Skip to content

Commit

Permalink
Merge pull request #1 from S-aiueo32/master
Browse files Browse the repository at this point in the history
Add google style docstring & type hinting, fix bugs, improve PyTorch compatibility
  • Loading branch information
bmartinn authored Mar 6, 2020
2 parents 3a868d8 + 196700a commit 1f53519
Showing 1 changed file with 128 additions and 59 deletions.
187 changes: 128 additions & 59 deletions pytorch_lightning/loggers/trains.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,14 @@ def any_lightning_module_function_or_hook(...):
"""

from argparse import Namespace
from logging import getLogger
from pathlib import Path
from typing import Any, Dict, Optional, Union

import numpy as np
import pandas as pd
import PIL
import torch

try:
Expand All @@ -38,39 +45,57 @@ def any_lightning_module_function_or_hook(...):


class TrainsLogger(LightningLoggerBase):
def __init__(self, project_name=None, task_name=None, **kwargs):
r"""
Logs using TRAINS
Args:
project_name (str): The name of the experiment's project
task_name (str): The name of the experiment
"""
"""Logs using TRAINS
Args:
project_name (Optional[str], optional): The name of the experiment's project. Defaults to None.
task_name (Optional[str], optional): The name of the experiment. Defaults to None.
task_type (str, optional): The name of the experiment. Defaults to 'training'.
reuse_last_task_id (bool, optional): Start with the previously used task id. Defaults to True.
output_uri (Optional[str], optional): Default location for output models. Defaults to None.
auto_connect_arg_parser (bool, optional): Automatically grab the ArgParser and connect it with the task. Defaults to True.
auto_connect_frameworks (bool, optional): If True, automatically patch to trains backend. Defaults to True.
auto_resource_monitoring (bool, optional): If true, machine vitals will be sent along side the task scalars. Defaults to True.
"""

def __init__(
self, project_name: Optional[str] = None, task_name: Optional[str] = None,
task_type: str = 'training', reuse_last_task_id: bool = True,
output_uri: Optional[str] = None, auto_connect_arg_parser: bool = True,
auto_connect_frameworks: bool = True, auto_resource_monitoring: bool = True) -> None:
super().__init__()
self._trains = trains.Task.init(project_name=project_name, task_name=task_name, **kwargs)
self._trains = trains.Task.init(
project_name=project_name, task_name=task_name, task_type=task_type,
reuse_last_task_id=reuse_last_task_id, output_uri=output_uri,
auto_connect_arg_parser=auto_connect_arg_parser,
auto_connect_frameworks=auto_connect_frameworks,
auto_resource_monitoring=auto_resource_monitoring
)

@property
def experiment(self):
r"""
Actual TRAINS object. To use TRAINS features do the following.
Example::
def experiment(self) -> trains.Task:
r"""Actual TRAINS object. To use TRAINS features do the following.
self.logger.experiment.some_trains_function()
Example:
.. code-block:: python
self.logger.experiment.some_trains_function()
"""
return self._trains

@property
def id(self):
def id(self) -> str:
if not self._trains:
return None
return self._trains.id

@rank_zero_only
def log_hyperparams(self, params):
def log_hyperparams(self, params: Union[Dict[str, Any], Namespace]) -> None:
"""Log hyperparameters (numeric values) in TRAINS experiments
Args:
params (Union[Dict[str, Any], Namespace]): The hyperparameters that passed through the model.
"""
if not self._trains:
return None
if not params:
Expand All @@ -81,11 +106,22 @@ def log_hyperparams(self, params):
self._trains.connect(vars(params))

@rank_zero_only
def log_metrics(self, metrics, step=None):
def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None) -> None:
"""Log metrics (numeric values) in TRAINS experiments. This method will be called by Trainer.
Args:
metrics (Dict[str, float]):
The dictionary of the metrics.
If the key contains "/", it will be splitted by the delimiter,
then the elements will be logged as "title" and "series" respectively.
step (Optional[int], optional): Step number at which the metrics should be recorded. Defaults to None.
"""
if not self._trains:
return None

if not step:
step = self._trains.get_last_iteration()

for k, v in metrics.items():
if isinstance(v, str):
logger.warning("Discarding metric with string value {}={}".format(k, v))
Expand All @@ -97,104 +133,137 @@ def log_metrics(self, metrics, step=None):
series = title = k
else:
title = parts[0]
series = parts[1:]
self._trains.get_logger().report_scalar(title=title, series=series, value=v, iteration=step)
series = '/'.join(parts[1:])
self._trains.get_logger().report_scalar(
title=title, series=series, value=v, iteration=step)

@rank_zero_only
def log_metric(self, title, series, value, step=None):
"""Log metrics (numeric values) in TRAINS experiments
def log_metric(self, title: str, series: str, value: float, step: Optional[int] = None) -> None:
"""Log metrics (numeric values) in TRAINS experiments. This method will be called by the users.
:param str title: The title of the graph to log, e.g. loss, accuracy.
:param str series: The series name in the graph, e.g. classification, localization
:param float value: The value to log
:param int|None step: Step number at which the metrics should be recorded
Args:
title (str): The title of the graph to log, e.g. loss, accuracy.
series (str): The series name in the graph, e.g. classification, localization.
value (float): The value to log.
step (Optional[int], optional): Step number at which the metrics should be recorded. Defaults to None.
"""
if not self._trains:
return None

if not step:
step = self._trains.get_last_iteration()

if isinstance(value, torch.Tensor):
value = value.item()
self._trains.get_logger().report_scalar(title=title, series=series, value=value, iteration=step)
self._trains.get_logger().report_scalar(
title=title, series=series, value=value, iteration=step)

