diff --git a/.github/workflows/docker-action.yml b/.github/workflows/docker-action.yml index c45127d..37ec7a8 100644 --- a/.github/workflows/docker-action.yml +++ b/.github/workflows/docker-action.yml @@ -17,6 +17,7 @@ jobs: strategy: matrix: image: + - 'mathcomp/mathcomp:1.12.0-coq-dev' - 'mathcomp/mathcomp:1.12.0-coq-8.13' - 'mathcomp/mathcomp:1.12.0-coq-8.12' - 'mathcomp/mathcomp:1.12.0-coq-8.11' diff --git a/meta.yml b/meta.yml index 93fdb99..a44f35b 100644 --- a/meta.yml +++ b/meta.yml @@ -83,6 +83,8 @@ dependencies: [MathComp](https://math-comp.github.io) 1.11.0 or later tested_coq_opam_versions: +- version: '1.12.0-coq-dev' + repo: 'mathcomp/mathcomp' - version: '1.12.0-coq-8.13' repo: 'mathcomp/mathcomp' - version: '1.12.0-coq-8.12' diff --git a/refinements/binnat.v b/refinements/binnat.v index a6c25e4..22b815c 100644 --- a/refinements/binnat.v +++ b/refinements/binnat.v @@ -1,6 +1,6 @@ (** This file is part of CoqEAL, the Coq Effective Algebra Library. (c) Copyright INRIA and University of Gothenburg, see LICENSE *) -Require Import ZArith. +Require Import ZArith Lia. From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq zmodp. From mathcomp Require Import path choice fintype tuple finset ssralg ssrnum bigop ssrint. @@ -405,13 +405,13 @@ Qed. Lemma Nat2Pos_xI m : ((Pos.of_nat m.+1)~1)%positive = Pos.of_nat ((m.+1).*2.+1). Proof. rewrite -muln2 [RHS]Nat2Pos.inj_succ // Nat2Pos.inj_mul //. -simpl (Pos.of_nat 2); zify; omega. +simpl (Pos.of_nat 2); lia. Qed. Lemma Nat2Pos_xO m : ((Pos.of_nat m.+1)~0)%positive = Pos.of_nat ((m.+1).*2). Proof. rewrite -muln2 Nat2Pos.inj_mul //. -simpl (Pos.of_nat 2); zify; omega. +simpl (Pos.of_nat 2); lia. Qed. Lemma pos_of_natE m n : pos_of_nat m n = Pos.of_nat (maxn 1 (m.*2.+1 - n)). diff --git a/refinements/binrat.v b/refinements/binrat.v index e89b877..cd16a1a 100644 --- a/refinements/binrat.v +++ b/refinements/binrat.v @@ -1,6 +1,6 @@ (** * A refinement of Mathcomp's rationals [rat] with [bigQ] from Coq standard library. *) -Require Import ZArith QArith. +Require Import ZArith QArith Lia. From Bignums Require Import BigQ. From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat order. From mathcomp Require Import ssralg ssrnum ssrint rat div. @@ -215,7 +215,7 @@ Qed. Lemma Z2int_lt x y : (Z2int x < Z2int y)%R <-> Z.lt x y. Proof. -rewrite -lez_addr1 -[1%R]/(Z2int 1) -Z2int_add Z2int_le; omega. +rewrite -lez_addr1 -[1%R]/(Z2int 1) -Z2int_add Z2int_le; lia. Qed. Lemma nat_of_pos_Z_to_pos x : nat_of_pos x = `|Z2int (Z.pos x)|%N.