
COLUMN SORTING IN PYGSVD

DOW DRAKE
UPDATED DECEMBER, 2019

1. Introduction

This document is intended to document and clarify the details of column ordering for the Python
pygsvd library. For convenience, an excerpt from the LAPACK documentation is reproduced in
the next section.

2. LAPACK Documentation Excerpt

The generalized singular value decomposition of an m × n matrix A and a p × n matrix B is
given by the pair of factorizations

A = UΣ1[0, R]QT and B = V Σ2[0, R]QT

The matrices in these factorizations have the following properties:

(1) U is m×m, V is p× p, Q is n× n and all three matrices are orthogonal. If A and B are
complex, these matrices are unitary instead of orthogonal, and QT should be replaced by
QH in the pair of factorizations.

(2) R is r × r, upper triangular and nonsingular. [0, R] is r × n (in other words, the 0 is an

r × (n− r) zero matrix. The integer r is the rank of

(
A
B

)
, and satisfies r ≤ n.

(3) Σ1 is m× r, Σ2 is p× r, both are real, nonnegative and diagonal, and ΣT
1 Σ1 + ΣT

2 Σ2 = I.
Write ΣT

1 Σ1 = diag (α2
1, . . . , α

2
r) and ΣT

2 Σ2 = diag (β2
1 , . . . , β

2
r), where αi and βi lie in the

interval from 0 to 1. The ratios α1/β1, . . . , αr/βr are called the generalized singular
values of the pair A, B. If βi = 0, then the generalized singular value αi/βi is
infinite

Σ1 and Σ2 have the following detailed structures, depending on whether m− r ≥ 0 or m− r < 0.
In the first case, m− r ≥ 0, then

Σ1 =

k l()
k I 0
l 0 C

m− k − l 0 0

and Σ2 =

k l()
l 0 S

p− l 0 0

Here l is the rank of B, k = r− l, C and S are diagonal matrices satisfying C2 +S2 = I, and S is
nonsingular. We may also identify α1 = · · · = αk = 1, αk+i = cii for i = 1, . . . , l, β1 = · · · = βk = 0,
and βk+i = sii for i = 1, . . . , l. Thus the first k generalized singular values α1/β1, . . . , αk/βk are
infinite, and the remaining l generalized singular values are finite.

In the second case, when m− r < 0,

Σ1 =

k m− k k + l −m()
k I 0 0

m− k 0 C 0
and Σ2 =

k m− k k + l −m()
m− k 0 S 0

k + l −m 0 0 I
p− l 0 0 0

1

2 DOW DRAKE UPDATED DECEMBER, 2019

Again, l is the rank of B, k = r − l, C and S are diagonal matrices satisfying C2 + S2 = I, S is
nonsingular, and we may identify α1 = · · · = αk = 1, αk+i = cii for i = 1, . . . ,m− k, αm+1 = · · · =
αr = 0, β1 = · · · = βk = 0, and βk+i = sii for i = 1, . . . ,m−k, and βm+1 = · · · = βr = 1. Thus the
first k generalized singular values α1/β1, . . . , αk/βk are infinite, and the remaining l generalized
singular values are finite.

3. Column Sorting Performed in pygsvd

The GSVD implementation in LAPACK returns singular values in arrays of length n. But in
all cases, we are only interested in the first r values. These are precisely the αi and βi, i = 1, . . . r
values described in the two cases above.

The problem addressed by column sorting is that although αi corresponds to βi for each i and
the columns of U, V and X are ordered correspondingly, no absolute ordering is guaranteed by the
LAPACK algorithm. The authors of pygsvd have chosen to provide the α values in descending
order and the β values in ascending order, resulting in generalized singular values in descending
order, which corresponds to the conventional ordering for the standard SVD algorithm.

