
An Axiomatic Basis for Computer Programming

ChristopherMark Gore

cgore.com

Thursday, March 5, AD 2015

1



Sir Charles Antony Richard Hoare FRS FREng

You can call me Tony!

2



He’s Really Smart!

• Quick Sort (a.k.a. the only good sort),

• Quick Select (a.k.a. the only good select),

• Hoare Logic (this paper is its beginnings),

• CSP (CommunicatingSequential Processes): formalized
message passing,

• Null references (or is that actually a bad thing?)

3



Programming is Logic!

If we control the inputs, the outputs of a function should
be the same, always. It is completely reproducable.

4



Ignore the Arithmetic

He talks a lot about basic arithmetic: feel free to ignore it,
he’s really just using it as a set of examples (unless you are
actually interested in the basic logical foundations of arithmetic.)

5



Program Execution: Preconditions and
Postconditions

We can determine a lot of the validity of a program Q by
specifying some preconditions P and some postconditions
R.

P{Q}R

If you specify enough preconditions and postconditions to
be both necessary and su�cient, you have “proven” your pro-
gram as correct.

Preconditions . . .{ Our Program . . .} Postconditions . . .

6



Axiom of Assignment

Let’s say we want to assign x := f . If we can assert P (x) to be
true a�er the assignment, then we must also be able to say
P (f) before the assignment.

⊢ P0{x := f}P

We get P0 by substituting f for x everywhere in P .

7



Rules of Consequence

If ⊢ P{Q}R and ⊢ R ⊃ S then ⊢ P{Q}S.

If ⊢ P{Q}R and ⊢ S ⊃ P then ⊢ S{Q}R.

This means we can make more general preconditions and
postconditions, and they must also hold.

Example: If our output should be a positive integer, we can
assert that it is just an integer.

8



Rule of Composition

If ⊢ P{Q1}R1 and ⊢ R1{Q2}R then ⊢ P{(Q1;Q2)}R.

This means we can chain together our statements and still
make proofs!

9



Rule of Iteration

If ⊢ P ∧B{S}P then ⊢ P{while B do S}¬B ∧ P .

At the end of the while loop, the conditional B is no longer
true.

10



Reservations and Limitations

• No side e�ects in the proof!

• No in�nite loops!

• Only makes sense if you can rigorously assert things.

11



Questions?

12


