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Todd Trimble, Andreas Blass, Robert Martin Solovay, Niels
Diepeveen, and others (mentioned below) have proved some theorems which are

now in this book.

Abstract. In this work I introduce and study in details the concepts of fun-
coids which generalize proximity spaces and reloids which generalize uniform
spaces, and generalizations thereof. The concept of funcoid is generalized con-
cept of proximity, the concept of reloid is cleared from superfluous details
(generalized) concept of uniformity.

Also funcoids and reloids are generalizations of binary relations whose
domains and ranges are filters (instead of sets). Also funcoids and reloids can
be considered as a generalization of (oriented) graphs, this provides us with a
common generalization of calculus and discrete mathematics.

The concept of continuity is defined by an algebraic formula (instead of old
messy epsilon-delta notation) for arbitrary morphisms (including funcoids and
reloids) of a partially ordered category. In one formula continuity, proximity
continuity, and uniform continuity are generalized.

Also I define connectedness for funcoids and reloids.
Then I consider generalizations of funcoids: pointfree funcoids and gen-

eralization of pointfree funcoids: staroids and multifuncoids. Also I define
several kinds of products of funcoids and other morphisms.

Before going to topology, this book studies properties of co-brouwerian
lattices and filters.
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Part 1

Introductory chapters



CHAPTER 1

Introduction

The main purpose of this book is to record the current state of my research.
The book is however written in such a way that it can be used as a textbook for
studying my research.

For the latest version of this file, related materials, articles, research questions,
and erratum consult the Web page of the author of the book:
http://www.mathematics21.org/algebraic-general-topology.html

1.1. License and editing

This work is licensed under the Creative Commons Attribution 4.0 Interna-
tional License. To view a copy of the license, visit
http://creativecommons.org/licenses/by/4.0/.

You can create your own copy of LATEX source of the book and edit it (to
correct errors, add new results, generalize existing results, enhance readability).
The editable source of the book is presented at
https://bitbucket.org/portonv/algebraic-general-topology

Please consider reviewing this book at
http://www.euro-math-soc.eu/node/add/book-review

If you find any error (or some improvement idea), please report in our bug
tracker:
https://bitbucket.org/portonv/algebraic-general-topology/issues

1.2. Intended audience

This book is suitable for any math student as well as for researchers.
To make this book be understandable even for first grade students, I made

a chapter about basic concepts (posets, lattices, topological spaces, etc.), which
an already knowledgeable person may skip reading. It is assumed that the reader
knows basic set theory.

But it is also valuable for mature researchers, as it contains much original
research which you could not find in any other source except of my work.

Knowledge of the basic set theory is expected from the reader.
Despite that this book presents new research, it is well structured and is suitable

to be used as a textbook for a college course.
Your comments about this book are welcome to the email porton@narod.ru.

1.3. Reading Order

If you know basic order and lattice theory (including Galois connections and
brouwerian lattices) and basics of category theory, you may skip reading the chapter
“Common knowledge, part 1”.

You are recommended to read the rest of this book by the order.
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1.4. Our topic and rationale

From [42]: Point-set topology, also called set-theoretic topology or general topol-
ogy, is the study of the general abstract nature of continuity or “closeness” on
spaces. Basic point-set topological notions are ones like continuity, dimension, com-
pactness, and connectedness.

In this work we study a new approach to point-set topology (and pointfree
topology).

Traditionally general topology is studied using topological spaces (defined below
in the section “Topological spaces”). I however argue that the theory of topolog-
ical spaces is not the best method of studying general topology and introduce an
alternative theory, the theory of funcoids. Despite of popularity of the theory of
topological spaces it has some drawbacks and is in my opinion not the most appro-
priate formalism to study most of general topology. Because topological spaces are
tailored for study of special sets, so called open and closed sets, studying general
topology with topological spaces is a little anti-natural and ugly. In my opinion the
theory of funcoids is more elegant than the theory of topological spaces, and it is
better to study funcoids than topological spaces. One of the main purposes of this
work is to present an alternative General Topology based on funcoids instead of
being based on topological spaces as it is customary. In order to study funcoids the
prior knowledge of topological spaces is not necessary. Nevertheless in this work
I will consider topological spaces and the topic of interrelation of funcoids with
topological spaces.

In fact funcoids are a generalization of topological spaces, so the well known
theory of topological spaces is a special case of the below presented theory of fun-
coids.

But probably the most important reason to study funcoids is that funcoids
are a generalization of proximity spaces (see section “Proximity spaces” for the
definition of proximity spaces). Before this work it was written that the theory of
proximity spaces was an example of a stalled research, almost nothing interesting
was discovered about this theory. It was so because the proper way to research
proximity spaces is to research their generalization, funcoids. And so it was stalled
until discovery of funcoids. That generalized theory of proximity spaces will bring
us yet many interesting results.

In addition to funcoids I research reloids. Using below defined terminology it
may be said that reloids are (basically) filters on Cartesian product of sets, and
this is a special case of uniform spaces.

Afterward we study some generalizations.
Somebody might ask, why to study it? My approach relates to traditional

general topology like complex numbers to real numbers theory. Be sure this will
find applications.

This book has a deficiency: It does not properly relate my theory with previous
research in general topology and does not consider deeper category theory prop-
erties. It is however OK for now, as I am going to do this study in later volumes
(continuation of this book).

Many proofs in this book may seem too easy and thus this theory not sophis-
ticated enough. But it is largely a result of a well structured digraph of proofs,
where more difficult results are made easy by reducing them to easier lemmas and
propositions.

1.5. Earlier works

Some mathematicians were researching generalizations of proximities and uni-
formities before me but they have failed to reach the right degree of generalization
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which is presented in this work allowing to represent properties of spaces with
algebraic (or categorical) formulas.

Proximity structures were introduced by Smirnov in [11].
Some references to predecessors:
• In [15, 16, 25, 2, 36] generalized uniformities and proximities are studied.
• Proximities and uniformities are also studied in [22, 23, 35, 37, 38].
• [20, 21] contains recent progress in quasi-uniform spaces. [21] has a very
long list of related literature.

Some works ([34]) about proximity spaces consider relationships of proximities and
compact topological spaces. In this work the attempt to define or research their
generalization, compactness of funcoids or reloids is not done. It seems potentially
productive to attempt to borrow the definitions and procedures from the above
mentioned works. I hope to do this study in a separate volume.

[10] studies mappings between proximity structures. (In this volume no at-
tempt to research mappings between funcoids is done.) [26] researches relationships
of quasi-uniform spaces and topological spaces. [1] studies how proximity structures
can be treated as uniform structures and compactification regarding proximity and
uniform spaces.

This book is based partially on my articles [30, 28, 29].

1.6. Kinds of continuity

A research result based on this book but not fully included in this book (and
not yet published) is that the following kinds of continuity are described by the
same algebraic (or rather categorical) formulas for different kinds of continuity and
have common properties:

• discrete continuity (between digraphs);
• (pre)topological continuity;
• proximal continuity;
• uniform continuity;
• Cauchy continuity;
• (probably other kinds of continuity).

Thus my research justifies using the same word “continuity” for these diverse kinds
of continuity.

See http://www.mathematics21.org/algebraic-general-topology.html

1.7. Responses to some accusations against style of my exposition

The proofs are generally hard to follow and unpleasant to read
as they are just a bunch of equations thrown at you, without
motivation or underlying reasoning, etc.

I don’t think this is essential. The proofs are not the most important thing in
my book. The most essential thing are definitions. The proofs are just to fill the
gaps. So I deem it not important whether proofs are motivated.

Also, note “algebraic” in the title of my book. The proofs are meant to be just
sequences of formulas for as much as possible :-) It is to be thought algebraically.
The meaning are the formulas themselves.

Maybe it makes sense to read my book skipping all the proofs? Some proofs
contain important ideas, but most don’t. The important thing are definitions.

http://www.mathematics21.org/algebraic-general-topology.html
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1.8. Structure of this book

In the chapter “Common knowledge, part 1” some well known definitions and
theories are considered. You may skip its reading if you already know it. That
chapter contains info about:

• posets;
• lattices and complete lattices;
• Galois connections;
• co-brouwerian lattices;
• a very short intro into category theory;
• a very short introduction to group theory.

Afterward there are my little additions to poset/lattice and category theory.
Afterward there is the theory of filters and filtrators.
Then there is “Common knowledge, part 2 (topology)”, which considers briefly:
• metric spaces;
• topological spaces;
• pretopological spaces;
• proximity spaces.

Despite of the name “Common knowledge” this second common knowledge chapter
is recommended to be read completely even if you know topology well, because it
contains some rare theorems not known to most mathematicians and hard to find
in literature.

Then the most interesting thing in this book, the theory of funcoids, starts.
Afterwards there is the theory of reloids.
Then I show relationships between funcoids and reloids.
The last I research generalizations of funcoids, pointfree funcoids, staroids, and

multifuncoids and some different kinds of products of morphisms.

1.9. Basic notation

I will denote a set definition like
{
x∈A
P (x)

}
instead of customary {x ∈ A | P (x)}.

I do this because otherwise formulas don’t fit horizontally into the available space.

1.9.1. Grothendieck universes. We will work in ZFC with an infinite and
uncountable Grothendieck universe.

A Grothendieck universe is just a set big enough to make all usual set theory
inside it. For example if f is a Grothendieck universe, and sets X,Y ∈ f, then also
X ∪ Y ∈ f, X ∩ Y ∈ f, X × Y ∈ f, etc.

A set which is a member of a Grothendieck universe is called a small set (re-
garding this Grothendieck universe). We can restrict our consideration to small
sets in order to get rid troubles with proper classes.

Definition 1. Grothendieck universe is a set f such that:
1◦. If x ∈ f and y ∈ x then y ∈ f.
2◦. If x, y ∈ f then {x, y} ∈ f.
3◦. If x ∈ f then Px ∈ f.
4◦. If

{
xi

i∈I∈f
}
is a family of elements of f, then

⋃
i∈I xi ∈ f.

One can deduce from this also:
1◦. If x ∈ f, then {x} ∈ f.
2◦. If x is a subset of y ∈ f, then x ∈ f.
3◦. If x, y ∈ f then the ordered pair (x, y) = {{x, y}, x} ∈ f.
4◦. If x, y ∈ f then x ∪ y and x× y are in f.
5◦. If

{
xi

i∈I∈f
}
is a family of elements of f, then the product

∏
i∈I xi ∈ f.
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6◦. If x ∈ f, then the cardinality of x is strictly less than the cardinality of f.

1.9.2. Misc. In this book quantifiers bind tightly. That is ∀x ∈ A : P (x) ∧Q
and ∀x ∈ A : P (x)⇒ Q should be read (∀x ∈ A : P (x))∧Q and (∀x ∈ A : P (x))⇒
Q not ∀x ∈ A : (P (x) ∧Q) and ∀x ∈ A : (P (x)⇒ Q).

The set of functions from a set A to a set B is denoted as BA.
I will often skip parentheses and write fx instead of f(x) to denote the result

of a function f acting on the argument x.
I will denote 〈f〉∗X =

{
β∈im f
∃α∈X:αfβ

}
(in other words 〈f〉∗X is the image of a

set X under a function or binary relation f) and X [f ]∗ Y ⇔ ∃x ∈ X, y ∈ Y : x f y
for sets X, Y and a binary relation f . (Note that functions are a special case of
binary relations.)

By just 〈f〉∗ and [f ]∗ I will denote the corresponding function and relation on
small sets.

Obvious 2. For a function f we have 〈f〉∗X =
{
f(x)
x∈X

}
.

Definition 3.
〈
f−1〉∗X is called the preimage of a set X by a function (or,

more generally, a binary relation) f .

Obvious 4. {α} [f ]∗ {β} ⇔ α f β for every α and β.

λx ∈ D : f(x) =
{

(x,f(x))
x∈D

}
for a set D and and a form f depending on the

variable x. In other words, λx ∈ D : f(x) is the function which maps elements x of
a set D into f(x).

I will denote source and destination of a morphism f of any category (See
chapter 2 chapter for a definition of a category.) as Src f and Dst f correspondingly.
Note that below defined domain and image of a funcoid are not the same as its
source and destination.

I will denote GR(A,B, f) = f for any morphism (A,B, f) of either Set or Rel.
(See definitions of Set and Rel below.)

1.10. Implicit arguments

Some notation such that ⊥A, >A, tA, uA have indexes (in these examples A).
We will omit these indexes when they can be restored from the context. For

example, having a function f : A→ B where A, B are posets with least elements,
we will concisely denote f⊥ = ⊥ for f⊥A = ⊥B. (See below for definitions of these
operations.)

Note 5. In the above formula f⊥ = ⊥ we have the first ⊥ and the second ⊥
denoting different objects.

We will assume (skipping this in actual proofs) that all omitted indexes can be
restored from context. (Note that so called dependent type theory computer proof
assistants do this like we implicitly.)

1.11. Unusual notation

In the chapter “Common knowledge, part 1” (which you may skip reading if
you are already knowledgeable) some non-standard notation is defined. I summarize
here this notation for the case if you choose to skip reading that chapter:

Partial order is denoted as v.
Meets and joins are denoted as u, t,

d
, d.

I call element b substractive from an elements a (of a distributive lattice A)
when the difference a \ b exists. I call b complementive to a when there exists c ∈ A
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such that b u c = ⊥ and b t c = a. We will prove that b is complementive to a iff b
is substractive from a and b v a.

Definition 6. Call a and b of a poset A intersecting, denoted a 6� b, when
there exists a non-least element c such that c v a ∧ c v b.

Definition 7. a � b def= ¬(a 6� b).

Definition 8. I call elements a and b of a poset A joining and denote a ≡ b
when there are no non-greatest element c such that c w a ∧ c w b.

Definition 9. a 6≡ b def= ¬(a ≡ b).

Obvious 10. a 6� b iff a u b is non-least, for every elements a, b of a meet-
semilattice.

Obvious 11. a ≡ b iff a t b is the greatest element, for every elements a, b of
a join-semilattice.

I extend the definitions of pseudocomplement and dual pseudocomplement to
arbitrary posets (not just lattices as it is customary):

Definition 12. Let A be a poset. Pseudocomplement of a is

max
{
c ∈ A

c � a

}
.

If z is the pseudocomplement of a we will denote z = a∗.

Definition 13. Let A be a poset. Dual pseudocomplement of a is

min
{
c ∈ A

c ≡ a

}
.

If z is the dual pseudocomplement of a we will denote z = a+.



CHAPTER 2

Common knowledge, part 1

In this chapter we will consider some well known mathematical theories. If you
already know them you may skip reading this chapter (or its parts).

2.1. Order theory

2.1.1. Posets.

Definition 14. The identity relation on a set A is idA =
{

(a,a)
a∈A

}
.

Definition 15. A preorder on a set A is a binary relation v on A which is:
• reflexive on A that is (v) ⊇ idA or what is the same ∀x ∈ A : x v x;
• transitive that is (v) ◦ (v) ⊆ (v) or what is the same

∀x, y, z : (x v y ∧ y v z ⇒ x v z).

Definition 16. A partial order on a set A is a preorder on A which is anti-
symmetric that is (v) ∩ (v) ⊆ idA or what is the same

∀x, y ∈ A : (x v y ∧ y v x⇒ x = y).

The reverse relation is denoted w.

Definition 17. a is a subelement of b (or what is the same a is contained in
b or b contains a) iff a v b.

Obvious 18. The reverse of a partial order is also a partial order.

Definition 19. A set A together with a partial order on it is called a partially
ordered set (poset for short).

An example of a poset is the set R of real numbers with v = ≤.
Another example is the set PA of all subsets of an arbitrary fixed set A with

v = ⊆. Note that this poset is (in general) not linear (see definition of linear poset
below.)

Definition 20. Strict partial order @ corresponding to the partial order v on
a set A is defined by the formula (@) = (v) \ idA. In other words,

a @ b⇔ a v b ∧ a 6= b.

An example of strict partial order is < on the set R of real numbers.

Definition 21. A partial order on a set A restricted to a set B ⊆ A is (v) ∩
(B ×B).

Obvious 22. A partial order on a set A restricted to a set B ⊆ A is a partial
order on B.

Definition 23.
• The least element ⊥ of a poset A is defined by the formula ∀a ∈ A : ⊥ v a.
• The greatest element > of a poset A is defined by the formula ∀a ∈ A :
> w a.

15
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Proposition 24. There exist no more than one least element and no more
than one greatest element (for a given poset).

Proof. By antisymmetry. �

Definition 25. The dual order for v is w.

Obvious 26. Dual of a partial order is a partial order.

Definition 27. The dual poset for a poset (A,v) is the poset (A,w).

I will denote dual of a poset A as (dualA) and dual of an element a ∈ A (that
is the same element in the dual poset) as (dual a).

Below we will sometimes use duality that is replacement of the partial order and
all related operations and relations with their duals. In other words, it is enough
to prove a theorem for an order v and the similar theorem for w follows by duality.

Definition 28. A subset P of a poset A is called bounded above if there exists
t ∈ A such that ∀x ∈ P : t w x. Bounded below is defined dually.

2.1.1.1. Intersecting and joining elements. Let A be a poset.

Definition 29. Call elements a and b of A intersecting, denoted a 6� b, when
there exists a non-least element c such that c v a ∧ c v b.

Definition 30. a � b def= ¬(a 6� b).

Obvious 31. a0 6� b0 ∧ a1 w a0 ∧ b1 w b0 ⇒ a1 6� b1.

Definition 32. I call elements a and b of A joining and denote a ≡ b when
there is no a non-greatest element c such that c w a ∧ c w b.

Definition 33. a 6≡ b def= ¬(a ≡ b).

Obvious 34. Intersecting is the dual of non-joining.

Obvious 35. a0 ≡ b0 ∧ a1 w a0 ∧ b1 w b0 ⇒ a1 ≡ b1.

2.1.2. Linear order.

Definition 36. A poset A is called linearly ordered set (or what is the same,
totally ordered set) if a w b ∨ b w a for every a, b ∈ A.

Example 37. The set of real numbers with the customary order is a linearly
ordered set.

Definition 38. A setX ∈PA where A is a poset is called chain if A restricted
to X is a total order.

2.1.3. Meets and joins. Let A be a poset.

Definition 39. Given a set X ∈PA the least element (also called minimum
and denoted minX) of X us such a ∈ X that ∀x ∈ X : a v x.

Least element does not necessarily exists. But if it exists:

Proposition 40. For a given X ∈ PA there exist no more than one least
element.

Proof. It follows from anti-symmetry. �

Greatest element is the dual of least element:

Definition 41. Given a set X ∈ PA the greatest element (also called maxi-
mum and denoted maxX) of X us such a ∈ X that ∀x ∈ X : a w x.
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Remark 42. Least and greatest elements of a set X is a trivial generalization
of the above defined least and greatest element for the entire poset.

Definition 43.
• A minimal element of a set X ∈PA is such a ∈ A that @x ∈ X : a A x.
• A maximal element of a set X ∈PA is such a ∈ A that @x ∈ X : a @ x.

Remark 44. Minimal element is not the same as minimum, and maximal
element is not the same as maximum.

Obvious 45.
1◦. The least element (if it exists) is a minimal element.
2◦. The greatest element (if it exists) is a maximal element.

Exercise 46. Show that there may be more than one minimal and more than
one maximal element for some poset.

Definition 47. Upper bounds of a set X is the set
{

y∈A
∀x∈X:ywx

}
.

The dual notion:
Definition 48. Lower bounds of a set X is the set

{
y∈A

∀x∈X:yvx

}
.

Definition 49. Join dX (also called supremum and denoted “supX”) of a
set X is the least element of its upper bounds (if it exists).

Definition 50. Meet
d
X (also called infimum and denoted “inf X”) of a set

X is the greatest element of its lower bounds (if it exists).

We will also denote di∈X f(i) = d

{
f(i)
x∈X

}
and

d
i∈X f(i) =

d{ f(i)
x∈X

}
.

We will write b = dX when b ∈ A is the join of X or say that dX does not
exist if there are no such b ∈ A. (And dually for meets.)

Exercise 51. Provide an example of dX /∈ X for some set X on some poset.
Proposition 52.
1◦. If b is the greatest element of X then dX = b.
2◦. If b is the least element of X then

d
X = b.

Proof. We will prove only the first as the second is dual.
Let b be the greatest element of X. Then upper bounds of X are

{
y∈A
ywb

}
.

Obviously b is the least element of this set, that is the join. �

Definition 53. Binary joins and meets are defined by the formulas
x t y = l{x, y} and x t y =

l
{x, y}.

Obvious 54. t and u are symmetric operations (whenever these are defined
for given x and y).

Theorem 55.
1◦. If dX exists then y w dX ⇔ ∀x ∈ X : y w x.
2◦. If

d
X exists then y v

d
X ⇔ ∀x ∈ X : y v x.

Proof. I will prove only the first as the second follows by duality.
y w dX ⇔ y is an upper bound for X ⇔ ∀x ∈ X : y w x. �

Corollary 56.
1◦. If a t b exists then y w a t b⇔ y w a ∧ y w b.
2◦. If a u b exists then y v a u b⇔ y v a ∧ y v b.

I will denote meets and joins for a specific poset A as
dA, d

A, uA, tA.
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2.1.4. Semilattices.

Definition 57.
1◦. A join-semilattice is a poset A such that at b is defined for every a, b ∈ A.
2◦. A meet-semilattice is a poset A such that aub is defined for every a, b ∈ A.

Theorem 58.
1◦. The operation t is associative for any join-semilattice.
2◦. The operation u is associative for any meet-semilattice.

Proof. I will prove only the first as the second follows by duality.
We need to prove (a t b) t c = a t (b t c) for every a, b, c ∈ A.
Taking into account the definition of join, it is enough to prove that

x w (a t b) t c⇔ x w a t (b t c)
for every x ∈ A. Really, this follows from the chain of equivalences:

x w (a t b) t c⇔
x w a t b ∧ x w c⇔

x w a ∧ x w b ∧ x w c⇔
x w a ∧ x w b t c⇔
x w a t (b t c).

�

Obvious 59. a 6� b iff a u b is non-least, for every elements a, b of a meet-
semilattice.

Obvious 60. a ≡ b iff a t b is the greatest element, for every elements a, b of
a join-semilattice.

2.1.5. Lattices and complete lattices.

Definition 61. A bounded poset is a poset having both least and greatest
elements.

Definition 62. Lattice is a poset which is both join-semilattice and meet-
semilattice.

Definition 63. A complete lattice is a poset A such that for every X ∈ PA
both dX and

d
X exist.

Obvious 64. Every complete lattice is a lattice.

Proposition 65. Every complete lattice is a bounded poset.

Proof. d∅ is the least and
d
∅ is the greatest element. �

Theorem 66. Let A be a poset.
1◦. If dX is defined for every X ∈PA, then A is a complete lattice.
2◦. If

d
X is defined for every X ∈PA, then A is a complete lattice.

Proof. See [27] or any lattice theory reference. �

Obvious 67. If X ⊆ Y for some X,Y ∈ PA where A is a complete lattice,
then

1◦. dX v dY ;
2◦.

d
X w

d
Y .

Proposition 68. If S ∈PPA then for every complete lattice A
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1◦. d

⋃
S = dX∈S dX;

2◦.
d⋃

S =
d
X∈S

d
X.

Proof. We will prove only the first as the second is dual.
By definition of joins, it is enough to prove y w d

⋃
S ⇔ y w dX∈S dX.

Really,

y w l

⋃
S ⇔

∀x ∈
⋃
S : y w x⇔

∀X ∈ S∀x ∈ X : y w x⇔

∀X ∈ S : y w lX ⇔

y w l

X∈S

lX.

�

Definition 69. A sublattice of a lattice is it subset closed regarding t and u.

Obvious 70. Sublattice with induced order is also a lattice.

2.1.6. Distributivity of lattices.

Definition 71. A distributive lattice is such lattice A that for every x, y, z ∈ A

1◦. x u (y t z) = (x u y) t (x u z);
2◦. x t (y u z) = (x t y) u (x t z).

Theorem 72. For a lattice to be distributive it is enough just one of the
conditions:

1◦. x u (y t z) = (x u y) t (x u z);
2◦. x t (y u z) = (x t y) u (x t z).

Proof.

(x t y) u (x t z) =
((x t y) u x) t ((x t y) u z) =

x t ((x u z) t (y u z)) =
(x t (x u z)) t (y u z) =

x t (y u z)

(applied x u (y t z) = (x u y) t (x u z) twice). �

2.1.7. Difference and complement.

Definition 73. Let A be a distributive lattice with least element ⊥. The
difference (denoted a \ b) of elements a and b is such c ∈ A that b u c = ⊥ and
a t b = b t c. I will call b substractive from a when a \ b exists.

Theorem 74. If A is a distributive lattice with least element ⊥, there exists
no more than one difference of elements a, b.

Proof. Let c and d be both differences a \ b. Then b u c = b u d = ⊥ and
a t b = b t c = b t d. So

c = c u (b t c) = c u (b t d) = (c u b) t (c u d) = ⊥ t (c u d) = c u d.

Similarly d = d u c. Consequently c = c u d = d u c = d. �
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Definition 75. I will call b complementive to a iff there exists c ∈ A such that
b u c = ⊥ and b t c = a.

Proposition 76. b is complementive to a iff b is substractive from a and b v a.

Proof.
⇐. Obvious.
⇒. We deduce b v a from b t c = a. Thus a t b = a = b t c.

�

Proposition 77. If b is complementive to a then (a \ b) t b = a.

Proof. Because b v a by the previous proposition. �

Definition 78. Let A be a bounded distributive lattice. The complement
(denoted ā) of an element a ∈ A is such b ∈ A that a u b = ⊥ and a t b = >.

Proposition 79. If A is a bounded distributive lattice then ā = > \ a.

Proof. b = ā⇔ bua = ⊥∧bta = > ⇔ bua = ⊥∧>ta = atb⇔ b = >\a. �

Corollary 80. If A is a bounded distributive lattice then exists no more than
one complement of an element a ∈ A.

Definition 81. An element of bounded distributive lattice is called comple-
mented when its complement exists.

Definition 82. A distributive lattice is a complemented lattice iff every its
element is complemented.

Proposition 83. For a distributive lattice (a \ b) \ c = a \ (b t c) if a \ b and
(a \ b) \ c are defined.

Proof. ((a \ b) \ c) u c = ⊥; ((a \ b) \ c) t c = (a \ b) t c; (a \ b) u b = ⊥;
(a \ b) t b = a t b.

We need to prove ((a \ b) \ c)u (bt c) = ⊥ and ((a \ b) \ c)t (bt c) = at (bt c).
In fact,

((a \ b) \ c) u (b t c) =
(((a \ b) \ c) u b) t (((a \ b) \ c) u c) =

(((a \ b) \ c) u b) t ⊥ =
((a \ b) \ c) u b v

(a \ b) u b = ⊥,

so ((a \ b) \ c) u (b t c) = ⊥;

((a \ b) \ c) t (b t c) =
(((a \ b) \ c) t c) t b =

(a \ b) t c t b =
((a \ b) t b) t c =

a t b t c.

�
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2.1.8. Boolean lattices.

Definition 84. A boolean lattice is a complemented distributive lattice.

The most important example of a boolean lattice is PA where A is a set,
ordered by set inclusion.

Theorem 85. (De Morgan’s laws) For every elements a, b of a boolean lattice
1◦. a t b = ā u b̄;
2◦. a u b = ā t b.

Proof. We will prove only the first as the second is dual.
It is enough to prove that a t b is a complement of ā u b̄. Really:

(a t b) u (ā u b̄) v a u (ā u b̄) = (a u ā) u b̄ = ⊥ u b̄ = ⊥;
(a t b) t (ā u b̄) = ((a t b) t ā) u ((a t b) t b̄) w (a t ā) u (b t b̄) = > u> = >.

Thus (a t b) u (ā u b̄) = ⊥ and (a t b) t (ā u b̄) = >. �

Definition 86. A complete lattice A is join infinite distributive when xu dS =

d〈xu〉
∗
S; a complete lattice A is meet infinite distributive when xt

d
S =

d
〈xt〉∗S

for all x ∈ A and S ∈PA.

Definition 87. Infinite distributive complete lattice is a complete lattice which
is both join infinite distributive and meet infinite distributive.

Theorem 88. For every boolean lattice A, x ∈ A and S ∈PA we have:
1◦. d〈xu〉

∗
S is defined and x u dS = d〈xu〉

∗
S whenever dS is defined.

2◦.
d
〈xt〉∗S is defined and x t

d
S =

d
〈xt〉∗S whenever

d
S is defined.

Proof. We will prove only the first, as the other is dual.
We need to prove that x u dS is the least upper bound of 〈xu〉∗S.
That x u dS is an upper bound of 〈xu〉∗S is obvious.
Now let u be any upper bound of 〈xu〉∗S, that is xu y v u for all y ∈ S. Then

y = y u (x t x̄) = (y u x) t (y u x̄) v u t x̄,
and so dS v u t x̄. Thus

x u lS v x u (u t x̄) = (x u u) t (x u x̄) = (x u u) t ⊥ = x u u v u,

that is x u dS is the least upper bound of 〈xu〉∗S. �

Corollary 89. Every complete boolean lattice is both join infinite distributive
and meet infinite distributive.

Theorem 90. (infinite De Morgan’s laws) For every subset S of a complete
boolean lattice

1◦. dS =
d
x∈S x̄;

2◦.
d
S = dx∈S x̄.

Proof. It’s enough to prove that dS is a complement of
d
x∈S x̄ (the second

follows from duality). Really, using the previous theorem:

lS t
l

x∈S
x̄ =

l

x∈S

〈

lSt
〉∗
x̄ =

l{ dS t x̄
x ∈ S

}
w
l{ x t x̄

x ∈ S

}
= >;

lS u
l

x∈S
x̄ = l

y∈S

〈
l

x∈S
x̄u

〉∗
y = l

{d
x∈S x̄ u y
y ∈ S

}
v l

{
ȳ u y
y ∈ S

}
= ⊥.

So dS t
d
x∈S x̄ = > and dS u

d
x∈S x̄ = ⊥. �
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2.1.9. Center of a lattice.

Definition 91. The center Z(A) of a bounded distributive lattice A is the set
of its complemented elements.

Remark 92. For a definition of center of non-distributive lattices see [5].

Remark 93. In [24] the word center and the notation Z(A) are used in a
different sense.

Definition 94. A sublattice K of a complete lattice L is a closed sublattice of
L if K contains the meet and the join of any its nonempty subset.

Theorem 95. Center of an infinitely distributive lattice is its closed sublattice.

Proof. See [17]. �

Remark 96. See [18] for a more strong result.

Theorem 97. The center of a bounded distributive lattice constitutes its sub-
lattice.

Proof. Let A be a bounded distributive lattice and Z(A) be its center. Let
a, b ∈ Z(A). Consequently ā, b̄ ∈ Z(A). Then ā t b̄ is the complement of a u b
because

(a u b) u (ā t b̄) = (a u b u ā) t (a u b u b̄) = ⊥ t⊥ = ⊥ and
(a u b) t (ā t b̄) = (a t ā t b̄) u (b t ā t b̄) = > u> = >.

So a u b is complemented. Similarly a t b is complemented. �

Theorem 98. The center of a bounded distributive lattice constitutes a
boolean lattice.

Proof. Because it is a distributive complemented lattice. �

2.1.10. Atoms of posets.

Definition 99. An atom of a poset is an element a such that (for every its
element x) x @ a if and only if x is the least element.

Remark 100. This definition is valid even for posets without least element.

Proposition 101. Element a is an atom iff both:
1◦. x @ a implies x is the least element;
2◦. a is non-least.

Proof.
⇒. Let a be an atom. 1◦ is obvious. If a is least then a @ a what is impossible,

so 2◦.
⇐. Let 1◦ and 2◦ hold. We need to prove only that x is least implies that x @ a

but this follows from a being non-least.
�

Example 102. Atoms of the boolean algebra PA (ordered by set inclusion)
are one-element sets.

I will denote atomsA a or just (atoms a) the set of atoms contained in an element
a of a poset A. I will denote atomsA the set of all atoms of a poset A.

Definition 103. A poset A is called atomic iff atoms a 6= ∅ for every non-least
element a of the poset A.
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Definition 104. Atomistic poset is such a poset that a = datoms a for every
element a of this poset.

Obvious 105. Every atomistic poset is atomic.
Proposition 106. Let A be a poset. If a is an atom of A and B ∈ A then

a ∈ atomsB ⇔ a v B ⇔ a 6� B.
Proof.

a ∈ atomsB ⇔ a v B. Obvious.
a v B ⇒ a 6� B. a v B ⇒ a v a ∧ a v B, thus a 6� B because a is not least.
a v B ⇐ a 6� B. a 6� B implies existence of non-least element x such that x v B

and x v a. Because a is an atom, we have x = a. So a v B.
�

Theorem 107. A poset is atomistic iff every its element can be represented as
join of atoms.

Proof.
⇒. Obvious.
⇐. Let a = dS where S is a set of atoms. We will prove that a is the least upper

bound of atoms a.
That a is an upper bound of atoms a is obvious. Let x is an upper

bound of atoms a. Then x w dS because S ⊆ atoms a. Thus x w a.
�

Theorem 108. atoms
d
S =

⋂
〈atoms〉∗S whenever

d
S is defined for every

S ∈PA where A is a poset.
Proof. For any atom

c ∈ atoms
l
S ⇔

c v
l
S ⇔

∀a ∈ S : c v a⇔
∀a ∈ S : c ∈ atoms a⇔

c ∈
⋂
〈atoms〉∗S.

�

Corollary 109. atoms(a u b) = atoms a ∩ atoms b for an arbitrary meet-
semilattice.

Theorem 110. A complete boolean lattice is atomic iff it is atomistic.
Proof.

⇐. Obvious.
⇒. Let A be an atomic boolean lattice. Let a ∈ A. Suppose b = datoms a @ a. If

x ∈ atoms(a \ b) then x v a \ b and so x v a and hence x v b. But we
have x = x u b v (a \ b) u b = ⊥ what contradicts to our supposition.

�

2.1.11. Kuratowski’s lemma.
Theorem 111. (Kuratowski’s lemma) Any chain in a poset is contained in

a maximal chain (if we order chains by inclusion).
I will skip the proof of Kuratowski’s lemma as this proof can be found in

any set theory or order theory reference.
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2.1.12. Homomorphisms of posets and lattices.

Definition 112. A monotone function (also called order homomorphism) from
a poset A to a posetB is such a function f that x v y ⇒ fx v fy for every x, y ∈ A.

Definition 113. A antitone function (also called antitone order homomor-
phism) from a poset A to a poset B is such a function f that x v y ⇒ fx w fy for
every x, y ∈ A.

Definition 114. Order embedding is a function f from poset A to a poset B
such that x v y ⇔ fx v fy for every x, y ∈ A.

Proposition 115. Every order embedding is injective.

Proof. fx = fy implies x v y and y v x. �

Obvious 116. Every order embedding is an order homomorphism.

Definition 117. Antitone order embedding is a function f from poset A to a
poset B such that x v y ⇔ fx w fy for every x, y ∈ A.

Obvious 118. Antitone order embedding is an order embedding between a
poset and a dual of (another) poset.

Definition 119. Order isomorphism is a surjective order embedding.

Order isomorphism preserves properties of posets, such as order, joins and
meets, etc.

Definition 120. Antitone order isomorphism is a surjective antitone order
embedding.

Definition 121.
1◦. Join semilattice homomorphism is a function f from a join semilattice A

to a join semilattice B, such that f(x t y) = fx t fy for every x, y ∈ A.
2◦. Meet semilattice homomorphism is a function f from a meet semilattice A

to a meet semilattice B, such that f(x u y) = fx u fy for every x, y ∈ A.

Obvious 122.
1◦. Join semilattice homomorphisms are monotone.
2◦. Meet semilattice homomorphisms are monotone.

Definition 123. A lattice homomorphism is a function from a lattice to a
lattice, which is both join semilattice homomorphism and meet semilattice homo-
morphism.

Definition 124. Complete lattice homomorphism from a complete lattice A
to a complete lattice B is a function f from A to B which preserves all meets and
joins, that is f dS = d〈f〉

∗
S and f

d
S =

d
〈f〉∗S for every S ∈PA.

2.1.13. Galois connections. See [3, 12] for more detailed treatment of Ga-
lois connections.

Definition 125. Let A and B be two posets. A Galois connection between A
and B is a pair of functions f = (f∗, f∗) with f∗ : A → B and f∗ : B → A such
that:

∀x ∈ A, y ∈ B : (f∗x v y ⇔ x v f∗y).
f∗ is called the upper adjoint of f∗ and f∗ is called the lower adjoint of f∗.

Theorem 126. A pair (f∗, f∗) of functions f∗ : A → B and f∗ : B → A is a
Galois connection iff both of the following:
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1◦. f∗ and f∗ are monotone.
2◦. x v f∗f∗x and f∗f∗y v y for every x ∈ A and y ∈ B.

Proof.
⇒.

2◦. x v f∗f∗x since f∗x v f∗x; f∗f∗y v y since f∗y v f∗y.
1◦. Let a, b ∈ A and a v b. Then a v b v f∗f

∗b. So by definition
f∗a v f∗b that is f∗ is monotone. Analogously f∗ is monotone.

⇐. f∗x v y ⇒ f∗f
∗x v f∗y ⇒ x v f∗y. The other direction is analogous.

�

Theorem 127.
1◦. f∗ ◦ f∗ ◦ f∗ = f∗.
2◦. f∗ ◦ f∗ ◦ f∗ = f∗.

Proof.
1◦. Let x ∈ A. We have x v f∗f

∗x; consequently f∗x v f∗f∗f
∗x. On the

other hand, f∗f∗f∗x v f∗x. So f∗f∗f∗x = f∗x.
2◦. Similar.

�

Definition 128. A function f is called idempotent iff f(f(X)) = f(X) for
every argument X.

Proposition 129. f∗ ◦ f∗ and f∗ ◦ f∗ are idempotent.

Proof. f∗◦f∗ is idempotent because f∗f∗f∗f∗y = f∗f∗y. f∗◦f∗ is similar. �

Theorem 130. Each of two adjoints is uniquely determined by the other.

Proof. Let p and q be both upper adjoints of f . We have for all x ∈ A and
y ∈ B:

x v p(y)⇔ f(x) v y ⇔ x v q(y).
For x = p(y) we obtain p(y) v q(y) and for x = q(y) we obtain q(y) v p(y). So

q(y) = p(y). �

Theorem 131. Let f be a function from a poset A to a poset B.
1◦. Both:

(a) If f is monotone and g(b) = max
{
x∈A
fxvb

}
is defined for every b ∈ B

then g is the upper adjoint of f .
(b) If g : B → A is the upper adjoint of f then g(b) = max

{
x∈A
fxvb

}
for

every b ∈ B.
2◦. Both:

(a) If f is monotone and g(b) = min
{
x∈A
fxwb

}
is defined for every b ∈ B

then g is the lower adjoint of f .
(b) If g : B → A is the lower adjoint of f then g(b) = min

{
x∈A
fxwb

}
for

every b ∈ B.

Proof. We will prove only the first as the second is its dual.
1◦a. Let g(b) = max

{
x∈A
fxvb

}
for every b ∈ B. Then

x v gy ⇔ x v max
{
x ∈ A

fx v y

}
⇒ fx v y
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(because f is monotone) and

x v gy ⇔ x v max
{
x ∈ A

fx v y

}
⇐ fx v y.

So fx v y ⇔ x v gy that is f is the lower adjoint of g.
1◦b. We have

g(b) = max
{
x ∈ A

fx v b

}
⇔ fgb v b ∧ ∀x ∈ A : (fx v b⇒ x v gb).

what is true by properties of adjoints.
�

Theorem 132. Let f be a function from a poset A to a poset B.
1◦. If f is an upper adjoint, f preserves all existing infima in A.
2◦. If A is a complete lattice and f preserves all infima, then f is an upper

adjoint of a function B→ A.
3◦. If f is a lower adjoint, f preserves all existing suprema in A.
4◦. If A is a complete lattice and f preserves all suprema, then f is a lower

adjoint of a function B→ A.

Proof. We will prove only first two items because the rest items are similar.
1◦. Let S ∈ PA and

d
S exists. f

d
S is a lower bound for 〈f〉∗S because

f is order-preserving. If a is a lower bound for 〈f〉∗S then ∀x ∈ S : a v fx that
is ∀x ∈ S : ga v x where g is the lower adjoint of f . Thus ga v

d
S and hence

f
d
S w a. So f

d
S is the greatest lower bound for 〈f〉∗S.

2◦. Let A be a complete lattice and f preserves all infima. Let

g(a) =
l{ x ∈ A

fx w a

}
.

Since f preserves infima, we have

f(g(a)) =
l{ f(x)

x ∈ A, fx w a

}
w a.

g(f(b)) =
d{

x∈A
fxwfb

}
v b.

Obviously f is monotone and thus g is also monotone.
So f is the upper adjoint of g.

�

Corollary 133. Let f be a function from a complete lattice A to a poset B.
Then:

1◦. f is an upper adjoint of a function B→ A iff f preserves all infima in A.
2◦. f is a lower adjoint of a function B→ A iff f preserves all suprema in A.

2.1.13.1. Order and composition of Galois connections. Following [32] we will
denote the set of Galois connection between posets A and B as A⊗B.

Definition 134. I will order Galois connections by the formula: f v g ⇔
f∗ v g∗ (where f∗ v g∗ ⇔ ∀x ∈ A : f∗x v g∗x).

Obvious 135. Galois connections A⊗B between two given posets form a poset.

Proposition 136. f v g ⇔ f∗ w g∗.
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Proof. It is enough to prove f v g ⇒ f∗ w g∗ (the rest follows from the fact
that a Galois connection is determined by one adjoint).

Really, let f v g. Then f∗0 v f∗1 and thus:
f0∗(b) = max

{
x∈A
f∗0 xvb

}
, f1∗(b) = max

{
x∈A
f∗1 xvb

}
.

Thus f0∗(b) w f1∗(b) for every b ∈ B and so f0∗ w f1∗. �

Definition 137. Composition of Galois connections is defined by the formula:
g ◦ f = (g∗ ◦ f∗, f∗ ◦ g∗).

Proposition 138. Composition of Galois connections is a Galois connection.
Proof. g∗◦f∗ and f∗◦g∗ are monotone as composition of monotone functions;
(g∗ ◦ f∗)x v z ⇔ g∗f∗x v z ⇔ f∗x v g∗z ⇔ x v f∗g∗z ⇔ x v (f∗ ◦ g∗)z.

�

Obvious 139. Composition of Galois connections preserves order.
2.1.13.2. Antitone Galois connections.

Definition 140. An antitone Galois connection between posets A and B is a
Galois connection between A and dualB.

Obvious 141. An antitone Galois connection is a pair of antitone functions f :
A→ B, g : B→ A such that b v fa⇔ a v gb for every a ∈ A, b ∈ B.

Such f and g are called polarities (between A and B).
Obvious 142. f dS =

d
〈f〉∗S if f is a polarity between A andB and S ∈PA.

Galois connections (particularly between boolean lattices) are studied in [32]
and [33].

2.1.14. Co-Brouwerian lattices.

Definition 143. Let A be a poset. Pseudocomplement of a ∈ A is

max
{
c ∈ A

c � a

}
.

If z is the pseudocomplement of a we will denote z = a∗.
Definition 144. Let A be a poset. Dual pseudocomplement of a ∈ A is

min
{
c ∈ A

c ≡ a

}
.

If z is the dual pseudocomplement of a we will denote z = a+.
Proposition 145. If a is a complemented element of a bounded distributive

lattice, then ā is both pseudocomplement and dual pseudocomplement of a.
Proof. Because of duality it is enough to prove that ā is pseudocomplement

of a.
We need to prove c � a ⇒ c v ā for every element c of our poset, and ā � a.

The second is obvious. Let’s prove c � a⇒ c v ā.
Really, let c � a. Then cua = ⊥; āt (cua) = ā; (āt c)u (āta) = ā; āt c = ā;

c v ā. �

Definition 146. Let A be a join-semilattice. Let a, b ∈ A. Pseudodifference
of a and b is

min
{

z ∈ A

a v b t z

}
.

If z is a pseudodifference of a and b we will denote z = a \∗ b.
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Remark 147. I do not require that a∗ is undefined if there are no pseudocom-
plement of a and likewise for dual pseudocomplement and pseudodifference. In fact
below I will define quasicomplement, dual quasicomplement, and quasidifference
which generalize pseudo-* counterparts. I will denote a∗ the more general case of
quasicomplement than of pseudocomplement, and likewise for other notation.

Obvious 148. Dual pseudocomplement is the dual of pseudocomplement.
Theorem 149. Let A be a distributive lattice with least element. Let a, b ∈ A.

If a \ b exists, then a \∗ b also exists and a \∗ b = a \ b.
Proof. Because A be a distributive lattice with least element, the definition

of a \ b is correct.
Let x = a \ b and let S =

{
y∈A
avbty

}
.

We need to show
1◦. x ∈ S;
2◦. y ∈ S ⇒ x v y (for every y ∈ A).

Really,
1◦. Because b t x = a t b.
2◦.

y ∈ S
⇒ a v b t y (by definition of S)
⇒ a t b v b t y
⇒ x t b v b t y (since x t b = a t b)
⇒ x u (x t b) v x u (b t y)
⇒ (x u x) t (x u b) v (x u b) t (x u y) (by distributive law)
⇒ x t ⊥ v ⊥ t (x u y) (since x u b = ⊥)
⇒ x v x u y
⇒ x v y.

�

Definition 150. Co-brouwerian lattice is a lattice for which pseudodifference
of any two its elements is defined.

Proposition 151. Every non-empty co-brouwerian lattice A has least element.
Proof. Let a be an arbitrary lattice element. Then

a \∗ a = min
{

z ∈ A

a v a t z

}
= minA.

So minA exists. �

Definition 152. Co-Heyting lattice is co-brouwerian lattice with greatest ele-
ment.

Definition 153. A co-frame is the same as a complete co-brouwerian lattice.
Theorem 154. For a co-brouwerian lattice at− is an upper adjoint of −\∗ a

for every a ∈ A.

Proof. g(b) = min
{

x∈A
atxwb

}
= b \∗ a exists for every b ∈ A and thus is the

lower adjoint of a t −. �

Corollary 155. ∀a, x, y ∈ A : (x \∗ a v y ⇔ x v a t y) for a co-brouwerian
lattice.
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Corollary 156. For a co-brouwerian lattice a t
d
S =

d
〈at〉∗S wheneverd

S exists (for a being a lattice element and S being a set of lattice elements).

Definition 157. Let a, b ∈ A where A is a complete lattice. Quasidifference
a \∗ b is defined by the formula:

a \∗ b =
l{ z ∈ A

a v b t z

}
.

Remark 158. A more detailed theory of quasidifference (as well as quasicom-
plement and dual quasicomplement) will be considered below.

Lemma 159. (a \∗ b)t b = at b for elements a, b of a meet infinite distributive
complete lattice.

Proof.
(a \∗ b) t b =

l{ z ∈ A

a v b t z

}
t b =

l{ z t b
z ∈ A, a v b t z

}
=

l{ t ∈ A

t w b, a v t

}
=

a t b.
�

Theorem 160. The following are equivalent for a complete lattice A:
1◦. A is a co-frame.
2◦. A is meet infinite distributive.
3◦. A is a co-brouwerian lattice.
4◦. A is a co-Heyting lattice.
5◦. a t − has lower adjoint for every a ∈ A.

Proof. �

1◦⇔3◦. Because it is complete.
3◦⇔4◦. Obvious (taking into account completeness of A).
5◦⇒2◦. Let − \∗ a be the lower adjoint of a t −. Let S ∈ PA. For every y ∈ S

we have y w (at y) \∗ a by properties of Galois connections; consequently
y w

(d
〈at〉∗S

)
\∗ a;

d
S w

(d
〈at〉∗S

)
\∗ a. So

a t
l
S w

((l
〈at〉∗S

)
\∗ a

)
t a w

l
〈at〉∗S.

But a t
d
S v

d
〈at〉∗S is obvious.

2◦⇒3◦. Let a \∗ b =
d{

z∈A
avbtz

}
. To prove that A is a co-brouwerian lattice it is

enough to prove a v b t (a \∗ b). But it follows from the lemma.
3◦⇒5◦. a \∗ b = min

{
z∈A
avbtz

}
. So a t − is the upper adjoint of − \∗ a.

2◦⇒5◦. Because a t − preserves all meets.

Corollary 161. Co-brouwerian lattices are distributive.

The following theorem is essentially borrowed from [19]:

Theorem 162. A lattice A with least element ⊥ is co-brouwerian with pseu-
dodifference \∗ iff \∗ is a binary operation on A satisfying the following identities:

1◦. a \∗ a = ⊥;
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2◦. a t (b \∗ a) = a t b;
3◦. b t (b \∗ a) = b;
4◦. (b t c) \∗ a = (b \∗ a) t (c \∗ a).

Proof.
⇐. We have

c w b \∗ a⇒ c t a w a t (b \∗ a) = a t b w b;
ct a w b⇒ c = ct (c \∗ a) w (a \∗ a)t (c \∗ a) = (at c) \∗ a w b \∗ a.
So c w b\∗ a⇔ cta w b that is at− is an upper adjoint of −\∗ a. By

a theorem above our lattice is co-brouwerian. By another theorem above
\∗ is a pseudodifference.

⇒.
1◦. Obvious.
2◦.

a t (b \∗ a) =

a t
l{ z ∈ A

b v a t z

}
=

l{ a t z
z ∈ A, b v a t z

}
=

a t b.

3◦. b t (b \∗ a) = b t
d{

z∈A
bvatz

}
=
d{

btz
z∈A,bvatz

}
= b.

4◦. Obviously (b t c) \∗ a w b \∗ a and (b t c) \∗ a w c \∗ a. Thus
(b t c) \∗ a w (b \∗ a) t (c \∗ a). We have

(b \∗ a) t (c \∗ a) t a =
((b \∗ a) t a) t ((c \∗ a) t a) =

(b t a) t (c t a) =
a t b t c w

b t c.

From this by definition of adjoints: (b \∗ a) t (c \∗ a) w (b t c) \∗ a.
�

Theorem 163. ( dS) \∗ a = dx∈S(x \∗ a) for all a ∈ A and S ∈PA where A
is a co-brouwerian lattice and dS is defined.

Proof. Because lower adjoint preserves all suprema. �

Theorem 164. (a \∗ b) \∗ c = a \∗ (b t c) for elements a, b, c of a co-frame.

Proof. a \∗ b =
d{

z∈A
avbtz

}
.

(a \∗ b) \∗ c =
d{

z∈A
a\∗bvctz

}
.

a \∗ (b t c) =
d{

z∈A
avbtctz

}
.

It is left to prove a \∗ b v c t z ⇔ a v b t c t z. But this follows from
corollary 155. �

Corollary 165. (((a0 \∗ a1) \∗ . . . ) \∗ an) = a0 \∗ (a1 t · · · t an).

Proof. By math induction. �
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2.1.15. Dual pseudocomplement on co-Heyting lattices.

Theorem 166. For co-Heyting algebras > \∗ b = b+.

Proof.

> \∗ b = min
{

z ∈ A

> v b t z

}
= min

{
z ∈ A

> = b t z

}
= min

{
z ∈ A

b ≡ z

}
= b+.

�

Theorem 167. (a u b)+ = a+ t b+ for every elements a, b of a co-Heyting
algebra.

Proof. a t (a u b)+ w (a u b) t (a u b)+ w >. So a t (a u b)+ w >; (a u b)+ w
> \∗ a = a+.

We have (a u b)+ w a+. Similarly (a u b)+ w b+. Thus (a u b)+ w a+ t b+.
On the other hand, a+ t b+ t (au b) = (a+ t b+ ta)u (a+ t b+ t b) . Obviously

a+ t b+ t a = a+ t b+ t b = >. So a+ t b+ t (a u b) w > and thus a+ t b+ w
> \∗ (a u b) = (a u b)+.

So (a u b)+ = a+ t b+. �

2.2. Intro to category theory

This is a very basic introduction to category theory.

Definition 168. A directed multigraph (also known as quiver) is:
1◦. a set O (vertices);
2◦. a setM (edges);
3◦. functions Src and Dst (source and destination) fromM to O.

Note that in category theory vertices are called objects and edges are called
morphisms.

Definition 169. A precategory is a directed multigraph together with a partial
binary operation ◦ on the set M such that g ◦ f is defined iff Dst f = Src g (for
every morphisms f and g) such that

1◦. Src(g ◦ f) = Src f and Dst(g ◦ f) = Dst g whenever the composition g ◦ f
of morphisms f and g is defined.

2◦. (h◦g)◦f = h◦ (g ◦f) whenever compositions in this equation are defined.

Definition 170. The set Hom(A,B) (also denoted as HomC(A,B) or just
C(A,B), where C is our category) (morphisms from an object A to an object B)
is exactly morphisms which have A as the source and B as the destination.

Definition 171. Identity morphism is such a morphism e that e ◦ f = f and
g ◦ e = g whenever compositions in these formulas are defined.

Definition 172. A category is a precategory with additional requirement that
for every object X there exists identity morphism 1X .

Proposition 173. For every object X there exist no more than one identity
morphism.

Proof. Let p and q be both identity morphisms for a object X. Then p =
p ◦ q = q. �

Definition 174. An isomorphism is such a morphism f of a category that there
exists a morphism f−1 (inverse of f) such that f ◦f−1 = 1Dst f and f−1◦f = 1Src f .

Proposition 175. An isomorphism has exactly one inverse.
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Proof. Let g and h be both inverses of f . Then h = h ◦ 1Dst f = h ◦ f ◦ g =
1Src f ◦ g = g. �

Definition 176. A groupoid is a category all of whose morphisms are isomor-
phisms.

Definition 177. A morphism whose source is the same as destination is called
endomorphism.

Definition 178. An involution or involutive morphism is an endomorphism f
that f ◦ f = 1Ob f . In other words, an involution is such a self-inverse (that is
conforming to the formula f = f−1) isomorphism.

Definition 179. Functor from category C to categoryD is a mapping F which
associates every object X of C with an object F (X) of D and every morphism f :
X → Y of C with morphism F (f) : F (X)→ F (Y ) of D, such that:

1◦. F (g ◦ f) = F (g) ◦ F (f) for every composable morphisms f , g of C;
2◦. F (1CX) = 1DFX for every object X of C.

2.2.1. Some important examples of categories.

Exercise 180. Prove that the below examples of categories are really cate-
gories.

Definition 181. The category Set is:
• Objects are small sets.
• Morphisms from an object A to an object B are triples (A,B, f) where f
is a function from A to B.

• Composition of morphisms is defined by the formula: (B,C, g) ◦
(A,B, f) = (A,C, g ◦ f) where g ◦ f is function composition.

Definition 182. The category Rel is:
• Objects are small sets.
• Morphisms from an object A to an object B are triples (A,B, f) where f
is a binary relation between A and B.

• Composition of morphisms is defined by the formula: (B,C, g) ◦
(A,B, f) = (A,C, g ◦ f) where g ◦ f is relation composition.

I will denote GR(A,B, f) = f for any morphism (A,B, f) of either Set or Rel.

Definition 183. A subcategory of a category C is a category whose set of
objects is a subset of the set of objects of C and whose set of morphisms is a subset
of the set of morphisms of C.

Definition 184. Wide subcategory of a category (O,M) is a category (O,M′)
whereM⊆M′ and the composition on (O,M′) is a restriction of composition of
(O,M). (Similarly wide sub-precategory can be defined.)

2.2.2. Commutative diagrams.

Definition 185. A finite path in directed multigraph is a tuple Je0, . . . , enK of
edges (where i ∈ N) such that Dst ei = Src ei+1 for every i = 0, . . . , n− 1.

Definition 186. The vertices of a finite path are Src e0, Dst e0 = Src e1,
Dst e1 = Src e2, . . . , Dst en.

Definition 187. Composition of finite paths Je0, . . . , enK and Jek, . . . , emK
(where Dst en = Src ek) is the path Je0, . . . , en, ek, . . . emK. (It is a path because
Dst en = Src ek.)
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Definition 188. A cycle is a finite path whose first vertex is the same as the
last vertex (in other words Dst en = Src e0).

Definition 189. A diagram in C is a directed multigraph, whose vertices are
labeled with objects of C and whose edges are labeled with morphisms of C.

I will denote the morphism corresponding to a edge e as D(e).

Definition 190. A diagram in C is commutative when the composition of
morphisms corresponding to a finite path is always the same for finite paths from
a fixed vertex A to a fixed vertex B independently of the path choice.

We will say “commutative diagram” when commutativity of a diagram is im-
plied by the context.

Remark 191. See Wikipedia for more on definition and examples of commu-
tative diagrams.

The following is an example of a commutative diagram in Set (because x+ 5−
3 = x+ 4− 2):

N N

N N

+5

+4 −3
−2

We are especially interested in the special case of commutative diagrams every
morphism of which is an isomorphism. So, the below theorem.

Theorem 192. If morphisms corresponding to every edge ei of a cycle
Je0, . . . , enK are isomorphisms then the following are equivalent:

• The morphism induced by Je0, . . . , enK is identity.
• The morphism induced by Jen, e0, . . . , en−1K is identity.
• The morphism induced by Jen−1, en, e0, . . . , en−2K is identity.
• . . .
• The morphism induced by Je1, e2, . . . , en, e0K is identity.

In other words, the cycle being an identity does not depend on the choice of the
start edge in the cycle.

Proof. Each step in the proof is like:

D(n) ◦ · · · ◦D(e0) = 1SrcD(e0) ⇔
D(n)−1 ◦D(n) ◦ · · · ◦D(e0) ◦D(n) = D(n)−1 ◦ 1SrcD(e0) ◦D(n)⇔

D(n− 1) ◦ · · · ◦D(e0) ◦D(n) = 1SrcD(en).

�

Lemma 193. Let f , g, h be isomorphisms. Let g ◦ f = h−1. The diagram at
the figure 1 is commutative, every cycle in the diagram is an identity.

Proof. We will prove by induction that every cycle of the length N in the
diagram is an identity.

For cycles of length 2 it holds by definition of isomorphism.
For cycles of length 3 it holds by theorem 192.
Consider a cycle of length above 3. It is easy to show that this cycle contains

a sub-cycle of length 3 or below. (Consider three first edges a e0→ b
e1→ c

e2→ d of the
path, by pigeonhole principle we have that there are equal elements among a, b,
c, d.) We can exclude the sub-cycle because it is identity. Thus we reduce to cycles
of lesser length. Applying math induction, we get that every cycle in the diagram
is an identity.

https://en.wikipedia.org/wiki/Commutative_diagram
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Figure 1.
•

• •

f

h−1

h

g−1

f−1

g

That the diagram is commutative follows from it (because for paths σ, τ we
have the paths σ ◦ τ−1 and τ ◦ σ−1 being identities). �

Lemma 194. Let f , g, h, t be isomorphisms. Let t ◦ h ◦ g ◦ f = 1Src f . The
diagram at the figure 2 is commutative, every cycle in the diagram is an identity.

Figure 2.

(0,0) (0,1)

(1,0) (1,1)

f

t−1 g

f−1

t

h−1

h

g−1

Proof. Assign to every vertex (i, j) of the diagram morphism W (i, j) defined
by the table 1.

Table 1.

i j W (i, j)
0 0 1Src f
0 1 f
1 0 t−1

1 1 g ◦ f

It is easy to verify by induction that the morphism corresponding every cycle in
the diagram starting at the vertex (0, 0) and ending with a vertex (x, y) is W (x, y).

Thus the morphism corresponding to every cycle starting at the vertex (0, 0) is
identity.

By symmetry, the morphism corresponding to every cycle is identity.
That the diagram is commutative follows from it (because for paths σ, τ we

have the paths σ ◦ τ−1 and τ ◦ σ−1 being identities). �

2.3. Intro to group theory

Definition 195. A semigroup is a pair of a set G and an associative binary
operation on G.
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Definition 196. A group is a pair of a set G and a binary operation · on G
such that:

1◦. (h · g) · f = h · (g · f) for every f, g, h ∈ G.
2◦. There exists an element e (identity) of G such that f · e = e · f = f for

every f ∈ G.
3◦. For every element f there exists an element f−1 (inverse of f) such that

f · f−1 = f−1 · f = e.

Obvious 197. Every group is a semigroup.

Proposition 198. In every group there exists exactly one identity element.

Proof. If p and q are both identities, then p = p · q = q. �

Proposition 199. Every group element has exactly one inverse.

Proof. Let p and q be both inverses of f ∈ G. Then f · p = p · f = e and
f · q = q · f = e. Then p = p · e = p · f · q = e · q = q. �

Proposition 200. (g · f)−1 = f−1 · g−1 for every group elements f and g.

Proof. (f−1 ·g−1) ·(g ·f) = f−1 ·g−1 ·g ·f = f−1 ·e ·f = f−1 ·f = e. Similarly
(g · f) · (f−1 · g−1) = e. So f−1 · g−1 is the inverse of g · f . �

Definition 201. A permutation group on a set D is a group whose elements
are functions on D and whose composition is function composition.

Obvious 202. Elements of a permutation group are bijections.

Definition 203. A transitive permutation group on a set D is such a per-
mutation group G on D that for every x, y ∈ D there exists r ∈ G such that
y = r(x).

A groupoid with single (arbitrarily chosen) object corresponds to every group.
The morphisms of this category are elements of the group and the composition of
morphisms is the group operation.



CHAPTER 3

More on order theory

3.1. Straight maps and separation subsets

3.1.1. Straight maps.

Definition 204. An order reflecting map from a poset A to a poset B is such
a function f that (for every x, y ∈ A)

fx v fy ⇒ x v y.

Obvious 205. Order embeddings are exactly the same as monotone and order
reflecting maps.

Definition 206. Let f be a monotone map from a meet-semilattice A to some
poset B. I call f a straight map when

∀a, b ∈ A : (fa v fb⇒ fa = f(a u b)).

Proposition 207. The following statements are equivalent for a monotone
map f :

1◦. f is a straight map.
2◦. ∀a, b ∈ A : (fa v fb⇒ fa v f(a u b)).
3◦. ∀a, b ∈ A : (fa v fb⇒ fa 6A f(a u b)).
4◦. ∀a, b ∈ A : (fa A f(a u b)⇒ fa 6v fb).

Proof.
1◦⇔2◦⇔3◦. Due fa w f(a u b).
3◦⇔4◦. Obvious.

�

Remark 208. The definition of straight map can be generalized for any poset
A by the formula

∀a, b ∈ A : (fa v fb⇒ ∃c ∈ A : (c v a ∧ c v b ∧ fa = fc)).
This generalization is not yet researched however.

Proposition 209. Let f be a monotone map from a meet-semilattice A to a
meet-semilattice B. If

∀a, b ∈ A : f(a u b) = fa u fb
then f is a straight map.

Proof. Let fa v fb. Then f(a u b) = fa u fb = fa. �

Proposition 210. Let f be a monotone map from a meet-semilattice A to
some poset B. If f is order reflecting, then f is a straight map.

Proof. fa v fb⇒ a v b⇒ a = a u b⇒ fa = f(a u b). �

The following theorem is the main reason of why we are interested in straight
maps:

36
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Theorem 211. If f is a straight monotone map from a meet-semilattice A then
the following statements are equivalent:

1◦. f is an injection.
2◦. f is order reflecting.
3◦. ∀a, b ∈ A : (a @ b⇒ fa @ fb).
4◦. ∀a, b ∈ A : (a @ b⇒ fa 6= fb).
5◦. ∀a, b ∈ A : (a @ b⇒ fa 6w fb).
6◦. ∀a, b ∈ A : (fa v fb⇒ a 6A b).

Proof.
1◦⇒3◦. Let a, b ∈ A. Let fa = fb ⇒ a = b. Let a @ b. fa 6= fb because a 6= b.

fa v fb because a v b. So fa @ fb.
2◦⇒1◦. Let a, b ∈ A. Let fa v fb ⇒ a v b. Let fa = fb. Then a v b and b v a

and consequently a = b.
3◦⇒2◦. Let ∀a, b ∈ A : (a @ b ⇒ fa @ fb). Let a 6v b. Then a A a u b. So

fa A f(a u b). If fa v fb then fa v f(a u b) what is a contradiction.
3◦⇒5◦⇒4◦. Obvious.
4◦⇒3◦. Because a @ b⇒ a v b⇒ fa v fb.
5◦⇔6◦. Obvious.

�

3.1.2. Separation subsets and full stars.

Definition 212. ∂Y a =
{
x∈Y
x 6�a

}
for an element a of a poset A and Y ∈PA.

Definition 213. Full star of a ∈ A is ?a = ∂Aa.

Proposition 214. If A is a meet-semilattice, then ? is a straight monotone
map.

Proof. Monotonicity is obvious. Let ?a 6v ?(aub). Then it exists x ∈ ?a such
that x /∈ ?(a u b). So x u a /∈ ?b but x u a ∈ ?a and consequently ?a 6v ?b. �

Definition 215. A separation subset of a poset A is such its subset Y that
∀a, b ∈ A : (∂Y a = ∂Y b⇒ a = b).

Definition 216. I call separable such poset that ? is an injection.

Definition 217. I call strongly separable such poset that ? is order reflecting.

Obvious 218. A poset is separable iff it has a separation subset.

Obvious 219. A poset is strongly separable iff ? is order embedding.

Obvious 220. Strong separability implies separability.

Definition 221. A poset A has disjunction property of Wallman iff for any
a, b ∈ A either b v a or there exists a non-least element c v b such that a � c.

Theorem 222. For a meet-semilattice with least element the following state-
ments are equivalent:

1◦. A is separable.
2◦. A is strongly separable.
3◦. ∀a, b ∈ A : (a @ b⇒ ?a @ ?b).
4◦. ∀a, b ∈ A : (a @ b⇒ ?a 6= ?b).
5◦. ∀a, b ∈ A : (a @ b⇒ ?a 6w ?b).
6◦. ∀a, b ∈ A : (?a v ?b⇒ a 6A b).
7◦. A conforms to Wallman’s disjunction property.
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8◦. ∀a, b ∈ A : (a @ b⇒ ∃c ∈ A \ {⊥} : (c � a ∧ c v b)).

Proof.
1◦⇔2◦⇔3◦⇔4◦⇔5◦⇔6◦. By the above theorem.
8◦⇒4◦. Let property 8◦ hold. Let a @ b. Then it exists element c v b such that

c 6= ⊥ and c u a = ⊥. But c u b 6= ⊥. So ?a 6= ?b.
2◦⇒7◦. Let property 2◦ hold. Let a 6v b. Then ?a 6v ?b that is it there exists c ∈ ?a

such that c /∈ ?b, in other words c u a 6= ⊥ and c u b = ⊥. Let d = c u a.
Then d v a and d 6= ⊥ and dub = ⊥. So disjunction property of Wallman
holds.

7◦⇒8◦. Obvious.
8◦⇒7◦. Let b 6v a. Then a u b @ b that is a′ @ b where a′ = a u b. Consequently

∃c ∈ A \ {⊥} : (c � a′ ∧ c v b). We have c u a = c u b u a = c u a′ = ⊥.
So c v b and c u a = ⊥. Thus Wallman’s disjunction property holds.

�

Proposition 223. Every boolean lattice is strongly separable.

Proof. Let a, b ∈ A where A is a boolean lattice an a 6= b. Then au b̄ 6= ⊥ or
āu b 6= ⊥ because otherwise au b̄ = ⊥ and at b̄ = > and thus a = b. Without loss
of generality assume a u b̄ 6= ⊥. Then a u c 6= ⊥ and b u c = ⊥ for c = a u b̄ 6= ⊥,
that is our lattice is separable.

It is strongly separable by theorem 222. �

3.1.3. Atomically Separable Lattices.

Proposition 224. “atoms” is a straight monotone map (for any meet-
semilattice).

Proof. Monotonicity is obvious. The rest follows from the formula

atoms(a u b) = atoms a ∩ atoms b

(corollary 109). �

Definition 225. I will call atomically separable such a poset that “atoms” is
an injection.

Proposition 226. ∀a, b ∈ A : (a @ b⇒ atoms a ⊂ atoms b) iff A is atomically
separable for a poset A.

Proof.
⇐. Obvious.
⇒. Let a 6= b for example a 6v b. Then a u b @ a; atoms a ⊃ atoms(a u b) =

atoms a ∩ atoms b and thus atoms a 6= atoms b.
�

Proposition 227. Any atomistic poset is atomically separable.

Proof. We need to prove that atoms a = atoms b ⇒ a = b. But it is obvious
because

a = latoms a and b = latoms b.

�

Theorem 228. A complete lattice is atomistic iff it is atomically separable.
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Proof. Direct implication is the above proposition. Let’s prove the reverse
implication.

Let “atoms” be injective. Consider an element a of our poset. Let b =

datoms a. Obviously b v a and thus atoms b ⊆ atoms a. But if x ∈ atoms a
then x v b and thus x ∈ atoms b. So atoms a = atoms b. By injectivity a = b that
is a = datoms a. �

Theorem 229. If a lattice with least element is atomic and separable then it
is atomistic.

Proof. Suppose the contrary that is a A datoms a. Then, because our lattice
is separable, there exists c ∈ A such that c u a 6= ⊥ and c u datoms a = ⊥. There
exists atom d v c such that d v c u a. d u datoms a v c u datoms a = ⊥. But
d ∈ atoms a. Contradiction. �

Theorem 230. Let A be an atomic meet-semilattice with least element. Then
the following statements are equivalent:

1◦. A is separable.
2◦. A is strongly separable.
3◦. A is atomically separable.
4◦. A conforms to Wallman’s disjunction property.
5◦. ∀a, b ∈ A : (a @ b⇒ ∃c ∈ A \ {⊥} : (c � a ∧ c v b)).

Proof.
1◦⇔2◦⇔4◦⇔5◦. Proved above.
3◦⇒5◦. Let our semilattice be atomically separable. Let a @ b. Then atoms a ⊂

atoms b and there exists c ∈ atoms b such that c /∈ atoms a. c 6= ⊥ and
c v b, from which (taking into account that c is an atom) c v b and
c u a = ⊥. So our semilattice conforms to the formula 5◦.

5◦⇒3◦. Let formula 5◦ hold. Then for any elements a @ b there exists c 6= ⊥ such
that c v b and cua = ⊥. Because A is atomic there exists atom d v c. d ∈
atoms b and d /∈ atoms a. So atoms a 6= atoms b and atoms a ⊆ atoms b.
Consequently atoms a ⊂ atoms b.

�

Theorem 231. Any atomistic poset is strongly separable.

Proof. ?x v ?y ⇒ atomsx v atoms y ⇒ x v y because atomsx = ?x ∩
atomsA. �

3.2. Quasidifference and Quasicomplement

I’ve got quasidifference and quasicomplement (and dual quasicomplement) re-
placing max and min in the definition of pseudodifference and pseudocomplement
(and dual pseudocomplement) with dand

d
. Thus quasidifference and (dual)

quasicomplement are generalizations of their pseudo- counterparts.

Remark 232. Pseudocomplements and pseudodifferences are standard termi-
nology. Quasi- counterparts are my neologisms.

Definition 233. Let A be a poset, a ∈ A. Quasicomplement of a is

a∗ = l

{
c ∈ A

c � a

}
.

Definition 234. Let A be a poset, a ∈ A. Dual quasicomplement of a is

a+ =
l{c ∈ A

c ≡ a

}
.
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I will denote quasicomplement and dual quasicomplement for a specific poset A
as a∗(A) and a+(A).

Definition 235. Let a, b ∈ A where A is a distributive lattice. Quasidifference
of a and b is

a \∗ b =
l{ z ∈ A

a v b t z

}
.

Definition 236. Let a, b ∈ A where A is a distributive lattice. Second quasid-
ifference of a and b is

a# b = l

{
z ∈ A

z v a ∧ z � b

}
.

Theorem 237. a \∗ b =
d{

z∈A
zva∧avbtz

}
where A is a distributive lattice and

a, b ∈ A.

Proof. Obviously
{

z∈A
zva∧avbtz

}
⊆
{

z∈A
avbtz

}
. Thus

d{
z∈A

zva∧avbtz

}
w a \∗ b.

Let z ∈ A and z′ = z u a.
a v btz ⇒ a v (btz)ua⇔ a v (bua)t (zua)⇔ a v (bua)tz′ ⇒ a v btz′

and a v b t z ⇐ a v b t z′. Thus a v b t z ⇔ a v b t z′.
If z ∈

{
z∈A
avbtz

}
then a v b t z and thus

z′ ∈
{

z ∈ A

z v a ∧ a v b t z

}
.

But z′ v z thus having
d{

z∈A
zva∧avbtz

}
v
d{

z∈A
avbtz

}
. �

Remark 238. If we drop the requirement that A is distributive, two formulas
for quasidifference (the definition and the last theorem) fork.

Obvious 239. Dual quasicomplement is the dual of quasicomplement.

Obvious 240.

• Every pseudocomplement is quasicomplement.
• Every dual pseudocomplement is dual quasicomplement.
• Every pseudodifference is quasidifference.

Below we will stick to the more general quasies than pseudos. If needed, one can
check that a quasicomplement a∗ is a pseudocomplement by the equation a∗ � a
(and analogously with other quasies).

Next we will express quasidifference through quasicomplement.

Proposition 241.

1◦. a \∗ b = a \∗ (a u b) for any distributive lattice;
2◦. a# b = a#(a u b) for any distributive lattice with least element.

Proof.

1◦. a v (au b)t z ⇔ a v (at z)u (bt z)⇔ a v at z ∧ a v bt z ⇔ a v bt z.
Thus a \∗ (a u b) =

d{
z∈A

av(aub)tz

}
=
d{

z∈A
avbtz

}
= a \∗ b.



3.2. QUASIDIFFERENCE AND QUASICOMPLEMENT 41

2◦.
a#(a u b) =

l

{
z ∈ A

z v a ∧ z u a u b = ⊥

}
=

l

{
z ∈ A

z v a ∧ (z u a) u a u b = ⊥

}
=

l

{
z u a

z ∈ A, z u a u b = ⊥

}
=

l

{
z ∈ A

z v a, z u b = ⊥

}
=

a# b.

�

I will denote Da the lattice
{
x∈A
xva

}
.

Theorem 242. For a, b ∈ A where A is a distributive lattice
1◦. a \∗ b = (a u b)+(Da);
2◦. a# b = (a u b)∗(Da) if A has least element.

Proof.
1◦.

(a u b)+(Da) =
l{ c ∈ Da

c t (a u b) = a

}
=

l{ c ∈ Da
c t (a u b) w a

}
=

l{ c ∈ Da
(c t a) u (c t b) w a

}
=

l{ c ∈ A

c v a ∧ c t b w a

}
=

a \∗ b.
2◦.

(a u b)∗(Da) =

l

{
c ∈ Da

c u a u b = ⊥

}
=

l

{
c ∈ A

c v a ∧ c u a u b = ⊥

}
=

l

{
c ∈ A

c v a ∧ c u b = ⊥

}
=

a# b.

�

Proposition 243. (a t b) \∗ b v a for an arbitrary complete lattice.

Proof. (a t b) \∗ b =
d{

z∈A
atbvbtz

}
.

But a v z ⇒ a t b v b t z. So
{

z∈A
atbvbtz

}
⊇
{
z∈A
avz

}
.

Consequently, (a t b) \∗ b v
d{

z∈A
avz

}
= a. �
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3.3. Several equal ways to express pseudodifference

Theorem 244. For an atomistic co-brouwerian lattice A and a, b ∈ A the
following expressions are always equal:

1◦. a \∗ b =
d{

z∈A
avbtz

}
(quasidifference of a and b);

2◦. a# b = d

{
z∈A

zva∧zub=⊥

}
(second quasidifference of a and b);

3◦. d(atoms a \ atoms b).

Proof.
Proof of 1◦=3◦.

a \∗ b =(

latoms a
)
\∗ b = (theorem 163)

l

A∈atoms a
(A \∗ b) =

l

A∈atoms a

({
A if A /∈ atoms b
⊥ if A ∈ atoms b

)
=

l

{
A

A ∈ atoms a,A /∈ atoms b

}
=

l(atoms a \ atoms b).

Proof of 2◦=3◦. a \∗ b is defined because our lattice is co-brouwerian. Taking the
above into account, we have

a \∗ b =

l(atoms a \ atoms b) =

l

{
z ∈ atoms a
z u b = ⊥

}
.

So d

{
z∈atoms a
zub=⊥

}
is defined.

If z v a ∧ z u b = ⊥ then z′ = d

{
x∈atoms z
xub=⊥

}
is defined because

z′ = z \∗ b (atomisticity taken into account). z′ is a lower bound for{
z∈atoms a
xub=⊥

}
.

Thus z′ ∈
{

z∈A
zva∧zub=⊥

}
and so d

{
z∈atoms a
zub=⊥

}
is an upper bound of{

z∈A
zva∧zub=⊥

}
.

If y is above every z′ ∈
{

z∈A
zva∧zub=⊥

}
then y is above every z ∈

atoms a such that z u b = ⊥ and thus y is above d

{
z∈atoms a
zub=⊥

}
.

Thus d

{
z∈atoms a
zub=⊥

}
is least upper bound of{

z ∈ A

z v a ∧ z u b = ⊥

}
,

that is

l

{
z ∈ A

z v a ∧ z u b = ⊥

}
=

l

{
z ∈ atoms a
z u b = ⊥

}
=

l(atoms a \ atoms b).
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�

3.4. Partially ordered categories

3.4.1. Definition.

Definition 245. I will call a partially ordered (pre)category a (pre)category
together with partial orderv on each of its Mor-sets with the additional requirement
that

f1 v f2 ∧ g1 v g2 ⇒ g1 ◦ f1 v g2 ◦ f2

for every morphisms f1, g1, f2, g2 such that Src f1 = Src f2 and Dst f1 = Dst f2 =
Src g1 = Src g2 and Dst g1 = Dst g2.

I will denote lattice operations on a Hom-set C(A,B) of a category (or any
directed multigraph) like tC instead of writing tC(A,B) explicitly.

3.4.2. Dagger categories.

Definition 246. I will call a dagger precategory a precategory together with
an involutive contravariant identity-on-objects prefunctor x 7→ x†.

In other words, a dagger precategory is a precategory equipped with a function
x 7→ x† on its set of morphisms which reverses the source and the destination and
is subject to the following identities for every morphisms f and g:

1◦. f†† = f ;
2◦. (g ◦ f)† = f† ◦ g†.

Definition 247. I will call a dagger category a category together with an
involutive contravariant identity-on-objects functor x 7→ x†.

In other words, a dagger category is a category equipped with a function x 7→ x†

on its set of morphisms which reverses the source and the destination and is subject
to the following identities for every morphisms f and g and object A:

1◦. f†† = f ;
2◦. (g ◦ f)† = f† ◦ g†;
3◦. (1A)† = 1A.

Theorem 248. If a category is a dagger precategory then it is a dagger cate-
gory.

Proof. We need to prove only that (1A)† = 1A. Really,
(1A)† = (1A)† ◦ 1A = (1A)† ◦ (1A)†† = ((1A)† ◦ 1A)† = (1A)†† = 1A.

�

For a partially ordered dagger (pre)category I will additionally require (for
every morphisms f and g with the same source and destination)

f† v g† ⇔ f v g.
An example of dagger category is the category Rel whose objects are sets and

whose morphisms are binary relations between these sets with usual composition
of binary relations and with f† = f−1.

Definition 249. A morphism f of a dagger category is called unitary when it
is an isomorphism and f† = f−1.

Definition 250. Symmetric (endo)morphism of a dagger precategory is such
a morphism f that f = f†.

Definition 251. Transitive (endo)morphism of a precategory is such a mor-
phism f that f = f ◦ f .
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Theorem 252. The following conditions are equivalent for a morphism f of a
dagger precategory:

1◦. f is symmetric and transitive.
2◦. f = f† ◦ f .

Proof.
1◦⇒2◦. If f is symmetric and transitive then f† ◦ f = f ◦ f = f .
2◦⇒1◦. f† = (f†◦f)† = f†◦f†† = f†◦f = f , so f is symmetric. f = f†◦f = f ◦f ,

so f is transitive.
�

3.4.2.1. Some special classes of morphisms.

Definition 253. For a partially ordered dagger category I will call monovalued
morphism such a morphism f that f ◦ f† v 1Dst f .

Definition 254. For a partially ordered dagger category I will call entirely
defined morphism such a morphism f that f† ◦ f w 1Src f .

Definition 255. For a partially ordered dagger category I will call injective
morphism such a morphism f that f† ◦ f v 1Src f .

Definition 256. For a partially ordered dagger category I will call surjective
morphism such a morphism f that f ◦ f† w 1Dst f .

Remark 257. It is easy to show that this is a generalization of monovalued,
entirely defined, injective, and surjective functions as morphisms of the category
Rel.

Obvious 258. “Injective morphism” is a dual of “monovalued morphism” and
“surjective morphism” is a dual of “entirely defined morphism”.

Definition 259. For a given partially ordered dagger category C the cate-
gory of monovalued (entirely defined, injective, surjective) morphisms of C is the
category with the same set of objects as of C and the set of morphisms being the
set of monovalued (entirely defined, injective, surjective) morphisms of C with the
composition of morphisms the same as in C.

We need to prove that these are really categories, that is that composition
of monovalued (entirely defined, injective, surjective) morphisms is monovalued
(entirely defined, injective, surjective) and that identity morphisms are monovalued,
entirely defined, injective, and surjective.

Proof. We will prove only for monovalued morphisms and entirely defined
morphisms, as injective and surjective morphisms are their duals.
Monovalued. Let f and g be monovalued morphisms, Dst f = Src g. Then

(g ◦ f) ◦ (g ◦ f)† =
g ◦ f ◦ f† ◦ g† v

g ◦ 1Src g ◦ g† =
g ◦ g† v
1Dst g = 1Dst(g◦f).

So g ◦ f is monovalued.
That identity morphisms are monovalued follows from the following:

1A ◦ (1A)† = 1A ◦ 1A = 1A = 1Dst 1A v 1Dst 1A .
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Entirely defined. Let f and g be entirely defined morphisms, Dst f = Src g. Then
(g ◦ f)† ◦ (g ◦ f) =
f† ◦ g† ◦ g ◦ f w

f† ◦ 1Src g ◦ f =
f† ◦ 1Dst f ◦ f =

f† ◦ f w
1Src f = 1Src(g◦f).

So g ◦ f is entirely defined.
That identity morphisms are entirely defined follows from the follow-

ing:
(1A)† ◦ 1A = 1A ◦ 1A = 1A = 1Src 1A w 1Src 1A .

�

Definition 260. I will call a bijective morphism a morphism which is entirely
defined, monovalued, injective, and surjective.

Proposition 261. If a morphism is bijective then it is an isomorphism.

Proof. Let f be bijective. Then f ◦f† v 1Dst f , f† ◦f w 1Src f , f† ◦f v 1Src f ,
f ◦ f† w 1Dst f . Thus f ◦ f† = 1Dst f and f† ◦ f = 1Src f that is f† is an inverse of
f . �

Let Hom-sets be complete lattices.

Definition 262. A morphism f of a partially ordered category is metamono-
valued when (

d
G) ◦ f =

d
g∈G(g ◦ f) whenever G is a set of morphisms with a

suitable domain and image.

Definition 263. A morphism f of a partially ordered category is metainjective
when f ◦ (

d
G) =

d
g∈G(f ◦ g) whenever G is a set of morphisms with a suitable

domain and image.

Obvious 264. Metamonovaluedness and metainjectivity are dual to each other.

Definition 265. A morphism f of a partially ordered category ismetacomplete
when f ◦ ( dG) = dg∈G(f ◦ g) whenever G is a set of morphisms with a suitable
domain and image.

Definition 266. A morphism f of a partially ordered category is co-
metacomplete when ( dG) ◦ f = dg∈G(g ◦ f) whenever G is a set of morphisms
with a suitable domain and image.

Let now Hom-sets be meet-semilattices.

Definition 267. A morphism f of a partially ordered category is weakly meta-
monovalued when (g u h) ◦ f = (g ◦ f) u (h ◦ f) whenever g and h are morphisms
with a suitable domain and image.

Definition 268. A morphism f of a partially ordered category is weakly
metainjective when f ◦ (g u h) = (f ◦ g) u (f ◦ h) whenever g and h are morphisms
with a suitable domain and image.

Let now Hom-sets be join-semilattices.

Definition 269. A morphism f of a partially ordered category is weakly meta-
complete when f ◦ (g t h) = (f ◦ g)t (f ◦ h) whenever g and h are morphisms with
a suitable domain and image.
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Definition 270. A morphism f of a partially ordered category is weakly co-
metacomplete when (g t h) ◦ f = (g ◦ f)t (h ◦ f) whenever g and h are morphisms
with a suitable domain and image.

Obvious 271.

1◦. Metamonovalued morphisms are weakly metamonovalued.
2◦. Metainjective morphisms are weakly metainjective.
3◦. Metacomplete morphisms are weakly metacomplete.
4◦. Co-metacomplete morphisms are weakly co-metacomplete.

3.5. Partitioning

Definition 272. Let A be a complete lattice. Torning of an element a ∈ A is
a set S ∈PA \ {⊥} such that

lS = a and ∀x, y ∈ S : (x 6= y ⇒ x � y).

Definition 273. Let A be a complete lattice. Weak partition of an element
a ∈ A is a set S ∈PA \ {⊥} such that

lS = a and ∀x ∈ S : x � l(S \ {x}).

Definition 274. Let A be a complete lattice. Strong partition of an element
a ∈ A is a set S ∈PA \ {⊥} such that

lS = a and ∀A,B ∈PS : (A � B ⇒ lA � lB).

Obvious 275.

1◦. Every strong partition is a weak partition.
2◦. Every weak partition is a torning.

Definition 276. Complete lattice generated by a set P (on a complete lattice)
is the set (obviously having the structure of complete lattice) P0 ∪ P1 ∪ . . . where
P0 = P and Pi+1 =

{

dK,
d
K

K∈PPi

}
.

Obvious 277. Complete lattice generated by a set is indeed a complete lattice.

Example 278. [S] 6=
{

d

AX
X∈PS

}
, where [S] is the complete lattice generated by

a strong partition S of a filter on a set.

Proof. Consider any infinite set U and its strong partition S =
{
↑U{x}
x∈U

}
.

The set S consists only of principal filters. But [S] contains (exercise!) some
nonprincipal filters. �

By the way:

Proposition 279.
{

d

AX
X∈PS

}
is closed under binary meets, if S is a strong

partition of an element of a complete lattice.
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Proof. Let R =
{

d

AX
X∈PS

}
. Then for every X,Y ∈PS

A

lX u
A

A

lY =
A

l((X ∩ Y ) ∪ (X \ Y )) uA
A

lY =(
A

l(X ∩ Y ) tA
A

l(X \ Y )
)
uA

A

lY =(
A

l(X ∩ Y ) uA
A

lY

)
tA
(

A

l(X \ Y ) uA
A

lY

)
=(

A

l(X ∩ Y ) uA
A

lY

)
tA ⊥A =

A

l(X ∩ Y ) uA
A

lY.

Applying the formula d

A
X uA d

A
Y = d

A(X ∩ Y ) uA d

A
Y twice we get

A

lX u
A

A

lY =
A

l(X ∩ Y ) uA
A

l(Y ∩ (X ∩ Y )) =
A

l(X ∩ Y ) uA
A

l(X ∩ Y ) =
A

l(X ∩ Y ).

But for any A,B ∈ R there exist X,Y ∈PS such that A = d

A
X, B = d

A
Y .

So A uA B = d

A
X u d

A
Y = d

A(X ∩ Y ) ∈ R. �

3.6. A proposition about binary relations

Proposition 280. Let f , g, h be binary relations. Then g ◦ f 6� h ⇔ g 6�
h ◦ f−1.

Proof.
g ◦ f 6� h⇔

∃a, c : a ((g ◦ f) ∩ h) c⇔
∃a, c : (a (g ◦ f) c ∧ a h c)⇔

∃a, b, c : (a f b ∧ b g c ∧ a h c)⇔
∃b, c : (b g c ∧ b (h ◦ f−1) c)⇔
∃b, c : b (g ∩ (h ◦ f−1)) c⇔

g 6� h ◦ f−1.

�

3.7. Infinite associativity and ordinated product

3.7.1. Introduction. We will consider some function f which takes an arbi-
trary ordinal number of arguments. That is f can be taken for arbitrary (small,
if to be precise) ordinal number of arguments. More formally: Let x = xi∈n be a
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family indexed by an ordinal n. Then f(x) can be taken. The same function f can
take different number of arguments. (See below for the exact definition.)

Some of such functions f are associative in the sense defined below. If a function
is associative in the below defined sense, then the binary operation induced by this
function is associative in the usual meaning of the word “associativity” as defined
in basic algebra.

I also introduce and research an important example of infinitely associative
function, which I call ordinated product.

Note that my searching about infinite associativity and ordinals in Internet has
provided no useful results. As such there is a reason to assume that my research of
generalized associativity in terms of ordinals is novel.

3.7.2. Used notation. We identify natural numbers with finite Von Neu-
mann’s ordinals (further just ordinals or ordinal numbers).

For simplicity we will deal with small sets (members of a Grothendieck uni-
verse). We will denote the Grothendieck universe (aka universal set) as f.

I will denote a tuple of n elements like Ja0, . . . , an−1K. By definition
Ja0, . . . , an−1K = {(0, a0), . . . , (n− 1, an−1)}.

Note that an ordered pair (a, b) is not the same as the tuple Ja, bK of two
elements. (However, we will use them interchangeably.)

Definition 281. An anchored relation is a tuple Jn, rK where n is an index set
and r is an n-ary relation.

For an anchored relation arityJn, rK = n. The graph1 of Jn, rK is defined as
follows: GRJn, rK = r.

Definition 282. Pri f is a function defined by the formula

Pr
i
f =

{
xi

x ∈ f

}
for every small n-ary relation f where n is an ordinal number and i ∈ n. Particularly
for every n-ary relation f and i ∈ n where n ∈ N

Pr
i
f =

{
xi

Jx0, . . . , xn−1K ∈ f

}
.

Recall that Cartesian product is defined as follows:∏
a =

{
z ∈ (

⋃
im a)dom a

∀i ∈ dom a : z(i) ∈ ai

}
.

Obvious 283. If a is a small function, then
∏
a =

{
z∈fdom a

∀i∈dom a:z(i)∈ai

}
.

3.7.2.1. Currying and uncurrying.
The customary definition. Let X, Y , Z be sets.
We will consider variables x ∈ X and y ∈ Y .
Let a function f ∈ ZX×Y . Then curry(f) ∈ (ZY )X is the function defined by

the formula (curry(f)x)y = f(x, y).
Let now f ∈ (ZY )X . Then uncurry(f) ∈ ZX×Y is the function defined by the

formula uncurry(f)(x, y) = (fx)y.

Obvious 284.
1◦. uncurry(curry(f)) = f for every f ∈ ZX×Y .
2◦. curry(uncurry(f)) = f for every f ∈ (ZY )X .

1It is unrelated with graph theory.
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Currying and uncurrying with a dependent variable. Let X, Z be sets and Y
be a function with the domain X. (Vaguely saying, Y is a variable dependent on
X.)

The disjoint union
∐
Y =

⋃
i∈domY ({i} × Yi) =

{
(i,x)

i∈domY,x∈Yi

}
.

We will consider variables x ∈ X and y ∈ Yx.
Let a function f ∈ Z

∐
i∈X

Yi (or equivalently f ∈ Z
∐

Y ). Then curry(f) ∈∏
i∈X Z

Yi is the function defined by the formula (curry(f)x)y = f(x, y).
Let now f ∈

∏
i∈X Z

Yi . Then uncurry(f) ∈ Z
∐

i∈X
Yi is the function defined

by the formula uncurry(f)(x, y) = (fx)y.

Obvious 285.
1◦. uncurry(curry(f)) = f for every f ∈ Z

∐
i∈X

Yi .
2◦. curry(uncurry(f)) = f for every f ∈

∏
i∈X Z

Yi .

3.7.2.2. Functions with ordinal numbers of arguments. Let Ord be the set of
small ordinal numbers.

If X and Y are sets and n is an ordinal number, the set of functions taking n
arguments on the set X and returning a value in Y is Y Xn .

The set of all small functions taking ordinal numbers of arguments is
Y
⋃
n∈Ord

Xn .
I will denote OrdVar(X) = f

⋃
n∈Ord

Xn and call it ordinal variadic. (“Var” in
this notation is taken from the word variadic in the collocation variadic function
used in computer science.)

3.7.3. On sums of ordinals. Let a be an ordinal-indexed family of ordinals.

Proposition 286.
∐
a with lexicographic order is a well-ordered set.

Proof. Let S be non-empty subset of
∐
a.

Take i0 = min Pr0 S and x0 = min
{

Pr1 y
y∈S,y(0)=i0

}
(these exist by properties of

ordinals). Then (i0, x0) is the least element of S. �

Definition 287.
∑
a is the unique ordinal order-isomorphic to

∐
a.

Exercise 288. Prove that for finite ordinals it is just a sum of natural numbers.

This ordinal exists and is unique because our set is well-ordered.

Remark 289. An infinite sum of ordinals is not customary defined.

The structured sum
⊕
a of a is an order isomorphism from lexicographically

ordered set
∐
a into

∑
a.

There exists (for a given a) exactly one structured sum, by properties of well-
ordered sets.

Obvious 290.
∑
a = im

⊕
a.

Theorem 291. (
⊕
a)(n, x) =

∑
i∈n ai + x.

Proof. We need to prove that it is an order isomorphism. Let’s prove it is an
injection that is m > n⇒

∑
i∈m ai + x >

∑
i∈n ai + x and y > x⇒

∑
i∈n ai + y >∑

i∈n ai + x.
Really, if m > n then

∑
i∈m ai+x ≥

∑
i∈n+1 ai+x >

∑
i∈n ai+x. The second

formula is true by properties of ordinals.
Let’s prove that it is a surjection. Let r ∈

∑
a. There exist n ∈ dom a and

x ∈ an such that r = (
⊕
a)(n, x). Thus r = (

⊕
a)(n, 0) +x =

∑
i∈n ai +x because

(
⊕
a)(n, 0) =

∑
i∈n ai since (n, 0) has

∑
i∈n ai predecessors. �
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3.7.4. Ordinated product.
3.7.4.1. Introduction. Ordinated product defined below is a variation of Carte-

sian product, but is associative unlike Cartesian product. However, ordinated prod-
uct unlike Cartesian product is defined not for arbitrary sets, but only for relations
having ordinal numbers of arguments.

Let F indexed by an ordinal number be a small family of anchored relations.
3.7.4.2. Concatenation.

Definition 292. Let z be an indexed by an ordinal number family of functions
each taking an ordinal number of arguments. The concatenation of z is

concat z = uncurry(z) ◦
(⊕

(dom ◦z)
)−1

.

Exercise 293. Prove, that if z is a finite family of finitary tuples, it is con-
catenation of dom z tuples in the usual sense (as it is commonly used in computer
science).

Proposition 294. If z ∈
∏

(GR ◦F ) then concat z = uncurry(z) ◦
(
⊕

(arity ◦F ))−1
.

Proof. If z ∈
∏

(GR ◦F ) then dom z(i) = dom(GR ◦F )i = arityFi for every
i ∈ domF . Thus dom ◦z = arity ◦F . �

Proposition 295. dom concat z =
∑
i∈dom z dom zi.

Proof. Because dom(
⊕

(dom ◦z))−1 =
∑
i∈dom f (dom ◦z), it is enough to

prove that
dom uncurry(z) = dom

⊕
(dom ◦z).

Really, ∑
i∈dom f

(dom ◦z) =

{
(i, x)

i ∈ dom(dom ◦z), x ∈ dom zi

}
={

(i, x)
i ∈ dom z, x ∈ dom zi

}
=∐

z

and dom uncurry(z) =
∐
i∈X zi =

∐
z. �

3.7.4.3. Finite example. If F is a finite family (indexed by a natural number
domF ) of anchored finitary relations, then by definition

GR
(ord)∏

=
{

Ja0,0, . . . , a0,arityF0−1, . . . , adomF−1,0, . . . , adomF−1,arityFdomF−1−1K
Ja0,0, . . . , a0,arityF0−1K ∈ GRF0 ∧ . . . ∧ JadomF−1,arityFdomF−1−1K ∈ GRFdomF−1

}
and

arity
(ord)∏

F = arityF0 + . . .+ arityFdomF−1.

The above formula can be shortened to

GR
(ord)∏

F =
{

concat z
z ∈

∏
(GR ◦F )

}
.
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3.7.4.4. The definition.

Definition 296. The anchored relation (which I call ordinated product)∏(ord)
F is defined by the formulas:

arity
(ord)∏

F =
∑

(arity ◦f);

GR
(ord)∏

F =
{

concat z
z ∈

∏
(GR ◦F )

}
.

Proposition 297.
∏(ord)

F is a properly defined anchored relation.

Proof. dom concat z =
∑
i∈domF dom zi =

∑
i∈domF arity fi =

∑
(arity ◦F ).

�

3.7.4.5. Definition with composition for every multiplier. q(F )i
def=

(curry(
⊕

(arity ◦F )))i.

Proposition 298.
∏(ord)

F =
{

L∈f
∑

(arity ◦F )

∀i∈domF :L◦q(F )i∈GRFi

}
.

Proof. GR
∏(ord)

F =
{

concat z
z∈
∏

(GR ◦F )

}
;

GR
∏(ord)

F =
{

uncurry(z)◦(
⊕

(arity ◦f))−1

z∈
∏

i∈domF
farityFi ,∀i∈domF :z(i)∈GRFi

}
.

Let L = uncurry(z). Then z = curry(L).

GR
∏(ord)

F =
{

L◦(
⊕

(arity ◦f))−1

curry(L)∈
∏

i∈domF
farityFi ,∀i∈domF :curry(L)i∈GRFi

}
;

GR
∏(ord)

F =
{

L◦(
⊕

(arity ◦f))−1

L∈f
∐

i∈domF
arityFi

,∀i∈domF :curry(L)i∈GRFi

}
;

GR
∏(ord)

F =
{

L∈f
∑

(arity ◦f)

∀i∈domF :curry(L◦
⊕

(arity ◦F ))i∈GRFi

}
;

(curry(L ◦
⊕

(arity ◦F ))i)x = L((curry(
⊕

(arity ◦F ))i)x) = L(q(F )ix) = (L ◦
q(F )i)x;

curry(L ◦
⊕

(arity ◦F ))i = L ◦ q(F )i;∏(ord)
F =

{
L∈f

∑
(arity ◦F )

∀i∈domF :L◦q(F )i∈GRFi

}
. �

Corollary 299.
∏(ord)

F =
{
L∈(
⋃

im(GR ◦F ))
∑

(arity ◦F )

∀i∈domF :L◦q(F )i∈GRFi

}
.

Corollary 300.
∏(ord)

F is small if F is small.

3.7.4.6. Definition with shifting arguments. Let F ′i =
{
L◦Pr1 |{i}×arityFi

L∈GRFi

}
.

Proposition 301. F ′i =
{
L◦Pr1 |{i}×f
L∈GRFi

}
.

Proof. If L ∈ GRFi then domL = arityFi. Thus
L ◦ Pr

1
|{i}×arityFi = L ◦ Pr

1
|{i}×domL = L ◦ Pr

1
|{i}×f.

�

Proposition 302. F ′i is an ({i} × arityFi)-ary relation.

Proof. We need to prove that dom
(
L ◦ Pr1 |{i}×arityFi

)
= {i} × arityFi for

L ∈ GRFi, but that’s obvious. �
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Obvious 303.
∐

(arity ◦F ) =
⋃
i∈domF ({i} × arityFi) =

⋃
i∈domF domF ′i .

Lemma 304. P ∈
∏
i∈domF F

′
i ⇔ curry(

⋃
imP ) ∈

∏
(GR ◦F ) for a (domF )-

indexed family P where Pi ∈ f{i}×arityFi for every i ∈ domF , that is for P ∈∐
i∈domF f{i}×arityFi .

Proof. For every P ∈
∐
i∈domF f{i}×arityFi we have:

P ∈
∏

i∈domF

F ′i ⇔

P ∈
{

z ∈ fdomF

∀i ∈ domF : z(i) ∈ F ′i

}
⇔

P ∈ fdomF ∧ ∀i ∈ domF : P (i) ∈ F ′i ⇔
P ∈ fdomF ∧ ∀i ∈ domF∃L ∈ GRFi : Pi = L ◦ (Pr

1
|{i}×f)⇔

P ∈ fdomF ∧ ∀i ∈ domF∃L ∈ GRFi : (Pi ∈ f{i}×arityFi ∧ ∀x ∈ arityFi : Pi(i, x) = Lx)⇔
P ∈ fdomF ∧ ∀i ∈ domF∃L ∈ GRFi : (Pi ∈ f{i}×arityFi ∧ curry(Pi)i = L)⇔

P ∈ fdomF ∧ ∀i ∈ domF : (Pi ∈ f{i}×arityFi ∧ curry(Pi)i ∈ GRFi)⇔
∀i ∈ domF∃Qi ∈ (farityFi){i} : (Pi = uncurry(Qi) ∧ (Qi)i ∈ farityFi ∧Qii ∈ GRFi)⇔

∀i ∈ domF∃Qi ∈ (farityFi){i} :
(
Pi = uncurry(Qi) ∧

( ⋃
i∈domF

Qi

)
i ∈ GRFi

)
⇔

∀i ∈ domF∃Qi ∈ (farityFi){i} :
(
Pi = uncurry(Qi) ∧

⋃
i∈domF

Qi ∈
∏

(GR ◦F )
)
⇔

∀i ∈ domF :
⋃

i∈domF

curry(Pi) ∈
∏

(GR ◦F )⇔

curry
( ⋃
i∈domF

Pi

)
∈
∏

(GR ◦F )⇔

curry
(⋃

imP
)
∈
∏

(GR ◦F ).

�

Lemma 305.
{

curry(f)◦
⊕

(arity ◦F )

f∈GR
∏(ord)

F

}
=
∏

(GR ◦F ).

Proof. First GR
∏(ord)

F =
{

uncurry(z)◦(
⊕

(dom ◦z))−1

z∈
∏

(GR ◦F )

}
, that is{

f

f∈GR
∏(ord)

F

}
=
{

uncurry(z)◦(
⊕

(arity ◦F ))−1

z∈
∏

(GR ◦F )

}
.

Since
⊕

(arity ◦F ) is a bijection, we have{
f◦
⊕

(arity ◦F )

f∈GR
∏(ord)

F

}
=
{

uncurry(z)
z∈
∏

(GR ◦F )

}
what is equivalent to{

curry(f)◦
⊕

(arity ◦F )

f∈GR
∏(ord)

F

}
=
{

z

z∈
∏

(GR ◦F )

}
that is

{
curry(f)◦

⊕
(arity ◦F )

f∈GR
∏(ord)

F

}
=∏

(GR ◦F ). �

Lemma 306.
{ ⋃

imP

P∈
∐

i∈domF
f{i}×arityFi∧curry(

⋃
imP )∈

∏
(GR ◦F )

}
={

L∈f
∐

i∈domF
arityFi

curry(L)∈
∏

(GR ◦F )

}
.
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Proof. Let L′ ∈
{
L∈f

∐
i∈domF

arityFi

curry(L)∈
∏

(GR ◦F )

}
. Then L′ ∈ f

∐
i∈domF

arityFi and

curry(L′) ∈
∏

(GR ◦F ).
Let P = λi ∈ domF : L′|{i}×arityFi . Then P ∈

∐
i∈domF f{i}×arityFi and⋃

imP = L′. So L′ ∈
{ ⋃

imP

P∈
∐

i∈domF
f{i}×arityFi∧curry(

⋃
imP )∈

∏
(GR ◦F )

}
.

Let now L′ ∈
{ ⋃

imP

P∈
∐

i∈domF
f{i}×arityFi∧curry(

⋃
imP )∈

∏
(GR ◦F )

}
. Then there ex-

ists P ∈
∐
i∈domF f{i}×arityFi such that L′ =

⋃
imP and curry(L′) ∈

∏
(GR ◦F ).

Evidently L′ ∈ f
∐

i∈domF
arityFi . So L′ ∈

{
L∈f

∐
i∈domF

arityFi

curry(L)∈
∏

(GR ◦F )

}
. �

Lemma 307.
{
f◦
⊕

(arity ◦F )

f∈GR
∏(ord)

F

}
=
{ ⋃

imP

P∈
∏

i∈domF
F ′
i

}
.

Proof.

L ∈
{ ⋃

imP

P ∈
∏
i∈domF F

′
i

}
⇔

L ∈
{ ⋃

imP

P ∈
∐
i∈domF f{i}×arityFi ∧ curry(

⋃
imP ) ∈

∏
(GR ◦F )

}
⇔

L ∈ f
∐

i∈domF
arityFi ∧ curry(L) ∈

∏
(GR ◦F )⇔

L ∈ f
∐

i∈domF
arityFi ∧ curry(L) ∈

{
curry(f) ◦

⊕
(arity ◦F )

f ∈ GR
∏(ord)

F

}
⇔

(because
⊕

(arity ◦F ) is a bijection)

curry(L) ◦
(⊕

(arity ◦F )
)−1
∈

{
curry(f)

f ∈ GR
∏(ord)

F

}
⇔

L ◦
(⊕

(arity ◦F )
)−1
∈

{
f

f ∈ GR
∏(ord)

F

}
⇔

(because
⊕

(arity ◦F ) is a bijection)

L ∈

{
f ◦
⊕

(arity ◦F )
f ∈ GR

∏(ord)
F

}
.

�

Theorem 308. GR
∏(ord)

F =
{

(
⋃

imP)◦(
⊕

(arity ◦F ))−1

P∈
∏

i∈domF
F ′
i

}
.

Proof. From the lemma, because
⊕

(arity ◦F ) is a bijection. �

Theorem 309. GR
∏(ord)

F =
{⋃

i∈domF

(
Pi◦(

⊕
(arity ◦f))−1)

P∈
∏

i∈domF
F ′
i

}
.

Proof. From the previous theorem. �

Theorem 310. GR
∏(ord)

F =


⋃

imP

P∈
∏

i∈domF

{
f◦(
⊕

(arity ◦f))−1

f∈F ′
i

}
.

Proof. From the previous. �
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Remark 311. Note that the above formulas contain both
⋃
i∈domF domF ′i and⋃

i∈domF F
′
i . These forms are similar but different.

3.7.4.7. Associativity of ordinated product. Let f be an ordinal variadic func-
tion.

Let S be an ordinal indexed family of functions of ordinal indexed families of
functions each taking an ordinal number of arguments in a set X.

I call f infinite associative when
1◦. f(f ◦ S) = f(concatS) for every S;
2◦. f(JxK) = x for x ∈ X.

Infinite associativity implies associativity.

Proposition 312. Let f be an infinitely associative function taking an ordinal
number of arguments in a set X. Define x ? y = fJx, yK for x, y ∈ X. Then the
binary operation ? is associative.

Proof. Let x, y, z ∈ X. Then (x ? y) ? z = fJfJx, yK, zK = f(fJx, yK, fJzK) =
fJx, y, zK. Similarly x ? (y ? z) = fJx, y, zK. So (x ? y) ? z = x ? (y ? z). �

Concatenation is associative. First we will prove some lemmas.
Let a and b be functions on a poset. Let a ∼ b iff there exist an order isomor-

phism f such that a = b ◦ f . Evidently ∼ is an equivalence relation.

Obvious 313. concat a = concat b ⇔ uncurry(a) ∼ uncurry(b) for every ordi-
nal indexed families a and b of functions taking an ordinal number of arguments.

Thank to the above, we can reduce properties of concat to properties of uncurry.

Lemma 314. a ∼ b⇒ uncurry a ∼ uncurry b for every ordinal indexed families
a and b of functions taking an ordinal number of arguments.

Proof. There exist an order isomorphism f such that a = b ◦ f .
uncurry(a)(x, y) = (ax)y = (bfx)y = uncurry(b)(fx, y) = uncurry(b)g(x, y)

where g(x, y) = (fx, y).
g is an order isomorphism because g(x0, y0) ≥ g(x1, y1) ⇔ (x0, y0) ≥ (x1, y1).

(Injectivity and surjectivity are obvious.) �

Lemma 315. Let ai ∼ bi for every i. Then uncurry a ∼ uncurry b for every
ordinal indexed families a and b of ordinal indexed families of functions taking an
ordinal number of arguments.

Proof. Let ai = bi ◦ fi where fi is an order isomorphism for every i.
uncurry(a)(i, y) = aiy = bifiy = uncurry(b)(i, fiy) = uncurry(b)g(i, y) =

(uncurry(b) ◦ g)(i, y) where g(i, y) = (i, fiy).
g is an order isomorphism because g(i, y0) ≥ g(i, y1)⇔ fiy0 ≥ fiy1 ⇔ y0 ≥ y1

and i0 > i1 ⇒ g(i, y0) > g(i, y1). (Injectivity and surjectivity are obvious.) �

Let now S be an ordinal indexed family of ordinal indexed families of functions
taking an ordinal number of arguments.

Lemma 316. uncurry(uncurry ◦S) ∼ uncurry(uncurryS).

Proof. uncurry ◦S = λi ∈ S : uncurry(Si);
(uncurry(uncurry ◦S))((i, x), y) = (uncurrySi)(x, y) = (Six)y;
(uncurry(uncurryS))((i, x), y) = ((uncurryS)(i, x))y = (Six)y.
Thus (uncurry(uncurry ◦S))((i, x), y) = (uncurry(uncurryS))((i, x), y) and

thus evidently uncurry(uncurry ◦S) ∼ uncurry(uncurryS). �

Theorem 317. concat is an infinitely associative function.
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Proof. concat(JxK) = x for a function x taking an ordinal number of argument
is obvious. It is remained to prove

concat(concat ◦S) = concat(concatS);
We have, using the lemmas,

concat(concat ◦S) ∼
uncurry(concat ◦S) ∼

(by lemma 315)
uncurry(uncurry ◦S) ∼
uncurry(uncurryS) ∼

uncurry(concatS) ∼
concat(concatS).

Consequently concat(concat ◦S) = concat(concatS). �

Corollary 318. Ordinated product is an infinitely associative function.

3.8. Galois surjections

Definition 319. Galois surjection is the special case of Galois connection such
that f∗ ◦ f∗ is identity.

Proposition 320. For Galois surjection A → B such that A is a join-
semilattice we have (for every y ∈ B)

f∗y = max
{

x ∈ A

f∗x = y

}
.

Proof. We need to prove (theorem 131)

max
{

x ∈ A

f∗x = y

}
= max

{
x ∈ A

f∗x v y

}
.

To prove it, it’s enough to show that for each f∗x v y there exists an x′ w x such
that f∗x′ = y.

Really, y = f∗f∗y. It’s enough to prove f∗(x t f∗y) = y.
Indeed (because lower adjoints preserve joins), f∗(x t f∗y) = f∗x t f∗f∗y =

f∗x t y = y. �

3.9. Some properties of frames

This section is based on a Todd Trimble’s proof. A shorter but less elemen-
tary proof (also by Todd Trimble) is available at
http://ncatlab.org/toddtrimble/published/topogeny

I will abbreviate join-semilattice with least element as JSWLE.

Obvious 321. JSWLEs are the same as finitely join-closed posets (with nullary
joins included).

Definition 322. It is said that a function f from a poset A to a poset B

preserves finite joins, when for every finite set S ∈ PA such that d

A
S exists we

have d

B〈f〉∗S = f d

A
S.

Obvious 323. A function between JSWLEs preserves finite joins iff it preserves
binary joins (f(x t y) = fx t fy) and nullary joins (f(⊥A) = ⊥B).

Definition 324. A fixed point of a function F is such x that F (x) = x. We
will denote Fix(F ) the set of all fixed points of a function F .

http://ncatlab.org/toddtrimble/published/topogeny
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Definition 325. Let A be a JSWLE. A co-nucleus is a function F : A → A
such that for every p, q ∈ A we have:

1◦. F (p) v p;
2◦. F (F (p)) = F (p);
3◦. F (p t q) = F (p) t F (q).

Proposition 326. Every co-nucleus is a monotone function.

Proof. It follows from F (p t q) = F (p) t F (q). �

Lemma 327. d

Fix(F )
S = dS for every S ∈P Fix(F ) for every co-nucleus F

on a complete lattice.

Proof. Obviously dS w x for every x ∈ S.
Suppose z w x for every x ∈ S for a z ∈ Fix(F ). Then z w dS.
F ( dS) w F (x) for every x ∈ S. Thus F ( dS) w dx∈S F (x) = dS. But

F ( dS) v dS. Thus F ( dS) = dS that is dS ∈ Fix(F ).
So d

Fix(F )
S = dS by the definition of join. �

Corollary 328. d

Fix(F )
S is defined for every S ∈P Fix(F ).

Lemma 329.
dFix(F )

S = F (
d
S) for every S ∈ P Fix(F ) for every co-

nucleus F on a complete lattice.

Proof. Obviously F (
d
S) v x for every x ∈ S.

Suppose z v x for every x ∈ S for a z ∈ Fix(F ). Then z v
d
S and thus

z v F (
d
S).

So
dFix(F )

S = F (
d
S) by the definition of meet. �

Corollary 330.
dFix(F )

S is defined for every S ∈P Fix(F ).

Obvious 331. Fix(F ) with induced order is a complete lattice.

Lemma 332. If F is a co-nucleus on a co-frame A, then the poset Fix(F ) of
fixed points of F , with order inherited from A, is also a co-frame.

Proof. Let b ∈ Fix(F ), S ∈P Fix(F ). Then

b tFix(F )
Fix(F )l

S =

b tFix(F ) F
(l

S
)

=

F (b) t F
(l

S
)

=

F
(
b t

l
S
)

=

F
(l
〈bt〉∗S

)
=

Fix(F )l
〈bt〉∗S =

Fix(F )l
〈btFix(F )〉∗S.

�

Definition 333. Denote Up(A) the set of upper sets on A ordered reverse to
set theoretic inclusion.

Definition 334. Denote ↑ a =
{
x∈A
xwa

}
∈ Up(A).
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Lemma 335. The set Up(A) is closed under arbitrary meets and joins.

Proof. Let S ∈P Up(A).
Let X ∈

⋃
S and Y w X for an Y ∈ A. Then there is P ∈ S such that X ∈ P

and thus Y ∈ P and so Y ∈
⋃
S. So

⋃
S ∈ Up(A).

Let now X ∈
⋂
S and Y w X for an Y ∈ A. Then ∀T ∈ S : X ∈ T and so

∀T ∈ S : Y ∈ T , thus Y ∈
⋂
S. So

⋂
S ∈ Up(A). �

Theorem 336. A poset A is a complete lattice iff there is a antitone map
s : Up(A)→ A such that

1◦. s(↑ p) = p for every p ∈ A;
2◦. D ⊆↑ s(D) for every D ∈ Up(A).

Moreover, in this case s(D) =
d
D for every D ∈ Up(A).

Proof.
⇒. Take s(D) =

d
D.

⇐. ∀x ∈ D : x w s(D) from the second formula.
Let ∀x ∈ D : y v x. Then x ∈↑ y, D ⊆↑ y; because s is an antitone

map, thus follows s(D) w s(↑ y) = y. So ∀x ∈ D : y v s(D).
That s is the meet follows from the definition of meets.
It remains to prove that A is a complete lattice.
Take any subset S of A. Let D be the smallest upper set containing S.

(It exists because Up(A) is closed under arbitrary joins.) This is

D =
{

x ∈ A

∃s ∈ S : x w s

}
.

Any lower bound of D is clearly a lower bound of S since D ⊇ S. Con-
versely any lower bound of S is a lower bound of D. Thus S and D have
the same set of lower bounds, hence have the same greatest lower bound.

�

Proposition 337. For any poset A the following are mutually reverse order
isomorphisms between upper sets F (ordered reverse to set-theoretic inclusion) on
A and order homomorphisms ϕ : Aop → 2 (here 2 is the partially ordered set of two
elements: 0 and 1 where 0 v 1), defined by the formulas

1◦. ϕ(a) =
{

1 if a ∈ F
0 if a /∈ F for every a ∈ A;

2◦. F = ϕ−1(1).

Proof. Let X ∈ ϕ−1(1) and Y w X. Then ϕ(X) = 1 and thus ϕ(Y ) = 1.
Thus ϕ−1(1) is a upper set.

It is easy to show that ϕ defined by the formula 1◦ is an order homomorphism
Aop → 2 whenever F is a upper set.

Finally we need to prove that they are mutually inverse. Really: Let ϕ be de-
fined by the formula 1◦. Then take F ′ = ϕ−1(1) and define ϕ′(a) by the formula 1◦.
We have

ϕ′(a) =
{

1 if a ∈ ϕ−1(1)
0 if a /∈ ϕ−1(1) =

{
1 if ϕ(a) = 1
0 if ϕ(a) 6= 1 = ϕ(a).

Let now F be defined by the formula 2◦. Then take ϕ′(a) =
{

1 if a ∈ F
0 if a /∈ F as

defined by the formula 1◦ and define F ′ = ϕ′−1(1). Then
F ′ = ϕ′−1(1) = F.

�
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Lemma 338. For a complete lattice A, the map
d

: Up(A) → A preserves
arbitrary meets.

Proof. Let S ∈P Up(A) . We have
d
S ∈ Up(A).dd

S =
dd

X∈S X =
d
X∈S

d
X is what we needed to prove. �

Lemma 339. A complete lattice A is a co-frame iff
d

: Up(A) → A preserves
finite joins.

Proof.
⇒. Let A be a co-frame. Let D,D′ ∈ Up(A). Obviously

d
(D t D′) w

d
D andd

(D tD′) w
d
D′, so

d
(D tD′) w

d
D t

d
D′.

Also
l
D t

l
D′ =

⋃
D t

⋃
D′ = (because A is a co-frame) =⋃{ d t d′

d ∈ D, d′ ∈ D′

}
.

Obviously d t d′ ∈ D ∩D′, thus
d
D t

d
D′ ⊆

⋃
(D ∩D′) =

d
(D ∩D′)

that is
d
D t

d
D′ w

d
(D ∩ D′). So

d
(D t D′) =

d
D t

d
D′ that isd

: Up(A)→ A preserves binary joins.
It preserves nullary joins since

dUp(A)⊥Up(A) =
dUp(A)

A = ⊥A.
⇐. Suppose

d
: Up(A) → A preserves finite joins. Let b ∈ A, S ∈PA. Let D be

the smallest upper set containing S (so D =
⋃
〈↑〉∗S). Then

b t
l
S =

l
↑ b t

⋃l
〈↑〉∗S =

l
↑ b t

l⋃
〈↑〉∗S = (since

l
preserves finite joins)

l(
↑ b t

⋃
〈↑〉∗S

)
=⋃(

↑ b ∩
⋃
〈↑〉∗S

)
=

l ⋃
a∈S

(↑ b∩ ↑ a) =

l ⋃
a∈S
↑ (b t a) = (since

l
preserves all meets)⋃

a∈S

l
↑ (b t a) =⋃

a∈S
(b t a) =

l

a∈S
(b t a).

�

Corollary 340. If A is a co-frame, then the composition F =↑ ◦
d

: Up(A)→
Up(A) is a co-nucleus. The embedding ↑: A→ Up(A) is an isomorphism of A onto
the co-frame Fix(F ).

Proof. D w F (D) follows from theorem 336.
We have F (F (D)) = F (D) for all D ∈ Up(A) since F (F (D)) =↑

d
↑
d
D =

(because
d
↑ s = s for any s) =↑

d
D = F (D).

And since both
d

: Up(A) → A and ↑ preserve finite joins, F preserves finite
joins. Thus F is a co-nucleus.
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Finally, we have a w a′ if and only if ↑ a ⊆↑ a′, so that ↑: A → Up(A) maps
A isomorphically onto its image 〈↑〉∗A. This image is Fix(F ) because if D is any
fixed point (i.e. if D =↑

d
D), then D clearly belongs to 〈↑〉∗A; and conversely ↑ a

is always a fixed point of F =↑ ◦
d

since F (↑ a) =↑
d
↑ a =↑ a. �

Definition 341. If A, B are two JSWLEs, then Join(A,B) is the (ordered
pointwise) set of finite joins preserving maps A→ B.

Obvious 342. Join(A,B) is a JSWLE, where f t g is given by the formula
(f t g)(p) = f(p) t g(p), ⊥Join(A,B) is given by the formula ⊥Join(A,B)(p) = ⊥B.

Definition 343. Let h : Q → R be a finite joins preserving map. Then
by definition Join(P, h) : Join(P,Q) → Join(P,R) takes f ∈ Join(P,Q) into the
composition h ◦ f ∈ Join(P,R).

Lemma 344. Above defined Join(P, h) is a finite joins preserving map.

Proof.

(h ◦ (f t f ′))x = h(f t f ′)x = h(fx t f ′x) =
hfx t hf ′x = (h ◦ f)x t (h ◦ f ′)x = ((h ◦ f) t (h ◦ f ′))x.

Thus h ◦ (f t f ′) = (h ◦ f) t (h ◦ f ′).
(h ◦ ⊥Join(P,Q))x = h⊥Join(P,Q)x = h⊥Q = ⊥R. �

Proposition 345. If h, h′ : Q→ R are finite join preserving maps and h w h′,
then Join(P, h) w Join(P, h′).

Proof. Join(P, h)(f)(x) = (h ◦ f)(x) = hfx w h′fx = (h′ ◦ f)(x) =
Join(P, h′)(f)(x). �

Lemma 346. If g : Q → R and h : R → S are finite joins preserving, then the
composition Join(P, h) ◦ Join(P, g) is equal to Join(P, h ◦ g). Also Join(P, idQ) for
identity map idQ on Q is the identity map idJoin(P,Q) on Join(P,Q).

Proof. Join(P, h) Join(P, g)f = Join(P, h)(g ◦ f) = h ◦ g ◦ f = Join(P, h ◦ g)f .
Join(P, idQ)f = idQ ◦f = f . �

Corollary 347. If Q is a JSWLE and F : Q → Q is a co-nucleus, then for
any JSWLE P we have that

Join(P, F ) : Join(P,Q)→ Join(P,Q)

is also a co-nucleus.

