- Linux
- Python 3.8+
- PyTorch 1.9.0
- CUDA 11.1
- GCC 5+
- GPU: RTX [30-series, A-series]
- mmcv > 1.3
- BboxToolkit 1.0
a. Create a conda virtual environment and activate it.
conda create -n apdetection python=3.7 -y
conda activate apdetection
b. Install PyTorch and torchvision following the official instructions, e.g.,
If you have CUDA 11.1 installed under /usr/local/cuda
and would like to install
PyTorch 1.9.0., you need to install the prebuilt PyTorch with CUDA 11.1.
pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
c. Clone the APDetection repository.
git clone https://github.com/chandlerbing65nm/APDetection.git
cd APDetection
d. Install build requirements and then install APDetection.
- install the BboxToolkit
git clone https://github.com/jbwang1997/BboxToolkit
cd BboxToolkit
pip install -v -e .
- install mmcv-full
Please refer to mmcv-full to select a compatible version of mmcv-full
# example for pytorch 1.9.0 and cuda 11.1
pip install mmcv-full==1.3.9 -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.9.0/index.html
# Here, the version of cuda and torch should be the same with your environment.
- install APDetection
pip install -r requirements/build.txt
pip install mmpycocotools
pip install -v -e .