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The growing number of narrow spectral bands in hyperspectral remote sensing improves the capacity to
describe and predict biological processes in ecosystems. But it also poses a challenge to fit empirical mod-
els based on such high dimensional data, which often contain correlated and noisy predictors. As sample
sizes, to train and validate empirical models, seem not to be increasing at the same rate, overfitting has
become a serious concern. Overly complex models lead to overfitting by capturing more than the under-
lying relationship, and also through fitting random noise in the data. Many regression techniques claim to
overcome these problems by using different strategies to constrain complexity, such as limiting the num-
ber of terms in the model, by creating latent variables or by shrinking parameter coefficients. This paper
is proposing a new method, named Naïve Overfitting Index Selection (NOIS), which makes use of artifi-
cially generated spectra, to quantify the relative model overfitting and to select an optimal model com-
plexity supported by the data. The robustness of this new method is assessed by comparing it to a
traditional model selection based on cross-validation. The optimal model complexity is determined for
seven different regression techniques, such as partial least squares regression, support vector machine,
artificial neural network and tree-based regressions using five hyperspectral datasets. The NOIS method
selects less complex models, which present accuracies similar to the cross-validation method. The NOIS
method reduces the chance of overfitting, thereby avoiding models that present accurate predictions that
are only valid for the data used, and too complex to make inferences about the underlying process.
� 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Data collection using in situ measurements is time-consuming
and expensive, constraining the availability of information to lim-
ited areas and specific periods (Plaza et al., 2009; Muñoz-Huerta
et al., 2013; Ramoelo et al., 2012). Remote sensing technologies
can mitigate these limitations and provide opportunities to moni-
tor biological processes over wider temporal and spatial scales
(Stroppiana et al., 2011; Wilson et al., 2011). The monitoring of
biological processes in ecosystems by remote sensing relies mostly
on empirical models to predict a variety of biochemical and bio-
physical properties of vegetation, soil or water (such as nitrogen
concentration, organic carbon and biomass stocks), estimated from
spectral information (Huber et al., 2008; Kokaly et al., 2009;
Nguyen and Lee, 2006; Shepherd et al., 2003; Thiemann and
Kaufmann, 2002).
Hyperspectral images present even greater potential, as they
consist of many narrow spectral bands that can detect changes in
specific regions of the spectrum to which concentrations of such
substances or structural characteristics of vegetation can be related
(Acevedo et al., 2017; Curran, 1989; Hansen and Schjoerring, 2003;
Manolakis et al., 2003; Darvishzadeh et al., 2011). Predictive
empirical models face two important challenges when using
hyperspectral data, as a result of the high dimensions involved:
(1) there is a large number of predictors relative to the number
of observations to fit the model (Zhao et al., 2013) and (2) there
is strong multicollinearity in the predictors, resulting in highly
redundant reflectance values at close spectral distances
(Dormann et al., 2013). Multicollinearity is enhanced when the
sample originates from a homogeneous land cover type, because
similar surfaces result in more similar reflectance values across
wavelengths (Cho et al., 2007).

High dimensionality and multicollinearity complicate the iden-
tification of relevant spectral bands to predict the response vari-
able and the estimation of their regression coefficients, since
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several explanatory variables can be written as a linear combina-
tion of the others (Gelman and Hill, 2006; James et al., 2013;
Kuhn and Johnson, 2013). Also, multicollinearity can falsely
increase prediction accuracy when a variable that has no correla-
tion with the response but correlates well with another variable
that does correlate with the response is used in the model
(Meehl, 1945).

There are two main solutions to process high dimensional and
multicollinear hyperspectral data with regression models
(Stroppiana et al., 2011). Firstly, the number of predictors (bands)
can be reduced before fitting an ordinary least squares (OLS) type
of model. This can be achieved by selecting a spectral index based
on a priori knowledge, by grouping bands to create latent variables
using techniques such as principal components and wavelets
(Bioucas-Dias and Nascimento, 2008; Bruce et al., 2002), or by find-
ing an optimal combination of bands using stepwise multiple lin-
ear regression or genetic algorithms (Ramoelo et al., 2012;
Darvishzadeh et al., 2008; Schlerf et al., 2010). Secondly, models
can be fitted using all explanatory variables based on non-
ordinary least square techniques (non-OLS). Commonly used
non-OLS regressions applied to remote sensing are: dimension
reductions such as Partial Least Squares Regression (Carvalho
et al., 2013; Martin et al., 2008), tree-based ensembles such as Ran-
dom Forest or Boosted Regression Trees (Abdel-Rahman et al.,
2013; Feilhauer et al., 2015), support vector machine regression
(Feilhauer et al., 2015; Mountrakis et al., 2011), and artificial neural
networks (Farifteh et al., 2007; Mirzaie et al., 2014; Skidmore et al.,
1997).

Regardless of whether or not there is a true relationship
between predictors (spectral bands) and the response variable,
using a large set of predictors in relation to the number of observa-
tions with a supervised method is likely to cause model overfitting
(Hastie et al., 2009). A model may fit the training set almost per-
fectly, but lead to lower accuracy predictions when applied to
new samples or a testing set (Gelman et al., 2014; Lee et al., 2004).

Overfitting is the situation where overly complex models cap-
ture more than the underlying relationship, and also fit random
and systematic errors (noise) in the data (James et al., 2013). This
is even more of a concern in non-OLS regression techniques that
use the residuals from a model fitted in a previous step as new
response in a subsequent step (Hastie et al., 2009). Also, predictors
derived from hyperspectral data may present a considerable
amount of noise in some regions of the spectra, depending on
the capacity to control variations in illumination and atmospheric
conditions during the measurements (Manolakis et al., 2003).

Therefore, empirical models need to be constrained regarding
the number of predictors or parameters included to avoid overfit-
ting. The type and number of terms per predictor used in a fitted
model varies between techniques, including parameter coeffi-
cients, interaction, second order terms, nodes, trees, and so on
(James et al., 2013). The number of terms used determines the level
of model complexity (Hastie et al., 2009). The maximum model
complexity to avoid overfitting depends greatly on the number of
observations relative to the number of predictors used for fitting
the model (Fassnacht et al., 2014; Kuhn and Johnson, 2013).

