Skip to content

Commit

Permalink
Regressions for TREC 2019 Deep Learning Track (Document Ranking Task) (
Browse files Browse the repository at this point in the history
…#996)

* Regressions for TREC 2019 Deep Learning Track (Document Ranking Task)

* Shortened label

* More minor tweaks.

* CR comments.
  • Loading branch information
lintool authored Feb 25, 2020
1 parent 8350cdd commit 0d42d30
Show file tree
Hide file tree
Showing 6 changed files with 16,680 additions and 0 deletions.
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -74,6 +74,7 @@ Note that these regressions capture the "out of the box" experience, based on [_
+ [Regressions for the MS MARCO Passage Retrieval Task with doc2query expansion](docs/regressions-msmarco-passage-doc2query.md)
+ [Regressions for the MS MARCO Passage Retrieval Task with docTTTTTquery expansion](docs/regressions-msmarco-passage-docTTTTTquery.md)
+ [Regressions for the MS MARCO Document Retrieval](docs/regressions-msmarco-doc.md)
+ [Regressions for the TREC 2019 Deep Learning Track (Document Ranking Task)](docs/regressions-dl19-doc.md)
+ [Regressions for NTCIR-8 ACLIA (IR4QA subtask, Monolingual Chinese)](docs/regressions-ntcir8-zh.md)
+ [Regressions for CLEF 2006 Monolingual French](docs/regressions-clef06-fr.md)
+ [Regressions for TREC 2002 Monolingual Arabic](docs/regressions-trec02-ar.md)
Expand Down
115 changes: 115 additions & 0 deletions docs/regressions-dl19-doc.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,115 @@
# Anserini: Regressions for [DL19 (Document)](https://github.com/microsoft/TREC-2019-Deep-Learning)

This page documents experiments, integrated into Anserini's regression testing framework, for the TREC 2019 Deep Learning Track (Document Ranking Task) on the MS MARCO document collection using relevance judgments from NIST.
Note that the NIST relevance judgments provide far more relevant documents per topic, unlike the "sparse" judgments provided by Microsoft (these are sometimes called "dense" judgments to emphasize this contrast).
For additional instructions on working with MS MARCO document collection, refer to [this page](experiments-msmarco-doc.md).

The exact configurations for these regressions are stored in [this YAML file](../src/main/resources/regression/dl19-doc.yaml).
Note that this page is automatically generated from [this template](../src/main/resources/docgen/templates/dl19-doc.template) as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead.

## Indexing

Typical indexing command:

```
nohup sh target/appassembler/bin/IndexCollection -collection TrecCollection -input /path/to/dl19-doc \
-index lucene-index.msmarco-doc.pos+docvectors+rawdocs -generator LuceneDocumentGenerator -threads 1 \
-storePositions -storeDocvectors -storeRawDocs >& log.dl19-doc.pos+docvectors+rawdocs &
```

The directory `/path/to/msmarco-doc/` should be a directory containing the official document collection (a single file), in TREC format.

For additional details, see explanation of [common indexing options](common-indexing-options.md).

## Retrieval

Topics and qrels are stored in [`src/main/resources/topics-and-qrels/`](../src/main/resources/topics-and-qrels/).
The regression experiments here evaluate on the 43 topics for which NIST has provided judgmen as part of the TREC 2019 Deep Learning Track.
The original data can be found [here](https://trec.nist.gov/data/deep2019.html).

