This repo is the official implementation for the paper "PuMer: Pruning and Merging Tokens for Efficient Vision Language Models", paper
install miniforge (same as conda, more portable)
create a python environment: conda env create -f env.yaml
, activate it: conda activate pumer
clone this repo: git@github.com:csarron/pumer.git
test cuda: python -c "import torch;print(torch.cuda.is_available())"
get torch env: python -m torch.utils.collect_env
install: pip install -e .
for local developement purposes: pip install -e ".[dev]"
The env-frozen.yaml
is generated via conda env export | grep -v "^prefix: | pumer==" > env-frozen.yaml
see notes/data.md for data preprocessing
see cli/prep/convert_ckpt.py
for converting original pretrained METER and ViLT checkpoints
below is the file layout after preparation:
# tree -h data
├── [4.0K] ckpt
│ └── [4.0K] converted
│ ├── [4.0K] meter_pretrain_384
│ │ ├── [ 674] config.json
│ │ └── [1.3G] pytorch_model.bin
│ ├── [4.0K] meter_pretrain_irtr_384
│ │ ├── [ 729] config.json
│ │ └── [1.2G] pytorch_model.bin
│ ├── [4.0K] meter_pretrain_nlvr2_288
│ │ ├── [ 674] config.json
│ │ └── [1.3G] pytorch_model.bin
│ ├── [4.0K] vilt_pretrain
│ │ ├── [ 619] config.json
│ │ └── [518M] pytorch_model.bin
│ ├── [4.0K] vilt_pretrain_irtr
│ │ ├── [ 718] config.json
│ │ └── [426M] pytorch_model.bin
│ └── [4.0K] vilt_pretrain_nlvr2
│ ├── [ 619] config.json
│ └── [518M] pytorch_model.bin
├── [4.0K] datasets
│ ├── [4.0K] irtr
│ │ ├── [390K] flickr30k-test.jsonl
│ │ ├── [ 11M] flickr30k-train.jsonl
│ │ ├── [397K] flickr30k-val.jsonl
│ │ ├── [ 10M] mscoco-restval.jsonl
│ │ ├── [1.7M] mscoco-test.jsonl
│ │ ├── [ 28M] mscoco-train.jsonl
│ │ └── [1.7M] mscoco-val.jsonl
│ ├── [4.0K] nlvr2
│ │ ├── [3.6M] dev.json
│ │ ├── [3.6M] test1.json
│ │ └── [ 39M] train.json
│ ├── [4.0K] snli-ve
│ │ ├── [ 16M] snli_ve_dev.jsonl
│ │ ├── [ 16M] snli_ve_test.jsonl
│ │ └── [464M] snli_ve_train.jsonl
│ └── [4.0K] vqa2
│ ├── [ 57K] vqa2_ans2label.json
│ ├── [ 39K] vqa2_label2ans.json
│ ├── [161K] vqa2-small.jsonl
│ ├── [ 45M] vqa2-test2015.jsonl
│ ├── [ 71M] vqa2-train2014.jsonl
│ └── [ 34M] vqa2-val2014.jsonl
└── [4.0K] lmdb
├── [ 13G] coco-test2015.lmdb
├── [ 19G] coco-trainval2014.lmdb
├── [4.2G] flickr30k_images.lmdb
├── [837M] nlvr2-dev.lmdb
├── [837M] nlvr2-test1.lmdb
└── [ 11G] nlvr2-train.lmdb
see notes/cmd.md for example usage;
checkout https://huggingface.co/csarron for finetuend checkpoints:
(-ft
is original finetuned model, p0.x-r0.x-t0.x-xxx
is our PuMer model)
vilt-vqa2-ft
vilt-vqa2-p0.1-r0.3-t0.2-258
vilt-ve-ft
vilt-ve-p0.1r0.3t0.2-2468
vilt-nlvr2-ft
vilt-nlvr2-p0.1r0.3t0.2-258
meter-vqa2-ft
meter-vqa2-p0.2r0.2t0.2-0246
meter-ve-ft
meter-ve-p0.3r0.5t0.2-0246
meter-nlvr2-ft
meter-nlvr2-p0.3r0.5t0.2-246
see notes/profile.md
- set
TRANSFORMERS_OFFLINE=1
after first use, otherwise sometime it will report 504 error due to always online look up.
- ignore the code in
src/pumer/model/pruner.py
(deprecated and unused), needs cleanup - the current codebase contain many clutters and experimental code that is not related to PuMer implementation, please ignore that.
@inproceedings{cao-etal-2023-pumer,
title = "{P}u{M}er: Pruning and Merging Tokens for Efficient Vision Language Models",
author = "Cao, Qingqing and
Paranjape, Bhargavi and
Hajishirzi, Hannaneh",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.721",
pages = "12890--12903",
}