The procedure to select an optimal model complexity that bal-
ances the trade-off between accuracy and overfitting is called the
tuning process (James et al., 2013). This process is typically per-
formed by adjusting or ‘‘tuning” parameters that control the num-
ber of terms in the model, such as the ‘‘number of components” in
partial least squares regression or ‘‘cost” in support vector machine
regression (Hastie et al., 2009).

The optimal model complexity cannot be calculated directly
from the data but can be defined by fitting models with different
complexities and evaluating their prediction accuracy (Krstajic
et al., 2014; Verrelst et al., 2012). Some metrics to assess model
accuracy, such as the adjusted coefficient of determination (R2
adj),

Akaikes Information Criterion (AIC), and the Bayesian Information
Criterion (BIC) are inappropriate for selecting the best model
complexity from different non-OLS regressions as the degrees of
freedom are impossible to determine or compare between
regression techniques (James et al., 2013). Often the coefficient of
determination (R2) of the simple regression between observed data
and model predictions is presented as accuracy metric for non-OLS
regressions.

Assessing model performance with the same dataset to which it
was fitted, greater complexity automatically means higher accu-
racy because error declines monotonically as complexity increases
(James et al., 2013). Therefore, it is inappropriate to use the same
dataset to select model complexity and to report the prediction
accuracy, requiring a method that separates the data into training
and testing (sub) sets (Esbensen and Geladi, 2010). Whether the
most suitable splitting of data will be based on approaches such
as cross-validation or bootstrapping or even the collection of an
independent validation set, will depend on the sample design
and data availability (Fassnacht et al., 2014; Kuhn and Johnson,
2013).

Independent validation can be achieved by splitting the existing
data into training and testing sets, keeping the validation set apart
to quantify the accuracy of each level of model complexity. In this
case, the fitted model will be considered overfitted when the accu-
racy of an independent validation set is significantly lower than the
accuracy of the training set (Dormann et al., 2013). Although non-
representative samples or samples from different populations can
also lead to lower accuracies, overfitting is related exclusively to
the process of modelling (Hawkins, 2004).

Despite being widely employed, splitting a single dataset into a
training and a testing set may only have a limited ability to char-
acterize the uncertainty in the predictions (Kuhn and Johnson,
2013). Model performance can be highly variable depending on
the size of the testing set and the variability in the population that
was sampled (Darvishzadeh et al., 2008; Kuhn and Johnson, 2013).
In addition, when the number of observations is limited, most of
them need to be allocated to calibrate the model (Hawkins,
2004). In these cases, cross-validation is an alternative approach
to evaluate a model as it randomly splits off multiple combinations
of training and validation sets (James et al., 2013).

Cross-validation estimation can produce a reasonable indica-
tion of overfitting, and has shown, in general, to be efficient in find-
ing optimal model complexity, giving a satisfactory estimation of
the predictive performance (Kuhn and Johnson, 2013). A widely
used cross-validation method is the K-fold approach, based on
the random splitting of observations into k groups of similar size
(James et al., 2013). This procedure can be repeated many times,
using a different selection of folds as testing set each time, to
increase the robustness (Krstajic et al., 2014).

Being widely accepted as tuning method, cross-validation pro-
cedures may still select overly complex model in the case of hyper-
spectral data. Hawkins (2004) stated that a model overfits when it
is more complex than another model that performs equally well.
Also, robust cross-validation can be computationally intensive
and thus time consuming for high dimensional data such as hyper-
spectral datasets, depending on the number of parameters to tune
(Hastie et al., 2009; Krstajic et al., 2014). Another limitation is that
tuning parameters are often not comparable between different
modelling methods and the available methods do not evaluate
the adequacy of the model complexity selected from different
non-OLS regressions (Kuhn and Johnson, 2013). In addition,
cross-validation tuning methods do not quantify the amount of
overfitting as the (true) maximum model contribution for a given
set of predictors is normally unknown, making it difficult to fairly
compare the accuracy of different regression techniques.
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The novelty of this study is to present a new tuning method for
modelling hyperspectral data that overcomes these limitations of
existing techniques. The new method is termed Naïve Overfitting
Index Selection (NOIS) and it (1) provides an efficient and struc-
tured method to tune over a range of parameters, showing a grad-
ual increase in model complexity, for non-OLS regressions; (2)
determines the maximum level of model complexity supported
by a specific data structure without overfitting; and (3) quantifies
the relative amount of overfitting across regression techniques
consistently, highlighting the trade-off between prediction accu-
racy and overfitting.

The performance of models derived from this tuning method is
compared to a tuning method based on robust cross-validation,
and tested using different hyperspectral datasets and regression
techniques.
2. Methods

The Naïve Overfitting Index Selection (NOIS) requires three
steps. Firstly, a dataset of artificial spectra is generated, having
the same data structure as the original spectra, but uncorrelated
with the response variable. Secondly, the amount of overfitting at
different levels of model complexity is calculated using the gener-
ated spectra as predictors. Thirdly, a model complexity is selected
based on an overfitting threshold that is compatible with the data
structure and comparable between datasets and regression tech-
niques. In this paper, the NOIS method is subsequently compared
with a traditional cross-validation tuning method by fitting seven
commonly used non-OLS regression techniques to five hyperspec-
tral datasets.

2.1. Database

A selection of hyperspectral datasets (Table 1) composed of dif-
ferent surfaces and measured using diverse instruments under sin-
gular conditions is used to assess the robustness of the NOIS
method. These datasets originate from various scientific contexts,
representing plausible combinations of number of observations
versus number of predictors. These include a dataset with a num-
ber of observations higher than the number of spectral bands (e.g.,
the soil organic carbon dataset), as well as a dataset where the
number of observations is considerably smaller than the number
of spectral bands (e.g., the leaf water content dataset).

