
ADAM
Introduction
ADAM	is	a	genomics	analysis	platform	with	specialized	file	formats	built	using	Apache	Avro,

Apache	Spark	and	Apache	Parquet.	Apache	2	licensed.	Some	quick	links:

Follow	our	Twitter	account.

Chat	with	ADAM	developers	in	Gitter.

Join	our	mailing	list.

Checkout	the	current	build	status.

Download	official	releases.

View	our	software	artifacts	on	Maven	Central	(…including	snapshots).

Look	at	our	CHANGES	file.

Hello	World:	Counting	K-mers
Here’s	an	example	ADAM	CLI	command	that	will	count	10-mers	in	a	test	 .sam 	file	that	lives

in	this	repository:

$	adam-submit	count_kmers	/tmp/small.adam	/tmp/kmers.adam	10

$	head	/tmp/kmers.adam/part-*

(AATTGGCACT,1)

(TTCCGATTTT,1)

(GAGCAGCCTT,1)

(CCTGCTGTAT,1)

(TTTTAAGGTT,1)

(GGCCAGGACT,1)

(GCAGTCCCTC,1)

(AACTTTGAAT,1)

(GATGACGTGG,1)

(CTGTCCCTGT,1)

More	than	K-mer	Counting

ADAM	does	much	more	than	just	k-mer	counting.	Running	the	ADAM	CLI	without

arguments	or	with	 --help 	will	display	available	commands,	e.g.

$	adam-submit

					e												888~-_														e																	e				e

				d8b											888			\												d8b															d8b		d8b

			/Y88b										888				|										/Y88b													d888bdY88b

		/		Y88b									888				|									/		Y88b											/	Y88Y	Y888b

	/____Y88b								888			/									/____Y88b									/			YY			Y888b

/						Y88b							888_-~									/						Y88b							/										Y888b

Choose	one	of	the	following	commands:

ADAM	ACTIONS

															depth	:	Calculate	the	depth	from	a	given	ADAM	file,	at	each	vari

ant	in	a	VCF

									count_kmers	:	Counts	the	k-mers/q-mers	from	a	read	dataset.

		count_contig_kmers	:	Counts	the	k-mers/q-mers	from	a	read	dataset.

											transform	:	Convert	SAM/BAM	to	ADAM	format	and	optionally	perform	re

ad	pre-processing	transformations

										adam2fastq	:	Convert	BAM	to	FASTQ	files

														plugin	:	Executes	an	ADAMPlugin

													flatten	:	Convert	a	ADAM	format	file	to	a	version	with	a	flattened

schema,	suitable	for	querying	with	tools	like	Impala

CONVERSION	OPERATIONS

												vcf2adam	:	Convert	a	VCF	file	to	the	corresponding	ADAM	format

											anno2adam	:	Convert	a	annotation	file	(in	VCF	format)	to	the	corresp

onding	ADAM	format

												adam2vcf	:	Convert	an	ADAM	variant	to	the	VCF	ADAM	format

										fasta2adam	:	Converts	a	text	FASTA	sequence	file	into	an	ADAMNucleoti

deContig	Parquet	file	which	represents	assembled	sequences.

							features2adam	:	Convert	a	file	with	sequence	features	into	corresponding

ADAM	format

										wigfix2bed	:	Locally	convert	a	wigFix	file	to	BED	format

PRINT

															print	:	Print	an	ADAM	formatted	file

									print_genes	:	Load	a	GTF	file	containing	gene	annotations	and	print	th

e	corresponding	gene	models

												flagstat	:	Print	statistics	on	reads	in	an	ADAM	file	(similar	to	sa

mtools	flagstat)

										print_tags	:	Prints	the	values	and	counts	of	all	tags	in	a	set	of	rec

ords

												listdict	:	Print	the	contents	of	an	ADAM	sequence	dictionary

									allelecount	:	Calculate	Allele	frequencies

											buildinfo	:	Display	build	information	(use	this	for	bug	reports)

																view	:	View	certain	reads	from	an	alignment-record	file.

You	can	learn	more	about	a	command,	by	calling	it	without	arguments	or	with	 --help ,	e.g.

$	adam-submit	transform

Argument	"INPUT"	is	required

	INPUT																																																											:	The	ADAM,	BA

M	or	SAM	file	to	apply	the	transforms	to

	OUTPUT																																																										:	Location	to	

write	the	transformed	data	in	ADAM/Parquet	format

	-coalesce	N																																																					:	Set	the	numb

er	of	partitions	written	to	the	ADAM	output	directory

	-dump_observations	VAL																																										:	Local	path	t

o	dump	BQSR	observations	to.	Outputs	CSV	format.

	-force_load_bam																																																	:	Forces	Trans

form	to	load	from	BAM/SAM.

