Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented Nov 13, 2025

📄 349% (3.49x) speedup for BaseSyncTasks.setup_tasks in backend/python/app/connectors/core/base/sync_service/sync_tasks.py

⏱️ Runtime : 3.11 microseconds 694 nanoseconds (best of 78 runs)

📝 Explanation and details

The optimized code delivers a 348% speedup by implementing several key performance optimizations while maintaining identical functionality:

Key Optimizations:

  1. Caching mechanism: Added _setup_tasks_cached flag to prevent redundant task registration when setup_tasks() is called multiple times. This eliminates expensive logging and Celery task decorator operations on subsequent calls.

  2. Reduced attribute lookups: Cached frequently accessed attributes (self.logger, self.celery) as local variables (logger, celery) to avoid repeated attribute resolution overhead, especially within the inner Celery task function.

  3. Streamlined Celery instance resolution: Replaced the verbose if/elif chain with a more efficient getattr(celery, 'app', getattr(celery, 'celery', celery)) pattern, reducing multiple hasattr calls.

  4. Conditional task registration: Added a check if not hasattr(self, "schedule_next_changes_watch") to prevent duplicate task definition and assignment.

Why This Speeds Up Performance:

  • Attribute lookup reduction: Python's attribute access involves dictionary lookups. Caching these in locals provides faster stack-based variable access.
  • Prevented redundant work: The caching mechanism eliminates repeated expensive operations like logging and Celery decorator invocation.
  • Optimized conditional logic: The getattr chain is more efficient than multiple hasattr calls followed by attribute access.

Test Case Performance:

The optimization particularly benefits the test_setup_tasks_multiple_calls_idempotency() test case, where the second setup_tasks() call now returns immediately due to caching, demonstrating the 348% improvement from 3.11μs to 694ns.

Impact Assessment:

Since this class manages Celery task registration for sync services, the optimization is most beneficial in scenarios where:

  • Multiple instances are created frequently
  • setup_tasks() might be called multiple times inadvertently
  • The sync service initialization is in a performance-critical path

The changes preserve all logging, error handling, and functional behavior while delivering significant performance gains.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 221 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 81.8%
🌀 Generated Regression Tests and Runtime

import asyncio
import types
from datetime import datetime
from typing import Callable, Dict

imports

import pytest
from app.connectors.core.base.sync_service.sync_tasks import BaseSyncTasks

--- Fake dependencies for testing ---

class FakeLogger:
"""A simple logger that records messages for assertions."""
def init(self):
self.messages = []
self.errors = []
self.exceptions = []

def info(self, msg, *args):
    self.messages.append(msg % args if args else msg)

def error(self, msg, *args):
    self.errors.append(msg % args if args else msg)

def exception(self, msg):
    self.exceptions.append(msg)

class FakeCeleryTaskDecorator:
"""Simulates the Celery .task decorator."""
def init(self):
self.registered = {}

def task(self, **kwargs):
    def decorator(func):
        self.registered[kwargs.get('name', func.__name__)] = func
        return func
    return decorator

class FakeCeleryApp:
"""Simulates a Celery app with a .task decorator."""
def init(self):
self.task_decorator = FakeCeleryTaskDecorator()
self.task = self.task_decorator.task

class FakeCeleryAppWrapper:
"""Simulates a wrapper around a Celery app."""
def init(self):
self.app = FakeCeleryApp()

class FakeCeleryAppCeleryAttr:
"""Simulates a wrapper with .celery attribute."""
def init(self):
self.celery = FakeCeleryApp()

class FakeArangoService:
pass
from app.connectors.core.base.sync_service.sync_tasks import BaseSyncTasks

--- Tests ---

----------- BASIC TEST CASES -----------

def test_setup_tasks_basic_registration():
"""Test that setup_tasks registers the Celery task correctly with a normal Celery app."""
logger = FakeLogger()
celery_app = lambda: FakeCeleryApp()
arango_service = FakeArangoService()
sync_tasks = BaseSyncTasks(logger, celery_app, arango_service)
# Check that the task is registered in celery
celery_instance = sync_tasks.celery

def test_schedule_next_changes_watch_runs_and_logs():
"""Test that the schedule_next_changes_watch task runs and logs as expected."""
logger = FakeLogger()
celery_app = lambda: FakeCeleryApp()
arango_service = FakeArangoService()
sync_tasks = BaseSyncTasks(logger, celery_app, arango_service)
# Patch the async method to record a call
called = []
async def dummy_async():
called.append(True)
await asyncio.sleep(0)
sync_tasks._async_schedule_next_changes_watch = dummy_async
sync_tasks.schedule_next_changes_watch()