The second last row of Table 1 indicates the risk of multi-
collinearity in the model, as in hyperspectral data a large propor-
tion of bands can be considered redundant when a specific
surface is measured. For example, if a maximum correlation
Table 1
Description and structure of the five selected datasets used for assessing the new tuning

Data structure Vegetation traits

Leaf Area Index (LAI) Leaf Chlorophyll Content
(LCC)

Le
(L

Observations (n) 129 111 10
Predictors (p) 592 126 66
Wavelength 352–2382 nm 436–2485 nm 25
Instrument GER3700 Hymap Br
Type Field Airborne La
Distribution (Y)

Redundancy (pair of
bands)

q < 0.75 = 3 bands q < 0.75 = 3 bands q
q < 0.90 = 8 bands q < 0.90 = 5 bands q

Published by Darvishzadeh et al.
(2008)

Darvishzadeh et al. (2011) Bu

Note 1: More detailed information about each dataset can be found in the supplementa
threshold of 0.75 between any pair of bands is defined as ‘‘not
being sufficiently different”, only a few individual bands will be
considered non-redundant in all datasets, implying a strong risk
of multicollinearity.

2.2. Generating artificial spectral data

A new dataset of predictors with the same dimensions as the
original dataset (Table 1) is generated from a multivariate normal
distribution. This generated dataset preserves the number of bands
and has an equivalent mean, variance and covariance to those
observed in the original spectra. This procedure intends to create
predictors that are completely uncorrelated with the response
variable, but maintain the data structure of the original predictors
(Fig. 1).

Artificial spectra were generated using the mvrnorm function
from the MASS package in R version 3.2.5 (Venables and Ripley,
2002; Ripley, 2009; R Core Team, 2016). This function requires a
vector of means and a positive-definite symmetric covariance
matrix extracted from the original spectra. The generated data
was rescaled according to the original spectra, preserving the same
reflectance range of each band using the function rescale from the
package plotrix (Lemon, 2006).

The process of generating spectral datasets gives a good indica-
tion of the amount of noise present in the predictors (all generated
datasets can be found in Appendix B). For instance, the generated
spectra for the moisture dataset present all bands as almost com-
pletely uncorrelated with the response variable (Appendix B), indi-
cating low noise in the data. Because sand samples allow for well-
controlled experiments to be conducted in a laboratory, precise
measurements could be made for this dataset. Also, only wave-
lengths between 350 and 2100 nm are included in the analysis,
as wavelengths over 2100 nm are considered by the data provider
to have a low signal-to-noise ratio (Nolet et al., 2014). On the other
hand, the LWC dataset contains bands between 2500 and
16,700 nm (thermal) and no specific pre-processing in the data
has been applied to reduce the noise in the data. A high level of
noise in certain regions of the spectra for this dataset can produce
generated predictors that may, by chance, still be slightly corre-
lated with the response variable.

2.3. Quantifying overfitting

The generated predictors’ dataset (X0) preserves the relationship
across spectral bands, but makes them uncorrelated (i.e., indepen-
dent) with the response variable (y). Given that y and X0 are inde-
pendent, the conditional distribution y|X0 does not depend on the
method NOIS.

Soil traits

af Water Content
WC)

Sand Moisture Content
(SMC)

Organic Carbon Content
(OCC)

8 208 292
12 2150 216
00–16,700 nm 350–2500 nm 350–2500 nm
uker Vertex 70 ASD Fieldspec FieldSpec FR
boratory Laboratory Laboratory

< 0.75 = 1 band q < 0.75 = 3 bands q < 0.75 = 13 bands
< 0.90 = 3 bands q < 0.90 = 3 bands q < 0.90 = 35 bands
itrago et al. (2016) Nolet and Roosjen (2014) ICRAF-ISRIC Spectral

Library

ry material (Appendix A).



Fig. 1. Comparison between original and generated reflectance for the soil dataset. The average (dark grey), maximum (lighter grey) and minimum (light grey) from the
original spectra (top left) and generated data (top right). And the correlation between the response variable (OCC) and predictors (bands), using original spectra (bottom left)
or generated data (bottom right).
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value of X0, E[y|X0] = E[y], and covariance y|X0 should approach zero
(Cook and Weisberg, 2009). Consequently, the only information
available is the mean of response variable, and any model based
on generated spectra as explanatory variables will be referred as
a naïve model. It implies that the mean square error of a prediction
based on X0 depends only on the variance of the response variable
r2

y . Therefore, the naïve models, in theory, should not reduce pre-

dictor errors (i.e., byi ¼ �y and r̂2
y ffi r2

y). Consequently, any reduction
in prediction error can be attributed to an increase in the model
complexity and thus to overfitting.

The amount of overfitting in a naïve model can be quantified by
the difference between the prediction error and the true error (i.e.,

variance of the response variable), expressed by 1� r̂2
y

r2
y

� �
. When

values of the predictor error (r̂2
y) are significantly lower than the

true error (r2
y) this will indicate model overfitting. The index will

achieve a maximum of 1 when the predictor error approaches zero
(r̂2

y ! 0Þ. In case of no overfitting, r2
y and r̂2

y should be equal and
the overfitting index will approach 0.

