgAQd2Q7U1q1bAQCXXXaZx77LL78cq1evxtatWzFgwIBIN43CRKutxryidJhM6mZ1tgMv+8cygkRERORNQo5sB+rQoUPQarWi+d2dOnUCABw+fDjSzaIwS1PVISe7Gp06WpCTXR30iDbLCBIREZE3HNkGYDabkZ0tXn5Cr9cDAEwmk8/XyMzMjIuc7qysrIi/Z2WlHRUVAkxmOwwGJbKzFMjMjP2+ak6s737+ucFtRLupTZttsFTr0KaLNtxNiwvR+O4lCvZd8Nh3wWPfBY99F7xE7LuYDbafeuopWK1WyY8fP348OnfuHL4G+VFZWRm195YqKysLZ8+ejeh7NqZYNI78OnOj4ynFwlvfVVb5DqQrq+px9mxVuJoVN6Lx3UsU7Lvgse+Cx74LHvsuePHYd1IuDmI22F6xYgUsFovkxw8fPjzoYFuv13sduTabzQDgNnGSpPGdYgHMK0oPKnUjlrCMIBEREfkSs8H2zp07I/ZenTt3xs6dO1FeXu6Rt+3M1XbmbpN0jpUavadYmExq5GTHd7DNMoJERETkS/wlzoaBs8rI119/7bFv48aNAIC8vLyItikRSFmpMd6Fo4wgERERJY6YHdmOpFGjRmHx4sX4xz/+gauuusqVMrJv3z7897//RdeuXdG/f/8otzL+JEuKRSjLCBIREVFiSchg++DBg1i0aBEAoLa2FgDw008/Yfr06a7HPPXUU67/7tKlCyZNmoTnn38eN954I37/+9+juroaH330EQCguLg4LiqNxJpkSrFwlBGsQ454URsiIiJKUgpBEOL/Xn4zpaWlGD9+vM/H/PDDDx7bPvzwQ7z11lv48ccfoVKp0K9fP/z1r39Fr169/L5nPMyeZTWS4MXjDOlYwv4LHvsueOy74LHvgse+C1489p2UaiQJGWxHQzx8OaL1Jbba0mEypTZLsYivXOZ4PADEEvZf8Nh3wWPfBY99Fzz2XfDise/iuvQfJQ6mWBAREVGyYiIyEREREVGYMNgmIiIiIgoTBttERERERGHCYJuIiIiIKEwYbBMRERERhQmDbSIiIiKiMGGwTUREREQUJgy2iYiIiIjChME2EREREVGYMNgmIiIiIgoTBttERERERGHCYJuIiIiIKEwYbBMRERERhQmDbSIiIiKiMGGwTUREREQUJqnRbgDFJqstHSZTKsxmAXq9AgZDPdJUddFuFhEREVFcYbBNHiwWHeYU12LT5hrXtkEFKsyZqYNWWx3FlhERERHFF6aRkBurLf23QNvmtn3TZhvmFNfCakuPUsuIiIiI4g+DbXJjMqV6BNpOmzbbYDLxZggRERGRVAy2yY3ZLMjaT0RERESNGGyTG71eIWs/ERERETVisE1uDIZ6DCpQie4bVKCCwVAf4RYRERERxS8G2+QmTVWHOTPVHgG3oxqJmuX/iIiIiALA2W7kQautxryidJhM6mZ1tln2j4iIiCgQDLZJVJqqDjnZdcjJjnZLiIiIiOIX00iIiIiIiMKEwTYRERERUZgw2CYiIiIiChMG20REREREYcJgm4iIiIgoTBhsExERERGFCYNtIiIiIqIwYbBNRERERBQmDLaJiIiIiMKEwTYRERERUZgw2CYiIiIiChMG20REREREYcJgm4iIiIgoTBhsExERERGFCYNtIiIiIqIwYbBNRERERBQmDLaJiIiIiMKEwTYRERERUZikRrsB4bBv3z6sXbsWe/bswZ49e3D27Fnk5eVh6dKloo8/duwYrrrqKq+vN2nSJEyePDlczSUiIiKiBJWQwfann36KV199FSqVCl26dMHZs2clPa9Hjx4YNmyYx/a8vLxQN5GIiIiIkkBCBtsjRozA0KFDYTQace7cOVx++eWSntezZ0+OYBMRERFRyCRksN2tW7doN4GIiIiIKDGD7WCdOnUKy5cvh8lkQk5ODgYOHIiOHTtGu1lEREREFKcYbDfx9ddf4+uvv3b9W6FQ4IYbbsDcuXOh1Wp9PjczMxNKZewXd8nKyop2E+IW+04e9l/w2HfBY98Fj30XPPZd8BKx7xhsA9BoNLj//vsxbNgwdOzYEXa7HXv37sVzzz2HDz/8ELW1tSgpKfH5GpWVlRFqbfCysrIkTxYld+w7edh/wWPfBY99Fzz2XfDYd8GLx76TcnEQs8H2U089BavVKvnx48ePR+fOnYN6r5ycHPz1r39121ZQUIC+ffti5MiRWLduHfbs2YNevXoF9foUm2prtagypcBkEpCRoYBB3wC12hLtZhEREVECidlge8WKFbBYpAc+w4cPDzrY9kaj0eDGG2/E888/jx07djDYTiAmswFziy3YUmpzbSvIV2HWDAMMelMUW0ZERESJJGaD7Z07d0a7CQAabw/U1NREuSUUKrW1Wo9AGwA2b7GhaJ4FxXO0HOEmIiKikIj9GX1Rtnv3bgBA+/bto9wSCpUqU4pHoO20eYsNVaaUCLeIiIiIEhWDbQB79+6FIAge29etW4cPPvgAmZmZGDx4cBRaRuFgMnn+rQPZT0RERCRVzKaRyHHw4EEsWrQIAFBbWwsA+OmnnzB9+nTXY5566inXf8+fPx9HjhxB37590bZtWzQ0NGDv3r3Yvn070tLSMH/+fBgMhsh+CAobg0Ehaz8RERGRVAkZbJ8+fRrvv/++z21Ng+0//OEP+OSTT7B792588cUXsNvtaNOmDUaPHo0JEyaga9euEWs7hV+GoQEF+Sps3uKZSlKQr0KGoSEKrSIiIqJEpBDE8icoYPFQFzIe61eGi8lsQNE8i1vAXZCvwuwZWuhFqpGw7+Rh/wWPfRc89l3w2HfBY98FLx77Lq7rbBOFk0FvQvEcLapMWphMAgwGBTIMDVCrWfaPiIiIQofBNiUttdoCtRpo3SraLSEiIqJExWokRERERERhwmCbiIiIiChMGGwTEREREYUJg20iIiIiojBhsE1EREREFCYMtomIiIiIwoTBNhERERFRmDDYJiIiIiIKEwbbRERERERhwmCbiIiIiChMGGwTEREREYUJg20iIiIiojBhsE1EREREFCYKQRCEaDeCiIiIiCgRcWSbiIiIiChMGGwTEREREYUJg20iIiIiojBhsE1EREREFCYMtomIiIiIwiQ12g2g0Bg6dCiOHz8uui8vLw9Lly5122a1WvHaa6/hww8/xC+//ILMzEwMGTIEDz74IHJyciLR5JiwevVqPProoz4fk5+fj7feegsAUFJSgpdeesnrY9evX48OHTqEtI3RtmbNGmzfvh3fffcd9u/fD5vNhvnz52PUqFGijzebzSgpKcG6detQXl6O1q1bY/jw4Zg0aRJ0Op3H4+12O5YvX46VK1fi8OHD0Gq1GDRoEKZMmYLzzz8/3B8vrKT2nc1mw2effYbPPvsMZWVlOHnyJADgwgsvxMiRI3HbbbchJSXF7TnHjh3DVVdd5fW9J02ahMmTJ4f+Q0VIIN+7YH+XX331FV599VXs2bMHCoUCvXr1wv3334+CgoKQfpZIC6Tvunfv7vf1vvjiC5x33nkAEv979+uvv2Lt2rXYsGEDfvrpJ5w+fRqZmZno168f7rrrLvTp08fjOTzmOQTSd8l2zGOwnUAMBgP+/Oc/e2xv376927/tdjvuu+8+bNy4EX379sXvf/97HD58GKtWrcLmzZuxcuVKZGdnR6rZUdWzZ09MmjRJdN8nn3yCAwcO4PLLL/fYN3LkSI9+BYCMjIyQtzHaXnjhBRw/fhxZWVlo3bq114s6ALBYLCgsLMS+fftw+eWX47rrrsO+ffuwePFibNu2DcuXL0d6errbc2bNmoVVq1ahW7duGDduHE6dOoW1a9fi66+/xooVK9C5c+cwf8Lwkdp3R44cwQMPPACtVouCggIMHToUJpMJn3/+OebOnYsNGzbgH//4BxQKhcdze/TogWHDhnlsz8vLC/nniaRAvndOgfwu16xZg6lTpyI7O9sVhH788ceYMGECnn/+eYwYMUL+h4iSQPrO2/Hv8OHD+M9//oMLL7zQFWg3lajfu6VLl2LRokXo2LEjLrvsMmRnZ+Pw4cP49NNP8emnn+Lvf/87rr32WtfjecxrFEjfJd0xT6CEMGTIEGHIkCGSHvvuu+8KRqNReOihhwS73e7a/s477whGo1GYOXNmuJoZN+rq6oS8vDzhoosuEsrLy13bX3zxRcFoNApbtmyJYusi6+uvvxaOHTsmCIIgvPrqq4LRaBTee+890ce+8MILgtFoFBYuXOi2feHChYLRaBT++c9/um3fvHmzYDQahbFjxwp1dXWu7V988YVgNBqFO+64I8SfJrKk9t3JkyeFZcuWCdXV1W7bq6urhVGjRglGo1H4+OOP3fYdPXpUMBqNwrRp08L3AaIokO9doL/Lc+fOCZdeeqkwcOBA4ZdffnFt/+WXX4SBAwcKAwcOFEwmk/wPESWB9J03RUVFgtFoFBYvXuy2PdG/d5988olQWlrqsX3btm1Cr169hAEDBrgdq3jMaxRI3yXbMY8520lo1apVAICHHnrI7arxj3/8I84//3z85z//QW1tbbSaFxM+/fRTnDt3DldeeSVatmwZ7eZE1aBBg0RHC5sTBAGrVq2CVqvF/fff77bv/vvvh1ardX33nJz//utf/4q0tDTX9t/97nfIy8vDxo0bceLEiRB8iuiQ2ndt2rTB2LFjodVq3bZrtVpMmDABALBt27awtDFWSe27YPzvf/9DVVUVCgsL0bZtW9f2tm3borCwEGfPnsWnn34alveOBLl9V1dXh//85z9QqVS48cYbQ9iy2Pf73/9edIT00ksvxcCBA1FZWYkffvgBAI95zQXSd8l2zGOwnUCsVitWr16Nf/7zn1i2bBl2797t8Zi6ujrs3r0bXbp08TgYKxQKDBo0CBaLBd99912kmh2T3n33XQDA6NGjRfdv27YNr732Gl5//XV8+umnqK6ujmTzYtKhQ4dw6tQp9OvXT/QA2q9fPxw9ehS//PKLa3tpaalrX3NXXHEFAGDr1q3hbXiMS011ZPs1z190OnXqFJYvX45//vOfWLVqFY4cORLJ5sUUqb9L53dKLEXMuS2Zv3fr1q1DZWUlhg4d6jWlMBm/d87fovP/ecyTrnnfSXlsIh3zmLOdQMrLyz0m+/Xu3RvPPvssOnbsCMCRJ2W3273mhDm3Hzp0CJdeemk4mxuzjh8/js2bN6Nt27aug19zJSUlbv/OyMjA448/jptuuikCLYxNhw8fBgCf362NGzfi0KFDOO+882CxWFBeXg6j0Sh6UO3UqZPb6yar9957D4B4YAgAX3/9Nb7++mvXvxUKBW644QbMnTvXIwBIdFJ/l4cOHQLQ+B1rit87/4MNQPJ9706cOIFNmzahVatWMBqNAHjMk0qs73xJxGMeg+0EMWrUKPTv3x9GoxFarRaHDh3CkiVLsGbNGtx+++348MMPodfrYTKZAAB6vV70dZzbzWZzxNoea1avXg273Y6RI0d6HBB79OiBJ598Enl5eWjdujXKy8vxxRdf4MUXX8T06dNhMBh8zpZOZIF+t6Q+3vm4ZLRixQps2LAB+fn5+N3vfue2T6PR4P7778ewYcPQsWNH2O127N27F8899xw+/PBD1NbWegSfiSrQ36XzO2gwGDxeK9m/d0ePHkVpaSnatWuHyy67zGN/Mn7vbDYbpk6dCqvViocffth1XuAxzz9vfedNoh7zGGwniOYzynv27Imnn34agGPW/apVq1x5UOSd3W7H6tWroVAocPPNN3vsv/rqq93+3aFDBxQWFqJr166uKgbJGmxTaH3++ecoLi5G+/btsXDhQo/9OTk5+Otf/+q2raCgAH379sXIkSOxbt067NmzB7169YpUk6OGv8vQee+99yAIAkaNGgWl0jPTNNm+d3a7HdOnT8e2bdtw6623JvXdy0AF2neJfMxjznaCu+222wAAO3bsANA4kuNt5Nq53duVd6LbtGkTTpw4gfz8/IDqnRYUFKBjx47Yv39/0t4VCPS7JfXxYqOPie7LL7/EAw88gJycHLz11lto3bq15OdqNBrXpDbn7z5Zeftd+hpBTObvnd1ux/vvvw+lUik62OBLIn7v7HY7HnvsMfz3v//FH/7wB8ydO9dtP4953vnru+YS/ZjHYDvBZWVlAXDUAgWA888/H0ql0pWz2Jxze7zW+ZTLOVPcV66iN86+rqmpCWmb4oUz31Dqd0ur1aJVq1Y4duwYGhoaPB7vzFsUy6tNZF988QUmTZqErKwsvP3220EtcpHs38WmxPrC+R0Uy41N1u8d4Fjk5+TJkxg0aBDatWsX8PMT6Xtnt9vx6KOP4v3338f111+Pp556ymOkn8c8cVL6rqlkOOYx2E5wZWVlABoXtlGr1cjNzcXPP//ssdCBIAjYtGkTtFotLr744oi3NdrOnj2L9evXo0WLFh63pf2xWCw4cOAAtFqt60efbDp37ozWrVtjx44dros7J4vFgh07dqBDhw5uC2Tk5eW59jX31VdfAQAGDBgQ3obHkC+++AKTJ09GZmYm3n777aBPus5KROEqnRcvvP0und+pjRs3ejzHuS2mF8gIEykTI31JlO+dM1j84IMPcO211+Lpp58WzTXmMc+T1L5zSpZjHoPtBHDw4EHRq7mDBw/imWeeAQDccMMNru233norAODZZ5+FIAiu7f/+979x9OhR3HDDDVCr1WFudexZs2YNbDYbbrjhBrf6p05msxk///yzx/ba2lrMnDkT1dXVGDFihKTSRolIoVBg9OjRsFgseOWVV9z2vfLKK7BYLK7vnpPz3y+88AKsVqtr+5dffomtW7fi8ssvj9mDZ6h9+eWXbicdf3eX9u7d6/b7dVq3bh0++OADZGZmYvDgwWFqbewI5nd5zTXXwGAwYNmyZa5logHg5MmTWLZsGbKyskRXqEtkFRUV+Pzzz5GdnY2hQ4d6fVyif++c6Q8ffPABRowYgYULF3oNFnnMcxdI3wHJdcxTCGItp7hSUlKCJUuWYMCAAWjXrh00Gg0OHTqEDRs2wGaz4d5778VDDz3kerzdbsfdd9/tWq59wIABOHLkCNatW4f27dtj1apVSbNce1M33HAD9u/fjw8//BDdu3f32H/s2DEMGzYMvXv3RteuXdGyZUucOXMGmzZtwsmTJ2E0GvH2228n3Mj2qlWrsH37dgDA/v37sWfPHvTr1881AtG/f3/XSJjFYsGf/vQnfP/997j88stx0UUXYe/evdi4cSN69+6NZcuWeVzIzZgxw7V08e9+9zuUl5fj448/hk6nw7///W906dIlsh84hKT23cGDB3HTTTfBarXiuuuuE/3M7du3dy0rDgDjxo3DkSNH0LdvX7Rt2xYNDQ3Yu3cvtm/fjrS0tLifFCi174L9XTZdrt25hPTHH3+Ms2fP4rnnnsM111wT2Q8cQoH8Zp0WL16MBQsWYMKECZg+fbrX1070711JSQleeuklaLVajB8/XnTwZNiwYejZsycAHvOaCqTvku2Yx2A7AWzduhXvvPMO9u3bh9OnT6O2thZZWVnIzc3FmDFjRGtVWq1WvPbaa1izZg1++eUXtGjRAldeeSUefPDBpFwxsaysDKNHj0Zubq7Hil9OZrMZzz77LMrKynD8+HFUVVUhPT0dXbt2xfDhw1FYWJiQdwSmT5+O999/3+v+kSNH4qmnnnL922QyoaSkBOvWrcPp06fRqlUrjBgxAhMnThSdeGu327Fs2TKsXLkShw8fhlarxaBBgzBlyhRXffh4JbXvSktLMX78eJ+vlZeXh6VLl7r+vWrVKnzyySf48ccfcfbsWdjtdrRp0wb5+fmYMGECunbtGrLPEQ1S+07O73LDhg149dVXsXfvXgDAxRdfjPvuuw+DBg0Ky2eKlEB/swBw7bXX4uDBg/j44499fneS/XsHAPPnz3cLAnnMcwik75LtmMdgm4iIiIgoTJizTUREREQUJgy2iYiIiIjChME2EREREVGYMNgmIiIiIgoTBttERERERGHCYJuIiIiIKEwYbBMRERERhQmDbSIiIiKiMGGwTUREREQUJgy2iYhC7NixY+jevTvGjRsX7aYQEVGUMdgmIiIiIgoTBttERERERGHCYJuIiIiIKEwYbBMRhVFtbS2eeeYZDBkyBBdffDGuvvpqvPbaaxAEweOxP/74I/72t7/h8ssvx8UXX4wrrrgCU6dOxU8//eTx2NLSUnTv3h3Tp09HeXk5Hn/8cQwePBgXXXQR3nzzTQCA1WrF8uXLcfPNN2PgwIHo06cPhg4dinvvvRcfffSRx2vW19fjnXfewW233YZ+/fohNzcXN954I958803U19d7PH7o0KHo3r07BEHAW2+9hWuvvRa9e/fGFVdcgXnz5qGqqkq0T2pqavDyyy/j+uuvR25uLvr374+xY8eKtmncuHHo3r07jh075rb9zTffRPfu3XHxxRejpqbGbd+CBQvQvXt3/O9//wvZ51u6dCn+8Ic/oE+fPrjxxhtFPxcRkZjUaDeAiChR2Ww23HHHHTh48CDy8vJgsViwbds2/P3vf0d1dTWmTJnieuzmzZvxl7/8BbW1tbjooouQl5eHn376CWvWrMH//d//YdGiRbj00ks93qOiogK33HILGhoa0K9fP1itVmg0GgDAww8/jE8++QQ6nQ6XXnop9Ho9fv31V2zfvh0WiwXXXXed63Vqa2txzz33oLS0FC1atEDfvn2RlpaGsrIyzJ8/H6WlpXj55ZehVHqO0RQXF2PlypXIy8uD0WjEtm3bsHTpUmzduhXvvPMO9Hq967Fmsxnjx4/Hnj17kJ2djSuvvBI1NTXYsmULvvnmG+zcuRMzZsxwPX7AgAHYunUrtm7dig4dOri2l5aWuvp4586dGDRokNs+hUKBvLy8kHy+2bNnY/Xq1RgwYAC6du0Km83m+w9PRNSUQEREIXX06FHBaDQKRqNRKCwsFEwmk2tfWVmZ0LNnT6FPnz6C2WwWBEEQqqurhUGDBglGo1FYtmyZ22stWbJEMBqNwuDBg4Xa2lrX9i1btrjeY+LEiW77BEEQjhw5IhiNRmHIkCFCRUWF277a2lphx44dbtvmzJkjGI1G4cEHHxSqqqpc200mk3D33XcLRqNReOedd9yeM2TIEMFoNAr9+vUTvv32W9d2s9ksjB8/XjAajcK8efPcnlNUVCQYjUZh3Lhxbv3y448/CgUFBYLRaBQ+++wz1/bNmzcLRqNRmDZtmmtbQ0ODMGDAAOG6664TjEaj8Oyzz7r2VVVVCT169BCuu+66kH2+gQMHCvv37xeIiILBNBIiojBRKpWYO3eu28hu7969MXjwYNTU1OC7774DAKxduxanT5/GJZdcgrFjx7q9xu23345evXrh5MmT+OSTTzzeIy0tDTNnzkR6errb9rNnzwIAevbsiaysLLd96enpuOSSS1z/PnPmDFatWoXzzjsP8+fPh8FgcO3T6/V44oknoFKp8K9//Uv0cxYWFuLiiy92/Vun02HmzJlQKBR49913UVdXBwCwWCx49913oVQqMXv2bLd+6dq1K+677z4AwNtvv+3afskllyAtLQ1bt251bfv+++9RWVmJG2+8Ee3bt3fbt23bNtjtdgwYMCBkn+/uu+9Gt27dRPcREfnDYJuIKEzatWuHCy64wGN7586dAQDl5eUAgG+++QYAcMMNN4i+zh/+8Ae3xzXVq1cvtGnTxmP7BRdcAK1Wiy+//BKvv/46fv31V6/tLC0thc1mwxVXXAG1Wu2xv1WrVujcuTP279+P2tpaj/3XXnutx7YLL7wQPXr0gMViwd69ewEAe/bscaXJdO3a1eM5zlzoHTt2wG63A3BcGOTm5uL48eOuvG1ncD1w4EDk5eXh22+/deVtO/c1TSGR+/mGDh3qsY2ISCoG20REYdK2bVvR7TqdDoBjAiMAnDp1CgDQvn170cc7c5Wdj2vqvPPOE32OXq9HcXExVCoVFi5ciMGDB2P48OGYNWsWtm/f7vbY48ePAwBWrlyJ7t27i/7vwIEDEAQBlZWVHu/lrd3O7c52+/ucGRkZMBgMqK2tdXsfZ+DsDKRLS0uh1+vRq1cv5OXlufK2mz6mabAt9/O1a9dOtL1ERFJwgiQRUZiITbYLtebpI01df/31GDRoENavX4+NGzdi27ZtWLFiBVasWIEJEyZg+vTpAOCqjNKzZ0/06NHD5/upVKrQNV6EQqHw2JaXl4dXXnkFW7duxU033YTt27ejf//+SElJcQXVpaWl6N27N/bt24euXbsiJyfH9Xy5n89XHxMR+cNgm4goylq3bg2gcQS2Oed25+MCkZ2djdGjR2P06NEQBAFfffUVpkyZgiVLluDmm29Gt27dXGko/fv3x8yZMwN+j+PHj6N79+4e20+cOOHWbuf/O7c3ZzKZUFVVBbVajczMTNf2Sy65BCqVClu3bnXlazuD7A4dOrjytvv06QO73e42qg1A9ucjIpKDaSRERFHmLOknVmcaAD788EO3xwVLoVBg8ODBuPLKKwEABw4cAADk5+cjJSUFn3/+eVBl7dauXeux7eDBg9i3bx+0Wi169uwJwJFfrlarsWfPHhw6dMjjOc7P2a9fP7e7Amq12pW3vXr1agCOfG0nZ972l19+6fp3U3I/HxGRHAy2iYii7JprrkHLli2xfft2rFixwm3f22+/je+++w5t2rTB8OHDJb/m3r17sW7dOldeuNO5c+ewe/duAI353m3atMHNN9+M48eP429/+xtOnz7t8XqHDx8WrYYCAMuWLXNNggQci9bMmzcPgiDg5ptvdk1K1Gq1uPnmm2G321FUVASLxeJ6zs8//4x//OMfABwL2TTnDKBXrlwJg8GAiy66yG2fzWbD+++/7/ZYJ7mfj4hIDqaREBFFmVarxTPPPIO//OUvmDVrFlasWIEuXbrgp59+wt69e6HVavHss88GlDt84sQJTJ48GQaDARdffDFatmwJk8mEbdu2obq6GkOGDHEr//f444/j+PHj+OSTT/DVV1+hR48eaNeuHSwWCw4ePIjDhw/jqqv+v707ZFElCsM4/lxEsMgo2DQJYhFMKlO9RpkkBsUPYBox+z0UBJNNwWCw2YQJEwSLWixO8hMMht2wuKwoFy7uYTf8f/XM4cxpD4f3vOfv08DvOI6azaYqlYri8bh839flclEul5Prunff9vt9bbdbbTYb1Wo1lUqlz0dtwjBUp9N52v2jXC5rOBwqDEPZtq1IJHI3JklhGCqbzSqVSj3Mf2V/APAKwjYA/AK2bWs+n2s0GsnzPB2PRyUSCTmOo263+7SF4L8Ui0X1ej15nqfT6STf92VZlvL5vBqNxmc7wZtYLKbxeKzlcqnFYqH9fq/dbqdkMql0Oi3Hce5enPxqMBgok8loNpvpfD7Lsiy12225rnvX01r66JIynU41mUy0Wq20Xq8VjUZVKBTUarVUr9efrnGr275erw8n17e67SAIHsa+Y38A8Io/b7dr2gAA/IdqtaogCHQ4HH76VwDg16JmGwAAADCEsA0AAAAYQtgGAAAADKFmGwAAADCEk20AAADAEMI2AAAAYAhhGwAAADCEsA0AAAAYQtgGAAAADCFsAwAAAIYQtgEAAABDCNsAAACAIe/Ri4Rxpg1CUgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "best_model = poly_models[\"Poly7\"]\n", + "best_fit = poly_fits[\"Poly7\"]\n", + "best_model.predict(best_fit, kind=\"pps\")\n", + "\n", + "predicted_mpg = best_fit.posterior[\"mpg_mean\"].mean((\"chain\", \"draw\"))\n", + "residuals = df_mpg[\"mpg\"] - predicted_mpg\n", + "sns.scatterplot(data=df_mpg, x=\"horsepower\", y=residuals)\n", + "plt.axhline(0, color='black', lw=2)\n", + "plt.ylabel(\"Residuals\")\n", + "plt.title('Residuals for degree 7 model');" + ] + }, + { + "cell_type": "markdown", + "id": "1dd0e989", + "metadata": {}, + "source": [ + "Hey, that looks pretty good, the residuals appear nice and flat. Before we go full steam ahead with this model, let's take a look at the posterior predictive distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "5c0e19e1", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Default computed for conditional variable: horsepower\n", + "Default computed for conditional variable: horsepower\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtsAAAHrCAYAAAAe4lGYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3zV9fX48dfnjqyb5OZmAGEGkDACItOgKMqIE2etUvdErQqttOL4tf1WrVixBXGhtcVVtO6CVSO4QJkCsmUGAgSybm6Sm9wk997P748P93Jv7shObuA8Hw8emvtZ7/vJvXDu+573OYqqqipCCCGEEEKIVqfr6AEIIYQQQghxspJgWwghhBBCiDYiwbYQQgghhBBtRIJtIYQQQggh2ogE20IIIYQQQrQRCbaFEEIIIYRoIxJsCyGEEEII0UYk2BZCCCGEEKKNSLAthBBCCCFEGzF09ACEaCsTJ07k8OHDAY/HxcXRq1cvJkyYwG233YbFYumA0bXcggULeP7558PuM2jQID755BM+/PBDHn74Ya688krmzJnTamNYs2YNN910k/fnjz76iCFDhoTc/5JLLmHPnj0A/OIXv+DJJ59stbGE4rlP9913H/fff3+Lz3fjjTeydu1a3njjDc4888wWn+/QoUNMmjSpUfu+9dZbjBkzpsnn7tGjB1999VVzhxjAcw98xcbGEh8fT8+ePcnKymLy5MlkZ2ejKEqrXfdUEez+Go1GkpKSGDp0KL/85S+ZOHFii6/T2u+Nk0Frv789/w4tX76cnj17tsIIRWckwbY46Y0cOZI+ffoA4Ha7KSwsZOPGjbzyyit8/PHH/Pvf/6ZXr17tPq7WCoBTU1M555xzgm5LT08Pe2xrB2MffPBByGB706ZN3kBbnBAXF8eVV14ZcvuePXvYsmULJpOJrKwsv22tHRg01aBBgxg8eDAAdXV1lJWVsXPnTjZu3Mhbb73FwIEDmTNnTtgPYCI03/tbVVXF9u3b+frrr/n666+58cYbeeyxxzp4hEKIxpBgW5z0rrnmGq666iq/x4qKirjhhhvIy8vjmWee4bnnnuug0bVcv379GgzWp0yZwvDhw0lISGiTMXTv3p2amhqWLl3KQw89RFRUVMA+H3zwAQDDhg1jy5YtbTKOzig5OTns7+/OO+8EtG8F4uLi2mtYjTJ58uSgM6Lr16/n6aefZvPmzfzqV7/izTffZNiwYR0wws6t/v11u93MmzePhQsX8uabbzJp0iTGjRvXgSM8+Tz99NNUV1fTvXv3jh6KOIlIzrY4JaWlpXHHHXcAsGrVqg4eTdtLSEigf//+dOnSpU3ObzAYuOyyyygrK2PZsmUB26urq/n000/p2rUr48ePb5MxnIyOHTvGypUrAS3tprMYPXo0b7/9NqNGjaK6uppZs2bhcrk6elidnk6nY8aMGd5v4j777LMOHtHJp3v37vTv35/Y2NiOHoo4iUiwLU5ZqampADidzpD7fP7559x+++1kZ2czdOhQzjnnHGbNmhUyHWLr1q3MnDmTc889l6FDhzJy5EgmTZrE/fff7xeETpw4kYcffhjQ8pwHDhzo/XPjjTe24rPUfPjhhwwcOJDZs2d7H5s9e7Y3V/jw4cN+Yxg4cGCTr3H11VcDJ2awfX3++efY7XauuOIK9Hp92PNs3ryZGTNmMH78eIYOHcq4ceO4++67+f7770Me43A4WLBgATk5OQwdOpTx48fz0EMPceTIkQbHvXXrVh588EHOO+88hg4dytixY7n99tv59ttvGzy2rX344Ye43W4GDBjA8OHDvY+vWbOGgQMHevN6b7rpJr/f3YcffhhwLlVVeffdd7nqqqs444wzGDVqFLfddhsbN25sk7FHRUXxf//3fwDk5eUF/RAGTX+PgTZzfvvttzN69GhGjBjB1VdfzccffwwQ8vXr+/gHH3zAtddey6hRoxg4cCCHDh3y7nfs2DGeeuopLrroIoYPH+49/1tvvRX274pVq1Zx3333+b1uf/3rX7f6/dXr9d7UkvprUprz3qnvueeeY+DAgfzhD38Iuc/mzZsZOHAg55xzjveeeF6TN954I3V1dbzyyitccsklnH766Zx55pncd9997N27N+Q59+7dy8MPP8z555/vfR/efPPN/O9//wu6/4IFCxg4cCALFizg2LFjPProo4wfP57TTz+dSy+9lPfee8/v3A8++CBnn302w4YN47LLLgt53htvvJGBAweyZs0av8dLS0t54403uPPOO5k4cSKnn346I0eO5KqrruKVV16hpqYm5HMTQtJIxClr8+bNAAwYMCBgm9PpZNasWXz22WdERUWRlZVF165dycvLY8mSJXz55ZcsWLCAc88913vMqlWruPPOO6mrq2PQoEGcccYZuN1ujh07xjfffIPL5WLy5MkAXHDBBWzatIkNGzbQu3dvRo0a5T1Pv3792viZa0aNGkVVVRVffPEFcXFxXHDBBS0634ABAzj99NP54YcfKCgo8MsXf//99wG46qqrWLJkSchz/Oc//+GPf/wjbrebIUOGcOaZZ3L48GFvnur999/Pfffd53dMdXU1t9xyC5s2bSIuLo7x48cTHR3NypUr+eabbzjvvPNCXu/1119nzpw5uN1uBg8ezOmnn05xcTFr1qxh5cqVQa8XjieYa60c6o8++ggInNVOTU3lyiuvZMWKFRQXFzN+/HjS0tK823v37h1wrocffpilS5cyatQozjvvPHbs2MH333/PunXreOutt/yC+dYyYMAAhgwZwvbt2/n+++/9XmPNeY8BfPrpp8yaNQu3201mZiaZmZkcO3aMhx9+uFFrAh5//HH+/e9/M2LECM477zzy8/O9izjXrVvHr3/9a2w2Gz169OCss86itraWLVu28Pjjj/P111/z8ssvYzQa/c759NNP889//hOdTsfQoUMZNWoUBQUFLF++nK+//prHH3/c+2G0NVRWVgL4pWs1570TzLRp03jllVdYsmQJs2bNIjExMWCft99+G4Brr70Wg8E/jKirq+Ouu+5i48aNjB49mv79+7N582a+/PJL1qxZw0cffRSwUPCbb77hgQceoKamhr59+5KTk0NJSQnr1q1j9erVrFy5kr/85S9Bx3vkyBGuvvpqjEYjo0ePprS0lPXr1/PYY49RUVHByJEjue222+jSpQtnnnkmR44cYePGjfzmN78B4OKLL27wngCsWLGCJ598kq5du9KnTx/OOOMMSktL+emnn3j22Wf56quveOONN4Km0AmBKsRJ6vzzz1czMzPVDz74wPuYy+VSjx49qr755pvq0KFD1cGDB6tfffVVwLF/+9vf1MzMTPWaa65RDx486Lfts88+UwcPHqyOGTNGtdls3sdvvPFGNTMzU/3kk08CzldeXq5u3LjR77EPPvhAzczMVB966KFmPb/nnntOzczMVG+44YYG9w11rfz8fDUzM1M9//zzmzWG1atXq5mZmerkyZNVVVXVd955R83MzFSff/557z779+9XMzMz1euvv95v3I888ojfuXbu3KkOGTJEHThwoPrRRx/5bfvmm2/UrKwsNTMzU125cqXftjlz5qiZmZnqhRdeqB49etT7eFVVlXrPPfeomZmZamZmpvrcc8/5Hffdd9+pAwcOVM8880x17dq1AWM599xz1czMTHXNmjV+22644QY1MzNTXb16dcD98Fwr2LamWrNmjZqZmalmZWWpJSUlQfcJNxZVPfH79fyO9+3b593mdDrVhx9+WM3MzFRvu+22Jo3Nc9369zSYRx99VM3MzFSnTZvm93hz3mNHjx5VzzjjDDUzM1N9/fXX/Y5Zu3atd1tmZmbAODyPjxw5MuC9qKqqWlhYqI4dO1YdOHCg+vbbb6sul8u7rbS0VL3pppvUzMxMdcGCBX7Hvfvuu2pmZqY6ZcoUdceOHQFjGjFihJqVlaXu378/7H3yFe7+Hjt2TB0xYoSamZmpzp8/X1XV5r93PO/F+td58MEH1czMTPVf//pXwPVLSkrUoUOHqllZWWphYaH3cc/fBZmZmeoVV1zht83hcKi33XabmpmZqf6///f//M5XVFSkjho1Ss3MzFRffPFF1e12e7dt3rxZHTNmjJqZmam+++67QceemZmp/uEPf1Dr6uq825YvX65mZmaqI0aMUM8///yA8y5atMj7O6sv1Htqz549QV83ZWVl3uf26quvBmz3/DuUn58fsE2cOiSNRJz0Hn74Ye9XyIMHD+bcc8/l8ccfZ+DAgbz55pucf/75fvuXlZWxaNEioqOjWbBgQUClkgsvvJBrr70Wm83Gf//7X+/jJSUlAEyYMCFgDAkJCZxxxhmt/+SAtWvXBqSAeP74fj3eHi655BJiY2P56KOPUFUVOJFW0tDM3htvvIHT6WTKlClcccUVftsmTJjAtddeC8Brr73mfdzhcPDuu+8C2u+5a9eu3m2xsbH83//9H9HR0UGvt2DBAlRV5f/+7/8Cyun5pty89dZbDT1tr759+9K3b99Wyff03LeJEyeSnJzc4vM99thj9O3b1/uzXq/3zu6tXbuWurq6Fl8jGE9pzbKyMu9jzX2Pvf/++1RVVTFixAi/kpMAY8aM4brrrmtwPLfddlvQ9+Lrr79OWVkZ119/Pb/61a/Q6U7882ixWPjrX/+K0Wjk7bff9r623W43CxYsAOBvf/sbgwYNChjTvffeS11dnfd12lxVVVWsW7eOu+++G7vdTlxcHNdccw3QvPdOOJ57u3jxYu9z9Xj//fepra3lggsu8Ps2xUNRFJ566im/bdHR0TzwwAMA/PDDD377/+c//6GiooKsrCzuuecev1KRw4YN4+677w479u7du/PII4/4zbBPnDiRgQMHYrfbSUlJ4e677/Y77/XXX09SUhIHDhxoVKoZQP/+/YO+bsxms7cqzOeff96oc4lTjwTb4qQ3cuRIrrzySu+f8847j/T0dLZs2cJTTz1FXl6e3/5r1qzB4XAwcuRIv+DN19ixYwH88jFPP/10AGbNmsX69evD5ne2Jk9KQbA/7V29Ij4+npycHPLz81mzZg0ul4uPP/4Yk8nEhRdeGPZYT/5xqDJ4nlSK9evXexfbbdu2DbvdjsViCUg3AG0h7Nlnnx3weGlpKZs3byYmJibgw5aHJw1kw4YNYcft6/PPP+fzzz/3vhaaq7Kyki+++AJo+ENKYxgMhqDlIdPS0jCbzdTW1voFw63J7XYD+AU7zX2PrVu3DoCpU6cGPeayyy5rcDyhXoeeHP2LLroo6HZP+kBpaan374zt27dTWFhI7969GTp0aKOfR2M9//zz3g/OI0aM4IYbbmDbtm2kpKTw4osvelO1mvPeCef0009nxIgR5OXlsWLFCu/jbrebd955B9AC1mC6d+8e8KEDtGAVtJx4X40de15eXsCxoL1Pg32gzsjIAODcc88NqPVuMBjo0aMHAIWFhUGvG4zL5WLVqlW88MIL/OlPf+Lhhx9m9uzZvPzyywDs37+/0ecSpxbJ2RYnvWCl/5xOJ8899xwLFy7khhtu4PPPPyc+Ph6A/Px8QMvBbmihYGlpqff/f/vb3/Lzzz/z3Xff8d133xETE8OQIUMYO3Ysl112mfcfm9bWmNJ/7enqq6/mk08+4YMPPsDhcFBYWMg111zT4Gyv5x/SUI0fPLOfNTU1lJWVkZKS4j3G8w9nMMHOd+jQIVRVxeFwNFiSzmq1ht3eFj799FOqq6vp1q1byBrqTZGWlhaQZ+wRHx+PzWZrswVenvtnNpu9jzX3PXb06FEg9O873OugoX08YwoVRNYfU9++fb3HHDx4sEnPo7F862wbDAbMZjNZWVlMnDiRmJgY737Nee805MYbb2Tjxo28/fbb3g+yX3/9NYcPH2bIkCGMHDky6HGhavt7/n6tra31e7yhsScmJpKUlERZWRnHjh0L+HAW6nqeiYZQ200mE0CjX/d5eXncd9997N69O+Q+nlx6IeqTYFuckgwGAzNnzuQ///kPRUVFfPLJJ95/ZD0zcX369An5D4qH72LGtLQ0PvjgA9auXcsPP/zAhg0b2Lx5Mxs2bGDhwoX89re/5a677mq7JxUhxo4dS+/evcnNzaW4uBhondnZ1uT5arw1Foa2BU8KyZVXXumXztBcrXGO5tq+fTsAmZmZ3sea+x7zCNWVsjHdKn2DVF+eMV1wwQUNfiOUlJQEnHgdpaWlNVjSsjmdakPVMW8PF1xwAV27duW7774jPz+fXr168e9//xsI/4GkvV9rDV2vtcbzwAMPsHv3bs4//3zuuOMO+vfvT3x8PEajkdraWqkjL8KSYFucsnQ6HT169MBqtfqVpPLMhPTt27fJM8aKonDmmWd6UxBqamr48MMP+fOf/8zf//53LrzwwqCVIk4miqJw5ZVXMn/+fH744Qf69+/PiBEjGjyua9euHDx4kPz8fL/AzMOTfx4dHe2dJfXUDa9fAs1XsG3dunXzjvUvf/lLhwaj9e3Zs4effvoJRVEi7kNKU+3evZsdO3YA+AWjzX2Pde3alf3794dcixDuddCQ9PR08vLyuPPOOxsdOHleR0lJSR367VJz3jsNMRgMTJs2jXnz5vHvf/+bX/7yl3z//fckJSVx6aWXturY9+3b5/2WoL6KigpvilOolKO2tnfvXn7++WdSUlJ4/vnnAyqwHDhwoEPGJTqPyPkXRoh25na7vf84+85kjRs3DqPRyNq1a72LHpsrOjqaadOmMXDgQNxuNz///LN3m+dr/fbK7Q6mrcZw1VVXkZycTFJSkndxVkM8ua2ecnf1ecoHjh492vuP3dChQ4mLi8NqtXqbv/gqLi4OWmO4a9eu3gVUvjmpkcDzPM8888yAhYP1eX5/kdgwpra2lj/+8Y+ANjs9ceJE77bmvsc8C1k//fTToNvDlZVsiCddpymNYoYNG4bFYmHPnj1h0wvaWnPeO41x7bXXEh0dzYcffsi//vUvVFXl6quvDvntQHN4xu6pk16f51uejIyMDgu2bTYboH24D3b/fBfxChGMBNvilOR0Opk3b543n9Q3EEhNTeXGG2+kqqqKu+++2y9A9qitrWX58uV+M+KvvfZa0JXte/fu9c58+LYA9syKhWv00NaSk5MxGo0UFxe36gK5bt26sWrVKtasWcPNN9/cqGNuuukmDAYDy5Yt45NPPvHbtnLlSm81h9tuu837eExMjDeYf+qpp/wWOzkcDv70pz/hcDiCXm/mzJmAVsXkq6++Ctiuqio//fRT0CA+lAsvvJALL7zQW8O9qerq6rz/cDemY6Qn+OjIQC+YH3/8keuvv54ff/yRuLg45s6d6/ftQXPfY7/4xS+IjY3lxx9/9NZ69r2mJ82hOe644w4SExNZtGgR//znPwNyi0HL6/Z9bRqNRu677z5UVeW+++5j/fr1Acd4FtVt2rSp2WNrSHPeO42RnJzMpZdeSllZGe+++y46nY5f/epXrTZugF/+8pfEx8ezbds2Xn75Zb/qJ9u3b+ell14C4Pbbb2/V6zZFRkYGer2eXbt2BTS7+eqrr1i0aFHHDEx0GpJGIk567733nnfFO2hlx3bu3ElBQQEAd999d0De6IMPPkhhYSFLly7liiuuYNCgQfTq1Qu9Xs/Ro0fZuXMnVVVVvPrqq96Fjy+99BJ//etf6devH/379yc6OprCwkI2bNiA0+nkiiuuICsry3uN4cOH06VLF7Zv386VV15JZmYmBoOBvn37elvJtzWj0cjEiRP54osvuOKKKxg1apR31urJJ59slzF4eLrW/elPf+L3v/89r7/+On379vU2oVBVlfvvvz8gN/aBBx7gxx9/ZPPmzVxwwQXe6gQ//vgjdXV1XHHFFUFnzSZOnMijjz7K008/zT333EOfPn3o27cv8fHxWK1Wdu7cSUlJCXfeeWejW8x7qhFUV1c36x588803lJSUkJiYSE5OToP7X3DBBXz44Yc888wzrFq1iuTkZG/6SUO50K1h2bJl3m+H6urqsNls7Ny5k6KiIkBb4DdnzhzvIj9fzXmPdevWjf/7v/9j9uzZ/PnPf+bdd99lwIABFBYWsn79em655Rb++c9/hlwMGk63bt148cUXuf/++3n66af5xz/+wYABA0hLS6OyspK9e/dy8OBBhg8fzuWXX+497oYbbuDIkSO89tprXH/99QwYMIDevXsTExNDUVERO3fupLy8nD/96U9tVv6zue+dxrjpppu8s8sTJkwIuZCxuVJTU5k7dy4zZszg73//O5988glDhgzxNrVxOp1cddVV/PKXv2zV6zZFcnIy119/PW+88Qa33HILo0ePpkuXLuzfv59t27Zxzz33eD8UCBGMBNvipLdhwwa/8m1Go5EuXbpw8cUXc9111wXt9GcwGHj22We57LLLeP/99/npp5/YvXs3sbGxpKWlcf755zNx4kS/+sx/+MMfWLVqFVu3bmXdunVUVVWRlpbGWWedxbXXXuttje4RFRXFa6+9xt///nc2bdrEzp07cbvdjB07tt2CbYA///nPJCUlsWLFCr744gtvveX2DrZB+9p60KBBvPbaa2zYsIGff/6Z+Ph4JkyYwE033RS0jF9cXBxvvPEGr7zyCkuXLmXlypWYzWbGjRvHzJkzQ361DlogkZ2dzVtvvcWaNWtYtWoVOp2O1NRUBg8ezHnnndeooLe1eIKaSy+9NGR9cF/nnXceTzzxBIsXL2b16tXeIH/UqFHtEmzv3LmTnTt3Atq3DAkJCfTs2ZMLLriAyZMnk52dHXLRYnPeYwCXX3456enpvPzyy/z0008cPHiQfv368fjjj3P22Wfzz3/+07uAsanGjBnDp59+yltvvcW3337Lli1bqK2tJSUlhfT0dC677LKgr4ff//73TJ48mX//+99s2LCBFStWYDQaSUtLY+zYse3yOmrOe6cxBg0aRFpaGkVFRdxwww2tPGrN+eefz0cffcSrr77KqlWr+OKLL4iNjWXUqFFcd911je7y2JYeeeQRBg4cyL///W+2bt2KXq8nMzOTv//971x88cUSbIuwFLV+xXohhBCiE/r444956KGHOP/88721j0XL/PDDD9x666307duXzz77rFEVX4QQ/iRnWwghRKdx5MgRb5qKrx9//JGnn34aiLxSk52Vy+XiueeeA+DWW2+VQFuIZpI0EiGEEJ3G6tWrefTRRxk0aBDp6eno9XoOHjzoTWe56qqrmDJlSgePsnP74IMPWL9+PVu3bmXXrl1kZmbKBxghWkCCbSGEEJ3G8OHDueqqq1i/fj1r166lurqahIQEzjrrLK6++upWrQF9qlq3bh0fffQRiYmJTJkyhUceeaRJJQOFEP4kZ1sIIYQQQog2IjnbQgghhBBCtBEJtoUQQgghhGgjEmwLIYQQQgjRRmTFA3hbdncGZrMZm83W0cPo1OQetpzcw5aTe9hycg9bTu5hy8k9bB2d9T5aLJYG95GZ7U5Gp5NfWUvJPWw5uYctJ/ew5eQetpzcw5aTe9g6Tub7ePI+MyGEEEIIITqYBNtCCCGEEEK0EQm2hRBCCCGEaCMSbAshhBBCCNFGJNgWQgghhBCijUiwLYQQQgghRBuRYFsIIYQQQog2IsG2EEIIIYQQbUSCbSGEEEIIIdqIBNtCCCGEEEK0EQm2hRBCCCGEaCMSbAshhBBCCNFGDB09AHHqcDhisVqN2GwKZrOKxVJHTEx1Rw9LCCGEEKLNyMy2aBc2WwK33BJNVpaes87SkZWl55ZborHZEjp6aEIIIYQQbUaCbdHmHI5Ypk/Xk5ur+D2em6swfboehyO2g0YmhBBCCNG2JNgWbc5qNQYE2h65uQpWq7GdRySEEEII0T4k2BZtzmYLHmg3drsQQgghRGclCyRFmzOb1RZtF0IIIU5W2dnZTdp/9erVbTSS5lu6dClPPPGE92dFUYiNjcVsNnPaaacxZswYLrjgAsxmc4uvdc8997Bx48aIvA+hSLAt2pzFUkdOji5oKklOjlaVRAghhDgV3X777QGPvfvuu1RWVgbdFslGjx7N8OHDAaiurqaoqIhNmzaxYsUK/vGPf/DQQw8xadKkDh5l+5NgW7S5mJhqFi40BCySzMlRWbjQJeX/hBBCnLLuvPPOgMc+/fRTKisrg26LZGPHjuWmm27ye8zlcvG///2PuXPn8oc//IH4+HjOPPPMDhphx5BgW7QLs7mCRYukzrYQQgjRHEeOHOGqq67i4osv5sYbb+Tll19m48aNlJeX8+GHHwJ4t//hD38IOD47O5sRI0bw0ksv+T1ut9v597//zVdffcWRI0cwGo1kZWVx6623csYZZ7R43Hq9nqlTp6LT6Xj88ceZP38+b7/9NoqiTb4dPHiQTz75hI0bN3Lo0CEcDgddu3blvPPO49ZbbyUuLs7vOQT7f9/nvGTJEr777jt2795NaWkpMTExDB48mJtuuolRo0a1+Pk0hwTbot3ExFSTnl5NenpHj0QIIcSp6GRornbo0CHuuOMO+vfvzyWXXILNZsNoNFJX1/SUTJvNxj333MO+ffs4/fTTufLKK7Hb7Xz33Xf8+te/5i9/+QsTJkxolXFfdNFFvPrqq+zbt4+9e/dy2mmnAfDNN9+wZMkSxo0bx+mnn46qqmzdupU333yTjRs38vLLL2MwaOHq7bffzqeffsrRo0f9UmwyMzO9/z937lxvnrjFYqGoqIhvv/2W+++/nzlz5nDuuee2yvNpCgm2hRBCCHHSs9kSgqQz6li40IDZXNGBI2uazZs3c/vttwekmBw5cqTJ53r22WfZt28fDz/8MJdffrn38XvuuYdbb72VOXPmkJ2dTXR0dIvHrdPpGDFiBJ999hk7duzwBtsXXngh06ZNo0uXLlitVu/+r732Gq+++irLli3jwgsvBLSUmw0bNnD06NGQKTaLFy+me/fufo8VFxdz6623smDBgg4JtqX0nxBCCCFOaidTc7WUlBRuueWWFp+nrKyM5cuXM3r0aL9AGyA5OZnrr78eq9XKunXrWnwtj9TUVO+1Pbp06YLRGNhv4xe/+AVAk69fP9D2XPe8884jPz+fgoKCJp2vNcjMthBCCCFOao1prpae3jnSSQYMGBA0OG2q7du343K5qK2t5dVXXw3Ynp+fD8CBAwcYP358i68XiqqqLF26lC+++IJdu3ZRWVmJ2+32bi8uLm7S+Q4fPszrr7/Ojz/+SFFREbW1tX7bi4uLSW/nfFYJtoUQQghxUmtMc7XOsp4oOTm5Vc5TXl4OaGkpmzdvDrlfdXXrfQjxBM4Wi8X72LPPPsv7779Peno648ePJzU11fth4rXXXgsIlsPJz8/n9ttvx263M3LkSMaPH4/JZEJRFDZs2MDGjRubdL7WIsG2EEIIIU5qp0JzNZ1Oywx2uVwB2yorKwMeM5lMAPzqV7/igQceaNvBAW63m40bNwIwePBgAEpLS/nggw847bTTeP/993E4HN79S0pKeO2115p0jXfeeYfy8nL++Mc/ctFFF/lte/rpp73Xb2+Ssy2EEEKIk5rWXC14QH2yNFdLSEgAoKioKGDbzz//HPDYkCFDUBSFLVu2tPnYAD777DOOHj1K//796devH6At6lRVlTFjxhAb6583v2nTpqDn0ev1QPAPFYcPHwYIWASpqmrY2fu2JsG26HAORywFBYns3GmmoCCxUy1UEUIIEfm05mqugID7ZGquZjKZ6NOnDz/99JM33xq0Otr1a2uDttBy0qRJbNmyhbfeegtVDfwwsnXrVr/Z5uZwuVwsXbqUv/71r+j1embMmOGtsd2tWzcAtmzZ4penXVhYGHTMAImJiQAcO3YsYJvnfD/99JPf42+88QZ79+5t0fNoCUkjER3qZCnFJIQQIrKdCs3Vpk2bxpw5c7jzzjuZOHEiqqqyatUqb9pGfb/73e84ePAgzz//PJ999hnDhg0jPj6ewsJCduzYQX5+Pp9++ikxMTGNuv7atWupqakBwOFwUFRUxMaNGykqKiIxMZE//vGPjB071rt/amoq559/Pl9//TVXX301I0aMoLS0lO+//57Ro0dz6NChgGuMGjWKr776iocffphx48YRFRXFgAEDOOecc7jyyitZunQpDz/8MJMmTcJsNrN161Z27drF2Wefzffff9+Mu9pyEmyLDtNQKaZFi2JPqr8EhRBCdKyTvbnaFVdcgdPp5N133+W///0vqampXHLJJdx6661BK4qYzWZeeeUV3n//fZYtW8YXX3yB2+0mJSWFAQMGcNttt2E2mxt9/fXr17N+/XoURSE2Nhaz2czAgQO56aabuOCCC7yz0r7+3//7f6Snp/Ptt9/y3nvv0bVrV6677jpuuukmvvrqq4D9L7/8cgoKCli2bBlvvvkmLpeLiy++mHPOOYeBAwcyf/58Fi5cyDfffINer2fYsGEsXLiQFStWdFiwrajBvjc4xfgWUe9IjelsZbFYIma8LVVQkEhWlj7k9m3bXKSnl7f6dU+me9hR5B62nNzDlpN72HJyD1tO7mHr6Kz30beySiiSsx0hbLYEbrklmqwsPWedpSMrS88tt0RjsyV09NDaTGNKMQkhhBBCdGYSbEeAlnS26syLC0+FUkxCCCGEOLVJsB0BGtPZKpjOPht+KpRiEkIIIcSpTYLtCNCcdIqWzIZHilOhFJMQQgghTm1SjSQCNCedojGz4enpkR+sngqlmIQQQghx6pKZ7QjQnHSKk2lxoVaKqZxBg2ykp5dLoC2EEEKIk4bMbEeAmJhqXnnFQG6unvR0BYcDYmPhyBGVnJzg6RSyuFAIIYQQIvJJsB0hVBXefx9yc088lpMDU6Yc/8FRjj5/Ne74RPRVVSSbTicnpz+5uYFfTuTkuLEYj6A7dgDVEA2GGNBHoRpitP83RLXPkxJCCCGEOMVJsB0BGtNJ0XT4K5TqMlBqUaqqMFV/x8J5FqbPtJCbe6IxTE6Oi1fmWYk/mgtuZ/ALKgroo48H39FgiEY1RKPGpaIm9WrDZyqEEEIIcWqRYDsCNLjYsRji7cX+G9xOUoo/4fVnRlM6J4PyCh2JCW6S9XmYiteHDrRBm0Z3OlCcDu9D2tV3464px901q8XPSQghhBBCSLAdERpazFhe5gq+we3EZF2NidXHd2z5WHTHtoGrFnf3ES0/mRBCCCHEKU6qkUSAxMTw2xPM7fuZSFe8G/3BNaC62/W6QgghhBAnGwm2I0BUFEyaFHzbpEkQFdX+lUWUsgPoD/wA7hCz6kIIIYQQokESbEeA0lKYMSMw4J40SXvcWtwxbcuV8iPo938HrtoOub4QQgghRGcnwXYESEhQmTYNsrNhyRJ47z3tv9nZMG0axJs6Lp1DsReh3/sN1Dka3FcIIYQQQviTBZIRwGKp4+yzdTz5ZOBCyZwcF8n6vPYflA/FUYZh31c4+06AKFOHjkUIIYQQojORme0IEBNTzcKFroCW7Z6a2Sbb+g4amY+aSgx7vwKHraNHIoQQQgjRacjMdoQwmytYtCgWa5Gb8jJX42tmt6e6agx7v8bV9xzUuJSOHo0QQgghRMSTYDuCxKhH6FW2TGs60wo1s9uEqxb9vm9w9TkbNaFbR49GCCGEECKiSRpJpFBV9IfWa4F2pHO70OetQLEe6OiRCCGEEEJENAm2I4SueBdKtbWjh9F4qoo+fw36Xbko1v3SAEcIIYQQIghJI4kEtXZ0x7Z29CiaRXGUoc9fBwVbcKcOwJ3cHwxRHT0sIYQQQoiIIMF2BNAfWt/5OzU6HeiObkFXuB23pS/u1EyIju/oUYXkcMRitRqx2RTMZhWLpY6YmOqOHpYQQgghTjISbHcwxZqHUnmso4fRetwudCV70JXsQTX3wJ06ENWU2tGj8pOfD3fcEU1u7om65jk5OhYuNGA2V3TgyIQQQghxspGc7Y7krEFfsKmjR9FmFNth9Hu/Qr9nGUpZfkQs/nQ4YrnjDvwCbdB+nj5dj8MR20EjE0IIIcTJSILtDqQ/shGctR09jDanVJWiP7gKw67POvz5Wq1GcnODb8vNVbBaje07ICGEEEKc1CTY7ih11ShlBzt6FO2rphL94Y7thmmzKS3aLoQQQgjRFBJsd5RTtFSeYjuEYs3rsOubzeFTWRraLoQQQgjRFBJsi/ahM2C3ZJOfeB07Dg2g4Eh8h+RHWyx15OQE35aTo1UlEUIIIYRoLRJsi7anM1CSejk3zxpG1kgzZ02IJ2uokVtuicZmS2jXocTEVPOPf2iBta+cHJWFC11S/k8IIYQQrUpK/4k2ZzePZvqMZHK/9P9s56kAsmhRbLsGub16waJFNVJnWwghhBBtToJt0eZKXRkBgbaHpwJIenr7BroxMdWkp1eTnt6ulxVCCCHEKUbSSESbs1Xow2+3tdNAhBBCCCHaWacJtl955RUGDhzIwIED2bRpU8D2yspKnnrqKc4//3yGDh3KxIkTefrpp7Hb7e0/WOHHnBC+Fb3ZVNNOIxFCCCGEaF+dItjetWsXCxYsIC4uLuj2qqoqbrjhBhYtWkS/fv245ZZb6Nu3L//85z+5+eabqamRYK4jJevzyMkJHnDn5LhIZjeKvaidRyWEEEII0fYiPtiuq6tj9uzZDB48mMmTJwfd5x//+Ac7duzgzjvv5LXXXmPWrFm89tpr3HnnnWzZsoVFixa176CFH5NtPQvnWQMC7pwcF6/Ms2KyrUefvxZcUnZPCCGEECeXiA+2X375ZXbv3s1f/vIX9PrA3F9VVXnvvfeIi4vj3nvv9dt27733EhcXx3vvvddew+2UKu0q+YdU9u1TcbvboKmL20lK8Se8/sxWtm2wserbCrZtsPH6M1tJLv4E3E6otaM7srH1ry2EEEII0YEiuhrJtm3bePnll3nggQc47bTTgu6Tl5dHYWEh48ePD0gziYuLY+TIkaxcuZKCggLSpfSEl8OhUlYG1jKorT3x+MF8yOjTBhd0OzFZV2NitfZzeeAuOmseamIPVHOPNhiAEEIIIUT7i9hgu7a2loceeohBgwZxxx13hNzvwIEDAGRkZATdnpGRwcqVK8nLywsZbJvNZnS69p3kV2uiUEPkoDfE1Mzj6pwqpaVuSktV7FUnZrCjok7sU10NVquOnj3CVxBpM9btKD36oxjbtrukxWJp0/OfCuQetpzcw5aTe9hycg9bTu5h6zhZ72PEBtvz588nLy+PDz/8MGj6iEdFRQUA8fHxQbd7Hq+srAx5DltH1J6rtWOoqmryYaa4OOxNOM7tVikvB6sVKiqgMUkiB/NBdUNyitLk8bVcFerWZbgyxgdscThiW6URjcViwWq1tsZgT1lyD1tO7mHLyT1sObmHLSf3sHV01vvYmA8IERlsb9y4kX/+85/cd999ZGZmdvRwOh2nU8Vuh/IKsJWBy930cxw6DFFRKvEJ7R9wK+VHUEr3oSb38z5msyUwfbqe3NwT48nJ0bFwoQGzuaLdxyiEEEII0RgRt0DS6XQye/ZsBg4cyF133dXg/gkJCUDomWvP46Fmvk8GLqeKzaZy+IjKz7tUtm2HvANQWtq8QBu0GfC8A1pud0fQH9kENdrvzuGIDQi04US7d4ejbVNOhBBCCCGaK+JmtquqqsjLywNg6NChQfe59tprAXjhhRfo378/gPeY+jyPh8rp7oxcLm3murISKu1annVr0BkNJGSOwWXKoLxCR3yCm6LqPNLVdRiU8I1pWp3biT5/Da5+E7BajQGBtkdHtXsXQgghhGiMiAu2o6Ki+MUvfhF02/r168nLy2PixIkkJyfTo0cPMjIy6NKlCxs2bKCqqsqvIklVVRUbNmygZ8+enb4SiaqqFBwFZ50Ta1nrn19nNJA89gpmzE4m98sTX3jkTBnKc3/tQbfyj9GpTQi4dQbs5tGUujKwVehJSnRh0eVhsq3XSv01glJVguHnz7Gp1wKh8/ZtNoVO/usVQgghxEkq4oLtmJgYnnzyyaDbZs+eTV5eHtOnT+eMM87wPn7NNdfwwgsv8OKLLzJr1izv4y+++CJVVVXcfffdbT3sNldWBkVFWh51W0jIHBMQaAPkfqnngd9bWPCHMaS7VjfuZDoDJamXM31GvcA9ZygL5/UgxVNbuzHqqjAnVgNRIXcxmzsm1UUIIYQQoiERl7PdHHfccQeDBg3i1Vdf5fbbb+fZZ5/l9ttv59VXX2XYsGHcfPPNHT3EFitq427mLlNGQKDtkfulnipjBkcKGhfU2s2jAwJtgNxcPdNnWrCbRzdpbOHbvWtVSYQQQgghItFJEWzHxcXx1ltvcfPNN7N3717+9a9/sW/fPm677TYWLVpETExMRw+xRSorVKodbXuN8orwL4XySh1FRVBS0nDAXeoKE7jn6il1ZTRpbKHbvassXOhqVvk/IYQQQoj2EHFpJOHMmTOHOXPmBN2WkJDAI488wiOPPNLOo2p7hW08qw2QmBC+bElivJtK4PDxkoAJYUoC2irCN8RpKLAP4G33PprSOdrizcQEN8kxx4iONgJJTTufEEIIIUQ76VTB9qnI4VCpCN2Pp9Xo7XnkTBlK7peBgXLOFBd6ex6glQQ8cABOO00lJiZ4wG1OCL+QMjHBHbRde1jB2r2XA4XgTjkNd9ehYAid1y2EEEII0RFOijSSk1l7zGoDVOxax/w5VnKm1EvVmOJi/tNWKnat8z7mcsO+/VBXFzylJHyOtYtkfV6rjRtAV7IHw67/oZTuA1UWSwohhBAicsjMdgSrq1Mpa6fOpe46J6VrP2bu7DG4Hs+gvFJHYrwbvT2Psh83+tXfTkzQHt+ft46uqU7MZv8Zbi3HugfTZ1rIzT0xU56T4+KVeVZMxetb/wk4a9EfWo+72oq7x6jWP78QQgghRDNIsB3Bioq0tI324q5zYtu2CliFDqgkfP3t+XN6cHDtx0QXOunaBcwW44na2kV6/vaMk6j5dViL64g3uUnW52mBtm/ZP0MMttSLKHWkUGZTsCSpWKJLMBd/Bs6mrwrVleyFqATcaZktvh+tzeGIxWo1YrMpmM1aFRVZ3CmEEEKc3CSNJEK5XColpR09ivD1t2fMtpCQOYbqajh4xMCRhMu5edYwskaaOWtCPEOHR3PfDCNdUmroVfk+JuvqgEC7sMv13HpfGsPP0DNhgo7Th+u59b40CrtcD4bmVZHRFWxCKT/Skqfd6my2BG65JZqsLD1nnaUjK0vPLbdEY7MldPTQhBBCCNGGJNiOUCUl4A5fIKRdNFR/22XKALSg/IHfN622ti31Iu6+V8+yZf5pKMuWKdx9rx5b6kXNHrf+4GqobqccnAY4HLFMn64PaDmfm6swfboehyO2g0YmhBBCiLYmwXYEUlWV4pKOHoWmoTJ9ldU6zFnjcCcPbXJt7VJHSkCg7bFsmUKpI6XJ4/VyOzHkrYS6jk/TsFqNAYG2R26ugtVqbOcRCSGEEKK9SLAdgaxlUBchTRHD1d82maBLehyz5gxj957wtbXLbIEvtTJb6FrdALYGtjeorhp93orGt4ZvIw09jxY/TyGEEEJELAm2I1Bbt2ZvCq3+dvAyfn//u5v779eR+6WOhpp0xsW62bNHxe0+seQzyRx++ae5ge2NoVSXoT+4pkNLAjb0PFrjeQohhBAiMkmwHWHKK1QcbdyavSnC1d8+c6xK7pfarOzq1TBpUvBzeJri2KsgP//E48kxJUyeHDzQnDxZJTm2FLslm/zE69iqXM8h83XYLdmga1oRHaX8MLqCn5p0TGuyWOrIyQn+PHNytKokQgghhDg5Sem/CFNU2NEj8Beu/ra1uD8QD8C8ebB4sXbM8uUnjvc0xSn7cSPmrHE4TRlsrtKRbHGT4jrEyy8mByySnDxZ5eWXXLhdCjfPGuZfcjBnKAvn9SCl+JMmpYfoinehxiSiJvdrye1olpiYahYuNAQskszJUVm40CXl/4QQQoiTmATbEaS6SqXS3tGjCBSs/jZA4tgM7z52O0ybBjNnan8cDhhwmgtd6VbKftyIZfSlfLcumfR0HQ4HlFXByiMJXDihlH+9oFJanazVn06CeJOb4iI39uoUxoxV+P4H7fxworrJ68+M1koJNoH+8I+4jCawWFp8T5rKbK5g0aK2q7MtNbyFEEKIyCRpJBGkqLijR9A09fO57XZ48kmYOhVefUULtG3bVpEwYBQFZSm8+66OqVPhmmvg0kvh3Xd17D2SgrH2KH3LF9ErrZTfzYL+pxk4c1wUEycqrF6tzZibTCeuG6q6SYNUFf3BH1CrbS1/8s0QE1NNeno5gwbZSE8vb7VgWGp4CyGEEJFLgu0IUVurUlbW0aNomnD53POftlKxax0AhrQBPPGE4pdeAlq6yRNPKJQbBmA3j2b6jMA63cuXw/z52my5r4ZKEobkqkPd/TU4a5p3fISRGt5CCCFEZJM0kghRVNy+rdlbQ7h87tI163DXaTnVVQ5jQKDtsXw52KuN1BG6ec7y5YHBdmKCG8qbOfCaCvR5K3H1Ow904UsWRrrG1PBOT5d0EiGEEKKjSLAdAVxOldIIaM3eHKHyuX1V2sPXka6sVNCr4YNe3wotOTkukvV5TR2qH6WqBP2hdbh6Z7foPB2tMTW809PbaTBCCCGECCBpJBGgpDQyWrO3FXN8+NJ2ZrMbkzl8uoOnjndOjotX5lkx2da3eFxK2UF0R7e2+DwdSWp4CyGEEJFNgu0O5narFHeyhZFNpbP9HLbO9Oo1Ov7znj50ne4clb59ati2wcbrz2wluYll/8KOrXA7Sun+VjlXR5Aa3kIIIURkkzSSDlZmhbqO7Sbe5sp3rmX+nB7MIDmgzvTDD8Oll2qf+YLW6T4+k92aAXZ9+sPrcRljURO6tcn525LU8BZCCCEim6KqHdjHOkJYrdb2v2itHcPOT9n5s0pNEwpjREVFUVtb23bjCkJnNJCQOQaXKYPyCh2JCdoiyIpdJxZBNuUcFZV6zMlGouOMjBql89bQNpm0hZDZ2VqOduYAF12UrVrKSCsG2qa4OOxVVfUGaMDZ/3yIbf8a3K2hvetsWyyWjnnfnETkHrac3MOWk3vYcnIPW0dnvY+WRvTukJntDlRe3rRAu60FC6qNjoPoE7sz4yGLfyfHKUOZP6cHpWs/blTA7VlIqTOuI23sFcx4KI477zoRaMOJOt0eq76twqQeb1yjM2A3j6bUlYGtQk9SoguLLi98IO5zTIVdT0qagZoahUqbk0Sz0/94txPD/hU4T5sEUabg52uG5gTBzTlGq+FdLYshhRBCiAgjOdsdqLCoo0dwgs5oIHnsFcyaM4wR2WYmTElgRLaZH3ZlMWN2YP3r3C/1zJhtISFzTJOuk5A5xns+z6LHUBITjq8a1RkoSb2cm2cNI2ukmbMmxDNkhJmbfzeUktTLQRfkM6PPMWPPMVNojefuX8cwdHg02eeagh/vdKDPWwmu1vnmoDnNZqRBjRBCCHFykWC7gzhqVL9Z3Y7mGwT7Sk/Xha7j/KUelymjSddxmU7U0169mjCLIk+U9wvV8MbTut1uHh1wvO8xM2dqjXHq1/oOdrzisKE/8AOogeVhHI5YCgoS2bnTTEFBYtiGMc1pNiMNaoQQQoiTjwTbHSRILNehfINgX771rYMpr2zaS8i38+O8eTBjRmDAnTPFxfw5VgxFWgfKUlfohjehWrf7HpOdHRhohzteqSxEf8i/tGBTZ5wb02ymNY4RQgghRGSTYFsAodufN5jqEd+0Tw3e1BC0HO1p07RgeMkSeO892LTRxdzZWyld8zEH9jlxu1VsFeEb3gQbu+8xDX5gCHK8Ys3z1uBuzoxzY5rNtMYxQgghhIhsEmwLwD8I9hU21WOKC709r0nX0dvzyJni8v7sWRQ5dSq8+ooLXelWbNtW4a5zUu2AAwfBnOAKc8bgY/c9ptG54fV4anA3Z8a5Oc1mpEGNEEIIcfKRYPsUV1VjZFdBKl/8r5gzx1USFeUf2M6bB489pgY0TsmZ4mL+01Yqdq1r0vUqdq1j/hyrX8Ad7nzl5WCsyiMnJ3jAHap1e7L+xDGNzQ0PRn94Pbay8LP3wWacm9NsRhrUCCGEECcfKf13ktpVkMr2w11xuXS4VB0ut0JVTRTl1TFUOqKorImmqiaKWqfvS6CG0wbVUHg0luKiWFAVzj7LRfcUKwuecVP9dAo2m0JSkkoMJZSu+1+j62x7uOuclK79mLmzx+B6PIPySh2J8Vrd7tI1wet2F21Zxwtze/DrWRZyc0+kh3hbtxcHtm432dazcF4Pps+0MG+ePmzDnGDHe6kq5rgqwBxyl2Azzs1pNiMNaoQQQoiTjzS1oWOa2lTbKtm35NMmH9dQU5sCawIfrjudzQe7t2R4dOsKd9+iZ0iP/BB1trVFjI2ts90cvnW/K6t0dOlmpK5OoaKsjsQEbUa6sXW2K+06LKlGamu1OtsJ8c6Gjz/Obsnm5t8NIzc38IugnByVRYtqQgbCzamZXVmZgNWqx2YDsxksFhfx8RVhj2lvnbX5QCSRe9hycg9bTu5hy8k9bB2d9T5KU5tTSHl1NEs3DGHFzn64VR2gAv7pDYriJjGmBnNcNZb4KpJNVaTEVxET5USvc7OrII1Vu/sCcPQY/OlpJzlnJ7J1VxLLlgeps42FubPHYNu2qtWfj6fud/1yhDk5LhbOqyClMe3b3U5M1tWYON4Y55j2H1NcHPbyqtDH1XNiljzZL+BuzIxzU5vN2GwJQWa29SxcmIDZHFkBtxBCCCEaJjPbdO6Z7VqnnmVbB/DFT4Nw1Pkv1OuVYiUzvYheKWX0Si6jW1I5Bn34X/eW/G68uWI0tqoTFTbq6uDo4XgqyqMD9t+42kblWi1HozXaunuYs8Yxa86woCX/cnJcvP7MVkzW1U06p0fQdu0N8cySq/2xVcUen3Fu3ZboDkcst9wSHXQxZkMz6O2ts85ARBK5hy0n97Dl5B62nNzD1tFZ76PMbJ/E3Cqs2d2Hj9cPpawqzm9bakIlV47Zwqi+h1CaWC1uWK+j/OnqL3hvzXB+2KXNchuN0CujknJbDUePmHDWncibLq/UoSPMTHQT27p7hKr7DVpt7JKnMk7MWLcHn1nynrFJuNImgCHww0dLNKbqSXp6ZATbQgghhGgcCbY7oR2Hu/DB2tPJL/H/NBVrrOWSkds5b8hejPrmd82Ji67j5nPXM7LvId5ecw7WMlBVSDTXYYovo/BoHNaSGEAhMd5NJaE7UDY33aR+7WuTCWbO1GpyOxxQp8RTkZhNQmXDOdetTakuw7D3K5x9z4UoU6udtzF1thubjiKEEEKIyCDBdidyxJrIR+uGs/lgt+OPaHnZOsXN+Vl7uOSM7ZhiWq883LBeR5k74TD3/7kvVQ4tdUWvh/QeVSRZaunTM9ZbZzvsTPSXetQnMzBn0egUE9/a1yYTLF6stVx/8knPo3pypgxl4bwepJQ0In+7tdVUYNj7tRZwxyS2yimlzrYQQghx8pE6253Ex+uG8ucPc44H2p6gS2FU33z+fM3n/DL7p1YNtD3c+Wt586UaUpJM1NVqM6+qCrFxTorLynn/P1ZUNXQHStCCZaMpnllzhjEi28yEKQmMyDYza85Qksdegc4Y+JnPt/nNzJlaoF2/5Xrul3qm/8ZCZeLoVnu+6AzYLdnkJ17HVuV6Dpmvw27JBl2Qz6V1VRj2fQXVrZNjJnW2hRBCiJOPBNudwM4jaXz202BU1ZNmoNCvSzG/n/oVd01aTVqivc2u7amL/cIff+ZfL+oYN1bnzQN3uxXeXzWM/6weTrwpdJfHmTNh5m90wVNMZieTkDkG0PK+zVnjiB87Davan7lz4ZVX3Jx9dmCg7T1Hrp7CmgxaZZ2vzkBJ6uXcPGsYWSPNnDUhniEjzNz8u6GUpF4ePOB21mLY+zVKZWGLL6/V2XYFNhCSOttCCCFEpyVpJBHO7Ya3V47y/pyWaOfKMT8xMuNwkxc/NnsMdc7j+daruOV0GGXpxlsrRnkXZn61LRP7yxVMmRzPl8sCX1ITJ6o8+WSIhX9f6nA9noHOuC5EqT+V+fNUunRRuPPOEznbsbGwapXW4bK8Qk9+AfTu1bLnaTePZvqMIHnnuXqmz7Tw+jOjg1dAcTvR7/8OV59xqIk9WjQGs7mCf/xDq7NdVgYWCyQlRV6dbSGEEEI0jsxsR7gVP/ejsDwBgMHdC3hy2leM6tt+gXYww3od5Y9X55J9Wp73sTWb4jAllDF5kn/udM4UF9FR4WedK2tiQy+wzFV4aDYsWaK1XZ86Fa65Bi69VPt58WKwpBqxWuHIkZbNbpe6wldAKXVlhD5YdaM/8AOKNa9FY7DZErjjDj3DhytMmKBw+ukKd9yhx2ZLaNF5hRBCCNExZGY7glXVGPlw7ekA6BQ314/fiFHvpjZ0xka7iYuu49bz1jGsdwFvrBhNTZ2RXXsVks0lfPV5FHqDwduGXY0fGvZciUkG3O6hIQPdYcMUHnssMJVk+XJQFHj5RT1lQFExqKh0TwelGZ9GbBX6sNvD5aUDoKro89fidtXiTs1s8vUdjtiAhjagfeCYPl3PokWxkkoihBBCdDIysx3BlmwY4m1UM+X0nW2am91co/sd4v9+8TkZaSUAlNoM/ObhWvZ//RmVaxdj27YKBSeTJgU/PicH1qxR2L0ndKCbnQ1ffhl827JlUFF5IjgtLobde6C2tt4st8/Cx3WOq4IufDQnhP8U41shJRzdkU3ojm1r1L6+GlNnWwghhBCdiwTbEeqYLZ6vt58GgCnawSVn7OzgEYVmMTl46LKvuGj4dkClzmXgmSUT+XLzAADUOgczZhAQcE+ZAg8/DL/5jUJMTOjzOxzhr19Z6R+gVlfDrl1gsx0PuOstfMw+1xR04WOyPo+cnOABd06Oi2R9XviBHL+W3ZLN4eph7NwWS0FBIg5HbMPH0bg62w6Hds6dO81NOrcQQgghOoYE2xFq8Q8jUFXt13PdWZuINkZA7kgYOgWuGLON3178DUa9ExWF99eewYLPx1NTfIB/vOoiO1vLvX7vPe2/f/mLlnttt2v516Fmv5OTw+diJ8YHlsRzuSHvgJbH3dDCR7tZKx1osq1n4TxrQMCdk+PilXlWTLb1DdyEetVMzokhK0vPLbdENyrnuqE62vHxCrfcEk1Wlp6zztI16dxCCCGE6BgSbEegHYe7sOOw1rimd0opY/rld/CIGm9g92Keuu5Tkk1aysvWQ+k88H8p3H6jlXVrXd4FjlOnwtGjKvbjmTHz5hF09jtniouM3s6w9adj9eUhx1NUDMccjVz46HaSUvwJrz+zlW0bbKz6toJtG2y8/sxWkosbbpwTOqhXmD5dh8NWB2roVJSG6myvXk3IfG6Z4RZCCCEikyyQjDAut8Jb3lJ/Kjee82OHVh5pjoTYWv78y89Z8Pl4fi7oSnl1DI88oXLVBQf5y58s2Kv1JMa70UXFANGANrs9bdrxmtwztdSRAae50JVupcqWwQMPmFFV/9ztKVPggQcUqmuiwo7HVh7+M6Xfwke3E5N1NSaOl/gLHccHCF/NRIfVGk2vwx/htmTgTu4P0fF++2h1tg0BiyRzclSefx5GjAifz52eLosnhRBCiEgjwXaE+W5HX4ortCAse0AevVPLOnZAzWTUu5l58Xcs/mEE3+04DRWFD75IZNuWI9yXs5JKgxtz1jhypgwl90ttcaTdfqIde84UF3Nnb8W2bRXuwf249lotCH/gAS0Qj4nRUk+uvRb+94ku7Fc0DS1sTExwNymoDqVR1UzUGnRFP6Mr+hk1vgvu5P6o5h6gaM/AbK5g0aJYrFYjNpuC2ax1jjx4MAq7PfSnLptNIT295c9BCCGEEK1Lgu0IUlVj5KN1Wqk/o97JL8ZubtLxhtgYksdcTLWags2mkJSkEkMJpev+h7O6gVWGbUCnwK/O2khqfBUfHn9eO4905bVvzuSuiauo2LWO+XN6MAOLN+AGLdCe/7SV0jXrAC0Y9g3E60uMd1MZ7PpGAwmZY4hKiCYnRw1a6aPRCx8boVHVTHyCeqWyEH1lIRii/Wa7Y2KqSU+v9gueExLCVyJpKN+7tTgc2geBXbsgISERi6VOyhEKIYQQYUiwHUE+Xj+UGqcWVF0xegsJsbVh9/cEky5TBhWVeuK7mPh2tVbdw5MLPXlyGi89fwPFK97qkIBbUeCC4T+TGOfg9W9Ho6JjY15P3v5+JDeM30Dp2o+ZO3sMrsczKK/UeWtzl65Zh7tOy5HW2/P8ZsB95UxxobfnBTyuMxq8HSm//0HH4sXgcvnX6vYufCxuYOFjI2nVTIaSmxtknOGCeqf/bLerxyiI9l/0qOVz60J8YNBmv9uazZZQL8VFT06OjoULDZjN0uFSCCGECEYWSEaIY7Z4vtvRH4Bkk53zs/aG3d8TTM6aM4wR2WbOnRzPsNMV3n1XYfFiMJm0/ZYtU7jnPj3JYy5u66cQ1rgBB7hr0moUtJSOlT/3578/ZnlbwVeuXYxu+9ve2tyeQBs4PgNuJWdKvSohx2fAK3atC7ieb0dKTz64pxrKkiUqP22oYe5DW6nb/nGDCx8bq8XVTNBmuw17lqFUFPg9ruVzuwIWUObkqCxc6Grz2eWGGu7IAs3IIKUhhRAi8iiqqrbP988RzGq1tvs1q22V7FvyqffnuUsnsPtoFwBmXvQtg3sUBj0uKiqK2tpazFnjmDVnWNAFeZMmaYGlb9rFpo0uKla82rpPohk25nVn4bJxqMc/5/0yeyOThu5p8DjfWXzfGfCKXev8AnOP+LHTGJFtDj2O1TYq1y4GIC0VundvpVWoOgN282hKXRmUV+hITHCTrM/TAu0mBvXu9OG40wb6PeZJ4/DN526PNI6CgkSyskLnpG/b5iI9vRUS308hFoulVf/uCfzm4cSHsZP1m4fWvoenIrmHLSf3sHV01vtosVga3EfSSCLAtvyu3kB7UPejIQNtXy5T6MoXy5driwl92WxKRHyNMSLjCHdPWcXLy8ahqjr+s/oM4mNqOPO08OUNPTPgsAodBM3R9tVQa/XyyhOLKouKwe1W6dmzFQLuFlQzqU9X8BNKdRmunqNBpwW6wfK520NjGu7IAs2O09A3D4sWxUpuvRBCdBAJtjuYy63w5kqtqYqiuLnxnB8bdVxDwWT9rotms0qkzG2d0ecId0/6gZeXnY2Kwr++PZPkoWfRv6+BxITwM9b1+c14H59J1tvzcJn8K5CYTNoHkOxs7d4kpcahZI3zXqekFNyqSu+eEEm1FpWyA+hrK3D1ORuMHZcS0NACzPZaoCmCs1qNQfP5QUpDCiFER4uEyc5T2tfb+2O1xwEwOWsXqQlVjTquoXJ2vu3PJ09WiVVKmj3GtnBGRgH3XrgaRVFRVYVnFri54LIYRmSbmTVnKMljr0BnDP9ZsH7e+oQpCd7jE8xGcqZo98hkgsWLtVKBnqY6w8/QM+vp00k+80rvdaxWOHAQIi2zSqkqxbD7S5SqjvsdNtRwpz0WaIrQGvPNgxBCiI4hwXYHstcY+WTdMABio2qZOmp7o4/VKnQELzU3aZIWWIIWaL/0govSdf9r8Xhb2zkX9MKSGI+qapPJGf3LiYpxkvulnhmzLSRkjvHuqzMaMGeNI37sNNyDryd+7DRSx13mXQTpK/dLPb/9fTQL5tWQM8XFzJkwf75/JRLQZvxmzE4mcdBY72NlNjhwIPICbpwO9Hu/RrHu75DLd/QCTRGefPMghBCRS9JIOtD7a06n1qX9CqaN20C0MXydZl8ha1TnqCxYAIXHVK75hTajXfxd69bZDpW6ES71I9gxalQMGzdE88trFdasr0Sng8FDbJx/bhKvvqrHZcoAVmkz2GdeyYyHksn98sQM3fLlqt/Pvv67RM/j/6+WubN3oaYM48knQ3V2VHDPGQj84H3MVg778yCjj4pO14IZQZ/FkrYKPUmJLiy65i2WBEB1o89fh7vahjt9eIvTXZq62NK34U5FhZ6EBJfU2Y4QkVAaUgghRHASbHeQg4cUVu3qC0B3SxljG1ggWJ+7zhmyRnXxV+ugzkkFtHqetm/9at8Z5ZwpQ5k/pwelaz8OCLh1RgMp2Vfw3bpk0tN1OBxQUQMmk8rixTB/fjT5eSo9+9ipc8KXX5excGESldXa+RMHjT1+Pf9AorQ0fLBZVq5Dt30V6hnDwu5XXhnYMKaiAvbvh759mxlw6wyUpF7O9Bn17lPOUBbO60FK8SfNLjmoK96F4rDh6jMO9OFb1YcSvHJFwzWzPQs0hwyxYLVK9ZFIoX3zYAhZjUQ+EAkhRMeRYLuDzH0uChUFULntvLXNmqRsaoWO1uBbv9pX7pd6ZmBh7uwxx8d0gnnwmRSUpfDuu4pfKsfGjQpPPOFJ74jhcD706KV143nqGRuLXonBAbjNA4PO2PnmpQfj6SwZbwr/FbopXsUe5PFKO+zbpwXcen3TfkF28+iAQBsgN1fP9JkWXn9mNCbr6iad05dSeQzDnmU4+4yHmMQmHSuVK05Ovt88tHdpSCGEEKFJznYHcLvdlB1fsDS6Xz69UmwdPKLGC1dyMPdLT+qHP0PaAJ54QgnImbbb/fOoy8tiKDgUh6pqOdP3/bYaR60eW5CZZ9Dy0idNCj7OnCkujI6DmLPGoTcoLFkCS5fCo4+eaPgD2vFx0aG/YrdXwd594HI2Lee11BXmPuXqKXVlNOl8QdVUYti7vMl53I2pXCE6J+2bh3IGDbKRnl4ugbYQQkQACbY7gE6n48n/V8PIjHymnbWxo4fj1ZhsicbUr66vymEMCLQBjh4NfKzMGsuxI1rAXVEBf/z4cvS64Lns8+bBjBmQk+P/eM4UF889Y0Wf2J1Zc4YxfLiOqVPh0ku1AN3TYXPSJHjsMRVn0e6wz6m6GvbsA2cTAm5bRegGMNDwfWw0Vx36/HXo934NjsaldUjlCiGEEKL9SBpJB+nVU2X65OanEbQWkwkSEyAxUQu2d+0BV5h1mg2VHPSkbviqtAcP3qKjg5+jtCQWRafSNb2asnI9v/l9BeedZ+abb/wDWLsdFi6E++6D++/X6mef1t+N3rqVOqvCg38ZGjC7vHw56PXwzTewcaObdEspJavWhH1OoJ17z17o30/FaGw4GDUnhF/smpjgblHDm/oUexGG3V/gTh2Iu+sQ0IV+a0vlCiGEEKL9yMz2KUanA3Mi9OoJWUPgtP4KXbooxMQoREUr9Okd/vhwJQdzprjQ2/MCHjfHB0/TCJcGcsbpcQwZFIuqQmWlis1exrkT/BcUTpoE06fDtGkn6mfrqMO2bRXO2D5h0jjAaFSZMLYY67qljWqeA1BTAz/vgkOHVOz28AFpsj6PnJwQ9ynHRbI+r1HXbBJVRVe0E8OuL1DKj4TcTWpmCyGEEO1Hgu1TgNEAycnQN0MLsDMyFJKTFQyGwBnahASF9G6hz6WVHLQGBNw5U1zMf9pKxa51AcfobD8HDe7mzdPSOOpvmzRJSw/57NM4Cg6ZUFUt0C212fjwozqWLIElS7RukNOmaTPcnuOio7VzNZSmsXu3wv2/SyFp5KUNNs/x5XJBSak2y71zp8qxYyq1tYHPzWRbz8J51oCAOyfHxSvzrFr5v7ZSa0eftxJ93vdQG7j0U2pmCyGEEO1HUSOue0f7s1qt7X7Nalsl+5Z82uTjoqKiqK2tBcLXu8blJDUFzGaIi2t6Dm7eARVbiHWbftf1KTkYqs62zmggOft4nex6ZckWPFuGISqa8qpY9u5V6NZNSy/Jz4eoKFi1Cl5+pZZu3StQVW1m/pabEvjs0yi/PHBPgG5JqIAtbxM/dhojss0hn9+SJdpseM4UF3Nnbw2ooNIUOqOB5CFjcMZlUGHXkWR2a/W0KzZhTziDUlcG5RV6EpKMREWplBY7SYxvYc3tRg/OgLtrFu7UAaD4fwBpap1tXxaLpUPeNycTuYctJ/ew5eQetpzcw9bRWe+jxWJpcB/J2e6kwtW7XvBMD1JKPiZK3/gmOfX17gW7a7Rc5fqaU3JQQeUXv1C5/34Fh0Mr21daqqKPTWL63fDb3ypERcEf/0hAEP2v16KortDxxDNOXG4dr/2rgjEjTSxZEuM91+rV2iz3yuVazriW7jLUr+GP7zk9HTZzv9TjejwDaF6wHfL34FNP28R6StIuZ/qMuFavud0gtxNdwU8o1jzcPUahmlK9mzw1s9PT2+bSQgghhJA0kk4rXL3r+39voS51TIgjG0enU+jbR1tM2FIJmWN44PfJ3HWXzptbPXUqWCw67r4bli1TcDrhuecCW6ovXw7PPadyRlYdj12RS5TRjaLAug12brql2nuuJ5+Es886kTMeKt3FMwM+b96Jxyoqm/8kQ/4ecvVMn2Gh0DC6wZrbdvPoZl+/sRSHDf3er9AdWhc0tUQIIYQQbUOC7U4qbL3rVqrj3JgFk40Raqzdu2uBNmjpIcuWBT9+2TKFKkc03ZMr+PN1XxAXq6Io0K17FWldq4DAnPETHTa38tMmN++9dyLP+447YOZM7ef33gNzWhzmrHFNyt1u6LmB9sGnQpdBcW071NxuJF3pfgw7P8Ww9UP0u3PRH1yN7tg2FOsBqLaCSxZHCiGEEK1J0kg6qQbrXbdSHWdtwaRKQZCa2PWFyiG3VQUfS7lP6bvqBlKFyyt16ABLdCV/uW4pf3z/YmwVetK6VnPN1Q7uvjqf0jX+OeOedJe0SQN5+eUYli/XSh1qLeK12fDjI/e2my/bsBRTvxFB8+CD5aM3p+54U8/RJtxOlOoyqC4jIKPfGIsaHY8anQhRCaimFNS4lPYfoxBCCHESkGC7k2qw3nUr1nHu0kWhqjr0gkloIId8gRbk2utlLyT6dBlvbOt1gFi9g8ev/pjHP8ihqCKBb1aqlB5UuHeKM2jb+6JjdcyYoV0gO1sLtOunq2jt5pN58blfcu8DMQHPYf6cHpSu/Tgg4G5M3fGGtHbN7Rarq0apq0apLPI+5LZk4E4/AwxRHTcuIYQQohOSNJJOKDERukS1bx3n3r3CB8Rhc8gf0PH3vwcGnUeOwOTJWjGchlqv16/fHW1w86dffEGvlFIANh/swV+XnI/LHRhtx8e5mTZNC7SvvDIw0D4xVh0HjsQGfQ4zZltIyAzMg29M3fGw+7RVze1WprPmYdj1GUrZwY4eihBCCNGpRGSwXVNTw1NPPcX111/P+PHjGTZsGGeffTbXXXcdH3zwAXV1gXmllZWVPPXUU5x//vkMHTqUiRMn8vTTT2OvP53aiRmN0L+vnr4ZCgmV7VvHuaEFk+FzyBXOHKsGBJxvvenipZe0gNvTer1+wB2ufrdBr/LIFcsZmH4MgH2Fqfz5wyk4Xf4Bt96ex9lnuXjySdi/P/zzLC0NXiYx90s9LlNGwOONqTsecp/2qLndmpw16A+uRr9/BWrNyfO+EkIIIdpSRNbZLi0t5bzzzuP0008nIyOD5ORkbDYbK1as4PDhw4wfP55XX30VnU4L7qqqqvjVr37Fjh07GD9+PIMHD2bHjh2sXLmSYcOG8fbbbxMdqjc4naPOtl4PgwdBYoIJe5W2KBCdAbt59PE6zlp+cbK+bWs3V1So7AsSsLoHX8+EKQkhj/tuWSVJyt6A2tx1hbuxjLmM8kojFRXQpQvUOMBapmJOVIlVSihd9z/cTmfImuKuWievfnUmP+7XVnP2Tinl4SuWozseN59IcbFw/wN6pk4N/fw89beDWfFtLfHR1YE1zSFo3XH7vo3e/O/KKh1pXY3U1ChUVdSRmOBq899VWzIlJFKR0A93ygCC5u6IBnXWmrKRRO5hy8k9bDm5h62js97HTltnOykpifXr1xMV5Z8f6nQ6ufXWW1m5ciXfffcd5513HgD/+Mc/2LFjB3feeSezZs3y7j937lxeffVVFi1axPTp09vzKbS6ZAvo9fWCGrcTk3U1Jo4XjW6HvN9QCyYbyl02J7qg4vgPxz/e6fR6zCOv4K679d6qJOApz6dw8cVw9lkpzH96Koqi8sDvA/PBPbnUd01aw6JvXaza3ZeDJcm89OVZ3DvlBxTFtzLJGKK6DSQnJ9qvuY73fDkqq1eHDhxrnUZGTDjxmvS9fv2646Fz2F288GwFXcvasLZ2e3A50R3ZhFJ2EFfPMRATuoGQEEIIcSqLyDQSnU4XEGgDGAwGpkyZAsCBAwcAUFWV9957j7i4OO69916//e+9917i4uJ477332n7QbSw5uaNHcEKXLgrm47GVzmjQyuZFxbBkicrSpfDoo9qCSI/LprqIMUUxa84wRmSbmTAlgRHZZn77lyzyj+hZtco/wF2+XFvEOHOmJ186me/WBc8H982lvvnc9WSmFwJaDvc7P5zh3ddTmcRZtJuHHw5MV5k0CZ5+GrZsCf5Fz+TJKl995T/OcLnc4XLYf/2gBZupGbW1dQbslmzyE69jq3I9h8zXYbdkg67jPjMrVaUYdueiO7oV3M1voiSEEEKcrCIy2A7F7XazYsUKADIzMwHIy8ujsLCQkSNHEhcX57d/XFwcI0eOJD8/n4KCgnYfb2sxmSAmJrK+qu/dC+LitdnbWXOGMXxkNFOnKlx6qbbYcfFibdw5U1z87a813D8zOkhTF4UnnlCYOTPw/MuXawsaPfulp4euZe3JpVYUmHHhd6QlaFPo3+wYwOc/DfTbvy6mN5deqpCdfaLOtqf+9gUXKDzzV3eQ3GqVBx5Q/BrhBLu+r4bqb5c4M3C7m5DBpTNQkno5N88aRtZIM2dNiGfICDM3/24oJamXd2jAjaqiK9yOYXcuir2o4f2FEEKIU0hEppF41NbWsnDhQlRVpaysjFWrVrFv3z6uuuoqxo0bB5yY4c7IyAh6joyMDFauXEleXh7pIfpSm81mb/53e4lSjEFn74Pp2UOPKe7E+Ez1PlR0lF5jR3LDbwJnb5cvB71e5ce1tbgKd1FZ3idk4Ll8OUGDbfBvFR+sbbxHRaWe6OP3Mgr4wzUrmP32ZOw1UXy0bhhp5lrGZR727mu3+9bY9ldUUM3fH9lP7eN9qKjUkRDvRh8dw7jxUQGlC4Nd3/excMor9JRVxNCrR+O6V1pNo5g+M1QXymT+/fdxWOw/NupcrSXwdeiCgjWQdhpK9+EoUZHxOo1kjcn1E+HJPWw5uYctJ/ewdZys9zGig+26ujqef/5578+KonDbbbfx4IMPeh+rqNBmMePj44Oew/N4ZWVl0O0AtnAFpNtIta2S2traBvfT6yEqCuxV2sy2KS7uxALJDlZk6Bm2Akl1hYPKLd/jHpwR9jyhAum+fbWUlHnz/MsOmkxagJ6drR1rTo1FUUZ5G89E6Wr5/dTlPP5hDk63nleXjSLGYCerZyEJ8eFTHUyxLkrXfg98j4KWfx0/dhp2e+gPRgnxLirr/S4buk5CvIv87Q6io8Bkavhbi2OGHuTmhrrXOo7V9CCqakWD52ktYV+HBzZD/jbcKQNwpw2S2twhdNbFQJFE7mHLyT1sObmHraOz3sfGfECI6DQSk8nEzz//zI4dO/j222/5wx/+wPvvv8+NN94YNng+mSRbtLJ7kchW0cDs7fHuiQ0tngxWv3vSJPjoIy0lZelSlaIi7RyeDpCrV2tVQ665BoafoWfWnKEkj73C23K9W1Il912wAlBRUXghdzx5RZbjNa+DjydYPW9oXC3t5h5zMJ9GpZM0eK87ogtlOG4XuqKdGH7+FF3h9s69GFQIIYRogQj7Fzo4nU5Ht27d+NWvfsWf//xnNmzYwEsvvQRAQoJWbi5U8O15PNTMd6SLpIWR9ZkTws/eeoLs8E1dVAoK/INNrRqJNqO9fDk89RSce5aDnCkuZs4M0wGy3mLFwT2KuH68llrhcuv52/8msHvtDp77a/i62PU1ppZ2c4+prdWa+zSksfc64rjq0B3dimHnp+iKd4EaoeMUQggh2khEp5EEM378eADWrl0LQJ8+fQBtoWQwnsdD5XRHskhcGOkrWZ9HTs5QcnMDZ11zclx0i8nD2QeKDq5j/pwezMBC7pcn9s2Z4uK5p8vQ6d1s2pTK7t0KMTHarPW0aSfau+fmKlSU1TF39m7cyUN58sngs7y5X+pxPZ4BrPI+du6g/Ry1JrJ8WyY1dUae+Xg8/xe7jLmzB+F63L8udumadQHt2MG/dGBbHFNSColmlcSE0L/rhu51xHehdNagO7IJXfFuXF2HoCZlSH1uIYQQp4ROF2wXFmql3QwGbegZGRl06dKFDRs2UFVV5VeRpKqqig0bNtCzZ8+QiyMjlc5oIHnoGPKNGdgq9CQlurDo8jDVbffZ6URTG7992qlRism2noXzejB9psUvCPR2RixeD2YFs9lF5bGPmf/YGBz1As+S1Vrg6R58PddcE7opToVdT9eUdArLw38ZU16pC/i65hfZP1FYkcCWg+mUV8fy1JIpPD5Mh9meh2H3Oip9Al+d0RCyeU79WtrB+B5fWaUj6ngjGwjseurrUD4MzFTRG4IHoI26151BrR19/jrUop9xdx2Kau7Z0SMSQggh2lREBtt79uyhR48exMbG+j1eXV3NU089BcCECRMAbdHkNddcwwsvvMCLL77o19TmxRdfpKqqirvvvrv9Bt8KdEYDyWdewV0P1WuIkjOUV5/rhaXqIwBKUi9n+ozAfRbO60FKcTs0TXE7SSn+hNefGU3pnHpdLIv9A/74OBfx6mrydq5CVx4YrDaUBpGUauLXD5qYMSP8bGhivDvg3IYoAw8/0o2bfq3D6XJTWKRy43Q4LSOLBU9rTWncdc4wjWhONK8JNovt4Xv89z/oWLwY/vSkJ+UlOuy56pxw+Aj07h3i5E24152B4ihHf+AH1FgL7m7DUGOTQW9sl9luhyMWq9WIzaZgNqtYLHXExFS3+XWFEEKcmiIy2P7ss8/417/+xahRo+jRowfx8fEcO3aM7777jrKyMkaPHs0tt9zi3f+OO+5g+fLlvPrqq+zYsYMhQ4awfft2b7v2m2++ueOeTDMkZI5hxkPBy7zd+UASrz+jNUSpH2h79pk+08Lrz4zGZF3d9oNtYhfL3r1hzx6orleBRMvrHuqXZuKRk6Oyeg0sW6Zw5plaTnf9nG0IvVgxIXMMs/6YzPYt0HdAGUajSlyci5/3VPHAQ0k8+/AYbNtWhW1EMwMLc2ePOT67HZzv8Y8+Gia3PMS5rGWQmKiSlBQi4OyAjqFtTam2ot//3YkHdAbQR6HqjVrwrdP+q+qjtJ+P/78al9KsrpU2WwLTp+v9Oojm5OhYuNCA2VwR5kghhBCieSIy2D7vvPMoLCxk48aNbNq0iaqqKuLj4xk4cCCXXHIJV199tTeNBLTmNW+99RYLFiwgNzeXNWvWkJaWxm233cavf/1rYoKVu4hgYRui5OoonZOh/X/IffSUzsk4EZRFEJ1OISNDZfcecPpMxmoLCoPndS9YoGPkSC04mjdPq0YC/oGsZ+Fh6ZrAxYq+9/Pg/kT69reh00NCYh3bfq6mLrYPsKrBRjT188HDXSc7O3Qt73DnOnQYYmLUiM7Vb1NuJ7idKPWyboLdDTUuBXdyP9SkXo1q6uNwxAYE2qCtCZg+Xc+iRbEywy2EEKLVRWSwPWzYMIYNG9akYxISEnjkkUd45JFH2mhU7afC3kBecoUONWj44b9PpIqKUuibobJ3L3iq3oVbUFh4bBh2u/Z87XZt8eTMmdofhwP691cxWLeGXKzoey9qHAYOHUygV0YFigJJlloWvKLj5uFKg/csWD54qOuEa8IT7lwuF+zbD6f1U4mKPkUD7kZSqkrQV5VAwSbc5l64k/tBXOjyPVarMSDQ9sjNVbBajaSnS7AthBCidUVksH2qs5jD5y83psxbYoI7otMM4uIUevZUOZh/4jF3nTPoIsSEc4b6HVu/A+Smje6w6R3171dlRRTHCuLo1r0KVYW1G9xUHD2H357RQHm9IPngoa7T0Jcp4c5VVwd798Np/VWMRp/gsIMXxEYsVx260n3oSvehxiShJvfFbekDev9mOjZb+A8vNptCJ1tHLYQQohOI3OnPU5ReDymGPHJyQtWl1hbFaaXgQu3TCUrBARaLQpe0hveLVUqYPDl445fJk1VilZKwxwer811aHENpcfTx9XgqO4505cm/VjNpYvCqIaHywUNdZ/VqLbe8ueeqrYW9e6Gu7vjz1hkoSb2cm2cNI2ukmbMmxDNkhJmbfzeUktTLG5VGcSpQHGXojmzEsGMJ+oNrUCoLvdvM5vDNgxraLoQQQjSHBNsRJtkC8eXrWTjPGhBM5+S4+MdzZZhs64+Xggu+zyvzrNpsZyeQnq5gTgy/T+m6//HS866AgHvyZJWXXnBRuu5/YY8P3mBGYdiQGC6YqOLJCM47HIULG+ef7996PWeKi+eesaLoFOLHTsM9+Hrix07DnDXO27Gy/nXmzdMa89QPuMM1wqmvplZLKXE6Vezm0WEXxNrNoxs83ynF7UIpO4B+3zcYfv4fiu0QFksdOTnBA+qcHK0qiRBCCNHaFFVVT/npHKvV2u7XrLZVsm/JpwGPD8w83sjGJ2XAt8xbl7rt2CuP54eE2KezpRW43WrQCiW+DLExJI+5mGo1xVuyLVYpoXTd/3CGO/C4qIR4UsZdSaUjDpsNkpLAFF1F8Q8fsXh5P77cMtC7b3yci1n3R5HeXU9aF61OdnmlgTqnjuXLFebN01JZcnJU5s8ppXTNR95ccb8629U67/G20joS4l3emt1A0Hre9n0bMfUb4fd4tCMPkjIYc7aZmTO1xZcOB8TGwqpV2qLRNT/UoLgc7ZZeYoqLw15V1SbnbivurllYo7OZfnf9aiQqCxe62r0aicVi6ZC/e04mcg9bTu5hy8k9bB2d9T5aLJYG95Fgm8gJtk0mOK1/+LzSzhjkNEZtbWCFktZiiI0h9ZwbuOc+PcuWnbi/kyervPS8i6Lv3uLjH/qxdEOWd5tR7+LBX+t4613/2WRPK3lPh8ucHJVnH95C2ZYfGj2eUPW8L5vq4tlnVH59v65enW8X8+fDvv16/vY3/yosnvEYDCoXX+wbQLpYOM/aZvXWm/U6jICcc9XcE3vaeVhtMR1eZ7uz/sMSSeQetpzcw5aTe9g6Out9bEywLWkkESQldCGFk55WoQR0bVCAI3nMxQGBNmh1u++5T0/K2IuZOnI7V4/9ybutzqVnznMKa3/0TylZvlyrnz1zpvZzbq6C2zyQpghVz3vY6XruuU8fvM73TB2HDgXW7faMJy2tfjm7CEsviZCcc8V2iPj8j0m35DNokI309HIp9yeEEKJNSbAdIfR6MDe9R8dJRatQ0vrnrVZTAgJtj2XLFKrVFAByTt/Fr8760W9795520rpWASe+AFq+XEvl8CivNDZpPKHqeWdnE3KcubkK3bsHP9/y5VBTE+wYPaWujCaNra1EVM55TSWGPctRbIfb75pCCCFOWRJsR4hki9bw5VTX2AolTdGYkm8eE4bs45Zz1/ptT+taTXpPO74Bt28dbVN80zKxQtXzbqg2d7jtR4824lo6A3ZLNvmJ17FVuZ5D5uuwW7LbZVa51BWuUVMHfChwO9Ef+B7d0a3te10hhBCnHAm2I0TyKZxCUl9jKpQ0RVNLvo3LPMADd+nwrGZQVbAk1xxvhKM96KmjPWkSxEU3rYpFqDrpDdXmDrc9OrqBa3VwGoetQh92e0c1YdIVbke/fwW4ahveWQghhGgGCbYjgMnEqdueO4TevSG2geCzsZpTp/uswQdJtZhwu0FRtIA7IbGOjP42zjvfzerVMHkyLFig4i7Z26TxBKv7DRw/Z+jSdAUFoZ/D6tXBjjlRb72j0zjMCQ00DGpEo6a2olQUYNizDBwR3AVKCCFEpyXBdgQ4lRdGhqLTKWRkgDHIhKvOaMCcNS5szWtfzanTXbFrHa/8vZIuyf4Bd2yci1hTOSNGuDnzTJg9G1yu4IFkqHHa920MUvcbtmx28dILLnKm+AeeOVNcPPdXKxMnBgbjkyervPQSbNlS75h69dbDpXF8/72eiqiBbZpeEvFNmGoqMexZ1nZ53Kobqq0opfvQHf4R/b6vUR3tW2pQCCFEx5DSf3Rs6T+9HoYMbny+doeU/uvAkm0Oh8qeveCJZ0OVzcuZ4mL+HCulaz/21rz21Zw63Z6a2TuKBzFnrp2aGtUbdFfZDRzYn4jqVti42kbl2sV+x6gJGRhN8cz8jc6/pvPxcZZv/pykETne8SQlqcRQgmPfahLPuBhbud5bDzwxwUXpmo8BSD7zioBtFRuXEJXWj9rYDCoqdZgT3aQY/H8/W5XrOWtCfMBzNJlg8WJ4/nm1Xu3p8KUDm/w6PJ7GMn2mhdzcEyklng8FyW1UorA53F2G4O42tPknUN3gsKFUW7U/VaUoDpv2uA9TUhq2bmMhytTCEZ+6OmupsEgi97Dl5B62js56H6XOdiN1ZLCdlgrduzc+haTdg21PkFQvBaGt6zj7sttV9u0HtxvMWeOYNWdY0FnanCku5s7eim3bqrDni4qKora28Tm67sHXc8FlsfTuW47BoKKq2kx3ZYWR/LwEvvmyEt32t/0+CIwZq2P16sBSfaDV035mTi33z4yud0/dvPCCwm9+A0uX+tcDX7gQ3E4X9/w6eK3w4hVv+X1o0Om0pjexMdp/K/tMY+iowHI3jz5KyHHm5Lh4/ZmtmKyBOSotrbMd8U2YokyohmjQ6UHRe/+r6vTajL+i8/mvHlCgpjxkYB2MKS4Oex04+58vAXczddZ/nCOJ3MOWk3vYOjrrfZQ6251ApC+M7OhcXwCTSaFPb62peqiyeaDVo3aZMlr9+okJbhzVBg7sTaSuTvHObscn1NGjdwVxMdq0u2/97Ozs4AEsaPW07/9NTJB7quOee2D48MB64Pn5BATanm333KcneczFfo+73VrTneISyD8E7rLgeeLhxtnqVULcTkzW1fQqf4cs9d/0Kn9HC+TbM9BubEWWWrsWOFcWoVQcRbEdRik7iK50P7ri3eiKfkZ3bBu6o1vQHdmE7shGdCV7UaqtjQq0veqqMOz7BupOvkZVQgjRbpyRvchdgu0O1BkWRkZKybbERIVevRquWlFe2fovac+CxpoaAwf2mqmt1XkD7kRzHa++Vo5b9f8gEK5MX3Y2fikbvpYtU/xqeHvExyuNqhUeSsWudUHzxH3LGQbTUVVC2kSENNYJUGs/HnBLcx0hhGgOpeJIRw8hrA7610VA51gYGUkl2ywWBZsp/KyhOSUOXdY4KnatC5q73RxaoNqDGVjI/VJP3t5E+vQrJzraDais/NGEzj6S6wafCIZjYrQPUzNnasG1w6Glc6xaFbwBja9ggXp5A4UybDYl7Cdnd52T0rUfM3f2GFyPZ1BeqSMx3o0hJgYIUTeQ41VCWqtIRwe3a2/oW5rXnxkdNGWmXdRUYtj3Dc5+54OxlcrwCCHEKUJXfgSXJaOjhxFSi4LtSZMmNWo/o9FIUlISQ4YMYerUqYwYMaIllz0pGAxg6gQdIxtVsq0dK6alReWRkzPUb5Gdx6RJ8N77etatHcr8OT1CLpZsqmCBqupWePpvtRw4EgWofLezP4lfOtFmihU2bIClS+GJJ+DJJ/3HePXV2j6hBKunndhA3XGzWaWh2hbuOufxfPZV6IBKIClrXMj72apVQkLm/g9l4bwe7ZL73+C3NHMyMNFBwTZATQX6/d/g6nc+GEJ/ABJCCOGjphJqIru6U4uC7cOHm1Yma9OmTSxevJgbbriBRx99tCWX7vSMRqX9OkbqjWCIQTXGgCEW1RADxvr/jQEVdMW70JXsBpfWqEUr2dYOwVgjmWzrWTivR0BVi0mTYMYMmDYN7HY9M7Awd/aYBhdLNlb9QBVgxiQjC744h/2FWgrH0i9Uss+qYvUPJlQV/vKXwHzo5cth/XqtbnawVBKtZnbg45WVKpMnB2/n7qkV3py/asp3rWP+U8dn7YNUCTEVr2/GWQNFwqxyJH1LE4riKEe/zxNwR3X0cIQQIuLpyiM7hQRamLO9c+dObrrpJhISErj77rv573//y/r161m/fj1LlizhnnvuITExkRtuuIFvvvmGZ599li5duvDWW2/x6aefttZzEPWopjRcPUbiHHgxzqFX4cy6EufAi3D1Ox9X72zc3c/AnTYQ1dIHNb4LxCSCPgoMUbi7DcU58BLcXYaAznA8uLUG1EiuX8e53bidpBR/wuvPbOWnjS7eew+WLNFSNbRAW9utrRZL+jJF1zHzom8Z2P2Y97HySgdnnV3FqFHw5ZfBj/vNbxQWPOcOyJ/OyVF57jnYtMl//0mTtG9CXnpJbVKt8Mbwzto/tJWNq2388E0F2zbYeP2Zra1aji8Scv8jubGOL8VhQ7//G+lqKYQQjaBUtFF/hFbUopntt99+m8WLF/Of//yHwYMH+20bMGAAM2bM4IILLuAXv/gFGRkZ3HDDDfTr14+rr76a9957j0suuaRFgxcnqHHJqObeuJN6gjGuZSc7HnS7UzPRFf9MSumnvP7MGZTOqVeyrbiDSrYdr2phpx/XXJMQcrfySl2brwCOMbq4P2clC5ePY0t+dwDKKqrZvkMBYoMeY7dDYUEVc2fv88ufjk2I5tzzYrjzTrj7bi13OyZGK813wQUKq78t54W5NQG1wou/C10rvDF8Z+0VICYdTGmt+61LJMwqR9q3NOEo1WXo932Lq98E7YOwEEKIQK5aFHsxanQDuZYdrEXB9jvvvMPYsWMDAm1fgwYNIjs7m3feeYcbbriBwYMHk5WVxY4dO1py6U6tsjIBqzWJMuVOLEkqlugSzMWfgbNpAZMak4Sa1At3Uu+2qdNriMLdbRju1Exii36ml+19UJ2tm6MdbtEc+G1LTDISFaVSWuwkMd5Foi58EJIY76bS81TqNbXxNJGp39TG05TGZcqgskpHWlcjNTUKttI6zMlGoqNVio7VER/nRm/Po2LXOow4uWfKD/zz67Gs398bgDferiIhUUdFefDc2/hYN7a1/vnT5YOvp7Awxi/H25e1TE+SUoBqioY6HWqNmxp7AaDVH3eZMiiv1JMUYpyNyV9XgSMFUGlX6d0T9IbWCbrbNfc/1GuqYlPQFKTWTplpLUq1Ff3+Fbj6nqulggkhhPCjVBzVSoNFuBYF2wcPHmTAgAEN7peYmMi6deu8P/fs2fOUDbZLS5O4+25P7q0WyEyenMbLL15Pl8K3Gw64YxJxJ/TFbe6lpX+0B0M07vTTcacN1OoLl+wGd/jgqVHCLprriaKo3PWA/zZPbvakC+Hvf3eHzH3OmeJCb8/Thh8bQ+o5N3DPffUbwqTx0vM3eBvC+Dal+f4HHYsXw5+e9ORdR/tcP4YLp8LZZ51YiEmdk9vPX0O00cn3u/qhqtAro5ID+xTslVEhx+aroTQGc2oss37n39DnsqlDeXZuFr++T0/ulyee25QpwcfZ2AWj5eXw827I6KMSF9fygLvdZpUbWogZad/SNECpKkGfdzzg7qjShEIIEaE6Q742tDBnOzExkR9//DFsN77a2lp+/PFHEn3KKVRWVvr9fKqorEzwCbRPWLZM4e579dhSLwp9sN6Ic8AUdMMux901q/0CbV/Hg27noEtxpw083jmv+cIvmksmd0XgtuXLYf58raTeb36j4+GHtVxnXzlTXMx/2krFLu0DXvKYiwMCbQhsCOPblGbmTO06wRY4eq6f+6WeGbMtJGSOAbSujTee8yOTsn727t+nXwVxphPvj/pj8+Wp5x1MTo7KmrVKwP0YOUrPvfUCbdDyxZ97Dn73u8BxNlZdHezZAwUFKpUVKi5X82cP2iv3v8EmTAlndHxjnSZS7MXo96/QVtwLIYTQqG5tZrsTaFGwPXHiRI4dO8Zvf/tbjhwJ/HRx9OhRHnzwQQoLC/3KBO7du5devXq15NKdktUaGPB5LFumUOoI3ZjEnTIAYhtuCdouDNG404fjHHgxanzXZp8m/KI5hfT04NuWL9cWRNrtcOmlCs/Pr2HbBm1x38bVNubO3krpmhOzuNVqSqMawvg2pQnXWdFzfQhciKkocE32Zi4+Y7v3sb6nVfDoI1Y2rCoLGJuvUI1ncqa4WPCcm9/8JvB+TJ4MX34Z/Lnl5mrbg42zsVSgsAj27oet22DnzyoH81UKi1xUVamojf36zmdh67YNNlZ9e/IuxGwLir0Iw8//Q7/vW5Tyw53ia1MhhGhLir240ywkb9H3kjNnzmT16tUsW7aMb775hqFDh5Keng5AQUEBW7duxel00qdPH2bMmAHAtm3bKC4u5uqrr2756DuZsrLw2222EF/X6/S4UxtO12l3xlhc/SagK9qF7ujmprWppuFFc+G6MHq22e1QUlhHlvoOvQBHmcreff6xW8j76rNdh/8ivXDXrr+9/kJMRYHLR28j2ljHR+uGo6rw0VI3W9cXcl/OOmKiggeW9et5V1TqvXnihYVRvPuu1hRn3rwTVVfq6sKP03e77zh9c9M96RSNye2uqdH+2O1uamtBp0BMjEqcCeJiIS4OoqND3O/jC1u9tazboD57JCzEbEtK5TH0lcfAGIc7pT/u5H5Sk1sIcUpSOkkKCbQw2LZYLLzzzjvMnTuXpUuXsmnTJjb51C2Ljo7miiuu4MEHH8Ri0WZls7Ky2Lx5c4sG3VklJYXfbjarUBb4eKT/g+pOy8Qd3wV9/hoUh63RxzW0aC5Yc5dg23wX18XEKAzor7Jn34lA02wOPQtoMkHXblAdM42KWhNLl2oBramB9aZ+1/dZiOnrwuG76J1SxqtfZVNVG83uo12Y/c4lPHDBCvp1LQ16Xk9lEJ1xHWljr2DGQ3EBOeuLF58ocxgfH36cvts94/TNTffLa57S9NxutwpV1dofD6NRpV9f7XfR3pq0ELODO1q2SF0VuqNb0B3bhmruhTv1NNS40N+MCSHEyUYX4S3afbV4msdisfDkk0+yatUq3nzzTf72t7/xt7/9jTfffJNVq1bxxBNPeAPtU53F4gqok+wxebJKckxJ4AZFhzttUBuPrBXEJuE6bXKTZuC1RXOhc5QLCoLPlE+apJXD0/YLXFwXFa0w4DSIPv75JFYpCXrfTSZYulTlgQcURmSbOfdcHZdeqp07JQVCVab0u36IxY4eQ3oW8tS0TxmZkQ+oVNdG8fSSiby/eljIY8A/f9yXb86473hCjdPDd5yhzt3c3O766upgz16w29s/1SH8a8rntXJ8IeXNs4aRNdLMWRPiGTLCzM2/G0pJ6uWdZzGi6kYpO4B+z3L0u3NRSvdF/gcFIYRoKUd5p1rHoqiNTro8eVmt1na7ln81Es3kySovv+Siy7HAaiTu5H64e472/myxWNp1vM2hVBSgz18LzprwO3oqRwQrxTa/DFC5a0boTpFnn60trguV8+t0quzbD3UEr0byyisq779P0GomkybBnDkwe7Z/7rbf9c/SFjuGysGu76cD3fjHV+OodWmBXJfECh685GuSTCfukye9w508lN179MTGBqaOgNbIZ+pU+Oc/3fTtq/DEE0rAOB97DL77Dr5f6T/O+LHTGJFtDjnOjattVK5dHPa5REVFhV0YDdqC0T69ITGxHWe4w72mfF4rdks2N88aFjS/OyfHxevPbG3zjpamuDjsVVWtf2J9FG5PwypFD4oOdHpURaf9v6LXfjmKXst5UvQtXuzcUTrD34eRTu5hy8k9bB1NuY+6op/RFfzk/VmNMePKvKCthhZWYyaUWy3Yrq2tZceOHRQWFgLQpUsXBg8eTFRU5DdkaO83iVZnW4+tTMVs1ma0Q9XZdg68GKJP5AJ0mje1swZ9/lqUioLw+/l8le9Xiq1ene3yCj0Jx+tse2pe19YqlJfVhf363+1W2b8fanXxpIy7kkpHHDYbmM2gU1ROHx76y52NG1zERtdpdbatTpJSoomK0VFSDCmpUOtwU1bsICHe1eha1o5aHfM+n8D+wlTt6Sturhu/malXpkJiBkZTPDN/o/P7AODfil577Ntv3CTGVGB0HMRg6c53a5JJT1e8jXAKClTOPcdNTUUlSoU2Np3BQPKYiyksT+Occ0MHwN8uq0C3/e2wz6MxwbZHr56QnNxKAXdjUj8a8ZoqVIcy/IzQAea2DTZ6lb/TOmMOoc2C7eYyxOBO6IaakI6a0LVTNNPpNH8fRjC5hy0n97B1NOU+6vd+jWIv8v4c6cF2i78rtdvtPPfcc7z//vtU1fuHIy4ujquvvpoHHniA+IaSS08h8fEVxEfZ6Wv9NGiOtoea1Nsv0O5UDNG4+p6DUrIHfcFPoetyN7Bozm+bFdAZMKZezvQHTMdnJbVcEW8d5Xqz3DqdQt/T9BwzX8i998f6lchbsiT8UygvraJy+9vojAYtf/p3sd7623/4IyxfrgO0309j851jotzMvuxrvtwygA/WDset6vj3ijN4b7WeyeclsGmTLmi5QdBSRzwNbxJjKqhcuxid0UBK9hVodUN8A1oVHFYqf9TG41trfMaM8IFvqBz05so/pH3L0KVLCwPuhmpoe373oV5TPsffeVf4DLrOvpCyWZwOdNY8sOaBoqCaUlETuuNOSO+YUqNCCBGMs9Yv0O4MWvQvSkVFBddffz1vvPEGVVVVDBo0iEmTJjFp0iQGDx5MVVUVb775Jr/61a+oqKhorTGfMlxdQnfm7CzUlNNwnjYFNSapVc7XYB1l8+iAY6qTxnD/7wKP8Q9OAyXGaznjjam/3dR85ynDdvOnqz8jKVH7EFJX5+LLr62s31CNFjj78y03WD//+oHfJ3PXXTqmToVrrtHSS+66S8cDvz8xHt9a46tXh87zbigHvbkKjsKRIy37Eq05v/tQx4dbfAsNNxg66akqSmURuoKfMOz6HMPOT9Ed3qB9U9UaDa2EEKKZGvzGPAK1KNieP38+O3fu5Mwzz2Tp0qV89NFHPP/88zz//PN8+OGHLF26lOzsbHbv3s38+fNba8ynBDWxB8SEzqvtVGIScQ2YjDs1s8Wnak4d5VDHNDbobGz97abWsu6WZOfvT0VRXqa14nY6oUevKnr1LUenDwz2HI7Apji+Yws3Ht9a4/PmHe/CWe+5h2u40xqKiuHgwSbU5q6npTW0fY8P+7tvzY6WJ4taO7qSPej3r8Cw/WP0+1doizE7SY1bIcTJozNVIfFoUbCdm5tLamoqL730Ev379w/Y3r9/f1566SVSUlLIzc1tyaVOOZE2q+1wxFJQkMjOnWYKChJxOGKbdgJFh7v7GVr3yxZoTh3lUMd4gs6GOlA2pf52eWXT3lIOh55DBxM5nG9Cd/zQhAQn/QeUER3jn44y4DRXQFOchtIdPOPxrTVut2v539nZWirNe+/Bhg1q2IY7rcVaBvv3a7n0TdXSGtq+x4f8wNHKHS1PSm6Xtgj60HoM2/+L/uAqbaZJ1toLIdpaJ+oa6atFOdtlZWVMnjyZ2NjQgVdMTAxjxozhq6++asmlTilqfBeIS+7oYXjZbAlMn673W7SXk6Nj4UIDZnPT0oPcXbPA7UJXtLNZY2lSHeUGjvEEnT+uraG6oobySh2J8Vpzl9I1JxY7+qYUNJh+0MR8Z8+5bdYYbr3ZwPJvKnC53RijVPoNsFFwyESZNYacHBV92TbKtq0KenxD46lfa9xuP5H/DbBpoxtbvXO3lYpK2LsX+vZVMRgan8fdnN99qOM9v/uZM7U/DgdkDnDRRdmKqbgT1NmOFKobpSwffVm+tsAyqTduSwbEJnX0yIQQJyGta2QD3dwiUItmtnv16oXN1nATk4qKCnr27NmSS51S3F2GdPQQvByO2IBAG7RyedOn65s+ww24009vdkfMRtdRbuQxZ5/lovboz9piw+1vU7l2MbZtq/xmd/X2PG8L9dbOd/Y9t8Vi4Jk5ScQeLxCuKNC9l50RYyr4/e9V9Ho95qxxxI+dhnvw9cSPnUZcTA2XTQ1xP3zGE6rWOGilJ2OVIDXe21BVtVaLu7Y29GxoXZ2KzaZy5IjKnr0qbmteQCt7j5wcrSpJOPVfB54PHFOnwquvHg+0rasl0G4upwNd8S4Mu3PR785FV7yr4fKfQgjRBEr54Y4eQrO0KNj+5S9/ydq1a9mxY0fIfXbs2MHq1au55pprWnKpU4Yal6LNbEcIq9UYtA41aAG31Wps1nnd3UdonTGbyGRbz8J51oDgOdzX/+GOeelvDecoV+xax/w5VnKmuFo939n33CNHwtVXK1yYE8+tN8XjqZpZU1PLr2eUUaobwKw5wxiRbWbClARGZJu5/3epPPuMGhBw1x9P6br/8dLzgU2VJk9WeekFF6Xr/tekcbeGmhrYswccDi2Pu6pKpbhY5cABle07VLbvgLwDWq633Q7lPvfKV84UF/PnWMlbtY49e1WOFWrnqq85r50AOgN2Szb5idexVbmeQ+brsFuyO08TnHaiVJehO7IJw47/os/7HsV2GNRTfNGpEKLFdJ2oRbuvFtfZfvzxx/nvf//LDTfcwMUXX0z37t0BOHLkCJ999hlvvfUWl112GY899lirDLgtdEh9zFo7hp2fBjzsyhiPmtg95GHtXc9z504zZ50V+jPZDz+4GTSo8S3a/aiqVou77EDTjgtXRznUrGRUPNYuV1BWGUeZDZKSIMlUhaXwY4qOVHCkgfevp9mMy5RBVa2Ort1isVfpKCuDpCSVGEooXfc/nNUNJHWHOXeZcRjnnnviXuv0bnplVGAynXhOhw6YKLf557Jcdpmbv/21msrqGGw2JeR4YixJpIy7ivJKIxUVkJYGtbVQbq0mtUsUNbU6yqyNez5NqbPd4PPXAarW+r0hhtgYksdcTLWags2mYDZrs/LBxqrXQ0I8JCRAYiJaykpzXjvegYYqPehi4TxrQNnJhkRcne22ZojCnToQd8ppoG/eh/T6pL5xy8k9bDm5h62jwfvoKMew6/OgmyK9znaLgu3Bg7VFfKqqoijBZz9DbVMUhe3btzf30q0qUoJtNSYJV2ZO2MPa+01dUJBIVlaY5h/bXKSnh0mUbYiqagusbIeaf46GGGIo7HI9d9+rD+zc+aKLLoVvU5BfTWEjynbqjAaSx14R0O7cM7vaUJ3tcEJ1dkxOqSa9ZxWqqq1BK7dFcfigCdBhMsHixfD886p/Tn298fjW2V61SmHxYq2E4erV8J//wKFD0L27lrscG6uV6Zs4wUXRd28FDbhbM9hurJbce50OUlO0DxhNyRP31dpdJ0+5YNujFYNuCXJaTu5hy8k9bB0N3Udd0U50BZuDbov0YLtFaSTp6emkp6fTvXt37//X/xNqW7du3Vpy6ZOSO8IqkABYLHUB1To8cnJULJYWLlRQFFy9s1ET0lt2njBsqRcFBNoAy5Yp3H2vHlvqRaSnKyQ3/H7xq7ntq6E62zqjISDf2pw1Dp3xRPqBb/62r9KSWGbNNFNXp6AoYE6qZcDgMoxRTm/d74Cc+nrj8a2z7Vsr/Pe/h7g4LeD21Om+9FJ4912F/CN6Us68pOGb0k6ae+8B3G4oLIIdO7UPEk5n0+cYWlp6UBznrEV3dAuGnz9FV7i9Uy52EkK0P6WTppBAC6uRSIWRVhQdj2qOvEWkMTHVLFxoCFKNRGXhQhcxMdUtv4iiw9XnLPR5K1AqC1t+vnpKHSkBgbbHsmUKpY4UzGhtxV0usIWZqG+wrvXjGYB/VY/QM7L+XSe1/O0ezMBC7pd6n/1cjBqlZ/eOJHr0riTRXIfRqHLaQBu1dXEsXx5DsAY9vuPxrbOdnX2iEsnFF8Ps2YG1w7WfFV54IcXveXhSaSoq9U1qU98amnPv63O7tRzwklJISVbp0qXxM90tLT0o6nHWoju6FV3RLtypA7RF052gRbwQogM4a7RKJJ2UrOqJEK60wVr5iQhkNlewaFEsVqvRmydrsdS1TqDtodPjyhiPfv93rf6GKrOFv6/eGtSKQu/eKvv2awvygmlMXev6e4SdkcXC3NljvBVQStd+zNzZY3A9nuFXijDKOIxJk3QsX55IRZKDHr3sKAp8+nkVffrXkp+XgNsVODbPeHzrbNevFR6qSc/y5VBVpR3X2A8Mbam8QkubmTlT+8DgSXlZtUqrmx3s3odSP+hOSwOjMfzrpKWlB0UIrlp0x7ahK94tQbcQIqjO2DXSV6sE24cOHWL9+vUUFhaGzeO87777WuNyJx9jHKqlT0ePIqyYmGrS06tJb7tsD9AZcGWcg37/tyhVpa122iRz+JQBs1mFsuND0Cn0zVDZszd4A5vG1rX21ZQZWXed83i961XowHsuJXoYM2Zo/798eQxVdgN9+5djjFIxmZxkDrKSfyAee2V00PH41tn2rRVe2UBRcM+HjsZ+YGhLSWa3N9fct0b4pEla3npSorvJsa436C6B5BSVLmGCbq104FBycwNnuKXrZCvwBt27cKdmStAthPDqrFVIPFoUbNfU1PDYY4+xdOlSgLBtmBVFkWA7BHdaJijyFTQAeiOujHPR7/sGxVHWKqdMjilh8uS0oKkkkyerJMf415jW6xX69VWP14GuNzx7HjlThvqleXiEqrPdnNnw+hLi6rjggmifJiwG9HoL77xfwdatdej00LtvJeW2Gg4fTACUIHW2tXvgqRW+fDkYG1ifZk5wYaN1UjhaKiaqhueeU1m+3P/3uHw5KIrKC3Nrmj2x7FahuBhKSyD5eHpJ/aBbKx3Yg+kzLX4Bt7d0YLF0nWwVrroTQXfaQNypmVJaUYhTmepGqTzW0aNokRb9DfbMM8+wZMkSUlJSmDp1Kr169SIuLq61xnZqMEQ3q970Sc0QhavfBPT7vkZxtPx7eXPxZ7z8YohqJC+5MB/7LOAYo1ELuHfv0fK4PcLlVc9/2krpmsA6282ZDa9PZ/uZs88expNP+gaACiZTIk//tYaXXtHOYE6qwxRvJT3NxPynK7zj0epsa9VI5s3TqpEALFsGOTmQmxt4zZwcFV2Z1umzNT4w+OZ8e8ruNSXnu8oRHTb3vsoRHXRbU7hVKC6BUiukd1NJTeFEepfbSUrxJ7z+zGhK59QrHShdJ1ufq07L6S7eg6vbUFRL34hNtRNCtB2lsqjTL6RuUbD92WefYbFY+Pjjj0lLS2utMZ1S2nLWxuFo4zzrtmSIxtV3Avr9K1o+w+100KXwbf71/EWUOk7UZ06OKdECbadPvohPHWZbhZ7EbBdqWR7lxwPCcHnVnsDWnDXOL6CMi6khZ4o7RMk4FX10DPFjp6G352HftxFTvxEBAWnlng3Hg/xkv4WqZ5+tMnl8BeMGHGHemz348ScwGFSKrBXMezqPX53lRKeAs9pB2br3eeVlrc62zQZ//zvERKtce63KjBm6gAWwz/3VSskqrZRdSz8wtEbOd2sE/I3ldsPhI2C1Qq9eKjExJwJuk3U1Jo6X+GvqZ0Gf11dFpYFEsxOLrpF1vk9VTgf6Q+tRi3fh7jYMNbFHy87ndqGUH0ZXuheltgq3JUNrMR9lapXhCiFal1LRuVNIoIXBdlVVFeecc44E2s2lN+JO6d8mp7bZEoJUENGxcKEBs7miTa7Z6oyxuE6biP7QOpSy/Jady+nAfPQjzByvb1wWpL5xyKYlQ5n/1ImAMFRedaiA8rKpLl5Y4ObX9+P3+OTJKvfdpzBufDR2ezSXTR3Ks89k8ev7dUED0rIflzD3oRG4/uwf5Jf8oH0QuGsMbOnajVe+yqbWaWTFjr78lNeN+y9YQb9eNSSN+QV33V1/dh9eflnh+utV7r9fweHQcroLClS/jn/NSZ/x1Ro5363xDUFTVVXDrl2QlqbStauW099sYV5fC+f1aHJTnFON4ihHn/c9qikVd/pw1LiUhg/y5bChK92HruwAOE/kh+mObUN3bBtqfBpuS1+tKpSkrQgRMTp7vja0sKnNL3/5S+Lj4/nnP//ZmmNqdx3V1EZXuh93t6FNOqwxxfMdjlhuuSU6aJv1nByVRYtqOs8M93Hhitk3VahmIg01LZn70NawAaE5axyz5gQ//rKpLp55vIQqRzSVNbHUOo189ZXCvHknFiE++iisWaMGTZXImeJi7uzw1/eocyo8nzuenUe6opUEVLlwkspPm1NYvjxwbJMnqzzwgMJll4W+5okPEqHSZ8LPTIdq2OOxcbWNyrWLwz4v7f6GDvgbe3+aKyoKevWA+ITIaIpzqlPNPUgYdC5l1WGqxLidKGUH0ZXua/yia70Rt7knqqUvqim1dQYbwaQhS8vJPWwdQe+jw4Zh1xcNHntSN7W59dZbWbt2bcR0guxUdAZttX0bsFqNQQNt0JqfWK2t0yq5PbnTBuHqe26bVidoqGkJiRlhjw+3iPC/S/RaoL12MfHR1UyapPDkk/4lBrOzCZmTnPulHpcp/PU9jAaV31y8gtvOW4NB5wIUPl+u4+CRMmLjAqsFLVum0L17+GueSJ/ZysbVNr5bVsnG1Tbmzt7aYKANjUsBaYiWL28NaPzjCfgrdgXmy7em2lrYux8O5ktTnEig2A6jbl2C7vCPUOdfOkipKkF3aB2G7f9Ff2h906obuerQle5Hv/crDD9/hq5oJ9R1rskJIU4WJ8OsNrQwjeSiiy7i2LFj3Hrrrdxwww2cddZZdO3aFZ0u+D8o3YP9i36qMrR8MVcotkbUlW7TEn5tRE3ohvO0yegPfI/isLX6+RtqWmKv0tGju9aJsC7IWo3G5hSH2i9YqcFgxzfWmaflM7j7MZ774lzySywYjSoZ/SsoK42iuCiOutoTz7c8RO6x7zV902eio6KobEK79tZIAWkoX749GuuAlsddXg49uqtYLI2f5bY19PqQpjhNp7rRlexFZz2AO20g6I0opftb7++Hmgp0BZvRFWxGTUjHnXpam3a7FUL468xdI321ODFt4MCBJCUl8eKLL/Liiy+G3E9RFJkBbyfmxtSV7qyi43H1n4j+0FoU2+FWPXVjmpakqgqpKSoVlVrQZSvXFtN5toc9/nhAGWo/3/rXwSQlulHqLb5sqJpHYlwtj16xjK9tN/LOew4UBSwptVhSarHb9VhLYqmwRZGYGDxobK086JbmfAfVgS9jlwsO5oPVqtKzB0RF+9+/2hoVRw1UO8BRDY4aiD29gdeHNMVpPrcT3bFtbXoJpaIAfUUBanwXXOlnQGxSm15PiFOeswalqqTh/TqBFgXbX3/9Nffffz9OpxOLxUL37t2l9F8EsFjqyMnRhczZtlg6dwkd9EZcfc72LmxqLY1uWqIoJCRAQgK4XCplZVrg3diAMtR+q1fDpZeqDB+uBHRI3L3LRYwpivsfHdbkah6KAtdd9v/bu+/4tupz8eOfczQsa1jeM3s4CRlAyGRDQqCsMkpbLtD1K6VQRtpyWzrv7bqlhfYWKLuvTiiXhkIpLZSQlBmySFghgWxnOYmnLEuWNc75/XFsx4olWbYkW7Kf9wu/jCWdo3O+Gnn01fN9Hh//Xl3EoSPtWKxG0OdwRHA4jFD6/get2PLzCXSY6G79PuggOIbBlEw8XjZ0sTyetx0+2mF0oYxoxwJrLUZc7U70/JCmODlDaT+KecdKtOKJaBWzwdLPp2QhxKCMhCok3VJaIHnFFVfw0Ucf8eMf/5jLLrsMJUdroObSwoZkF2LErkai8/DDkdypRpIEpe0Qpv3rB1SDM94CyZ5qEXGalhT3Uy2iM2yitewyvnJ74kWE8RYbfvKqCD/5H5Ubb6RPPfAHH9T4+tcU/v5cjMV1SSwONOfbKD3jWr78FZW3NoUoLu0g3953Jj/QodLabOPkk8z8+i5P3Hxsq9WasFtsLFF1tnulgCRbZzvRAtShWCCZqkSLTB/63xZKm6UayUDFfS0PFdWMVj4drXQaqInT0LKVLO5LnYxhehw/jqa6NUl/g53tCyRTCrZPPPFETjrpJP7whz8MdhdZIZdeJAN5Ued0ne2BCLRhrlsDncl9iEj4D3SvOshRTUuSrYPctX1jaAKtHhWnI3ZAGSvwtNs6ueU/S+PW454/X4lqU95bMtU8zPk2iudfSIdu1BpvaQ3x8r/beOV1nVAkOlAwqTpzJx3k1Cm7mF5zlOMr3g0m2E5VOiqaDLfej7u33YTLaXx70L59IzWV4QHlgIssCLa7WexEquagF44b7iMZMAkUUydjmB5R46hrmD/4W9ITENkebKeURlJUVJTUnYjhYbN1UFXVkZOLIQciQAUtrk/iCQUpdIX6bxKimvEVLeppXFNYEInaJqWmJb22H2+CkNfoQqklmnjv+rgb0NwJqlUo3HJL/F3EWzwZHdSbCGgWbHkhvFqI8ZUa/+/jh7i09n02NS7ixTVF1Hd1xI1oCht3jmHjzjGUFMMVS1tYUPYGrikn9wkUk52ZTrWDZKIFhA4HPc2BBrPvoZJokem+/RAK6ZSXS8Cdc0J+TPvWGY13qk8eeA1wIUQUpa1+RH3Tl1Kwff755/PPf/6Tzs5O8vIyV11DiHii02WMp3PCJiGqmQPO87n+lsIhaSxisShMGK+za5fRChzi5x4/91ziL5kSVSuJtZAx3v0sWQK33WbjgktgyblGI52f3aKy+iUFuyNMUUkAd+GxILCpGR79SxEv1FxKwOfgtdeOvdaTzZdOR751vIWlDgc88QTc/k0rK1cO/NiySf1hCAaNRZfSmjz3KP5mTDtXoxeOJVI5R7pSCjFQ/mZMDdvSXgBhuKVUa2r58uXU1NRw4403sm/fvnQdkxBJCQTy++Slg1Gz+IblRfjc8/ps43PP4/pbC/t2MkywTarsdoWaMcf+jtdNsXthYjzFxbGD8XgLGePdz+rVcM89sHw5zJ5j4sabTV23UfD7LBzc5+KjrUW4HHby849te+CgTmNrO+MnebBajXzvlS+ZuO2OIly18xMee8IOkklsD90LS/vmmS9fDvfeq/d9Hgxg39mkqRn21IGm5XDVoFFOad1v1Og+9DZKSx34myEytGlXI44Wgc52lPajKO1HjTENtEHQZ3QE1RNX+xHZTfEeRvtoJeadq0ZcoA0p5mx/5jOfIRQK8c4776CqKjU1NVRUVMRcKKkoStbmdudSrpXkhh1TX1/AzJnxFyV9sNnD2Lb/i7psf8GnmTk3ft5vrG3S5eBBncam+LnH3/mOUZFk9eq+2y47T+OBewPcdGte0h0c+8txfu454/cll8Q/5mef1bnmuhBnnNlB3b5j+9d18LZZOHTAgRYx9ZsvnY5863gLDFev1lmyJP4Hld77TjWVJZ36y3vPz4dJE8FslhnueLImZztZ5jz0PBd6ngvyXOjW7v93gjI8ddbT8m+KrkOwHSXgQQm2Ayq6ajLa3vf8mNCP+xtTV4O1SAhCHSihDgj7UYL+Y3+HOlDCfiOg7o+igGqJvj+TGd1RjlYyFcyZaYom/y4Pkq6jeA6gNmxD6WhN6fU8onO2N2zY0PP/kUiEffv2xZ3hztVKJSJ79de8J1aOb3+NazLZWKS62qi7HO8+fvUrIx3CZIqepe0OqBve+Ad333Fy0g1d+juX/proAASDCu1tVr7wWSvXfSZMabkfV0EIRYECdwhXQStej4X6I+BKsJ9kG/4kooXCtL33Lx6473LaA3Y8Hih0g9erk+hbge59qxYzJYsu47WNxVRVqQQC4O2EQ4dmc+aiGprWZVe6SUcH7NgJkybq5OXJ++eIEO5ECXei+Br7Xmd1oOcVoFsdYHWiWx1d/+84FpRmg3CnEVR3tEKg1fj/zjZj5nkwFDV9s9K6bnyD0PUtQverRmlvQG34yCjXWFqbvvQeXUdpP4oebgRzaXr2ORroGkrLXkwNH0JnOjo5ZL+Ugu3VsabghBgi/TXnidUkJJnGNZlqLKIoRv52nTP2Pyw+H1x9NWza0EmHtzNmQN29uE6FfpvN9Ndkp78mOr1vY7NBoMPMgboCzOYIFVV+CgqDRtBdGOI/vw9zxi3mkwvfpbSg78xEOjpImvNtFC/+NF++2RRVGnHVqsTbde/bPWMh9a0lPPmkEvXtwZIlKlOnllA2YyEt763p5yiGVjBoBNwTJ+g4HBJwj2hBH0rQF/tjo9mKbnUaAXlXIN4dkGOxZya/XwtDoA2l04PS4TGC6kArhDvTez9Dlf6hhVEbd6A27UR3jyNSNm3wjYk6vagte1Fb6iDkR7fbMVmKiYyZn10fjLJNJITavAu1YTuEk5jtGUFSCrZramrSdRxCDFh/zXuK8w73udxoXDOblStjldfLfGMRs1mh1BK/uclpp0YIHv6I9g+SC6gTSdRkZ8kSI2UFjDrevYPXWLdZt+7Y7cJhEwf3uzh0QKNqjI/CoiC6Du/WjeHduhpOqDnCJxa+S03xsU8t6eggWTz/Qm48LtAGePllJe459N63uWwqP75V6ZOmY/ytcP+9U4HsCrbB6Fa5ezdYLHqfpplRSYB61C8sFihwQUEB2PORBZe5LBxECTeDv7lvMK4oRuCd5zIC8TwnWF3G7yQCcT0SMrr0Bdp6ZqmVQBuEcig9ZyB0HaW1DnNrHbqrCq18OrqjrP/twkEUzz7Ulr0o/uY+VyueA5g624iMPw3yEn3PNwpFgqgN21GbdgyoJ8ZIklLO9kiRS7lWkhsWLVHznkJrHaYdx017qmZayi/n+lvdg2pckxaqmaOFH+emrydufpPy3RyX4+xwGIsJzzkHTCbw++HIEY0zT9e46Stq1OLFpUt1br1V4eqrjRn3Sy+J8Iu7db5ys3pcNZEIP/l+C/f+4iCbd9eg94QCOvMm7ueTi9/Bbe9M2NAl2XN2nXE9J53cN1jvrkby61/HTr/p3rfjtOuZe0r8NKLNmyP43ni0n1FNn6GsVW4yGUF3gQtcTjCNkDzwnMvZHmqKeiz4tjqM/HBF7Zql9qB0enFYGPVjqNtL0Mqmo7uPm0DUNRRvvRFgt9XHnYWPeh6aLETGLkAvGKbJyEgQ9eg248NX8aThOYZuuobatAv16AdJ5dyP5JxtCbaRYDvXtbe7aGkx0doKRUVQWBjB6TQa3Jj2rUdprYu6vcNZwFHLCYNvXDMYvZrleLwmiosjWK1m2vw2PG0KhYWQZ9VoOBzAmR+7fvVgFvd1b6O7JmBxOFn+VbXPB5N7ftZMxHOIkG1cVIOdQDCP1rZjqSy+3W/jmBS/znaj185jr5/CtkOVx+5f0Th35g4+Pm8Ltnw1bgdJoN9z0+Z8ibPOjp3Z7XDA2jc1Ih3euN0p9ZO+xJlnxs8Mf/01Dd55JLnHMw2GozFQN4cDXC4j+M7Pz93AW4Lt1MkY9pLnIlI2DT2/yEgTad2XVNpMrDHUyk9Aq5g5dN8o6Rpq407Uo1t7ctZ1ZxmRmnnDMtOueA5iOvxe0s3mQILtES+XglcJtqP125Y+1IH5oxeigugh/8eluw38bUbpu+6Z2Hvv1Vm7VuGJJ4xSfL3TG5adF+GeO1t6akTHr1Mdfbt40t3qPFGguLehiP9bexJ7jh5bMJRnDvHxeVs4d+bOPv/2JHtu8Wa2u73zdgTv6/FnpgtO/zwnzo3fD+DdzZ20vfG7uNen23AG271ZLEbg7XKC3Q5Wa+4E3xIopk7GMHXxxlB3VREZtxBMmamC0k1p3W8EtkFfjCtVtIoT0MqmD03FG38zpvp3Yi8C7sdIDraHp9aQEGkQv862wg03mAgE8sGSj1Y+Y5iO0OBzz+O2bxYzf4HKc8/B008bM4sLFyp84xt9A23oWyM61TrVEceE+N0pXzIRcUwY9Pkdb0JZC3dc+jLfvGQ1NcXGB8POsIW/rDuZ/3z8Ejbvif56Ndlzc+YHWLo09tzA0qU6zvzEC25Uz0csWxanVvkyHdXzUVLnN9KEQtDcDHX7YNuH8MFWnT17dI4c0fF6dSKRUT8fI8SgKN56zDtego7WzOzf14Bp5ypM+9bGDrTBmPE+vAXTjpeM3PxMCfow7Vtr1MkeRKCdqnZvdr9Pycw2MrOdq/qts/1BhKoqoySVefu/et6Mhnom50Dhp9m5z90nqF6yxAi0Fy408qJj6a4RnWqdam3GNZx1XvyvEl9d5UXd+ni/59JtILOyHx4q5bE35tHQduz+S0vgpi+onFC9D901gRMX9H9uhadejZrvZs0aqKoyShfm58OhQ3D66RDxe2h9M/4YqBYzxQsvNwL7Pqk0TTQPcem/bJnZTkaeFewOY6Gl3W6MezaUc5VZ2dTJGKau3zFUTUTGzEcvHJeeO+z0Yqp/D6Vt4M1ftNKpaBWz0lc1JRJEPbIVtWlnypVlBv1c1HV2HHQz8cILUrr/wcp4nW0hhlN/dbY9HoWqKow3uqqTMNUNT6UJTc2POXu9ejV87WvGosWf/CT2tt01olOtU52O0nu9c8Zj5WzHM726kf+5ZhW7rJfz8/sUNM1o7vODn2tYLeO56858HI74Hzi6z621TcV7FFasgJdeOnb9smUwZgy48hOPkRYK07z+Ge7+5nwiPzyuVvm6oW9qk0s6g8ZP9+d8VYE8m47VaqShWC3G794/2RCMC5EVtAimfevQ/M1oVScOPo873Il65APU5l3HlSJKntq4A9VzkEjNXPSC6sEdB8TMER8urR7oTHNFynSTYFvkrP7qbPe+XnfXoDvLjTa/QyyimWJ2hQRYuRJuuSX+tt1BcKrBsrmjrqvkYewyieaOuhhbHRM/r3oW99xZ02/OeMH0BTz202K2vKPgLgxQWe3HZNYJhSMsv93L7JNUdu+24mnOo7Mz+m2p+9zKKiz8960xUm5WGuXx7r/XQkPCs2DAtcpFbJpuNN3p6Ih/G4tZNwLvroA8zwpFhSOnEooQA6U2bkcJtBAZdyqY468fMQLp7lqe2rGqHg0fpqd0XsiPae8b6IVjiVSdDJZ+mi6EgyhBL3R6UTrbUYLtRqpIlpSHPNpA1idFZ2WwfeTIEV544QVee+01du/eTWNjI263m7lz5/LFL36RE088sc827e3t3HfffaxcuZKGhgbKy8s5//zzufnmm3E40tQtSmSV/upsFxVFvylFqk/GvP3FoTq8Hu3eCJC4c2UsvWtEp1qnWlEUvvUtIyg9PpXlW9/qfxYyYV41Rdx9x/yeBZaxqqZY3A7WrDHuw9Nqw9OaR0lZB2UVHagqtHk1SssClJYF0DQIBVV87RamTjETaDQ+CHR29q2R3W31auN6kT1CYeOHXgF5/WEoKdYpKwOLRR4vMfoo7Q2Ytz3XtVixO6DuCq6HOKtXad2P2XuESNWJRqnCYDtKp9cIpju9XX+3D/vMdSLt7TodHWDK8jAvK4PtP/3pTzz66KOMGzeO0047jeLiYurq6li1ahWrVq3iF7/4BRdeeGHP7f1+P9deey3btm3j9NNP56KLLmLbtm389re/ZePGjTz++OPk5SX4FClyks3WwcMPm+NWI7HZjpt2s7nRSqZAx6EhPc5CZwcQfzV6VZUR9K5eTU8t7HPP1bFaIJI3AfdM8O1+m3t/XhPVatzIV9Y4c0ELTWs3JjyGkG0cFy9RWL7c2H8gYHSFXLcOLr5Y4Y3V40jU0KXfBZY/mgCsjT8DvkzniSfoqdsNCk0NdpoabJSWdzD3lBAHDhrdPVUV8mwaebZOmlo7+X/frqHQfhGT3/JTVKIR8JsJBMzoenSw5mkOJWjaLlIxmLKTsWgaNDRCYyMUFumUl4HNJo+aGGW6ZquzQiSI6cBGIPG/IdnqaH9fZ2aJrAy258yZw5/+9CcWLFgQdflbb73F5z73Of77v/+bpUuXYrUaAcxvfvMbtm3bxvXXX8/tt9/ec/u7776bRx99lN///vfccMMNQ3oOYmi43V5+//t8WloseDwKbrcxo90n0O6iVcyCA43A0H39VWzax7Jls+LOwNvzgjz4a51wWEE1m7n1NpWf/ETBmA13s2zZHO752RhQ4amnFFau7L29wumnFeE85SoUb/zgp82r4vP1nxseT3854952E4UzF2OtnMaty/NY+VLfCjGRSKz8dJXGow5+9hMNU8v77PeO48WX4cOPNA4d1tE0Yz+tfjub3tGoqjEet0hEobU5j+YmG6GgMdvvckaGLS0kXcFoNko1hSgWHSP/u6UF3AU65eVgt0vQLYRIXiCg402+jPewyspge9myZTEvnzdvHgsXLuSNN97go48+Yvbs2ei6zooVK7Db7dx0001Rt7/pppt4/PHHWbFihQTbI5jN1kFVVYexGLI/ZitK9YnQ9mrGj6ubopAwhaOY7diPvImv+FQ+e1vfoHzlSoXbKOYTnyDmdbfcamLRIjcbN8QPflLN+S4o6Cc/vjSf2/9zNrfcqrLypdi3Wb3aCLaPt2QJ5OcFafhgLQWs5arJwGQIRVR21JeyaU8N7++vxuO392xjMumUlAUoKQsQ7FQpKbbib9iX8BgzJRPBaDYZSArRYHjajB+nwwi6XS4JuoUQ/cuVWW3I+pTyvsxmc9TvvXv3cvToUebOnYvdbo+6rd1uZ+7cuezfv5/6+vohP1aRpcqnodvil5pLt6bQOD71KYXbboO33oJ//xs2bYLbboNPfUqhKWSUg2rSa2POfoMRVFdVxb5u9WpYtChxzW27rTNhjWq7LfFSbpfbFHf7887TWb/BaOMeSFzquo8lS+C739UJN+zoc53FpHHCmKNcd8bb/Pw//sl932/g85+xY7WYiUSO3c6ap+H1Bbj+O9V8/bFL+M3LC3j9w4kcbC5AG4IUyFRroGe7oarR3u6D3Xtg+w6d1tahz18VQuSOYFCnNYeqIGflzHY8hw4d4s0336SsrIza2loA6uqMxVMTJkyIuc2ECRN444032Lt3L1VJTX2KkU5RFLTqkzHtfmVI7s/rM/Gb3/RtXrNkCfzmN9DuMwKZFk/iuqeJAtnu63rnT0ddH8zj1lsVdL3vMdx6q0IgmHhNg7/TFnf7//1fhYULjb9t/SxqLy/Xee45pSdnvL5eo6qomaa16xNvCNTMmMAvf2fjogvyWbBAZ9++CDt3B1m3Poi33Yi+2wM2Nu4az8Zd443jsYSYWN7E9OqjnDVjF/nW9M8wJ5vPnqtSLTs5UB0dRoOdw1aoqNApKmToWl4LIXJCY2PP8tKckDPBdigU4hvf+AbBYJDbb78dk8nI0/R2Jew4nc6Y23Vf3t4e/0tyt9uNqubOJH8yBdRFYoVjp6F11kPL/ozfV2mBhe/8d+w62wAP32/F0WbH2U+PgUSBbO/rvO0m8qzRCzI9bSauvpqYCySvvhpeeLbvNr21tChxt9++/ViN7HXrji32PN6yZRpFtiasZXl421VcTo1Jzjq8b72NWVEhwf0DdHRa+ec/4Z//BFAw3r7MgB1F0fnpnR3867kGjrYdey8IhCxsO1jJtoOVvPT+NC45ZTvnzNqLxZS+xUne9sSVZmI9Ht2s/ZxzNrC6Ev+TVuDUCWbgPHTg8BFo9ShUV6kUF8V+j3Yc942mGDgZw9TJGKZHMuMYjui0t4ej/skw2/KyOjbKiWBb0zTuuOMONm7cyCc/+Ukuu+yytO7f4/GkdX+ZJB0kU9czhq4pmA/tyPiq8EBe7OATjMsDneDz+3FUBFmyxBbztuedB/EyoZYsMYLcbi5nhPbjOhO6nJGECyRjbdOb263H3f655479/69+BU88cezcui07L8I9d7bQ8OazaKEwCgOvcd2ZYANdVzhtsY1TbS+wt6GYV7ZO5q3dYwlrRiCsoNMeyOOJNbN58Z1JXDrvAxZOriMdn7Fdzki/18ca21zpIJnv2xO/7OQynXyXFdPUUzK2GDQYhLY2o/pOZQUUFByb5Zbuh6mTMUydjGF6JDuOR4/qdBz3TW8k0DlssVEyQX7WT+dqmsa3v/1t/vGPf3DppZfygx/8IOp6l8toAR1v5rr78ngz32IUszqIjDkl419Rt7UmbkLg7bq+ILyD735XZ8mS6OuXLIHvfU/n7LN1li6Nvm7pUiM95dFHjb/j1dw26nTHDgqTqdOdrzTFzdmur9dZtsy4zuczZsoXLTKC8Oee03l3cyd337GF5vWpLRR0OxOPY4EzhKLAxPJmPn/2Ru68+h9cPv89Spw+9F5FAZt9Dn7/6gL+66nzeX9fZcqpwamObbbzbt/IPXe29DnHJUvg5psVTllg4/Y7Z1G84DJUS+bmbzo6YM9e2LlTp709l75AFkKki6bpNDYO91EMXFbPbGuaxre+9S3+9re/cfHFF3PnnXf2SfcYP97Izdy7d2/MfXRfHi+nW4xuetFEInkFmOrehFCCdngpcLsSz3wWuCLQBvaWDUysrOJTnypm+XI1Kq95fE0nt3zVxsKFxsLK3mkc3/wmXH89bNwQ4Z6ftdC8vm+9VCNgquE2iqJmKJedF3+b3po3Ps+Dv76WG282sWrVscB16VKdc8+OcMZ8D7fphax8ydQzA35s30aQrVrMuGcuHnR5PNXzUcIumKrno6jLXPlBLjjxI5bN/ojth8tYv3M8m/eMIRAy8nWOthXw65VnUOpq51OL32bOuMP9HkMsAxnbwba8H05aKEzzhr9x9x3z0X82nX0HrYDSk4Lk8w2sMkmqZRJ9fti126heMmmSLuncQowirS1dzbJyjKLr2bnku3egfeGFF3L33Xf35Gn3pus6Z555Ju3t7axZsyaqIonf7+9pirM63vf4kFNpGZJGkrqYYxgKYNr3ptGCNs18RYv47H/OYuXKWF/DR/jDXVtwtHTlgahmfO55NEeOBSLFpr00axNYcLqb5cuNWePupjZr1xqpG2veiKA2b0kYsEQFOe0qBc6BBTnmfBvF8y+kQy/pqWmerzTRvPF5tHA44b7jl8cz0kuSKY+nWswUL7zc2MdxTYzu+VkTzev630cwrPLevmre/GgCWw9WRs14u2wBls7eztkzdmEb4ELKZMY2HWMw3JwLrubkRfEr+by9zkP7hifiXp/uMbBardjyglRWQn6+RN2DISkQqZMxTI9kxvHDj3Q6YxTPMjncTL/8ggwdWWLJpJFk5cx2d+rI3/72Ny644ALuuuuumIE2GJUlrrrqKu6//34eeOCBqKY2DzzwAH6/ny9/+ctDdegiV1lsRCadjXroHdSmnWndtcPzFg//agw3LO8bJD5yTyuOhreO3Vg1E86rIhxwEkQhYtIJ51XhbTDzxBNGykjvvOklS4wcaW+rHwZS67jXR2zVnNxMo9lmw+IspKNdBQUUVcHiKMRssxFoae2a0VyLSt987FTbvXcfT/P6Z7j7m/OJ/DA6qG196+2kzsFq1pg36QDzJh2gPWDltW2T+PcHU/EGbHgDNp7ZOIdn35rF7LH1zJ+8j5ljjmDPS5y+Asbsb6LzH+gYZKtUK5NkYgzavMaP261TVQl5eRJ0CzESeTyxA+1ckJXB9v33388zzzyD3W5nwoQJPPjgg31us3TpUmbMmAHAF7/4RVavXs2jjz7Ktm3bOOGEE9i6dStvvPEGs2fP5rOf/exQn4LIRYqKVjMX3V6E6cCmtC6cVBSdT3xC55Zbepe904mKes02jpZfw5dvOj5Vo4z77ydhRZP777WQqL5//BnF2dx/30y+/p8qf38ufkMWW1EhhYs+xZe+zHHHZuHBBz9F67onCbS0xr3/lNu99zqe44PawTaVcdqCXHjyh1x48ods2V/OinUnc9hTgKarvLuvhnf31aCgM6m8iZMmHGT22HoqC72DTlsYCSUCU22OlMkx8HigzQMlJToVFWA2S9AtxEjSkENNbI6XlcH2wYMHASMN5KGHHop5m5qamp5g226389hjj3HfffexcuVK1q9fT1lZGV/4whf4yle+gq2/4r9C9KIXTSRsK8S8dw2EUv9q0Oeex5du7TubByrLlhXxh7vm4WhZh6f0Y30CbTCC29ZWPWFFk1DYzIzp0NoKrR5jMVlv8WcUVW68WWHhQoW/P9f78uiZxpLFV/QJtLuP7cYbdR556AoOPv/buGOQ7IzoYGY+0zFbOmvsUWaNfZGdh0t44s2TOdBsfC2oo7DraCm7jpby1w0nUuzwceL4Q8wZV8/UqoYBlRAc6nrVmWAsBo1TmSSJxaCZHgMdaGwy2sCXl+uUloKqStAtRK7z+XR8OZypk5XB9p133smdd945oG1cLhff/va3+fa3v52hoxKjSn4R4annGXnc7al9nG6OJJjNW2mi+c4JOFhHc6CkTzDbbf/+xAGDp01lvFWhvBzKyyHYqdPiAU8rdAQSzyiuWmV0t+xzbL1mGtvaLXGPbdUqhbb2xEXCk50R7W/mU//JBNwziUoXsbryWPNmemZLp1Q28d3LV3GopYB36mrYuGss9a3HcpSbfQ5e3jqVl7dOxWIKc8KYI8wZW8+ssfUUOhK3z0x1VjgbpLrQdqjGIKJB/WEj8K6q1CkqkoBbiFyWy7PakKXBthBZwZxHZOLZqPXvojZuH/RuPN7ETU+6Z/taPfEDgrzEDR5xOHRoO/a3NU+hohwqyiEQ0NnuTzxf2Ls7pcNBz0LMtoCLggVXo6rG5d3Na47n8SSuI5rsjGiimU+HAywOJ8u/M4eVL0Xnvj/5JHzqU7GPb6CzpYoCNcVt1BS3cdHJ22j02nmnrobNu2vYdbQUuhZVhiJm3q2r4d26GgCqizxMqzrKtOqj1FY24LBF53qnOiucDXpXJon8KDpvvnl9/wtt0zEGA6noEgrBvv3Q0KhTXQVOpwTdQuSaQEDH09b/7bKZBNtCJKIoaNUnoecXYTr4FmiJy/jF0n/pPw3aoNAdvzDQunWwbBmsXNn3uiVLwJEfigq2e7PZFIoKEs8odmdaORwctxBTBdwsW6bzxBPHSr0dz+0Gb4L9Jzsjmmjmc/lyWP5VNSrQBnoWnf7nf8J//3ff7VKdLS11+Vk6awdLZ+3A22Hl3X3VvL2nhm2HKohox87lUIubQy1uXt46FQWdMSWtTK8+yrSqo0ypbERNcVY4WySzGDSeVGfGB5uf39FhlAssKDAWUdpsEnQLkSsacrCu9vEk2BYiCXrReMI2N+a6NRCMM70bR7FpL8uWxS/9V2zaa9zO1sTSpWUx0zXee0/nZz+DSESJyt1esgS++12dgvCOQR/D0qU669YZ97l8uRFoH58fvnKlgqbpLF+u9OkiuXSpToEzlDDYTnZGNNHM57nn6vzkJ7GDpJUr4fvf7xtsp3vG2JUf5PRpezl92l4CQTMfHKjk7boa3t9XSSB0rHewjsL+piL2NxXx0vvTUBWN8aUtTF+3nc9cXswPv1tJMGTumZVNZlY4XVKtc52KVGfGU83Pb2sDbxsUF+tUVsoiSiGyXSik0zoCqh1nbZ3toZRLdaulznbqUhrDcCemva+j+JuT30Y101T6cW5YXhQV7C5bFuGRX7VQ3PgsaOEE1Uh0Hn4wgjni4cXXiqiqim54c/4ZzRQ1dO1joMdwnsb9v9b4+u0Kf3/OxHPPwSWXxN/NqlU6S5dGH9uDD9JvNZJkHZu57Dvz+f3vq5x+Rvzg6NVXdc46S4napndTnXSIF6i2fvgWe+pdbDtYwbaDFew6UoKmx09eMaka8yYd4sKTtlBZmOhjSnoNts71cAbovaVa57s3k2p8I2PNgzwrWK3Gb9MoC8ClRnTqZAzTI9Y41tfrHE0iXzvb62xLsI0E26NNf2MYCOTT0mLpadxSVBTCZutV3kMLY9q3DqXtUPJ3GqdZjcPzVnSQbCukufxyPG0WWj1QWAhuV4jio89AOICn9GM0B441lSm2NeFufAHCiRfnAWC2RW1fWKhTYGmi5f3XcJ34MdoDdjweogLW461Zo+NwGDnahYXG1/Jtb/+DtgP9j4XV5aRk8eU991NYCI48P01rnyHoPZaMEK9BTKRoFifPjZ///vbbOgpan4Y74Y4kxiYJAwlUAyETOw6X9QTfh1piB4gKOnMnHuDj87ZQ4e4/ISPVoNc9czG33zk75iLUZedFuPuOLX1mhrOpGY824xrOOs8V9/pXV3lRtz6e0n2YTMcC757fecb/W60jLxCXQDF1Mobpcfw4aprO1q3Gguf+ZHuwLWkkQvTi8bi44QbTcc1nVB5+2Izb3TUDqZqJjD8N9dBm1KZdye1YC+NoWYeDrk6RsfKrzTaOFl/Jl790/My2hYcfvBI13MYNtxRGBzzLSnj4VxdR0pjEzHbxRdxwS3TAdOmlpfziF1fy5RuNqiLPPRd/F2Dkvp52Wu9jgwcfvISA5/GogPl4VpeT4tOv6bmfY9vbefDBa2h+49j28XKCy5ZMY8kSU8wSiEuWGAsbTzqp92x4CffceXHagsGBpDDYLBFmjz3M7LFGC3iP38a2g+V8eKiCrQcq8HTkA0a6yaY9Y9m0ZwwTy5r4xKL3mFLRFPP+B5uv3Ntg6lxnUzOeoahmEokYz/Pjy2cajJ6jioLR2Am618uiKsf+X+m6TlXBlg/2fLDbja6vivSXFyIpTU3JBdq5INvLugoxZAKB/D6BNhj5yjfcYCIQyD92oaKg1ZyCVjk7bfefqM726pdN3HBbUd+AZ6WJG5YX4XPPS7hvn3seN9zWN2CaPVvlxl4B8Lp1RuAay9KlOi+/HKvONpQsvjzh/Zcsvjzqfga6PYAa8fLd7+p9jq87b/3ZZ4973F4ycdsdRbhq5/e772T0G6g6JsTd1m0PsGjqPj531kZ+9h//4PtXvMjlC7ZR4e7+1KWwp6GUu547l9sfu4RnNsziqMcRtY+EQW+S55lMnevjpXLe6Wa3dbJ0aewvY5cu1bHbMt9eTgc0HTTNCAQiEeMnFDaqn4RCEAxCZ9Aou9nSAgcPwY6dsGUL7Nihc+iIieb8RexzfZotyjUccH8aX9EiUOPPf2maTiCg09am09ikU1+vs2+fzuHDOh3+Uf8FtchioZDO/gM6Bw7oHDmi09xkPI87/DqhkA4xEix0XR8RCyO7ycy2EF1aWix9Au1uK1cqtLRYqKqKnu7SymegW/IxHdgY8w2jR680Eo/XRGFBhCI1Oo0kUZ3tqiolZiUS49iO1eqOJ16t70WLiFp0+KtfGdVIIHqR5LJlOjffrHD11X33vWqVQnvAHve+AdoD9oR1uvvbHqAjYMXvV/jkJ42FnMfy1sHvV/j5z/tuk87OjOlqyNJdWnBi5XYumLOFRq+dVVumsm7HBDqCVrwBG/96bwb/em8GlW4P86ce4vRzinEW1XL9l1RuvQ3WrjUeq+7KMMme52BmhrOpGU8gmMettyroOn0WCt96q0Ig2E+NzGGm6RAIm7FPuYwvHf8NxbJZPPiLGix7/kYwECYY7ArcQxAKJp7hO3IULBYdtxvcBUZVIZlBF9mguVnn0KH+Z6gtZh2HI4ym6ZgtRgPnUCjxNrlEgm0hungS1Lnuvr6qqu/letEEIuZ8TPvehEiMd4fuxYm39f3H9eFf1fSkgCSqsx3oJ+24v4DI4zVF1c8OBIyvtEtKoutn+3xGeb/ly42fggKdgrw2TPYCFi8efJ1tjyfx8fe3PUCrR+Xzn4ff/AaqqozKEm43TJwI554b/9jSFQxmKoWh1OXn04vf5dOL3+Xduir+umEORzwFABz2uHnuLTfPvQXBoBdfuwWf18LcuRaeeEKNKsWYzHkOps718ed9/POosMyJ7cwrks6PTyXvvNWjRj0/uz9wrVtnPG+ffzb7u3DG/YZipYkbv9aVlrN34B8OQyFobDR+TCbjtesuAJdLumiKoWfMZoM3yfXfoTD4O3SCwcwe13DJ9vclIYaMO0Gd6/6u110VhCedDWZbn+vipXAcnwKSqM62re9uo/QXCBa6IzzxhBGUXHIJXHUVXHwx/Nd/GTPZjl4ZCz6fUWP7kkvAXaDRvuEJNC1+MAtG0JtIqtcb56Dxm98YpQnnzTMC7FNOga99zQjAHY7Y2xU405P0ZwSqsWump6vE4Inj6/nhVS/y9YteZlL5se9QdR2sVo2i4k7GjG/naFML3/2vVpac58PhDKIoelLnadS5bulzHt2VW7zb+9a57n3e3XXYez+PTjxR4Su3l1F6xrWY8xM/Ubvzzm+/czYnL3Jz1nkuTl7k5vY7Z1G84DJUS+L5nwKXFvX8vOoq4/dPfmI8P9P1WGfSUKTlRCJG+sreOvhgK+zZq9PcrBMOS7qJyLzmZp2PPko+0B4NZGZbiC5FRSGWLVNjppIsW2ZUJUkov4jwlCVGacDAsRWQybZrT1Rnu75e72pqE+vYjtXqjsdl6+Tee3VWrz4+H52E9bPzlSa8gNPmZ+nS2KkgS5fqOG3+hHW2U90ewGYd+Dmks852qg1ZBqK2qpFvXPIydQWf4ns/VrE7+s74hiMRdu6OMH6SMZv8k58HmOqezoyao4wrbcGk9g2sBlPnuvd5z19gilmHfdUqhRtvNnH/3Rdy9LWn455XqostR0IXzqFOy9E041ugtq63JItFB+O/rg9xIYKdOj3Plq4U2uOfPap6bEFo92JQ5bgfteu3xQpWC1gsx/7fapUZ9pFuoLPZo4mU/kNK/402icYwdjUSnYcfjhyrRtKfcBBT3RoUn1EcdItyDaee5Yx787Wvepmp/zlxne2HIqihNm64zZ24Vncc+92fZubJ8aePY9XPfujBCI7dj7FnRwCTw6gmcvwix+46272ricTSXY1ksNtD/zWWV6/WWbJkCOts9wpUB1Nv2mq1EuznO1Oj1J0TuyOM0xUi3x4i3x5G7Scas1mCzBlXz0Unb6WyMNX6HMfOWyuZw0knxQ+Y3nk7gvf1R+Nen2qd7ER12NP9WGdKOmuFp0Myz8N0ManRgbi1q7yiywUmU+4G4lL6L/nc7ERSeS5K6T8hcojb7eX3v++nznZ/zFYiE8/EtH89iudA0u3aCQcoP/o4v/t1jFrah18ALcwf7ppH853H1epufCtx2T/A0xa/PjVAvk3j3XeIvs8jL0BeJ9OnQ5unncCWJ3nkoStoa7fg8RipHwXOEE1rn+43UA5622l+43Ee+vWxOttutzHj3fTGM/1uD/3PCFrNId5e1zHgroQDkUqrcogO1r3tpp4OkvGCdSM9SMHvs+D3WQBQFB1bfhi7PcxFF4fYviNImzc6UAmErGzYNZ6Nu8aycEodVyzYgts++Hrj3eetzZlNT327GDweJeGsbKqzulooTOvmf3DfXRfSoR+rF2/DqKme7YE2jIzZ+cGKaBAJ9F2DoqpQ4NIpKoICF121FUUukNns5EiwLcRxbLYOqqo6Yi6GTJpqIjL+VNRD71AcSa5dOwDhAO7Dz9Az79Uafft+a3XH0V/AX2hvZ2zr/8W8T7NZobjMTFPpUm640czKl3rPHpu4586lBJOo8Rz0tlO/8k+AsVjE2/WTrIKCxF/COW0B2tc/MaggeCgMpk52rMBM1xU6/BZOXWxhbE0+9QfC/Phbrby18m12Hipi5+FSjrYZjV90VNbtnMj6XeM5efxB/uO0TbjyB7/EP5l1DYke01QXmaoWM4VzL+aW/zx+DAdWU304O2IOZTpSrtA0aPUYP2YzFBXqFBVCvl2C7myWjtns0UKCbSEySKs+CVtrHQ//qiVuu3ZH41sZP45i0wAC/hjiLvJ8ycRtShH3fGc+Te+u7ZPnmU4ut4mlS/W4ed8utykrg+xug8lXjheYLVkCt91GVzUSM4pSxN13lPds3+bPY9PeMbz8wRSOeArQdZXNe8eyee8YplY2cOWC95hQ1jLgCURnfiBx7n1+IGGwneqsbjoa7KSjOVAqBpM3P5qEw9DQaPzYbEbQXVQEFktyT1ZNMypadHZ2/QS7qrO4pCRiPJGwjscDGvTk80fl7vcqha3pxt8dAWjP5jfcLCM520jO9mgzLGMYaKWzqYPmUE3idu2Z0l1+ME7A32/Od8GnmTk3fp7pB5s9VDc/gbfdmJ3qr9TfYLjPup69dX0X6HUHnhPGR/C8Gj9feLgNNle3J1+6eBY7dpp6St31rrOdaPuDzQU8u2km7++rRtOPBZfFDh/nzNzBoin7KLAn1wym8NSrIc/NV78Kq1Ydu3zpUuN49ICH1jczl3OdjnznwbSsH8mGMmc7FU4nFBcZ6WeqYjQOCgQh2BkdWCc6FZMKThcUOMFVkHwA359cztnu6NDZW5d43IaK5GwLIVJjKySvIp8x+1aj6A0DSgFJCy1MSeOzg8/59ibO+W7zqow1KxQWQmEhtLYaeXxaGr9ebGlREtdY/mfifOF0SCX9YLD5yj350jMmcdVVrgFvX1Pcxk3nrSUYVvnrhjm88dFEwhEzzT4Hf91wEk9vPJHZY+tZNKWO6dVHcNhCcc+ztU3lyk8bpRbvvNOocFFQAIcOGaUYV/y5/5zrVGZ101HJYzAt60VfQ52K095u/KgHAb1rhnWAIpoxEeDxAAeNmXOXy3gOO+yjb9a7pUXnwMH0vk+L2CTYFmKomPOITDwbtf5d1MbtQ3//WjhjOd89izy7FBYq2Gw6dfv6b8iT9DG49Z4ay/Guz+QanVTTD1LNV051e6tZ4+pT3+GK+e/zwjvTeen9aYQ1E7qu8N6+at7bVw3AmBIPc04uYP2fnbz5ppVIxDjXZefN4r77jNn0Sy8d3DFAaotM09FYKJs6Yuaq4UzFSWdgGOharNnQ0D3rrVPgNGa/rdaRG3jrupFr3dg03Ecyesh7ihBDSVHQqk8iMm4RqIlni7OJkfMdp6FLnJxvm01h6hTjq990yFeaWLo09nRWd03wTEqYL3xHEa7a+Qm3T7UpTrqa6uRZIlw2/wPuvPofnDtzO6oSHb0caHLz/CqFJo+PaTNbmDS1lcrqdtZuCHPTV+B//zd2tDMUlTTSMQbJBOwisVRfC9moe9Z7/0HY9iFs3aazt06noVHH79cZKRm3oZDOrt0SaA81CbaFGAZ64TjCk5eANU7bwyzj8LzFw79q6RNw9yzy9MRe5KmqCmPHKowdS7+1ofvTvPF5Hvx1pE/AvXSpzoP3R2je+Hxqd9CPVDv/DaZ742C3Vy1m3DMX41xwNdqMa3AuuBr3zMVRHRpd+UE+tfhdfnjVv1gwuQ6TGjvItOVHKC7tZOz4duobWlnxjIf5C70UuDtRTdqAziFVqY4hDE0n0JFuKLpgDrdQyAi+Dx2CHTthywewc5dOfb1OW5tOJAe7cfp8Ojt2JO4GLDJDFkgiCyRHm6waw3AQ0/51KN7Dw30k/bM6aSm/jNZ2O60eIze70OGn6OjfINh/MkBAy6O15EL8Wt/6yOGO5HJNrC4nJYtj1Opem1yt7lQYDWbi50y/usqLuvXxhPsYaJ3tRNvHa6oT/yv+CPfc2RL3K/5g2MSuIyV8GDyHp/+ukm8P91utRFFg6hQT8+aEmGJ+gyrnETLRJDBq3HxmisrtWCzG1/8FBeByGPXeAy2tSe0r1xvjpDNfejCL0rQZ13DhZS6WL4dFi4xUjPx8WLvWWCj7/LP9vxZGgrw8o8JJcZGNjgT5cse/JBTF2NaWBybz0KSrNDYaqSPZHPAN5rnY81pwTqIj4hhcb4wUJbNAUoJtJNgebbJuDHUd9cgW1KPbhvtI4kvQ3fKhByKUH30cwgkC5gTbP/jrCI2vP9ZvwD3YIDJd0t35L1NVIFKtttF9nqqqY3eEcDhD2B0hbPmRqOBb1/v2HnHbA5xQU8/ssYeZUXMEe97ga3p3i/e49y5/uHhx8p1Iu/eZrk6gQy3dr4PBPA8LFl1N3WF33MpA4ys9tK0bui6Ywy2V17LZbATdtnwjAM+3pTcI1zSdAwcgic+hw26g49j9Wrjx6wVs2qzjbcsDBtH1OUXJBNuSRiLEcFMUtMrZRMafBmp2rln2lH6sT6AMRuv1L99kwlP6sUFvf+PNJornXxh3W5PJmMGuPnl480RzJf0g1a/4u89T0xTavVaO1DvYs7OQj7YWUVLo5KQ5eQQ6TDFnvT1+G2t3TOSRfy/m649dyl3/OJt/vTuN/U1uBjutEy8/ePVquOceozLNqlUKN94IJYsvT2qf3Ys02zc8gbr1cdo3PGFUfMnyQBuyI1/aZu3k3nv1qEAbjMfk3nt1bNbkSkkKo654uw8aG+HgQdi5C7ZshQ+26uzapXPwkE5jk47Xq9PZObDc8WCnzo6duRFoD4ardj63frOI/Yd8jJ3QTnGpUX5x5UqFG24wEQjkD/MRHpOd/7ILMQrp7hrCeUsxHXkfxXNwuA8nSnOgJGYjEzACneZACfHnfPvfvkMv6fnbpILDadTVdTmNhZYA+62Jg0j+ZwIu11p87YMrC9afXOn8l2q1jXjnufRcnfvuMzP3lDx8PjCZNZxOY+bb4QpisUQPuqar7Dxcxs7DZTyzcQ6Fdj/zJu3njOl7qCxMfsYp0YeH1auNYBuM51F7wJ70fnNVNpQu9AfyEr6e/YG8jN7/aBAOQ3tXIH48i0XHasX4sXDs/61gsRglDNvadPbtG9ndHSOOCWx+t5OKKuMke68LWrlSoaXFQlXV0KWTJCLBthDZxFZgzHAHfajNu1Gbd0F4+LsNtHoSf6Xp6ef6frdvU6ipNAJsez598xPov9a3z68yc6KCpul4vdDmBW8bpGuyMlc6/6VaHi/ReR49NAmfz8hbj4RVPK15eFrzAJ08W4Rv3N7Ots0H2VFfRigS/Xi1+u2s2jKNVVumMaWigTOm72buxANYzYmPt78PD71TZT2ekf91bTaULsyGYxjNQiHjJ95CR4tFJ5R6BlfW271XobzSCKbDYWhuskVd7/EoVFUNx5H1JcG2ENnI6kCrnI1WfgKKZx9q406UjuHLMy90J54qdrt1aB389oVunXI9cUCebK1vVVVwu43UEwC/X6etDTxt6av5DWTtSqNUW6JD/FrYzgUT4myhYDaZueZqGx0Xj6GpWaH+cIQt73l4570I+xsLo26980gZO4+U8fjahZyxSOGCRfUUemOncfT34cHW699Xt5uM1lrPBgUuDYeDuIsTk6k1no5jSHj9EBzDUDfVySWjIdDWdfjD/4V65mUO7XeiRaI/4rn7+XdnKMmHTyGymWpCL5pIZOp5RKYsQS8cH3PWN9OKbYlrXBfbEhdtTXV7GFytbwC7XaGyUmFarcKMaVBVaXSLG6juxTi33zmbkxe5Oes8FycvcnP7nbMoXnBZVFm94ZSO8njxxMtbdzjgH//QuXV5HicvcrP0wgKu+0IRb38wll/d5eYXn32ez5+1nvlT9mOzHXseBIOw+jWd//x5Jd/+y2X86/0T6AxFf0hIlCu/ZInRQRSM55HTlpstswfCEtjHP/6hs24dXHIJXHUVXHyxMQ7/+IeOJbAv48cw3OsXcuW1KDJn7Y7x7Nxt/H9bq4V2b3Tq0rJlRlWSbCHVSJBqJKNNzo9hKIDashu1aReEhigfLVE1kgcjlB8ZfDWSpLYHUM00lX6cG5YXsXJlr5zprlrfxY3P9tt2vrdQSMfTBm0eow10f2+EqVb5OF6mqpFA5qptxCub98gjGk89pbByZd8Pgr3Hxj1zMV//6SzWrNVwFnRS4A5htUbPkiroVBd7OGvGTk6fthdLninmfaZSjSSXFc4+la//dHbssV6m84tvvU/r+28mvb/BllsbzvKJ6X4tpiqTr+XRJNlxbA9YueOJiwhFzOTbdIpcblattvRcn43VSCTYRoLt0WbEjKGuobQdQm3ahdJ+JPP3Z7bhKf0YzQGjTrbbbcxIuxtf6D9QTsf2AKoZn3sezZFjXx0Xm/YaTXUGEGgfLxI5lmri9cZuCZ0rpf8yLVYgr1ptnDg3/qK47rGJNYYWawS3uxN3cSd5edEDb1I15ow7xKdPf5/xp8zuqbNdWJqPNU+hoQFcrqGrtZ4NsuV5OJzlE9M9BqnK1ddytkl2HO/71+lsOWAkY990wVrOPH9s1tfZlu9aRM5rb3fR0mKitRWKiqCwMILTOdIzNwFFRXePIeIeYyyobNmL2rIXghlqD6aFMXfWY9bysCpmLLrxd9JBbjiA+/Azx6qWtKZ2ODpK2jJqTCaFoiLj+aNpOq2tRue43iv5s2FRWDbkqcbK59ZmXAPED7a7xybWGIaCJhob7DQ22Hnh7x7+/dd3WbdjPE3tDiKaytt7x/D23hpq/unhigX/ZsHcCK6Jl+FpM6FpRlaVyZqH2WbLmWA7lccxG56HED+vfygM5Rhkw2tOHPPevsqeQHvWmHpOHHMAzwcHMDm2Mv3yC4b56OKTYFvktObmQr78ZY5LTTDx0EOFFBe3Dt+BDTWrA61iJlrFTBRfA0rzHlTPgZRme6N0p3DcdlwjjWWzePhXNZQMMIUjm49BVRWKi8Hp1Nm//1jpreFeFBa/mcks7rmzJuNNfRJJdmwKChJ/kVpZoXDpKVu59JSttLTbWLH+JN6pqyaimTjYUsh9L56J600F/Z5ONqzLp3vZ0dKlJh588Ep466/4GxrTdFaZkerjONzPw2wwVGOQza+50SgYNvHblxcCYDWH+X/nrB/mI0qeLJAUOau93dUn0IauRitfNq4fjXRHGdrYBYRPuJTI2PnozrKU9+lzz+sT5AKsXGnihuVF+NzzUr6PbDsGq1Vh8mSF6mpQleFfFJYNzUziSXZsXG5TwoWyLvex/N8iZ4AvLVnHvZ99hsvmvYfLZqQaeb067f4AM2a3MGZ8G2ZLpKepTfHCy9J6XpmQ6uNot3UmHEO7beQ3lBmqMcjm19xo9KfXT6EjZAXg82dtSEuH2qEiwbbIWS0tfTsSdlu1SqGlJXFd5hFPNRuVTCadQ3jahWjlJ4DVMahdNUcSNNJYaaI5MiGFA83uYygrVZg6FcL7MlflIxmpdobMpGQroPg7bdx6q8KSJdHbL1kCt96q4O+MrpMLYDbpfOykj7j72uf49h1OOvymnlbxBe4QU6e3MmlqK+vWB/G0Zf9rPtXHMRDMSziGgeDIbygzVGOQza+50Wb3kWI27BoHwPTqw8ydmF2N3/ojaSQiZ7W2Jr7e44GxY4fkULJfnhOtchZa5SwU7xHU5p0obYdItod2fw1l+suhTIfhPAabTWHyhDBH9wxfU5tsydWNJdmGPy0tCldfbdSIXr7cqBFtsxll666+Gp7/p5LwHMbWWNmzMw/VpFFZ7aPAHURVwZYfYdzEdj77/8DtvJzSUjPlZQpTJ0Ol4yg2zzsU5rX120BnKKT6OLZ61MRj+OzIbygzVGOQza+50UTT4IGXTgMULKYwNyxZN9yHNGASbIucVViY+Hp3/MXqo5ruqiDiqoBQR1eXyt39lhBMtqFMJg33MSiKQkVpBJ9vLft2rEUNDu2isGzP1U1mwZzbrePzwU9+EnsfbreesClN92tai6gc2u/i0H6N4tIAJWWBnq55jS1mGlvgwx06r70JUAacB4DdGqTE5aPE6aPY6afE5afC7aWiwEuJy49JzXxxrlQfxwKXlnAMh/t5MBSGagyy/TU3Wjy59iS8AeNbr8+cuTGn0ke6yYcykbOKiiIJ8/aKihIHZ6OeJR+tYibh6RcRGX8aurM87k0H21AmnbLhGAAcDoVptVBSPCR312O4c8bTIV9J3NwoX0nc3MhdcPxrXqW50c6ObcV88koXTnse7V4zwaAas3yjP2hlf1MR79SN4d8f1LJi3Un8+sUz+N6KC7n5d1fw/RXnc//K03hq/Rxe+3AiHx0qo9VnS/YLoKSk+jiOhOdBqoZqDGSsh9+hFhevbJsCwOTyBhZMPjDMRzQ4UmcbqbOdy2JXI9F56CHiViORMUyg04vatMsoIRjpVe80zQ1lBiUbjuE4bW06Bw5AvAwSBTBbwGoFqwUsFrBYwWyCxqY8fL7kF3INdyORdDDn2yg941puvLlvc6MH74/Q+NpjhDvi11y3l5VSMO9Kbryx72v+l7+EOXN6r+HQsVg1bPlhbLYw554TYO/uDryB/Bh71jEerdjyLCEqCtqpLGxjQlkzkyuaGFvSOqiZ8FQfx3Q/D3KxRvRQvRaSvZ9cHMNsdPw46jp8+/8upNnnwKxG+Pk1f8eRF/txNTncw1b6T5raJCmXAi8JFPvqrrPt8RhfMxcVJa6zLWOYBC2C4tlnNMzxNxuX9Woo420343KG09JQZkAy1NQmFeGwzuHDxv9brUZA3fPbAvGKgatqPlu2+OMG6jG3yWAjkWTrCadad9icb6N4/oV06MeaG+UrTTRvfD4q0I53P1ZayZt0Bh6PgsdjpJMVFOgcqAtyxtl9F1h2e/11nXJXA/tee4m9h2zsbyxi++Eyth0sJxQ5llGpKhGKnR1YzRE6Q2aafXZ0ve9jaLHoTJqgMH6MyszpMK3qAKb69YMag8JCHRt9xyCeVJ8Hqd5/NhiqpjrJ3E+uBtupvpbTUYM80XPxr69P4vl3ZgLwmdM3ctr0vXH3I8F2DsilwEsCxdTJGA6QvxnT0W0obcdWfzvsdnx+/zAeVO5z2O00NfvYvTv+zPhQiV9POMI9d7b01BNO9nYZO55lGvffr/DVr8I//tHfzHa0556De+7RefDXERpfPzaDHgyrfFRfzvv7qnhvXzUtPnvUdmOLW5hU0UiZy0dn2MzexlL2NFXQ7ut7XxVlOhOL9jOxtJHJFY1UF7X1mf0eqjGMJ+G3C8eNjUhOLgbbqT4P0/E8TvRc/MF/BfnSzV50XWFcaTPfuWx1wn1JsJ0DcinwkkAxdTKGg9TRiunoVhTPAQm206B7DDs7dXbtGt6A2z1zMbffOTtmmbNl50W4+44teD5Ym/TtMnk8S5fqLFyo9Fkc98gjOk89BStX9g2ClyyBRYuMBXVLl+rcf3cDR197us/tdB0ONLuNwHt/NXuPFqP3Si9x5HVSXqZw6Iido0cVFNUoTWi2algsWp8vMfLMYcaXNTOpvImJZc1MLG9i3Py5QzKG8ZSfeQVfub0sZtnURGMj4svFYDvV13I63gsSPRdnn9xCJKJhUjV+dvXfceUnXhSZ7cG2VCMRQiQnv5DI+FMh0AYd+8H/wXAf0YiQl6cwefLwBtz91hP+0QRgbdK3y+TxrFqlcNttfS//6lcVNm/WueXmSFR+7ZIlcNttRkm47u079JKY+1YUGFviYWyJhwtP/pC2jjw+2F/Je/ur2HqgEl9nHnsOAIRxJ/j31aRG0HSVzrCZ7fXlbK8/tvi44Dk4dMhLWYUZX7uFDr8ZXTfONZ1jGE+HXpKwP0G8sREjS6qv5XS8F8R+LupUjWknEjFWOH9iwTv9Btq5QIJtIcTA2ApQq04nbB+P2rDNWEwpX5ClZLgD7mTrCQ9V3eH+7icQI8vB54OjR+HuO7YQ/tkcdu1Somov+3zHbuvxJK7n3a0gv5PFtXUsrq0jHFE41OKmpeRjfPcHeZjNGmaLhqXrt9msY+6a3Y5o8WvCt3nB6QrjdIUpqwig68bLR4sohMMqd/9aY4xlOuUuHyUuH6UuPwX5gXip/wPm8STeUbJjI3Jbqq/ldLwXHP9cVNUIE6a0YbMZgfaYGhPnztrVz15ygwTbQojByXOijZmPVn4CasOHqM17QB/+piG5qifg3g2hIZ7ISbae8FDVHe7vfmxx1kG6XOB5bS2uM2Zx1VXxA97+6nnHYjbpjCtt5YQF0NocbyGmzisrPRxa8wIefz4evw1vII/2QB7ejjxa/TZaw5UcOKRgMukoCj0/qqpjtkR4+z14m9lRezWpEYodPsrdPkqcfkp7AnGjZrjTFkw6GHe7E38wHszYiNyTjnrvqWwP0c/F/PwQ4ya1Yep62bZ7zfzPD+10ZO5LniElwbYQIjVWB1rNKb2C7t2gSY3zwcjLU5gySWfnEAfcRj3hWVHpF9161xNO9naZPJ6lS3XWrYudb+x2a3jprucdPy85X2kadECZeAw0ik11mLpSUWIxcl1nsfIlFUXVsdnC2B1h8u1hioojQIRIJPq4I5qJBm8BDd6CmPs0qxFKXH6KnT6KHX6jYY/T+F3s9FPk8GM2GYFNJsdG5I5UX8vpeC/IV5pYsqSUd94LUF7ZgaIY3/I0HrVx4mw7LksDidut5Q5ZIIkskBxtZAxTl3AMgz5Me19HCWS4pWSOS7TINNg5tAF3svWEh72+cYJqJA8+CO3v/I32+iMp1/Me1LGlqU5247q/cbQpjwPNhRxodrO/qZD9TUV9qqQMjI7FFMFmDZNvDeMoLODAQYWWFgVNM36qqxQuOF9HP/IueUoHZpOGqujkW0NMqWykID/5mvCjTS4ukMyGeu9B1clv1l7Mu+8bkzOaBvvrnCxeaB3w6zTbF0hKsI0E26ONjGHq+h3DSBDT3jUovoahO6gc019Fl+6AO8KxWrbtHSbKKm10BlVaW0hrfeRk6xYnWyc7nmRrPMc7HkukCdvUs/vU2e74cDVNO3bFvZ/ex6mFw/3WB05UQxgY8jrXHUEzB5vdHGgu5JCnhPrAOOoOKHQOUQycbw1S4vRT4W6jprgVd34Qe14QR57x224NYc8LYrOE05Zfnkg6ajynSy4G2zC89d73NhRx/8rTaOswmkwVFCh8/TYnU6eYBvR+0k2C7RyQS4GXBIqpkzFMXVJjqEUw7V+H4jmY+HajVDLlE4NhE43Fl3HrN4tZ86bKE0/APffA6l4lZ4eyPnKqtXVTrfFsKyqkcNGnYnaQfPBBaF33JIGW1pTPAchYLez0juGxfO8zztT47rciHFn/Ah2+CJ1hM50hE51hs5Ev7sunrcNGRyQfzV7Brp3g8+koqrG9xaJjMkE4xThVVTSKHB2UOH09aSzHp7VYzREimkJ7II/2gBWTqpNnCWM1h8kzh3tSXjI1humWi8H2cI2hrsPqLVN4asOJPVV4xpc2cdvHXqfIpQx6HCXYzgG5FHhJoJg6GcPUJT2Guo566G3Upp2ZP6gck0yw7StaxGdvN2rZfuc7RmWN1TF6OwxVfeRUa+umWuO55sIv8KUvW+Ju/8hDIQ4+/9uUzwHIWC3s4R7DqmXX8eWb7fG3v9fH7n/8hfaAFV9nHr5OK03efPY2FHOwpZCjbU46Q5bjtjSqkesJWt4ff3sS3NakauSZu4JvS5g8cwSrJYzNHMZqCeMuL2bj+8Xs2mVCiyhEen5UTl2k8eOvfUho95uoQzDDDrkZbA9VzfzefJ0W/vDqfN7dV9Nz2eKpe7jujE2YVD2lccz2YFsWSAohMkdR0GrmgiUf9fD7w300Oac5cqyWbXdTllhWrVIIUEJ1NUYcg1FCsMMP/g4jFzIdUq2tm2qN57b22IF29/Zt7ccHgX0ldw5krJ74cI9heyB2oN2zfdCB0xbEaQtCVD2J3YAxM3m0zcmHB8vZdqiCjw6V4w9aGdisXeIoOKKp+INW/EFr7BvsAeikoqrvVYeb4IvfqUHhE+TnhbBbg5S6fEyuaGRKRRMTy5vItw5zy9YsMFQ187vtOVrMw6sX0eJzdF2i84kF77J09o4hSTsabhJsCyEyTiufgW7Jx3Rgo9TkHgCP99jCo1i1paNu61GYWBrjXy1dJ9BpBN0dfvD7jX1pg3gYUq2tm2qNZ0/sAh9R1/dX2zeZc+gvckylnniuj6GiQIW7nQp3O2edsBtNg7rGIrYdquDDgxXsbyok3xrClR+gIL8Tl63rd9ffVlOYiK4SDKv4glZa2h00eh00tDk52uYgGE78gclqDmGxWmj1KMdC9u4SihhpMYpizLL7O634O600ep18eKii66Y6hQ4/5e52ygu8VBS047AFo8J/mzXE+NIWihwdIzYQHKqa+QebC3hl6xRe/3AietceLaYw15+7jhPH16fhHnKDBNtCiCGhF00gYrZhqnsTNJlZSobbdayEYrza0j23devQGuMKxWjuYrMBXd926rpOR0evALyj/2AeUq+tm2qNZ7c74ea43fRbti6Zc+hPKvXER8IY9qaqMLG8hYnlLVx40ocD2LIvXQdvII+GNiP4bmhz0uB19vztDdgIhi0Ew2CxDO5Du45Ci89Bi8/BR10BeDwF+R1MLGtmfFlL1+9mHHm5380QMlszPxxReHtvDa9sm8LOw2VR17ntHdy87A3GlbYOcu+5SYJtIcSQ0V2VhCefg3nPaxCWUmL9KTbtZdmyWaxcaWLdOqP1eLyc7WJbU9L7VRQFux3sdqAr6yAY1Dl8BBKl4qdaWzfVGs8FzhBLl8bP2S5whvoNFJM9h0zVEx/uMXTa/CxdGj9n22nzD1udbUUxunYW5HcyuaK5z/WBoJlGrwOl+iTuf3wi77yjoHYt8FRUHVXVmTxJ4/R5jXiPNBAMGwtENc04Vx2FUETtmfH2dVoIhCz0TWsxAvm2jnze3VcTlWOcbwlS6OigxOWj0u2lqqiNIqdGnsmH09aJ0xbEbg2iZnkbzkzUzG/x5fP6h5N4bdtEvIH8rkuP5eePK23mK+etodCR2YXc2UgWSCILJEcbGcPUpTyGQR/mPa9CZzr6DeamZBZIopppKv04NywvYs0aU9xqJA89GKH8yOMQTv0fsUDACLpjpRukWls31frX6a1GEv8cgIzVEx/uMbS6nBSffk3cMWx+43GC3ux+Xaaz3nsgZGLP0RJ2HSlh15FSdh8t6QrAU6GTZw6Tbw3hsAVx2QIU2gMU5AeMv/M7GV/SQnWxZ8gWcR4vXWOo6/BRfRmvbJ3CO3ure1JFeisv8HL69N2cc8IurOb4Dc9G8gJJCbaRYHu0kTFMXVrGMNxpNL/x953BGg2SCrYBVDM+9zyaIxNo95koKrMR6FRpbTVSBoptTbgbX0hLoN1bR4cRdLcd15soldq6kHqdbltRISWLr6Ct3YLHY6Q9FDhDNK19ut9AeyDnkOp5pnr/iaQ6hlaXk5LFl9MesPeModPmp2ntM1kfaHfL1OOjaRglEoPGrHdH0EJHyExH0ILHb+OIx0VDm5MWXz7eDhthre/McLLMaoSygnbGl7YwveYIs8YcxpU/dFVNUhnDjqCZtTsm8MoHkznS1rezqdkUYe6EA5w+bQ+1VQ1J5b5LsD3C5VLgJYFi6mQMU5e2MdTCmOrWonhHz0KZbkkH28PM79c5fBiyMQYbrpJrmWqoMhyNWgY7hqk2RMkViR6TSDBMc7udo94SWtpVvB02PB15tPjy8fiNYNzXaaUjaEHTk8srURUNp62TEpePscWtVLjbKXb6ybeGMJs0zGqk67dm/DZpmFQNiymCqeuyTMyWhyIq+xoL2X2klF1HS/hgfyXBSN9M5OoiD6dP282iKXU4bP3nt/ceX2+7CZczMqjnfLYH25KzLYQYPqqZyMQzjAWTkSCEgyiRIERCEOn+/+Cx/w93/X+gVaqaDBG7XWHSJGj3GUG3z5fcdiaTsSjTlmf8tlqhqbnvTHmuid8MZBb33Fkz6GYgmdpvJsRPZSnjwV9fOyQNloZCMo9JictPVUk44QcWXYdAyGgu5A3k0dZho9Frp66xmIPNblp8djqCRu64pqu0deTT1pHPnqOlgzxyHYspgtMWpCA/QJHDT4nLR4XbS4nTjz0vRL4lRL7V+OlO7QiEzD2Nho56nOztOr4jHhcevy1migiA1Rxm3qT9nD5tN5PKm5Ou4JJLz/lUycw2MrM92sgYpm64x1Dx1mOqW5vTVU1yZWb7eF6vTv1h6Ogw/japYMs/FlTb8oy/zebY/+L6fMb2yQbtiQzHzHammoEMR5MRGNwYptpYJ1ck+5ik43mo67CvsZD39lWx43AZB5oL8XXmpbTPZKmKUZkk2dn3buNKWjh9+m4WTN43qNrl6XzOy8y2EEKkme6qMqqa7H0DQh3DfTijisul4HIZ6SUWC1gsA/vO2uFQmDIZ2tqMmfJcmwDNVDOQoW4ykopUG+vkiqF8TBQFxpe1Mr6sFdgGQIvPxs7DZew+Wkw4YkJVdVRFw6TqKIqOSdFRVQ1VMf5GNx4TDWjvyKO53UGLP5/2QB6+TgvBsJlYDYViB9nGIs8Ce4ASp5+qQg/l7nZctiBOWydFDj+VhanlluXScz5VEmwLIXJTfhHhKUsw7XnDSCsRQ8puTy0xtKBAoaAAWlqMhZi50u06U81AhqrJSDqk2lgnVwz3Y1LkCDB/8n7mT96flv2FIwqNXif1rS4OtxZQ3+qivsXFEU8BOjCxrJkplY1MrmhiYlkz9gzXFB/u8R1KEmwLIXKXxU5k8jmY6t5EaT8y3EcjBqGoyFhc19QMR48YbeazWaaagWSyyUi6pdpYJ1fk0mOSDLNJp7LQS2WhFzjUc3l3MvFQd8scaeObyEj50CCEGK1MFiITz0ArnjjcRyIGSVEUSksUpk+HykojDzxbGc1AYtcKTqXhTab2mwlGY53YAXd3Y52RIJcek1QoytAH2jB6xhck2BZCjASKijZmPlrl7OE+EpECVVWoKFeYMR3KyoyKJtnGu30j99zZ0idI6G4G4t2+Mav2mwnNG5/nwV9H+gTc3Y11mjc+P0xHll659JjkotE0vlKNBKlGMtrIGKYum8dQad2Haf8G0BN/RTnccrUayVDSdR1vO7S2QpsHIlr66vKmIlMNVTLZSCeewVbSOL4xTmEhOPJyqzFOMpJ5TDJZFSdRnW9gyOuyp9toqbMtwTYSbI82Moapy/YxVHwNmPauMWp0ZykJtgdG13Xa/WZ8NZdx838eX5c3wj13toyourxDZTCBYvz6yKPzcchUsJ1wnH/WiqLo3PqNkfMYjOQOkpJGIoQYcXRHGeEpS8DqGO5DEWmiKArqmPl9Am0wyoTddkcRrtr5w3R0o4urdn6fABDkcUi3xONczGsb5THIFRJsCyFGpjwX4SlL0e3Fw30kIk2aI/3U5XVMGNoDGqX6rY8sj0NaJBznlQpVVfIY5Aop/SeEGLnMeUQmnYPavAsCHpRAG0pnm9EOXuQcjzfxismOgIrVmjs1u3PVaKqPPJz6G+dAgoZQ8hhkFwm2hRAjm2pCK62NvizkNwLvQBt0ShCeK9yu2GXCeq4v0KiphYOHoLl5iA5qFBpN9ZGHU3/jbLMl2FYeg6yStcH2s88+y6ZNm9iyZQvbt28nFArx05/+lCuuuCLm7dvb27nvvvtYuXIlDQ0NlJeXc/7553PzzTfjcEjephCiF4sd3WJHd1VGX94dhPubUJt2QFimSLNJsWkvy5bNYuXKvjPcy5ZFKDbtRVUVxo6BApfO/gMQSRyfi0Ew6iPPYuVLMR6HEVYfeTglHOdlOvX1OrGygeUxyD5Z+y3DPffcw5NPPsmhQ4coLy9PeFu/38+1117L73//eyZNmsTnPvc5Jk6cyG9/+1s++9nP0tnZOURHLYTIaV0BuFYxk/D0i9GqT5ZFllnE4XmLh3/VwrJlx9XlXRbhkV+14PC81XOZ260wrRYKXEN9lCPfaKqPPJwSj3MTZ85vlscgR2Rt6b8333yT8ePHU1NTwyOPPMIvfvGLuDPb9957L/fffz/XX389t99+e8/ld999N48++ihf+9rXuOGGG+LeVzaXMDtetpdcywUyhqkbVWOoayit+1EbPkQJeNK2Wyn9N0iqGZ97Hs2RCXjbzbicYYpNe41AW4td6qyxSae+HrTsLr0+LAZbbm04aoJnk6Gq955onIGUHoNENbyH4zEcyaX/sjbY7i1RsK3rOmeeeSbt7e2sWbMGu93ec53f7+e0006jpKSEVatWxd1/LgUNoyrIyRAZw9SN1jFU2g4ZQbevceAbW/LRHeVozjL0/GIKFR/tuzdKqkoKBvKBpbNTp24fdHRk+KByTCYbsoxUI6HOeDaeQyrPxerJbooWZ2+wnbVpJMnau3cvR48eZe7cuVGBNoDdbmfu3Lns37+f+vr6YTpCIcRIoRdUE5l8LpHJ56IXVCe+scWOXjieyJj5hKddSHjGJUTGLUQvngT5hShVs4xUlaqTwJxgpZNIi7w8halToCJxVqIQ/RoJdcZHwjl0GzsGSkuU4T6MhHI+2K6rqwNgwoQJMa/vvnzv3r1Dc0BCiBFPd5QSmXA64drz0QvHg6IYwXXRBCJj5xOefhHhGRd3BdcTIc8Ze0eqGa2slvD0i4jUzAWLPfbtRFooikJlpcKUyWC1DvfRiFw1EuqMj4RzABhbA8XF2R1oQxZXI0mW1+sFwOmM/Y9Z9+Xt7fGL4LjdblQ1dz53JPOVhUhMxjB1MoYARVA1AT0SRjEN/O00agxLStEnnQJNu9DrP4BObxqPc+Ry2Af+AcVhh5JinVaPDgqoCqgqqKqC0vX/3b9VBZSu37oOPj/4fBo+n47PB6Fw1mdi9ssqnzwGxNueuN67t91EXpaPabaew0Cei+PGqZSXdp1HvgM1i/9NyvlgOx08nvQtesq00Zorm04yhqmTMUxd3DE0l8KYM1Fa6zAd3SZBdwKpLjKNV6dY142fWAsqTSYoKDB+AIJBHb8f/H7w+YxGI1oOxd+Ssz1wLmfiepIuZ4T2LB/TbDyHgTwXa2rAYVfwdb38dc1CZJj+TRoVOdsul1HXKd7Mdffl8Wa+hRAi6ygKetEEwrUXEBm3GN3mHu4jEnFYrQqFhQrV1QpTpyrMmgVTp0BNNbjdYMr5f2XF8Yz617GD1VypcZ3L51BTnf052sfL+beB8ePHA/Fzsrsvj5fTLYQQWUtR0AvHEqk931hIqeT8W/aIpygKdrtCaanChPEKM2fCxAlQXGzMiovcNxLqjOfqOdRUQ2lpbgXaMALSSCZMmEB5eTmbN2/G7/f3Kf23efNmxowZQ1VV1TAepRBCpEYrq0VzlmHav95oMy9ygqIoPWknY2t02n3gaQOPB0Khwe3TYgFbnpEGYzZH55bHyjXv/TsYhJYWaPVId83B0kJhmjf8jbvvmE/kR9F1tpvX50ad8ePPoXed7mw9h+ocDbRhBATbiqJw1VVXcf/99/PAAw9ENbV54IEH8Pv9fPnLXx7GIxRCiDTJLyIyZSlq/buoTbuG+2jEQCkKTic4ncYMnd+v0+oxAu9YqaomE+TbjKA6z3bs/02mwQccFgs4HFBTo9PWBn6/QkMD5FCa+YBkqnGLFgrj+WAtsJY8qzXrc7Rj6X0OKhC/jMTwq66CshwNtCGLg+0VK1awadMmALZv395z2YYNGwA45ZRTuOqqqwD44he/yOrVq3n00UfZtm0bJ5xwAlu3buWNN95g9uzZfPaznx2ekxBCiHRTzWg1p6C7qjAd2CBNcXKY3a5gtxuBRCCg42kzcrxteWDLB7M5c8GFoii43VBdZaa8rJNWD7S0Gos8B0NVIS/PmGn3+yCSBd064zdumcU9d9bkRPMZAVWVUFaWu4E2ZHGwvWnTJp555pmoyzZv3szmzZt7/u4Otu12O4899hj33XcfK1euZP369ZSVlfGFL3yBr3zlK9jiLTkXQogcpRdUE556Pqb9G1Dajwz34YgU2WxK3OoomWYyK5SUQEkJBDt1WlqNVJPOGJ/jrFbjw0DecT8WS69gSNfx+cHrNX78w9S1M2HjFoq4+475XTO7IltVVUJ5eW4H2pAj7dozLZdKmEnJtdTJGKZOxjB16RxDtXE7av17oGfBdOIQSrX0n0g8hn6/ETRbLceCakUZeOATDuu0t0ObF9q9MFSTyc4FV3PyoviVfN5e56F9wxMp34+UT0wsLw/GjAF0Y51COBz9OxSGcAhM5uhxrKyEiiQDbd3mJlJ7fobOILFkSv9l7cy2EEKI5GiltWiOckz718niSZE23WkuqTKbFQoLobDQ+DsQ0PF6jeDb78tcXfI2b+LqPW3tau6XZMtybjeMG2s0jOqPzWamzRMkFDbmDZyu3J/R7ibBthBCjAT5hUSmnNe1eHLncB+NEHF1p8yUlUEkotPQAA2NsZsIpaLAlXiHBU4tqxcF5jIFqKoe2KJGk6pgzVOw5mXuuIaLfKgTQoiRQjWh1cwlMuF0dHux1OUWWc9kUqisVJgxHUpLjSAtbfvO4cYtucxihsmTc7t6SLrJzLYQQowwekE1kYJq47vYgAelo8X48TejBDyjLrdbZD+zWaGmGspKdQ4fMRZopspo3FLDbRSx8qVjHYW6G7c0r8/Oxi25zOmA8eMzW0knF0mwLYQQI5WiQn4Ren7RsTrKEoCLLGa1KowbC+VlOocPGw2ABspkApcTCgrCuNr+xu9+Pp+m8AQ8bSpOR3Y3bsllZWVQXYnRWUlEkWBbCCFGkzgBuOJvQmmpQ/UcgIhUVhDDy2ZTmDDBqIhSXw/t/dT/ttnA5TI6dTrt9Ar4Irg863CxDkwQ8up4PBC2gm+QHTxFNJMKY8eC2y1BdjwSbAshxGinqOiOMnRHGVr1ySjeetSWOhTvIZDqsGIY2e0KkyeD16tTfxg6ump2qwo4nFDQFWBbrckFehaLQmmpkR8eChmBd6tn8M18RgKnA4qLoSNgjG9HB0Rip7r3YbPBhPGQlyeBdiISbAshhDhGNaG7xxBxj4FwJ4pnvxF4+5uG+8jEKOZyKbhc4PHoKIrR8j6ZcnKJSOANpSVQXW3UT+9dLToU0nsC744OIxA/vpR4UaFRPzvVx2E0kGBbCCFEbOY89JIpREqmQGc7amsdasteCI6iaERklUylKvQOvMNhow64t31om/AMJQWoqYGSktjjabEoWCzGtwbdImHdmP0OGKkjxcUSZCdLgm0hhBD9y3OiVcxEq5iJ4mtE8exH6WyHkA8l6AMtye+dhchyZrNCURF0Nwbs6DgWfGeyCc9QMZlgwgRwOgYWLJvMCk6n8a2CGBgJtoUQQgyI7ihFd5RGXxjuhKAReCshX9f/+yUYFzkvP18hPx/Ky0HTdNp9GMG3Fzo7B74/BWOdstL1h6oc+x3rcgUjtSUdMb7NBhMnJJ/jLtJDgm0hhBCpM+cZaSf24thBQdCH6fAWlNa6oT4yIdJGVRVjUabL+DsY1NF1E4GAUQBFVbt+dwXOsX4PpjReKKTT2AhNTRAZZJXOgbROF+klwbYQQojMszqIjFuIUjwR08FN0Okd7iMSImVWq4LDruLzZzaAtVgUqqqgokKnqclobx8aQOnCinKorJQge7hIL18hhBBDRneWE649H61yNqim/jcQQvRQVYWyMqO9/bixkG/r7/YwfpwE2sNNZraFEEIMLUVFK5+BVjgO08HNKN764T4iIXKKohxbxOn16jQ0GAs4e7NYYOJ4yLdLoD3cJNgWQggxPKwOIhPPQPEcxHTobQj5h/uIhMg53TXIOzqMoLu1FewOo9mM2SyBdjaQYFsIIcSw0t01hF0VqIe3oDbtkK6VQgxCfr7CuHFQVaVjNhuz3yI7SM62EEKI4aea0apPIjzlvL5lBYUQSbNYFAm0s4wE20IIIbJHfiGRyecSGTMf8qR7hhCif7qrcrgPISFJIxFCCJF19OKJhIsnorQfRW3aidJ2UNJLhBB96DY3WsWs4T6MhCTYFkIIkbV0ZzkRZzmEAqgte1Cbd0PQN9yHJYTIBopCZOyCrC8jKsG2EEKI7GexGeUCy2egeA+jNu2CiGeA+7Cj5xei2wrR84vAZEEJtEJHK0qgFSXQBvog2/MJIYacVjEL8ouG+zD6JcG2EEKInKK7Kom4KlEceWi7N6M27+lTNlC3FUBXUG0E14VGS/nj9+Us7/WHBoE2lIDHCL67gnDCnZk9ISHEgOmOUrSy6cN9GEmRYFsIIUROUqx2tIqZaOUnGI1xQh2QX4huc4M6iH/eFNXYPr8QnfHHLg91GAG4rwG1eReEg+k7CSHEwKlmImMWQI5UXZFgWwghRG5TFPSC6szt35KPbslHd1Wilc9Abd6N2rhDcseFGCaRqhNzqlqRBNtCCCFEslQzWmktWslUFM9+1IYPUTpah/uohBg1dFcVesnk4T6MAZFgWwghhBgoRUEvHEekcJyxYLPhI5T2I8N9VEKMbGYrkTHzhvsoBkyCbSGEECIF3Qs26WjB1PARSuu+4T4kIUakSM08sOQP92EMmHSQFEIIIdIhv4jIuEWEp1+EVjo162v/CpFL9MLx6O4xw30YgyIz20IIIUQ6WR1o1SejVc42KpmEOozf4QCE/F2/uy4PB0CLDPcRp49qBi083EchRhqLnUjNycN9FIMmwbYQQgiRCaoZ8lzoeS4A4jabjwS7gm8/6uEtKB0tQ3aIaWO2Eamaje4eh9rwIerRbdIgSKRNZOwCMFmH+zAGTYJtIYQQYjiZrGCyotvcRJwVqEe3oR7dCnrc8Dx7KCpa2TS08hk9tc21iploheMxHXwLpf3oMB+gyHVa6dTo5lM5SIJtIYQQIlsoqhGsFtRg2r/B6GCZDl0lC/U8J2rL3rQEwbp7jFHv2Oroe2Wek8iks1Fa6jDVvyNdOMWg6LYCtMo5w30YKZNgWwghhMg2+YVEpi5FPbIVtWHb4Ge5VRNayRSjrXVXu/pI0QQI+lBb9kKwEfz+hLs4np5fhFZ9ErqjrP/bFo0n7KpCPfwuavOeQZyAGLUUhcjYhSNiobEE20IIIUQ2UlS0yllo7hpM+9ejBNoGtm3JZCPIjlUqzepAq5iJWlREZP9Hxmy350DixY3dedlFEwd2HmYr2pj56EUTUA9uGth5iFFLKz8B8ouG+zDSQoJtIYQQIpvlFxGZch7qkQ9QGz5MfFtFQSuaYAQqsdI7YtCd5USc5VB9MkrbAdTmvSi+hl777MrLLpsOJsugT0N3lBGZugy14SMjJ32gVVgUBSz2kVfBRfShO8uM5/AIIcG2EEIIke1UE1rVHHS3kctNp7fPTfTC8UQqZkKec3D3YbKgF00kUjQROtuN2e6Q39hnkoF7vxQVrXwGmnsspoOb+nbdNFvRrU6wOtGtjq7/d6BbHUagrSigaygdLSi+BpT2BhR/I0RC6Tk+MbzyXEQqZqEXjh3uI0krCbaFEEKIHKHbSwhPXYZ6+H3Uxu3GZe4xRCpmga0gfXeU50SrnJW+/cXYf2TSWShth0DXjWDa6khu5lxR0e0l6PYSKJtu5LMHWlF9DUYA7muAcDBzxy7Sz2JHmXgqYbXI+EA1wkiwLYQQQuQS1WQsUHSPQVdNOZ3XqhdUp74TRYH8IrT8IiitNS4LtKH4jqL6Go1cdKn5nZ3MecY3HSVTUIpLoCUHa8wnQYJtIYQQIgfpjtLhPoTsZStAtxUQKZkC/mbMdWsg1JH2u9EdpSiTToGt/5ZUloEwWYx1AKW1PfXZRzJ1uA9ACCGEECJj7MWEp5yXVKnCgdBKpxq1xIsnEJ68JH157SOZakIrm0542kXGAshREGiDzGwLIYQQYqSz2IhMOgv10DuoTTtT25dqJjJmfvQiPlsB4SlLMdWtQfE1prb/VOS50IrGQyiA2lqXPbPtioJWPNnoNBqrFOUIJ8G2EEIIIUY+RUWrmYueX4Tp4KZB5XHrtgIi406NvRjVnEdk4lmYDmxEad2XhgNOksmKVjgWvWiCsWi0i1Y1B6WlDrVpV/o6kQ6UJR+taCJa8cRRPfMvwbYQQgghRg29eCIRWwGmujcHlMetF44jMmZe4tQH1URk3CLUPBfqkQ/ScLRxKAq6qxqtaAJ6QRUoMbKCVTN6yWQiJZNRfI1G0O3ZPySLRfWCarTiieiu6hFZXWSgJNgWQgghxKii20sITzkP0743+0/7UBS0qpPQSqcmvX+tYia61YnpwMa0Bre6vRi9cDxa4Tgw5yW/naOUiKMUwiehtuxBbdoFQV/ajgsAix2tuGsW22JP775znATbQgghhBh9LDYik85GPfS2EXzGvE0+kfGnRqVnJEsvGk/EasdUtya1ut9WB5p7LFrRhNRrqZvz0Mqmo5VOQ2k/jNq4E8VbP/j9dc+wl0xCd1bKLHYcEmwLIYQQYnRSVLSaU3rlces9V+nOciLjFg9oBvl4uqOM8OSlmPe+HrPrZ9zt7MVGKoarGvILB33/cSkKuquKiKsKgj4U31GUSBi0sLGoUgujaGHQQtB9uRZG6boOk8WYxS6aOCoXPA6UBNtCCCGEGNX04klEbG5Me9dAOGA0WqmYlZ6Z2jwn4SlLMNW9idJ+NPZtVBO6swKtoBrdVTW0AazVgW6diN7/LcUgSbAthBBCiFFPt5cQnnoeSsCD7qpM785NViITz0Q9uAm1eY9xmdlmBNcF1ejOClBN6b1PkTUk2BZCCCGEALDko2dqVllR0cbMR3dWolsdYC/OzP2IrCPBthBCCCHEEIlqhiNGBWnXLoQQQgghRIZIsC2EEEIIIUSGSLAthBBCCCFEhkiwLYQQQgghRIZIsC2EEEIIIUSGSLAthBBCCCFEhkiwLYQQQgghRIZIsC2EEEIIIUSGSLAthBBCCCFEhkiwLYQQQgghRIZIsC2EEEIIIUSGSLAthBBCCCFEhkiwLYQQQgghRIZIsC2EEEIIIUSGSLAthBBCCCFEhkiwLYQQQgghRIZIsC2EEEIIIUSGKLqu68N9EEIIIYQQQoxEMrMthBBCCCFEhkiwLYQQQgghRIZIsC2EEEIIIUSGSLAthBBCCCFEhkiwLYQQQgghRIaYh/sAhOHcc8/l4MGDMa9bsGABf/rTn6IuCwaDPPLII/z973+nvr4et9vNOeecw/LlyykpKRmKQ84qTz/9NN/61rcS3mbRokX84Q9/AOC+++7j17/+ddzbrl69mjFjxqT1GLPJs88+y6ZNm9iyZQvbt28nFArx05/+lCuuuCLm7dvb27nvvvtYuXIlDQ0NlJeXc/7553PzzTfjcDj63F7TNB5//HH+8pe/UFdXh91u59RTT+WrX/0qY8eOzfTpDYlkxzAUCvHvf/+bf//737z33nscPnwYgClTpnD55ZfzqU99CpPJFLXNgQMHWLJkSdz7vvnmm7nlllvSf1JDbCDPw8G+Zl9//XUefvhhPvjgAxRFYebMmdx0000sXrw4recyXAYyhtOmTet3f6+88gpVVVXA6HgeHjlyhBdeeIHXXnuN3bt309jYiNvtZu7cuXzxi1/kxBNP7LONvB9GG8gYjtb3Qwm2s4jL5eKzn/1sn8tramqi/tY0jRtvvJE33niDk046iWXLllFXV8eKFStYu3Ytf/nLXyguLh6qw84KM2bM4Oabb4553YsvvsiOHTs4/fTT+1x3+eWX9xlfgIKCgrQfYza55557OHjwIEVFRZSXl8f9oAfg9/u59tpr2bZtG6effjoXXXQR27Zt47e//S0bN27k8ccfJy8vL2qb73//+6xYsYKpU6dy3XXXcfToUV544QXWrFnDk08+yYQJEzJ8hpmX7Bju27ePW2+9FbvdzuLFizn33HPxer28/PLL/OAHP+C1117jwQcfRFGUPttOnz6dpUuX9rl8wYIFaT+f4TCQ52G3gbxmn332Wb7xjW9QXFzcE3w+//zzfP7zn+dXv/oVF1xwQeonMcwGMobx3iPr6up47rnnmDJlSk+g3dtIfh7+6U9/4tFHH2XcuHGcdtppFBcXU1dXx6pVq1i1ahW/+MUvuPDCC3tuL++HfQ1kDEft+6EussI555yjn3POOUnd9qmnntJra2v1r33ta7qmaT2X//nPf9Zra2v1733ve5k6zJzT2dmpL1iwQD/hhBP0hoaGnsvvvfdevba2Vl+3bt0wHt3wWbNmjX7gwAFd13X94Ycf1mtra/W//vWvMW97zz336LW1tfpdd90Vdfldd92l19bW6g899FDU5WvXrtVra2v1a665Ru/s7Oy5/JVXXtFra2v1L3zhC2k+m+GR7BgePnxYf+yxx3Sfzxd1uc/n06+44gq9trZWf/7556Ou279/v15bW6t/85vfzNwJZIGBPA8H+pptbW3V582bpy9cuFCvr6/vuby+vl5fuHChvnDhQt3r9aZ+EsNsIGMYzw9/+EO9trZW/+1vfxt1+Wh4Hr744ov6+vXr+1y+ceNGfebMmfr8+fOj3sfk/bCvgYzhaH0/lJztHLRixQoAvva1r0V9+vv0pz/N2LFjee655wgEAsN1eFll1apVtLa2cvbZZ1NaWjrch5M1Tj311Jizg8fTdZ0VK1Zgt9u56aaboq676aabsNvtPc/Hbt1/33bbNeSuEwAAFNFJREFUbVit1p7LzzrrLBYsWMAbb7zBoUOH0nAWwyvZMayoqOCaa67BbrdHXW632/n85z8PwMaNGzNyjNku2TEcjH/961+0tbVx7bXXUllZ2XN5ZWUl1157LS0tLaxatSoj9z2UUh3Dzs5OnnvuOSwWCx//+MfTeGS5YdmyZTFnRufNm8fChQvxeDx89NFHgLwfxjOQMRyt74cSbGeRYDDI008/zUMPPcRjjz3Gu+++2+c2nZ2dvPvuu0ycOLHPG6yiKJx66qn4/X62bNkyVIed1Z566ikArrrqqpjXb9y4kUceeYTf/OY3rFq1Cp/PN5SHl/X27t3L0aNHmTt3bsw3x7lz57J//37q6+t7Ll+/fn3Pdcc744wzANiwYUNmDzxHmM1GJt/xOYrdjh49yuOPP85DDz3EihUr2Ldv31AeXlZK9jXb/RyLlT7WfZk8D2HlypV4PB7OPffcuOmHo/V52P367P4t74cDd/wYJnPbkfh+KDnbWaShoaHPIr/Zs2fzy1/+knHjxgFGvpOmaXFzvLov37t3L/Pmzcvk4Wa9gwcPsnbtWiorK3ve1I533333Rf1dUFDAd77zHS677LIhOMLsV1dXB5Dw+fbGG2+wd+9eqqqq8Pv9NDQ0UFtbG/MNc/z48VH7He3++te/ArEDQoA1a9awZs2anr8VReGSSy7hBz/4QZ9/7EeLZF+ze/fuBY4953qT5+Ex/U1IwOh8Hh46dIg333yTsrIyamtrAXk/HKhYY5jISH4/lGA7S1xxxRWccsop1NbWYrfb2bt3L7/73e949tln+dznPsff//53nE4nXq8XAKfTGXM/3Ze3t7cP2bFnq6effhpN07j88sv7vNFNnz6d//mf/2HBggWUl5fT0NDAK6+8wr333ssdd9yBy+VKuPp5tBjo8y3Z23ffbjR78sknee2111i0aBFnnXVW1HX5+fncdNNNLF26lHHjxqFpGlu3buV///d/+fvf/04gEOgTdI50A33Ndj8nXS5Xn33J89Cwf/9+1q9fT3V1Naeddlqf60fr8zAUCvGNb3yDYDDI7bff3vPvh7wfJi/eGMYz0t8PJdjOEsevEp8xYwY///nPAWNF/YoVK3rymUT/NE3j6aefRlEUrrzyyj7Xn3feeVF/jxkzhmuvvZbJkyf3VCqQYFtkyssvv8yPfvQjampquOuuu/pcX1JSwm233RZ12eLFiznppJO4/PLLWblyJR988AEzZ84cqkMedvKaTb+//vWv6LrOFVdcgar2zSodjc9DTdO444472LhxI5/85CflW85BGOgYjob3Q8nZznKf+tSnANi8eTNwbJYm3sx19+XxPkmPFm+++SaHDh1i0aJFA6pjunjxYsaNG8f27dvl2wEG/nxL9vaxZhtHi1dffZVbb72VkpIS/vCHP1BeXp70tvn5+T2L2LrfE0a7eK/ZRLOG8jw0AqJnnnkGVVVjTkgkMlKfh5qm8e1vf5t//OMfXHrppfzgBz+Iul7eD/vX3xgeb7S8H0qwneWKiooAo7YnwNixY1FVtScf8Xjdl+d63c5Uda8AT5SHGE/3mHd0dKT1mHJRd05hss83u91OWVkZBw4cIBKJ9Ll9d25irDza0eCVV17h5ptvpqioiD/+8Y+Damghz8++Yo1J93MyVj7saH8egtHs5/Dhw5x66qlUV1cPePuR9jzUNI1vfetbPPPMM1x88cXceeedfWb75f0wsWTGsLfR9H4owXaWe++994BjjW1sNhtz5sxhz549fZoX6LrOm2++id1uZ9asWUN+rNmipaWF1atXU1hY2Oer5/74/X527NiB3W7veRGPZhMmTKC8vJzNmzf3fODr5vf72bx5M2PGjIlqhLFgwYKe6473+uuvAzB//vzMHngWeuWVV7jllltwu9388Y9/HPQ/sN1VijJVMi/XxHvNdj/H3njjjT7bdF+WE80wMiSZhZGJjKTnYXeQ+Le//Y0LL7yQn//85zFzjOX9ML5kx7DbaHs/lGA7C+zatSvmp7Jdu3Zx9913A3DJJZf0XP7JT34SgF/+8pfout5z+f/93/+xf/9+LrnkEmw2W4aPOns9++yzhEIhLrnkkqi6pt3a29vZs2dPn8sDgQDf+9738Pl8XHDBBUmVKhrpFEXhqquuwu/388ADD0Rd98ADD+D3+3uej926/77nnnsIBoM9l7/66qts2LCB008/PevfGNPt1VdfjfqHpb9vnrZu3Rr12u62cuVK/va3v+F2uznzzDMzdLTZZzCv2Y997GO4XC4ee+yxnpbQAIcPH+axxx6jqKgoZje60aC5uZmXX36Z4uJizj333Li3Gw3Pw+60h7/97W9ccMEF3HXXXXGDRHk/jG0gYwij8/1Q0WOdgRhS9913H7/73e+YP38+1dXV5Ofns3fvXl577TVCoRA33HADX/va13pur2ka119/fU+79vnz57Nv3z5WrlxJTU0NK1asGHXt2nu75JJL2L59O3//+9+ZNm1an+sPHDjA0qVLmT17NpMnT6a0tJSmpibefPNNDh8+TG1tLX/84x9H9Mz2ihUr2LRpEwDbt2/ngw8+YO7cuT2zC6ecckrPjJff7+fqq6/mww8/5PTTT+eEE05g69atvPHGG8yePZvHHnusz4e77373uz3tic866ywaGhp4/vnncTgc/N///R8TJ04c2hPOgGTHcNeuXVx22WUEg0EuuuiimOdeU1PT004c4LrrrmPfvn2cdNJJVFZWEolE2Lp1K5s2bcJqtY6YxYDJjuFgX7O927V3t4t+/vnnaWlp4X//93/52Mc+NrQnnAEDeS13++1vf8vPfvYzPv/5z3PHHXfE3fdoeB7ed999/PrXv8Zut/OZz3wm5iTL0qVLmTFjBiDvh7EMZAxH6/uhBNtZYMOGDfz5z39m27ZtNDY2EggEKCoqYs6cOfzHf/xHzJqTwWCQRx55hGeffZb6+noKCws5++yzWb58+ajulPjee+9x1VVXMWfOnD6dvLq1t7fzy1/+kvfee4+DBw/S1tZGXl4ekydP5vzzz+faa68d8d8M3HHHHTzzzDNxr7/88su58847e/72er3cd999rFy5ksbGRsrKyrjgggv4yle+EnMxrqZpPPbYY/zlL3+hrq4Ou93Oqaeeyle/+tWemvG5LtkxXL9+PZ/5zGcS7mvBggX86U9/6vl7xYoVvPjii+zcuZOWlhY0TaOiooJFixbx+c9/nsmTJ6ftPIZTsmOYymv2tdde4+GHH2br1q0AzJo1ixtvvJFTTz01I+c01Ab6Wga48MIL2bVrF88//3zC59JoeB72N34AP/3pT6OCP3k/jDaQMRyt74cSbAshhBBCCJEhkrMthBBCCCFEhkiwLYQQQgghRIZIsC2EEEIIIUSGSLAthBBCCCFEhkiwLYQQQgghRIZIsC2EEEIIIUSGSLAthBBCCCFEhkiwLYQQQgghRIZIsC2EEEIIIUSGSLAthBADdODAAaZNm8Z111033IcihBAiy0mwLYQQQgghRIZIsC2EEEIIIUSGSLAthBBCCCFEhkiwLYQQKQgEAtx9992cc845zJo1i/POO49HHnkEXdf73Hbnzp18/etf5/TTT2fWrFmcccYZfOMb32D37t19brt+/XqmTZvGHXfcQUNDA9/5znc488wzOeGEE/j9738PQDAY5PHHH+fKK69k4cKFnHjiiZx77rnccMMN/POf/+yzz3A4zJ///Gc+9alPMXfuXObMmcPHP/5xfv/73xMOh/vc/txzz2XatGnous4f/vAHLrzwQmbPns0ZZ5zBj3/8Y9ra2mKOSUdHB/fffz8XX3wxc+bM4ZRTTuGaa66JeUzXXXcd06ZN48CBA1GX//73v2fatGnMmjWLjo6OqOt+9rOfMW3aNP71r3+l7fz+9Kc/cemll3LiiSfy8Y9/POZ5CSHEYJiH+wCEECJXhUIhvvCFL7Br1y4WLFiA3+9n48aN/OIXv8Dn8/HVr36157Zr167ly1/+MoFAgBNOOIEFCxawe/dunn32WV566SUeffRR5s2b1+c+mpub+cQnPkEkEmHu3LkEg0Hy8/MBuP3223nxxRdxOBzMmzcPp9PJkSNH2LRpE36/n4suuqhnP4FAgC996UusX7+ewsJCTjrpJKxWK++99x4//elPWb9+Pffffz+q2ncO5kc/+hF/+ctfWLBgAbW1tWzcuJE//elPbNiwgT//+c84nc6e27a3t/OZz3yGDz74gOLiYs4++2w6OjpYt24db731Fm+//Tbf/e53e24/f/58NmzYwIYNGxgzZkzP5evXr+8Z47fffptTTz016jpFUViwYEFazu+//uu/ePrpp5k/fz6TJ08mFAolfuCFEGIgdCGEEAOyf/9+vba2Vq+trdWvvfZa3ev19lz33nvv6TNmzNBPPPFEvb29Xdd1Xff5fPqpp56q19bW6o899ljUvn73u9/ptbW1+plnnqkHAoGey9etW9dzH1/5yleirtN1Xd+3b59eW1urn3POOXpzc3PUdYFAQN+8eXPUZf/93/+t19bW6suXL9fb2tp6Lvd6vfr111+v19bW6n/+85+jtjnnnHP02tpafe7cufr777/fc3l7e7v+mc98Rq+trdV//OMfR23zwx/+UK+trdWvu+66qHHZuXOnvnjxYr22tlb/97//3XP52rVr9draWv2b3/xmz2WRSESfP3++ftFFF+m1tbX6L3/5y57r2tra9OnTp+sXXXRR2s5v4cKF+vbt23UhhMgESSMRQohBUlWVH/zgB1Ezu7Nnz+bMM8+ko6ODLVu2APDCCy/Q2NjIySefzDXXXBO1j8997nPMnDmTw4cP8+KLL/a5D6vVyve+9z3y8vKiLm9paQFgxowZFBUVRV2Xl5fHySef3PN3U1MTK1asoKqqip/+9Ke4XK6e65xOJz/5yU+wWCw88cQTMc/z2muvZdasWT1/OxwOvve976EoCk899RSdnZ0A+P1+nnrqKVRV5b/+67+ixmXy5MnceOONAPzxj3/sufzkk0/GarWyYcOGnss+/PBDPB4PH//4x6mpqYm6buPGjWiaxvz589N2ftdffz1Tp06NeZ0QQqRKgm0hhBik6upqJk2a1OfyCRMmANDQ0ADAW2+9BcAll1wScz+XXnpp1O16mzlzJhUVFX0unzRpEna7nVdffZXf/OY3HDlyJO5xrl+/nlAoxBlnnIHNZutzfVlZGRMmTGD79u0EAoE+11944YV9LpsyZQrTp0/H7/ezdetWAD744IOeNJnJkyf32aY7F3rz5s1omgYYHwzmzJnDwYMHe/K2u4PrhQsXsmDBAt5///2evO3u63qnkKR6fueee26fy4QQIl0k2BZCiEGqrKyMebnD4QCMBYwAR48eBaCmpibm7btzlbtv11tVVVXMbZxOJz/60Y+wWCzcddddnHnmmZx//vl8//vfZ9OmTVG3PXjwIAB/+ctfmDZtWsyfHTt2oOs6Ho+nz33FO+7uy7uPu7/zLCgowOVyEQgEou6nO3DuDqTXr1+P0+lk5syZLFiwoCdvu/dtegfbqZ5fdXV1zOMVQoh0kAWSQggxSLEW26Xb8ekjvV188cWceuqprF69mjfeeIONGzfy5JNP8uSTT/L5z3+eO+64A6CnMsqMGTOYPn16wvuzWCzpO/gYFEXpc9mCBQt44IEH2LBhA5dddhmbNm3ilFNOwWQy9QTV69evZ/bs2Wzbto3JkydTUlLSs32q55dojIUQIlUSbAshRIaVl5cDx2Zgj9d9efftBqK4uJirrrqKq666Cl3Xef311/nqV7/K7373O6688kqmTp3ak4Zyyimn8L3vfW/A93Hw4EGmTZvW5/JDhw5FHXf37+7Lj+f1emlra8Nms+F2u3suP/nkk7FYLGzYsKEnX7s7yB4zZkxP3vaJJ56IpmlRs9pAyucnhBCZJGkkQgiRYd0l/WLVmQb4+9//HnW7wVIUhTPPPJOzzz4bgB07dgCwaNEiTCYTL7/88qDK2r3wwgt9Ltu1axfbtm3DbrczY8YMwMgvt9lsfPDBB+zdu7fPNt3nOXfu3KhvBWw2W0/e9tNPPw0Y+drduvO2X3311Z6/e0v1/IQQIpMk2BZCiAz72Mc+RmlpKZs2beLJJ5+Muu6Pf/wjW7ZsoaKigvPPPz/pfW7dupWVK1f25IV3a21t5d133wWO5XtXVFRw5ZVXcvDgQb7+9a/T2NjYZ391dXUxq6EAPPbYYz2LIMFoWvPjH/8YXde58sorexYl2u12rrzySjRN44c//CF+v79nmz179vDggw8CRiOb43UH0H/5y19wuVyccMIJUdeFQiGeeeaZqNt2S/X8hBAikySNRAghMsxut3P33Xfz5S9/me9///s8+eSTTJw4kd27d7N161bsdju//OUvB5Q7fOjQIW655RZcLhezZs2itLQUr9fLxo0b8fl8nHPOOVHl/77zne9w8OBBXnzxRV5//XWmT59OdXU1fr+fXbt2UVdXx5IlS2IG/Jdeeimf/OQnWbhwIS6Xi7feeouGhgamTp3KbbfdFnXbr33ta7zzzjusWbOGpUuXMn/+/J6mNp2dnVx33XUxq38sWLCABx98kM7OThYvXozJZIq6DqCzs5NJkyZRWlraZ/tUzk8IITJJgm0hhBgCixcv5qmnnuKhhx5i3bp1bN++ncLCQi699FJuvPHGmCUEEznxxBNZvnw569atY8+ePbz11lu43W6mTZvGJz7xiZ5ygt1sNhuPPvoozz33HM888wwffvgh77//PkVFRdTU1HDppZdGdZzs7bvf/S5jxoxhxYoVHDhwALfbzTXXXMNtt90WVdMajCopjz32GL/97W954YUX+Pe//43FYmHWrFn8x3/8BxdffHHM++jO2w6FQn1mrrvztg8ePNjnunScnxBCZJKidy/jFkIIIXo599xzOXjwIB999NFwH4oQQuQsydkWQgghhBAiQyTYFkIIIYQQIkMk2BZCCCGEECJDJGdbCCGEEEKIDJGZbSGEEEIIITJEgm0hhBBCCCEyRIJtIYQQQgghMkSCbSGEEEIIITJEgm0hhBBCCCEyRIJtIYQQQgghMkSCbSGEEEIIITJEgm0hhBBCCCEy5P8DXDKwXduc5mUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure()\n", + "for p in [.68, .95]:\n", + " bmb.interpret.plot_predictions(\n", + " best_model,\n", + " best_fit,\n", + " \"horsepower\",\n", + " pps=True,\n", + " legend=True,\n", + " prob=p,\n", + " ax=plt.gca()\n", + " )\n", + "sns.scatterplot(data=df_mpg, x=\"horsepower\", y=\"mpg\", color='blue', label='True Data')\n", + "plt.title(\"Best Fit Model: 7th Degree Polynomial\");" + ] + }, + { + "cell_type": "markdown", + "id": "d683c8d3", + "metadata": {}, + "source": [ + "Uh-oh. You can see that while this gave the best elpd, and had a nice residual plot, it's obviously overfit. Given our knowledge about how cars operate, we expect a decreasing trend of fuel efficiency at higher horsepower. The 7th degree polynomial absolutely is not consistent with that. First, looking at the low values, it increases before starting the decreasing trend. Second, it starts to go back up at the high end of the data, strongly latching onto a couple of points that are likely driven by noise.\n", + "\n", + "This behavior evokes the classic quote,\n", + "\n", + "> \"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk.\" - John von Neumann\n", + "\n", + "The takeaway here is that **as you fit higher polynomial degrees, you increase the risk of overfitting**.\n", + "\n", + "#### Extrapolation of polynomial models\n", + "\n", + "With any model, we should be careful when extrapolating and ensure our assumptions hold, but this particularly applies when considering polynomial regression. Since we consider the higher order polynomials, terms can quickly blow up outside of our domain.