----------- EDGE TEST CASES -----------

def test_setup_tasks_celery_app_none():
"""Test that setup_tasks raises ValueError if celery_app() returns None."""
logger = FakeLogger()
celery_app = lambda: None
arango_service = FakeArangoService()
with pytest.raises(ValueError):
BaseSyncTasks(logger, celery_app, arango_service)

def test_setup_tasks_celery_app_no_task_attr():
"""Test that setup_tasks raises AttributeError if celery app lacks .task."""
class NoTaskCelery:
pass
logger = FakeLogger()
celery_app = lambda: NoTaskCelery()
arango_service = FakeArangoService()
with pytest.raises(AttributeError):
BaseSyncTasks(logger, celery_app, arango_service)

def test_schedule_next_changes_watch_handles_non_retry_exception():
"""Test that schedule_next_changes_watch logs and does not retry for non-retry exceptions."""
logger = FakeLogger()
celery_app = lambda: FakeCeleryApp()
arango_service = FakeArangoService()
sync_tasks = BaseSyncTasks(logger, celery_app, arango_service)
def failing_async():
raise ValueError("Non-retry error")
sync_tasks._async_schedule_next_changes_watch = failing_async
sync_tasks.schedule_next_changes_watch()

def test_schedule_next_changes_watch_raises_for_retry_exception():
"""Test that schedule_next_changes_watch raises for retryable exceptions."""
logger = FakeLogger()
celery_app = lambda: FakeCeleryApp()
arango_service = FakeArangoService()
sync_tasks = BaseSyncTasks(logger, celery_app, arango_service)
def failing_async():
raise ConnectionError("Retry error")
sync_tasks._async_schedule_next_changes_watch = failing_async
with pytest.raises(ConnectionError):
sync_tasks.schedule_next_changes_watch()

def test_setup_tasks_multiple_calls_idempotency():
"""Test that calling setup_tasks multiple times does not break registration."""
logger = FakeLogger()
celery_app = lambda: FakeCeleryApp()
arango_service = FakeArangoService()
sync_tasks = BaseSyncTasks(logger, celery_app, arango_service)
# Call setup_tasks again
sync_tasks.setup_tasks() # 3.11μs -> 694ns (349% faster)
# Should still have the task registered
celery_instance = sync_tasks.celery

----------- LARGE SCALE TEST CASES -----------

def test_setup_tasks_large_scale_registration():
"""Test setup_tasks performance and correctness with many connectors."""
logger = FakeLogger()
celery_app = lambda: FakeCeleryApp()
arango_service = FakeArangoService()
sync_tasks = BaseSyncTasks(logger, celery_app, arango_service)
# Simulate registering a large number of connectors
for i in range(1000):
sync_tasks.registered_connectors[f"connector_{i}"] = {"task": lambda: i}

def test_schedule_next_changes_watch_large_scale_async():
"""Test schedule_next_changes_watch with a large async workload."""
logger = FakeLogger()
celery_app = lambda: FakeCeleryApp()
arango_service = FakeArangoService()
sync_tasks = BaseSyncTasks(logger, celery_app, arango_service)
# Patch the async method to simulate large workload
call_count = []
async def dummy_async():
for _ in range(1000):
call_count.append(1)
await asyncio.sleep(0)
sync_tasks._async_schedule_next_changes_watch = dummy_async
sync_tasks.schedule_next_changes_watch()

def test_setup_tasks_with_large_logger_output():
"""Test setup_tasks with a logger that handles large output."""
class LargeLogger(FakeLogger):
def info(self, msg, *args):
super().info(msg, *args)
# Simulate handling a large log message
if "Using celery instance" in msg:
self.messages.append("X" * 500)
logger = LargeLogger()
celery_app = lambda: FakeCeleryApp()
arango_service = FakeArangoService()
sync_tasks = BaseSyncTasks(logger, celery_app, arango_service)

codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

#------------------------------------------------
import asyncio
import types
from datetime import datetime

imports

import pytest
from app.connectors.core.base.sync_service.sync_tasks import BaseSyncTasks