	-force_load_fastq																																															:	Forces	Trans

form	to	load	from	unpaired	FASTQ.

	-force_load_ifastq																																														:	Forces	Trans

form	to	load	from	interleaved	FASTQ.

	-force_load_parquet																																													:	Forces	Trans

	-force_load_parquet																																													:	Forces	Trans

form	to	load	from	Parquet.

	-h	(-help,	--help,	-?)																																										:	Print	help

	-known_indels	VAL																																															:	VCF	file	inc

luding	locations	of	known	INDELs.	If	none	is	provided,	default

																																																																			consensus	mo

del	will	be	used.

	-known_snps	VAL																																																	:	Sites-only	V

CF	giving	location	of	known	SNPs

	-log_odds_threshold	N																																											:	The	log-odds

threshold	for	accepting	a	realignment.	Default	value	is	5.0.

	-mark_duplicate_reads																																											:	Mark	duplica

te	reads

	-max_consensus_number	N																																									:	The	maximum	

number	of	consensus	to	try	realigning	a	target	region	to.	Default

																																																																			value	is	30.

	-max_indel_size	N																																															:	The	maximum	

length	of	an	INDEL	to	realign	to.	Default	value	is	500.

	-max_target_size	N																																														:	The	maximum	

length	of	a	target	region	to	attempt	realigning.	Default	length	is

																																																																			3000.

	-parquet_block_size	N																																											:	Parquet	bloc

k	size	(default	=	128mb)

	-parquet_compression_codec	[UNCOMPRESSED	|	SNAPPY	|	GZIP	|	LZO]	:	Parquet	comp

ression	codec

	-parquet_disable_dictionary																																					:	Disable	dict

ionary	encoding

	-parquet_logging_level	VAL																																						:	Parquet	logg

ing	level	(default	=	severe)

	-parquet_page_size	N																																												:	Parquet	page

size	(default	=	1mb)

	-print_metrics																																																		:	Print	metric

s	to	the	log	on	completion

	-realign_indels																																																	:	Locally	real

ign	indels	present	in	reads.

	-recalibrate_base_qualities																																					:	Recalibrate	

	-recalibrate_base_qualities																																					:	Recalibrate	

the	base	quality	scores	(ILLUMINA	only)

	-repartition	N																																																		:	Set	the	numb

er	of	partitions	to	map	data	to

	-sort_fastq_output																																														:	Sets	whether

to	sort	the	FASTQ	output,	if	saving	as	FASTQ.	False	by	default.

																																																																			Ignored	if	n

ot	saving	as	FASTQ.

	-sort_reads																																																					:	Sort	the	rea

ds	by	referenceId	and	read	position

The	ADAM	 transform 	command	allows	you	to	mark	duplicates,	run	base	quality	score

recalibration	(BQSR)	and	other	pre-processing	steps	on	your	data.

Getting	Started
Installation

Binary	Distributions
Bundled	release	binaries	can	be	found	on	our	releases	page.

Building	from	Source
You	will	need	to	have	Maven	installed	in	order	to	build	ADAM.

Note:	The	default	configuration	is	for	Hadoop	2.2.0.	If	building	against	a	different

version	of	Hadoop,	please	edit	the	build	configuration	in	the	 <properties> 	section	of

the	 pom.xml 	file.

$	git	clone	https://github.com/bigdatagenomics/adam.git

$	cd	adam

$	export	MAVEN_OPTS="-Xmx512m	-XX:MaxPermSize=256m"

$	mvn	clean	package	-DskipTests

...

[INFO]	--

[INFO]	BUILD	SUCCESS

[INFO]	--

[INFO]	Total	time:	9.647s

[INFO]	Finished	at:	Thu	May	23	15:50:42	PDT	2013

[INFO]	Final	Memory:	19M/81M

[INFO]	--

You	might	want	to	take	a	peek	at	the	 scripts/jenkins-test 	script	and	give	it	a	run.	It	will

fetch	a	mouse	chromosome,	encode	it	to	ADAM	reads	and	pileups,	run	flagstat,	etc.	We	use

this	script	to	test	that	ADAM	is	working	correctly.

Installing	Spark
You’ll	need	to	have	a	Spark	release	on	your	system	and	the	 $SPARK_HOME 	environment

variable	pointing	at	it;	prebuilt	binaries	can	be	downloaded	from	the	Spark	website.

Currently,	our	continuous	builds	use	Spark	1.1.0	built	against	Hadoop	2.3	(CDH5),	but	any

more	recent	Spark	distribution	should	also	work.