2.3.1. Naïve overfitting index selection (NOIS)
Since variance or mean square errors depend on the response

variable range (y), the model accuracy was reported as Root Mean
Square Error normalized by the range of the response variable
(NRMSE). The naïve overfitting index produced by a specific level
of complexity is also calculated based on NRMSE.

na€ıve overfitting index ¼ 1� NRMSEg
NRMSEy

� �
; where :

NRMSEg is the error based on the prediction derived from the naïve
model using the generated data (X0), and NRMSEy is the error based
on the prediction derived from the mean of the response variable (y).
For instance, a naïve overfitting index of 0.75 indicates that the
true error is falsely reduced 75% by this level of model complexity.
In this case, the model complexity should be significantly con-
strained or the number of observations considerably increased.
Negative index values indicate that the model predicts a bigger
error than NRMSEy, and the model complexity is constrained
excessively (‘‘underfitted”). Because the NRMSEy is only based on
the response variable (y), and no model contribution is expected
from naïve models, the degree of overfitting is directly comparable
between regression techniques.
2.4. Selecting model complexity

The optimal model complexity supported by the data is selected
by increasing tuning parameter values until the naïve overfitting
index drops below a pre-defined tolerance (Fig. 2). This tolerance,
expressed as a percentage of the NRMSEy, can be adjusted to avoid
selecting underfitted models, where the level of complexity is
excessively constrained. The tolerance is set at 0.05 in this study,
based on the maximum correlation between the response variable
(y) and the artificially generated spectra (see Appendix B).

In some of the regression techniques there is more than one
tuning parameter to define model complexity, requiring a repeat
of the procedure for each parameter, whilst keeping other tuning
parameters fixed.

Because naïve models are trained and selected using generated
artificial spectra, the accuracy can be assessed using the full data-
set with original predictors, as opposed to the traditional cross-
validation method, which requires multiple splitting of training
and validation subsets. Thus, compared to traditional cross valida-
tion, the NOIS method avoids uncertainty in the estimation of pre-
diction errors. The naïve overfitting index is defined as the relative
model contribution when using generated data (naïve model) and



Fig. 2. Process to select the level of model complexity using the NOIS method and the traditional cross-validation tuning. The point P1 represents the level of complexity,
where the value of the naïve overfitting index over the NRMSEg curve (generated data) approaches 0.05 (tolerance). The point P2 represents the level of complexity selected
by the traditional method (based on original data), where the maximum model contribution is achieved based on minimization of the NRMSE estimate from the cross-
validation (NRMSEcv curve).
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provides an indication of the amount of overfitting for a given level
of model complexity.
2.5. Comparison with a traditional ‘tuning’ method

The NOIS method is compared with a tuning procedure using
traditional cross-validation to test its consistency and reliability
in the tuning process (Fig. 3). A 10-fold cross-validation is adopted
to evaluate the performance of each level of model complexity
with the original spectra as predictors. This procedure is randomly
repeated ten times, resulting in a combination of 100 subsets of
training and validating sets of the original data. The model tuning
by means of traditional cross-validation is based on minimization
of the cross validated prediction error (NRMSEcv).

The same approach to calculate the naïve overfitting index can
be used with the traditional cross validated tuning method to rep-
resent the relative model contribution, by replacing the NRMSEg
from the naïve model (generated predictors) by the NRMSEcv esti-
mate from the model fitted on the original data. However, as the
true model contribution is unknown in this case, the model
contribution may be confused with overfitting. Also, the prediction
error estimated by cross-validation is based on an average (see
Fig. 2 – P2), and the model contribution may vary significantly
between sub-models.
2.5.1. Regression techniques tested
Common regression techniques for modelling hyperspectral

data are used to compare the NOIS method with a traditional
cross-validation method (Table 2). These regression techniques
are often selected because they are considered to be reasonably
robust regarding highly dimensional data and high multicollinear-
ity (Kuhn and Johnson, 2013; Zhao et al., 2013).
Techniques that contain stochasticity (i.e., Regression Trees and
Neural Networks) are initialized with a fixed seed for each level of
complexity with the generated (X0) and original (X) predictors. Dif-
ferent initialisations of a Neural Network algorithm may result in
differences regarding complexity and relative overfitting (James
et al., 2013). When the models are fitted based on the same seed,
the results are consistent and comparable. For non-stochastic tech-
niques, the fitted training model will not change, but a fixed seed
will guarantee the same selection of k-folds in cross-validation
(replicability).

All regression methods are executed in R version 3.2.2 (The R
Foundation for Statistical Computing). The package Caret (Classifi-
cation and Regression Training) is used for fitting models from dif-
ferent regression techniques with cross-validation under the same
platform (all the packages are presented in Table 2). The value of
all selected tuning parameters for each regression technique and
dataset are presented in Appendix C. The response and explanatory
variables in each dataset are mean centred and scaled by standard
deviation before fitting the models to increase comparability
across techniques and datasets (Kuhn, 2008).
3. Results

3.1. Selecting model complexity

The NOIS method, in most cases, identifies lower levels of com-
plexity as suitable than the traditional tuning process using cross-
validation does (Fig. 4). Datasets with a higher number of observa-
tions (n) in relation to the number of predictors (p) support greater
model complexities (Burket, 1943; Hastie et al., 2009). This princi-
ple becomes quite clear when the model complexity is selected by
the NOIS method, but is less evident when the traditional cross-
validation is used.



Fig. 3. Comparison between the proposed NOIS method and a traditional approach of cross-validation.

Table 2
List of regression techniques tested, R packages and functions to fit the model, and tuning parameters used for defining model complexity.

Type Regression technique R package and (function) Tuning parameters to define model complexity

Regression trees (ensemble) Random forest randomForest (rf) mtry (number of randomly selected predictors)
maxnode (max number of terminal nodes trees)

Boosted trees gbm (gbm) n.trees (number of interactions)
interaction.depth (max. of variable interactions)
Shrinkage (shrinkage/learning rate)
n.minobsinnode (min. terminal node size)

Artificial neural network Stuttgart neural network simulator RSNNS (mlp) Size (number of hidden units),
Max (number max. of interactions),
Decay (weight decay/shrinkage/leaning rate)

Dimension reduction Partial least squares pls (pls) ncomp (number of components)

Vector machines Support vector machines e1071 (svmLinear) Cost (cost)
Epsilon

Penalized or shrinkage model The Lasso Elasticnet (lasso) Fraction (fraction of full solution – shrinkage)
Ridge Elasticnet (ridge) Lambda (weight decay – shrinkage)
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For example, the organic C dataset (grey line in Fig. 4) is the
dataset with the highest n/p ratio, namely 292 observations for
216 bands. This dataset also shows the lowest overfitting in almost
all the regression techniques. Random Forest models form an
exception with similar levels of overfitting occurring regardless
of the differences in n/p ratios. In contrast, LWC has the lowest
n/p ratio, i.e., 108 observations for 6612 bands, and shows overfit-
ting at relatively low levels of model complexity.