As can be seen in the structures of Σ1 and Σ2 above, the non-trivial α and β values that require
sorting begin at index i = k+1 and continue to either i = k+l in the first case or i = k+m−k = m
in the second case. When the sort operation is limited to this minimal set, we can guarantee that
no indexing error will occur during sorting of columns of U, V or X.

We next develop a strategy for re-ordering columns to accomplish the desired sorting of singular
values. We note that if X is defined by

X = Q

(
I 0
0 R−1

)
That is, if X is the inverse transpose of the default X returned by pygsvd, then

UTAX = UTUΣ1

(
0 R

)
QTQ

(
I 0
0 R−1

)
= Σ1

(
0 R

)(I 0
0 R−1

)
= Σ1

(
0 I

)
Similarly

V TBX = Σ2

(
0 I

)
Thus we see that if r < n, we have n−r columns of zeros in these products preceding the structures
of Σ1 and Σ2. In the first case, m− r ≥ 0, we get

UTAX =

n− r k l()
k 0 I 0
l 0 0 C

m− k − l 0 0 0

and V TBX =

n− r k l()
l 0 0 S

p− l 0 0 0

In the second case, when m− r < 0,

UTAX =

n− r k m− k k + l −m()
k 0 I 0 0

m− k 0 0 C 0
and

V TBX =

n− r k m− k k + l −m()
m− k 0 0 S 0

k + l −m 0 0 0 I
p− l 0 0 0 0

COLUMN SORTING IN PYGSVD 3

To see clearly how columns must be reordered, it is useful to write UTAX as
uT1
uT1
...
uTm

A
(
x1 x2 · · · xn

)
=

uT1Ax1 uT1Ax2 · · · uT1Axn
uT2Ax1 uT2Ax2 · · · uT2Axn

...
...

...
...

uTmAx1 uTmAx2 · · · uTmAxn

and V TBX as

vT1
vT1
...
vTm

B
(
x1 x2 · · · xn

)
=

vT1 Bx1 vT1 Bx2 · · · vT1 Bxn
vT2 Bx1 vT2 Bx2 · · · vT2 Bxn

...
...

...
...

vTp Bx1 vTp Bx2 · · · vTp Bxn

Pre-multiplication of a square matrix A by a compatible permutation matrix P T reorders the

rows of A and post-multiplication of A by P reorders the corresponding columns. So in particular,
if D is a diagonal matrix, P TDP will re-order the diagonal elements of D. In the case, for example
where U,A and X are n× n, and r = l = n we could let Ũ = UP , X̃ = XP and get

ŨTAX̃ = (UP)TAXP = P TUTAXP = P TΣ1P

So we see that the desired ordering of the diagonal entries can be achieved by an appropriate
ordering of the columns of U and A. Now consider the two representations of UTAX above. In
the case m − r > 0. We wish to permute columns of U and columns of X in such a way that
the diagonal entries of C are in descending order. The top left element of C corresponds to
uTk+1Axn−r+k+1. The desired entries of C can be sorted performing the desired sort on the correct
ranges of columns of U and X. For U , we see that we must skip the first k columns and sort the
next l columns. For X, we must skip the first n−r+k columns and sort the next l columns. Since
X always has n columns, this is equivalent to sorting its last l columns. To sort S, we must sort
the first l values of V and the last l columns of X, which agrees with the sort already performed
on X. These operations correspond to the Python code:

if m - r >= 0:

ix = np.argsort(C[k:r])[::-1] # sort l values

X[:, -l:] = X[:, -l:][:, ix]

if compute_uv[0]:

U[:, k:k+l] = U[:, k:k+l][:, ix]

if compute_uv[1]:

V[:, :l] = V[:, :l][:, ix]

We also note that the given structures of UTAX and V TBX do not place the singular values
on the diagonal in cases when the rank r of the stacked AB matrix is less than n and/or in cases
when k = r− l > 0, the difference between the rank of AB and the rank of B. In most cases, this
can be corrected by rotating the columns of X to the left by n− r and rotating the columns of V
down by k. This rotation is impossible only in the case when k > 0 and p < r, i.e. the number of
rows of B is less then the rank of AB. These operations correspond to the Python code:

if n-r > 0:

X = np.roll(X, r-n, axis=1)

if k > 0 and p >= r:

V = np.roll(V, k, axis=1)

4. Edge case discussion and comparison with Matlab

As mentioned above, it is convenient to place the singular on the diagonals of UTAX and
V TBX. In most cases, this is performed by the roll operations above. But there is an edge case,

4 DOW DRAKE UPDATED DECEMBER, 2019

k > 0 and p < r such that this cannot be done for V TBX. Similarly, the Matlab implementation
also tries to place the singular values on the diagonal, but for Matlab also, it is not always possible.

The implementation in Matlab uses the opposite convention and sorts the α values in ascending
order and the β values in descending order, resulting in generalized singular values in ascending
order. Because of this different convention, in Matlab, the singular values in the product V TBX
can always be placed on the diagonal. However, in the case m < n, the singular values in the
product UTAX cannot be placed on the diagonal by Matlab. These edge cases are illustrated by
the following examples.

Using pygsvd for a case with k = 1 > 0 and p = 2 < n = 3:

A = array([[4, 1, 8],

[7, 1, 0],

[3, 0, 5]])

B = array([[0, 5, 6],

[0, 6, 5]])

C,S,X,U,V = gsvd(A,B,X1=True)

C

array([1. , 0.98318738, 0.07632218])

S

array([0. , 0.1825995 , 0.99708321])

U.T@A@X

array([[1. , -0. , -0.],

[0. , 0.98318738, -0.],

[0. , -0. , 0.07632218]])

V.T@B@X

array([[0. , 0.1825995 , -0.],

[0. , 0. , 0.99708321]])

We note that this off-diagonal result for V TBX cannot be corrected by rotating the columns
of X to the left because that would also have the unintended side affect of moving the singular
values of UTAX off the diagonal.

Using Matlab for the same A and B, we do get the singular values on the diagonal:

>> [U,V,X,C,S] = gsvd(A,B)

C =

0.0763 0 0

0 0.9832 0

0 0 1.0000

S =

0.9971 0 0

0 0.1826 0

However, if we reverse the roles of A and B, we find in Matlab

B =

4 1 8

7 1 0

COLUMN SORTING IN PYGSVD 5

3 0 5

A =

0 5 6

0 6 5

>> [U,V,X,C,S] = gsvd(A,B)

C =

0 0.1826 0

0 0 0.9971

S =

1.0000 0 0

0 0.9832 0

0 0 0.0763

We see that the singular values do not lie on the diagonal of C. We can check that the C matrix
returned by Matlab’s gsvd is the same as UTAX1, where X1 = X−T

>> X1=inv(X’)

X1 =

-0.1162 -0.0634 0.0183

0 -0.1275 -0.1291

0 0.1296 0.0015

>> U’*A*X1

ans =

0 0.1826 -0.0000

0 -0.0000 0.9971

Finally we show that for this A and B, the pygsvd algorithm does place the singular values on
the diagonals.

In [4]: A

Out[4]:

array([[0, 5, 6],

[0, 6, 5]])

In [5]: B

Out[5]:

array([[4, 1, 8],

[7, 1, 0],

[3, 0, 5]])

6 DOW DRAKE UPDATED DECEMBER, 2019

In [6]: C,S,X,U,V = gsvd(A,B,X1=True)

In [7]: U.T@A@X

Out[7]:

array([[0.99708321, -0. , -0.],

[-0. , 0.1825995 , -0.]])

In [8]: V.T@B@X

Out[8]:

array([[0.07632218, 0. , -0.],

[-0. , 0.98318738, -0.],

[-0. , 0. , 1.]])

In conclusion, we see that the pygsvd implementation is correct, given its sorting convention, in
the same way that the Matlab implementation is correct.