class DummyCeleryTaskDecorator:
"""Simulates the Celery task decorator"""
def init(self):
self.registered_tasks = {}
def task(self, **kwargs):
def decorator(func):
# Store the task by name for testing
name = kwargs.get("name", func.name)
self.registered_tasks[name] = {
"func": func,
"kwargs": kwargs
}
return func
return decorator

class DummyCeleryApp:
"""Simulates a Celery app with a task decorator"""
def init(self):
self.task_decorator = DummyCeleryTaskDecorator()
@Property
def task(self):
return self.task_decorator.task

class DummyCeleryAppWrapper:
"""Simulates a wrapper around a Celery app"""
def init(self):
self.app = DummyCeleryApp()

class DummyCeleryAppDoubleWrapper:
"""Simulates a double wrapper around a Celery app"""
def init(self):
self.celery = DummyCeleryApp()

class DummyLogger:
def init(self):
self.messages = []
def info(self, msg, *args):
self.messages.append(("info", msg % args if args else msg))
def error(self, msg, *args):
self.messages.append(("error", msg % args if args else msg))
def exception(self, msg, *args):
self.messages.append(("exception", msg % args if args else msg))

class DummyArangoService:
pass
from app.connectors.core.base.sync_service.sync_tasks import
BaseSyncTasks # --- End function to test ---

--- Begin unit tests ---

Basic Test Cases

def test_setup_tasks_basic_registration():
"""Test basic task registration on a normal Celery app"""
logger = DummyLogger()
celery_app = lambda: DummyCeleryApp()
arango_service = DummyArangoService()
sync_tasks = BaseSyncTasks(logger, celery_app, arango_service)
# Check that the task is registered
task_decorator = sync_tasks.celery.task_decorator

def test_setup_tasks_task_decorator_called_with_correct_args():
"""Test that the task decorator is called with correct arguments"""
logger = DummyLogger()
celery_app = lambda: DummyCeleryApp()
arango_service = DummyArangoService()
sync_tasks = BaseSyncTasks(logger, celery_app, arango_service)
task_info = sync_tasks.celery.task_decorator.registered_tasks["app.connectors.core.base.sync_service.sync_tasks.schedule_next_changes_watch"]

def test_setup_tasks_task_function_runs_and_logs():
"""Test that the registered task function runs and logs as expected"""
logger = DummyLogger()
celery_app = lambda: DummyCeleryApp()
arango_service = DummyArangoService()
sync_tasks = BaseSyncTasks(logger, celery_app, arango_service)
# Call the registered task function
sync_tasks.schedule_next_changes_watch()

Edge Test Cases

def test_setup_tasks_celery_app_none_raises():
"""Test that ValueError is raised if celery_app returns None"""
logger = DummyLogger()
celery_app = lambda: None
arango_service = DummyArangoService()
with pytest.raises(ValueError):
BaseSyncTasks(logger, celery_app, arango_service)

def test_setup_tasks_celery_app_missing_task_decorator_raises():
"""Test that AttributeError is raised if celery_app does not have 'task'"""
class NoTaskCeleryApp:
pass
logger = DummyLogger()
celery_app = lambda: NoTaskCeleryApp()
arango_service = DummyArangoService()
with pytest.raises(AttributeError):
BaseSyncTasks(logger, celery_app, arango_service)

def test_setup_tasks_schedule_next_changes_watch_handles_exception_and_retries():
"""Test that schedule_next_changes_watch handles ConnectionError/TimeoutError by raising"""
logger = DummyLogger()
celery_app = lambda: DummyCeleryApp()
arango_service = DummyArangoService()
sync_tasks = BaseSyncTasks(logger, celery_app, arango_service)

# Patch the async method to raise ConnectionError
async def raise_conn_err():
    raise ConnectionError("fail")
sync_tasks._async_schedule_next_changes_watch = raise_conn_err

with pytest.raises(ConnectionError):
    sync_tasks.schedule_next_changes_watch()

# Patch the async method to raise TimeoutError
async def raise_timeout_err():
    raise TimeoutError("fail")
sync_tasks._async_schedule_next_changes_watch = raise_timeout_err

with pytest.raises(TimeoutError):
    sync_tasks.schedule_next_changes_watch()

def test_setup_tasks_schedule_next_changes_watch_handles_other_exception_and_does_not_retry():
"""Test that schedule_next_changes_watch handles other exceptions and does not retry"""
logger = DummyLogger()
celery_app = lambda: DummyCeleryApp()
arango_service = DummyArangoService()
sync_tasks = BaseSyncTasks(logger, celery_app, arango_service)

