forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_expanded_weights.py
785 lines (678 loc) · 40.8 KB
/
test_expanded_weights.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
# Owner(s): ["module: nn"]
from dataclasses import dataclass
from functools import partial
from itertools import product, chain
import unittest
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss
from torch.nn.utils._per_sample_grad import call_for_per_sample_grads
from torch.testing._internal.common_cuda import TEST_CUDA, tf32_off
from torch.testing._internal.common_device_type import OpDTypes, instantiate_device_type_tests, ops
from torch.testing._internal.common_modules import module_db, modules
from torch.testing._internal.common_nn import TestBase, module_tests, new_module_tests
from torch.testing._internal.common_utils import TestCase, freeze_rng_state, make_tensor, run_tests, parametrize, skipIfTorchDynamo
from torch.testing._internal.common_methods_invocations import SampleInput, op_db
from torch.nn.utils._expanded_weights import ExpandedWeight
from torch.nn.utils._expanded_weights.expanded_weights_utils import forward_helper, set_grad_sample_if_exists, \
unpack_expanded_weight_or_tensor, sum_over_all_but_batch_and_last_n, standard_kwargs
from torch.utils._pytree import tree_map_only
class TestContext:
pass
class TestExpandedWeightHelperFunction(TestCase):
def test_forward_helper(self, device):
input = torch.randn(3, 4, device=device)
weight = torch.randn(5, 4, device=device)
bias = torch.randn(5, device=device)
for (weight_batched, bias_batched) in product([True, False], [True, False]):
maybe_batched_weight = weight
maybe_batched_bias = bias
if weight_batched:
maybe_batched_weight = ExpandedWeight(weight.clone().requires_grad_(), 3, loss_reduction="sum")
if bias_batched:
maybe_batched_bias = ExpandedWeight(bias.clone().requires_grad_(), 3, loss_reduction="sum")
args = (input, maybe_batched_weight, maybe_batched_bias)
expanded_args, expanded_kwargs = standard_kwargs(('bias',), args)
res = forward_helper(nn.functional.linear, expanded_args, expanded_kwargs)
expected = nn.functional.linear(input, weight, bias)
self.assertEqual(res, expected)
self.assertEqual(len(expanded_args), 2)
assert expanded_args[0] is args[0] # avoids property checks in assertEquals
assert expanded_args[1] is args[1] # avoids property checks in assertEquals
self.assertEqual(len(expanded_kwargs), 1)
assert expanded_kwargs['bias'] is args[2] # avoids property checks in assertEquals
def test_forward_helper_failure_args(self, device):
weight = torch.randn(5, 4, device=device)
bias = torch.randn(5, device=device)
with self.assertRaisesRegex(RuntimeError, r"do not support inputs that are also ExpandedWeights."):
input = ExpandedWeight(torch.randn(3, 4, requires_grad=True), 3, loss_reduction="sum")
expanded_args, expanded_kwargs = standard_kwargs(('bias',), (input, weight, bias))
forward_helper(nn.functional.linear, expanded_args, expanded_kwargs)
with self.assertRaisesRegex(RuntimeError, r"requires a Tensor as the first input"):
expanded_args, expanded_kwargs = standard_kwargs(('bias',), (3, weight, bias))
forward_helper(nn.functional.linear, expanded_args, expanded_kwargs)
with self.assertRaisesRegex(RuntimeError, r"requires a batch dimension but got an input of size 0"):
expanded_args, expanded_kwargs = standard_kwargs(('bias',), (torch.tensor(3), weight, bias))
forward_helper(nn.functional.linear, expanded_args, expanded_kwargs)
with self.assertRaisesRegex(RuntimeError, r"0 is not a valid batch size for Expanded Weights"):
expanded_args, expanded_kwargs = standard_kwargs(('bias',), (torch.randn(0, 1, 2), weight, bias))
forward_helper(nn.functional.linear, expanded_args, expanded_kwargs)
input = torch.randn(3, 4)
for (weight_batched, bias_batched) in product([True, False], [True, False]):
if not weight_batched and not bias_batched:
continue
maybe_batched_weight = weight
maybe_batched_bias = bias
if weight_batched:
maybe_batched_weight = ExpandedWeight(weight.clone().requires_grad_(), 4, loss_reduction="sum")
if bias_batched:
maybe_batched_bias = ExpandedWeight(bias.clone().requires_grad_(), 4, loss_reduction="sum")
with self.assertRaisesRegex(RuntimeError, r"Expected ExpandedWeights to have batch size matching input"):
expanded_args, expanded_kwargs = standard_kwargs(('bias',), (input, maybe_batched_weight, maybe_batched_bias))
forward_helper(nn.functional.linear, expanded_args, expanded_kwargs)