\n", + "\n", + "For example, with the quadratic fit, we see that the drop in mpg flattens out at higher horsepower. However, if you look closely at the posterior predictive of the quadratic model, you can start to see the fit rise again at the end. But, if we extend this beyond the bounds, due to the curvature of a second degree polynomial, we see a reversal of the negative effect on horsepower, where our quadratic model implies a higher horsepower leads to _better_ mpg." + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "b34ef85c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtsAAAHrCAYAAAAe4lGYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACmVUlEQVR4nOzdeZxN9R/H8de9d9Y7m7HVWKJFpdKiSGgzGtkqFaWERGSvVKSkyFIUKdmSSkXakRIlIVtKxfjRYh8hY8zMnTvLvef3x3HH7DPMcmfmvp+PR48458w5n3u/hs/9zuf7+VoMwzAQEREREZESZ/V2ACIiIiIilZWSbRERERGRUqJkW0RERESklCjZFhEREREpJUq2RURERERKiZJtEREREZFSomRbRERERKSUKNkWERERESklft4OoCJyu90kJCR4OwwpYxERERp3H6Mx9z0ac9+jMfc9kZGRZfo8zWyfAatVb5sv0rj7Ho2579GY+x6NuZQ2/QkTERERESklSrZFREREREqJkm0RERERkVKiZFtEREREpJQo2RYRERERKSVKtkVERERESomSbRERERGRUqJkW0RERESklCjZFhEREREpJUq2RURERERKiZJtEREREZFSomRbRERERKSUKNkWERERESklSrZFREREREqJkm0RERERkVKiZFtEREREpJQo2RYRERERn2D79dcyf6ZfmT9RKr1mzZqd1vXr168vpUjO3JIlSxg7dmzm7y0WC3a7nfDwcC644AKaNGlCmzZtiIiIKPazHnnkEX755Zdy+T6IiIhUFpbjxwnt1AmOHy/T5yrZlhL30EMP5Tq2cOFCkpKS8jxXnl1zzTVcccUVABiGwb59+/j111/58ccfmTNnDk899RTR0dFejlJEREQKEzhtGtaEhDJ/rpJtKXF9+vTJdWzp0qUkJSXlea48a9q0Kd27dwcgMjKS+Ph4XC4XX331FZMmTWLUqFGEhoZy7bXXejlSERERyY/l338JmjnTK89Wsi1ec/DgQe68807atWvHAw88wIwZM/jll184ceIEn376KUDm+VGjRuX6+mbNmnHVVVfx5ptvZjuenJzMBx98wHfffcfBgwfx9/fn0ksv5cEHH+TKK68sdtw2m42OHTtitVoZM2YMU6dO5f3338disQCwd+9evvjiCzZt2sShQ4dwOp2cddZZ3HTTTTz44IPY7fZsryGvX2d9zYsXL2b16tXs2rWLY8eOERQURMOGDenevTtXX311sV+PiIhIZRf06qtYHA4yGjcu8+RXCyTF6/bv30/v3r2Jj4+nffv2tGvXDn9//zO6V0JCAn369OGtt94iLCyMTp06cfPNN7Njxw4GDBjADz/8UGJxt23blrPPPpu///6bv/76K/P4qlWrWLx4MbVr16Zdu3Z06tSJ8PBw3nvvPQYPHkxGRkbmtQ899BBnn3125q89/914442Z10yaNIljx47RpEkT7r33Xlq0aMHvv//OoEGDWL16dYm9HhERkcrIum8fgW+/DUBKHpN3pU0z2xWc0xlMfLw/CQkWIiIMIiPTCQpK8XZYp+W3337joYceylVicvDgwdO+1+TJk/n7778ZMWIEt99+e+bxRx55hAcffJAJEybQrFkzAgMDix231WrlqquuYtmyZcTGxnLBBRcAcOutt9K1a9dcHxjeeustZs+ezYoVK7j11lsBs+Rmy5YtHDp0KN8Smw8//JBatWplO3b06FEefPBBpk2bxg033FDs1yIiIlJZBU2YgCU9nfQbbiDDC/9mama7AktICKNnz0AuvdRG8+ZWLr3URs+egSQkhHk7tNNSrVo1evbsWez7HD9+nJUrV3LNNddkS7QBqlatyv333098fDybNm0q9rM8qlevnvlsj5o1a+Y5M3/33XcDnPbzcybanufedNNN7Nu3j7i4uNO6n4iIiK+wbt9OwIIFgHdmtUEz2xWW0xlM3742li+3ZDu+fLmFvn1tzJsXXGFmuBs0aHDGZSNZbd++HZfLRVpaGrNnz851ft++fQDs2bOHli1bFvt5+TEMgyVLlrB06VL+/vtvkpKScLvdmeePHj16Wvc7cOAA77zzDj///DNHjhwhLS0t2/mjR48SFRVVIrGLiIhUJsEvvojFMEjr2BFX48ZeiUHJdgUVH++fK9H2WL7cQny8P1FRFSPZrlq1aonc58SJE4BZlvLbb7/le11KSsm9L57EOTIyMvPY5MmT+fjjjznrrLNo2bIl1atXz/ww8dZbb+VKlguyb98+HnroIZKTk2ncuDEtW7YkJCQEi8XCli1b+OWXX07rfiIiIr7CtmEDAcuWYVitpIwc6bU4lGxXUAkJeSfaWc9X9MlOq9WscnK5XLnOJSUl5ToWEhICwH333cfgwYNLNzjA7Xbzyy+/ANCwYUMAjh07xieffMIFF1zAnDlzCAoKyrz+v//+46233jqtZyxYsIATJ07w3HPP0bZt22znJk6cmPl8ERERycIwCH7hBQDS7r8f94UXei0U1WxXUBERRrHOVwRhYWbt+ZEjR3Kd+9///pfr2CWXXILFYuH3338v9dgAli1bxqFDhzj//PM577zzAHNRp2EYNGnSJFuiDfBrPlvE2mw2IO8PFQcOHADItQjSMIwCZ+9FRER8md+KFfj/9BNGYCApTz7p1ViUbFdQkZHpxMTknVDHxJhdSSq6kJAQ6tWrx9atWzPrrcHso52ztzaYCy2jo6P5/fffmT9/PoaR+/35448/cDqdxYrL5XKxZMkSXnrpJWw2G0OGDMnsse1p4/f7779nq9M+fPhwnjEDhIeHA/Dvv//mOue539atW7Mdf/fdd7O1GxQREZGT3O7MWe3UPn0watf2ajgqI6mggoJSmDnTL9ciyZgYg5kzXRVmcWRhunbtyoQJE+jTpw+tWrXCMAx++umnzLKNnJ544gn27t3L66+/zrJly2jUqBGhoaEcPnyY2NhY9u3bx9KlS3PNOudn48aNpKamZv5+3759/PLLLxw5coTw8HCee+45mjZtmnm+evXq3HzzzXz//ff07NmTJk2acOzYMdauXcs111zD/v37cz3j6quv5rvvvmPEiBFcd911BAQE0KBBA66//no6derEkiVLGDFiBNHR0URERPDHH3+wc+dOWrRowdq1a0/zHRUREancAj75BL9t23CHh+N89FFvh6NkuyKLiEhk3ryK32e7IHfccQcZGRksXLiQL7/8kurVq9O+fXsefPDBPDuKREREMGvWLD7++GNWrFjBN998g9vtplq1ajRo0IBevXoRERFR5Odv3ryZzZs3Y7FYCA4OJiIigosuuoju3bvTpk2bzFnprJ599lmioqL4/vvvWbRoEWeddRb33nsv3bt357vvvst1/e23305cXBwrVqzgvffew+Vy0a5dO66//nouuugipk6dysyZM1m1ahU2m41GjRoxc+ZMfvzxRyXbIiIiWaWlETRuHACpgwdjZGlg4C0WI6+ftUuh4uPjvR2ClLHIyEiNu4/RmPsejbnv0ZhXLoFz5mB/8kncZ51FwubNcLJ5QlaRZZyAq2ZbRERERCq+pCSCXn4ZgJQnnsgz0fYGJdsiIiIiUuEFzZiB9cgRXOeeS9oDD3g7nExKtkVERESkQrP89x9B06YBkPL001ACO1OXFCXbIiIiIlKhBb36KpbERDIaNSK9Uydvh5ONkm0RERERqbAs+/cTeHKH5pRnnwVr+Upvy1c0IiIiIiKnIXjiRCypqaS3bElGdLS3w8lFybaIiIiIVEjWHTsI+PBD4OSstsVSyFeUPSXbIiIiIlIhBY8bh8XtJq19e1xNmng7nDwp2RYRERGRCse2aRMBS5ZgWK2kjBzp7XDypWRbRERERCoWwyB49GgA0u69F/fFF3s3ngIo2RYRERGRCsX/66/x/+knjKAgUkaM8HY4BVKyLSIiIiIVR0ZG5qy285FHMGrX9m48hVCyLSIiIiIVRsD8+dh27cJdtSrOIUO8HU6hlGyLlANLliyhWbNmLFmyxNuhFElpxXvHHXdwxx13lOg9RUSkEklKInjiRACcTzwB4eFeDqhwft4OQCqngwcPcueddxZ4zdlnn83nn39+RvefPXs2b731Fm+88QZXX331Gd2jsvG85+3atWPUqFHeDiebRx55hF9++SXf80OHDuXee+/N85zGWkREPIKmT8f677+46tcn9cEHvR1OkZTbZPuLL77g559/5o8//mDnzp2kp6czfvz4XAlceno63333Hd999x2//fYbhw4dAuCCCy6gU6dO3HPPPdhstjyf8eWXX/Luu+/y559/4u/vT+PGjRk8eDCXXnppqb8+X1GnTh3atGmT57mwsLAyjka87b777iM4ODjX8csuuwyA119/vaxDEhGRCsJy+DBB06YBJzewCQjwckRFU26T7alTp3LgwAEiIyOpWbMmBw4cyPO6vXv3MnjwYOx2O9dddx2tWrUiMTGR77//nueff57Vq1fz5ptvYsmxo9Cbb77JlClTqF27Nvfeey/JycksXbqUe++9l3nz5mkGrYTUqVOHPn36eDsMKSfuv/9+qlWrlu/5OnXqlGE0IiJSkQS99BKW5GQyGjcmvQKVHJbbZHvs2LHUq1eP2rVrM2vWLCZPnpzndaGhoYwaNYpOnTpht9szjzscDh544AG+//57vv76a9q2bZt5bvfu3bz++uvUr1+fjz/+OHOG9b777qNLly48++yzLFmyBKtVJe1l5d1332X69Ol06tSJp556qsBzWUsSBgwYkHld1rIUT93ve++9x8yZM1m9ejX//fcfI0aMoEOHDuzYsYMlS5awZcsW/v33XzIyMjJn4e+77z78/LJ/a9xxxx3YbDbmzZvHG2+8werVq0lKSqJ+/fp069aNmJiYXK8pJSWF+fPns2LFCuLi4ggKCuKyyy6jR48eXHHFFUV6X1atWsXKlSuJjY3lyJEj+Pn5ccEFF3DPPffQqlWrzOuWLFnC2LFjAfjqq6/46quvMs9lLb8wDIMlS5bw5Zdf8tdff+FyuTj33HO566676NixY67nJyQkMGPGDFatWoXD4eC8886jR48eRYr9THjGzTOORRlrERGp/Ky7dhH4zjsApDz/fLnclj0/5TbZbt68eZGuO+uss7j//vtzHbfb7Tz44IM8/vjjbNq0KVuy/emnn5KRkcEjjzySrZShYcOGdOjQgU8//ZSff/6ZJuV028/KqFu3bmzcuJHPPvuMZs2aceONNwKwbds2Zs2axbnnnsuQkyuO27dvD8Avv/xCu3btiIqKAnKXpaSnpzNgwABSUlK4/vrrsdlsVK1aFTDLlNasWcOVV17JddddR2pqKlu2bGH69Ols376dCRMm5IoxLS2NQYMGkZKSQtu2bUlJSWHlypWMGjWK48eP06VLl8xrU1NTGTBgANu3b+eiiy7innvu4dixY6xYsYINGzbwwgsvEB0dXej78uabb+Ln58fll19O9erViY+PZ82aNTz99NM89thjmc+88MILueeee1i4cCENGjTghhtuyLyH5/0xDIPnnnuO5cuXU7duXdq0aYOfnx8bN27kxRdf5J9//mHw4MGZX+d0Ounfvz9//fUXjRo14qqrruLff//lmWee4dprry009pJQ1LEWEZHKLXjMGCwuF2m33kpGixbeDue0lNtkuyR4Zidz1mxv3LgRgBZ5DFbLli359NNP2bhxY+km24YBDkfp3b+47PYS+dS4f/9+Zs+enee5yy67jOuuuw4Aq9XKqFGjeOCBB3jxxRdp2LAhISEhPPfcc1itVl544QWCgoIA6NChA3Fxcfzyyy+0b98+35Kf//77jwYNGjBhwoTMr/Xo0aMHw4YNy/ZnwzAMxo0bx+LFi9m6dWuu2ecjR45Qp04dZs+ejb+/PwA9e/ake/fuvP7669x0003UrFkTgPnz57N9+3batGnD6NGjM8uYunTpQu/evZkwYQLNmjUjJCSkwPfvlVdeoXaO/qEOh4M+ffowa9YsbrvtNoKCgrjwwgsJDQ3NTLbzKt354osvWL58OR06dGD48OGZ3x/p6emMGDGCDz74gJiYGC4+uQvXe++9x19//cXtt9/OiCwbBrRt25ahQ4cWGHd+3n///Vw129WqVct3MW1Rx1pERCov2/r1p7ZlL2cNAIqiUifbn3zyCWAm0Fnt3r0bu91OjRo1cn1NvXr1ANizZ0/pBWYYhLVti9/JpL88yrj2WhK/+qrYCff+/ft566238jx3zz33ZCbbADVr1mTkyJE8+eSTjB49mpo1a7J//34effRRGjRocEbPHzBgQK5EG8wyhJwsFgt33XUXixcvZtOmTXmWevTr1y8z0fbE3KVLF2bNmsW3336b+VOWr776Cj8/PwYMGJBtvcBFF11Eu3bt+OKLL1i9enW2n7jkJWeiDeZPbdq3b89rr73G9u3bady4cYH38Pj4448JDg5m2LBh2cpk/P396devH2vWrGH58uWZyfayZcvw9/fn4YcfznafZs2acc0117B58+YiPTerDz74INexBg0aFNq5RkREfJRhYH/uOQDSunUr19uy56fSJtsLFy5k9erV2UoSPJKSkjLLCXIKDQ0FIDExscD7R0ZGnnlwhgFZErbyyM/Pz3yNZ5hsJycnA+YHnfyS7bzcfvvtbNmyhQULFgBw44030q9fv1zXeWZHw8LC8hwLm81GYGAgTZo0ybU4FsySkPfff5+lS5fy999/43A4MAwj83xiYmK2+9psNvz8/Ljhhhty1fJff/31zJo1i927dxMZGUlSUhIHDhzg/PPP56KLLsr17BtuuIEvvviCvXv3Zj7DM8MdEhKS7bn//fcfs2bNYvXq1Rw8eBCn05ntXikpKZnXe97zwMDAXO9JSkoKf/31FzVr1uTjjz/OFVNGRgZgtg/0vIaDBw9ywQUXcMEFF+S6/rrrrmPz5s254s2P5wPKmjVr8vyQ6+H5SUPWexY21qXNG88U79KY+x6NeTn26aewaRPY7QSOH09gBRyrSplsf//994wZM4batWvz8ssvl8oz4uPji3eDL78s/2Ukx4+f8ZcnJCQAZhJ3uu/Vddddl5ls33777Xl+fUpKCmAmxXmdd7lcREZGcjyf1zBs2DDWrFnDOeecQ3R0NJGRkfj5+ZGUlMTChQtz3ddzP8/rysqTSB47doz4+HgOHz4MQERERJ6xeWba//vvv8zznkQ5OTk581hCQgI9evTg0KFDXH755XTo0IGwsDCsViu7du1i9erVxMfHZ7sezHrxnM89fPgwhmHw77//Fthe78SJE9leQ3h4eJ6vwZMAZ423IOnp6Zkx5lx8mpXL5QKyf38VNtalKTIyssyfKd6lMfc9GvNyLD2d8CefxAak9O+PMzgYSmCsyvrDVaVLtn/44QcGDx5MtWrVeOeddzJraLMKDQ3Nd+Y6KSkJKIMFWBYLFFKv64sSExMZP348wcHBuN1uXnnlFa644opCa5tPx/bt21mzZg3NmjVj8uTJ2eq2//jjDxYuXJjn18XHx+N2u3PNbB87dgw49VMRT6ye4zl5jhf2mhYvXsyhQ4d4+OGH6dWrV7Zz7777LqtXry7w67PyPOviiy9m3rx5Rb4+v3+A8nttIiIiJSXw3Xex/fUX7urVcQ4a5O1wzlil6m23atUqBg4cSGRkJO+++y5169bN87r69evjcDg4cuRIrnOeWm1P7baUrQkTJnDo0CEeffRRBg4cyP79+5k0aVKu6zwJstvtPu1neHq2N2/ePNfi2V9//TXfr8vIyOD333/PddzzNRdeeCFgJqq1a9dm//79mTPEWW3ZsiXb9YXFmbWzSEFxFvSehISEUL9+fXbv3l1oiZTn+lq1arF//37++++/Ij2/tBRnrEVEpIJKTCTIsy37U09BBe5CVWmS7VWrVjFo0CAiIiJ49913C0yWPV1G1q5dm+vcmjVrAGjatGnpBCr5+vLLL1m5ciXR0dHcdtttdO7cmRYtWrBs2TK++eabbNeGh4cD8O+//572czyLI7du3Zrt+N9//827775b4NfOmDEjsyQCzPKMjz76iICAAG655ZbM4+3atSMjI4M333wzWy34rl27WLp0KaGhoXkm0UWJ85tvvmHdunW5rg8LC8NiseT7nnTp0gWn08n48eMzSzOyOnjwIAcPHsz8fdu2bUlPT2fWrFnZrtuwYcMZLY48U8UZaxERqZiCpk3DevQorvPPJ7V7d2+HUyyVoozkhx9+yJZo169fv8Dr77zzTubOncubb75JdHR0ZslIbGwsS5Ys4fzzz1eLsRJSUOs/gO7duxMYGMjevXt59dVXOeussxg+fHjm+WeeeYZu3brx0ksv0ahRI2rVqgXA1VdfjcViYcaMGfzzzz+EhIQQFhZG586dC43pkksu4ZJLLmHlypX8999/XHrppfz777/8+OOPtGjRgu+++y7Pr6tRowYpKSl069aNli1bZvbZTkhI4LHHHstWstStWzfWrl3LsmXL2L17N9dccw3x8fGsWLECl8vFiBEjCi0jadu2Le+99x6vvPIKW7Zs4eyzz2bXrl1s3ryZm266iVWrVmW73m6307BhQ3799VdGjx5N3bp1sVgstG3blqioKDp16sQff/zBV199xW+//UaTJk2oXr06x44dY8+ePWzbto0XXngh8z3u1q0bq1at4osvvuDvv//O7LO9cuVKWrRokeeH1dJQnLEWEZGKxxIXR9D06QBmq79y3lSiMOU22V60aBE///wzADt37sw85umRffXVV9O5c2f++usvBg4cSFpaGk2bNmXp0qW57lW7du1srcXOPfdcBg4cyJQpU7j99tuJiYnJ3K4dYMyYMdo9soQU1PoP4N5778VqtfLss8+SmprK6NGjs9XLR0ZGMmrUKIYOHcqoUaOYMWMGfn5+nHvuuTzzzDN88MEHLFq0iLS0NM4+++wiJWA2m43Jkyczffp01q9fT2xsLHXq1GHQoEE0b94832Q7ICCA1157jenTp7Ns2TKSkpKoV68ejz/+eK4dJAMDA3njjTd47733WLFiBQsWLCAoKIirrrqKHj16cOWVVxYaZ82aNXnzzTd5/fXX2bRpExkZGVx00UVMnTqVf//9N1eyDTB69GimTJnC2rVrSUpKwjAMrrjiCqKiorBYLIwaNYrmzZvzxRdfsHbtWhwOB5GRkdStW5dBgwZl6y0fHBzM9OnTefPNN/nhhx/YuXMn5557LmPHjiUpKanMku3ijLWIiFQ8wePHY3E4yGjShPQOHbwdTrFZjKw/4y5Hhg8fzmeffZbv+U6dOjFhwgQ2bNhA90J+vNC0aVPee++9XMe//PJL3nnnHf7880/8/f1p3LgxQ4YM4dJLLy00Pq1c9i2e7do9vdvFN6hLge/RmPsejXn5YvvjD8JuvBGLYXBi2TJcpbBjcVl3Iym3yXZ5p29M36Jk2zfpH2HfozH3PRrzcsQwCO3UCf/Vq0nr1Ink09in43SUdbKtWgkRERER8Tr/5cvxX70aIzCQlJO7RlYGSrZFRERExLvS0wkeNQqA1H79cJ9zjpcDKjnldoGkSHny+eef60eNIiIipSRw3jxsu3bhrlaNlEcf9XY4JUoz2yIiIiLiNZbjxzM3sEkZMQJO7q9QWSjZFhERERGvCZo8GeuxY7guvJC0Cr6BTV6UbIuIiIiIV1j/+YfAkzsVO8aMAb/KV+GsZFtEREREvCJ49Ggs6emk33wzGa1bezucUqFkW0RERETKnN9PPxGweDGG1WrOalss3g6pVCjZFhEREZGy5XYT/MwzAKQ98ADuSy7xckClR8m2iIiIiJSpgI8/xu+XXzBCQ80OJJWYkm0RERERKTsOB8EvvACA89FHMWrW9HJApUvJtoiIiIiUmaDp07EePIirTh2c/fp5O5xSp2RbRERERMqE5dAhgqZOBSDluecgONjLEZU+JdsiIiIiUiaCx43DkpxMxtVXk37nnd4Op0wo2RYRERGRUmf74w8C3n8fAMfYsZW21V9OSrZFREREpHQZBsEjR2IxDNJuvx3Xtdd6O6Iyo2RbREREREqV/5Il+P/4I0ZgICnPP+/tcMqUkm0RERERKT1OJ8HPPmv+cuBA3Oec4+WAypaSbREREREpNUHTp2Pbuxd3VBTOoUO9HU6ZU7ItIiIiIqXCcvAgQa++CkDK6NEQEuLdgLxAybaIiIiIlIrgMWPMVn9NmpB2993eDscrlGyLiIiISImzbdpE4MKFADjGj/eZVn85KdkWERERkZLldmMfMQKA1K5dcTVu7OWAvEfJtoiIiIiUqICPPsJvyxaM0FBSTnYi8VVKtkVERESk5CQmEvzCCwCkPP44xtlnezkg71KyLSIiIiIlJmjKFKyHDuE691xS+/Xzdjhep2RbREREREqEdfdugt54A4CUMWMgMNDLEXmfkm0RERERKRHBo0ZhSUsj/cYbSW/b1tvhlAtKtkVERESk2Px++IGAJUswbDYc48b5bKu/nJRsi4iIiEjxZGRgf/ppAFIfegh3w4ZeDqj8ULItIiIiIsUS+M472GJjcUdG4nzqKW+HU64o2RYRERGRM2aJjydo3DgAnE8/jREZ6eWIyhcl2yIiIiJyxoImTMAaH4+rYUNSe/TwdjjljpJtERERETkjtt9/J/CttwBwjB8Pfn5ejqj8UbItIiIiIqfPMLA/+SQWt5u0O+4g44YbvB1RuaRkW0REREROW8BHH+G3YQOG3Y7j5PbskpuSbRERERE5PSdOEPzccwCkDBuGUaeOlwMqv5Rsi4iIiMhpCZ44Eevhw7jOP5/URx7xdjjlmpJtERERESkya2wsgbNmAeCYMAECA70cUfmmZFtEREREisYwsD/1FBaXi7T27cmIjvZ2ROWekm0RERERKRL/zz7Df80ajKAgUl580dvhVAhKtkVERESkcElJ2J99FgDn0KG4zznHywFVDEq2RURERKRQwZMnY42Lw1WvHs5Bg7wdToWhZFtERERECmTdtYvA6dMBSBk/HoKDvRxRxaFkW0RERETyZxjYhw/Hkp5O+i23kN6mjbcjqlCUbIuIiIhIvvyXLsX/++8xAgJwjB8PFou3Q6pQlGyLiIiISN4cDoKffhoA56BBuM87z8sBVTxKtkVEREQkT0FTpmDbvx9XnTo4H33U2+FUSH7eDiA/X3zxBT///DN//PEHO3fuJD09nfHjx3PnnXfmeX1SUhLTpk1j+fLlHDlyhJo1a9KmTRsGDhxISEhIruvdbjfvv/8+H330EXv27MFut9O8eXMeffRR6tatW9ovT0RERKRcs/7zD0HTpgGQMnYs2O1ejqhiKrfJ9tSpUzlw4ACRkZHUrFmTAwcO5Hutw+GgW7duxMbG0rJlS9q3b09sbCxz585l06ZNvP/++wTm2Ep01KhRLFq0iAYNGvDAAw9w+PBhli1bxtq1a1m4cCH169cv5VcoIiIiUk55FkWmppJ+002kd+zo7YgqrHKbbI8dO5Z69epRu3ZtZs2axeTJk/O9ds6cOcTGxtKnTx+GDRuWeXzSpEnMnj2befPm0bdv38zj69evZ9GiRTRp0oS5c+cSEBAAQIcOHXj44YcZM2YMb731Vum9OBEREZFyzH/JEvy//RbD3x/HhAlaFFkM5bZmu3nz5tSuXbvQ6wzDYNGiRdjtdvr375/tXP/+/bHb7SxatCjbcc/vhwwZkploA9x44400bdqUNWvWcPDgwRJ4FSIiIiIVTFIS9hEjAHAOHoz7wgu9HFDFVm6T7aLavXs3hw8fpnHjxthz1BLZ7XYaN27Mvn37iIuLyzy+YcOGzHM5XX/99QBs3LixdAMXERERKYeCJ07EevCguVPkY495O5wKr8In23v27AHIt8bac3z37t2AWd995MgR6tSpg81my3V9vXr1st1XRERExFfYtm0jcMYMABwvvaSdIktAua3ZLqrExEQAQkND8zzvOZ6UlHRa13uuy09kZOTpBysVnsbd92jMfY/G3PdozE9yu+Gpp8DlgjvvJKxLF29HVClU+GTbW+Lj470dgpSxyMhIjbuP0Zj7Ho2579GYnxLw3nuErFuHERJCwujRGJX0fSnrD1cVvowkLCwMODVznZPnuGfGuqjXe64TERERqews//1H8OjRAKQ89RRGnTreDagSqfDJtqfG2lOTnZPnuKd22263U6NGDfbv34/L5cp1vadW23NfERERkcouePRorPHxZFx6KalZ2iVL8VX4ZLt+/frUrFmTLVu24HA4sp1zOBxs2bKFOnXqEBUVlXm8adOmmedy+vHHHwFo0qRJ6QYuIiIiUg7Y1q8n8P33AXBMmgT+/l6OqHKp8Mm2xWKhc+fOOBwOpk+fnu3c9OnTcTgcdMlR4O/5/dSpU0lLS8s8/sMPP7Bx40ZatmxZpB7fIiIiIhVaejohjz8OQOoDD+C69lovB1T5lNsFkosWLeLnn38GYOfOnZnHPP2vr776ajp37gxA7969WblyJbNnzyY2NpZLLrmE7du3s2bNGho1akSPHj2y3btZs2Z07tyZRYsWceedd3LjjTdy5MgRvvrqK6pUqcIzzzxThq9URERExDsC33wTW2ws7mrVSHnuOW+HUylZDMMwvB1EXoYPH85nn32W7/lOnToxYcKEzN8nJiYybdo0li9fztGjR6lRowa33norAwYMyLPNn9vtZv78+Xz00Ufs2bMHu91O8+bNefTRRznnnHMKjU8rl32PVqz7Ho2579GY+x5fHnPL/v1ENGuGxeEgedo00u6/39shlYmy7kZSbpPt8s5XvzF9mS//heyrNOa+R2Pue3x5zEMeeICApUtJb9aMpCVLwFrhq4uLRK3/RERERKRU+X/zDQFLl2L4+ZmLIn0k0fYGvbMiIiIivsThIPippwBIfeQR3Jdc4uWAKjcl2yIiIiI+JGjyZGx79+KuXZuUJ57wdjiVnpJtERERER9h3b6doGnTAHBMmAB5NJGQkqVkW0RERMQXuFyEDBmCJSODtA4dSG/f3tsR+QQl2yIiIiI+IPDtt/H7+WeM0FBzVlvKhJJtERERkUrOcuAAwS+8AEDKc89h1Krl5Yh8h5JtERERkUrOPnw4lqQkMpo0IfXBB70djk9Rsi0iIiJSifkvWZLZUzv51VfVU7uM6d0WERERqaxOnMB+sqe2c8gQ9dT2AiXbIiIiIpVU8JgxWOPicJ1/Ps7HH/d2OD5JybaIiIhIJWTbsIHAuXMBcLzyCgQFeTki36RkW0RERKSySUsj5NFHsRgGqffdR8b113s7Ip+lZFtERESkkgmaNg3bjh24q1cn5WTLP/EOJdsiIiIilYj1zz8JmjQJAMe4cRhVq3o5It+mZFtERESksjAM7I89hiU1lfRWrUi/6y5vR+TzlGyLiIiIVBIBH3yA/5o1GMHBOCZPBovF2yH5PCXbIiIiIpWA5cgRgp99FoCU4cNx16vn5YgElGyLiIiIVAr2p5/Gevw4GY0akfrII94OR05Ssi0iIiJSwfkvW0bAJ59gWK04pkwBPz9vhyQnKdkWERERqcAsCQnYT+4OmTpgAK6rrvJyRJKVkm0RERGRCiz42WexHjqE6/zzSRk+3NvhSA5KtkVEREQqKL9VqwicPx8Ax2uvQXCwlyOSnJRsi4iIiFRESUnYhw4FwNm7NxnXXefdeCRPSrZFREREKqDgsWOx7d2Lq04dUk62/JPyR8m2iIiISAVjW7+ewNmzAczuI2Fh3g1I8qVkW0RERKQicToJGTIEi2GQet99ZLRq5e2IpABKtkVEREQqkKCXXsK2axfus84iZexYb4cjhVCyLSIiIlJB2H79laBp0wBwTJ6MUaWKdwOSQinZFhEREakI0tKwDxqExeUirVMn0tu183ZEUgRKtkVEREQqgKCpU/Hbtg131ao4Jk70djhSREq2RURERMo5a2wsQZMmAeCYMAGjenUvRyRFpWRbREREpDxzuQgZNAhLejppt95K+l13eTsiOQ1KtkVERETKscA338RvyxaMsDAckyaBxeLtkOQ0KNkWERERKaesu3YRPG4cAI4xYzBq1fJyRHK6lGyLiIiIlEcZGYT074/F6ST95ptJe+ABb0ckZ0DJtoiIiEg5FPjGG/j9/DNGWBjJU6eqfKSCUrItIiIiUs5Yt28nePx4ABzjx2PUqePliORMKdkWERERKU/S0wkZMABLWhppbdqQ1rWrtyOSYlCyLSIiIlKOBL36Kn5bt+KuUgXHq6+qfKSCU7ItIiIiUk7Yfvvt1OY1L72EcfbZXo5IikvJtoiIiEh5kJaGvX9/LBkZpHXooM1rKgkl2yIiIiLlQNDLL+O3fTvuatVwTJ6s8pFKQsm2iIiIiJfZtmwhaMoUAByTJ2PUqOHdgKTEKNkWERER8San09y8xuUi7c47Sb/tNm9HJCVIybaIiIiIFwWPH49t507cZ52F46WXvB2OlDAl2yIiIiJeYtuwgcDXXwfA8eqrGFWrejkiKWlKtkVERES8weEgZOBALIZBateupN96q7cjklLg5+0ASophGHz77be89957/PPPPyQmJnL22Wdz7bXX0qdPH+rWrZvt+qSkJKZNm8by5cs5cuQINWvWpE2bNgwcOJCQkBAvvQoRERHxFcEvvIDtr79wR0WRMm6ct8ORUlJpZrYnTpzIoEGD+Oeff4iOjqZbt27UqVOHjz76iNtvv52dO3dmXutwOOjWrRvz5s3jvPPOo2fPnpx77rnMnTuXHj16kJqa6sVXIiIiIpWd3/ffEzRrFgDJU6diRER4OSIpLZViZvvIkSO888471K5dmy+++IKwsLDMc/PmzWP8+PG8/fbbjB8/HoA5c+YQGxtLnz59GDZsWOa1kyZNYvbs2cybN4++ffuW+esQERGRys8SH0/IwIEAOHv1IqN1ay9HJKWpUsxsHzhwALfbzVVXXZUt0Qa46aabAIiPjwfMcpNFixZht9vp379/tmv79++P3W5n0aJFZRK3iIiI+BjDwD5sGNa4OFwXXEDK8897OyIpZZUi2a5Xrx7+/v788ssvJCUlZTu3atUqAJo1awbA7t27OXz4MI0bN8Zut2e71m6307hxY/bt20dcXFyZxC4iIiK+I+Djjwn47DMMm43kN98ErROr9CpFGUlkZCTDhg1jwoQJ3HrrrURHRxMaGsqOHTvYsGED9913H926dQNgz549ANSvXz/Pe9WvX581a9awe/duoqKiyuoliIiISCVn2b+f4CeeAMD5xBO4rr7ayxFJWagUyTZAz549qVmzJs888wwLFizIPH711VfToUMH/PzMl5qYmAhAaGhonvfxHM85Q55TZGRkSYQtFYzG3fdozH2Pxtz3lMmYu91w551w4gQ0a0bwmDEE+1WaNEwKUGlG+fXXX2fGjBkMHjyY2267jbCwMGJjYxk/fjzdu3fntddeIzo6usSe56kBF98RGRmpcfcxGnPfozH3PWU15oGvv4591SqMkBBOvP467pOTf1L2yvoDdaWo2V63bh3Tpk3j/vvv5+GHH+bss88mJCSEa665hhkzZuDn58fEiRMBMhdQ5jdz7Tme38y3iIiIyOmwbdtG8NixADjGjsV93nlejkjKUqVItlevXg3Atddem+tcjRo1OO+889izZw/JycnUq1cPMBdK5sVzPL+abhEREZEiczqx9+2LJS2NtDZtSOve3dsRSRmrFMl2eno6AMeOHcvz/LFjx7Barfj7+1O/fn1q1qzJli1bcDgc2a5zOBxs2bKFOnXqaHGkiIiIFFvwiy/it3077urVcUydChaLt0OSMlYpku3GjRsD5gY2iTlqoD788EMOHTrElVdeSUBAABaLhc6dO+NwOJg+fXq2a6dPn47D4aBLly5lFruIiIhUTn4//kjgyVzD8dprGDVrejki8QaLYRiGt4MoLpfLRY8ePdi0aRPVqlWjVatWhIWFsX37dtavX09QUBDvvfcel19+OWDOYHft2pUdO3bQsmVLLrnkErZv386aNWto1KgR8+fPJygoqMBnagGN79HCKd+jMfc9GnPfU1pjbklIILxlS6wHDpDavTuOKVNK/BlyZsp6gWSlSLYB0tLSmDdvHsuWLeOff/4hPT2datWqce2119KvXz/OP//8bNcnJiYybdo0li9fztGjR6lRowa33norAwYMKNLiSP1l7Hv0j7Dv0Zj7Ho257ymtMbf37UvgokW4zj2XEz/8AGq8UG4o2a4g9Jex79E/wr5HY+57NOa+pzTG3P/TTwnt3RvDaiXxq69wNW1aoveX4lHrPxEREZEKyrJ/P/bHHwfA+dhjSrRFybaIiIhIicjIIOThh7EmJJDRuDHOk1uzi29Tsi0iIiJSAoImT8Z//XqM0FCS58wBf39vhyTlQLG2ay/q9uf+/v5UqVKFSy65hI4dO3LVVVcV57EiIiIi5Ypt/XqCXn4ZAMfkybi1OZ6cVKxk+8CBA6d1/a+//sqHH35It27dGDlyZHEeLSIiIlIuWI4fJ7RPHyxuN6n33ENa587eDknKkWKVkezYsYPu3bsTFhZGv379+PLLL9m8eTObN29m8eLFPPLII4SHh9OtWzdWrVrF5MmTqVmzJvPnz2fp0qUl9RpEREREvMMwsA8divXAAVznnYfjpZe8HZGUM8Wa2X7//ff58MMP+eijj2jYsGG2cw0aNGDIkCG0adOGu+++m/r169OtWzfOO+887rrrLhYtWkT79u2LFbyIiIiINwW89x4BX36J4edH8qxZEBbm7ZCknCnWzPaCBQto2rRprkQ7q4svvphmzZqxYMECABo2bMill15KbGxscR4tIiIi4lXWnTuxP/00ACnPPIOrcWMvRyTlUbGS7b179xIREVHodeHh4ezbty/z93Xq1CE5Obk4jxYRERHxHqeTkN69sTgcpN94I6kDB3o7IimnipVsh4eH8/PPP5OWlpbvNWlpafz888+Eh4dnHktKSsr2exEREZGKJPj55/H74w/c1aqR/OabYFU3Zclbsf5ktGrVin///ZfHHnuMgwcP5jp/6NAhHn/8cQ4fPpytTeBff/1F3bp1i/NoEREREa/w+/ZbgmbOBCD5jTcwzj7byxFJeVasBZJDhw5l/fr1rFixglWrVnHZZZcRFRUFQFxcHH/88QcZGRnUq1ePIUOGALBt2zaOHj3KXXfdVfzoRURERMqQ5dAhQgYMAMD58MNkxMR4OSIp7yyGYRjFuUF8fDyTJk1iyZIlpKamZjsXGBhIx44defzxx4mMjCxWoOVNfHy8t0OQMhYZGalx9zEac9+jMfc9pzXmbjehd9+N/6pVZFx2GYnLl0NQUOkGKCWurHPSYifbHg6Hg23btnHkyBEAatSowaWXXordbi+J25c7+svY9+gfYd+jMfc9GnPfczpjHjhtGvbnnsMIDubEd9/hvuiiUo5OSkNZJ9vFKiPJym6306RJk5K6nYiIiEi5Ydu8meAxYwBwjBunRFuKrMSS7bS0NGJjYzl8+DAANWvWpGHDhgQEBJTUI0RERETKnOX4cUIeeghLRgZpt99OWvfu3g5JKpBiJ9vJycm89tprfPzxxzgcjmzn7HY7d911F4MHDyY0NLS4jxIREREpW4aBfdAgbPv24apfn+SpU8Fi8XZUUoEUK9lOTEzkgQce4H//+x9g7hZZu3ZtAA4ePEhsbCzvvfce69ev5/333ydMW5iKiIhIBRI4axYBS5diBASQPHcuaJ8QOU3FSranTp3Kjh07aNasGc8++yznn39+tvN//fUXY8eOZf369UydOpVnnnmmWMGKiIiIlBXbL78QPGoUACkvvIDryiu9G5BUSMXqRnLDDTfgdrv59ttvCQ4OzvMap9NJ69atsVqtrF69+owDLW+0Wt33qEuB79GY+x6Nue/Jb8wtCQmE3XQTtj17SOvQgeR33lH5SCVR1t1IirWD5PHjx2natGm+iTZAUFAQTZo0ISEhoTiPEhERESkbhoF98GBse/bgOuccHNOmKdGWM1asZLtu3bpFSqITExOpU6dOcR4lIiIiUiYC33qLgMWLMfz9SZ47FyMiwtshSQVWrGS7S5cubNy4kdjY2HyviY2NZf369XTu3Lk4jxIREREpdbatWwk+ucYsZfRoXI0bezkiqeiKtUCyR48e7N27l+7du9OtWzfatWtHrVq1ALMbybJly5g/fz733nsvPXv2LIl4RURERErHiROE9OqFJS2NtHbtSO3Xz9sRSSVQrAWSDRs2BMAwDCz51DLld85isbB9+/YzfbTXaQGN79HCKd+jMfc9GnPfkznmhkFIr14EfPEFrjp1SPzhB4wyXkgnZaNCbdceFRVVUnGIiIiIeE3gjBkEfPGFWaf91ltKtKXEFCvZ/u6770oqDhERERGvsG3YQPBzzwGQMmYMriZNvByRVCbFWiApIiIiUqEdPkxor15YMjJIu/NOUvv08XZEUskUa2bbY//+/WzevJnDhw+TlpaW73UDBw4siceJiIiIFJ/LBffdhzUuDleDBiRPmaJ+2lLiipVsp6am8swzz7BkyRLAXAyZH4vFomRbREREyo2gCRNg5UoMu52kd96B0FBvhySVULGS7ZdffpnFixdTrVo1OnbsSN26dbHb7SUVm4iIiEip8Pv2W4InTwYgecoU3Bdf7OWIpLIqVrK9bNkyIiMj+fzzz6lRo0ZJxSQiIiJSaqz79hHi6aHdvz/pd9/t3YCkUivWAkmHw0GTJk2UaIuIiEjFkJpKSM+eWOPjyWjcGF55xdsRSSVXrGS7QYMGJCUllVQsIiIiIqUq+Jln8PvlF9yRkSS//TYEBno7JKnkipVsP/jgg2zcuLFC7wQpIiIiviFgwQKC3noLw2IhecYM3HXrejsk8QHFqtlu27Yt//77Lw8++CDdunWjefPmnHXWWViteefwtWrVKs7jRERERM6IbetW7I89BoDziSfIuOUWL0ckvqLYfbYvuugiqlSpwvTp05k+fXq+11ksFs2Ai4iISJmz/PcfId27Y3E6SWvTBueTT3o7JPEhxUq2v//+ewYNGkRGRgaRkZHUqlVLrf9ERESk/HC5COndG9u+fbjOOw/HjBmQz0/gRUpDsZLtadOmYRgG48eP54477sCiXZdERESkHAkeOxb/H34wN655912MiAhvhyQ+pljJ9l9//cU111xDp06dSioeERERkRLh/+WXBE2dCkDya6/hvuQSL0ckvqhYP0eJjIwkMjKypGIRERERKRHWHTsIGTgQAOeAAaTfeaeXIxJfVaxku02bNmzevJnU1NSSikdERESkeE6cILR7dyxJSaRffz0pzz3n7YjEhxUr2R46dCi1a9fmkUceYe/evSUVk4iIiMiZcbsJ6d8f259/4q5dm+S33gK/YjdfEzljxfrT17dvX6xWKz/99BNt27aldu3anHXWWXkulLRYLLzzzjvFeZyIiIhIgYImTybgq68wAgNJeucdjOrVvR2S+LhiJdsbN27M/LXL5WLv3r35znCrU4mIiIiUJv+vviJ4/HgAHC+/jKtxYy9HJFLMZHvlypUlFYeIiIjIGbNu305Iv34AOPv0Ia1bNy9HJGIqVrJdu3btkopDRERE5IxY4uMJ7dbt1ILIsWO9HZJIJm2hJCIiIhVXRgYhvXph270b1znnkDx3Lvj7ezsqkUyVbnnut99+ywcffMD27dtxOBzUqFGDK6+8kieeeIKoqKjM65KSkpg2bRrLly/nyJEj1KxZkzZt2jBw4EBCQkK8+ApERESkqIJHjTJ3iAwJIemDDzCqVfN2SCLZVJpk2zAMnnvuORYuXMg555xDu3btCAkJ4fDhw2zatIkDBw5kJtsOh4Nu3boRGxtLy5Ytad++PbGxscydO5dNmzbx/vvvExgY6OVXJCIiIgUJ+OADgmbMACB5+nTtECnlUqVJtt99910WLlzIfffdxzPPPIPNZst2PiMjI/PXc+bMITY2lj59+jBs2LDM45MmTWL27NnMmzePvn37llnsIiIicnpsmzZhf+wxAFKefJL0jh29HJFI3iyGYRjeDqK4nE4nN9xwA+Hh4Xz99df4FdC83jAMbrjhBpKSkli7di12uz3znMPhoEWLFlSrVo0VK1YU+Mz4+PgSi18qhsjISI27j9GY+x6NecVgiYsjPDoa66FDpLVvT/I774D1zJahacx9T2RkZJk+r1LMbK9Zs4aEhATuvPNO3G43y5cvZ/fu3YSFhdG8eXPq1auXee3u3bs5fPgwLVu2zJZoA9jtdho3bsyaNWuIi4vLVuMtIiIi5UBKCqEPPID10CFcF19M8vTpZ5xoi5SFSpFsb9u2DQCr1UrHjh3ZvXt35jmr1UrPnj156qmnANizZw8A9evXz/Ne9evXZ82aNezevbvAZLusPxVJ+aBx9z0ac9+jMS/HDAP694ctW6BqVWxLlxJ5zjnFvq3GXEpTpUi2//vvPwDmzZvHJZdcwqJFizj//POJjY3l2WefZe7cudStW5f77ruPxMREAEJDQ/O8l+d4UlJSgc/Uj5x8j37U6Hs05r5HY16+BU2cSPCCBRh+fiTNm0dGZCQUc7w05r6nrD9cVYqfu3jKzv39/XnjjTe4/PLLCQkJ4ZprrmHq1KlYrVbefvttL0cpIiIiZ8r/008JnjgRAMekSWS0bOnliESKplIk257Z6Msuu4yzzjor27kLL7yQunXrsnfvXk6cOEFYWBiQ/8y153h+M98iIiJStmw//0zIwIEAOPv3J617dy9HJFJ0lSLZPu+88wAyE+mcPMedTmfmYsmsdd1ZeY7nV9MtIiIiZceyfz+h99+PxekkrU0bUp5/3tshiZyWSlGzfe211wLw999/5zqXnp7O3r17sdvtVK1alRo1alCzZk22bNmCw+HI1fpvy5Yt1KlTR51IREREvC0pidD77sN6+DAZl1xC8qxZkGMfDZHyrlLMbJ9zzjm0bNmSPXv2sGjRomznZs2axYkTJ2jdujV+fn5YLBY6d+6Mw+Fg+vTp2a6dPn06DoeDLl26lGX4IiIikpPLRUjfvvj98QfuGjVI/vBDyOcn2CLlWaXY1AZg79693Hvvvfz333/cdNNNnHfeeWzfvp3169dTu3ZtFi5cSI0aNQBzBrtr167s2LGDli1bcskll7B9+3bWrFlDo0aNmD9/PkFBQQU+TyuXfY9WrPsejbnv0ZiXH8HPPUfQtGkYgYEkfvklriZNSuU5GnPfU9bdSCpNsg0QFxfHa6+9xo8//sjx48epXr06rVq1YsCAAVSrVi3btYmJiUybNo3ly5dz9OhRatSowa233sqAAQOKtDhS35i+R38h+x6Nue/RmJcPAfPnEzJ4MABJs2aRfvfdpfYsjbnvUbJdEdx6KyeeegrXlVd6OxIpQ/oL2fdozH2Pxtz7/FatIrRLFywZGaQMG4bz6adL9Xkac9+jPtsVwTffENqlC9Z8OpqIiIjI6bNu305ojx5YMjJIvftunCNGeDskkWJTsn0mrroK69GjhN5zDxZ9GhYRESk2S1wcYffcgyUxkfTrrsMxbRpYLN4OS6TYlGyfiSVLcNeujW3XLkIeeABSU70dkYiISMXlafF34ACuBg1Inj8fAgO9HZVIiVCyfSZq1SJx4UKMsDD8160zd7Vyu70dlYiISMXjchHSpw9+W7firl6dpIULMcq4plakNCnZPkPuSy4h6d13Mfz8CPjkE4JefNHbIYmIiFQshkHwiBEEfPMNRlAQSe+/j1s7OEslo2S7GDJuvBHH1KkABL/6KgHvvOPliERERCqOwDffJGjOHAyLheQZM0qtl7aINynZLqa0rl1JefJJAOzDhuG3YoWXIxIRESn//BcvJvjZZwFIeeEF0m+7zcsRiZQOJdslwPnUU6R27YrF5SK0Vy9sv//u7ZBERETKLduGDYT07YvFMHD27k1q//7eDkmk1CjZLgkWC45XXyX9hhuwJCUReu+9WPft83ZUIiIi5Y51505C77sPi9NJWps2pIwbpxZ/Uqkp2S4pAQEkv/MOrosvxhoXR+jdd2M5dszbUYmIiJQblpP/Plrj48m4+mqS58wBPz9vhyVSqpRslyAjIoLERYsye3CHdu0KDoe3wxIREfG+EycI7dIF2/79uC64gKQFCyAkxNtRiZQ6JdslzKhd20y4q1TBb9MmQnr3howMb4clIiLiPamphHbrht+2bbjPOoukRYswqlXzdlQiZULJdilwX3wxSR98gBEURMDXX2N//HEwDG+HJSIiUvbcbkIeeQT/NWswQkNJ+ugj3PXqeTsqkTKjZLuUuJo1I/mttzCsVgLfe4+g8eO9HZKIiEjZMgyCR44k4PPPMfz9SXrvPVyNGnk7KpEypWS7FKW3bYtj8mQAgidNImDuXC9HJCIiUnYCp00jaOZMAJKnTyfjxhu9HJFI2VOyXcrSevQgZfhwAOxPPIH/4sVejkhERKT0BXz0EfbRowFwjBlD+l13eTcgES9Rsl0GnE88QWrPnlgMg5CHH8Zv3TpvhyQiIlJq/L/5BvuAAQA4+/cn9eSvRXyRku2yYLHgePll0tq3x5KaSmjXrti2bvV2VCIiIiXOb906Qh58EIvLRWqXLqS88IK3QxLxKiXbZcVmI3n2bNJbtsSSmEho585Yd+3ydlQiIiIlxvbbb4R27WruDnnrrTimTQOrUg3xbfoOKEtBQSTNn0/GlVdiPXqUsDvvxLJ/v7ejEhERKTbrn3+auycnJpLevDnJb70F/v7eDkvE65Rsl7XwcJI++ghXgwZYDxwg7K67sBw54u2oREREzpjlwAFC77wT69GjZFx+OUkffADBwd4OS6RcULLtBUb16iR+8gmuOnXMbd07d4YTJ7wdloiIyGmz/PcfYXfddWob9kWLIDzc22GJlBtKtr3EqFOHpE8/xV2jBn6//UboffdBSoq3wxIRESm6xERC77kH286duGvVIumTTzBq1PB2VCLlipJtL3JfcAFJH3+MERaG/7p1hPTqBenp3g5LRESkcE4noQ88gN+WLbirViXxk09w163r7ahEyh0l217matSIxIULMYKDCfjmG+wDB4Lb7e2wRERE8peWRsiDD+K/ejVGaChJixbhvugib0clUi4p2S4HXM2akTRvHoafH4GLFmF/7DEwDG+HJSIikltGBiF9+xLwzTcYQUEkvf8+rquu8nZUIuWWku1yIuOWW0ieORPDaiXw3XcJHjFCCbeIiJQvbjf2QYMI+OILDH9/kt59l4zrr/d2VCLlmpLtciS9Uyccr7+OYbEQNGsWwc8/r4RbRETKB8PAPmwYgQsXYthsJM+dS0br1t6OSqTc8/N2AJJd2r33gtNJyGOPEfTaaxjBwTifesrbYZUopzOY+Hh/EhIsREQYREamExSkTiwiIuWWYRA8ciSB8+ZhWCwkz5hBevv23o5KpELQzHY5lNazJ45x4wAInjiRwNde83JEJSchIYyePQO59FIbzZtbufRSGz17BpKQEObt0EREJB9B48YRNGMGAI6pU0m/6y4vRyRScSjZLqdS+/XDMWoUAPbRowmcOdPLERWf0xlM3742li+3ZDu+fLmFvn1tOJ3abUxEpLwJmjyZ4MmTAXC89BJp3bp5OSKRikXJdjmWOnQoKU88AYB9xAgC5s3zbkDFFB/vnyvR9li+3EJ8vH8ZRyQiIgUJnD6d4BdfBMAxejSpvXt7OSKRikfJdjnnHD4c58CBANgff5yABQu8HNGZS0jIO9Eu6nkRESk7gTNmYH/mGQBSnnqK1MGDvRyRSMWkZLu8s1hIef55nH36YDEM7AMGELBwobejOiMREQV3VinsvIiIlI3AWbOwP/00ACmPPorzySe9HJFIxaVkuyKwWEgZP57UBx80E+7+/Stkwh0ZmU5MTN4JdUyM2ZVERES8K3D2bOzDhwOQMnQozmeeAYt+8ihyptT6r6KwWnG8/DIAgW+/jb1/fwDS7rnHm1GdlqCgFGbO9KNvXxtr11oYOhSaNQMwqF/fu7GJiAgEzpmD/WS7WeeQITiffVaJtkgxKdmuSMo44S6NftgREYm8804wiYmBDBwIL75oAcy/yGNiApk504+IiMQSiF5ERE5H4FtvYT9ZLuIcPJiUUaOUaIuUAJWRVDQnE+7SLinJqx92v36BJCSEExcXzo4dEcTFhZ9Ruz7DgIEDUQtAEZFyIuDtt7Gf7H7lHDSIlOeeU6ItUkI0s10RlfIMt9MZzJAhNpo0sTBoEDidEBoKVata6NPHyooVp/4CjomxnvZsdFFaAEZFaUdJEZGyEDBvHiGPPw6Ac+BAUkaPVqItUoI0s11RleIM9/Hj/vTubWH9eujYETp3hjVrYORIsiXacGaz0WoBKCJSPgTMnUvIY48B4Ozfn5Tnn1eiLVLClGxXZHkl3PPnF/u2breFqVNh5cpTx5o1gxUr8r7+dDekUQtAERHvC5w+nZBhw4CTifaYMUq0RUqBku2K7mTC7ezVC4thEDJ4MIFz5hTrli6XJVuiDWYpSUFOZzZaLQBFRLwr6JVXTm1Y8+ijSrRFSpGS7crAaiXl5ZdxPvIIAPYnnyTw9dfP+HaJeZRfBwUV/DWnMxtttgB05Uq4Y2IMZs50FbvjiYiI5MMwCBo3juCxYwFIGTFCfbRFSpkWSFYWFgspY8diBAcT/Mor2EeNwpKSgnPYsNP+SzQkJPex9eshOppcM95wZrPRERGJzJtX8q0FRUQkH4ZB8OjRBE2bBoBj9GhtwS5SBpRsVyYWizlDERxM8IsvEjx+PDidpz1rERJiEB2dvZRkyhT48EPzNllrt4szGx0UlEJUVApRUUW7vjT6fouI+AS3m+CnnyZo1iwAHOPHk9q3r5eDEvENSrYrIefjj2MEBWF/9lmCX30Vi8NByrhxRU64w8LSeOaZQOBUwp2cDDNnwuTJBjabwYkTlGnCm5AQRt++tmwtA8+k7aCIiM9xu7E/9hiB776LYbHgmDyZtJ49vR2ViM9Qsl1JpQ4YgBEcTMiwYQTNnIklNRXHpElgLbxMPzAwhXPP9eOee2wMHWrB6TRrtuPiDCIiXISHJ1KrVhm8iJOczuBciTacajs4b16wZrhFRPKSkYF90CACFy7EsFpxTJtGWteu3o5KxKdU6gWSs2bN4qKLLuKiiy7i119/zXU+KSmJ8ePHc/PNN3PZZZfRqlUrJk6cSHJyctkHWwrSevUiedo0DIuFwHnzzM1v0otWWx0enkiHDqmcd56L2rXdnHeeiw4dUgkPL/4sstMZfFq7UBZlExwREcnB6SSkRw8z0bbZSJ45U4m2iBdU2pntnTt3Mm3aNOx2Ow6HI9d5h8NBt27diI2NpWXLlrRv357Y2Fjmzp3Lpk2beP/99wkMDPRC5CUr7f77MYKCCOnXj8CPPsJy4gTJb70FwYVvQnO6NdVFcSblIEXZBKckYxQRqfBOnCD0gQfw//FHjKAgkufOJf3WW70dlYhPqpQz2+np6QwfPpyGDRvSunXrPK+ZM2cOsbGx9OnTh7feeothw4bx1ltv0adPH37//XfmzZtXtkGXovS77iJ5/nyMoCACvv6a0M6d4cSJMo+jsHKQ/Ga4tQmOiEjRWf77j7BOncxEOzSUpEWLlGiLeFGlTLZnzJjBrl27GDduHDabLdd5wzBYtGgRdrud/v37ZzvXv39/7HY7ixYtKqtwy0R6mzYkffwxRlgY/uvWEXbbbViOHCnTGM60HESb4IiIFI3lwAHC2rXD75dfcFerRuKXX5LRooW3wxLxaZUu2d62bRszZsxg4MCBXHDBBXles3v3bg4fPkzjxo2x2+3Zztntdho3bsy+ffuIi4sri5DLTEbz5iQuXoy7Rg38fvuNsPbtse7bV2bPL6wc5Phxa5613NoER0SkcNa//iKsbVtsu3bhrlWLxKVLcV15pbfDEvF5lapmOy0tjaeeeoqLL76Y3r1753vdnj17AKhfv36e5+vXr8+aNWvYvXs3UZWsGNh1+eUkfvUVoXfeie3PPwlr25bETz7BfdFFJXL/gnphV6liMHIkNGtmbv8eHAw//WT28E5ONo9deumpn0RkreXWJjgiIvmz/f47oXffjfXIEVznn0/Sp5/irlvX22GJCJUs2Z46dSq7d+/m008/zbN8xCPx5H7koaGheZ73HE9KSsr3HpGRkcWI1MuuuQbWrYM2bbBu305Ehw7w9dfm8WLYtw9694bly08di4mxMWdOEHXrQkICbNgAL7546nx0tLlZzqxZ8N13edVy+7FgQSSetzv7Zx8bUMg+8iWsQo+7nBGNue+pcGP+449w223mX7JXXontm2+IqFnT21FVKBVuzKVCqTTJ9i+//MLcuXMZOHAgF154Yak/Lz4+vtSfUapCQrB8+SWhXbrgt2ULxs03kzRvHhmtWp3R7ZzOYHr3Dsxj8SP07m0wZ46Lvn1trFiR/fzKlWCxGIwfb+Gmm3Lfd/lyiItzAWW/oDOnyMjIij/uclo05r6noo25/5dfEtK3L5bUVNKbNSNpwQLw94cK9Bq8raKNuRRfWX+4qhQ12xkZGQwfPpyLLrqIhx9+uNDrw8LCgPxnrj3H85v5riyMqlVJ/Owz0m+8EUtSEqH33kvAwoVndK+CFj+uXWvB4bAxaJCFRYtgyRIYN878/+bN8PTTFgICzBnuvCZjCqv1zsvp9vIWEaloAmfPJuTBB7GkppLWrh1Jn3wC4eHeDktEcqgUM9sOh4Pdu3cDcNlll+V5zT333APAG2+8wfnnnw+Q+TU5eY7nV9NdqYSFkbRwIfaBAwn8+GNCHnkE68GDOIcOLfL27pB/QlyzJixeDIMHWzLLS2rWhFWrYPBgWLHi1LWtW5sz3dHRcPjwqeOn29pPW7uLSKVmGASNGUPwlCkApD74II6XXoICyidFxHsqRbIdEBDA3Xffnee5zZs3s3v3blq1akXVqlWpXbs29evXp2bNmmzZsgWHw5GtI4nD4WDLli3UqVOn0i2OzFdAAI4ZMzCiogiaNo3gMWOwHDxIyoQJRf7LO6+EOCQEli6FESOyJ9Vz5uROtMH8/aOPmudvu808drqt/bS1u4hUaunp2IcMIXDBAgBSRo7E+dhjpzU5IiJlq1Ik20FBQbyYddVdFsOHD2f37t307duXK7O0QOrcuTNvvPEG06dPZ9iwYZnHp0+fjsPhoF+/fqUddvlitZLy/PO4a9Ui+OmnCXrrLayHDpE8a1aRdps0e2FbsyW5Q4ea63VyJtW1auU+5rFiBUyaBCNHwu+/G0ydenqt/YrSyzsqSsm2iFRAiYmE9uyJ//ffY9hsOKZMIe3++70dlYgUolIk22eid+/erFy5ktmzZxMbG8sll1zC9u3bWbNmDY0aNaJHjx7eDtErUvv2xR0VRUjfvgQsXYq1UyeSPvgAo2rVAr/O7IXtl21WuVmzvNfoFLZ55fHjZqL96qvGaZd9nM7W7gW1KRQRKU8shw8Teu+9+P36K4bdTtLbb5Nxyy3eDktEiqBSLJA8E3a7nfnz59OjRw/++usv3n77bf7++2969erFvHnzCAoq25Zy5Un6bbeZPVojIvDbuJGwtm2x7t1b6NeZvbBT2brVYNEiCA2FvN7GwtbvhIdD794WHn3UctoLG4u6tXtCQhg9ewZy6aU2mje3cumlNnr2DCQhIey0niciUtqs//sfYW3a4Pfrr7irVzd3hVSiLVJhWAzDOL3VZwJUgtZ/RWDdsYOwzp2xHjiAu0YNkt5/H1cRenE7ncH07BnIoEEW1q+H9evNhY8eX34Jr72WdylJ69ZmPffUqebM+H33uYiKKnrbP8+z8yoliYkxmDcvFaDQa/Ka4VZ7KN+jMfc95W3M/VavJqR7d6wnTuCqX5+kjz/Gfd553g6rUilvYy6lr6xb/ynZPkO+8o1pOXjQ/NHlH39gBAWRPH066Xfcke/1TmcwCQn++PlZ+f57+OILC337msmzJ+EuqBvJ9OkQG2uuyzz7bAgJcWOzQXKyhaQkiIw0qFo1rcByj4SEcP7+28qxY5bMXSp//91g0iQ4dszAbrewcKElc+fKnLZtyzvB11/Ivkdj7nvK05gHzJ+P/bHHsGRkkNG0KUnz52NUr+7tsCqd8jTmUjbKOtn22ZptKRqjVi0Sv/qKkD59CPjmG0J79SLln3/ybA3oabnXpImFX3+Fpk1h4kR4+mlzlnroUHNL9shISE01E/CUFEhMNI8dPw4tW55q+3fbbTBhgoVHHrFkmRm3EBMTmNnGL2vddZUqBoGB5vXZ2/4ZTJwILVtaOHzYPO7ZubJr19wJd9a6bhGRMud2E/TiiwS/+ioAaXfdRfK0aXnX5YlIueezNdtyGkJDSZ4/H+fJDi3BY8ZgHzgQ0tIyL8nacq9ZM7Pl33PPwbXXQqNGZrIdHm7+W/H992ZS/fff5g7xK1bA44/DTTdl76/dqJHZnztrCQqcauOXkBCere76/fdt9O1rybPt37BhFvr0OXVs5Uoz2R86NPfLPd2+3iIiJSYlhZDevTMT7ZRhw8yuUEq0RSosJdtSNDYbKePG4Xj5ZQyrlcAPPyT0rruwnPzRW9aWe06n2WN75EhYsACuvNKcBE9MhGnT4MUXzdnk9evNGeZmzciVUIN5PL8WgcuXW/j77+ytBs3r8+5GsnKleb6wY6fb11tEpKRYjhwh7PbbCfj8cwx/f5KnT8f59NPqoS1SwSnZltOS+tBDJC1YgBEaiv/atYS1aYP1r7+ytdwLCTFLNNavh44doWdPs246OBiefRa++85MxGfPhiFD8n+W01lwLMeOZf8HqLDr8zqfmnrq1zExBjNnnl5fbxGRkmDdsYOwmBj8Nm/GXaUKSZ9+Stq993o7LBEpAUq25bRltG7Nia+/xlWnDrY//yQsJoaoHd+dOp9hdhtZuTJ74h0dDbfeah5v1Qo++QTq1jX/y0thPzWtXx+WLDET95CQwq/P6/yFFxqsW+dm2zYX8+alajt3ESlz/l9/TXhMDLY9e3Cdey6J33xDRosW3g5LREqIkm05I+5LLiHx22/JaNwYa3w89frcyusXTwMMrNZT5R9Dh57qRJIz8b7+erjqKti40VwMOXIkLF4MixaZSbRhQIcOeT//llvg88/N8+vXm/f9+WfzvnmJjjavy3ksKMjg4osTiIo6oRltESlbhkHQq68Scv/9WJKSSG/ZksTly3E3aODtyESkBKkbiZwx46yzSFy8GPvQoQQuWsSAHYM5r/ZWHCemAwGAWRP94ovm9VkT76yeeeZUK0DPtXCqFaBhmAsuPWJizHt17mz+3nO/G24wy1IsFiNb7XZMDIwYkT1xb90apkwxO6Cok5aIlDmHg5DBgwn49FMAnA89RMq4ceDv7+XARKSkqc/2GVJPziwMg8DXXyf4+eexuN0kX9mC8379hMOcxaJFp5LixYvNGu6cRo7MvfGNR0wMvPaaQWKi2Wfb3x/+9z+zB3eXLtnb9i1eDLNnG7zyink8KQnCwmDTJgv790PjxmbddlCQ+bxff4VXX3VTvXpCkV6merH6Ho257ymLMbccOEDoAw+YW6/7+eF46SXSevYs1WdK/vR97nvUZ1sqhKSkMOLjbRw/bvbIrvLg01Rp2JCQ3r0J+XUtfwRew62pnxMUdHXm1+S3gDHr7HdOy5fDrl2WXEl6dLQ5u53168LDDRo1snDFFWayHRNjbmTz0EP5v45Royz4+4cVWKvt6eW9cyeEhYUTGZmukhMROSO2DRsI7dED6+HDuKtVI/mdd8ho3tzbYYlIKVLNtpwWpzOY/fursHWrjX37zJ7W111noVcvG4cb303it9/iatCAGqn7WWdtieOtDzPrqPNbwHgmXUTyatt34oQls60gmO0B9+4t+N779pk9u53O4DzPJySEZfbybtYMLr3URs+egSQkhBV84zLkdAYTFxfOjh0RxMWF5/taRMS7At5/n7Dbb8d6+DAZl15K4sqVSrRFfICSbSkyT+J5+eUWOna0ZFuc+NNPFvr1gxNRjTnx7bek33ILgW4nXT6/j4X1n+TW1umZCyNzKqyLSFRU9oWTnu4jWZPwvBZAAhhGwf1pAwPNpDw+PnedZNaNerLybKpTHpLarB8Gmje3lssPAyI+LzUV++OPEzJoEJa0NNI6diRx2TLc55zj7chEpAwo2ZYiyS/xzLoT44oVFuLjbRAeTtIHH5BycnvGam+9zKITbegW8y9TpxrExJza9GbxYrP/tqf3dkhI9ufGxMC2bWatd+fO2buPeK6NiTEYMsRc8Jj1vosWQdWqMGuWkeu+kD1B9/QJzzpLfPRoIE2aWPL82vwS9LJUET4MiPg6y/79hLVvT+Dbb2NYLKQMH07y229DaKi3QxORMqIFkmfI1xZTxMWFc+mltnzPexY/rl5tcNllxwFz1vX92z9hyG8PEUoyByy1+e/Njwi6+ToyMiwMHQrffnvqHq1bmx1Junb11FzDxIkQF2f+PjjY3BxnyhS47jqD6dMN0tMN/P0tXHWV+bnxww9zdzyJiTFOdiOxZJaYREebnUs8z9q+3UVwsJErec15XVbr1rm5+OKiLa4sDYWNybZtLqKiTpRhRJWPFk75npIcc7/Vqwl56CGs//2Hu0oVkmfOJOOWW0rk3lJy9H3ue7RAUsqlrDtE5sVT0hER4fn9yVnX3+5hPpfzKXfS0NhB1MCbODjsFXpuHMDK77Lfc8UKsFrNhDo93ewk8uij2dv+RUebCXXXrhbS0gxq1TqB0xlMixbmLHRerQXN5Nlg7VqDXbssmd1ITiX1BqGhBr175z1zD7kXY5qv1bufUwsbk4QEC1FRZRSMiJxiGAROm0bwCy9gcbvJuPxykt95B3e9et6OTES8QGUkUiSFJZZBQdC6tUFkpAuA+Hj/zMR1Bw1pykZ+b9gZa0Y6dSYMoud3D2AnOdd9li8HlwsOHYIBA7In2pC9bCU+3nLy2SnMnOnmrrsM+vXLXtd96r4WbDazNWDHjmQupPRs0Z6YaMmVaGd9Zs7FmDExBpGR6QW+J6WtsDHx9ocBEZ904gQhPXpgHz0ai9tNateuZn22Em0Rn6WZbSmSyMh0YmKseSak0dEQF2cwYwaEhpot9HLOuiYRxp6JC3n7tmZMtj5JN/f7XMFW7uITdnFhtmv374dzz4V1604dCwkxE+xmzcxZ9PPOO5VMJySE0bevNVf5hzkDfqr848QJeOedVI4d8ychwUJEhJHZxi8uLqLA1591MaYnQfd2+7+CxqQ8fBgQ8TXW2FhCe/TA9uefGP7+OCZOJK1HD7AU/FMoEancNLMtRWKxmLsw5uwmEhMD06cbtGnjpmrV45nHs86qehYthoZZeJXH+OO174jjbBrxB5towt0syvW8xx4zk2vP13u2efcslLz6arO+Oz6+SqELNz2cTnM3yqioE7m2aC9sFvjCCw3WrzfroOfNSy2wL3dZMWf0XcTEZI+9vHwYEPEZhkHA/PmEt26N7c8/cdeqReLSpeZGNUq0RXyekm0pkmPH/OnQwUKzZqc6fSxeDE2aQOPG5u6OWZmzrka2RNlzzadHb+CxG7fwIy2J4ASL6MJ0HiGIlMwOIcuXnyrdyG+b9+XLLfzzT9HKP6Kj4bvv8u8g4ok3LzExBjVqpHLttWRL0MuDiIhE5s1LZds2F+vWucvVhwERn5CYiL1fP0IGD8aSkkL6zTdz4vvvcV1zjbcjE5FyQmUkUiQJCWYnj/x2esy5GM+cdfXj++9txMWZnUcCAmDVKrOs4+67o3hi6Hf8uOI5nmY8jzCDmNB17L1rIR2fuDjbvQvaYbKwBeROZ/aOIu3aWYHwXGUknnhzzpJnnyUupCG4lwQFpRAVlaLFkCJlzPbHH4T06mWWjdhspIwcSergweZKbxGRk5RsS5GcyWK8iIhEWraswiOPmLPMnlnu114zO46sWuXPoSHj+HHDTTR9/QHOP/4bZ/W/hjuZznt055xzzHaABe0wWdiGOOeeaybrntptp5Ns7fJiYqzMnOlHRETiyVlic2v2nMm4iEgmwyDgnXewjxiBJTUVd61aJM2ZgyvnSmoREVRGIkVUWJlFXovxnM5gBg7M3j5v6lSzxV9yMnz+udkz+4axMdQ//israUUoybxLD5ZH9cBITOL11+H88/OPa/16s248L9HR8NlnpzqP3HKLwXffFbwBjDlLnLumW0QEMLuNPPQQIY89hiU1lbSYGE6sXq1EW0TypZltKZTTGczx4/689pq5aU1UlAWn09xk5uBBg5iYvBfjZW3/B7nLQaZMMWe6AVaujCKG5TzNOEYzmlvi3iXtgQ181WMh/tdcQUyMWced06+/wpgxZrvA7BvZwKRJcOCAuTjz119h4kQL116b+x6e3SCjoko3sXY6NWsuUpHZNm8mpG9fbP/8g+HnR8qoUaT276+yEREpkJJtKZDZVs/G2rUWFi6Ejz4yZ6Y9YmIgvw3Rcrb/y1kOkpxslncMHWr+FxJiIzn5WXbsu5HIAV2p9c//6Di2KW83GM/A8UNxuazZEuroaOjb1+xQMnYsvPwyJCSYiff338N1153aiXLMGPjrr9y7QGaNtTRrnj3vY/Z68FMlLCJSjmVkEPTKKwS9/DIWlwtX3bokz5mDq0kTb0cmIhWAtms/Q76wtavTGUzPnoEsX25h5EizZCNnRxAwy0jmzUvNNUubcztxz5bu+fGcX7wYenY8yo7rHqT6T0sAONE0mr3Pz8MVVYejR83EffNms6tWixbg7w9nnQUDB2b/MOARHQ0TJpjdU/JSlK3Nz3RL36zvY075vXdSPmgbZ9+Tc8ytu3cT0q8ffhs3ApB6992kvPwyRkTBvfml4tD3ue8p6+3a9bMvyVfWMpBmzfJOtOFUGUZOOeu816/P3afbw9Pyz/P//6jO/176ksEBM0jzCyZ840ouvudyJl27iLVrISoKOnWCxo3NxHv5cvj777wTbTBj9/MzWLQo9w6TMTEGAQGWzLrtonI6g4mLC2fHjgji4sLz/fqc5TRZ5ffeiYiXGQYBH35I+A034LdxI0ZYGMkzZ+KYNUuJtoicFiXbkq+sZSAFdQTJea1Hzk1XpkwxW/C1bp39hyme1ny//mr+f8oUs/Tjh9UWbvm4L32b/MImrsHvRDzvpXbhwVU9eP7xE1xxhTkT3qGDmaDXqZN9i/ac/vzTQufOp67/8EPz11OmWPjrLyuxsYFs316lwMT51OsNo2fPQC691Ebz5lYuvdRGz56BJCSEFem9OZ3zIlK2LMePE9KrFyEDBmBJSiK9WTNO/PgjaZ07ezs0EamAVLMt+crazq+wFnv5tQbM2U6vShWDuXMNEhMtHD9uJTQU0tLgyBELTZrAL7/Al1+a640CA+GPP2DRbxcxn3Vsu+cFLvhoHHW/f5cprOY/3mMtLQFz5nrYMLP2O7+e3Flfw8qVYLOZZSdPPGHWfF91leXktvA2WrWyEhgYSGSkO9dCRqczOM9dKz2dTebNC852/Zm0TRQRL1m5kvDu3bEePIjh54dz+HCcQ4aYf2GIiJwBzWxLvrKWgRRUAlJQ67+4uHB27w4AoH79NM4++wShoYlERZ2gYcPj1K17nBo13AQHG9x5J6xdaz7n5puheXNYuNCcgQ4M8efdC8aw5dXV/M25nMtufuBGJvIkgZjT7suXm18Hp7aI9+x2+d130KABbN9uzqCvWgXjx8MFF8CmTZCRkX1b+OhoCy1bWvKcsT7dspAzaZsoImUsKYngYcOgdWusBw/iOv98Er/+GudjjynRFpFi0QLJM+QriymydiP58MPc26Z7dljM2VEj7+4beV8LcPx4FR5+GFasyGsRoTkD3bu3mXzfdvMJXmMwPXkHgFgupifz2Mi1fP+92fKvb9+8YoURI8zSEU9Xktat4dVXzS4my5YVvAh0wQILEM+OHRHccouVoUPNWnZPG8SffjJLYL791s3FFydk+/oTJ8JYvtyWZ9vE8HB1IymvtHDKN/j9+CP2QYOw7d0LgLNXL1Kef77gujSpNPR97nvKeoGkku0z5EvfmJ7+0ImJFqpWNcs+Tpwg317RZ9J9I2fnkpxWrACHA/z8oF0781hHvmQmfYniEC6sTGIYl3/6PPaqQYwbl3df7ujo3P2+W7eGN96AnTsL7pYSGwtnnRXPoUPh/PmnLVcy76k9v+ACF2efnb2zyel++JDyQf8IV3LJyQS/8AJBs2cD4KpbF9u8ecRfdZWXA5OypO9z36NuJOJ1SUlh7NtXhd9/r8L+/VXIyPAjKuoEF16YQPXqCdSqlVDgDotFLbPI2s3j2LGC/yjabGabv7p1T/X1XsxtXMo23qMbNtw8xUs0638VNXdvyDPRBjM5zrnR24oVkJIC1asXPJGVcHKyOjTU4LXXjFwz4CtXwmuvGYSGZv/8mpSUO9H2vBdZd68UkbLjt24d4ddfn5lop/bsyYk1a6BVKy9HJiKVjZJtyebYsSr06mXjiiss3Hijhcsvt9Crl41jx6oU+R6FdddITLTk6uZx/HjBX5OUZM46N2sGTz9tZG7RHk9VuvMez135BRk1ziby0A4u7tWcCTyVWcudU16dVXbtgueeM8tU8ku4Pd2+EhMteZa7gFkGk5h46lxCQhi7duVOtD3U+k+kjCUlETx8OKEdO2LbvRt37dokfvIJjldegbDc3YRERIpLybZkSkoKo1+/3HXTK1ZY6NfPPF8UhXXXqFqVXDO9RenBbXYKgZQUCxMnwpYt8M03Zt9sV/vbWDvTnOW2uM1Z7l+5khv4Idf98uqsEhRklp289prZnSSnmBiDs84yf13UVn6eriXHjp26PufCzSVLwDDU+k+kLPh9+y3hLVoQNGsWFsMg9YEHSFi7lgzPymoRkVKgZFsyxcfbCpyxjY8v2or8wrpvpKWRa6Z3yhR49FEyZ6w9PHXQs2ef6hTSrh1cdZW5oc3LL4PbbX59UoA5yz2/8xf8F3A2F/M/fuAm5vAQkRzLvN/69bmf4Tm2fDm0bZs75pkzXXhKvAr6MBESYpajxMWF89dfgQwebKF+ffN41m4nHTuS2fP7sccsefbnFpGSYTl8mJDevQm75x5s+/bhqluXxEWLcEydCuHh3g5PRCo59dmWTMePF3w+IcGsmS6MuZmNX74LAuPi8v6MZ7HA00/Dk09CfDzUrw+ffw5du5oz2jkXJIJZb221wrp1ZtJ9yy3Q76vbWDTvBjKeGE7HAzN5iLl0ZDFzG71Ks5H30aHjqZg8yXzXrqfu6XSaM89OpznjHRcHQUEZeL5dzA8T1lwfGEJCYMkSg4EDLSxffuo13nKLOYO9enXeryG//twiUkyGQcD8+QSPGoU1IQHDaiX1kUdIGT5cnUZEpMyoG8kZqowrl/ftq8IVV+Rf0rB1q0HduseLfL+kpDDi420cPw6RkVCliovQ0MQ8O4+MHGnO+Hp2dpw61UywPd1BFi8uuFPIkiXw889wzz0weLDZr3voUGgbvpbL33iYsL3bAUhuEcPe4dPZ5jyfoCDzeVOmnGoFCGbf7SZNst9/2zYXl1xiyxz3vLqLzJpl8PHHuWftwZyxnzjRnJHPz7ZtLqKiTuR/gZQ5dSmouKx//on90UfxX7sWgIwrrsAxZQquK64o8Os05r5HY+571I1EvCYy0pVrK3WP1q0NIiNdRb5XQkIYvXtnX2jZu7eNhIQwqlbNXWbSrJk545ucbM4yN2sGZ599qqyksO3iQ0LMspL4eLMn98KFZku/4NYt2LngFz64dCwu/0BC1i7norsv4/jwCXTqmM6LL2ZPtPOrG89Zp23ujJnKtm0u1q1zs22bi+bNjQIWQpoz7/nFPnIkpKVZ2bEjokjbxYtIPlJSCJo4kfDrr8d/7VoMux3HmDEkfvttoYm2iEhpULItmUJDE5kxg1wJd+vWBjNmmOeLorDtzA0DZs50ZUu4sybTyclmH+ybbjIT5+jowreL93Qrue46mDkTzjrLbCyQmAhHEgK4cN5IHmryOytphTXVSe+/RvBnyBVEsyLL64Rp0+C//04tYFy2zNw+PiTEwoYNZEuEg4JSiIo6kdkG8UQhk9J5nc9ax33VVRaaN7fmuWuliBTCMPBftozw5s0JnjgRS2oq6dHRnFi3jtQBA8wm/SIiXqAykjNUmX/k5Cn/SEgw291FRrqKnGhD4RvUeMolPJvlJCRYCAmx5FnC4ulA8sADZnlIYRvVeJLX114z67k9Vq70zFobfHrHe9z81TCqpB0BYP+1d/G/hyfz/d/1+P13uP12eOih/O+V32Y0Bw9GcNll+X9+XbPGbC+YtWbbUz6T366VeW0AJGVHP16uGKx//419xAj8v/0WAHetWjjGjCH9jjvMxSCnQWPuezTmvkdlJOJ1oaGJ1K17nMsuO07dusfzTbSzbkqTdca3qK3xss4M16iRmmcHk+RkMxlduPDULHdWngWOU6aYv/cspMyaHANkZHh+ZcH/oe7UT9vJVAbjwkqdDZ9w3UMN4cWxfPOlk5o1C76XZ4Y+KSks2+sPDs7dTcUjJgZ++MGMNetr8JTP5GX5cgvHjgXk+R6LCOBwEPTii4Q3b47/t99i+PuTMnQoCevXk96p02kn2iIipUHJtpyRnJvSZC19KKzPdl7nzQ4mrlwJtyeZfukl6N0bJkwwk99Fi8yFjM2amTXenrrr/JLXatVO/drphASqMJSpXMUv/MAN2ElhLM+yjUuJ/PFLwCg0Ed61y5bt9f/wg4URI/L+QDBiBERFGZn16IsXw+LFBlWqFPxe/fOPJc/3WMSnGQb+X35JeLNmBE+ejCUtjfSbb+bEmjU4R42C0FBvRygikknJtpy2wmqyw8KMAvtsR0am53ku56LDrVuNbMl0nz4wfLhZW925Mxw6RK4FjvktpExPP5UEZ63//p3LuYlVdOUDDlCL8/mbFi/dzle0I2DXtgLfh6yb1QDUqGHhnnvMDwebN8N335n/HzLE7JJyzTWwcaOL9u3dnHeei6uvTqVq1XxWTWbSFu8iWdl++YXQjh0J7dkT2/79uOrUIendd0n6+GPcDRp4OzwRkVyUbMtpi4/3L3D78aQkS56z1J5a54JqkLOWlkRGutiwwch31jqvXSfzWkgZEgKGcaqEI/fXWVhAVy7ifyyo9xQZVn/a8jW3DLucGfTlLA7lE2v236enw5w5ZunJNddAq1bm/6dONY8nJ5NtQWVQUEqBGwDltQEPaIt38U2W/fux9+tHeHQ0/uvWYQQFkfL445xYv570Dh1UMiIi5ZaSbTlthdVkHz9uybM13rx5qbkWFebH6QwmOdnCm2+e6o6Sc9Z6ypTcNdDr15sz3x6eRY6//252KWnWDFq0gFdfzV1f3fyWUM6eN4GrA7fxCXdicbvpyyz+5AKeYQx2Tk2h55UI162bfdMaT0u/oUPNPCAkhFwz0vmVz8TEGNlq0XMqbAxEKo3ERILGjiWiaVMCP/oIgNQuXUjYuBHnyJFgt3s5QBGRgqkbyRny5ZXLRe02cqaybhhTsybMnQt16hi43dC4ce5dG4cONZPo0FBISTHrs59+2kx689osZ+XKU1/XqpW5A2V4OHz9NXTqZHY9WbECbgn6kYV1Hydy1yYADlCLZxjLoVseoP8gv2y14mB2G2nZ8lRcWZ/nERNjMGWK2XM7PPxUl5esnVkiIgz8/S1cdZU12/1L8j2WolGXAi/KyDB3fxw/HusRs3NQevPmpIwZg6ug3aGKSWPuezTmvqesu5Eo2T5DvvyN6XQG07NnYD47JRavXV1e9/YkzM2a5d8mr3Vrg2uvtWS2//Mk4LVrm5vdQPbjnq3Yzz4b2reHL74Al8vshV2zpnn+0CGwB7mpueojLnlvOMH/7gHA0eByXoocz/Mb25K1pvrjj+Huu7PHnFesnlaFGzaY/curVj1epPfBQy0By47+EfYCtxv/xYsJHj8e286dALjOO4+U558nvV27Ui8X0Zj7Ho2571HrPyn3Cip9KKwmuzDx8f6sXWth5MhTG8vceaeZnM6enbtsxPPcGTPg99+zxxMcbG5q4+HZLKdjR3OBZceOsGePWU89apQ5K92unVln/dxzEBAAne+xcs2ke4n8dwfbH3yZ40Rg3/Uboze25/eI67mRVZn3z/q9W1Ank5UrzfMrVljo18/sa55Tab7HIuWSYeC3YgVh0dGEPvggtp07cUdG4hg3jhPr1pHevr3qskWkQqoUM9v//vsvy5YtY/Xq1fz9998cPXqUiIgIGjduTO/evbkijy16k5KSmDZtGsuXL+fIkSPUrFmTNm3aMHDgQEJCQgp9pj4F5y59iIxML3YSuHNnBIcPW3OVX3haAPbubXYlyTo7fe65bmrVSsDpDOb4cX/AypAhFr791kzYO3bM/3lr1sDo0bl7aXueef315sLHZs3MmfH0Q/9x2eJxVF0wnSDDLCKPv7o1R4eOxa/FtfTpY8a9aJGZ0Ocn6/mtWw3q1j2e53Wl8R5L0WnGq2z4/fQTQWPH4v/TTwAYoaE4H3kE54ABZo1XGdKY+x6Nue9RGckZmDRpErNnz+acc86hadOmVK1alT179rBixQoMw2Dy5Mm0a9cu83qHw8F9991HbGwsLVu2pGHDhsTGxrJmzRoaNWrE+++/T2BgYIHP1Ddm6Th6NIJHHrEWWH7x4ovZj2etX05KCqN371NtCUeOhF9/hSuvNLdy9/eH6tUhLQ1SU80ykquvJt/a6M2b4amnstd5R0dDaMIBot5+kbOXzMHPbbYy3FyrIzXeHEPvaVcwZEjBSX7WDwGrVxtcdtnxIr9Hp0sJ+5nTP8Kly/brrwS/+CL+J7/hjcBAUh96COfQoRjVq3slJo2579GY+56yTrb9yvRppeTyyy/nvffeo2nTptmOb968mZ49ezJ69Ghat25NQEAAAHPmzCE2NpY+ffowbNiwzOs9Sfu8efPo27dvmb4GMaWlFVx+MXRo9mM5+3bHx2fv/z17tvl1jz6aPUn3zJS/8oq5kDHnYkePuLhTibZnwaN5n9rAdO5v/gTjgsdQe+U7XHNwMdy+mFcadsaa+AwxMZfnu7181k4mERGnfl3SiXHWxaYeMTFWZs70K3JnGJGSZtu8maBXXiHg668BMPz8SOvWjZTHH8eoXdvL0YmIlKxKUbMdExOTK9EGuOaaa7j22mtJSEjgf//7HwCGYbBo0SLsdjv9+/fPdn3//v2x2+0sWrSoTOKW3E4U0mAja/u/vOqXT5w41XJv8WJz4eNjj+UuE1m50kycGzUy/58zic/Js3V7zg8C7687l17MZVq/7Ry4/h4AGsUu4tL7ruCd47cx4JoN2a7Pub1869YGkZEuoOBdOc9EYZsPaWMcKWt+69YReuedhMfEEPD11xgWC6mdO3Ni/Xocr7yiRFtEKqVKkWwXxM/PL9v/d+/ezeHDh2ncuDH2HP1Z7XY7jRs3Zt++fcTFxZV5rJL3Vu5ZXXihUWDf7ipVzBno9evNMo2jR+Hbb/O+l2ehouf/OcXEnJqBLmzB4wXtL+KnwQu4nK0spAtuLJy9cTGvb27G4Stas+q579m8yZ1tR8zWrc2FnaGhiXkmxiEh0KSJhb//thEbW4W4uPDTSpAL23zo2DHzJz1OZzBxceHs2BFx2s8QKZRh4Pfdd4S2b09Yhw74r1qFYbOR2rWrmWTPnIn7vPO8HaWISKmp1Mn2wYMHWbduHTVq1ODCCy8EYM8es31b/fr18/waz/Hdu3eXQYSSU0E7KsbEGNSokZptB8acAgLgtddOJcb5bd+e9fq81sNGR5slJp4Z6MLu41ms+TuXcy8LaUgsb9OTdPyosXUlNz7fiot7t+Shs5ew7CtzK/q5c12Zbf9yJsaeshVzt0sLLVpYTnumu7CNb/butXDsWJUSnU0XyeRy4b90KWG33ELY3Xfj/9NPGAEBpD74ICd+/hnHG29oe3UR8QmVomY7L+np6Tz55JOkpaUxbNgwbDZzE5bEk73gQkND8/w6z/GkpKQC71/WxfW+ZM4cs+tI1nrnmBiYM8dCVFQQkMee7Cft25e9ZCSv7duzstnMpLZ2bbPsxJM0r18PGzeau00uX174fTxf07q1+fydXEQv3mY0o3mSl+hjfYuQrT9x7qCO1L7oMgKefBTuuw+CzD9HJ9sJZ8qvbMUsAfFjwYJICvsjWNj5GjXM1oM5S2xO5xm+QN/rpyk5GebNMz+p/vmneSw4GPr2xTJsGIG1a1Pw8nPv05j7Ho25lKZKmWy73W6GDx/Opk2b6NKlC3fccUeJP0Mrl0tPaCjMm5f3QsHC3vakpCpk3WjGnBnOf3OZ77+HDRvg9dezdw+55Rbo2ROaNjVrvgu7z/r1sGMHTJ8O/fufSmD3Uo/PW79B65HPEPn2K9jffZPQ//0BDz2Ee/hwUnv1IrVXL8LCzgdO7cqZV9cVj+XLIS7OBRRc4B4REUxMTN4b40RHm91Y8mp5CLB2LRw96iYuzvDpLibqUlB0lrg4AufMIfDtt7EePw6AOyLC/DPerx9GjRrmheX8/dSY+x6Nue9RN5JicrvdPP300yxZsoTbbruN559/Ptv5sDDzx+P5zVx7juc38y1lIygohaioFKKicp8rqGNHzmGbMsWcubbZss+UexYqeuqnU1LMNn+JiVC1qpmAX3mlee3QoeaM9f33m7/OOeM+aRLs3w/XXmt2Pbn2WvPeWWfJh02OYvTol4l+dyR9mM24s1/D/9B+gidOJGjKFPw63cf6tx5jX/hlBAebLQoLcvy4FQjP9R7kfG9mzXLz3XdWatSw4HSaE4wHDkCdOuYOmXnxlLAMHGhh+fJTlWbqYiJ5sW3bRuD06QR8/DGWdLMzkOvcc0nt14/Url1zf1OKiPiYSpVsu91uRowYweeff06HDh2YMGECVmv2svR69eoB+ddke47nV9Mt3lVYKzubzaB9ewtXXnlq4xubzay/3rvXTKw9CXDWdn+JidC2LaxaBY8/nn3G98UXzf/at4eBA2HcOPjnn1P3ue468z6LF8PSpeZ/eXn6aUigCpN4grs+Gsxl/3uPoDffxG/LFkIXvM21C97mODFMpz9DvmlPQd+ewcGwfbuN4GDzebt2WRk3LpD+/cnx3hiMGAEdOpx6rbfcYn4YyLE+ONOpEpa8u5jMmxd82jPc6vVdyaSm4r9kCYFz52ZuRAOQ3qwZqf37k962rfmNJyIilWNTG8ieaLdr145JkyZl1mlnZRgGN9xwA0lJSaxduzZbRxKHw0GLFi2oWrUqK/NrPXGSfuRU9pzOYHr2zLssIibGYN68VBIS/MnIsPHoo9kT5pgYM1HOr5/21q1mwh0UZG7Xnp/Fi80Ee/363CUlhe0a+f33cPPN5q//+OPkrpcpQbx0x8+02DSFTnyGDTcACWG1+bxGb57+uw8Hyd4OrXVrg2uvtWSWmURHw4QJMGKEwYoVeZeMZN0J0+k0Z+/Dw+H55w2WLMn+NYXtuumJvajy/oBktm0s77Pk+vFydta9ewmYN4/A+fOxHj0KgGGzkd6xI84BA3BdfbWXIyw+jbnv0Zj7nrIuI6kU3Ug8pSOff/45t956Ky+//HKeiTaAxWKhc+fOOBwOpk+fnu3c9OnTcTgcdOnSpSzCltNUWCu7+Hh/QkIMHn3UyGPRn9mlJK9+2jExZglJy5bmjHVBnE6zNOWZZ8wZ4qwK+949WcFEdLTZBQUg/ngAUza1pDMfcwF/MoGnOEJ1IhIP0OPv59lrqcendKINX2PBTevWBoMHWzK7pICZ9J84QZ6Jtud8hw6n2iF27mzGMHKkwauvQocOOT9vF/z5Oz6+4C4nWanXdyXgcuG3fDkh995L+FVXETxlCtajR3FHRZHy5JMkbN1K8ty5lSLRFhEpDZWijOSNN97gs88+w263U79+fd58881c17Ru3ZqGDRsC0Lt3b1auXMns2bOJjY3lkksuYfv27Znbtffo0aOsX4IUQWGt7Dzn80s6V6yAESOyLzyMiTHLO9q3N39flK4jLVqAw2H+f/Bgc6Fh/fpmAu3pRpJT69ZmLbSnVvzYMXPb+KyvaTfnMoIJPMfz3Bf4KZMazKDaH6vpxOd04nNSa5/Lj+m9GHTPAySn1Mt2/2PHCo7bsxNmVsuXW3jkETN579v3VI15ZGTB73N4OMTF5a4Xz0tRPiBFRamcpDyy/vUXAQsWELhgAdYDBzKPp994I6m9epF+662FLy4QEZHKkWwfOPkPgcPhYMaMGXleU7t27cxk2263M3/+fKZNm8by5cvZsGEDNWrUoFevXgwYMICgwjIu8YrCNryJiDAKTcgDAuDXX0/tNBkSAldffaq0pKCuIzExcP755gx51q8B8z7r15vJt2Fk//roaPO4y0XmpjYbNxr5vqY0Aqk9rCv3rO/KwT+205eZ9OAdqhz4h9YHniWWZ/mOm3mX7nzM3SQTWuiHhLPPhiVL4KefzJl5T+wrVlgYMiR72cjIkQW/Bxs2wMMP27Icy3/hZFE+IOW1CLYgqv8uRSdOEPDZZwR++CF+GzdmHnZXqULaffeR2rMn7gsu8GKAIiIVT6Wp2S5rqu8qe0Wp2Y6P9+fSS/NfmJWzHvmbb6BNm1O/93TiyNnjunVrsz3gP/+YM9LPPw9XXHGqBjo4GCIi4NZbzVIVz3HPIsopU2DZMrjhhlOxerqH5PWacsYZjIN1Qz7i2NR3acX3mceTsfMJd+G6rzsfHbmZr7/N/dqjo0+1EszZhQVy15rXrGk+/9lnc3deybnYMuf7nzPpjYsLL3A8/vjDjcVS9PaCJ06EsXy5jaioU91VDh40iIlxER5e8vXf5amWs9Q+ZGRk4Ld6NYEffoj/0qVYTu7gZFitZLRqRWrXruaCRx+ZhChPYy5lQ2Pue9T6TyQfQUEpzJzpl+9iu6CgFCIjzZnWvBNyOHgw+zF/f4OsfbmTk81EdOhQ87/QUHNGOiLCTJQPH4Zu3eDVV+GRRwxefPHU127ebJCcbMm3P3ZoaPZYASwWM4F1ufLfDh4gBTsfh/ZkU0xPHly+h27MpwfvcCG76M578MF73F+jNkvO6cykvZ1ZTzMMrNmSazj1jKFDT5XTZM2hQkLMTYVeeAGaNIFBg8wPDZGR5sY/11yT9wLT/EpCzB1B8xsPg3XrLDz8cNHaC6amBvPPPzYWLrTk+MmBhQYNbFx8cTCBgZVzhruwLjynzeXCb906Aj7/HP/FizMXOwK4LrqI1K5dSevcGeN0f+wgIiK5aGb7DOlTsPcUNsOXX/eL11+HtDQzsU1KgipV3ISFGfTunXsBn+drJk608PHH2UsvRo40Syly1mZv2gTDh+e/8c0bbxiEh2ef/Y2LC6dpU1uu2fDISHPBZlYhIeZzhwzxPMPgWjYwsvY7tDm+gIDk45nXplavzYHmd7OiSmce//g6khzWzHsMHQqdOpmz9J6uJEeOmK/v3HPN15BX3XlhXUrWrXNz8cW5u5TkNx4jR8KqVRYaNz7104GffoLffzeYMSP3LPnRoxE88og13/f3zTfdVK+e+/nFmREuDzNeRfmJTpFej8uF34YN+H/2GQGLF2M9fDjzlDsykrS77iLt3ntxXXWV+SnQR5WHMZeypTH3PWU9s61k+wzpG7N8O50Eq6Dk/KqrLLlmcvNLOp9/3pz9Hjs2d832M89AvXpuqlTJngzu2BFB8+a5mwKNHJl3e8Hnn4eoKCOzjMJTpjL91VQGXPANd7kXce4fXxKRZXfJ/dTmE+7i66BODPigBVPe8M9RImMukuzaFRYsyD+hLizZ3rbNRVRU3rta5hyPgAALO3daeeWV3O/VkCFwwQUuzj47+7327KnCVVflnwT+8otBvXrHsx0rbtvB8vCPcGGlOAW976Sm4rdmDf7ffEPAkiVYs+xk5K5ShfQOHUi74w4yrr9eix1PKg9jLmVLY+57VEYiAiQlhREfb+P4cXOWt0oVF6GhRf9xeUE7UOYUEZGY5/bwf/0VmGfJxMmS1lxeesnc3v2ee8zZY08yHBcHZ50FR49ClSrZvyY8PO97ndr50siWKP78s8Err0D//tmPR0cH0nTIbbTsehvppPLjs8v535iPuI0vqcMBhvAaQ5yvkdQlgqSMW4miPctoy39UZ8UKC4ZxKub8rF9vluJkreP2iIkx37OicjotuRJtOPX7qVNzJ9X5bPqa7/nC2g7m3Jwnrw9o5cHpLjK1HD6M//Ll5n/ff48lyx9id3g46e3bmwn2jTee6kEpIiKlRsm2lDvHjlWhX7/sLfxat7YxY0YVqlY9XirPzCs5Dw8PzOfa/O/jdud9fM8eqFcv9w+RAgLy7vyRnAwzZ8Kbbxo4ne5sCWB6uh93321j0CCzDjwpKeeOmIF86e7I+uiO9F6ZSgzLuZuPuTf8K0JPHOVeFnIvC3FjYT3NWEIHlq5sT7PBjcCaf+v9KVPg559h8GAj35r5vOQ1u7xli5FvjfrKleBy5U4wIyOz19fnff6U02k7mF9N9Jw53t9tvNAuPKEZ2H7+Gf/vv8f/66/x27Il23n32WeTHhNDWrt2ZNx0kxJsEZEypjKSM6QfOZWOpKQwevWy5dkru3Vrg7lzT2+GuzhOnAind29rrljMmu3cuzXmdxzyj33nzggOH7bm6n7iKaeoWdPNhReeKj3JWb+bX7lJSAgsWWIwfvyp7dsXLXAx+d6NtGcpHVjClWzN9jXO8Brsqn0zK9ytmP6/VvzJBWRNbqOjzTKZtDRo1cogKMisey+oRCe/euOsu2nmZe1ag4YNjxfpXpB37XJsbBVatMg/Ofc8o+D7wrx5Tq+2Fswdn8HF7CCalXStuZLrUldhTTie7WsyrryS9DZtSG/TBtfllxf4IUqyU0mB79GY+x7VbFcQ+sYsHfv2VeGKK/JPkLZuNahb93iZxHLoUDh//mnLlQi3b29uj/7449lneFesMGjdOv/Y86qtzW+BpKdd4MaN2b8mZ/1ufq0Kzdlmg4wMSEoy685DQshW81yHfbTjK9qzlGhWEoIjW2z7qMN3tOJ7biaj+Y3c81R9ut53qoY9rwQ3ZymGv7+Fli2t9OmTvU1inTpw5ZX5v/e//WZgGOQqIzqdGuyi/lkqVk10IQpaO5DfuZwlVJFVMmDnThYO2UDNbd/Tiu+oTfa2Ou7wcDJatiS9dWvS27RRF5FiUOLlezTmvkc12+LTjh8v+HxCAtStWyahcPy4JVsbwKyJsKf0w+02SEgwWwMWVlOc1wYukZHptGhhzdZC0COvOuic9bs5WxVGRBhUq+bGbochQ6x8+aWFkBBYuBC2bzeylazspy6z6Mss+tLm5jTuqruRfe9+xy3W72hu/Ym6Gfvpwbv04F1YB//ecRbzjWaspxk/cR1rll/D0aN26tTJvxTjttvMcpGsrQYBZs0qqP7bfI8ffjjvMqK86uvzmnm22Qyioy35di+x2Yw839OczmTjHfPr8m/XZ7GYGwNlPdeli5UXXwzk0T5JJK3azHX8RHPWUc//J8LTj/F4lnu7AwJJb9oc980tSb/hBlxXXAF++utcRKQ80t/OUq7kXECYU0REmYRx8lkGycnk2zfbanVTu/aJzOQ/Li4cyH+GNK/a26L0Di/sHllj3LbNLOvIWnYwdKjZF3z9egsffmhel3PDngGDA+jatSXJtGTdzaN4rJ+D6Q+sY1Lb74j/7Huu5mfOMv7lDr7gDr4AIAMbyXdcjq1FUzIaNeKVT67hxw2NAHvmvRs1svDoo7nLXB591NzR0jDg229PHT+1cU72BHjFCgv9+hnMnRtGaGhikRa/Wq0GQ4bkfr2eEh2rNf9dPLMq7HxeCluceffd5q9DSOJyfuNKfuWp47+S1ngznyX+hh+uU1+UDqnWIIxrrsFo0YSMG24go2lT80cEIiJS7inZlnIlMtJF69b512xHRrry+KrSiqXgDVlyzjqf7vUe+XVDyWu2tijPyLkw0LN7JGSfBQ8IMP8LDQWbDb76yiw1OXgQnhhuZ8JHrUk9pzXOQbAtMIXkNb/w7ZifuCxpPdfxE3U4QMTfv8DfvwDwGjDVauVoZANWH7+Cn11XcJvtCj5ZexnPPF2Xa6+zZuunPWAAfPGF+WHB89OB0FC47TazNKZWLThxwjx+4AD07m0hPt5W5AWLVaqkM3++lSFDLEycaN4rPNx8ffPnG0yZkl6E95Qz6koSH+/P2rUWRo403//UpHSqntjN/pX/46/PfqN98q/8j1+5gD+xcjKZzzLLv5e6rKM5P3Ed62jOVvcVbJ7tX2YlVCIiUnJUs32GVN9VevLuRmIwYwal1o0kP6fbp7m4fZ0Lk5gYRnKyjcGDLdk2nsn6/uTs3Z1zO3aPmjXNGd9HH82+qLN9e3MmvH9/cjzDPB4dbe6keU+L/bzY4Sd+nrGBKnt+4wq2chaHcz8ISLMGstN9AbtowC4aENToQu58qgHDZl7ARz9GYWDGa/Y3t/DYY+bMd85nJyYaXHzx8SK/X0X9s5TfuM2ZYyE0tIjf6xkZWA4dwrZvH0fW7Me9YxeHf9xJ1aP/43z+wp+MPL9sP7X5lSu57P4rGfb+laynGQeok+u61asNLrvseO4bSIlS/a7v0Zj7Hi2QrCD0jVm6PIvEPDOekZFl14UkJ89CtsREG2FhrkJ3ICzOjoWFxbFkSSBffGHhyitzL6j87TeDN95wkZhoybbgL7/NaPLrZJLfDplgJr2DB5sLMseNM7d1X7r01PmzOMQVbOWuC7ZybeBWLkzZit8/O/E38p8dTsOfA9RmP3U4QG1s59TBflEd3v62DnFEcYyq/Ec1GreK5I1ZfkX+wHW63UvyGreoqCDi//0XS3w8lv/+wxofj+XoUaxxcVgPHMj2n+XQISz59X4EHASzkwv576xLufCeq3jwtSvZyhUcpQYAmzfDNdfk/3rKcnGwL1Pi5Xs05r5HyXYFoW9M3+Ptv5Dj4sL5+29bgbs4bt1q8P/27j0uqjL/A/hnuIkDiOAtRVvMPIggBMi44iUhw1KkErFdzdZ8WWa6eX2VbVqb6VpplnlN27RCS3A1ydbVbltqclHJGyiKgoKuYsp1GBiY5/fH/M6Rwww3dVTg8369fMk8zzNnnsMzo18O3/N9OnQob1B5wNqC8Pp2ijxyBIiPBwYMAIYPr33cwYNAq1ZAWL8qtNOfR0CrTEx6+DT8nTLh+ftpXD2QCW9kwx61B6g1Vbm4QXi2Q4WrJ8q1nrBr4wIHN2c4uNpDtG4NODtDODsDrVujyOCGJUvtoIGA5v9TNar/PfslPdzsC4CyMmhKS2EqqUBlkQGmkjI4GYrgWHwVDtd/B4ob/kOecHCAycsL+q4++HR/L2RCwin44BR8kAcv5Qp+crJAv37qHwISE4F16wQCAzWqyi0HDpjXdfXqu/cDZ0tytz/ndOdxzVseViMhIqsKCzV17vBoHgN066a+6VLejVKjsX61uqb6XqOgwJwDnpBQ97hz54D16wU2fWWPSZO6Y9In3bF8+TD8sPNGaosDjLgP/0NX5Kr+jOmfiwsHLqAjrsAT19AWBbCDgH1pMVBaDAdkV7sN07rWAJbWNWB1PQeoRmg0EB4eEO3aQXh4wHTffTB5eVn8ER07Avb2OHnSHTPCaq9tXVlpvrpe/ap7QoLABx8AU6YIVXWaoUMF1qwBA20ioiaKwTZRE+HuLvD77/WNkf++cdPltWt2KC7W4OWXzTdGlpWZU09qK6FY1w6Z1V+jvnHOzuaKG1VVwCefqGuBy8+thCNy0Q25UE/G52/qq+t2qMKCmQXISrmK9P3X0Q6/wxPXoIUerVGGPj30GB2lR6uqQsBggMZgQFkRsCPRHPCK/7++LX8NAE/+yRna9vYwOrZB/E43/HbaBXpooYcWJXDF72iHXgPa4x8fu6BVp1bmu0gbqL4KJm3bmrBxo1GVtuLmJjBpkuXNwd9/r8HUqcJie3kiImoaGGwTNREeHkZcumRXa+3oRx9VV2uRt6D38LCeu5yYaL5qWjO4S0qy3g6Y252cNMo4a1vNA+b2pCTz1z/8ALz7rnpcXc8dOlQgKUn92ibY448jPLF4XTvMeB0WaRbTPwRCJ6pzmg2G1thsqD1n+/Fl5dA4l+HSpTaY9IH1QPrAfmCOpgqd7a1vaiPneRcU2MHNzVxO0M7OHDjXvHJd/bXlPP7qJQwvXWrT4O3liYio6eAevkRNhLNzGSIjqzBvnnlzmuoiI2tPNTDX8q5CZKT6amtcnPk5Q4eq248csd4upzOsWmVu//BDc73qmuPkOtYffnijrbhYPUZ+bs3zkF/jyBHL19ZqzekwSUnmq96xsUBUlPnxl19aplbXdt41a5g3ZFMb6+1umDChFfz87DFggAYBARpMn26HM2fsMWeOPVavRr2v3ZDXaWg/ERHdm3iD5E3izRQtz71yE015eWsUFzuhtFSDkpIb1VpcXOrO6a1ve3C58ou7uwkLF9ph8mQNHB1v1MA2GoGPPhJYtMhc8aSwUIO2bQVcXQWuX7dHZqZGtdW8vK07YA6ea26d7uICZZv6tm0F2rS5UXWmqKgNCgvtUFBg3ujI3d0Eg8EOU6fWviPkqlUCHTsWNPi8ZTezXXtdlU4eecR8TseOCaxceeN7VV9lGltuG08Nd698zunO4Zq3PKxG0kTwg9nytJR/kG938GmuV12FSZMsd1SU+2uW4bMmL68t+vSp/erusWMCXl4FdR7DmrrnDqxcaYKra0WjAnS5osvx4yZoNKJBwXZjSxWSbbSUzzndwDVvee50sM00EiJSuZl0hvpSNlxdixuU0lGXmqkoje2vTW1zf+QRYNo0ICjIDhMmtEJhoZvSV9/3SK7ocu6cueZ5WJgd/PzsLY7TkHk05ntERET3Ht4gSUQq9VXSqK2/vm3nG7Mt/e2cV8OObZ7btWtOOHdOA0CDpCTz9valpeYbFCdPtlcqgtT3WjcqtaiD8prHqW0ettgUiYiI7g4G20Sk4uFhRGSkXZ2VNGpTs8JGY/ttNa/qasvhdnYug0bjiJEjrf/Cr3pFkLrmIldiqV6RpbbjWHMr3yMiIrr3MI2EiFTu1XSG2zGv6hVErKV2NDSFpq7Uk+nTzfnjNSuyWDsOERE1f7xB8ibxZoqWp6XdRFNfFY+mNq+G3IB4/bpjo24OrV5n29UVsLc319l2cNAgKMhOVZGlruPQvaOlfc6Ja94Scbt2Iron3KvpDDc7r+vXHevdNKaxqSq1zcVgaI0BA2oP7Bua8kJERE0f00iIqEVoSIrI7UqhuVdTcYiI6M7jlW0iahEaWs2kekWQ4mJ7uLlV3VQKDSuLEBERwGCbiFqIxqSIyOkhvXt74Pr1m8+tvldTcYiI6M5hGgkRtQhM7SAioruBV7aJqMVgagcREd1pDLaJqEVhagcREd1JTCMhIiIiIrIRBttERERERDbCYJuIiIiIyEYYbBMRERER2QiDbSIiIiIiG2GwTURERERkIwy2iYiIiIhshME2EREREZGNMNgmIiIiIrIRBttERERERDbCYJuIiIiIyEYYbBMRERER2QiDbSIiIiIiG2GwTURERERkIxohhLjbkyAiIiIiao54ZZuIiIiIyEYYbBMRERER2QiDbSIiIiIiG2GwTURERERkIwy2iYiIiIhsxOFuT6ApOXr0KFasWIG0tDRUVlZCkiRMmDABw4cPv9tTo3rs2LEDhw4dwvHjx5GZmQmj0YjFixdj1KhRVseXlJRgxYoV2LNnD/Lz89GxY0cMGzYM06ZNg4uLi8V4k8mETZs2IT4+Hjk5OdBqtQgLC8PMmTPRrVs3W58eWXH58mXs2rULv/zyC86ePYurV6/C3d0dwcHBmDRpEgIDAy2ew3Vv2srLy7Fs2TIcP34cOTk5KCwsRJs2bdCtWzfExsYiOjoajo6OqudwzZundevW4f333wcAbNmyBQ899JCqn+vetEVERCAvL89qn06nwxdffKFqq6iowLp165CYmIhLly7B3d0d4eHhmDFjBtq1a2f1OImJifj8889x5swZODo6Ijg4GC+//DL8/PwaPV+W/mugpKQkTJo0CU5OThgxYgRcXFywZ88e5OXl4dVXX8XEiRPv9hSpDvIH08PDA1qtFnl5ebUG23q9HmPHjkVGRgYGDhwIX19fZGRkYN++fejTpw82bdqEVq1aqZ4zb948JCQkoGfPnnj44Ydx5coV7Nq1Cy4uLtiyZQu8vb3v0JmSbOnSpVi/fj3uv/9+6HQ6eHp6IicnB99//z2EEHj//fdVPyhz3Zu+a9euYciQIQgICIC3tzc8PT1RWFiIvXv3Ii8vDwMHDsT69ethZ2f+pS7XvHnKzMxETEwMHBwcoNfrLYJtrnvTFxERgaKiIvzlL3+x6PPy8lL9324ymfD8889j3759eOihhxAaGoqcnBx899136Nq1K+Lj4+Hp6ak6xpo1a/Dhhx/Cy8sLkZGRKC0txbfffguj0YiNGzciJCSkcRMWVC+j0SiGDh0q/P39RXp6utJeVFQkIiMjhZ+fn8jNzb2LM6T67N+/X1mjjz/+WEiSJP71r39ZHbt8+XIhSZJYsmSJqn3JkiVCkiSxdu1aVfuBAweEJEli3Lhxory8XGn/73//KyRJEhMnTrzNZ0MNsXv3bpGcnGzRnpqaKvz8/ERoaKhqvbjuTV9VVZVqLWRGo1E888wzQpIk8dNPPyntXPPmp6KiQjz11FMiNjZWzJkzR0iSJNLS0lRjuO5NX3h4uAgPD2/Q2K1btwpJksSsWbOEyWRS2jdv3iwkSRLz589XjT937pzo3bu3iIyMFEVFRUp7enq68Pf3F48//rioqqpq1HyZs90ASUlJOH/+PKKiouDr66u0u7m54cUXX4TRaMT27dvv4gypPmFhYfDy8qp3nBACCQkJ0Gq1eOmll1R9L730ErRaLRISElTt8uPp06fDyclJaX/44Yeh0+mwb98+XLx48TacBTVGZGQkdDqdRXvfvn3Rr18/FBYW4tSpUwC47s2FnZ2dai1kDg4OePTRRwEAOTk5ALjmzdXatWtx+vRp/OMf/4C9vb1FP9e95ZHXb9asWdBoNEr7n/70J3Tr1g3ffPMNDAaD0r5t2zZUVlZiypQpcHNzU9p9fX0RFRWFrKwsHDp0qFFzYLDdACkpKQCAgQMHWvTJbampqXd0TmQb2dnZuHLlCoKDg6HValV9Wq0WwcHBuHDhAi5duqS0JycnK301DRo0CMCN9xDdGxwcHFR/c92bN5PJhL179wIAJEkCwDVvjk6cOIG1a9di2rRpePDBB62O4bo3HxUVFdi2bRvWrl2LuLg4HDlyxGJMeXk5jhw5gu7du1tccNNoNAgLC4Ner8fx48eVdnktBwwYYHE8OeZr7HrzBskGyM7OBgD84Q9/sOjr0KEDtFqtcrWEmjZ5HWvLv/P29sa+ffuQnZ2Nzp07Q6/XIz8/H5IkWb2KIr9n+P64d1y8eBG//vorOnTooAReXPfmpaKiAh9//DGEECgoKMCBAwdw9uxZjBo1Cv379wfANW9uKioq8Oqrr6JXr16YNGlSreO47s1Hfn4+XnvtNVVbnz59sGzZMtx///0AgPPnz8NkMtW53oA5zuvbt6/ytVarRYcOHSzG3+x6M9hugJKSEgBQ/TqhOldXVxQXF9/JKZGNyOvo6upqtV9ul98TDR3P98e9wWg04pVXXkFFRQXmzJmj/OfJdW9ejEYjVq5cqTzWaDSYOHEiZs+erbRxzZuX5cuXIzs7G9u2bbMaFMu47s3DqFGjEBISAkmSoNVqkZ2djQ0bNmDHjh2YMGECEhMTVbFZQ9db/rrmDZM1xzd2vRlsE1GLYDKZMHfuXKSmpmLMmDF48skn7/aUyEZcXFxw6tQpmEwmXLlyBT/++CM++OAD/Pbbb1i/fn2t//FS05SWloZPP/0U06ZNU35bRc3btGnTVI99fX3x3nvvATCX+k1ISMBzzz13N6ZmFXO2G6C+n2RKSkpqvepNTYu8jtV/yq1ObpffEw0dz/fH3WUymfC3v/0NO3fuRHR0NN566y1VP9e9ebKzs8N9992HsWPHYsGCBTh8+DDWrFkDgGveXFRWVmLu3Lnw8fHBCy+8UO94rnvz9vTTTwMADh8+DKDx6y1/XVe8V/24DcUr2w0g5/Tk5OTA399f1Zefnw+9Xo+AgIC7MDO63eR8LDlPvya5XX5PyHldubm5qKqqsvj1pZzXZS3fn+4Mk8mE1157DV9//TWioqLwzjvvKHWWZVz35q/mjU1c8+ZBr9cra1Xz/2eZHICtWrUKPXr0AMB1b648PDwAmN8XANCtWzfY2dk1eL3lr9PS0pCfn2+Rt32z680r2w0QGhoKANi3b59Fn9wmj6GmzdvbGx07dsThw4eVD6tMr9fj8OHD6Nq1Kzp37qy063Q6pa8muQIC3x93R/VAe/jw4Xjvvfes5nNy3Zu/K1euALhRgYZr3jw4OTlh9OjRVv/IAVRERARGjx4NLy8vrnszd/ToUQBQKo84OzsjICAA586ds9hxUgiBX3/9FVqtVvWDmryW+/fvtzi+HPNZKytbFwbbDdC/f39069YNO3fuREZGhtJeXFyMtWvXwtHRkfmfzYRGo0FsbCz0ej1Wr16t6lu9ejX0ej3GjBmjapcfL1++HBUVFUr7zz//jJSUFAwcOLBBNb7p9pJTR77++ms89thjWLJkSa03TnHdm4czZ86grKzMor2srAyLFy8GYK6NDHDNmwtnZ2csWrTI6p+goCAAwOTJk7Fo0SL4+vpy3ZuBrKwsq5/zrKwsLF26FAAwcuRIpV1ev2XLlkFU2zT9q6++woULFzBy5Eg4Ozsr7aNGjYKDgwPWrFmjSifJyMjAzp070aNHj0bvIMnt2huI27U3bQkJCUoR+szMTJw4cQLBwcHKr4JCQkIQGxsLwHx1489//jNOnjyJgQMHonfv3khPT1e28o2Li1N9MAHLrXzz8/Px73//Gy4uLvjqq6/QvXv3O3vChBUrVmDlypXQarV49tlnlSua1Q0dOlTZqIrr3vStWLECGzZsQEhICLy8vODq6orLly/jl19+QUFBAfr27Yt//vOfyjpyzZu3uXPnYvv27Va3a+e6N13y5zw0NBRdunRB69atkZ2djV9++QVGoxGTJ0/GrFmzlPHWtms/f/489uzZAy8vLyQkJNh8u3YG241w9OhRfPTRR0hLS0NlZSUkScJzzz2H4cOH3+2pUT3kf3Rr89RTT+Gdd95RHhcXF2PFihXYs2cPrl69ig4dOuCxxx7D1KlTrVYyMJlMiIuLQ3x8PHJycqDVahEWFoaZM2cq9T7pzqpvzQFg8eLFGDVqlPKY6960HTt2DPHx8UhLS8Ply5eh1+vh6uoKHx8fjBgxAjExMRY/dHHNm6/agm2A696UpaSkYPPmzcjIyMDVq1dhMBjg4eGBgIAAjB071uoGhBUVFVi3bh127NiBS5cuoW3bthgyZAhmzJiB9u3bW32dxMREfPbZZzhz5gwcHR0RHByM6dOnw8/Pr9FzZrBNRERERGQjzNkmIiIiIrIRBttERERERDbCYJuIiIiIyEYYbBMRERER2QiDbSIiIiIiG2GwTURERERkIwy2iYiIiIhshME2EREREZGNMNgmIiIiIrIRBttERA2Qm5sLHx8fjB8//m5PhYiImhAG20RERERENsJgm4iIiIjIRhhsExERERHZCINtIqJGMhgMWLp0KcLDw+Hv749HH30U69atgxDCYuyZM2cwe/ZsDBw4EP7+/hg0aBBeeeUVnD171mJscnIyfHx8MHfuXOTn5+P111/H4MGD0bt3b2zcuBEAUFFRgU2bNiEmJgb9+vVDYGAgIiIiMHnyZHz77bcWx6ysrMTmzZvx9NNPIzg4GAEBAXjiiSewceNGVFZWWoyPiIiAj48PhBD47LPPMHz4cPTp0weDBg3CwoULUVRUZPV7UlZWhlWrViEqKgoBAQEICQnBuHHjrM5p/Pjx8PHxQW5urqp948aN8PHxgb+/P8rKylR97777Lnx8fPCf//zntp3fF198gejoaAQGBuKJJ56wel5ERLfK4W5PgIioKTEajZg4cSKysrKg0+mg1+uRmpqK999/H6WlpZg5c6Yy9sCBA3jxxRdhMBjQu3dv6HQ6nD17Fjt27MB3332H9evXo2/fvhavce3aNYwePRpVVVUIDg5GRUUFWrduDQCYM2cOdu/eDRcXF/Tt2xeurq64fPkyDh06BL1ejxEjRijHMRgMeOGFF5CcnIy2bdvioYcegpOTE44ePYrFixcjOTkZq1atgp2d5XWXt99+G/Hx8dDpdJAkCampqfjiiy+QkpKCzZs3w9XVVRlbUlKCZ599FidOnICnpyeGDBmCsrIyJCUl4eDBg0hLS8O8efOU8aGhoUhJSUFKSgq6du2qtCcnJyvf47S0NISFhan6NBoNdDrdbTm/N998E9u2bUNoaCh69OgBo9FY98ITEd0sQURE9bpw4YKQJElIkiSeeeYZUVxcrPQdPXpU+Pr6isDAQFFSUiKEEKK0tFSEhYUJSZJEXFyc6lgbNmwQkiSJwYMHC4PBoLQnJSUprzF16lRVnxBCnD9/XkiSJMLDw8W1a9dUfQaDQRw+fFjV9ve//11IkiRmzJghioqKlPbi4mLx/PPPC0mSxObNm1XPCQ8PF5IkieDgYHHs2DGlvaSkRDz77LNCkiSxcOFC1XMWLFggJEkS48ePV31fzpw5I/r37y8kSRI//vij0n7gwAEhSZJ49dVXlbaqqioRGhoqRowYISRJEsuWLVP6ioqKRK9evcSIESNu2/n169dPZGZmCiIiW2MaCRFRI9jZ2eGtt95SXdnt06cPBg8ejLKyMhw/fhwAsGvXLly9ehVBQUEYN26c6hgTJkyAn58f/ve//2H37t0Wr+Hk5IT58+ejVatWqvbr168DAHx9feHh4aHqa9WqFYKCgpTHv//+OxISEtC5c2csXrwYbm5uSp+rqysWLVoER0dHfPnll1bP85lnnoG/v7/y2MXFBfPnz4dGo8HWrVtRXl4OANDr9di6dSvs7Ozw5ptvqr4vPXr0wJQpUwAAn3/+udIeFBQEJycnpKSkKG0nT55EYWEhnnjiCXh5ean6UlNTYTKZEBoaetvO7/nnn0fPnj2t9hER3U4MtomIGqFLly544IEHLNq9vb0BAPn5+QCAgwcPAgBGjhxp9TjR0dGqcdX5+fmhU6dOFu0PPPAAtFotfv75Z3zyySe4fPlyrfNMTk6G0WjEoEGD4OzsbNHfoUMHeHt7IzMzEwaDwaJ/+PDhFm0PPvggevXqBb1ej/T0dADAiRMnlDSZHj16WDxHzoU+fPgwTCYTAPMPBgEBAcjLy1PytuXgul+/ftDpdDh27JiSty33VU8hudXzi4iIsGgjIrIFBttERI1w3333WW13cXEBYL6BEQCuXLkCAPDy8rI6Xs5VlsdV17lzZ6vPcXV1xdtvvw1HR0csWbIEgwcPxrBhw/DGG2/g0KFDqrF5eXkAgPj4ePj4+Fj9c/r0aQghUFhYaPFatc1bbpfnXd95tmnTBm5ubjAYDKrXkQNnOZBOTk6Gq6sr/Pz8oNPplLzt6mOqB9u3en5dunSxOl8iotuNN0gSETWCtZvtbrea6SPVRUVFISwsDD/88AP27duH1NRUbNmyBVu2bMFzzz2HuXPnAoBSGcXX1xe9evWq8/UcHR1v3+St0Gg0Fm06nQ6rV69GSkoKnnzySRw6dAghISGwt7dXgurk5GT06dMHGRkZ6NGjB9q1a6c8/1bPr67vMRHR7cRgm4jIBjp27AjgxhXYmuR2eVxjeHp6IjY2FrGxsRBCYO/evZg5cyY2bNiAmJgY9OzZU0lDCQkJwfz58xv9Gnl5efDx8bFov3jxomre8t9ye03FxcUoKiqCs7Mz3N3dlfagoCA4OjoiJSVFydeWg+yuXbsqeduBgYEwmUyqq9oAbvn8iIjuFKaREBHZgFzSz1qdaQBITExUjbtZGo0GgwcPxpAhQwAAp0+fBgD88Y9/hL29PX766aebKmu3a9cui7asrCxkZGRAq9XC19cXgDm/3NnZGSdOnEB2drbFc+TzDA4OVv1WwNnZWcnb3rZtGwBzvrZMztv++eeflcfV3er5ERHdKQy2iYhs4PHHH0f79u1x6NAhbNmyRdX3+eef4/jx4+jUqROGDRvW4GOmp6djz549Sl64rKCgAEeOHAFwI9+7U6dOiImJQV5eHmbPno2rV69aHC8nJ8dqNRQAiIuLU26CBMyb1ixcuBBCCMTExCg3JWq1WsTExMBkMmHBggXQ6/XKc86dO4c1a9YAMG9kU5McQMfHx8PNzQ29e/dW9RmNRmzfvl01Vnar50dEdKcwjYSIyAa0Wi2WLl2KF198EW+88Qa2bNmC7t274+zZs0hPT4dWq8WyZcsalTt88eJF/PWvf4Wbmxv8/f3Rvn17FBcXIzU1FaWlpQgPD1eV/3v99deRl5eH3bt3Y+/evejVqxe6dOkCvV6PrKws5OTk4JFHHrEa8EdHR2PMmDHo168f3NzccPDgQeTn56Nnz56YPn26auysWbPw22+/Yf/+/Rg6dChCQ0OVTW3Ky8sxfvx4q9U/dDod1qxZg/LycvTv3x/29vaqPgAoLy/HAw88gPbt21s8/1bOj4joTmGwTURkI/3798fWrVuxdu1aJCUlITMzE23btkV0dDSmTJlitYRgXQIDAzFjxgwkJSXh3LlzOHjwINzd3eHj44PRo0cr5QRlzs7OWL9+Pb755hts374dJ0+exLFjx+Dh4QEvLy9ER0erdpysbt68eejatSsSEhKQm5sLd3d3jBs3DtOnT1fVtAbMVVLi4uLw6aefYteuXfjxxx/h6OgIf39/jB07FlFRUVZfQ87bNhqNFleu5bztvLw8i77bcX5ERHeKRsi3dBMRUYsXERGBvLw8nDp16m5PhYioWWDONhERERGRjTDYJiIiIiKyEQbbREREREQ2wpxtIiIiIiIb4ZVtIiIiIiIbYbBNRERERGQjDLaJiIiIiGyEwTYRERERkY0w2CYiIiIishEG20RERERENsJgm4iIiIjIRhhsExERERHZyP8BrYOxRt4yy38AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extrapolate_x_hp = np.linspace(0, 500, 250) \n", + "mpg_hp_sq_mod.predict(mpg_hp_sq_fit, data=pd.DataFrame({\"horsepower\": extrapolate_x_hp}))\n", + "\n", + "sns.scatterplot(data=df_mpg, x=\"horsepower\", y=\"mpg\", color='blue', label='True Data')\n", + "plt.plot(\n", + " extrapolate_x_hp,\n", + " mpg_hp_sq_fit.posterior[\"mpg_mean\"].mean((\"chain\", \"draw\")),\n", + " color=\"red\",\n", + " label=\"Extrapolated Fit\",\n", + ")\n", + "plt.xlim(left=0, right=extrapolate_x_hp.max())\n", + "\n", + "plt.legend(frameon=False)\n" + ] + }, + { + "cell_type": "markdown", + "id": "90a9da02", + "metadata": {}, + "source": [ + "This is strictly untrue based on what we know about cars and what we've seen in the data, so you would _not_ want to use the model outside of the intended domain. If that is the goal, you would want to find more appropriate specification. Something like an exponential or inverse fit may be appropriate, in order to make sure the fit approaches 0, while still forbidding predictions below 0.\n", + "\n", + "Extrapolation issues are not unique to polynomial regression, for example we run into forbidden values with linear regression when extrapolating too." + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "5dbfa6b6", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtsAAAHrCAYAAAAe4lGYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC0sUlEQVR4nOzdd3xT5ffA8c9NunfZZSiKIAgIKKNssaXKUhygKPJlQ9lDRcSNKIoiS1YddSAorh8UUYYCMsoGAUFUZEnZbTrTkdzfH9e0TZN00JG2Oe/Xy5c0ubn3SR5STp6c5xxFVVUVIYQQQgghRInTOXsAQgghhBBCVFYSbAshhBBCCFFKJNgWQgghhBCilEiwLYQQQgghRCmRYFsIIYQQQohSIsG2EEIIIYQQpUSCbSGEEEIIIUqJBNtCCCGEEEKUEjdnD6AyMJvNGAwGZw9DlKHAwECZcxci8+1aZL5dj8y5awkODi7T68nKdgnQ6eRldDUy565F5tu1yHy7HplzUZrkb5cQQgghhBClRIJtIYQQQgghSokE20IIIYQQQpQSCbaFEEIIIYQoJRJsCyGEEEIIUUok2BZCCCGEEKKUSLAthBBCCCFEKZFgWwghhBBCiFIiwbYQQgghhBClRIJtIYQQQgghSokE20IIIYQQQpQSCbaFEEIIIYQoJRJsCyGEEEIIUUok2BZCCCGEEKKUSLAthBBCCCFEKXFz9gCEazMavYmPd8dgUAgMVAkOzsTLK83ZwxJCCCGEKBGysi2cxmDwZ/BgT5o21dOhg46mTfUMHuyJweDv7KEJIYQQQpQIWdkWTmE0ejNqlJ4NGxSr2zdsUBg1Sk90tLescAshKqTQ0NAiHR8bG1tKI7lxMTExvP7669k/K4qCt7c3gYGB3HbbbbRp04b77ruPwMDAYl8rMjKSgwcPlsvXQYiSIMG2cIr4eHebQNtiwwaF+Hh3QkIk2BZCVDzDhg2zue3LL78kOTnZ7n3lWevWrWnRogUAaWlpXLlyhUOHDvHrr7/ywQcfMG3aNMLCwpw8SiHKNwm2hVMYDPYD7dz3h4SU0WCEEKIEjRgxwua2devWkZycbPe+8qxt27YMGjTI6jaTycQPP/zAO++8w0svvYSfnx/t2rVz0giFKP8k2BZOERioFut+IYSo6C5cuMDDDz9Mz549eeqpp1i6dCkHDx4kMTGRb7/9FiD7/pdeesnm8aGhobRq1YolS5ZY3Z6SksIXX3zBzz//zIULF3B3d6dp06YMGTKEli1bFnvcer2ePn36oNPpmDlzJvPnz2fFihUoiraIcvbsWf7v//6PvXv3cvHiRYxGIzVr1uSee+5hyJAh+Pj4WD0He3/O/ZzXrl3Ltm3b+PPPP7l+/TpeXl40adKEQYMGcffddxf7+QhR2mSDpHCK4OBMIiLsB9QREVpVEiGEcAXnz59n+PDhxMfH06tXL3r27Im7u/sNnctgMDBixAg+/PBD/P39eeihh+jWrRsnTpxg7NixbN26tcTG3aNHD2rVqsWpU6f4+++/s2/fsmULa9eupU6dOvTs2ZOHHnqIgIAAPvvsMyZMmEBWVlb2scOGDaNWrVrZf7b817Vr1+xj3nnnHa5fv06bNm14/PHH6dixI0eOHGH8+PFs27atxJ6PEKVFVraFU3h5pbFsmZvNJsmICJVly0yyOVIIUSiVoXzob7/9xrBhw2xSTC5cuFDkc7377rucOnWK6dOn8+CDD2bfHhkZyZAhQ5g9ezahoaF4enoWe9w6nY5WrVqxfv16jh8/zm233QbA/fffz4ABA2w+MHz44YdERUWxadMm7r//fkBLuTlw4AAXL150mGKzcuVKateubXXb1atXGTJkCAsXLqRLly7Ffi5ClCZZ2RZOExiYRHR0OseOmdi508yxYyaio9MJDExy9tCEEBVAZSkfWrVqVQYPHlzs8yQkJLB582Zat25tFWgDVKlShSeffJL4+Hj27t1b7GtZVKtWLfvaFjVq1LC7Mv/oo48CFPn6eQNty3Xvuecezp07R1xcXJHOJ0RZk5Vt4VReXmmEhKTJZkghRJFUpvKhDRs2vOG0kdx+//13TCYTGRkZREVF2dx/7tw5AM6cOUOnTp2KfT1HVFUlJiaGdevWcerUKZKTkzGbzdn3X716tUjn+/fff/nkk0/Yv38/V65cISMjw+r+q1evEiL/iIhyTIJtUW5Uhq+DhRBlozKVD61SpUqJnCcxMRHQ0lJ+++03h8elpZXc62IJnIODg7Nve/fdd/n666+pWbMmnTp1olq1atkfJj788EObYDk/586dY9iwYaSkpHDXXXfRqVMnfH19URSFAwcOcPDgwSKdTwhnkGBbFFppBsMGg7+d/G0dy5a5SVqJEMKGK5QP1em0TE+TyWRzX3Jyss1tvr6+ADzxxBNMmDChdAcHmM1mDh48CECTJk0AuH79Ot988w233XYbH3zwAV5eXtnHX7t2jQ8//LBI11i1ahWJiYm8/PLL9OjRw+q+t956K/v6QpRnkrMtCqU0cyML+jrYaPQu9jWEEJWLK5QP9ffXfr9euXLF5r4//vjD5rY77rgDRVE4cuRIqY8NYP369Vy8eJEGDRpw6623AtqmTlVVadOmjVWgDXDo0CG759Hr9YD9DxX//vsvgM0mSFVV8129F6I8kWBbFMhRMLxjh8LGjXouXAjkxIlA4uICbigwLszXwUIIkZsrlA/19fXl5ptv5vDhw9n51qDV0c5bWxu0jZZhYWEcOXKEzz//HFW1fX2OHj2K0Wgs1rhMJhMxMTG8/fbb6PV6Jk6cmF1j21LG78iRI1Z52pcvX7Y7ZoCAgAAALl26ZHOf5XyHDx+2uv3TTz+1KjcoRHkmaSSiQPaCYV9fWLkS5s9XGDmyeKkfrvB1sBCiZLlK+dABAwYwe/ZsRowYwb333ouqquzatSs7bSOvZ555hrNnz7Jo0SLWr19P8+bN8fPz4/Llyxw/fpxz586xbt06m1VnR/bs2UN6ejoARqORK1eucPDgQa5cuUJAQAAvv/wybdu2zT6+WrVqdOvWjV9++YXBgwfTpk0brl+/zo4dO2jdujXnz5+3ucbdd9/Nzz//zPTp02nfvj0eHh40bNiQzp0789BDDxETE8P06dMJCwsjMDCQo0ePcvLkSTp27MiOHTtu4FUVomxJsC0KZDAo+PrCpEkQGgpGI9xyCzz3HGzebH3sjVQCcIWvg4UQJU8rH1q5N1b37duXrKwsvvzyS9asWUO1atXo1asXQ4YMsVtRJDAwkOXLl/P111+zadMmfvrpJ8xmM1WrVqVhw4YMHTqUwMDAQl9/37597Nu3D0VR8Pb2JjAwkNtvv51BgwZx3333Za9K5/biiy8SEhLCL7/8wurVq6lZsyaPP/44gwYN4ueff7Y5/sEHHyQuLo5Nmzbx2WefYTKZ6NmzJ507d+b2229n/vz5LFu2jC1btqDX62nevDnLli3j119/lWBbVAiKau97JlFk8fHxzh5Cqbl4MYC//tIzf35OcL12LfTp4/gxx46ZCAlJLNT5jUZvBg/2tJtKEhGhEh2dXu7+8QwODq7Ucy6syXy7Fplv1yNz7lpyV88pC5KzLQrk56eyYIFqtYpdUMpfQakhuWlfB5ts8i8r29fBQgghhHA9kkYiCpSUpLBpk3XwXFC6X1FTP1zh62AhhBBCuB4JtkWBEhJsvwCJjYWwMNucbbjxSgDSTVIIIYQQlY0E26JAfn62t82bp1UjAeuAW1I/hBBCCCFySLAtCqTXq4SFKVZBdUoKDBgAc+fC3LkqKSmqpH4IIYQQQuQhwbYokE6nMnGi9ufcAXdoKISEgLu7mcaNC1d5RAghhBDClUiwLQoUFJTJBx/oCA1VmDRJq0Ti5aXlbX/wgcrSpRW/U5sQQgghRGmQYFsUyMsrjfnztU5ts2aVj05tRqNULhFCCCFE+SfBtiiU8lSaz2Dwt9Oiueht4oUQQgghSps0tRGFppXmS6RxYwMhIYlOW9HOG2hDTpt4o9G7zMckhBBCCOGIBNuiQomPd7fb1h20gDs+3r2MRySEEEII4ZikkQinKmrudUFt4A0GRZriCCGEEKLckJVt4TQGgz+DB3vStKmeDh10NG2qZ/BgTwwGf4ePKagNfFHbxAshhBBClCaXCraXL1/O7bffzu23386hQ4ds7k9OTubNN9+kW7duNGvWjHvvvZe33nqLlJSUsh9sJXejudfBwZlERNgPqG+0TbwQQriKCxcuEBoaymuvvWZ1e2RkJKGhoU4aVdH07duXvn37OnsYQhSay6SRnDx5koULF+Lj40NqaqrN/ampqQwcOJDjx4/TqVMnevXqxfHjx/noo4/Yu3cvK1aswNPT0wkjr5wKk3sdEmKbTuLllcayZW52qpFIm3ghRPly4cIFHn74Yavb3NzcqFKlCi1btuSpp56iYcOGThpdyXrttdf44Ycf+Pbbb6ldu7azhyNEueISwXZmZibPPfccTZo04eabb2bNmjU2x3zwwQccP36cESNG8PTTT2ff/s477xAVFUV0dDSjRo0qy2FXasXJvS5PZQiFEKIgdevW5b777gMgLS2No0ePsmHDBrZs2cLChQtp0aKFk0cIL7/8Mkaj0dnDEKJScok0kqVLl/Lnn3/yxhtvoNfrbe5XVZXVq1fj4+PDmDFjrO4bM2YMPj4+rF69uqyG6xKKm3tdHsoQCiFEYdStW5cRI0YwYsQIJkyYwPLlyxk8eDAZGRksXbrU2cMDoFatWtSvX9/ZwxCiUqr0K9vHjh1j6dKlTJgwgdtuu83uMadPn+by5ct06tQJHx8fq/t8fHy466672L59O3FxcYTYW25duxZatQJf39J4CpWSlnuts5tKEhGh4u+vEhcXICvXQohKqV+/fkRHR3P8+HEAQkNDadWqFa+++ipLlixh9+7dxMfHs2jRIu6++24ADh48yOeff87Ro0dJTU2lZs2ahIeHM3jwYLy8vKzObzKZWLFiBWvWrOHy5cvUqFGDPn36EB4ebnc8kZGRHDx4kNjYWJv7tm3bxtdff82JEycwGo1WaTANGjSgb9++XLx4EcAqbaZVq1YsWbIk++cLFy7w8ccfs2fPHq5fv05AQADt2rVjxIgRdv9t3bZtGx9//DGnTp3Cx8eHzp07M27cuCK+0kI4X6UOtjMyMpg2bRqNGzdm+PDhDo87c+YMgMNP9fXr12f79u2cPn3afrD9wAME33QTzJ0LDz8MSv4pEkLzwQcwfDhs2JBzW0QELFmiMG6cG7mzfSIi9HzwgRf16pX9OB0JDg529hBEGZL5di0lMd+WzfVubm425zOZTADodLrs+1JSUhg1ahSBgYH07t2b9PR0QkJCCA4O5osvvuC1114jICCAbt26UaVKFY4ePUp0dDSHDx/m008/xcPDI/v8zz//PN988w1169blySefJD09nVWrVnHixAkAPD09rcbk7u5u93nPnj2bjz/+mKCgILp3707VqlWJi4sjNjaWVq1a0bp1a4YMGcJ3333HiRMnGDRoEAEBAQDUqVMn+3yHDx9m2LBhpKWlcc8993DzzTfz77//smHDBnbv3s2XX35JvVy/4L///numTZuGn58fDz74IP7+/mzZsoXJkydjMpnw8PAo8fekvMdFaanUwfb8+fM5ffo03377rd30EYukJK3Ft5+fn937LbcnJyfbP8HNN8OZM/Doo2R27Urq7NmYb7+9eIOvJPKro+3m5s3cuR7Exyv4+YGvr4q3t5mxY/WsWZO3SgkMH64SHZ1eLla4g4ODiY+Pd/YwRBmR+S4Fqgp2NquXB8HBwcSnpxd74cRgMACQlZVl8/fno48+AqBJkybZ9508eZLevXszffp0q3+zDhw4wOuvv85tt93GokWLCAwMzL7v008/ZfHixSxfvpwnn3wSgP379/PNN9/QsGFDli9fjre3Vt3p8ccfZ9CgQQCkp6dbjSkzU6vklPu27du38/HHH9OgQQMWL15sdd2srCwMBgPx8fE8+OCDHD58mBMnTtC3b1+rDZLx8fFkZWUxceJETCYTH374Ibfn+vexb9++jB07lpdffpl3330X0D50vPbaa3h7e/PRRx9x0003ATBkyBDGjx/PlStXqFWrVom+J+U97lrK+oNVpQ22Dx48yEcffcS4ceNo1KhR6V7s999Je+UVvBYswH3rVgI6dyY9MpK0p58Gf8c1oys7g8HfTtUQHcuXu6Gq2LkPFi3Ss3lz0auUCCEqEFXFv0cP3PbscfZIHPJv146kH34okW8qz58/T1RUFABGo5Fjx45x6NAhPD09GT16dPZx7u7ujBs3zmZx6LvvvsNkMjF16lSrgBdg4MCBrFy5ko0bN2YH2+vXrwdg6NCh2YE2QI0aNejfvz/Lly8v1Li/+eYbAKZMmWJzXTc3N6pWrVqo81jSMEeOHGkVaAO0bNmSzp07s23bNlJSUvD19WXr1q2kpKTQr1+/7EDbcs1Ro0ZZvWZCVASVMtjOysriueee4/bbb2fkyJEFHu//X0DsaOXacrujlW98fDBOn07G44/jPWMGHj/+iNfChXh8/TWpr71GpgumluRXR3vDBj1ff43d+8aNU5k0CWbNsn9e6RApRCXhQr8Tz58/z4cffgjklP6LiIhg0KBBVnuJateuTVBQkM3jjx49CkBsbCx79+61ud/NzS07HRLgzz//BLRANi97tzny+++/4+HhQatWrQr9GHss4z9z5kz2h47crl27htls5uzZszRp0iTf8Tdv3jzfb6qFKI8qZbCdmprK6dOnAWjWrJndYx577DEA3n//fRo0aACQ/Zi8LLcXtFPbfMstpHzxBekbNuAzfTr6f/7Bb8QIMj/+mNS338Z8xx1Ffi4VVX51tENCFKs87dw2bFAYP97xeaVDpBCVgKJoq8blOI0kqQTSSCxCQ0OZN29egcdVqVLF7u2JiYkAREdHF+p6KSkp6HQ6u4G7o2vYk5ycTPXq1dHpile4zDL+n376Kd/j0tLSsq8L9r/q1+v1NqvsQpR3lTLY9vDw4NFHH7V73759+zh9+jT33nsvVapUoU6dOtSvX58aNWpw4MABUlNTrSqSpKamcuDAAerWrWt/c6QdWRERJHbpgtf77+M1dy7uO3cS0LUr6cOGYZw+HdUFflHkV0e74FKuKmC/Sol0iBSiklCU8lvBydcXMjKcPYpsvv+9Tps3b87+c0HHm81mEhISbALW69evF/q6/v7+XL9+HbPZXKyA2zLmd955h06dOhV4vOVbZHs51CaTCYPBQPXq1W94PEKUtUpZZ9vLy4tZs2bZ/c/yddioUaOYNWsWTZo0QVEU+vXrR2pqKosXL7Y61+LFi0lNTaV///5FHQTGqVMx7N5NRp8+KCYTXsuXE9C2LR5ffAFmc0k93XIpvxVoX1+YMUOrmLh6NcTEwBtvaP/ftw8CAuDgQZU1a6BGDe0xxekQaTR6ExcXwIkTgcTFBThsBS+EEOVR06ZNgZx0jIJYulIeOnTI5j57tzlyxx13kJGRwcGDBws81pLaYbbzb5tl/EeOHCnUdfMb/5EjR7IruQhRUVTKYPtGDB8+nMaNGxMVFcWwYcN49913GTZsGFFRUTRv3pz//e9/N3RetW5dUj75hKRvvsHUsCG6K1fwHTcO/x490B8+XMLPovzQ6mjbBtw1akD9+rBnD/TpA/36wdCh0LcvzJsHrVtD164KrVopLFigsmOHyvHjJqKj0wkMTCryOAwGfwYP9qRpUz0dOuho2lTP4MGeGAyuu3FVCFGxPPLII+j1eubOnZtdzzq3pKQk/vjjj+yfe/ToAWgVTyypGQCXL1/mq6++KvR1Ld8Qz507N7uyikVWVhbXrl3L/tlS7u/SpUs25+nSpQu1atVi1apVdgP3rKwsq8C6S5cu+Pr6EhMTw9mzZ62OW7ZsWaHHL0R5USnTSG6Ej48Pn3/+OQsXLsyu+1m9enWGDh3K2LFjbRoGFFVWt24k/vornkuX4v3OO7jt3Yv/vfeSMXgwaTNmoBYhj64i8PJKY9kyN6tNkr6+sHEjTJgAmzblHPvBB7a3AWzapBAZqfLRR+oNr2g72qQ5apSe6GjvclFGUAgh8tOgQQOeeeYZ5syZw2OPPUb79u2pU6cOqampXLhwgYMHD9KrVy+mTZsGwN13303v3r2JiYnhySefpGvXrmRmZrJp0yaaNm3Kjh07CnXdDh068OSTT7JixQr69etH165dqVKlCleuXGHv3r08+eSTPP7449nXXLFiBbNnz6Zbt254eXkREhJCjx498PDw4I033mDy5MlERkbSunVrGjRogKIoxMXFcfjwYQIDA/nyyy8BLY1kypQpzJw5kyFDhtC9e3d8fX3ZsWMHnp6eVKtWrXReaCFKiaKqquw4KwFFqc+pXLiA9yuv4Pn11wCYg4NJe/FFMp56CirZLusLFwL55x8dRqO2om0wQN4GZvv2aSvajhw+rFKvXkKRrx0XF0DTpo5fz2PHTISEJBb5vCA1WV2NzLdrKan5vnDhAg8//HChNkhaOkjm7riY1++//87KlSs5dOgQ8fHx+Pn5UbNmTdq1a0fPnj2tNvFbOkj+3//9X3YHyQceeICwsDAeffRRevbsyUsvvZR9fH4dJH/55Re+/vpr/vjjDzIyMqhatWp2B8lbb701+7jPP/+c//u//yMuLo6srCyb53P58mVWrFjBzp07uXTpEu7u7lSvXp0777yTiIgIWuf5h2Dr1q3ZHSR9fX2zO0haaoV///33+b6mRSHvcddS1nW2JdguITfyJnXbsQOfZ59F/1+73qyWLUl96y1MbdqU9PCcJnfAu3attjmyXz/rY37+Ge691/E5tmxRuflmU5HTSE6cCKRDB8eZUjt3mmncWPtqNL/mO/bIL2bXIvPtWmS+XY/MuWsp62BbcradKKtjRxK3biX1zTdR/f1xO3SIgPvuw2f8eJQrV5w9vBKRO3fbaAR72Tj/pfo5FBSkMHGivsgbGwsqE2i5X/K6hRBCCFFaJNh2Njc30keNwrB3L+kDBgDguWIFAW3a4Ll8OWRlOXmAxaPlbpuIiFDx8oLYWAgLsz7mwgXb1BKL8HBISIDmzbXukUXhaJMm5JQRLCivWyqXCCGEEKI4JNguJ9QaNUh9/30Sf/yRrBYt0CUm4vPcc/h364bbrl3OHl6xBAYmER2dzu23mzlyRGXiROuAe/hwWLDANuAOD9cqlPTvD6Gh+dfutid3oJ9b7jKC+TXfsbSHF0IIIYS4UZKzXUJKNNfLZMLj00/xnjkTXUICAOn9+pH26quotWqV3HWcwGDwZ+JEPc2bK4SGaqklwcEQEgL//AO1akFiopZacuGCFohfvqzV477jjhvb0JhfPnZR8rpzk/w+1yLz7Vpkvl2PzLlrkQ2SFVRpvEmVa9fwnjULj08+QVFVVD8/0p59lvRRo8C9Yqy4Go3eJCS4YzYrmEwKqalQtapKWprCyZNKdmpJ+/bQu7f2GF9fmDSJ7GDc2xvq1lWpWtVEUpKSfa7kZAgKMue7mdFeoK0ocP26dpufn8KXXyrMmwcpKbaPd1SxRH4xuxaZb9ci8+16ZM5di2yQFNnUqlVJnTuXpE2byLr7bpTkZHxeeomAzp1x27rV2cMrkMHgz+jRnvz1l56JE3W0aKHQvr1Co0Y69u+HqCiVPn1g1izYtUtLLfH1hZUrtQDc0vSmd2949ln45x89p07lnKtjR8VqM2N6ek6nyIsXA4iPD7S78fHECU/attVuu/NOhd27VVautO0cLe3hhRBCCFFcsrJdQkr9E7HZjMfKlXi/+iq6q1cByHjwQVJnzkStW7d0r30DjEZvBg/2pE0bhdhY2LzZ+n5fX1i3TuWNN7TcaEuQffEifPml7fEAy5Zp6SR5m9+AFhg/+iiMHKnlX8+YAbt3q2zaZJuPHRamrZrPmpVzW3i4Srt2SvZtlrxuR+UGZRXEtch8uxaZb9cjc+5aJI2kgiqrN6mSkIDX7Nl4fvABitmM6uODccoUjGPHgqdnmYyhMCz1tdeu1Vao7fH1hS1bQFG0fG1fX62du6MGN/mdK+/9RTnW4vBhlZQUVepsCxsy365F5tv1yJy7FkkjEflSg4JImz2bpC1byGzfHiU1Fe/XXyegY0fcNm509vCyWSqHGI1aED1jhhbgrl4NMTHazwCnT8N338HSpdCzpxZ0O2I05n/N3PcX5ViLlBSVxo0NhIQkSht3IYQQQpQICbYrKFOzZiTHxJCybBnmmjXRnzqF/2OP4fvkk+hOn3b28LIbxjjKwY6NJTtPet48sssB2mt6Y5HffXnvL8qxeccshBBCCFFSJNiuyBSFjH79MOzejXHsWFQ3NzzWryegfXu8Zs+GNOetzloaymRlaTW0c+dg+/pqOdM+Piq+vipffgkHDkCXLlrpv4gI++e8cAG6d7d/X1iYFsBb2Gue4+hYkM2QQgghhCgdEmxXBgEBpM2cSeK2bWR26YKSno73228T0L497j/8AE5Iy7c0lPHzU602NOZe6Q4PV+jaVaF3b/j1V2jVCnr1gueftw24IyJUmjSxbYhjue+FF1Tmzcu5zbJaHh5u29DmhRewOjYsDKZP13LHhRBCCCFKkmyQLCHlZmOFquK+Zg0+L7yA7t9/AcgMCyP1zTcx33ZbmQ/n+PEgOnbMiWJnzCC7OkneetpVq6qEhGi1uPftg9q1tdu9vLTGNt26qRiNZqs624GBKh4ecPWqgtEImzfn1Mx+4AGV+fPNpKZqOeS+vgrffaegKHDXXTnnjo3Vgu89ewrfNEc207gWmW/XIvPtemTOXYtskBTFoyhkPvgghthY0qZMQfXwwH3zZgI6dsTrtdfsd24pRUFBZqufQ0NzAu28udz33qswcaLWxKZlS62rZEAA6HRw6pQWmAcFZVK7toF69RKoXdvElCla3e4OHRTuvVdh716VfftUfv/dxNKl6QQGJhISkkjjxgZSUlTmzIGMDKuXK1tR28ELIYonPT2dlJSUcvdfUlIS6enpzn55XF7fvn3p27dvoY+PiYkhNDSUmJiYUrtGVFQUoaGh7N+/v9CPqczk9SgcN2cPQJQSX1+ML7xAxoAB+EyfjvumTXjPm4fnV1+ROnMmmX37lknehJa7rWPDhpzqJKAFzvPn29bT3rEDLl3SamDnTj8JC4OJExUSEtypVSsNo9GbUaP02ee12LBBYeJEleho29J9QUFa85r5861rbIeFaYF/UJB8ySNEWUlPT2fPnj2kOXFviSOenp7odDratm2L5w2WVL1w4QIPP/wwAFWqVGHNmjW4udn+k/vPP/8wYMAAAGrVqsX333+ffV9MTAyvv/66zdhq1apF+/btGTx4MEFBQTbnTEpK4rvvvmPXrl2cPn2axMREvLy8qFOnDi1atOC+++6jWbNmhXoe9saQW8OGDfnss88KdS4hXJUE25WcuUEDkr/8Evcff8R7+nT0Z8/iN2wYmZ98Qurs2ZgbNy7V62u5227ZgbGlCkjepjIWkybB66/bBuGWn+fP12E0enPliicjRihMmKB1n8zdbn3DBoX4eHdCQqz/EffzU1mwQGXzZsXm3Iqi8tFHEmwLUVaysrJIS0vDzc3NbhDqTHq9npSUFLKysm442M59ruvXr7Nz5066dOlic//atWvR6fL/krl169a0aNECgISEBHbv3s2qVavYsmULn3zyCYGBgdnH7tu3jxdeeIGEhATq1atHp06dqFKlCkajkX/++Yc1a9awevVqJk+ezGOPPVbo55F7DLlVrVq10Ocobffccw/NmjWjWrVqzh6Ky+jXrx/du3enVq1azh5KuVa+fsOJ0qEoZPboQeY99+C1YAFe8+fjvm0bAV26kD5yJGnPPqvla5SSwMAkoqO9iY93R1UVIiIUjEb7q+qOgnDQgmKzGQYP9rRa0basTA8YkBNwGwwKwcHaNQ0GhcBAFVVV7HaUBNi0SSExUYefX7GeqhCiiNzc3PDw8HD2MKwUFPwWxZ133smff/5JTEyMTbCdlZXFjz/+SJs2bTh48KDDc7Rt25ZBgwZZPW7ixIns37+fr776ihEjRgBw8uRJpk6diqIovPzyy9x///0oeb7BNBgMfPnll6QUMaUw7xjKIz8/P/zkl3iZCgoKsvvtirAmOduuxNsb47RpJO7aRUavXihZWXgtXkxgu3Z4fPVVqVYt8fJKIyQkkdq1DSxbZqJKFfvXKqgZzZkz2KSObN6spYZMmpRzm5+fwuDBnjRtqqdDBx1Nm+r555/802b++UfBYPAvzNMRQohC8fT0pHv37uzYsYPr169b3We5rXfv3kU6p5ubW3ae8fHjx7Nvnzt3Lunp6Tz99NP06NHDJtAGCAwMZOTIkaUWOB8+fJgpU6YQERFBly5deOyxx4iKisJo55d7aGgokZGRXL58mVdffZWePXvSvn17m/zfpKQkZs+eTc+ePenSpQuDBg1iw4YNNufLL2d727ZtDBkyhK5du9KjRw/eeOMNEhMdb4i/dOkSL774IhEREXTr1o3IyMh8PxABHDx4kKlTp3LffffRuXNnHn30UZYuXWrz3Pfv309oaChRUVEcP36c8ePHc++99xIWFsa0adO4cOFCvtfJLTIyktDQUNLT01m6dCmPPPIIHTt2JCoqKvuYCxcuMGvWLB588EE6d+5Mr169eO2114iLi7N7zl9++YXBgwfbvFb28tvzy9n+9ddfGTNmDGFhYXTt2pWBAwfyxRdfkJWVZXXchQsXCA0N5bXXXuPcuXNMmzaN7t27c8899zBu3Dj+/PPPQr8e5ZUE2y7IfPPNpHz2GUlffYWpQQN0ly7hO3o0fr16oT96tMjnS07259y5II4cCeL8+SCSk/MPWAMDk6hfX7VbT7ugZjRgP2DevFlbFQetvF9srG1Q7uixue8fNUqP0ehd0CCEEKLQevfujclkYv369Va3r127loCAALp27XrD57YE1GfPnuXQoUPUqlWLnj17Fvi40kjd2bx5M2PGjOHAgQPZgbanpycffvghY8eOtbvpNDExkREjRvDXX3/RvXt3+vbti6+vb/b9WVlZjB8/noMHD9KjRw969+7NpUuXeOmll/jqq68KNa4ffviBZ599lrNnz3L//ffTs2dPfvvtN8aPH28T+AFcvXqV4cOHs3HjRu644w769+9PQEAAEyZM4NixY3av8c033zBmzBiOHDlCx44d6d+/PzVq1CA6Oprx48eTmWnbx+H48eOMHj0ad3d3+vbtS5MmTdi6dSsTJkwo8gbd6dOns27dOu666y4ee+wxateuDcDRo0cZNGgQP/zwA40bN6Z///60bNmSn376iaFDh/Lvf1XLLNauXcv06dM5d+4cPXr0oGfPnhw9epQJEyZgMpkKPZ4vvviCZ555hr/++ouIiAgeeeQR0tPTWbBgATNmzMBeIby4uDiGDx9OYmIivXv3pm3btuzbt4+xY8dy7dq1Ir0e5Y2kkbiwrPBwEjt3xmvxYrzefRf32Fjc7rmH9GHDME6fjlqIr4YSEoI4dQri4xW8vWHDBjh8WM+8eUFUqZLg8HE+PhlMn+6JyaRY5WdfuKDV2LazaEFEhG0zmtyMRi3QXrQIWrWyDawtjW7y5oNDTqMbR/neOdfQUlNOngR//wCCg203YgohRG5NmzalQYMGrFu3jieffBKAa9eusWvXLh5++OEip9FkZWXxf//3fwDccccdgBZUAbRq1apE02As9uzZYzcAfPjhh6latSopKSm8+eab6PV6oqKiaNiwIaCtvL700kts2rSJFStWMHToUKvH//333/Tu3Zvp06ej1+ttzn/16lXq1atHVFQU7u7uAAwePJhBgwaxaNEi7rnnHmrUqOFw3CkpKbz77rt4e3vz8ccfc9NNN2WPa/z48fzxxx82+caLFy/mypUrjBo1iiFDhmTf/v333zN79myba/zzzz/MnTuX2267jUWLFlnl0H/66acsXryYr776KnvuLXbu3MnMmTPpnqtb26uvvsr69evZtm2b1e0FuXr1Kp9//rnVtbOysnjxxRcxm8189NFH3H777dn3HTp0iLFjxzJ37lzeffddQPsG4b333rP7Wk2aNIkTJ04UKjf7/PnzvP/++wQHBxMdHU3NmjUBGD16NOPHj2fr1q38+OOP9OjRw+pxBw8eZMyYMVbfuixbtoyPP/6YdevWlfs0pvzIyrar8/TEOHkyhthYMvr2RTGb8YqKIqBNGzw++0xLknbg+vUgRo7UmtPkbsM+cqTCpEnku8Lt6ZnGLbeYeOwxle3bISZGq63t5gYTJtg2rgkPh7lzrZvR5NWokUp0dDrXr6t2KxxaGt1ERFh/otYqneSc21EJQIPBPzs1JTQUmjbVM3iwZ7lKPTEavYmLC+DEiUDi4gJklV6IcqJ3796cOnUqOyhet24dJpOJPn36FPjYPXv2EBUVRVRUFO+88w4DBgxg37591K5dm0cffRQge+XP3ubApKSk7Mdb/lu1alWRxr9v3z4+/PBDm/8s1922bRvJycn07t07O9AGLf993Lhx6PV61q1bZ3Ned3f37Psdsaz+WtSoUYP+/fuTkZHBxo0b8x331q1bSUlJoXfv3tnBI2gr+6NGjbI5PjMzk82bNxMcHMwTTzxhdd8DDzxAvXr1bB7z3XffYTKZmDp1qlWwCzBw4ECCg4PtjrNVq1Y2AbUlpej333/P93nlNXz4cJtrb9++nbi4OAYOHGgVaAO0bNmSzp07s2vXruz8/W3btpGamkqfPn0K9Vo5smHDBkwmE0888UR2oA3g4eHB2LFjAez+XahduzYDBw60us3y/ijq61HeyMq2AECtW5eUjz4iffBgfKZNQ//HH/hOnIjnJ5+QOmcOplatrI43Gr0ZMwabDYeWVePQUIX4eH2+Gw4DApLo3dubhAR3qlXTsXMn3Hmngk6nBdZms7bh0c8PVq+Gb76Be+7RanBbGuF4e2vVSI4cUalePR0vrzT8/d3tXi8lRdtEuX8//PmndVOb3JsrAwNtv97Kr9TgqFF6oqO9nb7CbTD424wxIkLHsmVuBAYmOXFkQoj777+f999/n5iYGJo1a8a6deto1KgRjRo1KvCx+/btY9++fYAWsISEhDBgwAD+97//2QRY9iQlJfHhhx9a3VarVi0ef/zxQo8/74pjXn/88QcAd911l819tWrVok6dOpw9e5aUlBSrNJHatWvnu8FOr9fTvHlzm9tbtmwJaJtC82PJ97Ucn1vz5s1tgvwzZ86Qnp7O3XffbVOJRqfTceedd3Lu3Dmr2y0foGJjY9m7d6/Nddzc3Dhz5ozN7XkDYCB7lT45OTmfZ2WradOmNrdZxnXmzBmrHG6La9euYTabOXv2LE2aNMl+rexVnWnatGm+H4hyy+/vQvPmzfH09LQ7bw0bNrT5VuZGX4/yRoJtYSWrSxcSt23Dc/lyvN96C7cDB/APDyfjqadIe/FF1P/KPMXHu9vJidZs3qxtVjQYwM4igBUvrzRq1UrDYPBn1So9ub9hjIiARYvg5EmtQkmNGtq5J0+2rlgSHq6ydCnZwW7e2t65deyo4uNjYuFC28BZu6ZKcLBtbl1+z7eg1JOyUBE+DAjhyoKDg+nUqRMbN27k3nvv5cyZM0ydOrVQjy0o0AWtljdo6QR51a5dm9hcOXj2ShAWl2V11DKOvKpWrWo32HZ0vEVQUJDdtBjL4woKwiz32+sYqNfrbT6s5He8o/FaNlpGR0fnO5a8cr8OuccEFCk/uqBx/fTTT/k+1lLr3jKH9p67TqcrdNWR/P4uKIpCcHAwV65csbnP3uth2VtQ1NejvJFgW9hydyd97FgyHnkE71dewfOrr/D89FPc16wh7YUXyPjf/wrstmg0Qq5vof67zboUX3BwJooCSUkePP20Qps2CuPHW69YT5kCzz2nPX7ECC2Iz5tzvWmTwpgxanZAaantPXGinubNFat28LfcYsbPL4lly+ytAqssW2bKDkpzj9fbW2HGDOt63rkZDAohIUV8nUtQef8wIITQ0hC2bNnCzJkz8fT05L777iuxc1tWfw8ePIjZbC6VvO38WAKlvBVXLCy32wuo8pOQkGD3+VjOV1CpP8v99lqxm0wmDAYD1atXL9Txua+bm+U5bd68ucjPr6TYqzxjGcs777xDp06dCjyH5Xh7z91sNpOQkGD1WhV0nuvXrxOS5x9GVVWJj4932uvkLJKzLRxSa9UidelSktatI6tpU3QJCfg+/TT+YWHUOrUj38cGB6sEB+d8Es2d72wpxTd6tCeXL3uSnKxj+HDFqnV7Tv63FniHheW0erdnwwaF69dzNhkFBibx3nsqe/eqVu3gR43SYTD4/1f7O51jx0zs3Gnm2DET0dHp2ekWecfbqpU2vpUrtVbzedlLPSlLBX34kVb0Qjhfu3btqF69OleuXKFLly4ElGB/g5tuuokWLVpw8eJFfvzxxxI7b2FZUiIOHDhgc9+lS5c4f/48derUKXKQZTKZOHLkiM3thw4dAigwDceSP245PrcjR47YrJjedNNNeHp6cvz4cZsNoWaz2e5YLCkcR2+gmldpsozL3pjtsbxWv/32m819v//+e6FXl/P7u3Ds2DHS09MLlT5VmUiwLQqU1b49Sb/8Qurbb2MODMTtt9+4ZWAXfqo9mBpcsjk+PFzl1lvBz08LXO2lOPj6wvDhClOnKqSn22/dbqmfnZWlrXDXqgVr12r52zExMGOGdeAbH59zfqPRm8hIxWFahdHonV37u3FjAyEhiVYr2vZSMuzV8wbHqSdlqaBg39kfBoQQWorA22+/zVtvvUVkZGSJn3/KlCl4enoyZ84cu3WoQfuK317ZteLq0qULfn5+rFu3jlOnTmXfrqoq77//PiaTiV69et3QuZcuXWpVOu/y5ct89dVXeHh4FFixo0uXLvj6+hITE8PZs2ezb8/KymLZsmU2x3t4eBAWFkZ8fDxffPGF1X1r1qyxOofFI488gl6vZ+7cuVy8eNHm/qSkpOw85rLUpUsXatWqxapVq+zWCM/KyrL6ENKlSxd8fHxYu3Yt58+ftzrO3mvlSEREBHq9npUrV1qli2RmZvL+++8D3PDfhYpK0khE4bi5kT58OBkPPoj3zJl4fv45ERc+4ZTbdzyf9RrvMxYTbkREqCxZAkFBCdkPtZfiMGlSToA9e7bjFevNm7UKJaqqBde5//3I2zky97eJxUmrKEw+ukXe1BNnyS9PvTx8GBDCEXt1jp2tsBvBbkSTJk1o0qRJqZz79ttv59133+WFF17gpZdeIioqipYtW1KlShVSU1O5dOkSu3fvJjMz0+4muOLw9fVl+vTpvPTSSwwbNozw8HCCgoLYu3cvJ06c4I477rApfVcY1apVIy0tjYEDB9KpUyfS0tLYvHkzBoOBKVOm5Fv2D7S0kClTpjBz5kyGDBlC9+7d8fX1ZceOHXh6etqt3jJmzBj27t3LsmXLOHz4MLfffjunT59m586dtGvXjt27d1sd36BBA5555hnmzJnDY489Rvv27alTpw6pqalcuHCBgwcP0qtXL6ZNm1bk518cHh4evPHGG0yePJnIyEhat25NgwYNUBSFuLg4Dh8+TGBgIF9++SUA/v7+TJgwgdmzZzN48ODs12rXrl24u7tTvXr1QqUn1a1bl7Fjx7JgwQIGDhxIWFgY3t7ebN++nTNnztClSxfuv//+0n765YoE26JI1OrVSV2wgPRBg/B59ll8Dx1iPpN489YPuPzSfDwjOtgEnvZSGHK3ZS+oVn1iIrz3nv2Vb9CC39hY8PXNWa0pTFqFoxzrgh4bFKQSG6vg728qN3W2LXnqBeWhC1FeuLm54e3tTVpaWrkLuD09PfH29i6Vxi+lrXXr1qxevZrvvvuOHTt2ZJfk8/Lyonbt2vTp04cePXrYrV5RXGFhYVStWpVPPvmELVu2YDQaCQkJYejQoTz11FM21T0Kw83NjQULFrB48WLWr19PcnIyN998M1OnTiXCXmc0O3r16oWfnx8ff/wxP/zwA76+vnTu3Jlx48bZ3XharVo1oqKiWLRoEbt37+bQoUM0btyYBQsWsG/fPptgG6Bv3740atSIlStXcujQIbZv346fnx81a9bk8ccfL1SjodJwxx138Nlnn7FixQp27tzJb7/9lh04d+nSxeY17Nu3LwEBAURHR7Nu3brs12rs2LE89NBD1KlTp1DXfeKJJ6hbty4rV67kxx9/JCsri3r16jFhwgT69+9vN8e8MlPU0vg+yQU52kxRqZlMKNFf4TfrJdwStIg5rW9/0l9/CfW/7lUAcXEBNG1qvVK0erWWRw1aSkh+3YoPHAA7FYSybdoEer3KbbeZ8PVNwmj05soVT06eVLI3Wubd2HjsmImQEPuteu2NN7djx0zccYe+XM65vU2oEmgXX3BwcLmc74ouPT293AXaoLU0T0lJuaHgUFRM8h7P37lz5+jXrx9hYWHMyl0OrIJyVG2mtFS8j+2i3DAkBzFqYyR7Ex7ndV5gNEvx/v4rPDesw/jsM6SPHg0eHnZTHHK3Zd+1y3Fnx/BwLT3E1zcnWPb11VazLVVGqlQBs1khJUUhK8u2ykjedJPwcBUfH8fPq3ApGaX3NXNxaHnoaU6tjCJEYXl6epbLgNbf379cfggQorQlJibi5eVl1dXUaDQy77+ub127dnXSyCo2WdkuIa72idho9GbwYE+rgLQVB1jEODqwCwBTw4akzp5NVrduVg1XfH214HfRIjX7559/1nKyN23KuYals+MHH0Dz5lraieWxeTdUhoXBsmUqY8ZgN0i2VDOJjbWcU2Xp0nSHq772G8RoKRmBgUmyCuJiZL5di8y365E512zdupVZs2bRrl07atasicFgYN++fcTFxdG6dWsWLFhQ5mUlS0NZr2xLsF1CXO1N6ijVQsHMU3zGh1Wfxe3aZQAyevcmbdYsUqs3IiHBHUXRMW2aVo3EEjT/8APs2JGzWm3p7GhJ/9i8WQuYZ8zQbre3Cm45xpF9++C773LOmV8qCeSfkiG/mF2LzLdrkfl2PTLnmrNnz7J8+XKOHDlCQkICoG14DAsL48knnyyX30TdCAm2KyhXe5OeOBFIhw6OP93u3hDPnd8+j2dUFIrJhOrtjXHSJBJGPMvg0YHZK9qWdBA/P+jWzfH1fvkF3ngDJkzQanHbkzsPvDD379xppnFjQ/5P1AH5xexaZL5di8y365E5dy1lHWxX/O8ChFMUVLfZr04AaW+8QeLWrWR27IiSlob3m29StevdDAxax9q18Nln8NBDULUqFNQFNiBAZdEilTydda3kzgMvzP0BAdoK/YkTgcTFBWA0eud/AiGEEEKIIpJgW9wQbROh/YA7d11n8x13kLxmDclRUZhDQvA4d4qnvuqDrm8fAq78zbRp0KEDfP214xSQ7t3h338Vtm6FrCzHQX5sLDiqBBUWpt2fe4w7dypWHS0HD/bEYPAv1PMXQgghhCgMCbbFDdHqOptsAm67dZ0VhcxHHuHy1sN8Vf8ZMnCnpymGzpFN6br5RbxJZd48beNi3oA7LEyrsV2nDtSrp3DzzVqFEnsOHYKZM23PER6unfu/zdSEhWl/njzZcXdJIYQQQoiSIDnbJcRVc72KUtfZsqnydk7wa8sJVD+0EYAz3MRk3mODz0NMmqxk53AnJ2ur0ffdB1evwsMPQ//+Kq+9pjBhgm03yYkTYfhwLeBu3RpOnQJvbzCbtS6UKSk5Gy/vvls7nz0FbZwEye9zNTLfrkXm2/XInLsWydkW5ZrR6J2d53zxYgBZWYUv1W7pzPgHjdn6/E88zDec4SZu5izf8gjfpt7H6ll/0KePFlz36aOV+8vIgHr1tHN89ZXCM89opf8OH4a1a7X/QkO1OtotWmir4HFxMHiwVsNbUbRA29s7p8KJu3vB4xRCCCGEKC4JtkWhGQz+DB7sSdOmerp31/HXX3qGDtUXOu8596ZKL2+F73iYJhxnJi+QjgcRbOQIzZnNNHzNSYC2Yv3LL5CennOetWvhn3/g/Hm4cEG7rWVLWLUKHn1UC64PH9Y6U8bGakF7v35al8rYWIiJUTlwwPHzLGjzZ0nI/aFFNmcKIYQQlZcE26JQjEZvqyYvkyZpq8ubNhU+7zn3psrYWC2QTsOHl5hJU46xlt54kMk03qbjsMbMbLqKiRNU5s2DixfzngvmzoVRo3KC6T59tJ/nztWC7zfesK3HvXkzvPkm1KtX8ObO0pL7Q4tszhRCCCEqNwm2RaHEx7tbdVMMDbXfWAa0gDs+3jZPI/emyrwbIv/mNh5gLS+1Wkt63VsJSL7AC8cGEPRQN+qnHCVvHX13d8fX37xZSyXZuNHx+Fq3pnCbO0tY3g8tucckmzOFEEKIyqfwCbfCpeXNYzYaCz4+JMT29sDAJKKjtU2VSUkKS5ZoOdmJiQppafDzz72p/V44kbzD87xBZ/NWDist2f3aOAJ4lUQCCQuDa9esz5u7QY7RCIn5728kKUlLORk/PqdjZVycloJSmvJ+aMnN8iElJKT0gn0hhBBClC1Z2RaFkjePuaAGMvnlPXt5pRESkkijRgaqVTNQu7aBxo0TuPVWE3v3qlxP9WIWL9CE4/xa/WH0qokOe+dzkka81/ITZr9hpmrVnPPVqAFbtmgdKI1GbSOkt7cWgDvi7Q0336xQuzbUratVKzlzRmHCBD1XrwYWeYW5sDnYBW2+lM2ZQgghROUiwbYolLxNbCw51/bcaN5zYGASy5eb2bRJZfVqWBxzMwkffsPe138isfbt1OQykw4NxiuiM7FLDhIWpgXUa9fC9OlaPW3LRsjnn9c2SNoLuMPD4ZtvFO67TysB+MILkJmp1ekePlzhr790RcqhLkoOdkGbL8tic6YQQgghyo4E26JQ8jaxseRch4eXbN5zQEAi9evDsmUqvXvDAw9A2xcieKzxYa5Pm02a3pdmhp1Efng3H3iM4f2Z13nhBdi0yfo8GzdqGyHnzrW+PTwcJkzIaXADWo73/Pnapsr586FKFWjTRuHUKT3Hjwflu1Jd1BzswnbeFEIIIUTlIE1tSoirFMPP3cQmKEjFz08lKUkpVFObokhO9sdg0KOqoKpagxs/P1j/wQVuWfwM/U0rAcgMrMoYw5t8xFDM6G3Os307+PhAQoIWRK9erQXaKSm211y7VqtocugQTJ2qrd5b8sBBpX59qFo1HS+vtOwGCJZGPY7Ya5BjMPjbBOiWDymBgUlFfalEGZCGF65F5tv1yJy7lrJuaiMbJEWRaPnWaVabH/38sLsZMreidJrUzpmEyWQblIaF1WHid1/Qo/9I5hjH0cxwjChGMpLljOV99tLW6jxxcVoqyY4d0LcvtGqldZ709tbyzjMytEDc3x88PbX876tXtUB75UptpXvWLABtDBERnixb5oblfVqYHOy8r03uTaIl/SFFCCGEEOWLpJGIUncjdaUdpWdYUj7unnoPrTjIsRHzMBBAG/axh3ZEMZxqXMk+vkoVqFpVC57btNEqkHTsCM89B5cuaX++5x4td3vSJO38ZnNOHfG85QUt6SGWBRDJwRZCCCFEfiSNpITI10/2GY3eDB7sabfcXUSESnR0ut0V3YLSMywpHzNmwJ/bL9Fj6zQG8wkA8QTxIjP5897RLFrqxtix9mtuh4VpKSLayrUmPFzL9b54UTu/I8ePQ82a8RiN3owe7Unz5kp22UFvb61N/JEjKkuX2j4/SSOpeOQrZtci8+16ZM5dS1mnkcjKtihVhakrbU9B6RmW9u3z5sHLi2vweVg0HdjBAVoRTAKLGM//XWhN8o/bHTa32bzZko+dY9MmrdZ2wXXEtf97eaUxdy7s3q1atYXfvVtl7lxsAm1paiOEEEK4Fgm2Ram60brSBaVfNGqksn27ys6dKn5+Zh57TOX5tR04tWovRyIXYwoIxuvEYVpN6MynPEUt4uyex15QnZSkFqKOuOXx3owZY9u2ftMmhTFjsAmeb/TDhxBCCCEqJgm2RYGSk/05dy6II0eCOH8+iOTkwtWfhqLlNFsawxw/HoSbm85hibzu3bW8alXVVqFNJoV77oGFC1X6Pa7nziWR7PviJMsYiaooPMXn/MHtTGYubliX1rMXVFepAv7+Kr162R9zRIRKzZran4saPCck5P+Wk6Y2QgghROUiwbbI1/XrQQwdqqdFC4WuXRXuvFNh6FA9168HFerxha0rnXsTZceOCnfdpfDee4pN45yICK1hTceOCp07a+MZPVrHxYsKHToorF0LP/0E6f7VGM0ylg7ezfGAtgSQxFymcpgWdONnQMvZjo21Pn9YGHz1lcIbbyi8957KAw/YryNelGokOX/2LzA9RTZUCiGEEJWLbJAsIZVxY0Vysj9Dh+ptUiRAa2bz0Ucm/PwK3tBX0IZAR5sov/0W9u8ne+NhSAgcOwZTptjWyc692dHXF7ZuhdattT+vXGHmj+kf87/jz1GdqwBsrdkfjwXv0H1ovexzhYVpjXoGDNDOHxGhrZanpmp1voODVapUybihOtuW59imjUJsrG2VE8tr4mjDqHAu2TzlWmS+XY/MuWsp6w2SEmyXkMr4Jj13LogWLRyv3B4+rFKvXkKhzpVfnW1HAaul4oi9n319cxrOWCqA1KyplfFLSYFXXtFqa2/cmHNs52bxNPj0JRr8tBjFbMbs7cOlES+yK3QyHv6exMbaNrzZvh06ddL+nPsDguUXc2GrrVieo69vTv3u/JrmiPJF/iF2LTLfrkfm3LVINRJRbiQk5H+/pSJHYWjNcBJp3NhASEiiVUDpKBUjNharNBJLCoYlYI2NxaoCyIwZ2u2+vjBnDowfr61Op6RoK973DwgmMnMB2947wE5dJ3RpqYQsmE6zJ5qzqM+PzJplu2KemSvF217FkLxt7C3ytq23PMeUFG3lvEsX2L0b9uzRnkOfPgrNmysF1h8XQgghRMUiwbZwKCgo//stFTmKy1GeclQUvPGGFjBDzmZGxw1ntNsnTcoJat99V1uB37nTzLFjJpYtg3c2tqCjeRsD+YyMqrVoxJ/8SA++oy/1+cfqnH5+ea9hu+lR6wiZzrFjpuzrREenZ6fIxMUFYDIpxMRoHwh8fbVOlpMn29b/lhKAQgghROUiwbZwKDjYRHi4/UA4PFwlONhUQtex3UTp6wsffAAzZ2qdH9euhWrVtBXj0FD7Oc9gXTs7NBR27VLx81Np3NiAj48WiLdoAWvXKvRdPZB/1v/B6pumkIWevvwfv3MHL/EqXqTZbM60sLcSb2/lPvemz86dFXr3Jjtf29/ffqMdkBKAQgghRGUiwbZwyM8viaVLsQm4w8NVli6lUJsjLSwrvCdOBBIXF1BgKsakSbBgAcTEaCkgffpo3R3HjSu4NJ7RmLPZcfJkhchIheRkf06d0rF2rZJ9vn794Mv1AVT/5F1GtTvMZu7FGyOv8gqnvJryXrc1/LDO9sNGYSqG5NdufvJk+yUHc5MSgEIIIUTlIBskS0hl3liRnOxPfLweg0FLHQkOLlwVEovCtie3bKJMSNDh54fdzZm+vlppP8umRXv27YPvvrPe7Hj4sMqffyo8+mjOeSZNgo4d4aabYOdOCKmlUnXL17T8dAreV88D8JO+B+NM8/mLhtnjjo5OJyTEK985L6hKyb59WrUUe89v0iTo318lJUW12UwqnEM2T7kWmW/XI3PuWmSDpCh3/PySqFcvgWbNEqhXL6HIK9qFbU9uScVo0iSBlBT7nwFTUmD9+pw87ry6d9ea3bRsCV9+mZMjbTBArVraMbk3WPbsCffeq91Xp65C5oP9+OO741wdMZ1MxZ37TOs5SjNeZwZ97k3h/fdtW7DbU9DK9LVr2KSpWMa1e7dKixYKHTroaNpUL5smhRBCiApMgm1Rqm60PXl+qRrz5sHcubbBqqXhzT335FQoOXQItmzRVuTNZi2Nw1J6b/PmnNzw+fPhrruga1do1dmPx0+9wfGvjpLS6T48yWAGb7D6aGPOzV1N/PWCd4YWlGqSmamlueR+DlrqjGpT11w2TQohhBAVlwTbolQVpcNibvl1ngwNhW++0f6/di2sXg0HDqg8+qgWYFtSR3x9YdQomD5dWynu0kULbv38cjZYOqpssnkzPBPViC+eWs+DfM8/1Mfz8nm6LXmM6k9EcHDF7za557n5+6v5bi7dtUurlpL7OTzyiG2gbSGbJoUQQoiKSYJtUaoKWuF1dL+j+tWWjY9vv43VRscLFxRGjrSuk20JpPMGsLlrZ+dX2WTDBgiprbCGB2nj8zt/PP4yGTpP/PdsptnAFvzQdBpjBqbbTfFITlaYNEmhe3fr27t3h3nzFI4cUbPrf/fpA1FRWqfK/MimSSGEEKLikWBblKr8VqgjIrTNf47krV994IBW9s/STj23NDtp1I4C6apVc/5saZTjiOX+0ZO9GXvlFRqbf+f/eAB3sniad3n/5yasemAVyUl+VtVWQEGvh0cfzVm5XrtW+/ncOZg9W7Wpyx0cbM53LIWpgiKEEEKI8sXN2QMQlYejluzLlrk5rEZS0GZDbdNkGiEhWvv4WbNy7svdst2y+dF6PPbPmZmprZBv3lxwCT7L/aGh/HftW+nL/9GDH5jPRBryF88deYqE3svpdWQRR7gTgOXLVVavtl9LOywMliyBatUSCQnJuT04GCIidA5bv/v7q8TFBdhteS+EEEKI8klWtkWJyN3AJW8Vjfw6LBZF7iY7eVu2f/+97YZJR4F0fHzO5sS8LeFzs9wPtoH7enrSjKNM5w1S8CHoyK8cpBXzmUAgCYSEKA6b1mzeDBkZtrfn1/p98WIYN05v9/UVQgghRPkldbZLiCvX5zQavRk82NPhimx0dHqJrcBevx7E6NHQrp2S3Y0RcoLv3JsdZ8yA3bth0ybrc8yYAYcPa50kO3aEunXh6ae1HG2L7t21yiaWDZdr12pBvT31OEtsx6epvWM1AJepztnI2bRdMhjVwefZnTvNNG5ssHtf3m8I/P1Vxo3Ts2ZN6b++wj6pwetaZL5dj8y5aynrOtsSbJcQV36TFtTA5dgxEyEhiSV2PUuTnbxNb3Knlfj5aXncVatqQXPuoHzBAq0pzvjxWoBteVy3bipeXpCYqLBnj9Ymfu5c7bEzZmAV3OcWFvZfa/hZm1nIeO7gOAB7dO3Y979F3PRwa4xG8PaGXbu00oV79hT+NSnr11fYkn+IXYvMt+uROXct0tRGVDg3Wt7vRvn5JdltepO7usfVqzkNayzl9bZu1Va6V63Samq3aaPdvmoVPPQQbN+u8PbbsGMHvPIK9O+f89i779ZWzfM204mIUJk4UQugfyaMlhxiKu+Q7uFHW/NuRn/cln/7jGJUv2v07q0F7DExKlWqON4YmldZv75CCCGEKDmyQVIU242W9yusvGkVVapkEhCQ/2Ms+dqWABxg714tV9uyOp17s6VldXrNGoURI3Jud3fXNi5mZmp51kuXat0oExMhKEglMNDMhAk6UlK0gDcTD+YyldrjBtBi5TTC4z5nFMt5lK/Zfv8s9KNHkJys49o1D6pUKVw3ytJ+fYUQQghRemRlWxRbccr7FSTvxsu2bfWcOOHJzp2Kw42NEREqcXG240lPd1xTe/NmLdi28PXV2r3v2KGlnHTrpq2Gjxyple7r2RNatFB49lkd776LTQOblj1D6B73GZ3ZxhHdnVTlOg/+GElI37bM6hNLs2a6Qm9wLM3XVwghhBClS4JtUWz5VdEoTHk/R4xGb5uSgZMmweuvK0yerNi0O899zYgI2/EkJBR0Pe3/ISFarva8ebal+zZt0tJJJk3Sfm7YUGHyZG3DZu562iaTNubtdGb1tP0sarSABAK5mwPsogMfMYRDGy4zapSeK1eCSE52HHSX1usrhBBCiNInGyRLiGyscFxn+0bZ2xiYuypI7g2RRqOWOnL77WaqVTNkj+fKFU9OnlTw8tLSQTp1cny9tWu1ALtzZwgPL/jYPn0cVyn54Qdt9Tv3sdW5zJtMZxgfAZBAIC/xGvd9P4Z5i/QsXQpVqiQ4vGZJv76i8GTzlGuR+XY9MueuRTZIigpLa0CTSOPGBkJCEosdCBoMCr6+WiUQy6pxSIj2s6+v9YbIfv1yNkbmHk9Kipp93/r1+dfUvnBBy+levBj0+pxrxsTkXNPCsgruqHFO9epawJ77mCvUYDgfEsou9nE3QRhYwEQ6TriLjE3bGD2aAle4S/L1FUIIIUTpk2BblFtBQapV45p+/aB1a+3nlSutg1+LvJsFAwOV7GDdUlGke3frx0REwPvvw8WLMHw4fPABvPRSzjUtVURyX9OyAdNR4xy9HiZM0IL4vMfsJpR27GYky7hGFYLOHmEr9zBk05Mk/XHpBl4pIYQQQpRXUo1ElFt+fioLFqhs3mxd2s6yyXHSJOuKInk3C6ane6MoWrk/y3G+vlo+9ptvasF1UBAcOwZ//w3btsGIEdaNcexdMzY2p7NkbCz07q3SooWSnc7i7Q06nRZsL1gADRpoAX3upjlm9EQxkqtdHmFa8gu0ObCMJ1hJ1gNryZj2NOmjR4OHR7FfQyGEEEI4V6XM2b506RLr169n27ZtnDp1iqtXrxIYGMhdd93F8OHDadGihc1jkpOTWbhwIRs2bODKlSvUqFGD++67j3HjxuFrbwk1D8n1KnkFNXPJnS9t2SyYuwX81auBjB2rs9s2PTxcC7jvuUdLR/nhB8jKAh+fnPQPe3bv1latT5/WVqyvX1fp0AEiI2HjxpwPBQ88oAX4luA8b3dL0Fa9J06EAQOgUcoB3mcs7dGieFPDhqS+9RZZ99xT8AslSp3kc7oWmW/XI3PuWqSDZAl45513iIqK4qabbqJt27ZUqVKFM2fOsGnTJlRV5d1336WnZfcakJqayhNPPMHx48fp1KkTTZo04fjx42zfvp3mzZuzYsUKPD09872mvElL3okTgXTo4DjT6ddfVfR61eFmwTNngmjVyn6XyfbtISBA+zkjAzw9Yc0abVNkfsH22rUqffoo2ed54AGVy5dBUZTs7pApKbat4nNv5gRts+b69TnHA3QPM7GyZzTBs6eju3IFgIw+fUidNQu1bt1Cv275kU2WN0b+IXYtMt+uR+bctZR1sF0p00juvPNOPvvsM9q2bWt1+759+xg8eDCvvPIK4eHhePz3Nf0HH3zA8ePHGTFiBE8//XT28ZagPTo6mlGjRpXpcxAFN2upUsWcb5vy5GTrn319c1aY8za0mTgRDhzQVpktmy/tU/KcR7E6z8qV2jlCQ62vkbu5DsCmTarVY8PDVZYs1aGr8jCJD4fhNXs2nh98gMfateg3bOLaqOmYJo3HK+jGPxsbDP42pRQjInQsW+Zm9Y2AEEIIIUpOpVzZzs+wYcPYvn07X3/9Nc2bN0dVVbp06UJycjI7duzAx8cn+9jU1FQ6duxI1apV2WRZonRAPhGXPKPRm8GDPa2CQ4uICJXo6PR8V2X//TeI0FAle0W5WjVt46O9tBJLB8m9e+GRR8DeZyvLMaClhthrkGM5pmVLbXOlIzt2qPj5ad0oAwMhONiEn19OwGsw+DP7iWMM2DWBrmwD4IJ3A/SL5uLxUGfHJ3aguK+lq5NVL9ci8+16ZM5di5T+K2Vubm5W/z99+jSXL1/mrrvusgq0AXx8fLjrrrs4d+4ccXFxZT5WV1fcZi5eXioxMTnVTK5etR9oQ04HyQ0btKolts1ytNXvefO04wrqROmoSolFYKBKvXoJNGuWQL16CVaBtqWZz7JdLbiHLTzBCi4QQu20v6k57EG8H3sK3enT+V8gj/h4d7uBNsCGDQrx8e5FOp8QQgghCselgu0LFy6wc+dOqlevTqNGjQA4c+YMAPXr17f7GMvtp4sY3IiSERiYRHR0OseOmdi508yxYyaio9MLlfaQkQFvvJETGDuqiW1huf/0aS1gzt0RctYsLT0kJaVw54mNdZz7HR6uVSxxxDowVljJE9zOH7zNM2TihtfGdQS0b4/Xm29Camr+g/mPwWA/0LZISHCpXwVCCCFEmamUOdv2ZGZm8uyzz5KRkcHTTz+NXq9VuUhK0oI2Pz8/u4+z3J6cNwE4j7L+SsLVhITk/kkPFLB0DJw7Z72SXdBqc0iIlq8dHGydXw3ahsf27bUNjwWdx8sLjhzRVsEnTrStQDJhAiQn67j1Vvt/Z06etL1N9fUncdLbbK8zlJYfjSd43ya858zB+6uv4L33oG9fUBwH1AX99TQaFVJSgvH1hUuXtPSWoCCoUaPgx7oKeY+7Fplv1yNzLkqLSwTbZrOZ5557jr1799K/f3/69u1b4teQXK/yJzk5CMgJQGNjtWDXUa71sWNat8hatbTGN7kDdUvwPGVK/ueJiNAe37u3yvnzCp07a1VILO3kY2O1FfIff1SJi7OfJ+3vH4D2gUJjtSFzc2NgAw/zLUu8JlPjzBl4+GEyu3UjdfZszA0b2n0tAgO9iYiwn7MdFgbbt4NOp/Lmm+TZQGlbUtEVST6na5H5dj0y565FcrZLmNls5vnnnycmJoYHHniAV1991ep+f3+tPbajlWvL7Y5WvkX5FRRktvrZstKct4OkpRrJlCla7W1FgUcftU4jef11SEjQbu/YUVtMjoiwPc+4cVrt7pEjFebMgcxM63bys2ZpqSiKojB4sCcGg2179uDgTKs89UmT8tboVviWR7jFeJwVt85A9fDA/ZdfCOjUCe9XX7Utw4Lj/HfLc1dVeP11xSYY37BBYdQoPUZjPnkvQgghhHCoUlcjMZvNTJ8+ne+//57evXvz9ttvZ6ePWPzzzz/cf//9dOrUiQ8//NDmHJbqJVu2bCHEOpfBinwiLn+Sk/0ZOlTPpk05AaSvL2zZonWPzL3anLve9YEDKnfdpWQfP2kS9OoF165pgfiuXRAVpXWbfOgh+Ocf++fJey1vb+2xR47AXXfBK684rgSSu0xf7uY99pz84Q/qvzce9/+W4s0hIaTOnEnmQw/ZpJZcuBDIP//obJ77qlWOr+HrCwcPmsnMVF22PreserkWmW/XI3PuWqTOdgnJHWj37NnTbqAN2gbIGjVqcODAAVJTU21K/x04cIC6devmG2iL8ik5WWHCBAVVzVkVTknRgt/8gtfk5JxA21Fd7g8+0NJBHJX4szz2+eet01HCw2Hx4pxVcUslkJAQ68BV2xiqNaC5elVH7nSYvK4GNaTal1/i/uOPeE+fjv7MGfyGDyczOlpLLbnjjuxjFUW1+9wdbfq0PI9x4xQ2bMj5IkzqcwshhBCFUynTSCypI99//z33338/c+bMsRtog/Z1fr9+/UhNTWXx4sVW9y1evJjU1FT69+9fFsMWN8Bo9CYuLoATJwKJiwuwSndISFCyG8ysXQs//6z9v6DPTf7+2obIbdtg0SLb3OzNm7UAfNIkx5slLakfeUsNbtoEY8bAggU5t+WtFGJ5TqdPa02XqlbN/8ungACttf2R+o9x8rtjJD3zEqqXF+7btxPQtStpka9x6aSK0ehNQIDK5s0qq1dr+ekzZmgBdUHPQ9JLhBBCiBtTKdNIFi5cyKJFi/Dx8WHQoEHZNbVzCw8Pp0mTJoC2gj1gwABOnDhBp06duOOOO/j999+z27V//vnneBVQgkK+fip79jsi5mzoi4sLoGnTnA9ZlnSMV16BnTu1mtp5RURoweXTT8Orr0Lr1o6vv3atloZhr8FNQakf+/blnPvYMVN2J0x7z2n5cpWvv7YNeC3P99FHtRxxiwceUFkw5TTn+k+l0+XvALhITT5r9hZt5g+k9wP67FQXS8721asqq1bZXqOg55F77JWZfMXsWmS+XY/MuWuRNJIS8O+//wJaEL106VK7x9SpUyc72Pbx8eHzzz9n4cKFbNiwgd27d1O9enWGDh3K2LFjCwy0RdmzNH5xtOIaHe1NcHAmDzygo3lzhdBQ8PDQguJff4XJk7VNgblXniMiYMYMlV27oGVLhYL6GBmNWr5zTIyKTqc4bJhjT+J/8Wl4uIq/v5rvc5o8WSEmRgVUmw8Wb70FcXEKq1fn5IS7uysMf70+my5/SwQ/sYAJ3M5Jnjk6mKMPL2f24+8z/sOWgPZ66PUqH35ools37FxfJb8UloQEXYHfFORlNGrpMa6a/y2EEMK1VMqVbWeQT8RlK++qdV6WFdfr14MYPRqrTZLh4Vp6xP792kZF0FJLDh/Wamnfcw+sW6ftLSxoZXvhQm1leO9erfNkejrUrw8mE7Rr5/ix+/bBtGnaY2+7zUStWon5Pid7mxS9vHRMmKCwbl3OcWFh8NZb1uN2J4PJvMeLzMSPFFSdjt2tRmOYOpMk9yp4e0OjRmaqVTOQnOxPfLw+u428osCddzoOtg8f1jphFlZB30aUV7Lq5Vpkvl2PzLlrkdJ/QhRCQR0RDQYFo9GbMWOsA23Q8qYXLNDSI0JCoFo1uHwZTp2CP//UNj8+/zx8951t23aLiAho0ADmzIH+/bXUlD59tNKAXbuCXm9bGjD3Y319tVzyAQO03PKCnlNKitZuPiQkkcaNDQQHZxIZiVWgDdpKdd4V+Uw8eJtpNOYEq3gMxWwmdP9i7nridn7s9wF9epsZN07h2rUgxo3T06KFQpcuCi1aKMTGOn4eYWHaqnhhFfRthOR/CyGEqIwk2BYVUmBg/kFeYKCap+25tQ0b4N9/tRXg9u2hZ0+t4kjt2jkbGy11ufMG3GFhMHcutGmj1dG25D9bpKTATz/B9On2Hzt9Onz7bU7Nbctzye85+fpqHwosm0GvXLHfoCY//1KXAaziwDs/c5SmVOcqHzCCWEKJ37CXyEho3tw2hWX6dNuAu3t3LRVHpyt8sJ3/fGhVWYQQQojKRoJtUSHlbfySW0SElgdc0Oq3vXJ3ZrNqVSYwdzWT1au19I/+/eGbb7T7L1zQ8q7zatUKeve2fuzatdrPvXtr9+cea37PyddXywsfN06haVM9HTroOHnS8XPTVqMdvTbwbXw3WnGQSbyHgQDaspdYQum/aSRdmlyxOj4lRRvvW29ZP49HH4WgIC3f3FE1mLwK822EEEIIUdlUyg2SovLTOiK6Ocz/9fJKIzAw/5XSvClbEREqmZnWt6WkWNfYtpQOnDJF+/nTT2HJEoiMVPM0z1FJSVGsHpubt7f1WPN7Tu+9Z9tGPb89u/PmwZ49MHmy7YbKuXOhXTuFLNyZzyRW8ThvMY3/8Skj+ICMUV8zhtdZymjM/7WMT0mBv/6yrieufQCAYcPyvv6O628X5tsIIYQQorKRDZIlRDZWOEd+lS2MRm8GD7afbhERobJwoba6nZystXYPDs4kPt49342Xhw9rmwbj47UNhJmZWuD9ySdmkpIUEhIgKEg7tkWL/DcWVq9u2zkSsNmkqNPZpnfMmKFtyrRXvjAsDLp0gQEDrDdU+vurGAx6TpxQsiuXWDpedmAHixhHKw4BcJCWjGMRO+kI2JYAnDHDfslDy2trrytmQfNh7zH5KcuqJrJ5yrXIfLsemXPXIhskhSgCL6+07E2DISGJVsGWtlJsskmpsKwoV6+eQL16CTRpkpD92PzSU8LC4Kuv4M47tU2QLVtqedu//qp1paxXL4HmzbVzKorjzZVhYVrAbi8wNBj8GT7cepPi6dO255g3D955x35O+MSJ8PbbcPGiFtTecksGPj4qw4frad5coV8/LTUkNlbrDunrCzvpyHNh+1hz3/vEE0QrDrGDTkTzPx7tdJHYWOvrhIbaD7TBcf51QfNRlEDZYPBn8GDP7LSapk31DB7sicHgX+hzCCGEEGVBVrZLiHwiLr+KugLqqDzdpEla6/eaNbU62YGB2ibLCRNgwwYzaWnaynZwsLYafeqUwvz51kGpJRi+5RaVOnUSbMZpb+XXUWOZH36AHTu0wNdo1FJLYmNzVqstj8uvKU5YmPb43bu1NvJPP62yc81VZjGD4XyADhWTrz8XRr7KmT7j8At2x8tL+3DRrZvj13znTjONGxvs3udoPgo7T0ajN6NHe2bXTzcac2qMHzmisnRp0VbIC6M8rXpJnfLSV57mW5QNmXPXUtYr2xJslxB5k1YueQOagACV5GQ948crbNqUc1zv3jB3rsrYsbBxo3XXx5gYrAJCSzB8+LDK4sUm/Pys85od1dl2lLIxYwbs3q3alDaEnCB61qyCu0AeOgQJCeDhoVKvnonERAWDQaHW2d2EvDERr9/2AnCUpoxnIfqwbsyZk1Oj3J6idpYsSv3tixcD+OsvvcMPMpa65SWpvPxDXFHrlFc05WW+RdmROXctkkYiRDmQNz1FVWH8eKwCbYAWLWDMGOtAG7SSeZMnaxsV+/TRNhf26aOtIL/9Nnh4ZNlc01E1DksJwrzpF9oqru3tlqBz3jztZ3tVV0BLH5kxQ8s7v3JFa8hjMiko/w0j66529K25i+FEcZWqNOMYv3Avwzc/zu8bztO9e/7VYArLaPRm4kQ9bdoo2RVPYmKgTRuFiRNt62+bzbbfGID28/z52v35Xauw1VPKG6lTLoQQFZOsbJcQ+URcuZ07F2R3w2N+q8a+vtqKdHq6lnYSEKCVChw+HH75xXblt6gdJPOmX1y7psNgUKxSSRyN0ddXy9fOG7SGh6tMmKAwYACsWpXzuGCu8xovEckS9JhJxpeUyS8y7MhE1m3KKY1yI6usRV2pdjQXFo66WhZnVbg8rHoVtmuqKL7yMN+ibMmcu5ayXtmW0n9CFEJCgv3bHa0agxbsnjhhXTLPwmBQCAmxvs3fXyU83H5aSPv2Kl5eZqpVS7J5nLYKnwYE0KWLbTAWG6sFrrkD2UmTbANt0Lptqqp2f+7nFk8VxrOIDxjOIsbRiR34vfcc39z8EReXvceF5vffcP5wfivVAPPnW78eycn5n8/e/QWtCkdHe5f7vOfC1CnP+3dDCCGE80kaiSj3kpP9OXcuiCNHgjh/Pojk5LKvOGEp55dXfvWufX2hfn2sUiNmzNBut1dTOjlZYcIExW6FkQkTFJKT7QdbltQIVVXsVlKZNw9eeEG1ui+/aiKbN2v323tuh2lJZ37lKT7FGFQTzzMnuXlUL+6e9QB1Mo8WKmDNm8phMin5jsVksn7eQUHmfM9v7/6idq/MO8bysOAldcqFEKJikmBblGvXrwcxdKhWCq9rV4U771QYOlTP9etBZTqOKlVsS9aBtmpsr4Okpevj9Ok5OduWcnsxMSpVqtjmNCckKDYdKy1dJwcM0O7PK3cJvHbtdIwbp9iMp2NHlVtuMREdnc7Ro2bWrlXx88v/+RqNOSvithTiwp5i1SsnSBw2EVWvx2PdOgJCQ/F6++18l/vtley7ejX/seRdqS5M91Db6xa+e6W9MT7+OE4vK3gjz1sIIYTzSbAtyq3kZH9Gj8YmrWLTJoXRoynTFW43tyymT7cNPg8dggULbDcpWro+5t1QuXkzvPkm2NspERioZneszL2pctYsLSUl78pl3tQIS3v5du0UNm9W2bFD5dgxLcgOCEjCyyuN2rUNNGtmwmzOfxXUyytnY2be5xwRoaWgtAkPJP7FuSRu20Zm584oRiPes2cT0KED7j/+aPMkHaVyeHnlHwjnfd43Uq87ICDfS2Tf7zjdBKdvQizJOuVCCCHKjmyQLCGysaLk3ehGuNIQFxdA27Z6Jk2yrWsdFQXbt2t1tvPr+pibvc1sRe2wWJwNc8nJWvOc/Gpvz5qlrdDPnQvt22ubPNPT4eefczZgZm8wDEjE/bvv8HnxRXRxcQBkdu9O6ptvYr711nzHu3cvPPec/bSWsDBYssRMtWq2NbuLUm/66tVAIiN1BV6jImxClDrbpU82y7kemXPXIhskhfiPo02JFgYD1KtXJkPBYFCyV53tuXoVGjdOyB7PiROBgONg295mNm3l0s1hxYy8AVVRNszlDtCCgrTW7YsWwbhxqtW1wsO1Jj0DBmg/d+yoBdqenvDaa7bt4S0bDJcvDyTg4YcxRETgNXcuXu+/j/vGjfhv2cq1IVMxPTuVpCQFX1+sPrB4e4PZDJMna+fLW41k6lSt2+a5c0HZDYOCgrQa5ZaNoYXZFHj9urZKb+8aEydq91erVrqbEIvazCc52Z/4eH2xnrcQQgjnk2BblFuONiVaBAaWyTD+u1bRNqfd6Ga2wMAkoqMLt3JZ2GvkLnlnKfm3YIHKrl0KkyZp9cMDAlSSkhTMZnB31zZzmkzwyy9asL1qlW2gbbFhg8Jff+moXz+IKlXg0sQ5zNw7iv47JnJf5gaqL3+Ty59+zk1z5vLlqkd4b55i9aElIkILeDt3zqmC4uUFv/0GN98MkZGKVSpReLiepUuDqFIlId/nn5u/v0pYmHb+3NeIjdU+WOzZoxbpNS0q+2UHdSxe7MmUKbBmTc7t/fvrmDXLk8hIiv28hRBCOJ8E26LcCg42ER6ut1sKLzxcJTjYVIZjySQiQucwxSPv5rSiHp9bYVcuC3ONvDnIOSX/tJ8tQe+MGUp2N0p7HSvzK3EIEB+vMHu2ygcfBDBqlI4NOxrzET/yIP/HPCZR33gGxvcjpEo4/15fADTJfuyGDWA2q7Rrp1jVA1+zBiZOtC2FqOXsq3z0kb9NF878XquOHXXMmpX/fBRn3hzJr+zg6NHa816zJuf2gQMVIiNL5nkLIYRwPtkgKcotP78kli61rfYRHq51TizLgKOom9PKYjNbYa6Rt+Sdo5J/8+Zp5QUjIlS7x+RX4tBy/6ZNCgZD7kBV4f/oyx38zqu8hMndk7uub+I37uRtnsGPnPnbtEnh3nutn0fduvZrjluOj493nFttO77CzYfj47jhecuv7OCmTQqhoda31a5tuyk49/FFed5CCCGcT1a2RblWpUoCH32k5a5aNh8GB5ucsrKXO8UjKUmPv78p381pRUkJKYkx2btG3hxkRyvUlkomsbGQkKCSN9/cXmMci7Aw7X6wn2efhg+v8Cpt3/sfmeMm8QBreYZ3eJIVPM07rGQAoODlpW1AtDyPq1fzXwsoas5+YefD3nEhIXrgxv7OFZQHnndOEgvYf1mWexWEEEIUnwTbotzz80vCz698BBiWFI877ggmPr7gqhSlvZktPd2b5GQPMjIUsrK0BjAmU87b2rZsXv7n8/RUCQhQWL1a27y4axesWKHlbffrB/HxWpm8f//V2s63bKlVKzl5Etavhzp1tHzvtLScx1sql5huvpUnfNewuNc6Hvl1IrXj/uYLnmTWTcuIzFpErVpNSU7WkZmpPY9atbSmQAsWaKu9iYnahy3LtUszZz/vvGmVCm7sXIGBqt2NoZbXJu+cFFSmsCz3KgghhCg+CbaFqKASE/355x89r79u3YExIkLP4sXaRrq8OciOVqgtTXjGjlXYuDFnJbZXLy2neswY65rh4eGwfTt4eEDTptptK1fyX130nOPCwrTbBwyAK1dUYmLg9dd7MTIujCnM5QVe55az21ivb8X394xhyLnXMBD03/NQ2bBBZcoUhZgY62tv2aISGFi0nH1HmxSXLXMjMLD0vimpUiWTmBgdr79uvTE0LEx7zbdts175vnBBS5UqD3sVhBBCFJ/kbAtRARmN3mzYYBtog7bxLjJSq6WdNwfZ0qgmPNz6Me+9B2+8gVWgDdrKdd5AG7Sfx4zRVmlTUnI2XuYNEDdv1m5/7z2Ve+818+ab2m3pePEmz9OYExxt/CiKycRD5xZykkYM5mMUzGzYoDBmDLRoYXvtCRMgKyv/9Iy8r5ejTYql3axGVcl+3rlZGhzVq2f97cPnn6ssWVI+9ioIIYQoPmlqU0KkGL5rcXYDhLi4AE6d0ltV78grd9MfSy3n69d1JCVpKSc6nZbu4eWlpei0bGl7jrVryfcahw5pjyvouKNHzSiKardhzNq1ML/PRhYwgSacAGAXoYxjEQe42+G5i9LUqLjNaooz3wVd2/LaOKqz7ey9Cq7I2e9vUfZkzl2LNLURQhTIYFAKLMeXeyOdJQfZYAikZ0/bFeGff7Z/jsJcozDHaZv+7K9EG42wie604DATWMDLvEp7YtlLG5YxCvOV14GqNo9LSCh8Hn9pNqsp7rUTE6Fx40Sb65envQpCCCFunKSRCFEBBQaqBW52tLeRzlFTFkeb8gp7jYKOCwiAoKCca/v6wowZ2qp2/frabZl48C5Pczt/sIIn0KESyVLun9iIkSxDh8nq8TVrap0ljxwJ4vz5IJKT/fMZZ9Ga1RiN3sTFBXDiRCBxcQE3vDnyRq7taAylmeoihBCi9EiwLUQFFBycSVyc1hXRnu7d7W+k0zZM2gZ3lk15ecXG2r8dtNs9PHKOczSWsDDYuVPB01PhgQfU7C6WsbFaesj331s/No7aDGQFXdjKKb/meCRdZxmj2U072hGbvZlzwgRo0UKha1eFO+9UGDpUz/XrQXbH4Oh5g22zGoPBn8GDPWnaVE+HDjqaNtXz+OPa7TeiKNfObwyDB3ve8BiEEEI4jwTbQlRAXl5pRESYeOEF24A7IkLbYGcvv9dR0xZHm/IOH85/s97cudYbL7t3tz4uLEy7ffJkhchIhfnzzbz3nvpfF0usHpv3eXiGd8a8dz/Lm87DQACt2U8s7dnfYgiLX7lss9lR67CI3RXuwja1cbyRkhveSFnUBkfO3MwphBCi5MkGyRIiGytcS3nZTJOe7k1SkgcpKQrJyTkb6Xx9899IZ9kwWdhNeYmJgRgMCgkJEBSkpT4EBBiszhMUpOLmpvDHHzqMRi21JDY2p842aBsRVVWhWTPrz/m561AHBakEBOS+dgApp65QZc50aq2PBiCBQF5kJkuIxJRn60l+GycdPW+L4m6kzE9B1y6LMYjCKS/vb1F2ZM5dS1lvkJRgu4TIm9S1uNov5sIGiidOBNKhg+MvzHbuNAMUeEzjxga79+n37kUZPx3/kwcASKzfnANDFpFyd5fsJjHr16s0a5ZQ+CdXxPHbG1vu1ycgQKs/fv06+PsXvWvojY5BlBxXe38LmXNXU9bBtqSRCCHyVZT84cJsBrzRDYMApjZtOPPVbn4bs5REtyoEnD7CPS93Jb73QP7ceoGVK6E4v0NvZGx5X59mzXRERuq4fFlH27ZFz7UuzusjhBCi/JFgWwjhUFHzhwuzGfBGNgzm5h+kMPXkSG7JOslSRmFGYSAr+GD77VyYOgd/r/QiPENrRR2bo9fH0sxn0qSi51oX9/URQghRvkiwLYRwKD7e3SaQtNiwQSE+3t3qtsJsBizqhsG8UlK0zZDXqUokS2nDXmJphz/JjPrzWWrddxduW7YU/cnmO37sji2/12fzZi0HHey/VkUfQ+FeHyGEEOWLNLURQjh0I81gAgOTiI7OP8e7MMcUdkwHuJsO7OR/fMJbTKPGqeN4PvwwGQ88QOrrr6PWrVv4J+xgbCEhesB202lBr0/uZj9FaZxTnNdHCCFE+SIr20IIh240f1jrWJlI48YGQkIS7QaJhTmmsNdU0RHNEBpxkmtPjkPV6fBYs4bA0FC85s6F9KKllljGVr9+BgAnT2K3sUxBr0/uZj8BARSpSc2Nvj5CCCHKFwm2hRAOlcf84fzG1C4ikIw5c0jaupXM9u1RUlPxfv11Ajp2xG3jxiJdJ/fGx9BQ7G4MzW8sYWFa6UPQXqudOxVpUiOEEC5Igm0hhEPlMX+4MGMyNW1KckwMycuXY65VC/2pU/g/9hi+Tz6J7vTpAq9R2I2hjsZiaeYzb542runTtcY++Z1LCCFE5SR1tkuI1Od0La5Wk7WwdbbL5ZgSE/F+5x08ly5FycpC9fTEOGECxkmTwNt+oFvUxjL51dl2d1do1UqX3dinoHMJ53O197eQOXc1FaqpTVje/soOuLu7ExQUxB133EGfPn1o1arVjV6y3JI3qWuRX8wVj+6PP/B57jnct24FwHTTTaTNmkVmz56gWK86l2RjGWlSU/HI+9v1yJy7lrIOtotVjeTff/8t0vGHDh1i5cqVDBw4kBkzZhTn0kIIUSTm228n+dtvcV+zBp8XXkB/9ix+Tz1FfOh9XHvxPXxb3ZK9Ml6SjWWkSY0QQri2YuVsnzhxgkGDBuHv78/o0aNZs2YN+/btY9++faxdu5bIyEgCAgIYOHAgW7Zs4d1336VGjRp8/vnnrFu3rqSegxBCFI6ikPngg5zbcIyVt0wnHQ+CY3/ipl4t2NrxFRIvaCvcJbkxtDxuMhVCCFF2ihVsr1ixgpUrV/Lpp58yadIkGjVqhJ+fH35+fjRs2JCJEyfy6aefsmrVKjZt2kSvXr1YunQpiqKwevXqknoOQghRaEajNyMnB/DEP2/QjKP8QA88yOTxf97C5+7m8NU6vDxTS2xjaHncZCqEEKLsFCtnu0+fPtSoUYMPP/ww3+OGDx/OxYsXiYmJAaBfv36cPXuW3bt33+ilyx3J9XItkt9XcdluflTpw1rmMYlb+QeAzM6dSZ09m9Rb7iI+3p2kJD3+/qZibQwtj5tMhX3y/nY9Mueupaxztou1sn327FkCAwMLPC4gIIBz585l/1y3bl1SHG3NF0KIUmTb9VFhLQ/QlGO8zCuYPbxw//VXArp2Jfj1qYT4nqddO4rdWEaa1AghhGsqVrAdEBDA/v37ycjIcHhMRkYG+/fvJyAgIPu25ORkq5+FEKKsONqQaMSb13iZv9ceIaNXL5SsLLwWLyawXTv47DOQKqlCCCFuQLGC7XvvvZdLly4xZcoULly4YHP/xYsXmTp1KpcvX7YqE/j3339Tr1694lxaCCFuSEEbFv2a1yXls89I+uorTA0aoLt0CQYNwr9nT/RHjpTxaIUQQlR0xcrZjo+P5/HHH+fMmTO4ubnRrFkzQkJCAIiLi+Po0aNkZWVx8803s2rVKoKDgzl27BgDBgxg1KhRjB07tsSeiLNJrpdrkfy+is1g8LfpEGnZsBgYmJRzYHo6nkuW4PPOO5CaiqrTkT50KMbnn0cNCir7gYsyIe9v1yNz7loqVFMb0ILMd955h5iYGNLT063u8/T0pE+fPkydOrXMn1hZkzepa5FfzBVfUTYsBicnkzFhAh7ffw+AuWpV0l56iYwnnwRdsb4gFOWQvL9dj8y5a6lwwbZFamoqx44d48qVKwBUr16dpk2b4uPjUxKnL/fkTepa5Beza7HMt9u2bfhMm4b+jz8AyLrrLlLffhvTXXc5eYSiJMn72/XInLuWChtsuzp5k7oW+cXsWqzmOzMTz6govGfPRklORlUUMp56irQXX0StWtW5AxUlQt7frkfm3LVUqNJ/uWVkZHD48GE2btzIxo0bOXz4cL5VSoQQokJydyd9zBgMe/aQ/thjKKqK56efEtCmDR4ffQQmk7NHKIQQohwp9sp2SkoKCxYs4OuvvyY1NdXqPh8fHx555BEmTJiAn59fsQZa3sknYtciqyCuJb/51sfG4vPss7gdPQpAVvPmWmpJu3ZlOURRguT97Xpkzl1LhUojSUpK4qmnnuKP//IXGzduTJ06dQC4cOECx48fB6Bhw4asWLECf3//Ehhy+SRvUtciv5hdS4HznZWFZ3Q0XrNmoTMYAEgfMIC0l15CrVmzjEYpSoq8v12PzLlrqVBpJPPnz+fEiRO0a9eOmJgYvvvuOxYtWsSiRYv49ttviYmJITQ0lD///JP58+eX1JiFEKJ8cXMjffhwEvfuJX3gQAA8V64ksG1bPJcsgcxMJw9QCCGEsxRrZbtLly6YzWY2btyIt7e33WOMRiPh4eHodDq2bdt2wwMt7+QTsWuRVRDXUtT51u/fr6WWHDwIgKlJE1LfeousTp1Ka4iiBMn72/XInLuWCrWynZCQQNu2bR0G2gBeXl60adMGw39frQohRGVnuvtukjZuJOW99zBXqYL++HH8H3gA3+HDUf7919nDE0IIUYaKFWzXq1evUEF0UlISdevWLc6lhBCiYtHpyPjf/0jcuxfjsGGoOh0e335LYGgonvPng1RrEkIIl1CsYLt///7s2bMneyOkPcePHyc2NpZ+/foV51JCCFEhqcHBpM2ZQ9LPP5PVpg1KSgo+r75KQKdOuP38s7OHJ4QQopQVK9j+3//+R//+/Rk0aBDz58/nzz//JCUlhZSUFP78808WLFjA//73Px5//HEGDx5cQkMWQoiKx3TnnSStX0/K4sWYa9RA/9df+D/6KL6DBqE7d87ZwxNCCFFKirVBskmTJgCoqoqiKHaPcXSfoij8/vvvN3rpckc2VrgW2UzjWkp8vhMT8Z49G8+oKBSTCdXbG+OkSRjHjwcvr5K7jrgh8v52PTLnrqWsN0i6FefBISEhJTUOIYRwHQEBpL3xBukDB+IzbRruO3bg/eabeKxcSdqbb5J5333OHqEQQogSUuwOkkIjn4hdi6yCuJZSnW9Vxf3bb/F56SV0cXEAZEREkPbmm5hvuaV0rinyJe9v1yNz7loqVOk/IYQQxaQoZD7yCIbduzFOmIDq7o7Hhg0EtG+P16xZkJrq7BEKIYQohhJZ2T5//jz79u3j8uXLZORTzmrcuHHFvVS5JZ+IXYusgriWspxv3cmT+Dz3HO5btgBgqluXtFmzyOzdGxzsjRElS97frkfm3LWU9cp2sYLt9PR0XnjhBWJiYgBtM6TDCylKviUCKzp5k7oW+cXsWsp8vlUV93Xr8H7+efTnzwOQec89pM6ejblRo7Ibh4uS97frkTl3LRVqg+ScOXNYu3YtVatWpU+fPtSrVw8fH5+SGpsQQrgmRSGzd28y770Xr3nz8Fq4EPctWwjo1In0yEjSnn4a/P2dPUohhBCFUKyV7Y4dO2I2m1mzZg3Vq1cvyXFVOPKJ2LXIKohrcfZ86/75B+/nn8fjp58AMIeEkPraa2Q+/LCklpQCZ8+3KHsy566lQm2QTE1NpU2bNi4faAshRGky33ILKStXkrxyJaZbbkEXF4ffiBH4PfAAukrUr0AIISqjYgXbDRs2JDk5uaTGIoQQIh+Z991H4o4dpD3/PKq3N+47dhDQtSve06ejGAzOHp4QQgg7ihVsDxkyhD179lSqTpBCCFGueXlhfPppEmNjyejTB8VkwmvZMgLatsVj5Uowm509QiGEELkUu/RfdHQ0S5YsYeDAgXTo0IGaNWui09mP4WvXrl2cS5VrkuvlWiS/z7WU5/l2+/lnfKZPR//nnwBktWlD6ttvY2rRwskjq7jK83yL0iFz7loqVOk/gF27dvHKK69w9uzZ/C+kKJV6BVzepK5FfjG7lnI/3xkZeC5divecOSgpKaiKQvqQIRhnzEAt439UKoNyP9+ixMmcu5YKVfrvl19+Yfz48WRlZREcHEzt2rWl9J8QQpQ1Dw/SJ0wg49FH8Xn5ZTy++Qavjz7C4/vvSXvhBTKeegr0emePUgghXFKxVrYffvhh/vjjD15//XX69u2L4sIlqOQTsWuRVRDXUtHm223HDnyefRb9f43Eslq1IvWttzC1bu3kkVUMFW2+RfHJnLuWClX67++//6Z169Y89NBDLh1oCyFEeZLVsSOJW7aQ+sYbqP7+uB08SEBEBD7jx6Ncvers4QkhhEspVrAdHBxc5p8OhBBCFIK7O+mjR2PYu5f0AQMA8FyxgoA2bfCMioKsLCcPUAghXEOxgu377ruPffv2kZ6eXlLjEUIIUYLUGjVIff99EtevJ+vOO9EZDPhMm4Z/t2647drl7OEJIUSlV6xge9KkSdSpU4fIyMgCq5EIIYRwHlO7diRt3kzKu+9iDgrC7dgx/Hv1wmf0aJSLF509PCGEqLSKtUFy0KBBZGZmcujQIXQ6HXXq1KFmzZp287cVReGTTz4p1mDLM9lY4VpkM41rqWzzrVy7hvfrr+Px6acoqorq50fatGmkjxwJ7u7OHp7TVbb5FgWTOXctFarOduPGjQt/IUXh+H8748uz3377jYULF3Lw4EGysrJo1KgRgwcPpmfPnvk+Tt6krkV+MbuWyjrf+oMH8Xn2Wdz27wfA1KgRqW+9RVbXrk4emXNV1vkWjsmcu5YKVWd78+bNJTWOciE2Npbhw4fj4eFBr1698PX1ZcOGDUyePJmLFy8ydOhQZw9RCCFKjKlVK5J++gmPL77A+9VX0Z88if9DD5Hx4IOkzpyJWreus4cohBAVXrE7SFYWWVlZ9OjRg4sXL/LVV1/RpEkTAJKSknj00Uf5999/+emnn6hTp47dx8snYtciqyCuxRXmW0lIwOvNN/H88EMUsxnVxwfj1KkYx4wBT09nD69MucJ8C2sy566lQtXZrkxiY2M5e/YsvXv3zg60Afz9/Rk9ejSZmZl89913ThyhEEKUHjUoiLS33iJpyxYyQ0NRUlPxnjmTgE6dcNu0ydnDE0KICkuC7f/s2bMHgE6dOtncZ7lt7969ZTomIYQoa6ZmzUhet46UZcsw16yJ/u+/8e/fH9+BA9GdOePs4QkhRIVTrJztyuT06dMA3HzzzTb3Va9eHR8fH844+IcmNTWVlJSU0hyeKGfc3Nxkzl2IK853Ss+eJHTuTMC8efh99BEeP/yA++bNJI0ZQ2JkJHh7O3uIpcYV59vVyZy7Fk9PT3x8fMrsehJs/yc5ORnQ0kbs8fPzIykpye5927Ztw2g0ltrYhBDCaXr0wL9ZM+6MiqL6kSMEvPce+hUrODJ0KBfbtgU7pV6FEKI88/Ly4v777y+z60mwXQKMRiMmkwk3N3k5XYWXl5d8wHIhrj7fyTfdxM7XXqP2zp00++gjfC9fJnT2bC7ddRdHhg8npXZtZw+xRLn6fLsimXPXkZWVVeZzLdHhf/z8/AAcrl4nJycTGBjo8PFubm54eHiUythE+ePp6YnZbHb2MEQZkfnWXO3WjV/bt6fBqlXc8u231DxwgOoTJvDPww/z9+OPY/LycvYQS4TMt+uROXctZV2ITzZI/qd+/foAdvOyr1y5Qmpqqt18biGEcCUmLy9ODh7Mr4sXc+Xuu9FlZdHgq6/oPHIktX79FaSarBBCWJFg+z9t2rQBYPv27Tb3WW6zHCOEEK4utW5d9r32GvtffJHUmjXxvnqVVm++SZsZM/A7e9bZwxNCiHJDgu3/tG/fnnr16hETE2PVVj4pKYmlS5fi7u5O3759nTdAIYQobxSFy+3b8+vSpfz55JOYPDyodugQHceO5fYPPsAtNdXZIxRCCKeTDpK5OGrX/u+//zJt2jSH7dq///57FEWRnG0X4u3tTVpamrOHIcqIzHfheF+8SJPly6kZGwuAMTiYP4YN40K3bhWqaonMt+uROXcdGRkZqKpapguoEmzn8dtvv7FgwQIOHjxIVlYWjRo1YsiQIfTs2dPhYyTYdj3yi9m1yHwXTbW9e7lj2TJ8L1wA4HrTpvweGUnSrbc6eWSFI/PtemTOXYcE2xWUBNuuR34xuxaZ76LTZWZS/9tvabBqFW7p6ag6HWd69eLPp54i67/qT+WVzLfrkTl3Hc4ItiVnWwghRIkzu7tz6rHH+HX5cuI6d0Yxm6m/di1dRoyg7oYNIGXWhBAuQoJtIYQQpcZYvTqHpk9nzxtvkFyvHp4GA83nzaP9lCkEnDzp7OEJIUSpk2BbCCFEqbvWsiXb33+f48OHk+XtTdDJk3SYPJmmCxfibjA4e3hCCFFqJNgWQghRJlQ3N04//DDboqL4t1s3FFXlpvXr6TJyJPXWrQOTydlDFEKIEifBthBCiDKVXqUKvz3zDLFvv03iLbfgkZREs/ffp8OkSQTl6nMghBCVgQTbQgghnCK+WTN2LljAschIMn19Cfz7b9pPnUrzuXPxiI939vCEEKJESLAthBDCaVS9nrN9+rAtKopzEREA1N20iS4jRnDz99+jSGqJEKKCk2BbCCGE02UEBXF00iR2zp2L4bbbcE9N5Y7ly+k4bhxVjhxx9vCEEOKGSbAthBCi3DA0bszO997j6PjxZPj743/mDO2mTaPFW2/hefWqs4cnhBBFJsG2EEKI8kWv51yPHmyLiuJMr16oikLtrVvpMmoUt3z9NUpmprNHKIQQhSbBthBCiHIpMyCA38eOZef8+cQ3boxbWhqNP/qITmPHUvXAAWcPTwghCkWCbSGEEOVa4m23EfvOO/w2ZQrpQUH4nT9P2xdeoNWsWXhdvuzs4QkhRL4k2BZCCFH+6XT8Gx7OtqgoTj/4IGadjlo7dtBl1CgarFqFLiPD2SMUQgi7JNgWQghRYWT5+nJ81Ch2LFzI9WbN0Ken0+jTT+kUGUn1PXucPTwhhLAhwbYQQogKJ/mWW9j91lscevZZjFWr4hsXR+tXXuHuV17BJy7O2cMTQohsEmwLIYSomBSFuHvuYduyZZx69FHMej019uyh0+jRNPzsM3RGo7NHKIQQEmwLIYSo2Ew+PvwxdCjbFy/masuW6DMzuW3lSjqPHk3NnTtBVZ09RCGEC5NgWwghRKWQUq8ee2fN4sCMGaRVr47P5cvc9frrtH7xRXzPn3f28IQQLkqCbSGEEJWHonCpY0e2LVvGX48/jtnNjeoHDtBpzBgaffwx+rQ0Z49QCOFiJNgWQghR6Zi9vPhz0CB+XbqUy23aoMvKosHq1XQZOZKQrVsltUQIUWYk2BZCCFFppdauzf5XX2Xfyy+TWqsWXteu0fKtt2g7fTp+p087e3hCCBcgwbYQQohK70q7dvy6dCknBw7E5OFB1d9+o+O4cTRevhy3lBRnD08IUYlJsC2EEMIlmD08+PuJJ/h12TIuduiAzmzmlu+/p8vIkdTevBnMZmcPUQhRCUmwLYQQwqWk1azJwRdeYO/MmSTXqYNnfDwt3n2X0GeeIeDvv509PCFEJSPBthBCCJd09e672b54MSeGDCHLy4vg48fpMHEiDd97D/ekJGcPTwhRSUiwLYQQwmWp7u78068fvy5fzoWuXVHMZuqsWUOXESOo++OPkloihCg2CbaFEEK4PGO1ahyeNo3ds2eTUr8+HomJNF+wgPZTphD4xx/OHp4QogKTYFsIIYT4z/U772RfVBTHR44k08eHoJMn6TB5Ms3mzcPDYHD28IQQFZAE20IIIUQuqpsbp/v2Zdvy5ZwPDweg3oYNdBkxgpvWrkUxmZw8QiFERSLBthBCCGFHRpUqHJkyhV1z5pB46624JyfTdMkSOkycSNCxY84enhCigpBgWwghhMhHQtOm7Jg/n2NjxpDp50fAqVO0f+YZ7nznHTyvX3f28IQQ5ZwE20IIIURB9HrO9u7Ntqgozt5/P6qiUOfnn+kyYgT1v/sOJSvL2SMUQpRTEmwLIYQQhZQRGMixCRPY9d57JDRqhFtaGk2ioug4bhxVDh929vCEEOWQBNtCCCFEERkaNWLX3LkcmTiRjIAA/M+epd306bR88028rl519vCEEOWIBNtCCCHEjdDpOH/ffWyLiuJM796oOh0hv/5K5xEjuPWrr9BlZjp7hEKIckCCbSGEEKIYMv39+X3MGHbMn8/1O+7ALT2d26Oj6ThmDNX273f28IQQTibBthBCCFECkho0YPecORyeOpX04GD8/v2XNi++SKuZM/G+dMnZwxNCOIkE20IIIURJURQuhIWxLSqKfx56CLNOR61du+g8ahS3ffEFuvR0Z49QCFHGJNgWQgghSliWjw8nRoxgx/vvc+3OO9FnZNDw88/pHBlJjdhYUFVnD1EIUUYk2BZCCCFKSfLNN7PnzTc5+NxzGKtWxefiRe5+7TXufuUVfP7919nDE0KUAQm2hRBCiNKkKFzs0oVty5fzd79+mN3cqLF3L50jI2n4ySfojUZnj1AIUYok2BZCCCHKgMnbm5NDhvDr4sVcuftudFlZ3Pbll3QeNYpa27dLaokQlZQE20IIIUQZSq1bl32vvcb+F14gtUYNvK9codUbb9Bmxgx8z5519vCEECVMgm0hhBCirCkKlzt04Ndly/jziScwubtT7dAhOo0dy+0ffog+NdXZIxRClBAJtoUQQggnMXt68tfAgfy6dCmXQkPRmUzc+s03dBk5ktq//CKpJUJUAhJsCyGEEE6WFhLCgZdeYt+rr5ISEoLX9eu0mDOHds8+i/8//zh7eEKIYpBgWwghhCgnrrRpw/YlS/jjf//D5OlJlWPH6DB+PE2WLsUtOdnZwxNC3AAJtoUQQohyxOzhwanHHmPbsmXEdeqEzmym/po1dBkxgjobNoDZ7OwhCiGKQIJtIYQQohwy1qjBoeefZ8+sWSTXq4enwcCd8+YR+vTTBPz5p7OHJ4QoJAm2hRBCiHLsWqtWbF+0iBPDhpHl7U3wiRN0mDSJpgsX4p6Y6OzhCSEKIMG2EEIIUc6p7u7888gjbFu+nH+7dUNRVW5av54uI0ZQ74cfwGRy9hCFEA5IsC2EEEJUEOlVq/LbM88Q+9ZbJNavj0dSEs0WLaLD5MkEHT/u7OEJIeyQYFsIIYSoYOKbN2fnwoX8Pno0mb6+BP71F+2nTqX5e+/hkZDg7OEJIXKRYFsIIYSogFS9njMPPMC25cs53707AHU3bqTLiBHc/H//hyKpJUKUCxJsCyGEEBVYRnAwRyZPZtfcuRhuuw33lBTuWLaMDuPHE3zkiLOHJ4TLk2BbCCGEqAQSGjdm53vvcXTcODL8/Qk4fZrQadNo8fbbeF675uzhCeGyJNgWQgghKgu9nnM9e7ItKoqzPXqgKgq1t2yhy8iR3PLNNyiZmc4eoRAuR4JtIYQQopLJDAjg2Pjx7Jw3j4Tbb8ctLY3GH35Ip3HjqHrwoLOHJ4RLkWBbCCGEqKQSGzZk17vv8tvkyaQHBuJ37hxtZ8yg5Rtv4HX5srOHJ4RLkGBbCCGEqMx0Ov7t3p1tUVGcfuABVJ2OkO3b6TJqFA1WrUInqSVClCoJtoUQQggXkOXnx/HRo9mxcCHXmzZFn55Oo08/pVNkJNX37nX28ISotCTYFkIIIVxI0i23sPvttzn0zDMYq1TB98IFWr/8Mne9+irecXHOHp4QlY4E20IIIYSrURTiunVj2/LlnHrkEcx6PTV376bz6NHc9vnn6IxGZ49QiEpDgm0hhBDCRZl8fPhj2DC2v/8+V1u2RJ+ZScMvvqDz6NHU2LkTVNXZQxSiwpNgWwghhHBxKTfdxN5Zszj4/POkVa+Oz+XL3P3667R+6SV8zp939vCEqNAk2BZCCCEEKAoXO3Xi12XL+OuxxzC7uVF9/346jxlDo48/Rp+W5uwRClEhSbAthBBCiGwmLy/+/N//+HXpUi63aYMuK4sGq1fTZeRIam3dKqklQhSRBNtCCCGEsJFauzb7X3mF/S+/TGqtWnhdu0art96i7fTp+J054+zhCVFhSLAthBBCCPsUhcvt2vHrkiX8OXAgJg8Pqv72Gx3HjqXx8uW4paY6e4RClHsSbAshhBAiX2ZPT/564gl+XbaMix06oDObueX77+kyYgS1N2+W1BIh8iHBthBCCCEKJa1mTQ6+8AJ7Z84kpXZtPOPjafHuu7R75hn8//7b2cMTolySYFsIIYQQRXL17rvZvmQJfwwZQpaXF1V+/52OEydyx+LFuCUlOXt4QpQrEmwLIYQQosjM7u6c6tePX5cv50KXLihmMzfHxNB1xAjq/vgjmM3OHqIQ5YIE20IIIYS4YcZq1Tj83HPsfvNNkm66CY/ERJovWED7KVMIPHnS2cMTwukk2BZCCCFEsV1v0YIdixZxfMQIsry9CTp5kvaTJ9N0wQLcDQZnD08Ip5FgWwghhBAlQnVz4/RDD7E1Kop/770XRVW56ccf6TJiBDfFxIDJ5OwhClHmJNgWQgghRInKqFKF355+mtg5c0i89VY8kpNpungxHSdOJOj33509PCHKlATbQgghhCgV8U2bsnP+fI6NGUOmnx8Bp07R/umnaf7uu3hcv+7s4QlRJiTYFkIIIUSpUfV6zvbuzbaoKM7ddx+qolB382a6jhhB/e++Q8nKcvYQhShVbs4eQEnLzMzk559/5ueff+a3337j4sWLANx222089NBDPPbYY+j1eruPXbNmDZ9++il//fUX7u7u3HXXXUyYMIGmTZuW5VMQQgghKp2MwECOTpzIufvv547Fiwn680+aREVRd8MGfo+M5Pqddzp7iEKUCkVVK1eP1b///puePXvi4+ND+/btueWWW0hKSuKXX37h8uXLdOvWjSVLlqAoitXjlixZwrx586hTpw4RERGkpKSwbt06MjMziY6O5u6773Z4ze+//x5FUfDw8CjtpyfKCW9vb9LS0pw9DFFGZL5di8x3GTCbqbthA7dHR+ORmAjAha5d+WPYMIzVqpX5cGTOXUdGRgaqqtK3b98yu2alC7YvXbrEpk2beOihh/Dx8cm+PTU1laeeeoqjR48yb948evTokX3f6dOn6dWrF3Xr1uXrr7/G398fgOPHj9O/f3/q1atHTEwMOp39rBsJtl2P/GJ2LTLfrkXmu+y4JyXR8NNPuWn9ehSzmSwvL/4eMIB/+vZFdXcvs3HInLsOZwTblS5nu2bNmjz55JNWgTaAj48PQ4YMAWDv3r1W93377bdkZWURGRmZHWgDNGnShN69e/P333+zf//+0h+8EEII4UIy/f35fexYds6fT3yTJrgZjdz+8cd0GjOGagcOOHt4QpSIShds58fNTUtRz5uzvWfPHgA6duxo85hOnTpZHSOE+P/27j0uxrT/A/hnpqbDVBLlVBExSQeUQiryWHYdWhvWPiy7/BSWXadd7Drs42yXjXUqtc86200elt197Nr98ajQgXJKpCjkVGt1MB2m5v794TfzGBNLmkbT5/16edF1XTPzvftO+jRdc99ERLWryNkZiatX4+ysWSi3sYFlXh585s9H16VLYX73rr7LI3opDSps/+tf/wLw3wCtkpOTA6lUCjs7O63btGnTBgCQm5ur+wKJiIgaKpEIt/72N8RFReHa0KFQisVoceIEAiZOhPPu3RBXVOi7QqIaMbizkTxNTEwM4uLi0KNHD/Tu3VtjrqSkBE2aNKn2dpaWlgCA4uLiZ96/mZkZTE1Na6dYqhfMzc31XQLVIfa7YWG/9cjcHLnTpqEgOBjt162DzZkzkO3cCccjR5A1ZQr+8PPT0cOy5w2BWCyu8/35r2zYXrlyJSpe4KfYsWPHwsnJqdq5o0ePYsmSJbC3t8eqVatqqUJNZWVlUCqVOrlvevXwzTQNC/vdsLDfr4bSFi1QsGwZWsTFwfWbb2B+6xY85s3DPR8fZEycCHmrVrX2WOx5w/Ei2bK2vLJhOyYmBnK5/LnXDxgwoNqwfezYMXz00Udo2rQptm3bhmbNmmmtsbS0fOor1yUlJQCg8cZJIiIiqgMiEe707o18X184f/892u7fj2YpKbBNS8PVYcOQPXIklGZm+q6S6Jle2bCdlpb20vfxn//8Bx9++CFsbGywfft2ODo6VrvOyckJaWlpyM/P19q3rdqrrdq7TURERHWrytwcmePGIe+11+AaGQm71FS0j4mB/ZEjyAgNxd1evYAnrp9B9Kow2DdIqoK2tbU1tm/f/syw7OPjAwA4fvy41lxCQgIAwNfXVzeFEhER0XN56OCAU0uWIHX+fMibNYN5fj68li+Hz/z5sLhxQ9/lEVXLIMP2sWPHNIL20/Zyq4SEhMDY2BgREREa20kyMjLw008/wdnZ+ZlXkCQiIqI6IhLhrp8f4iMjcWXUKFRJJLBNS4P/Bx/A5Z//hNELbEElqgsGdwXJ7OxsDB06FBUVFRg0aBDatm2rtcbe3h4hISEaY7xcO70IvpmmYWG/Gxb2u36R3r6NjlFRaJ6UBAAoa9oUl/7nf3C7d+/n3lrCnjccvFx7LUhKSsLYsWOfucbX1xc7duzQGj948CC2bduGrKwsSCQSeHl5Ydq0aXBzc3vm/TFsNzz8j7lhYb8bFva7frJLTobr5s2wuH0bAHDf3R3pkyejpJoX3Z7EnjccDNv1FMN2w8P/mBsW9rthYb/rL3FFBdru2wfnmBgYlZdDKRbj+pAhuDJ6NCr//7oZ1WHPGw59hG2D3LNNREREDY/SxATZ77yDuM2bcadXL4iVSjgdOIDAsDDY//YbwOthkB4wbBMREZFBKWvWDGnz5iF56VKUODjA9MEDeK5Zgx6ffIJGWVn6Lo8aGIZtIiIiMkh/eHkhYeNGXBo/HpXm5rDJyIDftGlw27ABkqdczI6otjFsExERkcESJBJcGz4ccZs341afPhAJAlr/+98IDA2F46FDQFWVvkskA8ewTURERAav3NYWZ2fPRtIXX6C4TRuYFBXBff16+M2YgUYXL+q7PDJgDNtERETUYNz38MDxDRtwceJEKKRSWGdlwWvKFLivXQuTBw/0XR4ZIIZtIiIialAEIyPkvvkm4qKjcbNfPwCA4+HDCAwLQ+sff4SIW0uoFjFsExERUYNUYWOD8zNnInXDBhS2bw9JSQncIiLg99FHsLlwQd/lkYFg2CYiIqIGrcjNDSfWrMGFKVNQYWmJRteuocfs2fBctQqm9+/ruzyq5xi2iYiIiIyMcGPQIMRFR+P6G29AEIlgf/QoAkND4bRvH0SVlfqukOophm0iIiKi/6ewtkb6hx/ixJo1eODiAuPSUrh+8w38p0xB0zNn9F0e1UMM20RERERPKJLJcPKrr3Bu+nSUW1vD8sYN+H72GbosXw6z/Hx9l0f1CMM2ERERUXXEYuT174+4qCjkBAdDEIvRMiEBAWFhaBcTA7FCoe8KqR5g2CYiIiJ6hkorK2RMmoTj69bhvpsbjMvL4bJtG/wnT4ZtSoq+y6NXHMM2ERER0XMobtcOSV9+ibOffIIyGxtY3LoFn88/h9fixTC/c0ff5dErimGbiIiI6HmJRLgVFIT46GhcDQmB0sgIzRMTETBxItrv3Alxebm+K6RXDMM2ERER0QuqlEpxecIEHN+4EQWdO8NIoUCH3bsRMGkSmp08CQiCvkukVwTDNhEREVENlbRujZTly5H26acotbWF9O5deC9Zgm4LF0Kal6fv8ugVwLBNRERE9DJEItwJCEB8VBSyRo6E0tgYdqdPI2DyZMi2boVRWZm+KyQ9YtgmIiIiqgVVZma48t57iI+IwL1u3SCurITznj0ICAtDi7g4bi1poBi2iYiIiGqR3N4epxctwumFCyFv3hzmBQXounIlfD77DJbXr+u7PKpjDNtEREREtU0kwr0ePRAfGYkro0ejysQEtmfPoteUKegYHQ1juVzfFVIdYdgmIiIi0hGlqSmyRo9GfGQk7vTsCXFVFdru34+A0FC0OnKEW0saAIZtIiIiIh0rbdECaQsWIGXxYjxs1Qpmf/6JzqtXo/vs2bC6elXf5ZEOMWwTERER1ZGCbt2QEBGBy++9h0pTUzRJT0evjz6Ca0QEjIuL9V0e6QDDNhEREVEdUkokuDpyJOKjonA7IAAipRJOP/6IwLAwOBw+DCiV+i6RahHDNhEREZEelNnZ4cynnyJp+XIUt24N08JCeKxdi54zZ6JRZqa+y6NawrBNREREpEf3u3TB8Q0bkDFhAirNzdE4MxN+M2bAbd06SAoL9V0evSSGbSIiIiI9E4yNkRMSgrjoaOQFBUEkCGj9yy8IDA1F659/Bqqq9F0i1RDDNhEREdErorxJE5z75BMkfvklitq2hUlJCdw2boTf9OlonJGh7/KoBhi2iYiIiF4xf7q748S6dUifPBkKS0tYZ2ej56xZ8AgPh8mff+q7PHoBDNtEREREryDByAjXhwxBXFQUbvTvDwBw+P13BIaGos0PP0DErSX1AsM2ERER0SusonFjXJg+HSfCw1HYvj0kcjk6RUWh19SpaHL+vL7Lo7/AsE1ERERUDxR27IgTa9bg/EcfoaJRI1jl5qL7nDno/MUXMC0o0Hd59BQM20RERET1hZERbr7+OuKio5E7aBAEkQitjh1DYFgY2sbGQqRQ6LtCegLDNhEREVE9o7CywsUpU3Di66/xp6srjMvK0HHLFvhPmYKmqan6Lo8ew7BNREREVE8VtW+PxFWrcG7mTJQ3bgzLmzfhO38+ui5dCrO7d/VdHoFhm4iIiKh+E4uR168f4qKjcW3oUCjFYrQ4cQKBkybB+bvvIK6o0HeFDRrDNhEREZEBqLSwwKWwMBxfvx5/eHjAqLwcsh07EDBpEuySkvRdXoPFsE1ERERkQEratkXyypU4M2cOypo2hfTOHXRbtAje//gHpLdv67u8Bodhm4iIiMjQiES43bs34jZvxtXhw6E0MkKz5GT4T5qEDjt2QFxWpu8KGwyGbSIiIiIDVSWV4vL48UjYtAkFXbvCSKFA++++Q+DEiWh+/DggCPou0eAxbBMREREZuIeOjkhZuhSp8+ah1M4O5vn58Fq2DD7z58Pi5k19l2fQGLaJiIiIGgKRCHd79ULc5s3IeucdKI2NYZuWBv8PPoDLt9/CSC7Xd4UGiWGbiIiIqAFRmpnhytixiI+MxD0fH4grK9Fu714ETpyIlseOcWtJLWPYJiIiImqA5K1a4fSiRTj1+eeQt2gBsz/+QJcvvoDv3LmwzMnRd3kGg2GbiIiIqAHL794d8ZGRyBwzBlWmpmh6/jx6TZ0K182bYfzwob7Lq/cYtomIiIgaOKWJCbL//nfERUbijp8fxEolnA4cQGBoKOx//x1QKvVdYr3FsE1EREREAICy5s2RNn8+UpYuRYmDA0wfPIBneDh6fPIJGmVn67u8eolhm4iIiIg0FHh5IWHjRlwaNw6VZmawyciA37Rp6LRxIyTFxfour15h2CYiIiIiLYJEgmsjRiAuKgq3eveGSKlEm59/RmBoKBx++QWoqtJ3ifUCwzYRERERPVW5rS3OzpmDpJUrUdymDUyKiuCxbh16zpwJ68uX9V3eK49hm4iIiIj+0n1PTxxfvx4Xw8KgkErR+MoV+M2YAfe1a2FSWKjv8l5ZDNtERERE9FwEY2PkDh2KuOho3OzXDwDgePgwAkND0frHHyHi1hItDNtERERE9EIqbGxwfuZMnFy9GoXOzpCUlMAtIgJ+06bBJj1d3+W9Uhi2iYiIiKhGHnTqhBNr1yJ9yhRUWFqi0dWr6PHJJ/BctQqm9+/ru7xXAsM2EREREdWckRGuDxqEuOhoXH/jDQgiEeyPHkVgaCic9u2DqLJS3xXqFcM2EREREb00hbU10j/8ECfXrMEDmQzGpaVw/eYb9Jo6FU3OnNF3eXrDsE1EREREtaZQJsPJ8HCcnzYNFY0awer6dXT/7DN0WbECZvn5+i6vzjFsExEREVHtEotxc8AAHIuORs6QIRDEYrSMj0dAWBja7dkDsUKh7wrrDMM2EREREelEpZUVMiZPxvF163DfzQ3G5eVw2boV/pMnw/bUKX2XVycYtomIiIhIp4rbtUPSl1/i7Mcfo8zGBha3bsFn4UJ0XbIE5nfu6Ls8nWLYJiIiIiLdE4lwq29fxEdH49pbb0EpFqPFyZMImDQJ7Xftgri8XN8V6gTDNhERERHVmUqpFJdCQ3F840b84ekJo4oKdNi1CwGTJ6NZYiIgCPousVYxbBMRERFRnStp0wbJK1Ygbe5clNraQnrnDrwXL4b3559Dmpen7/JqDcM2EREREemHSIQ7gYGI37wZ2W+/DaWxMZqdOoWAyZPRYds2GJWV6bvCl8awTURERER6VWVujsz330f8pk3I9/aGuLIS7WNiEBAWhhbx8fV6awnDNhERERG9EuQODji1eDFOL1gAefPmMC8oQNcVK+Azbx4srl/Xd3k1wrBNRERERK8OkQj3evZEfGQkrowahSqJBLZnzsB/yhS4fPMNjOVyfVf4Qhi2iYiIiOiVozQ1Rda77yI+MhJ3e/SAuKoK7fbtQ0BYGFodPVpvtpYwbBMRERHRK6u0ZUukLlyIU4sW4WGrVjC7fx+dV61C99mzYXXtmr7L+0sM20RERET0ysv38UFCRAQuv/ceqkxN0SQ9Hb0+/BCukZEwLinRd3lPxbBNRERERPWCUiLB1ZEjEbd5M277+0OkVMLp4EEEhobC/vBhQKnUd4laGLaJiIiIqF4pa9YMZz77DMnLl6PE0RGmhYXwXLsWPWfNQqPMTH2Xp4Fhm4iIiIjqpT+6dEHChg3ImDABlebmaHz5MvxmzIDb+vWQFBXpuzwADNtEREREVI8JEglyQkIQFxWFvKAgiAQBrQ8dQmBoKBx//hmoqtJrfQzbRERERFTvlTdtinOffILEL75AUdu2MCkuhvvGjfCbMQONMzL0VhfDNhEREREZjD89PHBi3TpcnDQJCgsLWGdloeesWfAID4fpgwd1Xg/DNhEREREZFMHICLnBwYiLjsaN/v0BAA6//46/ffBBndfCsE1EREREBqmicWNcmD4dJ8PDUdi+PSR6uNS7cZ0/ooEyMzODqampvsugOmRubq7vEqgOsd8NC/vd8LDnhq28a1ekRUejvLwcKC2t08cWCUI9ubA8EREREVE9w20kREREREQ6wrBNRERERKQjDNtERERERDrCsE1EREREpCM8G8lLOHfuHNavX4+0tDRUVlZCJpPh/fffx8CBA/VdGj3DgQMHcPr0aVy4cAGZmZlQKBRYsWIFQkJCql1fUlKC9evX4/Dhw8jPz0ezZs0wYMAATJ06FRYWFlrrlUoldu3ahT179iA3NxdSqRR+fn6YMWMGHB0ddX149IS7d+/i0KFDiIuLw9WrV1FQUABra2t4eXlhwoQJ6Ny5s9Zt2PP6rby8HOHh4bhw4QJyc3NRWFiIRo0awdHRESNGjEBwcDAkEonGbdhzwxIVFYWvvvoKABATE4MuXbpozLPf9Vvfvn2Rl5dX7Zyvry927NihMVZRUYGoqCgcPHgQt2/fhrW1NYKCgjB9+nQ0bdq02vs5ePAgtm/fjqysLEgkEnh5eeGjjz6Cm5vbC9fLs5HUUGJiIiZMmAATExMMGjQIFhYWOHz4MPLy8jBnzhyMHz9e3yXSU6i+SG1sbCCVSpGXl/fUsC2XyzFq1ChkZGTA398frq6uyMjIQEJCAjw8PLBr1y6tUz7Onz8fsbGx6NChA3r37o179+7h0KFDsLCwQExMDJycnOroSAkAVq9ejejoaLRu3Rq+vr5o0qQJcnNz8fvvv0MQBHz11VcaPyCz5/Xf/fv30adPH3h6esLJyQlNmjRBYWEh4uPjkZeXB39/f0RHR0MsfvTLXfbcsGRmZmLYsGEwNjaGXC7XCtvsd/3Xt29fFBUV4b333tOas7e31/h+rlQqERoaioSEBHTp0gU+Pj7Izc3Fb7/9BgcHB+zZswdNmjTRuI+IiAisXbsW9vb26N+/Px4+fIiff/4ZCoUCW7duhbe394sVLNALUygUQr9+/QR3d3fh4sWL6vGioiKhf//+gpubm3Dz5k09VkjPcvz4cXV/Nm/eLMhkMuFf//pXtWu//vprQSaTCatWrdIYX7VqlSCTyYTIyEiN8ZMnTwoymUwYPXq0UF5erh7/z3/+I8hkMmH8+PG1fDT0V3799VchKSlJazwlJUVwc3MTfHx8NHrFntd/VVVVGr1QUSgUwrvvvivIZDLh6NGj6nH23HBUVFQIb731ljBixAjh448/FmQymZCWlqaxhv2u/4KCgoSgoKDnWrt3715BJpMJM2fOFJRKpXp89+7dgkwmExYsWKCx/tq1a0KnTp2E/v37C0VFRerxixcvCu7u7sIbb7whVFVVvVC93LNdA4mJibh+/ToGDx4MV1dX9biVlRUmTZoEhUKB/fv367FCehY/Pz/Y29v/5TpBEBAbGwupVIoPnri86wcffACpVIrY2FiNcdXH06ZNg4mJiXq8d+/e8PX1RUJCAm7dulULR0HPq3///vD19dUa79atG7p3747CwkJcvnwZAHtuKMRisUYvVIyNjfHaa68BAHJzcwGw54YmMjISV65cwfLly2FkZKQ1z343PKr+zZw5EyKRSD3+zjvvwNHRET/++CPKysrU4/v27UNlZSUmT54MKysr9birqysGDx6M7OxsnD59+oVqYNiugeTkZACAv7+/1pxqLCUlpU5rotqXk5ODe/fuwcvLC1KpVGNOKpXCy8sLN27cwO3bt9XjSUlJ6rknBQQEAPjv84f0z9jYWONv9tywKZVKxMfHAwBkMhkA9tyQpKenIzIyElOnTkX79u2rXcN+G46Kigrs27cPkZGR2LlzJ86ePau1pry8HGfPnkXbtm21XmQTiUTw8/ODXC7HhQsX1OOqXvbq1Uvr/lQZ70X7zTdI1kBOTg4AoE2bNlpzdnZ2kEql6ldNqP5S9fBpe/GcnJyQkJCAnJwctGzZEnK5HPn5+ZDJZNW+oqJ6vvC58Wq4desWTpw4ATs7O3XwYs8NS0VFBTZv3gxBEPDgwQOcPHkSV69eRUhICHr27AmAPTcUFRUVmDNnDjp27IgJEyY8dR37bTjy8/Px6aefaox5eHggPDwcrVu3BgBcv34dSqXymf0GHuW6bt26qf8tlUphZ2entb6m/WbYroGSkhIA0Pj1wuMsLS1RXFxclyWRDqh6aGlpWe28alz1fHje9Xxu6J9CocDs2bNRUVGBjz/+WP1NlD03LAqFAhs2bFB/LBKJMH78eMyaNUs9xp4bhq+//ho5OTnYt29ftaFYhf02DCEhIfD29oZMJoNUKkVOTg62bNmCAwcO4P3338fBgwc1stjz9lv17yffMPnk+hftN8M2ETUoSqUSc+fORUpKCt5++20MHTpU3yWRjlhYWODy5ctQKpW4d+8ejhw5gjVr1uDMmTOIjo5+6jdgql/S0tLw7bffYurUqerfUpFhmzp1qsbHrq6u+PLLLwE8Or1vbGwsxo0bp4/SqsU92zXwVz/ZlJSUPPVVb6o/VD18/Cfex6nGVc+H513P54b+KJVKfPbZZ/jpp58QHByMRYsWacyz54ZJLBajRYsWGDVqFBYvXozU1FREREQAYM/ru8rKSsydOxcuLi4ICwv7y/Xst2EbOXIkACA1NRXAi/db9e9n5bvH7/d58ZXtGlDt8cnNzYW7u7vGXH5+PuRyOTw9PfVQGdUm1d4s1R79J6nGVc8H1R6vmzdvoqqqSutXmao9XtXt9SfdUyqV+PTTT/HDDz9g8ODBWLlypfo8yyrsueF78g1O7Hn9JpfL1T168vuxiiqAbdy4Ec7OzgDYb0NlY2MD4NHzAgAcHR0hFoufu9+qf6elpSE/P19r33ZN+81XtmvAx8cHAJCQkKA1pxpTraH6y8nJCc2aNUNqaqr6C1dFLpcjNTUVDg4OaNmypXrc19dXPfck1VkQ+Nyoe48H7YEDB+LLL7+sdl8ne2747t27B+C/Z6Bhz+s3ExMTDB8+vNo/qgDVt29fDB8+HPb29uy3gTt37hwAqM88YmZmBk9PT1y7dk3ripOCIODEiROQSqUaP6ipenn8+HGt+1dlvOpOJ/ssDNs10LNnTzg6OuKnn35CRkaGery4uBiRkZGQSCTcB2oARCIRRowYAblcjk2bNmnMbdq0CXK5HG+//bbGuOrjr7/+GhUVFerxY8eOITk5Gf7+/s91jm+qPaqtIz/88ANef/11rFq16qlvoGLPDUNWVhZKS0u1xktLS7FixQoAj86RDLDn9Z2ZmRmWLVtW7Z+uXbsCACZOnIhly5bB1dWV/TYA2dnZ1X59Z2dnY/Xq1QCAIUOGqMdV/QsPD4fw2EXTv//+e9y4cQNDhgyBmZmZejwkJATGxsaIiIjQ2E6SkZGBn376Cc7Ozi98BUlerr2GeLn2+is2NlZ9QvrMzEykp6fDy8tL/Wshb29vjBgxAsCjVzr+/ve/49KlS/D390enTp1w8eJF9WV9d+7cqfFFCmhf1jc/Px///ve/YWFhge+//x5t27at2wNu4NavX48NGzZAKpVi7Nix6lc0H9evXz/1BarY8/pv/fr12LJlC7y9vWFvbw9LS0vcvXsXcXFxePDgAbp164Z//vOf6j6y54Zp7ty52L9/f7WXa2e/6y/V17ePjw9atWoFc3Nz5OTkIC4uDgqFAhMnTsTMmTPV66u7XPv169dx+PBh2NvbIzY2VueXa2fYfgnnzp3DunXrkJaWhsrKSshkMowbNw4DBw7Ud2n0DKr/gJ/mrbfewsqVK9UfFxcXY/369Th8+DAKCgpgZ2eH119/HVOmTKn2bAZKpRI7d+7Enj17kJubC6lUCj8/P8yYMUN97k+qO3/VbwBYsWIFQkJC1B+z5/Xb+fPnsWfPHqSlpeHu3buQy+WwtLSEi4sLBg0ahGHDhmn90MWeG56nhW2A/a7PkpOTsXv3bmRkZKCgoABlZWWwsbGBp6cnRo0aVe0FBysqKhAVFYUDBw7g9u3baNy4Mfr06YPp06fD1ta22sc5ePAgtm3bhqysLEgkEnh5eWHatGlwc3N74ZoZtomIiIiIdIR7tomIiIiIdIRhm4iIiIhIRxi2iYiIiIh0hGGbiIiIiEhHGLaJiIiIiHSEYZuIiIiISEcYtomIiIiIdIRhm4iIiIhIRxi2iYiIiIh0hGGbiOgF3Lx5Ey4uLhgzZoy+SyEionqAYZuIiIiISEcYtomIiIiIdIRhm4iIiIhIRxi2iYhqqKysDKtXr0ZQUBDc3d3x2muvISoqCoIgaK3NysrCrFmz4O/vD3d3dwQEBGD27Nm4evWq1tqkpCS4uLhg7ty5yM/Px7x58xAYGIhOnTph69atAICKigrs2rULw4YNQ/fu3dG5c2f07dsXEydOxM8//6x1n5WVldi9ezdGjhwJLy8veHp64s0338TWrVtRWVmptb5v375wcXGBIAjYtm0bBg4cCA8PDwQEBGDp0qUoKiqq9nNSWlqKjRs3YvDgwfD09IS3tzdGjx5dbU1jxoyBi4sLbt68qTG+detWuLi4wN3dHaWlpRpzX3zxBVxcXPDLL7/U2vHt2LEDwcHB6Ny5M958881qj4uIqKaM9V0AEVF9pFAoMH78eGRnZ8PX1xdyuRwpKSn46quv8PDhQ8yYMUO99uTJk5g0aRLKysrQqVMn+Pr64urVqzhw4AB+++03REdHo1u3blqPcf/+fQwfPhxVVVXw8vJCRUUFzM3NAQAff/wxfv31V1hYWKBbt26wtLTE3bt3cfr0acjlcgwaNEh9P2VlZQgLC0NSUhIaN26MLl26wMTEBOfOncOKFSuQlJSEjRs3QizWfv1lyZIl2LNnD3x9fSGTyZCSkoIdO3YgOTkZu3fvhqWlpXptSUkJxo4di/T0dDRp0gR9+vRBaWkpEhMTcerUKaSlpWH+/Pnq9T4+PkhOTkZycjIcHBzU40lJSerPcVpaGvz8/DTmRCIRfH19a+X4Pv/8c+zbtw8+Pj5wdnaGQqF4duOJiF6UQEREz+3GjRuCTCYTZDKZ8O677wrFxcXquXPnzgmurq5C586dhZKSEkEQBOHhw4eCn5+fIJPJhJ07d2rc15YtWwSZTCYEBgYKZWVl6vHExET1Y0yZMkVjThAE4fr164JMJhOCgoKE+/fva8yVlZUJqampGmP/+Mc/BJlMJkyfPl0oKipSjxcXFwuhoaGCTCYTdu/erXGboKAgQSaTCV5eXsL58+fV4yUlJcLYsWMFmUwmLF26VOM2ixcvFmQymTBmzBiNz0tWVpbQs2dPQSaTCUeOHFGPnzx5UpDJZMKcOXPUY1VVVYKPj48waNAgQSaTCeHh4eq5oqIioWPHjsKgQYNq7fi6d+8uZGZmCkREusJtJERENSAWi7Fo0SKNV3Y9PDwQGBiI0tJSXLhwAQBw6NAhFBQUoGvXrhg9erTGfbz//vtwc3PDnTt38Ouvv2o9homJCRYsWABTU1ON8T///BMA4OrqChsbG405U1NTdO3aVf3xH3/8gdjYWLRs2RIrVqyAlZWVes7S0hLLli2DRCLBd999V+1xvvvuu3B3d1d/bGFhgQULFkAkEmHv3r0oLy8HAMjlcuzduxdisRiff/65xufF2dkZkydPBgBs375dPd61a1eYmJggOTlZPXbp0iUUFhbizTffhL29vcZcSkoKlEolfHx8au34QkND0aFDh2rniIhqA8M2EVENtGrVCu3atdMad3JyAgDk5+cDAE6dOgUAGDJkSLX3ExwcrLHucW5ubmjevLnWeLt27SCVSnHs2DF88803uHv37lPrTEpKgkKhQEBAAMzMzLTm7ezs4OTkhMzMTJSVlWnNDxw4UGusffv26NixI+RyOS5evAgASE9PV2+TcXZ21rqNai90amoqlEolgEc/GHh6eiIvL0+9b1sVrrt37w5fX1+cP39evW9bNff4FpKXPb6+fftqjRER1SaGbSKiGmjRokW14xYWFgAevYERAO7duwcAsLe3r3a9aq+yat3jWrZsWe1tLC0tsWTJEkgkEqxatQqBgYEYMGAAFi5ciNOnT2uszcvLAwDs2bMHLi4u1f65cuUKBEFAYWGh1mM9rW7VuKruvzrORo0awcrKCmVlZRqPowrOqiCdlJQES0tLuLm5wdfXV71v+/E1j4ftlz2+Vq1aVVsvEVFt4RskiYhqoLo329W2J7ePPG7w4MHw8/PD//7v/yIhIQEpKSmIiYlBTEwMxo0bh7lz5wKA+sworq6u6Nix4zMfTyKR1F7x1RCJRFpjvr6+2LRpE5KTkzF06FCcPn0a3t7eMDIyUofqpKQkeHh4ICMjA87OzmjatKn69i97fM/6HBMR1QaGbSIiHWrWrBmA/74C+yTVuGrdi2jSpAlGjBiBESNGQBAExMfHY8aMGdiyZQuGDRuGDh06qLeheHt7Y8GCBS/8GHl5eXBxcdEav3Xrlkbdqr9V408qLi5GUVERzMzMYG1trR7v2rUrJBIJkpOT1fu1VSHbwcFBvW+7c+fOUCqVGq9qA3jp4yMi0jVuIyEi0iHVKf2qO880ABw8eFBjXU2JRCIEBgaiT58+AIArV64AAHr06AEjIyMcPXq0Rqe1O3TokNZYdnY2MjIyIJVK4erqCuDR/nIzMzOkp6cjJydH6zaq4/Ty8tL4rYCZmZl63/a+ffsAPNqvraLat33s2DH1x4972eMjItI1hm0iIh164403YGtri9OnTyMmJkZjbvv27bhw4QKaN2+OAQMGPPd9Xrx4EYcPH1bvC1d58OABzp49C+C/+72bN2+OYcOGIS8vD7NmzUJBQYHW/eXm5lZ7NhQA2Llzp/pNkMCji9YsXboUgiBg2LBh6jclSqVSDBs2DEqlEosXL4ZcLlff5tq1a4iIiADw6EI2T1IF6D179sDKygqdOnXSmFMoFNi/f7/GWpWXPT4iIl3jNhIiIh2SSqVYvXo1Jk2ahIULFyImJgZt27bF1atXcfHiRUilUoSHh7/Q3uFbt27hww8/hJWVFdzd3WFra4vi4mKkpKTg4cOHCAoK0jj937x585CXl4dff/0V8fHx6NixI1q1agW5XI7s7Gzk5ubib3/7W7WBPzg4GG+//Ta6d+8OKysrnDp1Cvn5+ejQoQOmTZumsXbmzJk4c+YMjh8/jn79+sHHx0d9UZvy8nKMGTOm2rN/+Pr6IiIiAuXl5ejZsyeMjIw05gCgvLwc7dq1g62trdbtX+b4iIh0jWGbiEjHevbsib179yIyMhKJiYnIzMxE48aNERwcjMmTJ1d7CsFn6dy5M6ZPn47ExERcu3YNp06dgrW1NVxcXDB8+HD16QRVzMzMEB0djR9//BH79+/HpUuXcP78edjY2MDe3h7BwcEaV5x83Pz58+Hg4IDY2FjcvHkT1tbWGD16NKZNm6ZxTmvg0VlSdu7ciW+//RaHDh3CkSNHIJFI4O7ujlGjRmHw4MHVPoZq37ZCodB65Vq1bzsvL09rrjaOj4hI10SC6q3cRERE/69v377Iy8vD5cuX9V0KEVG9xj3bREREREQ6wrBNRERERKQjDNtERERERDrCPdtERERERDrCV7aJiIiIiHSEYZuIiIiISEcYtomIiIiIdIRhm4iIiIhIRxi2iYiIiIh0hGGbiIiIiEhHGLaJiIiIiHSEYZuIiIiISEf+D83cVYBDF5T7AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "mpg_hp_linear_mod.predict(mpg_hp_linear_fit, data=pd.DataFrame({\"horsepower\": extrapolate_x_hp}))\n", + "sns.scatterplot(data=df_mpg, x=\"horsepower\", y=\"mpg\", color='blue', label='True