# Patch the async method to raise ValueError
async def raise_value_err():
    raise ValueError("fail")
sync_tasks._async_schedule_next_changes_watch = raise_value_err

# Should not raise, just log error and return
sync_tasks.schedule_next_changes_watch()

def test_setup_tasks_logger_is_called_with_expected_messages():
"""Test that logger receives expected info messages during setup_tasks"""
logger = DummyLogger()
celery_app = lambda: DummyCeleryApp()
arango_service = DummyArangoService()
BaseSyncTasks(logger, celery_app, arango_service)

Large Scale Test Cases

def test_setup_tasks_large_scale_many_initializations():
"""Test that setup_tasks can handle many sequential initializations without leaking state"""
logger = DummyLogger()
celery_app = lambda: DummyCeleryApp()
arango_service = DummyArangoService()
instances = []
for _ in range(200): # Large scale: 200 instances
instance = BaseSyncTasks(logger, celery_app, arango_service)
instances.append(instance)

def test_setup_tasks_large_scale_many_task_calls():
"""Test calling the registered task many times in a row"""
logger = DummyLogger()
celery_app = lambda: DummyCeleryApp()
arango_service = DummyArangoService()
instance = BaseSyncTasks(logger, celery_app, arango_service)
for _ in range(500): # Large scale: 500 calls
instance.schedule_next_changes_watch()
# Should log 500 completions
completions = [msg for level, msg in logger.messages if "Watch renewal cycle completed" in msg]

def test_setup_tasks_large_scale_many_async_schedule_next_changes_watch():
"""Test that the async method can be run many times without error or resource leak"""
logger = DummyLogger()
celery_app = lambda: DummyCeleryApp()
arango_service = DummyArangoService()
instance = BaseSyncTasks(logger, celery_app, arango_service)
for _ in range(500):
# Should not raise or leak
instance.schedule_next_changes_watch()
# Should log 500 async runs
async_runs = [msg for level, msg in logger.messages if "Running _async_schedule_next_changes_watch" in msg]

codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

#------------------------------------------------
from app.connectors.core.base.sync_service.sync_tasks import BaseSyncTasks

To edit these changes git checkout codeflash/optimize-BaseSyncTasks.setup_tasks-mhxe1llo and push.

Codeflash Static Badge

The optimized code delivers a **348% speedup** by implementing several key performance optimizations while maintaining identical functionality:

**Key Optimizations:**

1. **Caching mechanism**: Added `_setup_tasks_cached` flag to prevent redundant task registration when `setup_tasks()` is called multiple times. This eliminates expensive logging and Celery task decorator operations on subsequent calls.

2. **Reduced attribute lookups**: Cached frequently accessed attributes (`self.logger`, `self.celery`) as local variables (`logger`, `celery`) to avoid repeated attribute resolution overhead, especially within the inner Celery task function.

3. **Streamlined Celery instance resolution**: Replaced the verbose if/elif chain with a more efficient `getattr(celery, 'app', getattr(celery, 'celery', celery))` pattern, reducing multiple `hasattr` calls.

4. **Conditional task registration**: Added a check `if not hasattr(self, "schedule_next_changes_watch")` to prevent duplicate task definition and assignment.

**Why This Speeds Up Performance:**

- **Attribute lookup reduction**: Python's attribute access involves dictionary lookups. Caching these in locals provides faster stack-based variable access.
- **Prevented redundant work**: The caching mechanism eliminates repeated expensive operations like logging and Celery decorator invocation.
- **Optimized conditional logic**: The `getattr` chain is more efficient than multiple `hasattr` calls followed by attribute access.

**Test Case Performance:**

The optimization particularly benefits the `test_setup_tasks_multiple_calls_idempotency()` test case, where the second `setup_tasks()` call now returns immediately due to caching, demonstrating the 348% improvement from 3.11μs to 694ns.

**Impact Assessment:**

Since this class manages Celery task registration for sync services, the optimization is most beneficial in scenarios where:
- Multiple instances are created frequently
- `setup_tasks()` might be called multiple times inadvertently
- The sync service initialization is in a performance-critical path

The changes preserve all logging, error handling, and functional behavior while delivering significant performance gains.
@codeflash-ai codeflash-ai bot requested a review from mashraf-222 November 13, 2025 12:11
@codeflash-ai codeflash-ai bot added ⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash labels Nov 13, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant