
Part 1: Clarifying raw_bitcast semantics
Part 2: Efficient implementation on big-endian machines

Vector lane ordering
Or: How to implement raw_bitcast 
on a big-endian architecture
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WebAssembly vector types – defined as values
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Summary of raw_bitcast semantics

● The raw_bitcast operator is underspecified, it actually exists in two flavors:
● “Little-endian lane order”:

Lane 0 of smaller type is least-significant part of lane 0 of larger type
● “Big-endian lane order”:

Lane 0 of smaller type is most-significant part of lane 0 of larger type

● Current usage of raw_bitcast
● On a little-endian machine, all uses of raw_bitcast use LE lane order
● On all machines, raw_bitcast emitted from wasmtime uses LE lane order
● On a big-endian machine, raw_bitcast emitted from cg_clif uses BE lane order

● Options to define semantics
● Impliclit (back-end treats functions emitted from wasmtime differently)
● Treat as memory operation (add MemFlags including endianness options)
● Separate opcodes, e.g. raw_bitcast_le and raw_bitcast_be

● Should we have an implicit “native” variant?
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Implementation on big-endian machines – LE memory, inverted
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Implementation on big-endian machines – BE memory, inverted
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Implementation on big-endian machines – BE memory, inverted
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Summary of implementation options

● The back-end has the choice between two options
● In-register lane order matches HW order (BE lane order)
● In-register lane order inverted from HW order (LE lane order)

● Impact of lane order choice on visible semantics
● Either implementation option can fully implement CLIF semantics
● In particular, either option can implement both LE and BE raw_bitcast
● Implementation option potentially visible in the ABI (vector argument/return regs)

● SystemV ABI requires BE lane order, Wasmtime ABI free to define
● Can be made transparent via lane swaps at ABI boundaries
● More efficient to choose one defined lane order per ABI

● Impact of lane order choice on implementation
● Either option can be fully implemented, including both LE/BE memory load/store
● Affected instructions: memory ops, explicit lane number ops, raw_bitcast
● Efficiency: raw_bitcast is no-op if and only if requested lane order matches 

implementation lane order, permute (element swap) otherwise



Proposed solution

● Choose in-register lane order based on the current function’s ABI
● LE lane order if function using Wasmtime ABI
● BE lane order otherwise

● Effect
● Fully implemented CLIF semantics, including LE and BE raw_bitcast
● No element swaps needed at ABI boundaries
● Efficient implementation of all variants of memory ops & explicit lane order ops
● raw_bitcast implementation:

● LE raw_bitcast in Wasmtime ABI functions is no-op
● BE raw_bitcast in functions using other ABI is no-op
● Result: every raw_bitcast used by all current front ends is no-op!

● Staged implementation
● Phase 1: Back-end only, assuming every raw_bitcast is a no-op
● Phase 2: Implement explicit raw_bitcast semantics via CLIF extension
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