Data')\n", + "\n", + "plt.plot(\n", + " extrapolate_x_hp,\n", + " mpg_hp_linear_fit.posterior[\"mpg_mean\"].mean((\"chain\", \"draw\")),\n", + " color=\"red\",\n", + " label=\"Predicted\"\n", + ")\n", + "plt.fill_between(extrapolate_x_hp, plt.ylim()[0], 0, color='grey', alpha=0.5, label=\"MPG Forbidden region\")\n", + "plt.xlim(left=0, right=extrapolate_x_hp.max())\n", + "plt.ylim(bottom=mpg_hp_linear_fit.posterior[\"mpg_mean\"].mean((\"chain\", \"draw\")).min())\n", + "plt.legend(frameon=False);" + ] + }, + { + "cell_type": "markdown", + "id": "4868d37a", + "metadata": {}, + "source": [ + "However, it is highlighted in this notebook because, due to the nature of polynomial regression, it can be very sensitive outside the fitting domain. Just for fun to wrap this notebook up, we will take a look at what the 7th order \"best model\" does outside of where we fit the model." + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "dfe793c9", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtsAAAHrCAYAAAAe4lGYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACX+0lEQVR4nOzdd3gUVdvH8e9mN70RQAiEKkURUHoTbPSmoIKoUUFBBSm2B8WCjefRVwVpgoBdbKAiVUR6702KgkiHQID0nt19/1h2ybJJCKTsJvl9rosr5syZM/fMSeI9Z8+cMVitVisiIiIiIlLgvNwdgIiIiIhISaVkW0RERESkkCjZFhEREREpJEq2RUREREQKiZJtEREREZFComRbRERERKSQKNkWERERESkkSrZFRERERAqJyd0BlFYWi4W4uDh3hyFZhIaGqk88kPrFM6lfPI/6xDOpXzxPWFhYkR5PI9tu4uWlS+9p1CeeSf3imdQvnkd94pnUL6KfABERERGRQqJkW0RERESkkCjZFhEREREpJMXmAcm5c+eybds29uzZw4EDB8jIyODdd9/l3nvvdak7adIkJk+enGNby5Yto0qVKi7la9asYdq0aezduxeDwUD9+vUZMmQIrVu3zradw4cPM378eDZu3EhKSgo1atSgX79+PPjggxgMhms/WREREREpEYpNsj1hwgROnjxJWFgYFSpU4OTJk1fcp3fv3kRERLiUh4SEuJTNnTuXkSNHUrZsWUcCv2jRIgYMGMD48ePp0qWLU/1//vmHfv36kZqaSteuXalQoQKrVq3irbfe4tChQ7z++uvXeKYiIiIiUlIUm2R7zJgxVK9enYiICKZPn87YsWOvuE/v3r1p2bLlFevFxcUxZswYwsLCmDNnDuHh4QAMGjSIXr168eabb9K2bVuCgoIc+7z55pskJCQwffp0br/9dgBGjBjBgAEDmDlzJj169KBx48bXeLYiIiIiUhIUmznbbdq0yXaUuiAsXryY+Ph4IiMjHYk2QHh4OJGRkcTExLB06VJH+eHDh9myZQstW7Z0JNoAPj4+jBgxAoBZs2YVSqwiIiIiUnwUm2T7WmzZsoXp06fz6aefsnTpUpKSkrKtt3nzZgDatm3rss1eZq9zpfpNmzYlICCALVu25Dt+ERERESneis00kmsxadIkp+9DQkJ49dVX6dWrl1P5kSNHAKhevbpLG/ayo0eP5qm+0WikSpUq/PPPP2RmZmIylehLLCIiIiK5KJGZ4I033sj//vc/WrRoQYUKFYiOjmblypVMnDiRl19+meDgYNq3b++on5iYCEBwcLBLW/Z52gkJCXmqDxAYGIjFYiEpKYnQ0NAc4yzq14XKlalPPJP6xTOpXzyP+sQzqV9KtxKZbHfs2NHp+ypVqhAZGUmtWrUcq4tkTbbdJSYmxt0hSBZhYWHqEw+kfvFM6hfPoz7xTOoXz1PUNz8les725Vq3bk21atU4cOCAY3Qash+9tstuFDu3+gBJSUkYDAYCAwMLLHYRERERKX5KVbINl+5mUlJSHGU1atQAnOdl29nLss7Pzq2+2WzmxIkTVKlSRfO1RUREREq5UpVsJycnc/DgQQICApw+QmjevDkAa9euddnHXtaiRYs81d+2bRvJycmOOiIiIiJSepW4ZDsxMZHDhw+7lKempvL666+TlJREly5dnEadu3btSnBwMDNnziQqKspRHhUVxcyZMwkLC6NDhw6O8uuvv57mzZuzadMmVq1a5ShPT09nwoQJAPTp06cwTk9EREREipFiM89h9uzZbNu2DYADBw44yuxrXjdt2pQ+ffoQGxtL165dadiwIbVq1aJ8+fKcP3+e9evXExUVRd26dRk5cqRT26Ghobz++uuMHDmS3r17061bN8D2uvbY2Fg++ugjp7dHArzxxhs8+OCDPPPMM3Tr1o3rrruOVatWcfDgQSIjI2nSpElhXxIRERER8XDFJtnetm0bc+bMcSrbvn0727dvd3zfp08fypQpw0MPPcTu3btZtWoV8fHx+Pr6UqtWLR555BEiIyPx8/Nzaf+ee+4hLCyMadOm8csvvwDQoEEDBg8eTJs2bVzq16lTh1mzZjF+/HhWrVpFcnIyNWrUYPTo0Tz00EMFfPYiIiIiUhwZrFar1d1BlFZaCihnrVq1uqr6GzduzPcxC3p5pgULFjBmzBjH9waDAX9/f0JDQ6lduzbNmzenc+fOua7FnleDBw9mx44dBXIdPI2WzfJM6hfPoz7xTOoXz1PUS/8Vm5FtKV2eeOIJl7Iff/yRxMTEbLd5smbNmnHLLbcAtlVwoqOj2blzJ2vWrOHTTz/lpZde8oh130VEREo605o1cPfdRXvMIj2aSB4NGjTIpWzhwoUkJiZmu82TtWjRgkcffdSpzGw2s2jRIj788ENGjx5NUFAQLVu2dFOEIiIipUPASy8p2Ra5GqdOneLee++lW7duPPLII3zyySfs2LGD+Ph4x9x7+/bRo0e77N+qVSsaN27M1KlTncqTkpL47rvvWL58OadOncLb25v69eszYMAAGjVqlO+4jUYjPXv2xMvLi3feeYcJEybw7bffYjAYADh27Bhz585ly5YtREVFkZqaSsWKFbnjjjsYMGAAAQEBTueQ3X9nPef58+ezevVqDh48yIULF/Dz86NevXo8+uijNG3aNN/nIyIi4vHMZrz+/bfID1vilv6T0unEiRMMHDiQmJgYunfvTrdu3fD29r6mtuLi4hg0aBCfffYZwcHB9O7dmzvvvJO//vqLZ555xmm5x/zq2rUr4eHh/Pvvvxw6dMhRvnLlSubPn09ERATdunWjd+/ehISE8M033zB8+HAyMzMddZ944gnCw8Md/23/d/vttzvqfPjhh1y4cIHmzZvTr18/br31Vv7880+GDRvG6tWrC+x8REREPJXh9GkM6elFflyNbAupqf7ExHgTF2cgNNRKWFgGfn4pV97Rg+zevZsnnnjCZYrJqVOnrrqtsWPH8u+//zJq1CjuueceR/ngwYMZMGAA7733Hq1atcLX1zffcXt5edG4cWN+++039u/fT+3atQHo0qULDz74oMsNw2effcaMGTNYunQpXbp0AWxTbrZv305UVFSOU2y+//57Kleu7FR27tw5BgwYwKRJk7jtttvyfS4iIiKezJjNe1iKgka2S7m4uGD69/elfn0jbdp4Ub++kf79fYmLC3Z3aFelXLly9O/fP9/txMbGsmzZMpo1a+aUaAOULVuWhx9+mJiYGLZs2ZLvY9mVL1/ecWy7ChUqZDsyf//99wNc9fEvT7Ttx73jjjs4fvw4p0+fvqr2REREihsvNyXbGtkuxVJT/XnqKSNLlhicypcsMfDUU0a+/NK/2Ixw16lT55qnjWS1b98+zGYz6enpzJgxw2X78ePHATh69Cht27bN9/FyYrVaWbBgAQsXLuTff/8lMTERi8Xi2H7u3Lmrau/kyZN89dVXbNu2jejoaNIv+xjt3LlzVKpUqUBiFxER8UReR4645bhKtkuxmBhvl0TbbskSAzEx3lSqVDyS7bJlyxZIO/Hx8YBtWsru3btzrJeSUnDXxZ44Z133c+zYsfz0009UrFiRtm3bUr58ecfNxGeffeaSLOfm+PHjPPHEEyQlJdGkSRPatm1LYGAgBoOB7du3s2PHjqtqT0REpDhy1zQSJdulWFxc9ol21u3FfbDTy8s2U8psNrtsS0xMdCkLDAwE4KGHHmL48OGFGxxgsVjYsWMHAPXq1QPgwoUL/Pzzz9SuXZtPP/3U6Y2n58+f57PPPruqY/zwww/Ex8fzxhtv0LVrV6dt//d//+c4voiISEnmrpFtzdkuxUJDc3956JW2FwfBwba559HR0S7b/v77b5eym266CYPBwJ9//lnosQH89ttvREVFUatWLa6//nrA9lCn1WqlefPmTok2wM6dO7Ntx2g0AtnfVJw8eRLA5SFIq9Wa6+i9iIhIiWG1um3OtpLtUiwsLINOnbJPqDt1sq1KUtwFBgZSvXp1du3a5ZhvDbZ1tC9fWxtsD1q2b9+eP//8k5kzZ2K1ul6fPXv2kJqamq+4zGYzCxYs4P3338doNDJixAjHGtv2Zfz+/PNPp3naZ8+ezTZmgJCQEADOnDnjss3e3q5du5zKv/76a6flBkVEREoqQ0wMXhenihY1TSMpxfz8Upg2zeTykGSnTlamTTMXm4cjr+TBBx/kvffeY9CgQdx1111YrVY2bNjgmLZxuf/85z8cO3aMyZMn89tvv9GwYUOCgoI4e/Ys+/fv5/jx4yxcuNBl1DknmzdvJi0tDYDU1FSio6PZsWMH0dHRhISE8MYbb9CiRQtH/fLly3PnnXeyYsUK+vfvT/Pmzblw4QLr1q2jWbNmnDhxwuUYTZs2Zfny5YwaNYrWrVvj4+NDnTp1aNeuHb1792bBggWMGjWK9u3bExoayp49ezhw4AC33nor69atu4arKiIiUnzYR7UtlSoV+Uizku1SLjQ0gS+/LP7rbOemV69eZGZm8uOPPzJv3jzKly9P9+7dGTBgQLYrioSGhjJ9+nR++uknli5dyu+//47FYqFcuXLUqVOHxx9/nNDQ0Dwff+vWrWzduhWDwYC/vz+hoaHccMMNPProo3Tu3NkxKp3V66+/TqVKlVixYgWzZ8+mYsWK9OvXj0cffZTly5e71L/nnns4ffo0S5cu5ZtvvsFsNtOtWzfatWvHDTfcwIQJE5g2bRorV67EaDTSsGFDpk2bxpo1a5Rsi4hIiWefr22uUaPIk22DNbvPyaVIxMTEuDsEySIsLEx94oHUL55J/eJ51CeeSf3iGfw++AD/d98l7cEH8f3uuyI9tuZsi4iIiEiJZh/ZttSsWfTHLvIjioiIiIgUIfucbbOSbRERERGRgmXUyLaIiIiISCFITsYrKgpQsi0iIiIiUqAc87VDQ7GGhRX98Yv8iCIiIiIiRcRoX2PbDaPaoGRbREREREowr4tvS7Zcf717ju+Wo4qIiIiIFAHjv/8CYFayLSIiIiJSsLwuJtuWWrXcc3y3HFVEREREpAgYL04j0ci2iIiIiEhBSk7G6/RpQCPbIiIiIiIFyrESSZkyWMuWdUsMSrZFREREpERy90okoGRbpMRYsGABrVq1YsGCBe4OJU8KK95evXrRq1evAm1TRESKJ/vDkWY3TSEBMLntyCJXcOrUKe69995c64SHh/Prr79eU/szZszgs88+4+OPP6Zp06bX1EZJY7/m3bp1Y/To0e4Ox8ngwYPZsWNHjtufffZZ+vXrl+029bWISOlk9ICRbSXb4vGqVKlC586ds90WHBxcxNGIuz300EP4+/u7lDdo0ACAyZMnF3VIIiLioTSyLZIHVapUYdCgQe4OQzzEww8/TLly5XLcXqVKlSKMRkREPJn9hTYa2RYpAF9//TVTpkyhd+/evPTSS7luyzol4ZlnnnHUyzotxT7v95tvvmHatGmsXr2a8+fPM2rUKHr06MFff/3FggUL2L59O2fOnCEzM9MxCv/QQw9hMjn/emVt7+OPP2b16tUkJiZSo0YNIiMj6dSpk8s5paSkMHPmTJYuXcrp06fx8/OjQYMGPPbYY9xyyy15ui4rV65k2bJl7N+/n+joaEwmE7Vr1+aBBx7grrvuctRbsGABY8aMAWDRokUsWrTIsS3r9Aur1cqCBQuYN28ehw4dwmw2U7NmTe677z569uzpcvy4uDg++eQTVq5cSXJyMtdffz2PPfZYnmK/FvbrbO/HvPS1iIiUQImJeJ05A7hv2T9Qsi0lSGRkJJs3b2bOnDm0atWK22+/HYC9e/cyffp0atasyYgRIwDo3r07ADt27KBbt25UqlQJf39/lwQ5IyODZ555hpSUFNq1a4fRaKTsxaWD5s6dy9q1a2nUqBGtW7cmLS2N7du3M2XKFPbt28d7773nEmNmZibDhg0jJSWFrl27kpKSwrJlyxg9ejSxsbH07dvXUTctLY1nnnmGffv2ccMNN/DAAw9w4cIFli5dyqZNm3j77bdp3779Fa/L1KlTMZlM3HzzzZQvX56YmBjWrl3LK6+8wvPPP+84Zt26dXnggQf48ccfqVOnDrfddpujjUqVKgG2RPuNN95gyZIlVK1alc6dO2Mymdi8eTP//e9/OXz4MMOHD3fsl5qaypAhQzh06BANGzakcePGnDlzhtdee42WLVteuVMLQHZ9DZqCJCJS0jmW/StXDmtoqNviULJdXFmtkJzs7ihyFhAABkOBNHXixAlmzJiR7bYGDRrQunVrALy8vBg9ejSPPPII//3vf6lXrx6BgYG88cYbeHl58fbbb+Pn5wdAjx49OH36NDt27KB79+40bdqUsLAwYmJinNo/f/48derU4b333nPsa/fYY4/x4osvYjQaHWVWq5X//e9/zJ8/n127drmMPp87d46qVasyY8YMvL29Aejfvz+PPvookydP5o477qBChQoAzJw5k3379tG5c2fefPNNDBevZ9++fRk4cCDvvfcerVq1IjAwMNfrN27cOCIiIpzKkpOTGTRoENOnT+fuu+/Gz8+PunXrEhQU5Ei2s5u6M3fuXJYsWUKPHj14+eWXHTcnGRkZjBo1iu+++45OnTpx4403ArZR/EOHDnHPPfcwatQoRztdu3bl2WefzTXunHz77bcuc7bLlSuX48O02fW1iIiUfJ6w7B8o2S6erFaCu3bFtHmzuyPJUWbLliQsWlQgCfeJEyf47LPPst32wAMPOJJtgAoVKvDqq68ycuRI3nzzTSpUqMCJEyd47rnnqFOnzjUd/5lnnnFJtME2DeFyBoOB++67j/nz57Nly5Zsp3o8/fTTjkTbHnPfvn2ZPn06f/zxBw8//DBgm8phMpl45plnHIk2wA033EC3bt2YO3cuq1evpmvXrrnGf3miDRAQEED37t2ZOHEi+/bto0mTJrm2YffTTz/h7+/Piy++6PQpgLe3N08//TRr165lyZIljmT7t99+w9vbmyeffNKpnVatWtGsWTO2bt2ap+Nm9d1337mU1alT54or14iISOli9ICHI0HJdvFVQKPGxUGrVq0YP358nuvfdttt9O7dmzlz5gDQpk0bHnjggWs6tq+vL7Vr1852W0ZGBrNnz2bp0qUcOXKElJQUrFarY/u5c+dc9jEajTRs2NClvFGjRgAcOHAAgKSkJE6ePEmNGjUcI91ZNW3alLlz53LgwIErJtsXLlzg66+/ZsOGDURFRZGWlua0Pbs4s5OamsqhQ4coX74833zzjcv2zMxMAI4ePeo4h1OnTlGzZs1sH2hs1KjRNSXbCxcuzPUBSREREdDItuSHwWAbNS4l00iuxR133OFItu+///5rbicsLMxpVDmrUaNGsXbtWqpVq0aHDh0ICwvDZDKRmJjIjz/+SHp6uss+ZcqUwcvL9V1S9nngiYmJgC1RzVp+OXuyaa+Xk7i4OB5//HGioqK4+eabad68OcHBwXh5eXHw4EFWr16dbZzZiY+Px2q1Eh0dneMnDWB7qDNrbGFhYdnWy+ncRERECoJ9jW2zku28mTt3Ltu2bWPPnj0cOHCAjIwM3n33XZePjjMyMli+fDnLly9n9+7dREVFAVC7dm169+7NAw884DTHFmzTFHJ70Gzo0KEMGzbMpfzs2bOMHz+e1atXExcXR+XKlenVqxcDBw50miZQKAwGuMJc3dIqISGBd999F39/fywWC+PGjeOWW2654tzmq7Fv3z7Wrl1Lq1atGDt2rNPP1J49e/jxxx+z3S82NhaLxeKScF+4cAGAoKAgAEes9vLL2cuvdE7z588nKiqKJ598kscff9xp29dff83q1atz3T8r+7FuvPFGvvzyyzzXv3wevF1O5yYiIlIQvP75BwDLNU4jLSjFJtmeMGECJ0+eJCwsjAoVKnDy5Mls6x07dozhw4cTEBBA69atueuuu0hISGDFihW89dZbrF69mqlTp2Y7WnnjjTfSoUMHl/IWLVq4lEVHR9O3b1+ioqLo2LEj1atXZ8uWLYwfP57du3czZcqUHEdEpXC99957REVF8corr5CWlsbYsWP58MMPeeONN5zq2RNki8Vy1cew//y1adPG5eZt586dOe5nNpv5888/XeZy2/epW7cuYEtUIyIiOHHiBGfPnnWZSrJ9+3an+leKM+vKIrnFmds1CQwMpEaNGhw5coSEhIQrruYRGBhI5cqVOXHiBOfPn3eZ+pHbdSpo+elrEREpfgwXLuB1cVDH3SPbrp9ne6gxY8awfPlyNm7cmOMrmcE2Mjh69GjWrVvHlClT+M9//sPbb7/N77//ToMGDVixYgWLFy/Odt969eoxbNgwl3/ZLVH24Ycfcvr0ad544w0mTZrEiy++yA8//ED37t1Zvnw5CxcuLLBzl7ybN28ey5Yto3379tx999306dOHW2+9ld9++43ff//dqW5ISAgAZy6uwXk17A9H7tq1y6n833//5euvv851308++YSMjAzH92fPnmXWrFn4+PjQsWNHR3m3bt3IzMxk6tSpTnPBDx48yMKFCwkKCso2ic5LnL///jvr1693qR8cHIzBYMjxmvTt25fU1FTeffddx3SRrE6dOsWpU6cc33ft2pWMjAymT5/uVG/Tpk3XNF/7WuWnr0VEpPjxOngQAEtEhNtnAhSbke02bdrkqV7FihUdqzlkFRAQwIABA3jhhRfYsmXLFR8qy01iYiKLFi2iatWqTom/wWDghRdeYOHChcyaNYsePXpc8zHkktyW/gN49NFH8fX15dixY3z00UdUrFiRl19+2bH9tddeIzIykvfff5+GDRtSuXJlwPaQocFg4JNPPuHw4cOUL18ek8lEnz59rhjTTTfdxE033cSyZcs4f/489evX58yZM6xZs4Zbb72V5cuXZ7tf+fLlSUlJITIykrZt2zrW2Y6Li+P55593GsGOjIxk3bp1/Pbbbxw5coRmzZoRExPD0qVLMZvNjBo16orTSLp27co333zDuHHj2L59O+Hh4Rw8eJCtW7dyxx13sHLlSqf6AQEB1KtXj507d/Lmm29StWpVDAYDXbt2pVKlSvTu3Zs9e/awaNEidu/eTfPmzSlfvjwXLlzg6NGj7N27l7fffttxjSMjI1m5ciVz587l33//dayzvWzZMm699VbWrVt3xWtdEC7v68DAQIKDg/PU1yIiUvwYL04hMeewyEFRKjbJdkGwL1V2+cf+dmfPnuXbb78lISGBcuXK0bJlS6pVq+ZSb+fOnaSnp9OmTRuXqSIRERHUrFmT7du3YzabczyW5F1uS/8B9OvXDy8vL15//XXS0tJ48803naY4hIWFMXr0aJ599llGjx7NJ598gslkombNmrz22mt89913zJ49m/T0dMLDw/OUgBmNRsaOHcuUKVPYuHEj+/fvp0qVKgwbNow2bdrkmGybTCYmTpzIlClT+O2330hMTKR69eq88MILLm+Q9PX15eOPP+abb75h6dKl/PDDD/j5+dG4cWMee+wxxwomualQoQJTp05l8uTJbNmyhczMTG644QYmTJjAmTNnXJJtgDfffJPx48ezbt06EhMTsVqt3HLLLVSqVAmDwcDo0aNp06YNc+fOZd26dSQnJxMWFkbVqlUZNmwYzZs3d7Tl7+/PlClTmDp1KqtWreLAgQPUrFmTMWPGkJiYWGTJdn76WkREih9Hsu3m+doABmvWz6eLienTpzN27NhsH5DMzaBBg1i9ejXTp093vF0Qcn5A0mAw0LNnT9566y0CAgIc5d9++y1vv/02L730kstDZ2BbR3nFihUsXbqUqlWrXuXZSUllfzV6Tom4iIiIFJDeveHXX2HiRMhmkYuiVGpGtn/88UdWr17t9BpvO39/f4YMGUKHDh2oVq0aFouFffv28dFHHzFv3jxSU1OZNGmSo35CQgKQ8+ue7R/t2+vlJKdVGsQ9snuDZEEym82A+v1qFXa/yLVRv3ge9YlnUr+4R8i+fRiBhMqVybzs+ue0JG1hKRXJ9ooVK3jnnXeIiIjggw8+cNlerlw5RowY4VTWunVrGjVqRO/evVmyZAl79+6lfv36RRWyiIiIiFyLzEy8Dh8G3L/sHxSj1Uiu1apVqxg+fDjlypXjq6++yvZtfDnx9/fnnnvuAS4ttQaXRrRzGrm2v8zjSkujiYiIiEjB8jp2DENGBlZ/f9tqJG5Woke2V65cybBhwwgLC+Prr7++pvnT9o8asi5zVr16dQCOHDmS7T5HjhzB29ubSpUqXX3QUmL9+uuv7g5BRESkxLO/zMZ8/fWQzVubi5r7Iygk9kQ7NDSUr7/+2pEgXy37+sQRWe6MGjVqhLe3N+vXr+fy50tPnjzJ4cOHadKkiWP1ExEREREpGkb7GtsesOwflNBke9WqVU6Jdo0aNXKtv2/fPpekGWDJkiX8+uuvhIaGOr08JCgoiO7du3P8+HF++OEHR7nVamXcuHGA7eUfIiIiIlK0PGmNbShG00hmz57Ntm3bADhw4ICjbPPmzYDtpRV9+vTh0KFDDB06lPT0dFq0aJHtmxwjIiKclgx89913OXbsGI0aNSI8PByz2cy+ffvYtm0bPj4+vPvuuy7zr1944QU2bdrEW2+9xYYNG6hWrRpbtmxh586d3HnnnXTv3r2wLoWIiIiI5MA+jcRTRraLTbK9bds25syZ41S2fft2pwcX+/Tpw7lz50hPTwfI8ZXpLVq0cEq27777bn7//Xd27drFypUrsVgsVKxYkT59+jBgwABq1arl0kaFChWYNWsW48ePZ9WqVSxfvpyIiAhGjBjBwIEDXV52IyIiIiKFz9NGtovlS21KCq276Vm0FqpnUr94JvWL51GfeCb1SxGLjyfs4vThmCNHICTEpUpRr7NdIudsi4iIiEjpYx/VtlSokG2i7Q5KtkVERESkRDD+/TcA5htucHMklyjZFhEREZESwXhxEQ1z3bpujuQSJdsiIiIiUiJ4XUy2LUq2pSCkpaWRlJTkkf/S0tLcfXkE6NWrF7169cpz/QULFtCqVSsWLFhQaMeYMWMGrVq1cizlWdrpeoiIFBxPHNkuNkv/ibO0tDQ2b97s9Bp5T+Lv70+LFi3w9fW95jZOnTrlWKKxbNmyzJs3L9u3ch4+fJgHH3wQgPDwcKfXoi9YsIAxY8Y41ff19SU8PJzWrVvTv39/ypQp49JmQkICc+bMYcOGDRw5coT4+Hj8/PyIiIjglltuoXPnzjRo0CBP55FdDFnVqVOHb775Jk9tiYiISA7S0vA6fBhQsi0FIDMzk5SUFEwmk8e9Ft4eW2ZmZr6SbTuj0ciFCxdYv36905s87ebPn4+XV+4f0jRr1oxbbrkFgNjYWDZt2sQPP/zAypUr+eqrrwgNDXXU3bp1K6+99hqxsbFUrVqVtm3bUrZsWVJTUzl8+DDz5s1j9uzZPPfcczzwwAN5Po+sMWRVrly5PLdR2O644w4aNGhA+fLl3R1KqdGnTx86duxIeHi4u0MRESnWvA4dwmCxYA0OxupBf1M9K0uTq2YymfDx8XF3GC4yMzMLrK2bb76ZgwcPsmDBApdkOzMzk8WLF9O8eXN27NiRYxstWrTg0UcfddpvxIgRbNu2jVmzZjFo0CDA9nbSF154AYPBwBtvvEGXLl1cXlAUFxfHjz/+SFJS0lWdx+UxeKKgoCCCgoLcHUapUqZMmWw/XRERkavjNIXEg14uqGRbPJ6vry8dO3Zk3rx5XLhwgbJlyzq2rVu3jgsXLtCjR49ck+3LmUwmevXqxbZt29i/f7+jfNy4caSlpfHaa6/RtWvXbPcNDQ3lySefLNAbiqx27drFV199xZ49e0hNTaVSpUp06NCBRx55BD8/P6e6rVq1onHjxrz11ltMnTqVTZs2ERMTw+TJk2natKmjXkJCAh9//DGrV68mMTGRGjVqEBkZSadOnZzas095ee211+jRo4fTttWrV/PFF1/w77//EhAQQLt27Rg6dGiO53HmzBkmT57Mpk2byMjI4MYbb+TJJ5/M9dx37NjBzJkz2bNnD8nJyVSsWJEePXrQr18/p3Pftm0bzzzzDE888QRt27ZlypQp7N27F4PBQLNmzRgxYgSVK1e+4rUGGDx4MDt27GDVqlV88cUX/PHHH0RFRdG/f3/HTdipU6f44osv2Lx5MxcuXCAkJISWLVsyaNAgKlWq5NLmihUr+Oqrrzh8+LDTtbLfbGWd6jRjxgw+++wzPv74Y6c+A1izZg3ff/89f//9N5mZmVStWpVu3brRt29fp0+07FOuunXrxoABA5g8eTLbt28nIyODBg0aMGLECOrUqZOn6yEiUlx54nxtULItxUSPHj2YM2cOv/32Gw8//LCjfP78+YSEhHD77bfzzjvvXFPb9pHrI0eOsHPnTsLDw+nWrdsV9yuM6TvLli1j9OjReHt706FDB8LCwti0aROfffYZGzduZMqUKS5Tc+Lj4xk0aBAhISF07NiR9PR0AgMDHdszMzMZNmwYKSkpdO3alZSUFMdxYmNj6du37xXjWrRoEW+//TaBgYF06dKFoKAg1q1bx7Bhw8jMzHS5FufOnWPgwIFER0fTqlUrbrjhBo4cOcLw4cNdEkq7n3/+mQ8//JDg4GDatm1LWFgY+/fv55NPPmHdunVMmTIFb29vp33279/PzJkzadq0Kb169eLAgQOsWrWKQ4cO8e23317VNKZRo0Zx8OBBWrVqRXBwsCNZ37NnD88++ywpKSm0bduWKlWqEBUVxe+//86GDRv49NNPiYiIcLQzf/58/vvf/xIYGEjXrl0JDAxkw4YNDB8+HLPZjNFozFM83333HRMnTiQkJIROnTrh7+/PmjVrmDhxIrt27eK9995z+dTl9OnTDBw4kOuvv54ePXpw8uRJVq9ezTPPPMP333/vUVOWREQKmiPZ9qA1tkHJthQT9evXp1atWixcuNCRbJ8/f54NGzZw7733XvVUmszMTObOnQvATTfdBMDOnTsBaNy48RXngF+LzZs3Z7tKy7333ku5cuVISkri3XffxWg0MmPGDMdI5ODBgxk9ejRLly7l22+/5fHHH3fa/9ChQ/To0YNRo0Zlm8idO3eOqlWrMmPGDEey2r9/fx599FEmT57MHXfcQYUKFXKMOykpibFjx+Lv788XX3xBtWrVHHENGzaMv//+22W+8ZQpU4iOjuapp55iwIABjvJff/2V9957z+UYhw8fZty4cdSuXZvJkyc7zaGfPXs2Y8eOZdasWU43WgDr16/nnXfeoWPHjo6yt956i99++43Vq1c7lV/JuXPnmDlzptOxMzMzef3117FYLHz++efckOUP+M6dO3nmmWcYN24cY8eOBWyfIHz00UfZXqtnn32Wv/76K09zs0+cOMHHH39MWFgYX375JRUrVgTg6aefZtiwYaxatYrFixe7fPqyY8cOhgwZ4jRdadq0aXzxxRcsXLjQ46cxiYjkhycu+wda+k+KkR49evDvv/+yZ88eABYuXIjZbKZnz55X3Hfz5s3MmDGDGTNm8OGHH/Lggw+ydetWKleuzP333w9AdHQ0QLYPByYkJDj2t//74Ycfrir+rVu38tlnn7n8O3/+PIBjikePHj2cPvL38vJi6NChGI1GFi5c6NKut7e3Y3tOnn76aadR4QoVKtC3b1/S09P5448/co171apVJCUl0aNHD0fyCLaR/aeeesqlfkZGBsuWLSMsLIyHHnrIadvdd99N1apVXfaZM2cOZrOZF154wSnZBRg4cCBhYWHZxtm4cWOXhNo+/WXfvn25ntflBg4c6HLstWvXcvr0aSIjI50SbYBGjRrRrl07NmzY4Ji/v3r1apKTk+nZs2eerlVOlixZgtls5qGHHnIk2gA+Pj4888wzANn+LFSuXJnIyEinMvvvx9VeDxGRYsVsdryqXSPbIteoS5cufPzxxyxYsIAGDRqwcOFC6tatS9083MFu3bqVrVu3AraEpVKlSjz44IM89thjLglWdhISEvjss8+cysLDw+nXr1+e4798xPFyf198xWyTJk1ctoWHhxMREcGxY8dISkpymiZSuXLlXB+wMxqNNGzY0KW8UaNGgO2h0NwcPHjQqX5WDRs2dEnyjx49SlpaGk2bNnWZxuHl5cXNN9/M8ePHncrtN1AbN25ky5YtTtv8/f0xmUwcPXrU5fiXJ8CAY5Q+MTEx1/O6XP369V3K7HEdPXqUGTNmuGw/f/48FouFY8eOUa9ePce1ym7Vmfr16+d5CkluPwsNGzbE19c3236rU6eOy6cy13o9RESKE69jxzCkpmL19cWSZbDDEyjZlmIjLCyMtm3b8scff3DXXXdx9OhRXnjhhTzte6VEFy6NaJ87d85lW+XKldm4caPj++yWIMwv++ho1gdAsypXrly2yXZO9e3KlCmT7bQY+35XSsLs28PCwly2GY1Gl5uV3OrnFG98fDwAX375Za6xXC7rdcgaE4DZbL6qtnKL6/fff891X/t69/Y+zO7cvby88rzqSG4/CwaDgbCwMMcnMVlldz3s8+mv9nqIiBQnjvnatWtDHgc2ioqSbSlW7r77blauXMk777yDr68vnTt3LrC2GzduDNjmvVoslkKZt50be6J04cKFbLfby7NLqHITGxub7fnY27vSUn/27TExMS7bzGYzcXFxXHfddXmqn/W4WdnPadmyZS7nFxYWlmNbBenyhw2zxvXhhx/Stm3bK7Zhr59dvBaLhdjYWKdrdaV2Lly44LLaidVqJSYm5qp/DkRESjKvi58Ietp8bdCcbSlmWrZsyXXXXUd0dDS33XYbISEhBdZ2jRo1uOWWW4iKimLx4sUF1m5e2adEbN++3WXbmTNnOHHiBBEREVedZJnNZv7880+XcvsDoVeahmOfP26vn9Wff/7pMmJarVo1fH192b9/v8sDoRaLJdtY7FM47NM2PIU9ruxizo79Wu3evdtl2759+/I8upzbz8LevXtJS0vL0/QpEZHSwlOX/QMl21LMGI1G3n//ff7v//6PwYMHF3j7zz//PL6+vnzwwQcsWbIk2zpJSUlYrdYCP/Ztt91GUFAQCxcu5N9//3WUW61WPv74Y8xmM927d7+mtj/55BMyMjIc3589e5ZZs2bh4+NzxRU7brvtNgIDA1mwYAHHjh1zlGdmZjJt2jSX+j4+PrRv356YmBi+++47p23z5s1zasPuvvvuw2g0Mm7cOKKioly2JyQkOOYxF6XbbruN8PBwfvjhh2zXcc/MzHS6CbntttsICAhg/vz5nDhxwqledtcqJ506dcJoNPL99987TRfJyMjg448/BrjmnwURkZLI+NdfAJhvvNHNkbjSNJJirrBerJIfhR1TvXr1qFevXqG0fcMNNzB27Fhee+01Ro8ezYwZM2jUqBFly5YlOTmZM2fOOF7Skt1DcPkRGBjIqFGjGD16NE888QQdOnSgTJkybNmyhb/++oubbrrJZem7vChfvjwpKSlERkbStm1bxzrbcXFxPP/887ku+we2aSHPP/8877zzDgMGDKBjx44EBgaybt06fH19s129ZciQIWzZsoVp06axa9cuxzrb69evp2XLlmzatMmpfq1atfjPf/7DBx98wAMPPEDr1q2JiIggOTmZ6OhoNm/eTPfu3XnppZeu+vzzw8fHh//9738899xzDB48mGbNmlGrVi0MBgOnT59m165dhIaG8uOPPwIQHBzM8OHDee+99+jfv7/jWm3YsAFvb2+uu+66PE1PqlKlCs888wwTJ04kMjKS9u3b4+/vz9q1azl69Ci33XYbXbp0KezTFxEpHiwWjBcHZJRsS4ExmUz4+/uTkpLikQm3fQWJ4qhZs2bMnj2bOXPmsG7dOseSfH5+flSuXJmePXvStWvXbFevyK/27dtTrlw5vvrqK1auXOl4g+Tjjz/OI488clUvabEzmUxMnDiRKVOm8Ntvv5GYmEj16tV54YUXXN4gmZPu3bsTFBTEF198waJFiwgMDHR5K2JW5cuXZ8aMGY43SO7cuZMbb7yRiRMnsnXrVpdkG6BXr17UrVuX77//np07d7J27VqCgoKIiIigX79+eXrRUGG46aab+Oabb/j2229Zv349u3fvdiTOt912m8s17NWrFyEhIXz55ZcsXLjQca2eeeYZevfu7fQCnNw89NBDVKlShe+//57Fixc73iA5fPhw+vbtm+0ccxGR0sjrxAkMSUlYfXywXH+9u8NxYbAWxufhkif5fegrLS3NIxNtsCV415IYulNRPYgnV6ek9Mvx48fp06cP7du357///a+7w8m3ktIvJYn6xDOpXwqfackSgvv1I/Omm0hYu/aK9XNaLauwFM+hRwHA19e32CW0IiVdfHw8fn5+Tm81TU1NZfz48QDcfvvtbopMRKRkMu7fD4ClkKaY5peSbRGRArRjxw7++9//0rJlSypWrEhcXBxbt27l9OnTNGvWjA4dOrg7RBGREsWTH44EJdsiIgWqZs2atGjRgt27dxMbGwvYHnh88sknefjhh4t8/XYRkZLOPrKtZFtEpBSoVq0aY8aMcXcYIiKlg9l8aY1tD51GoiEWERERESmWvI4exZCaitXPD0v16u4OJ1tKtkVERESkWHJMIalbF4xGN0eTPSXbIiIiIlIsOR6O9NApJKBkW0RERESKKU9fiQSUbIuIiIhIMeVlX2NbybaIiIiISAHKzMT4zz+AppGIiIiIiBQor3/+wZCejjUoCEuVKu4OJ0dKtkVERESk2DHu3QtcHNX24BeGeW5kIiIiIiI5cCz7V7++myPJnZJtERERESl2HCPbSrZFRERERAqWI9m+6SY3R5I7JdsiIiIiUqwY4uIwnjgBeH6ybXJ3AHk1d+5ctm3bxp49ezhw4AAZGRm8++673HvvvdnWT0xMZNKkSSxZsoTo6GgqVKhA586dGTp0KIGBgS71LRYL3377LbNmzeLo0aMEBATQpk0bnnvuOapWrZrtMdasWcO0adPYu3cvBoOB+vXrM2TIEFq3bl2g5y4iIiIil9jX1zZXqYI1NNTN0eSu2IxsT5gwgR9//JFTp05RoUKFXOsmJycTGRnJl19+yfXXX0///v2pWbMmn3/+OY899hhpaWku+4wePZoxY8ZgtVp55JFHaNeuHUuWLOH+++/nyJEjLvXnzp3LwIEDOXToEPfeey+9e/fmn3/+YcCAASxevLigTltERERELmMqJvO1oRiNbI8ZM4bq1asTERHB9OnTGTt2bI51P/30U/bv38+gQYN48cUXHeUffvghM2bM4Msvv+Spp55ylG/cuJHZs2fTvHlzPv/8c3x8fADo0aMHTz75JO+88w6fffaZo35cXBxjxowhLCyMOXPmEB4eDsCgQYPo1asXb775Jm3btiUoKKigL4OIiIhIqVdc5mtDMRrZbtOmDREREVesZ7VamT17NgEBAQwZMsRp25AhQwgICGD27NlO5fbvR4wY4Ui0AW6//XZatGjB2rVrOXXqlKN88eLFxMfHExkZ6Ui0AcLDw4mMjCQmJoalS5de03mKiIiISO6UbLvRkSNHOHv2LE2aNCEgIMBpW0BAAE2aNOH48eOcPn3aUb5p0ybHtsu1a9cOgM2bNzvK7P/dtm1bl/r2sqz1RURERKSAWCzFZo1tKIHJ9tGjRwGoUaNGttvt5fZ52MnJyURHR1OlShWMRqNL/erVqzu1m3Vf+7Yr1RcRERGRguF1/DiGxESsPj5Yatd2dzhXVGzmbOdVQkICQI7zpe3liYmJV1XfXi/rvsHBwXmqn5OwsLAr1pGipT7xTOoXz6R+8TzqE8+kfilgq1cDYKhfn7DrrnNzMFdW4pLt4iQmJsbdIUgWYWFh6hMPpH7xTOoXz6M+8Uzql4Lnt2kT/kDaDTeQfA3XtqhvfkrcNBL7aLN99Ply9nL7CHRe62cdxc5t9Dq3UW8RERERyR/jn38CYG7QwM2R5E2JS7btc6azWxs7a7l97nZAQADXXXcdJ06cwGw2u9S3z73OOj/bvm9287Kzqy8iIiIiBcORbDds6OZI8qbEJds1atSgQoUKbN++neTkZKdtycnJbN++nSpVqlCpUiVHeYsWLRzbLrdmzRoAmjdv7iiz//fatWtd6tvLWrRokf+TEREREREHQ1wcxosDmxrZdhODwUCfPn1ITk5mypQpTtumTJlCcnIyffv2dSq3fz9hwgTS09Md5atWrWLz5s20bdvWaY3vrl27EhwczMyZM4mKinKUR0VFMXPmTMLCwujQoUNhnJ6IiIhIqeVYX7tqVazF5MHTYvOA5OzZs9m2bRsABw4ccJTZ17Nu2rQpffr0AWDgwIEsW7aMGTNmsH//fm666Sb27dvH2rVradiwIY899phT261ataJPnz7Mnj2be++9l9tvv53o6GgWLVpEmTJleO2115zqh4aG8vrrrzNy5Eh69+5Nt27dAFi0aBGxsbF89NFHenukiIiISAEz7t4NFJ8pJFCMku1t27YxZ84cp7Lt27c7Tf2wJ9sBAQHMnDmTSZMmsWTJEjZt2sR1113H448/zjPPPIOfn59L+2+//TZ169Zl1qxZfP311wQEBNCxY0eee+45qlWr5lL/nnvuISwsjGnTpvHLL78A0KBBAwYPHkybNm0K8tRFREREhOL3cCSAwWq1Wt0dRGmlpYA8i5Zn8kzqF8+kfvE86hPPpH4pWMG3347pzz9JnDmTjIszC66Wlv4TEREREblcejrGv/4Citc0EiXbIiIiIuLxjH//jSEjA0uZMliqVHF3OHmmZFtEREREPJ7T+toGg5ujyTsl2yIiIiLi8RwrkRSjhyNBybaIiIiIFAPGPXuA4jVfG5Rsi4iIiIins1gwFbPXtNsp2RYRERERj+Z1+DCGhASsfn6Yb7jB3eFcFSXbIiIiIuLRjDt3AmCuXx9MxeadjICSbRERERHxcKZduwDIbNTIvYFcAyXbIiIiIuLRjBeTbfMtt7g5kqunZFtEREREPJfVeinZ1si2iIiIiEjB8Tp8GK/4eKy+vsXu4UhQsi0iIiIiHsy4Ywdw8eFIb283R3P1lGyLiIiIiMcqzg9HgpJtEREREfFgxfnhSFCyLSIiIiKeqpg/HAlKtkVERETEQzk9HHnjje4O55oo2RYRERERj+T05shi+HAkKNkWEREREQ9lurgSSXF9OBKUbIuIiIiIhzJu3w6AuWlTN0dy7ZRsi4iIiIjnycy8tOxfkyZuDubaKdkWEREREY9j/PtvDMnJWIOCsNSp4+5wrpmSbRERERHxOMZt24CLo9pexTdlLb6Ri4iIiEiJZbo4X7s4TyEBJdsiIiIi4oEcD0cq2RYRERERKUBJSRj37wc0si0iIiIiUqCMf/6JwWzGUqkS1sqV3R1OvijZFhERERGPYsr6cGQxp2RbRERERDyKqYTM1wYl2yIiIiLiYYwa2RYRERERKXiGqCiMx45hNRjIbNzY3eHkm5JtEREREfEYpi1bADDfdBOEhLg5mvxTsi0iIiIiHsORbDdv7uZICoaSbRERERHxGPZkO1PJtoiIiIhIAUpPx7hzJ6BkW0RERESkQBn//BNDWhqWsmWx1Krl7nAKhJJtEREREfEIps2bAchs1gwMBjdHUzBM7g6gsPzyyy+MGjUq1zqtWrXiq6++AmDSpElMnjw5x7rLli2jSpUqLuVr1qxh2rRp7N27F4PBQP369RkyZAitW7fO3wmIiIiIlDIl7eFIKMHJdr169Rg6dGi2237//XcOHjxI27ZtXbb17t2biIgIl/KQbJaemTt3LiNHjqRs2bLce++9ACxatIgBAwYwfvx4unTpks+zEBERESk9HA9Htmjh5kgKTolOtuvVq+dSnp6ezsyZMzGZTPTu3dtle+/evWnZsuUV24+Li2PMmDGEhYUxZ84cwsPDARg0aBC9evXizTffpG3btgQFBeX/ZERERERKOMOpU3idPInVy6tEvMzGrtTN2V66dCmxsbHccccdlC9f/prbWbx4MfHx8URGRjoSbYDw8HAiIyOJiYlh6dKlBRGyiIiISIlnn69trl8fStBgZalLtn/66ScA+vTpk+32LVu2MH36dD799FOWLl1KUlJStvU2X/yByG4qir3MXkdEREREcmfauBGAzFat3BxJwSqx00iyc/LkSTZs2EB4eDjt2rXLts6kSZOcvg8JCeHVV1+lV69eTuVHjhwBoHr16i5t2MuOHj2a/6BFRERESgEl2yXAL7/8gsVioXfv3hiNRqdtN954I//73/9o0aIFFSpUIDo6mpUrVzJx4kRefvllgoODad++vaN+YmIiAMHBwS7Hsc/TTkhIyDWesLCw/J6SFDD1iWdSv3gm9YvnUZ94JvVLHsTHw549AAR17gwl6JqVmmTbYrHwyy+/YDAYuO+++1y2d+zY0en7KlWqEBkZSa1atRyri2RNtgtCTExMgbYn+RMWFqY+8UDqF8+kfvE86hPPpH7JG9OyZQRbLJirVyc+IAAK8ZoV9c1PqZmzvX79ek6dOkWrVq2oWrVqnvdr3bo11apV48CBA47RbMh99Dq3UW8RERERceaYQlIC31NSapLt2bNnAzk/GJkb+x1QSkqKo6xGjRpA9vOy7WXZzecWEREREWeOZDsPyy8XN6Ui2Y6JiWHZsmWUKVPGZbrIlSQnJ3Pw4EECAgKcPnZofvHNRmvXrnXZx17WogQtyC4iIiJSKNLTMW3bBmhku9iaO3cuGRkZ9OzZEx8fH5ftiYmJHD582KU8NTWV119/naSkJLp06YLJdGmKe9euXQkODmbmzJlERUU5yqOiopg5cyZhYWF06NChcE5IREREpIQw7tyJITUVS7lyWOrUcXc4Ba5UPCD5888/AzlPIYmNjaVr1640bNiQWrVqUb58ec6fP8/69euJioqibt26jBw50mmf0NBQXn/9dUaOHEnv3r3p1q0bYHtde2xsLB999JHeHikiIiJyBU5L/hkMbo6m4JX4ZHv37t0cOHCAm2++mRtuuCHbOmXKlOGhhx5i9+7drFq1ivj4eHx9falVqxaPPPIIkZGR+Pn5uex3zz33EBYWxrRp0/jll18AaNCgAYMHD6ZNmzaFel4iIiIiJUFJnq8NYLBarVZ3B1FaaSkgz6LlmTyT+sUzqV88j/rEM6lfrsBsJrR2bbzi4ohfuhRzkyaFfkgt/SciIiIipYJx71684uKwBgdjvvlmd4dTKJRsi4iIiIhbmNasASCjdWswlczZzUq2RURERMQtTOvWAZB5661ujqTwKNkWERERkaJnNmNavx6AzLZt3RxM4VGyLSIiIiJFzrhnD17x8bb52g0bujucQqNkW0RERESKnOniG7dL8nxtULItIiIiIm7gmK9dgqeQgJJtERERESlqpWS+NijZFhEREZEiZty9u1TM1wYl2yIiIiJSxEyrVwOQ0a4dGI1ujqZwKdkWERERkSLlvXIlAJm33ebeQIqAkm0RERERKTopKZg2bgQg4/bb3RxM4VOyLSIiIiJFxrR5M4a0NCyVKmGpW9fd4RQ6JdsiIiIiUmRMq1YBF0e1DQY3R1P4lGyLiIiISJHxvphsZ5aCKSSgZFtEREREioghJgbjzp0AZJSChyNBybaIiIiIFBHT2rUYrFbMN9yAtVIld4dTJJRsi4iIiEiRsC/5VxpWIbEz5Wfn9u3b56met7c3ZcqU4aabbqJnz540btw4P4cVERERkeLGasW0bBkAmXfe6eZgik6+ku2TJ09eVf2dO3fy/fffExkZyauvvpqfQ4uIiIhIMeL1zz8Yjx3D6uNDRtu27g6nyORrGslff/3Fo48+SnBwME8//TTz5s1j69atbN26lfnz5zN48GBCQkKIjIxk5cqVjB07lgoVKjBz5kwWLlxYUOcgIiIiIh7O2z6q3bo1BAa6OZqik6+R7W+//Zbvv/+eWbNmUa9ePadtderUYcSIEXTu3Jn777+fGjVqEBkZyfXXX899993H7Nmz6d69e76CFxEREZHiwZ5sZ+RxGnJJka+R7R9++IEWLVq4JNpZ3XjjjbRq1YoffvgBgHr16lG/fn3279+fn0OLiIiISHGRkoJp3TpAyfZVOXbsGKGhoVesFxISwvHjxx3fV6lShaSkpPwcWkRERESKCdP69RhSU7FUrozlxhvdHU6RyleyHRISwrZt20hPT8+xTnp6Otu2bSMkJMRRlpiY6PS9iIiIiJRcTlNISsEr2rPKV7J91113cebMGZ5//nlOnTrlsj0qKooXXniBs2fPOi0TeOjQIapWrZqfQ4uIiIhIMVFa52tDPh+QfPbZZ9m4cSNLly5l5cqVNGjQgEoX3wZ0+vRp9uzZQ2ZmJtWrV2fEiBEA7N27l3PnznHfffflP3oRERER8WheR49iPHgQq9FIxh13uDucIpevZDssLIwffviBDz/8kAULFrBz5052XnzfPYCvry+9evXihRdeICwsDID69euze/fufAUtIiIiIsWD9++/AxeX/CuF04jzlWyDLeH+73//y6uvvsrevXuJjo4G4LrrrqN+/foEBATkO0gRERERKZ68Fy8GIKNTJzdH4h75TrbtAgICaN68eUE1JyIiIiLFXULCpSX/Ond2czDuUWDJdnp6Ovv37+fs2bMAVKhQgXr16uHj41NQhxARERGRYsR7xQoMGRmYa9XCUqeOu8Nxi3wn20lJSUycOJGffvqJ5ORkp20BAQHcd999DB8+nKCgoPweSkRERESKEft87dI6hQTymWwnJCTwyCOP8PfffwO2t0VGREQAcOrUKfbv388333zDxo0b+fbbbwkODs5/xCIiIiLi+cxmvP/4A4CMLl3cHIz75CvZnjBhAn/99RetWrXi9ddfp1atWk7bDx06xJgxY9i4cSMTJkzgtddey1ewIiIiIlI8GLdvx+vcOazBwWS2auXucNwmXy+1WbJkCeXLl2fq1KkuiTZArVq1mDp1KuXKlWPJkiX5OZSIiIiIFCOOVUjatwdvbzdH4z75SrZjY2Np0aIF/v7+Odbx8/OjefPmxMXF5edQIiIiIlKM+CxYAEB6t25ujsS98pVsV61aNU9JdEJCAlWqVMnPoURERESkmPA6cMD21khv71L9cCTkc8523759+fDDD9m/fz/16tXLts7+/fvZuHEjL774Yn4OdU3uuusuTp48me22Fi1a8M033ziVpaenM336dObNm8fp06cJDQ3lzjvv5Nlnn6VcuXLZtjNv3jy+/vpr/vnnH7y9vWnSpAnDhw+nfv36BX4+IiIiIsWBz8KFAGTedlupfGtkVvlKth977DGOHTvGo48+SmRkJN26daNy5cqAbTWS3377jZkzZ9KvXz/69+9fEPFeteDgYB577DGXcvuqKXYWi4XBgwezdu1aGjVqRKdOnTh69CizZ89mw4YNzJo1i7JlyzrtM3XqVMaPH09ERAT9+vUjKSmJhQsX0q9fP7788kuaNm1aqOcmIiIi4om87VNIund3cyTuZ7BardZr3dk+mm21WjEYDNnWyWmbwWBg375913roPLnrrrsAWL58+RXr/vzzz7zyyiv06NGDDz/80BHz999/z5tvvskDDzzA22+/7ah/5MgRunfvTpUqVfjpp58cyxru37+fvn37UrVqVRYsWICXV84zdWJiYvJzelLAwsLC1CceSP3imdQvnkd94plKY78YTpygzM03YzUYiNu/H2uFCu4OyUlYWFiRHi9fI9uVKlUqqDjcbvbs2QA8//zzTjcH/fr147PPPmP+/Pm88sor+Pn5AfDLL7+QmZnJ4MGDndYPr1evHj169OCXX35h27ZteoW9iIiIlCo+ixYBYG7RwuMSbXfIV7KdlxFjd0tPT+eXX37h7NmzBAUF0bBhQ2655RanOmlpaezatYuaNWu6TC8xGAy0adOGH3/8kT179tCsWTMANm/eDMCtt97qcsy2bdvyyy+/sHnzZiXbIiIiUqp4X5yvnd6jh5sj8Qz5fl27p4uOjmbUqFFOZQ0bNmTcuHFUq1YNgGPHjmGxWKhRo0a2bdjLjxw54ki2jxw5QkBAANddd51L/erVqwNw9OjRAjoLEREREc9niI7GtG4dABmarw0UULJ94sQJtm7dytmzZ0lPT8+x3tChQwvicHl277330rRpU+rWrUtAQABHjhzhiy++YO7cufTv35958+YRFBREQkICAEFBQdm2Yy9PTEx0lCUmJro8MHl5fXu7OSnqOUNyZeoTz6R+8UzqF8+jPvFMpapffvwRLBZo2pTQxo3dHY1HyFeynZaWxmuvvcaCi0+c5vaspcFgKPJk+/Lj1atXj/fffx+AuXPnMnv2bAYMGFCkMWVV2h6Y8HSl8SGW4kD94pnUL55HfeKZSlu/BH33Hd5Acs+epHnoeRerByQ/+OAD5s+fT7ly5ejZsydVq1YlICCgoGIrNA888ABz585l+/btDBgwwPGAY9aR66zs5VlHvrOOiOdUP+uDkyIiIiIlmeHMmUtTSHr1cm8wHiRfyfZvv/1GWFgYv/76a7Zzlz2V/Y4mOTkZsL0J08vLiyNHjmRb316edU53jRo12LFjB9HR0S7nbp+rbZ+7LSIiIlLS+cyfj8FiIbNpUywXn4uTfL6uPTk5mebNmxerRBtg9+7dwKUX2/j5+XHzzTdz+PBhlzdOWq1W1q9fT0BAAA0aNHCU21cZWXfxDi6rtWvXAra3VIqIiIiUBt6//gpAuka1neQr2a5Tp06OUy/c7dChQ6SkpGRb/uGHHwLQs2dPR3nfvn0BGDdunNPc8x9++IHjx4/Ts2dPxxrbYHv40mQyMXXqVKfpJPv372fBggXUqlVLb5AUERGRUsFw+jSmDRsASL/nHjdH41nyNY1kwIAB/Oc//2Hfvn3cdNNNBRVTgVi0aBFffPEFzZs3p3Llyvj7+3PkyBFWr15NRkYGTz31lNMa2L1792bRokUsWLCAEydO0Lx5c44dO8aSJUuoUqUKzz77rFP7NWvWZOjQoYwfP5577rmHTp06OV7XDvDOO+/k+vZIERERkZLC59dfMVitZDZvjrVKFXeH41HylWx37dqVM2fOMGDAACIjI2nTpg0VK1bMMcmsXLlyfg53VVq2bMmhQ4fYv38/W7duJTU1lbCwMG677TYeeugh2rZt61Tfy8uLqVOnMn36dObOncuXX35JmTJluP/++3n22WezXeZv8ODBRERE8NVXX/H999/j7e1Ns2bNGDFiBPXr1y+qUxURERFxK5+ffgIg/f773RyJ5zFYc1uvLw82bNjAm2++ybFjx3I/kMHAvn378nOoEqc0LQVUHJS25ZmKC/WLZ1K/eB71iWcqDf3ideAAoa1aYTUaidu/H2v58u4OKVfFaum/FStWMGzYMDIzMwkLC6Ny5crFYuk/ERERESkYPrNnA5DRvr3HJ9rukK9ke9KkSVitVt5991169eqFwWAoqLhERERExNNZrY5kO71PHzcH45nylWwfOnSIZs2a0bt374KKR0RERESKCeOmTRiPHcMaFERG167uDscj5Wu5jLCwsCKf9yIiIiIinsHXPqrdowdoKnG28pVsd+7cma1bt5KWllZQ8YiIiIhIcZCaivecOYBWIclNvpLtZ599loiICAYPHnzF1UhEREREpOTwXrQIr9hYLJUrk3n77e4Ox2Pla872U089hZeXFxs2bKBr165ERERQsWLFbB+UNBgMfPXVV/k5nIiIiIh4CN9vvwUg7cEHwWh0czSeK1/J9ubNmx3/bTabOXbsWI4j3FqpRERERKRkMJw4gWnlSgDSH3rIvcF4uHwl28uWLSuoOERERESkmPD94QcMVisZbdtiqVnT3eF4tHwl2xEREQUVh4iIiIgUBxYLPt99B0D6ww+7ORjPl68HJEVERESkdDGtW4fxyBGsQUGk9+zp7nA8npJtEREREckz3y+/BC4u96e1ta9IybaIiIiI5Inh7Fm8FywAIK1/f/cGU0wo2RYRERGRPPH57jsMGRlkNm2K+eab3R1OsaBkW0RERESuzGJxTCFJGzDAvbEUI0q2RUREROSKTMuXYzx2DEtoKOm9e7s7nGJDybaIiIiIXJHv558DkP7gg+Dv7+Zoig8l2yIiIiKSK6/Dh/H+/XdAU0iulpJtEREREcmV7/TptjdGtm+PpU4dd4dTrCjZFhEREZGcxcfj++23AKQ+9ZSbgyl+lGyLiIiISI58v/8eQ2Ii5jp1yLzrLneHU+wo2RYRERGR7Fks+M6YAUDak0+Cl1LHq6UrJiIiIiLZ8l68GOO//2IJCSHtgQfcHU6xpGRbRERERFxZrfhNmABA2uOPQ1CQmwMqnpRsi4iIiIgL46ZNmLZswerjQ5oejLxmSrZFRERExIV9VDu9Xz+sFSu6OZriS8m2iIiIiDjx2rcPn99/x2owkDp0qLvDKdaUbIuIiIiIE79JkwDI6NEDS+3abo6meFOyLSIiIiIOXv/+i8/s2QCkPvuse4MpAZRsi4iIiIiD39ixGCwWMjp2xNy4sbvDKfaUbIuIiIgIAF5HjuAzaxYAKf/5j5ujKRmUbIuIiIgIAH7jxmEwm8m46y7MzZq5O5wSQcm2iIiIiNhGtX/4AYCUkSPdHE3JoWRbRERERPB7910MmZm2Ue0WLdwdTomhZFtERESklPPatw+fn34CIOX1190cTcmiZFtERESklPMfMwaD1Ur6PfdgvuUWd4dToijZFhERESnFjJs24bN4MVajkZRXXnF3OCWOyd0BFIYzZ87w22+/sXr1av7991/OnTtHaGgoTZo0YeDAgdxy2R3bpEmTmDx5co7tLVu2jCpVqriUr1mzhmnTprF3714MBgP169dnyJAhtG7dusDPSURERKTAWa0EjB4NQPpDD2GpU8fNAZU8JTLZ/uabb5gxYwbVqlXj1ltvpWzZshw9epSlS5eydOlSxo4dS7du3Vz26927NxERES7lISEhLmVz585l5MiRlC1blnvvvReARYsWMWDAAMaPH0+XLl0K/sRERERECpD3L79g2rIFa2AgKS+/7O5wSqQSmWzffPPNfPPNN7S47EnarVu30r9/f9588006dOiAj4+P0/bevXvTsmXLK7YfFxfHmDFjCAsLY86cOYSHhwMwaNAgevXqxZtvvknbtm0JCgoquJMSERERKUgpKfi/9RYAqcOHY61Uyc0BlUwlcs52p06dXBJtgGbNmtGyZUvi4uL4+++/r7n9xYsXEx8fT2RkpCPRBggPDycyMpKYmBiWLl16ze2LiIiIFDa/qVMxnjiBpXJlUp95xt3hlFglMtnOjclkcvqa1ZYtW5g+fTqffvopS5cuJSkpKds2Nm/eDEDbtm1dttnL7HVEREREPI3h1Cn8xo8HIOWNNyAgwL0BlWAlchpJTk6dOsX69eu57rrrqFu3rsv2SZMmOX0fEhLCq6++Sq9evZzKjxw5AkD16tVd2rCXHT169IrxhIWF5TFyKSrqE8+kfvFM6hfPoz7xTB7ZL08/DYmJ0KoVgQMHEuhV6sZfi0ypSbYzMjIYOXIk6enpvPjiixiNRse2G2+8kf/973+0aNGCChUqEB0dzcqVK5k4cSIvv/wywcHBtG/f3lE/MTERgODgYJfj2OdpJyQkXDGmmJiY/J6WFKCwsDD1iQdSv3gm9YvnUZ94Jk/sF9PKlQTPmoXVy4uE//s/zHFx7g6pSBX1zU+pSLYtFgsvv/wyW7ZsoW/fvi4j1R07dnT6vkqVKkRGRlKrVi3H6iJZk20RERGRYiktjYCRI23/OXAg5oYN3RxQyVfiPzOwWCy88sorLFiwgLvvvpu3Lj51mxetW7emWrVqHDhwwDGaDbmPXuc26i0iIiLiTn4TJmD85x8sFSvqBTZFpEQn2xaLhVGjRjFnzhx69OjBe++9h9dVzkmyf9SQkpLiKKtRowaQ/bxse1l287lFRERE3MVr/378xo4FIHnMGMjmPSJS8Epssm1PtH/99Ve6devG+++/7zRPOy+Sk5M5ePAgAQEBTvN7mjdvDsDatWtd9rGXZbf0oIiIiIhbmM0EDh+OISOD9C5dyLj4Qj4pfCUy2bZPHfn111/p0qULH3zwQY6JdmJiIocPH3YpT01N5fXXXycpKYkuXbo4LRXYtWtXgoODmTlzJlFRUY7yqKgoZs6cSVhYGB06dCj4ExMRERG5Br7TpmHatg1rcDDJH3wABoO7Qyo1SuQDkh9//DFz5swhICCAGjVqMHXqVJc6HTp0oF69esTGxtK1a1caNmxIrVq1KF++POfPn2f9+vVERUVRt25dRl58kMAuNDSU119/nZEjR9K7d2/Hq98XLVpEbGwsH330kd4eKSIiIh7B68AB/MeMASD5rbewRkS4OaLSpUQm2ydPngRs00A++eSTbOtERERQr149ypQpw0MPPcTu3btZtWoV8fHx+Pr6UqtWLR555BEiIyPx8/Nz2f+ee+4hLCyMadOm8csvvwDQoEEDBg8eTJs2bQrv5ERERETyKiODwKefxpCaSsYdd5D+6KPujqjUMVitVqu7gyitPG3dzdLOE9dCFfWLp1K/eB71iWdyd7/4/e9/+H/4IZYyZYhfuxZr5cpui8VTFPU62yVyzraIiIhIaWfcuBG/ceMASB43Tom2myjZFhERESlhDBcuEDRwIAaLhbQHHiDjshf6SdFRsi0iIiJSklgsBAwZgtepU5hr1yb5/ffdHVGppmRbREREpATxnTwZnyVLsPr5kfTFF6C3WruVkm0RERGREsK0ciX+b78NQPL//oe5fn03RyRKtkVERERKAK8jRwh84gnbPO2HHiL9scfcHZKgZFtERESk+EtMJPCRR/CKiSGzSROSP/xQb4n0EEq2RURERIqzzEyCnngC0969WCpUIPHrryGbF/KJeyjZFhERESmurFYCXnoJ7z/+wOrvT+K332o9bQ+jZFtERESkmPKdOBHfL77AajCQNG0a5qZN3R2SXEbJtoiIiEgx5PPVVwS89RYAKWPGkNGjh5sjkuwo2RYREREpZrznzCHg+ecBSHn2WdIGD3ZzRJITJdsiIiIixYj3ggUEPvUUBquVtP79SX39dXeHJLlQsi0iIiJSTHjPn0/g449jyMwk7f77Sf7gAy3x5+GUbIuIiIgUA95z5theWpOZSVqfPiRPmQJGo7vDkitQsi0iIiLi4Xw+/5zAgQNtiXbfvrZE22Ryd1iSB0q2RURERDyV1Yrf++8T+OKLGKxWUh9/nOSPP9aIdjGiWyIRERERT5SWRsDzz+P7/fcApPznP6S+/LLmaBczSrZFREREPIzh/HkCH30U7w0bsBqNJL//PukDBrg7LLkGSrZFREREPIhx+3aCHnsMr5MnsQYHk/jFF2TedZe7w5JrpDnbIiIiIp7AasXnq68I7tYNr5MnMdeqRfzixUq0izmNbIuIiIi4mSE2loBnn8Vn3jwA0rt1I2nKFAgJcXNkkl9KtkVERETcyLR6NQFDh2I8cQKryUTKa6+RNnQoeGkCQkmgZFtERETEHRIT8X/zTfw+/xwAc82aJM2YgblJEzcHJgVJt0wiIiIiRclqxXvBAkJbt3Yk2qmPP078ypVKtEsgjWyLiIiIFBGvv/4i4I038P7jDwDM1auTPGECmbfd5ubIpLAo2RYREREpZIaTJ/F/7z18vv8eg8WC1dub1OHDSX3uOQgIcHd4UoiUbIuIiIgUlpgY/N98E9/p0zGkpgKQ3qMHKa+/jqVOHTcHJ0VBybaIiIhIATOcOIHf9Onw9df4xccDkNG6NSlvvIG5RQs3RydFScm2lDrx8SHExXkRGwtlykBoqIWQkHinOqmp/sTEeBMXZyA01EpYWAZ+fikFHkvW45QpYyUoyEpCgqHQjysiIoXDuHs3vh9/jM+cORgyMwEw33gjKW+8QUanTmAwuDlCKWpKtqVUOX++DIMHw9Kll/7YdejgxdSpZQgLs30fFxfMU08ZWbLkUp1OnbyYNs1EaGhCtu1enpwHB1tJTDQQG3spiU5MNGCxGDCbDSQmQnAwmM0ABoxG23Kq//5rJSjIQGoq+PrCgQNeVKniS3Q0BAaCl5cVLy8rZcrknoQX5M1CUd14iIgUW4mJ+Mybh8933+G9fr2jOKNtW7xfeon41q21ZnYpZrBarVZ3B1FaxcTEuDuEUiU+PoSBA72cEm27Dh2sfP65AZMplf79fZ0SbbtOnaxMn+46Cn55ch4YCB99ZKVJEwPHj0OdOjBqlJWnnjIwfjwsXZq1TZg4ES5cgOuu4+KNQNa4YOpU29/o2FiIj4eyZcHPz0pAgJnAQFvyn5gYTFycEasVrFaIi4OgIAMnTsDw4fDKK1ZatYLERKvLzUDWBNqeWCckGChXDlJSDBw9CgaDgQ0bYPx4uPVWK9OmmfHyMhAbm/UTAiupqVYuXCiYUfpLsRgJDjaXyiTfk290wsLC9DfMw6hPipjFgmn9eny+/x6fefMwJCUBYDUaSe/dm7QhQzA3aqR+8UBh9tG1IqJk2430y1e0jh8vwy235Pzx3a5dYDKZqV/fmGOd5cutVKsGZcvGArZkKGtyHhgI338PEybAsmXw6quwcSO0awfr1sHFlZ6cdOoEkyfDkCHOibZdhw7w2mtwxx3OZVOnWomPt73J9/nnYdAgg+O4WdueNMkWw3/+A4MGQevWtmS9fHnbCHp8PPj4WClbFo4dsyXWlSrBzp22G4DUVPD3h5MnoUoV6NvXlnDffz88+WTWTwisTJ1q4Nw5CAuDYcOs/PFH1k8HbEm6/dOB3BLJ7D9dcN7frqATUk9JcK/mGriDEgjPoz4pAmlpmNaswXvxYnx++w2v06cdm8y1apH+4IOkPfAA1ogIR7n6xfMo2S5F9MtXNBITg4mJMRIbC7ffnnOyvWoVGL0sdGiXRiBJ+JGKETNeWDBixoiZz2dY+PKzTN56I5PAkBTOXgijS08fMjGRiYmhI0xs2WFi+WojmZiY9Ys33e/1Ye1aA23b5hzjzp3QqFHO27dtg6ZNncs6dLCNio8YAS1a2BLqrIm2Xfv28PDD0Lw5PPusc53u3eG99+C551xH3EeNgh494OJgDR072ka2T5+2JeAVK9puAJKSbDcZzz4Ld90FPj4QFGT7l5JiG7UPC4P0dJg40cqYMVZSUw0MG4ZLIjlpku1GYNAgQ46fLnz5ZZoj+Y2PD2bJEiOVKhkcNwWnTlnp1MlMSIhzQprTXH3n0XwDK1ZApUoGMjKgWjUwm61kZEBYmMUl8c5rYn61CfzlN3G5XQN3UQLhedQnhcBqxevYMVuCvWwZ3suWYUhMvLQ5ONg2iv3gg7aHHrOZj61+8TxKtksR/fIVstRU4vclMmnkcc5uP8F7z57hm/HnKM+lf8EkEEgSgSRxXUASXilJGAr4V8KCAaufP7GpfqTgn+2/Fu38+H2Nc1kyAY6vQ0cG8Ob7ASTj/O+7OQF06h3AjJkB3Btp28+azYtht2yxJc+Xj5y/+ips2pT9iHr79tCqFfz3v9mXdeoEQ4fCwIHw6ae4jKp36GCbwvLgg7aEvEMHmDIFLBYrw4YZsh3lb98exo610qhRbp9A2PrHZIKzZ2HMGIPTcdu3h9des1K1qpWkJFsSXras7ZMD+0i7fapPq1YQEwNlyhjw8YHoaHjrLduNS9ZPKOyyjiznNPI8eTJcuGCbqlO2bAapqaarHqVPT/eiceOcr8GePRYMBmuOyXvWG8wyZcDf34rZbCU0NP83A/a27Q/1liljJijI/SPtoqSuQFgseB06hGnLFkzr1mFaswbjiRPOVcLDyejShfSuXcls1w78/HJtUv3ieZRslyL65SsAmZl4HT6M8eBBvA4cwHjwIMYDB/A6dgyv6Oh8NZ2ON2aMWPDCjBEvkxe+AUZi4o2UCTOQnGghyC+TlAT7uHYm3mQW0IlduxT8XJLyOjcHsGH3pe/tSXzXewP45hfXJN7+7633A3hm5KX6yQTwzU8BdL/fDzDQvr1tZP3ypNTu8oS9QwcYNw5uvjnn+LMbxc9q6VJbO1u2wMsv53zciROhfn1YsQL+979LU3gun+pjl3U0/9lnc/6koFMnK59+ambgQGMOI8/Qpg28+SZ8/rmVH37giiPUqan+nD/vy4ULEBpqICHBNvUoJ/PnW+nZ0zXJz8y0kplpm2fv5WXAbLbdlJjNULMmxMRYKVMGEhKsjqQ6Pd3Ek0/mfDOQmupPbKw3tgd5s/9EYvJkOH/e9l4Og8F2zIAAC0lJFNiof15WEbqaellvSMLCyPWm4Wrq5kV+28vpmrkjqSvoT3fyem0KZLpXejpehw5h3L8f086dGHfuxLRzp9PINYDVZMLcpAkZ7dqR0aUL5saNr+phRyXbnkfJdjGze/duJk2axI4dO8jMzKRu3br079+fbt26XXFf/fJdJavVNuKwYwfG7dttX//8E0NKzn9gk/HnOFU5TlUSAitxR5/rmLOmPBsPlec85YgjlJuaBfLC6EAeHRzIlK8COXoukPHTA/hj+aW52/ak0mSCbt1g61Zo1gz++svKM89cGlmdPx/u7mlxJN+vvJDOrk2pvP5iCuPfTWHXJtu4tR+pjjHspjel8HDvFObPSuH4QedtASRTs0IyTW5MZstq13Q4PCSZjPgU/Ekt7KvvIh1v0vDFP9SHs3G+pONDGq5f6zf2YeOOS9936OrDnN+yr5+OD88MNzF2ou0KZuDNpVsZ278PPvJm6HMmJkw28dTQnOvNmWeiy93e/L7UxO0dLpU/P9KbDVtMLFlhApyTYPvNQatW0LNnzue+a5c11/n/69fbEu516+DWW3NuZ88eC4GBFpeRb/sNRU7mz3eNr1MnLs6jv1Rm/3TB/unDxImXTxeyXrzBMDimC2XdNn26heHDvRg40MDp0zBr1pVvqrp3h//7P3juuezn7Pv5ZXLhgi1JCg42cP48JCfbjp/TNKDz58s4fTJhb2/SJNsNRHCwlXLlMkhI8M1mtSErU6dCuXKxjrLY2DIcO2Z7iDg+HkJDbTcg1apBmTKX6gFcuFCGp592bfOTTy49u3E1LlywrYiU9Vw6drTFGBiY5rg2OSWQl0+dCgiAwEAr5ctDYqLhmh4mzm01pdwS2YSEYA4fNrpcx5o1zQQHX+q/vD5/EBNThmXLcJkW1r49hIXFXnV7ACQl4XXyJF7Hjzv+GQ8csA3K/PsvBtuSUE6s/v6YGzYk49Zbybz1VjJbtrTdpV8jJdueR8l2MbJx40YGDhyIj48P3bt3JzAwkCVLlnDy5EleeuklHn/88Vz31y/flRlOnMB71Sq8V67EtHp1tqPV1sBAzHXqYK5TB4v96/XXsyfuJm69uxxZE6oaNWwjnLYRN9v/HDIyoE8fOHIE9u2zPUjYqJEteUhNtX1CuHHjpXnVmzbZEpi774Z9+yycOWNwTGWwPxBpT0jso6jR0XD99TBmDC5THkaMsC3zl5bmOtpq3+7tDV27Op93hw7wySfw1FPQuoWZHRtS2bTSNSG/tVEyj/VJZsyryY4E3v7v4V7J/P5r9uPa/qRQu1IysacvlfmSXjAd6yHMeJGJCTNGx9fAYCMWLyPn40wXZ+obnbabMXJ9bSP7/8l5e4tWRtZsNHFrOyMr1rhut39/z71ebNpq5PAxk9P2Nm2NHDtl4sC/Rpd96txgpPr1Rub/5trmf142MeY95/q3NDbS+34js342smm7awwtWhlp2MjI5E9c21u20siv801s2mpkyDAj99xv257dVKVFi2w3orlNTerUKbsHa52nG9mnAd14Yxq+vikkJNhWEcqanNplTfJXr7by9tvkuNrQZ59ZCA6OJyXFtnLP8OEGl5V/Jk60Ehpqxt//0io/jz9uzGUFo6sbkU5KsrWX3bl06mSlXz94/PGcE8i0NH/++svXZerU5dfwah6kzS5x7dDByvDhhlzbS0/358IF3xyvY9myafj4pOT5+YOkpGD++ceY47Sw2rVtqy+lpvgx6FHYviyG64jmOqIpzzmuI5qW10fTu90ZvM+fsiXWJ07gdf58rudvDQ7GfMMNZN5yC+ZGjchs3BhL3bq2kZUComTb8yjZLiYyMzPp2rUrUVFRzJo1i3r16gGQkJDA/fffz8mTJ/n999+JyPJE8uX0y5cNqxXj9u34zJ2L9+LFGP/5x3mznx/mhg3JbNwYc5Mmtj+MtWpl+5FeTquPXJ4QZ7V6tRWzOft5wCNGwIwZ8O67tgcBz56FffvMBARYHSNNmZlQr57tf3xLltj2DQy0jSi2bWt7CLNSJdtDhCYTLF9ue+jw2WcvJfOXJ/l//mmb2nD5iOX48bYbh0aN4MMPbUl3Tsn69u2wdm3+52x3vDOTtk1TmPxhCj6k40sa82an81Af23/by7J+HfVcGpM/uvT9qy+ksWBOOif/da1fLTydJreYSU3I4PCBTGLO2afnZFC+TCZVwzPxsmTy74EMbqiVydFDWafwZDiNbYf4Z5CRkomvMTPb0SvJn8zLbiD8g4zEJpoILmPkfGz2NxhmjNSoYeDQES+sGLBg+xoU4kVQkIHjp2zfh4R6UbuOAZOvhbQ0bzZtda6f9Wvz5gY2bvHijjsMLFuZc71u3QwEBGeSnu7L+o1enDx9aTuAFQMREdC2Hfj5poPBQGKiD7N+cq6T9Wu/fhAUnO78UJz9v7P5mpDoy1df59zeww8bmPmtc3nNmtCzpxmjt5mUZF8W/ebF4SPOdawYuL4mRFQxsHqNrax2LSu977VgMmU4x5LlvzMyvZn9k4mDBw0usdSubaBqddvfQSsGbqhrpd+DZkd7KSn+/Djbi78PuJ7LDXWh34MQEJBCXLw/Y/7r5YgTwJsMfEnDlzRGPJVCsE8CKbGwdnk60Sdtfwv8SCWIREKIJzwwgSqhCRiT4zEkJjpeFJNX1uBgzFWrYqlSBUvVqlhq18Z8ww2Y69bFWqlSob9kRsm251GyXUysXbuWJ554gnvvvZd3333XaducOXN4+eWXGTZsGEOHDs2xDf3yXWS1Yty5E59ff8V77lyMx45d2uTlZZsrd8cdZN5xB5nNmtky1TzIaVQqMBAWLLDy7ruXzz2FGTMyycw0smwZVK5swNsbypWzrV3t5wfHj0P//rZE+/I5tzEx3sTGemE2g7+/AYMBEhJsD+dt2mRbvm/QIFsCazRC7dowdKiVJUsMjhHwyz/mb98eXnjBtrJHSIjtYb6wMNua23372kadfvrJFleVKvY1uG3zZ1NScKyNfdddMHas7YFG+00AXN1qJPbE3T7aZa83aRIX5/G69kF2c7b/7/9sywhOmuS8FKK9/R07bPOxb7kl508X/vtf25zo9euzP26nTraHMWvXhr/+gmeGWFm53Iw3GfzyYyYPPeCcpNtTQROZfDLZzJ87zezdbWbb5kynVNFEJi2bZjJsiJmPJ1r4c5etLGudm2/K5NGHzIx+zczbo8389EMm/xxwbsOImTo1zXTvksn0qZeno7Y6fiYzPbqaSUs2423IxJxuxt/HzOoVZjC7xmXETMObzPy9z7nMiJnrq5s5eTT7fYyYCQ4wk56ceVkcltx/wUTcyIyX41H36Itj3OcoT88B5Sl7Y7Atqb6YYFtDQ90aq5Jtz1PUybbeIHmNNm/eDEDbbNZzs5dt2bKlSGMqdhIT8Zk9G9/PPsO0b5+j2BoQQEbnzqTffTeZd9xxzX8og4IS+OSTMjz9tNUp4W7d2jY388sv05zmKVaqZARsH5N26WJfccE2hSMmBrp3N3D2rK2NS/NPbfMY/fxSqFQphUqV7HM8Lx3TvvLF0qW25DsoCIxGKxaLlenTDcTF2ZLnsmVtI+fx8bb5j8HBtnpgICjIluAmJtqS6MxM+Pxz201AeLitzdBQiI+34uVloEoVW5IaGmobUV+71vZ1zBjbKHh09KUpNKdO2W4E/u//4PRpK5UqGQgNtbW9apXtmGFhthuGrIl2hw625L1zZ9sc4ssT9qwfbdu/nzrVtoRgdLRtus6779qWEgRbMv3gg3DnnbaHKAcPvmxUvSO88ortBgDggw/gxx9tcWZN2jt2tI3wJ1z8xNvfH1573QAGE8uWmVi3G5q2z+nhRzjoA6O+t938/JPNaiRPTTOTlGGk4/UGNmUzLajlaxAXDp++BoPvgYZ3wtxs6nV4DS5UtvLq1BxG1TJh/pO2udn2OdqvvgobrVeYN73PddvWn23PGORk/o+uc8Db32Xl44lmDh0wc/+9Zl5+0cz2zZmsXe2asLdrbeaVl8zc1yuTKRPNPDs8+6TeiJkxb1t5Y7QFA1a8uPT15ZFWPnj/0vdj3rZQNSKBc9EBjHrZ6lLf/nXEMCuTJ1kY/ZqF/47Jvo4BK/953kyZ0GSiTvkybRp4YcHr4g2FAavj6xOPW6lY4eJ677G+TP3EcHFM1upS98lBVkJCLj4vYR+3yvLVcFlZXJwPX31lyLYtgIcfsvL9d67b+vaxEhaWxoXzPvz8My7b7f/duaOVJX9c2tb7HgtlyqRnGxtWK3FxPixY4Nqe/evtt8PqVZe+79LJQkhohm3fWB+WLs3+PAxYufNOKBOSRkqqN0t+d96WcfF5jzR8uf8hHwLCIDoumE9n+jnK0/AlkSASCCaBYD78JIiaN1s5k1yJFh3KEE9IttOZbn/RTGAl1wdiRdxJI9vXaPjw4fz+++/8/PPPNGjQwGV748aNCQ0NZeXKldnun5yczIULFwo5Ss9kOniQwG++IfCnn/C6mBFZ/PxI7dCBlJ49Sb3zTqz+/gV2vKSkQOLijI4XwISGmgkMTHKpFxoaSlxcXLZtpKX5ERtrIiHBQHCwlTJlMvH1zfmhxLwe80rHCQqyLV8XF+dFSIhtCbe4OANJSQaCg8FisSWumzfDoUNWRo+2v7XRtqpFYKDtpTVRUbakfds2+PZbeOklK02a2BLpoCDbsQ0GHK+VT0qyvdDmpZdg1SoDAQG2UfmmTW1JfFiY7ebg9GlITrbdGFSoYMVqNRAba/s+ONhWNzbWSmio7TgZGQZeeQVWr7YdMyDAttRekya2G5qgIFt75cvbkvuKFS+NbJ87Z0smR4603TzktH9SElSubLup+Pln+PVXqFDB9rBixYq2G4zrr4c33rgUB0C7dlb+7/9sxy1XzrbOduXKtqUKMzNtq1rY+z05OZBjx4wcPGggPPxSjFFRtjeGJibCI4/YbrJq1CCHelYqVbLy4otejvPJqm1b2/Xevt12fhMm2M536lTbTVnWfW67zXZj8+ijtut3eTuDBrnuY3f77bZPOEaOdN7n2WchPNzK7Nm2n5vt23M+9hNP2KZHdep0adrSmjU5n9OECa7bvv7aFr/dihUWwsMTOH8+hJdfNuR6jSZMsN0YvvZa9sdt1w7+7/+shIXFc+pUCO3b5zxtYNkyK5Ur25K1mJgQXnrJcMU28+rChWBeeinn/n71VddnMwBWrjRTsWIiUVHB3HlnzqtgXH4N7fvl5MyZIO64I+eXeOXWXl6vY1qaHyNG+LBqlWvd22+3MmFCOr6+qZw+HcJdd+Xc3vLlVipVynt7niS3/7eIe5QtW5aAgIAiO56S7Wv0+OOPs27dOpYsWUL16tVdtrdr147k5GS2bduW7f6LFy8mNdWz/iAUtpAjR7jxhx+ovGmToyyxUiUOd+3KsTvvJMOe9Umu4uNto8BZXlxGpUq2N0MGB9u+T0uzJXbp6bZZN97etiTT/r2fn+2hzCtJSrJN1Th16lJZ5crQsqVtmnx6+qU2fXxsx0hLu/S9xWI7jv0B0PR0W5smk62ut7etHS8v23Zv70vTSk0m5/a9vW3tWa22r5mZtjKj0ba0nf24RqPtX2amrZ7FYjtfq/XSNfD1db4m3t62ssBAW7KamnopPj8/W5J7uYQEWx/4+9uObzTaPnUID7/Upp+fLY6TJ13rRUTYzjEmBnbvdu3PevXgwAHby4i2brVNFQLbPs2b226GMjNt3587Z2t/377s27GvjrJ/v/N2e1+eOWOLNWt8FSva/nvzZtsNxF9/2aZP3XST7WYILr1Z9Nw5qFvX9gxClSq2BHjzZtdYbr7ZNip/+ZTbSpVs57N796W4brvt0s9Nbtdo9Wpbe40b215ClN1xW7SwteXvb/v5W7fOuU7WurfeemnhiaQk289BTm16e1/dIhW5ncvNN9v6YedO530uvxarVzv/PublGuYWz7W2l5xsu+nK6Tq2bXvp9yanvyNt2ly6frnFcvmx89KeSG78/Pzo0qVLkR1PyfY1ym+y/euvv2I2mzEV4BPPnir4+HFu+P57ItavB8BqMBDVvDmHu3Uj+uabr2q90sLk5+dXbG6AMjJ8HQm1PXH29k4rlGOZzd6kpnqRlmY7jp+fBaMxo9DbS0/3JT0dUlMN+PlZLybwrueY12txqT1bvZzauxp5PXZu55ye7suxY1ChgsFxIwC2m4O0NNunAkajJddrZm/f/tfcfoNiMkFmpsERn8lkG6W3H8fPz4LZ7EVcHPj4GBz7pafbjuvjk+Zo2x5TfDyAbSnAbdugcmUrHTrYroH9z5nJhGNpPfsNQXKylapVbVONjh69NCpZrZqVxo0NLFxoS5qrV7fSsaNz36Sn+3LkyKX2QkPhzBkrK1caHIl7rVpW7rjDFt/l5xISAr6+l9pLTfVl6VI4dsw5jg4dwM/Puf/S0nzz1GZeXX4uJhMkJlqpXh1WroRDhy7FlNO1+OOPq7+GucVzre1dzXXMy+99drHkdOyC/rtUmIrT/1tKg8zMTIxGI7169SqyYyrZvkb5nUby66+/YjAY8Mnjw37Fkd+ZM9T9+msqr1zpmLt4ul07Dj78MEnVqrk5Olf+/v6k5LJmt7hHaeiXzEx7smy4mGTbEwhrvm4I7O3ab1j8/C6uTnGZ9HRfUlMvJeW5HTctze/iDYatTdsnF66JRE7HvrzclrxyxRjzul9ezyUtzZe0NEOWGyVrjsnz1dTNi7xem6u9FmlpXvj6WnLcL6/x5LVP4Op+dvJzbYqz0vA3rDhJT0/HarUWabJd8odVC0mNGjUAOHr0qEuyHR0dTXJyMjfn9pq8EswrLY3rf/qJ62fPxphuW5c5qk0bDj78MIk1a7o5OhHPYzJlUBizqOztXqltH580fHxszxdcia9vKr6+ULGiPykpOY/W5XTs7Mp9fK4cY173y+u5+Pqm4eub13POe928uJprk9f9fXzguuv8SUm5+kT3WvvEVi/vPzvXGotIcecZn98XQ82bNwdsSwBezl5mr1OalN25k7ZDhlDn228xpqdzvmFD1k2cyI7XXlOiLSIiIqWORravUevWralatSoLFizg0UcfdXqpzSeffIK3t3eRfkThbqbkZG6cMYOqv/8OQGq5cuwfNIiodu0K/YUBIiIiIp5KyfY1MplMjBkzhoEDB/Lwww9n+7r2KlWquDvMIlFm715uGTuWgKgoAI52786BAQPILMJldUREREQ8kZLtfGjVqhXfffcdEydOZNGiRWRmZlK3bl1efPFFunXr5u7wCp/FQu0ffqD2d99hsFhIrliR3c8/T0zDhu6OTERERMQjKNnOp5tvvplPP/3U3WEUOe+4OG758EOuu7i04Yn27dn/9NNkapFTEREREQcl23LVgv/9l6ZvvYV/dDRmX1/2DB3Kqfbt3R2WiIiIiMdRsi1XpcLGjdzy/vuYUlNJqlyZ7a++qlVGRERERHKgZFvyrMavv3LjjBkYrFbONWrEjlGjyLS/H1xEREREXCjZliuzWqn71VfUmjULgGPdurHv6aexloJXzYuIiIjkh7IlyZ3ZTP2PP6ba4sUA/N2/P//26aO1s0VERETyQMm25MxspuH48VRZtgyrlxd7hg7lRJcu7o5KREREpNhQsi3ZM5u5edw4IlaswOLlxa6RI4m67TZ3RyUiIiJSrCjZFlcWCw0nTryUaL/8MlFt27o7KhEREZFiR8m2OLNaufGzz6jyxx9YvbzY+fLLnFGiLSIiInJNvNwdgHiW62fNouacOQD8OWKEEm0RERGRfFCyLQ6Vly/nhq++AmD/k09ysmNHN0ckIiIiUrwp2RYAwv78k4bjxwPw7333caRXL7fGIyIiIlISKNkWAk6dosmYMXhlZhJ16638PWCAu0MSERERKRGUbJdyxpQUmrzzDj4JCcTWrcuuF18EL/1YiIiIiBQEZVWlmdVKw48+IvjoUVLLlmX76NFYfH3dHZWIiIhIiaFkuxSr+dNPVFq7FovJxI5XXiGtbFl3hyQiIiJSoijZLqXK7N1L3Ysrj+x76ilib7rJzRGJiIiIlDxKtksh74QEGr3/Pl4WCyfvvJPj3bq5OyQRERGREknJdmljtdJg/Hj8o6NJqlyZvc88AwaDu6MSERERKZGUbJcyVRcvJnzDBiwmEztffhlzQIC7QxIREREpsZRslyL+p09z44wZAPzdvz/xtWu7OSIRERGRkk3JdmlhNnPzuHGYUlM537Ch3hApIiIiUgSUbJcSNebOpezevWT6+/Pnc8/pxTUiIiIiRUAZVyngf/o0db/5BoD9gwaREh7u5ohERERESgcl2yWd1UqDyZMxpqVx/uabOdG5s7sjEhERESk1lGyXcJWXL6f8jh2Yvb3ZM2yYlvkTERERKUJKtksw7/h46l1cfeSfhx4iOSLCzRGJiIiIlC5Ktkuwul99hU98PAnVq3P4vvvcHY6IiIhIqaNku4QK+ecfqi5eDMC+IUOwmkxujkhERESk9FGyXRJZrdw0dSoGq5VTt9/OhYYN3R2RiIiISKmkZLsEqrx8OWH795Pp58ffTzzh7nBERERESi0l2yWMV2oqN3z5JQCHHniA1PLl3RuQiIiISCmmZLuEqTF3Ln7nz5Ny3XUc6d3b3eGIiIiIlGpKtksQn7g4as2aBcCBxx7D4uPj5ohERERESjcl2yVIre++w5SSQlzt2py64w53hyMiIiJS6inZLiECTp+m2qJFAPz1+OPgpa4VERERcTdlZCVEre++w8tsJrppUy40auTucEREREQEKHFvOsnIyGD58uUsX76c3bt3ExUVBUDt2rXp3bs3DzzwAEaj0WmfEydO0L59+xzbHDp0KMOGDXMpP3v2LOPHj2f16tXExcVRuXJlevXqxcCBA/H29i7YE8tF4PHjRKxYAcDBRx4psuOKiIiISO5KXLJ97Ngxhg8fTkBAAK1bt+auu+4iISGBFStW8NZbb7F69WqmTp2KwWBw2ffGG2+kQ4cOLuUtWrRwKYuOjqZv375ERUXRsWNHqlevzpYtWxg/fjy7d+9mypQp2R6jMNT+7jsMFgtnWrUirm7dIjmmiIiIiFxZiUu2g4KCGD16NL179yYgIMBRnpyczCOPPMKKFStYvHgxXbt2ddm3Xr162Y5gZ+fDDz/k9OnTvPnmmzz44IMAWK1WXnjhBRYuXMjChQvp0aNHwZxULoIOH6byqlUAHIyMLPTjiYiIiEjelbg52xUrVuThhx92SrQBAgICGDBgAABbtmzJ1zESExNZtGgRVatWpV+/fo5yg8HACy+8AMCsi0vwFbba338PwOm2bUm4/voiOaaIiIiI5E2JG9nOjclkO93L52zbnT17lm+//ZaEhATKlStHy5YtqVatmku9nTt3kp6eTps2bVymikRERFCzZk22b9+O2WzO8VgFIfDECcLXrQPgn4uj6yIiIiLiOUpVsv3zzz8D0LZt22y3r1u3jnUXk1ewjVT37NmTt956y2mk/OjRowDUqFEj23Zq1KjB4cOHOXXqFFWrVi2g6F1dP2sWBquVM61akVizZqEdR0RERESuTalJtn/88UdWr15Nq1atuP322522+fv7M2TIEDp06EC1atWwWCzs27ePjz76iHnz5pGamsqkSZMc9RMSEgAIDg7O9liBgYFO9XLi5+eHr6/vNZ2Pb1QUlS+uQHLikUfw9/e/pnbEma6jZ1K/eCb1i+dRn3gm9Yvn8PLyIiUlpUiP6bHJ9nvvvUd6enqe6z/66KM5jjSvWLGCd955h4iICD744AOX7eXKlWPEiBFOZa1bt6ZRo0b07t2bJUuWsHfvXurXr39V53AlqampWCyWa9q3xsV1tc81asTZmjWhiH9wSiJ/f/8i/wWUK1O/eCb1i+dRn3gm9YtnuZrcsqB4bLL9448/kpycnOf6nTt3zjbZXrVqFcOHD6dcuXJ89dVXVKhQIc9t+vv7c8899zB+/Hi2b9/uSLbtI9o5jVwnJSU51StoPnFxVP39dwAO9e1bKMcQERERkfzz2GR7x44d+W5j5cqVDBs2jLCwML7++utrmj8dFhYG4HRXWr16dQCOHDmS7T5HjhzB29ubSpUqXX3QeVBt4UKM6enE1qnDhVtuKZRjiIiIiEj+lbil/+zsiXZoaChff/21I0G+Wrt27QJsq4zYNWrUCG9vb9avX4/VanWqf/LkSQ4fPkyTJk0cq58UJK/0dKotWADAkXvvhSJ6cY6IiIiIXL0SmWyvWrXKKdHOaS633b59+1ySZoAlS5bw66+/Ehoaym233eYoDwoKonv37hw/fpwffvjBUW61Whk3bhwAfQtpekflFSvwjY0l5brriLr11kI5hoiIiIgUDI+dRnKtDh06xNChQ0lPT6dFixYsXLjQpU5ERAT33nuv4/t3332XY8eO0ahRI8LDwzGbzezbt49t27bh4+PDu+++6zL/+oUXXmDTpk289dZbbNiwgWrVqrFlyxZ27tzJnXfeSffu3Qv+5KxWasyZA8CRe+7BWggj5yIiIiJScEpctnbu3DnHk6bZJdoALVq0cEq27777bn7//Xd27drFypUrsVgsVKxYkT59+jBgwABq1arl0kaFChWYNWsW48ePZ9WqVSxfvpyIiAhGjBjBwIEDXV52UxDKb99O8LFjZPr7c6Jz5wJvX0REREQKVolLtlu2bMnff/99Vfv06dOHPn36XPWxKlSowP/+97+r3u9aVZ83D4DjnTuTeXEtbxERERHxXCVyznZJ5H/6NNdt3QrAscKYoiIiIiIiBU7JdjFRbdEiDFYr0U2bkpxlZRQRERER8VxKtosBr7Q0qixZAsCxHj3cHI2IiIiI5JWS7WKg0qpV+CQkkFyhAmebNXN3OCIiIiKSR0q2i4FqF1dVOd69OxiNbo5GRERERPJKybaHCzl0iDIHD2IxmTjRqZO7wxERERGRq6Bk28NVWbwYgDOtW5MeGurmaERERETkaijZ9mBeqalUXrkSgONdurg3GBERERG5akq2PVj4unV4JyWRXLEi52+5xd3hiIiIiMhVUrLtwapenEJyolMn8FJXiYiIiBQ3yuA8VOCJE5TduxerlxcnOnZ0dzgiIiIicg2UbHuoiKVLAYhu2pS08uXdHI2IiIiIXAsl257IYqHy8uUAnOzQwc3BiIiIiMi1UrLtgcru3o3/uXNkBAZytmVLd4cjIiIiItdIybYHirg4qn36ttuw+Pi4ORoRERERuVZKtj2MMTWV8HXrADh5111ujkZERERE8kPJtoepuGEDppQUksPDib3pJneHIyIiIiL5oGTbw1RetgyAk+3bg8Hg5mhEREREJD+UbHsQn9hYyu3cCcCpO+90bzAiIiIikm9Ktj1I+Nq1eFksxNatS3Llyu4OR0RERETyScm2B6m0ahVgW4VERERERIo/Jdsewu/cOcru3QtAlJJtERERkRJBybaHCF+9GoAL9euTqtezi4iIiJQISrY9RKWLyfbp2293cyQiIiIiUlCUbHuAgNOnKXPgAFYvL6LatnV3OCIiIiJSQJRse4CKa9cCcP7mm0kvU8a9wYiIiIhIgVGy7QHsr2c/c+utbo5ERERERAqSkm0384uOtk0hMRiIat3a3eGIiIiISAFSsu1mFdevByDmpptIL1vWzdGIiIiISEFSsu1mmkIiIiIiUnIp2XYj39hYwuwvstEUEhEREZESR8m2G4Vv2oTBaiW2Th1SK1Z0dzgiIiIiUsCUbLtRpY0bAU0hERERESmplGy7iSklhfJ//gnAGU0hERERESmRlGy7SYWdOzFmZpJUuTJJVaq4OxwRERERKQRKtt0kfPNmAM62bAkGg5ujEREREZHCoGTbTSpu2wbA2Vat3ByJiIiIiBQWJdtu4puQQHpQEDE33eTuUERERESkkCjZdqMzTZtiNRrdHYaIiIiIFBIl224U1aKFu0MQERERkUKkZNtNzCYTZxs3dncYIiIiIlKITO4OoLSaP3s2/v7++Pr6ujsUycLf39/dIUg21C+eSf3iedQnnkn94jm8vLxISUkp0mMarFartUiPKCIiIiJSSmgaiYiIiIhIIVGyLSIiIiJSSJRsi4iIiIgUEiXbIiIiIiKFRKuRFKHdu3czadIkduzYQWZmJnXr1qV///5069bN3aGVeHfddRcnT57MdluLFi345ptvnMrS09OZPn068+bN4/Tp04SGhnLnnXfy7LPPUq5cuaIIucSYO3cu27ZtY8+ePRw4cICMjAzeffdd7r333mzrJyYmMmnSJJYsWUJ0dDQVKlSgc+fODB06lMDAQJf6FouFb7/9llmzZnH06FECAgJo06YNzz33HFWrVi3s0yuWrqZPJk2axOTJk3Nsa9myZVSpUsWlfM2aNUybNo29e/diMBioX78+Q4YMoXXr1gV6LiXFmTNn+O2331i9ejX//vsv586dIzQ0lCZNmjBw4EBuueUWl330u1K4rrZP9LtSNNLS0hg3bhx79uzh6NGjxMXFERISQtWqVenTpw9333033t7eTvu4+3dFyXYR2bhxIwMHDsTHx4fu3bsTGBjIkiVLeO6554iKiuLxxx93d4glXnBwMI899phLeUREhNP3FouFwYMHs3btWho1akSnTp04evQos2fPZsOGDcyaNYuyZcsWVdjF3oQJEzh58iRhYWFUqFAhx5segOTkZCIjI9m/fz9t27ale/fu7N+/n88//5wtW7bw7bffuiyXOXr0aGbPnk2dOnV45JFHOHv2LL/99hvr1q3jxx9/pEaNGoV8hsXP1fSJXe/evV1+VwBCQkJcyubOncvIkSMpW7asI4FftGgRAwYMYPz48XTp0iX/J1HCfPPNN8yYMYNq1apx6623UrZsWY4ePcrSpUtZunQpY8eOdRqY0e9K4bvaPrHT70rhSkpK4vvvv+fmm2/mjjvuoGzZssTFxbFmzRpeeeUVFi1axIwZM/Dysk3e8IjfFasUuoyMDGuHDh2sDRo0sO7bt89RHh8fb+3UqZO1fv361hMnTrgxwpLvzjvvtN555515qvvTTz9Z69ata33++eetFovFUf7dd99Z69ata3399dcLK8wSad26dY6f72nTplnr1q1r/fnnn7OtO2HCBGvdunWtH3zwgVP5Bx98YK1bt671k08+cSrfsGGDtW7dutaHH37YmpaW5ihfuXKltW7dutbHH3+8gM+mZLiaPpk4caK1bt261o0bN+ap7djYWGuzZs2sLVu2tJ4+fdpRfvr0aWvLli2tLVu2tCYkJOT/JEqY33//3bpp0yaX8i1btljr169vbd68udPPuH5XCt/V9ol+V4qG2Wx2uu52GRkZ1sjISGvdunWtK1ascJR7wu+K5mwXgY0bN3Ls2DF69OhBvXr1HOXBwcE8/fTTZGRkMGfOHDdGKFnNnj0bgOeffx6DweAo79evH1WrVmX+/Pmkpqa6K7xip02bNtmO8lzOarUye/ZsAgICGDJkiNO2IUOGEBAQ4OgbO/v3I0aMwMfHx1F+++2306JFC9auXcupU6cK4CxKlrz2ybVYvHgx8fHxREZGEh4e7igPDw8nMjKSmJgYli5dWijHLs46depEixYtXMqbNWtGy5YtiYuL4++//wb0u1JUrqZProV+V66Nl5eX08+wnclkomPHjgAcPXoU8JzfFSXbRWDz5s0AtG3b1mWbvWzLli1FGlNplJ6ezi+//MInn3zCzJkz2bVrl0udtLQ0du3aRc2aNV2SEYPBQJs2bUhOTmbPnj1FFXapceTIEc6ePUuTJk0ICAhw2hYQEECTJk04fvw4p0+fdpRv2rTJse1y7dq1Ay79/kn+bNmyhenTp/Ppp5+ydOlSkpKSsq2Xl7936pOrYzKZnL7qd8X9Lu+TrPS74h4Wi4U1a9YAULduXcBzflc0Z7sIHDlyBIDq1au7bLvuuusICAhw3IVJ4YmOjmbUqFFOZQ0bNmTcuHFUq1YNgGPHjmGxWHKcj2UvP3LkCM2aNSvMcEsd++9Abtd+7dq1/9/enQc1db19AP8CL4ohqFhwAfyNSr0BDVDAhMIodeu4oxWXqYqjzlh1bMd1lFbRurRatTjVurfFKqUCjlutVju1dakKCFoQUJRFJVYEN5YQQHPfP5hciYkLlQRtv58Zp5PnnCT35PQJD5dzz0VBQQHatWsHrVaL4uJiCIIAOzs7k/6GfGNuNYz169cbPW7evDkWLFiAYcOGGcWf9X3HOam/mzdv4vTp03B1dZUKCOZK4zI3J3UxV6yjuroaW7ZsgSiKuH//Ps6cOYO8vDwMHz5curj0VckVFttWUF5eDqB22Yg5crkcZWVl1jyk/5zhw4cjMDAQgiBAJpOhoKAAMTEx2L9/PyZMmIADBw4YzYNcLjf7Ooa4YU6p4dT3s3/R/sytl+Pl5YXPP/8carUarVu3RnFxMf744w+sW7cOkZGRcHJyQp8+faT+z/q+45zUT01NDebNm4fq6mrMnTtX+uHPXGk8T5sTgLlibTU1NUa7v9jY2GDSpEmYM2eOFHtVcoXFNv0nfPjhh0aPvb29sWrVKgC1V4MnJiZi4sSJjXFoRK80wxpIAw8PD4wbNw6enp7Sjgl1CwhqGHq9HpGRkUhJScGoUaNMzoqS9T1vTpgr1uXo6IjLly9Dr9fj9u3bOHbsGNauXYsLFy5g27ZtTy2YGwPXbFvB834TKi8vf+pZb7Ks0aNHAwDS0tIAPD7D8LQz14b4q5TE/xb1/exftD9zyzKCg4Pxv//9Dzk5OUZz8KzvO87Ji9Hr9fjkk09w8OBBhIWFYcmSJUbtzBXre96cPAtzxbJsbW3Rtm1bjBkzBkuXLkVaWho2bdoE4NXJFRbbVmBYK2RujU9xcTG0Wq3ZNVtkec7OzgBq9+EEgPbt28PW1lZaS/ckQ5z70TY8Qw686Gcvk8ng6uqKwsJCPHr0yKS/Id+YW5ZjyJ/Kykop9qzvO87J8+n1enz88cfYu3cvBg8ejJUrV0r7BRswV6zrRebkeZgr1vHkhaWvSq6w2LYClUoFADh16pRJmyFm6EPWlZ6eDuDxjW0cHBzg6+uL/Px8kxt9iKKI06dPQyaTQalUWv1Y/+06dOiA1q1bIy0tTfrlx0Cr1SItLQ0eHh5o166dFFer1VLbkwxXpTO3LEOr1eLKlSuQyWRSIQG82Pedue3U6HFRt2/fPgwcOBCrVq0ye5EWc8V6XnROnoW5Yj23b98G8HiXmFclV1hsW0FwcDDat2+PgwcPIjs7W4qXlZVh8+bNsLe353o8C8rNzTU6m1A3vmbNGgDAkCFDpPioUaMAANHR0RBFUYrv2rULN27cwJAhQ+Dg4GDho/7vsbGxwciRI6HVarFx40ajto0bN0Kr1UpzY2B4/NVXX6G6ulqKHz9+HMnJyejevbvF9pP+LygvL0d+fr5JXKfTISoqChUVFejfv7/R9mcDBgyAk5MTYmNjcevWLSl+69YtxMbGwtnZGX379rXK8b9ODMsU9u3bh/79+2P16tVPLeqYK9ZRnzlhrljP1atXzf5Mr6ysxIoVKwDU7okNvDq5YiPWrSbIYp52u3aNRoP58+fzdu0WtH79esTExEClUsHNzQ3NmjVDQUEBTpw4gZqaGkyZMgWzZ8+W+uv1ekyePFm6XbtKpcL169dx9OhRuLu7IzExkbdrr4fExESkpqYCAHJycpCZmYmAgADpz3CBgYEYOXIkgNozDe+//z4uXbqE7t27o0uXLsjKysKpU6fg4+OD2NhYk190Fi5cKN1W95133kFxcTEOHToER0dH7Nq1Cx07drTugF8DLzonhYWF6Nu3L3x8fODp6QkXFxfcuXMHp0+fxq1btyAIAnbs2GF0tg4wvgW14XbWhw4dwr1797B27VoMGDDAugN+Daxfvx5ff/01ZDIZxo8fb3b/5r59+0o3RmOuWF595oS5Yj2Gn+mBgYFwd3eHXC5HUVERTpw4gfv376Nbt2749ttvpf//X4VcYbFtRenp6Vi3bh3Onz+Phw8fQhAETJw4UUowsozk5GTExcUhOzsbJSUl0Ol0cHZ2hq+vL8aMGWP2hgLV1dXYunUr9u/fj7///hstW7ZEz549MXPmTLi4uDTCKF5fkZGRz7xD6nvvvYeVK1dKj8vKyrB+/XocPXoUJSUlcHV1Rf/+/TF9+nSzF6bq9XrExsYiISEB165dg0wmQ0hICGbNmiXtn07GXnROysvLER0djfT0dGg0GpSWlqJp06bw9PREv379MG7cuKf+lefEiRPYsmULsrKyAABKpRLTpk1DSEiIRcb0unvenADAihUrMHz4cOkxc8Wy6jMnzBXrycjIQEJCAs6fP4+ioiJotVrI5XIoFAoMGjQI4eHhJr8YNXausNgmIiIiIrIQrtkmIiIiIrIQFttERERERBbCYpuIiIiIyEJYbBMRERERWQiLbSIiIiIiC2GxTURERERkISy2iYiIiIgshMU2EREREZGFsNgmIiIiIrIQFttERA2gsLAQCoUCERERjX0oRET0CmGxTURERERkISy2iYiIiIgshMU2EREREZGFsNgmImpgOp0Oa9asQa9evaBUKvHuu+9i69atEEXRpO/Vq1cxZ84cdO/eHUqlEj169MC8efOQl5dn0jcpKQkKhQKRkZEoLi7GggULEBoaii5dumD79u0AgOrqavzwww8IDw9HUFAQ/Pz80Lt3b0yZMgU///yzyWs+fPgQcXFxGD16NAICAuDr64uhQ4di+/btePjwoUn/3r17Q6FQQBRFfP/99xg4cCB8fHzQo0cPLF++HKWlpWY/k8rKSmzYsAGDBw+Gr68vAgMDMXbsWLPHFBERAYVCgcLCQqP49u3boVAooFQqUVlZadT2xRdfQKFQ4Jdffmmw8e3cuRNhYWHw8/PD0KFDzY6LiOh5/q+xD4CI6N+kpqYGkyZNQm5uLtRqNbRaLVJSUvDll1+ioqICs2bNkvqeOXMGU6dOhU6nQ5cuXaBWq5GXl4f9+/fj119/xbZt29CtWzeT97h79y5GjBiBR48eISAgANXV1WjWrBkAYO7cuThy5AgcHR3RrVs3yOVyFBUVITU1FVqtFoMGDZJeR6fT4YMPPkBSUhJatmyJt956C02aNEF6ejpWrFiBpKQkbNiwAba2pudlli1bhoSEBKjVagiCgJSUFOzcuRPJycmIi4uDXC6X+paXl2P8+PHIzMxEq1at0LNnT1RWVuLs2bM4d+4czp8/j4ULF0r9VSoVkpOTkZycDA8PDymelJQkfcbnz59HSEiIUZuNjQ3UanWDjG/x4sXYs2cPVCoVPD09UVNT8+yJJyJ6GpGIiF7ajRs3REEQREEQxHHjxollZWVSW3p6uujt7S36+fmJ5eXloiiKYkVFhRgSEiIKgiDGxsYavVZMTIwoCIIYGhoq6nQ6KX727FnpPaZPn27UJoqieP36dVEQBLFXr17i3bt3jdp0Op2YlpZmFPv0009FQRDEmTNniqWlpVK8rKxMnDx5sigIghgXF2f0nF69eomCIIgBAQFiRkaGFC8vLxfHjx8vCoIgLl++3Og5S5cuFQVBECMiIow+l6tXr4rBwcGiIAjisWPHpPiZM2dEQRDE+fPnS7FHjx6JKpVKHDRokCgIghgdHS21lZaWil5eXuKgQYMabHxBQUFiTk6OSET0sriMhIioAdna2mLJkiVGZ3Z9fHwQGhqKyspKXLx4EQBw+PBhlJSUwN/fH2PHjjV6jQkTJqBr1664desWjhw5YvIeTZo0QVRUFJo2bWoUv3fvHgDA29sbzs7ORm1NmzaFv7+/9PjOnTtITExEu3btsGLFCjg5OUltcrkcn332Gezt7fHjjz+aHee4ceOgVCqlx46OjoiKioKNjQ12796NqqoqAIBWq8Xu3btha2uLxYsXG30unp6emDZtGgBgx44dUtzf3x9NmjRBcnKyFLt06RIePHiAoUOHwt3d3agtJSUFer0eKpWqwcY3efJkdO7c2WwbEVF9sNgmImpAbm5u6NSpk0m8Q4cOAIDi4mIAwLlz5wAAQ4YMMfs6YWFhRv3q6tq1K9q0aWMS79SpE2QyGY4fP45vvvkGRUVFTz3OpKQk1NTUoEePHnBwcDBpd3V1RYcOHZCTkwOdTmfSPnDgQJPYm2++CS8vL2i1WmRlZQEAMjMzpWUynp6eJs8xrIVOS0uDXq8HUPuLga+vLzQajbRu21BcBwUFQa1WIyMjQ1q3bWiru4TkZcfXu3dvkxgR0T/BYpuIqAG1bdvWbNzR0RFA7QWMAHD79m0AgLu7u9n+hrXKhn51tWvXzuxz5HI5li1bBnt7e6xevRqhoaHo168fFi1ahNTUVKO+Go0GAJCQkACFQmH235UrVyCKIh48eGDyXk87bkPccNzPG2fz5s3h5OQEnU5n9D6GwtlQSCclJUEul6Nr165Qq9XSuu26feoW2y87Pjc3N7PHS0RUX7xAkoioAZm72K6hPbl8pK7BgwcjJCQEv/32G06dOoWUlBTEx8cjPj4eEydORGRkJABIO6N4e3vDy8vrme9nb2/fcAdvho2NjUlMrVZj48aNSE5OxrBhw5CamorAwEDY2dlJRXVSUhJ8fHyQnZ0NT09PvPHGG9LzX3Z8z/qMiYjqg8U2EVEjaN26NYDHZ2CfZIgb+tVHq1atMHLkSIwcORKiKOLkyZOYNWsWYmJiEB4ejs6dO0vLUAIDAxEVFVXv99BoNFAoFCbxmzdvGh234b+G+JPKyspQWloKBwcHtGjRQor7+/vD3t4eycnJ0nptQ5Ht4eEhrdv28/ODXq83OqsN4KXHR0TUULiMhIioERi29DO3zzQAHDhwwKjfP2VjY4PQ0FD07NkTAHDlyhUAwNtvvw07Ozv8/vvv/2hbu8OHD5vEcnNzkZ2dDZlMBm9vbwC168sdHByQmZmJgoICk+cYxhkQEGD0VwEHBwdp3faePXsA1K7XNjCs2z5+/Lj0uK6XHR8RUUNhsU1E1AgGDBgAFxcXpKamIj4+3qhtx44duHjxItq0aYN+/fq98GtmZWXh6NGj0rpwg/v37+Ovv/4C8Hi9d5s2bRAeHg6NRoM5c+agpKTE5PWuXbtmdjcUAIiNjZUuggRqb1qzfPlyiKKI8PBw6aJEmUyG8PBw6PV6LF26FFqtVnpOfn4+Nm3aBKD2RjZPMhTQCQkJcHJyQpcuXYzaampqsHfvXqO+Bi87PiKihsJlJEREjUAmk2HNmjWYOnUqFi1ahPj4eHTs2BF5eXnIysqCTCZDdHR0vdYO37x5Ex999BGcnJygVCrh4uKCsrIypKSkoKKiAr169TLa/m/BggXQaDQ4cuQITp48CS8vL7i5uUGr1SI3NxfXrl1Dnz59zBb8YWFhGDVqFIKCguDk5IRz586huLgYnTt3xowZM4z6zp49GxcuXMCff/6Jvn37QqVSSTe1qaqqQkREhNndP9RqNTZt2oSqqioEBwfDzs7OqA0Aqqqq0KlTJ7i4uJg8/2XGR0TUUFhsExE1kuDgYOzevRubN2/G2bNnkZOTg5YtWyIsLAzTpk0zu4Xgs/j5+WHmzJk4e/Ys8vPzce7cObRo0QIKhQIjRoyQthM0cHBwwLZt2/DTTz9h7969uHTpEjIyMuDs7Ax3d3eEhYUZ3XGyroULF8LDwwOJiYkoLCxEixYtMHbsWMyYMcNoT2ugdpeU2NhYfPfddzh8+DCOHTsGe3t7KJVKjBkzBoMHDzb7HoZ12zU1NSZnrg3rtjUajUlbQ4yPiKih2IiGS7aJiIieo3fv3tBoNLh8+XJjHwoR0WuBa7aJiIiIiCyExTYRERERkYWw2CYiIiIishCu2SYiIiIishCe2SYiIiIishAW20REREREFsJim4iIiIjIQlhsExERERFZCIttIiIiIiILYbFNRERERGQhLLaJiIiIiCyExTYRERERkYX8P9v6pAuix5eMAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extrapolate_x_hp = np.linspace(0, 300, 250) \n", + "best_model.predict(best_fit, data=pd.DataFrame({\"horsepower\": extrapolate_x_hp}))\n", + "\n", + "sns.scatterplot(data=df_mpg, x=\"horsepower\", y=\"mpg\", color='blue', label='True Data')\n", + "plt.plot(\n", + " extrapolate_x_hp,\n", + " best_fit.posterior[\"mpg_mean\"].mean((\"chain\", \"draw\")),\n", + " color=\"red\",\n", + " label=\"Extrapolated Fit\",\n", + ")\n", + "plt.fill_between(extrapolate_x_hp, plt.ylim()[0], 0, color='grey', alpha=0.5, label=\"MPG Forbidden region\")\n", + "\n", + "plt.xlim(left=0, right=extrapolate_x_hp.max())\n", + "plt.ylim(bottom=best_fit.posterior[\"mpg_mean\"].mean((\"chain\", \"draw\")).min())\n", + "plt.legend(frameon=False);" + ] + }, + { + "cell_type": "markdown", + "id": "f78b1413", + "metadata": {}, + "source": [ + "Yikes." + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "21a0b2a2", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Last updated: Fri Apr 26 2024\n", + "\n", + "Python implementation: CPython\n", + "Python version : 3.12.2\n", + "IPython version : 8.22.2\n", + "\n", + "matplotlib: 3.8.3\n", + "pandas : 2.2.1\n", + "scipy : 1.12.0\n", + "arviz : 0.17.1\n", + "seaborn : 0.13.2\n", + "formulae : 0.5.3\n", + "numpy : 1.26.4\n", + "bambi : 0.13.1.dev30+g7fd71d36\n", + "\n", + "Watermark: 2.4.3\n", + "\n" + ] + } + ], + "source": [ + "%load_ext watermark\n", + "%watermark -n -u -v -iv -w" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.2" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/notebooks/polynomial_regression.ipynb b/docs/notebooks/polynomial_regression.ipynb new file mode 100644 index 000000000..28523aa05 --- /dev/null +++ b/docs/notebooks/polynomial_regression.ipynb @@ -0,0 +1,2061 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Polynomial Regression\n", + "\n", + "This example has been contributed by Tyler James Burch ([\\@tjburch](https://github.com/tjburch) on GitHub)." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "import arviz as az\n", + "import bambi as bmb\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "\n", + "plt.style.use(\"arviz-darkgrid\")\n", + "SEED = 1234" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "# Temporary fix to make outputs cleaner\n", + "import warnings\n", + "warnings.filterwarnings(\"ignore\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This example will discuss polynomial regression using Bambi. Unlike many other examples shown, there aren't specific polynomial methods or families implemented in Bambi, most of the interesting behavior for polynomial regression occurs within the formula definition. Regardless, there are some nuances that are useful to be aware of. \n", + "\n", + "This example uses the kinematic equations from classical mechanics as a backdrop. Specifically, an object in motion experiencing constant acceleration can be described by the following:\n", + "\n", + "$$x_f = \\frac{1}{2} a t^2 + v_0 t + x_0$$\n", + "\n", + "Where $x_0$ and $x_f$ are the initial and final locations, $v_0$ is the initial velocity, and $a$ is acceleration.\n", + "\n", + "## A falling ball\n", + "\n", + "First, we'll consider a simple falling ball, released from 50 meters. In this situation, $v_0 = 0$ $m$/$s$, $x_0 = 50$ $m$ and $a = g$, the acceleration due to gravity, $-9.81$ $m$/$s^2$. So dropping out the $v_0 t$ component, the equation takes the form:\n", + "\n", + "$$x_f = \\frac{1}{2} g t^2 + x_0$$\n", + "\n", + "We'll start by simulating data for the first 2 seconds of motion. We will also assume some measurement error with a gaussian distribution of $\\sigma = 0.3$." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/MAAAJjCAYAAABA7UFUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADI2klEQVR4nOzdeZzN5fvH8dfnnNkHY2bM2MaWfd9LaOyVqJCQKKJUKO1KSfpqV4lUypIWoV9SSQtiSLLva2RfZowxjNnP+fz+OM0wZjszc5g54/18PHoM59znc64zt5Hrc9/3dRmmaZqIiIiIiIiIiNuwFHYAIiIiIiIiIpI3SuZFRERERERE3IySeRERERERERE3o2ReRERERERExM0omRcRERERERFxM0rmRURERERERNyMknkRERERERERN6NkXkRERERERMTNeBR2AEVBTExMYYfgtICAAGJjYws7DMmF5sl9aK7cg+bJPWie3Ifmyj1ontyH5so9uNM8BQYG5jpGK/NuxmLRlLkDzZP70Fy5B82Te9A8uQ/NlXvQPLkPzZV7KG7zVLw+jYiIiIiIiMg1QMm8iIiIiIiIiJtRMi8iIiIiIiLiZpTMi4iIiIiIiLgZJfMiIiIiIiIibkbJvIiIiIiIiIibUTIvIiIiIiIi4maUzIuIiIiIiIi4GSXzIiIiIiIiIm5GybyIiIiIiIiIm1EyLyIiIiIiIuJmlMyLiIiIiIiIuBkl8yIiIiIiIiJuRsm8iIiIiIiIiJtRMi8iIiIiIiLiZpTMi4iIiIiIiLgZJfMiIiIiIteIHj160KNHj8IOo0gbP348rVq14vjx41f0fY4fP06rVq0YP378FX2fwno/ufI8CjsAERERERHJuw0bNvDdd9+xbds2YmJi8PX1pWrVqnTo0IFevXrh7e1d2CFeE1q1apXh997e3vj7+xMWFkaDBg3o2rUrNWvWLKTo5Epp1aoVTZs25aOPPiq0GJTMi8vZbCZbtkL0GQgOgsaNwGo1CjssERERkWIhNTWVd955h++//x5fX19uvPFGwsLCiIuLY+3atUyaNIkFCxYwceJEKlWqVNjhXhNKly7NXXfdBTjmJzY2lr179/L111/z9ddfc/vtt/PMM8/g5eWV/prQ0FC++eYbSpQoUVhhi5tTMi8utSLC5P3JJlFRFx8LCYFRI6FduBJ6ERERkYL66KOP+P7776lXrx5vvPEGoaGh6c/ZbDZmzJjB9OnTeeKJJ/j888/x9/cvxGivDYGBgTz44IOZHt+/fz+vvPIKP/74IykpKYwbNy79OQ8PD6pWrXr1gpRiR8m8uMyKCJMxY81Mj0dFwZixJhPGK6EXERERKYjDhw8zZ84cSpUqxdtvv01wcHCG561WKw8++CBHjhzht99+46uvvuKhhx7KdJ3z58/z4YcfEhERQVxcHFWrVmXAgAHcfPPNGcYlJSXx7bffsnjxYk6cOIHNZqN06dLUr1+fQYMGZdo+HhERwbx589izZw9JSUmEhYXRrVs3+vXrh9VqTR/3008/8b///Y8XX3yRgIAAZs+ezf79+ylVqhTjxo3j4Ycfpnv37rz44ouZYj9z5gy333479erV49NPP01//MKFC3z99dcsW7aM48eP4+npSf369Rk8eDBNmjTJdJ0DBw7w4YcfsmnTJgzDoFGjRowYMcKpeXBW9erVmTRpEv379+eXX37h7rvvpn79+oDjDHuvXr247bbbGDt2bPprTp8+zezZs1m9ejVRUVF4enoSHBxMs2bNGD58ePpK/vjx4/n555/5v//7P5YtW8bChQuJjIwkODiY7t27c//99+PhkXu6t3v3bn766Sc2btzIqVOnSE1NJSwsjFtuuYX+/ftneY0zZ87wxRdf8Oeff3Lq1Cm8vb0JCwujU6dO3HvvvRnG7tu3j88//5xNmzYRGxtLmTJlaNu2LQ8++CABAQHp4y79fgwcOJApU6awZcsWDMOgVatWPPXUU5QuXZpt27bxySefsHPnTqxWK+3bt+fJJ5/E19c3U5ybNm3iyy+/ZPv27cTHx1OhQgU6dOjAoEGD8PHxSR+3YcMGhg8fzpAhQ2jbti1Tp05lx44dGIZBixYtePzxx6lQoUKGsWnXv/SYxYsvvkj37t1z/Z67igrgiUvYbI4V+ZxMmmJis+U8RkRERKQosNlMNm4y+X2p42tR+TfMokWLsNvt9OjRI1Mif6kHHngAgB9//DHTc6mpqYwcOZJNmzbRtWtXunfvzqlTpxg7dizz5s3LMHb8+PFMnjwZgO7du9O7d28aNWrE5s2b2blzZ4axU6dO5dlnn+XQoUO0b98+/dz+5MmTeemll7KMc9myZYwePZqgoCB69erFjTfeSOPGjSlfvjx//PEHSUlJmV7z+++/Y7PZ6Nq1a/pjsbGxPPjgg0yfPp2SJUvSs2dPOnTowO7duxk+fDgrVqzIcI39+/fz4IMP8tdff9GqVSt69+5NSkoKDz30kMsL3wUGBtKzZ08AlixZkuPYxMREHnroIebPn09YWBi9e/emW7duVK5cmcWLFxMTE5PpNe+99x5ffPEFLVu25O6778bLy4tPP/002+/55RYuXMiKFSuoXr06PXr04Pbbb8c0TaZOnZrlzZRDhw5x3333MWfOHAIDA7n77ru5+eab8fHx4fPPP88wNiIigiFDhrBy5UqaNWtG3759qV69Ot9++y1Dhw7l3Llzma5/4sQJHnroIZKTk7njjjuoUaMGv//+O88++yybN29mxIgR+Pr60qNHDypWrMiPP/7IxIkTM13n//7v/3j00UfZtm0bbdq0oU+fPpQtW5ZZs2YxcuRIUlJSMr1m165dPPzww3h6etKjRw/q1q3LihUreOyxx9L/LJYvX54hQ4YAUK5cOYYMGZL+X61atZz6nruKVubFJbZsJcPW+qxERjrGNWt6dWISERERyY+ifGxw27ZtALRo0SLHcVWrViUkJISoqChOnTpF2bJl0587ffo0lSpV4tNPP8XT0xOAQYMGcd999zFlyhTat29PaGgocXFxLFu2jDp16jB9+vQMK+s2m434+Pj03//999/Mnj2bVq1a8frrr6evkpqmyVtvvcWCBQtYtmwZHTt2zBDnmjVreP/997n++uszPH7rrbcyc+ZMVq5cSefOnTM8t3jxYjw9PenUqVP6YxMnTuTAgQM8//zz3HnnnemPP/LIIwwePJg33niDVq1apRcFfOedd7hw4QLjxo3j1ltvTR//0UcfZUpIXaFZs2bMmDGDXbt25Thu3bp1HD9+nH79+jFq1KgMz8XHx2e5Sr5jxw6+/PLL9OMWDz/8MI899hh//PFHlt/zy91///08/fTTGebXNE1ee+01fvzxR7Zs2ULjxo3Tnxs3bhynT59m9OjRmTojREZGpv86NjaWV155hYCAAKZNm0b58uXTn/v999956aWXmDZtGk8//XSGa2zatIknnniCvn37psfy1FNPsXr1ap555hleffVVwsPDAceNqUGDBrF48WIeeeSR9Btc//77L++++y41atRgypQp6TsAAgMDmTRpElOnTmXevHmZdhGsXr2aV199lS5duqQ/9sorr7B48WIiIiLo0qULFSpUSL9xVL58+SyPV1wtWpkXl4g+49pxIiIiIoUh7djg5YsUaccGV0QU7gp9dHQ0QIbkPDtpyd3p06czPZe2+njp2D59+pCcnMzvv/8OgGEYmKaJl5cXFkvGtMFqtVKyZMn033/77bcAjB49OsN2Z8MwGD58OIZhpF/3UjfddFOmRB5IX3X/5ZdfMjz+77//snv3blq3bp2eoJ09e5alS5fSokWLDIk8QFBQEPfeey8xMTGsW7cOgJMnT7Jp0yZq1KiRIZEHR2J76edylTJlyqTH6oysOhH4+fllKKCXpk+fPhnqJnh6ejJs2DDAsZMjN+XKlcuQyINj3tIK+qV938Bx42DXrl00bdo0yxaHl8bx888/c+HCBR599NEMiTxAly5dqF27dpY7FcLCwujTp0+GWNKS61q1aqUn8uCoO9CxY0dsNhsHDx5Mf3zBggXYbDaeeuqpDFv5AQYMGEBgYGCWfx6bNm2aIZEH0rfNX74TpSjQyry4RHCQa8eJiIiIXG3OHhts28a9O/VYrVYaNmyY6fG0c+V79+4FwN/fn9atW7N69Wruv/9+OnbsSLNmzahXr16mFeLt27fj6+ub5bZ+cCSnhw4dyvR42vnxy1WuXJl69eqxZs0azp49S+nSpYGLyf2lSfjOnTux2WwkJydnOEOf5siRI4Bje3jbtm3Zt28fQIbV5jR+fn7UrFmTjRs3ZhnXlda0aVPKlCnD7Nmz2bdvH23atKFZs2ZUrVoVw8j6z1xW9QAaNmyI1WpNn8ucpKSkMH/+fJYsWcLBgwdJSEjANC/+HFx6Mygtoc3qBszltm/fDjhuABw9ejTT88nJyZw9ezbD/IKjzsDlnzVtxT2rFn9pz0Vdcgcu7b3XrFmT4WaEr68vCQkJeHh4ZPnnsXbt2pkeS7tBERcXl/UHLURK5sUlGjdybD/Laat9aKhjnIiIiEhR5A7HBoODgzl06BCnTp2iSpUqOY5N2/KctiqcpnTp0plW2sGxig0Zk5bXXnuNWbNm8dtvv/Hxxx8DjiS/e/fuPPLII+lFxM6dO4fNZmP69OnZxpOQkJDte2ala9eu7Ny5kyVLltC7d29M0+TXX3+lVKlStGnTJn1c2rnrrVu3snXr1lzfP+3zBQYGZjkup5jyKy0hzu4905QoUYLPPvuMadOmsWrVKlavXg04dmIMHDiQ3r17OxWv1WolICCACxcu5Brb888/z6pVq6hcuTKdO3cmMDAQDw8P4uLimDt3LsnJyelj0753ISEhuV43bV7Sdm1kJyEhIUMyn1X3hbSdAzk9l5qamum9Z82alWucl8rp+jabLU/XuhqUzItLWK0Go0aSZTX7NI+PMNz6LraIiIgUb+5wbLBhw4Zs3LiR9evX57g6evDgQaKioggJCcm0Jf/s2bPY7fZMCf2ZM44Pdmnfcx8fHx5++GEefvhhjh8/zoYNG1iwYAFz584lKSmJ0aNHA44kyDAMfv31V1d9VLp06cKkSZP45Zdf6N27N5s2beLkyZP07Nkzw3bztASsf//+PPbYY7leN+3zZVVMDi5+H1wpbaW/bt26uY4tV64cY8eOxW63888///D3338zb9483nnnHUqVKpWp48CZM2cy3dix2WzExsbmemNi586drFq1ilatWjFx4sQM2+23b9/O3LlzM4xPO4IQldtdLy7Oy1dffUX16tVzHe9Kae+9dOnSDAl6YGBgtvPujnRmXlymXbjBhPEGl9+oCw2FCeONQi8YIyIiIpITdzg2eNttt2GxWFi4cGGOSUnaiuTtt9+e6TmbzZZeSO9SmzdvBsi2IneFChW4/fbbmTp1Kn5+fqxcuTL9ufr16xMbG8vhw4fz8GlyVrp0aVq1asX27ds5cuRI+hb7W265JcO4evXqYRhGlp8pK2lbtbds2ZLpufj4+PRt+K4SExPDggULADKdx86JxWKhVq1aDBw4kFdffRUgw/c8Tdq8XWrbtm3YbLZcq6sfO3YMgNatW2c6N5/VdevVqwfA2rVrc40/7QiFs/PiSmnvnbbd/kqwWCzY7fYrdn2nYijUd5dip124wbffGHzwnsHLLzm+zp+jRF5ERESKvrRjgzkp7GODVapUoU+fPsTGxvL0009nKm5nt9uZMWMGv/zyC2FhYZmqdaf5+OOPM7TmioyMZN68eXh5eaUnnDExMezfvz/Ta8+fP09ycnKG1fG0gmUTJkwgNjY202uio6P5999/8/x50wrh/fDDDyxbtowKFSpkOuseHBxMp06d2LZtG19++WWG895ptm/fTmJiIuBY+W7atCn//PNPpgJ7n3/+OefPn89znNk5cOAAjz/+ODExMdx22225rswfOHAgvcjhpdJ2C2RVAG/evHkZqsinpKTwySefANCtW7cc369cuXJA5hsbBw4cYPbs2ZnG16tXj3r16rFp0ya+//77TM9fGkf37t3x8/Pjk08+4cCBA5nGJiYmXrFk+6677sJqtfLuu+9y8uTJTM+fP3+ePXv2FOg9SpUqleHzFgZtsxeXs1oNtZ8TERERt+MuxwZHjBjBhQsX+PHHH7n77rtp3bo1YWFhXLhwgb///psjR45QqVIl3n333SzPAJcpU4aEhAQGDBhA27ZtSUhIYOnSpcTGxvLkk0+mF/yKiorivvvuo2bNmtSoUYOQkBBiY2OJiIggNTU1w42CG2+8kQceeIAZM2bQu3dvWrVqRbly5YiNjeXo0aNs2bKFYcOGUa1atTx91rZt21KiRAnmzJlDamoqffr0ybIQ3DPPPMPhw4eZMmUKixcvpmHDhpQoUYLIyEh27drFkSNHWLRoUfoZ/6effpqHHnqI8ePHExERQaVKldIrtTdp0iTLVemcxMTEpBffS9vivmfPnvSCcXfccQfPPPNMrtdZu3YtkydPplGjRlSuXJmAgACOHTvGqlWr8Pb2zvLMfP369RkwYACdO3fG19eXVatWcejQIdq3b59rW7q05Hzp0qVER0dTv359Tp06xcqVK2nTpg3Lli3L9Jpx48YxfPhw3njjDX755RcaNGhAcnIyBw4cYO/evfz222+AY0v7q6++ygsvvMDAgQNp1aoVVapUITk5mRMnTrBp0yYaNWrE+++/n+v3Ja+qV6/OM888w9tvv03fvn258cYbqVixIjabjX///ZdNmzbRrVs3nnvuuXy/R/PmzVm6dCnPPvsstWrVwmKxcNNNN2VZpO9KUTIvIiIiIvIfx7FBMvWZDw11JPJFYbehh4cHY8aMoUuXLixcuJCtW7eyYsUKfH19qVq1Kj179qRXr17piWtWr//ggw+YOnUqixcvJi4ujipVqvDUU09lOI9dvnx5hg4dyoYNG1i3bh2xsbGULl2a2rVrpydIl3rooYdo0qQJ8+bNY/369Zw/f56AgAAqVKjAkCFDMm2Pd4a3tzcdO3bkhx9+AMjUSi5NWi/zb7/9liVLlvDrr79it9sJDg6mZs2aPPDAAxlalFWvXp1p06bx4YcfsmbNGtasWUPjxo2ZNm0aX331VZ6T+bNnz6YX//Py8sLf359KlSpx7733cuuttzqd4N1www3pie7y5ctJSEggJCSETp06MXDgwCxvhjzxxBMsXbqUH374gVOnThEcHMzQoUO5//77c30/q9XKxIkTmTp1KmvWrGHXrl2EhYUxcuRIWrdunWUyX7lyZWbNmsXs2bNZtWoVc+fOxdfXl0qVKjF48OAMY9u0acPs2bP58ssvWbduHWvXrsXX15eQkBC6d++e7Xy6Qo8ePahVqxZz5sxh8+bNrFq1ipIlSxIaGkq/fv247bbbCnT9J598EoANGzawatUq7HY7oaGhVzWZN8ys9qFcY9ypCEJxK9pQXGme3Ifmyj1ontyD5sl9aK5yZ7OZbNnqKHYXHOTYWn+1V+Q1T+6jMOZq/Pjx/Pzzz3z33XdUqFDhqr63u3Knn6ncOh+AVuYlj4rC/9hERERErjQdGxSRok7J/DWkoIn4iggz05azkBAYNRKXbznTTQMREREREZHsKZm/RhQ0EV8RYWZZDCYqylEkZsJ41yX0V/OmQW50U0FERERERIoinZmn+J+Zzy4RT5NbD3ibzaR3v4zJ9eVCQ2H+nIJXdy1orK6U/U2F3GNwp/M41zrNlXvQPLkHzZP70Fy5B82T+9BcuQd3midnzsyrz3wxZ7M5EtKcTJpiYrNlP2bLVnJM5AEiIx3jCsIVsbpK2k2Fyz932k6EFRHX/D0wEREREREpREV2m33Hjh05duxYls9df/31fPHFFxkeS05OZtq0afzwww+cOHGCgIAAOnTowKhRowgODr4aIReq7LaD5yURb9Y06+tEn3EuBmfHZSevsV4pzt5UaNtGW+5FRERERKRwFNlkHqBkyZJZ9kesWLFiht/b7XYeeeQRVq1aRZMmTbj55ps5dOgQ8+fP56+//mLevHkEBQVdrbCvupzOmCenOHeN6DPZX+eO7s5dI7iA3+KrddMgN0XlpoKIiIiIiEh2inQyX6pUKUaOHJnruAULFrBq1Sq6d+/OO++8g2E4VkvnzJnDuHHjeP/99xk/fvyVDrdQ5FaYbshg565z9KjJ9JmZH4+KgukzoVQpOHcu+9eHhjpW8QvC2ZsBzo7Lb/G6onJT4UpQQT8RERERkeKhSCfzzpo/fz4ATz75ZHoiD9CvXz+mT5/Ojz/+yAsvvICPj09hhXhFOLMd/IefHKvrOa00h4Q4xhXE4yMKXvyucaPcY3X2pkFBKuK7+qZCUVGUugSIiIiIiEjBFOlkPjk5me+++47IyEhKlChBw4YNady4cYYxSUlJbNmyhWrVqmXafm8YBq1bt2bu3Lls376dFi1aXM3wXc4SuQv70Sis8fGAhUMHoYHVwCxnYJpgx4JpWrCZVlJNKza7B6mpHnTrbuW7hR6kmh6O5+weJNu9SLF7kWz3okc3Lz6d5Qlkn9CdOwdDBjuS/kuTwdBQRyLvimTQajUYNZIcq9k7c9OgoG30XHlToai4mq0FRURERETkyivSyXxUVBTPP/98hscaNmzIu+++S+XKlQE4fPgwdrudqlWrZnmNtMcPHjzo3sl8/Bl8v+qNzbTj+99D9YH3rnfitbHQt30Oz5+B4XdAks0rPclPtPmQYPMh0eZLos2HRJsP1VJ9GTbIh+hzvlxI8cHT35/QMD8Mb3/Y6Y/p5Q9e/pie//3auySmdwnw8AXDuUSxXbjBhPFkWkF29qaBK4rXueqmwuVxFdb2dhX0ExEREREpfopsMt+rVy+aN29OrVq18PPz4+DBg8ycOZOFCxcyaNAgfvjhB0qUKMH58+cBKFGiRJbXSXs8Li4u2/cKCAjAYinaXfrMgADsLQdiRu4FTDBNzp+3s/+fFMDEYtgx/vtqNWzp/3lYUilbxo6Xhw3sqaQmp4ItGauZjGGmZngPb2sy3tbk7IOIdfxXPu33p4FDTgRv8QCfUuBTCsOnFPgEXPy9XyD4Bv73tTT4BXLnDYF0Dy/Npj0liYzxIqSMhebNPJxKNNeuSyEqKofD/TiK1x34tyTXt/TMdkyPO8HfP4nX34rn1Cl7+uPlyloY/awfXTp75xpLWm/I35dkvk7Zshaed/I6BeWq70lx5kwfTyl8mif3oHlyH5or96B5ch+aK/dQnOapyCbzI0aMyPD7unXr8tZbbwGwcOFC5s+fz+DBTlZ3y0VsbKxLrnPFtR1NYGAgMTExgGPF9el+mXuhXyo0FObPMUjOKhE27ZCajC0liaFDk4iLScbTkoy3NQlvSxI+1sT//ksgNDCRkQ8mYrEnQUoCRkoCJF/ASLmAkXzhv1/HO74mX8BIjofk8ximHeypEH8G4s9w+fpwTuvFTQDTwxfTL4iUv4NI9gvE9AvG9A3E9A26+Gv/Mpj+IZh+QRw8ZHXqW3nw0Hlq1sj55kCL5jDva5MtW41LVtRNrNZ4YmLic3xt2jxlt7391Ck7o56KY8L4C1d8e/vBQzmvyl8cl/v3pDi69GdKii7Nk3vQPLkPzZV70Dy5D82Ve3CneXLmpkORTeaz07dvXxYuXMjGjRsZPHgwJUuWBLJfeU97PLuVe3dW4O3ghgU8fbB6+jDo4ayTzjQTHjGwNTWw5SVA04SUeIyk8xhJ5yApDiPpHEZSHCSdc/w6MdbxX8JZjMSzGImxkOD4apg2jNQEjHPH4Nyx3N8Og26eQdRrF0x0UhlOJ4Zw+r+vUYmhRCaGciqxLKcTQwgO8nLqI1itRr7bzxWV7e3FtaCfiIiISFHw008/8b///Y8XX3yR7t2d7Oks4gJul8yn3aGIj3esjFaqVAmLxcLBgwezHJ/2eHZn6t1dQc+Yu/o6GRiG4wy9lz9myXJ5e61pQtJ5R4IfH42REIMRfwYj4cwlX2MwEqIxLpx2jDHteKVEUzsgGtib7aXtpgF/B2HuKIvdvyxRSaHE2MthDSxPWP0KGAEVMEuEgrVgW86LSr/64ljQT0RE5FrUqlWrPI1fs2bNFYok/9IS3+zUrFmTL7744ipGlLvjx4/Tq1cvbrvtNsaOHVvY4Yikc7tkfuvWrQDplet9fHxo1KgRmzdv5tixYxkq2pumyerVq/Hz86NBgwaFEu/V0C7coG0bClxgzVXXcQnDAJ9SmD6lMEtXzn283eZI/C9EsW1NFD/Ni6KMdxRlvE8T4hNFqO8pQn0iCfGJxNOSCvHREB+NlZ1UACoAnAR2OS5nYmCWCMUsWR57qfL/fa2IGRCGPSAMs2QF8My51eHV7lefXZG9K1HQT0RERK6+IUOGZHps7ty5xMXFZflcUdaiRYtMXaoAgoODCyGagmnfvj2tW7fGy8u5nZ8irlIkk/n9+/dToUIFfH19Mz3+zjvvAHD77benP96nTx82b97Mu+++yzvvvJPea/6bb77hyJEj9O3bt9j1mL9cQbaDX4nrXHUWq+MMvV8w9W+vw+mAzD3VQ0Ph8eEm7VueZWPESebNdCT4oT6nKOd7knK+Jyjve4JyvifwsqZgxJ2CuFNYT2zO8i3t/mUwS/2X3AdUxB5QCXvpypgBlTEDAq7q9vbceshfkZ0XIiIiclU9+OCDmR5btGgRcXFxWT5XlF1//fXcd999hR2GS5QoUcKtzmJL8VEkk/mff/6ZmTNn0rJly/Sk/uDBg0RERJCSksKwYcNo2bJl+viePXvy888/89NPP3H06FFatmzJ4cOH+e233wgLC2PUqFGF92FcJG3VNTEpCR9vs/BWzN1E9rsMLKTaghg/PZCoqLpZvtbATs2KZ5jx1kmsF05iOX8c49xxLOeOYcQexRJ7FCMlHsuF03DhdJbJfqqnL21KhfFh20r8c6YyRy5U5mh8JQ7FVeVkQjlMHN0TXLG93dke8s7uvCjMNnoiIiJScJduCx84cCAff/wxmzZt4ty5c3z33XcAOW4bb9WqFU2bNuWjjz7K8PiFCxf4+uuvWbZsGcePH8fT05P69eszePBgmjRp4tLP8OmnnzJ9+nQ+/PBDmjdvnuG5rM6oX/qZBw8ezJQpU9i4cSMpKSk0aNCAxx9/nJo1a2Z6nzNnzvDFF1/w559/curUKby9vQkLC6NTp07ce++9GY4F/Pzzz/z888/pr02LLacz81u2bOHzzz9n+/btJCYmUr58eTp37szAgQMzLTamfd//97//8eGHH/Lnn3+SmJhIjRo1ePTRRzN9H0SKZDJ/ww03sH//fnbt2sX69etJTEwkMDCQ8PBw+vfvT9u2bTOMt1gsfPTRR0ybNo2FCxcya9YsSpcuTe/evRk1ahRBQe5d2SvjqqujoN+lq67u5moli9ntMsjtLLuJhb3HyrAxMoRmTRtlLvpnmpB4FkvsMYxzjuTeEnvUkeifPYxx7jhGSgLW6H20CdpHm8v++CXavDl8oQqH4qpQrVk1vPdUw166Kvagao62fXmQ1yJ7ue28yG2FX0RERNzH0aNHGTp0KNWrV6dbt27Exsbi6elJSkpKnq8VGxvLI488woEDB2jUqBE9e/bkwoULREREMHz4cF577TXatWt3BT5F3pw4cYKhQ4dy3XXX0b17d44dO5Ye45w5czJs4z906BDDhw/n9OnTNG7cmPDwcBITEzlw4ACff/459957L7Vq1aJv377MnTuXmjVrEh4env768uXLZxVCuqVLlzJ27Fg8PT3p3LkzgYGB/P3330yfPp01a9YwdepUvL0ztimOi4tj2LBhlChRgq5du3LmzBmWLl3KqFGjmDVrFtWrV3ftN0zcWpFM5q+//nquv/76PL3Gy8uLESNGZGpp5+6cXXV1F0UhWSzwWXbDAN9A7L6BUK4ByWk3JwwIvg4a108h2COe84e2YYk9zLHthzm1+xBlPY9Qyf8wPtYkapXaS61Sex3n9H+5eGm7bxBm0HXYg6tjD6qOPfg67EHVMUuUdbzvZVxZZK+4/VkTEZFrlGlCakJhR5E9D98s/59+JWzdupUhQ4Zk2oJ//PjxPF9r4sSJHDhwgOeff54777wz/fFHHnmEwYMH88Ybb9CqVatMyWl21q5dS1JSUqbHe/XqVaBz85s2beLRRx/NsIX/k08+YebMmSxatCjD4+PGjeP06dOMHj2aHj16ZLhOZGQkALVq1aJEiRLpybyzxxkuXLjA66+/jtVq5dNPP03fFfDII48wduxYlixZwldffcUDDzyQ4XX79u3jrrvu4qmnnsJicezkbNGiBa+99hrffvstzz33XJ6/J1J8FclkXhyKSmszVykqyaIrz7JnfXPCgzGjK9CieWlsQGgTCP4v4d8anUoF32PUL3sQj9iDWGIOYsQ4vlriTmFJOAPHzmA9tj7D+5he/o7kPug67ME1sJephb1MTaKjQ536LLndwCiKf9a03V9ERPLMNPGdey/W45sKO5Js2So0I6Hvl1cloQ8ODmbQoEEFvs7Zs2dZunQpLVq0yJDIAwQFBXHvvffy7rvvsm7dukw7aLOzfv161q9fn+nxdu3aFSiZr1ChAgMGDMjw2O23387MmTPZuXNn+mM7duxg165dNG3aNFMiDxAa6ty/sbITERFBXFwcvXr1yrC932KxMGLECP744w8WLVqUKZn39fVl+PDh6Yk8wG233cabb76ZIX4RUDJfpBWV1maucCWSxfwme65q1ZbTzYknno7jf69cLCx3cXu7J1AVk6pk2uCWfMGR1Efvx3LmAJbof7CcOYBx9jBG8gWsJ7diPbk1w0tu9yhJ1TY12He+FvvP1eCf8zX551xNYlNKZxiX242Jq/1nLbe5Kwo7OERExF3p/xNpatasiadnwVrtAuzcuRObzUZycjKffvpppuePHDkCOLatO5vMX7567io1a9bMkAjDxcQ8Li4u/bG0xDivu4GdtWfPHgCaNWuW6bly5cpRsWJFDh8+zIULF/D3909/rlKlSvj5+WUY7+HhQVBQUIb4RUDJfJF2tVubXUmuThYLkuy5olXbFVnJ9vLHXrY+9rL1L3uzZCwxhzDSEvzof7BE78Ny5iAeqedpGryJpsEZVyBOJZRl77na7I2tzUmjNk3D6oC9KlisWb711fyzltvcFZUdHCIi4oYMw7HqrW32AC6rG3Xu3DnAsW0/rU10VhISCv/7fmlinMbDw5Hy2GwXKyGlJcYhISFXJI4LFy4A2c9BcHBwlsl8VvEDWK3WDPGLgJL5Iu1qtja70lyZLLoi2Stoq7Zci+iZLlzJtnphL1MTytTExi0XH09NxhLzL3tW7WXjr/uoXmofNUvuo6L/Mcr6nqKs7yluKhvhGPsFmB4+2INrYg+pjT20DrbQethD6oCnr8v/rGW38p7b3L06zuSDD3O+tjsdLRERkUJgGODpl/u4a1jaynVWyWFWq79pCWb//v157LHHrmxw/8kpxrREuSBKliwJQFRuq035lPY9O3Mm63/cpj2eXfIu4gwl80WYq7aDFwWuShZduSLubKu2rLh6JTtfRwY8vLCH1KZmz9ocDzaZ8N+NCX+POGqW2kvzinu4o+Uewjz2YDm9DyM1AeupbVhPbUu/hGlYsAdVo1VIPYY1qsv6Y/XYE1uHuNSSmd7O2T9r2a28PzY890R94vtw9mzOY9zlaImIiEhRlVMim7Y9/FL16tXDMAy2bduW6bkrJa8x5lW9evUARyG+wYMH5zjWanXsbLTb7U5fv3bt2gBs3LiRzp07Z3ju1KlTHD16lIoVKyqZlwJRMl+EuWI7eFHhqhsTrt6un1urtuxc+SJ6eTsfnvHGREmCg5rTuFFzrFaDBAC7DSP2MJaoPVijdmOJ3IXl1E4s8aexRu/HGr2fR6r+CFUd1zscV5mdsfXZcbYBO2IasCu2Lo+PKJHrn7WcVt5fGpf758gtkU/jDkdLREREiip/f3+qVKnCli1bOHLkCJUqVQIcK96X95YHx5bwTp06sWTJEr788kvuvfdejMuOCmzfvp0aNWpk6p2eX2nJ9uLFi+natWv6Sv22bdv49ddfXXL9evXqsWnTJr7//vssq9mnnbUvWbIkhmFw6tQpp68fHh5OiRIlWLRoEb179+a6664DwDRNPvzwQ2w2G926dSvw55Brm5L5Iq6g28GLClfdmCgqdQRyuzlhGI7nC1JEL6/nw3O8MWGxYgZWwxZYDVutWy/GGReJJXInlsidWE/tJPnITvyST1C5xGEqlzjMrRUXA2Biwf7vddgTGmIr2wB72QaOLfoeXunXcmbXhKu4w9ESERGRouyee+7hjTfe4MEHH6Rjx46Ypslff/1F3bp1sxz/zDPPcPjwYaZMmcLixYtp2LAhJUqUIDIykl27dnHkyBEWLVrksmS+QYMGNGrUiPXr1zN06FCaNm3KyZMniYiIoG3btqxYsaLA7zFu3DiGDx/OG2+8wS+//EKDBg1ITk7mwIED7N27l99++w0APz8/6taty+bNmxk3bhyVKlXCMAy6du2aba95f39/nn/+ecaOHcuQIUPo3LkzpUuXZt26dezevZt69epx7733FvgzyLVNybwbuHTVNTHJHx/vC27ZpssVNyaKSh2BIltEL4/MEqHYSoRiu659enX9c3ExHPp7B5ZT2ymbup2gxB1Y4k5ijf4Ha/Q/eO5Y4Hit1RN7SF1s5RtjL9+YnWcaEhVVkYJWES4dAGdjs3/eXY6WiIiIFGU9evQgNTWVuXPn8sMPP1CmTBm6devG4MGDs6xIHxAQwLRp0/j2229ZsmQJv/76K3a7neDgYGrWrMkDDzxAQECAS2N8++23mTRpEqtWrWL//v3UrFmTd955h6ioKJck85UrV2bWrFnMnj2bVatWMXfuXHx9falUqVKmrffjxo3j/fff588//yQuLg7TNGncuHG2yTxAp06dCA4O5vPPP2f58uUkJiZSvnx5HnjgAQYOHIi3t3eBP4Nc2wzTNK/OUloRFhMTU9ghOC0wMNCt4s1KQfqH22wmvfuZuW7Xnz/n6hw/yGqLfGgovPBcCVo0j8/xtRs3mTz2RO4/fh+8Z9CsaeHeuDHiIrGc2oH15DYsp7ZjPbkNI/FspnFnkoLYFtOQbTGN2RrTmO0xDYm3OX8WLDQURj6a85b8CeOd35HizJ+14vAzdS3QPLkHzZP70Fy5B82T+9BcuQd3mqfAwMBcx2hlXq66/J5TT3ttUaojkF0RvTJlvImJyTmZLypHBpyRvoJfvcN/D5gYsUexntyK5cQWrCe2YJzaRZD3GdqVW0G7co675TbTwj/narL5TFO2nGnK5pgmHI/PfvU+bYfGhPFZ3yTJy9ES9aoXERERkeJMyby4naJWR6AoFNG7mi6udocRHBRG4/DbsFoNbElJvPjwLiqxhYaBW2gUuJWK/seoHbCH2gF76FvtGwASPUNYe7IJa080ZfOZpuyOrUtQiGeGuStIpwFwbS0CEREREZGiSMm8uKWCJntFgTu2Hsx5tdubWwc3ZszYRvDvQADKeEfROGgTTYI20ThwMw2Cd+KTEkV48O+EB/8OgM3ii1mhETbPltgPN8dWvjF4+ub7JklRqEUgIiIiInKlKZkXt1WQ7fpFQV6PDBSk1oArOLvafemuidNJISw9cTPbbDcT1NfguhuTsJzahvX4ZqzHN2I9tglrUiwc/RuPo38DYFo8sJetj61iC2xhzbFVaA4+pZyO09XtC0VEREREiiIl8yKFyNkjA4V9/jsvq90575rwwR7WEntYS0f1fNOOJfofLMc2YD26Aeux9VjiTmH97xw+66djYmAPrYut0vXYwq7HVjHn5D6vtQhsNpONm0y33eEhIiIiItcmJfMihSy3IwNF4fx3Xle7nd41YViwl6mFvUwtUhvf4yisd+4Y1mPrsR51/Gc5ewhr5E6skTthw6xck/u81CJYEWHywYdnOXXq4vdXRfJERERExB0omRcpArJLfovK+e+rVnnfMDADwkgNCCO1Xg/HQ3GRWI+uw3pkLdaja7HEHMyY3BsW7KH1sFVuha1yKxrXa0ZIiHeutQhiY83/WuBl/P6qSJ6IiIiIuAMl8yJFWFE5/12YlffNEqGk1ulGap1uQDbJ/antWE9th3Wf4WP15JubmzJnbSv+Pt2KnWfrYzMz/lU38lH44MOc31dF8kRERESkKFMyL1KEFZVe9EWp8n6m5P78KaxH1mA9/BfWw2uwxJ0i+PxaRtRdywg+4HxKCTZEt+CvyNbstbeh95CqlCxlEBWV844HFckTERERkaJMybxIEVZUetHntfL+1WSWLEtqvTtJrXen48x9zEGsh//C4/AaLEf+piTnaF9uOe3LLQfAvq8Chzza0Ln8jfx9uhXnUwKyvXb0mcLvIiAiIiIikhUl8yJFWFFaEXe28v7VlGWiHVSN1KBqpDbpD3YblqjdWA+tdvx3fAOWc8epxnzeaTkfm2lhR0wD/opqzV9RrdkW0zjDlvyjR01696PQugg49Xl1Y0FERETkmmSYppnzXtNrQExMTGGH4LTAwEC3ivda5cp5yq6afZoJ469uIl1UEsrs2/Xl8P1IiXdUyP/3T06s/pOqfvszPH0uuRRrom7kz8ib2JrQln9Ph2T7/lf7+56vz1uM6O8+96B5ch+aK/egeXIfmiv34E7zFBgYmOsYJfMomRfXc/U8ZZXIFeaKeGFzxQ2OFREmk147QauQv7gx5E9uDF1Naa/YDGP2xNZmVeRN/HnqJrbGNCbV9Ex/LjQU5s9xHC240jc4itoNncKgv/vcg+bJfWiu3IPmyX1ortyDO82TknknucuEgnv9AbyWXYl5Kior4oXNZjPp3c/M9ehBWqKdE0efeYNTp+xYsFE/cDs3V1vJzVVWEpK6A4tx8a/H8ykl+CuyDSsjw1l16iZikoP54D2D8+czHz1w5Yq5Kz+vO9Pffe5B8+Q+NFfuQfPkPjRX7sGd5smZZF5n5kXcRHa96K81rmzX1y7c4PbupVm+IoboMx4EBzWhcaMmLFs+kg/ejObGkNW0KbuSG0P+JMg7hpsr/srNFX/Fbhpsi2nE2YhwZi9tR9S5OsDFRNqVveqLSntCERERESlalMyLiFtxdbs+x02SjAl3cJBJTHIQPx/rzs/HumNgp37p7dxUdgXhZVdQt/QuGgdtAdsW2rWfzKmEsqw8FU7EqXb8HXUjSXYfwDW96otKe0IRERERKVqUzIuIW7ka7fou7yJgYmH72UZsP9uIj/aMJNTnFF2qRtCi5ApahayhrO8peledT++q80lI9WFNVGuWn+xIxKlwtmwtU6AV86LSnlBEREREihYl8yLiVq5Guz6r1WDUSLItOheZWJaUBnfzxLd342VJokXwWsLLraBd2T8o73eSDuWX0aH8MuymQczfTfFM7UBq9U6YQdXyHEtRak8oIiIiIkWHpbADEBHJC0einfO29cdHFLwYXLtwgwnjDUIu604XGuqoHt+2jeP6yXZvVkfdxBvbXqTrkiX0Xf4tH+0ezs6z9bAYJsHxG/FeORH/WbfhN7MrXhHvYDmxBUy7U3Fcrc8rIiIiIu5F1exRNXtxPc3Tleeqdn25zVV2XQScqTJfP+wEnz25As9/l2E98jeGPTX9Obt/KKk1OmGr0RlbWEuwemZ/IRd+Xnelnyn3oHlyH5or96B5ch+aK/fgTvOkavYiUmy1Czdo24Yr3q4vuy4CuW3FB+j/UAVszfqzLO4eps0/T23LKjqUW8JNZSMocSESry1zYMscTO8AUqu3J7VGZ2xV2oCnb6ZrXa3PKyIiIiLuQcm8iLitwm7X59iKn7nP/KUr5isizP8S/hIc4lZ+O34rnpZkbiizho7ll9Ct+h94J53Bc+dCPHcuJNXiS0xwOP4tbsZevR14+adfN7fPm90uAhEREREpfpTMi4gUQE4r5jabY2v85VLsXqyKDGdVZDjTTth4aeAmTq5Ywo2ll1LB7zghUb/C4l+xGd6Y1W8iteYtpF7XHrxLZBtHVtvwQ0Jg1MiC97oXERERkaJHybyISAFlt2K+ZWvOVegBTkZaGT6xBdACeI66ATvpXOE3ulT4lcr+R+CfJXj8swTT6oWtaltSa95M6nUdwKdU+jUurv5nFBXlOAYwYbwSehEREZHiRsm8iMgVEn0mr68w2BVbn12x9Zm8axS1S+3mzhq/0bfBb1jPHsRj/zI89i/DtHpiq3oTqbW6klS1Pe9P9svxqpOmmLRtoy33IiIiIsWJknkRkSskOKggrzbYc64ub22sS9iAx2lR+R889v6Gx95fsJzZn57Ye1q8ebZKOL95dGVlZDiJtszF8yIjHbsECrO+gIiIiIi4lpJ5EZErpHEjx7n13Lba5yY6xsDerBbJZWqR3HoEltN78dizGI89i7GePUSXCr/TpcLvxKf6suJkB3493pU/I9uSYve6eI087xIQERERkaJMybyIyBXiTPs6Z1y+wm8vk5bYP8belTvZMudnbq7wKxX9j9E17Ge6hv3MueRSLDnRhcXHbmPD6ZYEB+mvexEREZHixFLYAYiIFGeO9nUGISEZHw8NhVfHkenxy4WGOlb4s2QYVG9Tj69PP0W3pb8yIGIOX+y/j1MJZSnldY5eVf6PT1sP4fdbO3FDzBtYTm4Ds2A3FkRERESkaNBSjYjIFZZT+zqLJetK9GkeH2HkWLju4uo/bD/biO1nG/HujmdoFryBrhUX0aXCrwR7RcHm2bB5NraAyhwN7MZe7+54V6imXvQiIiIibsowTS3TxMTEFHYITgsMDHSreK9Vmif3URTmKqse8aGhjkTe2ZZy2V1j1KMpdKi0Go/dP2HZtwyrPTH9+R0x9Vl+9g5q9biNGzuVcdXHuSKKwjxJ7jRP7kNz5R40T+5Dc+Ue3GmeAgMDcx2jlXkRkUKW08p9wa/hjY0OLDvWnv/9GEeHcn/QNWwRN4b8Sf3AHdQP3EHqpreIPtiWgLZ3kHpdR/D0uYKfVkRERERcQcm8iEgRYLUaBW4dl901bDbHqn2CzZ+fj3Xn52PdCfSK5taKi+ke9gP1A3dQNnYFLFqB6eVPas1bSK17B7ZKLcFQaRURERGRokjJvIhIMbdla+b2eDHJwcz5dwBz/h1A1RIH6Bb2IwMb/YRP4nE8d3yH547vsJcsT2q9O0mp1wMzsErhBC8iIiIiWdKSi4hIMZdbj/mDcdfx4e7HWVzrN+L7fEFKw7sxvUtiOX8Cr78/xn/mrfjOHYDHtvmQFHd1ghYRERGRHGllXkSkmLu8T32244It2MNakBTWgqQOY/DYvxSPHd9jPfQn1mMbsB7bgPnHa6TW6EJq/TuxVWoFFuuVDV5EREREsqRkXkSkmGvcyNHP/vKt9pfK1M/ew5vU2reRWvs2jLhIPHb9gMfO77FG78dz94947v4Re4lypNbvQUr9XpilK13xzyEiIiIiF2mbvYhIMefoRZ9zZfyc+tmbJUJJaTmUhPt+JL7/PJIb98f0DsASd9KxDX/GzfjMH4THzh8gJTHLa4iIiIiIaymZFxG5BrQLN5gw3iAkJOPjoaEwYbyT/ewNA3u5hiS0f5FVrVawtspEzgS1xcTA48jf+PzyHP7TwvFeMg7LyW1gmlfmw4iIiIiIttmLiFwrXNHPfkWEo81dVJQncCtwK/UqHufl23+gZtx3WM4dw3PrXDy3ziXOvxYHAu4i7rrbqd+8dJ7eR0RERERypmReROQaUpB+9isiTMaMzbzavvNYBfp+/DATXhlGx2rrOLPsW0JO/06JC3tpdOF1ko5MZNWCLvi17UPD21qC4bqk3mYzC3RzQkRERMRdKZkXEZFc2WyOFfmcTPrQwP7o9bw063pKesbSteLP9KryLXUCdtMpZBHsWUTcwap4Xt+b1Po9MP2CCxTTxV0CFx8LCYFRI3Hu2ICIiIiIG9OZeRERydWWrTlXwweIjISJ7zl+fT4lgHkH76Hfim/pv2Iu/3ewNxdS/SiRdBDvle/gN60D3j89gfXQn2Da8xxP2i6By2OKioIxY01WROi8voiIiBRvSuZFRCRX0WecG3c29vJHDHbGNuDVra/Q5dflvLL5Fc6VbIhhT8Fz7y/4/t9Q/GZ0xXPddIh37k2c2iUwxcRmU0IvIiIixZeSeRERyVVwUMGvEW/zZ8Hh3iy9bi7xAxc4Wtx5lcASexjvle/g/2l7vH9+BsuxDTlWwnd2l8CWrQWPWURERKSoUjIvIiK5atyITG3tLle6tHPXCg4Ce0gdkju9xIVhK0js8iq2sg0wbCl47v4Jv7kD8J19B56bvoKk85le7+wuAWfHiYiIiLgjJfMiIpIrq9Vg1Mici8o9NSr3hD801HFjIJ2nH6kNe5Nw73zi+88npUFvTA9frNH/4P3H//D/pB3ev72EeXxb+kuc3SXgit0EIiIiIkWVknkREcnAZjPZuMnk96WOr2lnz9uFG0wYb2RK2ENDYcJ4gw7tLbkm/I+PMLJtHWcv14Ckm1/lwkPLSerwIrbgGhipCXhu/5bUj7rgO+cePHb9RON6yXm/aSAiIiJSzBimmcPBxGtETExMYYfgtMDAQLeK91qleXIfmquMsm/3ZqS3e8utt3tW1wgNdSTyzl4DANPEcmwDnlvm4LnvN7CnAmD3C+ZAqbsYPrsPpxLLZ/k5Jow31J6uEOjnyX1ortyD5sl9aK7cgzvNU2BgYK5jlMyjZF5cT/PkPjRXF6W1e8tOXhLknJJ1Z24YXK60RwoXVn2K59Z5WOJOAWBi4c8zHfhi9z38fboVYGS6aSBXl36e3Ifmyj1ontyH5so9uNM8KZl3krtMKLjXH8BrmebJfWiuHGw2k979Mvdtv1RoKMyfk/02eWfk94ZB+jzZUrDu/wPPLV/jceTv9OfPeV/HqSoDCO10O1bfEvmOTwpGP0/uQ3PlHjRP7kNz5R7caZ6cSeZ1Zl5ERK5KuzeX9Ie3emKrdTOJd8/iwv0/OtrbefpRKukANfeOp9SMjniteBPj7JH098zq/L+IiIiIu/Mo7ABERKTwXY12b3m5YdCsacat+lWrpHBdNTPDrgAzuAbJnV4iue0TeO78Hs9NX2I5ewivDbPw3PA5kQHtmfjXvfz2j2MLPqRt50fb8EVERMTtKZkXEZGr0u4tLzcMMp+rP5d9Iu5dgpSmA0hp0h/rwVV4bvoSj4MrKRv7B2/V+4NhYdWZ8++9/HT0dqKi/Bgz1mTCeCX0IiIi4t60zV5ERGjcKB894vPI2RsBR486ztVfvoofFQVjxpqsiMhmq7xhwVYtnAt3fsLgTT8x50B/LqT6Ub3Ufl5sPJ5fu3RiZN33CPU5lft2fhEREZEiTsm8iIhgtRoF6hHvDGduGISEwA8/5Twmt0R8y1bYdKQab24fwy2/LePt7c9x5EIlArzOMaTmZyzqfDNPhD3D/lXb8vEpRERERIoGJfMiIgI4tp1PGG9kSrhDQ13Tt92ZGwZ3dC94Ib5Lt/PHpZbkqwP3cefSRTyx9gPWn26JpyWVrmE/02xDX3y/uRfr3os97EVERETchc7Mi4hIunbhBm3bkG2PeFdcf8J4MvWZT+sPn5wCkPv295zO32e1nd+OlT9OduKPk52oE7CTe6/7gm6Vf8Z6fCO+xzdiL1WBlKYDSWl4N3j55/lzOePSgn6u/r6KiIjItUfJvIiIZGC1GjRreuWun9MNg42bnDvHntP5+7Tt/Nmt8O+OrcfkY6/TbtyT+Gyfg+eWuVjOHcd7xZt4/fUhKY36kNJ0IGbJcvn4dFnLXNBPlfVFRESkYLTNXkRErjrHDQODLp0cX9NWqF1RiM/Z8/+WgLIktxnFhQf/ILHzK9gDq2Ekx+G1fgZ+07vgvfhZLJG78vrRMlkRkc+CfiIiIiI5UDIvIiJFhqsK8eXp/L+nD6mN+hA/6CcSekzFFtYSw56K564f8fuyFz7fDsb670ow855022yOFfmcqLK+iIiI5Ie22YuISJGS27l6Z7el5/n8v2HBdl0HEq7rgOXkdjw3zMRj7694HF6Dx+E12IJrkNLiAVLrdAOrl1MxbNnqfEG/K3m0QURERIofJfMiIlLkXJ6IV61Skuuqnc9zwbj8nv+3l2tAUreJJN/0JJ4bv8Bz23ys0f9g/fUF7H9OIqXZ/aQ06pNrsbycCvXlZ5yK6ImIiEgaJfMiIlIkXZqIBwZ6EhNz9ZNWs1RFktuPJrnVo3hum4fnxtlY4k7hHfEWXn9/RErje0hpOpBUn+Ask+ycCvVdyplxKqInIiIil1IyLyIikhufUqS0HEpK0/vw2PUDXutnYIn5F6+107Cum8Xik3cybftgDl+oAlxMstu2ybmyPuRe0A8uFtG7XFoRvQnjldCLiIhca1QAT0RExFkeXqQ27O0olnfHZGL8G2M1k+ledj7fd+zG2y1GUTdgR3qSvepPClzQT0X0REREJCtK5kVE5Jpms5ls3GTy+1LHV6eSYsNCcrVO9FnyFYNXzSbiZDsshkmXCr8zp10fprZ6kObB65g0xU7bNjhfWT8LeSmiJyIiItcObbMXEZFrljPn0LMrOudIsg2iaM6mtc2pXnIfD9T8jFsqLKZ16Gpah65my5kmHFn2IO06t6dtGyNfxetcXURPREREigcl8yIick1y5hw6ZG6Rl5bsJ6dkfN3+8zUZs/FNpu4ewf3VZ3Jn5QU0DtoM24ZjO16TlOsfolnjW8GSt//1urKInoiIiBQf2mYvIiLXHGfOob/5jiPZv3yLe1qyf/Ro1q8/Fl+J17aN5bYlvzFz3wOkWv2xRu/DZ/Ez+M28DY+t8yA12elYGzci0xb9yzlTRE9ERESKFyXzIiJyzXHmHPq5czk//8NPOSfZ0UkhzIl+igtDl5DU+jFM30AssUfwWfIyfjNuxnPjF5CSkGusVqtR4CJ6IiIiUvwomRcRkWuOK86XR0XBHd1zHvP4CAOrf2lSWj3iSOrbj8buH+roVb/8Nfymd8Fz3WeQfCHH67QLNwpURE9ERESKH52ZFxGRa46rzpeHhRlMGJ/5XH1oqCORz5Bke/qR0ux+Uhrdg8fOBXit/RTLuWN4r5yI19rPSG42kJSmA8AnIMv3ahdu0LYN+SqiJyIiIsWPknkREbnmpJ1Dz22rfW6Cg6BZ0zwm2R5epDbqS2r9XnjsXoTX2k+wxBzE+68peG2YRUqTe0lufj/4BmZ6qdVq0KxpwWIWERGR4kHb7EVE5JrjzDn0UqVyvsalReccSbZBl06Or06tlls9Sa3fg/j7fyKx20RswTUxkuPwWvsJ/p91xmvlRIhXvzkRERHJmpJ5ERG5JuV2Dv25p69S0TmLldTat5Fw3/ck3DEZW2hdjJR4vNZ95kjqI97GiI8u+PuIiIhIsaJt9iIics3K7Ry60+fhXcGwYKvRmYTqnbAeWI7Xmg+xntqB1/oZeG6eQ0rjfqS0eADTv4xr31dERETckpJ5ERG5puV0Dr1Qis4ZBrbqHUi4rj3Wf1fg9ddUrKe24bVhJp5b5pDSqC8pLYdg+ufSfF5ERESKNSXzIiIiOSi0onOGge269iRUa4f14Eq8/voQ68mteG38HM+tcx0r9S2HYvoFF0JwIiIiUth0Zl5ERKQoMwxs1cJJuOcbEnp9iq18Y4zURLw2zMLvsy54RbwDCTGFHaWIiIhcZVqZFxERKQJsNjPn7fyGga1qWxKqtMF6cBVeqyc7tt+vn+7Yft90IMnNB4Fv6cL6CCIiInIVKZkXEREpZCsizEyF9kJCYNRIMhfaMwxs1W4ioWpbrP8ux2v1FKyRO/Fa+wmem78kpel9jj71PgFXLN5cbzyIiIjIFadkXkREpBCtiDAZM9bM9HhUFIwZazJhfBYJPfx3pr4DCdXaY92/DK+/pmCN2o3X3x/Bui85XmUQgbfeh9W3hMvjze7GQ487XfpWIiIikgOdmRcRESkkNpsjMc7JpCkmNlsOYwwDW41O/FL5W17Z8x7/nKuBl/08Vf+djPnBzRyeNwNSEvMc18ZNJr8vdXxNe/+0Gw+XJvJw8cbD70uS8vQ+IiIikn9amRcRESkkW7aSKTG+XGSkY1xOFfVXRJiMedkAbub7PZ25ucIvPFpnClVKHKL00bdJ/PhzCH+Y1AZ3gdUrx/fLbuX9seEmH3yYc6xvvBXP3K9NbbkXERG5CrQyLyIiUkiizxR83OWr+yYWfj1+G73++IGXN73K8fjy+KRE4rN0PH4zb8NjxwKwp2Z5rZxW3l8al/uNh5On7GzZ6txnEhERkYJRMi8iIlJIgoMKPi671X2b6cHCI724c9nPvL51DEleZbCcO4bPry/g9/kdeOxZDKb94ngntvw7w9kbFCIiIlIwSuZFREQKSeNGji3sOQkNdYzLTm7Jc4rdi7kH+/Nr7V9JuulpTJ8ALDH/4rPoSXy/6o314CowTae2/DvD2RsUIiIiUjBK5kVERAqJ1WowamTO58sfH2HkeAbd2eS5dBlfUloO4cKQJSTdOALTyx9r5C58v3sQn/mDsB/ZkpfQs1SurCXHGw8iIiLiOkrmRUREClG7cIMJ441MK/ShoTBhvJF1W7pL5Hl137sEKTcO58KQ30luPgjT6oXH0bW0/+ce3ms5kuol9+X7s4x+1k/F70RERK4SVbMXEREpZO3CDdq2cZx/jz7jWG1v3AinEmPH6j5Z9qpPk+Xqvm8gye2eI6XZfXj99SEeOxbQofwy2pX7g0VHb+ejPcM5Hh+W4SWhoTDyUfjgw4xb8kNDHe/RpbM3MTHxefrsIiIikj+GaZoFr3bj5mJiYgo7BKcFBga6VbzXKs2T+9BcuQfNU+6yaimXlmTntroPYJw5wLmFkygf8xsAKXYP5h/sy6d7HyYm2bGXP22ngM1mZnnjQfPkPjRX7kHz5D40V+7BneYpMDAw1zFamRcRESkGCrK6D2AGXUfJwZNYtXgbvn+9T/PSq+l/3VfcUel7/u/kYMreMYi24f6A45o59b0XERGRK0/JvIiISDHhiiS7SdeG2G7+jK3L/6LS3okEspP7K03BvvcbkoOGk9rgLrB6uiZgERERyTcVwBMREZEMrFaD6zq1xvPh+STe9g72gEpYLpzGZ+kr+M2+A+ve30Cn9ERERAqVknkREZFriM1msnGTye9LHV9tthyScsNCap1uxA/6iaQOYzB9A7HEHMT3p8fxndMPy9F1Vy9wERERycBtttlPmzaNiRMnAjB37lyaNGmS/tzkyZOZMmVKtq9dunQpYWFh2T4vIiJyLciqSF5ICIwaSc5F8qxepDQdQEq9HnhtmInnhllYT27Fb959pF7XgaSbnsIMrn7lP4CIiIikc4tkfu/evUyePBk/Pz/i47NvedOzZ08qVqyY6fFSpUpdyfBERESKvBURZpbt66KiHG3tJozPJaEH8C5BcuuRpDTu52hnt+1bPA78gfXfCFIb9sbs+iLO/tMiu4r4IiIi4pwin8ynpKQwevRo6tatS5UqVfjhhx+yHduzZ09uuOGGqxidiIhI0WezOVbkczJpiknbNs4l1KZ/CEmdx5Hc7D68V76Lx/6leG6dS+run/BsMYSU5oOwWXyyTdbzvUNARERE0hX5ZP7jjz9m3759LFiwgM8++6ywwxEREXE7W7aSIXHOSmSkY1xequGbQdeReOcULEfX4b3ibayntuG9+gPMdd/w8a6RfL3zTuxYgYvJOlDwHQIiIiJStJP5HTt28PHHH/PYY49Ro0aNXMevW7eOLVu2YLFYqFq1KjfeeCP+/v5XIVIREZGiK/qMa8ddzh7WkoT+3xBwdCXnF76KX/Ixnq7xEneEfsF7O57mr6g26cl6biff8rJDQERE5FpWZJP55ORknnvuOerUqcPQoUOdes3kyZMz/L5UqVKMGTOGHj165Pi6gIAALBb3KewfGBhY2CGIEzRP7kNz5R40T/lXtUoKcM6JcSUJDMx/D3lbwJ30eeZGOvh/yYM1P6FWqb18dONDrDp1E+/ueJoDcTU4l0sYkZFw4N+SXN9SveyvNP1MuQfNk/vQXLmH4jRPRTaZnzRpEgcPHuS7777DarXmOLZOnTq89tprXH/99YSGhhIVFcXy5cv54IMPGD16NCVLlqRTp07Zvj42NtbV4V8xgYGBxMTEFHYYkgvNk/vQXLkHzVPBXFfNJCQk5632oaFwXbXzxMTkf0V83z8lOHrSgy8YxMLDPXio1sf0rTaHtmVX0ipkNd8d6s1He4YTkxyc43UOHjpPzRpamb+S9DPlHjRP7kNz5R7caZ6cuelQJJejN23axIwZM3jkkUeoVatWruO7dOnCXXfdRaVKlfD29iYsLIwBAwYwadIkAN5///0rHLGIiEjRZbUajBqZc3L8+AijwFvbo07b0399LqU07+wYzV1//MDSE53xsNjoU20uP3S6jUE1puNlScr2OsFBBQpDRETkmlDkkvnU1FRGjx5N7dq1eeihhwp0rRtvvJHKlSuzd+9e4uLiXBShiIiI+2kXbjBhvEFISMbHQ0NhwnjDJUXnQspk/mfF4QtVeGrdJIb8OYudZ+tR0jOOUfXe5bsOd9Cl/K9AxmJ4oaGOyveuYrOZbNxk8vtSx1ebLeeq/iIiIu6iyG2zj4+P5+DBgwA0aNAgyzF9+/YF4MMPP6Rz5845Xi8wMJBDhw6RkJBAiRIlXBqriIiIO2kXbtC2DVesv3vzZh7ZbuffEN2SeyPm0rvmjzxY9X3C/I/ydssn2XymCW9vH82Osw0B1+wQSKMWeCIiUpwVuWTey8uL3r17Z/nc+vXrOXjwIB07diQoKIiKFSvmeK34+Hj27duHn59fsSp0ICIikl9Wq5Gn9nN5vfaokUaWrecATCw0GdiDjbabOfXDTPqUn0GToM18Fd6P36PuwOj0JK3Cy7oklhURplrgiYhIsVbkknkfHx8mTJiQ5XOjR4/m4MGDDBs2jCZNmgAQFxdHVFQU1apVyzA2MTGRl156iQsXLtCrVy88PIrcRxURESl2HNv5ybQiHhrqWHV3JND+2MKHs2Vdbyrsep/KMQvpEvID5q4lJJd8kJRmg8DTJ98x2GyOFfmcqAWeiIi4O7fPcM+ePUvXrl1p2LAh1atXp0yZMkRHR7N69WpOnjxJrVq1ePbZZws7TBERkWuGM9v5rVaDBq3KQas3iD/RH+/lr2M9sRnvPyfhuW0+SeHPYKt5Cxh5T7a3bM25cj84WuBt2coV26UgIiJypbl9Ml+6dGn69+/P1q1bWbFiBefOncPb25vq1aszcOBABgwYgI9P/u/ui4iISN7lZTu/vXwjEvp9jcfuRXitnIjl3HF8f3qC1ArN2VLheQ6n1MvT+f7oM869r7PjREREiiK3SubfeOMN3njjjQyPlShRgrFjxxZSRCIiIuIShkFq3e6k1uiE5/oZePz9GR7HN9D02N0cOtyLl3c9jkdAsFPF65xtbacWeCIi4s6KXGs6ERERuYZ5+rIk5VFu++Unfj7aDYth0qvK//FDp27cXHI2L7+czIqIi+fhs2o917gRmVrwXc7VLfBERESuNrdamRcREZHiLa14XVRieV7Y+BZz/72HZxu+Tv3SO3imwZv0qjKfT794nrZt2rDqz8yF9hyt53Kuqg+ubYGXFveVavknIiKSFcM0zZzLvV4DYmJiCjsEpwUGBrpVvNcqzZP70Fy5B82Te3DFPG3cZPLYExn/aWLBxp2VFzCy7iSCvB0H3fd7duKxxc9wLL5SlteZMN6RSOdcVd81su9n79r3cSX9TLkHzZP70Fy5B3eaJ2daq2tlXkRERIqMrIrS2bGy4HBvlhy/mWG1p9Kv2tdUT1nKdx1W8vk/g5nxz1ASbX4ZXjNpisn8OQZt2xhXdMVc/exFRKSw6My8iIiIFBk5FaU7n1qKd3aMps/y71gT1QpvazIP1f6E7zvezs0VFgMXk+q01nOOqvoGXTo5vmaVyGd17t4Zzvazd/Z6IiIieaGVeRERESky0orX5dQn/rSlBg//9Rkdyi3l6fpvUdH/GG+1eJq7oubz5rYXOBBXA3Cu9Vz2W+RzX1FXP3sRESlMWpkXERGRIsNqdRSvy8nddwEY/HGyM73++IGpu4eTaPPmhpC/mdv+Lp6s/xb+HnG5tp5L2yJ/eUKetkX+0qr5WVE/exERKUz5Xpk/evQo69atY9euXZw5c4bz589TsmRJgoKCqFu3Li1btiQsLMyVsYqIiMg1oF24wYTx2Reva9sGfvjJ8VyS3Ydpex/lp6N38HT9t+hYfin3Vf+cbpUW4ev1NHbzDjCy3lrvzBb5tm2yP2OvfvYiIlKY8pTMx8bGsmDBAubPn8+BAwcAyKoYvvHf/zSrV6/O3XffTY8ePQgICHBBuCIiInItaBfuSNqzK143aiQZCs8djw/jyXUf0DpkJaMbvkblEofh19HYts8nqeNL2ENqZ7i+K7bIO3MkQP3sRUTkSnEqmU9ISOCzzz5jxowZJCQk4OPjQ/PmzWnYsCHXXXcdpUuXpkSJEpw/f57Y2FgOHDjA1q1b2b59O6+//jrvv/8+Q4YMYciQIfj6+l7pzyQiIiLFgKN4XdbPZbd6/49xEzvCf6Cs3+d4rfkY67EN+H7Zi5TG/UluPRJ8SgGu2SLvOBLAVe1nLyIiksapZL5z585ER0fTtm1b7rjjDjp37oyfn1+ur4uPj+e3337jxx9/ZMqUKXzzzTesWrWqwEGLiIiIZL96700KD5FapzveK97CY9+veG3+Eo+9v5Dc7llS63R32Rb53I4EqC2diIhcKU4l802aNGH48OHUq1cvTxf38/OjR48e9OjRgx07djB16tR8BSkiIiKSlZxW781SFUi8/X2sh1bjvex/WGL+xWfxs6Ru+5am7V8kJKS6S7bI53YkQERE5EowzKwOvV9jYmJiCjsEpwUGBrpVvNcqzZP70Fy5B82TeyjS85SajOeGmXj9/TFGaiKmxYMDofczYPowEmz+Wb5kwvjiu7JepOdK0mme3Ifmyj240zwFBgbmOkat6URERKT48/Ai5YZhxN//E6nVO2LYU6l+cjrLet5Bz9q/AxfXNkJDi3ciLyIixUO+W9OJiIiIuBszoCKJd36Idf8feP8xAd9zx3i59ihG3tiW9aEv4lO+srbIi4iIWyhQMr927VrWrl1LVFQUycnJWY4xDIPXXnutIG8jIiIi4lK26h2Ir9wKr7Wf4LluBkFnVtEl9k6Sg4aRYg4BvAo7RBERkRzlK5k/e/YsI0aMYMOGDVn2mb+UknkREREpkjx9SW4zipR6d+K9dDweh9fgvfoDPHf/RFKnl7FVur6wIxQREclWvpL5119/nfXr11OzZk369OlDpUqVnGpVJyIiIlLUmIHVSLxrBh67F+G14g0sZw7gO/9+UurdSVL4s+DnZB87ERGRqyhfyfwff/xBuXLl+Oabb/D3z7oCrIiIiIjbMAxS63YntdpNeK96D4+t8/DcuRCP/ctJCn+K1AZ3gaG6wSIiUnTk6/9KNpuNJk2aKJEXERGR4sUngKTO40jo9zW2kDoYSbH4/D4W37kDsZzeW9jRiYiIpMtXMl+/fn1Onz7t6lhEREREigR7hSYk3DufpHbPYXr6YT2+Ed8v78Jr5buQkljY4YmIiOQvmX/kkUfYvHkzERERro5HREREpGiweJDSfBDxg34itXonDHsqXus+xW/2HVgP/VnY0YmIyDUuX2fmb7zxRt555x2ee+452rVrR+vWrSlbtiwWS9b3Blq2bFmgIEVEREQKi1myPIl3TsH6zxK8l/0PS+wRfP9vKCl1byep3WgVyBMRkUKR7z7z8fHxeHh4sHDhQhYuXJjj2F27duX3bURERESKBFuNzsRXaoXXn5Pw3PwVnrt+xOPfCJLCnyW1fk8wjMIOUUREriH5Sua/++47xowZg2ma1KtXj7CwMBXDExERkeLPuwTJHceQWvd2vJe8jDVqNz6/jSF150KSuozDDKxW2BGKiMg1Il/J/GeffYaXlxfTpk3jhhtucHVMIiIiIkWGzWayZStEn4HgIGjcCCjfiIT+8/DcOBuvv6bgcXQt1tk9SL5hGCkth4LVq7DDFhGRYi5fyfyxY8do2bKlEnkREREp1lZEmLw/2SQq6uJjISEwaiS0C/ckpeUQUmvdgveSV/A4tArv1ZPx2LOYpC6vYq/QJE/vldVNA6tVW/dFRCRr+Urmy5Yti6+vr6tjERERESkyVkSYjBlrZno8KgrGjDWZMB7ahRuYAWEk9pqGx+5FeC9/DWv0P/h+05+UpgNIbvM4eOV+FDHnmwZK6EVEJLN8taa78847+fvvvzl79qyLwxEREREpfDabI7nOyaQpJjbbf2MMg9S63bkwaBEp9e7EwMRr0xf4fX471n9zbuWbdtPg0kQeLt40WBGRcxwiInJtylcy//DDD3PDDTdw33338ffff2Oa+p+MiIiIFB9btpIpub5cZKRjXAa+gSTd+gYJvT7DXqoilvMn8F0wDO+fn4X4M5mukeebBiIiIv/J1zb7m2++GYDjx48zaNAgPDw8CAkJwciiJYthGCxZsqRgUYqIiIhcRdGZ8+48jbNVbUP8/T/gtXoynhtn47n7RzwOriSp/fOk1r09vY1dXm4aNGuahw8gIiLFXr4L4F0qJSWF48ePuyQgERERkcIWHOSCcZ5+JLd7jtRaXfH+/SWsp/fi88tzpO7+iaTO4zBLVSjwTQMREbl25SuZ3717t6vjEBERESkyGjdyFKDLadU8NPS/NnW5sJdvRMK93+K5fgZea6bicXAl1s9vJ+mmpwgO7AvkXuDO2ZsLIiJy7cjXmXkRERGR4sxqNRg1Muck+/ERhvOt46yepNwwjPiBC7BVaIqREo/PsldpvW8QTSodyvGlzt40EBGRa4uSeREREZEstAs3mDDeICQk4+OhoTBhvJHnlnE2m8mGQ9X4ocxs/qn5AqanLx7H1jO9WU/urz4Dq5Ga5evydNNARESuGU5ts9+3bx81a9Ys8Ju56joiIiIiV0O7cIO2bRwF6KLPOLa7N25EnpPrjH3kLcC9NAhrz3vtXibk/F88UX8it1X5hTHr/sc/52sBjpsGj4/IeNPAZjMLHIuIiBQPTiXzd9xxB127duWhhx6iTp06eX6TnTt38sknn/D777+zc+fOPL9eREREpLBYrUaBKsmn9ZG/3PajFeny1ad8/tgCGp14i9rsYF7Hu9kT+iCn6wyjUROvDIl6xhsCDiEhMGoked4lICIi7s+pbfbDhw9n+fLl9OzZkzvvvJNp06axefNmkpOTsxyflJTEpk2b+OSTT7j99tu56667WLlyJcOHD3dp8CIiIiJFWe595A2e+aYX5wf8SGr1TljMVOqe+ojWO/riefriAkjaDYHLC/JFRcGYsSYrItSHXkTkWmOYpunU3/7R0dF89NFHLFy4kPPnz2MYBlarlfLly1OqVCn8/f25cOECsbGxnDx5EpvNhmmalCxZkl69ejFs2DCCgopmKdaYmJjCDsFpgYGBbhXvtUrz5D40V+5B8+QeNE+Zbdxk8tgTuf9T64P3DJo1AY+9i/Fe9j+MhBhMw0rK9Q+S0OJheg/wzLWy/vw5zp+t11y5B82T+9BcuQd3mqfAwMBcxzjdmi44OJgXX3yRp59+msWLF/PHH3+wceNGjhw5kmlsmTJlaNGiBe3bt6dr1654e3vnLXIRERGRYiBPfeQNg9Tat2GrdANey/6H595f8Pr7Y1K2LyUk+X9E0SDb10dGOs71F+Q4gIiIuJc895n38fGhZ8+e9OzZE4AzZ84QHR3N+fPnKVmyJMHBwUV2BV5ERETkanK2P/yl40y/YJK6v0fq3lvwXvoq/hf2Mfum/sz6Zwif7H2EFLtXltdw9saBiIgUDwVuTRcUFETNmjVp1qwZNWvWVCIvIiIi8p/GjcjU2u5y2fWRt9W6lfj7fyQy9DY8LDaG1prGN+G9qV96W5bXcfbGgYiIFA/qMy8iIiJyhVitBqNG5nyOPcc+8n5BeN/zDq/seZ/opGCql9rP7Jv681jdd/G0XCxEnN0NARERKb6UzIuIiIhcQe3CDSaMNzKt0IeGwoTxRq5t5axWgxb33kyvZT/w89FuWA07D9Sczpzwu6kbsAPI5YaAiIgUS3k+My8iIiIiedMu3KBtG0eRuugzji3xjRvhdALeLtyAlwJ5b/Jb/H78Fl5s/Ao1Sv3Dl+H3sL/CQ1Ro8zCQ9Vl6EREpnpTMi4iIiFwFVqtRoGrzF28IdGZNZHNaRr1KaOQv1DrxEbavl5N062ukBNXO9w0DERFxL0rmRURERNzExRsCQcB7JO65Ge+l47FG7cLny7uZe+gRpmwZis10/BMvJARGjSTXrfwiIuJ+dGZeRERExE2l1u5K/P0/crJ0JyxmKoMrT2Z22/5cV+IfAKKiYMxYkxURZiFHKiIirqZkXkRERMSNpfoEM3DxJF7Y8CbnkktRP3AH37TrzX3VZ2LBBsCkKSY2myOht9lM1q5L4felJhs3XXxcRETcS76S+U6dOvH222/nOm7ixIl07tw5P28hIiIiIk7YshWiogx+Ptadu/5YSMTJdnhZU3iy/jt82mYwFf2OEBnpGLciwqR3P5PBQ8/xyqsmjz3h+L1W7kVE3E++kvljx45x5syZXMfFxMRw7Nix/LyFiIiIiDgh+pJ/kkUlhfLY2g8Zt3k8F1L9aB68gfnte3JXlXmsWmVnzFiTqKiMr9dWfBER93RFt9knJCTg4aEaeyIiIiJXSnDQ5Y8YfH/4Lu5evoD1p1vg55HAS41foePJRwjxjsz2OpduxRcRkaLviiTzdrud/fv38/fff1OhQoUr8RYiIiIigqP9XEhI5sePx4fx4OqZvLP9GZLtXrQKXsm3He7k5gqLs7xO2lZ8ERFxD04vm9etWzfD77///nu+//77HF9jmiZ9+vTJV2AiIiIikjur1WDUSMdW+cuZWPjywCBKNW1L26jnqVd6J2+1eJqOx5by+tYXiU0pnWF8dO6nKEVEpIhwOpkvX758+q9PnDiBj48PgYGBWY719PQkNDSUTp06MXDgwIJHKSIiIiLZahduMGE8vD8545n40FB4fIRByZI1ue/JrxlaaxpDa37CrRUX0yx4PS9v+h9/RbVNH595y76IiBRVTifzy5YtS/91nTp1uPXWW3n99devSFAiIiIikjftwg3atnFslY8+40jMGzdyrNzbbCaBZTz5eM9wVp4K59WmL3BdyQN8dOMwvvn3Ht7f+RSlgn1p3KiwP4WIiDgrX9XpZs+eTZkyZVwdi4iIiIgUgNVq0Kxp1o+nbcXfcbYh/SPm8Vjd9+h/3Vf0qzaHG8qs4dj1b2K1NnTqfWw2M8ubBiIicvXkK5m//vrrXR2HiIiIiFxBGbfi+/LW9hdYeaodrzZ/kWol/6Xqnv4kBz5KyvUPYjOt2SbrKyLMTNv5Q0Jg1EjHe4iIyNVRoL5xR44cYcOGDURGRpKcnJzlGMMwGD58eEHeRkRERERcIG0r/oF/S3Lw0HmCg9riVet7Uv4Yj+feX/Be/QHxW1YwatXrbDlSJf11ack6ZF1oL61X/YTxSuhFRK4WwzTNPDcUTU5O5sUXX+THH38EHFXrs30Dw2DXrl35j/AqiImJKewQnBYYGOhW8V6rNE/uQ3PlHjRP7kHz5D4yzZVp4rHrR6y/v4qnLY74VF/e2f4c3x3uDVxMzkuVgnPnsr9uaCjMn2Noy72L6GfKfWiu3IM7zVN2xeYvla+V+Q8++IAffviBUqVKcccdd1C1alX8/f3zcykRERERKWyGQVLt23lkQjOeqPICLcusY2yTcYSXW84rm8cTkxwM5JzIw8Ve9Vmd2xcREdfKVzL/008/UapUKRYsWEDFihVdHZOIiIiIXGVbtsLOYxV46NgMBlSfzcg679O+3HIatO/Jy5sn8GfkTU5dR73qRUSuDkt+XhQdHU3z5s2VyIuIiIgUE2lJuImFL/YPYsDKb/jnXA3K+ETzYauHea7BBLwtibleR73qRUSujnwl8xUqVHB1HCIiIiJSiC5Pwveeq8O9EXP5+sAAAO657mu+Du9D7VLZ10IKDUW96kVErpJ8JfN33XUXa9eu5cwZ7aMSERERKQ4aN3JUrb9Ukt2Ht7Y/z6N/fczpxGCql9rPFzfdw33VZ2Jgz3SNx0eo+J2IyNWSr2R+6NChhIeHc99997FmzZocq9mLiIiISNFntRqMGpl1Ir466ibuXv49J0t3wMuawpP13+GjGx8k1OcU4FiRnzDeUFs6EZGrKF8F8Lp06QLA8ePHGTx4MB4eHoSEhGAYmf8CNwyDJUuWFCxKEREREbni2oUbTBgP7082iYq6+HhoKDw+IpgSN31I4rb5eC9/g1Yha/ipaw/21X2VsE5dtCIvInKV5SuZP3bsWIbfp6SkcPz4cZcEJCIiIiKFp124Qds2jur20WccZ+kbNyI9WU9t1AdbpZb4/PwsXqe2U3/746QYfUhq/xx4+hVy9CIi1458JfO7d+92dRwiIiIiUkRYrUaOveLNwGok9PsKr9VT8Fz3GZ7b5mE9tp7E297BHlr36gUqInINy9eZeRERERG5xlm9SL7pSRJ7T8fuH4rlzAF85/TFc8MsMDMXxxMREddSMi8iIiIi+WarfCPx931PavVOGLYUvFe8ic93wzAuROX+YhERybcCJfOrVq1i+PDh3HTTTTRo0IAXXngh/bmVK1fy+uuvc+rUqQIHKSIiIiJFmG8giXdMJrHTy5hWbzwOrcJ3dg+sB1YUdmQiIsVWvpP5//3vfzz44IMsXbqUCxcukJqamqFFXUhICJ9//jmLFy92SaAiIiIiUoQZBqmN+xE/4FtsZWpjSTiD7/cP4/XHa5CaXNjRiYgUO/lK5r///nu+/PJL6tevz4IFC9i4cWOmMXXq1KF8+fIsW7aswEGKiIiIiHswg2uQ0H8uSU0GAuC16QuY0Rfz9IFCjkxEpHjJVzI/Z84cSpUqxbRp06hbN/uKpbVr1+bo0aP5Dk5ERERE3M+K1V50/2g0I9dM5UxSICXiduMxszf7v/sOLtnJKSIi+ZevZH7v3r00bdqUoKCgHMeVKFGC06dP5yswEREREXE/KyJMxow1iYqClZHt6Lv8O9ZGXY+vNYHGB8cQ+/kzkBTnsvez2Uw2bjL5fanjq82mmwUicm3IV595AMMwch0TGRmJj49Pft9CRERERNyIzWby/uSMyXRUUigP//UZg2tO55HaU6h4ZhG2L7eS1G0i9nINC/R+KyIc7xd1SeH8kBAYNRLahef+b1UREXeWr5X5qlWrsmPHDlJSUrIdExcXx+7du6lRo0a+gxMRERER97FlKxkS6zR2rEzf9xBD/vyc4/EVsMYewfeb/nium55jT/qcVt0v3QFwqagoGDPWZEWEVuhFpHjLVzJ/6623EhUVxcSJE7Md8+6773L+/Hm6deuW7+BERERExH1En8n5+S0xTem7/P84FnAzhj0V75Xv/NeTPvOxzBURJr37mTz2hMkrrzq+9u7nSNKz2gFwuUlTtOVeRIq3fCXz999/P7Vq1eLzzz+nb9++TJs2DYAjR44wa9Ys7r33Xr7++mvq1q3L3Xff7dKARURERKRoCs65nBIA51NLsb/peyR2fuViT/ove2I9vCZ9TG6r7rO/zPzc5SIjHTsFRESKq3ydmffx8WHWrFmMHj2aiIgItm51/E25fv161q9fD0CbNm14++238fLycl20IiIiIlJkNW7kOLOeU6IdGgqNGxukWvtgr9AU70VPYo3+B59vHyDlhodJuP4R3p9szfF95v+fc/HktlNARMSd5bsAXlBQENOmTWP37t2sWrWKY8eOYbfbKVeuHG3atKFRo0aujFNEREREijir1WDUSMfqeXYeH2FgtTqK09nL1CSh/zy8/3gNz+3f4vX3R8TvXodx/i2gbLbXOHfOuXic2SkgIuKu8p3Mp6lTpw516tRxRSwiIiIi4ubahRtMGE+mKvOhoY5EPlOVeU9fkm5+FVulG/Be8jKlY9fzTbu7GLvpNVZFhmf7PqVKwrnz2ccRGurYKSAiUlwVOJkXEREREblUu3CDtm0cZ9ajzzhWyBs3In1FHhyV6jM+3w1buQaY858giN1MafUIs/4ZzJRdj5NqemZ6j7t7w/SZ2cdw6Q4AEZHiqEDJ/NGjR1m/fj2RkZEkJydnOcYwDIYPH16QtxERERERN2O1GjRrmvVz2feHr0Lb++fw/Ytv06P81wyqMZOmQRt5fsPbHE+omD42NBTuG2BwXbU87AAQESlmDNM089yzIykpiRdffJGffvoJgJwuYRgGu3btyn+EV0FMTExhh+C0wMBAt4r3WqV5ch+aK/egeXIPmif3UZhzlVapPjsTxjuS8KUf/cYrTV6ipOd5ziWXYuzmCSw/2TF9TFqynnmFn2KzIq+fKfehuXIP7jRPgYGBuY7J18r822+/zY8//khwcDC33347lSpVws/PLz+XEhEREZFrhLP94efPMYCbeWRaPZ6t+jSNgrby/vUj+b8T9+Hb7UnCw73Tx+e0A0BEpDjLVzK/ePFiAgMD+f777wkJCXF1TCIiIiJSDG3ZmnPbOrjYH95x7j6MrZtn88+O96hx+nPuKj8b2/HNJJ57F7NUxZwvJCJSzFny86L4+HhatmypRF5EREREnOZs3/e0cVarQdPm3pS7bzQJd0zG9C6F9eRW/L64C+uBP1wWl81msnGTye9LHV9ttjyfQhURuerytTJfs2ZN4uLiXB2LiIiIiBRjzvZ9z2qcrUZn4kPq4PPTk1hPbcP3+0dJbv4AyW1HgTVztXtnZV+MDxXRE5EiLV8r84MHD2bt2rXs3LnT1fGIiIiISDHVuJEjUc5JTv3hzYAwEvp9SXLTgQB4bZiB7/z7Mc6fyFc8acX4Lt/6HxUFY8aarIjQCr2IFF35Wpnv2rUrp06dYvDgwQwYMIDWrVtTtmxZLJas7w1UqFChQEGKiIiIiPuzWg1GjSTHava59oe3epHc4QVsYS3w+e1FrMc34fdFTxJvfRPbde2cjsXZYnxt2xSf6vgiUrzku8987dq1KV26NFOnTmXq1KnZjjMMQyv4IiIiIgI4tq5PGF/w/vC2mjcTH1IXn0VPYD21A9/vHyb5hmEk3zgSLNZcX5+XYnyqli8iRVG+kvk//viDkSNHkpqaSmBgIBUqVFBrOhERERFxiqNSPQXuD2+WrkRC36/xWvEmXlu+xuvvT7Ac30zSbW9j+ue8nz+vxfhERIqafCXzkydPxjRNXn/9dXr06IFhaOuRiIiIiDjPZf3hPbxI7vQS9orN8P59LB5H/sbyZS8Su72LPaxlti8rSDE+EZGiIF8F8Pbv30+LFi3o2bOnEnkRERERKXSpdboRf+98bME1sFw4je/8wXiu+wxbqi3LtnMFLcYnIlLY8pXMBwYGEhgY6OpYRERERETyzQy6joT+c0mpeweGacN75UR2jhvBmGfP8sqrJo89YdK7n6NKvaMYX86LUrkW4xMRKUT5SuZvueUW1q9fT1JSkqvjERERERHJP08/km59g61VXiHJ5sWNQcv5Jvxu6gbsADK2nXMU4zMyrdCHhsKE8c4X4xMRKQyGaZp5bqCZkJDAoEGD8Pf3Z9y4cVSuXPlKxHbVxMTEFHYITgsMDHSreK9Vmif3oblyD5on96B5ch/Ffa5sNscKfFDSLt5p+QSV/I+QbPPkze0v8H+H7gYMQkNh/hzHyrvNZha4GN+VUNznqTjRXLkHd5onZ3bC56sA3rBhw7BYLPz111907dqVihUrUrZs2SzPzxuGweeff56ftxERERERybO0tnNR1KX/inm80vRFOpZfykuNX6Fx4GZe2/YSkZG+6W3nXFaMT0TkKspXMr927dr0X9tsNg4fPszhw4ezHKsCeSIiIiJyNV3aTu58aimeXDeJQTVmMLLu+9xReSG1A3bx9Pr3iT5TtdBiFBEpqHwl80uXLnV1HCIiIiIiLpG5nZzBrH+GsD2mIW+2eJraAXv5Orwvh22vAZ0LIUIRkYLLVzJfsWJFV8chIiIiIuISaW3noqIyPr4++nruWTGft1o8SZOgzdTfPpJk3wdJbvMYWPL1z2IRkUKTr2r2IiIiIiJFVU5t5yITyzL0z1kcCL0PAK91n+Lzfw9ixEcX6D1tNjPLfvYiIldKgZL5f/75h9dee41+/fpxyy238NZbb6U/t3HjRmbPns3Zs2cLGmO6adOmUbt2bWrXrs3mzZszPR8XF8frr79Ohw4daNCgAR07duTNN9/kwoULLotBRERERIq+nNrOvfKKF6EDniex20RMTz88jqzB94teWI5vytd7rYhwVM9/7AkzUz97EZErJd/7iWbOnMnEiRNJTU0FHIXuLi/z//rrr+Pl5UW/fv0KFiWwd+9eJk+ejJ+fH/Hx8Zmej4+PZ8CAAezatYu2bdvSrVs3du3axYwZM1i3bh1fffUV3t7eBY5DRERERNxDu3CDtm3Itu1cau3bsJWphe+Pj2M5cwDfefeT1H40qY3vASeLOK+IMBkzNnPSntbPfsJ41K9eRK6IfK3ML1++nDfffJNy5coxZcoUVq9ezeXt6ps1a0ZQUJBLiuWlpKQwevRo6tatS+fOWRcp+eyzz9i1axcPPvgg06dP5+mnn2b69Ok8+OCDbNu2jVmzZhU4DhERERFxL462cwZdOjm+Xt4/3gyuQXz/eaTUuhXDnoLPslfx/vV5SEnM9do2m8n7k3NefZ80RVvuReTKyFcyP3PmTHx9fZk5cyadO3cmKChTyVAA6tSpw7///lugAAE+/vhj9u3bx2uvvYbVas30vGmazJ8/Hz8/Px599NEMzz366KP4+fkxf/78AschIiIiIsWQlz9J3d4lKfxZTMOC586F+H7THyP2aI4vS+tnn5PISMc4ERFXy1cyv2PHDpo0aUKlSpVyHBcYGMjp06fzFdil7/Xxxx8zYsQIatSokeWYgwcPEhkZSbNmzfDz88vwnJ+fH82aNePIkSOcOHGiQLGIiIiISDFlGKS0GEziXTOw+wZhjdqF35e9sf67Mtvidpf2s8+Js+NERPIiX2fmU1JS8Pf3z3XcmTNnslxJd1ZycjLPPfccderUYejQodmOO3ToEABVq1bN8vmqVauyatUqDh48SPny5fMdj4iIiIgUb7bKN5Aw4Ft8fhyF9eRWfBYMY+7h4UzaPAzzv3WwkBAYNTKrfvZZc3aciEhe5CuZDwsLY/fu3TmOSU5OZs+ePdkm2M6YNGkSBw8e5LvvvsvxpsD58+cBKFGiRJbPpz0eFxeX5fMBAQFYLO7TpS8wMLCwQxAnaJ7ch+bKPWie3IPmyX1ornIQGIg57EcOT3uBCie+YlDlKVT12s5LG1/nfGopTp+GF182mfiWP2XLJhAZacfM4li8YUDZUAvt25XOdFbf+VA0T+5Cc+UeitM85SuZ79ixI5999hkzZ85k8ODBWY757LPPOHPmDPfdd1++Atu0aRMzZsxgxIgR1KpVK1/XcFZsbOwVvb4rBQYGZuoaIEWP5sl9aK7cg+bJPWie3IfmKnc2m8n9371Aa5+6vNBoPO3LLeer8L48se4D9p+vCcAbb19g5KPw0risr2GaMHK4yblzZ/MVg+bJfWiu3IM7zZMzNx3ytRw9dOhQypYty1tvvcWoUaNYtGgRANHR0fz+++88++yzTJ48mbCwMO699948Xz81NZXRo0dTu3ZtHnrooVzHlyxZEsh+5T3t8exW7kVERERELpVW3G7hkZ4MWvUlx+MrULnEYb646R66lP8VcBS3CwjIvp/9hPGG2tKJyBWTr5X5gIAAZs6cyWOPPcYvv/zCr786/kJbuXIlK1euxDRNatSowYcffpivBDo+Pp6DBw8C0KBBgyzH9O3bF4APP/yQ6tWrA6S/5nJpjxdky7+IiIiIXDsuLVq3K7Y+/SPm8Ubzp2kVsoa3Wz7J9H1D+XDXY0Sf8aBLp5z72YuIXAn5SuYBqlWrxsKFC1m2bBl//vknx44dw263U65cOVq3bs0tt9yS7+J3Xl5e9O7dO8vn1q9fz8GDB+nYsSNBQUFUrFiRqlWrEhoaysaNG4mPj89Q0T4+Pp6NGzcSFham4nciIiIi4pTLi9adTQ5k+JpPGFn3fQbVmMmQmp9RN2AnlHwHCPyvn33O17TZTCX8IuIy+U7mASwWC507d6Zz586uigcAHx8fJkyYkOVzo0eP5uDBgwwbNowmTZqkP3733Xfz4YcfMnXqVJ5++un0x6dOnUp8fDwPP/ywS2MUERERkeKrcSNH1fpL+8jbTA/e3/k0u87WY1yTl2gduhr71j4kVpuMPaROjtdbEWHy/mQzw/XSquJrK76I5If7lHDPxdChQ6lTpw6ffvopQ4YMYeLEiQwZMoRPP/2Uhg0bcv/99xd2iCIiIiLiJqxWg1Ejs06yfz1+G/ev+op4rzAs547iO+cePHYvyvZaKyJMxozNmMiD40bBmLEmKyKyKIUvIpKLfCXzv/32Gz179uSvv/7Kdszq1avp2bMnS5YsyXdweeHn58eXX37J/fffz/79+5k5cyYHDhzggQceYNasWfj4+FyVOERERESkeGgXnn1xu/ufrot9yHxSq7TBSE3E5+en8VrxNthTM4y12Rwr8jmZNMXEZlNCLyJ5Y5hmVl0xc/bwww+zadMmVq5ciZeXV5ZjkpOTadu2Lc2bN+ejjz4qcKBXkru0JwD3aqdwLdM8uQ/NlXvQPLkHzZP70FzlTY5n3e02vP6chNe6TwFIrdyKxG7vgq+jrdTGTSaPPZH7P7c/eM+gWdOMOwE0T+5Dc+Ue3Gmerlhrut27d1O7du1sE3lwFLGrU6cOu3fvzs9biIiIiIgUCY7idgZdOjm+ZihaZ7GSfNOTJHR/D9PTD4/Da/D7ug+WqD1Axqr4OXF2nIhImnwl89HR0YSGhuY6LiQkhOjo6Py8hYiIiIiI27DVupWEfnOwB1TCEus4R2/d+2umqvjZcXaciEiafCXzpUqV4sSJE7mOO3nyZIY2cSIiIiIixZU9pBbx/eeRWvlGjNQEfH8axfVxkwgNsef4utBQx9Z9EZG8yFcy37BhQzZv3syePXuyHbNnzx42b95Mw4YN8x2ciIiIiIhb8S1NYq9pJDcfDIDPuk/44taRlPA4n+1LHh9hqN+8iORZvpL5/v37Y7PZGDZsGL/88kum53/55ReGDRuG3W6nf//+BQ5SRERERMRtWDxIbvcsibe+iWn1pmzscn7pdQ9NK/2bYVhoKEwYb6jPvIjkS76q2QO88cYbzJo1C8MwKFWqFGFhYQAcPXqUc+fOYZomAwcOZMyYMS4N+Epwl4qG4F4VGK9lmif3oblyD5on96B5ch+aq6vHcmoHPgtHYIk7ielVgu113uYfo13mqvhkrprfvl0g586dLbzgxWn6mXIP7jRPzlSz98jvxUePHk3dunX55JNPOHDgALGxsenPVa9enQcffJAePXrk9/IiIiIiIm7PXrY+CffOx+enUViPbaDB1kep1fYJUpoMBeNiIr8iwtGPPirq4mvLlj3LY8NNrdyLSJbyvTJ/qcjISE6ePAlAuXLlnKp0X5S4y90ZcK+7SdcyzZP70Fy5B82Te9A8uQ/NVSGwJeO9/HU8t3wDQErtbiTd/Cp4+rIiwmTM2Mz/JDcMME1txXcH+plyD+40T1d0Zf5SoaGhbpfAi4iIiIhcNVYvkjq9jC2kDt7L/ofnnkVYzh7kQrfJvD+5bJYvSVtymzTFpG0bVCRPRDLIVwE8ERERERHJu9RGfUnoPQPTNxDrqR34fHk35VM35/iayEjYsvXqxCci7qNAK/Pr169n6dKlHDp0iAsXLpDVjn3DMPj8888L8jYiIiIiIsWGPawl8f3n47NwOF6n9/BZ60H8b+vL/HCkZ7aviT7j+Hp5kbzLi+iJyLUjX8m8aZq88MILfP/99+kJvGEYGZL5tN8bhv5yERERERG5lBlQkYR+X5Ew93lCon5nfNMXqVlqL+/vfAqbmfmf6MFBWRfJCwmBUSPRmXqRa1C+ttnPmTOHBQsWUL9+fWbOnMnNN98MOPrLf/rpp/Ts2ROLxcKQIUNYsmSJSwMWERERESkWvPzxuuc9Zh95FICB1Wcz5YZHKOkZm2FYaCjExjqK5F2ayANERcGYsSYrIgpc01pE3Ey+kvkFCxbg6+vLp59+yo033oi/vz8AVatW5aabbuL1119n4sSJzJgxg127drk0YBERERGR4sLqYSW45wieXvcuCam+3Bi6mq9u6kfVEgfSO9eNfBQ++DDn60yaYmKzKaEXuZbkK5nfv38/zZo1y1Qu32azpf/61ltvpX79+syYMaNgEYqIiIiIFGPtwg06PHIrT+z4guPx5alc4jBf3NSf22quZsJ4g4AAI9OK/OVUJE/k2pOvZN40TUqXLp3+e19fXwBiYzNuCapSpQp79+7Nf3QiIiIiIteAduEGb86ox6Eu84j2a0ZJz/NMqDuMziW+IDrauRX3tCJ5InJtyFcyHxoaSmRkZPrvK1SoAJBpS/3BgwexWq0FCE9ERERE5NpgtRo0vKEM3kNnklK/J5h2vJe/TquocXgYybm+PjjoKgQpIkVGvpL5+vXr888//6Rvq2/bti2mafL222+zf/9+4uLi+Oyzz9ixYwf16tVzacAiIiIiIsWahxdJN0/AcuvLmBiUPzGf6eEPEeB5NtuXhIY62tSJyLUjX8l8x44diYmJYfny5QDUqVOHbt26sXv3brp3707Lli2ZOHEiHh4ePPHEE66MV0RERESk+DMMrG0eIbHHVEwvfxoHrOPL8H5cV+KfLIc/PsJQv3mRa0y+kvnu3buzdetW2rdvn/7YG2+8wZNPPknDhg2pXLky7dq1Y9asWTRqpFuEIiIiIiL5YbuuPQn95mAPCKOS/xG+CO9P29CI9OdDQ2HCeEN95kWuQYZpmtd8D4uYmJjCDsFpgYGBbhXvtUrz5D40V+5B8+QeNE/uQ3PlHjLMU0IMvj88hvXYekwMtld4hpha99O4sVbkiwL9TLkHd5qnyzvHZSVfK/MiIiIiInIV+QaS0Hs6KQ3uwsCk4fG3uPH0y1hJKezIRKSQKJkXEREREXEHVi+SurxKUrvnMDHw3P4tPt89BAlnCzsyESkEHs4M6tSpU77fwDAMlixZku/Xi4iIiIjIfwyDlOaDsAdWwWfR03gc+Ru/Of1I6PkRZmC1wo5ORK4ip5L5Y8eOXek4RERERETESbbrOpDQ72t8vn8Ey9lD+H19D4m3v4+tcqvCDk1ErhKnkvndu3df6ThERERERCQP7CG1Seg/D58fRmA9sQWf7x4kqeNLpDbqU9ihichVoDPzIiIiIiJuyvQvQ8Ldn5NSuxuGPRWfJS/jtfwNsNsKOzQRucKUzIuIiIiIuDMPb5Jue5uk1iMB8Nr4OT4Lh0PyhUIOTESuJKe22WcnMjKS7777jvXr1xMZGQlAaGgoLVq0oGfPnpQtW9YlQYqIiIiISA4Mg5RWj2IGVsP7l+fx+HcFvt/cS2LPjzBLli/s6ETkCsh3Mr9gwQLGjx9PYmIipmmmP753717+/PNPPvnkE1588UXuuusulwQqIiIiIiI5S63dFXupivgsHI719B58v+5D4p0fYS/XoLBDExEXy1cyv2LFCl544QUsFgtdu3alW7duVKxYEYDjx4+zaNEifvnlF1588UXKlClDu3btXBq0iIiIiIhkZrOZbDzZkPgqc7jp8KP4X9iH77yBJHZ9C1vNLuljtmyF6DMQHASNG4HVahRy5CKSV/lK5j/++GMMw2Dq1KmZEvU6derQsWNH7rjjDh5++GE++eQTJfMiIiIiIlfYigiT9yebREUBVMDf40veu/Eprg9chc+Pj5N801MsiR/M+1P4b4xDSAiMGgntwpXQi7iTfBXA2717N82bN88xSW/Xrh0tWrRg165d+Q5ORERERERytyLCZMxYM0OSfiG1BI+s+pC5//bDwMR75Tsk/t/LxJxOyfDaqCgYM9ZkRYSJiLiPfCXzXl5ehIaG5jouNDQULy+v/LyFiIiIiIg4wWZzrMhn+ZzpwevbXmTqv6OxmwZ3Vf2WKa0epqTHuUxjJ00xsdmU0Iu4i3wl89dffz1bt27FbrdnO8Zms7FlyxZatmyZ7+BERERERCRnW7Zm3DafmcG0bQMZtXYy8am+tApZw+c33UtFvyMZRkVGOq4lIu4hX8n8k08+ydmzZxkzZgznz5/P9HxcXBwvvfQS586d48knnyxwkCIiIiIikrXoM86NizjVgcGrvuBUQlmuK3mAL266h0aBm/N1LREpfPkqgLdo0SI6dOjAggUL+O2332jTpk16Nftjx47x559/Eh8fz+23387PP/+c4bWGYTB8+PCCRy4iIiIiIgQHOT92z7m6DFw5h0nXD6du6V1Ma/0AL258nSUnbsnztUSkcBnmpU3inVSnTh0MwyAfL8UwjCJXFC8mJqawQ3BaYGCgW8V7rdI8uQ/NlXvQPLkHzZP70Fy5B2fnyWYz6d3PzHGrfUiI42vaGF/rBd5o/gztyq0A4L0dT7H4/GDmz7GoTV0+6GfKPbjTPAUGBuY6Jl8r86+//np+XiYiIiIiIi5mtRqMGumoSJ+dUSMdCXramASbP0+sncwzDd7gnuu+5on6E+kVchSr8SL5TBFE5CrL109qz549XR2HiIiIiIjkU7twgwnjuaTPvENoKDw+wkjvIX/pGDtW3tz+AmctlXi46ltUiZpL6vfHSez+Hnj5F9InERFn6babiIiIiEgx0C7coG0bR0X66DOO8++NG5Fh23zmMQaNG91P4r9h+Pz8DB4HV+I7dwCJPT7CLFmuED+NiOQmX8l8QkICMTExlC5dGj8/v/THY2Nj+fTTT9m3bx/ly5fngQceoHLlyi4LVkREREREsme1GjRrmvcxthqdSegzG5/vH8EatRvfr/uS2PNj7KF1r1ywIlIg+WpNN3XqVDp16sSBAwfSH0tOTqZPnz5Mnz6dFStW8M0339C3b18iIyNdFqyIiIiIiFwZ9nINSbhnLrbg6lguROI7dwDWfyMKOywRyUa+kvk1a9ZQuXJlGjRokP7YwoULOXToEDfccAPTp09n4MCBxMTEMGvWLFfFKiIiIiIiV5AZUJGEvl+TWqkVRko8Pt8/isfWeYUdlohkIV/J/IkTJ6hSpUqGx5YtW4ZhGLz++uu0adOGMWPGULVqVVauXOmSQEVERERE5CrwKUVir09IqdcDw7Ths+RlvFa9D/loSy0iV06+kvnY2FhKliyZ/nvTNNm4cSO1a9emfPny6Y/XqVOHEydOFDxKERERERG5eqxeJN3yGsmthgPgtfYTvBc/B7bkQg5MRNLkK5kPCQnh2LFj6b/fvn07sbGxtGzZMsM4wzAuf6mIiIiIiLgDwyC59QgSb56AafHAc/eP+Hz3ECSeK+zIRIR8JvN16tRh69atLFmyhLi4OKZOnYphGHTo0CHDuEOHDhEaGuqSQEVERERE5OpLbdCLxB4fY3r543Hkb3zn9sc4dyzX19lsJhs3mfy+1PHVZtM2fRFXyldruqFDh7J8+XJGjhwJOLbZ161bl1atWqWPOX36NLt376Zbt26uiVRERERERAqFrWobEvp+ic93w7BG78d3Tj8Se3yMvWz9LMeviDB5f7JJVNTFx0JCYNRIR697ESm4fK3MN2vWjClT/r+9+46Pos7/OP6e3fSEEiABCWAQCSISJKGDBIyggooUERFUOARpB3aUg1PuOPROKYIiRUHRQ+CoolhoCSgEJBQRFEFBwZIIoYT03fn9kV8iIW0Dm7Kb1/Px8BGZ+c7MZ/bLZPjst81RZGSkrrvuOt1zzz2aO3euLJY/T7d+/Xr5+/vrlltucVqwAAAAAMqHPegGpQ78QLZaYbJc/EO+yx8qcOm6mFhTEyfnTeQlKTFRmjjZVEwsLfSAMximybSUSUlJ5R2CwwIDA10q3sqKenId1JVroJ5cA/XkOqgr11Ce9WSzmdp/QDp9RqpZQ2oRLlmt/9+inn5BPh/+VR4/7ZRpWJV+29+V1fy+3OP6DcifyF8qOFhasdT483xugGfKNbhSPQUGBhZb5oq62QMAAABwT8V2kfeuorTe8+T9+WR5Hlorn88