diff --git a/CHANGELOG.md b/CHANGELOG.md index f3057973..f82f1d50 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,7 +1,29 @@ +# v0.6.1 (12/12/2022) + +# Change-log +Added quadtree csv reader ([#186](https://github.com/SCECcode/pycsep/pull/186)) +Non-Poissonian tests +([#189](https://github.com/SCECcode/pycsep/pull/189), +[#205](https://github.com/SCECcode/pycsep/pull/205), +[#208](https://github.com/SCECcode/pycsep/pull/208), +[#209](https://github.com/SCECcode/pycsep/pull/209)) +Added plots for p-values, and confidence ranges for consistency tests ([#190](https://github.com/SCECcode/pycsep/pull/190)) +Added NZ testing and collection regions ([#198](https://github.com/SCECcode/pycsep/pull/198)) +Fixed region border plotting issue ([#199](https://github.com/SCECcode/pycsep/pull/199)) +Added documentation for non-Poissonian tests ([#202](https://github.com/SCECcode/pycsep/pull/202)) +Support for BSI catalog ([#201](https://github.com/SCECcode/pycsep/pull/201)) +Fixed compatibility with new version of matplotlib ([#206](https://github.com/SCECcode/pycsep/pull/206)) + +## Credits +Pablo Iturrieta (@pabloitu) +Jose Bayona (@bayonato89) +Khawaja Asim (@khawajasim) +William Savran (@wsavran) + # v0.6.0 (02/04/2022) ## Change-log -Adds support for quadtree regions [#184](https://github.com/SCECcode/pycsep/pull/184) +Adds support for quadtree regions ([#184])(https://github.com/SCECcode/pycsep/pull/184) ## Credits Khawaja Asim (@khawajasim) diff --git a/CITATION.cff b/CITATION.cff index 670b50d9..5b01f9cd 100644 --- a/CITATION.cff +++ b/CITATION.cff @@ -14,6 +14,6 @@ authors: given-names: Philip J. orcid: 0000-0002-9221-7068 title: "pyCSEP - Tools for Earthquake Forecast Developers" -version: 0.4.1 +version: 0.6.1 repository: https://github.com/SCECcode/pycsep date-released: 2021-04-20 diff --git a/codemeta.json b/codemeta.json index 31301e2c..c8f61d30 100644 --- a/codemeta.json +++ b/codemeta.json @@ -9,7 +9,7 @@ "downloadUrl": "https://github.com/SCECcode/pycsep", "issueTracker": "https://github.com/SCECcode/pycsep/issues", "name": "pyCSEP", - "version": "v0.6.0", + "version": "v0.6.1", "description": "The pyCSEP Toolkit helps earthquake forecast model developers evaluate their forecasts with the goal of understanding earthquake predictability.", "applicationCategory": "Seismology", "developmentStatus": "active", @@ -30,7 +30,7 @@ "NumPy 1.21.3 or later (https://numpy.org)", "SciPy 1.7.1 or later (https://scipy.org)", "pandas 1.3.4 or later (https://pandas.pydata.org)", - "cartopy 0.20.0 or later (https://scitools.org.uk/cartopy/docs/latest)", + "cartopy 0.21.5 or later (https://scitools.org.uk/cartopy/docs/latest)", "GEOS 3.7.2 or later (https://trac.osgeo.org/geos/)", "PROJ 8.0.0 or later (https://proj.org/)" ], diff --git a/csep/__init__.py b/csep/__init__.py index 4149d43c..de1a03f8 100644 --- a/csep/__init__.py +++ b/csep/__init__.py @@ -188,7 +188,9 @@ def load_catalog(filename, type='csep-csv', format='native', loader=None, apply_ def query_comcat(start_time, end_time, min_magnitude=2.50, min_latitude=31.50, max_latitude=43.00, - min_longitude=-125.40, max_longitude=-113.10, verbose=True, + min_longitude=-125.40, max_longitude=-113.10, + max_depth=1000, + verbose=True, apply_filters=False, **kwargs): """ Access Comcat catalog through web service @@ -201,11 +203,11 @@ def query_comcat(start_time, end_time, min_magnitude=2.50, max_latitude: max latitude of bounding box min_longitude: min latitude of bounding box max_longitude: max longitude of bounding box - region: :class:`csep.core.regions.CartesianGrid2D + max_depth: maximum depth of the bounding box verbose (bool): print catalog summary statistics Returns: - :class:`csep.core.catalogs.ComcatCatalog + :class:`csep.core.catalogs.CSEPCatalog """ # Timezone should be in UTC @@ -213,7 +215,8 @@ def query_comcat(start_time, end_time, min_magnitude=2.50, eventlist = readers._query_comcat(start_time=start_time, end_time=end_time, min_magnitude=min_magnitude, min_latitude=min_latitude, max_latitude=max_latitude, - min_longitude=min_longitude, max_longitude=max_longitude) + min_longitude=min_longitude, max_longitude=max_longitude, + max_depth=max_depth) t1 = time.time() comcat = catalogs.CSEPCatalog(data=eventlist, date_accessed=utc_now_datetime(), **kwargs) print("Fetched ComCat catalog in {} seconds.