diff --git a/src/field_10x26_impl.h b/src/field_10x26_impl.h index 4363e727e7..4a9b234d56 100644 --- a/src/field_10x26_impl.h +++ b/src/field_10x26_impl.h @@ -11,6 +11,15 @@ #include "field.h" #include "modinv32_impl.h" +/** See the comment at the top of field_5x52_impl.h for more details. + * + * Here, we represent field elements as 10 uint32_t's in base 2^26, least significant first, + * where limbs can contain >26 bits. + * A magnitude M means: + * - 2*M*(2^22-1) is the max (inclusive) of the most significant limb + * - 2*M*(2^26-1) is the max (inclusive) of the remaining limbs + */ + #ifdef VERIFY static void secp256k1_fe_verify(const secp256k1_fe *a) { const uint32_t *d = a->n; diff --git a/src/field_5x52_impl.h b/src/field_5x52_impl.h index b56bdd1353..dcc1c4c272 100644 --- a/src/field_5x52_impl.h +++ b/src/field_5x52_impl.h @@ -22,11 +22,18 @@ #endif /** Implements arithmetic modulo FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F, - * represented as 5 uint64_t's in base 2^52. The values are allowed to contain >52 each. In particular, - * each FieldElem has a 'magnitude' associated with it. Internally, a magnitude M means each element - * is at most M*(2^53-1), except the most significant one, which is limited to M*(2^49-1). All operations - * accept any input with magnitude at most M, and have different rules for propagating magnitude to their - * output. + * represented as 5 uint64_t's in base 2^52, least significant first. Note that the limbs are allowed to + * contain >52 bits each. + * + * Each field element has a 'magnitude' associated with it. Internally, a magnitude M means: + * - 2*M*(2^48-1) is the max (inclusive) of the most significant limb + * - 2*M*(2^52-1) is the max (inclusive) of the remaining limbs + * + * Operations have different rules for propagating magnitude to their outputs. If an operation takes a + * magnitude M as a parameter, that means the magnitude of input field elements can be at most M (inclusive). + * + * Each field element also has a 'normalized' flag. A field element is normalized if its magnitude is either + * 0 or 1, and its value is already reduced modulo the order of the field. */ #ifdef VERIFY