The two tuning methods suggest similar levels of complexity for
the LCC dataset for all regression methods. The Support Vector
Machine tuning for the LCC dataset generated the only instance
where the traditional tuning method selected a lower level of
model complexity than the NOIS method did. The reason for this
is that the LCC dataset has the smallest number of predictors,
which are also the least correlated with the response. As well,
the generated spectra present a low level of noise to fit in this data-
set (see Appendix B). This leads to select models with low levels of
complexity in both methods.
The different tuning approaches result in different levels of
overfitting. For example, the PLSR model fitted to the LWC dataset
is constrained to a maximum complexity of 3 components (tuning
parameter of PLSR) at a naïve overfitting index of 0.04 when the
NOIS method is used. On the other hand, the traditional method
selects up to 20 components, at a naïve overfitting index of 0.66.
Whereas the new method selected a model complexity that, when
applied to the original spectra, presents a model contribution of
33%, the traditional method selected a model complexity that pre-
sents a model contribution of 48%. The model contribution sug-
gested by cross-validation is only slightly higher than the one
indicated by the new method, but has a much higher level of com-
plexity (100,000 more parameter terms in the model). This com-
plexity selected by cross-validation is large enough to present a
model contribution of 99% for the training model
(NRMSEtr = 0.0037).

Some researchers suggest selecting a smaller model complexity
if increasing it does not decrease the error by at least 2% (Kooistra



Fig. 4. Naive overfitting index selection (NOIS) according to model complexity per regression technique. Note: The range of tuning parameters commonly suggested by
software guides or machine learning literature seems unsuitable for the high dimensional hyperspectral data used in this study, and more constrained tuning parameters
used to reduce complexity are needed to avoid overfitting. See for example Kuhn and Johnson (2013), James et al. (2013) or https://cran.r-project.org/ for suggested ranges of
tuning parameters.
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et al., 2004; Darvishzadeh et al., 2011). In the case of PLSR, select-
ing a model complexity by the traditional tuning method, with this
criterion, 9 rather than 20 components would be selected for opti-
mal complexity. Although less overfitted, this still presents an
NRMSEtr more than twice as small as NRMSEcv, and a level of com-
plexity sufficient to reduce the NRMSEtr one quarter of the
NRMSEy in the generated data (with a naïve overfitting index of
0.26). Also, this 2% rule is easily applied in PLSR where there is only

https://cran.r-project.org/
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one discrete tuning parameter, but is less applicable in many other
regression techniques that present two or more non-discrete tun-
ing parameters for selection.

3.2. Quantifying overfitting and model contribution

Fig. 5 presents the cross-validated error (NRMSEcv) for models
fitted to the original spectra with a level of complexity tuned by
the NOIS method and the traditional method for all regression
techniques. The boxplot shows the variability in NRMSEcv among
the sub-models’ performance by the repeated k-fold cross-
validation.

The results, when presented in ascending order of dimensional-
ity (n versus p), indicate that by increasing the number of predic-
tors relative to the observations, the distance between NRMSEtr
and NRMSEcv in the traditional method increases considerably.
On the other hand, the new method results in NRMSEtr values that
are very similar to the NRMSEcv values. The amount of overfitting
(bars on Fig. 5) for the model complexities selected by the new
method are all controlled at a tolerance around 0.05.

The model complexities selected by the traditional method pre-
sent much higher levels of overfitting for a number of scenarios. In
the most extreme case a naïve overfitting index of around 0.90 was
found using traditional tuning (Random forest applied to the LWC
dataset), suggesting that the error can be reduced to 10% with non-
informative predictors by selecting an overly complex model. The
results indicate that the new method selects models that are less
likely to be overfitted, while in most cases showing similar
accuracy.
Fig. 5. Boxplots of the NRMSE distribution from 100 cross-validated models fitted on
method. The bars represent the naive overfitting index of the model complexity selecte
3.3. Comparison between methods

PLSR and SVMR models show only small differences in perfor-
mance between the levels of complexity selected by the traditional
and the new method. These regression techniques also present
results that are more consistent across different data structures
and different capacities of explaining the response by the predic-
tors. The distribution of NRMSEcv between models selected in both
methods is mostly similar, yet the level of complexity for the NOIS
method is usually significantly smaller than for the traditional
method.

While the model selected by the NOIS method presents a single
value of prediction error, the cross-validation procedure presents
an average of hundred combinations of training and validation
sets. The more random noise there is present in the original
spectral signal, the more uncertainty is presented in the
cross-validation estimation. This is noticeable when comparing
the variability of the cross-validation estimates between the
Moisture and LWC datasets (Fig. 5). This can also be derived from
the higher capacity to generate artificial predictors that are uncor-
related with the response variables in the first step of the NOIS
method (see Appendix B).

Taking the LWC original dataset as an example, the relative
model contribution of the selected models for different regressions
is between 0.66 and 0.99 for the training models, while the model
contribution from cross-validation is between 0.16 and 0.49. Such
differences may be due to the smallest model contribution coming
from an underfitted model (NRMSEcv = 0.218) and the highest
from a highly overfitted model (NRMSEtr = 0.004). Based on these
the original bands with a model complexity selected by the traditional and NOIS
d. The circles indicate the NRMSEtr using all the observations.
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results, it is difficult to decide what the most reasonable estimation
of accuracy is given the available predictors to explain the response
variable LWC. However, concluding that choosing a model with a
complexity that minimizes NRMSEcv does not guarantee general-
izable non-OLS model predictions. In the proposed NOIS method,
the model is selected by the maximum complexity that is sup-
ported by the data structure without overfitting, and the accuracy
is a single calculated value for that particular model using the orig-
inal data.

Another limitation of the traditional method is the effect of
intensive cross-validation, resulting in a low capacity to indicate
overfitting in complex models when the number of observations
is insufficient. Fig. 6 presents the difference between cross-
validation error estimates (NRMSEcv) and training model errors
(NRMSEtr) for the tuning process of PLSR as an example using
the traditional method.

As observed in the LCC plot (Fig. 6e) the NRMSEcv decreases to a
certain level of complexity, after which it starts to increase, while
the NRMSEtr further decreases. The optimal complexity for this
dataset occurs at a point where the difference between the
NRNSEtr and NRMSEcv is not too great (Hastie et al., 2009;
Schlerf and Atzberger, 2006). This, however, is not observed in
datasets where the number of observations is much smaller than
the number of predictors, such as for LWC and Moisture. After
the fourth component, NRMSEtr and NRMSEcv start to bifurcate
in the LWC dataset (Fig. 6b). While NRMSEtr reduces to approxi-
mately zero when twenty or more components are included,
NRMSEcv remains at an almost steady value for nine or more
components.

The gap between NRMSEtr and NRMSEcv demonstrates a
clearly overfitted model that presents a complexity higher than
supported by the data available. This complexity produces an
NRMSEtr value of 0.004 for LWC, near to the nominal precision
of the instruments used for measuring the spectra (photometric
Fig. 6. Error in model prediction (NRMSE) per level of complexity fitted by PLSR using
(NRMSEtr) and dotted lines are cross-validation estimates (NRMSEcv).
accuracy of 0.1% T - VERTEX 70 Spectrometer) and is probably
more precise than the capacity to determine the true leaf water
content values. Nevertheless, this clearly overfitted model would
still be selected when using minimization of the cross-validation
error (NRMSEcv) as a tuning method.
4. Discussion

The naïve overfitting index selection as presented has a number
of advantages. Firstly, it is based on a single error estimation (i.e.,
NRMSEg). Secondly, it uses all the available observations to cali-
brate the model ensuring that no degree of freedom is lost in the
tuning process. Thirdly, a comparison between different regression
techniques is more reliable as the amount of overfitting can be
quantified and controlled. This comparison indicates that the max-
imum level of complexity supported by a model before overfitting
depends greatly on the data structure. Especially the number of
observations (n) versus number of predictors (p), the degree of
multicollinearity, and the amount of random noise in the data
can increase the risk of overfitting considerably. Fourthly, model
complexity is hard to standardize across regression techniques,
but now the amount of overfitting can be estimated by the naïve
overfitting index in a comparable way.

Traditional tuning based on cross-validation does not indicate
whether the level of model complexity is appropriate for the data
under consideration. The NOIS method allows more control and
understanding about the effects of the model complexity in the
trade-off between accuracy and overfitting. Finally, robust cross-
validation can be time consuming, requiring intensive computing
time for high dimensional data such as hyperspectral measure-
ments. The NOIS method is considerably faster, especially for
regression techniques that require tuning across a large range of
parameters. Cross-validation only needs to be performed for the
selected level of complexity to assess the final model accuracy.
the traditional tuning method (original data). Solid lines represent training models
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4.1. Trade-off accuracy and overfitting

Some machine learning algorithms were initially designed for
classification, such as the ones based on regression trees (Random
Forest and GBM). Such methods normally produce training models
with significantly higher accuracy than the validation models.
Thus, these techniques will hardly ever present similar accuracy
in the training and validation sets for models using continuous
response variables, regardless of the tuning method applied. Also,
Dormann et al. (2013) concluded that Random Forests consistently
overfit, without there being an obvious solution to correct this.

In prediction problems, it is desirable to fit models from a given
sample in such a way that the most accurate predictions are pro-
duced, also when applied to other samples from the same popula-
tion (Burket, 1943). However, building complex models with high
dimensional data with techniques that learn from the information
in the model residues can reduce the reproducibility of the predic-
tion accuracy considerably for future samples from the same pop-
ulation (Kuhn and Johnson, 2013). Accuracymetrics used for model
selection in non-OLS regression techniques do not take in account
the lack of parsimony as common in ordinary least square regres-
sions. The new tuning method overcomes this problem by identify-
ing for each regression technique the maximum model complexity
that is supported by the given data structure.

Seeking accurate models by minimizing the prediction error has
to be weighed against the risk of overfitting and producing unreal-
istically small errors. At times, complex models fictitiously perform
better than the accuracy of the measuring system used for collect-
ing the set of spectral signals, chemical concentrations or struc-
tural components. The random error in measurements or
situations when relevant predictors are missing in the model
should not be mistaken for lack of fitness (underfitting) and be a
reason to increase model complexity.

Predictors derived from hyperspectral data cannot be consid-
ered independent because the reflectance is measured by the same
instrument, at the same time, and from nearby wavelengths
(Curran, 1989). These characteristics are generally undesirable for
modelling, as predictors that are not independent from each other
tend to cause serious problems of multicollinearity. However,
these characteristics also provide the opportunity to generate arti-
ficial spectra using the covariance matrix in such a way that the
data structure is replicated, but the result is not correlated with
the response variable. So, our proposed method uses these proper-
ties of hyperspectral data to present an intuitive tuning process
that permits understanding of the trade-off between accuracy
and overfitting for the selected model complexity.

4.2. Limitations and precautions

Our proposed method is built on the assumption that the mod-
elling algorithm conducts the same procedure for the original and
for the artificially generated predictors. This is not the case for regres-
sion techniques that present an internal mechanism of feature selec-
tion for explanatory variables. Such techniques (e.g., Lasso and GBM)
may actually present different levels of model complexity for the
same value of a tuning parameter (Hastie et al., 2009, James et al.,
2013; Kuhn and Johnson, 2013). This can be seen, for example, in
the lasso regression of the moisture dataset. This model, when tuned
with cross validation retains 341 out of the 2150 predictors available
(others have their coefficients shrunk to zero). However, with the
NOIS method it retains 571 predictors.