nK+PC78poP1r7D6jIRF6SEhKk/QekiJalex+Au7uibvYAAAAA3I/DXeStXkq/fZoy2o6QJHntfF3en/1NZ05nOnSd02ecGTVQOTnUMh8dHS3DMLRo0SLVr19f0dHRDl/AMAxt3LjxigMEAAAAUPpstuwW+aLMmmOqU8f/73JvGMroOF72KtfIe9MUeX6zSp1rJMrX+qpSbf5FnqdmDWdGDlRODiXzOWvKZ2Vl5fkzAAAAAPdwpV3ks8Lvl+kfLJ+PnlCNM9v0TtQQPfbFGzqTXqvAcwQHZ4/BB3B1HErmv/322yL/DAAAAMC1Odr1vaBytkZdlXrfYvmuGakwfaN3Oz2oUTvn6aeLofnKjhvjXpPfAeWFMfMAAAAAHO76Xlg5+zUtlDLgv7JXq696/ie1pPODah64P3d/cLA0dYrBOvOAkzCbPQAAAAC1CM+etb64ZeWK6iJvBoYqdcB/5bNmpKr9flCLo4Zqd4P/KKNhdN7l7QBctStK5uPj4xUXF6djx47p/PnzMgxD1apV0/XXX6+2bduqRYsWzo4TAAAAQCmyWg2NH5s9a31hHOkib/rXUmr/d+Sz/nF5/BirtifGKf36vyvL2t/ZIQOVWomS+W+//VbPP/+8Dh8+LEkyzbwPumFkP9jh4eGaOnWqrr/+eieFCQAAAKC0RXU2NHWK8q0zHxycncjndJG32UztP5A9fr5mDeVvdff0U1qv1+W98QV5Hlwpn41/V0ZygjLaj5YMWucBZ3A4mT9w4IAefvhhpaamytfXV507d1bTpk0VGBgo0zSVlJSkw4cPa9u2bdq/f7/uv/9+LVmyRDfeeGNpxg8AAADAiaI6G+rUUYUm6zGxZr5kPyhIGj9WecfDWzyU3u0fMv2D5RU3V147X5dxMUHp0ZMlC6N9gavl0FNks9n09NNPKzU1Vf369dOECRMUEBBQYNnk5GRNmzZNK1eu1JNPPqmPP/44t8UeAAAAQMVntRp5lp/LERNrFtgNPzExu3v+1CmXJfSGoYyOf5U9IFjem/8hz69XyEg5rbQer0ievqV4B4D7c2g2+02bNunEiRPq0aOH/vnPfxaayEtSQECApk6dqjvuuEPHjx/X5s2bnRYsAAAAgPJhs2W3yBdl1hxTNlv+MlktBijtrpkyrV7yOLZZviv/IvvFJMXvNfX5JlPxews+zmYziy0DVFYOtcxv2bJFFotFjz/+uMMnfvLJJ/Xpp59q48aNio6OvuIAAQAAAJS//QeKnulekhISsssV1Kpva9xNqf3elu+aUbL+sldnZwzStC/m6dfUupLyd9V3uDs/UEk51DJ/8OBBNWzYUPXr13f4xPXr19d1112nb7755oqDAwAAAFAxnD5z9eXsIZGKvX6JfkutowZ+P+idTg/q+ipHJP3ZVT8m1sztzn/5lweXlgEqO4eS+cTERIWGhpb45KGhoUpISCjxcQAAAAAqlpo1rr6czWbqnwuv10Pb3tfR89cr2DdBizoNVmTN3bllZs6+8u78QGXiUDKfnJysKlWqlPjkAQEBSk5OLvFxAAAAACqWFuHZ3dyLEhycXa4wOV31E9LqaMgX72rP6UhV8UzWG+2Gq2udjZKy9zvanR+ozBxK5rOysq5oRnqLxSKbzVbi4wAAAABULFarofFji84Jxo0x8q43f5lLu+BfyKymUTvma/Ov0fK2ZuiV1o+r77XLHY7H0W7/gLtyKJkHAAAAgKjOhqZOMfK10AcHS1OnGMVOTHd5F/x0u4+e/mq6Vp3oK6th16QWL+rRsLmSiu9C72i3f8BdOTSbvSStWbNGa9asKcVQAAAAAFR0UZ0NdeqY3c399JnspLpFuIpskc+R01X/0m70NtNDU/a/qD/Saml4k3kafcMc1at+Wi/uek52WQs8T3Hd+YHKwOGWedM0r+g/AAAAAO7FajUU0dJQt+jsn44k8jnHFdxV39Ab3/1VL339vEwZ6lVnqaZFPiNPS0aB5ymuOz9QGTjUMv/tt9+WdhwAAAAAKoHsrvrKt4Z8cLDUfMggpdeuKe8NE3R7yCcKDkjSmC9e08WsgNwy48YU350fqAwc7mYPAAAAAM5QVFf9LPWQ6VNdPuvGqmW1OH3Sf4i2NXhTAbVrOdydv6RsNvOKhg0A5YlkHgAAAECZy+6qX/A+27UdlHrfO/JZPUJVkg/pjlODlNr+LZnWek6PIybWzNdLIChIGj9W9ABAhcZs9gAAAAAqHHudm5Q64H3Zq4bIcu4n+X4wUJbEI069RkysqYmTzXzr2icmShMnm4qJZQ4wVFwk8wAAAAAqJDMwVKkD/itbzcayXEyU7/LBsvyy1ynnttmyW+SLMmuOKZuNhB4VE8k8AAAAgArLDAhW6v1LZKvbUkb6efn+b6isP8Tk7rfZTMXvNfX5puyfjibf+w8oX4v85RISsssBFRFj5gEAAABUbD7VlNr3Lfl8OE4ex7fJZ90Ypd/+L21KvOuKx7ufPuPYpR0tB5Q1WuYBAAAAVHyevkrr9boyb7hbhj1LPhue0cFFS654vHvNGo5d1tFyQFkjmQcAAADgGqyeSr/zJaXfPEiS9GzzaRrZZLak/Il7cePdW4Rnt+IXJTg4uxxQEZHMAwAAAHAdhkVx1Z/TnMNjJUkjmryp55v/QxbZ8hQrbry71Wpo/Niiu+KPG2Ow3jwqLJJ5AAAAAC7ldJKhhd8/pqkHJsluGurfcJn+FfmsPIyMvOWKGe8e1dnQ1ClGvhb64GBp6hSDdeZRoTEBHgAAAACXkjOOfcXxATqXUV1TI57VHSEbFOCRrKe+mqE0m2+eckWJ6myoU8fsVvzTZ7KPaREuWuRR4dEyDwAAAMClXDre/bNf7tBf415XapavOtXeprntHlUVj/MlGu9utRqKaGmoW3T2TxJ5uAKSeQAAAAAu5fLx7jsSO+mxHQt0PqOqWtbcq4UdH9HTI06TlMOtkcwDAAAAcDmXj3ffn9RSf/lysc5k1FSTat8p+sQgGedPlW+QQClizDwAAAAAl5R/vPsN8mzwnuyrh8ly9if5fvCgUvu+JbNmo/IOFXA6WuYBAAAAuKzLx7sbNUOVev/7stVsJEvy7/JbNkiW3w6Wd5iA05HMAwAAAHArZpXaSu2/RLbazWWknZXviodl/SmuvMMCnIpkHgAAAID78Q1U6n2LlFW/nYzMFPmsHi7rsS3lHRXgNCTzAAAAANyTl78u3jNXf9S6VYYtQz7rxsryzYflHRXgFCTzAAAAANxSTKypfoO8dPuiGVr/890yTJt8PnlWP6xcVqLz2Gym4vea+nxT9k+bzSyliAHHMZs9AAAAALcTE2tq4uScpNtDk/b+SylZfurfcJnCT7ygw8svqH7/YQ6dZ+ZsU4mJf24LCpLGj82eTR8oL7TMAwAAAHArNlt2An4pUxb96+tJeuv77AS+6clX5bFtpmQW3sqe84XApYm8JCUmShMnm4qJpYUe5YdkHgAAAIBb2X9A+RLwbIZmH35csw6NlyT57J4nry3/kkx7vpIFfSFwuVlz6HKP8kMyDwAAAMCtnD5T9P5FRx/V1AOTZMqQ17735P3pRMmeladM4V8I/CkhIbscUB5I5gEAAAC4lZo1ii+z4vgAfdd0mkzDKs9Da+Sz/gkpKyN3f3FfCJS0HOBsJPMAAAAA3EqL8OxJ6ooSHCxd0/0epd09U6bVUx5HP5fP2lFSZqokx74QKEk5wNlI5gEAAAC4FavV0PixRc80P26MIavVkO3625R275syPXzlceIL+a56VEpPdvgLgRbhTgwcKAGSeQAAAABuJ6qzoalTjHwJeXCwNHWKkWdZOdu1HZTad6FMrwBZT+2R7/+GyppxzuEvBIDywDrzAAAAANxSVGdDnTpmT1J3+kx2l/gW4SowAbeHRCj1vsXyXTlM1t+/lu+Kh9Wl71uaOqVmvnXmg4OzE3nWmUd5IpkHAAAA4LasVkMRLR0ra6/dTKn935XPyqGy/nFEvssHq0u/Rer0QW2HvhAAyhLd7AEAAADg/9lrNVZq//dkr3KNLEnH5btskDwunFRES0Pdog1FtKRrPSoGknkAAAAAuIQZeK1S739P9uoNZDl/Sr7LBsk4fay8wwLyIJkHAAAAgMuYVesqtf8S2WpeL8vFBPkuf0iWhMPlHRaQq0KOmU9PT9f06dN18OBBnThxQufOnVPVqlVVv3593Xfffbrnnnvk6emZW3727NmaM2dOoefbtGmT6tWrVxahAwAAAHATZkCwUvu/K99Vj8r6+zfyXfGIUvvMl/2aFuUdGlAxk/mLFy9q6dKlCg8PV5cuXVSjRg2dO3dO27Zt0/PPP6+PP/5YCxYskMWSt2NB7969FRISku98VatWLavQAQAAALgT30Cl9lsk39WPyfpLvHz/N1Spvd+UvV7r8o4MlVyFTOarV6+ur776Sl5eXnm2Z2VlaciQIdq+fbtiY2PVpUuXPPt79+6ttm3blmGkAAAAANyedxWl9pkvn7Vj5PHzTvmuGq60Xq/Ldm2H8o4MlViFHDNvsVjyJfKS5OHhoW7dukmSTpw4UdZhAQAAAKisvPyVdu9cZYXeIiMrTT5rRsr6w9bc3Tabqfi9pj7flP3TZjPLL1ZUChWyZb4wdrtd27ZtkySFhYXl2797927t379fFotFoaGhat++vfz9/cs6TAAAAADuyNNHaffMkc9HT8jj2Cb5rPur0nq+os/P36upL5lKTPyzaFCQNH6sFNWZZexQOip0Mp+RkaF58+bJNE2dPXtWO3bs0A8//KA+ffqoffv2+crPnj07z5+rVq2qiRMn6t577y2jiAEAAAC4NQ8vpd01Q96fTJDndx/L+8Mn9Gl8mhIT78pTLDFRmjjZ1NQpJPQoHYZpmhW2/8fFixcVERGR+2fDMDRkyBA9+eST8vD483uIzz//XOfPn1ebNm0UHBysxMREbd26Va+99prOnz+v119/XdHR0YVex26355tMDwAAAAAKY9ptylr9hLRvmeymoRf3TdHan/vkKWMYUu1giz7bUF1WKwk9nKtCJ/M57Ha7EhIStHnzZs2YMUPXX3+9FixYoICAgCKP27Fjh4YMGaLGjRvrww8/LLRcUlKSs0MuNYGBgS4Vb2VFPbkO6so1UE+ugXpyHdSVa6CeKr74eJt+W/QP9W+4TJI07cBELTs+MF+512YYimhJMl/eXOmZCgwMLLaMSzRHWywW1alTRwMHDtSUKVMUHx+vuXPnFntc+/bt1aBBAx05ckTJycllECkAAACAyuJ0kkX/+nqSlhx7SJL0XPhUDW60OH+5M2UcGCoFl0jmL9WpUydJ0q5duxwqn/ONRmpqaqnFBAAAAKDyqVlDkgy9+s0zWnhkuCTpyWb/0V8azy+gXPGYER8lUaEnwCtIQkKCJOUZM1+YlJQUff/99/Lz83OomwIAAAAAOKpFePas9X/8YWjOt+OUbvfS6BvmaGzTWfK0ZOrN70YpONhQi/DizxUTa2rmbGbEh+MqZMv80aNHC2xJT01N1bRp0yRJUVFRkqTk5GT9+OOP+cqmpaVp0qRJunjxou644w6Hkn8AAAAAcJTVamj82D8T7QVHRmrmocclSY81eUNjb5ilcaNV7OR3MbGmJk7Om8hLf86IHxNLCz3yq5AZ7oYNG7Ro0SJFRkYqJCREAQEB+v333xUbG6uzZ8+qVatWeuSRRyRJZ8+e1Z133qnmzZurUaNGqlWrlk6fPq0vv/xSv/32m8LCwvTMM8+U7w0BAAAAcEtRnQ3NeMVfU19KVmKitPjoMGXZPfXUTf/WX8IWKENZyjCfzp7avgA2W3aLfFFmzTHVqWPxXwqgcqmQyXyXLl2UkJCgvXv3at++fUpJSVFAQICaNGminj17qm/fvrkt7dWrV9fAgQN14MABxcTE6Pz58/L29lajRo00ePBgDRo0SD4+PuV8RwAAAADcVbfbvNXy5ovafyB7sruaNR5Rqukl363/lNeeRZItUxldn5fNrkvKZHfT339A+VrkL5eQkF0uomXZ3A9cQ4VM5ps3b67mzZs7VDYgIECTJ08u5YgAAAAAoHBWq5En2bbpQaV5eMp74wvy2veefj2VoUfXTVJC4p8jnYOCpK5Rjp2fGfFxuQo5Zh4AAAAAXF1WeH+l3/4vmTJ0beJyjQqZLItsufsTE6Xl/3PsXI7OiI/Kg2QeAAAAAEpJ+g29NO37l2QzLbq3wWr9I+J5WY2sPGUsxWRlwcFyaEZ8VC4k8wAAAABQSvYfkJYfvksTvnpFmXYP9ay3XlMjJuRJ6O32os8xbozB5HfIh2QeAAAAAEpJzlj3z3+9Xc98NV2Zdg/dEbJBL0U+LQ8jM7dc/37ZY+gvFRwsTZ1isM48ClQhJ8ADAAAAAHdw6Vj3Lb9F64nds/Rqq/HqVvczWQy7nv3qP8oyvdSpo6HRI/PPdk+LPApDyzwAAAAAlJIW4Xlb3Lf93kVP7H5N6TYvRV+zUf9p9aTq1s7ITdwjWhrqFp39k0QeRSGZBwAAAIBSYrUaGj82b1K+PaGzxu+arXSbl7pes1mLuj8uq5lZyBmAgpHMAwAAAEApiupsaOoUI08L/Y7ETpr83RuyGd6qfW6rfNaNkbLSyy9IuBzGzAMAAABAKYvqbKhTx8vHxHdQxqk35bNmpDyOb5PP2jFKu2e25OlT3uHCBdAyDwAAAABloKAx8bYG7ZTae55MD195nNgun7WjpMzU8g4VLoBkHgAAAADKkb1+G6X2mS/T008eP+2Qz5qRUmZKeYeFCo5kHgAAAADKmb1eK6X2WSDTy18eP8fJZ80oEnoUiWQeAAAAACoAe0hE3oR+NS30KBzJPAAAAABUEPa6Lf9M6E/uKnFCb7OZit9r6vNN2T9tNrMUo0V5YjZ7AAAAAKhAshP6hfJdNSw3oU/rPVfy9CvyuJhYUzNnm0pM/HNbUJA0fmz2bPpwL7TMAwAAAEAFY697s1L7LJTpFSCPk7vku/qxIlvoY2JNTZycN5GXpMREaeJkUzGxtNC7G5J5AAAAAKiAshP6BTK9AmQ9uVu+q0YUmNDbbNkt8kWZNYcu9+6GZB4AAAAAKih73ZuV2je7hd566iv5rBqhfbuT84yJ339A+VrkL5eQIO0/UDYxo2wwZh4AAAAAKjD7NS2U2nehPJcPk+epr+Szf6T+HfeGUm3+CgqSukY5dp7TZ0o3TpQtWuYBAAAAoILb8n24hmxZoAuZAWpV6yvNaTdSvtaLSkyUlv/PsXPUrFG6MaJskcwDAAAAQAWWMyb+4NlwjdyRndBH1tyj2W1Hy8eaPYbeUkxmFxwstQgvg2BRZkjmAQAAAKACu3RM/KUJfatau/Vam9HysabKbi/6HOPGGLJaWZ7OnZDMAwAAAEAFdvlY94NnwzV65zwlZ/qrTdAuzfr/hL5/v+x15S8VHCxNnWKwzrwbYgI8AAAAAKjAChrrfiDpZo3eOU9vtB+utkFxmtlmrLLava7RI320/0D2FwA1a2R3radF3j3RMg8AAAAAFViL8Pwt7pK0P6mlRu+cp5QsX7UL2qG2x8fIak9XREtD3aINRbSka707I5kHAAAAgArMajU0fmzBSfm+MxEavXOesiy+8vzpS/msGytlpZdxhCgPJPMAAAAAUMFFdTY0dYpR4Jj4fuNbKaPfPJkevvI4sf3/E/qM8gkUZYYx8wAAAADgAqI6G+rUUQWOibertdJ6vymf1SPkcXybfD4cq7S7Z0seXuUdNkoJLfMAAAAA4CKsVqPQMfG2+m2Udu9cmR4+8vgxVj7rx0u2/C30Npup+L2mPt+U/dNmM8vwDuAstMwDAAAAgJuwNWintHvfkM/qkfL4YYt8PnpSaT2nS1ZPSVJMrKmZs83cdeul7Mn1xo8Vy9e5GFrmAQAAAMCN2Bq0V1qvOTKtnvI4ulHeG56R7FmKiTU1cXLeRF6SEhOliZNNxcTSQu9KSOYBAAAAwM3YQjsp7e7ZMi2e8jzyibw2TNBrs7OKPGbWHLrcuxKSeQAAAABwQ7bropR290yZFg95ffeRxtT7myyyFVo+ISF7cj24BpJ5AAAAAHBTtka3Kq3Hq7LLqrvrr9OkFi/IkL3Q8qfPlGFwuCok8wAAAADgxmxh3fXdjf+WzbSo97Wr9Hz4PyQV3J2+Zo2yjQ1XjmQeAAAAANxc3W536t9Hp8luGrovdLkmNJ+qyxP64ODsdevhGkjmAQAAAMDNWa2Gwh+4W3/f90/ZTUMDGi7VU81e1qUJ/bgxedetR8XGOvMAAAAAUAlkryPfWzOW2fRko8ka1GiJ0u3eWnZ6vMaNsbDOvIshmQcAAACASiKqs6FOHfvp+w1Zanxkiv7SeKEeHOStrI5jyjs0lBDd7AEAAACgErFaDV1z1wNKj3pWkuQT97o8dy0o56hQUiTzAAAAAFAJZUY+ovROT0iSvLdPl2f8O+UcEUqCZB4AAAAAKqnMNo8qvX12F3vvrS/JY//Sco4IjiKZBwAAAIBKLLPdKGW0flSS5LNpijwOrizniOAIknkAAAAAqMwMQxmdHldGxEOSJO/PJsnj8IflHBSKQzIPAAAAAJWdYSgjaoIyWwyQIVPen0yQ9cgn5R0VisDSdAAAAAAAyTCUfuskKStDnt+sks/HTyvN6iVbo1vzFbXZTO0/IJ0+I9WsIbUIz54lH2WHZB4AAAAAkM2wKL3bFMmWKc9vP5TP+vFK6zVXttCOuUViYk3NnG0qMfHPw4KCpPFjs9exR9mgmz0AAAAA4E8Wq9Lv+JeyGneXYcuUz7oxspzcLSk7kZ84OW8iL0mJidLEyaZiYs1yCLhyIpkHAAAAAORl8VBaj/8oq2FnGVlp8l39mHRqn2bOLjpZnzXHlM1GQl8WSOYBAAAAAPlZvZR292vKatBORmaKvFeOUI30w0UekpAg7T9QRvFVciTzAAAAAICCeXgrrdfrsoVEyjPrvOa2f1TXBRwt8pDTZ8ootkqOZB4AAAAAkIfNZip+r6nPN5mKP+ir5Lvn6kKVm1TDO0nzOvxFDfxPFHpszRoFnGMv3e+djdnsAQAAAAC5Cp6t3l9PjpinxjuGqJH/Ec1rP1RDv1iiX1Pr5jk2ODh7mTpmvC99tMwDAAAAACQVPVv9hH9W14ZaC/XDhet0jd9vmtdhqIK8E/KUGzfG0PYvxIz3ZYBkHgAAAAAgm80sdrb6dVtq6lj7hfolrb4a+P+sNzv8RYFeZxQcLE2dYqhTRzHjfRkhmQcAAAAAaP8B5WtNv1xCguQdVEcBI99WmncdNarygz7s96hWLL6gqM6Gw+dgxvurRzIPAAAAAHB4FvrTZyRLYD3ZBr4tu18tBSR/q4C1j0kZF0t0DlwdknkAAAAAQO4s9I6WMwMbKq3vWzK9q8n66z75rB2jWtXSnXotFI5kHgAAAACgFuHZM84XJWe2+hz2oDCl9pkv09NPHj/vVLufH1ed4MwSnQNXhmQeAAAAACCr1dD4sUUvGzdujCGrNW8Z+zXhSr13rkyrtzx/3Kq373xOFtlKdA6UHMk8AAAAAEBS9hrwU6cY+Vroc2arL2yNeHv9Nkq7Z7ZMi6fqJm3Q2qEvKDjIXqJzoGQ8yjsAAAAAAEDFEdU5e4m5/QeyJ6qrWSO7W3xxrem2hrcorccr8vnocdX/Y5U+HOmnuOrP6XSS4fA54DiSeQAAAABAHlaroYiWJT/OFtZd6VlT5fPJc/Le957atfVXRvR4p8cHutkDAAAAAJwo68Z7lXbrJEmSV9w8ee5aUM4RuSda5gEAAAAATpV180ClZ6bIe9ur8t4+XaZ3FWW1GJCnjM1mlrgrP/5EMg8AAAAAcLrM1sNkpCfLa9c8eW+aInkFKKvpXZKkmFhTM2ebSkz8s3xQkDR+rJggz0F0swcAAAAAlIqMjuOU0WKgDJny/mSCrMe2KCbW1MTJeRN5SUpMlCZONhUTa5ZPsC6GZB4AAAAAUDoMQxm3TlRm03tkmDb5rB+vre/sKPKQWXNM2Wwk9MUhmQcAAAAAlB7DovTbpyqrUbQMW4ZebDJGN1U/UGjxhITsZfFQNJJ5AAAAAEDpsngoreerSghoJz+PVL3eboSur3Kk0OKnz5RhbC6KZB4AAAAAUPo8vHWk5WztP9NC1bzOa277R1Xf/0SBRWvWKOPYXBDJPAAAAACgTDSP8NcLR+fqu3NhCvL5Q/PaD1Owz295ygQHZy9TJ2UvXxe/19Tnm7J/Mpb+TyxNBwAAAAAoE1aroWGjqmvk1AVa3HGwGgT8pDfbP6q/fPGOkjKym+PHjTFktRosX1cMWuYBAAAAAGUmqrOhJycG6bnv3tKvKXV0XZUfNKfdYwq9JllTpxiK6mywfJ0DSOYBAAAAAGUqqrOhN94N0cmubyndGqhm1b/R/+4do6j26bLZslvki8LydSTzAAAAAIByYLUaatrxOtkGLJDp5S+PU7vl89ETOrAvM1+L/OVYvo5kHgAAAABQjuy1mym11xsyrd7y+GGLrj0wSYbsxR5X2ZevI5kHAAAAAJQre/02Srt7hkzDqgZJ6/T0TS9JKrobfc7ydZV1xntmswcAAAAAlDvbdV2Vfsc0+Wx4RgOve1/nMqpr3pFRBZbNWb6uMs94T8s8AAAAAKBCyGp6t9K7/k2SNPKG1/VAw/cKLDdujKHtX6hSz3hPMg8AAAAAqDAyWz6o9A5jJUnPNp+mnvXW5e4LDpamTjHUqaMq/Yz3dLMHAAAAAFQomW1Hykg9K6+9S/TPyL/prj5VlNnwVrUIz54FP35v/hb5y+XMeB/RsmxiLmu0zAMAAAAAKhbDUEaXCcq8sZcM06Z2Pz+hVrV2y2rNHgfv6Ez27jzjPck8AAAAAKDiMSxK7/5PZTWKlmHLkO/a0bIkHJL050z2xXG0nCsimQcAAAAAVEwWD6X1eEW2kFYyMpLls2q4jKTjahGePWt9UXJmvHdXJPMAAAAAgIrL00ep974hW1BTWVJOy3flMHmkJmr82KKXnhs3xsjtlu+OSOYBAAAAABWbdxWl9Zkve/UGspw/JZ+VwxTV+pymTjHytdDnzHjv7uvMM5s9AAAAAKDCM/1rKbXv2/L94AFZT38v3zUjFdXvLXXq6Kv9B7Inu6tZQ7kz3rs7WuYBAAAAAC7BrBaitL4LZXpXlfXXffL5cLysylRES0Pdog1FtHTvrvWXIpkHAAAAALgMe60wpfZ+U6aHrzyOb5P3J89Lpr28wypzJPMAAAAAAJdir9tSaXfPkmnxkOd3H8lry78k0yzvsMoUyTwAAAAAwOXYGt6i9DtekilDXvvel+fON8o7pDJFMg8AAAAAcElZN/RURteJkiTvHXPksf+Dco6o7JDMAwAAAABcVmbLB5XRdqQkyXvTFFmPfFbOEZUNknkAAAAAgEvL6DBWmc37y5Apnw1PyfpTXHmHVOpI5gEAAAAArs0wlB49WVnXd5Nhy5TPutGyJBwq76hKFck8AAAAAMD1WaxK6/EfZdVrIyPjonxWjZBx9qfyjqrUkMwDAAAAANyDh7fSes2RLegGWVL+kO/KYTIuJpZ3VKWCZB4AAAAA4D68qyitz3zZq9WX5dzP8lk1Qkq/UN5ROR3JPAAAAADArZj+QUrtu1B2v5qyJh6W79rRMjPTyjsspyKZBwAAAAC4HbN6A6X1mS/Ty1/Wk7t18vXRit9rymYzyzs0pyCZBwAAAAC4pS3fNtXTe2crw+apoD82aMJTyeo3wFRMrOsn9B7lHQAAAAAAAM4WE2tq4mRTUlv9lPiBAr2SlGLzV0qiNHGyqalTpKjORnmHecVI5gEAAAAAbsVmMzVz9p+t70fO35CvzKw5pjp1lKxW10zo6WYPAAAAAHAr+w9IicWsSJeQkF3OVVXIlvn09HRNnz5dBw8e1IkTJ3Tu3DlVrVpV9evX13333ad77rlHnp6eeY5JTk7W7Nmz9dlnnykxMVHBwcG6/fbbNWbMGPn7+5fTnQAAAAAAytrpM84tVxFVyJb5ixcvaunSpTIMQ126dNGQIUN02223KSEhQc8//7wee+wx2e323PIpKSkaNGiQFi9erOuuu06PPPKIGjZsqLffflsPP/yw0tPTy/FuAAAAAABlqWYN55ariCpky3z16tX11VdfycvLK8/2rKwsDRkyRNu3b1dsbKy6dOkiSVq4cKEOHz6sRx99VE899VRu+VdeeUULFizQ4sWLNWLEiLK8BQAAAABAOWkRLgUFFd3VPjg4u5yrqpAt8xaLJV8iL0keHh7q1q2bJOnEiROSJNM0tWLFCvn5+WnUqFF5yo8aNUp+fn5asWJF6QcNAAAAAKgQrFZD48cWPbHduDGGy05+J1XQZL4wdrtd27ZtkySFhYVJko4fP66EhARFRETIz88vT3k/Pz9FRETo559/1q+//lrm8QIAAAAAykdUZ0NTpxgKCsq7PThYmjrFcOll6aQK2s0+R0ZGhubNmyfTNHX27Fnt2LFDP/zwg/r06aP27dtL+rOFPjQ0tMBzhIaGavv27Tp+/LiuueaasgodAAAAAFDOojob6tQxe9b6tHR/+XhfVItw112O7lIVOpnPzMzUnDlzcv9sGIaGDh2qJ598MnfbhQsXJEkBAQEFniNne3JycqHXqVatmiwW1+mkEBgYWN4hwAHUk+ugrlwD9eQaqCfXQV25BurJdVBXFVv0rTn/512eYThVhU7m/f399d1338lutyshIUGbN2/WjBkztG/fPi1YsKDQBL6kzp0755TzlIXAwEAlJSWVdxgoBvXkOqgr10A9uQbqyXVQV66BenId1JVrcKV6cuTLIZdojrZYLKpTp44GDhyoKVOmKD4+XnPnzpUkValSRVLhLe85252V+AMAAAAAUN5cIpm/VKdOnSRJu3btkiRde+21krInwitIzvbCxtQDAAAAAOBqXC6ZT0hIkJS9TJ2UnaQHBwcrPj5eKSkpecqmpKQoPj5e9erVY/I7AAAAAIDbqJDJ/NGjR5Wamppve2pqqqZNmyZJioqKkpQ9Kd59992nlJQUvfHGG3nKv/HGG0pJSVH//v1LP2gAAAAAAMpIhZwAb8OGDVq0aJEiIyMVEhKigIAA/f7774qNjdXZs2fVqlUrPfLII7nlhw0bpk2bNmnBggU6fPiwbrzxRh06dEjbt29X8+bN9fDDD5ffzQAAAAAA4GQVMpnv0qWLEhIStHfvXu3bt08pKSkKCAhQkyZN1LNnT/Xt2ze3m70k+fn56b333tPs2bP12WefKS4uTkFBQRo6dKhGjx4tHx+fcrwbAAAAAACcyzBN0yzvIMqbqyxPILnWcgqVGfXkOqgr10A9uQbqyXVQV66BenId1JVrcKV6cpul6QAAAAAAwJ9I5gEAAAAAcDEk8wAAAAAAuBiSeQAAAAAAXAzJPAAAAAAALoZkHgAAAAAAF0MyDwAAAACAiyGZBwAAAADAxZDMAwAAAADgYkjmAQAAAABwMYZpmmZ5BwEAAAAAABxHyzwAAAAAAC6GZB4AAAAAABdDMg8AAAAAgIshmQcAAAAAwMWQzAMAAAAA4GI8yjuAyuLAgQOaPXu29u7dq6ysLIWFhemRRx5Rjx49HD5HRkaG5s+fr3Xr1unXX39VtWrV1LVrV40fP141a9Ys8Jh169bp3Xff1dGjR+Xp6amIiAj99a9/VbNmzZx1a27laurJNE3FxsZq8+bNio+P1y+//KKsrCxde+216tGjh4YMGSJvb+98xzVp0qTQc/bu3VsvvfTSVd2TO7ra52nVqlV67rnnCt3/7rvvqm3btk6/bmV0tZ/ZrbfeqlOnThVZ5v3331erVq1y/8wzVTJr167Vnj17dPDgQR05ckSZmZmaNm2a+vTpU6Lz2O12vf/++1q+fLlOnDghPz8/dejQQY8//rjq169f4DHbtm3TvHnz9M0338gwDDVr1kyjRo1S+/btnXFrbsUZ9fTVV19p48aN2rVrl06dOqWUlBSFhIQoOjpaI0aMUNWqVfMdU9Qz2KZNGy1ZsuSK78ldOaOu4uLi9NBDDxW6v7Dz/fjjj5o5c6Z27typ1NRUhYaGasCAAXrggQdkGMYV3Y+7ckY9DR48WLt27SqyzMsvv6x777039888UyXz+++/a8OGDYqNjdUPP/ygP/74Q9WqVVNERISGDRumFi1aOHwud3xPkcyXgZ07d2rYsGHy8vJSz5495e/vr88++0yPP/64fvvtNw0dOrTYc9jtdo0cOVLbt2/XzTffrO7du+vEiRNasWKFduzYoeXLl6tGjRp5jpk7d65mzpypkJAQDRgwQBcvXtRHH32kAQMGaPHixYqMjCytW3ZJV1tPGRkZGj58uLy8vNSmTRt16tRJGRkZ2r59u2bMmKGNGzdqyZIl8vX1zXdsSEiIevfunW9706ZNnXZ/7sIZz1OO6OjoAj/jkJCQUr1uZeGMz+yhhx7ShQsX8m1PSkrS+++/r2rVqql58+b59vNMOW7WrFk6deqUAgMDFRwcXOyXJ4WZPHmyVqxYocaNG2vw4MFKSEjQhg0b9MUXX2jZsmUKDQ3NU37t2rV65plnVKNGjdx/PH/88ccaMmSIZs6cqTvuuONqb82tOKOexo0bp6SkJEVGRqpXr14yDEO7du3SwoUL9emnn+qDDz5QrVq18h1XpUoVPfzww/m2F/S7Es57pqTs5K5Nmzb5thf0u+zo0aMaMGCA0tLSdOeddyo4OFgxMTF68cUXdezYMU2aNOmK43BHzqin3r17F1g/WVlZmjdvniwWS4FJH8+U45YsWaIFCxaoQYMG6tixo2rUqKETJ05o48aN2rhxo1599VWHGwjc8j1lolRlZmaat912m3nTTTeZhw4dyt1+/vx5s3v37mazZs3MkydPFnue//3vf2ZYWJj5xBNPmHa7PXf7f//7XzMsLMycNGlSnvI//vijeeONN5rdu3c3z58/n7v90KFD5k033WTeeeedps1mc8Idugdn1FNGRob5xhtvmGfPns23fcSIEWZYWJi5YMGCfMeFhYWZgwYNcs6NuDlnPU8rV640w8LCzJUrV5bpdSuT0v7M3nrrLTMsLMz8xz/+kW8fz1TJfPHFF7l1MW/evBI9Gzl27NhhhoWFmQ8++KCZnp6eu33r1q1mWFiYOXTo0Dzlz549a7Zq1cps27at+euvv+Zu//XXX822bduabdu2NS9cuHAVd+V+nFFP8+bNM3/77bc82+x2u/n3v//dDAsLM1944YV8x3Tt2tXs2rXrlQdeCTmjrnbu3GmGhYWZr732msPHPPjgg2ZYWJi5devW3G3p6enmwIEDzbCwMDM+Pr5EMbg7Z9RTYT755BMzLCzMHDFiRL59PFMl8+mnn5pxcXH5tu/evdts1qyZ2bp16zzvncK463uKMfOlbOfOnfrpp59011135fkWtUqVKnrssceUmZmp1atXF3ueFStWSJKeeOKJPN2kBgwYoPr16+vDDz9UWlpa7vZVq1YpKytLI0eOVJUqVXK3N23aVHfddZeOHTumPXv2OOMW3YIz6snT01MjR45UtWrV8m0fMWKEJGn37t3OD74Scdbz5CrXdWWl/Zn973//kyT169fvqmOt7Dp06HDVrUE576hx48bJy8srd3tUVJTatGmj7du365dffsnd/sknn+j8+fMaNGiQ6tSpk7u9Tp06GjRokJKSkrRx48arisndOKOehg8frtq1a+fZZhiGRo0aJYl3lLM4o65K6scff9Tu3bvVtm1bRUVF5W738vLSuHHjJEnLly8v05gqutKsJ95RztO9e/cCez+0atVKbdu21blz5/Tdd98Vex53fU+RzJeynHE0nTp1yrcvZ1txL8/09HTt379fDRs2zPdLxzAMdejQQSkpKTp48GC+63bs2LHQ6xY3xqcycUY9FcXDI3tEi9VqLXD/+fPntWzZMr355ptaunSpQ7+UKiNn19OhQ4f09ttva/78+fr444+VlJRUJtetDErzM4uPj9exY8d000036YYbbiiwDM9U2YqLi5Ofn58iIiLy7bvlllsk5X3nOPL3g3dU2SnuHZWRkaFVq1bpzTff1Hvvvaf9+/eXZXiV2vHjx7V48WLNmzdPa9as0e+//15guaKeqcjISPn5+fGeKiO//fabtm/frqCgIHXp0qXAMjxTzpHzuyvnZ1Hc9T3FmPlSdvz4cUnStddem29fUFCQ/Pz8dOLEiSLP8dNPP8lut+cbx5EjZ/vx48dzJ4E6fvy4/Pz8FBQUlK98TizFXbcycUY9FWXlypWSCv5yRZK+/fZbTZ48Oc+2W265RS+//HKhkxtWRs6up8snmfHx8dHo0aM1fPjwUr1uZVCan1lOi8d9991XaBmeqbKTkpKixMREhYWFFZgMFvTOKervB++oslfcOyoxMTHfpKHNmzfX9OnT1aBBg1KPrzJbv3691q9fn/tnDw8PDRo0SM8880ye562oZ8pqtapevXo6evSosrKyHEp8cOVWrlwpu92u3r17F/pZ80xdvV9++UVffvmlgoKCFBYWVmRZd35P8TSXsuTkZEnK09X9UgEBAQVO7nSpnP0BAQGFnuPSa+X8/+UT4l1evrjrVibOqKfCxMTEaNmyZWrUqFGBycfQoUPVvXt3hYaGytPTU99//73eeOMNxcbGasSIEVq2bFmhrSWVjbPqqV69epo0aZI6deqkOnXq6Ny5c9qxY4emT5+uV199Vb6+vho8eLDTr1uZlNZndvHiRW3YsEG+vr666667CizDM1W2HH1HXVrfRf394B1Vtg4fPqzXX39dNWvW1LBhw/Lt79OnjyIjIxUWFiY/Pz8dP35cixYt0tq1a/XII49o3bp1hdY9rlyNGjX05JNPqmvXrgoJCVFqaqr27t2rV199VYsXL5ZhGJowYUJu+eJ+5/r7+8tut+vixYv5hgPCeUzT1KpVqyQV3sWeZ+rqZWZm6plnnlFGRoaeeuqpYt/p7vyeops9UIoOHDigxx9/XFWqVNGsWbPyjNHJ8eyzz6ply5YKDAxUQECAWrZsqXnz5qlNmzb6+uuvtWnTpnKI3L21adNGgwYNUmhoqHx8fFS7dm3de++9euutt+Tt7a05c+YoKyurvMNEAT7++GOlpKTojjvuKPSlzDMFOObnn3/W8OHDZbPZNH369AIbAcaMGaP27durZs2a8vX1VdOmTfXvf/9bvXr10qlTp3LHocK5GjdurOHDh6tx48by8/NTzZo1ddttt+ndd99VjRo1tGTJEp0+fbq8w8Rldu7cqZMnT6pNmzYFtuhKPFNXy263a8KECdq9e7f69++fZ9m/yohkvpQV981NcnJyod+i5sjZf2nL++XnuPRaOf9f1DUvPS+cU0+X+/rrr/WXv/xFFotFCxcuVOPGjR0+1mKx5Lbix8fHl+i67qw06ulSjRs3VmRkpM6ePatjx46V2XXdUWl9ZjndgUs6qRDPVOlx9B11aX0X9feDd1TZ+Pnnn/XQQw8pKSlJr732mtq1a1ei4++//35JPE9lLSgoSNHR0crKysozzrq437kXL16UYRjy9/cvkzgrq6uZ+I5nqnh2u13PP/+81q9fr3vuuUcvvviiQ8e583uKZL6U5YxnL2hMRWJiolJSUgr95i5H/fr1ZbFYcsduXC5n+6Vj6kNDQ3PHh1wuJ5birluZOKOeLvX1119r6NChstvteuuttxQeHl7imAIDAyVlj/NBNmfXU0FyPvfU1NQyva67KY3P7OjRo9q7d6+uu+663PlBSoJnqnTkzM9y8uRJ2Wy2fPsLeucU9feDd1Tpy0nkExMTNXPmTHXt2rXE5+B5Kj8lfU/ZbDadPHlS9erVY7x8KTp37pw+//xzVa1a9YrWH+eZKprdbtdzzz2n1atX66677tJLL70ki8WxVNad31Mk86WsdevWkqTt27fn25ezLadMYXx8fBQeHq4ff/xRp06dyrPPNE19+eWX8vPz00033ZTvul988UWh1y1omYfKyhn1lCMnkbfZbFq4cKFatGhxRTHlfONer169KzreHTmzngpis9lyV4WoW7dumV3XHZXGZ3a1S/3wTJWeNm3aKCUlpcAWpW3btknKW9+O/P3gHVU6Lk3kZ8yYodtuu+2KznPgwAFJKvMl2PDn77JLP/uinqk9e/YoJSWF91QpW7dundLT03X33XfL29u7xMfzTBUuJ5Ffs2aNevTooX//+98lnvvGXd9TJPOlrH379qpfv77Wr1+vw4cP526/cOGC3nzzTXl6euYZ65GQkKBjx47l69LRv39/SdL06dNlmmbu9g8++EA///yz7r77bvn4+ORu79Onjzw8PDR37tw85zp8+LDWr1+vRo0aKTIy0tm367KcVU8HDx7U0KFDlZWVpQULFqhly5ZFXve7775TZmZmvu3x8fFauHChPD09r+jbXXflzHq6nM1m0yuvvKITJ06obdu2Cg4OvuLrwnl1lSMzM1Nr164t9rPmmSpdZ86c0bFjx3TmzJk823PeUbNmzVJGRkbu9piYGO3atUudOnXK8w/UO++8U1WqVNF7772n3377LXf7b7/9pvfee0+BgYFXnGSi8HrKSeQTEhI0ffp0devWrcjzHDt2LE/r76XbX3nlFUnS3Xff7bzAK6HC6qqg95QkvfPOO4qLi1NoaKiaN2+eu/26665T69atFRcXp5iYmNztGRkZmjVrlqSiVwBB0Qqrp0s58oUzz1TJ5XStX7Nmje644w795z//KTKRr2zvKcO8NDNEqdi5c6eGDRsmLy8v9ezZU/7+/vrss8906tQpPfvssxo6dGhu2QkTJmj16tWaNm2a+vTpk7vdbrfr0Ucf1fbt23XzzTerdevW+umnn/TZZ58pJCREK1asyDdxzdy5czVz5kyFhISoe/fuunjxoj766CNlZmZq8eLFJPOXudp6Onv2rLp3765z587plltuKbBFvkqVKnrkkUfynGfr1q2KjIzUNddcIw8PD33//ff64osvZBiGJk+erAceeKDU792VOON5atKkSe5/tWvX1rlz57Rr1y4dP35cderU0Xvvvaf69etf8XWRzRl1lePTTz/VX//6V3Xv3l2zZ88u9Jo8UyW3YsUK7dmzR5J05MgRffPNN4qIiMjtPhgZGZmbBMyePVtz5szRmDFjNHbs2Dzn+dvf/qYVK1aocePGioqKUmJioj7++GP5+/vrgw8+UMOGDfOUX7t2rZ555hnVqFFDPXr0kJQ9wWFSUpJmzJihO++8s7Rv3aU4o55uvfVWnTp1SjfffHOBaydLylN+9uzZWrRokVq3bq26devK19dXx48fV2xsrDIzMzVixAg98cQTpXXLLstZdeXh4aGbbrpJtWvXVmpqqvbv369Dhw6patWqBQ7h+/777/XAAw8oLS1NPXr0UFBQkGJiYvT9999r0KBBmjRpUhl9Aq7BWb/7pOwvX/r27atmzZrlzmZfEJ6pksv57P38/PTQQw8VOFTktttuU9OmTfOUryzvKQbOlIF27drpv//9r1577TV9/PHHysrKUlhYmJ566qncvxjFsVgsmjt3rubPn6+1a9dq8eLFql69uvr166fx48cXOAPtyJEjFRISonfeeUdLly6Vp6enWrVqpXHjxqlZs2bOvk2Xd7X1lJycrHPnzknK7q6T02XnUiEhIXmS+ejoaJ0/f17ffvutvvzyS2VmZqpWrVrq2bOnHn744Ssaa+/unPE8DR06VPv27dOXX36pc+fOydPTUw0aNNDIkSM1ZMiQApftccZ1KxtnfmaOdrHnmSq5PXv2aPXq1Xm2xcfH5+mK6EiL3pQpUxQWFqbly5fr3XfflZ+fn7p166bHH3+8wHWTe/XqpcDAQM2bNy/3H7833XSTRo4cqQ4dOlzlXbkfZ9RTzlC9ffv2ad++fQWWufQfv23bttWxY8d0+PBhffXVV0pLS1NgYKA6d+6sgQMHFvqFQGXnjLoaMGCAtm/frt27d+vs2bOyWCyqW7euHn74YQ0dOlR16tTJd0zjxo21fPlyzZw5UzExMUpJSVFoaKgmT56sgQMHOufm3IizfvdJjr+jeKZKLuf3VkpKit58880Cy4SEhOQm80Vxx/cULfMAAAAAALgYxswDAAAAAOBiSOYBAAAAAHAxJPMAAAAAALgYknkAAAAAAFwMyTwAAAAAAC6GZB4AAAAAABdDMg8AAAAAgIshmQcAAAAAwMWQzAMAAAAA4GI8yjsAAABQtCZNmpSofEhIiDZv3qzBgwdr165d2rRpk+rVq1dK0ZWe5557Ths2bNCmTZtUs2bNEh9/6NAh9e7dW0899ZQeffTRUogQAIDyQzIPAEAF17t373zb9uzZo59++kk33HCDmjZtmmdfYGBgWYVWar777jutWbNGQ4YMuaJEXpJuvPFG3XrrrZo/f77uu+8+Va9e3blBAgBQjgzTNM3yDgIAAJTMhAkTtHr1ao0ZM0Zjx44tsMwvv/yi1NRUNWjQQJ6enmUc4dUZOXKktm3bppiYmCtO5iVp3759uv/++zVs2DA9/fTTTowQAIDyxZh5AADcVN26ddWoUSOXS+R//fVXbd26VZ06dbqqRF6Sbr75Zl177bVauXKlMjIynBQhAADlj2QeAAA3NXjwYDVp0kQnT57Ms71Jkya69dZblZWVpddff13dunVTeHi47rzzTq1cuTK33I4dOzR48GBFRESodevWeuaZZ5SUlFTgtbKysvTf//5X999/vyIiIhQeHq5evXpp8eLFysrKKlHcK1eulN1uV8+ePQvcf+TIET311FOKjo5W8+bN1a5dO/Xq1UtTp05VQkJCvvI9e/ZUUlKSNm7cWKI4AACoyEjmAQCopMaPH69FixYpLCxMrVu31smTJ/X8889r5cqV+uSTTzRs2DDZbDZ16tRJvr6+Wrt2rUaPHq3LR+ilpaVp6NChevHFF3X8+HHdfPPN6tChgxITEzVt2jSNHTtWdrvd4bi2bNkiSWrTpk2+fQcPHlS/fv304Ycfyt/fX9HR0br55puVlZWld999Vz/++GO+Y3LOs3Xr1hJ8OgAAVGxMgAcAQCV06tQp+fv767PPPlONGjUkSTt37tTDDz+sGTNmKDMzU6+//rq6dOkiSUpOTtaAAQO0Z88excXFqV27drnnevnllxUXF6cePXpoypQpqlKlSu4xTzzxhDZv3qxly5bpgQceKDauixcv6vDhwwoODlbt2rXz7V+yZInS09P17LPPaujQoXn2HTt2LPfal2revLksFot2797t8OcDAEBFR8s8AACV1PPPP5+byEtSu3btdOONNyoxMVGdO3fOTeQlKSAgQP3795ekPEnx6dOntWLFCl1zzTWaNm1anmQ6ICBAU6dOlaenp5YuXepQTMeOHZPNZlPDhg0L3H/mzBlJUocOHfLta9SokYKDg/NtDwgIUFBQkH755RedO3fOoTgAAKjoSOYBAKiEPD09C+zGXr9+fUlSx44dC92XmJiYuy0uLk6ZmZm65ZZb5OPjk++YoKAghYaG6siRI0pLSys2rtOnT0uSqlWrVuD+Zs2aSZJefPFFxcXFOTweP+d8OV8GAADg6uhmDwBAJVSrVi1ZrdZ82/38/CSpwC7uOfsunRX+1KlTkqTly5dr+fLlRV7z3LlzBSb8l7pw4YIkyd/fv8D9w4YN0549e7Rr1y499NBD8vPzU8uWLRUVFaU+ffoU2M1eym6dv/T8AAC4OpJ5AAAqIYul6M55xe3PkTMZXtOmTXXDDTcUWdaRJfJykvGLFy8WuD8gIEDvvvuu9uzZoy1btmjXrl3auXOnvvjiC82fP1/vv/++QkND8x2XnJyc5/wAALg6knkAAHDFclrwIyMjNWnSpKs+X8668mfPni20jGEYatWqlVq1aiUpu2v+v/71L61fv14zZszQrFmz8h2TM1b+0jkCAABwZYyZBwAAV6xdu3ayWq3asmWLMjMzr/p8119/vTw8PApcYq4wNWvW1JgxYyRJ33//fb79ycnJSkhIUN26dQsdiw8AgKshmQcAAFesdu3a6tu3r06dOqUnn3xSf/zxR74yJ06c0KeffurQ+fz8/NS0aVMlJibq999/z7d/6dKl+vnnn/Ntj4mJkSRdc801+fZ9/fXXMk1TrVu3digGAABcAd3sAQDAVZk4caJOnTqlTz/9VNu2bdMNN9ygunXrKiUlRceOHdOJEycUHR2t22+/3aHzdenSRV9//bXi4uJ0zz335Nn3wQcf6IUXXtD111+vRo0ayWq16ocfftC3334rb29vjRo1Kt/54uLics8LAIC7oGUeAABcFR8fHy1YsEAvv/yywsPD9cMPP+jTTz/VwYMHVaNGDY0dO1ZPP/20w+fr27evrFar1q9fn2/fuHHj1LdvXxmGoR07dmjLli1KS0vTfffdpzVr1igyMjLfMR999JECAwN12223XdV9AgBQkRhmzjS0AAAAFcTo0aO1detWbd26VUFBQVd8nr1792rAgAEaNmxYib5QAACgoqNlHgAAVDjjxo2T3W7X22+/fVXnmT9/vqpWrapHH33USZEBAFAxkMwDAIAKJywsTPfee6+WLl2q06dPX9E5Dh06pM2bN2v48OGqXr26cwMEAKCc0c0eAAAAAAAXQ8s8AAAAAAAuhmQeAAAAAAAXQzIPAAAAAICLIZkHAAAAAMDFkMwDAAAAAOBiSOYBAAAAAHAxJPMAAAAAALgYknkAAAAAAFwMyTwAAAAAAC7m/wDVpZfJoFPBYQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "g = -9.81 # acceleration due to gravity (m/s^2)\n", + "t = np.linspace(0, 2, 100) # time in seconds\n", + "inital_height = 50\n", + "x_falling = 0.5 * g * t**2 + inital_height\n", + "\n", + "rng = np.random.default_rng(SEED)\n", + "noise = rng.normal(0, 0.3, x_falling.shape)\n", + "x_obs_falling = x_falling + noise\n", + "df_falling = pd.DataFrame({\"t\": t, \"x\": x_obs_falling})\n", + "\n", + "fig, ax = plt.subplots(figsize=(10, 6))\n", + "ax.scatter(t, x_obs_falling, label=\"Observed Displacement\", color=\"C0\")\n", + "ax.plot(t, x_falling, label=\"True Function\", color=\"C1\")\n", + "ax.set(xlabel=\"Time (s)\", ylabel=\"Displacement (m)\")\n", + "ax.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Casting the equation $x_f = \\frac{1}{2} g t^2 + x_0$ into a regression context, we let time ($t$) be the independent variable, and final location ($x_f$) be the response/dependent variable. This allows our coefficients to be proportional to $g$ and $x_0$. The intercept, $\\beta_0$ corresponds exactly to $x_0$. Letting $\\beta_1 = \\frac{1}{2} g$ then gives $g = 2\\beta_1$ when $x_1 = t^2$, meaning we\"re doing _polynomial regression_. We can put this into Bambi via the following, optionally including the `+ 1` to emphasize that we choose to include the coefficient. " + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Auto-assigning NUTS sampler...\n", + "Initializing NUTS using jitter+adapt_diag...\n", + "Multiprocess sampling (2 chains in 2 jobs)\n", + "NUTS: [x_sigma, Intercept, I(t ** 2)]\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d3ed722baf304a5c8efbf1fdd31c877f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 3 seconds.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "02af316294e04eff9ad312701387dac3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "We recommend running at least 4 chains for robust computation of convergence diagnostics\n" + ] + } + ], + "source": [ + "model_falling = bmb.Model(\"x ~ I(t**2) + 1\", df_falling)\n", + "results_falling = model_falling.fit(idata_kwargs={\"log_likelihood\": True}, random_seed=SEED)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The term `I(t**2)` indicates to evaluate inside the `I`. For including _just the $t^2$ term_, you can express it any of the following ways: \n", + "\n", + "- `I(t**2)`\n", + "- `{t**2}`\n", + "- Square the data directly, and pass it as a new column\n", + "\n", + "To verify, we\"ll fit the other two versions as well." + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Auto-assigning NUTS sampler...\n", + "Initializing NUTS using jitter+adapt_diag...\n", + "Multiprocess sampling (2 chains in 2 jobs)\n", + "NUTS: [x_sigma, Intercept, I(t ** 2)]\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "51e921614ebc4f4c85c79deac62ec7e6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 3 seconds.\n", + "We recommend running at least 4 chains for robust computation of convergence diagnostics\n", + "Auto-assigning NUTS sampler...\n", + "Initializing NUTS using jitter+adapt_diag...\n", + "Multiprocess sampling (2 chains in 2 jobs)\n", + "NUTS: [x_sigma, Intercept, tsquared]\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9dc2805035b34fa690d55a4c21b38550", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 3 seconds.\n", + "We recommend running at least 4 chains for robust computation of convergence diagnostics\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "I{t**2} coefficient: -4.8471\n", + "{t**2} coefficient: -4.8471\n", + "tsquared coefficient: -4.8471\n" + ] + } + ], + "source": [ + "model_falling_variation1 = bmb.Model(\n", + " \"x ~ {t**2} + 1\", # Using {t**2} syntax\n", + " df_falling\n", + ")\n", + "results_variation1 = model_falling_variation1.fit(random_seed=SEED)\n", + "\n", + "model_falling_variation2 = bmb.Model(\n", + " \"x ~ tsquared + 1\", # Using data with the t variable squared\n", + " df_falling.assign(tsquared=t**2) # Creating the tsquared variable for use in the formula\n", + ")\n", + "results_variation2 = model_falling_variation2.fit(random_seed=SEED)\n", + "\n", + "print(\"I{t**2} coefficient: \", round(results_falling.posterior[\"I(t ** 2)\"].values.mean(), 4))\n", + "print(\"{t**2} coefficient: \", round(results_variation1.posterior[\"I(t ** 2)\"].values.mean(), 4))\n", + "print(\"tsquared coefficient: \", round(results_variation2.posterior[\"tsquared\"].values.mean(), 4))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Each of these provides identical results, giving -4.9, which is $g/2$. This makes the acceleration exactly the $-9.81$ $m$/$s^2$ acceleration that generated the data. Looking at our model summary," + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
meansdhdi_3%hdi_97%mcse_meanmcse_sdess_bulkess_tailr_hat
Intercept49.9610.05149.85450.0500.0010.0013125.01233.01.0
I(t ** 2)-4.8470.028-4.901-4.7980.0000.0003127.01408.01.0
x_sigma0.3360.0240.2930.3830.0000.0002550.01595.01.0
\n", + "
" + ], + "text/plain": [ + " mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk \\\n", + "Intercept 49.961 0.051 49.854 50.050 0.001 0.001 3125.0 \n", + "I(t ** 2) -4.847 0.028 -4.901 -4.798 0.000 0.000 3127.0 \n", + "x_sigma 0.336 0.024 0.293 0.383 0.000 0.000 2550.0 \n", + "\n", + " ess_tail r_hat \n", + "Intercept 1233.0 1.0 \n", + "I(t ** 2) 1408.0 1.0 \n", + "x_sigma 1595.0 1.0 " + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "az.summary(results_falling)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We see that both $g/2 = -4.9$ (so $g=-9.81$) and the original height of $x_0 = 50$ $m$ are recovered, along with the injected noise.\n", + "\n", + "We can then use the model to answer some questions, for example, when would the ball land? This would correspond to $x_f = 0$.\n", + "\n", + "$$\n", + "0 = \\frac{1}{2} g t^2 - x_0\n", + "$$\n", + "\n", + "$$\n", + "t = \\sqrt{2x_0 / g}\n", + "$$" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The ball will land at 3.21 seconds\n" + ] + } + ], + "source": [ + "calculated_x0 = results_falling.posterior[\"Intercept\"].values.mean()\n", + "calculated_g = -2 * results_falling.posterior[\"I(t ** 2)\"].values.mean()\n", + "calculated_land = np.sqrt(2 * calculated_x0 / calculated_g)\n", + "print(f\"The ball will land at {round(calculated_land, 2)} seconds\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Or if we want to account for our measurement error and use the full posterior," + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The ball landing will be measured between 3.19 and 3.23 seconds\n" + ] + } + ], + "source": [ + "calculated_x0_posterior = results_falling.posterior[\"Intercept\"].values\n", + "calculated_g_posterior = -2 * results_falling.posterior[\"I(t ** 2)\"].values\n", + "calculated_land_posterior = np.sqrt(2 * calculated_x0_posterior / calculated_g_posterior)\n", + "lower_est = round(np.quantile(calculated_land_posterior, 0.025), 2) \n", + "upper_est = round(np.quantile(calculated_land_posterior, 0.975), 2)\n", + "print(f\"The ball landing will be measured between {lower_est} and {upper_est} seconds\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Projectile Motion\n", + "\n", + "Next, instead of a ball strictly falling, instead imagine one thrown straight upward. In this case, we add the initial velocity back into the equation.\n", + "\n", + "$$x_f = \\frac{1}{2} g t^2 + v_0 t + x_0$$\n", + "\n", + "We will envision the ball tossed upward, starting at 1.5 meters above ground level. It will be tossed at 7 m/s upward. It will also stop when hitting the ground.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/MAAAJjCAYAAABA7UFUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADYLklEQVR4nOzdd3yTVfvH8c+d0c0opWUPZaNMAREQUIYDREBEHicoTkDA/ag/HkURF07cioIiCioIKCpDKaiADItMGQIyW6CU0ZE0uX9/xFZKVxrSJm2/79fLVyQ5uXPdOU2b6z7XOccwTdNEREREREREREoNS6ADEBEREREREZGiUTIvIiIiIiIiUsoomRcREREREREpZZTMi4iIiIiIiJQySuZFREREREREShkl8yIiIiIiIiKljJJ5ERERERERkVJGybyIiIiIiIhIKWMLdADBLjk5OdAheKVSpUqkpKQEOgzJh/on+KmPgp/6KLipf4Kf+ij4qY+Cm/on+JWlPoqOji60jUbmywiLRV0ZzNQ/wU99FPzUR8FN/RP81EfBT30U3NQ/wa+89VH5OlsRERERERGRMkDJvIiIiIiIiEgpo2ReREREREREpJRRMi8iIiIiIiJSyiiZFxERERERESlllMyLiIiIiIiIlDJK5kVERERERERKGSXzIiIiIiIiIqWMknkRERERERGRUkbJvIiIiIiIiEgpo2ReREREREREpJRRMi8iIiIiIiJSyiiZFxERERERESlllMyLiIiIiIiIlDJK5kVERERERERKGSXzIiIiIiIiIqWMknkRERERkXKif//+9O/fP9BhBLXx48fTsWNH9u/fX6yvs3//fjp27Mj48eOL9XUC9XpS/GyBDkBERERERIpuzZo1fPXVV/zxxx8kJycTHh5O/fr1ueSSSxg4cCChoaGBDrFc6NixY45/h4aGEhkZSe3atTn//PO54ooraNSoUYCik+LSsWNH2rRpw1tvvRWwGJTMi4iIiIiUIpmZmbz44ovMmTOH8PBwLrroImrXrs3JkydZtWoVr776KrNnz2bSpEnUqVMn0OGWC5UqVWLQoEGAp39SUlL4888/+fTTT/n000+56qqrePDBBwkJCcl+TlxcHJ999hlRUVGBCltKOSXzIiLiNZfLJGE9HDkKMVWgVUuwWo1AhyUiUq689dZbzJkzh+bNm/Pss88SFxeX/ZjL5WLKlCl88MEHjB07lqlTpxIZGRnAaMuHypUrc/vtt+e6f8eOHTz55JPMmzcPp9PJE088kf2YzWajfv36JReklDlK5kVExCtL401eed0kKenf+2JjYcwo6NZVCb2ISEnYs2cPM2bMoGLFirzwwgvExMTkeNxqtXL77bfz999/88MPPzB9+nTuuOOOXMc5ceIEb7zxBvHx8Zw8eZL69etz44030rt37xztMjIy+OKLL1iwYAEHDhzA5XJRuXJlzjvvPIYOHZqrfDw+Pp6ZM2eydetWMjIyqF27Nn369GHIkCFYrdbsdvPnz+fpp5/m8ccfp1KlSkybNo0dO3ZQsWJFnnjiCe666y769u3L448/niv2o0ePctVVV9G8eXPee++97PtPnTrFp59+ypIlS9i/fz92u53zzjuPYcOG0bp161zH2blzJ2+88Qbr1q3DMAxatmzJyJEjveoHbzVo0IBXX32V66+/nu+++45rr72W8847D/DMYR84cCBXXnkl48aNy37O4cOHmTZtGr/88gtJSUnY7XZiYmJo27YtI0aMyB7JHz9+PN9++y1ffvklS5Ys4euvvyYxMZGYmBj69u3LLbfcgs1WeLq3ZcsW5s+fz9q1azl06BCZmZnUrl2byy67jOuvvz7PYxw9epSPP/6Yn3/+mUOHDhEaGkrt2rXp0aMHN9xwQ46227ZtY+rUqaxbt46UlBSqVq1Kly5duP3226lUqVJ2u9Pfj5tuuonJkyeTkJCAYRh07NiR+++/n8qVK/PHH3/wzjvvsGnTJqxWK927d+e+++4jPDw8V5zr1q3jk08+YcOGDaSmplKtWjV69uzJ0KFDCQsLy263Zs0aRowYwW233UaXLl1488032bhxI4Zh0K5dO0aPHk3NmjVztM06/unTLB5//HH69u1b6HvuL1oAT0RECrU03uSxcTkTeYCkJHhsnMnSeDMwgYmIFBOXy2TtOpOFiz23Lldw/J775ptvcLvd9O/fP1cif7pbb70VgHnz5uV6LDMzk1GjRrFu3TquuOIK+vbty6FDhxg3bhwzZ87M0Xb8+PG8/vrrAPTt25dBgwbRsmVLfv/9dzZt2pSj7ZtvvslDDz3E7t276d69e/a8/ddff53/+7//yzPOJUuW8Mgjj1ClShUGDhzIRRddRKtWrahRowY//vgjGRkZuZ6zcOFCXC4XV1xxRfZ9KSkp3H777XzwwQdUqFCBAQMGcMkll7BlyxZGjBjB0qVLcxxjx44d3H777fz666907NiRQYMG4XQ6ueOOO/y+8F10dDQDBgwAYNGiRQW2TU9P54477mDWrFnUrl2bQYMG0adPH+rWrcuCBQtITk7O9ZyXX36Zjz/+mPbt23PttdcSEhLCe++9l+97fqavv/6apUuX0qBBA/r3789VV12FaZq8+eabeV5M2b17NzfffDMzZswgOjqaa6+9lt69exMWFsbUqVNztI2Pj+e2225j2bJltG3bluuuu44GDRrwxRdfMHz4cI4fP57r+AcOHOCOO+7A4XDQr18/GjZsyMKFC3nooYf4/fffGTlyJOHh4fTv359atWoxb948Jk2alOs4X375Jffccw9//PEHnTt3ZvDgwcTFxfHRRx8xatQonE5nruds3ryZu+66C7vdTv/+/WnWrBlLly7l3nvvzf5ZrFGjBrfddhsA1atX57bbbsv+r3Hjxl695/6ikXkRESmQy+UZkS/Iq5NNunRWyb2IlA3BXIn0xx9/ANCuXbsC29WvX5/Y2FiSkpI4dOgQ1apVy37s8OHD1KlTh/feew+73Q7A0KFDufnmm5k8eTLdu3cnLi6OkydPsmTJEpo2bcoHH3yQY2Td5XKRmpqa/e+VK1cybdo0OnbsyMSJE7NHSU3T5Pnnn2f27NksWbKESy+9NEecK1as4JVXXqFDhw457r/88sv58MMPWbZsGT179szx2IIFC7Db7fTo0SP7vkmTJrFz507++9//cvXVV2fff/fddzNs2DCeffZZOnbsmL0o4IsvvsipU6d44oknuPzyy7Pbv/XWW7kSUn9o27YtU6ZMYfPmzQW2++2339i/fz9DhgxhzJgxOR5LTU3Nc5R848aNfPLJJ9nTLe666y7uvfdefvzxxzzf8zPdcsstPPDAAzn61zRNnnnmGebNm0dCQgKtWrXKfuyJJ57g8OHDPPLII7l2RkhMTMz+/5SUFJ588kkqVarEu+++S40aNbIfW7hwIf/3f//Hu+++ywMPPJDjGOvWrWPs2LFcd9112bHcf//9/PLLLzz44IM89dRTdO3aFfBcmBo6dCgLFizg7rvvJjo6GoC//vqLl156iYYNGzJ58uQcFQDTpk3jzTffZObMmbmqCH755ReeeuopevXqlX3fk08+yYIFC4iPj6dXr17UrFkz+8JRjRo18pxeUVI0Mi8iIgVKWE+uEfkzJSZ62knpEqwjjyKBFOyVSEeOHAHIkZznJyu5O3z4cK7HskYfT287ePBgHA4HCxcuBMAwDEzTJCQkBIslZ9pgtVqpUKFC9r+/+OILAB555JEc5c6GYTBixAgMw8g+7ukuvvjiXIk8kD3q/t133+W4/6+//mLLli106tQpO0E7duwYixcvpl27djkSeYAqVapwww03kJyczG+//QbAwYMHWbduHQ0bNsyRyIMnsT39vPylatWq2bF6I6+dCCIiInIsoJcla8Q5i91u58477wQ8lRyFqV69eo5EHjz9ds011wBkv2/guXCwefNm2rRpk+cWh6fH8e2333Lq1CnuueeeHIk8QK9evWjSpEmelQq1a9dm8ODBOWLJSq4bN26cnciDZ92BSy+9FJfLxa5du7Lvnz17Ni6Xi/vvvz9HIg9w4403Eh0dnefPY5s2bXIk8kB22fyZlSjBQCPzIiJSoCNH/dtOgkMwjzyKBEp5qUSyWq20aNEi1/1Z88r//PNPACIjI+nUqRO//PILt9xyC5deeilt27alefPmuUaIN2zYQHh4eJ5l/eBJTnfv3p3r/qz542eqW7cuzZs3Z8WKFRw7dozKlSsD/yb3pyfhmzZtwuVy4XA4csyhz/L3338DnvLwLl26sG3bNoAco81ZIiIiaNSoEWvXrs0zruLWpk0bqlatyrRp09i2bRudO3embdu21K9fH8PI+2cur/UAWrRogdVqze7LgjidTmbNmsWiRYvYtWsXaWlpmOa/n4PTLwZlJbR5XYA504YNGwDPBYC9e/fmetzhcHDs2LEc/QuedQbOPNesKSV5bfGX9VjSaX/Qsl57xYoVOS5GZLHZbHn+PDZp0iTXfVkXKE6ePJnrsUBTMi8iIgWKqeLfdhJ4WSOPZ8oaeZwwXgm9lE9FqURq26ZkYjpTTEwMu3fv5tChQ9SrV6/Atlklz1mjwlkqV66ca6QdPKPYkDNpeeaZZ/joo4/44YcfePvttwFPkt+3b1/uvvvu7EXEjh8/jsvl4oMPPsg3nrS0tHxfMy9XXHEFmzZtYtGiRQwaNAjTNPn++++pWLEinTt3zm6XNe96/fr1rF+ff5lY1utnnV9WSXZRYvJVVkKc32tmiYqK4v333+fdd99l+fLl/PLLL4CnEuOmm27K3v6usHitViuVKlXi1KlThcb23//+l+XLl1O3bl169uxJdHQ0NpuNkydP8vnnn+NwOLLbZr13sbGxhR43q1+yqjbyk5aWliOZz2v3hazKgYIey8zMzPXaH330UaFxnq6g47tcriIdqyQomRcRkQK1aukZsS3oC25cnKedBL/yMvIo4ovSUInUokUL1q5dy+rVqwscHd21axdJSUnExsbmKsk/duwYbrc7V0J/9KjnxE7f9zwsLIy77rqLu+66i/3797NmzRpmz57N559/TkZGBo888gjgSYIMw+D777/316nSq1cvXn31Vb777jsGDRrEunXrOHjwIAMGDMhRbp6VgF1//fXce++9hR436/zyWkwO/n0f/ClrpL9Zs2aFtq1evTrjxo3D7Xazfft2Vq5cycyZM3nxxRepWLFirh0Hjh49muvCjsvlIiUlpdALE5s2bWL58uV07NiRSZMm5Si337BhA59//nmO9llTEJIKu+rFv/0yffp0GjRoUGh7f8p67cWLF5fprRk1Z15ERApktRqMGVVwUjd6pKHEr5TQGggi+SsNlUhXXnklFouFr7/+Ot9kFP4dkbzqqqtyPeZyubIX0jvd77//DpDvitw1a9bkqquu4s033yQiIoJly5ZlP3beeeeRkpLCnj17inA2BatcuTIdO3Zkw4YN/P3339kl9pdddlmOds2bN8cwjDzPKS9ZpdoJCQm5HktNTc0uw/eX5ORkZs+eDZBrPnZBLBYLjRs35qabbuKpp54CyPGeZ8nqt9P98ccfuFyuQldX37dvHwCdOnXKNW8+r+M2b94cgFWrVhUaf9YUCm/7xZ+yXjur3L44WCwW3G53sR3fqxgC+uoiIlIqdOtqMGG8wZlVdXFxMGG8oZLsUqQ0jDyKBEpWJVJBAl2JVK9ePQYPHkxKSgoPPPBArsXt3G43U6ZM4bvvvqN27dq5VuvO8vbbb+fYmisxMZGZM2cSEhKSnXAmJyezY8eOXM89ceIEDocjx+h41oJlEyZMICUlJddzjhw5wl9//VXk881aCG/u3LksWbKEmjVr5prrHhMTQ48ePfjjjz/45JNPcsz3zrJhwwbS09MBz8h3mzZt2L59e64F9qZOncqJEyeKHGd+du7cyejRo0lOTubKK68sdGR+586d2Yscni6rWiCvBfBmzpyZYxV5p9PJO++8A0CfPn0KfL3q1asDuS9s7Ny5k2nTpuVq37x5c5o3b866deuYM2dOrsdPj6Nv375ERETwzjvvsHPnzlxt09PTiy3Zvuaaa7Barbz00kscPHgw1+MnTpxg69atZ/UaFStWzHG+gaAyexER8Uq3rgZdOntGbI8c9YxMtWqpUuzSpjSMPIoEiqcSiTzXlMgSDJVII0eO5NSpU8ybN49rr72WTp06Ubt2bU6dOsXKlSv5+++/qVOnDi+99FKeJcZVq1YlLS2NG2+8kS5dupCWlsbixYtJSUnhvvvuy17wKykpiZtvvplGjRrRsGFDYmNjSUlJIT4+nszMzBwXCi666CJuvfVWpkyZwqBBg+jYsSPVq1cnJSWFvXv3kpCQwJ133sk555xTpHPt0qULUVFRzJgxg8zMTAYPHpznQnAPPvgge/bsYfLkySxYsIAWLVoQFRVFYmIimzdv5u+//+abb77JnuP/wAMPcMcddzB+/Hji4+OpU6dO9krtrVu3znNUuiDHjh3LXnwvq8R969at2QvG9evXjwcffLDQ46xatYrXX3+dli1bUrduXSpVqsS+fftYvnw5oaGhec6ZP++887jxxhvp2bMn4eHhLF++nN27d9O9e/dCt6XLSs4XL17MkSNHOO+88zh06BDLli2jc+fOLFmyJNdznnjiCUaMGMGzzz7Ld999x/nnn4/D4WDnzp38+eef/PDDD4BnfYCnnnqKRx99lJtuuomOHTtSr149HA4HBw4cYN26dbRs2ZJXXnml0PelqBo0aMCDDz7ICy+8wHXXXcdFF11ErVq1SE1NZf/+/axbt44+ffrw8MMP+/waF1xwAYsXL+ahhx6icePGWCwWLr744jwX6SsuSuZFRMRrVqsRsEWfxD+0BoJIwTyVSOTa7SEuzpPIB0Mlks1m47HHHqNXr158/fXXrF+/nqVLlxIeHk79+vUZMGAAAwcOzE5c83r+a6+9xptvvsmCBQs4efIk9erV4/77788xH7tGjRoMHz6cNWvW8Ntvv5GSkkLlypVp0qRJdoJ0ujvuuIPWrVszc+ZMVq9ezYkTJ6hUqRI1a9bktttuy1Ue743Q0FAuvfRS5s6dC5BrK7ksWXuZf/HFFyxatIjvv/8et9tNTEwMjRo14tZbb82xRVmDBg149913eeONN1ixYgUrVqygVatWvPvuu0yfPr3IyXxKSkr24n8hISFERkZSp04dbrjhBi6//HKvE7wLL7wwO9H96aefSEtLIzY2lh49enDTTTfleTFk7NixLF68mLlz53Lo0CFiYmIYPnw4t9xyS6GvZ7VamTRpEm+++SYrVqxg8+bN1K5dm1GjRtGpU6c8k/m6devy0UcfMW3aNJYvX87nn39OeHg4derUYdiwYTnadu7cmWnTpvHJJ5/w22+/sWrVKsLDw4mNjaVv37759qc/9O/fn8aNGzNjxgx+//13li9fTlRUFNWqVWPIkCFceeWVZ3X8++67D4A1a9awfPly3G43cXFxJZrMG2ZedSiSraC5SMEkOjq61MRaHql/gp/6KPipj/wnv9Xss/gydUL9E/zUR0XjcpklXomkPgpuwdY/48eP59tvv+Wrr76iZs2agQ4nKARbH52NwnY+AI3Mi4iIlDulYeRRJNBUiSQiwU7JvIiISDmkNRBERERKNyXzIiIi5ZRGHkVEREovbU0nIiIi4icul8nadSYLF3tuXS4tTSQixWPcuHGsWLFC8+XLMY3Mi4iIiPjB0ngz1zoEsbEwZhRah0BERPxOI/MiIiIiZylrh4Azt/xLSvLsWb40XiP0IiLiX0rmRUREJCDKSkm6y+UZkS/Iq5NL7/mJiEhwUpm9iIiIlLiyVJKesJ5cI/JnSkz0tNOCgyIi4i8amRcREZESVdZK0o8c9W87ERERbyiZFxERkRJTFkvSY6r4t52IiIg3lMyLiIhIiSlKSXpp0aqlZ4pAQeLiPO1ERET8Rcm8iIiIlJiyWJJutRqMGVXwPP/RIw2s1tK1FoCIiAQ3JfMiIiJSYspqSXq3rgYTxhu5Rujj4mDCeKPULeonIiLBT6vZi4iISInJKkkvqNS+tJakd+tq0KWzZ4rAkaOeCxKtWqIReZEybv78+Tz99NM8/vjj9O3bN9DhSDmiZF5ERERKjKck3bNqfX5Kc0m61Wpo+zkpNh07dixS+xUrVhRTJL7LSnzz06hRIz7++OMSjKhw+/fvZ+DAgQwYMICHH3440OGIZFMyLyIiIiXKU5JOrn3m4+I8ibxK0kXydtttt+W67/PPP+fkyZN5PhbM2rVrR6tWrXLdHxMTE4Bozk737t05//zzqVq1aqBDkXJGybyIiIiUOJWkixTd7bffnuu+b775hpMnT+b5WDDr0KEDN998c6DD8IuoqCiioqICHYaUQ1oAT0RExM9cLpO160wWLvbclqY900uSpyTdoFcPz60SeRH/2L9/Px07dmT8+PH89ddfPPzww/Tu3ZuOHTuyf//+HI/npWPHjtx999257j916hTvvfce//nPf+jWrRs9e/Zk9OjR/P77734/h/fee4+OHTuyZs2aXI/Nnz+fjh07Mn/+/Oz7Tj+nv//+m4cffphevXrRvXt3Ro4cybZt2/J8naNHj/Lqq68yePBgunXrRu/evbn11luZPn169msNHDgQgNmzZ9OxY8fs/7JiyyueLAkJCdx333307t2brl27ct111/Hee++Rnp6eq23W+37kyBHGjx/PZZddRrdu3bjtttvyfB9ENDIvIiLiR0vjzVzl47GxMGYUKh8XkRK1d+9ehg8fToMGDejTpw8pKSnY7XacTmeRj5WSksLdd9/Nzp07admyJQMGDODUqVPEx8czYsQInnnmGbp161YMZ1E0Bw4cYPjw4Zx77rn07duXffv2Zcc4Y8aMHGX8u3fvZsSIERw+fJhWrVrRtWtX0tPT2blzJ1OnTuWGG26gcePGXHfddXz++ec0bdqUzp07Zz+/Ro0aBcayePFixo0bh91up2fPnkRHR7Ny5Uo++OADVqxYwZtvvkloaGiO55w8eZI777yTqKgorrjiCo4ePcrixYsZM2YMH330EQ0aNPDvGyalmpJ5ERERP1kab+a5sFtSkmfBtwnjfU/oXS5TJeki3jBNyEwLdBT5s4WDUTKf3fXr13PbbbflKsHfv39/kY81adIkdu7cyX//+1+uvvrq7Pvvvvtuhg0bxrPPPkvHjh1zJaf5WbVqFRkZGbnuHzhw4FnNm1+3bh333HNPjhL+d955hw8//JBvvvkmx/1PPPEEhw8f5pFHHqF///45jpOYmAhA48aNiYqK4vPPP6dZs2ZeT2c4deoUEydOxGq18t5779GoUSPA836NGzeORYsWMX36dG699dYcz9u2bRvXXHMN999/PxaLp4i6Xbt2PPPMM3zxxRdagE9yKFXJ/LvvvsukSZMAz2IfrVu39up5breb6dOnM3PmTHbv3k1ERASdOnVi7Nix1KlTpxgjFhGR8sLl8ozIF+TVySZdOhc9CS9to/268CABY5qEf34D1v3rAh1Jvlw125J23SclktDHxMQwdOjQsz7OsWPHWLx4Me3atcuRyANUqVKFG264gZdeeonffvuNLl26eHXM1atXs3r16lz3d+vW7ayS+Zo1a3LjjTfmuO+qq67iww8/ZNOmTdn3bdy4kc2bN9OmTZtciTxAXFyczzEAxMfHc/LkSQYOHJidyANYLBZGjhzJjz/+yDfffJMrmQ8PD2fEiBHZiTzAlVdeyXPPPZcjfhEoRcn8n3/+yeuvv05ERASpqalFeu64ceOYNWsWjRo14qabbiIxMZEFCxbw888/8/nnn1O/fv3iCVpERMqUgpLUhPUF750OkJjoaVeUrcuKc7S/OJS2Cw9SFunnLEujRo2w2+1nfZxNmzbhcrlwOBy89957uR7/+++/AU/ZurfJ/Jmj5/7SqFGjHIkw/JuYnzx5Mvu+rMS4Q4cOfo8BYOvWrQC0bds212PVq1enVq1a7Nmzh1OnThEZGZn9WJ06dYiIiMjR3mazUaVKlRzxi0ApSeadTiePPPIIzZo1o169esydO9fr565YsYJZs2bRvn17pkyZQkhICAB9+/bljjvu4KmnnuKDDz4ortBFREoFjaQWrrAk9chR747jbTso3tH+4lDaLjxIGWQYnlFvldkDnlFzfzh+/DjgKdtfv359vu3S0gL/vp+eGGex2Twpj8vlyr4vKzGOjY0tljhOnToF5N8HMTExeSbzecUPYLVac8QvAqUkmX/77bfZtm0bs2fP5v333y/Sc2fNmgXA6NGjsxN58JTwdOjQgeXLl7N//35q1qzp15hFREqLQI+kloYLCd4kqTFefmf2th0U32h/cShtFx6kDDMMsEcU3q4cyxq5zis5zGv0NyvBvP7667n33nuLN7h/FBRjVqJ8NipUqABAUmG/ZH2U9Z4dPZr3Fdys+/NL3kW8EfRb023cuJG3336bkSNH0rBhwyI/f+XKlURERORZ4nLxxRcDngU4RETKo6wk9czvMllJ6tL44t1SbWm8yaAhJveONXnyKc/toCHF/7pF4W2Sev55JoUN8MTFeS5WeKs4RvuLy5q1mV5feBCRwCookc0qDz9d8+bNMQyDP/74o9hjy1LUGIuqefPmgHd5gNVqBfK+sJCfJk2aALB27dpcjx06dIi9e/dSq1YtJfNyVoJ6ZN7hcPDwww/TtGlThg8fXuTnp6amkpSUROPGjbM/hKerV68e4JnfIyJS3gR6JLW0lGR7Ozq+YaPBmFFkn5PNcBJlP0mYNY0wazqhlgxG35JOyN4MyEzHcKZBZgZGpucW0wTD4hlVNCxgWDg/1eDa+gZu05L9n8u0ciozklOZUf/cRlIjsgI4ojyjkSVUvnumpMNur9oFw4UHkfIuMjKSevXqkZCQwN9//529IPSpU6d46623crWPiYmhR48eLFq0iE8++YQbbrgB44zfNRs2bKBhw4aEhYX5JcasZHvBggVcccUV2SP1f/zxB99//71fjt+8eXPWrVvHnDlz8lzNPmuufYUKFTAMg4MHD3p9/K5duxIVFcU333zDoEGDOPfccwEwTZM33ngDl8tFnz59zvo8pHwL6mT+1VdfZdeuXXz11Vd5JuOFOXHiBABRUVF5Pp51f1a7vFSqVCnXIhrBKjo6OtAhSAHUP8GvvPXRqt+cJCUdL7BNYiLs/KsCHdqf/QJKp3O5TF574xiQ98UEw4DX3zC4qm/lHBcSAtFH6RkZgKfsNNJ2khrh+4kJPUJ06FGqhBwlOvQo0SHJNEk4TvWoZC657jCuE0eoYEvJfbCt//znpUbAY96M5P/yz3+GASFREFoBQqMwIqtAVDWMitWhQhxGhepQoRpGhWpQoRqEVsj1hdxXsVW927e6fr0KREf79+fpdC6X6akSOOwmtqqFC9raVNZ/mvL2e640KmofZX1HPv15WWXooaGh+R5v+PDh/N///R933HEHl19+OW63m2XLltGiRQs2bNiA3W7P8dwJEyawb98+Jk+ezA8//ECbNm2oUKECBw8eZMOGDezatYvly5cXGn/WSHR4eHiBbS+++GLatm3L6tWrueuuu2jXrh379+9n8eLFXHrppSxcuJDIyMjsY3hzzmee08svv8xNN93Es88+y6JFi2jdujUZGRls376dzZs3s3Llyuz3tkWLFvz2228888wz1KtXD4vFwtVXX51jdP30eKKjo3n66ae5//77GT58OFdccQVVqlThl19+YePGjbRs2ZKRI0fm2srvzBiz5NXPkrfy9B4FbTK/bt06pkyZwsiRI2ncuHHA4khJyePLWBCKjo4mOTk50GFIPtQ/wa889tGu3d6Vsu/afYJGDf2bDK1dZ3LoUP6vb5pw8JCbn5Ym07aN57VLpI8yMzCO78eSshfj+F4sKXtps3sv07vuo1bEXiqHFPA34SiYRyECcvx1dVtCwB4G9nCwhWLa/rm1h4MtDGxhmLZQz2i86facvOkG3BhuN0lJbjZvdmPgxmK4sVucRNhSibSdItJ2ktgKp7C5T2GYLs9zM054/gPMfyoK8nunTVs4ZmQsZlQc7sp1cUfXw125HmZ0PdyV6+aYd1zY2gYXtK1MbGzBVQxxcXDuOSdITi6e5Dr/9R+MoKjyCLTy+HuutPGlj7JKv09/Xtb314yMjHyP16tXL1JSUvj888+ZNWsWVatWpU+fPgwbNozvv/8ep9OZ67lvvfUWX3zxBYsWLWLu3Lm43W5iYmJo1KgRt9xyS6448pKVdKelpRXaduLEibz66qssX76crVu30qhRI1588UWSkpJYuHAhp06dyj6GN+d85jlVqlSJDz/8kGnTprF8+XISEhIIDw+nTp063HLLLTnaPv7447zxxhv8+OOPnDx5EtM0ady4MREREdnndHo8AB07duSNN95g6tSp/PDDD6Snp1OjRg1uvfVWbrrpJlJTU3Pt0pXX+w5597PkVpZ+z3lzUcIwTTN4Jib+IzMzkz59+hAeHs6sWbNybKnxyCOPMHv2bK/2mU9NTaVNmzY0btyYefPm5Xr8+++/59577+Wee+5h9OjReR6jtPwwlKUf3LJI/RP8ymMfrV3nmaNemNdeNrITan9ZuNgzR74w//s/g149iiGZzziJ5cg2LIe3YTn8p+c2eReWU4mFPjU5ozKHM2JJzogm2VGFZEc0GbYqDL45BiKrYEZUwQz33BJaESxFryw7U15JalwcjB75T5Jqmp7SfcdJcJzEcKRiZJzASDuKcTIR41QSxskkjFNJWE798++M/KvSsrgj43BH12d/ej2+W1OXzYfqsfPEufx9qi4xsdYcSXJ0dDRzvj6a59SJLBPG+55UF3YxIb9pG/547bLi9M9QaVh4sjwqj3+LShP1T/ArS33kTTIflCPzqamp7Nq1C4Dzzz8/zzbXXXcdAG+88QY9e/bMs01ERASxsbHs3bsXl8uVq1Q/a6581tx5EZHypFVLvBpJLcqCbd4qjpXf8+RyYDn612lJ+5+eJP74/nyfYtojcFeqjVmpNu6KtTAr1Wb93lo8914t9qfWItWVe7GiCeMNXD5e8PAmqerW1aBLZ/JvZxhgD/eM9kfG5jsSn4MzzZPUn0rCcuIgxrHdWJJ3ey5qHNuNkZ6C5VQillOJ1GUVd9QD/vlzmZoZzrbjTdgyqyk7k5rTsEtzzArt6dbVYMJ4Cr7w4IPCdlwI9PoPpU2gd7AQERH/CMpkPiQkhEGDBuX52OrVq9m1axeXXnopVapUoVatWgUeq0OHDnzzzTesXbuW9u3b53hs2bJlALnuFxEpD6zWnAu25WX0SKNYkp9iuZBgmhgpe7EeSMByIAHrgd+xJG3BcGfm2dwdGYe7amPPf7GNcEefi7tyHQirnGsRuWZtYVhlTwKUWoJJ6umsVsO/28/ZwzEr18WsXJc8l65LOwZHd/HG07uo7N5N3cjd1IvazTlRO4mwpdGqyu+0qvI77AZ2Q6bFRniVBvSOa8alDzfjzxPN2O1sTuXYiLMa9fVmocQKFUrPFn6BVloWnhQRkcIFZZl9QfIrsz969CjJyclER0dTpcq/QzkrVqzglltuoX379kyZMiV7r/mlS5dyxx130KVLFz744IN8X6+0lGmUpZKSskj9E/zKcx8VWsJdjK9blLLoXH3kOIX10MZ/E/cDCVhSj+Q6jhkS9U/S3gh31Ua4qjbGHdMIwisXOWZ/liYXZ1m4v+LMayqG1cikXuQumlbaQpNKm2laaTNta2zGnpl7MUXTYsMd1xxXrQtw1WqLq9YFEO79wkQul2erwsIu+tx5Ozw1ofDjnT5tozyqWLEyPS47Wuj7OWtG8VzEk8KV579FpYH6J/iVpT4qtWX2vpg+fTqTJ09m5MiRjBo1Kvv+jh07cu211zJr1iwGDhxIt27dSEpK4ttvv6Vy5co8/vjjAYxaRCTwCi3hLsbXLUpJtpmWgnXbQqx7VmDdvw7L4a0YZs4xZdNixx3XDFeNVrhrtMJVoxVmxVp+267NX6PjxVkW7s8S6ry2kXOZNnaebMjOkw35dl9fAP73OFzbK40T21ZgTdyMJWkzlkMbsZw8hPXgeqwH18OaDwFwVzn3n+Te819B/ePttoDHjnl3Pmc9baOUW7M2UxUMIiJlSJlJ5gsyfvx4GjduzMyZM5k2bRoRERH06tWLsWPHUrdu3UCHJyIScH4v4fZSgRcSMh1Y96/DuudXrHt+JfPQBsLPSN7dFWrkSNzdcc3BFvrvyPTqrGOaQTXS6G2SWtSkyt8l1F6vbRBjYFSujathD1wNe3juNE2ME/ux7l2Ddf9aLPtWYz2yA8vRnViO7sT+xywA3FHVcNVqh6t+F1z1O2NGxmYf19s96StXDtz6D6VJ0uE8J1Tk4u37LiIigVXqyuxLWmkp0yhLJSVlkfon+KmPgoDpxpK01ZO87/4V677VGJnpOZq4q5xLZt2LcNVuj7tGa8wK1XIdpjRsT+bLav6F8bYkvSgl1EU5ZtWqVQr/DKUley7Q7F2Ddf8aLIc25lrTwBXXDFf9i8msfzFrDrVk1P2Fjzu89rLBiRMFr/+g1exh2/Yohg3PPR3iTMWxg4V4R3+Lgpv6J/iVpT4qV2X2IiJSCjlTse5ajm37Ymy7lmGk5fwD7I6siqvuRbjqdiKqxWUcc4cXeLjSsrhXcazmXxyj/X5fJDE8GleDS3E1uNTzb2ca1oN/eC7g7FqG9dBGrImbsSZuJmTVu3QJieL1zh358e8u/JzYhUPpNXIdMmvE3WotnpX0y5IL2tpUwSAiUoYomRcRkWKR3yJsRuoRrDt+xLZjMdbdv2C4HNnPMe0RuGq3x1XvIlx1L/IsVPfPfGqjUjQUcLW9NG1PVhyr+XtbGl3UEuri2m4OAHs4rjodcNXpAJ1He342dv3sucCzezlGWjIXxyzi4phFAGw/3pClBy9h4YHebElpBhg5LiYEav2H4uavBQ09F2eMgOxgISIi/qdkXkRE/O7MUvc6kbvp22AJ156/hOiT6zBO2wndXakOmQ0uJbPBpbhrtgZriE+vWVzz0ItDcWwLWByj/VlKKkk2I2LIbN6PzOb9yHC7sCRuwrprGakJy6h4cj0NK26nYcXt3Nb4PQ6m1+JUvd7UaHQZbrNl9kWfQK3/UFz8vSd8sV6cERGREqVkXkRE/Cqr1P3cqO0MbvoNl1RfQsOK2z0PnvTcuKqdR2aDHrga9MBdtZFfVpsvrpHp4uLvpKo4RvtPV+JJssWKu3oL3NVbYO94D6dOJbNv2c9U3LeQ6ifiqR62Dw59CDM+xF2hBpmNepHZ6DLPBSHDUoKBFp/imjZSVisYRETKGyXzIiLiN+6UQ+z94hs+6zaPppW2ZN/vdNtYc6Q9Px64lA2Zl/Dm1Jp+TxyKc2S6uPgzqSqO0f5gYomMps7lfYG+pDlTsf61HNu277Ht/AnLiQOErJ1GyNppuCNjyWzYi8zGl+Gu3a7UJvbFPW2krFUwiIiUR0rmRUTk7GScxLbtB2xb5mHds5I763sSEKfbxvJDF7Nw/+UsS7yYE85K2U8pjlL34h6ZLi7+TKrKTQm1PQJX4964Gvcmw5mOdffPnp/BHUuwnEoiJOFTQhI+xV2xJpnNrsZ5Xn/MyqVrK9rSNG1EREQCQ8m8iIgUncvhWaRs8zxsO37EcGVkP7TuSBu+2XsVC/dfRoqzcp5PL45S97I+Mu2tcldCbQ/L3t8+I9OBdc+vnhH77YuwHN9PyMq3CFn5Fq5aF+Bs3p/MxpdDaFSgoy5UaZs2IiIiJU/JvIiIeM1y+E9s62di3zIfIz0l+353lQY4m/UlwdWHOx6tVehxfC11L2xV73IzMl2IcltCbQvBdW43XOd2I+PScdh2LMa2cQ7WPb9g3bcG6741mD9O8JThn9cfV50LwWINdNR5Ko3TRkREpGQpmRcRkYI507Ft+w77+plY96/LvtsdGUtm0z5kNrsKd2wzMAyauExiY81iKXVfuCiDCc8Wvqp3uRuZlrzZwzw/n037YJw4hG3zXOyb5mA5uhP7lnnYt8zzLJzXrB/O8wZgRtcLdMQ5lNZpIyIiUnIM0zQLXl2lnEsuYE/jYBIdHV1qYi2P1D/BT32Um3FkB/b1n2PfNBcjwzMKb1psuBpcirPFYFx1O+Y5qpnfCtxZJowv+gj50niTx/9nkt9fLF+OKf5VKj5Dponl4B/YN83GtuVbjIzj2Q9l1r8YZ+v/4KrfNWhG6/39WSoVfVTOqY+Cm/on+JWlPoqOji60jZL5QpSWH4ay9INbFql/gp/66B+ZDmzbfsC+/nOs+1Zn3+2uWBNni8FknjcAMyqu0MPktTe2r6XuLpfJoCGFj/bPmlH258MHs1L3GcrMwLrzR+wbvsK6azkGnq9D7kq1cbYcgvP8gRBe+Beps1HYtBHw72ep1PVROaQ+Cm7qn+BXlvrIm2ReZfYiIoKRsg/7759i3/gVRvoxAEzDguvcS3C2HIyrXucijVb6s9Rdq3pLsbCF4mp8Oa7Gl2Mc24M94TPsG77CkrKX0GUvEvLL62Q2vRJnq+txVz/f7y+fV5KuaSMiIlIUSuZFRMoxy4H12Nd8iG3bDximGwB3VHWcLQaRef41mBWq+3xsfy3CplW9pbiZlevi6PYQjk6jsG39Fvvv07Embsa+cTb2jbNxVW+Js/X1ZDa+AmwhZ/16+ZXPJyV5dmOYMD5nQl9uFzQUEZECKZkXESlv3C6sO5YQsnYq1n1rsu/OrNcJZ+sbcJ3TFSzB8+dBq3pLibGHk3n+NWSeNxDLgd+x/z4D25/fYT24Hut363EvfR5n6+txtr7e5xJ8l8szIl+QVyebdOms0XcRESlY8HxbExGR4uVM9Yw0rp2G5dgeAEyLncymfXBeMBR3bJMAB5i3rFW9Dx8m3wXwtKq3+JVh4K7ZhoyabXB0ewjbhi+wJ3yO5eRBQn+dTMhvH+BsMQjnBbdgVix8K8bTadqIiIj4i5J5EZEyzjiZ6JkPn/DZv6vSh1bC2WoIztbXe7WgXSBZrQZjRsHj/8t/NHP0SC1+J8XDjKxKers7WWm7jbC/FtLs6PtUOLmZkHUfY//9U8/FsPa34a7a2KvjadqIiIj4i5J5EZEyykjeTciqd7FtnofhdgLgrlQX5wU34zxvANgjAhyh97p1NXj5xUgmPHvSL6t6i3jr34XqrMDlwGVc1vBXHrzwA6qeWIF981zsm+eSeU43HO2H4651ARj5/zxq2oiIiPiLknkRkTLGSP6LkJXvYNs8H8N0AeCqdQGOtrfganBp0OyhXVS9eobSpvUpreotJSbvheoMvt/eie+3d2Lywxu50DUF27YfsP21FNtfS3HVaI2j/XBcDS4Bw5LrmFnTRgrbalHTRkREpDBK5kVEygjjyA5PEr/1m+yV6TPP6Yrjwrtx12wd2OD8RKt6S0nxZqG68R+ex6wZL2HrvIeQNR9i2zgb64HfCZ87EldMAxwXjcTVqHeOpD5r2kheq9ln0bQRERHxhpJ5EZFi4nKZXo8iF6XtmSyHt2Ff+Ta2rQsw8CQImedegqPjPcWyP7ZIeVC0herqkdHzCRwXjcC+7hPsCTOwHtlB+PyxuKo2wdFpJK4GPbLL77t1NZgwnlz7zGvaiIiIFIWSeRGRYvDvPNt/74uNhTGjyPVFvShtT2dJ2krIirewbfs++77MBj1wXHQP7rjmfjsXkfLIl4XqzMhYHF3G4mg/HPvaaYSs+Qjr4a2Ezx2Fq9p5OC4a5dn60fAk7F06o2kjIiLiMyXzIiJ+lvc8W88o32PjTCaM/zdJL0rbLJbDfxLyy+vYti/Kvi+zUW8cHe/GHdvUz2cjUj6d1UJ1oRVwXjQCZ+sbCFn7Efa1H2M9tJHwOXfhqtEKR6dRuOp20rQRERE5K0rmRUT8yJt5tq9ONunS2fP/3ra1Wg2M4/sJ+XUyto1zMDAxMchsfBnOjnd7vS2WiHjHLwvVhVfG0XkMjra3EPLb+9h//xTrgQTCvxyOq9YFZHS6F3edDn6N+2ym7IiISOmiZF5ExI+KMs8WvGu7cc0x2qW/j33dJxguB+AZic/oNAozpqEfohaRM/l1obrwaBxdH8R5wVDsv72PPeEzrPvWEDHrFjLrdsTReSzuGme/fL2vU3ZERKR0yr1nioiI+Kwo82wLaxtqSWdoww9o9+vlhKyeguFy4KrVjtT/fEb6Va8qkRcpZp6F6gxiY3PeHxcHE8YXfaE6MzIWR/f/knrrDzha/QfTYse2ZwURM64j9Jv7MVL2+Rxr1pSdMy8QZk3ZWRpfcBWQiIiUPhqZFxHxo7OaZ/sPCy6uqjOXu5tOpnr4QXCBq2pjHF3uy148S0RKRnEsVGdWqIajxzic7YdnT52xb/0W2/aFONvchKPDnRBW0evjeTu956q+SuhFRMoSJfMiIn5U1Hm2OduadK32E/c2e4WGFbcDcCijBhWuuhd386vAYi3W2EUkb8W1UJ1ZsSYZlz2Ds81NhMQ/j23PCkJWT8G+4SscF43A2fI6sNoLPY6303vWrM2kkQp6RETKDJXZi4j4kWeebcEjdlnzbE9v26TiZt7vNJTXLhxJw4rbSXFUZNLGB1l70be4z++vRF6kDHPHNSP9mimk9X8bd5UGGOnHCP1xAhFTr8K6bSGYBY+oezu9J+mw2w/RiohIsNDIvIiIn3nm2ZJrIaq4OE8if/o8227tj/H1ba9QJ3EWFsMk3RXK9J03Mf/YbQy/uxIXa9EqkfLBMHCd243U+p2xbfiSkF9ex3JsN+Hz7vWsfN/tYdzVW+T5VG+n98RW1RiOiEhZomReRKQYFDrP1p2JPeFzQn55jaiM42BAYtyVrI25n0Y9a/CRtpMSKZ8sNjJbXkdmkz6ErH4f++qPPCvffzoYZ9O+OC5+ALNCtRxP8XZ6zwVtbRw/Xszxi4hIiVEyLyJSTPKbZ2vds5KQHydgPbINAFdsUzIueZSI2u3pUsIxivblliAVGoWj8xicLa8j5OdXsW/6GvuW+dh2LMFx0UicbW7Mnk/v1230RESk1FAyLyKCJ6Fbu84s1oTOOL6PkPgXsf/5HQBmWCUyOo8hs8W1mhMfINqXW4KdWaEGGZc/i7PNTYQueQrrgQRC45/HtvFLHJeOw1WnA1C06T0iIlI2GKZZyKoq5VxycnKgQ/BKdHR0qYm1PFL/BLel8SavvWFw6NC/i0N5Ejo/fQF2pmNf/QEhv72PkZmOaVhwthyCo9MoCK989scvJ/z9Ocralzs/vuwjXp7p91wJMN3YNs4mdNkkjDTPe+1sehWOrg9gRsUBBVeaqI+Cn/oouKl/gl9Z6qPo6OhC2yiZL0Rp+WEoSz+4ZZH6J3gVd0Jn3b6Y0J+ewXJ8PwCu2u3JuOQx3LFNfD5meeXPz5HLZTJoiFnoHONZM1Sa7C39nitBaccI/eVVbAmfY2BihkTi6DQKZ+sbwJJ/0aX6KPipj4Kb+if4laU+8iaZ17KmIlJuuVyeEuuCvDrZxOUq+jVP48QhwuaOInzuSCzH9+OuUIP0Pi+Rdu1UJfJBwNt9uRPWl0w8IkUSXpmMHv8j7YZZuKq3xHCcIvSnZwn/5Bose1cHOjoRESkhmjMvIkGjpBciK0pCl9dCdnky3dgSPiN0+UsYjlOYFhvOC4bh6HgX2CPOOmbxD2/35fa2nUgguKudR9p/ZmDb8CWhy17CevhPImbehLNZPxxdH8SMrBroEEVEpBgpmReRoBCIhcj8ndBZkv4kdNE4rAcSAHBVb0lGr/EaiQ9C3u7L7W07kYAxLGS2uJbMhj0J/flVbOtnYt88F9vOpWR0f4TM5leDoakiIiJlkcrsRSTgsuatnzlKnpTk2WppaXzxLO3ht4TOmU7I8lcIn34N1gMJmCGRZFz6OGlDPlUiH6Sy9uUuSFycp51IqRAeTUbPJ0i7/nNccc0xMlII+/6/hH11O0bKvkBHJyIixUDJvIgEVHHOWy+MPxI6655fifj4akJWvYPhziSzYU9Sb5n/z0JU2m4uWHn25S54tFL7cktp5K7egrTrPyfj4vsxraHYdv9MxLR+2Nd+jOl2BTo8ERHxIyXzIhJQgVyI7PSELr8q1HwTurRkQr/7L+Ff3Irl2B7ckXGkXfUa6f1ex6xQ3f/Bit959uU2cl3QiYvTtnRSyllsONsPJ/XmObhqtcNwphL60zO43r8a48j2QEcnIiJ+ojnzIhJQgV6IzJPQkWuf+bg4TyKfV0Jn/fM7whaPx0hLxsTA2fp6HJ3HQGhU8QQpxaZbV4MunSnRhRdFSooZXZ+0wVOx/TGL0PgX4O/VRHwyEMeFd+NsfxtYQwIdooiInAUl8yISUMGwEFm3rgZX9a3MT0uTC07o0pIJXfIU9q0LAHDFNPIscFezdfEFJ8XOajW8361ApLQxLGS2vA7XOd2IWjoB/lxE6C+vYfvzOzJ6P427eotARygiIj5SMi8iAZU1b72gUvuSWIjMk9DlPxpr3bGE0IX/w5J6GNOw4uxwh2e7OY1siUgpYFaojvXGjzm5YjqhP07AevhPwmcMwdl2KI5Oo8AeFugQRUSkiDRnXkQCKugXIks/7pkb//UILKmHcVdpQNp/PsPR+V4l8iJSqhiGQWbTPpy6ZT7Opn0xTDcha6YQMX0QlkMbAx2eiIgUkZJ5EQm4oi5E5nKZrF1nsnCx57Y4VroHsO5aTsS0q7FvmoOJgaPdraTe+CXu6ucXy+t5oyjnXlLvk4iUMhFVyLjyBdL6v4k7siqWozsInzEE+8q3wZ0Z6OhERMRLKrMXkaDg7UJkS+M9W9mdXpYfGwtjRuG/1ccdpwhd+jz2P2YC4K5cl/TLJuKu1dY/x/dRUc69RN4nESnVXOdeQurNcwlb9AS2bT8Q+vOr2Hb+RPrlz2FG1wt0eCIiUgjDNM2gG6rJyMjgpZdeYsOGDezevZuUlBQqVqxInTp1uPbaa+nXrx92u73Q46xcuZKbb74538cnTpzIwIEDCzxGcnJykeMPhOjo6FITa3mk/vGPpfEmj43L/1fW2WwnltVH1r9XEfr9o1iO7wPA0fpGHBePBXuET8f1l6Kce3G+T4Gkz1FwU/8Ev3z7yDSxbZ5L6JKnMRwnMW3hZHR/mMwWg/Pft/MsuVymdpHIgz5HwU39E/zKUh9FR0cX2iYoR+ZPnTrFjBkzaNmyJd27d6dKlSqkpKSwbNkyHn30Ub799lvee+89LBbvZgl06NCBDh065Lq/WbNm/g5dRIqJy+UZaS7Iq5NNunT27QuhmZlByE/PErJ2KgDuijXJ6P0MrroX+hSvPxXl3IFifZ9EpAwyDDKbX42rdntCv38U298rCVv0BJk7lpDR6ynMqDi/vpwqh0RE/CMok/nKlSuzevVqQkJyLi6VmZnJsGHDWL58OfHx8XTv3t2r43Xo0IFRo0YVQ6QiUlIS1he84j1AYqKnXVG3GTOO7iTz04cJObgBAGeLa8no9jCERPoYrX8V5dyh+N4nESnbzIo1SR80BfvaaYQsfxnbX/FYp11Nes8ncTXu7ZfXyK9yKCkJHhtnMmG8EnoREW8F5QJ4FoslVyIPYLPZ6NWrFwC7d+8u6bBEJICOHPVvO8BTWvrHLCI+GQQHN2CGR5PW/00yeo0PmkQeinbuxfI+iZRRWiQyD4YF5wVDSbvhC1yxzTDSjxE+fzShCx6GjBNndWhvq4zUDyIi3gnKkfn8uN1uli1bBkDjxo29ft6uXbv46KOPyMjIoFq1alx00UVUq1atuMIUkWIQU8W/7UhPIWzh/7Bt+x4Ao0FXTvXwfzmpP/j93IvYVqQsUql3wdxVG5F2/WeE/PoG9t/ex755LtZ9q0m/chLumq19OmZxVliJiJRHQZ3MOxwO3nnnHUzT5NixY/z666/s3LmTgQMHctFFF3l9nPnz5zN//vzsf9tsNm688UYeeughrFZrcYQuIv/w1yJHrVp6vmgX9EUwLs7TrjCWfWsI+/ZBLCcOYFpsODqPJrLn/ZgpKUWOqyQU9dz99T6JlFUq9faSNQRHl7FkntONsO8expKyl/CZN+HoPBpnu1vBKFqBpyqHRET8KyhXs89y6tQp2rb9dysowzAYNmwY999/PzZb4dchtm3bxo8//sgll1xCrVq1SEtLY926dUyaNImdO3cybNgwHnnkkQKP4Xa7vV5oT0RyWrgog4nPp3LokDv7vmrVLPz3oQh69Qz16XhjHzgJwOm/ubIWW375xagCj2u6MnEvfRn3Ty+D6YYq9bFe+xaW2sE/BFSUcz/b90mkLHO5THpdcSzH76XTGQZUi7Pww4LKWiTyNGb6cVxfP4C5YS4ARqNLsF7zOkZkVa+Pseo3J8OGHy+03YfvV6RD+393LXK5TNaszSTpsJvYqhYuaGtT34iIEOTJfBa3201iYiJLlizh5ZdfpmHDhrz33ntERUX5dLykpCT69evH8ePHiY+PJyYmJt+2pWVrg7K0DUNZVB77p7i2R8urNDYuDkaPLPh4xvF9hH37ENb9awFwNr+ajEv/L3tufGnoo6Kcu6/vUzArDX1UnpWW/lm7zuTesYV/9XntZYO2bUrnZyU/Z91H/6wzEvrjMxiuDNyRsWRc+SKuOrl3DMqLy2UyaIhZaOXQrBlGdrKe/3SI0vu7rCCl5XNUXql/gl9Z6qNSuzXdmSwWC9WrV+f6668nOjqaMWPG8NZbb/Hggw/6dLzY2Fh69OjBrFmzSEhI4NJLL/VzxCLlW3FuI9etq0GXzhSpdN/653eELRyHkXECMySSjB5PkNmsb5FeNxgU5dx9eZ9EygOVep8FwyCz5WDcNVoT9s19WI7uIGzWUJwd78bR8R6wFDx10Wo1GDOKAi/0jh6ZM5HXdAgRkfyVimT+dF26dAFg1apVZ3WcrCsdaWlpZx2TiORU3IscWa2Gd8/LdBC6dCL2hM8AcFVvSfqVL2JWrlP0Fw0SXp97EduKlBfFsaBkeeOObUzqDTMJXTIB+8avCFnxJta9v5F+xQuYFQpeYLhbV4MJ4ym0cqg4LwqLiJQVpS6ZT0xMBPBqznxBEhISAKhVq9ZZxyQiOQXDyJdxfB9h88ZiPfQHAI4Od+C4aCRY7YU8U0TKMn8uplmu2SPIuGwCrroXEbrof1j3/kbEJwNIv2wirnO7FfhUbyqHtPK9iEjhgnJlt+3bt+c5Yp6WlsbEiRMB6Nbt3z8UR48eZceOHRw9mjMz2LBhQ57Hnzp1KitXrqR+/fq0aNHCj5GLCAR+5Mu6cykRH1+D9dAfmGGVSBvwDo4uY5XIi8g/pd4Fj+SeXuotBcts1pfUG7/EFdcMIy2Z8Dl3EbL0eXA5Cnyep3LIoFcPz+2Z73cwXBQWEQl2QTkyv2DBAj788EMuuOACatWqRVRUFIcOHSI+Pp5jx47Rrl07hg4dmt1++vTpTJ48mZEjRzJq1Kjs+++9915sNhvnn38+1apVIy0tjYSEBDZt2kTFihV54YUXtDWdSDEI2MiX20XIr5MJWfk2AK5qLUi/6mXMiqrAEZF/eVvqLd4xo+uTNuQzQuJfIOT3TwhZ8yHWAwmk930ZMyrOp2MG+qKwiEhpEJTJfPfu3UlMTGTdunX8/vvvpKamEhUVRZMmTejTpw/XXHONV2X2Q4YMYfny5fz2228cO3YMi8VCzZo1ueWWW7j11lupXr16CZyNSPlT1EWO/MFIPULotw9g27MCAEer/+Do9gjYQvz2GiJSdmiRSD+zheC49DFcdS8k7PtHse5fS/j0a0jv8zLu2u2KfDhNhxARKVyp2JoukErL1gZlaRuGsqi89k9JbY9m2b+OsPljsZw8hGkLJ6PX+CKvVl9e+6g0UR8FN/VP8CupPjKSdxE2916sR7ZhWmw4uj6Is81NYBTt935xbXEazPQ5Cm7qn+BXlvqozGxNJyKlU7GPfJkm9nXTCIl/EcOdibvKuaRd9SpmTEP/HF9ERIrMjK5P2vWfEfrDOOxbvyH0p4lYDv5BRq8nwR7h9XE0HUJEpGBK5kWkWBXb9mgZJwn74XFs274HwNnkCjJ6PQUhkcXwYiIiUiT2CDKufAF3jZaExL+Afct8LElbSe/3GmZ0fa8Po+kQIiL5UzIvIqWOcfQvwr8egSX5L0yLHUe3h3G2vr7IJZy+crlMfbEUESmMYeBsezOuuOaEzR+L9cg2Ij4dTPrlz+FqcInXhym2i8IiIqWcknkRKVWsO5cS9u0DGI6TuKOqk973Zdw1W5fY6+e1DkBsLIwZhUo+RaRMOtsLmO7a7Ui78UvC5o/Bun8d4V/fg+PCu3BcNBIs2lVIRMRXSuZFpHQwTeyrPyBk2UsYmLhqXUB631cwI6uWWAj5LcaUlORZuX/CeCX0IlK2+OsCphkVR9q1HxGy9HlCfp9OyMq3sRzcQPqVL0B4Zf8HLiJSDlgCHYCISKGcaYR++yChyyZhYOJsMZi0QVNKNJF3uTxfaAvy6mQTl0sbhIhI2ZB1AfPM7eGyLmAujS/i7ztrCI5LHyf98ucwbWHYdi8nYvogLIf/9F/QIiLliJJ5EQlqxokDhH9+I/at32BabKT3GOdZEdlasvvHJ6wveL9jgMRETzsRkdKuOC9gZjbvR9p/ZuCuVAfL8X2Ez/gP1p0/+hqqiEi5pWReRIKWZd9awqdfizVxE2Z4NGnXfEBmq/8EJJYjR/3bTkQkmBX3BUx3bFNSr/+czNodMJyphM0Zgf23D8BUdZOIiLeUzItIULL9MYvwWUOxpB7BFduU1Otn4a7TIWDxxFTxbzsRkWBWIhcww6NJv+Z9nC2vw8AkdNmLhH7/KGQ6zuKgIiLlh5J5EQkuLichi58ibOE4DLcTZ+PLSRsyHbNSrYCG1aqlZ9GngsTFedqJiJR2JXYB02ono8f/yLjkMUzDgn3THMK/GIpx6vBZHlhEpOxTMi8iwSMtmbAvhxOS8CkAGZ1Hk9HnJbBHBDgwzzZMY0YVvHLz6JGG9psXkTKhRC9gGgbONjeSPuBdzNAKnu3rPh2MJWmLHw4uIlJ2KZkXkaBgJP9FxKdDsO1dhWmPIO3qN3BeeBcYwZMcd+tqMGG8kesLblwcTBhvaFs6ESkzAnEB01W/M6n/+Rx35XpYThwg/LMbsG5f5P3zXSZr15ksXOy51e4iIlLWaZ95EQk4y97fCJ87CiM9BXfFWqT3fwt31UaBDitP3boadOnsWfTpyFFPiWmrlmhEXkTKHM8FTHLtMx8X50nkz7yA6XKZZ/270axyDqnXf07Y/LHY9vxK+NxRZHQZi7P97QVe3F0ab+aKMzYWxoxCF1pFpMxSMi8iAWXbNJfQHx7HcDtxVW9J+tVvlOj+8b6wWg3atgl0FCIixc/bC5h+TabDKpE+4B1CfnqWkIRPCV3+MpbD28no/RTYQnM1Xxpv8ti43KPwSUnw2DiTCeOV0ItI2aQyexEJDNPE/usbhH33MIbbSWajy0i7dmrQJ/IiIuWN5wKmQa8entu8EvnHxpm5trLLSqaXxvtQ7m614+jxf6T3GIdpWLFvmUf4F8MgLTlHM5fLcxGhIK9OVsm9iJRNSuZFpORlOgj97hFCf50MgKP9cNL7vgT2sAAHJiIiRVHcyXRmq/+Qfs37mKEVse5fR8SM/2Ac25P9eMJ6cl1EOFNioqediEhZo2ReREpW2jHCvxqOffNcTMNKes8ncVx8Pxj6dSQiUtqURDLtqtuR1CHTcVeogeXYbsJn/AfLgQTA+33uvW0nIlKa6NuziJQY49geIj77D9a9v2GGRJE+8B0yWw4OdFgiIuKjkkqmzZiGpP3nM1xxzbGkHSV81lCs2xd7vc+9t+1EREoTJfMiUiIs+9cRMWMIluRduCvUIG3IdFz1Ogc6LBEROQslmUybUXGkDZ5G5jldMTLTCZs7ivbm9FzbhZ4pLs6zaJ+ISFmjZF5Eip1t67eEzxqKkZaMq9r5pP3nM9xVGwc6LBEROUutWlKyyXRIJOlXv4GzxWAMTMJ/msDb/V/EwJ3vU0aPzL1on4hIWaBkXkSKlX3NR4R9cz+Gy0Fmgx6kDZ6KGRUX6LBERMQPrFaDMaMKTpT9nkxbbGT0fIKMLmMBaHDoQ7655QFqxmXkaBYXBxPGG9qWTkTKLO0zLyLFwzQJWTaJkNUfAOBocxOObg+DxRrgwERExJ+6dTWYMJ5c+8zHxXkS+WJJpg0DZ4c7MCvUIPT7x6iZ/D1zBySxqsFkDp2oTEwVTzWARuRFpCxTMi8i/udyErrw/7Bv+hqAjIvvx9nuNjD0pUpEpCzq1tWgS2fPqvVHjlJiyXRms6swI+MImzcK24G1dEy/gbQB72BWrlPg81wus8RjFRHxNyXzIuJfzlTC5o3BtmsZpmElo/fTZJ7XP9BRiYhIMbNaDdq2KfnXddW9kLTrphM2+04syX8R/tl/SB/wDu5q5+XZfmm8mauKIDYWxoxCJfkiUqpozryI+E9aMuGzhnkSeVsY6VdPViIvIiLFzl210T9b1zXDknqE8Fm3YPl7Va52S+NNHhuXM5EHSEqCx8aZLI03SyhiEZGzp2ReRPzCOL6PiM9uwHpwPWZYJdIGTcF1bvdAhyUiIuWEGRVH2rXTyKzdAcNxivCvbse6Y0n24y6XZ0S+IK9ONnG5fEvoXS6TtetMFi723Pp6HBERb6nMXkTOmuXwn4R9eTuWU4mePeQHvocZ0yDQYYmISHkTGkX6wHcJ++Z+bDsWEzb3XjJ6P0XmeQNIWE+uEfkzJSZ65v0XdbqASvdFJBA0Mi8iZ8WydzXhn9+E5VQirpgGpA35VIm8iIgEji2U9KtewXneQAzTRdj3j2Jf/SFHjnr3dG/bZVHpvogEipJ5EfGZdftiwr8cjpFxHFfNtqQN/gSzQvVAhyUiIuWdxUZG76dxXHArAKHxz3NB8ktA4Yl1TBXvX6a4S/dFRAqiZF5EfGLb8CVh8+7FcGWQee4lpF3zPoRXDnRYIiIiHoaBo9uDZFx8PwB197zPMxf+DwuufJ8SF+fZps5bRSndFxHxNyXzIlJk9rXTCPvhcQzTjfO8gaT3ew3s4YEOS0REJBdn++Gk9xqPaVi4stqXPN/uPuwWR55tR480irTffHGV7ouIeEPJvIh4zzSxr3yb0J8mAuC4YBgZvZ8Gi9bSFBGR4JXZ4lrS+76MabXTs+Yi3ulyNxHWU9mPx8XBhPFGkRer87Ykvyil+yIi3tI3cBHxjmkSsvwlQn57H4CMi0bi7HgPGFqlV0REgp+rUW/SB7xL2NcjaFt5Bd8PuZX4uu9QIS6aVi0p0oh8llYtPavWF1RqX9TSfRERb2lkXkQKZ7oJWfL0v4l814dwXjRCibyIiJQqrrodSbt2KmZ4NBVObOCKAzdzQaMknxJ58FwAGDOq4OcWtXRfRMRbSuZFpGDuTEJ/eJyQhE8xMUjv+STOdsMCHZWIiIhP3NXPJ/W6T3BHVcdydAfhM2/COHHA5+N162owYbxBbGzO+30t3RcR8ZbK7EUkm8tlkrDes1BPTBVodZ6DyO8fxrbte0zDSsblE8lsdlWgwyySXOfkYymliIiUHWaVc0m77mPCZw3FcmwP4Z/fRNq1H2FWqu3T8bp1NejSGf29EZESpWReRABYGu/ZKzdr3l+oJZ3XOo/lwuh4TKud9Csn4WrUK7BBFtGZ5wSeuY1jRqGREhGRcs6sVDuPhH4KZvQ5Ph3PajVo28bPQYqIFEBl9iLC0niTx8b9m/RGWE/x+oV3c2F0PGmZYaw6941Smciffk5ZkpLgsXEmS+PNwAQmIiJBw6xQg7TBH+Ou0gDLyYOEz7wZ48j2QIclIuIVJfMi5ZzL5Rm9zlLBnsJbF91Oh9hVnHRGMmLFO/zfx51xucwcz1m7zmThYs/t6Y8FgzPPKS+vTg6+uEVEpOSZUXGkDZ6Kq2oTLKcOEzHzZixJWwIdlohIoVRmL1LOJaz/d0udyiHJvH3RcJpW2sIxRyVGrHiHjcdaZLdr26Z0lK6ffk75SUz895xERKR8MyNiSLv2I8K/Go710EbCZw4l7Zr3cVc/P9ChiYjkSyPzIuXckaOe2+iQo7zb6VaaVtrC4fQYhv/8UXYin9WutJSuZ52Tv9qJiEg5EF6ZtEEf4qrRGiMjhfAvhmHZvy7QUYmI5EvJvEg5F1PFk8i/0+k2Glf8k6T0qgz/5SO2n2ico1105dJTuh5Txb/tRESknAitQNo17+Oq1Q7DcZLwL4dj/XtVoKMSEcmTknmRcq51w6NM6XorjSv+SWJ6LMN//ohdJ8/N0SYuznPrbel6oLVqSa79fs8UF+dpJyIikkNIJGkD3yWzXicMZyphX92BddfPgY5KRCQXJfMi5ZiReoTIr4ZxTsQ2EtNjuf3nD9l9KveWPKNHGiQf824+fDCUrlutBmNGFRzv6JGG9v8VEZG82cNJv/pNMs/phuHKIOzru7H+FR/oqEREclAyL1JOGalHCJs1FOuRbbgj49jUbiqpETkT+bg4mDDeoFtXo9SVrnfrajBhvJFrhP70cxIREcmXLZT0fq+R2bAnhstJ2NxRWHctD3RUIiLZgnI1+4yMDF566SU2bNjA7t27SUlJoWLFitSpU4drr72Wfv36YbfbvTqW2+1m+vTpzJw5k927dxMREUGnTp0YO3YsderUKeYzEQlO/yby23FHerbkaRddny96mCSs94yux1TxlKFnjV5nla4XVGofbKXr3boadOlMvuckIiJSIGsI6X1eIuyb+7BtX0TY1yNJ7/8mrnqdAh2ZiEhwjsyfOnWKGTNmYBgG3bt3Z9iwYfTs2ZPExEQeffRR7rrrLtxut1fHGjduHE8//TSmaXLTTTdx8cUX88MPPzBo0CB27dpVvCciEoSMU4cJm3WLJ5GPqkba4KmY0fUBT5Lbto1Brx6e29OT3tJaul7QOYmIiBTKaie9zyQyG1zqKbmfcw/WPSsCHZWISHCOzFeuXJnVq1cTEhKS4/7MzEyGDRvG8uXLiY+Pp3v37gUeZ8WKFcyaNYv27dszZcqU7OP17duXO+64g6eeeooPPviguE5DJOgYpw4T9sVQrEd2eBL5az/KTuS94SldJ9c+83FxnkRepesiIlImWUNI7/MyYfPuxfbXUsLm3E3agHdw1+kQ6MhEpBwLymTeYrHkSuQBbDYbvXr1YtWqVezevbvQ48yaNQuA0aNH5zhet27d6NChA8uXL2f//v3UrFnTf8GLBCnjVBLhs4ZhOZqVyE/FjK5X5OOodF1ERMolWwjpV71G2NyR2HYtI3z2XaQNfBd37XaBjqxIXK78p9SJSOkSlGX2+XG73SxbtgyAxo0bF9IaVq5cSUREBG3bts312MUXXwzAqlXaO1TKvpyJfHWfE/ksKl0XEZFyyRZCer/XyazXGSMzjfDZd2LZtzbQUXltabzJoCEm9441efIpz+2gISZL481AhyYiPgjKkfksDoeDd955B9M0OXbsGL/++is7d+5k4MCBXHTRRQU+NzU1laSkJBo3bozVas31eL16nkTGmxF+kVIt9ShhX5yWyA+eilm5bqCjEhERKZ1soaT3m0zY13dj27OC8K9uJ+2a93HXbBPoyAq0NN7ksXG5k/akJHhsnMmE8Wi6nEgp43Myv3fvXn777Tc2b97M0aNHOXHiBBUqVKBKlSo0a9aM9u3bU7t27bMKzul0Mnny5Ox/G4bBrbfeyv3331/oc0+cOAFAVFRUno9n3Z/VLj+VKlXCYikdBQzR0dGBDkEKEIj+MdOOkfnpnXBkB1SsQchtswmtUr/E4ygt9BkKfuqj4Kb+CX7qI/8xb/kU1yc3wV8/EzH7TqxDP8dSO3c1aFEVRx+5XCavvXEMyHsE3jDg9TcMrupbWdV2hdBnKPiVpz4qUjKfkpLC7NmzmTVrFjt37gTANHP/UjAMzy+BBg0acO2119K/f38qVapU5OAiIyPZunUrbrebxMRElixZwssvv8zvv//Oe++9l2+i7k8pKSnF/hr+EB0dTXJycqDDkHwEpH8cpwj/4lasBzfgjoghbeAHmEYl0M9JnvQZCn7qo+Cm/gl+6qNi0Pc1wmffhXXvb2R+dB1p10zBXf18nw9XXH20dp3JoUP5l9KbJhw85Oanpcm0baNkPj/6DAW/stRH3lyU8CqZT0tL4/3332fKlCmkpaURFhbGBRdcQIsWLTj33HOpXLkyUVFRnDhxgpSUFHbu3Mn69evZsGEDEydO5JVXXuG2227jtttuIzw8vMgnYrFYqF69Otdffz3R0dGMGTOGt956iwcffDDf51SoUAGAkydP5vl41v1Z7UTKFGea58vFwfWYYZVIv2YKZpVzAh2ViIhI2WKPIK3/W4TPvhPrvjWEf3kbaYOm4K52XqAjy+HIUf+2E5Hg4FUy37NnT44cOUKXLl3o168fPXv2JCIiotDnpaam8sMPPzBv3jwmT57MZ599xvLly88q4C5dugCFL1wXERFBbGwse/fuxeVy5Zo3nzVXPmvuvEiZkekgbO4orPtWY4ZEkXbNB7hjC18wUkRERHwQEknagHcI/+p2rPvXeRL6wdNwVw2ev70xVfzbTkSCg1eTwVu3bs1XX33F+++/T79+/bxK5MGTUPfv358PPviAL7/8klatWp1VsACJiYmAZ5u6wnTo0IHU1FTWrs29ymjWqvjt27c/65hEgobLSdg3Y7Ht/hnTHuHZMifIRgdERERKC5fLZO06k4WLPbcuVz6l6iGRpA14F1f1lhjpKYR9eRtGcvAsstyqJcTGFtwmLs7TTkRKD6+S+TfeeIPmzZuf1Qudd955vPHGG1613b59O2lpabnuT0tLY+LEiYBnr/gsR48eZceOHRw9mrM2aPDgwQC8+uqrOByO7PuXLl3KqlWr6NKlC7Vq1SryuYgEg1xfMJyZhC54CNuOJZjWUNKvfiPoV9YVEREJVkXexi00irQB7+CKaYTl1GHCv7wV48TBkg06H1arwZhRBc+FHz1SW82KlDZBuTXdggUL+PDDD7nggguoVasWUVFRHDp0iPj4eI4dO0a7du0YOnRodvvp06czefJkRo4cyahRo7Lv79ixI9deey2zZs1i4MCBdOvWjaSkJL799lsqV67M448/HoCzEzl7S+NNXnndJCnJ828DN891fJzecd9hWuyk93sNV92OgQ1SRESklPJ5G7fwyqQP+oDwz2/EcmwP4V/cStp1H2NGxJRA1AXr1tVgwnhyfH8Az4j86JGGtqUTKYWCMpnv3r07iYmJrFu3jt9//53U1FSioqJo0qQJffr04ZprrvGqzB5g/PjxNG7cmJkzZzJt2jQiIiLo1asXY8eOpW5d7bUtpU/uLxgm/23xNL3jvibTbSWhwYs0OadrwOITEREpzVwuzwXzgrw62aRLZ/IcyTYjY0kbNIXwz2/CkvwXYV/eTtq1H0FYxWKK2Hvduhp06QwJ6z2L3cVU8ZTWa0RepHQyzLz2lvPSqlWrWLVqFUlJSTnK2HO8gGHwzDPP+BxgoJWWrQ3K0jYMZZG/+sfl8pT4/XtF3WRs8xe5peFHuE2Dx9Y+yxpnX2bNUKlcUekzFPzUR8FN/RP81EfeWbvOU1JfmNdeNgrcxs1I/suT0KcewVWjNWnXvA8hkQUeU30U3NQ/wa8s9ZHftqY707Fjxxg5ciRr1qzJc5/505X2ZF4kmCSsJ0dp3N1N3uCWhh8BMD7hSRbs65vdrq2my4uIiBSZv7ZxM6PPIf2aDwifeTPWA78TNnck6f3fxmWEaGRcRPzCp2R+4sSJrF69mkaNGjF48GDq1Knj9Qr3IuK707843NTgI+5s8hYAz/7xKHP2XJNnOxEREfGeP7dxc8c2IW3gu4R/cSu2PSs4Oe0+hn73EgcT7dltYmNhzKi85+C7XKYSfxHJl0/J/I8//kj16tX57LPPiIwsuFxIRPwn64tDvzqzuf+8FwB4bdMYPvvrhjzbiYiISNFkbeN2eiXcmYqyjZu7RivSr36TkC/voPqxJdxb+zEeS3wW859NpU5fVK//1f8+78zFbqHgxF9Eyh+vtqY7k8vlonXr1krkRbzk9T61hWjVEvo1XsK4Vv8DYOr2YUzZPjxHG+0TKyIi4rvi2MbNUasDT2x+CafbxpW1v+G/LZ8Gcn4XeHXyv98Psha7PfOCQlbin+/2eCJSrviUzJ933nkcPnzY37GIlElL4016XXHM+31qC2A/sJr/Nbsfm8XF13v68/Km+4GcXya0T6yIiMjZ8WzjZhAbm/P+uDiYML7o27glrId5f17C42sn4jYNBtf/nDHNJ3F6Qp+YCGvWZnq9mr6vAwMiUnb4VGZ/9913c/vttxMfH0/XrtoCSyQ//24jl/MPbqH71ObBkriZ8Dn3YJgODla+hDd/fZLTE3ntEysiIuI//tzGLWstm+/3X0mELZX/tf4fQxt+yHFHJaZsvz27XdJhNydOFFziD57EX4vdiohPyfxFF13Eiy++yMMPP0y3bt3o1KkT1apVw2LJe6C/ffv2ZxWkSGl0tvvUns5I3k3YV3dgOE7iqtWOqIEvMfMWuxbFERERKUZWq+GXhPn0tWxm7xlEpO0kD5z/Avc2f4UjGVX5+u8BAMRWtbBrt3fH1GK3IuJTMg+QmpqKzWbj66+/5uuvvy6w7ebNm319GZFS68xt5PLizZV142Qi4V8Nx5J6GFdsU9L6vwn2MKzoiryIiEhpcOaiep/sHEqV0KPc2ugD/q/V/zjqiGar2Z0L2to4ccK7Y2qxWxHxKZn/6quveOyxxzBNk+bNm1O7dm0thidyBr/sU5ueQthXt2NJ2Yu7Ul3SB74HoRX8Ep+IiIiUDM+ievwz9c7jtc1jqRp6mH51v+b5C+5n3fkfYLX28Ptq+iJSdvmUzL///vuEhITw7rvvcuGFF/o7JpFSobC9X896n1pnGuFz7sF6+E/ckVVJu+Z9zMiqZx+4iIiIlDjPonqctt2cwfiEJ6lWIZkLo+O56K97MBPnYrXH5Ur8z6TFbkUEfEzm9+3bR/v27ZXIS7nlzd6vZ3Vl3eUkbP5YrPvXYoZWIH3g+5iV6/j3JERERKRE5V5UL4SmzV7CNfs2rAcSyJz6H4zrPqFb1xpnJP4eWuxWRE7nUzJfrVo1wsPD/R2LSKnw7wr1OZ25Qv3pJXWGAWYeF9jzvLJuugn94TFsfy3FtIWR1v8t3LFNiulsREREpCTlXlQvkrT+bxHx+Y1Yju4k7KvbSRv8Cd26VvbbavoiUjb5tM/81VdfzcqVKzl27JifwxEJbkXd+zVrn9q4uJwftXz3qTVNQpY+j33zPEzDSnrfl3HXusCv5yAiIiJBJjyatIHvQcUaWI/sIPzre8CZ9k/ib9Crh+dWibyInM6nZP6uu+7iwgsv5Oabb2blypWYeQ05ipRBRVmhPku3rgYLF1TmtZcN/vd/Bq+9bDBrRt4lcva1UwlZOxWAjMuewXVudz9GLyIiIsHKrFgT282fYoZWxLp/HWHf3AfuzECHJSJBzKcy+969ewOwf/9+hg4dis1mIzY2FsPInZwYhsGiRYvOLkqRIOHrCvVZV9YLYtv6LaFLnwMgo+uDZDbv50uIIiIiUkoZ1ZqR1v9Nwr+4DdvOnwhd+D8yej8NeXzHFhHxeQG80zmdTvbv3++XgESC2VmvUJ8Py97fCP3uEQAcrW/EecGwIkYmIiIiZYG71gWk932JsLmjsG/8CjMyFkeXMYEOS0SCkE/J/JYtW/wdh0ipUBx7vxpHthP+9UgMl5PMhj1xdH9EV+BFRETKMVeDS8no+QRhC8cRsuodzIgYnG1vCnRYIhJkfJozL1JeeVaoLzjRLsrer8bJRMK/ugMj4ziuGq1Jv+IFsFj9EaqIiIiUYpktriWj82gAQn6aiHXbDwGOSESCjZJ5kSLKWqE+Njbn/fmuUJ8fxynCZt+F5cQB3NH1Sev/JtjD/B+wiIiIlErODnfibDUEA5Owbx/Csv/3QIckIkHEqzL7bdu20ahRo7N+MX8dRyTQunU1zm7vV5eTsHmjsSZtxh0RQ9qAdyE8uniDFhERkdLFMMi45DGM4wew/bWU8K/vIfU/n2FWrhvoyEQkCHg1Mt+vXz/uu+8+n+fKb9q0idGjR3P11Vf79HyRYOTz3q+mSeii/2Hb/TOmLZz0/m9jVq5TvMGKiIhI6WSxkd5nEq645hhpyYTPvhPSkgMdlYgEAa9G5keMGMGUKVNYsGABjRs3pk+fPnTo0IHmzZsTEhKSq31GRgabNm1i1apVzJ8/n+3btxMeHs6IESP8fgIipU3Ir5Oxb5yNaVhI7/sS7urnBzokERERCWYhkaT3f4vwGUOwJO8ifO4o0q75AGyhgY5MRALIME3T9KbhkSNHeOutt/j66685ceIEhmFgtVqpUaMGFStWJDIyklOnTpGSksLBgwdxuVyYpkmFChUYOHAgd955J1WqFHG/riCQnFw6rnxGR0eXmljLo6z+sf0xi7CF4wBI7/kkmS0H52jncpm+l+7LWdFnKPipj4Kb+if4qY+CX2F9ZDm8jfDPb8DIOIGzyZVkXPkCGFoCq6ToMxT8ylIfRUcXPgXX663pYmJiePzxx3nggQdYsGABP/74I2vXruXvv//O1bZq1aq0a9eO7t27c8UVVxAaqquGItadSwld9CQAjgvvypXIL403eeV1M8e2d7GxMGYU3i+qJyIiImWWu2oj0q96jbCvbse+9VvMirVwXHxfoMMSkQDxemQ+P0ePHuXIkSOcOHGCChUqEBMTUypH4PNTWq7slKWrUGVR5dQ9OD8YgOFMxdn8ajIum5hjL/ml8SaPjcv/o1ikVfLFJ/oMBT/1UXBT/wQ/9VHw87aPbBvnEPb9f4G8K/2keOgzFPzKUh/5dWQ+P1WqVClTybuIvxknDpL52c0YzlQy63Uio9f4HIm8y+UZkS/Iq5NNunRWyb2IiIhA5nn9yTi+j9BfJxO6eDxmheq4zuka6LBEpIRpko1IcXKcImzOPXDiEK6YhqT3fQWsOReNTFhPjtL6vCQmetqJiIiIADg73oOzeX8M00XY/LFYEjcHOiQRKWFK5kWKi9tF2IKHsCZthsiqpPd/G0Ir5Gp25Kh3h/O23ZlcLpO160wWLvbculxnNbNGREREgoFhkNHrSTLrdMRwphI2+y6MEwcCHZWIlKCzLrMXkbyFLJuEbccSTGsItus/wqxQK892MV7OUvG23em0qJ6IiEgZZg0h/apXCf/8BqxHthP21Z2kDZme5+CBiJQ9GpkXKQa29TMJWfMhABmXPYOlbrt827Zq6UmwCxIX52lXFFmL6p1Zwp+UBI+NM1karxF6ERGRUi+sIukD3sYdWRXrkW2Ezb8P3JmBjkpESoCSeRE/s+75ldAlTwGQcdFIMpv2Kbi91WDMqIJHyUePNIq0+J23i+qp5F5ERKT0MyvWIr3/25i2cGy7lxOy9PlAhyQiJUDJvIgfGUd3EjZvNIY7E2fTq3B2vMer53XrajBhvJFrhD4uzrdt6bSonoiISPnirnYe6Vc8C0DIuo+xJXwW4IhEpLhpzryIv6QlEz77LoyME7hqtiGj91M5tqArTLeuBl06exLsI0c9c+RbtfRtO7riXlRPREREgo+rUW8yOo8h9OdXCF3yNGZ0fVx1OwY6LBEpJj6NzPfo0YMXXnih0HaTJk2iZ8+evryESOmS6SB87igsKX/jrlSbtH6TwRZa5MNYrQZt2xj06uG59XVf+eJcVE9ERESCl7PDHTibXuXZsm7eGIzkvwIdkogUE5+S+X379nH0aOFDesnJyezbt8+XlxAJCJ+2cTNNQhf+H9Z9azBDokjr/xZEBDZLLq5F9URERCTIGQYZvZ/CVaMVRkYK4XPugfSUQEclIsWgWOfMp6WlYbOpkl9Kh6XxJoOGmNw71uTJpzy3g4YUvuq7fdU72DfPxTSspF/1CmZMwxKKOH/FsaieiIiIlBK2UNL7TcZdoQaW5F2EzR8DLmegoxIRPyuWZN7tdrNjxw5WrlxJzZo1i+MlRPzK123cbFsXEPrzqwBkXPo4rnqdiztUr/l7UT0REREJXmdWF2aGxZDe/01MewS2PSsI/XECmNrFRqQs8XrYvFmzZjn+PWfOHObMmVPgc0zTZPDgwT4FJlJSvN3GrUvnnIvRWQ5uIPS7/wLgaHszma2GFGucvvDnonoiIiISnJbGe77LnD4oERsLY0Y14dIrXyDs65HY13+OO6YRzjY3BC5QEfErr5P5GjVqZP//gQMHCAsLIzo6Os+2druduLg4evTowU033XT2UYoUo6Js49a2jeffxqkkwuaOxHBlkHlONxxdHyr+QH3kWVQv0FGIiIhIcciqLjxTVnXhhPGX0PPi+whdNomQn57BHV0fV/3gqSQUEd95ncwvWbIk+/+bNm3K5ZdfzsSJE4slKJGSVORt3DIdhM29F8vJQ7irnEv6lS+AxVps8YmIiIjkxevqwk9vxXJkB/ZNcwj7ZiypQ2ZgxjQooShFpLj4NGd+2rRp3H777f6ORSQgirSNm2kSuvhJrAd+xwytSNrVb0BohWKNT0RERCQvXlcX/mGQ0fNJXDXbYmSc8Kxwn5ZcMkGKSLHxKZnv0KED5557rr9jEQmIomzjZl/3CfaNX2EaFtL7vIQZXb9EYhQRERE5U5GqC20hpPV7HXfFWlhS9hA+bzS4HMUan4gUr7PaN+7vv/9mzZo1JCYm4nDk/cvAMAxGjBhxNi8jUqw827iR53yzLKNHGoTsW0HI0ucAcHR9UPPNREREJKCKVF0IEFGF9P5vEv7Z9Vj3/kbIT8/h6PF/xRafiBQvn5J5h8PB448/zrx58wDPqvX5UTIvwcDlMgtc0d2zjRu5VoKNi/Mk8t1b/k3Y9LEYpgtn86txtr0lAGchIiIi8q+s6sKCSu2zqguzuKs2Jv2KFwj/+h5CEj7FHdeMzBaDij9YEfE7n5L51157jblz51KxYkX69etH/fr1iYyM9HdsIn6R/3Yt5NhrPd9t3FyphM0YgZGRgqt6SzJ6PgmGtnYTERGRwPK2uvDMLWldDS4ho9MoQn95ndAl43HHNMRds3UxRysi/uZTMj9//nwqVqzI7NmzqVWrlr9j4tChQyxYsID4+Hh27tzJ4cOHqVSpEm3btmX48OG0atXKq+OsXLmSm2++Od/HJ06cyMCBA/0VtgShwrdryZnQ59rGzXQTNv9hrEe2446MJb3f62ALLYHIRURERApXWHXh6d9zTue88C6siZuxbV9E2Lx7SbvhC8youBKKWkT8wadk/siRI3Tp0qVYEnmAjz/+mPfee4+6devSuXNnqlSpwu7du1m0aBGLFi1i0qRJXHnllV4fr0OHDnTo0CHX/c2aNfNn2BJkvN6upTO5rlhnCfnldWw7FmNaQ0jv97r+yImIiEjQybe6MJ/vNwAYFtIvf5bwGUOwHtnuSeivnQa2kJILXETOik/JfM2aNf0dRw4tW7bk448/zpWAr169mqFDh/LEE0/Qs2dPQkK8+2XToUMHRo0aVRyhShDzeruW9eQcjf+HbesCQla+DUBGrydx1/CuIkRERESkpOWqLvRGSCTp/SYT8elgrAcSCF0ynoxeT2k6oUgp4dPWdNdccw2rVq3i6FEv98Moot69e+c5kt6uXTsuvPBCUlJS2Lp1a7G8tpQdRdqu5QyWxE2Efv8oAI4LhpLZvL//AhMREREJEmZ0PdL7TMI0LNg3fIlt/WeBDklEvORTMj98+HC6du3KzTffzIoVKwpczd7fbDZbjltv7Nq1i48++oh33nmHOXPmcOjQoeIKT4JIkbdr+YeReoSwr0diZKaTWa8zjovv939wIiIiIkHCVb8Lji5jAQj98Rkse1cHOCIR8YZPZfa9evUCYP/+/QwbNgybzUZsbCxGHiU5hmGwaNGis4vyH/v37+eXX34hNjaWxo0be/28+fPnM3/+/Ox/22w2brzxRh566CGsVqtfYpPg48t2LbichM0fi+XEAdyVPVeqsfj0MREREREpNZztbsOSuAn71gWEzR9D2g2zMCvUCHRYIlIAw/RhWL1p06ZFar9ly5aivkQuTqeTYcOG8dtvv/Hcc8/Rv3//Qp+zbds2fvzxRy655BJq1apFWloa69atY9KkSezcuZNhw4bxyCOPFHgMt9uNxeJTAYMEgYWLMhj7wEkATv9Jz7ru9PKLUfTq+e/q9K4F/8P9yzsQEontzgUYcd5fNBIREREpzUzHKTLf6wcHN2LUbIl1+NcY9vBAhyUi+fApmS9pbrebBx98kPnz5zN48GCeeuqpszpeUlIS/fr14/jx48THxxMTE5Nv2+Tk5LN6rZISHR1damItaXntM5/Xdi22Ld8Q9u0DAKRd9SquRr39FoP6J/ipj4Kf+ii4qX+Cn/oo+AVDHxkp+4iYPggj/RjO5leTcdlELYj3j2DoHylYWeqj6OjoQtsEff2w2+3m0UcfZf78+fTr148nn3zyrI8ZGxtLjx49mDVrFgkJCVx66aV+iFSClTfbtVgO/0noD/8HgKP9cL8m8iIiIiKlhVmpFul9Xybsy+HYN32NO64Zzra3BDosEclDUNePu91u/vvf/zJ79mz69u3Ls88+67eS96wrHWlpaX45ngQ3z3YtBr16eG5z7LuafpywuaMwMtPIrHsRjs6jAxeoiIiISIC56nbE0e0hAEKWvoB1z68BjkhE8nJWmfHy5csZMWIEF198Meeffz6PPvpo9mPLli1j4sSJPq8cn5XIz5kzhyuvvJLnn3/er4vVJSQkAFCrVi2/HVNKIdNN2HePYDm2B3eFGlrwTkRERARwtrkJZ/OrMUwXYd/cj3HiQKBDEpEz+JzMP/3009x+++0sXryYU6dOkZmZmWOLutjYWKZOncqCBQuKfOys0vo5c+Zw+eWX88ILLxSYyB89epQdO3bk2vd+w4YNebafOnUqK1eupH79+rRo0aLI8UnZYV/5NradP2JaQ0i/6jUIL3xuioiIiEiZZxhk9HgCV1xzjLRkwuaNgUxHoKMSkdP4NAQ5Z84cPvnkE84//3yeeuopmjVrlmuF+6ZNm1KjRg2WLFnC0KFDi3T8N954g9mzZxMREUH9+vV56623crXp2bMnzZo1A2D69OlMnjyZkSNHMmrUqOw29957LzabjfPPP59q1aqRlpZGQkICmzZtomLFioVeJJCyzfpXPCG/TAYgo8c43NXPD3BEIiIiIkHEHkb6Va8S8ckgrAfXE7L0WRw9xgU6KhH5h0/J/IwZM6hYsSLvvvsuVapUybddkyZN+PPPP4t8/H379gGQmprK22+/nWebWrVqZSfz+RkyZAjLly/nt99+49ixY1gsFmrWrMktt9zCrbfeSvXq1Yscm5QNxrG/Cfv2IQxMnC0Gk3n+NYEOSURERCTomJVqk37Fc4TNuZuQhBm4a7Qms3m/QIclIviYzP/555906NChwEQeICoqisOHDxf5+M8++yzPPvus1+1HjRqVY0Q+yx133MEdd9xR5NeXMs6ZRti8ezEyUnBVb0nGJY8FOiIRERGRoOU6txvOjncTsuJNQhf9D3dsE9yxTQIdlki55/OcecOL/SYTExMJCwvz9SVE/M80CV30BNakLbjDq5B+1atgCwl0VCIiIiJBzdHxHjLrdcHITCds3r2Qfjz7MZfLZO06k4WLPbcul1nAkUTEX3wama9fvz4bN27E6XRit9vzbHPy5Em2bNlCw4YNzypAEX+y//4p9s1zMQ0rGX1ewqygqRYiIiIieXG5TBLWw5GjEFPFQuvLnifqs0FYju0h7PtHSe/3GkuXGbzyuklS0r/Pi42FMaOgW9fCB/9ExHc+jcxffvnlJCUlMWnSpHzbvPTSS5w4cYI+ffr4HJyIP1n2rSVkqWf6huPi+3HVvTDAEYmIiIgEp6XxJoOGmNw71uTJpzy31wyrxC+1XsG02rHtWMzeme/z2LiciTxAUhI8Ns5kabxG6EWKk0/J/C233ELjxo2ZOnUq1113He+++y4Af//9Nx999BE33HADn376Kc2aNePaa6/1a8AivjBOJRE2fzSGOxNn48txXjA00CGJiIiIBKWl8Wa+SfrI587jj9qPA9Bo76t0qLoi3+O8Olkl9yLFyadkPiwsjI8++oiLL76YhIQEXn75ZQBWr17Ns88+y5o1a+jcuTPvv/8+ISGajywB5nYR+s0DWE4dxhXTgIzeT4MXaz6IiIiIlDcul8krrxecgD/w+TUcqNYfq+Hm2QseJC7sYJ7tEhMhYX1xRCki4OOceYAqVarw7rvvsmXLFpYvX86+fftwu91Ur16dzp0707JlS3/GKeKzkF9fx7Z3FaY9gvSrXoOQyECHJCIiIhKUEtaTa0T+TImJBrPS/o/eKVtoWmkLL7S7j9t+/ohMM/cg3pGjxRSoiPiezGdp2rQpTZs29UcsIn5n/SuekJXvAJDRazxmlXMDHJGIiIhI8PI2+XYZYdz/2yvM6DqYVlUSeOD853n2j8dztYspeCdrETkLPm9NJxLsjBMHCFvwMADOVkPIbKrFGEVEREQK4m3y3aY1OCLr8Ni6iQAMOWcGV9aan6NNXBy0UrGuSLE5q5H5vXv3snr1ahITE3E4HHm2MQyDESNGnM3LiBSdy0HY/LEY6cdwxTUno9sjgY5IREREJOi1aunZWq6gUvu4OGjT2mDMKHhsXHfe3XondzR5h/9r9T+2Hm/CjhONABg90sBq1TpFIsXFp2Q+IyODxx9/nPnzPVffTDP/RTKUzEsghCx7CeuBBMzQCqT3fQVsoYEOSURERCToWa1ZSXr+3++zkvRuXWHCeHjt9RGcn/gHneJ+4YV29zFm82fceU+U9pkXKWY+JfMvvPAC8+bNIyYmhquuuoo6deoQERHh79iknHK5TBLWe+ZsxVTxXCEuylVd67aFhKydCkD6ZRMxK9cprlBFREREypxuXQ0mjIdXXs+5PV1cnCeRPz1J79bVoEtnG5tWP0fayms4t8JOvrj5aRwXPxuAyEXKF5+S+QULFhAdHc2cOXOIjY31d0xSji2NN3P94YiNhTGj8OrqrnFsD2E/PAaA44JhuBr2KK5QRURERMosT5KOVwMsVqtBiwurYtZ6EXPWUEK2zMVd90Iyzx8YgMhFyg+fFsBLTU2lffv2SuTFr5bGmzw2zsw1RyspyVPqtTS+4D1PycwgbP4YjIwTuGq2wdFlbPEFKyIiIlLGWa0GbdsY9OrhuS2sUtJduz2OTvcCELrkKSyH/yyJMEXKLZ+S+UaNGnHy5El/xyLlmMvlGZEvyKuTTVyu/NuE/jQRa+JmzPBo0vu8BFa7v8MUERERkQI4O9xOZr3OGJnphM0fC45TgQ5JpMzyKZkfNmwYq1atYtOmTf6OR8qphPUFr5oKkJjoaZcX2+b52Nd/jolB+hUvYFao7v8gRURERKRghoX0K57HHRmH5ehOQhc/CQUsli0ivvNpzvwVV1zBoUOHGDZsGDfeeCOdOnWiWrVqWCx5XxuoWbPmWQUpZd+Ro763M47sIHTR/wBwXngXrvqd/RiZiIiIiBRJRBXS+0wifNYt2DfPw1XnQjLPvybQUYmUOT7vM9+kSRMqV67Mm2++yZtvvplvO8MwNIIvhYqp4mM7Zyph80djOFPJrNMRx0XaBlFEREQk0Ny12+HoPJrQ5S8Tuvgp3NVa4I5tHOiwRMoUn5L5H3/8kVGjRpGZmUl0dDQ1a9bU1nRyVlq19KxaX1CpfVycp93pQhc/hfXIDtyRsWRc+QJYrMUbqIiIiIh4xdl+ONa/f8O2ezlh34wl9fqZEBIZ6LBEygyfkvnXX38d0zSZOHEi/fv3xzC83wNcyqfC9o63Wg3GjPKsWp+f0SNzrqJq2zQH+6Y5mIaF9CtfxIysWqznICIiIiJFYFhIv+I5Ij4ekD1/PuPy50C5g4hf+JTM79ixg3bt2jFgwAB/xyNlkLd7x3frajBhPLnaxsV5EvnT2xrJfxG6+CkAHBeNwF2nQ7Gfh4iIiIgUkebPixQbn5L56OhooqOj/R2LlEFZe8efKWvv+Anjcyf0XTpT4Cg+mQ7C5t/vmSdfuwPODneWxKmIiIiIiA80f16kePi0Nd1ll13G6tWrycjI8Hc8Uob4une81WrQto1Brx6e2xyJPBCy7EWsSZ795DVPXkRERCT4OdsPJ7NeFwxXBmHfaP95EX/wKZkfM2YMtWrV4u6772bPnj3+jknKiLPdOz4v1h1LCFn3MQDplz2DGRV3FhGKiIiISIn4Z/58jv3nReSs+FRmf+edd2KxWPj111+54oorqFWrFtWqVctzITzDMJg6depZByqlz9nsHZ8X48RBwr5/FADHBUNxndvdt8BEREREpOSdOX++Xmcym18d6KhESi2fkvlVq1Zl/7/L5WLPnj35jtBrpfvyy+e94/PiziTs2wcw0lNwVTsPR5exZxWbiIiIiJQ8d+12OC4aQegvrxO6eDyuGq0xo+sFOiyRUsmnZH7x4sX+jkPKIF/3js9LyIq3se5bgxkSSfqVk8Aa4r9ARURERKTEODvciW33r1j3rSbs2wdIGzJd3+1EfOBTMl+rVi1/xyFlkC97x+d5nL9XYV/5FgAZPZ/U1VsRERGR0sxiJf3K54mYNgDroQ2E/Pwqjq4PBjoqkVLHpwXwRLzl2TveIDY25/1xcTBhfM694/OUlkzotw9imG6c5w0ks2mf7IdcLpO160wWLvbcnrkqvoiIiIgEJ7NCDdJ7PwVAyOopWHf9HOCIREofn0bms2zfvp2ZM2eyfv16kpOT6dGjBw899BAAa9euZcOGDfTr14/KlSv7I1YppbzaOz4vpknYd//FcioRd5Vzybj0seyHlsZ7tr07vYQ/NhbGjKLwCwQiIiIiEnCuRr1wthqCPeEzQr97hLSb52BGxAQ6LJFSw+dk/sMPP2TSpElkZmYCnoXukpOTc7SZOHEiISEhDBky5OyilFLPs3d80Z5jXzcN219LMa0hpPd5CewRgCeRz6t0PynJU9I/YbwSehEREZHSIKPrw1j2rsZ6ZDuh3/2X9AFvg6HiYRFv+PRJ+emnn3juueeoXr06kydP5pdffsE0cyZXbdu2pUqVKlosT3xiObSRkPhJAGR0fwR3bBPAU1r/yusFl9O/Olkl9yIiIiKlgj2MjD6TMK2h2HYtw752WqAjEik1fErmP/zwQ8LDw/nwww/p2bMnVarkvbdY06ZN+euvv84qQCmHHKcI++Y+DLeTzIa9yGz5b2VHwvqCV8cHSEz0tBMRERGR4Oeu2piM7g8DELLsJSyHNgY4IpHSwadkfuPGjbRu3Zo6deoU2C46OprDhw/7FJiUX6FLnsZybA/urIVRjH9L5o8c9e4Y3rYTERERkcDLbDmEzAY9MNxOwr59ABynAh2SSNDzKZl3Op1ERkYW2u7o0aNYrVZfXkLKKdvWb7FvmoNpWEi/8gUIq5Tj8Zi8i0By8badiIiIiAQBwyC999O4o6pjSd5F6I/PBDoikaDnUzJfu3ZttmzZUmAbh8PB1q1bqV+/vi8vIeWQceIAoYueBMDZ4U7ctS7I1aZVS3Jtc3emuDhPOxEREREpRcIrk37Fc5gY2Dd+hW3LN4GOSCSo+ZTMX3rppezbt48PP/ww3zbvv/8+R48epXfv3j4HJ+WI20XYgocxMo7jqt4SR8e782xmtRqMGVXwSvWjRxqFb3snIiIiIkHHXacDzgvvAiB00RMYKXsDHJFI8PIpmR8+fDjVqlXj+eefZ8yYMXzzjeeq2ZEjR1i4cCEPPfQQr7/+OrVr1+aGG27wa8BSNtlXT8G69zdMewTpVzwPVnu+bbt1NZgw3sg1Qh8XBxPGG9qWTkRERKQUc1x0D66abTAcJz3z513OQIckEpQM88w95bz0119/ce+997Jt2zYMw8A0TYx/FiozTZOGDRvyxhtvUK9ePb8GXNKSk5MDHYJXoqOjS02sZ7Ic2kj4jCEY7kzSe08g8/yBXj3P5TJJWO9Z7C6miqe0PlhH5Etz/5QX6qPgpz4Kbuqf4Kc+Cn7qo38Zx/cR8fEAjIwTOC68C0fn0YEOSf1TCpSlPoqOji60jc3Xg59zzjl8/fXXLFmyhJ9//pl9+/bhdrupXr06nTp14rLLLtPid1I4Zyph3z6A4c4ks9FlZJ43wOunWq0GbdsUY2wiIiIiEhBmxVpk9HySsG/uw77qXTLP6Yq7pr74iZzO52QewGKx0LNnT3r27OmveKScCf3pOSzJu3BHVSO95xM5tqETERERkfIrs8kVOHf+hH3zXMIWPETqTXMgpPAdtUTKC5/mzIv4g3X7Yux/zMTEIOPy5yC8cqBDEhEREZEgknHp47gr1sSSslfb1Ymcwadk/ocffmDAgAH8+uuv+bb55ZdfGDBgAIsWLfI5OCm7jJOJhP3wOADOdsNw1b0wwBGJiIiISNAJrUD65f9uV2fd9kOgIxIJGj4l81999RX79+/nggty7wOepV27duzbt48vv/zS5+CkjDLdhH7/KEb6MVxxzXB0CvyCJiIiIiISnNy12+FsPxyAsIXjME4mBjgikeDgUzK/ZcsWmjRpQkhISL5tQkJCaNq0KVu2bPE5OCmb7Os+xrb7Z0xbGOlXvAC2/H+OREREREQcnUbiimuGkZ5C6PePgukOdEgiAedTMn/kyBHi4uIKbRcbG8uRI0d8eQkpoyxJWwlZNgmAjG4PY8Y0CHBEIiIiIhL0rCGkX/ECpjUU2+6fsf/+aaAjEgk4n5L5ihUrcuDAgULbHTx4kIiICF9eQsoiZzqh3z6I4XKSee4lZLa8LtARiYiIiEgJcrlM1q4zWbjYc+tymV4/14xpgKPrgwCExL+IcWR7cYUpUir4tDVdixYtWLZsGVu3bqVJkyZ5ttm6dSu///47nTp1KvLxDx06xIIFC4iPj2fnzp0cPnyYSpUq0bZtW4YPH06rVq28Ppbb7Wb69OnMnDmT3bt3ExERQadOnRg7dix16tQpcmziu5DlL2E9sg13RFXSez+tbehEREREypGl8SavvG6SlPTvfbGxMGYUdOvq3fdCZ+vrsf61FNuuZYR9+xBp138GVk3ZlPLJp5H566+/HpfLxZ133sl3332X6/HvvvuOO++8E7fbzfXXX1/k43/88cdMnDiRv//+m86dOzNs2DAuuOACFi9ezJAhQ/j222+9Pta4ceN4+umnMU2Tm266iYsvvpgffviBQYMGsWvXriLHJr6x7v6ZkHUfA5Bx2TMQUSXAEYmIiIhISVkab/LYuJyJPEBSEjw2zmRpvJcj9IZBRu+nMcMqY03aTMgvr/s/WJFSwjBN0/valtM8++yzfPTRRxiGQcWKFalduzYAe/fu5fjx49nJ82OPPVbkY//www9UrlyZDh065Lh/9erVDB06lIiICJYvX17gAnwAK1as4JZbbqF9+/ZMmTIlu/3SpUu544476NKlCx988EGBx0hOTi5y/IEQHR0dvLGmpxAx7WosJw/haHU9jh7/F+iISlxQ948A6qPSQH0U3NQ/wU99FPzKah+5XCaDhuRO5E8XFwezZhhYrd6N0Fu3LSR83r2YGKRd+xHuOh0Kf9JZKqv9U5aUpT6Kjo4utI1PI/MAjzzyCM899xznnHMOKSkpbNy4kY0bN5KSksK5557Ls88+61MiD9C7d+9ciTx4tru78MILSUlJYevWrYUeZ9asWQCMHj06R+LfrVs3OnTowPLly9m/f79PMYr3Qn+cgOXkIdyV6+Hoen+gwxERERGREpSwngITeYDERE87b7ka9cJ53kAMTMK+e4SE3477NA9fpDTzac58lquvvpqrr76axMREDh48CED16tW9WuneVzabLcdtQVauXElERARt27bN9djFF1/MqlWrWLVqFf379/d3mPIP65/fY988D9OwkH75s2DXgogiIiIi5cmRo/5tlyXjkkdxbP+NyBN/k/zp0zy57lmg6PPwRUqrs0rms8TFxRVrAp9l//79/PLLL8TGxtK4ceMC26amppKUlETjxo2xWq25Hq9Xrx4Au3fvLvA4lSpVwmLxuYChRHlTilGSzBOJZC4ZD4C1671UOu+SAEcUWMHWP5Kb+ij4qY+Cm/on+KmPgl9Z7KP69ZzAcS/aVSA62u71cRcuiuDDxc8ypfNN9K0zj2WHuvL9/is5fBge/5/Jyy9G0qtn6FlEnltZ7J+ypjz1kV+S+ZLgdDp56KGHcDgcPPDAA3km6Kc7ceIEAFFRUXk+nnV/Vrv8pKSk+BBtyXG5TBLWQ3pGJGGhp2jVEq/nGhUr0yRszihsqUdxxTXjZOthUEbmr/iiLM3fKavUR8FPfRTc1D/BT30U/MpqH517jklsbMGl9nFxcO45J0hO9nyPzfqOe+To/7d353FR1fsfx99nBgbFXQMXcisFTXPXXFBUtLrZalr2u9fqem1Vr0ubpVlZ5u3em2Vqi2Wb1zSp0K5Zed1wyS00zdQsyw0tSBRFlGFmzu+PCRJBZBmYw/B6Ph49iO/5zpnP9HFsPvPdpDq1leczrtttaso/TKWkttNbe+/TfVGvaUKbZ7UttaOSz9aVJD3/Qrratzvts8/GgZqfQBJIOSrMlxIlKua//vprrVixQgcOHNDp06eV3156hmHovffeK8nTyOPxaPz48dqyZYtuu+02psX/LvfxHumSfDOt6GJ/eRZG0M6PFPRzgky7Q5nXvsCRIQAAABWU3W5ozCjvrvUXMnrkH5vfFeYIu3PX4b+59z71CF+r1rV2alLbSRq56XVJRs46/A7tS+uVAf5VrGLeNE098cQTWrRoUU4BbxhGrmI++3ejhGeJezwePfHEE1qyZIluvPFGPfPMM4V6XLVq1SRJ6enp+V7Pbs/uV95kH+9xvuzjPaZMLl5B74vzP40ThxSy2rtmydljjDyXNC9yHAAAAAgcMb0MTZmsPJ8zw8O9hXz258zCfsY9d329ywzWk9ue14KYQYquu04DG32kTw4OllT0dfhAeVKsxeDz589XfHy8WrVqpXfeeUdXX321JO/58m+++aZuueUW2Ww2/e1vf9Py5cuLHZzH49Hjjz+u+Ph4XX/99frHP/5R6PXroaGhCgsL0+HDh+V2u/Ncz14rn712vjxxu70Fd0Gmzyz6Tp4+Of/T41alLx+XkZUhd0QnZXW4s0gxAAAAIDDF9DL00QJDr7xk6KknvT/j5v9RyBflM26d2rnbf06/XDN2j5YkPdT6n2oQeliS8vQDAkmxivn4+HhVrlxZb775prp166YqVapIkpo0aaKePXtq6tSpevHFF/X2229r9+7dxQosu5BftGiRrrvuOv3zn/+86Dr583Xp0kUZGRnaunVrnmtr166VJHXu3LlY8flTqRzv4aMvCIK3vid7UqLM4FCdvXaqZCtazgAAABC47HZDHdob6h/r/XnuUs6ifMZt28Y7e/RcH/w0VInHOqpKUIYmt5uouuEetW1TCi8CsIhiFfP79u1Thw4d8izKP3cE/Nprr1WrVq309ttvF/n+2VPrFy1apGuvvVb/+te/CizkU1NTtW/fPqWm5p5Hc9ttt0mSpk+fLqfTmdOekJCgzZs3Kzo6WhEREUWOz99K43gPX3xBYPttrxzrX5YkZfZ+XGaNSwsfAAAAACq0onzG9a7Dz70E1CO7Jm2bogxXZXW6ZIumDZ5njY2hgVJS7DXzNWvWzPm9cuXKkrw7v9eu/cdclsaNGyshIaHI9581a5bi4+MVGhqqJk2a6LXXXsvTp1+/fmrZsqUkad68eZo5c6ZGjhypUaNG5fTp2rWrBg8erLi4OA0cOFAxMTFKSUnR0qVLVbNmTU2cOLHIsVlBYacLFWVaUYm/IHA7FfL5eBnuLLku6yNX61sL/+QAAACo8Ir6GTe/dfhJGQ315sFHNfqyZ3TFkZeUkdpTZu3LSidgwM+KVcyHh4crOTk55/cGDRpIknbv3q0ePXrktO/fv7/IU+MlKSkpSZL3rPjXX3893z4RERE5xXxBJk+erMjISC1cuFDvv/++QkND1b9/f40dO1aNGjUqcmxWkD2t6GLHexRlWlFJvyBwbHxV9pTdMivXUmb/yVIJNz4EAABAxVKcz7gxvQxF91Duk5iuvE2uxcsVdGC9Kn3xuM4MmSfZys2J3EChGWZ+58ldxLhx47RhwwatW7dOdrtde/bs0c0336wWLVroxRdfVN26dbVgwQL9+9//Vrdu3fTOO++URuxlwqrnFF5op89sUyYbRdrN3u02NWhI3s3vzhUeLsXNN/JMV7Id2abKH/5FhunRmeunyx15daGft6IIpDMvAxU5sj5yZG3kx/rIkfWRI999xjVO/aLQ92+UkXlKmT3GKOuq+0ocG/mxvkDKUWHOmS/Wmvm+ffvq+PHjWr16tSSpRYsWGjBggPbs2aPrr79enTt31osvvqigoCCNHTu2OE+Bi/BOKzLybPwRHl70Ql7Kf93R+c49/zNHVoYqfTFehulRVssbKeQBAABQbL76jGtWq6fMPhMkSY4Ns2RL2ePrUAG/K9bIvCQ5nU7Z7facafRZWVl65513tHz5cqWlpalp06YaPny4OnXq5NOAy5rVv9lxu01t3yGdzayiSiGn1baNSrTRR37nzJ9//ue5HCufk+ObefJUraeMOxdLlaoX+7kDWSB9SxioyJH1kSNrIz/WR46sjxz9Ifszbs7U+eJ8xjVNVfp0lIL2rZD7kiid+b+FUpCj2DGRH+sLpBwVZmS+2MV8RVFe/jD48g9uYf/ytB/arMpxd0mSztz6ltyNe+TpA69A+oslUJEj6yNH1kZ+rI8cWR858j0j45hC37tBxpnjcna5T87oMcW+F/mxvkDKUalNs0dgK+j8zxzO0wpZ5p26lNXmdgp5AAAAWI4ZWkdn+z0tSQre8qZsR7f7NyDAhyjmUSyOtdNkSzssT7X6yuz5sL/DAQAAAPLlbn61slrcIMP0qNIX46WsM/4OCfCJQp3REBsbW+wnMAxDy5cvL/bjYT32Q5vl2P6BJCnz6uekkKp+jggAAAC4sMy+E2Q/tEm24/vlWPeSnH2e8HdIQIkVqpjPPvcdyDu9vrufAwIAAAAuolINZV79rCrH3yfHtrlyN+snd8Mu/o4KKJFCFfN79nCUA7xyptdXb6DMXo/4OxwAAACgUNxNeynrytsU/O1ChSybqIw7F0nBof4OCyg21syj0OwHN+WeXu+o4ueIAAAAgMLL7PWIPNXqy5Z2SI51L/s7HKBEKOZROOdPr2/Uzc8BAQAAAEUUUlWZ/SdLkoK3/Ue2pEQ/BwQUX6Gm2V9IcnKyPvnkE3399ddKTk6WJIWHh6tTp0665ZZbVLduXZ8ECf9zrJ0m28kkptcDAACgXHM3iVZWq4EK/u4TVfpygjKGxkvBlf0dFlBkxS7m4+PjNXnyZJ09e1amaea07927V+vXr9cbb7yhiRMn6tZbb/VJoPAfptcDAAAgkGTGPCb7/nWynTggx1cz5Ix51N8hAUVWrGI+ISFBTzzxhGw2m/70pz9pwIABioiIkCQdOXJEn332mb744gtNnDhRl1xyiWJiYnwaNMoQ0+sBAAAQaCpVV2b/Z1R50QMK3vqeXM2vlqdBO39HBRRJsYr5119/XYZh6NVXX81TqLdo0UJ9+/bVjTfeqPvvv19vvPEGxXw55lj7ItPrAQAAEHDcl/VWVssbFbz7U1VaNkEZf/lECgrxd1hAoRVrA7w9e/aoY8eOBRbpMTEx6tSpk3bv3l3s4OBf9oMb5dg+XxLT6wEAABB4Mns/Lk+VS2RL/UmODbP8HQ5QJMUq5h0Oh8LDwy/aLzw8XA6HozhPAX9znlbIsomSmF4PAACAAFW5pjJjn5IkBX/9tmy/7JQkud2mtm4z9b8V3p9ut1nQXQC/KNY0+y5dumjHjh3yeDyy2fL/PsDtdmv79u3q3LlziQKEfzC9HgAAABWBu1k/ZUVdp+Dvlyrkyye0rHGcps0KVkrKH33CwqQJ4zPVqaP/4gTOV6yR+XHjxunEiROaMGGCTp06led6enq6nnzySZ08eVLjxo0rcZAoW7ZDm8+ZXj+F6fUAAAAIaJl9J8pTubbsx37Qwfmv5yrkJSklRRr7cLoS1jBCD+so1sj8Z599pj59+ig+Pl7Lli1Tjx49cnazT0pK0vr165WRkaEbbrhBS5cuzfVYwzA0YsSIkkeO0pF1VpX+96T3X6+8Te5GXf0cEAAAAFDKKtfSmT4TVWXpOA1r/pZWHu2n70+2zNNt+kxT0T0ku93wQ5BAbsUq5mfOnCnD8P4BPn36tJYtW5Zvv08//TRPG8W8tTk2zJTtxEF5qtZVZq+H/R0OAAAAUCYSz1yrzCOfq3+D/+mZ9hP1lzUL5DKDc66bppScLG3fIXVo78dAgd8Vq5ifOnWqr+OABdh+/U7Bie9KkncjkJBq/g0IAAAAKCPHUqUZ305Upzpb1KLGHt3dbI7e+uH+fPsBVlCsYv6WW27xdRzwN3eWQpZNlGG6lRV1ndyX9/F3RAAAAECZqVNbSs28RP/c+bimdnxM90W9plW/xGrfqeZ5+gFWUKwN8BB4gr9+W/aUPTIr1ZSzzxP+DgcAAADwuYKOnGvbxrtr/edJA7TqaB8F21ya3G6C7IZLkmQYUni4tx9gBcUamT9z5oyOHz+umjVrKjQ0NKc9LS1Nb775pn744QfVr19fw4YNU6NGjXwWLEqHkfqTHBtnSZIyez8uM7SOnyMCAAAAfCthjamXZ5h5jpwbM0qK6WXIbjc0ZpQ0YZI0ZcdT6lgnUa1qfaf/u+w/mrvvbknS6JEGm9/BMoo1Mv/qq68qNjZWP/30U06b0+nUbbfdpjlz5ighIUELFizQ7bffruTkZJ8Fi1JgelRp2ZMy3FlyNekpV8sb/B0RAAAA4FMJa0xNmGTme+TchElmzpFzMb0MTZlsyKgephe/e0SS9GDUDLVpeEgv/buqYnpRyMM6ilXMb9y4UY0aNVLr1q1z2hYvXqwDBw7oqquu0pw5czR06FAdP35c7777rq9iRQlcaEpR8Pb5sh/ZKjM4VJn9nvbOHwIAAAAChNvtHZEvyPSZf3w+jull6KMFhmLHDlRy1atUOeis5tz4jPrFOsoiXKDQijXN/ujRo7riiityta1cuVKGYWjq1KmqX7++evToobVr12rt2rV69NFHfRIsiudCU4rG33tEffdMkyQ5e46TWb2BnyIEAAAASsf2HcozIn++84+cs9sNdehgyGj6jMz3b1LwoQ0yv1koNbm69AMGCqlYI/NpaWmqVu2PY8tM09TWrVsVFRWl+vXr57S3aNFCR48eLXmUKLYLTykyFbL8GRlZGXI36KCstnf4J0AAAACgFBX2KLn8+pm1GsvZfaQkyf35UzJO/+bDyICSKVYxHxYWpqSkpJzfd+7cqbS0NHXu3DlXP4Mp235V0JSi6y5doui6a+X0BCsjdrJkcLABAAAAAk9hj5K7UL+sjnfLHd5SOnNCjtVTfRcYUELFquBatGihHTt2aPny5UpPT9err74qwzDUp0/us8kPHDig8PBwnwSKorvQlKJajmN6tLX3L6I3vn9Q2w5fVsaRAQAAAGUj+8i5ghR45JwtSJn9n5VsdgV/v1T2n1b5PEagOIpVzA8fPlySNGrUKHXu3FmrVq1SixYt1LVr15w+v/32m/bs2aNWrVr5JlIU2YWmFD125VTVdKTp+7QovffjXws99QgAAAAob7xHzhU8Y/hiR8556raSrft9kqSQ5ZMl52mfxggUR7GK+Q4dOmjmzJnq2LGjLrvsMt1444167bXXZLP9cbslS5aoSpUq6tmzp8+CRdHkN1Uopu5KXRvxudymTU9/86xcZnChpx4BAAAA5VH2kXPnj9CHh0tTJhuFOnLO1udheWo0lC39FznWvVRKkQKFZ5imWfA5DRXc8ePH/R1CodSqVStPrG63qUFD/tj8rmrQKX3S50aFV07WOz8M0/TdDyk8XIqbX/A3kSi5/PIDayFH1keOrI38WB85sj5yVPrcblPbd3hnsNap7Z1aX9jPwbVq1dLJ7UtV+aNhMmXozJB58jRoX8oRoygC6T1Uq1ati/Zh17MAdv6UotFXTFN45WQdTG+k178f4W27yJQiAAAAIFDY7YY6tDfUP9b7s6ifg92Nuimr1UAZMlVp2ZOSy1lKkQIXRzEf4LKnFPW+bKsGN1koSZq8/RnVuKRSoacUAQAAAPDK7PWIPKF1ZEvdp+Atb/o7HFRgQYXpFBsbK8Mw9M4776hhw4aKjY0t9BMYhqHly5cXO0CUXEyPLF3709NSqrS/9kDdOfGqIk0pKkhJpioBAAAA5U7lmnL2maBKn42TY9MbckVeI7NOM39HhQqoUMV89pnyLpcr1+8oH4K/flv21H3yVK6tS25/RJdU9k2xnbDGe479ucffhYVJY0aJEX8AAAAELFfktXLt/q+CflqlSsue1Jkh8ySDSc8oW4Uq5vfs2VPg77Au4/h+OTa+Jkly9h4vVa7pk/smrDE1YVLevRNTUqQJk0xNmUxBDwAAgABlGMqMnST74c2yH/1GwdvnK6vdn/0dFSoYvj4KZKapkOXPyHA75WrcQ64W1/vktm63d0S+INNnmnK7OSgBAAAAgcmsVk+Z0eMkSY6102ScOurniFDRUMwHsKDdixV0aKNMe4gyYydJhm9GyrfvUK6p9flJTvb2AwAAAAKVq+0QuRu0l5GVoZAVkyVO/UYZKtQ0+/Nt3bpVmzZt0r59+3Ty5EkZhqEaNWqoWbNmuuqqq9S2bVtfx4miOnNcIatfkCQ5u42QWbORz259LNW3/QAAAIByybDpbP/JCp07UEE/rZb9x//J3fxqf0eFCqJIxfyePXv0xBNPaPfu3ZIk87xvnozfR37btGmjKVOmqFkzdnX0l5CEf8o4e0LuSyKV1fFun967Tm3f9gMAAADKK7NOM2V1HibHpjcUsup5ZTTqLoVU9XdYqAAKXczv2LFDd911l86cOaPKlSurV69eatmypWrVqiXTNHX8+HHt3r1ba9eu1fbt23X77bdr7ty5uuKKK0ozfuTDfnCjgnctkilDmf2ekezBPr1/2zbeXesLmmofHu7tBwAAAAQ6Z5f7FbTnc9nSDsrx1Sty9nnC3yGhAihUMe92u/XII4/ozJkzGjRokMaPH6+qVfP/tik9PV1Tp07Vxx9/rIceekhLly7NGbFHGXBlKmT505KkrLZD5GnQzudPYbcbGjNK+e5mn230SIPz5gEAAFAxBFdSZr9JqvzxcAV/M0+uK26Sp24rf0eFAFeoDfBWrFihAwcO6LrrrtNzzz13wUJekqpWraopU6bo2muv1f79+7Vy5UqfBYuLc2x6XbYTB+SpEiZn9NhSe56YXoamTDYUFpa7PTxcmjLZ4Fg6AAAAVCjuxj2UFTVAhulRyPKnJI/b3yEhwBVqZH7VqlWy2WwaO7bwxeFDDz2kL7/8UsuXL1dsbGyRA1u8eLESExO1c+dO7d27V1lZWZo6daoGDhxY6Hts2rRJd9555wWvF/V+Vmcc+1HBW+ZIkjL7TJRCqpXq88X0MhTdw7tr/bFU7xr5tm3EiDwAAAAqJGfvxxS0f63sv36n4G8+UFaHof4OCQGsUMX8zp071bRpUzVs2LDQN27YsKEuu+wyfffdd8UKbPr06UpKSlKtWrUUHh6upKSkYt1Hkrp06aIuXbrkaW/ZsmWx72k1psejSv97SoYnS67L+sjdvH+ZPK/dbqhD+zJ5KgAAAMDSzCphyuw5TpWWPy3H+pflat5fZrV6/g4LAapQxXxKSoo6duxY5Js3adJEiYmJRX6cJD333HNq3LixIiIiNHv2bL344ovFuo/kLeZHjRpV7MeXB2biPNmPbJUZHKrMvhN9dqY8AAAAgMJzXTlY7u8WyX70G4Wsel5nb3zF3yEhQBVqzXx6erqqVSv6lO2qVasqPT29yI+TpO7duysiIqJYj61ojNMpci97VpLk7D5KZvUGfo4IAAAAqKAMmzL7PSPTFqSgH/8n+75V/o4IAapQI/Mul6tYO9LbbDa53f7f+GH//v169913lZmZqbp166pbt26qW7euv8PyGcfqqdLZk3KHX6Gs9n/xdzgAAABAheYJi1RWh7vk+HqOQlY+q4xGV8ltq8xeU/CpQp8zX54tWbJES5Ysyfk9KChIf/nLX/Too4/Kbrf7MbKSM04eUfD3n3u/Aew/WbJViJQCAAAAlubs9qCC9n4u28kj+nXhTN2/6GGlpPxxPSxMGjNKnAKFYit05bdo0SItWrSoFEPxvdq1a+uhhx5Snz59FBERoTNnzmjbtm168cUX9e6778owDI0fP77Ae9SoUUM2W6FWI/iFWb2qPF3uktGgrWq0iPZ3OChArVq1/B0CLoIcWR85sjbyY33kyPrIkbUVLT+15Lnpn3LP/YsaH31ftTKvV4pa5Fz97Tdp4lOmXvp3FfXvF+L7YCuoivQeKnQxb5pmsZ6gONPzfaV58+Zq3rx5zu+hoaHq16+f2rZtqxtvvFFz587VPffcozp16lzwHmlpaWURaslEj1etWrV0/Phxf0eCCyA/1keOrI8cWRv5sT5yZH3kyNqKkx937Q7afuxq9aqzTBPbPKO71/1HHnlnBmeXV8+/kK727U4z5d4HAuk9VJgvJQpVzO/Zs6fEwVhJWFiYYmNjFRcXp+3bt6tv377+DgkAAABAgNm+Q3r268cV33e92tTeoVubxClu/5BcfZKTvf047hlFZd3546Us+5uOM2fO+DkSAAAAAIHoWKqUkhmuGbtHS5L+3vJlXRKSkm8/oKgqbDG/fft2SeL4OwAAAADF5nab2rrN1P9WeH+63X8sT65T2/szbv8QfXe8laoFn9LDrV/Ic4/sfkBRBEQxn5qaqn379ik1NfdXWjt37sy3/3vvvadNmzapSZMmuvLKK8siRAAAAAABJmGNqUFDTP19rKlnnvX+HDTEVMIab0Hfto1313qP7Hp2x9NymzZdG/G5uoWtz7lHeLi3H1BUlj3HLC4uTomJiZKkvXv35rRt3rxZktSxY0cNHjxYkjRv3jzNnDlTI0eO1KhRo3Lu8fe//11BQUFq3bq16tatqzNnzmj79u3atWuXqlevrn/961/l/mg6AAAAAGUvYY2pCZPybhKekiJNmGRqymTvsXNjRnl/35N2heb/9Gf95fK5Gn/lFA1avUhZHodGjzTY/A7FYtliPjExUfHx8bnatm7dqq1bt+b8nl3MX8iQIUO0bt06bdmyRSdOnJDNZlODBg101113adiwYapXr16pxA4AAAAgcLndpl6eUfBpX9Nnmoru4S3op0yWXp5h6rXvR+rqiC/UuOoBjWj7tsJueaBE58y73aa27/Cuua9T2zvCzxcDFYdhFvfMuQqivBxtEEjHMAQi8mN95Mj6yJG1kR/rI0fWR46s7dz8bN3mnVJ/Ma+8ZKhDe29xnV14V973mToffESmPUQZdy+RWePSYsWTsMb7hULKOfvphYVJY0YZJfqCoDwLpPdQYY6mC4g18wAAAABQVgq7+/y5/ex2b2Hf8tYBcjW8SoY7UyGrni/W82dP8U85b2P87Cn+2Wv2Edgo5gEAAACgCAq7+3y+/QxDmX2flGkLVtBPq2Tft6pIz13YKf7n7qqPwEQxDwAAAABFkL1LfUEK2qXerHO5sjreJUkKWTVFyjpT6OfevkN5RuTPl5zs7YfARjEPAAAAAEVgtxsaM6rgdekX26Xe2fUBearVl+1kkhyb3yz0cxdnij8CE8U8AAAAABSRd5d6I88IfXi4NGVyITahCw5VZsx4779+/ZaM4/sL9bwlmuKPgGLZo+kAAAAAwMpiehmK7qFiHw/nbt5frsbRCjqwTiErp+jswNmSUfBjs6f4FzTVvqAp/ggcjMwDAAAAQDFl71LfP9b7s0jnvBuGMvtOkGkPVtCBdbL/8L9CPV9Jp/gjMFDMAwAAAICfmLWaKKvTcElSyOqpkvP0RR9T4in+CAhMswcAAAAAP3J2uVdBe/4rW9phOTa+Jmevhy/6mJJO8Uf5RzEPAAAAAP4UXEmZfZ5Q5UUPKnjre8pscZO2JTW7aJHuneLvh3hhCRTzAAAAAOBn7sv6yHV5XwXtW6l9s57V3xPekeQt4MPCpDGjxPR55MKaeQAAAACwgDWhj+uMq5La1diiP0V8ltOekiJNmGQqYY3px+hgNRTzAAAAAOBnbrepqbMbaM4P90qSxrX6l6oGncrVZ/pMU243BT28KOYBAAAAwM+27/COwL+37686kN5YYZV+0wNRM3P1SU729gMkinkAAAAA8Ltjqd6fWR6H/vHtBEnS7U3n6/JqP+TbD6CYBwAAAAA/q1P7j3/fkNJDy4/0U5DNrcdaPy/JzLcfKjaKeQAAAADws7ZtvLvWZ5v23aM66w5Rl7DN6l9/mSQpPNzbD5Ao5gEAAADA7+x2Q2NG/XH03JEzEXr3x79Jksa1+qcq2TM0eqSR73nzqJgo5gEAAADAAmJ6GZoy2cgZoX/nh7/pSEYD1Q/9RXOHv80588glyN8BAAAAAAC8YnoZiu7h3bX+WGplHXc/pgY7R6tZ8hxlnLhFZs2G/g4RFsHIPAAAAABYiN1uqEN7Q/1jDTXu31+uRl1luJ0KSXjB36HBQijmAQAAAMCqDEOZfSbItAUpaN8K2fev83dEsAiKeQAAAACwMLNOM2W1+7MkKWTV85Lb6eeIYAUU8wAAAABgcc5uI+QJrSPb8Z8VvO0//g4HFkAxDwAAAABWF1JNzuhxkiTHhlky0pP9HBD8jWIeAAAAAMoBV6ub5a7XRkZWhhxrX/R3OPAzinkAAAAAKA8MmzL7TpQpQ8G7P5XtyDZ/RwQ/opgHAAAAgHLCU+9KuVoPlCSFrHxO8rj9HBH8hWIeAAAAAMoRZ/RYmSHVZE/epaCdH/s7HPgJxTwAAAAAlCNmaB05u42UJIWse0k6c8K/AcEvKOYBAAAAoJzJanuH3HWayTh7Qo4NM/0dDvyAYh4AAAAAyht7sJx9JkiSgrfPly3lez8HhLJGMQ8AAAAA5ZC7UVe5ml8jw/TIsXqqZJr+DglliGIeAAAAAMqpzF6PyLQ7FHRok+w/Lvd3OChDFPMAAAAAUE6ZNSKU1emvkqSQNf+SXE4/R4SyQjEPAAAAAOWYs/M98lQJky3tkIK3ve/vcFBGKOYBAAAAoDxzVJGz5zjvv256Xcbp3/wcEMoCxTwAAAAAlHOuljfKXfdKGc7Tcqx/2d/hoAxQzAMAAABAeWfYlNnncUlS0M5PZEve5eeAUNoo5gEAAAAgAHgatFdW1AAZMhWyiqPqAh3FPAAAAAAECGevh2QGVZI96WvZf1jm73BQiijmAQAAACBAmNXqK6vTMEnZR9Vl+jkilBaKeQAAAAAIIM7Of5Onal3ZTiYpeOt7/g4HpYRiHgAAAAACSXConD0fkiQ5Nr0hIz3ZzwGhNFDMAwAAAECAcbW4Xu76bWVkZXBUXYCybDG/ePFiTZo0SQMHDlTr1q0VFRWlTz75pMj38Xg8mjt3rm644Qa1adNGXbt21bhx43To0KFSiBoAAAAALMAwlNnbe1Rd8Hfxsv2y088BwdcsW8xPnz5dH374oY4cOaLw8PBi32fSpEl67rnnZJqmhg4dqp49e2rZsmUaNGiQ9u/f77uAAQAAAMBCPPXbKqvlDZKkkNUcVRdoLFvMP/fcc1q5cqU2btyoIUOGFOseGzduVFxcnDp37qxPPvlEjzzyiP71r39p1qxZOnHihJ599lkfRw0AAAAA1uGMfkhmUGXZj2xV0N7P/R0OfMiyxXz37t0VERFRonvExcVJkkaPHi2Hw5HTHhMToy5dumjdunU6cuRIiZ4DAAAAAKzKrFZXzi7DJUmONf+Wss76OSL4imWLeV/YtGmTQkND1aFDhzzXevbsKUnavHlzWYcFAAAAAGUmq+MwearVl+3UUQUnvu3vcOAjAVvMZ2RkKCUlRZdeeqnsdnue640bN5YkHThwoKxDAwAAAICyE1zpj6PqNr/FUXUBIsjfAZSWU6dOSZKqVq2a7/Xs9ux+F1KjRg3ZbOXjO49atWr5OwQUgPxYHzmyPnJkbeTH+siR9ZEjayvP+TG7/lnunR9KB7eo6tevK+iWl/wdUqkozzkqqoAt5n0lLS3N3yEUSq1atXT8+HF/h4ELID/WR46sjxxZG/mxPnJkfeTI2gIhP7bu4xR68A55ti5Q2hWD5Qlv6e+QfCoQcpStMF9KlI8h52KoVq2aJCk9PT3f69nt2f0AAAAAIJB5GrRTVtSfZMiUY80/OaqunAvYYj40NFRhYWE6fPiw3G53nuvZa+Wz184DAAAAQKBzRo+TaQ9W0MGNsv+c4O9wUAIBW8xLUpcuXZSRkaGtW7fmubZ27VpJUufOncs6LAAAAADwC7PGpcpqP1SSFLLm35LH5eeIUFwBUcynpqZq3759Sk1NzdV+2223SZKmT58up9OZ056QkKDNmzcrOjq6xGfZAwAAAEB54uxyn8xKNWVL3aegb+P8HQ6KybIb4MXFxSkxMVGStHfv3py27HPhO3bsqMGDB0uS5s2bp5kzZ2rkyJEaNWpUzj26du2qwYMHKy4uTgMHDlRMTIxSUlK0dOlS1axZUxMnTizjVwUAAAAAflapupzdRypk5XNyfDVTrhY3SCH5nwIG67JsMZ+YmKj4+PhcbVu3bs01ZT67mC/I5MmTFRkZqYULF+r9999XaGio+vfvr7Fjx6pRo0Y+jxsAAAAArMbtNrV9h3QsVapTW2rbarCCt82T7fjPcmyeLWfPcf4OEUVkmCZbGBakvBxtEEjHMAQi8mN95Mj6yJG1kR/rI0fWR46srTznJ2GNqZdnmEpJ+aMtLEx6fuhqdf5xhEy7Qxl/XSqzevleglyec3S+Cn00HQAAAABUdAlrTE2YlLuQl6SUFOmeaTH6rdpVMtxOOda97Jf4UHwU8wAAAAAQgNxu74j8hRl6cv0jMmUoeM8S2Y7uKLPYUHIU8wAAAAAQgLbvUJ4R+fNt2N9Sv9a7SZIUkvCCxCrscoNiHgAAAAAC0LHUi/eRpG21R8sMqiT7ka2y//C/0g0KPkMxDwAAAAABqE7twvWrUreusjr+VZIUsvZFye0sxajgKxTzAAAAABCA2rbx7lpfkPBwbz9n57/JU+US2dIOKvibD8omQJQIxTwAAAAABCC73dCYUUaBfUaPNGS3G5Kjipzd/y5Jcmx8XTpzogwiRElQzAMAAABAgIrpZWjKZCPPCH14uDRlsqGYXn8U+65WA+W+JFJGZpocm14r40hRVEH+DgAAAAAAUHpiehmK7uHd3f5Yqnctfds23pH7XGx2OXs9qsqfDFfwN/OV1fYOmbWa+CVmXBwj8wAAAAAQ4Ox2Qx3aG+of6/2Zp5D/nbtJD7ma9JThyVLIupfKOEoUBcU8AAAAACCHs9fDMg2bgn5YJtuRb/wdDi6AYh4AAAAAkMNzSaRcV9wsSQpZ+2/JNP0bEPJFMQ8AAAAAyMXZfZRMe4jsSYmy/7TK3+EgHxTzAAAAAIBczGr1lNXxLklSyNoXJY/LzxHhfBTzAAAAAIA8nJ2Hy6xUU7bUnxS08xN/h4PzUMwDAAAAAPIKqSZn1wckSY4NM6SsDD8HhHNRzAMAAAAA8pXVZog8NS6V7fRvCk58z9/h4BwU8wAAAACA/AU55OwxRpLk2PKWjIxj/o0HOSjmAQAAAAAX5Ir6k9x1W8nIylDwxtf8HQ5+RzEPAAAAALgwwyZnz0ckScE7PpRxfL9/44EkinkAAAAAwEW4G10lV5OeMjwuOdZP93c4EMU8AAAAAKAQnD0flilDwXu/kO3odn+HU+FRzAMAAAAALsoTFilXq5slSSFr/i2Zpn8DquAo5gEAAAAAheLsPkqmPUT2pK9l/2m1v8Op0CjmAQAAAACFYlarr6wOQyVJjnUvSh6XnyOquCjmAQAAAACF5ux8j8xKNWQ/tk9B38X7O5wKi2IeAAAAAFB4larLedX9kiTHVzOlrAw/B1QxUcwDAAAAAIokq+3/yVM9QrbTyQre+r6/w6mQKOYBAAAAAEUT5JCzxxhJkmPLW1JGqn/jqYAo5gEAAAAAReZqcZ3c4VfIcJ6WY/Nsf4dT4VDMAwAAAACKzrDJGT1OkhS8/QMZJ4/4OaCKhWIeAAAAAJDD7Ta1dZup/63w/nS7zQv3bdxdroZXyXBnybFhVhlGiSB/BwAAAAAAsIaENaZenmEqJeWPtrAwacwoKaaXkfcBhiFn9FgFzR+ioF2L5Oz0V5l1mpVdwBUYI/MAAAAAACWsMTVhUu5CXpJSUqQJk0wlrMl/hN5Tv61czfrJMD0KWT+9DCKFRDEPAAAAABWe2+0dkS/I9JkXnnKf2WO0TMOmoB+Xy3Z0e2mEiPNQzAMAAABABbd9h/KMyJ8vOdnbLz9mnWZyXXGzJMmxdppkFvzFAEqOYh4AAAAAKrhjhTwmvqB+zm4jZNqDFXR4s+wH1vsmMFwQxTwAAAAAVHB1ape8n1m9gbLa/p8kybFummR6fBAZLoRiHgAAAAAquLZtvLvWFyQ83NuvIM4u98p0VJE9ebeC9n7huwCRB8U8AAAAAFRwdruhMaPyOXruHKNHGrLbC+6j0NpydvyrJMmxfrrkzvJViDgPxTwAAAAAQDG9DE2ZbOQZoQ8Pl6ZMNvI/Zz4fWR3vlqdybdlOHFTQd5+UQqSQpCB/BwAAAAAAsIaYXoaie3h3rT+W6l0j37aNLj4ify5HFWVddb9CVj8vx4ZZcrW8UQquXHpBV1CMzAMAAAAActjthjq0N9Q/1vuzSIX877La3C5P9QjZTqcoeNt/SiFKUMwDAAAAAIrM7Ta1dZup/63w/nS7zzlbPsghZ/dRkiTHlreks2l+ijJwMc0eAAAAAFAkCWtMvTzDVErKH21hYdKYUcpZW+9qcb3cW+bIfuwHObbMkbPnOD9FG5gsPTK/Y8cO3XPPPerUqZPatWun2267TUuXLi304z/55BNFRUVd8J9NmzaVYvQAAAAAEHgS1piaMCl3IS9JKSnShEmmEtb8PkJvs8sZPVaSFLxtroz05DKONLBZdmR+48aNGj58uBwOhwYMGKAqVapo2bJlGjt2rH755RcNGzas0PeKjY1Vy5Yt87RHRET4MmQAAAAACGhut3dEviDTZ5qK7uFde+++rLfcDdrLfmSbHBtfVWa/p8sm0ArAksW8y+XSk08+KcMwNG/evJxCfMSIERo0aJCmTZuma665ptDFeL9+/TRw4MDSDBkAAAAAAt72HcozIn++5GRvvw7tJRmGMqPHKXThUAV9+5GcHe+WWatJWYQa8Cw5zX7jxo06ePCgrr/++lwj6tWqVdP999+vrKwsxcfH+zFCAAAAAKh4jqUWvZ/n0k5yNe0lw3TL8dWM0gmsArLkyPzmzZslSdHR0XmuZbdt2bKl0PfbtWuXTpw4IZfLpUsvvVTdunVTrVq1fBMsAAAAAFQQdWoXr5+zxxgF/bxGwd8vVVaX++QJi/R9cBWMJYv5/fv3S5IaN26c51pYWJhCQ0N14MCBQt9v7ty5uX6vVKmSRowYoXvvvbdEcQIAAABARdK2jXfX+oKm2oeHe/udyxPeUq7m1yjohy/l2DBDZ29khL6kLFnMp6enS/JOq89P1apVderUqYve59JLL9WTTz6p6Oho1atXT2lpadqwYYOmTZumF198UZUrV9bQoUMLvEeNGjVks1lyNUIezDawNvJjfeTI+siRtZEf6yNH1keOrI38eE0Yn6mxD3trNvOcvfAM74l0euKxqrrkkpA8jzOvfUKuH5cp6MflqplxUEZEW5/HVpFyZJimWfBWhH4wbNgwrV+/XsuWLct3dL5nz57KyMhQYmJise7/ww8/6NZbb1XlypW1fv16BQVd+DuN48ePF+s5ylqtWrXKTawVEfmxPnJkfeTI2siP9ZEj6yNH1kZ+csvvnPnwcGn0SCPnnPn8hCx9VMF7/itX0146e8sbPo0pkHJUmC8lLDkyX7VqVUm64Oh7enq6atSoUez7N2/eXB07dtRXX32lffv2KSoqqtj3AgAAAICKJqaXoege3l3rj6V618i3beM9jq4gzm4PKuj7pQr6eY1sR7bJ06B9GUUceCw5f7xJkyaSlO+6+JSUFGVkZOQ7Yl8U2d90nDlzpkT3AQAAAICKyG431KG9of6x3p8XK+QlyazVRK4rbpIkdrYvIUsW8507d5YkrVu3Ls+17LbsPsXhdru1c+dOSVKDBg2KfR8AAAAAQNE4uz4o0xasoIMbZDu0udSfz+02tXWbqf+t8P50uy230rxYLFnMd+vWTQ0bNtSSJUu0e/funPZTp07p9ddfV3BwsG6++eac9uTkZO3bty/PtPzsgv1cbrdb//73v3XgwAFdddVVCg8PL7XXAQAAAADIzawRIVfrgZKkkK9eyb2Lno8lrDE1aIipv4819cyz3p+DhphKWFP+C3pLrpkPCgrSc889p+HDh+vPf/6zBgwYoCpVqmjZsmVKSkrSY489pksvvTSn/7Rp0xQfH6+pU6dq4MCBOe233nqroqKiFBUVpbp16yotLU2bN2/W/v37Va9ePU2ZMsUfLw8AAAAAKjTnVfcr6Lt42ZMSZT/4ldyNe/j8ORLWmJowKW/RnpIiTZhkaspkFbhZn9VZcmRekrp27aoPPvhAHTp00NKlSzV//nzVqVNHL730koYNG1aoewwbNkxVqlTRV199pXfffVdLlixRpUqV9MADD+jTTz9Vw4YNS/lVAAAAAADOZ1arp6w2t0uSHOt9Pzrvdnt32y/I9Jnle8q9JY+ms5LycrRBIB3DEIjIj/WRI+sjR9ZGfqyPHFkfObI28uN7xukUhc65WobrrM7c/Krcl/Up0f3OzdHWbd4p9RfzykvezfuspjBH01l2ZB4AAAAAELjMKmHKavdnSb/vbG96fHbvY6m+7WdFFPMAAAAAAL9wdv6bzOBQ2ZN3y/7D8iI9tqBd6uvULtw9CtvPiiy5AR4AAAAAoAKoXEtZHe6UY9PrcmyYoTPNYiWb/aIPS1jjXROfkvJHW926J/T3EaZiehlq20YKC1Ou6+cLD5fatvHBa/ATRuYBAAAAAH7j7PhXmSHVZT/2o4L2fnHR/tm71J9fqCcnezRhkvfYObvd0JhRBa+FHz3SkN1uvfXyhUUxDwAAAADwn0rV5ex4t6Tf1857XBfsWtAu9dlbu2fvUh/Ty9CUyYbCwnL3Cw+Xpkw2yvWxdBLT7AEAAAAAfpbV4U45tr4v24kDCtr9X7la3ZJvv+07Cp46L0nJyd5+Hdp7z5GP7uH9/Viqd4182zYq1yPy2RiZBwAAAAD4l6OKnJ2He/9146uS25lvt+LsUm+3e4+f6x/r/RkIhbxEMQ8AAAAAsICsdv8nT+glsqUdVtB38fn2qQi71BcWxTwAAAAAwP+CKyuryz2SJMfG1yVXZp4u2bvUF6S871JfWBTzAAAAAABLyGpzuzxV68qW/ouCv43Lc72gXeqN35vL+y71hUUxDwAAAACwhqAQOa+6X5IUvOkNKetMni4X2qW+brgtIHapLyx2swcAAAAAWIar9UB5trwl28kkBW+fr6xOw/L0yW+X+t4xNXXy5ImyD9hPGJkHAAAAAFiH3SFn1wclSY4tb0nO0/l3C9Bd6guLYh4AAAAAYCmuK26Up2ZjGWeOK3jbXH+HY0kU8wAAAAAAa7EFydlthCTJ8fU70tmTfg7IeijmAQAAAACW44q6Tu46l8vIPCnH1vf8HY7lUMwDAAAAAKzHZpez2yhJUvDW96Qzx/0ckLVQzAMAAAAALMndvL/cYS1kOE/L8fXb/g7HUijmAQAAAADWZNjk7P53SVLwtnkyTv/m54Csg2IeAAAAAGBZ7st6y12vjQzXGQVvedPf4VgGxTwAAAAAwLoMQ87uv6+d375Axqlf/RyQNVDMAwAAAAAszd24h9wRHWW4nQre/Ia/w7EEinkAAAAAgLUZxh9r57/9SMbJJD8H5H8U8wAAAAAAy3M37CJXw64yPFlybHzN3+H4HcU8AAAAAKBccPbwjs4HfbdIxvEDfo7GvyjmAQAAAADlgqdBe7ma9JRhuuXYOMvf4fgVxTwAAAAAoNzIXjsftHuJjGP7/ByN/1DMAwAAAADKDU+91nJdHitDphwbZvo7HL+hmAcAAAAAlCs5587v/UK2lD1+jsY/KOYBAAAAAOWKJyxKWZHXSpIcX1XM0XmKeQAAAABAuePsNlKmDAXtWyFb8i5/h1PmKOYBAAAAAOWOWedyuaKuk6QKee48xTwAAAAAoFxydr3fOzr/43KZv1Ss0XmKeQAAAABAuWTWaSZX5DWSJPeqF/0cTdmimAcAAAAAlFtZXR+QJJm7PpMtZa+foyk7FPMAAAAAgHLLc0mkXM29o/PBmyrO2nmKeQAAAABAqXK7TW3dZup/K7w/3W7Tp/d3dn1QkhS090vZfvvBp/e2qiB/BwAAAAAACFwJa0y9PMNUSsofbWFh0phRUkwvwyfP4QmLlHHFAGnXZwre9LoyBwT++nlG5gEAAAAApSJhjakJk3IX8pKUkiJNmGQqYY3vRujtvcdKkoK+/1zGsX0+u69VUcwDAAAAAHzO7faOyBdk+kzfTbk36reW6/JYGTLl2PS6T+5pZRTzAAAAAACf275DeUbkz5ec7O3nK87fd7YP+n6pjNSffXdjC6KYBwAAAAD43LFU3/YrDE/dVnJd1keG6ZEjwHe2p5gHAAAAAPhcndq+7VdYzm4jJElBez6TcTxwR+cp5gEAAAAAPte2jXfX+oKEh3v7+ZKnbiu5msb8Pjo/27c3txCKeQAAAACAz9nthsaMKvjoudEjDdntvjme7lw5o/O7/yvjxEGf398KKOYBAAAAAKUippehKZONPCP04eHSlMmGz86ZP5+n3pVyNekpw3TLsemNUnkOfwvydwAF2bFjh2bMmKFt27bJ5XIpMjJSd999t6677rpC38PpdGr27Nn69NNPdfToUdWoUUN9+vTRmDFjVKdOnVKMHgAAAAAQ08tQdA/vrvXHUr1r5Nu2UamMyJ/L2fVBBe1fq6Bdi+W86n6ZNRuW6vOVNcsW8xs3btTw4cPlcDg0YMAAValSRcuWLdPYsWP1yy+/aNiwYRe9h8fj0QMPPKB169apXbt2uvrqq3XgwAHFxcVpw4YNWrhwoWrX9vFuCwAAAACAXOx2Qx3al+1zehq0k6txDwUdWC/H5jeUefVzZRtAKbPkNHuXy6Unn3xShmFo3rx5evbZZzV+/HgtXrxYTZo00bRp05SUlHTR+8THx2vdunW6/vrrtWDBAj388MOaMWOGnnrqKR06dEgvv/xy6b8YAAAAAIBf5Kyd37VYRtrFa8jyxJLF/MaNG3Xw4EFdf/31atmyZU57tWrVdP/99ysrK0vx8fEXvU9cXJwkady4cTKMP6ZwDBkyRA0bNtR///tfnT171vcvAAAAAADgd54G7eVq1E2GxyXH5sBaO2/JYn7z5s2SpOjo6DzXstu2bNlS4D0yMzO1fft2NW3aVBEREbmuGYah7t27KyMjQzt37vRR1AAAAAAAq8kZnf8uXsbJwBmdt2Qxv3//fklS48aN81wLCwtTaGioDhw4UOA9Dh48KI/HoyZNmuR7Pbs9+7kAAAAAAIHHE9FRrkZdZXhcsv0SOIO5ltwALz09XZJ3Wn1+qlatqlOnThV4j+zrVatWveA9zn2uC6lVq1aB162kPMVaEZEf6yNH1keOrI38WB85sj5yZG3kx/oumKN7FkmSgssulFJnyZF5AAAAAABwYZYs5rNHzS80+p6enn7BUfts2dcvNPKe3X6hkXsAAAAAAKzKksV89nr2/NbFp6SkKCMjI9/19Odq2LChbDbbBdfEZ7dfaE09AAAAAABWZclivnPnzpKkdevW5bmW3Zbd50IqVaqkNm3a6Oeff85zJr1pmvrqq68UGhqq1q1b+yhqAAAAAADKhiWL+W7duqlhw4ZasmSJdu/endN+6tQpvf766woODtbNN9+c056cnKx9+/blmZZ/2223SZKmTZsm0zRz2hcsWKBDhw7phhtuUKVKlUr3xQAAAAAA4GOGeW6VayEbN27U8OHD5XA4NGDAAFWpUkXLli1TUlKSHnvsMQ0bNiyn7/jx4xUfH6+pU6dq4MCBOe0ej0f33HOP1q1bp3bt2qlz5846ePCgli1bpoiICMXFxal27dr+eHkXtWPHDs2YMUPbtm2Ty+VSZGSk7r77bl133XWFvofT6dTs2bP16aef6ujRo6pRo4b69OmjMWPGqE6dOqUYfeArSX5M09SaNWu0cuVKbd26VUeOHJHL5VLjxo113XXX6a9//atCQkLK4FUENl+8h86Vlpam66+/XsnJyYqOjtacOXN8HHHF46scHTt2TG+88YZWr16to0ePKjQ0VE2aNNFNN92k//u//yul6AOfL/Lz66+/6s0339RXX32lI0eOKDQ0VI0bN9btt9+uG264QXa7vRRfQWBbvHixEhMTtXPnTu3du1dZWVl5PgcVhsfj0bx587Rw4UIdOHBAoaGh6t69u8aOHauGDRuWUvSBzxf5+frrr7V8+XJt3rxZSUlJysjIUEREhGJjY3XfffepevXqpfgKAp+v3kPncjqdGjx4sPbs2aOmTZvqiy++8GHEFY8vc5Senq63335by5Yt06FDhxQcHKyGDRsqNjZWI0eOLIXoy4Ylj6aTpK5du+qDDz7QK6+8oqVLl+Z8kHj44YcL/UHCZrPptdde0+zZs7V48WK9++67qlmzpgYNGqQxY8ZYtpC/0BcZY8eO1S+//JLri4wL8Xg8euCBB3K+yLj66qt14MABxcXFacOGDVq4cKFlX7/VlTQ/TqdT9957rxwOh7p06aLo6Gg5nU6tW7dOL730kpYvX665c+eqcuXKZfSKAo8v3kPnmzx58kWPskTh+SpHu3fv1rBhw3Ty5EnFxMTommuuUUZGhvbt26dVq1ZRzBeTL/Jz6NAhDR48WCdOnFB0dLT69Omj9PR0rVixQo899pg2bdqkqVOnlsGrCUzTp09XUlKSatWqpfDw8DxLCgtr0qRJiouLU/PmzTV06FAlJyfr888/1/r16/Xhhx+yt1Ax+SI/o0eP1vHjx9WxY0fddNNNMgxDmzdv1ltvvaUvv/xSCxYs0CWXXFIK0VcMvnoPnWvWrFk6ePCgD6KD5LscHTlyRHfddZcOHTqk7t27KyYmRk6nUwcPHtSXX35Zrot5mbCUrKwss1+/fmbr1q3NXbt25bSfPHnSvPrqq81WrVqZhw8fvuh9PvroIzMyMtIcN26c6fF4cto/+OADMzIy0nzyySdLJf5A54v8OJ1O89VXXzVPnDiRp/2+++4zIyMjzTfffLNU4q8IfPUeOtcXX3xhRkZGmv/5z3/MyMhIc9iwYb4Ou0LxVY5OnTpl9u7d2+zatau5e/fufJ8HReer/Dz11FNmZGSk+e677+ZqT0tLM3v37m1GRkYW+b2IP6xfvz7nv98bb7xhRkZGmh9//HGR7rFhwwYzMjLS/POf/2xmZmbmtK9evZq/60rIF/l54403zF9++SVXm8fjyXlvPf300z6LtyLyRY7OtX37drNly5Y5nxWuueYaX4VaYfkiR1lZWebAgQPNNm3amBs2bMj3enlmyTXzFdnGjRt18OBBXX/99WrZsmVOe7Vq1XT//fcrKytL8fHxF71PXFycJGncuHEyDCOnfciQIWrYsKH++9//6uzZs75/AQHOF/kJDg7WAw88oBo1auRpv++++yRJW7Zs8X3wFYSv3kPZUlNT9fTTT+umm25STExMaYRc4fgqRx988IGOHDmihx56SC1atMhzPSjIspPPLM1X+Tl06JAk5XnfVK9eXR06dJAkHT9+3IeRVyzdu3dXREREie6R/Vlh9OjRcjgcOe0xMTHq0qWL1q1bpyNHjpToOSoqX+Tn3nvvVd26dXO1GYahBx98UBKfFUrKFznKlpmZqccee0wdO3ZkRpgP+SJHX375pXbu3Klhw4apa9euea6X988KFPMWs3nzZklSdHR0nmvZbRf7yzszM1Pbt29X06ZN87wBDMNQ9+7dlZGRoZ07d/oo6orDF/kpSPZfKKwjLT5f5+ipp56S3W7XhAkTfBMgfJajpUuXyjAMXXPNNfrpp580d+5cvfnmm1qxYoWcTqdvg65AfJWfyMhISVJCQkKu9pMnT2rbtm0KCwtTs2bNShouSmDTpk0KDQ3N+XLlXD179pT0x58HWAefFaxn2rRpOnr0qKZMmZJrEA3+t3TpUknStddeq6NHj2r+/PmaPXu2Pv/8c50+fdrP0ZVc+f4qIgDt379fktS4ceM818LCwhQaGqoDBw4UeI+DBw/K4/FccJ1bdvv+/fvVqVOnkoRb4fgiPwX5+OOPJUk9evQo9j0qOl/maPHixVq2bJlmzZqlGjVq5DkxA8Xjixw5nU7t3btXtWvX1ty5czVjxgx5PJ6c6w0bNtSsWbMUFRXl09grAl+9h/72t79p5cqVmjp1qtauXauoqKicNfOVKlXSzJkzOVHGjzIyMpSSkqLIyMh8i8Ls/Jfk/2koHXxWsJYtW7bo/fff1/jx49WoUSN/h4PzfPfdd5K8G0r+4x//yPVlf+3atfXyyy/rqquu8ld4JcbIvMVkb7BVrVq1fK9XrVr1ogVF9vWqVate8B7nPhcKzxf5uZCEhAR9+OGHuvzyyzV48OBix1jR+SpHv/76q6ZMmaLrr79e/fr182mMFZ0vcpSWlia3260TJ07o1Vdf1SOPPKKvvvpKa9as0YMPPqjDhw/rgQceUGZmps/jD3S+eg9dcskl+vDDD9WzZ0+tXbtWb731lhYsWKBTp07p5ptvzndpBMpOYT8r8CWmtezevVuzZs1SnTp1NHz4cH+HU+FlZGTo8ccfV7t27TR06FB/h4N8HDt2TJI0ZcoU3XXXXUpISNCGDRs0ceJEnTp1SiNGjFBycrKfoyw+innAAnbs2KGxY8eqWrVqmj59eq61i/CPiRMnKigoiOn1FpU9Cu92u3XHHXdo2LBhqlOnjurWravRo0fr2muvVVJSEscC+dGBAwd0xx13KDU1VfPmzdPWrVuVkJCgESNG6NVXX9Xdd98tt9vt7zCBcuPQoUO699575Xa7NW3aNE4lsoAXXnhBycnJev7552WzUVZZkfn7Key9e/fWww8/rHr16ql27doaOnSo7rrrLp06dUofffSRn6MsPv7UWczFvglPT0+/4GhJtuzrFxp5z26/0LfxuDBf5Od83377rf72t7/JZrPprbfeUvPmzUscZ0XmixzFx8drzZo1mjRpEh+WSoEv/56TpL59++a5nt3G3iBF56u/58aPH68jR47o9ddfV6dOnVSlShXVq1dP9957r/7yl79o27Zt+uyzz3waOwqvsJ8Vivr/NJSOQ4cO6c4779Tx48f1yiuv5LuRF8rWpk2btGDBAo0ePVpNmzb1dzi4gOz/pwXqZwWKeYvJXs+e3xq1lJQUZWRk5LuO8VwNGzaUzWbLWfd4vux2zo4tOl/k51zffvuthg0bJo/Hozlz5qhNmza+CrXC8kWOdu3aJcm7w3NUVFTOP7GxsZKkdevWKSoqSjfddJNvg68gfJGj0NDQnF2eq1evnud6dhvT7IvOF/lJT0/X1q1bdfnllyssLCzP9ez1ibt37y55wCiW0NBQhYWF6fDhw/nOkMjOf1H+n4bSkV3Ip6Sk6OWXX1afPn38HRL0x99f//znP3N9Vsjeq+Xnn39WVFQU+1P5WfYXLYH6WYFi3mI6d+4syVssnC+7LbvPhVSqVElt2rTRzz//rKSkpFzXTNPUV199pdDQULVu3dpHUVccvshPtuxC3u1266233lLbtm19F2gF5osctW/fXoMGDcrzz3XXXSdJqlevngYNGqT+/fv7OPqKwVfvo+yRqR9//DHPtew2Xx07VJH4Ij9ZWVmSLnz0XGpqqiSxpMjPunTpooyMDG3dujXPtbVr10oq/P/TUDrOLeRfeukl9nCxkMjIyHw/KwwaNEiSd1bLoEGDdPPNN/s30Aou4D8r+Puge+SWlZVlxsbGmq1btzZ37dqV037y5Enz6quvNlu1amUeOnQop/3XX381f/zxR/PkyZO57vPRRx+ZkZGR5rhx40yPx5PT/sEHH5iRkZHmk08+WfovJgD5Kj/ffvut2alTJ7Ndu3bm119/XWbxVwS+ylF+Dh06ZEZGRprDhg0rldgrCl/lKDEx0YyMjDQHDBhgpqWl5bQnJyebPXv2NFu0aGH+9NNPpf+CAoyv8nPNNdeYkZGR5sKFC3O1p6Wlmddee60ZGRlprl+/vnRfTAXxxhtvmJGRkebHH3+c7/Vjx46ZP/74o3ns2LFc7Rs2bDAjIyPNP//5z2ZmZmZO++rVq/m7zoeKm5+DBw+avXv3Nq+44grzyy+/LItQK6zi5uhCIiMjzWuuucaXIVZ4JXkftW7d2uzWrZv5yy+/5LSfOnXKvOmmm8zIyEjzq6++KtXYS5Nhmr/vCgDL2Lhxo4YPHy6Hw6EBAwaoSpUqWrZsmZKSkvTYY49p2LBhOX3Hjx+v+Ph4TZ06VQMHDsxp93g8uueee7Ru3Tq1a9dOnTt31sGDB7Vs2TJFREQoLi6OtcDFVNL8nDhxQldffbXS0tLUs2fPfEfkq1WrprvvvrusXlLA8cV7KD+HDx9WbGysoqOjNWfOnNJ+GQHNVzn6xz/+oXfeeUf169dXnz595HK5tGLFCh07dkzjxo3TfffdV9YvLSD4Ij8JCQl68MEH5XK51K1bN7Vs2VInT57UypUrlZqaqmuuuUavvPKKP15eQIiLi1NiYqIkae/evfruu+/UoUOHnGnxHTt2zDkZZcaMGZo5c6ZGjhypUaNG5brPxIkTFRcXp+bNmysmJkYpKSlaunSpqlSpogULFrAWuJh8kZ++ffsqKSlJ7dq1U3R0dL7Pc34+UXi+eg/lJyoqSk2bNmUT1hLyVY7mzp2r5557TjVr1lT//v3lcDi0evVqJSUl6fbbb9fkyZPL9oX5EOfMW1DXrl31wQcf6JVXXtHSpUvlcrkUGRmphx9+OGea78XYbDa99tprmj17thYvXqx3331XNWvW1KBBgzRmzBgK+RIoaX7S09OVlpYmyTuNMXsq47kiIiIo5kvAF+8hlC5f5Wj8+PGKjIzUvHnzFB8fL8Mw1LJlSz3zzDMsgygBX+QnJiZG8+fP15w5c5SYmKgtW7bI4XDo8ssv14gRI3THHXeU8qsIbImJiYqPj8/VtnXr1lxT5gtzzOnkyZMVGRmphQsX6v3331doaKj69++vsWPHcmZ2CfgiP9lLJb/55ht98803+fahmC8+X72HUHp8laOhQ4cqIiJCc+bM0WeffSa3261mzZrpgQceKPc5ZmQeAAAAAIByhg3wAAAAAAAoZyjmAQAAAAAoZyjmAQAAAAAoZyjmAQAAAAAoZyjmAQAAAAAoZyjmAQAAAAAoZyjmAQAAAAAoZyjmAQAAAAAoZyjmAQAAAAAoZ4L8HQAAACi8qKioIvWPiIjQypUrNXToUG3evFkrVqzQpZdeWkrRlZ7HH39cn3/+uVasWKE6deoU+fG7du3SLbfcoocfflj33HNPKUQIAEDZopgHAKAcueWWW/K0JSYm6uDBg2rRooVatmyZ61qtWrXKKrRS8/3332vRokX661//WqxCXpKuuOIK9e3bV7Nnz9bgwYNVs2ZN3wYJAEAZM0zTNP0dBAAAKL7x48crPj5eI0eO1KhRo/Ltc+TIEZ05c0aNGjVScHBwGUdYMg888IDWrl2rhISEYhfzkvTNN9/o9ttv1/Dhw/XII4/4MEIAAMoea+YBAKgAGjRooMsvv7zcFfJHjx7V6tWrFR0dXaJCXpLatWunxo0b6+OPP5bT6fRRhAAA+AfFPAAAFcDQoUMVFRWlw4cP52qPiopS37595XK5NGvWLPXv319t2rTRn/70J3388cc5/TZs2KChQ4eqQ4cO6ty5sx599FEdP3483+dyuVz64IMPdPvtt6tDhw5q06aNbrrpJr377rtyuVxFivvjjz+Wx+PRgAED8r2+d+9ePfzww4qNjdWVV16prl276qabbtKUKVOUnJycp/+AAQN0/PhxLV++vEhxAABgNRTzAABAY8aM0TvvvKPIyEh17txZhw8f1hNPPKGPP/5YX3zxhYYPHy63263o6GhVrlxZixcv1ogRI3T+ar2zZ89q2LBheuaZZ7R//361a9dO3bt3V0pKiqZOnapRo0bJ4/EUOq5Vq1ZJkrp06ZLn2s6dOzVo0CD997//VZUqVRQbG6t27drJ5XLp/fff188//5znMdn3Wb16dRH+6wAAYD1sgAcAQAWXlJSkKlWqaNmyZapdu7YkaePGjbrrrrv00ksvKSsrS7NmzVLv3r0lSenp6RoyZIgSExO1adMmde3aNedeL7zwgjZt2qTrrrtOkydPVrVq1XIeM27cOK1cuVIffvih7rjjjovGdfr0ae3evVvh4eGqW7dunutz585VZmamHnvsMQ0bNizXtX379uU897muvPJK2Ww2bdmypdD/fQAAsCJG5gEAgJ544omcQl6SunbtqiuuuEIpKSnq1atXTiEvSVWrVtVtt90mSbmK4mPHjikuLk7169fX1KlTcxXTVatW1ZQpUxQcHKz58+cXKqZ9+/bJ7XaradOm+V5PTU2VJHXv3j3Ptcsvv1zh4eF52qtWraqwsDAdOXJEaWlphYoDAAAropgHAKCCCw4Ozncae8OGDSVJPXr0uOC1lJSUnLZNmzYpKytLPXv2VKVKlfI8JiwsTE2aNNHevXt19uzZi8Z17NgxSVKNGjXyvd6qVStJ0jPPPKNNmzYVej1+9v2yvwwAAKA8Ypo9AAAV3CWXXCK73Z6nPTQ0VJLyneKefe3cXeGTkpIkSQsXLtTChQsLfM60tLR8C/5znTp1SpJUpUqVfK8PHz5ciYmJ2rx5s+68806Fhoaqffv2iomJ0cCBA/OdZi95R+fPvT8AAOURxTwAABWczVbwRL2LXc+WvRley5Yt1aJFiwL7FuaIvOxi/PTp0/ler1q1qt5//30lJiZq1apV2rx5szZu3Kj169dr9uzZmjdvnpo0aZLncenp6bnuDwBAeUQxDwAAfCJ7BL9jx4568sknS3y/7HPlT5w4ccE+hmGoU6dO6tSpkyTv1Pznn39eS5Ys0UsvvaTp06fneUz2Wvlz9wgAAKC8Yc08AADwia5du8put2vVqlXKysoq8f2aNWumoKCgfI+Yu5A6depo5MiRkqQffvghz/X09HQlJyerQYMGF1yLDwBAeUAxDwAAfKJu3bq69dZblZSUpIceeki//fZbnj4HDhzQl19+Waj7hYaGqmXLlkpJSdGvv/6a5/r8+fN16NChPO0JCQmSpPr16+e59u2338o0TXXu3LlQMQAAYFVMswcAAD4zYcIEJSUl6csvv9TatWvVokULNWjQQBkZGdq3b58OHDig2NhYXXPNNYW6X+/evfXtt99q06ZNuvHGG3NdW7BggZ5++mk1a9ZMl19+uex2u3766Sft2bNHISEhevDBB/Pcb9OmTTn3BQCgPGNkHgAA+EylSpX05ptv6oUXXlCbNm30008/6csvv9TOnTtVu3ZtjRo1So888kih73frrbfKbrdryZIlea6NHj1at956qwzD0IYNG7Rq1SqdPXtWgwcP1qJFi9SxY8c8j/nss89Uq1Yt9evXr0SvEwAAfzPM7K1nAQAALGjEiBFavXq1Vq9erbCwsGLfZ9u2bRoyZIiGDx9epC8UAACwIkbmAQCApY0ePVoej0dvv/12ie4ze/ZsVa9eXffcc4+PIgMAwH8o5gEAgKVFRkbq5ptv1vz583Xs2LFi3WPXrl1auXKl7r33XtWsWdO3AQIA4AdMswcAAAAAoJxhZB4AAAAAgHKGYh4AAAAAgHKGYh4AAAAAgHKGYh4AAAAAgHKGYh4AAAAAgHKGYh4AAAAAgHKGYh4AAAAAgHKGYh4AAAAAgHKGYh4AAAAAgHLm/wHSZ6TvF2nvDwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "v0 = 7\n", + "x0 = 1.5\n", + "x_projectile = (1/2) * g * t**2 + v0 * t + x0\n", + "noise = rng.normal(0, 0.2, x_projectile.shape)\n", + "x_obs_projectile = x_projectile + noise\n", + "df_projectile = pd.DataFrame({\"t\": t, \"tsq\": t**2, \"x\": x_obs_projectile, \"x_true\": x_projectile})\n", + "df_projectile = df_projectile[df_projectile[\"x\"] >= 0]\n", + "\n", + "fig, ax = plt.subplots(figsize=(10, 6))\n", + "\n", + "ax.scatter(df_projectile.t, df_projectile.x, label=\"Observed Displacement\", color=\"C0\")\n", + "ax.plot(df_projectile.t, df_projectile.x_true, label='True Function', color=\"C1\")\n", + "ax.set(xlabel=\"Time (s)\", ylabel=\"Displacement (m)\", ylim=(0, None))\n", + "ax.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Modeling this using Bambi, we must include the linear term on time to capture the inital velocity. We'll do the following regression,\n", + "\n", + "$$x_f = \\beta_0 + \\beta_1 t + \\beta_2 t^2$$\n", + "\n", + "Which then maps the solved coefficents to the following: $\\beta_0 = x_0$, $\\beta_1 = v_0$, and $\\beta_2 = \\frac{g}{2}$." + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Auto-assigning NUTS sampler...\n", + "Initializing NUTS using jitter+adapt_diag...\n", + "Multiprocess sampling (2 chains in 2 jobs)\n", + "NUTS: [x_sigma, Intercept, I(t ** 2), t]\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4822a69c41b940648e908c19fb5dabf0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 9 seconds.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e509be8ff23f43a5b718064516748af6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "We recommend running at least 4 chains for robust computation of convergence diagnostics\n" + ] + } + ], + "source": [ + "model_projectile_all_terms = bmb.Model(\"x ~ I(t**2) + t + 1\", df_projectile)\n", + "fit_projectile_all_terms = model_projectile_all_terms.fit(idata_kwargs={\"log_likelihood\": True}, target_accept=0.9, random_seed=SEED)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
meansdhdi_3%hdi_97%mcse_meanmcse_sdess_bulkess_tailr_hat
Intercept1.5600.0641.4421.6790.0020.0011093.01099.01.0
I(t ** 2)-4.8710.114-5.090-4.6650.0040.003890.0936.01.0
t6.9130.1886.5657.2570.0060.004897.0916.01.0
x_sigma0.2020.0170.1710.2340.0000.0001195.01102.01.0
\n", + "
" + ], + "text/plain": [ + " mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk \\\n", + "Intercept 1.560 0.064 1.442 1.679 0.002 0.001 1093.0 \n", + "I(t ** 2) -4.871 0.114 -5.090 -4.665 0.004 0.003 890.0 \n", + "t 6.913 0.188 6.565 7.257 0.006 0.004 897.0 \n", + "x_sigma 0.202 0.017 0.171 0.234 0.000 0.000 1195.0 \n", + "\n", + " ess_tail r_hat \n", + "Intercept 1099.0 1.0 \n", + "I(t ** 2) 936.0 1.0 \n", + "t 916.0 1.0 \n", + "x_sigma 1102.0 1.0 " + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "az.summary(fit_projectile_all_terms)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initial height: 1.44 to 1.68 meters (True: 1.5 m)\n", + "Initial velocity: 6.53 to 7.26 meters per second (True: 7 m/s)\n", + "Acceleration: -10.17 to -9.30 meters per second squared (True: -9.81 m/s^2)\n" + ] + } + ], + "source": [ + "hdi = az.hdi(fit_projectile_all_terms.posterior, hdi_prob=0.95)\n", + "print(f\"Initial height: {hdi['Intercept'].sel(hdi='lower'):.2f} to {hdi['Intercept'].sel(hdi='higher'):.2f} meters (True: {x0} m)\")\n", + "print(f\"Initial velocity: {hdi['t'].sel(hdi='lower'):.2f} to {hdi['t'].sel(hdi='higher'):.2f} meters per second (True: {v0} m/s)\")\n", + "print(f\"Acceleration: {2*hdi['I(t ** 2)'].sel(hdi='lower'):.2f} to {2*hdi['I(t ** 2)'].sel(hdi='higher'):.2f} meters per second squared (True: {g} m/s^2)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We once again are able to recover all our input parameters.\n", + "\n", + "In addition to directly calculating all terms, to include all polynomial terms up to a given degree you can use the `poly` keyword. We don't do that in this notebook for two reasons. First, by default it orthogonalizes the terms making it ill-suited to this example since the coefficients have physical meaning. For more information on the orthogonalization, please see the [orthogonal polynomial notebook](https://bambinos.github.io/bambi/notebooks/orthogonal_polynomial_reg.html). The orthogonalization process can be disabled by the `raw` argument of `poly`, but we still elect not to use it because in later examples we decide to use different effects on the $t$ term vs the $t^2$ term, and doing so is not easy when using `poly`. However, just to show that the results match when using the `raw = True` argument, we'll fit the same model as above." + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Auto-assigning NUTS sampler...\n", + "Initializing NUTS using jitter+adapt_diag...\n", + "Multiprocess sampling (2 chains in 2 jobs)\n", + "NUTS: [x_sigma, Intercept, poly(t, 2, raw=True)]\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2296047b245249c3a99d27beba3ff975", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 7 seconds.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b852dc26e2064db1b1c261f6327a0455", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "We recommend running at least 4 chains for robust computation of convergence diagnostics\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
meansdhdi_3%hdi_97%mcse_meanmcse_sdess_bulkess_tailr_hat
Intercept1.5620.0641.4461.6860.0020.0011220.01319.01.0
poly(t, 2, raw=True)[0]6.9100.1836.5387.2370.0060.004977.01077.01.0
poly(t, 2, raw=True)[1]-4.8690.110-5.084-4.6700.0030.0021004.01184.01.0
x_sigma0.2020.0170.1710.2340.0000.0001399.01215.01.0
\n", + "