Proof. From idQ w F (co-nucleus axiom 1◦) we have Join(P, idQ) w
Join(P, F ) and since by the last lemma the left side is the identity on Join(P,Q),
we see that Join(P, F ) also satisfies co-nucleus axiom 1◦.

Join(P, F ) ◦ Join(P, F ) = Join(P, F ◦ F ) by the same lemma and thus
Join(P, F )◦Join(P, F ) = Join(P, F ) by the second co-nucleus axiom for F , showing
that Join(P, F ) satisfies the second co-nucleus axiom.

By an other lemma, we have that Join(P, F ) preserves binary joins, given that
F preserves binary joins, which is the third co-nucleus axiom. �

Lemma 348. Fix(Join(P, F )) = Join(P,Fix(F )) for every JSWLEs P , Q and
a join preserving function F : Q→ Q.
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Proof. a ∈ Fix(Join(P, F )) ⇔ a ∈ FP ∧ F ◦ a = a ⇔ a ∈ FP ∧ ∀x ∈ P :
F (a(x)) = a(x).

a ∈ Join(P,Fix(F ))⇔ a ∈ Fix(F )P ⇔ a ∈ FP ∧ ∀x ∈ P : F (a(x)) = a(x).
Thus Fix(Join(P, F )) = Join(P,Fix(F )). That the order of the left and right

sides of the equality agrees is obvious. �

Definition 349. Pos(A,B) is the pointwise ordered poset of monotone maps
from a poset A to a poset B.

Lemma 350. If Q, R are JSWLEs and P is a poset, then Pos(P,R) is a JSWLE
and Pos(P, Join(Q,R)) is isomorphic to Join(Q,Pos(P,R)). If R is a co-frame,
then also Pos(P,R) is a co-frame.

Proof. Let f, g ∈ Pos(P,R). Then λx ∈ P : (fxt gx) is obviously monotone
and then it is evident that f tPos(P,R) g = λx ∈ P : (fxt gx). λx ∈ P : ⊥R is also
obviously monotone and it is evident that ⊥Pos(P,R) = λx ∈ P : ⊥R.

Obviously both Pos(P, Join(Q,R)) and Join(Q,Pos(P,R)) are sets of order
preserving maps.

Let f be a monotone map.
f ∈ Pos(P, Join(Q,R)) iff f ∈ Join(Q,R)P iff f ∈

{
g∈RQ

g preserves finite joins

}P
iff

f ∈ (RQ)P and every g = f(x) (for x ∈ P ) preserving finite joins. This is bijectively
equivalent (f 7→ f ′) to f ′ ∈ (RP )Q preserving finite joins.

f ′ ∈ Join(Q,Pos(P,R)) iff f ′ preserves finite joins and f ′ ∈ Pos(P,R)Q iff
f ′ preserves finite joins and f ′ ∈

{
g∈(RP )Q

g(x) is monotone

}
iff f ′ preserves finite joins and

f ′ ∈ (RP )Q.
So we have proved that f 7→ f ′ is a bijection between Pos(P, Join(Q,R)) and

Join(Q,Pos(P,R)). That it preserves order is obvious.
It remains to prove that if R is a co-frame, then also Pos(P,R) is a co-frame.
First, we need to prove that Pos(P,R) is a complete lattice. But it is easy

to prove that for every set S ∈ PPos(P,R) we have λx ∈ P : df∈S f(x) and
λx ∈ P :

d
f∈S f(x) are monotone and thus are the joins and meets on Pos(P,R).

Next we need to prove that

b tPos(P,R)
Pos(P,R)l

S =
Pos(P,R)l 〈

btPos(P,R)
〉∗
S.

Really (for every x ∈ P ),

b tPos(P,R)
Pos(P,R)l

S

x = b(x) t

Pos(P,R)l
S

x =

b(x) t
l

f∈S

f(x) =
l

f∈S

(b(x) t f(x)) =
l

f∈S

(
b tPos(P,R) f

)
x =

Pos(P,R)l

f∈S

(
b tPos(P,R) f

)x.
Thus b tPos(P,R) dPos(P,R)

S =
dPos(P,R)
f∈S

(
b tPos(P,R) f

)
=

dPos(P,R)〈
btPos(P,R)〉∗S. �

Definition 351. P ∼= Q means that posets P and Q are isomorphic.



CHAPTER 4

Typed sets and category Rel

4.1. Relational structures

Definition 352. A relational structure is a pair consisting of a set and a tuple
of relations on this set.

A poset (A,v) can be considered as a relational structure: (A, JvK).
A set can X be considered as a relational structure with zero relations: (X, JK).
This book is not about relational structures. So I will not introduce more

examples.
Think about relational structures as a common place for sets or posets, as far

as they are considered in this book.
We will denote x ∈ (A, R) iff x ∈ A for a relational structure (A, R).

4.2. Typed elements and typed sets

We sometimes want to differentiate between the same element of two different
sets. For example, we may want to consider different the natural number 3 and the
rational number 3. In order to describe this in a formal way we consider elements
of sets together with sets themselves. For example, we can consider the pairs (N, 3)
and (Q, 3).

Definition 353. A typed element is a pair (A, a) where A is a relational struc-
ture and a ∈ A.

I denote type(A, a) = A and GR(A, a) = a.

Definition 354. I will denote typed element (A, a) as @Aa or just @a when
A is clear from context.

Definition 355. A typed set is a typed element equal to (PU,A) where U is
a set and A is its subset.

Remark 356. Typed sets is an awkward formalization of type theory sets in
ZFC (U is meant to express the type of the set). This book could be better written
using type theory instead of ZFC, but I want my book to be understandable for
everyone knowing ZFC. (PU,A) should be understood as a set A of type U . For
an example, consider (PR, [0; 10]); it is the closed interval [0; 10] whose elements
are considered as real numbers.

Definition 357. TA =
{

(A,a)
a∈A

}
= {A} × A for every relational structure A.

Remark 358. TA is the set of typed elements of A.

Definition 359. If A is a poset, we introduce order on its typed elements
isomorphic to the order of the original poset: (A, a) v (A, b)⇔ a v b.

Definition 360. I denote GR(A, a) = a for a typed element (A, a).

Definition 361. I will denote typed subsets of a typed poset (PU,A) as
P(PU,A) =

{
(PU,X)
X∈PA

}
= {PU} ×PA.

61
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Obvious 362. P(PU,A) is also a set of typed sets.

Definition 363. I will denote T U = TPU .

Remark 364. This means that T U is the set of typed subsets of a set U .

Obvious 365. T U =
{

(PU,X)
X∈PU

}
= {PU} ×PU = P(PU,U).

Obvious 366. T U is a complete atomistic boolean lattice. Particularly:
1◦. ⊥T U = (PU, ∅);
2◦. >T U = (PU,U);
3◦. (PU,A) t (PU,B) = (PU,A ∪B);
4◦. (PU,A) u (PU,B) = (PU,A ∩B);
5◦. dA∈S(PU,A) = (PU,

⋃
A∈S A);

6◦.
d
A∈S(PU,A) =

(
PU,

{⋂
A∈S A if A 6= ∅

U if A = ∅

)
;

7◦. (PU,A) = (PU,U \A);
8◦. atomic elements are (PU, {x}) where x ∈ U .

Typed sets are “better” than regular sets as (for example) for a set U and a typed
set X the following are defined by regular order theory:

• atomsX;
• X;
•
dT U ∅.

For regular (“non-typed”) sets these are not defined (except of atomsX which how-
ever needs a special definition instead of using the standard order-theory definition
of atoms).

Typed sets are convenient to be used together with filters on sets (see below),
because both typed sets and filters have a set PU as their type.

Another advantage of typed sets is that their binary product (as defined below)
is a Rel-morphism. This is especially convenient because below defined products
of filters are also morphisms of related categories.

Well, typed sets are also quite awkward, but the proper way of doing modern
mathematics is type theory not ZFC, what is however outside of the topic of this
book.

4.3. Category Rel

I remind that Rel is the category of (small) binary relations between sets, and
Set is its subcategory where only monovalued entirely defined morphisms (func-
tions) are considered.

Definition 367. Order on Rel(A,B) is defined by the formula f v g ⇔
GR f ⊆ GR g.

Obvious 368. This order is isomorphic to the natural order of subsets of the
set A×B.

Definition 369. X [f ]∗ Y ⇔ GRX [GR f ]∗ GR Y and 〈f〉∗X =
(Dst f, 〈GR f〉∗GRX) for a Rel-morphism f and typed sets X ∈ T Src f , Y ∈
T Dst f .

Definition 370. For category Rel there is defined reverse morphism:
(A,B, F )−1 = (B,A, F−1).

Obvious 371. (f−1)−1 = f for every Rel-morphism f .
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Obvious 372.
[
f−1]∗=[f ]∗−1 for every Rel-morphism f .

Obvious 373. (g ◦ f)−1 = f−1 ◦ g−1 for every composable Rel-morphisms f
and g.

Proposition 374. 〈g ◦ f〉∗ = 〈g〉∗ ◦ 〈f〉∗ for every composable Rel-morphisms
f and g.

Proof. Exercise. �

Proposition 375. The above definitions of monovalued morphisms of Rel
and of injective morphisms of Set coincide with how mathematicians usually define
monovalued functions (that is morphisms of Set) and injective functions.

Proof. Let f be a Rel-morphism A→ B.
The following are equivalent:
• f is a monovalued relation;
• ∀x ∈ A, y0, y1 ∈ B : (x f y0 ∧ x f y1 ⇒ y0 = y1);
• ∀x ∈ A, y0, y1 ∈ B : (y0 6= y1 ⇒ ¬(x f y0) ∨ ¬(x f y1));
• ∀y0, y1 ∈ B∀x ∈ A : (y0 6= y1 ⇒ ¬(x f y0) ∨ ¬(x f y1));
• ∀y0, y1 ∈ B : (y0 6= y1 ⇒ ∀x ∈ A : (¬(x f y0) ∨ ¬(x f y1)));
• ∀y0, y1 ∈ B : (∃x ∈ A : (x f y0 ∧ x f y1)⇒ y0 = y1);
• ∀y0, y1 ∈ B : y0 (f ◦ f−1) y1 ⇒ y0 = y1;
• f ◦ f−1 v 1B .

Let now f be a Set-morphism A→ B.
The following are equivalent:
• f is an injective function;
• ∀y ∈ B, a, b ∈ A : (a f y ∧ b f y ⇒ a = b);
• ∀y ∈ B, a, b ∈ A : (a 6= b⇒ ¬(a f y) ∨ ¬(b f y));
• ∀y ∈ B : (a 6= b⇒ ∀a, b ∈ A : (¬(a f y) ∨ ¬(b f y)));
• ∀y ∈ B : (∃a, b ∈ A : (a f y ∧ b f y)⇒ a = b);
• f−1 ◦ f v 1A.

�

Proposition 376. For a binary relation f we have:
1◦. 〈f〉∗

⋃
S =

⋃〈
〈f〉∗

〉∗
S for a set of sets S;

2◦.
⋃
S [f ]∗ Y ⇔ ∃X ∈ S : X [f ]∗ Y for a set of sets S;

3◦. X [f ]∗
⋃
T ⇔ ∃Y ∈ T : X [f ]∗ Y for a set of sets T ;

4◦.
⋃
S [f ]∗

⋃
T ⇔ ∃X ∈ S, Y ∈ T : X [f ]∗ Y for sets of sets S and T ;

5◦. X [f ]∗ Y ⇔ ∃α ∈ X,β ∈ Y : {α} [f ]∗ {β} for sets X and Y ;
6◦. 〈f〉∗X =

⋃〈
〈f〉∗

〉∗ atomsX for a set X (where atomsX =
{
{x}
x∈X

}
).

Proof.
1◦.

y ∈ 〈f〉∗
⋃
S ⇔ ∃x ∈

⋃
S : x f y ⇔ ∃P ∈ S, x ∈ P : x f y ⇔

∃P ∈ S : y ∈ 〈f〉∗P ⇔ ∃Q ∈
〈
〈f〉∗

〉∗
S : y ∈ Q⇔ y ∈

⋃〈
〈f〉∗

〉∗
S.

2◦.⋃
S [f ]∗ Y ⇔ ∃x ∈

⋃
S, y ∈ Y : x f y ⇔

∃X ∈ S, x ∈ X, y ∈ Y : x f y ⇔ ∃X ∈ S : X [f ]∗ Y.
3◦. By symmetry.
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4◦. From two previous formulas.
5◦. X [f ]∗ Y ⇔ ∃α ∈ X,β ∈ Y : α f β ⇔ ∃α ∈ X,β ∈ Y : {α} [f ]∗ {β}.
6◦. Obvious.

�

Corollary 377. For a Rel-morphism f we have:
1◦. 〈f〉∗ dS = d

〈
〈f〉∗

〉∗
S for S ∈PT Src f ;

2◦. dS [f ]∗ Y ⇔ ∃X ∈ S : X [f ]∗ Y for S ∈PT Src f ;
3◦. X [f ]∗ dT ⇔ ∃Y ∈ T : X [f ]∗ Y for T ∈PT Dst f ;
4◦. dS [f ]∗ dT ⇔ ∃X ∈ S, Y ∈ T : X [f ]∗ Y for S ∈ PT Src f , T ∈

PT Dst f ;
5◦. X [f ]∗ Y ⇔ ∃x ∈ atomsX, y ∈ atomsY : x [f ]∗ y for X ∈ T Src f ,

Y ∈ T Dst f ;
6◦. 〈f〉∗X = d

〈
〈f〉∗

〉∗ atomsX for X ∈ T Src f .

Corollary 378. A Rel-morphism f can be restored knowing either 〈f〉∗x for
atoms x ∈ T Src f or x [f ]∗ y for atoms x ∈ T Src f , y ∈ T Dst f .

Proposition 379. Let A, B be sets, R be a set of binary relations.
1◦. 〈

⋃
R〉∗X =

⋃
f∈R〈f〉

∗
X for every set X;

2◦. 〈
⋂
R〉∗{α} =

⋂
f∈R〈f〉

∗{α} for every α, if R is nonempty;
3◦. X [

⋃
R]∗ Y ⇔ ∃f ∈ R : X [f ]∗ Y for every sets X, Y ;

4◦. α (
⋂
R) β ⇔ ∀f ∈ R : α f β for every α and β, if R is nonempty.

Proof.
1◦.

y ∈
〈⋃

R
〉∗
X ⇔ ∃x ∈ X : x

(⋃
R
)
y ⇔ ∃x ∈ X, f ∈ R : x f y ⇔

∃f ∈ R : y ∈ 〈f〉∗X ⇔ y ∈
⋃
f∈R

〈f〉∗X.

2◦.

y ∈
〈⋂

R
〉∗
{α} ⇔ ∀f ∈ R : α f y ⇔ ∀f ∈ R : y ∈ 〈f〉∗{α} ⇔ y ∈

⋂
f∈R

〈f〉∗{α}.

3◦.

X
[⋃

R
]∗
Y ⇔ ∃x ∈ X, y ∈ Y : x

(⋃
R
)
y ⇔

∃x ∈ X, y ∈ Y, f ∈ R : x f y ⇔ ∃f ∈ R : X [f ]∗ Y.

4◦. Obvious.
�

Corollary 380. Let A, B be sets, R ∈PRel(A,B).
1◦. 〈 dR〉

∗
X = df∈R〈f〉

∗
X for X ∈ T A;

2◦. 〈
d
R〉∗x =

d
f∈R〈f〉

∗
x for atomic x ∈ T A;

3◦. X [ dR]∗ Y ⇔ ∃f ∈ R : X [f ]∗ Y for X ∈ T A, Y ∈ T B;
4◦. x [

d
R]∗ y ⇔ ∀f ∈ R : x [f ]∗ y for every atomic x ∈ T A, y ∈ T B.

Proposition 381. X [g ◦ f ]∗ Z ⇔ ∃β : (X [f ]∗ {β} ∧ {β} [g]∗ Z) for every
binary relation f and sets X and Y .
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Proof.

X [g ◦ f ]∗ Z ⇔ ∃x ∈ X, z ∈ Z : x (g ◦ f) z ⇔
∃x ∈ X, z ∈ Z, β : (x f β ∧ β g z)⇔

∃β : (∃x ∈ X : x f β ∧ ∃y ∈ Y : β g z)⇔ ∃β : (X [f ]∗ {β} ∧ {β} [g]∗ Z).

�

Corollary 382. X [g ◦ f ]∗ Z ⇔ ∃y ∈ atomsT B : (X [f ]∗ y ∧ y [g]∗ Z) for
f ∈ Rel(A,B), g ∈ Rel(B,C) (for sets A, B, C).

Proposition 383. f ◦
⋃
G =

⋃
g∈G(f ◦g) and

⋃
G◦f =

⋃
g∈G(g ◦f) for every

binary relation f and set G of binary relations.

Proof. We will prove only
⋃
G◦f =

⋃
g∈G(g ◦f) as the other formula follows

from duality. Really

(x, z) ∈
⋃
G ◦ f ⇔ ∃y : ((x, y) ∈ f ∧ (y, z) ∈

⋃
G)⇔

∃y, g ∈ G : ((x, y) ∈ f ∧(y, z) ∈ g)⇔ ∃g ∈ G : (x, z) ∈ g◦f ⇔ (x, z) ∈
⋃
g∈G

(g◦f).

�

Corollary 384. Every Rel-morphism is metacomplete and co-metacomplete.

Proposition 385. The following are equivalent for a Rel-morphism f :

1◦. f is monovalued.
2◦. f is metamonovalued.
3◦. f is weakly metamonovalued.
4◦. 〈f〉∗a is either atomic or least whenever a ∈ atomsT Src f .
5◦.

〈
f−1〉∗(I u J) =

〈
f−1〉∗I u 〈f−1〉∗J for every I, J ∈ T Src f .

6◦.
〈
f−1〉∗dS =

d
Y ∈S

〈
f−1〉∗Y for every S ∈PT Src f .

Proof.

2◦⇒3◦. Obvious.
1◦⇒2◦. Take x ∈ atomsT Src f ; then fx ∈ atomsT Dst f ∪{⊥T Dst f} and thus

〈(l
G
)
◦ f
〉∗
x =

〈l
G
〉∗
〈f〉∗x =

l

g∈G
〈g〉∗〈f〉∗x =

l

g∈G
〈g ◦ f〉∗x =

〈
l

g∈G
(g ◦ f)

〉∗
x;

so (
d
G) ◦ f =

d
g∈G(g ◦ f).

3◦⇒1◦. Take g = {(a, y)} and h = {(b, y)} for arbitrary a 6= b and arbitrary y. We
have g∩h = ∅; thus (g ◦ f)∩ (h ◦ f) = (g∩h) ◦ f = ⊥ and thus impossible
x f a∧x f b as otherwise (x, y) ∈ (g ◦ f)∩ (h ◦ f). Thus f is monovalued.
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4◦⇒6◦. Let a ∈ atomsT Src f , 〈f〉∗a = b. Then because b ∈
atomsT Dst f ∪{⊥T Dst f}

l
S u b 6= ⊥ ⇔ ∀Y ∈ S : Y u b 6= ⊥;

a [f ]∗
l
S ⇔ ∀Y ∈ S : a [f ]∗ Y ;

l
S
[
f−1]∗ a⇔ ∀Y ∈ S : Y

[
f−1]∗ a;

a 6�
〈
f−1〉∗lS ⇔ ∀Y ∈ S : a 6�

〈
f−1〉∗Y ;

a 6�
〈
f−1〉∗lS ⇔ a 6�

l

Y ∈S

〈
f−1〉∗Y ;

〈
f−1〉∗lS =

l

X∈S

〈
f−1〉∗X.

6◦⇒5◦. Obvious.
5◦⇒1◦.

〈
f−1〉∗au 〈f−1〉∗b =

〈
f−1〉∗(au b) =

〈
f−1〉∗⊥ = ⊥ for every two distinct

atoms a = {α}, b = {β} ∈ T Dst f . From this

α (f ◦ f−1) β ⇔ ∃y ∈ Dst f : (α f−1 y ∧ y f β)⇔
∃y ∈ Dst f : (y ∈

〈
f−1〉∗a ∧ y ∈ 〈f−1〉∗b)

is impossible. Thus f ◦ f−1 v 1Rel
Dst f .

¬4◦⇒ ¬1◦. Suppose 〈f〉∗a /∈ atomsT Dst f ∪{⊥T Dst f} for some a ∈ atomsT Src f .
Then there exist distinct points p, q such that p, q ∈ 〈f〉∗a. Thus
p (f ◦ f−1) q and so f ◦ f−1 6v 1Rel

Dst f .
�

4.4. Product of typed sets

Definition 386. Product of typed sets is defined by the formula
(PU,A)× (PW,B) = (U,W,A×B).

Proposition 387. Product of typed sets is a Rel-morphism.

Proof. We need to prove A×B ⊆ U ×W , but this is obvious. �

Obvious 388. Atoms of Rel(A,B) are exactly products a × b where a and b
are atoms correspondingly of T A and T B. Rel(A,B) is an atomistic poset.

Proposition 389. f 6� A × B ⇔ A [f ]∗ B for every Rel-morphism f and
A ∈ T Src f , B ∈ T Dst f .

Proof.

A [f ]∗ B ⇔ ∃x ∈ atomsA, y ∈ atomsB : x [f ]∗ y ⇔
∃x ∈ atomsT Src f , y ∈ atomsT Dst f : (x× y v f ∧ x× y v A×B)⇔ f 6� A×B.

�

Definition 390. Image and domain of a Rel-morphism f are typed sets de-
fined by the formulas

dom(U,W, f) = (PU,dom f) and im(U,W, f) = (PW, im f).

Obvious 391. Image and domain of a Rel-morphism are really typed sets.

Definition 392. Restriction of a Rel-morphism to a typed set is defined by
the formula (U,W, f)|(PU,X) = (U,W, f |X).



4.4. PRODUCT OF TYPED SETS 67

Obvious 393. Restriction of a Rel-morphism is Rel-morphism.

Obvious 394. f |A = f u (A × >T Dst f ) for every Rel-morphism f and A ∈
T Src f .

Obvious 395. 〈f〉∗X = 〈f〉∗(Xudom f) = im(f |X) for every Rel-morphism f
and X ∈ T Src f .

Obvious 396. f v A×B ⇔ dom f v A∧ im f v B for every Rel-morphism f
and A ∈ T Src f , B ∈ T Dst f .

Theorem 397. Let A, B be sets. If S ∈P(T A×T B) then
l

(A,B)∈S

(A×B) =
l

domS ×
l

imS.

Proof. For every atomic x ∈ T A, y ∈ T B we have

x× y v
l

(A,B)∈S

(A×B)⇔ ∀(A,B) ∈ S : x× y v A×B ⇔

∀(A,B) ∈ S : (x v A ∧ y v B)⇔ ∀A ∈ domS : x v A ∧ ∀B ∈ imS : y v B ⇔

x v
l

domS ∧ y v
l

imS ⇔ x× y v
l

domS ×
l

imS.

�

Obvious 398. If U , W are sets and A ∈ T (U) then A× is a complete homo-
morphism from the lattice T (W ) to the lattice Rel(U,W ), if also A 6= ⊥ then it
is an order embedding.



CHAPTER 5

Filters and filtrators

This chapter is based on my article [30].
This chapter is grouped in the following way:
• First it goes a short introduction in pedagogical order (first less general
stuff and examples, last the most general stuff):
– filters on a set;
– filters on a meet-semilattice;
– filters on a poset.

• Then it goes the formal part.

5.1. Implication tuples

Definition 399. An implications tuple is a tuple (P1, . . . , Pn) such that P1 ⇒
. . .⇒ Pn.

Obvious 400. (P1, . . . , Pn) is an implications tuple iff Pi ⇒ Pj for every i < j
(where i, j ∈ {1, . . . , n}).

The following is an example of a theorem using an implication tuple:

Example 401. The following is an implications tuple:
1◦. A.
2◦. B.
3◦. C.

This example means just that A⇒ B ⇒ C.
I prefer here a verbal description instead of symbolic implications A⇒ B ⇒ C,

because A, B, C may be long English phrases and they may not fit into the formula
layout.

The main (intuitive) idea of the theorem is expressed by the implication P1 ⇒
Pn, the rest implications (P2 ⇒ Pn, P3 ⇒ Pn, ...) are purely technical, as they
express generalizations of the main idea.

For uniformity theorems in the section about filters and filtrators start with
the same P1: “(A,Z) is a powerset filtrator.” (defined below) That means that the
main idea of the theorem is about powerset filtrators, the rest implications (like
P2 ⇒ Pn, P3 ⇒ Pn, ...) are just technical generalizations.

5.2. Introduction to filters and filtrators

5.2.1. Filters on a set. We sometimes want to define something resembling
an infinitely small (or infinitely big) set, for example the infinitely small interval
near 0 on the real line. Of course there is no such set, just like as there is no natural
number which is the difference 2 − 3. To overcome this shortcoming we introduce
whole numbers, and 2−3 becomes well defined. In the same way to consider things
which are like infinitely small (or infinitely big) sets we introduce filters.

An example of a filter is the infinitely small interval near 0 on the real line. To
come to infinitely small, we consider all intervals ] − ε; ε[ for all ε > 0. This filter

68
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consists of all intervals ] − ε; ε[ for all ε > 0 and also all subsets of R containing
such intervals as subsets. Informally speaking, this is the greatest filter contained
in every interval ]− ε; ε[ for all ε > 0.

Definition 402. A filter on a set f is a F ∈PPf such that:
1◦. ∀A,B ∈ F : A ∩B ∈ F ;
2◦. ∀A,B ∈Pf : (A ∈ F ∧B ⊇ A⇒ B ∈ F).

Exercise 403. Verify that the above introduced infinitely small interval near
0 on the real line is a filter on R.

Exercise 404. Describe “the neighborhood of positive infinity” filter on R.

Definition 405. A filter not containing empty set is called a proper filter.

Obvious 406. The non-proper filter is Pf.

Remark 407. Some other authors require that all filters are proper. This is a
stupid idea and we allow non-proper filters, in the same way as we allow to use the
number 0.

5.2.2. Intro to filters on a meet-semilattice. A trivial generalization of
the above:

Definition 408. A filter on a meet-semilattice Z is a F ∈PZ such that:
1◦. ∀A,B ∈ F : A uB ∈ F ;
2◦. ∀A,B ∈ Z : (A ∈ F ∧B w A⇒ B ∈ F).

5.2.3. Intro to filters on a poset.

Definition 409. A filter on a poset Z is a F ∈PZ such that:
1◦. ∀A,B ∈ F∃C ∈ F : C v A,B;
2◦. ∀A,B ∈ Z : (A ∈ F ∧B w A⇒ B ∈ F).

It is easy to show (and there is a proof of it somewhere below) that this coincides
with the above definition in the case if Z is a meet-semilattice.

5.3. Filters on a poset

5.3.1. Filters on posets. Let Z be a poset.

Definition 410. Filter base is a nonempty subset F of Z such that
∀X,Y ∈ F∃Z ∈ F : (Z v X ∧ Z v Y ).

Definition 411. Ideal base is a nonempty subset F of Z such that
∀X,Y ∈ F∃Z ∈ F : (Z w X ∧ Z w Y ).

Obvious 412. Ideal base is the dual of filter base.

Obvious 413.
1◦. A poset with a lowest element is a filter base.
2◦. A poset with a greatest element is an ideal base.

Obvious 414.
1◦. A meet-semilattice is a filter base.
2◦. A join-semilattice is an ideal base.

Obvious 415. A nonempty chain is a filter base and an ideal base.

Definition 416. Filter is a subset of Z which is both a filter base and an upper
set.



5.3. FILTERS ON A POSET 70

I will denote the set of filters (for a given or implied poset Z) as F and call F
the set of filters over the poset Z.

Proposition 417. If > is the maximal element of Z then > ∈ F for every
filter F .

Proof. If > /∈ F then ∀K ∈ Z : K /∈ F and so F is empty what is impossible.
�

Proposition 418. Let S be a filter base on a poset. If A0, . . . , An ∈ S (n ∈ N),
then

∃C ∈ S : (C v A0 ∧ . . . ∧ C v An).

Proof. It can be easily proved by induction. �

Definition 419. A function f from a poset A to a poset B preserves filtered
meets iff whenever

d
S is defined for a filter base S on A we have f

d
S =

d
〈f〉∗S.

5.3.2. Filters on meet-semilattices.

Theorem 420. If Z is a meet-semilattice and F is a nonempty subset of Z then
the following conditions are equivalent:

1◦. F is a filter.
2◦. ∀X,Y ∈ F : X u Y ∈ F and F is an upper set.
3◦. ∀X,Y ∈ Z : (X,Y ∈ F ⇔ X u Y ∈ F ).

Proof.
1◦⇒2◦. Let F be a filter. Then F is an upper set. If X,Y ∈ F then Z v X∧Z v Y

for some Z ∈ F . Because F is an upper set and Z v XuY thenXuY ∈ F .
2◦⇒1◦. Let ∀X,Y ∈ F : X uY ∈ F and F be an upper set. We need to prove that

F is a filter base. But it is obvious taking Z = X uY (we have also taken
into account that F 6= ∅).

2◦⇒3◦. Let ∀X,Y ∈ F : X u Y ∈ F and F be an upper set. Then

∀X,Y ∈ Z : (X,Y ∈ F ⇒ X u Y ∈ F ).

Let X u Y ∈ F ; then X,Y ∈ F because F is an upper set.
3◦⇒2◦. Let

∀X,Y ∈ Z : (X,Y ∈ F ⇔ X u Y ∈ F ).
Then ∀X,Y ∈ F : X u Y ∈ F . Let X ∈ F and X v Y ∈ Z. Then

X u Y = X ∈ F . Consequently X,Y ∈ F . So F is an upper set.
�

Proposition 421. Let S be a filter base on a meet-semilattice. If A0, . . . , An ∈
S (n ∈ N), then

∃C ∈ S : C v A0 u · · · uAn.

Proof. It can be easily proved by induction. �

Proposition 422. If Z is a meet-semilattice and S is a filter base on it, A ∈ Z,
then 〈Au〉∗S is also a filter base.

Proof. 〈Au〉∗S 6= ∅ because S 6= ∅.
LetX,Y ∈ 〈Au〉∗S. ThenX = AuX ′ and Y = AuY ′ whereX ′, Y ′ ∈ S. There

exists Z ′ ∈ S such that Z ′ v X ′uY ′ . SoXuY = AuX ′uY ′ w AuZ ′ ∈ 〈Au〉∗S. �
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5.3.3. Order of filters. Principal filters. I will make the set of filters F
into a poset by the order defined by the formula: a v b⇔ a ⊇ b.

Definition 423. The principal filter corresponding to an element a ∈ Z is

↑ a =
{
x ∈ Z

x w a

}
.

Elements of P = 〈↑〉∗Z are called principal filters.

Obvious 424. Principal filters are filters.

Obvious 425. ↑ is an order embedding from Z to F.

Corollary 426. ↑ is an order isomorphism between Z and P.

We will equate principal filters with corresponding elements of the base poset
(in the same way as we equate for example nonnegative whole numbers and natural
numbers).

Proposition 427. ↑ K w A ⇔ K ∈ A.

Proof. ↑ K w A ⇔↑ K ⊆ A ⇔ K ∈ A. �

5.4. Filters on a Set

Consider filters on the poset Z = PU (where U is some fixed set) with the order
A v B ⇔ A ⊆ B (for A,B ∈PA).

In fact, it is a complete atomistic boolean lattice with
d
S =

⋂
S, dS =

⋃
S,

A = U \A for every S ∈PPU and A ∈PU, atoms being one-element sets.

Definition 428. I will call a filter on the lattice of all subsets of a given set U
as a filter on set.

Definition 429. I will denote the set on which a filter F is defined as Base(F).

Obvious 430. Base(F) =
⋃
F .

Proposition 431. The following are equivalent for a non-empty set F ∈
PPU:

1◦. F is a filter.
2◦. ∀X,Y ∈ F : X ∩ Y ∈ F and F is an upper set.
3◦. ∀X,Y ∈PU : (X,Y ∈ F ⇔ X ∩ Y ∈ F ).

Proof. By theorem 420. �

Obvious 432. The minimal filter on PU is PU.

Obvious 433. The maximal filter on PU is {U}.

I will denote ↑ A =↑U A =↑PU A. (The distinction between conflicting nota-
tions ↑U A and ↑PU A will be clear from the context.)

Proposition 434. Every filter on a finite set is principal.

Proof. Let F be a filter on a finite set. Then obviously F =
dZ upF and

thus F is principal. �
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5.5. Filtrators

(F,P) is a poset and its subset (with induced order on the subset). I call pairs
of a poset and its subset like this filtrators.

Definition 435. I will call a filtrator a pair (A,Z) of a poset A and its subset
Z ⊆ A. I call A the base of the filtrator and Z the core of the filtrator. I will also
say that (A,Z) is a filtrator over poset Z.

I will denote base(A,Z) = A, core(A,Z) = Z for a filtrator (A,Z).

While filters are customary and well known mathematical objects, the concept
of filtrators is probably first researched by me.

When speaking about filters, we will imply that we consider the filtrator (F,P)
or what is the same (as we equate principal filters with base elements) the filtrator
(F,Z).

Definition 436. I will call a lattice filtrator a pair (A,Z) of a lattice A and its
subset Z ⊆ A.

Definition 437. I will call a complete lattice filtrator a pair (A,Z) of a complete
lattice A and its subset Z ⊆ A.

Definition 438. I will call a central filtrator a filtrator (A, Z(A)) where Z(A)
is the center of a bounded lattice A.

Definition 439. I will call element of a filtrator an element of its base.

Definition 440. upZ a = up a =
{
c∈Z
cwa

}
for an element a of a filtrator.

Definition 441. downZ a = down a =
{
c∈Z
cva

}
for an element a of a filtrator.

Obvious 442. “up” and “down” are dual.

Our main purpose here is knowing properties of the core of a filtrator to in-
fer properties of the base of the filtrator, specifically properties of up a for every
element a.

Definition 443. I call a filtrator with join-closed core such a filtrator (A,Z)
that d

Z
S = d

A
S whenever d

Z
S exists for S ∈PZ.

Definition 444. I call a filtrator with meet-closed core such a filtrator (A,Z)
that

dZ
S =

dA
S whenever

dZ
S exists for S ∈PZ.

Definition 445. I call a filtrator with binarily join-closed core such a filtrator
(A,Z) that a tZ b = a tA b whenever a tZ b exists for a, b ∈ Z.

Definition 446. I call a filtrator with binarily meet-closed core such a filtrator
(A,Z) that a uZ b = a uA b whenever a uZ b exists for a, b ∈ Z.

Definition 447. Prefiltered filtrator is a filtrator (A,Z) such that “up” is in-
jective.

Definition 448. Filtered filtrator is a filtrator (A,Z) such that

∀a, b ∈ A : (up a ⊇ up b⇒ a v b).

Theorem 449. A filtrator (A,Z) is filtered iff ∀a ∈ A : a =
dA up a.

Proof.
⇐. up a ⊇ up b⇒

dA up a v
dA up b⇒ a v b.
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⇒. a =
dA up a is equivalent to a is a greatest lower bound of up a. That is the
implication that b is lower bound of up a implies a w b.

b is lower bound of up a implies up b ⊇ up a. So as it is filtered a w b.
�

Obvious 450. Every filtered filtrator is prefiltered.
Obvious 451. “up” is a straight map from A to the dual of the poset PZ if

(A,Z) is a filtered filtrator.
Definition 452. An isomorphism between filtrators (A0,Z0) and (A1,Z1) is

an isomorphism between posets A0 and A1 such that it maps Z0 into Z1.
Obvious 453. Isomorphism isomorphically maps the order on Z0 into order

on Z1.
Definition 454. Two filtrators are isomorphic when there exists an isomor-

phism between them.
Definition 455. I will call primary filtrator a filtrator isomorphic to the fil-

trator consisting of the set of filters on a poset and the set of principal filters on
this poset.

Obvious 456. The order on a primary filtrator is defined by the formula a v
b⇔ up a ⊇ up b.

Definition 457. I will call a primary filtrator over a poset isomorphic to a
powerset as powerset filtrator.

Obvious 458. upF is a filter for every element F of a primary filtrator. Re-
versely, there exists a filter F if upF is a filter.

Theorem 459. For every poset Z there exists a poset A ⊇ Z such that (A,Z)
is a primary filtrator.

Proof. See appendix A. �

5.5.1. Filtrators with Separable Core.
Definition 460. Let (A,Z) be a filtrator. It is a filtrator with separable core

when
∀x, y ∈ A : (x �A y ⇒ ∃X ∈ upx : X �A y).

Proposition 461. Let (A,Z) be a filtrator. It is a filtrator with separable core
iff

∀x, y ∈ A : (x �A y ⇒ ∃X ∈ upx, Y ∈ up y : X �A Y ).
Proof.

⇒. Apply the definition twice.
⇐. Obvious.

�

Definition 462. Let (A,Z) be a filtrator. It is a filtrator with co-separable core
when

∀x, y ∈ A : (x ≡A y ⇒ ∃X ∈ down x : X ≡A y).
Obvious 463. Co-separability is the dual of separability.
Definition 464. Let (A,Z) be a filtrator. It is a filtrator with co-separable core

when
∀x, y ∈ A : (x ≡A y ⇒ ∃X ∈ down x, Y ∈ down y : X ≡A Y ).

Proof. By duality. �
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5.6. Alternative primary filtrators

5.6.1. Lemmas.

Lemma 465. A set F is a lower set iff F is an upper set.

Proof. X ∈ F ∧Z w X ⇒ Z ∈ F is equivalent to Z ∈ F ⇒ X ∈ F ∨Z 6w X is
equivalent Z ∈ F ⇒ (Z w X ⇒ X ∈ F ) is equivalent Z ∈ F∧X v Z ⇒ X ∈ F . �

Proposition 466. Let Z be a poset with least element ⊥. Then for upper
set F we have F 6= PZ⇔ ⊥ /∈ F .

Proof.
⇒. If ⊥ ∈ F then F = PZ because F is an upper set.
⇐. Obvious.

�

5.6.2. Informal introduction. We have already defined filters on a poset.
Now we will define three other sets which are order-isomorphic to the set of filters
on a poset: ideals (I), free stars (S), and mixers (M).

These four kinds of objects are related through commutative diagrams. First
we will paint an informal commutative diagram (it makes no formal sense because
it is not pointed the poset for which the filters are defined):

F I

M S

¬

〈dual〉∗

¬

〈dual〉∗

Then we can define ideals, free stars, and mixers as sets following certain for-
mulas. You can check that the intuition behind these formulas follows the above
commutative diagram. (That is transforming these formulas by the course of the
above diagram, you get formulas of the other objects in this list.)

After this, we will paint some formal commutative diagrams similar to the
above diagram but with particular posets at which filters, ideals, free stars, and
mixers are defined.

5.6.3. Definitions of ideals, free stars, and mixers. Filters and ideals
are well known concepts. The terms free stars and mixers are my new terminology.

Recall that filters are nonempty sets F with A,B ∈ F ⇔ ∃Z ∈ F : (Z v
A ∧ Z v B) (for every A,B ∈ Z).

Definition 467. Ideals are nonempty sets F with A,B ∈ F ⇔ ∃Z ∈ F : (Z w
A ∧ Z w B) (for every A,B ∈ Z).

Definition 468. Free stars are sets F not equal to PZ with A,B ∈ F ⇔
∃Z ∈ F : (Z w A ∧ Z w B) (for every A,B ∈ Z).

Definition 469. Mixers are sets F not equal to PZ with A,B ∈ F ⇔ ∃Z ∈
F : (Z v A ∧ Z v B) (for every A,B ∈ Z).

By duality and and an above theorem about filters, we have:

Proposition 470.
• Filters are nonempty upper sets F with A,B ∈ F ⇒ ∃Z ∈ F : (Z v
A ∧ Z v B) (for every A,B ∈ Z).

• Ideals are nonempty lower sets F with A,B ∈ F ⇒ ∃Z ∈ F : (Z w
A ∧ Z w B) (for every A,B ∈ Z).
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• Free stars are upper sets F not equal to PZ with A,B ∈ F ⇒ ∃Z ∈ F :
(Z w A ∧ Z w B) (for every A,B ∈ Z).

• Mixers are lower sets F not equal to PZ with A,B ∈ F ⇒ ∃Z ∈ F : (Z v
A ∧ Z v B) (for every A,B ∈ Z).

Proposition 471. The following are equivalent:
1◦. F is a free star.
2◦. ∀Z ∈ Z : (Z w A∧Z w B ⇒ Z ∈ F )⇔ A ∈ F ∨B ∈ F for every A,B ∈ Z

and F 6= PZ.
3◦. ∀Z ∈ Z : (Z w A∧Z w B ⇒ Z ∈ F )⇒ A ∈ F ∨B ∈ F for every A,B ∈ Z

and F is an upper set and F 6= PZ.

Proof.
1◦⇔2◦. The following is a chain of equivalencies:

∃Z ∈ F : (Z w A ∧ Z w B)⇔ A /∈ F ∧B /∈ F ;
∀Z ∈ F : ¬(Z w A ∧ Z w B)⇔ A ∈ F ∨B ∈ F ;

∀Z ∈ Z : (Z /∈ F ⇒ ¬(Z w A ∧ Z w B))⇔ A ∈ F ∨B ∈ F ;
∀Z ∈ Z : (Z w A ∧ Z w B ⇒ Z ∈ F )⇔ A ∈ F ∨B ∈ F.

2◦⇒3◦. Let A = B ∈ F . Then A ∈ F ∨ B ∈ F . So ∀Z ∈ Z : (Z w A ∧ Z w B ⇒
Z ∈ F ) that is ∀Z ∈ Z : (Z w A⇒ Z ∈ F ) that is F is an upper set.

3◦⇒2◦. We need to prove that F is an upper set. let A ∈ F and A v B ∈ Z. Then
A ∈ F ∨ B ∈ F and thus ∀Z ∈ Z : (Z w A ∧ Z w B ⇒ Z ∈ F ) that is
∀Z ∈ Z : (Z w B ⇒ Z ∈ F ) and so B ∈ F .

�

Corollary 472. The following are equivalent:
1◦. F is a mixer.
2◦. ∀Z ∈ Z : (Z v A∧Z v B ⇒ Z ∈ F )⇔ A ∈ F ∨B ∈ F for every A,B ∈ Z

and F 6= PZ.
3◦. ∀Z ∈ Z : (Z v A∧Z v B ⇒ Z ∈ F )⇒ A ∈ F ∨B ∈ F for every A,B ∈ Z

and F is an lower set and F 6= PZ.

Obvious 473.
1◦. A free star cannot contain the least element of the poset.
2◦. A mixer cannot contain the greatest element of the poset.

5.6.4. Filters, ideals, free stars, and mixers on semilattices.

Proposition 474.
• Free stars are sets F not equal to PZ with A ∈ F ∨B ∈ F ⇔ ¬∃Z ∈ F :

(Z w A ∧ Z w B) (for every A,B ∈ Z).
• Free stars are upper sets F not equal to PZ with A ∈ F ∨ B ∈ F ⇐
¬∃Z ∈ F : (Z w A ∧ Z w B) (for every A,B ∈ Z).

• Mixers are sets F not equal to PZ with A ∈ F ∨ B ∈ F ⇔ ¬∃Z ∈ F :
(Z v A ∧ Z v B) (for every A,B ∈ Z).

• Mixers are lower sets F not equal to PZ with A ∈ F ∨B ∈ F ⇐ ¬∃Z ∈
F : (Z v A ∧ Z v B) (for every A,B ∈ Z).

Proof. By duality. �

By duality and and an above theorem about filters, we have:

Proposition 475.
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• Filters are nonempty sets F with AuB ∈ F ⇔ A ∈ F ∧B ∈ F (for every
A,B ∈ Z), whenever Z is a meet-semilattice.

• Ideals are nonempty sets F with A tB ∈ F ⇔ A ∈ F ∧B ∈ F (for every
A,B ∈ Z), whenever Z is a join-semilattice.

• Free stars are sets F not equal to PZ with AtB ∈ F ⇔ A ∈ F ∨B ∈ F
(for every A,B ∈ Z), whenever Z is a join-semilattice.

• Mixers are sets F not equal to PZ with A u B ∈ F ⇔ A ∈ F ∨ B ∈ F
(for every A,B ∈ Z), whenever Z is a meet-semilattice.

By duality and and an above theorem about filters, we have:

Proposition 476.
• Filters are nonempty upper sets F with AuB ∈ F ⇐ A ∈ F ∧B ∈ F (for

every A,B ∈ Z), whenever Z is a meet-semilattice.
• Ideals are nonempty lower sets F with A tB ∈ F ⇐ A ∈ F ∧B ∈ F (for
every A,B ∈ Z), whenever Z is a join-semilattice.

• Free stars are upper sets F not equal to PZ with A t B ∈ F ⇒ A ∈
F ∨B ∈ F (for every A,B ∈ Z), whenever Z is a join-semilattice.

• Mixers are lower sets F not equal to PZ with AuB ∈ F ⇒ A ∈ F∨B ∈ F
(for every A,B ∈ Z), whenever Z is a meet-semilattice.

5.6.5. The general diagram. Let A and B be two posets connected by an
order reversing isomorphism θ : A → B. We have commutative diagram on the
figure 1 in the category Set:

Figure 1.

PA PB

PA PB

¬

〈θ〉∗

〈θ−1〉∗
¬

〈θ〉∗

〈θ−1〉∗

Theorem 477. This diagram is commutative, every arrow of this diagram is
an isomorphism, every cycle in this diagrams is an identity (therefore “parallel”
arrows are mutually inverse).

Proof. That every arrow is an isomorphism is obvious.
Show that 〈θ〉∗¬X = ¬〈θ〉∗X for every set X ∈PA.
Really,

p ∈ 〈θ〉∗¬X ⇔ ∃q ∈ ¬X : p = θq ⇔ ∃q ∈ ¬X : θ−1p = q ⇔ θ−1p ∈ ¬X ⇔
@q ∈ X : q = θ−1p⇔ @q ∈ X : θq = p⇔ p /∈ 〈θ〉∗X ⇔ p ∈ ¬〈θ〉∗X.

Thus the theorem follows from lemma 194. �

This diagram can be restricted to filters, ideals, free stars, and mixers, see
figure 2:

Theorem 478. It is a restriction of the above diagram. Every arrow of this
diagram is an isomorphism, every cycle in these diagrams is an identity. (To prove
that, is an easy application of duality and the above lemma.)
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Figure 2.

F(A) I(B)

M(A) S(B)

¬

〈θ〉∗

〈θ−1〉∗

¬

〈θ〉∗

〈θ−1〉∗

5.6.6. Special diagrams. Here are two important special cases of the above
diagram:

F(A) I(dualA)

M(A) S(dualA)

¬

〈dual〉∗

¬

〈dual〉∗
and

F(A) I(A)

M(A) S(A)

¬

〈¬〉∗

¬

〈¬〉∗
(1)

(the second diagram is defined for a boolean lattice A).

5.6.7. Order of ideals, free stars, mixers. Define order of ideals, free
stars, mixers in such a way that the above diagrams isomorphically preserve order
of filters:

• A v B ⇔ A ⊇ B for filters and ideals;
• A v B ⇔ A ⊆ B for free stars and mixers.

5.6.8. Principal ideals, free stars, mixers.

Definition 479. Principal ideal generated by an element a of poset A is ↓ a ={
x∈A
xva

}
.

Definition 480. An ideal is principal iff it is generated by some poset element.

Definition 481. The filtrator of ideals on a given poset is the pair consisting
of the set of ideals and the set of principal ideals.

The above poset isomorphism maps principal filters into principal ideals and
thus is an isomorphism between the filtrator of filters on a poset and the filtrator
of ideals on the dual poset.

Exercise 482. Define principal free stars and mixers, filtrators of free stars and
mixers and isomorphisms of these with the filtrator of filters (these isomorphisms
exist because the posets of free stars and mixers are isomorphic to the poset of
filters).

Obvious 483. The following filtrators are primary:
• filtrators of filters;
• filtrators of ideals;
• filtrators of free stars;
• filtrators of mixers.

5.6.8.1. Principal free stars.

Proposition 484. An upper set F ∈PZ is a principal filter iff ∃Z ∈ F∀P ∈
F : Z v P .

Proof.
⇒. Obvious.
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⇐. Let Z ∈ F and ∀P ∈ F : Z v P . F is nonempty because Z ∈ F . It remains
to prove that Z v P ⇔ P ∈ F . The reverse implication follows from
∀P ∈ F : Z v P . The direct implication follows from that F is an upper
set.

�

Lemma 485. If S ∈ PZ is not the complement of empty set and for every
T ∈PZ

∀Z ∈ Z : (∀X ∈ T : Z w X ⇒ Z ∈ S)⇔ T ∩ S 6= ∅,
then S is a free star.

Proof. Take T = {A,B}. Then ∀Z ∈ Z : (Z w A ∧ Z w B ⇒ Z ∈ S)⇔ A ∈
S ∨B ∈ S. So S is a free star. �

Proposition 486. A set S ∈ PZ is a principal free star iff S is not the
complement of empty set and for every T ∈PZ

∀Z ∈ Z : (∀X ∈ T : Z w X ⇒ Z ∈ S)⇔ T ∩ S 6= ∅.

Proof. Let S = 〈dual〉∗F . We need to prove that F is a principal filter iff the
above formula holds. Really, we have the following chain of equivalencies:
∀Z ∈ Z : (∀X ∈ T : Z w X ⇒ Z ∈ S)⇔ T ∩ S 6= ∅;
∀Z ∈ Z : (∀X ∈ T : Z w X ⇒ Z /∈ 〈dual〉∗F )⇔ T ∩ 〈dual〉∗F 6= ∅;
∀Z ∈ dualZ : (∀X ∈ T : Z v X ⇒ Z /∈ F )⇔ T ∩ F 6= ∅;
∀Z ∈ dualZ : (∀X ∈ T : Z v X ⇒ Z /∈ F )⇔ T * F ;
T ⊆ F ⇔ ¬∀Z ∈ dualZ : (Z ∈ F ⇒ ¬∀X ∈ T : Z v X);
T ⊆ F ⇔ ¬∀Z ∈ dualZ : (Z /∈ F ∨ ¬∀X ∈ T : Z v X);
T ⊆ F ⇔ ∃Z ∈ dualZ : (Z ∈ F ∧ ∀X ∈ T : Z v X);
T ⊆ F ⇔ ∃Z ∈ F∀X ∈ T : Z v X;
∃Z ∈ F∀X ∈ F : Z v X that is F is a principal filter (S is an upper set

because by the lemma it is a free star; thus F is also an upper set). �

Proposition 487. S ∈ PZ where Z is a poset is a principal free star iff all
the following:

1◦. The least element (if it exists) is not in S.
2◦. ∀Z ∈ Z : (∀X ∈ T : Z w X ⇒ Z ∈ S)⇒ T ∩ S 6= ∅ for every T ∈PZ.
3◦. S is an upper set.

Proof.
⇒. 1◦ and 2◦ are obvious. S is an upper set because S is a free star.
⇐. We need to prove that

∀Z ∈ Z : (∀X ∈ T : Z w X ⇒ Z ∈ S)⇐ T ∩ S 6= ∅.

Let X ′ ∈ T ∩ S. Then ∀X ∈ T : Z w X ⇒ Z w X ′ ⇒ Z ∈ S because S is
an upper set.

�

Proposition 488. Let Z be a complete lattice. S ∈PZ is a principal free star
iff all the following:

1◦. The least element is not in S.
2◦. dT ∈ S ⇒ T ∩ S 6= ∅ for every T ∈PZ.
3◦. S is an upper set.

Proof.
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⇒. We need to prove only dT ∈ S ⇒ T ∩ S 6= ∅. Let dT ∈ S. Because S is
an upper set, we have ∀X ∈ T : Z w X ⇒ Z w dT ⇒ Z ∈ S for every
Z ∈ Z; from which we conclude T ∩ S 6= ∅.

⇐. We need to prove only ∀Z ∈ Z : (∀X ∈ T : Z w X ⇒ Z ∈ S)⇒ T ∩ S 6= ∅.
Really, if ∀Z ∈ Z : (∀X ∈ T : Z w X ⇒ Z ∈ S) then dT ∈ S and

thus dT ∈ S ⇒ T ∩ S 6= ∅.
�

Proposition 489. Let Z be a complete lattice. S ∈PZ is a principal free star
iff the least element is not in S and for every T ∈PZ

lT ∈ S ⇔ T ∩ S 6= ∅.

Proof.
⇒. We need to prove only dT ∈ S ⇐ T ∩ S 6= ∅ what follows from that S is an

upper set.
⇐. We need to prove only that S is an upper set. To prove this we can use the

fact that S is a free star.
�

Exercise 490. Write down similar formulas for mixers.

5.6.9. Starrish posets.

Definition 491. I will call a poset starrish when the full star ?a is a free star
for every element a of this poset.

Proposition 492. Every distributive lattice is starrish.

Proof. Let A be a distributive lattice, a ∈ A. Obviously ⊥ /∈ ?a (if ⊥ exists);
obviously ?a is an upper set. If x t y ∈ ?a, then (x t y) u a is non-least that is
(x u a) t (y u a) is non-least what is equivalent to x u a or y u a being non-least
that is x ∈ ?a ∨ y ∈ ?a. �

Theorem 493. If A is a starrish join-semilattice lattice then
atoms(a t b) = atoms a ∪ atoms b

for every a, b ∈ A.

Proof. For every atom c we have:
c ∈ atoms(a t b)⇔

c 6� a t b⇔
a t b ∈ ?c⇔

a ∈ ?c ∨ b ∈ ?c⇔
c 6� a ∨ c 6� b⇔

c ∈ atoms a ∨ c ∈ atoms b.
�

5.6.9.1. Completely starrish posets.

Definition 494. I will call a poset completely starrish when the full star ?a is
a principal free star for every element a of this poset.

Obvious 495. Every completely starrish poset is starrish.

Proposition 496. Every complete join infinite distributive lattice is com-
pletely starrish.
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Proof. Let A be a join infinite distributive lattice, a ∈ A. Obviously ⊥ /∈ ?a
(if ⊥ exists); obviously ?a is an upper set. If dT ∈ ?a, then ( dT ) u a is non-least
that is d〈au〉

∗
T is non-least what is equivalent to a u x being non-least for some

x ∈ T that is x ∈ ?a. �

Theorem 497. If A is a completely starrish complete lattice lattice then
atoms lT =

⋃
〈atoms〉∗T.

for every T ∈PA.

Proof. For every atom c we have:

c ∈ atoms lT ⇔ c 6� lT ⇔ lT ∈ ?c⇔ ∃X ∈ T : X ∈ ?c⇔

∃X ∈ T : X 6� c⇔ ∃X ∈ T : c ∈ atomsX ⇔ c ∈
⋃
〈atoms〉∗T.

�

5.7. Basic properties of filters

Proposition 498. upA = A for every filter A (provided that we equate ele-
ments of the base poset Z with corresponding principal filters.

Proof. A ∈ upA ⇔ A w A ⇔↑ A w A ⇔↑ A ⊆ A ⇔ A ∈ A. �

5.7.1. Minimal and maximal filters.

Obvious 499. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator.
3◦. ⊥A (equal to the principal filter for the least element of Z if it exists)

defined by the formula up⊥A = Z is the least element of A.

Proposition 500. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator with greatest element.
3◦. >A defined by the formula up>A = {>Z} is the greatest element of A.

Proof. Take into account that filters are nonempty. �

5.7.2. Alignment.

Definition 501. I call down-aligned filtrator such a filtrator (A,Z) that A and
Z have common least element. (Let’s denote it ⊥.)

Definition 502. I call up-aligned filtrator such a filtrator (A,Z) that A and Z
have common greatest element. (Let’s denote it >.)

Obvious 503.
1◦. If Z has least element, the primary filtrator is down-aligned.
2◦. If Z has greatest element, the primary filtrator is up-aligned.

Corollary 504. Every powerset filtrator is both up and down-aligned.

We can also define (without requirement of having least and greatest elements,
but coinciding with the above definitions if least/greatest elements are present):

Definition 505. I call weakly down-aligned filtrator such a filtrator (A,Z) that
whenever ⊥Z exists, ⊥A also exists and ⊥Z = ⊥A.

Definition 506. I call weakly up-aligned filtrator such a filtrator (A,Z) that
whenever >Z exists, >A also exists and >Z = >A.
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Obvious 507.
1◦. Every up-aligned filtrator is weakly up-aligned.
2◦. Every down-aligned filtrator is weakly down-aligned.

Obvious 508.
1◦. Every primary filtrator is weakly down-aligned.
2◦. Every primary filtrator is weakly up-aligned.

5.8. More advanced properties of filters

5.8.1. Formulas for Meets and Joins of Filters.

Lemma 509. If f is an order embedding from a poset A to a complete lattice B
and S ∈ PA and there exists such F ∈ A that fF = d

B〈f〉∗S, then d

A
S exists

and f d

A
S = d

B〈f〉∗S.

Proof. f is an order isomorphism from A to B|〈f〉∗A. fF ∈ B|〈f〉∗A.
Consequently, d

B〈f〉∗S ∈ B|〈f〉∗A and d

B|〈f〉∗A〈f〉∗S = d

B〈f〉∗S.
f d

A
S = d

B|〈f〉∗A〈f〉∗S because f is an order isomorphism.
Combining, f d

A
S = d

B〈f〉∗S. �

Corollary 510. If B is a complete lattice and A is its subset and S ∈ PA

and d

B
S ∈ A, then d

A
S exists and d

A
S = d

B
S.

Exercise 511. The below theorem does not work for S = ∅. Formulate the
general case.

Theorem 512.
1◦. If Z is a meet-semilattice, then d

F(Z)
S exists and d

F(Z)
S =

⋂
S for every

bounded above set S ∈PF(Z) \ {∅}.
2◦. If Z is a join-semilattice, then

dI(Z)
S exists and

dI(Z)
S =

⋂
S for for

every bounded below set S ∈PI(Z) \ {∅}.

Proof.
1◦. Taking into account the lemma, it is enough to prove that

⋂
S is a filter.

Let’s prove that
⋂
S is nonempty. There is an upper bound T of S. Take arbitrary

T ∈ T . We have T ∈ X for every X ∈ S. Thus S is nonempty.
For every A,B ∈ Z we have:
A,B ∈

⋂
S ⇔ ∀P ∈ S : A,B ∈ P ⇔ ∀P ∈ S : A uB ∈ P ⇔ A uB ∈

⋂
S.

So
⋂
S is a filter.

2◦. By duality.
�

Theorem 513.
1◦. If Z is a meet-semilattice with greatest element, then d

F(Z)
S exists and

d

F(Z)
S =

⋂
S for every S ∈PF(Z) \ {∅}.

2◦. If Z is a join-semilattice with least element, then
dI(Z)

S exists anddI(Z)
S =

⋂
S for every S ∈PI(Z) \ {∅}.

3◦. If Z is a join-semilattice with least element, then d

S(Z)
S exists and

d

S(Z)
S =

⋃
S for every S ∈PS(Z).

4◦. If Z is a meet-semilattice with greatest element, then
dM(Z)

S exists anddM(Z)
S =

⋃
S for every S ∈PM(Z).

Proof.
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1◦. From the previous theorem.
2◦. By duality.
3◦. Taking into account the lemma, it is enough to prove that

⋃
S is a free

star.
⋃
S is not the complement of empty set because ⊥ /∈

⋃
S. For every A,B ∈ Z

we have:

A ∈
⋃
S ∨B ∈

⋃
S ⇔ ∃P ∈ S : (A ∈ P ∨B ∈ P )⇔

∃P ∈ S : A tB ∈ P ⇔ A tB ∈
⋃
S.

4◦. By duality.
�

Corollary 514. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a meet-semilattice with greatest ele-

ment >.
3◦. d

A
S exists and up d

A
S =

⋂
〈up〉∗S for every S ∈PA \ {∅}.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. By the theorem.

�

Corollary 515. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a meet-semilattice with greatest ele-

ment >.
3◦. A is a complete lattice.

We will denote meets and joins on the lattice of filters just as u and t.

Proposition 516. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over an ideal base.
3◦. A is a join-semilattice and for any A,B ∈ A

up(A tA B) = upA ∩ upB.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Taking in account the lemma it is enough to prove thatR = upA∩upB

is a filter.
R is nonempty because we can takeX ∈ upA and Y ∈ upB and Z w X∧Z w Y

and then R 3 Z.
Let A,B ∈ R. Then A,B ∈ upA; so exists C ∈ upA such that C v A∧C v B.

Analogously exists D ∈ upB such that D v A ∧ D v B. Take E w C ∧ E w D.
Then E ∈ upA and E ∈ upB; E ∈ R and E v A ∧ E v B. So R is a filter base.

That R is an upper set is obvious.
�

Theorem 517. Let Z be a distributive lattice. Then

1◦.
dF(Z)

S =
{

K0uZ···uZKn
Ki∈
⋃
S where i=0,...,n for n∈N

}
for S ∈PF(Z) \ {∅};

2◦. d

I(Z)
S =

{
K0tZ···tZKn

Ki∈
⋃
S where i=0,...,n for n∈N

}
for S ∈PI(Z) \ {∅}.
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Proof. We will prove only the first, as the second is dual.
Let’s denote the right part of the equality to be proven as R. First we will

prove that R is a filter. R is nonempty because S is nonempty.
Let A,B ∈ R. Then A = X0uZ· · ·uZXk, B = Y0uZ· · ·uZYl whereXi, Yj ∈

⋃
S.

So
A uZ B = X0 uZ · · · uZ Xk uZ Y0 uZ · · · uZ Yl ∈ R.

Let element C w A ∈ R. Consequently (distributivity used)
C = C tZ A = (C tZ X0) uZ · · · uZ (C tZ Xk).

Xi ∈ Pi for some Pi ∈ S; C tZ Xi ∈ Pi; C tZ Xi ∈
⋃
S; consequently C ∈ R.

We have proved that that R is a filter base and an upper set. So R is a filter.
Let A ∈ S. Then A ⊆

⋃
S;

R ⊇
{

K0 uZ · · · uZ Kn

Ki ∈ A where i = 0, . . . , n for n ∈ N

}
= A.

Consequently A w R.
Let now B ∈ A and ∀A ∈ S : A w B. Then ∀A ∈ S : A ⊆ B; B ⊇

⋃
S. Thus

B ⊇ T for every finite set T ⊆
⋃
S. Consequently upB 3

dZ
T . Thus B ⊇ R;

B v R.
Comparing we get

dF(Z)
S = R.

�

Corollary 518. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a distributive lattice.

3◦. up
dA

S =
{

K0uZ···uZKn
Ki∈
⋃
〈up〉∗S where i=0,...,n for n∈N

}
for S ∈PA \ {∅}.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. By the theorem.

�

Theorem 519. Let Z be a distributive lattice. Then:
1◦. F0uF(Z) · · ·uF(Z)Fm =

{
K0uZ···uZKm

Ki∈Fi where i=0,...,m

}
for any F0, . . . ,Fm ∈ F(Z);

2◦. F0tI(Z) · · ·tI(Z)Fm =
{

K0tZ···tZKm
Ki∈Fi where i=0,...,m

}
for any F0, . . . ,Fm ∈ I(Z).

Proof. We will prove only the first as the second is dual.
Let’s denote the right part of the equality to be proven as R. First we will

prove that R is a filter. Obviously R is nonempty.
Let A,B ∈ R. Then A = X0 uZ · · · uZ Xm, B = Y0 uZ · · · uZ Ym where

Xi, Yi ∈ Fi.
A uZ B = (X0 uZ Y0) uZ · · · uZ (Xm uZ Ym),

consequently A uZ B ∈ R.
Let filter C w A ∈ R

C = A tZ C = (X0 tZ C) uZ · · · uZ (Xm tZ C) ∈ R.
So R is a filter.
Let Pi ∈ Fi. Then Pi ∈ R because Pi = (Pi tZ P0) uZ · · · uZ (Pi tZ Pm). So

Fi ⊆ R; Fi w R.
Let now B ∈ A and ∀i ∈ {0, . . . ,m} : Fi w B. Then ∀i ∈ {0, . . . ,m} : Fi ⊆ B.
Let Li ∈ B for every Li ∈ Fi. L0 uZ · · · uZ Lm ∈ B. So B ⊇ R; B v R.
So F0 uF(Z) · · · uF(Z) Fm = R. �
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Corollary 520. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a distributive lattice.
3◦. up(F0 uA · · · uA Fm) =

{
K0uZ···uZKm

Ki∈upFi where i=0,...,m

}
for any F0, . . . ,Fm ∈ A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. By the theorem.

�

More general case of semilattices follows:

Theorem 521.

1◦.
dF(Z)

S =
⋃{ ↑(K0uZ···uZKn)

Ki∈
⋃
S where i=0,...,n for n∈N

}
for S ∈PF(Z) \ {∅} if Z is a

meet-semilattice;
2◦. d

I(Z)
S =

⋃{ ↑(K0tZ···tZKn)
Ki∈
⋃
S where i=0,...,n for n∈N

}
for S ∈PI(Z) \ {∅} if Z is a

join-semilattice.

Proof. We will prove only the first as the second is dual.
It follows from the fact that

F(Z)l
S =

F(Z)l {
K0 uZ · · · uZ Kn

Ki ∈
⋃
S where i = 0, . . . , n for n ∈ N

}
and that

{
K0uZ···uZKn

Ki∈
⋃
S where i=0,...,n for n∈N

}
is a filter base. �

Corollary 522. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a meet-semilattice.

3◦. up
d
S =

⋃{ up(K0uZ···uZKn)
Ki∈
⋃
〈up〉∗S where i=0,...,n for n∈N

}
for every S ∈PA \ {∅}.

Theorem 523.
1◦. F0 uF(Z) · · · uF(Z) Fm =

⋃{ ↑(K0uZ···uZKm)
Ki∈Fi where i=0,...,m

}
for S ∈ PF(Z) \ {∅} if

Z is a meet-semilattice;
2◦. F0 tI(Z) · · · tI(Z) Fm =

⋃{ ↑(K0tZ···tZKm)
Ki∈Fi where i=0,...,m

}
for S ∈PI(Z) \ {∅} if Z

is a join-semilattice.

Proof. We will prove only the first as the second is dual.
It follows from the fact that

F0 uF(Z) · · · uF(Z) Fm =
F(Z)l {

K0 uZ · · · uZ Km

Ki ∈ Fi where i = 0, . . . ,m

}
and that

{
K0uZ···uZKm

Ki∈Fi where i=0,...,m

}
is a filter base. �

Corollary 524. up(F0 uF(Z) · · · uF(Z) Fm) =
⋃{ up(K0uZ···uZKm)

Ki∈Fi where i=0,...,m

}
if Z is

a meet-semilattice.

Lemma 525. If (A,Z) is a primary filtrator and Z is a meet-semilattice and an
ideal base, then A is a lattice.

Proof. It is a join-semilattice by proposition 516. It is a meet-semilattice by
theorem 521. �
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Corollary 526. If (A,Z) is a primary filtrator and Z is a lattice, then A is a
lattice.

5.8.2. Distributivity of the Lattice of Filters.

Theorem 527. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a distributive lattice.
3◦. A tA

dA
S =

dA〈AtA〉∗S for S ∈PA and A ∈ A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Taking into account the previous section, we have:

up
(
A tA

Al
S

)
=

upA ∩ up
Al
S =

upA ∩
{

K0 uZ · · · uZ Kn

Ki ∈
⋃
〈up〉∗S where i = 0, . . . , n for n ∈ N

}
={

K0 uZ · · · uZ Kn

K0 uZ · · · uZ Kn ∈ upA,Ki ∈
⋃
〈up〉∗S where i = 0, . . . , n for n ∈ N

}
={

K0 uZ · · · uZ Kn

Ki ∈ upA,Ki ∈
⋃
〈up〉∗S where i = 0, . . . , n for n ∈ N

}
={

K0 uZ · · · uZ Kn

Ki ∈ upA ∩
⋃
〈up〉∗S where i = 0, . . . , n for n ∈ N

}
={

K0 uZ · · · uZ Kn

Ki ∈
⋃
〈upA∩〉∗〈up〉∗S where i = 0, . . . , n for n ∈ N

}
= K0 uZ · · · uZ Kn

Ki ∈
⋃{upA∩upX

X∈S

}
where i = 0, . . . , n for n ∈ N

 =

 K0 uZ · · · uZ Kn

Ki ∈
⋃{up(AtAX )

X∈S

}
where i = 0, . . . , n for n ∈ N

 =

up
Al{A tA X

X ∈ S

}
=

up
Al〈
AtA

〉∗
S.

�

Corollary 528. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a distributive lattice which is an ideal

base.
3◦. A is a distributive and co-brouwerian lattice.

Corollary 529. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a distributive lattice with greatest ele-

ment.
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3◦. A is a co-frame.

The below theorem uses the notation and results from section 3.9.

Theorem 530. If A is a co-frame and L is a bounded distributive lattice which,
then Join(L,A) is also a co-frame.

Proof. Let F =↑ ◦
d

: Up(A)→ Up(A); F is a co-nucleus by above.
Since Up(A) ∼= Pos(A, 2) by proposition 337, we may regard F as a co-nucleus

on Pos(A, 2).
Join(L,A) ∼= Join(L,Fix(F )) by corollary 340.
Join(L,Fix(F )) ∼= Fix(Join(L,F )) by lemma 348.
By corollary 347 the function Join(L,F ) is a co-nucleus on Join(L,Pos(A, 2)).

Join(L,Pos(A, 2)) ∼= (by lemma 350)
Pos(A, Join(L, 2)) ∼=

Pos(A,F(X)).
F(X) is a co-frame by corollary 529. Thus Pos(A,F(X)) is a co-frame by
lemma 350.

Thus Join(L,A) is isomorphic to a poset of fixed points of a co-nucleus on the
co-frame Pos(A,F(X)). By lemma 332 Join(L,A) is also a co-frame. �

5.9. Misc filtrator properties

Theorem 531. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator.
3◦. (A,Z) is a filtered filtrator.
4◦. (A,Z) is a filtrator with join-closed core.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. The formula ∀a, b ∈ A : (up a ⊇ up b ⇒ a v b) is obvious for primary

filtrators.
3◦⇒4◦. Let (A,Z) be a filtered filtrator. Let S ∈ PZ and d

Z
S be defined. We

need to prove d

A
S = d

Z
S. That d

Z
S is an upper bound for S is

obvious. Let a ∈ A be an upper bound for S. It’s enough to prove that

d

Z
S v a. Really,

c ∈ up a⇒ c w a⇒ ∀x ∈ S : c w x⇒ c w
Z

lS ⇒ c ∈ up
Z

lS;

so up a ⊆ up d

Z
S and thus a w d

Z
S because it is filtered.

�

5.10. Characterization of Binarily Meet-Closed Filtrators

Theorem 532. The following are equivalent for a filtrator (A,Z) whose core is
a meet semilattice such that ∀a ∈ A : up a 6= ∅:

1◦. The filtrator is with binarily meet-closed core.
2◦. up a is a filter for every a ∈ A.

Proof.
1◦⇒2◦. Let X,Y ∈ up a. Then X uZ Y = X uA Y w a. That up a is an upper set

is obvious. So taking into account that up a 6= ∅, up a is a filter.
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2◦⇒1◦. It is enough to prove that a v A,B ⇒ a v A uZ B for every A,B ∈ A.
Really:

a v A,B ⇒ A,B ∈ up a⇒ A uZ B ∈ up a⇒ a v A uZ B.
�

Corollary 533. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a meet semilattice.
3◦. (A,Z) is with binarily meet-closed core.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. From the theorem.

�

5.10.1. Separability of Core for Primary Filtrators.

Theorem 534. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a meet semilattice with least element.
3◦. (A,Z) is with separable core.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Let A �A B where A,B ∈ A.

up(A uA B) =
⋃{ up(A uZ B)

A ∈ upA, B ∈ upB

}
.

So
⊥ ∈ up(A uA B)⇔

∃A ∈ upA, B ∈ upB : ⊥ ∈ up(A uZ B)⇔
∃A ∈ upA, B ∈ upB : A uZ B = ⊥ ⇔
∃A ∈ upA, B ∈ upB : A uA B = ⊥A

(used proposition 533).
�

5.11. Core Part

Let (A,Z) be a filtrator.

Definition 535. The core part of an element a ∈ A is Cor a =
dZ up a.

Definition 536. The dual core part of an element a ∈ A is Cor′ a = d

Z down a.

Obvious 537. Cor′ is dual of Cor.

Obvious 538. Cor a = Cor′ a = a for every element a of the core of a filtrator.

Theorem 539. The following is an implications tuple:
1◦. a is a filter on a set.
2◦. a is a filter on a complete lattice.
3◦. a is an element of a filtered filtrator and Cor a exists.
4◦. Cor a v a and Cor a ∈ down a.

Proof.
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1◦⇒2◦. Obvious.
2◦⇒3◦. Theorem 531.
3◦⇒4◦. Cor a =

dZ up a v
dA up a = a. Then obviously Cor a ∈ down a.

�

Theorem 540. The following is an implications tuple:
1◦. a is a filter on a set.
2◦. a is a filter on a complete lattice.
3◦. a is an element a of a filtrator with join-closed core and Cor′ a exists.
4◦. Cor′ a v a and Cor′ a ∈ down a and Cor′ a = max down a.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. It is join closed by 531. Cor′ a exists because our filtrator is join-closed.
3◦⇒4◦. Cor′ a = d

Z down a = d

A down a v a. Now Cor′ a ∈ down a is obvious.
Thus Cor′ a = max down a.

�

Proposition 541. Cor′ a v Cor a whenever both Cor a and Cor′ a exist for
any element a of a filtrator with join-closed core.

Proof. Cor a =
dZ up a w Cor′ a because ∀A ∈ up a : Cor′ a v A. �

Theorem 542. The following is an implications tuple:
1◦. a is a filter on a set.
2◦. a is a filter on a complete lattice.
3◦. a is an element of a filtered filtrator and both Cor a and Cor′ a exist.
4◦. Cor′ a = Cor a.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. By theorem 531.
3◦⇒4◦. It is with join-closed core because it is filtered. So Cor′ a v Cor a. Cor a ∈

down a. So Cor a v d

Z down a = Cor′ a.
�

Corollary 543. Cor′ a = Cor a =
⋂
a for every filter a on a set.

5.12. Intersection and Joining with an Element of the Core

Definition 544. A filtrator (A;Z) is with correct intersection iff ∀a, b ∈ Z :
(a 6�Z b⇔ a 6�A b).

Definition 545. A filtrator (A;Z) is with correct joining iff ∀a, b ∈ Z : (a ≡Z

b⇔ a ≡A b).

Proposition 546. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a meet-semilattice.
3◦. (A,Z) is with binarily meet-closed core, weakly down-aligned filtrator,

and Z is a meet-semilattice.
4◦. (A,Z) is with correct intersection.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Corollary 533.
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3◦⇒4◦. a 6�Z b⇒ a 6�A b is obvious. Let a �Z b. Then a uZ b exists; so ⊥Z exists
and auZ b = ⊥Z (as otherwise auZ b is non-least). So ⊥Z = ⊥A. We have
a uA b = ⊥A. Thus a �A b.

�

Proposition 547. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a join-semilattice.
3◦. (A,Z) is with binarily join-closed core, weakly up-aligned filtrator, and Z

is a join-semilattice.
4◦. (A,Z) is with correct joining.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Corollary 531.
3◦⇒4◦. Dual of the previous proposition.

�

Lemma 548. For a filtrator (A,Z) where Z is a boolean lattice, for every B ∈ Z,
A ∈ A:

1◦. B �A A ⇔ B w A if it is with separable core and with correct intersection;
2◦. B ≡A A ⇔ B v A if it is with co-separable core and with correct joining.

Proof. We will prove only the first as the second is dual.

B �A A ⇔
∃A ∈ upA : B �A A⇔
∃A ∈ upA : B �Z A⇔
∃A ∈ upA : B w A⇔

B ∈ upA ⇔
B w A.

�

5.13. Stars of Elements of Filtrators

Definition 549. Let (A,Z) be a filtrator. Core star of an element a of the
filtrator is

∂a =
{
x ∈ Z

x 6�A a

}
.

Proposition 550. up a ⊆ ∂a for any non-least element a of a filtrator.

Proof. For any element X ∈ Z

X ∈ up a⇒ a v X ∧ a v a⇒ X 6�A a⇒ X ∈ ∂a.

�

Theorem 551. Let (A,Z) be a distributive lattice filtrator with least element
and binarily join-closed core which is a join-semilattice. Then ∂a is a free star for
each a ∈ A.
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Proof. For every A,B ∈ Z

A tZ B ∈ ∂a⇔
A tA B ∈ ∂a⇔

(A tA B) uA a 6= ⊥A ⇔
(A uA a) tA (B uA a) 6= ⊥A ⇔
A uA a 6= ⊥A ∨B uA a 6= ⊥A ⇔

A ∈ ∂a ∨B ∈ ∂a.

That ∂a doesn’t contain ⊥A is obvious. �

Definition 552. I call a filtrator star-separable when its core is a separation
subset of its base.

5.14. Atomic Elements of a Filtrator

See [4, 9] for more detailed treatment of ultrafilters and prime filters.

Proposition 553. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a meet-semilattice with greatest element.
3◦. A is a complete lattice.
4◦. atoms

d
S =

⋂
〈atoms〉∗S for every S ∈PA.

5◦. atoms(a u b) = atoms a ∩ atoms b for a, b ∈ A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Corollary 515.
3◦⇒4◦. Theorem 108.
4◦⇒5◦. Obvious.

�

Proposition 554. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a distributive lattice which is and ideal

base.
3◦. A is a starrish join-semilattice.
4◦. atoms(a t b) = atoms a ∪ atoms b for a, b ∈ A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Corollary 528.
3◦⇒4◦. Corollary 493.

�

Theorem 555. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a meet-semilattice.
3◦. (A,Z) is a filtered weakly down-aligned filtrator with binarily meet-closed

core Z which is a meet-semilattice.
4◦. a is an atom of Z iff a ∈ Z and a is an atom of A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. It is filtered by the theorem 531, binarily meet-closed by corollary 533.
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3◦⇒4◦.
⇐. Let a be an atom of A and a ∈ Z. Then either a is an atom of Z or

a is the least element of Z. But if a is the least element of Z then a
is also least element of A and thus is not an atom of A. So the only
possible outcome is that a is an atom of Z.

⇒. We need to prove that if a is an atom of Z then a is an atom of A.
Suppose the contrary that a is not an atom of A. Then there exists
x ∈ A such that x @ a and x is not least element of A. Because “up”
is a straight monotone map to the dual of the poset PZ (obvious
451), up a ⊂ upx. So there exists K ∈ upx such that K /∈ up a.
Also a ∈ upx. We have K uZ a = K uA a ∈ upx; K uZ a is not least
of Z (Suppose for the contrary that K uZ a = ⊥Z, then K uZ a =
⊥A /∈ upx.) and K uZ a @ a. So a is not an atom of Z.

�

Theorem 556. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator.
3◦. (A,Z) is a filtered filtrator.
4◦. a ∈ A is an atom of A iff up a = ∂a.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. By the theorem 531.
3◦⇒4◦.

⇒. For any K ∈ A

K ∈ up a⇔ K w a⇔ K 6�A a⇔ K ∈ ∂a.

⇐. Let up a = ∂a. Then a is not least element of A. Consequently for
every x ∈ A if x is not the least element of A we have

x @ a⇒
x 6�A a⇒

∀K ∈ upx : K ∈ ∂a⇒
∀K ∈ upx : K ∈ up a⇒

upx ⊆ up a⇒
x w a.

So a is an atom of A.
�

Proposition 557. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator.
3◦. Coatoms of A are exactly coatoms of Z.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Suppose a is a coatom of Z. Then a is the only non-greatest element in

up a. Suppose b A a for some b ∈ A. Then a cannot be in up b and thus
the only possible element of up b is the greatest element of Z (if it exists)
from what follows b = >A. So a is a coatom of A.
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Suppose now that a is a coatom of A. To finish the proof it is enough
to show that a is principal. (Then a is non-greatest and thus is a coatom
of Z.)

Suppose a is non-principal. Then obviously exist two distinct elements
x and y of the core such that x, y ∈ up a. Thus a is not an atom of A.

�

Corollary 558. Coatoms of the set of filters on a set U are exactly sets U\{x}
where x ∈ U .

Proposition 559. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a coatomic poset.
3◦. A is coatomic.

Proof.
1◦⇒2◦. Obvious.
2◦⇒2◦. Suppose A ∈ A and A 6= >A. Then there exists A ∈ upA such that

A is not greatest element of Z. Consequently there exists a coatom a ∈ Z such that
a w A. Thus a ∈ upA and a is not greatest.

�

5.15. Prime Filtrator Elements

Definition 560. Let (A,Z) be a filtrator. Prime filtrator elements are such
a ∈ A that up a is a free star (in lattice Z).

Proposition 561. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a distributive lattice which is an ideal

base.
3◦. (A,Z) is a filtrator with binarily join-closed core, where A is a starrish

join-semilattice and Z is a join-semilattice.
4◦. Atomic elements of this filtrator are prime.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. (A,Z) is with binarily join-closed core by the theorem 531, A is a distribu-

tive lattice by theorem 528.
3◦⇒4◦. Let a be an atom of the lattice A. We have for every X,Y ∈ Z

X tZ Y ∈ up a⇔
X tA Y ∈ up a⇔
X tA Y w a⇔
X tA Y 6�A a⇔

X 6�A a ∨ Y 6�A a⇔
X w a ∨ Y w a⇔

X ∈ up a ∨ Y ∈ up a.
�

The following theorem is essentially borrowed from [19]:

Theorem 562. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
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2◦. (A,Z) is a primary filtrator over a boolean lattice.
3◦. Let a ∈ A. Then the following are equivalent:

(a) a is prime.
(b) For every A ∈ Z exactly one of {A,A} is in up a.
(c) a is an atom of A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦.

3◦a⇒3◦b. Let a be prime. Then A tZ A = >A ∈ up a. Therefore A ∈
up a∨A ∈ up a. But since AuZA = ⊥Z it is impossible A ∈ up a∧A ∈
up a.

3◦b⇒3◦c. Obviously a 6= ⊥A.
Let a filter b @ a. Take X ∈ up b such that X /∈ up a. Then X ∈ up a
because a is prime and thus X ∈ up b. So ⊥Z = X uZ X ∈ up b and
thus b = ⊥A. So a is atomic.

3◦c⇒3◦a. By the previous proposition.
�

5.16. Stars for filters

Theorem 563. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a distributive lattice which is an ideal

base and has least element.
3◦. ∂a is a free star for each a ∈ A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. A is a distributive lattice by the corollary 528. The filtrator (A,Z) is

binarily join-closed by corollary 531. So we can apply the theorem 551.
�

5.16.1. Stars of Filters on Boolean Lattices. In this section we will con-
sider the set of filters A on a boolean lattice Z.

Theorem 564. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a boolean lattice.
3◦. ∂A = ¬〈¬〉∗ upA = 〈¬〉∗¬upA and upA = ¬〈¬〉∗∂A = 〈¬〉∗¬∂A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Because of properties of diagram (1), it is enough to prove just ∂A =

¬〈¬〉∗ upA. Really, X ∈ upA ⇔ X w A ⇔ X �A A ⇔ X /∈ ∂A for any
X ∈ Z (taking into account theorems 532, 534, and lemma 548).

�

Corollary 565. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a boolean lattice.
3◦. ∂ is an order isomorphism from A to S(Z).

Proof. By properties of the diagram (1). �

Corollary 566. The following is an implications tuple:
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1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a boolean lattice.
3◦. ∂ d

A
S =

⋃
〈∂〉∗S for every S ∈PA.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. ∂ d

A
S = d

S(Z)〈∂〉∗S =
⋃
〈∂〉∗S.

�

5.17. Generalized Filter Base

Definition 567. Generalized filter base is a filter base on the set A where
(A,Z) is a primary filtrator.

Definition 568. If S is a generalized filter base and A =
dA

S for some A ∈ A,
then we call S a generalized filter base of A.

Theorem 569. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a meet-semilattice.
3◦. For a generalized filter base S of F ∈ A and K ∈ Z we have

K ∈ upF ⇔ ∃L ∈ S : K ∈ upL.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦.

⇐. Because F =
dA

S.
⇒. Let K ∈ upF . Then (taken into account corollary 522 and that

S is nonempty) there exist X1, . . . , Xn ∈
⋃
〈up〉∗S such that K ∈

up(X1 uZ · · · uZ Xn) that is K ∈ up(↑ X1 uZ · · · uZ ↑ Xn). Conse-
quently (by theorem 532) K ∈ up(↑ X1 uA · · · uA ↑ Xn). Replacing
every ↑ Xi with such Xi ∈ S that Xi ∈ upXi (this is obviously possi-
ble to do), we get a finite set T0 ⊆ S such that K ∈ up

dA
T0. From

this there exists C ∈ S such that C v
dA

T0 and so K ∈ up C.
�

Corollary 570. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a meet-semilattice with least element.
3◦. For a generalized filter base S of a F ∈ A we have

⊥A ∈ S ⇔ F = ⊥A.

Proof. Substitute ⊥A as K. �

Theorem 571. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a meet-semilattice with least element.
3◦. Let F0uA · · ·uAFn 6= ⊥A for every F0, . . . ,Fn ∈ S, where S is a nonempty

set of elements of A. Then
dA

S 6= ⊥A.

Proof. Consider the set

S′ =
{
F0 uA · · · uA Fn
F0, . . . ,Fn ∈ S

}
.
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Obviously S′ is nonempty and binarily meet-closed. So S′ is a generalized filter
base. Obviously ⊥A /∈ S. So by properties of generalized filter bases

dA
S′ 6= ⊥A.

But obviously
dA

S =
dA

S′. So
dA

S 6= ⊥A. �

Corollary 572. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a meet-semilattice with least element.
3◦. Let S ∈ PZ such that S 6= ∅ and A0 uZ · · · uZ An 6= ⊥Z for every

A0, . . . , An ∈ S. Then
dA

S 6= ⊥A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Because (A,Z) is binarily meet-closed (by the theorem 532).

�

Theorem 573. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a bounded meet-semilattice.
3◦. A is an atomic lattice.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Let F ∈ A. Let choose (by Kuratowski’s lemma) a maximal chain S

from ⊥A to F . Let S′ = S \ {⊥A}. a =
dA

S′ 6= ⊥A by properties of
generalized filter bases (the corollary 570 which uses the fact that Z is a
meet-semilattice with least element). If a /∈ S then the chain S can be
extended adding there element a because ⊥A @ a v X for any X ∈ S′
what contradicts to maximality of the chain. So a ∈ S and consequently
a ∈ S′. Obviously a is the minimal element of S′. Consequently (taking
into account maximality of the chain) there is no Y ∈ A such that ⊥A @
Y @ a. So a is an atomic filter. Obviously a v F .

�

Definition 574. A complete lattice is co-compact iff
d
S = ⊥ for a set S

of elements of this lattice implies that there is its finite subset T ⊆ S such thatd
T = ⊥.

Theorem 575. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a bounded meet-semilattice.
3◦. A is co-compact.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Poset A is complete by corollary 515.

If ⊥ ∈ up
dA

S then there are Ki ∈ up
⋃
S such that ⊥ ∈ up(K0 uZ

. . . uZ Kn) that is K0 uZ . . . uZ Kn = ⊥ from which easily follows F0 uA

. . . uA Fn = ⊥ for some Fi ∈ S.
�

5.18. Separability of filters

Proposition 576. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a boolean lattice.
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3◦. A is strongly separable.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. By properties of stars of filters.

�

Remark 577. [14] seems to show that the above theorem cannot be generalized
for a wider class of lattices.

Theorem 578. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a boolean lattice.
3◦. A is an atomistic poset.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Because (used theorem 229) A is atomic (theorem 573) and separable.

�

Corollary 579. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a boolean lattice.
3◦. A is atomically separable.

Proof. By theorem 227. �

5.19. Some Criteria

Theorem 580. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a complete boolean lattice.
3◦. (A,Z) is a down-aligned, with join-closed, binarily meet-closed and sepa-

rable core which is a complete boolean lattice.
4◦. The following conditions are equivalent for any F ∈ A:

(a) F ∈ Z;
(b) ∀S ∈PA :

(
F uA d

A
S 6= ⊥ ⇒ ∃K ∈ S : F uA K 6= ⊥

)
;

(c) ∀S ∈PZ :
(
F uA d

A
S 6= ⊥ ⇒ ∃K ∈ S : F uA K 6= ⊥

)
.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. The filtrator (A,Z) is with with join-closed core by theorem 531, binarily

meet-closed core by corollary 533, with separable core by theorem 534.
3◦⇒4◦.

4◦a⇒4◦b. Let F ∈ Z. Then (taking into account the lemma 548)

F uA
A

lS 6= ⊥ ⇔ F 6w
A

lS ⇒ ∃K ∈ S : F 6w K ⇔ ∃K ∈ S : F uA K 6= ⊥.

4◦b⇒4◦c. Obvious.
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4◦c⇒4◦a.

∀S ∈PZ :
(
F uA

A

lS 6= ⊥ ⇒ ∃K ∈ S : F uA K 6= ⊥
)
⇔

∀S ∈PZ :
(
F 6�A

Z

lS ⇒ ∃K ∈ S : F 6�A K

)
⇔ (lemma 548)

∀S ∈PZ :

 Z

lS 6w F ⇒ ∃K ∈ S : K 6w F

⇔
∀S ∈PZ :

∀K ∈ S : K w F ⇒
Z

lS w F

⇔
∀S ∈PZ :

(
∀K ∈ S : K w F ⇒

Zl
〈¬〉∗S w F

)
⇔

∀S ∈PZ :
(
∀K ∈ S : K w F ⇒

Zl
S w F

)
⇒

Zl
upF w F ⇔

Zl
upF ∈ upF ⇒

F ∈ Z.

�

Remark 581. The above theorem strengthens theorem 53 in [30]. Both the
formulation of the theorem and the proof are considerably simplified.

Definition 582. Let S be a subset of a meet-semilattice. The filter base
generated by S is the set

[S]u =
{

a0 u · · · u an
ai ∈ S, n = 0, 1, . . .

}
.

Lemma 583. The set of all finite subsets of an infinite set A has the same
cardinality as A.

Proof. Let denote the number of n-element subsets of A as sn. Obviously
sn ≤ cardAn = cardA. Then the number S of all finite subsets of A is equal to

s0 + s1 + · · · ≤ cardA+ cardA+ · · · = cardA.
That S ≥ cardA is obvious. So S = cardA. �

Lemma 584. A filter base generated by an infinite set has the same cardinality
as that set.

Proof. From the previous lemma. �

Definition 585. Let A be a complete lattice. A set S ∈ PA is filter-closed
when for every filter base T ∈PS we have

d
T ∈ S.

Theorem 586. A subset S of a complete lattice is filter-closed iff for every
nonempty chain T ∈PS we have

d
T ∈ S.

Proof. (proof sketch by Joel David Hamkins)
⇒. Because every nonempty chain is a filter base.
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⇐. We will assume that cardinality of a set is an ordinal defined by von Neumann
cardinal assignment (what is a standard practice in ZFC). Recall that
α < β ⇔ α ∈ β for ordinals α, β.

We will take it as given that for every nonempty chain T ∈ PS we
have

d
T ∈ S.

We will prove the following statement: If cardS = n then S is filter
closed, for any cardinal n.

Instead we will prove it not only for cardinals but for wider class of
ordinals: If cardS = n then S is filter-closed, for any ordinal n.

We will prove it using transfinite induction by n.
For finite n we have

d
T ∈ S because T ⊆ S has minimal element.

Let cardT = n be an infinite ordinal.
Let the assumption hold for every m ∈ cardT .
We can assign T =

{
aα

α∈cardT
}

for some aα because card cardT =
cardT .

Consider β ∈ cardT .
Let Pβ =

{
aα
α∈β

}
. Let bβ =

d
Pβ . Obviously bβ =

d
[Pβ ]u. We have

card[Pβ ]u = cardPβ = cardβ < cardT

(used the lemma and von Neumann cardinal assignment). By the assump-
tion of induction bβ ∈ S.
∀β ∈ cardT : Pβ ⊆ T and thus bβ w

d
T .

It is easy to see that the set
{

Pβ
β∈cardT

}
is a chain. Consequently{

bβ
β∈cardT

}
is a chain.

By the theorem conditions b =
d
β∈cardT bβ ∈ S (taken into account

that bβ ∈ S by the assumption of induction).
Obviously b w

d
T .

b v bβ and so ∀β ∈ cardT, α ∈ β : b v aα. Let α ∈ cardT . Then
(because cardT is a limit ordinal, see [44]) there exists β ∈ cardT such
that α ∈ β ∈ cardT . So b v aα for every α ∈ cardT . Thus b v

d
T .

Finally
d
T = b ∈ S.

�

5.20. Co-Separability of Core

Theorem 587. The following is an implications tuple.

1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a meet infinite distributive complete

lattice.
3◦. (A,Z) is an up-aligned filtered filtrator whose core is a meet infinite dis-

tributive complete lattice.
4◦. This filtrator is with co-separable core.

Proof.

1◦⇒2◦. Obvious.
2◦⇒3◦. It is obviously up-aligned, and filtered by theorem 531.
3◦⇒4◦. Our filtrator is with join-closed core (theorem 531).

Let a, b ∈ A. Cor a and Cor b exist since Z is a complete lattice.
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Cor a ∈ down a and Cor b ∈ down b by the theorem 539 since our
filtrator is filtered. So we have

∃x ∈ down a, y ∈ down b : x tA y = > ⇐
Cor a tA Cor b = > ⇔ (by finite join-closedness of the core)
Cor a tZ Cor b = > ⇔

Zl
up a tZ

Zl
up b = > ⇔ (by infinite distributivity)

Zl{ x tZ y
x ∈ up a, y ∈ up b

}
= > ⇐

∀x ∈ up a, y ∈ up b : x tZ y = > ⇔ (by binary join-closedness of the core)
∀x ∈ up a, y ∈ up b : x tA y = > ⇐

a tA b = >.
�

5.21. Complements and Core Parts

Lemma 588. If (A,Z) is a filtered, up-aligned filtrator with co-separable core
which is a complete lattice, then for any a, c ∈ A

c ≡A a⇔ c ≡A Cor a.

Proof.
⇒. If c ≡A a then by co-separability of the core exists K ∈ down a such that

c ≡A K. To finish the proof we will show that K v Cor a. To show this
is enough to show that ∀X ∈ up a : K v X what is obvious.

⇐. Cor a v a (by theorem 539 using that our filtrator is filtered).
�

Theorem 589. If (A,Z) is a filtered up-aligned complete lattice filtrator with
co-separable core which is a complete boolean lattice, then a+ = Cor a for every
a ∈ A.

Proof. Our filtrator is with join-closed core (theorem 531).
a+ =

Al{ c ∈ A

c tA a = >A

}
=

Al{ c ∈ A

c tA Cor a = >A

}
=

Al{ c ∈ A

c w Cor a

}
=

Cor a
(used the lemma above and lemma 548). �

Corollary 590. If (A,Z) is a filtered up-aligned complete lattice filtrator with
co-separable core which is a complete boolean lattice, then a+ ∈ Z for every a ∈ A.

Theorem 591.
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a complete boolean lattice.
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3◦. (A,Z) is a filtered complete lattice filtrator with down-aligned, binarily
meet-closed, separable core which is a complete boolean lattice.

4◦. a∗ = Cor a = Cor′ a for every a ∈ A.

Proof.
1◦⇒2◦ Obvious.
2◦⇒3◦ It is filtered by theorem 531. It is complete lattice filtrator by 515. It is

with binarily meet-closed core (proposition 533), with separable core (theorem 534).
3◦⇒4◦ Our filtrator is with join-closed core (theorem 531). a∗ =

d

A{ c∈A
cuAa=⊥A

}
. But c uA a = ⊥A ⇒ ∃C ∈ up c : C uA a = ⊥A. So

a∗ =
A

l

{
C ∈ Z

C uA a = ⊥A

}
=

A

l

{
C ∈ Z

a v C

}
=

A

l

{
C

C ∈ Z, a v C

}
=

A

l

{
C

C ∈ up a

}
=

Z

l

{
C

C ∈ up a

}
=

Zl{ C

C ∈ up a

}
=

Zl
up a =

Cor a
(used lemma 548).

Cor a = Cor′ a by theorem 542. �

Theorem 592. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a complete boolean lattice.
3◦. (A,Z) is a filtered down-aligned and up-aligned complete lattice filtra-

tor with binarily meet-closed, separable and co-separable core which is a
complete boolean lattice.

4◦. a∗ = a+ = Cor a = Cor′ a ∈ Z for every a ∈ A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. The filtrator (A,Z) is filtered by the theorem 531. A is a complete lat-

tice by corollary 515. (A,Z) is with co-separable core by theorem 587.
(A,Z) is binarily meet-closed by proposition 533, with separable core by
theorem 534.

3◦⇒4◦. Comparing two last theorems.
�

Theorem 593. The following is an implications tuple:
1◦. (A,Z) is a primary filtrator over a complete lattice.



5.22. CORE PART AND ATOMIC ELEMENTS 101

2◦. (A,Z) is a complete lattice filtrator with join-closed separable core which
is a complete lattice.

3◦. a∗ ∈ Z for every a ∈ A.

Proof.
1◦⇒2◦. A is a complete lattice by corollary 515. (A,Z) is a filtrator with join-

closed core by theorem 531. (A,Z) is a filtrator with separable core by
theorem 534.

2◦⇒3◦.
{

c∈A
cuAa=⊥A

}
⊇
{

A∈Z
AuAa=⊥A

}
; consequently a∗ w d

A{ A∈Z
AuAa=⊥A

}
.

But if c ∈
{

c∈A
cuAa=⊥A

}
then there exists A ∈ Z such that A w c

and A uA a = ⊥A that is A ∈
{

A∈Z
AuAa=⊥A

}
. Consequently a∗ v

d

A{ A∈Z
AuAa=⊥A

}
.

We have a∗ = d

A{ A∈Z
AuAa=⊥A

}
= d

Z{ A∈Z
AuAa=⊥A

}
∈ Z.

�

Theorem 594. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a complete boolean lattice.
3◦. (A,Z) is an up-aligned filtered complete lattice filtrator with co-separable

core which is a complete boolean lattice.
4◦. a+ is dual pseudocomplement of a, that is

a+ = min
{

c ∈ A

c tA a = >A

}
for every a ∈ A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. (A,Z) is filtered by the theorem 531. It is with co-separable core by theo-

rem 587. A is a complete lattice by corollary 515.
3◦⇒4◦. Our filtrator is with join-closed core (theorem 531). It’s enough to prove

that a+ tA a = >A. But a+ tA a = Cor a tA a w Cor a tA Cor a =
Cor atZ Cor a = >A (used the theorem 539 and the fact that our filtrator
is filtered).

�

Definition 595. The edge part of an element a ∈ A is Edg a = a \ Cor a, the
dual edge part is Edg′ a = a \ Cor′ a.

Knowing core part and edge part or dual core part and dual edge part of an
element of a filtrator, the filter can be restored by the formulas:

a = Cor a tA Edg a and a = Cor′ a tA Edg′ a.

5.22. Core Part and Atomic Elements

Proposition 596. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over an atomistic lattice.
3◦. (A,Z) is a filtrator with join-closed core and Z be an atomistic lattice.
4◦. Cor′ a = d

Z
{

x
x is an atom of Z,xva

}
for every a ∈ A such that Cor′ a exists.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. (A,Z) is with join-closed core by corollary 531.
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3◦⇒4◦.
Cor′ a =

Z

l

{
A ∈ Z

A v a

}
=

Z

l

{

d

Z atomsZA
A ∈ Z, A v a

}
=

Z

l

⋃{ atomsZA
A ∈ Z, A v a

}
=

Z

l

{
x

x is an atom of Z, x v a

}
.

�

Corollary 597. Cor a =↑
{

p∈U
↑{p}va

}
and

⋂
a =

{
p∈U
↑{p}va

}
for every filter a

on a set U.

Proof. By proposition 543. �

5.23. Distributivity of Core Part over Lattice Operations

Theorem 598. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a complete lattice.
3◦. (A,Z) is a join-closed filtrator and A is a meet-semilattice and Z is a

meet-semilattice.
4◦. Cor′(a uA b) = Cor′ a uZ Cor′ b for every a, b ∈ A. whenever Cor′(a uA b),

Cor′ a, and Cor′ b exist

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. (A,Z) is with join-closed core by corollary 531. A is a meet-semilattice by

corollary 515.
3◦⇒4◦. We have Cor′ p v p for every p ∈ A whenever Cor′ p exists, because our

filtrator is with join-closed core (theorem 540).
Obviously Cor′(a uA b) v Cor′ a and Cor′(a uA b) v Cor′ b.
If x v Cor′ a and x v Cor′ b for some x ∈ Z then x v a and x v b,

thus x v a uA b and x v Cor′(a uA b).
�

Theorem 599. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a complete lattice.
3◦. (A,Z) is a join-closed filtrator.
4◦. Cor′

dA
S =

dZ〈Cor′
〉∗
S for every S ∈ PA whenever both sides of the

equality are defined. Also Cor′
dA

T =
dZ

T for every T ∈PZ whenever
both sides of the equality are defined.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. It is with join-closed core by theorem 531. A is a complete lattice by

corollary 515.
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3◦⇒4◦. We have Cor′ p v p for every p ∈ A because our filtrator is with join-closed
core (theorem 540).

Obviously Cor′
dA

S v Cor′ a for every a ∈ S.
If x v Cor′ a for every a ∈ S for some x ∈ Z then x v a, thus

x v
dA

S and x v Cor′
dA

S.
So Cor′

dA
S =

dZ〈Cor′
〉∗
S. Cor′

dA
T =

dZ
T trivially follows

from this.
�

Theorem 600. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a complete atomistic distributive lattice.
3◦. (A,Z) is a filtered down-aligned filtrator with binarily meet-closed core Z

which is a complete atomistic lattice and A is a complete starrish lattice.
4◦. Cor′(a tA b) = Cor′ a tZ Cor′ b for every a, b ∈ A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. (A,Z) is filtered by theorem 531. It is with binarily meet-close core by

corollary 533. A is starrish by corollary 528. A is complete by corol-
lary 515.

3◦⇒4◦. From theorem conditions it follows that Cor′(a tA b) exists.
Cor′(a tA b) = d

Z
{

x
x is an atom of Z,xvatAb

}
(used proposition 596).

By theorem 555 we have

Cor′(a tA b) =
Z

l((atomsA(a tA b)) ∩ Z) =
Z

l((atomsA a ∪ atomsA b) ∩ Z) =
Z

l((atomsA a ∩ Z) ∪ (atomsA b ∩ Z)) =
Z

l(atomsA a ∩ Z) tZ
Z

l(atomsA b ∩ Z)

(used the theorem 493). Again using theorem 555, we get

Cor′(a tA b) =
Z

l

{
x

x is an atom of Z, x v a

}
tZ

Z

l

{
x

x is an atom of Z, x v b

}
=

Cor′ a tZ Cor′ b

(again used proposition 596).
�

See also theorem 167 above.

5.24. Separability criteria

Theorem 601. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a boolean lattice.
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3◦. (A,Z) is a filtrator with correct intersection, with binarily meet-closed and
separable core.

4◦. B �A A ⇔ B w A for every B ∈ Z, A ∈ A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Using proposition 546, corollary 533, theorem 534.
3◦⇒4◦. By the lemma 548.

�

Theorem 602. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a complete boolean lattice.
3◦. (A,Z) is a filtrator over a boolean lattice with correct joining and co-

separable core.
4◦. B ≡A A ⇔ B v A for every B ∈ Z, A ∈ A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Using obvious 547, theorem 587.
3◦⇒4◦. By the lemma 548.

�

5.25. Filtrators over Boolean Lattices

Proposition 603. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a boolean lattice.
3◦. (A,Z) is a down-aligned and up-aligned binarily meet-closed and binarily

join-closed distributive lattice filtrator and Z is a boolean lattice.
4◦. a \ AB = a uA B for every a ∈ A, B ∈ Z.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. A is a distributive lattice by corollary 528. Our filtrator is binarily meet-

closed by the corollary 533 and with join-closed core by the theorem 531.
It is also up and down aligned.

3◦⇒4◦.
(a uA B) tA B = (a tA B) uA (B tA B) = (a tA B) uA (B tZ B) = (a tA B) uA > = a tA B.

(a uA B) uA B = a uA (B uA B) = a uA (B uZ B) = a uA ⊥ = ⊥.

So a uA B is the difference of a and B.
�

Proposition 604. For a primary filtrator over a complete boolean lattice both
edge part and dual edge part are always defined.

Proof. Core part and dual core part are defined because the core is a complete
lattice. Using the theorem 603. �

Theorem 605. The following is an implications tuple:
1◦. (A,Z) is a primary filtrator over a boolean lattice.
2◦. (A,Z) is a complete co-brouwerian atomistic down-aligned lattice filtrator

with binarily meet-closed and separable boolean core.
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3◦. The three expressions of pseudodifference of a and b in theorem 244 are
also equal to d

{
auB
B∈up b

}
.

Proof.
1◦⇒2◦. The filtrator of filters on a boolean lattice is:
• complete by corollary 515;
• atomistic by theorem 578;
• co-brouwerian by corollary 528;
• with separable core by theorem 534;
• with binarily meet-closed core by corollary 533.
2◦⇒3◦. d

{
z∈F

zva∧zub=⊥

}
v d

{
auB
B∈up b

}
because

z ∈
{

z ∈ F

z v a ∧ z u b = ⊥

}
⇔ z v a ∧ z u b = ⊥ ⇔ (separability)

z v a ∧ ∃B ∈ up b : z uB = ⊥ ⇔ (theorem 601)⇔ z v a ∧ ∃B ∈ up b : z v B ⇔
∃B ∈ up b :

(
z v a ∧ z v B

)
⇔ ∃B ∈ up b : z v a uB ⇒

z v l

{
a uB
B ∈ up b

}
.

But a uB ∈
{

z∈F
zva∧zub=⊥

}
because(

a uB
)
u b = a u

(
B u b

)
v a u

(
B uA B

)
= a u

(
B uZ B

)
= a u ⊥ = ⊥

and thus
a uB v l

{
z ∈ F

z v a ∧ z u b = ⊥

}
so d

{
z∈F

zva∧zub=⊥

}
w d

{
auB
B∈up b

}
.

�

5.26. Distributivity for an Element of Boolean Core

Lemma 606. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a boolean lattice.
3◦. (A,Z) is an up-aligned binarily join-closed and binarily meet-closed dis-

tributive lattice filtrator over a boolean lattice.
4◦. AuA is a lower adjoint of AtA for every A ∈ Z.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. It is binarily join closed by theorem 531. It is binarily meet-closed by

corollary 533. It is distributive by corollary 528.
3◦⇒4◦. We will use the theorem 126.

That AuA and AtA are monotone is obvious.
We need to prove (for every x, y ∈ A) that

x v A tA (A uA x) and A uA (A tA y) v y.
Really,

AtA(AuAx) = (AtAA)uA(AtAx) = (AtZA)uA(AtAx) = >uA(AtAx) = AtAx w x
and

AuA(AtAy) = (AuAA)tA(AuAy) = (AuZA)tA(AuAy) = ⊥tA(AuAy) = AuAy v y.
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�

Theorem 607. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a boolean lattice.
3◦. (A,Z) is an up-aligned binarily join-closed and binarily meet-closed dis-

tributive lattice filtrator over a boolean lattice.
4◦. A uA d

A
S = d

A〈
AuA

〉∗
S for every A ∈ Z and every set S ∈PA.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. It is binarily join-closed by theorem 531. It is binarily meet-closed by

corollary 533. It is distributive by corollary 528.
3◦⇒4◦. Direct consequence of the lemma.

�

5.27. More about the Lattice of Filters

Definition 608. Atoms of F are called ultrafilters.

Definition 609. Principal ultrafilters are also called trivial ultrafilters.

Theorem 610. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a boolean lattice.
3◦. The filtrator (A,Z) is central.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. We can conclude that A is atomically separable (the corollary 579), with

separable core (the theorem 534), and with join-closed core (theorem 531),
binarily meet-closed by corollary 533.

We need to prove Z(A) = Z.
Let X ∈ Z(A). Then there exists Y ∈ Z(A) such that X uA Y =

⊥A and X tA Y = >A. Consequently there is X ∈ upX such that
X uA Y = ⊥A; we also have X tA Y = >A. Suppose X A X . Then
there exists a ∈ atomsAX such that a /∈ atomsA X . We can conclude also
a /∈ atomsA Y (otherwise X uA Y 6= ⊥A). Thus a /∈ atoms(X tA Y) and
consequently X tAY 6= >A what is a contradiction. We have X = X ∈ Z.

Let nowX ∈ Z. Let Y = X. We haveXuZY = ⊥A andXtZY = >A.
Thus X uA Y =

dA{X uZ Y } = ⊥A; X uA Y = X uZ Y = >A. We have
shown that X ∈ Z(A).

�

5.28. More Criteria

Theorem 611. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a boolean lattice.
3◦. For every S ∈ PA the condition ∃F ∈ A : S = ?F is equivalent to

conjunction of the following items:
(a) S is a free star on A;
(b) S is filter-closed.

Proof.
1◦⇒2◦. Obvious.
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2◦⇒3◦.
⇒.

3◦a. That ⊥A /∈ ?F is obvious. For every a, b ∈ A

a tA b ∈ ?F ⇔
(a tA b) uA F 6= ⊥A ⇔

(a uA F) tA (b uA F) 6= ⊥A ⇔
a uA F 6= ⊥A ∨ b uA F 6= ⊥A ⇔

a ∈ ?F∨ ∈ ?F

(taken into account corollary 528). So ?F is a free star on A.
3◦b. We have a filter base T ⊆ S and need to prove thatdA
T u F 6= ⊥A. Because

〈
FuA

〉∗
T is a generalized filter base,

⊥A ∈
〈
FuA

〉∗
T ⇔

dA〈FuA〉∗T = ⊥A ⇔
dA

T uA F 6= ⊥A. So it is
left to prove ⊥A /∈

〈
FuA

〉∗
T what follows from T ⊆ S.

⇐. Let S be a free star on A. Then for every A,B ∈ Z

A,B ∈ S ∩ Z⇔
A,B ∈ S ⇔

A tA B ∈ S ⇔
A tZ B ∈ S ⇔

A tZ B ∈ S ∩ Z

(taken into account the theorem 531). So S ∩ Z is a free star on Z.
Thus there exists F ∈ A such that ∂F = S ∩ Z. We have upX ⊆
S ⇔ X ∈ S (because S is filter-closed) for every X ∈ A; then (taking
into account properties of generalized filter bases)

X ∈ S ⇔
upX ⊆ S ⇔

upX ⊆ ∂F ⇔
∀X ∈ upX : X uA F 6= ⊥A ⇔

⊥A /∈
〈
FuA

〉∗ upX ⇔
Al〈
FuA

〉∗ upX 6= ⊥A ⇔

F uA
Al

upX 6= ⊥A ⇔

F uA X 6= ⊥A ⇔
X ∈ ?F .

�

5.29. Filters and a Special Sublattice

Remind that Z(X) is the center of lattice X and Da is the lattice
{
x∈A
xva

}
.

Theorem 612. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a boolean lattice.
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3◦. Let A ∈ A. Then for each X ∈ A

X ∈ Z(DA)⇔ ∃X ∈ Z : X = X uA A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦.

⇐. Let X = XuAA where X ∈ Z. Let also Y = XuAA. Then X uAY =
XuAXuAA = (XuZX)uAA = ⊥AuAA = ⊥A (used corollary 533)
and X tA Y = (X tA X) uA A = (X tZ X) uA A = >A uA A = A
(used theorem 531 and corollary 528). So X ∈ Z(DA).

⇒. Let X ∈ Z(DA). Then there exists Y ∈ Z(DA) such that X uA Y =
⊥A and XtAY = A. Then (used theorem 534) there existsX ∈ upX
such that X uA Y = ⊥A. We have

X = X t (X uA Y) = X uA (X tA Y) = X uA A.

�

Theorem 613. The following is an implication tuple:
1◦. (A;Z) is a powerset filtrator.
2◦. (A;Z) is a primary filtrator over a boolean lattice.
3◦. F(Z(DA)) is order-isomorphic to DA by the formulas

• Y =
d
X for every X ∈ F(Z(DA));

• X =
{
F∈Z(DA)
FwY

}
for every Y ∈ DA.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. We need to prove that the above formulas define a bijection, then it

becomes evident that it’s an order isomorphism (take into account that the order
of filters is reverse to set inclusion).

First prove that these formulas describe correspondences between F(Z(DA))
and DA.

Let X ∈ F(Z(DA)). Consider Y =
d
X . Every element of X is below A,

consequently Y ∈ DA.
Let now Y ∈ DA. Then

{
F∈Z(DA)
FwY

}
is a filter.

It remains to prove that these correspondences are mutually inverse.
Let X =

{
F∈Z(DA)
FwY0

}
and Y1 =

d
X for some Y0 ∈ DA.

Y1 w Y0 is obvious. By theorem 612 and the condition 2◦ we have Y1 =
d
X v

dA
{

FuA
F∈upY0

}
=
dA
{

F
F∈upY0

}
u A = Y0 u A = Y0. So Y1 = Y0.

Let now Y =
d
X0 and X1 =

{
F∈Z(DA)
FwY

}
for some X0 ∈ F(Z(DA)).

X1 =
{
F∈Z(DA)
Fw

d
X0

}
= (by generalized filter bases) =

{
F∈Z(DA)
∃X∈X0:FwX

}
={

F∈Z(DA)
F∈X0

}
= X0 because F ∈ X0 ⇔ ∃X ∈ X0 : F w X if F ∈ Z(DA).

�

5.30. Distributivity of quasicomplements

Theorem 614. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a complete boolean lattice.
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3◦. (A,Z) is a filtered down-aligned and up-aligned complete lattice filtra-
tor with binarily meet-closed, separable and co-separable core which is a
complete boolean lattice.

4◦. (a uA b)∗ = (a uA b)+ = a∗ tA b∗ = a+ tA b+ for every a, b ∈ A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. The filtrator (A,Z) is filtered by the theorem 531. A is a complete lat-

tice by corollary 515. (A,Z) is with co-separable core by theorem 587.
(A,Z) is binarily meet-closed by proposition 533, with separable core by
theorem 534.

3◦⇒4◦. Theorem 592 apply. Also theorem 598 apply because every filtered filtrator
is join-closed. So

(auAb)∗ = (auAb)+ = Cor(a uA b) = Cor a uZ Cor b = Cor atACor b = a+tAb+ = a∗tAb∗.
�

Theorem 615. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a filtered starrish down-aligned and up-aligned complete lattice

filtrator with binarily meet-closed, separable and co-separable core which
is a complete atomistic boolean lattice.

3◦. (a tA b)∗ = (a tA b)+ = a∗ uA b∗ = a+ uA b+ for every a, b ∈ A.

Proof.
1◦⇒2◦. (A,Z) is a filtered (theorem 531), distributive (corollary 528) complete lat-

tice filtrator (corollary 515), with binarily meet-closed core (corollary 533),
with separable core (theorem 534), with co-separable core (theorem 587).

2◦⇒3◦. (atAb)+ = (atAb)∗ = Cor′(a tA b) = Cor′ a tZ Cor′ b = Cor′ auZCor′ b =
a∗ uZ b∗ = a∗ uA b∗ = a+ uA b+ (used theorems 591, 600, 592).

�

Theorem 616. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a complete boolean lattice.
3◦. (A,Z) is a filtered complete lattice filtrator with down-aligned, binarily

meet-closed, separable core which is a complete boolean lattice.
4◦. (a uA b)∗ = a∗ tA b∗ for every a, b ∈ A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. It is filtered by theorem 531. It is complete lattice filtrator by 515. It is

with binarily meet-closed core (corollary 533), with separable core (theo-
rem 534).

3◦⇒4◦. It is join closed because it is filtered. (a uA b)∗ = Cor′(a uA b) =
Cor′ a uZ Cor′ b = Cor′ a tZ Cor′ b = a∗ tZ b∗ = a∗ tA b∗ (theorems 598,
591).

�

Theorem 617. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a filtered starrish down-aligned complete lattice filtrator with

binarily meet-closed, separable core which is a complete atomistic boolean
lattice.
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3◦. (a tA b)∗ = a∗ uA b∗ for every a, b ∈ A.

Proof.
1◦⇒2◦. (A,Z) is a filtered (theorem 531), distributive (corollary 528) complete lat-

tice filtrator (corollary 515), with binarily meet-closed core (corollary 533),
with separable core (theorem 534).

2◦⇒3◦. (atA b)∗ = Cor′(a tA b) = Cor′ a tZ Cor′ b = Cor′ auZ Cor′ b = a∗ uZ b∗ =
a∗ uA b∗ (used theorems 591, 600).

�

Theorem 618. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a complete boolean lattice.
3◦. (A,Z) is a filtered up-aligned complete lattice filtrator with co-separable

core which is a complete boolean lattice.
4◦. (a uA b)+ = a+ tA b+ for every a, b ∈ A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. It is filtered by theorem 531, is a complete lattice by corollary 515, is with

co-separable core by theorem 587.
3◦⇒4◦. (a uA b)+ = Cor(a uA b) = Cor′(a uA b) = Cor′ a uZ Cor′ b = Cor′ a tZ

Cor′ b = Cor′ a tA Cor′ b = a+ tA b+ using theorems 589, 542, 598 and
the fact that filtered filtrator is join-closed.

�

Theorem 619. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a filtered down-aligned and up-aligned filtrator with binarily

meet-closed core, with co-separable core Z which is a complete atomistic
boolean lattice and A is a complete starrish lattice.

3◦. (a tA b)+ = a+ uA b+ for every a, b ∈ A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. (a tA b)+ = Cor(a tA b) = Cor′(a tA b) = Cor′ a tZ Cor′ b = Cor′ a uZ

Cor′ b = Cor a uA Cor b = a+ uA b+ using theorems 589, 542, 600.
�

5.31. Complementive Filters and Factoring by a Filter

Definition 620. Let A be a meet-semilattice and A ∈ A. The relation ∼ on A
is defined by the formula

∀X,Y ∈ A :(X ∼ Y ⇔ X uA A = Y uA A).

Proposition 621. The relation ∼ is an equivalence relation.

Proof.
Reflexivity. Obvious.
Symmetry. Obvious.
Transitivity. Obvious.

�

Definition 622. When X,Y ∈ Z and A ∈ A we define X ∼ Y ⇔↑ X ∼↑ Y .
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Theorem 623. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a distributive lattice.
3◦. For every A ∈ A and X,Y ∈ Z we have

X ∼ Y ⇔ ∃A ∈ upA : X uZ A = Y uZ A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦.

∃A ∈ upA : X uZ A = Y uZ A⇔ (corollary 533)
∃A ∈ upA :↑ XuA ↑ A =↑ Y uA ↑ A⇒

∃A ∈ upA :↑ XuA ↑ A uA A =↑ Y uA ↑ A uA A ⇔
∃A ∈ upA :↑ X uA A =↑ Y uA A ⇔

↑ X uA A =↑ Y uA A ⇔
↑ X ∼↑ Y ⇔
X ∼ Y.

On the other hand,

↑ X uA A =↑ Y uA A ⇔{
X uZ A0

A0 ∈ A

}
=
{
Y uZ A1

A1 ∈ A

}
⇒

∃A0, A1 ∈ upA : X uZ A0 = Y uZ A1 ⇒
∃A0, A1 ∈ upA : X uZ A0 uZ A1 = Y uZ A0 uZ A1 ⇒

∃A ∈ upA : Y uZ A = X uZ A.

�

Proposition 624. The relation ∼ is a congruence1 for each of the following:
1◦. a meet-semilattice A;
2◦. a distributive lattice A.

Proof. Let a0, a1, b0, b1 ∈ A and a0 ∼ a1 and b0 ∼ b1.
1◦. a0 u b0 ∼ a1 u b1because (a0 u b0) uA = a0 u (b0 uA) = a0 u (b1 uA) =

b1 u (a0 u A) = b1 u (a1 u A) = (a1 u b1) u A.
2◦. Taking the above into account, we need to prove only a0 t b0 ∼ a1 t b1.

We have

(a0 t b0) u A = (a0 u A) t (b0 u A) = (a1 u A) t (b1 u A) = (a1 t b1) u A.

�

Definition 625. We will denote A/(∼) = A/((∼) ∩ A × A) for a set A and
an equivalence relation ∼ on a set B ⊇ A. I will call ∼ a congruence on A when
(∼) ∩ (A×A) is a congruence on A.

Theorem 626. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a boolean lattice.

1See Wikipedia for a definition of congruence.



5.32. PSEUDODIFFERENCE OF FILTERS 112

3◦. Let A ∈ A. Consider the function γ : Z(DA) → Z/∼ defined by the
formula (for every p ∈ Z(DA))

γp =
{

X ∈ Z

X uA A = p

}
.

Then:
(a) γ is a lattice isomorphism.
(b) ∀Q ∈ q : γ−1q = Q uA A for every q ∈ Z/∼.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. ∀p ∈ Z(DA) : γp 6= ∅ because of theorem 612. Thus it is easy to see that

γp ∈ Z/∼ and that γ is an injection.
Let’s prove that γ is a lattice homomorphism:
γ(p0 uA p1) =

{
X∈Z

XuAA=p0uAp1

}
;

γp0 uZ/∼ γp1 ={
X0 ∈ Z

X0 uA A = p0

}
uZ/∼

{
X1 ∈ Z

X1 uA A = p1

}
={

X0 uA X1

X0, X1 ∈ Z, X0 uA A = p0 ∧X1 uA A = p1

}
⊆{

X ′ ∈ Z

X ′ uA A = p0 uA p1

}
=

γ(p0 uA p1).