def test_set_grad_sample_if_exists(self, device):
def test_fn(a):
return grad_sample
orig_weight = torch.randn(4, device=device, requires_grad=True)
expanded_weight = ExpandedWeight(orig_weight, 3, loss_reduction="sum")
grad_sample = torch.randn(3)
set_grad_sample_if_exists(expanded_weight, test_fn)
self.assertTrue(hasattr(orig_weight, 'grad_sample'))
self.assertEqual(orig_weight.grad_sample, grad_sample)
basic_tensor = torch.randn(4, device=device)
set_grad_sample_if_exists(basic_tensor, test_fn)
self.assertFalse(hasattr(basic_tensor, 'grad_sample'))
non_tensor = 3
set_grad_sample_if_exists(non_tensor, test_fn)
self.assertFalse(hasattr(non_tensor, 'grad_sample'))
def test_set_grad_sample_if_exists_failure(self, device):
def test_fn(a):
return True
grad_tensor = torch.randn(4, requires_grad=True, device=device)
with self.assertRaisesRegex(RuntimeError, r"does not support a mixture of ExpandedWeight parameters and normal Parameters"):
set_grad_sample_if_exists(grad_tensor, test_fn)
def test_unpack_expanded_weight_or_tensor(self, device):
input = torch.randn(3, requires_grad=True, device=device)
self.assertEqual(input, unpack_expanded_weight_or_tensor(ExpandedWeight(input, 3, loss_reduction="sum")))
input.requires_grad_(False)
self.assertEqual(input, unpack_expanded_weight_or_tensor(input))
self.assertTrue(unpack_expanded_weight_or_tensor(4) is None)
def test_unpack_expanded_weight_or_tensor_with_custom_function(self, device):
input = torch.randn(3, requires_grad=True, device=device)
self.assertTrue(unpack_expanded_weight_or_tensor(ExpandedWeight(input, 3, loss_reduction="sum"), lambda x: x is input))
input.requires_grad_(False)
self.assertTrue(unpack_expanded_weight_or_tensor(input, lambda x: x is input))
self.assertTrue(unpack_expanded_weight_or_tensor(4, lambda x: x is input) is None)
def test_unpack_expanded_weight_or_tensor_failure(self, device):
input = torch.randn(3, requires_grad=True, device=device)
with self.assertRaisesRegex(RuntimeError, r"does not support a mixture of ExpandedWeight parameters and normal Parameters"):
unpack_expanded_weight_or_tensor(input)
with self.assertRaisesRegex(RuntimeError, r"does not support a mixture of ExpandedWeight parameters and normal Parameters"):
unpack_expanded_weight_or_tensor(input, lambda x: x is input)
def test_sum_over_all_but_batch_and_last_n(self, device):
input = torch.randn(1, 2, 3, 4, 5, device=device)
res = sum_over_all_but_batch_and_last_n(input, 2)
expected = input.sum((1, 2))
self.assertEqual(res, expected)
res = sum_over_all_but_batch_and_last_n(input, 0)
expected = input.sum((1, 2, 3, 4))
self.assertEqual(res, expected)
res = sum_over_all_but_batch_and_last_n(input, 4)
self.assertEqual(res, input)
class TestExpandedWeightFunctional(TestCase):
def _compare_ew_and_for_loop_per_sample_grads(self, op, sample_input, reduction):
input = sample_input.input
args = sample_input.args
kwargs = sample_input.kwargs
batch_size = input.shape[0] if len(input.shape) > 1 else 1
# get per sample grads with ExpandedWeights objects
loss_reduction = "sum" if reduction == torch.sum else "mean"
(ew_input, ew_args, ew_kwargs) = make_expanded_weight(sample_input, batch_size, loss_reduction)
diff_input_list = (ew_input,) + tuple(ew_args) + tuple(ew_kwargs.values())
diff_input_list = [i for i in diff_input_list if is_diff_tensor(i)]
diff_input_list = [i.orig_weight if isinstance(i, ExpandedWeight) else i for i in diff_input_list]
if not diff_input_list:
return
result = run_op(op, ew_input, *ew_args, **ew_kwargs)
reduction(result).backward() # grad doesn't work with ExpandedWeight because it calls __torch_function__
expanded_weight_grad = tuple(i.grad_sample if hasattr(i, "grad_sample") else i.grad for i in diff_input_list)
# get per sample grads with for loop
func = partial(run_op, op)
per_sample_grad = for_loop_per_sample_grad(batch_size, reduction, input, func, *args, **kwargs)
# check equality
self.assertEqual(len(per_sample_grad), len(expanded_weight_grad))
if loss_reduction == "mean":
# don't check equality of `input.grad`s since these vanilla tensors won't be scaled
expanded_weight_grad = expanded_weight_grad[1:]
per_sample_grad = per_sample_grad[1:]
for (result_grad, expected_grad) in zip(expanded_weight_grad, per_sample_grad):
self.assertEqual(result_grad, expected_grad)
@ops(filter(lambda op: op.supports_expanded_weight, op_db), dtypes=OpDTypes.supported, allowed_dtypes=(torch.double,))