The process to generate artificial predictors may result in a
dataset slightly correlated with the response variable when the
number of predictors is extremely large and noisy. In this case,
when the complexity is constrained to a level that presents no
model contribution, the NOIS tuning may select an underfitted
model. This is the case for the LWC dataset (see Appendix B), and
can be seen distinctly in the ridge regression were the model coef-
ficients were shrunken excessively resulting in an error higher
than the RMSEy (Fig. 6). In this case, the remaining correlation
from the generated data can overtake the tolerance of 5%, and a
higher threshold should be defined to accept more model contribu-
tion. A pre-processing filter to smooth the original spectral signal
to reduce the noise before generating the artificial predictors could
be applied in such cases. As this study aimed to compare the new
method for different data structures, no extra pre-processing was
applied on the (original) spectra and the tolerance was kept con-
stant, despite the risk of selecting underfitted models for a partic-
ular dataset.

5. Conclusion

Hyperspectral data provide opportunities to monitor biological
processes and structure in a natural environment over wider tem-
poral and spatial scales. However, as demonstrated in this study,
empirical models using high dimensional hyperspectral data as
predictors are very likely to cause model overfitting. The tradi-
tional tuning methods fail to precisely determine the maximum
level of complexity that is warranted by the used data. These meth-
ods are also unable to estimate the amount of overfitting expected
given a selected model complexity. The NOIS method presented
here, overcomes these problems by quantifying the relative
amount of overfitting and by selecting an optimal model complex-
ity supported by the data. The new tuning method consistently
selects a less complex model and is thus less susceptible to overfit-
ting, while the model performance is similar to the ones selected
by the traditional tuning method. The NOIS method increases the
chances of fitting more generalizable models from hyperspectral
data, avoiding models that perform accurately only on the data
that they were trained with.
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Appendix A. Datasets

A.1. LAI and GER3700 canopy spectra

Description extracted from Darvishzadeh et al. (2008).

A.1.1. Leaf area index – LAI
Non-destructive measurements of leaf area index were taken

using a Plant Canopy Analyzer (LAI-2000), an instrument produced
by LICOR Inc. (Lincoln, NE USA). The measurements were taken
under clear sky conditions, with a low solar elevation, and without
direct sunlight reaching the sensor. Five bellow-canopy samples
and a reference above-canopy radiation were collected to repre-
sent the, average, LAI.

A.1.2. Canopy spectra
The canopy spectra measurements were captured in the field

from June 15 to July 15 in 2005 by the spectroradiometer
GER3700 (Geophysical and Environmental Research Corporation,
Buffalo, Ney York). The wavelength range was between 350 nm
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and 2500 nmwith a spectral resolution of 3–16 nm. Measurements
were collected on clear sunny days between 11:30 and 14:00 to
reduce atmospheric perturbations and BRDF effects. The sensor
captured a base area about 45cm in diameter. Up to 15 measure-
ments per plot (1 m � 1 m) were recorded, changing the position
slightly to represent the plot area. The average of the measures
was used in order to reduce noise.

A.2. LCC and Hymap image

Description extracted from Darvishzadeh et al. (2011).

A.2.1. Leaf chlorophyll content – LCC
Leaf chlorophyll content (LCC) was measured in the field by the

instrument SPAD-502 Leaf Chlorophyll Meter (Minolta, Inc.). SPAD
values are unitless measurements based on the transmittance in
red (650 nm) and NIR (920 nm) wavelength regions. Many studies
have demonstrated that these values are highly correlated with the
leaf chlorophyll concentrations derived from chemical processes. A
total of 30 leaves of main, dominant species were measured and
averaged to represent the LCC in each plot.

A.2.2. Hymap image
Hyperspectral airborne HyMap sensor data were acquired over

the study area on 4 July 2005. The sensor contained 126 spectral
channels in a wavelength range of 436–2485 nm with a spectral res-
olution of between 13 nm and 17 nm and a spatial resolution of 4 m.

A.3. LWC and FTIR spectrometer

Description extracted from Buitrago et al. (2016).

A.3.1. Leaf water content (LWC)
LWC was destructively measured at each stage of the experiment

using leaves from the same cohort as the marked leaves, which were
used for the spectral measurements. The relative gravimetric LWC
was calculated using the equation: LWC = 100 ⁄ (Ww�Wd)/Ww,
where Ww is the weight of the fresh leaf, and Wd is the weight of
the dried leaf. Leaves were dried in an oven at 65 �C. Cuticle thickness
was measured from a thin transverse section of the marked leaves,
using a LeitzWetzlar microscope, with an amplification of 250�. This
trait was measured at least 3 times in each leaf and the measure-
ments averaged and expressed in lm.

A.3.2. Leaf spectral
All plants were measured with a Bruker Vertex 70 FTIR spec-

trometer, adapted with an external integrating sphere. An Infra-
gold plate with known spectral emissivity was used to calibrate
each measurement. Spectra were measured in the range 4000–
600 cm�1 (2.5–16.7 lm) with a resolution of 4 cm�1. Per leaf eight
samples, with 520 scans per sample, were taken. These measure-
ments were averaged and the results were calculated per leaf. Five
leaves per plant were measured in the same way for a total of 75
leaves per treatment at every stage of the experiment.

A.4. Moisture and laboratory spectroscopy

Description extracted from Nolet and Roosjen (2014). Data are
publicly accessible at doi: 10.4121/uuid:866135c2-2be3-4b74-8f
9c-922505285a7b.

A.4.1. Moisture
A representative sample of beach sand was collected from the

‘Sand Motor’ (GPS location: 52.0520N 4.1840E). Before the experi-
ment, the sample was coarsely sieved (2 mm) to remove shells and
constituents other than sand. The sand, composed of quartz with
some feldspar, had a dry bulk density rb of 1.655 gcm. For each
experiment, a sub-sample of the collected beach sand was placed
in a matte black petridish (5 cm radius, 1.5 cm height), filling it
up to the rim, and oven dried for 24 h at 105 �C. The sample was,
after measuring its initial weight, slowly saturated with distilled
water. The water was allowed to distribute itself uniformly
throughout the sample and excess free water was drained from
the surface. The sample was placed on a data-logging weighing
scale with milligram precision.