After indexing has completed, you should be able to perform retrieval as follows:

```
nohup target/appassembler/bin/SearchCollection -index lucene-index.dl19-doc.pos+docvectors+rawdocs \
-topicreader TsvInt -topics src/main/resources/topics-and-qrels/topics.dl19-doc.txt \
-bm25 -output run.dl19-doc.bm25-default.topics.dl19-doc.txt &
nohup target/appassembler/bin/SearchCollection -index lucene-index.dl19-doc.pos+docvectors+rawdocs \
-topicreader TsvInt -topics src/main/resources/topics-and-qrels/topics.dl19-doc.txt \
-bm25 -rm3 -output run.dl19-doc.bm25-default+rm3.topics.dl19-doc.txt &
nohup target/appassembler/bin/SearchCollection -index lucene-index.dl19-doc.pos+docvectors+rawdocs \
-topicreader TsvInt -topics src/main/resources/topics-and-qrels/topics.dl19-doc.txt \
-bm25 -axiom -axiom.deterministic -rerankCutoff 20 -output run.dl19-doc.bm25-default+ax.topics.dl19-doc.txt &
nohup target/appassembler/bin/SearchCollection -index lucene-index.dl19-doc.pos+docvectors+rawdocs \
-topicreader TsvInt -topics src/main/resources/topics-and-qrels/topics.dl19-doc.txt \
-bm25 -bm25prf -output run.dl19-doc.bm25-default+prf.topics.dl19-doc.txt &
nohup target/appassembler/bin/SearchCollection -index lucene-index.dl19-doc.pos+docvectors+rawdocs \
-topicreader TsvInt -topics src/main/resources/topics-and-qrels/topics.dl19-doc.txt \
-bm25 -bm25.k1 3.44 -bm25.b 0.87 -output run.dl19-doc.bm25-tuned.topics.dl19-doc.txt &
nohup target/appassembler/bin/SearchCollection -index lucene-index.dl19-doc.pos+docvectors+rawdocs \
-topicreader TsvInt -topics src/main/resources/topics-and-qrels/topics.dl19-doc.txt \
-bm25 -bm25.k1 3.44 -bm25.b 0.87 -rm3 -output run.dl19-doc.bm25-tuned+rm3.topics.dl19-doc.txt &
nohup target/appassembler/bin/SearchCollection -index lucene-index.dl19-doc.pos+docvectors+rawdocs \
-topicreader TsvInt -topics src/main/resources/topics-and-qrels/topics.dl19-doc.txt \
-bm25 -bm25.k1 3.44 -bm25.b 0.87 -axiom -axiom.deterministic -rerankCutoff 20 -output run.dl19-doc.bm25-tuned+ax.topics.dl19-doc.txt &
nohup target/appassembler/bin/SearchCollection -index lucene-index.dl19-doc.pos+docvectors+rawdocs \
-topicreader TsvInt -topics src/main/resources/topics-and-qrels/topics.dl19-doc.txt \
-bm25 -bm25.k1 3.44 -bm25.b 0.87 -bm25prf -output run.dl19-doc.bm25-tuned+prf.topics.dl19-doc.txt &
```

Evaluation can be performed using `trec_eval`:

```
eval/trec_eval.9.0.4/trec_eval -m map -c -m ndcg_cut.10 -c -m recip_rank -c -m recall.100 -c -m recall.1000 -c src/main/resources/topics-and-qrels/qrels.dl19-doc.txt run.dl19-doc.bm25-default.topics.dl19-doc.txt
eval/trec_eval.9.0.4/trec_eval -m map -c -m ndcg_cut.10 -c -m recip_rank -c -m recall.100 -c -m recall.1000 -c src/main/resources/topics-and-qrels/qrels.dl19-doc.txt run.dl19-doc.bm25-default+rm3.topics.dl19-doc.txt
eval/trec_eval.9.0.4/trec_eval -m map -c -m ndcg_cut.10 -c -m recip_rank -c -m recall.100 -c -m recall.1000 -c src/main/resources/topics-and-qrels/qrels.dl19-doc.txt run.dl19-doc.bm25-default+ax.topics.dl19-doc.txt
eval/trec_eval.9.0.4/trec_eval -m map -c -m ndcg_cut.10 -c -m recip_rank -c -m recall.100 -c -m recall.1000 -c src/main/resources/topics-and-qrels/qrels.dl19-doc.txt run.dl19-doc.bm25-default+prf.topics.dl19-doc.txt
eval/trec_eval.9.0.4/trec_eval -m map -c -m ndcg_cut.10 -c -m recip_rank -c -m recall.100 -c -m recall.1000 -c src/main/resources/topics-and-qrels/qrels.dl19-doc.txt run.dl19-doc.bm25-tuned.topics.dl19-doc.txt
eval/trec_eval.9.0.4/trec_eval -m map -c -m ndcg_cut.10 -c -m recip_rank -c -m recall.100 -c -m recall.1000 -c src/main/resources/topics-and-qrels/qrels.dl19-doc.txt run.dl19-doc.bm25-tuned+rm3.topics.dl19-doc.txt
eval/trec_eval.9.0.4/trec_eval -m map -c -m ndcg_cut.10 -c -m recip_rank -c -m recall.100 -c -m recall.1000 -c src/main/resources/topics-and-qrels/qrels.dl19-doc.txt run.dl19-doc.bm25-tuned+ax.topics.dl19-doc.txt
eval/trec_eval.9.0.4/trec_eval -m map -c -m ndcg_cut.10 -c -m recip_rank -c -m recall.100 -c -m recall.1000 -c src/main/resources/topics-and-qrels/qrels.dl19-doc.txt run.dl19-doc.bm25-tuned+prf.topics.dl19-doc.txt
```