" + ], + "text/plain": [ + " mean sd hdi_3% hdi_97% mcse_mean mcse_sd \\\n", + "Intercept 1.562 0.064 1.446 1.686 0.002 0.001 \n", + "poly(t, 2, raw=True)[0] 6.910 0.183 6.538 7.237 0.006 0.004 \n", + "poly(t, 2, raw=True)[1] -4.869 0.110 -5.084 -4.670 0.003 0.002 \n", + "x_sigma 0.202 0.017 0.171 0.234 0.000 0.000 \n", + "\n", + " ess_bulk ess_tail r_hat \n", + "Intercept 1220.0 1319.0 1.0 \n", + "poly(t, 2, raw=True)[0] 977.0 1077.0 1.0 \n", + "poly(t, 2, raw=True)[1] 1004.0 1184.0 1.0 \n", + "x_sigma 1399.0 1215.0 1.0 " + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model_poly_raw = bmb.Model(\"x ~ poly(t, 2, raw=True)\", df_projectile)\n", + "fit_poly_raw = model_poly_raw.fit(idata_kwargs={\"log_likelihood\": True}, random_seed=SEED)\n", + "az.summary(fit_poly_raw)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We see the same results, where `poly(t, 2, raw=True)[0]` corresponds to the coefficient on $t$ ($v_0$ in our example), and `poly(t, 2, raw=True)[1]` is the coefficient on $t^2$ ($\\frac{g}{2}$)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Measuring gravity on a new planet\n", + "\n", + "In the next example, you've been recruited to join the space program as a research scientist, looking to directly measure the gravity on a new planet, PlanetX. You don't know anything about this planet or it's safety, so you have time for one, and only one, throw of a ball. However, you've perfected your throwing mechanics, and can achieve the same initial velocity wherever you are. To baseline, you make a toss on planet Earth, warm up your spacecraft and stop at Mars to make a toss, then travel far away, and make a toss on PlanetX. \n", + "\n", + "First we simulate data for this experiment." + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "def simulate_throw(v0, g, noise_std, time_step=0.25, max_time=10, seed=1234):\n", + " rng = np.random.default_rng(seed)\n", + " times = np.arange(0, max_time, time_step)\n", + " heights = v0 * times - 0.5 * g * times**2\n", + " heights_with_noise = heights + rng.normal(0, noise_std, len(times)) \n", + " valid_indices = heights_with_noise >= 0\n", + " return times[valid_indices], heights_with_noise[valid_indices], heights[valid_indices]\n", + "\n", + "# Define the parameters\n", + "v0 = 20 # Initial velocity (m/s)\n", + "g_planets = {\"Earth\": 9.81, \"Mars\": 3.72, \"PlanetX\": 6.0} # Gravitational acceleration (m/s^2)\n", + "noise_std = 1.5 # Standard deviation for noise\n", + "\n", + "# Generate data\n", + "records = []\n", + "for planet, g in g_planets.items():\n", + " times, heights, heights_true = simulate_throw(v0, g, noise_std)\n", + " for time, height, height_true in zip(times, heights, heights_true):\n", + " records.append([planet, time, height, height_true])\n", + "\n", + "# Convert to a DataFrame\n", + "df = pd.DataFrame(records, columns=[\"Planet\", \"Time\", \"Height\", \"Height_true\"])\n", + "df[\"Planet\"] = df[\"Planet\"].astype(\"category\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And drawing those trajectories," + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/MAAAJjCAYAAABA7UFUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3yV9fn/8dd9n5VBNgQIBEEgMeywBQRFce/aWoujVXFU/TpaV2v9We1XW75uWqVa3FitdSsOihVE9l5hCwQCBLLIPOu+f38cCMSEFZKcnOT9fDx8QO51rpPchnPdn8/nugzbtm1EREREREREJGKY4Q5ARERERERERI6PknkRERERERGRCKNkXkRERERERCTCKJkXERERERERiTBK5kVEREREREQijJJ5ERERERERkQijZF5EREREREQkwiiZFxEREREREYkwSuZFREREREREIowz3AGIiEjLlJmZedznDB06lDfffLPBY5k0aRJ//etfuf3227njjjsa/Pqt2c6dO3nnnXeYO3cu27Zto7S0lOjoaNLT0xk0aBAXX3wx/fr1C3eYEeWaa65hwYIFvPHGGwwbNizc4YiISDOlZF5ERBrFZZddVmvbnj17mD179mH3n3zyyY0eVzh88MEHPPjgg1x22WX8+c9/Dnc4Debll1/mueeew+/3ExMTQ//+/UlJSaG8vJz169fz5ptv8uabb3LDDTdw3333hTtcERGRFkXJvIiINIq6ktb58+dXJ/NNmdSOHz+e888/n6SkpCZ7zZbuySef5OWXX8blcnH//fdz9dVX43a7axyzbNkynnnmGbZs2RKeICPUX/7yFyorK0lLSwt3KCIi0owpmRcRkRYvOTmZ5OTkcIfRYsydO5eXX34ZgGeeeYZx48bVedyAAQN47bXXWLx4cVOGF/GUxIuIyLFQATwREWkWJk2aRGZmJpMmTSIvL4/f/e53jBkzht69e/PAAw9UH/f111/z+9//ngsvvJAhQ4bQt29fxo4dy4MPPsjmzZuPeu26/PDDDzz88MOcddZZ9O3bl0GDBjF+/Hg+/vjjw8Zr2zZff/01N998MyNHjqRPnz6MHDmSq666ipdeeomqqiqA6tgAPvzwQzIzM6v/u+aaa2pcs7KykpdeeonLLruM7Oxs+vfvzwUXXMAzzzxDSUlJrRi2b99OZmYmY8eOJRgM8uqrr3LppZeSnZ1NZmYmZWVlDBw4kF69erFz587DvpcJEyaQmZnJ1KlTD3vMoV544YXq93a4RP4AwzAYPHhwre2bNm3iwQcf5IwzzqBPnz4MHTqU6667jmnTptV5nUN/hrt37+b3v/89o0aNol+/flx44YW89957Na79m9/8hpEjR9K3b18uvvjiw1537NixZGZmsn37dqZPn85VV13FwIEDyc7O5pprrmHmzJl1nrdjxw5eeuklrr32Wk4//XT69OnD4MGDueqqq3jnnXewLKvWOUf7eR1wzTXXkJmZyfz582uc7/P5+Mc//sHll19OdnZ29T33k5/8hIkTJ1JcXFzrNXft2sVjjz3G2WefXX1v//znP+edd94hGAzWOv6DDz4gMzOTBx54gIqKCp566inGjRtX/Vr3338/u3fvrvN7IiIiTUsj8yIi0qxs2bKFyy67DJfLxcCBA7Ftu8b0+Lvuugu320337t0ZPnw4gUCADRs28MEHH/Dll18yZcoUBg4ceMyv98UXX3D//ffj9Xo5+eSTGTNmDKWlpaxYsYL77ruPefPm8cQTT9Q4x+/3c8899/D1119jmib9+vVj+PDhFBUVsXHjRp566inOP/98OnfuzDnnnMOyZctYsmQJXbp0YdCgQdXXObRGQHFxMb/85S/JycmhTZs2DB8+HJfLxYIFC5g8eTKfffYZr7/+Op07d671Hmzb5vbbb+e7775j8ODBdO/enQ0bNtCmTRsuv/xy3nzzTd555x3uvvvuWudu27aN7777jjZt2nDppZce9fu1b98+Fi1aBNRd9+BYfPvtt/zP//wPXq+Xbt26cfbZZ1NQUMDChQuZN28es2fP5vHHH6/z3Ly8PH7yk5/gcrkYPHgwhYWFLFq0iIceeojS0lIGDhzI9ddfT2pqKsOGDSMvL4+lS5dWv/fzzz+/zuu++eabvPbaa/Tp04czzjiDbdu2sWDBAhYsWMBDDz1U68HLxx9/zHPPPUfnzp3p2rUrAwcOZM+ePSxdupQlS5bw/fff8/zzz2MYRq3XOtzP60gsy+Kmm25i7ty5tGnThsGDBxMfH09hYSFbt25lypQpXHTRRSQmJlafs2LFCiZMmEBxcTFpaWmcddZZlJaWsmDBApYuXcr06dN58cUXay2PACgtLeXnP/85O3fuZNCgQfTs2ZNly5bx0UcfsXDhQj7++GPi4uKOGLOIiDQyW0REpInMmzfPzsjIsDMyMmrte/7556v3/fa3v7W9Xm+d1/j888/t8vLyGtssy7LfeustOyMjw77gggtsy7LqvPbzzz9fY/vatWvtPn362H379rW/+uqrGvu2b99uX3jhhXZGRob94Ycf1tj3xBNP2BkZGfYZZ5xh5+Tk1Iplzpw59r59+6q3vf/++3ZGRoZ9//331/2NsW37rrvusjMyMuyf/vSndmFhYfX2srIy+8Ybb7QzMjLsK6+8ssY5ubm51d+z0aNH25s3b6513R9++MHOzMy0Tz311Dq/p3/+85/tjIwM+7HHHjtsbIeaM2dO9Wvm5eUd0zmH2rNnjz1o0CA7IyPDfuGFF2r8rFasWGEPGTLEzsjIsN99990a5x16fzz88MO23++v3jdjxgw7IyPDzs7Ots8444xa133ttdfsjIwMe9y4cbXiOeOMM+yMjAw7MzPT/vjjj2vs+/zzz+3MzEy7V69e9rp162rsW758ea1ttm3bu3btsi+++GI7IyPDnjZtWo19x/Lzsm3bvvrqq+2MjAx73rx51dsWLFhgZ2Rk2JdeeqldWlpa65wVK1bUuG+8Xm/1e3v44Ydtn89XvW/btm3V+55++uka1zlwr2ZkZNjXX399jdcqLi62L7nkEjsjI8OePHlynbGLiEjT0TR7ERFpVhITE3n44YfrHC2E0MhqTExMjW2GYTB+/Hiys7PZsGEDmzZtOqbXmjx5Mj6fj7vuuouzzz67xr5OnTrxv//7vwC88cYb1dsLCgp46623AHj++ec55ZRTasVy6qmnHteoZV5eHl9++SWGYfDoo4/WmIkQGxvLn/70JzweT/Wob13uvvtuunXrVmt7165dGT16NAUFBXzxxRc19lVVVfH+++9jGAa/+MUvjinWoqKi6r+npKQc0zmH+te//kVpaSm9e/fm1ltvrTFy3bdvX2655RYApkyZUuf5aWlp/O53v8PpPDi58MBU+fLyclJSUrjllltqXHf8+PEkJiaydetW8vLy6rzumWeeycUXX1xj2/nnn8/ZZ59NIBCo1TKxX79+ZGRk1LpO+/btuffeewH48ssvD/t9ONzP63D27t0LwKBBg2jTpk2t/X379q1x33zxxRfs2LGD1NRUfv/73+Nyuar3paenc//99wOhGQler7fW9WJiYnjiiSdqvFZCQgI33XQTAHPmzDnm2EVEpHFomr2IiDQrx5IIb926le+++46tW7dSXl5evT75QMLzww8/0KNHjyNew7IsZs2aBRx+6nXfvn2JiYkhJycHr9eLx+Nh/vz5+P1+evfuTZ8+fY737dVp4cKFWJZF7969az0cgFCCOGrUKGbMmMH8+fPrXEZwzjnnHPb61157LTNnzmTq1Klccskl1ds//fRTSkpKGDlyZJO1BVywYAFw+Cn6V1xxBX/5y1/YsmULu3fvpn379jX2Dxs2DI/HU+u8rl27sm7dOkaPHl1rarvT6aRTp04UFxeTn59fZ4G5w8Vz6aWX8tVXX1XHfSifz8fs2bNZuXIlBQUF+P1+bNumvLwcCN2Hh3Okn1ddevfujcPh4P3336dbt26MGzeO1NTUwx5/IN4LLrigzgdjZ599NgkJCZSUlLBq1aoayz8A+vTpU+f1D9wnWjcvIhJ+SuZFRKRZ6dSp02H3BYNBHn30Ud59911s2z7scWVlZUd9neLi4urjxowZc0zHt2/fnh07dgA0aPJ7IDGqaz38AV26dKlx7KFSUlKIjo4+7LkjR46ke/fuLF++nFWrVlU/hHj77beB0Mj1sTp09LegoICOHTse87lw9PcaHx9PYmIixcXFdSbzh3u9A7M1Drc/NjYWoM5R6CPFc2D7rl27amxftmwZd99992FH+uHw9+HRfl516dKlCw8++CATJ07k0Ucf5dFHH6VTp04MGDCA008/nXPPPbdG0n6077NhGHTu3JmSkpI676nDfR8PjNT7fL7jil9ERBqeknkREWlWoqKiDrvvjTfe4J133qFdu3Y88MADZGdn07Zt2+qR2t/85jd89tlnR0z0Dzi02vixFHI7dJpyc3Ok7xmEErerr76aP/7xj0ydOpUnnniCpUuXsmbNGjp16sQZZ5xxzK/Vq1cvTNPEsixWrlx53Mn8iTLNI68QPNr++jr0nqqsrOS2225j7969XH755Vx11VWcdNJJtGnTBofDwQ8//MC555572Gsd7ed1ONdccw3nnXce33zzDYsXL2bx4sV8/vnnfP7550yaNImpU6cecbT+eDTW91FERBqOknkREYkYB9Z8//GPf+TMM8+stX/Lli3HfK2kpCSioqKoqqrivvvuO+Y+9AemaB+uDV59HBh9zs3NPewxB/b9eKT6WF166aU888wzfP7559x3333V6/6vuuqq40rcEhISGDx4MAsWLODDDz+sVWvgaNq3b8/mzZsP+15LS0urW6zV973Wx/bt2+tc4nBgJkaHDh2qty1cuJC9e/fSu3fvWp0OILQMpLG0bduWn/3sZ/zsZz8DQm34fv/737N06VKeeuop/vKXvwDHdk9t3769xrEiIhJZ9NhVREQixoFe63VNxd+wYQNr16495ms5HA5GjBgBUKsw3JEcaBm3evVqVq9efUznHBjVDwQCde4fMmQIpmmSk5NT53vIz8/nu+++A0JrxusjJiaGK664Aq/Xy9///ne++uorPB4PV1xxxXFf60CRum+++Ybp06cf8Vjbtqtb2QEMHToUgI8++qjO499//30gtAa+KZPMjz/+uM7tB+I8EDccvA8PNyvhk08+adjgjqB79+7ceOONAOTk5FRvPxDvtGnT6lxaMH36dEpKSoiNjW2w2g8iItK0lMyLiEjEOLBOferUqTWmyefn53P//fcfNlk+nNtvvx2Xy8X//d//8eGHH9a45gHr16/n66+/rv46JSWFq666CoA777yT9evX1zjetm3mzp1LaWlp9bYDo7qHq7KflpbGueeei23bPPzwwzUqxldUVPDwww/j9XrJzs6us/jdsRo/fjymafLqq6/i9/u54IILaqyBP1YjR47k+uuvB0JV2V999dU611CvWrWKG264gVdeeaV6289+9jPatGnD6tWrmTx5co3p62vWrOHFF18E4IYbbjjuuE7E9OnT+fzzz2ts+/LLL/n6669xOp1cffXV1du7d+8OwNy5c9m4cWONc959912mTZvW4PHNnTuXmTNn4vf7a2y3bZtvv/0WoEZhv/POO4+0tDTy8/N54oknavy/kZuby5///GcgNHW/roKCIiLS/GmavYiIRIxbbrmF7777jn/961/Mnz+fXr16UVZWxsKFC0lPT2fcuHFHHSk+VO/evfm///s/HnzwQR544AGeffZZevToQVJSEiUlJaxfv55du3ZVtyg74N5772X79u188803XHLJJfTv37+6WvqGDRvYvXs3M2bMqK7K379/f1JTU1mzZg2XXXYZGRkZOJ1OunXrVj2q+vDDD7N582aWL1/OuHHjGDZsGA6Hg4ULF1JYWEjnzp158sknT+j717lzZ8aOHct//vMfgBoJ6vG6//77SUhI4K9//St//vOfmTRpEv379yc5OZmKigrWrVtXPUV9woQJ1ee1bduWJ598kjvvvJNnnnmGjz/+mF69elFQUMDChQsJBAJcfvnl1dPIm8q1117LPffcw6uvvspJJ51Ebm4uy5cvr36vh07B79WrF2eeeSYzZszg0ksvZdiwYSQkJJCTk8MPP/zAzTffzOTJkxs0vnXr1lW3iuvVqxepqal4vV7WrFnDjh07iIuL484776w+3u1289xzzzFhwgT++c9/MmvWLPr37095eTnz5s3D6/UyatQobrvttgaNU0REmo6SeRERiRj9+/fn/fff59lnn2XlypV88803dOzYkauvvppbb72VP/3pT0c8/8ctyyA0gtm3b1/efPNN5syZw5IlSwgGg7Rt25YuXbowfvz4WsXM3G43L7zwAp9//jkffvghq1atYtWqVSQmJnLSSSdx3XXX0a5duxrHT5kyhWeeeYZly5axdu1aLMti6NCh1cl8UlIS77zzDm+++SbTpk3j+++/x7IsOnfuzM9+9jOuv/56EhISTvh7OGrUKP7zn/+QnZ1N7969T+hat9xyCxdddBHvvvsuc+bMYc2aNZSVlREdHU16ejpnnnkml112Gb169apx3hlnnMGHH37Iyy+/zNy5c/nqq6+Ijo5m0KBB/PznPz9sq8DGdO2115Kdnc3rr7/ON998A8DgwYO58cYb6ywQ+Nxzz/HGG2/w0UcfsXjxYjweD3369OGhhx7ipJNOavBkfuzYsZSVlbFo0SK2bt3K8uXLiYqKokOHDtx0002MHz++xrp+gH79+vHRRx/x8ssvM2vWLKZPn47b7aZXr15ccskl/PSnP8Xp1EdBEZFIZdjHUvJXREQkgk2cOJEpU6Zw7733VifPrdVVV13FkiVLeOqpp7jwwgvDHU7YjR07lh07djBjxowjtgYUERFpbrRmXkREWjTbtlm5ciUA3bp1C3M04TVz5kyWLFlCWloa55xzTrjDERERkROguVUiItJi3Xvvvaxfv561a9fSvn17Ro4cGe6QmlxRURFPPvkk+/btY+bMmUDo+3Kgwr6IiIhEJiXzIiLSYn3yySfExsYyevRo7r//fqKiosIdUpMrLy/n3//+N06nk86dO3P99deHZU26iIiINCytmRcRERERERGJMFozLyIiIiIiIhJhlMyLiIiIiIiIRBgl8yIiIiIiIiIRRgXwCFX6bUgJCQmUlJQ06DVFwkX3s7QUupelpdC9LC2F7mVpSRr6fk5KSjrqMRqZbwSmqW+rtBy6n6Wl0L0sLYXuZWkpdC9LSxKO+1n/B4mIiIiIiIhEGCXzIiIiIiIiIhFGybyIiIiIiIhIhFEyLyIiIiIiIhJhlMyLiIiIiIiIRBgl8yIiIiIiIiIRRsm8iIiIiIiISIRRMi8iIiIiIiISYZTMi4iIiIiIiEQYJfMiIiIiIiIiEUbJvIiIiIiIiEiEUTIvIiIiIiIiEmGUzIuIiIiIiIhEGCXzIiIiIiIiIhFGybyIiIiIiIhIhFEyLyIiIiIiIhJhlMyLiIiIiIhIDZ999hlnnXVWuMOQI3CGOwARERGRJmdbmHs3grcEPAlYbXuAoTEOEWldHn30UaZNmwaA0+mkQ4cOnHfeeVx33XVhjamsrIyJEyeGLYZIoWReREREWhUzbymupVMxCzdB0AcON1Zyd/zZ47HSssMdnohIkxo+fDh/+MMf8Pl8zJkzhyeffBKn00lKSkq4Q5OjUDIvIiIirYaZtxTPzIlQVYId2w6cHgh4MfNz8MyciHfMfUroRaRVcbvd1Yn7T37yE2bOnMl3333HpZdeWuO47du389xzz7Fq1Sqqqqro2rUrt956K0OHDq0+5tJLL+XSSy9l+/btfPPNN8TFxfGrX/2qxrV2797N888/z/z58zFNk/79+3P33XeTlpbGyy+/XD1TYPjw4QD87W9/Y9CgQY37TYhQmk8mIiIirYNt4Vo6NZTIJ3YBdwyYDnDHYCemQ9U+XMumgm2FO1IRkbDxeDz4/f5a2ysrKxkxYgR//etfef311xk+fDj33nsvu3btqnHc22+/zSmnnMLrr7/OT37yEyZOnMjWrVsBCAQC3HnnncTExDB58mT+/ve/Ex0dzd13343f72f8+PGceeaZDB8+nM8//5zPP/+cfv36Ncn7jkRK5kVERKRVMPduxCzcFBqRN4yaOw0DOzYFs2BTaC29iEgrY9s2CxYsYP78+QwePLjW/p49e3LZZZfRvXt3unTpws0330ynTp347rvvahw3YsQIrrjiCtLT07nmmmtISEhg8eLFAEyfPh3btvnd735Hjx496NatG3/4wx/YtWsXS5YsISYmBo/HUz1bICUlBZfL1STvPxJpmr2IiIg0Xw1ZqM5bEloj7/TUvd8ZBRUFoeNERFqJ77//njPOOINAIIBlWZxzzjnceOONzJgxo8ZxFRUV/OMf/+D777+noKCAYDCI1+utNTLfo0eP6r8bhkFKSgpFRUUAbNy4ke3btzN27Nga5/h8PrZv386wYcMa6V22TErmRUREpFlq8EJ1ngRwuCHgDU2x/7FAVWi/J+HEgxcRiRADBw7kvvvuw+Vy0bZtW5zOulPESZMmsWDBAu644w46d+6Mx+Phd7/7HYFAoMZxPz7fMAwsK7R8qaKigszMTP74xz/Wun5SUlIDvaPWQ8m8iIiINDuNUajOatsDK7k7Zn4Otiu95lR728YoL8BqnxUa/RcRaSWio6NJT08/6nErVqzgggsu4PTTTwdCifnOnTuP67UyMzOZMWMGycnJxMbG1nmMy+UiGAwe13VbK62ZFxERkealsQrVGSb+7PEQFY9RnAu+crCC4CsPfR0Vj3/AePWbFxGpQ+fOnfn2229Zv349GzZs4OGHH64ecT9W5557LgkJCdx7770sW7aMvLw8Fi9ezFNPPUV+fj4AHTt2ZNOmTWzdupXi4uJaI/9ykP61EhERkWalMQvVWWnZoVH91CwMbynGvh0Y3lKs9llqSycicgR33nkncXFxTJgwgd/+9rcMHz6czMzM47pGVFQUkydPpkOHDjzwwAP8/Oc/5/HHH8fn81WP1F9yySV06dKFX/3qV5x77rksX768Md5Oi2DYtm2HO4hwO1CQoaEkJSU1+DVFwkX3s7QUupcjh7l9IZ7/PIId3yk0Iv9jVhBj3w68Zz2C1XlI/V6kIQvrNTHdy9JS6F6WlqSh7+djqSGgNfMiIiLSvDRFoTrDxGqXUf/zRUREwiwyHkGLiIhIq3GgUJ1Rvhd+PIHwQKG6lO6tr1CdbWHuWY+1ZS7mnvXHXzNARERaFI3Mi4iI1EcET9Nu9vYXqvPMnIhRnIsdmxLqAR+owigvaJWF6g5t0xckiAfHibXpExGRiKdkXkRE5Dg1eP/zSNcIDzYOFKqr/j5XFIS+z+2z8A9oXd/nWm36ottgV5adUJs+ERGJfErmRUREjkNj9D+PZI35YMNKy8bbsX/rngHx4zZ9hoFxoE2fKx2jOBfXsql4O/ZvXd8XERHRmnkREZFj1lj9zyPUgQcbZv4abE88dnwnbE989YMNM2/pib/I/kJ1VuchoYJ1rSxhbcw2fSIiEtla17+IIiIiJ0CJ1SH0YKNpeEtCMx6cnrr3O6NC+70lTRuXiIiEnZJ5ERGRY6XEqpoebDSRQ9v01aUh2vSJiEhE0pp5ERGRY9UU/c8jxbE82KgoOP4HG7YdqlpftQ/DWwLeUoyqfWAFjnRSvXYBYDqwPXEQlYDticOOSgBXTO0HFGFyoE2fmZ+D7UqvGdeBNn3ts1pfmz4REVEyLyIicqyUWB3ieB9sBH0Y3lKo2odRVYLh3bf/6/1/r95eCpa/ad/LjxmhBL86uffEYUfFh+oCeOLBE7//67jGT/zraNNnO+LAV95q2/SJiEiIknkREZFj1VT9zyOgh32NBxuOThD0YgSqQiPoQT9GRQF2dFJo3bx3X2jfcbCdUYckzfHgcB1fgMeaYAf9GN5SDO++0IMGfwXYQYyqYoyqYijJPcrrOA5J9A+M8O+Pu017rITO4Ik7vth/pFabPm8xBo5W2aZPREQOUjIvIiJyHBq7/3mz7mFv21BVjFmyHbNkO3ZUHIa3BDNvF7bDBYYjlAgH/WA6saPiMcrzD55vuqpHu0OJbzy2J6F6lDs0Cr4/eXe6w/Meg37wlVXPEjgwayA03f/gNrz7MPyVofdbWYRRWXTYS9pRCdjxnbESOmMldMJO6Izdpv1xPaA5tE1fnNuiwmc2y4c8IiLSdJTMi4iIHKfG6n/erHrYWwGM0l2YJdsxSnIxS3ZglGzH8JfXOMxO7AIlO0LT6rHA4SGY1JVgj7MIpmWHpqh7ErCj4sAZ3WzWoh+WwwXRSdjRSUddbl9j6cCBpQIHEv3KYszSnRjle0IPAapKMPNXHzzXdGHFp2EfSPDjQ3/iqmPJwgH72/SZSUlYRYd/eHDcImAmiIjIsfjss8/405/+xEMPPcSFF14Y7nAanZJ5ERGR+tifWDWYH7d6O5D0umOwXekYxbm4lk3F27F/wydavvJDkvbtGCU7MEt3gh2sfaxhYrXpsD8J7Rz6Mz4Ns3R360sGHW7smBSISTl84u+vwti3IzSbYd/+7+2+HRD0YRZvheKtOA453I5OPvh93f+nHdO20R6CNOuZICLSLOXl5XH55Zcf8ZgOHTrw0UcfNcrrDx8+nOzsbF588cVGuX4kUTIvIiLSDBxPq7cTeYhgVBRgFG3Zn7Rvx9y347BTxG1XdPX08OrkMq5DqLDdj1hRraCCf324orBTuhNM6U71oxHbwijbg7Fve62fg1FZiKOyEHatqL6E7YzCjk8Lff/jO2Pb/YG4E07wm9VMEBGJOJ07d+acc86pc19c3InVCpFjo2ReRESkOWisVm8BL+beDZj5a3Dkr8Eo213nYXZMW6zEdOz4TgdHhKOTm/+0+EhkmNhx7bHj2mN1GnRwe/UMiUNH8fMwAlUYhZsxCzcDEFzzHh4jCis1Cyu1F8HULIiKP74YwjkTRERahM6dOzNhwoRwh9GqKZkXERFpDhqqh71tY+zLw8xfjSN/TWgt9KHT5Q0TKyEdOyEdK6FT6O/xaeCKbtj3I8fPHYvVLhPaZR4cxbcCGGW799csCC2DoGw7RmUpju0LcGxfgAuwEtKrk3sr+eSjVv9vqpkgIlI/lmXzwxYoLYW4OOjWFUwzMh+ufvvtt8yYMYOcnBz27NmD0+mkR48eXHnllYwdO7bGsQem8J9//vlcc801TJ48maVLl7Jv3z4eeugh/vSnPwGwdOlShg8fXn1eXWvk58+fzz/+8Q/Wr1+Px+Nh1KhR3HnnnSQktJyZZErmRUREmoET6mHvLcPckxNK3vNzMKpqjt7b0clY7XsRTO0VShaPVGRNmhfTiR3fiWB8J0gfCkBMfBzlmxZj5q8J/VeSW/0fG74OFSFs2zOU2Kf2wm6TWjthb6yZICJywlausnn/Q5utW8HnB7cLTjoJfnIZ9O0TeQn9iy++iNPppF+/frRt25aioiJmz57N7373O+655x5+9rOf1Tpn+/bt3HjjjXTv3p0LLriAkpISunTpwg033MCUKVPo0KEDF1xwQfXxGRk1Hzp+9913zJkzh1GjRtG3b1+WLVvGtGnT2L59Oy+99FKjv+emomReRESkOTieHvZWALPwh/3JXA5m8TY4tASbw02wbcaRkzmJWIbDidUuIzRi3vtSqNqHY8/a6uTe8Jbi2L0Kx+5VwGEe5jTUTBARaVArV9n89QWb0jJISQaPB7xe2LAB/vqCze2/bj4J/fbt23n55Zfr3NenTx9OPfVUAJ5++mk6depUY39FRQUTJkzgpZde4uKLLyYqKqrG/hUrVnDDDTfUmsbfr18/pkyZQseOHY84xX/27Nm88MIL9O/fH4BgMMgdd9zBkiVLWLVqFX369Dnu99scKZkXERFpJo7Yw/6UCzG8pbjmT8bcsw4jUFXz3PhOoeS9fS+s5O5HnWYtLUhUPMH0oQTTh+5fZrEDc3eoRoJZsDFUVG/LbBxbZoeWWSR1DU3Jb9Mes2gbdlKX45sJIiKNwrJCI/KlZdAp7eD/ltHRkJYGeXnwwYc2vXs1jyn327dvZ8qUKXXuu/LKK6uT+R8n8gAxMTFccMEFPP/886xZs4aBAwfW2J+SksIvf/nLesd2zjnnVCfyAA6Hg/PPP58lS5awZs0aJfMiIiLS8Kp72O9eg5m/GrN0N0bFXtwr3q1xnO1ug9XulNCIa7ssiE4MT8DSvBgGdkJnggmdCWacvb8A4nrM/JzqAojm/mJ6hncfRlURxq4S7Ni2oYKHdrD2TBARaRI/bIGtW0Mj8nWUsiApGbZsDR3X/eRwRFjT8OHDefbZZ496XGFhIW+88QZz585l165deL3eGvv37t1b65yePXvictX/oXRmZmatbampqQCUlZXV+7rNjZJ5ERGR5sIKhEZUc+fj2Ln8R4XrHFjJ3aqrl9uJJ2nqvByd04PVoS9Wh74ECLUmNHevwdyTg7lnLSbsr5q/A0q2YzujsFJ64Bt+i9rSiTSx0tLQGnnPYUpZeNxQ5A8dFylKSkq4/vrr2bVrF/369WPIkCHExcVhmiYbNmxg1qxZ+Hy+WuclJyef0OvGxsbW2uZwOIDQlPuWQsm8iIhIONk2Rsl2HLnzcOQuxPAd/JRmx6SE1jlXr3VWxfmIYFuhLgLeEvAkhKaqN5MRbjsmhWC30wh2Ow2sIEbRFhy7V+PYNhejeCuG4QRXNO5lbxPcvZpg+nCs1CwwHeEOXaTFi4sLFbvzekNT63/M6wvtj6QW7p9++im7du3ipptu4vrrr6+x74033mDWrFlhiqxlUDIvIiISDpXFOLYvxJE7PzQqup/tjiOYPoRg+nDshM4afY8wZt7SgzUPgr5QzYPk7vizxze/kW7TgZ3SnUBKdwK9LobKotA9uW0eZulOHDsW49ixGNsTR7DzUIJdTsVOqL32VUQaRreuoar1GzaE1sj/qJQFRYWQ0TN0XKTYsSP079vo0aNr7Vu2bFm9rmmaJpZlnUhYLYaSeRERkaYS9GHuXI5z23zM/DVUV6A3HAQ79ifY5cAoaCP989yMR4xbAjNvKZ6ZE6GqJNS/3ekJrVnPz8EzcyLeMfc1v4T+UNFJBHueTbDHOIySXBzb5uHYvhDDW4pz0wycm2ZgxXcm2GUYwc5DISo+3BGLtCimafCTy0JV6/PyQmvkPe7QiHxRYWhE/vLLjGZR/O5YdejQAYDly5fTo8fBgppfffUVc+bMqdc14+Pjyc/Pb5D4Ip2SeRERkcZk2xiFm0IJfN5iDH9l9S4r6WSCXYYT7DQQ3LXX9zWkiBoxjkS2hWvp1FAin3hIdXh3DLYrHaM4F9eyqXg79m/+D1AMAzuxC4HELgT6XI65e/X+Og4rMPdtx1y1HdfqDwmm9go9gOrQN9TGTkROWN8+Brf/muo+80X7+8xn9Awl8s2lLR0cuTUdwLXXXst5553Hm2++ydNPP82SJUvo0KEDGzZsYNGiRZx++ul8++23x/26gwYNYsaMGdx3331kZGRgmiannXYaPXv2PIF3E5mUzIuIiDQCo3xvKAHKnY9Rvqd6ux2dTDB9GMEuw0P935tAxI8YRwBz70bMwk2h728dZajt2BTMgk2YezeG+sNHCtOJ1bE/Vsf++H3lOLYvCi0NKfqhupe97YrG6jSIQPpw7OSTfzQ3WLNBRI5X3z4GvXuFqtaXloZG5Lt1bR7t6A51pNZ0AD//+c9JTU3lxRdf5K9//SsLFy4kEAiQmZnJc889x+7du+uVzN9zzz0ALF68mNmzZ2NZFqmpqa0ymTds27bDHUS4FRUVNej1kpKSGvyaIuGi+1laiia5l/2VOPKW4Ng2H7Ngw8HtDg/BTtkE00/FatuzadfB2xaeafdh5q+pOWIMoVkDxblY7bPwnjdRSdYJMLcvxPOfR7DjO9VdLM4KYuzbgfesR7A6Dzmh12oOv5eN0t37izYuwKgsrN5ux7YLPaxKH4ZRkqvZIHJEzeFeFmkoDX0/JyUlHfUYjcyLiIicCNvC3LM2tL44bxlY/v07DKx2mQTThxNMGxAaDQ+DFjti3Nx4EkJTzQNecMfU3h+oCu33JDR9bI3AjmtPoNclBLIuxty7PpTY71iKUb4H59rPcC2bilGyA9swQw84YttpNoiISANTMi8iIlIf3lKcm7/FsfV7jKqS6s12m/YEupxKMH0oRB/9qXqj85aERkUP9zDBGQUVBaHjpN6stj2wkrtj5udgu9Jrz4AoL8BqnxWaZt6SGKGHVla7TPz9fo4jbxmO3Lk4V30YarPojMYo3oodnYAd0w47McLqB4iINGNK5kVEpGXbv2bXKrEwfeYJr9k1yvJxbJqBc+vc6lF42xVLsPPg0Dr4xJOaVzu5VjZiHDaGiT97PJ6ZEzGKc7FjU0IPSgJVGOUFEBWPf8D4lp28Oj0EuwzDjk7CsXEGticew18BQS9GZTFGZTG2Jw7bHRuaMaLZICIiJ0TJvIiItFiHVnAPEsSDo95rdo2irTg3fI0jbykHWspZiScR6DkOq0M/cLga4R2cuFY7YhwGVlo23jH3HVwnXlEQWifePgv/gFa0TtxbAraFHd8J2zDBX4lRvgfDuw/DW4pRtQ/sIOaORSqIJyJyApTMi4hIi1Srgnt0G+zKsuNbs2vbmHtycG74GnPPuurNVmpvAj3PbvpidvWhEeMmZaVl4+3Yv3VXcP/xbBB3DLb7JOyAF6N8byixtwK41n2JY886Aj3OIthlmNrbiYgcJyXzIiLS8tTR89swHcfe89sKYuYtwblhOmZJbmibYRLsPIRAj3HYCZ2a9v2cII0YNzHDbNXTxw87G8TpwY5Pg4APKyYRO7YtRnk+ruVv41z7KcGTzyDQbTS4Y8P7BkREIoSSeRERaXHqXcE94MWxbQ7ODf852G7L4SHQdSTB7mOxY1Ka7k00MI0YS5M52myQmCR8Y+7DapeFY+v3ODfNwKgswpnzCc71XxHoOpJAj7OaRwFJEZFmTMm8iIi0PMdbwd1bFqpMv/lbDH85ALY7jmD30wl0G9NyRgpb+YixNJ1jnQ0S7HEmwZPH4Ni+GMfG6Zj7duDc9A3OzTMJdh58+Jkw+wtb6sGUiLRmSuZFRKTlOdYK7paNc8W7OLd8f7AyfUzb0Brek07VGl6RE3DMs0FMJ8EuwwimD8XMXxNa3rJ3HY7c+Thy5xNs34dgz3FYKaEaFYcWtiToCz0kqGdhSxGRSNZsk/mxY8eyY8eOOvcNHTqUN998s8Y2n8/HSy+9xCeffMLOnTtJSEjgjDPO4K677iIlJXKnRYqIyPE7agX3fbvAE4t7yasHz0nsEipql5atET6RhnI8s0EMA6t9b3zte2MUbcG5YTqOvKU4dq/CsXsVVlJXrKSuuFZ9CN59oWU0Tg8EvMdX2FJEpIVotsk8QFxcHNddd12t7Z061ZxuZVkWt956K7Nnz2bAgAGcffbZbN26lffee4+5c+fyr3/9i+Tk5KYKW0REwq2ONbu22QbK9mDu24FhW1ht2gJgpfbaX5k+o/lXphdpJeykrviHTiBQlo9j0wycW+diFv6Ac+008FdiJ3UFV1TowduxFrYUEWlhmnUyHx8fzx133HHU4z788ENmz57NhRdeyJNPPomx/8PYP//5Tx555BGeffZZHn300cYOV0REmpHqNbtL3sLMXwUFG3AE/diuWIKJ6QS7jw2tx01MD3eoInIYdptUAv2vInDKhbiW/RMzbwmYDozSPIzy3dgxbUOFKU3H4Qtbioi0UC3iseV7770HwD333FOdyAP8/Oc/Jz09nU8//ZSqqqpwhSciIuHiig1V0o5tD217EOzQD9/wW/Fe9Bz+wdcrkReJFJ44gp2ysWNSQu3tTBdYQYyy3Zh712NUFILDE1pDf6CwpYhIC9esR+Z9Ph8ffPAB+fn5tGnThr59+9K/f/8ax3i9XpYvX063bt1qTb83DIMRI0bw7rvvsmrVKgYPHtyU4YuISJgYpbtwrv4Qx64VAFixKbj7XUxZ+yHgaRPm6ESkXjwJ4IzCdrcJ9aivKsEoy4egD2PfDgxjF7YrGtzx4Y5UpEXLy8vj8ssvByA5OZlPPvkEp7N2WvnDDz9w1VVXAdChQwc++uijpgyzVWjWyfyePXt48MEHa2zr27cvTz/9NF26dAFg27ZtWJZF165d67zGge1btmxRMi8i0tJ5S3Gu/QznltlgW2CYBLqeRuCUC4jp0AWKisIdoYjUU43Clonp2NFJ2FEJGBWFGGX5GL4yAJzrp+F3x2jmjUgjczgcFBYWMmfOHEaPHl1r/6effopptoiJ4M1Ws03mL7/8cgYNGkRGRgYxMTFs2bKFV199lY8//phf/vKXfPLJJ7Rp04bS0lIA2rSpe6TlwPaysrLDvlZCQkKD32hJSUkNej2RcNL9LM2dHfBi53yJtfqzUNs5pwOj8xDM7CsxEtKqj9O9LC1Fa72XrdG3EPzyESjdAW1SQ0XwouMhUAHuGIz4DnhKfsDz/ZMYJ4/E7H8FRqy6GjVnrfVejmTl5eUADBw4kLVr1/LVV19xySWX1DgmEAjw9ddfM2LECBYsWIDD4WgVP+umfo/NNpm//fbba3ydlZXFxIkTAfj444957733+NWvftUgr1VS0rBrq5KSkijS6I+0ELqfpVmzbRy583HmfIJRGbpPrcSTCPS5PFSd3qJ6NF73srQUrfpejuuBOfI3tfvMt8vCP2A8dmIXnKs/wrFjEaz7L2yYTaDHmQR6ng2u6HBHLz/Squ/lCHYgd3I4HJx11ll88sknbNq0qUb3sJkzZ7J3717OOeccFixYQDAYrP5Z79mzh48++oh58+aRl5dHWVkZKSkpjBgxghtvvLFWF7JHH32UadOm8f777/Ptt9/y6aefsmPHDsaNG8fDDz+M1+vl3//+N1988QU7d+4kGAySmJhI7969+eUvf0nPnj2b5PvS0PfzsTwYaLbJ/OFceeWVfPzxxyxZsoRf/epXxMXFAYcfeT+w/XAj9yIiEpnMPetwrnofsyQXADs6GX+vS7A6D1GLOZEWzErLxtuxP+bejaFid54ErLY9qtvR+YfcQKDHmbhWfYBZsAHn+i9xbPmewCkXEOw6EsyI+/grrZFtHfYeb04uvPBCPvzwQ7744gvGjx9fvf3TTz8lPj6eMWPG8Nhjj9U4Z9myZbz99tsMHjyY3r1743Q6Wb9+PR988AHz58/n9ddfrzN3e+qpp1i1ahUjR45k1KhR1cnuo48+yowZM+jRowcXXnghLpeL/Px8Fi9ezJo1a5osmQ+HiPttduCHVlFRAUB6ejqmabJly5Y6jz+w/XBr6kVEJLIYpTtxrvoAx+5VANiuaAI9zyXY/XRwuMMbnIg0DcM8Yvs5O6krvlF3Y+5agWv1hxhlu3GteAfn5v/i730ZVod+eugnzZaZt7T27JPk7vizx2OlZYc7vBp69+5N9+7d+fzzz6uT+YKCAubOncvll1+O21373+VBgwbx+eefExMTU2P7tGnTePTRRw87A3vjxo288cYbdOjQoXpbWVkZ33zzDaeccgpTpkzB4XBU7wsGg9U5Y0vV/B7vHMWKFaHKxAcq10dFRdGvXz9++OEHduzYUeNY27aZM2cOMTEx9OnTp8ljFRGRBlRVgmvZVDwzHgsl8oaDwMln4D3rUYIZZyuRF5GaDAOrY3+8Yx/C3+/n2O44jLLduOdPxj37GYyiLeGOUKQWM28pnpkTMfPXYHviseM7YXviMfNzQtvzloY7xFouvPBCNm/ezKpVoYfsn3/+OcFgkIsuuqjO45OTk2sl8gDnnXcesbGxLFy4sM7zxo8fXyORh1D3Mtu2cbvdtWqgORyO6lncLVWzTOY3bdpEZWVlnduffPJJgBo3x89+9jMAnn76aWzbrt7+zjvvkJuby0UXXURUVFQjRy0iIo0i4MO5bhpR0/8fji2zAZtgWjbeMx8m0O9najUnIkdmOgmePAbvuD8SyDgXTBdmwQY8M/+Ca+EUjIqCcEcoEmJbuJZOhaoS7MQu4I4B0wEHujNU7cO1bGqoW0szcu655+J0Ovnss8+AUDKfkZFBRsbhZ8/897//5c477+Tcc89l5MiRDB8+nFNPPZXy8nL27t1b5zm9e/eutS02NpYRI0awYsUKrrvuOl577TVWrFhBIBBomDfXzDXLafbTpk3j1VdfZciQIaSlpREdHc2WLVuYNWsWfr+fm2++mSFDhlQff9lllzFt2jQ+++wztm/fzpAhQ9i2bRtff/01nTt35q677grfmxERkfqxrVBxuzUfY1SFiu1YSV3x9/kJdkqPMAcnIhHHFU2g1yUEuo3GlfMJjm3zcexYhCNvKYHuYwlknguu2qOFIk3F3LsRs3ATdmy72stADAM7NgWzYBPm3o1HXGbS1JKSkhg1ahTTp09n7NixbN26ld/85jeHPX7q1KlMmjSJpKQkhg4dSmpqKh6PB4B3330Xn89X53k/Lox3wOOPP85rr73G119/zeTJk4FQkn/hhRdy6623tuhB3WaZzA8bNoxNmzaRk5PDokWLqKqqIikpidGjR/OLX/yCUaNG1TjeNE1efPFFXnrpJT7++GNee+01EhMTueKKK7jrrrsO+4MXEZHmyczPCRW32xdaPmVHJ4fWuXYapHWuInJiopPwD7yOwMljca1+P1RMc+N0HFvnEDjlfILdRqtInoSHtyS0Rt7pqXu/MwoqCkLHNTMXX3wx3377LY899hgej4dzzjmnzuMCgQCvvvoqbdu25Y033qiRp9m2zVtvvXXcrx0VFcUtt9zCLbfcQl5eHosXL+bDDz/k3Xffxev18sADD9T7fTV3zfI31dChQxk6dOhxneN2u7n99ttrtbQTEZHIYezbgWvVh5j5q4H9xe0yziN48ungcIU3OBFpUezEdHwj7sTMXxN6eFi6E9fK93Bu/hZ/r0tDhcb08FCakichVP8l4A1Nsf+xQFVovyeh6WM7imHDhtGuXTv27NnDuHHjiI+Pr/O4kpISysrKGDx4cK0B15ycHLxe7wnFkZaWRlpaGuPGjeP888/nu+++UzIvIiLSqPxVOHM+wbn5W8DeX9xuDIHM88EdG+7oRKSlMgys9r3xtTsFx7Z5OHM+wSjfg3vhy1htM/EP+AV2m9RwRymthNW2B1Zyd8z8HGxXes2HSbaNUV6A1T4r1KaumXE4HEycOJH8/PwjtoJLSkrC4/Gwbt06qqqqqqfA79u3j6eeeuq4X7eoqIjCwkK6d+9eY3tpaSk+n4+EhOb34KMhKZkXEZGwMnevxrXsbYzKQgCCaQMJ9LpEH6BFpOmYDoJdRxLsPBjnxv/gXP8V5t51eL75E/6siwh2HxsqRCbSmAwTf/Z4PDMnYhTnYsemhKbWB6owygsgKh7/gPHNst88QFZWFllZWUc8xjRNfvKTn/D2229z9dVXM2rUKMrLy5k3bx4dOnSgXbt2x/Wae/bs4dprr6Vnz5706NGDdu3aUVJSwqxZswgEAtXt8loqJfMiIhIevnJcK9/DkTsfADsmBf+A8VipR/4gICLSaJweAqdcQDB9KK5lUzH3rMO1+gMcOxbhz74GO6FzuCOUFs5Ky8Y75r6DfeYrCkJ95ttnhf6NbGZ95uvj17/+NfHx8Xz++ed88MEHJCcnM27cOG688UZ+8YtfHNe1OnbsyI033sjixYtZuHAhJSUlJCYmkpmZyZVXXsmpp57aSO+ieTDsQ3u5tVJFRUUNer2kpKQGv6ZIuOh+lgZn25g7FuNa8S8MXylghCpJZ110+KI/DUD3srQUupebiG3j2DYX56p/Y/grQ8t/eo4jkHleaN2ynDDdy0dgW5h7N4aK3XkSQlPrm+mIvIQ09P2clJR01GM0Mi8iIk2nsgjX8ndw7FoBgBXXMTTaldwtzIGJiPyIYRA8aQTB9r1xrXgXR95SnOu/xJG3FF/21WqRKY3LMJtV+zlpnpTMi4hI47NtHFtm41z9AUagKjTClXkegYxz1AJKRJqXOkZE/UNvIpi3FNfydzDKduP57ikC3UYT6HUpuKLDHbGItFL6BCUiIo3KKMvHtfQtzIINAFhJ3fBnX40dnxbmyEREajLzlh5cqxz0hdYqJ3fHnx1aq+xtm4Fr1Qc4ts3B+cMsHLtW4u9/FVaHvuEOXURaISXzIiLSOKwgjo0zcK39DCw/ONz4e10S6hmvdX8i0syYeUvxzJwIVSXYse1CNTwCXsz8HDwzJ+Idcx9WWjb+gdcQTB+Ca+lUjIq9uOe9QLDzEPx9fwqeuHC/DRFpRZTMi4hIgzOKc3EtfROzJBcAq90p+AeMx45tG+bIRETqYFu4lk4NJfKJXQ7293bHYLvSQ7/Tlk3F27H//rXMp+Ad+wecaz/FuXEGju0LMfNzCPT9KcHOQ2r2BxcRaSRK5kVEpOEEfTjXfYFzw9dgW9iuGAJ9ryCYPlwfbkWk2TL3bsQs3BQakf/x7yrDwI5NwSzYhLl348GiZE43gT4/IdhpUGgp0b4duBa/irl9If4Bv4Doo1eibhCqei7SaimZFxGRBmEUbMS99C2Mst0ABNMG4u/3M4hKCHNkIiJH4S0JrZE/XHtMZ1So37e3pNYuO6krvtMfwLnha5xrp+HYvQrHf/6Iv/elBLuNadQHmUdb4y8iLZuSeREROTH+SpxrPsL5wywAbE88/v4/1wdJEYkcnoRQ7/iAF9wxtfcHqkL7PYd5OGk6CWSeTzAtOzRKX7g51M5u+6JQwc+4Dg0e8rGu8ReRlktzcEREpN7MXavwfPNYdSIf7DIC75kP6wOkiEQUq20PrOTuGOV7wbZr7rRtjPICrJTuoSnsR2DHdcR32m9Ds5IcHszCTXi++RPOdV+AFWi4gH+8xt8dA6YjtMY/MR2q9uFaNhVsq+FeU0SaHSXzIiJy/LxluBa9inve3zAqi7Bj2uIbeSf+gdeAOzbc0YmIHB/DxJ89HqLiMYpzwVcOVhB85aGvo+LxDxh/bGvRDYPgyWdQdebDWKm9wQ7izPkE97d/xija0iDhHs8afxFpuTTNXkREjou5fRGuFe9i+MoAg0CPMwmcchE43eEOTUSk3qy0bLxj7ju4Br2iILQGvX0W/gH1WIMek4zv1Ntw5C7AufI9zH078MycSKDHWQR6XQzmCXwMP4E1/iLSciiZFxGRYxPwhtaAbpsLgBWXhn/g1dhJ3cIcmIhIw7DSsvF27N9w1eENg2CXYQTb98K14l84dizCuXE65t51+AffgN0mtX7XPdE1/iLSIiiZFxGRozJKduBe9A+M0l2AQSDzPAKZ553YyJKISHNkmAfbzzUUTxz+ITccbGNXvA33t0/gH/ALrM5DjvtyB9b4m/k52K70mlPtD6zxb5911DX+IhLZtGZeREQOz7Zx/PAdnpl/wSjdhR2VgG/kXQSyLlIiLyJynKy0AXjH/j5UbC9QhXvRK7iWvgUB3/FdqCHX+Is0opdffpnhw4ezePHicIfSIun/cBERqZu/AtfCf+Ba/jZYfqzU3njP+H3Dj1iJiLQm0Un4Rt1NIOM8wMCx9XvcM/+MsS/vuC5zYI2/lZqF4S3F2LcDw1uK1T5LbemkUeXl5TF8+PAa/40aNYqLL76Yhx9+mA0bNoQ7xOM2fPhwbr311jr3PffccwwfPpyXXnqpzv3bt2/njDPOYOTIkRQXFzdilLVpWEVERGoxirbgXjgFo2IvGA78vS4h2OOs2lWTRUTk2NhWjbX4gawLsdpl4Fr0CmbpTjzf/hl/vysJnjTimH/XNvgaf5Hj0LlzZ8455xwAKisrWbVqFV9//TXffvstkyZNon///mGOsGHccsstzJkzh9dff53TTjuNrKys6n2WZfHYY49RWVnJU089RWJiYpPGpmReRKQl+tGHxmP+cGfbODbNwLX6I7CD2NHJ+IbciJ2sInciIvVl5i09WCU/6AtVyU/ujj97PN4zHsK9+DXMPTm4lr2FuWct/gG/AFf0sV28Mdb4ixyDzp07M2HChBrbJk+ezGuvvcbkyZN58cUXwxRZw/J4PPzhD3/g5ptv5tFHH+X111/H7Q518Hn77bdZvnw5F1xwAWeeeSZFRUVNGpuSeRGRFuZIHxqPOO3SW4Zryes4dq8CIJg2MLQm01VHpWQRETkmZt5SPDMnQlVJqC+80wMBL2Z+Dp6ZE/GOuQ/fiDtwbPgaV84nOHYswizeim/w9dhJXcMdvoSJZVtsKVpHma+YNu5EuiZlYkbAjIuf/vSnvPbaa+Tk5BzxuE8//ZRZs2axYcMGCgsLiYqKIisri2uvvZZBgwbVOHbx4sXcdttt3HDDDYwaNYoXXniB1atXYxgGgwcP5s477yQtLa3Wa+Tl5fHqq6+yYMECCgsLiY+PZ9iwYUyYMIGOHTvWuDbA0qVLGT58ePX5Dz30EBdeeCEAffr04eqrr+b111/n73//O3fccQebN2/mpZdeon379txzzz0n9H2rLyXzIiItyLF8aKwroTf3rse16FWMqmIwnfj7XEGw22hNqxcRORG2hWvp1NDv5MQuB3+numOwXekYxbm4lk3F27E/wYxzsNr2DC1xKt+DZ9aT+HtfRrD7WP0ubmVW717IRzmvsK14A/6gF5fDQ5fEnlyadT292x9/94NwMI5yzz755JP06NGDIUOGkJSUxJ49e5g5cyZ33HEHf/7znxk9enStc3JycnjrrbcYNGgQl156KevXr2fmzJls2rSJqVOn4vF4qo9dtWoVd911F5WVlYwaNYrOnTuza9cuvvrqK+bOncs//vEPOnXqRMeOHbnhhhuYMmUKHTp04IILLqi+RkZGzRkvN954I7Nnz+af//wnI0aM4Pnnn8fv9/PQQw8RGxt7gt+x+lEyLyLSUhzHh8bqKfe2hXPdFzjXfg7Y2G3ah6bVJ3QO29sQEWkpzL0bMQs3hR6u/ji5MQzs2BTMgk2YezditcvATj4Z7xm/w7X0LRw7l+Fa9e9QT/qB14E7PMmCNK3VuxcyecEjlPlKSI5OxeOMwhuoYmPBSiYveIRbhj7SrBP6Dz74AIBevXod8bh//vOftUbT9+7dy69+9SsmTZpUZzI/Z84cHnvsMcaNG1e97Y9//CNffPEFs2bNqt4eCAT4wx/+gGVZvPLKK2RmZlYfv2zZMm677TaefvppnnrqKdLS0pgwYQJTpkyhY8eOtZYNHMrlcvHwww9zww03cPfdd+Pz+bjiiisYMiR8P4/mP1dDRESOyfF8aASgshj398/jXPsZYBPsMhzv6Q8qkRcRaSjektByJ6en7v3OqNB+b8nBbe5Y/ENvwt/vSjAcOHatxPPf/8XcG3kVwuX4WLbFRzmvUOYrIS2uK9GuWEzDQbQrlrS4rpT5Svg451Us2wp3qECoivvLL7/Myy+/zKRJk7jllluYMmUKHo+HW2655Yjn1jUtvm3btpx++unk5uayc+fOWvuzs7NrJPJA9TT4NWvWVG+bPXs2O3fu5Oqrr66RyAMMGDCA0047jblz51JeXn7M7/WAzMxMzjrrLHw+H0lJSdx+++3HfY2GpJF5EZGW4lg+NFYUgLcEc/dqXItfx/CVgsODv//PCXYZXvd5TaG+BftERJozTwI43BDwgruO+iOBqtB+T0LN7YZB8OTTsZK74140BaNsN+7ZzxDIupBAxrn6/dhCbSlax7biDSRHp9aapm4YBsnRqWwtXs+WonWcnJx1mKs0ne3btzNlyhQAnE4nycnJnH322Vx77bX06NHjiOfu2LGD119/ncWLF7Nnzx58Pl+N/Xv37q1e137AjxNzgNTUVADKysqqt61aFar9s3XrVl5++eVa5xQUFGBZFtu2batRmf5Y/PDDD/z3v/8FoKioiOXLlzNs2LDjukZDUjIvItJSHMuHRtOFY/siHLtWAGDFd8I/ZAJ2XPsmDvagehfsExFp5qy2PbCSu2Pm52C70mvOmrJtjPICrPZZoQeYdbAT0/GOeQDXindw5M7HmfMp5p71+Ab9EqITm+Q9SNMp8xXjD3rxOKPq3O9xRFEU3EOZr7hpAzuM4cOH8+yzzx73ebm5udxwww2Ul5czcOBARo0aRWxsLIZhsGTJEpYuXVoruQfqXJfucDgACAaD1dv27dsHwFdffXXEOCorK48r7kAgwGOPPYbP5+M3v/kNkyZN4vHHH+ftt9/WmnkRETkxR/3QWJoPDhPHzuVgGAS6jSbQ5yehBwDHqoFH0OtbsE9EJCIYJv7s8XhmTsQozsWOTQnNkgpUYZQXQFQ8/gHjj/x71BWFf9Avsdpl4lr+DubedXj++zj+Qddhte/ddO9FGl0bdyIuhwdvoIpoV+3k0BuswuXw0Mad2PTBNaB33nmHffv28f/+3//jvPPOq7HvL3/5C0uXLj2h6x9IrJ988klGjRp1Qtc61BtvvMGaNWu44oor+OlPf0plZSUvvPACzz77LL///e8b7HWOh+boiIi0FPs/NBIVj1GcC75ysILgK8fYuwHDWwJRidjuGHxDbyLQ/6rjSuTNvKV4pt2H58v78fznkdCf0+7DzKvnP7o/LtjnjgHTESrYl5gOVftwLZsKzWRtoIhIfVhp2aEHk6lZGN5SjH07MLylWO2zjuuBZbDLqXhPfxArvhOGrxT33L/iXP0RWIHGfQPSZLomZdIlsSeFlfnYtl1jn23bFFbmc1JiBl2Tak83jyQ7duwAqFXkzrZtVqxYccLX79079JBr5cqVx3yOaZpY1uE/b6xfv55XXnmFzp07V6+THz9+PL179+bTTz9l7ty5JxZ0PSmZFxFpQWp9aCzZjlm8DcMKYCd3I9hxAL7Tf3fco90HRtDN/DXYnnjs+E7YnvjqEfT6JPTHXbBPRCRCWWnZeM+fiPfcv+A965HQn+dNPO7fxXZcB3xj7iPQLZQEOTd8hfu7ZzAqChojbGlipmFyadb1tHEnkFe6hUp/OZYVpNJfTl7pFuLciVyS9auI6Dd/JB06dABg+fLlNba/8cYbbNq06YSvP3r0aDp06MA777xT5yh/IBBg2bJlNbbFx8eTn59f5/X8fj9//OMfsSyLP/zhD0RFhZZBOBwOHn74YTweD0888QSlpaUnHPvx0jR7EZEWxkrLxtuxP45t83GueAezogjbHUOg59kEel0M5nH+6q9Py7tjcRwF+0REIp5hYrXLOPpxR+NwE+h/FVa7U3AtfROzaDPu//4v/uxrtCypBejdfgi3DH2kus98UXAPLoeHnin9uCTrV826Ld2xuuyyy/jss8948MEHOfPMM0lISGDVqlWsX7+ekSNH8v3335/Q9d1uN48//jh33303t956K4MHD6Z79+4YhsHOnTtZvnw5CQkJvPvuu9XnDBo0iBkzZnDfffeRkZGBaZqcdtpp9OzZk5dffplNmzYxfvx4+vfvX+O1TjrpJG666abq9fP33XffCcV+vJTMi4i0QObO5bhWvAtBH1Zc+9B6y3qurTzePsnHrL5VnkVEBCstG19iF1wLp2AW/YB7wUsEepxFoPdlqnYf4Xq3H0JW6iC2FK2jzFdMG3ciXZMyI35E/oDMzEyee+45/v73v/Ptt9/icDjo27cvf//73/nuu+9OOJmHUJ/7N998k6lTpzJnzhxWrFiBy+WiXbt2jB49mrPPPrvG8ffccw8AixcvZvbs2ViWRWpqKl6vl6lTp9K1a1duuummOl/rqquuYubMmXzwwQeMGjWKESNGnHD8x8qwf7wgoxUqKipq0OslJSU1+DVFwkX3c4SxbZzrpu3vHQ9WSk98g68/oarH5vaFeP7zCHZ8p9Ca9h+zghj7duA96xGszscxYmBboTX3+TmhNfI/LthXnBtaU3rexAb5YKp7WVoK3ctSgxXAueYTnBunAxBs3wf/4OvBFR3mwI5O97K0JA19PyclJR31mJbxeEdERCDow7VoSnUiHzj5DHwj7zzx9kWHjqDXpb4j6Ecq2Fece2xVnkVEWjvTSaDP5fgG3xBqP7p7Fe5Z/4dRvifckYlII9MnJBGRlqCyGPd3T+PYsRgMB/4B4wn0+1ndI+nH6UDLO6N8L/x4MteBPskp3Q/bJ/mI126gKs8iIq2d1Xkw3tPuwY5KwCzdifvbv2DuXR/usESkEWnNvIhIhDOKtuCePxmjqgTbFYt/2E1YbRugyFL1CzRAn+QjOFCwryH714uItEZ2Ule8Y+7HPX8yZvE23N8/j7//VQS7jgx3aCLSCJTMi4hEMHPHYtyLXwfLH2pZNPzXoUJ1DezACLpr6VTMwk2hKvMON1b7LPwDxp/4CHpDVXkWEWntopPwjfoNrqVv4NixGNeytzD27SDQ5ycNMltLRJoPJfMiIpHItnGu/Rznus+Bpil4pBF0EZEI4XTjH3wDdlxHnGs/w7n5v5hlu/ENuQFcdXQPEZGIpGReRCTSBHy4lryOI29J6MumbEWkEXQRkchgGAROuQArriPuxa9h5q/BM3NiaAZXm9RwRyciDUDDKSIikaSyCPd3T4YSecOBP/vq0NRJjY6LiEgdrE4D8Y7+LXZ0EkbZbtwz/4K5Z124wxKRBqBPfyIiEcIo+gHPzL9gluRiu9vgG/k/BE9SUSMRETkyO7EL3tH3YSV1w/BX4J7zPI7NM8MdloicICXzIiIRwNy+EM93z2BUlWDFdcQ35v6GrVgvIiItW3QivlF3Eew8FGwL14p3cC5/B6xAuCMTkXrSmnkRkebMtnHmfIpz/RdA0xS6ExGRFsrhxj/ol1jxHXGt+RjnDzMxy3bhGzIB3LG1j7ctFT0VacaUzIuINFcB7/5Cd0tDX/YYR6D3pfogJSIi9WcYBDPOxY7riHvRq5h71u0vjHcrdlyH6sPMvKUH25EGfaF2pMnd8Wc3QDtSEWkQ+kQoItIcVRbh/u6pUCJvOPAPvJZAn8uVyIuISIOwOvbfXxgvGaM8H/esiZj5a4BQIu+ZGfra9sRjx3fC9sRj5ueEtu9/yCwi4aVPhSIizYxR+AOeb5/YX+guDu+ouwl2OTXcYYmISAtjJ3TGO+Z+rOSTMfyVuOf8FcfGGbiWvAVVJdiJXcAdA6YD3DHYielQtQ/XsqlgW+EOX6TVUzIvItKMOHIX4Jn9NIa3FCu+E77T78dO6R7usEREpKWKisc38i6CXYYDNu7Fr+PIW4wd0xYMo+axhoEdm4JZsCm0ll5EwkrJvIhIc2DbONd8hGvxq2AFCHboh2/0vdgxKeGOTEREWjqHC3/2tfh7X45tBzC8pZhlO+uudO+MCq2h95Y0fZwiUoOSeRGRcAt4cS34O871X4W+7HkO/mG3gNMT5sBERKTVMAyCPccR6D8eDAd4yzALNkGgquZxgSpwuMGTEJ44RaSaknkRkaOxLcw96zG3L8Tcs75h1wlWFOKe9SSOncvBdOIf+Mv9FeuNo54qIiLS0AKnnEeg82CwghDwhhJ6b2lop21jlBdgpXQPtakTkbBSazoRkSNozNY8RskO3HMnYVSVYHvi8A27FTu5WwNFLiIiUg+GiX/oBMzyvRgluRAMYhb+gB3bDoJ+iIrHP2C8uquINAP6v1BE5DAaszWPUbgZ9+ynMKpKsOLS8I55QIm8iIg0C1ZaNt4zHgx1UnF4MAJVmPu2Y8ck4R1zn/rMizQTGpkXEamLbeFaOvVga54D097dMdiudIziXFzLpuLt2P+4RyfM3atxL3gJgj6s5JPxDf81uGMb4U2IiIjUj5WWjbdjf8w9G3Cs/QTnzpXgjsEszsXqOEDLwUSaAY3Mi4jUwdy7EbNwU2haYQO25jG3L8Q978VQIp/aG9+I/1EiLyIizZNhYqVm4j/tt/gHXAWGgXP9FziX/1N95kWaASXzIiJ18ZaE1sgfrqJ8PVrzODbPxL3oVbCDBDsNxjdcFetFRCQCGAaBzPPw978KMHBu+Q7Xwil1t64TkSajZF5EpC6ehFDrnYC37v3H05rHtnGu/RzXincAm0C3MfgHXw+mVjqJiEjkCHYbjW/IDWA4cOQtwT33hcP/OykijU7JvIhIHay2PbCSu2OU7wXbrrnzeFrz2DbOle/hXPsZAIHMCwj0u1JrDUVEJCJZnQbhG34rONyYe3Jwf/8c+MrDHZZIq6RkXkSkLoaJP3s8RMVjFOeGPqhYQfCVh74+ltY8VgDXktdxbv4vAP6+PyOQdeHBRL4x+9eLiIg0Eqt9b7wj78J2xWAW/YDnuyehsijcYYm0OprjKSJyGFZaNt4x9x3sM19REOoz3z4L/4Cj9JkP+nAteBnH7lWhBwMDryOYPrR6d2P2rxcREWlsdnI3fKf9Bvec5zFKd+GZ9SS+kXdit0kNd2girYaSeRGRI6huzbN3Y6jYnSchNLX+SCPy/grc817ELNgIpgvf0AlYHfpW7z7Qv56qklC1fKcHAt7q/vXq4SsiIpHAjk/DN/pe3N8/h1G+B/esJ/GNuAM7MT3coYm0CppmLyJyNIaJ1S4Dq/MQrHYZR07kq/bh/u4ZzIKN2M4ofCPuqJHI1+pf744B0xHqX5+YDlX7cC2bqin3IiISEeyYFLyn/RYrIR3DV4p79tOYe9eHOyyRVkHJvIhIAzEqCvB89yTmvu3Ynjh8o+7BatuzxjGN1b9eREQkbKLi8Y26CyulJ0agCvecv2LuXB7uqERaPCXzIiINwNi3A/es/8Mo34MdnYzvtN/WPc2wEfrXi4iIhJ0rBt+I2wl26AuWH/eCl3BsmxfuqERaNCXzIiInyCj8Afd3T2NUlWDFpeEdfe/hCwA1ZP96ERGR5sThxj/0ZoLpw0LLypa8jmPjjHBHJdJiKZkXETkB5u7VeL5/FsNfgZV0Mr7T7oHoxMMe32D960VERJoj04F/4HUEuo8FwLXq3zjXfFz73zwROWFK5kVE6sncvgj3vBch6MNK7YVv5P+AO/bIJzVE/3oREZHmzDAI9LmCQNbFADjXf4lr+dsq7irSwPRpUUSkHhw/zMK96BWwgwQ7DcI3/NbDr4P/kQP9663ULAxvKca+HRjeUqz2WWpLJyIiLYNhEMg8D3//XwAGji2zcS2cAkF/uCMTaTHUZ15E5HjYNs71X+LM+QSAQLfRBPpdedwj6fXqXy8iIhJhgt1Ow3bH4F70Ko68JRj+CnzDbjnmB+AicnhK5kVEjpVt41z1b5ybvgEgkHk+gVMurN1i7ljt718vIiLSklmdBuFzxeCe/3fMPWtxf/8cvlNvA5LCHZpIRNMQkIjIsbACuJa8Xp3I+/v+lEDWRfVP5EVERFoRKzUL78g7sV2xmEU/4PnuSeyKwnCHJRLRlMyLiBxN0Idrwcs4cueHCtgN/CXB/VV6RURE5NjYyd3wjf4NdlQiRukugl89hlGWH+6wRCKWknkRkSMJ+kOJ/K4VYLrwDb2ZYJdh4Y5KREQkItlxHfGN/i12bCqU78X9/bOhdq0ictyUzIuIHI4VwLXwHzh2rwol8qfehtWxX7ijEhERiWh2TAreUXdjxHfEqCzCPfsZjIqCcIclEnGUzIuI1MUK4Fo45eCI/Km/xmqXGe6oREREIp9tYZblQ+ZZ2A4PRkUB7tnPQmVRuCMTiSgRVc3+pZde4qmnngLg3XffZcCAATX2l5WVMWnSJL7++mv27NlDamoq55xzDrfffjuxsbFhiFhEIpIVxLXoVRw7l4HpxDf8Fqx2p4Q7KhERkYhn5i3FtXQqZuEmLIKYlo0R8GJ79+GZ/QzeUXdDtKrcixyLiBmZX79+PZMmTSImJqbO/RUVFVx99dW89tprnHzyyfzyl7+kW7duvPLKK1x33XV4vd4mjlhEIpIVxLX4NRx5S8Bw4Bt6M1Zqr3BHJSIiEvHMvKV4Zk7EzF+D7YmHxHTs6GRsTIyirZgFG/F8/xxUFoc7VJGIEBHJvN/v54EHHiArK4uzzjqrzmP+8Y9/kJOTw4QJE5gyZQq//e1vmTJlChMmTGDlypW89tprTRu0iEQe28K15A0cOxbtT+RvwurQJ9xRiYiIRD7bwrV0KlSVYCd2AXcMhukAdwx2cldsdxxG+R6M0l14vn8WqkrCHbFIsxcRyfzkyZPZsGEDjz/+OA6Ho9Z+27Z57733iImJ4de//nWNfb/+9a+JiYnhvffea6pwRSQSHUjkty8IJfJDblSxOxERkQZi7t2IWbgJO7YdGEbNnYaBHZeK7YwC04FRtjuU0HtLwxKrSKRo9sn86tWrmTx5Mrfffjs9evSo85gtW7aQn5/PwIEDa03Dj4mJYeDAgeTm5rJz586mCFlEIo1t41o6tbqPvG/IDVhpA8IdlYiISMvhLYGgD5yeuvc7o8C28PW6tLoPvXv2s+Ata9IwRSJJs07mfT4f999/P6eccgo33njjYY/bunUrAF27dq1z/4HtW7ZsaeAIRSTi2TauZW/j2DYHMPANvh4rLTvcUYmIiLQsngRwuCFwmDpWgarQ/sST8I28CzsqAbM0D/f3z4KvvElDFYkUzbqa/XPPPceWLVv44IMP6pxef0BpaWgKTps2bercf2B7WVndT/YSEhIwzYZ9rpGUpCqc0nK01PvZtm2sha9j580Hlxtz5C1EdxsR7rCkEbXUe1laH93LEmnshCEEO2Rh71wJMfEY+6fau1wubNuGfUUYaf3w9BiCYZrYCf+P4PTHoTKfqEWTMc96AMNT92d9keaiqX83N9tkfunSpbzyyivcfvvtZGRkNOprlZQ0bIGNpKQkiorUJ1NahhZ7P9s2zpXv4dz8X8DAP/A6golZ0BLfqwAt+F6WVkf3skQqs/dP8ez9AfZsxo5NwRkdR6CyFKO8AKLi8fa6Aqv6c3k0xtBf4/7uGYz8jVjTHsU38k5w1d3ZSiTcGvp387E8GGiW0+wDgQAPPPAAmZmZ3HTTTUc9Pi4uDjj8yPuB7YcbuReRVsa2ca769yGJ/DUEuwwLd1QiIiItmpWWjXfMfVipWRjeUijOxfCWYrXPCm3/0TI3O64jvlF3YrvbYBZvwz1nEvgrwhS9SPPTLEfmKyoqqte39+lTd1uoK6+8EoC//e1vdO/eHTj8mvgD2w+3pl5EWhHbxrn6A5ybvgHAP2A8wS6nhjkoERGR1sFKy8bbsT/m3o3EuS0qfCZW2x5g1D3GaMd3wjfyLtyzn8Es2oJ7zl/xjbgDXNFNHLlI89Msk3m3280VV1xR575FixaxZcsWxo4dS3JyMp06daJr166kpqayZMkSKioqalS0r6ioYMmSJXTu3JmOHTs21VsQkebItnGu+Rjnxv8A4O//C4JdR4Y5KBERkVbGMLHaZWAmJWEdw7RkO6ETvpF34v7+WcyiH3DP/Su+U+8AV1QTBCvSfDXLZD4qKor//d//rXPfAw88wJYtW7j55psZMGBA9faf/vSn/O1vf+OFF17gt7/9bfX2F154gYqKCm655ZbGDltEmjnn2s9wbvgKAH+/Kwl2Oy3MEYmIiMixsBPTDyb0hZtxz/sbvlNvP3yrO5FWoFkm8/Vx4403MmPGDF5++WVycnLo1asXa9asYfbs2fTt25frrrsu3CGKSBg5136Oc900APx9f0rw5NPDG5CIiIgcFzuxC74R/4P7++cwCzbinvcCvuG3gdMd7tBEwqJZFsCrj5iYGN566y2uu+46Nm3axKuvvsrmzZu5/vrree2114iK0jQckdbKue4LnGs/A8Df5ycEu48Nc0QiIiJSH3ZSV3wj/gfbGYW5dz3u+S9A0BfusETCwrBt2w53EOHW0O1d1DJGWpJIv58d67/CteYjAPy9LiOYcXZ4A5KwifR7WeQA3cvSUpzIvWwUbMIzZxIEvVjtsvANvwUcGqGX8FFrOhGRBuTYML06kQ9kXaxEXkREpIWwU7rjHXE7ODyYe3Jwz38Jgv5whyXSpJTMi0iL5Nj0Da7VHwAQOOVCApnnhTkiERERaUh2Sg98p/4aTBdm/mpcC5TQS+uiZF5EWhzH5v/iWvkeAIGM8whknh/miERERKQxWG0z8J16G5guHLtX4Vr4D7AC4Q5LpEkomReRFsWxeSauFf8CINDzHAJZF4FhhDkqERERaSxWu0x8w28NJfS7VuBa9IoSemkVlMyLSIvh2Po9rhXvABDocRaBXpcokRcREWkFrNQsfMNuBsOBI28prsWvg+p8SwunZF5EWgRz53JcS6cCEOg+lkDvy5XIi4iItCJW+974ht0SSuh3LMK58j0l9NKiKZkXkYhnFGzCvXAKYBPsciqBPlcokRcREWmFrA598A28FgDn5v/i2PB1mCMSaTxK5kUkohn78nDPewGCPqy4jgTbZmLu3QC2Fe7QREREJAys9KH4+1wBgGvNRzi2zQ1zRCKNw1nfE30+H8uWLSMnJ4fCwkJKS0uJi4sjOTmZrKwsBgwYgNvtbshYRURqqizCPfevmKU7obIYR+lOHLnzweHGSu6OP3s8Vlp2uKMUERGRJhbscSZGVQnOjdNxLX0L290Gq0PfcIcl0qCOK5m3LItvvvmGf/3rX8ybNw+/P9TH0T5kLYqxf2qry+Xi1FNP5ac//Sljx47FNDUJQEQakK8cz5znMYu2YBRvw3a3wY5KBKcHAl7M/Bw8MyfiHXOfEnoREZFWKND7MgzvPhy583EveBnvqLuxk7uFOyyRBnPMyfwHH3zA888/z+7du7Ftm44dO9K3b19OPvlkEhMTiY2NpaysjJKSEjZv3syKFSuYOXMms2bNon379tx5551cdtlljfleRKS1CPpwz3sBY99OjLJ8bFcsdlLXg+vk3THYrnSM4lxcy6bi7dgfDD1QFBERaVUMA3/21RjeMsz81bjn/g3f6N9ix3UId2QiDeKYkvmLLrqIjRs30q1bN/7nf/6HCy+8kPT09KOel5ubyyeffMJnn33Ggw8+yGuvvcbHH398wkGLSCtmBXEtnIJZuBmsILbTgx3TtnbBO8PAjk3BLNiEuXcjVruM8MQrIiIi4WM68Q2dgPv7ZzGLtuCeMwnv6N9CdFK4IxM5Ycc0VOV0Opk0aRLTpk3j1ltvPaZEHiA9PZ3bbruNL774gkmTJmmqvYicGNvGtfyfOHatANOJ/5TzQ9udnrqPd0ZB0AfekqaLUURERJoXpwff8Nuw27THqCzEPeev4K8Id1QiJ+yYsusPP/yQs84664ReaNy4cXz44YcndA0Rad2caz/DsfV7wMA3+Hrs1N7gcEPAW/cJgarQfk9Ck8YpIiIizYynDb4Rd2BHJWCW5uGe92Logb9IBNNQuYhEBMfmmTjXTQPA3/8qrLRsrLY9sJK7Y5TvhUMKcQJg2xjlBVgp3bHa9ghDxCIiItKc2DEp+E69A9sZhVmwEdeiV9XKViJagyfzpaWlrFy5kj179jT0pUWklTLzluJa8S4AgcwLCHY7LbTDMPFnj4eoeIziXPCVgxUEX3no66h4/APGq/idiIiIAGAndMI/7FYwHDh2LsO1/J+1BwREIkS9PuHOnj2bBx98kDVr1tTY/uabbzJy5Eh+9rOfMWbMGB5//PEGCVJEWi9z73rcC6cANsGuowicckGN/VZadqj9XGoWhrcUY98ODG8pVvsstaUTERGRWqx2GfgGXw8YOLbMrp75JxJpjqvP/AHvvfces2bN4qGHHqretm7dOh5//HEcDgf9+/dn8+bNvPnmmwwdOvSE19uLSOtklOzANe9FsIMEO/bH3/+q2lXr2Z/Qd+yPuXdjqNidJyE0tV4j8iIiIlIHq9NA/N4rca14B+faz7A98Qdn/olEiHp90l2zZg1ZWVnExsZWbztQ3O6JJ57gnXfe4f3338flcvHPf/6zYSIVkVbFqCjAPXcSRqAKK6UH/sHXHzk5N0ysdhlYnYeE2tApkRcREZEjCJ48hkBmqDOOa/k/MfOWhjkikeNTr0+7e/fupUOHDjW2zZ07l/j4eC64IDQFNj09nSFDhrBp06YTj1JEWhdvGe45kzCqSrDi0vANuyVUlV5ERESkAQVOuZDgSaMAG/eiVzD3rg93SCLHrF7JvMPhwOs92AqquLiYDRs2MGjQoBq95JOTkyksLDzxKEWk5bAtzD3rMbcvxNyzvnYV2YAX97y/YZTtxo5OwjfidnDH1n0tERERkRNhGPj7/5xgh35gBXDNn4xRsiPcUYkck3qtme/UqRNLly7F7/fjcrmYPn06tm0zcuTIGscVFxeTmJjYEHGKSAtg5i3FtXQqZuGmUG9XhxsruTv+7PGhQnVWAPeClzGLtmC7YvGNuAOik8IdtoiIiLRkpgP/kBswvn8Os3Az7rmT8I2+FzsmJdyRiRxRvUbmzz//fAoLC7n66qv585//zP/93//hdDprFLqzbZvVq1eTnp7eYMGKSOQy85bimTkRM38NticeO74TticeMz8ntH3HElzLpmLmrwbThe/UX2PHdQx32CIiItIaONz4hv8aO64DRlUJ7jmTQi1vRZqxeiXz11xzDf369WP58uW89tprlJWV8Zvf/Ib27dtXHzNv3jwKCwsZNmxYgwUrIhHKtnAtnQpVJdiJXcAdA6YD3DHYielQtQ/3rIk4ts4Fw8Q3dAJ28snhjlpERERaE3cs3hH/gx2dhFG2G/fcv0HAe/TzRMKkXtPsY2JieOedd1i4cCGFhYVkZWXRtWvXGseYpsmDDz7I2LFjGyJOEYlg5t6NmIWbsGPb1W4tZxhgmjgKNmK164Vv+C1YHfqGJ1ARERFp3aKT8I24A/esJzGLfsC18B/4h90MZr3SJpFGVa+7csaMGTidTsaMGXPYY4YNG6ZReREJ8ZaE1sg7PbX3VRZjVBSCbRPoMpTgSSOaPj4RERGR/ey4jviG/xrP98/h2L0Klk3Fn31t7QEJkTCr1zT722+/nTfffLOhYxGRlsqTEGot9+Opat5SzJLtYAexPXEEu48LT3wiIiIih7BTuuMbciMYJo5t83Cu+TjcIYnUUq9kPjk5mYSEhIaORURaKKttD6zk7hjle8G2Qxv9lZjF20Kt6QwHwU6DsNr1DG+gIiIiIvtZHfvhH/ALAJwbvsKx6b9hjkikpnol80OHDmXFihXYBz6Ui4gciWHizx4PUfEYxblQWYRZuDk09d62sBPS8WdfDUa9fiWJiIiINIrgSSMJZF0MgGvle5jbF4Y5IpGD6vXJ+c4776SoqIjHH38cr1cVHkXk6Ky0bLxj7sNq2xOzaAuGrxwMk2CXYXhPvz/UZ15ERESkmQlknEvg5NMBG/fi1zEKNoY7JBGgngXwPvvsM8aMGcNbb73FtGnTOPXUU0lLS8Ptdtc61jAMbrvtthMOVEQin9WhL3ZiF+yKQix3NL4hN2F1ytaIvIiIiDRfhkGg708xqkpw5C3FPf/v+Mbcjx3bNtyRSStn2PWYK3/KKadgGMYxTbM3DIOcnJx6BddUioqKGvR6SUlJDX5NkXBpsPvZtnEtexvH1tng8OAdcy92fKcTv67IMdLvZmkpdC9LSxFx93LAi/u7pzBLcrHi0vCNvhdcUeGOSpqJhr6fk5KSjnpMvUbmn3jiifqcJiKtmGPzf0OJPAa+ITcokRcREZHI4vTgG34rnpl/wSzNw7VoCv7ht2qGoYRNvZL5yy67rKHjEJEWzNy9GtfKfwPg730ZVoe+YY5IREREWiTbwty7Ebwl4EnAatujYZPt6CR8w27G890zOHavwl79IYE+P2m464sch3ol8yIix8oo3Ylr4T8Am2CXUwn2OCvcIYmIiEgLZOYtxbV0KmbhplDHHIcbK7k7/uzxDVpo107qhm/gNbgXvYJz43+w4zoSPGlEg11f5FidUDIfCAT49ttvWblyJUVFRfTr148rrrgCgN27d1NUVESPHj1wOvXMQKRV8pXjnvciRqAq9I9p/6vAMMIdlYiIiLQwZt5SPDMnQlUJdmw7cHog4MXMz8Ezc2Koo04DJvRW5yEESnfhXDcN17K3sWPbYbXt2WDXFzkW9Z5zsmjRIs4++2zuuOMO/v73v/Pee++xePHi6v3Lli3jsssu45tvvmmQQEUkwlgB3Atewijfgx2djG/YzeBwhTuqerFsi82FOazYNZfNhTlYthXukEREROQA28K1dGookU/sAu4YMB3gjsFOTIeqfbiWTYUT+ffbtjD3rMfcvhBzz3qwLQKnXEgwbSDYQVwLXsIo39tw70nkGNRryHzjxo1MmDABv9/P1VdfzaBBg7jrrrtqHHPGGWcQFRXFV199xdlnn90QsYpIpLBtXCvexdy7HhwefKf+Gjxx4Y6qXlbvXshHOa+wrXgD/qAXl8NDl8SeXJp1Pb3bDwl3eCIiIq2euXcjZuGm0Ij8j2cAGgZ2bApmwSbMvRux2mUc//WPMH3fP/A6jPI9mCW5uOa9iG/0b8EV3UDvTOTI6jUy/8ILL+D1epk8eTK///3vOffcc2sd43a76d27d7NvSyciDc+x+VscWyK/cv3q3QuZvOARNhaspI07ng5x6bRxx7OxYCWTFzzC6t0Lwx3iYWk2gYiItBreklCS7fTUvd8ZFdrvLTnuSx+Yvm/mr8H2xGPHd8L2xFdP3zfzV+Mbfit2VML+CvevnNgMAJHjUK+R+fnz59OvXz9GjRp1xOPat2/P2rVr6xWYiESmUOX694DIrlxv2RYf5bxCma+EtLiuGPuf9Ee7YklzdiWvdAsf57xKVuogzGbWkkazCUREpFXxJIDDDQFvaIr9jwWqQvs9Ccd33R9P3z8w6u+OwXalYxTn4lo2Fe95E/ENuwXPd0+rwr00qXp9At23bx8dOnQ46nEVFRUEAoH6vISIRCCjdCeuRVNoCZXrtxStY1vxBpKjU6sT+QMMwyA5OpWtxevZUrQuTBHWLZJnE4iIiNSH1bYHVnL30Jp1266507YxyguwUrqH2tQdh+OZvm8ndcU38BoAnBv/g2PrnBN5SyLHpF7JfEpKCtu2bTvqcZs3bz6mpF9EWoADlev9lS2icn2Zrxh/0IvHGVXnfo8jCn/QS5mvuGkDO4IfzyaIdsViGo7QbIK4rpT5Svg451VNuRcRkZbFMPFnj4eoeIziXPCVgxUEX3no66h4/APGH3+/+eOcvm91HkIg83wAXMvexty74UTelchR1SuZHz58ODk5OcybN++wx0yfPp2tW7cycuTIegcnIhGiBVWuP6CNOxGXw4M3UFXnfm+wCpfDQxt3YtMGdgSROptARETkRFlp2aH2c6lZGN5SjH07MLylWO2z6t+W7tDp+3WpY/q+KtxLU6rXmvkJEyYwbdo0brvtNn7zm98wbty46n0lJSVMnz6diRMnEh0dzS9/+cuGilVEmqMWVLn+UF2TMumS2JONBStJc3atkRzbtk1hZT49U/rRNSkzjFHWdCyzCYqCe5rVbAIREZGGYqVl4+3YH3PvxtBouSchNLW+nrVtDkzfN/NzsF3pNWccHpi+3z6r5vR9wwhVuK/Yi1m8Dde8F/CNvlcV7qVR1OvO7t69O08//TSWZfHYY48xevRoDMPgo48+Yvjw4fzhD3/A5/Px5JNPkp6e3tAxi0gz0lIq1/+YaZhcmnU9bdwJ5JVuodJfjmUFqfSXk1e6hTh3Ipdk/apZFb+LxNkEkUwdA0REmiHDxGqXgdV5SKgN3Yn8O13f6ftON75ht+yvcL9TFe6l0dRrZB7grLPO4rPPPuO1115jzpw57NixA8uy6NChAyNGjOD666+nS5cuDRmriDQzNSvXXxqxlesPp3f7Idwy9JHqyvBFwT24HB56pvTjkqxfNbvK8JE4myBSqWOAiEjrcGD6fnWf+YqCUJ/59ln4B4w//PT96CRVuJdGZ9j2j0s+tj5FRUUNer2kpKQGv6ZIuBzufjZKd+GeNRHDX0mwy3D82ddGdMG7I7Fsiy1F6yjzFdPGnUjXpMxmNSJ/qAPV7Mt8JSRHp+JxROENVlFYmU+cO5Gbh/6/VptsNtTv5lrfY2cU3kDoe9zGncAtQx9ptd9jaRr6nCEtRUTdy7ZVr+n75vZFuBdNAcCffQ3Bk0Y0dqQSJg19PyclJR31mHp9Gv3oo49YsmTJUY9btmwZH330UX1eQkSaM1857nkvHFK5/hctNpGH0JT7k5Oz6NfhVE5Ozmq2iTwcnE3QI6UvZb597CrLpcy3j54p/Vp1It9Q1DFARKSVquf0favzYFW4l0ZTr2n2DzzwAJdddhkDBw484nH//ve/ef/997n00kvr8zIi0hxZAdwLXm5Rletbmt7th5CVOihiZhNEkuPpGHByclaYohQRkeYkcMqFGKW7cOQtwbXgJXxj7seObRvusKQFqPea+WNhWVatDzsiEsGqK9evC1WuH94yKtdHOl+giqKqvRRV7qF4/58lVQWUVBViGAYOw4nTdOIwnZiH/N1pOHGYLhymY/8xh/7diWmGtjlNJw7DGdpnunAYTtq440mJaY/DbNR/RpoddQwQEZHjpgr30kga9VNYbm4ubdq0acyXEJEmVKNy/eDrsRNaRuX65q4qUEFx5d79ifqP/9xDpb8sLHE5DCdtYzvSvk1nOrRJJ7VNZ9q36UxiVNsW+yD30I4B0a7YWvvVMUBEROq0v8K9Z+Zfqivc+4ffemLV9qXVO+Zk/q9//WuNr9euXVtr2wHBYJAffviBRYsWMWKEijyItARm/pqales79gtzRC1Hpb+cosq9lFQVUFS1h+LKg6PsxZV7qQyUH/Ua0c5YEqPbkhTdjsSotiRGtyXBk4xhmAQtP0E7QNAKErD8BKzA/q9D/wUsP0E7WP110A4cPO6QbUErQGD/vn1VhfiCXnaX5bK7LJcVzK2Oxe2Iov3+xL59m3Tat+lMapvOtHHHN+a38bAOFDA0yoPYXscJLTlQxwAREak3VbiXBnZcybxhGNi2jWEY5OTkkJOTc8RzUlJSuOeee044SBEJL6N0F66F/wBsgl2GE+wxLtwhRbRKfzmbC9ewsXAVGwtWUVSZf9Rzol1tqhP1pOi2Nf5MjG5LlDOmCSI/yLZtiqv27k/mt7OrLJf8sh3sLd+JL1hFbslGcks21jinjTuB1P2j+AeS/dTYTrgPM2W9IRzaQs4igInzhFrImYbJpVnXM3nBI+SVbqmzY8AlWb9SfQIREamTndQV38BrcS+agnPjf7DjOhA8aWS4w5IIdcyt6T788EMg9AHud7/7HYMGDeKKK66o81iXy0VqaioDBgzA7XY3XLSNRK3pRA4vMcZF5ccPYpTvwUo+Gd/Iu1Tw7jgFrSDb921iY8EqNhasZHvJJmxq/uqNdcdXJ+gJUSmHJO7tSIpq26gJb0MKWgH2VuyqTvIP/HekBxZJ0anVyX2HNl3okdKnzinsx+vHLeTaRMVRVlXaIC3k6uozf1JiBpdk/UodA6TR6XOGtBSt+V525nyGc93nYDjwjfwfrLYZ4Q5JTlA4WtPVq8/8Nddcw+jRo5kwYUK9AmtulMyLHIYVIH7JP/BtX44dnYz39AdU8O4YFVTsZmPBSjYVrmZT4Wq8gcoa+9vGdqRHcl96pPSha1Jmk4+sNzVfoIr88h01EvzdZbmU+UpqHWsaDron9yIrdTC9UgfXa3q+ZVs8MfO20HT4uNB0eJfLhd/vx7Zt8kq30DOlHw+M+Wu9R9EPTN9XxwBpavqcIS1Fq76XbRvXwn/gyFuC7YrFd/r92LHtwh2VnICISeZbGiXzInWwbZzL/0n0jnn4LRPv6HtV8O4IKv3l/FCUw4aClXVOnY92taF7ci96pvSje3JvEqPVkgagzLeP/LId7C7LJb9sO1uL15NfvqN6v4HBSUmZ9E4dQq/UQSREpRzTdTcX5vCXWXfQxh1fPcp/IJmH0M+rzLeP+0dPUgs5iTj6nCEtRau/lwM+3LOfwizehh3XAe/o+1ThPoKFI5k/oWr2gUCAb7/9lpUrV1JUVES/fv2qp97v3r2boqIievTogdPZuloXibQEji3f4dzyHbjcqlxfhwNT5zcVrGZj4UpySzZh21b1ftNw0CWxJz2S+9AjpS9p8V01aluHNu542iTH10io95bvZHX+QtbkL2bHvs1sKVrLlqK1fL7uTTrHn0yv9kPonTqElJj2h72uWsiJiEizd0iFe6N0F64lr+MfejO00I4w0vDqnWUvWrSI++67j507d1YXxfP7/dXJ/LJly7jrrrt47rnnOPvssxssYBFpfEbRD7hW/AsAc8BPVbl+v8KKfDYWrGRj4So2F66hKlBRY3/bmI70SAlNne+WdAoep56u10fb2I6M6XYxY7pdTFHlHtbkL2ZN/kK2FW9g+77NbN+3ma83vEv7Nun0aT+UXqmDSI3tXKOyvFrIiYhIRDhQ4X7Wkzh2LsfaOJ1gT+VOcmzqlcxv3LiRCRMm4Pf7ufrqqxk0aBB33XVXjWPOOOMMoqKi+Oqrr5TMi0QSbxnuBS+DHSSYlo3R+0IoLg53VGFT4S9jyY5ZLNrxLXsrdtbYp6nzjS8puh0jTzqXkSedyz5vEWvzl7A6fxGbi9ZUt8Wbsel92sZ0pFfqIHqlDqFTfDe1kBMRkchgWxgBH4G0bFybZ+Ja/SF2YlesdiqIJ0dXr2T+hRdewOv18tJLLzFq1Kg6j3G73fTu3fuo7etEpBmxLdyLXsGoLMKOTcWffXWNJKg12Vm6lXm501m+cy4Bywdo6ny4xXuSGJp+JkPTz6TCX8baPUtZvXsBGwtWsbdiJ7O2fMasLZ+REJVC79QhDO98Fjv3ba1uIWc64qj0l6uFnIiINAtm3lJcS6diFm6CgBfDV44BuGdNpOr8JyE6MdwhSjNXr2R+/vz59OvX77CJ/AHt27dn7dq19QpMRJqec+3nmHtywHThG3oTuFp2hfUfC1oB1uQvYl7udLYWr6/e3iGuC8PTx9G3/bAGnTqvauj1F+Nqw8C00xiYdhpVgQrW713O6t2LWF+wjJKqAuZs+xKANp54LDtIQcVuSrwFOAwXPVP6qYWciIiElZm3FM/MiVBVEqpiH+vB9ldi7l2PY9dKPP/9X7znPgGmao/J4dXr7ti3bx8dOnQ46nEVFRUEAoH6vISINDFz1yqc66YB4B8wvlUVvNvnLWLR9m9ZuOMbSr3FQGgUvnfqYIanj6NLYkaDz1Coq095l8SeXJp1vZLM4xTljKFfh1Pp1+FU/EEfGwpWsiZ/IWv3LKUqUEFSTDuifDHExcQzIHU052X+gijVMxARkXCxLVxLp4YS+cQuBwveedpgpfbC3LUSR+4CnKs+INDvZ+GNVZq1eiXzKSkpbNu27ajHbd68+ZiSfhEJL6OiANfiVwEIdBtNsMuwMEfU+GzbZlvJBublTmf17oVYdhCANu4EhnQey5DOZxDvOXpLkPpYvXshkxc8QpmvhOToVDzOKLyBKjYWrGTygke4ZegjSujryeVw7187P4igFWBT4WrW5C9idf4iAnhZnPcta/cu4dT0sxmWfladxfFEREQak7l3I2bhptCI/I8HC1xRWIldcJRsw5XzGVZKd6xOg8ITqDR79Urmhw8fzscff8y8efMYPnx4ncdMnz6drVu3Mn78+BMKUEQaWdCHa8FLGP4KrMSTCPS5ItwRNSpf0MvKXfOYlzudnaVbq7d3SezJ8PRx9E4dgqMRp7RZtsVHOa9Q5ishLe5gYbZoVyxpzq7klW7h45xXyUod1Cyn3EfS0gCH6SSjbX8y2vbngsxrWL9vCV+u/hdFlXv4z6Z/M2vLZwztPJYRJ53baA9uREREavGWQNAHTk/d+2PbYlfsBcuPe8mbeOM7YcdpgFRqq9cn1gkTJjBt2jRuu+02fvOb3zBu3LjqfSUlJUyfPp2JEycSHR3NL3/5y4aKVUQagWvle5jF27BdsaF18g5XuENqFIUV+czf/h+W7JhFZaAcAKfppn+HUxmWPo60+JOaJI4tRevYVryB5OjUWlP3DcMgOTqVrcXr2VK0rkbv9eYgkpcGuBxuRp18HqckDGHV7vnM2vIZu8tymb11GnO3fc3AtNMY1fWCI/auFxERaRCeBHC4IeAFdx31iQJV2NHJWCk9MCr24l7wd7xjHjh88i+tlmHbtl2fE//zn/9w7733UlVVVed+j8fDU089xZlnnnlCATaFoqKiBr1eUlJSg19TpDE4ts3FteQNwMB36m1Y7XvXOiaS72fbttlYsJJ5udNZv3c5NqFfd4lRbRmePo6BnUYT42rTpDGt2DWXZ7+/jw5x6ZiGo9Z+ywqyqyyXu0ZOpF+HU5s0tiM53NKAwsp82rgTImJpwKH3sm3brNu7jFlbPmVb8QYADAz6dBjGaSdd2GQPd0TqI5J/L4scqtXey7aFZ9p9mPk52InpNafa2zZGcS5W+yy8ZzyEZ+afMapKCHYajH/w9bWn5Uuz0dD3c1LS0WcN1nsu6VlnncVnn33Ga6+9xpw5c9ixYweWZdGhQwdGjBjB9ddfT5cuXep7eRFpZEbJdlzL/glA4JQL6kzkI1Wlv5ylO2czP/c/FFTsqt7eM6Uvw9LHkdG2f9imhrdxJ+JyePAGqupcr+0NVuFyeGjjTmz64A4j0pcG1MUwDE5pl80p7bLZUrSWmT98yoaCFazcNY+Vu+bRM6UfY7pdRNekU8IdqoiItDSGiT97PJ6ZEzGKc7FjU8AZBYEqjPICiIrHP2A8RCfiGzIBz+xncOxYhJV8MsHuZ4Q7emlGTmhhaKdOnfj973/fULGISFPxV+Be8BJYfqzU3gQyzw93RA2ioGI3s7dOY/nO7/EFvQB4nNEMTBvNsM5n0ja2Y5gjhK5JmXRJ7MnGgpWkObvWmGpv2zaFlfn0TOlH16TMMEZZUyQvDTgWXZNOoWvSKeTt28p3Wz9j1a75bChYwYaCFXRJ7MnorheR2XZAg3c0EBGR1stKy8Y75r6DfeYrCsDhxmqfhX/AeKy0bADslO74e1+Ga9W/ca16HyvpJOzkk8McvTQXalwoEslsC3PvxlAhFU8CVtsecLSRUdvGtfh1jPI92NHJ+Ab/KuKnbFUFKvh288fM3fY1QTvUDjM1thPD0s9iQMeRDdob/kSZhsmlWdczecEj5JVuCU1Zd0ThDYamrMe5E7kk61fNaoS7zFeMP+jF44yqc7/HEUVRcA9lvuKmDayBpcWfxJV9b+Os7lcwe8vnLMn7jm3FG3hr2dO0b5PO6K4X0qf9MBxm7eURIiIix8tKy8bbsf9RP8sFu4/FLNyMI28J7gUv4z3jd+CJC1PU0pyccDIfDAYpKirC5/Md9pi0tLQTfRkR+REzb+nBp7lBX+hpbnJ3/NkHn+bWxbHhaxy7VoDhwDd0ArgjtzWXZVss3jGT/2z6N+W+fQB0T+7DmG4X0S0pq9mOpPZuP4Rbhj5SXUyuKLgHl8NDz5R+XJL1q2a39jwSlwaciJSY9lzS63rO6H4Zc7Z+yYLtM9hdlst7q17kP5v+zaiTzmdg2mhcDne4QxURkUhnmFjtMo5yjIE/+xrMfTswynbjXjgF38j/OfoAjrR49S6A9/333zN58mSWLVtGIBA4/AsYBmvWrKl3gE1BBfAk0ph5S/HMnAhVJaEepU4PBLwY5XshKh7vmPvqTOjNPetwf/8cYOPv/wuC3U476ms11/t5c+EaPl/3FrvLcgFIielA/w4jSIlpT5wnqVm3TDsgUtq8WbbFEzNvCy0NiKu9NCCvdAs9U/rxwJi/Nsv4D6jvvVzpL2d+7n+Ys+0rKvylALRxJzCiyzkM6TxWveqlyTXX38six0v38vExSnfi+fYvEPQSyDiXQK9Lwh2SHCJiCuB99dVX3H333ViWRVJSEmlpacTE1NFWQUQanm3hWjo1lMgndjk4Rd4dg+1KxyjOxbVsKt6O/Ws+sa0swrVwCmAT7DKcYNdRYQn/RBVU7ObL9f8kZ89iAKKcMfRI7sOGwlW8u/JvEdUyzTTMiFhjHolLAxpStCuW00++hBEnncuSHTP5bus0SqoK+Hrjv5i55VOGp49jTNeLcB9mGYKIiEhDsOM64ssej3vRKzjXf4mV1A2rY79whyVhVK+R+YsuuohNmzbx6KOPcvnll2Oakf0BTiPzEknMPevxfHk/tie+7t6kvnIMbynec/9ycNqWFcA9+xnMws1Y8Z3wjb4PnMc2Rbih7+f6jkZX+sv59oePmbdtOkE7gGGYDO08lrQ2XXlt6cSIbpkWKerqM39SYkazXBpQl4a6l4NWgBW75jFry6fsKc8DICEqmQsyr6VX6qATvr7I0ehzhrQUupfrx7niXzg3/xfbFY1vzAPYbVLDHZIQQSPzW7duZciQIVxxxRX1OV1EToS3JLRG3umpe78zKlQR1VtycNPqDzELN2M7o/APvemYE/mGVlcyeLQRdMu2WLTjW2Zser96XXyPlD6clzGedrFpPDHzthbVMq05691+CFmpgyJiaUBjcphOstNGMaDjSHL2LOaL9f+kqDKft5c/yyntBnJB5tUkRbcLd5giItJCBfpcjlm0FbNoM64FL+Mbcy+ojkurVK9kvm3btsf0pKC+vF4vTz/9NKtWrWLr1q2UlPx/9u47vKoyW/z4992npZz0kISEFEqAAKEXRcZesCGIWFERe7vTnBlnfndmnLneO3ecfnUYK6KCDRQsWEEHxUaHACEQICEQSCC9nrbf3x9bUCCBEJKclPV5nnnO5Ox99lkHd3bO2u/7rlVFZGQkqampzJgxgylTpuBwOI56TW1tLY8//jgfffQRBw8eJCEhgUsuuYQHHniA8HBZzyi6EVeUdcH2e5oemfc3WttdUQAY+9Zi3/kJAL4xs1p+9/bbSvlmlYnhNVpWKf8EtpSs5slVjxw3gp5flsOTqx5pcgT92HXx8WG9uXTQjQyMG4FSil3lud26ZVpn1FWWBnQEpRRDEsaSGTecf+9+i5UF77Ht4Dp2lm/mgn7TOTPtYmxG6+rMdpV6CkIIIYLAsOMdfweuT/+AUb0Xx8ZX8I26pct3JxKnrlXfMiZPnszbb7+Nx+PB5WpmdPA01NXV8corrzB8+HDOPfdcYmNjqaqq4vPPP+dXv/oV7733Hs8888yR6f319fXMnDmT3NxcJk2axOWXX05ubi5z585l9erVLFiwoF3iFCIYzPgBmLH9MUpz0Y7Uoy/cWqPqyjATszDjB6Bq9uNc9xIA/sxLMHuPaNF7fL9SfoAALmwtqpTfbMzaZEnu3BaPoB+qP8AH219h28F11n72cM7vfzXj+5x/VHLUU1qmic7NYXNy0YAZjEiayFu5z1NYmccHO15h/f6VTB0ym9SoAad0vNbMYBFCCNHDhMbgG3c7zi/+gW3P15ixAwhknBXsqEQHa1Uy/+CDD7Jq1Sruuecefve735GWltamQUVHR7NmzRqczqOni/j9fm677TZWrlzJZ599xrnnngvAs88+S25uLnfeeScPPfTQkf3//Oc/88wzzzBv3jzuvvvuNo1RiKBRBr5RN+Fa8RiqsggdHmdNrfc3ourKICQS38ibwO/F+c1TEPBgxg/En3Vliw5/XKX8UDe6oRajNBfXisearZR/IgUVeS0aQc87uIGCym1HrYuf0OdCzu8/jTCH+7jj9rSWaaJzS3CncMfY/8e64s/4YMerlNQW8fSq3zO2z3lcPODaFlW9b80MFiGEED2T2WsQviFX4di6BMemVzGj+qBj0oMdluhArUrmQ0NDmTdvHtdffz2XXnopKSkpJCYmNtnTWSnFCy+8cErHNwzjuEQewG63c9FFF7Fq1SoKCwsBqy3SwoULCQsL47777jtq//vuu48FCxawcOFCSeZFt2Imj8Jzzs+/6zNfX2b1mU/MwjfyJszeI3GseQ5VW4IOicI79nYwbCc/cBOV8pVhO3ml/JM42Qi603BR3VjO8+v+F6fNmkWTGTecSwfeSII7pdnjZsQMIi0602qZZj++ZVp5QymZccPJiBnU4liFOB1KKcaknMPgXqOt0fniz1m99xNyS9dy2aCbyE48o8m/lXDqM1iEEEKIQObFGOW7sB3YhHPV03jO+xU4ZYlxT9GqZL6kpIRZs2ZRUFCA1po9e/awZ8+eJvdt7ktLa5imyeeffw7AwIFWle6CggJKS0uZNGnSce3xwsLCGD16NCtXrmT//v307t27zWIRItjM5FF4eo/AOJRvFbtzRR1Z127b+Sm2fWtB2fCOuxNCIlt0TONQPkb5TmtE/tjfXaXQ4XEYZTuttfSHK+W3wIlG0Ou8NRTXFNDgq8Mf8JEcmcFlA29iYPzJlwT09JZpovMKd0YwfehdjE7+AW/lPs+huv28njOHtfs+Y0rWLOLCEo97TUtnsEgNCCGEEEcohW/MrRif/gFVfwjH2nn4zrhP1s/3EK1K5v/whz+we/duJk6cyMyZM0lNTW2XPvNer5ennnoKrTWVlZV89dVX7Nq1i6uvvpozzzwT4MgIfUZGRpPHyMjIYOXKlRQUFEgyL7ofZRyXVKuynTg2vwGAb+g0dFz/lh+vFZXyW6KpEXRvoJHS2mJqvVU0+uuJcsVyTfY9TOhzwSkVDRuaOI57xj9yZI1xReAgDpuLzLjhXaZlmui+Bd/6xmTxwBn/zecFS1mx+212lm/m8a9+yTl9p/CDjMuxG98Vc5UaEEIIIVrFEYZ3/F24PvsTtpLN6Lz38A++PNhRiQ7QqmT+q6++Ij09nWeeeQabrQVTd1vJ5/PxxBNPHPlZKcXs2bP56U9/euS5mpoaANzu49fTfv/52traZt8nKirqSDG9ttKe1f6FaI5urCaw8QWwG6i0MwgZO/2UZsdoTyp+ZxioAMrxXUJxuHuE9njBGUZkr1TUKZ7jN4//IX9b8QsO1O4BBTWeSgKmH2/AS1x4Ir+68J+ckXHBKR3zsEkxFzNx0IXsPLSVGk8FEa4Y+scP6RbJYE+wcd9XvLbhX+wu23ak4FvfuMFcN/JeRqSc2abvFaxr89Vxt/GDQZNZtPFp8ko38Nmet9lWvoYZI+8ls9cwAJL9aYQ4wwjgx+U4PqGv93oIcYaRHJ8mf2OEnAOi25BzuY3ExGCad2F+9TSOnR9hSx+BSs4OdlQ9Tkefz61K5k3TZOjQoe2ayAOEh4eTl5eHaZqUlpbyySef8Le//Y0NGzbwzDPPNJvAn6qqqlMbZTyZmJgYKioq2vSYQpyUGcD55eMY1QfR7kQ8g6+ByspTO4YzAVdUulUpP9qqlO9wOPD5fFal/KoDmIlZ1DoT4BTP8bSwwUzPuptn1jxKRcNBTG0S6ghnVO/xXJd9P4OiRp/27028PYV4u7XGvqqybX+vRfs4tuBbtCsOj7+RrfvX8qeyn7ZpwbdgX5vthHBd1oPkxH7Ne3kL2FdRyN8/fZiRvScxeeANxDp6kxLRz5rBEnF8DYjSmmIy44YTa+stf2N6uGCfy0K0FTmX21jsMBwpE7AVrMT7yd+t9fNhscGOqsdo6/O5JTcGWjVsNWLEiGbXyLcHwzBISkrixhtv5Pe//z3r1q3jX//6FwARERFA8yPvh59vq8RfiM7Kvu0djEN5YHPhnXA3NDGyd1LfVsonJBJVWQTeOrQZAG+d9fPhSvmnOOKttWZV0XKW7XyDPlH9yE6cwN3jf8MfL3mNRy6YK1Phe6hjC76FOsIxlM0q+BaRQa23irdyn8fUZrBDbTNKKYYnnckPJ/6R8X0uQKHYsH8l//jyF6wv/pyrBt+G2xl1pI6EaQZo8NVRXFMgNSCEEEKclC97BmZ0GspXh3P1MxDwBTsk0Y5a9Y3gxz/+Mdu3b+f1119v63hOatKkSQCsWrUKgPR0q/1CQUFBk/sffr65NfVCdAfG/o3Yt38IgHfUTeiI1teHOFwp30zIQnlqoLII5anBTMxqVVu6el8tL2/8B29vm4ff9DIwbjgPn/MEVw6+lX6xWZKY9GCnUvCtuwl1hDMlaxZ3jf8NSRFpNPhqWbz1Wb4q+pBrs+9jQFw2td5qDtQWUeutJjNuOHeP/63c+BJCCHFiNie+8XehHWEYFQXYNy8KdkSiHbVqmv2OHTu4+uqr+e1vf8s777zDxIkTSUxMbHbd+dSpU08nxqOUlpYCVps6sJL0hIQE1q1bR319/VGF+Orr61m3bh19+vSR4nei21K1pTjWWe0f/f3Ow+xz+l/2v18pP8JpUu81jlTKPxW7yreycPO/qPFUYlN2Ls68jolpl7RplwvRdUnBN0iNGsC943/P10UfsXznGxRWbqeoaicT0yZzzdB78ATqu1VBQCGEEO1Ph8XhGzsb51f/xL77M3RMPwJpE4IdlmgHrUrmH374YZRSaK1ZvXo1a9asaXI/rTVKqVNO5vPz80lJSSE0NPSo5xsaGvjDH/4AwDnnnANYozczZszgn//8J3PmzOGhhx46sv+cOXOor6/nnnvuOaX3F6LLCPhwrH4W5WvAjOmHf9jVbXfsbyvlGzExmKe4/idg+lm+8w0+L1iKRhMf1ptrs+8nOTK97eITXd6JWhYCeAKNOGwu3M7ojg+uA9kMG2elX8rQhHG8m/cS2w6uY2XhUraUrmLakDulDZ0QQohTZiYOxT/oMux5S3FsfBkzJgMdcXxbVNG1tSqZv//++9t1ZO3999/n+eefZ8yYMaSkpOB2uykpKeGzzz6jsrKSsWPHMmvWrCP733HHHSxfvpxnnnmG3NxchgwZwtatW1m5ciXZ2dnceuut7RarEMFk37oEo6oI7QjHO/4OOIWWbu2lrL6E13PmsK96FwDjUs7j0oE34mxm9FX0XE21LDxMa015QymZccPJiBkUxCg7TnRoPDNH/pjc0nW8m/cCFQ0HeX7tH7hwwDWcnXGlzGgRQghxSvyDL8Moy8c4lIdjzXN4z/4Z2Bwnf6HoMpTWWgc7iGPl5OTw+uuvs379ekpKSqivr8ftdjNo0CAuv/xypk+ffmSa/WE1NTU8/vjjfPTRRxw6dIhevXoxefJk7r///pMWv2vrKppSmVN0BKNkC86vrNaN3gn3YvYe3i7v09LzWWvNhv1f8M62eXgDHkLt4Uwdcrus8RUndGw1e5ctBE+gkfKGUiKc0W26TrwrXZu9/kbeyXuR9cWfAzAofiTXDLunyRkMoufpSueyECci53IHaKjE9cmjKF8d/v4X4M++JtgRdVvBqGbfKZP5jibJvOhyGqutC7O3Bn/fc/CPuL7d3qol53ODr463t80j58DXAGTEDGbGsHuIColrt7hE97GlZDVLcueyp3LHkT7z6dEDuSrrtja9GdTVrs1aa9YWr+DdbS/iN33EhPbihuH/QXJkRrBDE0HW1c5lIZoj53LHMPZvwvmN1QnMe+YDmIlDgxxR9xSMZD74c3KFEKdGa5zrXkB5azAjktt2nXwr7Kncwes5c6hsPIRSBhf0u5qz+14pxbpEiw1NHEdWwhgKKvKo9VZKwbdvKaUYm3IuyREZvLLp/6hoOMjTq3/P5YNuZmzKuTLtXgghRIuYvYfj73sO9t0rcKx9Ac/5/wkhkcEOS7SBFn1T+tGPfsTOnTtP64127NjBD3/4w9M6hhACbDuXY5RuBcOBb9ztYHMGJQ5Tm3y6awnPrHmUysZDxIT24q5xv+bcflf1+CRMnDpDGfSLzWJ40pnSsvAYyZEZ3DfhvxjcazR+08dbuXN5c+szeAOeYIcmhBCii/APuxozIhnlrcG57kWQydndQou+LX311VdceeWVPPDAAyxbtgyv19uig3u9Xj788EPuvfderrrqKr755pvTClaInk5VFuHYsgQA37Dp6MjkoMRR2XCI59b8D8t3voHWJiN7n8X9ZzxKatSAoMQjRHcX6gjnphE/4uIB16JQrC/+nKdW/Y5D9QeCHZoQQoiuwOa0BoEMB0bpFmw7Pwl2RKINtGjNfE1NDXPmzGHBggX4fD7Cw8MZMWIE2dnZ9O3bl6ioKMLDw6mrq6OyspLdu3ezefNmNm7cSF1dHU6nk5kzZ3LPPfcQERHREZ/rlMiaedEl+D24/v0HVG0JgaTh+CbcAx0wzfbY83lzySqWbH2ORn89TlsIU7JuZWTvSe0ehxCnq7tcm3eVb+W1nH9S563GaQth+tC7pNBkD9NdzmUh5FzueLZdK3BsehWUDc85v0BHpwY7pG6j0xfAO3jwIIsWLWLRokXs27fPOkATycThQ/bp04cZM2Ywffp04uPjW/o2HU6SedEVONa9hG3Pl+iQKDzn/Se4Ttyloa0cPp+9/kaW5s1nbfEKAFKj+nPNsHuJC5OepaJr6E7X5mpPBa9t+ieFlXkAnJV+KRcPuBZbJ2hPKdpfdzqXRc8m53IQaI1j1VPY9m9EuxPxnPtLsLuCHVW30OmT+e/Lz89nzZo15OXlUVZWRm1tLW63m7i4OAYPHszYsWPp379/aw7d4SSZF52dsW8tztXPAgrvWT/E7NVxfbdjYmLYUrie13PmcKh+PwrF2X2v5Px+0yRxEF1Kd7s2B0w/H+W/zheF7wOQHj2Q64Y/QKTr5H/8RdfW3c5l0XPJuRwk3jqrK1JjJYG0ifhG3xzsiLqFLpXMdyeSzIvOTNWX4fz0v1G+BvwDL8E/ZGqHvbfWmg1ln7Nkw/MEtJ+okFiuGXYPfWOyOiwGIdpKd702by1dwxtbnsbjbyDcGcl12ffTL3ZIsMMS7ai7nsui55FzOXiMg3k4v/gHoPGOuwMzZUywQ+rygpHMS7lgITozM4BjzfMoXwNmTF/8g6/osLeu9VbzwvrHeHvzPALaz5CEcdx/xn9LIi9EJzMkYSz3Tvg9ie5U6rzVPL/2f1mx+23kXr0QQojmmL0G4R94CQCODQtQ9WVBjki0hiTzQnRi9u0fYJTvRNtD8I29DTpoWvuhuv08teoR8ss247A5uSprNjcMf5AwR8es0xdCnJr4sCTuHv9bRiX/AI3m4/yFzN/wVxp8dcEOTQghRCflH3w5ZkxflK8Bx5q5YAaCHZI4RZLMC9FJqbJ87NuWAuAffj06vFeHvO/uilyeWvU7KhoOEhuayE/P/TPj+pzXZLFLIUTn4bS5uHrInUwdcjt2w0HeoQ3M+ebXFFcXBDs0IYQQwaBNjIPbMfauxji4HbR59HbDjm/sbWh7CEb5LuzbPwhOnKLVpHqVEJ2Rtw7nmucBTSB1AoG0CU3uZmqTgoo8ar2VuJ3RZMQMwlCtv0e3cf+XvLnlGQLaT2pUf24a+ROSIlNlPZsQXYRSirEp55IckcErm/6PioaDPL3691w2aCbjUuSmnBBC9BRG8Xoc6xdglO+EgBdsTszY/vhG3YSZPOrIfjq8F74RN+Bc+zz2bUsJ9BqEjhsQxMjFqZBkXojORmscG15GNZSjw+LxDb+uyd22lKxmSe5c9lTuwBfw4LC5SIvOZGrW7FPuOa21ZsXut1m2cxEAQxLGMWPYPThsztP+OEKIjpccmcF9E/6LN7Y8xbaD63k793mKqvK5cvCtOG3SgkgIIbozo3g9rhWPQWOVNbPT7gK/B6M0F9eKx/Cc8/OjEnozdTyB0q3Yir7BueZ5POf9CpzhQfwEoqVkmr0QnYxtz5fYiteBsuEdNxscocfts6VkNU+ueoT8shzczkiSIlJxOyPJL8vhyVWPsKVkdYvfL2D6WZL73JFE/qz0S7lh+IOSyAvRxYU6wrlpxI+5eMC1KBTriz/nqVW/41D9gWCHJoQQor1oE8f6BVYiH50GzjAwbOAMQ0enQmM1jg0Ljpty7/t2SadqKMex4WWQIqpdgiTzQnQiqqYEx6bXAfBlXYmO6XvcPqY2WZI7l1pvFckRGYQ6wjGUjVBHOMkRGdR6q3gr93nMY9dFNaHRX89LG/7C2n0rUCiuHHwrlw68UabiCtFNKKU4u++V3DbmYcKdkZTUFjHn61+f0g0/IYQQXYdxKN8qnhzeC479PqcUOjwOo2wnxqH8o7c5QvCOnQ3Khq14HbY9X3Zc0KLVWpXML1myhHXr1p10vw0bNrBkyZLWvIUQPU/Ah2PNcxDwYsYPIpB5cZO7FVTksadyB7GhCccl3UopYkMTKKzcTkFF3gnfrqqxjGdWP3qkYv1NI3/MhNQL2+zjCCE6j36xQ7j/jEdJjx6IN9DIK5v+j6/2fBTssIQQQrQ1T5W1Rt7ezJIqe4i13VN13CYdk4Ev60oAHJteR9XITK7OrlXJ/MMPP8zChQtPut+iRYv45S9/2Zq3EKLHsW99C6OqCO0Ixzvm1uPvpn6r1luJL+DBZQ9pcrvLFoIv4KHWW9nsexVXF/LkqkcoqS3C7YzijrH/yeBeo5rdXwjR9UW6Ypg95pdHbtotzXuJ5TvfkH70QgjRnbiiwOYEv6fp7f5Ga7srqsnNgcyLMXsNgoDXalcX8LVjsOJ0tes0e9M0ZbquEC1glGzBvnM5AL7RN0NoTLP7up3ROGwuPP7GJrd7Ao04bC7czugmt28/tJFn1/wXNZ5KEsJTuHv8b0mJPH46vxCi+7EZdq4YdAsX9J8OwKe7lvD2tnktWpYjhBCi8zPjB2DG9kfVHTp+3bvWqLoyzLj+mPHNVKxXCu/oWWhHOEZVEfatS9o9ZtF67ZrMFxUV4Xa72/MthGg7J+vF2V48NTjWvQCAv+/ZmL1HnHD3jJhBpEVnUt5QetyImtaa8oZS0qMHkhEz6LjXrtr7CS9t+CvegId+MUO4c9yviQntmP71QojOQSnFef2mcuXgW1EoVu/9hNdz/onflNEXIYTo8pSBb9RNEBKJqiwCbx2YAfDWWT+HROIbeROcqJVxaDS+0bcAYN/5CUbJlg4KXpyqFreme+KJJ476edu2bcc9d1ggEGD37t2sWbOGiRMnnl6EQnSAlvbibHNa41z7AspTgxmRjH/Y9JPHqgymZs3myVWPUFxTQGxoAi5bCJ5AI+UNpUQ4o7kq67aj+s1rrfk4/3U+K3gXgFHJP2Bq1mxshnSnFKKnmpB6IWGOCBZtfpLNJato8NVz04gf4mxmCY8QQoiuwUweheecn3/33ba+zPpum5iFb2TLvtuavYfj73cu9l3/xrH2BTzn/yeERHZA9OJUKN3CxXKDBw9GKYXW+sjjycTFxfH0008zdOjQ0w60PVVUVLTp8WJiYtr8mKL9NNeLU9UdgpDI43pxtiVb/nIcmxeB4cBz7i/QkSktfm1TfebTowdyVdZtR/WZ9wW8vLnlaXJKvgHggv7TObfvVS1eAiPns+gu5FxuWn7ZZl7e+He8AQ8pkf24ZdRDhDsjgh2WOAE5l0V3IedyO9OmVbXeUwWuKGtq/YlG5I8V8OJc8RhG9T7MhCF4z3yg2ZpOou3P55iY5pfdHtbiZH7x4sWANcL3q1/9ijFjxnDNNdc0ua/D4SAhIYGRI0fidHb+XtWSzPdg2sT13s8xSrdavTi/f4HSGlVZhJmYhefSx07t4tcCqrII14o/gg7gG349gX7nnPIxTG1SUJFHrbcStzOajJhBR43I1/tqmb/hr+yp3IGhbEwbcgejkied0nvI+Sy6CzmXm7e3aicvrP8zDb5a4sN7M2vUz4kOjQ92WKIZci6L7kLO5c5P1ezH9ekfwPThGzadwADpfNScYCTzLZ5jO23atCP/f/HixZx99tlHPSdEV3QqvTjNXgPb7o39HpxrngMdIJA0nEDfs1t1GEMZ9IvNanJbWX0JL67/M2X1Bwixh3HjiB/SL3bI6UQthOim+kT1586x/8kL6x/jUN1+nlnzX9w66uckuFs+W0gIIUT3oyN648u+BsfGV3BsWYIZP9AaABOdQquGGl966SXuvPPOto5FiI53Gr04T4cjZxGqtgQdEoVv1M1tPmVpT+UOnlr1O8rqDxAVEsed434tibwQ4oQS3CncNe43xIf3pqqxnGfWPMreqp3BDksIIUSQBTJ+QKD3CNABnGvmNt/2TnS4dq1mL0Snd5q9OFvD2LcOW+FKQOEbcxu42rbjw5aS1cxd+7/U+2pIjuzLPeMfIdHdp03fQwjRNZnaZFd5LpsOfMWu8tzjWtJFhcRx59hfkxLZjwZfLXPX/oH8ss1BilYIIUSnoBS+UTejQ6JRtSU4Nr0e7IjEt1pdyjo/P59nn32W1atXc/DgQXy+plvaKKXYunVrqwMUoj0d7sVplOaiHanHr5mvK8NMzGq+F+epqi/HsWE+AP7MizF7Hd8+rrW01nxR+D4f7ngVjWZwr1FcO+w+qUwthACaLpqZFp3J1KzZRxXNDHdGMHvMw7y88f/YWb6Zl9b/hWuG3UN20oQgRi+EECKonOH4xtyG84u/Y9vzJYHEIZgpY4IdVY/XqmR+/fr13HbbbTQ2NgIQFRVFfLwUyhFd0Le9OF0rHkNVFqHD46yp9f5GVF1Zy3pxtpQ2ca59HuVrwIxOx591xekf81sBM8DSvJdYtXc5YLWcunzQzUcVwxNC9FxbSlbz5KpHqPVWWe0s7SF4/I3kl+Xw5KpHuGf8I0cl9C57KDeP+smRtnWv5/yTel8NE1Kl8JEQQvRUZq+B+Adegn37Bzg2LMAbk4EOiwt2WD1aq5L5v/71rzQ2NnLrrbdy7733Eh0d3cZhCdFx2qIXZ0vY897HKMsHmwvf2NnQRj3evf5GXsv5J3mHNqBQTB54IxPTLmlx67nmHK6Ur+oCaI/tuEr5QoiuwdQmS3LnUuutIjki48i1IdQRTrI9g+KaAt7KfZ6shDFH/Y7bDQfXZt9PqMPN6r2f8M62F6j31Z5Sa0shhBDdi3/w5RgH8zAqduNYMxfvpJ+AYQt2WD1Wq7KJzZs3k5WVxS9/+cu2jkeIoDCTR+HpPeL0enGegCrfjT3vPQB8I25AuxPa5LgNvjpeWPcYe6t3YTeczBh2z1Gja631/em4Jn4M7E1OxxVCdH4FFXnsqdxBbGjCcUm4UorY0AQKK7dTUJF3XHcMQxlMGTwLtzOST3ctYfnON6jz1nD5oJlHHetkbTKFEEJ0E4Yd39jZOD/9b4zyXdh3fIR/0KXBjqrHalUy73A46NevX1vHIkRwKaNt288d5vfiXPcCaJNAn3EE0tpm3Wmjv54X1/+JvdW7CHW4uXnkT0iLzjzt4x47HdcdEkFtY02z03GFEJ1brbcSX8CDq5n6GS5bCBWBg9R6K5vcrpTigv7TCXNEsDTvJb4u+oh6Xw3Th96FzbC3eC2+EEKI7kGHx+Mffj2OdfOwb1tKICkbHSXFloOhVbfNR48eTX5+flvHIkS3ZM9967s2dMOva5Njev2NvLj+zxRV7STUHs5tox9uk0T+2Om4oY5wDMNmTceNyKDWW8Vbuc8fVwFbCNF5uZ3ROGwuPP7GJrd7Ao04bC7czugTHufMtIuZMexeDGVj04GvmL/hb2wo/oInVz1CflkObmckSRGpuJ2RR27+bSlZ3Q6fSAghRLAFUscfaVfnWDsPTH+wQ+qRWpXM/+QnP2HPnj0sWLCgreMRolsxDm3HvvNTAKufvDP8tI/p9Tfy4oa/sKdyByH2MG4b8zDJkemnfVw4tem4QoiuISNmEGnRmZQ3lKK1Pmqb1pryhlLSoweSEXPy7hojek9k5sgfYzecbC/byD+++gXVnorvbv4pufknhBA9glL4RtyIdoRjVO/Dvu29YEfUI7Vomv2SJUuOe+7qq6/m0Ucf5f3332fixIkkJSVhGE3fG5g6derpxChE1+T34Fj3IqAJpE3ETBx62of0BjzM3/A3Ciq24bKHMmv0L0iOzDjt4x52utNxhRCdj6EMpmbN5slVj1BcU2BVs7eF4Ak0Ut5QSoQzmquybmvxGveB8SOYPeZh/vXNbymrLyHUEY7f9OGwOY/sc7K1+EIIIbqBkEh8I2/AufpZ7Ds+JNB7ODomI9hR9SgtSuYffvjhJivXaq1Zs2YNa9asaXa7UkqSedEj2Te/gaovQ4fG4su+5rSP5wt4WbDh7+yq2IrTFsKs0T+nT1Tb1q74/nTcUMfxswhaOh1XCNG5DE0cxz3jHzmytr0icBCHzUVm3HCuyrrtlNe2p0VnMnng9WwtXU3A9LGnagepkf1xfu9GoNz8E0KI7s9MGUOgeAO2fWtwrnsBz7m/hO/d3BXtq0XJ/P333y9taES315bVmI3SXOwFnwPgG30LOEJPKzZfwMvLG//BzvLNOG0ubh39M1KjBpzWMZtyeDpuflkOyfaMo37vD0/HzYwb3qLpuEKIzmVo4jiyEsa02XUuNSqT+PAUajwV+AJe9lTtoE9kf0IcYYDc/BNCiJ7CN+J6jEPbUTUHsOe+g3/Y9GCH1GO0KJl/8MEH2zsOIYKqTasx++pxrH8JAH/fczB7nV7i6zd9vLrpcXaUbcJhc3LzqJ+SHt0OVfdpejquYYugwVfXqum4QojOxVBGm015z4gZRL/YLLYf2kDA9NPob2BPVT59ovoRag+Xm39CCNFTOMPxjbwJ5zf/wp6/nEDvkei4/sGOqkeQb+Sixzvciq2tqjE7chahGirQ4b3wD512WrEFTD+vbnqCvEMbsBtObh75U/rGtO/a08PTcQfEZVPrrWZ/dSG13moy44Zz9/jfSqspIQTw3c2/SFcsNsOB0+bC1H4KK7ezp3KH3PwTQogexOw9nEDaGYC2WjL7PcEOqUdoVZ95IbqLY1uxHZ5WHuoIJ9meQXFNAW/lPk9WwpgWfSE1DuRg2/MVoPCOvgXsrlbHFjD9vJYzh20H12E3HMwc+WP6xQ5p9fFOxfen4ypXAO2xndZ0XCFE9/T9tfiFFXkcqq/Hb/ox7SbXZd8vN/+EEKIH8WXPwDiYh6o7iH3rEvxt1JJZNK9Vyfwtt9zSov0cDgfR0dFkZWVx+eWX07t379a8nRDt5lRasZ10aqq3Dsf6+QD4B1yAjmv9mvaAGWDh5n+xtXQ1NmXnxhE/ZEDcsFYfrzUOT8eNiYmhoqKiQ99bCNF1fP/mX1n9AZblL6LWV8WXRR8wJHEsMaG9gh2iEEKIjuAIwzdqJs4vH8e+69+YvUee9nJTcWKtSuZXrVoFWMnOsT1rD/v+tqVLl/L3v/+dhx56iFmzZrUuUiHaQVu2YnNsfBXlqUa7E/FnXdnqmExt8saWp9hcsgqbsnPDiP9gYPyIVh9PCCHa2+Gbf/1is8hKGMOzax7lUN1+nl/7R+4a92vcrqhghyiEEKIDmAlD8Gf8AHvB5zjWvYjn/P887ULQonmtmjO7fPlybrnlFmw2G1deeSX/+te/WLJkCUuWLOHJJ59kypQp2Gw2Zs6cycsvv8xPfvITXC4Xf/zjH1m5cmVbfwYhWu37rdia0tJqzMa+ddj2rQFl4B1za6tbcpja5M0tT7PpwFcYysb1wx9kcK9RrTqWEEIEg9sZyW2jf0F0SDzlDSXMW/8YDb66YIclhBCig/iHTUeHxaEaynFsfiPY4XRrrUrmN27cyPz583nqqaf405/+xHnnncfgwYMZPHgw5557Lo899hhPPfUUr7zyCsXFxdx1113885//RGvN/Pnz2/ozCNFqh1uxlTeUHjfL5HArtvTogSeuxuypwbHxFQD8mRejY/q2KhatNUu2PseG/V+glMF12feTlTC6VccSQohgigqJ47YxD+N2RnGgZg8vrv8z3mZumgohhOhitIlxcDvG3tUYB7eDNo/ebndZrZlR2Aq/wCjZEpQwe4JWJfPPPfccY8aM4ayzzmp2n7POOovRo0czd+5cAM444wwGDx7Mpk2bWhepEO3gcDVmtzOK4poCGnx1mGaABl8dxTUFJ6/GrDWODS+jvLWYkSn4B1/eqji01ryVO5d1xZ+hUFw77D4pHCWE6NLiwhKZNfrnhNrDKarKZ8HGf+A3fcEOSwghxGkwitfjeu/nuD74Ba5lj1iP7/0co3j9UfuZ8QPx9z8PwGrZ7JUZWu2hVcn8rl27SEhIOOl+CQkJ7N69+8jP6enpVFdXt+YthWg3x7ZiO1Bb1OJWbLa9q7Ht3wDKhm/0rWCcehkKrTXvbHuBNfv+jUJxzbB7yE6acBqfSAghOoekiDRuGf0QTpuLneWbeT3nXwTMQLDDEkII0QpG8XpcKx7DKN2KdkWiI1PQrkiM0lzr+WMSev+Qq9DuRFRjFY6chUGKuntrVQG8kJAQNm/ejNb6uArgh2mt2bx5MyEh3xUW83g8uN3u1kUqRDv6fjXmWm8lbmf0yVuxNVRi3/QqAP7Bl6GjU5vfV5sYh/LBUwWuKMz4AaAMtNYszZvPqr3LUSimD7uLEb0ntvGnE0KI4EmNGsBNI37Mi+v/zNbS1SzJfY6rh9zZ7PcHIYQQnZA2caxfAI1V6Og0OHwNd4ahHamoyiIcGxbg6T0CDn9/tjnxjr4V12d/wlb0DYHeIzCTpRZUW2pVMj9x4kTee+89/uu//ouf/exnhIYeXaGwsbGRP//5z+zZs4fLL/9u2nFhYaG0pxOd1uFqzC2iNc7181G+BszodPyZlzR/3OL1ONYvwCjfCQEv2JyYsf3xjryR92pz+broIwCmDrmDkb0ntcVHEUKITqV/3FCuG/4Ar2z6P9YXf47LFsrlg2a2KKE3tXlqN1qFEEK0OeNQPkb5TnR4r+8S+cOUQofHYZTtxDiUj9lr4JFNOrYv/syLse/4EMeGV/DEDQBXRAdH3321Kpn/yU9+wpdffskrr7zC0qVLmTRp0pEkff/+/axcuZLq6mpiY2P58Y9/DMDOnTvZvXs3t99+e9tFL0SQ2PZ8iVG6BQw7vjG3gmFrcr/D05ForLIufnYX+D2okq0s/+QnfBkdCSFRXJU1mzEpZ3fwpxBCiI4zJGEM04feyaLNT/F10UeEOsK5oP/VJ3zNlpLVLMmdy57KHfgCHhw2F2nRmUzNmi11RYQQoiN5qqxBKbur6e32EKgvs/Y7hn/w5RgHcjBqinFsfAXfuDuPvyFwWDOzWUXTWpXMp6Sk8Nprr/Gb3/yGr7/+mqVLlx63z5lnnskjjzxCSkoKAKmpqaxcuZKICLkTI7o2VV+GPWcRAL6sK9ERzcw2aWY6knaE8mEYrKjfj1Fdw+UjHmRcn/M6KnwhhAiakb0n0eir5928l/h012JC7GGclT65yX23lKzmyVWPUOutIjY0AZc9BI+/kfyyHJ5c9Qj3jH9EEnohhOgoriir9bLfA86w47f7G63trqjjt9kc+MbMwrXij9iK1xPYtwazz/HX7+Zms/pG3STT85vRqmQeIC0tjXnz5rFnzx7WrVtHaWkpYBW9GzVqFOnp6Uft73Q6iY+PP71ohQg2rXGsewnlb8SM7UdgwIXN7trcdKSPvXv5xFcMNgdX+d2MC03HbPYoQgjRvZyRdjGN/gaW7VzE+9sXEGIPZUzKOUftY2qTJblzqfVWkRyRcWQ6fqgjnGR7BsU1BbyV+zxZCWNkyr0QQnQAM34AZmx/jNJctCP16JF1rVF1ZZiJWdZIehN0dCr+QZdi3/Yujo2v4onLhNDoI9ubm816uLie55yfS0LfhFYn84elpaWRlpbWFrEI0enZdq/AOJQHhsOqXn+iL5FNTEda7tnLMu9eAK4M6cukBhNPE9ORhBCiOzun7xQa/HV8Ufg+S7Y+h8seyrDE8Ue2F1TksadyB7GhCcetq1dKERuaQGHldgoq8lpe60QIIUTrKQPfqJtwrXgMVVmEDo+zptb7G1F1ZRASiW/kTSf8buwfeAnGgU0YlXtwbFiA74z7rJsCrSmuJ4BWtqYToidStaU4tiwGwDd0Gtp9kvaM35+OBHzq3ceH3iIALnel8QMV0/x0JCGE6MaUUkzOvIExKeeg0SzM+Rc7Dm06sr3WW4kv4MFlD2ny9S5bCL6Ah1pvZQdFLIQQwkweZY2QJ2ShPDWo6n0oTw1mYlbLRs4N+7eDYTZsJZux7fnKevoUiuuJo7VoZH7JkiUAXHjhhbjd7iM/t9TUqVNPMSwhOhlt4lj3IgS8mPGDCPQ796Qv+f50pK9x8r5nDwCTXWmc40hGVRadcDqSEEJ0Z0oprsqajcffwOaSVSzY+A9uG/1z0mMG4XZG47C58PgbCXWEH/daT6ARh82F2xnd8YELIUQPZiaPwtN7RKuL1OnIZHxZU3BsXYw9ZyGBhKzTKq7X07UomX/44YdRSjFixAjcbveRn0/mcB96SeZFV2fLX24V47C58I2+ufkKnN/37XSkwk9/zeLarWBzcIErlfOJRlUWtWg6khBCdGeGMpgx7F48/kZ2lG3ixQ1/4fYx/4+MmEGkRWeSX5ZDsj3jqO8cWmvKG0rJjBtORsygIEYvhBA9lDKOaj93qgKZF2LbvxGjYhfOdS/iz5zc+uJ6PVyLkvn7778fpRQxMTFH/SxET6Bq9uPIfRsAX/Y16LC4Fr92f2Q8L8SEYZa7GeO3c0mDQtmt6Ui+kVKZUwghbIadG0b8By+s+xOFlXm8sP4x7hz7n0zNms2Tqx6huKbAqmZvC8ETaKS8oZQIZzRXZd0mxe+EEKIrUga+0bfg+vS/MQ5uQ/UecVrF9XoypbXWwQ4i2CoqKtr0eDExMW1+TBEkZgDnZ3/CqCzETBiK98z7WzYqD9R4Knlq1e+obDxERvQgZqddjd1X1+V6Zsr5LLoLOZc7twZfHc+v/V+KawqIConlzrG/Zl/17uP6zKdHD+SqrNt6dFs6OZdFdyHncs9m2/kpjpzXwebCO+QqXKuehsbqJovrdYVq9m19Ph8eSD+R065mL0R3Zt/xEUZlIdoRinfUTS1O5L0BD/M3/I3KxkPEhSVx48gfYTjc0oJOCCGaEeoI55bRP+PZNY9yqG4/89Y9xh1j/x+/POefFFTkUeutxO2MJiNmkIzICyFENxDody62/RswDm3HXrwOz9k/w7HhZWtpa32Z1WdeZrOe0Gkn85WVlWzZsoWKigqSk5MZPXp0W8QlRNCpqr3Yty0FwJ99HYSe/O4YWOs5F21+in3Vuwh1uLl51E8Jc7jbM1QhhOgW3M5Ibhv9C55Z/SiH6vczb/1j3D7mV9J+TgghuiOl8I26Gdcnj2KU5aN6j8Rz2WOtLq7XE7X6X6a8vJyf/vSnTJo0iTvuuIOf/exnLFy48Mj2hQsXMn78eNasWdMmgQrRoUw/jrUvgA4QSBpOIHX8yV/zrQ93vMrW0tXYlJ2bRvyQ+LCkdgxUCCG6l6iQOGaN+QVuZxQHavbw0oa/4PU3BjssIYQQ7UCHx+MbNh0Ax9a3ULUHMXsNxOwzziqyJ4n8CbXqX6eyspLrr7+epUuXkpmZyY033sixS+8vuugi6urq+PDDD9skUCE6kj3vfYzqvWhH+LcV51s2vX7V3k9YWfgeANOG3kFGzOD2DFMIIbql+LAkZo3+OSH2MPZU7uDlTf/Ab/qCHZYQQoh2EMiYhJkwBEwfjnUvgBkIdkhdRquS+SeffJI9e/Zw//33s3jxYn79618ft090dDSDBg1i9erVpx2kEB1JVRRg3/4BAL6RN0BIZItet6Msh3e2vQDABf2nM7L3We0WoxBCdHdJEWncOvpnOG0u8ss2s2jzk8cNHAghhOgGlMI7aibaEYpRsRtb/sfBjqjLaFUyv2zZMjIyMnjwwQdPuF9qaiolJSWtCkyIoAh4ca57AbRJIGUMZsqYFr2spLaIVzc9jtYmI3ufxbl9r2rnQIUQovtLjRrAjSN+hE3Z2Vyyik93LQl2SEIIIdpDaAz+7GsBcOS+i6raF+SAuoZWJfMlJSUMHnzy6cNKKWpra1vzFkJ0ONPUlH++lJp9B6j2RuDJvr5Fr6vxVPLS+r/i8TeQETOYqUNuR7VwWr4QQogTGxA3jClZswD4ZNebbCmRGX9CCNEdBVInEEgaDjog0+1bqFXJvNvt5uDBgyfdb8+ePcTGxrbmLYToUDmbNU/8zx5KVnxM/k7Nnz6/kd//KYyczSee0nlcC7oRP8RuODooaiGE6BnGpJzDxLTJACza8iTF1YVBjkgIIUSbUwrfyBut6fZVRdh2fhLsiDq9ViXz2dnZ5OTkUFRU1Ow+27ZtY9u2bdKqTnR6OZs1/5zjZ1jdfBx2k73GaA7YhrNjBzwxRzeb0B/bgu6WUQ91eAs609Ts3KXZsNF6NE1ZTyqE6J4uybyeAXHD8AW8LNj4N2q91cEOSQghRFsLicJ/uLr9tndRdYeCHFDn1qpkfubMmXi9Xh544AF27tx53PbCwkJ+9rOfobXmpptuOu0ghWgvpql5Y7FmiO1TMiKL8KswvvDMIDQUkpOhthbeXNx0kvz9FnQzR/yIuLDEDo09Z7Pm9/+tefR/NH/6q/X4+/9u/uaDEEJ0ZTbDxnXZDxAf1puqxjJe3vh3AqY/2GEJIYRoY4G0iZjxgyDgxbHhZZDip81qVTJ/9tlnc8cdd5CXl8cVV1zB5MmTUUqxcuVKpkyZwmWXXcaOHTu4++67GTt2bFvHLESb2V0AlXsPcVHiuyjgy8aradBRgNWNLiYWCgqt/b7v+y3orh56J+kxgzo07pzNmifmaLbvALcbeidZjyebTSCEEF1ZqCOcmSN/fKRl3du586TCvRBCdDffTrfHsGMczMVWtCrYEXVarUrmAR566CH+9re/MXDgQAoKCtBac/DgQbZv3056ejp//vOf+dGPftSGoQrR9mqqNRdFvYLL5mVfYCDbfGcetd3lBK8Pamq+e+7YFnQjek886fuY2mRXeS6bDnzFrvJcTG22OubDswlqaiElGUJDwTBo0WwCIYTo6uLDe3Nt9n0oFGuLV/B1UetaGLXldVkIIUTb0u4EfIMvB8CesxA8NSd5Rc9kP50XX3rppVx66aWUl5ezd+9etNYkJSWRmNix042FaK0kzypCwnPxBRysaLgROLoKvccLTgdERFg/t6YF3ZaS1SzJncueyh34Ah4cNhdp0ZlMzZrN0MRxpxzz7gIoLIS4WGv2wPcdO5ugf79TPrwQQnR6A+NHMHngDby//WXey5tPr/BkBsQNa/Hr2/q6LIQQou0FBlyIbe8ajOp9ODa/gW/MrGCH1Om0emT++2JjYxk+fDgjRoyQRF50HZ5a0g8tIiwUlpdeSmUg4ajNWkNFOWSkQ98MqwXdi+v/ckot6LaUrObJVY+QX5aD2xlJUkQqbmck+WU5PLnqkVa1WKqpsWYLuFxNb29qNoEQQnQ3E9MmMyr5B2g0r256nEP1B1r0uva4LgshhGgHhh3fqJsAha3oG4ySLcGOqNNpk2ReiK7IsXkRyldHTN8UcvwXUlwM9Q0QCFiPxcXWiPzV0xR+7WX+hr9R1VhGfFjvFrWgM7XJkty51HqrSI7IINQRjqFshDrCSY7IoNZbxVu5z5/y1M6ICGu2gMfT9PZjZxMIIUR3pJTiqqzbSI0aQKO/nvkb/kqDr+6Er2mv67IQQoj2oWP64u93LoBVDM/fzBfgHqpF0+x/+ctftvoNlFL8z//8T6tfL0R7MEq3Yiv6BlBEXjCT+7IcvLFYU1gIFT4rGR6YaSXyw4bCK5u+a0F386iftqgFXUFFHnsqdxAbmnDcCL5SitjQBAort1NQkUe/2KwWx943A9LTrWJ3yclHT7U/PJtgYKa1X2dkmprdBdbMgYgIK07DOPEMByGEaIrdcHDjiB/y5KrfcqhuP6/nzOHmUT/FUE2PVbTXdVkIIUT78Q+5Ctv+jaiGcuzb3j3Suk60MJlfvHhxs9sO/zFsrpqsJPOi0/F7cKxfYP3ffueiY/uSHQtDh9BkkvnB9lda1YKu1luJL+DBZQ9pcrvLFkJF4CC13spTCt8wFNOnWVXri4utNfIupzUiX1H+3WyCzpgg52zWR26aeL+9aZKeDtOnQfawzhevEKLzi3BFc9OIH/P06v9iR9kmPtzxKpcOvLHJfdvruiyEEKId2V34Rt6I86snsOcvJ5AyBh2TEeyoOoUWJfN/+MMfmnxea82vfvUrxowZwzXXXNOmgQnRXuzb3kU1lKNDY/BnTTnyvGGo4wrGnU4LOrczGofNhcffSKgj/LjtnkAjDpsLtzP6lD9D9jDFA/fR7GyCzpgYH26nV1NrFe9zuaylAofb6T1wnyT0QojWSY7MYPrQu3gt5wm+KHyfJHcao5InHbdfe16XhRBCtB8zcSiBlLHY9q3BseFlvOf8HIzTquXeLbToX2DatGnNbvvVr35FWlraCfcRorNQFYXY85cD4BtxAziaHp2B1rWg+76MmEGkRWeSX5ZDsj3jqCmdWmvKG0rJjBtORit71GcPU83OJuhsjm2nd/if4nA7veJiq53e0CGdM34hROeXnTSBktoi/r37LZZsfY748CRSowYctU97X5eFEEK0H9/wazFKczGqirDlf0Jg4MXBDinopACe6DnMAI4NCwBNIGUMZlJ2s7uW1Bbxysb/O6UWdMcylMHUrNm4nVEU1xTQ4KvDNAM0+OoorikgwhnNVVm3Nbu2s0XvYSj691OMHGE9dtZE+FTa6QkhRGtd0H86Wb3GENB+Fmz4O1WNZUdt74jrshBCiHbiisCfba2Xd2x7F1VbGuSAgq9T/rUqKSlh3rx5zJ49m3PPPZdhw4Zx1lln8eCDD7Jx48YmX1NbW8sf/vAHzjvvPIYNG8b555/PH//4R+rqTlzZVvQctp3LMaqK0I4wfNnXNrvf4RZ03kBji1vQNWdo4jjuGf8IA+KyqfVWc6C2iFpvNZlxw7l7/G97TD9jaacnhOgISilmDLuHRHcqtd4qFmz8B97A0ZWP5boshBBdVyD1DMxeg8D04dj4slX9uQfrlAsNXnrpJZ555hnS0tI466yziI2NpbCwkGXLlrFs2TL+8pe/cNlllx3Zv76+npkzZ5Kbm8ukSZO4/PLLyc3NZe7cuaxevZoFCxbgai6LED2CqjuII/ddAKsCZkhkk/t5A55TbkF3MkMTx5GVMIaCijxqvZW4ndFkxAzqdCM/WmsqK6H0IJSWWo/l5ZqYmAaU0kS4ISwcItwQHg7ucOsxLAxsthPf7Ph+O73Q0OO3Szs9IURbcdpDmDnyx/zrm99SXL2bxVuf5dph9x11U7arXJeFEEIcQyl8I27E9cmjGAfzsBV9TSDtzGBHFTSdMpkfPnw4L730EuPHjz/q+TVr1jBr1iweeeQRLrzwQpxOJwDPPvssubm53HnnnTz00ENH9v/zn//MM888w7x587j77rs79DOITkRrqy+l6cOMH9TsL7zWmsVbnjnlFnQtYSij07Q58vs1ZeXfJeylpVBaqjl40BodP5bD4cPna/6up1IQGqpxuw8n+Ar3cQm/JjHRmmqfkgLG974vSzs9IURbiwntxQ0jHuT5tX8k58DXJIb34dx+Ry+X6kzXZSGEEC2n3Qn4Bl+BY+ti7DlvEEgcBq6eOSLUKZP5iy9uupjB2LFjmTBhAitXriQvL4/s7Gy01ixcuJCwsDDuu+++o/a/7777WLBgAQsXLpRkvgezFX2DcXAbGA58I288ftH2t77Zu4yckm8wlI2bRvywxS3oOiuPR1N6EA4ehJLS75L28nIImE2/xmZAXDwkJih69YL4OHC5Qth/wE9dHdTWQl2dprYO6uqgvt5Kxuvrrf9ZK5eaTvxraqCiEg6VQUgIhIaAKwR8XoiOlnZ6Qoi21TcmiysG38Lbuc+zbOciEt2pZCWMDnZYQggh2kBgwAXY9q3BqCrCsel1fONuD3ZIQdEpk/kTsdvtRz0WFBRQWlrKpEmTCAsLO2rfsLAwRo8ezcqVK9m/fz+9e/fu8HhFkHlqsOcsAsA3+HK0O6HJ3fZW7eL9vJcBuCTzejJiBndYiKfL49Hs3Xf8KHtlVfOvcTohMQF69VIkJEBCL+vnmBiw249OUGNinFRUfP+57/5/IKBpaLCS/MMJvpXwf/dzTa2mrva76fX7D0BDPTQ2gqEgNAx694bKSqio1MREd54EWdrpCdG1je9zPiW1RXxTtIyFm+dw17jfkBSRFuywhBBCnC7Dhm/kTbhW/BHbvjUE0s7ATBwa7Kg6XIuS+ays5qehKaVYsmQJS5YsaXb71q1bWxXcsYqLi/nyyy/p1asXAwcOBKCwsBCAjIyMJl+TkZHBypUrKSgokGS+B3LkLEL56jAj+xAYcEGT+9T7anl10+MEtJ8hCeOYmHZJB0fZOvuKNV9/A+s3aLzepveJcEOvXpCQYCXtib2sn6OiaHVRv++z2awp9e4Trkb47n38fk1trSZ3G2zfAfv2WUl8XR28s1TzzlJITdUMH6YYNhTi4oKXKEs7PSG6h8sG3sTB2mJ2VWxlwca/c8/43xHu7JnTMYUQojvRMen4+5+PfedyHBtexnPBb8Des+qktSiZ16dRJfB0Xvt9Pp+Pn//853i9Xh566CFsNhsANd+Wv3Y3k00cfr62trbZY0dFRWEYbVv0JiYmpk2PJ76jTRNK89CNlaiQaEgYhGriv58u3kSgZD04nNjOvY/wuF7H76M1C7+eQ12git7Rqcw+6yFCHeEd8Clax+PRrF3n4/OVPgr3BI48n9DLICXFICnRICnJIDHRICnRRnh42ySZbXk+9+oFffvCZZdaP1dUmGzY6GfDRh/5OwMcOAAHDsBHyyC1j41RI+2MGmknMdHWZjG0xPYdfvburSUxQeF0Hv/vmJCgKdqrKSt3MzCzy01y6rHk2twz3XPOr/nbv3/OoboDLNn+DPec9VvsRtf+vZVzWXQXci6L06HPvJlA2VaoO0RI4TKMsTODGk9Hn88t+ku2bdu29o7jhEzT5OGHH2b16tVce+21TJ06tU2PX1V1gvnIrRATE0NFRUWbHlNYjOL1ONYvwCjfCQEv2JyYsf3xjboJM3nUdzv6Pbg+exLl8+Hvfz5+Iwaa+G/yWcG7bCz6CrvhYNqgu2ms9dJIM8PcQbR/v+abVbBug6ax0XrOZoNhQxUTxkP/fsePtHu9NDtifyo64nweOcL6X3WNZssWa3r7zl2wa7ePXbvhjcXQO8ma0p6dba3pb2/79mkaGjXR0eBrojCgYUBDI+zbV02veBmZ7wrk2tyzXZN1H0+t+h25+9ez4OvHmZI1K9ghtZqcy6K7kHNZtAUjazrOr56AnKV4YoegY/oGJY62Pp9bcmOg09+WNk2TX/3qV7z77rtMmTKF3/3ud0dtj/i2l1VzI++Hn29u5F50HUbxelwrHoPGKnR4L2sajd+DUZqLa8VjeM75+ZGE3p77NqqhHB0aiz9rSpPH212Ry8f5CwG4bNBMkiPTO+yztITPp9m4Cb5ZpSnc893zcXEwYZxi7Bhwu7tXEhkZoTjzDDjzDEVtrWZrrpXY5+dba+33H9B8tAwSeukjiX3vpLZZMnAsaacnRPeS6O7Dtdn3sWDD31i1dzmJ7j5MSL0w2GEJIYQ4TWbiUAKpE7AVfYNj/QK85z4MXXz2VUt16k9pmia//OUvWbJkCVdccQX/+7//e9x0+PR0KwErKCho8hiHn29uTb3oIrSJY/0CK5GPTvtuAbMzDO1IRVUW4diwAE/vEajKPdh3fgpgVa9vYu1Mrbea13PmoLXJyN5nMS7lvI78NCdUUmqNwq9dq2k4PApvwJAhijPGw4AB7ZO8djZut2L8OBg/TlFffzixh+07rCr9yz/VLP/UurkxfBgMGwZ9Utru36ZvhlW1fscOa4389w/bFdrpCSGON7jXKC4aMIOP8l9nad58eoUn0y92SLDDEkIIcZp8w6ZjHNiMUb0PW/4yAgMnBzukDtFpk/nvJ/KXXXYZjz322JF18t+XkZFBQkIC69ato76+/qiK9vX19axbt44+ffpI8bsuzjiUj1G+0xqRPzZZUwodHodRthOjNA/7ljcBTaDPuCarWpra5PWcOdR4KukVnsyUwbOCnhz7fJqczdYo/O6C756PibGS2XFjrVHrnioszJqJMHYMNDRA7jYrsc/brikrg09XaD5dYf17ZQ+DsydBZOTp/XsZhmL6NKtqfXExxMSCy2mNyFeUWyPynbWdnhCieT/IuIKS2r1sPPAlr2x6nHvH/47YsKY7nQghhOgiXBH4s2fgWDcPx7almMmjm+1i1Z20bdW3NnJ4av2SJUuYPHkyf/rTn5pM5MEahZsxYwb19fXMmTPnqG1z5syhvr6ea6+9tiPCFu3JU2WtkW+uQqU9BAJebLs+wajei3aE48ue0eSun+5azK7yLThsTm4Y/h847SHtGPiJHTyoeXep5r//V/Pq61YibxgwdIhi9izFwz9TXHCe6tGJ/LFCQxWjRyluvVnx2/9U3HSDYni2wumwyiJ89rnmsb9oln+q8flOrwBn9jDFA/cpMjOhrhYOlFiPAzPh/nuVtKUTogtSSjF1yO2kRPajwVfL/A1/xetvDHZYQgghTlMgdTxmr8Fg+nFsWGBNpezmlG6rcvNt6PHHH+eJJ54gLCyMW2655UhP+e+78MILj7TMq6+v54YbbmDbtm1MmjSJIUOGsHXrVlauXEl2djbz588nJKT5hK2tC29IMY+2ZxzcjuuDX6BdkeAMO34Hbx2qvgLtttbS+0bfQiDtzON221GWw4vr/oRGc82wexjZ+6wOiP5ofr9my1b4epVm587vno+O+m4UPiqq8ySJXeV89no1edthxWeaPUXWczExcNlkxfDs05t+b5rWjZaaGmtEvm+GtKPrirrKuSw6RlVjOU+u+i01nkpGJf+A6UPvCnZILSbnsugu5FwWbU3VHcS1/L/A9OEbNZNAesd915cCeN/at28fYCXpTz75ZJP7pKSkHEnmw8LCmD9/Po8//jgfffQR33zzDb169WL27Nncf//9J0zkRddgxg/AjO2PUZqLdqQet4BZ1R6yyrvbnJi9BhNIPeO4Y1Q1lrEw519oNONSzuvwRP5QmWbVKlizVlNbZz2nFAwepDhjAgwaKAni6bDbISwMzpoIGcWwYaM1Ur/gFc0XX8GVl0Nqn9b9+xqGon+/Ng5YCBFUUSGxXJd9P8+t+R/WF39O/9ghjOw9KdhhCSGEOA06vBe+rCtxbHkT++Y3CCQOg5CoYIfVbjrlyHxHk5H5ruG7avbV6PA4a2q9vxFVV2ZlxSGR6LB4POf/53FrZAKmn+fW/g97KnfQOyKdu8b9BofN2SFxe72aj5db078P/7ZFRsL4sYpx4yAmunMn8F3hfM7ZrHljsaawELw+q8p8nz7WCPrOXd+1lhs7WjH5ktNfTy+6pq5wLouO9+muJSzf+QZOm4v7zniU+LCkYId0UnIui+5CzmXRLswAzhV/xKgqIpA8Gt/4OzvkbYMxMt8p18wL0RQzeZTVfi4hC+WpQVXvQ3lqMOMHoN2J6JAofIOvaLLYxUf5r7Oncgch9jCuH/5ghyXy+Ts1f/s/zYrPrER+YCbcMlPxy58rLr5IdfpEvivI2ax5Yo5m+w5wu61WdW437NoF36yCKy6D0aOsf+c169puPb0Qons4p+8U+sZk4Q14eH3TP/GbvmCHJIQQ4nQYNnyjbgZlYCteh7F/U7Ajajedcpq9EM0xk0fRkJTNnt0fU1N3gIjwJAaU7cVevA4zKpXAgAuOe01u6Tq+KHwfgKuH3klcWGK7x9nQoFn6PqxabSWMUZFW5fOswZK8tyXTtEbka2oh5Xvt40JDrXZyxcXw0cfw6/8HE89QvP2utZ7+w4+s9n+XX8ppr6cXQnRthjK4Ztg9PPH1/6O4poCPdrzOZYNuCnZYQgghToOOTsXf/wLs+R/j2PQqnvhMcIQGO6w2J8m86FK2lKxmSe5c9lTuwBfwkOlXzKwxSYpIwznyYTCO7npQXl/KG1ueAmBi2mSGJIxt9xg3b9EseVtTXW39fOYZiksvgZAQSRjb2u4CKCyEuNgmOxYSEwsFhdZ+/fsp7r/XWkv//geayspv19N/CVde0fr19EKIri8qJJbpQ+9i/oa/8uWeD+gXO4TBvUYFOywhhBCnwT/4CmzF61H1h7Dnvo1/+HXBDqnNyTR70WVsKVnNk6seIb8sB7czkj7hKVxW66XOV81iXxGbvaVH7e8LeHl10+M0+utJjRrAJZnt+wtcU6OZ/7LmxflWIh8fD/fcqZh2lZJEvp3U1Fhr5F3NdCx0Oa3tNTXWz0opRo1UPPQTxcUXWu3sCgrh8X9qXl+oqa6WqfdC9FSDe41iYtpkAN7Y8jRVjeVBjkgIIcRpsTvxjbzR+r+7VqDKdwU5oLYnybzoEkxtsiR3LrXeKpIjMgh1hDO+qpIoE/yuSJaFmLyV+zymNo+85v3tL1NcU0Cow831wx/AZrTPRBStNWvWav78N82mHI1hwHnnKH78H4p+/SSJb08REVaxO4+n6e0er7U9IuLo551OxYUXWEn9Uevp/6xZ/omspxeip7o481p6R6TT4Ktl4eZ/HfU3RQghRNdjJmQRSJ0AaBzr54PpD3ZIbUqSedElFFTksadyB7GhCSil6OVpZFh1JQAr4xOICEuksHI7BRV5AGzc/yWr9i5HoZgx7B6iQuLaJa6KCs1zz2teX6RpaLDWaT94v+LSyQqHo2sn8qap2blLs2atj527NKbZ+RLcvhmQng7l5XBsXw6toaIcMtKt/ZoSHa24/lrFA/cp0tOsUfwPP9b86a+aDRs10uxDiJ7Fbji4bvgDOG0uCiq2sWL328EOSQghxGnyZc9AO93YDuXj+PpfGAe3Qze5WStr5kWXUOutxBfw4LKHYGjND8qsKfX54RHsDQ3HZQaoCByk1lvJwbpi3sqdC1hVigfGj2jzeExT8+VX8MFHGq/X6nF+0QWKH0wCu71rJ/FwdKu3QKAWm02Tng7Tp0H2sM7z+QxDMX0aPDFHU1xsrZF3Oa0R+Ypya0T+6mkKwzhxzGmpivvugY2b4L33rfX0L79q/TeW9fRC9CzxYUlMyZrFos1P8cnON+kbM5iMmMHBDksIIUQrGYe2o+oOYRzcirN0C2b+csy4AfhG3YSZ3LXro8jIvOgS3M5oHDYXHn8jQ2oqifV68Bg2vo6NB8ATaMRhc+GyhfHKxv/DG/DQL2YI5/e/us1jKSnVzHlS8/a7ViLfry/8+D8U552ruk0i//1WbykpBm437NhhJc05mzvXaHX2MGtkPTMT6mrhQIn1ODAT7r9Xtfjmg1KKkSOaXk//2kJNVVXn+txCiPYzsvckRvaehEazcPO/qPfVBjskIYQQrWAUr8e14jFUzQHMsF6Y7gS0KxKjNBfXiscwitcHO8TTIiPzokvIiBlEWnQmB0o3MubbKvHfxMTRaLOjtaa8oZQBsdlsKvmK0rp9uJ1RzMi+F0O13f0qv1/z6Qr45FNNIGAVXbvsUsUZ47tPa7OmWr0Zhjqq1dubizVDh3DS0e6OlD1MMXSIVbW+psYake+b0boYrfX0MG4sfPARrF2nWbtOk5MDl1wMk87qPv+9hRDNmzL4Voqq8imrP8CbW57hphE/kt99IYToSrSJY/0CaKxCx6Qf1fpIO8NQlUU4NizA03sEtGHO0JG6ZtSixzGUwdSs2UxuVAR8tRQ7bGwLC6fBV0dxTQERzmgG9xrFxv1foFBcN/x+IlzRbfb+e/Zo/u8JzcfLrEQ+a7Dipz9SnDlBdasvd6fS6q2zMQxF/37W6Hr/fiefWn8yUVGK62ZYo/4Z6dZ6+neWal59HSmQJ0QP4LSHcF32A9iUnW0H1/HN3mXBDkkIIcQpMA7lY5TvRIf3avKLrQ6PwyjbiXEoPzgBtgFJ5kWXkW1EcbErjTBnJO+HOzhQt5dabzWZccO5Ztjd5JR8A8CFA66hb0xWm7ynx6N5513NP5/UHCgBdzjceL1i1i1W8bTu5lRbvfUEaamKe+9WTLlSYRiwfoPmyac1lZWS0AvR3SVHpjN54A0AvJ/3MsXVhUGOSAghRIt5qiDgBXszX2ztIdZ2T1XHxtWGZJq96BpMP45Nr+B0RRMy6EpuSxtFrbcStzOaRHcqT616BL/pZWD8CM7OuLJN3nLHDmvKeXmF9fPoUYorL4fw8O6XxB/2/VZvoaHHb2+u1Vt3p5Ri0kRISoT5L2uK9lpr6W+eCRnp3fd8EELAGakXsbN8M9sOruf1nH9y34Tf47SHBDssIYQQJ+OKApsT/B5whh2/3d9obXdFdXxsbURG5kWXYNv5KarmANrpJjDkKvrFZjE86Uz6xgzm7dznKW8oISokjmuG3XPa097r661Wc8/MtRL56CiYPctqYdadE3k4/VZv3d2A/or/uF/ROwlqauGpZzSr18gIvRDdmVKKaUPuJNIVw6H6/byb91KwQxJCCNECZvwAzNj+qLpDTX6xVXVlmHH9MeMHBCfANiDJvOj8GipwbFsKgH/oNHCGH9n0ddHHbCldhU3ZuX74A4Q53Kf1Vtt3aP7yd82atRqlYOKZip/+WDF4UPdO4g+zWr0p3G6r2F19AwQCmvoG6+eWtnrrzmJjFffdY1XJDwRg4Ruat97R+P2S1AvRXYU7I5iRfS8Kxbriz9i4/8tghySEEOJklIFv1E0QEomqLAJvHZgB8NZZP4dE4ht5U5ctfgeSzIsuwLH5TQh4MGP6EUg788jzRVX5fLD9FQAmD7yB1KjTu6u2eo1m7jxNTQ0k9IJ771ZMnaJwuXpW4npsq7fiYrNVrd66M5dLMfNGuPhC69/iiy81z83T1NdLQi9Ed9U3Jotz+00F4K3c5ymrLwluQEIIIU7KTB6F55yfYyZkoTw1qOp9KE8NZmKW9XwX7zMva+ZFp2YczMO2bw2g8I24/kglynpfLa9ueoKA9jM0YTxnpF7U6vfQWrP8E/homZWIjR6lmD4NHI62S1pNU7dJ27SO8v1Wb+AGajp9zB1NKauFXVISvPq6ZudO+L8nNLfeDL17y7+TEN3RuX2vYlf5Vgor83gt55/cPe432Az5KiWEEJ2ZmTwKT+8RVtV6TxW4oqyp9V14RP4w+QskOi/Tj2PTqwD4+52Djk4FrOT7jc1PUdVYRmxoIlOHzG71OvlAQLPkLfhmtZXIn3+e4pKL2raPeM5mq5BeYaFVCd7psNalT59Gpx7ltlq9QUyMg4qKzhtnsA0bqnjgXnjhJU1ZOfzzSc3111rPCyG6F5th49rse3ni6/+kuHo3H+W/zqUDbwx2WEIIIU5GGZi9BgY7ijbX9W9HiG7LtvOTb4veReDP+q5C/aq9y8k7tAG74eCGEQ8S6gg/wVGa5/VqXlpgJfJKwbSrFJMvbtu+8TmbNU/M0WzfAW439E6yHnfsgCfmaHI2y7Ts7iApSfHg/YoB/cHrhRfnaz5ertHHFlsRQnR5USFxXD3kTgC+KHyfvEMbghuQEEKIHkuSedE5NVTg2PYeAP5h08BhtZMoqy/h/e2vUFcPmfbrqD+YhmmeesJUW6t5+lnN1lyNwwE336Q484y2HUk1TWtEvqYWUpKtVm+GYT0mJ0NtLby5WLcqftH5hIUpbr9N8YOzrPPo42Wa+S+DxyP/fYXobrISRnNG6sUAvLH5aao9FUGOSAghRE8kybzolBw5i6yid7H9CKSeAYCpTZ7891Ns2eahYGMWS+deyKP/o/n9f5/aCHdZmWbOU5o9RRAWBnfertplSvTuAigshLjYI0v9j1AKYmKhoPDwunTRHdhsiiuvUMyYrrDZrJkZ//yXpqxMEnohuptLMq+jd0Q69b4aFuU8ianNYIckhBCih5FkXnQ6RmkutuJ1WEXvbjiSCS/4fCnfbNtOfU0oSVV3kJykTnnK+t69VnJ16BDExMB9dysy0ttnbXNNjbVG3uVqervLaW2vqWmXtxdBNG6s4t67FBERcKAEHp+jyd8pCb0Q3YnD5uS67Ptx2lzsqtjKZ7vfCXZIQgghehhJ5kXnYvpxbHoNAH+/c9FRfQAortrDOzlv4PdDH++NRDjjT3nK+rY8zZPPaGrrrNfcf48iIaH9ipRFRFjF7jyeprd7vNb2iIh2C0EEUVqa4j/uV6T2gfp6eHauZuWXso5eiO4kPrw3Vwy+FYDlu96ksHJ7kCMSQgjRk0gyLzoVW/5yVG0J2hWBP+sKAAKmn3lfP0V9g59I/0giG84+6jUtmbK+Zq3mhRc1Xi9kDoB77lRERrZvtfG+GVbV+vJyODZ/0xoqyiEj3dpPdE9RUYp77lKMHqUwTXj7Hc2iN8Hvl4ReiO5iVO9JjEiaiNYmr+fMod5XG+yQhBBC9BCSzIvOo6ECR963Re+GTj9S9O7TXUvYX7sHfG6SamajOD4Jb27Kutaa5Z9qXl+kCZhWD/nbblWEhLR/2zDDUEyfZi0FKC6G+gYIBKzH4mJrRP7qaUp6t3dzDofiuhlwxWUKpWD1Gs1Tz2iqayShF6I7UEoxJWsWsaGJVDWWsWTrczIDRwghRIeQZF50GlbROy9mbH8CqeMB2Fu1kxUF72C3Q2TprQQaopt8bVNT1gMBzZtL4MOPrC9V551jJVV2e8clz9nDFA/cp8jMhLpaa/10XS0MzIT771Wdus+8aDtKKc7+gWL2LEVoCBTugcef0BTtlS/8QnQHLnso1w2/H5uys7V0Dav2Lg92SEIIIXoAe7ADEALAKN1qFb1TxpGid76Al0Wbn0Jrkwl9z2Dbpgns2GGtd/9+dfjDU9YHZn43Zd3r1bz8KmzNtXrIT7lCcdbE4CTO2cMUQ4dYSwBqaqwbDn0zkBH5HmjQQMWD98O8lzSlpfDk05rp06wZI0KIri0lsi8XZ17H+9sX8P72l0mPHkhSRFqwwxJCCNGNyci8CL6AD8em14HDRe9SAPg4fyGH6vcT4YpmStatLZ6yXlf3XQ95ux1m3hi8RP4ww1D076cYOcJ6lES+54qPVzxwr2JIlsLng1df1yx9XwrjCdEdTEy7hEHxI/GbPl7L+Sdef2OwQxJCCNGNSTIvgs6283DRu0j8gy8HYFd5Ll/u+QCAaUPuIMzhbtGU9fJyzZwnrR7yoaFWD3mZyi46m5AQxa03w/nnWefmis80b7+LJPRCdHFKKaYNvZMIVzQH64p5f/vLwQ5JCCFENybT7EVw1Zfj2PZt0bthVtG7Rn89b255GoCxKecyMH7Ekd1PNGV93z7N3HmamlqIjobbb1MktmPrOSFOh1KKyRdDfBwsfEPzxZcal8t6TgjRdbmdkcwYdi9z1/6B1fs+ZVjiBPrHDQ12WEIIIbohGZkXQeXYvAhMH2ZcJoE+4wB4P+9lKhsPERPai0sH3njca5qasr59h+ZfT1uJfO8keOBeSeRF1zB2jGLqVda5+smnmk//LaPzQnR1/WKHML7PBQAs3vqsTLcXQgjRLiSZF0FjlGzBVrz+26J314FSbDu4nrXFK1Aorh56Jy576EmPs3ad5vl5Vg/5/v3hnrvav4e8EG3pzAmKyy+1ztn3P9R89bUk9EJ0dZMzryc6JJ7KxkN8mP9asMMRQgjRDUkyL4Ij4MOxyfpy4+93HjoyhXpfLUu2PgfAxPTJ9I3JOuEhDveQf22h1UN+5AjF7bMUoaGSyIuu55yzFRd8u4Z+8VuadesloReiK3PaQ5g65HYAvilaxu6K3CBHJIQQoruRZF4EhT1/GaruIDok6kjRu3dy51HrraJXeDIX9r/mhK83Tc2St7/rIX/O2YobruvYHvJCtLWLL+JI54XXF2k2b5GEXoiubEDcMMamnAvAm1tkur0QQoi2Jcm86HCqvgx73vsA+IZNB0coOQe+JqfkG5QymD70bhw2Z7Ov9/s181+Gr77+tof8ldYUZaUkkRddm1KKKVdY6+hNExa8otm+QxJ6IbqySzKvJyokloqGUj7euSjY4QghhOhGJJkXHc6es9Aqehc/EDNlLNWeCt7e9gIA5/adQp+ofs2+VmvN4rdg8xarh/xNNygmBbmHvBCtZZqanbs0GzZaj6apUUpxzdUwPFsRCMALL2l2F0hCL0RXFeoI56qs2QB8vecjCiu3BzkiIYQQ3YW0phMdyjiwGdv+jaBs+IZfhwaWbH2OBl8tyREZnNv3qhO+ftknsHqNNSJ/802KrMGSyIuuKWez5o3FmsJC8PrA6YD0dJg+zWrBeP21Go8H8rbD8y9o7r4DUlLkfBeiKxoYP4LRyWezrvgzFm95lvvPePSEM9CEEEKIlpCRedFxAl4cOa8D4O9/HjoymbXFK9h+aCN2w8H0YXdjM5q/v7R6jebjZdYI5bSrJJEXXVfOZs0TczTbd4DbbbVTdLthxw54Yo4mZ7PGblfcMlPRry80NsIzczUlpTJCL0RXdenAG4lwRXOofj/LZLq9EEKINiDJvGg/2sQ4uB1j72qMg9ux7/jou6J3gy6nouEg7+XNB+DC/teQ6O7T7KG25VmjmADnn6c4Y4Ik8qJrMk3rXK6phZRkCA0Fw7Aek5OhthbeXGxNuXc4FLNuUaT2gfp6eOY5TVmZJPRCdEXfn27/ZeEHFFXlBzkiIYQQXZ0k86JdGMXrcb33c1wf/ALXskdwvfdTnJ/9BdVYhW/YNWi7ize2PI034CE9ehAT0yc3e6x9+zTzX9aYJowepbjkog78IEK0sd0FUFgIcbFwbM1GpSAmFgoKrf0AQkIUt9+mSEqE6moroa+qkoReiM7M1Ca7ynPZdOArdpXnYmoTgMG9RjGy91loNG9ueQZfwBvkSIUQQnRlsmZetDmjeD2uFY9BYxU6vBfYXajyXShPNVRpUAZf7vmQgoptOG0urh56J4Zq+r5SRYVm7jyN1wsD+sM1VyNV60WXVlNjrZF3uZre7nJChc/a77CwMMUds+FfT2vKyqyE/p67wO1u/nfBNDW7C6zjRERA3wwwDPndEaK9bSlZzZLcueyp3IEv4MFhc5EWncnUrNkMTRzHZYNmkl+2mYN1xXy6awkXZ14b7JCFEEJ0UTIyL9qWNnGsX2Al8tFp4AwDbx3K34h2hKLtLirWPcPH+dba+cmZNxAXltjkoerrNc/OtaYj906yCt5JH3nR1UVEWMXuPJ6mt3u81vaIiKOfj4xU3HW7IjoKSg/Cs89rGhqaHqHP2az5/X9rHv0fzZ/+aj3+/r+ttfhCiPazpWQ1T656hPyyHNzOSJIiUnE7I8kvy+HJVY+wpWQ1YQ43U7JmAfB54VL2Vu0KbtBCCCG6LEnmRZsyDuVjlO+0RuSVstbN1xQDoMPj8bsTeL3sa/yNlWTGZTOuz/lNHsfn08x7UXPwEERHwexZitBQSeRF19c3w6paX14O+pjcWmuoKIeMdGu/Y8XEKO68XeEOh+Jiq8q9x3P0QVpSXE8I0fZMbbIkdy613iqSIzIIdYRjKBuhjnCSIzKo9VbxVu7zmNpkSMJYshMnoLXJ4q3P4Dd9wQ5fCCFEFyTJvGhbnioIeMFuzSFWdQch4APDjg5P4FNdzl6znlBlY+qQO5qcMq+15tXXrXXDoSFWIh8VJYm86B4MQzF9msLtthLy+gYIBKzH4mJrRP7qaarZKfG9einuuF0RGmL9jrw4X+PzWQn6qRTXE0K0rYKKPPZU7iA2NOG4v21KKWJDEyis3E5BRR4Alw++hXBnJCW1e1mx++1ghCyEEKKLk2RetC1XFNic4Pdg+jzU1xRTbXrZGxZJkdnAcs8eUAZX9r2GqJDYJg/x7lJrdNFmg1tuViQlSSIvupfsYYoH7lNkZkJdLRwosR4HZsL99yqyh534nE/ubRXFczphRz4seAX8fn3KxfWEEG2n1luJL+DBZQ9pcrvLFoIv4KHWWwmA2xnJFYNuAWDF7ncori7sqFCFEEJ0E1IAT7QpM34AZmx/tpSs5qC3gni/l102k8W+Shr9AWJMONOdSfaga5p8/ecrNZ9/YY0aXjdD0b+fJPKie8oephg6hFYXqUtLU8y6BebO02zN1Sx8QzF4kD7l4npCiLbhdkbjsLnw+BsJdYQft90TaMRhc+F2Rh95LjtpAjkl37C1dDWLtz7DPeMfwWbIVzMhhBAtIyPzom0pg/UZo1gS2E+stxEDyAlx4cVHmdnAHrz0H3QNyrAd99KNmzTvvmcl8pdfqhg5QhJ50b0ZhnXDauQI6/FUq80P6K+YeaPCZsD6DZrVa8BhP/XiekKI05cRM4i06EzKG0rRxxTE0FpT3lBKevRAMmIGHbVtyuBbCXW42V9TyGcF73ZkyEIIIbo4SeZFmzK1yZLSz5lguggxHGx3KEpooEb7CVEOQkJi+LBi3ZGeu4ft2q15baFGa5h4puLsHwTpAwjRxQzJUlx3rUIpyM8HpxPKyk69uJ4Q4vQYymBq1mzcziiKawpo8NVhmgEafHUU1xQQ4YzmqqzbjmvF6nZFccWgmwH49663OFCzJxjhCyGE6IIkmRdtqqAij8j9m0khBE9oFKuSB7DPFYp2uomMSicpesBRBYAASko1L7yk8fth6BDFlCukl7wQp2LkCKuoHgpsNjDN1hXXE0KcnqGJ47hn/CMMiMum1lvNgdoiar3VZMYN5+7xv2Vo4rgmXzc86UwG9xpNQPt5c+uzBMxAB0cuhBCiK5KFWaJN1deXcFZNLYbhYl10LEWBGrxK47CFkhDeBwVUBA4eKQBUXa2ZO0/T0ADpaXDj9S1fMyyE+M74cQqPB95Zag3JG4ZVVK/CZ02tH5hpJfInK64nhDg9QxPHkZUwhoKKPGq9lbid0WTEDDpuRP77lFJMyZpFQcU2iqt380Xhe5zd98rj9jO1SUFFHqougPbYTnpcIYQQ3Zsk86JNpRRv5aBWlNkMVrtsVFYfAiApIg2bYaPBV3ekAJDHo5n7gqaiAuLjYdYtCodDEg0hWusHkxSNHvh4mQYNl1xkFco71eJ6QojTYyiDfrFZp/SaSFcMlw2ayZtbnmb5zjcZ3Gs0Ce6UI9u3lKxmSe5c9lTuwMSPgZ206EymZs1udsRfCCFE9ya3c0WbUXUHSdq/lVB7OEtdJsV1RQDEhMYT7ow4qgBQn8hBzH9ZU1wM7nC4fZYiPFwSDSFO14Xnw9mTrCn3X3wFdjutKq4nhOh4o3pPIjNuOAHtZ/HWZ47Ul9lSsponVz1CflkObmckyZHpuJ2R5Jfl8OSqR9hSsjrIkQshhAgGSeZFm7FvWYzSASLTziLfATWeShSKuNDEowoATRl8G0uWKPK2W9N/b5uliIuTREOItqCU4vLLYMI4hdbw6uuagwf1yV8ohAg6pRRTh8zGZQ+lqGonXxZ+YBWWzZ1LrbeK5IgMQh3hGIaNUEc4yREZ1HqreCv3+eMKywohhOj+JJkXbcI4tB1b8XpA4R1+LXHhvQl3RhLmiKC0rvioAkDFm8eyZq1GKbjpRkVqH0nkhWhLSimmXgX9+oLXCy8u0Hg8ktAL0RVEhcRx2cCbAFi28w3WF69kT+UOYkMTjisOq5QiNjThuMKyQgghegZZMy9Onzax5ywCwJcxibf2fkC4M4LLBs4kw3Yph2qq6BUZzcShg1i/3mDZciupmHaVImuwJPJCtAebTXHjDfCPxzUlJbD4LbhuhpZOEUJ0AaOTzyan5GvyyzbzwY6X8fobcYUlNLmvyxZyVGFZIYQQPYck8+K02fZ8hVFVhHaEsjomjoLt71Nf6yBv1S38e3c83m+raS+JgcZGjdsN55+nOGOCJBVCtKfICMVN18PTz2nWrddkpCvOmBDsqIQQJ6OUYmrW7fzfVw9TVleCz/Ti8TcS6gg/bl9PoPFIYVkhhBA9i0yzF6fH14h961sAVPc/j/d3L6G6BkpWT6MgLx63G3ongcMBmzfDrt2Q3Nuqsi2EaH/9+ikuvcS6cfbWO5qivTLdXoiuIDo0nsmZNxDqDCdg+jlYV4zWR//+fr+wbEbMoCBFKoQQIlgkmRenxb7jA5SnBh3ei/f8xdR7a6nY2wdz3yWkJENoKPj9cPAguFxgM6CiArTkE0J0mLN/AEOHKAIBmP+ypr5efgGF6ArG9Tmf/jFDSXCn4PE3sq96Nw2+OgJm4KjCsldl3Sb95oUQogeSK79oNVV3CHv+cgC2p49h7f6V1DeA3jGL+Bg7SkEgAEV7wR8AVwikZ8CeIthdENTQhehRlFJcew3ExVk30159neNG+IQQnY9V3f52YsMSSIpIJTYsgVpvNfurC48qLCt95oUQomeSNfOi1exbFoPpxxuXyZJDXwLQP+xcSqszcSWBaVqJvNdr9bpO7QOGAVVVUFMT5OCF6GFCQxUzb4Q5T2q25Wk++bfigvOCHZUQ4mRiwxK4eMB1LM17CYfNxS0jHyIqKgrtsZERM0hG5IUQogeTvwCiVYxDO7AVrwMU/46N5WBdMeHOSM5LvxanAzweKCmBhgYrgU9LtdbNe7xWMbyIiGB/AiF6npRkxdQp1vr5jz7W7MiX0XkhuoIzUi8iPXoQvoCHdfs/Z1TKJPrFZkkiL4QQPZz8FRCnTmvsOQsBKE3J5pMDnwNw6cAbyBrgJj0diouhstLavU+KtV5ea6goh4x06JsRnNCF6OnGjVWMG6vQGl55VVNVJQm9EJ2dUoqrh96J3XCyq3wLXxV8FOyQhBBCdAKSzItTZiv6GqOqCNPmYjHl+E0v/WKGMCLpLAxDcdGF0NAIjY3WCHxICNQ3WAl+RARcPU1hGNKWTohgmTrF6ipRWwcLXtH4/ZLQC9HZxYUlctGAGQC8tfkFqj0VQY5ICCFEsEkyL06N33OkFd2G3v3ZUbkNm7IzJWsWSikCAc2GDZCeBgkJ1pT6AyVQVwsDM+H+exXZwySRFyKYHA7FzJsUISFQUAgffBjsiIQQLXFm2sWkRvXH42/gg+2vBDscIYQQQSYF8MQpsW//ENVYRX1IFO/U5QFwdt8riQ/vDcCy5VC4B3r1gkd/B5VVipoaa0S+bwYyIi9EJxEfZ1W4f3G+5rOVmvR05EabEJ2coQyuHDyLZ9f9F5sOfMXYlPPoF5sV7LCEEEIEiYzMixZT9WXY85cB8H50BDXeKuLCkjg74woAdu7SfPJva7ru9GmKuDiD/v0UI0co+veTqfVCdDbDhirOOdv6vXx9kebgQZluL0RnlxyZwcS+lwDwzrZ5BEx/kCMSQggRLJLMixazb1kCpo/CyHi+rrFG5a8cfCsOm5O6Os0rr2m0tgpsjRguibsQXcHki61ZMx4PzH9Z4/VKQi9EZ3f5kJsIc0RwsK6Yr/ZIMTwhhOipJJkXLaLKdmLbt4aAhkW2ajSaEUkTGRA3DK01C9+A6mroFQ9Trgh2tEKIlrLZFDfdoIhww/4DsPgt0FoSeiE6szCnm0syrwfgk11vUtVYHuSIhBBCBIMk8+LktMbxbSu6L2Ki2e8tJ8QexqUDbwTgq69ha67GZoMbb1C4XDIqL0RXEhmpuPEGhVKwdp1m1epgRySEOJnRyT8gNWoA3oCHD3ZIMTwhhOiJJJkXJ2UrWoVRWUiFofjAtx+AizOvw+2KYv9+zbvvWaN4l1+mSEmWRF6Irqh/P8Xki63f37fe0ezbJ6PzQnRmSimuHDwLhSLnwNfsKt8a7JCEEEJ0MEnmezptYhzcjrF3NcbB7aDNo7f7Pdi3LgbgrXADLwFSowYwLuU8vF7Nglc1fj9kDVacdWYQ4hdCtJlzz4EhWQq/H15coKmvl4ReiM4sOTKdCakXAvDOthekGJ4QQvQwksz3YEbxelzv/RzXB7/AtewR6/G9n2MUrz+yj33HR6jGKrbaAmwOVKCUwVVZt6GU4p2lUFpqtZ2bMd0aJRBCdF1KWe3qYmOgogJeWyjr54Xo7C7oP51wZyQH64r5cs+HwQ5HCCFEB5JkvocyitfjWvEYlGwh365YHxZCvl1ByVZcKx6zEvr6cuw7PsajAyx2NoIyOCttMkkRaWzK0XyzSqMUXH+twu2WRF6I7iAsTHHzTIXdDrnbNP9eEeyIhBAnEuoIP1IM79Ndi6lqLAtyREIIITqKPdgBiCDQJo71C8hp2MciRx2F3lq8OoBT2Uh3uLmmoY6hGxZg9soC08cyp48KQxMVEsf5/aZRUal5401rtO7csxWZAySRF6I7SUlWTJ0Ci97UfPCRJjUVBvSX33MhOqtRvSexZt+n7KncwfvbX+b64Q8GOyQhhBAdQEbmeyDjUD5bDm3gcaOE7YEq3MpBbyMct3KwI1DF48YB8g+sxr5rBfsD9aww6gC4cvAt2JSLV17TNDRCaipcdGGQP4wQol2MGwtjRyu0hpdf0VRXy3R7ITorqxjerSgUm0tWkV+2OdghCSGE6ACdNpl/6623+M1vfsPVV1/NsGHDGDRoEG+++Waz+9fW1vKHP/yB8847j2HDhnH++efzxz/+kbq6ug6MumswGyt4I7CPGgKkGOGEKjuGUoQqO8lGOLU6QFlDKWbAwxuuRky7iyEJYxncazTLP4WCAnC54MbrFHa7jNYJ0R0ppZh6FfROgto6mP+Kxu+XhF6Izqp3RDoTUi8C4N1tL0oxPCGE6AE6bTL/j3/8g9dee43i4mISEhJOuG99fT0zZ85k3rx59OvXj1mzZtG3b1/mzp3Lrbfeisfj6aCou4YCbzkFeIjDcVzROqUU4/12wgMBPtMVFNgVTpuLywfNZNcuzfJPrC/z06cp4uIkkReiO3M6FTffpAgJsW7iffBRsCMSQpzIBf2vxu2M4lD9fr4ofD/Y4QghhGhnnTaZf/TRR/nkk0/4+uuvuf7660+477PPPktubi533nknzz33HA899BDPPfccd955Jzk5OcybN69jgu4iqsOi8NrshJgB0JpAAPx+CATAZppM8mjqlOJtlw9sDi7ofw0OM5ZXX9dobU29HTlCEnkheoL4eMWM6dbv+2efazZvkdF5ITqrUEc4kwd+Wwxv9xIphieEEN1cp03mJ06cSEpKykn301qzcOFCwsLCuO+++47adt999xEWFsbChQvbK8wuye2KwR4WT5028NU30FDnp75O01DnZ0iNhxBT8WlIgIbQSGvaXp8LWfQmVFZBfDxcNSXYn0AI0ZGyhynOnmQl9K8v0hw6JAm9EJ3ViKSzSI8eiC/g5b28l4MdjhBCiHbUaZP5liooKKC0tJTRo0cTFhZ21LawsDBGjx5NUVER+/fvD1KEnU9GzCCiHCPY6XFT43djNwKE2BuJUgGG+ezkA+scLsKckVyVdRur19jYvEVjs8FN1ytcLhmVF6KnmXwJZGRAYyO8tEDj80lCL0RndKQYnjLYUrqKHWU5wQ5JCCFEO+nyyXxhYSEAGRkZTW4//HxBQUHHBNQVaIU/bxYeTyK7bWEUBNLZ6x/AQF8MjcrgfYefuoa+jEu5AHtDP95dan1pv2yyIiVFEnkheiK7XTHzBoU7HPYfgMVvBTsiIURzkiLSODP1YgCWbnsJv+kLckRCCCHaQ5fvM19TUwOA2+1ucvvh52tra5s9RlRUFIbRtvc1YmJi2vR4bWn7Dj/Vu84gLeF3VPWaS4NjO7G6mmH+BjbYDfYF+hGo68vwiNtYtNgOmIwcYefKK0KPK5gneobOfD6LjhMTA/fc7ef/nqhn4yY4c0Iow4c7gh3WKZFzWXQXJzuXrx5zG3kV66hqPMSGQ59z0aDpHRSZEKdGrsuiO+no87nLJ/Ntoaqqqk2PFxMTQ0VFRZsesy3t26dpaNT09o4mav9IGp3buCb0WTy2fXzhKCMQSMC570befTtA0d4AEW6YcoWfykrpCtATdfbzWXSshF4w8QzNvz/TvDDfx09/pAgN7Ro3+eRcFt1FS8/l89KnsWjzU7ybs4ABEcOJDo3vgOiEaDm5LovupK3P55bcGOjy0+wjIiKA5kfeDz/f3Mh9TxQRAU4HeDygMMjW9aTqBv7tOkS5mYCjLhujbDx52639r79W4XZ3jS/rQoj2d9GFEBcH1dXw3gfBjkYI0RyrGN4g/KaX97ZLMTwhhOhuunwyn56eDjS/Jv7w882tqe+J+mZAejqUl4OhvZzhWsJ2xyG22hwEzDD09lvw+xVhoXDu2YrMTEnkhRDfcTgUM662rgvfrNLs3CXF8ITojKxieLeglMHW0tVsP7Qx2CEJIYRoQ10+mc/IyCAhIYF169ZRX19/1Lb6+nrWrVtHnz596N27d5Ai7HwMQzF9msLthpS6zzBUKZ+E7qfC1wtdOAVvTSIJvSA1FS6+KNjRCiE6o379FBPGWwn9ojelur0QndX3i+G9K8XwhBCiW+nyybxSihkzZlBfX8+cOXOO2jZnzhzq6+u59tprgxRd55U9TPEfd9UzOfUDvnTtYY8nBrO+Dwmey+idZPWTv+F6hd0uo/JCiKZdNhmiIqGsDD5eFuxohBDNOb//NNzOKMobSlhZ8F6wwxFCCNFGOm0BvIULF7J27VoAtm/ffuS5VatWATBmzBhmzJgBwB133MHy5ct55plnyM3NZciQIWzdupWVK1eSnZ3NrbfeGpwP0cmNcCyjpN8hChqq6BWayTnRt7JquXVKTLtKER8nibwQonmhoYppU2Hei5oVn2uysyG1j1w3hOhsQuxhXDrwRhZu/hf/3v02I3pPJCa0V7DDEkIIcZo67cj82rVrWbx4MYsXL2bLli0ArFu37shzhxN9gLCwMObPn8+tt97Kzp07ef7559m1axezZ89m3rx5hISEBOtjdF4NFdjyl/OutwAjOonxfc9g+5rBAIwZrRg9Sr6QCyFObkiWYuQIhdaw6A2N3y/T7YXojIYnnUlGzGCrGF7egmCHI4QQog0orXWP/+bV1i0xukKbDce6l8jd9S4vBvai4gaScuAx8rfEERcHP3pQ4XJJMi8sXeF8FsFVW6v589809fVwycWKC87rnNcPOZdFd9Hac7mkdi9PfP3/0Nrk5lE/ZVD8yLYPTohTINdl0Z1IazrRIVR1MbrwC5Z6CjHdSSQFLiV/Sxw2G9x0vSTyQohT43YrplxhXTeWLdeUlvb4e8RCdEqJ7j5MTLsEgKXb5uMLeAEwtcmu8lw2HfiKXeW5mNoMZphCCCFaqNOumRftx75lMV/49nPI6cTp6k3RyssBmHyJoo+sdxVCtMKokbBho2JbnmbRm5p777YKlAohOpfz+01j04GvrGJ4he+REJ7Ckty57KncgS/gwWFzkRadydSs2QxNHBfscIUQQpyAjMz3MMah7TTsX89y7z60Owln8TX4PaFkZMDZk4IdnRCiq1LKKobndEJBIXz5VbAjEkI0xWUP5dKBNwLwzrYXeOLr/0d+WQ5uZyRJEam4nZHkl+Xw5KpH2FKyOsjRCiGEOBFJ5nsSrbFvWcLH3iLqQyJx6UzKcidhM+Dqq5SMogkhTso0NTt3aTZstB5N87sp9THRissvta4j73+oqaiQ6fZCdEbZiWfQNyaLfdW7KandS3JEBqGOcAxlI9QRTnJEBrXeKt7KfV6m3AshRCcm0+x7EGP/Bg4e2sI3/oMEIgfSmHsjCoOzf6BISpJEXghxYjmbNW8s1hQWgtcHTgekp8P0aZA9zLqGnDEB1m+EggJ4c4lm9iyZbi9EZ6OUYkTSWbyV+zx2w06dtxq3K+qo7bGhCRRWbqegIo9+sVlBjFYIIURzZGS+pzD9OLa+xbueQgJh8TjqJuA7lEVMDJx/XrCDE0J0djmbNU/M0WzfAW439E6yHnfsgCfmaHI2W6PwSilmXK2w2yFvO6zfENy4hRBNc9qdhNhDMZRBad2+40bgXbYQfAEPtd7K4AQohBDipCSZ7yFshV+SV7mNPF2Dz5lEbc71AEydItXrhRAnZprWiHxNLaQkQ2goGIb1mJwMtbXw5uLvptz36qW48ALruvL2u5raWpluL0Rn43ZGExUSj8LAG/BQ3lB61HZPoBGHzYXbGR2cAIUQQpyUJPM9gd8DuW/zrqcQMzwBs/gSbL5Ehg1VZA2WRF4IcWK7C6CwEOJi4dgZ80pBTKxV9G53wXfPnz3JSvTr6+GtdzoyWiFES2TEDCIjZhAOmxOA8voSvAEPAFpryhtKSY8eSEbMoGCGKYQQ4gQkme8B7PnLWF27k1IVoDGQTqDgKpxOmHJFsCMTQnQFNTXWGnmXq+ntLqe1vabmu+fsdmu6vWHAxk2aLVtldF6IzsRQBlOzZhMbmoipA/hNHyU1RTT46iiuKSDCGc1VWbdhKPmqKIQQnZVcobs7Tw3e7e/xkbcIf1gi3p3TsekwLr5QER0to/JCiJOLiLCK3Xk8TW/3eK3tERFHP5+SojjnB9Z1ZvFbmoYGSeiF6EyGJo7j3gm/Y2jiBAKmn7KGUg7VHyAzbjh3j/+t9JkXQohOTpL5bs6e9z7L63dRb3dQWz0EV8W5JPeGsyYGOzIhRFfRN8OqWl9eDvqYfFxrqCiHjHRrv2NdeAHEx0N1Nbz3fkdEK4Q4FUMTx/G7C+YyY9h99IvNYkDsMH72g39IIi+EEF2AJPPdmKotpSL/Q770HaDenoS56wYMZePqqQqbTUblhRAtYxiK6dMUbjcUF0N9AwQC1mNxsTUif/U0hWEcf11xOBTXTLOe/2a1Jn+njM4L0dkYymD6sLtIcqfhCTSwvvizYIckhBCiBSSZ78bsue+w1LMLvzOcmtIzCfMMZ/w4RVqaJPJCiFOTPUzxwH2KzEyoq4UDJdbjwEy4/151pM98U/r1U5x5hrX9jcUar1cSeiE6m1BHOOf3mwrA8l1v4vE3BDcgIYQQJ2UPdgCifaiKAnYXLmerv4IK20BC99+AOxwuvSTYkQkhuqrsYYqhQ6yq9TU11oh83wyaHJE/1qWXQG4ulJXBR8vgisvaPVwhxCka1+d8vir6mLL6A3xesJQLB1wT7JCEEEKcgIzMd0daY9u8mHc8Bfgd0TTuvRynP4UrLleEhcmovBCi9QxD0b+fYuQI67EliTxASIhi2lRr389Xaor2yui8EJ2NzbBz8YBrAVhZ+D5VjeVBjkgIIcSJSDLfDRmlW1m7/3P2mw0crMsgqnIa/fvDqJHBjkwI0ZNlDbZuAmgNi97Q+P2S0AvR2QxJGEtadCZ+08snO98MdjhCCCFOQJL57kZr/DkL+dBbRIMRh9p/LU7DzdVXKZSSUXkhRHBNuQLCw2H/AVghNbaE6HSUUlw68EYA1hV/xoGaPUGOSAghRHMkme9mbEWrWFG2ihod4GDFUKLqLuS8cxS9ekkiL4QIPrdbMeUK63q07BNNSamMzgvR2aRGDWBY4ng0mg93vBrscIQQQjRDkvnuJOClevNrfO7dT2WgF+GHbiY+zs555wY7MCGE+M7IEdaU+0DAmm5vmpLQC9HZXDTgWmzKzo6yHHaU5QQ7HCGEEE2QZL4bse3+nPerNuLRNqoOTSLMM4qpUxQOh4zKCyE6D6UU064ClwsK98CXXwc7IiHEseLCEpmQeiEAH2x/BVObQY5ICCHEsSSZ7y589RRteYVN/jIONiYSU3ULI4cbDBooibwQovOJjlZcNtm6Pn3woaaiQkbnhehszu13FSH2MEpqi9iw/4tghyOEEOIYksx3E7btH7K0NhdPwIWvfCpR9lSuvDzYUQkhRPPOmGD1qfd64Y3FGq0loReiMwlzuDm371UALMtfiDfgCXJEQgghvk+S+e6goYJNua+yJ1BHaW0aMTXXcMlFishIGZUXQnReSimuuVpht8P2HbBufbAjEkIca0LqhUSHxFPtqeDLwg+CHY4QQojvkWS+GzC3LOb9xl3UesOwV80ko3cUZ54R7KiEEOLkevVSXHSBdePx7Xc1NTUyOi9EZ+KwOblowAwAPit4l1pvdZAjEkIIcZgk812cqtnPyp2LqfD7qKjNIrruEq6eqjAMGZUXQnQNZ/8AkpOhoQHeeifY0QghjjU86UxSIvvhDTTyyc43gx2OEEKIb0ky38XVbnyZf3v3UdkYSVjVHUw600WfPpLICyG6DptNMWO6wjBgU45ma66MzgvRmSilmDzwegBW7/uUg3XFQY5ICCEESDLfpamyfD4uep96r0lD3Zn0do7n4guDHZUQQpy6lOT/3969h0VZ5/8ff97DQRxAAQMPhKB4CBU1D2gtmSV5zjJTyzYtVs1Vt6Ouh92u3fba0rbc3TRb0+tXWrmmfkstzcRjisZBNLUUNRUw8ICKCo7IDMVe+AAAJGZJREFUDDO/P7iYFcFERYfB1+MfLu/PPfe8GaZpXvf7c39ug26xJSciV33jwGZToBepTpoERnFP8L04HHbWHFzs6nJERASFefflcHB8x/9je9EpzhQG4nduFAP6mahdW115EXFPDz8Efr6QewqSUlxdjYhcqWezoRiGifTcHRzJ2+fqckRE7ngK827KyNnJqpOJFF4ycBQMoF2TprSNdnVVIiI3zsfHoOcjJSck1613YLGoOy9SnYT4hdIptDsA3x74XLeTFBFxMYV5d2QvZt/OD/m5KJ/zRQ0IsDzLYwMMDENdeRFxb507QUgIWCywYZOrqxGRK/Vo+gTeHrXIPn+YPSeSXF2OiMgdTWHeXTjsmHIPYPolFccPi/gmbycXL3lgOjeC3g/W4656CvIi4v48PAz69y35PNu6zcHp0+r8iVQnfrXq8kBEfwASDi7BZre6uCIRkTuXp6sLkGsz5ezEY8dnZJ7ZQ4HtItmXTnPCsHOxsBVNaz/Gg91cXaGISNVp2QKaN4ODP8PqNfDbYa6uSEQu95vGvUn5ZT1nC0+RlLWW2Ii+ri5JROSOpM58NWfK2cmBDX/i7ye/4Q3bERKKjvGNYSHf6o31UE8G35+Bp6e68iJScxhGSXfeMEpuVZeRqe68SHXi7elDXOSTAGw6sgKLtcDFFYmI3JkU5qszh5305H8zszCdPTYrvhe98Ci2c6m4FmfPNSXf+yTW49PBYXd1pSIiVaphQ4POnUpOVK5c5dBCWyLVzL2NHqC+XxiFNgvfHfnK1eWIiNyRFOars9wDLD29nTPFEFRkJtruYL/JoLC4NueO9sUz4v/4v1PbIfeAqysVEalyPR8Bb2/IOgq797i6GhG5nMkw0bv5UwAkZa3ljOWkiysSEbnzKMxXY0dO7SHDbsHfVht/k4Ncj0vYi725cKoD9evvoK6pmCN2C0dO6VuuiNQ8dfwNuncr6c5/860Dq1XdeZHqpPldbYkMakOxw8ban5e4uhwRkTuOwnw1dvi0g0sOBz4G2A07v+DJBas/F0/fS90G3+NjwCWHg8Na7VlEaqhuD0DdOpCXB1u3uboaEblS7xZPYWCw50QyR8/97OpyRETuKArz1ViRZyuw18ZhKuTshUYczunBiZ+H0bDJKgwD7KZCHPbaJfuJiNRA3t4GvXqWdOc3bHJQUKCTlyLVSUP/cNo3igXg2wOLtL6FiMhtpDBfjTULiaL4QlvOGHbMtXIxn76X4KCfqe37C16GhTOGHfuFtjQLiXJ1qSIit0zHDtCoERQWwrr1rq5GRK4UFzkIT5M3mWcPsC93h6vLERG5YyjMV2ORTUzUL36V/MJwjnlbaNjuXYJDE7AaRRw1DAoKw2lQ/CqRTfRnFJGaq/RWdQBJKQ5OnlTnT6Q6qetTj9+E9wYg4eBiiu02F1ckInJnUAqsxkwmg+f7xVDnl7c5f+YhMotDOEgdMotDOH/mYepkv81z/WIwmXSfeRGp2ZpFGrSKMrDb4ZtvXV2NiFzpgYh++HrX4ZTlGKnZG11djojIHUFhvpqLbmMwYUQMHW2z8d3/IZ57Z+K7/0M62d5nwvAYotsoyIvInaFfH/Awwd59Dn4+pO68SHXi42nm4aYDAdh4eDmFNouLKxIRqfk8XV2AXFt0G4PWrTw4ktGK/Hzw94cmEagjLyJ3lOBggy5dYNv3DlZ+4+DFcfocFKlOOoV25/usBE5ZjrElYxWPNBvs6pJERGo0debdhMlkENnUoH27kp/6Aisid6JHekBtH8jJgR07XV2NiFzOw+RJz+ZDAdia+S3nCk+7uCIRkZpNYV5ERNyGr6/Bww+VnMz8NsHBpUuabi9SnUQFdyA8oCU2exHrDn3h6nJERGo0hXkREXEr998HQYFw/jxsSXR1NSJyOcMw6NPiaQB+yEnkWH6miysSEam5FOZFRMSteHkZ9Old0p3ftNnB+fPqzotUJ3fXjSS6fhccOFh9YBGHTu9l9/HvOXxmH3aH3dXliYjUGFoAT0RE3E7baEjcCplZsGYtDB7k6opE5HI9mw8l6eg61hz8nM1HvsZkmPDyqEXjgOY8HhVP6/qdXV2iiIjbU2deRETcjmEY9O9b0p3fnuYg55i68yLVSc75DE5dOMaFovNctF2gvt/d+HnX4efTe5iT8ld+OpHq6hJFRNyewryIiLil8HCDttEGDges+saBw6FAL1Id2B12lu/7CJPJA7OXP8V2G/lF56jt5Usj/wgKis6xYt/HmnIvInKTFOZFRMTl7HYHhw47+GFXyU+7vXLBvG9v8PCAgz/D/v23uEgRqZSMvP1knT3IXeYG3GVuAMC5i6eAklk1QbVDyDx7gIw8/UcrInIzdM28iIi41J4fHXyxzEFmJhRZwdsLwsNh0ECIbmP86mODggxifwPfbXawcrWD5s3Bw+PXHyMit1ZB0VmsxZeo5emDj2dtbHYrPp5m53gtDx/yinMpKDrruiJFRGoAdeZFRMRl9vzo4P0PHBw4CH5+0LBByc+DB+H9Dxzs+fHaHfqHu4PZDCdPQsr2W1+ziPw6P+8AvDxqcclWiGGYCPELpY5PoHP8UnEhXh618PMOcF2RIiI1gMK8iIi4hN1e0pHPL4DQRlC7NphMJT8bNYKCAvhy2bWn3NeubfBIj5Ju/Nq1DgoLde28iCtFBLakcUBzzlw8WW4tC4fDwZmLJwkPaEFEYEsXVSgiUjMozIuIiEscyYDMTKgXBMYVM+MNAwKDICOzZL9r6RIDwXdBwQXY+N2tqFZEKstkmHg8Kh4/77rk5Gdw0XoBu72Yi9YL5ORn4O8dwGNRz2My9DVURORm6FNURERcIj+/5Br5WrUqHq/lXTKen3/tY3l6GvTtU3JGYEuig7y8/3UDSxfX255mva7F9UTkxrWu35kxMX+lWb1oCorOc7zgKAVF52lery0vxPxF95kXEakCWgBPRERcwt+/ZLG7S5dKptZf6VJRybi/f+WO1yoKIpvCocOweg0Me6rs4nrFxQV4eDgqvbieiNyc1vU7ExXSkYy8/RQUncXPO4CIwJbqyIuIVBF9moqIiEs0iShZtf7MGbjyFvEOB+SdgYjwkv0qwzAM+vc1MAz4YZeDdevtZRbXCw01XffieiJyc0yGiaZBUbRtcB9Ng6IU5EVEqpA+UUVExCVMJoNBAw38/CAnBywXobi45GdOTklH/omBBiZT5TvooaEGHe81wAEffwLn8y9fXM+47sX1RERERKorhXkREXGZ6DYG48caNG8OFwrg+ImSny2aw7jfGzc0Fb5Xz5Jr7U/lgo/PzS+uJyIiIlId6Zp5ERFxqeg2Bq1blQTr/PySjnyTCK6rI3+5unUNWrdy8NNeOHcW7qpXPtDX8oa8Si6uJyIiIlIdqTMvIiIuZzIZRDY1aN+u5OeNBvlSsbHg6QmFlyAvr/z49S6uJyIiIlLdKMyLiEiN07K5QbNIsBZB7qmSa/FL3cjieiIiIiLVjcK8iIjUOCaTwcj4koXvLBcg5xgUFztuanE9ERERkepEYV5ERGqkdm1NjHkBfP1Kbn+XlVV804vriYiIiFQXWgBPRERqrL69TeTk2PlhF0Td403vXkU3tbieiIiISHWhzryIiNRoj/Y3qFcPGjf2qJLF9URERESqA3XmRUSkRqsfYvD6VLjrLh/Oni10dTkiIiIiVUKdeRERqfE8PQ2MK282LyIiIuLGFOZFRERERERE3IzCvIiIiIiIiIibUZgXERERERERcTMK8yIiIiIiIiJuRmFeRERERERExM3UqDC/e/duRo0aRadOnWjfvj1Dhgzhm2++cXVZIiIiIiIiIlWqxtxnPikpiZEjR+Lt7U2/fv3w9fUlISGBV155hePHjxMfH+/qEkVERERERESqRI0I8zabjddffx3DMFi4cCFRUVEAjBs3jieffJJ//vOf9OrVi9DQUBdXKiIiIiIiInLzasQ0+6SkJLKysujfv78zyAP4+/szZswYrFYry5Ytc2GFIiIiIiIiIlWnRoT5lJQUAGJjY8uNlW5LTU29rTWJiIiIiIiI3Co1IsxnZGQAEB4eXm4sODgYs9lMZmbmba5KRERERERE5NaoEdfMFxQUACXT6ivi5+dHfn7+VR8fGBhY5TXdimOKuIrez1JT6L0sNYXey1JT6L0sNcntfj/XiM68iIiIiIiIyJ2kRoR5Pz8/gKt23wsKCq7atRcRERERERFxNzUizEdERABUeF18bm4uFoulwuvpRURERERERNxRjQjznTt3BiAxMbHcWOm20n1ERERERERE3F2NCPP33XcfYWFhrFy5kn379jm35+fnM2fOHLy8vHj88cddV6CIiIiIiIhIFTIcDofD1UVUhaSkJEaOHIm3tzf9+vXD19eXhIQEsrOzmTRpEvHx8bf0+Xfv3s2sWbPYuXMnNpuNFi1a8Nxzz9G3b99b+rwiVenEiROsXr2azZs3c/jwYU6dOkXdunXp0KEDI0eOpF27dq4uUeSmzJ07lxkzZgCwePFi2rdv79qCRK7D2rVr+e9//8vevXuxWCwEBwfTvn17Jk6cSMOGDV1dnsg1ORwO1q5dy6effsqRI0fIz8+nQYMGdOnShVGjRhEWFubqEkXKWLFiBWlpafz4448cOHAAq9XKtGnTeOKJJyrcv6CggFmzZpGQkEBubi4hISH06tWL8ePH4+vrW+X11ZgwDyWBeubMmWUC9fPPP3/LA7WrTySIVJV3332XefPm0bhxY2JiYggKCiIzM5N169bhcDiYMWOGTlCJ2zpw4ACDBg3C09MTi8WiMC9uw+Fw8Je//IXFixfTuHFjYmNj8fX15eTJk6SmpvLOO+/QqVMnV5cpck3Tp0/n448/Jjg4mB49euDn50d6ejpbt27FbDbz+eef06JFC1eXKeL08MMPk52dTWBgIGazmezs7KuGeYvFwrBhw9i3bx+xsbFERUWxb98+EhMTiY6OZuHChdSqVatK66tRYd4VbDYbffr04fjx4yxZsoSoqCigZIr/k08+SXZ2NmvWrCE0NNTFlYpcW0JCAgEBAcTExJTZvn37dp577jnMZjOJiYl4e3u7qEKRG2O1Whk6dCienp6Eh4fz1VdfKcyL21iwYAFvvfUWw4YN489//jMeHh5lxm02G56eni6qTqRycnNz6datGw0bNmTFihVl7jQ1f/58Z0CaNm2aC6sUKWvbtm2Eh4cTGhrqnN13tTA/c+ZMZs+ezahRo5gwYYJze2mz7NVXX+WFF16o0vpqxDXzrpSUlERWVhb9+/d3BnkAf39/xowZg9VqZdmyZS6sUKTyevbsWS7IA3Tq1IkuXbpw7tw59u/f74LKRG7OnDlzOHjwIG+99Va5ICRSnRUWFjJ79mzCwsL405/+VOH7V0Fe3EF2djZ2u51777233C2ju3fvDkBeXp4LKhO5uvvvv79STVmHw8HSpUsxm82MHTu2zNjYsWMxm80sXbq0yutTmL9JKSkpAMTGxpYbK92Wmpp6W2sSuRVKvyzqS6O4m59++ok5c+Ywfvx4mjVr5upyRK5LYmIi586dIy4uDrvdTkJCAnPnzmXRokUV3pJXpLoKDw/Hy8uLnTt3UlBQUGZs06ZNAHTt2tUFlYncvIyMDE6ePEmHDh0wm81lxsxmMx06dODo0aMcO3asSp9X38pvUkZGBkCF97EPDg7GbDbrf7bi9nJycti2bRvBwcG6lk3cSlFREZMmTeKee+5h5MiRri5H5Lr99NNPAJhMJh599FHn947Sbc899xyTJk1yUXUilRcYGMiECROYPn06vXv3LnPNfHJyMsOGDeO3v/2tq8sUuSGleS8iIqLC8YiICBITE8nIyKjSBUsV5m9S6ZnFK6cLlfLz8yM/P/92liRSpaxWK3/84x8pKipiwoQJmqIsbuW9994jIyODL7/8Uu9dcUunT58GSq4pbtWqFUuXLiUyMpJ9+/bx+uuv89FHHxEWFsawYcNcXKnItT333HOEhITw5z//mc8//9y5vWPHjvTv31+z/8RtleY9Pz+/CsdLt185K+VmaZq9iFyV3W5n8uTJpKamMmTIEB5//HFXlyRSaTt37uSjjz7i97//vWaUiNsqXafYy8uL2bNn07ZtW3x9fenUqRPvvfceJpOJjz/+2MVVilTO+++/zx//+EfGjBnDd999x44dO1i4cCGXLl1i+PDhrF+/3tUlirgVhfmbVHqW5Wrd94KCgqt27UWqM7vdztSpU1m5ciUDBgzgjTfecHVJIpVms9mYPHkyLVu2ZPTo0a4uR+SGlX7PaNOmDfXr1y8z1qJFC8LCwsjKyuL8+fOuKE+k0rZt28asWbN45plnGD16NA0aNHCemJozZw6enp68/fbbri5T5IaU5r2rdd5Lt1+tc3+jNJflJpVeF5GZmUmbNm3KjOXm5mKxWGjbtq0LKhO5cXa7nSlTprB8+XL69+/P9OnTMZl07k/ch8VicV5bfOVnc6mhQ4cCMHv2bOLi4m5XaSLXpWnTpsDVL+cr3V5YWEidOnVuW10i12vz5s0AdOnSpdxYcHAwTZs2Ze/evVy4cAFfX9/bXZ7ITSldP+3ydU0uV7r9atfU3yiF+ZvUuXNnPvzwQxITE+nXr1+ZscTEROc+Iu7i8iDft29f/vGPf+haY3E73t7ePPnkkxWObd++nYyMDB5++GGCgoIqdcsZEVcpDT6HDx8uN2a1WsnKysJsNhMUFHS7SxO5LlarFYAzZ85UOH7mzBlMJhNeXl63syyRKhEREUFISAg7duzAYrGUWdHeYrGwY8cO7r777ipd/A4U5m/afffdR1hYGCtXrmT48OHOe83n5+czZ84cvLy8dJ2xuI3SqfXLly+nd+/evPPOOwry4pZ8fHx48803KxybPHkyGRkZvPDCC7Rv3/72FiZynRo3bkxsbCyJiYksXbqUwYMHO8fmzp3L+fPnGTBggBYOk2qvQ4cOfPbZZ8yfP59evXqVmW2yaNEijh8/TocOHfD29nZhlSI3xjAMBg8ezOzZs/nggw+YMGGCc+yDDz7AYrEwZsyYqn9eR+nKKnLDkpKSGDlyJN7e3vTr1w9fX18SEhLIzs5m0qRJxMfHu7pEkUqZNWsW77//PmazmeHDh1f45TAuLs550krEHU2ePJlly5axePFihXlxC1lZWTz11FOcPn2a7t27O6cjJyUlERoayuLFiwkODnZ1mSK/qri4mBEjRpCamkq9evV4+OGH8ff3d76XfXx8+PTTT3V5qlQrS5cuJS0tDYADBw7w008/0aFDB+e0+o4dOzpPslosFp5++mnS09OJjY2lVatW7N27l8TERKKjo/nss8/w8fGp0vp0GrcKdO3alf/+97/MnDmTb775BpvNRosWLZgwYQJ9+/Z1dXkilZadnQ2UfBjNmTOnwn1CQ0MV5kVEbqPGjRvzxRdfMHPmTLZs2cLWrVu56667eOaZZxg3bhz16tVzdYki1+Th4cFHH33E/PnzWb16NStXrsRqtVKvXj0GDBjAmDFjiIyMdHWZImWkpaWxbNmyMtt27NjBjh07nP8uDfNms5nPPvuMWbNmkZCQQHJyMsHBwcTHxzNu3LgqD/KgzryIiIiIiIiI29Hy1CIiIiIiIiJuRmFeRERERERExM0ozIuIiIiIiIi4GYV5ERERERERETejMC8iIiIiIiLiZhTmRURERERERNyMwryIiIiIiIiIm1GYFxEREREREXEzCvMiIiIiIiIibsbT1QWIiIhUJy1btryu/UNDQ9mwYQPPPvssKSkprF+/nrvvvvsWVXfrTJkyhdWrV7N+/Xrq1avn6nKqrS+//JIpU6Ywfvx4/vCHP1z34x0OBwMHDqS4uJgVK1ZgMqmvIiIiN0ZhXkRE5DIDBw4sty0tLY2srCzuueceoqKiyowFBgbertJumf3797N8+XKef/55BflbzDAMxo0bx/jx4/nyyy958sknXV2SiIi4KYV5ERGRy0yfPr3ctsmTJ5OVlUVcXNxVu7Fvv/02Fy9epH79+re6xCr373//Gw8PD373u9+5upQ7QlxcHE2bNmXmzJk8/vjjeHrq65iIiFw/ze0SERGpAo0aNSIyMhIvLy9Xl3Jdjh07xqZNm4iNjVVX/jYxDINHH32UEydOsGHDBleXIyIibkqngkVERKrA1a6Zb9myJaGhoSQkJPDhhx+yfPlyTpw4QWhoKCNHjmTQoEEAfP/993zwwQf89NNPeHh48NBDDzFlypQKp/HbbDaWLFnCihUrOHjwIDabjSZNmjBw4EB++9vfXlen94svvsBut9OvX78Kxw8cOMDcuXPZuXMnJ0+exNfXl/r16xMTE8OoUaMICQkps/+hQ4eYN28e33//PadPn6ZOnTp06dKFsWPH0rx58wqfY9euXcyfP5/t27eTl5dHQEAAkZGR9OvXjyFDhpTZ99ixY/znP/9hy5Yt5Obm4u/vT8eOHRk9ejRt27Yts+8vv/xCjx49iImJYd68ebz//vusWrWK3NxcGjZsyODBgxk1ahSGYZSrKS0tjVmzZrFr1y48PDxo164dL7744lVfxwsXLvDZZ5+xatUqsrOzsdvt1KtXj1atWjF48GAeeOCBMvs/+uijvPfeeyxZsoSePXte9bgiIiJXozAvIiJyG7z88sskJSXRpUsXGjduTEpKClOnTgXA19eX1157jXbt2hEbG8sPP/zAihUr+OWXX1i4cGGZsFlYWMjo0aNJTk4mICCA9u3b4+3tze7du5k2bRrJycnMnj270gurbdy4EYCYmJhyYz/++CPDhg3j0qVLtGzZkh49elBYWMjRo0f55JNPiIuLKxPm161bxyuvvEJRURFRUVG0a9eO48ePs3r1ajZu3Mi8efPo3LlzmedYsGAB06dPx26307p1azp37kxeXh779+/nH//4R5kwv3//fkaMGEFeXh5NmjShZ8+e5OTksHbtWjZu3Mi7775Lnz59yv0eVquV+Ph4Dh06RExMDBaLhdTUVGbMmMGFCxd45ZVXyr0m48ePx2az0bZtW8LCwkhPT+eZZ57hiSeeKHf84uJinn/+eXbt2kVgYCAxMTHUqlWL48ePs3nzZsxmc7kwHxYWRsOGDUlKSqKwsBAfH59K/LVERET+R2FeRETkFsvOzsbX15eEhASCgoIASEpKYsSIEfzrX//CarUye/ZsunfvDkBBQQFPPfUUaWlpJCcn07VrV+ex3n77bZKTk+nbty9/+9vf8Pf3dz7m1VdfZcOGDSxevJinn376mnVduHCBffv2ERISUuG1/p9++imXLl1i0qRJxMfHlxk7dOiQ87mhpAs+ceJEPD09+fDDD7n//vudY5s3b2bs2LFMnDiRhIQEvL29AUhNTWXatGmYzWZmz57Nfffd53yMzWZj69atzn87HA4mTJhAXl4eI0eOZMKECc6THGvWrOHll19m6tSpdOzYsdxsgZ07dxITE8P69evx8/MDYM+ePQwdOpQFCxYwevRofH19na/j1KlTsdlsvPXWW86ZEw6HgxkzZjBv3rxyr1Nqaiq7du0iOjqahQsXUqtWLedYQUEBGRkZFb7+bdu2Zc2aNfzwww9l/sYiIiKVoWvmRUREboOpU6c6gzxA165dadWqFbm5uXTr1s0Z5AH8/PycHenU1FTn9tOnT7N06VIaNmzItGnTyoRpPz8/3nzzTby8vFi0aFGlajp06BDFxcU0adKkwvEzZ84AlAnmpSIjI8uE5gULFmCxWHjttdfK7d+tWzeeeuopjh07xnfffefcPnfuXBwOB2PGjCkT5AE8PT158MEHnf9OTk7mwIEDNGrUiJdffrnMbIVevXoRFxeHxWLhiy++KFeryWTijTfecAZ5gOjoaLp168bFixf58ccfndvXrFnDmTNn6Ny5szPIQ8l17i+99BINGjS46uvUoUOHMkEeSv4ubdq0KfcYwPm6p6enVzguIiLyaxTmRUREbjEvL68Kp7GHhYUB8Jvf/OaqY7m5uc5tycnJWK1WHnjggQqnZQcHBxMREcGBAwcoLCy8Zl2nT58GoG7duhWOt27dGoA33niD5ORkbDbbVY9V2kV/5JFHKhzv1KkTALt37wZKOu8pKSkADB069Jq1bt++HYDevXtXuMjgY489Vma/yzVq1IimTZuW2x4REQGUfY1LH9+3b99y+3t5edGrV69y26OiojCZTHz55ZcsWbKEvLy8a/4+AAEBAcD/TgaIiIhcD02zFxERucXuuusuPDw8ym03m80AFU5xLx0rKipybsvOzgZgyZIlLFmy5Fef89y5c9e8Djs/Px/AOcX8SiNHjiQtLY2UlBSGDx+O2Wzm3nvv5cEHH+SJJ54oMzOgtLZu3br96nOWBt2zZ89SWFhIQEDAVU8mXO7kyZMAZRYXvFxoaGiZ/S5XUTcd/vd7X/4alz6+9HhXe57LNWnShIkTJ/LPf/6T119/nb/85S80b96c++67j4EDB3LPPfdUeKzSmQLnz5+vcFxEROTXKMyLiIjcYtdajK6yi9U5HA6gpBN8tYBYqjK3yCsN4xcuXKhw3M/Pj08++YS0tDQ2btxISkoKSUlJbN26lblz57Jw4UJnd9tutwMwcODAX33Odu3aXbOuG1HRivSlKvv63oz4+Hj69OnDunXr2Lp1K2lpacyfP58FCxYwZcoURowYUe4xpSdT6tSpc8vrExGRmkdhXkRExE2UdvA7duzI66+/ftPHK72v/NmzZ6+6j2EYdOrUyTlN/vTp07z11lusXLmSf/3rX7z33ntASfc7KyuLSZMmVXg7vSsFBgbi4+PD2bNnOX/+/DUDben1+aUzAK70yy+/lNnvRl3reXJycq762IYNG/Lss8/y7LPPYrPZWLVqFVOnTuWdd97h8ccfLzcD4dy5cwBl1lIQERGpLF0zLyIi4ia6du2Kh4cHGzduxGq13vTxmjVrhqenJ0eOHKn0Y+rVq8f48eMBOHjwoHN76aJ369atq9RxPDw8nOsILF68+Jr7l55M+PbbbykuLi43/tVXX5XZ70Z17NgRgNWrV5cbs9lsJCQkVOo4np6ePPbYY0RHR2O1WsnMzCy3z+HDhwGuOctCRESkIgrzIiIibqJ+/foMGjSI7OxsXnvtNU6dOlVun8zMTNasWVOp45nNZqKiosjNzeXEiRPlxhctWsTRo0fLbS9dkb5hw4bObfHx8fj4+PD2229XGHiLior49ttvOX78uHPbqFGjMAyDOXPmkJSUVGZ/m81WZuX7Ll260KJFC7Kzs5k5c6bzkgOAtWvXsnbtWsxmc5kV6G9E7969CQgIICUlhWXLljm3OxwOZs2aVWFnPikpiW3btjkvNSh19OhRDh06hGEYFa6LsHv3bry8vGjfvv1N1SwiIncmTbMXERFxI3/605/Izs5mzZo1bNmyhXvuuYdGjRphsVg4dOgQmZmZ9OjRo8JV1yvSvXt39uzZQ3JyMgMGDCgz9vnnn/PXv/6VZs2aERkZiYeHB4cPHyY9PZ1atWoxduxY577h4eHMmDGDCRMm8Ic//IHw8HCaNm2K2WzmxIkT7N27F4vFwvLly50L0sXExDBx4kTeeecdRowYQZs2bYiIiCAvL4/09HSKioqcq8sbhsG7777L8OHDmTNnDmvXriUqKoqcnBx27NiBp6cnb7755k1Psy+9xd+LL77I5MmTWbRoEWFhYaSnp5OZmcmQIUPKLT6Ynp7OtGnTCAoKonXr1gQEBJCXl0dKSgpFRUU8++yz5cJ8VlYWx48fv+qdCURERK5FYV5ERMSN+Pj4MG/ePL7++muWLVtGeno6e/bsITAwkNDQUAYMGEC/fv0qfbxBgwbxwQcfsHLlynJh/qWXXmLdunXs3r2b77//HqvVSv369Rk8eDDx8fHlbvcWFxfHV199xccff8y2bdvYtm0bnp6ehISE8NBDD/HII48QGRlZ5jG/+93vaNeuHfPnz2fHjh3s37+fgIAAWrRoUe73aNmyJcuWLeM///kPW7ZsYc2aNfj5+REXF8cLL7xA27Ztr/PVrFhcXByffPIJM2fOZM+ePRw6dIjo6Gj+/ve/c+TIkXJh/qGHHuLs2bMkJyeTnp7O2bNnCQoKomPHjgwbNqzC2/V9/fXXAAwZMqRKahYRkTuP4bh8npqIiIjcccaNG8emTZvYtGkTwcHBri6nxnM4HPTp0weLxcKGDRvw9FRvRURErp+umRcREbnDvfTSS9jtdj766CNXl3JHWLduHUeOHOHFF19UkBcRkRumzryIiIgwZcoUVq9ezfr16523rJOq53A4GDhwIMXFxaxYsQKTSX0VERG5MQrzIiIiIiIiIm5Gp4NFRERERERE3IzCvIiIiIiIiIibUZgXERERERERcTMK8yIiIiIiIiJuRmFeRERERERExM0ozIuIiIiIiIi4GYV5ERERERERETejMC8iIiIiIiLiZhTmRURERERERNzM/wddXP7Ht+wFMAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(10, 6))\n", + "\n", + "for i, planet in enumerate(df[\"Planet\"].cat.categories):\n", + " subset = df[df[\"Planet\"] == planet]\n", + " ax.plot(subset[\"Time\"], subset[\"Height_true\"], alpha=0.7, color=f\"C{i}\")\n", + " ax.scatter(subset[\"Time\"], subset[\"Height\"], alpha=0.7, label=planet, color=f\"C{i}\")\n", + "\n", + "ax.set(\n", + " xlabel=\"Time (seconds)\", ylabel=\"Height (meters)\", title=\"Trajectory Comparison\", ylim=(0, None)\n", + ")\n", + "ax.legend(title=\"Planet\");" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We now aim to model this data. We again use the folowing equation (calling displacement $h$ for height):\n", + "\n", + "$$\n", + "h = \\frac{1}{2} g_{p} t^2 + v_{0} t\n", + "$$\n", + "\n", + "where $g_p$ now has a subscript to indicate the planet that we're throwing from.\n", + "\n", + "In Bambi, we'll do the following:\n", + "\n", + "`Height ~ I(Time**2):Planet + Time + 0`\n", + "\n", + "which corresponds one-to-one with the above formula. The intercept is eliminated since we start from $x=0$. " + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "clusterI(Time ** 2):Planet_dim (3)\n", + "\n", + "I(Time ** 2):Planet_dim (3)\n", + "\n", + "\n", + "clusterHeight_obs (81)\n", + "\n", + "Height_obs (81)\n", + "\n", + "\n", + "\n", + "Height_sigma\n", + "\n", + "Height_sigma\n", + "~\n", + "HalfStudentT\n", + "\n", + "\n", + "\n", + "Height\n", + "\n", + "Height\n", + "~\n", + "Normal\n", + "\n", + "\n", + "\n", + "Height_sigma->Height\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "Time\n", + "\n", + "Time\n", + "~\n", + "Normal\n", + "\n", + "\n", + "\n", + "Time->Height\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "I(Time ** 2)&Planet\n", + "\n", + "I(Time ** 2):Planet\n", + "~\n", + "Normal\n", + "\n", + "\n", + "\n", + "I(Time ** 2)&Planet->Height\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "planet_model = bmb.Model(\"Height ~ I(Time**2):Planet + Time + 0\", df)\n", + "planet_model.build()\n", + "planet_model.graph()" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Auto-assigning NUTS sampler...\n", + "Initializing NUTS using jitter+adapt_diag...\n", + "Multiprocess sampling (4 chains in 2 jobs)\n", + "NUTS: [Height_sigma, I(Time ** 2):Planet, Time]\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a9ba35163f4c4f34a0608e6b14587284", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 12 seconds.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5c988c5b603c448fa097ec92b88432f6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "planet_fit = planet_model.fit(chains=4, idata_kwargs={\"log_likelihood\": True}, random_seed=SEED)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The model has fit. Let's look at how we did recovering the simulated parameters." + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
meansdhdi_3%hdi_97%mcse_meanmcse_sdess_bulkess_tailr_hat
I(Time ** 2):Planet[Earth]-4.9950.076-5.139-4.8550.0020.0011659.01779.01.0
I(Time ** 2):Planet[Mars]-1.8830.022-1.926-1.8430.0010.0001229.01533.01.0
I(Time ** 2):Planet[PlanetX]-3.0160.036-3.083-2.9490.0010.0011352.01739.01.0
Time20.1230.16519.81220.4290.0050.0031235.01703.01.0
Height_sigma1.7560.1441.5162.0430.0030.0021806.02076.01.0
\n", + "
