Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Special square, pow u in final exponentiation #36

Open
wants to merge 8 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
113 changes: 113 additions & 0 deletions gfp12.go
Original file line number Diff line number Diff line change
Expand Up @@ -158,6 +158,45 @@ func (c *gfP12) Exp(a *gfP12, power *big.Int) *gfP12 {
return c
}

func (e *gfP12) SpecialPowV(a *gfP12) *gfP12 {
t0, t1, t2 := &gfP12{}, &gfP12{}, &gfP12{}

t0.SpecialSquare(a)
t0.SpecialSquare(t0)
t0.SpecialSquare(t0) // t0 = a ^ 8
t1.SpecialSquare(t0)
t1.SpecialSquare(t1)
t1.SpecialSquare(t1) // t1 = a ^ 64
t2.Conjugate(t0) // t2 = a ^ -8
t2.Mul(t2, a) // t2 = a ^ -7
t2.Mul(t2, t1) // t2 = a ^ 57
t2.SpecialSquare(t2)
t2.SpecialSquare(t2)
t2.SpecialSquare(t2)
t2.SpecialSquare(t2)
t2.SpecialSquare(t2)
t2.SpecialSquare(t2)
t2.SpecialSquare(t2) // t2 = a ^ (2^7 * 57) = a ^ 7296
t2.Mul(t2, a) // t2 = a ^ 7297
t2.SpecialSquare(t2)
t2.SpecialSquare(t2)
t2.SpecialSquare(t2)
t2.SpecialSquare(t2)
t2.SpecialSquare(t2)
t2.SpecialSquare(t2)
t2.SpecialSquare(t2)
t2.SpecialSquare(t2) // t2 = a ^ (7297 * 256) = a ^ 1868032
e.Mul(t2, a)
return e
}

func (e *gfP12) SpecialPowU(a *gfP12) *gfP12 {
e.SpecialPowV(a)
e.SpecialPowV(e)
e.SpecialPowV(e)
return e
}

func (e *gfP12) Square(a *gfP12) *gfP12 {
// Complex squaring algorithm
v0 := (&gfP6{}).Mul(&a.x, &a.y)
Expand All @@ -174,6 +213,80 @@ func (e *gfP12) Square(a *gfP12) *gfP12 {
return e
}

// Special squaring loop for use on elements in T_6(gfP2) (after the
// easy part of the final exponentiation. Used in the hard part
// of the final exponentiation. Function uses formulas in
// Granger/Scott (PKC2010).
armfazh marked this conversation as resolved.
Show resolved Hide resolved
func (e *gfP12) SpecialSquare(a *gfP12) *gfP12 {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

it can be renamed to SquareCyclotomic or something more shorter. Similarly for the exponentiation by u

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

renamed to SquareCyclo6

tmp := &gfP12{}

f02 := &tmp.y.x
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Let' make clear what is the isomorphism.

f01 := &tmp.y.y
f00 := &tmp.y.z
f12 := &tmp.x.x
f11 := &tmp.x.y
f10 := &tmp.x.z

t00, t01, t02, t10, t11, t12 := &gfP2{}, &gfP2{}, &gfP2{}, &gfP2{}, &gfP2{}, &gfP2{}

gfP4Square(t11, t00, &a.x.y, &a.y.z)
gfP4Square(t12, t01, &a.y.x, &a.x.z)
gfP4Square(t02, t10, &a.x.x, &a.y.y)

f00.MulXi(t02)
t02.Set(t10)
t10.Set(f00)

f00.Add(t00, t00)
t00.Add(f00, t00)
f00.Add(t01, t01)
t01.Add(f00, t01)
f00.Add(t02, t02)
t02.Add(f00, t02)
f00.Add(t10, t10)
t10.Add(f00, t10)
f00.Add(t11, t11)
t11.Add(f00, t11)
f00.Add(t12, t12)
t12.Add(f00, t12)

f00.Add(&a.y.z, &a.y.z)
f00.Neg(f00)
f01.Add(&a.y.y, &a.y.y)
f01.Neg(f01)
f02.Add(&a.y.x, &a.y.x)
f02.Neg(f02)
f10.Add(&a.x.z, &a.x.z)
f11.Add(&a.x.y, &a.x.y)
f12.Add(&a.x.x, &a.x.x)

f00.Add(f00, t00)
f01.Add(f01, t01)
f02.Add(f02, t02)
f10.Add(f10, t10)
f11.Add(f11, t11)
f12.Add(f12, t12)