## Effectiveness

With the above commands, you should be able to replicate the following results:

MAP | BM25 (Default)| +RM3 | +Ax | +PRF | BM25 (Tuned)| +RM3 | +Ax | +PRF |
:---------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
[DL19 (Doc)](https://trec.nist.gov/data/deep2019.html)| 0.3309 | 0.3870 | 0.3516 | 0.3624 | 0.3138 | 0.3697 | 0.3860 | 0.3858 |


NDCG@10 | BM25 (Default)| +RM3 | +Ax | +PRF | BM25 (Tuned)| +RM3 | +Ax | +PRF |
:---------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
[DL19 (Doc)](https://trec.nist.gov/data/deep2019.html)| 0.5190 | 0.5169 | 0.4730 | 0.5105 | 0.5140 | 0.5485 | 0.5245 | 0.5280 |


RR | BM25 (Default)| +RM3 | +Ax | +PRF | BM25 (Tuned)| +RM3 | +Ax | +PRF |
:---------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
[DL19 (Doc)](https://trec.nist.gov/data/deep2019.html)| 0.8046 | 0.7718 | 0.7428 | 0.7775 | 0.8872 | 0.8074 | 0.7492 | 0.8007 |


R@100 | BM25 (Default)| +RM3 | +Ax | +PRF | BM25 (Tuned)| +RM3 | +Ax | +PRF |
:---------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
[DL19 (Doc)](https://trec.nist.gov/data/deep2019.html)| 0.3948 | 0.4189 | 0.3945 | 0.4004 | 0.3862 | 0.4193 | 0.4399 | 0.4287 |


R@1000 | BM25 (Default)| +RM3 | +Ax | +PRF | BM25 (Tuned)| +RM3 | +Ax | +PRF |
:---------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
[DL19 (Doc)](https://trec.nist.gov/data/deep2019.html)| 0.6966 | 0.7504 | 0.7323 | 0.7357 | 0.6810 | 0.7282 | 0.7545 | 0.7553 |

The setting "default" refers the default BM25 settings of `k1=0.9`, `b=0.4`, while "tuned" refers to the tuned setting of `k1=3.44`, `b=0.87` (see [this page](experiments-msmarco-doc.md) for more details about tuning).

47 changes: 47 additions & 0 deletions src/main/resources/docgen/templates/dl19-doc.template
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
# Anserini: Regressions for [DL19 (Document)](https://github.com/microsoft/TREC-2019-Deep-Learning)

This page documents experiments, integrated into Anserini's regression testing framework, for the TREC 2019 Deep Learning Track (Document Ranking Task) on the MS MARCO document collection using relevance judgments from NIST.
Note that the NIST relevance judgments provide far more relevant documents per topic, unlike the "sparse" judgments provided by Microsoft (these are sometimes called "dense" judgments to emphasize this contrast).
For additional instructions on working with MS MARCO document collection, refer to [this page](experiments-msmarco-doc.md).

The exact configurations for these regressions are stored in [this YAML file](../src/main/resources/regression/dl19-doc.yaml).
Note that this page is automatically generated from [this template](../src/main/resources/docgen/templates/dl19-doc.template) as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead.

## Indexing

Typical indexing command:

```
${index_cmds}
```

The directory `/path/to/msmarco-doc/` should be a directory containing the official document collection (a single file), in TREC format.

For additional details, see explanation of [common indexing options](common-indexing-options.md).

## Retrieval

Topics and qrels are stored in [`src/main/resources/topics-and-qrels/`](../src/main/resources/topics-and-qrels/).
The regression experiments here evaluate on the 43 topics for which NIST has provided judgmen as part of the TREC 2019 Deep Learning Track.
The original data can be found [here](https://trec.nist.gov/data/deep2019.html).

After indexing has completed, you should be able to perform retrieval as follows:

```
${ranking_cmds}
```

Evaluation can be performed using `trec_eval`:

```
${eval_cmds}
```

## Effectiveness

With the above commands, you should be able to replicate the following results:

${effectiveness}

The setting "default" refers the default BM25 settings of `k1=0.9`, `b=0.4`, while "tuned" refers to the tuned setting of `k1=3.44`, `b=0.87` (see [this page](experiments-msmarco-doc.md) for more details about tuning).