" + ], + "text/plain": [ + " mean sd hdi_3% hdi_97% mcse_mean \\\n", + "I(Time ** 2):Planet[Earth] -4.995 0.076 -5.139 -4.855 0.002 \n", + "I(Time ** 2):Planet[Mars] -1.883 0.022 -1.926 -1.843 0.001 \n", + "I(Time ** 2):Planet[PlanetX] -3.016 0.036 -3.083 -2.949 0.001 \n", + "Time 20.123 0.165 19.812 20.429 0.005 \n", + "Height_sigma 1.756 0.144 1.516 2.043 0.003 \n", + "\n", + " mcse_sd ess_bulk ess_tail r_hat \n", + "I(Time ** 2):Planet[Earth] 0.001 1659.0 1779.0 1.0 \n", + "I(Time ** 2):Planet[Mars] 0.000 1229.0 1533.0 1.0 \n", + "I(Time ** 2):Planet[PlanetX] 0.001 1352.0 1739.0 1.0 \n", + "Time 0.003 1235.0 1703.0 1.0 \n", + "Height_sigma 0.002 1806.0 2076.0 1.0 " + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "az.summary(planet_fit)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Getting the gravities back to the physical value," + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "g for Earth: -10.30 to -9.70 meters (True: -9.81 m)\n", + "g for Mars: -3.85 to -3.68 meters (True: -3.72 m)\n", + "g for PlanetX: -6.18 to -5.90 meters (True: -6.0 m)\n", + "Initial velocity: 19.79 to 20.43 meters per second (True: 20 m/s)\n" + ] + } + ], + "source": [ + "hdi = az.hdi(planet_fit.posterior, hdi_prob=0.95)\n", + "print(f\"g for Earth: {2*hdi['I(Time ** 2):Planet'].sel({'I(Time ** 2):Planet_dim':'Earth', 'hdi':'lower'}):.2f} to {2*hdi['I(Time ** 2):Planet'].sel({'I(Time ** 2):Planet_dim':'Earth', 'hdi':'higher'}):.2f} meters (True: -9.81 m)\")\n", + "print(f\"g for Mars: {2*hdi['I(Time ** 2):Planet'].sel({'I(Time ** 2):Planet_dim':'Mars', 'hdi':'lower'}):.2f} to {2*hdi['I(Time ** 2):Planet'].sel({'I(Time ** 2):Planet_dim':'Mars', 'hdi':'higher'}):.2f} meters (True: -3.72 m)\")\n", + "print(f\"g for PlanetX: {2*hdi['I(Time ** 2):Planet'].sel({'I(Time ** 2):Planet_dim':'PlanetX', 'hdi':'lower'}):.2f} to {2*hdi['I(Time ** 2):Planet'].sel({'I(Time ** 2):Planet_dim':'PlanetX', 'hdi':'higher'}):.2f} meters (True: -6.0 m)\")\n", + "print(f\"Initial velocity: {hdi['Time'].sel(hdi='lower'):.2f} to {hdi['Time'].sel(hdi='higher'):.2f} meters per second (True: 20 m/s)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see that we're pretty close to recovering most the parameters, but the fit isn't great. Plotting the posteriors for $g$ agsint the true values," + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLsAAAJjCAYAAADkuxODAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hb1fkH8O/V8kxsx3Ec7ySOR/YkgxE2YbbsUSilFEoppUB/tMxS2tJCF5QNZZZV9t4BMghJCGTHSex475HEIx6y1v39cXSvLE/JlnQ1vp/nyaNrSZaOZOW+Ou855z2SLMsyiIiIiIiIiIiIwoBO6wYQERERERERERH5CpNdREREREREREQUNpjsIiIiIiIiIiKisMFkFxERERERERERhQ0mu4iIiIiIiIiIKGww2UVERERERERERGGDyS4iIiIiIiIiIgobTHYREREREREREVHYYLKLiIiIiIiIiIjCBpNdREREREREREQUNpjsIiIiIiIiIiKisGHQugHkuRNOOAF1dXVu1xmNRkycOBHz58/HZZddhsWLF2vUOu0o78uXX36JzMxMrZsT9gb7HA7m3nvvxbnnnhuAFo2soKAAAFBcXKxxS4gCj7FjcIwdgdX3c/jjH/8Yd95555D3ffrpp/GPf/wDAKDX67Fnz56AtJEo1PF8Pzie7wNrNJ/DcP4bbdy4ET/96U8RHR2N9957Dzk5OYPe75FHHsHDDz+M6dOn45133oHJZApwS8MPk10haOHChep/ko6ODuzevRuffPIJPv30U9xyyy346U9/GtD2hPPJiYbW93M4mOzs7IC1hZ9BopExdlCw+OCDD/C73/1uyC/yb731VoBbRBReeL6nYBBsn0N/Gu4zvnz5cvzoRz/Cyy+/jFtvvRUvv/wydDr3BXZFRUV4/PHHYTAY8Le//Y2JLh9hsisEXXDBBW4zZnp7e3HXXXfh3XffxT/+8Q8cd9xxmDp1qoYtDKznn38eVqsVqampWjclovT/HBJRcGPscMfYoY3Zs2dj9+7d+PLLL3HaaacNuH3r1q0oLy/HnDlzsGvXLg1aSBT6eL53x/O9Nvg5dLn55pvx9ddfY+vWrXj22Wdx1VVXqbdZLBbccsstsNlsuO666zB79mwNWxpeWLMrDERFReGuu+5CbGws7HY7Vq1apXWTAio7Oxu5ubkwGo1aN4WIKGQwdjB2aOG8884DMPTsrTfffNPtfkQ0djzf83wfDCL5cxgbG4t7770XOp0ODz74IEpLS9Xb/v3vf2P//v2YNWsWrr32Wg1bGX44sytMxMXFYerUqSgqKkJtba3bbY2NjXjqqafw9ddfo6GhASaTCXl5eTj77LNxwQUXQK/XD3i8yspKPPnkk/j222/R3NwMo9GIxMRE5OXlYeXKlTjvvPPw9ttv47bbblN/58QTT3R7jBdeeAFLly5VfzabzXjllVfw6aefory8HL29vUhPT8eJJ56Iq6++GklJSQPa0bfW0ltvvYXXX38dpaWl6OzsVKeJDjdt1NvX7snzeaqsrAxPPfUUvvnmG7S1tSE7Oxs/+tGPcOmll+KMM85AaWkpPv74Y+Tm5nr0eKP5O/Z9PZ999hmef/55FBcXw+FwoLCwENdeey2OPfZYj1/TWOzcuROffvopNm/ejIaGBrS3t2P8+PGYO3cuLr/8chx55JHDtn+wv8fmzZu9+gwC0Px9IAomjB2MHYGOHfn5+Zg9eza++eYbNDU1uc206OrqwieffILJkyfj6KOPHvIxRhNP+r+uof5OnnyGiUIRz/c83wdDX2G4z+FgfHG+9/Z1efM59OYzvnjxYlxxxRV49tlnccstt+C1117Dzp078dxzz8FoNOK+++5jQtbHmOwKI52dnQDgtsZ3586duPrqq9HW1ob09HScdNJJOHz4MDZv3oxt27Zh1apVePzxx91+p6SkBJdccgk6OzsxdepUHH/88dDpdGhqasJ3332HpqYmnHfeecjOzsY555yDzz77DN3d3Vi5ciViY2PVx5k4caJ63NTUhKuuugolJSVITEzEnDlzEBcXhz179uCZZ57Bp59+ihdffBEZGRmDvrY///nPeOWVV7BgwQIcd9xxqKmpgSRJw74fo3ntY3m+vj788EPceuutsFqtmDlzJhYvXozKykr86U9/QlNTE6qqqtSTvSfG8loA4KGHHsJjjz2GBQsW4Nhjj0V5eTm2bduGa665Bg8//DBOPvlkj1/baN1///349ttvMX36dMyaNQsxMTGoqanB6tWrsXr1atx+++34yU9+MujvDvX38OYzCATH+0AUbBg73DF2uPjrnHneeedh9+7dePvtt91GsT/55BN0d3fj8ssvH/Z9G0s8AYb+O3n6GSYKVTzfu+P53iWQ35EH+xwOZazne29fl7efQ2/7IjfeeCPWrl2L3bt348EHH8Tnn38Oh8OBm266Cfn5+R6/h+QhmULG8ccfL+fn58tvvfXWgNv27t0rFxYWyvn5+fKbb74py7Is9/b2qr9z1113yRaLRb1/dXW1etv999/v9li33nqrnJ+fLz/22GMDnqenp0fevHnzoO2qqakZtN0Oh0O++OKL5fz8fPn222+XDx8+rN5mtVrl++67T87Pz5d//OMfD/jd/Px8OT8/X164cKG8bdu2Yd+Xvs8/2tfuyfON5Pvvv5dnzZolL1q0SP7666/dbnviiSfkgoICOT8/X77ssss8erzRvpa+r2fx4sXy9u3b3W576KGH5Pz8fPmUU07x6vUN9zkczpo1a+SmpqYB12/dulVeuHChPGvWLLmxsXHQ9o/09xjpM+iP94EoVDB2bBv2fWHsCGzs+O677+SOjg557ty58sknn+x2n4svvlguKCiQq6ur5ZqaGjk/P1+eMWPGgMcaTTzp+7qG+jt5+xkmCjY8328b9n3h+V77vsJgn8O+v9P/MzLW8703r2ssn8ORPuN97dixQ54xY4baxosuuki22Wwj/h55jzW7Qtzhw4exdu1aXH/99XA4HJg0aZJa8PWTTz5BXV0dJk2ahDvuuMNtWmRWVhZuueUWAMCLL76I3t5e9baDBw8CwKBTO6Ojo3HEEUd41UalGN+MGTPwxz/+EfHx8eptBoMBv/3tb5Gfn49vv/0WJSUlgz7GlVdeifnz53v8nKN97aN9PoXdbscdd9wBq9WK++67b8AyjKuuukqd+upp8cGxvhYA+PWvf4158+a5XXfNNddg3LhxqKysRENDg8evUXHbbbehoKBgyH8dHR1u9z/22GMxadKkAY+zYMECXHrppbBarfjiiy8Gfa7R/j3688f7QBSKGDsGx9jhzl/nzHHjxuHkk09GVVUVNm/eDAAoLy/H1q1bccQRRyArK2vY3x9LPAGG/jv5+jNMFAx4vh8cz/fu/P0debjP4XDGer735nX54nPoiblz57otv/zjH/846BJTGjsuYwxBt912m9vaYEV2djYefvhhdeqk8gXyjDPOGHSa6CmnnIKEhAS0t7dj9+7dWLRoEQDxH3Dt2rW4++67cf3112PJkiWIiooadXvXrl2rPp/BMPAjp9PpsHjxYpSUlGDbtm2DTuE89dRTvXrO0b720T6f4pNPPkFFRQWWLl2Kk046acDter0eWVlZOHTokMcBbKyvBQCOP/74AdeZTCZkZWVhz549aGpqQlpamkftUfTdTngwg605b21txdq1a1FSUoKOjg7YbDYAou4DAFRUVAz6WKP9e/Tnj/eBKFQwdoyMscOdP8+Z5513Hj744AO89dZbWLJkiVqw3tNlgqONJ8DQfydff4aJtMLz/ch4vnfnj/O9p5/DkYzlfO/N6/LF59ATGzduxPr169WfP/roI7XGGPkWk10hqG+SwWg0YsKECZg/fz6OOeYYt/+YTU1NADBkoURJkpCZmYn29nb1vgDws5/9DFu2bMGGDRtw1VVXwWg0oqCgAEcccQROP/10zJ0716v21tTUAAAefPBBPPjgg8Pe99ChQ4NeP9T6/KGM9rWP9vkUn3/+OQDghz/84ZD3MZvNAIA5c+Z49JhjfS0AkJ6ePuj1yojFUKM8w+m/nfBIXn/9ddx7773o7u4e8j5dXV2DXj/av0d//ngfiEIFY8fIGDvc+fOcuWzZMmRmZuKzzz7D7bffjvfeew/x8fEedSDHEk+Aof9Ovv4ME2mF5/uR8Xzvzh/ne08/h8MZ6/nem9fli8/hSDo7O3H77bdDlmVcdtlleO211/D000/jpJNOYozxAya7QpC3SQZvxcTE4LnnnsPOnTvx9ddfY9u2bdi2bRt2796N5557Dj/60Y/whz/8wePHczgcAIBFixYhOzt72Pvm5eUNen10dLTnL8AHRvt8u3fvBjB0cLJaraisrERCQsKI74Uv6XTarljevXs37rrrLuj1etx888044YQTkJaWhpiYGEiShNdeew133XUXZFke9Pd99ffX+n0g0hJjh/8xdnhOkiScc845ePjhh3HLLbegpaUFF1100Yjv4VjjCTD038nXn2EirfB87388349srJ9DX5zvvXldvvgcjuSvf/0r6uvrsXz5ctx5551ISkrCww8/jNtuuw3vvPOOR0X7yXNMdoUxZTtvJUs9GGXL175bfyvmzp2rZphtNhu++OIL3HLLLXjllVewcuVKLFu2zKN2KFNDTzzxRPzsZz/z6jWM1lhf+2gpNQyGmpb71Vdfobe3F4sXL/b4MbV6Lb706aefqiMYV1999YDblWnIRKQ9xg7GjkA599xz8eijj2L16tUAPFvCGIh44qvPMFGw4/me5/tgFuj+g78/h2vWrMFbb72F+Ph4/PWvf4UkSbjmmmvw5ZdfYs+ePXjooYdw8803+/x5IxmnOYSxJUuWAAA+/vjjQaeerlq1Cu3t7YiLixtxTbjBYMCpp56qFlHct2+feptSm8lutw/6uytWrADgOmEFgi9fuzeUKbHV1dUDbjObzfj3v/8NwPOCk4B2r8WX2tvbAQw+lbi3t1ed0j1aI30GichzjB2MHYGSnp6OE088EYmJiZg/f/6AIsKD8Xc86W+4zzBRqOP5nuf7YBbo8/1YPocjfcbb2tpw5513AgBuvfVW9TUZjUbce++9MBqNePbZZ7Fjx47RNp8GwWRXGDvttNOQnp6O5uZm3HvvvWoxP0Bk/u+77z4AwI9//GO3opIvv/wyysvLBzxeS0uLOvW270lHGSHYv3//oO048cQTMWfOHOzcuRO33XbboGuc29vb8b///c+tjWMx2tc+VkrBx8cee8xt/fihQ4dw7bXXqu+rN4FGq9fiS7m5uQCAd999F52dner1vb29uPvuu9XRptEa6TNIRJ5j7GDsCKRHHnkE3377LV577TWP7u/PeOLtZ5go1PF8z/N9MPN3/6G/sXwOR/qM//nPf0ZLSwtWrFiBCy64wO22wsJCXHvttbDb7bj11ltZQ9iHuIwxjJlMJjz44IO4+uqr8b///Q/r1q3DvHnz0NXVhU2bNqG3txdHH300rrvuOrffe/311/GnP/0JmZmZyMvLQ3x8PFpbW/H999/DbDZj2bJlOOGEE9T7r1y5Et9++y1++9vf4uijj8b48eMBiOKV06ZNg06nw6OPPoprrrkG77zzDj777DMUFBQgPT0dVqsVNTU1KCkpgd1ux7nnnutxwUJ/vPax+uUvf4k1a9bgu+++w8qVKzF//nz09vbiu+++Q25uLqZOnYqKigosWLAg6F/LSN544w1195fBHHXUUTjrrLMAiKUqL7zwAvbs2YMTTzwRixcvhl6vVz9Tl19+OV544YVRt2WkzyAReY6xg7EjmPkznnj7GSYKdTzf83wfzPzdf+hvLJ/D4T7j+/fvx4cffojx48fjnnvuGfS5leWMRUVFePDBB/G73/3OZ68rkjHZFebmzp2Ld999F0899RTWrVuHVatWwWQyYebMmfjhD3+ICy64YEDAuOmmm7BmzRrs2LEDO3bswOHDh5GcnIy5c+fivPPOwxlnnOH2O5dccgm6urrw/vvvY+3atWo2+gc/+IGaaEhNTcXrr7+Ot99+Gx9//DGKi4uxa9cuJCQkYNKkSbj44otxwgkn+HS0YTSvfawKCwvx4osv4v7778eOHTvwzTffYPr06fi///s/HHfccVi5ciUKCwuRkpIS9K9lJFu3bsXWrVuHvH3cuHFqsmv8+PF488038fDDD2P9+vVYt24dEhMTcdRRR+FXv/oVtmzZMqa2ePIZJCLPMXYwdgQrf8YTbz/DROGA53ue74OVv/sPgxnt53Coz/hRRx2FP/3pTwCAO+64Y8iaaQaDAffddx/OPfdcPPfcczjllFMwf/58n7++SCPJgVoYTRTh7rrrLrz22mu4++67cckll2jdHCIiCgGMHUREkYHneyLfYs0uIh/atWvXgOva29vxl7/8Ba+99hpmzpw5YJ02ERFFNsYOIqLIwPM9UeBwZheRj7S0tODoo49Geno6pk2bhoSEBDQ2NmLv3r3o7u5GYWEhnnrqKUyaNEnrphIRUZBg7CAiigw83xMFVmgt3CUKYg6HAxdeeCE2b96M7du3w2w2Y9y4cZg3bx5OP/10nH322TCZTFo3k4iIgghjBxFRZOD5niiwOLOLiIiIiIiIiIjCBmt2ERERERERERFR2GCyi4iIiIiIiIiIwgaTXUREREREREREFDb8UqC+tbV1wHUJCQlob2/3x9OFDL4HfA8UfB/4HgCR8R4kJSUNe/tg8WIsIuE9DVf824Um/t1CV7D97UaKF4DvY0YgBdv7TYHBv3tk4t/d/zyJGQGb2aXTcRIZ3wO+Bwq+D3wPAL4H/sD3NHTxbxea+HcLXfzbBRbf78jEv3tk4t89OPCvQEREREREREREYYPJLiIiIiIiIiIiChtMdhERERERERERUdhgsouIiIiIiIiIiMIGk11ERERERERERBQ2mOwiIiIiIiIiIqKwwWQXERERERERERGFDSa7iIiIiIiIiIgobDDZRUREREREREREYYPJLiIiIiIiIiIiChtMdhERERERERERUdhgsouIiIiIiIiIiMIGk11ERERERERERBQ2mOwiIiIiIiIiIqKwwWQXERERERERERGFDSa7iIiIiIiIiIgobDDZRUREREREREREYYPJLiIiIiIiIiIiChtMdhERERERERERUdhgsouIiIiIiIiIiMIGk11ERERERERERBQ2DFo3gCjU7S6S8fIrMvbsA3QSMGsmcOUVEqZNk7RuGhERhSGbTcazz8v45FNAkoCzzpRw+WWAXs+4Q0QUaqxWGRs2Ad98I6N4P9DdBThkwGEHHA7AZAJi44D4OCDOeTl+PDBlioSCfKAgH9DpeP4n6o/JLqIxeOVVGY8/KUOWXdetWQes3yDj6p8BP7oYkCQGHyIi8g1ZlvHP+2V8+LHrumeek1FVDdx1Bzs8REShwmyW8errwJtvyWhrH80jiA7IxInA6afKuPB8CYmJjAFECia7iEbp/Q9lPPaECDIrTwHO/oEEhwP432sy1n8DPP6kjEOHgF/9kgkvIiLyjc9XAR9+DOh0wO/+T8SWf9wv44svgflzgbN/qHEDiYhoRBWVMm65XUZ9vfg5eQJw0knAgvkSkhIBvQ6QdOJcb7EAXV1AZxfQ1SkuDx2SUVYO7NkDHDgAvPAS8MabMi66UMaPL5UQFcW+BxGTXUSjUFwi41/3i0TX5ZcBP7/KVf5u7hzgjbeAhx6R8dobQEKCuA8REdFYmM0yHntSxJ4rr5Bw5hmiM9PdDTz0qIynnpFxwgnA+HHs5BARBauychm/vlFGewcwKQX4xTUSTjgOMBi8OXeL+1osMr7ZALz4soyS/cDzLwCr18j48x+BaVMZCyiysUA9kZccDhkPPCjD7gCOWwFc/TP3QCJJEi48X8JvbhTX/+dpGeu+lgd7KCIiIo999Alw8CCQNlksk1ecew4wdQrQ3gH89wXGGyKiYNXYJOOG34hE14xC4LmnJZxykuRlosvFZJJw/HESnvmPhD/dLSF5AlBVDVz7KxlbtzEeUGRjsovIS59/AewuAmJigBuul4Zconju2RLOP08c/+0fMg4eZMAhIqLRkWUZb70t4sjFF0kwmVyxx2CQcN214uf3PwA6OxlviIiCjc0m449/ltHWBuRNB+7/h4SEBN/MvpIkCSccJ+G/z0qYN1cse7zlNhlFexgPKHIx2UXkBYdDxksvK8sXJaSkDB+grvuFhLzpYrT9b/+UIcsMOERE5L29+4DqGiA6Gjht5cDbly4BpkwBeszAx58GvHlERDSC/70G7NoNxMYC9/xJwjg/LDlPTJTwwD8lLDlCxIPf3iqjtpb9D4pMTHYReeHbzUBlldj299yzR76/0Sjh97dLMBqBDRvFEhQiIiJvff6F6KwcczQQGzuwgyRJEs47R1z/9jsyHA52boiIgsWhQzJeeEmcl2/6tYSMdP/V0zKZJNzzRwkzCoGODuDOP8iw2RgTKPIw2UXkhVdfF4HirDOAuDjPgtS0aZJa1+vBh2U0NjLYEBGR52w2GV99JY5PPnHo2LPyZDEYU1sH7NwVoMYREdGInv2vjJ4eoLBA7OLub7GxEu79i4SE8UBpGfDSK/5/TqJgw2QXkYfq6mVs2Sq2AD7/PO9GYy66QOzS2NMDPPI4k11EROS5bduBQ61AwnhgyRFD3y82VsKxK8Txqi8Ya4iIgkFLi4wPPhTH110rQacLzC6JE5Ml3HC9eK7/viijopJxgSILk11EHvp8lbhctBCYnOpdkNLrJfzfTRJ0OmDNWuDbzVY/tJCIiMLRNxtcSxhH2rFLmfm1ei1gtbJjQ0SktbfflWG3A/PmAgvmBybRpTj5JODIZYDVCvyd9YMpwjDZReQBWZbx6WciOJx6yuiCVO40Cef8UBzf+7curp0nIqIRybKMbzaK46OOHDn+LFwATEgSdVq++97PjSMiomF1d8t47wNxfNEFgU10AaKe482/kRAdLYrjr/8m4E0g0gyTXUQeKNoD1NUDMdHAimNG/zg/+6lYO7+/1K4GPiIioqFUVgENDYDJCCxeNPL99XoJJ54gjld9yUEVIiItffZ5Lzo6gPR04KgjtWnDpEkSLjhPHP/naRl2O2MDRQYmu4g8sG69CApHHQXExIx+VGb8eFex+qefldHRwWBDRERD2+Cc1bVwoefx5+STxP2+Xg/09DDOEBFp5cOPLQCAM0+XoNcHfmaX4kcXSxg3DqioBNas06wZRAHFZBeRB75xTvk95qixB6mzzgTy8/U4fFgUiyQiIhrKxk0iTixf5nn8mVEoZhGYzcDm7/zVMiIiGs6Bg7Jap/ekE7Vty7hxEs4/Vxy/+jprd1FkYLKLaATVNTKqqgG9Hli6ZOyPp9dL+O1vYgEAb70D1NUx2BAR0UDd3TJ2F4njZV7EH0mScMxR4nj9N4wxRERa+OorQJaBObOB9DTtZnUpzj1bgskI7N0L7NyldWuI/I/JLqIRfLNBXC6YD8TH+yZQHbnchKVLAJsNeOIpdkSIiGigHTtFnEibLGZqeUMpZr9hI7ghChGRBlavFefek07QPtEFAElJElaeIo7ffJtxgcIfk11EI9j0rbNelwe7YHnjl7+QoNMBq9cAe/cx4BARkbvvt4jYsHixmK3ljblzgHHjgPYOsckKEREFTluba2bu0Udr25a+zj1bxJL13wDt7ex/UHhjsotoGBaLjF27xfERi3372LnTJKw8WRw/8xyDDRERufvue3G5eJH3gy0Gg4Qjl4njr9czxhARBdK3m8USxvx8PVInBcfMLgDIy5OQnwdYrcCqL7VuDZF/MdlFNIyiPYDFAkxIAnKyff/4V1wuQa8DNn0L7C5iZ4SIiISDB2WUVwCSBCxaMLrHOOoo1wg+ixETEQXOBufmIsceY9K4JQOdcZqIDR99zLhA4Y3JLqJhbN0mgsCC+d4vIfFERoaElSvF8bPPM+AQEZHw/RZxmZcHJCaOLv4sWwIYjUBtHVBd7cPGERHRkGw2Wd0J95ijjdo2ZhAnnyRiw/5SoGQ/+x8UvpjsIhrGtu3icsEC/00//smPJej1Ynv4nbsYcIiIyFWv64hFo3+M2FgJC+aL46+/GXubiIhoZMUlwOHDQHw8MG+uQevmDDB+vIRjnHXEOLuLwhmTXURD6O2V1aK+C0e5hMQTGekSTj9VHHN2FxERybKM75wzu0ZTr6uvo9WljIwvRESBsHWbuFwwT9RPDEanrRTtWr0GsNsZHyg8MdlFNITdRaJ448SJQFamf5/r8stE7a7vtwD7OZ2YiCiiVVUDBw4AJpPYVXEsjjpSXBbtEbuDERGRf23b7iyD4seVIWO1eJGYeXaoFdi5S+vWEPkHk11EQ/B3va6+0tIkHHecOH7tTXZGiIgimbIL49w5QFTU2OJP6iQJubliVzClhgwREfmH1SqrySN/rgwZK6NRwgrnUsbVa9j3oPDEZBfRELbvEJcL5wdmVOaiC8TzfPElcOAggw4RUaT67jsRA8a6hFGxfKm43PgtYwsRkT/t3QeYzUDCeGDaVK1bM7zjjxMxZu06LmWk8MRkF9EgbDYZe/eJ47EuIfHUzBkS5swGbDbg7XcYcIiIIpHVKquboyw9wjePuXyZ6NB8u5kdGiIif1IGyxfMB3S64F3GCDiXMsYBBw9B7fcQhRMmu4gGUVoGWCxiLXtWVuCe98LzRVB8731RIJ+IiCLL7iKgxwwkJQG5ub55zFkzRTzr6AD27PXNYxIR0UC7i8T397lzgjvRBYiljEuXiONvNrLfQeGHyS6iQSidgZkzAjsqc8zRQNpkoL0D+PTzgD0tEREFie++V5Yw+i7+GAySOkts4yZ2aIiI/EGWZexx7uQ+a5a2bfHUkctFnNmwUeOGEPkBk11EgyjaIzoDs2YG9nkNBgnnnyeCzjvvypBldkqIiCKJUpx+yWLfDrQscy5l3PStTx+WiIicauuAtnbAZATy87RujWeWLQV0OqCsDGhsYr+DwguTXUSDKFJGZWYGfgryaStFkCwtA4pLAv70RESkkfZ2GfuKxfERi3372MucS1VK9gMHDrBDQ0Tka0r/IT9fLBEMBQkJEmY7Z6Ft3KRtW4h8jckuon7a22XU1orjmTMC//zjx0tYsUIcf/gROyRERJFiyzZAloGpU4CJE33bUUpKkjCjUBxv2uzThyYiIrjqdYXKEkaFaykj+x0UXpjsIupHqdeVlSUST1o483TxvKu+BMxmBh4iokiwyVlPa4mPdmHsT9mVkXW7iIh8T6nXNVuDlSFjceRycbllC9DTw/hA4YPJLqJ+9uzVpl5XXwsXAGlpQFcXsHqtdu0gIqLAsNtltUDwUUf6p6O0fJm4/O57wGplh4aIyFcsFhll5eJYmUUbKqZOAVJTAYsV2LlL69YQ+Q6TXUT9aFmvS6HTSTjjNPH8H33MDgkRUbjbXSQKG48bB8yd45/nKMgHEhOB7m5g127/PAcRUSSqqATsdnEOT03VujXekSQJixaI463b2O+g8MFkF1Efsiyj2FkceEaBtm05daW43LETaGpm4CEiCmdfrxfn+SOXiZ15/UGnk7BsqTjmUkYiIt/Zv19c5ueJ5FGoWbBAtHnbdm3bQeRLTHYR9XHgANDeAeh1wNSp2rZlcqqEeXNFseIvv9K2LURE5D+yLOPr9eL46KP820lavtRZt+tbvz4NEVFEKd4vBhDy8zRuyCgtmC8ui4uB7m4OhlB4YLKLqI/SMnGZlQ1ERWk/KnPySc5C9V8w6BARhatdu4G6eiAmGli6xL/PdcQRYkCnshJoaGBsISLyBWVmV16e9v2H0ZicKiE9HbA7xKoSonDAZBdRH0qya3qutu1QHH8sYDAA+0uBikp2SoiIwtHHn4jz+/HHAbGx/u0ojR8nYfZscczZXUREY2e3y2ofIlRndgHAwvnictt29jkoPDDZRdRHaak4uU/PDY5RmYQESR3l5+wuIqLw09Mj46s14vj00wITe5Y5lzJuYt0uIqIxq60FzGYgOhrIytS6NaO3YL6IDVu3adwQIh9hsouoD2XL4NwgmdkFAKc4lzJ+8ZWo60JEROHjs8/F7ogZ6cC8uYF5zuXLxOWWbUBvL+MKEdFYFDuXME7PBfT64BgwHw2lblfJfqCzk7GBQh+TXUROvb0yqmvEcV4QJbuWLwNMJqC+3rXMkoiIQp/NJuOlV0SH4oLzpYDt4JU7DZiUAvT2cuctIqKx2u8sTp8XwksYAWDSJAmZGYDDAewq0ro1RGPHZBeRU0WFOLknJgDJyVq3xiU21rWUcd3XHGUhIgoXn60CGpuACUnAWWcE7nklScIy5+yuTd8yrhARjUWJc2ZX/vTQndWlUGo67tnD2EChj8kuIidl1lRuLgI2uu6pY1eI9qxdp3FDiIjIJzoOy/jP06IzcfFFUsB3AF7urNu1YROXyBMRjZYsyygtFcehPrMLAGbNFLFhN2d2URgwaN0AomBRWq4Up9e4IYM4cjmg1wPlFUB1jYzsrOBKxhEREWCxyPj8C2DHDhk2O5A6CVi8SML8eYDB4Dpv9/bKuO0OGQcPAllZwHnnBL6tixaK3X7r64GaGiA7O/BtICIKdYcOAe0dgE4HTJ2idWvGbvZMcblnL+BwyNDp2Oeg0MVkF5GTMioTLDsx9jV+nIRFC2Vs/k7M7vrxpVq3iIiI+qpvkPHbW2RUVbtf/9IrMuLjgKVLZSxbIsFmA97/SMbevUBcHPCnuwI/qwsQS+Tnz5Px/RZg47dMdhERjUZ5hbhMT4cm53JfmzpV7CrZ1QVUVYdHAo8iF5cxEsE5Bdm5jDEYZ3YBwIpjRABl3S4iouDS2ibjht+IRFfyBOCnPwF++QsJp58KJCYCnV3Al18Bf7lPxt/+6Up0/f1eCXl52nWOjlzmXMq4kXGFiGg0KirFZbgkhQwGCYUF4riISxkpxHFmFxGApmags1MsFczJ0bo1gzv6KOCf9wN79wGHDsmYMCH0R4+IiMLBw4/IaGgAMtKBRx+SMHGicn6WYLfL2LsPWP+NjJ27xIh53nTg/HMlpKRoex5fsgTAo8Cu3WJpZTjMSiAiCqSKCjFYMG2qxg3xodmzgO07gKI9Ms48g3GBQheTXUQAypyzunKyAZMpOE/qE5Ml5OfJKNkPfPsdcNpKrVtERES7i0SdLgD44119E12CXi9h9ixg9qzgiy052WInyEOtYiBl/jytW0REFFpcM7uC7xw/WqJIvcwi9RTyuIyRCAj6JYyKZUvFJbeKJyIKDo89Ic7Hp58KFBaGVmdHkiQsmC+Ot23XsiVERKFHlmU12RVOM7tmOYvUV1YBnZ3sc1DoYrKLCEBpmXMnxunB3VFZ5twqfvN3gM3G4ENEpKV9xWJposEA/Pyq4I4fQ1kwX7R7+w7GFCIibzS3iELuer3YWTdcTJggIS0NkGUx65coVDHZRYTQmdk1cwYQHw8cPszgQ0SktQ8/Egmi447FgOWLoUKZ2bVrN2CxMOFFROSpCudOjFmZgNEYmjFgKDMKxWVxibbtIBoLJrso4pnNMmprxXGwJ7sMBglLjxDHXMpIRKQdm03G6jXi+IzTQreTk+2s22WxcBCFiMgb5c5k19QwWsKoyHfuFLx/P/sbFLqY7KKIV14hpukmJSEkdjhUljJu+lbjhhARRbDvvgfaO0SiaOECrVszeqzbRUQ0OpWVIhEUTsXpFQX54rJ4v7btIBoLJrso4oXKEkbF0iXisrgEOHiQoy1ERFpY9YU4/55wgthxMZQpdbu2bWdMISLyVDgWp1fkTReXtbVAVxdjA4UmJrso4pWWOovTh0iya8IECfnO0ZbN32nbFiKiSGSzyVi/QRyfdEJoJ7oAYP58cbm7iJufEBF5wuGQUVkpjqdO0bIl/pGYKCE1VRzvL9W2LUSjxWQXRbyycnE5PTd0OizLl4rLTZvZKSEiCrQ9e4HubiBhvNg4JNRlZwHjxwO9vezUEBF5ouUA0GMWOzFmZGjdGv/IzxOXJSxSTyGKyS6KaLIso8y5jDE3RGZ2AcARi0Vibus28RqIiChwvt8iLhctAnS60BkoGYpOJ2H2LHG8a7e2bSEiCgU1NeIyPV1sIBWOCvLF6ypmkXoKUUx2UURrbAQ6uwCDAcjJ1ro1nps1E4iOBlpbXTvBEBFRYGzZKr74L14UPh2cObPFa9m1m50aIqKR1Dh3cs/O0rYd/sSZXRTqmOyiiKYUp5+SAxiNodNpMRolzJ0jjrds0bYtRESRpLtbxu4icbx4kbZt8aW+M7s4Y5iIaHjV1eI8mZWpcUP8SKkRXFUNmM2MCxR6mOyiiKbuxDhd23aMhjKj4PutDD5ERIGyYxdgtwNpaUB6WugMkoxkRiGg1wEHDgBNzVq3hogouCkzu7KywicO9DcxWULyBMDhcPWZiEIJk10U0crKRKIod1roBSplRsG27dw9i4goUIqKxPl2/lyNG+Jj0dES8pxLVoqKtG0LEVGwU2p2hfMyRgBqXODmJRSKmOyiiKbO7Aqh4vSK6bliJ7CeHmDvPq1bQ0QUGfbsFZezZobeIMlICgvEJYsRExENzWKR0dAojrPCPNmVO01clpUzLlDoYbKLIlZ3t4y6enEcissYdToJCxaI4y1btW0LEVEkcDhk7NkjjmfN1LYt/pCv7LxVrHFDiIiCWH2DWNoXEwMkT9C6Nf6lrH4pL9e4IUSjYNC6AURaKa8AZBlITgaSEkNzhH7xQglr1sr4fouMKy6XYLfbsXr1auzZswd79uzBvn37YDabcfrpp+Ouu+4a9rE6Ojrw9NNPY926dTh48CCSk5Nx7LHH4qqrrsK4ceMC9IqIiIJXdY3YwTc6Gpg6VevW+F7yhAbYra9jy3d7cdZZ9Whvb4der0dWVhaOP/54XHzxxYiJifHqMS0WC1599VV88cUXqKmpgc1mw8SJE3HEEUfgJz/5CTIyMvz0aoiI/KPvEkZJCs0+hKemOWd2lZeLzUv6v96tW7fi9ddfx86dO3H48GEkJCRg+vTpOPfcc7FixQoNWkzkwmQXRSxlCaMyPTcULXLW7SraI3ZJsVq7ceedd3r9OG1tbbjqqqtQW1uLjIwMrFixAhUVFXjttdewceNGPPXUU0hISPBx64mIQkuRc1ZXYQFgMIRfB8dqKYNsfxU2ezImpeZg/vz5OHz4MHbv3o0nn3wSq1atwhNPPIHx48d79Hi9vb247rrrsHv3bowbNw4LFiyAyWRCcXEx3n//fXzxxRd47LHHUFhY6OdXRkTkO9XOZFe4L2EEgJxsQK8XAz3NLUDqJNdtTz31FJ555hmYTCbMnTsXSUlJaGlpwY4dO5CSksJkF2mOyS6KWKXO4vShuIRRkZkBTJoENDcDO3cBc2YbcNppp6GwsBAzZ85EVVUV7rnnnhEf54EHHkBtbS2OO+443HPPPTAYxKnhX//6F9544w08+OCDI84MIyIKd0V7RNyYGYZLGAFg9uwZyM1/CVXV03DpZRJOOE4k9Lq6unDLLbfg+++/x/PPP49f//rXHj3eu+++i927d2PmzJl46KGHEB8fDwCw2+144IEH8Oabb+LBBx/E448/7rfXRETkazU1IhZkZWrckAAwGiVkZcmorBSzu5Rk14cffohnnnkGs2bNwr333otJk1xZMLPZjLq6Om0aTNQHa3ZRxCpTi9OH7ui8JElYvFAcf79VRkxMDP7whz/goosuwpw5cxAVFTXiYxw4cACrVq2C0WjEb3/7WzXRBQDXX389kpKS8Nlnn+HQoUP+ehlERCFBqWU1oyB048ZwJk6ciHnzxHTnkhJXMeK4uDhcddVVAIDvv//e48fbvn07AOCSSy5RE10AoNfr8fOf/xwAsEcpgkZEFCJqasVlVlZ4xoL+cp3L9sucdbvMZjMefvhhxMbG4u9//7tbogsAoqOjkZsbgrt/UdjhzC4KavX19Tj33HOxYMEC3H///XjyySfx1Vdfob29HTk5Obj66qtxzDHHAAC+/PJLvPzyyygvL0dMTAxOOukkXHfddYiOjnZ7TLPZjFdffRU7tn0Jh70Wf/kz8Nr/puHcc8/FGWecMaAN27dvxxdffIFt27ahubkZFosFkydPxooVK3D55ZcPqGe1ZcsWXHfddTj99NNxww034IknnsC6devQ0dGBrKwsXHLJJbj88st99h4tWijh409lbNkyut/ftGkTHA4HFi5ciOTkZLfbTCYTjj76aHzwwQfYsGEDzjzzTB+0mIgoMHwZQ2w2GRUVgCybsWvn63ju2a9Q4yzcMm1aYGPIWWed5bf3rCBfAiCjuMT9emUgxGg0evxYntyXS+SJSGvexood216GzVqOf/49Brt2DN3feO2117BmzRpUVlYCCN1YMW2ahC9XyygvlwFIWLNmDdrb23HWWWcN6DsQBRMmuygk2Gw2/OpXv0J9fT0WLFiAtrY2bN++HbfeeiseeOABlJWV4ZFHHsGCBQuwdOlSbN++HW+88Qba29vxpz/9SX2cQ4cO4de//jVKS0sBJEOnn48FC4Ddu3fhz3/+M/bu3Yubb77Z7bkffvhhlJaWIjc3F4sXL4bFYkFxcTFefPFFfPPNN3j66acRGxs7oM2dnZ24+uqr0dPTg/nz56tt/stf/qJ2pHxhkXNmV8l+oKNDxvjx3o0y7d+/HwBQUFAw6O0FBQX44IMPnO8ZEVHo8UUMqakFei2HIFtvxCuvlCI5ORkLFiyALMvYtSuwMcThcOCHP/yhX96rgnxxWVziKkZsNpvx/PPPAwCOOuoojx9r6dKl+Pzzz/G///0Py5cvd1vG+J///AcA/Jq4IyLyhqexwiEvgKRbCmDk/kZKSkrIxwqlvnFZhbjc4hxhnzNnDg4fPozPPvsMZWVliIqKwty5c7FixQq3lSJEWuGnkELCrl27sHjxYrz99tvqTlAffvgh7rnnHvz9739XdxKcMWMGAKClpQWXX345Pv/8c1xzzTXqbk/33HMPSktLcdTRF2LTd79EQb4J//63DgcPHsTNN9+MN998E0cddRSWL1+uPvfPfvYzzJ07120JhsViwf333493330X//vf//Czn/1sQJvXrVuHk08+Gb///e9hMpkAAGvXrsUtt9yCxx57bECy69prr8W2bdu8el/uvPNOnHnmmcjOklFdI+p2He15PwQA0NjYCAADpiArlOuV+xERhRpfxJDSMsBh/QtkRykuuugiXHfddeq5PdAx5LnnnhvQgRlLDOlr2lRAr+9A64GHcPvtQG9vG4qKitDe3o5jjz0WP/rRjzx+/FNPPRWbNm3CqlWrcM4552Du3LkwmUzYt28fDh06hEsvvRRXXnmlV20mIvIXT2LFHXc+hb/+rRDJE4Cnnzw4bH/joosuwp133omuri4AoRsrfnX9nQBOR1WVMstZZL3a2tpwySWX4MCBA+p9X331VeTm5uL+++9HamqqV89D5GtMdlFI0Ol0+N3vfue25fnpp5+ORx55BLW1tfjpT3+qdlIAICUlBStXrsSrr76Kbdu2ISMjAyUlJdiwYQNmzpyJGTN/jW+/12G6czl5cnIybr31VvzkJz/B22+/7RZ8jjzyyAHtMZlMuPHGG/HBBx9g3bp1gwafuLg43HzzzWrgAYBjjz0Wubm5KCsrQ319PdLT09Xbli9fjrS0NK/el8xMURlz/nyxM8y2HTKOPsq7mV09PT0AMGD6tUK5vru726vHJSIKFr6IIZu/LYbs2IikCTNwww03QKdzlT0N9Rji3jYJ2Vlm7N/3MVavdl1/4okn4uabbx4yVgxGr9fj7rvvRmpqKl566SV888036m0FBQU44ogjoNfrvWozEZG/eBIrDIYZAGRkZY3c37jhhhtgMpnUZFeoxopZMzMREwP09Ij+xuHDhwEATz75JHJycnDPPfcgLy8PlZWV+Pvf/47i4mLcdttteOaZZyBJkVHXjIITk10UEtLS0pCdne12nU6nw+TJk9HW1oalS5cO+B1ldOXgwYMAgG+//RYAsGLFChSXik5K3+L0BQUFiI2NHbRYbnNzM9avX4+qqip0dXXB4XAAEPVIlJot/RUWFg5aiyQrKwtlZWU4ePCgW/AZSx2v+fMkvP+BDGctYCIi6sMXMWTnzs0AgDlzVrgluhShHEP6mzlzEioqN+CKy2WcdcYBbN68GU888QQuvfRS3H///SgsLPTocTo6OnDLLbdg7969uOmmm3D88ccjOjoa27dvx7/+9S/85je/wR//+EecfPLJPms7EdFoeRIrvt/q3IkxS9w+XH8jnGLFtKkOFO0ROzIq7dLr9XjggQfUGVyzZs3CAw88gPPOOw979uzB5s2bB42vRIHCZBeFhJSUlEGvV0ZeBrtduc1isQAAGhoaAABPPPEEgCcAAPf/S/zrq7e31+3nV155BY899hhsNptXbR5qWaCy3l5ply8smCcu95cCnZ0y4uM9H0VR3iez2Tzo7cr1g9UJICIKBb6IIc3NIoasW/skli17csjnCsUY0l/uNFGkvrxCQmpqKs466yzk5ubi6quvxj333IMXX3zRo9H6f//739i2bRtuvPFGXHTRRer1K1asQEpKCq688ko89NBDOP7441nfhYg050msUHJOWZmS222D9TdEn2NwoRYrpk0DivYAFZWy+poXL148YKnihAkTcOSRR+LLL7/Etm3bmOwiTfGbBYWEkb5Ue/KlW5bFSMzs2fNQtEeMwpx0IjDcZlG7d+/GQw89hPj4eNx0003qjoXKVOEzzzzTbZ26t23q64UXXlB3a/HUD37wA8yfPx8pKRIy0mXU1QO7dgPLl3n+GJMnTwYgRpMGo1yv3I+IKNSMNYa0tskw94oYMmfOPGRlZXj0vKESQ/pTixGXua6bOXMmsrOzUVpaivr6enU2w1DsdjtWrVoFADjhhBMG3D5jxgykp6ejrq4OdXV1yMnJ8artRES+5kmsqKkVx/0mgKmU/sa8efOQkZGBqKioAYmt/kIhVkzJmQdARlWVmAFXUlIy5HJI5frW1lavnofI15jsooihjNYUzliBfaWXIGUi8Oc/D5xe3NeaNWsAAL/4xS8GbBNsNpvVKcu+sHHjRq8LRi5cuFDtqMyfD9TVi7pdy5d5Hvjy8vIAAMXFxYPerlw/ffp0r9pGRBQuKisBSUqBDOC441bg0ksv9ej3QimG9DXNmeyqqwe6u2XExoqYkpiYCEB0YEZKdrW2tsJqtQIQNWUGo1yv1H8hIgp2ysyu7IElDwG4+hsrVohYkZSUNGLSJxRiRU62WEZSWQ0cf0w+1q5dO+S5u6OjAwDcap8RaYHJLooYS5YswX/+8x9s3LgWwCXwJHejnMQHmyL81VdfqaM3vvD444+P6ffnz5Pw0cfe1+1atmwZdDodduzYgUOHDmHChAnqbRaLBevXr4derx+0cCYRUSSoqgIk3RIAT2Ht2rUeJ7tCKYb0lZQoIXmCjIOHgIpKYNZMoKurC8XFxZAkya3+y1DGjx8Po9EIq9WKffv2YdGiRW63d3V1obq6GgBnDhNRaDh0COgxA3odMFSNd6W/EW6xorFRtKG2FjjyyKPx1FNPYefOnbDZbG7L0B0OB3bs2AFA1Ccj0tLw01qIwsjs2bOxZMkS1NXuhN36T2RndQ24z/79+7Fx40b1Z6VI5fvvv++2hr6iogKPPvqo/xvthflzxWVxsRiJ99TEiRNx8sknw2q14h//+Ifb63zkkUfQ2tqKlStXuiXBiIgiSWW1DEk3C2lpR2Dnzp34xz/+oe6u1VcoxxAAeO+991BXVwcAyHXuVlxWLpaz33XXXeju7saRRx45IB786le/wkUXXYSioiL1OpPJhGXLxJr6Bx980G0JTm9vL/7+97/DbDZj7ty5mDhxop9fGRHR2DU0isu0dMBoHHwVhdLfUGJFZ2fngPuEYqyYNAmIjgZsNiAuLh9LlixBY2MjnnjiCbdk3HPPPYeqqiokJSXhuOOO067BRODMLoowd999N84770b09LyNt95Yhb1FeZg4cSK6urpQWlqKpqYmXHTRRepWwGeeeSZeeeUVrF+/HhdeeCFmzJiBjo4ObNu2DcceeyyKiorQ2Nio8asS0tIkpKbKqK/9B356ZQni44D29nYAwIYNG9y2K37mmWfcfvemm25CUVERVq9ejYsvvhiFhYWoqKhAWVkZsrKycMMNNwT0tRARBROlvMnFl9yNjz68CW+99RY+//xz5OWFTwwBgE8//RT33nsvpk6dCrs9B3aLHk8+0Yx//r0YFosF06ZNw2233Tbg92pra9HY2Dhgo5MbbrgBRUVFKCkpwYUXXog5c+YgKioKe/fuRUtLC8aPH49bbrklUC+PiGhMnGMBQy5hVNx999248cYb8dZbb2HVqlWYPn16yMcKnU5CdraMkhKgsgq44447cNVVV+Gll17CunXrkJubi8rKSlRUVCAqKgp//OMfuYyRNMeZXRRREhOToDc9CZ3hJmRnT0FJSQlWr16N0tJSpKen4/rrr3ebcpyQkIDnnnsOp5xyCqxWK9avX4+Wlhb8/Oc/x5/+9CcNX8ng5s8DZEclqiqLUFRUhNpaUUWzra0NRUVF6r/+EhMT8cwzz+CCCy6A1WrF2rVr0dnZiQsvvBDPPvvsoFsaExFFiqoqcTlr1gQ89dRT+M1vfoMpU8Ivhlx22WU466yzAADNLVsgO9agva0as2bNwm9+8xs8//zzXs3CyszMxIsvvoiLL74YKSkp2L59OzZt2oSoqCicf/75eOmll5CrTCEjIgpyDc6lfFlZw99vwgRXrMjNzQ2bWJHjLMpfVQ2kpqbihRdewPnnnw+LxYKvv/4abW1tOPnkk/Hss89iyZIl2jaWCIAk+3IRsNNgRfg8Kc4X7vgeaP8e1NTKuOQyGSYT8PnHEgwG73Yw8RV/vQ8ffiTjvn/ImDsHeOzh4M5la/1ZCAaR8B4kJSUNe7uvX38kvKfhKlj/dp2dMk49U3xV+uQDCePGaRM3Am3fPhlX/UJGUhLwwTtDx5Ng/bvRyILtbzdSvABCe3e3YHu/yXu/u9WBDZuAm38j4ewfeBYLwunv/vwLMp5+VsbKU4Df3x7c/QythdPfPVh5EjP4KaWIUloqLqdNhWaJLn+aLzZKwd59QG+vz/PYREQRp0rUUEfyBERMogsAnCVk0NoKdHQwnhARVSs7MY4wsytcTckRl8psZ6Jgx2QXRZSycvGFPVxXTWRkABMnAlYrULRH69YQEYU+5Uv9lCmaNiPgYmMlKBuDVbJjQ0QRzmqV0dAgjrNGqNkVrnKUZFc1fLpDJJG/MNlFEaW0TFxOzw3P0XlJktTZXdu2MwgREY1VTa1nNVrCEUfxiYiEhgbA7gBiosXAciTKzAD0OqCnB2hu0bo1RCNjsosiirKMcXqYzuwCgPnzRCJv+w6NG0JEFAZqxD4fyMoMz0GS4SjFiCurOHhCRJFNWcKYlSUGlyOR0SghI0MccxCEQgGTXRQxDh+W0dgkjsN1GSMALHDO7CraA1gs7KAQEY2FstW88gU/kkyZIjp0XMZIRJFOTXZF6BJGhbKUkXGBQgGTXRQxyivEZWoqMD6MiwxnZwNJSYDFIgrVExHR6MiyjFpnsisrEpNdXMZIRATAtaRd2bwjUilxobqGA+oU/JjsooihLGHMnaZtO/xNkiTMmyuOt23XtClERCGttVXUJpEkIC1N69YEnrKMsbEJ6Olhx4aIIleNOrMrfAfMPZHpfP21tRo3hMgDTHZRxCgtE1/Uw7lel2KBs27Xjp3snBARjZYyqyt1EmAyRV4HJzFRQmKCOFaW8BARRaKaPjW7Ilmmc5ZzDZNdFAKY7KKIoe7EOD38Oyzz54vL3bsBm40JLyKi0Yjkel2KHC5lJKII19Ul4+AhcRzpNbuyncm+5magt5d9DApuTHZRRLDbZbVmVyTM7Jo6BRg/HugxA/uKtW4NEVFoqq0TX+QzmezijoxEFLGUWUwTkoD4+PAfNB9OYiIQFwfIMlBXr3VriIbHZBdFhLo6oLcXiIoCMtK1bo3/6XSuul3bd2jbFiKiUKXUJMnIiNzOzZRs8dqrqjVuCBGRRqq5hFElSZI6u41LGSnYMdlFEaFkv7jMnQbo9ZHRaVHqdm3fwdF4IqLRUHdijOBlK+oyRia7iChC1Th3HsxmsgsAkOmMiSxST8GOyS6KCCX7RZDKz9e4IQGk1O3auYt1u4iIvCXLMmt2wTWTob4OcDgYS4go8igzmLKyImPAfCRZarKLMYGCG5NdFBGUmV35eZETpHKnAfFxQHc3UFqqdWuIiEJLezvQ2SWOI2H5+1AmpQAGA2CxioLERESRRl3GGMGzfPvKyhT9KS5jpGDHZBeFPVmWsV9NdmnblkDS6yXMnSOOd+7Sti1ERKFGWcI4KQWIioqcgZL+DAYJ6WnimB0bIoo0siyjhjW73GSyZheFCCa7KOw1NQPtHYBeD0ybqnVrAmvOHNFB27mb04yJiLzBJYwuan2WOm3bQUQUaAcPAT09gE4X2bN8+1JiwsGDQHc3+xgUvJjsorCnzOqaOgUwmSJrdH7ObHG5a7cYmSIiIs/U1olzZiaTXazPQkQRq9q5OUfaZMBojKx+xFDGj5OQmCCOOQhCwYzJLgp7anH6CFrCqCgsEDPaDh4EGhq1bg0RUehQzpnp6ezcZLI+CxFFKFdxem3bEWy4lJFCAZNdFPaU4vR5EVScXhEdLak7UO5i3S4iIo81OpNdkydr245goMxu4zbzRBRpamrEoHk2k11uXDN+tW0H0XCY7KKwV1IiLiNxZhcAzFWWMhZx+QkRkaeUmV1pTHapnZr6BsBmYywhosjhmtkVeYPmw3HN+GVMoODFZBeFtdY2GS0HAEkC8qZr3RptzJktgtGu3Ro3hIgoRNhsMlpaxDFndgGTJgEmI2CziU1fiIgiRbWyE2Omtu0INpmc2UUhgMkuCmtKcfrMTCA2NjJHZJQi9eXlQGcnR1+IiEbS0gI4HCLBMyFJ69ZoT6eTkM6ljEQUYWw2GfX14pjLGN1lM9lFIYDJLgprxcoSxgid1QUAyckS0tMBWQaK9mjdGiKi4KcsYUydLBI9BGQx2UVEEaahEbDbgehoYOJErVsTXDKcMaGtHeg4zMF0Ck5MdlFY21/q3IkxP7I7K8rsrl27GYyIiEaiFqdP1bYdwUTdeauOcYSIIkN1tbjMzODAR3+xsZKaAOQgCAUrJrsorEV6cXoF63YREXmuoVEkdFivy0UpRsxODRFFCqU4fXa2tu0IVupOvXXatoNoKEx2Udjq6pLVk2+kFqdXKDsy7tnDnbSIiEbSqO7EyJF8BbeZJ6JIU1MjvjOzOP3g0tPFpVLXjCjYMNlFYWt/qbicNAlITIzsDsuUKUB8PNBjBsrKtW4NEVFwU2p2cWaXizKC39DAQRMiigzqToxZkd2PGEp6mnhf6usZEyg4MdlFYavEuRNjpC9hBESdgdmzxDGXMhIRDc81s0vbdgSTiROBqCjA7nAlA4mIwpm6jJE7MQ5KKVJfx5ldFKSY7CLtyLL45yf79zuL0+dxNAboU7drF0dfiChCjCLO2GwyWlrEMZNdLjqd5KrPwqWMRBTmurtlHDggjjNHu4xRliH7sa+jtfQ0cclljBSsmOwibcgyTBsfhWnjo35LeHFmlzvXjozatoOIKCBGGWdaWsTsJaMRmDDBj+0LQeqOjEx2EVGYU85ziYnA+HGjGDh3xiDH6n/6dXBfSxnOml0tB4De3vB8jRTamOwibditkForIbVWAnarzx++t1dGZaU4ZrJLmFEI6HVAcwvQ2MSARERhbpRxRlmil5rKreb7c83sYgwhovBW46zXNeoljM4YJB8o90tfJxgkJACxseKYy9spGDHZRWGpvEKMzCcmACkpWrcmOMTESMhzJv44u4uIaHBNTeKSSxgHysoUyT/WZyGicKfM7Mpiva4hSZKkzu6qq9O2LUSDYbKLwlJxsbjMyxMnYhKUpYxFezgqT0Q0GO7EODS1GDE7NUQU5qprxHdlJclPg1OTXRwEoSDEZBeFpb3FIkAVFmrckCAzc6YI2Hv2aNwQIqIg1dgo4sfkVHZw+lOWMTY0iEL+REThaszLGCNEujPZVd/AmEDBh8kuCkv7nDO7ZhSws9LXzBnicn8pYLEwKBER9afM7OIyxoGSk4GoKFEmoJH1WYgoTMmyzGWMHkpPF32tes74pSDEZBeFHbNZRmWFOJ7BmV1u0tNEHTOrVSS8iIjIXSOXMQ5Jp3PVZ6llx4aIwlRrK9DVBeh0rmV6NLgMdWaXtu0gGgyTXRR2SvaLUefkZCAlhTO7+pIkSZ3dtWevtm0hIgo2NpuM5mZxzJldg2PdLiIKd9XOJYyTJwMmE/sSw1GXMdYDDgdXjVBwYbKLws6+feKSs7oGp9bt2suARETU14EDYrDEYBADJjSQUrerto4xhIjCk1KvKytT23aEgtRJgF4HWKwihhIFEya7KOyoxelZr2tQ6swuFqknInKj7sSYKpbs0UAZGeJ94cwuIgpXNbXOnRhZr2tEBoOEVOdMaC5lpGDDZBeFnb2c2TUs5X2pqwda2zgyT0SkaHIuYUxN1bYdwcw1s0vbdhAR+Uu1uhMjBz08odTtqqvXth1E/THZRWHl8GEZtc7dUwoLtG1LsBo3TkJOtjjey7pdREQqpV7XpBRt2xHMlGRXfQNgt3PAhIjCD5cxeic9TVzW1zMmUHBhsovCyr5icZmWBiQkcDRmKK4i9QxKRESK5hZxTpw0SeOGBLGUFMBoBGw2V3KQiChc2GyyOkOJyxg9oy5v58wuCjJMdlFYUZJdXMI4PFeReo0bQkQURJTkDXfyHZpeL6lLVriUkYjCTWOjSOZHRXGWr6eUmV1MdlGwYbKLwsrefSxO7wnXzC5uE0xEpFCSXamc2TWsDNbtIqIwVeMsh5KZyY1KPKUMgDQw2UVBhskuCiuc2eWZ3GmAyQR0dkKtcUZEFOmaW8QllzEOz1WknoMlRBReqlmvy2vKAEhbO9DVxbhAwYPJLgobhw7JaG4GJAkoyNe6NcHNYJDU90hJEBIRRTKzWUZHhzjm0pXhqfVZOLOLiMJMdbVI1mSzXpfHYmMlJCaI4/oGbdtC1BeTXRQ29u4Tlzk54qRLw1OSXcUlHIEhIlJmdcXEAPHx2rYl2GVyGSMRhSllZld2NvsS3khzLmVksouCCZNdFDb2FYukzYwCjRsSIgryRRAvLtG4IUREQUCp1zUpBZAkdnKGoyxZqa9j3UciCi9qsoszu7yiFKmvZ90uCiJMdlHYUGZ2FRayk+IJZWZXyX52VoiI1GQX63WNKHUSoNcDFivQ1OzQujlERD7R1SXj4EFxzGSXd9LVmV3sU1DwYLKLwoIsy9jnTHaxOL1nsrPFtsrd3SxST0TE4vSeMxgkpDlH8aurmewiovBQ45zVNSEJiI/n4Lk30ieL94szuyiYMNlFYaGxUewAYjAA03O1bk1oMBgk5E0Xx/u4lJGIIlxzixiNZnF6zyh1u6pr7No2hIjIR1z1urRtRyhKZ80uCkJMdlFY2OvcUTB3GmAycSTGUyxST0QkKMsYUycxhnhCTXZVM9lFROGhukZ8H87iEkavKTW7GhsBu539CgoOTHZRWNi3T5xUC1mc3itqkfpijRtCRKQxJdmVwpldHsnMFPGDyxiJKFy4itNz0MNbKSmilqPVChw4qHVriAQmuygs7FXrdTE4eaPAmRxkkXoiinQsUO+dDC5jJKIwU10tLlmc3nsGg4TJqeKYdbsoWDDZRSHP4ZBR7Kw5Vcji9F7J6Vukvk7r1hARaaO7W0ZnlzhOZbLLI31rdskyB0uIKLQ5HDJqnBs2sWbX6Ch1uxpYt4uCBJNdFPJqakSyJioKmJKjdWtCi8EgqQX9i1mknogilLITY3wcEBvLGcKemJwK6HWA2Qwc5JIVIgpxzS1Ab6/Y7CptstatCU1K3a76Bg6AUHBgsotCnlKcPj9PJG/IO2qR+mIGJiKKTKzX5T2jUUKqs0PImcFEFOpqnPW6MtLZnxit9HTxvnEZIwULJrso5CnF6WdwCeOoFBQ4i9RzZhcRRSjW6xodZSkjk11EFOpYr2vsXDO7tG0HkYLJLgp5SnH6QhanHxVlZlfJfrDuChFFpKZmce5jsss7SpH6ujrGDiIKbdU14jyWxXpdo5amJLs4s4uCBJNdFNJsNhn7S8UxZ3aNzpQcwGgEurqAhkatW0NEFHgtzppdqZM4aOKNzAzxfnFmFxGFumrnMsbsLMaB0VIK1B9qBXp6OAhC2mOyi0JaeQVgsYiiwspyCvKOwSBh6hRxXFqqaVOIiDShFKifxJpdXnHN7NK2HUREY+VKdmnbjlA2fpyE+HhxzB0ZKRgw2UUhbZ+zOH1BASBJHIkZLWVHxtIybdtBRKQFFqgfnb41u7gMnohCldkso6lJHDPZNTbK7C7W7aJgwGQXhbS9LE7vE7m5IlFYWsbOChFFFlmW0eRMdqWyZpdX0iYDkgR0dwOtrVq3hohodGpqxeW4cUBCgrZtCXXprNtFQYTJLgpp+5zF6WewOP2YcGYXEUWqzk6gp0ccs0C9d6KiJKSlia+SrNtFRKGq7xJGrhQZG3VmVyMH0El7THZRyOrtlVFeLo4LObNrTJRkV3090NXF4EREkUMpTj9+PBAdzU6Ot7Kz9ABYt4uIQlcN63X5THqaiKOc2UXBgMkuCln7SwG7A0hKYlHhsUpIkJAyURyXV2jbFiKiQGpicfoxyc5SZnZxoISIQlN1tTh/ZWdzwGOsMlizi4IIk10UspTi9DNYnN4npk8Xl1zKSESRRClOz2TX6GRni5ldXMZIRKGKOzH6Tt+aXdy4hLTGZBeFLKU4fSHrdfmEWrerlIGJiCJHc7M457Fe1+hwGSMRhTJZltVkVxaTXWOWmgrodIDFAhw8pHVrKNIx2UUhy1WcXtt2hIvcacqOjBo3hIgogNSZXZM4cDIa6jLGWo7iE1HoOXhI7Cir0wGZGVq3JvQZDJI6U5p1u0hrTHZRSOrqco3CFBZo25ZwoSxjLC8HHA52WIgoMjQrNbs4s2tUMjPFzK7OLqCjQ+PGEBF5qbpaXE6eDJhMHPTwhXTW7aIgwWQXhaTiEkCWxVTZpCQGJl/IzABMJqDHDNRxJIaIIkQzC9SPSUyMa4MT1u0iolDDel2+17duF5GWmOyikNS3OD35hsEgYdpUcVxaqm1biIgCQZZlFqj3gQzn0p/aWm3bQUTkrZoa506MTHb5THq6mIhQ38CVIqQtJrsoJLE4vX+oRerLGJyIKPx1dAC9veI4hcmuUVPq3NTWMXYQUWhxzexin8JXOLOLggWTXRSSlOL0rNflW9Ons0g9EUUOZQljYiIQFcWOzmhlZor3jjsyElGoUWp2ZWdr245wotTsamDNLtIYk10UclrbZDQ0iuOCfG3bEm6UZYwVlZo2g4goIFw7MWrbjlCnzOyqYbKLiEKIxeLqU3AZo+8oM7taDgC9vZzxS9phsotCTrGzXldWFjBuHEfifWmqM9lVXw/09DA4EVF4U2Z2pXIJ45goncTqalEHjYgoFNTVAw4HEBMDJCdr3ZrwkZAAxMaK48ZGbdtCkY3JLgo5LE7vP0mJEpKSxHFllbZtISLyt+ZmkZhhva6xycwEdDqgqws4eEjr1hAReUZZwpiTDUgSB9B9RZIkpCl1u7iUkTTEZBeFHBan9y91KWOFtu0gIvI31zJGxpOxMJkkddlKFQdKiChEKAO7OTnatiMcsUg9BQMmuyjksDi9f02dIi7LK7gUhYjCm7KMkTW7xk4p7lxVrW07iIg8VVUlvutOyeGAh68pRerrG9ifIO0w2UUh5cABGQcPieUS+XlatyY8TZ0qAj6L1BNRuFNmdqUy2TVmU5wzI5TOIxFRsKvss4yRfCs9TfQnOLOLtMRkF4WU4hJxmZMNREdzFMYfuIyRiCKBLMtocc7sYs2uscvOFjGZM7uIKBQ4HLJas2sKlzH6nGtml7btoMjGZBeFlJL94jI/X9t2hDMl4De3AJ2dHKEnovDU1gZYrOI4ZaKmTQkLrpld2raDiMgTzc2A2QwYDK7EDPlORp+aXdyll7TCZBeFlOIScbIsyOesLn8ZN07CJOcsBy5lJKJwpdTrSp4AGI2MKWOl1OxqOQB0d7NjQ0TBTSlOn5kBGAyMAb6WmgpIEtBjFoNLRFpgsotCSolzGWMBZ3b51ZQp4rKcSxmJKEy5dmLUth3hYvw4CROSxDGXMhJRsFOWMHInRv+IipLUWdNcykhaYbKLQkZrq4zmFjFKkDdd69aEN7VuVyVH54koPDWzXpfPKZ1GJruIKNhVVovvuCxO7z+s20VaM2jdAAJ0TUXQV66HvmE7dA07oes5pN5mnXk2ek+9d/DfaymBvnoD9LXfQ2qrgq77INDbCTlqHBwpBbAVngnbzB8COr33barZDEPNt9A1bIe+cRek3sPqbZZl18Fy5K8G/T199SaYNj0GXVMR4LDDMTEfliOugj3/lIF3lh0wVKyD8aF5MK/8K2yzzhm2TUpx+qxMIDbW99ONpcNNMG59HoaKryF11AGSDo6ETNhzT4Bl8ZVA1LjRPbClC8Yd/4OhbDV0h8oBSyeseiNiYyfCnjYP1jkXwJG1ZMCvjfZz4QtiR0Z52CL1UnsdjNtehL7mW+jaawCrGTBGwzE+A/aspbAuuAxyovs3iNinT4SuQ2zLYgUQP0wbRvUaze0wbX0R+rKvoGurAmQH5HGTYZu6AtbFP4McP8gUju5DiFp/P/QVayH1tEOOmwhb/qmwHHk9YIwZcHfThkdg2vQobJlLYL7wv961j8jPRnvekA6Vw7j7begad0HXUQuppw2wWwBTPBxJU2CbcjSs838ExCSNvnE9rTBtexn6ijXQtdUANjPkmCTICZmwZy6GfNyv0PdriVfxxG5B7As/hK610qN4AgDNzaKjM8nHyS7Dztehr/0eupZ9kHoOQTK3Azoj5LgU2CfPhm3mD2GfusKrx9TXbEbMGz/x+P49F/wXdiWu9LTCULUB+prN0DXvhdTVAqnnIKAzwpGYDXvOUbAuvHzw86OXcrKBbduVHRk9j9O6lhIYt78Mfd0WSIcbAFsvYIp1tW/BjyHHDV1YTTpYCtP2l6Gv3gSpsxmQZcixE+BIzhXxaPGVXr2OmNcvh772uxHv1/mr7wFTnKsdbTUwffMADFUbAUsX5PFpsM46F9Yjrhr0u1jUp7fBuOddv8d0otEY7bnMn/HEl/2TlJYrAZyCKTn9zlWjiCd+Z+2GccerMJR+KfoS1i7I0QmQ49Ngz1wM69yLICdpNEVNlmEo/hiGfR9B17QbkrkNMMbBETcR12XOw5O1Z6C+ftmgvyodboBx64vQV66H7nADYLeKc3diDuxZS2Bd9BPAGOtde9gXoD6Y7AoCpk2Pw1D2pde/F/Xx/0F/sHTA9VLPIeiqN8JQvRG2Pe/BfM7jXp8ootbcC33LPq9+R1+1AdFvXw1JdkA2xgKGaOibdiHmwxtgPvVe2Gae7XZ/3aFySNYu2CfPG3DbYPxZnF5f/S2iP/g1pN4O9+sPlEB/oASG3W+j54LnIU+Y6tXjSl0HEPPaZeJk25fDBl17DXTtNTDu+xC9R98E65Kfu91ltJ8LXxhpR0Zd7feIeecaSNZu9xssXep7Ztz1BsxnPwZ79nL/NlZpU0sJot+5BrrORrfrpdZKmForYdz9NnrOeRKOjIWuG61mxL7+Y+gOlUOWdJBjJ0J3uAGmLc9B17wX5guec3+s9loYv3sass4Aywl3BOJlEXlltOcNfc1mmL5/ZuAN5jboG7ZD37Adxh3/Q88F/4WcnOv941dtQPSHNw04x0qdTUBnE/R1WyDPOgVInOm6vxfxxLjleehaK2FPm+9RPAGg7sQ4aZJvB09MGx6GrvuA+5UOG6T2aujaq2Es/hiW+ZfCcsKdPn3eoRiL3kHUun8MvMFuhb5lH/Qt+2Dc9QZ6zn7c/fw4Cjk5YqDEm5ldhuJPEPXJ7yA5bO439B6GvqkI+qYi0b7zn4cjZeAXAOPmp2D65kFIst3teqmjDrqOOhgq1nmd7BoNqasFMa9eAl33Qcg6A+SYROjaqhH1zb+ha6tG78q/uN1fV78Nhj3vQY4aB8sx/+f39hF5a7TnMn/GE1/2T66fdBOaMv+KnJyz3e4/mnjiT7rmvYh+95cDv992HQC6DkDftAuOiXmwaZHsMrcj5r3roK/b4n69vQ16cxuO0JeiIcuGbxuWov8AiGHPe4j64m5INrPb9dLhBugON8BQswm2GT+AnOB5H5Z9AeqPyxiDjByV4P3vQII9pRC2qSvgSMh0u81Quxmm9f8OSJtMmx6DJDvgSMhG18/XoOuadbCnLxC3ffOQ232lw03QHSyFDKD3uNvE2sQR+Ks4vdTVgugPrlc7YTIk2DMWwZ42T72PrqsZMe/8Qsxe8oJp06NuiS7ZFAfblGOAybPd7/fNg2I22RBG87kYC2VXrUOtQFvbwKWMUV/e7ZbocsRPhm3qsXCMS1Ovk2xmRK262+337FNXwJZ3Cmx5p0CaeYZ6bMs7ZcBn15E6y/MGW82Ifu9at+BmT50Fe+YRkCUxmi5ZOhHz7i/FlwMnw74PxQgZAPMPH0H3NWvRe7z40mao2QR99Sb3173mXkj2XljnXQLHRBaOo+A2mvOGI2YC7GnzYJt2HOwphW636boPImrNfV4/pq5xN6Lf/YVbossxPgO2nKNhz1gER+zAGTvexZNGmL59ErKkQ+8Jd3oUTwD/LmOUdQY4JuTClnMUbNnLIUeNd7vdtP1l6Oq3e/54MUlu58v+/2TJ9XVO1ptgTx58rb8jLgW2KcfAnjbf7Xek3g5Ef3gj0H8Aw0vKciCPd2S0WRD1xR/dEl2OxBzxfSY22dW+nlaY1g6c+WTc+iKi1t+vJrpkSQd7ch5sU1fAnjpbdGzHyJ46e8j3HTrXmLFx+ysi0SXp0XPpG+i+5mtYFv1U3Fb0NqS2PhlA2YGor/4MCTIsy68bdtYakZbGci7zRzxxa9sY+ie9k0Q8+WXhw8jOct13tPHEX6SOesS8cYXb91tH3CTYspfDlrnE7Xt3wDlsiHn7526JLtkUD3v6AthyjoZjwjTIzlRDfb37r+pLv0TUp7e5JbocSVOd8Wne6Po97AvQIDizKwjY8lfCVng67JNFciXumZM8+0W9EZaFl8O68CeQxzsXRcsOmNbcB9O2F9W7Gfe8B8txtwKS57lN69wLYYlLgWPyXOhaKz1aPqFrKhKvJ/d4dcmfLf806Ou3iamp3YeAJDFl2bT+n5BkO+wJ2XBMmuFRm8ZcnN5uhb5iHfSNO2E5+ib1auO2l92mQfee+HvY5l0ibtv0GKI2PCxeX3s1jDtfhXXRFR4/pa62TwCQ9Oi+9C3ISTlISkpC96u/hLHobQCAJDuga9wF+/gM9f6j/lx4Y4j3JCZGQlqajIYGsSPjgvl9fqenFfqDZeqPjqSp6P7xO4Ahyjn1+2zoWsWUMF17tfi7x04AAPSe+AfXcyQl4XBrq/hBdiD2GdfSJNkUB6sX08YNe99Xl0cCgGXxz2BZcbO4bc97iP70VgCA1NsO47dPqiMx+mbxmZWjEmCfdjwAwDrzh4hafY9of1MR7Nli6rW+4msYyr6CIzZZTGsmCkKjPW840hei+5LX4Jg8x+3Lvb5sNWLe+6Xr5/qt3jVIlhH12e2Q7Fbxoz4KvafeC1vBaW530zXuwvgJUwGH82dP4onzvGJa+zdI1m5Y517kVZJcSXaNahnjEOdOQMQQe+YSICbRdaW1e0CnQF+/FY70+R49nWNiHsxnPTjobfrqTTDs/1z92VZwuvreqM3NWATLsl+KmbbOv6+ufhti3rgCkt0ifu5qgb5yPex5gywT9YS1B7Mcq/CT3Ga8VHklbDZ5xB3OdAf3Q+ptd7U9aynM5z8rvq+Y2xH37EqxdAqAvn6H2+9Khxtg+vpf6s+OxGyYz7jf/TNgt0JfuX50r0d5WfN/5NEyJuUz60jJh8PZsbfN/CFMW8SsAF3zHtidS/sNO1+Dvnkv7MnTYZ1/6ZjaR+Qvoz2X+S2ewHf9k7rEUzGteRvSYxvQKbcCGFs8GZNh4knUl390G4y3HH8HrPMvcevTSQfLxpaUG+b5h2Pc8l/oG3eqP1tnnYPe424HolxFSvZuOYC3/1KBBmOfX7T2IGrVXZAgBtMdMRPQe8a/1O/bAADZAX3Nd5Cj3ZOrw2FfgAbDZFcQsM04Sz2W2oee3dOf+ZwnIcf1+5Yu6WA55mYYd7wKySE6F1JvB6TuQ16NHCrJHgBAa6WHvzXYibbPrCDniVhf/S2M+z+HrDPCkVLg0SN3dMhocCbqvS1Or2sqgmHPezDu+xBST6sYXepzMtfXbna1VtLBNvs89Wfb7PPVZBcgTpbeJLug73N2jxrntp7eMWkm4Ex2AQBM7hWsRvu58MRI7wkgljI2NADl5f2SXXqT2/0cE/NEost5m2NinprskiF5tIRWX74Guj4z26wzz3argzLi7/errWKdc4F6bJvxA8ir/gDJ3gsAMO79AJbjbwMknWjfAAM/s7BbELVaLEGxHP2b0ddvI/Kz0Z43BlseBgD23OMhRyW4EhLK/3UP6as2QH9wv/qzZfl1AxJdAOCYPAdSQhKgJMC9iScln0KOTkDvUTd43C6HQ3YtY/Qi2eXJuXPQZJExFra8le5LPbx8L4di3P6y28/WBZe5/Wyb8YNBl/E50hfAln8qjHvfV6/TtVbBPuCew5BlOCo3ImrTizDs/wzxli4sTDkB/y0D6uo82OVMZ3T70TFppqsTF50AR0Im9M5klxzlHhOMO15Vz+sAYD7t7wM7p3oj7LnHe/OKRm/QzmbfmdHO23taEfWNSFxajr/TbXYYUTAZ7bnMX/EE8F3/5NAhYJp689jiyWiNFE+k1groK75Wf7bNvRDWBQOT46MpLeDJ8w9LdsC47SX1R/vEfPSe/KcB57NJU5Kx/dAESBJgtcowGiUY9n7gVk/UcsId7okuAJB0sGcv9er1sC9Ag2GEDWEDEl0Kgwly1DhIfU4ksmm4UuC+4UidCX3dFhjKVsOy/DrAEAVDyafitvHpQEwSZLsNptV/FtdNLBiQOBmKUpw+Ix0YN27k0QupsxmGfR/CUPSuW0cLwIBCg1K3632CIdqtTXK0+zRa3YESsczDw6UR9pwjoW/eI57H3Abj9pdhnXUu5INtMBS9pd7PETcR9jHWShmJN+8JIJYyfrNB2a2mz3tuioN98lx1NEdftQG6ms1wpM2DrnEn9FUb1Lvapx0HGKNHbFvfzpoMyeuR7r6fdQDuI0GSJP4/dIsAJ/W2Q2qthDxhmtoxknrboS9fDfu042Hc4+r4OVLFclPj989B11YlpuMHQ6FSogDRl692n3mTfaR3v1+5zu1n+7TjYNj+CvRNu0WR4KQc2PJPhTxhmtv9PIkncLjiSe9RN3hV7Li9HbBaxXfYiSOMA3l77hyUtcdt9pUs6WHLGrxgrzekww3Ql61Wf7anzR+Q8BluoKv/bbKHX96lthoY97wHw973YG+vRd+UlT5KvCeV1SMnuxwTpsAxLk3M1gNgKPkUthlnwTFhGvQV66BrKVbva8s71e13+3YCHYnZkGOTYdz0GHSHKgG9EY5JM2AtPGNsmyoAMJSthr72e8DWKwonT54L2/STBsQ2x6RZQMU66FpKoGvZB0dKIQzOeCJDUv8uUesfgGRuhzX/VK87c0SaG8O5bKzxZLQGiyepBz8BALQhHYYxxhNveBNPDBVfq7OfAMCWd4r4vbot4nyUkA5b7klw9CuN4qvnH47uQInbckFb/qnQV22EvvJrMcEidgLs2csxYeqxiIoCenuBxiaxyZihwvW9QDZEw56+QHzPbtkH6PRi2Wzh6ZC9XKLJvgANhsmuMKRrKnLLmNsnz/Uo4TBWlmW/RPTbV0PXXo24/xwH6IxqULMc+WsAgGPT09AfLIM9pRCOfjv1Dcej4vS2XhjKvhQn8KoNbsVqZWMsbLknwFZ4BuxTjnb7tb71ByRrN6SuA2oHoH9heUl2QNdeJ2YzecCy5BroGnbC4Jw9FvXVPYj66h7YACj7MjmSpsB8xr+8323EE6N8TwA4d6eRUT1IoWHzyr8g5u2fQ3e4AZKlE7GDTCO3TTkG5n4FeQcjHaqAvmqj+rM950ivNwLoX0NC11YNh/JFpfcwpJ7WAbfbJ0yDreAMOL5/FrpD5Yh+71eiKGVXs2h/9jLYs5aIpTKb/+Os3/B7zes3EPmTvmw1jHveBewWSB310B8oUW+zp86G5bhbvHu85r3qsawzIPqNK9ziEwCYNj4K69JfAGfcpV7nSTwxbntJxJNJM2Cbe5FX7VKWME5IAozGQf5Pj+HcqYj65HeQbL2AuQP6pt2QLJ3O98GI3uNvG/VofF/GHa+6ta3/rK5hybLb4AQA2DOPGPr+vZ0wlHwK4553oavb6tYJk6MTRB2rwjPxwQuLADjrdh0zQhv0JphP+xti3vsVpN4O6A43IPalc92bCQm2GWe6F3F32MTgk5PUexixz52uzmgHABSJepjm0/4+ptldhtJVA65zxCajd+W9sE91vUDr/Etg2PU6dN0HEfPyBaJAvbMujG3WOZATMqFr3A3D7rcgG2NhOda7/0tEWhntuczX8WS0Bosn8bKIJ3tSf425GFs8GYnssMNQ8ikM+z70Kp7o+sRPAIj69FboulrcrjN9+ySss89H70l3D7rjKwCfxLP++rfNuON/A9qGbS/CnjYPM7IewvbSiaivF8kuXUuf39XpEfv8mQM2vDJteBC9x98J29wLPW4T+wI0GCa7wo21B1Ff/MHtKsvSXwTkqe05R8J83jOurX1tZthT56hbxUtdLXCs/hdkSOg97jYYd74O6XAjoj69FVLPIcixE2ErOBX26QNrzJQ4i9Pn5w08uejqt8FY9C4MJZ+41d6SdUbYc46ErfBM2KafMGQyyZ55BPRNu9SfTWv+CsvxdwAOO0zr/jnwF5xB3iNR8TCf9xSiPv+921IRtY3RibAsu06t7+ErY31PACDbmYusHKTQsJw8HT2XvIrod3/h1plV2CfNEJ87D0bGjNtfces0DTZFeySOzMWAc9YHAJi+vh+9p94L2RiDqHX/HLhLV6/zb2iMRs+FL8C0/gHndsOH4BiX5tpuGIBp7d9F/YY5F8KROgtSWzWM21+G7sB+sUQmYxGs837kVqOAKFTpWivcRu0V9ozFMJ/2t6FnFA+lT2JLctgGjLwCYhDBtOkx2FNygLwfiOfzIJ6YNj4q4skJvwckHfSlX8BQ/Cmk7gMingwSSxTN4nssJvXbgdwX506FofTLAV/gZX0Uek+4w225/KjZLDDselP90RGXIoqme8j4/TNuu5rZpp88sNMqO6Cv2gjDnndhKP3CrZiwbIiGbdpxiF58MdpTFqizonNyZAAyKir7zQoegiPzCHRf/DJi3vmF23J2hT17KayLr3IftDN3uJ3X+3di1OstnYj+8Eb0/Og1n8ZZXfdBRL9/HXoufAmOtLkAxGz7nov/B9P6+2Go3gippx2OxGxYZ50L6xE/E/XrvvozJNmB3qXXQB43GbrmvTDufA1SaxVgioU9ezmscy4EDJ7NeicKhNGey3weT0ZpsHhS3Dkb/9n7M5x720rP4skQ/ZPh6Bq2Q9e4CzjcgOgiVx/A03jSP14OSCY5GXe/CTkmccCurr6MZwPa1u1Z2/QNO3BX3g04t/Ql1DdIzt91na8lS9fgj2+3IuqLuyGPmwz71BUetYl9ARoMk13hxNKF6Pd+Bb2zECMgivMFrF4FAHv2MvT0X3ftZFr3T6D3MGwzfgBH2nzovrgbemdtJ4Wx+CNYFv0UlmN/53a9soyxsF+JL13NZrdZRTIkODIWwlp4Bmz5p3qUbLEu/DGMu99UC0Aaiz+BsfiToX/Bw6WXgNj6PPqdX0B/sFS0L2o87JPnwGDpABp2QTK3IfqT38K2/3OYz/q3V5sIDMUX7wng2lXr4EGgs1NGfHyfIqNVGxD94U3qe+YYlwZH8nToDpVD11EHffNexLx2GSzH/m74GmeWLjHq5+RIyIZ96rEev1aFddY5MH7/rFqY0lC7GYanTxzy/nLfpaqxyeg95Z5B76ev3iTqN0QloPfoG0VB57eucvvSZ6hYB2PRO+i++BW/TXsn0pq+7nvEvvADmM96EPacozz+PaUwvUKOToD5rIdgT50FQ9lqRH16CyRZVKV3rP4XMP1M9Tw4UjyRLJ2wzvgBHOkLYFr7N5i2PO92H2PxR7AnTRV1oPoZbCdGX507hyPZexG96i7YytfAfMYDY0pqGEo+dpslZ517kXudyGEYt78M09f3qz87JkyD+ZQ/D3yOPe8j+rPb1J9lnQH2rGWwzTgDtuknA6Y4xCb1rbUGTHOuSC0v9/B17HkfUat+rxbKdyRNgSMhC7qWvdB1HYChehP0r5yP3lP/ptZ76/+5AsSuW+bT/wk5JgmmTY/BtPUF530tMH77JHrPfMCzBgFwJOeKXcEyj4CcmAXZEA19UxFMa//mKk1gt8K04UGYz3vG9f4kZqH3zAfQO8hjGna/BX3jTpEAW3gF9Ps/R/RH/+e2E6Wh7CsYij9Gz/nPM+FFQW0s57LRxpOx6BtPenpkXHSaGGS9KdvzeDJY/2QoPokn/eOn3gjz6f8SJVLqtiL6wxvV76PGrS/AcsRVgLP8it/jmWPgOdiy9FpYFl0BqasZ0R/eqG5mNc24HUdNWo+GhmMASAN+15GQCfNZD8KRkA3jrtcRte4fAAAJMkwbH0WPh8ku9gVoMGPvWVNwMHcg5q2fwVDj2h7VMu9H6i4UWtPVbRUzm6LGwbLiZuiadquJLuucC9H5y03iizoA05bnxEiIU2enjFrnYG//4vT9x4xtM85E74l/EAUsPTzZyOMmo+fsx+GIHVjXRIY04Hq57640I4j++HdqossRNwndP/0Y5vOehvGXq9DbpwikoXQVDHs/8Phxh+OL9wQA4uMlJDt3fq/qu5Sxp1UEWGeiyzblGHRf+RnM5/4H3T/9BDZnskqCDNPX90NqqxnyOQx73lOnwwMYsMOMx4yx6DnnP0MujXX0r0vjyd/QYYPJuRNL71G/BmKSRIfM2g3H+Ax0/ewL9Jz/HGRJD11rJUwbHvG+3URBxrr4SnT+Zi86r9+GrivEl3uFZOlC1Ke3AtYejx+vf71I6+zzYM9aApjiYJtxJux9a7Z0NkM6VIGRKPFENsWLeNK4S+2YWOdd7BZP9K0VkHraBjxGc7Po6PSd2eWrc6ei6/ot6LxpD7p+sR49P3wUjiTX8mxD2Vcw7njF68fsy7jN9fuy3ujx0hvj5qcQ9dU9rp2wkqag57xn1U6Suz5LFSHBOu8S9J70B9iG2URkujPZVVUN2GzyoPdRSIfKEfX5HWqiyzrnAnRf8bGIJ1d+Brtzt2Yxyv9HwDkSLw8yem5Zfj3kpClAdAIsx/yf22evf+HikfSe+AdYl1wNR/p8yLHJolZl1hKxMZDBNcNMX/Md4Gz7sMwdanKx97jbAdmB6C/uhuSwwZ46G12/WA/zqfeJx6zfBuP2l4Z7NKKAGu25zNfxxFeqnV9LExOACV3bPI4n/fsnwxkQTwpO9z6e9N+4KvdE2PPEIIN96jHuG9LYLdA3uHas9XU8G6ltjriJsBz5KyB6POTk6bAuvdbt9sXJm1GvbJTYL3ZYFv1UDEpFxcO6+Eq3z5eucZeolewJ9gVoEEx2hYPuQ4h54wq3k5zliKthOfH3GjaqD4cdUV85t289/v8gx6XAUL5Gvdmy6Kfiy+kRV6vXGfoU3N0vckVITQUSE91P3474VNhTXYUZjXs/QOwLP0DMC2fDuPkpSH22oB22iRkL0X3lpzCf9EdYZ58Pa8HpsBxxFXoufQOOZFeGTY5OgDwu3aPHlDrq3LZVtuWdIr40O1nnuK9D11d+49HjjsRX7wkgitQDcKvbZShf6zYd2jrnfNdsAr0R1tmueiuSwwp9nwRsf32/IMnGWFhnnTvkfUciJ+ei+ycfwHza32Gde5H4Gy68HD0X/Bf2Ka5RIRmSR8tZjFtfdNaXmwHbvIshtVWro1TWWedATsiAPXsZHM6NBQzlq4d7OKLQYoyGPGEaLMf+TszgcdJ1HYC+Yecwv+hOTshy+7n/l1BHnx1qAahJ9CH1iSeW5deJeFL2lXqzMrLdN55IXU0DHsa1E6Mrpvjy3Ol6cglybDLsuSfAfOa/3W4ylH7p/eM56Rp2ui2/t+Wd6tGOy6b1/0bUeteMLntKIXoufBHyuNRB7+9ImgqHc/MACTJM215E3DMnI+Z/l8C47WVI3QcH/E5qKhAXB9hsGLTmY1+G4k/cZjZZ517kqoVijIVtxg/U26Tedtc296Y4yP06bG6fLb0Jjj7FjSXzCJ8rD8lxE9X3AxAxbrBkan+mDQ9B13MItmnHwz7tWOgbtqlLL63zL4UcmwzbzB+KzRcAt880UVAYy7nMR/HEV6qc5Tmm5HgfT/r2T4bjiE+FfZJrsxBj8UdexxNHv/g5MJ72i599znN+iWdubct0b9v4DLfBakfSFLfbxxs7UN+g/G6/1zXM9wIJsmu5oQfYF6D+uIwxxEmHmxDz1pXQHXKtF+g95mZRHyJIGHe+Cn3LXtiTc2FYdhXQcdjtC7KyZl+Odw2xS90H1GNlCWPBIMXp5aQc9Fz6BqSDpWJd+t4PoOtqhv5AMfTri2Fa/4Dn03ZNcbDNvdCtGKLUVgN9/Tb1Z9uUYzwuSih1Nnt0P/X+Q9Qc8ZYv35PsbGDLVqCqz46MUpe3r6tt0Osd5evVgAFAjFD13TllNPQm2Gac5TbaBXM7ovrs/OJInz/i80hdLTBtehQA0HvCnYCkg9Tl+kz2rTPhiE+FHnC7nSicOPrVVZF6BiY4hmJPmwfD/s9cv9sv6SCZ291+7p/A6K9vPFGKsbv/3xRxxC2e2AYuKmtWk119ntuX8WQQjvj+7+PA+mWe6ruDLeBBrUNZhmnNvTBte1G9yp6+ED1nPz7s+dCRPh/dV3wkNlrZ8y6MxR9DMrdD37Ad+obtMK29D7Zpx8Aw/RR1WaMkSZg2Vcau3UBpuWtZ42B0Y4iT9rR5bgNnkrm972bxbp+tkT5Xbhw2QDfE12OHHVKne/JUHmKGm0LXUgzjjlch603oPU4sCXX7zPb5XMjxqUBHPeMJBbWxnMvGEk98pbJKnCnOy37N+3jS7dn/TTkpBz0Xv4Ko96+HsbMBjp426LpavIon9rR5bj/3HwwaED9jXY/h73hmnzwXsqRTyxAMjO1tbj+3Wiagrh6QZRn2tHliR+YhXofbuVvSQR501vEw2BegPjizK4RJbTWIef0yNdElS3qYT/6zR4mu2KdPRPz9MxB//wzEvH65/xrZ0wrTNw8DACzH3wFJL75A9t3eXDmp9f0S2/f24YrTq/dPng7LipvRffVX6Dn3KVgLzoBsiIYEGfq6LYj+8k+Ie3IFot+5Bvr9A3dW0lesA/oVSZRaKxH90U2Q7KKjJEOCdcGP3X+vZrP6PsbfPwOGondcbYp3Hyk3lK4C+hR0NO563f01JGQM+fpGY6zvCQBMyRbvuTIKBrgHfQAw7n7bVVfAbhU/923H+MFnwjk2Pev2s2WEXcSiPr3N7b3uT1+9EeiXMJQ6mxH90c3Q9flyYlk4cOfI/kzr/gHJ0gXrjLPU0RoM8pkFXJ/bvp9ZopBi6YJpzX2Q+iSfFbqmIhiLP3a7zjHefUR3uHhiKzgdsuTaIcpQ/AngTD5JXS1uW5BjfJpYhjaUfvFESUi47ajr/ILtFk90A+tYDVazS73/GM6dht1vwbDvI8Bqdn9QmwVR3zzodpVjvPs531D0jts5Tl+zefD3ofsQDH2K8Nonz4WjX6fI/QU5EPX5nW6JLtuUY9Bz3jMeDzA40ubCcuJd6LpmHXrOfBC2acdD1hkgOWyQS1cj+tPbEPfE0Yj68CboazZjmnMVSnn58MsYHf3jya43ANn5O9ZuGPpt7NL3PXPryABu9R/1levV3bQAwJ611O2+Ma9frr7Psf1quhj2fojo96+Hrm6Le2PtVpjW/QO6PoN19okFQy7nVIii9HZYF18JOVHMaHD7DtRnQMgVT8Y48EM0RqM+l/kxnvhKVTWQaGrFKYZRxBNvv+tFjYOUNhvdP/3M63hin3Ys5ChXokdf9hWgfP+0dLnFAVkfBXva/AFP74u+wKBiJ7jVW9O1VkBXv935pDIMRe+63f27A0vQ1QUcPjzw3G3Y+wHgTJrpDux3WyrqSJsPGKLUn9kXIG9xZlcQMG56DIbyteKHfsUIDRVroXvFVYej50evqcfR718PXXut+rMclwJD5dcwVH494DnMJ/4BiJ3gcZuivvwjdE3OIqz9kkCG3W9C73wOOS4F5h8OvT456ut/Qepthy1vJezZy9Xr7RmLga3/FY+35z1Yl18Lw573XLf32f68ZL+4HGxm1wA6PexTjoZ9ytHo7e2EoeQTGPe8B33dFkgOGwwV6yB1NqMn72S3X4v66i+QOpvgSM6FHJcCqasZugOlbtuYWxf9RN11yRPy+HQxeuFcXqrrbELcc6fBPnkurJZ2RDW4r/u3Fp7h9vNoPxe+ek8A146MfWt22aYeC9kUp34uDBVrEfvcqaJA/cEyt9205KgEMRuuH+lwA+Ri12wPW/YyyH2Wi46GcfN/EF37PRwTciGPS4XU0wbdgf2QbK56ELbpJ8Oev3LYx9HVbYFx7weQTXGwrPiter1jwjQ4YidC130AhuKPYV14OaSuFuhrvxe39/nMEmllVOcNhx2mrf+Faet/xWYTE6YBeiOkw41uu/UBYtmbY/Icj9sjj0uFdeHlMG15DgCgb9mL2OdOgyN5OvSNu9xGqnXH3jDsYw0ZT7KOALaI5Lmh6B1Yl/zcLZ7I/WKfwyGryxhT++3G6GYU505dSzFM216ErI+CI6VALC20dEHfsm/A6LV1zgXDvt6hGHe9oda4AsQyuGHvv/UFGItcgxCypAP0RkR/esuA+9ryT1WLwA9Kb4I9/xTY808Bug/BuO8DRO37EGjcDclmhrHkU0h2K3JzjwAgj1ik3pa/EqZNj6u7ZBl3vgZ9zWY4EjLVAvUKR2K222fPln8q7Fv+qy5tNO58DbqGnZCjE6CvdyWqZJ3Ry9nuMgylX8BQ+gUcsRPhSMkHIEF3oGTAjmPWpT8f9pEMe96Hvm4LHOPSYFlyjXq9PW0eZL0Jkt0Cw573YCs4DbqGHdC1VorbGU9IY6M+l/kxngC+6Z9UVQG/nvEAohwdXseTUf/fHM13cUMULEdejyhnzShdVwtinz8DjkkzoWspdkvoWxdcNnzifQx9gaFYjr4J+uqN6lL0mDd/Cnv6AvHd2FmvGBADMqUOsTlAfT0wvnAebHmnqDt1GirWitc1PgP6+m1uS9stS6+BN9gXoP6Y7AoCurYaVx2KfqSeVuiH3FL7sNvPus5G6PY3Dn7fFb/D8OOr/dp0sGzINuk6mwDnNH7HELN2AFFU0LD7bciGGPQe5/6l2j7laDhik6HrPoiojQ/BuOMVNeNuy1qq7sjX3S2riRaPkl19RcXDNucC2OZcILaI3fPegFHiviR7r7rLUn+W+Ze5new8ZV55L2LeuEINSFJvBwxV6wc+/tJfDDhBjvZzMSwv3xOlZlddHWC1yjAaJSAmCeZT/oLoT36r7oil66hXdz9RyIZomE+7b9CZA8YdrwIO1xbA1vnDz+rylOSwQX+gGDhQPOA2W95KmE/72/AP0Lce0LLr3LfF1ulhOfomRH9+B/Qt+xD35ArAZoZkt0A2xsKy/DqfvAaisRjreUN3uAG6ww2D3uZImgrzWQ96vJRbYTn6RujaqmEo+3LI57As+DHillzhtqufW7uGiydTV8CWtRSGmm8Rtf4BGLe+qMYTR2yyuhRF0d4OWK3iZUwcucyVMJp4MsTfQZZ0sCz7pSg07C2HHcadrsENR+xE2ApOHfZX+tc7kWTHkDWhHMl5nrcldgKsC3+C+BNvRHvJJhj2vAvD3g8BALnOpYulIyS75OTpsBz7O5jW/k1dDqNrrYCu307NcnQCzKf/E9C5ZglC0sF81oOIefOnapJI37LX/ff0JvSu/CscKf22ch6W6/Ot6z4AXdXAZSmypIPlyF/DVnD60A9j6YLp638CAHqPvRUwugrbIyYJ1iOuhmnTozBUfo24x48CnJu1OOImwrr4Ci/aS+Q/YzmX+SOejLV/YrPJGHd4F86e+zYceu/iSd/+yZh4EU+s838E6VA5TM4at7rug9D1m9RgyzsFlqNv9MvzD8cxaQZ6V/4VUZ/dDslhg2Qzw1C90e0+9uRcmM96COkbJBw8BNQ1AIWFgPmUexDT2Qx9w3bxulor1fM44PxsHXMz7B7uxNgX+wLUF5Nd5B+yjKgv/wwJMnqX/hxyn0KxAABJB3vGYsgHSiBZuyF1H4QjfjJsBafCcuSv1eBXWiZWNEycCEyY4F1AdGtOYjYsR14Py/JfQddntEFhWXIVDGVfQXegRCwpcNghx6fAnrEY1rkXibXdo3neCVPRfcWHMO74Hwzla6E7VAb0dkIymOCITYE9fR6scy6EI3PxqF/baI30ngDifY+JAXp6gLp6V/LLnr8S3SkFMG5/BfqazdB11IoddYwxcIzPhD17KazzL1OXbLixWWDY9ab6o2N8Buy5x4/59VjnXQJEJUDXXCSmE9stkGMnwp42D7ZZ58I+deAMs/6MO16FvmUfHBNc9Rvcmj77XPSY4mD67mnoDpQAeiNsWUthOfomOCZ60UkkCiamWJhP/jP0dd9D17QHUvdBMeNKZxAFuScWwDb9RNgKzwD6bNXtMb0J5h88DMO+D2HY/bZISFi6IcckwDF5HqzzL4E95ygMOSbtQTwxn/0YTBseEQXPuw+IeJJ3MqTOlgGdqSbnYPiECYDB4H1cGe7caZt9PmCKh65+K3Ttteq5CKY4OBKyYc9cDOvsc0c9k1Vf9qVb59E254LR/U18zJFSAMuxt8ByzM2Q2qow1blytLkZOHxYxrhxQ7/P1oWXw56xSMzqqtsCqaPB+Z7FwpE4BfYpR8K64MduG7wo5HGT0X3Z2zBuexGGkk+ha60CHDbI8amwZy+DZdEVkPsUlPeErfAM9MQkipmQjbuga6sViShDFORxk2HPPALWeRePWNzYtPFR6LpaYMteLmbC9WM58ldwxE2EcfvLot3GOFhzloudJPvVNSIKtFGfy/wdT8aorlbGLbPugU6SYV56tefxpF//xFdG/C4uSbCc+HvYp66Aceer0DXsFO9n1DjYJ82Cdc55sOcPP+AxpucfgW3GWbBPmgHT98+JWV7dBwB9FBwTpsGWfyqs8y4GjDFIT3Ng1264dmSMGoeei16EcedrMOz7SDy31Qw5biLsGYtgXXi517P+APYFaCBJlmVvJvx4pHWQkdmkpKRBr48kfA/6vAc2C6I+ux0A0Lvyr4Bh8ID35tsy/v2QjCOXA3+/N3xKzIXSZ+GqaxzYVwz85U8Sjl3huyAfSu+Bv0TCe5CUNHzRU1+//kh4T8OVz/92Q8SZr9fLuO1OGTMKgaeeCJ+4opWh/m7nXuBAcwvw6EMS5s31bQeRfCPYzpcjxQvA9zEjkILt/Y5Ea7+WccfvZeTnA8/+x8/nf2cMMplMOHz83UP2dSLBM8858Nx/gbPOBG65OTLiLv+/+58nMSMyPm0UsoqLRS7W6yWM5DM5ztlcfet2ERGFqmbnzK5Jw9XrojHLzRWX5RXD34+IKFAqnOejqTnatiPSpKeJAY+GwVe1EvkNk10U1FzF6TkqrJUcdUdGn08CJSIKuOYWcS4bbCdG8h1lR8bSUsYOIgoOFZXifDR1KvsVgZTuLKFWz2QXBRiTXRS0entlVFaK43wugdYMZ3YRUThpdm6oNymFnR1/ypsu3t/93peBISLyC3Vm1xRNmxFx0iaLy6ZGsUkAUaAw2UVBq7QMsDuApCSOwGspJ1tcVlUDfijxR0QUUC1qskvbdoS7fGf5gdIydm6ISHs2m4zqGnGszDylwJg4ETAaRb9OGXAiCgQmuyhoKUsY8/MAyce7n5DnMjMAvV7syNjCAEVEIa6JNbsCIjND7OZrsQDVnBlMRBqrqQVsNiAmGkhN1bo1kUWnk9TZXeqOjEQBwGQXBS2lOH0+i9NrymCQkOFca8+ljEQUyhwOGQcOiGPO7PIvnU5SSxAU79e2LUREFZXicspUcX6iwGLdLtICk10UtJSZXYUsTq851u0ionDQ1gZYrYAkiWUV5F9KsqukhMsYiUhbFRXO4vRTtG1HpEpPE5f19YwHFDhMdlFQslhkdbtyFqfXnqtuFwMUEYUupVbIhAli1ir5V34+i9QTUXBQitNP406MmkhPF+87Z3ZRIDHZRUGpvEKsqx83Dpg8WevWUE62CFBVVRo3hIhoDJpZryug1Jld+8USUiIirZRzJ0ZNuWZ2adsOiixMdlFQUpYwFuSzOH0wUJcxMtlFRCGMOzEGVk42YDIB3d1AHTs4RKQRi0VGXZ045k6M2mDNLtICk10UlJT6HixOHxyUZYwHDwGdnRydJ6LQ1NQizl8pTHYFhMEgITdXHJeUaNsWIopc1TWA3QHEx7Feo1aUmV0dHexLUOAw2UVBqdj5pbggj7O6gkFcnITkZHFcXaNtW4iIRss1s4uxJVAK1B0Z2bkhIm2oSxincsWIVmJjJSQmiuMGzu6iAGGyi4KOzSajrEwcF3BmV9DIzhKXTHYRUahSa3ZxZlfAKEXqObOLiLRSUenciZFLGDWVptTtYrKLAoTJLgo6lVWAxQrExbnWd5P2uCMjEYU6ZTdGFqgPnL5F6mWZ8YOIAo87MQYHZSkjazhSoDDZRUFHWcKYnwfodAxKwSI7S/wtaqo1bggR0Sg4HDIL1Gtg2lRArxd1WpqatG4NEUWiCu7EGBRcReo58EGBwWQXBR0Wpw9O2erMLm3bQUQ0Gm1tgM0GSBILFAeSySSpu58V79e2LUQUecxmWV02x50YtZWRJgbO6zmziwKEyS4KOiXOL8MsTh9clGRXbR1gt3NEhohCi1Kva8IEsUsgBY5Sf3NfMWMHEQVWZRUgy0BiApCUxHO/llwzu7RtB0UOJrsoqNjtMvaXimMWpw8uqZMAkwmwWoHGRq1bQ0TknSbW69JMYYHoYO7bp3FDiCjiVPTZiZG0pdTsamzkwDkFBpNdFFSqawCzGYiJBjIztW4N9aXXS8hy7sjIpYxEFGqanEn6yanatiMSFRaKy33FLFJPRIGl7sQ4Rdt2EJCSImo42mxAywGtW0ORgMkuCirK1uTTp4vkCgWXbGeyq7pG23YQEXmrqVl0eJjsCrzcaYDRCBw+DNTVad0aIook5dyJMWjo9RLSJotj1u2iQGCyi4JKsbM4fUGBxg2hQeWoReo5Mk9EoaXRuRNgaio7PIFmNEqYPl0c7yvWti1EFFnKy8UllzEGB6VuVwNLolAAMNlFQYXF6YNbdpb4u9RwZhcRhZgmZ7KLM7u0McM5iLWXReqJKEA6OmQ0O+s15k7Tti0kuGZ2MRaQ/zHZRUHD4ZDVZFc+i9MHpWx1Zpe27SAi8pY6s4sF6jXBIvVEFGhlzlldk1OB+HgOpAeD9HTxd+COjBQITHZR0KitA7q7xY5/ynI5Ci5Kza7WVqDjMEdkiCg0mHtltLWJ49TJmjYlYilF6ktKuAsXEQWGkuzKzdW2HeSi7MjIml0UCEx2UdBQi9PnAgYDR1+CUWyshJSJ4rias7uIKES0NIvLmBhgXLy2bYlUOdlip+UeM1BVpXVriCgSlJWJxDqXMAYPpWYXZ3ZRIDDZRUFDKU7PJYzBTVnKyGQXEYWKRmeya3IqIEkcTNGCXi+pm8/sZZF6IgqAUnVmF8/7wUKZ2dXaCnR3c5Yv+ReTXRQ0WJw+NKjJrhoGKCIKDc1KcXouYdRUoZLs2sf4QUT+ZbfLqKgQx3lcxhg0xo2TkDBeHNfVadsWCn9MdlFQkGUZ+0vFcV6etm2h4eVki2Qki9QTUahoahbJFRan19aMQhapJ6LAqG8AzGZRCzgjQ+vWUF9ZzhrA1bXatoPCH5NdFBSamoGODkCvB6ZN1bo1NBylSH1NjbbtICLyVJNz6/nUVM4c1pIys6u0DLBYOLuLiPynrExcTpsqllFT8MjMFJe1THaRnzHZRUFhv3MJ45QpgMnEgBTMlGWMtXWAzcbOChEFv6ZGcZmaqm07Il16OjB+PGCzAeXlWreGiMJZWbmzOD2XMAadrEzR16upZT+C/IvJLgoKJfudxemna9wQGtGkFCAqSnRWuJMKEYWCZufMrslMdmlKkiRX3S4WqSciPyp1zuzKncZB9GCTxVUiFCBMdlFQcNXrYkAKdjqdpC5lrGaQIqIgJ8uuZBdndmmPReqJKBDKnLNHp3NmV9DJci5jrOEyRvIzJrsoKCg7MeazOH1IUJNdLFJPREHOYgHsdkCvAyYma90aYpF6IvK37m4Z9fXimLWAg0+mc8OAjg6gvZ0DH+Q/THaR5to7ZDQ3i+M8LmMMCUrdrupqBigiCm5ms7hMSWGR4mAwo1BcVlYBPT2MIUTke+UV4nLiRCAxkef9YBMTIyFlojjm7C7yJya7SHPKEsaMdCAujgEpFORki79TFWd2EVGQ63EmuyZP1rYdJEycKCE5GXA4XLO6iYh8yVWvS9t20NDUul1MdpEfMdlFmlMCUh6XMIYM18wubdtBRDQSZWYX63UFD2V2114uZSQiP+BOjMEvU6nbVcMZvuQ/THaR5vaXOndiZHH6kKEUlmzvANraGKSIKHiZzeIclTpJ44aQqrDAWbermPGDiHyv1LlqZDp3YgxaWZnib1Nbp3FDKKwx2UWaK1V3YtS2HeS5mBgJk5wdR+7ISETBzKwuY2SnJ1goM7tYpJ6IfE2WZXUnRs7sCl7qMkb2I8iPmOwiTdntrrXa+SxOH1JylKWMDFJEFMSUml2c2RU8CvLFZW0d0HGYs7uIyHcaG4HubsBgcO0eTsEnW1nGWCsSlET+wGQXaaqzE5BlIHkCkJzMUfdQonyB4I6MRBTM1JldrNkVNBITJaSliePiYm3bQkThRZnVlZMDGI3sWwSrtDRApxMx+sABrVtD4YrJLtLU4cPikksYQ0+2c0dGzuwiomBltQF2mzhmgfrgoi5lZLKLiHxI2fhqOpcwBjWjUUKac5dk7shI/sJkF2nqsHP5ApNdoUdZxljFHRmJKEj19IjL5CQgOpoj/MGEReqJyB/UnRhZnD7oqXW7mOwiP2GyizTV4ZzZlT+dASnUKMsY6+sAq5WdFSIKPkqyS1kyR8GjsEBc7mWReiLyoTLO7AoZyu7uNTXsR5B/MNlFmpFloLNLHOdzZlfISUkBYqIBuwOor9e6NUREAzHZFbwK8gFJApqbgUOH2NEhorEzm2XU1onj3GnatoVGlpkpJjsofzMiX2OyizTT1QXIDiAulh2RUCRJErK4lJGIglhPj0iipDPGBJ24OEmdIcy6XUTkC5WVgMMBJCYCEyZo3RoaiRIDalj/l/yEyS7SjFKcfnouoNNxGWMoUup2sUg9EQUjdWbXZMaYYFToLFK/dx9ndhHR2JU6d2LMnSYGZSm4KcsY6+oBm41xgHyPyS7STIezOD3X1Ieu7CznjozVDFBEFHzUZFe6tu2gwc0oFDGkmDO7iMgHysrYtwglkyYBJiNgswFNTVq3hsIRk12kmcOd4jKPxelDVjZndhFRkLLZZJjN4ljZ3pyCi1qkvhiQZQ6aENHYlKkzu9i3CAU6nYSMDHHMHRnJH5jsIk04HLJrGeN0bdtCo5fTp2YXOypEFExaDoiNUHQ6IJm1W4JS3nRArwNaW4GmZq1bQ0ShTJZldSfGXM7sChlZSt0uJrvID5jsIk00NgJ2m+iEKAkTCj1ZmWI3rcOHgbY2rVtDRORS3yAuo2NYFzJYRUVJmDpVHHMpIxGNxcGDQHuH6FtMydG6NeQppW5XFUuikB8w2UWa2F8qLuPiAIOBnZBQFRUlYXKqOOZSRiIKJg3OZFdsjLbtoOHNYJF6IvKBUuesruws8f2UQkNOtlL/V+OGUFhisos0sd9ZQHL8OI0bQmOmTD+uYpAioiDS0CDiTAyTXUGt0Fmkfh9ndhHRGJT12YmRQkeOcxYe+xHkD0x2kSZKnTO7xo3jyEuoU5ahckdGIgom9Y3iMiaGcSaYKUXq97FIPRGNgbITY24uz/mhROlHHDwIdHYyBpBvMdlFmnAlu7RtB41dNqcfE1EQUpYxxkRr2w4aXu40sfV8ZydQW6d1a4goVHFmV2iKj5eQnCyOObuLfI3JLgq4gwdlHGwVx/Hx2raFxk6d2cWaXUQURNRkV6y27aDhGQySuiszlzIS0WhYrTIqq8Qxd2IMPcqGAlVV2raDwg+TXRRwSgHJ2FhAr9e2LTR22c5kV30DYLFw+jERae/wYRkdh8UxZ3YFP3UpI4vUE9EoVFUDdjsQHwekTtK6NeQtpS/BHRnJ15jsooBTphlzCWN4SJ4gEpcOB5egEFFwaHDW6zKZOKgSCmY4i9Tv3adxQ4goJJU5B9KnTQMkiTW7Qs0UZ0kULmMkX2OyiwJOKSAZH89gFA4kSVKXMtZwKSMRBYH6enHJnRhDQ2GhuCzZD9jtHNknIu+UVSjF6TVuCI0Kd2Qkf2GyiwJOWcY4jvW6wkZ2lrhkkCKiYFCv1OtisiskZGeJ5aZmM2u2EJH3lJldudM4kB6KlEHz+jpRf43IV5jsooCy9CkgyeL04UPdkbGGAYqItFffIM5FTHaFBr1eQoGzbtdeFqknIi+VcyfGkDZxoiiJYncANbVat4bCCZNdFFDl5Xa1gGQ0iwaHDc7sIqJg4lrGyFH+UKEku4qLOWhCRJ5rb5fRckAcT5uqbVtodPqWRKlmX4J8iMkuCqiSEjsAjryEm74BSpbZUSEibSmbZXBmV+goLBCJyX2c2UVEXlA2vkqbDMTFcYAjVCl1uyq5lJ18iMkuCqiS/TYAHHkJNxkZgE4HdHUBhw5p3RoiimQWi4xG526McbHatoU8V+ic2VVaCthsHDQhIs+UV4hLFqcPbTlKSZRqnv/Jd5jsooAqLlZmdnHkJZxERUmYPFkccykjEWmpvgFwOIDYGMBk0ro15KmMdFHiwGIFKiq0bg0RhQpll3cOpIc2ZZVIJfsR5ENMdlFAFSszu7iMMeyoSxlrtG0HEUW2Guc5KDNT23aQd3Q6V5F6LmUkIk8pyxhzczmQHsqmOJcxVlcDDgdnd5FvMNlFAXPokIyDB2VIEjBlitatIV9TitRz+jERaUnZyYnJrtCjFqkvYRwhopE5HLI6E5T1gENbejqg1wNmM9DconVrKFww2UUBo4y8ZGYCMdEcfQk32cpae87sIiIN1dSIRElWhsYNIa+xSD0ReaOhAegxAyYjkMlzfkgzGCRkOQepuCMj+QqTXRQwpWXikiMv4UmZ2cWaXUSkJdfMLg6qhBq1SH2Z2GiAiGg4pc6B9ClTRbKEQlu2UreLOzKSjzDZRQFT6iwgOZ1r6sOSUrOrsRHo7WUnhYi0oYwIc2ZX6EmbDIwbB9hsrh3WiIiGUqYMpLM4fVjIcdbtqqpiP4J8g8kuChglIE3n1sBhKSkJiI8HZBmordO6NUQUiTo7ZRxqFccZrNkVciRJUmd3cSkjEY2kvFwkRVicPjxMcZZE4SoR8hUmuyggrFZZnZLKZYzhSZIkLmUkIk3VOpcwTkgC4uPY+QlFSrKruJgj+0Q0PGUZI/sW4UFZJcJ+BPkKk10UENU1YllCfLyEyZO1bg35ixKkWFiSiLRQ7Ux2ZWVp2w4aPRapJyJPmM0y6pwrCZjsCg9Kza7WVqCjgwMeNHZMdlFAKEsY8/P0kCSOtocrdUfGagYoIgo8dSdGLmEMWQXOmV3lFaz/SERDq6gUpTMSE4EJE9i3CAexsRImpYhjzu4iX2CyiwJCKU6fn6/XuCXkT8qITHWNtu0goshUo87sYscnVKVOEp1Xux0oK9e6NUQUrMq4hDEsqUXqmewiH2CyiwKi1DmzqyDPoG1DyK/61uySZY7IE1Fg1TgT7ZzZFbpYpJ6IPFGm7vKucUPIp7gjI/kSk10UEMroS0EBZ3aFs4x0QK8DenqAAwe0bg0RRRKHQ1ZHgpX6gRSaXMkudnaIaHBK32LaNM7kDSc5yo6MVRo3hMICk13kd61tMg4eFMfTp3NmVzgzmSSkpYtjLmUkokBqbALMZsBoBDIytG4NjYVSpL6YM7uIaBCyLKv1gLmMMbxMnSIuKyq1bAWFCya7yO+UYJSRDsTFcvQl3PVdykhEFCgVFeIyOwswGBhrQpkys6uiUuy4RkTU18FDQHsHoNO5kiMUHpS/Z0Mj0N3N8z+NDZNd5HdKva7p07VtBwVGjlqkngGKiAKn3JnsmjpV23bQ2E2cKCF5AuBwAPtLtW4NEQUbZXAjPR2IiuLgRjhJSJAwIUkcc+CcxorJLvI7pYBkLtfUR4Rs5y5o1QxQRBRAlZUi1kydwlgTDgpYpJ6IhqAkuzirKzwpg1bK35lotJjsIr9TtwbmbikRIds5s4ujMUQUSEp9D3Z+woNSt4tF6omovwp1cEPbdpB/uOp28fxPY8NkF/mVzSarHZDpLCAZEZRljE1NXGtPRIFht8uodO7cxGWM4UGp28Ui9UTUn9K3mDaVM3nD0RTnDG0WqaexYrKL/Kq2DrBagehoIC1N69ZQICQmcq09EQVWQwNgsQAmE5DOWBMWCvLFZVU1B06IyEWWXQPpHNwIT9yRkXyFyS7yq75r6nU6jr5ECuXLh7KElYjIn5QvxDnZgF7PWBMOkpMlTEoBZJlF6onIpaUF6OoC9DogK1Pr1pA/KP0IrhKhsWKyi/yqvMK5pp4jL//f3n3HR1GtfQD/TXonjRIgkATSCL2L9CKCcFUsqNguRUVs2L12XlAUBRX1AoJeFRVFrDRBqaH3QBIIpBIChDQSSE/O+8fZ2RCSQMruzpbf9/PBGXeTzdnZ3Xn2PHPOc2xKiL6wJAMUERkf63VZJxapJ6Krqef7tm0BJyde3LBGXp4K/PzkPkd3UVMw2UVGVdUBYTCyJWoNhSSuokJEJlB1YYWxxpqwSD0RXS2JKzHaBE5lJENgsouMSp3GGMKRXTZFHcnHZBcRmQLrt1inCI7sIqKr6Fdi5PneqgUFyS1XZKSmYLKLjKa0VCA9Xe7z6ottUV/v7Gzg4kUGKSIynrIygTTdYhi8sGJd1CL1p08Dly4xlhDRlRc3OJLXmqmzgpJ54ZyagMkuMpq000BFJeDhDjRvrnVryJTc3RW0ain3OfyYiIwpJUWu+uvhAQS00ro1ZEje3or+NU04qW1biEh7QgikpMh9Xki3burrq77eRI3BZBcZzZXTShSFV19sTUiI3HIqIxEZ0wldEiQslLHGGqmjuziVkYjOnweKigAHB67EaO3UZFfmBY7spcZjsouMhisx2rYQfd0uBigiMp6TJ+U5JjRU44aQUYTritSfYJF6IpunXkgPbAs4OPDihjXz9FTg7y/3U1K1bQtZLia7yGhS9KulMBjZIv2KjEkaN4SIrJo6vS08lLHGGrFIPRGpuBiJbdGvyMhZItRITHaR0SRxJUabduWKjELwijwRGV5FhcCpU3KfI7usU7gu2XUmA8gvYCwhsmX6WSO8kG4T9MkurshIjcRkFxlFcbFAxlm5z2SXbWoXCNjbAZcuAVlZWreGiKxRejpQVAw4O8tzDlkfL08FbVrL/RMc3UVk05J5Id2m6FdkTNG2HWS5mOwio0hJBYQAvJsBPj68+mKLnJ0VtNUVD2WReiIyhgTdqK6OHQB7e8Yaa8WpjERUWSmQmib3uRKjbVBniTDZRY3FZBcZBefUE8AVGYnIuBISWJzeFrBIPRGdPQcUFwOOjkDr1lq3hkwhqL3cZmUBBZzGTo3AZBcZRbJ+Tr227SBtqUXqk7kiIxEZAYvT2wZ1ZFc8R3YR2Sz1Qnq7dlyJ0VZ4eCho0Vzuc3QXNQaTXWQUVcXpGYxsmVpT4RRXZCQiAxNC4CSL09uE8DBAUYDz54HcXF48IbJFyfpV3jVtBplYUJDcMtlFjcFkFxkFpzESAHTsKLfJyUB5OTsoRGQ4Z84A+flySguLFVs3d3cF7dvJ/fjj2raFiLSRksqVGG1RVd0u9iOo4ZjsIoO7fFng/Hm5z6svti2gFeDuDpSVQV9UlIjIEOLi5Ta0I+DkxM6PtYuIkNv44+zwENmi1FS5Ves4kW3Qr8jI+r/UCEx2kcGpo7r8/QEvL3ZAbJmdnYKOHeS+Ot2IiMgQ4uJl0qNTJ40bQiYRGSG/T3BkF5HtEaJqJcZ27bRtC5mWOnAiJUXLVpClYrKLDI5z6ulKobqpjCdP8Wo8ERlOrG5kV6dIXlSxBZ0i5TY+XnZ8ich2ZGUBRUWAvR3Qto3WrSFTUvuT2TlAfj7P/dQwTHaRwalzqllDhQCgY0fZET3FkV1EZCClpUJ/ToniyC6b0CEEcHAALuYDZ89p3RoiMqUU3RTG1m0AR0de4LAlbm4KWraU+yxSTw3FZBcZXJJ+ZBeDEV05sotX44nIME6ekrUAvZsBrQO0bg2ZgpOToo8n8fHatoWITCtNN4WxPacw2iR1dBfrdlFDMdlFBseVGOlKQe0Be3u5alrmBa1bQ0TWIE4/hRFQFF5YsRWRuiL1cSxST2RTUtPkZ571umyTOlsoKZnnfmoYJrvIoPLzBbKz5T5rdhEAODsr+pVzTp7Uti1EZB1i49Ti9Ex02RK1SP1xFqknsilqcfqgdjzn26LgYPm6J3FkFzUQk11kUOqorlYt5RxrIgDoeMVURiKiplJHdrFel22J1BWpP5EAlJfzCj+RreBKjLatamQXS6JQwzDZRQalr9fFKYx0hVBdkXquyEhETZWTI5CRIfcjwrVtC5lWu0DAzQ0oLq4qWE1E1u3yZYGsLLnPml22Kag9YGcnS6Jk52jdGrIkTHaRQSXr5lIz2UVXCuXILiIykEOH5bZjB8DTkyOIbYmdnaJPcHIqI5FtUEd1+fnynG+rnJ0VtGkj95OStG0LWRYmu8ig1JFdIcEMRlRFTXadPQsUFHB0FxE13sFD8hzSs4fGDSFNsEg9kW3hFEYCgA5XTGUkqi8mu8igUlLklsXp6UpeXgpatpT7ibwiQ0RNcPCw3PbswYsqtkgtUh8fr3FDiMgk0nQrMbZvr3FDSFPqrKGkJF7ooPpjsosMJjdXIO8ioCicU081qaO7ErgiIxE1UlaWwOnTMs5066p1a0gLapH6pCSgpISdHiJrp9bna8+VGG1ahxCuyEgNx2QXGYy6EmPrAMDFhQGJqlOTXScS2DkhosZRR3WFhrJ2i61q0VzW7qmo5MUTIluQppvGyAvpti0kRG6TU4CKCvYlqH6Y7CKDSdZl2oOCNG0GmSl16gmLChNRYx1S63V117YdpB1FURChq9vFqYxE1q28XCD9jNznNEbb1qY14OQElJTIGsBE9cFkFxlMcopuJcYgbdtB5kktKpx2Wi4jTUTUUAcPyS3rddk2fd2uE4wlRNbszBmgogJwdQGa+2vdGtKSvb2iH1CRyKmMVE9MdpHBqNMYg4PYCaGafHxkkXohgBMJWreGiCzN+UyBMxmAvR3rddm6SI7sIrIJ6kqMge0AOzv2L2xdiK5IfTKTXVRPTHaRQQghqpJdwZo2hcxYZLjcxnMqIxE1kDqqKywccHdnp8eWqcmu9DNAfj5HdxFZKzXZFcR6XQQgJFjG/kSuyEj1xGQXGURODpCfD9jZsYAk1S1CnXpynEGKiBqG9bpI5eWloG0buX/8hLZtISLjSU2T5/12XImRwJFd1HBMdpFBXLkSo7MzAxLVTr0azyL1RNRQrNdFV1KL1MdxKiOR1UrlSox0hQ66FRlPnwZKS3nhnK6PyS4yiKp6XVq2gsxdeJjcnjsP5ORUatsYIrIYZ88KnDsP2NsDXTpr3RoyB53UFX5ZpJ7IKgkhkKYmu7gSIwHw9wc8PICKyqpEKNG1MNlFBpGiW4kxiPW66Bo8PBS0C5T7x2LLtW0MEVmMg4fltlMk4ObGkV0EREbKbVyc7BQTkXXJzgYuX5YlUtRpy2TbFEXRj+5KStK2LWQZmOwig+BKjFRf6lTGo8eY7CKi+jmoq9fVvbu27SDzEdpRrsyZkwtkXtC6NURkaOrIndYBgJMT+xckqQuhJSXzIgddH5Nd1GTVVmIM0rIlZAk6RcovLDFHmewiousTQuCQWq+rOzs8JLm4KAjRXeFnHUgi65PKKYxUiw4h8ntAEovUUz0w2UVNlp0DFBTIYcbqFDWiukRFye2RmHJUVvKqDBFd25kzcuSOgwPrdVF1VUXqGUuIrE1qqvxcszg9XSlEP7JL23aQZWCyi5pMXf61dWuuxEjX17ED4OICFBQIpKRq3RoiMndqva6oTnI0D5FKLVIfz5FdRFanamQXz/tURZ3GeP48cOkSL3TQtTHZRU3GKYzUEA4Oir5uV2ystm0hIvOn1uvq2UPjhpDZUYvUHz8BjhQmsjL6lRg5souu4OWpoLm/3Ff7oER1YbKLmixZtxIjk11UX511U5GOxrJzQkR1u7JeVw/W66KrBLWXI4ULC7kMPZE1KSwU+oUn2jHZRVdR6zUmckVGug4mu6jJUlLkNjiYHRGqn86d5Hvl2DGNG0JEZi0tTdaFdHKU0xiJruTgoCA8TO7Hx2vbFiIyHHVUl6+PHMlDdCV93a4kXjSna2Oyi5pECKGv2cWRXVRfaqc17TRw8SIDFRHV7tBhue3cmTUhqXaRLFJPZHVSdMkujuqi2nTowBUZqX6Y7KImycoCLl0G7LkSIzWAt7eC4CB5+omN07gxRGS2Dh5W63Ux0UW166QbKRzHkV1EViM1jSsxUt066KYxnjolB14Q1YXJLmoStTBgmzaAkxM7I1R/3bs5AmDdLiKqnRBCP7KrR3ctW0LmrJOuSH1iIlBczHhCZA3SuBIjXUNQe8DBQQ64OH9e69aQOWOyi5qkql6Xps0gC9S9uwMA4OhRjRtCRGYpOQXIzQWcnaumqhFdrWULwM8XqKgEEk5q3RoiMoTUVLnlyC6qjaOjgvbt5f6pRG3bQuaNyS5qEnUlxqD2GjeELE7vnnJkV1wcUFLCq/FEVJ26CmOXzhw5THVTFEU/uotTGYksX3m5QPoZuc9kF9WlozqVkckuugYmu6hJ1GmMwUHsiFDDtG9vBz9foLSMdbuIqCbW66L6ioxU63bxwgmRpcs4C5SXAy4uQIsWWreGzJVapP5UIs/7VDcmu6jRhBBVyS5OY6QGUhQF3bvL/cNHNG0KEZmZysqqel09e2jaFLIA+pFdvHBCZPHUKYztAgE7O17soNqFdpRbjuyia2GyixrtwgXgsm4lxsC2WreGLFGPbvJLzOEjvCpDRFUSk4D8fMDVBYgI17o1ZO4iIwBFAc6dB3JyGE+ILFmqrjh9O05hpGvo2EFuz5wBiop43qfaMdlFjaaO6mrblvVUqHHUkV3HYoHSUgYqIpLUel1duwIODowvdG3u7lXFiuOOa9sWImqatDS1HjDP/VQ3Hx8Fvj6AEEBSstatIXPFZBc1WlW9Li1bASQnJ+ONN97ALbfcgkGDBuG2227DBx98gLy8vHo/xpw5c9C/f3/0798fhw8frnF/ZWUllixZgnHjxmHIkCGYPn06Tp6sfdmn8vJyTJo0CdOmTYMQDU/gqO24ltWrV6N///6YNWtWrbdf+W/o0KEYN24cpk+fjk8//RRJSUkNflxjad8O8PEBSkuBeHZQiEjnkK5eV4/upu/sMKbUvP1aMaWudl/rcY2haiojL5wQWbIUdRqjiUd2GfzcfySmxv3WdO43h/5ER05lpOtgsosaTV2JUct6Xfv378e///1vbNiwAR4eHrjxxhvh5OSEn3/+GQ8++CAyMzOv+xgHDhzAn3/+CUWpu1P17bff4ssvv4S7uzv69OmDY8eO4amnnsLly5dr/OzKlSuRnJyM559//pqPaUxt27bF2LFjMXbsWAwePBghISFITk7G8uXLcd999+HNN9+ste2mpigKunWV+6zbRUSArNd1WNdHMHW9LsaU2l0rpowbN84sYkqnCLVIvabNIKImEEIgTTeNMciEyS6e+2tn7v0JdSoji9RTXRy0bgBZrmTdkNEgjVZiLC4uxhtvvIHi4mJMmTIF06ZNAyAD5aefforvvvsOc+bMwccff1znY5SUlGDu3LkICQmBu7s7jh49WuNnysvLsXz5coSGhmLZsmVwcnLC+vXr8dZbb+G3337DpEmT9D+bnZ2NpUuX4rbbbkN4uHaFZrp27Yo33nij2m1CCOzYsQMffvgh/vrrL2RmZmLhwoVwcND2NNCju4ItWwUOHhJ46AEOWSeydYlJQEEB4OoKhIWa7u8yptTtWjFlwYIFZhFTOnWS2/jjMmHKwtZElicnB7h0GbCzA9q0Mc3f5Lm/buben+gQogAQSOTILqoDR3ZRowgh9MOMtZrGuHnzZuTk5KB9+/aYMmWK/nZFUTB9+nQEBARgz54915xi8eWXXyI9PR0vvvhinSfpjIwMFBQUYNSoUXBycgIA3HTTTXB2dkZCQkK1n/3ss8/g4OCARx991ADP0LAURcHAgQOxbNkyNG/eHIcOHcKqVau0bhZ695Tbo0eB4mJemSGydeoozy6dTVuvizGlYdSYsnLlSrOIKSHBgLOzXDgn7bRmzSCiJlCL0we0ApydTXP+57m/YcypP6FOY0xMQqOmepL1Y7KLGiXzAlBYCNjba7cS44kTJwAA3bt3h51d9beyg4MDunaV8+O2bdtW6++fOnUK3333HcaNG4fuaqX0WhQUFAAAPD099bfZ2dnB3d1dfx8AxMTEYN26dZg+fTqaNWvWqOdkCr6+vvqrVitXrtS4NbImQ4sWQGkZUEt5AyKyMVrV62JMaRw/Pz+ziCkODgrCw+R+PKcyElkkNdmlLjhhCjz3N4459CfatwMcHeVFjrPnNGkCmTkmu6hR1CmMgW0BR0dtpgoUFRUBqB40rqQGiNquxFRWVmLu3Lnw9PTEE088cc2/06pVKwBAmlpEAEB+fj7y8vLQsmVL/eN98MEHiIiIwL/+9a+GPxkTGzFiBOzs7JCenl6vOgTGpCgK+vaW+3v386oMkS2rrBQ4ohvZ1aO7af82Y0rjmUtMUYvUx8YzlhBZotRU+dltF2i6v8lzf+Npfe53cFAQpEuMnjpl8j9PFoDJLmoUdSXGoCDt2uDt7Q0AOHeu9lR+RkZGnff//PPPOHbsGJ588snrXjXx8/NDeHg41qxZg8OHDyM/Px8ff/wxKisrceONNwIAfvnlF5w8eRLPP/98jatC5sjd3R2tW7cGIFef0VqfPjJhum+fxg0hIk0lpwAX8wEXFyDCxGVKGFMaz1xiSmQki9QTWTJ1ZFdQe9NdSOe5v/HM4dzfQVekPrHuxSHJhrFAPTWKfiXGIO3a0KNHD3z99dfYuXMn8vLy9MEKADIzM7FPlzkpLCys9nuZmZlYtGgRevbsibFjx9brbz311FN45pln8Nhjj+lvGzBgAAYOHIiLFy/qlxGOiorS319SUgJHR8dGB6vrLRfcVN7e3khPT0d+fr5R/0599O4JKAqQlAxkZQn4+7OwMJEtOnxYbk1drwtgTGkqc4gpUbqRXYmJQEmJMFnNHyIyjFRdPWBTTmPkub9ptD73d+wgi9TLFRl5zqfqmOyiRlFHdgUHa3dS6devH8LDw3HixAnMnDkTzz//PIKDg5GYmIi5c+eivLwcAGos1ztv3jyUlZXhxRdfrPff6tWrF77++musW7cOly5dQlRUFG6++WYAwOeffw4AmDFjBgBg3759mD9/PpKTk+Hs7IwxY8Zg5syZcHZ2btDzu1bgTE9PR0xM0wpcqYUctVrO+ErNmikIDxM4fgLYtx8Yc7PWLSIiLWhVrwtgTLGGmNKyJeDrA+TkAgknZdKUiCxDYaFA5gW5376d6f4uz/2Wfe7vqBvZxWmMVBsmu6jBhBBISZH7Wo7sUhQFc+fOxXPPPYf4+PhqK6j4+vpi6tSpWLx4Mby8vPS3b9q0Cdu3b8fkyZMR1MA5mCEhIfoApIqPj8eff/6JZ599Ft7e3sjMzMTzzz+PDh064N1330VycjKWLVsGFxcXPPPMMw36e1cv9Xul1atXNzk4Xbx4EQCqHR8t9ekDHD8h63aNuVn7BBwRmZYQAod1p7Xu3Uz/9xlTLD+mKIqCTp0EonfIqYxMdhFZDrWUlY8P4OVluu+BPPdb9rlfncZ4JkMmTN3c2IegKkx2UYOdPw8UFQEODtqtxKgKCAjAN998g61bt+Lo0aMoKSlBcHAwRo8ejS1btgAAgoOD9T8fHR0NANi7dy8OHTpU7bHUwpPz58+Hu7s7brnlFowbN67Ovy2EwLx589CxY0fcfvvtAIBVq1ahtLQUs2fPRuvWrTFs2DCkp6dj1apVeOyxx+Di4mLIp99oly9fxpkzZwBUPz5a6tdHwbfLBfbuBSoqBOztGayIbEliUgXy8gBnZyAyQps2MKY0jjnFlMgIBdE7BOLiOKWFyJKkqCsxmnBUl8oo5/6PPoZn6Xnc3rMNRg6r+2/z3N80Pt4K/PwEsrNlOZTOUdf/HbIdTHZRg6lTGAPbmr6mSm0cHBwwYsQIjBgxotrtR48eBQD07Nmzxu8cO3aszsdLSEio8/eu9OeffyI+Ph6LFi2Cvb09ACAlJQXe3t76Yo0A0KlTJ6xduxanT59GaGho/Z6Ukf39998QQqBdu3Zo3ry51s0BIIOTh4csTh0bB3TtonWLiMiU9u2XU0U6R2m3yi/AmNIY5hRT1BUZWaSeyLKkpsnpcFokuwAjnPt1Sa9+Ib7X/Ls89zddxw5AdracyshkF12JyS5qsKp6XZo245qys7OxadMmNGvWDEOHDtXf/sYbb9Q5nHf69Ok4dOgQFi1ahO7du1/z8QsKCvDf//4XY8aMQbdu1efblJSUVPv/4uJiADCbVVVycnLwxRdfAADuvvtujVtTxcFBQf9+An//A+zYKdC1i/aJVCIynf37ywBoU6/rehhT6padnW1WMSUyQi54cvYckJsr4ONjfu8nIqqpqji9+Xxmm3Tu/+xT9Du3Ak5OTiio4/Et+dxvTv2Jjh2APXvBIvVUg3l8WsiiJCerKzFqfzJJTEysEQwyMzPxwgsvoLCwEE899ZRRhvouXrwYpaWlNebch4SEoLCwENu2bQMAlJeXY9OmTXByckKbNm0M3o6GEEJg586dmDJlCrKystC7d2/cdtttmrbpajcOkO+pHbs0bggRmZQQAvv0yS7t2sGYUn9qTLnrrrvMKqZ4eCj6kSEc3UVkOdI0nMbIc3/9mWN/omNH2X84lahpM8gMcWQXNZh+ZFeQlq2QvvvuO2zduhXh4eHw9/dHTk4OYmJiUFpaismTJ+OWW24x+N88efIkfv31Vzz55JPw8/Ordt+dd96JH3/8Ea+99hr69euH9PR0JCcn48EHHzTp/PqYmBjMmjULgAyQFy9exIkTJ5CXlwcAGDNmDJ5//nk4OJjXKaBfX8DeDkhJAc5kCLRprX1ClYiM73Q6kJ0j4OSoXb0ugDGlLpYWUzpFAimpQFy80F9EISLzVV4ucDpd7rdvb/q/z3N/7Szl3B/WUW5PJbLuL1VnHt9KyGJUVAh9siskRNOmAACGDBmCnJwcnDx5EjExMfD09ET//v0xceJE9OrVyyh/88MPP0RQUBDuvPPOGvf5+fnho48+wsKFC7F79254eHhg0qRJeOSRR4zSlrqkp6cjPV1+a3B2doanpyeCg4MRFRWFsWPHIsQcXrxaeHkq6NpV4NBhYMdO4O6ah5iIrJBa9iQiAnBy0u5LKmNK7a4VU+655x74+/ubtD3XExmpYO16wZFdRBYiIwOoqABcXYAWGpR+4rm/dpbSn2jbVr53iorlxbMgDRKmZJ4UIYQw9IPm5ubWuM3Hx6fW222JNRyDtNMC9z0g4OwMbFirNDhzrj8G5aVw/us/AICS0e8ADk7GaK7Zsob3QlPVdQxW/CTw6ecCvXsBH31o3TOtbeF94OPjc837Df38beGYWqP35lXizzXAffcCjz9qoM+9jccZUzHHz9yJBIEpjwh4uANr/1RgZ8er/LUxt9fuevECMHzMMCVzO97mZNt2gf+8LhAWBny5xEq+++likJOTEwqGvcUYZGTTn6jE0WPAG68quGmU9ud8ft6Nrz4xw0rOJmQqSUlyG9QeHCJKRjHgBrk9fAS4fNnguXgiMkNHY+W2SxTjCjVdhxDAyQm4dBk4fVrr1hDR9aTq6nUFabQSI1m+8DC5PXGSfQeqwmQXNUhikjyBdDCPUatkhdoFKggMBMrLgT37tG4NERlbfoFASorc79xZ06aQlXBwUPQdn7jj2raFiK4vNU32L9q14wUPapywUPneSUjQuCFkVpjsogZJSpbbkBAGIzKeG3Wju7ZH8+oMkbWLjZPb9u3s4OPN2EKG0amT3MbFM44QmbvUVLllrSVqrDDdBY6Ek0BlJc/7JDHZRQ2SqJvGyJFdZExDBssO785dQGkpAxaRNTt2TH7Gu3d31LglZE06Rcg4EhencUOI6JqEEPppjO04jZEaKag94OQIXL4MnD2rdWvIXDDZRfVWXCxw5ozcZ7KLjCmqE+DvLwPW/gNat4aIjOmYrl5X925cIJoMp1Ok3J5KBEpKeNGEyFxlZQGFhYC9HdC2jdatIUvl4KCgQwe5f5xTGUmHyS6qt+QUQAjA2xvw9eVUEzIeOzsFQwbJ/S3b2Ekhslbl5UI/8qYHk11kQK1aAT4+QEWFnNZCROZJHdUV0BpwcmL/ghovLFRuExLYdyCJyS6qN05hJFNSpzJuj5YdYiKyPknJQFEx4O4OdOhgr3VzyIooiqIf3RUfr21biKhurNdFhhIWpitSzwscpMNkF9Vbkm4lxpBgjRtCNqFbVzmKsKAAOHRY69YQkTEcPSa3UZ3kiE4iQ+oUKd9TsSxST2S2UnQrMbZnvS5qonD9yC5ZC46IyS6qt6qRXeyQkPHZ2ysYrE5l3MqARWSNjuqK03fpzLhChhelW5FRrQtHROYnTTeNsX07xgFqmuBgwN4euJgPnM/UujVkDpjsonpLSpZbtfgfkbEN1U1l3BYNVFQw4UVkbY7pRnZ16axtO8g6dYqURa/PnwfOZzKGEJmjFN00xvacxkhN5OysIDhI7iewSD2ByS6qp5wcgdxcQFGgP4kQGVvPHoCnJ5CbC8Qc1bo1RGRIFy4InDsP2NlVrZxHZEhubgo6dJT7RxlDiMzOpUsC2dlyn9MYyRDCwuQ24SQvcBCTXVRP6hTGNq0BFxcOMybTcHBQMOhGuc+pjETWRZ1a1iFEJiWIjKGrbtSgOmWWiMyHuhKjnx/g4cE4QE0XHqorUs+RXQQmu6ie1CmMIVyJkUxMXZVx63agspKdFSJrcSxWfp47cwojGVGXLjKGqIshEJH5UFdi5KguMhR1ZNcJrshIYLKL6ilRtxJjBya7yMT69Abc3YGsLCCOy8cTWQ01+dAlilfzyXjUkV2nEoHCQl4wITInqepKjKzXRQbSsYMsu5OdDWRl85xv65jsonpJ0k1jDAlmp4RMy8lJwYAb5D6nMhJZh5ISgQTdVVeO7CJjat5cQauWQGUlEBundWuI6EpqcfogrsRIBuLqquhHCp7k6C6bx2QXXVdFhUByitznSoykBXVVxi1bASGY8CKydMdPAOXlgJ8vENBK69aQtevaRW5jjjJ+EJkTtX8RHKxpM8jKhIXK7QnW7bJ5THbRdZ3JAEpKAGdnWaCeyNT69QVcXIBz5xm4iKyBWpy+c2dAUXhFn4yLdbuIzE9xscDZs3I/iNMYyYDCwnRF6rkio81jsouu61Si3AYHAfb27JSQ6bm4KOjfT+5v3cbARWTpjulWxuvMel1kAl10U2Vj44DycsYQInOQmgYIATTzAnx8tG4NWROO7CIVk110XSd1WfHQUI0bQjZNncq4mVMZiSyaEAJHdSO7urBeF5lAcBDg4Q4UFQGJSVq3hoiA6lMYOcKXDCk8TBapP38eyMlhn8GWMdlF16UWEQ4LZSAi7Qy4AXByBNLTgaRkrVtDRI2VfgbIy5Of5zBeRCETsLdXEBUl9zmVkcg8JCfLJERQkLbtIOvj7q7oV/jkSu62jckuuq5Tp+Q2tKO27SDb5uamoE8fuc9VGYks1zFdsiE8XK62SmQKXTrr6naxSD2RWdCP7ApiHCDD6xQpt7HxPOfbMia76JqyswWyc+RQ0A4hWreGbN3QIfIL0dZtGjeEiBrtaKxar0vjhpBNqVqRkVPhicxBSqrcBgdp2gyyUp0iZZ8hLk7jhpCmmOyiazqpG9UV2BZwdeWVF9LWjQMAe3s5jTEtjZ0VIkukjuxSR9oQmUJkhIwfF7JkHRci0s6VKzEGB2vbFrJOUbqRXcdPAJWV7DPYKia76JrUZBeL05M58PJU0Kun3N/C0V1EFqegQOinrnBkF5mSq6uC8DC5f+iwpk0hsnkpqXIlRu9mgI83L3yQ4QUHAy4uwOXLcuVPsk1MdtE1JehWYmRxejIX6lTGLdt4lYbI0sTGyQ5O2zaAry/jCplWzx5ye/AQ4weRltSLHixOT8bi4FB1gYNF6m0Xk110TSdZnJ7MzKCBgJ0dkJAAZJxlh4XIkhxT63V11rghZJN69ZQJ1oOHWbeLSEvJKfLzxymMZExqkfq4OJ7vbRWTXVSnwkKB9HS5z2QXmQsfbwXdu8l9FqonsixHdfW6OkdxVBeZXpfOgIODrNmVkaF1a4hsV0qK3HIlRjImfZF6juyyWUx2UZ1OJcqtvz/g48NgROZjyGB1VUZeqSGyFOXlQr8qUleO7CINuLgo+iv9Bw9p2xYiW6ZOY+RKjGRMnTrJbVKSXBSBbA+TXVSnkyflNoyjusjMDB4ot7FxQG4ugxeRJUhMAoqKAQ931mkh7aiLnBxg3S4iTRQVXbESY5CmTSEr16I54OcHVFQCJxK0bg1pgckuqlPCKflFkCsxkrlp3lwWnRQC2Llb69YQUX0c001hjIoC7Ow4Wpi00aO7fO8dOsS6XURaSE2VWx8fwJsrMZIRKUrVaN7YOG3bQtpgsovqVFWcnoGIzM+NA+T7csdOdlaILMFRXXH6Lp0ZU0g7UZ0AJycgOwdI43L0RCanX4mxvabNIBtRVbeL/QVbxGQX1aqsTCA5We5zZBeZoxsHyO3efUBJCQMYkbmrKk6vbTvItjk7K+iiqxl3gHW7iEzuVJL8ztahg8YNIZsQpavbxSL1tonJLqpVYiJQVgZ4egKtA7RuDVFNYaFAc3+guFguI09E5iszU+D8ecDOrmopcCKtqFMZD7JuF5HJJeoWwOoYwlG+ZHwR4YCiAJmZQFY2z/m2hskuqtXxE3IrTxAMRmR+FEXBgBvkPqcyEpm3Y7paGR07AG5ujCmkLbVI/aFDQGUl4weRKSUmyS1HdpEpuLkp+oUQ4li3y+Yw2UW1ij8hv/xFRGjcEKJrUOt27dzFQsNE5uzoUfn55BRGMgeREYCbG3AxH0jgCl1EJpOTI5CbK0f5ciVGMpXOuqnrMUfZV7A1THZRrdSRXZHhvAJP5qtXT8DZWQ5NPnVK69YQUV2Oxcptly6MKaQ9BwcFvXvJ/d17tW0LkS1RR3W1bQO4uDAekGl00333OHJU44aQyTHZRTUUFwuk6IrTR4Rr2xaia3F2VtCnt9zfsUvbthBR7YqLBRJOyv0uHNlFZqJfX9n52buPV/qJTEVd6Z1TGMmUunWV24QEoLCQ53xbwmQX1ZBwEqioBPx8gebNtW4N0bUNuEF2WHbvYfAiMkfxx4GKCsDfH2jZUuvWEEn9+shtbCxQUMD4QWQKiepKjCxOTybUqpWCli3ld5FY1u2yKUx2UQ3qFMZwFqcnC9Cvr9zGxQP57LAQmR39FMbOjClkPlq1UtC+nby4d+Cg1q0hsg36lRg5sotMrFsXuWXdLtvCZBfVcPy4PAlERrBTQuavZQsFQUFAZSWw/4DWrSGiq6nF6btEMaaQeVEvluzZy84PkbGVlwukpMr9DiHatoVsT9euurpdMRo3hEyKyS6qQR3ZxZUYyVKww0JknioqBGJ0BWG7dtG2LURXU+t27dnHFX2JjC0tDSgvB9zdgVattG4N2Rq1bldsHFBWxvO9rWCyi6opKBBIOy33I8K0bQtRffVXOyx72WEhMienEoFLl2XnpmNHrVtDVF33boCTk1zRVx1xQkTGcUo3hbFDCKe0k+kFtQe8mwElJcCJBK1bQ6bCZBdVoxbta9Ma8PFhICLL0LUL4OwMZGUByclat4aIVIcOy223LoCDA2MKmRdnZwXdu8n9PXu1bQuRtTulFqdnvS7SgKIo6KIbYc6pjLaDyS6qJjZOBqLOnTVuCFEDODsr6NFd7u9mh4XIbBw6LGNK9+5MdJF5UkcG79rNUcFExpSoH9nFeEDa6Kav28Xzva1gsouqOXpMbllImCyNvvYK63YRmYWKCoEjR+R+z+6aNoWoTjfcILeHj8hSDkRkHIlJcsuVGEkr3XV1u2KOApWVPN/bAia7SK+iQuinMXJkF1katUh9zFGgqIgBjEhrrNdFliCwrYKg9kBFBUcGExlLXp5AVpbcDwnWti1kuzp2BFxdgUuXqmrIkXVjsov0kpKBoiLAzQ0IDtK6NUQNE9gWCGgFlJUBBw9p3RoiYr0ushQDb5Tb6GheKCEyhpOn5LZNa8DNjfGAtOHgoKCHrk7j/gPatoVMg8ku0jsWK7dRnQB7ewYisiyKouhHd+3bzw4LkdZYr4ssxcAb5Xt0914uSU9kDOrqd+Hh2raDqHcveb7ff4DnelvAZBfpHYvVFaeP0rghRI3Up48MYHv3adwQIhtXUSH0qx2xXheZu06RgJ8vcPly1YhEIjKchJOyjxEexosfpK3eveT2SAxQWsqEl7Vjsov0jqnF6TszEJFl6tkdsLcD0k4D584xgBFpJTFJ1sRwc2O9LjJ/dnYKBgyQ+9t3MHYQGdqJE3IbFqptO4iCgwFfH6CkpGpWE1kvJrsIAJCdLXAmA1AUeYWTyBJ5eiro1Enu79uvbVuIbJlaN69bV9brIsswSDeVcccOQAgmvIgMpaBA9jEAJrtIe4qi6Ed3cSqj9WOyiwDIJbcBILQj4OHBjglZrj69dVMZWbeLSDPqF8gerNdFFqJXT8DVBci8UFVfiIiaTi1OH9AKaNaMMYG0V1W3S+OGkNEx2UUAqgoJ9+iubTuImqpvH7ndf0DWDSIi0yotFfq6R+qiEUTmztlZQV/d+zWaUxmJDEZNHoeFadsOIlUv3ciu4yfkyEOyXkx2EYCqKSe8Ck+WLiIc8HAHCgp4dZ5IC0ePyVoYfr5ASLDWrSGqP3VVxu07NG4IkRVRi9OHhbKPQeahZQsF7dsBlZUc3WXtmOwiZGULpJ2W9bq6dtW6NURN4+Cg6K/YcFVGItPbu092bPr0kbUxiCzFgP5ykZPERCDjLK/2ExlCgu7CYzhHdpEZ6d9fbnft5rnemjHZRTh8WG5DOwJenuyYkOVT63btY90uIpNTF4fo25vxhCxLs2YKunWT+1u3adsWImtQWCgvqAMsTk/mZUB/+R1l1x6gspL9BWvFZBexXhdZHbVu17FY4PJlBjAiU8nNE0g4KffV1Y6ILMnQIbIDtGUrYwdRU508BQgBNPcHfH15AYTMR9cugJsbkJvLsifWjMkuwsHDcst6XWQtWgcoaNsGqKiAvlA2ERmfWvuiYwd2bMgyDR4kyzrExgGZmUx4ETVFbJzcRkZq2w6iqzk6KujTW+7v3MVzvbVissvGZWUJnNbV6+rGel1kRfroRnep9YOIyPj27JWfN3V0JZGl8fdT0LWL3N+6Xdu2EFm6uHgZEzpF8uIHmZ8b1KmMuzVuCBkNk102bo+ugHd4GODJel1kRdR6QXv3a9wQIhtRUSGwW/eFsX8/xhOyXEMGcyojkSHExcttJ47sIjN0Qz+5PX4CyM7m+d4aMdll49Sr8P37adwQIgPr2UOuqpWezlW1iEwh/jiQdxHwcId+ZAyRJRoyWG5jjsoVq4mo4bKyBTIzATs7ICJc69YQ1eTnp+hXCd29V9u2kHEw2WXDyssF9upGdvXry6vwZF3c3RVERcn9fRzdRWR0as2Lfn0BBwfGFLJcLVsoiOokC2tv41RGokaJ09XrCg4C3NwYE8g8DbhBbnexbpdVYrLLhsUfBy5dAjw9gcgIrVtDZHh9+8gvV/tYt4vI6HbuktsbbmCnhiyfOpVx6zbGD6LGiD8uPzvsY5A5U+t27d0PlJTwfG9tmOyyYbv3yA90n968Ck/WSV1lZf9BOZKRiIzjfKbAqUS52En/vlq3hqjphg6R20OHgdw8xg+ihtLX6+rEPgaZr4hwwN8fKCwEDhzUujVkaEx22bA9urnJ/TmFkaxURDjg4SFHMB4/oXVriKzXLt2ors5RgLc3YwpZvtYBspZLZSWwPVrr1hBZlooKgfjjcp/F6cmc2dkpGDJI7m/hSF6rw2SXjcrNFfrOf19ehScrZW+voHcvuc+6XUTGE71TfkFUpwMQWYOhQ7gqI1FjpKbJkTKuLrJmF5E5U6etR+/gTBBrw2SXjdqhuwofFgr4+7FzQtZLrdu1l3W7iIyioEBg/wG5P3iQtm0hMiR1VcYDB4H8fMYQovo6Fiu3ERHywiOROevaBfBuBuTny6nrZD2Y7LJR23TDNAcPYgAi69ZHN7IrLg64dImdFSJD27kLKC8HgtoDQe0ZU8h6tAtU0KEDUFEBbN+hdWuILMeRGPl9q1tXjRtCVA8ODgoGDZT7XJTEujDZZYMuXxbYx6vwZCMCAhQEBgIVlcDBQ1q3hsj6qDUu1FEwRNZkmG4q4+Yt7AAR1VdMjNx27cILIGQZ1KmM27bLmnNkHZjsskG7dgNlZUC7QM6jJ9vQV7cq4979DF5EhlRYKPSLnQwdzE4NWZ/hQ+V2335OZSSqj8xMgbPnADs7uWgJkSXo1RPwcAdycqum4ZLlY7LLBl15FV5R2Dkh69dHV7dr3z6NG0JkZXbvBUpLgdatgY4dtW4NkeG1a6ego24q4zauykh0XUeOym1oR8DNjf0MsgyOjgpuvFHuc1ES68Fkl40pKRHYvUfuD2G9LrIRPbsD9vbAmQzgzBkGMCJD2ar7QjiUF0/Iig0fJt/bmzYzfhBdT8xR1usiy6SOUN+8lVMZrQWTXTZm9x6guBho2RIID9e6NUSm4eamoEtnub9vv7ZtIbIWhYUC0Tvl/rChTHSR9Ro2VG4PHADy8tgBIroWtV5Xt66MC2RZ+vUFPDyArCzgSIzWrSFDYLLLxqz7S35JGzGcV+HJtvTpLd/ve/axo0JkCNuigZISoG1bIIIXT8iKBbZVEBYqFzrhVEaiuuUXCCQly/2uXbRtC1FDOTkpGDZE7m/8m/0Fa8Bklw3JzRXYtVvujxnNRBfZln595PbgIaC8nAGMqKk2bJSfo5tGKrx4QlZPHb3IqYxEdTt6FBBCLoLl48O4QJZn1MiqqYylpTzfWzomu2zIxr9lgdXISCA4iAGIbEtoKNDMC7h8GYiL17o1RJYtO1tg/wG5f9NIbdtCZArqqowHDwG5nMpIVKsjunpdHNVFlqpbV8DfH7h0CfrVpslyMdllQ9aulwFo7M1MdJHtsbdX0LuX3N+3nx0Voqb4ZzNQWSkvnrRty5hC1q9NGwXhYfJ9v3Wb1q0hMk+s10WWzt5ewYjhcn/jP+wvWDomu2zEyZMCpxIBR0dgxDCtW0OkjT595Jevvfs0bgiRhVNrWdw0kh0ash3qqoybt7ADRHS14mKB4yfkfleuxEgWbNQIea6P3iEX4yHLxWSXjfj1D/lBHTQQ8PJi54RsU5/echt/XBZRJaKGO50uEH8csLfjxROyLcOGyu2hw0BODmMI0ZUOHwHKy+WK760DtG4NUeOFhwGBgUBpKbB1u9atoaZgsssG5OcL/LVB7t9xOxNdZLtatlAQ1F5OQzl4UOvWEFmmvzbITn6vXoCvL2MK2Y7WAQoiI3RTGdkBIqpGLRHRtw9XfCfLpiiKfuT6+r94YcOSMdllA1avlcvDh3ZkwUgidXTXXtbtImqwigqBtevk/hjWfyQbxFUZiWqnlojo25uxgSzf6Jvk9uAh4Nx5nu8tFZNdVq68XGDVr/IDeucdXB6eqK9at2svIASDF1FD7N0HZF4AvLyAwQO1bg2R6amrMh4+IlclJSLgwgWB5BTAzg7o1VPr1hA1XesABT26A0JAP0OKLA+TXVYuegdw/jzg3QwYOVzr1hBpr3s3wMkROHceSE7RujVEluWP1bJzf/NNgLMzL56Q7WnVSkGnSNkB2sJVGYkAAHv3y21EOGsDk/UYM1q+l9f9JXiB3EIx2WXFhBD49jv5wfzXeHZMiADA1VVB715yf3u0tm0hsiRZ2QI7d8r98eMYT8h2qasyciojkbR3X1W9LiJrMXQI4OoCpKcDx2K1bg01BpNdVmzPXuBEAuDiAtx1JzsmRKpBA9UlhdlRIaqvdeuBikqgS2cgOIgxhWzXsKGAogBHYljLhaiyUmC/bmRXH9brIivi5qZg6BC5v3Y9z/WWiMkuKyWEwNffyg/lbf8CfLwZfIhUNw6QHZX440BmJoMX0fVUVgqsXiM/K+NuYTwh29ayhYJuXeX+3/9o2xYircUfBy7mA25uQFQnrVtDZFjqYjybNgMlJewzWBomu6zUocPA0WOyNtE9E9kxIbqSr6+CzlFyP3qntm0hsgQHDgJnMgB396oC3US27KZR8rvVxr/Z+SHbpo6S798PcHBgn4OsS/duQKuWwOXLwDaWP7E4THZZISEEFn+hXoEH/P0YeIiupk5l3B7NjgrR9air+o4eJeveEdm6oUMAR0cgMQlITGIcIdsVvUNuB97I2EDWx85OwZib5f7adTzXWxomu6zQtmggNk7W6nrwAQYeotoMGii3Bw8B+QUMXkR1OZMhsEM3AvLOCYwpRADg5amgfz+5v2EjYwjZpjNnBJJTAHs76D8PRNbm5pvkd5/9B4Bz53i+tyRMdlmZ8nKBxUvkh3DiXRzVRVSXwLYKQoKBigquykh0Lb/8JiCEXGWrXTvGFCLVTSN1Uxn/kXXtiGyNWgqie3eZACayRm3aKOjVExACWL2W53pLwmSXlVm9Fkg7DTTzAu67h0GH6FrU5eP/2cTARVSbwkKBNWvk/l13MKYQXWnADbKOXWYmEHNU69YQmZ5aCuLGAYwPZN3+NU6+x1evlYNLyDIw2WVF8vMFvlgqP3wPPajA3Z2Bh+haRgyX2wMHgLw8Bi6iq/21Ebh0GWjbBujXV+vWEJkXZ+eqZek3sFA92ZiLFwWO6pK8g27Uti1ExjZoIODdDMjKAnbv0bo1VF9MdlmRpV8KXMwHgoKACbdp3Roi8xfYVkFYKFBRCWzdrnVriMxLZaXAql9kB37C7Qrs7HgBhehq6lTGzVuAsjImvMh2bN0uvz917AAEBDA+kHVzcqoqVP/Hap7rLQWTXVbi5EmB3/6Q+zOfUrj0L1E9qVMZN21m4CK60s5dQEoq4OYGjL1Z69YQmafu3QB/f6CgQH5miGzFRt1oxpEj2Ocg2zBeN5Vx9x7gfCb7DZaAyS4rIITA/I8FKiuB4cOAXj0ZdIjqa/gwuT10GMjOZuAiAmRc+Wa5/Dzcfivg4cG4QlQbe3sFo0fJ/TVclp5sxIULAoePyP2Rw7VtC5GptAtU0KM7UFkJrFmrdWuoPpjssgLr/wKOHgNcXIAZ09khIWqI1gEKOkfJwPXXRq1bQ2QeDh0G4uIBJydg4l2MK0TXcsuYqqv9WVlMeJH1+2ezXJmuS2egVSvGCLId6uiu1WsEKip4vjd3THZZuJwcgU8+kx+0hx9U0LIFAw5RQ43VdVTWrhMQgoGLSB3VdctYwNeXcYXoWtq1U9Cls7xosn6D1q0hMr6//5ExYtRIxgeyLUMGAV5eQOYFYM9erVtD18Nkl4X7+FOBggIgtCNwz91at4bIMo0YBjg7y/pEcfFat4ZIW8diBfYfAOztgPsmsiNDVB+3jJWflTW8aEJWLu20wPETMkYMG6p1a4hMy9lZwZjRcv9PFqo3e0x2WbAdOwX+2SSDzcsvsig9UWO5u1ctH8+aK2TrvlgmPwM338wVtojqa/hQwNUFOH1alpYgslar18oY0bcv4OPNGEG2R53KuHMXC9WbOya7LFRhocCHC+SHa+LdQHgYgw1RU6g1V/7ZBBQXM3CRbTp4SODAQcDBAXj4AcYVovpyc1MwTLfgCS+akLUqKxNYt17uj7+FMYJsU1B7Wai+ohL49Tee780Zk10WavEXApkXgNatgckPM9gQNVX3bkBAAHD5MvD3Jq1bQ2R6Qggs/VJ+aRt3C0d1ETWUetFk0ybg8mV2gMj6RO8AcnMBP19gwA1at4ZIO3fdIc/3f6zmRXJz5qB1A2xFcnIyZs+ejV27diE/Px9+fn4YOHAgpk6dCm9v73o/zoEDBzBjxgz9/6clAUOH1vy5adOmYcqUKU1vOJEVq6iowObNmxEXF4e4uDicPX0c5eXFWPjJWNwy5nUoSt2d/fz8fCxduhTbtm1DdnY2/Pz8MGTIEEydOhWenp4mfBZki77//nscOXIEiYmJyM3NRWlpKfz8/NCjRw9MmjQJHTt2rPdjrV69GrNnz652288/yn9XeuONNzB27FhDNJ/I6pw9exZbNv8EByUOBXkZuOmmi3ByskdgYCCGDRuGe+65B66urg16zIqKCqxatQpr1qxBamoq7O3tERoaiokTJ2KYOoyMSGf69Ok4dOhQnfcvWLAAN9zQsAzVsWPH8PXXXyMmJgZFRUWws2+JirJhGDXqITg4uDe1yUQW5+DBg/jpp58QExOD8uIC5BQ3w+QpHfHYoxMwePDgej3G2bNnsX37duzcuRMJCQm4ePEiPDw8EBkZiQkT6v84dH1MdpnA/v378fzzz6O4uBjt27dHly5dkJSUhJ9//hnbtm3D0qVL0aJFi3o9lpeXLzy9xuLSJaBtW7nkr6qyshLr18uxxd27dzfCMyGyLoWFhXjttddq3J6fD8QcBbp1rf338vLyMHXqVKSnp6NNmzYYPHgwkpOT8eOPP2LXrl344osv0KxZMyO3nmzZ119/jeLiYnTo0AEdOnQAIC+qrFu3Dhs3bsTcuXMxcODAej1W27ZtcfPNY7F9B1B4GQgJAcLD5H2XL1/G1q1bAQDdunUzynMhsgaJiYn44Ycf4O7uB8WuPVzduiGqUwFiY2OxePFibNy4EYsWLYKXl1e9Hq+iogIvvvgiduzYATc3N3Tr1g2VlZU4evQoXnnlFUyZMgXTpk0z8rMiSzRs2LBaE6vNmzdv0OOsX78e//d//4eKigqEh4fD27sV9uw9DohvsH3LTvz7wcVwd2fCi2zHF198gWXLlsHJyQldu3aFf3MfJCRkIjnpCLZvb17vJNWbb76JmJgYODk5ISoqCn5+fsjIyMDu3buxe/du3HPPPXjmmWeM+2RsBJNdRlZcXIw33ngDxcXFmDFjBh544AEAcrrIp59+iu+++w5z5szBxx9/XK/H2xbdHkWlr8G/JbBsqQIvr6qRJzt37sT69evRsmVL9OzZ0yjPh8iaODg4YMyYMYiIiECnTp2QmpqqH+Hy8y8C3brWPrJrwYIFSE9Px9ChQzF79mw4OMhT6YcffoiVK1fi448/xhtvvGGy50G25/3330dERAScnZ2r3f7zzz/jgw8+wDvvvIM//vhD/968lu7duyP+RDf8vUWgeUvgiyUK3Nzke3/VqlXYunUrunbtijZt2hjluRBZg4iICHz//fdo2TIYt90pUFQEPPiQgojwQrz00kvYv38//ve//+Gpp56q1+OtWLECO3bsQEBAABYuXIi2bdsCAFJSUvDkk09i2bJl6N+/P7p06WLMp0UW6Mknn0Tr1q2b9BiZmZl49913UVFRgVdffRXjx4/Hp59XYv/hMnh7zUZq6kYsXLgQL7/8soFaTWTeVq9ejWXLliEqKgrvvvsuWrRogYICgQl3CRQWFaNrt4x6P1aLFi3w3HPPYezYsdUSxjt27MCLL76IFStW4IYbbkC/fv2M8VRsCmt2GdnmzZuRk5OD9u3b44knntDfrigKpk+fjoCAAOzZswcnT5687mMlJQt8+53cf+ap6okuAPpRXaNHj77m9CsiklxdXfHmm29i4sSJ6NKlS7XEwbZtQGYtK6xkZWVh48aNcHR0xAsvvFAtmfDkk0/Cx8cHf/31F3JyckzyHMg2devWrUaiCwDuvPNOtG3bFjk5OUhOTq7XY+XmCvzvG/lef2RaVaILqIorY8aMMUCriayXv78/QkJC4O6uYPRN8rZffhNwd3fH1KlTAciR/vX166+/AgAee+wxfaILAIKCgvRlKpYvX26g1hNVt3r1apSUlKBv374YP348CgsF/lwDKIojnnn6Obi5ueHPP//ExYsXtW4qkdEVFxdj4cKFcHNzw/vvv6+fkeXpqeDmmwFFccHOXSH1frzZs2fjrrvuqjEy8sYbb8T48eMBABs2bDDcE7BhTHYZ2YkTJwDIK+d2dtUPt4ODA7p2lfOktm3bds3HqagQeG+eQHk5cOMAucT1lYqKirB9+3YA7JQQNZWvr1xh5cefaya7du/ejcrKSnTr1g1+fn7V7nNycsLAgQNRUVGBnTt3mqq5RNXY29sDABwdHev1859+LnD5MhAWBoy9uer2jIwMHD16FI6OjhgxYoQxmkpklSbcJhPG0dHAuXNCf1Gkvp/JS5cuIT09HQBqHanfq1cvADIelZaWGqLJRNWo/Rf1/bd6rVzAp10gMGJ4M3Ts2BEVFRXYsWOHls0kMoktW7bg4sWLGDFiRI3v/nferjvf7wTOZDS9UL1aczUrK6vJj0Wcxmh0RUVFAFBnwWq1rs/1Rnb99jsQGwe4uQHPPaPUGLm1ZcsWFBUVISwsDMHBwQZoOZHtCgkBDsUAv/8BPHCfgLd31edN/ayGh4fX+rvh4eH4888/cerUKZO0lehK69atQ1paGgIDAxEYGHjdnz9wUOCvjYCiAC88q8DOruaorgEDBtS7zhARASHBCnr1FDhwEFj+QxHOnfkfAHnVvj7U745A7d8f1e+OJSUlSEtLa9CCFGT91BFXdnZ2CAwMxJAhQ9CqVasGPcaV/ZfSUoEVP8pO/N13yjhR3/4LkTU4cOAAAKBLly4oKCjAX3/9hcTERDg7O6Nr167o03sg9u13wMpVAs882bTZVRkZcjrk1Uk1ahwmu4xMXWnx3Llztd6vvqHruh8AzmcKLPpCBpnHHlHQokXNDxGnmhAZTnN/OcolIQFYuUpg2pSqz5z6Wa1rUQn19mt9pokMZfny5UhKSkJxcTFSUlKQlJSE5s2b4//+7//0I7zqUloq8MECGVtuvxWIjKh9ajzjClH95efn46OPPoKoACpKc/HzT3GAuIghQ4bgvvvuq9djeHl5wd7eHhUVFTh37hyCgoKq3a9+dwRkrGGyi6701VdfVfv/hQsXYvLkyZg8eXK9H+PK/svadUDmBcDfHxijG/1bn/4LkbVQy0Lk5eXh3nvvrTbqasWKFWjdugOE+AB/rm6Jhx4Q8PFuXMKroKAA69atAwAMGjSo6Q0nTmM0th49egCQxeOvruGTmZmJffv2AZCrwtVGCIEPF8hCp106A7f9q+bPZGVlYf/+/bC3t8dNN91k2CdAZKMenKQr0P0LcPly1bBk9Wqni4tLrb+n3l7XZ5rIkHbv3o21a9di06ZNSEpKQqtWrTBr1ixERERc93eXfiVw+jTg5ws8MrX6F7PY2FikpaXBy8ur3qNRiEjWdlm7di327lkLUbkLEBcR0mEEXn755TrjxtWcnZ0RGRkJAFizZk2N+1evXq3fZ6whVY8ePfDmm29i1apV2LJlC3766Sc89thjsLe3x5IlS/Djjz826LEAYMOGjfjmOzlVdtK9CpydFcTHxyMxMREA339kGwoKCgAAixcvhpeXFxYtWoR//vkHy5YtQ3h4ODIyEuFk9x8UFwus+qXxUxnfe+895ObmonPnzhg6dKiBWm/bmOwysn79+iE8PByFhYWYNm0aYmNjUVhYiKNHj2LmzJkoLy8HgDoLym/aDOzcBTg6Ai8+X32KiWrDhg2oqKhAnz59OOSRyEAGDwKC2gOXLgM/rtS6NUS1+/TTT7F7925s3LgRixYtQmBgIKZPn17jyv7VjsQI/LBC7j83U4GHR+2jukaMGFHvOkNEJEf37t69G7t27cILL/4GO4f/IDn5MO67bxKOHz9e78d58MEHAQDff/89vvvuO2RnZ+PChQv46quv8Ouvv+pHbnJBIlI98sgjGDNmDNq0aQMXFxe0a9cODz/8MN5//30AwNKlS1FcXFyvxxo9ejRatGiB8+fP4Wz6i2jmmYiRwy9jz549eOWVV/j+I5tSWVkJQNZEXbBgAbp37w53d3dERUVhwYIFcHV1RVFRPETlPvz8C1BY2PCE1zfffIO///4bXl5eePvtt/nZMhAmu4xMURTMnTsXISEhOHbsGKZMmYLhw4dj2rRpyM3N1a/QU1s9lIsXBRZ8Ij8sD96vIDio9jc9p5oQGZ6dnYJ/Pyw/cz/8KJCbKz+Lrq6uAFDnF0b1djc3NxO0kkjy9PRE9+7dsWDBAkRERGDJkiWIi4ur9WcLCwVmvysghCxIP3hQ9dhSXl6Ov//+GwDjClFjKYqCW//VEm3bjYOdw3vIy7uI2bNnQ4j6dYIGDx6MGTNmAJDT0G655RaMHz8eixcvxvjx4/V1I1lPj66nX79+iIyMREFBAWJjY+v1O25ubnj33Q9gZ98ConIPsi88gDFjRuLpp5+Gg4ODfkou339kC9Tv/r1790bLli2r3efr64sBAwYAALw8DuHSJeC3Pxr2+OvWrcN///tfuLq6Yv78+WjTpo1B2k2s2WUSAQEB+Oabb7B//37s3r0bJSUlCA4OxujRo7FlyxYAqLWo/Gf/FcjLA4KDgPvrKPOQnJyMhIQEuLm5YciQIUZ7DkS2aNgQ4Psw4EQC8PVyWXRSLfKamZlZ6++otze0GCyRITg4OGDkyJE4fvw4oqOj0alTpxo/s/AzgbNngVYtgadrKaS6d+9e5Obmok2bNvoVg4mo4RwcFNw7EfhwQSfYO7TDqVOnkJGRUe+OzAMPPIAhQ4Zg8+bNOHv2LNzd3XHjjTeiZ8+e+uXpuSgR1UdgYCDi4+ORnZ1d7985eDgUisMKeHv/g+FDEqAolQgPD8eoUaPw9ddfA+D7j2xDQEAAEhISEBAQUOf9ABAcnIejccCPKwWmTanfhY3o6GjMnj0bDg4OmDt3Ljp37mywdhOTXSbj4OCAMWPGoH///tVuP3r0KICaS0vv2y+wdr1cIeulFxQ4Ol57VNfQoUPrXQuCiOrHzk7BY48AM58X+O134O47BUJDQwFULct9NfV2FgwmraiFhXNzc2vc988mgT/XyNjyn5cVuLvXveDJzTffbNR2EtmCsTcD33wLnD0jV69TE8n11a5dOzz00EPVbjt37hwuXLiAtm3b1rlYCtGV8vPzAdRdb/RquXkC334noCgumPn0OIy+qXqsqKv/QmSNwsLCsHXrVn3trqupn6/Qjq44nwVkZgIrfy7G2OsMjj948CBeffVVAMDbb7+Nfv36GbTdxGmMmsrOzsamTZvQrFmzakXoiosF5s2X2eAJtwGdo2pPdAkh8NdffwFgp4TIWPr0VtCnN1BeLkdb9u/fH3Z2djhy5EiNRSdKS0sRHR0Ne3t7/ZBmIlM7ePAgAKBt27bVbk87LTB3nowtk+4FevaoGVsKCwuxbds2ALJmCxE1jbOzgkn3FgIiAYACb+/aRwY0xMqVspDkbbfd1uTHIuuXm5uLI0eOAEC9Fi8BgK/+J1BYKFemHjWy+n0nT57EoUOHEBISgm7duhm6uURmR10ZMSYmRl9vW1VZWan/fEVGhusXuFq8tAhFRXWP7jp+/DheeOEFlJaW4pVXXsHw4cON1HrbxmSXCSQmJqKkpKTabZmZmXjhhRdQWFiIp556qtqVli//J5B+eitQfg9ysmbV+biHDx/GuXPn0Lx5c/Tu3dto7SeydU8+rsDeDti6DUhK9sOoUaNQVlaGefPmVQt6n376KXJzczF69Gj4+vpq2GKyZkeOHMGuXbv0BVNV5eXl+Omnn7B+/Xo4Oztj5MiqHkpJicATT65EQd498Pf5L6ZOrv0iypYtW1BcXIzOnTujXbt2Rn0eRNbk999/x5kzZ2rcnpmZiZ073gBQCMVuAP7a6FPt/ieeeAITJ06sUUupqKhIv9z9lX799VesWLEC7du3x913323Q50CWKyYmBlu3bkVFRUW12zMyMvDSSy+hqKgIgwYNqjEScOXKlZg4cSI+//xz/W0JJwV++wMQlQl4bFpFtcWxkpOT8corr0AIgeeee864T4rITISFhaFv3744d+4cFi1aVK324ldffYXU1FT4+Phg6NChuGUs0Lo1kJ0t8Nhjb2PixIn6skWq1NRUzJw5E5cvX8bMmTMxbtw4Ez8j28FpjCbw3XffYevWrYiKioK3tzdycnIQExOD0tJSTJ48Gbfccov+Z08kCKz4CYC4hPLyNGRl1b26ojrV5KabboKdHfOWRI3x/vvv66ceXrx4EQCwc+dOTJkyRf8zy5Ytwx0TBH76GVjwicAn859BbGwsNm/ejHvuuQcRERFITk5GYmIiAgMD8fTTT2vyXMg2nD59GrNnz4a3tzciIiLg5eWFixcvIjExEVlZWXB2dsbrr79erYjqgo8FLlzIA0Qaojplw8Hh2lPjOVqYqGHWr1+Pd999F8HBwWjfvj0cHBxw/vx5nDhxAqWlpWjZMgRZeS/hhx+BW8YKtGopP4Pp6ek4d+5cjUVPcnNzce+99yIkJASBgYFwcHDA8ePHcebMGQQEBGDBggVwcnLS4qmSGUpLS8Ps2bPh5+eH8PBweHh44Ny5czhx4gRKSkoQEhKCV155pcbv5eXlITU1FVlZWQCAigqBeR8KVFYCXh4f4803UtCxY0f4+Pjg/PnzOHbsGADgpZdeQq9evUz6HIm09Oqrr2Lq1KlYvnw5tm3bhg4dOiAlJQXJyclwdnbG22+/rS9kP/XfwKw5AqcSz6OiPBWXLl2q9livv/46cnNz4ePjg+PHj2PWrJqDW4KCgvSr8lLjMdllAkOGDEFOTg4SExORm5sLT09P9O/fHxMnTqwWKMrLBd6bJwNMp0jg2NG6H7O0tBSbN28GwE4JUVMkJyfXuKKel5eHvLy8ardNfljB3/8InD4NrF3vjWXLlmHp0qXYtm0btm7dCl9fX9x9992YNm0aPD09TfgMyNb07NkTDz30EA4dOoRTp04hLy8Pjo6OCAgIwLBhw3D33XcjMDBQ//Or1wqsXivrdAkAzs61P25WVhYOHDgABwcHjBo1yjRPhshK3H///Wjbti2OHTuGgwcP4vLly/Dw8EBUVBSGDRuGW2+9FTOfd0TMUeDjhQLvzr72svLNmjXD7bffjsOHD2Pfvn2orKxE69atMWXKFEyaNIkr/lI1UVFRmDBhAmJjYxEfH4/8/Hy4uroiNDQUw4cPx4QJE+pVr+uP1UD8ccDdHbj/vpsRHb0ep06dQkFBAXx8fDBixAjcf//9CAsLM8GzIjIfLVu2xDfffINly5YhOjoa27dvh6enJ0aNGoWHH34YHTp00P/siOHADz/aI76OxU/VGl+5ublYu3ZtrT/To0cPJrsMQBH1XQO5AWoriuvj41Pr7bbkesfg+xUCny8S8PQEvvtaga/vtb8IWSL9MSgvhfNf/wEAlIx+B3CwrauT/DxY5jHYsFFg1hwBR0fgq6UKgto37TNqicegoXx8fK55v6Gfvy0c04Y4EiPw9LMC5eXA1MkKHn7QfOOKwV87G48zpsLPXP0lJQn8e5pARQUw9x0FAwdo+3k0t9fuevECMHzMMCVzO95XO3de4KHJApcvAzOfUnDHBPONFxZBF4OcnJxQMOwtxiAbc+iwO558pgAuLsAP3ypo3pyfJ0OrT8zg3DczceaMwNIvZd7xicetM9FFZOlGjQT69wPKyoC57wtUVBj8WgGRwZw9K/Dq6zLRNXQI8OD9WreIyLaFhCiYqCuzteBjgcuXGUPIPFRWCrwzVya6OkcBt92qdYuILNuwoY7o0hkoLgYWLeG5XitMdpkBIQTe/1CgtBTo1VMuU01E5kdRFLzwnAI3N+BYLLDqV61bRFS7wkKBl18VyLsoV9N67RWlWpFhItLGvx9UENAKOH8e+PhTdoDIPPy8Cjh4CHB1kfHC3p7xgqgpFEXB008qUBTgr43AsVie77XAZJcZ+HMNcOAg4OQEvPCsAkVhgCEyVy1bKHj8MfkZXbJUID2dwYvMS0WFwNuzBRKTAD9fYO5sBS4ujCtE5sDVVcFr/5EdoLXrgK3bGUNIWycShH7kyYzHFbRty3hBZAgR4QrGjpH7Hy8UqKzk+d7UmOzSWMZZgYWfyTf+tCkMMESW4F/jgJ495NDkt+cIlJczeJF5EEJgwccCO3YCTo7AO7MVtGjBuEJkTrp1VXDfPXL//XkC5zMZQ0gb+QUCr70pUFoGDLwRuHW81i0isi6PTJEzQuKPA+v+0ro1tofJLg2p8+OLioBuXYG779S6RURUH3Z2Cl59RYGnJxAfD329PSKtff0t8NsfcuXFN19XENWJiS4iczR1soKwMOBiPmSyoZRxhExLCIF35wqcPQsEtAL+8zJnlxAZmp9f1eJA/10scPEiz/WmxGSXhn7+BTh8RM6P/89LnB9PZElatlDw0vPyM/vdD8CBgwxepK3Va6sWOnnmKQVDBjOmEJkrR0cFs9+uumjy0ULGEDKtH34Etu8AHB2B/3tbgZcnYwaRMdx1BxAcBOTlAQs/57nelJjs0kha2hXz46craNOGAYbI0gwdomD8OEAIYNYcgZwcBjDSxs5dAvM+kO+/ByYBd9zOmEJk7loHKHjzNVm/648/gZWrGEPINI7ECCzW9UOefkJBRDhjBpGxODoqeOkFea5f/xewdx/P9abCZJcGSksF3potV1/s0xu49V9at4iIGuupGQqC2gPZ2cCbs1i/i0zvSIzAG28LVFQCN48GHpnKTguRpejfT8Gj0+Rn9pNPBbZHM4aQcV24IPDmLBkzRo1kP4TIFDpHKbhjgtyf96FAURHP9abAZJcGPvuvQEIC0MwLeOVFzo8nsmSurgpmz1Lg6gocOixXaCQyldg4gedfEiguBvr3A15+gTGFyNJMuhf413g5Svit/xOIP844QsZRWCjw4isCWVlAUHuuAk9kSo9MUdCyJXD2nKzfRcbHZJeJbd4isOpXuf/af7hKFpE1CGqv4JWX5Gf5+xXA1m0MYGR8CScFnntRLnLSswcwZ5YCBwfGFCJLoygKnn1aQb++QEkJ8OIrAmcyGEfIsMrL5Sjgk6cAHx/g/bkK3NwYM4hMxc2tqt7vL78B0Tt5njc2JrtMKO10BebOk2/qSfcCN/RngCGyFsOHKph4l9yf/Y5AwkkGMDKepCSBmc8JXLoEdOkMvPeOAmdnxhQiS+XgoOD/3lLQsQOQmws896JAXh7jCBmGEAIffSKwew/g7CxjRusAxgwiU+vbp6q/8O5cgawsnueNickuE7l8WeCJpwpw+bLsmEybwgBDZG2mP6qgdy+gqFhemc/MZAAjw0tOEXjmOYGL+UBkBPDBewpcXRlTiCydm5uCD95T0KolkJ4u40hxMeMINd03y4Hf/gAUBXjzNQWdIhkziLTy6DQFYaHAxXzg/94RqKzked5YmOwygYoKgbf+TyAxqQL+/sD/vcWpJkTWSL0yHxQEZGXJjkphIQMYGc7JUwJPPi2Qkwt07AB8+L4Cd3fGEyJr4e+v4IP3FXh6AnHxXPiEmu6HHwW+WCbfQ0/OUDB4EGMGkZacnBS89boCFxfgwEHgy//xHG8sTHaZwH8XC+zaDbi4AHNnK/D3Z5AhslaengrmvavAxwc4lQi88ppASQmDGDVd/HGBp2YK5F0EwsOATxYo8PJiPCGyNkHtFbz3jgInJ2DHTmD+xwJCMI5Qw/38i8Bn/5XvnamTFdx9J2MGkTlo107B88/Kz+P/vgE2beE53hiY7DKylasEVvwk9+fM8kBEBIMMkbULCJAdFVdXecXm9bd4ZZ6aJuaowNPPChQUAJ2jgI/nM9FFZM26dlHw5usKFAX440/g62+1bhFZmhU/yTpdAPDQA8DDDzJmEJmTm29SMPFuuT/nXdb7NQYmu4xow98CHy+suppy82hnjVtERKbSKbLqyvzOXcCsOQIVFQxi1HAHDwk894JAYSHQvRswf54CDw92Wois3ZBBCp55Sn7Wl34psGYdYwhdnxACny+uxKefVy2KNXUyYwaROZr+iIK+feRKvC+/KpCby/O8ITHZZSTbowXmvCvfrHdOkFdUiMi29OyhYM7/KXBwADZtBua+z4QXNcyuPQLPvyRQVAz07SOL0XOpeCLbccftCu6/T+6/P09g1x7GEKpbWZnAu+8JfP+D/P/pjyqY/qgdFIVxg8gcOTgoePsNBYGBQGamTHgVFfE8byhMdhnB9miB198SqKgARo0EnnpCYZAhslE39JNBzN4OWPcX8MbbrOFF9bNmncDLrwiUlgI3DgDena3AxYWxhMjWPDpNweibgIpK4PU3BeKPM4ZQTdnZsq7j2vWAnR3w8osKJt3LmEFk7jw9FcydLRcmiY0D/vO6QGkpz/OGwGSXgUXvELr6PMCIYcCrLyuws2OgIbJlQwYrmPWWAkdHYOs24PmXBC5dYhCj2gkh8OX/5NX5ikrgppHA7LcVODszlhDZIkVR8PILcqpLcTHwwssC6emMIVTlWKzA1EcFjh4DPNyB995RMG4sYwaRpWjfXsG8uQpcXYB9+1n+xFCY7DKg1WsFXn29KtH1+qsKHBwYaIhIJrw+fF+Bmxtw6DAw/QmB1NQKrZtFZqasTOC9eUK/DPUDk2QscXRkLCGyZY6OCma/rSAsDMjLA559USAnhx0hW1dWJvDFskrMeFLgQhYQ1B5YskjBDf0ZM4gsTecoBe/MluVPtmyVReu5wFXTMNllAEIILPuqUtbjqQRG38REFxHV1LOHgk8/VuDnBySnABMnXcTOXQxiJGXppqCsXiunoDw3U8Gj01hrhYgkNzcF895VEBAAZGQAL74iUFjIGGKr4uIFpj0m8PW3corriOHA4s8VtAtkzCCyVH16K3jrdQX29sCGv4E3Z3FKY1M4aN0AS1dWJjDvQzk/HgAevB+YNsUyanRlZWWZ/G+Wl5cjLy8PqCiFf0mJbEd2FmDvZPK2aEl/HGyYKY6Bv7+/UR+/McJCFSxbIuuuHD0m8NJ/gEn3Ckz5N0fv2LKYo3IKfHY24O4OvPGqghsHWN77oSlxxeDnBBuPM6ZiK/HMXOKJn5+C+fOA6TMEjp8AXn1DYO4ccJqzDTmTIbDkC4F/Nsv/b+YFPPesguFDzfM9oEV/wyzoYpAQlYxBZs5czu+qoUMUzJkFvP6WwNZtwCuvCcx+G3B1Nc/PuDlThBAGTxXm5ubWuM3Hx6fW2y1ZVpbsnBw9BtjbAc/OVHDr+LrfhOZ2DHx9fTX72072wNLxXgCAqX/mo5SzucgIcnJytG5CncrKBBZ94YQff5Kd8dCOwH9eUhAaal2BzMfH55r3G/qcaG7n2espKRFY9j+BFT8ClZVAcBDwzmwFgW0t832gZVy5GuMMGZK5xZO4eDkStLgY6NUTmDtHaXBHyNzOl9eLF4DhY4YpNfV4p6cLfPeDwLq/gPJyQFGAm2+SKy76+ppvzDCnuGBKjEGWwxjnd0OcX/ftF3j5VYGSEiAyQtbiM+fPuqnVJ2ZwGmMjHT4iMHmaTHS5uwNz37l2oouI6EqOjgreeNUDc2YpaOYFnDwFTHlUYMHHlSgo4HBlW6DGke9/kImu0TfJKSiWmugiItPpFKngg/cUuLoCBw7KovWc0mh9hBA4EiPwxtuVuO9BgT/XyERXn97Al18oePUVO3Z+iaxUn94KPvpQ9hPijwOPPi5w8iTP8w3BZFcDqYUgn54pkJMLhAQDSxezECQRNc6QwQq++UrB8GEy4bHqV+DeBwS+X8GOi7U6eUrgpf9U4omnBVLTAD9fOSrj9f/Ywc2NsYSI6qd7NwULPlDg7g4cPgI88YxAZibjhjUoKhL4Y7XAv6cKzHhKYNNm+R1hQH/g84UKFnxgh9COjBdE1q5LZwWLPlfQtg1w9pxMeP32h4ARJudZJdbsaoCTJwXmzBU4lSj/f/Qo4PlnGz5snIjoSn5+Cma9qeBf4wQ++kQgJRX4fJHAd98Dd90JjLsF8PfjecaSFRQI7NkL/LlG4MBBeZu9nXxtH52mwMuLry8RNVznKAUffQi88JJAQgIw7TGB2bNkB4ksT3q6wK+/C6xZC1y6LG9zdgZGjQDumKAwwUVkgwLbKljyX2D2uwI7dwEfzBc4dAh45mnAx5vnhGthza56yMsTWPqVwB9/yqsq3s1kfa6GFoI0t2OgRcFIb2/vqgL1O96V7bjxFZsr2qg/DjbMFMfA3ApOXq22c0J5ucBfG4Fvlwukn5G32dsB/fsDAwco6N8PaN7ccgKbrdbsEkIgLQ3YsQvYuUvg6FG5WhYgX8+hQ4EpDyto185yXsv6aEpcMfg5wcbjjKnYSjwz93hy9qzAS/8RSEqWq7lOug+Y/NC1Fz4xl/OlylZrdlVUCOzeA6z6VWDvvqrbW7cGbr9VwS1jYNEXRGy6QP2Od+Hk5IiMPs8zBpkxY5zfjXF+rawUWPETsHiJQEUl4OkJPDpVwfhxgL295Z4jGqs+MYMju64hv0Dg9z+A734QuHRJ3jZ8GDDzKQU+Ppb/htLii5uPjw8cHByA8lI4OzvLdvj5Aw62FQD0x8GG8RjUzsFBfrEdPQrYtAX49TdZG3DHTmDHTnltorm/QEQ4EBQkR3z5+wNuboC9vUzIl5UBpWVAWancLykFSnX7paVAaalAqW5fLXKrQLe1k/uensDddypo1szyz3WmUloqcCQG2LFLYNcu4ExG9fuDgoBBNwK3/ktBq5bWeVybElcMfk6w8ThjKjyXm4eAAAWLPpNX/Df8DXy7HNi6VeDRR4DBA2ERq4TbmoyzAhv/BlavETh7Tt6mKED/fsCE2xT06wvY2Vn+62buiWKj0cUgJycnxiAyCDs7BffdA3TvBsz7UODkKeCDBQK//QH8+yFg0EDrOGcYEr+dXEUIgcQkYPVagTVrgKJieXtoR+CpJxT06M43EBEZn4ODgptGAjeNVJCcIpce3rFL4MQJ4EKW/Ld9BwAYb85+y5bAv8YZ7eGtQna2wK49wK7d8op8UVHVfY6OQI/uwI03KLjhBqB1AOMHERmPm5uCN15TMGigwIcLBNJOA6++LhAWCky4DRg5AnBx4XlISxln5cWQvzfJC1kqT0/gljFyJFebNnyNiKhunSIVfLEI+PV3YOmXssTSq28ItG8HjB8nL5hbw8AcQ2CyC8ClS/Jq/MHDAnv2ACmpVfd16ADcO1HBqBG2OTyQiLQXHKQgOAh4+EEFhYXySs6JE8CZDIGsbCArCygpkSO37OwARyfAyVEmW5yd5dbJCXB2qtpX/6nnNSHUfwJCAO7uCoYP1fRpm6XKSoGEk8Cu3XJ6Yvzx6vf7+QIDbgBu6K+gdy+w4DwRmdywoQr69AZ++FHgx5VAwklg7jyBjxYCfXoJ9O2roFMk0KsnCxwbU3m5wOl0IDEROBYnsH9/LlJSq465ogA9ewCjR8lFapiIJKL6cnBQcNcdwE0jgR9XCvz8C5CaBnz6ucBn/wUiwgV69QQ6dlAQEgIEtAJcXGxvlK9ZJrsqKgS+/Q44nyng4AA42AMODnKKjuyoKXB2ApycUW3r7FzVoXNylr9Trk7bKZOdwZwcIDsHyMmRASgpCfqhwypHRzmE+PZb5ZcFW3tTEJH5cnNT0K0r0K0rICccGprlne+EECgrk+duYzz2uXPAgYPA/oMCBw8COVeVYIgIBwbcoGDADUBYKIeQE5H2PDwUTJui4O47BdasA377QyAjQ44I3r5DJlycnXPQtg3QqhXQsgXg5SUvdLi4yMdQL4KUlQHFxUBJiUBJCVBcApQUy21xsZwOf8ftCgYPsp1zX2mpQF4ekJsH5ObK7YULQGamQGYmcD4TOH1a9j+qVMLeHujSGRh4o4KRwwF/f9s5ZkRkeM2aKXhkqoJJ9wr8vUnOTouPB+KPQ3dBtirB7uQEeDcTcHAE7BR5gdzOXtaSxRUlTaDbKoosk+LhAXh6yK2XlwJvb8DHG/D2lrXMvb3l6FRz/P5rlsmu1FQ5JK9uhr8S1batnG7Ss4eCG/rJLwlERGT+nn9JrnRoZwe4uGTDxVkGXfWfl+eV/6/Ay0sGbS8veZuLs5yyXlQkOy3nM4Fz5+Sw8ISTwNW1t11dgD59ZIKrfz+ulElE5qtZM1nj5d6JwKlTctGMmKMCcfHApUtAYpL8V6Vx37E9PYVFJLtKSwUOH5EXwCsr5cIhlRVX7FcCFRVAYSFw+bKs2Xv5MlBwCfrkVl5u1UqJ1+PqImeJdOwIDBvigfCwy+xjEJHBubsruHU8cOt4BVlZArv3AvHxsjxTUrI8p5WWApkXmvqXao8R9naAVzOhT37p/zUDXF0VONjrEmv2QGQEEBFumvOgWSa7goOBN15VkHFWDgGuqJBXjSoqgLJy+UKVlMh/6n5paVUR5pISoLRE/o6jU/UpPN7ecpqJry8Q0EoO6wsJBoswm5q9I4RPkH6fiKix7OzktrJSBvPCwpqjr6o0vCNnbw/dlB+gV08FUZ3kCGMyc4wzRHqKoiA0FAgNBQAFQggUXGqG+PiLOHtWzqa4dBkovCxHbMmfkv9xcgScXeSFARcXwNlZgbNu38UZcHUF+vTW7rk1xOeLBX5eZZjHsrdHtREOzf2BFi2AFi0UtGgBBLaRKyqqox18fJyRm1tomD9O5k8XgxRXF8YgMil/fwXjxgLjxqqlSgSKioC8i0D+RaC8QuZVKivl6N2KCuh+rmqr/isslMn+S5eAggKBixfl4+TlVf27dFleLMjNlf9qqv7d29UFWLdaTsU0NrNMdimKgptG6f9Py6aQsSgKSm+Yod8nImqs999VcFnXQXNyaobz5y6i4JIMzgX5QH6BDNAFBUBBgfr/VduSEhl4XV3laK+WLeW/oPYKwsPkBRFnZ56nLA7jDFGdFEVB+3b28PJUPxu28RkZ0F/BiRPyQrq9vW4aj+6fvX3VbW5ugLs74OEuR0x4eFQltXy8AR8fOaXHHKftkJnQxSA3H5+aQ8SJTEhRFLi5yfNa64AmPVKtt5aVySRYbp4uAaZPhsnp3iWlMqGm/uvSWTFJogsw02QX2Qh2PojIABRFdkQ8PAAfnys7b9V+yuTtIjPAOENEV+jbR0HfPjwvkIkoCms/k9VzdFTg7w/4+199j/bvfTutG0BERERERERERGQoTHYREREREREREZHVYLKLiIiIiIiIiIisBpNdRERERERERERkNZjsIiIiIiIiIiIiq8FkFxERERERERERWQ0mu4iIiIiIiIiIyGow2UVERERERERERFaDyS4iIiIiIiIiIrIaTHYREREREREREZHVYLKLiIiIiIiIiIisBpNdRERERERERERkNZjsIiIiIiIiIiIiq8FkFxERERERERERWQ0mu4iIiIiIiIiIyGow2UVERERERERERFaDyS4iIiIiIiIiIrIaTHYREREREREREZHVYLKLiIiIiIiIiIisBpNdRERERERERERkNZjsIiIiIiIiIiIiq8FkFxERERERERERWQ0mu4iIiIiIiIiIyGow2UVERERERERERFZDEUIIY/+RgoICHDhwAL169YKnp6ex/5xZ4jHgMVDxOPAYADwGxsBjarn42lkmvm6Wi6+dafF42ya+7raJr7v5MMnIrkuXLmHr1q24dOmSKf6cWeIx4DFQ8TjwGAA8BsbAY2q5+NpZJr5ulouvnWnxeNsmvu62ia+7+eA0RiIiIiIiIiIishpMdhERERERERERkdUwSbLLw8MDQ4YMgYeHhyn+nFniMeAxUPE48BgAPAbGwGNqufjaWSa+bpaLr51p8XjbJr7utomvu/kwSYF6IiIiIiIiIiIiU+A0RiIiIiIiIiIishpMdhERERERERERkdVgsouIiIiIiIiIiKwGk11ERERERERERGQ1mOwiIiIiIiIiIiKr4dDQX6isrMT333+PVatWISkpCfb29oiMjMTkyZMxYsSIRjWitLQUd911F44fP47g4GCsX7++UY9jSoY8DpcuXcKXX36JDRs24PTp03B0dERgYCBGjBiBJ554wkjPoOkMdQzy8/Px1Vdf4e+//0Z6ejqcnJzQtm1b3H777bjrrrvg7OxsxGdRP7///jsOHDiAY8eOISEhAWVlZXj33XcxYcKEWn/+0qVLWLhwITZs2IALFy6gRYsWGD16NJ544gm4u7s36G9v374dixcvRmxsLBRFQVRUFB5//HHccMMNhnhqDaLFcUhJScH69euxfft2pKamIi8vD35+fujXrx8effRRdOjQwZBP8bq0fC9c6c0338SKFSsAANHR0WjevHmjH8sclZSUYP78+Th27BhSU1Nx8eJFeHl5ITAwEHfddRf+9a9/wdHRsd6PZ6nnWUtkqNfugQcewN69e6/5M++99x5uu+02A7XcthnyM2cJcd2aGPK1O3fuHD7//HNs27YNWVlZ8Pb2xqBBg/DUU08hICDAyM/EMgwfPhxnzpyp9b6+ffvi22+/rdfjFBcX44cffsAff/yB9PR0CCHQunVrjBkzBvfffz88PT0N2WwyoI0bN+L7779HXFwcCgsL0bx5c3Tv3h0vvPBCvT4nlZWV+O677/DTTz8hNTUVbm5uGDBgAGbOnInAwEATPANqjKa87vv378fff/+NvXv34syZMygsLESbNm0wYsQIPProo/Dy8jLRs7AtihBC1PeHhRB4+umn8ddff6Fdu3YYPHgwSktL8c8//yA7Oxuvv/467r///gY3YsGCBfjmm29QWFhoEckuQx6HjIwMPPTQQzh9+jQGDBiAyMhIlJaWIi0tDRkZGfjzzz+N/Gwax1DHID8/HxMmTMDp06fRq1cvdOvWDaWlpdi2bRvS0tLQv39/fPXVV7Cz03YQovrFxsfHB25ubjhz5kydCY7CwkLcd999iI+Px8CBAxEZGYn4+HhER0ejS5cu+O677+r9Rf/333/Hiy++CF9fX4wdOxYAsHbtWuTm5uKjjz7CzTffbNDneT1aHIeZM2di7dq1CAsLQ8+ePeHh4YGEhARs27YNLi4uWLp0Kfr06WOMp1srrd4LV9qxYwcmT54MNzc3FBYWWmWyKycnB0OHDkXXrl0RFBQEX19fXLx4Edu3b8eZM2cwcOBAMWz2xAAAFTxJREFUfPHFF/U6N1jqedZSGeq1++WXX2rtUJaXl2Px4sWws7PD5s2b0bJlS2M9FZtiqNfNUuK6NTHUa5eWloZ77rkH2dnZGDhwIMLCwpCamopNmzbB19cXK1asQLt27Uz0rMzX8OHDkZ+fj4ceeqjGfW3atKnz4teVysrKMGnSJBw5cgSRkZHo27cvAGDPnj04fvw4QkNDsXLlSri6uhq8/dR4Qgi8+eab+PHHH9GuXTsMHDgQ7u7uyMzMxL59+zBv3jz07t37uo/z2muvYeXKlQgNDcWQIUOQmZmJdevWwd3dHT/++COCgoKM/2So3gzxut94443Izc1Fr169EBkZCUVRsHfvXsTFxSEwMBArVqyAv7+/iZ6RDRENsG7dOhEWFibuueceUVRUpL89OztbDBs2THTu3FmcPn26IQ8pjhw5IiIjI8Xy5ctFWFiYGD16dIN+XwuGOg5lZWViwoQJomvXrmLXrl213m+uDHUMlixZIsLCwsScOXOq3V5SUiImTJggwsLCxN69ew3e/obasWOHSE9PF0IIsXjxYhEWFiZWrVpV689+/PHHIiwsTMybN6/a7fPmzRNhYWFi0aJF9fqbeXl5onfv3qJfv37i7Nmz+tvPnj0r+vXrJ/r16ycKCgoa+YwaR4vjsGrVKhEbG1vj9tWrV4uwsDAxduzYBj6LptHiGFwpPz9fDB48WDz55JPi/vvvF2FhYSIzM7PhT8TMVVRUiJKSkhq3l5WV6Z/35s2br/s4lnyetVSGeu3qsn79ehEWFiYeffTRJrSSrmao181S4ro1MdRr98gjj4iwsDDx9ddfV7t97dq1IiwsTEyePNlQTbZow4YNE8OGDWvSY6xZs0aEhYWJGTNm1Lhv+vTpIiwsTPz6669N+htkeP/73/9EWFiYeOutt0R5eXmN++vznWLXrl0iLCxMTJo0qdrndsuWLfycmSlDvO6LFy8W586dq3ZbZWWlePPNN/WPTYbXoMtq//zzDwDgscceg4uLi/52X19fPPTQQygtLcUvv/xS78crKSnBSy+9hF69euG+++5rSFM0Zajj8Ndff+HYsWOYPHky+vfvX+N+B4cGzzI1GUMdg9OnTwMAhgwZUu12JycnDBw4EIC8Yqm1AQMGoE2bNtf9OSEEVq5cCTc3Nzz++OPV7nv88cfh5uaGlStX1utvrl+/Hvn5+bj//vvRqlUr/e2tWrXC/fffj9zcXPz9998NeyJNpMVxmDBhAjp16lTj9ltuuQVBQUE4deqUSd8jWhyDK82ZMwfFxcV48803G/y7lsTOzg5OTk41bndwcMCoUaMAAKmpqdd9HEs+z1oqQ712dfn5558BAHfeeWejH4NqMtTrZilx3ZoY4rUrKSlBdHQ0/P398cADD1S7b8yYMYiMjER0dLT+9aWmSU9PBwAMHjy4xn1Dhw4FwM+JuSkuLsZnn32GwMBAvPrqq7C3t6/xM/X5TqF+93v66aerfW6HDBmCvn37Ijo6GhkZGYZrODWJoV73Rx55pMZIdEVR9H2Effv2GabBVE2Dkl1ZWVkAgLZt29a4T71t9+7d9X68+fPn4+zZs5gzZw4URWlIUzRlqOOwdu1aAMDNN9+Ms2fP4ocffsCSJUuwbt06XL582YAtNjxDHYOwsDAAwNatW6vdXlpaih07dsDFxQXdu3dvYmtNJyUlBZmZmejZsyfc3Nyq3efm5oaePXvi9OnTOHv27HUfS61Vo3YOrqTedr16Nlox5HG4FrUGiTkmLIxxDDZt2oRff/0Vr7/+Ovz8/AzdZItQWVmJ7du3A6g6f1yLJZ9nrU1DX7vanDt3Tj9tV+0QknE19HWztrhuyRry2uXl5aG8vBytW7eu9Tt5Y77nWzP1ou6iRYuwfPlyHDlypEG/HxoaCgDYtm1bjfu2bNkCRVHQr18/g7SVDCM6OhoXL17EyJEjUVlZiQ0bNmDJkiX44YcfGnQBZ8+ePfrvgVcbNGgQAPP9fm+LDPW610Xtw9SWRKOma1AP0cfHB4C8GnF1UWj1CkVKSkq9Hmvfvn345ptv8PLLL1vc/H9DHYfY2FgAsmDd3LlzUVpaqr/P19cXH330kdkGOkMdgzvvvBN//vknvv76a8TGxqJr164oKyvD1q1bUVhYiAULFlhUPRb1pFfXXPugoCBER0cjJSXluoUM1ePXvn37GveptxniJGsMhjwOdYmJicHJkyfRpUsXsyzqaOhjkJubi9dffx0jR47EuHHjDNlUs1ZaWorFixdDCIG8vDzs2rULSUlJmDBhQr0WabDk86yla+prV5tVq1ahsrISt99+u1kmua1BU183a4vrlqQpr52Xlxfs7e2RkZEBIUSNhFdDv+dbuwsXLuCVV16pdluXLl0wf/78evVrhg4dipEjR2Ljxo247bbbqtXsSk9Px//93/8hKirKKG2nxlG/T9jZ2WH8+PHVPgt2dnZ4+OGH8dJLL13zMQoLC3HhwgWEhYXVmtww9+/3tsgQr/u1rFq1CoCs6UWG16BvioMHD8aaNWuwZMkS9O/fX19YOTc3F19//TUAWZj0egoLC/HKK6+ge/fuNYZKWwJDHYfs7GwAclrS5MmTcf/998PJyQlr1qzBe++9hxkzZmDt2rVo0aKF8Z5MIxnqGLi4uODrr7/GW2+9hV9//RX79+8HILPb999/P3r06GG8J2EEBQUFAAAPD49a71dvv3Tp0nUfS/2Z2lbjUR9H/XvmxpDHoa7Hf+mll2BnZ4cXXnihcY00MkMfg7fffhtlZWV46623DNI+S1FWVoZPP/1U//+KomDy5Ml47rnn6vX7lnyetXRNfe2uJoTQT4/nFEbjaerrZm1x3ZI05bVzdXVF7969sWfPHnz//feYNGmS/r4NGzYgPj4egPl+7zClCRMmoFevXggLC4ObmxtSUlLw1Vdf4ffff8fDDz+MP/74o87Yr1IUBQsXLsT8+fOxdOlS/fEFgNtvvx0DBgww9tOgBlK/T/zvf/9Dp06dsHLlSnTo0AHx8fF4/fXX8eWXXyIwMPCapXnq+92QnzPzYYjXvS7x8fH47LPP4Ofnh6lTpxq66YQGJrvGjRuHX375BXv27MH48eMxaNAglJWV4Z9//tFPqanP6jrvvfceMjMz672Slrkx1HEQuoUwhw4diueff15/+wMPPIBz585h6dKl+Pnnn2vU+zEHhjoGOTk5ePzxx5GTk4MlS5agV69eKCoqwj///IP33nsPW7ZswS+//HLdLw1kO4qLizFjxgwkJSVh5syZNjEqZ+3atVi3bh3ee+89q1t18Xrc3d1x4sQJVFZWIjMzE5s2bcKCBQtw+PBhfPHFF9c9N1jyedbSNfW1u9ru3buRnp6Ovn371jrilQyjqa8b47p2mvra/ec//8G9996LWbNmYdOmTQgPD0daWhr++ecfhIeH48SJExZVdsRYnnjiiWr/HxkZiffffx+AXEV75cqV+Pe//33NxygqKsKzzz6LmJgYzJ8/Xz/ybteuXZgzZw62bduGn376qdZyIaQN9fuEo6MjPvvsM/0I1d69e+Pjjz/Grbfeiq+++sqi6lDT9RnrdT99+jQeeeQRVFRUYP78+fD19TV426mBNbscHBywdOlSPPnkk1AUBT/++CM2btyIESNG4JNPPgGA69aR2bNnD1asWIGnn34awcHBjW+5hgxxHICq7P3w4cNr3KfeduzYMQO23HAMdQzeeecdHDp0CJ988gmGDBkCDw8PNG/eHPfccw+eeeYZpKam4ttvvzX20zEYdRRWXaN11Nvr8yX/Wld3rjXqyxwY8jhcqaSkBI8//jj27NmDRx99FI899ljTGmpEhjoGeXl5ePvttzF06FDcdtttBm2jJbGzs0OrVq1w3333YdasWTh48CD++9//Xvf3LPk8ay0a+9pdjYXpTauxr5u1xXVL1NjXLiIiAj///DPGjBmDuLg4fPPNN0hOTsasWbNw6623AqjfdztbNXHiRADAwYMHr/uzixYtwqZNmzBr1iyMHTsWPj4+8PHxwdixY/H2228jOzsbixYtMnaTqQHU7xOdO3euMRU7LCwMgYGBSEtLu+bMlvp+NzTX7/e2yBCv+9VOnz6NBx98ELm5ufjkk09qXUCJDKPBBS+cnJzwxBNP1LiqsWfPHgDyjXAt6jDd999/X38V5ErJyckIDw+Hp6enfui7OWrqcQCA4OBg5Obm1lpvSL2tpKTEAK01DkMcg+3bt8Pb2xsRERE17lNH7Fw5tNvcqaMN6qppod5eVx2nKwUFBeHYsWNITU3V10hTqXP5zXV0gyGPg6q4uBiPP/44duzYgalTp+LZZ59tYiuNy1DH4OzZs8jLy8OWLVsQHh5e68+oCxb89ttviIyMbFR7LUlDFmiw9POstWns4hoXL17Exo0b4eXlhZtvvtkYTaNraMjrZm1x3dI19DPXoUMHfPTRRzVuf/nllwHU77udrVK/qxUWFl73Z9WFA2obna52fOPi4gzYOmqqkJAQAHUnotTbi4uL66wl6+bmhubNmyM9PR0VFRU16naZ+/d7W2SI1/1KaqLrwoUL+OijjzBs2DDDNZZqMFh11z///BMAMHbs2Gv+XFhYWJ1XZX/++Wd4enpi9OjRcHV1NVTTTKq+xwGQwezgwYM4deoUbrrppmr3nTp1CgDQpk0bwzfSyBpyDEpLS/X/rl42Ozc3F0DVinuWICgoCC1atMDBgwdRWFhYbRW+wsJCHDx4EG3btq1XQfI+ffpg9erViI6OrrFyVXR0NADoC5qaG0MeB6B6omvy5MlmW6frSoY6Bt7e3nWeM7du3YoLFy5g3LhxcHFxgbe3tyGfgtnKzMwEUL9VOK31PGupGvLaXemPP/5ASUkJ7rzzTn2NSDKdhrxu1hbXLV1jP3NXunTpEjZv3gxvb28WUb6GmJgYAPWLKWVlZQDkZ+LqEd45OTkAUOPzQ9pSE5NJSUk17isrK0NaWhrc3NyuOx2tb9++WLNmDQ4ePIg+ffpUu09Ngl59O2nHUK87UD3RtWDBAowcOdLg7aXqGlwwq7Zhl+vXr8eqVavQpUuXap2JnJwcJCYm6k/aADBgwADMmTOn1n8A4O/vjzlz5uC1115rzPMxmaYeB0AWuHRycsLy5ctx/vz5ao+9ePFiAMCYMWOM9AyazhDHoGfPnigvL8fnn39e7faSkhL9bZY0tFNRFNx1110oLCys8Zw+//xzFBYW4u677652e1FRERITE5GRkVHt9jFjxsDT0xPLly/HuXPn9LefO3cOy5cvh4+Pj9meJA15HNSpizt27MC///3vJq14YkqGOgYBAQF1njPVqeAvv/wy5syZ0+iVLc3RqVOnUFRUVOP2oqIivPvuuwCAIUOG6G+31vOsJTLUa3clTmE0PkO9btYW1y2BoV674uJilJeXV7uttLQUr776KvLy8jBjxgybTzYnJibWeqwTExPxwQcfAADGjx+vv72goACJiYn6pKNKXajh008/RWVlpf72iooKfTkQW6hJaknatWuHgQMHIjU1FStXrqx235IlS5Cfn4+RI0fqE8t1fc7U734ff/xxtRWit27dir1792LgwIG8CGdGDPW6q4muzMxMzJ8/H6NGjTLZc7BlilCrrtXTmDFjEBAQgJCQEDg7OyMmJgZ79+5FYGAgvv7662ofzoULF+LTTz/FE088gSeffPK6jx0eHo7g4GCsX7++4c/ExAx1HL799lvMnj0b3t7eGDVqFJycnLBlyxacOXMGEydOxKxZs0z91OrNEMcgLi4OkyZNQmFhIbp164YePXqguLgY27dvx5kzZ9CjRw988803ml/dWrlyJQ4cOAAASEhIQGxsLHr27KkfZtyrVy/cddddAOSonXvvvRfHjx/HwIED0alTJ8TFxSE6OhpdunTB8uXL4eLion/sPXv24MEHH0Tfvn1r1DH5/fff8eKLL8LX11c/Um7t2rXIzc3FggULTN5J1+I4vPzyy/j111/RvHlzfT2Mq91+++0mK+Kq1XuhNg888AD27t2L6Ohoqytcv3DhQnz11Vfo1asX2rRpAw8PD5w/fx7btm1DXl4eevfujWXLlumPn7WeZy2RIV87QNZUu+OOOxAVFaVfjZEMz1Cvm6XEdWtiqNdu//79ePLJJzFgwAAEBATg0qVL2Lp1KzIyMnD33Xdj1qxZNl+gXj3Wffr0QevWreHq6oqUlBRs27YNZWVlePTRR6uVWfjll1/wyiuv4Pbbb8fcuXP1t6vH9MKFCwgNDdUngHft2oVTp04hKCgIP/30E5o1a2by50h1S0tLwz333IPs7GwMHToUISEhiIuLw+7du9GmTRv8+OOP+u9j14ptr732GlauXInQ0FAMGTIEFy5cwNq1a+Hu7o4VK1ZYbF1ra2WI13348OE4c+YMunfvrp9efrX65EuoYRo8pnns2LHYsGEDDh8+jPLycrRt2xbTp0/H1KlTbWplHUMdhwceeABt2rTBsmXLsGbNGlRUVKBjx46YPn26vsNsrgxxDDp16oRffvkFixcvxp49e/Ddd9/B3t4e7du3x9NPP43JkyebxRfiAwcO4Ndff61228GDB6sVIVVfLzc3NyxfvhwLFy7Ehg0bsGfPHjRv3hyTJ0/GjBkzqiU3rufWW2+Fj48PFi9erO/kde7cGdOnT9dkWWotjsOZM2cAABcuXKi2pPqV+vbta7Jkl1bvBVszdOhQZGZm4tChQzh8+DAKCwvh4eGB8PBw3HLLLbjjjjvqPS3Hks+zlsiQrx3AUV2mYqjXzVLiujUx1GvXunVr9O3bFwcOHEBWVhZcXV3RqVMnvPzyyxg9erQJnon569evHxITExEfH4/9+/ejuLgYPj4+GDx4MO677746O7FXa926NVatWoUlS5Zg+/btWLFiBRRFQZs2bTBlyhQ8+uijTHSZoXbt2mHVqlX45JNPsH37duzYsQP+/v6YNGkSZsyYUe8FHGbNmoWwsDD89NNP+Oabb+Dm5oZRo0Zh5syZaNeunZGfBTWUIV53tT9z+PBhHD58uNafYbLL8Bo8souIiIiIiIiIiMhcNbhmFxERERERERERkblisouIiIiIiIiIiKwGk11ERERERERERGQ1mOwiIiIiIiIiIiKrwWQXERERERERERFZDSa7iIiIiIiIiIjIajDZRUREREREREREVoPJLiIiIiIiIiIishpMdhERERERERERkdVgsouIiIiIiIiIiKwGk11ERERERERERGQ1mOwiIiIiIiIiIiKr8f+ThyUpEnwPZgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "earth_posterior = -2 * planet_fit.posterior[\"I(Time ** 2):Planet\"].sel({\"I(Time ** 2):Planet_dim\": \"Earth\"})\n", + "planetx_posterior = -2 * planet_fit.posterior[\"I(Time ** 2):Planet\"].sel({\"I(Time ** 2):Planet_dim\": \"PlanetX\"})\n", + "mars_posterior = -2 * planet_fit.posterior[\"I(Time ** 2):Planet\"].sel({\"I(Time ** 2):Planet_dim\": \"Mars\"}) \n", + "\n", + "fig, axs = plt.subplots(1, 3, figsize=(12, 6))\n", + "az.plot_posterior(earth_posterior, ref_val=9.81, ax=axs[0])\n", + "axs[0].set_title(\"Posterior $g$ on Earth\")\n", + "az.plot_posterior(mars_posterior, ref_val=3.72, ax=axs[1])\n", + "axs[1].set_title(\"Posterior $g$ on Mars\")\n", + "az.plot_posterior(planetx_posterior, ref_val=6.0, ax=axs[2])\n", + "axs[2].set_title(\"Posterior $g$ on PlanetX\");" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The fit seems to work, more or less, but certainly could be improved.\n", + "\n", + "### Adding a prior\n", + "\n", + "But, we can do better! We have a [very good idea of the acceleration due to gravity on Earth](https://en.wikipedia.org/wiki/Gravity_of_Earth) and [Mars](https://en.wikipedia.org/wiki/Gravity_of_Mars), so why not use that information? From an experimental standpoint, we can consider these throws from a calibration mindset, allowing us to get some information on the resolution of our detector, and our throwing apparatus. The model will spend considerably less time trying pin down those parameters, and will better explore other parameters with already good values of the $g$ terms locked in.\n", + "\n", + "For Earth, at the extremes, $g$ takes values as low as 9.78 $m$/$s^2$ (at the Equator) up to 9.83 (at the Poles). So we can add a very strong prior,\n", + "\n", + "$$\n", + "g_{\\text{Earth}} \\sim \\text{Normal}(-9.81, 0.025)\n", + "$$\n", + "\n", + "For Mars, we know the mean value is about 3.72 $m$/$s^2$. There's less information on local variation readily available by a cursory search, _however_ we know that the radius of Mars is about half that of Earth, so $\\sigma = \\frac{0.025}{2} = 0.0125$ might make sense, but to be conservative we'll round that up to $\\sigma = 0.02$.\n", + "\n", + "$$\n", + "g_{\\text{Mars}} \\sim \\text{Normal}(-3.72, 0.02)\n", + "$$\n", + "\n", + "For PlanetX, we must use a very loose prior. We might say that we know the ball took longer to fall than Earth, but not as long as on Mars, so we can split the difference. Then set a very wide $\\sigma$ value.\n", + "\n", + "$$\n", + "g_{\\text{PlanetX}} \\sim \\text{Normal}(\\frac{-9.81 - 3.72}{2}, 3) = \\text{Normal}(-6.77, 3)\n", + "$$\n", + "\n", + "Since these correspond to $g/2$, we'll divide all values by 2 when putting them into Bambi. Additionally, we know the balls landed eventually, so $g$ _must be_ negative. We'll truncate the upper limit of the distribution at 0.\n", + "\n", + "Now, for defining this in Bambi, the term of interest is `I(Time ** 2):Planet`. Often, you set one prior that applies to all groups, however, if you want to set each group individually, you can pass a list to the `bmb.Prior` definition. [The broadcasting rules from PyMC apply here](https://github.com/bambinos/bambi/issues/778), so it could equivalently take a numpy array. You'll notice that the priors are passed alphabetically by group name." + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [Height, Height_sigma, I(Time ** 2):Planet, Time]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
meansdhdi_3%hdi_97%
Height_sigma15.02513.4540.07840.306
I(Time ** 2):Planet[Earth]-4.9040.012-4.925-4.881
I(Time ** 2):Planet[Mars]-1.8590.010-1.877-1.842
I(Time ** 2):Planet[PlanetX]-3.4321.461-6.077-0.711
Time-0.53115.273-27.48629.578
\n", + "
" + ], + "text/plain": [ + " mean sd hdi_3% hdi_97%\n", + "Height_sigma 15.025 13.454 0.078 40.306\n", + "I(Time ** 2):Planet[Earth] -4.904 0.012 -4.925 -4.881\n", + "I(Time ** 2):Planet[Mars] -1.859 0.010 -1.877 -1.842\n", + "I(Time ** 2):Planet[PlanetX] -3.432 1.461 -6.077 -0.711\n", + "Time -0.531 15.273 -27.486 29.578" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "priors = {\n", + " \"I(Time ** 2):Planet\": bmb.Prior(\n", + " \"TruncatedNormal\",\n", + " mu=[\n", + " -9.81/2, # Earth\n", + " -3.72/2, # Mars\n", + " -6.77/2 # PlanetX\n", + " ],\n", + " sigma=[ \n", + " 0.025/2, # Earth \n", + " 0.02/2, # Mars\n", + " 3/2 # PlanetX\n", + " ],\n", + " upper=[0, 0, 0]\n", + " )} \n", + "\n", + "planet_model_with_prior = bmb.Model(\n", + " 'Height ~ I(Time**2):Planet + Time + 0',\n", + " df,\n", + " priors=priors\n", + ")\n", + "\n", + "planet_model_with_prior.build()\n", + "idata = planet_model_with_prior.prior_predictive()\n", + "az.summary(idata.prior, kind=\"stats\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we've sampled the prior predictive and can see that our priors are correctly specified to the associated planets.\n", + "\n", + "Next we fit the model." + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Auto-assigning NUTS sampler...\n", + "Initializing NUTS using jitter+adapt_diag...\n", + "Multiprocess sampling (4 chains in 2 jobs)\n", + "NUTS: [Height_sigma, I(Time ** 2):Planet, Time]\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fa35a94cf9ed42708055e4914ecb5a31", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 17 seconds.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ffe09192f4674e5d8b48994501aac9fb", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "planet_fit_with_prior = planet_model_with_prior.fit(chains=4, idata_kwargs={\"log_likelihood\": True}, random_seed=SEED)\n", + "az.summary(planet_fit_with_prior)\n", + "planet_model_with_prior.predict(planet_fit_with_prior, kind=\"pps\");" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
meansdhdi_3%hdi_97%mcse_meanmcse_sdess_bulkess_tailr_hat
Time19.9580.07419.83020.1050.0010.0012514.02572.01.0
Height_sigma1.7530.1401.5082.0270.0020.0023667.03010.01.0
I(Time ** 2):Planet[Earth]-4.9070.012-4.928-4.8840.0000.0004359.03199.01.0
I(Time ** 2):Planet[Mars]-1.8620.008-1.878-1.8460.0000.0002657.02611.01.0
I(Time ** 2):Planet[PlanetX]-2.9850.022-3.026-2.9440.0000.0003121.02938.01.0
\n", + "