def test_expanded_weight_per_sample_grad_sum(self, device, dtype, op):
sample_inputs = op.sample_inputs(device, dtype, requires_grad=True)
for sample_input in supported_inputs(op, sample_inputs):
if op.name == "nn.functional.embedding": # embedding flips its argument order for autograd tests
sample_input = SampleInput(sample_input.args[0], args=(sample_input.input,), kwargs=sample_input.kwargs)
self._compare_ew_and_for_loop_per_sample_grads(op, sample_input, torch.sum)
@ops(filter(lambda op: op.supports_expanded_weight, op_db), dtypes=OpDTypes.supported, allowed_dtypes=(torch.double,))
def test_expanded_weight_per_sample_grad_mean(self, device, dtype, op):
sample_inputs = op.sample_inputs(device, dtype, requires_grad=True)
for sample_input in supported_inputs(op, sample_inputs):
if op.name == "nn.functional.embedding": # embedding flips its argument order for autograd tests
sample_input = SampleInput(sample_input.args[0], args=(sample_input.input,), kwargs=sample_input.kwargs)
self._compare_ew_and_for_loop_per_sample_grads(op, sample_input, torch.mean)
@ops(filter(lambda op: op.supports_expanded_weight, op_db), dtypes=OpDTypes.supported, allowed_dtypes=(torch.double,))
def test_expanded_weights_per_sample_grad_input_no_grad(self, device, dtype, op):
sample_inputs = op.sample_inputs(device, dtype, requires_grad=True)
for sample_input in supported_inputs(op, sample_inputs):
if op.name == "nn.functional.embedding": # embedding flips its argument order for autograd tests
sample_input = SampleInput(sample_input.args[0], args=(sample_input.input,), kwargs=sample_input.kwargs)
sample_input.input.requires_grad_(False)
self._compare_ew_and_for_loop_per_sample_grads(op, sample_input, torch.mean)
@skipIfTorchDynamo("Checking error message doesn't work with dynamo")
@ops(filter(lambda op: op.supports_expanded_weight, op_db), dtypes=OpDTypes.supported, allowed_dtypes=(torch.double,))
def test_unsupported_expand_weights(self, device, dtype, op):
sample_inputs = op.sample_inputs(device, dtype, requires_grad=True)
unsupported_inputs = supported_inputs(op, sample_inputs, supported_inputs=False)
for sample_input in unsupported_inputs:
with self.assertRaisesRegex(RuntimeError, r"Expanded Weights"):
if op.name == "nn.functional.embedding": # embedding flips its argument order for autograd tests
sample_input = SampleInput(sample_input.args[0], args=(sample_input.input,), kwargs=sample_input.kwargs)
input = sample_input.input
batch_size = input.shape[0] if len(input.shape) > 1 else 1
# get per sample grads with ExpandedWeights objects
(ew_input, ew_args, ew_kwargs) = make_expanded_weight(sample_input, batch_size)
result = run_op(op, ew_input, *ew_args, **ew_kwargs)
diff_input_list = (ew_input,) + tuple(ew_args) + tuple(ew_kwargs.values())
diff_input_list = [i for i in diff_input_list if is_diff_tensor(i)]
diff_input_list = [i.orig_weight if isinstance(i, ExpandedWeight) else i for i in diff_input_list]
result.sum().backward() # grad doesn't work with ExpandedWeight because it calls __torch_function__
@ops(filter(lambda op: op.supports_expanded_weight, op_db), dtypes=OpDTypes.supported)
def test_expanded_weight_forward(self, device, dtype, op):
sample_inputs = op.sample_inputs(device, dtype)
for sample_input in supported_inputs(op, sample_inputs):
if op.name == "nn.functional.embedding": # embedding flips its argument order for autograd tests
sample_input = SampleInput(sample_input.args[0].clone(),
args=(sample_input.input.clone(),),
kwargs=sample_input.kwargs)
if "cuda" in device and "max_norm" in sample_input.kwargs and "padding_idx" in sample_input.kwargs:
self.skipTest("embedding is non-determinstic in this case, see issue #74679")
batch_size = sample_input.input.shape[0] if len(sample_input.input.shape) > 1 else 1
for loss_reduction in ["sum", "mean"]:
(ew_input, ew_args, ew_kwargs) = make_expanded_weight(sample_input, batch_size, loss_reduction)
expanded_weight_result = run_op(op, ew_input, *ew_args, **ew_kwargs)
normal_result = run_op(op, sample_input.input, *sample_input.args, **sample_input.kwargs)
self.assertEqual(expanded_weight_result, normal_result)
def test_expanded_weight_error(self, device):
batch_size = 3
sample_input = make_tensor((batch_size, 4), dtype=torch.float32, device=device, requires_grad=True)
sample_weight = make_tensor((4), dtype=torch.float32, device=device, requires_grad=True)
with self.assertRaisesRegex(RuntimeError, r"Expanded Weights encountered but cannot handle function"):