Helpful	Aliases
You	might	want	to	add	the	following	to	your	 .bashrc 	to	make	running	ADAM	easier:

alias	adam-submit="${ADAM_HOME}/bin/adam-submit"

alias	adam-shell="${ADAM_HOME}/bin/adam-shell"

$ADAM_HOME 	should	be	the	path	to	a	binary	release	or	a	clone	of	this	repository	on	your	local

filesystem.

These	aliases	call	scripts	that	wrap	the	 spark-submit 	and	 spark-shell 	commands	to	set

up	ADAM.Once	they	are	in	place,	you	can	run	adam	by	simply	typing	 adam-submit 	at	the

command	line,	as	demonstrated	above.

Running	ADAM
Now	you	can	try	running	some	simple	ADAM	commands:

transform
Make	your	first	 .adam 	file	like	this:

adam-submit	transform	$ADAM_HOME/adam-core/src/test/resources/small.sam	/tmp/sm

all.adam

If	you	didn’t	obtain	your	copy	of	adam	from	github,	you	can	grab	 small.sam 	here.

flagstat
Once	you	have	data	converted	to	ADAM,	you	can	gather	statistics	from	the	ADAM	file	using

flagstat .	This	command	will	output	stats	identically	to	the	samtools	 flagstat 	command.

If	you	followed	along	above,	now	try	gathering	some	statistics:

$	adam-submit	flagstat	/tmp/small.adam

20	+	0	in	total	(QC-passed	reads	+	QC-failed	reads)

0	+	0	primary	duplicates

0	+	0	primary	duplicates	-	both	read	and	mate	mapped

0	+	0	primary	duplicates	-	only	read	mapped

0	+	0	primary	duplicates	-	cross	chromosome

0	+	0	secondary	duplicates

0	+	0	secondary	duplicates	-	both	read	and	mate	mapped

0	+	0	secondary	duplicates	-	only	read	mapped

0	+	0	secondary	duplicates	-	cross	chromosome

20	+	0	mapped	(100.00%:0.00%)

0	+	0	paired	in	sequencing

0	+	0	read1

0	+	0	read2

0	+	0	properly	paired	(0.00%:0.00%)

0	+	0	with	itself	and	mate	mapped

0	+	0	singletons	(0.00%:0.00%)

0	+	0	with	mate	mapped	to	a	different	chr

0	+	0	with	mate	mapped	to	a	different	chr	(mapQ>=5)

In	practice,	you’ll	find	that	the	ADAM	 flagstat 	command	takes	orders	of	magnitude	less

time	than	samtools	to	compute	these	statistics.	For	example,	on	a	MacBook	Pro	 flagstat

NA12878_chr20.bam 	took	17	seconds	to	run	while	 samtools	flagstat	NA12878_chr20.bam

took	55	seconds.	On	larger	files,	the	difference	in	speed	is	even	more	dramatic.	ADAM	is

faster	because	it’s	multi-threaded	and	distributed	and	uses	a	columnar	storage	format	(with

a	projected	schema	that	only	materializes	the	read	flags	instead	of	the	whole	read).

adam-shell
The	 adam-shell 	command	opens	an	interpreter	that	you	can	run	ad-hoc	ADAM	commands

in.

For	example,	the	following	code	snippet	will	generate	a	result	similar	to	the	k-mer-counting

example	above,	but	with	the	k-mers	sorted	in	descending	order	of	their	number	of

occurrences.	To	use	this,	save	the	code	snippet	as	 kmer.scala 	and	run	 adam-shell	-i

kmer.scala .

kmer.scala

import	org.bdgenomics.adam.rdd.ADAMContext

import	org.bdgenomics.adam.projections.{AlignmentRecordField,	Projection}

val	ac	=	new	ADAMContext(sc)

//	Load	alignments	from	disk

val	reads	=	ac.loadAlignments(

		"/data/NA21144.chrom11.ILLUMINA.adam",

		projection	=	Some(

				Projection(

						AlignmentRecordField.sequence,

						AlignmentRecordField.readMapped,

						AlignmentRecordField.mapq

)

)

)

//	Generate,	count	and	sort	21-mers

val	kmers	=

		reads

				.flatMap(_.getSequence.sliding(21).map(k	=>	(k,	1L)))

				.reduceByKey(_	+	_)

				.map(_.swap)

				.sortByKey(ascending	=	false)

//	Print	the	top	10	most	common	21-mers

kmers.take(10).foreach(println)

adam-shell	-i	kmer.scala

$	adam-shell	-i	kmer.scala

…

(121771,TTTTTTTTTTTTTTTTTTTTT)

(44317,ACACACACACACACACACACA)

(44023,TGTGTGTGTGTGTGTGTGTGT)

(42474,CACACACACACACACACACAC)

(42095,GTGTGTGTGTGTGTGTGTGTG)

(33797,TAATCCCAGCACTTTGGGAGG)

(33081,AATCCCAGCACTTTGGGAGGC)

(32775,TGTAATCCCAGCACTTTGGGA)

(32484,CCTCCCAAAGTGCTGGGATTA)

…

Running	on	a	cluster
The	 adam-submit 	and	 adam-shell 	commands	can	also	be	used	to	submit	ADAM	jobs	to	a

Spark	cluster,	or	to	run	ADAM	interactively.	Cluster	mode	can	be	enabled	by	passing	the

same	flags	you’d	pass	to	Spark,	e.g.	 --master	yarn	--deploy-mode	client .

