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Introduction Tree structure RNA biotype and their proportions

Short RNAs, categorized as non-coding RNA molecules, are less than 200
nucleotides in length and play a vital role in the regulation of the genome.
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They have been implicated in a large number of biological processes and '
pathological conditions. Moreover, they are shown to be altered in different ongRNA|LEtein coding "
models of epigenetic inheritance [1-3]. Short RNA studies are hampered < S @ @ rRBNA (0%)
by a number of technical issues, including the bioinformatic analysis of IneHNA o - B snRNA (0.1%)
short RNA sequencing data: i nmo | OB AT i O O primary_piRNA (0.1%)
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known short RNA types (e.g. miRNA, piRNA, rasiRNA, siRNA, 5 i _5 < - Mt_':RNA ((11.30/0))
snoRNA, tsRNA, tRFs, srRNA and U-RNA). On top of multiplying the tRNA-Ala-AGC-3 | .. ATGC... S B miRNA (11 6.;/0)°
work needed for an extensive analysis of the data, this can potentially ANAAlCGE =N B other (19%)
create misassignment mistakes. tRNA-Arg g °© | B tRNA (45.7%)
2. Current methods either do not deal adequately with post- _ S -
transcriptional modifications (for genome-based methods); or if they Figure 2: An example tree structure from tRNAs. ;
do (transcript-based methods), they do not deal with unannotated 5 Figure 6: Read proportions from samples (example).
features. : :
3. Current methods do not adequately account for the hierarchical : Plpelme for short RNA-Seq data analySIS : :
organization of the features one might want to quantify or test. Comparison of shortRNA with other methods
4. There is still no consensus on the most appropriate normalization [ FastQ or SRA ‘ We compared 20 published tools for 21 features.
method for short-RNA-Seq data. ' ) '
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The issue of post-transcriptional modifications: Custom genome |. Unique seqs—[ Collapse J Perl
: v . Quality control v/ v v v v
tRNA-iMet-CAT-4 is transcribed from chrX, and as other tRNAs receives _ i Alighment/
post-transcriptionally the 3’ addition of the nucleotides CCA: : ,,  Featuretree Count matrix : onn Bowtie v v v v
i (Fig. 2) : :  Mapping
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To deal with this, researchers have often simply timmed 3' CCAs before : reads : : Seraelinee  Ensembl, Rfam ¢"°°3%¢ User
alignment, however this can often results in the read becoming : : [ Multi-mapped | Normalization | defined
ambiguous when instead it initially wasn’t, as in the case above. One reads : P Normalization X % v v v
solution to this issue is to build a custom genome that is complemented : P
with known, post-transcriptionally modified transcripts [4]. l P — _ —: | Differential X X v v v
: Customised : l Differential analysis l : | analysis
: : assignment rules : _ —: Eunctional
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The issue of ambiguity between related CJ tRNA I—F’ i v ‘ i data analysis
features: tRNA typically have several |\ / | Adequate
copies across the genome - for instance (" «— — Seq sources ] ! handling of
tRNA-Ala-AGC has 23 nearly-identical | . post- X v X X v
copies. While a genome. alignment wil - ; i Figure 3: Pipeline for data analysis. . transoriptiona
make most reads from such features i i ificati
ambiguous (i.e. multimapping), from a djd : :

functional point of view it is irrelevant from - Unannotated
uncti | view it is i Vv ; i transcripts/
which exact location they came from. This issue becomes even more | ReSUItS i Novel v v v X v

critical with tRNA fragments, which often have conserved sequences : :  predictions
across different tRNAs. One way to address this issue is to aggregate '

reads into functional equivalence classes, i.e. higher level than specific Tree-based read assignment recover a Iarge Heirarchical X X X X v
It ipts. : : : : L isoMi X X X X v
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Because of these shortcomings, we developed a new analysis framework Unique sequences Total reads
that addresses these issues using alternative nested equivalence classes

over a customized annotation. We present this approach and package, g . g © _ COHC|USIOH
and show how it'can be used to redress biases in the quantification of both S o = <
specific RNA as wellas large RNA classes. _E S - _E - i« Standalone R package for short RNA-Seq data analysis.
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Experiment object. ; Mapping Assignment Mapping Assignment
’ . o Heirarchical: could easily be extended to additional feature trees (for
Figure 4: Reads assignment (Sperm short RNA-Seq [3]). example Vault RNAs).
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