torch.add(sample_input, ExpandedWeight(sample_weight, batch_size, loss_reduction="sum"))
def _test_embedding_model(self, model, num_embedding, device):
batch_size = 32
input = torch.randint(0, num_embedding, (batch_size, 5, 5), device=device)
return self._test_model(partial(model, num_embedding=num_embedding), batch_size, input, device)
def _test_conv_model(self, model, input_size, num_dim, device, loss_reduction="sum", atol=1e-4, rtol=5e-5):
batch_size = 32
input_ending = [input_size] * num_dim
input = torch.randn([batch_size, 3] + input_ending, device=device)
return self._test_model(partial(model, num_dim=num_dim), batch_size, input, device, loss_reduction, atol, rtol)
def _test_model(self, model, batch_size, input, device, loss_reduction="sum", atol=1e-4, rtol=5e-5):
model = model(10).to(device)
targets = torch.randint(0, 10, (batch_size,), device=device)
criterion = CrossEntropyLoss(reduction=loss_reduction)
result = call_for_per_sample_grads(model, loss_reduction=loss_reduction)(input)
loss = criterion(result, targets)
loss.backward()
result = []
for weight in model.parameters():
result.append(weight.grad_sample)
del weight.grad_sample
expected = []
for i in range(batch_size):
loss = criterion(model(input[i].unsqueeze(0)), targets[i].unsqueeze(0))
expected.append(torch.autograd.grad(loss, model.parameters(), torch.ones_like(loss)))
expected = [torch.stack(grad) for grad in zip(*expected)]
for (res, exp) in zip(result, expected):
self.assertEqual(res, exp, atol=atol, rtol=rtol)
def _compute_tolerances(self, device):
is_cuda_sm86 = device.startswith("cuda") and torch.cuda.get_device_capability(0) == (8, 6)
return (9e-3, 5e-5) if is_cuda_sm86 else (1e-4, 5e-5)
@tf32_off()
def test_cnn_model_sum(self, device):
def convnet(num_classes, num_dim):
return nn.Sequential(
nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.AdaptiveAvgPool2d((1, 1)),
nn.Flatten(start_dim=1, end_dim=-1),
nn.Linear(128, num_classes, bias=True),
)
atol, rtol = self._compute_tolerances(device)
return self._test_conv_model(convnet, 28, 2, device, atol=atol, rtol=rtol)
@tf32_off()
def test_cnn_model_mean(self, device):
def convnet(num_classes, num_dim):
return nn.Sequential(
nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.AdaptiveAvgPool2d((1, 1)),
nn.Flatten(start_dim=1, end_dim=-1),
nn.Linear(128, num_classes, bias=True),
)
atol, rtol = self._compute_tolerances(device)
return self._test_conv_model(convnet, 28, 2, device, loss_reduction="mean", atol=atol, rtol=rtol)
@parametrize('num_dim', [1, 2, 3])
@tf32_off()
def test_instance_norm_model(self, num_dim, device):
def instance_norm_model(num_classes, num_dim):
conv_layer = nn.Conv1d if num_dim == 1 else nn.Conv2d if num_dim == 2 else nn.Conv3d
norm_layer = nn.InstanceNorm1d if num_dim == 1 else nn.InstanceNorm2d if num_dim == 2 else nn.InstanceNorm3d
return nn.Sequential(
conv_layer(3, 32, kernel_size=3, stride=1, padding=1),
norm_layer(32, affine=True),
nn.Flatten(start_dim=1, end_dim=-1),
nn.Linear(32 * (7 ** num_dim), num_classes, bias=True),
)
atol, rtol = self._compute_tolerances(device)
return self._test_conv_model(instance_norm_model, 7, num_dim, device, atol=atol, rtol=rtol)
@parametrize('num_dim', [1, 2, 3])
@tf32_off()
def test_group_norm_model(self, num_dim, device):
def group_norm_model(num_classes, num_dim):
conv_layer = nn.Conv1d if num_dim == 1 else nn.Conv2d if num_dim == 2 else nn.Conv3d
return nn.Sequential(
conv_layer(3, 32, kernel_size=3, stride=1, padding=1),
nn.GroupNorm(8, 32, affine=True),
nn.Flatten(start_dim=1, end_dim=-1),
nn.Linear(32 * (7 ** num_dim), num_classes, bias=True),
)
atol, rtol = self._compute_tolerances(device)
return self._test_conv_model(group_norm_model, 7, num_dim, device, atol=atol, rtol=rtol)
@parametrize('num_dim', [1, 2, 3])
@tf32_off()
def test_layer_norm_model(self, num_dim, device):
def layer_norm_model(num_classes, num_dim):
conv_layer = nn.Conv1d if num_dim == 1 else nn.Conv2d if num_dim == 2 else nn.Conv3d
normalized_shape = [7] * num_dim
return nn.Sequential(
conv_layer(3, 32, kernel_size=3, stride=1, padding=1),
nn.LayerNorm(normalized_shape, elementwise_affine=True),
nn.Flatten(start_dim=1, end_dim=-1),
nn.Linear(32 * (7 ** num_dim), num_classes, bias=True),
)
atol, rtol = self._compute_tolerances(device)
return self._test_conv_model(layer_norm_model, 7, num_dim, device, atol=atol, rtol=rtol)