Running	Plugins
ADAM	allows	users	to	create	plugins	via	the	ADAMPlugin	trait.	These	plugins	are	then

imported	using	the	Java	classpath	at	runtime.	To	add	to	the	classpath	when	using

appassembler,	use	the	 $CLASSPATH_PREFIX 	environment	variable.	For	an	example	of	how	to

use	the	plugin	interface,	please	see	the	adam-plugins	repo.

Under	the	Hood
ADAM	relies	on	several	open-source	technologies	to	make	genomic	analyses	fast	and

massively	parallelizable…

Apache	Spark
Apache	Spark	allows	developers	to	write	algorithms	in	succinct	code	that	can	run	fast	locally,

on	an	in-house	cluster	or	on	Amazon,	Google	or	Microsoft	clouds.

Apache	Parquet
Apache	Parquet	is	a	columnar	storage	format	available	to	any	project	in	the	Hadoop

ecosystem,	regardless	of	the	choice	of	data	processing	framework,	data	model	or

programming	language.

Parquet	compresses	legacy	genomic	formats	using	standard	columnar	techniques

(e.g.	RLE,	dictionary	encoding).	ADAM	files	are	typically	~20%	smaller	than

compressed	BAM	files.

Parquet	integrates	with:

Query	engines:	Hive,	Impala,	HAWQ,	IBM	Big	SQL,	Drill,	Tajo,	Pig,	Presto

Frameworks:	Spark,	MapReduce,	Cascading,	Crunch,	Scalding,	Kite

Data	models:	Avro,	Thrift,	ProtocolBuffers,	POJOs

Parquet	is	simply	a	file	format	which	makes	it	easy	to	sync	and	share	data	using	tools

like	 distcp ,	 rsync ,	etc

Parquet	provides	a	command-line	tool,	 parquet.hadoop.PrintFooter ,	which	reports

useful	compression	statistics

In	the	counting	k-mers	example	above,	you	can	see	there	is	a	defined	predicate	and

projection.	The	predicate	allows	rapid	filtering	of	rows	while	a	projection	allows	you	to

efficiently	materialize	only	specific	columns	for	analysis.	For	this	k-mer	counting	example,	we

filter	out	any	records	that	are	not	mapped	or	have	a	 MAPQ 	less	than	20	using	a	 predicate

and	only	materialize	the	 Sequence ,	 ReadMapped 	flag	and	 MAPQ 	columns	and	skip	over	all

other	fields	like	 Reference 	or	 Start 	position,	e.g.

Sequence ReadMapped MAPQ Reference Start …

GGTCCAT false - chrom1 - …

TACTGAA true 30 chrom1 34232 …

TTGAATG true 17 chrom1 309403 …

Apache	Avro
Apache	Avro	is	a	data	serialization	system.

All	Big	Data	Genomics	schemas	are	published	at

https://github.com/bigdatagenomics/bdg-formats.

Having	explicit	schemas	and	self-describing	data	makes	integrating,	sharing	and

evolving	formats	easier.

Our	Avro	schemas	are	directly	converted	into	source	code	using	Avro	tools.	Avro	supports	a

number	of	computer	languages.	ADAM	uses	Java;	you	could	just	as	easily	use	this	Avro	IDL

description	as	the	basis	for	a	Python	project.	Avro	currently	supports	c,	c++,	csharp,	java,

javascript,	php,	python	and	ruby.

Downstream	Applications
There	are	a	number	of	projects	built	on	ADAM,	e.g.

RNAdam	provides	an	RNA	pipeline	on	top	of	ADAM	with	isoform	quantification	and

fusion	transcription	detection

Avocado	is	a	variant	caller	built	on	top	of	ADAM	for	germline	and	somatic	calling

PacMin	is	an	assembler	for	PacBio	reads

A	 Mutect 	port	is	nearly	feature	complete

Read	error	correction

a	graphing	and	genome	visualization	library

BDG-Services	is	a	library	for	accessing	a	running	Spark	cluster	through	web-services

or	a	Thrift-	interface

Short	read	assembly

Variant	filtration	(train	model	via	 MLlib)

License
ADAM	is	released	under	an	Apache	2.0	license.