return e.Set(tmp)
}

// Implicit gfP4 squaring for Granger/Scott special squaring in final expo
// gfP4Square takes two gfP2 x, y representing the gfP4 element.
func gfP4Square(retX, retY, x, y *gfP2) {
armfazh marked this conversation as resolved.
Show resolved Hide resolved
t1, t2 := &gfP2{}, &gfP2{}

t1.Square(x)
t2.Square(y)

retX.Add(x, y)
retX.Square(retX)
retX.Sub(retX, t1)
retX.Sub(retX, t2) // retX = 2xy

retY.MulXi(t1)
retY.Add(retY, t2) // retY = x^2*xi + y^2
}

func (e *gfP12) Invert(a *gfP12) *gfP12 {
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
// ftp://136.206.11.249/pub/crypto/pairings.pdf
Expand Down
84 changes: 84 additions & 0 deletions gfp12_test.go
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
package bn256

import (
"math/big"
"testing"
)

func TestGfP12SpecialSquare(t *testing.T) {
in := gfP12Gen

got := &gfP12{}
expected := &gfP12{}

got.SpecialSquare(in)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

add some warning, since this test assume the input is in the cyclotomic subgroup.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

added requirement for input

expected.Square(in)

if *got != *expected {
t.Errorf("not same got=%v, expected=%v", got, expected)
}
}

func TestGfp12SpecialPowV(t *testing.T) {
in := gfP12Gen

got := &gfP12{}
expected := &gfP12{}

got.SpecialPowV(in)
expected.Exp(in, big.NewInt(1868033))

if *got != *expected {
t.Errorf("not same got=%v, expected=%v", got, expected)
}
}

func TestGfp12SpecialPowU(t *testing.T) {
in := gfP12Gen

got := &gfP12{}
expected := &gfP12{}

got.SpecialPowU(in)
expected.Exp(in, u)

if *got != *expected {
t.Errorf("not same got=%v, expected=%v", got, expected)
}
}

func BenchmarkGfp12Square(b *testing.B) {
got := &gfP12{}
b.ResetTimer()

for i := 0; i < b.N; i++ {
got.Square(gfP12Gen)
}
}

func BenchmarkGfp12SpecialSquare(b *testing.B) {
got := &gfP12{}
b.ResetTimer()

for i := 0; i < b.N; i++ {
got.SpecialSquare(gfP12Gen)
}
}

func BenchmarkGfp12ExpU(b *testing.B) {
got := &gfP12{}
b.ResetTimer()

for i := 0; i < b.N; i++ {
got.Exp(gfP12Gen, u)
}
}

func BenchmarkGfp12SpecialPowU(b *testing.B) {
got := &gfP12{}
b.ResetTimer()

for i := 0; i < b.N; i++ {
got.SpecialPowU(gfP12Gen)
}
}
12 changes: 6 additions & 6 deletions optate.go
Original file line number Diff line number Diff line change
Expand Up @@ -224,9 +224,9 @@ func finalExponentiation(in *gfP12) *gfP12 {
fp2 := (&gfP12{}).FrobeniusP2(t1)
fp3 := (&gfP12{}).Frobenius(fp2)

fu := (&gfP12{}).Exp(t1, u)
fu2 := (&gfP12{}).Exp(fu, u)
fu3 := (&gfP12{}).Exp(fu2, u)
fu := (&gfP12{}).SpecialPowU(t1)
fu2 := (&gfP12{}).SpecialPowU(fu)
fu3 := (&gfP12{}).SpecialPowU(fu2)

y3 := (&gfP12{}).Frobenius(fu)
fu2p := (&gfP12{}).Frobenius(fu2)
Expand All @@ -245,14 +245,14 @@ func finalExponentiation(in *gfP12) *gfP12 {
y6 := (&gfP12{}).Mul(fu3, fu3p)
y6.Conjugate(y6)

t0 := (&gfP12{}).Square(y6)
t0 := (&gfP12{}).SpecialSquare(y6)
t0.Mul(t0, y4).Mul(t0, y5)
t1.Mul(y3, y5).Mul(t1, t0)
t0.Mul(t0, y2)
t1.Square(t1).Mul(t1, t0).Square(t1)
t1.SpecialSquare(t1).Mul(t1, t0).SpecialSquare(t1)
t0.Mul(t1, y1)
t1.Mul(t1, y0)
t0.Square(t0).Mul(t0, t1)
t0.SpecialSquare(t0).Mul(t0, t1)

return t0
}
Expand Down