Because γp0 uZ/∼ γp1 and γ(p0 uA p1) are equivalence classes, thus
follows γp0 uZ/∼ γp1 = γ(p0 uA p1).

To finish the proof it is enough to show that ∀Q ∈ q : q = γ(Q uA A)
for every q ∈ Z/∼. (From this it follows that γ is surjective because q is
not empty and thus ∃Q ∈ q : q = γ(Q uA A).) Really,

γ(Q uA A) =
{

X ∈ Z

X uA A = Q uA A

}
= [Q] = q.

�

This isomorphism is useful in both directions to reveal properties of both lattices
Z(DA) and q ∈ Z/∼.

Corollary 627. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a boolean lattice.
3◦. Z/∼ is a boolean lattice

Proof. Because Z(DA) is a boolean lattice (theorem 98). �

5.32. Pseudodifference of filters

Proposition 628. The following is an implications tuple:
1◦. A is a lattice of filters on a set.
2◦. A is a lattice of filters over a boolean lattice.
3◦. A is an atomistic co-brouwerian lattice.
4◦. For every a, b ∈ A the following expressions are always equal:

(a) a \∗ b =
d{

z∈A
avbtz

}
(quasidifference of a and b);

(b) a# b = d

{
z∈A

zva∧zub=⊥

}
(second quasidifference of a and b);
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(c) d(atoms a \ atoms b).

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. By corollary 528 and theorem 578.
3◦⇒4◦. Theorem 244.

Conjecture 629. a \∗ b = a# b for arbitrary filters a, b on powersets is not
provable in ZF (without axiom of choice).

�

5.33. Function spaces of posets

Definition 630. Let Ai be a family of posets indexed by some set domA. We
will define order of indexed families of elements of posets by the formula

a v b⇔ ∀i ∈ domA : ai v bi.
I will call this new poset

∏
A the function space of posets and the above order

product order.

Proposition 631. The function space for posets is also a poset.

Proof.
Reflexivity. Obvious.
Antisymmetry. Obvious.
Transitivity. Obvious.

�

Obvious 632. A has least element iff each Ai has a least element. In this case

⊥
∏

A =
∏

i∈domA

⊥Ai .

Proposition 633. a 6� b ⇔ ∃i ∈ domA : ai 6� bi for every a, b ∈
∏

A if every
Ai has least element.

Proof. If domA = ∅, then a = b = ⊥, a � b and thus the theorem statement
holds. Assume domA 6= ∅.

a 6� b⇔

∃c ∈
∏

A \ {⊥
∏

A} : (c v a ∧ c v b)⇔

∃c ∈
∏

A \ {⊥
∏

A}∀i ∈ domA : (ci v ai ∧ ci v bi)⇔

(for the reverse implication take cj = ⊥Aj for i 6= j)
∃i ∈ domA, c ∈ Ai \ {⊥Ai} : (c v ai ∧ c v bi)⇔

∃i ∈ domA : ai 6� bi.
�

Proposition 634.
1◦. If Ai are join-semilattices then A is a join-semilattice and

A tB = λi ∈ domA : Ai tBi. (2)
2◦. If Ai are meet-semilattices then A is a meet-semilattice and

A uB = λi ∈ domA : Ai uBi.
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Proof. It is enough to prove the formula (2).
It’s obvious that λi ∈ domA : Ai tBi w A,B.
Let C w A,B. Then (for every i ∈ domA) Ci w Ai and Ci w Bi. Thus

Ci w Ai tBi that is C w λi ∈ domA : Ai tBi. �

Corollary 635. If Ai are lattices then
∏

A is a lattice.

Obvious 636. If Ai are distributive lattices then
∏

A is a distributive lattice.

Proposition 637. If Ai are boolean lattices then
∏

A is a boolean lattice.

Proof. We need to prove only that every element a ∈
∏

A has a complement.
But this complement is evidently λi ∈ dom a : ai. �

Proposition 638. If every Ai is a poset then for every S ∈P
∏

A

1◦. dS = λi ∈ domA : dx∈S xi whenever every dx∈S xi exists;
2◦.

d
S = λi ∈ domA :

d
x∈S xi whenever every

d
x∈S xi exists.

Proof. It’s enough to prove the first formula.(
λi ∈ domA : dx∈S xi

)
i

= dx∈S xi w xi for every x ∈ S and i ∈ domA.
Let y w x for every x ∈ S. Then yi w xi for every i ∈ domA and thus

yi w dx∈S xi =
(
λi ∈ domA : dx∈S xi

)
i
that is y w λi ∈ domA : dx∈S xi.

Thus dS = λi ∈ domA : dx∈S xi by the definition of join. �

Corollary 639. If Ai are posets then for every S ∈P
∏

A

1◦. dS = λi ∈ domA : dx∈S xi whenever dS exists;
2◦.

d
S = λi ∈ domA :

d
x∈S xi whenever

d
S exists.

Proof. It is enough to prove that (for every i) dx∈S xi exists whenever dS
exists.

Fix i ∈ domA.
Take yi = ( dS)i and let prove that yi is the least upper bound of

{
xi
x∈S

}
.

yi is it’s upper bound because dS w x and thus ( dS)i w xi for every x ∈ S.
Let x ∈ S and for some t ∈ Ai

T (t) = λj ∈ domA :
{
t if i = j

xj if i 6= j.

Let t w xi. Then T (t) w x for every x ∈ S. So T (t) w dS and consequently
t = T (t)i w yi.

So yi is the least upper bound of
{

xi
x∈S

}
. �

Corollary 640. If Ai are complete lattices then A is a complete lattice.

Obvious 641. If Ai are complete (co-)brouwerian lattices then A is a (co-
)brouwerian lattice.

Proposition 642. If each Ai is a separable poset with least element (for some
index set n) then

∏
A is a separable poset.

Proof. Let a 6= b. Then ∃i ∈ domA : ai 6= bi. So ∃x ∈ Ai : (x 6� ai ∧ x � bi)
(or vice versa).

Take y = λj ∈ domA :
{
x if j = i;
⊥Aj if j 6= i.

Then y 6� a and y � b. �
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Obvious 643. If every Ai is a poset with least element, then the set of atoms
of
∏

A is 
λi ∈ domA :

({
a if i = k;
⊥Ai if i 6= k

)
k ∈ domA, a ∈ atomsAk

.
Proposition 644. If every Ai is an atomistic poset with least element, then∏

A is an atomistic poset.

Proof. xi = datomsxi for every xi ∈ Ai. Thus

x = λi ∈ dom x : xi = λi ∈ dom x : latomsxi =

l

i∈dom x

λj ∈ dom x :
{
xi if j = i

⊥Aj if j 6= i
=

l

i∈dom x

λj ∈ dom x :
{

datomsxi if j = i

⊥Aj if j 6= i
=

l

i∈dom x

l

q∈atoms xi

λj ∈ dom x :
{
q if j = i

⊥Aj if j 6= i
.

Thus x is a join of atoms of
∏

A. �

Corollary 645. If Ai are atomistic posets with least elements, then
∏

A is
atomically separable.

Proof. Proposition 227. �

Proposition 646. Let (Ai∈n,Zi∈n) be a family of filtrators. Then (
∏

A,
∏

Z)
is a filtrator.

Proof. We need to prove that
∏

Z is a sub-poset of
∏

A. First
∏

Z ⊆
∏

A
because Zi ⊆ Ai for each i ∈ n.

Let A,B ∈
∏

Z and A v
∏

Z B. Then ∀i ∈ n : Ai vZi Bi; consequently
∀i ∈ n : Ai vAi Bi that is A v

∏
A B. �

Proposition 647. Let (Ai∈n,Zi∈n) be a family of filtrators.
1◦. The filtrator (

∏
A,
∏

Z) is (binarily) join-closed if every (Ai,Zi) is (bina-
rily) join-closed.

2◦. The filtrator (
∏

A,
∏

Z) is (binarily) meet-closed if every (Ai,Zi) is (bi-
narily) meet-closed.

Proof. Let every (Ai,Zi) be binarily join-closed. Let A,B ∈
∏

Z and At
∏

Z

B exist. Then (by corollary 639)

A t
∏

Z B = λi ∈ n : Ai tZi Bi = λi ∈ n : Ai tAi Bi = A t
∏

A B.

Let now every (Ai,Zi) be join-closed. Let S ∈P
∏

Z and d

∏
Z
S exist. Then

(by corollary 639)∏
Z

lS = λi ∈ domA :
Zi

l

{ xi
x ∈ S

}
= λi ∈ domA :

Ai

l

{ xi
x ∈ S

}
=

∏
A

lS.

The rest follows from symmetry. �



5.33. FUNCTION SPACES OF POSETS 116

Proposition 648. If each (Ai,Zi) where i ∈ n (for some index set n) is a
down-aligned filtrator with separable core then (

∏
A,
∏

Z) is with separable core.

Proof. Let a 6= b. Then ∃i ∈ n : ai 6= bi. So ∃x ∈ Zi : (x 6� ai ∧ x � bi) (or
vice versa).

Take y = λj ∈ n :
{
x if j = i

⊥Aj if j 6= i
. Then we have y 6� a and y � b and

y ∈ Z. �

Proposition 649. Let every Ai be a bounded lattice. Every (Ai,Zi) is a
central filtrator iff (

∏
A,
∏

Z) is a central filtrator.

Proof.

x ∈ Z
(∏

A
)
⇔

∃y ∈
∏

A : (x u y = ⊥
∏

A ∧ x t y = >
∏

A)⇔

∃y ∈
∏

A∀i ∈ domA : (xi u yi = ⊥Ai ∧ xi t yi = >Ai)⇔

∀i ∈ domA∃y ∈ Ai : (xi u y = ⊥Ai ∧ xi t y = >Ai)⇔
∀i ∈ domA : xi ∈ Z(Ai).

So

Z
(∏

A
)

=
∏

Z⇔
∏

i∈domA

Z(Ai) =
∏

Z⇔

(because every Zi is nonempty)⇔ ∀i ∈ domA : Z(Ai) = Zi.

�

Proposition 650. For every element a of a product filtrator (
∏

A,
∏

Z):
1◦. up a =

∏
i∈dom a up ai;

2◦. down a =
∏
i∈dom a down ai.

Proof. We will prove only the first as the second is dual.

up a =
{
c ∈

∏
Z

c w a

}
=
{

c ∈
∏

Z

∀i ∈ dom a : ci w ai

}
={
c ∈

∏
Z

∀i ∈ dom a : ci ∈ up ai

}
=

∏
i∈dom a

up ai.

�

Proposition 651. If every (Ai∈n,Zi∈n) is a prefiltered filtrator, then
(
∏

A,
∏

Z) is a prefiltered filtrator.

Proof. Let a, b ∈
∏

A and a 6= b. Then there exists i ∈ n such that ai 6= bi
and so up ai 6= up bi. Consequently

∏
i∈dom a up ai 6=

∏
i∈dom a up bi that is up a 6=

up b. �

Proposition 652. Let every (Ai∈n,Zi∈n) be a filtered filtrator with upx 6= ∅
for every x ∈ Ai (for every i ∈ n). Then (

∏
A,
∏

Z) is a filtered filtrator.

Proof. Let every (Ai,Zi) be a filtered filtrator. Let up a ⊇ up b for some
a, b ∈

∏
A. Then

∏
i∈dom a up ai ⊇

∏
i∈dom a up bi and consequently (taking into

account that upx 6= ∅ for every x ∈ Ai) up ai ⊇ up bi for every i ∈ n. Then
∀i ∈ n : ai v bi that is a v b. �
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Proposition 653. Let (Ai,Zi) be filtrators and each Zi be a complete lattice
with upx 6= ∅ for every x ∈ Ai (for every i ∈ n). For a ∈

∏
A:

1◦. Cor a = λi ∈ dom a : Cor ai;
2◦. Cor′ a = λi ∈ dom a : Cor′ ai.

Proof. We will prove only the first, because the second is dual.

Cor a =∏
Zl

up a =

λi ∈ dom a :
Zil{ xi

x ∈ up a

}
= (upx 6= ∅ taken into account)

λi ∈ dom a :
Zil{ x

x ∈ up ai

}
=

λi ∈ dom a :
Zil

up ai =
λi ∈ dom a : Cor ai.

�

Proposition 654. If each (Ai,Zi) is a filtrator with (co)separable core and each
Ai has a least (greatest) element, then (

∏
A,
∏

Z) is a filtrator with (co)separable
core.

Proof. We will prove only for separable core, as co-separable core is dual.

x �
∏

A y ⇔
(used the fact that Ai has a least element)

∀i ∈ domA : xi �Ai yi ⇒
∀i ∈ domA∃X ∈ upxi : X �Ai yi ⇔
∃X ∈ upx∀i ∈ domA : Xi �Ai yi ⇔

∃X ∈ upx : X �
∏

A y

for every x, y ∈
∏

A. �

Obvious 655.
1◦. If each (Ai,Zi) is a down-aligned filtrator, then (

∏
A,
∏

Z) is a down-
aligned filtrator.

2◦. If each (Ai,Zi) is an up-aligned filtrator, then (
∏

A,
∏

Z) is an up-aligned
filtrator.

Obvious 656.
1◦. If each (Ai,Zi) is a weakly down-aligned filtrator, then (

∏
A,
∏

Z) is a
weakly down-aligned filtrator.

2◦. If each (Ai,Zi) is a weakly up-aligned filtrator, then (
∏

A,
∏

Z) is a weakly
up-aligned filtrator.

Proposition 657. If every bi is substractive from ai where a and b are n-
indexed families of elements of distributive lattices with least elements (where n is
an index set), then a \ b = λi ∈ n : ai \ bi.
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Proof. We need to prove (λi ∈ n : ai\bi)ub = ⊥ and atb = bt(λi ∈ n : ai\bi).
Really

(λi ∈ n : ai \ bi) u b = λi ∈ n : (ai \ bi) u bi = ⊥;
b t (λi ∈ n : ai \ bi) = λi ∈ n : bi t (ai \ bi) = λi ∈ n : bi t ai = a t b.

�

Proposition 658. If every Ai is a distributive lattice, then a \∗ b = λi ∈
domA : ai \∗ bi for every a, b ∈

∏
A whenever every ai \∗ bi is defined.

Proof. We need to prove that λi ∈ domA : ai \∗ bi =
d
{
z∈
∏

A

avbtz

}
.

To prove it is enough to show ai \∗ bi =
d
{

zi
z∈
∏

A,avbtz

}
that is ai \∗ bi =

d{ z∈Ai
aivbitz

}
because z′ ∈

{
zi

z∈
∏

A,avbtz

}
⇔ z′ ∈

{
z∈Ai

aivbitz

}
(for the reverse

implication take zj = ai for j 6= i), but ai \∗ bi =
d{ z∈Ai

aivbitz

}
is true by definition.

�

Proposition 659. If every Ai is a distributive lattice with least element, then
a# b = λi ∈ domA : ai # bi for every a, b ∈

∏
A whenever every ai # bi is defined.

Proof. We need to prove that λi ∈ domA : ai # bi = d

{
z∈
∏

A

zva∧z�b

}
.

To prove it is enough to show ai # bi = d
{

zi
z∈
∏

A,zva∧z�b

}
that is ai # bi =

d

{
zi

z∈
∏

A,zivai∧∀j∈domA:zj�bj

}
that is ai # bi = d

{
z∈Ai

zvai∧z�bi

}
(take zj = ⊥Aj

for j 6= i) what is true by definition. �

Proposition 660. Let every Ai be a poset with least element and a∗i is defined.
Then a∗ = λi ∈ domA : a∗i .

Proof. We need to prove that λi ∈ domA : a∗i = d

{
c∈
∏

A

c�a

}
. To prove this it

is enough to show that a∗i = d

{
ci

c∈
∏

A,c�a

}
that is a∗i = d

{
ci

c∈
∏

A,∀j∈domA:cj�aj

}
that is a∗i = d

{
ci

c∈
∏

A,ci�ai

}
(take cj = ⊥Aj for j 6= i) that is a∗i = d

{
c∈Ai
c�ai

}
what is true by definition. �

Corollary 661. Let every Ai be a poset with greatest element and a+
i is

defined. Then a+ = λi ∈ domA : a+
i .

Proof. By duality. �

5.34. Filters on a Set

In this section we will fix a powerset filtrator (A,Z) = (A,PU) for some set U.
The consideration below is about filters on a set U, but this can be general-

ized for filters on complete atomic boolean algebras due complete atomic boolean
algebras are isomorphic to algebras of sets on some set U.
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5.34.1. Fréchet Filter.

Definition 662. Ω =
{

U\X
X is a finite subset of U

}
is called either Fréchet filter or

cofinite filter.

It is trivial that Fréchet filter is a filter.

Proposition 663. Cor Ω = ⊥Z;
⋂

Ω = ∅.

Proof. This can be deduced from the formula ∀α ∈ U∃X ∈ Ω : α /∈ X. �

Theorem 664. max
{ X∈A

CorX=⊥Z

}
= max

{
X∈A⋂
X=∅

}
= Ω.

Proof. Due the last proposition, it is enough to show that CorX = ⊥Z ⇒
X v Ω for every filter X .

Let CorX = ⊥Z for some filter X . Let X ∈ Ω. We need to prove that X ∈ X .
X = U \ {α0, . . . , αn}. U \ {αi} ∈ X because otherwise αi ∈↑−1 CorX . So

X ∈ X . �

Theorem 665. Ω = d

A{ x
x is a non-trivial ultrafilter

}
.

Proof. It follows from the facts that Corx = ⊥Z for every non-trivial ultra-
filter x, that A is an atomistic lattice, and the previous theorem. �

Theorem 666. Cor is the lower adjoint of Ω tA −.

Proof. Because both Cor and ΩtA− are monotone, it is enough (theorem 126)
to prove (for every filters X and Y)

X v Ω tA CorX and Cor(Ω tA Y) v Y.
Cor(Ω tA Y) = Cor Ω tZ CorY = ⊥Z tZ CorY = CorY v Y.
Ω tA CorX w EdgX tA CorX = X . �

Corollary 667. CorX = X \∗ Ω for every filter on a set.

Proof. By theorem 154. �

Corollary 668. Cor d

A
S = d

A〈Cor〉∗S for any set S of filters on a powerset.

This corollary can be rewritten in elementary terms and proved elementarily:

Proposition 669.
⋂⋂

S =
⋃
F∈S

⋂
F for a set S of filters on some set.

Proof. (by Andreas Blass) The ⊇ direction is rather formal. Consider any
one of the sets being intersected on the left side, i.e., any set X that is in all the
filters in S, and consider any of the sets being unioned (that’s not a word, but you
know what I mean) on the right, i.e.,

⋂
F for some F ∈ S. Then, since X ∈ F ,

we have
⋂
F ⊆ X. Taking the union over all F ∈ S (while keeping X fixed), we

get that the right side of your equation is ⊆ X. Since that’s true for all X ∈
⋂
S,

we infer that the right side is a subset of the left side. (This argument seems to
work in much greater generality; you just need that the relevant infima (in place of
intersections) exist in your poset.)

For the ⊆ direction, consider any element x ∈
⋂⋂

S, and suppose, toward
a contradiction, that it is not an element of the union on the right side of your
equation. So, for each F ∈ S, we have x /∈

⋂
F , and therefore we can find a set

AF ∈ F with x /∈ AF . Let B =
⋃
F∈S AF and notice that B ∈ F for every F ∈ S

(because B ⊇ AF ). So B ∈
⋂
S. But, by choice of the AF ’s, we have x /∈ B,

contrary to the assumption that x ∈
⋂⋂

S. �

Proposition 670. ∂Ω(U) is the set of infinite subsets of U .
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Proof. ∂Ω(U) = ¬〈¬〉∗Ω(U).
〈¬〉∗Ω is the set of finite subsets of U . Thus ¬〈¬〉∗Ω(U) is the set of infinite

subsets of U . �

5.34.2. Number of Filters on a Set.

Definition 671. A collection Y of sets has finite intersection property iff in-
tersection of any finite subcollection of Y is non-empty.

The following was borrowed from [7]. Thanks to Andreas Blass for email
support about his proof.

Lemma 672. (by Hausdorff) For an infinite set X there is a family F of
2cardX many subsets of X such that given any disjoint finite subfamilies A, B, the
intersection of sets in A and complements of sets in B is nonempty.

Proof. Let
X ′ =

{
(P,Q)

P ∈PX is finite, Q ∈PPP

}
.

It’s easy to show that cardX ′ = cardX. So it is enough to show this for X ′
instead of X. Let

F =


{

(P,Q)∈X′
Y ∩P∈Q

}
Y ∈PX

.
To finish the proof we show that for every disjoint finite Y+ ∈PPX and finite

Y− ∈PPX there exist (P,Q) ∈ X ′ such that

∀Y ∈ Y+ : (P,Q) ∈
{

(P,Q) ∈ X ′
Y ∩ P ∈ Q

}
and ∀Y ∈ Y− : (P,Q) /∈

{
(P,Q) ∈ X ′
Y ∩ P ∈ Q

}
what is equivalent to existence (P,Q) ∈ X ′ such that

∀Y ∈ Y+ : Y ∩ P ∈ Q and ∀Y ∈ Y− : Y ∩ P /∈ Q.

For existence of this (P,Q), it is enough existence of P such that intersections
Y ∩ P are different for different Y ∈ Y+ ∪ Y−.

Really, for each pair of distinct Y0, Y1 ∈ Y+ ∪ Y− choose a point which lies in
one of the sets Y0, Y1 and not in an other, and call the set of such points P . Then
Y ∩ P are different for different Y ∈ Y+ ∪ Y−. �

Corollary 673. For an infinite set X there is a family F of 2cardX many
subsets of X such that for arbitrary disjoint subfamilies A and B the set A∪

{
X\A
A∈B

}
has finite intersection property.

Theorem 674. Let X be a set. The number of ultrafilters on X is 22cardX if
X is infinite and cardX if X is finite.

Proof. The finite case follows from the fact that every ultrafilter on a finite set
is trivial. LetX be infinite. From the lemma, there exists a family F of 2cardX many
subsets ofX such that for every G ∈PF we have Φ(F ,G) =

dA Gu
dA
{

X\A
A∈F\G

}
6=

⊥A(X).
This filter contains all sets from G and does not contain any sets from F \ G.

So for every suitable pairs (F0,G0) and (F1,G1) there is A ∈ Φ(F0,G0) such that
A ∈ Φ(F1,G1). Consequently all filters Φ(F ,G) are disjoint. So for every pair
(F ,G) where G ∈ PF there exist a distinct ultrafilter under Φ(F ,G), but the
number of such pairs (F ,G) is 22cardX . Obviously the number of all filters is not
above 22cardX . �
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Corollary 675. The number of filters on U is 22cardX if U us infinite and
2cardU if U is finite.

Proof. The finite case is obvious. The infinite case follows from the theorem
and the fact that filters are collections of sets and there cannot be more than 22card U

collections of sets on U. �

5.35. Bases on filtrators

Definition 676. A set S of binary relations is a base on a filtrator (A,Z)
of f ∈ A when all elements of S are above f and ∀X ∈ up f∃T ∈ S : T v X.

Obvious 677. Every base on an up-aligned filtrator is nonempty.

Proposition 678. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator.
3◦. (A,Z) is a filtered filtrator.
4◦. A set S ∈ PZ is a base of a filtrator element iff

dA
S exists and S is a

base of
dA

S.

Proof.
1◦⇒2◦, 2◦⇒3◦. Obvious.
3◦⇒4◦.

⇐. Obvious.
⇒. Let S be a base of an f ∈ A. f is obviously a lower bound of S. Let g

be a lower bound of S. Then for every X ∈ up f we have g v X
that is X ∈ up g. Thus up f ⊆ up g and thus f w g that is f is the
greatest upper bound of S.

�

Proposition 679. There exists an f ∈ A such that up f = S iff S is a base
and is an upper set (for every set S ∈PZ).

Proof.
⇒. If up f = S then S is an upper set and S is a base of f because ∀X ∈ up f ∃T ∈

S : T = X.
⇐. Let S be a base of some filtrator element f and is an upper set. Then for

every X ∈ up f there is T ∈ S such that T v X. Thus X ∈ S. We have
up f ⊆ S. But S ⊆ up f is obvious. We have up f = S.

�

Proposition 680. up f is a base of f for every f ∈ A.

Proof. Denote S = up f . That f is a lower bound of S is obvious.
If X ∈ up f then ∃T ∈ S : T = X. Thus S is a base of f . �

Proposition 681. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator.
3◦. (A,Z) is a filtered filtrator.
4◦. f =

dA
S for every base S of an f ∈ A.

Proof.
1◦⇒2◦, 2◦⇒3◦. Obvious.
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3◦⇒4◦. f is a lower bound of S by definition.
Let g be a lower bound of S. Then for every X ∈ up f there we have

g v X that is X ∈ up g. Thus up f ⊆ up g and thus f w g that is f is the
greatest lower bound of S.

�

Proposition 682. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator.
3◦. (A,Z) is a filtered filtrator.
4◦. If S is a base on a filtrator, then

dA
S exists and up

dA
S =

⋃
K∈S upK.

Proof.
1◦⇒2◦, 2◦⇒3◦. Obvious.
3◦⇒4◦.

dA
S exists because our filtrator is filtered. Above we proved that S is a

base of
dA

S. That
⋃
K∈S upK ⊆ up

dA
S is obvious. If X ∈ up

dA
S

then by properties of bases we have K ∈ S such that K v X. Thus
X ∈ upK and so X ∈

⋃
K∈S upK. So up

dA
S ⊆

⋃
K∈S upK.

�

Proposition 683. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a meet-semilattice.
3◦. (A,Z) is a filtrator with binarily meet-closed core such that ∀a ∈ A :

up a 6= ∅.
4◦. A base on the filtrator (A;Z) is the same as base of a filter (on Z).

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Corollary 533.
3◦⇒4◦.

⇒. Let S be a base of f on the filtrator (A;Z). Then for every a, b ∈ S we
have a, b ∈ up f and thus a uZ b = a uA b ∈ up f . Thus ∃x ∈ S : x v
a uZ b that is x v a ∧ x v b. It remains to show that S is nonempty,
but this follows from up a being nonempty.

⇐. Let S be a base of filter f (on Z). Let X ∈ up f . Then there is T ∈ S
such that T v X.

�

5.36. Some Counter-Examples

Example 684. There exist a bounded distributive lattice which is not lattice
with separable center.

Proof. The lattice with the Hasse diagram2 on figure 3 is bounded and dis-
tributive because it does not contain “diamond lattice” nor “pentagon lattice” as a
sublattice [43].

It’s center is {0, 1}. xuy = 0 despite upx = {x, a, 1} but yu1 6= 0 consequently
the lattice is not with separable center. �

In this section A denotes the set of filters on a set.

Example 685. There is a separable poset (that is a set with ? being an injec-
tion) which is not strongly separable (that is ? isn’t order reflective).

2See Wikipedia for a definition of Hasse diagrams.
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Figure 3.

1

a

x y

0

Proof. (with help of sci.math partakers) Consider a poset with the Hasse
diagram 4.

Figure 4.

a b

p q r

Then ?p = {p, a, b}, ?q = {q, a, b}, ?r = {r, b}, ?a = {p, q, a, b}, ?b =
{p, q, a, b, r}.

Thus ?x = ?y ⇒ x = y for any x, y in our poset.
?a ⊆ ?b but not a v b. �

Example 686. There is a prefiltered filtrator which is not filtered.

Proof. (Matthias Klupsch) Take A = {a, b} with the order being equality
and Z = {b}. Then up a = ∅ v {b} = up b, so up is injective, hence the filtrator is
prefiltered, but because of a 6v b the filtrator is not filtered. �

For further examples we will use the filter ∆ defined by the formula

∆ =
Al{ ]− ε; ε[

ε ∈ R, ε > 0

}
and more general

∆ + a =
Al{ ]a− ε; a+ ε[

ε ∈ R, ε > 0

}
.

Example 687. There exists A ∈PU such that
dA

A 6=
d
A.

Proof.
dZ
{

]−ε;ε[
ε∈R,ε>0

}
=↑ {0} 6= ∆. �

Example 688. There exists a set U and a filter a and a set S of filters on the
set U such that a uA d

A
S 6= d

A〈
auA

〉∗
S.

Proof. Let a = ∆ and S =
{
↑R]ε;+∞[
ε>0

}
. Then a uA d

A
S = ∆uA]0; +∞[) 6=

⊥A while d

A〈
auA

〉∗
S = d

A{⊥A} = ⊥A. �
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Example 689. There are tornings which are not weak partitions.

Proof.
{∆+a
a∈R

}
is a torning but not weak partition of the real line. �

Lemma 690. Let A be the set of filters on a set U . Then X uA Ω v Y uA Ω iff
X \ Y is a finite set, having fixed sets X,Y ∈PU .

Proof. Let M be the set of finite subsets of U .

X uA Ω v Y uA Ω⇔{
X ∩KX

KX ∈ Ω

}
⊇
{
Y ∩KY

KY ∈ Ω

}
⇔

∀KY ∈ Ω∃KX ∈ Ω : Y ∩KY = X ∩KX ⇔
∀LY ∈M∃LX ∈M : Y \ LY = X \ LX ⇔

∀LY ∈M : X \ (Y \ LY ) ∈M ⇔
X \ Y ∈M.

�

Example 691. There exists a filter A on a set U such that (PU)/∼ and
Z(DA) are not complete lattices.

Proof. Due to the isomorphism it is enough to prove for (PU)/∼.
Let take U = N and A = Ω be the Fréchet filter on N.
Partition N into infinitely many infinite sets A0, A1, . . .. To withhold our ex-

ample we will prove that the set {[A0], [A1], . . . } has no supremum in (PU)/∼.
Let [X] be an upper bound of [A0], [A1], . . . that is ∀i ∈ N : X uA Ω w Ai uA Ω

that is Ai \X is finite. Consequently X is infinite. So X ∩Ai 6= ∅.
Choose for every i ∈ N some zi ∈ X ∩Ai. The {z0, z1, . . . } is an infinite subset

of X (take into account that zi 6= zj for i 6= j). Let Y = X \ {z0, z1, . . . }. Then
Y uA Ω w Ai uA Ω because Ai \Y = Ai \ (X \ {zi}) = (Ai \X)∪{zi} which is finite
because Ai \X is finite. Thus [Y ] is an upper bound for {[A0], [A1], . . . }.

Suppose Y uA Ω = X uA Ω. Then Y \X is finite what is not true. So Y uA Ω @
X uA Ω that is [Y ] is below [X]. �

5.36.1. Weak and Strong Partition.

Definition 692. A family S of subsets of a countable set is independent iff the
intersection of any finitely many members of S and the complements of any other
finitely many members of S is infinite.

Lemma 693. The “infinite” at the end of the definition could be equivalently
replaced with “nonempty” if we assume that S is infinite.

Proof. Suppose that some sets from the above definition has a finite inter-
section J of cardinality n. Then (thanks S is infinite) get one more set X ∈ S and
we have J ∩ X 6= ∅ and J ∩ (N \ X) 6= ∅. So card(J ∩ X) < n. Repeating this,
we prove that for some finite family of sets we have empty intersection what is a
contradiction. �

Lemma 694. There exists an independent family on N of cardinality c.

Proof. Let C be the set of finite subsets of Q. Since cardC = cardN, it
suffices to find c independent subsets of C. For each r ∈ R let

Er =
{

F ∈ C
card(F∩]−∞; r[) is even

}
.
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All Er1 and Er2 are distinct for distinct r1, r2 ∈ R since we may consider
F = {r′} ∈ C where a rational number r′ is between r1 and r2 and thus F is a
member of exactly one of the sets Er1 and Er2 . Thus card

{
Er
r∈R
}

= c.
We will show that

{
Er
r∈R
}
is independent. Let r1, . . . , rk, s1, . . . , sk be distinct

reals. It is enough to show that these have a nonempty intersection, that is existence
of some F such that F belongs to all the Er and none of Es.

But this can be easily accomplished taking F having zero or one element in
each of intervals to which r1, . . . , rk, s1, . . . , sk split the real line. �

Example 695. There exists a weak partition of a filter on a set which is not a
strong partition.

Proof. (suggested by Andreas Blass) Let
{
Xr
r∈R
}
be an independent family

of subsets of N. We can assume a 6= b⇒ Xa 6= Xb due the above lemma.
Let Fa be a filter generated by Xa and the complements N \Xb for all b ∈ R,

b 6= a. Independence implies that Fa 6= ⊥A (by properties of filter bases).
Let S =

{ Fr
r∈R
}
. We will prove that S is a weak partition but not a strong

partition.
Let a ∈ R. Then Xa ∈ Fa while ∀b ∈ R \ {a} : N \ Xa ∈ Fb and therefore

N \ Xa ∈ d

A
{
Fb

R3b6=a

}
. Therefore Fa uA d

A
{
Fb

R3b 6=a

}
= ⊥A. Thus S is a weak

partition.
Suppose S is a strong partition. Then for each set Z ∈PR

A

l

{
Fb
b ∈ Z

}
uA

A

l

{
Fb

b ∈ R \ Z

}
= ⊥A

what is equivalent to existence of M(Z) ∈PN such that

M(Z) ∈
A

l

{
Fb
b ∈ Z

}
and N \M(Z) ∈

A

l

{
Fb

b ∈ R \ Z

}
that is

∀b ∈ Z : M(Z) ∈ Fb and ∀b ∈ R \ Z : N \M(Z) ∈ Fb.
Suppose Z 6= Z ′ ∈PN. Without loss of generality we may assume that some

b ∈ Z but b /∈ Z ′. Then M(Z) ∈ Fb and N \M(Z ′) ∈ Fb. If M(Z) = M(Z ′) then
Fb = ⊥A what contradicts to the above.

So M is an injective function from PR to PN what is impossible due cardi-
nality issues. �

Lemma 696. (by Niels Diepeveen, with help of Karl Kronenfeld) Let K
be a collection of nontrivial ultrafilters. We have dK = Ω iff ∃G ∈ K : A ∈ upG
for every infinite set A.

Proof.
⇒. Suppose dK = Ω and let A be a set such that @G ∈ K : A ∈ upG. Let’s prove

A is finite.
Really, ∀G ∈ K : U \A ∈ upG; U \A ∈ up Ω; A is finite.

⇐. Let ∃G ∈ K : A ∈ upG. Suppose A is a set in up dK.
To finish the proof it’s enough to show that U \A is finite.
Suppose U \A is infinite. Then ∃G ∈ K : U \A ∈ upG; ∃G ∈ K : A /∈

upG; A /∈ up dK, contradiction.
�

Lemma 697. (by Niels Diepeveen) If K is a non-empty set of ultrafilters
such that dK = Ω, then for every G ∈ K we have d(K \ {G}) = Ω.



5.39. EQUIVALENT FILTERS AND REBASE OF FILTERS 126

Proof. ∃F ∈ K : A ∈ upF for every infinite set A.
The set A can be partitioned into two infinite sets A1, A2.
Take F1,F2 ∈ K such that A1 ∈ F1, A2 ∈ F2.
F1 6= F2 because otherwise A1 and A2 are not disjoint.
Obviously A ∈ F1 and A ∈ F2.
So there exist two different F ∈ K such that A ∈ upF . Consequently ∃F ∈

K \ {G} : A ∈ upF that is d(K \ {G}) = Ω. �

Example 698. There exists a filter on a set which cannot be weakly partitioned
into ultrafilters.

Proof. Consider cofinite filter Ω on any infinite set.
Suppose K is its weak partition into ultrafilters. Then x � d(K \ {x}) for

some ultrafilter x ∈ K.
We have d(K \ {x}) @ dK (otherwise x v d(K \ {x})) what is impossible

due the last lemma. �

Corollary 699. There exists a filter on a set which cannot be strongly par-
titioned into ultrafilters.

5.37. Open problems about filters

Under which conditions a \∗ b and a# b are complementive to a?
Generalize straight maps for arbitrary posets.

5.38. Further notation

Below to define funcoids and reloids we need a fixed powerset filtrator.
Let (FA,T A) be an arbitrary but fixed powerset filtrator. This filtrator exists

by the theorem 459.
I will call elements of F filter objects.
For brevity we will denote lattice operations on FA without indexes (for ex-

ample, take
d
S =

dFA
S for S ∈PFA).

Note that above we also took operations on T A without indexes (for example,
take

d
S =

dT A
S for S ∈PT A).

Because we identify T A with principal elements of FA, the notation like
d
S

for S ∈ PT A would be inconsistent (it can mean both
dT A

S or
dFA

S). We
explicitly state that

d
S in this case does not mean

dFA
S.

For X ∈ F we will denote GRX the corresponding filter on PA. It is a con-
venient notation to describe relations between filters and sets, consider for example
the formula: {x} ⊆

⋂
GRX .

We will denote lattice operations without pointing a specific set like
dF

S =dF(A)
S for a set S ∈PF (A).

5.39. Equivalent filters and rebase of filters

FiXme: This section was checked for errors but less carefully than the rest of
the book.

Throughout this section we will assume that Z is a lattice.
An important example: Z is the lattice of all small (regarding some

Grothendieck universe) sets. (This Z is not a powerset, and even not a complete
lattice.)

Throughout this section I will use the word filter to denote a filter on a sub-
lattice DA where A ∈ Z (if not told explicitly to be a filter on some other set).
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The following is an embedding from filters A on a lattice DA into the lattice
of filters on Z: SA =

{
K∈Z

∃X∈A:XvK

}
.

Proposition 700. Values of this embedding are filters on the lattice Z.

Proof. That SA is an upper set is obvious.
Let P,Q ∈ SA. Then P,Q ∈ Z and there is an X ∈ A such that X v P

and Y ∈ A such that Y v Q. So X u Y ∈ A and P u Q w X u Y ∈ A, so
P uQ ∈ SA. �

5.39.1. Rebase of filters.

Definition 701. Rebase for every filter A and every A ∈ Z is A ÷ A =
d{↑A(XuA)

X∈A

}
.

Obvious 702. 〈Au〉∗SA is a filter on A.

Proposition 703. The rebase conforms to the formula
A÷A = 〈Au〉∗SA.

Proof. We know that 〈Au〉∗SA is a filter.
If P ∈ 〈Au〉∗SA then P ∈ PA and Y u A v P for some Y ∈ A. Thus

P w Y uA ∈
d{↑A(Y uA)

Y ∈A

}
.

If P ∈
d{↑A(XuA)

X∈A

}
then by properties of generalized filter bases, there exists

X ∈ A such that P w X uA. Also P ∈PA. Thus P ∈ 〈Au〉∗SA. �

Proposition 704. X ÷ Base(X ) = X .

Proof. Because X u Base(X ) = X for X ∈ X . �

Proposition 705. (X ÷A)÷B = X ÷B if B v A.

Proof. (X ÷ A) ÷ B =
d
 ↑B(Y uB)

Y ∈
d
{
↑A(XuA)
X∈X

}
 =

d{↑B(XuA)
X∈X

}
u ↑B B =

d{↑B(XuAuB)
X∈X

}
=
d{↑B(XuB)

X∈X

}
= X ÷B. �

Proposition 706. If A ∈ A then A÷A = A ∩PA.

Proof. A ÷ A = 〈Au〉∗SA = 〈Au〉∗
{

K∈Z
∃X∈A:XvK

}
=
{

K∈Z
K∈A∧K∈PA

}
= A ∩

PA. �

Proposition 707. Let filters X and Y be such that Base(X ) = Base(Y) = B.
Then X ÷ C = Y ÷ C ⇔ X = Y for every Z 3 C w B.

Proof. X ÷ C = Y ÷ C ⇔ X ∪
{
K∈PC
KwB

}
= Y ∪

{
K∈PC
KwB

}
⇔ X = Y. �

5.39.2. Equivalence of filters.

Definition 708. Two filters A and B (with possibly different base sets) are
equivalent (A ∼ B) iff there exists an X ∈ Z such that X ∈ A and X ∈ B and
PX ∩ A = PX ∩ B.

Proposition 709. X and Y are equivalent iff (X ∼ Y) iff Y = X ÷ Base(Y)
and X = Y ÷ Base(X ).

Proof.
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⇒. Suppose X ∼ Y that is there exists a set P such that PP ∩ X = PP ∩ Y
and P ∈ X , P ∈ Y. Then X ÷ Base(Y) = (PP ∩ X ) ∪

{
K∈P Base(Y)

KwP

}
=

(PP ∩Y)∪
{
K∈P Base(Y)

KwP

}
= Y. So X ÷Base(Y) = Y, Y ÷Base(X ) = X

is similar.
⇐. If Base(X ) /∈ Y then Y ÷ Base(X ) 63 Base(Y) ∈ Y and thus Y ÷ Base(X ) 6= Y.

So Base(X ) ∈ Y and similarly Base(Y) ∈ X . Thus Base(X ) u
Base(Y) ∈ Y and similarly Base(X ) u Base(Y) ∈ X .

It’s enough to show X ÷ (Base(X ) u Base(Y)) = Y ÷ (Base(X ) u
Base(Y)) because for every P ∈ X ,Y we have X ∩ PP = X ÷ P =
(X ÷ (Base(X )uBase(Y)))÷P and similarly Y ∩PP = (Y ÷ (Base(X )u
Base(Y)))÷ P . But it follows from the conditions and proposition 705.

�

Proposition 710. If two filters with the same base are equivalent they are
equal.

Proof. Let A and B be two filters and PX ∩ A = PX ∩ B for some set X
such that X ∈ A and X ∈ B, and Base(A) = Base(B). Then

A = (PX ∩ A) ∪
{
Y ∈ DBase(A)

Y w X

}
=

(PX ∩ B) ∪
{
Y ∈ DBase(B)

Y w X

}
= B.

�

Proposition 711. If A ∈ SA then A÷A ∼ A.

Proof.
(A÷A) ∩P(A u Base(A)) =

SA ∩PA ∩P(A u Base(A)) =
SA ∩P(A u Base(A)) = A ∩P(A u Base(A)).

Thus A÷A ∼ A because A u Base(A) w X ∈ A for some X ∈ A and
A u Base(A) w X u Base(A) ∈ A÷A.

�

Proposition 712. ∼ is an equivalence relation.

Proof.
Reflexivity. Obvious.
Symmetry. Obvious.
Transitivity. Let A ∼ B and B ∼ C for some filters A, B, and C. Then there exist

a set X such that X ∈ A and X ∈ B and PX ∩ A = PX ∩ B and a set
Y such that Y ∈ B and Y ∈ C and PY ∩ B = PY ∩ C. So X u Y ∈ A
because

PY ∩PX ∩ A = PY ∩PX ∩ B = P(X u Y ) ∩ B ⊇ {X u Y } ∩ B 3 X u Y.
Similarly we have X u Y ∈ C. Finally

P(X u Y ) ∩ A = PY ∩PX ∩ A = PY ∩PX ∩ B =
PX ∩PY ∩ B = PX ∩PY ∩ C =P(X u Y ) ∩ C.

�
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Definition 713. I will call equivalence classes as unfixed filters.

Remark 714. The word “unfixed” is meant to negate “fixed” (having a par-
ticular base) filters.

Proposition 715. A ∼ B iff SA = SB for every filters A, B on sets.3

Proof. Let A ∼ B. Then there is a set P such that P ∈ A, P ∈ B and
A∩PP = B∩PP . So SA = (A∩PP )∪

{
K∈Z
KwP

}
. Similarly SB = (B∩PP )∪{

K∈Z
KwP

}
. Combining, we have SA = SB.

Let now SA = SB. Take K ∈ SA = SB. Then A÷K = B ÷K and thus
(proposition 711) A ∼ A÷K = B ÷K ∼ B, so having A ∼ B. �

Proposition 716. A ∼ B ⇒ A ÷ B = B ÷ B for every filters A and B and
set B.

Proof. A÷B = 〈Bu〉∗SA = 〈Bu〉∗SB = B ÷B. �

5.39.3. Poset of unfixed filters.

Lemma 717. Let filters X and Y be such that Base(X ) = Base(Y) = B. Then
X ÷ C v Y ÷ C ⇔ X v Y for every set C ⊇ B.

Proof. X÷C v Y÷C ⇔ X÷C ⊇ Y÷C ⇔ X∪
{
K∈PC
KwB

}
⊇ Y∪

{
K∈PC
KwB

}
⇔

X ⊇ Y ⇔ X v Y. �

Proposition 718. X v Y ⇒ X ÷ B v Y ÷ B for every filters X , Y with the
same base and set B.

Proof. X v Y ⇔ X ⊇ Y ⇒ X ÷B ⊇ Y ÷B ⇔ X ÷B v Y ÷B. �

Define order of unfixed filters using already defined order of filters of a fixed
base:

Definition 719. X v Y ⇔ ∃x ∈ X , y ∈ Y : (Base(x) = Base(y) ∧ x v y) for
unfixed filters X , Y.

Lemma 720. X v Y ⇔ SX v SY for every unfixed filters X , Y.

Proof.
⇒. Suppose X v Y. Then there exist x ∈ X , y ∈ Y such that Base(x) = Base(y)

and x v y. Then SX = S x v S y = SY.
⇐. Suppose SX v SY. Then there are x ∈ X , y ∈ Y such that S x v S y.

Consequently S x′ v S y′ for x′ = x ÷ (Base(x) t Base(y)), y′ = y ÷
(Base(x)tBase(y)). So we have x′ ∈ X , y′ ∈ Y, Base(x′) = Base(y′) and
x′ v y′, thus X v Y.

�

Theorem 721. v on the set of unfixed filters is a poset.

Proof.
Reflexivity. From the previous theorem.
Transitivity. From the previous theorem.

3Use this proposition to shorten proofs of other theorem about equivalence of filters? (Our
proof uses transitivity of equivalence of filters. So we can’t use it to prove that it is an equivalence
relation, to avoid circular proof.)
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Antisymmetry. Suppose X v Y and Y v X . Then SX v SY and SY v SX .
Thus SX = SY and so S x = S y for some x ∈ X , y ∈ Y. Consequently
S (x÷B) = S (y ÷B) for B = Base(x) t Base(y). Thus x÷B = y ÷B
and so x ∼ y, thus X = Y.

�

Theorem 722. [x] v [y]⇔ x v y for filters x and y with the same base set.

Proof.
⇐. Obvious.
⇒. Let Base(x) = Base(y) = B. Suppose [x] v [y]. Then there exist x′ ∼ x and

y′ ∼ y such that C = Base(x′) = Base(y′) (for some set C) and x′ v y′.
We have by the lemma x′ ÷ (B t C) v y′ ÷ (B t C).
But x′ ÷ (B tC) = x÷ (B tC) and y′ ÷ (B tC) = y ÷ (B tC). So

x÷ (B t C) v y ÷ (B t C) and thus again applying the lemma x v y.
�

Proposition 723. X v Y ⇒ X ÷ C v Y ÷ C for every unfixed filters X , Y
and set C.

Proof. Let X v Y. Then there are x ∈ X , y ∈ Y such that Base(x) = Base(y)
and x v y. Then by proved above x ÷ C v y ÷ C what is equivalent to X ÷ C v
Y ÷ C. �

Proposition 724. If C ∈ SX and C ∈ SY for unfixed filters X and Y then
X ÷ C v Y ÷ C ⇔ X v Y.

Proof.
⇐. Previous proposition.
⇒. Let X ÷C v Y÷C. We have some x ∈ X , y ∈ Y, such that Base(x) = Base(y)

and x÷ C v y ÷ C. So S (x÷ C) v S (y ÷ C). But S (x÷ C) ∼ x and
S (y ÷ C) ∼ y. Thus S x v S y that is x v y and so X v Y.

�

5.39.4. Rebase of unfixed filters. Proposition 716 allows to define:

Definition 725. A÷B = a÷B for an unfixed filter A and arbitrary a ∈ A.

Obvious 726. (X ÷ A)÷ B = X ÷ B if B v A for every unfixed filter X and
sets A, B.

Proposition 715 allows to define:

Definition 727. SA = S a for every a ∈ A for every unfixed filter A.

Theorem 728. S is an order-isomorphism from the poset of unfixed filters to
the poset of filters on Z.

Proof. We already know that S is an order embedding. It remains to prove
that it is a surjection.

Let Y be a filter on Z. Take Z 3 X ∈ Y. Then 〈Xu〉∗Y is a filter on X and
S [〈Xu〉∗Y] = S 〈Xu〉∗Y = Y. We have proved that it is a surjection. �

Obvious 729. A÷B = 〈Bu〉∗SA for every unfixed filter A.

Obvious 730. If A ∈ SA then A÷A ∈ A for every unfixed filter A.

Proposition 731. If C ∈ SX and C ∈ SY for unfixed filters X and Y then
X ÷ C = Y ÷ C ⇔ X = Y.
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Proof. The backward implication is obvious. Let now X ÷ C = Y ÷ C.
Take x ∈ X , y ∈ Y. We have X ÷C = x÷C = (x÷B)÷C for B = C tBase(x)t
Base(y). Similary Y ÷C = (y÷B)÷C. Thus (x÷B)÷C = (y÷B)÷C and thus
x÷B = y ÷B, so x ∼ y that is X = Y. �

Proposition 732. A÷A =
d{↑A(XuA)

X∈SA

}
for every unfixed filter A.

Proof. Take a ∈ A.
l{↑A (X uA)

X ∈ SA

}
=
l{↑A (X uA u Base(a))

X ∈ SA

}
=
l{ ↑A (X uA)

X ∈ SA ∩P Base(a)

}
=

l{ ↑A (X uA)
X ∈ S a ∩P Base(a)

}
=
l{↑A (X uA)

X ∈ a

}
= a÷A = A÷A.

�

5.39.5. The diagram for unfixed filters. Fix a set B.

Lemma 733. X 7→ X ÷B and x 7→ [x] are mutually inverse order isomorphisms
between

{unfixed filter X
B∈SX

}
and F(DB).

Proof. First, X ÷ B ∈ F(DB) for X ∈
{unfixed filter X

B∈SX
}

and [x] ∈{unfixed filter X
B∈SX

}
for x ∈ F(DB).

Suppose X0 ∈
{unfixed filter X

B∈SX
}
, x = X0 ÷ B, and X1 = [x]. We will prove

X0 = X1. Really, x ∈ X1, x = k ÷B for k ∈ X0, x ∼ k, thus x ∈ X0. So X0 = X1.
Suppose x0 ∈ F(DB), X = [x0], x1 = X ÷ B. We will prove x0 = x1. Really,

x1 = x0 ÷B. So x1 = x0 because Base(x0) = Base(x1) = B.
So we proved that they are mutually inverse bijections. That they are order

preserving is obvious. �

Lemma 734. S and X 7→ 〈Bu〉∗X = X ∩PB are mutually inverse order
isomorphisms between F(DB) and

{
X∈F(Z)
B∈X

}
.

Proof. First, S x ∈
{
X∈F(Z)
B∈X

}
for x ∈ F(DB) because of theorem 728 and

〈Bu〉∗X ∈ F(DB) obviously.
Let’s prove 〈Bu〉∗X = X ∩PB. If X ∈ 〈Bu〉∗X then X ∈ X (because B ∈ X )

and X ∈PB. So X ∈ X ∩PB. If X ∈ X ∩PB then X = B ∩X ∈ 〈Bu〉∗X .
Let x0 ∈ F(DB), X = S x, and x1 = 〈Bu〉∗X . Then obviously x0 = x1.
Let now X0 ∈

{
X∈F(Z)
B∈X

}
, x = 〈Bu〉∗X0, and X1 = S x. Then X1 = X0 ∪{

K∈Z
KwB

}
= X0.

So we proved that they are mutually inverse bijections. That they are order
preserving is obvious. �

Theorem 735. The diagram at the figure 5 (with the horizontal “unnamed”
arrow defined as the inverse isomorphism of its opposite arrow) is a commutative
diagram (in category Set), every arrow in this diagram is an isomorphism. Ev-
ery cycle in this diagram is an identity (therefore “parallel” arrows are mutually
inverse). The arrows preserve order.

Proof. It’s proved above, that all morphisms (except the “unnamed” arrow,
which is the inverse morphism by definition) depicted on the diagram are bijections
and the depicted “opposite” morphisms are mutually inverse.

That arrows preserve order is obvious.
It remains to apply lemma 193 (taking into account the proof of theorem 728).

�
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Figure 5.
F(DB)

{
X∈F(Z)
B∈X

} {unfixed filter X
B∈SX

}
x7→[x]

S

X 7→〈Bu〉∗X=X∩PB

X 7→X÷B

S

5.39.6. The lattice of unfixed filters.

Theorem 736. Every nonempty set of unfixed filters has an infimum, provided
that the lattice Z is distributive.

Proof. Theorem 517. �

Theorem 737. Every bounded above set of unfixed filters has a supremum.
Proof. Theorem 512 for nonempty sets of unfixed filters. The join d∅ = [⊥]

for the least filter ⊥ ∈ Z(DA) for arbitrary A ∈ Z. �

Corollary 738. If Z is the set of small sets, then every small set of unfixed
filters has a supremum.

Proof. Let S be a set of filters on Z. Then TX ∈ X is a small set for every X ∈
S. Thus

{
TX
X∈S

}
is small set and thus T =

⋃{ TX
X∈S

}
is small set. Take the filter

T =↑ T . Then T is an upper bound of S and we can apply the theorem. �

Obvious 739. The poset of unfixed filters for the lattice of small sets is bounded
below (but not above).

Proposition 740. The set of unfixed filters forms a co-brouwerian (and thus
distributive) lattice, provided that Z is distributive lattice which is an ideal base.

Proof. Corollary 528. �

5.39.7. Principal unfixed filters and filtrator of unfixed filters.

Definition 741. Principal unfixed filter is an unfixed filter corresponding to
a principal filter on the poset Z.

Definition 742. The filtrator of unfixed filters is the filtrator whose base are
unfixed filters and whose core are principal unfixed filters.

We will equate principal unfixed filters with corresponding sets.
Theorem 743. If we add principal filters on DB, principal filters on Z con-

taining B, and above defined principal unfixed filters corresponding to them to
appropriate nodes of the diagram 5, then the diagram turns into a commutative
diagram of isomorphisms between filtrators. (I will not draw the modified diagram
for brevity.)

Every arrow of this diagram is an isomorphism between filtrators, every cycle
in the diagram is identity.

Proof. We need to prove only that principal filters on B and principal filters
on Z containing B correspond to each other by the isomorphisms of the diagram.
But that’s obvious. �

Obvious 744. The filtrator of unfixed filters is a primary filtrator.
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Obvious 745. The filtrator of unfixed filters is down-aligned.

Proposition 746. The filtrator of unfixed filters is
1◦. filtered;
2◦. with join-closed core.

Proof. Theorem 531. �

Proposition 747. The filtrator of unfixed filters is with binarily meet-closed
core.

Proof. Corollary 533. �

Proposition 748. The filtrator of unfixed filters is with separable core.

Proof. Theorem 534. �

Proposition 749. CorX and Cor′ X are defined for every unfixed filter X and
CorX = Cor′ X , provided that every DA is a complete lattice.

Proof. CorX and Cor′ X exists because of the above isomorphism.
Cor′ X = CorX by theorem 542. �

Obvious 750. CorX = Cor′ X =
⋂
X for every filter X ∈ F(small sets).

Proposition 751. atoms
d
S =

⋂
〈atoms〉∗S whenever

d
S is defined.

Proof. Theorem 108. �

Proposition 752. atoms(AtB) = atomsA∪atomsB for unfixed filters A, B,
whenever Z is a distributive lattice which is an ideal base.

Proof. Proposition 554. �

Proposition 753. ∂X is a free star for every unfixed filter X , whenever Z is
a distributive lattice which is an ideal base which has a least element.

Proof. Theorem 563. �

Proposition 754. The poset of unfixed filters is an atomistic lattice if ev-
ery DA (for A ∈ A) is an atomistic lattice.

Proof. Easily follows from 735 by isomorphism. �

Proposition 755. The poset of unfixed filters is a strongly separable lattice
if every DA (for A ∈ A) is an atomistic lattice.

Proof. Theorem 231. �

Proposition 756. CorX = d(Z∩atomsunfixed filters) for every unfixed filter X
if every DA (for A ∈ A) is an atomistic lattice.

Proof. Theorem 596. �

Proposition 757. Cor(AuB) = CorAuCorB for every unfixed filters A, B,
provided every DA (for A ∈ A) is a complete lattice.

Proof. Theorem 598. �

Proposition 758. Cor
dA

S =
dZ〈Cor〉∗S for the filtrator of unfixed filters

for every nonempty set S of unfixed filters, provided every DA (for A ∈ A) is a
complete lattice.

Proof. Theorem 599. �
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Proposition 759. Cor(A tA B) = CorA tZ CorB for the filtrator of unfixed
filters for every unfixed filters A, and B, provided every DA (for A ∈ A) is a
complete atomistic distributive lattice.

Proof. Can be easily deduced from theorem 600 and the triangular diagram
(above) of isomorphic filtrators. �

Conjecture 760. The theorem 611 holds for unfixed filters, too.

It is expected to be easily provable using isomorphisms from the triangular
diagram.



CHAPTER 6

Common knowledge, part 2 (topology)

In this chapter I describe basics of the theory known as general topology. Start-
ing with the next chapter after this one I will describe generalizations of customary
objects of general topology described in this chapter.

The reason why I’ve written this chapter is to show to the reader kinds of objects
which I generalize below in this book. For example, funcoids and a generalization of
proximity spaces, and funcoids are a generalization of pretopologies. To understand
the intuitive meaning of funcoids one needs first know what are proximities and
what are pretopologies.

Having said that, customary topology is not used in my definitions and proofs
below. It is just to feed your intuition.

6.1. Metric spaces

The theory of topological spaces started immediately with the definition would
be completely non-intuitive for the reader. It is the reason why I first describe
metric spaces and show that metric spaces give rise for a topology (see below).
Topological spaces are understandable as a generalization of topologies induced by
metric spaces.

Metric spaces is a formal way to express the notion of distance. For example,
there are distance |x − y| between real numbers x and y, distance between points
of a plane, etc.

Definition 761. Ametric space is a set U together with a function d : U×U →
R (distance or metric) such that for every x, y, z ∈ U :

1◦. d(x, y) ≥ 0;
2◦. d(x, y) = 0⇔ x = y;
3◦. d(x, y) = d(y, x) (symmetry);
4◦. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

Exercise 762. Show that the Euclid space Rn (with the standard distance) is
a metric space for every n ∈ N.

Definition 763. Open ball of radius r > 0 centered at point a ∈ U is the set

Br(a) =
{

x ∈ U
d(a, x) < r

}
.

Definition 764. Closed ball of radius r > 0 centered at point a ∈ U is the set

Br[a] =
{

x ∈ U
d(a, x) ≤ r

}
.

One example of use of metric spaces: Limit of a sequence x in a metric space
can be defined as a point y in this space such that

∀ε > 0∃N ∈ N∀n > N : d(xn, y) < ε.

135
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6.1.1. Open and closed sets.

Definition 765. A set A in a metric space is called open when ∀a ∈ A∃r >
0 : Br(a) ⊆ A.

Definition 766. A set A in a metric space is closed when its complement U \A
is open.

Exercise 767. Show that: closed intervals on real line are closed sets, open
intervals are open sets.

Exercise 768. Show that open balls are open and closed balls are closed.

Definition 769. Closure cl(A) of a set A in a metric space is the set of points
y such that

∀ε > 0∃a ∈ A : d(y, a) < ε.

Proposition 770. cl(A) ⊇ A.

Proof. It follows from d(a, a) = 0 < ε. �

Exercise 771. Prove cl(A ∪ B) = cl(A) ∪ cl(B) for every subsets A and B of
a metric space.

6.2. Pretopological spaces

Pretopological space can be defined in two equivalent ways: a neighborhood
system or a preclosure operator. To be more clear I will call pretopological space
only the first (neighborhood system) and the second call a preclosure space.

Definition 772. Pretopological space is a set U together with a filter ∆(x)
on U for every x ∈ U , such that ↑U {x} v ∆(x). ∆ is called a pretopology on U .
Elements of up ∆(x) are called neighborhoods of point x.

Definition 773. Preclosure on a set U is a unary operation cl on PU such
that for every A,B ∈PU :

1◦. cl(∅) = ∅;
2◦. cl(A) ⊇ A;
3◦. cl(A ∪B) = cl(A) ∪ cl(B).

I call a preclosure together with a set U as preclosure space.

Theorem 774. Small pretopological spaces and small preclosure spaces bijec-
tively correspond to each other by the formulas:

cl(A) =
{

x ∈ U
A ∈ ∂∆(x)

}
; (3)

up ∆(x) =
{

A ∈PU

x /∈ cl(U \A)

}
. (4)

Proof. First let’s prove that cl defined by formula (3) is really a preclosure.
cl(∅) = ∅ is obvious. If x ∈ A then A ∈ ∂∆(x) and so cl(A) ⊇ A. cl(A ∪ B) ={
x∈U

A∪B∈∂∆(x)

}
=
{

x∈U
A∈∂∆(x)∨B∈∂∆(x)

}
= cl(A) ∪ cl(B). So, it is really a preclosure.

Next let’s prove that ∆ defined by formula (4) is a pretopology. That up ∆(x)
is an upper set is obvious. Let A,B ∈ up ∆(x). Then x /∈ cl(U \A)∧x /∈ cl(U \B);
x /∈ cl(U \A)∪cl(U \B) = cl((U \A)∪ (U \B)) = cl(U \ (A∩B)); A∩B ∈ up ∆(x).
We have proved that ∆(x) is a filter object.

Let’s prove ↑U {x} v ∆(x). If A ∈ up ∆(x) then x /∈ cl(U \A) and consequently
x /∈ U \A; x ∈ A; A ∈ up ↑U {x}. So ↑U {x} v ∆(x) and thus ∆ is a pretopology.
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It is left to prove that the functions defined by the above formulas are mutually
inverse.

Let cl0 be a preclosure, let ∆ be the pretopology induced by cl0 by the formula
(4), let cl1 be the preclosure induced by ∆ by the formula (3). Let’s prove cl1 = cl0.
Really,

x ∈ cl1(A)⇔
∆(x) 6�↑U A⇔

∀X ∈ up ∆(x) : X ∩A 6= ∅ ⇔
∀X ∈PU : (x /∈ cl0(U \X)⇒ X ∩A 6= ∅)⇔
∀X ′ ∈PU : (x /∈ cl0(X ′)⇒ A \X ′ 6= ∅)⇔
∀X ′ ∈PU : (A \X ′ = ∅ ⇒ x ∈ cl0(X ′))⇔
∀X ′ ∈PU : (A ⊆ X ′ ⇒ x ∈ cl0(X ′))⇔

x ∈ cl0(A).

So cl1(A) = cl0(A).
Let now ∆0 be a pretopology, let cl be the closure induced by ∆0 by the formula

(3), let ∆1 be the pretopology induced by cl by the formula (4). Really

A ∈ up ∆1(x)⇔
x /∈ cl(U \A)⇔

∆0(x) �↑U (U \A)⇔ (proposition 548)
↑U A w ∆0(x)⇔
A ∈ up ∆0(x).

So ∆1(x) = ∆0(x).
That these functions are mutually inverse, is now proved. �

6.2.1. Pretopology induced by a metric. Every metric space induces a
pretopology by the formula:

∆(x) =
FUl{

Br(x)
r ∈ R, r > 0

}
.

Exercise 775. Show that it is a pretopology.

Proposition 776. The preclosure corresponding to this pretopology is the
same as the preclosure of the metric space.

Proof. I denote the preclosure of the metric space as clM and the preclosure
corresponding to our pretopology as clP . We need to show clP = clM . Really:

clP (A) ={
x ∈ U

A ∈ ∂∆(x)

}
={

x ∈ U
∀ε > 0 : Bε(x) 6� A

}
={

y ∈ U
∀ε > 0∃a ∈ A : d(y, a) < ε

}
=

clM (A)

for every set A ∈PU . �
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6.3. Topological spaces

Proposition 777. For the set of open sets of a metric space (U, d) it holds:
1◦. Union of any (possibly infinite) number of open sets is an open set.
2◦. Intersection of a finite number of open sets is an open set.
3◦. U is an open set.

Proof. Let S be a set of open sets. Let a ∈
⋃
S. Then there exists A ∈ S such

that a ∈ A. Because A is open we have Br(a) ⊆ A for some r > 0. Consequently
Br(a) ⊆

⋃
S that is

⋃
S is open.

Let A0, . . . , An be open sets. Let a ∈ A0∩ · · ·∩An for some n ∈ N. Then there
exist ri such that Bri(a) ⊆ Ai. So Br(a) ⊆ A0 ∩ · · · ∩ An for r = min{r0, . . . , rn}
that is A0 ∩ · · · ∩An is open.

That U is an open set is obvious. �

The above proposition suggests the following definition:

Definition 778. A topology on a set U is a collection O (called the set of open
sets) of subsets of U such that:

1◦. Union of any (possibly infinite) number of open sets is an open set.
2◦. Intersection of a finite number of open sets is an open set.
3◦. U is an open set.

The pair (U,O) is called a topological space.

Remark 779. From the above it is clear that every metric induces a topology.

Proposition 780. Empty set is always open.

Proof. Empty set is union of an empty set. �

Definition 781. A closed set is a complement of an open set.

Topology can be equivalently expresses in terms of closed sets:
A topology on a set U is a collection (called the set of closed sets) of subsets of

U such that:
1◦. Intersection of any (possibly infinite) number of closed sets is a closed set.
2◦. Union of a finite number of closed sets is a closed set.
3◦. ∅ is a closed set.

Exercise 782. Show that the definitions using open and closed sets are equiv-
alent.

6.3.1. Relationships between pretopologies and topologies.
6.3.1.1. Topological space induced by preclosure space. Having a preclosure

space (U, cl) we define a topological space whose closed sets are such sets A ∈PU
that cl(A) = A.

Proposition 783. This really defines a topology.

Proof. Let S be a set of closed sets. First, we need to prove that
⋂
S is

a closed set. We have cl(
⋂
S) ⊆ A for every A ∈ S. Thus cl(

⋂
S) ⊆

⋂
S and

consequently cl(
⋂
S) =

⋂
S. So

⋂
S is a closed set.

Let now A0, . . . , An be closed sets, then

cl(A0 ∪ · · · ∪An) = cl(A0) ∪ · · · ∪ cl(An) = A0 ∪ · · · ∪An
that is A0 ∪ · · · ∪An is a closed set.

That ∅ is a closed set is obvious. �
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Having a pretopological space (U,∆) we define a topological space whose open
sets are {

X ∈PU

∀x ∈ X : X ∈ up ∆(x)

}
.

Proposition 784. This really defines a topology.

Proof. Let set S ⊆
{

X∈PU
∀x∈X:X∈up ∆(x)

}
. Then ∀X ∈ S∀x ∈ X : X ∈ up ∆(x).

Thus
∀x ∈

⋃
S∃X ∈ S : X ∈ up ∆(x)

and so ∀x ∈
⋃
S :
⋃
S ∈ up ∆(x). So

⋃
S is an open set.

Let now A0, . . . , An ∈
{

X∈PU
∀x∈X:X∈up ∆(x)

}
for n ∈ N. Then ∀x ∈ Ai : Ai ∈

up ∆(x) and so
∀x ∈ A0 ∩ · · · ∩An : Ai ∈ up ∆(x);

thus ∀x ∈ A0 ∩ · · · ∩ An : A0 ∩ · · · ∩ An ∈ up ∆(x). So A0 ∩ · · · ∩ An ∈{
X∈PU

∀x∈X:X∈up ∆(x)

}
.

That U is an open set is obvious. �

Proposition 785. Topology τ defined by a pretopology and topology ρ defined
by the corresponding preclosure, are the same.

Proof. Let A ∈PU .
A is ρ-closed⇔ cl(A) = A⇔ cl(A) ⊆ A⇔ ∀x ∈ U : (A ∈ ∂∆(x)⇒ x ∈ A);

A is τ -open⇔
∀x ∈ A : A ∈ up ∆(x)⇔

∀x ∈ U : (x ∈ A⇒ A ∈ up ∆(x))⇔
∀x ∈ U : (x /∈ U \A⇒ U \A /∈ ∂∆(x)).

So ρ-closed and τ -open sets are complements of each other. It follows ρ = τ . �

6.3.1.2. Preclosure space induced by topological space. We define a preclosure
and a pretopology induced by a topology and then show these two are equivalent.

Having a topological space we define a preclosure space by the formula

cl(A) =
⋂{ X ∈PU

X is a closed set, X ⊇ A

}
.

Proposition 786. It is really a preclosure.

Proof. cl(∅) = ∅ because ∅ is a closed set. cl(A) ⊇ A is obvious.
cl(A ∪B) =⋂{ X ∈PU

X is a closed set, X ⊇ A ∪B

}
=⋂{ X1 ∪X2

X1, X2 ∈PU are closed sets, X1 ⊇ A,X2 ⊇ B

}
=⋂{ X1 ∈PU

X1 is a closed set, X1 ⊇ A

}
∪
⋂{ X2 ∈PU

X2 is a closed set, X2 ⊇ B

}
=

cl(A) ∪ cl(B).
Thus cl is a preclosure. �

Or: ∆(x) =
dF{X∈O

x∈X
}
.

It is trivially a pretopology (used the fact that U ∈ O).
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Proposition 787. The preclosure and the pretopology defined in this section
above correspond to each other (by the formulas from theorem 774).

Proof. We need to prove cl(A) =
{

x∈U
∆(x)6�↑UA

}
, that is

⋂{ X ∈PU

X is a closed set, X ⊇ A

}
=
{

x ∈ U
dFU{X∈O

x∈X
}
6�↑U A

}
.

Equivalently transforming it, we get:

⋂{ X ∈PU

X is a closed set, X ⊇ A

}
=
{

x ∈ U
∀X ∈ O : (x ∈ X ⇒↑U X 6�↑U A)

}
;⋂{ X ∈PU

X is a closed set, X ⊇ A

}
=
{

x ∈ U
∀X ∈ O : (x ∈ X ⇒ X 6� A)

}
.

We have

x ∈
⋂{ X ∈PU

X is a closed set, X ⊇ A

}
⇔

∀X ∈PU : (X is a closed set ∧X ⊇ A⇒ x ∈ X)⇔
∀X ′ ∈ O : (U \X ′ ⊇ A⇒ x ∈ U \X ′)⇔

∀X ′ ∈ O : (X ′ � A⇒ x /∈ X ′)⇔
∀X ∈ O : (x ∈ X ⇒ X 6� A).

So our equivalence holds. �

Proposition 788. If τ is the topology induced by pretopology π, in turn
induced by topology ρ, then τ = ρ.

Proof. The set of closed sets of τ is {
A ∈PU

clπ(A) = A

}
= A ∈PU⋂{

X∈PU
X is a closed set in ρ,X⊇A

}
= A

 =

{
A ∈PU

A is a closed set in ρ

}
(taken into account that intersecting closed sets is a closed set). �

Definition 789. Idempotent closures are called Kuratowski closures.

Theorem 790. The above defined correspondences between topologies and
pretopologies, restricted to Kuratowski closures, is a bijection.

Proof. Taking into account the above proposition, it’s enough to prove that:
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If τ is the pretopology induced by topology π, in turn induced by a Kuratowski
closure ρ, then τ = ρ.

clτ (A) =⋂{ X ∈PU

X is a closed set in π,X ⊇ A

}
=⋂{ X ∈PU

clρ(X) = X,X ⊇ A

}
=

⋂{ clρ(X)
X ∈PU, clρ(X) = X,X ⊇ clρ(A)

}
=

⋂{clρ(clρ(X))
X = A

}
=

clρ(clρ(A)) =
clρ(A).

�

6.3.1.3. Topology induced by a metric.

Definition 791. Every metric space induces a topology in this way: A set X
is open iff

∀x ∈ X∃ε > 0 : Br(x) ⊆ X.

Exercise 792. Prove it is really a topology and this topology is the same as
the topology, induced by the pretopology, in turn induced by our metric space.

6.4. Proximity spaces

Let (U, d) be metric space. We will define distance between sets A,B ∈ PU
by the formula

d(A,B) = inf
{

d(a, b)
a ∈ A, b ∈ B

}
.

(Here “inf” denotes infimum on the real line.)

Definition 793. Sets A,B ∈PU are near (denoted A δ B) iff d(A,B) = 0.

δ defined in this way (for a metric space) is an example of proximity as defined
below.

Definition 794. A proximity space is a set (U, δ) conforming to the following
axioms (for every A,B,C ∈PU):

1◦. A ∩B 6= ∅ ⇒ A δ B;
2◦. if A δ B then A 6= ∅ and B 6= ∅;
3◦. A δ B ⇒ B δ A (symmetry);
4◦. (A ∪B) δ C ⇔ A δ C ∨B δ C;
5◦. C δ (A ∪B)⇔ C δ A ∨ C δ B;
6◦. A δ̄ B implies existence of P,Q ∈PU with A δ̄ P , B δ̄ Q and P ∪Q = U .

Exercise 795. Show that proximity generated by a metric space is really a
proximity (conforms to the above axioms).

Definition 796. Quasi-proximity is defined as the above but without the sym-
metry axiom.

Definition 797. Closure is generated by a proximity by the following formula:

cl(A) =
{
a ∈ U
{a} δ A

}
.
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Proposition 798. Every closure generated by a proximity is a Kuratowski
closure.

Proof. First prove it is a preclosure. cl(∅) = ∅ is obvious. cl(A) ⊇ A is
obvious.

cl(A ∪B) ={
a ∈ U

{a} δ A ∪B

}
={

a ∈ U
{a} δ A ∨ {a} δ B

}
={

a ∈ U
{a} δ A

}
∪
{
a ∈ U
{a} δ B

}
=

cl(A) ∪ cl(B).
It is remained to prove that cl is idempotent, that is cl(cl(A)) = cl(A). It is

enough to show cl(cl(A)) ⊆ cl(A) that is if x /∈ cl(A) then x /∈ cl(cl(A)).
If x /∈ cl(A) then {x} δ̄ A. So there are P,Q ∈PU such that {x} δ̄ P , A δ̄ Q,

P ∪Q = U . Then U \Q ⊆ P , so {x} δ̄ U \Q and hence x ∈ Q. Hence U \cl(A) ⊆ Q,
and so cl(A) ⊆ U \Q ⊆ P . Consequently {x} δ̄ cl(A) and hence x /∈ cl(cl(A)). �

6.5. Definition of uniform spaces

Here I will present the traditional definition of uniform spaces. Below in the
chapter about reloids I will present a shortened and more algebraic (however a little
less elementary) definition of uniform spaces.

Definition 799. Uniform space is a pair (U,D) of a set U and filter D ∈
F(U × U) (called uniformity or the set of entourages) such that:

1◦. If F ∈ D then idU ⊆ F .
2◦. If F ∈ D then there exists G ∈ D such that G ◦G ⊆ F .
3◦. If F ∈ D then F−1 ∈ D.
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Funcoids and reloids



CHAPTER 7

Funcoids

In this chapter (and several following chapters) the word filter will refer to a
filter (or equivalently any filter object) on a set (rather than a filter on an arbitrary
poset).

7.1. Informal introduction into funcoids

Funcoids are a generalization of proximity spaces and a generalization of pre-
topological spaces. Also funcoids are a generalization of binary relations.

That funcoids are a common generalization of “spaces” (proximity spaces,
(pre)topological spaces) and binary relations (including monovalued functions)
makes them smart for describing properties of functions in regard of spaces. For
example the statement “f is a continuous function from a space µ to a space ν”
can be described in terms of funcoids as the formula f ◦ µ v ν ◦ f (see below for
details).

Most naturally funcoids appear as a generalization of proximity spaces.1
Let δ be a proximity. We will extend the relation δ from sets to filters by the

formula:
A δ′ B ⇔ ∀A ∈ upA, B ∈ upB : A δ B.

Then (as it will be proved below) there exist two functions α, β ∈ FF such
that

A δ′ B ⇔ B u αA 6= ⊥F ⇔ Au βB 6= ⊥F .

The pair (α, β) is called funcoid when B u αA 6= ⊥F ⇔ A u βB 6= ⊥F . So
funcoids are a generalization of proximity spaces.

Funcoids consist of two components the first α and the second β. The first
component of a funcoid f is denoted as 〈f〉 and the second component is denoted
as
〈
f−1〉. (The similarity of this notation with the notation for the image of a

set under a function is not a coincidence, we will see that in the case of principal
funcoids (see below) these coincide.)

One of the most important properties of a funcoid is that it is uniquely deter-
mined by just one of its components. That is a funcoid f is uniquely determined
by the function 〈f〉. Moreover a funcoid f is uniquely determined by values of 〈f〉
on principal filters.

Next we will consider some examples of funcoids determined by specified values
of the first component on sets.

Funcoids as a generalization of pretopological spaces: Let α be a pretopological
space that is a map α ∈ Ff for some set f. Then we define α′X = dx∈X αx for
every set X ∈ Pf. We will prove that there exists a unique funcoid f such
that α′ = 〈f〉|P◦ ↑ where P is the set of principal filters on f. So funcoids are
a generalization of pretopological spaces. Funcoids are also a generalization of
preclosure operators: For every preclosure operator p on a set f it exists a unique
funcoid f such that 〈f〉|P◦ ↑=↑ ◦p.

1In fact I discovered funcoids pondering on topological spaces, not on proximity spaces, but
this is only of a historic interest.

144
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For every binary relation p on a set f there exists unique funcoid f such that
∀X ∈Pf : 〈f〉 ↑ X =↑ 〈p〉∗X

(where 〈p〉∗ is defined in the introduction), recall that a funcoid is uniquely deter-
mined by the values of its first component on sets. I will call such funcoids principal.
So funcoids are a generalization of binary relations.

Composition of binary relations (i.e. of principal funcoids) complies with the
formulas:

〈g ◦ f〉∗ = 〈g〉∗ ◦ 〈f〉∗ and
〈
(g ◦ f)−1〉∗ =

〈
f−1〉∗ ◦ 〈g−1〉∗.

By similar formulas we can define composition of every two funcoids. Funcoids with
this composition form a category (the category of funcoids).

Also funcoids can be reversed (like reversal of X and Y in a binary relation)
by the formula (α, β)−1 = (β, α). In the particular case if µ is a proximity we have
µ−1 = µ because proximities are symmetric.

Funcoids behave similarly to (multivalued) functions but acting on filters in-
stead of acting on sets. Below there will be defined domain and image of a funcoid
(the domain and the image of a funcoid are filters).

7.2. Basic definitions

Definition 800. Let us call a funcoid from a set A to a set B a quadruple
(A,B, α, β) where α ∈ F (B)F(A), α ∈ F (A)F(B) such that

∀X ∈ F (A),Y ∈ F (B) : (Y 6� αX ⇔ X 6� βY).

Definition 801. Source and destination of every funcoid (A,B, α, β) are de-
fined as:

Src(A,B, α, β) = A and Dst(A,B, α, β) = B.

I will denote FCD(A,B) the set of funcoids from A to B.
I will denote FCD the set of all funcoids (for small sets).

Definition 802. I will call an endofuncoid a funcoid whose source is the same
as it’s destination.

Definition 803. 〈(A,B, α, β)〉 def= α for a funcoid (A,B, α, β).

Definition 804. The reverse funcoid (A,B, α, β)−1 = (B,A, β, α) for a fun-
coid (A,B, α, β).

Note 805. The reverse funcoid is not an inverse in the sense of group theory
or category theory.

Proposition 806. If f is a funcoid then f−1 is also a funcoid.

Proof. It follows from symmetry in the definition of funcoid. �

Obvious 807. (f−1)−1 = f for a funcoid f .

Definition 808. The relation [f ] ∈ P(F (Src f) ×F (Dst f)) is defined (for
every funcoid f and X ∈ F (Src f), Y ∈ F (Dst f) by the formula X [f ] Y ⇔ Y 6�
〈f〉X .

Obvious 809. X [f ] Y ⇔ Y 6� 〈f〉X ⇔ X 6�
〈
f−1〉Y for every funcoid f and

X ∈ F (Src f), Y ∈ F (Dst f).

Obvious 810.
[
f−1]=[f ]−1 for a funcoid f .

Theorem 811. Let A, B be sets.
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1◦. For given value of 〈f〉 ∈ F (B)F(A) there exists no more than one funcoid
f ∈ FCD(A,B).

2◦. For given value of [f ] ∈P(F (A)×F (B)) there exists no more than one
funcoid f ∈ FCD(A,B).

Proof. Let f, g ∈ FCD(A,B).
Obviously, 〈f〉 = 〈g〉 ⇒[f ]=[g] and

〈
f−1〉 =

〈
g−1〉⇒[f ]=[g]. So it’s enough to

prove that [f ]=[g]⇒ 〈f〉 = 〈g〉.
Provided that [f ]=[g] we have Y 6� 〈f〉X ⇔ X [f ] Y ⇔ X [g] Y ⇔ Y 6� 〈g〉X

and consequently 〈f〉X = 〈g〉X for every X ∈ F (A), Y ∈ F (B) because a set of
filters is separable, thus 〈f〉 = 〈g〉. �

Proposition 812. 〈f〉⊥ = ⊥ for every funcoid f .

Proof. Y 6� 〈f〉⊥ ⇔ ⊥ 6�
〈
f−1〉Y ⇔ 0 ⇔ Y 6� ⊥. Thus 〈f〉⊥ = ⊥ by

separability of filters. �

Proposition 813. 〈f〉(I t J ) = 〈f〉I t 〈f〉J for every funcoid f and I,J ∈
F (Src f).

Proof.

?〈f〉(I t J ) ={
Y ∈ F

Y 6� 〈f〉(I t J )

}
={

Y ∈ F

I t J 6� 〈f−1〉Y

}
={

Y ∈ F

I 6� 〈f−1〉Y ∨ J 6� 〈f−1〉Y

}
={

Y ∈ F

Y 6� 〈f〉I ∨ Y 6� 〈f〉J

}
={

Y ∈ F

Y 6� 〈f〉I t 〈f〉J

}
=

?(〈f〉I t 〈f〉J ).

Thus 〈f〉(I t J ) = 〈f〉I t 〈f〉J because F (Dst f) is separable. �

Proposition 814. For every f ∈ FCD(A,B) for every sets A and B we have:
1◦. K [f ] I t J ⇔ K [f ] I ∨ K [f ] J for every I,J ∈ F (B), K ∈ F (A).
2◦. I t J [f ] K ⇔ I [f ] K ∨ J [f ] K for every I,J ∈ F (A), K ∈ F (B).

Proof.
1◦.

K [f ] I t J ⇔
(I t J ) u 〈f〉K 6= ⊥F(B) ⇔

I u 〈f〉K 6= ⊥F(B) ∨ J u 〈f〉K 6= ⊥F(B) ⇔
K [f ] I ∨ K [f ] J .

2◦. Similar.
�
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7.2.1. Composition of funcoids.

Definition 815. Funcoids f and g are composable when Dst f = Src g.

Definition 816. Composition of composable funcoids is defined by the formula
(B,C, α2, β2) ◦ (A,B, α1, β1) = (A,C, α2 ◦ α1, β1 ◦ β2).

Proposition 817. If f , g are composable funcoids then g ◦ f is a funcoid.

Proof. Let f = (A,B, α1, β1), g = (B,C, α2, β2). For every X ∈ F (A),
Y ∈ F (C) we have
Y 6� (α2 ◦ α1)X ⇔ Y 6� α2α1X ⇔ α1X 6� β2Y ⇔ X 6� β1β2Y ⇔ X 6� (β1 ◦ β2)Y.

So (A,C, α2 ◦ α1, β1 ◦ β2) is a funcoid. �

Obvious 818. 〈g ◦ f〉 = 〈g〉 ◦ 〈f〉 for every composable funcoids f and g.

Proposition 819. (h ◦ g) ◦ f = h ◦ (g ◦ f) for every composable funcoids f , g,
h.

Proof.

〈(h ◦ g) ◦ f〉 =
〈h ◦ g〉 ◦ 〈f〉 =

(〈h〉 ◦ 〈g〉) ◦ 〈f〉 =
〈h〉 ◦ (〈g〉 ◦ 〈f〉) =
〈h〉 ◦ 〈g ◦ f〉 =
〈h ◦ (g ◦ f)〉.

�

Theorem 820. (g ◦ f)−1 = f−1 ◦ g−1 for every composable funcoids f and g.

Proof.
〈
(g ◦ f)−1〉 =

〈
f−1〉 ◦ 〈g−1〉 =

〈
f−1 ◦ g−1〉. �

7.3. Funcoid as continuation

Let f be a funcoid.

Definition 821. 〈f〉∗ is the function T (Src f) → F (Dst f) defined by the
formula

〈f〉∗X = 〈f〉 ↑ X.

Definition 822. [f ]∗ is the relation between T (Src f) and T (Dst f) defined
by the formula

X [f ]∗ Y ⇔↑ X [f ]↑ Y.

Obvious 823.
1◦. 〈f〉∗ = 〈f〉◦ ↑;
2◦. [f ]∗ =↑−1 ◦[f ]◦ ↑.

Obvious 824. 〈g〉〈f〉∗X = 〈g ◦ f〉∗X for every X ∈ T (Src f).

Theorem 825. For every funcoid f and X ∈ F (Src f), Y ∈ F (Dst f)
1◦. 〈f〉X =

d〈
〈f〉∗

〉∗ upX ;
2◦. X [f ] Y ⇔ ∀X ∈ upX , Y ∈ upY : X [f ]∗ Y .

Proof.
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2◦.

X [f ] Y ⇔
Y u 〈f〉X 6= ⊥ ⇔

∀Y ∈ upY :↑ Y u 〈f〉X 6= ⊥ ⇔
∀Y ∈ upY : X [f ]↑ Y.

Analogously X [f ] Y ⇔ ∀X ∈ upX :↑ X [f ] Y. Combining these two equiva-
lences we get

X [f ] Y ⇔ ∀X ∈ upX , Y ∈ upY :↑ X [f ]↑ Y ⇔ ∀X ∈ upX , Y ∈ upY : X [f ]∗ Y.

1◦.

Y u 〈f〉X 6= ⊥ ⇔
X [f ] Y ⇔

∀X ∈ upX :↑ X [f ] Y ⇔
∀X ∈ upX : Y u 〈f〉∗X 6= ⊥.

Let’s denote W =
{
Yu〈f〉∗X
X∈upX

}
. We will prove that W is a generalized filter

base. To prove this it is enough to show that V =
{
〈f〉∗X
X∈upX

}
is a generalized filter

base.
Let P,Q ∈ V . Then P = 〈f〉∗A, Q = 〈f〉∗B where A,B ∈ upX ; AuB ∈ upX

and R v P u Q for R = 〈f〉∗(A u B) ∈ V . So V is a generalized filter base and
thus W is a generalized filter base.
⊥ /∈W ⇔

d
W 6= ⊥ by properties of generalized filter bases. That is

∀X ∈ upX : Y u 〈f〉∗X 6= ⊥F(Dst f) ⇔ Y u
l〈
〈f〉∗

〉∗ upX 6= ⊥.

Comparing with the above, Y u 〈f〉X 6= ⊥F(Dst f) ⇔ Y u
d〈
〈f〉∗

〉∗ upX 6= ⊥.
So 〈f〉X =

d〈
〈f〉∗

〉∗ upX because the lattice of filters is separable.
�

Corollary 826. Let f be a funcoid.
1◦. The value of f can be restored from the value of 〈f〉∗.
2◦. The value of f can be restored from the value of [f ]∗.

Proposition 827. For every f ∈ FCD(A,B) we have (for every I, J ∈ T A)

〈f〉∗⊥ = ⊥, 〈f〉∗(I t J) = 〈f〉∗I t 〈f〉∗J

and

¬(I [f ]∗ ⊥), I t J [f ]∗ K ⇔ I [f ]∗ K ∨ J [f ]∗ K (for every I, J ∈ T A, K ∈ T B),
¬(⊥ [f ]∗ I), K [f ]∗ I t J ⇔ K [f ]∗ I ∨K [f ]∗ J (for every I, J ∈ T B, K ∈ T A).

Proof. 〈f〉∗⊥ = 〈f〉⊥ = 〈f〉⊥ = ⊥;

〈f〉∗(I t J) = 〈f〉 ↑ (I t J) = 〈f〉 ↑ I t 〈f〉 ↑ J = 〈f〉∗I t 〈f〉∗J.
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I [f ]∗ ⊥ ⇔ ⊥ 6� 〈f〉 ↑ I ⇔ 0;
I t J [f ]∗ K ⇔

↑ (I t J) [f ]↑ K ⇔
↑ K 6� 〈f〉 ↑ (I t J)⇔
↑ K 6� 〈f〉∗(I t J)⇔

↑ K 6� 〈f〉∗I t 〈f〉∗J ⇔
↑ K 6� 〈f〉∗I∨ ↑ K 6� 〈f〉∗J ⇔

I [f ]∗ K ∨ J [f ]∗ K.
The rest follows from symmetry. �

Theorem 828. (fundamental theorem of theory of funcoids) Fix sets A and
B. Let LF = λf ∈ FCD(A,B) : 〈f〉∗ and LR = λf ∈ FCD(A,B) : [f ]∗.

1◦. LF is a bijection from the set FCD(A,B) to the set of functions α ∈
F (B)T A that obey the conditions (for every I, J ∈ T A)

α⊥ = ⊥, α(I t J) = αI t αJ. (5)
For such α it holds (for every X ∈ F (A))〈

L−1
F α

〉
X =

l
〈α〉∗ upX . (6)

2◦. LR is a bijection from the set FCD(A,B) to the set of binary relations
δ ∈P(T A×T B) that obey the conditions

¬(I δ ⊥), I t J δ K ⇔ I δ K ∨ J δ K (for every I, J ∈ T A, K ∈ T B),
¬(⊥ δ I), K δ I t J ⇔ K δ I ∨K δ J (for every I, J ∈ T B, K ∈ T A). (7)

For such δ it holds (for every X ∈ F (A), Y ∈ F (B))
X
[
L−1
R δ
]
Y ⇔ ∀X ∈ upX , Y ∈ upY : X δ Y. (8)

Proof. Injectivity of LF and LR, formulas (6) (for α ∈ imLF ) and (8) (for
δ ∈ imLR), formulas (5) and (7) follow from two previous theorems. The only
thing remaining to prove is that for every α and δ that obey the above conditions
a corresponding funcoid f exists.

2◦. Let define α ∈ F (B)T A by the formula ∂(αX) =
{
Y ∈T B
XδY

}
for every

X ∈ T A. (It is obvious that
{
Y ∈T B
XδY

}
is a free star.) Analogously it can be

defined β ∈ F (A)T B by the formula ∂(βY ) =
{
X∈T A
XδY

}
. Let’s continue α and β

to α′ ∈ F (B)F(A) and β′ ∈ F (A)F(B) by the formulas

α′X =
l
〈α〉∗ upX and β′Y =

l
〈β〉∗ upY

and δ to δ′ by the formula
X δ′ Y ⇔ ∀X ∈ upX , Y ∈ upY : X δ Y.

Y u α′X 6= ⊥ ⇔ Y u
d
〈α〉∗ upX 6= ⊥ ⇔

d
〈Yu〉∗〈α〉∗ upX 6= ⊥. Let’s prove

that
W = 〈Yu〉∗〈α〉∗ upX

is a generalized filter base: To prove it is enough to show that 〈α〉∗ upX is a
generalized filter base. If A,B ∈ 〈α〉∗ upX then exist X1, X2 ∈ upX such that
A = αX1, B = αX2.

Then α(X1 u X2) ∈ 〈α〉∗ upX . So 〈α〉∗ upX is a generalized filter base and
thus W is a generalized filter base.

By properties of generalized filter bases,
d
〈Yu〉∗〈α〉∗X 6= ⊥ is equivalent to

∀X ∈ upX : Y u αX 6= ⊥,
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what is equivalent to
∀X ∈ upX , Y ∈ upY :↑ Y u αX 6= ⊥ ⇔
∀X ∈ upX , Y ∈ upY : Y ∈ ∂(αX)⇔

∀X ∈ upX , Y ∈ upY : X δ Y.

Combining the equivalencies we get Y u α′X 6= ⊥ ⇔ X δ′ Y. Analogously
X u β′Y 6= ⊥ ⇔ X δ′ Y. So Y u α′X 6= ⊥ ⇔ X u β′Y 6= ⊥, that is (A,B, α′, β′) is
a funcoid. From the formula Y u α′X 6= ⊥F(B) ⇔ X δ′ Y it follows that

X [(A,B, α′, β′)]∗ Y ⇔↑ Y u α′ ↑ X 6= ⊥ ⇔↑ X δ′↑ Y ⇔ X δ Y.

1◦. Let define the relation δ ∈ P(T A × T B) by the formula X δ Y ⇔↑
Y u αX 6= ⊥.

That ¬(I δ ⊥) and ¬(⊥ δ I) is obvious. We have
I t J δ K ⇔

↑ K u α(I t J) 6= ⊥ ⇔
↑ K u (αI t αJ) 6= ⊥ ⇔

↑ K u αI 6= ⊥∨ ↑ K u αJ 6= ⊥ ⇔
I δ K ∨ J δ K

and
K δ I t J ⇔

↑ (I t J) u αK 6= ⊥ ⇔
(↑ It ↑ J) u αK 6= ⊥ ⇔

↑ I u αK 6= ⊥∨ ↑ J u αK 6= ⊥ ⇔
K δ I ∨K δ J.

That is the formulas (7) are true.
Accordingly to the above there exists a funcoid f such that

X [f ] Y ⇔ ∀X ∈ upX , Y ∈ upY : X δ Y.

For every X ∈ T A, Y ∈ T B we have:
↑ Y u 〈f〉 ↑ X 6= ⊥ ⇔↑ X [f ]↑ Y ⇔ X δ Y ⇔↑ Y u αX 6= ⊥,

consequently ∀X ∈ T A : αX = 〈f〉 ↑ X = 〈f〉∗X.
�

Note that by the last theorem to every (quasi-)proximity δ corresponds a unique
funcoid. So funcoids are a generalization of (quasi-)proximity structures. Reverse
funcoids can be considered as a generalization of conjugate quasi-proximity.

Corollary 829. If α ∈ F (B)T A, β ∈ F (A)T B are functions such that
Y 6� αX ⇔ X 6� βY for every X ∈ T A, Y ∈ T B, then there exists exactly one
funcoid f such that 〈f〉∗ = α, 〈f−1〉∗ = β.

Proof. Prove α(I t J) = αI t αJ . Really, Y 6� α(I t J) ⇔ I t J 6� βY ⇔
I 6� βY ∨ J 6� βY ⇔ Y 6� αI ∨ Y 6� αJ ⇔ Y 6� αI t αJ . So α(I t J) = αI t αJ
by star-separability. Similarly β(I t J) = βI t βJ .

Thus by the theorem there exists a funcoid f such that 〈f〉∗ = α, 〈f−1〉∗ = β.
That this funcoid is unique, follows from the above. �

Definition 830. Any Rel-morphism F : A → B corresponds to a funcoid
↑FCD F ∈ FCD(A,B), where by definition

〈
↑FCD F

〉
X =

dF〈〈F 〉∗〉∗ upX for every
X ∈ F (A).
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Using the last theorem it is easy to show that this definition is monovalued and
does not contradict to former stuff. (Take α =↑ ◦〈F 〉∗.)

Proposition 831.
〈
↑FCD f

〉∗
X = 〈f〉∗X for a Rel-morphism f and X ∈

T Src f .

Proof.
〈
↑FCD f

〉∗
X = min〈↑〉∗

〈
〈f〉∗

〉∗ upX =↑ 〈f〉∗X = 〈f〉∗X. �

Corollary 832.
[
↑FCD f

]∗ = [f ]∗ for every Rel-morphism f .

Proof. X
[
↑FCD f

]∗
Y ⇔ Y 6�

〈
↑FCD f

〉∗
X ⇔ Y 6� 〈f〉∗X ⇔ X [f ]∗ Y for

X ∈ T Src f , Y ∈ T Dst f . �

Definition 833. ↑FCD(A,B) f =↑FCD (A,B, f) for every binary relation f be-
tween sets A and B.

Definition 834. Funcoids corresponding to a binary relation (= multivalued
function) are called principal funcoids.

Proposition 835. ↑FCD g◦ ↑FCD f =↑FCD (g◦f) for composable morphisms f , g
of category Rel.

Proof. For every X ∈ T Src f〈
↑FCD g◦ ↑FCD f

〉∗
X =

〈
↑FCD g

〉∗〈↑FCD f
〉∗
X =

〈g〉∗〈f〉∗X = 〈g ◦ f〉∗X =
〈
↑FCD (g ◦ f)

〉∗
X.

�

We may equate principal funcoids with corresponding binary relations by the
method of appendix A. This is useful for describing relationships of funcoids and
binary relations, such as for the formulas of continuous functions and continuous
funcoids (see below).

Thus (FCD(A,B),Rel(A,B)) is a filtrator. I call it filtrator of funcoids.

Theorem 836. If S is a generalized filter base on Src f then 〈f〉
d
S =d

〈〈f〉〉∗S for every funcoid f .

Proof. 〈f〉
d
S v 〈f〉X for every X ∈ S and thus 〈f〉

d
S v

d
〈〈f〉〉∗S.

By properties of generalized filter bases:

〈f〉
l
S =

l〈
〈f〉∗

〉∗ up
l
S =

l〈
〈f〉∗

〉∗{ X

∃P ∈ S : X ∈ upP

}
=

l{ 〈f〉∗X
∃P ∈ S : X ∈ upP

}
w

l

P∈S
〈f〉P =

l
〈〈f〉〉∗S.

�

Proposition 837. X [f ]
d
S ⇔ ∃Y ∈ S : X [f ] Y if f is a funcoid and S is a

generalized filter base on Dst f .
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Proof.

X [f ]
l
S ⇔

l
S u 〈f〉X 6= ⊥ ⇔

l
〈〈f〉Xu〉∗S 6= ⊥ ⇔

(by properties of generalized filter bases)⇔
∃Y ∈ 〈〈f〉Xu〉∗S : Y 6= ⊥ ⇔ ∃Y ∈ S : 〈f〉X u Y 6= ⊥ ⇔ ∃Y ∈ S : X [f ] Y.

�

Definition 838. A function f between two posets is said to preserve filtered
meets, when f

d
S =

d
〈f〉∗S whenever

d
S is defined for a filter base S on the

first of the two posets.

Theorem 839. (discovered by Todd Trimble) A function ϕ : F (A)→ F (B)
preserves finite joins (including nullary joins) and filtered meets iff there exists a
funcoid f such that 〈f〉 = ϕ.

Proof. Backward implication follows from above.
Let ψ = ϕ|T A. Then ψ preserves bottom element and binary joins. Thus there

exists a funcoid f such that 〈f〉∗ = ψ.
It remains to prove that 〈f〉 = ϕ.
Really, 〈f〉X =

d〈
〈f〉∗

〉∗ upX =
d
〈ψ〉∗ upX =

d
〈ϕ〉∗ upX = ϕ

d
upX = ϕX

for every X ∈ F (A). �

Corollary 840. Funcoids f from A to B bijectively correspond by the formula
〈f〉 = ϕ to functions ϕ : F (A)→ F (B) preserving finite joins and filtered meets.

7.4. Another way to represent funcoids as binary relations

This is based on a Todd Trimble’s idea.

Definition 841. The binary relation ξ~ ∈ P(F (Src ξ) × F (Dst ξ)) for a
funcoid ξ is defined by the formula A ξ~ B ⇔ B w 〈ξ〉A.

Definition 842. The binary relation ξ∗ ∈P(T Src ξ×T Dst ξ) for a funcoid
ξ is defined by the formula

A ξ∗ B ⇔ B w 〈ξ〉A⇔ B ∈ up〈ξ〉A.

Proposition 843. Funcoid ξ can be restored from
1◦. the value of ξ~;
2◦. the value of ξ∗.

Proof.
1◦. The value of 〈ξ〉 can be restored from ξ~.
2◦. The value of 〈ξ〉∗ can be restored from ξ∗.

�

Theorem 844. Let ν and ξ be composable funcoids. Then:
1◦. ξ~ ◦ ν~ = (ξ ◦ ν)~;
2◦. ξ∗ ◦ ν∗ = (ξ ◦ ν)∗.

Proof.
1◦.

A (ξ~ ◦ ν~) C ⇔ ∃B :
(
A ν~ B ∧ B ξ~ C

)
⇔

∃B ∈ F (Dst ν) : (B w 〈ν〉A ∧ C w 〈ξ〉B)⇔
C w 〈ξ〉〈ν〉A ⇔ C w 〈ξ ◦ ν〉A ⇔ A (ξ ◦ ν)~ C.
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2◦.

A (ξ∗ ◦ ν∗) C ⇔ ∃B : (A ν∗ B ∧B ξ∗ C)⇔
∃B : (B ∈ up〈ν〉A ∧ C ∈ up〈ξ〉B)⇔ ∃B ∈ up〈ν〉A : C ∈ up〈ξ〉B.

A (ξ ◦ ν)∗ C ⇔ C ∈ up〈ξ ◦ ν〉B ⇔ C ∈ up〈ξ〉〈ν〉B.
It remains to prove

∃B ∈ up〈ν〉A : C ∈ up〈ξ〉B ⇔ C ∈ up〈ξ〉〈ν〉A.

∃B ∈ up〈ν〉A : C ∈ up〈ξ〉B ⇒ C ∈ up〈ξ〉〈ν〉A is obvious.
Let C ∈ up〈ξ〉〈ν〉A. Then C ∈ up

d
〈〈ξ〉〉∗ up〈ν〉A; so by properties of general-

ized filter bases, ∃P ∈ 〈〈ξ〉〉∗ up〈ν〉A : C ∈ upP ; ∃B ∈ up〈ν〉A : C ∈ up〈ξ〉B. �

Remark 845. The above theorem is interesting by the fact that composition
of funcoids is represented as relational composition of binary relations.

7.5. Lattices of funcoids

Definition 846. f v g def= [f ] ⊆ [g] for f, g ∈ FCD(A,B) for every sets A, B.

Thus every FCD(A,B) is a poset. (It’s taken into account that [f ] 6= [g] when
f 6= g.)

We will consider filtrators (filtrators of funcoids) whose base is FCD(A,B) and
whose core are principal funcoids from A to B.

Lemma 847. 〈f〉∗X =
dF
F∈up f 〈F 〉

∗
X for every funcoid f and typed set X ∈

T (Src f).

Proof. Obviously 〈f〉∗X v
dF
F∈up f 〈F 〉

∗
X.

Let B ∈ up〈f〉∗X. Let FB = X ×B tX ×>.
〈FB〉∗X = B.
Let P ∈ T (Src f). We have

⊥ 6= P v X ⇒ 〈FB〉∗P = B w 〈f〉∗P

and

P 6v X ⇒ 〈FB〉∗P = > w 〈f〉∗P.

Thus 〈FB〉∗P w 〈f〉∗P for every P and so FB w f that is FB ∈ up f .
Thus ∀B ∈ up〈f〉∗X : B ∈ up

dF
F∈up f 〈F 〉

∗
X because B ∈ up〈FB〉∗X.

So
d
F∈up f 〈F 〉

∗
X v 〈f〉∗X. �

Theorem 848. 〈f〉X =
dF
F∈up f 〈F 〉X for every funcoid f and X ∈ F (Src f).
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Proof.

Fl

F∈up f
〈F 〉X =

Fl

F∈up f

Fl〈
〈F 〉∗

〉∗ upX =

Fl

F∈up f

Fl

X∈upX
〈F 〉∗X =

Fl

X∈upX

Fl

F∈up f
〈F 〉∗X =

Fl

X∈upX
〈f〉∗X =

〈f〉X

(the lemma used). �

Below it is shown that FCD(A,B) are complete lattices for every sets A and B.
We will apply lattice operations to subsets of such sets without explicitly mentioning
FCD(A,B).

Theorem 849. FCD(A,B) is a complete lattice (for every sets A and B). For
every R ∈PFCD(A,B) and X ∈ T A, Y ∈ T B

1◦. X [ dR]∗ Y ⇔ ∃f ∈ R : X [f ]∗ Y ;
2◦. 〈 dR〉

∗
X = df∈R〈f〉

∗
X.

Proof. Accordingly [27] to prove that it is a complete lattice it’s enough to
prove existence of all joins.

2◦. αX
def= df∈R〈f〉

∗
X. We have α⊥ = ⊥;

α(I t J) =

l

f∈R

〈f〉∗(I t J) =

l

f∈R

(〈f〉∗I t 〈f〉∗J) =

l

f∈R

〈f〉∗I t l〈f〉
∗
J =

αI t αJ.

So 〈h〉∗ = α for some funcoid h. Obviously

∀f ∈ R : h w f. (9)

And h is the least funcoid for which holds the condition (9). So h = dR.
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1◦.

X
[

lR
]∗
Y ⇔

↑ Y u
〈

lR
〉∗
X 6= ⊥ ⇔

↑ Y u l

f∈R

〈f〉∗X 6= ⊥ ⇔

∃f ∈ R :↑ Y u 〈f〉∗X 6= ⊥ ⇔
∃f ∈ R : X [f ]∗ Y

(used proposition 607).
�

In the next theorem, compared to the previous one, the class of infinite joins is
replaced with lesser class of binary joins and simultaneously class of sets is changed
to more wide class of filters.

Theorem 850. For every f, g ∈ FCD(A,B) and X ∈ F (A) (for every sets
A, B)

1◦. 〈f t g〉X = 〈f〉X t 〈g〉X ;
2◦. [f t g] = [f ] ∪ [g].

Proof.

1◦. Let αX def= 〈f〉X t 〈g〉X ; βY def=
〈
f−1〉Y t 〈g−1〉Y for every X ∈ F (A),

Y ∈ F (B). Then

Y u αX 6= ⊥ ⇔
Y u 〈f〉X 6= ⊥ ∨ Y u 〈g〉X 6= ⊥ ⇔

X u
〈
f−1〉Y 6= ⊥ ∨ X u 〈g−1〉Y 6= ⊥ ⇔

X u βY 6= ⊥.

So h = (A,B, α, β) is a funcoid. Obviously h w f and h w g. If p w f and p w g
for some funcoid p then 〈p〉X w 〈f〉X t 〈g〉X = 〈h〉X that is p w h. So f t g = h.

2◦. For every X ∈ F (A), Y ∈ F (B) we have

X [f t g] Y ⇔
Y u 〈f t g〉X 6= ⊥ ⇔

Y u (〈f〉X t 〈g〉X ) 6= ⊥ ⇔
Y u 〈f〉X 6= ⊥ ∨ Y u 〈g〉X 6= ⊥ ⇔

X [f ] Y ∨ X [g] Y.

�

7.6. More on composition of funcoids

Proposition 851. [g ◦ f ] = [g] ◦ 〈f〉 =
〈
g−1〉−1 ◦ [f ] for every composable

funcoids f and g.
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Proof. For every X ∈ F (Src f), Y ∈ F (Dst g) we have
X [g ◦ f ] Y ⇔

Y u 〈g ◦ f〉X 6= ⊥ ⇔
Y u 〈g〉〈f〉X 6= ⊥ ⇔

〈f〉X [g] Y ⇔
X ([g] ◦ 〈f〉) Y

and
[g ◦ f ] =[

(f−1 ◦ g−1)−1] =[
f−1 ◦ g−1]−1 =

(
[
f−1] ◦ 〈g−1〉)−1 =〈

g−1〉−1 ◦ [f ].
�

The following theorem is a variant for funcoids of the statement (which defines
compositions of relations) that x (g ◦ f) z ⇔ ∃y : (x f y ∧ y g z) for every x and z
and every binary relations f and g.

Theorem 852. For every sets A, B, C and f ∈ FCD(A,B), g ∈ FCD(B,C)
and X ∈ F (A), Z ∈ F (C)

X [g ◦ f ] Z ⇔ ∃y ∈ atomsF(B) : (X [f ] y ∧ y [g] Z).
Proof.

∃y ∈ atomsF(B) : (X [f ] y ∧ y [g] Z)⇔
∃y ∈ atomsF(B) : (Z u 〈g〉y 6= ⊥ ∧ y u 〈f〉X 6= ⊥)⇔
∃y ∈ atomsF(B) : (Z u 〈g〉y 6= ⊥ ∧ y v 〈f〉X )⇒

Z u 〈g〉〈f〉X 6= ⊥ ⇔
X [g ◦ f ] Z.

Reversely, if X [g ◦ f ] Z then 〈f〉X [g] Z, consequently there exists y ∈
atoms〈f〉X such that y [g] Z; we have X [f ] y. �

Theorem 853. For every sets A, B, C
1◦. f ◦ (g t h) = f ◦ g t f ◦ h for g, h ∈ FCD(A,B), f ∈ FCD(B,C);
2◦. (g t h) ◦ f = g ◦ f t h ◦ f for g, h ∈ FCD(B,C), f ∈ FCD(A,B).

Proof. I will prove only the first equality because the other is analogous.
For every X ∈ F (A), Z ∈ F (C)

X [f ◦ (g t h)] Z ⇔
∃y ∈ atomsF(B) : (X [g t h] y ∧ y [f ] Z)⇔

∃y ∈ atomsF(B) : ((X [g] y ∨ X [h] y) ∧ y [f ] Z)⇔
∃y ∈ atomsF(B) : ((X [g] y ∧ y [f ] Z) ∨ (X [h] y ∧ y [f ] Z))⇔

∃y ∈ atomsF(B) : (X [g] y ∧ y [f ] Z) ∨ ∃y ∈ atomsF(B) : (X [h] y ∧ y [f ] Z)⇔
X [f ◦ g] Z ∨ X [f ◦ h] Z ⇔

X [f ◦ g t f ◦ h] Z.
�
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Another proof of the above theorem (without atomic filters):

Proof.

〈f ◦ (g t h)〉X =
〈f〉〈g t h〉X =

〈f〉(〈g〉X t 〈h〉X ) =
〈f〉〈g〉X t 〈f〉〈h〉X =
〈f ◦ g〉X t 〈f ◦ h〉X =
〈f ◦ g t f ◦ h〉X .

�

7.7. Domain and range of a funcoid

Definition 854. Let A be a set. The identity funcoid 1FCD
A =

(A,A, idF(A), idF(A)).

Obvious 855. The identity funcoid is a funcoid.

Proposition 856. [f ] = [1Dst f ] ◦ 〈f〉 for every funcoid f .

Proof. From proposition 851. �

Definition 857. Let A be a set, A ∈ F (A). The restricted identity funcoid

idFCD
A = (A,A,Au,Au).

Proposition 858. The restricted identity funcoid is a funcoid.

Proof. We need to prove that (A u X ) u Y 6= ⊥ ⇔ (A u Y) u X 6= ⊥ what is
obvious. �

Obvious 859.
1◦. (1FCD

A )−1 = 1FCD
A ;

2◦. (idFCD
A )−1 = idFCD

A .

Obvious 860. For every X ,Y ∈ F (A)
1◦. X

[
1FCD
A

]
Y ⇔ X u Y 6= ⊥;

2◦. X
[
idFCD
A

]
Y ⇔ Au X u Y 6= ⊥.

Definition 861. I will define restricting of a funcoid f to a filter A ∈ F (Src f)
by the formula

f |A = f ◦ idFCD
A .

Definition 862. Image of a funcoid f will be defined by the formula im f =
〈f〉>F(Src f).

Domain of a funcoid f is defined by the formula dom f = im f−1.

Obvious 863. For every morphism f ∈ Rel(A,B) for sets A and B
1◦. im ↑FCD f =↑ im f ;
2◦. dom ↑FCD f =↑ dom f .

Proposition 864. 〈f〉X = 〈f〉(X udom f) for every funcoid f , X ∈ F (Src f).
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Proof. For every Y ∈ F (Dst f) we have
Y u 〈f〉(X u dom f) 6= ⊥ ⇔
X u dom f u

〈
f−1〉Y 6= ⊥ ⇔

X u im f−1 u
〈
f−1〉Y 6= ⊥ ⇔

X u
〈
f−1〉Y 6= ⊥ ⇔

Y u 〈f〉X 6= ⊥.

Thus 〈f〉(X u dom f) = 〈f〉X because the lattice of filters is separable. �

Proposition 865. 〈f〉X = im(f |X ) for every funcoid f , X ∈ F (Src f).

Proof.
im(f |X ) =〈

f ◦ idFCD
X

〉
> =

〈f〉
〈

idFCD
X

〉
> =

〈f〉(X u >) =
〈f〉X .

�

Proposition 866. X u dom f 6= ⊥ ⇔ 〈f〉X 6= ⊥ for every funcoid f and
X ∈ F (Src f).

Proof.
X u dom f 6= ⊥ ⇔

X u
〈
f−1〉>F(Dst f) 6= ⊥ ⇔

>u 〈f〉X 6= ⊥ ⇔
〈f〉X 6= ⊥.

�

Corollary 867. dom f = d

{
a∈atomsF(Src f)

〈f〉a6=⊥

}
.

Proof. This follows from the fact that F (Src f) is an atomistic lattice. �

Proposition 868. dom(f |A) = A u dom f for every funcoid f and A ∈
F (Src f).

Proof.

dom(f |A) =
im(idFCD

A ◦f−1) =〈
idFCD
A

〉〈
f−1〉> =

A u
〈
f−1〉> =

A u dom f.

�

Theorem 869. im f =
dF 〈im〉∗ up f and dom f =

dF 〈dom〉∗ up f for every
funcoid f .
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Proof.
im f =
〈f〉> =

Fl

F∈up f
〈F 〉> =

Fl

F∈up f
imF =

Fl
〈im〉∗ up f.

The second formula follows from symmetry. �

Proposition 870. For every composable funcoids f , g:
1◦. If im f w dom g then im(g ◦ f) = im g.
2◦. If im f v dom g then dom(g ◦ f) = dom f .

Proof.
1◦.

im(g ◦ f) =
〈g ◦ f〉> =
〈g〉〈f〉> =
〈g〉 im f =

〈g〉(im f u dom g) =
〈g〉dom g =
〈g〉> =
im g.

2◦. dom(g ◦ f) = im(f−1 ◦ g−1) what by proved above is equal to im f−1 that
is dom f .

�

7.8. Categories of funcoids

I will define two categories, the category of funcoids and the category of funcoid
triples.

The category of funcoids is defined as follows:
• Objects are small sets.
• The set of morphisms from a set A to a set B is FCD(A,B).
• The composition is the composition of funcoids.
• Identity morphism for a set is the identity funcoid for that set.

To show it is really a category is trivial.
The category of funcoid triples is defined as follows:
• Objects are filters on small sets.
• The morphisms from a filter A to a filter B are triples (A,B, f) where
f ∈ FCD(Base(A),Base(B)) and dom f v A ∧ im f v B.

• The composition is defined by the formula (B, C, g) ◦ (A,B, f) = (A, C, g ◦
f).

• Identity morphism for a filter A is idFCD
A .

To prove that it is really a category is trivial.
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Proposition 871. ↑FCD is a functor from Rel to FCD.

Proof. ↑FCD (g ◦ f) =↑FCD g◦ ↑FCD f was proved above. ↑FCD 1Rel
A = 1FCD

A is
obvious. �

7.9. Specifying funcoids by functions or relations on atomic filters

Theorem 872. For every funcoid f and X ∈ F (Src f), Y ∈ F (Dst f)
1◦. 〈f〉X = d〈〈f〉〉

∗ atomsX ;
2◦. X [f ] Y ⇔ ∃x ∈ atomsX , y ∈ atomsY : x [f ] y.

Proof.
1◦.

Y u 〈f〉X 6= ⊥ ⇔
X u

〈
f−1〉Y 6= ⊥ ⇔

∃x ∈ atomsX : x u
〈
f−1〉Y 6= ⊥ ⇔

∃x ∈ atomsX : Y u 〈f〉x 6= ⊥.

∂〈f〉X = d〈∂〉
∗〈〈f〉〉∗ atomsX = ∂ d〈〈f〉〉

∗ atomsX . So 〈f〉X =

d〈〈f〉〉
∗ atomsX by corollary 565.

2◦. If X [f ] Y, then Yu〈f〉X 6= ⊥, consequently there exists y ∈ atomsY such
that y u 〈f〉X 6= ⊥, X [f ] y. Repeating this second time we get that there exists
x ∈ atomsX such that x [f ] y. From this it follows

∃x ∈ atomsX , y ∈ atomsY : x [f ] y.

The reverse is obvious.
�

Corollary 873. Let f be a funcoid.
• The value of f can be restored from the value of 〈f〉|atomsF(Src f) .
• The value of f can be restored from the value of

[f ]|atomsF(Src f)× atomsF(Dst f) .

Theorem 874. Let A and B be sets.
1◦. A function α ∈ F (B)atomsF(A) such that (for every a ∈ atomsF(A))

αa v
l〈

l◦〈α〉
∗ ◦ atoms ◦ ↑

〉∗
up a (10)

can be continued to the function 〈f〉 for a unique f ∈ FCD(A,B);

〈f〉X = l〈α〉
∗ atomsX (11)

for every X ∈ F (A).
2◦. A relation δ ∈ P(atomsF(A)× atomsF(B)) such that (for every a ∈

atomsF(A), b ∈ atomsF(B))

∀X ∈ up a, Y ∈ up b∃x ∈ atoms ↑ X, y ∈ atoms ↑ Y : x δ y ⇒ a δ b (12)

can be continued to the relation [f ] for a unique f ∈ FCD(A,B);

X [f ] Y ⇔ ∃x ∈ atomsX , y ∈ atomsY : x δ y (13)

for every X ∈ F (A), Y ∈ F (B).

Proof. Existence of no more than one such funcoids and formulas (11) and
(13) follow from the previous theorem.
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1◦. Consider the function α′ ∈ F (B)T A defined by the formula (for every
X ∈ T A)

α′X = l〈α〉
∗ atoms ↑ X.

Obviously α′⊥T A = ⊥F(B). For every I, J ∈ T A

α′(I t J) =

l〈α〉
∗ atoms ↑ (I t J) =

l〈α〉
∗(atoms ↑ ∪ atoms ↑ J) =

l(〈α〉
∗ atoms ↑ I ∪ 〈α〉∗ atoms ↑ J) =

l〈α〉
∗ atoms ↑ I t l〈α〉

∗ atoms ↑ J =
α′I t α′J.

Let continue α′ till a funcoid f (by the theorem 828): 〈f〉X =
d
〈α′〉∗ upX .

Let’s prove the reverse of (10):
l〈

l◦〈α〉
∗ ◦ atoms ◦ ↑

〉∗
up a =

l〈

l◦〈α〉
∗
〉∗
〈atoms〉∗〈↑〉∗ up a v

l〈

l◦〈α〉
∗
〉∗
{{a}} =

l{(
l◦〈α〉

∗
)
{a}
}

=
l{

l〈α〉
∗{a}

}
=

l{

l{αa}
}

=
l
{αa} =
αa.

Finally,

αa =
l〈

l◦〈α〉
∗ ◦ atoms ◦ ↑

〉∗
up a =

l
〈α′〉∗ up a = 〈f〉a,

so 〈f〉 is a continuation of α.
2◦. Consider the relation δ′ ∈P(T A×T B) defined by the formula (for every

X ∈ T A, Y ∈ T B)

X δ′ Y ⇔ ∃x ∈ atoms ↑ X, y ∈ atoms ↑ Y : x δ y.

Obviously ¬(X δ′ ⊥F(B)) and ¬(⊥F(A) δ′ Y ).
For suitable I and J we have:

I t J δ′ Y ⇔
∃x ∈ atoms ↑ (I t J), y ∈ atoms ↑ Y : x δ y ⇔

∃x ∈ atoms ↑ I ∪ atoms ↑ J, y ∈ atoms ↑ Y : x δ y ⇔
∃x ∈ atoms ↑ I, y ∈ atoms ↑ Y : x δ y ∨ ∃x ∈ atoms ↑ J, y ∈ atoms ↑ Y : x δ y ⇔

I δ′ Y ∨ J δ′ Y ;

similarly X δ′ I t J ⇔ X δ′ I ∨X δ′ J for suitable I and J . Let’s continue δ′ till a
funcoid f (by the theorem 828):

X [f ] Y ⇔ ∀X ∈ upX , Y ∈ upY : X δ′ Y.
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The reverse of (12) implication is trivial, so

∀X ∈ up a, Y ∈ up b∃x ∈ atoms ↑ X, y ∈ atoms ↑ Y : x δ y ⇔ a δ b.

Also

∀X ∈ up a, Y ∈ up b∃x ∈ atoms ↑ X, y ∈ atoms ↑ Y : x δ y ⇔
∀X ∈ up a, Y ∈ up b : X δ′ Y ⇔

a [f ] b.

So a δ b⇔ a [f ] b, that is [f ] is a continuation of δ.
�

One of uses of the previous theorem is the proof of the following theorem:

Theorem 875. If A and B are sets, R ∈ PFCD(A,B), x ∈ atomsF(A), y ∈
atomsF(B), then

1◦. 〈
d
R〉x =

d
f∈R〈f〉x;

2◦. x [
d
R] y ⇔ ∀f ∈ R : x [f ] y.

Proof.
2◦. Let denote x δ y ⇔ ∀f ∈ R : x [f ] y. For every a ∈ atomsF(A), b ∈

atomsF(B)

∀X ∈ up a, Y ∈ up b∃x ∈ atoms ↑ X, y ∈ atoms ↑ Y : x δ y ⇒
∀f ∈ R,X ∈ up a, Y ∈ up b∃x ∈ atoms ↑ X, y ∈ atoms ↑ Y : x [f ] y ⇒

∀f ∈ R,X ∈ up a, Y ∈ up b : X [f ]∗ Y ⇒
∀f ∈ R : a [f ] b⇔

a δ b.

So by theorem 874, δ can be continued till [p] for some funcoid p ∈ FCD(A,B).
For every funcoid q ∈ FCD(A,B) such that ∀f ∈ R : q v f we have

x [q] y ⇒ ∀f ∈ R : x [f ] y ⇔ x δ y ⇔ x [p] y,

so q v p. Consequently p =
d
R.

From this x [
d
R] y ⇔ ∀f ∈ R : x [f ] y.