216 changes: 216 additions & 0 deletions src/main/resources/regression/dl19-doc.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,216 @@
---
name: msmarco-doc
index_command: target/appassembler/bin/IndexCollection
index_utils_command: target/appassembler/bin/IndexUtils
search_command: target/appassembler/bin/SearchCollection
topic_root: src/main/resources/topics-and-qrels/
qrels_root: src/main/resources/topics-and-qrels/
index_root:
ranking_root:
collection: TrecCollection
generator: LuceneDocumentGenerator
threads: 1
index_options:
- -storePositions
- -storeDocvectors
- -storeRawDocs
topic_reader: TsvInt
evals:
- command: eval/trec_eval.9.0.4/trec_eval
params:
- -m map
- -c
separator: "\t"
parse_index: 2
metric: map
metric_precision: 4
can_combine: true
- command: eval/trec_eval.9.0.4/trec_eval
params:
- -m ndcg_cut.10
- -c
separator: "\t"
parse_index: 2
metric: NDCG@10
metric_precision: 4
can_combine: true
- command: eval/trec_eval.9.0.4/trec_eval
params:
- -m recip_rank
- -c
separator: "\t"
parse_index: 2
metric: RR
metric_precision: 4
can_combine: true
- command: eval/trec_eval.9.0.4/trec_eval
params:
- -m recall.100
- -c
separator: "\t"
parse_index: 2
metric: R@100
metric_precision: 4
can_combine: true
- command: eval/trec_eval.9.0.4/trec_eval
params:
- -m recall.1000
- -c
separator: "\t"
parse_index: 2
metric: R@1000
metric_precision: 4
can_combine: true
input_roots:
- /tuna1/ # on tuna
- /store/ # on orca
- /scratch2/ # on damiano
input: collections/msmarco/doc/
index_path: indexes/lucene-index.msmarco-doc.pos+docvectors+rawdocs
index_stats:
documents: 3213835
documents (non-empty): 3213835
total terms: 2748636047
topics:
- name: "[DL19 (Doc)](https://trec.nist.gov/data/deep2019.html)"
path: topics.dl19-doc.txt
qrel: qrels.dl19-doc.txt
models:
- name: bm25-default
display: BM25 (Default)
params:
- -bm25
results:
map:
- 0.3309
NDCG@10:
- 0.5190
RR:
- 0.8046
R@100:
- 0.3948
R@1000:
- 0.6966
- name: bm25-default+rm3
display: +RM3
params:
- -bm25
- -rm3
results:
map:
- 0.3870
NDCG@10:
- 0.5169
RR:
- 0.7718
R@100:
- 0.4189
R@1000:
- 0.7504
- name: bm25-default+ax
display: +Ax
params:
- -bm25
- -axiom
- -axiom.deterministic
- -rerankCutoff 20
results:
map:
- 0.3516
NDCG@10:
- 0.4730
RR:
- 0.7428
R@100:
- 0.3945
R@1000:
- 0.7323
- name: bm25-default+prf
display: +PRF
params:
- -bm25
- -bm25prf
results:
map:
- 0.3624
NDCG@10:
- 0.5105
RR:
- 0.7775
R@100:
- 0.4004
R@1000:
- 0.7357
- name: bm25-tuned
display: BM25 (Tuned)
params:
- -bm25
- -bm25.k1 3.44
- -bm25.b 0.87
results:
map:
- 0.3138
NDCG@10:
- 0.5140
RR:
- 0.8872
R@100:
- 0.3862
R@1000:
- 0.6810
- name: bm25-tuned+rm3
display: +RM3
params:
- -bm25
- -bm25.k1 3.44
- -bm25.b 0.87
- -rm3
results:
map:
- 0.3697
NDCG@10:
- 0.5485
RR:
- 0.8074
R@100:
- 0.4193
R@1000:
- 0.7282
- name: bm25-tuned+ax
display: +Ax
params:
- -bm25
- -bm25.k1 3.44
- -bm25.b 0.87
- -axiom
- -axiom.deterministic
- -rerankCutoff 20
results:
map:
- 0.3860
NDCG@10:
- 0.5245
RR:
- 0.7492
R@100:
- 0.4399
R@1000:
- 0.7545
- name: bm25-tuned+prf
display: +PRF
params:
- -bm25
- -bm25.k1 3.44
- -bm25.b 0.87
- -bm25prf
results:
map:
- 0.3858
NDCG@10:
- 0.5280
RR:
- 0.8007
R@100:
- 0.4287
R@1000:
- 0.7553
Loading

0 comments on commit 0d42d30

Please sign in to comment.