def test_embedding_model(self, device):
def embedding_model(num_classes, num_embedding):
return nn.Sequential(
nn.Embedding(num_embedding, 15),
nn.Flatten(start_dim=1, end_dim=-1),
nn.Linear(375, num_classes, bias=True)
)
return self._test_embedding_model(embedding_model, 16, device)
def test_group_norm_error(self, device):
# group norm has to call native_group_norm. This checks that it hits the same errors
# that normal group norm would
N = 3
C = 5
inp = torch.randn(N, C)
with self.assertRaisesRegex(RuntimeError, r"Expected number of channels in input to be divisible"):
F.group_norm(inp, 2) # 5 is not divisible by 2
class TestExpandedWeightModule(TestCase):
def _do_test(self, module, input, args=None, kwargs=None, batch_first=True, atol=None, rtol=None):
args = args or ()
kwargs = kwargs or {}
batch_dim = 0 if batch_first else 1
batch_size = input.shape[batch_dim]
diff_input = input.dtype == torch.float or input.dtype == torch.double
if diff_input:
input.requires_grad_()
with freeze_rng_state():
# get per sample grads with ExpandedWeights context manager
actual_res = call_for_per_sample_grads(module,
batch_size=batch_size,
loss_reduction="sum",
batch_first=batch_first)(input, *args, **kwargs).sum()
actual_res.backward()
actual_grads = []
for param in module.parameters():
actual_grads.append(param.grad_sample)
del param.grad_sample
if diff_input:
actual_grads.append(input.grad.clone())
input.grad = torch.zeros_like(input.grad)
# get per sample grads with a for loop
expected_res = torch.tensor(0., device=input.device, dtype=actual_res.dtype)
expected_grads = []
for i in range(batch_size):
input_slice = input.narrow(batch_dim, i, 1)
input_slice = input_slice.squeeze(batch_dim)
# h's batch dim is always the first dim. Must be contiguous for CUDA
sliced_args = tree_map_only(torch.Tensor, lambda t: t.narrow(1, i, 1).contiguous(), args)
diff_params = module.parameters()
if diff_input:
diff_params = chain(diff_params, (input_slice,))
res = module(input_slice.unsqueeze(batch_dim).contiguous(), *sliced_args, **kwargs).sum()
out_grads = torch.autograd.grad(res, diff_params, torch.ones_like(res), allow_unused=True)
expected_grads.append(out_grads)
expected_res += res
expected_grads = [torch.stack(grad) for grad in zip(*expected_grads)]
if not batch_first:
expected_grads[-1] = expected_grads[-1].transpose(0, 1)
self.assertEqual(actual_res, expected_res)
[self.assertEqual(actual, expected, atol=atol, rtol=rtol) for (actual, expected) in zip(actual_grads, expected_grads)]
def _do_test_multi_input(self, module, input):
class TestModule(nn.Module):
def __init__(self, module):
super().__init__()
self.module = module
def forward(self, input):
return self.module(input) + self.module(input)
batch_size = input.shape[0]
diff_input = input.dtype == torch.float or input.dtype == torch.double
if diff_input:
input.requires_grad_()
with freeze_rng_state():
# get per sample grads with ExpandedWeights context manager, calling .backward() twice
test_module = TestModule(module)
actual_res = call_for_per_sample_grads(test_module, loss_reduction="sum")(input).sum()
actual_res.backward()
actual_grads = []
for param in module.parameters():
actual_grads.append(param.grad_sample)
del param.grad_sample
if diff_input:
actual_grads.append(input.grad.clone())
input.grad = torch.zeros_like(input.grad)
# get per sample grads with a for loop, running over the input twice
expected_grads = []
for i in range(batch_size):
input_slice = input[i]
diff_params = module.parameters()
if diff_input:
diff_params = chain(diff_params, (input_slice,))
res = module(input_slice.unsqueeze(0)).sum()
out_grads = torch.autograd.grad(res, diff_params, torch.ones_like(res), allow_unused=True)
expected_grads.append(out_grads)
expected_grads = tuple(torch.stack(grad) for grad in zip(*expected_grads))
expected_grads = tuple(expected_grad for expected_grad in expected_grads if expected_grad is not None)
assert [self.assertEqual(actual, 2 * expected) for (actual, expected) in zip(actual_grads, expected_grads)]
def _do_test_rnn_packed_sequence(self, module, input, args=None, kwargs=None, atol=None, rtol=None):
args = args if args is not None else ()
kwargs = kwargs if kwargs is not None else {}
batch_size = max(tuple(input.batch_sizes)).item()
with freeze_rng_state():
# get per sample grads with ExpandedWeights context manager
actual_res = call_for_per_sample_grads(module,
batch_size=batch_size,
loss_reduction="sum")(input, *args, **kwargs).data.sum()