1◦. From the former

y ∈ atoms
〈l

R
〉
x⇔

y u
〈l

R
〉
x 6= ⊥ ⇔

∀f ∈ R : y u 〈f〉x 6= ⊥ ⇔

y ∈
l
〈atoms〉∗

{
〈f〉x
f ∈ R

}
⇔

y ∈ atoms
l

f∈R

〈f〉x

for every y ∈ atomsF(A). From this it follows 〈
d
R〉x =

d
f∈R〈f〉x.

�

Theorem 876. g ◦ f =
dFCD

{
G◦F

F∈up f.G∈up g

}
for every composable funcoids f

and g.
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Proof. Let x ∈ atomsF(Src f). Then

〈g ◦ f〉x =
〈g〉〈f〉x = (theorem 848)

Fl

G∈up g
〈G〉〈f〉x = (theorem 848)

Fl

G∈up g
〈G〉

Fl

F∈up f
〈F 〉x = (theorem 836)

Fl

G∈up g

Fl

F∈up f
〈G〉〈F 〉x =

Fl{ 〈G〉〈F 〉x
F ∈ up f,G ∈ up g

}
=

Fl{ 〈G ◦ F 〉x
F ∈ up f,G ∈ up g

}
= (theorem 875)〈FCDl{

G ◦ F
F ∈ up f,G ∈ up g

}〉
x.

Thus g ◦ f =
dFCD

{
G◦F

F∈up f.G∈up g

}
. �

Proposition 877. For f ∈ FCD(A,B), a finite set X ∈ PA and a function
t ∈ F (B)X there exists (obviously unique) g ∈ FCD(A,B) such that 〈g〉p = 〈f〉p
for p ∈ atomsF(A) \ atomsX and 〈g〉@{x} = t(x) for x ∈ X.

This funcoid g is determined by the formula

g = (f \ (@X ×FCD >)) t l

x∈X
(@{x} ×FCD t(x)).

Proof. Take g = (f \ (@X ×FCD >)) t dq∈X(@{q} ×FCD t(x)) that is g =(
f uX ×>

)
t dq∈X(@{q} ×FCD t(x)) =

(
f u

(
X ×>

))
t dq∈X(@{q} ×FCD t(x)).

〈g〉p = (theorem 850) =
〈
f u

(
X ×>

)〉
p t dq∈X〈@{q} ×FCD t(x)〉p =

(theorem 875) =
(
〈f〉p u

〈
X ×>

〉
p
)
t dq∈X〈@{q} ×FCD t(x)〉p.

So 〈g〉@{x} = (〈f〉∗@{x} u ⊥) t t(x) = t(x) for x ∈ X.
If p ∈ atomsF(A) \ atomsX then we have 〈g〉p = (〈f〉p u >) t ⊥ = 〈f〉p. �

Corollary 878. If f ∈ FCD(A,B), x ∈ A, and Y ∈ F (B), then there exists
an (obviously unique) g ∈ FCD(A,B) such that 〈g〉p = 〈f〉p for all ultrafilters p
except of p = @{x} and 〈g〉@{x} = Y.

This funcoid g is determined by the formula

g = (f \ (@{x} ×FCD >)) t ({x} ×FCD Y).

Theorem 879. Let A, B, C be sets, f ∈ FCD(A,B), g ∈ FCD(B,C), h ∈
FCD(A,C). Then

g ◦ f 6� h⇔ g 6� h ◦ f−1.



7.10. FUNCOIDAL PRODUCT OF FILTERS 164

Proof.
g ◦ f 6� h⇔

∃a ∈ atomsF(A), c ∈ atomsF(C) : a [(g ◦ f) u h] c⇔
∃a ∈ atomsF(A), c ∈ atomsF(C) : (a [g ◦ f ] c ∧ a [h] c)⇔

∃a ∈ atomsF(A), b ∈ atomsF(B), c ∈ atomsF(C) : (a [f ] b ∧ b [g] c ∧ a [h] c)⇔
∃b ∈ atomsF(B), c ∈ atomsF(C) : (b [g] c ∧ b

[
h ◦ f−1] c)⇔

∃b ∈ atomsF(B), c ∈ atomsF(C) : b
[
g u (h ◦ f−1)

]
c⇔

g 6� h ◦ f−1.

�

7.10. Funcoidal product of filters

A generalization of Cartesian product of two sets is funcoidal product of two
filters:

Definition 880. Funcoidal product of filters A and B is such a funcoid A×FCD

B ∈ FCD(Base(A),Base(B)) that for every X ∈ Base(A), Y ∈ Base(B)
X
[
A×FCD B

]
Y ⇔ X 6� A ∧ Y 6� B.

Proposition 881. A×FCD B is really a funcoid and〈
A×FCD B

〉
X =

{
B if X 6� A
⊥F(Base(B)) if X � A.

Proof. Obvious. �

Obvious 882.
• ↑FCD(U,V ) (A×B) =↑U A× ↑V B for sets A ⊆ U and B ⊆ V .
• ↑FCD (A×B) =↑ A× ↑ B for typed sets A and B.

Proposition 883. f v A ×FCD B ⇔ dom f v A ∧ im f v B for every f ∈
FCD(A,B) and A ∈ F (A), B ∈ F (B).

Proof. If f v A×FCDB then dom f v dom(A×FCDB) v A, im f v im(A×FCD

B) v B. If dom f v A ∧ im f v B then
∀X ∈ F (A),Y ∈ F (B) : (X [f ] Y ⇒ X uA 6= ⊥ ∧ Y u B 6= ⊥);

consequently f v A×FCD B. �

The following theorem gives a formula for calculating an important particular
case of a meet on the lattice of funcoids:

Theorem 884. f u (A ×FCD B) = idFCD
B ◦f ◦ idFCD

A for every funcoid f and
A ∈ F (Src f), B ∈ F (Dst f).

Proof. h def= idFCD
B ◦f ◦ idFCD

A . For every X ∈ F (Src f)

〈h〉X =
〈

idFCD
B

〉
〈f〉
〈

idFCD
A

〉
X = B u 〈f〉(A u X ).

From this, as easy to show, h v f and h v A×FCD B. If g v f ∧ g v A×FCD B
for a g ∈ FCD(Src f,Dst f) then dom g v A, im g v B,

〈g〉X = B u 〈g〉(A u X ) v B u 〈f〉(A u X ) =
〈

idFCD
B

〉
〈f〉
〈

idFCD
A

〉
X = 〈h〉X ,

g v h. So h = f u (A×FCD B). �
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Corollary 885. f |A = f u (A ×FCD >F(Dst f)) for every funcoid f and A ∈
F (Src f).

Proof. f u (A×FCD >F(Dst f)) = idFCD
>F(Dst f) ◦f ◦ idFCD

A = f ◦ idFCD
A = f |A. �

Corollary 886. f 6� A ×FCD B ⇔ A [f ] B for every funcoid f and A ∈
F (Src f), B ∈ F (Dst f).

Proof.
f 6� A ×FCD B ⇔〈

f u (A×FCD B)
〉∗> 6= ⊥ ⇔〈

idFCD
B ◦f ◦ idFCD

A

〉∗
> 6= ⊥ ⇔〈

idFCD
B

〉
〈f〉
〈

idFCD
A

〉∗
> 6= ⊥ ⇔

B u 〈f〉(A u>) 6= ⊥ ⇔
B u 〈f〉A 6= ⊥ ⇔

A [f ] B.
�

Corollary 887. Every filtrator of funcoids is star-separable.

Proof. The set of funcoidal products of principal filters is a separation subset
of the lattice of funcoids. �

Theorem 888. Let A, B be sets. If S ∈P(F (A)×F (B)) then
l

(A,B)∈S

(A×FCD B) =
l

domS ×FCD
l

imS.

Proof. If x ∈ atomsF(A) then by theorem 875〈
l

(A,B)∈S

(A×FCD B)
〉
x =

l

(A,B)∈S

〈
A×FCD B

〉
x.

If x 6�
d

domS then
∀(A,B) ∈ S : (x u A 6= ⊥ ∧

〈
A×FCD B

〉
x = B);{〈

A×FCD B
〉
x

(A,B) ∈ S

}
= imS;

if x �
d

domS then
∃(A,B) ∈ S : (x u A = ⊥ ∧

〈
A×FCD B

〉
x = ⊥);{〈

A×FCD B
〉
x

(A,B) ∈ S

}
3 ⊥.

So 〈
l

(A,B)∈S

(A×FCD B)
〉
x =

{d
imS if x 6�

d
domS

⊥F(B) if x �
d

domS.

From this the statement of the theorem follows. �

Corollary 889. For every A0,A1 ∈ F (A), B0,B1 ∈ F (B) (for every sets
A, B)

(A0 ×FCD B0) u (A1 ×FCD B1) = (A0 u A1)×FCD (B0 u B1).
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Proof. (A0×FCD B0)u (A1×FCD B1) =
d
{A×FCD B0,A1×FCD B1} what is by

the last theorem equal to (A0 u A1)×FCD (B0 u B1). �

Theorem 890. If A, B are sets and A ∈ F (A) then A×FCD is a complete
homomorphism from the lattice F (B) to the lattice FCD(A,B), if also A 6= ⊥F(A)

then it is an order embedding.

Proof. Let S ∈PF (B), X ∈ T A, x ∈ atomsF(A).〈

l

〈
A×FCD〉∗S〉∗X =

l

B∈S

〈
A×FCD B

〉∗
X ={

dS if X ∈ ∂A
⊥F(B) if X /∈ ∂A

=〈
A×FCD

lS
〉∗
X;〈l〈

A×FCD〉∗S〉x =
l

B∈S

〈
A×FCD B

〉
x ={d

S if x 6� A
⊥F(B) if x � A.

Thus d
〈
A×FCD〉∗S = A×FCD dS and

d〈
A×FCD〉∗S = A×FCD dS.

If A 6= ⊥ then obviously A×FCD X v A×FCD Y ⇔ X v Y. �

The following proposition states that cutting a rectangle of atomic width from
a funcoid always produces a rectangular (representable as a funcoidal product of
filters) funcoid (of atomic width).

Proposition 891. If f is a funcoid and a is an atomic filter on Src f then

f |a = a×FCD 〈f〉a.

Proof. Let X ∈ F (Src f).

X 6� a⇒ 〈f |a〉X = 〈f〉a, X � a⇒ 〈f |a〉X = ⊥F(Dst f).

�

Lemma 892. λB ∈ F (B) : >F ×FCDB is an upper adjoint of λf ∈ FCD(A,B) :
im f (for every sets A, B).

Proof. We need to prove im f v B ⇔ f v >×FCD B what is obvious. �

Corollary 893. Image and domain of funcoids preserve joins.

Proof. By properties of Galois connections and duality. �

Proposition 894. f v A×FCD B ⇔ dom f v A ∧ im f v B for every funcoid
f and filters A ∈ F(Src f), B ∈ F(Dst f).

Proof. f v A×FCD B ⇒ dom f v A because dom(A×FCD B) v A.
Let now dom f v A ∧ im f v B. Then 〈f〉X 6= ⊥ ⇒ X 6� A that is f v

A×FCD >. Similarly f v >×FCD B. Thus f v A×FCD B. �
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7.11. Atomic funcoids

Theorem 895. An f ∈ FCD(A,B) is an atom of the lattice FCD(A,B) (for
some sets A, B) iff it is a funcoidal product of two atomic filter objects.

Proof.
⇒. Let f ∈ FCD(A,B) be an atom of the lattice FCD(A,B). Let’s get elements

a ∈ atoms dom f and b ∈ atoms〈f〉a. Then for every X ∈ F (A)

X � a⇒
〈
a×FCD b

〉
X = ⊥ v 〈f〉X , X 6� a⇒

〈
a×FCD b

〉
X = b v 〈f〉X .

So a×FCD b v f ; because f is atomic we have f = a×FCD b.
⇐. Let a ∈ atomsF(A), b ∈ atomsF(B), f ∈ FCD(A,B). If b � 〈f〉a then ¬(a [f ] b),

f � a ×FCD b; if b v 〈f〉a then ∀X ∈ F (A) : (X 6� a ⇒ 〈f〉X w b),
f w a×FCD b. Consequently f � a×FCD b∨ f w a×FCD b; that is a×FCD b
is an atom.

�

Theorem 896. The lattice FCD(A,B) is atomic (for every fixed sets A, B).

Proof. Let f be a non-empty funcoid from A to B. Then dom f 6= ⊥, thus
by theorem 573 there exists a ∈ atoms dom f . So 〈f〉a 6= ⊥ thus it exists b ∈
atoms〈f〉a. Finally the atomic funcoid a×FCD b v f . �

Theorem 897. The lattice FCD(A,B) is separable (for every fixed sets A, B).

Proof. Let f, g ∈ FCD(A,B), f @ g. Then there exists a ∈ atomsF(A) such
that 〈f〉a @ 〈g〉a. So because the lattice F (B) is atomically separable, there exists
b ∈ atoms such that 〈f〉a u b = ⊥ and b v 〈g〉a. For every x ∈ atomsF(A)

〈f〉a u
〈
a×FCD b

〉
a = 〈f〉a u b = ⊥,

x 6= a⇒ 〈f〉x u
〈
a×FCD b

〉
x = 〈f〉x u ⊥ = ⊥.

Thus 〈f〉x u
〈
a×FCD b

〉
x = ⊥ and consequently f � a×FCD b.〈

a×FCD b
〉
a = b v 〈g〉a,

x 6= a⇒
〈
a×FCD b

〉
x = ⊥ v 〈g〉x.

Thus
〈
a×FCD b

〉
x v 〈g〉x and consequently a×FCD b v g.

So the lattice FCD(A,B) is separable by theorem 222. �

Corollary 898. The lattice FCD(A,B) is:
1◦. separable;
2◦. strongly separable;
3◦. atomically separable;
4◦. conforming to Wallman’s disjunction property.

Proof. By theorem 230. �

Remark 899. For more ways to characterize (atomic) separability of the lattice
of funcoids see subsections “Separation subsets and full stars” and “Atomically
separable lattices”.

Corollary 900. The lattice FCD(A,B) is an atomistic lattice.

Proof. By theorem 228. �

Proposition 901. atoms(f t g) = atoms f ∪ atoms g for every funcoids f, g ∈
FCD(A,B) (for every sets A, B).
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Proof. a ×FCD b 6� f t g ⇔ a [f t g] b ⇔ a [f ] b ∨ a [g] b ⇔ a ×FCD b 6�
f ∨ a×FCD b 6� g for every atomic filters a and b. �

Theorem 902. The set of funcoids between sets A and B is a co-frame.
Proof. Theorems 828 and 530. �

Remark 903. The above proof does not use axiom of choice (unlike the below
proof).

See also an older proof of the set of funcoids being co-brouwerian:
Theorem 904. For every f, g, h ∈ FCD(A,B), R ∈ PFCD(A,B) (for every

sets A and B)
1◦. f u (g t h) = (f u g) t (f u h);
2◦. f t

d
R =

d
〈ft〉∗R.

Proof. We will take into account that the lattice of funcoids is an atomistic
lattice.

1◦.
atoms(f u (g t h)) =

atoms f ∩ atoms(g t h) =
atoms f ∩ (atoms g ∪ atomsh) =

(atoms f ∩ atoms g) ∪ (atoms f ∩ atomsh) =
atoms(f u g) ∪ atoms(f u h) =

atoms((f u g) t (f u h)).
2◦.

atoms
(
f t

l
R
)

=

atoms f ∪ atoms
l
R =

atoms f ∪
⋂
〈atoms〉∗R =⋂

〈(atoms f)∪〉∗〈atoms〉∗R = (use the following equality)⋂
〈atoms〉∗〈ft〉∗R =

atoms
l
〈ft〉∗R.

〈(atoms f)∪〉∗〈atoms〉∗R ={
(atoms f) ∪A
A ∈ 〈atoms〉∗R

}
={

(atoms f) ∪A
∃C ∈ R : A = atomsC

}
={

(atoms f) ∪ (atomsC)
C ∈ R

}
={

atoms(f t C)
C ∈ R

}
={

atomsB
∃C ∈ R : B = f t C

}
={

atomsB
B ∈ 〈ft〉∗C

}
=

〈atoms〉∗〈ft〉∗R.
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�

Conjecture 905. f u dS = d〈fu〉∗S for principal funcoid f and a set S of
funcoids of appropriate sources and destinations.

Remark 906. See also example 1333 below.

The next proposition is one more (among the theorem 852) generalization for
funcoids of composition of relations.

Proposition 907. For every composable funcoids f , g

atoms(g ◦ f) =
x×FCD z

x ∈ atomsF(Src f), z ∈ atomsF(Dst g),

∃y ∈ atomsF(Dst f) : (x×FCD y ∈ atoms f ∧ y ×FCD z ∈ atoms g)

.
Proof. Using the theorem 852,

x×FCD z 6� g ◦f ⇔ x [g ◦ f ] z ⇔ ∃y ∈ atomsF(Dst f) : (x×FCD y 6� f ∧y×FCD z 6� g).
�

Corollary 908. g◦f = d

{
G◦F

F∈atoms f,G∈atoms g

}
for every composable funcoids

f , g.

Theorem 909. Let f be a funcoid.
1◦. X [f ] Y ⇔ ∃F ∈ atoms f : X [F ] Y for every X ∈ F (Src f), Y ∈

F (Dst f);
2◦. 〈f〉X = dF∈atoms f 〈F 〉X for every X ∈ F (Src f).

Proof.
1◦.

∃F ∈ atoms f : X [F ] Y ⇔
∃a ∈ atomsF(Src f), b ∈ atomsF(Dst f) : (a×FCD b 6� f ∧ X

[
a×FCD b

]
Y)⇔

∃a ∈ atomsF(Src f), b ∈ atomsF(Dst f) : (a×FCD b 6� f ∧ a×FCD b 6� X ×FCD Y)⇔
∃F ∈ atoms f : (F 6� f ∧ F 6� X ×FCD Y)⇔

f 6� X ×FCD Y ⇔
X [f ] Y.

2◦. Let Y ∈ F (Dst f). Suppose Y 6� 〈f〉X . Then X [f ] Y; ∃F ∈
atoms f : X [F ] Y; ∃F ∈ atoms f : Y 6� 〈F 〉X ; Y 6� dF∈atoms f 〈F 〉X . So
〈f〉X v dF∈atoms f 〈F 〉X . The contrary 〈f〉X w dF∈atoms f 〈F 〉X is obvious.

�

7.12. Complete funcoids

Definition 910. I will call co-complete such a funcoid f that 〈f〉∗X is a
principal filter for every X ∈ T (Src f).

Obvious 911. Funcoid f is co-complete iff 〈f〉X ∈ P(Dst f) for every X ∈
P(Src f).

Definition 912. I will call generalized closure such a function α ∈ (T B)T A

(for some sets A, B) that
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1◦. α⊥ = ⊥;
2◦. ∀I, J ∈ T A : α(I t J) = αI t αJ .

Obvious 913. A funcoid f is co-complete iff 〈f〉∗ = ↑ ◦ α for a generalized
closure α.

Remark 914. Thus funcoids can be considered as a generalization of general-
ized closures. A topological space in Kuratowski sense is the same as reflexive and
transitive generalized closure. So topological spaces can be considered as a special
case of funcoids.

Definition 915. I will call a complete funcoid a funcoid whose reverse is co-
complete.

Theorem 916. The following conditions are equivalent for every funcoid f :
1◦. funcoid f is complete;
2◦. ∀S ∈PF (Src f), J ∈ T (Dst f) : ( dS [f ] J ⇔ ∃I ∈ S : I [f ] J);
3◦. ∀S ∈PT (Src f), J ∈ T (Dst f) :

(

dS [f ]∗ J ⇔ ∃I ∈ S : I [f ]∗ J
)
;

4◦. ∀S ∈PF (Src f) : 〈f〉 dS = d〈〈f〉〉
∗
S;

5◦. ∀S ∈PT (Src f) : 〈f〉∗ dS = d

〈
〈f〉∗

〉∗
S;

6◦. ∀A ∈ T (Src f) : 〈f〉∗A = da∈atomsA〈f〉
∗
a.

Proof.
3◦⇒1◦. For every S ∈PT (Src f), J ∈ T (Dst f)

lS u
〈
f−1〉∗J 6= ⊥ ⇔ ∃I ∈ S : I u

〈
f−1〉∗J 6= ⊥,

consequently by theorem 580 we have that
〈
f−1〉∗J is a principal filter.

1◦⇒2◦. For every S ∈ PF (Src f), J ∈ T (Dst f) we have that
〈
f−1〉∗J is a

principal filter, consequently

lS u
〈
f−1〉∗J 6= ⊥ ⇔ ∃I ∈ S : I u

〈
f−1〉∗J 6= ⊥.

From this follows 2◦.
6◦⇒5◦.

〈f〉∗ lS =

l

a∈atoms dS

〈f〉∗a =

l

⋃
A∈S

{
〈f〉∗a

a ∈ atomsA

}
=

l

A∈S

l

a∈atomsA
〈f〉∗a =

l

A∈S
〈f〉∗A =

l

〈
〈f〉∗

〉∗
S.

2◦⇒4◦. Using theorem 580,
J 6� 〈f〉 lS ⇔

lS [f ] J ⇔
∃I ∈ S : I [f ] J ⇔
∃I ∈ S : J 6� 〈f〉I ⇔

J 6� l〈〈f〉〉
∗
S.
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2◦⇒3◦, 4◦ ⇒5◦, 5◦⇒3◦, 5◦⇒6◦. Obvious.
�

The following proposition shows that complete funcoids are a direct general-
ization of pretopological spaces.

Proposition 917. To specify a complete funcoid f it is enough to specify 〈f〉∗
on one-element sets, values of 〈f〉∗ on one element sets can be specified arbitrarily.

Proof. From the above theorem is clear that knowing 〈f〉∗ on one-element
sets 〈f〉∗ can be found on every set and then the value of 〈f〉 can be inferred for
every filter.

Choosing arbitrarily the values of 〈f〉∗ on one-element sets we can define a
complete funcoid the following way: 〈f〉∗X = dα∈atomsX〈f〉

∗
α for every X ∈

T (Src f). Obviously it is really a complete funcoid. �

Theorem 918. A funcoid is principal iff it is both complete and co-complete.

Proof.
⇒. Obvious.
⇐. Let f be both a complete and co-complete funcoid. Consider the relation g

defined by that ↑ 〈g〉∗α = 〈f〉∗α for one-element sets α (g is correctly
defined because f corresponds to a generalized closure). Because f is a
complete funcoid f is the funcoid corresponding to g.

�

Theorem 919. If R ∈ PFCD(A,B) is a set of (co-)complete funcoids then
dR is a (co-)complete funcoid (for every sets A and B).

Proof. It is enough to prove for co-complete funcoids. Let R ∈PFCD(A,B)
be a set of co-complete funcoids. Then for every X ∈ T (Src f)〈

lR
〉∗
X = l

f∈R

〈f〉∗X

is a principal filter (used theorem 849). �

Corollary 920. If R is a set of binary relations between sets A and B then

d

〈
↑FCD(A,B)〉∗R =↑FCD(A,B) ⋃R.
Proof. From two last theorems. �

Lemma 921. Every funcoid is representable as meet (on the lattice of funcoids)
of binary relations of the form X × Y tX ×>T (B) (where X, Y are typed sets).

Proof. Let f ∈ FCD(A,B), X ∈ T A, Y ∈ up〈f〉X, g(X,Y ) def= X × Y tX ×
>T (B). Then g(X,Y ) = X ×FCD Y tX ×FCD >F(B). For every K ∈ T A

〈g(X,Y )〉∗K =
〈
X ×FCD Y

〉∗
K t

〈
X ×FCD >F(B)

〉∗
K =


⊥F(B) if K = ⊥T A

Y if ⊥T A 6= K v X
>F(B) if K 6v X

 w 〈f〉∗K;

so g(X,Y ) w f . For every X ∈ T A

l

Y ∈up〈f〉∗X

〈g(X,Y )〉∗X =
Fl

Y ∈up〈f〉∗X

Y = 〈f〉∗X;
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consequently 〈l{ g(X,Y )
X ∈ T A, Y ∈ up〈f〉∗X

}〉∗
X v 〈f〉∗X

that is
l{ g(X,Y )

X ∈ T A, Y ∈ up〈f〉∗X

}
v f

and finally

f =
l{ g(X,Y )

X ∈ T A, Y ∈ up〈f〉∗X

}
.

�

Corollary 922. Filtrators of funcoids are filtered.

Theorem 923.
1◦. g is metacomplete if g is a complete funcoid.
2◦. g is co-metacomplete if g is a co-complete funcoid.

Proof.
1◦. Let R be a set of funcoids from a set A to a set B and g be a funcoid from

B to some C. Then 〈
g ◦ lR

〉∗
X =

〈g〉
〈

lR
〉∗
X =

〈g〉 l
f∈R

〈f〉∗X =
l

f∈R

〈g〉〈f〉∗X =

l

f∈R

〈g ◦ f〉∗X =

〈

l

f∈R

(g ◦ f)
〉∗
X =

〈

l〈g◦〉
∗
R
〉∗
X

for every typed set X ∈ T A. So g ◦ dR = d〈g◦〉
∗
R.

2◦. By duality.
�

Conjecture 924. g is complete if g is a metacomplete funcoid.

I will denote ComplFCD and CoComplFCD the sets of small complete and co-
complete funcoids correspondingly. ComplFCD(A,B) are complete funcoids from A
to B and likewise with CoComplFCD(A,B).

Obvious 925. ComplFCD and CoComplFCD are closed regarding composition
of funcoids.

Proposition 926. ComplFCD and CoComplFCD (with induced order) are com-
plete lattices.

Proof. It follows from theorem 919. �

Theorem 927. Atoms of the lattice ComplFCD(A,B) are exactly funcoidal
products of the form ↑A {α} ×FCD b where α ∈ A and b is an ultrafilter on B.
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Proof. First, it’s easy to see that ↑A {α} ×FCD b are elements of
ComplFCD(A,B). Also ⊥FCD(A,B) is an element of ComplFCD(A,B).
↑A {α} ×FCD b are atoms of ComplFCD(A,B) because they are atoms of

FCD(A,B).
It remains to prove that if f is an atom of ComplFCD(A,B) then f =↑A

{α} ×FCD b for some α ∈ A and an ultrafilter b on B.
Suppose f ∈ FCD(A,B) is a non-empty complete funcoid. Then there exists

α ∈ A such that 〈f〉∗@{α} 6= ⊥F(B). Thus ↑A {α}×FCDb v f for some ultrafilter b
on B. If f is an atom then f =↑A {α}×FCDb. �

Theorem 928. G 7→ dα∈A(↑A {α} ×FCD G(α)) is an order isomorphism from
the set of functions G ∈ F (B)A to the set ComplFCD(A,B).

The inverse isomorphism is described by the formula G(α) = 〈f〉∗@{α} where
f is a complete funcoid.

Proof. dα∈A(↑A {α} ×FCD G(α)) is complete because G(α) = datomsG(α)
and thus

l

α∈A
(↑A {α} ×FCD G(α)) = l

{
↑A {α} ×FCD b

α ∈ A, b ∈ atomsG(α)

}
is complete. So G 7→ dα∈A(↑A {α} ×FCD G(α)) is a function from G ∈ F (B)A to
ComplFCD(A,B).

Let f be complete. Then take

G(α) = l

{
b ∈ atomsF(Dst f)

↑A {α} ×FCD b v f

}
and we have f = dα∈A(↑A {α}×FCD G(α)) obviously. So G 7→ dα∈A(↑A {α}×FCD

G(α)) is surjection onto ComplFCD(A,B).
Let now prove that it is an injection:
Let

f = l

α∈A
(↑A {α} ×FCD F (α)) = l

α∈A
(↑A {α} ×FCD G(α))

for some F,G ∈ F (Dst f)Src f . We need to prove F = G. Let β ∈ Src f .

〈f〉∗@{β} = l

α∈A

〈
↑A {α} ×FCD F (α)

〉∗@{β} = F (β).

Similarly 〈f〉∗@{β} = G(β). So F (β) = G(β).
We have proved that it is a bijection. To show that it is monotone is trivial.
Denote f = dα∈A(↑A {α} ×FCD G(α)). Then

〈f〉∗@{α′} = (because ↑A {α′} is principal) =

l

α∈A

〈
↑A {α} ×FCD G(α)

〉
@{α′} =

〈
↑A {α′} ×FCD G(α′)

〉
@{α′} = G(α′).

�

Corollary 929. G 7→ dα∈A(G(α)×FCD ↑A {α}) is an order isomorphism from
the set of functions G ∈ F (B)A to the set CoComplFCD(A,B).

The inverse isomorphism is described by the formula G(α) =
〈
f−1〉∗@{α}

where f is a co-complete funcoid.

Corollary 930. ComplFCD(A,B) and CoComplFCD(A,B) are co-frames.
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7.13. Funcoids corresponding to pretopologies

Let ∆ be a pretopology on a set U and cl the preclosure corresponding to it
(see theorem 774).

Both induce a funcoid, I will show that these two funcoids are reverse of each
other:

Theorem 931. Let f be a complete funcoid defined by the formula 〈f〉∗@{x} =
∆(x) for every x ∈ U , let g be a co-complete funcoid defined by the formula
〈g〉∗X =↑U cl(GRX) for every X ∈ T U . Then g = f−1.

Remark 932. It is obvious that funcoids f and g exist.
Proof. For X,Y ∈ T U we have

X [g]∗ Y ⇔
↑ Y 6� 〈g〉 ↑ X ⇔
Y 6� cl(GRX)⇔

∃y ∈ Y : ∆(y) 6�↑ X ⇔
∃y ∈ Y : 〈f〉∗ ↑U {y} 6�↑ X ⇔

(proposition 607 and properties of complete funcoids)
〈f〉∗Y 6�↑ X ⇔
Y [f ]∗ X.

So g = f−1. �

7.14. Completion of funcoids

Theorem 933. Cor f = Cor′ f for an element f of a filtrator of funcoids.
Proof. By theorem 542 and corollary 922. �

Definition 934. Completion of a funcoid f ∈ FCD(A,B) is the complete
funcoid Compl f ∈ FCD(A,B) defined by the formula 〈Compl f〉∗@{α} = 〈f〉∗@{α}
for α ∈ Src f .

Definition 935. Co-completion of a funcoid f is defined by the formula
CoCompl f = (Compl f−1)−1.

Obvious 936. Compl f v f and CoCompl f v f .
Proposition 937. The filtrator (FCD(A,B),ComplFCD(A,B)) is filtered.
Proof. Because the filtrator of funcoids is filtered. �

Theorem 938. Compl f = CorComplFCD(A,B) f = Cor′ComplFCD(A,B) f for every
funcoid f ∈ FCD(A,B).

Proof. CorComplFCD(A,B) f = Cor′ComplFCD(A,B) f using theorem 542 since the
filtrator (FCD(A,B),ComplFCD(A,B)) is filtered.

Let g ∈ upComplFCD(A,B) f . Then g ∈ ComplFCD(A,B) and g w f . Thus
g = Compl g w Compl f .

Thus ∀g ∈ upComplFCD(A,B) f : g w Compl f .
Let ∀g ∈ upComplFCD(A,B) f : h v g for some h ∈ ComplFCD(A,B).
Then h v

d
upComplFCD(A,B) f = f and consequently h = Complh v Compl f .

Thus

Compl f =
ComplFCD(A,B)l

upComplFCD(A,B) f = CorComplFCD(A,B) f.
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�

Theorem 939. 〈CoCompl f〉∗X = Cor〈f〉∗X for every funcoid f and typed
set X ∈ T (Src f).

Proof. CoCompl f v f thus 〈CoCompl f〉∗X v 〈f〉∗X but 〈CoCompl f〉∗X
is a principal filter thus 〈CoCompl f〉∗X v Cor〈f〉∗X.

Let αX = Cor〈f〉∗X. Then α⊥T (Src f) = ⊥F(Dst f) and

α(X t Y ) = Cor〈f〉∗(X t Y ) = Cor(〈f〉∗X t 〈f〉∗Y ) =
Cor〈f〉∗X t Cor〈f〉∗Y = αX t αY

(used theorem 600). Thus α can be continued till 〈g〉 for some funcoid g. This
funcoid is co-complete.

Evidently g is the greatest co-complete element of FCD(Src f,Dst f) which is
lower than f .

Thus g = CoCompl f and Cor〈f〉∗X = αX = 〈g〉∗X = 〈CoCompl f〉∗X. �

Theorem 940. ComplFCD(A,B) is an atomistic lattice.

Proof. Let f ∈ ComplFCD(A,B), X ∈ T (Src f).

〈f〉∗X = l

x∈atomsX
〈f〉∗x = l

x∈atomsX
〈f |x〉∗x = l

x∈atomsX
〈f |x〉∗X,

thus f = dx∈atomsX(f |x). It is trivial that every f |x is a join of atoms of
ComplFCD(A,B). �

Theorem 941. A funcoid is complete iff it is a join (on the lattice FCD(A,B))
of atomic complete funcoids.

Proof. It follows from the theorem 919 and the previous theorem. �

Corollary 942. ComplFCD(A,B) is join-closed.

Theorem 943. Compl dR = d〈Compl〉∗R for every R ∈ PFCD(A,B) (for
every sets A, B).

Proof. For every typed set X〈
Compl lR

〉∗
X =

l

x∈atomsX

〈

lR
〉∗
x =

l

x∈atomsX

l

f∈R

〈f〉∗x =

l

f∈R

l

x∈atomsX
〈f〉∗x =

l

f∈R

〈Compl f〉∗X =

〈

l〈Compl〉∗R
〉∗
X.

�

Corollary 944. Compl is a lower adjoint.

Conjecture 945. Compl is not an upper adjoint (in general).

Proposition 946. Compl f = dα∈Src f (f |↑{α}) for every funcoid f .
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Proof. Let denote R the right part of the equality to prove.
〈R〉∗@{β} = dα∈Src f

〈
f |↑{α}

〉∗@{β} = 〈f〉∗@{β} for every β ∈ Src f and R is
complete as a join of complete funcoids.

Thus R is the completion of f . �

Conjecture 947. Compl f = f \∗ (Ω×FCD f).

This conjecture may be proved by considerations similar to these in the section
“Fréchet filter”.

Lemma 948. Co-completion of a complete funcoid is complete.

Proof. Let f be a complete funcoid.

〈CoCompl f〉∗X = Cor〈f〉∗X = Cor l

x∈atomsX
〈f〉∗x =

l

x∈atomsX
Cor〈f〉∗x = l

x∈atomsX
〈CoCompl f〉∗x

for every set typed X ∈ T (Src f). Thus CoCompl f is complete. �

Theorem 949. Compl CoCompl f = CoCompl Compl f = Cor f for every fun-
coid f .

Proof. Compl CoCompl f is co-complete since (used the lemma) CoCompl f
is co-complete. Thus Compl CoCompl f is a principal funcoid. CoCompl f is the
greatest co-complete funcoid under f and Compl CoCompl f is the greatest com-
plete funcoid under CoCompl f . So Compl CoCompl f is greater than any prin-
cipal funcoid under CoCompl f which is greater than any principal funcoid un-
der f . Thus Compl CoCompl f is the greatest principal funcoid under f . Thus
Compl CoCompl f = Cor f . Similarly CoCompl Compl f = Cor f . �

7.14.1. More on completion of funcoids.

Proposition 950. For every composable funcoids f and g
1◦. Compl(g ◦ f) w Compl g ◦ Compl f ;
2◦. CoCompl(g ◦ f) w CoCompl g ◦ CoCompl f .

Proof.
1◦. Compl g ◦ Compl f = Compl(Compl g ◦ Compl f) v Compl(g ◦ f).
2◦. CoCompl g ◦ CoCompl f = CoCompl(CoCompl g ◦ CoCompl f) v

CoCompl(g ◦ f).
�

Proposition 951. For every composable funcoids f and g
1◦. CoCompl(g ◦ f) = (CoCompl g) ◦ f if f is a co-complete funcoid.
2◦. Compl(f ◦ g) = f ◦ Compl g if f is a complete funcoid.

Proof.
1◦. For every X ∈ T (Src f)

〈CoCompl(g ◦ f)〉∗X =
Cor〈g ◦ f〉∗X =
Cor〈g〉〈f〉∗X =

〈CoCompl g〉〈f〉∗X =
〈(CoCompl g) ◦ f〉∗X.
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2◦. (CoCompl(g ◦ f))−1 = f−1 ◦ (CoCompl g)−1; Compl(g ◦ f)−1 = f−1 ◦
Compl g−1; Compl(f−1 ◦ g−1) = f−1 ◦ Compl g−1. After variable replacement we
get Compl(f ◦ g) = f ◦ Compl g (after the replacement f is a complete funcoid).

�

Corollary 952. For every composable funcoids f and g
1◦. Compl f ◦ Compl g = Compl(Compl f ◦ g).
2◦. CoCompl g ◦ CoCompl f = CoCompl(g ◦ CoCompl f).

Proposition 953. For every composable funcoids f and g
1◦. Compl(g ◦ f) = Compl(g ◦ (Compl f));
2◦. CoCompl(g ◦ f) = CoCompl((CoCompl g) ◦ f).

Proof.
1◦.

〈g ◦ (Compl f)〉∗@{x} = 〈g〉〈Compl f〉∗@{x} =
〈g〉〈f〉∗@{x} = 〈g ◦ f〉∗@{x}.

Thus Compl(g ◦ (Compl f)) = Compl(g ◦ f).
2◦. (Compl(g◦(Compl f))−1 = (Compl(g◦f))−1; CoCompl(g◦(Compl f))−1 =

CoCompl(g ◦ f)−1; CoCompl((Compl f)−1 ◦ g−1) = CoCompl(f−1 ◦ g−1);
CoCompl((CoCompl f−1) ◦ g−1) = CoCompl(f−1 ◦ g−1). After variable replace-
ment CoCompl((CoCompl g) ◦ f) = CoCompl(g ◦ f).

�

Theorem 954. The filtrator of funcoids (from a given set A to a given set B)
is with co-separable core.

Proof. Let f, g ∈ FCD(A,B) and f t g = >. Then for every X ∈ T A we
have

〈f〉∗X t 〈g〉∗X = > ⇔ Cor〈f〉∗X t Cor〈g〉∗X = > ⇔
〈CoCompl f〉∗X t 〈CoCompl g〉∗X = >.

Thus 〈CoCompl f t CoCompl g〉∗X = >;
f t g = > ⇒ CoCompl f t CoCompl g = >. (14)

Applying the dual of the formulas (14) to the formula (14) we get:
f t g = > ⇒ Compl CoCompl f t Compl CoCompl g = >

that is f tg = > ⇒ Cor f tCor g = >. So FCD(A,B) is with co-separable core. �

Corollary 955. The filtrator of complete funcoids is also with co-separable
core.

7.15. Monovalued and injective funcoids

Following the idea of definition of monovalued morphism let’s call monovalued
such a funcoid f that f ◦ f−1 v idFCD

im f .
Similarly, I will call a funcoid injective when f−1 ◦ f v idFCD

dom f .

Obvious 956. A funcoid f is:
1◦. monovalued iff f ◦ f−1 v 1FCD

Dst f ;
2◦. injective iff f−1 ◦ f v 1FCD

Src f .
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In other words, a funcoid is monovalued (injective) when it is a monovalued
(injective) morphism of the category of funcoids. Monovaluedness is dual of injec-
tivity.

Obvious 957.
1◦. A morphism (A,B, f) of the category of funcoid triples is monovalued iff

the funcoid f is monovalued.
2◦. A morphism (A,B, f) of the category of funcoid triples is injective iff the

funcoid f is injective.

Theorem 958. The following statements are equivalent for a funcoid f :
1◦. f is monovalued.
2◦. It is metamonovalued.
3◦. It is weakly metamonovalued.
4◦. ∀a ∈ atomsF(Src f) : 〈f〉a ∈ atomsF(Dst f) ∪{⊥F(Dst f)}.
5◦. ∀I,J ∈ F (Dst f) :

〈
f−1〉(I u J ) =

〈
f−1〉I u 〈f−1〉J .

6◦. ∀I, J ∈ T (Dst f) :
〈
f−1〉∗(I u J) =

〈
f−1〉∗I u 〈f−1〉∗J .

Proof.
4◦⇒5◦. Let a ∈ atomsF(Src f), 〈f〉a = b. Then because b ∈

atomsF(Dst f) ∪{⊥F(Dst f)}

(I u J ) u b 6= ⊥ ⇔ I u b 6= ⊥ ∧ J u b 6= ⊥;
a [f ] I u J ⇔ a [f ] I ∧ a [f ] J ;

I u J
[
f−1] a⇔ I [f−1] a ∧ J [f−1] a;

a u
〈
f−1〉(I u J ) 6= ⊥ ⇔ a u

〈
f−1〉I 6= ⊥ ∧ a u 〈f−1〉J 6= ⊥;〈

f−1〉(I u J ) =
〈
f−1〉I u 〈f−1〉J .

5◦⇒1◦.
〈
f−1〉a u 〈f−1〉b =

〈
f−1〉(a u b) =

〈
f−1〉⊥ = ⊥ for every two distinct

atomic filter objects a and b on Dst f . This is equivalent to ¬(
〈
f−1〉a [f ]

b); b � 〈f〉
〈
f−1〉a; b � 〈

f ◦ f−1〉a; ¬(a
[
f ◦ f−1] b). So a

[
f ◦ f−1]

b ⇒ a = b for every ultrafilters a and b. This is possible only when
f ◦ f−1 v 1FCD

Dst f .
6◦⇒5◦. 〈

f−1〉(I u J ) =
l〈
〈f〉∗

〉∗ up(I u J ) =
l〈
〈f〉∗

〉∗{ I u J
I ∈ up I, J ∈ upJ

}
=

l{ 〈f〉∗(I u J)
I ∈ up I, J ∈ upJ

}
=

l{ 〈f〉∗I u 〈f〉∗J
I ∈ up I, J ∈ upJ

}
=

l{ 〈f〉∗I
I ∈ up I

}
u
l{ 〈f〉∗J

J ∈ upJ

}
=〈

f−1〉I u 〈f−1〉J .
5◦⇒6◦. Obvious.
¬4◦⇒¬1◦. Suppose 〈f〉a /∈ atomsF(Dst f) ∪{⊥F(Dst f)} for some a ∈ atomsF(Src f).

Then there exist two atomic filters p and q on Dst f such that p 6= q and
〈f〉a w p ∧ 〈f〉a w q. Consequently p 6� 〈f〉a; a 6�

〈
f−1〉p; a v 〈f−1〉p;
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f ◦ f−1〉p = 〈f〉

〈
f−1〉p w 〈f〉a w q;

〈
f ◦ f−1〉p 6v p and

〈
f ◦ f−1〉p 6=

⊥F(Dst f). So it cannot be f ◦ f−1 v 1FCD
Dst f .

2◦⇒3◦. Obvious.
1◦⇒2◦.〈(l

G
)
◦ f
〉
x =

〈l
G
〉
〈f〉x =

l

g∈G
〈g〉〈f〉x =

l

g∈G
〈g ◦ f〉x =

〈
l

g∈G
(g ◦ f)

〉
x

for every atomic filter object x ∈ atomsF(Src f). Thus (
d
G)◦f =

d
g∈G(g◦

f).
3◦⇒1◦. Take g = a×FCD y and h = b×FCD y for arbitrary atomic filter objects a 6= b

and y. We have g u h = ⊥; thus (g ◦ f) u (h ◦ f) = (g u h) ◦ f = ⊥ and
thus impossible x [f ] a ∧ x [f ] b as otherwise x [g ◦ f ] y and x [h ◦ f ] y so
x [(g ◦ f) u (h ◦ f)] y. Thus f is monovalued.

�

Corollary 959. A binary relation corresponds to a monovalued funcoid iff it
is a function.

Proof. Because ∀I, J ∈P(im f) :
〈
f−1〉∗(IuJ) =

〈
f−1〉∗Iu〈f−1〉∗J is true

for a funcoid f corresponding to a binary relation if and only if it is a function (see
proposition 385). �

Remark 960. This corollary can be reformulated as follows: For binary rela-
tions (principal funcoids) the classic concept of monovaluedness and monovalued-
ness in the above defined sense of monovaluedness of a funcoid are the same.

Theorem 961. If f , g are funcoids, f v g and g is monovalued then g|dom f =
f .

Proof. Obviously g|dom f w f . Suppose for contrary that g|dom f @ f . Then
there exists an atom a ∈ atoms dom f such that 〈g|dom f 〉a 6= 〈f〉a that is 〈g〉a @
〈f〉a what is impossible. �

7.16. Open maps

Definition 962. An open map from a topological space to a topological space
is a function which maps open sets into open sets.

An obvious generalization of this is open map f from an endofuncoid µ to an
endofuncoid ν, which is by definition a function (or rather a principal, entirely
defined, monovalued funcoid) from Obµ to Ob ν such that

∀x ∈ Obµ, V ∈ 〈µ〉∗{x} : 〈f〉∗V w 〈ν〉〈f〉∗@{x}.
This formula is equivalent (exercise!) to

∀x ∈ Obµ : 〈f〉〈µ〉∗@{x} w 〈ν〉〈f〉∗@{x}.
It can be abstracted/simplified further (now for an arbitrary funcoid f from

Obµ to Ob ν):
Compl(f ◦ µ) w Compl(ν ◦ f).

Definition 963. An open funcoid from an endofuncoid µ to an endofuncoid ν
is a funcoid f from Obµ to Ob ν such that Compl(f ◦ µ) w Compl(ν ◦ f).

Obvious 964. A funcoid f is open iff f ◦ µ w Compl(ν ◦ f).

Theorem 965. Let µ, ν, π be endofuncoids. Let f be an principal monovalued
open funcoid from Obµ to Ob ν and g is a open funcoid from Ob ν to Obπ. Then
g ◦ f is an open funcoid from Obµ to Obπ.
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Proof.

〈g ◦ f〉〈µ〉∗@{x} =
〈g〉〈f〉〈µ〉∗@{x} w
〈g〉〈ν〉〈f〉∗@{x} w (using that f is monovalued and principal)
〈π〉〈g〉〈f〉∗@{x} =
〈π〉〈g ◦ f〉@{x}.

�

Problem 966. Devise a pointfree (not using a particular point x) proof of the
above theorem. It should refer to a lemma which may use a particular point, but
the proof of the theorem itself should be without a particular point.

7.17. T0-, T1-, T2-, T3-, and T4-separable funcoids

For funcoids it can be generalized T0-, T1-, T2-, and T3- separability. Worthwhile
note that T0 and T2 separability is defined through T1 separability.

Definition 967. Let call T1-separable such endofuncoid f that for every α, β ∈
Ob f is true

α 6= β ⇒ ¬(@{α} [f ]∗ @{β}).

Proposition 968. An endofuncoid f is T1-separable iff Cor f v 1FCD
Ob f .

Proof.

∀x, y ∈ Ob f : (@{x} [f ]∗ @{y} ⇒ x = y)⇔
∀x, y ∈ Ob f : (@{x} [Cor f ]∗ @{y} ⇒ x = y)⇔ Cor f v 1FCD

Ob f .

�

Proposition 969. An endofuncoid f is T1-separable iff Cor〈f〉∗{x} v {x} for
every x ∈ Ob f .

Proof. Cor〈f〉∗{x} v {x} ⇔ 〈CoCompl f〉∗{x} v {x} ⇔
Compl CoCompl f v 1FCD

Ob f ⇔ Cor f v 1FCD
Ob f . �

Definition 970. Let call T0-separable such funcoid f ∈ FCD(A,A) that fuf−1

is T1-separable.

Definition 971. Let call T2-separable such funcoid f that f−1 ◦ f is T1-
separable.

For symmetric transitive funcoids T0-, T1- and T2-separability are the same (see
theorem 252).

Obvious 972. A funcoid f is T2-separable iff α 6= β ⇒ 〈f〉∗@{α} 6� 〈f〉∗@{β}
for every α, β ∈ Src f .

Definition 973. Funcoid f is regular iff for every C ∈ T Dst f and p ∈ Src f

〈f〉〈f−1〉C � 〈f〉@{p} ⇐↑Src f {p} � 〈f−1〉C.

Proposition 974. The following are pairwise equivalent:
1◦. A funcoid f is regular.
2◦. Compl(f ◦ f−1 ◦ f) v Compl f .
3◦. Compl(f ◦ f−1 ◦ f) v f .
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Proof. Equivalently transform the defining formula for regular funcoids:
〈f〉〈f−1〉C � 〈f〉@{p} ⇐↑Src f {p} � 〈f−1〉C;
〈f〉〈f−1〉C 6� 〈f〉@{p} ⇒↑Src f {p} 6�

〈
f−1〉C;

(by definition of funcoids)
C 6� 〈f〉〈f−1〉〈f〉@{p} ⇒ C 6� 〈f〉@{p};
〈f〉〈f−1〉〈f〉@{p} v 〈f〉@{p};〈
f ◦ f−1 ◦ f

〉
@{p} v 〈f〉@{p};

Compl(f ◦ f−1 ◦ f) v Compl f ;
Compl(f ◦ f−1 ◦ f) v f . �

Proposition 975. If f is complete, regularity of funcoid f is equivalent to
f ◦ Compl(f−1 ◦ f) v f .

Proof. By proposition 951. �

Remark 976. After seeing how it collapses into algebraic formulas about fun-
coids, the definition for a funcoid being regular seems quite arbitrary and sucked
out of the finger (not an example of algebraic elegance). So I present these formu-
las only because they coincide with the traditional definition of regular topological
spaces. However this is only my personal opinion and it may be wrong.

Definition 977. An endofuncoid is T3- iff it is both T2- and regular.

A topological space S is called T4-separable when for any two disjoint closed
sets A,B ⊆ S there exist disjoint open sets U , V containing A and B respectively.

Let f be the complete funcoid corresponding to the topological space.
Since the closed sets are exactly sets of the form

〈
f−1〉∗X and sets X and Y

having non-intersecting open neighborhood is equivalent to 〈f〉∗X � 〈f〉∗Y , the
above is equivalent to:〈

f−1〉∗A � 〈f−1〉∗B ⇒ 〈f〉∗〈f−1〉∗A � 〈f〉∗〈f−1〉∗B;
〈f〉∗

〈
f−1〉∗A 6� 〈f〉∗〈f−1〉∗B ⇒ 〈f−1〉∗A 6�

〈
f−1〉∗B;

〈f〉∗
〈
f−1〉∗〈f〉∗〈f−1〉∗A 6� B ⇒ 〈f〉∗〈f−1〉∗A 6� B;

〈f〉∗
〈
f−1〉∗〈f〉∗〈f−1〉∗A v 〈f〉∗〈f−1〉∗A;

f ◦ f−1 ◦ f ◦ f−1 v f ◦ f−1.
Take the last formula as the definition of T4-funcoid f .

7.18. Filters closed regarding a funcoid

Definition 978. Let’s call closed regarding a funcoid f ∈ FCD(A,A) such
filter A ∈ F (Src f) that 〈f〉A v A.

This is a generalization of closedness of a set regarding an unary operation.

Proposition 979. If I and J are closed (regarding some funcoid f), S is a set
of closed filters on Src f , then

1◦. I t J is a closed filter;
2◦.

d
S is a closed filter.

Proof. Let denote the given funcoid as f . 〈f〉(I tJ ) = 〈f〉I t〈f〉J v I tJ ,
〈f〉

d
S v

d
〈〈f〉〉∗S v

d
S. Consequently the filters I tJ and

d
S are closed. �

Proposition 980. If S is a set of filters closed regarding a complete funcoid,
then the filter dS is also closed regarding our funcoid.

Proof. 〈f〉 dS = d〈〈f〉〉
∗
S v dS where f is the given funcoid. �
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7.19. Proximity spaces

Fix a set U . Let equate typed subsets of U with subsets of U .
We will prove that proximity spaces are essentially the same as reflexive, sym-

metric, transitive funcoids.
Our primary interest here is the last axiom (6◦) in the definition 794 of prox-

imity spaces.

Proposition 981. If f is a transitive, symmetric funcoid, then the last axiom
of proximity holds.

Proof.

¬
(
A [f ]∗ B

)
⇔ ¬

(
A
[
f−1 ◦ f

]∗
B
)
⇔ 〈f〉∗B � 〈f〉∗A⇔

∃M ∈ U : M � 〈f〉∗A ∧M � 〈f〉∗B.
�

Proposition 982. For a reflexive funcoid, the last axiom of proximity implies
that it is transitive and symmetric.

Proof. Let ¬
(
A [f ]∗ B

)
implies ∃M : M � 〈f〉∗A ∧ M � 〈f〉∗B.

Then ¬
(
A [f ]∗ B

)
implies M � 〈f〉∗A ∧ 〈f〉∗B v M , thus 〈f〉∗A � 〈f〉∗B;

¬
(
A
[
f−1 ◦ f

]∗
B
)
that is f w f−1 ◦ f and thus f = f−1 ◦ f . By theorem 252 f is

transitive and symmetric. �

Theorem 983. Reflexive, symmetric, transitive funcoids endofuncoids on a
set U are essentially the same as proximity spaces on U .

Proof. Above and theorem 828. �



CHAPTER 8

Reloids

8.1. Basic definitions

Definition 984. Let A, B be sets. RLD](A,B) is the base of an arbitrary but
fixed primary filtrator over Rel(A,B).

Obvious 985. (RLD](A,B),Rel(A,B)) is a powerset filtrator.
Definition 986. I call a reloid from a set A to a set B a triple (A,B, F ) where

F ∈ RLD](A,B).
Definition 987. Source and destination of every reloid (A,B, F ) are defined

as
Src(A,B, F ) = A and Dst(A,B, F ) = B.

I will denote RLD(A,B) the set of reloids from A to B.
I will denote RLD the set of all reloids (for small sets).
Definition 988. I will call endoreloids reloids with the same source and des-

tination.
Definition 989.
• ↑RLD] f is the principal filter object corresponding to a Rel-morphism f .
• ↑RLD](A,B) f =↑RLD] (A,B, f) for every binary relation f ∈P(A×B).
• ↑RLD f = (Src f,Dst f, ↑RLD] f) for every Rel-morphism f .
• ↑RLD(A,B) f =↑RLD (A,B, f) for every binary relation f ∈P(A×B).

Definition 990. I call members of a set
〈
↑RLD〉∗Rel(A,B) as principal reloids.

Reloids are a generalization of uniform spaces. Also reloids are generalization
of binary relations.

Definition 991. up f−1 =
{

F−1

F∈up f

}
for every f ∈ RLD](A,B).

Proposition 992. f−1 exists and f−1 ∈ RLD](B,A).

Proof. We need to prove that
{

F−1

F∈up f

}
is a filter, but that’s obvious. �

Definition 993. The reverse reloid of a reloid is defined by the formula
(A,B, F )−1 = (B,A, F−1).

Note 994. The reverse reloid is not an inverse in the sense of group theory or
category theory.

Reverse reloid is a generalization of conjugate quasi-uniformity.
Definition 995. Every set RLD(A,B) is a poset by the formula f v g ⇔

GR f v GR g. We will apply lattice operations to subsets of RLD(A,B) without
explicitly mentioning RLD(A,B).

Filtrators of reloids are (RLD(A,B),Rel(A,B)) (for all sets A, B). Here I
equate principal reloids with corresponding Rel-morphisms.

183
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Obvious 996. (RLD(A,B),Rel(A,B)) is a powerset filtrator isomorphic to the
filtrator (RLD](A,B),Rel(A,B)). Thus RLD(A,B) is a special case of RLD](A,B).

8.2. Composition of reloids

Definition 997. Reloids f and g are composable when Dst f = Src g.

Definition 998. Composition of (composable) reloids is defined by the formula

g ◦ f =
RLDl{

G ◦ F
F ∈ up f,G ∈ up g

}
.

Obvious 999. Composition of reloids is a reloid.

Obvious 1000. ↑RLD g◦ ↑RLD f =↑RLD (g ◦ f) for composable morphisms f , g
of category Rel.

Theorem 1001. (h ◦ g) ◦ f = h ◦ (g ◦ f) for every composable reloids f , g, h.

Proof. For two nonempty collections A and B of sets I will denote
A ∼ B ⇔ ∀K ∈ A∃L ∈ B : L ⊆ K ∧ ∀K ∈ B∃L ∈ A : L ⊆ K.

It is easy to see that ∼ is a transitive relation.
I will denote B ◦A =

{
L◦K

K∈A,L∈B

}
.

Let first prove that for every nonempty collections of relations A, B, C
A ∼ B ⇒ A ◦ C ∼ B ◦ C.

Suppose A ∼ B and P ∈ A ◦ C that is K ∈ A and M ∈ C such that P = K ◦M .
∃K ′ ∈ B : K ′ ⊆ K because A ∼ B. We have P ′ = K ′ ◦M ∈ B ◦ C. Obviously
P ′ ⊆ P . So for every P ∈ A ◦C there exists P ′ ∈ B ◦C such that P ′ ⊆ P ; the vice
versa is analogous. So A ◦ C ∼ B ◦ C.

up((h ◦ g) ◦ f) ∼ up(h ◦ g) ◦ up f , up(h ◦ g) ∼ (uph) ◦ (up g). By proven above
up((h ◦ g) ◦ f) ∼ (uph) ◦ (up g) ◦ (up f).

Analogously up(h ◦ (g ◦ f)) ∼ (uph) ◦ (up g) ◦ (up f).
So up(h ◦ (g ◦ f)) ∼ up((h ◦ g) ◦ f) what is possible only if up(h ◦ (g ◦ f)) =

up((h ◦ g) ◦ f). Thus (h ◦ g) ◦ f = h ◦ (g ◦ f). �

Exercise 1002. Prove fn ◦ · · · ◦ f0 =
dRLD

{
Fn◦···◦F0
Fi∈up fi

}
for every composable

reloids f0, . . . , fn where n is an integer, independently of the inserted parentheses.
(Hint: Use generalized filter bases.)

Theorem 1003. For every reloid f :
1◦. f ◦ f =

dRLD
{

F◦F
F∈up f

}
if Src f = Dst f ;

2◦. f−1 ◦ f =
dRLD

{
F−1◦F
F∈up f

}
;

3◦. f ◦ f−1 =
dRLD

{
F◦F−1

F∈up f

}
.

Proof. I will prove only 1◦ and 2◦ because 3◦ is analogous to 2◦.
1◦. It’s enough to show that ∀F,G ∈ up f∃H ∈ up f : H ◦ H v G ◦ F . To

prove it take H = F uG.
2◦. It’s enough to show that ∀F,G ∈ up f∃H ∈ up f : H−1 ◦ H v G−1 ◦ F .

To prove it take H = F uG. Then H−1 ◦H = (F uG)−1 ◦ (F uG) v G−1 ◦ F .
�

Exercise 1004. Prove fn =
dRLD

{
Fn

F∈up f

}
for every endofuncoid f and pos-

itive integer n.



8.2. COMPOSITION OF RELOIDS 185

Theorem 1005. For every sets A, B, C if g, h ∈ RLD(A,B) then

1◦. f ◦ (g t h) = f ◦ g t f ◦ h for every f ∈ RLD(B,C);
2◦. (g t h) ◦ f = g ◦ f t h ◦ f for every f ∈ RLD(C,A).

Proof. We’ll prove only the first as the second is dual.
By the infinite distributivity law for filters we have

f ◦ g t f ◦ h =
RLDl{

F ◦G
F ∈ up f,G ∈ up g

}
t

RLDl{
F ◦H

F ∈ up f,H ∈ uph

}
=

RLDl{
(F1 ◦G) tRLD (F2 ◦H)

F1, F2 ∈ up f,G ∈ up g,H ∈ uph

}
=

RLDl{
(F1 ◦G) t (F2 ◦H)

F1, F2 ∈ up f,G ∈ up g,H ∈ uph

}
.

Obviously

RLDl{
(F1 ◦G) t (F2 ◦H)

F1, F2 ∈ up f,G ∈ up g,H ∈ uph

}
w

RLDl{
(((F1 u F2) ◦G) t ((F1 u F2) ◦H))
F1, F2 ∈ up f,G ∈ up g,H ∈ uph

}
=

RLDl{
(F ◦G) t (F ◦H)

F ∈ up f,G ∈ up g,H ∈ uph

}
=

RLDl{
F ◦ (G tH)

F ∈ up f,G ∈ up g,H ∈ uph

}
.

Because G ∈ up g ∧H ∈ uph⇒ G tH ∈ up(g t h) we have

RLDl{
F ◦ (G tH)

F ∈ up f,G ∈ up g,H ∈ uph

}
w

RLDl{
F ◦K

F ∈ up f,K ∈ up(g t h)

}
=

f ◦ (g t h).

Thus we have proved f ◦gtf ◦h w f ◦ (gth). But obviously f ◦ (gth) w f ◦g
and f ◦(gth) w f ◦h and so f ◦(gth) w f ◦gtf ◦h. Thus f ◦(gth) = f ◦gtf ◦h. �

Theorem 1006. Let A, B, C be sets, f ∈ RLD(A,B), g ∈ RLD(B,C), h ∈
RLD(A,C). Then

g ◦ f 6� h⇔ g 6� h ◦ f−1.
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Proof.

g ◦ f 6� h⇔
RLDl{

G ◦ F
F ∈ up f,G ∈ up g

}
u

RLDl
uph 6= ⊥ ⇔

RLDl{
(G ◦ F ) uRLD H

F ∈ up f,G ∈ up g,H ∈ uph

}
6= ⊥ ⇔

RLDl{
(G ◦ F ) uH

F ∈ up f,G ∈ up g,H ∈ uph

}
6= ⊥ ⇔

∀F ∈ up f,G ∈ up g,H ∈ uph :↑RLD ((G ◦ F ) uH) 6= ⊥ ⇔
∀F ∈ up f,G ∈ up g,H ∈ uph : G ◦ F 6� H

(used properties of generalized filter bases).
Similarly g 6� h ◦ f−1 ⇔ ∀F ∈ up f,G ∈ up g,H ∈ uph : G 6� H ◦ F−1.
Thus g ◦ f 6� h ⇔ g 6� h ◦ f−1 because G ◦ F 6� H ⇔ G 6� H ◦ F−1 by

proposition 280. �

Theorem 1007. For every composable reloids f and g
1◦. g ◦ f = d

{
g◦F

F∈atoms f

}
.

2◦. g ◦ f = d

{
G◦f

G∈atoms g

}
.

Proof. We will prove only the first as the second is dual. �

Obviously d
{

g◦F
F∈atoms f

}
v g ◦ f . We need to prove d

{
g◦F

F∈atoms f

}
w g ◦ f .

Really,

l

{
g ◦ F

F ∈ atoms f

}
w g ◦ f ⇔

∀x ∈ RLD(Src f,Dst g) :
(
x 6� g ◦ f ⇒ x 6� l

{
g ◦ F

F ∈ atoms f

})
⇐

∀x ∈ RLD(Src f,Dst g) : (x 6� g ◦ f ⇒ ∃F ∈ atoms f : x 6� g ◦ F )⇔
∀x ∈ RLD(Src f,Dst g) : (g−1 ◦ x 6� f ⇒ ∃F ∈ atoms f : g−1 ◦ x 6� F )

what is obviously true.

Corollary 1008. If f and g are composable reloids, then

g ◦ f = l

{
G ◦ F

F ∈ atoms f,G ∈ atoms g

}
.

Proof. g ◦ f = dF∈atoms f (g ◦ F ) = dF∈atoms f dG∈atoms g(G ◦ F ) =

d

{
G◦F

F∈atoms f,G∈atoms g

}
. �

8.3. Reloidal product of filters

Definition 1009. Reloidal product of filters A and B is defined by the formula

A×RLD B def=
RLDl{

A×B
A ∈ upA, B ∈ upB

}
.

Obvious 1010.
• ↑U A×RLD ↑V B =↑RLD(U,V ) (A×B) for every sets A ⊆ U , B ⊆ V .
• ↑ A×RLD ↑ B =↑RLD (A×B) for every typed sets A, B.
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Theorem 1011. A×RLDB = d

{
a×RLDb

a∈atomsA,b∈atomsB

}
for every filters A and B.

Proof. Obviously A×RLD B w d

{
a×RLDb

a∈atomsA,b∈atomsB

}
.

Reversely, let K ∈ up d

{
a×RLDb

a∈atomsA,b∈atomsB

}
. Then K ∈ up(a×RLDb) for every

a ∈ atomsA, b ∈ atomsB. K w Xa × Yb for some Xa ∈ up a, Yb ∈ up b;

K w l

{
Xa × Yb

a ∈ atomsA, b ∈ atomsB

}
= l

{
Xa

a ∈ atomsA

}
× l

{
Yb

b ∈ atomsB

}
w A×B

where A ∈ upA, B ∈ upB; K ∈ up(A×RLD B). �

Theorem 1012. If A0,A1 ∈ F (A), B0,B1 ∈ F (B) for some sets A, B then

(A0 ×RLD B0) u (A1 ×RLD B1) = (A0 u A1)×RLD (B0 u B1).

Proof.

(A0 ×RLD B0) u (A1 ×RLD B1) =
RLDl{

P uQ
P ∈ up(A0 ×RLD B0), Q ∈ up(A1 ×RLD B1)

}
=

RLDl{
(A0 ×B0) u (A1 ×B1)

A0 ∈ upA0, B0 ∈ upB0, A1 ∈ upA1, B1 ∈ upB1

}
=

RLDl{
(A0 uA1)× (B0 uB1)

A0 ∈ upA0, B0 ∈ upB0, A1 ∈ upA1, B1 ∈ upB1

}
=

RLDl{
K × L

K ∈ up(A0 u A1), L ∈ up(B0 u B1)

}
=

(A0 u A1)×RLD (B0 u B1).

�

Theorem 1013. If S ∈P(F (A)×F (B)) for some sets A, B then
l{ A×RLD B

(A,B) ∈ S

}
=
l

domS ×RLD
l

imS.

Proof. Let P =
d

domS, Q =
d

imS; l =
d{ A×RLDB

(A,B)∈S

}
.

P ×RLD Q v l is obvious.
Let F ∈ up(P ×RLD Q). Then there exist P ∈ upP and Q ∈ upQ such that

F w P ×Q.
P = P1 u · · · u Pn where Pi ∈ domS and Q = Q1 u · · · uQm where Qj ∈ imS.
P ×Q =

d
i,j(Pi ×Qj).

Pi × Qj ∈ up(A ×RLD B) for some (A,B) ∈ S. P × Q =
d
i,j(Pi × Qj) ∈ up l.

So F ∈ up l. �

Corollary 1014.
d〈
A×RLD〉∗T = A×RLD d

T if A is a filter and T is a set
of filters with common base.

Proof. Take S = {A} × T where T is a set of filters.
Then

d{A×RLDB
B∈T

}
= A×RLD dT that is

d〈
A×RLD〉∗T = A×RLD dT . �

Definition 1015. I will call a reloid convex iff it is a join of direct products.
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8.4. Restricting reloid to a filter. Domain and image

Definition 1016. Identity reloid for a set A is defined by the formula
1RLD
A =↑RLD(A,A) idA.

Obvious 1017. (1RLD
A )−1 = 1RLD

A .

Definition 1018. I define restricting a reloid f to a filter A as f |A = f u
(A×RLD >F(Dst f)).

Definition 1019. Domain and image of a reloid f are defined as follows:

dom f =
Fl
〈dom〉∗ up f ; im f =

Fl
〈im〉∗ up f.

Proposition 1020. f v A ×RLD B ⇔ dom f v A ∧ im f v B for every reloid
f and filters A ∈ F (Src f), B ∈ F (Dst f).

Proof.
⇒. It follows from dom(A×RLD B) v A ∧ im(A×RLD B) v B.
⇐. dom f v A ⇔ ∀A ∈ upA∃F ∈ up f : domF v A. Analogously

im f v B ⇔ ∀B ∈ upB∃G ∈ up f : imG v B.
Let dom f v A ∧ im f v B, A ∈ upA, B ∈ upB. Then there exist

F,G ∈ up f such that domF v A∧imG v B. Consequently FuG ∈ up f ,
dom(F uG) v A, im(F uG) v B that is F uG v A×B. So there exists
H ∈ up f such that H v A × B for every A ∈ upA, B ∈ upB. So
f v A×RLD B.

�

Definition 1021. I call restricted identity reloid for a filter A the reloid
idRLD
A = (1RLD

Base(A))|A.

Theorem 1022. idRLD
A =

dRLD(Base(A),Base(A))
A∈upA idA for every filter A.

Proof. Let K ∈ up
dRLD(Base(A),Base(A))
A∈upA idA, then there exists A ∈ upA such

that GRK ⊇ idA. Then
idRLD
A v

↑RLD(Base(A),Base(A)) idBase(A) u(A×RLD >) v
↑RLD(Base(A),Base(A)) idBase(A) u(A×RLD >) =

↑RLD(Base(A),Base(A)) idBase(A) u ↑RLD (A×>) =
↑RLD(Base(A),Base(A)) (idBase(A) ∩GR(A×>)) =

↑RLD(Base(A),Base(A)) idA v K.

Thus K ∈ up idRLD
A .

Reversely let K ∈ up idRLD
A = up(1RLD

Base(A) u (A ×RLD >)), then there exists
A ∈ upA such that

K ∈ up ↑RLD(Base(A),Base(A)) (idBase(A) ∩GR(A×>)) =
up ↑RLD(Base(A),Base(A)) idA w

up
RLD(Base(A),Base(A))l

A∈upA
idA .

�
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Corollary 1023. (idRLD
A )−1 = idRLD

A .

Theorem 1024. f |A = f ◦ idRLD
A for every reloid f and A ∈ F (Src f).

Proof. We need to prove that

f u (A×RLD >) = f ◦
RLD(Src f,Src f)l {

idA
A ∈ upA

}
.

We have

f ◦
RLD(Src f,Src f)l {

idA
A ∈ upA

}
=

RLD(Src f,Src f)l {
GR(F ) ◦ idA

F ∈ up f,A ∈ upA

}
=

RLDl{
F |A

F ∈ up f,A ∈ upA

}
=

RLDl{
F u (A×>T (Dst f))
F ∈ up f,A ∈ upA

}
=

RLDl{
F

F ∈ up f

}
u

RLDl{
A×>T (Dst f)

A ∈ upA

}
=

f u (A×RLD >).

�

Theorem 1025. (g ◦f)|A = g ◦ (f |A) for every composable reloids f and g and
A ∈ F (Src f).

Proof. (g ◦ f)|A = (g ◦ f) ◦ idRLD
A = g ◦ (f ◦ idRLD

A ) = g ◦ (f |A). �

Theorem 1026. f u (A ×RLD B) = idRLD
B ◦f ◦ idRLD

A for every reloid f and
A ∈ F (Src f), B ∈ F (Dst f).

Proof.

f u (A×RLD B) =
f u (A×RLD >F(Dst f)) u (>F(Src f) ×RLD B) =

f |A u (>F(Src f) ×RLD B) =
(f ◦ idRLD

A ) u (>F(Src f) ×RLD B) =
((f ◦ idRLD

A )−1 u (>F(Src f) ×RLD B)−1)−1 =
((idRLD

A ◦f−1) u (B ×RLD >F(Src f)))−1 =
(idRLD
A ◦f−1 ◦ idRLD

B )−1 =
idRLD
B ◦f ◦ idRLD

A .

�

Proposition 1027. idB ◦ idA = idAuB for all filters A, B (on some set U).

Proof. idB ◦ idA = (idB)|A = (1RLD
U |B)|A = 1RLD

U |AuB = idAuB. �

Theorem 1028. f |↑{α} =↑Src f {α} ×RLD im(f |↑{α}) for every reloid f and
α ∈ Src f .
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Proof. First,
im(f |↑{α}) =

RLDl
〈im〉∗ up(f |↑{α}) =

RLDl
〈im〉∗ up(f u (↑Src f {α} × >F(Dst f))) =

RLDl{
im(F ∩ ({α} × >T (Dst f)))

F ∈ up f

}
=

RLDl{ im(F |↑{α})
F ∈ up f

}
.

Taking this into account we have:
↑Src f {α} ×RLD im(f |↑{α}) =

RLDl{
↑Src f {α} ×K
K ∈ im(f |↑{α})

}
=

RLDl
{
↑Src f {α} × im(F |↑{α})

F ∈ up f

}
=

RLDl{
F |↑{α}
F ∈ up f

}
=

RLDl{
F u (↑Src f {α} × >T (Dst f))

F ∈ up f

}
=

RLDl{
F

F ∈ up f

}
u ↑RLD (↑Src f {α} × >T (Dst f)) =

fu ↑RLD (↑Src f {α} × >T (Dst f)) =
f |↑{α}.

�

Lemma 1029. λB ∈ F (B) : >F×RLDB is an upper adjoint of λf ∈ RLD(A,B) :
im f (for every sets A, B).

Proof. We need to prove im f v B ⇔ f v >F ×RLD B what is obvious. �

Corollary 1030. Image and domain of reloids preserve joins.

Proof. By properties of Galois connections and duality. �

8.5. Categories of reloids

I will define two categories, the category of reloids and the category of reloid
triples.

The category of reloids is defined as follows:
• Objects are small sets.
• The set of morphisms from a set A to a set B is RLD(A,B).
• The composition is the composition of reloids.
• Identity morphism for a set is the identity reloid for that set.

To show it is really a category is trivial.
The category of reloid triples is defined as follows:
• Objects are small sets.
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• The morphisms from a filter A to a filter B are triples (A,B, f) where
f ∈ RLD(Base(A),Base(B)) and dom f v A, im f v B.

• The composition is defined by the formula (B, C, g) ◦ (A,B, f) = (A, C, g ◦
f).

• Identity morphism for a filter A is idRLD
A .

To prove that it is really a category is trivial.

Proposition 1031. ↑RLD is a functor from Rel to RLD.

Proof. ↑RLD (g ◦ f) =↑RLD g◦ ↑RLD f was proved above. ↑RLD 1Rel
A = 1RLD

A is
by definition. �

8.6. Monovalued and injective reloids

Following the idea of definition of monovalued morphism let’s call monovalued
such a reloid f that f ◦ f−1 v idRLD

im f .
Similarly, I will call a reloid injective when f−1 ◦ f v idRLD

dom f .

Obvious 1032. A reloid f is
• monovalued iff f ◦ f−1 v 1RLD

Dst f ;
• injective iff f−1 ◦ f v 1RLD

Src f .

In other words, a reloid is monovalued (injective) when it is a monovalued
(injective) morphism of the category of reloids.

Monovaluedness is dual of injectivity.

Obvious 1033.
1◦. A morphism (A,B, f) of the category of reloid triples is monovalued iff

the reloid f is monovalued.
2◦. A morphism (A,B, f) of the category of reloid triples is injective iff the

reloid f is injective.

Theorem 1034.
1◦. A reloid f is a monovalued iff there exists a Set-morphism (monovalued

Rel-morphism) F ∈ up f .
2◦. A reloid f is a injective iff there exists an injective Rel-morphism F ∈

up f .
3◦. A reloid f is a both monovalued and injective iff there exists an injection

(a monovalued and injective Rel-morphism = injective Set-morphism)
F ∈ up f .

Proof. The reverse implications are obvious. Let’s prove the direct implica-
tions:

1◦. Let f be a monovalued reloid. Then f ◦ f−1 v 1RLD
Dst f , that is

RLDl{
F ◦ F−1

F ∈ up f

}
v 1RLD

Dst f .

It’s simple to show that
{
F◦F−1

F∈up f

}
is a filter base. Consequently there exists F ∈

up f such that F ◦ F−1 v 1RLD
Dst f that is F is monovalued.

2◦. Similar.
3◦. Let f be a both monovalued and injective reloid. Then by proved above

there exist F,G ∈ up f such that F is monovalued and G is injective. Thus F uG ∈
up f is both monovalued and injective.

�
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Conjecture 1035. A reloid f is monovalued iff

∀g ∈ RLD(Src f,Dst f) : (g v f ⇒ ∃A ∈ F (Src f) : g = f |A).

8.7. Complete reloids and completion of reloids

Definition 1036. A complete reloid is a reloid representable as a join of reloidal
products ↑A {α} ×RLD b where α ∈ A and b is an ultrafilter on B for some sets A
and B.

Definition 1037. A co-complete reloid is a reloid representable as a join of
reloidal products a×RLD ↑A {β} where β ∈ B and a is an ultrafilter on A for some
sets A and B.

I will denote the sets of complete and co-complete reloids from a set A to a
set B as ComplRLD(A,B) and CoComplRLD(A,B) correspondingly and set of all
(co-)complete reloids (for small sets) as ComplRLD and CoComplRLD.

Obvious 1038. Complete and co-complete are dual.

Theorem 1039. G 7→ d

{
↑A{α}×RLDG(α)

α∈A

}
is an order isomorphism from the set

of functions G ∈ F (B)A to the set ComplRLD(A,B).
The inverse isomorphism is described by the formula G(α) = im(f |↑{α}) where

f is a complete reloid.

Proof. d

{
↑A{α}×RLDG(α)

α∈A

}
is complete because G(α) = datomsG(α) and

thus

l

{
↑A {α} ×RLD G(α)

α ∈ A

}
= l

{
↑A {α} ×RLD b

α ∈ A, b ∈ atomsG(α)

}
is complete. So G 7→ d

{
↑A{α}×RLDG(α)

α∈A

}
is a function from G ∈ F (B)A to

ComplRLD(A,B).
Let f be complete. Then take

G(α) = l

{
b ∈ atomsF(Dst f)

↑A {α} ×RLD b v f

}

and we have f = d

{
↑A{α}×RLDG(α)

α∈A

}
obviously. So G 7→ d

{
↑A{α}×RLDG(α)

α∈A

}
is

surjection onto ComplRLD(A,B).
Let now prove that it is an injection:
Let

f = l

{
↑A {α} ×RLD F (α)

α ∈ A

}
= l

{
↑A {α} ×RLD G(α)

α ∈ A

}
for some F,G ∈ F (B)A. We need to prove F = G. Let β ∈ Src f .

f u (↑A {β} ×RLD >F(B)) = (theorem 607)

l

{
(↑A {α} ×RLD F (α)) u (↑A {β} ×RLD >F(B))

α ∈ A

}
=

↑A {β} ×RLD F (β).

Similarly fu(↑A {β}×RLD>F(B)) =↑A {β}×RLDG(β). Thus ↑A {β}×RLDF (β) =↑A
{β} ×RLD G(β) and so F (β) = G(β).

We have proved that it is a bijection. To show that it is monotone is trivial.
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Denote f = d

{
↑A{α}×RLDG(α)

α∈A

}
. Then

im(f |↑{α′}) = im(fu(↑A {α′}×>T (B))) = (because ↑A {α′} × >T (B) is principal) =

im l

{
(↑A {α} ×RLD G(α)) u (↑A {α′} × >T (B))

α ∈ Src f

}
= im(↑A {α′}×RLDG(α′)) = G(α′).

�

Corollary 1040. G 7→ d

{
G(α)×RLD↑A{α}

α∈A

}
is an order isomorphism from the

set of functions G ∈ F (B)A to the set CoComplRLD(A,B).
The inverse isomorphism is described by the formula G(α) = im(f−1|↑{α})

where f is a co-complete reloid.

Corollary 1041. ComplRLD(A,B) and ComplFCD(A,B) are a co-frames.

Obvious 1042. Complete and co-complete reloids are convex.

Obvious 1043. Principal reloids are complete and co-complete.

Obvious 1044. Join (on the lattice of reloids) of complete reloids is complete.

Theorem 1045. A reloid which is both complete and co-complete is principal.

Proof. Let f be a complete and co-complete reloid. We have

f = l

{
↑Src f {α} ×RLD G(α)

α ∈ Src f

}
and f = l

{
H(β)×RLD ↑Dst f {β}

β ∈ Dst f

}
for some functions G : Src f → F (Dst f) and H : Dst f → F (Src f). For every
α ∈ Src f we have

G(α) =
im f |↑{α} =

im(f u (↑Src f {α} ×RLD >F(Dst f))) = (*)

im l

{
(H(β)×RLD ↑Dst f {β}) u (↑Src f {α} ×RLD >F(Dst f))

β ∈ Dst f

}
=

im l

{
(H(β)u ↑Src f {α})×RLD ↑Dst f {β}

β ∈ Dst f

}
=

im l



({
↑Src f {α}×RLD ↑Dst f {β} if H(β) 6�↑Src f {α}
⊥RLD(Src f,Dst f) if H(β) �↑Src f {α}

)
β ∈ Dst f

 =

im l

{
↑Src f {α}×RLD ↑Dst f {β}
β ∈ Dst f,H(β) 6�↑Src f {α}

}
=

im l

{
↑RLD(Src f,Dst f) {(α, β)}

β ∈ Dst f,H(β) 6�↑Src f {α}

}
=

l

{
↑Dst f {β}

β ∈ Dst f,H(β) 6�↑Src f {α}

}
* theorem 607 was used.

Thus G(α) is a principal filter that is G(α) =↑Dst f g(α) for some g : Src f →
Dst f ; ↑Src f {α} ×RLD G(α) =↑RLD(Src f,Dst f) ({α} × g(α)); f is principal as a join
of principal reloids. �
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Definition 1046. Completion and co-completion of a reloid f ∈ RLD(A,B)
are defined by the formulas:

Compl f = CorComplRLD(A,B) f ; CoCompl f = CorCoComplRLD(A,B) f.

Theorem 1047. Atoms of the lattice ComplRLD(A,B) are exactly reloidal
products of the form ↑A {α} ×RLD b where α ∈ A and b is an ultrafilter on B.

Proof. First, it’s easy to see that ↑A {α} ×RLD b are elements of
ComplRLD(A,B). Also ⊥RLD(A,B) is an element of ComplRLD(A,B).
↑A {α} ×RLD b are atoms of ComplRLD(A,B) because they are atoms of

RLD(A,B).
It remains to prove that if f is an atom of ComplRLD(A,B) then f =↑A

{α} ×RLD b for some α ∈ A and an ultrafilter b on B.
Suppose f is a non-empty complete reloid. Then ↑A {α} ×RLD b v f for some

α ∈ A and an ultrafilter b on B. If f is an atom then f =↑A {α} ×RLD b. �

Obvious 1048. ComplRLD(A,B) is an atomistic lattice.

Proposition 1049. Compl f = d

{
f |↑{α}
α∈Src f

}
for every reloid f .

Proof. Let’s denote R the right part of the equality to be proven.
That R is a complete reloid follows from the equality

f |↑{α} =↑Src f {α} ×RLD im(f |↑{α}).

Obviously, R v f .
The only thing left to prove is that g v R for every complete reloid g such that

g v f .
Really let g be a complete reloid such that g v f . Then

g = l

{
↑Src f {α} ×RLD G(α)

α ∈ Src f

}
for some function G : Src f → F (Dst f).

We have ↑Src f {α} ×RLD G(α) = g|↑Src f{α} v f |↑{α}. Thus g v R. �

Conjecture 1050. Compl f u Compl g = Compl(f u g) for every f, g ∈
RLD(A,B).

Proposition 1051. Conjecture 1050 is equivalent to the statement that meet
of every two complete reloids is a complete reloid.

Proof. Let conjecture 1050 holds. Then for complete funcoids f and g we
have f u g = Compl(f u g) and thus f u g is complete.

Let meet of every two complete reloid is complete. Then Compl f u Compl g
is complete and thus it is greatest complete reloid which is less Compl f and less
Compl g what is the same as greatest complete reloid which is less than f and g
that is Compl(f u g). �

Theorem 1052. Compl dR = d〈Compl〉∗R for every set R ∈ PRLD(A,B)
for every sets A, B.
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Proof.
Compl lR =

l

{ ( dR)|↑A{α}
α ∈ A

}
= (theorem 607)

l

 d

{
f |↑{α}
α∈A

}
f ∈ R

 =

l〈Compl〉∗R.

�

Lemma 1053. Completion of a co-complete reloid is principal.

Proof. Let f be a co-complete reloid. Then there is a function F : Dst f →
F (Src f) such that

f = l

{
F (α)×RLD ↑Dst f {α}

α ∈ Dst f

}
.

So
Compl f =

l


(

d

{
F (α)×RLD↑Dst f{α}

α∈Dst f

})
|↑{β}

β ∈ Src f

 =

l

(

d
{
F (α)×RLD↑Dst f{α}

α∈Dst f

})
u (↑Src f {β} ×RLD >F(Dst f))

β ∈ Src f

 = (*)

l

 d

{
(F (α)×RLD↑Dst f{α})u(↑Src f{β}×RLD>F(Dst f))

α∈Dst f

}
β ∈ Src f

 =

l

 d

{
↑Src f{β}×RLD↑Dst f{α}

α∈Dst f

}
β ∈ Src f, ↑Src f {β} v F (α)


* theorem 607.

Thus Compl f is principal. �

Theorem 1054. Compl CoCompl f = CoCompl Compl f = Cor f for every
reloid f .

Proof. We will prove only Compl CoCompl f = Cor f . The rest follows from
symmetry.

From the lemma Compl CoCompl f is principal. It is obvious
Compl CoCompl f v f . So to finish the proof we need to show only that
for every principal reloid F v f we have F v Compl CoCompl f .

Really, obviously F v CoCompl f and thus F = ComplF v Compl CoCompl f .
�

Conjecture 1055. If f is a complete reloid, then it is metacomplete.

Conjecture 1056. If f is a metacomplete reloid, then it is complete.

Conjecture 1057. Compl f = f \∗ (ΩSrc f ×RLD >F(Dst f)) for every reloid f .

By analogy with similar properties of funcoids described above:
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Proposition 1058. For composable reloids f and g it holds
1◦. Compl(g ◦ f) w (Compl g) ◦ (Compl f)
2◦. CoCompl(g ◦ f) w (CoCompl g) ◦ (CoCompl f).

Proof.
1◦. (Compl g) ◦ (Compl f) v Compl((Compl g) ◦ (Compl f)) v Compl(g ◦ f).
2◦. By duality.

�

Conjecture 1059. For composable reloids f and g it holds
1◦. Compl(g ◦ f) = (Compl g) ◦ f if f is a co-complete reloid;
2◦. CoCompl(f ◦ g) = f ◦ CoCompl g if f is a complete reloid;
3◦. CoCompl((Compl g) ◦ f) = Compl(g ◦ (CoCompl f)) = (Compl g) ◦

(CoCompl f);
4◦. Compl(g ◦ (Compl f)) = Compl(g ◦ f);
5◦. CoCompl((CoCompl g) ◦ f) = CoCompl(g ◦ f).

8.8. What uniform spaces are

Proposition 1060. Uniform spaces are exactly reflexive, symmetric, transitive
endoreloids.

Proof. Easy to prove using theorem 1003. �



CHAPTER 9

Relationships between funcoids and reloids

9.1. Funcoid induced by a reloid

Every reloid f induces a funcoid (FCD)f ∈ FCD(Src f,Dst f) by the following
formulas (for every X ∈ F (Src f), Y ∈ F (Dst f)):

X [(FCD)f ] Y ⇔ ∀F ∈ up f : X
[
↑FCD F

]
Y;

〈(FCD)f〉X =
Fl

F∈up f

〈
↑FCD F

〉
X .

We should prove that (FCD)f is really a funcoid.

Proof. We need to prove that

X [(FCD)f ] Y ⇔ Y u 〈(FCD)f〉X 6= ⊥ ⇔ X u
〈
(FCD)f−1〉Y 6= ⊥.

The above formula is equivalent to:

∀F ∈ up f : X
[
↑FCD F

]
Y ⇔

Y u
l

F∈up f

〈
↑FCD F

〉
X 6= ⊥ ⇔

X u
l

F∈up f

〈
↑FCD F−1〉Y 6= ⊥.

We have Y u
d
F∈up f

〈
↑FCD F

〉
X =

d
F∈up f (Y u

〈
↑FCD F

〉
X ).

Let’s denote W =
{
Yu〈↑FCDF〉X
F∈up f

}
.

∀F ∈ up f : X
[
↑FCD F

]
Y ⇔ ∀F ∈ up f : Y u

〈
↑FCD F

〉
X 6= ⊥ ⇔ ⊥ /∈W.

We need to prove only that ⊥ /∈ W ⇔
d
W 6= ⊥. (The rest follows from

symmetry.) To prove it is enough to show that W is a generalized filter base.
Let’s prove thatW is a generalized filter base. For this it’s enough to prove that

V =
{
〈↑FCDF〉X
F∈up f

}
is a generalized filter base. Let A,B ∈ V that is A =

〈
↑FCD P

〉
X ,

B =
〈
↑FCD Q

〉
X where P,Q ∈ up f . Then for C =

〈
↑FCD (P uQ)

〉
X is true both

C ∈ V and C v A,B. So V is a generalized filter base and thus W is a generalized
filter base. �

Proposition 1061. (FCD) ↑RLD f =↑FCD f for every Rel-morphism f .

Proof. X
[
(FCD) ↑RLD f

]
Y ⇔ ∀F ∈ up ↑RLD f : X

[
↑FCD F

]
Y ⇔

X
[
↑FCD f

]
Y (for every X ∈ F (Src f), Y ∈ F (Dst f)). �

Theorem 1062. X [(FCD)f ] Y ⇔ X ×RLD Y 6� f for every reloid f and
X ∈ F (Src f), Y ∈ F (Dst f).

197
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Proof.

X ×RLD Y 6� f ⇔

∀F ∈ up f, P ∈ up(X ×RLD Y) : P 6� F ⇔
∀F ∈ up f,X ∈ upX , Y ∈ upY : X × Y 6� F ⇔

∀F ∈ up f,X ∈ upX , Y ∈ upY : X
[
↑FCD F

]
Y ⇔

∀F ∈ up f : X
[
↑FCD F

]
Y ⇔

X [(FCD)f ] Y.
�

Theorem 1063. (FCD)f =
dFCD up f for every reloid f .

Proof. Let a be an ultrafilter on Src f .
〈(FCD)f〉a =

d
{
〈↑FCDF〉a
F∈up f

}
by the definition of (FCD).〈dFCD up f

〉
a =

d
{
〈↑FCDF〉a
F∈up f

}
by theorem 875.

So 〈(FCD)f〉a =
〈dFCD up f

〉
a for every ultrafilter a. �

Lemma 1064. For every two filter bases S and T of morphisms Rel(U, V ) and
every typed set A ∈ T U

RLDl
S =

RLDl
T ⇒

Fl

F∈S
〈F 〉∗A =

Fl

G∈T
〈G〉∗A.

Proof. Let
dRLD

S =
dRLD

T .
First let prove that

{
〈F 〉∗A
F∈S

}
is a filter base. Let X,Y ∈

{
〈F 〉∗A
F∈S

}
. Then

X = 〈FX〉∗A and Y = 〈FY 〉∗A for some FX , FY ∈ S. Because S is a filter base,
we have S 3 FZ v FX u FY . So 〈FZ〉∗A v X u Y and 〈FZ〉∗A ∈

{
〈F 〉∗A
F∈S

}
. So{

〈F 〉∗A
F∈S

}
is a filter base.

Suppose X ∈ up
dF
F∈S〈F 〉

∗
A. Then there exists X ′ ∈

{
〈F 〉∗A
F∈S

}
where X w X ′

because
{
〈F 〉∗A
F∈S

}
is a filter base. That is X ′ = 〈F 〉∗A for some F ∈ S. There

exists G ∈ T such that G v F because T is a filter base. Let Y ′ = 〈G〉∗A. We
have Y ′ v X ′ v X; Y ′ ∈

{
〈G〉∗A
G∈T

}
; Y ′ ∈ up

dF
G∈T 〈G〉

∗
A; X ∈ up

dF
G∈T 〈G〉

∗
A.

The reverse is symmetric. �

Lemma 1065.
{

G◦F
F∈up f,G∈up g

}
is a filter base for every reloids f and g.

Proof. Let denote D =
{

G◦F
F∈up f,G∈up g

}
. Let A ∈ D ∧ B ∈ D. Then A =

GA ◦ FA ∧ B = GB ◦ FB for some FA, FB ∈ up f , GA, GB ∈ up g. So A u B w
(GA uGB) ◦ (FA u FB) ∈ D because FA u FB ∈ up f and GA uGB ∈ up g. �

Theorem 1066. (FCD)(g ◦ f) = ((FCD)g) ◦ ((FCD)f) for every composable
reloids f and g.

Proof.

〈(FCD)(g ◦ f)〉∗X =
Fl

H∈up(g◦f)

〈H〉∗X =
Fl

H∈up
dRLD{ G◦F

F∈up f,G∈up g}
〈H〉∗X.
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Obviously

RLDl{
G ◦ F

F ∈ up f,G ∈ up g

}
=

RLDl
up

RLDl{
G ◦ F

F ∈ up f,G ∈ up g

}
;

from this by lemma 1064 (taking into account that{
G ◦ F

F ∈ up f,G ∈ up g

}
and

up
RLDl{

G ◦ F
F ∈ up f,G ∈ up g

}
are filter bases)

RLDl

H∈up
dRLD{ G◦F

F∈up f,G∈up g}
〈H〉∗X =

Fl{ 〈G ◦ F 〉∗X
F ∈ up f,G ∈ up g

}
.

On the other side

〈((FCD)g) ◦ ((FCD)f)〉∗X = 〈(FCD)g〉〈(FCD)f〉∗X =

〈(FCD)g〉
Fl

F∈up f
〈F 〉∗X =

l

G∈up g

〈
↑FCD G

〉 RLDl

F∈up f
〈F 〉∗X.

Let’s prove that
{
〈F 〉∗X
F∈up f

}
is a filter base. If A,B ∈

{
〈F 〉∗X
F∈up f

}
then A =

〈F1〉∗X, B = 〈F2〉∗X where F1, F2 ∈ up f . A u B w 〈F1 u F2〉∗X ∈
{
〈F 〉∗X
F∈up f

}
. So{

〈F 〉∗X
F∈up f

}
is really a filter base.

By theorem 836 we have

〈
↑FCD G

〉 Fl

F∈up f
〈F 〉∗X =

Fl

F∈up f
〈G〉∗〈F 〉∗X.

So continuing the above equalities,

〈((FCD)g) ◦ ((FCD)f)〉∗X =
Fl

G∈up g

Fl

F∈up f
〈G〉∗〈F 〉∗X =

Fl{ 〈G〉∗〈F 〉∗X
F ∈ up f,G ∈ up g

}
=

Fl{ 〈G ◦ F 〉∗X
F ∈ up f,G ∈ up g

}
.

Combining these equalities we get 〈(FCD)(g ◦ f)〉∗X = 〈((FCD)g) ◦ ((FCD)f)〉∗X
for every typed set X ∈ T (Src f). �

Proposition 1067. (FCD) idRLD
A = idFCD

A for every filter A.
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Proof. Recall that idRLD
A =

d{↑Base(A)idA
A∈upA

}
. For every X ,Y ∈ F (Base(A))

we have

X
[
(FCD) idRLD

A

]
Y ⇔

X ×RLD Y 6� idRLD
A ⇔

∀A ∈ upA : X ×RLD Y 6�↑RLD(Base(A),Base(A)) idA ⇔

∀A ∈ upA : X
[
↑FCD(Base(A),Base(A)) idA

]
Y ⇔

∀A ∈ upA : X u Y 6� A⇔
X u Y 6� A ⇔

X
[
idFCD
A

]
Y

(used properties of generalized filter bases). �

Corollary 1068. (FCD)1RLD
A = 1FCD

A for every set A.

Proposition 1069. (FCD) is a functor from RLD to FCD.

Proof. Preservation of composition and of identity is proved above. �

Proposition 1070.
1◦. (FCD)f is a monovalued funcoid if f is a monovalued reloid.
2◦. (FCD)f is an injective funcoid if f is an injective reloid.

Proof. We will prove only the first as the second is dual. Let f be a monoval-
ued reloid. Then f ◦f−1 v 1RLD

Dst f ; (FCD)(f ◦f−1) v 1FCD
Dst f ; (FCD)f ◦ ((FCD)f)−1 v

1FCD
Dst f that is (FCD)f is a monovalued funcoid. �

Proposition 1071. (FCD)(A×RLD B) = A×FCD B for every filters A, B.

Proof. X
[
(FCD)(A×RLD B)

]
Y ⇔ ∀F ∈ up(A ×RLD B) : X

[
↑FCD F

]
Y (for

every X ∈ F (Base(A)), Y ∈ F (Base(B)).
Evidently

∀F ∈ up(A×RLD B) : X
[
↑FCD F

]
Y ⇒ ∀A ∈ upA, B ∈ upB : X [A×B] Y.

Let ∀A ∈ upA, B ∈ upB : X [A×B] Y. Then if F ∈ up(A×RLD B), there are
A ∈ upA, B ∈ upB such that F w A×B. So X

[
↑FCD F

]
Y. We have proved

∀F ∈ up(A×RLD B) : X
[
↑FCD F

]
Y ⇔ ∀A ∈ upA, B ∈ upB : X [A×B] Y.

Further

∀A ∈ upA, B ∈ upB : X [A×B] Y ⇔
∀A ∈ upA, B ∈ upB : (X 6� A ∧ Y 6� B)⇔

X 6� A ∧ Y 6� B ⇔ X
[
A×FCD B

]
Y.

Thus X
[
(FCD)(A×RLD B)

]
Y ⇔ X

[
A×FCD B

]
Y. �

Proposition 1072. dom(FCD)f = dom f and im(FCD)f = im f for every
reloid f .
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Proof.

im(FCD)f = 〈(FCD)f〉> =
Fl

F∈up f
〈F 〉∗> =

Fl

F∈up f
imF =

Fl
〈im〉∗ up f = im f.

dom(FCD)f = dom f is similar. �

Proposition 1073. (FCD)(f u (A×RLD B)) = (FCD)f u (A×FCD B) for every
reloid f and A ∈ F (Src f) and B ∈ F (Dst f).

Proof.
(FCD)(f u (A×RLD B)) =
(FCD)(idRLD

B ◦f ◦ idRLD
A ) =

(FCD) idRLD
B ◦(FCD)f ◦ (FCD) idRLD

A =
idFCD
B ◦(FCD)f ◦ idFCD

A =
(FCD)f u (A×FCD B).

�

Corollary 1074. (FCD)(f |A) = ((FCD)f)|A for every reloid f and a filter
A ∈ F (Src f).

Proposition 1075. 〈(FCD)f〉X = im(f |X ) for every reloid f and a filter X ∈
F (Src f).

Proof. im(f |X ) = im(FCD)(f |X ) = im(((FCD)f)|X ) = 〈(FCD)f〉X . �

Proposition 1076. (FCD)f = d

{
x×FCDy

x∈atomsF(Src f),y∈atomsF(Dst f),x×RLDy 6�f

}
for

every reloid f .

Proof. (FCD)f = d

{
x×FCDy

x∈atomsF(Src f),y∈atomsF(Dst f),x×FCDy 6�(FCD)f

}
, but x×FCD

y 6� (FCD)f ⇔ x [(FCD)f ] y ⇔ x×RLD y 6� f , thus follows the theorem. �

9.2. Reloids induced by a funcoid

Every funcoid f ∈ FCD(A,B) induces a reloid from A to B in two ways,
intersection of outward relations and union of inward reloidal products of filters:

(RLD)outf =
RLDl

up f ;

(RLD)inf = l

{
A×RLD B

A ∈ F (A),B ∈ F (B),A×FCD B v f

}
.

Theorem 1077. (RLD)inf = d

{
a×RLDb

a∈atomsF(A),b∈atomsF(B),a×FCDbvf

}
.

Proof. It follows from theorem 1011. �

Proposition 1078. up ↑RLD f = up ↑FCD f for every Rel-morphism f .
Proof. X ∈ up ↑RLD f ⇔ X w f ⇔ X ∈ up ↑FCD f . �

Proposition 1079. (RLD)out ↑FCD f =↑RLD f for every Rel-morphism f .

Proof. (RLD)out ↑FCD f =
dRLD up f =↑RLD min up f =↑RLD f taking into

account the previous proposition. �
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Surprisingly, a funcoid is greater inward than outward:

Theorem 1080. (RLD)outf v (RLD)inf for every funcoid f .

Proof. We need to prove

(RLD)outf v l

{
A×RLD B

A ∈ F (A),B ∈ F (B),A×FCD B v f

}
.

Let
K ∈ up l

{
A×RLD B

A ∈ F (A),B ∈ F (B),A×FCD B v f

}
.

Then

K ∈ up ↑RLD

l

{
XA × YB

A ∈ F (A),B ∈ F (B),A×FCD B v f

}
= (RLD)out ↑FCD

l

{
XA × YB

A ∈ F (A),B ∈ F (B),A×FCD B v f

}
= (RLD)out

FCD

l

{
↑FCD (XA × YB)

A ∈ F (A),B ∈ F (B),A×FCD B v f

}
w (RLD)out latoms f
= (RLD)outf

where XA ∈ upA, XB ∈ upB. K ∈ up(RLD)outf . �

Proposition 1081. (RLD)outft(RLD)outg = (RLD)out(ftg) for funcoids f , g.

Proof. (RLD)outft(RLD)outg =
dRLD
F∈up f Ft

dRLD
G∈up g G =

dRLD
F∈up f,G∈up g(Ft

G) =
dRLD
H∈up(ftg)H = (RLD)out(f t g). �

Theorem 1082. (FCD)(RLD)inf = f for every funcoid f .

Proof. For every typed sets X ∈ T (Src f), Y ∈ T (Dst f)
X [(FCD)(RLD)inf ]∗ Y ⇔
X ×RLD Y 6� (RLD)inf ⇔

↑RLD (X × Y ) 6� l

{
a×RLD b

a ∈ atomsF(A), b ∈ atomsF(B), a×FCD b v f

}
⇔ (*)

∃a ∈ atomsF(A), b ∈ atomsF(B) : (a×FCD b v f ∧ a v X ∧ b v Y )⇔
X [f ]∗ Y.

* theorem 580.
Thus (FCD)(RLD)inf = f . �

Remark 1083. The above theorem allows to represent funcoids as reloids
((RLD)inf is the reloid representing funcoid f). Refer to the section “Funcoidal
reloids” below for more details.

Obvious 1084. (RLD)in(A×FCD B) = A×RLD B for every filters A, B.

Conjecture 1085. (RLD)out idFCD
A = idRLD

A for every filter A.

Exercise 1086. Prove that generally (RLD)in idFCD
A 6= idRLD

A . I call
(RLD)in idFCD

A thick identity or thick diagonal, because it is greater (“thicker”) than
identity idRLD

A .

Proposition 1087. dom(RLD)inf = dom f and im(RLD)inf = im f for every
funcoid f .
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Proof. We will prove only dom(RLD)inf = dom f as the other formula follows
from symmetry. Really:

dom(RLD)inf = dom d

{
a×RLDb

a∈atomsF(Src f),b∈atomsF(Dst f),a×FCDbvf

}
.

By corollary 1030 we have

dom(RLD)inf =

l

{
dom(a×RLD b)

a ∈ atomsF(Src f), b ∈ atomsF(Dst f), a×FCD b v f

}
=

l

{
dom(a×FCD b)

a ∈ atomsF(Src f), b ∈ atomsF(Dst f), a×FCD b v f

}
.

By corollary 893 we have

dom(RLD)inf =

dom l

{
a×FCD b

a ∈ atomsF(Src f), b ∈ atomsF(Dst f), a×FCD b v f

}
=

dom f.

�

Proposition 1088. dom(f |A) = A u dom f for every reloid f and filter A ∈
F (Src f).

Proof. dom(f |A) = dom(FCD)(f |A) = dom((FCD)f)|A = A u dom(FCD)f =
A u dom f . �

Theorem 1089. For every composable reloids f , g:
1◦. If im f w dom g then im(g ◦ f) = im g;
2◦. If im f v dom g then dom(g ◦ f) = dom f .

Proof.
1◦. im(g ◦ f) = im(FCD)(g ◦ f) = im((FCD)g ◦ (FCD)f) = im(FCD)g = im g.
2◦. Similar.

�

Lemma 1090. If a, b, c are filters on powersets and b 6= ⊥, then
RLD

l

{
G ◦ F

F ∈ atoms(a×RLD b), G ∈ atoms(b×RLD c)

}
= a×RLD c.

Proof.

a×RLD c = (b×RLD c) ◦ (a×RLD b) = (corollary 1008) =
RLD

l

{
G ◦ F

F ∈ atoms(a×RLD b), G ∈ atoms(b×RLD c)

}
.

�

Theorem 1091. a×RLD b v (RLD)inf ⇔ a×FCD b v f for every funcoid f and
a ∈ atomsF(Src f), b ∈ atomsF(Dst f).

Proof. a×FCD b v f ⇒ a×RLD b v (RLD)inf is obvious.
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a×RLD b v (RLD)inf ⇒ a×RLD b 6� (RLD)inf ⇒

a [(FCD)(RLD)inf ] b⇒ a [f ] b⇒ a×FCD b v f.

�

Conjecture 1092. If A ×RLD B v (RLD)inf then A ×FCD B v f for every
funcoid f and A ∈ F (Src f), B ∈ F (Dst f).

Theorem 1093. up(FCD)g ⊇ up g for every reloid g.

Proof. Let K ∈ up g. Then for every typed sets X ∈ T Src g, Y ∈ T Dst g

X [K]∗ Y ⇔ X
[
↑FCD K

]∗
Y ⇔ X

[
(FCD) ↑RLD K

]∗
Y ⇐ X [(FCD)g]∗ Y.

Thus ↑FCD K w (FCD)g that is K ∈ up(FCD)g. �

Theorem 1094. g ◦ (A×RLD B) ◦ f =
〈
(FCD)f−1〉A×RLD 〈(FCD)g〉B for every

reloids f , g and filters A ∈ F (Dst f), B ∈ F (Src g).

Proof.

g ◦ (A×RLD B) ◦ f =
RLDl{

G ◦ (A×B) ◦ F
F ∈ up f,G ∈ up g,A ∈ upA, B ∈ upB

}
=

RLDl
{ 〈

F−1〉∗A× 〈G〉∗B
F ∈ up f,G ∈ up g,A ∈ upA, B ∈ upB

}
=

RLDl
{ 〈

F−1〉∗A×RLD 〈G〉∗B
F ∈ up f,G ∈ up g,A ∈ upA, B ∈ upB

}
=

(theorem 1013)
Fl
{ 〈

F−1〉∗A
F ∈ up f,A ∈ upA

}
×RLD

Fl{ 〈G〉∗B
G ∈ up g,B ∈ upB

}
=

Fl
{ 〈

↑FCD F−1〉∗A
F ∈ up f,A ∈ upA

}
×RLD

Fl
{ 〈

↑FCD G
〉∗
B

G ∈ up g,B ∈ upB

}
=

Fl
{〈
↑FCD F−1〉A
F ∈ up f

}
×RLD

Fl
{〈
↑FCD G

〉
B

G ∈ up g

}
=

(by definition of (FCD))〈
(FCD)f−1〉A×RLD 〈(FCD)g〉B.

�

Corollary 1095.
1◦. (A×RLD B) ◦ f =

〈
(FCD)f−1〉A×RLD B;

2◦. g ◦ (A×RLD B) = A×RLD 〈(FCD)g〉B.

9.3. Galois connections between funcoids and reloids

Theorem 1096. (FCD) : RLD(A,B) → FCD(A,B) is the lower adjoint of
(RLD)in : FCD(A,B)→ RLD(A,B) for every sets A, B.
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Proof. Because (FCD) and (RLD)in are trivially monotone, it’s enough to
prove (for every f ∈ RLD(A,B), g ∈ FCD(A,B))

f v (RLD)in(FCD)f and (FCD)(RLD)ing v g.
The second formula follows from the fact that (FCD)(RLD)ing = g.

(RLD)in(FCD)f =

l

{
a×RLD b

a ∈ atomsF(A), b ∈ atomsF(B), a×FCD b v (FCD)f

}
=

l

{
a×RLD b

a ∈ atomsF(A), b ∈ atomsF(B), a [(FCD)f ] b

}
=

l

{
a×RLD b

a ∈ atomsF(A), b ∈ atomsF(B), a×RLD b 6� f

}
w

l

{
p ∈ atoms(a×RLD b)

a ∈ atomsF(A), b ∈ atomsF(B), p 6� f

}
=

l

{
p ∈ atomsRLD(A,B)

p 6� f

}
=

l

{
p

p ∈ atoms f

}
= f.

�

Corollary 1097.
1◦. (FCD) dS = d〈(FCD)〉∗S if S ∈PRLD(A,B).
2◦. (RLD)in

d
S =

d
〈(RLD)in〉∗S if S ∈PFCD(A,B).

Theorem 1098. (RLD)in(f t g) = (RLD)inf t (RLD)ing for every funcoids
f, g ∈ FCD(A,B).

Proof.

(RLD)in(f t g) = l

{
a×RLD b

a ∈ atomsF(A), b ∈ atomsF(B), a×FCD b v f t g

}
=

l

{
a×RLD b

a ∈ atomsF(A), b ∈ atomsF(B), a×FCD b v f ∨ a×FCD b v g

}
=

l

{
a×RLD b

a ∈ atomsF(A), b ∈ atomsF(B), a×FCD b v f

}
t l

{
a×RLD b

a ∈ atomsF(A), b ∈ atomsF(B), a×FCD b v g

}
=

(RLD)inf t (RLD)ing.

�

Proposition 1099. (RLD)in(f u (A ×FCD B)) = ((RLD)inf) u (A ×RLD B) for
every funcoid f and A ∈ F (Src f), B ∈ F (Dst f).

Proof.
(RLD)in(fu(A×FCDB)) = ((RLD)inf)u(RLD)in(A×FCDB) = ((RLD)inf)u(A×RLDB).

�

Corollary 1100. (RLD)in(f |A) = ((RLD)inf)|A.

Conjecture 1101. (RLD)in is not a lower adjoint (in general).

Conjecture 1102. (RLD)out is neither a lower adjoint nor an upper adjoint
(in general).
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Exercise 1103. Prove that card FCD(A,B) = 22max{A,B} if A or B is an infinite
set (provided that A and B are nonempty).

Lemma 1104. ↑FCD(Src g,Dst g) {(x, y)} v (FCD)g ⇔↑RLD(Src g,Dst g) {(x, y)} v g
for every reloid g.

Proof.

↑FCD(Src g,Dst g) {(x, y)} v (FCD)g ⇔
↑FCD(Src g,Dst g) {(x, y)} 6� (FCD)g ⇔ @{x} [(FCD)g]∗ @{y} ⇔

↑RLD(Src g,Dst g) {(x, y)} 6� g ⇔↑RLD(Src g,Dst g) {(x, y)} v g.

�

Theorem 1105. Cor(FCD)g = (FCD) Cor g for every reloid g.

Proof.

Cor(FCD)g =

l

{
↑FCD(Src g,Dst g) {(x, y)}
↑FCD {(x, y)} v (FCD)g

}
=

l

{
↑FCD(Src g,Dst g) {(x, y)}
↑RLD(Src g,Dst g) {(x, y)} v g

}
=

l

{
(FCD) ↑RLD(Src g,Dst g) {(x, y)}
↑RLD(Src g,Dst g) {(x, y)} v g

}
=

(FCD) l

{
↑RLD(Src g,Dst g) {(x, y)}
↑RLD(Src g,Dst g) {(x, y)} v g

}
=

(FCD) Cor g.

�

Conjecture 1106.
1◦. Cor(RLD)ing = (RLD)in Cor g;
2◦. Cor(RLD)outg = (RLD)out Cor g.

Theorem 1107. For every reloid f :
1◦. Compl(FCD)f = (FCD) Compl f ;
2◦. CoCompl(FCD)f = (FCD) CoCompl f .

Proof. We will prove only the first, because the second is dual.
Compl(FCD)f = dα∈Src f ((FCD)f)|↑{α} = (proposition 1073) =

dα∈Src f (FCD)(f |↑{α}) = (FCD) dα∈Src f f |↑{α} = (FCD) Compl f . �

Conjecture 1108.
1◦. Compl(RLD)ing = (RLD)in Compl g;
2◦. Compl(RLD)outg = (RLD)out Compl g.

Note that the above Galois connection between funcoids and reloids is a Galois
surjection.

Proposition 1109. (RLD)ing = max
{

f∈RLD
(FCD)fvg

}
= max

{
f∈RLD

(FCD)f=g

}
.

Proof. By theorem 131 and proposition 320. �
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9.4. Funcoidal reloids

Definition 1110. I call funcoidal such a reloid ν that

X ×RLD Y 6� ν ⇒

∃X ′ ∈ F (Base(X ))\{⊥},Y ′ ∈ F (Base(Y))\{⊥} : (X ′ v X∧Y ′ v Y∧X ′×RLDY ′ v ν)

for every X ∈ F (Src ν), Y ∈ F (Dst ν).

Remark 1111. See theorem 1116 below for how they are bijectively related
with funcoids (and thus named funcoidal).

Proposition 1112. A reloid ν is funcoidal iff x ×RLD y 6� ν ⇒ x ×RLD y v ν
for every atomic filter objects x and y on respective sets.

Proof.
⇒. x×RLD y 6� ν ⇒ ∃X ′ ∈ atomsx,Y ′ ∈ atoms y : X ′×RLD Y ′ v ν ⇒ x×RLD y v ν.
⇐.

X ×RLD Y 6� ν ⇒

∃x ∈ atomsX , y ∈ atomsY : x×RLD y 6� ν ⇒

∃x ∈ atomsX , y ∈ atomsY : x×RLD y v ν ⇒

∃X ′ ∈ F (Base(X ))\{⊥},Y ′ ∈ F (Base(Y))\{⊥} : (X ′ v X∧Y ′ v Y∧X ′×RLDY ′ v ν).

�

Proposition 1113. (RLD)in(FCD)f = d

{
a×RLDb

a∈atomsF(Src ν),b∈atomsF(Dst ν),a×RLDb 6�f

}
.

Proof.

(RLD)in(FCD)f =

l

{
a×RLD b

a ∈ atomsF(Src ν), b ∈ atomsF(Dst ν), a×FCD b v (FCD)f

}
=

l

{
a×RLD b

a ∈ atomsF(Src ν), b ∈ atomsF(Dst ν), a [(FCD)f ] b

}
=

l

{
a×RLD b

a ∈ atomsF(Src ν), b ∈ atomsF(Dst ν), a×RLD b 6� f

}
.

�

Definition 1114. I call (RLD)in(FCD)f funcoidization of a reloid f .

Lemma 1115. (RLD)in(FCD)f is funcoidal for every reloid f .

Proof. x ×RLD y 6� (RLD)in(FCD)f ⇒ x ×RLD y v (RLD)in(FCD)f for atomic
filters x and y. �

Theorem 1116. (RLD)in is a bijection from FCD(A,B) to the set of funcoidal
reloids from A to B. The reverse bijection is given by (FCD).

Proof. Let f ∈ FCD(A,B). Prove that (RLD)inf is funcoidal.
Really (RLD)inf = (RLD)in(FCD)(RLD)inf and thus we can use the lemma

stating that it is funcoidal.
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It remains to prove (RLD)in(FCD)f = f for a funcoidal reloid f .
((FCD)(RLD)ing = g for every funcoid g is already proved above.)

(RLD)in(FCD)f =

l

{
x×RLD y

x ∈ atomsF(Src f), y ∈ atomsF(Dst f), x×RLD y 6� f

}
=

l

{
p ∈ atoms(x×RLD y)

x ∈ atomsF(Src f), y ∈ atomsF(Dst f), x×RLD y 6� f

}
=

l

{
p ∈ atoms(x×RLD y)

x ∈ atomsF(Src f), y ∈ atomsF(Dst f), x×RLD y v f

}
=

latoms f = f.

�

Corollary 1117. Funcoidal reloids are convex.

Proof. Every (RLD)inf is obviously convex. �

Theorem 1118. (RLD)in(g ◦ f) = (RLD)ing ◦ (RLD)inf for every composable
funcoids f and g.

Proof.

(RLD)ing ◦ (RLD)inf = (corollary 1008) =
RLD

l

{
G ◦ F

F ∈ atoms(RLD)inf,G ∈ atoms(RLD)ing

}
Let F be an atom of the poset RLD(Src f,Dst f).

F ∈ atoms(RLD)inf ⇒ domF ×RLD imF 6� (RLD)inf ⇒
(because (RLD)inf is a funcoidal reloid)⇒

domF ×RLD imF v (RLD)inf

but domF ×RLD imF v (RLD)inf ⇒ F v (RLD)inf is obvious.
So

F ∈ atoms(RLD)inf ⇔ domF ×RLD imF v (RLD)inf ⇒

(FCD)(domF ×RLD imF ) v (FCD)(RLD)inf ⇔ domF ×FCD imF v f.

But

domF ×FCD imF v f ⇒ (RLD)in(domF ×FCD imF ) v (RLD)inf ⇔

domF ×RLD imF v (RLD)inf.

So F ∈ atoms(RLD)inf ⇔ domF ×FCD imF v f .
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Let F ∈ atoms(RLD)inf , G ∈ atoms(RLD)ing. Then domF ×FCD imF v f and
domG×FCD imG v g. Provided that imF 6� domG, we have:

domF ×RLD imG = (domG×RLD imG) ◦ (domF ×RLD imF ) =
RLD

l

{
G′ ◦ F ′

F ′ ∈ atoms(domF ×RLD imF ), G′ ∈ atoms(domG×RLD imG)

}
v (*)

RLD

l

{
G′ ◦ F ′

F ′ ∈ atomsRLD(SrcF,DstF ), G′ ∈ atomsRLD(SrcG,DstG), F ′ v (RLD)inf,G′ v (RLD)ing

}
=

RLD

l

{
G′ ◦ F ′

F ′ ∈ atoms(RLD)inf,G′ ∈ atoms(RLD)ing

}
= (RLD)ing ◦ (RLD)inf.

(*) F ′ ∈ atoms(domF ×RLD imF ) and domF ×FCD imF v f implies domF ′ ×FCD

imF ′ v f ; thus domF ′ ×RLD imF ′ v (RLD)inf and thus F ′ v (RLD)inf . Likewise
for G and G′.

Thus (RLD)ing◦(RLD)inf w d

RLD
{

domF×RLDimG
F∈atoms(RLD)inf,G∈atoms(RLD)ing,imF 6�domG

}
.

But (RLD)ing ◦ (RLD)inf v d

RLD
{

(domG×RLDimG)◦(domF×RLDimF )
F∈atoms(RLD)inf,G∈atoms(RLD)ing

}
=

d

RLD
{

domF×RLDimG
F∈atoms(RLD)inf,G∈atoms(RLD)ing,imF 6�domG

}
.

Thus

(RLD)ing◦(RLD)inf =
RLD

l

{
domF ×RLD imG

F ∈ atoms(RLD)inf,G ∈ atoms(RLD)ing, imF 6� domG

}
=

RLD

l


domF ×RLD imG

F ∈ atomsRLD(Src f,Dst f), G ∈ atomsRLD(Dst f,Dst g),

domF ×FCD imF v f, domG×FCD imG v g, imF 6� domG

.
But

(RLD)in(g ◦ f) = l

{
a×RLD c

a×FCD c ∈ atoms(g ◦ f)

}
= (proposition 907) =

l

{
a×RLD c

a ∈ F (Src f), c ∈ F (Dst g),∃b ∈ F (Dst f) : (a×FCD b ∈ atoms f ∧ b×FCD c ∈ atoms g)

}
=

l

{
a×RLD c

a ∈ F (Src f), c ∈ F (Dst g),∃b0, b1 ∈ F (Dst f) : (a×FCD b ∈ atoms f ∧ b×FCD c ∈ atoms g ∧ b0 6� b1)

}
.

Now it becomes obvious that (RLD)ing ◦ (RLD)inf = (RLD)in(g ◦ f). �

9.5. Complete funcoids and reloids

For the proof below assume

θ =



l

x∈Src f
(↑Src f {x} ×RLD 〈f〉∗@{x}) 7→ l

x∈Src f
(↑Src f {x} ×FCD 〈f〉∗@{x})


(where f ranges the set of complete funcoids).

Lemma 1119. θ is a bijection from complete reloids into complete funcoids.

Proof. Theorems 928 and 1039. �

Lemma 1120. (FCD)g = θg for every complete reloid g.
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Proof. Really, g = dx∈Src f (↑Src f {x}×RLD 〈f〉∗@{x}) for a complete reloid g
and thus
(FCD)g = l

x∈Src f
(FCD)(↑Src f {x}×RLD〈f〉∗@{x}) = l

x∈Src f
(↑Src f {x}×FCD〈f〉∗@{x}) = θg.

�

Lemma 1121. (RLD)outf = θ−1f for every complete funcoid f .
Proof. We have f = dx∈Src f (↑Src f {x} ×FCD 〈f〉∗@{x}). We need to prove

(RLD)outf = dx∈Src f (↑Src f {x} ×RLD 〈f〉∗@{x}).
Really, (RLD)outf w dx∈Src f (↑Src f {x} ×RLD 〈f〉∗@{x}).
It remains to prove that dx∈Src f (↑Src f {x} ×RLD 〈f〉∗@{x}) w (RLD)outf .
Let L ∈ up dx∈Src f (↑Src f {x} ×RLD 〈f〉∗@{x}). We will prove L ∈

up(RLD)outf .
We have

L ∈
⋂

x∈Src f
up(↑Src f {x} ×RLD 〈f〉∗@{x}).

〈L〉∗{x} = G(x) for some G(x) ∈ up〈f〉∗@{x} (because L ∈ up(↑Src f {x}×RLD

〈f〉∗@{x}).
Thus L = G ∈ up f (because f is complete). Thus L ∈ up f and so L ∈

up(RLD)outf .
�

Proposition 1122. (FCD) and (RLD)out form mutually inverse bijections be-
tween complete reloids and complete funcoids.

Proof. From two last lemmas. �

Theorem 1123. The diagram at the figure 1 (with the “unnamed” arrow from
ComplRLD(A,B) to F (B)A defined as the inverse isomorphism of its opposite ar-
row) is a commutative diagram (in category Set), every arrow in this diagram is
an isomorphism. Every cycle in this diagram is an identity (therefore “parallel”
arrows are mutually inverse). The arrows preserve order.

