From 0b86e6b3f9620807659eddaa95a8a3dc074b811c Mon Sep 17 00:00:00 2001 From: Columbus240 <8899730+Columbus240@users.noreply.github.com> Date: Sun, 10 Jan 2021 22:46:17 +0100 Subject: [PATCH] Patch for coq v8.10 --- theories/Topology/EuclideanSpaces.v | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/theories/Topology/EuclideanSpaces.v b/theories/Topology/EuclideanSpaces.v index 5ab27e1d..10b5eb5f 100644 --- a/theories/Topology/EuclideanSpaces.v +++ b/theories/Topology/EuclideanSpaces.v @@ -5,10 +5,12 @@ Does every compact manifold (or topological-space (maybe Hausdorff is necessary)) admit a uniform probability distribution? *) +Require Import FunctionalExtensionality. +Require Import RTopology. Require Import Vector. Require Import ProductTopology. -Require Import RTopology. -Require Import FunctionalExtensionality. +Require Import Ensembles. +Require Import Compactness. (* Using [Fin.t] instead of repeated application of ProductTopology2 makes that we don’t have to consider associativity. Using [Vector] instead of [ProductTopology] makes that we don’t have to always consider functional extensionality. *) Definition FiniteProduct (A : TopologicalSpace) (n : nat) := @@ -145,7 +147,6 @@ Definition EuclideanSpace_scalarproduct {n : nat} (x y : point_set (EuclideanSpa Program Definition EuclideanSpace_scalarproduct_self_nonneg {n : nat} (x : point_set (EuclideanSpace n)) : nonnegreal := {| nonneg := EuclideanSpace_scalarproduct x x; |}. -Proof. Next Obligation. unfold EuclideanSpace_scalarproduct. induction x.