actual_res.backward()
actual_grads = []
for param in module.parameters():
self.assertEqual(param.grad_sample.shape[0], batch_size)
actual_grads.append(param.grad_sample)
del param.grad_sample
input.data.grad = torch.zeros_like(input.data)
# compute the per sample grads with a for loop
expected_res = torch.zeros_like(actual_res)
expected_grads = []
padded_input, seq_sizes = torch.nn.utils.rnn.pad_packed_sequence(input, batch_first=True)
for i in range(len(seq_sizes)):
input_slice = padded_input[i].narrow(0, 0, seq_sizes[i])
diff_params = module.parameters()
batch_dim = 0 if module.m.batch_first else 1
res = module(input_slice.unsqueeze(batch_dim), *args, **kwargs).sum()
expected_res += res
out_grads = torch.autograd.grad(res, diff_params, torch.ones_like(res), allow_unused=True)
expected_grads.append(out_grads)
expected_grads = [torch.stack(grad) for grad in zip(*expected_grads)]
self.assertEqual(actual_res, expected_res)
[self.assertEqual(actual, expected, atol=atol, rtol=rtol) for (actual, expected) in zip(actual_grads, expected_grads)]
@modules(filter(lambda m_info: m_info.module_cls in (torch.nn.RNN, torch.nn.LSTM, torch.nn.GRU), module_db))
@tf32_off()
def test_module(self, device, dtype, module_info, training):
class RNNWrapper(torch.nn.Module):
def __init__(self, m_cons, args, kwargs):
super().__init__()
self.m = m_cons(*args, **kwargs)
def forward(self, *inps):
ret = self.m(*inps)
assert isinstance(ret, tuple)
return ret[0]
def batch_hidden(h):
new_h_shape = [1] * (len(h.shape) + 1)
new_h_shape[1] = 2
return h.unsqueeze(1).repeat(new_h_shape)
module_cls = module_info.module_cls
atol, rtol = (1e-4, 1e-5) if module_cls == torch.nn.GRU and dtype == torch.float32 else (None, None)
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=True, training=training, with_packed_sequence=True)
for module_input in module_inputs:
if module_input.forward_input is None:
continue
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
m = RNNWrapper(module_cls, args, kwargs)
batch_first = m.m.batch_first
m.to(device).to(dtype)
args, kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
# if the RNN tests use unbatched inputs--batch the inputs
input = args[0]
if isinstance(input, torch.Tensor) and input.dim() == 2:
input = input.detach()
new_input_shape = [1] * (len(input.shape) + 1)
if batch_first:
new_input_shape[0] = 2
input = input.repeat(new_input_shape)
else:
new_input_shape[1] = 2
input = input.unsqueeze(1).repeat(new_input_shape)
h = args[1] if len(args) > 1 else None
if h is not None:
h = batch_hidden(h) if isinstance(h, torch.Tensor) else tuple(batch_hidden(hx) for hx in h)
args = list(args)
args[1] = h
if isinstance(input, torch.nn.utils.rnn.PackedSequence):
self._do_test_rnn_packed_sequence(m, input, args[1:], kwargs, atol=atol, rtol=rtol)
else:
self._do_test(m, input, args[1:], kwargs, batch_first=batch_first, atol=atol, rtol=rtol)
def test_per_sample_api_failing(self):
module = nn.Linear(10, 10)
input = torch.randn(64, 10)
with self.assertRaisesRegex(RuntimeError, r"Module passed must be nn.Module"):
call_for_per_sample_grads("fail")(input)
with self.assertRaisesRegex(RuntimeError, r"Batch size passed must be None or an integer"):
call_for_per_sample_grads(module, batch_size=6.4)(input)
with self.assertRaisesRegex(RuntimeError, r"Batch size must be positive"):
call_for_per_sample_grads(module, batch_size=-64)(input)
with self.assertRaisesRegex(RuntimeError, r"incorrect for multiple calls"):
loss = call_for_per_sample_grads(module)(input).sum()
loss.backward() # populate grad_sample fields
call_for_per_sample_grads(module)(input)
module = nn.Linear(10, 10) # reset to not have grad_sample fields
with self.assertRaisesRegex(RuntimeError, r"Expected loss_reduction argument to be sum or mean"):
call_for_per_sample_grads(module, loss_reduction="")(input)
def test_per_sample_api_compute_batch_size(self):
class CustomModule(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(5, 5)
def forward(self, input1, input2):
return self.linear(input1) + self.linear(input2)
module = CustomModule()
input1 = torch.randn(4, 5)
input2 = torch.randn(5, 5)
with self.assertRaisesRegex(RuntimeError, "found at least one input with batch size 4 and one with batch size 5"):
call_for_per_sample_grads(module)(input1, input2)
input2 = torch.randn(4, 5)
call_for_per_sample_grads(module)(input1, input2)
module = CustomModule()