" + ], + "text/plain": [ + " mean sd hdi_3% hdi_97% mcse_mean \\\n", + "Time 19.958 0.074 19.830 20.105 0.001 \n", + "Height_sigma 1.753 0.140 1.508 2.027 0.002 \n", + "I(Time ** 2):Planet[Earth] -4.907 0.012 -4.928 -4.884 0.000 \n", + "I(Time ** 2):Planet[Mars] -1.862 0.008 -1.878 -1.846 0.000 \n", + "I(Time ** 2):Planet[PlanetX] -2.985 0.022 -3.026 -2.944 0.000 \n", + "\n", + " mcse_sd ess_bulk ess_tail r_hat \n", + "Time 0.001 2514.0 2572.0 1.0 \n", + "Height_sigma 0.002 3667.0 3010.0 1.0 \n", + "I(Time ** 2):Planet[Earth] 0.000 4359.0 3199.0 1.0 \n", + "I(Time ** 2):Planet[Mars] 0.000 2657.0 2611.0 1.0 \n", + "I(Time ** 2):Planet[PlanetX] 0.000 3121.0 2938.0 1.0 " + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "az.summary(planet_fit_with_prior)[0:5]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We see some improvements here! Off the cuff, these look better, you'll notice the $v_0$ coefficient on `Time` covers the true value of 20 m/s.\n", + "\n", + "Now taking a look at the effects before and after adding the prior on the gravities," + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLsAAAJjCAYAAADkuxODAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddXgU1/rA8e+sRrDg7u7u7g7FKS01ape2t70/buW2l7q3tNS9vaXQ4lrc3YO7OwSIQGzt/P6YZJONEd9N8n6eh4fZndnZM7Ob8+5xTSmlEEIIIYQQQgghhBAiHzB4OwFCCCGEEEIIIYQQQmQXqewSQgghhBBCCCGEEPmGVHYJIYQQQgghhBBCiHxDKruEEEIIIYQQQgghRL4hlV1CCCGEEEIIIYQQIt+Qyi4hhBBCCCGEEEIIkW9IZZcQQgghhBBCCCGEyDeksksIIYQQQgghhBBC5BtS2SWEEEIIIYQQQggh8g2p7BJCCCGEEEIIIYQQ+YZUdgkhhBBCCCGEEEKIfEMquwqA7t27U6dOnXv+mzdvnreT6hafpvwu8WezfPnyVI97+OGHc+0zSun70rBhQ7p27crzzz/P7t27s3TeS5cuZXOKhRA5JXF+8M4776R57E8//eQ+tn79+rmUwvzNF2NE0nRJnBAif8jM33V+/pvdtm0bdevWpWnTppw/fz7V47766ivq1KnDgAEDsNlsuZjC7OWL8SanYk3ic+fH765IYPJ2AkTuad68OVWqVEl1f+XKlXMlHd27d+fy5cusWbOGihUr5sp75gWfffYZPXv2xGTyjT/LxN+XiIgIDh06xLJly1i+fDkvvfQSjzzyiJdTKITITYsXL+bFF1/EYrGkuH/u3Lm5nKKCxddiBEicECI/Kkh/12mVSdq1a8f999/P9OnTefnll5k+fToGg2c/kcOHD/Ptt99iMpn48MMPU42PeY2vxZuC9J0U2cs3vsEiV4wcOZJhw4Z5OxkiBf7+/pw7d47Zs2czduxYbycHSP59iY2NZfLkySxYsICPP/6Yrl27Uq1atXSf77fffsNut1OmTJmcSK4QIgc1bNiQQ4cOsWbNGvr165ds/969ezlz5gyNGjXi4MGDXkhh/uaLMQIkTgiRH2X333VeNmnSJDZt2sTevXv55ZdfmDBhgnufzWbjpZdewuFwMHHiRBo2bOjFlGYfX4w3OfGdlHhTMMgwRiF8wPjx4wH4+uuviY6O9nJqUma1Wpk8eTIBAQE4nU5WrVqVoddXrlyZGjVqYDabcyiFQoicMnz4cCD13ltz5szxOE5kr7wQI0DihBD5UVb/rvOygIAA3n//fQwGA1OnTuXUqVPufZ9//jknT56kQYMGPP30015MZfbKC/EmO76TEm8KBqnsEqk6cOAAH330ESNGjKBDhw40bNiQ9u3b89RTT7F169YUX5N4rq25c+cyevRoWrRo4R7bXadOHS5fvgxAjx49PMZg79ixI8VzrlixgrFjx9K8eXOaNm3KmDFj2LBhQ6av6/Tp07z88st06tSJRo0aMWDAAKZPnw7AgAEDqFOnDqdPn870+TOjc+fOtG7dmpCQEH777bcMvfbatWu8/fbb9O7dm0aNGtGiRQvGjBnDX3/9hdPpzNZ0BgYGultOEo9xT+tzjz/uXmPjM3od6XlPIUT2qF27Ng0bNmTLli1cv37dY19kZCTLli2jbNmydOzYMdVzZHdMif87P3fuHK+88grdu3enYcOGNGvWjG7duvHEE09kemilr8WJrMQIkDiR1nsKIe4ttb/r1GQmvwfPv9mM/v6PiYnhl19+YdSoUbRs2ZJGjRrRp08fPvroI0JDQz2OzUiZpGXLljz88MMePbn27t3Lr7/+itls5oMPPshShYnEm8xJ6zuZ1XiTmWuQeOObZBijSNWUKVPYsWMHNWvWpEGDBvj7+3Px4kXWrVvHunXr+M9//sNDDz2U4mvffvttZsyYQbNmzejatSsXL16kYsWK3HfffaxYsYKoqCj69OlDQECA+zUlS5ZMdp4vvviCb775hmbNmtGlSxfOnDlDcHAwTz75JF9++SW9evXK0DUtWbKEl19+GbvdTv369WnZsiXnzp3jrbfe4vr165w/f94j88xNkyZNYtSoUfz000+MGTOGoKCge77mwIEDPP7444SFhVG+fHl69uzJnTt32LlzJ8HBwaxatYpvv/02W+cQuHv3LkCK50zpc9c0LUevI7PvKYTImOHDh3Po0CHmzZvn0Yq9bNkyoqKiGD9+fJp/e9kdUzRN48SJE4wdO5a7d+9SrVo1unXrhsFg4Pr16+zatYvr169nuLeZr8aJzMQIkDiRlfcUQiRI6+86qazk95Dx3//Xr19nwoQJnDhxgmLFitGoUSMCAwM5cuQIP//8M8uXL2fatGlUqFAB0Hv1ZKRM8vzzz7NhwwYOHTrE1KlTWblyJS6XixdeeIHatWun+x4mJfEma+71ncxM3p/Va5B442OUyPe6deumateurebOnZuh161fv15dv3492fN79+5VzZs3Vw0aNFDXrl3z2Fe7dm1Vu3Zt1bx5cxUcHJxmei5evJjqe8efp2XLlmrfvn0e+7744gtVu3Zt1bt37wxdz+7du1WDBg1UixYt1KZNmzz2fffdd6pOnTqqdu3a6oEHHsjQebMi/l7s2rVLKaXUM888o2rXrq3ee+89j+MeeuihZJ9hbGys+/WTJ09WNpvNve/ChQvufVOmTMlUmlL6vhw9elTVrVtX1a5dW82ZM8f9fFY+98xeR3reUwiRNYnzqIiICNW4cWPVq1cvj2PGjBmj6tSpoy5cuKAuXryoateurerVq5fsXDkRU15++WVVu3Zt9c033yTbFx0drXbu3Jmh6/W1OJGVGKGUxAmJE0KkX2b+rlP7m81Mfq9U5n7/u1wuNWbMGFW7dm31n//8R925c8e9z263qw8++EDVrl1bPfjgg6lec1plknj79+9X9erVc6dx9OjRyuFw3PN1qZF4k/40ZeQ7qVTm401WrkHijW+SYYwFyCuvvJJs+dbE/yIiIjyO79KlC6VLl052nmbNmjFu3DjsdjurV69O8b0effRRmjZtmuU0P/fcczRp0sTjuSeffJLChQtz7tw5rl69mq7zOJ1OXn31Vex2Ox988EGyoTYTJkxwt1p4c4LJF154AZPJxIwZM9xdq1OzbNkyLl++TOnSpXn11Vc9ulBXqlSJl156CYBp06YRGxubpXTduXOHDRs28Oyzz+JyuShdunSKk1Rn5nPP6nVk13dNCJG2woUL06tXL86fP8/OnTsBOHPmDHv37qVVq1ZUqlQpzdfnREy5deuW+9xJ+fn50apVq3tdllteiBMZiREgcSIr7ymESP/fdVJZye8hY7//4yeQr1evHm+++SaFChVy7zOZTPz73/+mdu3a7NixgxMnTqTnslPUuHFj2rdv73785ptvYjQaM3UuiTeZjzcZ+U5mNO/PjmuQeONbZBhjAZJ42daUpDTePDQ0lA0bNnDixAkiIiJwOByAPkcKwNmzZ1M8V9++fbOeYKBbt27JnrNYLFSqVIkjR45w/fp1ypUrd8/zLFu2jLNnz9KmTRt69uyZbL/RaKRSpUrcvn3bq5Vd1atXZ/jw4cycOZOpU6fy0UcfpXpsfGFzwIABKXal7d27N0WLFiU8PJxDhw7RokWLDKXllVde4ZVXXkn2fOXKlfnyyy89unvHy8znntXryK7vmhDi3oYPH87ixYuZO3curVu3ds+Jld6hgtkdUxo3bsyGDRt44403ePbZZ2ndujVWqzWDV6XLC3EiIzECJE5k5T2FKKgy83edkszm95Cx3//x83j17t0bkyl50dZgMNCyZUtOnDhBcHBwpocdbtu2jc2bN7sf//333+45mjJK4k3G4k1mv5MZzfuz4xok3vgWqewqQJIu23ovs2bN4v333ycqKirVYyIjI1N8Pn5MfFaVL18+xefjW23S2zKwcuVKAIYMGZLqMTExMQA0atQoXef88MMPk014CfDBBx+k6/WpeeaZZ1i0aBGLFy/m0UcfpW7duikeFz9JdMWKFVPcr2kaFStWJDw8PNmE0umRuHLUbDZTvHhxmjZtSqdOnVL8MQGZ+9yzeh3Z9V0TQtxb27ZtqVixIitWrOA///kPCxcupFChQun6cZcTMeWxxx5jz549bN26lQkTJmA2m6lTpw6tWrWif//+NG7cOH0XRt6JE+mNESBxIivvKURBlZm/66Sykt9Dxn7/X7x4EYCpU6cyderUNNN1+/btNPen5u7du/znP/9BKcUDDzzAzJkz+emnn+jZs2eG4kw8iTcZizeZ/U5mNO/PjmuQeONbpLJLpOjQoUNMnjwZo9HIpEmT6N69O+XKlcPf3x9N05g5cyaTJ09GKZXi6/38/LIlHQZD9oy0PXToEJB6wLDb7Zw7d46iRYtSuXLldJ1zxYoVKXbrzWplV+nSpRk/fjzff/89U6ZM4YcffsjS+TIro5WjkH2fu6+/pxAFlaZp3HfffXz55Ze89NJLhISEMHr06Hv+HeZUTPH39+fXX3/lwIEDbNq0ieDgYIKDgzl06BC//vor999/P6+//nq6ri2vxAlfiREgcUKI/Cgzf9eJZTW/h4z9/ne5XAC0aNHinnlzrVq10n3exN577z2uXLlCu3bteO211wgKCuLLL7/klVdeYf78+RmecF3iTcZk9jsp8UZIZZdI0fLly92tF48//niy/fFdkPOK+HldUuvmunbtWmJjY2nZsmW6z7l27dpsSVtKHn/8cWbOnMmGDRvYtWtXiseUKVMGSGjRSkn8Urfxx/qi/HIdQhQUw4YN4+uvv2bdunVA+oYw5nRMady4sbt13eFwsHr1al566SVmzJhBnz59aNu27T3PkZfiRHpiBOSf/DW/XIcQBUFulyHihzP26NGDxx57LFvPDbB+/Xrmzp1LoUKFeO+999A0jSeffJI1a9Zw5MgRvvjiCyZNmpShc0q88c18Oj9cg/AkE9SLFIWHhwMpdyOOjY11d7/NjPi5wZxOZ6bPkVHx3Z4vXLiQbF9MTAyff/454N3J6RMrXLgwTz31FAAff/xxise0bt0agKVLl6Y4nHPVqlWEh4cTGBjoM9eVkvxyHUIUFOXLl6dHjx4UK1aMpk2bJptEOCU5GVOSMplM9O3b1z3h77Fjx9L1urwUJ9ITIyD/5K/55TqEKAhyM78H6Ny5M5BQyZYR9yqThIWF8dprrwHw8ssvu6/JbDbz/vvvYzab+eWXX9i/f3+G3lfijfevKyX54RqEJ6nsEimqUaMGAAsWLODu3bvu52NjY3njjTfctdqZEV8TfvLkyawlMgPiJxD85ptvPOYIuH37Nk8//TRnzpwBfCOoxBs3bhzly5dn//797Nu3L9n+fv36Ub58eW7cuMH777/vnvgT9BaJ+G7LDz74YKYnbM4N+eU6hChIvvrqK3bs2MHMmTPTdXxOxZTp06e78+/EQkJC3MNEUpv7Jam8FifuFSMg/+Sv+eU6hCgIcrIMkZIePXrQqFEjDhw4wCuvvJLivFzh4eH8+eefHnkH3LtM8vbbbxMSEkLnzp0ZOXKkx766devy9NNP43Q6efnllzO0wqDEG9/Mp/PDNQhPMoyxAJk9e7Z7lYmUdOjQgUGDBgH6MJXff/+dI0eO0KNHD1q2bInRaGT37t3ExMQwfvx4fv/990ylo0+fPuzYsYN///vfdOzYkSJFigD6RMPVq1fP1Dnv5R//+Afr169n165d9OnTh6ZNmxIbG8uuXbuoUaMG1apV4+zZszRr1ixH3j8zLBYLzz33HC+//DLR0dEp7p86dSqPP/44f/75Jxs3bqRJkyZERkayfft2YmNj6dixIxMnTvRC6tMvv1yHECJ1ORVTZs2axVtvvUXFihWpVasWhQoVIjQ01H3etm3b0r1793SdK6/FiXvFiPhj8kP+ml+uQ4iCICfLECkxGAx8/fXXPPnkk8yfP58VK1ZQp04dypcvj91u5+LFi5w4cQKn08mwYcM8JjRPq0xy8uRJlixZQpEiRXjnnXdSfO/44YyHDx9m6tSpvPjii+lKs8Qb35QfrkF4ksquAmTv3r3s3bs31f2FCxd2V3YVKVKEOXPm8OWXX7J582Y2btxIsWLF6NChA8888wx79uzJdDrGjh1LZGQkixYtYsOGDe6WkMGDB+dYZVfdunWZNm0aU6ZMYf/+/WzZsoWaNWvyf//3f3Tt2pU+ffpQt25dSpUqlSPvn1lDhgzhl19+4cSJEynub9y4MQsWLODHH39k48aNrFq1CovFQv369RkyZAgjR45M98o53pRfrkMIkbKciikvvPAC69evZ//+/ezfv587d+5QokQJGjduzPDhwxkwYEC68468GCfuFSMg/+Sv+eU6hMjvcrIMkZoyZcowa9Ys5s2bx9KlSzl+/DgHDx6kaNGilC5dmjFjxtC9e/dkvXFSK5N06NCBt956C4BXX3011fmZTCYTH3zwAcOGDePXX3+ld+/eNG3a9J7plXjju/LDNYgEmsro4GYh8pnJkyczc+ZM3njjDcaOHevt5AghhPAxEieEEELkBok3QmQfmbNLFAgHDx5M9lx4eDjvvvsuM2fOpH79+snG4gshhCg4JE4IIYTIDRJvhMgd0rNL5HshISF07NiR8uXLU716dYoWLcq1a9c4evQoUVFR1K1blx9//JHSpUt7O6lCCCG8QOKEEEKI3CDxRojcIwNORb7ncrkYNWoUO3fuZN++fcTExFC4cGGaNGlC//79GTp0KBaLxdvJFEII4SUSJ4QQQuQGiTdC5B7p2SWEEEIIIYQQQggh8g2Zs0sIIYQQQgghhBBC5BtS2SWEEEIIIYQQQggh8g2p7BJCCCGEEEIIIYQQ+UaOTFAfGhqa7LmiRYsSHh6eE2+XZ8g9kHsQT+6D3AMoGPcgKCgozf0pxYusKAj3NL+Szy5vks8t7/K1z+5e8QKyP2bkJl+73yJ3yOdeMMnnnvPSEzNyrWeXwSCdyOQeyD2IJ/dB7gHIPcgJck/zLvns8ib53PIu+exyl9zvgkk+94JJPnffIJ+CEEIIIYQQQgghhMg3pLJLCCGEEEIIIYQQQuQbUtklhBBCCCGEEEIIIfINqewSQgghhBBCCCGEEPmGVHYJIYQQQgghhBBCiHxDKruEEEIIIYQQQgghRL4hlV1CCCGEEEIIIYQQIt8weTsBQuRlLpfi5CnYtx9CQhQApUtpNG0KtWqCpmneTaAQQoh8x+FQbNgIR44q0KBxQ40O7cFkkpgjhBB5iVKKW7fg5Gm4dg1u3FDY7IACpeKP0f83m8HfXyMgAPz9IcAfSpaEihWgRAkpdwiRlFR2CZEJSinWb4BfflOcPZdsL6AHnmFDYchgsFol+AghhMi6/QcUH36suHAx4bmZsxRly8ArL0GL5hJvhBDClymlOHQYVqxSbNwIt0Mz9OoUny1SBOrXUzRtotG5I1SuLLFACKnsEiKDoqIUH09RrFqtP/b3g+bNoXIlveXlwgXYuw8uXYYvvlbMnANPPg69ekiLixBCiMzbtkPxyqsKh0Mv2PTuBShYvQauXYcXJime+QeMGiGxRgghfNHhI4qvvlEcPJTwnNEAlSrrDeVlSoOfn/68pun/9Adgt0F0NERFQ1QUREbCjRC4fg0iImD7Dti+Q/HdD1CzhmL0KI2e3cFslpggCiap7BIiA+7eVfzr34ojR/XA9MA4GDNKo3BhzyASFaVYuQr+N01x/Tq89Y5i+Qp48f+gbFkJOEIIITLmyFHFf1/XK7q6dIZXXtQoVEiPJ089ofjsC8XfS+GLrxRGAwwfJrFGCCF8hdOp+OU3xbTp4HKB1Qrdu0LvXhqNG2VtFIjdrjh9Gg4ehm3bFXuD4dRpePd9xU+/wD+e0t9LGt1FQSOVXUKkU2ys4v9e1Cu6CheGD97VaNI45aAREKAxdAj07QN/zYLfpyl27oIHH1b8+/9g9KhcTrwQQog8K+KO4rXXFTEx0KY1vDlZ85ify89P45UXNYoXdzHtD/jsC0XZstChvRRshBDC22JjFW+8rdi0WX/cpxc8/aRGyZLZk0ebzRp160LdujByuEbEHcWixTB7rt7o/vqbeiP8S5OgeHGJC6LgkNUYhUgHpRQffKw4fESv6PpiSuoVXYn5+Wk8PF7jt1/0VpvoGHjrXcUbb90lNjblMfdCCCFEPKUUH32iuHEDKpSHt9/QUp2I/onHNIYO1rffeldx4aLEGSGE8Ca7XfHKa3pFl9kMk1/V+O+rhmyr6EpJkcIaD9yvMWuGxiMP6e+7ZSs8+oTi5CmJC6LgkMouIdJhwSJYtRqMRnj3LY1atTIWoCpX0vjycz3gaBrMnhvLUxMVly9LwBFCCJG6TZth/QY9/rw5WSMgIPX4o2ka/3xWo1FDfS6X//xXER0tcUYIIbxBKcUbb0Wyc5c+D9eUjzV698q9nlVWq8Zjjxj48TuNqlXg5k2Y+Jxi5y6JC6JgkMouIe7h4iXF19/qQWHiUxrNm2UuSBmNesD59CONoCCNk6fgsScVu3ZLwBFCCJFcVJTi8y/1GHH/GKhb997xx2zWeOdNjRIl4Nw5+PZ7iTFCCOENfy+FBYtiMRrgrdc1mjX1zhDCmjU0vv1Ko3kzfWL7l/+j2BsssUHkf1LZJUQa4oePxMRAi+YwYnjWz9m6lcacmUWpXw/u3oX/e1Exd54EHCGEEJ5++10fvliuLDz0YPoLSSVKaLz2in78vAVIK74QQuSyCxcTGisen6DRvp1358oqXFjj0480OnUEmx1eflVx4qTEBpG/SWWXEGnYuAmC94HFAi//W8NgyJ5AVbaMkS8/1+jXR1+R5bMvFN//6EIpCTpCCCHg9BnFzNn69gv/1PDzy1j8adVSY/h9+vb7Hyoi7kh8EUKI3KCUYsrnemN52zZm7h/j7RTpzGaNN/6r0bSJ3sPr3y8pbt6U2CDyL6nsEiIVsbGKr75NGD5Srlz2tshYrRr/eVnjiQn6eadNhw8+VjgcEnSEEKIgc7kUn0xROJ3QuROZ7hHw9JMalSpByE34fKrEFiGEyA0bNsLuPWAxwxuTA7OtsTw7WK0aH7yrUb0a3LoNk9+UsofIv6SyS4hUzJ4LV69CyZIwbmzOBClN0xj/gBbXa0wf2//G2xJ0hBCiIFu6HA4eAn8/+OezmY8/fn4ar76sx5eVq2HdeoktQgiRk6KjFV98ree14+6HShWNXk5RcoUKabz7tkZgIBw4KHM7ivxLKruESEFkpOKPGXrG/9QTGv7+OdsiM3CAxntva5jN+qpb736gcDol8AghREETFqb49js9/3/kYY0ypbMWfxo20Hjgfn37088VYWESW4QQIqfMnA03bkDZMjnXWJ4dKlXUG0NAT7PM7SjyI6nsEiIFc+bpk8dXrQK9euTOe3bsoPH2mxpGI6xaDR9+rHC5JPAIIURB8uU3ivAIqFEdRo3InnM+8pA+ZCUsDKZ+JXFFCCFywp07ir9mJTSWZ3SuxdzWuZPGiGH69gcfKe7I3I4in5HKLiGSiIpSzJytZ/bjH9QwGnMvUHVsr/HmZA2jQR/G8sNPEnSEEKKg2LFTsWIlaBq8OEnDZMqe+GM2a7zykj6ccdVq2LxVYosQQmQ3d2N5VejW1cuJSacnH9eoWAFuhOiNLULkJ1LZJUQSc+dDRARUqgQ9uuX++3ftovFKXLfiP2bAshUSeIQQIr+LitInpQcYMQwa1M/ehpZ6dTXGjNK3P5kiLfhCCJGdYmIUs+fq+erDudxYnhX+/vqCWZoGS5fB3mCJDSL/kMouIRKx2xWz58T16nrAe4Gqb2+N8Q/o2x99ojh4SAKPEELkV0opPvxEcfUalCkDjz+WM7HnsUc0KlaEmzfh628lrgghRHZZsUpvLC9XLu/06orXuJHG0CH69hdfybzBIv+Qyi4hEtm4CW6HQokSuTdXV2omPKrRuRPY7fCf/ypCQiTwCCFEfvTnTFizFoxGeP01jYCAnKnsslo1XnlRb8FfshR27Za4IoQQWaVUQq+uEcPyTq+uxB57WKNQITh1Gv5e5u3UCJE9pLJLiETmL9QD1eCBZNtcKZllMGj89z8aNWtAaCi88bbC4ZCCiRBC5CfzFii+iVt9ceJTGo0b5WzsadJYY/h9+vaHHyuioiSuCCFEVuzeA+fOgb8/DOjn7dRkTrFiGo8+pMefH35SREZKbBB5n1R2CRHnzBnFvv1gNMDggb7RIuPvr/HOmxoBAbD/APz0iwQeIYTwdU7nvRsnIiMVn37uYsrn+nH3j4WR2bT64r08MUGjXFm4dh2++0HiihBCZEX8FCgD+kGhQr5RhsiMYffpcxaHhemT7QuR15m8nQAhfMX8RXqg6tQRSpXynUBVsaLGyy/C5DcUf8yAVi0VLZr7TvqEEELA6TOK+QsV27dDSAg4XWCxKMqVhfLloUJ5KFNGw+WCs+cUmzfD3Uj9tY88BI8+rKFpuZO3BwRovDgJXpikmLcAundTNG0icUUIITLq+g3Fth369vBheTsfNZk0Hn0Y3nxb8dcsxYhhEBiYt69JFGxS2SUE+ipYy1fo2/cN9b1MvXtXjT2DFAsXw/sfKv73S8rBx+l0sm7dOo4cOcKRI0c4duwYMTEx9O/fn8mTJ6f5HhEREfz0009s3LiRW7duUaJECbp06cKECRMoXLhwTl2aEELkaQ6H4rsfFLPmgMvluc9mg/MX9H86z15UVavAxH9otGuT+3GnVUuNQQMUi//WF0L5/VcICbnGrFmzOHr0KJcvXyY8PByj0UilSpXo1q0bY8aMwd/fP0PvY7PZ+Ouvv1i9ejUXL17E4XBQsmRJWrVqxUMPPUSFChVy6AqFECLnLV8BSkHTJlCpou+VITKqe1f47X963Jo7H/eCWanZu3cvs2bN4sCBA9y5c4eiRYtSs2ZNhg0bRufOnXMlzUKkRiq7hEBfQSU6GipXgubNvJ2alE18WmPnLn21rq++Vbw0KXlAjYqK4rXXXsvwucPCwpgwYQKXLl2iQoUKdO7cmbNnzzJz5ky2bdvGjz/+SNGiRbPjMoQQIt+w2RSvv6nYtEV/3LmTPgy+Zk2wmOHOHbhyNe7fFcWNEH0S+rJl9LmzWjTX52f0ln88pbFpi+LCRZi/EMqVOc2ff/5JiRIlqFKlCk2bNuXOnTscOnSI77//nlWrVvHdd99RpEiRdJ0/NjaWiRMncujQIQoXLkyzZs2wWCwcP36cRYsWsXr1ar755hvq1q2bw1cqhBDZTynF0mXxQxjzfkUXgNGo8dB4eOsdvXfX8PtS7931448/8vPPP2OxWGjcuDFBQUGEhISwf/9+SpUqJZVdwuuksksUeEop5i/QA9XQIbk3jCSjAgI0XnkJnntBsXgJdO+qaNXSM60mk4l+/fpRt25d6tevz/nz53nnnXfuee7PPvuMS5cu0bVrV9555x1MJj1r+PTTT5k9ezZTp069Z88wIYQoSJRSfPCRXtFlMcPr/9Xo0tkzTy5SBBI6LvlebClcWGPCI/DJZ4pfflN880UdZsyYQfXq1T2Oi4yM5KWXXmL37t389ttvPPfcc+k6/4IFCzh06BD169fniy++oFChQoDeC/mzzz5jzpw5TJ06lW+//Tbbr00IIXLa/gNw+Yo+MX3XLt5OTfbp0U3v3XXhIiz+G8aMSn7MkiVL+Pnnn2nQoAHvv/8+pUuXdu+LiYnh8uXLuZhiIVImE9SLAu/AQThzFqxW6NfH26lJW/NmGsOG6tuffqaIjfUcEuPv78/rr7/O6NGjadSoEVar9Z7nvHnzJqtWrcJsNvPvf//bXdEF8OyzzxIUFMSKFSu4fft2dl6KEELkabPnwsrVek+tD99PXtGVVwwcANWq6r3QFv9dIllFF0BgYCATJkwAYPfu3ek+9759+wAYO3asu6ILwGg08sQTTwBw5MiRzCdeCCG8KL5XV49u+qJS+YXRqDFmtH49c+YmX3AlJiaGL7/8koCAAD766COPii4APz8/atSokWvpFSI10rNL+LQrV64wbNgwmjVrxpQpU/j+++9Zu3Yt4eHhVKlShccff5xOnToBsGbNGqZPn86ZM2fw9/enZ8+eTJw4ET8/P49zxsTEMHPmTNasWcPFixex2cDpqk7jhvdRuPDAZGnYt28fq1evJjg4mBs3bmCz2ShbtiydO3dm/Pjxyeaz2rNnDxMnTqR///7885//5LvvvmPjxo1ERERQqVIlxo4dy/jx4zN9T56YoLFxs+LSZZg2XTHh0awF1+3bt+NyuWjevDklSpTw2GexWOjYsSOLFy9m69atDByY/P4IIYSvyqkY8sMPf/HnX2tQrktoZvju2+rcGDaMAQMGJEtDTsSQQYMGZds9Mpk0np0I//q3Pln9qBGKsmWTx5X4hhCz2Zzuc6fnWBkiL4TwtszGithYfzD0oGePiYDnfIbx5Y3169dz7tw5AKpXr86wPBIr+vSCH37UV+3dtBm6dU3Yt379esLDwxk0aFCysoMQvkR6dok8weFw8Mwzz7BixQoaNmxIgwYNOHXqFC+//DI7d+7kzz//ZPLkyQQEBNCmTRtcLhezZ8/mvffe8zjP7du3mTBhAt9++y23bt2iYcNmKJqCOs/e3e/wySefJHvvL7/8ksWLF2O1WmnZsiUtW7YkMjKSadOm8eSTTxIVFZVimu/evcvjjz/O5s2badq0KY0bN+b8+fO8++67zJ49O9P3olAhjX8+oxdE/pgB589nbdn4kydPAlCnTp0U98c/f+rUqSy9jxBCeEt2x5AZM75DuW5TLKgpLVs25fz587z99tu5FkMWLlyYrfendSt9/jCHA377PXlMiYmJ4bfffgOgQ4cO6T5vmzZtAPjzzz+5e/eu+3mn08kPP/wAkK0Vd0IIkRUZiRVVqrZBKRfKOYdFC9/3OE/i8sbNmzdp1qwZTZvmrVhhtWoMGaxvz5rjGRf27NkDQKNGjbhz5w5z5szhww8/5PPPP2ft2rU4HI5Mv68Q2Ul6dok84eDBg7Rs2ZJ58+a5V4JasmQJ77zzDh999JF7JcF69eoBEBISwvjx41m5ciVPPvmke7Wnd955h1OnTjF69GgmTpzIX7PMBB9U1K1/G+X4N3PmzKFDhw60a9fO/d6PPfYYjRs39hiCYbPZmDJlCgsWLODPP//kscceS5bmjRs30qtXL/773/9isVgA2LBhAy+99BLffPMNPXv29Dj+6aefJjg4OEP3xWV6lY+nDODLz8n0XGPXrl0DSNYFOV788/HHCSFEXpPdMUQzjsLi9w9++MFK5Uoat27dYtKkSbkWQ3799VeGDBnicXxmYshrr73m7rE74VGNPXsVy5bD0MHhzJo1FdAXMDl8+DDh4eF06dKF+++/P93n79u3L9u3b2fVqlXcd999NG7cGIvFwrFjx7h9+zbjxo3j0UcfzVCahRAip2QkVjz7vAujNQSL4eE0yxuvvfYakZGRAHk2Vuzf9yqHjwykQX29rHH27FlAjw9jx47l5s2b7mP/+usvatSowZQpUyhTpkyG3keI7CaVXSJPMBgMvPjiix5Lnvfv35+vvvqKS5cu8cgjj7gLKQClSpWiT58+/PXXXwQHB1OhQgVOnDjB1q1bqV+/Pv/85z9RSmPBIr2lYtTIElSr8jIPPfQQ8+bN8wg+7du3T5Yei8XC888/z+LFi9m4cWOKwScwMJBJkya5Aw9Aly5dqFGjBqdPn+bKlSuUL1/eva9du3aUK1cu3fckOhq27azIvv2wdh306J7ulyY5TzRAsqE68eKfT61FSQghfF12xhD/gHrYnM8xcriBypX0H/4lSpTg5ZfzVgwBqFixonu7UUONNq0VO3bCrLnRLF261OPYHj16MGnSpFRjRUqMRiNvvPEGZcqU4Y8//mDLli3ufXXq1KFVq1YYjcYMpVkIIXJKemPFzZuKfftB00rRq1cfFi1KvbxhsVjclV15MVYcOAhXr1dk4WLlruy6c+cOAN9//z1VqlThnXfeoVatWpw7d46PPvqI48eP88orr/Dzzz/77MJfomCQyi6RJ5QrV47KlSt7PGcwGChbtixhYWHuoRKJxbeu3Lp1C4AdO3YA0LlzZwwGA5u3KG7cgKJFoFsXsFrrEBAQkOJkuTdu3GDz5s2cP3+eyMhIXC4XoM9HcvHixRTTXLdu3RTnIqlUqRKnT5/m1q1bHsEnM/N4/fa74qdfFN98r+jQHvz8JKAIIURS2RlDYm2d8Q80cP8Yz/y2Tp28F0OSGjdWY8dOxYaNpVmxYhtFiuhp37lzJ9999x3jxo1jypQp1K1bN13ni4iI4KWXXuLo0aO88MILdOvWDT8/P/bt28enn37Kv/71L95880169eqV5bQLIURWpTdWrNsASkHDBlCrVtrljaTyWqw4eEjx9DOKNWvhuYmKQoU0d7qMRiOfffaZuwdXgwYN+Oyzzxg+fDhHjhxh586dKcZXIXKLVHaJPKFUqVIpPh/f8pLS/vh9NpsNgKtXrwLw3Xff8d1337mPuxUDXRItFxwbG+txnhkzZvDNN99kePx5asMCAwICPNKVFWNH60sCX78Of86ERx7K+Dni71NMTEyK++Ofj0+3EELkNdkZQ1yO74kM/57+/VN+r7wUQ5Jq1hRq14ITJ2H+Qnh4vEaZMmUYNGgQNWrU4PHHH+edd95h2rRp6Wqt//zzzwkODub5559n9OjR7uc7d+5MqVKlePTRR/niiy/o1q2bx0rAQgjhDemNFWvWxq3C2F3D35q+8kZSeSVWNGygr9h79py+AvGwoQn3o2XLlsmGKhYvXpz27duzZs0agoODpbJLeJX8shB5wr1+VKfnR7dSemBq0qQJQUEV2LAR0KBLZwjwT/k1hw4d4osvvqBQoUK88MIL7hUL47sKDxw40GOcekbTlNjvv//uXq0lvQYPHsw/nmrC628q/pih6N8PypTO2PuWLVsW0FuTUhL/fPxxQgiR12RHDAmP0FuyNUMTunWtQHpG8+WFGNK0aVOP9xwzCt56VzFvvmLsaH2SYoD69etTuXJlTp06xZUrV9w931LjdDpZtWoVAN27Jx9nX69ePcqXL8/ly5e5fPkyVapUyVDahRAiu6UnVly7pjh0GDRNX6Fw+zbPYxKXNypUqIDVak1WsZWUr8eK5s0Gc/ZcYxYtVtw3RO8Bd+LEiVSHQ8Y/HxoamqH3ESK7SWWXKDDiW2M6d+5MaPhYjBZo1xY+eD/1RUnXr18PwFNPPZVsmeCYmBh3l+XssG3btgxPGNm8eXMGDGjCvPmw/wB8+73ijf9mLOjVqlULgOPHj6e4P/75mjVrZui8QgiRn1y/rseQGjU68d57D6TrNXkhhiSu7ALo3g2++wFuhOjzQfbrm7CvWLFigF6AuVdlV2hoKHa7HdDnlElJ/PPx878IIYSvW7te/79pEyhZIvlv7sTljXHjxhEUFHTPSh9fjxWTJjXHYmnMqdNw9BjUrl2bDRs2pJp3R0REAHjMfSaEN0hllygwWrduzQ8//MD69Ru4dG0sAPcNSbtiKD4TT6mL8Nq1a92tN9nh22+/zfRr//ksPPaEYvUaGDZU0bhR+iu82rZti8FgYP/+/dy+fZvixYu799lsNjZv3ozRaExx4kwhhCgIoqIUZ863Bn7E5dwIpK+yK6/EkMRMJo2hQ+CHnxSL/1b066vHk8jISI4fP46maR7zv6SmSJEimM1m7HY7x44do0WLFh77IyMjuXDhAiA9h4UQecfqREMYUxJf3tiwYQPjxo1L1znzQqw4etzFilWwdLli8IBO/Pjjjxw4cACHw+ExDN3lcrF//35An59MCG9KvUuLEPlMw4YNad26NQcPHiDs9ieUKR1Jm9aex5w8eZJt2xL6I8dPUrlo0SKPMfRnz57l66+/zpV0p0ftWhoD4+aP+eoblaGgWLJkSXr16oXdbufjjz/2uM6vvvqK0NBQ+vTp41EJJoQQBcnGzWCzNcDPvxVnzhzg448/dq+ulVhejSHxFi5cyOXLl+nfF4wGfRWuc+cVN27cYPLkyURFRdG+fftk8eCZZ55h9OjRHD582P2cxWKhbdu2AEydOtVjCE5sbCwfffQRMTExNG7cmJIlS+bOBQohRBZcuQonTuj5Y9fOKR8TX944cECPFXfv3k12TF6MFX376JV7a9dBtWq1aN26NdeuXeO7777zKHf8+uuvnD9/nqCgILp27eql1Aqhk55dokB54403GDb8eWKi53Hz+iqefbYWJUuWJDIyklOnTnH9+nVGjx7tXgp44MCBzJgxg82bNzNq1Cjq1atHREQEwcHBdOnShcOHD3Pt2jUvX5VuwqMaq9coDh74mFGjTlCkCISHhwOwdetWj+WKf/75Z4/XvvDCCxw+fJh169YxZswY6taty9mzZzl9+jSVKlXin//8Z65eixBC+JIVK/Uf8qNGvcH2bS8wd+5cVq5cSa1a+SeGACxfvpz333+fatWqUTiwCrduGXnmmRtEhB/HZrNRvXp1XnnllWSvu3TpEteuXUu20Mk///lPDh8+zIkTJxg1ahSNGjXCarVy9OhRQkJCKFKkCC+99FJuXZ4QQmTJ1rj6qRYtoFix1EdRvPHGGzz//PPMnTuXVatWUbNmzTwfK5o3g5Il4eZN2LYdXn31VSZMmMAff/zBxo0bqVGjBufOnePs2bNYrVbefPNNGcYovE56dokC5caNIOyu7zFbX6BGjaqcOHGCdevWcerUKcqXL8+zzz7r0eW4aNGi/Prrr/Tu3Ru73c7mzZsJCQnhiSee4K233vLilSRXooTG/WM1lOscFy8e5vDhw1y6dAmAsLAwDh8+7P6XVLFixfj5558ZOXIkdrudDRs2cPfuXUaNGsUvv/yS4pLGQghREERFwe49+vaQIcX58ccf+de//kXVqvkrhgA88MADDBo0CIDIu3tQrvXcunmB+vUb8K9//YvffvstQ72wKlasyLRp0xgzZgylSpVi3759bN++HavVyogRI/jjjz+oUaNGTl2OEEJkq61b9YaPnqkMYYxXvHhCrKhRo0a+iBVGo0avHvr2ilWKMmXK8PvvvzNixAhsNhubNm0iLCyMXr168csvv9C6deu0TyhELtBUdg4CjpPSJHzpmZwvv5N74P178P5HLv5eCr17wuTXvFfXm1P3ITpaMeYBxa1b8OxEjdEjMzZZfW7y9nfBFxSEexAUFJTm/uy+/oJwT/MrX/3s/pyp+PpbRZPG8PUXBaeN0OFQjByjCLkJb76u0aNbyvHEVz83cW++9tndK15A3l7dzdfut8iYM2cU4x9VmM2waJ5G4cLp+42dnz73U6cVDz+m34OF8zSKpPMeFET56XP3VemJGQXnV5so8CLuKFat1rfvG5o/M2d/f43HH9Wv7bffFRF3sr0uWwghCpQNG/V8tHsqlT35lcmk0TduJcZVqyWWCCEKtviJ6du2Jt0VXflNzRoaNWqA3a7P3SWEr5PKLlFgLFsONhvUrAENG3g7NTmnX1+oXg3u3IHfp0kBRQghMuvmTcWhuJHfXTp5Ny3e0LunXqDbvgMiIiSeCCEKJqWUu3Kn+z2GMOZ38XFh3XqJCcL3SWWXKBBcLsX8hXqmfN9QDU3Lv4HKaNT4x1P69c2dD1euSjASQojM2LRF/79hAyhZMv/GjdRUq6pRswY4HLB+o7dTI4QQ3nH8BFy6DFYrdGjn7dR4V9cu+v/B+yA0TMoYwrdJZZcoEHbthkuXIDAQ9+SK+Vmb1tCyhd7N+PsfJRAJIURmxA9h7Nyp4FV0xesV14ovQxmFEAXV2nV6/te+HQQEFNx4AFChvEbt2uBywcZN3k6NEGmTyi5RIMyaowepAf0KRpDSNI2JT2loGqxZC0ePSSFFCCEyIiJCERysb3fu6N20eFOP7vr/+/ZDSIjEEiFEwZJ4CGNqC3UUNN266Pdh/QaJCcK3SWWXyPfOnVfs2AmaBsOHFZwgVauWRp/e+vaPP0swEkKIjNiyFZwuqFEDKlYsOLEjqbJlNJo0BqVgjUxILIQoYI4dh2vXwc8P2rbxdmp8Q7e4oYx790KYDGUUPkwqu0S+N2eungl37KB3vS1IHn1Yw2iEnbtg334JRkIIkV5btsUNYSzAvbrixa9EGT+sUwghCor4idg7tAM/v4JVjkhNxYoatWrqDUKbt3g7NUKkTiq7RL4WEaFYtkLfHjWi4AWo8uU0Bg3Qt3/4SaGUFFSEEOJeHA7F7t36dts2BS92JBVf4XfoMNy8JXFECFEwJB7C2K2rxILE4u/HWlmVUfgwqewS+dqiJRAbCzVrQNMm3k6Ndzz0oIbFAgcO6j28hBBCpO3wEbgbCUWKQN063k6N95UqpdGgvj6UcfNmb6dGCCFyhwxhTF38qox79uqdC4TwRVLZJfIth0Mxb76e+Y4aoaFpBbNFplQpjfuG6ts//iy9u4QQ4l527NTzyVYtwWgsmLEjqfgVKTdskhgihCgYZAhj6ipX0qhRA5xO2LLN26kRImVS2SW8Ryn9Xw7ZsBFuhEBQUMJqUgXVA2M1/P30FqqN0iovhCgoMhlnduzU/2/bWgo38Tp30v/fGyyt+EKI/C9bhjCq/N3I3KmD/v+Wrfn3GkXeJpVdwjuUwrLtayzbvs6xCq9Zc/TzDh0MVmvBLrAEBWmMHKFv//SzwumUoCSEyOcyGWdCQxXHT+jbrVvlUNryoEoVNWpUl1Z8IUTBED+E0T+zQxjjYpBr3Sc52rjvTR3b6+WrHTvBZsuf1yjyNqnsEt7htKOFnkMLPQdOe7af/tBhxeEjYDLB0MEFu6Ir3tjRGoUKwdlzsny8EKIAyGSc2RE3t2HtWlCihMSPxOJ7d22UoYxCiHwufghj+8wOYYyLQermmRwp6/iC2rWhZEmIjobgfd5OjRDJSWWXyJdm/KUHqF49pLASr3BhjfvH6Pfil18VDocUVoQQIqn4+bratPZyQnxQl84JrfjR0RJDhBD5k6zCmD4Gg0aHdvr2ZhnKKHyQVHaJfOf8ecWmuHmp7h8rASqxEcOgWDG4dBlWr/V2aoQQwrc4nYqdcfN1tZH5upKpUR3KlwebLWFeMyGEyG+yPISxAOnYQY+VW7aQr+cnE3mTVHaJfGfGTIVS0LEDVKsqhZXEAgI0Ro/U78kf0xUulwQlIYSId+IkhEdAQAA0bODt1PgeTdPoEjeUUVZlFELkV1kewliANG8Gfn76omAnT3k7NUJ4ksouka+EhChWrNS3H7hfglNK7hsChQLh3HncPeCEEELA7j36/82bgckkMSQl8UMZt26TCYmFEPlP4iGM3btJHLgXq1WjVUt9e/MW76ZFiKSkskvkKzNnKxwOaNIYGjaQAJWSQoU0ht2nb//+R/5eElkIITIieJ+eHzZvJvEjNfXrQYkSEBkJe4K9nRohhMheMoQx4+KHMsq8XcLXSGWXyDci7igWLta3pVdX2kaN0PDzg+MnYOcub6dGCCG8z25XHDiobzdv5t20+DKDQaNTR31bVmUUQuQ3iYcwWq1SnkiP9m1B0+DECbhxQ+KC8B1S2SXyjfkL9KVva1SXlph7KVZMY/BAfXvadAlKQghx9BjExEDRIlC9mrdT49u6dIprxd+iT+ovhBD5gQxhzJygIM09z+WWbd5NixCJSWWXyBdiYxWz5+o/uMeN1dA0CVD3Mna0htEI+/bDsWNSWBFCFGx744bkNWum914SqWvWFAoVgtBQ2Lff4e3kCCFEtpAhjJnXoX18I4iUKYTvkMoukS/8vQzCwqBcWejezdupyRtKldLo2V3fnjlHApMQomDbGyzzdaWXyaTRob2+vXqNzbuJEUKIbCJDGDMvPiYEB0N0tJQrhG+Qyi6R5zkcij9n6pnqmNGarKCVAaNG6vdq7Tp9JUshhCiIYmMVhw7p2zJfV/rED2VcvdYmC50IIfI8l0uxRoYwZlrVKnqnA5sd9uz1dmqE0Elll8jz1m2Aq1ehWFEY0M/bqclb6tTWaNoEnE6YO18KK0KIgunwEf0HeoniUKWyt1OTN7RuBVYrXLni4uQpb6dGCCGy5uAhuH4dAgNlCGNmaJpG+3b69pZtUqYQvkEqu0SeppRi+gw9Qx0xXMPPT1piMmrUCP2eLVws3Y6FEAVT8D4972vaFJnzMZ38/DR3gXDDRokdQoi8bfVaPR/r0kmGMGZW+3b6fdu2HenxK3yCVHaJPG3nLjh1Wp9IcthQb6cmb+rQHsqXhzt3YPlKb6dGCCFyX/zk9C2aSwEnIzp31O/Xxk1eTogQQmSBw6FYFzeEsWcPiQOZ1bSJXia7eRPp8St8glR2iTztj7heXYMHQZEiEpwyw2jUGDlcv3fz5itpiRFCFCgxMYrDR/Tt5k29mpQ8p107MJng7Dm4cFFihxAib9q1B8LCIShI5m3MCqtVo2ULfXvrNu+mRQiQyi6Rhx05qgjeB0ZjwkTrInP69QE/P73AcuCgt1MjhBC55+AhcDigdCmoUMHbqclbihTWaN3KDEjvLiFE3rV6jV5Z36MbstBVFsUPZZR5u4QvMHk7AQIM1w9jPLcZ49V9GK4ewBB9273PXn8osX3fT/l1IScwXtiK8dJutLDzGKJuQexdlLUwrlJ1cNQdiKP+EDAYM56mizsxXdyB4eo+jNcOosXece+ztZ2Irf0zKb7OeGE7lu3fYLh+GFxOXCVrY2s1AWft3skPVi5MZzdi/qIJMX3ew9HgvgylcfqfeibapxeUKZ31wKTduY5572+Yzm5Ci7gMmgFX0Yo4a3TH1vJRsBbO3IltkZj3/4np9DoMt8+A7S52o5mAgJI4yzXB3mgkrkqtk70ss9+LzChUSKNnd8WSpbBwkaJJ43vfTy38MubgaRgv7sAQfhHsMWD2w1WkAs5KbbA3ewBVzHOm54CfemCIuKJfA1AojfNn6hpjwrHsnYbx9FoMYedBuVCFy+Ko1hl7y8dQhUonf03Ubaybp2A8uwEtOhwVWBJH7b7Y2j8LZv9kh1u2foVl+9c4KrYmZtT/MpY+IXJYZvMN7fYZzIfmYbh2EEPEJbToMHDawFIIV1BVHFU7Ym96P/gHZT5x0aFYgqdjPLseQ9hFcMSg/INQRSvirNgS1fUZEv8syVA8cdoI+H0IhtBzGY4ne+Pm62rWLHvm6zIdmIXx0m4MIcfQom+jxYSDwYwKLIWzbEMc9YfgrNY5Q+c0XtyJ/+yH0n189Mj/4YyPK9GhmM5vxXhxJ4YbR9EiQ9Cib4HBjKtYZZxVOmBvPj7l/DEdena3sHWbnY2bFA/cn7n7Zwg5gXnfdIyX96DduQqOWLAEJKSv2YOowJKpvl67dQrLvukYL2xHu3sDlEIFFMdVooYej1o+mqH0+M8aj/HSrnsed/eZ3WAJTEhH2EUsWz7DdH4b2CJRRcphbzAMe6sJKf4Wsy5/BfORBdke04XIDpnNy3IynuRE+SQmRrkr63v20LIUT3KMPQrz/r8wnVqjlyXskSi/oqhC5XBWbIm98WhUUBXvpE0pTMeXYjr2N4brhxgTHUbfPoHcii0Ji5tgbDIIZ+WUZ/zX7lzFvHcaxnObMdy5Ck67nncXq4KzUmvsLR4Cc0DG0iNlAZGIVHb5AMv2bzGdXpPh11mX/h/GW8kHRGvRtzFc2IbpwjYcRxYSc9+3Gc4orOvfxxhyLEOvMZ7fit+8x9GUC2UOAJMfxusH8V/yT2L6vo+j/lCP4w23z6DZI3GWbZJs371cuJAQmO4fm/XCifHCDvwWP4cWG+H5/M0TGG+ewHRoHtEjf0MVr5ah82qRN/Gf+YCe2SbmcmAIv4gh/CLmY0uI7fgC9tZPeByS2e9FZg0drLFkqWLdBnjuGUWxYqnfV8Ol3fjPfxLNHuW5wxbpvmfmg7OJGfoNzsrtcjjlcWkKOYHf/Ccx3L3m8bwWeg5L6DnMh+YRfd/3uCo0T9hpjyFg1oMYbp9BaQZUQEkMd65i2fMrhhtHiRn5q+e5wi9h3vUTymDC1v3V3LgsITIks/mG8eJOLLt/Tr4jJgzj1X0Yr+7DvP9Pokf+D1WiRsbPf34rfkteSJbHanevw93rGC/vQTXoDcXqJxyfgXhi3vMbhtBzOMs1zXA82Ru3RHrzZtnTmm/Z+iWGqJueT7ocaOEXMIRfwHx8Kbam47B1fy1b3u9ezIfnY934cfIdTjvGkGMYQ45hPjib6KHfeuaP6dS9m4W334vkyFG4dl1RtkzG7qPp+DKsy15Eczk8d8TewXj9MMbrh/X0jfgNV6nayV5v3vkjli1T0ZTT43kt4jKGiMuYzm7McGVXZmiRIfj/NRZD1C2UwYTyL4Yh7ALWLZ9jCLtAbJ93PY43XAnGdGQhyloYW6f/y/H0CZFRmc3LcjKe5ET5ZOuNIURHQ7my0KA+mHdlPp7kBMONo/gt+Efy37eRNyHyJsbrB3GVrIXDG5VdMeH4L5yI8fIej6eDrGEEWcPg5CnsZmeKlV2mIwuxrn4DzRHj8bx25yqGO1cxXdyOo95gVNH0l2GlLCCSkmGMPkZZi2b8NWg4S9XFUa0zrqIVPfaZLu3EsvnzXEmTZfs3aMqFq2hlIp9YT+STG3GW1we+W7Z84XGsduc6hlunUEBs11cgg63pM/5SKAUdO0DVKlkroGiRIfgtftZdCFNoOCu0wFmuifsYQ+QN/Oc/pfdeygDL9q89KrqUJRBH1U5QtqHncVum6r3JUpGZ70VG1a2rUac22O2wdHnax1rXvOFR0eUqVBZHtS64CpdzP6c5YrCuesPjdc5qnXHU6o2jVm+0+gPc245avZN9d11lGqQ/8fYY/BY+7RHcnGUa4KzYCqXprema7S7+C/6h/ziIYzq2RG8hA2KGfEXUkxuI7ab/aDNd3I7xwnbP617/PpozFnuTsbhKJi90CeFLMpNvuPyL4yzXBEf1rjhL1fXYZ4i6hXX9Bxk+p+HaIfwWPOVR0eUqUgFHlY44K7TAFZC8x07G4sk1LDu+R2kGYru/lqF4EhWlOBZXbsrO+bqUwYSreA0cVTrgqNwOZS3isd+ybzqGK/vSfz7/II/8Muk/pSX8nFNGC84SNVM8jyuwFI6qnXCWa+rxGi02Ar8lz0PSBox0KFXKQJPG+vbadRl8scOGdfWbHhVdrmJV9N8zASUS0hcdimVD8p5P5r3TsG6e4q7oUpoBZ4laOKp1xlmmoV6wzSJnmYap3ncMCW3G5n0z9IouzUj0uNlEPbkJW4tH9H2H56GFXUg4qXJhXfs2Ggpbu4lp9loTwpuykpflRDzxSFs2lU9WrdZ79/bsAYa71zMdT3KCFnEF/9kPe/y+dQWWxlG5HY6KrT1+d+c6lwP/eU94VHQpSyGc5ZtxztSBM3eq41IpVzUYT63BuvwVj4ouV1C1uPjUJHPlHikLiBRIzy4f4KjdB0fd/jjL6pUrgT/3TN8LjWZszcdjb/4Qqkh5/TnlwrL+AyzB09yHmY8sxNb1ZdDSX7dpbzwKW2ApXGUbYwg9l67hE4brh/XrqdHNPeTPUbsfxivBetfUqNv6zI+AZfMnaMqJs2hlXKXrpTtdACEhyr1qYIaGTDjtGM9uxHjtALaOL7ifNgdP9+gGHdvjvziajNX3bf8G69Yv9esLv4D5wF/YWzyc7rc0XEoUADQjUePmooKqEBQURNRf/8B8eB4AmnJhuHYQZ5GECWMy/b3IiCT3ZOhgjQ8/USxarBgzCgyGFO5vdCjGW6fdD11B1Yh6cD6YrHFdv4diCD2rX3/4Bf1zDygOQGyP192v8w8K4k5oqP5AuQj4OWFokrIEYs9At3HT0UXu4ZEAtpaPYes8Sd93ZCF+y18GQIsNx7zje3dLjPGG/p1V1qI4q3cDwF5/CNZ17+jpv34YZ+W2+rFnN2E6vRZXQAm9W7MQPiiz+YarfHOixs7EVbaRx4974+l1+C/8R8LjK3szliClsK74D5rTrj80Wont+z6OOv08DjNcO0iR4tXAFfc4PfEkLl+xbPgQzR6FvfHojFWSA/sPgtMF5cpBuXJZjyegxxBnxdbgXyzhSXtUskKB8cpeXOWbpuvtXCVrETNoaor7jBe2YzqZsJSuo05/971xJ7dCC2xt/6H3tI37fA1XgvGf/TCa06Y/jgzBeG4zzlopDBO9h549NI4diiJm1xrMNUKwt3osXa8z3DqJFhuekPZKbYgZ8Yv+eyUmnMBf+uhDpwDjlf0er9XuXMWy6VP3Y1exysQMmOL5HXDaMZ7bnOHrScze9P50DWOK/866StXGFVewd9QfgmWP3ivAcOMIzrih/aYDMzHeOIqzRE3sTcdlKX1C5JTM5mU5Fk/ImfLJseDbQHF69dCyFE8yLY14Yl3zpkdjvK3bq9ibjvUo02m3TmetUi6N90+Lec//MF474H5sb3AfsV3/A9ZChBxTPP6UokLRW/w54rxn7xp7NNZVk9HQKxld/sWJHfCp+/c2AMqF8eIulJ9n5WpapCwgUiI9u3yAo94gHHX6o4pmbGbcmPu+x9b1lYSKLgDNgK3TJJTBnPBUbARa1O0UzpBGmpqMxVmzZwbn8Egpo000OWFcRmy8sAPzyZUogxlXqToZShfArDkKhwOaNIaGDe6duRuuH8ay7j0Cf+iC/6JnMJ7d6LHfeGlnQmo1A46Gw92PHQ1HeBxrOrIwY4k1JnwOWAt7jKd3la7veazFcwarzH4v0iO1e9KjOwQGwqXLsCe13yBGi8dDV8laekVX3D5XyVrufQotXUNojWfWY0jUs81ef6jHPCj3fH2SuVXsjUa6tx31BqOMVvdj89HFoFwJ6Usm+XcWpw3rOn0Iiq3jvzI/f5sQOSyz+YarVG1c5Ron+8HsrNHNs4XVZCUjjOe3Yrx10v3Y1m5isoouAFfZRmhFE8WyjMSTE8tRfkWJ7fDPDKUNIDhYP2d6V9+6VzwB9MqixIVDAHMAjlp9PJ/L4L1MjXnfdI/H9mYPeDx21BtM9Og/cFZp7/H5uso3w1G7r8exhtAkQ+7vRSlc57Zxn+E1VvfuwnMVXiL2dAYKsIl+q0BcXIwvxPkV9ejxq6yeMcG8/y80Z6z7cUy/j5IXTo1mnDW6pT89WZFiYTPxBM1x+6NDsW7RKy5t3V7z6B0mhC/JbF6WU/EEcqZ8Yrdr1KgOtUw7sxRPMupe8UQLPYvxbMLKH47Go7A3G5es84IqUQNVvHq2v3+alAtz8B/uh86StYnt9RZY9bJMndpQPAguh5dg780WHi81HV3sMZ+orfurnhVdAJpBH/qYgd/bUhYQKZEIm4epwFIp7zBZUNbCaIkyEmVJayrw7OEqUx/j5T2YTq/D1m4imKyYTujj4VxFyoN/EMrpwLLubf25knWSVZzcS8QdxYJF+nZavbq0uzcwHVuC6fACj4IWkGyiQY+KQJOfR5qUn2c3WsPNE/owj3QOjXBWaY/xhr6mvRYThnnfdOwNhqFuhWE6PNd9nCuwJM5MzJWSEem5JwEBGr17KeYvgCVLFa1apnCPLYE4yzZ2t+YYz2/FcHEnrnJNMFw7gPH8Vvehzupdwex3z7QlLqwptAy3dCf+rgOeLUGapv89ROmFIi02HC30HKp4dXfBSIsNx3hmHc7q3TAfWeR+qauMPtzUvPtXDGHn9e74vjBRqRC5xHhmnWfPm8rtM/b6c54/np3Vu2LaNwPj9UP6JMFBVXDU7pvsh3p64gmuhHgS2+GfmZrseG+w/n/zptkTT1Jlj/bofaU0I45KbdN4Qfpod65iPJ0wdtBZrmmyCp+0hsgl3afS+eNdC7uI+chCTEcX4gy/RCBAXL3VlZv+VEzrxYm4ilfFVbic3lsPMJ1YjqPeIFzFq2M8uxFDyHH3sY5anhVziQuBrmKVUQElMG//BsPtc2A04ypdD3vdAVlbVAEwnV6H8dJucMTqEyeXbYyjZs9ksc1VugGc3Ygh5ASGkGO4StXFFBdPFJr7c7Fu/gwtJhx77b6pTtoshM/KQl6W1XiSWWnFk5uO8oTZghjT3ZnleJIeGYknprOb3L2fABy1euuvu7xHz4+KlsdRoyeuJFOjZNf7p8Vw84THcEFH7b4Yz2/DeG4TWtRtVEBxHmnfhk//7srWbdCyRUKMNSWqVFMmP5zlm+m/s0OOgcGoD5ut2x+VwSGaUhYQKZHKrnzIcP2wR425s2zjdFU4ZJWt7T/wm/c4hvALBP7QFQxmd1CztX8OANf2nzDeOo2zVF1cSVbqS48FCyE6GmpUh7ZJfyM6YjGdXqNn4Oe3ekxWq8wBOGp0x1F3AM6qHT1elnj+Ac0ehRZ5010ASDqxvKZcGMIve/ReSout9ZMYrh7AFNd7zLr2Haxr38EBxK/L5AqqSsyATzO+2kh6ZOKeDOinMX+BYtMmuHNHUbhw8kJgTJ938Z/3BIY7V9FsdwlIoRu5o2onYpJMyJsS7fZZjOe3uR87q7TP8EIASeeQMIRdwBX/QyX2Dlp0aLL9zuLVcdQZgGv3Lxhun8Fv4TP6pJSRN/T0V26Ls1JrfajMzh/i5m/4r9fnbxAiJxlPr8N8ZAE4bWgRVzDePOHe5yzTEFvXlzJ2vhtH3dvKYMJv9sMe8QnAsu1r7G2eggGT3c+lJ56Yg//Q40npejgaj87glcLdu4oTcb/1k/XsymQ8Scy67EU0RyzERGC8fgjNdjfuPpiJ7fZKpib6T8q8/y+PtCXt1ZUmpTwaJwCcFVulfnzsXUwnlmM+sgDD5b0ehTDlV5Rz/r15d0l/rvm34s+JKn0rWxotxPT7EP+Fz6DFRmC4c5WAP4Z5JhMNR72BnpO4uxx641McLfYOAb/2R3PZE445rM+HGdPvoyz17jKdWpXsOVdACWL7vI+zWif3c/amYzEdnIUh6hb+00fqE9THzQvjaHAfqmhFDNcOYTo0F2UOwNYlY39LQnhLZvOy7I4nmZVWPPn8oD4UbViFPzAGZz6epEW5nJhOLMd0bEmG4okhUfwEsC5/GUNkiMdzlh3fY284gtieb6S44iuQLfEsqaRpM+//M1naHjROo3HHJny08wuUKuWOCYaQRK81GAn4bWCyBa8sW6cS2+01HI1HpTtNUhYQKZHKrvzGHo119eseT9naPJUrb+2s0p6Y4T8nLO3riMFZppF7aV8tMgTXuk9RaMR2fQXzgVlod65hXf4yWvRtVEBJHHX64qyZ8hwzNpti7jz9x/XYMVpCpnklGPPhBZhOLPOYe0sZzDirtMdRdyCOmt1TrUxyVmyF8fpB92PL+vewdXsVXE4sGz9JISF3039TrIWIGf4j1pX/xXx0UbLdyq8YtrYT3fN7ZJes3JM6tfXKxNNnYM1aGDok+flViZpEj/0LvwVPeRRm4zlL19O/d+loGTPvm+FRaLI3y/j8Ja6KLeFEwqz6lk1TiO37Psrsj3XjJ8lX6YqN+wzNfkSP+h3L5s/ilhu+jatwuYTlhgHLho/0+RsajcJVpgFa2AXM+6ZjuHlSHyJToQX2Jve7u24LkZcZQs96tNrHc1ZoSUy/D1PvUZyaRBVbmsuRrOUV9EYEy/ZvcJaqArUG6++Xjnhi2fa1Hk+6/xc0A8ZTqzEdX44WdVOPJ6nEknj7DoDLBRUrQqlS2RNPEjOdWpPsB7wyWont/qrHcPlMc9gwHZzjfugKLKVPmp5O5t0/e6xq5qjZK3mhVbkwnt+G6cgCTKdWe0wmrEx+OKp3xa/lGMJLNSMw1szBvxSxt+D4CaibzlkKXBVbETVmOv7zn/IYzh7PWbkN9pYTPBvtYiI88vWkhRj387a7+C15nuj7Z2ZrnDVE3cJv0USiR/2hD9dC720fPeZPLJunYLqwDS06HFexytgbDNPnMFNKn5ReuYht8ySqcFkMN45iPjATLfQ8WAJwVm6HvdEoMGWs17sQOSmzeVm2x5NMSi2erHc+xpKLvejQOIRSh79JO56kUT5JjeHqPgzXDsKdq/gdTigDpDeeJI2XSSuT4pkPzUH5F0u2qmt2xrNkaYtKX9qaFN/Pi/yTixemUzluQTEtKiG/1myRKZ/face6+g1U4bI4q3VOV5qkLCBSIpVd+YktEr+Fz2CMm4gR9Mn5cm2+CsBZuS3RScddx7Fs/ARi7+CoNxhXuaYYVr+BMW4i83jm439ja/EIti4vJnv9mnVw6zaUKgk94i7JcHGnR68ihYarQnPsdQfoc5Gko7LF3vxBzIfmuCeANB9fhvn4stRfkIGhl1rEZfzmP4Xx1ik9fdYiOMs2wmSLgKsH0WLC8Fv2bxwnVxIz6PMMLSKQmqzeE03T6NcXvvpG8fdyxdAhyVsvjOe34rfkBfc9cxUuh6tETQy3z2CIuIzxxlH8Zz6ArcuLaU/ob4vUW/3iuIpWxlmtS4auF/RJMc27f3FPTGm6tBPTTz1SPV4lHqoaUILY3u+keJzxwnZ9/gZrUWI7Pq9P6Dx3gsePPtPZjZgPzydqzIwc6/YuhLcZL+8m4PfBxAyairNKh3S/Ln5i+njKrygxg77AWaYBptPrsC5/CS1u3gzXuk+h5kB3PniveKLZ7mKvNxhX+WZYNnyIZc9vHseYj/+NM6ha8vkR4wTv85yvKzviyb1ozlj8Vk3GcWY9MQM+y1KlhunEUo9ecvbGoz3niUyDed90LJumuB+7ilcnpvfbyd/jyCL8VrzifqwMJpyV2uKoNwBHzV5gCSQgKAhCQwkIgA7tFWvXweo1irp10tfybTqyCOuq/7onyncFVcVVtBKGkKMYIm9iurAd44wRxPb90D3fW9LvFeirbsX0/wTlH4Rl+zdY9v4ed6wN847viR34WbrSA+AqUUNfFaxiK1SxSiiTH8brh7Fs+DBhagKnHcvWqcQM/znh/hSrROzAz4hN4ZymQ3MxXjugV4A1fxjjyZX4/f1/HitRmk6vxXR8KdEjfpMKL+HTspKXZTaeZEVK8eSnp/XY868GU9Ai7x1PUiufpCRb4knS+Gk0E9P/U32KlMt78VvyvPv3qHnv79haTYC46VdyPJ65kufBtjZPY2vxMFrkDfyWPO9ezKpJ8X0sX7+Jyg91SfG1rqIViRk0FVfRypgPzsK68WMANBSWbV8Tnc7KLikLiJTIBPX5RUwE/nMfw3QxYXlUW5P73atQeJvh8l69Z5O1MLbOkzBcP+Su6LI3GsXdf2zXf6gDlj2/6i0hiSilmDlLL5gMH6ZhNse1DiR5H0e9gcT2eF1fTTGdmY0qXJbood/iCkg+r4lCS/a8SjpZZxr8lr7oruhyBZYm6pGlxAz/CfM/VhGbaMUT06lVmI4uTvd505Id96RPLzAa4ehROHtOee6MDtUDbFxFl6NqJ6IeXUHMsB+IemQZjrjKKg2FZdMUtLCLqb6P6chCd3d4INkKM+lmDiD6vh9SHRrrSjovTXo+Q5cDS9xKLLEdngP/IL1AZo/CVaQCkY+tJnrEryjNiCH0HJatX2U83UL4GHvLR7n7r6PcfTaYyIf1H/fxNFsk1uUvgz063edLOl+kveFwnJVagyUQR72BOBPP2XL3Btrts9xLfDxRlkJ6PLl20F0wsTcZ4xFPjKFn0aLDUjxPcNx8Xc2aZl88SSzy2T3cfeEIkU9tJnrI17iCEoZnm06vxbx/RobPmZg5OOH1ymhO99Ab884fsa59J2ElrKCqRA//xV1I8pRoqCIa9iZjie35Oo5UFhHp1UO/i6vWgMOhku1PSrt9BuvKV90VXfZGI4l6eKkeTx5dgTNutWa9lf9NiGuJVym0ntvaPYsKqgp+RbF1+j+P717SiYvvJbbH69hbP46rfFNUQAl9rspKrYm573uUKaGHmfHiLohLe5piItyVi7Fd/wPKhd/qN9BcDpxlGhL51GZi+n6gn/NKMOZ9f6R1NiFyVWbzsuyOJ9np8mXF0aPQvMReakSmL56kVD5JTbJ4Uqd/xuNJ0oWravTAWUtvZHBW64Sj3qCE93PaMF5NWLE2u+PZvdLmCiyJrf0z4FcEVaIm9jZPe+4/uzPRaz1jh63FI3qjlLUQ9paPeny/DNcO6nMlp4eUBUQKpLIrP4i6jf/shz0yOVurx7H1+K8XE5WIy4l1bdzyrd3+DxVYCtOZ9e7dthaP6D9OWz3ufs6UaMJd0CcRPnUa/PxgcELejqtQGZxlEiZmNB9dTMDvg/H/fSjmnT+iJVqCNs0kVmhO1KPLien5JvaGI7DX6Y+t1QSix83GVaKm+zjlVxRVuHwaZ0qgRVz2WFbZUau3/qM5jr2R5zh047kt6TrvvWTHPQkK0mgf1wC2dJlngcV0ZoNHd2h7oxEJvQmMZuwNE+Zb0Vx2jIkqYJNK/ANJmQOwNxiW6rH3okrUIOqhxcT0+wh749H6Z9h8PNEj/4ezakKrkEJL13AW895pcfPL1cPRZAxa2AV3K5W9wX2oohVwVm6LK25hAdOZdWmdToi8xeyHKl4dW5cX9R48cQyRNzFePZDGCz2popU8Hif9EepKtEIt4K5ET1WieGJrN1GPJ6fXunfHt2wnjida5PVkp4m4ozipt0PQrGncqbMpnnhekIYKKIGzRndiBn7usct0ak3GzxfHcPWAx/B7R62+aU5EH8+y+XOsmxN6dDlL1SV61DRU4TIpHu8KqoYrbvEADYUleBqBP/fC/8+xmIOno0Xd8ji+bRsoVhRu3YIdO1M6oyfT8WUePZvsjUcnzIViDsBRb7B7nxYbnrDMvSUQlaTA5vHdMlpwJZrcWIu5x/cqnVRgSff9AD3GpVaZmphl6xcYom/jqN4NZ/UuGK8Gu4de2puOQwWUwFF/iL74Anh8p4XwCVnJy7IpnmSn5SsVBpy80Tpudb10xpOk5ZPUuAqVwVk6YbEQ8/G/MxxPXEniZ/J4miR+JsrnciSeeaTNcxkSVaSCR2O1K6iqx/6YsAju3IlrYEl6XWn8LtBQCcMN00HKAiIpGcaYx2l3ruM/91EMt8+4n4vtNEmfH8JHmA/8hTHkKM4SNTC1nQARdzx+IMeP2U+8jLAWddPjHPG9ugb0gyKJJkxXQVWIHjcb7dYpfVz60cUYIm9gvHkc4+bjWDZ/lv5uu5ZAHI1HeUyGqIVdxHgl2P3YUbVTuicl1O7eSNdx7uNTmXMko7LrnvTvp7Fpi2LFSnjycYXJFNf7ITKj1xWW4vOuM5vdAQPQW6gSr5ySGUYLjnqDPFq7iAnHmmjlF1f5pvd8Hy0yBMv2rwGI7f4aaAa0yITvZOJ5JlyFymAEj/1C5CeuJPOqaNG3UjkyOWe5JphOrkh4bZJKBy0m3ONx0gqMpBLHk/jJ2D3/NvU44hFPHMkHle3fD0pB5UpQsoSet2VrPEmBq1DS+5h8/rL0SryCLaRjrkOlsKx/H0vwNPdTzvLNiR76bZr5oat8U6Ie/ltfaOXIAszHl6LFhGO8ug/j1X1YNnyAo3onTDV746jZC7MlkD59FDNn6Sv6dmifdrw0ZCFOOss18Wg402LCEy8W7/Hdutf3yoPLAYZUfh67nGh3PStPVQo93BIzhBzHvP8vlNFCbFd9SKjHdzbR90IVKgMRVySeCJ+WlbwsK/Eku7hcimXLYWTVmVQ2H8tYPIlK39+mCqpC9JgZWBc9i/nuVVzRYRgiQzIUT5zlmng8TtoYlCx+BiScI6fjmbNsY5RmcE9DkDy2h3k8vh1TnJ279WlonOWa6Csyp3IdHnm3ZkCl2Os4DVIWEIlIz648TAu7iP+sB9wVXUozEtPr7XRVdAX81INCU+pRaEo9/GeNz7lERodi2fIlALZur6IZ9R+QiZc3j8/UEv+ITbz//HnF1u16HdPI4Sn/cFYlamLrPImox9cSPexH7HUGoEx+aCiMl/fgt+YtAr/vjN/8JzGeTL6ykvHsRkgySaIWeg6/v19Ac+oFJYWGvdmDnq+7uNN9HwtNqYfp8PyENBXybCk3nVoFiSZ0NB+c5XkNRSukeG2ZldV70q4tFCsGt0Nh1+5E500U9AHMh+YlzCvgtOuPE6ejSMo94Vzbf/F4bLvHKmLW5a943OukjBe2QZIKQ+3uDfz+noQh0Y8TW/PkK0cmZdn4MZotEnu9Qe7WGlL4zkLC9zbxd1aIPMUWiWX9B2iJKp/jGa4fxnx8qcdzriKeLbppxRNHnf4oLWGFKNPxZRBX+aRFhngsQU6RcvowtNQkiSfxFRIeK+rG/cD2iCeG5PNYJZ2vK7Gs5J2mQ3MxHfsb7DGeJ3XYsG6Z6vGUq4hnnm86PN8jjzNeTKVrVNRtTIkm4XWWbYwrSaHI84JcWFe+5lHR5ajaiejhP6e7gcFVrjG2HpOJfHIj0QOn4qjeDWUwobkcqFPr8Fv+CoHfdcS65AVGt9KHDG7dCrdupT2U0ZU0nhycrddCAtijMCVZ2CXxPfMoyIDH/I/Gc5vdq2kBOCt5Lt/sP2u8+z4HJJnTxXR0CX6LnsVweY9nYp12LBs/xpCosc5Zsk6KwzkT0yeld2Jv+SiqmN6jweM3UKIGoYR4ksWGHyGyKNN5WQ7Gk+yybz/EhIYysV4m4klGf+tZC6OVa0jUIysyHE+c1bugrAkVPcbTayH+96ct0iMOKKMVZ7mmyd4+q2WBVAUU95hvzRB6FsOVfXFvqjAdXuBx+K6brdm2Xc/bk+bdpqOLIa7SzHDzpMdQUVe5pmCyuh9LWUBklPTs8gHm7d9gOrNBf5BkMkLT2Q0YZiTMwxF9/0z3tt+iZzGEX3I/VoGlMJ3bhOncpmTvEdPjdQgonu40Wde8ieF63CSsSSqBTIfmYIx7DxVYipghqY9Ptm76FC02HEetPjgrt3M/76zQEvb+Tz/fkYXY2z2N6cjChP2Jlj+fNUfPHDu2h4oV79GrymDEWbUjzqodiY29i+nEMsxHFmK8vAfN5cB0diPa3RtE1+rl8TLr2nfR7l7HVaIGKrAUWuQNDDdPeSxjbm/xkHvVpfRQRcrrrRdxw0sNd68T+Gs/nGUbY7eFY73qOe7fXneAx+PMfi+y656YTBo9uyvmzINVqxXt2ur33lGtC8oS6P5emM5uIODXvvoE9bdOe6ympaxF9d5wSWh3rqKOJ/T2cFRui0o0XDQzzDt/wO/SblzFa6AKl0GLDsNw8ySaI2E+CEfNXjhr90nzPIbLezAfXYyyBGLr/G/3867i1XEFlMQQdRPT8aXYm49HiwzBeEmvCXQl+s4K4S2ZyjdcTix7/4dl7//0xSaKVwejGe3ONY/V+kAf9uYq2yjd6VGFy2BvPh7Lnl8BMIYcJeDXfrhK1MR47aBHS7Whyz/TPFeq8aRSK9ijV56bDs/H3voJj3iiUoh9e5PM15WiTOSdhpDjWIKnoYxWXKXq6EMLbZEYQ44la722NxqZ5vWmxnxwtnuOK9CHwaV5/N7fMR9OaIRQmgGMZvyWv5TsWEftvu5J4FNktOCs3Rtn7d4QdRvzscVYjy2Ba4fQHDGYTyynstNOwwatOHQYlq+EcWNTP52jdh8s2791r5JlPjAT48WduIpWdE9QH89VrLLHd89Ruy/OPf9zD200H5iJ4eoBlF9RjFcSKqqUwZzB3u4K06nVmE6txhVQElep2oCG4eaJZCuO2ds8keaZTEcWYby8B1fhcthaP+l+3lmuCcpoQXPaMB1ZiKNOPwxX92MIPafvl3givCzTeVkOxhPInvLJsuWK5+p9RhFzRIbjSab/NjPzW9xkxdb+Waxxc0YZIkMI+G0ArtL1MYQc96jQtzd7IO2K90yWBdJi6/gCxgvb3EPR/ec8grN8M/23cdx8xQARRRqz42Zbim0Hp1NBuSY4avV2r9RpOrtBv64iFTBeCfYY2m5r8yQZIWUBkZRUdvkAQ9jFhHkoktCiQzGmuqT2HY/HhrvXMJy8lvKxnV8k7fbVJGm6dTrVNBnuXoe4bvyuVHrtgD6poOnQPJTJn9iunj+qnVU74googSHqFtZtX2DeP8Nd4+6o1Ma9Il9YmGJZXJ3I6FHpGz7oZi2Eo9FIHI1G6kvEHlmYrJU4Mc0Z615lKSlb0wc8Mrv0iunzPv6zH3YHJC02AtP5zcnP3+apZBlkZr8XacrgPenZQ2POPMWmzRAdrfD318A/iJje7+K37N/uFbEMEVfcq5/EUyY/Yvp9kGLPAfP+v8CVsASwvWnavbrSS3M5MN48DjePJ9vnqNWHmH4fpn2CxPMBtZ3ouSy2wYit4wv4rXwVY8gxAr/vDI4YNKcNZQ7A1m5itlyDEFmR1XzDcOcqhjtXU9znCqpGzKCp6R7KHc/W8XkMYRcwnV6T6nvYmj1IYOuHITTl9KUZT6p1xlGpDaaLO7Bu/gzz3mnueOIKKOEeihIvIkJxOm7kf/x8XfeUmXiSyuegNAO2tv/QJxrOKJcT84GExg1XQEkcdfqm+ZKk851oypXqnFCuErXSn5aA4tibP0ShHs8TfmI7piMLMB1dAsDA/hqHDisW/60YOxoMhjR6ZXd5EcuGD93DYQyhZzEkWalZ+RUlpv8nYEjoJYhmIGbQVPznPOKuJDKGHPV8ndFCbJ/3cJWqk/7rSjS1syHqJobzyYelKM2Arf1zOOr0T/00tkgsmz4BILbLy2BOmNge/yDsrR7Hsv1rTOc2EfhtB4hbrMUVWBJ7y4czkF4hck5W8rKciCdZLZ9ERSmuBx9kaJt5OI0ZiyeJyydZkoF4Ym96P9rtM1ji5rg1RN3CkKRTg6NWb2wdn8+R90+Lq3Q9Yvu8h3XFf9BcDjRHDKYL2zyOcZaogRoylUILNMLC4egxaNgAYnq/g//dGxiv7tOvK/ScOx+HuO9Wp0k407kSY2JSFhCJSWWXyBlKYV3zNhqK2DZPoBJNFAuAZsBZoSXq5gk0exRa1C1chcriqNMXW/vn3MFvwSKw2aBObWiS/k5VyZNTrDK29s9ia/cMhkStDfFsrSdgOr0Ww80T+pAClxNVqBTOCi2xNx6tj+3OzPsWr0bUw0sw7/8T05kNGG6fhti7aCYLroBSOMs3wd5oFK6KLTN/cZl0r3sC0KA+lC8PV67Alq3QM260h7N2H6JK1cG8bwbGizsxRFzSV9Qx++MqUhFn5TbYmz7gHrLhwWHDdHCO+6GrSAWcNbpl+XrsTcaCtSiGG4f17sROGyqgJM5yTXA0GIazWvIeZkmZ9/+FMeQYruIJ8zd4JL3hMKItgVh2/YTh5gkwmnFUaoOt4wu4SmagkCiEL7EEENPrbYyXd2O4fgQt6pbe48pg0ifkLlkHR80eOOoOgERLdaeb0ULM4C8xHVuC6dA8vULCFoXyL4qrbBPsTcfirNKBVNuk0xFPYoZ+g2XrV/qE51E39XhSqxfa3ZBkhanguPm6qlaB4sUz2IhC2nmno+EIsBTCcGUvhvBL7rwISyCuopVxVmyJveGwTPdkNZ5e41F4dDQambnPJJu5StXB1uUlbJ0moYWdp7sffPkNXLqkD4Nv0zr119qbj8dZoYXeq+vyHrSIq3H3LABXsao4q7bH3uxBjwVe4qnCZYl6YB7m4GmYTizHEHoeXA5UoTI4K7fF1uJhVKIJ5dPDUXcA0f7F9J6Q1w5iCLukV0SZrKjCZXFWbIW9yZh7Tm5s2fY1hsgQHJXb6T3hkrC1fwZXYEnM+6br6TYHYq/STl9JMsm8RkLktkznZTkdT7Jo/XrFv+q8g0FTxLZ5PP3xJEn5JLvc87e4pmHr8V+c1TpjPvAXhqsH9PtpLYyzdAPsjYbjrJ12g0eW3v8eHPUG4SxdD8vuX/VeXlE3wWjFVbw6jtp9sTcZg9HsT5vWLtasha3bFA0baGAtTPToaZgPzMR07G/9ve0xqMCSOCu0wN58fIZ7/YGUBURymlIqIx1+0iU0hZbZoKCgFJ8vSOQeJLoHDhvWFf8BILbPe2BKHvBsNsXIMYpbt2Hyaxq9e2ZvgPGmvPRd+PFnF/+bBu3bwUfvZ980f3npHuSUgnAPgoLSnvQ0u6+/INzT/CrbP7tU4sznX7qYMxfuGwr/97xMXZpVqX1u8fe5fVv46AO5z77I1/LLe8ULyP6YkZt87X4XRM/808W+/fDk4xoPjsvhckVcDLJYLNzp9kaKZZ2CYsVKxdvvKWrWgN9+LhjxQP7ec156YkbB+LaJPGnNWrh1G0qVhO5dvZ2agqtXXCXjjp0QHp7tdeNCCJGrgtMzX5fIsmFD9fu7bQdcviyxQwjhXVeuKvbt1ztn9cnEKHKReW1ag8EAp07D9RsSD0Tukcou4ZOUUvw1W88MRwzXMJmkUOItVato1KoJTies2+Dt1AghROaFhWVivi6RKZUrabRprQ8ZnbdACjdCCO9aHjcHcMsWULq0lCtyU7FiGg3q69vbtqV9rBDZSSq7hE/asxdOnwY/Pxg00NupEfG9u1atlgKLECLv2qcvjkv1ahBUTAo7OW3EMP0e/71UnxhaCCG8weVSLFuh50H9+kre7w3t2+n3fet2iQUi90hll/BJM+N6dQ3oB0UKS1Dytp7d9W7f+w/AtesSpIQQeVPwPj3/kl5duaNNa6hcCe5GwuK/vZ0aIURBtf8AXL0KgYHQuaO3U1MwtW+n/797j77CuxC5QSq7hM85d16xbbteuTJyuFR0+YLSpTX3aphrUl6xXgghfN7euPm6mjeT2JIbDAaNMaP1ez1ztsLhkAKOECL3Lflbz3u6dwM/P8n/vaF6NShXDmw22LnL26kRBYVUdgmfM2uOHpA6doCKFSUg+QoZyiiEyMtCQxVnz+nb8ZX3Iuf16QXFg+DGDWksEULkvogIxbr1+vaQgVKu8BZN0+jaWd9ev1HKEiJ3SGWX8CmhYco9geSYURKQfEm3LmAy6SupnDkrQUoIkbfE9+qqUUOfLFfkDqtVY0RcL+0ZfymUkvghhMg9y1eCzQ61akKdOt5OTcHWpXPcvF3bwGaTWCBynlR2CZ+ycJHevbVuHWjcyNupEYkVKaKvrAWweo0EKCFE3rJrt55vtWzh5YQUQEOHgL8fnD4jw1eEELlHKcWiJXreP3iQhqZJQ4c31a8HJUpAZCTsCfZ2akRBIJVdwmfYbIp58/WANHqUBCRf1LOH/pmsXou0zgsh8gylFLv26NutWkhsyW1FCmvulZVn/CWxQwiROw4egnPn9NXde/XwdmqEwaDRuZO+vVGGMopcIJVdwmesWQe3Q6FUSX3InPA9HdvrPxiuXIFjx72dGiGESJ9Ll+D6dTCboWkTb6emYBo1UsNogD174dhxKeQIIXJefK+uHt2hUCFp6PAFXTrpn8OmzciiJSLHSWWX8AlKKWbP1TO8YfdpmEwSkHyRv79Gh/b6tgxlFELkFbv36v83biQrcXlL2TIaPbrr239K7y4hRA6LuKNYu07fHjRA8n1f0bQJFCkCYeFw4KC3UyPyO6nsEj7hwEE4cQIsFhg80NupEWnp2V3/wbBmHTidUmARQvi+PXvj5+uSAo83jR2j3/91G+DyZYkfQoics3KVPg9wjerQoL63UyPimUwaHTvo2xs3SRwQOUsqu4RPiO/V1acXFC0qhRFf1qY1FAqEmzelRUYI4fuUguB9+narll5NSoFXq6a+0InLBX/NlkKOECJnKKVYHD8x/UCZB9jXxA9l3LARXC6JBSLnSGWX8LprNxSbNunb8cuTC99lsWh07qxvy1BGIYSvCw+HqGgoWgRq1/J2asS4sXqc/3sphIZKDBFCZL/DR/TVXy0W6N3L26kRSbVsAf7+EHITjh7zdmpEfiaVXcLrFi5SOF3QojnUqC6VXXlBr7hVGddvkMklhRC+7fZtPY9q0UJfCUp4V7OmULeOPrxo7nyJH0KI7LdwkZ63dO8GhQtLvu9rrFaN9u307XXrJQ6InCOVXcKrnE5Y8re+PXKEBKO8ollTCAqC8AjYtcfbqRFCiNTduq3/37qlxBhfoGmau3fX3PkQFSUFHSFE9omIUKyJm5h+6GDJ931V9276Z7N2vQxlFDlHKruEV129BncjoUJ5aN/W26kR6WUyaXTrom/LUEYhhK+yOyAiQt9uKfN1+YzOnaBiBbhzB5Ys9XZqhBD5ybIVes/RmjVkYnpf1rY1BATAjRtw6LC3UyPyK6nsEl518aJeUTJ8mCbDS/KYnnFDGTdththYqfASQvieW7f0CeqrVoGyZSTG+AqjUWPMaP3zmDlbyXB4IUS2UEqxIG4I49DBMjG9L7NaNTp30rfXrJUYIHKGVHYJr7l1GyIjIcAfBvTzdmpERjVsAGXKQFQUbNvu7dQIIURyISH6D2jpOex7+vXRh8Nfvw5r13k7NUKI/GBvMFy8qE9+LhPT+74e3ROGMkqjh8gJUtklvCa+V1ffPhAYKC0veY3BoNGjm74tQxmFEL7G4VDcuqVvt2snMcbXWK0aI4bpn8v0vxRKSRwRQmTN/IV6PtKnNwQESL7v61q1gCJFIDQU9u33dmpEfiSVXcIrLl5S3Lypbw8bIsEor4ofyrh1O0RGSkFFCOE7Dh4GhwPMZqhXx9upESm5byj4+8Hp07Bjp7dTI4TIy27eUmzarG/LxPR5g8mk0aWzvi1DGUVOkMou4RXzF+gZWsmSUKGCBKS8qlZNqFxJnwh00xZvp0YIIRJs25YQZ4xGiTO+qEhhjcGD9O0Zf0lBRwiReUv+1ld5b9QQataQPD+v6Bk3lHHDJrDbJQ6I7CWVXSLX3b2rWL5S365cWYJRXqZpGj2669sylFEI4SuUUmyNm0uwVEmJM75s1EgNo1Gfa+foMYkjQoiMczoVi5YkTEwv8o6mTaB4kL5y8u493k6NyG+kskvkuuUrIToGAgP1zE3kbb3ihjLu2g1hYVJQEUJ434ULcPkKaAYoUcLbqRFpKVNao1dPfXv6nxJDhBAZt2073LgBRYtA1y7eTo3ICKNRo3v8HMAylFFkM6nsErlKKcWCuMkjK1aUlpf8oHJljdq19K7j6zd6OzVCCAFbtun/BxUDo9GrSRHpMHZ03DCWjfqcnkIIkRELFun5Rv9++uIXIm+JX5Vx4yaIiZEYILKPVHaJXLV7j4Nz58HfCuXKeTs1IrvEBykZyiiE8AWbt+h5UalSUujJC2pU12jXFpSCv2ZKHBFCpN+Vq8q9wMWQQZLn50UNG+jlwuho2LjZ26kR+YlUdolcNXNWDAA9eoJJWtvzjfh5u/YfgJAQKagIIbwnJERx8JC+XaqUd9Mi0m/cWL2Qumw53L4tcUQIkT4LFymUgtatZNRIXqVpGn1769vLV0j+L7KPVHaJXHP7tmLVGhsAQwZIMMpPypbRaNRQb5Vfu97bqRFCFGTrN+p5UcP64Gf1dmpEejVpDPXrgc0Os+dJYUcIcW82m+Lvpfq2TEyft/XppX9+u/fAzZsSA0T2kMoukWuWLAWHAxrUh5o1JSDlNz1lKKMQwgesXafnQV26SJzJSzRNY9z9+mc2fwFERUksEUKkbcMmCAuHUiWhfTtvp0ZkRcWKesO5ywUrV3s7NSK/kMoukSucTsXCxbIkcH7WvRsYDXD0GJw/L4UUIUTuu34jYQhjl07eTYvIuI7toVIluHsXFv/t7dQIIXzdwriJ6QcN1DCZpHyR1/XprX+GK1ZJOUJkD6nsErli+w64fh2KFElYXlbkL0FBGm3a6NvLZLy9EMIL1m/Q/2/cCEqVlIJPXmM0au6VGWfOUtjtEkuEECm7cFGxbz8YDDCwv7dTI7JD925gNsPp03DylOT/Iuukskvkivglge8bYpUlgfOx/n3jWmRW6r35hBAiN61Zq+c73btJnMmr+vSCEsXhRgisXuvt1AghfNWSpXp+37Y1lC4teX5+UKSwRof2+vbylVKOEFknlV0ix125qti+Q98ePdLPu4kROap9OyhcGEJuwp693k6NEKIgOXdeceSoPpy6Wxdvp0ZkltWqMWK4XnCd8adCKSnwCCE8ORyK5cv17YGy6FW+0jduKOOqVfrnLERWSGWXyHGLFutLArdsAVWqGL2dHJGDLBaNXj30bRnKKITITUuXxbXyt4USJaTwk5cNHQwBAXD2HGzb7u3UCCF8zdZtcDsUigfJxPT5TZvWUKyo/vnu3uPt1Ii8Tiq7RI6y2xVL4pYEvm+IFD4Kgn5xQxk3bIS7d6XCSwiR8xwOxfIV+vaAfhJr8rrChTWGDNK3Z/wlcUQI4WnJ33q+0K8vMjF9PmM2a/SMaziXoYwiq6SyS+SordsgLEyffyN+DLbI3+rWgapVwGaDdeu9nRohREGwfafeChwkrfz5xsjhGiYT7NsPhw5LgUcIobtxQ7F9p74tQxjzp/ihjBs3ScO5yBqp7BI5Kn7yyL59pOWloNA0zd27S4YyCiFyQ/wQxj69JNbkF6VLa/TupW9PnyGxRAihW7ocXC5o2gQqVZT8Pj+qUweqVdUbzmWhEpEVUtklckxIiGJHXMvLgP4SjAqSPr30paAPHIRLl6SQIoTIOddvKLZs0bf7yxDGfOX+MRqaBpu26AsQCCEKNpdL8XdcQ/og6dWVb2ma5i47xn/eQmSGVHaJHLNshd7y0qQxVK4kAakgKVlSo1VLfXuJBCkhRA6aN1/hdEHzZlC9msSa/KRqFY1OHfXtGX9KLBGioNu3H65eg0KB0FVW3c3X+vQCoxGOHoPTZyT/F5kjlV0iRyRueZHJggumwYP0z33JUn2hAiGEyG7R0YpFS/TtUSMl1uRH48bqn+uKVXovPiFEwbVilZ4HdO8OVqvk+flZUJBGxw76tvTuEpkllV0iR+w/AJevgL8/dOvq7dQIb+jQDkqW1Bco2LjJ26kRQuRHy1fCnTtQoTy0b+vt1Iic0KC+RvNm4HTCzFlS4BGioIqNVazfoG/36SUVXQVBfIeJFSul4VxkjlR2iRwRP3StZ3fw95eAVBCZTBqDBujbCxZJgBJCZC+XSzF7jp63jByhYTBIrMmvHrhf/2wXL4HwcIknQhREW7ZBZCSULQONGno7NSI3tG6lN5yHR8DmLd5OjciLpLJLZLu7dxNaXmRi+oJt4AANgwGC98F5mVxYCJGN1m+ECxf1uVv69/V2akROatUSateC6BiYt8DbqRFCeMPKuCGMvXohjRsFhMmk0S8uvv+9TMoRIuOksktku9VrITYWqlaFBvW9nRrhTWVKa7Rvp28vXCxBSgiRPZRS/G9afK8uCAiQgk9+pmmae+6uOXMV0dEST4QoSMLCFNu269u9e0p+X5AM6Kt/3jt3wQ2Zt1FkkFR2iWwXX/M+oJ+GpklAKuiGDNa/A0uXQ0yMBCkhRNZt2QqnT+vzQo4cLnGmIOjSWZ+bLTxCX/hECFFwrNugz9tXuxZUqyp5fkFSsaJG0ybgcullCSEyQiq7RLY6c0Zx9Ki+VGzf3t5OjfAFrVtCuXJw966+mpYQQmSFUorfftcrzoffB0WKSMGnIDCZNMaO0T/rv2YpHA5pPBGioIgfwthbJqYvkOKnxVm6XOFySd4v0k8qu0S2ip+YvkN7fclYIYxGjZHD9O/C7DkKpSRICSEyb+06OHYc/Pxg9CiJMwVJvz5QPAiuX9enTBBC5H+XrygOHgKDQV/4ShQ83bpAQABcuQL79ns7NSIvkcoukW3sdsXKuJ478UvFCgEwoL8epM6dhx07vZ0aIUReFROj+OZ7vcL8gfs1gopJrClIrFaNUSP1z/yP6dLCL0RBsGq1/n+L5lCypOT5BZGfn0bPHvr230sl3xfpJ5VdItts3QZh4VCiBLRp7e3UCF8SGKgxaIC+PWuOBCkhROb8OVPv1VOmDIwd7e3UCG8YOlhfgfPcedi02dupEULkJKWUDGEUAAyMG8q4bgPcuSNlCZE+Utklsk38xPR9e+tzawiR2IhhGgaDvprKqdMSpIQQGXPjhmL6n3re8Y8nNaxWiTMFUaFCGiOG69v/myZD44XIz44fhwsXwWqFLp28nRrhTfXqQrWqYLPJMHaRflLZJbLFrVuKHTv0bRnCKFJSrpxGty769u9/SOFECJEx3/2giImBxo2gezdvp0Z408jhGv5+cOIkbJeh8ULkWyvienV17AABAVK+KMg0TWPQAP07sGixNHSI9JHKLpEtVqwCpwsaNoDKlXM3GJ09e5bJkyczYMAAOnXqxNChQ/nkk08ICwtL9zneffdd2rZtS9u2bdm3b1+y/S6Xix9++IGBAwfSpUsXnn76aU6ePJniuRwOB+PGjePxxx/PVEYcn460LFmyhLZt2/LWW2+l+Hzif127dmXgwIE8/fTTfPXVV5w5cybD580u4x+M64K8Hk6fceTIewgh8p9DhxUrV4OmwXPPaGhazsUZiSnJn08rpqSW7rTOm1VFi2oMGaxv/y69u4TIlxwO5e7B0ycXhjBme96//0Cy/fkp7/dGeaJvH7CY4eQpOHosW08t8imp7BJZppRiadwQxv653Ktr9+7dPPLII6xcuZJChQrRoUMHLBYLc+bMYfz48dy4ceOe59izZw+LFy9Os/A0bdo0fvnlFwIDA2nVqhWHDh3iueeeIzIyMtmxs2fP5uzZs0yaNClHC2RpqVixIv3796d///507tyZ6tWrc/bsWf744w/uv/9+Xn/99RTTntNqVNfo3AmUgh9+jM719xdC5D0ul2LqV/ExBurWybl8VWJKytKKKQMHDvRKTBkzWsNihoOHIHhfrr61ECIX7N4DoaFQrCi0bpXD7yV5f4p8rTxRpIhGt7ie3QsWSSOHuDeTtxMg8r4jR/WJYq1W6JGLQ0tiYmKYPHkyMTExPPbYYzz++OOAXvn21VdfMX36dN59912mTp2a6jliY2P54IMPqF69OoGBgRw8eDDZMQ6Hgz/++INatWrx888/Y7FYWL58OW+88QYLFixg3Lhx7mNv3brFTz/9xNChQ6lTp072X3Q6NW7cmMmTJ3s8p5Riy5YtfPrpp6xYsYIbN27w5ZdfYjLlbjbw0IMaGzcpli63Me5+jUoVpVu6ECJ1K1fD0aP6iq5PPJZz+YXElNSlFVM+++wzr8SUkiU0BgxQzF+gD41v3kxiiRD5yarVemVGj+45Oxew5P2p88XyxNDBGitWKtashWf/oShcWPJ+kTrp2SWyLL5XV9fO+qp7uWXdunXcvn2bKlWq8Nhjj7mf1zSNp59+mnLlyrFjx440h1j88ssvXLp0iRdffDHVTPrKlSvcuXOHXr16YbFYAOjduzdWq5UTJ054HPv1119jMpl48skns+EKs5emaXTs2JGff/6ZUqVKERwczNy5c3M9HXVqa7RvCy4XTJsurTJCiNRFRSm+/V7PJ8Y/oFGiRM7FGIkpGRMfU2bPnu21mDJujIbRqPcAOXxE4okQ+UVUlGLDJn07p1dhlLw/Y7xdnmjYAKpXg9hYfRodIdIilV0iS2JiEsbT5/YQxuPHjwPQtGlTDAbPr7LJZKJx48YAbNy4McXXnzp1iunTpzNw4ECaNm2a6vvcuXMHgMKFC7ufMxgMBAYGuvcBHDhwgGXLlvH0009TtGjRTF1TbihevLi71Wr27NleScND4/XvyooVcP68FFCEECn7Y4bi1i0oXx5GjcjZ95KYkjklSpTwWkwpW1ajT299WxY+ESL/2LwFYmKgYgWoXy9n30vy/szxVnlC0zSGDNbLEQsWyZyNIm1S2SWyZOMmiIyEcmWhWdPcfe/oaH3Op8RBI7H4AJFSS4zL5eKDDz6gcOHCPPPMM2m+T9myZQG4cOGC+7mIiAjCwsIoU6aM+3yffPIJdevWZfDgwRm/mFzWo0cPDAYDly5dStc8BNmtQX2Nbl3NOF3w7Q8SpIQQyV29qvhrpr498WkNiyVnG1QkpmSeN2PKA/drGAywZSucPCXxRIj8IH4Vxt69cnZBEpC8Pyu8lff36QV+fnDuHBxIPmJUCDep7BJZ8nfcEMa+fcBgyN2eXcWKFQPg2rVrKe6/cuVKqvvnzJnDoUOHePbZZ+/ZalKiRAnq1KnD33//zb59+4iIiGDq1Km4XC46dOgAwLx58zh58iSTJk1K1irkiwIDAylfvjygrz7jDf96PhCjQW+927dfCihCCE/ffK+w2aF5M+jcMeffT2JK5nkzplSupNGti74tQ+OFyPtu31bs2q1v9+6Z8+8neX/meSvvL1RIo2d3fXuhTFQv0iAT1ItMu3ZNsTdY3+7fN/cnB2zWrBn/+9//2Lp1K2FhYe5gBXDjxg127doFQFRUlMfrbty4wXfffUfz5s3p379/ut7rueee4/nnn+epp55yP9e+fXs6duxIeHi4exnhBg0auPfHxsZiNpszHazutVxwVhUrVoxLly4RERGRo++TmurVjAwaCAsWwdffKr7/JvcrTIUQvmnffsW69WAwwHPP5HzLPkhMySpvxpQHH9BYs07/zlx4RFG5ssQSIfKq1Wv1eV3r14OKubCIkeT9WeOtvH/oYI0lSxXrNsBzzyiKFZN8XyQnlV0i05atAKWgRXMoVy73M5g2bdpQp04djh8/zgsvvMCkSZOoVq0ap0+f5oMPPsDhcAAkKyR9/PHH2O12XnzxxXS/V4sWLfjf//7HsmXLuHv3Lg0aNKBv374AfPPNNwBMnDgRgF27djFlyhTOnj2L1WqlX79+vPDCC1it1gxdX1qB89KlSxw4cCBD50sqfoy7t5YzBnj0YY0VqxRHj8GaddCrh9eSIoTwEU6n4ouv9Pxp0ACoWSN38iiJKXk3ptSsodGxg2LzFr1316uvSKFHiLxqZdwQxj45PDF9PMn782beX7euRu3aihMn9DLp2NG5+vYij5DKLpEpLpdi6XI9c/NGry7QM9UPPviA//u//+Po0aMeK6gUL16cCRMm8P3331OkSBH382vXrmXTpk08+uijVK1aNUPvV716dXcAinf06FEWL17Mv/71L4oVK8aNGzeYNGkSNWrU4P333+fs2bP8/PPP+Pn58fzzz2fo/ZIu9ZvYkiVLshycwsPDATzuT24rXlxj3Fj46RfFN98q2rfN3RU9hRC+Z+kyOHESCgXChMdyLz+QmJK3Y8r4BzQ2b1GsXAWPPqy80ggnhMiaCxcUx46D0QDdu+fOe0ren3fz/qGDNT76RLFwsWLMKO824AvfJJVdIlP27YerVyEwELp09l46ypUrx++//86GDRs4ePAgsbGxVKtWjT59+rB+/XoAqlWr5j5+8+bNAOzcuZPg4GCPc8VPPDllyhQCAwMZMGAAAwcOTPW9lVJ8/PHH1KxZk/vuuw+AuXPnYrPZeOeddyhfvjzdunXj0qVLzJ07l6eeego/P7/svPxMi4yM5PLly4Dn/fGGsaNh6XK4cgV+/Fnx/HMSqIQoqKKiFD/8rDekPPKwRlAuD0uQmJI5vhBT6tfTaNVSn+tn+p+KSf+SWCJEXrNytZ7/t2lNrub/OZL3fz6Vwrbr3Ne8Aj27pf7ekvdnXs/u8NU3cOkS7NkLLVvkehKEj5PKLpEp8b26uncDPz/v/qA0mUz06NGDHj08x8AdPKgvz9G8efNkrzl06FCq5ztx4kSqr0ts8eLFHD16lO+++w6j0QjAuXPnKFasmHuyRoD69euzdOlSLl68SK1atdJ3UTls9erVKKWoXLkypUqV8mparFaNf/8LXpikmDsf+vRW1KsrhRQhCqLZcyE0VF9ufthQ76RBYkrG+UpMGf+Axq7dir+XwcPjFSVLSiwRIq9QSrFilb7dO5eGMCaW7Xl/XKVXm+rF03xfyfszLyBAo09vxfwFMHeeomULyfOFJ6nsEhkWFaVYv0HfHtDPNzOVW7dusXbtWooWLUrXrl3dz0+ePDnV7rxPP/00wcHBfPfddzRt2jTN89+5c4dvv/2Wfv360aRJE499sbGxHo9jYmIAfGZVldu3b/Pjjz8CMGrUKC+nRteqpUbvnoqVq+GjTxQ/fgcmk29+t4QQOSM8wsWff+kNKY8+omE2+04eIDEldbdu3fKZmNK0CTRqCAcPwZ+zFM/+w3e+Q0KItB06rI8a8feHjh28nRpdlvL+r7+izbW/sFgs3Enl/Hk57/eV8sTw+zTmL1Bs3gpXrirKyxB2kYhv/LWIPGXtOoiJgcqVoEF976bl9OnTyYLBjRs3+Pe//01UVBTPPfdcjnT1/f7777HZbMnG3FevXp2oqCg2btwIgMPhYO3atVgsFipUqJDt6cgIpRRbt27lscce4+bNm7Rs2ZKhQ4d6NU2JPTtRo3BhOHkK/pzp7dQIIXLbb/+L4W4kVK+Ge0nx3CYxJf3iY8rIkSN9JqZomsZDD+oFnYWLICxMlqQXIq9YETcxfZfOuT9qRPL+9PO18kTVKhqtW+mLps2dL3m+8CQ9u0SG/b0sbmL6frmzHHxapk+fzoYNG6hTpw4lS5bk9u3bHDhwAJvNxqOPPsqAAQOy/T1PnjzJ/PnzefbZZylRooTHvhEjRjBz5kxee+012rRpw6VLlzh79izjx4/P1fH1Bw4c4K233gL0ABkeHs7x48cJCwsDoF+/fkyaNAmTyXeygKAgjWf/Ae99qPj5V0Xb1lCrlrTOCFEQhIYqpk2PBmDCoxoGg3f+9iWmpCwvxZQ2raFObTh+AmbNUTwxQeKIEL7OblesXadv59YqjIlJ3p+yvJL3jxyusXOX4u+/4bGHFQEBku8Lnfd/lYg85cwZxcFDYDRCvz7eTg106dKF27dvc/LkSQ4cOEDhwoVp27Yto0ePpkWLnJml8NNPP6Vq1aqMGDEi2b4SJUrw+eef8+WXX7J9+3YKFSrEuHHjeOKJJ3IkLam5dOkSly5dAsBqtVK4cGGqVatGgwYN6N+/P9WrV8/V9KRXv76waTNs2gJvv6cPZ7RaJWAJkd9Nm66IjoZ6daFTR++lQ2JKytKKKWPGjKFkyZK5mp60aJrG+Afg1cn6PJBjRysKF5Y4IoQv27ETIiKgRHFo3iz331/y/pTllfJEm9ZQsaI+Uf2KVXDfEG+nSPgKTSmV7f39QkNDkz0XFBSU4vMFSX64B59/4WLOPOjaGd55K+OjYN33wGHDuuI/AMT2eQ9MluxOqk/LD9+FrErtHoSGKsY/qggN1VdqnPh0/h1tXRC+B0FBQWnuz+7rLwj3NL+5cUMxZpzCZocpH2u0bpVNFRMFPM7kFl/8m3O59Dhy7hw8/ljC0Ebhydc+u3vFC8j+mJGbfO1++5LXXnexfgOMHgnPTswnv/viYpDFYuFOtzckBuWwOfMUn3+hqFIZpv3mvR7i8eTvPeelJ2bkk9xE5IaYGMXyFfr24EHyw1HkjKAgjZcm6d+vv2bBnr0y/l6I/Oy3aXpFV8sWJlq19HZqRH5gMGiMH6fHkVmzFdHREkeE8FUREYotW/Xtvn2kfCEyp18fCAiA8xdg9x5vp0b4CqnsEum2bj3cjYRy5aBlzvToFQKAjh00Bg3UJ5t8610lkwwLkU9dvqz4e6m+/dwzAV6fB1LkH927QfnyEB4BCxd7OzVCiNSsXQd2O9SoAbVqSgwQmRMYqNG/n749e66UG4ROKrtEui1aomccgwd6v2uoyP+em6hRpTLcuqVPWp8DI66FEF72y28Kp1Ofb6NFc7O3kyPyEZNJ48H79d8q0/+U3l1C+KplK/S/zX7Sq0tk0Yj7NDQNtm2Hi5ckzxdS2SXSKfHE9P37ejs1oiDw99d4Y7KG2Qxbt8Hc+d5OkRAiO505q1i5Wt9+/DEp5Ijs17eP3rsrNBRmz/V2aoQQSV24qDh8BIwG6NXD26kReV3Fihrt2ujbs+ZIZZeQyi6RTvG9ujp2gBIlpFAicketmhoTn9a/b19/qzh5SgKXEPnFz78qlIIunaFuHYkrIvuZzRoTHtG/WzP+VETckRgihC9ZHterq3VrKV+I7DF6lP49WroMQmUalAJPKrvEPcXEKJav1LcHD5RAJHLX8PugQ3t9Poc33pKhKELkB8eOKzZsBE2Dxx6RuCJyTo/uUL2aPufon39J/BDCV7hcihWr9O2+vSUOiOzRvBnUqQ2xsTBvvuT5BZ1Udol7Wr0G7t7VJ6aXlbJEbtM0jVde1ChZUl9h5YuvJHAJkdf9+LP+d9y7J1SvJoUckXOMRs09THb2XLh1S2KIEL5g3364fh0KBeojR4TIDpqmMS5uvsa585FG8gJOKrtEmpRSzJ6nZxLDhsrE9MI7ihXTmPyqPunk4r9hzVoJXELkVfsPKHbs1OeAfPRhiSki53XsAPXrQUwM/P6HxA8hfEH8EMZu3cBqlVggsk+XTlChPEREwJKl3k6N8Cap7BJp2rcfTp8GPz8Y0N/bqREFWfNmGg+O07c/+lRx5aoUWITIa5RS7l5dA/pDhQpSwBE5T9M0nvx/9u47von6DeD455JuOtkUyqbsPUVkI1sFRVCGyhARcSvgBkFQf4KCAxBFWbIRUfbee1NmyywtLdBFd5P7/XEkUDpI2zRt2uf9evWV9C65fO8ud0/uue8Ypn3XVq2G4BsSP4TIS/HxKlu3a89lFEZhbXq9wgt9te/VoiUqKSlyzi+sJNklMrXsXq2uLk+Cp4cEI5G3Br+sUKc2xMbCuC8leAlhbw4e0m6iODnCywMlpgjbadxIoWkTSEnRBjwRQuSd7TshPl6rfVO3Tl6XRhREXbuAj4/WVHbjprwujcgrkuwSGQoNVdm5S3v+bG+5KBF5z8FB4fNPFIoUgdMB8PsfcsEihL1QVZVZs7Vj9pmnoWRJiSvCtka9rqDXwY6dcOiwxA8h8sradfdupndWUBSJBcL6nJ0V+t0bmfGPuXKDvLCSZJfI0IpVKkYjNGkMlSpKIBL5Q5kyCh++r30f5y2AI0cleAlhD3bugrPnwNUFBvaXmCJsr3JlhWee1p5P+1EufoTIC9euqxw+oo3G27VLXpdGFGS9nwFvbwi+gXnkT1G4SLJLpCsuTmX1v9rz556VixKRv3Rop9CzO6gqjJ+oEhkpFyxC5GcGw/2+uvo8Bz4+EldE3hjyioKnJwRdgn/+zevSCFH4rP5XiwUtmkPpUhILRO5xdVV4sZ/U7irMJNkl0rX6P4iJgXLl4LHmeV0aIdJ68w2FCuXh1i2Y/K2KqkoAEyK/2rAJLl0GDw/MncYKkRc8PRWGvKJ9B3/9TSUiQmKHELaSlKSyZq32/OmeEgtE7uv1tNZ3V0gIrNuQ16URtibJLpFGcrLK4iXaj78X+yno9RKMRP7j6qrwxWcKjo6wazds2pLXJRJCpCcpSeW337WYMuBFBQ8Z7ETksad7QrWq2k29aT9JsksIW9m5CyKjoERxrWaXELnN1VWh/wva744/56okJ8s5vzCRZJdIY9NmCAuHYkWhc6e8Lo0QGatWVWHQAC2A/TBNmjMKkR+tWg2hN6F4cXi2V16XRghtsJPR7yvodNooXfv2S+wQwhb+udeEsUd37TgUwhaeeUq7rg0JhZV/53VphC1JskukYjSqLFhk6ldFwdlZApHI3wa8CJUraXcKp8sdeiHylbg4lT/nacflKy8puLhITBH5Q40aCn2e1Z5/N1UlPl7ihxC5ydQxvU4H3btJLBC24+KiMHSw9p2bM1clOkbO94WFJLtEKlu3weXLUKSIlgUXIr9zdFQY86F2h379Rtgrd+iFyDcWLlKJjNT6f+zeNa9LI0RqQ15RKFVKu9tvGkBBCJE7Vv59r2P6ZtIxvbC9bl21m+MxMTB3npzvCwtJdgmzlBSV3+ZoB3+/5xXc3SUQCftQq+b9O/RTpqokJEgQEyKvhYaqLFykPX9tmCJNVkS+4+am8P672vdy6XI4clRihxC5ITZW5d812vNne0ssELan1yuMHKF995avhOAbcr4vDCTZJcw2boar18DTE55/Lq9LI0TWDHlFoWRJ7Q79vAUSwITIaz/PVElKgoYNoE3rvC6NEOl7rLlCzx6gqjBhkkqMNG8Rwur+WwNxcVCxAjRrmtelEYVV82YKzZpCcjL8MkPO9YWBJLsEoNXq+uNP7aB/oa9CkSJy10XYFzc3hbdGad/bhYvg6lUJYkLklWPHVbZs1fpmefMNBUWRmCLyr1GvK5QrC2FhMPUHiR1CWJPBoLJ0xf3+gCUeiLw0coSCXgfbdsDefXK+L+gk2SUAWPE3BN8AHx8ZLUvYr9at4LEW2h2bKT+oqKoEMSFszWBQmfajduw91UMbNVWI/MzNTeGTj7QLoA2bYPMWiR1CWMuuPRASorUckVHeRV6rUlmhz70WTDI4ScEnyS5BVJTK739oB/qwIQpubnJhIuyToii8/aaCkxMcOgxbtuZ1iYQofFb8DecvgLs7DBks8UTYhzq1FQYN1J5/O0Ul9KZcAAlhDUuXacfS008hI/KKfGHIKwqlS0HoTcz9VYuCSZJdgjl/qty9C1WqyGhZwv6V9VUYNED7MTXtJ5XYWAliQthKaKjKrF+1Y+61YQo+3nJhI+zHSwMVataEu3dh3JcqKSkSP4TIiTNnVY4dB70eej8t8UDkD66uCu+9c29wkmVw/oKc6wsqSXYVcoFBKiv/1p6/OVJBr5dAJOzfC32hXDm4fRtm/y4BTAhbUFWVb75TiU+ABvXhqZ55XSIhssbBQWHcZwruReDkKbnjL0ROzZ2nHUOdOkKJEnKNIfKPx1ootG8HBiNMnKSSmCjn+4JIkl2FmMGgMvlbFYMRWj8BjRtJEBIFg7Ozwrtv3R9e+ILcsREi123YCAcOgpMjfPiegk4nMUXYH98yCqM/0L678xbA/gMSP4TIjouBKjt3g6LAoP4SD0T+886bCt7eEBgkN8cLKkl2FWLLV8KZM1CkCObEgBAFRbOm2h0boxH+N1XFaJQgJkRuCQ9X+eFep/Qvv6RQvrzEFGG/2rVV6PWM9vzLr1Ru3Zb4IURWzZ2vHTft2yIxQeRLPj4KYz7UvpuLlsCRo3KuL2gk2VVIBQer/DpbO6Bff02heHEJQqLgeXOkgpsbnA6A1f/ldWmEKJgMBpXxE1Wio6G6P7zYL69LJETOvTFCoWoViIyE8RNUDAa5CBLCUpevqGzdpj0fNFCuMUT+1aqlQs8eoKowYZJKTIyc6wsSSXYVQsnJKl98eb9flZ7d87pEQuSO4sUVht4bDe6XmSoRERLAhLC2+Qvh6DFwdYEvPlNwcJALG2H/nJ0Vxn+u4OoCR47Cn/PyukRC2I/Zv6moqtZNSpXKEhNE/jbqdYWyvhAWBhMnS2uQgkSSXYXQr7+rnDkLHh7wyUfSr4oo2Ho/A9WqaqNr/TRDgpcQ1nTqtMrv9zrxfvdtBb9yEk9EwVG+vML772rf6T/mqhw+IjFEiEc5c1Zl2w7Q6TDfcBQiP3Nz0wYncXSEXbth4aK8LpGwFkl2FTK79qgs/Et7PuZDhdKlJAiJgs3BQbtYURRYt17a4wthLXfuqHz2hTbISccO0KVzXpdICOvr/KRC925a/49ffKly65bEECEyM2OWdox0eRIqV5LrDGEfatRQePtN7fs6a7Yq1wsFhCS7CpELF1TGjdcO3N7PQJsnJACJwqF2LYWne2rPv5sqwwsLkVPJySqffK4SFg7l/eD9dxQURWKKKJjefUuhShWIiNASXikpEkOESM/+AyqHj4CjIwx+WWKCsC9P9YCunbWbG5+Pl5sbBYEkuwqJ8HCV0R9p/XQ1aQxvviEBSBQurw5TKOoDV67CnD8leAmRE9N+UjlxUhvNd/JEBXd3iSmi4HJ2VpgwThvw5Nhx+PU3iSFCPCw5WeWH6fdvqpcuLXFB2BdFUXjvnfs3Nz7+TG6Q2ztJdhUCt2+rvPmudge+Qnn48gvpQFgUPp4eCu/d63vlr0Vw9qwELyGyY+UqlZV/g6LAZx8rMqS8KBT8yimMvTdE/YK/YPceiSFCPGjpcrh6DXx84JWXJC4I++TiojBxnIK7uzaa++RvVVRVzvf2SpJdBVxEhMpb76lcuwalSsF33yh4eEgAEoVTmycUOrQDgxG++lolKUmClxBZsXOXytQftONmyCsKj7eUeCIKj3ZtFZ57Vnv+5VcqN0IkhggBcOuWaq41P+JVqe0r7Fu5clptXr0eNm6S0XjtmUNeF6CwuHTpEhMmTGDv3r1ER0dTrFgxWrVqxdChQ/H29rZ4OYcPH2bkyJGPfN2wYcPo0mUw736gEnwDShSHaVMUqVIsCr2331I4fFQl6BL8/kcKVStvJyAggICAAM6ePUtCQgLdunXjs88+y3Q50dHRzJ49mx07dnD79m2KFStGmzZtGDp0KB4eHjZaG1FYLVy4kOPHjxMYGEhERARJSUkUK1aMhg0b0r9/f6pWrWrxsv79918mTJjwyNcNHvIpi5Z2xWiEHt3gpYE5WQMh7NPI1xQCAlQCzsAnn6v8Ml1r5hgSEsKSJUs4c+YMwcHBREVFodfr8fPzo127dvTr1w9XV9csfZbBYGD58uX8999/XLlyBb1eT7Vq1ejbty/t2rXLpTUU9mrEiBEcPXo0w/lTp07lsccey9IyT506xZ9//smJEyeIj4+nVKlStG/fnpdfftn8fVZVle+mqsTHQ+1aMliJKBiaNFZ492349juV2b+rlC8P7dsqHDlyhCVLlnDixAliYmLw8vKiatWq9O7dm9atW1u07JCQEHbu3MmePXs4f/48UVFRuLu7U7NmzSwtRzyaJLts4NChQ7z//vskJCRQoUIF6tatS1BQEMuWLWPHjh3Mnj2bkiVLWrSsYsWK0a1bt3TnGY1G1q1bB0DRovUZPlIlMhLKlIEp3yqULSuJLiF8vBXeexs+/UJl/sI4UhI+yfIyIiMjGTp0KNevX6ds2bK0bt2aS5cusXjxYvbu3cuvv/6Kl5eX9QsvxD1//vknCQkJVKlShSpVqgDaTZW1a9eyceNGJk+eTKtWrSxaVrly5TKMK7GxsWzfvh2A5X/XIykJHmvBvRFOJaaIwsfRUWH8FzD0VZXz5+Hrb1U+/RgCAwP566+/KFasGBUqVKBBgwbExMRw6tQpZs6cycaNG5kxYwaenp4WfY7BYODDDz9k9+7duLm5Ub9+fYxGIydPnmTs2LEMGTKEYcOG5eq6CvvUrl27dBOrJUqUyNJy1q1bx5dffonBYKB69eqULl2ac+fO8eeff7J7925mzpxJkSJF2LgJdu4GBwf48H0FnU5igygYnu6pcPWqyuKlMOErlf17Z7Nq1W84OTlRr149fHx8CA8P5/jx45QoUcLiJNXnn3/OiRMncHJyonbt2hQrVowbN26wb98+9u3bR79+/Xj77bdzd+UKCUl25bKEhAQ+++wzEhISGDlyJAMHarfCVVXlxx9/ZMGCBUycOJEffvjBouVVrFgxwxone/bsYd26dXh5leKnGQ1JSAT/avDtZIVixSTwCGHSrq1C924q//7ngItrF15+qSaNG9fiypUrFtVwmTp1KtevX6dt27ZMmDABBwftVPrdd9+xdOlSfvjhh0fWDBMiJ7755htq1KiBs7NzqunLli3jf//7H1999RX//POP+buZmQYNGtCgQYN05y1fvpzt27fj6FiP2Niy1KwJ4z+Xfh9F4Va6lJbweuc9lQ2boGpVeLJjDRYuXEjlypVTvTY2NpbRo0dz6NAh/vjjD958802LPmPRokXs3r2bMmXKMH36dMqVKwfA5cuXGTVqFL/99hstWrSgbt26Vl47Ye9GjRqFr69vjpYRFhbGpEmTMBgMfPzxx/TsqQ1pnZyczJdffsmGDRuYPn06Q4eNZuo0rfniy4MUqlSW2CAKltdfU7h2TWXXrv9Yteo3qvnX5rv/TUpVUSUhIYHg4GCLl1myZEnee+89unXrRpEiRczTd+/ezYcffsiiRYt47LHHaN68uVXXpTCSPrty2datW7lz5w4VKlTgjTfeME9XFIURI0ZQpkwZ9u/fz4ULF3L8WWvXarW6ou8+SUKiQrOm8OMPkugSIj1vj1KoVNGVFPUzTp3pQ+3addIkDtJz69YtNm7ciKOjIx988EGqZMKoUaPw8fFh/fr13LlzJzeLLwq5+vXrp/t9fe655yhXrhx37tzh0qVLOf6cf/7R4opB7ULVKvDd1wqurhJThGjUUOHNUdqxMGOWSmBQsTSJLoAiRYowdOhQQKvpb6mVK1cC8Nprr5kTXaDd9BwyZAgA8+fPz3b5hcjMv//+S2JiIs2aNTMnugAcHR157733cHNzY/Xq1Xz2RSQxMeDvDwNezMMCC5FL9HqFsaMTUdQfATfikybj6JS6lqSLi4u5lr0lJkyYQJ8+fVIlugAef/xx8/G2YcOGHJddSLIr1507dw7Q7pzrdKk3t4ODA/Xq1QNgx44dOfqcK1fj2Lx5JwA6fRcGDtBqdLm5yUWJEOlxdVUY97mCkxPs2w/zFlj2vn379mE0Gqlfvz7FihVLNc/JyYlWrVphMBjYs2dPLpRaiEfT6/WAdlGSEwcOBnPu3EnAkYqV2jP1OwVPT4kpQpj0fkbrv85ohM/Hq1y7nn6H9aabIpYek3fv3uX69esANGrUKM38xo0bA1o8SkpKykbJhcic6folve+fqY8ig8HAsWN7cHGBTz+SGr+i4Nq/fzsGQxRuRdoTGlqMD8eoxMXlzgAlpj5Xb926lSvLL2wk2ZXL4uPjATLssNrUr092a3apqsqGTSqvDN6K0RiPXu/P15MrM3yoDr1ego4QmalSWeGdN7Xj5NffVALOPjpwmY7V6tWrpzvfNP3ixYtWKqUQllu7di1Xr17Fz88PPz+/bC/ndIDK6DFarS63Ii2Z/r0XPt4SU4R4kKIovPu2Qp3acPcujPlIJTo6dRxJSEjgjz/+ALS79pYw/XaE9H8/mn47JiYmcvXq1WyWXhRUq1ev5ptvvuF///sfixcvJjQ0NMvLeNT1i9GofQdV4wU+eFehUkWJD6LgOnz4MACDBtbFwz2G06eW88KL3zB16vds2bKFlJQUq33WjRs3ANLcUBfZI3125TLTSIsZBRrTFzo7gSg6WuV/U1W2bAVD0noABg7qQisZCl4Ii/XsoXAxUGX5Sli58tHJLtOxmtGgEqbp2Tmmhciq+fPnExQUREJCApcvXyYoKIgSJUrw5Zdfmmt4ZdXe/Sqffq4SH6fFlffe7SLN4YXIgJOTwsTxMOw1lStX4YMxUZQpOQ2dThvM5PTp00RFRdGmTRtefNGydl6enp7o9XoMBgOhoaFUrFgx1XzTb0fQYk1WRl8VBd+cOXNS/T99+nQGDx7M4MGDLV5GZtcvQUEqAWe072CZ0qF0flLigyjYTN1C6HRRGJP7Y0y5xc1QWLwYFi9eRJUqVZgyZQqlSpXK0efExMSwdu1aAJ544okcl1tIza5c17BhQ0DrPP7hPnzCwsI4ePAgAHFxcVla7r79KgNf0RJdOuUWqIfR6/X0eU7G+xUiq0aNVGjSGJKStf8zOxxNdztdXFzSnW+antVjWojs2LdvH2vWrGHLli0EBQVRunRpxo8fT40aNbK8LFVV+XuVypiPVOLjAkC9iqenJ08+admojkIUVsWKKXz7tYJ7ETh1OoF169awZs0a9uzZQ1RUFB06dGDMmDEZxo2HOTs7U7NmTQD++++/NPP//fdf83OJNcKkYcOGfP755yxfvpxt27axZMkSXnvtNfR6PbNmzWLx4sVZWhbAxo0bSU5ONk+/fVvlrXcDMBoCASjrG5/u+4UoSGJiYgCYOXMmxYp5MurNGTi5bkTvNBtv7+oEBgYyduxYVDVnTRu//vprIiIiqFOnDm3btrVCyYUku3JZ8+bNqV69OnFxcQwbNozTp08TFxfHyZMneeedd8zVHi0dwj0+XuV/U428P1rl9m2oUB56P70JVTXQtGlTqfIoRDY4OCh8+YVC6Xs3ZA4chPDw3GmLL4Q1/fjjj+zbt4+NGzcyY8YM/Pz8GDFiRJo7+4+SkKAycbJWW9hggHK+WhPGDh065LjvLyEKgyqVFb6aoODkVBIHlz0813c3f//9Nx9//DHHjh2jf//+nD171uLlDRo0CICFCxeyYMECbt++TXh4OHPmzGHlypXmmpuW/n4UBd+rr75K165dKVu2LC4uLpQvX56XX36Zb775BoDZs2eTkJBg0bI6d+5MyZIlCQ0N5YMPPiAwMJAbN+4yfMQ+wkM/ArTvn3SZIgoDo9EIaH2iTp06lf4vNuCTj93RO9QiJv47HBxcCQgI4MCBA9n+jLlz57Jp0yY8PT0ZN26cnNutRJJduUxRFCZPnkzlypU5deoUQ4YMoX379gwbNoyIiAjzCD2enp6PXNbpAJVXhqn8vUr7/7ln4fdfFY4c0S5KunbtmmvrIURB5+GhMLC/Flji42HkWyo3QtImvFxdXQEy/MFomu7m5pZLJRUiLQ8PDxo0aMDUqVOpUaMGs2bNIiAgwKL3Xr+uMnykyrr1oNPBa68aiI7aDEhcESIrGjVU+HiMgqLA36sUFi0tSY8ePfj222+JiopiwoQJFt/5b926NSNHjgS0Zmjdu3enZ8+ezJw5k549e5r7h7Tk96Mo3Jo3b07NmjWJiYnh9OnTFr3Hzc2N7777jpIlS7Jv3z769+9P794duX71HfR6R555RmuSK98/URiYfvs3adLE3FTxyY4KYz9U0OmKYjC2BODo0aPZWv7atWv55ZdfcHV1ZcqUKZQtW9Y6BRfSZ5ctlClThrlz53Lo0CH27dtHYmIilSpVonPnzmzbtg2ASpUqZfj+lBSVP+aqzJsPBiOULAFjRys0baJw6dIlzp8/j5ubG23atLHRGglRMLm7a8kuNze4cQNeH6Uy9X+k6ni1dOnSgNYMOT2m6abXCWFLDg4OdOzYkbNnz7Jr1y5q1aqV4WtVVWXVavjpZ5X4BPDxgXGfKSTEHyQiIoKyZcuaRwwWQlimYweFhESY/I3KsuWg16m88XpNypcvz8WLF7lx44bFFzIDBw6kTZs2bN26lZCQEIoUKcLjjz9Oo0aNzMPTZ/b7UQgTPz8/zpw5w+3bty1+T7Vq1ViyZAkrV27iz3lniYoyUsS9Oj9N68TWrXMB+f6JwqFMmTKcP3+eMmXKpJretYuCwQATv9J+8+/YeYdXX1XR6SyvlbVr1y4mTJiAg4MDkydPpk6dOlYte2EnyS4bcXBwoGvXrrRo0SLV9JMnTwLpD+0LcPmKypcTVc6d1/7v1BHeeUvB00M7iNat02p1tW3b1uK+IIQQmWvRHK4Gw6XL8MabKl9NgPr1tGOuWrVqwP1huR9mmi4dBou8YupYOCIiIsPX3AxT+fpblQNat5E0qA9ffKpQvLjCZ59pcaVLly65XVQhCqQe3RSMRvjmfyqLl0JSsmoeQdGUSLZU+fLleemll1JNCw0NJTw8nHLlymU4WIoQD4qOjgYy7m80I9eDnVmyvBt347pRshRM/Z9C5coK06Zlfv0iREHi7+/P9u3bzX13PahHd4XVq2M4fgwuXXZlwlcqH42xbLlHjhzh448/BmDcuHE0b97ciqUWIM0Y89Tt27fZsmULXl5eaTqhMxpVlixTGTxMS3R5eMC4zxU+/0RnTnSpqsr69dpoWXJRIoT1ODvDjz8o1KwBUdHw1rsqq1ZrTU9atGiBTqfj+PHjaQadSEpKYteuXej1elq2bJkXRReCI0eOAFCuXLk081JSVBYuUhkwSEt0OTnBmyMVpk3VEl1xcXHs2LED0PpsEUJkz1M9FN5/V2vSuGJlLCdPnkdRFHx9fXO87KVLlwLwzDPP5HhZouCLiIjg+PHjAFkavGT3HpXXR6mE34KKFWDmz1qi68KFCxw9epTKlStTv3793Cq2EPmGaWTEEydOmPvbNjEajURGaMeXXu/Phk0w9hOV+PjMm6yfPXuWDz74gKSkJMaOHUv79u1zp/CFnCS7bCAwMJDExMRU08LCwvjggw+Ii4vjzTffTHWnJfSmykuvbGPKd32JvzueZk1h3hyFDu1SV4k8duwYoaGhlChRgiZNmthkXYQoLLy8tARAu7aQkgLffqfyvylGPDyK0alTJ5KTk/n2229TBb0ff/yRiIgIOnfuTNGiRfOs7KJgO378OHv37jV3mGqSkpLCkiVLWLduHc7OznTs2DHV/P99t4R27fsyffrPxCdAvbrwx2yF5/so5ir327ZtIyEhgTp16lC+fHmbrZMQ9m7VqlUEBwenmvbMUwrvvBWOmvI5BkMc7h4tSU7xSfWaN954g759+6bpSyk+Pt483P2DVq5cyaJFi6hQoQLPP/+89VdE2KUTJ06wfft2DAZDquk3btxg9OjRxMfH88QTT6SpCbh06VL69u3Lzz//bJ6WkqLy0y9GPhxzjtjYFBrUh59/VChdWus+xTTq3HvvvWeTdRMir/n7+9OsWTNCQ0OZMWNGqr4X58yZw5UrV/Dx8WHCl+1wdoa9+2Do8Gg++ugL+vbta+62yOTKlSu88847xMbG8s4779CjRw8br1HhIc0YbWDBggVs376d2rVr4+3tzZ07dzhx4gRJSUkMHjyY7t27A1pNrQ0bYeoPKtFRd0G9Sjm/Ynz3jZLuiAymJoxPPvkkOp3kLYXIjm+++cbc9DAqKgqAPXv2MGTIEPNrXh06m19/U/n7HzhxUuXdt97m9OnTbN26lX79+lGjRg0uXbpEYGAgfn5+vPXWW3myLqJwuHbtGhMmTMDb25saNWrg6elJVFQUgYGB3Lp1C2dnZz799FNzJ6rnL6j8MlNl395IVMNVnF1u8+Foha6dSdOvhCmuSG1hIbJm3bp1TJo0iUqVKlGhQgUcHBy4efMm586dw2hIQq+vRFziaIa8qvLZx9CsqXbsXb9+ndDQ0DSDnkRERPDCCy9QuXJl/Pz8cHBw4OzZswQHB1OmTBmmTp2Kk5NTXqyqyIeuXr3KhAkTKFasGNWrV8fd3Z3Q0FDOnTtHYmIilStXZuzYsWneFxkZyZUrV7h165a2nGsqX01WOXUaDMk/4Ox0CQzV+N+3Pty8eZNTp04BMHr0aBo3bmzTdRQiL3388ccMHTqU+fPns2PHDqpUqcLly5e5dOkSzs7OjBs3jmbN3ChaVOXDsSrHjqegU2+SlHiFu3fvplrWp59+SkREBD4+Ppw9e5bx48en+byKFSuaR+UV2SfJLhto06YNd+7cITAwkIiICDw8PGjRogV9+/Y1B4rISG3I923btff4+sL1q1C8WPrDSiclJbF161ZALkqEyIlLly6luaMeGRlJZGSk+f/fflPwrwYTJ6sEXYJ3P/DipYGzCQ/7jZ07d7B9+3aKFi3K888/z7Bhw/Dw8LDxWojCpFGjRrz00kscPXqUixcvEhkZiaOjI2XKlKFdu3Y8//zz+Pn5ERKiMvt3lfUbtffpdGAwQOsnoHvXtHHl1q1bHD58GAcHBzp16mTjtRLCvg0YMIBy5cpx6tQpjhw5QmxsLO7u7tSuXZt27drRvMXTfDHekQsX4d0PVJ7uqTJyRMadGHt5edGrVy+OHTvGwYMHMRqN+Pr6MmTIEPr37y8j/opUateuTe/evTl9+jRnzpwhOjoaV1dXqlWrRvv27endu3em/XWpKsxboDLnD5WkZHAvAh16dCEocB2BgRc5diwGHx8fOnTowIABA/D397fh2gmR90qVKsXcuXP57bff2LVrFzt37sTDw4NOnTrx8ssvU6VKFQDq1VWY9Qt8/KnChXvd+54OgAcrb5n60IuIiGDNmjXpfl7Dhg0l2WUFimrpGMhZkF6nuD4+Ppl2llsYpLcNVFVl8xb4fppKZBTo9fDKSwoDXgQHB8tHcrAX5m2QkoTz+o8ASOz8FTgUrruTcjzY5za4c0dl0jcqe/dp/9esAR++r1CtavaOVXvcBlnl4+OT6Xxrr39h2KaPEhmpMn+hyvKVkJysTevYAYYNUSjrm3/jitX3XSGPM7Yix5zlEhK0WpbLV2r/lykNb72p8Phj6d/YzG35bd89Kl6A9WOGLeW37W0ScEbl2+9ULlzU/m/WFD54V6FMmfwbL+zCvRjk5ORETLsvJAYVMg4OXrz7fgR77l0zPPM0vDFCwcVFjitrsSRmSM2uPBQWpvLd9yq792j/V64EH41RqFFdDgIh8qOiRRW+mQSrVsMvM1XOnIWhr6r07avy8kAFNzc5dkXeCQ9XWbREZdVqMLWIatwIRgyXuCJEfuDiovDOWwptWqtM+lolJBTGfKTStAmMGgmVK8lxKmznZpjKzFkqGzZp/3t6wqiRCl2ezJvkqxAFiYeHjkkTFWbPUZk3H/5eBceOqXz+Kdm+SS6yTpJdecBoVFn9H/w8QyU2Fhwc4KWBWm0uR0f58guRnymKwjNPQauW8P10renxwr9g/QaVV4eSbj9IQuSm4GCVBYtU1q67X5PL3x+GD1Vo1lQuWoTIbxo1VPjzd63Z2KIlcPAQvDxEpWN7lZdfUijvJ8esyD3x8dqovAsXgWn8rC6d4fXhCkWLyndPCGvR6xWGD1Vo1EBlwlcql6/AqyNUhg2B558rmK248htJdtnYseMq039SOXde+79WTRjzoSJ384SwM8WLK0wYp7Brt8q0n1Ru3IBJX2vNU94cCQ3qyzEtctfFQJWFf6ls2gKmgRnr14NBAyTJJUR+5+amMHyYQo/uKr/MUNm2AzZsgk1bVDp1VHlpoCS9hHXFxamsXAV/LVYxdUtary68OVKhRg35rgmRW5o2Ufjjd5j8jdai6+cZ2m+30e9DdX859nKTJLts5Np1lS++jGHTZq2LNDc3GPKKwnO9tayvEMI+tXpcSywsWwF/zlM5fx7eeEulWVOVV15SqFtHjm9hPQaDyq49sGy5ytFj96c3b6YluerXk++bEPakrK/ChPEK586r/P6HdiG0fgNs3KTSvp3KoAFyQ1TkTHSMyqp/YPESrX9g0AbCGvGqQts2cmNECFvw8VaYPBH+WwM//qJdLwx7TeWZp1ReeVnBx1uOw9wgya5cdu26yp/zVDZuBIMxCZ0OenbXEl1SVViIgsHJSeHFftC1C/w2R2X1ajhwEA4cVGncSOXlQQoNG8jxLrIvOkbl3/9gxUqV0JvaNL0OWreGAS8qcmdQCDtX3V/h668Uzp5V+f1PlT17YdNm2LRZpU1rraaXfzU5zoXlrlxRWbpCZd36+/04liurdZ3SqaM0oRLC1hRFoUd3eKwFTPtJG6Ruxd+wfqPKgBe1po3OznJcWpMku3LJhQsqi5aqbNx0v3lJ6yccGfJKClUqy5dYiILIx1vh/XcUXuirjYa3dh0cPgKHj6jUrKnyXC+Fdm215JgQj6KqKufOwT//qWzYeP9ixdMTnuoBvZ5RKFVSvktCFCQ1aih8M0nh/AWVufO05o3bd8D2HSotH9OSXrVryXEv0hcXp7J9J6xdp3Lk6P3pVavAC30VOrSXJJcQea1YMYVxnyk83VM11/Ka+avKipXwQj+tYoyrqxyn1iDJLisyNS9Zukzl2PH701u2gJdfUni8pWe+HHJYCGFdZX0VRr+v8NIAlfl/qfy3Bs6cgS/PqPz4C/TorvJkRwULRswVhVB0jFYbePV/KhcD70+vUhn6PKvdkZc7f0IUbP7VtOaNQZdU5i3QagDs2Qt79qo0baIlvaRvSAFaguvgIdixS2XHDoi/d2NEUbTBdPo8p9CwgTRXFCK/adRQYfYMrb/GWb+qhIXDtB9V/pwLfZ6D3r3A00OO25xQVFVVrb3Q9BI6Pj4+BTbRc/mKytp1Kus3wq1b2jS9Htq2gReev9/pY37bBrdMhbUhb29vIiMjwZBE8d2TtHI8Phb0TjYvS14yb4dCzBbboHjx4rm6fEtFRKisWg1//6Py4GFXvbqe9m2NdGgHpUsXzGDm84iMnrXPifntPGup+HiVffth63aVXbsg6d6oik6O0KYN9OxuHxcrOYkrVj8nFPI4YyuFJZ7ldTy5ek2rMbx+AxgM2rQG9bUmaU0aZ+/ckN/Ol4+KF2D9mGFL1treKSkqFy7C8RNazfHDh+/HDICyvtC1i0KXJ/PHb4u8uN7IF+7FICcnR240fV9iUD6WG+f3rB7vSUkqa9fDgr+0Qa8AXF2gUyd4uqd0V5EeS2KGJLuyKfSmys5dsGGTypkz96d7ecJTPaHX0wolH2pekt+2QdGiRfPss530MLunJwBDV0eTZMizoogC7M6dO3ldhFRSUlR27IL1G7TEhuGB732litCsGbRoplC3Dri4FIygJsmu9KmqyrVrcOQoHDqssu/A/WaKoNXi6tlD4cmO4OlpP9+FvIwrD5M4I6wpv8STkBAt6bVmHSTfS3DUrgX9X1Bo+VjWmqjlt/OlJLvSSklRuXoVzl+ECxdVLlzQaorHJ6R+XZky8MTj0Ka1Qr26+evGSH6KC7YkMch+5Mb5Pbvn15QUla3bYf4ClcCg+9NrVNeS2O3aIP1+32NJzJBmjBZKSVE5dx4OHoKdu7TnJnodPPYYdO2s8FgL6Y9HCJE+BweF9m2hfVuFqCiVA4fcWPVPLCdOwqXL2t/iJSp6HVSpqlKnFtSsqVCxAlQorw1VL+xLcrLWofz1YAgOhuBgleBg7cLl4ZvdZcpAuzba96N69fx1sSKEyB/KlFH44D2FlwaqLFys8s9qOB0AH32q4u0NT3ZUad9OoWYNGe3b3sTFaRe3Fy5qff9euAhBQalrbZm4u0O9OlC/vsJjzaFSJYkZQhQEDg4KnTpAx/Zw7LjWKmT7Djh7Ds6eU/lhOjRsoNK2jVart1xZOfYzI8muDNy+rXL+Ipw/D6cDtD644uLuz1cUqFdXu4PSsb1kWIUQWePlpfD8cy506hBPdLTKwcOw/4DKwYMQfks795w/D/x9v/Jt8eIqJUtAsaJQrBh4eGh9Nzk5gbMzODhotcWMRu0x9Z9qnm4aNCMzRYoo9HpG+gqwREKCVuX8ejAE39ASWqbnN29mvL2dHKF2ba3PhpaPgX81+cEihLBMyZIKb49SGNRfZfFSraZXRAQsWQZLlql4e0HzZip16yrUqgmVK0nH5PlFfLzK9etw9TpcuwaXLmnXHNevQ3rtbdzctA7m/atB1aoKNapr+1Onk/0pREGlKFr3FQ0bKEREaN0lbd6qtSgzDX4FULIkNGmkUrOmQrWq2rlBbo7fl2+TXaGhKuG3QKfTak7p9Nrzh//X35um04NOSftcr9cu7pKTITkFUpIhKQmiYyA6GqKiISYa7kSohITCjRAICYH0up/w8IBGDbVmRq0eBx8f+SIJIXLO01OhQzvo0E5BVVVuhsHp03DqtNZB+dWrcPuOVhMobdcXVm+Jbl6uj4/CUz1yafF2JDFRJTwcboZpyaubYRASej/B9ajuSFxctD5UypbV7sD5+ipUKA+1akpH80KInClaVGHEcIVhQ1T2H9CGsN9/ACKjYP1G7X/QboaULq1S1hd8faFYUYVSpRJwdFDx8tLOU3q99joHvfZcpwfjAzdNUtLcRNGmAdSvW/gusFJSVJKStCbocXEQF3/vMQ5i7z3GxMCt21p/nZFRUdwINhIWnvEyixeHalVNfwr+1bRav5LYEqLw8vFR6Pc89Hte4UaIypatsG+/yqnTEBYGa9bBmnXauV5RoFRJlRIloGQJ7ZxSpIiCqyvan4t2bs/IgzmUh/+cnO7/OTqC871H0//58YZKvuyzKzhYpd8ANd27G7aiKFDeD/z9obq/llmtWiVnVcLzW98I0kF93iksHfpmpjB1UJ+RrJwTomO0O8G3b9/7u6Ny9y4kJkFiovZnSEkdlHQPPtfdv4BRFO0vM0WKKFYZBcYWfXZ9Ps7I9p3g6ABOzgoOehVHR3A0BWXH1AE6VbB20GpepaRoF23JyRAbq90MibkL0VHaTZFHcXfXEllly2qJrXJlFe15Wa0mXmGpsSUd1Bc+hSWe5fd48qCUFJWTp+DgIZUzZ7U+nu7G5u5ntm8H4z/X5WgZtuiz6/wFlSXLVBITQTWCwajVpjIawKhq8eDBP4NBi7NJifdjbeK9BJchB30weXlC+fLg5wcVyivmBFdBvJEuHdRLB/X5XX7ooD474uNVTpyEY8e1Zs8XLmrXCHlFr7v32zqThJiTEzRupND/hZyf6+y2zy4fH2jcSKthZbwXiIzGe4Hoof9Nz00BKzN6HTg4ahc3Hh7g6Xn/z9tLG7HEt4x2B8WvHLi6FryA86C8+OHm4+ODg4MDqCpOpatr5ShZ5tFX3gWMeTsUYrINssbTQ2uKcl/hOmYyc+v2vWRVCsQn5M5dEmdnKF0KSpWCUiWhVCkFX18twVWurH11Ip+bchJXrH5OKORxxlbkXJ7/ODjcb/4CYDSqhIVprRdu3IDgEJXISIiPd+LWrSSio+/dMHmg9lZKivb7Or27+w//OTpAuzb2cXz9s1pl3XrrL9fVVWtu6OYGbq5QpIj23N0diheD4sUVKlQogqtLLH7ltK4MCgt7ShRb1b0Y5OLqIjFI5ApXV4XmzaB5s/vfrYgIleAbEBYO4eFw65ZKfDzEx2u1T+Pj028ubfJgot/wYLcoKVr/gUlJ2l/yvccH8y8GozZ4xsMDaDzs1GmVvn1sUxMsX9bsygmjUU1zV8ZULTuvO+rMbzW78kKqbWD66hXCk798F2QbQOHYBrao2WUwqFrCKxlc3Ty5fSua5BStlpYpKKf5uzcvOVlFp1O0pjv3mu8UcQcPd+1GiIeHdqHi6Vl4amfllVw5HgpxnLGVwnAeK6jy276zRc2uiAits2eDQav9rCj3u0nRKam7QlHudZfi7Kz9mfrHdHYGF+fU0y1pZpjftrewAVXF28enUNR+FakVluM9JUU1/95OTr5XEzYp/d/gpmlVq0C1aoW4ZldO6HQKupzVoha2IhcfQggr0OsVSpXUnvv4OFA0S81A5DxUoEmcEUI8wMdH4Zmn87oUotBQFLlRJgo0BwfthrGra16XJH2SFhJCCCGEEEIIIYQQBYYku4QQQgghhBBCCCFEgSHJLiGEEEIIIYQQQghRYEiySwghhBBCCCGEEEIUGJLsEkIIIYQQQgghhBAFhiS7hBBCCCGEEEIIIUSBIckuIYQQQgghhBBCCFFgSLJLCCGEEEIIIYQQQhQYkuwSQgghhBBCCCGEEAWGoqqqmtsfEhMTw+HDh2ncuDEeHh65/XH5kmwD2QYmsh1kG4Bsg9wg29R+yb6zT7Lf7JfsO9uS7V04yX4vnGS/5x82qdl19+5dtm/fzt27d23xcfmSbAPZBiayHWQbgGyD3CDb1H7JvrNPst/sl+w725LtXTjJfi+cZL/nH9KMUQghhBBCCCGEEEIUGJLsEkIIIYQQQgghhBAFhk2SXe7u7rRp0wZ3d3dbfFy+JNtAtoGJbAfZBiDbIDfINrVfsu/sk+w3+yX7zrZkexdOst8LJ9nv+YdNOqgXQgghhBBCCCGEEMIWpBmjEEIIIYQQQgghhCgwJNklhBBCCCGEEEIIIQoMSXYJIYQQQgghhBBCiAJDkl1CCCGEEEIIIYQQosCQZJcQQgghhBBCCCGEKDAcsvoGo9HIwoULWb58OUFBQej1emrWrMngwYPp0KFDtgqRlJREnz59OHv2LJUqVWLdunXZWo4tWXM73L17l99//50NGzZw7do1HB0d8fPzo0OHDrzxxhu5tAY5Z61tEB0dzZw5c9i0aRPXr1/HycmJcuXK0atXL/r06YOzs3MuroVlVq1axeHDhzl16hTnz58nOTmZSZMm0bt373Rff/fuXaZPn86GDRsIDw+nZMmSdO7cmTfeeIMiRYpk6bN37tzJzJkzOX36NIqiULt2bV5//XUee+wxa6xaluTFdrh8+TLr1q1j586dXLlyhcjISIoVK0bz5s0ZPnw4VapUseYqPlJefhce9Pnnn7No0SIAdu3aRYkSJbK9rPwoMTGRKVOmcOrUKa5cuUJUVBSenp74+fnRp08fnnrqKRwdHS1enr2eZ+2RtfbdwIEDOXDgQKav+frrr3nmmWesVPLCzZrHnD3E9YLEmvsuNDSUn3/+mR07dnDr1i28vb154oknePPNNylTpkwur4l9aN++PcHBwenOa9asGfPmzbNoOQkJCfz111/8888/XL9+HVVV8fX1pWvXrgwYMAAPDw9rFltY0caNG1m4cCEBAQHExcVRokQJGjRowAcffGDRcWI0GlmwYAFLlizhypUruLm50bJlS9555x38/PxssAYiO3Ky3w8dOsSmTZs4cOAAwcHBxMXFUbZsWTp06MDw4cPx9PS00VoULoqqqqqlL1ZVlbfeeov169dTvnx5WrduTVJSEps3b+b27dt8+umnDBgwIMuFmDp1KnPnziUuLs4ukl3W3A43btzgpZde4tq1a7Rs2ZKaNWuSlJTE1atXuXHjBqtXr87ltckea22D6OhoevfuzbVr12jcuDH169cnKSmJHTt2cPXqVVq0aMGcOXPQ6fK2EqLph42Pjw9ubm4EBwdnmOCIi4vjxRdf5MyZM7Rq1YqaNWty5swZdu3aRd26dVmwYIHFP/RXrVrFhx9+SNGiRenWrRsAa9asISIigu+//54uXbpYdT0fJS+2wzvvvMOaNWvw9/enUaNGuLu7c/78eXbs2IGLiwuzZ8+madOmubG66cqr78KDdu/ezeDBg3FzcyMuLq5AJrvu3LlD27ZtqVevHhUrVqRo0aJERUWxc+dOgoODadWqFb/++qtF5wZ7Pc/aK2vtuxUrVqR7QZmSksLMmTPR6XRs3bqVUqVK5daqFCrW2m/2EtcLEmvtu6tXr9KvXz9u375Nq1at8Pf358qVK2zZsoWiRYuyaNEiypcvb6O1yr/at29PdHQ0L730Upp5ZcuWzfDm14OSk5Pp378/x48fp2bNmjRr1gyA/fv3c/bsWapVq8bSpUtxdXW1evlF9qmqyueff87ixYspX748rVq1okiRIoSFhXHw4EG+/fZbmjRp8sjlfPLJJyxdupRq1arRpk0bwsLCWLt2LUWKFGHx4sVUrFgx91dGWMwa+/3xxx8nIiKCxo0bU7NmTRRF4cCBAwQEBODn58eiRYsoXry4jdaoEFGzYO3ataq/v7/ar18/NT4+3jz99u3bart27dQ6deqo165dy8oi1ePHj6s1a9ZU58+fr/r7+6udO3fO0vvzgrW2Q3Jystq7d2+1Xr166t69e9Odn19ZaxvMmjVL9ff3VydOnJhqemJiotq7d2/V399fPXDggNXLn1W7d+9Wr1+/rqqqqs6cOVP19/dXly9fnu5rf/jhB9Xf31/99ttvU03/9ttvVX9/f3XGjBkWfWZkZKTapEkTtXnz5mpISIh5ekhIiNq8eXO1efPmakxMTDbXKHvyYjssX75cPX36dJrp//77r+rv769269Yti2uRM3mxDR4UHR2ttm7dWh01apQ6YMAA1d/fXw0LC8v6iuRzBoNBTUxMTDM9OTnZvN5bt2595HLs+Txrr6y17zKybt061d/fXx0+fHgOSikeZq39Zi9xvSCx1r579dVXVX9/f/XPP/9MNX3NmjWqv7+/OnjwYGsV2a61a9dObdeuXY6W8d9//6n+/v7qyJEj08wbMWKE6u/vr65cuTJHnyGs748//lD9/f3VL774Qk1JSUkz35LfFHv37lX9/f3V/v37pzput23bJsdZPmWN/T5z5kw1NDQ01TSj0ah+/vnn5mUL68vSbbXNmzcD8Nprr+Hi4mKeXrRoUV566SWSkpJYsWKFxctLTExk9OjRNG7cmBdffDErRclT1toO69ev59SpUwwePJgWLVqkme/gkOVWpjZjrW1w7do1ANq0aZNqupOTE61atQK0O5Z5rWXLlpQtW/aRr1NVlaVLl+Lm5sbrr7+eat7rr7+Om5sbS5cutegz161bR3R0NAMGDKB06dLm6aVLl2bAgAFERESwadOmrK1IDuXFdujduze1atVKM7179+5UrFiRixcv2vQ7khfb4EETJ04kISGBzz//PMvvtSc6nQ4nJ6c00x0cHOjUqRMAV65ceeRy7Pk8a6+ste8ysmzZMgCee+65bC9DpGWt/WYvcb0gsca+S0xMZNeuXRQvXpyBAwemmte1a1dq1qzJrl27zPtX5Mz169cBaN26dZp5bdu2BeQ4yW8SEhL46aef8PPz4+OPP0av16d5jSW/KUy//d56661Ux22bNm1o1qwZu3bt4saNG9YruMgRa+33V199NU1NdEVRzNcIBw8etE6BRSpZSnbdunULgHLlyqWZZ5q2b98+i5c3ZcoUQkJCmDhxIoqiZKUoecpa22HNmjUAdOnShZCQEP766y9mzZrF2rVriY2NtWKJrc9a28Df3x+A7du3p5qelJTE7t27cXFxoUGDBjksre1cvnyZsLAwGjVqhJubW6p5bm5uNGrUiGvXrhESEvLIZZn6qjFdHDzINO1R/dnkFWtuh8yY+iDJjwmL3NgGW7ZsYeXKlXz66acUK1bM2kW2C0ajkZ07dwL3zx+ZsefzbEGT1X2XntDQUHOzXdMFochdWd1vBS2u27Os7LvIyEhSUlLw9fVN9zd5dn7nF2Smm7ozZsxg/vz5HD9+PEvvr1atGgA7duxIM2/btm0oikLz5s2tUlZhHbt27SIqKoqOHTtiNBrZsGEDs2bN4q+//srSDZz9+/ebfwc+7IknngDy7+/7wsha+z0jpmuY9JJoIueydIXo4+MDaHcjHu4U2nSH4vLlyxYt6+DBg8ydO5cxY8bYXft/a22H06dPA1qHdZMnTyYpKck8r2jRonz//ff5NtBZaxs899xzrF69mj///JPTp09Tr149kpOT2b59O3FxcUydOtWu+mMxnfQyamtfsWJFdu3axeXLlx/ZkaFp+1WoUCHNPNM0a5xkc4M1t0NGTpw4wYULF6hbt26+7NTR2tsgIiKCTz/9lI4dO9KjRw9rFjVfS0pKYubMmaiqSmRkJHv37iUoKIjevXtbNEiDPZ9n7V1O9116li9fjtFopFevXvkyyV0Q5HS/FbS4bk9ysu88PT3R6/XcuHEDVVXTJLyy+ju/oAsPD2fs2LGpptWtW5cpU6ZYdF3Ttm1bOnbsyMaNG3nmmWdS9dl1/fp1vvzyS2rXrp0rZRfZY/o9odPp6NmzZ6pjQafT8fLLLzN69OhMlxEXF0d4eDj+/v7pJjfy++/7wsga+z0zy5cvB7Q+vYT1ZemXYuvWrfnvv/+YNWsWLVq0MHesHBERwZ9//gloHZM+SlxcHGPHjqVBgwZpqkrbA2tth9u3bwNas6TBgwczYMAAnJyc+O+///j6668ZOXIka9asoWTJkrm3MtlkrW3g4uLCn3/+yRdffMHKlSs5dOgQoGW3BwwYQMOGDXNvJXJBTEwMAO7u7unON02/e/fuI5dlek16o/GYlmP6vPzGmtsho+WPHj0anU7HBx98kL1C5jJrb4Nx48aRnJzMF198YZXy2Yvk5GR+/PFH8/+KojB48GDee+89i95vz+dZe5fTffcwVVXNzeOlCWPuyel+K2hx3Z7kZN+5urrSpEkT9u/fz8KFC+nfv7953oYNGzhz5gyQf3932FLv3r1p3Lgx/v7+uLm5cfnyZebMmcOqVat4+eWX+eeffzKM/SaKojB9+nSmTJnC7NmzzdsXoFevXrRs2TK3V0Nkken3xB9//EGtWrVYunQpVapU4cyZM3z66af8/vvv+Pn5Zdo1j6W/DeU4yz+ssd8zcubMGX766SeKFSvG0KFDrV10QRaTXT169GDFihXs37+fnj178sQTT5CcnMzmzZvNTWosGV3n66+/JiwszOKRtPIba20H9d5AmG3btuX99983Tx84cCChoaHMnj2bZcuWpenvJz+w1ja4c+cOr7/+Onfu3GHWrFk0btyY+Ph4Nm/ezNdff822bdtYsWLFI380iMIjISGBkSNHEhQUxDvvvFMoauWsWbOGtWvX8vXXXxe4URcfpUiRIpw7dw6j0UhYWBhbtmxh6tSpHDt2jF9//fWR5wZ7Ps/au5zuu4ft27eP69ev06xZs3RrvArryOl+k7ied3K67z766CNeeOEFxo8fz5YtW6hevTpXr15l8+bNVK9enXPnztlVtyO55Y033kj1f82aNfnmm28AbRTtpUuX8sorr2S6jPj4eN59911OnDjBlClTzDXv9u7dy8SJE9mxYwdLlixJt7sQkTdMvyccHR356aefzDVUmzRpwg8//MDTTz/NnDlz7KofavFoubXfr127xquvvorBYGDKlCkULVrU6mUXWeyzy8HBgdmzZzNq1CgURWHx4sVs3LiRDh06MG3aNIBH9iOzf/9+Fi1axFtvvUWlSpWyX/I8ZI3tAPez9+3bt08zzzTt1KlTViy59VhrG3z11VccPXqUadOm0aZNG9zd3SlRogT9+vXj7bff5sqVK8ybNy+3V8dqTLWwMqqtY5puyY/8zO7uZFbrKz+w5nZ4UGJiIq+//jr79+9n+PDhvPbaazkraC6y1jaIjIxk3LhxtG3blmeeecaqZbQnOp2O0qVL8+KLLzJ+/HiOHDnCL7/88sj32fN5tqDI7r57mHRMb1vZ3W8FLa7bo+zuuxo1arBs2TK6du1KQEAAc+fO5dKlS4wfP56nn34asOy3XWHVt29fAI4cOfLI186YMYMtW7Ywfvx4unXrho+PDz4+PnTr1o1x48Zx+/ZtZsyYkdtFFllg+j1Rp06dNE2x/f398fPz4+rVq5m2bLH0t2F+/X1fGFljvz/s2rVrDBo0iIiICKZNm5buAErCOrLc4YWTkxNvvPFGmrsa+/fvB7QvQmZM1XS/+eYb812QB126dInq1avj4eFhrvqeH+V0OwBUqlSJiIiIdPsbMk1LTEy0QmlzhzW2wc6dO/H29qZGjRpp5plq7DxYtTu/M9U2yKhPC9P0jPpxelDFihU5deoUV65cMfeRZmJqy59fazdYczuYJCQk8Prrr7N7926GDh3Ku+++m8NS5i5rbYOQkBAiIyPZtm0b1atXT/c1pgEL/v77b2rWrJmt8tqTrAzQYO/n2YImu4NrREVFsXHjRjw9PenSpUtuFE1kIiv7raDFdXuX1WOuSpUqfP/992mmjxkzBrDst11hZfqtFhcX98jXmgYOSK92uunCNyAgwIqlEzlVuXJlIONElGl6QkJChn3Jurm5UaJECa5fv47BYEjTb1d+/31fGFljvz/IlOgKDw/n+++/p127dtYrrEjDar27rl69GoBu3bpl+jp/f/8M78ouW7YMDw8POnfujKurq7WKZlOWbgfQgtmRI0e4ePEiTz75ZKp5Fy9eBKBs2bLWL2Quy8o2SEpKMv89PGx2REQEcH/EPXtQsWJFSpYsyZEjR4iLi0s1Cl9cXBxHjhyhXLlyFnVI3rRpU/7991927dqVZuSqXbt2AZg7NM1vrLkdIHWia/Dgwfm2n64HWWsbeHt7Z3jO3L59O+Hh4fTo0QMXFxe8vb2tuQr5VlhYGGDZKJwF9Txrr7Ky7x70zz//kJiYyHPPPWfuI1LYTlb2W0GL6/Yuu8fcg+7evcvWrVvx9vaWTpQzceLECcCymJKcnAxox8TDNbzv3LkDkOb4EXnLlJgMCgpKMy85OZmrV6/i5ub2yOZozZo147///uPIkSM0bdo01TxTEvTh6SLvWGu/Q+pE19SpU+nYsaPVyytSy3KHWelVu1y3bh3Lly+nbt26qS4m7ty5Q2BgoPmkDdCyZUsmTpyY7h9A8eLFmThxIp988kl21sdmcrodQOvg0snJifnz53Pz5s1Uy545cyYAXbt2zaU1yDlrbINGjRqRkpLCzz//nGp6YmKieZo9Ve1UFIU+ffoQFxeXZp1+/vln4uLieP7551NNj4+PJzAwkBs3bqSa3rVrVzw8PJg/fz6hoaHm6aGhocyfPx8fH598e5K05nYwNV3cvXs3r7zySo5GPLEla22DMmXKZHjONDUFHzNmDBMnTsz2yJb50cWLF4mPj08zPT4+nkmTJgHQpk0b8/SCep61R9badw+SJoy5z1r7raDFdXtgrX2XkJBASkpKqmlJSUl8/PHHREZGMnLkyEKfbA4MDEx3WwcGBvK///0PgJ49e5qnx8TEEBgYaE46mpgGavjxxx8xGo3m6QaDwdwdSGHok9SelC9fnlatWnHlyhWWLl2aat6sWbOIjo6mY8eO5sRyRseZ6bffDz/8kGqE6O3bt3PgwAFatWolN+HyEWvtd1OiKywsjClTptCpUyebrUNhpqimXtcs1LVrV8qUKUPlypVxdnbmxIkTHDhwAD8/P/78889UB+f06dP58ccfeeONNxg1atQjl129enUqVarEunXrsr4mNmat7TBv3jwmTJiAt7c3nTp1wsnJiW3bthEcHEzfvn0ZP368rVfNYtbYBgEBAfTv35+4uDjq169Pw4YNSUhIYOfOnQQHB9OwYUPmzp2b53e3li5dyuHDhwE4f/48p0+fplGjRuZqxo0bN6ZPnz6AVmvnhRde4OzZs7Rq1YpatWoREBDArl27qFu3LvPnz8fFxcW87P379zNo0CCaNWuWph+TVatW8eGHH1K0aFFzTbk1a9YQERHB1KlTbX6RnhfbYcyYMaxcuZISJUqY+8N4WK9evWzWiWtefRfSM3DgQA4cOMCuXbsKXMf106dPZ86cOTRu3JiyZcvi7u7OzZs32bFjB5GRkTRp0oTffvvNvP0K6nnWHllz34HWp9qzzz5L7dq1zaMxCuuz1n6zl7hekFhr3x06dIhRo0bRsmVLypQpw927d9m+fTs3btzg+eefZ/z48YW+g3rTtm7atCm+vr64urpy+fJlduzYQXJyMsOHD0/VzcKKFSsYO3YsvXr1YvLkyebppm0aHh5OtWrVzAngvXv3cvHiRSpWrMiSJUvw8vKy+TqKjF29epV+/fpx+/Zt2rZtS+XKlQkICGDfvn2ULVuWxYsXm3+PZRbbPvnkE5YuXUq1atVo06YN4eHhrFmzhiJFirBo0SK77de6oLLGfm/fvj3BwcE0aNDA3Lz8YZbkS0TWZLlOc7du3diwYQPHjh0jJSWFcuXKMWLECIYOHVqoRtax1nYYOHAgZcuW5bfffuO///7DYDBQtWpVRowYYb5gzq+ssQ1q1arFihUrmDlzJvv372fBggXo9XoqVKjAW2+9xeDBg/PFD+LDhw+zcuXKVNOOHDmSqhNS0/5yc3Nj/vz5TJ8+nQ0bNrB//35KlCjB4MGDGTlyZKrkxqM8/fTT+Pj4MHPmTPNFXp06dRgxYkSeDEudF9shODgYgPDw8FRDqj+oWbNmNkt25dV3obBp27YtYWFhHD16lGPHjhEXF4e7uzvVq1ene/fuPPvssxY3y7Hn86w9sua+A6nVZSvW2m/2EtcLEmvtO19fX5o1a8bhw4e5desWrq6u1KpVizFjxtC5c2cbrEn+17x5cwIDAzlz5gyHDh0iISEBHx8fWrduzYsvvpjhRezDfH19Wb58ObNmzWLnzp0sWrQIRVEoW7YsQ4YMYfjw4ZLoyofKly/P8uXLmTZtGjt37mT37t0UL16c/v37M3LkSIsHcBg/fjz+/v4sWbKEuXPn4ubmRqdOnXjnnXcoX758Lq+FyCpr7HfT9cyxY8c4duxYuq+RZJf1ZblmlxBCCCGEEEIIIYQQ+VWW++wSQgghhBBCCCGEECK/kmSXEEIIIYQQQgghhCgwJNklhBBCCCGEEEIIIQoMSXYJIYQQQgghhBBCiAJDkl1CCCGEEEIIIYQQosCQZJcQQgghhBBCCCGEKDAk2SWEEEIIIYQQQgghCgxJdgkhhBBCCCGEEEKIAkOSXUIIIYQQQgghhBCiwJBklxBCCCGEEEIIIYQoMCTZJYQQQgghhBBCCCEKDEl2CSGEEEIIIYQQQogCQ5JdQgghhBBCCCGEEKLAkGRXPte+fXuqV6/+yL8VK1bkdVHNTGUq6NLbN3Xq1KFt27a8/fbbHDp0KEfLvX79upVLnPuuX79u3haPKr9pPfPTd9fEnveBEJD6/DRhwoRMXzt79mzza2vVqmWjEhZsuRUfHly2PZ6fJEYIkTuyc84pyN/jvXv3UqNGDRo0aMCVK1cyfN2PP/5I9erV6d69O0lJSTYsoXXJNUlaBSXegH3vh7zmkNcFEJZp1KgRFSpUyHB++fLlbVKO9u3bExwczObNmylXrpxNPjO/e3DfREdHc+rUKdauXcu6desYPXo0r7zySh6XUAhRmK1evZoPP/wQJyendOcvX77cxiUqPCQ+CCFsqTCdczK7Jnnsscd48cUXWbBgAWPGjGHBggXodKnreJw+fZpffvkFBwcHvv766wxjpD0pTPtfCEtIsstO9OnTh969e+d1MUQ6Ht43iYmJfPbZZ/z99998++23tG3blkqVKlm8vD/++IPk5GRKlSqVG8UVQhQiderU4dSpU2zevJmuXbummX/kyBGCgoKoW7cuJ0+ezIMSFmzWjg8gMUIIkbHcOOfYq/fff5+dO3dy5MgRfv/9d4YOHWqel5SUxOjRo0lJSWHkyJHUqVMnD0tqPXJNIkRq0oxRCCtzdnbms88+w83NDYPBwMaNG7P0/vLly1OlShUcHR1zqYRCiMLi2WefBTKuvbVs2bJUrxO5K6fxASRGCCEsZ41zjr1yc3Nj0qRJ6HQ6fvjhBy5evGie9/3333PhwgVq167NiBEj8rCUuUuuSURhJzW7CqgTJ06wbt06Dhw4QEhICFFRUXh6elKvXj0GDRpEy5Yt07zH1M/WuXPnWL58OUuWLOHixYvcvXuXSZMmMXbsWPNrO3TokOq9c+fOpXnz5mmWuX79ev744w/OnTuH0WikRo0ajBgxgjZt2mRrvQIDA/n111/ZvXs3kZGRlC9fnhdffJH+/fvTvXt3Ll68yJo1a6hSpUq2lm8tRYoUoVKlSpw+fTpV++rMtrGpGnZm1bJDQ0P59ddf2blzJyEhITg5OVGtWjWeeeYZ+vTpg16vT1MWSz7z8uXLzJw5k/379xMWFoajoyPe3t5Uq1aNzp072/RCODtlSUhIYOHChaxbt46goCASExPx9fWlQ4cODBs2DB8fnzTvuXjxItOmTWP//v3Ex8dTvnx5evXqxcsvv2yDtRTCNvz9/alTpw67d+/m5s2bqe7OxsbGsnbtWkqXLk2rVq0yXIa140lunnfsIUZkFB9AYoQlslqW7MQHkBghCo7Mzjnpyc45H1KfS7L6+z8rx+mKFSssviZp0qQJL7/8Mr///jujR49m8eLFnDhxgjlz5uDo6MjkyZNzlMix55iT03gDWY85BT3egMSc/EaSXQXUlClT2L9/P1WrVqV27dq4urpy7do1tm7dytatW/noo4946aWX0n3vl19+ycKFC2nYsCFt27bl2rVrlCtXjl69erF+/Xri4uLo3Lkzbm5u5vcUL148zXKmTZvGzz//TMOGDWnTpg1BQUEcPXqU4cOHM336dDp16pSldfr3338ZM2YMycnJ1KpViyZNmnD58mXGjx/PzZs3uXLlivmEnh/cvXsXIN0+ANLbxoqiZLq8EydOMGzYMCIjI/H19aVjx47ExMRw4MABjh49ysaNG/nll18y7HMgo888f/48L7zwAnfv3qVSpUq0a9cOnU7HzZs3OXjwIDdv3rRZYMlOWW7evMnQoUM5f/483t7e1K1blyJFihAQEMBvv/3GunXrmDdvHmXLljW/59ChQwwbNoy4uDj8/Px4/PHHiYiIYOrUqRw/ftwm6yqErTz77LOcOnWKFStWpLqDvXbtWuLi4hg0aFCm5x9rx5PcOu/YU4zILD6AxIiMZLUs2YkPIDFCFDyPOuc8KCfnfMj67/+sHqemJICl1yRvv/0227dv59SpU/zwww9s2LABo9HIO++8g7+/v8Xb8GEFJeZkJ95AzmJOQYw3IDEnX1JFvtauXTvV399fXb58eZbet23bNvXmzZtpph85ckRt1KiRWrt2bTU0NDTVPH9/f9Xf319t1KiRevTo0UzLc+3atQw/27ScJk2aqMeOHUs1b9q0aaq/v7/65JNPZml9Dh06pNauXVtt3LixunPnzlTzZsyYoVavXl319/dXBwwYkKXl5kRm++bMmTNqjRo1VH9/f3XZsmXm6dndxomJiebpn332mZqUlGSed/XqVfO8KVOmpFneoz5zzJgxqr+/v/rzzz+nmRcfH68eOHAgs82QyrVr18yfl9l35MH1fHD7ZbUsRqNR7devn+rv769+9NFHakxMjHlecnKyOnnyZNXf318dOHCgeXpCQoLapk0b1d/fX504caKakpJinnfmzBm1efPmFq+DEPmV6fg6ePCgGh0drdarV0/t1KlTqtf069dPrV69unr16lXzsVuzZs00y8qNeGLN846q5r8YkZ34oKoSI9Jbz+zGiOzEB1WVGCHsU3bOORn9ps/OOV9Vs/f7P7vHaWblT8/x48fVmjVrmsvYt2/fVMd2VhWEmJOT677sxpyCGm9UVWJOfiV9dtmJsWPHphlS9sG/6OjoVK9v06YNJUuWTLOchg0b0r9/f5KTk9m0aVO6nzV48GAaNGiQ4zK/+eab1K9fP9W04cOH4+HhweXLlwkJCbFoOQaDgY8//pjk5GQmT56cprnN0KFDzVVC87qDyZiYGLZv386oUaMwGo2ULFky3U6hs7qN165dS3BwMCVLluTjjz9OVeXaz8+P0aNHAzBv3jwSExPTXUZGn3n79m2AdKuWu7i40LRpU4vLmVNZLYup49GaNWsybtw43N3dzfMcHBz44IMP8Pf3Z//+/Zw/fx7QmtaGhIRQpkwZPvjgg1RVrGvUqMFrr72WG6smRJ7x8PCgU6dOXLlyhQMHDgAQFBTEkSNHaNq0KX5+fpm+PzfiiTXPO/YSIyyNDyAxIiNZKUt24gNIjBAFR1bOOQ/KyTkfsvb7P7vHaVbVq1cvVfPLcePGpdus2xIFLeZk57ovpzGnoMUbkJiTX0kzRjvx4FCy6UmvvXlERATbt2/n/PnzREdHk5KSAmjtjwEuXbqU7rK6dOmS8wID7dq1SzPNyckJPz8/AgICuHnzJmXKlHnkctauXculS5do3rw5HTt2TDNfr9fj5+fHnTt38iSojB07NlXfASbly5dn+vTpqapWm2R1G5suULt3755udeAnn3wSLy8voqKiOHXqFI0bN7b4M+vVq8f27dv54osvGDVqFM2aNcPZ2TlL5bOWrJZl+/btgLb+Dg5pT2c6nY4mTZpw/vx5jh49ir+/v3lbdu3aNd3jplevXkyaNMlKayRE/vDss8+yevVqli9fTrNmzcwd1lvaHMDa8cSa5538HCOyEx9AYkRGslKW7MQHQGKEsGvZPec8LLvnfMja7//sHqdZtXfvXnbt2mX+/7///jP3H5VVBS3mZOe6L6cxp6DFG5CYk19JsstOPDyU7KMsWbKESZMmERcXl+FrYmNj053+cDvi7PL19U13uinTndHd5Ydt2LABgKeffjrD1yQkJABQt25di5b59ddfExERkWb65MmTLXr/gx5MRDo6OlK0aFEaNGjAE088ke7JDrK+jW/evAmQbueQAIqiUK5cOaKiosyvtfQzhwwZwuHDh9mzZw9Dhw7F0dGR6tWr07RpU7p160a9evUsLueDbfxVVc30tab5D74nq2W5du0aAD/88AM//PBDpp93584dQOtMEzLell5eXnh4eBATE5Pp8oSwJy1atKBcuXKsX7+ejz76iFWrVuHu7m7Rj9zciCfWPO/k5xiRnfgAEiMenJ/dGJGd+AASI4R9y+4550E5OedD1n7/Z/c4zYq7d+/y0UcfoaoqAwYMYPHixcyePZuOHTtm6fxlUtBiTnau+3IacwpavAGJOfmVJLsKoFOnTvHZZ5+h1+t5//33ad++PWXKlMHV1RVFUVi8eDGfffZZhge+i4uLVcqh01mnleypU6eAjANGcnIyly9fxsvLi/Lly1u0zPXr1xMcHJxmenaSXVlNRIL1trE1PtPV1ZU5c+Zw4sQJdu7cydGjRzl69CinTp1izpw5vPjii3z++ecWfYarq6v5eXx8fKavNf2IevAuU1bLYjQaAWjcuPEj9321atUsWgchCiJFUejVqxfTp09n9OjRhIeH07dv30eei3IrnljzvJOfY0R24gNIjICcxwiJD6Iwyu45xySn53zI2u9/WxynX331FTdu3OCxxx7jk08+wcfHh+nTpzN27FhWrlxpUaf9DypoMUfijVyTFGSS7CqA1q1bZ757MWzYsDTzTVWQ7YWpzXRGVa+3bNlCYmIiTZo0sXiZW7ZssUrZbKVUqVLA/bsG6TENJ2x6bVbVq1fPfJciJSWFTZs2MXr0aBYuXEjnzp1p0aLFI5fh7e2Nm5sbcXFxXL16NcPq5pGRkURGRgKk25TV0rKY3tuhQweGDBli0Xqatk9Gw29HR0fL3RNRIPXu3ZuffvqJrVu3ApY1YczteGKN847ECIkR6ZUlO/EBJEaIws3W1xDZPU4ttW3bNpYvX467uztfffUViqIwfPhwNm/eTEBAANOmTeP999/P0jIl5uR+zLG3ePPgeyXm5C/SQX0BFBUVBaRfjTgxMdFc/TY7TG2JDQZDtpeRVaZqz1evXk0zLyEhge+//x7I+87pc1OzZs0AWLNmTbrNPzdu3EhUVBRFihSxynZwcHCgS5cu5k43z549a9H7dDqduazr16/P8HWmeV5eXtSsWTPbZWndujVw/8eZJUwdSq5bt47k5OQ08//++2+LliOEvfH19aVDhw54e3vToEGDNB0Ipyc348nDsnvekRghMSK9smQnPoDECFG42fKcD9k/TuHR1ySRkZF88sknAIwZM8a8To6OjkyaNAlHR0d+//13jh8/nqXPlZhj25hjD/EGJObkV5LsKoCqVKkCaAfH3bt3zdMTExP54osvMswcW8KUfb5w4ULOCpkFpk4Nf/7551R9BNy5c4cRI0YQFBQEFOyg0rVrV3x9fQkLC2PSpEnmjkJBu6tiquY8cODALHfkuGDBAvM2fFB4eLi5qnZG/S+kZ+jQoSiKwurVq1m6dGma+UePHmXKlCkAvPLKK6k6Y8xqWTp06EDdunU5ceIEY8eOTbc/h6ioKP766y/zNuvSpQulSpXixo0bTJkyxVztGOD8+fP88ssvFq+rEPbmxx9/ZP/+/SxevNii1+dWPLHmeUdihMSI9MqSnfgAEiNE4Zab1xDpye5xCo++Jvnyyy8JDw+ndevW9OnTJ9W8GjVqMGLECAwGA2PGjLG4H2GQmAO5F3PsNd6AxJz8Spox2omlS5eaR2tIz+OPP07Pnj0BranK3LlzCQgIoEOHDjRp0gS9Xs+hQ4dISEhg0KBBzJ07N1vl6Ny5M/v37+eDDz6gVatWeHp6AlonfpUrV87WMh/l9ddfZ9u2bRw8eJDOnTvToEEDEhMTOXjwIFWqVKFSpUpcunSJhg0b5srn5wdOTk788MMPDBs2jL/++osdO3ZQv359YmNj2bdvH4mJibRq1YqRI0dmedlLlixh/PjxlCtXjmrVquHu7k5ERIT5+9KiRQvat29v8fKaNm3KRx99xOTJk/nkk0+YOXMmtWrVwsHBgStXrnD69GlUVaV79+68+uqrOSqLTqfjp59+Yvjw4axcuZL169dTvXp1fH19SU5O5tq1a5w/fx6DwUDv3r1xcHDAxcWF//3vf7z66qv8/vvvbNq0ibp16xIZGcmBAwdo164dp0+fTrfvBCEKm9yKJ9Y870iMkBiRXlmyEx8AiRGiUMvNa4j0ZPc4hcyvSS5cuMC///6Lp6cnEyZMSPezTc0ZT58+zQ8//MCHH35oUZkl5uRezLHXeAMSc/IrSXbZiSNHjnDkyJEM53t4eJiTXZ6enixbtozp06eza9cuduzYgbe3N48//jhvvPEGhw8fznY5XnjhBWJjY/nnn3/Yvn27+U7IU089lWvJrho1ajBv3jymTJnC8ePH2b17N1WrVuW9996jbdu2dO7cmRo1alCiRIlc+fz8ol69evz999/8+uuv7Nixg40bN+Lk5EStWrV4+umn6dOnj8Uj7TzonXfeYdu2bRw/fpzjx48TExNDsWLFqFevHs8++yzdu3fP8nIHDRpE06ZNmT9/PocOHWLHjh2kpKRQtGhROnToQO/evenQoYNVylKqVCmWLFnCihUrWLNmDefOnePkyZN4eXlRsmRJ+vXrR/v27VPdWWrWrBlLlixh+vTpHDhwgI0bN+Ln58ebb77J4MGDefLJJ7O8HYUoiHIrnljzvCMxQiMxIm1ZshMfQGKEKLxy8xoiI9k9TjO6Jnn88ccZP348AB9//HGGfUY5ODgwefJkevfuzZw5c3jyySdp0KDBI8srMUeTGzHHnuMNSMzJjxQ1qw2khchHPvvsMxYvXswXX3zBCy+8kNfFEUIIkY9IjBBCCGErEnOEyF+kzy6R7508eTLNtKioKCZOnMjixYupVatWmrb4QgghCgeJEUIIIWxFYo4Q9kNqdol8LTw8nFatWuHr60vlypXx8vIiNDSUM2fOEBcXR40aNfj1118pWbJkXhdVCCGEjUmMEEIIYSsSc4SwL9Jnl8jXjEYjzz//PAcOHODYsWMkJCTg4eFB/fr16datG8888wxOTk55XUwhhBB5QGKEEEIIW5GYI4R9kZpdQgghhBBCCCGEEKLAkD67hBBCCCGEEEIIIUSBIckuIYQQQgghhBBCCFFgSLJLCCGEEEIIIYQQQhQYudJBfURERJppXl5eREVF5cbH2Q3ZBrINTGQ7yDaAwrENfHx8Mp2fXrzIicKwTQsq2Xf2Sfab/cpv++5R8QKsHzNsKb9tb2Ebst8LJ9nvuc+SmGGzml06nVQik20g28BEtoNsA5BtkBtkm9ov2Xf2Sfab/ZJ9Z1uyvQsn2e+Fk+z3/EH2ghBCCCGEEEIIIYQoMCTZJYQQQgghhBBCCCEKDEl2CSGEEEIIIYQQQogCQ5JdQgghhBBCCCGEEKLAkGSXEEIIIYQQQgghhCgwJNklhBBCCCGEEEIIIQoMSXYJIYQQQgghhBBCiALDIa8LIAqvI0dVzp6D558DBwclr4sjhBCiAEpMVFmzDq5fV2naRKFFc4k3Qggh7ouIVDlwAAIvqRgM4OGu0LAB1KsLiiIxQwh7JckukSduhKi8856KwQiOjgp9ns3rEgkhhChokpNV3vtQ5dhx7f/FS1W6dVUZ/b6CXi8XMEIIUZgFB6vMmq2ydTsYjQ/OUQGoWwc++QjK+kq8EMIeSTNGkSf27QfDvaCyd5+at4URQghRIC1aAseOg5sbPNkR9DpYsxa++U7FaJTYI4QQhdXBQyqDX1XZvFVLdPn7w7O94MUXoFNHcHaGk6dgxEiVq9ckXghhj6Rml8gTZ8/dDxrnzuVhQYQQQhRId++qzJ2nxZp331bo8qRCm9Yqn36h8t8a8C0DLw3M40IKIYSwuTNnVT4cq5KcrNXeevdthWpVU9feCr2pMuYjlYuB8MlnKr/OAGdnqeElhD2Rml0iT1y7dv95VDRERckdEyGEENazeSvEJ0DFitC5kzatTWuF997RLlZ+m6Ny5KjEHiGEKExiYlQ++VxLdLV8DH6YkjbRBVC6lMKUbxV8fCDoEiz4Kw8KK4TIEUl2iTxx9Wrq/69dz5tyCCGEKJjWrtMSWd27Kqk6GH6qB3TtrDVb+WK8yu3bkvASQojCYu58lZs3oawvfPaxgpNTxrW1ihZVeHuUNn/hIokXQtgbSXYJm4uOVomK1p7XrKk93riRd+URQghRsEREqpwO0J536pB6nqJotbsqV4I7ETB+ooqqygWMEEIUdKE3VZav0J6//ZaCu/ujmyW2b6ddryQkwLKVEiuEsCeS7BI2F3pTeyzqA+XLac/Db+VdeYQQQhQsBw+BqkLVKlC8eNqLGRcXhS+/UHBxgcNHYM26PCikEEIIm1q0WCUpGRo1hBbNLHuPoigMeFGLI3+vgvh4SXgJYS8k2SVsLjxceyxeAooXvzftlgQOIYQQ1rH/gBZTmmdyMVOhgsLgl7ULmFmzVRITJQ4JIURBFRensna99nxg/9TN2x+lVUut2WNMDKzfkEsFFEJYnSS7hM2ZanGVKA4lS2iBxpQAE0IIIXJCVVUOHNSeN2+W+cVMn2ehVCm4fRv++dcGhRNCCJEnNm6G2FgoVw4aN8rae/V6hV7PaPFk7Xq5MSKEvZBkl7C58HAtSJQortXu0qblYYGEEEIUGNeuQ0QEODlqQ8pnxtHxfvOUFX9L311CCFFQmQYtebqngk5nea0uk44dQKeD0wFw/brECiHsgSS7hM2Za3aVUChxrxnjLemzSwghhBWcOqU91qihJbMepXMncHWBa9fg2PFcLpwQQgibuxmmcuo0KEraQUssVbyYQpPG2vP1GyXZJYQ9kGSXsLlbDzRjNCW7bt8Gg0EChxBCiJw5eVqLJXVqW/Z6NzeF9u2151u2SRwSQoiCZtt27bFe3fQHLbHUk5209+7YaY1SCSFymyS7hM2ZmiyWKAE+PtpdFoMRoqPztlxCCCHsn6lmV53all/QPNFKe+2evUhTRiGEKGC2bdfO6+3aZj/RBdCyBeh1EBgEN0IkVgiR30myS9icqRlj8eLg4KDg5an9fyci78okhBDC/t29q3L5ivbc0ppdAE0agZMT3LypXcQIIYQoGKKitCaMAK1b5WxZnp4Kdetqz3fvydmyhBC5T5JdwqYSElTu3tWeFy+mPRYtqj3euZM3ZRJCCFEwnL8AqqqNsFi0qOV38F1c7vfFsmdvLhVOCCGEzR08pMWFKpWhZMmc1ewCaPW4tozde6RmlxD5nSS7hE1FRBoBcHAAd3dtmo+P9nhbkl1CCCFy4MJF7dG/Wtbf27ypdgFz7LhcwAghREFx4KB2Tm/W1DrLe7yl9nj0mFabWAiRf0myS9hUZIQWFLy8QFG0C4tiUrNLCCGEFZy/oMUY/2pZv3tf717TlFOnZcAUIYQoCFRVZf8B7XnzZjmv1QXgV06hQnkwGLRaY0KI/EuSXcKm7kRoNbu8ve5Pu9+MUS4uhBBCZN+FC9pjtWzU7KpcGdzcIC4Ogi5Zt1xCCCFs79JlreWIs/P9GxrWYKoldvCwXLsIkZ9JskvYVESkFhS8ve9PM/WrEiEd1AshhMimxESVK/c6p/evmvX36/UKtWtpz02dGQshhLBfx09oj3Vqg5OTdWp2ATRprC1LanYJkb9JskvYVOS9ml1e6dTskj67hBBCZFfQJTAYtZrDJUpkbxk1qmuPFy7K3XohhLB3x45p5/IG9a2X6AJo2AD0eggJgeAbEi+EyK8c8roAonC580CfXSZF73VQn5s1u9atW8fy5csJDAxEVVUqVqzI008/zdNPP23uO8xSRqORVatW8d9//xEUFERSUhI+Pj40bNiQAQMG4O/vn0trIYQQIiPnH2jCmNXzuknVqgqgcvFi9soQEhLCkiVLOHPmDMHBwURFRaHX6/Hz86Ndu3b069cPV1dXi5c3YsQIjh49mulrFEVh714ZQlIIIR6kqirHjmvPG9S37rLd3BTq1FY5fkKr3VX2Kesu/2FHjhxhyZIlnDhxgpiYGLy8vKhatSq9e/emdevWufvhQtgxSXYJm4qMzLjPrtyq2fX111+zcuVKHB0dqVOnDq6urpw8eZLJkydz4sQJPvvsM4uXpaoqY8eOZfv27Tg7O9OgQQPc3d0JDAxkw4YNbNmyhW+++YaWLVvmzsoIIYRI14V7ndNnp78uk2pVtMfAIK2Ter0+a0mzwMBA/vrrL4oVK0aFChVo0KABMTExnDp1ipkzZ7Jx40ZmzJiBp6enRct77LHHKFOmTLrzzp07R2BgIA0aNMhSGYUQojC4HqxdWzg6Qq2a1l9+0yYKx0+oHDqk8sxT1q059qBff/2V3377DScnJ+rVq4ePjw/h4eEcP36cEiVKSLJLiExIskvYlLnPLq/7QcE0GmNUFKSkqDg4WC9gbNmyhZUrV+Lp6cm0adOoUaMGALdu3eKtt95izZo1tGjRgieffNKi5e3cuZPt27dTpkwZZs2aRYkH2srMmzePn376iW+//ZaVK1dabR2EEEI8mqlml3/V7MeQsmXBxQUSEuD6dahQIWvvr1GjBgsXLqRy5cqppsfGxjJ69GgOHTrEH3/8wZtvvmnR8gYNGpThvMGDBwPQpUuXrBVSCCEKgWPHtMdaNcHZ2frJqCaNYfbvcPho9m6OWOLff//lt99+o3bt2kyaNImSJUua5yUkJBAcHGz1zxSiIJE+u4RNRaTTZ5enJ+h0oKoQGWXdz1uxYgUAL774ojnRBVC8eHHzxcb8+fMtXt6xe5GzV69eqRJdAAMGDMDd3Z2QkBDu3JEOyIQQwlYMBpXAIO25fw5qdun1ClXu5akuZKMpY/HixdMkugCKFCnC0KFDATh0KOc9Gl+9epWAgACcnZ3p0KFDjpcnhBAFzbETpv66cmf5NaqDexGIiYFz562//ISEBKZPn46bmxvffPNNqkQXgIuLC1WqVLH+BwtRgEjNLjtz48YNevfuTcOGDZkyZQozZ85ky5YtREVFUaFCBYYNG8YTTzwBwObNm1mwYAFBQUG4urrSsWNHRo4ciYuLS6plJiQksHjxYjZv3sy1a9cAqFy5Mr1796Z79+5pynDs2DE2bdrE0aNHCQsLIykpidKlS9O6dWsGDRqEh4dHqtcfPnyYkSNH0q1bN26Fv40h+Re++XoH476Ixs/PjxdeeAEf7+7cvgN37kDxYtbbXufOnQOgUaNGaeY1atQInU7H+fPnCQ0NpXTp0o9cnqOjY4bzFEVBURT0ej3u7u7ZL7QQQuQTtow5AwcOpG3btmnKYEnMuX4dEhO1Wlk3bx7h+ee1mPPWW28xY8YMduzYQXT0/ZjTs2fPDNe5ahU4HQAXA1U6drDenXoHB+0nV2ZxxFLr168HoFWrVhJvhBB2wdbXMKdPdwWgbp375/GcXMOkF09Kl+zHxUs9OHzE+k0lt23bRlRUFD179qRYMSteHAlRiEiyy06lpKTwxhtvcOPGDRo2bEhkZCTHjh1jzJgxTJ06lcDAQH788UcaNmxI8+bNOXbsGEuXLiUqKorx48ebl3Pnzh3efPNNLl68SLFixWjYsCGqqnLy5Em+/PJLzpw5w/vvv5/qs6dPn87FixepUqUKTZo0ISkpiXPnzjFv3jx2797N7NmzcXNzS1Pmu3fvEhQ4FNUQR40a9TEYojh27BgTJ06ktK8BeAprV4iKj48HSBO8QLvgcHV1JTY2lgsXLliU7GrevDl//vknK1eupGvXrmmaMcbExNCtWzecnJystxJCCJHHbBFzxowZw3PPPZetmBN0Sev0vVJFraYwaDFn2LBhxMfH06BBA3OZJ06ciNFo5Omnn053XStV0jqpv3LVetsvISGBP/74A4DHH388x8szJbs6d+6c42UJIYQt2eoaRtGfQe/4bqokVE6uYdKLJwbDV+gcjBw+8hQD+1u3GePhw4cBqFu3LjExMaxfv57AwECcnZ2pV68erVu3Nt9EEUKkT44QO3Xy5EmaNGnCihUrzCM7/fvvv0yYMIFvvvmG6OhoZs+eTc2a2hk+PDycQYMGsWHDBoYPH07ZsmUBmDBhAhcvXqRv376MHDnSnKS5ffs277//PsuWLePxxx/nscceM3/2kCFDqFevXqq7yUlJSUyZMoW///6bv/76iyFDhqQp844dO9DpO6J3/oRPP3WmRAmF7du3M3r0aO7cngNK6mSXJaNQPeyTTz6hR48e5v9NnTiGhoZSqVKlVK+NiooiNjYWgNDQUIuW36hRI/r378+CBQt47rnnaNiwIUWKFCEwMJDr16/TvXt3PvjggyyVWQgh8jtbxJzRo0dnO+agewWAB0/zO3bsoFOnTnz66afmzzHFnDlz5qRJdj0cc7ZughabMt8uD8cck+joaL7//nsAIiMjOX36NFFRUbRp04YXX3wx84U+wsmTJ7l+/TpeXl4yGIoQwu7YIp689tr7XLu2jKIlW+Lpef88mZNrmIziiTFlDidOPkVSkoqTk5bwssY1zKVLlwAthrzwwgvcunXLPG/RokVUqVKFKVOmUKpUqSx9jhCFiSS77JROp+PDDz9MNYR5t27d+PHHH7l+/TqvvPKKOUgAlChRgs6dO7No0SKOHj1K2bJlOX/+PHv27KFWrVq89dZb6HT3u3ArVqwYY8aM4aWXXmLFihWpLjzS+3Ht5OTE22+/zerVq9mxY0e6gcLNrQiJhvdQFCdzn11t2rShSpUqBAYGoncK4fYdX/PrMxuFKiPlypVL9X+DBg3YuHEj//33X6p1AC2wmsTFxVn8GaNGjaJkyZJMmzaNffv2pfrsZs2apaliLYQQ9s4WMefLL7+kV69e2Yo55Spoya4qle/fWS9SpAjvv/9+qpq2D8acGzdu4OubNubEx8O27aDooHMnUDK5Wf9wzDFJSEhgzZo1qaZ16NCB999/P8cxYu3atQB06tRJ7uoLIeyOLeJJk2Yfcu3aKyjqCuB+DMnuNUxG8aRy5coEBQWRmBDCqdO+NGqozXvwGsbZ2ZnExMRHbpeH40lMTAwAM2fOpEKFCkyYMIFq1apx+fJlvvnmG86dO8fYsWP57bffUDILVEIUYvIryU6VKVOG8uXLp5qm0+koXbo0kZGRNG/ePM17THdCbt++DcD+/fsBaN26daogYVK9enXc3NwICAhIMy8sLIxdu3Zx5coVYmNjMRq1jucdHR3NbeYfVqlyDc5d9MLNDfOdDwA/Pz8CAwOBW0RElAG0eZmNQmWp/v37s2XLFjZt2kSpUqXo06cPLi4ubN26lVmzZqHX6zEYDBYHiaSkJMaNG8e2bdt4+eWX6d69O15eXpw9e5YpU6bw+eefEx4ezoABA3JcdiGEyC9sEXNq1aqV7ZiTpP1L5QdqdtWoUQOvB0dDuccUc27fvp0q2WWKOUajSqeuKomJMHiIgl+5rF9ElCxZkn379qGqKmFhYRw4cIAZM2bQv39/pkyZkmrAlKxISUlh8+bNgIzCKISwT7aIJ2Hh1QE37sacSTsvG9cwGcWT8uXLExQUBNziyNEyNGqY9hrGx8eHiIiIdJebGVO59Ho9U6dONdfgql27NlOnTuXZZ58lICCAAwcOpLvNhBCS7LJbD48EaGK6S5LefNO8pKQkAEJCQgCYMWMGM2bMyPCzHr4bsXDhQn7++WdSUlKyVGZPD61MD8cKU9t4VU3mtpX77KpRowaffPIJkydPZsGCBSxYsMA87/HHH8fBwYHt27fj6elp0fL+/PNPNm/eTN++fRk2bJh5euPGjfnuu+944YUXmD17Nj169MDb29u6KyOEEHkkv8cc0+jrlSrBlcva84dHrjIxxRxTuR6m0yn4lVO5GAhXroJf+pW3LKIoCqVKlaJnz55UqVKFYcOGMWHCBObNm5etO/F79uwhKioKPz8/6tSpk/2CCSFEHrFlPElIsM41zKPiiaomc/gIDB2cpcVmyrTOTZo0SdNUsWjRorRs2ZLNmzdz9OhRSXYJkQFJdtmpR/1ItuRHtKpqQ/LWr1/ffMfkUU6dOsW0adNwd3fnnXfeoVGjRhQrVsxcrbdHjx6p2pQ/KDlZu/PinfbGiNmDNz7mzp3L5cuXLSqXyVNPPUWDBg1STevatSuNGzdm8+bNXL16FWdnZ5o0acLjjz/O8OHDAdL055WRdevWAdCuXbs080qXLk3t2rU5dOgQZ8+epUWLFlkquxBC5Fe2iDnpNfWwNOYYjeDlCcWK3k92ZTWZ9GDMiY4EQxL89itsyaTfrvRiTkZq1apF+fLluXjxIjdu3LA47j7I1DG91OoSQtir3I4nsXGwY4c2WEmnjven5+QaxpIyBZyBuDgVNzclVTyxtBnjw/GkTJkynD9/PsMuXUzTs1NrTIjCQpJdhZjpzknr1q3p37+/Re/Ztm0bAK+99hrdu3dPNS8hIcFcvTg9OsQpTwAAnedJREFUScnaY2YVnh7soH7v3r1Z7tyxUaNG6V54lCxZkhdeeCHVtISEBC5cuICbmxvVq1e3aPlhYWEAGQ71XqRIEeB+O3shhBCaR8Wc9Jp6ZCXmVKqU9QTXg9KLOWfOaH8ZySjmZMRU4zciIiLLya7Y2Fh27doFSLJLCFG4ZRZP1m9Q2b1PpU5t+OKL+00cc3IN8yjFikFEJBw/AY+1sM41jL+/P9u3b8/wmiI6OhogVd9nQojUJNlViDVr1oxZs2axfft2i5NdphNuetV5t2zZYr7Tkh5Ti5F0mrybPdiM8ZdffrGoTNn177//Eh8fz7PPPmtxh8HFihUjNDSUs2fPUrVq1VTzDAYD58+fB8hyx/pCCFHQ5XbMqWxZBd0MPRhzNm5WGfelSr268PP0tP3BZEdsbCznzp1DUZRUfYVZasuWLSQmJlKvXr1s1QoTQoiCIrN4cjpAiwu1aqZ+T06uYR7FvxrsPwiHj6g81kJJFU+y22fXE088wa+//sqJEydISUlJNSCJ0Wjk+PHjABbfsBeiMLLOLzhhl+rUqUOzZs04ceIE3377LbGxsWlec+HCBfbu3Wv+39Sh5D///JOqvfulS5f46aefMv08S5JdMTGQnJz9YJOeM+nclt+xYwc//vgj3t7eqfreMhk3bhx9+/Y13wUyad26NQCzZs3i6tWr5ukGg4FffvmFkJAQSpcune3Oh4UQoqDK7ZhTubL1RqMq76c9PnCat8iqVasINnUg9oCwsDA+++wz4uLiaNmyJUWLFk01/4033qBv376cPn06w2WbmtF37do1a4USQogCJrN4EnDvZ7+P90WrXcM8SnV/Lf4cPpKjxaTi7+9Ps2bNCA0NZcaMGamScXPmzOHKlSv4+PjQtm1b632oEAWM1Owq5L744gvefvttli9fzoYNG6hWrRrFixcnNjaWixcvcvPmTfr27WseBr5Hjx4sXLiQXbt28fzzz1OzZk2io6M5evQobdq04fTp04SGhqb7Wcn3kl3eXulfkOj1oAKRkZBB35XZ8sorr1CuXDkqVKiAq6srQUFBBAUF4eXlxdSpU9PtSD40NJQrV65w9+7dVNOHDBnC/v37uXLlCgMGDKBu3bp4enpy/vx5goODcXZ25pNPPpHh4IUQIh2ZxZygoCBCQkKyHXNyWrPrQeXuVZyKjILYWJUiRSxLpK1bt45JkyZRqVIlKlSogIODAzdv3uTcuXMkJSVRuXJlxo4dm+Z9169fJzQ0lISEhHSXGxYWxtGjR3F0dKRDhw7ZXi8hhCgo0osnRYsWJ+DUXYyGQH760XrXMI/iX017vHARoqJUvDK41smqjz/+mKFDhzJ//nx27NhBlSpVuHz5MpcuXcLZ2Zlx48ZJM0YhMiE1uwq5okWL8uuvv/Luu+9SsWJFzp8/z9atW7l48SK+vr6MGjUqVfVgLy8v5syZw5NPPklycjK7du0iPDycV199lfHjx2f6WeY+uzKo2WXqBuuOlftZ7NevH25ubpw4cYIdO3aQnJzMCy+8wF9//UXNmjUfvYAHeHl58fvvvzNkyBDKly9PQEAAO3fuxGAw0K1bN/744w+aNGli3RUQQogCIrOY4+fnl+WY82CrE2smu4oUUcyx6sYNy983YMAAevbsCcCRI0fYunUrV69epXbt2rz77rv88ccfFC9ePMvlWb9+PUajkZYtW1o8erAQQhRk6cWTbdu2YjQE4ujkyxtvvGG1a5hH8fCAShW150ey1lVXpkqVKsXcuXN57rnnSEpKYufOnURGRtKpUyd+//13mjVrZr0PE6IAUtScNFDOQHrtkrPbXrkgKezb4NURRgLOwFdfKrR+Iu0dj5eHGLkYCP/7WqFFc+s1R8mPCvt3AWQbQOHYBj4+PpnOt/b6F4ZtWlBlZ98dP6Ey8k2VkiVhxRLr3r8zxayJ4xXatC7YMSkn5JizX/lt3z0qXoB9jzyX37Z3QbRkqcq0n1Qebwlff2XbOh3fTzeybDk88zS8/879z5b9XjjJfs99lsQMqdklbCYqSnvMaDRGUxcmEZG2KI0QQgh7d+mS9mjNWl0mpj7kg7NQs0sIIUTeOX3G1Dm97W9QNG5o/X67hBA5I8kuYTPmZFcGzRh9vLVHSYILIYSwRNAl7cKmcmXrL7vsvWTXjRtWrwAvhBAiF5g6p394JEZbaFAfdDq4dg3CwiRuCJEfSLJL2ERyssrdewOlZDQao/e9mogRERIghBBCPFqQuWaX9e/i+/pqy5SaXUIIkf9FRKqEhICiQM08GBTdw0Ohur/2/LAV++0SQmSfJLuETURFa486ndaJY3qK+mgXFtKMUQghxKOoqvpAssv6y79fs8v6yxZCCGFdAQHaY4Xy4O6eN/0sNm6kPR45IjfuhcgPJNklbOJ+E0YFnS79AGRqxnjnjm3KJIQQwn7dvgPR0dpNlArlrb983zLaY+hNSEmRCxchhMjPzpw19deVd2Vo3Oh+v125MAacECKLJNklbCIyUnv09sn4K2caUMH0WiGEECIjps7pfX3B2dn6d/GLFwcnRzAYICzc6osXQghhRab+umrmQef0JnXrgKOjFjOuB+dZMYQQ90iyS9hE5L2aXT7eGQcgU7LrjnRQL4QQ4hEuX9EeK1XMneXrdApl7tXukqaMQgiRfxmNap52Tm/i4qJQu5b2/PDhvCuHEEIjyS5hE6ZmjD4W1OyKiJCqv0IIITJ3+bIWJypWzL3PMPXbJZ3UCyFE/nX9Oty9C05OUCUXRufNiiaN7zVlPCrXMkLkNUl2CZswNU3MrGaX971RGg0GiLmb+2USQghhv8w1uyrkXpMVX3Mn9XLRIoQQ+VXAWe2xuj84OORdM0aARg21xyNHtBpnQoi8I8kuYRNRUdrJPrOaXc7OCu5FtOcR0km9EEKIDKiqyqXL2vPcrNnl66tdNEnNLiGEyL8CAvK+c3qTWjXB1UUbiT4wKK9LI0ThJskuYRPmPrt8Hrjboqra3wO8TU0ZI21TLiGEEPYnMlIbiVFRoLxfJi9MJ85khblmV0i2FyGEECKX3e+vK29rdYFWs6x+fe354cOqdM0iRB6SZJewifvNGO995VQVp70/4bT3p1QXIj7e2mOEdFIvhBAiA6YmjGXKaB0CpyuDOJMVvtJBvRBC5GuJiSoXA7Xn+aFmF0DjRgqgUurcTxi3/i9HN12EENknyS5hE6YO6r1NNbsMySgRl1EiLoMh2fy6okW1RxmRUQghREZMya6KFTJ5UQZxJitMya67dyE6Ri5WhBAiv7lwEVJStIGuSpfO69JomjcFR10yTtGXSbkZlO0YJITIGUl2CZswJbuKZtJnF9yv2RUZKRcVQggh0meLkRhBqzVWrJj2/EZw7n6WEEKIrDM1YaxZAxQl75sxAlSqBKVKgtEIt+8Y87o4QhRakuwSuU5V1ft9dmUyGiNod2UA7kgH9UIIITJgi5EYTUy1u4Kl3y4hhMh3As6YOqfPH4ku0JJuzZtpz8PCJNklRF6RZJfIdfHxkHyv9q639yNqdt1r5igd1AshhMjI5cvaY27X7IIHOqmXfruEECLfMdXsql0rb8vxsObNtGuasHCjdFIvRB6RZJfIdaZaXc7O4Ob2iJpd3tqjdFAvhBAiPdHRKrfv1f6tUD73P8/cSX2IXKwIIUR+EhGpmm9E1Kiet2V5WKOGoNNBQrxqvkEjhLAtSXaJXGfqr8vL69Gv9fbWHk0JMiGEEOJBpiaMJUs++gaKNZQtq32G1OwSQoj85eRJ7bFiRfDwyD/NGAFcnBVz9yz7DuZtWYQorCTZJXJdZKT26G1BssuUEIuSZJcQQoh0WDQSoxWZa3ZJsksIIfKV4ye0Grf16+ZxQTJQvLiWgNu/X2oGC5EXJNklcl1kFmp2mZoxxsRASooEBiGEEKmZRmKsVNE2n2fqs+tmmMQlIYTIT46f0B7r189ftbpMihfXHk+dhugYiR9C2Joku0Sui47WHi1Jdnl4aI+qCjF3c69MQggh7NP9ml22ubgpVlTrc9JohJs3bfKRQgghHiEuTuXCBe15/Xp5W5aMuLqAu7uCwQj79ud1aYQofCTZJXJdVJR2J8PT49GvdXBQzAkvacoohBDiYbYciRG0IeRNTRmDpSmjEELkC6cDwGCE0qWgVMn8WbMLoFQp7XJ7926p2SWErUmyS+S6rNTsevB1pr6+hBBCCIDYWJWwcO15BRv12QX3mzJKv11CCJE/mPvryqe1ukxKldQut/cdgORkSXgJYUuS7BK5LupessvT07K7Lt7SSb0QQoh0mJowFisGnjYcecvcSX2IXKgIIUR+YOqvq169/FurC8DbW0cxH4iNhaPH8ro0QhQukuwSuc5cs8vTstd7e2uPkZLsEkII8QBbj8Ro4uurXUxJM0YhhMh7SUkqpwO05/m9ZhdAi8e0x13SlFEIm5Jkl8h1phpanhYmu7ykZpcQQoh0XLli25EYTcpKM0YhhMg3zp2HpCStNUiF8nldmkdr2UK7YbJrD6iqJLyEsBVJdolcFx2jPWa1zy5Tx/ZCCCEEPNA5vY1GYjQx99kVIhcqQgiR10xNGOvW1QYRye8aNwIXFwgLgwsX87o0QhQekuwSuS7a3GeXZa/39tKCljRjFEII8aBLpmaMFW37uWVKa4+xsfdjmhBCiLxx6LB206Fhg/yf6AJwdlJo2kR7vnOX3DARwlYc8roAWeVw5l9c1n6QalpC569Iqd0r8zcaknGd/yz62xfMk4yevsQN3Zytcih3LuF0+A/0V/eh3L0JekeMPhVJ8e9CcsMB4OCc5j3qjZO4rJuA/sYRSEnA6F2R5Ib9SanXN93PcFnyEg7XD5DUYiRJLd/IVjmtJiEKpyPz0AduQRd5BVQjqkdpUiq1JrnJEFT3kum+LTFRJSFBe+7pkc4LVCMOJ5fgELgZ3a2LKAlRDFEVenQsxk1qo7/4DIaqHdK8TbkThEPQdvQhx9CFHEd396Z5nqFcU+Kfn2uNtc4Wh9MrcVn/UaavSQYc231CcsP+qaa7LhmE/vrBR37G3TcOgVMRywuVHIfDhQ3oQ46ju3Ec3a3zKKrBPDt2yCZUr7Jp32dMwfHArzgG/I0SHQJORUip8BhJrd5F9SqX5uX6awdwXfoSqosXsa+sBVcfy8soRD5kcczJ7jFmAbfZHdBFZ95+TnXxJvb1vamm6cICcNo9ze5ijv78Ohwu7UQXdgYlLhwlPgoUHUa3YnzoV4O1SjcqlO8C6C1ephIdTJE/uln8+lT7OCkWt6t7+KzJAaq4nKL4wjCckm6DokP1LEOKX3OSGw1C9amYtRW1Eqc9P+K076dHvi7+mZ8xVG6XZro+aBuOp1eiu3kKJfY2qAZUZ0+MxapiqPYkyXWfS/c3Ta6UKTkOpz3TcTi/HiX2FqqrF4ZKbUl84t1044kp3hp9KhI3aBXonbJUTiHyivO6sTgG/G3Rax95vWKlaxxLf4NC2t/a+qv7cNr3M7qbp8FowFjcn6SmQzH4P5nOm5Nwm/s0uojLll3DPSQhQeXEvZpdzZtm6a0ZS47D8fgiHC5uRncnCJJjUV28UN3LYCjXhOR6fVF9ctZZ5BOPK+zcpbJ7Dwx55REvVo3orx1Ef/0AuhtH0EWHoMTdBkMiqltxDGXqk1KvH4byzdN9u/uUmo8sj6FUbeL7L8vSOuiv7Mbh4iZ0oadRYsNQ4iO04rp4YyzuT0q1TqTUfibtuTjuDs67pqC/tB0lPgq1SHFS/LuQ1HIUOLqm+RxTDEkp14yE5//MUhmFeJB9JbviI3DaNilbb3U8MCtVEMgJh7P/4bz+YxRD4v2JhkT0N0+hv3kKh4C/SXjud9QiJcyzdbcukPJXXxyS41H1TqhOHuhvX0C/6QsSY2+R/NjINJ/hcP0ARs+yJDUbZpVyZ5cu/DwuK4ejuxuaaroScRmniMs4nlpBfK+ZGMs2SvNe0x1wvQ7c3R+aaTSgv7YPx/NrU03WA75uIfgSAv9sIrnu8yR2GpfqNY7HF+F0dF5OV63Q0EVcwWXd2Cy/z3nDJzgGrALAWKQ4SnwkjufWor9+kPiBf6O6Fbv/YmMKTlu+BCDx8bcl0SXsXxZiTnaPsdyiu3UB10UDUFLsL+Y4HZqDPvREmun6mBu0K32DdqW3kLJjDQlPTQcl9yuo6y/vwvXft+l9rykj8ffnKXeCcLoThOOpFSR0/Sb9C7t8zGnLRJyOzU8zXYm/g+76ARyuH8Dh9ArtojYrN1iyQ1VxXfma+WLbWKQkStwtHE8tQxdylPj+y1Mn3RJjcNr5nfa07UeS6BKFljWvcbJDf2UPLiuGoahGVEc3cHBBf/Mkrv++RUKXSaTUeibV6x0P/4Eu4jKGMg3SzLPE8ROQlAwlS0J5K/TXpQs7g8vfr6e9zom9BbG30N88ibF4NVJymOx67DHQ6eD8BQi9qVK6VCa10hKicF32crqzlJgQdDEhOJ5fR1LjwSS1+SDd1+UGh1PLcTy3Ns10JTYMXWwYDld2YTi1nPg+f9xPYiUn4LZkILo7QaiKDtWtOLqYEJwOz0EXdoaEPnNSLyvqOo4HZ6PqHEhq/7EN1koUZHaV7HLeNhld/J0sv0+5HYjTgVlWKYMu/CzO68aiGJMBUPWOGHwbo8RHoL91DgD97Yu4/PsO8c/Pg3vtyB0P/grJ8ajOHsQN+gfVvRTO/72L4/l1OB2cTXKTV8DRTfuQpFicdnwLQGLbMVm+o2pVyQm4rBqRKgAYStUGRzd0wUdQVANK0l1c/36duJf/RS1SPNXbo+4luzw807ap10VcRpcQaf5f1Ttqd4qi4vCIPGae7nhyCcm1nsJYtnG6RVSdvVAS82ebR9XVB0O5tLedHB0dMXpnHqENpeqgevqmP1OX/UNX1TmA3gklOS7T1ykRV8yJrqTGr5DU5kN0YWdwXdAHXewtHI8uIOnxN82vdzw6H/3tixhK1iKl3vPZLp8Q+UV2Y46lx1h2GMo2QXUrmvYznVLfTXA8+KuW6LK3mHOPioLqXR6jZxlQHNCFn0UXd8s83yFwCw7n1pJSo7tly3NwJaVaxoko/eVdqfaXsWStdF8XmeRFTJHa+JZMQhd6AsWQBIBiSMRl3RjiytRH9ShlUZlyg9HTF2OpOunOU4ukroGtCzmRJtFlKF0P1dkD/fWD5nXThwXgeGQuyS1G5GqZ9Nf2mRNdifdqPuuDtuL69+vobwficPZfUuo8a369057p6OJuk1KlA4ZKT2SrbELkFWPpOqRkECOUmNBUCX9jydoZLsea1ziGck1RM7hRqdwJQn/7fmdThlL3y+S072cU1YjRqzxxA5aB3hnXZS+jv3EUp93TUiW0lJhQnPbPRFV0JLb/xHydlBUHDmnNAJs1yXl/XUr0DVyXvoySeL99urFISYzFqoDRgC7qGrqYkBx9homPt0Kd2ionTsLuPfCshRXaVL0TxtJ1UR1c0N88jfLAtZPT4d8x+DbAUK1Thu9PqfhEurWnjF5+WV2F++/1LIvq6Yvq6Iru9sVUtc/1oSdwPDqf5Hs3zhzO/qvVlgMSnv4RQ+V2OB5dgPPWCThc24f+6j4M5VuY3++8bRKKIZGkhgMxFvfPdhmFADtKdumv7MbxzD8AGD3KWH7iUVVcNn2OYkjSLgYUXaoTWlY5HvzNnOgCSHjqRwyVWgP3asGcWq6VN/gw+osbMdz7ca2/qY2Pa/Brjuqhdf6RUrMnjufXoaQkoLsdiLF0XQCc9v2C7u5NUiq0wlC1Y7bLmiWqEf21/egvbCSpw2fmyQ5n/kl1AktqMoSk1u9r8wJW4bJuDABKYhSO+2emycCbanZ5pdNfl/LQRWRC79kY/JoRfF1ly/ifeL3G/SYQ+hvHUiW7DOUfI6FULQyl66P6VMR9avoXJjmSwTbJCmOxqiT0/CHNdFcfHwwREZm+N7nBi1mu2p0R1bUoiW1GYyhdD2PJWjhvHvfI6vP6sADz85RaTwNgLFkTYwl/9GFn0IWdNs9XYm/htPcnVJR7P16kO0Bh37Iac7JzjGVHUstRGPyaPfJ19hpzAJJajMBYslbq5vGGZK7/NJoaKffvKOuCj4CFyS7ciqZ7LgZQIq/idmHj/Y8q1xRjieqpXmMo7s/6hJF8srAd3brpGdNXh3LnEm6L+5ubcSgp8TicX0ty45ctK9PDDMnoL+1AH3qCpFbvZG8R5ZqR2MWy2oj64MOp/n+w+aru+kHclgy6/9qQYySTPZaWSXfzfkxJvhdzDJXbmW9o6W6ehnvJLl34eRyP/4Wqd9YStELYmeQG/fl/e/cdHkW1PnD8O9vSISH0EDqB0DsISBGQ6lWxi1692Hu51p+9t6uo2EC5Xgs2QFQUkd6b9JLQQiAklADpddv8/pjsJpteNtnd5P08D89uZnZnzsywc2beOec9lr7TS53n9+eTLsEuS7+bSl+Im+9xzMMeKHNewI+FZVAVHZY+Nzr/dvx2rZ3GgJ+Ws8QaNQn9qV1a3ZmTAgUPaUxr30Kx5GDpfR32FmUH8crzd0FPy0GDKhnoKufc6rfyJec+U1Ewj3kGS98bXK5jlQtx1QrKOaiqHX3cavTnYhgx/GH27lPZsFHlqivLX6Y9oAmWIXdi6Xl1Ycva/EwCfrnH5fxtPLCo3GBX/tgXqp1GoThrr2sxD38ENbRIoEy1Y1r3LqYd/3VO0iftwIIW7NIX3C+ofo2d3dYt3S/Hb/WrgPb/xxHs0sevxxC3CntgeLn/H4WoLN+4I7Xk4rfiRQDsjdtgHnR7pb9q2PuD84SQf/GjqH7F+9JVjf7kNud7e3ALZ6ALwFLkiSOAMeY353u1tPOZy4hO2geUlHiMu75G1RvJH1N+3id3UFLiMW14n8AvxhGwYAbGg7+7zC/ed9/S6xrne2v0P1D1hS0AjLGLQbW7fL7c5PTFAiKOp0SNG0Nsumvwqvhxs3Uag7X7FahNOtSoAipNRfvEF6khLbAMuFXramr0r9x3ytqvzv+2hfNN6/+DYs7C2v0f2Fv3q1lhhfC0atQ51fmN1SZfrXMAbB1Hl8wDqTeyNqVYzi2De/azcfd3KIUnNsx9XW8sbZGDyb1pIXkdxmNHT2KSNl1t0gFL7+tdPqtLPV7l9evOHsC0+nWC5owi4Lf70cevq/IyqkVvdPnT1rLwxrN4y7biLQdrR1l1uVpivt/qV1HsViyDbis1f6QQPisnBcPhpc4/beFdynzA4e57nLLozh1yCa7YOox0DXaU+tstUt8UXE/qE7ZiPLwU1b8x+cMfqlZZzp9XORavLXJgyewpruWu4NyqpMajj1/v/Nva+1otl26x+xM1vBNqk45VLqsuOVYLBMb+ScAfD6OPX8eI4dq8XbshK6ucRPWmIHJu/QNL/1tcu5D7hWC+yDWnpi7tRJXLVl22tkOLHXtA0WHt/g/XaUXqZ7WS/z+wmfFb/RoA5hGPOgOnQtSET7TsMm36EF16IgD5415EyUqu1PeUzLP4rX8PAFvEAKy9r8f09xc1KovjCS6A6ucawVH9G7v8rTu9x/ne3rwH+gtx6E9uRck8gxrcAkPBRb5q8NeaywJ+q19DsVkwD7xNC+TUhrx0DIf+xBjzC/oiZdTK4trMtXjrK9W/yDYrCqpfCEqOlrtMyU9HST3uUiE4ujE2dt012rKCmkKR7pGmrbMxD76TELK5ocN3Rcrkj63DqCptYpVVYZ9UhZJ5FtPq17WkksZA7OGdsHa6BMIqzmdliFuNPnE7WPNRA5tgb9kba+dxdXYjXfRmxxDzq9aN8dxBdOcPa/MLuqXoTu3CEPMbqikY88WP1UnZhKhN1a1z6oIh5hcMB34Gux01qCm2iP7YOo4u0bXZV+ucMtmtdLMucZlkazes5mWz5GI8sKhwNSGtSg6KUtCtJzJSuzg/mVikWMW67quVvDhXspIxHPwdw4FfSubaKaW7SWXpLhzBb+VLkJcBfiFanpnO40sdRMbadigmRYdS8JDKuOs77M26o/oFl+gWZY2aUOtlKtrKwxjzq7Mbo6PVhb2lVucYYn9Hn/i3ll9ukGfzywnhbsZ9851diKHsVl21cY9TZpl2z3P521LsgYC9RXf0STswxK3GfNF9YPBzBuzsjVpr51C7FdNqR17Xh6qd1/Xv7dprt67QuHHJIEpVzq2G+PUuDzqsXS7Vvpe0Q7v2btwaa6dxznNPZVS0/raRCu3aqpxIgK3bYOwlZSxIb4KA0vMQlqh3KngYYdzxv4J0LwpqSEtskYOxtR3mvsYCqooh9jeXSdYi9bPj3K7kp6M/tlrrxlikQYjjfsK4/Ut0aSe05Ptu6tkihNcHu3RnD2DcqSUit3S/Alu74RiKXJiWx2/VKyjmLFS9ibzxr7jlR636hTgDQLrM02AzO5OiFo+s63LOgyUHjIFYBt2O8ehylPxMAv87EdUU5MwFYx58BxgD0B9ZhuHERuzBLTBXMzdGmexW9Mc3YIj5FUPcKpeKVNUbsbW/GGu3qViLjdRUPKCnS0vA7qig8jNdgn+O+bYiwS5ny65Srv/tjSNRci44uweZ/v4c09+fAzCs4BrY7N8c25Q3nN1w3Kqa+6QqdOkJJRLpm9a9g23IDBj6MOjKHk3McHR5iWn2wHDyJ7xRJ/lJ1NC2WLpfjjHmV0w7vsRwcDFKbjqKasMe1FRr5q3atd8ZKvkX3VciZ5sQvqYmdU5dMBYvy44vsTeOJG/Key4X5JZBt2M44nt1TlGmNW9q9YM5C13yQUY10cqvomAZfCe29sNrXExD7GKXbj+WPteXeV5uU9AL5MIFyMlRCQxUMBzf4PIZW5tyupha8zHErdRugk5schmtUzUGYu10CdZuU7C1H1Ht7dGfPYC+SHdA0LoNmS96wJk/xbnO8M6YRz2pdStS7RhObMDw+WjXzxgCMF90nzMlQ22WyRY5BGubwRgSt+G3+lWM2+agFORps4V3wtp1smt+uVFPekUrSiHcxm7DuPdH55+qX2Os0ZeV+tHauMcpVV4GhtjCFrj2sA4lHjSYh96L/893oEtPIGjOaNAZnbl0zcO03K5aXtc4bM2jyxwRuDIc+boGDSwysZrnVl1yrMvffkufQpd9zmWaaetsLD2vJn/ci2Vfs5e3fkWP0qgVuSOfxNZpNADDh8OJBNiwSWXsJVU/biXqnQpSG5QYhGTbHGzNo8mbMrPaI0wat32O/ux+MOegS4lzSfVg6X4F1p7TnH9bu07Bvv2/6FKO4f/r/VqC+mztIaK17VBskYNRMk9j2janIJfbc7X3/1k0ON4d7LJb8Vv2nHZzHRiuXdhUkv7wXxjitCF3zUPvcdsTa3ubQeiO/AWAYs7CtP49zEPvQclNw7S55DDbSn4WqjEQe9MuGG7/lbylr6JP2olizsQW3qVwGHhLHn5r39LKO/JxMAWhP7kNQ8wvKBmnwL8x1o5jtGaiVciHpDt3ULvZiP3dJbmvquiwRQzE2m2K9sTWv5SmV4C9zUAo0pzatP498ie+gWoMwG/df1xO6I7tLSo9XauUyurGaGvVD2vUJJd+3g65Vn8S29xBq4iBpXy5+mq6T2pKUe3Yt3yByWzGPLpqo7fpci7g/9t95F77LfZWvWulfEXlX/oq9tB2GGN+Qck4DaZALO2GYR7xKGpgOIbd36FPjsUW3kl7+pifhXHP9+iTtoPNgr1pFyx9p6NWkIxfCK9QgzrHk3TpJwlYeDs5Ny105uWwN+1C7nXfYNr0oU/VOUXpT2x0SYgMYFN1WIffj2XQbZUuU3mMu4u0Itb7uXTVLy4kRCEsTCU1VWvd1UNdguHY6sKytehZaqBKd2oXxgO/YDj8J0p+ZuH6dEZs7YZpQb/OlxQOGOBmis2C34b3wOCHpf8/XeZZ+v8Te3BL/Jc+iWLNK/FdS8+rtGHk66JMikLelZ9i2jQLw+G/ULLPoQY2wdphNPkXPwoGP0zrPkSXnYy13XBsXcajZJ/DuHseujP7Aa31l6XvdJfRsIXwFfq4la5Bg57TSm3pWVv3OKUxHvgZxVo4BK2l7/QSgQhbu2HkXTUX05ZPtG571jxsLXphHnQ7tqhLUbLPFcnr+hwoOvRHV2A4tBQl5zxqYFOsXSdWmDPSbledLbsGD1JqfG4t3nuleKDLuQ/2L0ANCMV88b9dP1/R+qMmoj+2BpN/oJb2pqAF9sXDFb77XmXzFrBaVQyGygd2lNR4TFs+LVyXKbhES7vK0CfHErBwBjk3/1Kt7oL6pB0Y4teWmG7uO13Li1a0tbnRn9xrv8a0YSb6+LUouSnYQ1phjZrozMtlWvu2lsut17XYW/RASUvQzu3nj4DeiC1igJYnrpa66or6y6uDXcbtX6I/p0XdzWP+DwJCK/fFvAxn0jtb065YBrrnohjAPORO9MdWodi0VK2mnV9h2vlVmZ9Xi+TEUFr3Ju/K2aV+zrRtDrqMU86bAePOb/Bb87rLZwxHlmE9toa8qTMrFfFWMpII/Ma1GaitWTTW6KlYu06p1IhRlh5XYtz+X2eSekPiNgxfjC3z82qxob+dCepLaWqMzYw+aYeztYFq8MfWui+KJQ/l1B4CDHl0OfoatgV/kjttjluGPXfHPqmIagrG0vs6rB1HYW/SGTW4OUrmGYy7vnV5umLcNQ/LgFtRQ1o5p9nDO2Ftf7E2Ik5opHPkFdPat5wJ4xWbBdOmD8i7am6Ny1ohnQHL0HtKH4UrNxW/jR8CYB7zLORnEvjDja45axI2Y9y3gNyrvpBcXsLrVbvOqWW2lr2x9L8FW8QA7I0itBuFpB34rXkDXfpJQOseYNo2m/zxLzu/Z2/Rw+fqnIroFTv6TR9iiF9H7pWf1eihhC7xb+coyoA2smMFXWsi20BqKlj2r8DvZGFidHtgU/Kmvl9iP+lObiNw/i3Ov1UU7BH9sXSbgjVqYrW78hRlD2yCecCt2NqPwB7WATWgCbr0BIxbP3MZIt60aRaWXtcWtoZS7ZhWv+FSL9la9UE1BqI/tRvFmotp97cYjiwj9+q5qOGda79MxkDMo57EXEqgWUk5hnHnN6g6I/ljnkFJPUHAjze5BFU5sRHDvoXkXvdttVssCOEpLsF3RYel740lP1SL9zglqCrG3d8X/mkKxlJG8NvWdii5RUbUK8q0TsvraonW8rqa1r6Facf/XD5jPPSHc+TvshyNg7Q0CAiAPo3/JvCHGp5bba7Dbqh6I3mT38XWbhj6pJ34//6wc5Re486vtfydBXVOpc7tVjP6Yq2wALpHQ2ioti179sKACnKPOSip8QTMn1GYUF/Rkzfp7VLrVmvboVijJmFv1Qd74zYo1jz0JzZpLaYdPZQyTmHc/R2WIXdVrgCVYNo9D8OJTeRe9Tlqo8Kk+GpgOPmXvlrqd/QJW7Rcbn6NyR/xMLpTuwhYeLvLCMmG+HUYDywi5/rv3FJviobDexPU56Zh2vIJgPZ0uevkCr5QyLRtDrrs86iKnvxLXymRhLUm7M27kzf5XdRSAi+qzoDqH1r4t6IHv9KaNLlS0k5i3D5XK+8lz2l5ngqa6Vs7jiHrns3kD38YAMORv9AfWVa5whbLe2htN4L8cS9iGTij8jcdxkByr5yDvYyWOSX6jRe7OXTk7CqtZZf+7IEiga4Acm76mbyrvyT3hu/5X8ZbhZ87tRNjOQHFKnHHPqmArct48se9qI0iFRoJBj/UsHaYL3kGa+fC0VIU1Yb+xGaX7+aPfQHL4Duwt+6LGhgOpiBskYPJu3I2apFkj/qTf2tdaD3Ib/17KPnpWKImYms7VBsGPvU4qqIn9+ovyb5tBfZGrVEsOfgtr95olkLUmRrUObUtf+pMrQVOix5aAM6/EbZOY8j7x0cunyvtoro0Xl3nFJF7y2KyHo0l655N/BY6lz0pfZzz9Kd3Y9r0UTnfrljRG0tAS0xcgchImBzxO4OOP+p86GUPDCfv6rmljnZVPERojZ5K/tgXsPa5wW0X7Na+N2Ie9SS2dsNRG7UGoz/2plHkT/4PthaFXVsVc5ZLzjTDvgUuga68iW+Re8MP5F39X3Ju/hm1oDWELjsZv1Wv1UmZyuO3+jUUuwVL/5tRm3TAb83r6HLOo/qFkHPzInJuXoTqF4Iu5zx+ayo3IqUQ3kK5cBTDya3Ov20dR5c6+EJt3uMUp49fhy49wfm3pceVVX7wrEvaiTG2IK/ryMfQndnnDHRZ+lxP1r1bsBR0azTt+BLdmX1lLmtbwZhZ/fuBoViPwmqdW4vlurJ2GquNamgKwtbhYpcupIrN7HKuqsm5Xa9XGF7QE3T9xnKS1BehO3eIgB9vRleQ61jVGcif9Ba2TqWnAsi7+kusva/VRhY2BaEGhmONvqxEwKl4l8jKyrvyM61+vncrOdd/h7XIgG261PjK1xl2K6aC4G3+8AchIAy/5c+hWHKwN4og+7YV5F79JaqiR5d6vMb1vmh4vDbYpZiznU3q9Se3EvTJRc5/fqtcf6h+q14l6JOLMBYkZlRyLhTMUQn4+U6X7yqZhQnRlcwzzulVYesynuzblpM/+mksPaZh6TYV89B7ybnlN5fktPZmUeXmZHKWf83rKDYzlj43YG8Whf74ehS7dhFtHnArBIRiGfAvZ6spQ9yqSpVT9QvG2mawcxQMw4kNBH5/HYH/nYBp44coKccqt5zwTuTcspi8SW9j6X0dlq6TMff/J7nXfIWtfeHJTUXB3qyby3edLbuKB7vsVpQiTbVtbYe6NMM+aJxClqWwQjUc31ipsla4LW7aJ9VVvF+9UvSJdDnUoKbYi+RCU+wWlNw0dxatSnRn9mM48LOWz6XgKZwhTuvOY4sYoB3PxhFYu2utPPQXjqKknfRYeYWoSE3qHE+xN4tyGRilsucTb69zSggIY0vyUO7f+il2CutURzee6lCykjEcXeH829a6f4kRCEtzaZOfeKX/0+ixAlpC+9zrvsHeNKrUz9uDW7gEd4yxiwn8+h8EfH0Fxm2fa11Ga4uiw9bGNQ1A0f8jhoN/ON+rpiCX0bTUsPbYIoc4/9YnbnPPA5YKylQW/eFlGE5swh7UHPPQe8Ga73xYZO08DnuzbtibdcPaSWt5rj+xCayefSAkRFWYSiSBLz34Xtv3OEUVTUyvomi5WqvCbnPWn+aL7kMNauZSnzhaShUdaMJxLVmavwvydQ0eqLjl3Gpv7DqqoFrsb3uoa+tQJa8wv2NN1z9imFZPbtwIqlp+wEt3eg8BP92CruDYq3oTeVPf11ojV1F170PK5N8Ie+t+5P3jI+yBhQ0g9MfXl2g5Vxrjzm+0XG7NorH2uR4lLQH9hThAC66qjSOwtR2qjXQNLqkDhKgMr+7G6KBYcrRE7xXMVyyu+SYU1Q55aWV/r4L55QoIK5H7Qndql7NLCeASCCqL/thaDMfWYA9o4uy3XPTE4xytyGBC9Q9FyU6u/InJvzF5136FkpGEIeZXjDG/oktLQJeWgGnrp5i2fqoliuw2FWvXyeUngdebsEZf5pooMy8dvyLD+Npb9wV/16hWRhktu5TcVJcRUIoLDgbyXT/vFu7cJ2WxW0uMjOZQovIr+oSsnO9ht6FknXWZVFrrwjqhqlpiVNVO/pC7nN0wHf8vi46wZS/yXsk5X3K4YiG8UHXrnFpR3nkhP1P751DBiEzgQ3VOMQknIcsSgk3nj86eXVDulAq+VTbjnh9Q7Fbn35Vp1WXc/iWjMt52PtK3N+lI7lVzy90ONawdudPno1w4quV2iV2MLjsZ/flD6DccwrRhZs26NdptWk61MrqZ6orVOUXrDUeCYE353VQV1Y6Sl165XFg1KFOpLHn4rXPNL6dknnUGaNWgwnpGDdZaECp2C0peWqmjUArhdfKzMBQdna5JpwpHm63VexzQgg5FWv3Y2o9ADatabjDj3h/QnyuS1xVQsovUNwW/XbXYtWJp8vJU9hY0+ho0yD3nVlurPi5/Fx2sBEDJS3f5Ww0sXEal1t+6L1gtqOEle8cMGggmE5w+A/HHoWMZu1Z/chv+v9zj7NKnmoLI+8fH2NoOKf0LUO51gy4jyXWbKnHdUCl6o9a7p+D4KXZrQZ1R9sBVSvY5TFu0fNf5lzwLiq7Y/4/C+sYe3AI9rv9/hKgMnwh21bXAL8Y6L8ZsbQaRe+3XLvP1R1dia38xGArzU+nOHsD/z8IcE6reD0ufCkYbsZqdOVLMIx4pDBQVaR2m5KahhqEFOxx9tCvRNbIotVEElqH3Yhl6r9acOOYXDIeXouRnok+ORZ8ci2ndf7BHDMDS/XKsva523d6EzdiadXOpKJSsZPz+esYlV4a5/y0u31PSk/i17zjoC6wGc+59MOU5rUz+oahFhjzXn9yKknocNaw9AAP8/iC44IYG0PLUuFFN90l5Av83BfOg27UnLkWSYupObsO45weXz9qK5LEyxP6OIW4l5gG3Yo8YUORDFkzr33U+0QEtT0PRQJn+5DYCiuQOyJvweq0N22vYvxD9mb3YQ9tiGfCvwhl+IZCb6tLiTClyoaVWIwGmEA1BeXWOcdvn6NITsfS7CXvz6MIvmbPxW/GC8xwKrueTUvlAnaM/uhIl5wLWrpNcypV00sZtXb7AWKReKN7Fp8R5cNzLlMpmwbB/vvNPe3ALrBWMNmja9JHzohwgNqMHkXfPgcAm5e8MR1nDO2Me+RjmEY+gT9iM4cAvGOJWanlUknagT9qBuvp1bO2GYel5tdaVphKUzDP4L34Ay6A7sHYe6xwdGsBwaAn6Iq3XVEXvcnNnD27hzLGomLMwHPzD2VJAST2BvkiXKtUYiFrkGqDo/rAAym0rnN04a1Km0pi2zS7ILzcAa/RU7Xt+wagoKKgu9YzjwZiK4rkHQkJUkfHAIpf8ROZKBN+rq6J7HGeZdn/n8lDaEayqtNxUTBtnAWAe84wz+FK0PlHy0lCDmrk80C7rWnH3HrBYoEULLXei8/M1OLfaOo5C9WvsHDlSH7cKRjyi5eUyZ2MoMkCXqvfD1qpviXKVu/5Tu7QPJR/APzcTS69rnOv391fo01tLuL9rV+nBLn38OvwXP+Rsda4GhGmpZYqMvFwav1Wvohr8sPS50TV3YW5qiZbqxa8bitd12UXO7bqknejP7MUafZmWaqUIw4Ff0BW0yAItKKdW8PDGtO4dFHM2lujLnC23XK5HigQbned2uZcQVeS1wS61cQRZj8aWOs9wYBH+f/2f8+/iN/b5E98gf2Lp+RqKnuTtjVqTc3vVu0H4L35Iyz/RpBNqQBhKxil0KXEuNx3mkY+5JB4vjXH7XHRpCdha9sba8yrndFubQYWfObCI/NZ9tRuFgpOdvVgXgKqwR/QnP6I/+WOewXB0BYaYX53D5OqTtqM7f6hEYMe4bQ7+idu17Q1pgZKbhu78EZfRWaydx2OLmuDyvXKb5eqNqMEtUTK1Y6FYcgj8ZpqWoN6ax+Tc3S4ft0a7NtU17JuPcd+CUhetS44h4LvCQGPeP2aV+3S3OvukPLq0BPyXP4+66lXszaNRA5qgZJ5Gf+6g6za1v7hYtxlVW//RFdgDm2rdYFHQnT9cYoQYy5A7K10e0IKT/r89UFjGdNcuhf6/PeDM+2DpdTXWskYky0vHtGEmAPmjn3YJ+NraDNby+yRtR0k7iRrcHENBImJ7YFPUIt0whfA2NalzwI2/sWIUuw3jgZ8xHvgZe0gr7OGdwW5BnxzrciGoKjqtS0g5fKHO0WUk4rfmTe382bQzanBLrHl5/Dj0KM39i50Hq3BeLspw+C90RZ4OW3pfV3brOUB/ZLnLxT9Aal5j2v35EibXMVmwRQ4us/sRADo9tvYjsLUfQX5+FobDf2KM+RV90g4UuxVD/DqUrGRyKxnsAm1ULf0fj2ojPzeP1vJWpZ5Alxrv8jlrr6tdHlpZu05yyRHkt+RxjLu+RTUFok/a5VrHR00sdx+5q0zFKWkJGLf/15lfzskUhL1FD/Rn96OPWw3DHwIU9AVdXOwterhlUBshap2qYtxTJAm8XwjW7peX+fHavscBwJKL8cAi55/20HbaQ/4q8Fv/Lkp+OtYuE7C1LexKaYscBAUjsBsOLMIy+E4MMb8Wzi9SHxVV2IURlNJajVbn3GrwwzzsAWfCf132OQL/NwV78+7ozh1yaf1q6XdT+eeU0tZ/YFFBwEvFcHw9SvY5l/X376fw93aVHbtUrprmuk1K9nn8f73f2YIVwB7SEtPfn5dYtRrYhPyxLxROsOZj2vsjpp1fYw9rjz20HYo5G11yjEtQVTX4l+ilVB4lNwW/tW9hWvcO9iYdtQT0qh1dyrESLcYsPaaVm8pHl7QDY+xiVFOQ1mLXsY1NOmIPbIou5zyGQ0uw9P8nSvY59InaMJz2Mv5/CFEWrw12eTvFnI3+zN4S01VFj3n4QxU+AVEyTmHa9jmqoitoull4krM3jcLS/QqMMb9g3PcT+riVzu4atvBO2gmkpgx+2hDw3aZouUtiF2OI+QVdsa5yzvLardqoVUVGrnKwdplA3qS3SkzPzYXyGsfamndHyc9AMWdp67DmYkjYXOJzlu5XYI12rfh1mWdL3f9QyrGpRJ9xoMr7pCLFk1m6zGs7iLzJ7xSf6nynyzmP7kTJprqqosM87MGqJ8+2WcrcX4BzBDqg3Asa08YP0eWmYO04GlvH0S7zzBfdq+X+seQQ+NVUMPg7W4aYL35U69YiRH3lpt9YcWqRukGXedplWHrnZ/R+5I97sdwRT32vztECeiTHYgD8/V3nW3pdW6WL9KJc8tDojVh7X1vu5x11VFHDmm+CEyU/q5YxxH2p/IKx9roGa69rtKBOzK8YYn+r+HsuhSvy1pKDPmlHqR+zdhpL/uj/c53W82osBaNgaYtS0Z/eXeK7tmbR5I98rE7KVJzfai2/nLnvdC3RchHmEY/g//Od6LKTCfpinHN9qqLX6hwhfID+xCaXILClx5UuvQI8wRC72KVLn6XvjZUakddBd2Yfhv1aXtf80a4jq9o6jMQaOQTDya34bZiJcec3zl4i1sgh2DqMKnWZjuT0gwZVohxVOLda+t6IknIM0x5twBJdzgV0x9e7fMba5VLMIx6ueL3F1x99OX6LH8KYfQZ7XmaJj/UvqLJ37QabTUWvL7Jt1nyXQBfgrBOLszdq7Tqh6HVD6nHXUdILqH6NyJvybqmDIFREUe3oLxyFC0dLnW/tdInWerwsRXO5Db3PtXu8Tq+d25c9g/7cQYJmjwRrHorNjGoMxHzRfVUur2jYJNhVDebhD6FP2IwuJb6g+byCGtICW9uhmPvehBreqcJl+K19C8Wai6Xn1dhb9ioxP//SV7CHtcO4fxFK5mnUwCZYO44mf8SjYAxw6/aowc2xDLoNy6Db0J07XGK+pc8N4NcYXfIBrRmpzYwa2BRbqz5Ye0zD1qH0G7fsbCg3u4fBD2u7Edhb90F/bC2684e1ylXRkasPZ+PxnuzTXcGdj17ing2tgor2SXmyb/lda+GUuB1dyjGU3BRQtZEq7c27Y+02heCh0wuHqixg7TaF3IBQDPFr0Z3Zhy4tEcxZ2miOIS2xtRmEpc/1JQYBqCu6cwcx7v0RVW/SWnUVY28aRe5132La+L52c2PNw9aiB+ZBd5Ro9SeEqBzLwNtQm3REf3wDurMHtKenllytdXHjSGyRQ7D0vRG1jBFzHXylzrF2vAQsWvcTXepxlNxUVHMu2ZZAUtXWtBrYF0uPK7FX0PWtLLrkGJeAjjVqUonuGJ6ghrbFPOwBzBfdj66MG4hSv9cogpwbf8JwdKXWgiHtOEpuOigKamA49pa9sXS/vPQRu3R68qfOxHp0CsaY39Cd3a8lv1btqP6NsYd3wdplvNb6Sm8q+f3aKFMR+mOrMcSvLcgv92CJ+bZ2w8i7ai6mzR+hO3tAmxYxEPNF95efz0YIL1IiCXyfGz1YGk3RkWpVY2DVHnioKn4rX0FBJX/InSV7uSg68q74BNOmjzAc+hMl5zz24JZYu07UfuelBNXOnVOJP67NGti/attS4blVUTCPfQ5bh5EY9/6A7vRe7V7ELwRb8x5Yel2FLWpi1VZalCkIJTianNEvuIxsCdA1CgIDITMTjsZpf7tD/uinsbUZhP7EJq0VeOZpsOaDKRB7aHts7Udg6XN9lXMa2lv1JX/kE1qr7Atx2j2hOVu7Hglpib1FL6zdpmJrP7zc5Rj3/ID+3EHsTTqV2jjE2nMauaYgTH9/ge78YdAbsUYOwTziEexNu1SpzEIoakVDQFRDamrJZOJhYWGlTm9IGto+OHJU5V+3q4Q3gV9/1lr1OPeB1YxfQbeg/Amvu3SHA6258iOPqXTsAF9/Wf9aBDW0/wulkX3QMPZBWFj5ORvcvf0NYZ/WV2Udu09n25n3PUy7Ah59uAr1QQX1THW9/6GdBT/DjdfDvXfXv/qpquQ357u87dhVVF+A++uMuuRt+9tXLPlT5fW3VKKj4fNPfeicW1AHmUwmMse8WGod9MTTdjZthvvuUbjhusq3nhPeT37vta8ydYYPnTGEr8kq6PkRVI20GSHBrssQQgjRMCUUpD9r29Y7bgQiI7VynDxZwQeFEELU2LYi+brqmwH9tfpk5y63tz0RQiDBLlGLHIGq4GqMauv4TqYEu4QQokFzBJXaRnq2HA6OcpxM9Gw5hBCivrPbVbZruckZXJl8XT6mT2/tdf8BbVuFEO4lwS5Ra9wR7MrNBatVTv5CCNEQ2WwqSdrgYrSpeh7dWuEY9j4xSeonIYSoTUeOQlo6BARAj+4Vf97XdO6kDcCSmVnYilkI4T4S7BK1Jitbew2pQbALtET3QgghGp5z58FiAYMBWlQtl26tad4cTEawWuFs9QbrFUIIUQmOURj79wODof617DIYFLoVDDS7f79nyyJEfSTBLlFratKyy2BQCCgYACyz5Gi9QgghGoBTBa26WrbEdVh2D9LpFGcrM3kSL4QQtWf3Hq31rCO3VX3Uq6f2uu+AtBQWwt0k2CVqTVaWdtKuTrALJEm9EEI0dElJ2mtEa8+Wo7hIydslhBC1ympV2VfQ2qlfH8+WpTb17KEF8qRllxDuJ8EuUWsynS27qvc0xjGKoySpF0KIhinplPbQxNuCXY4k9Qkn5Um8EELUhqNxkJMDwUHQsaOnS1N7HLnITiRARobUKUK4kwS7RK2pSTfGot+TnF1CCNEwOZLTR0R4VxeWyDZaeU5KN0YhhKgVu/dor717e0839toQGqo4H6AciPFsWYSobyTYJWpNTYNd0o1RCCEaNmewy8tadkk3RiGEqF17CvJ19e1TfwNdDj17aK/79kvLLiHcSYJdotY4RmOsbrArqOB70o1RCCEaHlVVOVWQs6u1lwW7HE/hk5MhN1duToQQwp3sdpU9+7T3fXp7tix1oWfPgrxdBzxcECHqGQl2iVrjaJEVUuNujHIjIYQQDU1GRuFDE29r2dW4sUKjRtr7xCTPlkUIIeqb48e1OiDAH7pGebo0ta97tPZ66LAW6BNCuIcEu0StcQS7HInmqypYujEKIUSD5ejC2LQp+Pl5XzeWyDbaq3RlFEII99q9V3vt2RMMBu87/7tb+3bg56flKZZckEK4jwS7RK1QVbXGLbtCCkZxlG6MQgjR8Hhrvi4H54iMCZ4thxBC1DeOfF19etf/QBdoAb2oLtr7mIOeLYsQ9YkEu0StyM0Fu117X+2cXQUtwmQ0RiGEaHiSCroHemuwKzKyYETGROlyIoQQ7qKqqrNlV98+ni1LXYrupr0ePCh1ihDuIsEuUSscrbEMBq1ZbnVIN0YhhGi4Tp3SLvhbt/bOJ/vObozS5UQIIdzm7Fm4cAH0+sIAUEPQrZtW18VKyy4h3EaCXaJWZBcEqIKDQVGqd6MSIqMxCiFEg+Xsxhjh2XKUpW1b7TXhpNYSQQghRM05uvF17uSd+RprS/eCwN7Ro2CxSJ0ihDtIsEvUiswiwa7qcnZjlGCXEEI0ON6es6tNQRAuKwvS0j1bFiGEqC9iYrRAT/fuHi5IHYuIgJAQMFvgWLynSyNE/SDBLlErHF0Pg6s5EiMUtuySboxCCNGw5OernD+vvffWYJefn0KLFtp76coohBDuEROrvXaPbjitukDrCdOtq/Y+NtazZRGivpBgl6gVWW5o2eX4bnYO2O3SnFcIIRoKR6uu4CBo1MizZSmPM29XomfLIYQQ9YHVqnLosPa+R7Rny+IJ3Qq6MsYekvseIdxBgl2iVrgj2OXoxqiqkJNT8zIJIYTwDacKgl2tI6qf97EutI3UXhMS5MZECCFq6lg85Odr9w9t2ni6NHUvuqtW3x2UJPVCuIUEu0StcOTsCqlBsMvPT8Fk1N5LV0YhhGg4vD1fl0NkpHZjIi27hBCi5mJitNfobqDTee+DjtriGH0y/jjk5spDFCFqSoJdolZkZWkn6Jq07Cr6fRmRUQghGo6kJK0O8fpgl6Mbo+TsEkKIGouJLUhO3wC7MAI0a6bQtCnY7XD4iKdLI4Tvk2CXqBXZ2dprcHDNnso483Zl17BAQgghfEZhyy7vfrLftq32mpQENps8hRdCiJpoqMnpi4ouSFJ/8JBnyyFEfSDBLlErMt0wGiNAkIzIKIQQDY4z2BXh2XJUpEVzMBq1oeLPJnu6NEII4buyslROJGjvu3f3bFk8qVs3LdDnaOUmhKg+CXaJWuGOBPVQmPNLujEKIUTDYLOpnDmjvW/t5d0Y9XrFGZCTroxCCFF9sQe1QalatYKw0Abcsqsgb5ckqRei5iTYJWqFu4Jd0o1RCCEaluRksFq1FlPNmnq6NBVzjsgowS4hhKi2wi6Mni2Hp3Ur6MaYdAoyMqR1lxA1IcEuUSvcFewKCnJdnhBCiPrN0YWxdSut5ZS3cySpTzgpNyVCCFFdjm57PRpwvi6ARo0U5+AssdK6S4gakWCXqBWO4FSI27oxyk2EEEI0BIlJ2qu3j8ToEBmp3ZglJnq4IEII4aNUVS1s2dWA83U5OPaBBLuEqBkJdgm3U1WVrIJuh0E17sao3URIyy4hhGgYTp3SHm609vLk9A6Oll2Ss0sIIarn7FlITQWDAbp09nRpPK9Hd+3+50CMPOwXoiYk2CXcLj9fy7cCNW/Z5ejGmC3BLiGEaBCcIzG29o2uLI6cXWeTIT9fbkyEEKKqDhS06urcCfz8fOPcX5scecsOxGiNCIQQ1SPBLuF2jlZYOh0EBNRsWTIaoxBCNCxJPtaNMTRUezCjqoWBOiGEEJXnyNcV3cCT0zt06QwmI2RkFHbtF0JUnQS7hNtlFklOryg1ezrjSHAv3RiFEKL+U1XV54JdiqIUdmWUvF1CCFFlMTHaa/cGnpzewWhUiIrS3h+I8WxZhPBlEuwSbueukRihSDfG7JovSwghhHdLTYXcPFAUaNXK06WpvMiCroySt0sIIarGalU5dFh730Nadjn1KEhSHyN5u4SoNgl2CbdzZ7DL2Y0xs+bLEkII4d0c3QCbNweTyXee8Ee2cYzIKDclQghRFXHHwGzW7hvatPF0abxHd2eSeg8XRAgfJsEu4XaOkRiDg2q+rEaNtdfMLLDZ5CZCCCHqs8Lk9J4tR1U5W3ZJN0YhhKiSA84ujKDT+c5DjtrmaNl1NA7y8uQeSIjqkGCXcDt3tuwKLQh22e2QIa27hBCiXktK0i7ofS7YFaG9SjdGIYSoGkdyekdwR2haNIfwcLDZcHbzFEJUjQS7hNu5M9hlMCg0aqS9T02t+fKEEEJ4L0dy+tatfevpvqPrTUoqZGXJE3ghhKgsSU5fOkVRnAFA6cooRPVIsEu4XWbBhX6IG4JdUNi6Ky3NPcsTQgjhnRzdGNtEeLYcVRUcrNAkTHufKF0ZhRCiUjIyVRIKWsRGd/NsWbxRD2feLnmIIkR1SLBLuF1hyy73PKEJK7iBSE1zy+KEEEJ4KWfOLh8LdkGRvF1Jni2HEEL4ithY7TWiNYSGSsuu4nr20F737gNVlYCXEFUlwS7hdu7sxggQFqq9pkk3RiGEqLfSM+zOFry+1rILILKgK6Pk7RJCiMqJKQh2Sb6u0kV3Az8/LZXL8ROeLo0QvkeCXcLtnMEuN4zGCBAaqr2mpcsTDSGEqK+OH7cB0KwpBAb63hP+Nm20Mp9MlLpKCCEqw5Gcvnt33zvn1wWTSXG27tq5y7NlEcIXSbBLuJ3bW3Y5ujFKyy4hhKi3jsVrwa62bT1ckGpydmOUll1CCFEhVVWLJKf3bFm8Wf9+WiBw1255kCJEVUmwS7idu4Ndjj78krNLCCHqr/iCYFc7Xw12FXRjTEyU3CpCCFGRpCRIzwCjETp38nRpvFe/vtrr7t1StwhRVRLsEm7n/mCX9iotu4QQov6KP+4Idvlmd5aI1qAokJUtowcLIURFHPm6unTWuuuJ0kV3A39/SEuH+HhPl0YI3yLBLuF27s7Z5UhQnyLBLiGEqLfifbwbo5+fQssW2vsE6coohBDlcuTrkuT05TMaFXr11N7v2u3RogjhcyTYJdwqP1/FbNHeh4S4Z5nhTbRXadklhBD1k9WqcjLRDvhusAuK5O1K9Gw5hBDC2x1w5OuS5PQV6tdX20c7JW+XEFUiwS7hVo5WXYoCgYHuWWaTgmBXdjbk5clJXggh6pukJLBaIcBfG43RV7WJ0F5PnpS6SgghypKTo3L4sPbe0WpJlK1/P+11xw7t4ZAQonIk2CXcKrMg2BUUBDqde57UBAeDyaS9l66MQghR/5xI0F4j27qv7vCEyEit7IlJHi6IEEJ4sQMxYLNDyxbQsoXvnvPrSnQ3aNxIywm5/4CnSyOE75Bgl3ArR8sud3VhBFAUxdmVMSXFfcsVQgjhHRzBLl8didHBMSLjScnZJYQQZdq9R2ud1KePhwviI/R6hSGDtfebt0jLLiEqS4Jdwq0cLbtC3DQSo4OjK+OFC+5drhBCCM9LSNAu3ttG+vYTfkfOrsREsNvlhkQIIUqzZ6/22re3b5/z69LQodq+2rLVwwURwodIsEu4lXMkxtoKdknLLiGEqHfiCoZT79jBs+WoqZYtwGAAswWSkz1dGiGE8D5ms0pMQXL6Pr09WxZfMmQQ6HQQdwzOJsvDFCEqw+DpAojaER8fz5dffsmOHTvIyMggPDycESNGcPvttxMaGlqpZbz22mssXrwYgM8++4y+ffu6zLfb7XzxxRf89ttvZGZm0r17d/r0exToVKIbo9Vq5ZZbbqFRo0Z88sknVPU5zuoVwwBISdkEZXz7999/59VXX2Xy5Mk8//zzJaYX5e/vT3BwMJGRkfTo0YPJkyfTsWPHKi1XCCGEpiZ1jtWqcvw42Cyv8+QTvwOVr3MeffRRunTpUsoyrdzyz1sIMp/nf7dW/W5q6NChAGzZsqXMz5RWN+j1CiFBv3Pu7GtccUXhZ6XOEUIIra6YOfNLcjJ3ABk8+GDd3J+UW1fccguBgYHMmTMHRanaHUpl6opFO0/z7HMja3x/0rixQo/uKvv2a6279IrUFUJURIJd9dD27dt57LHHyMvLo127dvTq1Ytjx46xYMEC1q1bxxdffEHz5s3LXcaOHTtYvHgxiqKgqqU/Pfjmm2/473//S7t27ejWrRtbt27l4MEHUdWfCA4Ocvns/PnziY+PZ+HChVWuSIqqScuuNm3a0Lu3dtNjtVpJS0vj8OHD7Nq1i2+//ZYJEybwxBNPEBQUVMGShBBCONS0zklKgrzcHai236tc5zz44IMsWLCgxHl7/vz5xB8/wbwZvWtU51RHkyZw7iyEhkYwbJiWkEbqHCFEQ1e0rkBpR7NmvTCZ6ub+pNy6ouBhTV3XFQ5VuT8ZOkRh336VzVtURlzkkeIK4VMk2FXP5OXl8fzzz5OXl8dtt93GHXfcAYCqqnz00UfMmzeP1157jQ8++KDMZeTn5/Pmm2/SsWNHgoKC2LdvX4nPWK1Wvv32W7p06cLcuXMxmUwsXbqUF198EZ3hV4KDb3R+9sKFC3zxxRdcccUVdO/endTU6g+pWJME9b179y7x5ENVVTZu3Mi7777LX3/9RXJyMrNmzcJgkJ+GEEJUxB11TuyhfOzWt/H370iXLlWvc3755RemT5/u/KyzzvnHP+jW6rz7N7oCjgFVwpr0kTpHCCFwrSvatJ3BmeTbueVWhauupM7uT8qsK664gq5du9bKdldGVe5Phl2k5/O58Pd2GDLQQwUWwodIzq56ZvXq1aSkpNCuXTtuu+0253RFUbjnnnto1aoVW7du5ciRI2Uu47///S+JiYk88cQTZV6Anzp1iszMTMaPH4/JZALg0ksvRaczodoPExJc+HTk448/xmAwcNddd9V4+9w9GqOiKIwYMYK5c+fSrFkzdu3axcKFC927EiGEqKfcUecs+vm/oCYybMT/VbnO8fPz4/Dhwy6fddY5d97uhi2suiZNtPovO7vkPKlzhBANkaOuaNu2LSlpMwDo26fu7k/KrSvccH/ibmXVFZ07QevWkJ+v5e4SQpRPgl31zKFDhwDo27cvOp3r4TUYDM5msuvWrSv1+0ePHmXevHlMnTq1RB/4ojIzMwEIKZKcS6fTYTAEA5nO0Rj37t3Ln3/+yT333EPjxo2ruVWFams0xiZNmjhbJMyfP792ViKEEPWMO+qcvXu+Q9FPZfiwsh9Tl1XnBAUFOedBsTqnUaPqbVQNNQnTXksLdjk/I3WOEKIBcdQVkZH9MJt1hDeBTgVpC+vi/qTcusIN9ye1pXhdoSgKoy7W5h06LEnqhaiIBLvqmdzcXMD1JF+U44Re2pMTu93Om2++SUhICPfff3+562nZsiUACQkJzmkZGRmYzWmgtCQ4WFvef/7zH7p168Y//vGP6mxOCSmptTec+9ixY9HpdCQmJpIsw2gJIUSF3FHnKEowOsN9REWV3ZWvrDonLS2NFi1aOJfn7jqnOhyjB+fmgsVSdn0ldY4QoqFw1BXp6drT8EGDcMmRVdv3J95YV1RW8bpi1Ehtvx096uGCCeEDJNhVzzhGMjlz5kyp80+dOlXm/AULFrB//34eeOCBCp9yhIeH07VrV/744w92795NRkZGQT97O4puGMHB8PPPP3PkyBEee+yxEk/8q8tqhSIPZtwqKCiI1q1bA9poMUIIIcrnjjoH/QMoSiOiuujLXE9ZdY7dbmf48OFA7dQ51RFc0LJZVeH06bI/J3WOEKKhcNQVCSe1umDwQNdk8LV9f+KNdUVlFa8rukdD06ZaV0YhRPkkI2o9069fP7766is2bdpEWlqayzC+ycnJ/P333wDk5OS4fC85OZnPPvuM/v37M3ny5Eqt68EHH+Thhx/m7rvvdk4LCLwIi304ipLOnDlzmDp1Kj169HDOz8/Px263VzvKas0bxoQJ1fxyJYSGhpKYmEhGRkbtrUQIIeqJmtY5Xbv2J+7EJJo1hdDQ8muG0uqcYcOGMWLECNLTy6hzrHaM+uqPsOUYVr66Ek5C27Zlz5c6RwjREDjqioz0zej90hg0MMw5ry7uTyqsK/LzMRqN1Q5+1bSuqEjRukKnUxg5QmXBglpdpRD1ggS76pkhQ4bQtWtXDh06xCOPPMJjjz1Ghw4diIuL480338RqtQKUGF73nXfewWKx8MQTT1R6XQMGDOCrr77izz//JCsrix49evDJ7EuxZMLixZ8CcN999wHw999/89577xEfH4+fnx+TJlzKUz3s+BmqVqkouskMHgTh4SXnJSYmsnfv3iotrzjHMMaeGn5YCCF8SU3rnJGjHifua+jYseJ1lVbnTJw4EYBPPvkEKFbnvPsu8ceP42/QMXHvOzzy78fw8/Or0vaVd3NVmTrn+AkYMbzs+VLnCCEagiFDhtCqdVdOnzqEUfcop049jp9f3d2flFtXFL0/mTSJRx55xD11hWpHn7STxLR8diWkV2l5JRZVrK4YNVJxBrtUSd0lRJkk2FXPKIrCm2++yb///W9iY2NdRsdq0qQJt99+O7Nnz6ZRkcS9q1atYv369cyYMYP27dtXaX0dO3Z0VhiqqvLOeyqqPZa1axbz6KOPEhoaSnJyMo899hidOnVi1qxZ7Nu3j7lz5xJ0tgWPXVqJO5wi9KZnmTJV4dLxJW8Mfv/99xoHu9LTtcqokYcSGwshhC+paZ2TltEOKExUXJGidY5DbGwsixeXUud07MB/ru7GsfM5zP5jCf6BQTz88MNV2r7iw8EXVZk652icCpQdyJI6RwjRECiKQueo1zl9+jHycg/W6f2JQ5l1RadOvPHGG8THxzN37lz8/f3dU1dYzfj99X/8sf9CjYNdxeuKPr0hIACyMyE1tUaLFqJek2BXPdSqVSu+/vpr1q5dy759+8jPz6dDhw5MmDCBNWvWANChQwfn5zds2ADAtm3b2LVrl8uyHIki33vvPYKCgpgyZQpTp04tdb25uWC1qdgs79K5UyeuvPJKABYuXIjZbObVV1+lR48eDBo0iMSTCfy07C/uG9Ouyl0az9fSiIzZ2dkkJSUBrvtHCCFE2WpS58Qf34U1H9athYMxxirVOVDwkOWdd+jcuXPJOufll+iwdxZjgeMB3Vm4cCF33303/v7+tbMjShEXV/Y8qXOEEA2F2ayyZ28r9KavuPO2daSm7K+z+xOooK549VVat27NmDFjSExM9EhdUZ7S6gqDQSEqCnbtgDNnPVk6IbybBLvqKYPBwNixYxk7dqzL9H379gHQv3//Et/Zv39/mcs7fPhwmd9zyMoC1fY7qLE89tin6PVasuHjx48TGhrqTK4I0D06miV/LuVkSh7tKr9ZAKSklP+kvLpWrFiBqqq0bduWZs2auX35QghRX9W0zjker/1zqEydA7B48WJiY2P57LPPStY5rVpBQcMrZ51z8iRdunSp8vZVV0KCdpNnMpWss6TOEUI0FLv3QE4ONG1q4OabxqLTjXOZX5v3J1BBXVH0/qR7d5YsWVLndUV5yqorukYp7NoBZ89qI9XrdNIdXojiJNjVgFy4cIFVq1bRuHFjRo8e7Zz+/PPPl9lV45577mHXrl189tln9O3bt9zlnzmbid36KX7+E0t8Nr/YkCF5eXkAVOe8nJJS9e9UvMwUPv/8cwCuvfZa969ACCEamIrqnGPHVP45QyUgAP76QyE8vAnXX399peuczMxMPv30UyZNmkSfPn1c5pVZ59ThyFtGE9jsWt6uqGL3TFLnCCEakvUbtcRSw4dRIihT2/cn3l5XlKe8uqJ9QWuBvDw4eAi6R9d16YTwft7xSxZuFRcXV+LknZyczOOPP05OTg4PPvhgrTTNnfftbMBCi1aufeQ7duxITk4O69atA8BqtbJq9WpMeoU2YVUvxwU3BrtUVWXTpk3cdtttnD9/noEDB3LFFVe4bwVCCFHPVbfOOaT1QiGqS8mbn8qYPXs2ZrO5RF4WZ52zfj0AFptdq3NMJiIiIqq8nuoKCdZei3ZllDpHCNHQ2O0qGzeCao9jyCCzy7y6uD+psK4oen+yalWd1xWlqUxdYSjSZGXtOslSL0RppGVXPTRv3jzWrl1L165dadq0KSkpKezduxez2cyMGTOYMmWK29d55MgR1q//BZ3hfsLDm7jMu/rqq/nxxx959tlnWbp0KfHx8cTHx/OvYW3wN+rJL2OZZaluy669e/fy8ssvA1qFlp6ezqFDh0hLSwNg0qRJPPbYYxgM8rMQQojKqm6dc+iwdnHeNarq6zxy5AiLFi3igQceILzY8LzOOueFl/ijfTAnU/I4dj6Hf/7zn3WagyU/bw8286t88w1s3iR1jhCiYdq7D5LPgU75npdfqvv7kwrrimefZciQISQmJhIfH1/ndYU77k/WroO771RlZF8hipErrHpo1KhRpKSkcOTIEfbu3UtISAhDhw7luuuuY8CAAbWyznfffZfw8HakZFxFaGPXeeHh4bz//vvMmjWL9evXExwczPQbrueeDgnVWld1g12JiYkkJiYC4OfnR0hICB06dKBHjx5MnjyZjh2rNjKkEEKI6tc5BalWiIqq+sX5u+++S/v27bn66qtLzHPWOR9+wKbYGEL8DUy/4XruvPPOKq+nJrKykoAkjsVBUqLUOUKIhunPv7QHG/37XYxC3d+fVFhXzJrFli1btPuT6dPrvK6o6f2JTgeJSRAfD1KtCOFKUVXV7e0eU0sZAzUsLKzU6Q1Jfd8HX32j8vlclamT4aknSu8h69wHBcPxAuRPeB0MpgqXn56uMuVy7b/r6uUKRqPvPr2o7/8XKkP2QcPYB2FhYeXOd/f2N4R9Wh/Y7SoTJqvk5sHXXyp07KC4/9hVo55xp4MHVW6/WyW0MSz+Ram3T9zlN+e7vO3YVVRfgPvrjLrkbfu7LuTlqfxjmkpODnz8oUKf3vXzPFiqgjrIZDKROebFWquDnvw/Oxs3wW3/UvjXLQ1o/3q5hvh7r2uVqTMkZ5dwm/R0LRDVuHEFH6ymkJDC/ukpcu4QQgifdfIk5OaBnx+0a+vp0tSODh1Ar4O0dDh/3tOlEUKIurduvTYKY+vW0LuXp0tTP426WAtwSd4uIUqSYJdwm/R07bVx49p5qqDTKTQpCODWxoiMQggh6oYjOX2XzqDX188n0X5+Ch06aO9jDnq2LEII4QlLl2kBmImX1t/WrZ42fJj2YOVoHCQlScBLiKIk2CXcJq0g2FU8Z5c7NSnIfe/OERmFEELULUdy+qguHi5ILYsuGAo+JkZuQIQQDcu5cyrbd2jvJ1zq2bLUZ40bK/Ttq71fu96jRRHC60iwS7hNYcuu2luHM9h1ofbWIYQQonY5ktN37Vq/n/T3iNa2LybWwwURQog69tdysNuhT2+IaF2/z/WeNmqktn/XrZcHK0IUJcEu4TZ1Euwq6MZYMBqvEEIIH2O3qxwu6MbYUFp2HTwENpvchAghGgZVVZ1dGCdNkEBXbRsxTHs9EAOpaVLXCOEgwS7hNnXRjdEx6IKcyIUQwjclnYLsbDAZoUN7T5emdrVvBwEBkJsLJ054ujRCCFE3Dh2C48fBZILRozxdmvqveXOFzp1AVWHrNk+XRgjvIcEu4Rb5+Sq5udr72mzZFRaqPR2SkVyFEMI3xRYka+/cGQyG+v3EX69X6NZVey9dGYUQDcWff2kPpUdeDMHB9fs87y0uukh73bxZGgQI4SDBLuEWGRnaq14HwcG1t55Q6cYohBA+7eBB7UK8e7SHC1JHevbQXvfslRsQIUT9Z7GorFipvZcujHVn+EXavt66DaxWqW+EAAl2CTdJK5KvqzaHFg4L1V6lZZcQQvgmR8uubt0axk1Qv77adu7a7dlyCCFEXdi8BdIzIDwcBg7wdGkajuhuWiqZrGzYt9/TpRHCO0iwS7hFXSSnh6I5u2p3PUIIIdzPalU5VDASY/duni1LXenZA/R6OHMWTp2Wp+1CiPrN0YVxwnitK7eoG3q9wpDB2vvNW6SuEQIk2CXcxBF8qvVgV6j2mp4uI1sJIYSviY8HsxmCg6BNG0+Xpm4EBirOLpvSuksIUZ+lpals3qK9n3ipBLrq2kVDtX2+aYuHCyKEl5Bgl3CLCxe016ZNa3c9jmCa3Q4ZmbW7LiGEEO4VU9CFsWtX0Okazo1Q377a667d8pBGCFF/rVwFVitERUHHjg3nHO8tBg/W8icfPy4tiYUACXYJN7lwQTuhhofX7noMBoXGjbT3krdLCCF8S0NLTu/QvyBv144doKpyAyKEqJ8cXRglMb1nNApR6NVLe795s2fLIoQ3kGCXcAtHy67wJrVfuYXJiIxCCOGTYhpYcnqH3r3Azw/OnYdj8Z4ujRBCuN+JEyoHD2k5CseN9XRpGq7CrozyYEUICXYJt7iQor02reWWXQChodqrtOwSQgjfkZurcrwg0NNQktM7+Pkp9O+nvd8suVSEEPXQ8pVacGXIIAgLbVgPNLzJRUO11127tHpXiIZMgl3CLc6f115ruxsjyIiMQgjhiw4fAZtdy+3YrFnDuxEaOkTb5i1b5eZDCFG/qKrK8hXa+3HjGt753Zt0aA8tW4DZAjt2ebo0QniWBLuEWzi7MdZFsCtUe01NlRsGIYTwFQditNforp4th6cMHaK97tsHWVlSfwkh6o+YWEg6Bf7+cPFwT5emYVMUhYsu0t5v3ix1jWjYJNglaiw/XyUrW3sf3qT21xcWpj0xkpZdQgjhO/bt1y66e/VqmE/9I1ortGurtW77e7unSyOEEO7j6MJ48QgICGiY53hvMqwgb9fmLTIoimjYJNglaux8QasukwmCg2t/fZKzSwghfIuqquzbr73v2cOzZfGkoQW5VDZskpsPIUT9YLWqrFylvb9UujB6hf79tEFRks9B3DFPl0YIz5Fgl6ixol0YFaUORmMM1V5lNEYhhPANSUnaOdtohK5Rni6N54wcodWRGzdpN4hCCOHrdu7SHkCHNoZBAz1dGgHaoCgD+mvvN232bFmE8CQJdokacwS76mIkRiiSoF5adgkhhE9wtOrq1lW7CG+oevbQ6rCsLNi129OlEUKImlu+QgvcjxkDBkPDPb97m8KujPJgRTRcEuwSNXYhRXuti3xdUCRBfVrdrE8IIUTN7HXk6+rp4YJ4mF6vcPEI7f3adXIDIoTwbfn5KmvXa+/Hj5VAlzdxdJs/EAPp6VLfiIZJgl2ixs6f106gdTESI0BoQcuu7GytkhVCCOHdHC27evWUm6FRF2v7YN16sNmkDhNC+K6NmyEnB1q2aNj5GL1RyxYKnTqC3Q5bt3m6NEJ4hgS7RI0V5uyqm5uYkGDQ67X3ael1skohhBDVlJ6ucvy49r5nA2/ZBVri4OAgSEnVnrgLIYSvWr5cC9iPHwc6nTzM8DYXFbTu2iRdGUUDJcEuUWPn6zhnl6IokrdLCCF8hCM3Vfv2EBYqN0NGo8Lw4dr7tevlBkQI4ZsyMlU2b9XeSxdG73RRQd6urdtkUBTRMEmwS9RYcrL22rx53a3TmbdLgl1CCOHVtu/ULrAH9vdwQbyIoyvjmrWgqnIDIoTwPWvWgtUKnTpBx44S7PJGPbpDSAhkZkpLYtEwSbBL1Iiqqh4JdjVrqr0mn6u7dQohhKi6nTu11wH95WbIYchgCAyEs2flBkQI4ZscozBKqy7vZTAoDBmsvd+0WR6siIZHgl2iRrKzITdPe9+8Wd2tt0VL7fXMWTlxCyGEtzp3TiXhJOh00LePp0vjPfz8FC4u6Mq4YpXUY0II35KcrLJ7j/Z+3FjPlkWUb8QwLRi5dr20JBYNjwS7RI04WnU1agT+/nX3ZKdlC21dZ8/U2SqFEEJU0faCVl1doyAkRJ7+FzX2Em1/rF4jozIKIXzLilWgqtCnd+E1ufBOwy4CkwkSE+HoUU+XRoi6JcEuUSOOboTN6rBVF2hDHAOcOVu36xVCCFF5W7YW5Osa4OGCeKFBA7VcKhcuwJ69ni6NEEJU3oqV0oXRVwQGKs5RGVetkQcromGRYJeokXMFwa667MII0EKCXUII4dWsVpWt27T3wy6SG6LijEaFURdr71etlhsQIYRvOH5C5fAR0Oth9ChPl0ZUxiWjtTp41WrpyigaFgl2iRpJPqedMOs62NWyIGfX+fMylK4QQnijffshKwsaN4Lu0Z4ujXdydGXURjWTukwI4f0ciemHDIbQUHmQ4QsuGgp+fpB0Cg4f8XRphKg7EuwSNVLYjbFuK7smYWA0gt1e2LpMCCGE93CM/DR0KOj1ckNUmn59ITQU0tJh5y5Pl0YIIcqnqirLV2rvx4+T87qvKNqVcaUMiiIaEAl2iRpxBJpaNK/b9ep0irN116nTdbtuIYQQ5VNVlQ2btPfShbFsBoPCmNHaexmVUQjh7Q7EwKlTEOAPI4Z5ujSiKhz51f5aJi2JRcMhwS5RI47RGOs6QT1AZBvtNeFk3a9bCCFE2Y4ehZMnwWSEoYM9XRrvNnaMdgOybh2YzXIDIoTwXn8s0c5RI0dCQIA8yPAlwy7SWhJfSIEtWz1dGiHqhsHTBRBVFx8fz5dffsmOHTvIyMggPDycESNGcPvttxMaGlrl5cXExDBv3jz27NlDamoqAQEBdOrUicsuu4wpU6agKGVXZskeSlAP0DYSNm2GhAQVKLuMS5cuZeHChcTFxaGqKu3bt+fyyy/n8ssvL3fb6mp5QgjhDt999x179uwhLi6O1NRUzGYz4eHh9OvXj+nTp9O5c+dKL+v333/n1VdfrfBzzz//PJMnTy4xfXlBK6WLLoKgIDkvlqd3L2jWFM6dh63b4OIRhfNOnz7NTz/9RGxsLElJSaSnp6PX64mMjGTMmDFcf/31BAQEVGl9ZrOZH374gRUrVnDy5EmsVitNmzZl0KBB3HLLLURERLh5C4UQ7nLPPfewa1fZfZ5nzpzJRRddVKVl7t+/n6+++oq9e/eSm5tLixYtuOSSS7j11ltdzi85OSorVmnvL5si53VfYzQqTJqg8v2PsPgPlRHDSz+GO3fu5KeffmLv3r1kZmbSuHFjOnfuzLRp0xg5cmSl1mWz2Vi9ejUxMTHExMRw8OBB8vLymDx5Ms8//7w7N0uIckmwy8ds376dxx57jLy8PNq1a0evXr04duwYCxYsYN26dXzxxRc0b175PoWrVq3iueeew2az0bVrV/r06UNaWhq7d+9mz549bNu2jZdffrnU72ZkquTkaO+rsEq3adtWAdRyW3a99dZbLFq0CKPRSM+ePQkICGDfvn28+eab7N27t8onXHcvTwgh3OWrr74iLy+PTp060alTJ0B7OPLnn3+yfPly3nzzTUaMGFHBUjRt2rQpNYgFkJ2dzdq1awHo06dPifl2u8rKghuicZfIDVFFdDqFsZeo/PATLFuhcvGIwn0WFxfH999/T3h4OO3ataNv375kZmayf/9+Zs+ezfLly/nss89o1KhRpdaVn5/Pfffdx/79+wkJCaFfv36YTCYOHTrEb7/9xooVK/jkk0/o1q1bbW2uEMINxowZU2qgu1kVu1osXbqUV155xXkf0LJlSw4dOsRXX33Fxo0bmT17NkFBQQCsWgO5udCmDfTp7Y6tEHVt6mSF739U2bwFkpNVmjd3raM///xz5s6di8lkonfv3oSFhXHu3Dn27NlDs2bNKh3sysnJ4dlnn62NTRCiSiTY5UPy8vJ4/vnnycvL47bbbuOOO+4AtNwoH330EfPmzeO1117jgw8+qNTyrFYr77zzDjabjZdeeokJEyY458XHx3PXXXexbNkyLr/8cgYMGFDi+6cLcmWFNwF//7q/oWkbqb2WFexatWoVixYtolGjRnz44YfOi/fz58/z0EMPsWTJEoYOHcqll15aqfW5e3lCCOFOb7/9Nt26dcPPz89l+oIFC/jPf/7D66