Figure 1.
F (B)A

ComplFCD(A,B) ComplRLD(A,B)

G 7→ d

{
{α}×RLDG(α)

α∈A

}
G 7→ d

{
{α}×FCDG(α)

α∈A

}f 7→(α7→〈f〉∗{α})

(RLD)out

(FCD)
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Proof. It’s proved above, that all morphisms (except the “unnamed” arrow,
which is the inverse morphism by definition) depicted on the diagram are bijections
and the depicted “opposite” morphisms are mutually inverse.

That arrows preserve order is obvious.
It remains to apply lemma 193 (taking into account that θ can be decomposed

into
(
G 7→ d

{
{α}×RLDG(α)

α∈A

})−1
and G 7→ d

{
{α}×FCDG(α)

α∈A

}
). �

Theorem 1124. Composition of complete reloids is complete.

Proof. Let f , g be complete reloids. Then (FCD)(g ◦ f) = (FCD)g ◦ (FCD)f .
Thus (because (FCD)(g◦f) is a complete funcoid) we have g◦f = (RLD)out((FCD)g◦
(FCD)f), but (FCD)g ◦ (FCD)f is a complete funcoid, thus g ◦ f is a complete
reloid. �

Theorem 1125.
1◦. (RLD)outg◦(RLD)outf = (RLD)out(g◦f) for composable complete funcoids

f and g.
2◦. (RLD)outg ◦ (RLD)outf = (RLD)out(g ◦ f) for composable co-complete fun-

coids f and g.

Proof. Let f , g be composable complete funcoids.
(FCD)((RLD)outg ◦ (RLD)outf) = (FCD)(RLD)outg ◦ (FCD)(RLD)outf = g ◦ f .
Thus (taking into account that (RLD)outg ◦ (RLD)outf is complete) we have

(RLD)outg ◦ (RLD)outf = (RLD)out(g ◦ f).
For co-complete funcoids it’s dual. �

Proposition 1126. If f is a (co-)complete funcoid then up f is a filter.

Proof. It is enough to consider the case if f is complete.
We need to prove that ∀F,G ∈ up f : F uG ∈ up f .
For every F ∈ Rel(Src f,Dst f) we have
F ∈ up f ⇔ F w f ⇔ 〈F 〉∗{x} w 〈f〉∗{x}.
Thus F,G ∈ up f ⇒ 〈F 〉∗{x} w 〈f〉∗{x}∧〈G〉∗{x} w 〈f〉∗{x} ⇒ 〈FuG〉∗{x} =

〈F 〉∗{x} u 〈G〉∗{x} w 〈f〉∗{x} ⇒ F uG ∈ up f .
That up f is nonempty and up-directed is obvious. �

Corollary 1127.
1◦. If f is a (co-)complete funcoid then up f = up(RLD)outf .
2◦. If f is a (co-)complete reloid then up f = up(FCD)f .

Proof. By order isomorphism, it is enough to prove the first.
Because up f is a filter, by properties of generalized filter bases we have F ∈

up(RLD)outf ⇔ ∃g ∈ up f : F w g ⇔ F ∈ up f . �

9.6. Properties preserved by relationships

Proposition 1128. (FCD)f is reflexive iff f is reflexive (for every endoreloid f).

Proof. f is reflexive ⇔ 1Rel
Ob f v f ⇔ ∀F ∈ up f : 1Rel

Ob f v F ⇔ 1Rel
Ob f vdFCD up f ⇔ 1Rel

Ob f v (FCD)f ⇔ (FCD)f is reflexive. �

Proposition 1129. (RLD)outf is reflexive iff f is reflexive (for every endofun-
coid f).

Proof. f is reflexive ⇔ 1Rel
Ob f v f ⇔ (corollary 922) ⇔ ∀F ∈ up f : 1Rel

Ob f v
F ⇔ 1Rel

Ob f v
dRLD up f ⇔ 1Rel

Ob f v (RLD)outf ⇔ (RLD)outf is reflexive. �
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Proposition 1130. (RLD)inf is reflexive iff f is reflexive (for every endofun-
coid f).

Proof. (RLD)inf is reflexive iff (FCD)(RLD)inf if reflexive iff f is reflexive. �

Obvious 1131. (FCD), (RLD)in, and (RLD)out preserve symmetry of the argu-
ment funcoid or reloid.

Proposition 1132. a×RLD
F a = ⊥ for every nontrivial ultrafilter a.

Proof. a×RLD
F a = (RLD)out(a×FCD a) =

dRLD up(a×FCD a) v 1FCD u (>FCD \
1FCD) = ⊥FCD. �

Example 1133. There exist filters A and B such that (FCD)(A ×RLD
F B) @

A×FCD B.

Proof. Take A = B = a for a nontrivial ultrafilter a. a ×RLD
F a = ⊥. Thus

(FCD)(a×RLD
F a) = ⊥ @ a×FCD a. �

Conjecture 1134. There exist filters A and B such that (FCD)(A n B) @
A×FCD B.

Example 1135. There is such a non-symmetric reloid f that (FCD)f is sym-
metric.

Proof. Take f = ((RLD)in(=)|R) u (≥)R. f is non-symmetric because f 6�
(>)R but f � (<)R. (FCD)f = (=)|R because (=)|R v f v (RLD)in(=)|R. �

Proposition 1136. If (RLD)inf is symmetric then endofuncoid f is symmetric.

Proof. Suppose (RLD)inf is symmetric then f = (FCD)(RLD)inf is symmet-
ric. �

Conjecture 1137. If (RLD)outf is symmetric then endofuncoid f is symmet-
ric.

Proposition 1138. If f is a transitive endoreloid, then (FCD)f is a transitive
funcoid.

Proof. f = f ◦ f ; (FCD)f = (FCD)(f ◦ f); (FCD)f = (FCD)f ◦ (FCD)f . �

Conjecture 1139. There exists a non-transitive endoreloid f such that
(FCD)f is a transitive funcoid.

Proposition 1140. (RLD)inf is transitive iff f is transitive (for every endo-
funcoid f).

Proof. f = f ◦ f ⇒ (RLD)inf = (RLD)in(f ◦ f) ⇔ (theorem 1118) ⇔
(RLD)inf = (RLD)inf ◦ (RLD)inf ⇒ (FCD)(RLD)inf = (FCD)(RLD)inf ◦
(FCD)(RLD)inf ⇔ f = f ◦ f . Thus f = f ◦ f ⇔ (RLD)inf ◦ (RLD)inf . �

Conjecture 1141.
1◦. There exists such a transitive endofuncoid f , that (RLD)outf is not a

transitive reloid.
2◦. There exists such a non-transitive endofuncoid f , that (RLD)outf is tran-

sitive reloid.
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9.7. Some sub-posets of funcoids and reloids

Proposition 1142. The following are complete sub-meet-semilattices (that is
subsets closed for arbitrary meets) of RLD(A,A) (for every set A):

1◦. symmetric reloids on A;
2◦. reflexive reloids on A;
3◦. symmetric reflexive reloids on A;
4◦. transitive reloids on A;
5◦. symmetric reflexive transitive reloids (= reloids of equivalence = uniform

spaces) on A.

Proof. The first three items are obvious.
Fourth: Let S be a set of transitive reloids on A. That is f ◦ f v f for

every f ∈ S. Then (
d
S) ◦ (

d
S) v f ◦ f v f . Consequently (

d
S) ◦ (

d
S) v

d
S.

The last item follows from the previous. �

Proposition 1143. The following are complete sub-meet-semilattices (that is
subsets closed for arbitrary meets) of FCD(A,A) (for every set A):

1◦. symmetric funcoids on A;
2◦. reflexive funcoids on A;
3◦. symmetric reflexive funcoids on A;
4◦. transitive funcoids on A;
5◦. symmetric reflexive transitive funcoids (= funcoids of equivalence = prox-

imity spaces) on A.

Proof. Analogous. �

Obvious corollaries:

Corollary 1144. The following are complete lattices (for every set A):
1◦. symmetric reloids on A;
2◦. reflexive reloids on A;
3◦. symmetric reflexive reloids on A;
4◦. transitive reloids on A;
5◦. symmetric reflexive transitive reloids (= reloids of equivalence = uniform

spaces) on A.

Corollary 1145. The following are complete lattices (for every set A):
1◦. symmetric funcoids on A;
2◦. reflexive funcoids on A;
3◦. symmetric reflexive funcoids on A;
4◦. transitive funcoids on A;
5◦. symmetric reflexive transitive funcoids (= funcoids of equivalence = prox-

imity spaces) on A.

The following conjecture was inspired by theorem 2.2 in [41]:

Conjecture 1146. Join of a set S on the lattice of transitive reloids is the
join (on the lattice of reloids) of all compositions of finite sequences of elements
of S.

The similar question can be asked about uniform spaces.
Does the same hold for funcoids?
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9.8. Double filtrators

Below I show that it’s possible to describe (FCD), (RLD)out, and (RLD)in en-
tirely in terms of filtrators (order). This seems not to lead to really interesting
results but it’s curious.

Definition 1147. Double filtrator is a triple (A,B,Z) of posets such that Z is
a sub-poset of both A and B.

In other words, a double filtrator (A,B,Z) is a triple such that both (A,Z)
and (B,Z) are filtrators.

Definition 1148. Double filtrator of funcoids and reloids is (FCD,RLD,Rel).

Definition 1149. (FCD)f =
dA upZ f for f ∈ B.

Definition 1150. (RLD)outf =
dB upZ f for f ∈ A.

Definition 1151. If (FCD) is a lower adjoint, define (RLD)in as the upper
adjoint of (FCD).

9.8.1. Embedding of A into B. In this section we will suppose that (FCD)
and (RLD)in form a Galois surjection, that is (FCD)(RLD)inf = f for every f ∈ A.

Then (RLD)in is an order embedding from A to B.

9.8.2. One more core part. I this section we will assume that (FCD)
and (RLD)in form a Galois surjection and equate A with its image by (RLD)in
in B. We will also assume (A,Z) being a filtered filtrator.

Proposition 1152. (FCD)f = CorA f for every f ∈ B.

Proof. CorA f =
dA upA f v

dA upZ f = (FCD)f . But for every g ∈ upA f

we have g =
dA upZ g w

dA upZ f , thus
dA upA f w

dA upZ f . �

Example 1153. (FCD)f 6= Cor′A f for the double filtrator of funcoids and
reloids.

Proof. Consider a nontrivial ultrafiler a and the reloid f = idRLD
a . Cor′A f =

Cor′FCD idRLD
a = d

FCD downFCD idRLD
a = d

FCD ∅ = ⊥FCD 6= a ×FCD a = (FCD) idRLD
a .
�

I leave to a reader’s exercise to apply the above theory to complete funcoids
and reloids.



CHAPTER 10

On distributivity of composition with a principal
reloid

10.1. Decomposition of composition of binary relations

Remark 1154. Sorry for an unfortunate choice of terminology: “composition”
and “decomposition” are unrelated.

The idea of the proof below is that composition of binary relations can be
decomposed into two operations: ⊗ and dom:

g ⊗ f =
{

((x, z), y)
x f y ∧ y g z

}
.

Composition of binary relations can be decomposed: g ◦ f = dom(g ⊗ f).
It can be decomposed even further: g ⊗ f = Θ0f ∩Θ1g where

Θ0f =
{

((x, z), y)
x f y, z ∈ f

}
and Θ1f =

{
((x, z), y)
y f z, x ∈ f

}
.

(Here f is the Grothendieck universe.)
Now we will do a similar trick with reloids.

10.2. Decomposition of composition of reloids

A similar thing for reloids:
In this chapter we will equate reloids with filters on cartesian products of sets.
For composable reloids f and g we have

g ◦ f =
RLD(Src f,Dst g)l {

G ◦ F
F ∈ GR f,G ∈ GR g

}
=

RLD(Src f,Dst g)l {
dom(G⊗ F )

F ∈ GR f,G ∈ GR g

}
.

Lemma 1155.
{

G⊗F
F∈GR f,G∈GR g

}
is a filter base.

Proof. Let P,Q ∈
{

G⊗F
F∈GR f,G∈GR g

}
. Then P = G0 ⊗ F0, Q = G1 ⊗ F1 for

some F0, F1 ∈ f , G0, G1 ∈ g. Then F0 ∩ F1 ∈ up f , G0 ∩G1 ∈ up g and thus

P ∩Q ⊇ (F0 ∩ F1)⊗ (G0 ∩G1) ∈
{

G⊗ F
F ∈ GR f,G ∈ GR g

}
.

�

Corollary 1156.
{
↑F(Src f×Dst g)(G⊗F )
F∈GR f,G∈GR g

}
is a generalized filter base.

Proposition 1157. g ◦ f = dom
dF(Src f×Dst g)

{
G⊗F

F∈GR f,G∈GR g

}
.

215
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Proof. ↑F(Src f×Dst g) dom(G ⊗ F ) w dom
dF(Src f×Dst g)

{
G⊗F

F∈GR f,G∈GR g

}
.

Thus

g ◦ f w dom
F(Src f×Dst g)l {

G⊗ F
F ∈ GR f,G ∈ GR g

}
.

Let X ∈ up dom
dF(Src f×Dst g)

{
G⊗F

F∈up f,G∈up g

}
. Then there exist Y such that

X × Y ∈ up
F(Src f×Dst g)l {

G⊗ F
F ∈ up f,G ∈ up g

}
.

So because it is a generalized filter baseX×Y ⊇ G⊗F for some F ∈ up f , G ∈ up g.
Thus X ∈ up dom(G⊗ F ). X ∈ up(g ◦ f). �

We can define g ⊗ f for reloids f , g:

g ⊗ f =
{

G⊗ F
F ∈ GR f,G ∈ GR g

}
.

Then

g ◦ f =
F(Src f×Dst g)l

〈dom〉∗(g ⊗ f) = dom
〈
↑RLD(Src f×Dst g,f)

〉∗
(g ⊗ f).

10.3. Lemmas for the main result

Lemma 1158. (g ⊗ f) ∩ (h⊗ f) = (g ∩ h)⊗ f for binary relations f , g, h.

Proof.

(g ∩ h)⊗ f = Θ0f ∩Θ1(g ∩ h) = Θ0f ∩ (Θ1g ∩Θ1h) =
(Θ0f ∩Θ1g) ∩ (Θ0f ∩Θ1h) = (g ⊗ f) ∩ (h⊗ f).

�

Lemma 1159. Let F =↑RLD f be a principal reloid (for a Rel-morphism f),
T be a set of reloids from DstF to a set V .

RLD(Src f×V,f)l

G∈up dT

(G⊗ f) = l

G∈T

RLD(Src f×V,f)l
(G⊗ F ).

Proof.
dRLD(Src f×V,f)
G∈up dT

(G⊗ f) w dG∈T
dRLD(Src f×V,f)(G⊗ F ) is obvious.

Let K ∈ up dG∈T
dRLD(Src f×V,f)(G⊗ F ). Then for each G ∈ T

K ∈ up
RLD(Src f×V,f)l

(G⊗ F );

K ∈ up
dRLD(Src f×V,f)

{
Γ⊗f
Γ∈G

}
. Then K ∈

{
Γ⊗f
Γ∈G

}
by properties of generalized

filter bases.
K ∈

{
(Γ0∩···∩Γn)⊗f
n∈N,Γi∈G

}
=
{

(Γ0⊗f)∩···∩(Γn⊗f)
n∈N,Γi∈G

}
.

∀G ∈ T : K ⊇ (ΓG,0 ⊗ f) ∩ · · · ∩ (ΓG,n ⊗ f) for some n ∈ N, ΓG,i ∈ G.
K ⊇

{
(Γ0⊗f)∩···∩(Γn⊗f)

n∈N,Γi∈G

}
where Γi =

⋃
g∈G Γg,i ∈ up dT .
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K ∈
{

(Γ0⊗f)∩···∩(Γn⊗f)
n∈N

}
. So

K ∈
{

(Γ′0 ⊗ f) ∩ · · · ∩ (Γ′n ⊗ f)
n ∈ N,Γ′i ∈ up dT

}
={

(Γ′0 ∩ · · · ∩ Γ′n)⊗ f
n ∈ N,Γ′i ∈ up dT

}
=

up
RLD(Src f×V,f)l {

G⊗ f
G ∈ up dT

}
.

�

10.4. Proof of the main result

Let’s prove a special case of conjecture 1055:

Theorem 1160. ( dT ) ◦ F = d

{
G◦F
G∈T

}
for every principal reloid F =↑RLD f

(for a Rel-morphism f) and a set T of reloids from DstF to some set V . (In
other words principal reloids are co-metacomplete and thus also metacomplete by
duality.)

Proof. (

lT
)
◦ F =

RLD(Src f,V )l
〈dom〉∗

((
lT

)
⊗ F

)
=

dom
RLD(Src f×V,f)l ((

lT
)
⊗ F

)
=

dom
RLD(Src f×V,f)l

G∈up dT

(G⊗ f);

l

G∈T
(G ◦ F ) =

l

G∈T

RLD(Src f,V )l
〈dom〉∗(G⊗ F ) =

l

G∈T
dom

RLD(Src f×V,f)l
(G⊗ F ) =

dom l

G∈T

RLD(Src f×V,f)l
(G⊗ F ).

It’s enough to prove
RLD(Src f×V,f)l

G∈up dT

(G⊗ f) = l

G∈T

RLD(Src f×V,f)l
(G⊗ F )

but this is the statement of the lemma. �

10.5. Embedding reloids into funcoids

Definition 1161. Let f be a reloid. The funcoid
ρf = FCD(P(Src f × Src f),P(Dst f ×Dst f))
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is defined by the formulas:

〈ρf〉x = f ◦ x and
〈
ρf−1〉y = f−1 ◦ y

where x are endoreloids on Src f and y are endoreloids on Dst f .

Proposition 1162. It is really a funcoid (if we equate reloids x and y with
corresponding filters on Cartesian products of sets).

Proof. y 6� 〈ρf〉x⇔ y 6� f ◦ x⇔ f−1 ◦ y 6� x⇔
〈
ρf−1〉y 6� x. �

Corollary 1163. (ρf)−1 = ρf−1.

Definition 1164. It can be continued to arbitrary funcoids x having destina-
tion Src f by the formula 〈ρ∗f〉x = 〈ρf〉 idSrc f ◦x = f ◦ x.

Proposition 1165. ρ is an injection.

Proof. Consider x = idSrc f . �

Proposition 1166. ρ(g ◦ f) = (ρg) ◦ (ρf).

Proof. 〈ρ(g ◦ f)〉x = g ◦f ◦x = 〈ρg〉〈ρf〉x = (〈ρg〉◦〈ρf〉)x. Thus 〈ρ(g ◦ f)〉 =
〈ρg〉 ◦ 〈ρf〉 = 〈(ρg) ◦ (ρf)〉 and so ρ(g ◦ f) = (ρg) ◦ (ρf). �

Theorem 1167. ρ dF = d〈ρ〉
∗
F for a set F of reloids.

Proof. It’s enough to prove 〈ρ dF 〉
∗
X =

〈
d〈ρ〉

∗
F
〉∗
X for a set X.

Really, 〈
ρ lF

〉∗
X =〈

ρ lF
〉
↑ X =

lF◦ ↑ X =

l

{
f◦ ↑ X
f ∈ F

}
=

l

{
〈ρf〉 ↑ X
f ∈ F

}
=〈

l

{
ρf

f ∈ F

}〉
X =〈

l〈ρ〉
∗
F
〉∗
X.

�

Conjecture 1168. ρ
d
F =

d
〈ρ〉∗F for a set F of reloids.

Proposition 1169. ρ1RLD
A = 1FCD

P(A×A).

Proof.
〈
ρ1RLD
A

〉
x = 1RLD

A ◦ x = x =
〈

1FCD
P(A×A)

〉
x. �

We can try to develop further theory by applying embedding of reloids into
funcoids for researching of properties of reloids.

Theorem 1170. Reloid f is monovalued iff funcoid ρf is monovalued.
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Proof.
ρf is monovalued⇔

(ρf) ◦ (ρf)−1 v 1Dst ρf ⇔
ρ(f ◦ f−1) v 1Dst ρf ⇔

ρ(f ◦ f−1) v 1FCD
P(Dst f×Dst f) ⇔

ρ(f ◦ f−1) v ρ1RLD
Dst f ⇔

f ◦ f−1 v 1RLD
Dst f ⇔

f is monovalued.
�



CHAPTER 11

Continuous morphisms

This chapter uses the apparatus from the section “Partially ordered dagger
categories”.

11.1. Traditional definitions of continuity

In this section we will show that having a funcoid or reloid ↑ f corresponding
to a function f we can express continuity of it by the formula ↑ f ◦ µ v ν◦ ↑ f (or
similar formulas) where µ and ν are some spaces.

11.1.1. Pretopology. Let (A, clA) and (B, clB) be preclosure spaces. Then
by definition a function f : A → B is continuous iff f clA(X) ⊆ clB(fX) for every
X ∈PA. Let now µ and ν be endofuncoids corresponding correspondingly to clA
and clB . Then the condition for continuity can be rewritten as

↑FCD(Obµ,Ob ν) f ◦ µ v ν◦ ↑FCD(Obµ,Ob ν) f.

11.1.2. Proximity spaces. Let µ and ν be proximity spaces (which I consider
a special case of endofuncoids). By definition a Set-morphism f is a proximity-
continuous map from µ to ν iff

∀X,Y ∈ T (Obµ) : (X [µ]∗ Y ⇒ 〈f〉∗X [ν]∗ 〈f〉∗Y ).

Equivalently transforming this formula we get

∀X,Y ∈ T (Obµ) : (X [µ]∗ Y ⇒ 〈f〉 ↑ X [ν] 〈f〉 ↑ Y );
∀X,Y ∈ T (Obµ) : (X [µ]∗ Y ⇒↑ X

[
f−1 ◦ ν ◦ f

]
↑ Y );

∀X,Y ∈ T (Obµ) : (X [µ]∗ Y ⇒ X
[
f−1 ◦ ν ◦ f

]∗
Y );

µ v f−1 ◦ ν ◦ f.

So a function f is proximity continuous iff µ v f−1 ◦ ν ◦ f .

11.1.3. Uniform spaces. Uniform spaces are a special case of endoreloids.
Let µ and ν be uniform spaces. By definition a Set-morphism f is a uniformly

continuous map from µ to ν iff

∀ε ∈ up ν∃δ ∈ up ν∀(x, y) ∈ δ : (fx, fy) ∈ ε.

Equivalently transforming this formula we get:

∀ε ∈ up ν∃δ ∈ upµ∀(x, y) ∈ δ : {(fx, fy)} ⊆ ε;
∀ε ∈ up ν∃δ ∈ upµ∀(x, y) ∈ δ : f ◦ {(x, y)} ◦ f−1 ⊆ ε;

∀ε ∈ up ν∃δ ∈ upµ : f ◦ δ ◦ f−1 ⊆ ε;
∀ε ∈ up ν :↑RLD(Obµ,Ob ν) f ◦ µ ◦ (↑RLD(Obµ,Ob ν) f)−1 v↑RLD(Obµ,Ob ν) ε;

↑RLD(Obµ,Ob ν) f ◦ µ ◦ (↑RLD(Obµ,Ob ν) f)−1 v ν.

So a function f is uniformly continuous iff f ◦ µ ◦ f−1 v ν.

220
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11.2. Our three definitions of continuity

I have expressed different kinds of continuity with simple algebraic formulas
hiding the complexity of traditional epsilon-delta notation behind a smart algebra.
Let’s summarize these three algebraic formulas:

Let µ and ν be endomorphisms of some partially ordered precategory. Con-
tinuous functions can be defined as these morphisms f of this precategory which
conform to the following formula:

f ∈ C(µ, ν)⇔ f ∈ Hom(Obµ,Ob ν) ∧ f ◦ µ v ν ◦ f.
If the precategory is a partially ordered dagger precategory then continuity also
can be defined in two other ways:

f ∈ C′(µ, ν)⇔ f ∈ Hom(Obµ,Ob ν) ∧ µ v f† ◦ ν ◦ f ;
f ∈ C′′(µ, ν)⇔ f ∈ Hom(Obµ,Ob ν) ∧ f ◦ µ ◦ f† v ν.

Remark 1171. In the examples (above) about funcoids and reloids the “dagger
functor” is the reverse of a funcoid or reloid, that is f† = f−1.

Proposition 1172. Every of these three definitions of continuity forms a wide
sub-precategory (wide subcategory if the original precategory is a category).

Proof.
C. Let f ∈ C(µ, ν), g ∈ C(ν, π). Then f ◦ µ v ν ◦ f , g ◦ ν v π ◦ g, g ◦ f ◦ µ v

g ◦ ν ◦ f v π ◦ g ◦ f . So g ◦ f ∈ C(µ, π). 1Obµ ∈ C(µ, µ) is obvious.
C′. Let f ∈ C′(µ, ν), g ∈ C′(ν, π). Then µ v f† ◦ ν ◦ f , ν v g† ◦ π ◦ g;

µ v f† ◦ g† ◦ π ◦ g ◦ f ; µ v (g ◦ f)† ◦ π ◦ (g ◦ f).
So g ◦ f ∈ C′(µ, π). 1Obµ ∈ C′(µ, µ) is obvious.

C′′. Let f ∈ C′′(µ, ν), g ∈ C′′(ν, π). Then f ◦ µ ◦ f† v ν, g ◦ ν ◦ g† v π;
g ◦ f ◦ µ ◦ f† ◦ g† v π; (g ◦ f) ◦ µ ◦ (g ◦ f)† v π.

So g ◦ f ∈ C′′(µ, π). 1Obµ ∈ C′′(µ, µ) is obvious.
�

Proposition 1173. For a monovalued morphism f of a partially ordered dag-
ger category and its endomorphisms µ and ν

f ∈ C′(µ, ν)⇒ f ∈ C(µ, ν)⇒ f ∈ C′′(µ, ν).
Proof. Let f ∈ C′(µ, ν). Then µ v f† ◦ ν ◦ f ;

f ◦ µ v f ◦ f† ◦ ν ◦ f v 1Dst f ◦ ν ◦ f = ν ◦ f ; f ∈ C(µ, ν).
Let f ∈ C(µ, ν). Then f ◦ µ v ν ◦ f ;

f ◦ µ ◦ f† v ν ◦ f ◦ f† v ν ◦ 1Dst f = ν; f ∈ C′′(µ, ν).
�

Proposition 1174. For an entirely defined morphism f of a partially ordered
dagger category and its endomorphisms µ and ν

f ∈ C′′(µ, ν)⇒ f ∈ C(µ, ν)⇒ f ∈ C′(µ, ν).
Proof. Let f ∈ C′′(µ, ν). Then f ◦ µ ◦ f† v ν; f ◦ µ ◦ f† ◦ f v ν ◦ f ;

f ◦ µ ◦ 1Src f v ν ◦ f ; f ◦ µ v ν ◦ f ; f ∈ C(µ, ν).
Let f ∈ C(µ, ν). Then f ◦µ v ν ◦f ; f† ◦f ◦µ v f† ◦ν ◦f ; 1Srcµ ◦µ v f† ◦ν ◦f ;

µ v f† ◦ ν ◦ f ; f ∈ C′(µ, ν). �

For entirely defined monovalued morphisms our three definitions of continuity
coincide:
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Theorem 1175. If f is a monovalued and entirely defined morphism of a
partially ordered dagger precategory then

f ∈ C′(µ, ν)⇔ f ∈ C(µ, ν)⇔ f ∈ C′′(µ, ν).

Proof. From two previous propositions. �

The classical general topology theorem that uniformly continuous function from
a uniform space to an other uniform space is proximity-continuous regarding the
proximities generated by the uniformities, generalized for reloids and funcoids takes
the following form:

Theorem 1176. If an entirely defined morphism of the category of reloids
f ∈ C′′(µ, ν) for some endomorphisms µ and ν of the category of reloids, then
(FCD)f ∈ C′((FCD)µ, (FCD)ν).

Exercise 1177. I leave a simple exercise for the reader to prove the last the-
orem.

Theorem 1178. Let µ and ν be endomorphisms of some partially ordered
dagger precategory and f ∈ Hom(Obµ,Ob ν) be a monovalued, entirely defined
morphism. Then

f ∈ C(µ, ν)⇔ f ∈ C(µ†, ν†).

Proof. f ◦ µ v ν ◦ f ⇔ µ v f† ◦ ν ◦ f ⇒ µ ◦ f† v f† ◦ ν ◦ f ◦ f† ⇒ µ ◦ f† v
f† ◦ν ⇔ f ◦µ† v ν† ◦f ⇒ f† ◦f ◦µ† v f† ◦ν† ◦f ⇒ µ† v f† ◦ν† ◦f ⇔ µ v f† ◦ν ◦f .

Thus f ◦ µ v ν ◦ f ⇔ µ⇔ f ◦ µ† v ν† ◦ f . �

11.3. Continuity for topological spaces

Proposition 1179. The following are pairwise equivalent for funcoids µ, ν and
a monovalued, entirely defined morphism f ∈ Hom(Obµ,Ob ν):

1◦. ∀A ∈ T Obµ,B ∈ up〈ν〉〈f〉∗A :
〈
f−1〉∗B ∈ up〈µ〉∗A.

2◦. f ∈ C(µ, ν).
3◦. f ∈ C(µ−1, ν−1).

Proof.
2◦⇔3◦. By general f ◦ µ v ν ◦ f ⇔ f ◦ µ† v ν† ◦ f formula above.
1◦⇔2◦. 1◦ is equivalent to

〈〈
f−1〉∗〉∗ up〈ν〉〈f〉∗A ⊆ up〈µ〉∗A equivalent to

〈ν〉〈f〉∗A w 〈f〉〈µ〉∗A (used “Orderings of filters” chapter).
�

Corollary 1180. The following are pairwise equivalent for topological spaces
µ, ν and a monovalued, entirely defined morphism f ∈ Hom(Obµ,Ob ν):

1◦. ∀x ∈ Obµ,B ∈ up〈ν〉〈f〉∗{x} :
〈
f−1〉∗B ∈ up〈µ〉∗{x}.

2◦. Preimages (by f) of open sets are open.
3◦. f ∈ C(µ, ν) that is 〈f〉〈µ〉∗{x} v 〈ν〉〈f〉∗{x} for every x ∈ Obµ.
4◦. f ∈ C(µ−1, ν−1) that is 〈f〉

〈
µ−1〉∗A v 〈ν−1〉〈f〉∗A for every A ∈ T Obµ.

Proof. 2◦ from the previous proposition is equivalent to 〈f〉〈µ〉∗{x} v
〈ν〉〈f〉∗{x} equivalent to

〈〈
f−1〉∗〉∗ up〈ν〉〈f〉∗{x} ⊆ up〈µ〉∗{x} for every x ∈ Obµ,

equivalent to 1◦ (used “Orderings of filters” chapter).
It remains to prove 3◦⇔2◦.

3◦⇒2◦. Let B be an open set in ν. For every x ∈
〈
f−1〉∗B we have f(x) ∈ B that

is B is a neighborhood of f(x), thus
〈
f−1〉∗B is a neighborhood of x. We

have proved that
〈
f−1〉∗B is open.
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2◦⇒3◦. Let B be a neighborhood of f(x). Then there is an open neighborhood
B′ ⊆ B of f(x).

〈
f−1〉∗B′ is open and thus is a neighborhood of x (x ∈〈

f−1〉∗B′ because f(x) ∈ B′). Consequently
〈
f−1〉∗B is a neighborhood

of x.
Alternative proof of 2◦⇔4◦: http://math.stackexchange.com/a/1855782/4876

�

11.4. C(µ ◦ µ−1, ν ◦ ν−1)

Proposition 1181. f ∈ C(µ, ν) ⇒ f ∈ C′′(µ ◦ µ−1, ν ◦ ν−1) for endofuncoids
µ, ν and monovalued funcoid f ∈ FCD(Obµ,Ob ν).

Proof. Let f ∈ C(µ, ν).
X [f ◦ µ ◦ µ−1 ◦ f−1]∗ Z ⇔ ∃p ∈ atomsF :(

X [µ−1 ◦ f−1]∗ p ∧ p [f ◦ µ]∗ Z
)
⇔ ∃p ∈ atomsF : (p [f ◦ µ]∗ X ∧ p [f ◦ µ]∗ Z) ⇒

∃p ∈ atomsF : (p [ν ◦ f ]∗ X ∧ p [ν ◦ f ]∗ Z) ⇔ ∃p ∈ atomsF :(
〈f〉∗p [ν]∗ X ∧ 〈f〉∗p [ν]∗ Z

)
⇒ X [ν ◦ ν−1]∗ Z (taken into account monovalued-

ness of f and thus that 〈f〉∗p is atomic or least). Thus f ◦ µ ◦ µ−1 ◦ f−1 v ν ◦ ν−1

that is f ∈ C′′(µ ◦ µ−1, ν ◦ ν−1). �

Proposition 1182. f ∈ C′′(µ ◦ µ−1, ν ◦ ν−1) ⇒ f ∈ C′′(µ, ν) for complete
endofuncoids µ, ν and principal funcoid f ∈ FCD(Obµ,Ob ν), provided that µ is
reflexive, and ν is T1-separable.

Proof. f ∈ C′′(µ ◦ µ−1, ν ◦ ν−1) ⇔ f ◦ µ ◦ µ−1 ◦ f−1 v ν ◦ ν−1 ⇒
(reflexivity of µ) ⇒ f ◦ µ ◦ f−1 v ν ◦ ν−1 ⇔ f ◦ µ−1 ◦ f−1 v ν ◦ ν−1 ⇒
〈f ◦ µ−1 ◦ f−1〉∗X v 〈ν〉∗〈ν−1〉∗X ⇒ Cor

〈
f ◦ µ−1 ◦ f−1〉∗X v Cor〈ν〉∗〈ν−1〉∗X ⇔

〈f ◦ µ−1 ◦ f−1〉∗X v Cor〈ν〉∗〈ν−1〉∗X ⇒ (T1-separability)⇒ 〈f ◦ µ−1 ◦ f−1〉∗X v
〈ν−1〉∗X for any typed set X on Ob ν. Thus f ∈ C′′(µ ◦ µ−1, ν ◦ ν−1) ⇒
f ◦ µ−1 ◦ f−1 v ν−1 ⇔ f ◦ µ ◦ f−1 v ν ⇔ f ∈ C′′(µ, ν). �

Theorem 1183. f ∈ C(µ ◦ µ−1, ν ◦ ν−1) ⇔ f ∈ C(µ, ν) for complete
endofuncoids µ, ν and principal monovalued and entirely defined funcoid f ∈
FCD(Obµ,Ob ν), provided that µ is reflexive, and ν is T1-separable.

Proof. Two above propositions and theorem 1175. �

11.5. Continuity of a restricted morphism

Consider some partially ordered semigroup. (For example it can be the semi-
group of funcoids or semigroup of reloids on some set regarding the composition.)
Consider also some lattice (lattice of objects). (For example take the lattice of set
theoretic filters.)

We will map every object A to so called restricted identity element IA of the
semigroup (for example restricted identity funcoid or restricted identity reloid). For
identity elements we will require

1◦. IA ◦ IB = IAuB ;
2◦. f ◦ IA v f ; IA ◦ f v f .

In the case when our semigroup is “dagger” (that is is a dagger precategory) we
will require also (IA)† = IA.

We can define restricting an element f of our semigroup to an object A by the
formula f |A = f ◦ IA.

We can define rectangular restricting an element f of our semigroup to objects
A and B as IB ◦ f ◦ IA. Optionally we can define direct product A × B of two
objects by the formula (true for funcoids and for reloids):

f u (A×B) = IB ◦ f ◦ IA.

http://math.stackexchange.com/a/1855782/4876
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Square restricting of an element f to an object A is a special case of rectangular
restricting and is defined by the formula IA ◦f ◦ IA (or by the formula f u (A×A)).

Theorem 1184. For every elements f , µ, ν of our semigroup and an object A
1◦. f ∈ C(µ, ν)⇒ f |A ∈ C(IA ◦ µ ◦ IA, ν);
2◦. f ∈ C′(µ, ν)⇒ f |A ∈ C′(IA ◦ µ ◦ IA, ν);
3◦. f ∈ C′′(µ, ν)⇒ f |A ∈ C′′(IA ◦ µ ◦ IA, ν).

(Two last items are true for the case when our semigroup is dagger.)

Proof.
1◦.

f |A ∈ C(IA ◦ µ ◦ IA, ν)⇔
f |A ◦ IA ◦ µ ◦ IA v ν ◦ f |A ⇔

f ◦ IA ◦ IA ◦ µ ◦ IA v ν ◦ f |A ⇔
f ◦ IA ◦ µ ◦ IA v ν ◦ f ◦ IA ⇐

f ◦ IA ◦ µ v ν ◦ f ⇐
f ◦ µ v ν ◦ f ⇔
f ∈ C(µ, ν).

2◦.
f |A ∈ C′(IA ◦ µ ◦ IA, ν)⇔

IA ◦ µ ◦ IA v (f |A)† ◦ ν ◦ f |A ⇐
IA ◦ µ ◦ IA v (f ◦ IA)† ◦ ν ◦ f ◦ IA ⇔
IA ◦ µ ◦ IA v IA ◦ f† ◦ ν ◦ f ◦ IA ⇐

µ v f† ◦ ν ◦ f ⇔
f ∈ C′(µ, ν).

3◦.
f |A ∈ C′′(IA ◦ µ ◦ IA, ν)⇔

f |A ◦ IA ◦ µ ◦ IA ◦ (f |A)† v ν ⇔
f ◦ IA ◦ IA ◦ µ ◦ IA ◦ IA ◦ f† v ν ⇔

f ◦ IA ◦ µ ◦ IA ◦ f† v ν ⇐

f ◦ µ ◦ f† v ν ⇔
f ∈ C′′(µ, ν).

�



CHAPTER 12

Connectedness regarding funcoids and reloids

12.1. Some lemmas

Lemma 1185. Let U be a set, A,B ∈ T U be typed sets, f be an endo-funcoid
on U . If ¬(A [f ]∗ B) ∧A tB ∈ up(dom f t im f) then f is closed on A.

Proof. Let A tB ∈ up(dom f t im f).

¬(A [f ]∗ B)⇔
B u 〈f〉∗A = ⊥ ⇒

(dom f t im f) uB u 〈f〉∗A = ⊥ ⇒
((dom f t im f) \A) u 〈f〉∗A = ⊥ ⇔

〈f〉∗A v A.

�

Corollary 1186. If ¬(A [f ]∗ B)∧AtB ∈ up(dom f t im f) then f is closed
on A \B for a funcoid f ∈ FCD(U,U) for every sets U and typed sets A,B ∈ T U .

Proof. Let ¬(A [f ]∗ B) ∧A tB ∈ up(dom f t im f). Then

¬((A \B) [f ]∗ B) ∧ (A \B) tB ∈ up(dom f t im f).

�

Lemma 1187. If ¬(A [f ]∗ B) ∧ A t B ∈ up(dom f t im f) then ¬(A [fn]∗ B)
for every whole positive n.

Proof. Let ¬(A [f ]∗ B) ∧A tB ∈ up(dom f t im f). From the above lemma
〈f〉∗A v A. B u 〈f〉A = ⊥, consequently 〈f〉∗A v A \ B. Because (by the above
corollary) f is closed on A \B, then 〈f〉〈f〉A v A \B, 〈f〉〈f〉〈f〉A v A \B, etc. So
〈fn〉A v A \B, B � 〈fn〉A, ¬(A [fn]∗ B). �

12.2. Endomorphism series

Definition 1188. S1(µ) = µ t µ2 t µ3 t . . . for an endomorphism µ of a pre-
category with countable join of morphisms (that is join defined for every countable
set of morphisms).

Definition 1189. S(µ) = µ0 tS1(µ) = µ0 t µt µ2 t µ3 t . . .where µ0 = 1Obµ
(identity morphism for the object Obµ) where Obµ is the object of endomorphism
µ for an endomorphism µ of a category with countable join of morphisms.

I call S1 and S endomorphism series.

Proposition 1190. The relation S(µ) is transitive for the category Rel.

225
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Proof.

S(µ) ◦ S(µ) = µ0 t S(µ) t µ ◦ S(µ) t µ2 ◦ S(µ) t · · · =
(µ0 t µ1 t µ2 t . . . ) t (µ1 t µ2 t µ3 t . . . ) t (µ2 t µ3 t µ4 t . . . ) =

µ0 t µ1 t µ2 t · · · = S(µ).
�

12.3. Connectedness regarding binary relations

Before going to research connectedness for funcoids and reloids we will excurse
into the basic special case of connectedness regarding binary relations on a set f.

This is commonly studied in “graph theory” courses. Digraph as commonly
defined is essentially the same as an endomorphism of the category Rel.

Definition 1191. A set A is called (strongly) connected regarding a binary
relation µ on U when

∀X,Y ∈PU \ {∅} : (X ∪ Y = A⇒ X [µ]∗ Y ).
Definition 1192. A typed set A of type U is called (strongly) connected re-

garding a Rel-endomorphism µ on U when
∀X,Y ∈ T (Obµ) \ {⊥T (Obµ)} : (X t Y = A⇒ X [µ]∗ Y ).

Obvious 1193. A typed set A is connected regarding Rel-endomorphism µ on
its type iff GRA is connected regarding GR µ.

Let f be a set.
Definition 1194. Path between two elements a, b ∈ f in a set A ⊆ f through

binary relation µ is the finite sequence x0 . . . xn where x0 = a, xn = b for n ∈ N
and xi (µ ∩A×A) xi+1 for every i = 0, . . . , n− 1. n is called path length.

Proposition 1195. There exists path between every element a ∈ f and that
element itself.

Proof. It is the path consisting of one vertex (of length 0). �

Proposition 1196. There is a path from element a to element b in a set A
through a binary relation µ iff a (S(µ ∩A×A)) b (that is (a, b) ∈ S(µ ∩A×A)).

Proof.
⇒. If a path from a to b exists, then {b} ⊆ 〈(µ ∩A×A)n〉∗{a} where n is the path

length. Consequently {b} ⊆ 〈S(µ ∩A×A)〉∗{a}; a (S(µ ∩A×A)) b.
⇐. If a (S(µ ∩A×A)) b then there exists n ∈ N such that a (µ ∩A×A)n b.

By definition of composition of binary relations this means that there
exist finite sequence x0 . . . xn where x0 = a, xn = b for n ∈ N and
xi (µ ∩A×A) xi+1 for every i = 0, . . . , n − 1. That is there is a path
from a to b.

�

Proposition 1197. There is a path from element a to element b in a set A
through a binary relation µ iff a (S1(µ ∩A×A)) b (that is (a, b) ∈ S1(µ∩A×A)).

Proof. Similar to the previous proof. �

Theorem 1198. The following statements are equivalent for a binary relation
µ and a set A:

1◦. For every a, b ∈ A there is a nonzero-length path between a and b in A
through µ.
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2◦. S1(µ ∩ (A×A)) ⊇ A×A.
3◦. S1(µ ∩ (A×A)) = A×A.
4◦. A is connected regarding µ.

Proof.
1◦⇒2◦. Let for every a, b ∈ A there is a nonzero-length path between a and b in

A through µ. Then a (S1(µ ∩A×A)) b for every a, b ∈ A. It is possible
only when S1(µ ∩ (A×A)) ⊇ A×A.

3◦⇒1◦. For every two vertices a and b we have a (S1(µ ∩A×A)) b. So (by the
previous) for every two vertices a and b there exists a nonzero-length path
from a to b.

3◦⇒4◦. Suppose ¬(X [µ ∩ (A×A)]∗ Y ) for some X,Y ∈ Pf \ {∅} such that
X∪Y = A. Then by a lemma ¬(X [(µ ∩ (A×A))n]∗ Y ) for every n ∈ Z+.
Consequently ¬(X [S1(µ ∩ (A×A))]∗ Y ). So S1(µ ∩ (A×A)) 6= A×A.

4◦⇒3◦. If 〈S1(µ ∩ (A×A))〉∗{v} = A for every vertex v then S1(µ∩(A×A)) = A×
A. Consider the remaining case when V

def= 〈S1(µ ∩ (A×A))〉∗{v} ⊂ A
for some vertex v. Let W = A \ V . If cardA = 1 then S1(µ ∩ (A×A)) ⊇
idA = A×A; otherwise W 6= ∅. Then V ∪W = A and so V [µ]∗ W what
is equivalent to V [µ ∩ (A×A)]∗ W that is 〈µ ∩ (A×A)〉∗V ∩W 6= ∅.
This is impossible because

〈µ ∩ (A×A)〉∗V = 〈µ ∩ (A×A)〉∗〈S1(µ ∩ (A×A))〉∗V =〈
(µ ∩ (A×A))2 ∪ (µ ∩ (A×A))3 ∪ · · · ∪

〉∗
V ⊆ 〈S1(µ ∩ (A×A))〉∗V = V.

2◦⇒3◦. Because S1(µ ∩ (A×A)) ⊆ A×A.
�

Corollary 1199. A set A is connected regarding a binary relation µ iff it is
connected regarding µ ∩ (A×A).

Definition 1200. A connected component of a setA regarding a binary relation
F is a maximal connected subset of A.

Theorem 1201. The setA is partitioned into connected components (regarding
every binary relation F ).

Proof. Consider the binary relation a ∼ b ⇔ a (S(F )) b ∧ b (S(F )) a. ∼ is
a symmetric, reflexive, and transitive relation. So all points of A are partitioned
into a collection of sets Q. Obviously each component is (strongly) connected. If
a set R ⊆ A is greater than one of that connected components A then it contains
a point b ∈ B where B is some other connected component. Consequently R is
disconnected. �

Proposition 1202. A set is connected (regarding a binary relation) iff it has
one connected component.

Proof. Direct implication is obvious. Reverse is proved by contradiction. �

12.4. Connectedness regarding funcoids and reloids

Definition 1203. Connectivity reloid S∗1 (µ) =
dRLD
M∈upµ S1(M) for an en-

doreloid µ.

Definition 1204. S∗(µ) for an endoreloid µ is defined as follows:

S∗(µ) =
RLDl

M∈upµ
S(M).



12.4. CONNECTEDNESS REGARDING FUNCOIDS AND RELOIDS 228

Do not mess the word connectivity with the word connectedness which means
being connected.1

Proposition 1205. S∗(µ) = 1RLD
Obµ t S∗1 (µ) for every endoreloid µ.

Proof. By the proposition 607. �

Proposition 1206. S∗(µ) = S(µ) and S∗1 (µ) = S1(µ) if µ is a principal reloid.

Proof. S∗(µ) =
d
{S(µ)} = S(µ); S∗1 (µ) =

d
{S1(µ)} = S1(µ). �

Definition 1207. A filter A ∈ F (Obµ) is called connected regarding an en-
doreloid µ when S∗1 (µ u (A×RLD A)) w A×RLD A.

Obvious 1208. A filter A ∈ F (Obµ) is connected regarding an endoreloid µ
iff S∗1 (µ u (A×RLD A)) = A×RLD A.

Definition 1209. A filter A ∈ F (Obµ) is called connected regarding an end-
ofuncoid µ when

∀X ,Y ∈ F (Obµ) \ {⊥F(Obµ)} : (X t Y = A ⇒ X [µ] Y).

Proposition 1210. Let A be a typed set of type U . The filter ↑ A is connected
regarding an endofuncoid µ on U iff

∀X,Y ∈ T (Obµ) \ {⊥T (Obµ)} : (X t Y = A⇒ X [µ]∗ Y ).

Proof.
⇒. Obvious.
⇐. It follows from co-separability of filters.

�

Theorem 1211. The following are equivalent for every typed set A of type U
and Rel-endomorphism µ on a set U :

1◦. A is connected regarding µ.
2◦. ↑ A is connected regarding ↑RLD µ.
3◦. ↑ A is connected regarding ↑FCD µ.

Proof.
1◦⇔2◦.

S∗1 (↑RLD µ u (A×RLD A)) =
S∗1 (↑RLD (µ u (A×A))) =
↑RLD S1(µ u (A×A)).

So
S∗1 (↑RLD µ u (A×RLD A)) w A×RLD A⇔

↑RLD S1(µ u (A×A)) w↑RLD (A×A) = A×RLD A.

1◦⇔3◦. It follows from the previous proposition.
�

Next is conjectured a statement more strong than the above theorem:

Conjecture 1212. Let A be a filter on a set U and F be a Rel-endomorphism
on U .
A is connected regarding ↑FCD F iff A is connected regarding ↑RLD F .

1In some math literature these two words are used interchangeably.
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Obvious 1213. A filter A is connected regarding a reloid µ iff it is connected
regarding the reloid µ u (A×RLD A).

Obvious 1214. A filter A is connected regarding a funcoid µ iff it is connected
regarding the funcoid µ u (A×FCD A).

Theorem 1215. A filter A is connected regarding a reloid f iff A is connected
regarding every F ∈

〈
↑RLD〉∗ up f .

Proof.
⇒. Obvious.
⇐. A is connected regarding ↑RLD F iff S1(F ) = F 1 t F 2 t · · · ∈ up(A×RLD A).

S∗1 (f) =
dRLD
F∈up f S1(F ) w

d
F∈up f (A×RLD A) = A×RLD A.

�

Conjecture 1216. A filter A is connected regarding a funcoid f iff A is
connected regarding every F ∈

〈
↑FCD〉∗ up f .

The above conjecture is open even for the case when A is a principal filter.

Conjecture 1217. A filter A is connected regarding a reloid f iff it is con-
nected regarding the funcoid (FCD)f .

The above conjecture is true in the special case of principal filters:

Proposition 1218. A filter ↑ A (for a typed set A) is connected regarding an
endoreloid f on the suitable object iff it is connected regarding the endofuncoid
(FCD)f .

Proof. ↑ A is connected regarding a reloid f iff A is connected regarding every
F ∈ up f that is when (taken into account that connectedness for ↑RLD F is the
same as connectedness of ↑FCD F )

∀F ∈ up f∀X ,Y ∈ F (Ob f) \ {⊥F(Ob f)} : (X t Y =↑ A⇒ X
[
↑FCD F

]
Y)⇔

∀X ,Y ∈ F (Ob f) \ {⊥F(Ob f)}∀F ∈ up f : (X t Y =↑ A⇒ X
[
↑FCD F

]
Y)⇔

∀X ,Y ∈ F (Ob f) \ {⊥F(Ob f)}(X t Y =↑ A⇒ ∀F ∈ up f : X
[
↑FCD F

]
Y)⇔

∀X ,Y ∈ F (Ob f) \ {⊥F(Ob f)}(X t Y =↑ A⇒ X [(FCD)f ] Y)

that is when the set ↑ A is connected regarding the funcoid (FCD)f . �

Conjecture 1219. A set A is connected regarding an endofuncoid µ iff for
every a, b ∈ A there exists a totally ordered set P ⊆ A such that minP = a,
maxP = b and

∀q ∈ P \ {b} :
{
x ∈ P
x ≤ q

}
[µ]∗

{
x ∈ P
x > q

}
.

Weaker condition:

∀q ∈ P \ {b} :
{
x ∈ P
x ≤ q

}
[µ]∗

{
x ∈ P
x > q

}
∨ ∀q ∈ P \ {a} :

{
x ∈ P
x < q

}
[µ]∗

{
x ∈ P
x ≥ q

}
.

12.5. Algebraic properties of S and S∗

Theorem 1220. S∗(S∗(f)) = S∗(f) for every endoreloid f .



12.5. ALGEBRAIC PROPERTIES OF S AND S∗ 230

Proof.

S∗(S∗(f)) =
RLDl

R∈upS∗(f)

S(R) v

RLDl

R∈
{

S(F )
F∈up f

}S(R) =

RLDl

R∈up f
S(S(R)) =

RLDl

R∈up f
S(R) =

S∗(f).

So S∗(S∗(f)) v S∗(f). That S∗(S∗(f)) w S∗(f) is obvious. �

Corollary 1221. S∗(S(f)) = S(S∗(f)) = S∗(f) for every endoreloid f .

Proof. Obviously S∗(S(f)) w S∗(f) and S(S∗(f)) w S∗(f).
But S∗(S(f)) v S∗(S∗(f)) = S∗(f) and S(S∗(f)) v S∗(S∗(f)) = S∗(f). �

Conjecture 1222. S(S(f)) = S(f) for
1◦. every endoreloid f ;
2◦. every endofuncoid f .

Conjecture 1223. S(f) ◦ S(f) = S(f) for every endoreloid f .

Theorem 1224. S∗(f) ◦ S∗(f) = S(f) ◦ S∗(f) = S∗(f) ◦ S(f) = S∗(f) for
every endoreloid f .

Proof. 2

It is enough to prove S∗(f) ◦ S∗(f) = S∗(f) because S∗(f) v S(f) ◦ S∗(f) v
S∗(f) ◦ S∗(f) and likewise for S∗(f) ◦ S(f).

S∗(µ) ◦ S∗(µ) =
dRLD
F∈upS∗(µ)(F ◦F ) = (see below) =

dRLD
X∈upµ(S(X) ◦ S(X)) =

dRLD
X∈upµ S(X) = S∗(µ).
F ∈ upS∗(µ) ⇔ F ∈ up

dF
F∈upµ S(F ) ⇒ (by properties of filter bases) ⇒

∃X ∈ upµ : F w S(X)⇒ ∃X ∈ upµ : F ◦ F w S(X) ◦ S(X) thus
RLDl

F∈upS∗(µ)

F ◦ F w
RLDl

X∈upµ
(S(X) ◦ S(X));

X ∈ upµ⇒ S(X) ∈ upS∗(µ)⇒ ∃F ∈ upS∗(µ) : S(X) ◦ S(X) w F ◦ F thus
RLDl

F∈upS∗(µ)

F ◦ F v
RLDl

X∈upµ
(S(X) ◦ S(X)).

�

Conjecture 1225. S(f) ◦ S(f) = S(f) for every endofuncoid f .

2Can be more succintly proved considering µ 7→ S∗(µ) as a pointfree funcoid?
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12.6. Irreflexive reloids

Definition 1226. Endoreloid f is irreflexive iff f � 1Ob f .

Proposition 1227. Endoreloid f is irreflexive iff f v > \ 1.

Proof. By theorem 601. �

Obvious 1228. f \ 1 is an irreflexive endoreloid if f is an endoreloid.

Proposition 1229. S(f) = S(f t 1) if f is an endoreloid, endofuncoid, or
endorelation.

Proof. First prove (f t1)n = 1tf t . . .tfn for n ∈ N. For n = 0 it’s obvious.
By induction we have

(f t 1)n+1 =
(f t 1)n ◦ (f t 1) =

(1 t f t · · · t fn) ◦ (f t 1) =
(f t f2 t · · · t fn+1) t (1 t f t · · · t fn) =

1 t f t · · · t fn+1.

So S(f t 1) = 1 t (1 t f) t (1 t f t f2) t . . . = 1 t f t f2 t . . . = S(f). �

Corollary 1230. S(f) = S(f t 1) = S(f \ 1) if f is an endoreloid (or just an
endorelation).

Proof. S(f \ 1) = S((f \ 1) t 1) w S(f). But S(f \ 1) v S(f) is obvious. So
S(f \ 1) = S(f). �

12.7. Micronization

“Micronization” was a thoroughly wrong idea with several errors in the proofs.
This section is removed from the book.



CHAPTER 13

Total boundness of reloids

13.1. Thick binary relations

Definition 1231. I will call α-thick and denote thickα(E) a Rel-
endomorphism E when there exists a finite cover S of ObE such that ∀A ∈ S :
A×A ⊆ GRE.

Definition 1232. CS(S) =
⋃{

A×A
A∈S

}
for a collection S of sets.

Remark 1233. CS means “Cartesian squares”.

Obvious 1234. A Rel-endomorphism is α-thick iff there exists a finite cover
S of ObE such that CS(S) ⊆ GRE.

Definition 1235. I will call β-thick and denote thickβ(E) a Rel-
endomorphism E when there exists a finite set B such that 〈GRE〉∗B = ObE.

Proposition 1236. thickα(E)⇒ thickβ(E).

Proof. Let thickα(E). Then there exists a finite cover S of the set ObE such
that ∀A ∈ S : A × A ⊆ GRE. Without loss of generality assume A 6= ∅ for every
A ∈ S. So A ⊆ 〈GRE〉∗{xA} for some xA for every A ∈ S. So

〈GRE〉∗
{ xA
A ∈ S

}
=
⋃{ 〈GRE〉∗{xA}

A ∈ S

}
= ObE

and thus E is β-thick. �

Obvious 1237. Let X be a set, A and B be Rel-endomorphisms on X and
B w A. Then:

• thickα(A)⇒ thickα(B);
• thickβ(A)⇒ thickβ(B).

Example 1238. There is a β-thick Rel-morphism which is not α-thick.

Proof. Consider the Rel-morphism on [0; 1] with the graph on figure 1:

Γ =
{

(x, x)
x ∈ [0; 1]

}
∪
{

(x, 0)
x ∈ [0; 1]

}
∪
{

(0, x)
x ∈ [0; 1]

}
.

y

x

1

0 1

Figure 1. Thickness counterexample graph

Γ is β-thick because 〈Γ〉∗{0} = [0; 1].
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To prove that Γ is not α-thick it’s enough to prove that every set A such that
A×A ⊆ Γ is finite.

Suppose for the contrary that A is infinite. Then A contains more than one
non-zero points y, z (y 6= z). Without loss of generality y < z. So we have that
(y, z) is not of the form (y, y) nor (0, y) nor (y, 0). Therefore A× A isn’t a subset
of Γ. �

13.2. Totally bounded endoreloids

The below is a straightforward generalization of the customary definition of
totally bounded sets on uniform spaces (it’s proved below that for uniform spaces
the below definitions are equivalent).

Definition 1239. An endoreloid f is α-totally bounded (totBoundα(f)) if ev-
ery E ∈ up f is α-thick.

Definition 1240. An endoreloid f is β-totally bounded (totBoundβ(f)) if ev-
ery E ∈ up f is β-thick.

Remark 1241. We could rewrite the above definitions in a more algebraic way
like up f ⊆ thickα (with thickα would be defined as a set rather than as a predicate),
but we don’t really need this simplification.

Proposition 1242. If an endoreloid is α-totally bounded then it is β-totally
bounded.

Proof. Because thickα(E)⇒ thickβ(E). �

Proposition 1243. If an endoreloid f is reflexive and Ob f is finite then f is
both α-totally bounded and β-totally bounded.

Proof. It enough to prove that f is α-totally bounded. Really, every E ∈ up f
is reflexive. Thus {x} × {x} ⊆ GRE for x ∈ Ob f and thus

{
{x}

x∈Ob f

}
is a sought

for finite cover of Ob f . �

Obvious 1244.
• A principal endoreloid induced by a Rel-morphism E is α-totally bounded

iff E is α-thick.
• A principal endoreloid induced by a Rel-morphism E is β-totally bounded

iff E is β-thick.

Example 1245. There is a β-totally bounded endoreloid which is not α-totally
bounded.

Proof. It follows from the example above and properties of principal en-
doreloids. �

13.3. Special case of uniform spaces

Remember that uniform space is essentially the same as symmetric, reflexive
and transitive endoreloid.

Theorem 1246. Let f be such an endoreloid that f ◦ f−1 v f . Then f is
α-totally bounded iff it is β-totally bounded.

Proof.
⇒. Proved above.
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⇐. For every ε ∈ up f we have that 〈GR ε〉∗{c0}, . . . , 〈GR ε〉∗{cn} covers the space.
〈GR ε〉∗{ci}×〈GR ε〉∗{ci} ⊆ GR(ε◦ε−1) because for x ∈ 〈GR ε〉∗{ci} (the
same as ci ∈ 〈GR ε〉∗{x}) we have〈

〈GR ε〉∗{ci} × 〈GR ε〉∗{ci}
〉∗{x} = 〈GR ε〉∗{ci} ⊆ 〈GR ε〉∗

〈
GR ε−1〉∗{x} =

〈
GR(ε ◦ ε−1)

〉∗{x}.
For every ε′ ∈ up f exists ε ∈ up f such that ε◦ ε−1 v ε′ because f ◦f−1 v
f . Thus for every ε′ we have 〈GR ε〉∗{ci} × 〈GR ε〉∗{ci} ⊆ GR ε′ and so
〈GR ε〉∗{c0}, . . . , 〈GR ε〉∗{cn} is a sought for finite cover.

�

Corollary 1247. A uniform space is α-totally bounded iff it is β-totally
bounded.

Proof. From the theorem and the definition of uniform spaces. �

Thus we can say about just totally bounded uniform spaces (without specifying
whether it is α or β).

13.4. Relationships with other properties

Theorem 1248. Let µ and ν be endoreloids. Let f be a principal C′(µ, ν)
continuous, monovalued, surjective reloid. Then if µ is β-totally bounded then ν is
also β-totally bounded.

Proof. Let ϕ be the monovalued, surjective function, which induces the
reloid f .

We have µ v f−1 ◦ ν ◦ f .
Let F ∈ up ν. Then there exists E ∈ upµ such that E ⊆ ϕ−1 ◦ F ◦ ϕ.
Since µ is β-totally bounded, there exists a finite typed subset A of Obµ such

that 〈GRE〉∗A = Obµ.
We claim 〈GRF 〉∗〈ϕ〉∗A = Ob ν.
Indeed let y ∈ Ob ν be an arbitrary point. Since ϕ is surjective, there exists

x ∈ Obµ such that ϕx = y. Since 〈GRE〉∗A = Obµ there exists a ∈ A such that
a (GRE) x and thus a (ϕ−1 ◦ F ◦ ϕ) x. So (ϕa, y) = (ϕa, ϕx) ∈ GRF . Therefore
y ∈ 〈GRF 〉∗〈ϕ〉∗A. �

Theorem 1249. Let µ and ν be endoreloids. Let f be a principal C′′(µ, ν)
continuous, surjective reloid. Then if µ is α-totally bounded then ν is also α-totally
bounded.

Proof. Let ϕ be the surjective binary relation which induces the reloid f .
We have f ◦ µ ◦ f−1 v ν.
Let F ∈ up ν. Then there exists E ∈ upµ such that ϕ ◦ E ◦ ϕ−1 ⊆ F .
There exists a finite cover S of Obµ such that

⋃{
A×A
A∈S

}
⊆ GRE.

Thus ϕ ◦
(⋃{

A×A
A∈S

})
◦ ϕ−1 ⊆ GRF that is

⋃{ 〈ϕ〉∗A×〈ϕ〉∗A
A∈S

}
⊆ GRF .

It remains to prove that
{
〈ϕ〉∗A
A∈S

}
is a cover of Ob ν. It is true because ϕ is a

surjection and S is a cover of Obµ. �

A stronger statement (principality requirement removed):

Conjecture 1250. The image of a uniformly continuous entirely defined
monovalued surjective reloid from a (α-, β-)totally bounded endoreloid is also (α-,
β-)totally bounded.

Can we remove the requirement to be entirely defined from the above conjec-
ture?
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Question 1251. Under which conditions it’s true that join of (α-, β-) totally
bounded reloids is also totally bounded?

13.5. Additional predicates

We may consider also the following predicates expressing different kinds of what
is intuitively is understood as boundness. Their usefulness is unclear, but I present
them for completeness.

• totBoundα(f)
• totBoundβ(f)
• ∃n ∈ N∀E ∈ up f : thickα(En)
• ∃n ∈ N∀E ∈ up f : thickβ(En)
• ∃n ∈ N∀E ∈ up f : thickα(E0 t . . . t En)
• ∃n ∈ N∀E ∈ up f : thickβ(E0 t . . . t En)
• ∃n ∈ N : totBoundα(fn)
• ∃n ∈ N : totBoundβ(fn)
• ∃n ∈ N : totBoundα(f0 t . . . t fn)
• ∃n ∈ N : totBoundβ(f0 t . . . t fn)
• totBoundα(S(f))
• totBoundβ(S(f))

Some of the above defined predicates are equivalent:

Proposition 1252.
• ∃n ∈ N∀E ∈ up f : thickα(En)⇔ ∃n ∈ N : totBoundα(fn).
• ∃n ∈ N∀E ∈ up f : thickβ(En)⇔ ∃n ∈ N : totBoundβ(fn).

Proof. Because for every E ∈ up f some F ∈ up fn is a subset of En, we have
∀E ∈ up f : thickα(En)⇔ ∀F ∈ up fn : thickα(F )

and likewise for thickβ . �

Proposition 1253.
• ∃n ∈ N∀E ∈ up f : thickα(E0 t . . . t En) ⇔ ∃n ∈ N : totBoundα(f0 t
. . . t fn)

• ∃n ∈ N∀E ∈ up f : thickβ(E0 t . . . t En) ⇔ ∃n ∈ N : totBoundβ(f0 t
. . . t fn)

Proof. It’s enough to prove
∀E ∈ up f∃F ∈ up(f0 t · · · t fn) : F v E0 t . . . t En and (15)
∀F ∈ up(f0 t · · · t fn)∃E ∈ up f : E0 t . . . t En v F. (16)

For the formula (15) take F = E0 t · · · t En.
Let’s prove (16). Let F ∈ up(f0 t · · · t fn). Using the fact that F ∈ up f i

take Ei ∈ up f for i = 0, . . . , n such that Eii v F (exercise 1004 and properties of
generalized filter bases) and then E = E0u· · ·uEn ∈ up f . We have E0t. . .tEn v
F . �

Proposition 1254. All predicates in the above list are pairwise equivalent in
the case if f is a uniform space.

Proof. Because f ◦ f = f and thus fn = f0 t · · · t fn = S(f) = f . �



CHAPTER 14

Orderings of filters in terms of reloids

Whilst the other chapters of this book use filters to research funcoids and
reloids, here the opposite thing is discussed, the theory of reloids is used to describe
properties of filters.

In this chapter the word filter is used to denote a filter on a set (not on an
arbitrary poset) only.

14.1. Ordering of filters

Below I will define some categories having filters (with possibly different bases)
as their objects and some relations having two filters (with possibly different bases)
as arguments induced by these categories (defined as existence of a morphism be-
tween these two filters).

Theorem 1255. card a = cardU for every ultrafilter a on U if U is infinite.

Proof. Let f(X) = X if X ∈ a and f(X) = U \X if X /∈ a. Obviously f is a
surjection from U to a.

Every X ∈ a appears as a value of f exactly twice, as f(X) and f(U \X). So
card a = (cardU)/2 = cardU . �

Corollary 1256. Cardinality of every two ultrafilters on a set U is the same.

Proof. For infinite U it follows from the theorem. For finite case it is obvious.
�

Proposition 1257.
〈
↑FCD f

〉
A =

{
C∈P(Dst f)
〈f−1〉∗C∈A

}
for every Set-morphism

f : Base(A) → Base(B). (Here a funcoid is considered as a pair of functions
F(Base(A)) → F(Base(B)), F(Base(B)) → F(Base(A)) rather than as a pair of
functions F (Base(A))→ F (Base(B)), F (Base(B))→ F (Base(A)).)

Proof. For every set C ∈P Base(B) we have〈
f−1〉∗C ∈ A ⇒

∃K ∈ A :
〈
f−1〉∗C = K ⇒

∃K ∈ A : 〈f〉∗
〈
f−1〉∗C = 〈f〉∗K ⇒

∃K ∈ A : C ⊇ 〈f〉∗K ⇔

∃K ∈ A : C ∈
〈
↑FCD f

〉∗
K ⇒

C ∈
〈
↑FCD f

〉
A.

So C ∈
{
C∈P(Dst f)
〈f−1〉∗C∈A

}
⇒ C ∈

〈
↑FCD f

〉
A.

Let now C ∈
〈
↑FCD f

〉
A. Then ↑

〈
f−1〉∗C w 〈↑FCD f−1〉〈↑FCD f

〉
A w A and

thus
〈
f−1〉∗C ∈ A. �

Below I’ll define some directed multigraphs. By an abuse of notation, I will
denote these multigraphs the same as (below defined) categories based on some
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of these directed multigraphs with added composition of morphisms (of directed
multigraphs edges). As such I will call vertices of these multigraphs objects and
edges morphisms.

Definition 1258. I will denote GreFunc1 the multigraph whose objects are
filters and whose morphisms between objects A and B are Set-morphisms from
Base(A) to Base(B) such that B v

〈
↑FCD f

〉
A.

Definition 1259. I will denote GreFunc2 the multigraph whose objects are
filters and whose morphisms between objects A and B are Set-morphisms from
Base(A) to Base(B) such that B =

〈
↑FCD f

〉
A.

Definition 1260. Let A be a filter on a set X and B be a filter on a set Y .
A ≥1 B iff HomGreFunc1(A,B) is not empty.

Definition 1261. Let A be a filter on a set X and B be a filter on a set Y .
A ≥2 B iff HomGreFunc2(A,B) is not empty.

Proposition 1262.
1◦. f ∈ HomGreFunc1(A,B) iff f is a Set-morphism from Base(A) to Base(B)

such that
C ∈ B ⇐

〈
f−1〉∗C ∈ A

for every C ∈P Base(B).
2◦. f ∈ HomGreFunc2(A,B) iff f is a Set-morphism from Base(A) to Base(B)

such that
C ∈ B ⇔

〈
f−1〉∗C ∈ A

for every C ∈P Base(B).

Proof.
1◦.

f ∈ HomGreFunc1(A,B)⇔ B v
〈
↑FCD f

〉
A ⇔

∀C ∈
〈
↑FCD f

〉
A : C ∈ B ⇔ ∀C ∈P Base(B) : (

〈
f−1〉∗C ∈ A ⇒ C ∈ B).

2◦.

f ∈ HomGreFunc2(A,B)⇔ B =
〈
↑FCD f

〉
A ⇔ ∀C : (C ∈ B ⇔ C ∈

〈
↑FCD f

〉
A)⇔

∀C ∈P Base(B) : (C ∈ B ⇔ C ∈
〈
↑FCD f

〉
A)⇔

∀C ∈P Base(B) : (
〈
f−1〉∗C ∈ A ⇔ C ∈ B).

�

Definition 1263. The directed multigraph FuncBij is the directed multigraph
got from GreFunc2 by restricting to only bijective morphisms.

Definition 1264. A filter A is directly isomorphic to a filter B iff there is a
morphism f ∈ HomFuncBij(A,B).

Obvious 1265. f ∈ HomGreFunc1(A,B) ⇔ B v
〈
↑FCD f

〉
A for every Set-

morphism from Base(A) to Base(B).

Obvious 1266. f ∈ HomGreFunc2(A,B) ⇔ B =
〈
↑FCD f

〉
A for every Set-

morphism from Base(A) to Base(B).

Corollary 1267. A ≥1 B iff it exists a Set-morphism f : Base(A)→ Base(B)
such that B v

〈
↑FCD f

〉
A.

Corollary 1268. A ≥2 B iff it exists a Set-morphism f : Base(A)→ Base(B)
such that B =

〈
↑FCD f

〉
A.
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Proposition 1269. For a bijective Set-morphism f : Base(A)→ Base(B) the
following are equivalent:

1◦. B =
{
C∈P Base(B)
〈f−1〉∗C∈A

}
.

2◦. ∀C ∈ Base(B) : (C ∈ B ⇔
〈
f−1〉∗C ∈ A).

3◦. ∀C ∈ Base(A) : (C ∈ 〈f〉∗B ⇔ C ∈ A).
4◦.

〈
↑FCD f

〉
|A is a bijection from A to B.

5◦.
〈
↑FCD f

〉
|A is a function onto B.

6◦. B =
〈
↑FCD f

〉
A.

7◦. f ∈ HomGreFunc2(A,B).
8◦. f ∈ HomFuncBij(A,B).

Proof.
1◦⇔2◦.

B =
{
C ∈P Base(B)
〈f−1〉∗C ∈ A

}
⇔ ∀C ∈P Base(B) : (C ∈ B ⇔

〈
f−1〉∗C ∈ A).

2◦⇔3◦. Because f is a bijection.
2◦⇒5◦. For every C ∈ B we have

〈
f−1〉∗C ∈ A and thus

〈
↑FCD f

〉
|A
〈
↑FCD f−1〉C =

〈f〉∗
〈
f−1〉∗C = C. Thus

〈
↑FCD f

〉
|A is onto B.

4◦⇒5◦. Obvious.
5◦⇒4◦. We need to prove only that

〈
↑FCD f

〉
|A is an injection. But this follows

from the fact that f is a bijection.
4◦⇒3◦. We have ∀C ∈ Base(A) : ((

〈
↑FCD f

〉
|A)C ∈ B ⇔ C ∈ A) and consequently

∀C ∈ Base(A) : (〈f〉∗C ∈ B ⇔ C ∈ A).
6◦⇔1◦. From the last corollary.
1◦⇔7◦. Obvious.
7◦⇔8◦. Obvious.

�

Corollary 1270. The following are equivalent for every filters A and B:
1◦. A is directly isomorphic to B.
2◦. There is a bijective Set-morphism f : Base(A) → Base(B) such that for

every C ∈P Base(B)
C ∈ B ⇔

〈
f−1〉∗C ∈ A.

3◦. There is a bijective Set-morphism f : Base(A) → Base(B) such that for
every C ∈P Base(B)

〈f〉∗C ∈ B ⇔ C ∈ A.
4◦. There is a bijective Set-morphism f : Base(A) → Base(B) such that〈

↑FCD f
〉
|A is a bijection from A to B.

5◦. There is a bijective Set-morphism f : Base(A) → Base(B) such that〈
↑FCD f

〉
|A is a function onto B.

6◦. There is a bijective Set-morphism f : Base(A) → Base(B) such that
B =

〈
↑FCD f

〉
A.

7◦. There is a bijective morphism f ∈ HomGreFunc2(A,B).
8◦. There is a bijective morphism f ∈ HomFuncBij(A,B).

Proposition 1271. GreFunc1 and GreFunc2 with function composition are
categories.

Proof. Let f : A → B and g : B → C be morphisms of GreFunc1. Then
B v

〈
↑FCD f

〉
A and C v

〈
↑FCD g

〉
B. So〈

↑FCD (g ◦ f)
〉
A =

〈
↑FCD g

〉〈
↑FCD f

〉
A w

〈
↑FCD g

〉
B w C.
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Thus g ◦ f is a morphism of GreFunc1. Associativity law is evident. idBase(A) is
the identity morphism of GreFunc1 for every filter A.

Let f : A → B and g : B → C be morphisms of GreFunc2. Then B =〈
↑FCD f

〉
A and C =

〈
↑FCD g

〉
B. So〈

↑FCD (g ◦ f)
〉
A =

〈
↑FCD g

〉〈
↑FCD f

〉
A =

〈
↑FCD g

〉
B = C.

Thus g ◦ f is a morphism of GreFunc2. Associativity law is evident. idBase(A) is
the identity morphism of GreFunc2 for every filter A. �

Corollary 1272. ≤1 and ≤2 are preorders.
Theorem 1273. FuncBij is a groupoid.
Proof. First let’s prove it is a category. Let f : A → B and g : B → C be

morphisms of FuncBij. Then f : Base(A) → Base(B) and g : Base(B) → Base(C)
are bijections and B =

〈
↑FCD f

〉
A and C =

〈
↑FCD g

〉
B. Thus g ◦ f : Base(A) →

Base(C) is a bijection and C =
〈
↑FCD (g ◦ f)

〉
A. Thus g ◦ f is a morphism of

FuncBij. idBase(A) is the identity morphism of FuncBij for every filter A. Thus
it is a category.

It remains to prove only that every morphism f ∈ HomFuncBij(A,B) has a
reverse (for every filters A, B). We have f is a bijection Base(A) → Base(B) such
that for every C ∈P Base(A)

〈f〉∗C ∈ B ⇔ C ∈ A.
Then f−1 : Base(B)→ Base(A) is a bijection such that for every C ∈P Base(B)〈

f−1〉∗C ∈ A ⇔ C ∈ B.
Thus f−1 ∈ HomFuncBij(B,A). �

Corollary 1274. Being directly isomorphic is an equivalence relation.
Rudin-Keisler order of ultrafilters is considered in such a book as [40].
Obvious 1275. For the case of ultrafilters being directly isomorphic is the same

as being Rudin-Keisler equivalent.
Definition 1276. A filter A is isomorphic to a filter B iff there exist sets

A ∈ A and B ∈ B such that A÷A is directly isomorphic to B ÷B.
Obvious 1277. Equivalent filters are isomorphic.
Theorem 1278. Being isomorphic (for small filters) is an equivalence relation.
Proof.

Reflexivity. Because every filter is directly isomorphic to itself.
Symmetry. If filter A is isomorphic to B then there exist sets A ∈ A and B ∈ B

such that A÷A is directly isomorphic to B÷B and thus B÷B is directly
isomorphic to A÷A. So B is isomorphic to A.

Transitivity. Let A be isomorphic to B and B be isomorphic to C. Then exist
A ∈ A, B1 ∈ B, B2 ∈ B, C ∈ C such that there are bijections f : A→ B1
and g : B2 → C such that

∀X ∈PA : (X ∈ B ⇔
〈
f−1〉∗X ∈ A) and ∀X ∈PB1 : (X ∈ A ⇔ 〈f〉∗X ∈ B)

and also ∀X ∈PB2 : (X ∈ B ⇔ 〈g〉∗X ∈ C).
So g ◦f is a bijection from

〈
f−1〉∗(B1∩B2) ∈ A to 〈g〉∗(B1∩B2) ∈ C

such that
X ∈ A ⇔ 〈f〉∗X ∈ B ⇔ 〈g〉∗〈f〉∗X ∈ C ⇔ 〈g ◦ f〉∗X ∈ C.

Thus g ◦ f establishes a bijection which proves that A is isomorphic to C.
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�

Lemma 1279. Let cardX = cardY , u be an ultrafilter on X and v be an
ultrafilter on Y ; let A ∈ u and B ∈ v. Let u÷A and v÷B be directly isomorphic.
Then if card(X \A) = card(Y \B) we have u and v directly isomorphic.

Proof. Arbitrary extend the bijection witnessing being directly isomorphic to
the sets X \A and X \B. �

Theorem 1280. If cardX = cardY then being isomorphic and being directly
isomorphic are the same for ultrafilters u on X and v on Y .

Proof. That if two filters are isomorphic then they are directly isomorphic is
obvious.

Let ultrafilters u and v be isomorphic that is there is a bijection f : A → B
where A ∈ u, B ∈ v witnessing isomorphism of u and v.

If one of the filters u or v is a trivial ultrafilter then the other is also a trivial
ultrafilter and as it is easy to show they are directly isomorphic. So we can assume
u and v are not trivial ultrafilters.

If card(X \A) = card(Y \B) our statement follows from the last lemma.
Now assume without loss of generality card(X \A) < card(Y \B).
cardB = cardY because otherwise card(X \A) = card(Y \B).
It is easy to show that there exists B′ ⊃ B such that card(X \A) = card(Y \B′)

and cardB′ = cardB.
We will find a bijection g from B to B′ which witnesses direct isomorphism of

v to v itself. Then the composition g ◦ f witnesses a direct isomorphism of u ÷ A
and v ÷B′ and by the lemma u and v are directly isomorphic.

Let D = B′ \B. We have D /∈ v.
There exists a set E ⊆ B such that cardE ≥ cardD and E /∈ v.
We have cardE = card(D∪E) and thus there exists a bijection h : E → D∪E.
Let

g(x) =
{
x if x ∈ B \ E;
h(x) if x ∈ E.

g|B\E and g|E are bijections.
im(g|B\E) = B \ E; im(g|E) = im h = D ∪ E;

(D ∪ E) ∩ (B \ E) = (D ∩ (B \ E)) ∪ (E ∩ (B \ E)) = ∅ ∪ ∅ = ∅.

Thus g is a bijection from B to (B \ E) ∪ (D ∪ E) = B ∪D = B′.
To finish the proof it’s enough to show that 〈g〉∗v = v. Indeed it follows from

B \ E ∈ v. �

Proposition 1281.
1◦. For every A ∈ A and B ∈ B we have A ≥2 B iff A÷A ≥2 B ÷B.
2◦. For every A ∈ A and B ∈ B we have A ≥1 B iff A÷A ≥1 B ÷B.

Proof.
1◦. A ≥2 B iff there exist a bijective Set-morphism f such that B =〈

↑FCD f
〉
A. The equality is obviously preserved replacing A with A ÷ A and B

with B ÷B.
2◦. A ≥1 B iff there exist a bijective Set-morphism f such that B ⊆〈

↑FCD f
〉
A. The equality is obviously preserved replacing A with A ÷ A and B

with B ÷B.
�
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Proposition 1282. For ultrafilters ≥2 is the same as Rudin-Keisler ordering
(as defined in [40]).

Proof. x ≥2 y iff there exist sets A ∈ x and B ∈ y and a bijective Set-
morphism f : X → Y such that

y ÷B =
{

C ∈PY

〈f−1〉∗C ∈ x÷A

}
that is when C ∈ y ÷ B ⇔

〈
f−1〉∗C ∈ x ÷ A what is equivalent to C ∈ y ⇔〈

f−1〉∗C ∈ x what is the definition of Rudin-Keisler ordering. �

Remark 1283. The relation of being isomorphic for ultrafilters is traditionally
called Rudin-Keisler equivalence.

Obvious 1284. (≥1) ⊇ (≥2).

Definition 1285. Let Q and R be binary relations on the set of (small) filters.
I will denote MonRldQ,R the directed multigraph with objects being filters and
morphisms such monovalued reloids f that (dom f) Q A and (im f) R B.

I will also denote CoMonRldQ,R the directed multigraph with objects being
filters and morphisms such injective reloids f that (im f) Q A and (dom f) R B.
These are essentially the duals.

Some of these directed multigraphs are categories with reloid composition (see
below). By abuse of notation I will denote these categories the same as these
directed multigraphs.

Lemma 1286. CoMonRldQ,R 6= ∅ ⇔MonRldQ,R 6= ∅.

Proof. f ∈ CoMonRldQ,R ⇔ (im f) Q A ∧ (dom f) R B ⇔ (dom f−1) Q
A∧ (im f−1) R B ⇔ f−1 ∈MonRldQ,R for every monovalued reloid f (or what is
the same, injective reloid f−1). �

Theorem 1287. For every filters A and B the following are equivalent:
1◦. A ≥1 B.
2◦. HomMonRld=,w(A,B) 6= ∅.
3◦. HomMonRldv,w(A,B) 6= ∅.
4◦. HomMonRldv,=(A,B) 6= ∅.
5◦. HomCoMonRld=,w(A,B) 6= ∅.
6◦. HomCoMonRldv,w(A,B) 6= ∅.
7◦. HomCoMonRldv,=(A,B) 6= ∅.

Proof.
1◦⇒2◦. There exists a Set-morphism f : Base(A) → Base(B) such that B v〈

↑FCD f
〉
A. We have

dom(↑RLD f)|A = A u>(Base(A)) = A
and

im(↑RLD f)|A = im(FCD)(↑RLD f)|A = im(↑FCD f)|A =
〈
↑FCD f

〉
A w B.

Thus (↑RLD f)|A is a monovalued reloid such that dom(↑RLD f)|A = A
and im(↑RLD f)|A w B.

2◦⇒3◦, 4◦⇒3◦, 5◦⇒6◦, 7◦⇒6◦. Obvious.
3◦⇒1◦. We have B v 〈(FCD)f〉A for a monovalued reloid f ∈

RLD(Base(A),Base(B)). Then there exists a Set-morphism
F : Base(A)→ Base(B) such that B v

〈
↑FCD F

〉
A that is A ≥1 B.
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6◦⇒7◦. Let f be an injective reloid such that im f v A and dom f w B. Then
im f |B v A and dom f |B = B. So f |B ∈ HomCoMonRldv,=(A,B).

2◦⇔5◦, 3◦⇔6◦, 4◦⇔7◦. By the lemma.
�

Theorem 1288. For every filters A and B the following are equivalent:
1◦. A ≥2 B.
2◦. HomMonRld=,=(A,B) 6= ∅.
3◦. HomCoMonRld=,=(A,B) 6= ∅.

Proof.
1◦⇒2◦. Let A ≥2 B that is B =

〈
↑FCD f

〉
A for some Set-morphism f : Base(A)→

Base(B). Then dom(↑RLD f)|A = A and

im(↑RLD f)|A = im(FCD)(↑RLD f)|A = im(↑FCD f)|A =
〈
↑FCD f

〉
A = B.

So (↑RLD f)|A is a sought for reloid.
2◦⇒1◦. There exists a monovalued reloid f with domain A such that 〈(FCD)f〉A =

B. By corollary 1324 below, there exists a Set-morphism F : Base(A)→
Base(B) such that f = (↑RLD F )|A. Thus〈

↑FCD F
〉
A = im(↑FCD F )|A = im(FCD)(↑RLD F )|A = im(FCD)f = im f = B.

Thus A ≥2 B is testified by the morphism F .
2◦⇔3◦. By the lemma.

�

Theorem 1289. The following are categories (with reloid composition):
1◦. MonRldv,w;
2◦. MonRldv,=;
3◦. MonRld=,=;
4◦. CoMonRldv,w;
5◦. CoMonRldv,=;
6◦. CoMonRld=,=.

Proof. We will prove only the first three. The rest follow from duality. We
need to prove only that composition of morphisms is a morphism, because associa-
tivity and existence of identity morphism are evident. We have:

1◦. Let f ∈ HomMonRldv,w(A,B), g ∈ HomMonRldv,w(B, C). Then dom f v
A, im f w B, dom g v B, im g w C. So dom(g ◦ f) v A, im(g ◦ f) w C that is
g ◦ f ∈ HomMonRldv,w(A, C).

2◦. Let f ∈ HomMonRldv,=(A,B), g ∈ HomMonRldv,=(B, C). Then dom f v
A, im f = B, dom g v B, im g = C. So dom(g ◦ f) v A, im(g ◦ f) = C that is
g ◦ f ∈ HomMonRldv,=(A, C).

3◦. Let f ∈ HomMonRld=,=(A,B), g ∈ HomMonRld=,=(B, C). Then dom f =
A, im f = B, dom g = B, im g = C. So dom(g ◦ f) = A, im(g ◦ f) = C that is
g ◦ f ∈ HomMonRld=,=(A, C).

�

Definition 1290. Let BijRld be the groupoid of all bijections of the category
of reloid triples. Its objects are filters and its morphisms from a filter A to filter B
are monovalued injective reloids f such that dom f = A and im f = B.

Theorem 1291. Filters A and B are isomorphic iff HomBijRld(A,B) 6= ∅.

Proof.
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⇒. Let A and B be isomorphic. Then there are sets A ∈ A, B ∈ B and a bijective
Set-morphism F : A → B such that 〈F 〉∗ : PA ∩ A → PB ∩ B is a
bijection.

Obviously f = (↑RLD F )|A is monovalued and injective.
im f =

Fl{ imG

G ∈ up(↑RLD F )|A

}
=

Fl{ im(H ∩ F |X)
H ∈ up(↑RLD F )|A, X ∈ A

}
=

Fl{ imF |P
P ∈ A

}
=

Fl{ 〈F 〉∗P
P ∈ A

}
=

Fl{ 〈F 〉∗P
P ∈PA ∩ A

}
=

Fl
(PB ∩ B) =
Fl
B = B.

Thus dom f = A and im f = B.
⇐. Let f be a monovalued injective reloid such that dom f = A and im f = B.

Then there exist a function F ′ and an injective binary relation F ′′ such
that F ′, F ′′ ∈ f . Thus F = F ′ ∩ F ′′ is an injection such that F ∈ f . The
function F is a bijection from A = domF to B = imF . The function
〈F 〉∗ is an injection on PA ∩ A (and moreover on PA). It’s simple to
show that ∀X ∈PA ∩ A : 〈F 〉∗X ∈PB ∩ B and similarly

∀Y ∈PB ∩ B : (〈F 〉∗)−1Y =
〈
F−1〉∗Y ∈PA ∩ A.

Thus 〈F 〉∗|PA∩A is a bijection PA ∩ A → PB ∩ B. So filters A and B
are isomorphic.

�

Proposition 1292. (≥1) = (w) ◦ (≥2) (when we limit to small filters).

Proof. A ≥1 B iff exists a function f : Base(A) → Base(B) such that B v〈
↑FCD f

〉
A. But B v

〈
↑FCD f

〉
A is equivalent to ∃B′ ∈ F : (B′ w B ∧ B′ =〈

↑FCD f
〉
A). So A ≥1 B is equivalent to existence of B′ ∈ F such that B′ w B and

existence of a function f : Base(A) → Base(B) such that B′ =
〈
↑FCD f

〉
A. This is

equivalent to A ((w) ◦ (≥2)) B. �

Proposition 1293. If a and b are ultrafilters then b ≥1 a⇔ b ≥2 a.

Proof. We need to prove only b ≥1 a ⇒ b ≥2 a. If b ≥1 a then there exists
a monovalued reloid f : Base(b) → Base(a) such that dom f = b and im f w a.
Then im f = im(FCD)f ∈ {⊥F(Base(a))} ∪ atomsF(Base(a)) because (FCD)f is a
monovalued funcoid. So im f = a (taken into account im f 6= ⊥F(Base(a))) and thus
b ≥2 a. �

Corollary 1294. For atomic filters ≥1 is the same as ≥2.

Thus I will write simply ≥ for atomic filters.
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14.1.1. Existence of no more than one monovalued injective reloid
for a given pair of ultrafilters.

14.1.1.1. The lemmas. The lemmas in this section were provided to me by
Robert Martin Solovay in [39]. They are based on Wistar Comfort’s work.

In this section we will assume µ is an ultrafilter on a set I and function f : I → I
has the property X ∈ µ⇔

〈
f−1〉∗X ∈ µ.

Lemma 1295. If X ∈ µ then X ∩ 〈f〉∗X ∈ µ.

Proof. If 〈f〉∗X /∈ µ then X ⊆
〈
f−1〉∗〈f〉∗X /∈ µ and so X /∈ µ. Thus

X ∈ µ ∧ 〈f〉∗X ∈ µ and consequently X ∩ 〈f〉∗X ∈ µ. �

We will say that x is periodic when fn(x) = x for some positive integer x. The
least such n is called the period of x.

Let’s define x ∼ y iff there exist i, j ∈ N such that f i(x) = f j(y). Trivially it
is an equivalence relation. If x and y are periodic, then x ∼ y iff exists n ∈ N such
that fn(y) = x.

Let A =
{

x∈I
x is periodic with period>1

}
.

We will show A /∈ µ. Let’s assume A ∈ µ.
Let a set D ⊆ A contains (by the axiom of choice) exactly one element from

each equivalence class of A defined by the relation ∼.
Let α be a function A→ N defined as follows. Let x ∈ A. Let y be the unique

element of D such that x ∼ y. Let α(x) be the least n ∈ N such that fn(y) = x.
Let B0 =

{
x∈A

α(x) is even

}
and B1 =

{
x∈A

α(x) is odd

}
.

Let B2 =
{

x∈A
α(x)=0

}
.

Lemma 1296. B0 ∩ 〈f〉∗B0 ⊆ B2.
Proof. If x ∈ B0 ∩ 〈f〉∗B0 then for a minimal even n and x = f(x′) where

fm(y′) = x′ for a minimal even m. Thus fn(y) = f(x′) thus y and x′ laying in
the same equivalence class and thus y = y′. So we have fn(y) = fm+1(y). Thus
n ≤ m+ 1 by minimality.

x′ lies on an orbit and thus x′ = f−1(x) where by f−1 I mean step backward
on our orbit; fm(y) = f−1(x) and thus x′ = fn−1(y) thus n−1 ≥ m by minimality
or n = 0.

Thus n = m+ 1 what is impossible for even n and m. We have a contradiction
what proves B0 ∩ 〈f〉∗B0 ⊆ ∅.

Remained the case n = 0, then x = f0(y) and thus α(x) = 0. �

Lemma 1297. B1 ∩ 〈f〉∗B1 = ∅.
Proof. Let x ∈ B1 ∩ 〈f〉∗B1. Then fn(y) = x for an odd n and x = f(x′)

where fm(y′) = x′ for an odd m. Thus fn(y) = f(x′) thus y and x′ laying in
the same equivalence class and thus y = y′. So we have fn(y) = fm+1(y). Thus
n ≤ m+ 1 by minimality.

x′ lies on an orbit and thus x′ = f−1(x) where by f−1 I mean step backward
on our orbit;

fm(y) = f−1(x) and thus x′ = fn−1(y) thus n − 1 ≥ m by minimality (n = 0
is impossible because n is odd).

Thus n = m+ 1 what is impossible for odd n and m. We have a contradiction
what proves B1 ∩ 〈f〉∗B1 = ∅. �

Lemma 1298. B2 ∩ 〈f〉∗B2 = ∅.
Proof. Let x ∈ B2 ∩ 〈f〉∗B2. Then x = y and x′ = y where x = f(x′). Thus

x = f(x) and so x /∈ A what is impossible. �
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Lemma 1299. A /∈ µ.
Proof. Suppose A ∈ µ.
Since A ∈ µ we have B0 ∈ µ or B1 ∈ µ.
So either B0 ∩ 〈f〉∗B0 ⊆ B2 or B1 ∩ 〈f〉∗B1 ⊆ B2. As such by the lemma

1295 we have B2 ∈ µ. This is incompatible with B2 ∩ 〈f〉∗B2 = ∅. So we got a
contradiction. �

Let C be the set of points x which are not periodic but fn(x) is periodic for
some positive n.

Lemma 1300. C /∈ µ.
Proof. Let β be a function C → N such that β(x) is the least n ∈ N such

that fn(x) is periodic.
Let C0 =

{
x∈C

β(x) is even

}
and C1 =

{
x∈C

β(x) is odd

}
.

Obviously Cj∩〈f〉∗Cj = ∅ for j = 0, 1. Hence by lemma 1295 we have C0, C1 /∈
µ and thus C = C0 ∪ C1 /∈ µ. �

Let E be the set of x ∈ I such that for no n ∈ N we have fn(x) periodic.

Lemma 1301. Let x, y ∈ E be such that f i(x) = f j(y) and f i′(x) = f j
′(y) for

some i, j, i′, j′ ∈ N. Then i− j = i′ − j′.
Proof. i 7→ f i(x) is a bijection.
So y = f i−j(y) and y = f i

′−j′(y). Thus f i−j(y) = f i
′−j′(y) and so i − j =

i′ − j′. �

Lemma 1302. E /∈ µ.
Proof. Let D′ ⊆ E be a subset of E with exactly one element from each

equivalence class of the relation ∼ on E.
Define the function γ : E → Z as follows. Let x ∈ E. Let y be the unique

element of D′ such that x ∼ y. Choose i, j ∈ N such that f i(y) = f j(x). Let
γ(x) = i− j. By the last lemma, γ is well-defined.

It is clear that if x ∈ E then f(x) ∈ E and moreover γ(f(x)) = γ(x) + 1.
Let E0 =

{
x∈E

γ(x) is even

}
and E1 =

{
x∈E

γ(x) is odd

}
.

We have E0 ∩ 〈f〉∗E0 = ∅ /∈ µ and hence E0 /∈ µ.
Similarly E1 /∈ µ.
Thus E = E0 ∪ E1 /∈ µ. �

Lemma 1303. f is the identity function on a set in µ.
Proof. We have shown A,C,E /∈ µ. But the points which lie in none of these

sets are exactly points periodic with period 1 that is fixed points of f . Thus the
set of fixed points of f belongs to the filter µ. �

14.1.1.2. The main theorem and its consequences.

Theorem 1304. For every ultrafilter a the morphism (a, a, idFCD
a ) is the only

1◦. monovalued morphism of the category of reloid triples from a to a;
2◦. injective morphism of the category of reloid triples from a to a;
3◦. bijective morphism of the category of reloid triples from a to a.

Proof. We will prove only 1◦ because the rest follow from it.
Let f be a monovalued morphism of reloid triples from a to a. Then it exists

a Set-morphism F such that F ∈ f . Trivially
〈
↑FCD F

〉
a w a and thus 〈F 〉∗A ∈ a

for every A ∈ a. Thus by the lemma we have that F is the identity function on a
set in a and so obviously f is an identity. �
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Corollary 1305. For every two atomic filters (with possibly different bases)
A and B there exists at most one bijective reloid triple from A to B.

Proof. Suppose that f and g are two different bijective reloids from A to
B. Then g−1 ◦ f is not the identity reloid (otherwise g−1 ◦ f = idRLD

dom f and so
f = g because f and g are isomorphisms). But g−1 ◦ f is a bijective reloid (as a
composition of bijective reloids) from A to A what is impossible. �

14.2. Rudin-Keisler equivalence and Rudin-Keisler order

FiXme: Define monomorphisms and epimorphisms

Theorem 1306. Atomic filters a and b (with possibly different bases) are iso-
morphic iff a ≥ b ∧ b ≥ a.

Proof. Let a ≥ b ∧ b ≥ a. Then there are a monovalued reloids f and g
such that dom f = a and im f = b and dom g = b and im g = a. Thus g ◦ f
and f ◦ g are monovalued morphisms from a to a and from b to b. By the above
we have g ◦ f = idRLD

a and f ◦ g = idRLD
b so g = f−1 and f−1 ◦ f = idRLD

a and
f ◦ f−1 = idRLD

b . Thus f is an injective monovalued reloid from a to b and thus a
and b are isomorphic. �

The last theorem cannot be generalized from atomic filters to arbitrary filters,
as it’s shown by the following example:

Example 1307. A ≥1 B∧B ≥1 A but A is not isomorphic to B for some filters
A and B.

Proof. Consider A =↑R [0; 1] and B =
d{↑R[0;1+ε[

ε>0

}
. Then the function

f = λx ∈ R : x/2 witnesses both inequalities A ≥1 B and B ≥1 A. But these filters
cannot be isomorphic because only one of them is principal. �

Lemma 1308. Let f0 and f1 be Set-morphisms. Let f(x, y) = (f0x, f1y) for a
function f . Then〈
↑FCD(Src f0×Src f1,Dst f0×Dst f1) f

〉
(A×RLD B) =

〈
↑FCD f0

〉
A×RLD 〈↑FCD f1

〉
B.

Proof. 〈
↑FCD(Src f0×Src f1,Dst f0×Dst f1) f

〉
(A×RLD B) =〈

↑FCD(Src f0×Src f1,Dst f0×Dst f1) f
〉l{↑Src f0×Src f1 (A×B)

A ∈ A, B ∈ B

}
=

l{↑Dst f0×Dst f1 〈f〉∗(A×B)
A ∈ A, B ∈ B

}
=

l{↑Dst f0×Dst f1 (〈f0〉∗A× 〈f1〉∗B)
A ∈ A, B ∈ B

}
=

l{↑Dst f0 〈f0〉∗A× ↑Dst f1 〈f1〉∗B)
A ∈ A, B ∈ B

}
= (theorem 888)

l{↑Dst f0 〈f0〉∗A
A ∈ A

}
×RLD

l{↑Dst f1 〈f1〉∗B
B ∈ B

}
=〈

↑FCD f0
〉
A×RLD 〈↑FCD f1

〉
B.

�

Theorem 1309. Let f be a monovalued reloid. Then GR f is isomorphic to
the filter dom f .
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Proof. Let f be a monovalued reloid. There exists a function F ∈ GR f .
Consider the bijective function p = λx ∈ domF : (x, Fx).
〈p〉∗ domF = F and consequently

〈p〉dom f =
RLDl

K∈up f
〈p〉∗ domK =

RLDl

K∈up f
〈p〉∗ dom(K ∩ F ) =

RLDl

K∈up f
(K ∩ F ) =

RLDl

K∈up f
K = f.

Thus p witnesses that f is isomorphic to the filter dom f . �

Corollary 1310. The graph of a monovalued reloid with atomic domain is
atomic.

Corollary 1311. idRLD
A is isomorphic to A for every filter A.

Theorem 1312. There are atomic filters incomparable by Rudin-Keisler order.
(Elements a and b are incomparable when a 6v b ∧ b 6v a.)

Proof. See [13]. �

Theorem 1313. ≥1 and ≥2 are different relations.
Proof. Consider a is an arbitrary non-empty filter. Then a ≥1 ⊥F(Base(a))

but not a ≥2 ⊥F(Base(a)). �

Proposition 1314. If a ≥2 b where a is an ultrafilter then b is also an ultra-
filter.

Proof. b =
〈
↑FCD f

〉
a for some f : Base(a) → Base(b). So b is an ultrafilter

since f is monovalued. �

Corollary 1315. If a ≥1 b where a is an ultrafilter then b is also an ultrafilter
or ⊥F(Base(a)).

Proof. b v
〈
↑FCD f

〉
a for some f : Base(a) → Base(b). Therefore b′ =〈

↑FCD f
〉
a is an ultrafilter. From this our statement follows. �

Proposition 1316. Principal filters, generated by sets of the same cardinality,
are isomorphic.

Proof. Let A and B be sets of the same cardinality. Then there are a bijection
f from A to B. We have 〈f〉∗A = B and thus A and B are isomorphic. �

Proposition 1317. If a filter is isomorphic to a principal filter, then it is also
a principal filter induced by a set with the same cardinality.

Proof. Let A be a principal filter and B is a filter isomorphic to A. Then
there are sets X ∈ A and Y ∈ B such that there are a bijection f : X → Y such
that 〈f〉∗A = B.

So minB exists and minB = 〈f〉∗minA and thus B is a principal filter (of the
same cardinality as A). �
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Proposition 1318. A filter isomorphic to a non-trivial ultrafilter is a non-
trivial ultrafilter.

Proof. Let a be a non-trivial ultrafilter and a be isomorphic to b. Then a ≥2 b
and thus b is an ultrafilter. The filter b cannot be trivial because otherwise a would
be also trivial. �

Theorem 1319. For an infinite set U there exist 22cardU equivalence classes of
isomorphic ultrafilters.

Proof. The number of bijections between any two given subsets of U is no
more than (cardU)cardU = 2cardU . The number of bijections between all pairs of
subsets of U is no more than 2cardU · 2cardU = 2cardU . Therefore each isomorphism
class contains at most 2cardU ultrafilters. But there are 22cardU ultrafilters. So there
are 22cardU classes. �

Remark 1320. One of the above mentioned equivalence classes contains trivial
ultrafilters.

Corollary 1321. There exist non-isomorphic nontrivial ultrafilters on any
infinite set.

14.3. Consequences

Theorem 1322. The graph of reloid F×RLD ↑A {a} is isomorphic to the filter
F for every set A and a ∈ A.

Proof. From 1309. �

Theorem 1323. If f , g are reloids, f v g and g is monovalued then g|dom f = f .

Proof. It’s simple to show that f = d

{
f |a

a∈atomsF(Src f)

}
(use the fact that

k v f |a for some a ∈ atomsF(Src f) for every k ∈ atoms f and the fact that
RLD(Src f,Dst f) is atomistic).

Suppose that g|dom f 6= f . Then there exists a ∈ atoms dom f such that g|a 6=
f |a.

Obviously g|a w f |a.
If g|a A f |a then g|a is not atomic (because f |a 6= ⊥RLD(Src f,Dst f)) what

contradicts to a theorem above. So g|a = f |a what is a contradiction and thus
g|dom f = f . �

Corollary 1324. Every monovalued reloid is a restricted principal monoval-
ued reloid.

Proof. Let f be a monovalued reloid. Then there exists a function F ∈ GR f .
So we have

(↑RLD(Src f,Dst f) F )|dom f = f.

�

Corollary 1325. Every monovalued injective reloid is a restricted injective
monovalued principal reloid.

Proof. Let f be a monovalued injective reloid. There exists a function F such
that f = (↑RLD(Src f,Dst f) F )|dom f . Also there exists an injection G ∈ up f .
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Thus

f = f u (↑RLD(Src f,Dst f) G)|dom f =
(↑RLD(Src f,Dst f) F )|dom f u (↑RLD(Src f,Dst f) G)|dom f =

(↑RLD(Src f,Dst f) (F uG))|dom f .

Obviously F uG is an injection. �

Theorem 1326. If a reloid f is monovalued and dom f is an principal filter
then f is principal.

Proof. f is a restricted principal monovalued reloid. Thus f = F |dom f where
F is a principal monovalued reloid. Thus f is principal. �

Lemma 1327. If a filter A is isomorphic to a filter B then if X is a typed set
then there exists a typed set Y such that ↑Base(A) X u A is a filter isomorphic to
↑Base(B) Y u B.

Proof. Let f be a monovalued injective reloid such that dom f = A, im f = B.
By proposition 626 we have: ↑Base(A) X u A = X where X is a filter comple-

mentive to A. Let Y = A \ X .
〈(FCD)f〉X u 〈(FCD)f〉Y = 〈(FCD)f〉(X u Y) = ⊥ by injectivity of f .
〈(FCD)f〉X t〈(FCD)f〉Y = 〈(FCD)f〉(XtY) = 〈(FCD)f〉A = B. So 〈(FCD)f〉X

is a filter complementive to B. So by proposition 626 there exists a set Y such that
〈(FCD)f〉X =↑ Y u B.

f |X is obviously a monovalued injective reloid with dom(f |X ) =↑ X u A and
im(f |X ) =↑ Y u B. So ↑ X u A is isomorphic to ↑ Y u B. �

Example 1328. A ≥2 B∧B ≥2 A but A is not isomorphic to B for some filters
A and B.

Proof. (proof idea by Andreas Blass, rewritten using reloids by me)
Let un, hn with n ranging over the set Z be sequences of ultrafilters on N

and functions N → N such that
〈
↑FCD(N,N) hn

〉
un+1 = un and un are pairwise

non-isomorphic. (See [6] for a proof that such ultrafilters and functions exist.)
A def= dn∈Z(↑Z {n} ×RLD u2n+1); B def= dn∈Z(↑Z {n} ×RLD u2n).
Let the Set-morphisms f, g : Z × N → Z × N be defined by the formulas

f(n, x) = (n, h2nx) and g(n, x) = (n− 1, h2n−1x).
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Using the fact that every function induces a complete funcoid and a lemma
above we get: 〈

↑FCD f
〉
A =

l

〈〈
↑FCD f

〉〉∗{↑Z {n} ×RLD u2n+1

n ∈ Z

}
=

l

{
↑Z {n} ×RLD u2n

n ∈ Z

}
=

B.〈
↑FCD g

〉
B =

l

〈〈
↑FCD g

〉〉∗{↑Z {n} ×RLD u2n

n ∈ Z

}
=

l

{
↑Z {n− 1} ×RLD u2n−1

n ∈ Z

}
=

l

{
↑Z {n} ×RLD u2n+1

n ∈ Z

}
=

A.
It remains to show that A and B are not isomorphic.
Let X ∈ up(↑Z {n} ×RLD u2n+1) for some n ∈ Z. Then if ↑Z×N X u A is an

ultrafilter we have ↑Z×N X uA =↑Z {n} ×RLD u2n+1 and thus by the theorem 1322
is isomorphic to u2n+1.

If X /∈ up(↑Z {n} ×RLD u2n+1) for every n ∈ Z then (Z × N) \ X ∈ up(↑Z
{n} ×RLD u2n+1) and thus (Z× N) \X ∈ upA and thus ↑Z×N X u A = ⊥Z×N.

We have also

(↑Z {0} ×RLD N) u B = (↑Z {0} ×RLD N) u l

{
↑Z {n} ×RLD u2n

n ∈ Z

}
=

l

{
(↑Z {0} ×RLD N) u (↑Z {n} ×RLD u2n)

n ∈ Z

}
=↑Z {0} ×RLD u0 (an ultrafilter).

Thus every ultrafilter generated as intersecting A with a principal filter ↑Z×N X
is isomorphic to some u2n+1 and thus is not isomorphic to u0. By the lemma it
follows that A and B are non-isomorphic. �

14.3.1. Metamonovalued reloids.

Proposition 1329. (
⋂
G) ◦ f =

⋂
g∈G(g ◦ f) for every function f and a set G

of binary relations.
Proof.

(x, z) ∈
(⋂

G
)
◦ f ⇔

∃y : (fx = y ∧ (y, z) ∈
⋂
G)⇔

(fx, z) ∈
⋂
G⇔

∀g ∈ G : (fx, z) ∈ g ⇔
∀g ∈ G∃y : (fx = y ∧ (y, z) ∈ g)⇔

∀g ∈ G : (x, z) ∈ g ◦ f ⇔

(x, z) ∈
⋂
g∈G

(g ◦ f).

�
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Lemma 1330. (
d
G) ◦ f =

d
g∈G(g ◦ f) if f is a monovalued principal reloid

and G is a set of reloids (with matching sources and destinations).

Proof. Let f =↑RLD ϕ for some monovalued Rel-morphism ϕ.
(
d
G) ◦ f =

dRLD
g∈up

d
G(g ◦ ϕ);

up
l

g∈G
(g ◦ f) =

up
l

g∈G

RLDl

Γ∈up g
(Γ ◦ ϕ) =

up
l ⋃

g∈G

{
↑RLD (Γ ◦ ϕ)

Γ ∈ up g

}
=

up
RLDl

Γ∈up
d
G

(Γ ◦ ϕ) =

up
l{ (Γ0 ◦ ϕ) u · · · u (Γn ◦ ϕ)

Γi ∈ up
d
G where i = 0, . . . , n for n ∈ N

}
= (proposition above)

up
l{ (Γ0 u · · · u Γn) ◦ ϕ

Γi ∈ up
d
G where i = 0, . . . , n for n ∈ N

}
=

up
l{ Γ ◦ ϕ

Γ ∈ up
d
G

}
.

Thus (
d
G) ◦ f =

d
g∈G(g ◦ f). �

Theorem 1331.
1◦. Monovalued reloids are metamonovalued.
2◦. Injective reloids are metainjective.

Proof. We will prove only the first, as the second is dual.
Let G be a set of reloids and f be a monovalued reloid.
Let f ′ be a principal monovalued continuation of f (so that f = f ′|dom f ).
By the lemma (

d
G) ◦ f ′ =

d
g∈G(g ◦ f ′). Restricting this equality to dom f we

get: (
d
G) ◦ f =

d
g∈G(g ◦ f). �

Conjecture 1332. Every metamonovalued reloid is monovalued.



CHAPTER 15

Counter-examples about funcoids and reloids

For further examples we will use the filter defined by the formula

∆ =
F(R)l {

]−ε; ε[
ε ∈ R, ε > 0

}
.

I will denote Ω(A) the Fréchet filter on a set A.

Example 1333. There exist a funcoid f and a set S of funcoids such that
f u dS 6= d〈fu〉

∗
S.

Proof. Let f = ∆×FCD ↑F(R) {0} and S =
{
↑FCD(R,R)(]ε;+∞[×{0})

ε∈R,ε>0

}
. Then

f u lS = (∆×FCD ↑F(R) {0})u ↑FCD(R,R) (]0; +∞[×{0}) =

(∆u ↑F(R)]0; +∞[)×FCD ↑F(R) {0} 6= ⊥FCD(R,R)

while d〈fu〉
∗
S = d{⊥FCD(R,R)} = ⊥FCD(R,R). �

Example 1334. There exist a set R of funcoids and a funcoid f such that
f ◦ dR 6= d〈f◦〉

∗
R.

Proof. Let f = ∆×FCD ↑F(R) {0}, R =
{
↑R{0}×FCD↑R]ε;+∞[

ε∈R,ε>0

}
.

We have dR =↑R {0}×FCD ↑R]0; +∞[; f ◦ dR =↑FCD(R,R) ({0} × {0}) 6=
⊥FCD(R,R) and d〈f◦〉

∗
R = d{⊥FCD(R,R)} = ⊥FCD(R,R). �

Example 1335. There exist a set R of reloids and a reloid f such that f ◦ dR 6=

d〈f◦〉
∗
R.

Proof. Let f = ∆×RLD ↑F(R) {0}, R =
{
↑R{0}×RLD↑R]ε;+∞[

ε∈R,ε>0

}
.

We have dR =↑R {0}×RLD ↑R]0; +∞[; f ◦ dR =↑RLD(R,R) ({0} × {0}) 6=
⊥RLD(R,R) and d〈f◦〉

∗
R = d{⊥RLD(R,R)} = ⊥RLD(R,R). �

Example 1336. There exist a set R of funcoids and filters X and Y such that
1◦. X [ dR] Y ∧ @f ∈ R : X [f ] Y;
2◦. 〈 dR〉X A d

{
〈f〉X
f∈R

}
.

Proof.
1◦. Take X = ∆ and Y = >F(R), R =

{
↑FCD(R,R)(]ε;+∞[×R)

ε∈R,ε>0

}
. Then

dR =↑FCD(R,R) (]0; +∞[×R). So X [ dR] Y and ∀f ∈ R : ¬(X [f ] Y).
2◦. With the same X and R we have 〈 dR〉X = >F(R) and 〈f〉X = ⊥F(R) for

every f ∈ R, thus d

{
〈f〉X
f∈R

}
= ⊥F(R).

�

Example 1337. dB∈T (A ×RLD B) 6= A ×RLD dT for some filter A and set of
filters T (with a common base).

252



15. COUNTER-EXAMPLES ABOUT FUNCOIDS AND RELOIDS 253

Proof. Take R+ =
{
x∈R
x>0

}
, A = ∆, T =

{
↑{x}
x∈R+

}
where ↑ = ↑R.

dT =↑ R+; A×RLD dT = ∆×RLD ↑ R+.

dB∈T (A×RLD B) = dx∈R+
(∆×RLD ↑ {x}).

We’ll prove that dx∈R+
(∆×RLD ↑ {x}) 6= ∆×RLD ↑ R+.

Consider K =
⋃
x∈R+

({x}×]− 1/x; 1/x[).
K ∈ up(∆×RLD ↑ {x}) and thus K ∈ up dx∈R+

(∆×RLD ↑ {x}) . But K /∈
up(∆×RLD ↑ R+). �

Theorem 1338. For a filter a we have a ×RLD a v 1RLD
Base(a) only in the case if

a = ⊥F(Base(a)) or a is a trivial ultrafilter.

Proof. If a ×RLD a v 1RLD
Base(a) then there exists m ∈ up(a ×RLD a) such that

m v 1Rel
Base(a). Consequently there exist A,B ∈ up a such that A × B v 1Rel

Base(a)
what is possible only in the case when ↑ A =↑ B = a is trivial a ultrafilter or the
least filter. �

Corollary 1339. Reloidal product of a non-trivial atomic filter with itself is
non-atomic.

Proof. Obviously (a ×RLD a) u 1RLD
Base(a) 6= ⊥RLD and (a ×RLD a) u 1RLD

Base(a) @

a×RLD a. �

Example 1340. There exist two atomic reloids whose composition is non-
atomic and non-empty.

Proof. Let a be a non-trivial ultrafilter on N and x ∈ N. Then

(a×RLD ↑N {x}) ◦ (↑N {x} ×RLD a) =
RLD(N,N)l

A∈a
((A× {x}) ◦ ({x} ×A) =

RLD(N,N)l

A∈a
(A×A) = a×RLD a

is non-atomic despite of a×RLD ↑N {x} and ↑N {x} ×RLD a are atomic. �

Example 1341. There exists non-monovalued atomic reloid.

Proof. From the previous example it follows that the atomic reloid ↑N
{x} ×RLD a is not monovalued. �

Example 1342. Non-convex reloids exist.

Proof. Let a be a non-trivial ultrafilter. Then idRLD
a is non-convex. This

follows from the fact that only reloidal products which are below 1RLD
Base(a) are reloidal

products of ultrafilters and idRLD
a is not their join. �

Example 1343. There exists (atomic) composable funcoids f and g such that
H ∈ up(g ◦ f) ; ∃F ∈ up f,G ∈ up g : H w G ◦ F.

Proof. Let a be a nontrivial ultrafilter and p be an arbitrary point, f =
a ×FCD {p}, g = {p} ×FCD a. Then g ◦ f = a ×FCD a. Take H = 1. Let F ∈ up f
and G ∈ up g. We have F ∈ up(A0 ×FCD {p}), G ∈ up({p} ×FCD A1) where
A0, A1 ∈ up a (take A0 = 〈F 〉∗@{p} and similarly for A1). Thus G ◦ F w A0 × A1
and so H /∈ up(G ◦ F ). �

Example 1344. (RLD)inf 6= (RLD)outf for a funcoid f .
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Proof. Let f = 1FCD
N . Then (RLD)inf = da∈atomsF(N)(a ×RLD a) and

(RLD)outf = 1RLD
N . But we have shown above a ×RLD a 6v 1RLD

N for non-trivial
ultrafilter a, and so (RLD)inf 6v (RLD)outf . �

Proposition 1345. 1FCD
U u ↑FCD(U,U) ((U × U) \ idU) = idFCD

Ω(U) 6= ⊥FCD(U,U) for
every infinite set U.

Proof. Note that
〈

idFCD
Ω(U)

〉
X = X u Ω(U) for every filter X on U.

Let f = 1FCD
U , g =↑FCD(U,U) ((U× U) \ idU).

Let x be a non-trivial ultrafilter on U. If X ∈ upx then cardX ≥ 2 (In fact,
X is infinite but we don’t need this.) and consequently 〈g〉∗X = >F(U). Thus
〈g〉x = >F(U). Consequently

〈f u g〉x = 〈f〉x u 〈g〉x = x u >F(U) = x.

Also
〈

idFCD
Ω(U)

〉
x = x u Ω(U) = x.

Let now x be a trivial ultrafilter. Then 〈f〉x = x and 〈g〉x = >F(U) \ x. So

〈f u g〉x = 〈f〉x u 〈g〉x = x u (>F(U) \ x) = ⊥F(U).

Also
〈

idFCD
Ω(U)

〉
x = x u Ω(U) = ⊥F(U).

So 〈f u g〉x =
〈

idFCD
Ω(U)

〉
x for every ultrafilter x on U. Thus f u g = idFCD

Ω(U). �

Example 1346. There exist binary relations f and g such that ↑FCD(A,B)

fu ↑FCD(A,B) g 6=↑FCD(A,B) (f ∩ g) for some sets A, B such that f, g ⊆ A×B.

Proof. From the proposition above. �

Example 1347. There exists a principal funcoid which is not a complemented
element of the lattice of funcoids.

Proof. I will prove that quasi-complement of the funcoid 1FCD
N is not its com-

plement (it is enough by proposition 145). We have:

(1FCD
N )∗ =

l

{
c ∈ FCD(N,N)
c � 1FCD

N

}
w

l

{
↑N {α}×FCD ↑N {β}

α, β ∈ N, ↑N {α}×FCD ↑N {β} � 1FCD
N

}
=

l

{
↑N {α}×FCD ↑N {β}
α, β ∈ N, α 6= β

}
=

↑FCD(N,N)
⋃{ {α} × {β}

α, β ∈ N, α 6= β

}
=

↑FCD(N,N) (N× N \ idN)

(used corollary 920). But by proved above (1FCD
N )∗ u 1FCD

N 6= ⊥F(N). �

Example 1348. There exists a funcoid h such that uph is not a filter.

Proof. Consider the funcoid h = idFCD
Ω(N). We have (from the proof of proposi-

tion 1345) that f ∈ uph and g ∈ uph, but f u g /∈ uph. �

Example 1349. There exists a funcoid h 6= ⊥FCD(A,B) such that (RLD)outh =
⊥RLD(A,B).
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Proof. Consider h = idFCD
Ω(N). By proved above h = f u g where f =

1FCD
N =↑FCD(N,N) idN, g =↑FCD(N,N) (N× N \ idN).

We have idN,N× N \ idN ∈ GR h.
So

(RLD)outh =
RLDl

uph =
RLD(N,N)l

GR h v↑RLD(N,N) (idN ∩(N× N \ idN)) = ⊥RLD(N,N);

and thus (RLD)outh = ⊥RLD(N,N). �

Example 1350. There exists a funcoid h such that (FCD)(RLD)outh 6= h.

Proof. It follows from the previous example. �

Example 1351. (RLD)in(FCD)f 6= f for some convex reloid f .

Proof. Let f = 1RLD
N . Then (FCD)f = 1FCD

N . Let a be some non-trivial ultra-
filter on N. Then (RLD)in(FCD)f w a ×RLD a 6v 1RLD

N and thus (RLD)in(FCD)f 6v
f . �

Example 1352. There exist composable funcoids f and g such that
(RLD)out(g ◦ f) A (RLD)outg ◦ (RLD)outf.

Proof. f = idFCD
Ω(N) and g = >F(N)×FCD ↑N {α} for some α ∈ N. Then

(RLD)outf = ⊥RLD(N,N) and thus (RLD)outg ◦ (RLD)outf = ⊥RLD(N,N).
We have g ◦ f = Ω(N)×FCD ↑N {α}.
(RLD)out(Ω(N)×FCD ↑N {α}) = Ω(N)×RLD ↑N {α} by properties of funcoidal

reloids.
Thus (RLD)out(g ◦ f) = Ω(N)×RLD ↑N {α} 6= ⊥RLD(N,N). �

Conjecture 1353. For every composable funcoids f and g
(RLD)out(g ◦ f) w (RLD)outg ◦ (RLD)outf.

Example 1354. (FCD) does not preserve binary meets.

Proof. (FCD)(1RLD
N u (>RLD(N,N) \ 1RLD

N )) = (FCD)⊥RLD(N,N) = ⊥FCD(N,N).
On the other hand,

(FCD)1RLD
N u (FCD)(>RLD(N,N) \ 1RLD

N ) =
1FCD
N u ↑FCD(N,N) (N× N \ idN) = idFCD

Ω(N) 6= ⊥FCD(N,N)

(used proposition 1061). �

Corollary 1355. (FCD) is not an upper adjoint (in general).

Considering restricting polynomials (considered as reloids) to ultrafilters, it is
simple to prove that each that restriction is injective if not restricting a constant
polynomial. Does this hold in general? No, see the following example:

Example 1356. There exists a monovalued reloid with atomic domain which
is neither injective nor constant (that is not a restriction of a constant function).

Proof. (based on [31]) Consider the function F ∈ NN×N defined by the for-
mula (x, y) 7→ x.

Let ωx be a non-trivial ultrafilter on the vertical line {x} × N for every x ∈ N.
Let T be the collection of such sets Y that Y ∩ ({x} × N) ∈ ωx for all but

finitely many vertical lines. Obviously T is a filter.
Let ω ∈ atomsT .
For every x ∈ N we have some Y ∈ T for which ({x} × N) ∩ Y = ∅ and thus

↑N×N ({x} × N) u ω = ⊥F(N×N).
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Let g = (↑RLD(N,N) F )|ω. If g is constant, then there exist a constant function
G ∈ up g and F ∩ G is also constant. Obviously dom ↑RLD(N×N,N) (F ∩ G) w ω.
The function F ∩ G cannot be constant because otherwise ω v dom ↑RLD(N×N,N)

(F ∩G) v↑N×N ({x} × N) for some x ∈ N what is impossible by proved above. So
g is not constant.