call_for_per_sample_grads(module)(input1, input2=input2)
module = CustomModule()
call_for_per_sample_grads(module)(input1=input1, input2=input2)
def test_per_sample_api_compute_batch_size_not_pytreeable(self):
@dataclass
class NonPytreeableTuple:
elem1: torch.Tensor
elem2: torch.Tensor
class CustomModule(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(5, 5)
def forward(self, input1, input2):
return self.linear(input1.elem1) + self.linear(input1.elem2)
input = NonPytreeableTuple(torch.randn(4, 5), torch.randn(4, 5))
model = CustomModule()
with self.assertRaisesRegex(RuntimeError, "ExpandedWeights cannot compute the batch size from the inputs"):
call_for_per_sample_grads(model)(input, "")
# would prefer for it to error because input is not pytree-able but that's hard to detect
with self.assertRaisesRegex(RuntimeError, "Expected ExpandedWeights to have batch size matching input"):
call_for_per_sample_grads(model)(input, torch.randn(5))
model = CustomModule() # TODO: functional call bug, sam will fix
call_for_per_sample_grads(model)(input, torch.randn(4, 5))
model = CustomModule()
call_for_per_sample_grads(model, batch_size=4)(input, torch.randn(5))
class ContextManagerTests(TestBase):
def __init__(self, *args, **kwargs):
self.test_cpu = kwargs.get('test_cpu', True)
self.test_cuda = kwargs.get('test_cuda', True)
super().__init__(*args, **kwargs)
@property
def constructor_args(self):
return self._get_arg('constructor_args', False)
def test_context_manager(self, test_case, device):
kwargs = {'device': device, 'dtype': torch.double}
module = self.constructor(*self.constructor_args).to(**kwargs)
if 'Embedding' in self.get_name():
kwargs['dtype'] = torch.long
input = self._get_input().to(**kwargs)
if len(input.shape) == 0 or input.shape[0] == 0:
raise unittest.SkipTest("Can't get per sample gradients when no batch dim or batch dim is 0")
if self.constructor == torch.nn.Linear and len(input.shape) == 1:
raise unittest.SkipTest("Can't get per sample gradients for input of rank 1")
test_case._do_test(module, input)
def test_context_manager_multiple_inputs(self, test_case, device):
module = self.constructor(*self.constructor_args).to(device)
input = self._get_input()
if len(input.shape) == 0 or input.shape[0] == 0:
raise unittest.SkipTest("Can't get per sample gradients when no batch dim or batch dim is 0")
if self.constructor == torch.nn.Linear and len(input.shape) == 1:
raise unittest.SkipTest("Can't get per sample gradients for input of rank 1")
test_case._do_test_multi_input(module, input)
def filter_supported_tests(t):
supported_modules = ['Linear', 'Conv1d', 'Conv2d', 'Conv3d', 'Embedding', 'LayerNorm', 'GroupNorm', 'InstanceNorm']
if 'module_name' in t and t['module_name'] in supported_modules:
return True
# TODO: Once all of these use ModuleInfo, replace with ModuleInfo tests
# These currently use the legacy nn tests
supported_tests = [t for t in module_tests + new_module_tests if filter_supported_tests(t)]
for test_param in supported_tests:
if 'constructor' not in test_param:
name = test_param.pop('module_name')
test_param['constructor'] = getattr(nn, name)
decorator = test_param.pop('decorator', lambda test: test)
test = ContextManagerTests(**test_param)
test_name = test.get_name()
if hasattr(TestExpandedWeightModule, test_name):
raise RuntimeError('Found two tests with the same name: ' + test_name)
test_name_multi_input = test.get_name() + "_multiple_inputs"
if hasattr(TestExpandedWeightModule, test_name_multi_input):
raise RuntimeError('Found two tests with the same name: ' + test_name)
if test.test_cpu:
setattr(TestExpandedWeightModule, test_name, decorator(lambda self, test=test: test.test_context_manager(self, 'cpu')))
setattr(TestExpandedWeightModule, test_name_multi_input,
decorator(lambda self, test=test: test.test_context_manager_multiple_inputs(self, 'cpu')))
if TEST_CUDA and test.test_cuda:
# since this checks derivatives, only use double for precision
setattr(TestExpandedWeightModule, test_name + '_cuda_double',
decorator(lambda self, test=test: test.test_context_manager(self, 'cuda')))
# ------------- HELPER FUNCTIONS -----------------
def run_op(op, input, *args, **kwargs):
r"""
OpInfo for Embedding switches the input and weight so autograd tests will only check the derivative
of the weight, not the input, which can't be differentiable since its dtype is int. Calls op,
using the special ordering that Embedding's OpInfo expects for that case.