+/zm+//YbBUHHV37dvX/r27VvqvIULF7J27Vp69+5daiugffvh7FkIDNS6TYiKjR+n8MNPKhs3QXa26mwN161bN7777js6duzo8vns7GyefPJJtm/fzv/+9z8efPDBSq3nl19+Yf/+/XTv3p0PP/yQ4OBgQHsKP3PmTBYsWMAHH3zAp59+6t4NFEK41QMPPEDr1q1rtIzk5GTeeOMNbDYbzzzzDJdddhkAFouFV155hWXLljFr1iyeeuopAH7/Q2uxO3WyIj0ZfFS7dgp9+6js3gMLF6ncc1fhcfz999+ZO3cuPXr04I033nBpPJGXl0dSUlKl12MwGJg0aRLdunWje/funDhxolKtxYVwN8nZ5UNWr15NSkoK7dq147bbbnNOVxSFe+65h1atWrF161aOHKncmLInTpwgNTWVdu3auQS6ADp06MDEiRMBrZtjaU6d0l5btarGxriBI9h15gzk55fMc/Lzzz8DcOONN7o8pW7atKnzxuDbb7+t9PrcvTwhhHCnPn36lAh0AVx99dW0adOGlJQU4uPja7yepUuXAjBp0qRS5y8uuCEaPRL8/OSGqDKiukC7tmA2w7r1hdObNm1aItAFEBQUxO233w5oLb4ra/fu3QDccMMNzkAXgF6v58477wTKrvOFEPXL77//Tn5+PoMHD3YGugCMRiP//ve/CQwMZPHixaSnp3MsXmX/AdDrYNKEchYqvN7112r18i+/aQ9XQAtmzZo1i8DAQN5+++0SvYT8/f2dLcYrIyAggBdeeIHrrruOXr16lXptIkRdkGCXDzl06BCgPXHX6VwPncFgoHdvrU3xunXrKrU8o9FYqc81bty41OmOURBbeyjYFRYGwUGgqlDawwbH/urfv3+Jef3790en03H48GHOnDlTqfW5e3lCCFFX9Ho9UPnzfllOnTrFvn37MBqNjB07tsT8jEyVVau19/+4TAJdlaUoCuPHaftr+crKJal3tNCryjGtzGfLqvOFEPVLede1jjxNNpuNjRs3svBn7bw0fDiEh8u53ZcNu0h7uJKdDb/9rk1bs2YN6enpjB07lvDwcM8WUAg3kmCXD8nNzQUgJCSk1PmOC9TKtuyKiIigTZs2nDhxgr/++stlXnx8PEuXLqVRo0aMGjWq1O+fPq1VfDVsRV1tiqIQ2VZ7fzyh5Pzy9pfRaHTmOqjs/nL38oQQoi78+eefJCQkEBkZSWRkZI2W5WjVNWzYsFLzRC39S2ud1KkT9Oheo1U1OOMLYofbd8CFC+UHvPLy8vjf//4HwPDhwyu9jiFDhgDw/fffk5WV5Zxus9mYM2cOgEsLDyGEd1q8eDFvv/02//nPf/jxxx+r9aC1svcV+/cfYekybdq1V0ugy9fpdAo3XK8dxx9+UsnLU9mxYwcAvXr1IjMzkwULFvDWW2/x/vvvs2rVKqxWqyeLLES1Sc4uH+IYabGsCu1UQb/CylZ4er2e5557jscee4wXXniB7777jsjISFJTU9m9ezcdOnTgueeeq0TLLs9VfB3aQ2wsxMerMNq1HI6kimfOnKFDhw4u89LT08nOzgYqv7/cvTwhhKgN3377LceOHSMvL4/jx49z7NgxmjVrxiuvvOJs4VVd5XVhVFWV3xZrQZrLL5OcLlUVEaHQo7vKgRhYuRquvbpwXkZGBu+//z4AaWlpHDhwgPT0dEaNGsWNN95Y6XVMnDiRLVu2sHz5cq688kp69+6NyWTi4MGDpKSkMH36dGbMmOHmLRNCuNuXX37p8vesWbOYMWNGlX6/lb2v2LPnDPn5WndrSUxfP0wYD199o+Vfnr8QZ4qDtLQ0brjhBs6fP+/87A8//ECnTp147733aNGihaeKLES1SMsuH9KvXz8ANm3aRFpamsu85ORk/v77b0AbAaOy+vTpwyeffEJERASHDh1ixYoV7NixA51Ox+DBg8sdgtzTObsAOnbQbqZKS0PjSK78xx9/lJj3+++/O99Xdn+5e3lCCFEbtmzZwpIlS1i1ahXHjh2jZcuWvPzyyzUeYe/AgQMkJCTQqFGjUlsTbd4Cx09AQABcOq5Gq2qwyurKmJeXx5IlS1iyZAmbNm1ydjd56qmn8Pf3r/Ty9Xo9L774IjfddBOZmZls3LiR1atXc/r0adq3b8+gQYNqHBAVQtSefv368cILL7Bw4ULWrFnDTz/9xN13341er2fOnDn8+OOPVVoWwPLly7FYLC7zYmNjiYuLA+BkovYw95qr5SFGfWE0KtwxQzuW336nkpaWAcDs2bNp1KgRn332GStXrmTu3Ll07dqVuLg4nn76aVS1ct3shfAWEuzyIUOGDKFr167k5OTwyCOPcODAAXJycti3bx+PPPKIs4lpVSqiZcuWcdttt9G8eXPmzp3L6tWr+emnn5gyZQrfffcd9913H2azucT3bDaVM2e1954MdnUqyNsbV0qwa/r06ej1elasWMGsWbM4c+YMaWlpLFq0iDlz5jgv6Cu7v9y9PCGEqA0fffSRs/XOZ599RmRkJPfcc0+JlgBV5WjVNXbs2FJzP837XrsIvuIfEBws58HquGS0lgA6NhZOJhbeVDRv3pwtW7awefNmfv31V5555hl2797N9OnTOXjwYKWXn5GRwf3338+CBQt45JFH+O2331i2bBlvv/02aWlpPProoyxfvrwWtkwI4Q533nknkyZNIiIiAn9/f9q2bcutt97K22+/DcAXX3xBXl5epZY1YcIEmjdvzpkzZ3j88ceJi4sjOzubrVu38vTTTzuvay0WHU3CYOyYWtss4QHjxkK3rlrurpRUrb7R6/XMnDmTvn37EhQURI8ePZg5cyYBAQHExMSwbds2D5daiKqRYJcPURSFN998k44dOxIbG8ttt93GJZdcwh133EFqaqpzZKbS8qiUJiEhgZdffpnGjRvz7rvv0qNHDwICAmjbti1PPfUUw4cP59ChQyxevLjEd5NOgdUK/v7QvJlbN7NKHL0Jk5JKjsjYrVs3nn32Wfz8/Jg3bx5XXHEFEydO5K233mLgwIGMGDECqPz+cvfyhBCiNoWEhNC3b19mzpxJt27dmDNnTrVH2rNaraxYsQIovQvj3n0qe/aC0QjXXSOBrupq0kRhwADt/fIVJecrikKLFi247LLLeOedd0hPT+fVV1+t9NP2999/n127dnH33Xdz3XXX0bx5cxo1asTIkSN58803UVWVDz/8UPKzCOFjhgwZQnR0NJmZmRw4cKBS3wkMDOTdd991BtOnT5/O2LFjeeihhzAYDFx/vaOLdAjXXatgMsm5vT7R6RQee1RBp4OcHC3v8MCBA0t0VWzSpAnDhg0DYNeuXXVeTiFqQnJ2+ZhWrVrx9ddfs3btWvbt20d+fj4dOnRgwoQJrFmzBqBEPqmyrFixAqvVytChQwkMDCwxf9y4cWzcuJHdu3dz1VVXucyLP669tmurnSw9JbwJNG4E6Rla95muUa7zJ02axIABA1i5ciUJCQn4+fkxcOBAhg8fzl133QVUfn/VxvKEEKK2GQwGxo0bx8GDB9mwYQPdu1c9c/y2bdtITU0lIiLCOfJvUY5WXRMvhaZN5YaoJi4dr7Dtb5XlK1X+dUvZrYW7d+9O27ZtOXr0KKdOnSo37QBoSegdrbYuueSSEvOjo6Np3bo1SUlJJCUl0a5du5pvjBCizkRGRhIbG8uFCxcq/Z0uXbrw008/sWLFCg4dOoTdbqdr166MHz+e557/CoCAgA5Mu6KWCi08qltXhWlXqPz4Q0tU9TDh4S1L/Vyrgm48qampdVk8IWpMgl0+yGAwMHbs2BLDvu/btw8ofQjh0iQnJwMQHBxc6vygoCAAMjMzS8w7flx7bd++UquqNYqi0KGDyu49cCy+ZLALtO4fN9xwg8u0vLw8jhw5QmBgIF27dq3SOt29PCGEqG2ORMTVvVB1dGGcOHFiiXlH41Q2bgJFwTnCk6i+kSPAzw9OnoRDh6C8VGtFj2tFwa7U1FRnXh5H/V5cefW+EMK7ZWRoeZeqksfP8fmpU6cydepU5zSrVeXvv/cCMHlKfwIC5NxeX915u8LSP6NIS13Htr8zUVW1xEMWx/8tx8jzQvgK6cZYT1y4cIFVq1bRuHFjRo8eXanvhIeHA5SZ7yM2NhYojOYXFX9ce4rfob3nKz9H3q74+MonTfz999/Jzc1l0qRJVb4oqIvlCSGEO+3cuROANm3aVPm7OTk5rFu3DtByvBQ3+3Pt3HvJaGgb6fk6wdcFBiqM0HqM8Nfysuu17OxsDh06hKIotG7dusLlNmrUyJlrrbR6Pzs7m4SEBABatiz96b4QwjulpqayZ88egBoPRgLw+dyj5OftRm/owH339Knx8oT3CgxUeOThiwE4e2Yf3/3g2o3dbrc7/2/JA33hayTY5WPi4uLIz893mZacnMzjjz9OTk4ODz74YIlgy5o1a7juuut46aWXXKZffLF2Ytu1axcLFy50mbd//35++OEHAMaMKZmR0tGyq0P7GmyMm3QoGJEx7ljJeY6AXVHr1q3jo48+IjQ0lDvuuKPE/JdeeonrrrvO2S20pssTQojatmfPHjZv3ozdbneZbrVa+emnn1i6dCl+fn6MG+c6TOL8+fO57rrr+OSTT8pc9po1a8jLy6Nnz560bdvWZd7uPSqbt4BeD7ffJoEud5k4QduXv/zyG0ePJpaYn5yczPPPP09OTg7Dhg2jSZMmLvPvv/9+rrvuOpfcPSaTiaFDhwLwwQcfuAwtn5+fz9tvv01eXh69e/emadOmtbFZQoga2Lt3L2vXrsVms7lMP3XqFE8++SS5ublcfPHFNG/e3GV+eef5w4cPl8jRt3dvPN98/TSgcvU1/5ZWXQ3AhAldadduMHCGjz/+jPUbC68lvvzyS06cOEFYWFiJBhXl3TMJ4Q2kG6OPmTdvHmvXrqVr1640bdqUlJQU9u7di9lsZsaMGUyZMqXEd7Kysjhx4kSJi+Fu3boxffp05s2bxzvvvMPChQvp0KED586dY//+/djtdq644goGDx7s8j2zWeX4Ce19Ry9IT1XYsqvkvH/961+0adOGdu3aERAQwLFjxzh27BiNGzdm5syZzi4gRZ05c4YTJ06QlZXlluUJIURtO3nyJK+++iqhoaF069aNRo0akZ6eTlxcHOfPn8fPz4/nnnuuROLZtLQ0Tpw44RL4KK6sLoyqqvLpbK3l0WVTILKN3BC5y5DB0CYCjh/7i5tuepMOHTrQrl07DAYDZ8+e5dChQ5jNZjp27MjTTz9d4vuJiYmcOXOmxKhsDz30EAcOHODw4cNce+219OrVCz8/P2JjYzl37hyNGjXiySefrKvNFEJUQUJCAq+++irh4eF07dqV4OBgzpw5w6FDh8jPzy/zfFDeeX7mzJkcP36czp07ExYWxtmzZ9m7dz+qCi1bPcGD9w+oi00TXuCDD/6P62+4g7zceTzx+HoG9O/EhQvHiY+Px8/Pj5deeqlEN8by7pnefvttDh06BEB6ejoAmzZt4rbbbnN+Zu7cubW4RUJIsMvnjBo1ipSUFI4cOcLevXsJCQlh6NChXHfddQwYUPUK6YEHHqBXr14sWrSIgwcPcuLECYKCgujXrx+XX345l156aYnvHI3TRmIMbQze0NOhYwctV0zyOUhNVQkLK7zhuv7669m5cyd79+4lPz+fFi1acMMNN3DzzTeXCP5VhruXJ4QQ7tC/f39uueUWdu3axdGjR0lLS8NoNNKqVSvGjBnDtddeS2RkZJWXe/78eXbs2IHBYGD8+PEu89ZtgAMx2qi8t94igS530ukUrpoGM9+/kaDACOAAO3fuJDs7m+DgYHr06MGYMWO44oorMJlMlV5umzZt+Oabb/jmm2/YvHkzu3fvRlVVmjdvztVXX80///nPEq1ChBDeoUePHkybNo0DBw4QGxtLRkYGAQEBdOnShUsuuYRp06ZVOZXGxIkTWbp0KUePHiUzM5Pg4FDQjUWvv5EXX+yKXi/n9oaiZcuWzP/pK26/Yy5nz2xg+/b1NGoUwvjx47n11lvp1KlTlZYXHx9fYmTQtLQ00tLS3FhqIcqnqJUdr7oKSkuAGxYW1uBHcKgv+2DhzyozP1QZOgT+81bVesI694HVjN9f/wdA/oTXwVD5i/XS3Hyrnfjj8OZrCiOGe3/FXF/+L9SE7IOGsQ/CwsLKne/u7W8I+9Qb5OWp3HSLypmz8M+b4M7ba54Vwe3Hzs31TF3Lzla58hqVnBx4+UWFS0Z7Z90mvznf5W3HrqL6Anx7NDhv29/F5eaqzLhT5eRJuHQcPP+sZLupkYI6yGQykTnmRZ+pg3JyVP79hMq+/RASAv95S6FHd++sf7yZt//e64PK1BlyFhNVFntIi49G1zz/pdv06K69Hohxe+xWCCFEMd/M0wJdzZvDzdPlIrg2BAUpXH+ttm/nfKFitUr9JoSoPR9/pgW6mjWFhx+S83pDFRioFAS4IDMTHnxEZeMmqX+Eb5Jgl6iy/fu11+7R3lMR9uyhlWX/gQo+KIQQokZOJqp8p41fwkP3K5K8uBZdf62WMiAxEb79ztOlEULUV6vXqPzyq/b+/55SaBQi5/WGLChIYeZ/FIYMhvx8ePpZlR9+UqmFDmFC1CoJdokqOXNGJTEJ9Dro3cvTpSnUq6f2eiBG614jhBDC/Ww2ldffVLFYYPAgGHmxp0tUvwUGKjz4gHbT+eVXKoePSP0mhHCvg4dUXn1DO7dcfy0MGiiBLqHVP2+9rjBlMtjt8NEnKq+8ppKfL/WQ8B0S7BJVsn2n9hodrUX9vUXbttCiBZjNsHOXp0sjhBD103c/wL79EBQET/xbQVG8px6or8aPhVEjwWaDZ55TSU2TGw0hhHvEHVN5/CmV/HxtFNi775RzuihkMCg89bjCQw8o6HWwbAXc84DKmbNSDwnfIMEuUSUbN2ont4FeNhKxoihcNFR7L/3KhRDC/fbtV5n7pXZ+ffgBhZYt5aaoLiiKwhP/VohoDafPwP89K0/WhRA1d/CgygMPq6SmQpfO8NLzCgaDnNeFK0VRuOYqhZnvKoQ2hsOH4fY7VXbslHpIeD8JdolKS09X2bxVe++No0KNulgr08pV2ogyQggh3OP8eZVnn1exWuGSMTBxgqdL1LA0bqzw9hsKwcFay7rnXlCxWKSeE0JUnaqq/LpY5d4HVTIyoHs0fDBTITjY+67thffo30/hi9kKUV0gLR0e/rfK53PtMniK8GoS7BKVNu8H7UYnqgt07Oh9FeKA/tC6NWRlw4qVni6NEELUDzk5Kk8/q3IhBTq0h6cel+6LntCuncKbryn4+cGmLfDSqzJCoxCiahITtfP5O++qmM1a18X335WE9KJyWrZU+PQjhamTQVXhq2/ggYelW6PwXgZPF0D4hp/mq3z3vfb+1n+WrBDPnz9fqeVYrVbS0tLAZqZpfr723QvnQW+qcpmaNm3q8rdOp3Dl5fDxpypff6sy4VIwmaTyFkKI6srPV3ny/1RiD0LjRvD6qwqBgVU7r1a5fnAXN9Qzta14PVaRvn0UXn8FnnpGZc1aeMNP5ZmntPpPCCFKo6oqB2Lg50UqK1dr+f/0erjrDoXrr3XP+aOy5/kGpaAOUlW7x+ugqtY15fHzU3jqCYWBA1Tefldl3364+VaV22fAVVciXWGFV5Fgl6jQz7+ofPixFrG/6Ua4eETJz0RFRVVpmSY9fHFZIwBuv2seZlvVy5WSklJi2pWXw4/ztbwm3/8It9xc9eUKIYSAjAytBcCevRAYCO++oxDZpuoXsVWtH9zFHfVMbSutHqvIkMEKL78Azz6v8tcyMBpUHntUbjCEEBpVVTl1Gg4dhp07VTZtgeTkwvlDh8C9dylu7aXhqfO8N3Opg/71P4/WQdWpayoybqxCdDS8+roW8Jr1scqvv8HN02H8OKmThHeQYJco19/bVd7/UAt03XIz3D7Du7uv+Psr3HMnvPK6ypdfqQy7CLp09t7yCiGEN9p/QBtiPOkUBAfBW28odOsq51JvcfEIheee0boy/r4ETp9RefkFLbeXEKL+y8tTSU6GM2cL/p1ROZsMZ85A3DHIynL9vJ8fjB0D065Q6NZNzhPCPSJaK3z8ISz5Ez6drZJwEl57U+WT2TB2jMrIixV69pCeNsJzJNglypSapvLq6yp2O0ye6P2BLodLx8OatbB+I7z4ssqnHyO5CIQQogKqqhITq3V1Wb4S7HZo0QLefkOhkxfmaWzoxo1VMJnglddUduyE6f9UufEGmDQRwkJLHi+rVeX8eTibDGfPwvkLWguPjh3k2ArhSaqqkpAA2TlgsYDVqr3m5kJqGqSmqqSmQUoKzgBXRT2+jUbo2AG6d4eLhij076c9EBbC3XQ6halTYMxo+OU3LfXNhRRY8DMs+FnFZIJePVX69VXoHg3dusl9mag7EuwSpcrPV3nxZe1k1b49/PsR3wh0QcEw7Y/BocMqJxLgsSdUnn8G2lSj+40QQtRHVqvK6TNw9CgcjVM5GgcHD8GFC4WfuXQcPPKQQohclHqtkRcrfPoxvPSKSvxx+OQzlU8+gzYRKk2aaHl5MjMhPR0upGgBzKL+3g4z/yPHVwhP+v5H7bdbVQEB0LIFtGypPZho0VyhZUtoG6kFuoxG+W2LuhMUpDD9BrjuGvh7B6xYqfL335CSCjt2wo6dhf/HIyNVukdD924K3btDp47S+kvUDgl2Cc4mq2zfoSUfDgqCEwlaJP74ca0iffE5BT+/8k9Ahw8frtS6QkNDCxPUb3wDgP1vPO32pI1hYQpvvaGNEBITC9ffpNK8mcrLLyr07CEnUyGE70s4qbJ8hTZKrqqCXQXVrr2iaoENVQWbHfJyISdX69py5ozWMsBWSv6QgAAYPgxuuE6ha5R7zpVVrh/cpZbrGW/RuZPCl1/An0vhl99UDh2GxCTtX3FGIzRv5rgxhsv/IfWhEJ7WoT1EtNbO2QYjGA3aq58JwsIgLBSaNIHQxgrNm2sBrhYtISQYr3kQXdnzfINSUAeZTEaGvvFYva2DijMYFC4aorUoVFWt4cHOXbBvv0pMDCSdgpMntX9/LdMCYEYjdGiv0rKlVkcFBIDBoLVyzMyEzCzIyID0DMhIh4xMbd4TjylMvNQ7fgPCO0mwS/DBLJV160tODwuDV15U6Nyp4pNIZUf5CAsLw2AwgKpiatlV+27zVlALlXWXzgqffwYzP1D5ezskn9O6b/Ts4fZVCSFEnfvivyqrVlf/+35+2tP/zp2gUyeFzp0guhsVPtyoqirXD+5SB/WMtzAYFC6bCpdNVUhP11rqZWSA1QaNQqBRI+0GIixMRm4UwttcNFThoqG+/bt052h/9UZBHeQf4F/v66CyKIpC+3bQvp2WLw4gPV0l5iDExkJMrEpsrBbEOnxE+1cV2dm1UGhRr0iwS3D1NAXVrnL+ghY5bxoOQ4coXDalFpPdKgrmi+5zvq8tkW0U3ntHISdHJTcXwsMbXkUjhKifbp6u0DRcxa6CTgFFV/Ba8E+nK3z191cIDISgQGjeHNpEQHh4PQ981FE9420aN1YY0N/TpRBCiAauoA4KDAurOMlaA9K4saPlF4DW+uvUKYg/oeWTPHdOJT9fy1tnMEBICIQEK4Q00nohNWoEjRtr/yT3l6iIBLsE/fsp9O/ngZNFHd58BAZqN3pCCFFfdOms0OV+udArVwMKcgkhhPAyiu/kPPYURVGIiICICOcUTxZH1DM6TxdACCGEEEIIIYQQQgh3kWCXEEIIIYQQQgghhKg3JNglhBBCCCGEEEIIIeoNCXYJIYQQQgghhBBCiHpDgl1CCCGEEEIIIYQQot6QYJcQQgghhBBCCCGEqDck2CWEEEIIIYQQQggh6g0JdgkhhBBCCCGEEEKIekOCXUIIIYQQQgghhBCi3lBUVVVreyWZmZns2LGDAQMGEBISUtur80qyD2QfOMh+kH0Asg9qg+xT3yXHzjfJcfNdcuzqluzvhkmOe8Mkx9171EnLrqysLNauXUtWVlZdrM4ryT6QfeAg+0H2Acg+qA2yT32XHDvfJMfNd8mxq1uyvxsmOe4Nkxx37yHdGIUQQgghhBBCCCFEvSHBLiGEEEIIIYQQQghRb9RJsCs4OJhRo0YRHBxcF6vzSrIPZB84yH6QfQCyD2qD7FPfJcfON8lx811y7OqW7O+GSY57wyTH3XvUSYJ6IYQQQgghhBBCCCHqgnRjFEIIIYQQQgghhBD1hgS7hBBCCCGEEEIIIUS9IcEuIYQQQgghhBBCCFFvSLBLCCGEEEIIIYQQQtQbEuwSQgghhBBCCCGEEPWGoapfsNvtfPfddyxcuJBjx46h1+uJjo5mxowZjB07tlqFMJvNXHPNNRw8eJAOHTqwdOnSai2nLrlzP2RlZfHf//6XZcuWcfLkSYxGI5GRkYwdO5b777+/lrag5ty1DzIyMvjyyy9ZsWIFiYmJmEwm2rRpw5VXXsk111yDn59fLW5F5fz666/s2LGD/fv3c/jwYSwWC2+88QbTpk0r9fNZWVnMmjWLZcuWce7cOZo3b86ECRO4//77CQoKqtK6169fz+zZszlw4ACKotCjRw/uvfdeLrroIndsWpV4Yj8cP36cpUuXsn79ek6cOEFaWhrh4eEMGTKEu+66i06dOrlzEyvkyf8LRb3wwgv88MMPAGzYsIFmzZpVe1neKD8/n/fee4/9+/dz4sQJ0tPTadSoEZGRkVxzzTX84x//wGg0Vnp5vnqe9UXuOnY333wz27ZtK/czb731FldccYWbSt6wufM35wv1en3izmN35swZPvnkE9atW8f58+cJDQ3l4osv5sEHH6RVq1a1vCW+4ZJLLiEpKanUeYMHD+abb76p1HLy8vL4/vvv+e2330hMTERVVVq3bs2kSZO46aabCAkJcWexhRstX76c7777jpiYGHJycmjWrBl9+/bl8ccfr9TvxG63M2/ePH766SdOnDhBYGAgw4YN45FHHiEyMrIOtkBUR02O+/bt21mxYgXbtm0jKSmJnJwcIiIiGDt2LHfddReNGjWqo61oWBRVVdXKflhVVR566CH++usv2rZty8iRIzGbzaxcuZILFy7w3HPPcdNNN1W5EDNnzuTrr78mJyfHJ4Jd7twPp06d4pZbbuHkyZMMGzaM6OhozGYzCQkJnDp1isWLF9fy1lSPu/ZBRkYG06ZN4+TJkwwYMIA+ffpgNptZt24dCQkJDB06lC+//BKdzrONEB0XNmFhYQQGBpKUlFRmgCMnJ4cbb7yR2NhYRowYQXR0NLGxsWzYsIFevXoxb968Sl/o//rrrzzxxBM0adKEyZMnA7BkyRJSU1N5//33mThxolu3syKe2A+PPPIIS5YsISoqiv79+xMcHMzhw4dZt24d/v7+fPHFFwwaNKg2NrdUnvq/UNTGjRuZMWMGgYGB5OTk1MtgV0pKCqNHj6Z37960b9+eJk2akJ6ezvr160lKSmLEiBF8/vnnlTo3+Op51le569j9/PPPpd5QWq1WZs+ejU6nY/Xq1bRo0aK2NqVBcddx85V6vT5x17FLSEjg+uuv58KFC4wYMYKoqChOnDjBqlWraNKkCT/88ANt27ato63yXpdccgkZGRnccsstJeZFRESU+fCrKIvFwvTp09mzZw/R0dEMHjwYgK1bt3Lw4EG6dOnC/PnzCQgIcHv5RfWpqsoLL7zAjz/+SNu2bRkxYgRBQUEkJyfz999/88477zBw4MAKl/Pss88yf/58unTpwqhRo0hOTubPP/8kKCiIH3/8kfbt29f+xohKc8dxHz58OKmpqQwYMIDo6GgURWHbtm3ExMQQGRnJDz/8QNOmTetoixoQtQr+/PNPNSoqSr3++uvV3Nxc5/QLFy6oY8aMUXv27KmePHmyKotU9+zZo0ZHR6vffvutGhUVpU6YMKFK3/cEd+0Hi8WiTps2Te3du7e6efPmUud7K3ftgzlz5qhRUVHqa6+95jI9Pz9fnTZtmhoVFaVu27bN7eWvqo0bN6qJiYmqqqrq7Nmz1aioKHXhwoWlfvaDDz5Qo6Ki1Hfeecdl+jvvvKNGRUWpn332WaXWmZaWpg4cOFAdMmSIevr0aef006dPq0OGDFGHDBmiZmZmVnOLqscT+2HhwoXqgQMHSkz//fff1aioKHXy5MlV3Iqa8cQ+KCojI0MdOXKk+sADD6g33XSTGhUVpSYnJ1d9Q7yczWZT8/PzS0y3WCzO7V69enWFy/Hl86yvctexK8vSpUvVqKgo9a677qpBKUVx7jpuvlKv1yfuOnZ33nmnGhUVpX711Vcu05csWaJGRUWpM2bMcFeRfdqYMWPUMWPG1GgZf/zxhxoVFaXed999Jebdc889alRUlLpo0aIarUO43//+9z81KipKffHFF1Wr1VpifmWuKTZv3qxGRUWp06dPd/ndrlmzRn5nXsodx3327NnqmTNnXKbZ7Xb1hRdecC5buF+VHqutXLkSgLvvvht/f3/n9CZNmnDLLbdgNpv5+eefK728/Px8nnzySQYMGMCNN95YlaJ4lLv2w19//cX+/fuZMWMGQ4cOLTHfYKhyL9M64659cPLkSQBGjRrlMt1kMjFixAhAe2LpacOGDSMiIqLCz6mqyvz58wkMDOTee+91mXfvvfcSGBjI/PnzK7XOpUuXkpGRwU033UTLli2d01u2bMlNN91EamoqK1asqNqG1JAn9sO0adPo3r17ielTpkyhffv2HD16tE7/j3hiHxT12muvkZeXxwsvvFDl7/oSnU6HyWQqMd1gMDB+/HgATpw4UeFyfPk866vcdezKsmDBAgCuvvrqai9DlOSu4+Yr9Xp94o5jl5+fz4YNG2jatCk333yzy7xJkyYRHR3Nhg0bnMdX1ExiYiIAI0eOLDFv9OjRgPxOvE1eXh4ff/wxkZGRPPPMM+j1+hKfqcw1hePa76GHHnL53Y4aNYrBgwezYcMGTp065b6Cixpx13G/8847S7REVxTFeY/w999/u6fAwkWVgl3nz58HoE2bNiXmOaZt2bKl0st77733OH36NK+99hqKolSlKB7lrv2wZMkSACZOnMjp06f5/vvvmTNnDn/++SfZ2dluLLH7uWsfREVFAbB27VqX6WazmY0bN+Lv70/fvn1rWNq6c/z4cZKTk+nfvz+BgYEu8wIDA+nfvz8nT57k9OnTFS7LkavGcXNQlGNaRflsPMWd+6E8jhwk3hiwqI19sGrVKhYtWsRzzz1HeHi4u4vsE+x2O+vXrwcKzx/l8eXzbH1T1WNXmjNnzji77TpuCEXtqupxq2/1ui+ryrFLS0vDarXSunXrUq/Jq3OdX585Hup+9tlnfPvtt+zZs6dK3+/SpQsA69atKzFvzZo1KIrCkCFD3FJW4R4bNmwgPT2dcePGYbfbWbZsGXPmzOH777+v0gOcrVu3Oq8Di7v44osB772+b4jcddzL4riHKS2IJmquSneIYWFhgPY0onhSaMcTiuPHj1dqWX///Tdff/01Tz31lM/1/3fXfjhw4ACgJax78803MZvNznlNmjTh/fff99qKzl374Oqrr2bx4sV89dVXHDhwgN69e2OxWFi7di05OTnMnDnTp/KxOE56ZfW1b9++PRs2bOD48eMVJjJ07L927dqVmOeY5o6TbG1w534oy969ezly5Ai9evXyyqSO7t4HqampPPfcc4wbN46pU6e6s6hezWw2M3v2bFRVJS0tjc2bN3Ps2DGmTZtWqUEafPk86+tqeuxKs3DhQux2O1deeaVXBrnrg5oet/pWr/uSmhy7Ro0aodfrOXXqFKqqlgh4VfU6v747d+4cTz/9tMu0Xr168d5771Xqvmb06NGMGzeO5cuXc8UVV7jk7EpMTOSVV16hR48etVJ2UT2O6wmdTsdll13m8lvQ6XTceuutPPnkk+UuIycnh3PnzhEVFVVqcMPbr+8bIncc9/IsXLgQ0HJ6Cfer0pXiyJEj+eOPP5gzZw5Dhw51JlZOTU3lq6++ArTEpBXJycnh6aefpm/fviWaSvsCd+2HCxcuAFq3pBkzZnDTTTdhMpn4448/eOutt7jvvvtYsmQJzZs3r72NqSZ37QN/f3+++uorXnzxRRYtWsT27dsBLbp900030a9fv9rbiFqQmZkJQHBwcKnzHdOzsrIqXJbjM6WNxuNYjmN93sad+6Gs5T/55JPodDoef/zx6hWylrl7H7z00ktYLBZefPFFt5TPV1gsFj766CPn34qiMGPGDP79739X6vu+fJ71dTU9dsWpqursHi9dGGtPTY9bfavXfUlNjl1AQAADBw5k69atfPfdd0yfPt05b9myZcTGxgLee91Rl6ZNm8aAAQOIiooiMDCQ48eP8+WXX/Lrr79y66238ttvv5VZ9zsoisKsWbN47733+OKLL5z7F+DKK69k2LBhtb0Zoooc1xP/+9//6N69O/Pnz6dTp07Exsby3HPP8d///pfIyMhyU/NU9tpQfmfewx3HvSyxsbF8/PHHhIeHc/vtt7u76IIqBrumTp3Kzz//zNatW7nsssu4+OKLsVgsrFy50tmlpjKj67z11lskJydXeiQtb+Ou/aAWDIQ5evRoHnvsMef0m2++mTNnzvDFF1+wYMGCEvl+vIG79kFKSgr33nsvKSkpzJkzhwEDBpCbm8vKlSt56623WLNmDT///HOFFw2i4cjLy+O+++7j2LFjPPLIIw2iVc6SJUv4888/eeutt+rdqIsVCQoK4tChQ9jtdpKTk1m1ahUzZ85k9+7dfP755xWeG3z5POvranrsituyZQuJiYkMHjy41Bavwj1qetykXvecmh67//u//+OGG27g5ZdfZtWqVXTt2pWEhARWrlxJ165dOXTokE+lHakt999/v8vf0dHRvP3224A2ivb8+fP517/+Ve4ycnNzefTRR9m7dy/vvfees+Xd5s2bee2111i3bh0//fRTqelChGc4rieMRiMff/yxs4XqwIED+eCDD7j88sv58ssvfSoPtahYbR33kydPcuedd2Kz2Xjvvfdo0qSJ28suqpizy2Aw8MUXX/DAAw+gKAo//vgjy5cvZ+zYsXz44YcAFeaR2bp1Kz/88AMPPfQQHTp0qH7JPcgd+wEKo/eXXHJJiXmOafv373djyd3HXfvg9ddfZ9euXXz44YeMGjWK4OBgmjVrxvXXX8/DDz/MiRMn+Oabb2p7c9zG0QqrrNY6jumVucgv7+lOea2+vIE790NR+fn53HvvvWzdupW77rqLu+++u2YFrUXu2gdpaWm89NJLjB49miuuuMKtZfQlOp2Oli1bcuONN/Lyyy+zc+dOPv300wq/58vn2fqiuseuOElMX7eqe9zqW73ui6p77Lp168aCBQuYNGkSMTExfP3118THx/Pyyy9z+eWXA5W7tmuorrvuOgB27txZ4Wc/++wzVq1axcsvv8zkyZMJCwsjLCyMyZMn89JLL3HhwgU+++yz2i6yqALH9UTPnj1LdMWOiooiMjKShISEcnu2VPba0Fuv7xsidxz34k6ePMk///lPUlNT+fDDD0sdQEm4R5UTXphMJu6///4STzW2bt0KaP8RyuNopvv22287n4IUFR8fT9euXQkJCXE2ffdGNd0PAB06dCA1NbXUfEOOafn5+W4obe1wxz5Yv349oaGhdOvWrcQ8R4udok27vZ2jtUFZOS0c08vK41RU+/bt2b9/PydOnHDmSHNw9OX31tYN7twPDnl5edx7771s3LiR22+/nUcffbSGpaxd7toHp0+fJi0tjTVr1tC1a9dSP+MYsOCXX34hOjq6WuX1JVUZoMHXz7P1TXUH10hPT2f58uU0atSIiRMn1kbRRDmqctzqW73u66r6m+vUqRPvv/9+ielPPfUUULlru4bKca2Wk5NT4WcdAweU1jrdceMbExPjxtKJmurYsSNQdiDKMT0vL6/MXLKBgYE0a9aMxMREbDZbibxd3n593xC547gX5Qh0nTt3jvfff58xY8a4r7CiBLdld128eDEAkydPLvdzUVFRZT6VXbBgASEhIUyYMIGAgAB3Fa1OVXY/gFaZ7dy5k6NHj3LppZe6zDt69CgAERER7i9kLavKPjCbzc5/xYfNTk1NBQpH3PMF7du3p3nz5uzcuZOcnByXUfhycnLYuXMnbdq0qVRC8kGDBvH777+zYcOGEiNXbdiwAcCZ0NTbuHM/gGuga8aMGV6bp6sod+2D0NDQMs+Za9eu5dy5c0ydOhV/f39CQ0PduQleKzk5GajcKJz19Tzrq6py7Ir67bffyM/P5+qrr3bmiBR1pyrHrb7V676uur+5orKysli9ejWhoaGSRLkce/fuBSpXp1gsFkD7TRRv4Z2SkgJQ4vcjPMsRmDx27FiJeRaLhYSEBAIDAyvsjjZ48GD++OMPdu7cyaBBg1zmOYKgxacLz3HXcQfXQNfMmTMZN26c28srXFU5YVZpzS6XLl3KwoUL6dWrl8vNREpKCnFxcc6TNsCwYcN47bXXSv0H0LRpU1577TWeffbZ6mxPnanpfgAtwaXJZOLbb7/l7NmzLsuePXs2AJMmTaqlLag5d+yD/v37Y7Va+eSTT1ym5+fnO6f5UtNORVG45ppryMnJKbFNn3zyCTk5OVx77bUu03Nzc4mLi+PUqVMu0ydNmkRISAjffvstZ86ccU4/c+YM3377LWFhYV57knTnfnB0Xdy4cSP/+te/ajTiSV1y1z5o1apVmedMR1fwp556itdee63aI1t6o6NHj5Kbm1tiem5uLm+88QYAo0aNck6vr+dZX+SuY1eUdGGsfe46bvWtXvcF7jp2eXl5WK1Wl2lms5lnnnmGtLQ07rvvvgYfbI6Liyt1X8fFxfGf//wHgMsuu8w5PTMzk7i4OGfQ0cExUMNHH32E3W53TrfZbM50IA0hJ6kvadu2LSNGjODEiRPMnz/fZd6cOXPIyMhg3LhxzsByWb8zx7XfBx984DJC9Nq1a9m2bRsjRoyQh3BexF3H3RHoSk5O5r333mP8+PF1tg0NmaI6sq5V0qRJk2jVqhUdO3bEz8+PvXv3sm3bNiIjI/nqq69cfpyzZs3io48+4v777+eBBx6ocNldu3alQ4cOLF26tOpbUsfctR+++eYbXn31VUJDQxk/fjwmk4k1a9aQlJTEddddx8svv1zXm1Zp7tgHMTExTJ8+nZycHPr06UO/fv3Iy8tj/fr1JCUl0a9fP77++muPP92aP38+O3bsAODw4cMcOHCA/v37O5sZDxgwgGuuuQbQWu3ccMMNHDx4kBEjRtC9e3diYmLYsGEDvXr14ttvv8Xf39+57K1bt/LPf/6TwYMHl8hj8uuvv/LEE0/QpEkTZ0u5JUuWkJqaysyZM+v8Jt0T++Gpp55i0aJFNGvWzJkPo7grr7yyzpK4eur/Qmluvvlmtm3bxoYNG+pd4vpZs2bx5ZdfMmDAACIiIggODubs2bOsW7eOtLQ0Bg4cyNy5c537r76eZ32RO48daDnVrrrqKnr06OEcjVG4n7uOm6/U6/WJu47d9u3beeCBBxg2bBitWrUiKyuLtWvXcurUKa699lpefvnlBp+g3rGvBw0aROvWrQkICOD48eOsW7cOi8XCXXfd5ZJm4eeff+bpp5/myiuv5M0333ROd+zTc+fO0aVLF2cAePPmzRw9epT27dvz008/0bhx4zrfRlG2hIQErr/+ei5cuMDo0aPp2LEjMTExbNmyhYiICH788Ufn9Vh5dduzzz7L/Pnz6dKlC6NGjeLcuXMsWbKEoKAgfvjhB5/Na11fueO4X3LJJSQlJdG3b19n9/LiKhMvEVVT5TbNkydPZtmyZezevRur1UqbNm245557uP322xvUyDru2g8333wzERERzJ07lz/++AObzUbnzp255557nDfM3sod+6B79+78/PPPzJ49m61btzJv3jz0ej3t2rXjoYceYsaMGV5xQbxjxw4WLVrkMm3nzp0uSUgdxyswMJBvv/2WWbNmsWzZMrZu3UqzZs2YMWMG9913n0twoyKXX345YWFhzJ4923mT17NnT+655x6PDEvtif2QlJQEwLlz51yGVC9q8ODBdRbs8tT/hYZm9OjRJCcns2vXLnbv3k1OTg7BwcF07dqVKVOmcNVVV1W6W44vn2d9kTuPHUirrrriruPmK/V6feKuY9e6dWsGDx7Mjh07OH/+PAEBAXTv3p2nnnqKCRMm1MGWeL8hQ4YQFxdHbGws27dvJy8vj7CwMEaOHMmNN95Y5k1sca1bt2bhwoXMmTOH9evX88MPP6AoChEREdx2223cddddEujyQm3btmXhwoV8+OGHrF+/no0bN9K0aVOmT5/OfffdV+kBHF5++WWioqL46aef+PrrrwkMDGT8+PE88sgjtG3btpa3QlSVO467435m9+7d7N69u9TPSLDL/arcsksIIYQQQgghhBBCCG9V5ZxdQgghhBBCCCGEEEJ4Kwl2CSGEEEIIIYQQQoh6Q4JdQgghhBBCCCGEEKLekGCXEEIIIYQQQgghhKg3JNglhBBCCCGEEEIIIeoNCXYJIYQQQgghhBBCiHpDgl1CCCGEEEIIIYQQot6QYJcQQgghhBBCCCGEqDck2CWEEEIIIYQQQggh6g0JdgkhhBBCCCGEEEKIekOCXUIIIYQQQgghhBCi3pBglxBCCCGEEEIIIYSoN/4fcEnfkO7BDrsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "earth_posterior_2 = -2 * planet_fit_with_prior.posterior[\"I(Time ** 2):Planet\"].sel({\"I(Time ** 2):Planet_dim\": \"Earth\"})\n", + "mars_posterior_2 = -2 * planet_fit_with_prior.posterior[\"I(Time ** 2):Planet\"].sel({\"I(Time ** 2):Planet_dim\": \"Mars\"})\n", + "planetx_posterior_2 = -2 * planet_fit_with_prior.posterior[\"I(Time ** 2):Planet\"].sel({\"I(Time ** 2):Planet_dim\": \"PlanetX\"})\n", + "\n", + "fig, axs = plt.subplots(2, 3, figsize=(12, 6), sharex='col')\n", + "az.plot_posterior(earth_posterior, ref_val=9.81, ax=axs[0,0])\n", + "axs[0,0].set_title(\"Earth $g$ - No Prior\")\n", + "az.plot_posterior(mars_posterior, ref_val=3.72, ax=axs[0,1])\n", + "axs[0,1].set_title(\"Mars $g$ - No Prior\")\n", + "az.plot_posterior(planetx_posterior, ref_val=6.0, ax=axs[0,2])\n", + "axs[0,2].set_title(\"PlanetX $g$ - No Prior\")\n", + "\n", + "az.plot_posterior(earth_posterior_2, ref_val=9.81, ax=axs[1,0])\n", + "axs[1,0].set_title(\"Earth $g$ - Priors Used\")\n", + "az.plot_posterior(mars_posterior_2, ref_val=3.72, ax=axs[1,1])\n", + "axs[1,1].set_title(\"Mars $g$ - Priors Used\")\n", + "az.plot_posterior(planetx_posterior_2, ref_val=6.0, ax=axs[1,2])\n", + "axs[1,2].set_title(\"PlanetX $g$ - Priors Used\");" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Adding the prior gives smaller uncertainties for Earth and Mars by design, however, we can see the estimate for PlanetX has also considerably improved by injecting our knowledge into the model." + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The watermark extension is already loaded. To reload it, use:\n", + " %reload_ext watermark\n", + "Last updated: Fri Apr 26 2024\n", + "\n", + "Python implementation: CPython\n", + "Python version : 3.12.2\n", + "IPython version : 8.22.2\n", + "\n", + "numpy : 1.26.4\n", + "pandas : 2.2.1\n", + "matplotlib: 3.8.3\n", + "bambi : 0.13.1.dev30+g7fd71d36\n", + "arviz : 0.17.1\n", + "\n", + "Watermark: 2.4.3\n", + "\n" + ] + } + ], + "source": [ + "%load_ext watermark\n", + "%watermark -n -u -v -iv -w" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.2" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/docs/notebooks/thumbnails/orthogonal_polynomial_reg.png b/docs/notebooks/thumbnails/orthogonal_polynomial_reg.png new file mode 100644 index 0000000000000000000000000000000000000000..da7aa577442ea672eb4d370ceb79ea1582b69afc GIT binary patch literal 48523 zcma%jcQ}^)|Fl|a$VfKUmHZGHST+j}NYC82p{mMN-Q})!y92-N?xd!@|z~xf!doiIbU`owKFA%O+;M zD7=UcdC?;$Gb0x(d%Ig|R?p2a+^o!Qaq--? zC>#CDA1;lB-?_umPxguhH|$gT6QZ{mDg#f%ta7_f&!?tYZi`>cA>Q@XA2wj-Ui|qd zCg$hjA6L?54uW7}iLgn5vW&~O;7@}%c*3`XiRA;aQsKvR;ujThZ$FN?^@2W_I8)|L z!!-%qzI*XhRTvV3?}t}g=AEW@k2nZ0N?#41(8q-Mp?M?^Ni3U1%M ziy7A`DJMtJ971UFyVwW|2Z!HfJD50508hBja&B&}H~T5MUG+L&fd+FDzrFc%)64iS z^TO&4AvJZKrI*BubT8i2wNU-tobvA-()Z=f&>( z4<017(fZf?iq;?2D9~yw)UWP!9k1^)E+Hl%5pR1bQ1uP3aX^Np& zs40Y87&P+tYc`Lznu!E`4mr3jy6@e)_mM`{v!lv&_4gOE%jFYZ%%642Q02SfsC!$F zv*z}_MoKM+w6(SMyw}TktEN*v#KbhO7S(r0i=97_l)OYjLJ}`W=j7ysVL6aPIFPHD ztC%KAu9h=w=$}&SeX#SBy9cgF*$llhls{5#ZgUy;!15Epqzw0b| z6>sv3>U1s^y^xuDCDq13aD_(rM~&z1QePI%*~!5HzjLahj0~Rt=`5{`y!`x5C;Q^x zF?)JGJ~ByV24-fH`Ht9{-R=jb78bkkFb2x)C#m9W4mQSZN5A65b-I?sxwThsx89)S zHYdQaD^L2YTfPIo&uu>;T;;OdbX`+VncX*UdwaX)a3h4rep1n>_Pp7Isn2$4D2&MH)H>~#)KHD3Bt)z+HIf*_$z{0}X>R>L~+Nj=q z_x`=w^XH%Q@bU38wM)&<{oB5Of0LNlL7(Q+lp~)+!DFdZidDqPA2OG~;2J_BE=b~=# z?;I_rmAY>lI5|6CupB~NpKXmY8T_QIE*i4}yT8Q#}H&(JS=kD$+u=QFLWFW5BRS1YYwaad;Xuf85#3Bp1od7^G}5b zGEnVqPbz5yC+BC%gE;ss^X}wVBetRzBQvwJ%aiqDCkLArtG_-IP;!0jKd1FSefuc% z3a87G(rCFoQNwg|sOQWp`a^g+NWp^2BQfmC#mz0~G>4mzkU&oDA(|Hb?%mZI1NN>Y z{vws?&W?_mF8)bVD9K-KN8Z^KR${~6(9xmVtl7PSbLHmLK|NZeE0Nb^xKRI(>##o7 zrAvKKb&!41IY0Be#AI!vHtEZkFNSM(c?g2k^EI}=UsEKertXT>G?4M|5P+*)9I;57 z|NiP4xoeb#?l)UXsC_Q$qp`icN*x^?$nGifKVx2AUKT!_3aYQ52pn5CANgWd1I6O2 z^-%cRyV5fb0t`${GgFO0KIpT9s~)b8Vf84~)tASs`Gc?tjp5n}Ztz9^T_4*$UM<=k zcc0{ZKFZS?O}n|7mB4RLW9Waz+Z;+{ady0aKI^hF_)66GIQbxHA08I$j(hav_gDd)%~sF+PAz#Yenc=MH% zlr-dxcEl)(w!gdowBqdV*sI9M)0R~Ve!H8Dc^{~=Xg0+i-k<;_046X zw3G+#PIEs<=oFHF=(~^4`_~q(l9H0@4a)L{7%3STD8K?daNoEmESwBmSo65DN{>xN zMdf#e_0QQQqJ?*GAB7NzE0f}1zMKGe0H0Ezf>{f{`|}nXTVX#rvfpX^PaUDf z^}zBj_hvK;P8w=xv>xxT%E-yhZMV_ps^%)3`$Bn%jEpqYmr@pi_MM)Yl|?D)BOrEu zc=s|H%Pk(B_i##`7E|209B01E-u{rB{PU~T00%)(f4>UaEv{2N>jrEDN(U5rF^(a8 zCT(DG+hfZ^IQDNEdvEum|M{Z-sS!?Zov-)kx93l-t(hn(DHjQAVC9IfU2C4G^%itn zqj>e|6-KgvW1xNAQONJ#T5!HL{m+)IZb(W>-W2mohK`YGMTJ5cIH2dCAVv)=??w0j zDYGG;pP&C3&l$v~U!{gJvoJH;ZYB~VzJ9%Bf7o!7=s`eO7;eZF>W`)A{ z>)Scl*`wFiY%?=6mDI1x4_NkPws>}avl^h=+1-Wv_Q+n?h7AqB(guzHM@L6h`s!x| zIP5JgEo&pCp))ha=uPR}g)Z1|w&PX%WzwJK+<16+ z^;MCXUROOb8}~QHli*f&;WW?g9vz--`uD&&%ICRsK5Cviz(2^{{6#3l=&-rZmQT~l zSh%`qQ3AH<=l*(i_4_O=1TpQ8jf|!}CpR4gC}3%xeqb>g`}X|2LATnC6|O7t27jSS z)K~9=jlHG5prL$C=cV4;I^S$%BqT1bkCtUYt0L!ljQ;5vksHLw$@$j2D^dMO@H#1} z!|9=8ctnIJ9L9W~J_ZJchGmy`F)@#oe2M@|l`R;b{7ig6PW=TiSxCouuRDbyJ!I%P@UNQBw zqV~6S=uCqWHP8@YpAu^ z@^O1?JtJe)`QDxKfD*7BS;R|to*4|XvFzBaI$xhb=SS|!cI;ae9N;g|WNu!;5%JnX z+7jR@-oayLS ztDqL+4E<_1;ghve+mSCX;azuN6P9}ITT488R0%jO9(FwY-)VIt$IHZ0I5jXT%J8HYu@l*=kStL4vUC@)uZ{CljF2CCCft<^I^U|XW)AaL^&N;X#^<%z7UF`)bRv9XTu z(G$K0`e+oB#p?i(v1O9#p`qfA&d&V7HFb4Kb#-AHBGI&>{ z^3vz8hhxX2rS;&@`ZPcf@7`M;I69d`E7;nyM3AxGVP*aNt0(Twn+8~mPoF+beJ-Ea z;nz)F-#db`O(Ed$EGpXnSjzuzS1DU?XehVo4`M)C0PJbuAZG#e1sHUc`~q$lmyqy2 zAKwSN@hZpJDE|IT$;*D{M;34n*((UbGl?lF+X1S-iinuaiWa>iCI(1>i76a74!ZaR zKGzyee)Xz~RdGa@`CaHL6%_*5L^MBtyuDkZ^BLCc+?cQeP~az2$7q?&wpVTJU*D7U za`nP(m);MsUTJBD%g)Y1DIc@5)ddyI&FKKw{`#yt>mb09Ajc3M*fwhf0E`!vk(Ogc z1rX`eCx)xnu2G8l31i}1xhE!;2LBm66v$iv3KWF&a)6@d%l+AMi9D|WSzm*a9!bd! z<-g`=A!+eBRh3eBCWp;07Py$UZ_md()=Jub*ZYe>T_?SM{VnXCKb6j&+b!fWPo6wG z-dm1c=t)roUWr0|0W1fP#8D^(w%KsUkA_kJweT*|u&0*(!pAW(G2H?F$Xtb5qk|`$ip}#Npv=G^L0ak7|zG_CZ7xC3lEq1lcyM$`{yQ zhPF*r6yoCIKNGk^7gN1~K)5*!>${WOxDhd8y8s=iLXQo)Tq^*ru5|Grwx!*oRKnZdGZeb(^$yVicVJU3QI-k!Qmj6_81NFHjEPR^TnPEl6KkjmE()WNG8rSqMUHkitjChjD6)UKG1~xYH zzD!Bstp-e3s;e|KuK~F6^OMJQw!k$n!vpgEyEZ+fY1lID&|9F*t){+DWQkPMik%K- z{}RCw_8(5img%);|nmVe>ycu3vIdutE=#-PzfY1(j&A zKq2V^R+poY(g8r(-!b)5g-5tD`8ulv?(OgQrH;2iLgT@^>H&XE#QOg$X+LC{%RW|J zvRr-FV%)gyHavFp*epEr8CQa}?-947k%D4xVNbn?azeZ5j@X^N3@w%qRIDp(FEpS2 zv2(A*elucQ_~l*oC$U`3A8|eDMkBU-1kDZePP{J4i3M=;@S@n4-&SMVO;O5IGBM_N z)yF!Yzq(AH_JTNSb@So>OWNZZ6=w#eW^i!OTDlz?vbvXWC}>M$Wba~QB>}o8<^T+U zJyd`$xnlvwYbiCe-~*}Q`54d>mUyb@Qgn20F}i5u$gwttM;+9wC3n=rL#q< z=K>|VKKiC$6Tko10lM0l`lb- zGv-TLUA*`bR6r8w-mmu(1Ne`cyzk{k7iiK;1z; zSpb@QkA>wY+GQFDFoGue>?eLg4U>mX+y3LnGlXkGZ>^n(0q%V`=7u9fbZ|xh^p02mJ!9x2X2uu^ospi z(nJ6P&rSd)KFZhlEZ{JO;pyp#fwUcv1%PTS67fc~NW`(}hlPbb0}YR>Q62X-Ri2c- zIw&=^zl&dh&O#=@J5~qfS$Ka?mB)VKCJ3+!3Rj>-gIXoaz0FE?83+f`D{5+lf!qjy zPJlx7qtx?d7hk=8O?U5JFcg*!6%`3wiCw6d<3>9s?tM|JVyMXD-X`O%SsVJc20jv5?JCXK)c z)Gcm=S~yvjUDovh=-fVR1E_FNy!X)$K-mSnORKK#x%#9jZv4)#qPWsT&A*xA>~|4MQ(Fnp3SVWx7WHE@Nxc;z902=h|P&}MO1 zu2?bLw4Ts`<3=FbIc3k3L1_!I3WaGjHY0~f2Ts!r(ApvIEd_}(|(QPCQNQ%*Hp&?&c*hvhLdGh6#p z8G{HZL+YBGK(#R5y?ck0Ze*40Yxl_jJbnE1DGbEStF*K|Thq;FS^U**>mBeX?MkQn zaJ*fXdS5^%c?*h1PpSw2hEg6Y{M+A)=D6?l%KIvdhy^-IiB((;w4)9h*5^MMfeHbl z{n})G8X}U1hvTau%s3LTJ15AP=p{kurWKB}&<7BF1#})5IFK;&j`xhv@{Xge%Eu}J z0>R@p0a|;yD28sdD<3E_6tk;4T3~t_k1U^q=y;%RHNH*2^_DWKy=xQ;sT9BZ)I7#i zG>H^7BSU=HPKp3Qf=0eu6qUz-56~G7jxC>V?69Vqnv#Y_NZYKqy1Fgj4Y<-F(fj2! zHOZin_=u+Y^Q4a3p_-}Wo7aQ={&_?Z=7(&y1z1>MU5;M6Gd6Ex%|Z7q}RyLC%Fu$07w3n%_x z_a>fEPo#~pQKRtro|2$uB!-_?2#X)?9eayf%0HQcr*NpwvY?{2DYZ8<+_x{+J5xMH zH_b`ZJdZa$Sj9xBn8*VKTaTxCEB%NsGwzgdkDvi#l5=mT(z1>>{_AC3rvf$^^on>Z%YE*PEvyhGS&Hi&{7Kp-a{6Le4sKjwAIC3 zUKh@8ng4xty_FYCmLVKY=6ism0Z!mVZv#bS{%9OHLZ6FuFlNEKhUTRrGKQQ=?E%#?Ma_ggUtdu9p`uvBA1q zJ^2C#;)F-72I+u+ZHE4qXC3B4ZlZ>Hn~34ziq$7k)q55KpzhK7Y+ZmdH8V3K8x0Kh z(^T28!7SkM2N@X|f4o*dgLJgj|CAm2to@W*^;yyWkq=_SfW3ANw7gHsSq_zY$PeDX zClyXz8U6N>c&5C0woGYZBV0P+g>-^=LiII+qRNbj{rodJYY(_ZpS?b5&{3RQu4^J( zOZEih{iYDY8x+8lh=jK=plt$lFz`Dv`&DG9Snqd6!SM_OBZ=?1F<3JQSOrIl0#r9C zDQrctGagVbXn=6urK8Ka&8CWbd!;M;+_pNRZ^_03fa?D0a15AHA7x^2FX#VhUHgwQ z2saF<k;0ti` zhd!bzs;aNT!fxHZozd?Ir5P6=-x#XwzMC)XUTeiHyM7kHR?ycO!kb_%o<4ct!-YD);ipiw0r49beuUF?5kU>*FEJAJUmW*GW?=Gj}bAG7h#8_+?+7kMYqd zrpf_jEGrstrH0;`W2NrL@DC{Wx>D;8gLpv^qP&h{!IhvyI-eY*;Uh|GP;@YCs6_}; z0OiAh05wDiIwGKo&t#woxt;b1v!91Bt!Fs>%s00>t^1@(h)p`By{E@wqQ=u@<4*!} zVZ}@`xh+=$M^YCsF^!{#F8XcrP9#^a2DY0vnU`jun4q(%zn*ofgbS!1H(2-d5jCtu z_qEe{Huv$!*SY9jQk6lT zR6NKSz;Rf0zZIliCY1=&`N)6|+>Zjgs*vBsk?Ju3H{hc15cSMX0IU8+ByK}rUPSQ) zxea)3G0i6NHhrglRWSuV}ii4V)1-^7cUg8u8)F8L)fy!-A z1e@HC8Z)92S6(D?cvmEG^x{tu2k*?@eW@E4$g}$lo&z(C7Cp9%UGEV?3xo1(2I`H= z+HaD8R1t6FrbUnDt^o`U10Rl_KJ?{fa^#0zdrQ;)Xs9gORW6JmzrhZU1TpZ+O@Riu za!J^t`H>TFr%w}Fk|TQd?_4h|OEw_Y8G2WYB^(l$y5yBbQ{XR7^?XV{473a`yFUVC zELsid^G!5}RFB-;_)sV=&z(8hr*Fz^hF=2(h=$Yq9vov5N=kUdSAb^zacrXo>x*|P z77kgLRU*-NOyKYtwT0*f@dN6nRh@iS*OJNzz(di3ec1gFH}ZGhU-)tx6kqu3THef z+=w)_tgV5=squ%nauWwZmUxHeBxzQjo)tAS9Q&_y7Wx3;GhkOtbkj2p@DKv+g?D&F zo-G5=nj+*y=e+e&rrx`sbmUcwmxQlB6+EGIr+ezpvue0?JmarEbqO1L#;KCZ<-NI* zl2TL-9ZyQD?(JYpW1p%^Lp%iPHU^%d#*c^{W91ve`ig$hcmazg zZ8UdQJwR5K&d_2U5tSQ z!lt4Of*iu69xD^Dd{7}Up|?BGjQ`5_+cwCtI;+n$J0n7~{rv1Cf!BuY2EQG+2Vj?c z2h9?cSwa;WL^!Z~{ByyFiOC=%(Z)k}@^* z?EJ7zY$sIgG()`e{w{R?%(qIUmwxLqu3`Apv2=7!wA$Jo=5#eRNlf^oeL=gB1w#gG z;+ggG$py$v*ezws5CVXrx-387P+gbrmeyJJ_MtQ*jiQ4{+)6zNjoQV}E+DojpjDUU z{+H4;p25)9PYt#BS^iz?Jr{lH0aRL1j#VFpRP%U0@Y4=Nah!=@4~vYPTS&4u@Bb(R zKt7|f!-em^ztU#B9D!<0U)8o)>np~QYn;tP=hA}CXyCoh3${!1t84TC!e?L6r%ol> z6y^;x;_%-7w*p~3abeAz5#ixITONLohZ2p-$HPztp>3-5&0LV8iRZSsf&d99w9wgi zA#QVuA-g4$Wcz51VkK7V`FIJ=oC$@SPu(Z4qVe_d>NrIEgf6WL<|jy* zo`=(+RzoQD+7Gi52;_ZyH*1y7MFc<0`pvHWL`?$d*w6yN;6#3H%&r;^;>4}_JjQ>@ z53h=WK{sfo@myw5jIUn3+646y5nw}%cwDx-pDs)T_!TGuqP`7j4od#=l)oD5p*+x8OuDdoMkM_(hvZGY6HqU?F4`c0uVxIx^xV!;Qh4XTd=w zR7oAZgRBkVlK~%w4u$Y=^lQZ)49P}Q>*!`bu_|^v{i4ayK{&C9O)e-X2*?9zcFt|o z?s`u7IeG;DHpN3!qO{|3L`Cg`voYAZq(8An(+-)1nZ!*yEasEB9T2}0ISmK>R$UREr4Vb zI89pZ>DC@vLtX0&a3N@ZW#o~+#z{bqogJW{KO_&5Et0orjiiM2!U-U`E4B5BObna(dyeqT`#4}ejSMljo71zGqU|>#z zW`_4E{;S8@uM&oP8N-d?`tZmRWvwNG9AW3+n)iS-_H!^#)dp=E_eRS5;FoI(R8S80 z4L#6eLB46`07v@{XaJCBNQL|z)Kt;5Xe1c)tnngLAkYCJiU6d%35*I#K3lD92fZ(* zc$dl9pqhb}1IoGuWJvyaZ`Oi_Th`YtP9mY_8b~|;4g&NeWn~inKMt7glfL|5W)$r^>sym%aTXkE6E<^z@r-~TcxFI3PREdt z4qOXFadMuIeFMlGhY%J3%pwPW9s%wEUkB0R8#oAPyq0c5eZ@)kdVB_(9qhxIMjYCE z3=Cn&U0ZbD1ayhGtDt`5siXoIM-*0l|0hpy!6@2y6ID*gvHHF41}1Me+F02Fn0ts3 zFnp>ihWbR*F$Q}&MvhRz>#YGrF~=T}10-GqfgZ?NA!Gz(7Q;RABY-b(tp@f(em{<{ zl9H-r{VJEzRaYi$nH>C`BYy*YPO!Gp0U#kM!MVjn=eZwwZxxYn1rn(Fplg=_{|^c5 z(1>_(7&T$}9WT>=v!C1$+X%nT{G+RD9#WH;pobxOEwB`^38}sxO#1ggyzIuxyO+fE zMpcCws~RrjD)dJD{^vfeucn# z9+<*SQJ?r9Kc2uvo}IaZ3Jm@Ngux(TmQz!6vwFN6oVBM9A7TLY*(GY@O^`!$dk~vS zp;AEBum4RPLohLK&Z-d9i&-$_+ZK08ATZSQ@^aGSYYQV(zEjIp-AMSN#*;fcJ9}-k zECP}jh|-AU2!O0WEeDEaT&nJOr+D0s9&Apq;ed2tfDZxB|IUz=(_X(^*~jiu}OJbF9S#Ud28R9{ESg zqzJn}p%8Y_tPRKx3I4&pG>04hYS|YEb^@pS#vh%uCxr~ML1IKjIm3fX{!e-2O~4WP z<1!!*Z@LY;2VSI?>M?_t>b1fM2Qe|{sCi8ew%YCyWKh)A&-gi`+f?U;Mbn5t(M;-E zWRdp$`~=Qsc;>13Vh0a)uD`_`x20CD{nxk|>sz^Kh3UcCoVr#Vp%ewgBtJju@khM+ z|5|wvC%&(5S`W2OI3|`FuD1&h50h%Mg#;$f><5z)pGeTGi2=3jzn6^o)Jd>2P8hnJhxjDNABf1RiUx(a=DqG$ zBgK?wZnL=AoNHmCGOPSv%V%PgD4BbHVPWTVw`X_4d-H+=*kS*ZCp9E!{uDDg{M78d zxjgp7srkiCx!bpIL+^liCook6amgp~DJv;W5q%j@r2u$XdAyQ;#*4_6yI|Bgto`Oh zwrrcQ%MvlrY=smdfb)2_*?h6XKgi@+aIzg}_(AeL6Zf!l-9z}Vkl-p*o;Ik! zfT$a%9XPOcfaAn}qoDm?RW zi%M*YMfc%L3mlqFBc?yPjBH7v(c@(_q9I0Gpn8D)N%RJkP$*33lX`ULHAP`@KwJ0L zx_d2cJb;2D02j&UU7;32Qq2DeG2927*vVd>tehovp%)qrk^|V8?*s=V9byg0%b|S! zix@x>5$y<4!cWjr4u|W{CE@JBgFp!D*RMS1d%0pMr7}SIFw{QB&wQC*lA4#qb7_`Q z9;pt-`P(pC=*QCV(y3BU7$Sj4q~x4^msz9WmY`sz!tp9qwN!O~c-!nWw3LO?9#In@ zmQd$R_>vH3)1)xzZk%4G-|;lHRQ@7zAZL4gnx3L;*gmK2SsqM+~cI_e+B39~uwdK~s@XsltPlkDIs6xbn z_#xOR&1VM>@)N+c0fevmZvDva57mr$TNTB(#m0NpLp}m)B70heKv>;*cBl5Kc)OUu zz9lW1=1!o6kuu%vuKwxs;nn>e@R7Cw8Ehk~2yX>v$pi4>4O2gT6Z{&fv5$-pbHDS5 z--O%n)%X{}ICt6*gFsY>F{k^z1}<#PmX=U`;Oy{trs_^Mn%CVR5!OSCK9shD7^L+g zQAEc-s7gi|5;$!mZP_sU-n;I5E^YJ2`zHKE&FlEsY;0RVZCfFPc(`ha2Aetu`okZ8 z^cm7W2t~K6OAwVYOebfRDg14~IL{@??Tj0AH8imigw=#M_>evhdD*~mI}0d5azINv z*{TcNE}!3kU{x@&YXe8a;y^$|k?)a@D0HwkXyk41v^WWZ>d*I!B5w-5gP#r?7$xB% z(5(VXFhv1T|B$$rfdLH$BriU?Z%%N{Pu)RO-tYJ6AY_Z=T>*k1=(^zrrYG<*tI4`r zxqImA$i2>7HKM=<*ouUDA>wyYexL$2b0tKa0q)o@&G14%4mjeY@XVkYDP;nJW`d9q zqd|qJd{EE9MnD2%=*K$tBCD+3<+t4e$ z4?u2&?0CH=1Wh2(f@DPVRCApm0yC^Ied*uC!(z6TLC1dVoPePOzrttjJO+)x=Xdc+ z&ado|Ign(4<_1uF0X#nX`}Z$3b5tznBtdk`E1TC(a{b?<-|fS1XFvKu>xL0Bo%y|t zrn-`!?>^ahMe#BYlIDQu2)LplfaoxQj<%prd(cn~wDVi)O(~~#mzG4SyD~GZT_4<% zM!wq~ar(bZ zo35mPEsk8bad$S|bo_JOj-WaH>!--CtT=~G=fmVfv^v+2g?FSeh>o>vYkn+bo{nn# z6drVIb?7nnxtQ8j!O2Izpy!L7ZefDh39uCOIj|!aAPsV#jt*P>`DwZFrI$0wDm$;q zRNm=^Y>2cGwFK169<7bN>mE_e9dJ$goMzvqx{(*dB^#52?3w%~sW(>G8PhSGTQ5ig zhD{{J6i4Uh=8!{U;JdF50wY8!EP$oT#dBn&${LizHP?I!wAVcULEpoceJelgM}>pb zxF;`W+x~rqJH<{dS{HQFV|$l~UvE56Ue*e~sLXm-N#1q$(mx;G`p2T`)=^;hZ>Npo z-6Nly!X9sOQ@z3=@N=ORqS6vUv9o-dh; z?NL^HnW2hf^hIL>O<+$VmG)Ld;Oj2O{g-HJ0@6{I_cl3(FWXV-d1ph|$a(!_20IWL zMu52qNU321*2t2IngPN876Zf5DNY3`#nkR0#-*-;)N$WsO&zuF)|N>X0~KYf>eBRJ z6D!L1acab-pHCfhN{1dFP-~sA_sjfR{C+8zL5Rp&F~88!^{U&yb5w?c6AGj) z48*-JAc`Sk2e9h|zUMl#xDPNpp6ack&n;ByWpL7W8%#&{pGVzKUumEk&s9}kXzI-m zd0*YM>z|>WkjeD8Jp9?9$fITcoLsT3o6|3Ho627QBj&7NeDj(1ttei@w=!=EPFIdcxq7die$6?++WgYLCh&C?mnLqw zUVlifDe>hqqA%*+G?MDYSn*bUY}o1D)~*)Tr;mc5QfVrwb0p};vzl3wqYE^UNeOz$6VdHLL&OlyCqDVkgJTYY~2 z+rt|s8PNdV+}Yorpzlf-HlkD<4DXgDson%!#hIk~uvkpV~LS zW=ty{e5N5>n0~nmuLzVX02z)D;{{HFple|DAP^54Ewe`khUfo`YA?vp9&|P^?31Cd zq`aj5jeJ3{lMoGAqy($OTl$ec{=!Ne>i(QW}sL}qVbEasS>v-~mc_Si>jn(&&-?T+0o7Vj@A zDen-4>lwbI*ttS8d~`Af)CUS4fXbhZ%Pv=mi5rmYB#gVPRvq$MJXBV|TP5>pcF%Vs z9$*URp#}darBkg!OasnLtc? z2*9!Ed<_F7_hK&1qk1@_ps-3pN&_qxM5{t_;(yn5S1*x)MgCN|L7FbRaP!Q_J#oxC z^3E{1z+h7E{z@p_v5zQZ{5_Vl<;D}&zV2r+Wl z%O&`WKIEP~pL|kSlTDkL?bLGbt2W2F7kvpjG-wIUPYg!KyQ-FJqb!HyJ!TZxqJ~4_ zOmX3t3j=}O^g+TMJ>ZT+VW5E{X1E8`SPu{m@UC1jha5|pffk%lYHR}-o;z4Xc@yxP zrBX9k@8|nMa_*bmc!%Nn4mosR2;JNR`N#~MsC^o@@SV=54o824Zje2nw$zczrqY~l zH~v;M8Bv=4wZpq93CDTN#AMk|o&KuO*IOATm#Yj%-ctIfMGo~<#EDf;Q5gX7hU8g8 z9#0Pph(Lk<Aj79>5O(cw2Vi$UvHFL5+zjq$N0v59XE;eSeF#N3|_#4LiO0+MP6TV>io zKnqg$(2>q{Xp_D4d>=o4{FzJ*Y_*t-F-Ob09G4`gTzp?D_B0#S-mLz0xrQ^=ZU?Bq zEHdW?@EAsk3Tt*`X?*vTt6=JBGicW-ntXeDpi}TzHK#tZntzj?gXax1{a&G(U5vKb z)Ng~2esSH6Dbi;rfp>4Z+~|KX^}~=x@>mzIY5-0$tVIK4e30!8a0fz5P=R6g>Ef-s zcY_cO1V%P=*bAWdku@tljBYH{3mSJ5#HJy=i{-)`vOP(RjPcmlY-2+>11t$dPqC|< zC)4?Ask~{Xp&pxJnC*CvHLKsv!ibT1^8DR-R+SN<@a(t3hn-hA|LmVW=3}31eZ7AY z7I}GgMVCESJ~~*nD_#D_B^(3D#lrZ=GuZeZ!Zg@dZazVupY@&Fx0*w!2GK)d)+c|z z34q0CE>Zw}$<}X$N=0Ef!UHnV9@8($!3P0_2WDlKz-b}tWLM0ogDf#1sEW>-bOx=9 za-W7w-=a`ApY{~~rAQD3`_u<%hR&$mMbfjf=se&8%5tbgUFoRMg4rJ>rH22>HlL;K z12YFM`TTRrqTCUs0$FWhlV)eRQJF4<=(bZ~l4$VM4~$4|V=Z;{I{nIs;f<4GS(rGE z))40N$2Rvq`!x!5+_6&6qjqAqzT!0;5OwcKu`y4>jMZbwu6!lZY^h5XS^#~K=(462^FE>3TI9D>l^j7cQ?5Cmt);ht`|*Ux?% zvpZ1_+Cu4;&G9@6rM}^RXI4oed-$+MDD=S0!LrA(iojNNS%ic&Fk!oiwLtffn*NIE zH40;kttj6oD-$YB8^YZ;JdngVDD&h#Q%g%rLWDISM?1je%tWqw0&@oNxvsURgkBTrC8d=2tKN>Qlv;xezvZbL$bGt}9(eBDL%4Ue$X|-8Lc|+` z8*V_7R60Gi$-e}FvrxSkWM*J@oyPrU;;g0Aagk+d5eD+u{EExQ0Mp+(}7Mbtc&#OTvSw8duKY}O}$DfQ;&Cpr8ox4+&a*0Fq> z=^|N@9)KIZ-|a-7x|m1*cbBF9#LFwyU|X$sSFIo{{L&@0$8YGca3N6hM#^hal)GNc zn5+r=$*l~()aX!Anl(SS1@4g)-%X2!UC(+$WEK;i_;r}J0Wl|RcoiAP-B)Y^@z@AP zhry@dhY2rkm@%GxZ~;qPfbrfV!t8F%JZJmwS+Pd%vhX;G?zcMKJBPxnOu-R4VUZoqJrki$)R6cW0ZPtc_>y&vjm9pcA~s8t>rJM&JRR9V}_;{1K~+!ot@etV7NK z31$CF+ZZ=BH^UU8EhiWF#~`dA<1enRyddNuF}kg-EwU`B06?s4U6MC-CP*{wZ&BmB~Ep#szzB!LSm9Gov4i0Q+mK{vEEn2_6X zJP;pnb+c!j3yQ1D$^6)g_UO*>{eG|{VJth?_%!^C187sbzRgc2_mFcN)4F+tLm4|Je^Ha!lGs371~BfLxSFXj`@()r`dn&CAI9;#Q-(PE4jdO!~Yy1fk!d_P1bX}s4s(N4HQ zjR7z|uQyzU6 zsu^gWUflvEn$D8WJ3mcgamtAa?kS~z}wrB|yQpY88}K1*bl?)*NEtE;Q@cwF0b z)~)j7mR-%6PwwvoIa7A&4(Vuk=XS{f~54#FWahiEerxsHq^fQe#%J!*R*h~R!P>-1PJ8-5}qGYx{> zZX9c1P7K5sKA=!c*4EbW%@OFQ4eM^IT3SzFbQQ)L;42*v-=V|=XMcYm3x}5FTnmoX z^XIHUw1wvDO`$MwsjK7hMcwb{XXN1GrYR>j;rH3&U#N)wNNfvbWn0kS8 zYU36ywY%(duuV5{THkZVJL7g<6Q{3zlHhu9@6IfdU9%~t!?_uytzn$Bw$XLbqVPV` zTYQ4yPwfS1?>XwusaYM6roqq(?3fPp*(911950yOMWQF}e;jexYql-|7B&O^m|{TQ zF}scQe&h=;%I(Hs42li<1M4UpAHbon@5w-IgDJ4n9y16ZD=UjzTcgk_bKuIoz4z+= z(+`L2jxf0lDI+O3j?lfRQ&pZ22fxnty!!;-FU;;X5s6JbN$D(^hW|uR!oWt;>OREI znjqoU3PUj?IdH%X*XKIRHBW-50}7XIbrPC?@p>!yvUaZSQBd?0(bT`&WvBf)RpLwG zJ*4D!@W(drZUMDljl@`)cW@kh14f#t@6t#qJpk!PAI!j+8Q_6@FMOxQA|yHHU{3Nj z5C!gI0v=Xjbeq`u3%DI~^Zwr62H;a?J)l^oz+?!7;wU+dv5Iuw9U;86@BUV^u^}lV8mhhFwX6ZWa?fe0OgJMYZj9k$pt)#yHO}p*~(hf%yKX zoIgHZS(WO!@ahvPr16#s#|_Jb&#D3=qtshaC!)hhB^x0z{`+?rM9%HXvl#GUL>)vh zR}TxKGM8l)$k{_y>=_JCUEpU$Z-t5>LMhmt@en=%yVeva+mA1iFimy)_6w-)1Em&< zXdC1UIyU_d9w6V$0LiIGjMj1DFaB<(4_UW0g62u zD)Jkek$tl=FjAWxCeQ5Nr?vP|+Uw$7`h#X${{EZE@I5RHKYv-9U5FS8=Kb+!Z1pH&5usht0WCehuY#&5+?)li35owGO7K z1y5BD9U?#e;NUR|=ObcKA5Xz!_Bh`AGMST}BFhhIyz@(WUk)f%V@@F7<^lW!KAnz^ zE(9(Grqf#y#|A8Z5Q;Lsetj?Kyx=0`e+FLU*dL7#X2vEaW2C|NWnk#2L{eN=oLGTf zx>NB8$y`|W-2vmDlFJkqnXEx}q5rZ(DXQP=7we?>`RkyUYBo$OBU|fNu%lMw7bJZx zX<`|rUdap-Wa(P77}nKNS!5+e?y6GyEWf&a2^h7orU!Q70UouYQD+3=Q*C?RW?y48qVb8ij(n z^49=aUH}ycU>2;pa{nlH&W!vLmO@-}SIDLthp8TZ$ikrhRjik~6vBo4XHt6)_w(Wl zq(~*NHf|8~Zv>Eo8w@~x5$z7PGGhJ1@F6v{8WdLZq?I(b0+F*iD&%@lNZwt%eCNcn_z9Mn4*Gnno&Q zn;K?|h2DRtrpGXwdqs+~BlAzUcFy<(c6$0;`JtEcbl0q`tlEYc#fgK>zpxBUjlWWS z5RWH0JpJ%R+=1cQ>-h+=>=JP^n9xVQ9)p4KZO!2n&L`_#-%9L>vqk(&<45hu?^o)v ztV$>;Me~TdrO2zx$z~kAUqup{90u2Yr;`qU=1ykq-rx;fpMeoiE@7bH$lM9?5TL;A z;JGRgV@*3GVpo^yvz)qLXRfzxc*eoux}rt{B&~{$Zg+UHev`vo9J0iDo2C5OpNH8oQ3l;(f~Hdyk&;mhn^D!PTcn2z~! zNY8x;Z8G0a)e-Is5!j#y_FlM^RYdPLd%x%jJ!<{PaXfQ=zDEBJYf+K1AzfKSw}^%< znOmp^qoB(?OS8xTie+6EKPzsNAk2qEcyCmO!jwE{3d+AW_TClF?P~7e;*d2rK)< zrFQwjYw=ordQUP#L90B&_$eu0A@(Oh-|<4qaJ6rQG!5Re9H7%>U*+ zm86RG`wBJ2!?Fic>%U8~hRpCF?z6Mw1QwwLd>2vu@ler!*0ROLq1xx>Z^K9WQP;Es zi{o!a^3m=t*0+LUb@^dYYHgSWDPNx1#e?D}4~*Wr=`b7LxtQWm;f7O#L*o$ugR22; z_hp()xgbB(2*pRo)Pw{}+%l?j`L4e-Ued3P^tzIZX*g6jugI>H?=I-tBhD(~70zX} zjnovpk4>}Rj$1DIEob_A^Qn&1JAX9>Tt~;Z#08Q+MmYM1TH4xvpWROWdIp?AMOW9m|1bSlh*|@r4+#lT z9gpSykh3z#w~_Jqj6F70o#oVmB&}Xu(l<(0LgHq$$TClRlE0HzOMz*0yy+d-_S?@!ZMC6QU^($BKW>%Iw#P zO;}{cd{pf}lj6T_($ZE|kwUdSE+@QqKuQ-)AsZ&R_Qthd2s`VsQvCcB%{^kVk(b|u z%>U)iAj-Ht;Q(`4@C7IHj;^xA!T*P*vy94W@4CK$NJ*+l*F{Q~gdp8rN{WTvi*@z2n)-S7QsyTs3J1E<72h$jJ8VT(b>``@?54kYN|@V)+$G#34~+U^XdSe7Rm=6GW6$Hs-i07u$s5vyewsbqqi z&%pO|`RYJdc`w`-Pih=#km3wR^AyAKPzO-e{dDQ#c38cd5<$5T+Z?ic_tn(zp09%P z&GrwTRU|v{*7R7-Afjq~X z$cY_)NTNx(xE!j_z=el}eZAs6c7UTr94aI<)=Sj)C7b^E>Y}CNNTn=qCd2Wwr4udN zCI%FyNnGxCspS+7)MhY}f>|31=WHv1 zRF&J(^D(lN&mg~^I%o)Gg#Jipf#=~^IcI)gV8@u3%&oB;njx)pZ^RJ^QLx8<X1G;PMM;eSmi&HsKlo zm&9*N!c2}zjkNEf!%vhsW{Pr+VwU6uPNmrUaA{vyebn!7H%Ma7=|2C?u^MDPa}jkT z=t-jIfn~eV=*`#aGO?)cP%@9>rl{O}OR*!XgkE&^MA5*1t8KpzFVBbof6{FHZcX@M z@YJ8yp_jkX?{v|(clZVGVC_bW>a*T;FsJ~ z$PkSRIX5&fG^{OXTRd`A887}J{plYj$^~0;!qsHqwZ}{ zR`D93VGmjU%D8{iad~$(P?`*HCN5IHs9CB5L@LWD{^el|7h0M!Pan~I(u5h*qw06%u|f-R&CyHQZV}a3nZ8prc4bd&+;z8inc&H94WbWW$fg|EVRXZFgD+zv;2@ zL6axzccifdKF})2XW77paawHW0!j)57a~>jsK@!=nsjjU&SLuqN=&5nsDE*c;Z_o$ zhqDv0_`?5!@TlODs^6)@hEQ`aKr&Zw*VCvm7*#Z%&E`KGFX_+B&L^m7lT(-zXjfKY ze0>kT z?rX-QwCfhhZ)PXod#O^EXW`p!DHD&hKE0cW-Q2~=qM6Zq?PmpkNWfF@7pcA)x+Qg zGQ3ngM^9uSAc*ibY(aMg%z&D%ZWnxrL`V$i6jVyf;&Un|Ka+=!FkzgZ8@ln~?(#JWJ^u7#{}%~p92xEir0ONtfK zlGX7azYH9atmpY+53zojmPh~iVQ^`RAc-JPu@bAu{tVvO!_%cWis`QL(ed%$h!+if z{fNOkKR+MN4eT0{T^N%=Q|q}DBby6}F!(>9I{NoJ{`=mjrt18Wm;M(&aA6^5Hv}EQ zDh$F7Vq!x$Uo$SukMUI=BxP&r8U;-hpg(;4crh(~=hvDXl#JTJ$`}m!VH9z-%#(Tf z|9RiwWX#LWrG^Y5^l$OdkyVmzq0PID?hyQZ{>i5u{D#Q8xB_ou;WeHpHMom_Wdq6? zLZZ3{2J)QoR%`%QfkeyzQx{OE55NFeJ#7z<3nXv~MoSRe_oM!4$PS2}u_Di5@Xqc1 zaRzfB65>Q0Y>4|Cx_?hkK}6941G6ZM$HDygbtFQn93NZ zxa0F`27Z8g*cIg;$wVp++m!R$V4;NM%0KPfu~-j0L(}o29Lg zXC}b*1Ye-wXM(UgdN{_7d98yQzVV{|)ysc}%u(m_hLqZzM85YeqY5(tSd9p@OE7#rJ%?-?<>RoKr80hgv5nK}%=-_@Y~J`nZ! z&z|IZs%@cH_={~}mnlzfJbnD>qFK5Ic%H(15}mhioQ0VgnIphc>E!hQ^m$;+Uz_|$ zc@sE_!2W>Z15DqarOT$FrGo!M25hK&e0-p=RMf!!JN+5V#mFvhKVM4bOsJ-6FzcsXgr^XXYk$fO*d z@dfmx3{aXtz=DaDRceG6>`!1MN3yZR#H$XOOrd_GE-c`5hRYKJ7Z*3d(S-9JB$=|R zsy@JXzGz+;#p9St zr$_W{V{DWYypXZ5W@gKy%T^@3a!gG&F(-=q>9M4G)>Dl)H|%);ng!hC0pRlD`zx}; z+oAGBp8IJmV_PK#qV9q{ zXER}yvw{si%A*9HxV+m-Y&m1D7hg`)or6~jtDyl6# zaqUrjQug9Oo@LUC1BbjZ@6|O+J>$8@KvahN74O@>zcvW22b^ZLi;=2I*qmHmzmsv`AZ{oihwzTk`4pUp*tcT ztb<@e6?Sb_(C;b_pR#S=JVGxdurjJQ<-7+%7HHIFy7sON*%O-(_+`D@L*OTW;{7eI z4tK!1^5f_QCL42TK$Ecm^X{vS*8vw}h39UJd}9$fJzGtK^RryKW-e)$X(;~USxKj7 zJ?chgX88Ld&+POvA-RAQ{U=)$1Moa%1a=1ED}sO;AqmO)clV-uY^_h;YHaAuEF6`a zQFjjBikj)^YRF>lQEqygf}ImNWNCXOd~9ZIlMx3$5Ij7PG%DN}fIkEDTwF@Z79JYh z*~qgLe)z1f$vcjB!#=l}_eg^K7DBILFsb_=`Ux4q0k$tczv>+_&G?D!Z{qLYLcH3~58i$))E|kMJGZBmsgU~QyC0tXu73eYji1>~mdk6XlqBa6nPPXw5-k43A!%2yw);qP`Sv-GM5_#;eAE}vd zI9;j;q=HZY<)xO^yGLmhqVLFI0t;N$jf9`6)L_zqxj}AG(Px-=NmCaT7h6Crgy32s zD1HT)q8(tAL(*&rpL83^IziqB6j14I-ubNjBB$u11JTeh+{mA#q(96Y*vz(*9?C>* zM|83BEO(2C*K?+dcrK$&^`YD%8g1VT>gf?dHV)uxM4VYIoZS6Mj(dj}f0>N*3K0fX6y}&pqrm>E-%lv?U^Yq@~ir5xmZ80jNC#3>lOmoXZx6V}Z{&Q8Q* z$e8Y-f{htd2&ONX$9N^2mH zI1t#%6bub1AZIf=F;M}kJLH#sFLfFC9F4iaPz32o;J-p*DKM@9;VKi#VE}t0#*a(> zmyoOjqOT1CkOj7_w1x&DaD;)G;RNP`zl^$Hzwm+TNvCHz}{AK}-A)_>~6U`)&Ue6K)boQx(n8-YRjl zuySwg0iPxOM~whhgC{MLx2bi`xja2QbOB)yzGcrG^oP11{zoQ@1S1QlD?RT3 zGU$8m0Z$$%P;P<14Brhmd&=0$6%2t{c`%bDL=4ZMo5f7`Cj>aJ*{1(5^B3{%$IUnqM@WAoFGBy-44w z-;M~E4u%tm7p23bjMH+E8g4gHh!>80DU?y)UvnKTI8#IMh`*pk4;bWga!?UCfP2da zs%)*tj}InIqhb;hyTCdBllB)7xmNU?KmLC&Kul7Sf}5LLklUdnICP*TPFJ?Og?=5d zx!{B$uP8#v0}w6%93v@~#5d*>6!1n5rWliT>lyH(a;!ciPuXTwwKv^)Y;IghN+QB= zBW|d1CF0D|)+H|Xu44P3S!})R@JHinvo1m;I`r*i0UL6C34+cHAefoJ!E;3}wEOBD zDQ=B#Mt5A8com`5hUDWOkATlc%3WzU=5fY%{Hp;k1g4aGTqdmqB}cL{GGPCWB-%-# zPU+*lRrNf+bbZwa(c0Z!>K?VQ%RC)So~$vBeJM3e&mY*-66YlN73Fq|k#}_3`t7@M zFhBkStHc4=PU8WnZBjAi0cr0AH)>3F_!rpo*_2ZbhwNi-TDZMjkWw`->7C)>10YBG67G zw*>tW5{L(gBNY^l(;GItw+QWssjFWMF%GA^H4I%9c+7>_Y$Z7yWoo|9~;UgVP}P}HT-8r{Pf(nD}1h+0l14D3FF`(+E&!eSi~FhNc2w9{!MmVo*+M1#rLX!{j@G6`=z; z70#tS z6D+g+Ko=c?dWDjRB;8%Zeo86E<`#osFxsZ2#FEk4w-Js>Oo^8ij~hXmgMl1CE6gB- ziU`rLrh=F_2;TPci?Zhfl;Cil8M?R=IPxwqdsB|w;7gH}kZ8%d*v^WQXh?xUy@|vhCqKY^h2T0uV5WdOO@bX2R}haY48$dYQzrIO9^H&; zjoVV8fXJ9v`KEGj`Q3g|J1mbrd5Z@QKb7ETfU^#~$gv+kf)@cw7I1?gOprDh;3Jq4 zVgpC<=YI_GRRlk&t_Eq>>+Wx>geqEtvc&gjd%jtI9fvZdweeNR(#o;%7+$?&eezp{ z`FXeEB!0ByzRr+dZ&nVDRfLQHq6@Nz0@^x+gbG=+L;sYLSk$YgzN>#^xC2>Ne<$qH!GaC_{58w~kH{BG4k0vw6+f`n?NiLu!Yj4jiiOxuH$DEF~8Rj(ma@vg zn@9-kJ3VV{(_5ROOWNsDU)mKB=#E1Lhhi~Qx)b}Eyd}~$FzB@@`PvR`ovN9x1+pRo zEJyz&dSyQ=-ZLjFM`f;ChvnSv3a1TWp>D37Pq;d;dhm=p5zG&4l#g$}0TL>JN1=>a z`vP}ZUe;!GMSb|?x5~Fa8p@x3!0$BRWO+ko5k<|$_CcQLtlah#x4U~oELKhdYc&J= z>{-R96D3*rCV*}32`-`&Q0)eJBf!SH2OAr{B+&S1CA}&hKVWv>O&fZ=;WtU07{Z-n z5@$N3%~eO#@5|_&sT`Z7;}DD8Je8I{)biWGJ@#d1)@|*vC*Qd~E!oEyxH&yy2v-GK zi)Ga=lXwjM+gqC|T3Hc9B5b5&WTzlTc|vv;v7~|@3K?%aJm}^5XNG5&Zi8>yOHJ>A zMPD2->KVq_|=HWRCv*Ape{o!6x=F!3tl67W^V$FDv7 z`I>&OEz#0%1f1jEZ=|-@fIBD7*dl3pd-U%y`UL z9F}^+xzeIzq91x9goMwsQ8F^;==JZYucc6*OBCV~_uIuvxv6joJL8>z@oQ$0?zua& zzWZ$+7d66(KJtF;cs$UFo>h=w;&MNOz_6vjzW?frTErWNglE9*2u_g$2uOpuDVX2o zX~uAMSjyiLt33)i&XA=_?#l`*d;?MZ< z^J#j7#N85u9f|H%jM8jwf@>23waW-69!?)AZEeI|U16b|96;gE{*u|zF0Egme9z!@ zNs9IE&rEg&;y~w+d-Is9ILg;^dSr)Q>D`uQ;1|Lu7?ZM%#}5eT9i`G3xPRZeqa%{oxs?K z)$PkK_JNsK1_mO4`-%%z%4Xid2Xb%nL}Or5<6v4^cbL5- z2;@n{@MzXmjYU~+7_j~|;nAIX^Y2Ie+3{ly!_B2SD@kxE3K?cdcJ^?{-t=;dve@&N z3J{{!?@rGzDDZ^J+!LHsR{^ze22?dL*_rTHe;55&Ebqc~oT=JLZ(DMf;^n|h$PMhL zEHuO5#6eujWUS^yMKti+=4_S<)<>UT++iaWdFjJ4;~Y9wnG@a{Ufk-ou4w2pV%`^R zjEycWl%9_sGy|lC{}f@LqdQQd07d&hS0`+vBI?#b*;sfbbP(N*k;>GG43EL5k5S7@ z&UIzP2tvM08@{>vVb|P3>()g~1FPA=wd0$Dnc}qE4bB$4pj&M=98cRo5(2UwNYk7k z9^KyVg0KiEC!~kGXH8-+-f`0{pSO0@?~an@)8P zTir3~QJt-ghiD&)euT8FTMdcQu!mC`()lsZjqDR&LUI*>q9fH9gc#TA`oU-lCR3}I zFVLkWHOaT!?V8ecM*2i=7f@pUY*Be?C?R3xLl!_C?9Z4Yf|AduDU9(P@Rl%lrMr^e zq+{_^@EzCcQMTV4+Qx=q%?~3~qdgCgnb_kx_pq$Y*Qv#u0JK9!1xPy&rY{&!BeM|j zcvm^d4GH|3X;w9N&{$-Uo3)RwIhDv7vAvl7kmX4b{7DDC- zf4!1p@~ZvUNW+LZ_?!H*3$|Pf8JoDH(OT3Fb+8A)%Y&S-6*9`HVWE-%h83~pdfhB! zYw?6FrQ#ttYh+OH)ZAI1my$b_I)7M zMZHX}D<;ZlB{JVp`TU$J$(M5?XBJ<)oQ;T=OI{j(S^=%0#WJZKZj27-y=owA01Mqd zfBW_kEDf*04Dtqq6KHgN^6NcSY#dKcI{f^opR1CvR}*K7)7Z!oe6Rg?%|6MKa+mdI zz)AIYrFTlWV3bM3oDk$v; z;0Gd@EZ2TAqq?{Y#&@6f^qXAL%a^E{5B$UWcFvzXV-aPx6G5z|GZmb@9{A=-aLAWu z{I2J6o%4?W;ov~A)zH?y(Fp62Ans$)Vfc5PUg9%~JHR6LE-&RB4vXeeqFW~FwbWn2 zFg${EtL-V^-D9)YH2Td+$D)9Vh=8_{vAySN>eUiW?K>q8O0~jK@?d`-$bt#B-dA^! z`T^X*GgDnvwBm*?IWhxkvFNAWgl#Qt5fe8*-4E)wmlL*cOAD@WH8wSWhZTkS8(cF0 zp3b)FI8Qz~V<35QaPU)S#$ifb>UE3clhRj%ztjd#&9!pokF41u=Pf&|Iq#i^jYqlQ zfFjXwIIM_h1MQ3ZNQ~(pAPnMQ^%zS2-=Ez<(?MP~$0335tV|CIPHr=Xnu+b}?bROL zJ$qkj92cu*MxtwfcINuURN%0}v(T+W=O}qJ0_~OV4eHU8z@#v5T0%cqS$&yi(MXSF0QR!?_jl#Vk zcw7Msy-iq$q@*N-VQ9ecI5q*KxzLo96n_m?0LB2v8o{$)5k1@D0sqc5BP#HBfkz$) z53&%4INy_eNU17TzqjWIoH{HqP+xoEIiNAW`9)Dl$qax>R}eN3=pi>!4(2(Hz zL%&oCLWa&I!#*ZvIE64}j{fKJy0;gnwVmZE21=aC<=2yl?hr`Xxza!Nu4CPkHwH2r zNQA)11fC--pr{^m1LhI}n69f60(DhZeW;24YF#lhh5ZLVlg57=Bvv33ZnD%F1HRf2 zc=MH$Ixv?9!XPYVDD%7Yg}CzAf+8;idu*0C&6du$&!ZJ&{zk_Ka`xmc(+<^W4bP#( z&Ia!wXeVF^Ie$NdcX<{Gi9Hyik&==kdxt<8yt)l@76Cw{!1j;y?CiIIS{NA|#2+k% zcZ#U*FpEQ6lQ31)zo>^CGMD#>BMhschetLX6;<^B5Faw@pmoD*z$z0PF*0bJ;QK|E zu7Mj6+z)CR8p9b8tUbtI2QB02_j_}|1<`q}1q>RnB;!D`5t2UeuO_VLa77$om<=>X z^Tt!^9`3xnJSYOL?SY{S1e1P$H^AkiME!G#7vm+#2BOn58cFh^QxC|$+s z6B6!0TGk&Hf53NxjAMgZ2nLIReG0NF+CyJdEc?dWFOIOL1Od2~d7u9Ff60mLX9FfX z5gETNhDYki`ooQq2uZ&;l*;G1L(gV8GNtpOoe^a_lE zkWGQ`J^#to#*J)HO})Njp!2RTr?Ym^_@!CwHZb(v@$L$q1V*M8ZBPH^8~otLSntqB z7nObch26|*+3`!3{^Y7EVT!YCn02DL<%>G^S^bHW4&TEa@n%k|G|tH1Ah@11uxjI) zb>oW%Pb7b!!@m;Gr$tu2&Twz%6%+_Bm3{3~VjIl<5WIg+>=JV^R{-+g#(&zPUtEQ@i7<1==|ts_Qn zoTAG6tgK5AGhG7UqZoMlVNL|Ip;Oq$39A$`tE!H3<8LKLRkod_SuVZgcW$h#Z?kdX z%@>i@62QXLS=6`vGx&{S+sAJA`HtLf3s=;_UA#i59ef6Mn^T~`ePKPxyIr-M*jwmU?9xf3H2_~;0`__0- z@}*N0a;&|+JZ-5w(tDv_u~2QU-$(Z~(t2Y2o2yy9ZvYf^*4sV@^$TS;SlH76?_ zV~7u^f4*SJpNp{dJlnWkvTLpLFpd?Ol{D>biqm?bj@;8G~INd1U}RB zbakZnca^1kxR+%=$G71%riY7>Q(5W1?Q0dTn>ql+Snz8ANee0^PzzsTy>xerLt!dA z=rQfQD0rtc4rU7nb$TIEasKP#RcR`lQDD0Sl+GfYt`-n^gaQJV!`47ujAXv%w-uQJ zSqw3_r8IVJJWEDcXE3;=GS6BmZi=rlnHYhJ0qALf%fa27QCNs$`F8;s>4N@i0GaKa znxN-Y%0Wpo9CPRII%YmOm}vH2Exb!a;zOu!_sGjq6-Qy!;+~TL`G4Cvzy%MEast>G z1&7A~%u=R`V?|{@%eN-}jV9zJtnl8WOjE`*e{#ax>t)%oC5w+H7QS~4$#Wq0C`?eC z;C$nO(+-r=|LC$Z5hf6K&8Z7}e#bB<3ua*t-2d zTDN|ndO5zm61A4<7458BM1heg3#%%L5nf1+2}7}eSql0f%vuqICbHcTGQ&mRvLUxK zW{#Fh4~rD1r>EnpzV|Quwr=?5ab59SkG)d~OQ*$3k|H|K3uAYk%annS0a!9PJ1Uny z%K|5bcL8Rxoek?5;4ShhFCqw%yqu4;h&RdyOT6PssvCxwQ<5T51;-sQTj+Mw%A2o$7oN!m(mm zpIMsUO#}s9>1Ktr*s3(LN)p-DH}~)O!N%q$vX=Pq_rG@l64n!9_hg*;aLdeYj4)s1 zCNcTyXo;-sLUXWwv`@!lX$V^!6G6*o#cODyse&o|=R@4%C*n#{_}4WF*Jjz0Qoep3 zeL&g3dWY23d@0Q=JXGqr;o=By1mZ)2ZmA5WU@!p&tIiUF6@h^K!TGj>pDASXAyiiU^;i!P#{EKbh;lMBGpY$oU3o`! z#^*2t20g(-sDkwg9WJETv7sLXuZ4A6Pw5-9X)m6Ql(@67e{gX z_I?aGRa4_A+V8OZy}x=ZSX+c7648A)O7H51)+LFtb!&$h~R-ObVy7yS}nUMwC!O0uAvWn2Js} z!zei9V+V1Jj%%tbitKNdqj+ddu%5jjMmdaZX;$0~Pc+VWx1)@`(iZSST!0>aCn1AO z#pSj)kJNNr9o5}3M_RD4zptLY%>F(8oNV%=pTE7+ywWG$=vQCsT&6pV%gSP4+_(qi zWDQ6(1H%TW=?&kFCPRLA;`$aE^=2pSp2w-Z*m&URyQK9NO<6(%Pq59!@}-vz*p8Fn z+YGYmH<~x;o-oUszb!NAvB9*sL!qk8LPGdMwK9550b0+cC{QAQ*$G z8;dTGRZgO_L4L<*HD!(}MxTzFfH1am_0(f;Z~p7^mB>FAw#wI^%B7Dj%Q7nF%C*Ys zw~QrjSC4V7iE$`i&eX<%-4J?M4=`IG@H1E+jtsfMDkaeH+xz(->ixKyNMzbY^y;g}y`#j*?-%^~#HR0Y`c(d!G6CTj|ky6Y?sg%ZQF?qx@A4s@6NF}^ff`^+E} zlY~EJKJr>zKkeIIGdAKobbv*(;MqgKob0trgy7{BI<+OVn0hN;wV*k>{c%X%i}rBH z(5obX`ka?`FK|&~WXYr}DYbC!+k+ox8YOXpre^HVBdI!H7GPsCvs|2^Ui4etXq9%` zvA#aH>Q;{k^GL23But!poc`d{4Fe8nYH)Br)d7PQH%azYGrcp-jcHO!V|Kc@XI*qE zpIF8#hyp34&?cSuHvYdC;G<*j?OSd-qZL-}+V$z^G}7iTr$AwGA$ zA8%5LkR3(H35Iw}IPaN3Ru&=Sr|P`PTjzZ!z~o||#{5L}GB_P4_#W1iXsr+r=2T7E z0dtQf5`QH$uFfP}-XS_od@n)*k7iXuEqc;aBOPDOfHpJg5>>)Dnd8NtqGhIy%lus> zbP*p76YXG4Rf zNfF`w1JwK(HrK>Pc!Ahm^8KF>2tpiQUq8ZJ;HU4I9V~?UX`ep6c&AY|#)jzDzsn+z zG;7kE4KJrA8 zJWt2cvq4wopa?*>8+q?b11UfbQhad?$_r6`=XB8WrFv1y$69J{@!llE^X$*@%KQC+ zo8KC%{Nx^{L zLsh! z2wAHoCuda}o=x@pN-_@0XIv&cWTp2|s1SBcVMwpT^uGp-&3j&7;c#&TpYIEZ!A0@(irg3cPMur8sf@MQX&Fq|Uz$QEI;7NFxPzAdobVMR z`G+3jrOcABQxp9g-R>gP$>fyBV|>nMDP7+BT43-@;i8S#CHft*8Gy@@1g_wmPrqT$ zuBL%OIM7YOF~Wo3WV-tMcN&P~f5oH}I_S!Ot|s?aa>gYx$uZTY3w}>XVwEcO)LB%t zPxc+TY$46n%zh>OKkB&b7!s;9@c9eTgQECmx?7&Ps};=1I+;_bUjDl#5h`IDh?%TA zx6Y=Ut`-b414P7yYY^T8%!_y+l&xO0(J`qg8)&p zR{szwL83vixM(dB`7d*DjSRo(vBUZrfs#kl#(XZ;VmZq5#R2PYOChW+4(e12r{-yr zks=OE&0s>9=7<@LmyZu@N8JdYb(zC&>a-xXM{Vc6MM(}Xx!VAYaB`Nxr!`u|=DN6da$?+~qCyqhQWL;BzB?(a6!-@7H8c!1n}^z0&V3(& z)y=?VNE)_S!cuN%!~_u%0%X@xy^43^qC*~_o{dQVx)5K}b>UyQB~J@p_U964AN@1r z3#awkuhwVIF20JEFsumck~|w`WPTeUD!=r(!!%m>!4?#z$nLWLTOS0f*o&W@tNXA> ztagOK7dKA)bCC;+4Rr_1TMn7k`e?< zY2dZ~8O;8fngew5gfxPk_5&)%XZK_1DRftC|0ex49qkQ|NRi574{aBtxPsY^`dviF znID8J1keI^!dLFGSWKk)-8QFYip=(YSL9>mRD)@m+uMITgtpAkcgRHFC4MEfipv0t zYhmZi9&m!+LtQ!l=d2bOs5LM&0q~+j&PQyq7)kG;@=)cXrz5v5r9PO&hIgfqx}($C znTEtHkPvf`d|#2i-W$7Ie+N(KLIX{Fje&MgMMGPe{i9LcE7E$NAC$zV6`bzBF*Fu4 z1dQFINvYZnV?0}Bo(LWN$j|?c+;_-pgLV%HW+dm@3=9%wSaAxkJ+0u**JNGw#aB`@ z&CW_2*1~>e@#$pl_jOWw#BCpc>-UAg#g4{WRMTENdy8E_SyOM5w-F-lkwDFO|!>xQSV+%T#)7W0(zE89^l zI6}S7 zX* z;AGT&d-GmjVeh8omGHIrNby)9zO8Gou7I-zArFIn6xjU8ng=j)ZpDUt;**yg(~7pl z7QBTn8);nNOmz0}j^*6gt8o}&(XpL+J-htuu{ni9@l*gqQ|Y(7HCJxk5H15jSG2b(y)N*`f`bi7 z!+>cMiHrS!2ql>QY80DQ-fMSDF54d4t=RmTxP3F!$r86P_PrJ6^Ek4hPbf{Su52xI zX# z>g*&)B&V>fuRenQ=7(QcwO2~lSe1g48(Y^x4*8B5@3RHz`Q73cB8-r~$D7GCi`gun zG4Wv!5=-(*N>U&E&hLT{G6{xsV2S~P5$@Rd)Kp|51#9Xv^YgL%K@3oT{J5h~w*q!9 zTocO~;R2vK%%Ks@8g_IAuWnfJHWF#&S~(F}@i@0f`)0L%;pjt?ppjY4KG-BNB}sZ8 zEH3(w!%ukxSt1TQ4i>;jo0FFpf&_vP`6b1voutF(oNm8M^urh%b`XXCa zEQ5{s+_9erXe2+qQRfONB?^p_D`A^=eFqyq)6-w|_V&6F;gLniz*_i8SUdn;C1f)& zELw%D8TwdD_i)hHAxe(ycEv=0&G`3jWC*$zuaM`T&D2p|VN4b*0tTXr_B*9Z1r)qh zRmz!nO!?w&n>SHY{n$KVGpu`u@UH)F=bJRKVJlp}bq&s;ica&Qy(tO((L^~5uuwRt zctS@JvbWy8$FElZi$oTTO&9Yr^>D)?H4x)rfBh9UHa7V6A^cfyx_0CRq*s-kgWx!Z zWTk8(y)kBa!k8FY`PP zUkppSGX+m*&mAqBnmAaMN19hfPv%-K_Omh%4RFw|F@8BDCLsx#@i}ReHPS74W%7mGSkA&9kg;~(jcmFIDKTiCbi@vd zK&lINSzw?=ek&WKhY8Uuu{1>;wRNWCzVUQ}wc|$EwzUj7sU5W^t?ljHmV;@ZZhN4= zzWOVAu^>NmVzbSdGf>e2T%o!joP_Ww(zgDbaV7W3lE?kI`1Md7_ob+O#u!zzCGXyZ zVs?ew;~O?%EPE$2J5R@W56gS|o<~WlPrs$LOmge}-p{L?SyPjMw2^? zHve5a=hD!O32$e)DD+ZewSZBBs!I?S7qFP1J+?6H^0WEZv+|+uikW^zV$8$Ww|x|H zjAY|yllS7ty>~+=(qA5Zm`Izs?f?}*Z;D_=Pb3xW{sXiH#FtJk{yEm%cr6abT##uQ zL`5n6AvAF4B?8L_aVQ@Oc!!UV>m(&7%PT5k-?UU+!ptk2R&R3txquIQzu>lr86p;?=3P|J=7=#Qd**XWS84 z^z?&;B~^YFdl5TR5w-M6CdBauO)*!f^WNaGa0!i6`G}>3A83?2aXh@03wU&76aaG_ zB+>Zj=jdoFwEsxJ8+K3o!#t4?&@nJTYSGqC$}WR=8KTVcS!>0IQ*7cSq4t$^Zw>gu zWo7T@e`n_S7k1#vE6Ezs(&S&HLNyS&8QeF8=6o0r;@0*+Up z0RgIS^H>Zx-ESapRZUfq_sEzX*}XGum2t zvnVSoBU`s1X5mPU#16#tGmqgtg#gP12H(i?Ys;j!8BEB;39N&G-?Pkhk$EO9KE~d^ zv)u!z!ZMh!{x_#f0>DRRYMAOe@2 zn;Q%lG+f^>h(tU+m3qP#qLD#ZTZL98^KT`pc7*+Bh#RfBhad61%9H$C);Zs_d=M9d zuiVi0!r&P(2AT(?S3MxllAD)D129SiXTsAjkg53L@amqtZ&ht5lgn*_(SRprJkL=| z#%fZcnWnPkd7g?MM!n=VRPF8I?P*6p_;tkb>*BLQ)N4{m8V_w+xp~$)P2YP#n1Rb9QDh3^at|cB18)JbyUED>hHsw-4kh-@ z)=UMK8K1TW?F-5xaYj;7Zo-gkkCoM*{@F}gH}cDFCWj2lMq4P+t4GR~q$bQc3Z>$L z-rut<^tW9i9*!*dedp!`Ta*Jo^;=Xx8ISoU@;lv+ve5AGEs7SxK-0{tp(w6GRhI8b zLXq0S3d}`z66)G;WMx%_$g&HQ6^Jv8n><`8MFx2Ap75ed>Y-aiQc5kFC9ZekSIoa& z=<5Ys>VK1y&g`G-WITH6s6LF7p{$4oS9GReV~{u3+Il%pb)4sm zDvP{2Kda33ijLdHLliSTn_zMWc`@GL1?DR;e-K8Dyw>SqEodk^c71f#U>cuh(fCLJ zQJ5{mNRr#6-A$>bj2!o3MJ5c1KLqp*Ml$cs__qsacxce09?2ONVEZviQD>E=XT|2d zcHX}kkiv)hlOU9b6zh;TPiFk&O$d|k1TNE>)0O0UdwD9%q%oZ;A@>9Gk!s!>NnK^; z-1Pgm+uI_HKjkDb_&LwC4#Y;{D6(i0GNiqcy7)|u@hAeL!KgLI(l$3YE4!^Jy6`sq zKJ7bZFJ0MGNqLJ@Kr% ze%FqTEKSeG_%HS84@T4TlafUxuWEHy4|={N+PZHsq@kB>uquU;1!-5hOdVka>>bcw zD~ZRjE;ZY<|9R@hScywqj*20qXkxzjo0h)sYIUcjTqC49k@LLOf(`ruu(HGh&Y8TT zBI%L|XE4`0f#(OoeDOUvq>$~Df0M&P?sk*!CWY-6hsEyjgRbhO3`-Vt`6%&`%)AU2 zMvP`v#%m?SVCnxF!Dd@H8Pzk#e<(i2Yps`ZTZhWn_yysjb43DwF4fAXnqF1#-69~* zhzCE@AhC>Ww1A?42R10OlbMyQQwIi6Qi$^fstSHltj%B+kYwk*6TaatNyXc|xPt~4 zB@2PaS24BgpYplCsA8Eq^I*Qwy6ancCum~e)m>tuv**t1HR34QCw>|nSpXD3M6Pm} zwZg0jJ{JX&NrYLEp)*~1;N#;1`3rP~S?#RkxO-%ef;}`@&y8PURoG^Hs*GAop~aBM zA$T>>a;g>aCfTjj<3Po`2|pGULqgWKo2~k5fBC7&Xb(zusxvrb&5_qKNd}VR2ybQH zF)g3P54`e-=2c&ar5TG#iH*Pcr$M5qgg{z*a-C__|9eb2S8bNQ#^i31-OSw(RvXed zqISBFJgyt!Ybe@1FHYIJs7smj8Rr`MR0LbJu446ol0>rN0Ah`L)HUpBQ)fm;s^ z7+j~#5LW?cBGj$>@!!wifR)d6y>%e8@b}MGW8{1M_`}m0N@EhXR#VE^d~fEC>O&op zvGb0{xrE#}Ppb@+Xujq)-$qLx32xkM@(z`d$cpgHiOBxBZee47%lyc#p^4i3mfK1= zNr3u?;A%>rW;5lH+`_^oSn9b1tvwW6oUqCjaTTk8xXfPbt9(sMydju5#BN`b0O@8PP`-Cl_K48K!k8sOR(m&lM zS?r38qTyivDAzL7Qe0X29%*lpEHP*p(J3jt(Ax}v5st#>;%h}-Y`euD%DWTZ{k{$& zq=S!W!_=KF@(xFb3D2M6y|?hdO6FdoaN#7RG3?J5ixf^8zMWlc zDx8Ret99LT%G=05rJ|$9%BMmuETVl=^!G3?WM>go54@%%z~Be0X$>s#CgHVI%XwOX zk`F|^Ps^gFnIAvb^4yrQ%gp#4;X@o3C&MLb&3SBmpMOdsMU+%TsBHKZHHM)I{G6bi zYZs{)U0RTR6vNLMhzgZ4cfP-h*T*Qr5X$Al9n3?#%7l3C*pqjqxaXa$FBf?#DY}>~+pJ18H}gsnl{5TZw`BuFvC39TsWE27 z;lriN6TZ|>J)e`kpJ#0^ecgoZZa)d{l{h0+b-U|yJeu;HRCUcY*;ddSLZYRk`~7`j zTEU2FABKk9-Y0v-wMM*JnEZkYC*4N3afSWw-2Aqj{X>^YFL*Z6$5Jd*FmltmpE0tN zy_OO_T_zklk{%LRCH6l8#w^nuB*=@!{4J{EE0@piefZei+jP+tTuM27pXVNq1}x@6 zHdG-|P$2mNDHqv(v>U6dsikZBv=mde^R@W6DPEo9o9V~Je@Cxe<{9+aU2xFw&%DjZ zdty$+AkC4_2}ce;Tsha|Gs?%r#r3$k2y~RZC}dJ2XK#`+73Q_2jc`?@J>pt94l4nU zEMk=58F<(N->fvapOE=GoCRC(lDA3t1&;SNzP;x?(eJ9F=V4{QPVNua->;n0(HycO z9LldO!aB&|=wpO=d>#}QS0aq43VM!zFaJ~^7kw1L{(wsd`}y&JG-FSzZeMF+__ol_ zg9i@|AQ)2$v;O0q*&gI^3}zQt(yOx?l!_)tcvHg7=;s;cvDl12oy_;^k2_U;U8t(~ z;@=eT9mPgEIh~@&Oowi(XA!{^0sqxRAFq5f0fq_py?Y5M!A7xM>#l`!`fV#4r0n-J z#N3o_d&w^t`xryw84-$+^}1KUNr>bPjDgpF4=1Q`iykg^7weuqx-2tPgA|H3( zFa4n5c$vb76V>%hWc+LmO^eT4)&*_lM-Pdv&^MW0N}i18=)owkSEg zQk62sy2H=^+2$A1blaM!y`UX-e+ChKA*4$~5dW}81WvmZ&{FvzeVVFQK7wL8nmG8h z!7;UJMcqdz`#V$Se{|Y?&~@~=Xjs5_rW7H z(l1|(+rHa4n^*I9AUG?=B}%xNRV!n;nH9q(Vn+1#ItulMJ)bc}}=4$Qx zpmS%O#u8PZ`O-GB?fg}*0hKP6+IC|QC4F%(Ri#x6B&wu)RXCH9a3EG>g>pmg)ULFy zDZ7JbnNMztsAb=^{9e#{#|AI^9|~5|)=}n+g4AbXzN~C^7Mc6SAX`P=t^wZexBF`( zUpI9hD@hX)Z#?+8wAj^%@!mCq6_*vKHw%}D?OrVb<=gt=oL<`Gw5$vk z8}?y0qjeP1_Aq6CEGR|`>~nkK@m6^prBw8C zf2_!GC(YR&lb20psdo>baGHJmj%Pl|&yA-qIqz2D?n`5Ll4-3}f_7*WizgL%oDunw zS$~=qT~eHu1DZ6Bf_p=Hv`b|<4cc3E);F(qIWwA={nNFEhHz=YS_bUt1W-&3mc^zb zr}L>t==~CUSZ>- z7`RI&t-(X6UMUBF`7oB$?4g_^D0<&=upw+=ZHJ-3!o!XrDB%c<3r;qZPh27++>A}`(K~*p@md@ zLPC3Y_bbTDnh^bm+*yBMz3?ZdTRM>cpl=26%Fa`RZvX`UdH(Or->IR||grw87o z?GeB(BEIfHNyUrEyY(s*RR0M;gOxeZ09}v0f~~`WP9_|?`^?p}&6ezjkDmSZPSW4f zZEaaq(b72Xxgxb4{-UNaA#B|T6=k?K6r650Ci*kT zQ2eni1$S`o>__*gbDZeRLfw{sn3x)0>>54(85XfCt+bK63fv`)8Zz9fzb;m3#fls& zu5IeI%z2*MySa47jA%2@HTh4%cOS2l&skJv$XS#5(X-pGkV-H|!YQe#^|O@8!zB&c?yX zSq!B*79t?8Rw?(J8NpvT+o+9TW^0MFc>kTS3vlnc$?YvB^vAqF@a)*AKUJ&H5I{5XhwC~SJj-QjNRx7Kv zC!Bi`@xr=zsGX*Dr_)M#YyV(Hnw=@rZ(&oJiQcUVzM*H&R#dYl+kNy?ZdaCcXDv$7 zA&=Fbqm{)Weo9z|zyRM?hP(Ejiqlc~xBncG2MVIh3%lU065cn({3NuatBZY2C|2lP z{ahnnsNZf$*R(6Go1e-HH?6MbC+*;*ksjRd4 zj)YiJla;yr70yl8?{5}$b!b?5)1OGNItW5d@egLfj8x6hbXShpBN^}ej_y19I zj6z?H5JGmk_10s|p@EgMrDws^3w6GVINJ1yFD%Uqu6v42wY;yH48ECkvj9T`%&4<8@qPNZl|)80Vu^7AH;!AIjU&&$vZa zmJMkc+9+Urvk26Ue;@XyT#1NKInL62Kx{tl@)jx!`$UbBYf2@doYe^_ITkw=CmprV z${kI1X;omz5t=WK6#iV7NjE1cgpWkXtcGpAO;Lis#L(z*b|~Ku+GCx5Qb(t5#8WmQ zKb&J!W{T2(8N$44eeBiGwF8Xa6h4?&uWT#Fp7(JJb;b6H1-jrGcfOl83Op(YnSqV=8YB%d&u)q>T6Blc5 zRG5B+H`*N^DD#0I48#yHKzFh!e>Xb!&iT5loV=7!D5WrtmS1$eP1{CiUwxymyh+!*wEa+DYkhF z?Oedx00YiCCOCh5S?IM&!fMkvk=}vyPJne=wr!hw*l|r+S($00T*wVca}4pWXMKXRmEqY_PE-Vf+1B|J~w{Kr9$j$T(4m(6mo~57oPCQQWe40*hjE4@>6{GaG zQx3WTd#ZBof0%#oN~3#pb^Of>3EG*7-bXpMQ46GX#LtG+I9{NCo#!{gv~=e5Cn?Sp zU**5t^2zNdeqBEqE~I%1sp`agNlxV1sR5(hL<{&-xm6<6AmfCjj`j_V>yI2cA|@qe2f7sT$x=D)JfHpc z(YJlMQp1{=Irn0kuPtAZOX{{Q6s~nr-(L6fvP%Jv%vH-~p9i_(4#!M56MpdNgbZFV za}?Cwd56n#n-RBcyKal1!;vpRmCji=tTy_q_)UKzjHQp?A(11%g(?0%*cKtD;>Wk> zY>9~gAjR4N{P*I~{|m#+Bvaq1y-8R>?zSudhe6-?oP0Pzy| ztgG1k@msBq8r^L{NFz-Czi*pH_^j77raa2Bc5Iti7@*u}X@v64o096kt}GE#+V)56 zzk1kvCm0LWv^dA<|NH9d2c40v{vZF^Yubg=xw$3)ph0$>pP$doL=Qq6L7q`kr*oE7 zc$u-}UDP-AsI+wbnouPWZD6gTL~TB_{OHl610YL#dC5~!qvGQ^Fuc>!(5N?FG&8$_ z(K;wKVJ+jrn>SyAE(#2n!SpU&C$HIE)+Q#Guo~;SGw#L>O+&-C#$Bpj{rWvF^&wV89+_NTpZwayb5tA78o#US0JD~uuz(to9Sq%(V!rcp3za@ zGz?q$cyBXQ@awlLU`z|*qv%CF#{c~!E& z23sbZ=P5Y=#u9go|LBxvmw$_hh!B^1FXaEiueAzp^*-|wCBEc1-62PVHVygX6NZX3 zJV?au^U|ud-N3cLISDIB`}fn6&N7w<_k65^3J?isJOXpr&3VM*?PGFu#4i;!9 zaLX9YS}yE{R*PVhEi7K4Hr)$BJ(3@?bxb^t!LfleVD!^!I66VG1{@->2S*nzkf!j@ zc>2A2q2vce5m8X}%LR*xM7mC{6&Cnp&^%RzNm_83nZLCtZ2SK>4HlujbqZFofJax@eduEc_8;SbakDyU9`sQVy#kjzI7k$ zX*ON}r089L{~L^U)leBh(8R|h=`Gjy_#_t=GDivE1F3hNogCb%QT-6YF9Doj18yaJ zd3=04E+HWdh9>wKpg>xpv-;gq2aGxq!I149+<`9;ggd+#q6`*qXKHfq;xarR4?5T$Wav(25k%{vXJLzF{%!I`Y;0{!Tm<;X- z;6)P9?6BPCB1nxdJ?xtz?*>+5kJd@IG&kP^fFH#G|Jkoby84fR@Zg4B2W7Yszc0h| z5VZcjUD@qlUI8UL>e<%X+G=3F^qmwdAb6miHN_tt9xf;?9fbwmm7u@2i@UmaCIKD= zCgknyDK%p^Mo67e}8|0`AI?6=cAs#omdRgz3Lkp;6Da_sng=( zkLBOM@IxdV9T0gyOasvl&ThPz+!9RCzGa^sbBwBL(oa9o;J-`ErwVf=u%HCh0~Vr< z&33H3mPB{^$Prx}JVH}}wMEcwzdT+<0@nNcrghPZJ9gj{FmiAhv(59T0)Z2ij{^)& zar%|!MdcM15&!dUYf&(&9LV)>+G=vEZ zs(D5hRX-(O=(t1s?CcLaKwk>^Ay$dGq(^t40gkwNyvPDz3+pH5*P71qkJ$W+p!4{40Rxp_7q)DfmbA6Mk6_tfVTFeIMafYyOsbIzq9X3G-x)C!Di2@Zhl7a=jAa!U&)yLrjUl2&1vc+EQ)4q}7f)Y8%b zr59;l%+=sZK?vALJ20RnE}r=o#3?wN#==$Dwbl58JBr17q=Cbr=Lu#OPtX7+q4q18Y1Zj=J=>t!24z&D8wQxP* zHIQ2;Z6nE`zKQ&q*ZsbIZYWpop0GNsjj#rV;D`Eb&wP16ZMC`CU-5%x z1oD!9^a%_MVR-%m={0=0aN0r@_2tpTLO`VyWU5Htwj>;TC)}yYZfJ;im(E4#fOt&o zL3!n~icvG>0Kn|kL}9fds)7BPY{|`+Uyl;!#)O0hjB;-Q!5Y>_mue_V3_{`jwKAqy z?Yx+RY!L`EI3~?Pnr}jPyVVWFjr#Uc&u2?ZBhds*nkYAV{a$*M9b#!e9)F+$Aup%_ zsR5!S#1bT;wJ==J0hl;eMArG;U1q*^$k_uHTu9Rx5&g6HzgOg7qW_6}>M*F31m}Pp zj*lnljx!J0%aTrrAkB{y7;Q}*%6!|{CNO!hA%4kue$pm2!L06&{h4z)ZtlPekz5kj zSGe>Z8r?{jnLypqMb>&XBP7iWp&IM9Taj&41o$I+N9KYZRb+ZfU>{v9HTwXIhE0QA z_?-KO{$PT0Yo{9zpxGoPAp-4w82cfou4exed+D?txxZG2M?{PuijLh5oE}D!{>iU; znU91xFh$8b7=2Lkw$^ng?d)Rp-&6!%;$08#CzcD4%;Q^|QFdvyn1ZZgRd|X^W6#}x z5ed8MIAo*~Bv+21rbl_P1^dn?mjdqO(=DNE2j}wVxIn$r{t#1B#oxH$(YPgH7EyU4 z>V>|kF_ZwqkeJ+q3>P(}@6)>y3=QfP<#g#`N`Mv;pE+`NpxSs~QFIA7Y!9rmm98x& zBvN3Q_4M?V^r6eHv6;;oM|Vv-*85fKWdS)L>GikLT-;kelGN;gX?>UUB&Esav1i>n z#gN6vJ+4sN-U6N)B3xwS*sYV^GH7|Jbsvdf<9TvhUu-n{J&hLc<2>r*uM|WygI%?^SKi znydi~2JPKgvq;Jk`Zs+71GL1nB_=K|I7194D8I)hGc!;=ggMr*ZQ9i5{&XL7;j(Fc z4kdi=UP75(EcGOr=_qU2RT6H5aIZ9xhXP1N9HC?r=(G}LftREXH8$5FG2<=L*uX$X zB>$*Mi1-p+@0KfSBkHHNB4`C%K*&PI=TKMqyE#AW-jc zxmQ-kgX$ZnAUD(1T-|gnHZ*S1lXG&(QvzRC1w5vZgbMZxiR{{yik?#f4)5={p-A)C z?}*Pw>_iaf9OBLV6srr!AfdS?T2&n2m_~mBG}aznGrrwfR)vmV|DGEEV=NystQ2{E zt=bc%XIFzSB?o_4#Y@N5-#@g^e>2NRzW#YS{=I6Jy;GqkzZ{)aKK-0*{KXo(lB+wS zlsglsX?$0Psl#U=!CLS_wZ`m)^PWRbZraDpEc0AeJ9B$aL-65~z{HojwR`YVTD~`w z$W@<+G`8$&Dn^gQ+0uM!xj@07qck5qAl`T<=*EU@XI%2xUifC7no8+{iYnCwb_RZ`=ZthLR3GRrt)@Cn pQ$tIobnycE(p31RqiLv7pl);Ne*k41J|qAD literal 0 HcmV?d00001 diff --git a/docs/notebooks/thumbnails/polynomial_regression.png b/docs/notebooks/thumbnails/polynomial_regression.png new file mode 100644 index 0000000000000000000000000000000000000000..eaf0e1a4ced2ac721d0bcaf226b19b606f88a730 GIT binary patch literal 75013 zcmc$`bySt@w>1okB2pqE4GIb(ARyfaVF99ahk$f_E<(na{mgO!I0@IOI2Nfo=-mWFnYx;6$_GP-tFW|nql#(Fm#3~X$TEiJh33Ebmm zyYbe}&dOGZgTws)zTlpvjS&ZGR^>Ik37*vxRa-19VqN4L`@49$F%~u!)>Dax3QqCM zBaUvLcMeWB2HlfBKjg!?g!AwQ*K*zk97*f7ziJ;+6s;AGh18Tyk5yNc)oU!&zNrnX zWZSb6y(g2{)zZbsIfqm5Q)H>e)05^>(>t<{@$u8gZX#|ER_${lhW%|vlDg(92+$?w z690bP(up!n(xD!ME?@xm`pUq1C`%{MC{|_(a9>xv~ zeA4zQCdPSqj(}F^6aSc7VZD9~kMUK{<0b9#<6U(5RH!i3(P8$V&IDoSxdg{(VaI!L zl_^C%0Ynr25?{lGQqlKD)nvZRG0zQHJ8*Ik3=~td|s5GT1H2ZTu z(Rr4##O%-2#2bu#+9#XjcUf7VK7Wqyc!zn4J~e#^{F(m}TZDwf_&SqJtc0Naw)ql^{haNH z3v*eiI9hKc7J>i7+YhL2ub`tI`d;MnIC2s@*`I1`F-7xfdmi(`?r}3pho;IUi3QUL ze$33Ncps(Z5|oi~*K2VIOYCU<@qKRY%+t!*SW^>?!h(X2$ltczs|;RVHapx~>$*U$ zQODgS@)%Y+o1(;WOcpL#9~F9=f?#toGuLL}Thzyd1R40Dfq?-5jle%z)h_wAbDfPf zQFx?G|HQ*Lk0B?d*ix%F&%|kFifI)khI&xh&kysoqtS6+gB+ z++JuLulFrq%*b?t7|vtM91xVoIMZ5n@D3u^eRQy88o#!6u#XZysfYNGb#QRl5#5VO zI(ipG%KS=0Lt}~8apiBbewb*>AEP8qcgxeGIdOQW(VG+m141XTPdB)^BXH@QyxzaR zoanO1(h@?ge5|%N<|z($mb2x`z`!8$oN)_cDa-6nfgdb7K~x)Z-TCH~E!+E*s}=aA zXqmm$5lS&P0q+N1gw%X+DCpPWV(uIKx^|I>#;HAbubEui3gUKZ$3^g9I)akhkl@?5 zZ&@n&KA6?YFz2n=jV4mLJ^|F)o^6-t-Z})8ek>E5Oa1-ziECtJ`PNfX$hCEfpSlS- zuC@!##Wxlhw5b%l!PBg;)9wE9uzygnNa}&LHCOG?3`c8gYqCrn9|64>4P2_v1^j3c z=le}S0bg@;Nxn|~x$A5y zb&rWf6_)DTQ1qVduyE3Ioe2wni&@X(620k46lK$__;mYuZ_8_K)C@Cp-DUITF=ccFo-Wznr3+~pqV=_vsPfsw&E8QU| z2aiMY%`rKZs|9d9%Sk8O=?=QOx;wiC1@|#6)RslaPg!%T3R(oq%gg)63V)|aqvQB3 zbL>axJ@)H6+uMueM0fgxYSTSWwvtwYg9$MCC^}&?vw&D`BiS9(*_j#IUcrFBg+^hb zZ@X_GcjGbPM{aVIrIe+jOH6sc30Vp#1|w8+v@V`Vsw^2>%N^y{Zy`Wl+}YV#(j_nz ztTyNlNqQOH-*vdmx_DA>DwrGjlQ1`TFXYlN(`5{@a_#LeDwT7!b}Q_cOqSJa+?=z` zOU%)g4l4y5HT!zV8z%CZtA)6uHn$4Q(KWDk$R)duRyp^hA*6JS-n+ILfE5 zo_&ajvrR(&hrlPjzj<7tkSJXxC3S{(SfXKn*ZtGv#fujq=Ki{zPzVYN3;*Qlo`*au zlr|U(Csiyd46@3H!Y;AOmKxavp^e&8Of42tmiy88moGalWtU<(LC^@!e0putY_s?y zoo?{EftD7Xw#UJ3f8F)@l(2#5pexkWZLpWjB6M;)-z_!aEL*^mD4Dtr=4euiy6{}M zaKR1Ymv>iDQE}r0v!+jRv39?iBa~&}>({S~wdtv;G_Y%jgS97;#>Onwu6wfs>XzAD zHY1SEEy`!EW2L=_c{O(c2jghfv9@tRM4)`VPT^p4)8^HyS7kGi>LwbFNBbLakP6^q zA)XhjR%473TOku_=%WwjlDZ%t%iOr~z5jkb)QvZ9-t<+-Vs=-`p?F~LZ?@qdJMU8C?>vreF`3@n6W9F@{GN2>FKr*&F7OT@w9SF z2X^%I^qeMxm`$pb9z8n8KVnCUWjot0I6EXMk!t-mwi*s2E9&DV%aMxDNOsFsFMXw@ zrBy9<@StISdDv7P|!_gX58Gt52z{KlcR(EV-J_T zRhc9)_t3qSe&dM-Kb1(ywb5!*Q5vt8J_06vcMRL3>!Cy~X-HXh3eM5&9u8``vU3}C zzFF-1p<&Z{yB{rny#4ywvu6~7Hg6(|FKFcHU|a3894c#AU+_F=(;g}?z=txF26xT7 zOH9p25QciaRF$JySzs|DBo#)dX=+m0yO8=iUG^F|c|=l@wvl&vW3w%!>CJv+ZAFy( zoun?*@}EN0a+}+*;c&rb=(MUTnoA=A0k)}0%9?QfA&nE`kRsC|`vp_;hxYaLHPU(B z7{$L=_N5b7-zdqQ4-XIT)2B~)CjA*yZQ@u^l3&m55Dzn}@pCX-^+51zs_H`Dk6zuq z3%(EO+_&XN-S;%j&|=HhfHtJv6Cn95PPGJ6+P*-QT8<^s3Oiu&yxnxY!IfbudV~!H z?1%MoG6YRvXsFn7IRb-R_g2}oYvL6%l@!I_IYEK(?*6%xFJ!k}`sIsPD6KHvR=L&o z9u;J5Jw1lz=4N}QtpL~R^M$-brQ&>i*S~bi&oegL>R@1@Ow6=P%qSfpz356GPOR@u z{PxhYU+DRUPb{{7gOpiz8nW~Ze1C&AB%t8*>Xj2ufKpN_)#FjLR;Wv1w>lj2@#9CK zwI7Y{^u)n^7`K|K_u2r76A`p-tOSRJsB$fYe{>u$MY3k4gUEW_`8P&Jy^wSk!~c#Q z&GNfJNtAxEO)OCKcR&A{jj&y;jje6!8s)pIrJ1=kvEnBiVJ{MdJ~Jme`9Rq#Fzlcb zvR`b1q;1`v+n=e-@uIh>fK4e!!+E&%DCm9%W9}7^zbA)6+ld)jS<@wG3w;PV4UdBv z4f}q@c)OmbP}D94G}aS~AJqX2cO5dNU752N7}T&O1l&V6=C(!nft!K4Uo`F4ixVuo~?t&Xv*4hO4UELy8g-3@zSTOZGC&V~})B2XjPcO$BL)q=G51UuJR+hts^JEOps2 zQOebFe=$cx(NBzX&VH5t{+ml_#vdahUeCGy?CL^b)A>iHElZ3{O#ZAnW#@7S+r~~$ z9HE%7iqH|m;cd3oUV0E-VOewFztEdbzoCLI$yEP?4dD5jSD4u0_s*#?&r|msMHg#W zBHF{mPs%!1a3@8s@Y7Tg6Z5l9M97I54~>U@fpakIG!=pct&4)C_?0!-*+mUCPWMAQ zNEv}4A?A61i2;}veQJk7(kfH^H?4JUZVpL>^n9vf@o39hT0nuP$781(2rMX@ z#aX za2=**rRH&#wa3@LNa@yYbqa?S74d9tZ8;+);ixt|F0L)<^vLK2k9}>9j}I*3kug#e zB!bl~%KeanfV9!=N#aS+D#kb0=vm7m+N z{d>-@v06{hSFc~I78(*pX*vL6qZCMxMT)g(#v!b9q4SnuB!_lqne`L}pBV*FfUh4u z`70HbCjfVyH(QzI<}riiwnj+X2?&hdiwbXXqXO{V(X6S>V z&l$*8R~D6YZ+M5-KUWMVh&jpaBN75gOAOH%jokCU7#DCBpo*Mh50mahyOYrI+KYln>YYk+nHbO!V{P1C_Q+O>)Y;?t8YuL7nOSb{%1o(ve zrUPuy-^w{V3vSJJG%oGjhoWjxxl(d5Qp+}IpcusHw}1~b1tBTH?!JQR*3 zS9Qzk&*H}ma?&EFDE77+JU)K_z99V#beoMIZ$H0u(HBV}_cSX2itVd4w+~zJb5yOL zOY%Gs1ax~dQz=`oKSL2vj7`r|X6q6A!QW6+s8Dh-_x+I70-T@ku%gD+rZ?Z6+~4X3 z`@dGTMFa<*3E;{UW~~-gz=pJJNVMnFp145jlihbkumSAK=|9kwLnz73tCbGh;FD|G zkwEC(1DvAU5zG7O^JfxTS{WA?A!KEd$f$PN$*>-U%1|Fb@A0#ZqqZH6zyX{)D4mAT zc^pA+D{huq*J1}q89M$BIOUzdEu61IdT0QUOKey6VR_+qmg`7+;cher?XQ1-*a&^>F~vuwAcAFuiz9ONED*$MGT3-)z9S zPP_H(XB_wY7$ixeTv%F5TTC3huV(!ZB zN7{eb0Vlw(W$O+2jkK~uA+*Ag01r6zTY?!&E?$HBYEfhe{F53Fx&(nRSR)no__jO~ zytcD1BH2_Qsi{%T#oNl3H3FFyPWq)>5zevRi0fK4asZ1>2YYJVU8O>4C|Cc9)sUAb zkrO+(1xHaI_Wr><#^y^yO(2|jrrSt!ujdXYsi~#qzRUL8)!I`JC~*z6uOe7EIOZU= z^UJ130F7pQyfYYJAX5SVjE61zzd1ZLZVsRc;OnX`l8Vp1Bq)&gJ^Lb&y0Csp@zDIq zzd(v-o>#I#a<8!HT1C{iZ{5{w?0%~T#!smZJ!GFf6I$e=im}8=`(c?`L{pLU-+#|y z$MO96)liJ;DQ?jJ!zUmN8uInzo&5d(my7xT;iXRq5&FR>!CtAX@gGJje_@d)<&9Sy{or>G-qzKS@4g zQq{<~Em?BDz2?H_f7p#n#II!Ic=Tr~zo(#)HZkx?1QqZxp8JjT>j!S_G28)=uL{rspvzCCW@!K9I4k%Z@MIEm~ZpQxc(Sy?H$ z^l*^UaX|B%VLc2$po1knz5&Sz$Q?1s#{YyufPD$)+%WLNO-)Ul&YN#e zPWEa^X=yt~9LGY&){LNoi+7%l0V*lJOZ@cg8;(A2D<)LpjJQr!_*yfKx)bDCn#|pcJ2B-=z(q$9& zS1Z>{X!!M-F6ER>UIt#e9O%F&PoC%iLdANKBu0xaIT%^3Uri;)JiK^eYefvUGTmP*!@vCQ5Jdj75Q1yGK`c*Z?we7y@G0F>M7m}wSj|8pN zo+ct3(t{gb2CDJ4oq`CyYLDhhX|X0FBRiU+KOKjhoeph=4rk!tQa11XF=zxAYpMMo zK6`dqQc@DjY`82Owx8Q!d5CIm-%Sj7m(D!hMydtPk{ACjiK@x^Bl|=gtFoKpgfjW3 z`41G|)-q2t`I3_aT>)xp8entdjLq*7bM^Sniq}m~BbX36Yqe~O2nt0oYHGr<7DMa( z;7g0OxY!sc0UK+P+mEkbeSp|F0h)85!UKAx^VKN>kIxP=k8p_m_f8Y^dDe1aLl2@7 z*6LXWS9HrAjyjVhGOA;8664!nQ&IrCh%Z{RDrEsWyEnewD~J0i=m0WW*itbt%Q0N~ z7lAZ{^f%xf+&05NK|nWXug-dw;lgLXixIz{tACF&Sljk$eO6*Qc7Uo&! zv=c{8^5ZcekptipRck#&srk&t0cYmWS&J({_i+z$-Y{fjHuaKVpa8FPXtlqV6P5Jv z5W|8@{|1Vr8Fb*#BC0W-+Wd1;d=>J7;WsY)epTZ?$@0g2Yy_4pEj6?hqpz}dRZX5V zGuYrjMqswKwtf-K={=t_bw2v2+<6T$Fp}(x+8kPN^GgM+8ARK5V{PLgVP`G5Uapb0o>%i)k&&s%YjgTPZhqlKl73GWk7Tk? zW0Ogg{OK0RI}L32=^jE|c#>)T(+VH|L8CeZM1cf=gXOo1vy%Ox&n`ZuC`fhP%#%P`g*v z4%j+Ed7{==K6|YMHHJRJQhu?5drj8{ZYL(mcjZ|w<)Am8`%0mjHnI$7<tn(7&18#L}j9bxad!b@=aF5~R3D#=5eJ^@m7}^$TL+bPRx?)VyM!eG&u!v!S7?JasNy)wM*wR18)vpe=kO z?4Us7Uy8$RNnX-;!JqNdCEQ~jq5PCdu3uZkiIx=^(v^>cEJaF~lU+Uu^IWbGcXq63 z+@kaKSpTfpbya}V^ajt!={R2%hV$ri@}9ctJ9$;Rq33_)@rE`M@~;Z%-?nRzoev&K zJGK`6B3LA&9gqInV8quJAOZ)$?hFsnq_-@3j%K+GsbdHCXhz>gb3L=+dhVd}$qcm~ zH7L+7yL|4p@T1Ds7(AzOj zpQ=a(csf}PGw3h{g1EQ8T-deWn{?6y0z#7?xfaE$71h77cQ}-!!W&Ir>LUElc7=YP z<^n}?d0C`PGaQUYX0@8l#~*iBC~gaLK6mt?&2rDu)hk}e6USSjIph{2EVOf6dVZ1C zVmbO+;8Q`j$+g^up;AVkINh<6wUrv$E8Du)E&V351&9QPLuJMG-A7K-X?sh4)A{f$ z#oS=%VVjwmu|AlIqTh%nq7_2$Iq$C}V#sbF@@WC%DOK)q>nvJ(2x#OoOG%vrbri1Y zTr>ZZRAh-7E}hDI-DIw8x3j&zIDJ3o@%OxuFctaiFFu~`Wnc4NSCGC~kljfkK{wn% z`{rA^W+(Z|s|KbNTye<$Uh{4xxFJ*y-~Dt-SRZ}tT}CRq9@qck3Q3Rvs713-CV$v! zYYYeVUk=wl6R}eT-)1RUVsp%n5=I}GT21HH-$856={men&uX$;-j~IdewPvvcUrXn zNB$Uzx!C0ND%f`}8>;z&-*#@QshB*W8$cwZ!n#31|~h+}jv^EW|85y#F0D$1XjUdvre({y^S zE2#^}KH`B~?Jyva`@YK~xa-!fqWG9MXQ?>Wn{-ikjlFR=g7n$wmMv$7N$4p0cdN>Z zE6Ix$vS-)B6yC_hlJ^GDjs@wsF+ZWd{NRNf%}m^N{n=c+W95(P$Mn=SL}WM3(A=Mf z(svsyBGiO+EwkXpY#Nku3Y`X}HGave{O4%rLR`=NCr>Yi;Z|u4o{Bwt*c702^sXxf~$LIntwx-DRiju`xR#>bH||dIMIq4fD_2I)0b(QO)C0P_S$>qfs{uh*Z60 zPbkxB*-KaWmfGP})KnZE14Bqd!6U}aZwB2gE90k;zkmM|dC}Qu9!h{ECHd|LUjiK+{ULKv@F0 zx}GYEiw=*BeDD(R4CAY7u_j&GkKz~418C85&0KGEn5EP0rV2FS3MRT~$;jjcWZtVCZpCGVBXIJL)zzdb=b z`8_?|RL)(x&s3d;UrrO#lCvN^z#l%TRtK8$EvxB!P3yErpA1o{?*;^wbM2Ly4+3@6 zlkc4yy}EwuU0Mcz1c`+(lb=p$?Ks~S^|5i%P7rCPHh=hlPgc3*^7!?VXZsTVN?7Xk)g+HY7U=m9k$VzI)7*SSpFplu z_kEVZS?7C|=yS6`2}e`7usF}%ilmiL#%Qs3@V3kEI;q^lI1NX8e0hm|YF>8uPOt74 zqWEjWEqc8ZdJ-Nyb39jl&;QrgZqagcI>QB78sY0xL-`bFQt7;{mp+=Z&9dLCcNHb5 zq)Ky=Gj^!?-VOXb{r>5Kq~AZkx$QJkhw>S>*UK|OXwb70Lp4_#)!*Cp62!+D>NGnt4H;0> zcRs#(S8SN%L(!cy-f`*niXeelp@Z3iA2s{mT?y)Ys@zL}rUFNwm zTs*kPn;J;P6)I8UXS&e$k|D|IiM^8}LCOC_)+fX-3C;`W<9j#V!#UIlEqC2H5h7yc z+%rdM6w?ka662-qUKaIQ?B?%lk(H2D856r$dK$YZwk3(dv>R;`+}`Z?#!gF9&P!W| zaI{cVP;r(utsrG}K$b%CGZLx4ze>h~W{vnYP{$R%7YX%1lS6bFkY06SnbH#+sKDDL z;_XNpa|YUY&ZW3n-ogHr5GG%f?ovsc@PgBwqW)gvf{fTnTlu?>+-zcA1@!~5 zs%r0<%A<}y3v5P?5Ao3#>NM7`5E0kQ{=w;$Yc@d_8V}Z^uO}Ms>CWc<5Y!_`Rz2Tb zt^&AWf7eoeN{%X-Ub@4YPPJRxGi^H(4xzg^^X=QTI}~T_UHm03={>@7t~j%2#I~K3+oLJJ6(PBy5qc-6{>HP{`=*Xy<0r)W+8Q*S};! ztl{WKisS$#rOFpa#~z`KmXx8xS-jjoyuUWB&0@W6mxdSRozP^@^R~vjh4z~wVwHuc-HMlCR7QD;#3kehRQbNTVE_;rfby3e#jwZzy-fbn2FG| z)UjM&|J;BcQv%7nMJfSGR>W7Ed{ahE9YVfl3-G&zFj}(Us{K+8VkVgvB+7g&ZdFD# zK^tGDB&2G%zgn5nVUB&3Vf78!;C_5PgT_USsP;&3e)C z=6rLaPQp{cA&a(&o89)e>R0vi^14^es32)kc#jKmDaW0samM z_=cD*yv`kMl6j$z55fv#rLms^iSy!Y6GTwz^&{%nGhWmls1tY!VwDJo>g@I6*-`h} zNL^Mx2+Ze6&`%(|x@^rmJR>WlTC0*egK zLTW~E;PPr@h;4JFK&hK&-hKBM=x(af2-$urt#DGS_QHoRm?2GFN+WJ=*CtgPEpVg_ z9X=4SnIknD3()DZR$)n|A`7@)a%&!6^wxJH-RGcE446e6 z%0sUtQvKeRw2C~?(4ZOAbkxjVNf7Ffw=ht>j?l~Cr8BJa!j5;}{ey63!0d*V+sZ7ox%g{WXBF+OtFB`H_ngkR-M`u~Vkrm8Y2?PYms4~017vT! zj11FyWVqv8{^fKwSp zn2nNoLG1XQ!G^*iPT|~fE`!xCzp}_JgdAujXBek?Mm34HbUfkiLb zC-Y~3ImE34(eZV{&oe@gSyVJZPW<>2u!7~EHJ?UOwa1=c^1cN=!5_?$o^=dC-ay_-4r&K7=CqZ|WEwvaik*Vb;@FiiCS_iVa09gNv#B{@-CO~zM zrubHAm2+|hl|zQ5lFw3x(R`tbxjAl3Iy*0sswILq9^BwiinsGU_ip{2wtz3hz#tOn zlb5hk4R1_@Dx^xbwY5!wh=zLulv&WHaMBAM)DA#2wE}$%yF2+YuGryxN*Y0-;@g4N zBf!8;U@kQ^TSAv|z%uZFc?Met>}cRS0<^qT)#8odDug8H>2ZE;opVeu7x_m=T_+l+ zB2jAm6Mo=A_l5WG8)%aQ`(B4ML#Mo38Sq5 z&9&>-?;CZ}oEeQy(~~^j8KMIcDofpk3FSa|oFGyuoQ1KdN?`Va-0VV|t@i~JAh!~-)TW?482{2u`gg9%tL1_S^pI76= zTQc#bG>@4{kzdkSX{3b3OWRBogM#TS;?>_hhWiTynVKXd^&_m`styGlNx=+RFng zLxJO(7UCU)OMbvfk#(ZF_NOoaJS2hO8V-+&l2%ovWMN?mrr`3SwyermA}^4pcmD+L zY{b*IwNg5^xsaX&d5s8s%_xYg;K8LCM9|cB+qeLJ)msz{2COVoxs1CQI4HTPd!8?RIht3B(fZka=@7RiQ4|v^}cF`rP92fe+TjW^6 zLX@7l&jAt1e-I46-hM_Wi_eaRBt1n7=8fv4vEi8H4l64ki**SAhC{x z{K~S>)%HNlK5KTkIqfc;rR=?`^+!n70pmD+OBlU&^)bNN+hSsgT>35RL;7L;0!Dud z460z?KwF9iKmL@R5F$Sy=Xh(bYYsL#m)p@5#AT#Q2QSJS;9L4zS5v~oeu0A@S`b`v zEvK9JqCOlQxgn}VEU#%STMThPAjaHbJU~fa9{T|(?`g*1vyK!BL+;mfQBvYo0mV0A z>zqR@U?H%Ea^6B+zddwpXI0in9UsU;*eIfh5fuKxS|jhMzpCbKx)T80lXbQe?%eF@ zQA0rT@(!K)8wuF%m+fi`ZSDfA{e@2R58G@Q{b1H8Eo| zFf*_LmPweWc&(3tgXOgSTbfw-yz5j;2;vL11B~yY4v~PEyVB!rF27EDQ9og&u!eup zw_i~IdH)gJ8cp+ivgBV)xOWGoB_)3Yz2UJxfeRv*{1ljzAkK*37=zy?y;Yx#B>bX+ zqL1kx1rcsK{M(!UzICleNbVs_A=H>C-oit<4Rs3P4&do0Dr1#ZU%+ zWuFLrnR@--7L99bP{(yLe@a-_brN*dN9e6cf8i!IWM}y-N82+LlLM9!pGCdSKOgQ@ zfF~*%t6yZMgF`c*;{NBe(`p#87 z^|DA=zl^KPP4~t_v3s#`E4UR_8jH1#7GNoFG`*a*Emc_#&ack2Q}qaWV5 z@-~`(u${Nfco*@LKrS-?`XTk(H*kh@0Jj#+YkJ+IHVN9j7??g$p!WoQmCO7uj~Hf| z8&M`pA^FOS86#B!LQ{nEOUmtJ4N@BNC(Q_YRN13ZUkVVtg;t~vW|e>29zgGksJ^6d z)TK2Hd-@<%Qt+Bw>rIz40xt=IRS+9wfT#z!(-5yAI0*fTXrF=GpDqm73p!A8uvO1F zi{A@&teXlG?=;P=ZUIMi2Uv!@Uw-riv$zd-o=fH*ju^(Yg9|noh8x1cTJ%-&1K1E5 zSXhFT_2FX54&6q%xl*z6&V5 zRU|dK@WZv1`|{n(k5Iha$OzS#2ZlXNbeDoIEC4j+^vK~CY{F1cAI6>6v160JAF4m4klnm> z0!%s~16`)YMIiM3)P=^=v_ByFAk+J}dF6g5qtoWXxRoEj0Ew~ua+94K<7yM&UKb~o z3ev$}dsY@F*C8oC_G{T*e;NCc`KH3@?f)T5Cokv=zt?T_2Un9YkerR+F$)X}%iSsi zj`!EEUuPpg*n>cRS81)`HHSw=N`dDFvd$FbDZ~bO)?W5}KT;I16{{~lP_G-+9=0Ix zZr`e>rCtRD^zA-D)^7DivG4^{i8Jz=J7d1C6KyKy+#AIE7aZdHtfX18-}RT^f_bC; zh{jCWr6b^JNr=3bSHBo*Us_I#wE)cvFb*9Z9Wj>pJb(7AVQM1}yw8CDGSchT(4}GN zVD&81F8%&Ju%Y2m1r$qtSMaNYhyLBW*}d_Un+P!*o_F6dx21U5JowimEFa_Zc-s{c z^j{=X7ov%LG^L?|qL^zr9oIM|n;o@xsyQG%$@*}~fu8!V1XE8m0jcM%lL$An-nBVB zRNA|=0o)AEU-&of(w%y3bQFwsMPFG6X{_ zWcLN^fT*2V*WKlbzoxn0jJguH=YRV;to)UK^{N5rSukPruWYK_MOwY9bTu{_tYeMg z!t_|eOc&sDRDMXG+yI5>Z9Lt%bd3klx91qV=Gx0@EIvFB4BSLl%|+p4+cL&a*E^x; z3eVQ~y3ev+e&jxjHu5_OF*9_ZU77+TKkvrI24coVruJ?zGjm%E3s_WbNO^30(54wI z7IIkr39m9<)bq$mD;vi8-PbNR7rdGRYSLJ+!C!))Hg z+O#KS^B$2GjnL6R1*&au5NNaLyu168cHm=G;kbCwN2rr*R*&0O~P41+BoABF@na4 zXYKhEKsI&5DUD-nsV{eV8a_MIc?a9}oqHw`8zm$qas1elA-eP$d)Dlz1@cpOXcavx{-DWZPNAGpAr%#_qQVHG%{(n z{RZwbJED?k)iRgO?0$W@-`iTVyOScgEOUfqA2%2kYEF$@?4k}* z#0YP125A!Q?m3`<;(1)#dnR$7o)ovIkJDms<4whz%dIbhQU-qXsbW=+-G?0_t= zaC$FJuI+ILKD%W5hJitPf*mhATwKHTg^|MdvC`7ifqMwt>ZPwMpD>L#O`kvnBF~e+ z+P!Z$l_AD`xG~b|QydKJaR|jB$aV58-c+msHUtYy3nwSygSbygf@l)oyP{ZQ^sl0&wpxBm;v z_dyspUc3#7z{muV4BTi|ky(}gs&LuG>aSp1uXewFg1w{SOBWHm)`tdVqpo~YwB218 zymL>!pj2^OGzn($+z7;W^aDCEs{{b(HID9X%D1XoK{-LKM4K&e#Pa5-j z3N{>;$E^A%2z_;;baBvo4aJk%0uF2q<<>%wkoR%NyhfOcJqAU8Bk#s=_HHTnpE-(xJJK2xHu66>RN+Qb;o`a2_jw4c2!r!|3QeZ|1R zU=yEJgzbbn5mPYZc?u}t8L4id~zn|_)jmX@X5~-^LQg)d8G&rAQt?Zty zPDt(NSicGO=AqK_z%%xXJvU!Sm4|kg%WZ$1>NJFk_dN)<(P00LhJnp@!c9|rZu?di z)jI=1dq9)eBH$94Uh6ytNpKF>Djh(a*T~8F^*$9FtAG{BgzJ6DxR$_$6g>_KqND12 zH;1OO{whXDN=y$8DTNg8duQS2|1}s_+rA9yj>y;vrDrWGULwzAwC5n-K9y(qR5w`7 zk$w~l#;jGLwL+jJ0)Jpa`m5*ZiEe0~?yyZ8J0bxChD+#`6%NVD%35@fG}wT)OF*q_X>=?|li>llf zpT}2hm0Jx3et49duAzFLw_Q}QEV9}UbUa8QSjyY^npIo_`yXh0|6?4WLNm!Fwj)>) za3nIS*?3L0anniUXoA>t9A?mG!C)~1Z6a!g$bQ`!R1wu0H$f1xu@Sd56gU|wBx!_S zpM6446(+FKqwa6ox&-vyxf{`ZoJCB%iqhZSKu%#Y9DN13`H|w&?;KUV=dn4!ga-`v zMrb+lSfH?#**=wWCo>YwY@_cj*LQ}VYBti=ybCf=H)Bzgj>(PYTa~C_GSHK%3;vJ< zo&jXg71%tQjWUGhf{}oH-NuWT@$tcf&A`g~0d6M}n!$bn2XIFYJD|;nL9h;nsDNhH z8-|5oiq999coy1?TkP!F1E$k6GaKL!M}}6BHwg_79}-e$2T z^Y7)Lisu!_P9@Y3bswq(;)?Tz4P4BtqYsDFA(JfFr>IQ!hr~{03$P8Frf7 zaLNeNg!lz-G5P1upOH0$z$r8xyoZeOAl*0O)c~)61b6_-C;X|S?;BhOB!?I%zt>1f zNp(Q-d4Ek1pp#pqz_f`M;zzz2deySux5r%GySN9W=sG z6KXqaFXaxs2fc+wT77u3`zy)sJJ&OQI(YUZRJM64xPkh+o__r^CJv`}>i%LqS)_+B z<%Z=2;~cabWyr!5OZ5WD(3b15!wL^JP%yeL4)h+K>oONI^mY$xTXinX8z&0cUb6y-tNb_sPW&=i6 zY?0?XfDvSB>!1w!E{glN+{D9X#g!jJk!jsfMRd23$zGI9n$6dG;0gQcf$c) z+!_7YZNr?NzIxpGz1zdGwcdPH<>;{`5Dm{bX#^ayo3_SIn}?~L$r@(%RZ5y6NM6pe z-ek{V{hg!oqVZu7Yh+Pb4lKvMz?>o*`m*Eq2jAagkU0tDJN0P(2q8Vtot`x(OnF^d+g~?eYH#dJEhv=nq6VnbkhEcO@twE2vFj8AD zn5xBs<}af(Ta7H^xDW=Bv|t8EZSLB&YdWgefo{%}k2z6+X)t1h+qm!rdM^;kxy^?1 zz=Zo4aUu4+qG=0|>h;sdFaY$$0^z+u{LMKB4Ga^}?iUyGWl|F3+5e?6cE%Q*!K7W) zWZY=`Jks8cP-m>c_l{Q6ov4^C7O=+dUp&70l{9Wz^hqzv7TFZB%Z5P8;_#Zag#5MP z$1%BO#^;5Dp#X0I`$D(p43p|eX8aTt#cehIKq`bv(#(v_UpMbf>s1)`QDZH~UDSwL zwGzOB0ib>~_=IrlfWNkH5`d}}#=838Mjbpc!oO>7iof=N5K7x57>VbAO&vg7sDfP5 z$K5Ki#6+a1&KVsFU`m*}=a`dmu}~S_(%nnyd2$lB7$^|Ow3DH1)1A)dP#L_AkCzp6 zKaoFB5IMn~3OjP`BlGj@=73T=sdhqyw4Emyfs==Wy2WcFc59MUn$(UA_X2P&zr25| zyfWQQoz*b2-rbTgv|Z2p1^mwekcl@=PsUECs5o62b^#{Fq_CB++UFMd}d&98yRov62q|7o*u7JFWZL(%+7;YdJQAabM=4tyHP`x z*x;&_4;osfaD(os`xFK@r#q^?Ii-yR%(Y=Qj^@I&%>f@qa(5^y znn)1?LiFX1H|AdgpSY`ljT<-Ohbs75gWZKWtGc<&-c86a@cb_pV{y8!BB~&ev&!*n$oQ8E4_=F5hil{VYh@Gma)DoPIs1= z13_lpFt|1%y#0?U%zdHULXBfp1}4NUk?|iGGW3IluACb|595i*{5lZG2Jp-W=IeH% zNS9&!(8T>M+n-R?D#FIgI?RrYL)KU|y`GN4DI>U2-5p1~Ly1n{WgJS}UnJQ+ytR$e zME3O&_|l!ak^==DR7&8UTG8buZ$*4B zARv+Dxa`)Faz_RGNPfj~K^x+*MYJkG7yt(0R0oFWkX?c2!EC~)UQ+kYhy_2WMFPP7 z@gw3Upq4bqK@|S=uxSVqgSmk!csNS`903(iAUrSyd0bFGP z5P6sm%m`{v70U`O+_I=xNL$?5g4#2N*X&V+^uk3CW;!0Je#7lnJGstkDpKvLqf26c{qvTq4O1tt4 zIFp(Y_ZdATPLPzJ=(;M1Ov@l5%cPaSJV%Y7#(UBWY(h?Fk<{OLOK7%$`;DEr5 zaZO}nS27^<%iy;f#(C+x@ZPRw$Wp5b_dfm7HM4(l?23tag)7;r>S=&{4fAk#&=ba9 z=37uN5nSLXhgix8a3N9RZDUkN7#C0r588xN+&GS$?hks4wX%#5qnQr^2Q9wb?SlEJ zgnnnv(cabi&}VgQBS9E+tDv5DN6%532L&uXSPMMN{gC_gnIV7WEPW|QQ zs~vov2T9Y60x$D&Z(;@^N~9cKDMO2k67{?fZq(s1@vz!cMV!h|0>`%uJ(rL`lHjyO z=?#C-#%-fFQRO)rOnzifxLkLs0+<-Y2X%J~X3#KfN9S9T_Aj|SR&>5jV!Q%;a>yZJ z&Ns_(xTnE_QqJ9#8&E6=@2fwTh$TiqbokE_5Nc`WD!RPWSe#Nx>`21@4`pu|mDT#T zdxJkzYJB&-i{Eg9;uKw-RQgQ zRvK9eDx4=v?O)9${(i0%4kOtz6xLkEjix+MF@Z2n{}qNRQe|agz`x(X48JY)I~Lqw zUlQjAFR_!Ao`ENULD0sg%a%pk4mxLZup^QD^&0X~?=oZU(guMjwlxixj5S$W@zrAju#XKm#~qEkeM_iPl#I; zb@Tk8qs$|neagq557LgWLEUc8nDR0g9Kx&quDw~&u0!kWA01g8wER{YIx5pJ$3igN zzc{3}O>7(U-3K?F3DL3mZH7KtW%8Nxjc?BxEcu}!5P3hTJ)#xv)7yN({V5$vcB&L% z`h)BMP`|%<&afFnbv(M?Xwc$V4}UH!`V?<^w%%cwNt1iWz|i?o{tzwEGHFC-=`O)$ zMg_Km0MED{*hFv*nCzfd>ybSl#(5f1x_C;~(o6-96dlTb0ot`t3ql*`90^!{UPK56 z99_*B0-e-Bq~6~5k>7@5I_8Yqx8w?(pVj@FEwam3VZlSW{r&qEzCU+Ce2B&iOJJ^5 z^CMk9IbO;_fv*=`9LS8B3nO2M*Gq#mN6J=rjDOh8$80-G7ahxC$@M z?*;vEJ@<pS_Xv>$x#nR+e zx`jbFg>IT1VbM3zkbDI*LE;d`R~2k-PD$1K>M0kkm1stE=9{%rJ#B?jmv;4Wyj%%Ka&vQ`!;0cy5r8-zk=g5@KpY7WU za=ssc(CKgyeHhnOJbMLeConKXpA;Lk+?b)WO*-!Qz)eaG0mZiuh*5J-*DMjOe{zCz zB-ifatQNR5XV*tAN*^a3AAj**X6gGXR8xAc-L?t#LN&Vi!3&}e?|M@o9JV? zWjjt9J0rYZ5t}oR0HSzx;9~7oD45~HRWPV0V9d~Xu=0;10y@tN+QXl)n@D9LTVCqj zzw$uwCW9-BzM>gw54IxwszoD*gjG<6Lx-(jpR=Q!SBo)zvY)9FujWMdbboFV&|g(D zZq_?AA&2{71=E-Bx8dz86pWo?1}W0NG=FPcI`Tv-TvLeVFJ(7|@YssYi3&RWUog?o z@<1A0=;COwpNDu*%pGj_+|ti54&oO%r5$Ht_HI;%IO>-?!G}X42hlKxFlM~&{NZSj zF_OS^oxA8w9%M6Z2bQ7|D&zEI@V zv2B`8ym0IgF|&qur&`exEwr94R!Y2|=o7f!@-M;h@*<)2HBq!&3*X`l7@nboy}deRSP1poAA-I=lrd&!<c4_4%8Q3v5kAb}U9Sx9)gHM+Opa>AN1x#GK*51wSgx z9REQ3!JjGyoK+$SKJ?bDuU%&#Nk;%SNR>ApbY7=`C`twJ7E)nDCnu}iHBIBfrDB=~>mL@#Hbg8)O`${Q?RtP8c=02RU-EjQVQ`W zB5tb$X^t1>)oV~P{?R3v)nx#XDNh8);)6|!6u@fE)-7Y;-(Z2#h140jo@X?L{^D21 z>Wk*_p{KkqH*Z}KplvuPH8N=oVmJg3>ShTwnzz3E!7e--w=VyTNW1X|2#2o{wG zSHd}^W`b5v7Xc#q_8B&>&xHSYk!y>$_R0&(39DT9e@wHP^>IirJozDuC`1t?D59-` zqVJqu@L0J$D+;7@Ikp#nHJ2vSSQ0m8fAQwNw1iGKCdU?j^;K3jp})7U@XlWvfK{}h z3RL&b8zCjA#1&#e{lQHLMNsd&$|sM=0u`CPv&WT>~Ph0VE5d6GU_p>@}M%-3Cl(&TJwm(p7=b_Dw(czUxU7Y2|f!y}m8S1`yGjxQh=pKLmekG+6 z1x}Xz@=ICAw$9wmJvwu6n0-7ARO`Rm#P>(mYH;G0^o?=qW5>T@#K`_NG%plF;VqPy zm>2{_^H@am?p*@@)7BHObw8RiiV&4%2uzL-t_Pg*fK33`Q3>qkY_Skr0nJ10Zv_fU zaa)o4Mcp_S7rpoRgmM`n2Z4M>m)x>J#F*rewf;(#)K34M#|x}r2OKUrSXOk@%mDNy z$s6Q-0sA8z|7q+Y+8ANU*B7vHjzKXN4cU!rLE%|O+-|9i zUDX{BX?_Li0mSCxKa%S1jC#9v=^&@OR_`;~GURuLIhTxelBsIRFIG!@ATM~?P7XXL z85^5>34->?fGJD;`t>^$FOi&IsW2}iL$@vTCc>tJJ`V4oCQ--&l0`yh)O>+5y?KEP zvX+0YMx~hpij2CqZtBrB6dDSBA%%El_WWGEBbnZ+`;4_(aT7&ViS#mSpBqoRp(qQ> zdju4gV>^XLC|nCGu@u;=R2;hZ_x6$I6hbGN0}c3eNzIwX-agWE0-6*Q(j%J*G{s{D z5D&`hLmU*OXXqfr)y3+vpLmPgW zzK@$WWawwv1}$Ee#QXsApY!;GU#Ls8mf7-D*vJ(E=k1bW<6ltsR`uLh}Q5UDfAN5H>`7YnAyG^Lj30 zlFL)*HVYtU(_zeH`xBPk2U{0K*tU8RTQs}J6MK^^b7uQG^TQb@MK7pQk2zgV1^Q~O6 zi%Zvfc4#lDQ+Vn52*4>vY;p$-KW+_{_&0YeRG=~Zp2Wq3?C%xLj2w%ATmXe=$(r2j zMbvHR;1HXjgEbMt7K{cj&-zZ?tw>;Zxvx3Blpx` zO7`P-H*?iH4hq9>SLgqCW=oGJ@*DwmDdVAe?hjH<-s?CWEL}XupIVyIZ?VU6G-SY^ zjSf8mfvHy^?-ABtAFr8iq!}m zqGxaQQmX80#rOQ`y8@Vu(c%Z-JRU>t||9P3e_~n*`82;gBus2<>fB@$|IrO_nIM$bR$G{q=#yn9l zx{vj!5q?l#Jk)OvWvkF&(^AhT9!^#r{HemA@s?=^VU25*g@V14dpAuYH3H;nvl`oX z|7PB>PZu_DY#RsrWjH~-Vk_b;*<~H)rPT~4C}d_GCcsvUqRV7gFSe$Fv|#Txz)dQ` zye!TjUL`uyl_(MiOYIXhN(V;HK~!x7j#6)5el+}HT z3i0DrSfaClsmq)MES(_yaBEruOhEq`0~xRqjwyg^?)nUmeUMr;3}36|*_1%Cwf&Z< zi_B5w)n7?Hj%&eX|H;c=F#bWddCaW-`=^tve--+p-T5Nhn8xP;;{Gn~ecAwH1X(8_ zkyI>&o{w(?FeM^{*BNMDv_Ox$+w=T~9s^m3N>j$|S`kMQ$c$OjFu`|3FCf786uyI6 zf}hW54>PhQhA?6!3j5wS%HRqzI}+mr6}$jL$ed!HTm>{d(tuXPQ;c9M4-cL0mR{pV z=Y_QivW9%{aF7PW-J`Ii+7Jl)S2YU1;-*pr92MfJsOYj~pQfLrpwJv7t8yIV5;{sT zv}C_%t8AF5T@@L@$t*2JBtjgodOlNE&4aX_`OY2T?b{Nmzw`e`)y;wI*Bgq1${M}! z^=9x@^36I}wG6ql{pIQDQ68RL#OwNb=%QP7CViCu&Ir*gZJ0|=%;vy1QfN0eZ5{x5 zIa<_Ru-JmjX1PG{3Drks8$y@~mN&(33R-unX zK*?eCbj7g93Jt%aU3{Y9sP-iIVa2sk20?N)h0v{=&>WzZuaaB<{Foa^Sjqs{eFWsh z4kS*Qu@f}AQvSmt4wNrpiHVcCb?>F-k;NS&K+NTd4;E3OYEt-jB7T49%OUv@;0Csl zkp|E#R;A~%oD_zuq2e`HdyCG>K>V}ViY)=>|E}CZjhMf<3%#L{&+d}LpSGDG4S04M zq>gtcA#$Nh@R2X3fllIsTG!nj@%q#k{c8q5tp)>x8Ypmqk#G3&WiNP`s9U1HwjsOY zNPz(jgDi1?E=cX8-^Jw{j19hKGp5vy<;UUGFIs(PdB_I!C10lJ$hkd%^d3r~IK#yG z!2`*z5B(!>g-9yrRoH<08!)2?mwChhaHL=5or$sk772w!iVl>?5u2O^>C(OM z=_ib_q5w)F4mn#Z4MJ{J_dz$JvjoX#lDow^Ds~7*)-d-8@Z}PaDI{MEppWx2jL4Mj zVD6jgq(VpNx-Mpch&2RPxN>fA#~J*PFo(v5k@6O_Bdv0e_{XmY3@GFoio)sZ9GLyfrmc-7c&OiFkWVQz8{t5V0M@jhu2r=2Jz=a^ex1a0e8CrYyeGQ;o;vKP=qlh z4eJiWftknx?a5hrS?bO>Qe^-=>ktU&17@^?^<8hm(qQ4jG#QD1XCCs3i~O zo7e!~>ZGvH&>)wm@G>R=S^YTv7DG<7!H(yn0AUQc(7zE{NbBq_fHYVU3FVzm=n3MS z&y<+@e(`x$6?z1-GqS(T5rH*qyo!4GrzhIIYgsc*G10EkAEh1enc;p~UG%DPr&Qv%)HZWFFV> zzxz%L?Z5XOe2rJbvMaup(>$dVRo=F9p80cvB*G@*Z?$#i)e@fHqX)4Q0FxS_$rT+)q{h6ET-~zyK2R-C&c8tXhu01qA;>AZGj{0>pMO z7qW7>Hr>>LP$~2?Qe@F??E(w!G8Buo`0$|tSYR-wSG4|1cbGzed@s@VJ78A3L{H2S z{NLYhGVp={%R0Mq2C?bf_x8JU;O#N_bYJ2|y&CE`?u+_=>a3O{o#6Qp%5*6(|IqnP zAbW%-3jU=AA@3)+mGdY_y~gx*h}_zx4N49=Xeh`&^~-bzkkvcVql2+xj)UwL=*-!6 zyX3Qhqd)Igy` z0_){M>y{q{x;MipgzMq|HPFrKneckSDMURP`aE>~FEo;DbdybBLxw)O+7eo+|L*Up z%1!a@sLsI}cTlQ7$2rK0AHhQjnR}iWas9IvkXH^>WelvU}S~o+Haa6-wzUOc; zmiag!F{N?T@5gYs93mJ80LFQ7gg&`%`@dyND^rmhJ z*zFKeq{mL&6vylF(iL}*WFWs4V6`OR(nEMlzVDUAV^heL%FdsIf@C>#BrFh}6&`#} z2<=$$GrgChB8tboJj`4l<%jI<{J?(i?HW61ehH3TU;V$Z2zuMi=AKt&NJptUvB-kp zDXc+TfYb39(_W3Po)XPk*mZBfQZCIK`2cdJ;YteFw^hkD(&PtLyEZ1Pgb=UzKLTt{ zP!-`dOoI(pA9%Bf7P@wEXL~+OE)?RY9?lO^Tzv{G!xzye(TL*KVjO!u;`Nt4ouHTK z-*%(IK*GfD$Pi_CmZ?rw^P%zA<&dXzXpk6PM_89$fW^$fp9nY=(w#t_D_P64 zs!@dN=p8UKygHrzqiYtVFLMB?F@Q-l;0;7;|Bm2k5bZ30iqavb#HWH@EEf;!unu)W z#42IBq(yp$8 z5w=q{iPhUXWc|$vQp2eoMm!9j8EAuR?QSlr{*vo>b3!fKBYKmfDFYMg#mafhCky)$r4-LlYm?mZ>%t_t z9a2ed{YOIM;!b@ALt9{+Q=5D+`1h&kfr0G);von_bp$q?*=ZHZ&MDYkH5>Im48IvfVzJ)t!4Fc~D0VnAh?VtD3Qs>wcdi1aIpbk&1`T zEmK{Q0OgS zj6g>eQOGT&6q~c@)dErt$=}Bdxh&5gSpS|p3pftG7=M&jbLWn=03MTtfly!dGh@NR zCrm}pj7LkBpXw`(k)K>U=m|pY%^lG=8H770zEW6IUuC?YlgT=M;y2}@Ke(SZD70XB z4y+Bcz&t=LXqt_of^QiR@m^4_<<$3iFYI4<+2}krHeyw1AJBeeN5xJ;BezxDA~>@xWd8x^XBGu0mDJ7tx}J2q&QHI608Q$ z6|!x#MTYhOu2+^{iWr+c#f~EP-35yIUx*ba6k#O_LAe-*JDgu&MMi_GBCizVIbfTt zZIMa3m%3EUbN=+>YngDauhBiV|?4v)Q7o1)DHX3w;u+zH`Qwt z++ipD7M3tTHdSk8%^v%&@C~eghNTUmSoR$`%Lpmp+Ab;#B08Z1vK6RZb2E0-qS_Hr z9U2B+?YaY>R$-uc&ayZGJ7=@R?-oM+@Xb1DQL3rd3Z<* z(wE-Fywk{`T`u{=!L_A8_bPd)aBm_ zJf+VrrkWvmBKw?Qqkj-e9X!KY4L~P|;m~_nb;;~C6k2J0$*y^{iEUZv1VM-WU>6gv zn37Cs%?PCaykxmXiZiB_UO%Z%#+n^cAKU1-r0#w(Q!ok(&gSER7w_~B9S_Or#LF^} z#hcQZQ4^Fi9Wb!kb5to{4x71Dztj}w+$rv{J1p(7bBbzzH?`SPZ1G3Bq=zdF#@!s5 zRXy${d^)Atf?{I&cR$Ojjfkg()=(Src<5bQsY(kLvFM;(DePwnn~`=nSJM-7haZoP1btj~;4~=Lek%X_DsrjM&L0+& zS?Zp^6;GAKy)j)$T{y99DrEm!D30TVFBv8ykXMam~1KQ=iCl7Dm zC2&;IQ=DNpXbV!mGrG;@%IYvQlKyQcke#`lj!{l9DugMaUDT4;Y$qyT(33ds!;n%* zQ(VEa`)IRWs_M!$mo$Peif(*GpAcuft|lcay;q^RR-Eyy#@TfTebsCSAap%e%`-fQ zu2n7g>jBKqX*!T07z`|l-HnNpjP+IVRH_2D@eeQRKwl7qlr-!EZ)EWNQZJ8iF6&pX zw!Mqmj`?cEt+dHClrq-i)}#LJ)OwxfQ4tySDpyq43=2y1nSK*1LE_Kn6J?v_JI8UwglyXiyD8Ej50Yx^l{NU66D9x-=JD zqz91lA@$tM4>&~y|Az7UXwe?dQ}NhD+x10g2-Vun(72G6YB;>xqsP@ig@>m9V#BVO zJTGr@@_H_ALw`$e$yq)|f?%HM(jLW}X+v#cKV`H7wXzq^(580R%ESjXo&1lXnU@yK zPe|VICOX{_l6uheTDlUQACCe8&~M0P`b7MDBmzmMKK*LlzN-F)cCf*)wD855PUWH~ z>Q~d?wwb}zjgkM4EQ6cVc9;bu$f(ow9M#HXm1B!+`n~&>>ZNlu(p63OUtOtoT+#JS z4^ENMmwem(JR?ia`5$XnRcOcDmERw~==dovLv(ZcfSv|N<@+tq>t+Xc(%>9dcq)|a z#@X1^$aT%0d-3JD_w7M0hytt%*x-)(k{p4*40qCb6i`?7<3%KoH!j6ziCzP!$4sDd zY!OrofRF=B!1at4i^fJ~vZHyH-=5F$c;L`{%t*5hW8t@~@!rNe zH3yM|zU6mXIGbgWk8dL1%GB!8Pwg)H{VZy-@wX-l+{;z2aA@ zcTBo+;l!Ppi&t%vrW?4EKK{6`55;f!Mv8^!z0v(e?+!Dy8cS@Q+;a+v2-m~zuby0H z?Z$ZP!jZ&G31hDaU&Hq?-HyE9gDERFabhs0ueyfb9_-o{=LGnd7Lzwhrdh*GL;pXr zC2B9E5Z5%8uU+uP{ttm_=_AuC@5qiirq1aj*PO0W5)0S(0i{Qr^G=1OkvEnEwY!YHMEEt%kUHT?#j-r&Yj$LJrbigufrDtl_% z68BEzZ5iD2X57z3+L%QD3~)eqq}vO)qzsN!HD(bGmi^fmTaJ|mSNYxku;)bTjTLJr zkzPPG8X0P%0D}}EwQXqte`^y=I&^-B%KHwsK8>5L~_0QB388?qd_kYies9S1f?) zJS=!CbklgO_?KFKD6-eoI12E7(Qyorx1dTC4f0BmB%L$uPvy*k;*N1mO)yj~qJ2S5 z(~k2ULaPc%*;II4;<$?$1;+c{)cv${@ZDl8d#vK4x~Aw$$n#O~@Q&>$ zn@yOsM+^xa#a9?ZJ=s6dW)4oa7r!$eb&m!&biguC`sf(1r1f3s!&Djz`xq}IL7frH zf%>E8)?QKiZ=R~mamUrR`DvFFHF z-x6!4SsSMdYqGF*Jq7^vH#D`NA>*+F~i~~Z+|4EXpr9$^&0UQ2bxv#J|(=15GyVs1ZfNT@t zcCT*3*hk34L{j#Z-YaAv$=Rmo)bj#=DaCEo=@(lhf4$q6?{&k?!%zOK&-bH5*5IgX za~r)1#VNiQ?2VV#I>{2d8$S;TcZymW|hZ}1DA3%@V znP$_ZcQAAVO3)~4;TxdO_B9)t=lAR=D1KXcz&Hs?h>d^ ztO`Tqp}Bcz50x~;Ta9tSGMjF$jLvfCu+!2pvCs2BXn=r=rsXIdI>-#mkrHr%;@%fngRCK6*6k7tP5e#OuBN^44LjBvM{ z%id7saBW|_1H)o0nrNKNe)ShxhIPT$>q|f5pfy_mO$;T#7UT<#6 zGWiEHX00ujvMu&#^Iqo~(T;3) z&3Z8}7I)s65!Pj_JNinCz_IiZFtenLqt({$1=)NAUj;R=5D=0G811K8F9eQJf(o7X z?!GyI?jaWp*#TjV6K+>r@hlqP7WQA7Dc!p1$ZD*)Obq>g37ekc_SiXNjz$g`9A{Wo}O}*r)&^3k8 zO4#Uuu!zfs@1Ir0eGSTtaL#YnM%VDR9};G4R%tD>8+&YcM*mo6WjRel0hby_a=QTD zvam|kN?IGw@KifPi_F2FZO}T;9__Oe?E)7o>VBR~JzXd*gFenQNEubfVRA3nmtgW4 zObu*o9OzYf0Mjx5GqXs5Ut*FDrf#%=_^Qa9Wisf@Otc{9PJPi|ZO6TM-C=n>>!T#cbM8uQH2BslS62M7Bp$ri$=%_vW^gq?28~()Jih&M)jn|Sw1?7h z9lc)Vmd?aEbeXG(F8i$rv4z3Y;SW~yMpWL=3wQ)o{@M1c!GLQ(G`$f6_*n)upv%xx zf@&=yNdWuUHdJ1001|Hy8*+v!%eX`G1Uw1bZq8!GOw}8csns^nou0J4u(2AAB&!Ae zX-9ph+I9le*9hZVcqK|SQDi%1++SAvVyV0&)XNkeRmzSox@|m={y0v!+$r8(>R$Iyd zgTZ$}F-8_>*?~4jaB~&A^6Dw zYraKTwH!@)G^O`h1bqCcL>*u&8%zHCy+G2X+Tk~P^I|H>V;2bfKg zekj+8u3aaRx>l7~JT*nH`TUv}QD}Vlo^zse*ZdmbNHHB9x<)roa+M_v4Q~Jw8X4dK zqvxir_=8-YSy-?k%2cSa5n~cwy>b1zm(1NVA7ldjmX&(bHiTteHL(Hc zsr~l0UR9Z0Paxh$8ZU+S+P}*t%3o?24=6`s*j-M$@`$84l!`CjbJOEP1o~#d`m~@! zq~(IQN525qy1u#O>Pm-0gbU6?tn1#j`Ezuhn7MKnZ{({eTAEe20?X6d9hpedbCsv= zA$SXDx(2q))%`X#vfJVw7#!UG$(qLjM363#11)_6gKsdU6=Xn*sx`-Ch=igW=COt> zpY84Kb;JvVjgM;q1)vcqgR)RXLy-G>D}#5`@;__OUSXi@I7E#uIOCMI?F|}8VIS8> zS^3F9`h#N*^RwyxoYnye%6W$jhimYwURSpo1&=o7zUMh%~AjFSg{rq2|s z#T?Vo8>_P)^4PcP+Vtd^JBjyHvKdg+_!`jFsb_1``-bYHRBWqeS+}BEObe#a3%#@R zh^KV-;s!EM)9osUI&_I2V)ZuoG*8nw3U#rcds%c3M;D-B8OD>XWr$;%Dc`#Qr7Xf@ z{X4AUpkfLLWkX*dNIZTFViD^2u9Wl-F!LCx&cpoNHY8+$QKq=HP=uC&Z;T9*0`5gm z$k_$ViUOl*HwU!!k*W8*f%5*JDKo!g(OorumUF?#X~o=FCR@pj)Wa%loIre_6s9Tl5J(I(ydxXE?UZGyAO3+vcd<*w|6tAxQe@-wS=cf$(5@t zJMqY``w)qQ{W2q}zOFhmQhvGRt14&8@n?g+w{($9_j9Bd9zA-5V8+1GFM@zB;2$7& z@&4*pXKn(Wm6dc0AKqN4_|@9iCAPg16v)szkS?HRvGu`FQ*2z^IrzdtrWZ)90Ueh- zA4b+cS&%5vzZG0>+tppO%B7=Yv=<}S0pitL9g~dK+0F#Yn%)Ef^+Nj&9Og`7R-_Ss zBJ_lu(@w+qe_@sPTggwTb?vO4Q>1ssN`%2Wm%*Hr@)k<_HD}a_$G|4oZyIAHR{c`L z`4MxBbwis!)xfOUJAOK8=H}G+hUph6IlV`--Re~bq&70cHorc{waN;owADmdt#GON z5Iyw2ztBYayCR=%#K(59->K__jQ?eTwOnteVRdS%5Aaf8aOs<&Sdcp917z*ifyIW5 zj2WmW7Lz;)YHPhzA~t}n31UAGg!NgkZ`aq?Q^GKGR@Gd?i}N$62vl_H6Elo-%*#8u z1lRJ1Tas1SO3RzH*>g%4iMP1(Ag~z^w<0#4DzNGz8_8isn zw`lj5^0UfBF2AA^Q3L6rJG1p9!LH9_jPs@NvEb1^zWvU!BZo5S997v9t7X*ru&Y#V zsQZ8j9{k0YpIE-@!E0oc9{_g%mTwUyx&tm^fa2lg@Br4t4G!qF(V`E?EL5&;VbbYV zEO%g+gtfG`wj#oRKsrd>V=t$FNgJh<^*w=~w+8i%XE220l^lzQ zF=YnI&u#68)}^jK`%ZOKl7@Lo1I&qYe8CsjJvFy+2?jP$(RmW3FMXxAtd-GnVyG$K zN{SD$u4AU#$$!F0!DZd^ZcVr_f?5upIG6Icg>ad?O;;}8dP=pjct&UK?wCXBwB}T4 zofhAp7m}&*zrJpgWt;5`T9<6UeGsNzxNY)Bns4h@V#zO+YF{eG&6_`lIZ#5+Onmqo zu%=sn^NW7TJ8;3W_6?y;y5(u$6OWcW_Q|#^u(44$)=|%6k2@%VUQdSJOS+4|K}kgR zaZ)!diD&(W&{12DZAJ6(^9zfL@-vAIkBkJOaMBitwgW*CwgvkfcU)}}5EK<@UJA#6 zN*Yw zMF*%42$D`;>E15PuY1~E9%noxEG^OS;Hd@43YM|b=C)RpyV%=g$)x?wXO$xFoGOZ% zt24h_c;-o*@E1>O7P1lq*M#Jp4F5_0o>Xj7SE8#Ex9(%5J@j_I(WBGV8FxfgzI95> zJvyX{iPL!+zfsU7jHI_awvNQw4d1^nR{!3dFR9roo2P+GscusH!$LBFs4=xQ4q9f? ze6sAuleVdxy&b)Rx}eOKSF1Z^H~BC$c+7e98~u%jTT3t-IHaVdXJH8L{6Woy2*f0F zIv2+j$V}4vJB*utNtRiSI{sZhtJmp1K62Kzok_6b8?1Ay&?5-F_cGN#r{cQKRh_=v$ZuACe>;+D@h@EpH+%HJM zEmxgnP5V-xpk!+l;k?GMc9_lQfg>fJSZ^E$o-O$g4g2wH zF;6{heduiZ`8(F{Z*@;QOqDguU3A#kEl)8mE#v&AcJFb#<|j41I);9mhdDnXbq*_6)?zrHIH6yaw&SzGwg<_mihj z%^fC=2EHlEF*T>adcLF*Czv0)>*I47CYU~UcR!PVcet{;s$TM%4)|3evyRDQ3PoxB zL+b1FXJ=gvYqrNa`!zbuV)Z5pn>;~EKgGx@ewKW<+NsIdR?=5=xZ7136krlnXcC3n zYyYHPW3x?c#Bz9~zbVQt?Ck7-9_u!BQFm+a~lF_2NcQeScg{G z9^}8xYCkUfd5#QPIIdZ;{-)vNj7~2-XVN`Zuin8IWmkJINlHHy2lt;z;9k}GEUETn zfCl*`r%QqS=6A=tmVyX#(SG647^ms{?D4U#j5{D1Bgi#)IipYnM8h$W^5=8KQn8?Hk_y9m@PV~DVU20HCf0l~)% zgjXrwzlXv=1(@HR&3H0p-9iWRHsfIv_l20#7munQ9vh;y`t|GAxXWtJI(ZgRo#9mZ z<&;dUb*vVla{~T%k+0X&va5ZDZ5Q(MTqscH6uRd6y!d9#jdqoHwVoB-5q@g+>^~vI zmB!mbvUab8xgMWKkN4TbH@ZZIkLm2OPG4$O%M+hqo!0RRLP=}s)3@vmK=I@c_cQ3U zb?QE+8lh$K`~oV+Aq`9+e}mui^IIT9_~CKp0z;qR#<#3HaJ}leb{A;(Fyq?8F!oH3 zhlfY_{BX_<5ZttacK!g@;)IkQW=5Zfk=K~5vcxLHDB4|4F~sf4%N`1x#6Hm9zdCt$ zv%hag-K^91OlPaB*x3o~>cjP!r*t+I+1q4HcIG^;QEZpxK8O7ARbYtkwJ4XZWYvzV zI+vVma}C*RNZ3)wf27 z?KSH%jHZ~wj)HErRW8|3XXW7jD8cZYvfT3 zOPa;6zPRsf#=#gm=8)jVy7q0nZWUIyxv-A{2E}eg?2nTd%uVIuAMl^iK31ux#9{f9 zv8N(kS7OPWMj2;ww~d&p^84~d#w-5T{w&Y#-)~$OitzGSX-&BC~c>fYgvr}2W1sCGYe>O1wt^nKr=Yzv_p z=bNda95>_k=x@<1vvsyz<#Iwx)b+dNLzMhsi?D*4i-GEQPF>lC#HY4j6AwRBvmwP2 z1gDP-r-gC2czMHP$!}e&ULeiujjDqex#cS?)gWZ=$5HW5lm-68$oI=AQ~AqFt@EE7 z<$qZLt?ZPr-Lcwh=oX`EQq!5Su(avGo6n7m;*Jz6Sc_kY#b#$whm)TpM@PEKSE6p_`$QvCkp&&dn!_U3<>+SVKvQbZ8#Ncvs#(EkcH!S3)I|yoQ@%s`Z}ebqE^Uh>)Ho$ z=qn{ltc{g)3*IMfYn*wszufN!kRT5CW4qb8In85UI@wU?UNZinDj$pPsHIQ0g%{75 zN@d5>zU0t~Cc&E(xzK5Bv5kYGkaBF>neQ5a89FPw-#-PUIiKqDvs=1idT?s$DhdLS9sGYm-H-$9c{LEcN=%c z@&I;GUPVO`N)4||;z~>TVO&TDRLPg8YCO#dCT4ELP$VQ2Sh95uc3;BTR2OSp8?<&W z0qOUMLTMuGcvcx6VmM8|-1Fv7J^F806KP93R`6mz6{G)M(?#)a6YbMgkx#3>V)s*5 z=RHp)hKDA)UiR9ymC@dq6wG2(Fu3Ve7;q>#MZ4x-{_bu>ha*#H$A_+`gHbc5yEXFF z7^i6Lbz+95epMwyvG^~Oei%0FTrNz?_@tIg?%@*7CjGb$3>lNUp51)M&^=*#QeM+RDs6z@@f8~l|SAg9WrIQ z*9Ez_-WYW5+}1%eda85!Hg74vBzI3`r~bIb$rX65qurl;tj9f@J!Kf!#hJKn=-oMx zJroJpP+F-R6t3C#L{f(N7gex&7ow{$X6T);QG)PspYOeV5F}OTdt>LJo&Nqhy>9rX z_}HVZz$$#fR~jdfMhO?K5dUfCoy!*}V=?39!}I*a@wg?spW|y?mjjI=$k~c3< z0vF~^-*rrFsZzVy*AYB}4TR}8y_*1BXm}oKOKh1ghBsX(zeH#UZts(C-`&>6A}>wT zdx!{Ds`^!KZoJn@)YubZp(Y@qiEWkZKI57@jvqEGkhw0tI8#_w>e8A38@rH0!-L5$ z_#Hu(yioV~*~hnIocp=W{H1h-&btl`L6&P4uUxStkM6FGiDAjcCl98& zL=Yu}ln^Y&E}}lWW`D`65c}DNk!hIsdtuY6h|+{!*t6@O=hQqdvA&3^Ec;D$X;jWs z$@4Y!5osuc;!BY@B5faq_XW(0p|l}&ta0bT?|t72R~;W{@xHn>r!fCDp6KE370GQE z+Eog;c|LC_%w;=9&H+a26C=FR>LFN3QBBM@t#u;2Zy|%dOYIXxL)6&X^zD=33;!-j zGg_J#l04xl4YS+$HMwmQQ2jD`vZ1xFv{6g3HJx83^`XnqbZAX+LjWS;ri~KyVq0Pq zsCIE0jEL}?clDq1KlBfZf^^uO^!x)~v2auI+f`?w1Lyadf68pOa`-L!yrr9d^m1~VVQdvq z!bf=9N8S&6eV?J@qoMuMvi<|kG`UN-u1uNU;oHzw+}efr` zfS_g9anY~5>Y+kW8kS^ms`((9LE!Vp{P5ocE?G{j2hJS^!xB7SdUd*GXwK_L-C3XC z&ZTu@jUuR&|2m7)`|Nfaf5m3RIPZd9eL@J-j5rrpb&~q<#bAwT`&r+fVo9W(#0@$V zO}`>2Ops#E)coZ%r9|N2R!{=|Pv0CTx?&L>2d$puL5+wGc9`p8zdDp)R|Bab;1NTI zD&G-_$kih85z&@@Ga}|hEZuSc6)7$Z&24`5$QsfNV4tpgNoZnI(N6BoKK*4#^VgaynJUGf`OL?+zp>S? zf1C{}xM+j&QtX5dR_~rfxqh_BLe%5eqimh70l$T&K6&gysWG86xpv`lP5ScsxujVI zYi3)gSH}lVSA6d`!=|bfTSW%>vvx(R+^+rHFUxa@*kFKlUA3(MN_8*aqgPLVoRlZ@ zLVzuN-h8XX_204ftrAPI!Vu%(Qwk^~kkl)dx}I7-2@v)WtRYH1DWG!5rL@DP*i9m+ zO|OXD+Anry(}-k*5MqaG4pX;z|M4K5pvOeTP)7N^j?(k!?M|g^Rh-Qw^;eJiVZiEs zj?ActQLoE-YzGAy*^EQQ*bbY|D-mhhibp>`TE6CFWWx9nKv+!DhEOWSxBD=fU}?)OI{C0DC?9eD9%u*8}Dz=d-Ui zzo#|jZ>wycK{$RMFcscQaouO>Pq>%mz%wF}fXq9WEa{?Aw}#Zk{KNrEP8y#PVf~7` zy0-*H7wYDcZIJ{xFXA)FOTN0!1~3I3JA*{LMZ{4Jh=u^8MP}22QabU4&qKR6k^8ge zwi%cpC-D70O@kyQs6UEgX$FJj}-&q>ASC7Ra!KCBeeeH|pf_-%1#S11Mafkc6vr4xo>YHqU zR4B>(Zs@pmt__AEZSVHWal!nZeu6>~WhJG;VqJVw z^W26uj>2oE)^_9n@b%VFRfS!@CiNJ=9m z4Iv`t<)nx7sr)BiCglwk%bd)!WgO=h4u}8?& zu$h~_k*vKo{r7)X3K8?BA#RswZP`vF~jhzQ#2LhcwEayX_)*X}^AP9|$Y`9kcf8aZi0C}h8Erb4>|vEG zSF7Qv^LqE2P*K$U#)kq0-(!O1hyR`DQo=5)l%@QuaPhqIyXEY0 zu;j#pe+`|P#n#OfK)L@e)k2Es4N7_hb>eTgUndNex1U7EmzSGSGv{8h->FrbZFFNd z|I_mUGZ@QJC5_+>)5lGr?uBmIf%Vpd6|(yM86vL4dZZQiKM6XNdyGl?d?5U#xblLp zg2=ZO=cg7?wx_G%>C(C}wi$dungBsuBoD(l5}r*Jt2;dSTfdvVQCIaqW6r-~H#|T= zE%JwPCuF~w9e=HeF#0TKoQfPQb;CAsdyQ=F)r4n~>YnyE@9Gj|g}Q(`984ld=@hPW z9ksWBiLtRzeNQ0RONfM{zCdpl2>pxwV z0*0ot3z&$yp?wt#8}Dvw;+!YrhidFupS$C<Tn&$U<8V2q`i$hW86rEPiqW#U#?KK0otkHL zf6mM#Le@L@=g7$WCNia`gi-rAV@C~?U6|rA-JA1w$LG|3i~2U%E)8o(-W>_OrOjwJ zbouW5d)MZ`sVPMY;k&6u}-!G9{2-S~BP^ zcPv1*>5La_WK$rg!M85(O^VS6DUK;F_I_g9pWG2~yepFOp zMBS_Jwc}{^me=rT(vu1+-cN0u%l&q6DfU`ZwFBPDC@$N44^jk}BGa1e(7Zynr+$qc z23tp~lsY}pDNU$!@9h%DYs3}W*HD*K+JmzMI#SgQh7EG(^WgdDg>Cqk3gdGMajJbL zHyZBH)3)$3hk~W^NLTGUxbk1O!=c!EZB+2?7)9&7#~BI_7ehT!i(yW;J%L)+7TQfuD6WkR)&Z63T~(k6zmg4^Z}4=p5%%*zvc% zB)`=~T&+^h_YYn1+>tOL58-Di3lR@UVTlxd1EcePD=OE(qFzr~N_PGR+|3U_qA z;!Z8Emdeosw;U&3?u5<xhKWRL4d0{4YS z@WMK1S993O-N&ocoTfOy>hz)JJ(h-nQa+L)lDp3>^`(pZZGEv5)nOmguJ_J~Jtcrc z2k)KtA6NSL@%*S+*rL(wL<%{!sA`!`1K?@*`%n6I6_z_Q*21~6`P{#C4*G=fuCSYRHh?|KnjU2)lSPjQ3t4{5h$ zI+;}@FiR^HsUbEPjYiU~!M{=l)tiARB~!kpj@sw)+ z5K}i}Z9#MSo?4k-$Ws;5%9!#6&bNxhaB-_kOIpw&EdGDj8g{#zgcPo_28+MQ^tlr(n8$tz)}A5{ zBn56+UDEzIp$3}sz5KD*cz~mi{_CyA+Kn0=@jn!$CUF-q#yZ4p6ET(mF|+|dN8{P1 z50q3?x(}qMh+-h5f2D~=WN7|qTIJ|b3fdRxCMjaqQUCp0Poc@nVzRxTX z(#Zo)*|GBP(+y4iZ-s@9VsW|eG#UpKNRmG6aXH_u%y$Tn-tAC8nW%et&}B`V!wm0I z$khH!;gisHyYHpPKwVY73zKlCu&)1cs=Cf6K-ufY!~2+GSnhy^@h<>8^O%0fEDuP@ zI|u~Wu}WSNKnaQw?z(r`%)+=v<~%M>+cbD2J{VAPbZ z-!IBEL-`hdVe7dimNI^h3#+k5iagZRCiyox`1Ewlonb zANo8H6Z~6a9Xa{NG?B+`9wAwJF75h`4x+1u?%ggPOC~Fl3wHVRTM2`#@o$`YtzbE| z9R{U)Zehu`b_EelrXe1Dx1q@_&-c46B_j?@oOF@L+xN_#;vHYtI()s6B5U9!M6CPv z?*%16%z$f<@R%GYO5swiH`I7K{(tmKXkxt}=6H+`ll*dKq1`!S_Kc_{nuB{aVhiq>h7}#}1!cYhPvcH-HQEyQ)z755glAjf%N3Wfd5DKu&!@HW zjR)rCWwY|Vxt~f%*E>_Qjg{!AR)j1iSYYM)zFL^5kVwXg^hDvbrDSWgzp>vIrO8lX zEziiyfgFeqpr!1Nj;ADZXvuGGPjuBuC^K+1zUyE7`NtDBx8lq<{(o-)Y12A?!n09= zw`FQLwKkBO&kt8XRuA)+pBt5s4MzF)ONup`ralsQMIjI>ddIB2f{CCmOr>9H@K z3vqTqtMw`C#^WKwDQ4~~=rB-r414N%V*IoD0zB64o?HHjP~|9qrV9qs{Z6}pY>mFY zKFA-i1#MJ+mDAQ>bt3l0;%l{{M0>OBa?IA#6C_9)eH&ta5qJ2OKxbyrtEkkTlgn_a z1xL`}*?6H6Spg@eY-{j`52+x66`q1!%fbC>QCs!m+UEu4v_a+OXi+j2N?Qij)SCAs zX|QdEOrth(n?3GkCTp!-n}V(->F|w$tsZbG%6V$YDsA0G{N`9^mt|jHM(+Y|m*`LG z8UXKBDU&?;=yUZlJv$3`yoGOKfXNwaj;zK=S?;!c&K%bGjvoKrt})0Zz6C7v$aq3Tq>dT^(H8>%r?ac3sGxN8d=4mL(8aF z^1;@IuVr%J0ZO?ySLmdblWJb9+%S4wJFQ(N>qCQEEDUu1kHe1)XXs%B6U8( za7T8hO${W3l>`B#W=O}Y;eW&4n6}|GDrXOb(gt9>7^Anhv`Lydk*Nz>asi29POmPF z35U67+LPHlC4<$U_@W(}lT%+IN={m0Dxc-wAhU?&JYDh`ZKTa^H*RS0n&$TSTX#2^ zvIGvzxo$002pl8l8-}WcZe0+kJ7371#qQkLITFOGHyc_1M4+~j3U5okW|f451kZ{m zYGqx<; z-f^B?1`F8&0R2lQ&V~?iBJ=ux3E;3IxWJZ)|CqQC@4~;NeY5i!psuiQp#yNIK~LI9 zGZE-0nnt0}n=cXcTVw4+|E}v*SWfSz$ZLJPkObf7ft7CNir1>c!muIXDQNJt0)5)w zG;gHZg`J#y3h(}&^V5on%|TH*5x!GT&P6qADl6mtHuWOT*LqX?bV!#C(W&VQ@l(q2 z5Bzr<5KSdW!BQ|v1{u2Id$MafP?zmw!uc}&0@zY%3eV1uYge6vzXurF zJVJ8($4AzWP@tep4CAuR)kX?dTwdnjalhl_mrC+2tNjr%(f#Qa{_B`tUS&^qLTd4b zjJ5N_5N#hDB}ceXGI_kf&X%??($>u#k#SNAE{<)VNp>yOdjt6>4$#@ z^Oe=8t*&lrNhWUM;EY)(V;X1o!5%=|oy+#;vC$k}Dx*o|E_E^E zR)dlFC?Wq=h|Ou@i3%MtpAMJiEn|j8r)cXKyVXy5yXg*+vIvU! zln0QdS8cMMKVe!y8$=2Igo#TC?NKTqQCFUoC6-dtLK4b&dVuCb{34JRR|m`LiPO7@$;hCm=y1m(%#f8P7^< z?6jSU*hv9T$AFTwEv-v-$DvOg5XK)VR|C}UUC<*kv?X>VwUZoQCne^>hdNEFD~{1Y z6t)rym+ai!2cpoRq%z@k=v-S7psc)LzS5M<;ynA zvizHgQ&4vq2ir1fc@G#L+9*Pw3PBP85-2YbUoZgm2QEb=m!h^GzcCI{Z7zKuPFE+F zsS$64qtCAHgWRmCP&v)U1qxCFjpRLEI(Kp()Hrx9eaksZ6V=hj_CtC?>$(Y_1b(!6 zl>d`kzJl(Ci{n}}|4k5)0J58;ae#Uhu%3VXRyzV8gh><+qA^c80bVjfzjjCMf&&;z2z|`jC+^7)ELr!9W~@rT}J$>fqH7 z!5CY3pT#$}?0I2$mSByEFDh4_ZLS;If^}2ShPY0>Z`bDNxc!&V8n=@sWehG9<&%k^ z+tRHThcxiM)+B^GvIbw?`n;jhbT)>Mt%qeO)&4|$L*Fct>WAI81Ep}{a9aaj&n$`r z1GihSc~yTpd#Z}2Z_p0JhdmOzCz6qc7rfym6bH-U4ta78h9J8clyJqhx2L;&9<4WZ z$P^M>F#Dmyr+1lREIz)=wW1;k0IiooQ$9-6d;XC7g%CvEFGB5G8F4HCJsXN&W44x8 z8gsa`l(^dFNC(@N7E(UOO2?O5xU#tY;jjw$_%gTd5uQ6B8g+=PsN#z@PTE~h?**=XNG~-p z@Pt%NBn{^oU)Uch1k3**6ep|<!a>&LB*!jokeZOB|fsHtq+p>2hS_@9Gof1IEvOdW05fB7lv)ipbsr({u*Z3H5a<)}R_Vpf&5Es8-5RpYF zgnxMuA!#3SE*HX_Pe(6tw_{{gHQsM+`=!BNbDSiIrj_~ zDA(%3OV&-|vt-zmx@htddX362+t?2~#Bc+`2O&P9jy$C=K> zY+wt-2O?to4~;T4gC~@S7F>Y&!cfEFPri9NjhrOEmet1}*BpG!4lN;Kl2k%4ygwgMJ13*5 z9UL)3@==^X&|ERf%-3AQ+T%VCMraLusch$dk?Hb`|9&rnN*;#;bpGc)!MPF6&^K9D zf_sDfEhPF^WOYxMlJC8q2PIY0M$lslqp+Y~uynYwmz|i(E{Is5N!O~z>=}W;!5Kqy zQ*)2l0b?zr;-p?v>OGKxT8w=6g|ya)$VkL^JoP3jk=}3FHN)kM$Ph|F;*)f~`9Nju z3BILgpvQk;kw3C%b`@jnui>q`59ArFN9@)Y`r`tN%D+9~aw{pmf-aq4 zh&og+Y9ZYcU1$6>Jh_OC(VsXv^fm9A=M zf|y~gpe_kcD#To4#IWO{ms`x0%a2x9SC3(w*%;+3a^493Esvnp8WZv3a=ayVt{TsQ zNm&)uV^XAkzscufozsUHuxcy60-bCWeE9?b5THM&7o@N1txo}xhtt;)`&W!lEXz$P zvJeO6w*;t;5}IN;5hsvxiAZ3yfyfP*5~}BUv8GK{E^BYk0f7a2AiU2c`GQUILh+u? z)a5m#+Hme?5(Xc&%F`MAoyuyE>X9!p*}osDZro3YEyf9ScH_LK#?Y7p*B#xeogL|vH)dn{*ZqHlOG-hW=qd}fu?#16<#ofr;qf=h{pFofaK5|B>?>x z6*j?uc~IAE=4(G@kK)h2t@MKe9{zI-Qup1JMoC&Tb942*`$G0S{ePmoYNO&jP_hoi zrrT<3MGJCvUhn=st()E94#Q!O`6g^7UTUL;0MBrVu(^Y1Rg0014Tj<^Xu}B*4Lb?4 zJT1K$TEF_4n+>hjJ=B>BFDj*)sO7@M%{GbH*wY?!=CfH7zEX!+yp3 zC{J0%x#N4u#@=s!mcw#zzRlbJXMOzZNMWBVhqS6JozHR-Q(JY?HQUB*7n5DjLxupy|X>luQ>x@hD+Ci);I zfnyIM%@Bn4Y-Sgf=3a**#&)eFPGQl}t&myW0DLUc7>1^5XF z_#7?NTNy;+M>LT>xnbGL%~sJ&ceLb~_R75-2xfYGA00jKqITO@biUU}U6;u(56kOVVeB6|I(n}ff~_dCo|18OJ>~Cl+oNV40cKx@`{Mw+Eo|>B?Eme(xi^3a3kp7}@RZ3nqEwFjjO4yy1_$9`|#boXXPsZT1#e#%MhBHCjh zn1~N#(N_)l1JenMVPJj9ARw9HF~ddu!M-MWls$ApKkasqiE~XVaCj=wYg%v1pooa5 z2$p9cPyFA@_paV1+f3rU&FeG_J{2nFhxJD!eDNt>bqWI2aGP9j%!#vrgu1%!!f>)9 zUbbM{;8xQe^PRP^(@H3i(l(H9X#`kq5eBV#fc*cRb!RTXaVsUR2A5~hm%wyb9*AcO z6Vb9KNmBcb#rTNf-sfm7NyCRTSzT(vqE8II2v1?;AWuN|_ePR&`9FrJFzwF(TD*`K zp##|Y#PG?}AFJU?r7GFqii~boXh>UIn{mBEJVMaaveTWQm~a5NmH>h^wf)M&3Z~nz z?oa^W&x%L#&08i4ieQADtlu;eL@4>cid=BomBpo|?!7t3m)F2JxPy(V658B67;rw& zf6sHn@Y1hNZa_uMU1jTjX$pI3Tg3PeP*q5T{CWuRZK?(ILN7x83r$bn{nH(QYF_rX zwSWIm-xwDjnbVi3SvcT90{jeEf)k=kN$-M9p90f@wePSy9j5A^&H^|5RuQ9TsuO>j zG+VTP9S9NaveP?J^5;EQ=dwB4%pz_qlI42zr?*~-Xt6||eJ8FiQc+Mr#S@?>AdNAl z+68MPeSEF?b0@$t%d(I)pNo>Z(K%rg#o3Ib*8VppM7(Y|_kQan_l@8Ed3sK5ZQ`<} zf=}ahbTUe{jSb@BCXfd^-vyx3%QW)rU_i5N5;$RF1B51s9;Og=L%~w#%%YrN^DF64 z#gd`F3-W9S>j(PSWpI|?oAt3t{@;}{B`mSp)y}rXW0+U07Wr|xlzVCYJ8m|)+Bz3g zo=a)^XAvZ~h5dUCB2FL+LT%uE{{Jeq5n2l&uzi$Hw!_BBa<4yARdMa($2`tmrcBO9 z+H#i@7Vo=b9xho7id)4w*VULtBw_YvK0hq%#xDSY!$%uY1R1}#zj~!7KJr*#e1{GM zE=6q~V{3ocCCP~9vDjq5UJiBP5;Jue+bxnvob@bT-}_X1px`8nbJsHOLJYD+WNJca zPJhNbv_38PQlcPG64u`~mVUBZt(!H6-jXPDo41^u5UTCgDTyqK^NJ0S4`9XvyL1{Q zD16A$eB-EZ9dW4-$gDDz70mIr?0)2az3xA@!f%sIxi1tj_#&iJ2jq#)j7w;>H15fi zPK3Z=lay<_X+iICJGNh3~wdB@_a&tN`lZ@J?8df&d4Evf;?*os8C|G1bq zZg3p0(&W=V{7KNIs9MfhRaPvzrAu>qq!2``%kMZSa{PL91&v(9T(j4USGA@EyVvu+ z#W9~^u%Wo+R>0p^$8k2WKG`xa+R4HVUs0WK{_Xn$h09VpT3X%7YL`w3l7`_I(YlR( zwu7q1I|y5!?Oe-aZ3T7p4zkN_6v$zH3MsWMAU5wIyE+zMU6s)oQQ9XiOYDGe2AMhT zBSTzOQ#1GNC!gtmRPW_91~Ouk;0pD|?00Ci?NZ7D)T}wdaP|ZAH*Qjb`lgxGKFg?* zv_=?J{vu9vrIU2`EzVIU>-#>1E+E#Qrt-rBj7}|YkR1#ke^-ucVZL9Z4Lj#;`iSbf2;Nsf@TPNn-p`?W{s5r!=em#YW>)guco(muKXn*KU5XA zqrx#yc3aQa;-};_YT}#KlNUyHk4PL8%5pRi%Y#^$7D!u!j2u|sLOc)YhZ~(b;&>d1 zY=2`EnQQj%&b5XLuAYF2fyI1~fz)LlhpBp72<8eSA*RS82JHg8{B*xpSo{zXg#qrO zr;QL*f;j*A_SpkuM9g!TzpgX}k^Na`t{#kQR!@4eaNnL$mnOZxFG|;>^*jQbUH&3@~O+ph1%OJN-4i^(WTY62!Oilb$^K1KRkH z%vO~#4WP$`kge-r{i9@N4qacj0Dx1YBCN2G1txgbrXSXA)t;#o>Rh{x&lF`)i&Bi| z;caU}^Z*n1zNemjhvl^+RY3_6)+|xM(4G`FGcNPehl(q>Vq=o}MEu^0INW`M8Y5lT zV)RVoDdl4t*Ms-RJT^ashP~=#HA(&q3TY;0lwq!}rqoVKwydq?U8&MX$H|ivj;=xhWdq!gKf*MvpJP9IiY=BN-JSSmKox}PsDdcNpXt;i zBQ~EbItW2_aG$fna+G-92VWGoXlz5A|Ngyuuhi7qVIiX4zRhPg1>aCCl(eh;6a7e? zmmo~W-Q0E-4RbLoTw=HmG4*ds_)^;@4wW`$FRG)jRZ#A^vgzG&QVGcHnCn}ga5|@P zGgRCwu;nFZz2wW4&4h+{Lzjn#2tUpa6PDwXaVgKkW4c@X7pehx0S11Yc zjbE}Es+bD97k>Y*W-x)N(GQ>`h`PcVtL41;ySrYBm=F#G1pJVjyO^0u`}IFOjH%-p zKzQnS<3)iVKc4J%Ft5O15ePlJnNnDY{Wd5l=&^QWcz6Tc09qQFFnG3a<{5-eR#_;{ zupiifM+y`)E)M;3Ac`hOn~RBYe1Rf9!h06TsqJ-RjoYMpGUMojjc|chSeOpg#)q2R zcYm!tKzuxPXmyjO7Aj^2b zb#Hd|eKZYX9as8y+?s4^7}axBv@mRFsk7@jp2FE&kL_oL&Wo>)b>;XhIn-n64M=ZW z>>8}=CyQ6V02(xuDMz(!uXW}jkQ@q*p(R9{0HrUGQb?RrpX(gCBc+KwYs<>YM)bu+ zMRgxos_#FB2~^Ud)V1l-xRQIl!Jo3iOe7xon9bHDGfj%581VBX40qRrZdYivZl!bH zu1gZuObMLq`_?J2MlM7$L$VDs$LIQTHJ9f0J_(>7-3)n}+}rVxs`(*p-$UBAhpg~- zpO~}r7-g)bi@?z;vd0;;0&0TFuVXBRmyH|6$WHif5c43RVAhLwJS+_jmZR7RA~dCD z?He>=EonL=@jTqjqhftNV^4au6%&?1JDNjF@5Ihh+#&sDwP=2HoPENsyWnK3&Z|4M z@&?1mCB{+0f%>}G&}GdhJ5_spP>c1a_Eg6{8&S&Q6Oou<3o2swCX@wNB;)DJGKeBL z44Lzh>YtzSCo_U>8!-)CDv`HTI#gTH;r+?4JZxNCVaN!LCsj}h`hT$o!Ifz2E`OZ( zPWdYY-0m*y&1`uIcv9SoJGS0cZK$$fI7P3T(HTvtGR-~sEy3P6{=CGiZZTf5(8@cb zsL!?A$Xiz!54T15%Cj}J#I1&dPtS{vch;Ts$RlM*fSR;;bh4owLOIs5vi&C^&?be{=RtdA*67dR8dZlS|HDb|d1Ad}5ICHZkS zR6M=b8XLh$KTKX4m(Y<`6=tVef=pq~+g*_KHsPzYo_~t|=`E^|GJ$0EH~K04Q=hq{ zBegG9l@U{xrDEB9r!F>~#4SUQ%c2$S{+b}I=Aq{Q$2fVn(AhgPn-d04dCSFpG;h{- z?mjsQ_nAyO2vT|WFyObSWuB3F{-@!kC3W+SBeGui5{$d9D-<6*w!W09 zve_`eNiA{|vAo$>I&xH`(>R3?XMNZdkdmlj`P-uMNE^+*y8aD}pB~=&7uO-A3`5iX zQ1PY1s;p_;iz(O=$424=;l<0wVz_CXDg<8@c9we7#^aM3gNC8qG2Lr@ebY9Ha4AfclD+I zkNW~_Y;o?58T!P-L2@-%>X&TSZ&0J~eZlNA1^)^4E+XI+2;Sjvhux{@@bKqCLf66I znqFIbnH6{l!4J9WP61oOy&Ntt0C53({iWsrg&y!nAqGRZc`@rIe z!NKutlZ(EnXDpwV-dk4LL_kyb!p#uNyO{d9!TidF8-btRDMyZ(hb?PU)B6t7;9ts7 z>J+<)rHM({X)c1lD&9wo)>u5k?y3K=fU;7de6TaPqwj*E?_Rk*QQ%f806 zrN?jR4J4LW4wQ4faW+E;gkm5E-0QSIIZkT6fzUUeRsR+u<|3ATDa#UUPN`6lL0nZC z#n1a2Z3>2Y;nw*=U-@rd*RrS*XvmuU=;$-ok<>SzpS-EonZL`(V~+Upx-gTK$jri7pxoO2wL``q|(?b1gK z;gotXa+Zr3aB1RMXVjr|?E1-QsT&qT$f?ym0lMrx$`6_g?uV|NE@QgQ#&P_jgLbT} zHX{bj+w1-Dp4M@L!Jp#@%|&Xh{Yui;0xR2pFz|{g>OYaqKV<}UJXmwyt_W|TJ4!G< zUiywuKHs;L9w2EdJ+DKEe>o$cxwd)?MPGNGf^c;*9jX;s7-$rE2F6q37mJNQf5r%U z3H(>I%ar@xof_8zy~Fj9aj&ZjYN>hAAqeZJ584QY9nA3yY57~#0n+d7RbvU@FT$1J zpR3S+&H1^AWl7tF1I(st+ai~*VvPpqREm`p)Q$Nw?_rRB;nBa2K}dr(yHYqt&VbP! zhf2^~sGH6yUpI}{g|FT4DO%VpdGO+l&@auajtf%-73Z}ac@e@0-;;Mj2Bfmg)i8O` zIzR2dZR-xgY?DiGYvF=>w#bc2iRm2%>XQL0-i2T8;*sGe`7>2!hXc#oJmzLKbvTO3 zMuyGg;md{2AV^=bH8;4Pk-Ri`i3PwxFW;lYs+Nme{#_&Fwr(|Xq0#F7by!zrqGCUf zivn%u9zL$Lqu$n>aqk|<1+Xxq5W89+r`q$hvwk&gHM!pTx z$B?6yd@6>ilUtxcIO}$f0_z;x2Yc530hfEa)h$CEdM*DVFNH!1 zGw#GUU=!+MjTG+-i|R_6AX89qdK<7!c`It88ORfMx=;0QZ-=-^TdnXyr%(1a$A9vL zhKgQQ>qu{k>Zw4knk7|`T)5K0UT#A~bvadkiP*fk8To?S#+;CFp5vS5=Iy@L?X@cu z+@4p}7x|@0myMyhhhEXz?WP5p_(JxUery#+!~9Qo4zAKGGTw$dR(BhETcQ7Z&Amfp zny0R=ub+_34e!$>9ZT8x+~UjSqHe2R24nVrb6SP1D0k+vz6g|Pe6p*{60+&~N=v&P zjC$8~^hOQ*D1$7I9&lUtF}SEJXj)#lFA@a4WPTTh{o=vc=s$>X_%Yx8ySTTJeFr@+ z&S*F5hSXkOU82Obw_6YOd!Z?7^_?C7>XFY(NBJ3EM?C=4b{CScmht&~8fwIl|1vF^ z4T8t$7R_sN2mYYp3-&q&AKkaEHV(HwLkn6}1a(JV$AAL*U4a=|4W+fO-O62h+Boqw zUx7-$?To0dAxi`y9HENcIJ>Q(kRE&WeX;ojELCJ!N8{gO96v>f)F%GSE`v^ya`Nhw3z(YsQX-zlA#pzV*KU_*rjgWBu}8r<`IiO;?< z2o^qrE3|s?VuM)$JSQNO202!}QAv-;y*%iH%`VTmyE2G_b?aT0Xgtr!0zEG%KUmA+ z;3yUGg@Sj8w4jv#(d_b4qD-?dzRHUWxwVz6T-D1DxtaKBnUy?yYOdm6`loXYK{H2k zz%2@(-j9*dZ95RWg0;@}!CNw)rl^=-SW!Gb_rTqo^uR&8m=epV7ZRq~#=G40x-$s7C zEH=suO|0U`7&*B+UP};`gt@R_W1)?imzqY*_B-z)?k-7Q#ibfxVzj^ebLGyl1P9Mo z3gYe%asFNx4oGUY;;FDYz5&D&sA`M!j>i6y7fq(ShCR>tCWbK==8jLbLER=B zd{HzSq#8}&4gBt}W737y4h_=D49@zUJFSMdvQUY?463&^RO(H(C*D?33`A)OHQ95P zQrKHi-fj>lEErm~_3T3qB$K*cRbx)QV`HCF{w(EwymaJ$!H9b&7{aU`gh06{XjtTh zJ3Yz6ISG6NkvyxW=#4zKou=Oc&o*ih|Vvh-mY53>4peOJzOJBv*B_0nfw!dw3`KGht+Fy6%c+FP)v4eL^MJ&ETVGI2O$F*o36$6Ym>dG_IehXr@DPPz1W z(OW(+oFYz3_G(l}8Zt&t#{q{1GLTa2Fv&-(7?EOeG;oU##1YteI`;}%OJ`YMcU|i& z)QZ`>SwesJpLr4_Z76(A{f{X2(q8@od90fKV-!hlw#6~JovEg#K9l0~(hOkOuN940 z(47SSuJi!xuk%+ezHsTp1znx?-U|Bhyn^&Y9X!pdb@^t3xhh%n;taJK0zcmDfwB0H zoWlM#zxy^rqWGm)?E@4`YcpC1!?)u5Dj&d|XR%^%-^R(+%v7zCiHy7vt$`8Qy((~3 ztB#k%Ift^_tJZO78bW}XErE{gK8G1+vL^}VRH*;6JKd?pL;&i=(9Y$ zbUQS;+(PSW?Z_1oFfW|V6qHYR^4uYZ*(vk)YF;rbhUk^&;IiwLCv~!#7n_`1;F^(2 z`X#~2pzEpAXEQAi6523o5v=JFe;dui8$e2f@^+_d((vC4K+A%;pbutb|0A>Ak9nA( zjWlB)Y-t2}u9aN_jYf31rHE}2eK3nL<(5Am&#Q89e*VQGjfN-Yqug)Q``*Y;wU$zf zug+{ucUjWx5={O>OmoeNXWY3)Z;(-Gr(|>SwR+9LO<2)xTS`(taCasGi^(eo?VIJ7kM29VB?Y znev&MEAhYi_xzxq3%nkWdroTOM^ZO2Wn$?h>fml+DIx~PWGyPnR{yC=&uG5j57x`TFc$4xsUSsO%1!RQC7YZX(mDi2Vk-!6;RVgg( zS)>RWE87d!Ih32!^;{3(pg1R_v$0S|f9ti(VdFYC)^%D?ReV^Z16(lkv<0 zr7ccY14W>2sOuTDP7) z-qD1?of)FI^2xsAi-+SKevX3n0j{y#%6g+Q}{fF145q>-od;O^%z zqgg!zz)`0CpKlTlt^X#g`h4Jyzs1fBn|`Jdac5(h^_>(LKX)lX)eb2_2<`maLv{|` zr^a8j{;VGLsuiE(9-G8|3J50s8Y6IrIHc^QnzTasi?NcBU3i4kx6F7wI!UByb9^=B z?^d5y8ZF5j*HLqnPh!-#b<{;-PxOI2K~MQa37viqc$wsJ{!Q*-j1xN0L?_0^K1GMd zU1`8o7Ox@=3}2egB9|;Dw<&p<`$P5nbC8bD5~0{a&YeFC?vh22g%&1{6#P4_4tP(V zJu9APJT@x*^efpbX*S~HXj!Opw^2@*mTsyd+T=>%;8)pXu}sp1GPRoLQbFE&XQ-rApPcW#=sFlu>$y!{i65^!H@fcTGP`#5rNWgPk>2q2#(y<+Vg%54 z+~N!58al8R53uSe+l#dRI4L^abDA%70V>-zzLINIGt+)JSP-Zs*dQ0TbYP~XrbD$W z*-(;mFOu16tab+>cVtp@+R3=)FL0z1QdqA=h!Nnb*}@r3jB^zb1m(xq;Hy>4kFO%C(S z#YVv^Wvtl4wJgCHKhq@FpRd((TuxQH1~q~kuW?U(;n@o+BYD9o4Lx1PeffwyC2K!j z{>Rk9mWsR_!`pJb?@+hj4 zYOGPW0(6e015N91I)K>o3BO0%B)LwY6+AEPIuq%aC!9;(zTOQOpMCf%fcz@wkaP(`jti6`HZA1 zjk{qh+6OK`@AcLTNd62Md<-0Q>ZCH!dKjbv>|-N>O43uWi%*t|Zu!Xw%I|OXYrY)T zu0nCQiZC-u=Mg}&wrZ~&j9W;Cvi}QOj1tz#n3bZBPl?wUOXDl4WFtmo8YaKfTc|g4 zTW9tDR)UhQQ|;Sm z(fDK`^GGz09-XlaG^iZ&oUS|_jvEyQQH(sf4JXzHs?X^xx=LMt$^H3%xn&a!&?fL$=mHu1;3h4M4slGGg8*8aiPSCyhAKa`DbSPn{By}$S$l}VLmPb#t&c=Xs>V%wQ`plW?Z*MC}n{lTm5>=T4Wi8Of>#XCS*oymc z|GKEnK=j=3p=Do{u2NqWBotX&xe&gE7jd(F{=(H*WbU~T%57!Ed9W`vb`;7q_!W%lN2>zzA)8~aLf zf>`|L3&Yi@Qe;LNkKYN*Avp_f8PXA9;oy#bgmhHrar3yi@3kKOi`ug4AKbSn;V^jt zcomCdklw1|;E&U`%sAOA#&if0ak$X)XQ}N$Mq-#e&6O(0hu4+~(uAJtLlT8j_2pQa z)6hG43%-h^(q=?x2&k%<+?HR27CR;`p18o!CcxsawPc2 z{h$FC6F~4M(YO+Hczr zZsVOH$2Ni_MAs;-YCA8ni}!zWByV?F&@5qm7nL1dYr==6})fscECpS&O0L2 z(yFy=297@z2b3nQ3U=F@zWiPU*_#h}DOV->s+`^|fygyY*_jRhux`<(fLppNqP%X6 z+^c&ekSKp`m~>aDr1T^6ti+P<5WXpwbvW!P`4-Q{Sz0m@ZbKtsP>Bc*Dx-q4#3s8I z!)@{m>DW&iMV#gdO6}v!d7>z`7=e8&VlLz2f}=CeJ#D{&+RHNk^G}2K48Kx_<7>vt z2hu95tSw99-mgv@sTD>X72n~gpaw)F&`(}q@(0cE3<8uEgL_ZXomAXQ=ZY_g&2Gpr zkc2)td3YUZ=`c|!Im@%FR>{0;wp?fLevbdSG&jv-=!GfdEm#Q=kRSUvP8WPoeG8`V|O*j1lNE zYjD0OB@9K`Eohf#CbTHsj*_WA^*jE}zeOocDd$dl8|#pTojk z`fRUj5kDz_p{-u924Z1>4SSkUI5sxy>pJPP$JN!9xI(Uy;UMZlNe<#BDt8-o;o5PG zIlUdTELE_t(rv|b)(d%TT-;)%3@Be;0W$~JPj)*_s;_K_uk5f=PxJvKK@fe_@$dN| z%5M|F(IyB>(%&+Jz}C`sx;JkzwxxEdiWCy!d`*r?v8;zEJrG58b|T+Q_L)p|~a* zt)!q2P|1(D$;~%HzCEK`pay6rDW1`mHE(av^|?%{s^74>bZX$>th${$CnEA}3WEjX zWCACx20Y_kpru3PctF;Uu3h-Qzy^db+0ff4Lc1*1+o2f|pa&-ioaczkm1ARL9{r3k zfI;2bXF82>!0Pre{? z=^OYzDw_1<(4g1j4ponM(Iv5d7WbGF62_6H_Kf60IcQFLLDrRgX~utfS(gXi?101n z|Kul5T}*C;??%_QU1sD#>ws?63ny+R0~BBJY=2vMKz2WUAM6^scO#{7Zl?;@xn|w` zJouAAiy?b{&xtf?>r#KGo1EP?wupGcx@utWE5wdH#NC*!rmcl}8Z)kDo<-vyWN%)l z-`qsAS*P`D;(qhVld-YGf1jBsx^*2CFV|B?lDp=^Kq9n6lFfn%!E(Nv{m`SHt+?64(k# z7YBy&92!%}0anGM`cS=0iona_er}ZA-TfamQuYY#PK_(=W`!mWq25JEHIMe(o+{eu zw|hglLM3@1L^^!E`H+iarlQXBzhys>B1L1>`q~&%QkA+vT-%0@4?<4*5mcHbjLP?h z6Q+-JPM`i6x~E|2Izn{+Mfgbln;z0vx0DZS{IbG^A7kxo%A4Ew8F{N)DN$0rc*I;8 zy{;RGvZ-KTB&5kmOjAUPV)XOki0-?8;&FoPrX^mp9j~sq0E08~xu-{a^MMbxW#<3T zBL2&LLVF8lSv+s6YdX!FPBi&U>shZ5OA%KdNw$RcpQ8$)QB5g-?_3wH$ragLD@k~9 zO;3uaKk>z3ig}#-#S%SdvX^c!p%%ArUtKcnCT{Jd84q}Ul<>d3e5ue`iM-g|Z_zaX z=Rd1+n83m;LZ0(K%su53|G+>;F)|k>KGW+@sHO_R8~w3dpb;GW4Mx9|*%A6A3c%tl zX}u2!(pByb%jTBj-1voNJJT#4J5oqz{S(odatQhO#xC3 zT=$=WkcXtyvVB?|&7opMTj7^6@|L5)FT}#<`MdBzEc?4BR;Ln`mDs|GM$#lj>HjjGF8kx#yMklo$Thy4b;A7j5c`F z-{tpkqFQFBJPQ4F5&wexrmV@moCuV{9=t%u$`3)3)U>Yka>#FyBqceStH11==`Le8 zN6~+YuEx&Pn@7#bB1O00V(A*hgLRvbl=@)~5zc}U(2+5y-t}(u5oqlVTJ9`u?$kk2 zLB(TjZa|g*CzO5$gH+av!DWjg&V+ClMfj?wNe>J~+bBsh`pxKR+B1m0BdnI3EA)-P zo zn^6>F;I;g(aKEO|cZsl^Aco7zu?evS9X&3$6OEU1KzT7*_vw`z&r8k6%?_eSO+GES zn?XF;NUxHAJ@52VRnWlLw5jm;{OG9$T!_q&?^5GPWG?NIwmb6wQ`uWUW!1G^qaX@O zill_dt$=iQDj}eN5&}{p2ugRC(k+5glA?$x(%s#Nv~;(0*SR*n@ArRajB~~~XOHpt z7~J>Xd#!cVT-Tb@LHGv~jLCx2Cl@6Y@Is@n8gKL)hxJAeDd)!hAI1_O76HbR|4{7= zD(4C{N5Cq%jEOAQ981lR-{`2GPSiL$>>d*b75}RLgpHGzb2T+ITUOG8^Gl0X+_RC2G0c}a7fQ4zOIv!1 zXsaeHdgGAN+LsQ*;#c|6{-~jkz=C>dIH2s|=r_o}2Wq z9*?UNs60`B)3pspeh@^YjM`o+EooDW?1rrB656 zZy@JDUe}?=^VemKz8x9HA)OuQATxeR5&>yEoCK zU2AC2)GwzQS0|zdb*}dQ@?CfwrK}C-)fzPUdvx6sre*d4$P8B-J#~0qcTF}(mX43* zHEbFjW#WW0u`s(McQJm)yOr9vqDAVx*hCrK@=j9k!Y}a^ZTU=YYr5C3o(7f=nC_G+ zu44G1tEoLwA)1-+UC@U%6>du(K_!#I*;ir*MN@CK-cY~4I%NnqDR!#1XX$Xg;@{E0 zdW#0d#Du+?6G6x=D>H+`kvK?Su%p)zb=P{_Fs0Bz1+*Mam7RGqPD1lKKbtt ziUH4Jg&LNa9&2IY=ptx6Snp7SFC8LagH~Q}aOr>W%WNo?6+_2u(?~}B#!iMFm*Bs1AxHR16hWkRiNq zgHc-xWbq{DowgSPL)wE$Rd!y$IR*4}54(%JV@y-E?*xRWvC$m<{&w56G%fwR{VJ$f z!29%s_||+#X z=7BWNQuD%>@Y-gl%B&oj*`L5~iXR_YD%8RJ^HqK!wpl1STVUB$otl~8ADY}Z2q2nF z@5n=;XzY0KHvY1$lvQ?C%+Fm}P7!d(8DQ9~sjUvrhl~8Y{GQw(s5zn(&EFOVe;N8c^VSi|4m;nKQjNoKBl?aY63cB4_n8qpoEou(A zIaeX`=g`EJ_u!s$F;)fLmJ31T&;b5B;Dc9|Iqt5FgZix5fqrK79 zDYAR{v9?{WX*IE{XmqucGkzk#Y$uB#SHhJHvI__+TpD>IV6q$t3nbD73M424SXI>p zD}>7%6-frfKgDyy-J9-zZDcC^bHNN>6=-1KWJpTXR08z!n-nC(bB4s5#oYw!`w73-a0r9T(&u7KWBlo{=KmIe*!y-Jd;X|hMF#EfO_qn&TMvCl z@k@qz&U6V8Gh#r3jWX_9k4|ug2@8&m6vR}aAkjhefSbSQ!*+0*Ukx^)?o<1YJuMgV zQW=tUEH3$y5|%vda?pywsQ+>Rc%r4`D2T)~iIG@g!7+#e0=%^gk>{M(rumWBl;%6_r^-oOGg+x-#M1hifz_e2cv@3b$fVt?wK%Y z+v&d*54oDE6GDk&aGyEfFIul#RlUv5l~#y3lYH#Q9pd;0Pa^aR1qW&2=;i`i0$;2r za0~8tSbEg;sq1xQ>(`NkGP7mnfl=PkK!5+HzxeU%txn-^iM;6*A$B_-Q7jGjXMqDSP-ZohXch^caf#uTxUYtkD{@lrs>7xuVsE0ECnw) z1=LwAf^YMh(Or4rU^i_CXAyEaw%%cJet4^ zpKZYt51;!3AmA^}6)LEadXCoR&AwAZ$YTH6k#UkKV3`mjg))H+Iugr63)gb*8lxW& z}`a7HEUkHfh89w8}dBTyv|Gq zTkqrl^=Ll5QnBaJys>Pk|5cTZSF&Dyzhq7S=qBN4Zqutix$7pP%}Y0!ByqVrBG;d> zGtrQ4`zQNvDxup*80`y4%aaBAX7-8Mit=c0>M(!;9eSb9_yg0OJIVR^Q9#W^L`v$= zTlnuxiNfQ@ghzX81j;@MN;2&?Q>ktZE?TQhI~wp`@EN2GR7UqZSee0Credr87@_^% zo-%V_aIjq3Ag@MYfLWXE`g>@PigmkUXeeQDt2|#~dP@%R_jcfixCWI=gQ#B!{zLDD z7dKnn^z~`cu3x{dU?G0&2Ff-~7kf!w`ifhU-cUl7nd=i@{5`ZxQ!Sx~8`?VI?w?fZ zR~ho41kF`ad`!p0{Z*A&E{aYX8GKZk4(Ar8uQ1gvjaP%^C1Dh;lp=9O-)VXMP*b~iT%0@_jnP~-)$%JS4a5bePx|D zStlJ;cj6v+8wlr=#_6A8@(tqcUOFWFy4=M7s*XOiWwCL;BIl1aAR$&1v) zu^_9F)s`x}xUf~y#;|3c0-{a|;bi|k%8HTh&&n+n z%4_ca7=ifsNVB^VF(JAlmXk;_M|1y9+7jmJs*qGktk)+t%1>q@&ci=WepWr1bZ`u1 zUk32bvD^158CGB4`WRMCn9SvFDsXQ%kH19k6+Sq392TW+TuF(E_&ingr|VlCKQh(= z4~-;TgrcIoQz|}AKCN|VqAmPGb+Mgedsl1yh(tfd>hDlc`$MS3u8vy^5OZf0X5ox~ z|GhFo*Rbxh5c2)GQxOC(pqnrg&*waMpD!hK#A3Uen-NN6U`T(gr{~#QczEc7umdHD zxi5^CIle`$xcvuG^NT9&;!tHw^7)%yJAk7jaLG~ub*17aF9}=aoxyHwTA@!KC&WaJ zT31d|`9H((1Tf;$+McB}f~448S91XmK<77`41BC94{d`H8D#2hz}7*ZsGjBO_#vUJmRVxelvO(comf$4rS@<`Z-dqjqwm_89bP zYR8e9&Dl2Rxme?7IJ5{#qh_O}@82`4ze`By01r&@k)XRJ)QaU(+BhvX1(ct0ErQ)e zxh5s{@(;`8327LB);QHUB_-&UivCz|97&RCZXRtxxHiAff*BAwX$!5(kXoFQosFIF z!5RD8^!e)N8;sU*LaWWke+o=B%bhrb$=HqBKCq&}VTHfVw*Ex!Uf^Knx1JX=NU4jq~j6ShX|+;dCy4 z93Vi*VY>g=mZUkbE4iJV{rWQlC$V2VI&Ll`Pz+GHIq;%8LDp2Ln^x7HvveKjg9|q2 zsNC&KY;>LvsQ4&H>?)vu4^WwQVE&@5ufzX=bs*})?!IgNJv({iUwg1m}KiP^EK&l_TLfZE@ z8dFwzR`j}T*2MCKuNZIe?u(`v8deWQzM)RInwqKH%H%h1ckeE(+kqMqad{eE5X^#% z(|LaB1bs30fl2g#h-v>f%mXIlBR~kL?X@3(^VBwtp_U|3){75YZ5Z^qCzdj!LQ=0l zBN7j^U`yEbs=*m1{*6Di{HNX*QCPoYTyJ4}=XoZ}%DaA#dsozIV^nOd9Hy5021C4fB&dVMEJ*0kXB8|ij zb&3f^6h+KSUspjr0g(~|a1(&HyCDeMwymLIWje=+Kw)J=S>nA5`WpgE^b^8S(hqSz zdg^9-0|epl|I*~6^=TarFKhpRqX?G5-^Z_x6#HIPu>F(ZGbqU!b@$b1<+RL%PT^HI zbOJb^KXLI6w8N*}j$NZQ^VNH&UJ@#zdjz)gYm90(!z z+ll#zTTrk*H?{U}weplPJ zaIA6cN)m06-(Fsx{NX6X^^{iX0f?QTfK3=bp2%zS@EXwHqn#g&M;a3V)p_Q}2yb-} z-U@x?piM)kEK->yne(k;@&waI#TXmu>{~E?m!NN)!Z{jP?by-_D!$B>&969^mR9Ij zH!8%jYQ3<7qNn~5rb?a>5oKIJ2FAVu4IQsE&;LH`u7Bs?8w_8~ zE%+`x^rH`(9=lRy@N()Rbl2qiDdYFi-29I)-gYb*FcB)gJFw_X+!JeCc6@B<_()6i zqIyHg?LEIddQ4$1S}FDJ|Jh`6)Bc}LCLJgA`X)(x-ts+<`%=t40wjPnZQi~@K>Qqdn3s5FR6y^U9?}U|2%!Ck*=4de>62G@ zvMcxV{?oy3e*d-uiy**l95;?CLcITTw1fp) z)cczIZ4*Ile?+xu>lrBq=G{QCFedj9!%a6k3I|J@=)AZ_e4OL`rv}62F^(da_Nlvh z{#H<>i~BOOsr&f0e1$-_gNtkuL0DPNp$im|kPUeLN7Zz^OWh=Bw{@ZXYC>p7w(W+O zDLODniT%%!gg{xYalGrFwKU7lYtJXsa%I{MTZquxDs zrj@c%D7jEur+hry87s+Ik{ucCNot@6}n8F;iur1O|*dKKyQ5|Pt8FvnyY4c1xHEZn*%cXLN zn*9fCDZn{w%AD2Hk9(PXQ{8;u@D)()+(8*C#Q6RptvIwo1fPj}vMxm9VDD8&>tR8f zUY~;yxPrU~8jYFfC6)MphdpxOh1lG7h|QgS6;8SE`RK2y*yG&tr^KbWgQO)}fniUy z`G!ix+}BgSq~4POG{UTN)sX~FBgvZt4`!bQpC&0kE+Ll?)Js#K zef6>$7Y)=WYeI0w`q9^~9jMa3*Rm47ap0am44&~B8gNFX zppUsQ40d0p4daEaF=f=zBp%NuoRIie`B}5Q7 zG#I8&K$bA4{WV&c??o{G~PL&uBcy>h4lWpkomDBs*Ou;U##<8cXNg$)(c9 z$NHp0t>{yh|7h0e?w{XUYh~rubY|e%&DcqdIpt_UjByzIRYyz5nb2B^ zK>VUdlRM*YMeDjEYK&QG^k~(dn5uZ%w&pSLzL#j13cqBww$h zhN2a1YqM>0vPl$7#T&gxwRKVgWcywXU5MlN_7<;O;$0us&&raOV%v*vtdKi+A!>}H z6cJVMVKAUFi%m{yCM>Pfjn}w!sO2@D=hPZQ)g<09;kBT!jZl5s@ukq6M@pFENw3q> zOE*!`yZz$FY{+a{F!MFSlC3-K z>IU}}S83}kYQ~>XdPaI{hd&q$t|+nkhOx7}mYkIlbISqezT%=*RzRT=cTyrcb%NC`@eUv zxB4_9jG40s8ugiGR(xfsIu~mKll;50TbOV$R=(V$+WkX!6d2GeF*b%-;qt+5p5M&o z(WB(ZXjGq^{Z{3v4)(Dx)WolQQ5e zpst@Uw;%P9Zy^s(ppAV73RU#53IEquLSoX|(w(d<8L2E{GQrDAk^Hg71ljD4{+Vrr zge3;Z@Byc7FT2P4<65gQXRVime|6qS5@l0JQ}N45miLS;|WoME?Lu1CZ>*T4!cbbEn6H@eO);Vg%-0?lc z($3fO^sBkaFBs^9PELZpe8I?K$v6|N5~1!k0E>U|dpbDHLs*VMx2@6uT}BiA)2i9Q&2z&ekuREAi6oPxftl+=jd z&!07Q1n)n#AM@4Je0~sT0sczrlH*O0WI8@q!exB-NyO!u@c23t5?V9wjbq(?ZFMSQ zCTC~Qi?R`{<5=jKdWGiEEH|U!@#Xx*N{HvArRsk;IbYvi)cKt-o-l9}iVN+9XX}P}c1@7|nq^MYyFe56Y{KPOpv{`2k zbL52uT6IZqy4O2R-n#{o%_6Q|AtERDnNc>}b{)v0^d{0!yXCasHKHfhtQp3EEbx~^ zfQ7;Fl7aUd+~=MceR z;W8-QYu(k-%L_Ob5?@0r7csGJc@m%>b9n>jbC^=H?Xj{ot?rG2^(}lWod^_)*Xw-v zd`5MDM|81!{gQc9#uxLDPMnhW&6^ARHbVvJBLi9H>$2hREC3$D$HuW=Ee~LpzF3%M zEn(ZKEuv|`isN5b6C2EMh2Z5~sb>$!)b5~^x$m?G2LwEzYVm^dg6v`=3HLM}#s%-2 zxAF|DOc$?V)HvR)xiq*x`s3>pDW*2V7$*^?8{%uFGc(3k-7e^56*0m6IPiywHR@`E z$6W?o+q|k$Ge!$4s!~$gDDkQpii4*GOgDbc>To3{d9E5byHISes@TXpdywi~UVdhe z@qlb#IMJvgt6@iKrm-MvJeHHw^Rs5fOPF}u@`*c_q~~Ah{$ypZKbGE$B_qtZaK3)E zYsae$bIKk>%YW(DTU37BQe5RZ8#cg%jf$^Lsmpf3!*%_(GUd|HaLLI@fC(C{0!BXe z?+6o-{EmRtK}?*`&?W2@Q2k-4IXFO-&^;~)Mt~>qj%LAW`}N{Y(hYp9nS|E?>+epO z>Np^}^K#(s>qmRrFR#8J9l*ik)!CbJLD|?o^b7oQ_i?_t6^(*-D)Ef8)VH@{k74HN zz#-nnz&k#^$$-T|mQq|iW2~qscmFi-H732vtnflg3MTa$Z#6oN=Y{z#c0KK`;=l0r zaD8Jw_W-dAe3;Ws6g-yrWY`n?f$x%7ROY{p#IrTBPXj%UrxhhiQm=j2Q*Uh$2-$^P?rf9F3xIf^V1+0dTclDm1b*`#;> zX1p`qcre-wg8)}wD6%Yj1?VGdn)l!NuCb8aoF^wH6Sgq179}Jkj98LFe4t61gSkS8 zGrHS}yoG1Fc33KlgXrczJ91$yv#<^naFBqFNi#o+PwrAl#C4#QM?dl zOFno{)KnwlJayLI!zah=yhj z@qg#nH>uFeTYT}M1A3m+bsQSSR&+KRV(D82bAYW&nR}^?m>QB7W&@efr3KC z4_;)L;TmD$MYS6n8lqjjaYNUFML>W&Z|I?s(VTgf{J$rg>HkVN&`w57j7Hb9#5^@W zf8WF7RE>s)oLpm;cQnW#s5oe>OIc;1f`!+2tnJ@#T2?*82Lg~8Laye7G#MXfadC04 zOowqCZ0xK*1^*pgez^I4DJe8nCmlBn3pUc=&$Y{o|DBJ=FeC}Wj+i$&Ideud77Ks7 z|9c{-5gquKy-`OReSLjIA;JAIMd)0rt+#%L6%yYa1IIMcW6CYhxXtr#V<+%K%eB%KCJD#I_4I zPsgP z299c=Sy}t@Mk=cgVEKbJ&$G6%3fCMBmWxs4 zT_#}R0Ee(vkwt?U-xknN_M}SVz|T!>195m{LW07xXE%-VVpmpHGX0!`8){*%eGph` za&mH{q@{B#$HlG@5e0^Y8BNyu_I^{#lwZz#tUpEqd~NQB+mrhn(<~sw3$p9UhCyeM zN@5644`_zb^6>OFybsdW0v0E9boBcA`lz8w_alcy*S~`8M%;mcfljWjWnb?_P#P3G zy)I;TCowV6$KQVoHv1XdgNG6NLd%LBQkbRbF3(f$8#iveXf)@egr8#jrkG}9V{5zE z|AP{ge+?UgNM8Kq;q^RqGnR+eI8dfu(9sHiBZCr?OEj`kceozXl!J%OFoyU*msQ0@!1 z?~l?pU3OPA*_tuzmU;u(bV{xMjtK6qjjz3Fm9prBeJ=sfc8BMEQgZXQasmk{DVOW6 z8SHW+8b+#|*qEnjRx~vjYCCA9fhz5k=A1IkeKg7kkXqjFsA(5|QS$goPI6lea zFi_BTjss}v<9JQyAbHJt@ccPyzBAz#8ykMvs3OdQ?L26$r%IEIy;Dys#U>zVYHJGy z8&`hx=#i0G&ld$WyVXB^m)-}Cl!t`iDkh4^`QuY_#CN=Cgz2IdvYS}w{zN70@LfJh zeZ19DSw;p^!gnu+03W~6jBnYqaBA1a#%8e4oU*2-ru2ith&*hlN75@y!F=n_G)H8y z-JdBv0mWIgn1}Q?+_xXk?}hy~N7@kJhio3(qu!H|lQ;WZA&L=m7Xo5OHroz28yhZU z`irVgeq^>0m(YH8hOm)ZyAcp@8CGOVbMx2VmmZMJSt>8aHZZ5-yx-i~x+N}t=J4UR z@@H_wh;kJp6VvlrpDS^xEEcmBdt$LmYhnw8`jDOkFavGvjOGH-y%Ag3rdyvEKa1@WKN~5jFlY+fUK`iTJF7Q;KPM_K zUWMKCph!=UdDiGvTt$HP`%w$y&6yT3N-o3Zt2aE4t<|G%E58zU{5$h0Tx<#iz$%QQ z0*0A%(g$G*hVqPi3eC0L+}#&@Gl)P-^9FrnAaFqqHmC)ucEZv)Cyhm@g281p0X;bq zp`zJzp6{!S-QCht)Xuyq)C%cJ6-g46tmQTU)0Qrd4I zAZ!HB>;#*tp%lX{dq*g z%8ElFp6|ulScP`66}q0@_%L{O1x6k5)lGW^HucgIlY!pxJ1|JSCAP+5$Lo@?eilJ! zGd8EbUTR(p^>=FX<~VffoPw0m!czll;jytX5$K{J2{RwBOaODZ;jym|BgmZ{^WnCY@t^;yKGd?t7#6H8jY9)720rw$rua{{&UL zgq-5g-x)h?(d_9ECqb)M7<+T-gPWV1(^dyRGgUlHDD;z*1A$t;<@o6?DZNbs1;52Z zGcy)&v*19YYP_+8n~*l7gRS}N9M8N+@gq%sO8Vow0ULgMl6aDCh0FU`^W2x+s4yCF zMX>wz-CYO$_bC2Gj&t2IkgPfYUgLAux#CSA25$kI?lIpyb?+~>GTGF!}qI zMPd;eVu;$l&ek}Znwlazy(%BY+~fX^mIY6!l9kMCd~i>mroTpUAq zOXh7{oIDVvIf1&&#@?P|Wwg7S+djA$d*^Se%!p01vf_CGdFpzPl6ZHDB-VWXA()Sl zQtne0(nOELSHF9D0)Yh?S_oD~%c5Z=q<;Ezu#(rczOj+<`_PV}2pc@&`?J%%s`ih9 zk5aF1#@H^(F<%KXpYhamlM8 z2?z)Yv4hurk@opBa5U#~4Lht1*1#KlJY&P#f^h^A`yBCulI|d7QW`^<@I4{Ot$$;&S?k}#r zH%*O?1v8cg6HLPV&IT{Jh4U2y{e zlw(-hPEJniza$AbU$jPHr*90K@qJ*?tPLVzM$!++o9PweI6ytZ<7jwXS3P|%n7y*v zqNwMm9t0=?DuL>e65An2uo;vR>mda{+*u|fBC3Ow=<<~-jCp6^bz}G~Z;X4Mi9&4r z0!cQK1?Lzv{RU2K>?DJMEFHvGtPU4NMn~V5kU)!wh(Nj=fub>LXb-ZLV~CLYQ2xx! z!QT6t62vNy>)`?ZTGqTZnCW}rH$(#h0};;j^0U*U?@tSYMn<$L_{^FSfk%)l^V5&Y zWQ6I3HJxKRz$PLh@^T=Hn!R#=N=>f`xUAQQjFWOq`k0__0Cwo!O!e?5Kb~?rtv>^m zk=I;D;)e^L%J;@xk#sas)Kzz<7}k#Z`I@$&EC(WU(5mSE{D2H`jiB+SlCF5E8ioPs z-*j00Lr6*4Mj(D%4THHq8?6UHRzEgdQ$wQ}(jGZQMf#gJy>?fJr&m`yz$?Y_nNzg1 zv;g&c*>9Xo^O0ggub7w^8w2sv{aZ-N0%=^n+0Z-4y&u6hK&v6rkr@CGDAC-&53ME; z)4K=h5tNzvrUPM6kLJ1TnDBw}B@FZeOj7JTlKw&x-vqMa7*@aO)Ce4C=yTaBc=KbXcE^fwze>yfvgWM zwNMmL<#V`fzl5|d;pa3YV!%#TzSFPO8B2uk?+sNdhvitg%}*7OG%9mgMF|PT!K^4} zK4G2LfI)$1PEvUamh++`j`tXz{>5n{EavwqKv5(mW#OHnk}l*eA^{fp3er~~vbS6A z@3=mLetdlVk$MrPd43mGPoCYPGGbm(tG4>Q0uW%#ZA$@)bdCI%k3X9T*})0Kh6WIH zOsn01qy;VN%G_tvty^tAbMWlXax|P)3kF(O$A4(?C%P;#B0dcg(D@ND5HtmeT@X5D zB$`2o(RBvjlyIh~s5n>s8iU8AHvse^OWMtRA*moFBZIVV68z8|^~@H-DI^QUboN?U zcv)({+z4gt0T96^3=e$QtOLyfSo(R~&5|wle-Z9}NHmL=mV3b~aoxQkf68Y5C!cYT zy!xOtJw07rfDMJ(G(8Ve7M$$tKe5wu{C$1V*W<^J=e`-hfOMLJeQNx8g183k^cPrI zSVV+`HLo$S?y#_w8|fg)f3n4BDM?t7#VCar|Cp2a%#5KK->_P^+8=4pnTY#LRBMoq zqd}d9DKE5!)Lt;F+i?XJ26z8q_y!>%dX#(U0~*LB z$8C;Wot?Wg)qmOye@ac|h<)e=a>R&lf*CM96+?rfxcW>H6GEppfkGajG9?XvOP3L^ z*J{om-+@M=Xw6Q|%*1440j7lc4CMXb!!znhTi_rD%JGH8#c8Sq8;<2+Y2F5>2_Tan z0ZrJD*&Ha3&emYj%pi8m&7GWI2=95aWcvYg6nYMoA%T{Vs8&;=*ZvE@0on^vvU2U0 zFJH!#Q4Z^n zem8@NnnzC)bH&eNsJniahU=3%a0+z@VxI`6_fv5!qiBa#1}=M8BT zn2Fz4lFtd<~v1S>aZH*?~g^vZvi>r*!Big@qX#) z4EMvRGPVsMT|!bBbcpiFwyuk*j^Ld#d#z!qd|bW^PH{i(C_3@s{_e0PBO4nV|0%f3 z_wYdWD}#hyka0y*<_(!aexbS~05zM)?x2Cx{riBrw6wRg6m>y1j-Dmhc27zw4RsE< zTBJe_giFB_0KyWwuB*I|2&h>kwYNV6!8?_V>DUe+m${DI(#9@#F8vnN*q zvh&`t-(GkOVa`XNoFpqa8_;2}F+he-6#7_DC`bBp^Rm8$P;4Vr3HVe*QPA~oi9evo z`Z*c`;0j}7W1%4aRI4_?{JX-{5y+P%A*qJa`40CkKxSJ5Rj2RalZ4l=2f{o-{YNh< zn((y1gwtU~W4>~7a)!U(bQ4 z13S-CBLN)hV{iaBLB(Tx+b$?5=woIZrC$w1@V50y#3kaJ4rI|WF$I16NCnA1bPg~; z88WA!l*eAtFb;0D8EjZH|0N-yv1#e)ksuBDmR7QrRV*eku@l@rz>2AWDPFvI5%kXP zgPnm)fXLBG-fXQKKwVAYG*wFpS0HF-Nh3kKJ{0B+;*v<^>7nTdRxKF-4PAFvXgN6E z0{RU_i39-YOz!1?k8Xg2$+nqowb4KQ9Ig8tz*ta_j)(g0MrNNpK)i@vH>`tMi#<{@ zvLp{AdXn4b6^LYp5Q3?M z>;fRnoI>$t3-A*>XNv!gDX3#1(TIe>0V}=&g9AtoE+yah+Tk7dlbr!H-0NIv@+PFv zfe=1f?3Ne@b2DO%6cXUx2lHPML5-EgmfmP9Kn3ms3nmpzeSKTi5`uD867(&D6R)e- z{{3KZ)j{lV;TF^a_ce+vsKJUSp&V3wOGX$$`Q^McL!8x$kNh@oB|t7< zbrS;eca5A2k#g=N@Lin$YXc