Suppose that g is injective. Then there exists an injection G ∈ up g. F uG ∈
up g is an injection which depends only on the first argument. So dom(F u G)
intersects each vertical line by atmost one element that is dom(F uG) inter-
sects every vertical line by the whole line or the line without one element. Thus
dom(F uG) ∈ T w ω and consequently dom(F uG) /∈ ω what is impossible.

Thus g is neither injective nor constant. �

15.1. Second product. Oblique product

Definition 1357. A×RLD
F B = (RLD)out(A×FCD B) for every filters A and B.

I will call it second product of filters A and B.

Remark 1358. The letter F is the above definition is from the word “funcoid”.
It signifies that it seems to be impossible to define A ×RLD

F B directly without
referring to funcoidal product.

Definition 1359. Oblique products of filters A and B are defined as

An B =
l{ ↑RLD f

f ∈ Rel(Base(A),Base(B)),∃B ∈ upB :↑FCD f w A×FCD ↑ B

}
;

Ao B =
l{ ↑RLD f

f ∈ Rel(Base(A),Base(B)),∃A ∈ upA :↑FCD f w↑ A×FCD B

}
.

Proposition 1360.
1◦. AnB = A×RLD

F B if A and B are filters and B is principal.
2◦. Ao B = A×RLD

F B if A and B are filters and A is principal.

Proof. AoB =
dRLD

{
f

f∈Rel,fwA×FCDB

}
= A×RLD

F B. The other is analogous.
�

Proposition 1361. A×RLD
F B v An B v A×RLD B for every filters A, B.

Proof.
An B v

l{ ↑RLD f

f ∈ Rel(Base(A),Base(B)),∃A ∈ upA, B ∈ upB :↑FCD f w↑ A×FCD ↑ B

}
v

l{ ↑ A×RLD ↑ B
A ∈ upA, B ∈ upB

}
=

A×RLD B.
An B w

l{ ↑RLD f

f ∈ Rel(Base(A),Base(B)), ↑FCD f w A×FCD B

}
=

l{ ↑RLD f

f ∈ up(A×FCD B)

}
=

(RLD)out(A×FCD B) =
A×RLD

F B.
�
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Conjecture 1362. A×RLD
F B @ An B for some filters A, B.

A stronger conjecture:

Conjecture 1363. A ×RLD
F B @ A n B @ A ×RLD B for some filters A, B.

Particularly, is this formula true for A = B = ∆u ↑R]0; +∞[?

The above conjecture is similar to Fermat Last Theorem as having no value
by itself but being somehow challenging to prove it (not expected to be as hard as
FLT however).

Example 1364. An B @ A×RLD B for some filters A, B.

Proof. It’s enough to prove An B 6= A×RLD B.
Let ∆+ = ∆u ↑R]0; +∞[. Let A = B = ∆+.
Let K = (≤)|R×R.
Obviously K /∈ up(A×RLD B).
An B v↑RLD(Base(A),Base(B)) K and thus K ∈ up(An B) because

↑FCD(Base(A),Base(B)) K w ∆+×FCD ↑ B = A×FCD ↑ B
for B =]0; +∞[ because for every X ∈ ∂∆+ there is x ∈ X such that x ∈]0; ε[ (for
every positive ε) and thus ]ε; +∞[⊆ 〈K〉∗{x} so having

〈K〉∗X =]0; +∞[∈ GR
〈
∆+×FCD ↑ B

〉∗
X.

Thus An B 6= A×RLD B. �

Example 1365. A×RLD
F B @ A×RLD B for some filters A, B.

Proof. This follows from the above example. �

Conjecture 1366. (An B) u (Ao B) 6= A×RLD
F B for some filters A, B.

(Earlier I presented a proof of the negation of this conjecture, but it was in
error.)

Example 1367. (An B) t (Ao B) @ A×RLD B for some filters A, B.

Proof. (based on [8]) Let A = B = Ω(N). It’s enough to prove (A n B) t
(Ao B) 6= A×RLD B.

Let X ∈ upA, Y ∈ upB that is X ∈ Ω(N), Y ∈ Ω(N).
Removing one element x from X produces a set P . Removing one element y

from Y produces a set Q. Obviously P ∈ Ω(N), Q ∈ Ω(N).
Obviously (P × N) ∪ (N×Q) ∈ up((An B) t (Ao B)).
(P×N)∪(N×Q) + X×Y because (x, y) ∈ X×Y but (x, y) /∈ (P×N)∪(N×Q)

for every X ∈ upA, Y ∈ upB.
Thus some (P ×N)∪ (N×Q) /∈ up(A×RLD B) by properties of filter bases. �

Example 1368. (RLD)out(FCD)f 6= f for some convex reloid f .

Proof. Let f = A×RLD B where A and B are from example 1365.
(FCD)(A×RLD B) = A×FCD B by proposition 1071.
So (RLD)out(FCD)(A ×RLD B) = (RLD)out(A ×FCD B) = A ×RLD

F B 6= A ×RLD

B. �



CHAPTER 16

Funcoids are filters

The motto of this chapter is: “Funcoids are filters on a (boolean) lattice.”

16.1. Rearrangement of collections of sets

Let Q be a set of sets.
Let ≡ be the relation on

⋃
Q defined by the formula

a ≡ b⇔ ∀X ∈ Q : (a ∈ X ⇔ b ∈ X).

Proposition 1369. ≡ is an equivalence relation on
⋃
Q.

Proof.
Reflexivity. Obvious.
Symmetry. Obvious.
Transitivity. Let a ≡ b ∧ b ≡ c. Then a ∈ X ⇔ b ∈ X ⇔ c ∈ X for every X ∈ Q.

Thus a ≡ c.
�

Definition 1370. Rearrangement R(Q) of Q is the set of equivalence classes
of
⋃
Q for ≡.

Obvious 1371.
⋃
R(Q) =

⋃
Q.

Obvious 1372. ∅ /∈ R(Q).

Lemma 1373. cardR(Q) ≤ 2cardQ.

Proof. Having an equivalence class C, we can find the set f ∈ PQ of all
X ∈ Q such that a ∈ X, for every a ∈ C.

b ≡ a⇔ ∀X ∈ Q : (a ∈ X ⇔ b ∈ X)⇔ ∀X ∈ Q : (X ∈ f ⇔ b ∈ X).

So C =
{
b∈
⋃
Q

b≡a

}
can be restored knowing f . Consequently there are no more than

card PQ = 2cardQ classes. �

Corollary 1374. If Q is finite, then R(Q) is finite.

Proposition 1375. If X ∈ Q, Y ∈ R(Q) then X ∩ Y 6= ∅ ⇔ Y ⊆ X.

Proof. Let X ∩ Y 6= ∅ and x ∈ X ∩ Y . Then

y ∈ Y ⇔ x ≡ y ⇔ ∀X ′ ∈ Q : (x ∈ X ′ ⇔ y ∈ X ′)⇒ (x ∈ X ⇔ y ∈ X)⇔ y ∈ X

for every y. Thus Y ⊆ X.
Y ⊆ X ⇒ X ∩ Y 6= ∅ because Y 6= ∅. �

Proposition 1376. If ∅ 6= X ∈ Q then there exists Y ∈ R(Q) such that
Y ⊆ X ∧X ∩ Y 6= ∅.

258
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Proof. Let a ∈ X. Then

[a] =
{

b ∈
⋃
Q

∀X ′ ∈ Q : (a ∈ X ′ ⇔ b ∈ X ′)

}
⊆{

b ∈
⋃
Q

a ∈ X ⇔ b ∈ X

}
=
{
b ∈

⋃
Q

b ∈ X

}
= X.

But [a] ∈ R(Q).
X ∩ Y 6= ∅ follows from Y ⊆ X by the previous proposition. �

Proposition 1377. If X ∈ Q then X =
⋃

(R(Q) ∩PX).

Proof.
⋃

(R(Q) ∩PX) ⊆ X is obvious.
Let x ∈ X. Then there is Y ∈ R(Q) such that x ∈ Y . We have Y ⊆ X that

is Y ∈ PX by a proposition above. So x ∈ Y where Y ∈ R(Q) ∩PX and thus
x ∈

⋃
(R(Q) ∩PX). We have X ⊆

⋃
(R(Q) ∩PX). �

16.2. Finite unions of Cartesian products

Let A, B be sets.
I will denote X = A \X.
Let denote Γ(A,B) the set of all finite unions X0 × Y0 ∪ . . . ∪Xn−1 × Yn−1 of

Cartesian products, where n ∈ N andXi ∈PA, Yi ∈PB for every i = 0, . . . , n−1.

Proposition 1378. The following sets are pairwise equal:
1◦. Γ(A,B);
2◦. the set of all sets of the form

⋃
X∈S(X×YX) where S are finite collections

on A and YX ∈PB for every X ∈ S;
3◦. the set of all sets of the form

⋃
X∈S(X×YX) where S are finite partitions

of A and YX ∈PB for every X ∈ S;
4◦. the set of all finite unions

⋃
(X,Y )∈σ(X×Y ) where σ is a relation between

a partition of A and a partition of B (that is dom σ is a partition of A
and im σ is a partition of B).

5◦. the set of all finite intersections
⋂
i=0,...,n−1

(
Xi × Yi ∪Xi ×B

)
where n ∈

N and Xi ∈PA, Yi ∈PB for every i = 0, . . . , n− 1.

Proof.
1◦⊇2◦, 2◦⊇3◦. Obvious.
1◦⊆2◦. Let Q ∈ Γ(A,B). Then Q = X0 × Y0 ∪ . . . ∪ Xn−1 × Yn−1. Denote S =

{X0, . . . , Xn−1}. We have Q =
⋃
X′∈S

(
X ′ ×

⋃
i=0,...,n−1

{
Yi

Xi=X′

})
∈ 2◦.

2◦⊆3◦. Let Q =
⋃
X∈S(X × YX) where S is a finite collection on A and YX ∈PB

for every X ∈ S. Let

P =
⋃

X′∈R(S)

(
X ′ ×

⋃
X∈S

{
YX

∃X ∈ S : X ′ ⊆ X

})
.

To finish the proof let’s show P = Q.
〈P 〉∗{x} =

⋃
X∈S

{
YX

∃X∈S:X′⊆X

}
where x ∈ X ′.

Thus 〈P 〉∗{x} =
⋃{ YX
∃X∈S:x∈X

}
= 〈Q〉∗{x}. So P = Q.

4◦⊆3◦.
⋃

(X,Y )∈σ(X × Y ) =
⋃
X∈domσ

(
X ×

⋃{
Y ∈PB

(X,Y )∈σ

})
∈ 3◦.
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3◦⊆4◦.⋃
X∈S

(X × YX) =
⋃
X∈S

(
X ×

⋃(
R

({
YX

X ∈ S

})
∩PYX

))
=

⋃
X∈S

(
X ×

⋃{Y ′ ∈ R
({

YX
X∈S

})
Y ′ ⊆ YX

})
=

⋃
X∈S

(
X ×

⋃{Y ′ ∈ R
({

YX
X∈S

})
(X,Y ′) ∈ σ

})
=

⋃
(X,Y )∈σ

(X × Y )

where σ is a relation between S and R
({

YX
X∈S

})
, and (X,Y ′) ∈ σ ⇔ Y ′ ⊆

YX .
5◦⊆1◦. Obvious.
3◦⊆5◦. Let Q =

⋃
X∈S(X × YX) =

⋃
i=0,...,n−1(Xi × Yi) for a partition S =

{X0, . . . , Xn−1} of A. Then Q =
⋂
i=0,...,n−1

(
Xi × Yi ∪Xi ×B

)
.

�

Exercise 1379. Formulate the duals of these sets.
Proposition 1380. Γ(A,B) is a boolean lattice, a sublattice of the lattice

P(A×B).
Proof. That it’s a sublattice is obvious. That it has complement, is also

obvious. Distributivity follows from distributivity of P(A×B). �

16.3. Before the diagram

Next we will prove the below theorem 1396 (the theorem with a diagram).
First we will present parts of this theorem as several lemmas, and then then state
a statement about the diagram which concisely summarizes the lemmas (and their
easy consequences).

Below for simplicity we will equate reloids with their graphs (that is with filters
on binary cartesian products).

Obvious 1381. upΓ(Src f,Dst f) f = (up f) ∩ Γ for every reloid f .
Conjecture 1382. �F(B) upA X is not a filter for some filter X ∈ FΓ(A,B)

for some sets A, B.
Remark 1383. About this conjecture see also:
• http://goo.gl/DHyuuU
• http://goo.gl/4a6wY6

Lemma 1384. Let A, B be sets. The following are mutually inverse order
isomorphisms between FΓ(A,B) and FCD(A,B):

1◦. A 7→
dFCD upA;

2◦. f 7→ upΓ(A,B) f .
Proof. Let’s prove that upΓ(A,B) f is a filter for every funcoid f . We need to

prove that P ∩Q ∈ up f whenever

P =
⋂

i=0,...,n−1

(
Xi × Yi ∪Xi ×B

)
and Q =

⋂
j=0,...,m−1

(
X ′j × Y ′j ∪X ′j ×B

)
.

This follows from P ∈ up f ⇔ ∀i ∈ 0, . . . , n − 1 : 〈f〉Xi ⊆ Yi and likewise for Q,
so having 〈f〉(Xi ∩X ′j) ⊆ Yi ∩ Y ′j for every i = 0, . . . , n − 1 and j = 0, . . . ,m − 1.
From this it follows

((Xi ∩X ′j)× (Yi ∩ Y ′j )) ∪
(
Xi ∩X ′j ×B

)
⊇ f

http://goo.gl/DHyuuU
http://goo.gl/4a6wY6
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and thus P ∩Q ∈ up f .
Let A, B be filters on Γ. Let

dFCD upA =
dFCD upB. We need to prove A = B.

(The rest follows from proof of the lemma 921). We have:

A =
FCDl{

X × Y ∪X ×B ∈ upA
X ∈PA, Y ∈PB

}
=

FCDl{
X × Y ∪X ×B

X ∈PA, Y ∈PB, ∃P ∈ upA : P ⊆ X × Y ∪X ×B

}
=

FCDl{
X × Y ∪X ×B

X ∈PA, Y ∈PB, ∃P ∈ upA : 〈P 〉∗X ⊆ Y

}
= (*)

FCDl
 X × Y ∪X ×B

X ∈PA, Y ∈PB,
d{ 〈P 〉∗X

X∈upA

}
v Y

 =

FCDl
 X × Y ∪X ×B

X ∈PA, Y ∈PB,
d{ 〈P 〉∗X

X∈up
dRLD upA

}
v Y

 =

FCDl
 X × Y ∪X ×B

X ∈PA, Y ∈PB,
〈

(FCD)
dRLD upA

〉
X v Y

 = (**)

FCDl
 X × Y ∪X ×B

X ∈PA, Y ∈PB,
〈dFCD up

dRLD upA
〉
X v Y

 =

FCDl
 X × Y ∪X ×B

X ∈PA, Y ∈PB,
〈dFCD upA

〉
X v Y

.
(*) by properties of generalized filter bases, because

{
〈P 〉∗X
P∈upA

}
is a filter base.

(**) by theorem 1063.
Similarly

B =
FCDl
 X × Y ∪X ×B

X ∈PA, Y ∈PB,
〈dFCD upB

〉
X v Y

.
Thus A = B. �

Proposition 1385. g ◦ f ∈ Γ(A,C) if f ∈ Γ(A,B) and g ∈ Γ(B,C) for some
sets A, B, C.

Proof. Because composition of Cartesian products is a Cartesian product. �

Definition 1386. g ◦ f =
dFΓ(A,C)

{
G◦F

F∈up f,G∈up g

}
for f ∈ FΓ(A,B) and

g ∈ FΓ(B,C) (for every sets A, B, C).

We define f−1 for f ∈ FΓ(A,B) similarly to f−1 for reloids and similarly derive
the formulas:

1◦. (f−1)−1 = f ;
2◦. (g ◦ f)−1 = f−1 ◦ g−1.
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16.4. Associativity over composition

Lemma 1387.
dRLD upΓ(A,C)(g ◦ f) =

(dRLD upΓ(B,C) g
)
◦
(dRLD upΓ(B,C)

)
for every f ∈ F(Γ(A,B)), g ∈ F(Γ(B,C)) (for every sets A, B, C).

Proof. If K ∈ up
dRLD upΓ(A,C)(g◦f) then K ⊇ G◦F for some F ∈ f , G ∈ g.

But F ∈ upΓ(A,B) f , thus

F ∈
RLDl

upΓ(A,B) f

and similarly

G ∈
RLDl

upΓ(B,C) g.

So we have

K ⊇ G ◦ F ∈ up
((RLDl

upΓ(B,C) g

)
◦

(RLDl
upΓ(A,B) f

))
.

Let now

K ∈ up
((RLDl

upΓ(B,C) g

)
◦

(RLDl
upΓ(A,B) f

))
.

Then there exist F ∈ up
dRLD upΓ(A,B) f and G ∈ up

dRLD upΓ(B,C) g such that
K ⊇ G◦F . By properties of generalized filter bases we can take F ∈ upΓ(A,B) f and
G ∈ upΓ(B,C) g. Thus K ∈ upΓ(A,C)(g ◦f) and so K ∈ up

dRLD upΓ(A,C)(g ◦f). �

Lemma 1388. (RLD)inX = X for X ∈ Γ(A,B).

Proof. X = X0×Y0∪. . .∪Xn×Yn = (X0×FCDY0)tFCD . . .tFCD (Xn×FCDYn).

(RLD)inX =
(RLD)in(X0 ×FCD Y0) tRLD . . . tRLD (RLD)in(Xn ×FCD Y ) =

(X0 ×RLD Y0) tRLD . . . tRLD (Xn ×RLD Yn) =
X0 × Y0 ∪ . . . ∪Xn × Yn = X.

�

Lemma 1389.
dRLD

f = (RLD)in
dFCD

f for every filter f ∈ FΓ(A,B).

Proof.

(RLD)in

FCDl
f =

RLDl
〈(RLD)in〉∗f = (by the previous lemma) =

RLDl
f.

�

Lemma 1390.
1◦. f 7→

dRLD up f and A 7→ Γ(A,B) ∩ upA are mutually inverse bijections
between FΓ(A,B) and a subset of reloids.

2◦. These bijections preserve composition.

Proof.
1◦. That they are mutually inverse bijections is obvious.
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2◦.(RLDl
up g

)
◦

(RLDl
up f

)
=

RLDl
{

G ◦ F
F ∈

dRLD
f,G ∈

dRLD
g

}
=

RLDl{
G ◦ F

F ∈ f,G ∈ g

}
=

RLDl FΓ(Src f,Dst g)l {
G ◦ F

F ∈ f,G ∈ g

}
=

RLDl
(g ◦ f).

So
dRLD preserves composition. That A 7→ Γ(A,B) ∩ upA preserves composition

follows from properties of bijections.
�

Lemma 1391. Let A, B, C be sets.

1◦.
(dFCD up g

)
◦
(dFCD up f

)
=

dFCD up(g ◦ f) for every f ∈ FΓ(A,B),
g ∈ FΓ(B,C);

2◦. (upΓ(B,C) g) ◦ (upΓ(A,B) f) = upΓ(A,B)(g ◦ f) for every funcoids f ∈
FCD(A,B) and g ∈ FCD(B : C).

Proof. It’s enough to prove only the first formula, because of the bijection
from lemma 1384.

Really:

FCDl
up(g ◦ f) =

FCDl
up

RLDl
up(g ◦ f) =

FCDl
up
(RLDl

up g ◦
RLDl

up f
)

= (FCD)
(RLDl

up g ◦
RLDl

up f
)

=(
(FCD)

RLDl
up g

)
◦

(
(FCD)

RLDl
up f

)
=(FCDl

up
RLDl

up g
)
◦

(FCDl
up

RLDl
up f

)
=(FCDl
up g

)
◦

(FCDl
up f

)
.

�

Corollary 1392. (h◦g)◦f = h◦(g◦f) for every f ∈ F(Γ(A,B)), g ∈ FΓ(B,C),
h ∈ FΓ(C,D) for every sets A, B, C, D.

Lemma 1393. Γ(A,B)∩GR f is a filter on the lattice Γ(A,B) for every reloid
f ∈ RLD(A,B).

Proof. That it is an upper set, is obvious. If A,B ∈ Γ(A,B) ∩ GR f then
A,B ∈ Γ(A,B) and A,B ∈ GR f . Thus A ∩B ∈ Γ(A,B) ∩GR f . �

Proposition 1394. If Y ∈ up〈f〉X for a funcoid f then there exists A ∈ upX
such that Y ∈ up〈f〉A.

Proof. Y ∈ up
dF
A∈up a〈f〉A. So by properties of generalized filter bases, there

exists A ∈ up a such that Y ∈ up〈f〉A. �

Lemma 1395. (FCD)f =
dFCD(Γ(A,B)∩GR f) for every reloid f ∈ RLD(A,B).
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Proof. Let a be an an atomic filter object. We need to prove

〈(FCD)f〉a =
〈FCDl

(Γ(A,B) ∩GR f)
〉
a

that is 〈FCDl
up f

〉
a =

〈FCDl
(Γ(A,B) ∩GR f)

〉
a

that is
Fl

F∈up f
〈F 〉a =

Fl

F∈Γ(A,B)∩up f

〈F 〉a.

For this it’s enough to prove that Y ∈ up〈F 〉a for some F ∈ up f implies Y ∈
up〈F ′〉a for some F ′ ∈ Γ(A,B) ∩GR f .

Let Y ∈ up〈F 〉a. Then (proposition above) there exists A ∈ up a such that
Y ∈ up〈F 〉A.

Y ∈ up
〈
A×FCD Y tA×FCD >

〉
a;
〈
A×FCD Y tA×FCD >

〉
X = Y ∈ up〈F 〉X if

⊥ 6= X v A and
〈
A×FCD Y tA×FCD >

〉
X = > ∈ up〈F 〉X if X 6v A.

Thus A ×FCD Y t A ×FCD > w F . So A ×FCD Y t A ×FCD > is the sought
for F ′. �

16.5. The diagram

Theorem 1396. The diagram at the figure 1 is a commutative diagram (in
category Set), every arrow in this diagram is an isomorphism. Every cycle in
this diagram is an identity (therefore “parallel” arrows are mutually inverse). The
arrows preserve order, composition, and reversal (f 7→ f−1).

Figure 1.
funcoids

funcoidal reloids filters on Γ

upΓ

(RLD)in

(FCD)

f 7→f∩Γ

dFCD

dRLD

Proof. First we need to show that
dRLD

f is a funcoidal reloid. But it follows
from lemma 1389.

Next, we need to show that all morphisms depicted on the diagram are bijec-
tions and the depicted “opposite” morphisms are mutually inverse.

That (FCD) and (RLD)in are mutually inverse was proved above in the book.
That

dRLD and f 7→ f ∩ Γ are mutually inverse was proved above.
That

dFCD and upΓ are mutually inverse was proved above.
That the morphisms preserve order and composition was proved above. That

they preserve reversal is obvious.
So it remains to apply lemma 193 (taking into account lemma 1389). �

Another proof that (FCD)(RLD)inf = f for every funcoid f :
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Proof. For every filter X ∈ F (Src f) we have 〈(FCD)(RLD)inf〉X =dF
F∈up(RLD)inf

〈F 〉X =
dF
F∈upΓ(Src f,Dst f) f 〈F 〉X .

Obviously
dF
F∈upΓ(Src f,Dst f) f 〈F 〉X w 〈f〉X . So (FCD)(RLD)inf w f .

Let Y ∈ up〈f〉X . Then (proposition above) there exists A ∈ upX such that
Y ∈ up〈f〉A.

Thus A×Y tA×> ∈ up f . So 〈(FCD)(RLD)inf〉X =
dF
F∈upΓ(Src f,Dst f) f 〈F 〉X v〈

A× Y tA×>
〉
X = Y . So Y ∈ up〈(FCD)(RLD)inf〉X that is 〈f〉X w

〈(FCD)(RLD)inf〉X that is f w (FCD)(RLD)inf . �

16.6. Some additional properties

Proposition 1397. For every funcoid f ∈ FCD(A,B) (for sets A, B):

1◦. dom f =
dF(A)〈dom〉∗ upΓ(A,B) f ;

2◦. im f =
dF(B)〈im〉∗ upΓ(A,B) f .

Proof. Take
{

X×Y
X∈PA,Y ∈PB,X×Y⊇f

}
⊆ upΓ(A,B) f . I leave the rest reasoning

as an exercise. �

Theorem 1398. For every reloid f and X ∈ F (Src f), Y ∈ F (Dst f):

1◦. X [(FCD)f ] Y ⇔ ∀F ∈ upΓ(Src f,Dst f) f : X [F ] Y;
2◦. 〈(FCD)f〉X =

dF
F∈upΓ(Src f,Dst f) f 〈F 〉X .

Proof.

1◦.

∀F ∈ upΓ(Src f,Dst f) f : X [F ] Y ⇔
∀F ∈ upΓ(Src f,Dst f) f : (X ×FCD Y) u F 6= ⊥ ⇔ (*)

(X ×FCD Y) u
FCDl

upΓ(Src f,Dst f) f 6= ⊥ ⇔

X

[FCDl
upΓ(Src f,Dst f) f

]
Y ⇔ X [(FCD)f ] Y.

(*) by properties of generalized filter bases, taking into account that funcoids
are isomorphic to filters.

2◦.
dF
F∈upΓ(Src f,Dst f) f 〈F 〉a =

〈dFCD upΓ(Src f,Dst f) f
〉
a = 〈(FCD)f〉a for every

ultrafilter a.
It remains to prove that the function

ϕ = λX ∈ F (Src f) :
Fl

F∈upΓ(Src f,Dst f) f

〈F 〉X

is a component of a funcoid (from what follows that ϕ = 〈(FCD)f〉). To prove this,
it’s enough to show that it preserves finite joins and filtered meets.
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ϕ⊥ = ⊥ is obvious. ϕ(I t J ) =
dF
F∈upΓ(Src f,Dst f) f (〈F 〉I t 〈F 〉J ) =

dF
F∈upΓ(Src f,Dst f) f 〈F 〉I t

dF
F∈upΓ(Src f,Dst f) f 〈F 〉J = ϕI t ϕJ . If S is a general-

ized filter base of Src f , then

ϕ

Fl
S =

Fl

F∈upΓ(Src f,Dst f) f

〈F 〉
Fl
S =

Fl

F∈upΓ(Src f,Dst f) f

Fl
〈〈F 〉〉∗S =

Fl

F∈upΓ(Src f,Dst f) f

Fl

X∈S
〈F 〉X =

Fl

X∈S

Fl

F∈upΓ(Src f,Dst f) f

〈F 〉X =
Fl

X∈S
ϕX =

Fl
〈ϕ〉∗S.

So ϕ is a component of a funcoid.
�

Definition 1399. �f =
dRLD upΓ(Src f,Dst f) f for reloid f .

Conjecture 1400. �f = (RLD)in(FCD)f for every reloid f .

Obvious 1401. �f w f for every reloid f .

Example 1402. (RLD)inf 6= �(RLD)outf for some funcoid f .

Proof. Take f = idFCD
Ω(N). Then, as it was shown above, (RLD)outf = ⊥

and thus �(RLD)outf = ⊥. But (RLD)inf w (RLD)inf 6= ⊥. So (RLD)inf 6=
�(RLD)outf . �

Another proof of the theorem “dom(RLD)inf = dom f and im(RLD)inf = im f
for every funcoid f .”:

Proof. We have for every filter X ∈ F (Src f):

X w dom(RLD)inf ⇔ X ×RLD > w (RLD)inf ⇔

∀a ∈ F (Src f), b ∈ F (Dst f) : (a×FCD b v f ⇒ a×RLD b v X ×RLD >)⇔
∀a ∈ F (Src f), b ∈ F (Dst f) : (a×FCD b v f ⇒ a v X )

and

X w dom f ⇔ X ×FCD > w f ⇔

∀a ∈ F (Src f), b ∈ F (Dst f) : (a×FCD b v f ⇒ a×FCD b v X ×FCD >)⇔
∀a ∈ F (Src f), b ∈ F (Dst f) : (a×FCD b v f ⇒ a v X ).

Thus dom(RLD)inf = dom f . The rest follows from symmetry. �

Another proof that dom(RLD)inf = dom f and im(RLD)inf = im f for every
funcoid f :

Proof. dom(RLD)inf w dom f and im(RLD)inf w im f because (RLD)inf w
(RLD)in and dom(RLD)inf = dom f and im(RLD)inf = im f .

It remains to prove (as the rest follows from symmetry) that dom(RLD)inf v
dom f .

Really,

dom(RLD)inf v
Fl{X ∈ up dom f

X ×> ∈ up f

}
=

Fl{X ∈ up dom f

X ∈ up dom f

}
=

Fl
up dom f = dom f.

�
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16.7. More on properties of funcoids

Proposition 1403. Γ(A,B) is the center of lattice FCD(A,B).

Proof. Theorem 610. �

Proposition 1404. upΓ(A,B)(A ×FCD B) is defined by the filter base{
A×B

A∈upA,B∈upB

}
on the lattice Γ(A,B).

Proof. It follows from the fact that A×FCD B =
dFCD

{
A×B

A∈upA,B∈upB

}
. �

Proposition 1405. upΓ(A,B)(A×FCD B) = F(Γ(A,B)) ∩ up(A×RLD B).

Proof. It follows from the fact that A×FCD B =
dFCD

{
A×B

A∈upA,B∈upB

}
. �

Proposition 1406. For every f ∈ F(Γ(A,B)):
1◦. f ◦ f is defined by the filter base

{
F◦F
F∈up f

}
(if A = B);

2◦. f−1 ◦ f is defined by the filter base
{
F−1◦F
F∈up f

}
;

3◦. f ◦ f−1 is defined by the filter base
{
F◦F−1

F∈up f

}
.

Proof. I will prove only 1◦ and 2◦ because 3◦ is analogous to 2◦.
1◦. It’s enough to show that ∀F,G ∈ up f∃H ∈ up f : H ◦ H v G ◦ F . To

prove it take H = F uG.
2◦. It’s enough to show that ∀F,G ∈ up f∃H ∈ up f : H−1 ◦ H v G−1 ◦ F .

To prove it take H = F uG. Then H−1 ◦H = (F uG)−1 ◦ (F uG) v G−1 ◦ F .
�

Theorem 1407. For every sets A, B, C if g, h ∈ FΓ(A,B) then
1◦. f ◦ (g t h) = f ◦ g t f ◦ h;
2◦. (g t h) ◦ f = g ◦ f t h ◦ f .

Proof. It follows from the order isomorphism above, which preserves compo-
sition. �

Theorem 1408. f ∩ g = f uFCD g if f, g ∈ Γ(A,B).

Proof. Let f = X0 × Y0 ∪ . . . ∪Xn × Yn and g = X ′0 × Y ′0 ∪ . . . ∪X ′m × Y ′m.
Then

f ∩ g =
⋃

i=0,...,n,j=0,...,m
((Xi × Yi) ∩ (X ′j × Y ′j )) =

⋃
i=0,...,n,j=0,...,m

((Xi ∩X ′j)× (Yi ∩ Y ′j )).

But f = X0×Y0tFCD . . .tFCDXn×Yn and g = X ′0×Y ′0 tFCD . . .tFCDX ′m×Y ′m;

f uFCD g = l

i=0,...,n,j=0,...,m
((Xi × Yi) uFCD (X ′j × Y ′j )) =

l

i=0,...,n,j=0,...,m
((Xi uX ′j)×FCD (Yi u Y ′j )).

Corollary 1409. If X and Y are finite binary relations, then
1◦. X uFCD Y = X u Y ;
2◦. (> \X) uFCD (> \ Y ) = (> \X) u (> \ Y );
3◦. X uFCD (> \ Y ) = X u (> \ Y ).
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Now it’s obvious that f ∩ g = f uFCD g. �

Theorem 1410. The set of funcoids (from a given set A to a given set B) is
with separable core.

Proof. Let f, g ∈ FCD(A,B) (for some sets A,B).
Because filters on distributive lattices are with separable core, there exist F,G ∈

Γ(A,B) such that F ∩G = ∅. Then by the previous theorem F uFCD G = ⊥. �

Theorem 1411. The coatoms of funcoids from a set A to a set B are exactly
(A×B) \ ({x} × {y}) for x ∈ A, y ∈ B.

Proof. That coatoms of Γ(A,B) are exactly (A×B) \ ({x}× {y}) for x ∈ A,
y ∈ B, is obvious. To show that coatoms of funcoids are the same, it remains to
apply proposition 557. �

Theorem 1412. The set of funcoids (for given A and B) is coatomic.

Proof. Proposition 559. �

Exercise 1413. Prove that in general funcoids are not coatomistic.

16.8. Funcoid bases

This section will present mainly a counter-example against a statement you
have not thought about anyway.

Lemma 1414. If S is an upper set of principal funcoids, then
dFCD(S ∩ Γ) =dFCD

S.

Proof.
dFCD(S ∩ Γ) w

dFCD
S is obvious.dFCD

S =
dFCD dFCD

K∈S TK w
dFCD(S∩Γ). where TK ∈P(S∩Γ). So

dFCD(S∩
Γ) =

dFCD
S. �

Theorem 1415. If S is a filter base on the set of binary relations then S is a
base of

dFCD
S.

First prove a special case of our theorem to get the idea:

Example 1416. Take the filter base S =
{{ (x,y)

|x−y|<ε

}
ε>0

}
and K =

{
(x,y)

|x−y|<exp x

}
where x and y range real numbers. Then K /∈ up

dFCD
S.

Proof. Take a nontrivial ultrafilter x on R. We can for simplicity assume
x v Z.

〈FCDl
S

〉
x =

Fl

L∈S
〈L〉x =

Fl

L∈S,X∈up x
〈L〉∗X =

Fl

ε>0,X∈up x

l

α∈X
]α− ε;α+ ε[.

〈K〉x =
dF
X∈up x〈K〉

∗
X =

dF
X∈up x dα∈X ]α− expα;α+ expα[.

Suppose for the contrary that 〈K〉x w
〈dFCD

S
〉
x.

Then

dα∈X ]α−expα;α+expα[ w
dF
ε>0,X∈up x dα∈X ]α−ε;α+ε[ for everyX ∈ upx;

thus by properties of generalized filter bases (
{

dα∈X ]α−ε;α+ε[
ε>0

}
is a filter base

and even a chain)
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dα∈X ]α− expα;α+ expα[ w
dF
X∈up x dα∈X ]α− ε;α+ ε[ for some ε > 0 and

thus by properties of generalized filter bases (
{

dα∈X ]α−ε;α+ε[
X∈up x

}
is a filter base) for

some X ′ ∈ upx

l

α∈X
]α− expα;α+ expα[ w l

α∈X′
]α− ε;α+ ε[

what is impossible by the fact that expα goes infinitely small as α→ −∞ and the
fact that we can take X = Z for some x. �

Now prove the general case:

Proof. Suppose that K ∈ up
dFCD

S and thus 〈K〉x w
〈dFCD

S
〉
x. We need

to prove that there is some L ∈ S such that K w L.
Take an ultrafilter x.〈dFCD

S
〉
x =

dF
L∈S〈L〉x =

dF
L∈S,X∈up x〈L〉

∗
X.

〈K〉x =
dF
X∈up x〈K〉

∗
X.

Then 〈K〉∗X w
dF
L∈S,X∈up x〈L〉

∗
X for every X ∈ upx; thus by properties of

generalized filter bases (
{
〈L〉∗X
L∈S

}
is a filter base);

〈K〉∗X w
dF
X∈up x〈L〉

∗
X for some L ∈ S and thus by properties of generalized

filter bases (
{
〈L〉∗X
X∈up x

}
is a filter base) for some X ′ ∈ upx

〈K〉∗X w 〈L〉∗X ′ w 〈L〉x.
So 〈K〉x w 〈L〉x because this equality holds for every X ∈ upx. Therefore

K w L. �

Example 1417. A base of a funcoid which is not a filter base.

Proof. Consider f = idFCD
Ω . We know that up f is not a filter base. But it is

a base of a funcoid. �

Exercise 1418. Prove that a set S is a filter (on some set) iff
∀X0, . . . , Xn ∈ S : up(X0 u · · · uXn) ⊆ S

for every natural n.

A similar statement does not hold for funcoids:

Example 1419. For a set S of binary relations
∀X0, . . . , Xn ∈ S : up(X0 uFCD · · · uFCD Xn) ⊆ S

does not imply that there exists funcoid f such that S = up f .

Proof. Take S0 = up 1FCD (where 1FCD is the identity funcoid on any infinite
set) and S1 =

⋃
F∈S0

{
upG

G∈upΓ F

}
(that is S1 =

⋃
F∈upΓ 1FCD upF ).

Both S0 and S1 are upper sets. S0 6= S1 because 1FCD ∈ S0 and 1FCD /∈ S1.
The formula in the example works for S = S0 because X0, . . . , Xn ∈ up 1FCD.

It also holds for S = S1 by the following reason:
Suppose X0, . . . , Xn ∈ S1. Then Xi w Fi where Fi ∈ S0. Consequently (take

into account that Γ is a sublattice of FCD) X0, . . . , Xn w F0 uFCD · · · uFCD Fn and
so X0 uFCD · · · uFCD Xn = X0 u · · · u Xn w F0 uFCD · · · uFCD Fn w 1FCD. Thus
X0 u · · · uXn ∈ upΓ 1FCD ⊆ S1; up(X0 u · · · uXn) ⊆ S1 as S1 is an upper set.

To finish the proof suppose for the contrary that up f0 = S0 and up f1 = S1
for some funcoids f0 and f1. In this case f0 =

dFCD
S0 = 1FCD =

dFCD upΓ 1FCD =dFCD
S1 = f1 and thus S0 = S1, contradiction. �
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Proposition 1420. For a set S of binary relations
∀X0, . . . , Xn ∈ S : up(X0 uFCD · · · uFCD Xn) ⊆ S

does not imply that S is a funcoid base.

Proof. Suppose for the contrary that it does imply. Then, because S is an
upper set (as follows from the condition, taking n = 0), it implies that S = up f
for a funcoid f , what contradicts to the above example. �

Conjecture 1421. Let ∀X,Y ∈ S : up(X uFCD Y ) ⊆ S.
Then

∀X0, . . . , Xn ∈ S : up(X0 uFCD · · · uFCD Xn) ⊆ S.

Exercise 1422. up(f0 uFCD . . . uFCD fn) ⊆
{

F0u...uFn
F0∈up f0∧...∧Fn∈up fn

}
for every

funcoids f0, . . . , fn (n ∈ N).

16.9. Some (example) values

I will do some calculations of particular funcoids and reloids.
First note that uFCD can be decomposed (see below for a short easy proof):

f uFCD g = (FCD)(((RLD)inf u (RLD)ing).
The above is a more understandable decomposition of the operation uFCD which

behaves in strange way, mapping meet of two binary relations into a funcoid which
is not a binary relation (1FCD uFCD (> \ 1FCD) = 1FCD

Ω ).
The last formula is easy to prove (and proved above in the book) but the result

is counter-intuitive.
More generally:

FCDl
S = (FCD)

RLDl
〈(RLD)in〉∗S.

The above formulas follow from the fact that (FCD) is an upper adjoint and
that (FCD)(RLD)inf = f for every funcoid f .

Let FCD denote funcoids on a set U .
Consider a special case of the above formulas:

1FCD uFCD (> \ 1FCD) = (FCD)((RLD)in1FCD u (RLD)in(> \ 1FCD)). (17)
We want to calculate terms of the formula (17) and more generally do some

(probably useless) calculations for particular funcoids and reloids related to the
above formula.

The left side is already calculated. The term (RLD)in1FCD which I call “thick
equality” above is well understood. Let’s compute (RLD)in(> \ 1FCD).

Proposition 1423. (RLD)in(> \ 1FCD) = > \ 1FCD.

Proof. Consider funcoids on a set U . For any filters x and y (or without loss
of generality ultrafilters x and y) we have:

x ×FCD y v > \ 1FCD ⇔ (theorem 574 and the fact that funcoids are filters) ⇔
x×FCD y � 1FCD ⇔ ¬

(
x [1FCD] y

)
⇔ x � y ⇒ ∃X ∈ upx, Y ∈ up y : X � Y .

Thus (RLD)in(> \ 1FCD) = d

{
X×Y

X,Y ∈T U,X�Y

}
= > \ 1FCD. �

So, we have:

1FCD
Ω = 1FCD uFCD (> \ 1FCD) = (RLD)in1FCD uFCD (> \ 1FCD).

Proposition 1424. If X0 t . . .tXn = > then (X0 ×X0)t . . .t (Xn ×Xn) ∈
up(RLD)in1FCD.
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Proof. It’s enough to prove (X0 × X0) t . . . t (Xn × Xn) ∈ up(x × x) for
every ultrafilter x, what follows from the fact that x v Xi for some i and thus
x× x v Xi ×Xi. �

Proposition 1425. For finite tuples X, Y of typed sets
(X0 × Y0) t . . . t (Xn × Yn) w 1⇔ (X0 u Y0) t . . . t (Xn u Yn) = >.

Proof. (X0×Y0)t . . .t (Xn×Yn) w 1⇔ ((X0×Y0)t . . .t (Xn×Yn))u 1 =
1 ⇔ ((X0 × Y0) u 1) t . . . t ((Xn × Yn) u 1) = 1 ⇔ idX0uY0 t . . . t idXnuYn = 1 ⇔
id(X0uY0)t...t(XnuYn) = 1⇔ (X0 u Y0) t . . . t (Xn u Yn) = >. �

Corollary 1426.

upΓ 1 =
{

(X0 × Y0) t . . . t (Xn × Yn)
n ∈ N,∀i ∈ n : Xi, Yi ∈ T U, (X0 u Y0) t . . . t (Xn u Yn) = >

}
.

Corollary 1427. The predicate (X0 u Y0) t . . . t (Xn u Yn) = > for an
element (X0 × Y0) t . . . t (Xn × Yn) of Γ does not depend on its representation
(X0 × Y0) t . . . t (Xn × Yn).

Proposition 1428.

upΓ 1 =
⋃{ upΓ((X0 ×X0) t . . . t (Xn ×Xn))

n ∈ N,∀i ∈ n : Xi ∈ T U,X0 t . . . tXn = >

}
.

Proof. If (X0 × Y0) t . . . t (Xn × Yn) ∈ upΓ 1 then we have
(X0×Y0)t. . .t(Xn×Yn) w ((X0uY0)×(X0uY0))t. . .t((XnuYn)×(XnuYn)) ∈ upΓ 1.
Thus

upΓ 1 ⊆
⋃{ upΓ((X0 ×X0) t . . . t (Xn ×Xn))

n ∈ N,∀i ∈ n : Xi ∈ T U,X0 t . . . tXn = >

}
.

The reverse inclusion is obvious. �

Proposition 1429.

(RLD)in1FCD =
RLDl{

(X0 ×X0) t . . . t (Xn ×Xn)
n ∈ N,∀i ∈ n : Xi ∈ T U,X0 t . . . tXn = >

}
.

Proof. By the diagram we have (RLD)in1FCD =
dRLD upΓ 1. So it follows from

the previous proposition. �

Proposition 1430. upΓ(RLD)in1FCD = upΓ 1.

Proof. If K ∈ upΓ 1 then K ∈ upΓ((X0 × X0) t . . . t (Xn × Xn)) and thus
K ∈ upΓ(RLD)in1FCD (see proposition 1424). Thus upΓ 1 ⊆ upΓ(RLD)in1FCD. But
upΓ(RLD)in1FCD ⊆ upΓ 1 is obvious. �



CHAPTER 17

Generalized cofinite filters

The following is a straightforward generalization of cofinite filter.

Definition 1431. Ω1a =
dA
X∈coatomsZ X; Ω1b =

dA
X∈coatomsA X.

Proposition 1432. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator.
3◦. Ω1a = Ω1b for this filtrator.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Proposition 557.

�

Proposition 1433. Let (A,Z) be a primary filtrator. Let Z be a subset of PU .
Let it be a meet-semilattice with greatest element. Let also every non-coempty
cofinite set lies in Z. Then

∂Ω =
{

Y ∈ Z

card atomsZ Y ≥ ω

}
. (18)

Proof. Ω exists by corollary 515.
Y ∈ ∂Ω ⇔ Y 6�A

dA
X∈coatomsZ X ⇔ (by properties of filter bases) ⇔ ∀S ∈

Pfin coatomsZ : Y 6�A
dA

S ⇔ (corollary 533) ⇔ ∀S ∈ Pfin coatomsZ : Y 6�d
S ⇔ ∀K ∈PfinU : Y \K 6= ∅ ⇔ cardY ≥ ω ⇔ card atomsZ Y ≥ ω. (Here Pfin

denotes the set of finite subsets.) �

Corollary 1434. Formula (18) holds for both reloids and funcoids.

Proof. For reloiods it’s straightforward, for funcoids take that they are iso-
morphic to filters on lattice Γ. �

Corollary 1435. ΩFCD 6= ⊥FCD (for FCD(A,B) where A × B is an infinite
set).

Proposition 1436. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over an atomic ideal base and ∀α ∈

atomsZ ∃X ∈ coatomsZ : a 6v X.
3◦. Ω1a and Cor Ω1a are defined, ∀α ∈ atomsZ ∃X ∈ coatomsZ : a 6v X and Z

is an atomic poset.
4◦. Cor Ω1a = ⊥Z.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Obvious.

272
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3◦⇒4◦. Suppose α ∈ atomsZ Cor Ω. Then ∃X ∈ up Ω : α 6v X. Therefore α /∈
atomsZ Cor Ω. So atomsZ Cor Ω1a = ∅ and thus by atomicity Cor Ω1a =
⊥Z.

�

Corollary 1437. Cor ΩFCD = ⊥.

Proposition 1438. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over an atomic meet-semilattice with greatest

element such that ∀α ∈ atomsZ ∃X ∈ coatomsZ : a 6v X.
3◦. A is a complete lattice, ∀α ∈ atomsZ ∃X ∈ coatomsZ : a 6v X and (A;Z)

is a filtered filtrator over an atomic poset.
4◦. Ω1a = max

{ X∈A
CorX=⊥Z

}
Proof.

1◦⇒2◦. Obvious.
2◦⇒3◦. Obvious.
3◦⇒4◦. Due the last proposition, it is enough to show that CorX = ⊥Z ⇒ X v Ω1a

for every X ∈ A.
Let CorX = ⊥Z for some X ∈ A. Because of our filtrator being

filtered, it’s enough to show X ∈ upX for every X ∈ up Ω1a . X = a0 u
. . .u an for ai being coatoms of Z. ai w X because otherwise ai 6w CorX .
So X ∈ upX .

�

Proposition 1439. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a meet-semilattice.
3◦. up Ω1a =

{ d
S

S∈Pfin coatomsZ

}
Proof.

1◦⇒2◦. Obvious.
2◦⇒3◦. Because

{ d
S

S∈Pfin coatomsZ

}
is a filter.

�

Corollary 1440. up ΩFCD = up ΩRLD.

Definition 1441. Ω1c = d(atomsA \Z).

Proposition 1442. The following is an implications tuple:
1◦. (A;Z) is a powerset filtrator.
2◦. (A;Z) is a down-aligned filtered complete lattice filtrator over an atomistic

poset and ∀α ∈ atomsZ ∃X ∈ coatomsZ : a 6v X.
3◦. Ω1c = Ω1a.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. For x ∈ atomsA \Z we have Corx = ⊥ because otherwise ⊥ 6= Corx @ x.

Thus by previous x v Ω1a and so Ω1c = d(atomsA \Z) v Ω1a.
If x ∈ atoms Ω1a then x /∈ Z because otherwise Corx 6= ⊥. So

Ω1a = latoms Ω1a = l(atoms Ω1a \ Z) v l(atomsA \Z) = Ω1c.

�
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Theorem 1443. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a complete atomic boolean lattice.
3◦. All of the following:

(a) A is atomistic complete starrish lattice.
(b) Z is a complete atomistic lattice.
(c) (A,Z) is a filtered down-aligned filtrator with binarily meet-closed

core.
4◦. Cor′ is the lower adjoint of Ω1c tA −.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Obvious.
3◦⇒4◦. It with join-closed core by theorem 531.
We will prove Cor′ X v Y ⇔ X v Ω1c t Y.
By atomisticity it is equivalent to: atomsA Cor′ X ⊆ atomsA Y ⇔ atomsA X ⊆

atomsA(Ω1c t Y); (theorem 600) atomsA Cor′ X ⊆ atomsA Y ⇔ atomsA X ⊆
atomsA Ω1c ∪ atomsA Y; what by below is equivalent to: atomsZ X ⊆ atomsZ Y ⇔
atomsA X ⊆ atomsA Ω1c ∪ atomsA Y.

Cor′ X v Y ⇔ atomsA Cor′ X ⊆ atomsA Y ⇒ atomsZ Cor′ X ⊆ atomsZ Y ⇔
atomsZ X ⊆ atomsZ Y;

atomsZ X ⊆ atomsZ Y ⇒ (theorem 596) ⇒ Cor′ X v Cor′ Y ⇒
(theorem 540)⇒ Cor′ X v Y.

Finishing the proof atomsA X ⊆ atomsA Ω1c ∪ atomsA Y ⇔ atomsA X ⊆
(atomsA \Z) ∪ atomsA Y ⇔ atomsZ X ⊆ atomsA Y ⇔ atomsZ X ⊆ atomsZ Y.

�

Next there is an alternative proof of the above theorem. This alternative proof
requires additional condition ∀α ∈ atomsZ ∃X ∈ coatomsZ : a 6v X however.

Proof. Define Ω = Ω1a = Ω1c.
It with join-closed core by theorem 531.
It’s enough to prove that

X v Ω tA Cor′ X and Cor′(Ω tA Y) v Y.
Cor′(Ω tA Y) = (theorem 600) = Cor′ Ω tZ Cor′ Y = (proposition 1436) = ⊥Z tZ
Cor′ Y v (theorem 540) v Y.

Ω tA Cor′ X = datoms(Ω tA Cor′ X ) = d(atoms Ω ∪ Cor′ X ) = datoms Ω t

datomsX ) w d(atomsX \Z)t d(atomsX∩Z) = d((atomsX \Z)∪(atomsX∩Z) =

datomsX = X . �

Corollary 1444. Under conditions of the last theorem Cor′ d

A
S =

d

A〈Cor′
〉∗
S.

Proposition 1445. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a complete atomic boolean lattice.
3◦. All of the following:

(a) A is atomistic complete co-brouwerian lattice.
(b) Z is a complete atomistic lattice.
(c) (A,Z) is a filtered down-aligned filtrator with binarily meet-closed

core.
4◦. Cor′ X = X \∗ Ω1c

Proof.
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1◦⇒2◦ Obvious.
2◦⇒3◦ Because complete atomic boolean lattice is isomorphic to a powerset.
3◦⇒4◦ Theorems 1443 and 154.

�

Proposition 1446.
1◦. 〈ΩFCD〉{x} = ΩU ;
2◦. 〈ΩFCD〉p = > for every nontrivial atomic filter p.

Proof. 〈ΩFCD〉{x} =
dA
y∈U (U \ {y}) = ΩU ; 〈ΩFCD〉p =

dA
y∈U > = >. �

Proposition 1447. (FCD)ΩRLD = ΩFCD.

Proof. (FCD)ΩRLD =
dFCD up ΩRLD = ΩFCD. �

Proposition 1448. (RLD)outΩFCD = ΩRLD.

Proof. (RLD)outΩFCD =
dRLD up ΩFCD =

dRLD up ΩRLD = ΩRLD. �

Proposition 1449. (RLD)inΩFCD = ΩRLD.

Proof.

(RLD)inΩFCD = l

{
a×RLD b

a ∈ atomsF , b ∈ atomsF , a×FCD b v ΩFCD

}
=

l

{
a×RLD b

a ∈ atomsF , b ∈ atomsF ,not a and b both trivial

}
=

l
{

datoms(a×RLD b)
a ∈ atomsF , b ∈ atomsF ,not a and b both trivial

}
=

l

⋃{ atoms(a×RLD b)
a ∈ atomsF , b ∈ atomsF ,not a and b both trivial

}
=

l(nontrivial atomic reloids under A×B) = ΩRLD.

�



CHAPTER 18

Convergence of funcoids

18.1. Convergence

The following generalizes the well-known notion of a filter convergent to a point
or to a set:

Definition 1450. A filter F ∈ F (Dstµ) converges to a filter A ∈ F (Srcµ)
regarding a funcoid µ (F µ→ A) iff F v 〈µ〉A.

Definition 1451. A funcoid f converges to a filter A ∈ F (Srcµ) regarding
a funcoid µ where Dst f = Dstµ (denoted f

µ→ A) iff im f v 〈µ〉A that is iff
im f

µ→ A.

Definition 1452. A funcoid f converges to a filter A ∈ F (Srcµ) on a filter
B ∈ F (Src f) regarding a funcoid µ where Dst f = Dstµ iff f |B

µ→ A.

Obvious 1453. A funcoid f converges to a filter A ∈ F (Srcµ) on a filter
B ∈ F (Src f) regarding a funcoid µ iff 〈f〉B v 〈µ〉A.

Remark 1454. We can define also convergence for a reloid f : f µ→ A⇔ im f v
〈µ〉A or what is the same f µ→ A⇔ (FCD)f µ→ A.

Theorem 1455. Let f , g be funcoids, µ, ν be endofuncoids, Dst f = Src g =
Obµ, Dst g = Ob ν, A ∈ F (Obµ). If f µ→ A,

g|〈µ〉A ∈ C(µ u (〈µ〉A ×FCD 〈µ〉A), ν),

and 〈µ〉A w A, then g ◦ f ν→ 〈g〉A.

Proof.

im f v 〈µ〉A;
〈g〉 im f v 〈g〉〈µ〉A;

im(g ◦ f) v
〈
g|〈µ〉A

〉
〈µ〉A;

im(g ◦ f) v
〈
g|〈µ〉A

〉〈
µ u (〈µ〉A ×FCD 〈µ〉A)

〉
A;

im(g ◦ f) v
〈
g|〈µ〉A ◦ (µ u (〈µ〉A ×FCD 〈µ〉A))

〉
A;

im(g ◦ f) v
〈
ν ◦ g|〈µ〉A

〉
A;

im(g ◦ f) v 〈ν ◦ g〉A;

g ◦ f ν→ 〈g〉A.

�

Corollary 1456. Let f , g be funcoids, µ, ν be endofuncoids, Dst f = Src g =
Obµ, Dst g = Ob ν, A ∈ F (Obµ). If f µ→ A, g ∈ C(µ, ν), and 〈µ〉A w A then
g ◦ f ν→ 〈g〉A.

Proof. From the last theorem and theorem 1184. �

276
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18.2. Relationships between convergence and continuity

Lemma 1457. Let µ, ν be endofuncoids, f ∈ FCD(Obµ,Ob ν), A ∈ F (Obµ),
Src f = Obµ, Dst f = Ob ν. If f ∈ C(µ|A, ν) then

f |〈µ〉A
ν→ 〈f〉A ⇔ 〈f ◦ µ|A〉A v 〈ν ◦ f〉A.

Proof.

f |〈µ〉A
ν→ 〈f〉A ⇔ im f |〈µ〉A v 〈ν〉〈f〉A ⇔
〈f〉〈µ〉A v 〈ν〉〈f〉A ⇔ 〈f ◦ µ〉A v 〈ν ◦ f〉A ⇔ 〈f ◦ µ|A〉A v 〈ν ◦ f〉A.

�

Theorem 1458. Let µ, ν be endofuncoids, f ∈ FCD(Obµ,Ob ν), A ∈
F (Obµ), Src f = Obµ, Dst f = Ob ν. If f ∈ C(µ|A, ν) then f |〈µ〉A

ν→ 〈f〉A.
Proof.

f |〈µ〉A
ν→ 〈f〉A ⇔ (by the lemma)⇔ 〈f ◦ µ|A〉A v 〈ν ◦ f〉A ⇐

f ◦ µ|A v ν ◦ f ⇔ f ∈ C(µ|A, ν).
�

Corollary 1459. Let µ, ν be endofuncoids, f ∈ FCD(Obµ,Ob ν), A ∈
F (Obµ), Src f = Obµ, Dst f = Ob ν. If f ∈ C(µ, ν) then f |〈µ〉A

ν→ 〈f〉A.
Theorem 1460. Let µ, ν be endofuncoids, f ∈ FCD(Obµ,Ob ν), A ∈ F (Obµ)

be an ultrafilter, Src f = Obµ, Dst f = Ob ν. f ∈ C(µ|A, ν) iff f |〈µ〉A
ν→ 〈f〉A.

Proof.

f |〈µ〉A
ν→ 〈f〉A ⇔ (by the lemma)⇔ 〈f ◦ µ|A〉A v 〈ν ◦ f〉A ⇔

(used the fact that A is an ultrafilter)
f ◦ µ|A v ν ◦ f |A ⇔ f ◦ µ|A v ν ◦ f ⇔ f ∈ C(µ|A, ν).

�

18.3. Convergence of join

Proposition 1461. dS
µ→ A ⇔ ∀F ∈ S : F µ→ A for every collection S of

filters on Dstµ and filter A on Srcµ, for every funcoid µ.
Proof.

lS
µ→ A⇔ lS v 〈µ〉A ⇔ ∀F ∈ S : F v 〈µ〉A ⇔ ∀F ∈ S : F µ→ A.

�

Corollary 1462. dF
µ→ A ⇔ ∀f ∈ F : f µ→ A for every collection F of

funcoids f such that Dst f = Dstµ and filter A on Srcµ, for every funcoid µ.
Proof. By corollary 893 we have

lF
µ→ A⇔ im lF

µ→ A⇔ l〈im〉
∗
F

µ→ A⇔

∀f ∈ 〈im〉∗F : F µ→ A⇔ ∀f ∈ F : im f
µ→ A⇔ ∀f ∈ F : f µ→ A.

�

Theorem 1463. f |B0tB1

µ→ A ⇔ f |B0

µ→ A ∧ f |B1

µ→ A. for all filters A, B0,
B1 and funcoids µ, f and g on suitable sets.

Proof. As easily follows from distributivity of the lattices of funcoids we have
f |B0tB1 = f |B0 t f |B1 . Thus our theorem follows from the previous corollary. �
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18.4. Limit

Definition 1464. limµ f = a iff f
µ→↑Srcµ {a} for a T2-separable funcoid µ

and a non-empty funcoid f such that Dst f = Dstµ.

It is defined correctly, that is f has no more than one limit.

Proof. Let limµ f = a and limµ f = b. Then im f v 〈µ〉∗@{a} and im f v
〈µ〉∗@{b}.

Because f 6= ⊥FCD(Src f,Dst f) we have im f 6= ⊥F(Dst f); 〈µ〉∗@{a}u〈µ〉∗@{b} 6=
⊥F(Dst f); ↑Srcµ {b} u

〈
µ−1〉〈µ〉∗@{a} 6= ⊥F(Srcµ); ↑Srcµ {b} u

〈
µ−1 ◦ µ

〉
@{a} 6=

⊥F(Srcµ); @{a}
[
µ−1 ◦ µ

]
@{b}. Because µ is T2-separable we have a = b. �

Definition 1465. limµ
B f = limµ(f |B).

Remark 1466. We can also in an obvious way define limit of a reloid.

18.5. Generalized limit

18.5.1. Definition. Let µ and ν be endofuncoids. Let G be a transitive per-
mutation group on Obµ.

For an element r ∈ G we will denote ↑ r =↑FCD(Obµ,Obµ) r.
We require that µ and every r ∈ G commute, that is

µ◦ ↑ r =↑ r ◦ µ.
We require for every y ∈ Ob ν

ν w 〈ν〉∗@{y} ×FCD 〈ν〉∗@{y}. (19)

Proposition 1467. Formula (19) follows from ν w ν ◦ ν−1.

Proof. Let ν w ν ◦ ν−1. Then
〈ν〉∗@{y} ×FCD 〈ν〉∗@{y} =
〈ν〉@{y} ×FCD 〈ν〉@{y} =

ν ◦ (↑Ob ν {y}×FCD ↑Ob ν {y}) ◦ ν−1 =
ν◦ ↑FCD(Ob ν,Ob ν) ({y} × {y}) ◦ ν−1 v

ν ◦ 1FCD
Ob ν ◦ ν−1 =
ν ◦ ν−1 v ν.

�

Remark 1468. The formula (19) usually works if ν is a proximity. It does not
work if µ is a pretopology or preclosure.

We are going to consider (generalized) limits of arbitrary functions acting from
Obµ to Ob ν. (The functions in consideration are not required to be continuous.)

Remark 1469. Most typicallyG is the group of translations of some topological
vector space.

Generalized limit is defined by the following formula:

Definition 1470. xlim f
def=
{
ν◦f◦↑r
r∈G

}
for any funcoid f .

Remark 1471. Generalized limit technically is a set of funcoids.

We will assume that dom f w 〈µ〉∗@{x}.

Definition 1472. xlimx f = xlim f |〈µ〉∗@{x}.
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Obvious 1473. xlimx f =
{
ν◦f |〈µ〉∗@{x}◦↑r

r∈G

}
.

Remark 1474. xlimx f is the same for funcoids µ and Complµ.

The function τ will define an injection from the set of points of the space ν
(“numbers”, “points”, or “vectors”) to the set of all (generalized) limits (i.e. values
which xlimx f may take).

Definition 1475. τ(y) def=
{
〈µ〉∗@{x}×FCD〈ν〉∗@{y}

x∈D

}
.

Proposition 1476. τ(y) =
{

(〈µ〉∗@{x}×FCD〈ν〉∗@{y})◦↑r
r∈G

}
for every (fixed) x ∈

D.

Proof.

(〈µ〉∗@{x} ×FCD 〈ν〉∗@{y})◦ ↑ r =〈
↑ r−1〉〈µ〉∗@{x} ×FCD 〈ν〉∗@{y} =
〈µ〉
〈
↑ r−1〉∗@{x} ×FCD 〈ν〉∗@{y} =

〈µ〉∗@{r−1x} ×FCD 〈ν〉∗@{y} ∈
{
〈µ〉∗@{x} ×FCD 〈ν〉∗@{y}

x ∈ D

}
.

Reversely 〈µ〉∗@{x} ×FCD 〈ν〉∗@{y} = (〈µ〉∗@{x} ×FCD 〈ν〉∗@{y})◦ ↑ e where e
is the identify element of G. �

Proposition 1477. τ(y) = xlim(〈µ〉∗@{x}×FCD ↑Base(Ob ν) {y}) (for every x).
Informally: Every τ(y) is a generalized limit of a constant funcoid.

Proof.

xlim(〈µ〉∗@{x}×FCD ↑Base(Ob ν) {y}) ={
ν ◦ (〈µ〉∗@{x}×FCD ↑Base(Ob ν) {y})◦ ↑ r

r ∈ G

}
={

(〈µ〉∗@{x} ×FCD 〈ν〉∗@{y})◦ ↑ r
r ∈ G

}
= τ(y).

�

Theorem 1478. If f is a function and f |〈µ〉∗@{x} ∈ C(µ, ν) and
〈µ〉∗@{x} w↑Obµ {x} then xlimx f = τ(fx).

Proof. f |〈µ〉∗@{x} ◦ µ v ν ◦ f |〈µ〉∗@{x} v ν ◦ f ; thus 〈f〉〈µ〉∗@{x} v
〈ν〉〈f〉∗@{x}; consequently we have

ν w 〈ν〉〈f〉∗@{x} ×FCD 〈ν〉〈f〉∗@{x} w 〈f〉〈µ〉∗@{x} ×FCD 〈ν〉〈f〉∗@{x}.
ν ◦ f |〈µ〉∗@{x} w

(〈f〉〈µ〉∗@{x} ×FCD 〈ν〉〈f〉∗@{x}) ◦ f |〈µ〉∗@{x} =
(f |〈µ〉∗{x})−1〈f〉〈µ〉∗@{x} ×FCD 〈ν〉〈f〉∗@{x} w〈
idFCD

dom f |〈µ〉∗{x}

〉
〈µ〉∗@{x} ×FCD 〈ν〉〈f〉∗@{x} w

dom f |〈µ〉∗@{x} ×FCD 〈ν〉〈f〉∗@{x} =
〈µ〉∗@{x} ×FCD 〈ν〉〈f〉∗@{x}.
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im(ν ◦ f |〈µ〉∗@{x}) = 〈ν〉〈f〉∗@{x};
ν ◦ f |〈µ〉∗@{x} v

〈µ〉∗@{x} ×FCD im(ν ◦ f |〈µ〉∗@{x}) =
〈µ〉∗@{x} ×FCD 〈ν〉〈f〉∗@{x}.

So ν ◦ f |〈µ〉∗@{x} = 〈µ〉∗@{x} ×FCD 〈ν〉〈f〉∗@{x}.
Thus xlimx f =

{
(〈µ〉∗@{x}×FCD〈ν〉〈f〉∗@{x})◦↑r

r∈G

}
= τ(fx). �

Remark 1479. Without the requirement of 〈µ〉∗@{x} w↑Obµ {x} the last
theorem would not work in the case of removable singularity.

Theorem 1480. Let ν v ν ◦ ν. If f |〈µ〉∗@{x}
ν→↑Obµ {y} then xlimx f = τ(y).

Proof. im f |〈µ〉∗@{x} v 〈ν〉
∗@{y}; 〈f〉〈µ〉∗@{x} v 〈ν〉∗@{y};

ν ◦ f |〈µ〉∗@{x} w

(〈ν〉∗@{y} ×FCD 〈ν〉∗@{y}) ◦ f |〈µ〉∗@{x} =〈
(f |〈µ〉∗@{x})−1〉〈ν〉∗@{y} ×FCD 〈ν〉∗@{y} =〈
idFCD
〈µ〉∗{x} ◦f−1

〉
〈ν〉∗@{y} ×FCD 〈ν〉∗@{y} w〈

idFCD
〈µ〉∗{x} ◦f−1

〉
〈f〉〈µ〉∗@{x} ×FCD 〈ν〉∗@{y} =〈

idFCD
〈µ〉∗{x}

〉〈
f−1 ◦ f

〉
〈µ〉∗@{x} ×FCD 〈ν〉∗@{y} w〈

idFCD
〈µ〉∗{x}

〉〈
idFCD
〈µ〉∗{x}

〉
〈µ〉∗@{x} ×FCD 〈ν〉∗@{y} =

〈µ〉∗@{x} ×FCD 〈ν〉∗@{y}.

On the other hand, f |〈µ〉∗@{x} v 〈µ〉∗@{x} ×FCD 〈ν〉∗@{y};
ν ◦ f |〈µ〉∗@{x} v 〈µ〉

∗@{x} ×FCD 〈ν〉〈ν〉∗@{y} v 〈µ〉∗@{x} ×FCD 〈ν〉∗@{y}.
So ν ◦ f |〈µ〉∗@{x} = 〈µ〉∗@{x} ×FCD 〈ν〉∗@{y}.
xlimx f =

{
ν◦f |〈µ〉∗@{x}◦↑r

r∈G

}
=
{

(〈µ〉∗@{x}×FCD〈ν〉∗@{y})◦↑r
r∈G

}
= τ(y). �

Corollary 1481. If limν
〈µ〉∗@{x} f = y then xlimx f = τ(y) (provided that

ν v ν ◦ ν).

We have injective τ if 〈ν〉∗@{y1} u 〈ν〉∗@{y2} = ⊥F(Obµ) for every distinct
y1, y2 ∈ Ob ν that is if ν is T2-separable.

18.6. Expressing limits as implications

When you studied limits in the school, you was told that limx→α f(x) = β
when x→ α implies f(x)→ β. Now let us formalize this.

Proposition 1482. The following are pairwise equivalent for funcoids µ, ν, f
of suitable (“compatible”) sources and destinations:

1◦. f |〈µ〉∗{α}
ν→ β;

2◦. ∀x ∈ F (Obµ) :
(
x

µ→ α⇒ 〈f〉x ν→ β
)
;

3◦. ∀x ∈ atomsF(Obµ) :
(
x

µ→ α⇒ 〈f〉x ν→ β
)
.

Proof.
1◦⇔2◦. ∀x ∈ F (Obµ) :

(
x

µ→ α⇒ 〈f〉x ν→ β
)
⇔ ∀x ∈ F (Obµ) : (x v 〈µ〉α ⇒

〈f〉x v 〈ν〉β)⇔ 〈f〉〈µ〉α v 〈ν〉β ⇔ f |〈µ〉∗{α}
ν→ β.



18.6. EXPRESSING LIMITS AS IMPLICATIONS 281

2◦⇒3◦. Obvious.
3◦⇒2◦. Let 3◦ hold. Then for x ∈ F (Obµ) we have x µ→ α ⇔ x v 〈µ〉α ⇔ ∀x′ ∈

atomsx : x′ v 〈µ〉α⇔ ∀x′ ∈ atomsx : x′ µ→ α⇒ ∀x′ ∈ atomsx : 〈f〉x′ ν→
β ⇔ ∀x′ ∈ atomsx : 〈f〉x′ v 〈ν〉β ⇔ dx′∈atoms x〈f〉x′ v 〈ν〉β ⇔ 〈f〉x v
〈ν〉β ⇔ 〈f〉x ν→ β.

�

Lemma 1483. If f is an enterely defined monovalued funcoid and x is an ul-
trafilter, y is a filter, then 〈f〉x v y ⇔ x v 〈f−1〉y.

Proof. 〈f〉x is an ultrafilter. 〈f〉x v y ⇔ 〈f〉x 6� y ⇔ x 6� 〈f−1〉y ⇔ x v
〈f−1〉y. �

Proposition 1484. The following are pairwise equivalent for funcoids µ, ν,
f , g of suitable (“compatible”) sources and destinations provided that g is entirely
defined and monovalued:

1◦. (f ◦ g−1)|〈µ〉∗{α}
ν→ β;

2◦. ∀x ∈ F (Obµ) :
(
〈g〉x µ→ α⇒ 〈f〉x ν→ β

)
;

3◦. ∀x ∈ atomsF(Obµ) :
(
〈g〉x µ→ α⇒ 〈f〉x ν→ β

)
.

Proof.
1◦⇔3◦. Equivalently transforming: (f ◦ g−1)|〈µ〉∗{α}

ν→ β; 〈f〉〈g−1〉∗〈µ〉∗{α} v
〈ν〉∗{β}; for every x ∈ atomsF(Obµ) we have x v 〈g−1〉〈µ〉∗{α} ⇒ 〈f〉x v
〈ν〉∗{β}; what by the lemma is equivalent to 〈g〉x v 〈µ〉∗{α} ⇒ 〈f〉x v
〈ν〉∗{β} that is 〈g〉x µ→ α⇒ 〈f〉x ν→ β.

3◦⇔2◦. Let x ∈ F (Obµ) and 3◦ holds. Let 〈g〉x µ→ α. Then ∀x′ ∈ atomsx :
〈g〉x′ µ→ α and thus 〈f〉x′ ν→ β that is 〈f〉x′ v 〈ν〉β. 〈f〉x =

dx′∈atoms x〈f〉x′ v 〈ν〉β that is 〈f〉x ν→ β.
�

Problem 1485. Can the theorem be strenhtened for: a. non-monovalued; b.
not entirely defined g? (The problem seems easy but I have not checked it.)
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Pointfree funcoids and reloids



CHAPTER 19

Pointfree funcoids

This chapter is based on [29].
This is a routine chapter. There is almost nothing creative here. I just general-

ize theorems about funcoids to the maximum extent for pointfree funcoids (defined
below) preserving the proof idea. The main idea behind this chapter is to find
weakest theorem conditions enough for the same theorem statement as for above
theorems for funcoids.

For these who know pointfree topology: Pointfree topology notions of frames
and locales is a non-trivial generalization of topological spaces. Pointfree funcoids
are different: I just replace the set of filters on a set with an arbitrary poset, this
readily gives the definition of pointfree funcoid, almost no need of creativity here.

Pointfree funcoids are used in the below definitions of products of funcoids.

19.1. Definition

Definition 1486. Pointfree funcoid is a quadruple (A,B, α, β) where A and B
are posets, α ∈ BA and β ∈ AB such that

∀x ∈ A, y ∈ B : (y 6� αx⇔ x 6� βy).

Definition 1487. The source Src(A,B, α, β) = A and destination
Dst(A,B, α, β) = B for every pointfree funcoid (A,B, α, β).

To every funcoid (A,B, α, β) corresponds pointfree funcoid (PA,PB,α, β).
Thus pointfree funcoids are a generalization of funcoids.

Definition 1488. I will denote pFCD(A,B) the set of pointfree funcoids from
A to B (that is with source A and destination B), for every posets A and B.
〈(A,B, α, β)〉 def= α for every pointfree funcoid (A,B, α, β).

Definition 1489. (A,B, α, β)−1 = (B,A, β, α) for every pointfree funcoid
(A,B, α, β).

Proposition 1490. If f is a pointfree funcoid then f−1 is also a pointfree
funcoid.

Proof. It follows from symmetry in the definition of pointfree funcoid. �

Obvious 1491. (f−1)−1 = f for every pointfree funcoid f .

Definition 1492. The relation [f ]∈P(Src f×Dst f) is defined by the formula
(for every pointfree funcoid f and x ∈ Src f , y ∈ Dst f)

x [f ] y def= y 6� 〈f〉x.

Obvious 1493. x [f ] y ⇔ y 6� 〈f〉x⇔ x 6�
〈
f−1〉y for every pointfree funcoid

f and x ∈ Src f , y ∈ Dst f .

Obvious 1494.
[
f−1]=[f ]−1 for every pointfree funcoid f .

Theorem 1495. Let A and B be posets. Then:

283
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1◦. If A is separable, for given value of 〈f〉 there exists no more than one
f ∈ pFCD(A,B).

2◦. If A and B are separable, for given value of [f ] there exists no more than
one f ∈ pFCD(A,B).

Proof. Let f, g ∈ pFCD(A,B).
1◦. Let 〈f〉 = 〈g〉. Then for every x ∈ A, y ∈ B we have

x 6�
〈
f−1〉y ⇔ y 6� 〈f〉x⇔ y 6� 〈g〉x⇔ x 6�

〈
g−1〉y

and thus by separability of A we have
〈
f−1〉y =

〈
g−1〉y that is

〈
f−1〉 =

〈
g−1〉 and

so f = g.
2◦. Let [f ]=[g]. Then for every x ∈ A, y ∈ B we have

x 6�
〈
f−1〉y ⇔ x [f ] y ⇔ x [g] y ⇔ x 6�

〈
g−1〉y

and thus by separability of A we have
〈
f−1〉y =

〈
g−1〉y that is

〈
f−1〉 =

〈
g−1〉.

Similarly we have 〈f〉 = 〈g〉. Thus f = g.
�

Proposition 1496. If Src f and Dst f have least elements, then 〈f〉⊥Src f =
⊥Dst f for every pointfree funcoid f .

Proof. y 6� 〈f〉⊥Src f ⇔ ⊥Src f 6�
〈
f−1〉y ⇔ 0 for every y ∈ Dst f . Thus

〈f〉⊥Src f � 〈f〉⊥Src f . So 〈f〉⊥Src f = ⊥Dst f . �

Proposition 1497. If Dst f is strongly separable then 〈f〉 is a monotone func-
tion (for a pointfree funcoid f).

Proof.
a v b⇒

∀x ∈ Dst f : (a 6�
〈
f−1〉x⇒ b 6�

〈
f−1〉x)⇒

∀x ∈ Dst f : (x 6� 〈f〉a⇒ x 6� 〈f〉b)⇔
?〈f〉a ⊆ ?〈f〉b⇒
〈f〉a v 〈f〉b.

�

Theorem 1498. Let f be a pointfree funcoid from a starrish join-semilattice
Src f to a separable starrish join-semilattice Dst f . Then 〈f〉(i t j) = 〈f〉i t 〈f〉j
for every i, j ∈ Src f .

Proof.
?〈f〉(i t j) ={

y ∈ Dst f
y 6� 〈f〉(i t j)

}
={

y ∈ Dst f
i t j 6� 〈f−1〉y

}
={

y ∈ Dst f
i 6� 〈f−1〉y ∨ j 6� 〈f−1〉y

}
={

y ∈ Dst f
y 6� 〈f〉i ∨ y 6� 〈f〉j

}
={

y ∈ Dst f
y 6� 〈f〉i t 〈f〉j

}
=

?(〈f〉i t 〈f〉j).
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Thus 〈f〉(i t j) = 〈f〉i t 〈f〉j by separability. �

Proposition 1499. Let f be a pointfree funcoid. Then:

1◦. k [f ] i t j ⇔ k [f ] i ∨ k [f ] j for every i, j ∈ Dst f , k ∈ Src f if Dst f is a
starrish join-semilattice.

2◦. i t j [f ] k ⇔ i [f ] k ∨ j [f ] k for every i, j ∈ Src f , k ∈ Dst f if Src f is a
starrish join-semilattice.

Proof.
1◦. k [f ] i t j ⇔ i t j 6� 〈f〉k ⇔ i 6� 〈f〉k ∨ j 6� 〈f〉k ⇔ k [f ] i ∨ k [f ] j.
2◦. Similar.

�

19.2. Composition of pointfree funcoids

Definition 1500. Composition of pointfree funcoids is defined by the formula

(B,C, α2, β2) ◦ (A,B, α1, β1) = (A,C, α2 ◦ α1, β1 ◦ β2).

Definition 1501. I will call funcoids f and g composable when Dst f = Src g.

Proposition 1502. If f , g are composable pointfree funcoids then g ◦ f is
pointfree funcoid.

Proof. Let f = (A,B, α1, β1), g = (B,C, α2, β2). For every x, y ∈ A we have

y 6� (α2 ◦ α1)x⇔ y 6� α2α1x⇔ α1x 6� β2y ⇔ x 6� β1β2y ⇔ x 6� (β1 ◦ β2)y.

So (A,C, α2 ◦ α1, β1 ◦ β2) is a pointfree funcoid. �

Obvious 1503. 〈g ◦ f〉 = 〈g〉 ◦ 〈f〉 for every composable pointfree funcoids f
and g.

Theorem 1504. (g◦f)−1 = f−1◦g−1 for every composable pointfree funcoids f
and g.

Proof. 〈
(g ◦ f)−1〉 =

〈
f−1〉 ◦ 〈g−1〉 =

〈
f−1 ◦ g−1〉;〈

((g ◦ f)−1)−1〉 = 〈g ◦ f〉 =
〈
(f−1 ◦ g−1)−1〉.

�

Proposition 1505. (h ◦ g) ◦ f = h ◦ (g ◦ f) for every composable pointfree
funcoids f , g, h.

Proof. 〈(h ◦ g) ◦ f〉 = 〈h ◦ g〉 ◦ 〈f〉 = 〈h〉 ◦ 〈g〉 ◦ 〈f〉 = 〈h〉 ◦ 〈g ◦ f〉 =
〈h ◦ (g ◦ f)〉;〈

((h ◦ g) ◦ f)−1〉 =
〈
f−1 ◦ (h ◦ g)−1〉 =

〈
f−1 ◦ g−1 ◦ h−1〉 =〈
(g ◦ f)−1 ◦ h−1〉 =

〈
(h ◦ (g ◦ f))−1〉.

�

Exercise 1506. Generalize section 7.4 for pointfree funcoids.
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19.3. Pointfree funcoid as continuation

Proposition 1507. Let f be a pointfree funcoid. Then for every x ∈ Src f ,
y ∈ Dst f we have

1◦. If (Src f,Z) is a filtrator with separable core then x [f ] y ⇔ ∀X ∈ upZ x :
X [f ] y.

2◦. If (Dst f,Z) is a filtrator with separable core then x [f ] y ⇔ ∀Y ∈ upZ y :
x [f ] Y .

Proof. We will prove only the second because the first is similar.

x [f ] y ⇔ y 6�Dst f 〈f〉x⇔ ∀Y ∈ upZ y : Y 6� 〈f〉x⇔ ∀Y ∈ upZ y : x [f ] Y.

�

Corollary 1508. Let f be a pointfree funcoid and (Src f,Z0), (Dst f,Z1) be
filtrators with separable core. Then

x [f ] y ⇔ ∀X ∈ upZ0 x, Y ∈ upZ1 y : X [f ] Y.

Proof. Apply the proposition twice. �

Theorem 1509. Let f be a pointfree funcoid. Let (Src f,Z0) be a binarily
meet-closed filtrator with separable core which is a meet-semilattice and ∀x ∈
Src f : upZ0 x 6= ∅ and (Dst f,Z1) be a primary filtrator over a boolean lattice.

〈f〉x =
Dst fl
〈〈f〉〉∗ upZ0 x.

Proof. By the previous proposition for every y ∈ Dst f :

y 6�Dst f 〈f〉x⇔ x [f ] y ⇔ ∀X ∈ upZ0 x : X [f ] y ⇔ ∀X ∈ upZ0 x : y 6�Dst f 〈f〉X.

Let’s denote W =
{
yuDst f 〈f〉X
X∈upZ0 x

}
. We will prove that W is a generalized filter

base over Z1. To prove this enough to show that V =
{

〈f〉X
X∈upZ0 x

}
is a generalized

filter base.
Let P,Q ∈ V . Then P = 〈f〉A, Q = 〈f〉B where A,B ∈ upZ0 x; A uZ0

B ∈ upZ0 x (used the fact that it is a binarily meet-closed and theorem 532) and
R v P uDst f Q for R = 〈f〉(A uZ0 B) ∈ V because Dst f is strongly separable by
proposition 576. So V is a generalized filter base and thus W is a generalized filter
base.
⊥Dst f /∈W ⇔ ⊥Dst f /∈

dDst f
W by theorem 569. That is

∀X ∈ upZ0 x : y uDst f 〈f〉X 6= ⊥Dst f ⇔ y uDst f
Dst fl
〈〈f〉〉∗ upZ0 x 6= ⊥Dst f .

Comparing with the above,

y uDst f 〈f〉x 6= ⊥Dst f ⇔ y uDst f
Dst fl
〈〈f〉〉∗ upZ0 x 6= ⊥Dst f .

So 〈f〉x =
dDst f 〈〈f〉〉∗ upZ0 x because Dst f is separable (proposition 576 and the

fact that Z1 is a boolean lattice). �

Theorem 1510. Let (A,Z0) and (B,Z1) be primary filtrators over boolean
lattices.

1◦. A function α ∈ BZ0 conforming to the formulas (for every I, J ∈ Z0)

α⊥Z0 = ⊥B, α(I t J) = αI t αJ
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can be continued to the function 〈f〉 for a unique f ∈ pFCD(A,B);

〈f〉X =
Bl
〈α〉∗ upZ0 X (20)

for every X ∈ A.
2◦. A relation δ ∈P(Z0×Z1) conforming to the formulas (for every I, J,K ∈

Z0 and I ′, J ′,K ′ ∈ Z1)

¬(⊥Z0 δ I ′), I t J δ K ′ ⇔ I δ K ′ ∨ J δ K ′,
¬(I δ ⊥Z1), K δ I ′ t J ′ ⇔ K δ I ′ ∨K δ J ′

(21)

can be continued to the relation [f ] for a unique f ∈ pFCD(A,B);

X [f ] Y ⇔ ∀X ∈ upZ0 X , Y ∈ upZ1 Y : X δ Y (22)
for every X ∈ A, Y ∈ B.

Proof. Existence of no more than one such pointfree funcoids and formulas
(20) and (22) follow from two previous theorems.

2◦.
{
Y ∈Z1
XδY

}
is obviously a free star for every X ∈ Z0. By properties of filters

on boolean lattices, there exist a unique filter αX such that ∂(αX) =
{
Y ∈Z1
XδY

}
for

every X ∈ Z0. Thus α ∈ BZ0 . Similarly it can be defined β ∈ AZ1 by the formula
∂(βY ) =

{
X∈Z0
XδY

}
. Let’s continue the functions α and β to α′ ∈ BA and β′ ∈ AB

by the formulas

α′X =
Bl
〈α〉∗ upZ0 X and β′Y =

Al
〈β〉∗ upZ1 Y

and δ to δ′ ∈P(A×B) by the formula

X δ′ Y ⇔ ∀X ∈ upZ0 X , Y ∈ upZ1 Y : X δ Y.

Y u α′X 6= ⊥B ⇔ Y u
d
〈α〉∗ upZ0 X 6= ⊥B ⇔

d
〈Yu〉∗〈α〉∗ upZ0 X 6= ⊥B. Let’s

prove that
W = 〈Yu〉∗〈α〉∗ upZ0 X

is a generalized filter base: To prove it is enough to show that 〈α〉∗ upZ0 X is a
generalized filter base.

If A,B ∈ 〈α〉∗ upZ0 X then exist X1, X2 ∈ upZ0 X such that A = αX1 and
B = αX2. Then α(X1 uZ0 X2) ∈ 〈α〉∗ upZ0 X . So 〈α〉∗ upZ0 X is a generalized filter
base and thus W is a generalized filter base.

By properties of generalized filter bases,
d
〈Yu〉∗〈α〉∗ upZ0 X 6= ⊥B is equiva-

lent to
∀X ∈ upZ0 X : Y u αX 6= ⊥B,

what is equivalent to
∀X ∈ upZ0 X , Y ∈ upZ1 Y : Y uB αX 6= ⊥B ⇔

∀X ∈ upZ0 X , Y ∈ upZ1 Y : Y ∈ ∂(αX)⇔
∀X ∈ upZ0 X , Y ∈ upZ1 Y : X δ Y.

Combining the equivalencies we get Y u α′X 6= ⊥B ⇔ X δ′ Y. Analogously
X uβ′Y 6= ⊥A ⇔ X δ′ Y. So Y uα′X 6= ⊥B ⇔ X uβ′Y 6= ⊥A, that is (A,B, α′, β′)
is a pointfree funcoid. From the formula Y u α′X 6= ⊥B ⇔ X δ′ Y it follows that
[(A,B, α′, β′)] is a continuation of δ.

1◦. Let define the relation δ ∈P(Z0×Z1) by the formulaX δ Y ⇔ Y uBαX 6=
⊥B.

That ¬(⊥Z0 δ I ′) and ¬(I δ ⊥Z1) is obvious. We have
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K δ I ′ tZ1 J ′ ⇔
(I ′ tZ1 J ′) uB αK 6= ⊥B ⇔

(I ′ tB J ′) u αK 6= ⊥B ⇔
(I ′ uB αK) t (J ′ uB αK) 6= ⊥B ⇔

I ′ uB αK 6= ⊥B ∨ J ′ uB αK 6= ⊥B ⇔
K δ I ′ ∨K δ J ′

and

I tZ0 J δ K ′ ⇔
K ′ uB α(I tZ0 J) 6= ⊥B ⇔
K ′ uB (αI t αJ) 6= ⊥B ⇔

(K ′ uB αI) t (K ′ uB αJ) 6= ⊥B ⇔
K ′ uB αI 6= ⊥B ∨K ′ uB αJ 6= ⊥B ⇔

I δ K ′ ∨ J δ K ′.

That is the formulas (21) are true.
Accordingly the above δ can be continued to the relation [f ] for some f ∈

pFCD(A,B).
∀X ∈ Z0, Y ∈ Z1 : (Y uB 〈f〉X 6= ⊥B ⇔ X [f ] Y ⇔ Y uB αX 6= ⊥B),

consequently ∀X ∈ Z0 : αX = 〈f〉X because our filtrator is with separable core.
So 〈f〉 is a continuation of α.

�

Theorem 1511. Let (A,Z0) and (B,Z1) be primary filtrators over boolean
lattices. If α ∈ BZ0 , β ∈ AZ1 are functions such that Y 6� αX ⇔ X 6� βY for every
X ∈ Z0, Y ∈ Z1, then there exists exactly one pointfree funcoid f : A → B such
that 〈f〉|Z0 = α,

〈
f−1〉|Z1 = β.

Proof. Prove α(I t J) = αI t αJ . Really, Y 6� α(I t J) ⇔ I t J 6� βY ⇔
I 6� βY ∨ J 6� βY ⇔ Y 6� αI ∨ Y 6� αJ ⇔ Y 6� αI t αJ . So α(I t J) = αI t αJ
by star-separability. Similarly β(I t J) = βI t βJ .

Thus by the theorem above there exists a pointfree funcoid f such that 〈f〉|Z0 =
α,
〈
f−1〉|Z1 = β.
That this pointfree funcoid is unique, follows from the above. �

Proposition 1512. Let (Src f,Z0) be a primary filtrator over a bounded dis-
tributive lattice and (Dst f,Z1) be a primary filtrator over boolean lattice. If S is a
generalized filter base on Src f then 〈f〉

dSrc f
S =

dDst f 〈〈f〉〉∗S for every pointfree
funcoid f .

Proof. First the meets
dSrc f

S and
dDst f 〈〈f〉〉∗S exist by corollary 515.

(Src f,Z0) is a binarily meet-closed filtrator by corollary 533 and with separable
core by theorem 534; thus we can apply theorem 1509 (upx 6= ∅ is obvious).
〈f〉

dSrc f
S v 〈f〉X for every X ∈ S because Dst f is strongly separable by

proposition 576 and thus 〈f〉
dSrc f

S v
dDst f 〈〈f〉〉∗S.
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Taking into account properties of generalized filter bases:

〈f〉
Src fl

S =
Dst fl
〈〈f〉〉∗ up

l
S =

Dst fl
〈〈f〉〉∗

{
X

∃P ∈ S : X ∈ upP

}
=

Dst fl {
〈f〉∗X

∃P ∈ S : X ∈ upP

}
w (because Dst f is a strongly separable poset)

Dst fl {
〈f〉P
P ∈ S

}
=

Dst fl
〈〈f〉〉∗S.

�

Proposition 1513. X [f ]
d
S ⇔ ∃Y ∈ S : X [f ] Y if f is a pointfree funcoid,

Dst f is a meet-semilattice with least element and S is a generalized filter base on
Dst f .

Proof.

X [f ]
l
S ⇔

l
S u 〈f〉X 6= ⊥ ⇔

l
〈〈f〉Xu〉∗S 6= ⊥ ⇔

(by properties of generalized filter bases)⇔
∃Y ∈ 〈〈f〉Xu〉∗S : Y 6= ⊥ ⇔ ∃Y ∈ S : 〈f〉X u Y 6= ⊥ ⇔ ∃Y ∈ S : X [f ] Y.

�

Theorem 1514. A function ϕ : A→ B, where (A,Z0) and (B,Z1) are primary
filtrators over boolean lattices, preserves finite joins (including nullary joins) and
filtered meets iff there exists a pointfree funcoid f such that 〈f〉 = ϕ.

Proof. Backward implication follows from above.
Let ψ = ϕ|Z0 . Then ψ preserves bottom element and binary joins. Thus there

exists a funcoid f such that 〈f〉∗ = ψ.
It remains to prove that 〈f〉 = ϕ.
Really, 〈f〉X =

d
〈〈f〉〉∗ upX =

d
〈ψ〉∗ upX =

d
〈ϕ〉∗ upX = ϕ

d
upX = ϕX

for every X ∈ F (Src f). �

Corollary 1515. Pointfree funcoids f from a lattice A of fitlters on a boolean
lattice to a lattice B of fitlters on a boolean lattice bijectively correspond by the
formula 〈f〉 = ϕ to functions ϕ : A→ B preserving finite joins and filtered meets.

Theorem 1516. The set of pointfree funcoids between sets of filters on boolean
lattices is a co-frame.

Proof. Theorems 1510 and 530. �

19.4. The order of pointfree funcoids

Definition 1517. The order of pointfree funcoids pFCD(A,B) is defined by
the formula:

f v g ⇔ ∀x ∈ A : 〈f〉x v 〈g〉x ∧ ∀y ∈ B :
〈
f−1〉y v 〈g−1〉y.

Proposition 1518. It is really a partial order on the set pFCD(A,B).
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Proof.

Reflexivity. Obvious.
Transitivity. It follows from transitivity of the order relations on A and B.
Antisymmetry. It follows from antisymmetry of the order relations on A and B.

�

Remark 1519. It is enough to define order of pointfree funcoids on every set
pFCD(A,B) where A and B are posets. We do not need to compare pointfree
funcoids with different sources or destinations.

Obvious 1520. f v g ⇒[f ]⊆[g] for every f, g ∈ pFCD(A,B) for every posets
A and B.

Theorem 1521. If A and B are separable posets then f v g ⇔[f ]⊆[g].

Proof. From the theorem 1495. �

Proposition 1522. If A and B have least elements, then pFCD(A,B) has least
element.

Proof. It is (A,B,A× {⊥B},B× {⊥A}). �

Theorem 1523. If A and B are bounded posets, then pFCD(A,B) is bounded.

Proof. That pFCD(A,B) has least element was proved above. I will demon-
strate that (A,B, α, β) is the greatest element of pFCD(A,B) for

αX =
{
⊥B if X = ⊥A

>B if X 6= ⊥A
; βY =

{
⊥A if Y = ⊥B

>A if Y 6= ⊥B
.

First prove Y 6� αX ⇔ X 6� βY .
If >B = ⊥B then Y 6� αX ⇔ Y 6� ⊥B ⇔ 0 ⇔ X 6� ⊥A ⇔ X 6� β⊥A

(proposition 1496). The case >A = ⊥A is similar. So we can assume >A 6= ⊥A and
>B 6= ⊥B.

Consider all variants:
X = ⊥A and Y = ⊥B. Y 6� αX ⇔ 0⇔ X 6� βY .
X 6= ⊥A and Y 6= ⊥B. αX = >B and βY = >A; Y 6� αX ⇔ Y 6� >B ⇔ 1 ⇔

X 6� >A ⇔ X 6� βY (used that >A 6= ⊥A and >B 6= ⊥B).
X = ⊥A and Y 6= ⊥B. αX = ⊥B (proposition 1496) and βY = >A; Y 6� αX ⇔

Y 6� ⊥B ⇔ 0⇔ ⊥A 6� βY ⇔ X 6� βY .
X = ⊥A and Y 6= ⊥B. Similar.
It’s easy to show that both α and β are the greatest possible components of a
pointfree funcoid taking into account proposition 1496. �

Theorem 1524. Let (A,Z0) and (B,Z1) be primary filtrators over boolean
lattices. Then for R ∈PpFCD(A,B) and X ∈ Z0, Y ∈ Z1 we have:

1◦. X [ dR] Y ⇔ ∃f ∈ R : X [f ] Y ;
2◦. 〈 dR〉X = df∈R〈f〉X.

Proof.
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2◦. αX
def= df∈R〈f〉X (by corollary 515 all joins on B exist). We have α⊥A =

⊥B;
α(I tZ0 J) =

l

{
〈f〉(I tZ0 J)

f ∈ R

}
=

l

{
〈f〉(I tA J)
f ∈ R

}
=

l

{
〈f〉I tB 〈f〉J

f ∈ R

}
=

l

{
〈f〉I
f ∈ R

}
tB l

{
〈f〉J
f ∈ R

}
=

αI tB αJ

(used theorem 1498). By theorem 1510 the function α can be continued to 〈h〉 for
an h ∈ pFCD(A,B). Obviously

∀f ∈ R : h w f. (23)
And h is the least element of pFCD(A,B) for which the condition (23) holds. So
h = dR.

1◦.
X
[

lR
]
Y ⇔

Y uB
〈

lR
〉
X 6= ⊥B ⇔

Y uB l

{
〈f〉X
f ∈ R

}
6= ⊥B ⇔

∃f ∈ R : Y uB 〈f〉X 6= ⊥B ⇔
∃f ∈ R : X [f ] Y

(used theorem 607).
�

Corollary 1525. If (A,Z0) and (B,Z1) are primary filtrators over boolean
lattices then pFCD(A,B) is a complete lattice.

Proof. Apply [27]. �

Theorem 1526. Let A and B be starrish join-semilattices. Then for f, g ∈
pFCD(A,B):

1◦. 〈f t g〉x = 〈f〉x t 〈g〉x for every x ∈ A;
2◦. [f t g]=[f ] ∪ [g].

Proof. �

1◦. Let αX def= 〈f〉x t 〈g〉x; βY def=
〈
f−1〉y t 〈g−1〉y for every x ∈ A, y ∈ B.

Then
y 6�B αx⇔

y 6� 〈f〉x ∨ y 6� 〈g〉x⇔
x 6�

〈
f−1〉y ∨ x 6� 〈g−1〉y ⇔
x 6�

〈
f−1〉y t 〈g−1〉y ⇔

x 6� βy.
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So h = (A,B, α, β) is a pointfree funcoid. Obviously h w f and h w g. If p w f
and p w g for some p ∈ pFCD(A,B) then 〈p〉x w 〈f〉x t 〈g〉x = 〈h〉x and

〈
p−1〉y w〈

f−1〉y t 〈g−1〉y =
〈
h−1〉y that is p w h. So f t g = h.

2◦.
x [f t g] y ⇔

y 6� 〈f t g〉x⇔
y 6� 〈f〉x t 〈g〉x⇔

y 6� 〈f〉x ∨ y 6� 〈g〉x⇔
x [f ] y ∨ x [g] y

for every x ∈ A, y ∈ B.

19.5. Domain and range of a pointfree funcoid

Definition 1527. Let A be a poset. The identity pointfree funcoid 1pFCD
A =

(A,A, idA, idA).

It is trivial that identity funcoid is really a pointfree funcoid.
Let now A be a meet-semilattice.

Definition 1528. Let a ∈ A. The restricted identity pointfree funcoid
idpFCD(A)
a = (A,A, auA, auA).

Proposition 1529. The restricted pointfree funcoid is a pointfree funcoid.

Proof. We need to prove that (a uA x) 6�A y ⇔ (a uA y) 6�A x what is
obvious. �

Obvious 1530. (idpFCD(A)
a )−1 = idpFCD(A)

a .

Obvious 1531. x
[
idpFCD(A)
a

]
y ⇔ a 6�A x uA y for every x, y ∈ A.

Definition 1532. I will define restricting of a pointfree funcoid f to an element
a ∈ Src f by the formula f |a

def= f ◦ idpFCD(Src f)
a .

Definition 1533. Let f be a pointfree funcoid whose source is a set with
greatest element. Image of f will be defined by the formula im f = 〈f〉>.

Proposition 1534. im f w 〈f〉x for every x ∈ Src f whenever Dst f is a
strongly separable poset with greatest element.

Proof. 〈f〉> is greater than every 〈f〉x (where x ∈ Src f) by proposition 1497.
�

Definition 1535. Domain of a pointfree funcoid f is defined by the formula
dom f = im f−1.

Proposition 1536. 〈f〉dom f = im f if f is a pointfree funcoid and Src f is a
strongly separable poset with greatest element and Dst f is a separable poset with
greatest element.

Proof. For every y ∈ Dst f

y 6� 〈f〉dom f ⇔ dom f 6�
〈
f−1〉y ⇔ 〈

f−1〉> 6� 〈f−1〉y ⇔
(by strong separability of Src f)〈

f−1〉y is not least⇔ > 6�
〈
f−1〉y ⇔ y 6� 〈f〉> ⇔ y 6� im f.

So 〈f〉dom f = im f by separability of Dst f . �



19.5. DOMAIN AND RANGE OF A POINTFREE FUNCOID 293

Proposition 1537. 〈f〉x = 〈f〉(x u dom f) for every x ∈ Src f for a pointfree
funcoid f whose source is a bounded separable meet-semilattice and destination is
a bounded separable poset.

Proof. Src f is strongly separable by theorem 222. For every y ∈ Dst f we
have

y 6� 〈f〉(x u dom f)⇔ x u dom f u
〈
f−1〉y 6= ⊥Src f ⇔

x u im f−1 u
〈
f−1〉y 6= ⊥Src f ⇔

(by strong separability of Src f)
x u

〈
f−1〉y 6= ⊥Src f ⇔ y 6� 〈f〉x.

Thus 〈f〉x = 〈f〉(x u dom f) by separability of Dst f . �

Proposition 1538. x 6� dom f ⇔ (〈f〉x is not least) for every pointfree fun-
coid f and x ∈ Src f if Dst f has greatest element >.

Proof. x 6� dom f ⇔ x 6�
〈
f−1〉>Dst f ⇔ >Dst f 6� 〈f〉x ⇔

(〈f〉x is not least). �

Proposition 1539. dom f = d

{
a∈atomsSrc f

〈f〉a 6=⊥Dst f

}
for every pointfree funcoid f

whose destination is a bounded strongly separable poset and source is an atomistic
poset.

Proof. For every a ∈ atomsSrc f we have

a 6� dom f ⇔ a 6�
〈
f−1〉>Dst f ⇔ >Dst f 6� 〈f〉a⇔ 〈f〉a 6= ⊥Dst f .

So dom f = d

{
a∈atomsSrc f

a6�dom f

}
= d

{
a∈atomsSrc f

〈f〉a 6=⊥Dst f

}
. �

Proposition 1540. dom(f |a) = a u dom f for every pointfree funcoid f and
a ∈ Src f where Src f is a meet-semilattice and Dst f has greatest element.

Proof.

dom(f |a) = im(idpFCD(Src f)
a ◦f−1) =〈

idpFCD(Src f)
a

〉〈
f−1〉>Dst f = a u

〈
f−1〉>Dst f = a u dom f.

�

Proposition 1541. For every composable pointfree funcoids f and g
1◦. If im f w dom g then im(g ◦ f) = im g, provided that the posets Src f ,

Dst f = Src g and Dst g have greatest elements and Src g and Dst g are
strongly separable.

2◦. If im f v dom g then dom(g ◦ f) = dom g, provided that the posets Dst g,
Dst f = Src g and Src f have greatest elements and Dst f and Src f are
strongly separable.

Proof.
1◦. im(g ◦ f) = 〈g ◦ f〉>Src f = 〈g〉〈f〉>Src f v im g by strong separability of

Dst g; im(g◦f) = 〈g ◦ f〉>Src f = 〈g〉 im f w 〈g〉dom g = im g by strong separability
of Dst g and proposition 1536.

2◦. dom(g ◦ f) = im(f−1 ◦ g−1) what by the proved is equal to im f−1 that is
dom f .

�
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19.6. Specifying funcoids by functions or relations on atomic filters

Theorem 1542. Let A be an atomic poset and (B,Z1) is a primary filtrator
over a boolean lattice. Then for every f ∈ pFCD(A,B) and X ∈ A we have

〈f〉X =
B

l〈〈f〉〉
∗ atomsA X .

Proof. For every Y ∈ Z1 we have

Y 6�B 〈f〉X ⇔ X 6�A
〈
f−1〉Y ⇔

∃x ∈ atomsA X : x 6�A
〈
f−1〉Y ⇔ ∃x ∈ atomsA X : Y 6�B 〈f〉x.

Thus ∂〈f〉X =
⋃
〈∂〉∗〈〈f〉〉∗ atomsA X = ∂ d

B〈〈f〉〉∗ atomsA X (used corol-
lary 566). Consequently 〈f〉X = d

B〈〈f〉〉∗ atomsA X by the corollary 565. �

Proposition 1543. Let f be a pointfree funcoid. Then for every X ∈ Src f
and Y ∈ Dst f

1◦. X [f ] Y ⇔ ∃x ∈ atomsX : x [f ] Y if Src f is an atomic poset.
2◦. X [f ] Y ⇔ ∃y ∈ atomsY : X [f ] y if Dst f is an atomic poset.

Proof. I will prove only the second as the first is similar.
If X [f ] Y, then Y 6� 〈f〉X , consequently exists y ∈ atomsY such that y 6�

〈f〉X , X [f ] y. The reverse is obvious. �

Corollary 1544. If f is a pointfree funcoid with both source and destination
being atomic posets, then for every X ∈ Src f and Y ∈ Dst f

X [f ] Y ⇔ ∃x ∈ atomsX , y ∈ atomsY : x [f ] y.

Proof. Apply the theorem twice. �

Corollary 1545. If A is a separable atomic poset and B is a separable poset
then f ∈ pFCD(A,B) is determined by the values of 〈f〉X for X ∈ atomsA.

Proof.
y 6� 〈f〉x⇔ x 6�

〈
f−1〉y ⇔ ∃X ∈ atomsx : X 6�

〈
f−1〉y ⇔ ∃X ∈ atomsx : y 6� 〈f〉X.

Thus by separability of B we have 〈f〉 is determined by 〈f〉X for X ∈ atomsx.
By separability of A we infer that f can be restored from 〈f〉 (theorem 1495).

�

Theorem 1546. Let (A,Z0) and (B,Z1) be primary filtrators over boolean
lattices.

1◦. A function α ∈ BatomsA such that (for every a ∈ atomsA)

αa v
l〈

l◦〈α〉
∗ ◦ atomsA

〉∗
upZ0 a (24)

can be continued to the function 〈f〉 for a unique f ∈ pFCD(A,B);

〈f〉X = l〈α〉
∗ atomsA X (25)

for every X ∈ A.
2◦. A relation δ ∈ P(atomsA× atomsB) such that (for every a ∈ atomsA,

b ∈ atomsB)
∀X ∈ upZ0 a, Y ∈ upZ1 b∃x ∈ atomsAX, y ∈ atomsB Y : x δ y ⇒ a δ b (26)

can be continued to the relation [f ] for a unique f ∈ pFCD(A,B);
X [f ] Y ⇔ ∃x ∈ atomsX , y ∈ atomsY : x δ y (27)

for every X ∈ A, Y ∈ B.
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Proof. Existence of no more than one such funcoids and formulas (25) and
(27) follow from theorem 1542 and corollary 1544 and the fact that our filtrators
are separable.

1◦. Consider the function α′ ∈ BZ0 defined by the formula (for every X ∈ Z0)

α′X = l〈α〉
∗ atomsAX.

Obviously α′⊥Z0 = ⊥B. For every I, J ∈ Z0

α′(I t J) =

l〈α〉
∗ atomsA(I t J) =

l〈α〉
∗(atomsA I ∪ atomsA J) =

l(〈α〉
∗ atomsA I ∪ 〈α〉∗ atomsA J) =

l〈α〉
∗ atomsA I t l〈α〉

∗ atomsA J =
α′I t α′J.

Let continue α′ till a pointfree funcoid f (by the theorem 1510): 〈f〉X =d
〈α′〉∗ upZ0 X .
Let’s prove the reverse of (24):

l〈

l◦〈α〉
∗ ◦ atomsA

〉∗
upZ0 a =

l〈
l◦〈α〉

∗
〉∗〈

atomsA
〉∗ upZ0 a v

l〈
l◦〈α〉
∗
〉∗
{{a}} =

l{(

l◦〈α〉
∗
)
{a}
}

=
l{

l〈α〉
∗{a}

}
=

l{

l{αa}
}

=
l
{αa} = αa.

Finally,

αa =
l〈

l◦〈α〉
∗ ◦ atomsA

〉∗
upZ0 a =

l
〈α′〉∗ upZ0 a = 〈f〉a,

so 〈f〉 is a continuation of α.
2◦. Consider the relation δ′ ∈ P(Z0 × Z1) defined by the formula (for every

X ∈ Z0, Y ∈ Z1)

X δ′ Y ⇔ ∃x ∈ atomsAX, y ∈ atomsB Y : x δ y.

Obviously ¬(X δ′ ⊥Z1) and ¬(⊥Z0 δ′ Y ).

I t J δ′ Y ⇔
∃x ∈ atomsA(I t J), y ∈ atomsB Y : x δ y ⇔

∃x ∈ atomsA I ∪ atomsA J, y ∈ atomsB Y : x δ y ⇔
∃x ∈ atomsA I, y ∈ atomsB Y : x δ y ∨ ∃x ∈ atomsA J, y ∈ atomsB Y : x δ y ⇔

I δ′ Y ∨ J δ′ Y ;
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similarly X δ′ I t J ⇔ X δ′ I ∨X δ′ J . Let’s continue δ′ till a funcoid f (by the
theorem 1510):

X [f ] Y ⇔ ∀X ∈ upZ0 X , Y ∈ upZ1 Y : X δ′ Y.

The reverse of (26) implication is trivial, so
∀X ∈ upZ0 a, Y ∈ upZ1 b∃x ∈ atomsAX, y ∈ atomsB Y : x δ y ⇔ a δ b;

∀X ∈ upZ0 a, Y ∈ upZ1 b∃x ∈ atomsAX, y ∈ atomsB Y : x δ y ⇔
∀X ∈ upZ0 a, Y ∈ upZ1 b : X δ′ Y ⇔

a [f ] b.
So a δ b⇔ a [f ] b, that is [f ] is a continuation of δ.

�

Theorem 1547. Let (A,Z0) and (B,Z1) be primary filtrators over boolean
lattices. If R ∈PpFCD(A,B) and x ∈ atomsA, y ∈ atomsB, then

1◦. 〈
d
R〉x =

d
f∈R〈f〉x;

2◦. x [
d
R] y ⇔ ∀f ∈ R : x [f ] y.

Proof.
2◦. Let denote x δ y ⇔ ∀f ∈ R : x [f ] y.

∀X ∈ upZ0 a, Y ∈ upZ1 b∃x ∈ atomsAX, y ∈ atomsB Y : x δ y ⇒
∀f ∈ R,X ∈ upZ0 a, Y ∈ upZ1 b∃x ∈ atomsAX, y ∈ atomsB Y : x [f ] y ⇒

∀f ∈ R,X ∈ upZ0 a, Y ∈ upZ1 b : X [f ] Y ⇒
∀f ∈ R : a [f ] b⇔

a δ b.

So by theorem 1546, δ can be continued till [p] for some p ∈ pFCD(A,B).
For every q ∈ pFCD(A,B) such that ∀f ∈ R : q v f we have x [q] y ⇒ ∀f ∈

R : x [f ] y ⇔ x δ y ⇔ x [p] y, so q v p. Consequently p =
d
R.

From this x [
d
R] y ⇔ ∀f ∈ R : x [f ] y.

1◦. From the former

y ∈ atomsB
〈l

R
〉
x⇔ y u

〈l
R
〉
x 6= ⊥B ⇔ ∀f ∈ R : y u 〈f〉x 6= ⊥B ⇔

y ∈
⋂〈

atomsB
〉∗{ 〈f〉x

f ∈ R

}
⇔ y ∈ atoms

l{ 〈f〉x
f ∈ R

}
for every y ∈ atomsB.

B is atomically separable by the corollary 579. Thus 〈
d
R〉x =

d
f∈R〈f〉x.

�

19.7. More on composition of pointfree funcoids

Proposition 1548. [g ◦ f ] = [g] ◦ 〈f〉 =
〈
g−1〉−1 ◦ [f ] for every composable

pointfree funcoids f and g.

Proof. For every x ∈ A, y ∈ B

x [g ◦ f ] y ⇔ y 6� 〈g ◦ f〉x⇔ y 6� 〈g〉〈f〉x⇔ 〈f〉x [g] y ⇔ x ([g] ◦ 〈f〉) y.
Thus [g ◦ f ] = [g] ◦ 〈f〉.

[g ◦ f ] =
[
(f−1 ◦ g−1)−1] =

[
f−1 ◦ g−1]−1 = (

[
f−1] ◦ 〈g−1〉)−1 =

〈
g−1〉−1 ◦ [f ].

�
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Theorem 1549. Let f and g be pointfree funcoids and A = Dst f = Src g be
an atomic poset. Then for every X ∈ Src f and Z ∈ Dst g

X [g ◦ f ] Z ⇔ ∃y ∈ atomsA : (X [f ] y ∧ y [g] Z).

Proof.

∃y ∈ atomsA : (X [f ] y ∧ y [g] Z)⇔
∃y ∈ atomsA : (Z 6� 〈g〉y ∧ y 6� 〈f〉X )⇔

∃y ∈ atomsA : (y 6�
〈
g−1〉Z ∧ y 6� 〈f〉X )⇔〈

g−1〉Z 6� 〈f〉X ⇔
X [g ◦ f ] Z.

�

Theorem 1550. Let A, B, C be separable starrish join-semilattices and B is
atomic. Then:

1◦. f ◦ (g t h) = f ◦ g t f ◦ h for g, h ∈ pFCD(A,B) and f ∈ pFCD(B,C).
2◦. (g t h) ◦ f = g ◦ f t h ◦ f for f ∈ pFCD(A,B) and g, h ∈ pFCD(B,C).

Proof. I will prove only the first equality because the other is analogous.
We can apply theorem 1526.
For every X ∈ A, Y ∈ C

X [f ◦ (g t h)] Z ⇔
∃y ∈ atomsB : (X [g t h] y ∧ y [f ] Z)⇔

∃y ∈ atomsB : ((X [g] y ∨ X [h] y) ∧ y [f ] Z)⇔
∃y ∈ atomsB : ((X [g] y ∧ y [f ] Z) ∨ (X [h] y ∧ y [f ] Z))⇔

∃y ∈ atomsB : (X [g] y ∧ y [f ] Z) ∨ ∃y ∈ atomsB : (X [h] y ∧ y [f ] Z)⇔
X [f ◦ g] Z ∨ X [f ◦ h] Z ⇔

X [f ◦ g t f ◦ h] Z.

Thus f ◦ (g t h) = f ◦ g t f ◦ h by theorem 1495. �

Theorem 1551. Let A, B, C be posets of filters over some boolean lattices,
f ∈ pFCD(A,B), g ∈ pFCD(B,C), h ∈ pFCD(A,C). Then

g ◦ f 6� h⇔ g 6� h ◦ f−1.

Proof.

g ◦ f 6� h⇔
∃a ∈ atomsA, c ∈ atomsC : a [(g ◦ f) u h] c⇔

∃a ∈ atomsA, c ∈ atomsC : (a [g ◦ f ] c ∧ a [h] c)⇔
∃a ∈ atomsA, b ∈ atomsB, c ∈ atomsC : (a [f ] b ∧ b [g] c ∧ a [h] c)⇔

∃b ∈ atomsB, c ∈ atomsC : (b [g] c ∧ b
[
h ◦ f−1] c)⇔

∃b ∈ atomsB, c ∈ atomsC : b
[
g u (h ◦ f−1)

]
c⇔

g 6� h ◦ f−1.

�
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19.8. Funcoidal product of elements

Definition 1552. Funcoidal product A×FCDB where A ∈ A, B ∈ B and A and
B are posets with least elements is a pointfree funcoid such that for every X ∈ A,
Y ∈ B〈
A×FCD B

〉
X =

{
B if X 6� A;
⊥B if X � A; and

〈
(A×FCD B)−1〉Y =

{
A if Y 6� B;
⊥A if Y � B.

Proposition 1553. A×FCD B is really a pointfree funcoid and

X
[
A×FCD B

]
Y ⇔ X 6� A ∧ Y 6� B.

Proof. Obvious. �

Proposition 1554. Let A and B be posets with least elements, f ∈
pFCD(A,B), A ∈ A, B ∈ B. Then

f v A×FCD B ⇒ dom f v A ∧ im f v B.

Proof. If f v A×FCDB then dom f v dom(A×FCDB) v A, im f v im(A×FCD

B) v B. �

Theorem 1555. Let A and B be strongly separable bounded posets, f ∈
pFCD(A,B), A ∈ A, B ∈ B. Then

f v A×FCD B ⇔ dom f v A ∧ im f v B.

Proof. One direction is the proposition above. The other:
If dom f v A ∧ im f v B then X [f ] Y ⇒ Y 6� 〈f〉X ⇒ Y 6� im f ⇒ Y 6� B

(strong separability used) and similarly X [f ] Y ⇒ X 6� A.
So [f ] ⊆

[
A×FCD B

]
and thus using separability f v A×FCD B. �

Theorem 1556. Let A, B be bounded separable meet-semilattices. For every
f ∈ pFCD(A,B) and A ∈ A, B ∈ B

f u (A×FCD B) = idpFCD(B)
B ◦f ◦ idpFCD(A)

A .

Proof. h def= idpFCD(B)
B ◦f ◦ idpFCD(A)

A . For every X ∈ A

〈h〉X =
〈

idpFCD(B)
B

〉
〈f〉
〈

idpFCD(A)
A

〉
X = B u 〈f〉(A u X )

and 〈
h−1〉X =

〈
idpFCD(A)
A

〉〈
f−1〉〈idpFCD(B)

B

〉
X = A u

〈
f−1〉(B u X ).

From this, as easy to show, h v f and h v A ×FCD B. If g v f ∧ g v A ×FCD B
for a g ∈ pFCD(A,B) then dom g v A. A and B are are strongly separable by
theorem 222. Thus by propositions 1537 we have:

〈g〉X = 〈g〉(X u dom g) = 〈g〉(X uA) = B u 〈g〉(A u X ) v

B u 〈f〉(A u X ) =
〈

idpFCD(B)
B

〉
〈f〉
〈

idpFCD(A)
A

〉
X = 〈h〉X ,

and similarly
〈
g−1〉Y v 〈h−1〉Y. Thus g v h.

So h = f u (A×FCD B). �

Corollary 1557. Let A, B be bounded separable meet-semilattices. For
every f ∈ pFCD(A,B) and A ∈ A we have f |A = f u (A×FCD >B).

Proof. f u (A×FCD >B) = idpFCD(B)
>B ◦f ◦ idpFCD(A)

A = f ◦ idpFCD(A)
A = f |A. �
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Corollary 1558. Let A, B be bounded separable meet-semilattices. For
every f ∈ pFCD(A,B) and A ∈ A, B ∈ B we have

f 6� A ×FCD B ⇔ A [f ] B.

Proof. Existence of f u (A×FCD B) follows from the above theorem.

f 6� A ×FCD B ⇔

f u (A×FCD B) 6= ⊥pFCD(A,B) ⇔〈
f u (A×FCD B)

〉
>A 6= ⊥B ⇔〈

idpFCD(B)
B ◦f ◦ idpFCD(A)

A

〉
>A 6= ⊥B ⇔〈

idpFCD(B)
B

〉
〈f〉
〈

idpFCD(A)
A

〉
>A 6= ⊥B ⇔

B u 〈f〉(A u>A) 6= ⊥B ⇔
B u 〈f〉A 6= ⊥B ⇔

A [f ] B.

�

Theorem 1559. Let A, B be bounded separable meet-semilattices. Then the
poset pFCD(A,B) is separable.

Proof. Let f, g ∈ pFCD(A,B) and f 6= g. By the theorem 1495 [f ] 6= [g].
That is there exist x, y ∈ A such that x [f ] y < x [g] y that is f u (x ×FCD y) 6=
⊥pFCD(A,B) < g u (x×FCD y) 6= ⊥pFCD(A,B). Thus pFCD(A,B) is separable. �

Corollary 1560. Let A, B be atomic bounded separable meet-semilattices.
The poset pFCD(A,B) is:

1◦. separable;
2◦. strongly separable;
3◦. atomically separable;
4◦. conforming to Wallman’s disjunction property.

Proof. By the theorem 230. �

Remark 1561. For more ways to characterize (atomic) separability of the
lattice of pointfree funcoids see subsections “Separation subsets and full stars” and
“Atomically Separable Lattices”.

Corollary 1562. Let (A,Z0) and (B,Z1) be primary filtrators over boolean
lattices. The poset pFCD(A,B) is an atomistic lattice.

Proof. By the corollary 1525 pFCD(A,B) is a complete lattice. We can use
theorem 228. �

Theorem 1563. Let A and B be posets of filters over boolean lattices. If
S ∈P(A×B) then

l

(A,B)∈S

(A×FCD B) =
l

domS ×FCD
l

imS.

Proof. If x ∈ atomsA then by the theorem 1547〈
l

(A,B)∈S

(A×FCD B)
〉
x =

l
{〈
A×FCD B

〉
x

(A,B) ∈ S

}
.
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If x u
d

domS 6= ⊥A then

∀(A,B) ∈ S : (x u A 6= ⊥A ∧
〈
A×FCD B

〉
x = B);{〈

A×FCD B
〉
x

(A,B) ∈ S

}
= imS;

if x u
d

domS = ⊥A then

∃(A,B) ∈ S : (x u A = ⊥A ∧
〈
A×FCD B

〉
x = ⊥B);{〈

A×FCD B
〉
x

(A,B) ∈ S

}
3 ⊥B.

So 〈
l

(A,B)∈S

(A×FCD B)
〉
x =

{d
imS if x u

d
domS 6= ⊥A;

⊥B if x u
d

domS = ⊥A.

From this by theorem 1546 the statement of our theorem follows. �

Corollary 1564. Let A and B be posets of filters over boolean lattices.
For every A0,A1 ∈ A and B0,B1 ∈ B

(A0 ×FCD B0) u (A1 ×FCD B1) = (A0 u A1)×FCD (B0 u B1).

Proof. (A0 ×FCD B0) u (A1 ×FCD B1) =
d
{A0 ×FCD B0,A1 ×FCD B1} what is

by the last theorem equal to (A0 u A1)×FCD (B0 u B1). �

Theorem 1565. Let (A,Z0) and (B,Z1) be primary filtrators over boolean
lattices. If A ∈ A then A×FCD is a complete homomorphism from the lattice A to
the lattice pFCD(A,B), if also A 6= ⊥A then it is an order embedding.

Proof. Let S ∈PA, X ∈ Z0, x ∈ atomsA.〈

l

〈
A×FCD〉∗S〉X =

l

B∈S

〈
A×FCD B

〉
X ={

dS if X uA A 6= ⊥A

⊥B if X uA A = ⊥A
=〈

A×FCD

lS
〉
X.

Thus d

〈
A×FCD〉∗S = A×FCD dS by theorem 1509.〈l〈

A×FCD〉∗S〉x =
l

B∈S

〈
A×FCD B

〉
x ={d

S if X uA A 6= ⊥A

⊥B if X uA A = ⊥A
=〈

A×FCD
l
S
〉
x.

Thus
d〈
A×FCD〉∗S = A×FCD dS by theorem 1542.