"""
if op.name == "nn.functional.embedding":
return op(args[0], input, **kwargs)
else:
return op(input, *args, **kwargs)
def make_expanded_weight(sample_input, batch_size, loss_reduction="sum"):
def expanded_weight_or_clone(arg):
if is_diff_tensor(arg):
return ExpandedWeight(torch.clone(arg), batch_size, loss_reduction)
return clone_if_tensor(arg)
ew_input = clone_if_tensor(sample_input.input)
ew_args = tuple(expanded_weight_or_clone(arg) for arg in sample_input.args)
ew_kwargs = {name: expanded_weight_or_clone(arg) for (name, arg) in sample_input.kwargs.items()}
return ew_input, ew_args, ew_kwargs
def supported_inputs(op, sample_inputs, supported_inputs=True):
r"""
ExpandedWeights currently does not support some use cases when there's no batch dimension or
operations that would cause inter-batch operations. Removes all of the cases it cannot deal with
"""
def filter_fn(input):
convolutions = ["nn.functional.conv1d", "nn.functional.conv2d", "nn.functional.conv3d"]
batched_input_size = dict(zip(convolutions, [3, 4, 5]))
if op.name == "nn.functional.linear":
is_supported_input = input.input.dim() > 1 # input of rank 1 means no batch dim
elif op.name == "nn.functional.layer_norm":
normalized_shape = input.args[0]
is_supported_input = input.input.shape != normalized_shape # would cause inter-batch operations
elif op.name in convolutions:
# currently can't deal with padding computation on Python level
is_supported_input = input.input.dim() == batched_input_size[op.name]
elif op.name == "nn.functional.embedding":
idx = input.args[0]
is_supported_input = len(idx.shape) > 1 # there's no batch size
else:
is_supported_input = True
is_supported_input = is_supported_input and input.input.shape[0] > 0 # 0 is not a valid batch size
return is_supported_input if supported_inputs else not is_supported_input
return [input for input in sample_inputs if filter_fn(input)]
def for_loop_per_sample_grad(batch_size, reduction, input, func, *args, **kwargs):
# get per sample grads by getting derivative for each input in a for loop
per_sample_grad = []
for i in range(batch_size):
per_sample_input = input[i]
result = reduction(func(per_sample_input.unsqueeze(0), *args, **kwargs))
diff_input_list = (per_sample_input,) + tuple(args) + tuple(kwargs.values())
diff_input_list = [i for i in diff_input_list if isinstance(i, torch.Tensor) and i.requires_grad]
per_sample_grad.append(torch.autograd.grad(result, diff_input_list, torch.ones_like(result), allow_unused=True))
if len(per_sample_grad) == batch_size:
per_sample_grad = tuple(torch.stack(grad) for grad in zip(*per_sample_grad))
return per_sample_grad
def is_diff_tensor(t):
return isinstance(t, ExpandedWeight) or (isinstance(t, torch.Tensor) and t.requires_grad)
def clone_if_tensor(t):
if isinstance(t, torch.Tensor):
res = torch.clone(t).detach()
res.requires_grad_(t.requires_grad)
return res
else:
return t
instantiate_device_type_tests(TestExpandedWeightHelperFunction, globals())
instantiate_device_type_tests(TestExpandedWeightFunctional, globals())
instantiate_device_type_tests(TestExpandedWeightModule, globals())
if __name__ == '__main__':
run_tests()