A.4.2. Laboratory spectroscopy
A laboratory spectroscopy experiment was conducted twice to

observe spectral reflectance in the optical domain (350–
2500 nm) under different moisture conditions. The spectral reflec-
tance was measured at 1 nm intervals using an ASD Fieldspec Pro
spectrometer (Analytical Spectra Devices, Boulder, CO). A 40,640
cm white Spectralon panel (LabSphere, Inc., North Sutton, NH)
was used to calibrate the spectrometer. The spectrometer was fit-
ted with a 10 FOV foreoptic which was directed at nadir at 40 cm
distance from the sample. As an artificial light source, a 900 W
Quartz Tungsten Halogen (QTH) lamp was placed 70 cm from the
sample at a 300 zenith angle. The spectrometer was programmed
to take a measurement every 5 min. Each time the weight of the
sample was also measured and stored.

A.5. Soil OrgC and VNIR spectral library

Data from: World Agroforestry Centre (ICRAF) and ISRIC –
World Soil Information (2010). ICRAF-ISRIC Soil VNIR Spectral
Library. Nairobi, Kenya: World Agroforestry Centre (ICRAF). Avail-
able at http://africasoils.net/.

This spectral library consists of visible near infrared spectra of
785 soil profiles (4437 samples) selected from the Soil Information
System (ISIS) of the International Soil Reference and Information
Centre (ISRIC). The samples consist of all physically archived sam-
ples at ISRIC for which soil attribute data was available in 2004.

A.5.1. OrgC
Soil samples were air-dried, clods crushed and the resulting

sample material sieved through a 2 mm sieve prior to further anal-
ysis. Organic carbon content was determined using the Walkley-3.

Black procedure. This involves a wet combustion of the organic
matter with a mixture of potassium dichromate and sulfuric acid at
about 125 �C. Soil property attributes were provided by ISRIC and
had been analysed according to the ISRIC ‘‘Procedures for soil anal-
ysis” (Van Reeuwijk, 2002).

A.5.2. VNIR spectral
Soil diffuse reflectance spectra were recorded for each library

sample using a FieldSpec FR spectroradiometer (Analytical Spectral
Devices, Boulder, CO) at wavelengths from 0.35 to 2.5 m with a
spectral sampling interval of 1 nm. Samples were illuminated from
below using a high-intensity source probe. About 20 g of air-dried
soil, ground to pass through a 2-mm sieve, was placed into 7.4 cm
diameter Duran glass Petri dishes to give a sample height of about
1 cm. To sample within-dish variation, reflectance spectra were
recorded at two positions, successively rotating the sample dish
through 90� between readings and an average of 25 spectra was
recorded at each position to minimize instrument noise. Before
reading each sample 10 white reference spectra were recorded
using calibrated spectralon (Labsphere, Sutton, NH, USA) placed
in a glass petri dish. Reflectance readings for each wavelength band
were expressed relative to the average of the white reference read-
ings. The 1 nm interval spectra were resampled by selecting every
tenth-nanometer value from 0.35 to 2.5 lm to give a total of 216
data points for each spectrum.

http://africasoils.net/


Correlation bands with response variable 
(Original)

Correlation bands with response variable 
(generated)

LA
I

Min -0.662 / Mean -0.065 / Max 0.642  Min -0.100 / Mean -0.035 / Max 0.035

LC
C

Min -0.231 / Mean -0.048 / Max 0.083 Min -0.056 / Mean -0.002 / Max 0.086

O
rg
C

Min -0.561 /  Mean -0.434 / Max -0.272 Min 0.016 / Mean 0.056 / Max 0.130

M
oi
st
ur
e

Min -0.975 / Mean -0.964 / Max -0.844 Min 0.024 / Mean 0.0511 / Max 0.067

LW
C

Min -0.514  /  Mean -0.181  / Max 0.145 Min -0.101 /  Mean 0.015 /  Max 0.235

Fig. B.1. Original and generated data for all the used datasets. The average, maximum and minimum correlation between the wavelengths with the response variable.

72 A.D. Rocha et al. / ISPRS Journal of Photogrammetry and Remote Sensing 133 (2017) 61–74



Regression Tuning OrgC LCC LAI Moisture LWC
technique parameter NOIS CV NOIS CV NOIS CV NOIS CV NOIS CV 

PLSR ncomp 10 21 5 5 6 19 4 17 3 20 

SVMR cost 50 100 0.3 0.1 0.1 1 0.05 0.5 0.0003 5 

epsilon 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Rforest nodesize 120 3 60 3 120 3 90 3 60 3 

mtry 50 50 5 5 10 10 10 10 10 10 

ntree 200 200 200 200 200 200 200 200 200 200

Lasso fraction 0.0005 0.01 0.001 0.005 0.003 0.05 0.0003 0.03 0.0005 0.5 

Ridge lambda 0.003 0.0001 0.2 0.05 0.5 0.003 0.2 0.001 2.3 0.01 

GBM n.trees 7000 200000 5000 50000 3000 150000 5000 200000 3000 200000

i.depth 2 2 2 2 2 2 2 2 2 2 

shrinkage 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

n.minnode 10 10 10 10 10 10 10 10 10 10 

Nnet m.interaction 3000 30000 300 700 130 5000 3000 100000 200 20000

hidden units 4 4 4 4 6 6 3 3 4 4 

learn rate 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.005 0.005 0.0001 0.0001 

Fig. C.1. Tuning parameters selected by the NOIS method and the traditional cross-validation per database and regression technique.
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Appendix B. Generated predictors

See Fig. B.1.

Appendix C. Tuning parameters

See Fig. C.1.
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