If A 6= ⊥A then obviously A×FCDX v A×FCDY ⇔ X v Y, because im(A×FCD

X ) = X and im(A×FCD Y) = Y. �
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Proposition 1566. Let A be a meet-semilattice with least element and B be
a poset with least element. If a is an atom of A, f ∈ pFCD(A,B) then f |a =
a×FCD 〈f〉a.

Proof. Let X ∈ A.
X u a 6= ⊥A ⇒ 〈f |a〉X = 〈f〉a, X u a = ⊥A ⇒ 〈f |a〉X = ⊥B.

�

Proposition 1567. f ◦ (A ×FCD B) = A ×FCD 〈f〉B for elements A ∈ A and
B ∈ B of some posets A, B, C with least elements and f ∈ pFCD(B,C).

Proof. Let X ∈ A, Y ∈ B.〈
f ◦ (A×FCD B)

〉
X =

({
〈f〉B if X 6� A
⊥ if X � A

)
=
〈
A×FCD 〈f〉B

〉
X ;〈

(f ◦ (A×FCD B))−1〉Y =〈
(B ×FCD A) ◦ f−1〉Y =({
A if

〈
f−1〉Y 6� B

⊥ if
〈
f−1〉Y � B

)
=({

A if Y 6� 〈f〉B
⊥ if Y � 〈f〉B

)
=〈

〈f〉B ×FCD A
〉
Y =〈

(A×FCD 〈f〉B)−1〉Y.
�

19.9. Category of pointfree funcoids

I will define the category pFCD of pointfree funcoids:
• The class of objects are small posets.
• The set of morphisms from A to B is pFCD(A,B).
• The composition is the composition of pointfree funcoids.
• Identity morphism for an object A is (A,A, idA, idA).

To prove that it is really a category is trivial.
The category of pointfree funcoid quintuples is defined as follows:
• Objects are pairs (A,A) where A is a small meet-semilattice and A ∈ A.
• The morphisms from an object (A,A) to an object (B,B) are tuples

(A,B,A,B, f) where f ∈ pFCD(A,B) and
∀x ∈ A : 〈f〉x v A, ∀y ∈ B :

〈
f−1〉y v B. (28)

• The composition is defined by the formula
(B,C,B, C, g) ◦ (A,B,A,B, f) = (A,C,A, C, g ◦ f).

• Identity morphism for an object (A,A) is idpFCD(A)
A . (Note: this is defined

only for meet-semilattices.)
To prove that it is really a category is trivial.

Proposition 1568. For strongly separated and bounded A andB formula (28)
is equivalent to each of the following:

1◦. dom f v A ∧ im f v B;
2◦. f v A×FCD B.

Proof. Because 〈f〉x v im f ,
〈
f−1〉y v dom f , and theorem 1555. �
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19.10. Atomic pointfree funcoids

Theorem 1569. Let A, B be atomic bounded separable meet-semilattices. An
f ∈ pFCD(A,B) is an atom of the poset pFCD(A,B) iff there exist a ∈ atomsA and
b ∈ atomsB such that f = a×FCD b.

Proof.
⇒. Let f be an atom of the poset pFCD(A,B). Let’s get elements a ∈ atoms dom f

and b ∈ atoms〈f〉a. Then for every X ∈ A

X � a⇒
〈
a×FCD b

〉
X = ⊥B v 〈f〉X , X 6� a⇒

〈
a×FCD b

〉
X = b v 〈f〉X .

So
〈
a×FCD b

〉
X v 〈f〉X and similarly

〈
b×FCD a

〉
Y v

〈
f−1〉Y for ev-

ery Y ∈ B thus a×FCD b v f ; because f is atomic we have f = a×FCD b.
⇐. Let a ∈ atomsA, b ∈ atomsB, f ∈ pFCD(A,B). If b �B 〈f〉a then ¬(a [f ] b),

f u (a ×FCD b) = ⊥pFCD(A,B) (by corollary 1558 because A and B are
bounded meet-semilattices); if b v 〈f〉a, then for every X ∈ A

X � a⇒
〈
a×FCD b

〉
X = ⊥B v 〈f〉X , X 6� a⇒

〈
a×FCD b

〉
X = b v 〈f〉X

that is
〈
a×FCD b

〉
X v 〈f〉X and likewise

〈
b×FCD a

〉
Y v

〈
f−1〉Y for every

Y ∈ B, so f w a×FCD b. Consequently f u (a×FCD b) = ⊥pFCD(A,B) ∨ f w
a×FCD b; that is a×FCD b is an atomic pointfree funcoid.

�

Theorem 1570. Let A, B be atomic bounded separable meet-semilattices.
Then pFCD(A,B) is atomic.

Proof. Let f ∈ pFCD(A,B) and f 6= ⊥pFCD(A,B). Then dom f 6= ⊥A, thus
exists a ∈ atoms dom f . So 〈f〉a 6= ⊥B thus exists b ∈ atoms〈f〉a. Finally the
atomic pointfree funcoid a×FCD b v f . �

Proposition 1571. Let A, B be starrish bounded separable lattices.
atoms(f t g) = atoms f ∪ atoms g for every f, g ∈ pFCD(A,B).

Proof.

(a×FCD b) u (f t g) 6= ⊥pFCD(A,B) ⇔ (corollary 1558)⇔
a [f t g] b⇔ (theorem 1526)⇔

a [f ] b ∨ a [g] b⇔ (corollary 1558)⇔
(a×FCD b) u f 6= ⊥pFCD(A,B) ∨ (a×FCD b) u g 6= ⊥pFCD(A,B)

for every a ∈ atomsA and b ∈ atomsB. �

Theorem 1572. Let (A,Z0) and (B,Z1) be primary filtrators over boolean
lattices. Then pFCD(A,B) is a co-frame.

Proof. Theorems 1510 and 530. �

Corollary 1573. Let (A,Z0) and (B,Z1) be primary filtrators over boolean
lattices. Then pFCD(A,B) is a co-brouwerian lattice.

Proposition 1574. Let A, B, C be atomic bounded separable meet-
semilattices, and f ∈ pFCD(A,B), g ∈ pFCD(B,C). Then

atoms(g ◦ f) ={
x×FCD z

x ∈ atomsA, z ∈ atomsC,∃y ∈ atomsB : (x×FCD y ∈ atoms f ∧ y ×FCD z ∈ atoms g)

}
.
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Proof.
(x×FCD z) u (g ◦ f) 6= ⊥pFCD(A,C) ⇔

x [g ◦ f ] z ⇔
∃y ∈ atomsB : (x [f ] y ∧ y [g] z)⇔

∃y ∈ atomsB : ((x×FCD y) u f 6= ⊥pFCD(A,B) ∧ (y ×FCD z) u g 6= ⊥pFCD(B,C))
(were used corollary 1558 and theorem 1549). �

Theorem 1575. Let f be a pointfree funcoid between atomic bounded sepa-
rable meet-semilattices A and B.

1◦. X [f ] Y ⇔ ∃F ∈ atoms f : X [F ] Y for every X ∈ A, Y ∈ B;
2◦. 〈f〉X = dF∈atoms f 〈F 〉X for every X ∈ A provided that B is a complete

lattice.

Proof.
1◦.

∃F ∈ atoms f : X [F ] Y ⇔
∃a ∈ atomsA, b ∈ atomsB : (a×FCD b 6� f ∧ X

[
a×FCD b

]
Y)⇔

∃a ∈ atomsA, b ∈ atomsB : (a×FCD b 6� f ∧ a×FCD b 6� X ×FCD Y)⇔
∃F ∈ atoms f : (F 6� f ∧ F 6� X ×FCD Y)⇔

(by theorem 1570)
f 6� X ×FCD Y ⇔

X [f ] Y.
2◦. Let Y ∈ B. Suppose Y 6� 〈f〉X . Then X [f ] Y; ∃F ∈ atoms f : X [F ] Y;

∃F ∈ atoms f : Y 6� 〈F 〉X ; and (taking into account that B is strongly separable
by theorem 222) Y 6� dF∈atoms f 〈F 〉X . So 〈f〉X v dF∈atoms f 〈F 〉X by strong
separability. The contrary 〈f〉X w dF∈atoms f 〈F 〉X is obvious.

�

19.11. Complete pointfree funcoids

Definition 1576. Let A andB be posets. A pointfree funcoid f ∈ pFCD(A,B)
is complete, when for every S ∈PA whenever both dS and d〈〈f〉〉

∗
S are defined

we have
〈f〉 lS = l〈〈f〉〉

∗
S.

Definition 1577. Let (A,Z0) and (B,Z1) be filtrators. I will call a co-complete
pointfree funcoid a pointfree funcoid f ∈ pFCD(A,B) such that 〈f〉X ∈ Z1 for every
X ∈ Z0.

Proposition 1578. Let (A,Z0) and (B,Z1) be primary filtrators over boolean
lattices. Co-complete pointfree funcoids pFCD(A,B) bijectively correspond to func-
tions ZZ0

1 preserving finite joins, where the bijection is f 7→ 〈f〉|Z0 .

Proof. It follows from the theorem 1510. �

Theorem 1579. Let (A,Z0) be a down-aligned, with join-closed, binarily meet-
closed and separable core which is a complete boolean lattice.

Let (B,Z1) be a star-separable filtrator.
The following conditions are equivalent for every pointfree funcoid f ∈

pFCD(A,B):
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1◦. f−1 is co-complete;
2◦. ∀S ∈PA, J ∈ Z1 : ( d

A
S [f ] J ⇒ ∃I ∈ S : I [f ] J);

3◦. ∀S ∈PZ0, J ∈ Z1 : ( d

Z0 S [f ] J ⇒ ∃I ∈ S : I [f ] J);
4◦. f is complete;
5◦. ∀S ∈PZ0 : 〈f〉 d

Z0 S = d

B〈〈f〉〉∗S.

Proof. First note that the theorem 580 applies to the filtrator (A,Z0).
3◦⇒1◦. For every S ∈PZ0, J ∈ Z1

Z0

lS u
A
〈
f−1〉J 6= ⊥A ⇒ ∃I ∈ S : I uA

〈
f−1〉J 6= ⊥A, (29)

consequently by the theorem 580 we have
〈
f−1〉J ∈ Z0.

1◦⇒2◦. For every S ∈PA, J ∈ Z1 we have
〈
f−1〉J ∈ Z0, consequently

∀S ∈PA, J ∈ Z1 :
(

A

lS 6�
〈
f−1〉J ⇒ ∃I ∈ S : I 6�

〈
f−1〉J).

From this follows 2◦.
2◦⇒4◦. Let 〈f〉 d

Z0 S and d

B〈〈f〉〉∗S be defined. We have 〈f〉 d

A
S = 〈f〉 d

Z0 S.

J uB 〈f〉
A

lS 6= ⊥
B ⇔

A

lS [f ] J ⇔
∃I ∈ S : I [f ] J ⇔

∃I ∈ S : J uB 〈f〉I 6= ⊥B ⇔

J uB
B

l〈〈f〉〉
∗
S 6= ⊥B

(used theorem 580). Thus 〈f〉 d

A
S = d

B〈〈f〉〉∗S by star-separability of
(B,Z1).

5◦⇒3◦. Let 〈f〉 d

Z0 S be defined. Then d

B〈〈f〉〉∗S is also defined because
〈f〉 d

Z0 S = d

B〈〈f〉〉∗S. Then
Z0

lS [f ] J ⇔ J uB 〈f〉
Z0

lS 6= ⊥
B ⇔ J uB

B

l〈〈f〉〉
∗
S 6= ⊥B

what by theorem 580 is equivalent to ∃I ∈ S : J uB 〈f〉I 6= ⊥B that is
∃I ∈ S : I [f ] J .

2◦⇒3◦, 4◦⇒5◦. By join-closedness of the core of (A,Z0).
�

Theorem 1580. Let (A,Z0) and (B,Z1) be primary filtrators over boolean
lattices. If R is a set of co-complete pointfree funcoids in pFCD(A,B) then dR is
a co-complete pointfree funcoid.

Proof. Let R be a set of co-complete pointfree funcoids. Then for every
X ∈ Z0 〈

lR
〉
X =

B

l

f∈R

〈f〉X =
Z1

l

f∈R

〈f〉X ∈ Z1

(used the theorems 1524 and 531). �

Let A and B be posets with least elements. I will denote ComplpFCD(A,B) and
CoComplpFCD(A,B) the sets of complete and co-complete funcoids correspondingly
from a poset A to a poset B.
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Proposition 1581.
1◦. Let f ∈ ComplpFCD(A,B) and g ∈ ComplpFCD(B,C) where A and C are

posets with least elements and B is a complete lattice. Then g ◦ f ∈
ComplpFCD(A,C).

2◦. Let f ∈ CoComplpFCD(A,B) and g ∈ CoComplpFCD(B,C) where (A,Z0),
(B,Z1), (C,Z2) are filtrators. Then g ◦ f ∈ CoComplpFCD(A,C).

Proof.
1◦. Let dS and d〈〈g ◦ f〉〉

∗
S be defined. Then

〈g ◦ f〉 lS = 〈g〉〈f〉 lS = 〈g〉 l〈〈f〉〉
∗
S = l〈〈g〉〉

∗〈〈f〉〉∗S = l〈〈g ◦ f〉〉
∗
S.

2◦. 〈g ◦ f〉Z0 = 〈g〉〈f〉Z0 ∈ Z2 because 〈f〉Z0 ∈ Z1.
�

Proposition 1582. Let (A,Z0) and (B,Z1) be primary filtrators over boolean
lattices. Then CoComplpFCD(A,B) (with induced order) is a complete lattice.

Proof. Follows from the theorem 1580. �

Theorem 1583. Let (A,Z0) and (B,Z1) be primary filtrators where Z0 and
Z1 are boolean lattices. Let R be a set of pointfree funcoids from A to B.

g◦( dR) = dg∈R(g◦f) = d〈g◦〉
∗
R if g is a complete pointfree funcoid from B.

Proof. For every X ∈ A 〈
g ◦
(

lR
)〉
X =

〈g〉
〈
lR

〉
X =

〈g〉 l

f∈R

〈f〉X =

l

f∈R

〈g〉〈f〉X =

l

f∈R

〈g ◦ f〉X =

〈

l

f∈R

(g ◦ f)
〉
X =

〈

l〈g◦〉
∗
R
〉
X.

So g ◦ ( dR) = d〈g◦〉
∗
R. �

19.12. Completion and co-completion

Definition 1584. Let (A,Z0) and (B,Z1) be primary filtrators over boolean
lattices and Z1 is a complete atomistic lattice.

Co-completion of a pointfree funcoid f ∈ pFCD(A,B) is pointfree funcoid
CoCompl f defined by the formula (for every X ∈ Z0)

〈CoCompl f〉X = Cor〈f〉X.
Proposition 1585. Above defined co-completion always exists.
Proof. Existence of Cor〈f〉X follows from completeness of Z1.
We may apply the theorem 1510 because

Cor〈f〉(X tZ0 Y ) = Cor(〈f〉X tB 〈f〉Y ) = Cor〈f〉X tZ1 Cor〈f〉Y
by theorem 600. �
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Obvious 1586. Co-completion is always co-complete.

Proposition 1587. For above defined always CoCompl f v f .

Proof. By proposition 539. �

19.13. Monovalued and injective pointfree funcoids

Definition 1588. Let A and B be posets. Let f ∈ pFCD(A,B).
The pointfree funcoid f is:
• monovalued when f ◦ f−1 v 1pFCD

B .
• injective when f−1 ◦ f v 1pFCD

A .

Monovaluedness is dual of injectivity.

Proposition 1589. Let A and B be posets. Let f ∈ pFCD(A,B).
The pointfree funcoid f is:
• monovalued iff f ◦ f−1 v idpFCD(B)

im f , if A has greatest element and B is a
strongly separable meet-semilattice;

• injective iff f−1 ◦ f v idpFCD(A)
dom f , if B has greatest element and A is a

strongly separable meet-semilattice.

Proof. It’s enough to prove f ◦ f−1 v 1pFCD
B ⇔ f ◦ f−1 v idpFCD(B)

im f . im f

is defined because A has greatest element. idpFCD(B)
im f is defined because B is a

meet-semilattice.
⇐. Obvious.
⇒. Let f ◦ f−1 v 1pFCD

B . Then
〈
f ◦ f−1〉x v x;

〈
f ◦ f−1〉x v im f (proposi-

tion 1497). Thus
〈
f ◦ f−1〉x v x u im f =

〈
idpFCD(B)

im f

〉
x.〈

(f ◦ f−1)−1〉x v x and
〈
(f ◦ f−1)−1〉x =

〈
f ◦ f−1〉x v im f . Thus〈

(f ◦ f−1)−1〉x v x u im f =
〈

idpFCD(B)
im f

〉
x.

Thus f ◦ f−1 v idpFCD(B)
im f .

�

Theorem 1590. Let A be an atomistic meet-semilattice with least element, B
be an atomistic bounded meet-semilattice. The following statements are equivalent
for every f ∈ pFCD(A,B):

1◦. f is monovalued.
2◦. ∀a ∈ atomsA : 〈f〉a ∈ atomsB ∪{⊥B}.
3◦. ∀i, j ∈ B :

〈
f−1〉(i u j) =

〈
f−1〉i u 〈f−1〉j.

Proof.
2◦⇒3◦. Let a ∈ atomsA, 〈f〉a = b. Then because b ∈ atomsB ∪{⊥B}

(i u j) u b 6= ⊥B ⇔ i u b 6= ⊥B ∧ j u b 6= ⊥B;
a [f ] i u j ⇔ a [f ] i ∧ a [f ] j;

i u j
[
f−1] a⇔ i

[
f−1] a ∧ j [f−1] a;

a uA
〈
f−1〉(i u j) 6= ⊥A ⇔ a u

〈
f−1〉i 6= ⊥A ∧ a u

〈
f−1〉j 6= ⊥A;

a uA
〈
f−1〉(i u j) 6= ⊥A ⇔ a u

〈
f−1〉i u 〈f−1〉j 6= ⊥A;〈

f−1〉(i u j) =
〈
f−1〉i u 〈f−1〉j.

3◦⇒1◦.
〈
f−1〉a u 〈f−1〉b =

〈
f−1〉(a u b) =

〈
f−1〉⊥B = ⊥A (by proposition 1496)

for every two distinct a, b ∈ atomsB. This is equivalent to ¬(
〈
f−1〉a [f ]
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b); b u 〈f〉
〈
f−1〉a = ⊥B; b u

〈
f ◦ f−1〉a = ⊥B; ¬(a

[
f ◦ f−1] b). So

a
[
f ◦ f−1] b ⇒ a = b for every a, b ∈ atomsB. This is possible only

(corollary 1544 and the fact that B is atomic) when f ◦ f−1 v 1pFCD
B .

¬2◦⇒ ¬1◦. Suppose 〈f〉a /∈ atomsB ∪{⊥B} for some a ∈ atomsA. Then there exist
two atoms p 6= q such that 〈f〉a w p ∧ 〈f〉a w q. Consequently p u 〈f〉a 6=
⊥B; a u

〈
f−1〉p 6= ⊥A; a v

〈
f−1〉p; 〈f ◦ f−1〉p = 〈f〉

〈
f−1〉p w 〈f〉a w q

(by proposition 1497 because B is separable by proposition 231 and thus
strongly separable by theorem 222);

〈
f ◦ f−1〉p 6v p and 〈f ◦ f−1〉p 6= ⊥B.

So it cannot be f ◦ f−1 v 1pFCD
B .

�

Theorem 1591. The following is equivalent for primary filtrators (A,Z0) and
(B,Z1) over boolean lattices and pointfree funcoids f : A→ B:

1◦. f is monovalued.
2◦. f is metamonovalued.
3◦. f is weakly metamonovalued.

Proof.

2◦⇒3◦. Obvious.
1◦⇒2◦.

〈(l
G
)
◦ f
〉
x =

〈(l
G
)〉
〈f〉x =

l

g∈G
〈g〉〈f〉x =

l

g∈G
〈g ◦ f〉x =

〈
l

g∈G
(g ◦ f)

〉
x

for every atomic filter object x ∈ atomsA. Thus (
d
G) ◦ f =

d
g∈G(g ◦ f).

3◦⇒1◦. Take g = a×FCD y and h = b×FCD y for arbitrary atomic filter objects a 6= b
and y. We have g u h = ⊥; thus (g ◦ f) u (h ◦ f) = (g u h) ◦ f = ⊥ and
thus impossible x [f ] a ∧ x [f ] b as otherwise x [g ◦ f ] y and x [h ◦ f ] y so
x [(g ◦ f) u (h ◦ f)] y. Thus f is monovalued.

�

Theorem 1592. Let (A,Z0) and (B,Z1) be primary filtrators over boolean
lattices. A pointfree funcoid f ∈ pFCD(A,B) is monovalued iff

∀I, J ∈ Z1 :
〈
f−1〉(I uZ1 J) =

〈
f−1〉I u 〈f−1〉J.

Proof. A and B are complete lattices (corollary 515).
(B,Z1) is a filtrator with separable core by theorem 534.
(B,Z1) is binarily meet-closed by corollary 533.
A and B are starrish by corollary 528.
(A,Z0) is with separable core by theorem 534.
We are under conditions of theorem 1509 for the pointfree funcoid f−1.

⇒. Obvious (taking into account that (B,Z1) is binarily meet-closed).
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⇐. 〈
f−1〉(I u J ) =

l〈〈
f−1〉〉∗ upZ1(I u J ) =

l〈〈
f−1〉〉∗{ I uZ1 J

I ∈ up I, J ∈ upJ

}
=

l
{ 〈

f−1〉(I uZ1 J)
I ∈ up I, J ∈ upJ

}
=

l
{ 〈

f−1〉I u 〈f−1〉J
I ∈ up I, J ∈ upJ

}
=

l
{ 〈

f−1〉I
I ∈ up I

}
u
l
{ 〈

f−1〉J
J ∈ upJ

}
=〈

f−1〉I uA 〈f−1〉J
(used theorem 1509, corollary 518, theorem 1498).

�

Proposition 1593. Let A be an atomistic meet-semilattice with least element,
B be an atomistic bounded meet-semilattice. Then if f , g are pointfree funcoids
from A to B, f v g and g is monovalued then g|dom f = f .

Proof. Obviously g|dom f w f . Suppose for contrary that g|dom f @ f . Then
there exists an atom a ∈ atoms dom f such that 〈g|dom f 〉a 6= 〈f〉a that is 〈g〉a @
〈f〉a what is impossible. �

19.14. Elements closed regarding a pointfree funcoid

Let A be a poset. Let f ∈ pFCD(A,A).

Definition 1594. Let’s call closed regarding a pointfree funcoid f such element
a ∈ A that 〈f〉a v a.

Proposition 1595. If i and j are closed (regarding a pointfree funcoid f ∈
pFCD(A,A)), S is a set of closed elements (regarding f), then

1◦. i t j is a closed element, if A is a separable starrish join-semilattice;
2◦.

d
S is a closed element if A is a strongly separable complete lattice.

Proof. 〈f〉(it j) = 〈f〉it 〈f〉j v it j (theorem 1498), 〈f〉
d
S v

d
〈〈f〉〉∗S vd

S (used strong separability of A twice). Consequently the elements it j and
d
S

are closed. �

Proposition 1596. If S is a set of elements closed regarding a complete point-
free funcoid f with strongly separable destination which is a complete lattice, then
the element dS is also closed regarding our funcoid.

Proof. 〈f〉 dS = d〈〈f〉〉
∗
S v dS. �

19.15. Connectedness regarding a pointfree funcoid

Let A be a poset with least element. Let µ ∈ pFCD(A,A).

Definition 1597. An element a ∈ A is called connected regarding a pointfree
funcoid µ over A when

∀x, y ∈ A \ {⊥A} : (x t y = a⇒ x [µ] y).
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Proposition 1598. Let (A,Z) be a co-separable filtrator with finitely join-
closed core. An A ∈ Z is connected regarding a funcoid µ iff

∀X,Y ∈ Z \ {⊥Z} : (X tZ Y = A⇒ X [µ] Y ).

Proof.
⇒. Obvious.
⇐. Follows from co-separability.

�

Obvious 1599. For A being a set of filters over a boolean lattice, an element
a ∈ A is connected regarding a pointfree funcoid µ iff it is connected regarding the
funcoid µ u (a×FCD a).

Exercise 1600. Consider above without requirement of existence of least ele-
ment.

19.16. Boolean funcoids

I call boolean funcoids pointfree funcoids between boolean lattices.

Proposition 1601. Every pointfree funcoid, whose source is a complete and
completely starrish and whose destination is complete and completely starrish and
separable, is complete.

Proof. It’s enough to prove 〈f〉 dS = d〈〈f〉〉∗S for our pointfree funcoid f
for every S ∈P Src f .

Really, Y 6� 〈f〉 dS ⇔ dS 6�
〈
f−1〉Y ⇔ ∃X ∈ S : X 6�

〈
f−1〉Y ⇔ ∃X ∈

S : Y 6� 〈f〉X ⇔ Y 6� d〈〈f〉〉
∗
S for every Y ∈ Dst f and thus we have 〈f〉 dS =

d〈〈f〉〉
∗
S because Dst f is separable. �

Remark 1602. It seems that this theorem can be generalized for non-complete
lattices.

Corollary 1603. Every boolean funcoid is complete and co-complete.

Proof. Using proposition 223 and corollary 89. �

Theorem 1604. Let A, B be complete boolean lattices.
A function α ∈ BA is equal to the component 〈f〉 of a pointree funcoid f ∈

pFCD(A,B) iff α is preserving all joins (= lower adjoint).

Proof. Let α ∈ BA and preserves all joins. Then α ∈ F (B)A (We equate
principal filters of the set FA of filters on A with elements of A). Thus (theo-
rem 1510) α = 〈g〉∗ for some g ∈ pFCD(FA,FB).
〈g−1〉 ∈ F (A)F(B).
Let y ∈ B. We need to prove 〈g−1〉y ∈ A that is dS 6� 〈g−1〉y ⇔ ∃x ∈ S :

〈g−1〉y 6� x for every S ∈PA.
Really, dS 6� 〈g−1〉y ⇔ y 6� 〈g〉 dS ⇔ y 6� d〈〈g〉〉∗S ⇔ ∃x ∈ S : y 6� 〈g〉x ⇔

∃x ∈ S : 〈g−1〉y 6� x.
Take β = 〈g−1〉∗. We have β ∈ AB.
x 6� βy ⇔ x 6� 〈g−1〉y ⇔ y 6� 〈g〉x⇔ y 6� αx.
So (A,B, α, β) is a pointfree funcoid.
The other direction: Let now f ∈ pFCD(A,B). We need to prove that it

preserves all joins. But it was proved above. �

Conjecture 1605. Let A, B be boolean lattices.
A function α ∈ BA is equal to the component 〈f〉 of a pointfree funcoid f ∈

pFCD(A,B) iff α is a lower adjoint.



19.17. BINARY RELATIONS ARE POINTFREE FUNCOIDS 310

It is tempting to conclude that 〈f〉 is a lower adjoint to
〈
f−1〉. But that’s false:

We should disprove that 〈f〉X v Y ⇔ X v
〈
f−1〉Y .

For a counter-example, take f = {0} × N. Then our condition takes form
Y = N⇔ X v {0} for X 3 0, Y 3 0 what obviously does not hold.

19.17. Binary relations are pointfree funcoids

Below for simplicity we will equate T A with PA.

Theorem 1606. Pointfree funcoids f between powerset posets T A and T B
bijectively (moreover this bijection is an order-isomorphism) correspond to mor-
phisms p ∈ Rel(A,B) by the formulas:

〈f〉 = 〈p〉∗,
〈
f−1〉 =

〈
p−1〉∗; (30)

(x, y) ∈ GR p⇔ y ∈ 〈f〉{x} ⇔ x ∈
〈
f−1〉{y}. (31)

Proof. Suppose p ∈ Rel(A,B) and prove that there is a pointfree funcoid f
conforming to (30). Really, for every X ∈ T A, Y ∈ T B

Y 6� 〈f〉X ⇔ Y 6� 〈p〉∗X ⇔ Y 6� 〈p〉X ⇔

X 6�
〈
p−1〉Y ⇔ X 6�

〈
p−1〉∗Y ⇔ X 6�

〈
f−1〉Y.

Now suppose f ∈ pFCD(T A,T B) and prove that the relation defined by the
formula (31) exists. To prove it, it’s enough to show that y ∈ 〈f〉{x} ⇔ x ∈〈
f−1〉{y}. Really,

y ∈ 〈f〉{x} ⇔ {y} 6� 〈f〉{x} ⇔ {x} 6�
〈
f−1〉{y} ⇔ x ∈

〈
f−1〉{y}.

It remains to prove that functions defined by (30) and (31) are mutually inverse.
(That these functions are monotone is obvious.)

Let p0 ∈ Rel(A,B) and f ∈ pFCD(T A,T B) corresponds to p0 by the for-
mula (30); let p1 ∈ Rel(A,B) corresponds to f by the formula (31). Then p0 = p1
because

(x, y) ∈ GR p0 ⇔ y ∈ 〈p0〉∗{x} ⇔ y ∈ 〈f〉{x} ⇔ (x, y) ∈ GR p1.

Let now f0 ∈ pFCD(T A,T B) and p ∈ Rel(A,B) corresponds to f0 by the
formula (31); let f1 ∈ pFCD(T A,T B) corresponds to p by the formula (30). Then
(x, y) ∈ GR p⇔ y ∈ 〈f0〉{x} and 〈f1〉 = 〈p〉∗; thus

y ∈ 〈f1〉{x} ⇔ y ∈ 〈p〉∗{x} ⇔ (x, y) ∈ GR p⇔ y ∈ 〈f0〉{x}.

So 〈f0〉 = 〈f1〉. Similarly
〈
f−1

0
〉

=
〈
f−1

1
〉
. �

Proposition 1607. The bijection defined by the theorem 1606 preserves com-
position and identities, that is is a functor between categories Rel and (A,B) 7→
pFCD(T A,T B).

Proof. Let 〈f〉 = 〈p〉∗ and 〈g〉 = 〈q〉∗. Then 〈g ◦ f〉 = 〈g〉 ◦ 〈f〉 = 〈q〉∗ ◦ 〈p〉∗ =
〈q ◦ p〉∗. Likewise

〈
(g ◦ f)−1〉 =

〈
(q ◦ p)−1〉∗. So it preserves composition.

Let p = 1ARel for some set A. Then 〈f〉 = 〈p〉∗ =
〈
1ARel

〉∗ = idPA and likewise〈
f−1〉 = idPA, that is f is an identity pointfree funcoid. So it preserves identities.

�

Proposition 1608. The bijection defined by theorem 1606 preserves reversal.

Proof.
〈
f−1〉 =

〈
p−1〉∗. �

Proposition 1609. The bijection defined by theorem 1606 preserves monoval-
uedness and injectivity.
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Proof. Because it is a functor which preserves reversal. �

Proposition 1610. The bijection defined by theorem 1606 preserves domain
an image.

Proof. im f = 〈f〉> = 〈p〉∗> = im p, likewise for domain. �

Proposition 1611. The bijection defined by theorem 1606 maps cartesian
products to corresponding funcoidal products.

Proof.
〈
A×FCD B

〉
X =

{
B if X 6� A
⊥ if X � A

= 〈A×B〉∗X. Likewise〈
(A×FCD B)−1〉Y =

〈
(A×B)−1〉∗Y . �

»»»> master



CHAPTER 20

Alternative representations of binary relations

Theorem 1612. Let A and B be fixed sets. The diagram at the figure 1
is a commutative diagram (in category Set), every arrow in this diagram is an
isomorphism. Every cycle in this diagram is an identity. All “parallel” arrows are
mutually inverse.

For a Galois connection f I denote f0 the lower adjoint and f1 the upper adjoint.
For simplicity, in the diagram I equate PA and T A.

Proof. First, note that despite we use the notation Ψ−1
i , it is not yet proved

that Ψ−1
i is the inverse of Ψi. We will prove it below.

Now prove a list of claims. First concentrate on the upper “triangle” of the
diagram (the lower one will be considered later).
Claim:

{
(x,y)

y∈f0{x}

}
=
{

(x,y)
x∈f1{y}

}
when f is an antitone Galois connection be-

tween PA and PB.
Proof: y ∈ f0{x} ⇔ {y} v f0{x} ⇔ {x} v f1{y} ⇔ x ∈ f1{y}. �
Claim: (X 7→d

x∈TX\{⊥}〈f〉x,Y 7→
d
y∈T Y \{⊥}〈f−1〉y)=(X 7→d

x∈X〈f〉{x},Y 7→
d
y∈Y 〈f−1〉{y})

when f is a pointfree funcoid between PA and PB.
Proof: It is enough to prove

d
x∈T X\{⊥}〈f〉x =

d
x∈X〈f〉{x} (the rest follows

from symmetry).
d
x∈T X\{⊥}〈f〉x v

d
x∈X〈f〉{x} because T X \ {⊥} ⊇

{
{x}
x∈X

}
.

d
x∈T X\{⊥}〈f〉x w

d
x∈X〈f〉{x} because if x ∈ T X \ {⊥} then we can take

x′ ∈ x that is {x′} ⊆ x and thus 〈f〉x w 〈f〉{x′}, so
d
x∈T X\{⊥}〈f〉x wd

x∈T X\{⊥}〈f〉{x′} w
d
x∈X〈f〉{x}. �

Claim:
(
PA,PB,X 7→ dx∈T X\{⊥} f0x, Y 7→ dy∈T Y \{⊥} f1y

)
=(

PA,PB,X 7→ dx∈X f0{x}, Y 7→ dy∈Y f1{y}
)
when f is an antitone Galois

connection between PA and PB.

Proof: It is enough to prove dx∈T X\{⊥} f0x = dx∈X f0{x} (the rest follows from
symmetry). We have dx∈T X\{⊥} f0x w dx∈X f0{x} because {x} ∈ T X\{⊥}. Let
x ∈ T X \ {⊥}. Take x′ ∈ X. We have f0x v f0{x′} and thus f0x v dx∈X f0{x}.
So dx∈T X\{⊥} f0x v dx∈X f0{x}. �

Claim: Ψ−1
3 = Ψ2 ◦Ψ1.

Proof: Ψ2Ψ1f =
(
PA,PB,X 7→

{
y

∃x∈X:(x,y)∈Ψ1f

}
, Y 7→

{
x

∃y∈Y :(x,y)∈Ψ1f

})
=(

PA,PB,X 7→
{

y
∃x∈X:y∈f0{x}

}
, Y 7→

{
x

∃y∈Y :x∈f1{y}

})
=(

PA,PB,X 7→ dx∈X f0{x}, Y 7→ dy∈Y f1{y}
)

= Ψ−1
3 f . �

Claim: Ψ3 = Ψ−1
1 ◦Ψ−1

2 .
Proof: Ψ−1

1 Ψ−1
2 f =

(
X 7→

{
y∈B

∀x∈X:{x}[f ]{y}

}
, Y 7→

{
x∈A

∀y∈Y :{x}[f ]{y}

})
=(

X 7→
{

y∈B
∀x∈X:y∈〈f〉{x}

}
, Y 7→

{
x∈A

∀y∈Y :x∈〈f−1〉{y}

})
=(

X 7→
d
x∈X〈f〉{x}, Y 7→

d
y∈Y

〈
f−1〉{y}) = Ψ3f . �

312
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Figure 1.
binary relations
between A and B

pointfree funcoids
between

PA and PB

antitone Galois
connections
between

PA and PB

Galois connections
between PA and PB

Ψ−1
1

Ψ2

Ψ−1
2

Ψ3

Ψ4

Ψ1

Ψ−1
3

Ψ5=Ψ−1
5

Ψ−1
4

Ψ1. f 7→
{

(x,y)
y∈f0{x}

}
=
{

(x,y)
x∈f1{y}

}
Ψ−1

1 . r 7→
(
X 7→

{
y∈B

∀x∈X:xry

}
, Y 7→

{
x∈A

∀y∈Y :xry

})
Ψ2. r 7→ (PA,PB, 〈r〉∗,

〈
r−1〉∗)

Ψ−1
2 . f 7→

{
(x,y)

{x}[f ]{y}

}
Ψ3. f 7→

(
X 7→

d
x∈T X\{⊥}〈f〉x, Y 7→

d
y∈T Y \{⊥}

〈
f−1〉y) =(

X 7→
d
x∈X〈f〉{x}, Y 7→

d
y∈Y

〈
f−1〉{y})

Ψ−1
3 . f 7→

(
PA,PB,X 7→ dx∈T X\{⊥} f0x, Y 7→ dy∈T Y \{⊥} f1y

)
=(

PA,PB,X 7→ dx∈X f0{x}, Y 7→ dy∈Y f1{y}
)

Ψ4. f 7→
(
X 7→ ¬

d
x∈T X\{⊥}〈f〉x, Y 7→

d
y∈T Y \{⊥}

〈
f−1〉¬y) =(

X 7→ dx∈T X\{⊥} ¬〈f〉x, Y 7→
d
y∈T Y \{⊥}

〈
f−1〉¬y) =(

X 7→ ¬
d
x∈X〈f〉{x}, Y 7→

d
y∈Y

〈
f−1〉¬{y}) =(

X 7→ dx∈X ¬〈f〉{x}, Y 7→
d
y∈Y

〈
f−1〉¬{y})

Ψ−1
4 . f 7→

(
PA,PB,X 7→ dx∈T X\{⊥} ¬f0x, Y 7→ dy∈T Y \{⊥} f1¬y

)
=(

PA,PB,X 7→ ¬
d
x∈T X\{⊥} f0x, Y 7→ dy∈T Y \{⊥} f1¬y

)
=(

PA,PB,X 7→ dx∈X ¬f0{x}, Y 7→ dy∈Y f1¬{y}
)

=(
PA,PB,X 7→ ¬

d
x∈X f0{x}, Y 7→ dy∈Y f1¬{y}

)
Ψ5 = Ψ−1

5 . f 7→ (¬ ◦ f0, f1 ◦ ¬)

Claim: Ψ1 maps antitone Galois connections between PA and PB into binary
relations between A and B.
Proof: Obvious. �
Claim: Ψ−1

1 maps binary relations between A and B into antitone Galois connec-
tions between PA and PB.
Proof: We need to prove Y ⊆

{
y∈B

∀x∈X:xry

}
⇔ X ⊆

{
x∈A

∀y∈Y :xry

}
. After we equiva-

lently rewrite it:

∀y ∈ Y ∀x ∈ X : x r y ⇔ ∀x ∈ X∀y ∈ Y : x r y
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it becomes obvious. �
Claim: Ψ2 maps binary relations between A and B into pointfree funcoids be-
tween PA and PB.
Proof: We need to prove that f = (PA,PB, 〈f〉,

〈
f−1〉) is a pointfree funcoids

that is Y 6� 〈f〉X ⇔ X 6�
〈
f−1〉Y . Really, for every X ∈ T A, Y ∈ T B

Y 6� 〈f〉X ⇔ Y 6� 〈r〉∗X ⇔ Y 6� 〈r〉X ⇔

X 6�
〈
r−1〉Y ⇔ X 6�

〈
r−1〉∗Y ⇔ X 6�

〈
f−1〉Y.

�
Claim: Ψ−1

2 maps pointfree funcoids between PA and PB into binary relations
between A and B.
Proof: Suppose f ∈ pFCD(T A,T B) and prove that the relation defined by the
formula Ψ−1

2 exists. To prove it, it’s enough to show that y ∈ 〈f〉{x} ⇔ x ∈〈
f−1〉{y}. Really,

y ∈ 〈f〉{x} ⇔ {y} 6� 〈f〉{x} ⇔ {x} 6�
〈
f−1〉{y} ⇔ x ∈

〈
f−1〉{y}.

�
Claim: Ψ3 maps pointfree funcoids between PA and PB into antitone Galois
connections between PA and PB.
Proof: Because Ψ3 = Ψ−1

1 ◦Ψ−1
2 . �

Claim: Ψ−1
3 maps antitone Galois connections between PA and PB into pointfree

funcoids between PA and PB.
Proof: Because Ψ−1

3 = Ψ2 ◦Ψ1. �
Claim: Ψ2 and Ψ−1

2 are mutually inverse.
Proof: Let r0 ∈ P(A × B) and f ∈ pFCD(T A,T B) corresponds to r0 by the
formula Ψ2; let r1 ∈P(A×B) corresponds to f by the formula Ψ−1

2 . Then r0 = r1
because

(x, y) ∈ r0 ⇔ y ∈ 〈r0〉∗{x} ⇔ y ∈ 〈f〉{x} ⇔ (x, y) ∈ r1.

Let now f0 ∈ pFCD(T A,T B) and r ∈ P(A × B) corresponds to f0 by the
formula Ψ−1

2 ; let f1 ∈ pFCD(T A,T B) corresponds to r by the formula Ψ2. Then
(x, y) ∈ r ⇔ y ∈ 〈f0〉{x} and 〈f1〉 = 〈r〉∗; thus

y ∈ 〈f1〉{x} ⇔ y ∈ 〈r〉∗{x} ⇔ (x, y) ∈ r ⇔ y ∈ 〈f0〉{x}.
So 〈f0〉 = 〈f1〉. Similarly

〈
f−1

0
〉

=
〈
f−1

1
〉
. �

Claim: Ψ1 and Ψ−1
1 are mutually inverse.

Proof: Let r0 ∈P(A×B) and f ∈ T A⊗T B corresponds to r0 by the formula Ψ−1
1 ;

let r1 ∈P(A×B) corresponds to f by the formula Ψ1. Then r0 = r1 because

(x, y) ∈ r1 ⇔ y ∈ f0{x} ⇔ y ∈
{
y ∈ B
x r0 y

}
⇔ x r0 y.

Let now f0 ∈ T A⊗T B and r ∈P(A×B) corresponds to f0 by the formula Ψ1;
let f1 ∈ T A⊗T B corresponds to r by the formula Ψ−1

1 . Then f0 = f1 because

f10X =
{

y ∈ B
∀x ∈ X : x r y

}
=
{

y ∈ B
∀x ∈ X : y ∈ f00{x}

}
=

l

x∈X
f00{x} = (obvious 142) = f00X.

�
Claim: Ψ3 and Ψ−1

3 are mutually inverse.
Proof: Because Ψ−1

3 = Ψ2 ◦Ψ1 and Ψ3 = Ψ−1
1 ◦Ψ−1

2 and that Ψ−1
2 is the inverse of

Ψ2 and Ψ−1
3 is the inverse of Ψ3 were proved above. �

Now switch to the lower “triangle”:
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Claim:
(
X 7→ dx∈T X\{⊥} ¬f0x, Y 7→ dy∈T Y \{⊥} f1¬y

)
=(

X 7→ dx∈X ¬f0{x}, Y 7→ dy∈Y f1¬{y}
)
.

Proof: It is enough to prove dx∈T X\{⊥} ¬f0x = dx∈X ¬f0{x} for a Galois connec-
tion f (the rest follows from symmetry).

dx∈T X\{⊥} ¬f0x w dx∈X ¬f0{x} because {x} ∈ T X \ {⊥}. If x ∈ T X \ {⊥}
then there exists x′ ∈ {x} and thus ¬f0{x′} w ¬f0x. Thus ¬f0x v dx∈X ¬f0{x}
and so dx∈T X\{⊥} ¬f0x v dx∈X ¬f0{x}. �
Claim: Ψ5 is self-inverse.
Proof: Obvious. �
Claim: Ψ4 = Ψ5 ◦Ψ3.
Proof: Easily follows from symmetry. �
Claim: Ψ−1

4 = Ψ−1
3 ◦Ψ−1

5 .
Proof: Easily follows from symmetry. �
Claim: Ψ4 and Ψ−1

4 are mutually inverse.
Proof: From two above claims and the fact that Ψ−1

3 is the inverse of Ψ3 and Ψ−1
5

is the inverse of Ψ5 proved above. �
Note that now we have proved that Ψi and Ψ−1

i are mutually inverse for all
i = 1, 2, 3, 4, 5.
Claim: For every path of the diagram on figure 2 started with the circled node, the
corresponding morphism is with which the node is labeled.

Figure 2.
1

Ψ2 Ψ−1
1

Ψ5 ◦Ψ−1
1

Ψ−1
1

Ψ2

Ψ−1
2

Ψ3

Ψ4

Ψ1

Ψ−1
3

Ψ5=Ψ−1
5Ψ−1

4

Proof: Take into account that Ψ−1
3 = Ψ2◦Ψ1, Ψ4 = Ψ5◦Ψ3 and thus also Ψ4◦Ψ2 =

Ψ5 ◦Ψ−1
1 . Now prove it by induction on path length. �

Claim: Every cycle in the diagram at figure 1 is identity.
Proof: For cycles starting at the top node it follows from the previous claim. For
arbitrary cycles it follows from theorem 192. �
Claim: The diagram at figure 1 is commutative.
Proof: From the previous claim. �

�

Proposition 1613. We equate the set of binary relations between A and B
with Rld(A,B). Ψ2 and Ψ−1

2 from the diagram at figure 1 preserve composition and
identities (that are functors between categories Rel and (A,B) 7→ pFCD(T A,T B))
and also reversal (f 7→ f−1).

Proof. Let 〈f〉 = 〈p〉∗ and 〈g〉 = 〈q〉∗. Then 〈g ◦ f〉 = 〈g〉 ◦ 〈f〉 = 〈q〉∗ ◦ 〈p〉∗ =
〈q ◦ p〉∗. Likewise

〈
(g ◦ f)−1〉 =

〈
(q ◦ p)−1〉∗. So Φ2 preserves composition.

Let p = 1ARel for some set A. Then 〈f〉 = 〈p〉∗ =
〈
1ARel

〉∗ = idPA and likewise〈
f−1〉 = idPA, that is f is an identity pointfree funcoid. So Φ2 preserves identities.
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That Φ−1
2 preserves composition and identities follows from the fact that it is

an isomorphism.
That is preserves reversal follows from the formula

〈
f−1〉 =

〈
p−1〉∗. �

Proposition 1614. The bijections Ψ2 and Ψ−1
2 from the diagram at figure 1

preserves monovaluedness and injectivity.

Proof. Because it is a functor which preserves reversal. �

Proposition 1615. The bijections Ψ2 and Ψ−1
2 from the diagram at figure 1

preserves domain an image.

Proof. im f = 〈f〉> = 〈p〉∗> = im p, likewise for domain. �

Proposition 1616. The bijections Ψ2 and Ψ−1
2 from the diagram at figure 1

maps cartesian products to corresponding funcoidal products.

Proof.
〈
A×FCD B

〉
X =

{
B if X 6� A
⊥ if X � A

= 〈A×B〉∗X. Likewise〈
(A×FCD B)−1〉Y =

〈
(A×B)−1〉∗Y . �

Let Φ map a pointfree funcoid whose first component is c into the Galois con-
nection whose lower adjoint is c. Then Φ is an isomorphism (theorem 1604) and
Φ−1 maps a Galois connection whose lower adjoint is c into the pointfree funcoid
whose first component is c.

Informally speaking, Φ replaces a relation r with its complement relations ¬r.
Formally:

Proposition 1617.
1◦. For every path P in the diagram at figure 1 from binary relations between

A and B to pointfree funcoids between PA and PB and every path Q
in the diagram at figure 1 from Galois connections between PA and PB
to binary relations between A and B, we have QΦPr = ¬r.

2◦. For every path Q in the diagram at figure 1 from binary relations between
A and B to pointfree funcoids between PA and PB and every path P
in the diagram at figure 1 from Galois connections between PA and PB
to binary relations between A and B, we have PΦ−1Qr = ¬r.

Proof. We will prove only the second (P ◦ Φ−1 ◦ Q = ¬), because the first
(Q ◦Φ ◦ P = ¬) can be obtained from it by inverting the morphisms (and variable
replacement).

Because the diagram is commutative, it is enough to prove it for some fixed P
and Q. For example, we will prove Ψ−1

2 Φ−1Ψ4Ψ2r = ¬r.
Ψ4Ψ2r =

(
X 7→ ¬

d
x∈X〈r〉

∗{x}, Y 7→
d
y∈Y 〈r〉

∗¬{y}
)
.

Φ−1Ψ4Ψ2r is pointfree funcoid f with 〈f〉 = X 7→ ¬
d
x∈X〈r〉

∗{x}.
Ψ−1

2 Φ−1Ψ4Ψ2r is the relation consisting of (x, y) such that {x} [f ] {y} what is
equivalent to: {y} 6� 〈f〉{x}; {y} 6� ¬〈r〉∗{x}; {y} 6v 〈r〉∗{x}; y /∈ 〈r〉∗{x}.

So Ψ−1
2 Φ−1Ψ4Ψ2r = ¬r. �

Proposition 1618. Φ and Φ−1 preserve composition.

Proof. By definitions of compositions and the fact that both pointfree fun-
coids and Galois connections are determined by the first component. �



Part 4

Staroids and multifuncoids



CHAPTER 21

Multifuncoids and staroids

21.1. Product of two funcoids

21.1.1. Definition.

Definition 1619. I will call a quasi-invertible category a partially ordered
dagger category such that it holds

g ◦ f 6� h⇔ g 6� h ◦ f† (32)
for every morphisms f ∈ Hom(A,B), g ∈ Hom(B,C), h ∈ Hom(A,C), where A,
B, C are objects of this category.

Inverting this formula, we get f† ◦ g† 6� h† ⇔ g† 6� f ◦h†. After replacement of
variables, this gives: f† ◦ g 6� h⇔ g 6� f ◦ h.

Exercise 1620. Prove that every ordered groupoid is quasi-invertible category
if we define the dagger as the inverse morphism.

As it follows from above, the categories Rel of binary relations (proposi-
tion 280), FCD of funcoids (theorem 879) and RLD of reloids (theorem 1006) are
quasi-invertible (taking f† = f−1). Moreover the category of pointfree funcoids
between lattices of filters on boolean lattices is quasi-invertible (theorem 1551).

Definition 1621. The cross-composition product of morphisms f and g
of a quasi-invertible category is the pointfree funcoid Hom(Src f, Src g) →
Hom(Dst f,Dst g) defined by the formulas (for every a ∈ Hom(Src f, Src g) and
b ∈ Hom(Dst f,Dst g)):〈

f ×(C) g
〉
a = g ◦ a ◦ f† and

〈
(f ×(C) g)−1

〉
b = g† ◦ b ◦ f.

We need to prove that it is really a pointfree funcoid that is that

b 6�
〈
f ×(C) g

〉
a⇔ a 6�

〈
(f ×(C) g)−1

〉
b.

This formula means b 6� g ◦a◦f† ⇔ a 6� g† ◦b◦f and can be easily proved applying
formula (32) twice.

Proposition 1622. a
[
f ×(C) g

]
b⇔ a ◦ f† 6� g† ◦ b.

Proof. From the definition. �

Proposition 1623. a
[
f ×(C) g

]
b⇔ f

[
a×(C) b

]
g.

Proof. f
[
a×(C) b

]
g ⇔ f ◦a† 6� b† ◦g ⇔ a◦f† 6� g† ◦ b⇔ a

[
f ×(C) g

]
b. �

Theorem 1624. (f ×(C) g)−1 = f† ×(C) g†.

Proof. For every morphisms a ∈ Hom(Src f, Src g) and b ∈ Hom(Dst f,Dst g)
we have:〈

(f ×(C) g)−1〉b = g† ◦ b ◦ f =
〈
f† ×(C) g†

〉
b.〈

((f ×(C) g)−1)−1〉a =
〈
f ×(C) g

〉
a = g ◦ a ◦ f† =

〈
(f† ×(C) g†)−1〉a. �

318
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Theorem 1625. Let f , g be pointfree funcoids between filters on boolean
lattices. Then for every filters A0 ∈ F (Src f), B0 ∈ F (Src g)〈

f ×(C) g
〉

(A0 ×FCD B0) = 〈f〉A0 ×FCD 〈g〉B0.

Proof. For every atom a1 ×FCD b1 (a1 ∈ atomsDst f , b1 ∈ atomsDst g) (see
theorem 1569) of the lattice of funcoids we have:

a1 ×FCD b1 6�
〈
f ×(C) g

〉
(A0 ×FCD B0)⇔

A0 ×FCD B0

[
f ×(C) g

]
a1 ×FCD b1 ⇔

(A0 ×FCD B0) ◦ f−1 6� g−1 ◦ (a1 ×FCD b1)⇔
〈f〉A0 ×FCD B0 6� a1 ×FCD 〈g−1〉b1 ⇔

〈f〉A0 6� a1 ∧
〈
g−1〉b1 6� B0 ⇔

〈f〉A0 6� a1 ∧ 〈g〉B0 6� b1 ⇔

〈f〉A0 ×FCD 〈g〉B0 6� a1 ×FCD b1.

Thus
〈
f ×(C) g

〉
(A0 ×FCD B0) = 〈f〉A0 ×FCD 〈g〉B0 because the lattice

pFCD(F (Dst f),F (Dst g)) is atomically separable (corollary 1560). �

Corollary 1626. A0 ×FCD B0
[
f ×(C) g

]
A1 ×FCD B1 ⇔ A0 [f ] A1 ∧B0 [g] B1

for every A0 ∈ F (Src f), A1 ∈ F (Dst f), B0 ∈ F (Src g), B1 ∈ F (Dst g) where
Src f , Dst f , Src g, Dst g are boolean lattices.

Proof.

A0 ×FCD B0

[
f ×(C) g

]
A1 ×FCD B1 ⇔

A1 ×FCD B1 6�
〈
f ×(C) g

〉
A0 ×FCD B0 ⇔

A1 ×FCD B1 6� 〈f〉A0 ×FCD 〈g〉B0 ⇔
A1 6� 〈f〉A0 ∧ B1 6� 〈g〉B0 ⇔
A0 [f ] A1 ∧ B0 [g] B1.

�

21.2. Definition of staroids

It follows from the above theorem 828 that funcoids are essentially the same as
relations δ between sets A and B, such that

{
Y ∈PB

∃X∈PA:XδY
}
and

{
X∈PA

∃Y ∈PB:XδY
}
are

free stars. This inspires the below definition of staroids (switching from two sets X
and Y to a (potentially infinite) family of posets).

Whilst I have (mostly) thoroughly studied basic properties of funcoids, staroids
(defined below) are yet much a mystery. For example, we do not know whether the
set of staroids on powersets is atomic.

Let n be a set. As an example, n may be an ordinal, n may be a natural
number, considered as a set by the formula n = {0, . . . , n− 1}. Let A = Ai∈n be a
family of posets indexed by the set n.

Definition 1627. I will call an anchored relation a pair f = (form f,GR f) of
a family form(f) of relational structures indexed by some index set and a relation
GR(f) ∈P

∏
form(f). I call GR(f) the graph of the anchored relation f . I denote

Anch(A) the set of anchored relations of the form A.
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Definition 1628. Infinitary anchored relation is such an anchored relation
whose arity is infinite; finitary anchored relation is such an anchored relation whose
arity is finite.

Definition 1629. An anchored relation on powersets is an anchored relation
f such that every (form f)i is a powerset.

I will denote arity f = dom form f .
Definition 1630. [f ]∗ is the relation between typed elements T(form f)i (for

i ∈ arity f) defined by the formula L ∈[f ]∗⇔ T ◦ L ∈ GR f .
Every set of anchored relations of the same form constitutes a poset by the

formula f v g ⇔ GR f ⊆ GR g.
Definition 1631. An anchored relation is an anchored relation between posets

when every (form f)i is a poset.

Definition 1632. (val f)iL =
{

X∈(form f)i
L∪{(i,X)}∈GR f

}
.

Proposition 1633. f can be restored knowing form(f) and (val f)i for some
i ∈ arity f .

Proof.

GR f =
{
K ∈

∏
form f

K ∈ GR f

}
={

L ∪ {(i,X)}
L ∈

∏
(form f)|(arity f)\{i}, X ∈ (form f)i, L ∪ {(i,X)} ∈ GR f

}
={

L ∪ {(i,X)}
L ∈

∏
(form f)|(arity f)\{i}, X ∈ (val f)iL

}
.

�

Definition 1634. A prestaroid is an anchored relation f between posets such
that (val f)iL is a free star for every i ∈ arity f , L ∈

∏
(form f)|(arity f)\{i}.

Definition 1635. A staroid is a prestaroid whose graph is an upper set (on
the poset

∏
form(f)).

Definition 1636. A (pre)staroid on power sets is such a (pre)staroid f that
every (form f)i is a lattice of all subsets of some set.

Proposition 1637. If L ∈
∏

form f and Li = ⊥(form f)i for some i ∈ arity f
then L /∈ GR f if f is a prestaroid.

Proof. Let K = L|(arity f)\{i}. We have ⊥ /∈ (val f)iK; K ∪ {(i,⊥)} /∈ GR f ;
L /∈ GR f . �

Next we will define completary staroids. First goes the general case, next sim-
pler case for the special case of join-semilattices instead of arbitrary posets.

Definition 1638. A completary staroid is an anchored relation between posets
conforming to the formulas:

1◦. ∀K ∈
∏

form f : (K w L0 ∧ K w L1 ⇒ K ∈ GR f) is equivalent to
∃c ∈ {0, 1}n : (λi ∈ n : Lc(i)i) ∈ GR f for every L0, L1 ∈

∏
form f .

2◦. If L ∈
∏

form f and Li = ⊥(form f)i for some i ∈ arity f then L /∈ GR f .
Lemma 1639. Every graph of completary staroid is an upper set.
Proof. Let f be a completary staroid. Let L0 v L1 for some L0, L1 ∈∏

form f and L0 ∈ GR f . Then taking c = n × {0} we get λi ∈ n : Lc(i)i =
λi ∈ n : L0i = L0 ∈ GR f and thus L1 ∈ GR f because L1 w L0 ∧ L1 w L1. �
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Proposition 1640. An anchored relation f between posets whose form is a
family of join-semilattices is a completary staroid iff both:

1◦. L0 t L1 ∈ GR f ⇔ ∃c ∈ {0, 1}n : (λi ∈ n : Lc(i)i) ∈ GR f for every
L0, L1 ∈

∏
form f .

2◦. If L ∈
∏

form f and Li = ⊥(form f)i for some i ∈ arity f then L /∈ GR f .

Proof. Let the formulas 1◦ and 2◦ hold. Then f is an upper set: Let L0 v L1
for some L0, L1 ∈

∏
form f and L0 ∈ f . Then taking c = n × {0} we get λi ∈ n :

Lc(i)i = λi ∈ n : L0i = L0 ∈ GR f and thus L1 = L0 t L1 ∈ GR f .
Thus to finish the proof it is enough to show that

L0 t L1 ∈ GR f ⇔ ∀K ∈
∏

form f : (K w L0 ∧K w L1 ⇒ K ∈ GR f)

under condition that GR f is an upper set. But this equivalence is obvious in both
directions. �

Proposition 1641. Every completary staroid is a staroid.

Proof. Let f be a completary staroid.
Let i ∈ arity f , K ∈

∏
i∈(arity f)\{i}(form f)i. Let L0 = K ∪ {(i,X0)}, L1 =

K ∪ {(i,X1)} for some X0, X1 ∈ Ai.
Let

∀Z ∈ Ai : (Z w X0 ∧ Z w X1 ⇒ Z ∈ (val f)iK);

then

∀Z ∈ Ai : (Z w X0 ∧ Z w X1 ⇒ K ∪ {(i, Z)} ∈ GR f).

If z w L0 ∧ z w L1 then z w K ∪ {(i, zi)}, thus taking into account that GR f is an
upper set,

∀z ∈
∏

A : (z w L0 ∧ z w L1 ⇒ K ∪ {(i, zi)} ∈ GR f).

∀z ∈
∏

A : (z w L0 ∧ z w L1 ⇒ z ∈ GR f).

Thus, by the definition of completary staroid, L0 ∈ GR f ∨ L1 ∈ GR f that is

X0 ∈ (val f)iK ∨X1 ∈ (val f)iK.

So (val f)iK is a free star (taken into account that zi = ⊥(form f)i ⇒ z /∈ GR f and
that (val f)iK is an upper set). �

Exercise 1642. Write a simplified proof for the case if every (form f)i is a
join-semilattice.

Lemma 1643. Every finitary prestaroid is completary.
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Proof.
∃c ∈ {0, 1}n : (λi ∈ n : Lc(i)i) ∈ GR f ⇔

∃c ∈ {0, 1}n−1 :
(

({(n− 1, L0(n− 1))} ∪ (λi ∈ n− 1 : Lc(i)i)) ∈ GR f∨
({(n− 1, L1(n− 1))} ∪ (λi ∈ n− 1 : Lc(i)i)) ∈ GR f

)
⇔

∃c ∈ {0, 1}n−1 :
(
L0(n− 1) ∈ (val f)n−1(λi ∈ n− 1 : Lc(i)i)∨
L1(n− 1) ∈ (val f)n−1(λi ∈ n− 1 : Lc(i)i)

)
⇔

∃c ∈ {0, 1}n−1∀K ∈ (form f)i :
(

K w L0(n− 1) ∨K w L1(n− 1)⇒
K ∈ (val f)n−1(λi ∈ n− 1 : Lc(i)i)

)
⇔

∃c ∈ {0, 1}n−1∀K ∈ (form f)i :
(

K w L0(n− 1) ∨K w L1(n− 1)⇒
{(n− 1,K)} ∪ (λi ∈ n− 1 : Lc(i)i) ∈ GR f

)
⇔

. . .

∀K ∈
∏

form f : (K w L0 ∧K w L1 ⇒ K ∈ GR f).

�

Exercise 1644. Prove the simpler special case of the above theorem when the
form is a family of join-semilattices.

Theorem 1645. For finite arity the following are the same:
1◦. prestaroids;
2◦. staroids;
3◦. completary staroids.

Proof. f is a finitary prestaroid ⇒ f is a finitary completary staroid.
f is a finitary completary staroid ⇒ f is a finitary staroid.
f is a finitary staroid ⇒ f is a finitary prestaroid. �

Definition 1646. We will denote the set of staroids of a form A as Strd(A).

21.3. Upgrading and downgrading a set regarding a filtrator

Let fix a filtrator (A,Z).

Definition 1647. � f = f ∩ Z for every f ∈PA (downgrading f).

Definition 1648. � f =
{

L∈A
upL⊆f

}
for every f ∈PZ (upgrading f).

Obvious 1649. a ∈� f ⇔ up a ⊆ f for every f ∈PZ and a ∈ A.

Proposition 1650. �� f = f if f is an upper set for every f ∈PZ.

Proof. �� f =� f ∩ Z =
{

L∈Z
upL⊆f

}
=
{
L∈Z
L∈f

}
= f ∩ Z = f . �

21.3.1. Upgrading and downgrading staroids. Let fix a family (A,Z) of
filtrators.

For a graph f of an anchored relation between posets define � f and � f
taking the filtrator of (

∏
A,
∏

Z).
For a anchored relation between posets f define:

form � f = Z and GR � f =� GR f ;
form � f = A and GR � f =� GR f.

Below we will show that under certain conditions upgraded staroid is a staroid,
see theorem 1675.
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Proposition 1651. (val � f)iL = (val f)iL∩Zi for every L ∈
∏

Z|(arity f)\{i}.

Proof. (val � f)iL =
{

X∈Zi
L∪{(i,X)}∈GR f∩

∏
Z

}
=

{
X∈Zi

L∪{(i,X)}∈GR f

}
=

(val f)iL ∩ Zi. �

Proposition 1652. Let (Ai,Zi) be binarily join-closed filtrators with both the
base and the core being join-semilattices. If f is a staroid of the form A, then � f
is a staroid of the form Z.

Proof. Let f be a staroid.
We need to prove that (val � f)iL is a free star. It follows from the last

proposition and the fact that it is binarily join-closed. �

Proposition 1653. Let each (Ai,Zi) for i ∈ n (where n is an index set) be a
binarily join-closed filtrator, such that each Ai and each Zi are join-semilattices. If
f is a completary staroid of the form A then � f is a completary staroid of the
form Z.

Proof.

L0 tZ L1 ∈ GR � f ⇔ L0 tZ L1 ∈ GR f ⇔ L0 tA L1 ∈ GR f ⇔
∃c ∈ {0, 1}n : (λi ∈ n : Lc(i)i) ∈ GR f ⇔

∃c ∈ {0, 1}n : (λi ∈ n : Lc(i)i) ∈ GR � f

for every L0, L1 ∈
∏

Z. �

21.4. Principal staroids

Definition 1654. The staroid generated by an anchored relation F is the
staroid f =↑Strd F on powersets such that ↑ ◦L ∈ GR f ⇔

∏
L 6� F and (form f)i =

T (formF )i for every L ∈
∏
i∈arity f T (formF )i.

Remark 1655. Below we will prove that staroid generated by an anchored
relation is a staroid and moreover a completary staroid.

Definition 1656. A principal staroid is a staroid generated by some anchored
relation.

Proposition 1657. Every principal staroid is a completary staroid.

Proof. That L /∈ GR f if Li = ⊥(form f)i for some i ∈ arity f is obvious. It
remains to prove

∏
(L0 t L1) 6� F ⇔ ∃c ∈ {0, 1}arity f :

∏
i∈n

Lc(i)i 6� F.
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Really ∏
(L0 t L1) 6� F ⇔

∃x ∈
∏

(L0 t L1) : x ∈ F ⇔

∃x ∈
∏

i∈arity f
(form f)i∀i ∈ arity f : (xi ∈ L0i t L1i ∧ x ∈ F )⇔

∃x ∈
∏

i∈arity f
(form f)i∀i ∈ arity f : ((xi ∈ L0i ∨ xi ∈ L1i) ∧ x ∈ F )⇔

∃x ∈
∏

i∈arity f
(form f)i

∃c ∈ {0, 1}arity f : x ∈
∏

i∈arity f
Lc(i)i ∧ x ∈ F

⇔
∃c ∈ {0, 1}arity f :

∏
i∈n

Lc(i)i 6� F.

�

Definition 1658. The upgraded staroid generated by an anchored relation F
is the anchored relation �↑Strd F .

Proposition 1659. ↑Strd F =��↑Strd F .

Proof. Because GR ↑Strd F is an upper set. �

Example 1660. There is such anchored relation f that �↑ f is not a com-
pletary staroid. This also proves existence of non-completary staroids (but not on
powersets).

Proof. (based on an Andreas Blass’s proof) Take f the set of functions

x : N → N where x0 is an arbitrary natural number and xi =
{

0 if n 6 x0
1 if n > x0

for i = 1, 2, 3, . . .. Thus f is the graph of a staroid of the form λi ∈ N : PN (on
powersets).

Let L0(0) = L1(0) = Ω(N), L0(i) =↑ {0} and L1(i) =↑ {1} for i > 0.
Let X ∈ up(L0 t L1) that is X ∈ upL0 ∩ upL1.
X0 contains all but finitely many elements of N.
For i > 0 we have {0, 1} ⊆ Xi.
Evidently,

∏
X contains an element of f , that is up(L0 t L1) ∈ f what means

L0 t L1 ∈�↑ f .
Now consider any fixed c ∈ {0, 1}N. There is at most one k ∈ N such that

the sequence x = Jk, c(1), c(2), . . .K (i.e. c with c(0) replaced by k) is in f . Let
Q = N \ {k} if there is such a k and Q = N otherwise.

Take Yi =
{
Q if i = 0
{c(i)} if i > 0 for i = 0, 1, 2, . . .. We have Y ∈ up(λi ∈ N :

Lc(i)(i)) for every c ∈ {0, 1}n.
But evidently

∏
Y does not contain an element of f . Thus,

∏
Y � f that is

Y /∈ f ; upY * f ; Y /∈ GR �↑ f what is impossible if �↑ f is completary. �

Example 1661. There exists such an (infinite) set N and N -ary relation f
that P ∈ GR �↑ f but there is no indexed family a ∈

∏
i∈N atomsPi of atomic

filters such that a ∈ GR �↑ f that is ∀A ∈ up a : f 6�
∏
A.

Proof. Take L0, L1 and f from the proof of example 1660. Take P = L0tL1.
If a ∈

∏
i∈N atomsPi then there exists c ∈ {0, 1}N such that ai v Lc(i)(i) (because

Lc(i)(i) 6= ⊥). Then from that example it follows that (λi ∈ N : Lc(i)(i)) /∈ GR �↑
f and thus a /∈ GR �↑ f . �
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Conjecture 1662. Filtrators of staroids on powersets are join-closed.

21.5. Multifuncoids

Definition 1663. Let (Ai,Zi) (where i ∈ n for an index set n) be an indexed
family of filtrators.

I call a mult f of the form (Ai,Zi) the triple f = (base f, core f, 〈f〉∗) of n-
indexed families of posets base f and core f and 〈f〉∗ of functions where for every
i ∈ n

〈f〉∗i :
∏

(core f)i|(domA)\{i} → (base f)i.
I call (base f, core f) the form of the mult f .

Remark 1664. I call it mult because it comprises multiple functions 〈f〉∗i .

Definition 1665. A mult on powersets is a mult such that every
((base f)i, (core f)i) is a powerset filtrator.

Definition 1666. I will call a relational mult a mult f such that every (base f)i
is a set and for every i, j ∈ n and L ∈

∏
core f

Li ∈ 〈f〉∗iL|(domL)\{i} ⇔ Lj ∈ 〈f〉∗jL|(domL)\{j}.

I denote arity f = n.

Definition 1667. Prestaroidal mult is a relational mult of the form (A, λi ∈
domA : S(Ai)) (where A is a poset), that is such that 〈f〉∗iL is a free star for every
i ∈ n and L ∈

∏
i∈(domL)\{i} core fi.

Definition 1668. I will call a multifuncoid a mult f such that (core f)i ⊆
(base f)i (thus having a filtrator ((base f)i, (core f)i)) for each i ∈ n and for every
i, j ∈ n and L ∈

∏
core f

Li 6� 〈f〉∗iL|(domL)\{i} ⇔ Lj 6� 〈f〉∗jL|(domL)\{j}. (33)

I denote the set of multifuncoids for a family (A,Z) of filtrators as pFCD(A,Z) or
just pFCD(A) when Z is clear from context.

Definition 1669. To every multifuncoid f corresponds an anchored relation g
by the formula (with arbitrary i ∈ arity f)

L ∈ GR g ⇔ Li 6� 〈f〉∗iL|(domL)\{i}.

Proposition 1670. Prestaroidal mults Λg = f of the form (Z, λi ∈ domZ :
S(Zi)) bijectively correspond to pre-staroids g of the form Z by the formulas (for
every K ∈

∏
Z, i ∈ domZ, L ∈

∏
j∈(domA)\{i} Zj , X ∈ Zi)

K ∈ GR g ⇔ Ki ∈ 〈f〉∗iK|(domL)\{i}; (34)
X ∈ 〈f〉∗iL⇔ L ∪ {(i,X)} ∈ GR g. (35)

Proof. If f is a prestaroidal mult, then obviously formula (34) defines an
anchored relation between posets. (val g)i = 〈f〉∗iL is a free star. Thus g is a
prestaroid.

If g is a prestaroid, then obviously formula (35) defines a relational mult. This
mult is obviously prestaroidal.

It remains to prove that these correspondences are inverse of each other.
Let f0 be a prestaroidal mult, g be the pre-staroid corresponding to f by

formula (34), and f1 be the prestaroidal mult corresponding to g by formula (35).
Let’s prove f0 = f1. Really,

X ∈ 〈f1〉∗iL⇔ L ∪ {(i,X)} ∈ GR g ⇔ X ∈ 〈f0〉∗iL.
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Let now g0 be a prestaroid, f be a prestaroidal mult corresponding to g0 by
formula (35), and g1 be a prestaroid corresponding to f by formula (34). Let’s
prove g0 = g1. Really,
K ∈ GR g1 ⇔ Ki ∈ 〈f〉∗iK|(domL)\{i} ⇔ K|(domL)\{i}∪{(i,Ki)} ∈ GR g0 ⇔ K ∈ GR g0.

�

Definition 1671. I will denote [f ]∗= GR g for the prestaroidal mult f corre-
sponding to anchored relation g.

Proposition 1672. For a form (Z, λi ∈ domZ : S(Zi)) where each Zi is a
boolean lattice, relational mults are the same as multifuncoids (if we equate poset
elements with principal free stars).

Proof.

(Li 6� 〈f〉∗iL|(domL)\{i} ⇔ Lj 6� 〈f〉∗jL|(domL)\{j})⇔
(Li ∈ ∂〈f〉∗iL|(domL)\{i} ⇔ Lj ∈ ∂〈f〉∗jL|(domL)\{j})⇔

(Li ∈ 〈f〉∗iL|(domL)\{i} ⇔ Lj ∈ 〈f〉∗jL|(domL)\{j}).
�

Theorem 1673. Fix some indexed family Z of join semi-lattices.
(val f)j(L ∪ {(i,X t Y )}) = (val f)j(L ∪ {(i,X)}) t (val f)j(L ∪ {(i, Y )})

for every prestaroid f of the form Z and i, j ∈ arity f , i 6= j, L ∈
∏
k∈L\{i,j} Zk,

X,Y ∈ Zi.

Proof. Let i, j ∈ arity f , i 6= j and L ∈
∏
k∈L\{i,j} Zk. Let Z ∈ Zi.

Z ∈ (val f)j(L ∪ {(i,X t Y )})⇔
L ∪ {(i,X t Y ), (j, Z)} ∈ GR f ⇔
X t Y ∈ (val f)i(L ∪ {(j, Z)})⇔

X ∈ (val f)i(L ∪ {(j, Z)}) ∨ Y ∈ (val f)i(L ∪ {(j, Z)})⇔
L ∪ {(i,X), (j, Z)} ∈ GR f ∨ L ∪ {(i, Y ), (j, Z)} ∈ GR f ⇔
Z ∈ (val f)j(L ∪ {(i,X)}) ∨ Z ∈ (val f)j(L ∪ {(i, Y )})⇔

Z ∈ (val f)j(L ∪ {(i,X)}) ∪ (val f)j(L ∪ {(i, Y )})⇔
Z ∈ (val f)j(L ∪ {(i,X)}) t (val f)j(L ∪ {(i, Y )})

Thus (val f)j(L∪{(i,X tY )}) = (val f)j(L∪{(i,X)})t (val f)j(L∪{(i, Y )}). �

Let us consider the filtrator
(∏

i∈arity f S((form f)i),
∏
i∈arity f (form f)i

)
.

Conjecture 1674. A finitary anchored relation between join-semilattices is a
staroid iff (val f)j(L∪{(i,X tY )}) = (val f)j(L∪{(i,X)})t (val f)j(L∪{(i, Y )})
for every i, j ∈ arity f (i 6= j) and X,Y ∈ (form f)i.

Theorem 1675. Let (Ai,Zi) be a family of join-closed down-aligned filtrators
whose both base and core are join-semilattices. Let f be a staroid of the form Z.
Then � f is a staroid of the form A.

Proof. First prove that � f is a prestaroid. We need to prove that ⊥ /∈
(GR � f)i (that is up⊥ * (GR f)i that is ⊥ /∈ (GR f)i what is true by the
theorem conditions) and that for every X ,Y ∈ Ai and L ∈

∏
i∈(arity f)\{i} Ai where

i ∈ arity f
L ∪ {(i,X t Y)} ∈ GR � f ⇔ L∪ {(i,X )} ∈ GR � f ∨ L ∪ {(i,Y)} ∈ GR � f.
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The reverse implication is obvious. Let L∪{(i,X tY)} ∈ GR � f . Then for every
L ∈ upL and X ∈ upX , Y ∈ upY we have L ∪ {(i,X tZi Y )} ∈ GR f and thus

L ∪ {(i,X)} ∈ GR f ∨ L ∪ {(i, Y )} ∈ GR f

consequently L ∪ {(i,X )} ∈ GR � f ∨ L ∪ {(i,Y)} ∈ GR � f .
It is left to prove that � f is an upper set, but this is obvious. �

There is a conjecture similar to the above theorems:

Conjecture 1676. L ∈� [f ]∗ ⇒� [f ]∗ ∩
∏
i∈domA atomsLi 6= ∅ for every

multifuncoid f for the filtrator (Fn,Zn).

Conjecture 1677. Let (A,Z) be a powerset filtrator, let n be an index set.
Consider the filtrator (Fn,Zn). Then if f is a completary staroid of the form Zn,
then � f is a completary staroid of the form An.

Example 1678. There is such an anchored relation f that for some k ∈ dom f

〈�↑ f〉∗kL 6= l

a∈
∏

i∈(dom f)\{k}
atomsLi

〈�↑ f〉∗ka.

Proof. Take P ∈ GR f from the counter-example 1661. We have

∀a ∈
∏

i∈dom f

atomsPi : a /∈ GRP.

Take k = 1.
Let L = P|(dom f)\{k}. Then a /∈ GR �↑ f and thus ak � 〈�↑ f〉∗ka|(dom f)\{k}.
Consequently Pk � 〈�↑ f〉∗ka|(dom f)\{k} and thus Pk �

da∈
∏

i∈(dom f)\{k}
atomsLi

〈�↑ f〉∗ka because Pk is principal.
But Pk 6� 〈�↑ f〉∗kL. Thus follows 〈�↑ f〉∗kL 6=

da∈
∏

i∈(dom f)\{k}
atomsLi〈�↑ f〉

∗
ka. �

21.6. Join of multifuncoids

Mults are ordered by the formula f v g ⇔ 〈f〉∗ v 〈g〉∗ where v in the right
part of this formula is the product order. I will denote u, t,

d
, d(without an

index) the order poset operations on the poset of mults.

Remark 1679. To describe this, the definition of product order is used twice.
Let f and g be mults of the same form (A,Z)

〈f〉∗ v 〈g〉∗ ⇔ ∀i ∈ domZ : 〈f〉∗i v 〈g〉
∗
i ;

〈f〉∗i v 〈g〉
∗
i ⇔ ∀L ∈

∏
Z|(domZ)\{i} : 〈f〉∗iL v 〈g〉

∗
iL.

Obvious 1680. ( dF )K = df∈F fK for every set F of mults of the same form
Z and K ∈

∏
Z whenever every df∈F fK is defined.

Theorem 1681. f tpFCD(A) g = f t g for every multifuncoids f and g for the
same indexed family of starrish join-semilattices filtrators.

Proof. αix
def= 〈fi〉∗xt 〈gi〉∗x. It is enough to prove that α is a multifuncoid.

We need to prove:

Li 6� αiL|(domL)\{i} ⇔ Lj 6� αjL|(domL)\{j}.
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Really,
Li 6� αiL|(domL)\{i} ⇔

Li 6� 〈fi〉∗L|(domL)\{i} t 〈gi〉
∗
L|(domL)\{i} ⇔

Li 6� 〈fi〉∗L|(domL)\{i} ∨ Li 6� 〈gi〉
∗
L|(domL)\{i} ⇔

Lj 6� 〈fj〉∗L|(domL)\{j} ∨ Lj 6� 〈gj〉
∗
L|(domL)\{j} ⇔

Lj 6� 〈fj〉∗L|(domL)\{j} t 〈gj〉
∗
L|(domL)\{j} ⇔

Lj 6� αjL|(domL)\{j}.

�

Theorem 1682. d

pFCD(A)
F = dF for every set F of multifuncoids for the

same indexed family of join infinite distributive complete lattices filtrators.

Proof. αix
def= df∈F 〈f〉

∗
i x. It is enough to prove that α is a multifuncoid.

We need to prove:
Li 6� αiL|(domL)\{i} ⇔ Lj 6� αjL|(domL)\{j}.

Really,
Li 6� αiL|(domL)\{i} ⇔

Li 6� l

f∈F

〈fi〉∗L|(domL)\{i} ⇔

∃f ∈ F : Li 6� 〈fi〉∗L|(domL)\{i} ⇔
∃f ∈ F : Lj 6� 〈fj〉∗L|(domL)\{j} ⇔

Lj 6� l

f∈F

〈fj〉∗L|(domL)\{j} ⇔

Lj 6� αjL|(domL)\{j}.

�

Theorem 1683. If f , g are multifuncoids for a primary filtrator (Ai,Zi) where
Zi are separable starrish posets, then f tpFCD(A) g ∈ pFCD(A).

Proof. Let A ∈
[
f tpFCD(A) g

]∗ and B w A. Then for every k ∈ domA

Ak 6�
〈
f tpFCD(A) g

〉∗
A|(domA)\{k}; Ak 6� 〈f t g〉∗A|(domA)\{k}; Ak 6�

〈f〉∗(A|(domA)\{k}) t 〈g〉∗(A|(domA)\{k}).
Thus Ak 6� 〈f〉∗(A|(domA)\{k}) ∨Ak 6� 〈g〉∗(A|(domA)\{k}); A ∈ [f ]∗ ∨A ∈ [g]∗;

B ∈ [f ]∗ ∨B ∈ [g]∗; Bk 6� 〈f〉∗(B|(domA)\{k}) ∨Bk 6� 〈g〉∗(B|(domA)\{k});
Bk 6� 〈f〉∗(B|(domA)\{k}) t 〈g〉∗(B|(domA)\{k}); Bk 6� 〈f t g〉∗B|(domA)\{k} =〈

f tpFCD(A) g
〉∗
B|(domA)\{k}.

Thus B ∈
[
f tpFCD(A) g

]∗. �

Theorem 1684. If F is a set of multifuncoids for the same indexed family of
join infinite distributive complete lattices filtrators, then d

pFCD(A)
F ∈ pFCD(A).

Proof. Let A ∈
[

d

pFCD(A)
F
]∗

and B w A. Then for every k ∈ domA

Ak 6�
〈

d

pFCD(A)
F
〉∗
A|(domA)\{k} = 〈 dF 〉

∗
A|(domA)\{k} =

df∈F 〈f〉
∗(A|(domA)\{k}).

Thus ∃f ∈ F : Ak 6� 〈f〉∗(A|(domA)\{k}); ∃f ∈ F : A ∈[f ]∗; B ∈[f ]∗ for some
f ∈ F ; ∃f ∈ F : Bk 6� 〈f〉∗(B|(domA)\{k}); Bk 6� df∈F 〈f〉

∗(B|(domA)\{k}) =〈

d

pFCD(A)
F
〉∗
B|(domA)\{k}. Thus B ∈

[

d

pFCD(A)
F
]∗
. �
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21.7. Infinite product of poset elements

Let Ai be a family of elements of a family Ai of posets. The staroidal product∏Strd(A)
A is defined by the formula (for every L ∈

∏
A)

form
Strd(A)∏

A = A and L ∈ GR
Strd(A)∏

A⇔ ∀i ∈ domA : Ai 6� Li.

Proposition 1685. If Ai are powerset algebras, staroidal product of principal
filters is essentially equivalent to Cartesian product. More precisely,

∏Strd
i∈domA ↑F

Ai =�↑Strd ∏A for an indexed family A of sets.
Proof.

L ∈ GR �↑Strd
∏

A⇔

upL ⊆ GR ↑Strd
∏

A⇔

∀X ∈ upL :
∏

X 6�
∏

A⇔
∀X ∈ upL, i ∈ domA : Xi 6� Ai ⇔

∀i ∈ domA : Li 6�↑F Ai ⇔

L ∈ GR
Strd∏

i∈domA

↑F Ai.

�

Corollary 1686. Staroidal product of principal filters is an upgraded princi-
pal staroid.

Proposition 1687.
∏Strd

a =��
∏Strd

a if each ai ∈ Ai (for i ∈ n where n is
some index set) where each (Ai∈n,Zi∈n) is a filtrator with separable core.

Proof.

GR ��
Strd∏

a ={
L ∈

∏
A

upL ⊆ Z ∩GR
∏Strd

a

}
={

L ∈
∏

A

upL ⊆ GR
∏Strd

a

}
={

L ∈
∏

A

∀K ∈ upL : K ∈ GR
∏Strd

a

}
={

L ∈
∏

A

∀K ∈ upL, i ∈ n : Ki 6� ai

}
={

L ∈
∏

A

∀i ∈ n,K ∈ upL : Ki 6� ai

}
={

L ∈
∏

A

∀i ∈ n : Li 6� ai

}
=

GR
Strd∏

a

(taken into account that our filtrators are with a separable core). �

Theorem 1688. Staroidal product is a completary staroid (if our posets are
starrish join-semilattices).
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Proof. We need to prove

∀i ∈ domA : Ai 6� (L0i t L1i)⇔ ∃c ∈ {0, 1}n∀i ∈ domA : Ai 6� Lc(i)i.

Really,

∀i ∈ domA : Ai 6� (L0i t L1i)⇔ ∀i ∈ domA : (Ai 6� L0i ∨Ai 6� L1i)⇔
∃c ∈ {0, 1}domA∀i ∈ domA : Ai 6� Lc(i)i.

�

Definition 1689. Let (Ai,Zi) be an indexed family of filtrators and every Ai
has least element.

Then for every A ∈
∏

A funcoidal product is multifuncoid
∏FCD(A)

A defined
by the formula (for every L ∈

∏
Z):

〈FCD(A)∏
A

〉∗
k

L =
{
Ak if ∀i ∈ (domA) \ {k} : Ai 6� Li
⊥A otherwise.

Proposition 1690. GR
∏Strd(A)

A =
[∏FCD(A)

A
]∗
.

Proof.

L ∈ GR
Strd(A)∏

A⇔
∀i ∈ domA : Ai 6� Li ⇔

∀i ∈ (domA) \ {k} : Ai 6� Li ∧ Lk 6� Ak ⇔

Lk 6�

〈FCD(A)∏
A

〉∗
k

L|(domA)\{k} ⇔

L ∈

FCD(A)∏
A

∗.
�

Corollary 1691. Funcoidal product is a completary multifuncoid.

Proof. It is enough to prove that funcoidal product is a multifuncoid. Really,

Li 6�

〈FCD(A)∏
A

〉∗
i

L|(domA)\{i} ⇔ ∀i ∈ domA : Ai 6� Li ⇔ Lj 6�

〈FCD(A)∏
A

〉∗
j

L|(domA)\{j}.

�

Theorem 1692. If our each filtrator (Ai,Zi) is with separable core and A ∈∏
Z, then �

∏Strd(Z)
A =

∏Strd(A)
A.
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Proof.

GR �
Strd(Z)∏

A ={
L ∈

∏
A

upL ⊆
∏Strd(Z)

A

}
={

L ∈
∏

A

∀K ∈ upL, i ∈ domA : Ai 6� Ki

}
={

L ∈
∏

A

∀i ∈ domA,K ∈ upLi : Ai 6� K

}
={

L ∈
∏

A

∀i ∈ domA : Ai 6� Li

}
=

GR
Strd(A)∏

A.

�

Proposition 1693. Let (
∏

A,
∏

Z) be a meet-closed filtrator, A ∈
∏

Z. Then
�
∏Strd(A)

A =
∏Strd(Z)

A.

Proof.

GR �
Strd(A)∏

A =

� GR
Strd(A)∏

A =

�

{
L ∈

∏
A

∀i ∈ domA : Ai 6� Li

}
={

L ∈
∏

A

∀i ∈ domA : Ai 6� Li

}
∩
∏

Z ={
L ∈

∏
Z

∀i ∈ domA : Ai 6� Li

}
=

GR
Strd(Z)∏

A.

�

Corollary 1694. If each (Ai,Zi) is a powerset filtrator and A ∈
∏

Z, then
�
∏Strd(A)

A is a principal staroid.

Proof. Use the “obvious” fact above. �

Theorem 1695. Let F be a family of sets of filters on meet-semilattices with
least elements. Let a ∈

∏
F , S ∈ P

∏
F , and every Pri S be a generalized filter

base,
d
S = a. Then

Strd(F)∏
a =

l

A∈S

Strd(F)∏
A.

Proof. That
∏Strd(F)

a is a lower bound for
{∏Strd(F)

A

A∈S

}
is obvious.

Let f be a lower bound for
{∏Strd(F)

A

A∈S

}
. Thus ∀A ∈ S : GR f ⊆

GR
∏Strd(F)

A. Thus for every A ∈ S we have L ∈ GR f implies ∀i ∈ domA :
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Ai 6� Li. Then, by properties of generalized filter bases, ∀i ∈ domA : ai 6� Li that
is L ∈ GR

∏Strd(F)
a. So f v

∏Strd(F)
a and thus

∏Strd(F)
a is the greatest lower

bound of
{∏Strd(F)

A

A∈S

}
. �

Conjecture 1696. Let F be a family of sets of filters on meet-semilattices
with least elements. Let a ∈

∏
F , S ∈ P

∏
F be a generalized filter base,d

S = a, f is a staroid of the form
∏

F . Then
Strd(F)∏

a 6� f ⇔ ∀A ∈ S :
Strd(Z)∏

A 6� f.

21.8. On products of staroids

Definition 1697.
∏(D)

F =
{

uncurry z
z∈
∏

F

}
(reindexation product) for every in-

dexed family F of relations.

Definition 1698. Reindexation product of an indexed family F of anchored
relations is defined by the formulas:

form
(D)∏

F = uncurry(form ◦F ) and GR
(D)∏

F =
(D)∏

(GR ◦F ).

Obvious 1699.
1◦. form

∏(D)
F =

{
((i,j),(formFi)j)
i∈domF,j∈arityFi

}
;

2◦. GR
∏(D)

F =
{{ ((i,j),(zi)j)

i∈domF,j∈arityFi

}
z∈
∏

(GR ◦F )

}
.

Proposition 1700.
∏(D)

F is an anchored relation if every Fi is an anchored
relation.

Proof. We need to prove GR
∏(D)

F ∈P
∏

form
(∏(D)

F
)
that is

GR
∏(D)

F ⊆
∏

form
(∏(D)

F
)
;

{{ ((i,j),(zi)j)
i∈domF,j∈arityFi

}
z∈
∏

(GR ◦F )

}
⊆∏{ ((i,j),(formFi)j)

i∈domF,j∈arityFi

}
;

∀z ∈
∏

(GR ◦F ), i ∈ domF, j ∈ arityFi : (zi)j ∈ (formFi)j .
Really, zi ∈ GRFi ⊆

∏
(formFi) and thus (zi)j ∈ (formFi)j . �

Obvious 1701. arity
∏(D)

F =
∐
i∈domF arityFi =

{
(i,j)

i∈domF,j∈arityFi

}
.

Definition 1702. f ×(D) g =
∏(D)Jf, gK.

Lemma 1703.
∏(D)

F is an upper set if every Fi is an upper set.

Proof. We need to prove that
∏(D)

F is an upper set. Let a ∈
∏(D)

F and
an anchored relation b w a of the same form as a. We have a = uncurry z for some
z ∈

∏
F that is a(i, j) = (zi)j for all i ∈ domF and j ∈ domFi where zi ∈ Fi.

Also b(i, j) w a(i, j). Thus (curry b)i w zi; curry b ∈
∏
F because every Fi is an

upper set and so b ∈
∏(D)

F . �

Proposition 1704. Let F be an indexed family of anchored relations and
every (formF )i be a join-semilattice.

1◦.
∏(D)

F is a prestaroid if every Fi is a prestaroid.
2◦.

∏(D)
F is a staroid if every Fi is a staroid.

3◦.
∏(D)

F is a completary staroid if every Fi is a completary staroid.
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Proof.
1◦. Let q ∈ arity

∏(D)
F that is q = (i, j) where i ∈ domF , j ∈ arityFi; let

L ∈
∏form

(D)∏
F

|(arity
∏(D)

F
)
\{q}


that is L(i′,j′) ∈

(
form

∏(D)
F
)

(i′,j′)
for every (i′, j′) ∈

(
arity

∏(D)
F
)
\ {q}, that

is L(i′,j′) ∈ (formFi′)j′ . We have X ∈
(

form
∏(D)

F
)

(i,j)
⇔ X ∈ (formFi)j . Soval

(D)∏
F


(i,j)

L =
{

X ∈ (formFi)j
L ∪ {((i, j), X)} ∈ GR

∏(D)
F

}
=

{
X ∈ (formFi)j

∃z ∈
∏

(GR ◦F ) : L ∪ {((i, j), X)} = uncurry z

}
=

X ∈ (formFi)j

∃z ∈
∏(

(GR ◦F )|(arity
∏(D)

F
)
\{(i,j)}

)
, v ∈ GRFi : (L = uncurry z ∧ vj = X)

 =


X ∈ (formFi)j

∃z ∈
∏(

(GR ◦F )|(arity
∏(D)

F
)
\{(i,j)}

)
: L = uncurry z ∧ ∃v ∈ GRFi : vj = X

.
If ∃z ∈

∏(
(GR ◦F )|(arity

∏(D)
F
)
\{(i,j)}

)
: L = uncurry z is false then(

val
∏(D)

F
)

(i,j)
L = ∅ is a free star. We can assume it is true. Soval

(D)∏
F


(i,j)

L =
{

X ∈ (formFi)j
∃v ∈ GRFi : vj = X

}
=

{
X ∈ (formFi)j

∃K ∈ (formFi)|(arityFi)\{j} : K ∪ {(j,X)} ∈ GRFi

}
={

X ∈ (formFi)j
∃K ∈ (formFi)|(arityFi)\{j} : X ∈ (valFi)jK

}
.

Thus

A tB ∈

val
(D)∏

F


(i,j)

L⇔

∃K ∈ (formFi)|(arityFi)\{j} : A tB ∈ (valFi)jK ⇔
∃K ∈ (formFi)|(arityFi)\{j} : (A ∈ (valFi)jK ∨B ∈ (valFi)jK)⇔

∃K ∈ (formFi)|(arityFi)\{j} : A ∈ (valFi)jK∨
∃K ∈ (formFi)|(arityFi)\{j} : B ∈ (valFi)jK

⇔

A ∈

val
(D)∏

F


(i,j)

L ∨B ∈

val
(D)∏

F


(i,j)

L.

Least element ⊥ is not in
(

val
∏(D)

F
)

(i,j)
L because K ∪ {(j,⊥)} /∈ GRFi.
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2◦. From the lemma.
3◦. We need to prove

L0 t L1 ∈ GR
(D)∏

F ⇔

∃c ∈ {0, 1}arity
∏(D)

F :

λi ∈ arity
(D)∏

F : Lc(i)i

 ∈ GR
(D)∏

F

for every L0, L1 ∈
∏

form
∏(D)

F that is L0, L1 ∈
∏

uncurry(form ◦F ).

Really L0 t L1 ∈ GR
∏(D)

F ⇔ L0 t L1 ∈
{

uncurry z
z∈
∏

(GR ◦F )

}
.

∃c ∈ {0, 1}arity
∏(D)

F :

λi ∈ arity
(D)∏

F : Lc(i)i

 ∈ GR
(D)∏

F ⇔

∃c ∈ {0, 1}arity
∏(D)

F :

λi ∈ arity
(D)∏

F : Lc(i)i

 ∈ { uncurry z
z ∈

∏
(GR ◦F )

}
⇔

∃c ∈ {0, 1}arity
∏(D)

F : curry

λi ∈ arity
(D)∏

F : Lc(i)i

 ∈∏(GR ◦F )⇔

∃c ∈ {0, 1}arity
∏(D)

F : curry

λ(i, j) ∈ arity
(D)∏

F : Lc(i,j)(i, j)

 ∈∏(GR ◦F )⇔

∃c ∈ {0, 1}arity
∏(D)

F : (λi ∈ domF : (λj ∈ domFi : Lc(i,j)(i, j))) ∈
∏

(GR ◦F )⇔

∃c ∈ {0, 1}arity
∏(D)

F∀i ∈ domF : (λj ∈ domFi : Lc(i,j)(i, j)) ∈ GRFi ⇔
∀i ∈ domF∃c ∈ {0, 1}domFi : (λj ∈ domFi : Lc(j)(i, j)) ∈ GRFi ⇔

∀i ∈ domF∃c ∈ {0, 1}domFi : (λj ∈ domFi : (curry(Lc(j))i)j) ∈ GRFi ⇔
∀i ∈ domF : curry(L0)i t curry(L1)i ∈ GRFi ⇔
∀i ∈ domF : (curry(L0) t curry(L1))i ∈ GRFi ⇔

∀i ∈ domF : curry(L0 t L1)i ∈ GRFi ⇔

L0 t L1 ∈
{

uncurry z
z ∈

∏
(GR ◦F )

}
⇔

L0 t L1 ∈ GR
(D)∏

F.

�

For staroids it is defined ordinated product
∏(ord) as defined in the section 3.7.4

above.

Obvious 1705. If f and g are anchored relations and there exists a bijection
ϕ from arity g to arity f such that

{
F◦ϕ

F∈GR f

}
= GR g, then:

1◦. f is a prestaroid iff g is a prestaroid.
2◦. f is a staroid iff g is a staroid.
3◦. f is a completary staroid iff g is a completary staroid.

Corollary 1706. Let F be an indexed family of anchored relations and every
(formF )i be a join-semilattice.
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1◦.
∏(ord)

F is a prestaroid if every Fi is a prestaroid.
2◦.

∏(ord)
F is a staroid if every Fi is a staroid.

3◦.
∏(ord)

F is a completary staroid if every Fi is a completary staroid.

Proof. Use the fact that GR
∏(ord)

F =
{
F◦(
⊕

(dom ◦F ))−1

F∈GR
∏(D)

f

}
. �

Definition 1707. f ×(ord) g =
∏(ord)Jf, gK.

Remark 1708. If f and g are binary funcoids, then f ×(ord) g is ternary.

21.9. Star categories

Definition 1709. A precategory with star-morphisms consists of
1◦. a precategory C (the base precategory);
2◦. a set M (star-morphisms);
3◦. a function “arity” defined on M (how many objects are connected by this

star-morphism);
4◦. a function Objm : aritym→ Obj(C) defined for every m ∈M ;
5◦. a function (star composition) (m, f) 7→ StarComp(m, f) defined for

m ∈M and f being an (aritym)-indexed family of morphisms of C such
that ∀i ∈ aritym : Src fi = Objm i (Src fi is the source object of the
morphism fi) such that

such that it holds:
1◦. StarComp(m, f) ∈M ;
2◦. arity StarComp(m, f) = aritym;
3◦. ObjStarComp(m,f) i = Dst fi;
4◦. (associativity law)

StarComp(StarComp(m, f), g) = StarComp(m,λi ∈ aritym : gi ◦ fi).

The meaning of the set M is an extension of C having as morphisms things
with arbitrary (possibly infinite) indexed set Objm of objects, not just two objects
as morphisms of C have only source and destination.

Definition 1710. I will call Objm the form of the star-morphism m.

(Having fixed a precategory with star-morphisms) I will denote StarHom(P )
the set of star-morphisms of the form P .

Proposition 1711. The sets StarHom(P ) are disjoint (for different P ).

Proof. If two star-morphisms have different forms, they are clearly not equal.
�

Definition 1712. A category with star-morphisms is a precategory with star-
morphisms whose base is a category and the following equality (the law of compo-
sition with identity) holds for every star-morphism m:

StarComp(m,λi ∈ aritym : 1Objm i) = m.

Definition 1713. A partially ordered precategory with star-morphisms is a
category with star-morphisms, whose base precategory is a partially ordered pre-
category and every set StarHom(X) is partially ordered for every X, such that:

m0 v m1 ∧ f0 v f1 ⇒ StarComp(m0, f0) v StarComp(m1, f1)
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for every m0,m1 ∈M such that Objm0 = Objm1 and indexed families f0 and f1 of
morphisms such that

∀i ∈ aritym : Src f0i = Src f1i = Objm0 i = Objm1 i;
∀i ∈ aritym : Dst f0i = Dst f1i.

Definition 1714. A partially ordered category with star-morphisms is a cate-
gory with star-morphisms which is also a partially ordered precategory with star-
morphisms.

Definition 1715. A quasi-invertible precategory with star-morphisms is a par-
tially ordered precategory with star-morphisms whose base precategory is a quasi-
invertible precategory, such that for every index set n, star-morphisms a and b of
arity n, and an n-indexed family f of morphisms of the base precategory it holds

b 6� StarComp(a, f)⇔ a 6� StarComp(b, f†).

(Here f† = λi ∈ dom f : (fi)†.)

Definition 1716. A quasi-invertible category with star-morphisms is a
quasi-invertible precategory with star-morphisms which is a category with star-
morphisms.

Each category with star-morphisms gives rise to a category (abrupt category,
see a remark below why I call it “abrupt”), as described below. Below for simplicity
I assume that the setM and the set of our indexed families of functions are disjoint.
The general case (when they are not necessarily disjoint) may be easily elaborated
by the reader.

• Objects are indexed (by aritym for some m ∈ M) families of objects of
the category C and an (arbitrarily chosen) object None not in this set.

• There are the following disjoint sets of morphisms:
1◦. indexed (by aritym for some m ∈M) families of morphisms of C;
2◦. elements of M ;
3◦. the identity morphism 1None on None.

• Source and destination of morphisms are defined by the formulas:
– Src f = λi ∈ dom f : Src fi;
– Dst f = λi ∈ dom f : Dst fi;
– Srcm = None;
– Dstm = Objm.

• Compositions of morphisms are defined by the formulas:
– g ◦ f = λi ∈ dom f : gi ◦ fi for our indexed families f and g of

morphisms;
– f◦m = StarComp(m, f) form ∈M and a composable indexed family
f ;

– m ◦ 1None = m for m ∈M ;
– 1None ◦ 1None = 1None.

• Identity morphisms for an object X are:
– λi ∈ X : 1Xi if X 6= None;
– 1None if X = None.

Proof. We need to prove it is really a category.
We need to prove:
1◦. Composition is associative.
2◦. Composition with identities complies with the identity law.

Really:
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1◦. (h◦g)◦f = λi ∈ dom f : (hi◦gi)◦fi = λi ∈ dom f : hi◦(gi◦fi) = h◦(g◦f);

g ◦ (f ◦m) = StarComp(StarComp(m, f), g) =
StarComp(m,λi ∈ aritym : gi ◦ fi) = StarComp(m, g ◦ f) = (g ◦ f) ◦m;

f ◦ (m ◦ 1None) = f ◦m = (f ◦m) ◦ 1None.
2◦. m ◦ 1None = m; 1Dstm ◦m = StarComp(m,λi ∈ aritym : 1Objm i) = m.

�

Remark 1717. I call the above defined category abrupt category because (ex-
cluding identity morphisms) it allows composition with an m ∈M only on the left
(not on the right) so that the morphism m is “abrupt” on the right.

By Jx0, . . . , xn−1K I denote an n-tuple.

Definition 1718. Precategory with star morphisms induced by a dagger pre-
category C is:

• The base category is C.
• Star-morphisms are morphisms of C.
• arity f = {0, 1}.
• Objm = JSrcm,DstmK.
• StarComp(m, Jf, gK) = g ◦m ◦ f†.

Let prove it is really a precategory with star-morphisms.

Proof. We need to prove the associativity law:
StarComp(StarComp(m, Jf, gK), Jp, qK) = StarComp(m, Jp ◦ f, q ◦ gK).

Really,

StarComp(StarComp(m, Jf, gK), Jp, qK) = StarComp(g ◦m ◦ f†, Jp, qK) =
q ◦ g ◦m ◦ f† ◦ p† = q ◦ g ◦m ◦ (p ◦ f)† = StarComp(m, Jp ◦ f, q ◦ gK).

�

Definition 1719. Category with star morphisms induced by a dagger cate-
gory C is the above defined precategory with star-morphisms.

That it is a category (the law of composition with identity) is trivial.

Remark 1720. We can carry definitions (such as below defined cross-
composition product) from categories with star-morphisms into plain dagger cat-
egories. This allows us to research properties of cross-composition product of in-
dexed families of morphisms for categories with star-morphisms without separately
considering the special case of dagger categories and just binary star-composition
product.

21.9.1. Abrupt of quasi-invertible categories with star-morphisms.

Definition 1721. The abrupt partially ordered precategory of a partially or-
dered precategory with star-morphisms is the abrupt precategory with the following
order of morphisms:

• Indexed (by aritym for some m ∈ M) families of morphisms of C are
ordered as function spaces of posets.

• Star-morphisms (which are morphisms None → Objm for some m ∈ M)
are ordered in the same order as in the precategory with star-morphisms.

• Morphisms None → None which are only the identity morphism ordered
by the unique order on this one-element set.
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We need to prove it is a partially ordered precategory.

Proof. It trivially follows from the definition of partially ordered precategory
with star-morphisms. �

21.10. Product of an arbitrary number of funcoids

In this section it will be defined a product of an arbitrary (possibly infinite)
indexed family of funcoids.

21.10.1. Mapping a morphism into a pointfree funcoid.

Definition 1722. Let’s define the pointfree funcoid χf for every morphism f
of a quasi-invertible category:

〈χf〉a = f ◦ a and
〈
(χf)−1〉b = f† ◦ b.

We need to prove it is really a pointfree funcoid.

Proof. b 6� 〈χf〉a⇔ b 6� f ◦ a⇔ a 6� f† ◦ b⇔ a 6�
〈
(χf)−1〉b. �

Remark 1723. 〈χf〉 = (f ◦−) is the Hom-functor Hom(f,−) and we can apply
Yoneda lemma to it. (See any category theory book for definitions of these terms.)

Obvious 1724. 〈χ(g ◦ f)〉a = g ◦ f ◦ a for composable morphisms f and g or
a quasi-invertible category.

21.10.2. General cross-composition product.

Definition 1725. Let fix a quasi-invertible category with with star-morphisms.
If f is an indexed family of morphisms from its base category, then the pointfree
funcoid

∏(C)
f (cross-composition product of f) from StarHom(λi ∈ dom f : Src fi)

to StarHom(λi ∈ dom f : Dst fi) is defined by the formulas (for all star-morphisms
a and b of these forms):〈(C)∏

f

〉
a = StarComp(a, f) and

〈(C)∏
f

−1〉
b = StarComp(b, f†).

It is really a pointfree funcoid by the definition of quasi-invertible category with
star-morphisms.

Theorem 1726.
(∏(C)

g
)
◦
(∏(C)

f
)

=
∏(C)
i∈n(gi ◦ fi) for every n-indexed

families f and g of composable morphisms of a quasi-invertible category with star-
morphisms.

Proof.
〈∏(C)

i∈n(gi ◦ fi)
〉
a = StarComp(a, λi ∈ n : gi ◦ fi) =

StarComp(StarComp(a, f), g) and〈(C)∏
g

 ◦
(C)∏

f

〉a =
〈(C)∏

g

〉〈(C)∏
f

〉
a = StarComp(StarComp(a, f), g).

The rest follows from symmetry. �

Corollary 1727.
(∏(C)

fk−1

)
◦ . . . ◦

(∏(C)
f0

)
=
∏(C)
i∈n(fk−1 ◦ . . . ◦ f0) for

every n-indexed families f0, . . . , fn−1 of composable morphisms of a quasi-invertible
category with star-morphisms.

Proof. By math induction. �
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21.10.3. Star composition of binary relations. First define star compo-
sition for an n-ary relation a and an n-indexed family f of binary relations as an
n-ary relation complying with the formulas:

ObjStarComp(a,f) = {∗}n;
L ∈ StarComp(a, f)⇔ ∃y ∈ a∀i ∈ n : yi fi Li

where ∗ is a unique object of the group of small binary relations considered as a
category.

Proposition 1728. b 6� StarComp(a, f)⇔ ∃x ∈ a, y ∈ b∀j ∈ n : xj fj yj .

Proof.

b 6� StarComp(a, f)⇔ ∃y : (y ∈ b ∧ y ∈ StarComp(a, f))⇔
∃y : (y ∈ b ∧ ∃x ∈ a∀j ∈ n : xj fj yj)⇔ ∃x ∈ a, y ∈ b∀j ∈ n : xj fj yj .

�

Theorem 1729. The group of small binary relations considered as a category
together with the set of of all small n-ary relations (for every small n) and the above
defined star-composition form a quasi-invertible category with star-morphisms.

Proof. We need to prove:
1◦. StarComp(StarComp(m, f), g) = StarComp(m,λi ∈ n : gi ◦ fi);
2◦. StarComp(m,λi ∈ aritym : 1Objm i) = m;
3◦. b 6� StarComp(a, f)⇔ a 6� StarComp(b, f†) (the rest is obvious).

Really,
1◦. L ∈ StarComp(a, f)⇔ ∃y ∈ a∀i ∈ n : yi fi Li.
Define the relation R(f) by the formula x R(f) y ⇔ ∀i ∈ n : xi fi yi. Obviously

R(λi ∈ n : gi ◦ fi) = R(g) ◦R(f).

L ∈ StarComp(a, f)⇔ ∃y ∈ a : y R(f) L.

L ∈ StarComp(StarComp(a, f), g)⇔ ∃p ∈ StarComp(a, f) : p R(g) L⇔
∃p, y ∈ a : (y R(f) p ∧ p R(g) L)⇔ ∃y ∈ a : y (R(g) ◦R(f)) L⇔

∃y ∈ a : y R(λi ∈ n : gi ◦ fi) L⇔ L ∈ StarComp(a, λi ∈ n : gi ◦ fi)

because p ∈ StarComp(a, f)⇔ ∃y ∈ a : y R(f) p.
2◦. Obvious.
3◦. It follows from the proposition above.

�

Obvious 1730. StarComp(a ∪ b, f) = StarComp(a, f) ∪ StarComp(b, f) for
n-ary relations a, b and an n-indexed family f of binary relations.

Theorem 1731.
〈∏(C)

f
〉∏

a =
∏
i∈n〈fi〉

∗
ai for every family f = fi∈n of

binary relations and a = ai∈n where ai is a small set (for each i ∈ n).
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Proof.

L ∈

〈(C)∏
f

〉∏
a⇔

L ∈ StarComp
(∏

a, f
)
⇔

∃y ∈
∏

a∀i ∈ n : yi fi Li ⇔

∃y ∈
∏

a∀i ∈ n : {yi} 6�
〈
f−1
i

〉∗{Li} ⇔
∀i ∈ n∃y ∈ ai : {y} 6�

〈
f−1
i

〉∗{Li} ⇔
∀i ∈ n : ai 6�

〈
f−1
i

〉∗{Li} ⇔
∀i ∈ n : {Li} 6� 〈fi〉∗ai ⇔
∀i ∈ n : Li ∈ 〈fi〉∗ai ⇔

L ∈
∏
i∈n
〈fi〉∗ai.

�

21.10.4. Star composition of Rel-morphisms. Define star composition for
an n-ary anchored relation a and an n-indexed family f of Rel-morphisms as an
n-ary anchored relation complying with the formulas:

ObjStarComp(a,f) = λi ∈ arity a : Dst fi;
arity StarComp(a, f) = arity a;

L ∈ GR StarComp(a, f)⇔ L ∈ StarComp(GR a,GR ◦f).

(Here I denote GR(A,B, f) = f for every Rel-morphism f .)

Proposition 1732.

b 6� StarComp(a, f)⇔ ∃x ∈ a, y ∈ b∀j ∈ n : xj GR(fj) yj .

Proof. From the previous section. �

Theorem 1733. Relations with above defined compositions form a quasi-
invertible category with star-morphisms.

Proof. We need to prove:
1◦. StarComp(StarComp(m, f), g) = StarComp(m,λi ∈ aritym : gi ◦ fi);
2◦. StarComp(m,λi ∈ aritym : 1Objm i) = m;
3◦. b 6� StarComp(a, f)⇔ a 6� StarComp(b, f†)

(the rest is obvious).
It follows from the previous section. �

Proposition 1734. StarComp(a t b, f) = StarComp(a, f) t StarComp(b, f)
for an n-ary anchored relations a, b and an n-indexed family f of Rel-morphisms.

Proof. It follows from the previous section. �

Theorem 1735. Cross-composition product of a family of Rel-morphisms is a
principal funcoid.

Proof. By the proposition and symmetry
∏(C)

f is a pointfree funcoid. Ob-
viously it is a funcoid

∏
i∈n Src fi →

∏
i∈n Dst fi. Its completeness (and dually

co-completeness) is obvious. �
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21.10.5. Cross-composition product of funcoids. Let a be a an anchored
relation of the form A and domA = n.

Let every fi (for all i ∈ n) be a pointfree funcoid with Src fi = Ai.
The star-composition of a with f is an anchored relation of the form λi ∈

domA : Dst fi defined by the formula

L ∈ GR StarComp(a, f)⇔ (λi ∈ n : 〈f−1
i 〉Li) ∈ GR a.

Theorem 1736. Let Src fi be separable starrish join-semilattice and Dst fi be
a starrish join-semilattice for every i ∈ n for a set n. Let form a =

∏
i∈n(Src fi).

1◦. If a is a prestaroid then StarComp(a, f) is a prestaroid.
2◦. If a is a staroid and Src fi are strongly separable then StarComp(a, f) is

a staroid.
3◦. If a is a completary staroid and then StarComp(a, f) is a completary

staroid.

Proof. We have
〈
f−1
i

〉
(X t Y ) =

〈
f−1
i

〉
X t

〈
f−1
i

〉
Y by theorem 1498.

1◦. Let L ∈
∏
i∈(arity f)\{k}(form fi) for some k ∈ n and X,Y ∈ form fk. Then

X t Y ∈ 〈StarComp(a, f)〉∗kL ⇔(
λi ∈ dom f :

〈
f−1
i

〉({ X t Y if i = k
Li if i 6= k

)
i

)
∈ GR a ⇔(

λi ∈ dom f :
({ 〈

f−1
i

〉
X t

〈
f−1
i

〉
Y if i = k〈

f−1
i

〉
Li if i 6= k

)
i

)
∈ GR a ⇔〈

f−1
i

〉
X t

〈
f−1
i

〉
Y ∈ 〈a〉∗k(λi ∈ (dom f) \ {k} : 〈f−1

i 〉Li) ⇔〈
f−1
i

〉
X ∈ 〈a〉∗k(λi ∈ n \ {k} :

〈
f−1
i

〉
Li) ∨ 〈f−1

i 〉Y ∈ 〈a〉
∗
k(λi ∈ n \ {k} :

〈
f−1
i

〉
Li) ⇔(

λi ∈ dom f :
({ 〈

f−1
i

〉
X if i = k〈

f−1
i

〉
Li if i 6= k

)
i

)
∈ GR a∨(

λi ∈ dom f :
({ 〈

f−1
i

〉
Y if i = k〈

f−1
i

〉
Li if i 6= k

)
i

)
∈ GR a

⇔

(
λi ∈ dom f :

〈
f−1
i

〉({ X if i = k
Li if i 6= k

)
i

)
∈ GR a∨(

λi ∈ dom f :
〈
f−1
i

〉({ Y if i = k
Li if i 6= k

)
i

)
∈ GR a

⇔

X ∈ 〈StarComp(a, f)〉∗kL ∨ Y ∈ 〈StarComp(a, f)〉∗kL.

Thus StarComp(a, f) is a pre-staroid.
2◦.

〈
f−1
i

〉
are monotone functions by the proposition 1497. Thus

〈
f−1
i

〉
Xi v〈

f−1
i

〉
Yi if X,Y ∈

∏
i∈(arity f)\{k}(form fi) and X v Y . So if a is a staroid and

X ∈ GR StarComp(a, f) then (λi ∈ dom f : 〈f−1
i 〉Xi) ∈ GR a then (λi ∈ dom f :

〈f−1
i 〉Yi) ∈ GR a that is Y ∈ GR StarComp(a, f).
3◦.

L0 t L1 ∈ GR StarComp(a, f) ⇔
(λi ∈ n :

〈
f−1
i

〉
(L0 t L1)i) ∈ GR a ⇔

(λi ∈ n :
〈
f−1
i

〉
L0i t 〈f−1

i 〉L1i) ∈ GR a ⇔
∃c ∈ {0, 1} : (λi ∈ n :

〈
f−1
i

〉
Lc(i)i) ∈ GR a ⇔

∃c ∈ {0, 1} : (λi ∈ n : Lc(i)i) ∈ GR StarComp(a, f).

�
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Conjecture 1737. b 6�Anch(A) StarComp(a, f) ⇔ ∀A ∈ GR a,B ∈ GR b, i ∈
n : Ai [fi] Bi for anchored relations a and b on powersets.

It’s consequence:

Conjecture 1738. b 6�Anch(A) StarComp(a, f)⇔ a 6�Anch(A) StarComp(b, f†)
for anchored relations a and b on powersets.

Conjecture 1739. b 6�Strd(A) StarComp(a, f) ⇔ a 6�Strd(A) StarComp(b, f†)
for pre-staroids a and b on powersets.

Proposition 1740. Anchored relations with objects being posets with above
defined star-morphisms is a category with star morphisms.

Proof. We need to prove:
1◦. StarComp(StarComp(m, f), g) = StarComp(m,λi ∈ aritym : gi ◦ fi);
2◦. StarComp(m,λi ∈ aritym : 1Objm i) = m.

(the rest is obvious). Really,

L ∈ GR StarComp(StarComp(m, f), g)⇔
(λi ∈ aritym :

〈
g−1
i

〉
Li) ∈ GR StarComp(m, f)⇔

(λi ∈ n :
〈
f−1
i

〉
(λj ∈ n :

〈
g−1
j

〉
Lj)i) ∈ GRm⇔

(λi ∈ aritym : 〈f−1
i 〉
〈
g−1
i

〉
Li) ∈ GRm⇔

(λi ∈ aritym : 〈(gi ◦ fi)−1〉Li) ∈ GRm⇔
L ∈ GR StarComp(m,λi ∈ aritym : gi ◦ fi);

and

L ∈ GR StarComp(m,λi ∈ aritym : 1Objm i)⇔
(λi ∈ n :

〈
1Objm i

〉
Li) ∈ GRm⇔

(λi ∈ aritym :
〈
1Objm i

〉
Li) ∈ GRm⇔

(λi ∈ aritym : Li) ∈ GRm⇔ L ∈ GRm.

�

Conjecture 1741. StarComp(a t b, f) = StarComp(a, f) t StarComp(b, f)
for anchored relations a, b of a form A, where every Ai is a distributive lattice, and
an indexed family f of pointfree funcoids with Src fi = Ai.

21.10.6. Cross-composition product of funcoids through atoms. Let
a be a an anchored relation of the form A and domA = n.

Let every fi (for all i ∈ n) be a pointfree funcoid with Src fi = Ai.
The atomary star-composition of a with f is an anchored relation of the form

λi ∈ domA : Dst fi defined by the formula

L ∈ GR StarComp(a)(a, f)⇔ ∃y ∈ GR a ∩
∏
i∈n

atomsAi ∀i ∈ n : yi [fi] Li.

Theorem 1742. Let Dst fi be a starrish join-semilattice for every i ∈ n.
1◦. If a is a prestaroid then StarComp(a)(a, f) is a staroid.
2◦. If a is a completary staroid and then StarComp(a)(a, f) is a completary

staroid.

Proof.



21.10. PRODUCT OF AN ARBITRARY NUMBER OF FUNCOIDS 343

1◦. First prove that StarComp(a)(a, f) is a prestaroid. We need to prove that
(val StarComp(a)(a, f))jL (for every j ∈ n) is a free star, that is{

X ∈ (form f)j
L ∪ {(j,X)} ∈ GR StarComp(a)(a, f)

}
is a free star, that is the following is a free star{

X ∈ (form f)j
R(X)

}
whereR(X)⇔ ∃y ∈

∏
i∈n atomsAi : (∀i ∈ n \ {j} : yi [fi] Li ∧ yj [fj ] X ∧ y ∈ GR a).

R(X)⇔

∃y ∈
∏
i∈n

atomsAi : (∀i ∈ n \ {j} : yi [fi] Li ∧ yj [fj ] X ∧ yj ∈ (val a)j(y|n\{j}))⇔

∃y ∈
∏

i∈n\{j}

atomsAi , y′ ∈ atomsAj :
(
∀i ∈ n \ {j} : yi [fi] Li∧
y′ [fj ] X ∧ y′ ∈ (val a)j(y|n\{j})

)
⇔

∃y ∈
∏

i∈n\{j}

atomsAi ∀i ∈ n \ {j} : yi [fi] Li∧

∃y′ ∈ atomsAj : (y′ [fj ] X ∧ y′ ∈ (val a)j(y|n\{j})).

If ∃y ∈
∏
i∈n\{j} atomsAi ∀i ∈ n \ {j} : yi [fi] Li is false our statement is

obvious. We can assume it is true.
So it is enough to prove that{

X ∈ (form f)j
∃y ∈

∏
i∈n\{j} atomsAi , y′ ∈ atomsAj : (y′ [fj ] X ∧ y′ ∈ (val a)j(y|n\{j}))

}
is a free star. That is

Q =
{

X ∈ (form f)j
∃y ∈

∏
i∈n\{j} atomsAi , y′ ∈ (atomsAj ) ∩ (val a)j(y|n\{j}) : y′ [fj ] X

}

is a free star. ⊥(form f)j /∈ Q is obvious. ThatQ is an upper set is obvious. It remains
to prove that X0 t X1 ∈ Q ⇒ X0 ∈ Q ∨ X1 ∈ Q for every X0, X1 ∈ (form f)j .
Let X0 t X1 ∈ Q. Then there exist y ∈

∏
i∈n\{j} atomsAi , y′ ∈ (atomsAj ) ∩

(val a)j(y|n\{j}) such that y′ [fj ] X0 tX1. Consequently (proposition 1499) y′ [fj ]
X0 ∨ y′ [fj ] X1. But then X0 ∈ Q ∨X1 ∈ Q.

To finish the proof we need to show that GR StarComp( a)(a, f) is an upper
set, but this is obvious.

2◦. Let a be a completary staroid. Let L0tL1 ∈ GR StarComp(a)(a, f) that is
∃y ∈

∏
i∈n atomsAi : (∀i ∈ n : yi [fi] L0i t L1i ∧ y ∈ GR a) that is ∃c ∈ {0, 1}n, y ∈∏

i∈n atomsAi :
(
∀i ∈ n : yi [fi] Lc(i)i ∧ y ∈ GR a

)
(taken into account that Dst fi

is starrish) that is ∃c ∈ {0, 1}n : (λi ∈ n : Lc(i)i) ∈ GR StarComp(a)(a, f). So
StarComp(a)(a, f) is a completary staroid.

�

Lemma 1743. b 6�Anch(B) StarComp(a)(a, f) ⇔ ∀A ∈ GR a,B ∈ GR b, i ∈ n :
Ai [fi] Bi for anchored relations a and b, provided that Src fi are atomic posets.