@rank_zero_only
def log_text(self, text):
def log_text(self, text: str) -> None:
"""Log console text data in TRAINS experiment
:param str text: The value of the log (data-point).
Args:
text (str): The value of the log (data-point).
"""
if not self._trains:
return None

self._trains.get_logger().report_text(text)

@rank_zero_only
def log_image(self, title, series, image, step=None):
def log_image(
self, title: str, series: str,
image: Union[str, np.ndarray, PIL.Image.Image, torch.Tensor],
step: Optional[int] = None) -> None:
"""Log Debug image in TRAINS experiment
:param str title: The title of the debug image, i.e. "failed", "passed".
:param str series: The series name of the debug image, i.e. "Image 0", "Image 1".
:param str|Numpy|PIL.Image image: Debug image to log.
Can be one of the following types: Numpy, PIL image, path to image file (str)
:param int|None step: Step number at which the metrics should be recorded
Args:
title (str): The title of the debug image, i.e. "failed", "passed".
series (str): The series name of the debug image, i.e. "Image 0", "Image 1".
image (Union[str, np.ndarray, PIL.Image.Image, torch.Tensor]):
Debug image to log. Can be one of the following types:
Torch, Numpy, PIL image, path to image file (str)
If Numpy or Torch, the image is assume to be the following:
shape: CHW
color space: RGB
value range: [0., 1.] (float) or [0, 255] (uint8)
step (Optional[int], optional):
Step number at which the metrics should be recorded. Defaults to None.
"""
if not self._trains:
return None

if not step:
step = self._trains.get_last_iteration()

if isinstance(image, str):
self._trains.get_logger().report_image(title=title, series=series, local_path=image, iteration=step)
self._trains.get_logger().report_image(
title=title, series=series, local_path=image, iteration=step)
else:
self._trains.get_logger().report_image(title=title, series=series, image=image, iteration=step)
if isinstance(image, torch.Tensor):
image = image.cpu().numpy()
if isinstance(image, np.ndarray):
image = image.transpose(1, 2, 0)
self._trains.get_logger().report_image(
title=title, series=series, image=image, iteration=step)

@rank_zero_only
def log_artifact(self, name, artifact, metadata=None, delete_after_upload=False):
def log_artifact(
self, name: str,
artifact: Union[str, Path, Dict[str, Any], pd.DataFrame, np.ndarray, PIL.Image.Image],
metadata: Optional[Dict[str, Any]] = None, delete_after_upload: bool = False) -> None:
"""Save an artifact (file/object) in TRAINS experiment storage.
:param str name: Artifact name. Notice! it will override previous artifact if name already exists
:param object artifact: Artifact object to upload. Currently supports:
- string / pathlib2.Path are treated as path to artifact file to upload
If wildcard or a folder is passed, zip file containing the local files will be created and uploaded
- dict will be stored as .json file and uploaded
- pandas.DataFrame will be stored as .csv.gz (compressed CSV file) and uploaded
- numpy.ndarray will be stored as .npz and uploaded
- PIL.Image will be stored to .png file and uploaded
:param dict metadata: Simple key/value dictionary to store on the artifact
:param bool delete_after_upload: If True local artifact will be deleted
(only applies if artifact_object is a local file)
Args:
name (str): Artifact name. Notice! it will override previous artifact if name already exists
artifact (Any): Artifact object to upload. Currently supports:
- string / pathlib2.Path are treated as path to artifact file to upload
If wildcard or a folder is passed, zip file containing the local files will be created and uploaded
- dict will be stored as .json file and uploaded
- pandas.DataFrame will be stored as .csv.gz (compressed CSV file) and uploaded
- numpy.ndarray will be stored as .npz and uploaded
- PIL.Image will be stored to .png file and uploaded
metadata (Optional[Dict[str, Any]], optional):
Simple key/value dictionary to store on the artifact. Defaults to None.
delete_after_upload (bool, optional):
If True local artifact will be deleted (only applies if artifact_object is a local file). Defaults to False.
"""
if not self._trains:
return None
self._trains.upload_artifact(name=name, artifact_object=artifact,
metadata=metadata, delete_after_upload=delete_after_upload)

def save(self):
self._trains.upload_artifact(
name=name, artifact_object=artifact, metadata=metadata,
delete_after_upload=delete_after_upload
)

def save(self) -> None:
pass

@rank_zero_only
def finalize(self, status):
def finalize(self, status: str) -> None:
if not self._trains:
return None
self._trains.close()
self._trains = None

@property
def name(self):
def name(self) -> str:
if not self._trains:
return None
return self._trains.name

@property
def version(self):
def version(self) -> str:
if not self._trains:
return None
return self._trains.id

def __getstate__(self):
def __getstate__(self) -> str:
if not self._trains:
return None
return self._trains.id

def __setstate__(self, state):
def __setstate__(self, state: str) -> str:
self._rank = 0
self._trains = None
if state:
Expand Down

0 comments on commit 1f53519

Please sign in to comment.