
Part 1: Clarifying raw_bitcast semantics
Part 2: Efficient implementation on big-endian machines

Vector lane ordering
Or: How to implement raw_bitcast 
on a big-endian architecture



Lane 1Lane 0 Lane 2 Lane 3

Lane 1Lane 0

Rust / C / C++ SIMD vectors – little-endian architecture

M L M L M LL M

1 2 3 4 5 6 7 8 9 10 11 12 13 140 15

M LL M

Memory address

I64X2 in memory

I32X4 in memory

raw_bitcast:
lane 0 of smaller 
type is least-
significant part of 
lane 0 of larger type
→ LE lane order



Lane 1Lane 0 Lane 2 Lane 3

Lane 1Lane 0

Rust / C / C++ SIMD vectors – big-endian architecture

L M L M L MM L

1 2 3 4 5 6 7 8 9 10 11 12 13 140 15

L MM L

Memory address

I64X2 in memory

I32X4 in memory

raw_bitcast:
lane 0 of smaller 
type is most-
significant part of 
lane 0 of larger type
→ BE lane order



Lane 2Lane 3 Lane 1 Lane 0

Lane 0Lane 1

WebAssembly vector types – defined as values

L M L M L MM L

M L

L MM L

V128 type

V128 as I64X2

V128 as I32X4

raw_bitcast:
lane 0 of smaller 
type is least-
significant part of 
lane 0 of larger type
→ LE lane order



Summary of raw_bitcast semantics

● The raw_bitcast operator is underspecified, it actually exists in two flavors:
● “Little-endian lane order”:

Lane 0 of smaller type is least-significant part of lane 0 of larger type
● “Big-endian lane order”:

Lane 0 of smaller type is most-significant part of lane 0 of larger type

● Current usage of raw_bitcast
● On a little-endian machine, all uses of raw_bitcast use LE lane order
● On all machines, raw_bitcast emitted from wasmtime uses LE lane order
● On a big-endian machine, raw_bitcast emitted from cg_clif uses BE lane order

● Options to define semantics
● Impliclit (back-end treats functions emitted from wasmtime differently)
● Treat as memory operation (add MemFlags including endianness options)
● Separate opcodes, e.g. raw_bitcast_le and raw_bitcast_be

● Should we have an implicit “native” variant?



Lane 2Lane 3 Lane 1 Lane 0

Lane 0Lane 1

Implementation on little-endian machines

L M L M L MM L

1 2 3 4 5 6 7 8 9 10 11 12 13 140 15

L MM L

Memory address

I64X2 in register

I32X4 in register

Vector load is 
naturally 
little-endian

Lane order 
matches HW

LE raw_bitcast 
is a no-op

BE raw_bitcast 
is not needed



Lane 1Lane 0 Lane 2 Lane 3

Lane 1Lane 0

Implementation on big-endian machines – default (e.g. cg_clif)

L M L M L MM L

1 2 3 4 5 6 7 8 9 10 11 12 13 140 15

L MM L

Memory address

I64X2 in register

I32X4 in register

Vector load is 
naturally big-
endian

Lane order 
matches HW

BE raw_bitcast 
is a no-op

LE raw_bitcast 
is not needed



Lane 1Lane 0 Lane 2 Lane 3

Lane 1Lane 0

Implementation on big-endian machines – little endian memory

M L M L M LL M

1 2 3 4 5 6 7 8 9 10 11 12 13 140 15

M LL M

Memory address

I64X2 in register

I32X4 in register

Vector load is 
naturally big-
endian

Bytes in each 
lane are in 
wrong order – 
register not 
usable for 
arithmetic 
operations!



Lane 1Lane 0 Lane 2 Lane 3

Lane 1Lane 0

Implementation on big-endian machines – little endian memory

L M L M L MM L

1 2 3 4 5 6 7 8 9 10 11 12 13 140 15

L MM L

Memory address

I64X2 in register

I32X4 in register

Per-element 
byte-swapped 
load

Lane order 
matches HW

BE raw_bitcast 
is a no-op

LE raw_bitcast 
is a permute



Lane 2Lane 3 Lane 1 Lane 0

Lane 0Lane 1

Implementation on big-endian machines – LE memory, inverted

L M L M L MM L

1 2 3 4 5 6 7 8 9 10 11 12 13 140 15

L MM L

Memory address

I64X2 in register

I32X4 in register

Full-vector 
byte-swapped 
load

Lane order 
inverted from 
HW

LE raw_bitcast 
is a no-op

BE raw_bitcast 
is not needed



Lane 2Lane 3 Lane 1 Lane 0

Lane 0Lane 1

Implementation on big-endian machines – BE memory, inverted

L M L M L MM L

1 2 3 4 5 6 7 8 9 10 11 12 13 140 15

L MM L

Memory address

I64X2 in register

I32X4 in register

Lane order 
does not 
match source 
semantics – 
not usable!

Vector load is 
naturally big-
endian



Lane 2Lane 3 Lane 1 Lane 0

Lane 0Lane 1

Implementation on big-endian machines – BE memory, inverted

L M L M L MM L

1 2 3 4 5 6 7 8 9 10 11 12 13 140 15

L MM L

Memory address

I64X2 in register

I32X4 in register

Element-
swapped load

Lane order 
inverted from 
HW

LE raw_bitcast 
is a no-op

BE raw_bitcast 
is a permute



Summary of implementation options

● The back-end has the choice between two options
● In-register lane order matches HW order (BE lane order)
● In-register lane order inverted from HW order (LE lane order)

● Impact of lane order choice on visible semantics
● Either implementation option can fully implement CLIF semantics
● In particular, either option can implement both LE and BE raw_bitcast
● Implementation option potentially visible in the ABI (vector argument/return regs)

● SystemV ABI requires BE lane order, Wasmtime ABI free to define
● Can be made transparent via lane swaps at ABI boundaries
● More efficient to choose one defined lane order per ABI

● Impact of lane order choice on implementation
● Either option can be fully implemented, including both LE/BE memory load/store
● Affected instructions: memory ops, explicit lane number ops, raw_bitcast
● Efficiency: raw_bitcast is no-op if and only if requested lane order matches 

implementation lane order, permute (element swap) otherwise



Proposed solution

● Choose in-register lane order based on the current function’s ABI
● LE lane order if function using Wasmtime ABI
● BE lane order otherwise

● Effect
● Fully implemented CLIF semantics, including LE and BE raw_bitcast
● No element swaps needed at ABI boundaries
● Efficient implementation of all variants of memory ops & explicit lane order ops
● raw_bitcast implementation:

● LE raw_bitcast in Wasmtime ABI functions is no-op
● BE raw_bitcast in functions using other ABI is no-op
● Result: every raw_bitcast used by all current front ends is no-op!

● Staged implementation
● Phase 1: Back-end only, assuming every raw_bitcast is a no-op
● Phase 2: Implement explicit raw_bitcast semantics via CLIF extension



?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