Proof.
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b 6�Anch(B) StarComp(a)(a, f)⇔

∃x ∈ Anch(B) \ {⊥} : (x v b ∧ x v StarComp(a)(a, f))⇔

∃x ∈ Anch(B) \ {⊥} : (x v b ∧ ∀B ∈ GR x : B ∈ GR StarComp(a)(a, f))⇔
∃x ∈ Anch(B) \ {⊥} :(

x v b ∧ ∀B ∈ GR x∃A ∈
∏

i∈domB

atomsBi : (∀i ∈ n : Ai [fi] Bi ∧A ∈ GR a)
)
⇔

∃x ∈ Anch(B) \ {⊥} : (x v b ∧ ∀B ∈ GR x,A ∈ GR a, i ∈ n : Ai [fi] Bi)⇔
∃x ∈ Anch(B) : (x v b ∧ ∀B ∈ GR x,A ∈ GR a, i ∈ n : Ai [fi] Bi)⇔

∀B ∈ GR b, A ∈ GR a, i ∈ n : Ai [fi] Bi.

�

Definition 1744. I will denote the cross-composition product for the star-
composition StarComp(a) as

∏(a).

Theorem 1745. a
[∏(a)

f
]
b ⇔ ∀A ∈ GR a,B ∈ GR b, i ∈ n : Ai [fi] Bi for

anchored relations a and b, provided that Src fi and Dst fi are atomic posets.

Proof. From the lemma. �

Conjecture 1746. b 6�Strd(B) StarComp(a, f) ⇔ a 6�Strd(A) StarComp(b, f†)
for staroids a and b on indexed families A and B of filters on powersets.

Theorem 1747. Anchored relations with objects being atomic posets
and above defined compositions form a quasi-invertible precategory with star-
morphisms.

Remark 1748. It seems that this precategory with star-morphisms isn’t a
category with star-morphisms.

Proof. We need to prove:

1◦. StarComp(a)(StarComp(a)(m, f), g) = StarComp(a)(m,λi ∈ aritym : gi ◦
fi);

2◦. b 6� StarComp(a)(a, f)⇔ a 6� StarComp(a)(b, f†)

(the rest is obvious).
Really, let a be a star morphism and Ai = (Obja)i for every i ∈ arity a;

1◦. L ∈ GR StarComp(a)(a, f)⇔ ∃y ∈ GR a∩
∏
i∈n atomsAi ∀i ∈ n : yi [fi] Li.

Define the relation R(f) by the formula x R(f) y ⇔ ∀i ∈ n : xi [fi] yi.
Obviously

R(λi ∈ n : gi ◦ fi) = R(g) ◦R(f).



21.10. PRODUCT OF AN ARBITRARY NUMBER OF FUNCOIDS 345

L ∈ GR StarComp(a)(a, f)⇔ ∃y ∈ GR a ∩
∏
i∈n atomsAi : y R(f) L.

L ∈ GR StarComp(a)(StarComp(a, f), g)⇔

∃p ∈ GR StarComp(a)(a, f) ∩
∏
i∈n

atoms(Dst f)i : p R(g) L⇔

∃p ∈
∏
i∈n

atoms(Dst f)i , y ∈ GR a ∩
∏
i∈n

atoms(Src f)i : (y R(f) p ∧ p R(g) L)⇔

∃y ∈ GR a ∩
∏
i∈n

atoms(Src f)i : y (R(g) ◦R(f)) L⇔

∃y ∈ GR a ∩
∏
i∈n

atoms(Src f)i : y R(λi ∈ n : gi ◦ fi) L⇔

∃y ∈ GR a ∩
∏
i∈n

atoms(Src f)i y∀i ∈ n : yi [gi ◦ fi] Li ⇔

L ∈ GR StarComp(a)(a, λi ∈ n : gi ◦ fi)

because p ∈ GR StarComp(a)(a, f)⇔ ∃y ∈ GR a ∩
∏
i∈n atoms(Src f)i y : y R(f) p.

2◦. It follows from the lemma above.
�

Theorem 1749.
〈∏(a)

f
〉∏Strd

a =
∏Strd
i∈n〈fi〉ai for every family f = fi∈n of

pointfree funcoids between atomic posets and a = ai∈n where ai ∈ Src fi.

Proof.

L ∈ GR
〈 (a)∏

f

〉 Strd∏
a⇔

L ∈ GR StarComp(a)

(Strd∏
a, f

)
⇔

∃y ∈
∏

i∈domA

atomsAi ∀i ∈ n : (yi [fi] Li ∧ yi 6� ai)⇔

∀i ∈ n∃y ∈ atomsAi : (y [fi] Li ∧ y 6� ai)⇔
∀i ∈ n : ai [fi] Li ⇔
∀i ∈ n : Li 6� 〈fi〉ai ⇔

L ∈ GR
Strd∏
i∈n
〈fi〉ai.

�

Conjecture 1750. StarComp(a)(a t b, f) = StarComp(a)(a, f) t
StarComp(a)(b, f) for anchored relations a, b of a form A, where every Ai
is a distributive lattice, and an indexed family f of pointfree funcoids with
Src fi = Ai.

21.10.7. Simple product of pointfree funcoids.

Definition 1751. Let f be an indexed family of pointfree funcoids with every
Src fi and Dst fi (for all i ∈ dom f) being a poset with least element. Simple product
of f is
(S)∏

f =

λx ∈ ∏
i∈dom f

Src fi : λi ∈ dom f : 〈fi〉xi, λy ∈
∏

i∈dom f

Dst fi : λi ∈ dom f :
〈
f−1
i

〉
yi

.
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Proposition 1752. Simple product is a pointfree funcoid
(S)∏

f ∈ pFCD

 ∏
i∈dom f

Src fi,
∏

i∈dom f

Dst fi

.
Proof. Let x ∈

∏
i∈dom f Src fi and y ∈

∏
i∈dom f Dst fi. Then (take into

account that Src fi and Dst fi are posets with least elements)

y 6�

λx ∈ ∏
i∈dom f

Src fi : λi ∈ dom f : 〈fi〉xi

x⇔
y 6� λi ∈ dom f : 〈fi〉xi ⇔
∃i ∈ dom f : yi 6� 〈fi〉xi ⇔

∃i ∈ dom f : xi 6�
〈
f−1
i

〉
yi ⇔

x 6� λi ∈ dom f :
〈
f−1
i

〉
yi ⇔

x 6�

λy ∈ ∏
i∈dom f

Dst fi : λi ∈ dom f :
〈
f−1
i

〉
yi

y.
�

Obvious 1753.
〈∏(S)

f
〉
x = λi ∈ dom f : 〈fi〉xi for x ∈

∏
Src fi.

Obvious 1754.
(〈∏(S)

f
〉
x
)
i

= 〈fi〉xi for x ∈
∏

Src fi.

Proposition 1755. fi can be restored if we know
∏(S)

f if fi is a family of
pointfree funcoids between posets with least elements.

Proof. Let’s restore the value of 〈fi〉x where i ∈ dom f and x ∈ Src fi.
Let x′i = x and x′j = ⊥ for j 6= i.
Then 〈fi〉x = 〈fi〉x′i =

(〈∏(S)
f
〉
x′
)
i
.

We have restored the value of 〈fi〉. Restoring the value of
〈
f−1
i

〉
is similar. �

Remark 1756. In the above proposition it is not required that fi are non-zero.

Proposition 1757.
(∏(S)

g
)
◦
(∏(S)

f
)

=
∏(S)
i∈n(gi◦fi) for n-indexed families

f and g of composable pointfree funcoids between posets with least elements.

Proof.〈(S)∏
i∈n

(gi ◦ fi)
〉
x = λi ∈ dom f : 〈gi ◦ fi〉xi = λi ∈ dom f : 〈gi〉〈fi〉xi =

〈(S)∏
g

〉
λi ∈ dom f : 〈fi〉xi =

〈(S)∏
g

〉〈(S)∏
f

〉
x =

〈(S)∏
g

 ◦
(S)∏

f

〉x.
Thus

〈∏(S)
i∈n(gi ◦ fi)

〉
=
〈(∏(S)

g
)
◦
(∏(S)

f
)〉

.〈(∏(S)
i∈n(gi ◦ fi)

)−1
〉

=
〈((∏(S)

g
)
◦
(∏(S)

f
))−1

〉
is similar. �

Corollary 1758.
(∏(S)

fk−1

)
◦. . .◦

(∏(S)
f0

)
=
∏(S)
i∈n(fk−1◦. . .◦f0) for every

n-indexed families f0, . . . , fn−1 of composable pointfree funcoids between posets
with least elements.
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21.11. Multireloids

Definition 1759. I will call a multireloid of the form A = Ai∈n, where every
each Ai is a set, a pair (f,A) where f is a filter on the set

∏
A.

Definition 1760. I will denote Obj(f,A) = A and GR(f,A) = f for every
multireloid (f,A).

I will denote RLD(A) the set of multireloids of the form A.
The multireloid ↑RLD(A) F for a relation F is defined by the formulas:

Obj ↑RLD(A) F = A and GR ↑RLD(A) F =↑
∏

A F.

For an anchored relation f I define Obj ↑ f = form f and GR ↑ f =↑
∏

form f

GR f .
Let a be a multireloid of the form A and domA = n.
Let every fi be a reloid with Src fi = Ai.
The star-composition of a with f is a multireloid of the form λi ∈ domA : Dst fi

defined by the formulas:

arity StarComp(a, f) = n;

GR StarComp(a, f) =
RLD(A)l {

GR StarComp(A,F )
A ∈ GR a, F ∈

∏
i∈n GR fi

}
;

Objm StarComp(a, f) = λi ∈ n : Dst fi.

Theorem 1761. Multireloids with above defined compositions form a quasi-
invertible category with star-morphisms.

Proof. We need to prove:

1◦. StarComp(StarComp(m, f), g) = StarComp(m,λi ∈ aritym : gi ◦ fi);
2◦. StarComp(m,λi ∈ aritym : 1Objm i) = m;
3◦. b 6� StarComp(a, f)⇔ a 6� StarComp(b, f†)

(the rest is obvious).
Really,

1◦. Using properties of generalized filter bases,

StarComp(StarComp(a, f), g) =
RLDl{

StarComp(B,G)
B ∈ GR StarComp(a, f), G ∈

∏
i∈n GR gi

}
=

RLDl{
StarComp(StarComp(A,F ), G)

A ∈ GR a, F ∈
∏
i∈n GR fi, G ∈

∏
i∈n GR gi

}
=

RLDl{
StarComp(A,G ◦ F )

A ∈ GR a, F ∈
∏
i∈n GR fi, G ∈

∏
i∈n GR gi

}
=

RLDl{
StarComp(A,H)

A ∈ GR a,H ∈
∏
i∈n GR(gi ◦ fi)

}
=

StarComp(a, λi ∈ arityn : gi ◦ fi).
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2◦.
StarComp(m,λi ∈ aritym : 1Objm i) =

RLD(A)l
{

StarComp(A,H)
A ∈ GRm,H ∈

∏
i∈aritym GR 1Objm i

}
=

RLD(A)l
{

StarComp(A, λi ∈ aritym : Hi)
A ∈ GRm,H ∈

∏
i∈aritym GR 1Objm i

}
=

RLD(A)l
{

StarComp(A, λi ∈ aritym : 1Xi)
A ∈ GRm,X ∈

∏
i∈aritym Objm i

}
=

RLD(A)l
{

(A ∩
∏
X)

A ∈ GRm,X ∈
∏
i∈aritym Objm i

}
=

RLD(A)l {
A

A ∈ GRm

}
= m.

3◦. Using properties of generalized filter bases,
b 6� StarComp(a, f)⇔

∀A ∈ GR a,B ∈ GR b, F ∈
∏
i∈n

GR fi : B 6� StarComp(A,F )⇔

∀A ∈ GR a,B ∈ GR b, F ∈
∏
i∈n

GR fi : B 6�
〈(C)∏

F

〉
A⇔

∀A ∈ GR a,B ∈ GR b, F ∈
∏
i∈n

GR fi : A 6�
〈(C)∏

F

−1〉
B ⇔

∀A ∈ GR a,B ∈ GR b, F ∈
∏
i∈n

GR fi : A 6� StarComp(B,F †)⇔

a 6� StarComp(b, f†).
�

Definition 1762. Let f be a multireloid of the form A. Then for i ∈ domA

RLD
Pr
i
f =

Fl〈
Pr
i

〉∗
GR f.

Proposition 1763. up PrRLD
i f = 〈Pri〉∗GR f for every multireloid f and i ∈

arity f .

Proof. It’s enough to show that 〈Pri〉∗GR f is a filter.
That 〈Pri〉∗GR f is an upper set is obvious.
Let X,Y ∈ 〈Pri〉∗GR f . Then there exist F,G ∈ GR f such that X = Pri F ,

Y = PriG. Then X ∩ Y ⊇ Pri(F ∩G) ∈ 〈Pri〉∗GR f . Thus X ∩ Y ∈ 〈Pri〉∗GR f .
�

Definition 1764.
∏RLD X =

dRLD(λi∈domX :Base(Xi))
X∈up

∏
X

∏
X for every indexed

family X of filters on powersets.

Proposition 1765. PrRLD
k

∏RLD
x = xk for every indexed family x of proper

filters.

Proof. up PrRLD
k

∏RLD
x = 〈Prk〉∗

∏RLD
x = upxk. �
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Conjecture 1766. GR StarComp(a t b, f) = GR StarComp(a, f) t
GR StarComp(b, f) if f is a reloid and a, b are multireloids of the same form,
composable with f .

Theorem 1767.
∏RLD

A = d

{ ∏RLD
a

a∈
∏

i∈domA
atomsAi

}
for every indexed family

A of filters on powersets.

Proof. Obviously
∏RLD

A w d

{ ∏RLD
a

a∈
∏

i∈domA
atomsAi

}
.

Reversely, let K ∈ GR d

{ ∏RLD
a

a∈
∏

i∈domA
atomsAi

}
.

Consequently K ∈ GR
∏RLD

a for every a ∈
∏
i∈domA atomsAi; K ⊇

∏
X and

thus K ⊇
⋃
a∈
∏

i∈dom a
atomsAi

∏
Xa for some Xa ∈

∏
i∈dom a atomsAi.

But
⋃
a∈
∏

i∈dom a
atomsAi

∏
Xa =

∏
i∈domA

⋃
a∈atomsAi〈Pri〉∗Xa ⊇∏

j∈domA Zj for some Zj ∈ upAj because 〈Pri〉∗X ∈ up ai and our lattice
is atomistic. So K ∈ GR

∏RLD
A. �

Theorem 1768. Let a, b be indexed families of filters on powersets of the same
form A. Then

RLD∏
a u

RLD∏
b =

RLD∏
i∈domA

(ai u bi).

Proof.

up
(RLD∏

a u
RLD∏

b

)
=

RLD(A)l
{

P ∩Q
P ∈ GR

∏RLD
a,Q ∈

∏RLD
b

}
=

RLD(A)l { ∏
p ∩

∏
q

p ∈ up
∏
a, q ∈ up

∏
b

}
=

RLD(A)l { ∏
i∈domA(pi ∩ qi)

p ∈
∏

up a, q ∈
∏

up b

}
=

RLD(A)l { ∏
r

r ∈ up
∏
i∈domA(ai u bi)

}
=

up
RLD∏

i∈domA

(ai u bi).

�

Theorem 1769. If S ∈ P
∏
i∈domZ F (Zi) where Z is an indexed family of

sets, then
l

a∈S

RLD∏
a =

RLD∏
i∈domZ

F(Zi)l
Pr
i
S.

Proof. If S = ∅ then
d
a∈S

∏RLD
a =

d
∅ = >RLD(Z) and

RLD∏
i∈domZ

F(Zi)l
Pr
i
S =

RLD∏
i∈domZ

F(Zi)l
∅ =

RLD∏
i∈domZ

>F(Zi) = >RLD(Z),
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thus
d
a∈S

∏RLD
a =

∏RLD
i∈domZ

dF(Zi) Pri S.
Let S 6= ∅.dF(Zi) Pri S v

dF(Zi){ai} = ai for every a ∈ S because ai ∈ Pri S. Thus∏RLD
i∈domZ

dF(Zi) Pri S v
∏RLD

a;

l

a∈S

RLD∏
a w

RLD∏
i∈domZ

F(Zi)l
Pr
i
S.

Now suppose F ∈ GR
∏RLD
i∈domZ

dF(Zi) Pri S. Then there exists X ∈
up
∏
i∈domZ

dF(Zi) Pri S such that F ⊇
∏
X. It is enough to prove that there

exist a ∈ S such that F ∈ GR
∏RLD

a. For this it is enough
∏
X ∈ GR

∏RLD
a.

Really, Xi ∈ up
dF(Zi) Pri S thus Xi ∈ up ai for every A ∈ S because Pri S ⊇

{ai}.
Thus

∏
X ∈ GR

∏RLD
a. �

Definition 1770. I call a multireloid principal iff its graph is a principal filter.

Definition 1771. I call a multireloid convex iff it is a join of reloidal products.

Theorem 1772. StarComp(a t b, f) = StarComp(a, f) t StarComp(b, f) for
multireloids a, b and an indexed family f of reloids with Src fi = (form a)i =
(form b)i.

Proof.
GR(StarComp(a, f) t StarComp(b, f)) =

l{↑RLD(form a) StarComp(A,F )
A ∈ GR a, F ∈

∏
i∈n GR fi

}
t
l{↑RLD(form b) StarComp(B,F )

B ∈ GR b, F ∈
∏
i∈n GR fi

}
=

l{↑RLD(form a) StarComp(A,F )t ↑RLD(form b) StarComp(B,F )
A ∈ GR a,B ∈ GR b, F ∈

∏
i∈n GR fi

}
=

l{↑RLD(form a) (StarComp(A,F ) ∪ StarComp(B,F ))
A ∈ GR a,B ∈ GR b, F ∈

∏
i∈n GR fi

}
=

l{ ↑RLD(form a) StarComp(A ∪B,F )
A ∈ GR a,B ∈ GR b, F ∈

∏
i∈n GR fi

}
=

l{ ↑RLD(form a) StarComp(C,F )
C ∈ GR(a t b), F ∈

∏
i∈n GR fi

}
=

GR StarComp(a t b, f).
�

21.11.1. Starred reloidal product. Tychonoff product of topological spaces
inspired me the following definition, which seems possibly useful just like Tychonoff
product:

Definition 1773. Let a be an n-indexed (n is an arbitrary index set) fam-
ily of filters on sets.

∏RLD∗
a (starred reloidal product) is the reloid of the form∏

i∈n Base(ai) induced by the filter base
∏
i∈n

({
Ai if i ∈ m
Base(ai) if i ∈ n \m

)
m is a finite subset of n,A ∈

∏
(a|m)

.
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Obvious 1774. It is really a filter base.

Obvious 1775.
∏RLD∗

a w
∏RLD

a.

Proposition 1776.
∏RLD∗

a =
∏RLD

a if n is finite.

Proof. Take m = n to show that
∏RLD∗

a v
∏RLD

a. �

Proposition 1777.
∏RLD∗

a = ⊥RLD(λi∈n:Base(ai)) if ai is the non-proper filter
for some i ∈ n.

Proof. Take Ai = ⊥ and m = {i}. Then
∏
i∈n

({
Ai if i ∈ m
Base(ai) if i ∈ n \m

)
=

⊥. �

Example 1778. There exists an indexed family a of principal filters such that∏RLD∗
a is non-principal.

Proof. Let n be infinite and Base(ai) is a set of at least two elements. Let
each ai be a trivial ultrafilter.

Every
∏
i∈n

({
Ai if i ∈ m
Base(ai) if i ∈ n \m

)
has at least 2n elements.

There are elements up
∏RLD

a with cardinality 1. They can’t be elements of
up
∏RLD∗

a because of cardinality issues. �

Corollary 1779. There exists an indexed family a of principal filters such
that

∏RLD∗
a 6=

∏RLD
a.

Proof. Because
∏RLD

a is principal. �

Proposition 1780. PrRLD
k

∏RLD∗
x = xk for every indexed family x of proper

filters.

Proof. PrRLD
k

∏RLD∗
x = 〈Prk〉∗GR

∏RLD∗
x = xk. �

Theorem 1781. PrRLD
i f v Ai for all i ∈ n iff f v

∏RLD∗A (for every reloid f
of arity n and n-indexed family A of filters on sets).

Proof. f v
∏RLD∗A ⇒ PrRLD

i f v PrRLD
i

∏RLD∗A v Ai.
Let now PrRLD

i f v Ai.

f v
∏({PrRLD

i f if i ∈ m
Base(form f)i if i /∈ m

)
for finite m ⊆ n, as it can be easily be

proved by induction.
It follows f v

∏RLD∗A. �

21.12. Subatomic product of funcoids

Definition 1782. Let f be an indexed family of funcoids. Then
∏(A)

f (sub-
atomic product) is a funcoid

∏
i∈dom f Src fi →

∏
i∈dom f Dst fi such that for every

a ∈ atomsRLD(λi∈dom f :Src fi), b ∈ atomsRLD(λi∈dom f :Dst fi)

a

(A)∏
f

 b⇔ ∀i ∈ dom f :
RLD
Pr
i
a [fi]

RLD
Pr
i
b.

Proposition 1783. The funcoid
∏(A)

f exists.
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Proof. To prove that
∏(A)

f exists we need to prove (for every a ∈
atomsRLD(λi∈dom f :Src fi), b ∈ atomsRLD(λi∈dom f :Dst fi))

∀X ∈ GR a, Y ∈ GR b

∃x ∈ atoms ↑RLD(λi∈dom f :Src fi) X, y ∈ atoms ↑RLD(λi∈dom f :Dst fi) Y : x

(A)∏
f

 y ⇒
a

(A)∏
f

 b.
Let

∀X ∈ GR a, Y ∈ GR b

∃x ∈ atoms ↑RLD(λi∈dom f :Src fi) X, y ∈ atoms ↑RLD(λi∈dom f :Dst fi) Y : x

(A)∏
f

 y.
Then

∀X ∈ GR a, Y ∈ GR b

∃x ∈ atoms ↑RLD(λi∈dom f :Src fi) X, y ∈ atoms ↑RLD(λi∈dom f :Dst fi) Y

∀i ∈ dom f :
RLD
Pr
i
x [fi]

RLD
Pr
i
y.

Then because PrRLD
i x ∈ atoms ↑Src fi PriX and likewise for y:

∀X ∈ GR a, Y ∈ GR b∀i ∈ dom f

∃x ∈ atoms ↑Src fi Pr
i
X, y ∈ atoms ↑Dst fi Pr

i
Y : x [fi] y.

Thus ∀X ∈ GR a, Y ∈ GR b∀i ∈ dom f :↑Src fi PriX [fi]↑Dst fi Pri Y ;
∀X ∈ GR a, Y ∈ GR b∀i ∈ dom f : PriX [fi]∗ Pri Y .
Then ∀X ∈ 〈Pri〉∗GR a, Y ∈ 〈Pri〉∗GR b : X [fi]∗ Y .
Thus PrRLD

i a [fi] PrRLD
i b. So

∀i ∈ dom f :
RLD
Pr
i
a [fi]

RLD
Pr
i
b

and thus a
[∏(A)

f
]
b. �

Remark 1784. It seems that the proof of the above theorem can be simplified
using cross-composition product.

Theorem 1785.
∏(A)
i∈n(gi ◦ fi) =

∏(A)
g ◦
∏(A)

f for indexed (by an index set
n) families f and g of funcoids such that ∀i ∈ n : Dst fi = Src gi.
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Proof. Let a, b be ultrafilters on
∏
i∈n Src fi and

∏
i∈n Dst gi correspondingly,

a

(A)∏
i∈n

(gi ◦ fi)

 b⇔
∀i ∈ dom f :

〈
Pr
i

〉∗
a [gi ◦ fi]

〈
Pr
i

〉∗
b⇔

∀i ∈ dom f∃C ∈ atomsF(Dst fi) :
(〈

Pr
i

〉∗
a [fi] C ∧ C [gi]

〈
Pr
i

〉∗
b
)
⇔

∀i ∈ dom f∃c ∈ atomsRLD(λi∈n:Dst f) :
(〈

Pr
i

〉∗
a [fi]

〈
Pr
i

〉∗
c ∧
〈

Pr
i

〉∗
c [gi]

〈
Pr
i

〉∗
b
)
⇐

∃c ∈ atomsRLD(λi∈n:Dst f) ∀i ∈ dom f :
(〈

Pr
i

〉∗
a [fi]

〈
Pr
i

〉∗
c ∧
〈

Pr
i

〉∗
c [gi]

〈
Pr
i

〉∗
b
)
⇔

∃c ∈ atomsRLD(λi∈n:Dst f) :

a
(A)∏

f

 c ∧ c
(A)∏

g

 b
⇔

a

(A)∏
g ◦

(A)∏
f

 b.
But

∀i ∈ dom f∃C ∈ atomsF(Dst fi) :
(〈

Pr
i

〉∗
a [fi] C ∧ C [gi]

〈
Pr
i

〉∗
b
)

implies

∃C ∈
∏
i∈n

atomsF(Dst fi) ∀i ∈ dom f :
(〈

Pr
i

〉∗
a [fi] Ci ∧ Ci [gi]

〈
Pr
i

〉∗
b
)
.

Take c ∈ atoms
∏RLD

C. Then

∀i ∈ dom f :
(〈

Pr
i

〉∗
a [fi] Pr

i
c ∧ Pr

i
c [gi]

〈
Pr
i

〉∗
b
)

that is

∀i ∈ dom f :
(〈

Pr
i

〉∗
a [fi]

〈
Pr
i

〉∗
c ∧
〈

Pr
i

〉∗
[gi]

〈
Pr
i

〉∗
b
)

We have a
[∏(A)

i∈n(gi ◦ fi)
]
b⇔ a

[∏(A)
g ◦
∏(A)

f
]
b. �

Corollary 1786.
(∏(A)

fk−1

)
◦ . . . ◦

(∏(A)
f0

)
=
∏(A)
i∈n(fk−1 ◦ . . . ◦ f0) for

every n-indexed families f0, . . . , fn−1 of composable funcoids.

Proposition 1787.
∏RLD

a
[∏(A)

f
] ∏RLD

b ⇔ ∀i ∈ dom f : ai [fi] bi for
an indexed family f of funcoids and indexed families a and b of filters where ai ∈
F (Src fi), bi ∈ F (Dst fi) for every i ∈ dom f .

Proof. If ai = ⊥ or bi = ⊥ for some i our theorem is obvious. We will take
ai 6= ⊥ and bi 6= ⊥, thus there exist

x ∈ atoms
RLD∏

a, y ∈ atoms
RLD∏

b.
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RLD∏
a

(A)∏
f

 RLD∏
b⇔

∃x ∈ atoms
RLD∏

a, y ∈ atoms
RLD∏

b : x

(A)∏
f

 y ⇔
∃x ∈ atoms

RLD∏
a, y ∈ atoms

RLD∏
b∀i ∈ dom f :

〈
Pr
i

〉∗
x [fi]

〈
Pr
i

〉∗
y ⇔

∀i ∈ dom f∃x ∈ atoms ai, y ∈ atoms bi : x [fi] y ⇔
∀i ∈ dom f : ai [fi] bi.

�

Theorem 1788.
〈∏(A)

f
〉
x =

∏RLD
i∈dom f 〈fi〉PrRLD

i x for an indexed family f of
funcoids and x ∈ atomsRLD(λi∈dom f :Src fi) for every n ∈ dom f .

Proof. For every ultrafilter y ∈ F
(∏

i∈dom f Dst fi
)
we have:

y 6�
RLD∏

i∈dom f

〈fi〉
RLD
Pr
i
x⇔

∀i ∈ dom f :
RLD
Pr
i
y 6� 〈fi〉

RLD
Pr
i
x⇔

∀i ∈ dom f :
RLD
Pr
i
x [fi]

RLD
Pr
i
y ⇔

x

(A)∏
f

 y ⇔
y 6�

〈(A)∏
f

〉
x.

Thus
〈∏(A)

f
〉
x =

∏RLD
i∈dom f 〈fi〉PrRLD

i x. �

Corollary 1789. 〈f ×(A) g〉x = 〈f〉(dom x)×RLD 〈g〉(im x) for atomic x.

21.13. On products and projections

Conjecture 1790. For principal funcoids
∏(C)and

∏(A) coincide with the
conventional product of binary relations.

21.13.1. Staroidal product. Let f be a staroid, whose form components are
boolean lattices.

Definition 1791. Staroidal projection of a staroid f is the filter PrStrd
k f cor-

responding to the free star

(val f)k(λi ∈ (arity f) \ {k} : >(form f)i).

Proposition 1792. Prk GR
∏Strd

x = ?xk if x is an indexed family of proper
filters, and k ∈ dom x.
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Proof.

Pr
k

GR
Strd∏

x =

Pr
k

{
L ∈ form x

∀i ∈ dom x : xi 6� Li

}
=

(used the fact that xi are proper filters){
l ∈ (form x)k

xk 6� l

}
= ?xk.

�

Proposition 1793. PrStrd
k

∏Strd
x = xk if x is an indexed family of proper

filters, and k ∈ dom x.

Proof.

∂
Strd
Pr
k

Strd∏
x =(

val
Strd∏

x

)
k

(λi ∈ (dom x) \ {k} : >(form x)i) =

 X ∈
(

form
∏Strd

x
)
k

(λi ∈ (dom x) \ {k} : >(form x)i) ∪ {(k,X)} ∈ GR
∏Strd

x

 =

{
X ∈ Basexk

(∀i ∈ (dom x) \ {k} : >(form x)i 6� xi) ∧X 6� xk

}
={

X ∈ Basexk
X 6� xk

}
= ∂xk.

Consequently PrStrd
k

∏Strd
x = xk. �

21.13.2. Cross-composition product of pointfree funcoids.

Definition 1794. Zero pointfree funcoid ⊥pFCD(A,B) from a poset A to to a
poset B is the least pointfree funcoid in the set pFCD(A,B).

Proposition 1795. A pointfree funcoid f is zero iff [f ]= ∅.

Proof. Direct implication is obvious.
Let now [f ]= ∅. Then 〈f〉x � y for every x ∈ Src f , y ∈ Dst f and thus

〈f〉x � 〈f〉x. It is possible only when 〈f〉x = ⊥Dst f . �

Corollary 1796. A pointfree funcoid is zero iff its reverse is zero.

Proposition 1797. Values xi (for every i ∈ dom x) can be restored from the
value of

∏(C)
x provided that x is an indexed family of non-zero pointfree funcoids,

Src fi (for every i ∈ n) is an atomic lattice and every Dst fi is an atomic poset with
greatest element.

Proof.
〈∏(C)

x
〉∏Strd

p =
∏Strd
i∈n〈xi〉pi by theorem 1749.

Since xi is non-zero there exist p such that 〈xi〉pi is non-least. Take k ∈ n,
p′i = pi for i 6= k and p′k = q for an arbitrary value q; then (using the staroidal
projections from the previous subsection)

〈xk〉q =
Strd
Pr
k

Strd∏
i∈n
〈xi〉p′i =

Strd
Pr
k

〈(C)∏
x

〉 Strd∏
p′.
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So the value of x can be restored from
∏(C)

x by this formula. �

21.13.3. Subatomic product.

Proposition 1798. Values xi (for every i ∈ dom x) can be restored from the
value of

∏(A)
x provided that x is an indexed family of non-zero funcoids.

Proof. Fix k ∈ dom f . Let for some filters X and Y

a =
{
>F(Base(x)) if i 6= k;
X if i = k

and b =
{
>F(Base(y)) if i 6= k;
Y if i = k.

Then X [xk] Y ⇔ ak [xk] bk ⇔ ∀i ∈ dom f : ai [xi] bi ⇔
∏RLD

a
[∏(A)

x
] ∏RLD

b.

So we have restored xk from
∏(A)

x. �

Definition 1799. For every funcoid f :
∏
A →

∏
B (where A and B are

indexed families of typed sets) consider the funcoid Pr(A)
k f defined by the formula

X

[
(A)
Pr
k
f

]∗
Y ⇔

RLD∏
i∈domA

({
>F(Ai) if i 6= k;
↑Ai X if i = k

)
[f ]

RLD∏
i∈domB

({
>F(Bi) if i 6= k;
↑Bi Y if i = k

)
.

Proposition 1800. Pr(A)
k f is really a funcoid.

Proof. ¬
(
⊥
[
Pr(A)

k f
]∗
Y
)
is obvious.

I t J

[
(A)
Pr
k
f

]∗
Y ⇔

RLD∏
i∈domA

({
>F(Ai) if i 6= k;
↑Ai (I t J) if i = k

)
[f ]

RLD∏
i∈domB

({
>F(Bi) if i 6= k;
↑Bi Y if i = k

)
⇔

RLD∏
i∈domA

({
>F(Ai) if i 6= k;
↑Ai It ↑Ai J if i = k

)
[f ]

RLD∏
i∈domB

({
>F(Bi) if i 6= k;
↑Bi Y if i = k

)
⇔

RLD∏
i∈domA

({
>F(Ai) if i 6= k;
↑Ai I if i = k

)
t

RLD∏
i∈domA

({
>F(Ai) if i 6= k;
↑Ai J if i = k

)
[f ]

RLD∏
i∈domB

({
>F(Bi) if i 6= k;
↑Bi Y if i = k

) ⇔

RLD∏
i∈domA

({
>F(Ai) if i 6= k;
↑Ai I if i = k

)
[f ]

RLD∏
i∈domB

({
>F(Bi) if i 6= k;
↑Bi Y if i = k

)
∨

RLD∏
i∈domA

({
>F(Ai) if i 6= k;
↑Ai J if i = k

)
[f ]

RLD∏
i∈domB

({
>F(Bi) if i 6= k;
↑Bi Y if i = k

) ⇔

I

[
(A)
Pr
k
f

]∗
Y ∨ J

[
(A)
Pr
k
f

]∗
Y.

The rest follows from symmetry. �

Proposition 1801. For every funcoid f :
∏
A →

∏
B (where A and B are

indexed families of typed sets) the funcoid Pr(A)
k f conforms to the formula

X

[
(A)
Pr
k
f

]
Y ⇔

RLD∏
i∈domA

({
>F(Ai) if i 6= k;
X if i = k

)
[f ]

RLD∏
i∈domB

({
>F(Bi) if i 6= k;
Y if i = k

)
.
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Proof.

X

[
(A)
Pr
k
f

]
Y ⇔

∀X ∈ upX , Y ∈ upY : X
[

(A)
Pr
k
f

]∗
Y ⇔

∀X ∈ upX , Y ∈ upY :
RLD∏

i∈domA

({
>F(Ai) if i 6= k;
↑Ai X if i = k

)
[f ]

RLD∏
i∈domB

({
>F(Bi) if i 6= k;
↑Bi Y if i = k

)
⇔

∀X ∈ up
RLD∏

i∈domA

({
>F(Ai) if i 6= k;
X if i = k

)
, Y ∈ up

RLD∏
i∈domB

({
>F(Bi) if i 6= k;
Y if i = k

)
: X [f ]∗ Y ⇔

RLD∏
i∈domA

({
>F(Ai) if i 6= k;
X if i = k

)
[f ]

RLD∏
i∈domB

({
>F(Bi) if i 6= k;
Y if i = k

)
.

�

Remark 1802. Reloidal product above can be replaced with starred reloidal
product, because of finite number of non-maximal multipliers in the products.

Obvious 1803. Pr(A)
k

∏(A)
x = xk provided that x is an indexed family of

non-zero funcoids.

21.13.4. Other.

Definition 1804. Displaced product
∏(DP )

f =�
∏(C)

f for every indexed
family of pointfree funcoids, where downgrading is defined for the filtrator(

FCD(StarHom(Src ◦f),StarHom(Dst ◦f)),Rel
(∏

(Src ◦f),
∏

(Dst ◦f)
))
.

Remark 1805. Displaced product is a funcoid (not just a pointfree funcoid).

Conjecture 1806. Values xi (for every i ∈ dom x) can be restored from the
value of

∏(DP )
x provided that x is an indexed family of non-zero funcoids.

Definition 1807. Let f ∈P
(
Z
∐

Y
)
where Z is a set and Y is a function.

(D)
Pr
k
f = Pr

k

{
curry z
z ∈ f

}
.

Proposition 1808. Pr(D)
k

∏(D)
F = Fk for every indexed family F of non-

empty relations.

Proof. Obvious. �

Corollary 1809. GR Pr(D)
k

∏(D)
F = GRFk and form Pr(D)

k

∏(D)
F =

formFk for every indexed family F of non-empty anchored relations.

21.14. Relationships between cross-composition and subatomic
products

Proposition 1810. a
[
f ×(C) g

]
b ⇔ dom a [f ] dom b ∧ im a [g] im b for fun-

coids f and g and atomic funcoids a ∈ FCD(Src f, Src g) and b ∈ FCD(Dst f,Dst g).
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Proof.

a
[
f ×(C) g

]
b⇔

a ◦ f−1 6� g−1 ◦ b⇔

(dom a×FCD im a) ◦ f−1 6� g−1 ◦ (dom b×FCD im b)⇔
〈f〉dom a×FCD im a 6� dom b×FCD 〈g−1〉 im b⇔

〈f〉dom a 6� dom b ∧ im a 6�
〈
g−1〉 im b⇔

dom a [f ] dom b ∧ im a [g] im b.

�

Proposition 1811. X
[∏(A)

f
]
Y ⇔ ∀i ∈ dom f : PrRLD

i X [fi] PrRLD
i Y for

every indexed family f of funcoids and X ∈ RLD(Src ◦f), Y ∈ RLD(Dst ◦f).

Proof.

X

(A)∏
f

 Y ⇔
∃a ∈ atomsX , b ∈ atomsY : a

(A)∏
f

 b⇔
∃a ∈ atomsX , b ∈ atomsY∀i ∈ dom f :

RLD
Pr
i
a [fi]

RLD
Pr
i
b⇔

∀i ∈ dom f∃x ∈ atoms
RLD
Pr
i
X , y ∈ atoms

RLD
Pr
i
Y : xi [fi] yi ⇔

∀i ∈ dom f :
RLD
Pr
i
X [fi]

RLD
Pr
i
Y.

�

Corollary 1812. X
[
f ×(A) g

]
Y ⇔ domX [f ] domY ∧ imX [g] imY for

funcoids f , g and reloids X ∈ RLD(Src f, Src g), and Y ∈ RLD(Dst f,Dst g).

Lemma 1813. For every A ∈ Rel(X,Y ) (for every sets X, Y ) we have:{
(dom a, im a)

a ∈ atoms ↑FCD A

}
=
{

(dom a, im a)
a ∈ atoms ↑RLD A

}
.

Proof. Let x ∈
{

(dom a,im a)
a∈atoms↑RLDA

}
. Take x0 = dom a and x1 = im a where

a ∈ atoms ↑RLD A.
Then x0 = dom(FCD)a and x1 = im(FCD)a and obviously (FCD)a ∈

atoms ↑FCD A. So x ∈
{

(dom a,im a)
a∈atoms↑FCDA

}
.

Let now x ∈
{

(dom a,im a)
a∈atoms↑FCDA

}
. Take x0 = dom a and x1 = im a where a ∈

atoms ↑FCD A.
x0
[
↑FCD A

]
x1 ⇔ x0

[
(FCD) ↑RLD A

]
x1 ⇔ x0 ×RLD x1 6�↑RLD A. Thus there

exists atomic reloid x′ such that x′ ∈ atoms ↑RLD A and dom x′ = x0, im x′ = x1.
So x ∈

{
(dom a′,im a′)
a′∈atoms↑RLDA

}
. �

Theorem 1814. ↑FCD A
[
f ×(C) g

]
↑FCD B ⇔↑RLD A

[
f ×(A) g

]
↑RLD B for

funcoids f , g, and Rld-morphisms A : Src f → Src g, and B : Dst f → Dst g.
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Proof.

↑FCD A
[
f ×(C) g

]
↑FCD B ⇔

∃a ∈ atoms ↑FCD A, b ∈ atoms ↑FCD B : a
[
f ×(C) g

]
b⇔

∃a ∈ atoms ↑FCD A, b ∈ atoms ↑FCD B : (dom a [f ] dom b ∧ im a [g] im b)⇒
∃a0 ∈ atoms dom ↑FCD A, a1 ∈ atoms im ↑FCD A,

b0 ∈ atoms dom ↑FCD B, b1 ∈ atoms im ↑FCD B : (a0 [f ] b0 ∧ a1 [g] b1).

On the other hand:

∃a0 ∈ atoms dom ↑FCD A, a1 ∈ atoms im ↑FCD A,

b0 ∈ atoms dom ↑FCD B, b1 ∈ atoms im ↑FCD B : (a0 [f ] b0 ∧ a1 [g] b1)⇒
∃a0 ∈ atoms dom ↑FCD A, a1 ∈ atoms im ↑FCD A,

b0 ∈ atoms dom ↑FCD B, b1 ∈ atoms im ↑FCD B : (a0×FCD b0 6� f ∧a1×FCD b1 6� g)⇒
∃a ∈ atoms ↑FCD A, b ∈ atoms ↑FCD B : (dom a [f ] dom b ∧ im a [g] im b).

Also using the lemma we have

∃a ∈ atoms ↑FCD A, b ∈ atoms ↑FCD B : (dom a [f ] dom b ∧ im a [g] im b)⇔
∃a ∈ atoms ↑RLD A, b ∈ atoms ↑RLD B : (dom a [f ] dom b ∧ im a [g] im b).

So

↑FCD A
[
f ×(C) g

]
↑FCD B ⇔

∃a ∈ atoms ↑RLD A, b ∈ atoms ↑RLD B : (dom a [f ] dom b ∧ im a [g] im b)⇔

∃a ∈ atoms ↑RLD A, b ∈ atoms ↑RLD B : a
[
f ×(A) g

]
b⇔

↑RLD A
[
f ×(A) g

]
↑RLD B.

�

Corollary 1815. f ×(A) g =�� (f ×(C) g) where downgrading is taken on
the filtrator(

pFCD(FCD(Src ◦f),FCD(Dst ◦f)),FCD
(
P
∏

(Src ◦f),P
∏

(Dst ◦f)
))

and upgrading is taken on the filtrator(
pFCD(RLD(Src ◦f),RLD(Dst ◦f)),FCD

(
P
∏

(Src ◦f),P
∏

(Dst ◦f)
))
.

where we equate n-ary relations with corresponding principal multifuncoids and
principal multireloids, when appropriate.

Proof. Leave as an exercise for the reader. �

Conjecture 1816. ↑FCD A
[∏(C)

f
]
↑FCD B ⇔↑RLD A

[∏(A)
f
]
↑RLD B

for every indexed family f of funcoids and A ∈ P
∏
i∈dom f Src fi, B ∈

P
∏
i∈dom f Dst fi.

Theorem 1817. For every filters a0, a1, b0, b1 we have

a0 ×FCD b0

[
f ×(C) g

]
a1 ×FCD b1 ⇔ a0 ×RLD b0

[
f ×(A) g

]
a1 ×RLD b1.



21.15. CROSS-INNER AND CROSS-OUTER PRODUCT 360

Proof.

a0 ×RLD b0

[
f ×(A) g

]
a1 ×RLD b1 ⇔

∀A0 ∈ a0, B0 ∈ b0, A1 ∈ a1, B1 ∈ b1 : A0 ×B0

[
f ×(A) g

]∗
A1 ×B1.

A0×B0

[
f ×(A) g

]∗
A1×B1 ⇔ A0×B0

[
f ×(C) g

]∗
A1×B1 ⇔ A0 [f ]∗ A1∧B0 [g]∗ B1.

(Here by A0 × B0
[
f ×(C) g

]∗
A1 × B1 I mean ↑FCD(Base a,Base b) (A0 ×

B0)
[
f ×(C) g

]∗↑FCD(Base a,Base b) (A1 ×B1).)
Thus it is equivalent to a0 [f ] a1 ∧ b0 [g] b1 that is a0 ×FCD b0

[
f ×(C) g

]∗
a1 ×FCD b1.

(It was used the corollary 1626.) �

Can the above theorem be generalized for the infinitary case?

21.15. Cross-inner and cross-outer product

Let f be an indexed family of funcoids.

Definition 1818.
∏in
i∈dom f f =

∏(C)
i∈dom f (RLD)infi (cross-inner product).

Definition 1819.
∏out
i∈dom f f =

∏(C)
i∈dom f (RLD)outfi (cross-outer product).

Proposition 1820.
∏in
i∈dom f f and

∏out
i∈dom f f are funcoids (not just pointfree

funcoids).

Proof. They are both morphisms StarHom(λi ∈ dom f : Src fi) →
StarHom(λi ∈ dom f : Src fi) for the category of multireloids with star-morphisms,
that is StarHom(λi ∈ dom f : Src fi) is the set of filters on the cartesian product∏
i∈dom f Src fi and likewise for StarHom(λi ∈ dom f : Src fi). �

Obvious 1821. For every funcoids f and g
1◦. f ×in g = (RLD)inf ×(C) (RLD)ing;
2◦. f ×out g = (RLD)outf ×(C) (RLD)outg.

Corollary 1822.
1◦. 〈f ×in g〉a = (RLD)ing ◦ a ◦ (RLD)inf

−1;
2◦. 〈f ×out g〉a = (RLD)outg ◦ a ◦ (RLD)outf

−1

Corollary 1823. For every funcoids f and g and filters a and b on suitable
sets:

1◦. a [f ×in g] b⇔ b 6� (RLD)ing◦a◦(RLD)inf
−1 ⇔ b◦(RLD)inf 6� (RLD)ing◦

a;
2◦. a [f ×out g] b ⇔ b 6� (RLD)outg ◦ a ◦ (RLD)outf

−1 ⇔ b ◦ (RLD)outf 6�
(RLD)outg ◦ a.

Proposition 1824. Knowing that every fi is nonzero, we can restore the values
of fi from the value of

∏in
i∈dom f f .

Proof. It follows that every (RLD)infi is nonzero, thus we can restore
each (RLD)infi from

∏(C)
i∈dom f (RLD)infi =

∏in
i∈dom f f and then we know fi =

(FCD)(RLD)infi. �

Example 1825. The values of f and g cannot be restored from f ×out g for
some nonzero funcoids f and g.



21.16. COORDINATE-WISE CONTINUITY 361

Proof. Obviously idFCD
Ω(N) 6= idFCD

Ω(R), but idFCD
Ω(N)×out idFCD

Ω(N) =
(RLD)out idFCD

Ω(N)×(C)(RLD)out idFCD
Ω(N) = ⊥ ×(C) ⊥ =

(RLD)out idFCD
Ω(R)×(C)(RLD)out idFCD

Ω(R) = idFCD
Ω(R)×out idFCD

Ω(R).
That is the product f ×out g is the same if we take f = g = idFCD

Ω(N) and if we
take f = g = idFCD

Ω(R). �

Question 1826. Which of the following are pairwise equal (for a. two funcoids,
b. any (possibly infinite) number of funcoids)?

1◦. subatomic product;
2◦. displaced product;
3◦. cross-inner product.

21.16. Coordinate-wise continuity

Theorem 1827. Let µ and ν be indexed (by some index set n) families of
endomorphisms for a quasi-invertible dagger category with star-morphisms, and
fi ∈ Hom(Obµi,Ob νi) for every i ∈ n. Then:

1◦. ∀i ∈ n : fi ∈ C(µi, νi)⇒
∏(C)

f ∈ C
(∏(C)

µ,
∏(C)

ν
)
;

2◦. ∀i ∈ n : fi ∈ C′(µi, νi)⇒
∏(C)

f ∈ C′
(∏(C)

µ,
∏(C)

ν
)
;

3◦. ∀i ∈ n : fi ∈ C′′(µi, νi)⇒
∏(C)

f ∈ C′′
(∏(C)

µ,
∏(C)

ν
)
.

Proof. Using the corollary 1727:

∀i ∈ n : fi ∈ C(µi, νi)⇔ ∀i ∈ n : fi ◦ µi v νi ◦ fi ⇒
(C)∏
i∈n

(fi ◦ µi) v
(C)∏
i∈n

(νi ◦ fi)⇔(C)∏
f

 ◦
(C)∏

µ

 v
(C)∏

ν

 ◦
(C)∏

f

⇔ (C)∏
f ∈ C

(C)∏
µ,

(C)∏
ν

.

∀i ∈ n : fi ∈ C′(µi, νi)⇔ ∀i ∈ n : µi v f†i ◦ νi ◦ fi ⇒
(C)∏

µ v
(C)∏
i∈n

(f†i ◦ νi ◦ fi)⇔

(C)∏
µ v

(C)∏
i∈n

f†i

 ◦
(C)∏
i∈n

νi

 ◦
(C)∏
i∈n

fi

⇔
(C)∏

µ v

(C)∏
i∈n

fi

† ◦
(C)∏
i∈n

νi

 ◦
(C)∏
i∈n

fi

⇔ (C)∏
f ∈ C′

(C)∏
µ,

(C)∏
ν

.
∀i ∈ n : fi ∈ C′′(µi, νi)⇔ ∀i ∈ n : fi ◦ µi ◦ f†i v νi ⇒

(C)∏
i∈n

(fi ◦ µi ◦ f†i ) v
(C)∏
i∈n

νi ⇔
(C)∏
i∈n

fi ◦
(C)∏
i∈n

µi ◦
(C)∏
i∈n

f†i v
(C)∏
i∈n

νi ⇔

(C)∏
i∈n

fi ◦
(C)∏
i∈n

µi ◦

(C)∏
i∈n

fi

† v (C)∏
i∈n

νi ⇔
(C)∏
i∈n

fi ∈ C′′
(C)∏

µ,

(C)∏
ν

.
�
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Theorem 1828. Let µ and ν be indexed (by some index set n) families of
endofuncoids, and fi ∈ FCD(Obµi,Ob νi) for every i ∈ n. Then:

1◦. ∀i ∈ n : fi ∈ C(µi, νi)⇒
∏(A)

f ∈ C
(∏(A)

µ,
∏(A)

ν
)
;

2◦. ∀i ∈ n : fi ∈ C′(µi, νi)⇒
∏(A)

f ∈ C′
(∏(A)

µ,
∏(A)

ν
)
;

3◦. ∀i ∈ n : fi ∈ C′′(µi, νi)⇒
∏(A)

f ∈ C′′
(∏(A)

µ,
∏(A)

ν
)
.

Proof. Similar to the previous theorem. �

Theorem 1829. Let µ and ν be indexed (by some index set n) families of point-
free endofuncoids between posets with least elements, and fi ∈ pFCD(Obµi,Ob νi)
for every i ∈ n. Then:

1◦. ∀i ∈ n : fi ∈ C(µi, νi)⇒
∏(S)

f ∈ C
(∏(S)

µ,
∏(S)

ν
)
;

2◦. ∀i ∈ n : fi ∈ C′(µi, νi)⇒
∏(S)

f ∈ C′
(∏(S)

µ,
∏(S)

ν
)
;

3◦. ∀i ∈ n : fi ∈ C′′(µi, νi)⇒
∏(S)

f ∈ C′′
(∏(S)

µ,
∏(S)

ν
)
.

Proof. Similar to the previous theorem. �

21.17. Upgrading and downgrading multifuncoids

Lemma 1830.
{

〈f〉∗kX

X∈up

∏
i∈n\{k}

Zi X

}
is a filter base on Ak for every family

(Ai,Zi) of primary filtrators where i ∈ n for some index set n (provided that f is a
multifuncoid of the form Z and k ∈ n and X ∈

∏
i∈n\{k} Ai).

Proof. Let K,L ∈
{
〈f〉∗kX
X∈upX

}
. Then there exist X,Y ∈ upX such that K =

〈f〉∗kX, L = 〈f〉∗kY . We can take Z ∈ upX such that Z v X,Y . Then evidently
〈f〉∗kZ v K and 〈f〉∗kZ v L and 〈f〉∗kZ ∈

{
〈f〉∗kX
X∈upX

}
. �

Definition 1831. Square mult is a mult whose base and core are the same.

Definition 1832. L ∈[f ]⇔ ∀L ∈ upL : L ∈ [f ]∗ for every mult f .

Definition 1833. 〈f〉X =
d
X∈upX 〈f〉

∗
X for every mult f whose base is a

complete lattice.

Definition 1834. Let f be a mult whose base is a complete lattice. Upgrading
of this mult is square mult � f with base � f = core � f = base f and 〈� f〉∗X =
〈f〉X for every X ∈

∏
base f .

Lemma 1835. Li 6� 〈� f〉∗L|(domL)\{i} ⇔ ∀L ∈ upL : Li 6� 〈f〉∗L|(domL)\{i},
if every ((base f)i, (core f)i) is a primary filtrator over a meet-semilattice with least
element.
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Proof.
Li 6� 〈� f〉∗L|(domL)\{i} ⇔
Li 6� 〈f〉L|(domL)\{i} ⇔

Li 6�
l

X∈upL|(domL)\{i}

〈f〉∗X ⇔

Li u
l

X∈upL|(domL)\{i}

〈f〉∗X 6= ⊥ ⇔

l

X∈upL|(domL)\{i}

〈Liu〉∗〈f〉∗X 6= ⊥ ⇔

l{ Li u 〈f〉∗X
X ∈ upL|(domL)\{i}

}
6= ⊥ ⇔ (*)

⊥ /∈
{

Li u 〈f〉∗X
X ∈ upL|(domL)\{i}

}
⇔

∀X ∈ upL|(domL)\{i} : Li u 〈f〉∗X 6= ⊥ ⇔ (**)
∀L ∈ upL : 〈f〉∗L|domL u Li 6= ⊥ ⇔
∀L ∈ upL : Li 6� 〈f〉∗L|domL.

(*) because
{

Liu〈f〉∗X
X∈upL|(domL)\{i}

}
is a filter base (by lemma 1830) of the filter

d{ Liu〈f〉∗X
X∈upL|(domL)\{i}

}
.

(**) by theorem 534. �

Proposition 1836. � f is a square multifuncoid, if every ((base f)i, (core f)i)
is a primary filtrator over a bounded meet-semilattice.

Proof. Our filtrators are with complete base by corollary 515.
Li 6� 〈� f〉∗L|(domL)\{i} ⇔ ∀L ∈ upL : Li 6� 〈f〉∗L|(domL)\{i} by the lemma.
Similarly Lj 6� 〈� f〉∗L|(domL)\{j} ⇔ ∀L ∈ upL : Lj 6� 〈f〉∗L|(domL)\{j}.

So Li 6� 〈� f〉∗L|(domL)\{i} ⇔ Lj 6� 〈� f〉∗L|(domL)\{j} because Li 6�
〈f〉∗L|(domL)\{i} ⇔ Lj 6� 〈f〉∗L|(domL)\{j}. �

Proposition 1837. [� f ]∗ = [f ] if every ((base f)i, (core f)i) is a primary
filtrator over a bounded meet-semilattice.

Proof. Our filtrators are with complete base by corollary 515.
L ∈ [� f ]∗ ⇔

Li 6� 〈� f〉∗L|(domL)\{i} ⇔ (by the lemma)
∀L ∈ upL : Li 6� 〈f〉∗L|(domL)\{i} ⇔

∀L ∈ upL : L ∈ [f ]∗ ⇔
L ∈ [f ].

�

Proposition 1838. L ∈ [f ] ⇔ Li 6� 〈f〉L|(domL)\{i} if every
((base f)i, (core f)i) is a primary filtrator over a bounded meet-semilattice.

Proof. Our filtrators are with complete base by corollary 515.
The theorem holds because � f is a multifuncoid and [f ] = [� f ]∗ and 〈f〉 =

〈� f〉∗. �

Proposition 1839. Λ � g =� Λg for every prestaroid g on boolean lattices.
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Proof. Our filtrators are with separable core by theorem 534.

Y ∈ 〈Λ � g〉∗iL ⇔
L ∪ {(i, Y )} ∈ GR � g ⇔

up(L ∪ {(i, Y )}) ⊆ GR g ⇔
∀K ∈ up(L ∪ {(i, Y )}) : K ∈ GR g ⇔

∀X ∈ upL, P ∈ upY : X ∪ {(i, P )} ∈ GR g ⇔
∀X ∈ upL, P ∈ upY : P 6� (val g)iX ⇔

∀X ∈ upL : Y 6� (val g)iX ⇔
∀X ∈ upL : Y ∈ (val g)iX ⇔

∀X ∈ upL : X ∪ {(i, Y )} ∈ GR g ⇔
∀X ∈ upL : Y ∈ 〈Λg〉∗X ⇔

∀X ∈ upL : Y u 〈Λg〉∗X 6= ⊥ ⇔

⊥ /∈
{
Y u 〈Λg〉∗X
X ∈ upL

}
⇔ (*)

l{Y u 〈Λg〉∗X
X ∈ upL

}
6= ⊥ ⇔

l

X∈upL
〈Y u〉∗〈Λg〉∗X 6= ⊥ ⇔

Y 6�
l

X∈upL
〈Λg〉∗X ⇔

Y ∈
l

X∈upL
〈Λg〉∗X ⇔

Y ∈ 〈Λg〉iL ⇔
Y ∈ 〈� Λg〉∗iL.

(*) because
{
Y u〈Λg〉∗X
X∈upL

}
is a filter base (by the lemma 1830) of

d{Y u〈Λg〉∗X
X∈upL

}
.
�

Definition 1840. Fix an indexed family (Ai,Zi) of filtrators. Downgrading of
a square mult f of the form (Ai,Ai) is the mult � f of the form (Ai,Zi) defined by
the formula 〈� f〉∗i = 〈f〉∗i |Zi for every i.

Obvious 1841. Downgrading of a square multifuncoid is a multifuncoid.

Obvious 1842. �� f = f for every mult f of the form (Ai,Zi).

Proposition 1843. Let f be a square mult whose base is a complete lattice.
Then �� f = f .

Proof. 〈�� f〉∗X =
d
X∈upX 〈� f〉∗X =

d
X∈upX 〈f〉∗X = 〈f〉∗X for every

X ∈
∏
i∈arity f (base f)i. �

21.18. On pseudofuncoids

Definition 1844. Pseudofuncoid from a set A to a set B is a relation f between
filters on A and B such that:
¬(I f ⊥), I t J f K ⇔ I f K ∨ J f K (for every I,J ∈ F (A), K ∈ F (B)),
¬(⊥ f I), K f I t J ⇔ K f I ∨ K f J (for every I,J ∈ F (B), K ∈ F (A)).
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Obvious 1845. Pseudofuncoid is just a staroid of the form (F (A),F (B)).

Obvious 1846. [f ] is a pseudofuncoid for every funcoid f .

Example 1847. If A and B are infinite sets, then there exist two different
pseudofuncoids f and g from A to B such that f∩(T A×T B) = g∩(T A×T B) =
[c] ∩ (T A×T B) for some funcoid c.

Remark 1848. Considering a pseudofuncoid f as a staroid, we get f ∩ (T A×
T B) =� f .

Proof. Take

f =
{

(X ,Y)
X ∈ F (A),Y ∈ F (B),

⋂
X and

⋂
Y are infinite

}
and

g = f ∪
{

(X ,Y)
X ∈ F (A),Y ∈ F (B),X w a,Y w b

}
where a and b are nontrivial ultrafilters on A and B correspondingly, c is the funcoid
defined by the relation

[c]∗ = δ =
{

(X,Y )
X ∈PA, Y ∈PB,X and Y are infinite

}
.

First prove that f is a pseudofuncoid. The formulas ¬(I f ⊥) and ¬(⊥ f I) are
obvious. We have

I t J f K ⇔
⋂

(I t J ) and
⋂
Y are infinite⇔⋂

I∪
⋂
J and

⋂
Y are infinite⇔

(⋂
I or

⋂
J is infinite

)
∧
⋂
Y is infinite⇔(⋂

I and
⋂
Y are infinite

)
∨
(⋂
J and

⋂
Y are infinite

)
⇔

I f K ∨ J f K.

Similarly K f I t J ⇔ K f I ∨ K f J . So f is a pseudofuncoid.
Let now prove that g is a pseudofuncoid. The formulas ¬(I g ⊥) and ¬(⊥ g I)

are obvious. Let ItJ g K. Then either ItJ f K and then ItJ g K or ItJ w a
and then I w a∨J w a thus having I g K∨J g K. So I tJ g K ⇒ I g K∨J g K.
The reverse implication is obvious. We have I t J g K ⇔ I g K ∨ J g K and
similarly K g I t J ⇔ K g I ∨ K g J . So g is a pseudofuncoid.

Obviously f 6= g (a g b but not a f b).
It remains to prove f ∩ (T A× T B) = g ∩ (T A× T B) = [c] ∩ (T A× T B).

Really, f ∩ (T A × T B) = [c] ∩ (T A × T B) is obvious. If (↑A X, ↑B Y ) ∈
g ∩ (T A × T B) then either (↑A X, ↑B Y ) ∈ f ∩ (T A × T B) or X ∈ up a,
Y ∈ up b, so X and Y are infinite and thus (↑A X, ↑B Y ) ∈ f ∩ (T A × T B). So
g ∩ (T A×T B) = f ∩ (T A×T B). �

Remark 1849. The above counter-example shows that pseudofuncoids (and
more generally, any staroids on filters) are “second class” objects, they are not
full-fledged because they don’t bijectively correspond to funcoids and the elegant
funcoids theory does not apply to them.

From the above it follows that staroids on filters do not correspond (by restric-
tion) to staroids on principal filters (or staroids on sets).
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21.18.1. More on free stars and principal free stars.

Proposition 1850. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator.
3◦. (A,Z) is a filtrator.
4◦. ∂F =� ?F for every F ∈ A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Obvious.
3◦⇒4◦. X ∈ ∂F ⇔ X 6�A F ⇔ X ∈ ?F ⇔ X ∈� ?F for every X ∈ Z.

�

Proposition 1851. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a meet-semilattice with least element.
3◦. (A,Z) is a filtrator with separable core.
4◦. ?F =� ∂F for every F ∈ A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. Theorem 534.
3◦⇒4◦. X ∈� ∂F ⇔ upX ⊆ ∂F ⇔ ∀X ∈ upX : X 6� F ⇔ X 6� F ⇔ X ∈ ?F .

�

Proposition 1852. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a complete boolean lattice.
3◦. (A,Z) is a down-aligned, with join-closed, binarily meet-closed and sepa-

rable core which is a complete boolean lattice.
4◦. The following conditions are equivalent for any F ∈ A:

(a) F ∈ Z.
(b) ∂F is a principal free star on Z.
(c) ?F is a principal free star on A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. The filtrator (A,Z) is with with join-closed core by theorem 531, binarily

meet-closed core by corollary 533, with separable core by theorem 534.
3◦⇒4◦.

4◦a⇒4◦b. That ∂F does not contain the least element is obvious. That
∂F is an upper set is obvious. So it remains to apply theorem 580.

4◦b⇒4◦c. That ?F does not contain the least element is obvious. That
?F is an upper set is obvious. So it remains to apply theorem 580.

4◦c⇒4◦a. Apply theorem 580.
�

Proposition 1853. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a join-semilattice.
3◦. The filtrator (A,Z) is weakly down-aligned and with binarily join-closed

core and Z is a join-semilattice.
4◦. If S is a free star on A then � S is a free star on Z.
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Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. It is weakly down-aligned by obvious 508 and with join-closed core by

theorem 531.
3◦⇒4◦. For every X,Y ∈ Z we have

X tZ Y ∈� S ⇔ X tZ Y ∈ S ⇔ X tA Y ∈ S ⇔
X ∈ S ∨ Y ∈ S ⇔ X ∈� S ∨ Y ∈� S;

Suppose there is least element ⊥Z ∈� S. Then ⊥A = ⊥Z ∈ S what is impossible.
�

Proposition 1854. The following is an implications tuple:
1◦. (A,Z) is a powerset filtrator.
2◦. (A,Z) is a primary filtrator over a boolean lattice.
3◦. If S is a free star on Z then � S is a free star on A.

Proof.
1◦⇒2◦. Obvious.
2◦⇒3◦. There exists a filter F such that S = ∂F . For every filters X ,Y ∈ A

X tA Y ∈� S ⇔ up(X tA Y) ⊆ S ⇔ ∀K ∈ up(X tA Y) : K ∈ ∂F ⇔
∀K ∈ up(X tAY) : K 6� F ⇔ X tAY 6� F ⇔ X tAY ∈ ?F ⇔ X ∈ ?F∨Y ∈ ?F ⇔

X 6� F ∨ Y 6� F ⇔ ∀X ∈ upX : X 6� F ∨ ∀Y ∈ upY : Y 6� F ⇔
∀X ∈ upX : X ∈ ∂F ∨ ∀Y ∈ upY : Y ∈ ∂F ⇔

upX ⊆ S ∨ upY ⊆ S ⇔ X ∈� S ∨ Y ∈� S;

⊥ ∈� S ⇔ up⊥ ⊆ S ⇔ ⊥ ∈ S what is false.
�

Proposition 1855. The following is an implications tuple:
1◦. (A,Z) is primary filtrator over a complete lattice.
2◦. (A,Z) is down-aligned filtrator with join-closed core over a complete lat-

tice.
3◦. If S is a principal free star on A then � S is a principal free star on Z.

Proof.
1◦⇒2◦. It is down-aligned by obvious 503 and with join-closed core by theorem 531.
2◦⇒3◦. d

Z
T ∈� S ⇔ d

Z
T ∈ S ⇔ d

A
T ∈ S ⇔ T ∩ S 6= ∅ ⇔ T∩ � S 6= ∅ for

every T ∈PZ; ⊥ /∈� S is obvious.
�

Proposition 1856. The following is an implications tuple:
1◦. (A,Z) is powerset filtrator.
2◦. (A,Z) is primary filtrator over a boolean lattice.
3◦. If S is a principal free star on Z then � S is a principal free star on A.

Proof.
1◦⇒2◦. Obvious.
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2◦⇒3◦. There exists a principal filter F such that S = ∂F .

A

lT ∈� S ⇔ up
A

lT ⊆ S ⇔ ∀K ∈ up
A

lT : K ∈ ∂F ⇔

∀K ∈ up
A

lT : K 6� F ⇔
A

lT 6� F ⇔
A

lT ∈ ?F ⇔ ∃K ∈ T : K ∈ ?F ⇔
∃K ∈ T : K 6� F ⇔ ∃K ∈ T∀K ∈ upK : K 6� F ⇔ ∃K ∈ T∀K ∈ upK : K ∈ ∂F ⇔

∃K ∈ T : upK ⊆ S ⇔ ∃K ∈ T : K ∈� S ⇔ T∩ � S 6= ∅.

⊥ ∈� S ⇔ up⊥ ⊆ S ⇔ ⊥ ∈ S what is false.
�

21.18.2. Complete staroids and multifuncoids.

Definition 1857. Consider an indexed family Z of posets. A pre-staroid f of
the form Z is complete in argument k ∈ arity f when (val f)kL is a principal free
star for every L ∈

∏
i∈(arity f)\{k} Zi.

Definition 1858. Consider an indexed family (Ai,Zi) of filtrators and mul-
tifuncoid f is of the form (A,Z). Then f is complete in argument k ∈ arity f iff
〈f〉∗kL ∈ Zk for every family L ∈

∏
i∈(arity f)\{k} Zi.

Proposition 1859. Consider an indexed family (Ai,Zi) of primary filtrators
over complete boolean lattices. Let f be a multifuncoid of the form (A,Z) and
k ∈ arity f . The following are equivalent:

1◦. Multifuncoid f is complete in argument k.
2◦. Pre-staroid � [f ]∗ is complete in argument k.

Proof. Let L ∈
∏

Z. We have L ∈ GR [f ]∗⇔ Li 6� 〈f〉∗iL|(domL)\{i};(
val [f ]∗

)
k
L = ∂〈f〉∗kL by the definition.

So
(
val [f ]∗

)
k
L is a principal free star iff 〈f〉∗kL ∈ Zk (proposition 1852) for

every L ∈
∏
i∈(arity f)\{k} Zi. �

Example 1860. Consider funcoid f = 1FCD
U . It is obviously complete in each

its two arguments. Then [f ]∗ is not complete in each of its two arguments because
(X ,Y) ∈[f ]∗⇔ X 6� Y what does not generate a principal free star if one of the
arguments (say X ) is a fixed nonprincipal filter.

Theorem 1861. Consider an indexed family (A,Z) of filtrators which are down-
aligned, separable, with join-closed, binarily meet-closed and with separable core
which is a complete boolean lattice.

Let f be a multifuncoid of the aforementioned form. Let k, l ∈ arity f and
k 6= l. The following are equivalent:

1◦. f is complete in the argument k.
2◦. 〈f〉∗l (L ∪ {(k, dX)}) = dx∈X〈f〉

∗
l (L ∪ {(k, x)}) for every X ∈PZk, L ∈∏

i∈(arity f)\{k,l} Zi.
3◦. 〈f〉∗l (L ∪ {(k, dX)}) = dx∈X〈f〉

∗
l (L ∪ {(k, x)}) for every X ∈PAk, L ∈∏

i∈(arity f)\{k,l} Zi.

Proof.
3◦⇒2◦. Obvious.
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2◦⇒1◦. Let Y ∈ Z.

lX 6� 〈f〉
∗
k(L ∪ {(l, Y )})⇔ Y 6� 〈f〉∗l

(
L ∪

{(
k, lX

)})
⇔

Y 6� l

x∈X
〈f〉∗l (L ∪ {(k, x)})⇔ (proposition 580)⇔

∃x ∈ X : Y 6� 〈f〉∗l (L ∪ {(k, x)})⇔ ∃x ∈ X : x 6� 〈f〉∗k(L ∪ (l, Y )).

It is equivalent (proposition 1852 and the fact that [f ]∗ is an upper
set) to 〈f〉∗k(L∪ {(l, Y )}) being a principal filter and thus (val f)kL being
a principal free star.

1◦⇒3◦.

Y 6� 〈f〉∗l
(
L ∪

{(
k, lX

)})
⇔ lX 6� 〈f〉k(L ∪ {(l, Y )})⇔

∃x ∈ X : x 6� 〈f〉∗k(L ∪ {(l, Y )})⇔ ∃x ∈ X : Y 6� 〈f〉∗l (L ∪ {(k, x)})⇔

Y 6� l

x∈X
〈f〉∗l (L ∪ {(k, x)})

for every principal Y . Thus 〈f〉∗l (L ∪ {(k, dX)}) = dx∈X〈f〉
∗
l (L ∪

{(k, x)}) by separability.
�

21.19. Identity staroids and multifuncoids

21.19.1. Identity relations. Denote idA[n] =
{
λi∈n:x
x∈A

}
=
{
n×{x}
x∈A

}
the n-

ary identity relation on a set A (for each index set n).

Proposition 1862.
∏
X 6� idA[n] ⇔

⋂
i∈nXi ∩ A 6= ∅ for every indexed

family X of sets.

Proof.∏
X 6� idA[n] ⇔ ∃t ∈ A : n×{t} ∈

∏
X ⇔ ∃t ∈ A∀i ∈ n : t ∈ Xi ⇔

⋂
i∈n

Xi∩A 6= ∅.

�

21.19.2. General definitions of identity staroids. Consider a filtrator
(A,Z) and A ∈ A.

I will define below small identity staroids idStrd
A[n] and big identity staroids IDStrd

A[n].
That they are really staroids and even completary staroids (under certain condi-
tions) is proved below.

Definition 1863. Consider a filtrator (A,Z). Let Z be a complete lattice. Let
A ∈ A, let n be an index set.

form idStrd
A[n] = Zn; L ∈ GR idStrd

A[n] ⇔
Zl

i∈n
Li ∈ ∂A.

Obvious 1864. X ∈ GR idStrd
A[n] ⇔ ∀A ∈ upA :

dZ
i∈nXi uA 6= 0 if our filtrator

is with separable core.

Definition 1865. The subset X of a poset A has a nontrivial lower bound (I
denote this predicate as MEET(X)) iff there is nonleast a ∈ A such that ∀x ∈ X :
a v x.
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Definition 1866. Staroid IDStrd
A[n] (for any A ∈ A where A is a poset) is defined

by the formulas:

form IDStrd
A[n] = An; L ∈ GR IDStrd

A[n] ⇔ MEET
({

Li
i ∈ n

}
∪ {A}

)
.

Obvious 1867. If A is complete lattice, then L ∈ GR IDStrd
A[n] ⇔

d
L 6� A.

Obvious 1868. If A is complete lattice and a is an atom, then L ∈ GR IDStrd
a[n] ⇔d

L w a.

Obvious 1869. If A is a complete lattice then there exists a multifuncoid
Λ IDStrd

A[n] such that 〈Λ IDStrd
A[n]〉kL =

d
i∈n Li u A for every k ∈ n, L ∈ An\{k}.

Proposition 1870. Let (A,Z) be a meet-closed filtrator and Z be a complete
lattice and A be a meet-semilattice. There exists a multifuncoid Λ idStrd

A[n] such that
〈Λ idStrd

A[n]〉kL =
dZ
i∈n Li uA A for every k ∈ n, L ∈ Zn\{k}.

Proof. We need to prove that L∪{(k,X)} ∈ GR idStrd
A[n] ⇔

dZ
i∈n LiuAA 6�A X.

But
Zl

i∈n
Li uA A 6�A X ⇔

Zl

i∈n
Li uA X 6�A A ⇔

Zl

i∈n
(L ∪ {(k,X)})i 6�A A ⇔ L ∪ {(k,X)} ∈ GR idStrd

A[n] .

�

21.19.3. Identities are staroids.

Proposition 1871. Let A be a complete meet infinite distributive lattice and
A ∈ A. Then IDStrd

A[n] is a staroid.

Proof. That L /∈ GR IDStrd
A[n] if Lk = ⊥ for some k ∈ n is obvious. It remains

to prove

L∪{(k,XtY )} ∈ GR IDStrd
A[n] ⇔ L∪{(k,X)} ∈ GR IDStrd

A[n] ∨L∪{(k, Y )} ∈ GR IDStrd
A[n] .

It is equivalent to
l

i∈n\{k}

Li u (X t Y ) 6� A ⇔
l

i∈n\{k}

Li uX 6� A ∨
l

i∈n\{k}

Li u Y 6� A.

Really,
l

i∈n\{k}

Li u (X t Y ) 6� A ⇔
l

i∈n\{k}

((Li uX) t (Li u Y )) 6� A ⇔

 l

i∈n\{k}

Li uX

 t
 l

i∈n\{k}

Li u Y

 6� A ⇔
l

i∈n\{k}

Li uX 6� A ∨
l

i∈n\{k}

Li u Y 6� A.

�

Proposition 1872. Let (A,Z) be a starrish filtrator over a complete meet
infinite distributive lattice and A ∈ A. Then idStrd

A[n] is a staroid.
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Proof. That L /∈ GR idStrd
A[n] if Lk = ⊥ for some k ∈ n is obvious. It remains

to prove
L∪{(k,XtY )} ∈ GR idStrd

A[n] ⇔ L∪{(k,X)} ∈ GR idStrd
A[n] ∨L∪{(k, Y )} ∈ GR idStrd

A[n] .

It is equivalent to
Zl

i∈n\{k}

Li u (X t Y ) 6� A ⇔
Zl

i∈n\{k}

Li uX 6� A ∨
Zl

i∈n\{k}

Li u Y 6� A.

Really,
Zl

i∈n\{k}

Li u (X t Y ) 6� A ⇔
Zl

i∈n\{k}

((Li uX) t (Li u Y ))⇔

 Zl

i∈n\{k}

Li uX

 t
 Zl

i∈n\{k}

Li u Y

 6� A ⇔
Zl

i∈n\{k}

Li uX 6� A ∨
Zl

i∈n\{k}

Li u Y 6� A.

�

Proposition 1873. Let (A,Z) be a primary filtrator over a boolean lattice.
IDStrd
A[n] is a completary staroid for every A ∈ A.

Proof. ?A is a free star by theorem 611.

L0 t L1 ∈ GR IDStrd
A[n] ⇔ ∀i ∈ n : (L0 t L1)i ∈ ?A ⇔ ∀i ∈ n : L0i t L1i ∈ ?A ⇔

∀i ∈ n : (L0i ∈ ?A ∨ L1i ∈ ?A)⇔ ∃c ∈ {0, 1}n∀i ∈ n : Lc(i)i ∈ ?A ⇔
∃c ∈ {0, 1}n : (λi ∈ n : Lc(i)i) ∈ GR IDStrd

A[n].

�

Lemma 1874. X ∈ GR idStrd
A[n] ⇔ Cor′

dA
i∈nXi 6� A for a join-closed filtrator

(A,Z) such that both A and Z are complete lattices, provided that A ∈ A.

Proof. X ∈ GR idStrd
A[n] ⇔

dZ
i∈nXi 6� A ⇔ Cor′

dA
i∈nXi 6� A (theorem 599).

�

Conjecture 1875. idStrd
A[n] is a completary staroid for every set-theoretic fil-

ter A.
Conjecture 1876. � idStrd

A[n] is a completary staroid if A is a filter on a set
and n is an index set.

21.19.4. Special case of sets and filters.

Proposition 1877. ↑Zn X ∈ GR idStrd
a[n] ⇔ ∀A ∈ a :

∏
X 6� idA[n] for every

filter a on a powerset and index set n.
Proof.

∀A ∈ a :
∏

X 6� idA[n] ⇔ ∀A ∈ a :
⋂
i∈n

Xi ∩A 6= ∅ ⇔ ∀A ∈ a :
Zl

i∈n
Xi 6� A⇔

∀A ∈ a :
Zl

i∈n
Xi 6�A A⇔

Zl

i∈n
↑Z Xi 6�A a⇔

Zl

i∈n
(↑Z

n

X)i 6�A a⇔↑Z
n

X ∈ GR ida[n] .

�
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Proposition 1878. Y ∈ GR idStrd
A[n] ⇔ ∀A ∈ upA : Y ∈ GR ↑Strd idA[n] for

every filter A on a powerset and Y ∈ Zn.
Proof. Take Y =↑Zn X.

∀A ∈ upA : Y ∈ GR ↑Strd idA[n] ⇔ ∀A ∈ upA :↑Z
n

X ∈ GR ↑Strd idA[n] ⇔

∀A ∈ upA :
∏

X 6� idA[n] ⇔↑Z
n

X ∈ GR idStrd
A[n] ⇔ Y ∈ GR idStrd

A[n] .

�

Proposition 1879. ↑Zn X ∈ GR idStrd
a[n] ⇔ ∀A ∈ a∃t ∈ A∀i ∈ n : t ∈ Xi.

Proof.
↑Z

n

X ∈ GR idStrd
a[n] ⇔ ∃A ∈ a∃t ∈ A : n×{t} ∈

∏
X ⇔ ∀A ∈ a∃t ∈ A∀i ∈ n : t ∈ Xi.

�

21.19.5. Relationships between big and small identity staroids.

Definition 1880. anStrd =
∏Strd
i∈n a for every element a of a poset and an index

set n.
Lemma 1881. L ∈ GR IDStrd

a[n] iff
⋃
i∈n upLi∪{a} has finite intersection property

(for primary filtrators over meet semilattices with greatest element).
Proof. The lattice A is complete by corollary 515. L ∈ GR IDStrd

a[n] ⇔d
i∈n upL u a 6= ⊥F ⇔ ∀X ∈

d
i∈n upL u a : X 6= ⊥ what is equivalent of⋃

i∈n Li ∪ {a} having finite intersection property. �

Proposition 1882. � idStrd
a[n] v IDStrd

a[n] v anStrd for every filter a (on any dis-
tributive lattice with least element) and an index set n.

Proof.
GR � idStrd

a[n] ⊆ GR IDStrd
a[n].

L ∈ GR � idStrd
a[n] ⇔ upL ⊆ GR idStrd

a[n] ⇔ ∀L ∈ upL : L ∈ GR idStrd
a[n] ⇔

(theorem 534)⇔ ∀L ∈ upL∀A ∈ up a :
Zl

i∈n
Li 6� A⇔

∀L ∈ upL∀A ∈ up a :
Zl

i∈n
Li uA 6= ⊥ ⇒⋃

i∈n
upLi ∪ {a} has finite intersection property⇔ L ∈ GR IDStrd

a[n] .

GR IDStrd
a[n] ⊆ GR anStrd. L ∈ GR IDStrd

a[n] ⇔ MEET
({ Li

i∈n
}
∪ {a}

)
⇒ ∀i ∈ a : Li 6�

a⇔ L ∈ GR aaStrd.
�

Proposition 1883. � idStrd
a[a] @ IDStrd

a[a] = aaStrd for every nontrivial ultrafilter a
on a set.

Proof. �

GR � idStrd
a[a] 6= GR IDStrd

a[a]. Let Li =↑Base(a) i. Then trivially L ∈ GR IDStrd
a[a]. But

to disprove L ∈ GR � idStrd
a[a] it’s enough to show L /∈ GR idStrd

a[a] for some
L ∈ upL. Really, take Li = Li =↑Base(a) i. Then L ∈ GR idStrd

a[a] ⇔ ∀A ∈
a∃t ∈ A∀i ∈ a : t ∈ i what is clearly false (we can always take i ∈ a such
that t /∈ i for any point t).
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GR IDStrd
a[a] = GR aaStrd. L ∈ GR IDStrd

a[a] ⇔ ∀i ∈ a : Li w a ⇔ ∀i ∈ a : Li 6� a ⇔ L ∈
GR aaStrd.

Corollary 1884. aaStrd isn’t an atom when a is a nontrivial ultrafilter.

Corollary 1885. Staroidal product of an infinite indexed family of ultrafilters
may be non-atomic.

Proposition 1886. idStrd
a[n] is determined by the value of � idStrd

a[n] (for every
element a of a filtrator (A,Z) over a complete lattice Z). Moreover idStrd

a[n] =��
idStrd
a[n].

Proof. Use general properties of upgrading and downgrading (proposi-
tion 1650). �

Proposition 1887. IDStrd
a[n] is determined by the value of � IDStrd

a[n], moreover
IDStrd

a[n] =�� IDStrd
a[n] (for filter a on a primary filtrator over a meet semilattice with

greatest element).

Proof.

L ∈�� IDStrd
a[n] ⇔ upL ⊆� IDStrd

a[n] ⇔ upL ⊆ IDStrd
a[n] ⇔

∀L ∈ upL : L ∈ IDStrd
a[n] ⇔ ∀L ∈ upL :

l

i∈n
Li u a 6= ⊥F ⇔⋃

i∈n
upLi ∪ {a} has finite intersection property⇔ (lemma)⇔ L ∈ GR IDStrd

a[n] .

�

Proposition 1888. idStrd
a[n] v� IDStrd

a[n] for every filter a and an index set n.

Proof. idStrd
a[n] =�� idStrd

a[n] v� IDStrd
a[n]. �

Proposition 1889. idStrd
a[a] @� IDStrd

a[a] for every nontrivial ultrafilter a.

Proof. Suppose idStrd
a[a] =� IDStrd

a[a]. Then IDStrd
a[a] =�� IDStrd

a[a] =� idStrd
a[a] what

contradicts to the above. �

Obvious 1890. L ∈ GR IDStrd
a[n] ⇔ a u

d
i∈n Li 6= ⊥ if a is an element of a

complete lattice.

Obvious 1891. L ∈ GR IDStrd
a[n] ⇔ ∀i ∈ n : Li w a ⇔ ∀i ∈ n : Li 6� a if a is an

ultrafilter on A.

21.19.6. Identity staroids on principal filters. For principal filter ↑ A
(where A is a set) the above definitions coincide with n-ary identity relation, as
formulated in the following propositions:

Proposition 1892. ↑Strd idA[n] = idStrd
↑A[n].

Proof.

L ∈ GR ↑Strd idA[n] ⇔
∏

L 6� idA[n] ⇔ ∃t ∈ A∀i ∈ n : t ∈ Li ⇔⋂
i∈n

Li ∩A 6= ∅ ⇔ L ∈ GR idStrd
↑A[n] .

Thus ↑Strd idA[n] = idStrd
↑A[n]. �

Corollary 1893. idStrd
↑A[n] is a principal staroid.
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Question 1894. Is IDStrd
A[n] principal for every principal filter A on a set and

index set n?

Proposition 1895. ↑Strd idA[n] v� IDStrd
↑A[n] for every set A.

Proof.

L ∈ GR ↑Strd idA[n] ⇔ L ∈ GR idStrd
↑A[n] ⇔↑ A 6�

Zl

i∈n
Li ⇒

↑ A 6�
Al

i∈n
Li ⇔ L ∈� GR IDStrd

↑A[n] .

�

Proposition 1896. ↑Strd idA[n] @� IDStrd
↑A[n] for some set A and index set n.

Proof. L ∈ GR ↑Strd idA[n] ⇔
dZ
i∈n Li 6�↑ A what is not implied by

dA
i∈n Li 6�↑ A that is L ∈� GR IDStrd

↑A[n]. (For a counter example take n = N,
Li =]0; 1/i[, A = R.) �

Proposition 1897. �↑Strd idA[n] =� idStrd
↑A[n].

Proof. �↑Strd idA[n] =� idStrd
↑A[n] is obvious from the above. �

Proposition 1898. �↑Strd idA[n] v IDStrd
↑A[n].

Proof.

X ∈ GR �↑Strd idA[n] ⇔ upX ⊆ GR ↑Strd idA[n] ⇔

∀Y ∈ upX : Y ∈ GR ↑Strd idA[n] ⇔ ∀Y ∈ upX : Y ∈ GR idStrd
↑A[n] ⇔

∀Y ∈ upX :
Zl

i∈n
Yiu ↑ A 6= ⊥ ⇒

Al

i∈n
Xiu ↑ A 6= ⊥ ⇔ X ∈ GR IDStrd

↑A[n] .

�

Proposition 1899. �↑Strd idA[n] @ IDStrd
↑A[n] for some set A.

Proof. We need to prove �↑Strd idA[n] 6= IDStrd
↑A[n] that is it’s enough to prove

(see the above proof) that ∀Y ∈ upX :
dZ
i∈n Yiu ↑ A 6= ⊥ :

dA
i∈n Xiu ↑ A 6= ⊥.

A counter-example follows:
∀Y ∈ upX :

dZ
i∈n Yiu ↑ A 6= ⊥ does not hold for n = N, Xi =↑] − 1/i; 0[ for

i ∈ n, A =] − ∞; 0[. To show this, it’s enough to prove
dZ
i∈n Yiu ↑ A = ⊥ for

Yi =↑]− 1/i; 0[ but this is obvious since
dZ
i∈n Yi = ⊥.

On the other hand,
dA
i∈n Xiu ↑ A 6= ⊥ for the same X and A. �

The above theorems are summarized in the diagram at figure 1:

� IDStrd
↑A[n] w ↑Strd idA[n] = idStrd

↑A[n]

IDStrd
↑A[n] w �↑Strd idA[n] =� idStrd

↑A[n]

� � � �

Figure 1. Relationships of identity staroids for principal filters.
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Remark 1900. v on the diagram means inequality which can become strict
for some A and n.

21.19.7. Identity staroids represented as meets and joins.

Proposition 1901. idStrd
a[n] =

dAnch
A∈up a idA[n] =

dStrd
A∈up a idA[n] for every filter a

on a powerset.

Proof. Since idStrd
a[n] is a staroid (proposition 1872), it’s enough to prove that

idStrd
a[n] is the greatest lower bound of

{
↑StrdidA[n]
A∈up a

}
.

That idStrd
a[n] v↑Strd idA[n] for every A ∈ up a is obvious.

Let f v↑Strd idA[n] for every A ∈ up a.

L ∈ GR f ⇒ ∀A ∈ up a : L ∈ GR ↑Strd idA[n] ⇔

∀A ∈ up a :
∏

L 6� idA[n] ⇔ ∀A ∈ up a :
Zl

i∈n
Li 6� A⇒

∀A ∈ up a :
Al

i∈n
Li 6� A⇒

Al

i∈n
Li 6� a⇒ L ∈ GR idStrd

a[n] .

Thus f v idStrd
a[n]. �

Proposition 1902. IDStrd
A[n] = da∈atomsA IDStrd

a[n] = da∈atomsA a
n
Strd where the

join may be taken on every of the following posets: anchored relations, staroids,
completary staroids, provided that A is a filter on a set.

Proof. IDStrd
A[n] is a completary staroid (proposition 1873). Thus, it’s enough

to prove that IDStrd
A[n] is the lowest upper bound of

{
IDStrd
a[n]

a∈atomsA

}
(also use the fact

that IDStrd
a[n] = anStrd).

IDStrd
A[n] w IDStrd

a[n] for every a ∈ atomsA is obvious.
Let f w IDStrd

a[n] for every a ∈ atomsA. Then ∀L ∈ GR IDStrd
a[n] : L ∈ GR f that is

∀L ∈ form f :
(

MEET
({

Li
i ∈ n

}
∪ {a}

)
⇒ L ∈ GR f

)
.

But

∃a ∈ atomsA : MEET
({

Li
i ∈ n

}
∪ {a}

)
⇔ ∃a ∈ atomsA :

Al

i∈n
Li 6� a⇐

Al

i∈n
Li 6� A ⇔ L ∈ GR IDStrd

A[n] .

So L ∈ GR IDStrd
A[n] ⇒ L ∈ GR f . Thus f w IDStrd

A[n]. �

Proposition 1903. idStrd
A[n] = da∈atomsA idStrd

a[n] where the meet may be taken
on every of the following posets: anchored relations, staroids, provided that A is a
filter on a set.

Proof. Since idStrd
A[n] is a staroid (proposition 1872), it’s enough to prove the

result for join on anchored relations.
idStrd
A[n] w idStrd

a[n] for every a ∈ atomsA is obvious.
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Let f w idStrd
a[n] for every a ∈ atomsA. Then ∀L ∈ GR idStrd

a[n] : L ∈ GR f that is

∀L ∈ form f :
(

Zl

i∈n
Li 6� a⇒ L ∈ GR f

)
.

But ∃a ∈ atomsA :
dZ
i∈n Li 6� a⇐

dZ
i∈n Li 6� A ⇔ L ∈ idStrd

A[n].
So L ∈ idStrd

A[n] ⇒ L ∈ GR f . Thus f w idStrd
A[n]. �

21.19.8. Finite case.

Theorem 1904. Let n be a finite set.
1◦. idStrd

A[n] =� IDStrd
A[n] if A and Z are meet-semilattices and (A,Z) is a binarily

meet-closed filtrator.
2◦. IDStrd

A[n] =� idStrd
A[n] if (A,Z) is a primary filtrator over a distributive lattice.

Proof.
1◦.

L ∈ GR � IDStrd
A[n] ⇔ L ∈ GR IDStrd

A[n] ⇔ MEET
({

Li
i ∈ n

}
∪ {A}

)
⇔

Al

i∈n
Li u A 6= 0⇔ (by finiteness)⇔

Zl

i∈n
Li u A 6= 0⇔ L ∈ GR idStrd

A[n]

for every L ∈
∏

Z.
2◦.

L ∈ GR � idStrd
A[n] ⇔ upL ⊆ GR idStrd

A[n] ⇔ ∀K ∈ upL : K ∈ GR idStrd
A[n] ⇔

∀K ∈ upL :
Zl

i∈n
Ki ∈ ∂A ⇔ ∀K ∈ upL :

Zl

i∈n
Ki 6� A ⇔

(by finiteness and theorem 532)⇔

∀K ∈ upL :
Al

i∈n
Ki 6� A ⇔ A ∈

⋂
〈?〉∗

{ dA
i∈nKi

K ∈ upL

}
⇔

(by the formula for finite meet of filters, theorem 520)⇔

A ∈
⋂
〈?〉∗ up

Al

i∈n
Li ⇔ ∀K ∈ up

Al

i∈n
Li : A ∈ ?K ⇔ ∀K ∈ up

Al

i∈n
Li : A 6� K ⇔

(by separability of core, theorem 534)⇔
Al

i∈n
Li 6� A ⇔ L ∈ IDStrd

A[n] .

�

Proposition 1905. Let (A,Z) be a binarily meet closed filtrator whose core
is a meet-semilattice. � IDStrd

A[n] and idStrd
A[n] are the same for finite n.

Proof. Because
dZ
i∈domL Li =

dA
i∈domL Li for finitary L. �

21.20. Counter-examples

Example 1906. �� f 6= f for some staroid f whose form is an indexed family
of filters on a set.
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Proof. Let f =
{
A∈F(f)
↑CorA6�∆

}
for some infinite set f where ∆ is some non-

principal filter on f.

A tB ∈ f ⇔↑f Cor(A tB) 6� ∆⇔↑f CorAt ↑f CorB 6� ∆⇔
↑f CorA u∆ 6= ⊥F(f)∨ ↑f CorB u∆ 6= ⊥F(f) ⇔ A ∈ f ∨B ∈ f.

Obviously ⊥F(f) /∈ f . So f is a free star. But free stars are essentially the
same as 1-staroids.
� f = ∂∆. �� f =

{
Z∈F

upZ⊆∂∆

}
=
{

Z∈F
∀K∈upZ:K 6�∆

}
=
{
Z∈F
Z 6�∆

}
= ?∆ 6= f . �

For the below counter-examples we will define a staroid ϑ with arityϑ = N and
GR ϑ ∈P(NN) (based on a suggestion by Andreas Blass):

A ∈ GR ϑ⇔ sup
i∈N

card(Ai ∩ i) = N ∧ ∀i ∈ N : Ai 6= ∅.

Proposition 1907. ϑ is a staroid.

Proof. (valϑ)iL = PN \ {∅} for every L ∈ (PN)N\{i} if

sup
j∈N\{i}

card(Aj ∩ j) = N ∧ ∀j ∈ N \ {i} : Lj 6= ∅.

Otherwise (valϑ)iL = ∅. Thus (valϑ)iL is a free star. So ϑ is a staroid. (That ϑ is
an upper set, is obvious.) �

Proposition 1908. ϑ is a completary staroid.

Proof.

A0 tA1 ∈ GR ϑ⇔ A0 ∪A1 ∈ GR ϑ⇔
sup
i∈N

card((A0i ∪A1i) ∩ i) = N ∧ ∀i ∈ N : A0i ∪A1i 6= ∅ ⇔

sup
i∈N

card((A0i ∩ i) ∪ (A1i ∩ i)) = N ∧ ∀i ∈ N : A0i ∪A1i 6= ∅.

If A0i = ∅ then A0i ∩ i = ∅ and thus A1i ∩ i w A0i ∩ i. Thus we can select
c(i) ∈ {0, 1} in such a way that ∀d ∈ {0, 1} : card(Ac(i)i ∩ i) w card(Adi ∩ i) and
Ac(i)i 6= ∅. (Consider the case A0i, A1i 6= ∅ and the similar cases A0i = ∅ and
A1i = ∅.)

So

A0 tA1 ∈ GR ϑ⇔ sup
i∈N

card(Ac(i)i ∩ i) = N ∧ ∀i ∈ N : Ac(i)i 6= ∅ ⇔

(λi ∈ n : Ac(i)i) ∈ GR ϑ.

Thus ϑ is completary. �

Obvious 1909. ϑ is non-zero.

Example 1910. There is such a nonzero staroid f on powersets that f 6w∏Strd
a for every family a = ai∈N.

Proof. It’s enough to prove ϑ 6w
∏Strd

a.
Let ↑N Ri = ai if ai is principal and Ri = N \ i if ai is non-principal.
We have ∀i ∈ N : Ri ∈ ai.
We have R /∈ GR ϑ because supi∈N card(Ri ∩ i) 6= N.
R ∈

∏Strd
a because ∀X ∈ ai : X ∩Ri 6= ∅.

So ϑ 6w
∏Strd

a. �
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Remark 1911. At http://mathoverflow.net/questions/60925/special-
infinitary-relations-and-ultrafilters there is a proof for arbitrary infinite form,
not just for N.

Conjecture 1912. For every family a = ai∈N of ultrafilters
∏Strd

a is not an
atom nor of the poset of staroids neither of the poset of completary staroids of the
form λi ∈ N : Base(ai).

Conjecture 1913. There exists a non-completary staroid on powersets.
Conjecture 1914. There exists a prestaroid which is not a staroid.
Conjecture 1915. The set of staroids of the form AB where A and B are sets

is atomic.
Conjecture 1916. The set of staroids of the form AB where A and B are sets

is atomistic.
Conjecture 1917. The set of completary staroids of the form AB where A

and B are sets is atomic.
Conjecture 1918. The set of completary staroids of the form AB where A

and B are sets is atomistic.
Example 1919. StarComp(a, f tg) 6= StarComp(a, f)tStarComp(a, g) in the

category of binary relations with star-morphisms for some n-ary relation a and an
n-indexed families f and g of functions.

Proof. Let n = {0, 1}. Let GR a = {(0, 1), (1, 0)} and f = J{(0, 1)}, {(1, 0)}K,
g = J{(1, 0)}, {(0, 1)}K.

For every {0, 1}-indexed family of µ of functions:

L ∈ StarComp(a, µ)⇔ ∃y ∈ a : (y0 µ0 L0 ∧ y1 µ1 L1)⇔
∃y0 ∈ domµ0, y1 ∈ domµ1 : (y0 µ0 L0 ∧ y1 µ1 L1)

for every n-ary relation µ.
Consequently

L ∈ StarComp(a, f)⇔ L0 = 1 ∧ L1 = 0⇔ L = (1, 0)
that is StarComp(a, f) = {(1, 0)}. Similarly

StarComp(a, g) = {(0, 1)}.
Also

L ∈ StarComp(a, f t g)⇔
∃y0, y1 ∈ {0, 1} : ((y0 f0 L0 ∨ y0 g0 L0) ∧ (y1 f1 L1 ∨ y1 g1 L1)).

Thus
StarComp(a, f t g) = {(0, 1), (1, 0), (0, 0), (1, 1)}.

�

Corollary 1920. The above inequality is possible also for star-morphisms of
funcoids and star-morphisms of reloids.

Proof. Because finitary funcoids and reloids between finite sets are essentially
the same as finitary relations and our proof above works for binary relations. �

The following example shows that the theorem 1861 can’t be strengthened:
Example 1921. For some multifuncoid f on powersets complete in argument

k the following formula is false:
〈f〉l(L ∪ {(k, dX)}) = dx∈X〈f〉l(L ∪ {(k, x)}) for every X ∈ PZk, L ∈∏

i∈(arity f)\{k,l}Fi.

http://mathoverflow.net/questions/60925/special-infinitary-relations-and-ultrafilters
http://mathoverflow.net/questions/60925/special-infinitary-relations-and-ultrafilters
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Proof. Consider multifuncoid f = Λ idStrd
↑U [3] where U is an infinite set (of the

form Z3) and L = (Y ) where Y is a nonprincipal filter on U .
〈f〉0(L ∪ {(k, dX)}) = Y u dX;

dx∈X〈f〉0(L ∪ {(k, x)}) = dx∈X(Y u x).
It can be Y u dX = dx∈X(Y u x) only if Y is principal: Really: Y u dX =

dx∈X(Y u x) implies Y 6� dX ⇒ dx∈X(Y u x) 6= ⊥ ⇒ ∃x ∈ X : Y 6� x and thus
Y is principal. But we claimed above that it is nonprincipal. �

Example 1922. There exists a staroid f and an indexed family X of principal
filters (with arity f = domX and (form f)i = Base(Xi) for every i ∈ arity f), such
that f v

∏Strd
X and Y uX /∈ GR f for some Y ∈ GR f .

Remark 1923. Such examples obviously do not exist if both f is a principal
staroid and X and Y are indexed families of principal filters (because for powerset
algebras staroidal product is equivalent to Cartesian product). This makes the
above example inspired.

Proof. (Monroe Eskew) Let a be any (trivial or nontrivial) ultrafilter on
an infinite set U . Let A,B ∈ a be such that A ∩ B ⊂ A,B. In other words, A, B
are arbitrary nonempty sets such that ∅ 6= A∩B ⊂ A,B and a be an ultrafilter on
A ∩B.

Let f be the staroid whose graph consists of functions p : U → a such that
either p(n) ⊇ A for all but finitely many n or p(n) ⊇ B for all but finitely many n.
Let’s prove f is really a staroid.

It’s obvious px 6= ∅ for every x ∈ U . Let k ∈ U , L ∈ aU\{k}. It is enough
(taking symmetry into account) to prove that

L ∪ {(k, x t y)} ∈ GR f ⇔ L ∪ {(k, x)} ∈ GR f ∨ L ∪ {(k, y)} ∈ GR f. (36)
Really, L∪{(k, xty)} ∈ GR f iff xty ∈ a and L(n) ⊇ A for all but finitely many n
or L(n) ⊇ B for all but finitely many n; L∪{(k, x)} ∈ GR f iff x ∈ a and L(n) ⊇ A
for all but finitely many n or L(n) ⊇ B; and similarly for y.

But x t y ∈ a⇔ x ∈ a ∨ y ∈ a because a is an ultrafilter. So, the formula (36)
holds, and we have proved that f is really a staroid.

Take X be the constant function with value A and Y be the constant function
with value B.
∀p ∈ GR f : p 6� X because pi ∩ Xi ∈ a; so GR f ⊆ GR

∏Strd
X that is

f v
∏Strd

X.
Finally, Y uX /∈ GR f because X u Y = λi ∈ U : A ∩B. �

21.21. Conjectures

Remark 1924. Below I present special cases of possible theorems. The theo-
rems may be generalized after the below special cases are proved.

Conjecture 1925. For every two funcoids f and g we have:
1◦. (RLD)ina

[
f ×(DP ) g

]
(RLD)inb ⇔ a

[
f ×(C) g

]
b for every funcoids a ∈

FCD(Src f, Src g), b ∈ FCD(Dst f,Dst g);
2◦. (RLD)outa

[
f ×(DP ) g

]
(RLD)outb ⇔ a

[
f ×(C) g

]
b for every funcoids

a ∈ FCD(Src f, Src g), b ∈ FCD(Dst f,Dst g);
3◦. (FCD)a

[
f ×(C) g

]
(FCD)b ⇔ a

[
f ×(DP ) g

]
b for every reloids a ∈

RLD(Src f, Src g), b ∈ RLD(Dst f,Dst g).

Conjecture 1926. For every two funcoids f and g we have:
1◦. (RLD)ina

[
f ×(A) g

]
(RLD)inb ⇔ a

[
f ×(C) g

]
b for every funcoids a ∈

FCD(Src f, Src g), b ∈ FCD(Dst f,Dst g);
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2◦. (RLD)outa
[
f ×(A) g

]
(RLD)outb ⇔ a

[
f ×(C) g

]
b for every funcoids a ∈

FCD(Src f, Src g), b ∈ FCD(Dst f,Dst g);
3◦. (FCD)a

[
f ×(C) g

]
(FCD)b ⇔ a

[
f ×(A) g

]
b for every reloids a ∈

RLD(Src f, Src g), b ∈ RLD(Dst f,Dst g).

Conjecture 1927.
∏Strd

a 6�
∏Strd

b ⇔ b ∈
∏Strd

a ⇔ a ∈
∏Strd

b ⇔ ∀i ∈ n :
ai 6� bi for every n-indexed families a and b of filters on powersets.

Conjecture 1928. Let f be a staroid on powersets and a ∈
∏
i∈arity f Src fi,

b ∈
∏
i∈arity f Dst fi. Then

Strd∏
a

(C)∏
f

 Strd∏
b⇔ ∀i ∈ n : ai [fi] bi.

Proposition 1929. The conjecture 1928 is a consequence of the conjec-
ture 1927.

Proof.

Strd∏
a

(C)∏
f

 Strd∏
b⇔

Strd∏
b 6�

〈(C)∏
f

〉 Strd∏
a⇔

Strd∏
b 6�

Strd∏
i∈n
〈fi〉ai ⇔

∀i ∈ n : bi 6� 〈fi〉ai ⇔ ∀i ∈ n : ai [fi] bi.

�

Conjecture 1930. For every indexed families a and b of filters and an indexed
family f of pointfree funcoids we have

Strd∏
a

(C)∏
f

 Strd∏
b⇔

RLD∏
a

(DP )∏
f

 RLD∏
b.

Conjecture 1931. For every indexed families a and b of filters and an indexed
family f of pointfree funcoids we have

Strd∏
a

(C)∏
f

 Strd∏
b⇔

RLD∏
a

(A)∏
f

 RLD∏
b.

Strengthening of an above result:

Conjecture 1932. If a is a completary staroid and Dst fi is a starrish poset
for every i ∈ n then StarComp(a, f) is a completary staroid.

Strengthening of above results:

Conjecture 1933.
1◦.

∏(D)
F is a prestaroid if every Fi is a prestaroid.

2◦.
∏(D)

F is a completary staroid if every Fi is a completary staroid.

Conjecture 1934. If f1 and f2 are funcoids, then there exists a pointfree
funcoid f1 × f2 such that

〈f1 × f2〉x = l

{
〈f1〉X ×FCD 〈f2〉X
X ∈ atomsx

}
for every ultrafilter x.
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Conjecture 1935. Let (A,Z) = (A,Z)i∈n be a family of filtrators on boolean
lattices.

A relation δ ∈P
∏

atomsAi such that for every a ∈
∏

atomsAi

∀A ∈ a : δ ∩
∏
i∈n

atoms ↑Zi Ai 6= ∅ ⇒ a ∈ δ (37)

can be continued till the function � f for a unique staroid f of the form λi ∈ n : Ai.
The funcoid f is completary.

Conjecture 1936. For every X ∈
∏
i∈n F (Ai)

X ∈ GR � f ⇔ δ ∩
∏
i∈n

atomsXi 6= ∅. (38)

Conjecture 1937. Let R be a set of staroids of the form λi ∈ n : F (Ai) where
every Ai is a boolean lattice. If x ∈

∏
i∈n atomsF(Ai) then x ∈ GR �

d
R⇔ ∀f ∈

R : x ∈� f .
There exists a completary staroid f and an indexed family X of principal filters

(with arity f = domX and (form f)i = Base(Xi) for every i ∈ arity f), such that
f v

∏Strd
X and Y uX /∈ GR f for some Y ∈ GR f .

Conjecture 1938. There exists a staroid f and an indexed family x of ultra-
filters (with arity f = dom x and (form f)i = Base(xi) for every i ∈ arity f), such
that f v

∏Strd
x and Y u x /∈ GR f for some Y ∈ GR f .

Other conjectures:

Conjecture 1939. If staroid ⊥ 6= f v anStrd for an ultrafilter a and an index
set n, then n×{a} ∈ GR f . (Can it be generalized for arbitrary staroidal products?)

Conjecture 1940. The following posets are atomic:
1◦. anchored relations on powersets;
2◦. staroids on powersets;
3◦. completary staroids on powersets.

Conjecture 1941. The following posets are atomistic:
1◦. anchored relations on powersets;
2◦. staroids on powersets;
3◦. completary staroids on powersets.

The above conjectures seem difficult, because we know almost nothing about
structure of atomic staroids.

Conjecture 1942. A staroid on powersets is principal iff it is complete in
every argument.

Conjecture 1943. If a is an ultrafilter, then idStrd
a[n] is an atom of the lattice

of:
1◦. anchored relations of the form (P Base(a))n;
2◦. staroids of the form (P Base(a))n;
3◦. completary staroids of the form (P Base(a))n.

Conjecture 1944. If a is an ultrafilter, then � idStrd
a[n] is an atom of the lattice

of:
1◦. anchored relations of the form F (Base(a))n;
2◦. staroids of the form F (Base(a))n;
3◦. completary staroids of the form F (Base(a))n.
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21.21.1. On finite unions of infinite Cartesian products. Let A be an
indexed family of sets.

Products are
∏
A for A ∈

∏
A.

Let the lattice Γ consists of all finite unions of products.
Let the lattice Γ∗ be the lattice of complements of elements of the lattice Γ.

Problem 1945. Is
dFCD a bijection from a. FΓ; b. FΓ∗ to:

1◦. prestaroids on A;
2◦. staroids on A;
3◦. completary staroids on A?

If yes, is upΓ defining the inverse bijection?
If not, characterize the image of the function

dFCD defined on a. FΓ; b. FΓ∗.

21.21.2. Informal questions. Do products of funcoids and reloids coincide
with Tychonoff topology?

Limit and generalized limit for multiple arguments.
Is product of connected spaces connected?
Product of T0-separable is T0, of T1 is T1?
Relationships between multireloids and staroids.
Generalize the section “Specifying funcoids by functions or relations on atomic

filters” from [29].
Generalize “Relationships between funcoids and reloids”.
Explicitly describe the set of complemented funcoids.
Formulate and prove associativity of staroidal product.
What are necessary and sufficient conditions for up f to be a filter (for a fun-

coid f)? (See also proposition 1126.)



Part 5

Postface



CHAPTER 22

Postface

See this Web page for my research plans: http://www.mathematics21.org/agt-
plans.html

I deem that now the most important research topics in Algebraic General Topol-
ogy are:

• to solve the open problems mentioned in this work;
• research pointfree reloids (see below);
• define and research compactness of funcoids;
• research categories related with funcoids and reloids;
• research multifuncoids and staroids in more details;
• research generalized limit of compositions of functions;
• research more on complete pointfree funcoids.

All my research of funcoids and reloids is presented at
http://www.mathematics21.org/algebraic-general-topology.html
Please write to porton@narod.ru, if you discover anything new related with my

theory.

22.1. Pointfree reloids

Let us define something (let call it pointfree reloids) corresponding to pointfree
funcoids in the same way as reloids correspond to funcoids.

First note that RLD(A,B) are isomorphic to FP(PX × PB). Then
note that P(PA × PB) are isomorphic both to pFCD(PA,PB) and to
atomsPA× atomsPB .

But FCD(A,B) is isomorphic to pFCD(F(A),F(B)).
Thus both FpFCD(A,B) and F(atomsA× atomsB) correspond to

pFCD(F(A),F(B)) in the same way (replace PA → A, PB → B) as RLD(A,B)
corresponds to FCD(A,B).

So we can name either FpFCD(A,B) or F(atomsA× atomsB) as pointfree
reloids.

Yes another possible way is to define pointfree reloids as the set of filters on
the poset of Galois connections between two posets.

Note that there are three different definitions of pointfree reloids. They prob-
ably are not the same for arbitrary posets A and B.

I have defined pointfree reloids, but have not yet started to research their
properties.

Research convergence for pointfree funcoids (should be easy).

22.2. Formalizing this theory

Despite of all measures taken, it is possible that there are errors in this book.
While special cases, such as filters of powersets or funcoids, are most likely correct,
general cases (such as filters on posets or pointfree funcoids) may possibly contain
wrong theorem conditions.
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Thus it would be good to formalize the theory presented in this book in a proof
assistant1 such as Coq.

If you want to work on formalizing this theory, please let me know.
See also https://coq.inria.fr/bugs/show_bug.cgi?id=2957

1A proof assistant is a computer program which checks mathematical proofs written in a
formal language understandable by computer.

https://coq.inria.fr/bugs/show_bug.cgi?id=2957


APPENDIX A

Using logic of generalizations

A.1. Logic of generalization

In mathematics it is often encountered that a smaller set S naturally bijectively
corresponds to a subset R of a larger set B. (In other words, there is specified an
injection from S to B.) It is a widespread practice to equate S with R.

Remark 1946. I denote the first set S from the first letter of the word “small”
and the second set B from the first letter of the word “big”, because S is intuitively
considered as smaller than B. (However we do not require cardS < cardB.)

The set B is considered as a generalization of the set S, for example: whole
numbers generalizing natural numbers, rational numbers generalizing whole num-
bers, real numbers generalizing rational numbers, complex numbers generalizing
real numbers, etc.

But strictly speaking this equating may contradict to the axioms of ZF/ZFC
because we are not insured against S ∩ B 6= ∅ incidents. Not wonderful, as it is
often labeled as “without proof”.

To work around of this (and formulate things exactly what could benefit com-
puter proof assistants) we will replace the set B with a new set B′ having a bijection
M : B → B′ such that S ⊆ B′. (I call this bijection M from the first letter of the
word “move” which signifies the move from the old set B to a new set B′).

The following is a formal but rather silly formalization of this situation in
ZF. (A more natural formalization may be done in a smarter formalistic, such as
dependent type theory.)

A.1.1. The formalistic. Let S and B be sets. Let E be an injection from S
to B. Let R = imE.

Let t = P
⋃⋃

S.

Let M(x) =
{
E−1x if x ∈ R;
(t, x) if x /∈ R.

Recall that in standard ZF (t, x) = {t, {t, x}} by definition.
Theorem 1947. (t, x) /∈ S.
Proof. Suppose (t, x) ∈ S. Then {t, {t, x}} ∈ S. Consequently {t} ∈

⋃
S;

{t} ⊆
⋃⋃

S; {t} ∈P
⋃⋃

S; {t} ∈ t what contradicts to the axiom of foundation
(aka axiom of regularity). �

Definition 1948. Let B′ = imM .
Theorem 1949. S ⊆ B′.
Proof. Let x ∈ S. Then Ex ∈ R;M(Ex) = E−1Ex = x; x ∈ imM = B′. �

Obvious 1950. E is a bijection from S to R.
Theorem 1951. M is a bijection from B to B′.
Proof. Surjectivity of M is obvious. Let’s prove injectivity. Let a, b ∈ B and

M(a) = M(b). Consider all cases: �
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a, b ∈ R. M(a) = E−1a; M(b) = E−1b; E−1a = E−1b; thus a = b because E−1 is
a bijection.

a ∈ R, b /∈ R. M(a) = E−1a; M(b) = (t, b); M(a) ∈ S; M(b) /∈ S. Thus M(a) 6=
M(b).

a /∈ R, b ∈ R. Analogous.
a, b /∈ R. M(a) = (t, a); M(b) = (t, b). Thus M(a) = M(b) implies a = b.

Theorem 1952. M ◦ E = idS .

Proof. Let x ∈ S. Then Ex ∈ R; M(Ex) = E−1Ex = x. �

Obvious 1953. E = M−1|S .

A.1.2. Existence of primary filtrator.

Theorem 1954. For every poset Z there exists a poset A ⊇ Z such that (A,Z)
is a primary filtrator.

Proof. Take S = Z, B = F, E =↑. By the above there exists an injection M
defined on F such that M◦ ↑= idZ.

Take A = imM . Order (v′) elements of A in such a way that M : F(Z) → A
become order isomorphism. If x ∈ Z then x = idZ x = M ↑ x ∈ imM = A. Thus
A ⊇ Z.

If x v y for elements x, y of Z, then ↑ x v↑ y and thus M ↑ x v′ M ↑ y that is
x v′ y, so Z is a subposet of A, that is (A,Z) is a filtrator.

It remains to prove that M is an isomorphism between filtrators (F(Z),P) and
(A,Z). That M is an order isomorphism from F(Z) to A is already known. It
remains to prove that M maps P to Z. We will instead prove that M−1 maps Z
to P. Really, ↑ x = M−1x for every x ∈ Z. �
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closure
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Kuratowski, 132

co-completion
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pointfree, 297

of funcoid, 166
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complement, 20
complemented
element, 20
lattice, 20

complementive, 20
complete
multifuncoid, 360
staroid, 360

complete lattice
homomorphism, 24

completely starrish, 79
completion
of funcoid, 166
of reloid, 186

composable
funcoids, 139
reloids, 176

composition
funcoids, 139
of reloids, 176

concatenation, 50
connected
regarding endofuncoid, 220
regarding endoreloid, 220
regarding pointfree funcoid, 300

connected component, 219
connectedness
regarding binary relation, 218
regarding Rel-endomorphism, 218

connectivity reloid, 219
continuity
coordinate-wise, 353
generalized, 213
of restricted morphism, 215
pre-topology, 212
proximity, 212
uniformity, 212

converges
regarding funcoid, 268

core part, 87
dual, 87

core star, 89
currying, 48, 49

De Morgan’s laws
infinite, 21

decomposition of composition, 207

388



INDEX 389

of reloids, 207
destination, 31
difference, 19
directly isomorphic, 229
disjunction property of Wallman, 37
distance, 127
domain

of funcoid, 149
downgrading, 314

anchored relation, 314
dual

order, 16
poset, 16

duality
partial order, 16

edge, 31
edge part, 101
element

of filtrator, 72
typed, 61

embedding
reloids into funcoids, 209

endo-funcoid, 137
endo-reloid, 175
endomorphism, 32
endomorphism series, 217

filter
closed, 173
cofinite, 119
Fréchet, 119
on a meet-semilattice, 69
on a poset, 69
on a set, 69
on meet-semilattice, 70
on poset, 69
on powerset, 71
on set, 71
principal, 71
proper, 69

filter base, 69
generalized, 94
generated by, 97

filter object, 126
filter-closed, 97
filtrator, 72

central, 72
complete lattice, 72
down-aligned, 80
filtered, 72
lattice, 72
of funcoids, 145
powerset, 73
prefiltered, 72
star-separable, 90
up-aligned, 80
weakly down-aligned, 80
weakly up-aligned, 80
with binarily join-closed core, 72
with binarily meet-closed core, 72
with co-separable core, 73
with join-closed core, 72

with meet-closed core, 72
with separable core, 73

finitary
relation
anchored, 312

finite intersection property, 120
form
of star-morphism, 327

funcoid, 136, 137
co-complete, 161
complete, 162
destination, 137
identity, 149
induced by reloid, 189
injective, 169
monovalued, 169
open, 171
pointfree, 275
co-complete, 295
co-completion, 297
complete, 295
composable, 277
composition, 277
destination, 275
domain, 284
identity, 284
image, 284
injective, 298
monovalued, 298
order, 281
restricted identity, 284
restricting, 284
source, 275
zero, 347

principal, 143
restricted identity, 149
reverse, 137
source, 137

funcoidal reloid, 199
funcoids
composable, 139
composition, 139
separable, 172

function space of posets, 113

Galois
connection, 24

Galois connection
between funcoids and reloids, 196

Galois surjection, 55
generalized closure, 161
graph
of anchored relation, 48, 311

greatest element, 15, 16
Grothendieck universe, 12
group, 35
permutation, 35
transitive, 35

group theory, 34
groupoid, 32

ideal base, 69
idempotent, 25
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identity, 35
identity relation, 15, 361
image

of funcoid, 149
independent family, 124
inequality

triangle, 127
infimum, 17
infinitary

relation
anchored, 312

infinite distributive, 21
injective

funcoid, 169
reloid, 183

intersecting elements, 16
inverse, 31
involution, 32
isomorphic

filters, 231
isomorphism, 31

join, 17
binary, 17

join infinite distributive, 21
join semilattice

homomorphism, 24
joining elements, 16

Kuratowski’s lemma, 23

lattice, 18
boolean, 21
center, 22
co-brouwerian, 28
co-Heyting, 28
complete, 18
distributive, 19
homomorphism, 24

least element, 15, 16
limit, 270

generalized, 270
linearly ordered set, 16
lower bound

nontrivial, 361

maximal element, 17
meet, 17
meet infinite distributive, 21
meet semilattice

homomorphism, 24
minimal element, 17
monotone, 24
monovalued

funcoid, 169
reloid, 183

Morgan’s laws, 21
morphism, 31

bijective, 45
co-metacomplete, 45
entirely defined, 44
identity, 31
injective, 44
involutive, 32

metacomplete, 45
metainjective, 45
metamonovalued, 45
monovalued, 44
surjective, 44
symmetric, 43
transitive, 43
unitary, 43
weakly co-metacomplete, 46
weakly metacomplete, 45
weakly metainjective, 45
weakly metamonovalued, 45

mult, 317
on powersets, 317

multifuncoid, 317
multigraph
directed, 31

multireloid, 339
convex, 342
principal, 342

object, 31
open map, 171
order
of mults, 319
Rudin-Keisler, 231

order embedding, 24
order homomorphism, 24
order isomorphism, 24
order reflecting, 36
ordinal, 48
ordinal variadic, 49

partial order, 15
restricted, 15
strict, 15

partition
strong, 46
weak, 46

path, 218
poset
bounded, 18
separable, 37
starrish, 79
strongly separable, 37

pre-staroid, 312
pre-topology
induced by metric, 129

precategory, 31
dagger, 43
partially ordered, 43
with star-morphisms, 327

with star-morphism
induced by dagger precategory, 329

with star-morphisms, 327
quasi-invertible, 328

preclosure, 128
preorder, 15
preserve filtered meets, 144
pretopology, 128
prime element, 92
principal
funcoid, 143
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product
cartesian, 48
cross-composition, 310, 330
displaced, 349
funcoidal, 156, 290, 322
oblique, 248
ordinated, 51
reindexation, 324
reloidal, 178
starred, 342

second, 248
simple, 337
staroidal, 321
subatomic, 343

product order, 113
projection

staroidal, 346
proximity, 133
pseudocomplement, 27

dual, 27
pseudodifference, 27
pseudofuncoid, 356

quasi-proximity, 133
quasicomplement, 39

dual, 39
quasidifference, 29, 40

relation
anchored, 48, 311
between posets, 312
finitary, 312
infinitary, 312
on powersets, 312

relational structure, 61
reloid, 175

co-complete, 184
complete, 184
convex, 179
destination, 175
domain, 180
identity, 180
image, 180
injective, 183
inward, 193
monovalued, 183
outward, 193
principal, 175
reverse, 175
source, 175

restricted identity reloid, 180
restricting

funcoid, 149
rectangular, 215
reloid, 180
square, 216

Rudin-Keisler equivalence, 233

semigroup, 34
semilattice

join-semilattice, 18
meet-semilattice, 18

separable, 37
atomically, 38

separation subset, 37
set
closed, 130
in metric space, 128

open, 130
in metric space, 128

partially ordered, 15
typed, 61

small set, 12
source, 31
space
metric, 127
pre-topological, 128
preclosure, 128
induced by topology, 131

proximity, 133
topological, 130
induced by preclosure, 130

uniform, 188
star
core, 89
full, 37

star composition, 327
star-morphism, 327
staroid, 312
completary, 312, 313
generated, 315
identity
big, 362
small, 361

principal, 315
starrish, 79
straight map, 36
subcategory
wide, 32

subelement, 15
sublattice
closed, 22

substractive, 19
sum
structured, 49

supremum, 17

topology, 130
torning, 46
typed element, 61
typed set, 61

ultrafilter, 106
trivial, 106

uncurrying, 48, 49
uniformity, 188
upgraded staroid
generated, 316

upgrading, 314
anchored relation, 314

vertex, 31
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