\n".format(t1 - t0)) @@ -234,6 +237,59 @@ def query_comcat(start_time, end_time, min_magnitude=2.50, return comcat + +def query_bsi(start_time, end_time, min_magnitude=2.50, + min_latitude=32.0, max_latitude=50.0, + min_longitude=2.0, max_longitude=21.0, + max_depth=1000, + verbose=True, + apply_filters=False, **kwargs): + """ + Access BSI catalog through web service + + Args: + start_time: datetime object of start of catalog + end_time: datetime object for end of catalog + min_magnitude: minimum magnitude to query + min_latitude: maximum magnitude to query + max_latitude: max latitude of bounding box + min_longitude: min latitude of bounding box + max_longitude: max longitude of bounding box + max_depth: maximum depth of the bounding box + verbose (bool): print catalog summary statistics + + Returns: + :class:`csep.core.catalogs.CSEPCatalog + """ + + # Timezone should be in UTC + t0 = time.time() + eventlist = readers._query_bsi(start_time=start_time, end_time=end_time, + min_magnitude=min_magnitude, + min_latitude=min_latitude, max_latitude=max_latitude, + min_longitude=min_longitude, max_longitude=max_longitude, + max_depth=max_depth) + t1 = time.time() + bsi = catalogs.CSEPCatalog(data=eventlist, date_accessed=utc_now_datetime(), **kwargs) + print("Fetched BSI catalog in {} seconds.\n".format(t1 - t0)) + + if apply_filters: + try: + bsi = bsi.filter().filter_spatial() + except CSEPCatalogException: + bsi = bsi.filter() + + if verbose: + print("Downloaded catalog from Bollettino Sismico Italiano (BSI) with following parameters") + print("Start Date: {}\nEnd Date: {}".format(str(bsi.start_time), str(bsi.end_time))) + print("Min Latitude: {} and Max Latitude: {}".format(bsi.min_latitude, bsi.max_latitude)) + print("Min Longitude: {} and Max Longitude: {}".format(bsi.min_longitude, bsi.max_longitude)) + print("Min Magnitude: {}".format(bsi.min_magnitude)) + print(f"Found {bsi.event_count} events in the BSI catalog.") + + return bsi + + def load_evaluation_result(fname): """ Load evaluation result stored as json file diff --git a/csep/_version.py b/csep/_version.py index d07e93fd..37416fa9 100644 --- a/csep/_version.py +++ b/csep/_version.py @@ -1,2 +1,2 @@ -__version__ = "0.6.0" +__version__ = "0.6.1" diff --git a/csep/artifacts/Regions/nz.collection.nodes.dat b/csep/artifacts/Regions/nz.collection.nodes.dat new file mode 100644 index 00000000..6dd942d5 --- /dev/null +++ b/csep/artifacts/Regions/nz.collection.nodes.dat @@ -0,0 +1,9029 @@ +172.65 -33.45 +172.75 -33.45 +172.85 -33.45 +172.95 -33.45 +173.05 -33.45 +173.15 -33.45 +173.25 -33.45 +172.25 -33.55 +172.35 -33.55 +172.45 -33.55 +172.55 -33.55 +172.65 -33.55 +172.75 -33.55 +172.85 -33.55 +172.95 -33.55 +173.05 -33.55 +173.15 -33.55 +173.25 -33.55 +173.35 -33.55 +173.45 -33.55 +172.05 -33.65 +172.15 -33.65 +172.25 -33.65 +172.35 -33.65 +172.45 -33.65 +172.55 -33.65 +172.65 -33.65 +172.75 -33.65 +172.85 -33.65 +172.95 -33.65 +173.05 -33.65 +173.15 -33.65 +173.25 -33.65 +173.35 -33.65 +173.45 -33.65 +173.55 -33.65 +171.95 -33.75 +172.05 -33.75 +172.15 -33.75 +172.25 -33.75 +172.35 -33.75 +172.45 -33.75 +172.55 -33.75 +172.65 -33.75 +172.75 -33.75 +172.85 -33.75 +172.95 -33.75 +173.05 -33.75 +173.15 -33.75 +173.25 -33.75 +173.35 -33.75 +173.45 -33.75 +173.55 -33.75 +173.65 -33.75 +173.75 -33.75 +171.85 -33.85 +171.95 -33.85 +172.05 -33.85 +172.15 -33.85 +172.25 -33.85 +172.35 -33.85 +172.45 -33.85 +172.55 -33.85 +172.65 -33.85 +172.75 -33.85 +172.85 -33.85 +172.95 -33.85 +173.05 -33.85 +173.15 -33.85 +173.25 -33.85 +173.35 -33.85 +173.45 -33.85 +173.55 -33.85 +173.65 -33.85 +173.75 -33.85 +173.85 -33.85 +173.95 -33.85 +171.75 -33.95 +171.85 -33.95 +171.95 -33.95 +172.05 -33.95 +172.15 -33.95 +172.25 -33.95 +172.35 -33.95 +172.45 -33.95 +172.55 -33.95 +172.65 -33.95 +172.75 -33.95 +172.85 -33.95 +172.95 -33.95 +173.05 -33.95 +173.15 -33.95 +173.25 -33.95 +173.35 -33.95 +173.45 -33.95 +173.55 -33.95 +173.65 -33.95 +173.75 -33.95 +173.85 -33.95 +173.95 -33.95 +174.05 -33.95 +174.15 -33.95 +171.65 -34.05 +171.75 -34.05 +171.85 -34.05 +171.95 -34.05 +172.05 -34.05 +172.15 -34.05 +172.25 -34.05 +172.35 -34.05 +172.45 -34.05 +172.55 -34.05 +172.65 -34.05 +172.75 -34.05 +172.85 -34.05 +172.95 -34.05 +173.05 -34.05 +173.15 -34.05 +173.25 -34.05 +173.35 -34.05 +173.45 -34.05 +173.55 -34.05 +173.65 -34.05 +173.75 -34.05 +173.85 -34.05 +173.95 -34.05 +174.05 -34.05 +174.15 -34.05 +174.25 -34.05 +171.65 -34.15 +171.75 -34.15 +171.85 -34.15 +171.95 -34.15 +172.05 -34.15 +172.15 -34.15 +172.25 -34.15 +172.35 -34.15 +172.45 -34.15 +172.55 -34.15 +172.65 -34.15 +172.75 -34.15 +172.85 -34.15 +172.95 -34.15 +173.05 -34.15 +173.15 -34.15 +173.25 -34.15 +173.35 -34.15 +173.45 -34.15 +173.55 -34.15 +173.65 -34.15 +173.75 -34.15 +173.85 -34.15 +173.95 -34.15 +174.05 -34.15 +174.15 -34.15 +174.25 -34.15 +174.35 -34.15 +174.45 -34.15 +171.65 -34.25 +171.75 -34.25 +171.85 -34.25 +171.95 -34.25 +172.05 -34.25 +172.15 -34.25 +172.25 -34.25 +172.35 -34.25 +172.45 -34.25 +172.55 -34.25 +172.65 -34.25 +172.75 -34.25 +172.85 -34.25 +172.95 -34.25 +173.05 -34.25 +173.15 -34.25 +173.25 -34.25 +173.35 -34.25 +173.45 -34.25 +173.55 -34.25 +173.65 -34.25 +173.75 -34.25 +173.85 -34.25 +173.95 -34.25 +174.05 -34.25 +174.15 -34.25 +174.25 -34.25 +174.35 -34.25 +174.45 -34.25 +174.55 -34.25 +171.55 -34.35 +171.65 -34.35 +171.75 -34.35 +171.85 -34.35 +171.95 -34.35 +172.05 -34.35 +172.15 -34.35 +172.25 -34.35 +172.35 -34.35 +172.45 -34.35 +172.55 -34.35 +172.65 -34.35 +172.75 -34.35 +172.85 -34.35 +172.95 -34.35 +173.05 -34.35 +173.15 -34.35 +173.25 -34.35 +173.35 -34.35 +173.45 -34.35 +173.55 -34.35 +173.65 -34.35 +173.75 -34.35 +173.85 -34.35 +173.95 -34.35 +174.05 -34.35 +174.15 -34.35 +174.25 -34.35 +174.35 -34.35 +174.45 -34.35 +174.55 -34.35 +174.65 -34.35 +174.75 -34.35 +171.55 -34.45 +171.65 -34.45 +171.75 -34.45 +171.85 -34.45 +171.95 -34.45 +172.05 -34.45 +172.15 -34.45 +172.25 -34.45 +172.35 -34.45 +172.45 -34.45 +172.55 -34.45 +172.65 -34.45 +172.75 -34.45 +172.85 -34.45 +172.95 -34.45 +173.05 -34.45 +173.15 -34.45 +173.25 -34.45 +173.35 -34.45 +173.45 -34.45 +173.55 -34.45 +173.65 -34.45 +173.75 -34.45 +173.85 -34.45 +173.95 -34.45 +174.05 -34.45 +174.15 -34.45 +174.25 -34.45 +174.35 -34.45 +174.45 -34.45 +174.55 -34.45 +174.65 -34.45 +174.75 -34.45 +174.85 -34.45 +174.95 -34.45 +171.55 -34.55 +171.65 -34.55 +171.75 -34.55 +171.85 -34.55 +171.95 -34.55 +172.05 -34.55 +172.15 -34.55 +172.25 -34.55 +172.35 -34.55 +172.45 -34.55 +172.55 -34.55 +172.65 -34.55 +172.75 -34.55 +172.85 -34.55 +172.95 -34.55 +173.05 -34.55 +173.15 -34.55 +173.25 -34.55 +173.35 -34.55 +173.45 -34.55 +173.55 -34.55 +173.65 -34.55 +173.75 -34.55 +173.85 -34.55 +173.95 -34.55 +174.05 -34.55 +174.15 -34.55 +174.25 -34.55 +174.35 -34.55 +174.45 -34.55 +174.55 -34.55 +174.65 -34.55 +174.75 -34.55 +174.85 -34.55 +174.95 -34.55 +175.05 -34.55 +171.55 -34.65 +171.65 -34.65 +171.75 -34.65 +171.85 -34.65 +171.95 -34.65 +172.05 -34.65 +172.15 -34.65 +172.25 -34.65 +172.35 -34.65 +172.45 -34.65 +172.55 -34.65 +172.65 -34.65 +172.75 -34.65 +172.85 -34.65 +172.95 -34.65 +173.05 -34.65 +173.15 -34.65 +173.25 -34.65 +173.35 -34.65 +173.45 -34.65 +173.55 -34.65 +173.65 -34.65 +173.75 -34.65 +173.85 -34.65 +173.95 -34.65 +174.05 -34.65 +174.15 -34.65 +174.25 -34.65 +174.35 -34.65 +174.45 -34.65 +174.55 -34.65 +174.65 -34.65 +174.75 -34.65 +174.85 -34.65 +174.95 -34.65 +175.05 -34.65 +171.65 -34.75 +171.75 -34.75 +171.85 -34.75 +171.95 -34.75 +172.05 -34.75 +172.15 -34.75 +172.25 -34.75 +172.35 -34.75 +172.45 -34.75 +172.55 -34.75 +172.65 -34.75 +172.75 -34.75 +172.85 -34.75 +172.95 -34.75 +173.05 -34.75 +173.15 -34.75 +173.25 -34.75 +173.35 -34.75 +173.45 -34.75 +173.55 -34.75 +173.65 -34.75 +173.75 -34.75 +173.85 -34.75 +173.95 -34.75 +174.05 -34.75 +174.15 -34.75 +174.25 -34.75 +174.35 -34.75 +174.45 -34.75 +174.55 -34.75 +174.65 -34.75 +174.75 -34.75 +174.85 -34.75 +174.95 -34.75 +175.05 -34.75 +175.15 -34.75 +171.65 -34.85 +171.75 -34.85 +171.85 -34.85 +171.95 -34.85 +172.05 -34.85 +172.15 -34.85 +172.25 -34.85 +172.35 -34.85 +172.45 -34.85 +172.55 -34.85 +172.65 -34.85 +172.75 -34.85 +172.85 -34.85 +172.95 -34.85 +173.05 -34.85 +173.15 -34.85 +173.25 -34.85 +173.35 -34.85 +173.45 -34.85 +173.55 -34.85 +173.65 -34.85 +173.75 -34.85 +173.85 -34.85 +173.95 -34.85 +174.05 -34.85 +174.15 -34.85 +174.25 -34.85 +174.35 -34.85 +174.45 -34.85 +174.55 -34.85 +174.65 -34.85 +174.75 -34.85 +174.85 -34.85 +174.95 -34.85 +175.05 -34.85 +175.15 -34.85 +175.25 -34.85 +171.75 -34.95 +171.85 -34.95 +171.95 -34.95 +172.05 -34.95 +172.15 -34.95 +172.25 -34.95 +172.35 -34.95 +172.45 -34.95 +172.55 -34.95 +172.65 -34.95 +172.75 -34.95 +172.85 -34.95 +172.95 -34.95 +173.05 -34.95 +173.15 -34.95 +173.25 -34.95 +173.35 -34.95 +173.45 -34.95 +173.55 -34.95 +173.65 -34.95 +173.75 -34.95 +173.85 -34.95 +173.95 -34.95 +174.05 -34.95 +174.15 -34.95 +174.25 -34.95 +174.35 -34.95 +174.45 -34.95 +174.55 -34.95 +174.65 -34.95 +174.75 -34.95 +174.85 -34.95 +174.95 -34.95 +175.05 -34.95 +175.15 -34.95 +175.25 -34.95 +175.35 -34.95 +171.75 -35.05 +171.85 -35.05 +171.95 -35.05 +172.05 -35.05 +172.15 -35.05 +172.25 -35.05 +172.35 -35.05 +172.45 -35.05 +172.55 -35.05 +172.65 -35.05 +172.75 -35.05 +172.85 -35.05 +172.95 -35.05 +173.05 -35.05 +173.15 -35.05 +173.25 -35.05 +173.35 -35.05 +173.45 -35.05 +173.55 -35.05 +173.65 -35.05 +173.75 -35.05 +173.85 -35.05 +173.95 -35.05 +174.05 -35.05 +174.15 -35.05 +174.25 -35.05 +174.35 -35.05 +174.45 -35.05 +174.55 -35.05 +174.65 -35.05 +174.75 -35.05 +174.85 -35.05 +174.95 -35.05 +175.05 -35.05 +175.15 -35.05 +175.25 -35.05 +175.35 -35.05 +175.45 -35.05 +171.85 -35.15 +171.95 -35.15 +172.05 -35.15 +172.15 -35.15 +172.25 -35.15 +172.35 -35.15 +172.45 -35.15 +172.55 -35.15 +172.65 -35.15 +172.75 -35.15 +172.85 -35.15 +172.95 -35.15 +173.05 -35.15 +173.15 -35.15 +173.25 -35.15 +173.35 -35.15 +173.45 -35.15 +173.55 -35.15 +173.65 -35.15 +173.75 -35.15 +173.85 -35.15 +173.95 -35.15 +174.05 -35.15 +174.15 -35.15 +174.25 -35.15 +174.35 -35.15 +174.45 -35.15 +174.55 -35.15 +174.65 -35.15 +174.75 -35.15 +174.85 -35.15 +174.95 -35.15 +175.05 -35.15 +175.15 -35.15 +175.25 -35.15 +175.35 -35.15 +175.45 -35.15 +175.55 -35.15 +171.95 -35.25 +172.05 -35.25 +172.15 -35.25 +172.25 -35.25 +172.35 -35.25 +172.45 -35.25 +172.55 -35.25 +172.65 -35.25 +172.75 -35.25 +172.85 -35.25 +172.95 -35.25 +173.05 -35.25 +173.15 -35.25 +173.25 -35.25 +173.35 -35.25 +173.45 -35.25 +173.55 -35.25 +173.65 -35.25 +173.75 -35.25 +173.85 -35.25 +173.95 -35.25 +174.05 -35.25 +174.15 -35.25 +174.25 -35.25 +174.35 -35.25 +174.45 -35.25 +174.55 -35.25 +174.65 -35.25 +174.75 -35.25 +174.85 -35.25 +174.95 -35.25 +175.05 -35.25 +175.15 -35.25 +175.25 -35.25 +175.35 -35.25 +175.45 -35.25 +175.55 -35.25 +175.65 -35.25 +175.75 -35.25 +171.95 -35.35 +172.05 -35.35 +172.15 -35.35 +172.25 -35.35 +172.35 -35.35 +172.45 -35.35 +172.55 -35.35 +172.65 -35.35 +172.75 -35.35 +172.85 -35.35 +172.95 -35.35 +173.05 -35.35 +173.15 -35.35 +173.25 -35.35 +173.35 -35.35 +173.45 -35.35 +173.55 -35.35 +173.65 -35.35 +173.75 -35.35 +173.85 -35.35 +173.95 -35.35 +174.05 -35.35 +174.15 -35.35 +174.25 -35.35 +174.35 -35.35 +174.45 -35.35 +174.55 -35.35 +174.65 -35.35 +174.75 -35.35 +174.85 -35.35 +174.95 -35.35 +175.05 -35.35 +175.15 -35.35 +175.25 -35.35 +175.35 -35.35 +175.45 -35.35 +175.55 -35.35 +175.65 -35.35 +175.75 -35.35 +175.85 -35.35 +175.95 -35.35 +172.05 -35.45 +172.15 -35.45 +172.25 -35.45 +172.35 -35.45 +172.45 -35.45 +172.55 -35.45 +172.65 -35.45 +172.75 -35.45 +172.85 -35.45 +172.95 -35.45 +173.05 -35.45 +173.15 -35.45 +173.25 -35.45 +173.35 -35.45 +173.45 -35.45 +173.55 -35.45 +173.65 -35.45 +173.75 -35.45 +173.85 -35.45 +173.95 -35.45 +174.05 -35.45 +174.15 -35.45 +174.25 -35.45 +174.35 -35.45 +174.45 -35.45 +174.55 -35.45 +174.65 -35.45 +174.75 -35.45 +174.85 -35.45 +174.95 -35.45 +175.05 -35.45 +175.15 -35.45 +175.25 -35.45 +175.35 -35.45 +175.45 -35.45 +175.55 -35.45 +175.65 -35.45 +175.75 -35.45 +175.85 -35.45 +175.95 -35.45 +176.05 -35.45 +176.15 -35.45 +176.25 -35.45 +172.05 -35.55 +172.15 -35.55 +172.25 -35.55 +172.35 -35.55 +172.45 -35.55 +172.55 -35.55 +172.65 -35.55 +172.75 -35.55 +172.85 -35.55 +172.95 -35.55 +173.05 -35.55 +173.15 -35.55 +173.25 -35.55 +173.35 -35.55 +173.45 -35.55 +173.55 -35.55 +173.65 -35.55 +173.75 -35.55 +173.85 -35.55 +173.95 -35.55 +174.05 -35.55 +174.15 -35.55 +174.25 -35.55 +174.35 -35.55 +174.45 -35.55 +174.55 -35.55 +174.65 -35.55 +174.75 -35.55 +174.85 -35.55 +174.95 -35.55 +175.05 -35.55 +175.15 -35.55 +175.25 -35.55 +175.35 -35.55 +175.45 -35.55 +175.55 -35.55 +175.65 -35.55 +175.75 -35.55 +175.85 -35.55 +175.95 -35.55 +176.05 -35.55 +176.15 -35.55 +176.25 -35.55 +176.35 -35.55 +172.05 -35.65 +172.15 -35.65 +172.25 -35.65 +172.35 -35.65 +172.45 -35.65 +172.55 -35.65 +172.65 -35.65 +172.75 -35.65 +172.85 -35.65 +172.95 -35.65 +173.05 -35.65 +173.15 -35.65 +173.25 -35.65 +173.35 -35.65 +173.45 -35.65 +173.55 -35.65 +173.65 -35.65 +173.75 -35.65 +173.85 -35.65 +173.95 -35.65 +174.05 -35.65 +174.15 -35.65 +174.25 -35.65 +174.35 -35.65 +174.45 -35.65 +174.55 -35.65 +174.65 -35.65 +174.75 -35.65 +174.85 -35.65 +174.95 -35.65 +175.05 -35.65 +175.15 -35.65 +175.25 -35.65 +175.35 -35.65 +175.45 -35.65 +175.55 -35.65 +175.65 -35.65 +175.75 -35.65 +175.85 -35.65 +175.95 -35.65 +176.05 -35.65 +176.15 -35.65 +176.25 -35.65 +176.35 -35.65 +176.45 -35.65 +172.15 -35.75 +172.25 -35.75 +172.35 -35.75 +172.45 -35.75 +172.55 -35.75 +172.65 -35.75 +172.75 -35.75 +172.85 -35.75 +172.95 -35.75 +173.05 -35.75 +173.15 -35.75 +173.25 -35.75 +173.35 -35.75 +173.45 -35.75 +173.55 -35.75 +173.65 -35.75 +173.75 -35.75 +173.85 -35.75 +173.95 -35.75 +174.05 -35.75 +174.15 -35.75 +174.25 -35.75 +174.35 -35.75 +174.45 -35.75 +174.55 -35.75 +174.65 -35.75 +174.75 -35.75 +174.85 -35.75 +174.95 -35.75 +175.05 -35.75 +175.15 -35.75 +175.25 -35.75 +175.35 -35.75 +175.45 -35.75 +175.55 -35.75 +175.65 -35.75 +175.75 -35.75 +175.85 -35.75 +175.95 -35.75 +176.05 -35.75 +176.15 -35.75 +176.25 -35.75 +176.35 -35.75 +176.45 -35.75 +176.55 -35.75 +172.25 -35.85 +172.35 -35.85 +172.45 -35.85 +172.55 -35.85 +172.65 -35.85 +172.75 -35.85 +172.85 -35.85 +172.95 -35.85 +173.05 -35.85 +173.15 -35.85 +173.25 -35.85 +173.35 -35.85 +173.45 -35.85 +173.55 -35.85 +173.65 -35.85 +173.75 -35.85 +173.85 -35.85 +173.95 -35.85 +174.05 -35.85 +174.15 -35.85 +174.25 -35.85 +174.35 -35.85 +174.45 -35.85 +174.55 -35.85 +174.65 -35.85 +174.75 -35.85 +174.85 -35.85 +174.95 -35.85 +175.05 -35.85 +175.15 -35.85 +175.25 -35.85 +175.35 -35.85 +175.45 -35.85 +175.55 -35.85 +175.65 -35.85 +175.75 -35.85 +175.85 -35.85 +175.95 -35.85 +176.05 -35.85 +176.15 -35.85 +176.25 -35.85 +176.35 -35.85 +176.45 -35.85 +176.55 -35.85 +172.35 -35.95 +172.45 -35.95 +172.55 -35.95 +172.65 -35.95 +172.75 -35.95 +172.85 -35.95 +172.95 -35.95 +173.05 -35.95 +173.15 -35.95 +173.25 -35.95 +173.35 -35.95 +173.45 -35.95 +173.55 -35.95 +173.65 -35.95 +173.75 -35.95 +173.85 -35.95 +173.95 -35.95 +174.05 -35.95 +174.15 -35.95 +174.25 -35.95 +174.35 -35.95 +174.45 -35.95 +174.55 -35.95 +174.65 -35.95 +174.75 -35.95 +174.85 -35.95 +174.95 -35.95 +175.05 -35.95 +175.15 -35.95 +175.25 -35.95 +175.35 -35.95 +175.45 -35.95 +175.55 -35.95 +175.65 -35.95 +175.75 -35.95 +175.85 -35.95 +175.95 -35.95 +176.05 -35.95 +176.15 -35.95 +176.25 -35.95 +176.35 -35.95 +176.45 -35.95 +176.55 -35.95 +176.65 -35.95 +172.45 -36.05 +172.55 -36.05 +172.65 -36.05 +172.75 -36.05 +172.85 -36.05 +172.95 -36.05 +173.05 -36.05 +173.15 -36.05 +173.25 -36.05 +173.35 -36.05 +173.45 -36.05 +173.55 -36.05 +173.65 -36.05 +173.75 -36.05 +173.85 -36.05 +173.95 -36.05 +174.05 -36.05 +174.15 -36.05 +174.25 -36.05 +174.35 -36.05 +174.45 -36.05 +174.55 -36.05 +174.65 -36.05 +174.75 -36.05 +174.85 -36.05 +174.95 -36.05 +175.05 -36.05 +175.15 -36.05 +175.25 -36.05 +175.35 -36.05 +175.45 -36.05 +175.55 -36.05 +175.65 -36.05 +175.75 -36.05 +175.85 -36.05 +175.95 -36.05 +176.05 -36.05 +176.15 -36.05 +176.25 -36.05 +176.35 -36.05 +176.45 -36.05 +176.55 -36.05 +176.65 -36.05 +172.45 -36.15 +172.55 -36.15 +172.65 -36.15 +172.75 -36.15 +172.85 -36.15 +172.95 -36.15 +173.05 -36.15 +173.15 -36.15 +173.25 -36.15 +173.35 -36.15 +173.45 -36.15 +173.55 -36.15 +173.65 -36.15 +173.75 -36.15 +173.85 -36.15 +173.95 -36.15 +174.05 -36.15 +174.15 -36.15 +174.25 -36.15 +174.35 -36.15 +174.45 -36.15 +174.55 -36.15 +174.65 -36.15 +174.75 -36.15 +174.85 -36.15 +174.95 -36.15 +175.05 -36.15 +175.15 -36.15 +175.25 -36.15 +175.35 -36.15 +175.45 -36.15 +175.55 -36.15 +175.65 -36.15 +175.75 -36.15 +175.85 -36.15 +175.95 -36.15 +176.05 -36.15 +176.15 -36.15 +176.25 -36.15 +176.35 -36.15 +176.45 -36.15 +176.55 -36.15 +176.65 -36.15 +176.75 -36.15 +172.55 -36.25 +172.65 -36.25 +172.75 -36.25 +172.85 -36.25 +172.95 -36.25 +173.05 -36.25 +173.15 -36.25 +173.25 -36.25 +173.35 -36.25 +173.45 -36.25 +173.55 -36.25 +173.65 -36.25 +173.75 -36.25 +173.85 -36.25 +173.95 -36.25 +174.05 -36.25 +174.15 -36.25 +174.25 -36.25 +174.35 -36.25 +174.45 -36.25 +174.55 -36.25 +174.65 -36.25 +174.75 -36.25 +174.85 -36.25 +174.95 -36.25 +175.05 -36.25 +175.15 -36.25 +175.25 -36.25 +175.35 -36.25 +175.45 -36.25 +175.55 -36.25 +175.65 -36.25 +175.75 -36.25 +175.85 -36.25 +175.95 -36.25 +176.05 -36.25 +176.15 -36.25 +176.25 -36.25 +176.35 -36.25 +176.45 -36.25 +176.55 -36.25 +176.65 -36.25 +176.75 -36.25 +176.85 -36.25 +172.65 -36.35 +172.75 -36.35 +172.85 -36.35 +172.95 -36.35 +173.05 -36.35 +173.15 -36.35 +173.25 -36.35 +173.35 -36.35 +173.45 -36.35 +173.55 -36.35 +173.65 -36.35 +173.75 -36.35 +173.85 -36.35 +173.95 -36.35 +174.05 -36.35 +174.15 -36.35 +174.25 -36.35 +174.35 -36.35 +174.45 -36.35 +174.55 -36.35 +174.65 -36.35 +174.75 -36.35 +174.85 -36.35 +174.95 -36.35 +175.05 -36.35 +175.15 -36.35 +175.25 -36.35 +175.35 -36.35 +175.45 -36.35 +175.55 -36.35 +175.65 -36.35 +175.75 -36.35 +175.85 -36.35 +175.95 -36.35 +176.05 -36.35 +176.15 -36.35 +176.25 -36.35 +176.35 -36.35 +176.45 -36.35 +176.55 -36.35 +176.65 -36.35 +176.75 -36.35 +176.85 -36.35 +172.75 -36.45 +172.85 -36.45 +172.95 -36.45 +173.05 -36.45 +173.15 -36.45 +173.25 -36.45 +173.35 -36.45 +173.45 -36.45 +173.55 -36.45 +173.65 -36.45 +173.75 -36.45 +173.85 -36.45 +173.95 -36.45 +174.05 -36.45 +174.15 -36.45 +174.25 -36.45 +174.35 -36.45 +174.45 -36.45 +174.55 -36.45 +174.65 -36.45 +174.75 -36.45 +174.85 -36.45 +174.95 -36.45 +175.05 -36.45 +175.15 -36.45 +175.25 -36.45 +175.35 -36.45 +175.45 -36.45 +175.55 -36.45 +175.65 -36.45 +175.75 -36.45 +175.85 -36.45 +175.95 -36.45 +176.05 -36.45 +176.15 -36.45 +176.25 -36.45 +176.35 -36.45 +176.45 -36.45 +176.55 -36.45 +176.65 -36.45 +176.75 -36.45 +176.85 -36.45 +172.85 -36.55 +172.95 -36.55 +173.05 -36.55 +173.15 -36.55 +173.25 -36.55 +173.35 -36.55 +173.45 -36.55 +173.55 -36.55 +173.65 -36.55 +173.75 -36.55 +173.85 -36.55 +173.95 -36.55 +174.05 -36.55 +174.15 -36.55 +174.25 -36.55 +174.35 -36.55 +174.45 -36.55 +174.55 -36.55 +174.65 -36.55 +174.75 -36.55 +174.85 -36.55 +174.95 -36.55 +175.05 -36.55 +175.15 -36.55 +175.25 -36.55 +175.35 -36.55 +175.45 -36.55 +175.55 -36.55 +175.65 -36.55 +175.75 -36.55 +175.85 -36.55 +175.95 -36.55 +176.05 -36.55 +176.15 -36.55 +176.25 -36.55 +176.35 -36.55 +176.45 -36.55 +176.55 -36.55 +176.65 -36.55 +176.75 -36.55 +176.85 -36.55 +176.95 -36.55 +172.95 -36.65 +173.05 -36.65 +173.15 -36.65 +173.25 -36.65 +173.35 -36.65 +173.45 -36.65 +173.55 -36.65 +173.65 -36.65 +173.75 -36.65 +173.85 -36.65 +173.95 -36.65 +174.05 -36.65 +174.15 -36.65 +174.25 -36.65 +174.35 -36.65 +174.45 -36.65 +174.55 -36.65 +174.65 -36.65 +174.75 -36.65 +174.85 -36.65 +174.95 -36.65 +175.05 -36.65 +175.15 -36.65 +175.25 -36.65 +175.35 -36.65 +175.45 -36.65 +175.55 -36.65 +175.65 -36.65 +175.75 -36.65 +175.85 -36.65 +175.95 -36.65 +176.05 -36.65 +176.15 -36.65 +176.25 -36.65 +176.35 -36.65 +176.45 -36.65 +176.55 -36.65 +176.65 -36.65 +176.75 -36.65 +176.85 -36.65 +176.95 -36.65 +177.85 -36.65 +177.95 -36.65 +178.05 -36.65 +178.15 -36.65 +178.25 -36.65 +172.95 -36.75 +173.05 -36.75 +173.15 -36.75 +173.25 -36.75 +173.35 -36.75 +173.45 -36.75 +173.55 -36.75 +173.65 -36.75 +173.75 -36.75 +173.85 -36.75 +173.95 -36.75 +174.05 -36.75 +174.15 -36.75 +174.25 -36.75 +174.35 -36.75 +174.45 -36.75 +174.55 -36.75 +174.65 -36.75 +174.75 -36.75 +174.85 -36.75 +174.95 -36.75 +175.05 -36.75 +175.15 -36.75 +175.25 -36.75 +175.35 -36.75 +175.45 -36.75 +175.55 -36.75 +175.65 -36.75 +175.75 -36.75 +175.85 -36.75 +175.95 -36.75 +176.05 -36.75 +176.15 -36.75 +176.25 -36.75 +176.35 -36.75 +176.45 -36.75 +176.55 -36.75 +176.65 -36.75 +176.75 -36.75 +176.85 -36.75 +176.95 -36.75 +177.05 -36.75 +177.55 -36.75 +177.65 -36.75 +177.75 -36.75 +177.85 -36.75 +177.95 -36.75 +178.05 -36.75 +178.15 -36.75 +178.25 -36.75 +178.35 -36.75 +178.45 -36.75 +178.55 -36.75 +178.65 -36.75 +178.75 -36.75 +178.85 -36.75 +173.05 -36.85 +173.15 -36.85 +173.25 -36.85 +173.35 -36.85 +173.45 -36.85 +173.55 -36.85 +173.65 -36.85 +173.75 -36.85 +173.85 -36.85 +173.95 -36.85 +174.05 -36.85 +174.15 -36.85 +174.25 -36.85 +174.35 -36.85 +174.45 -36.85 +174.55 -36.85 +174.65 -36.85 +174.75 -36.85 +174.85 -36.85 +174.95 -36.85 +175.05 -36.85 +175.15 -36.85 +175.25 -36.85 +175.35 -36.85 +175.45 -36.85 +175.55 -36.85 +175.65 -36.85 +175.75 -36.85 +175.85 -36.85 +175.95 -36.85 +176.05 -36.85 +176.15 -36.85 +176.25 -36.85 +176.35 -36.85 +176.45 -36.85 +176.55 -36.85 +176.65 -36.85 +176.75 -36.85 +176.85 -36.85 +176.95 -36.85 +177.05 -36.85 +177.25 -36.85 +177.35 -36.85 +177.45 -36.85 +177.55 -36.85 +177.65 -36.85 +177.75 -36.85 +177.85 -36.85 +177.95 -36.85 +178.05 -36.85 +178.15 -36.85 +178.25 -36.85 +178.35 -36.85 +178.45 -36.85 +178.55 -36.85 +178.65 -36.85 +178.75 -36.85 +178.85 -36.85 +178.95 -36.85 +179.05 -36.85 +179.15 -36.85 +173.15 -36.95 +173.25 -36.95 +173.35 -36.95 +173.45 -36.95 +173.55 -36.95 +173.65 -36.95 +173.75 -36.95 +173.85 -36.95 +173.95 -36.95 +174.05 -36.95 +174.15 -36.95 +174.25 -36.95 +174.35 -36.95 +174.45 -36.95 +174.55 -36.95 +174.65 -36.95 +174.75 -36.95 +174.85 -36.95 +174.95 -36.95 +175.05 -36.95 +175.15 -36.95 +175.25 -36.95 +175.35 -36.95 +175.45 -36.95 +175.55 -36.95 +175.65 -36.95 +175.75 -36.95 +175.85 -36.95 +175.95 -36.95 +176.05 -36.95 +176.15 -36.95 +176.25 -36.95 +176.35 -36.95 +176.45 -36.95 +176.55 -36.95 +176.65 -36.95 +176.75 -36.95 +176.85 -36.95 +176.95 -36.95 +177.05 -36.95 +177.15 -36.95 +177.25 -36.95 +177.35 -36.95 +177.45 -36.95 +177.55 -36.95 +177.65 -36.95 +177.75 -36.95 +177.85 -36.95 +177.95 -36.95 +178.05 -36.95 +178.15 -36.95 +178.25 -36.95 +178.35 -36.95 +178.45 -36.95 +178.55 -36.95 +178.65 -36.95 +178.75 -36.95 +178.85 -36.95 +178.95 -36.95 +179.05 -36.95 +179.15 -36.95 +179.25 -36.95 +173.25 -37.05 +173.35 -37.05 +173.45 -37.05 +173.55 -37.05 +173.65 -37.05 +173.75 -37.05 +173.85 -37.05 +173.95 -37.05 +174.05 -37.05 +174.15 -37.05 +174.25 -37.05 +174.35 -37.05 +174.45 -37.05 +174.55 -37.05 +174.65 -37.05 +174.75 -37.05 +174.85 -37.05 +174.95 -37.05 +175.05 -37.05 +175.15 -37.05 +175.25 -37.05 +175.35 -37.05 +175.45 -37.05 +175.55 -37.05 +175.65 -37.05 +175.75 -37.05 +175.85 -37.05 +175.95 -37.05 +176.05 -37.05 +176.15 -37.05 +176.25 -37.05 +176.35 -37.05 +176.45 -37.05 +176.55 -37.05 +176.65 -37.05 +176.75 -37.05 +176.85 -37.05 +176.95 -37.05 +177.05 -37.05 +177.15 -37.05 +177.25 -37.05 +177.35 -37.05 +177.45 -37.05 +177.55 -37.05 +177.65 -37.05 +177.75 -37.05 +177.85 -37.05 +177.95 -37.05 +178.05 -37.05 +178.15 -37.05 +178.25 -37.05 +178.35 -37.05 +178.45 -37.05 +178.55 -37.05 +178.65 -37.05 +178.75 -37.05 +178.85 -37.05 +178.95 -37.05 +179.05 -37.05 +179.15 -37.05 +179.25 -37.05 +179.35 -37.05 +179.45 -37.05 +173.35 -37.15 +173.45 -37.15 +173.55 -37.15 +173.65 -37.15 +173.75 -37.15 +173.85 -37.15 +173.95 -37.15 +174.05 -37.15 +174.15 -37.15 +174.25 -37.15 +174.35 -37.15 +174.45 -37.15 +174.55 -37.15 +174.65 -37.15 +174.75 -37.15 +174.85 -37.15 +174.95 -37.15 +175.05 -37.15 +175.15 -37.15 +175.25 -37.15 +175.35 -37.15 +175.45 -37.15 +175.55 -37.15 +175.65 -37.15 +175.75 -37.15 +175.85 -37.15 +175.95 -37.15 +176.05 -37.15 +176.15 -37.15 +176.25 -37.15 +176.35 -37.15 +176.45 -37.15 +176.55 -37.15 +176.65 -37.15 +176.75 -37.15 +176.85 -37.15 +176.95 -37.15 +177.05 -37.15 +177.15 -37.15 +177.25 -37.15 +177.35 -37.15 +177.45 -37.15 +177.55 -37.15 +177.65 -37.15 +177.75 -37.15 +177.85 -37.15 +177.95 -37.15 +178.05 -37.15 +178.15 -37.15 +178.25 -37.15 +178.35 -37.15 +178.45 -37.15 +178.55 -37.15 +178.65 -37.15 +178.75 -37.15 +178.85 -37.15 +178.95 -37.15 +179.05 -37.15 +179.15 -37.15 +179.25 -37.15 +179.35 -37.15 +179.45 -37.15 +179.55 -37.15 +173.35 -37.25 +173.45 -37.25 +173.55 -37.25 +173.65 -37.25 +173.75 -37.25 +173.85 -37.25 +173.95 -37.25 +174.05 -37.25 +174.15 -37.25 +174.25 -37.25 +174.35 -37.25 +174.45 -37.25 +174.55 -37.25 +174.65 -37.25 +174.75 -37.25 +174.85 -37.25 +174.95 -37.25 +175.05 -37.25 +175.15 -37.25 +175.25 -37.25 +175.35 -37.25 +175.45 -37.25 +175.55 -37.25 +175.65 -37.25 +175.75 -37.25 +175.85 -37.25 +175.95 -37.25 +176.05 -37.25 +176.15 -37.25 +176.25 -37.25 +176.35 -37.25 +176.45 -37.25 +176.55 -37.25 +176.65 -37.25 +176.75 -37.25 +176.85 -37.25 +176.95 -37.25 +177.05 -37.25 +177.15 -37.25 +177.25 -37.25 +177.35 -37.25 +177.45 -37.25 +177.55 -37.25 +177.65 -37.25 +177.75 -37.25 +177.85 -37.25 +177.95 -37.25 +178.05 -37.25 +178.15 -37.25 +178.25 -37.25 +178.35 -37.25 +178.45 -37.25 +178.55 -37.25 +178.65 -37.25 +178.75 -37.25 +178.85 -37.25 +178.95 -37.25 +179.05 -37.25 +179.15 -37.25 +179.25 -37.25 +179.35 -37.25 +179.45 -37.25 +179.55 -37.25 +179.65 -37.25 +173.35 -37.35 +173.45 -37.35 +173.55 -37.35 +173.65 -37.35 +173.75 -37.35 +173.85 -37.35 +173.95 -37.35 +174.05 -37.35 +174.15 -37.35 +174.25 -37.35 +174.35 -37.35 +174.45 -37.35 +174.55 -37.35 +174.65 -37.35 +174.75 -37.35 +174.85 -37.35 +174.95 -37.35 +175.05 -37.35 +175.15 -37.35 +175.25 -37.35 +175.35 -37.35 +175.45 -37.35 +175.55 -37.35 +175.65 -37.35 +175.75 -37.35 +175.85 -37.35 +175.95 -37.35 +176.05 -37.35 +176.15 -37.35 +176.25 -37.35 +176.35 -37.35 +176.45 -37.35 +176.55 -37.35 +176.65 -37.35 +176.75 -37.35 +176.85 -37.35 +176.95 -37.35 +177.05 -37.35 +177.15 -37.35 +177.25 -37.35 +177.35 -37.35 +177.45 -37.35 +177.55 -37.35 +177.65 -37.35 +177.75 -37.35 +177.85 -37.35 +177.95 -37.35 +178.05 -37.35 +178.15 -37.35 +178.25 -37.35 +178.35 -37.35 +178.45 -37.35 +178.55 -37.35 +178.65 -37.35 +178.75 -37.35 +178.85 -37.35 +178.95 -37.35 +179.05 -37.35 +179.15 -37.35 +179.25 -37.35 +179.35 -37.35 +179.45 -37.35 +179.55 -37.35 +179.65 -37.35 +173.35 -37.45 +173.45 -37.45 +173.55 -37.45 +173.65 -37.45 +173.75 -37.45 +173.85 -37.45 +173.95 -37.45 +174.05 -37.45 +174.15 -37.45 +174.25 -37.45 +174.35 -37.45 +174.45 -37.45 +174.55 -37.45 +174.65 -37.45 +174.75 -37.45 +174.85 -37.45 +174.95 -37.45 +175.05 -37.45 +175.15 -37.45 +175.25 -37.45 +175.35 -37.45 +175.45 -37.45 +175.55 -37.45 +175.65 -37.45 +175.75 -37.45 +175.85 -37.45 +175.95 -37.45 +176.05 -37.45 +176.15 -37.45 +176.25 -37.45 +176.35 -37.45 +176.45 -37.45 +176.55 -37.45 +176.65 -37.45 +176.75 -37.45 +176.85 -37.45 +176.95 -37.45 +177.05 -37.45 +177.15 -37.45 +177.25 -37.45 +177.35 -37.45 +177.45 -37.45 +177.55 -37.45 +177.65 -37.45 +177.75 -37.45 +177.85 -37.45 +177.95 -37.45 +178.05 -37.45 +178.15 -37.45 +178.25 -37.45 +178.35 -37.45 +178.45 -37.45 +178.55 -37.45 +178.65 -37.45 +178.75 -37.45 +178.85 -37.45 +178.95 -37.45 +179.05 -37.45 +179.15 -37.45 +179.25 -37.45 +179.35 -37.45 +179.45 -37.45 +179.55 -37.45 +179.65 -37.45 +173.35 -37.55 +173.45 -37.55 +173.55 -37.55 +173.65 -37.55 +173.75 -37.55 +173.85 -37.55 +173.95 -37.55 +174.05 -37.55 +174.15 -37.55 +174.25 -37.55 +174.35 -37.55 +174.45 -37.55 +174.55 -37.55 +174.65 -37.55 +174.75 -37.55 +174.85 -37.55 +174.95 -37.55 +175.05 -37.55 +175.15 -37.55 +175.25 -37.55 +175.35 -37.55 +175.45 -37.55 +175.55 -37.55 +175.65 -37.55 +175.75 -37.55 +175.85 -37.55 +175.95 -37.55 +176.05 -37.55 +176.15 -37.55 +176.25 -37.55 +176.35 -37.55 +176.45 -37.55 +176.55 -37.55 +176.65 -37.55 +176.75 -37.55 +176.85 -37.55 +176.95 -37.55 +177.05 -37.55 +177.15 -37.55 +177.25 -37.55 +177.35 -37.55 +177.45 -37.55 +177.55 -37.55 +177.65 -37.55 +177.75 -37.55 +177.85 -37.55 +177.95 -37.55 +178.05 -37.55 +178.15 -37.55 +178.25 -37.55 +178.35 -37.55 +178.45 -37.55 +178.55 -37.55 +178.65 -37.55 +178.75 -37.55 +178.85 -37.55 +178.95 -37.55 +179.05 -37.55 +179.15 -37.55 +179.25 -37.55 +179.35 -37.55 +179.45 -37.55 +179.55 -37.55 +179.65 -37.55 +173.35 -37.65 +173.45 -37.65 +173.55 -37.65 +173.65 -37.65 +173.75 -37.65 +173.85 -37.65 +173.95 -37.65 +174.05 -37.65 +174.15 -37.65 +174.25 -37.65 +174.35 -37.65 +174.45 -37.65 +174.55 -37.65 +174.65 -37.65 +174.75 -37.65 +174.85 -37.65 +174.95 -37.65 +175.05 -37.65 +175.15 -37.65 +175.25 -37.65 +175.35 -37.65 +175.45 -37.65 +175.55 -37.65 +175.65 -37.65 +175.75 -37.65 +175.85 -37.65 +175.95 -37.65 +176.05 -37.65 +176.15 -37.65 +176.25 -37.65 +176.35 -37.65 +176.45 -37.65 +176.55 -37.65 +176.65 -37.65 +176.75 -37.65 +176.85 -37.65 +176.95 -37.65 +177.05 -37.65 +177.15 -37.65 +177.25 -37.65 +177.35 -37.65 +177.45 -37.65 +177.55 -37.65 +177.65 -37.65 +177.75 -37.65 +177.85 -37.65 +177.95 -37.65 +178.05 -37.65 +178.15 -37.65 +178.25 -37.65 +178.35 -37.65 +178.45 -37.65 +178.55 -37.65 +178.65 -37.65 +178.75 -37.65 +178.85 -37.65 +178.95 -37.65 +179.05 -37.65 +179.15 -37.65 +179.25 -37.65 +179.35 -37.65 +179.45 -37.65 +179.55 -37.65 +179.65 -37.65 +173.25 -37.75 +173.35 -37.75 +173.45 -37.75 +173.55 -37.75 +173.65 -37.75 +173.75 -37.75 +173.85 -37.75 +173.95 -37.75 +174.05 -37.75 +174.15 -37.75 +174.25 -37.75 +174.35 -37.75 +174.45 -37.75 +174.55 -37.75 +174.65 -37.75 +174.75 -37.75 +174.85 -37.75 +174.95 -37.75 +175.05 -37.75 +175.15 -37.75 +175.25 -37.75 +175.35 -37.75 +175.45 -37.75 +175.55 -37.75 +175.65 -37.75 +175.75 -37.75 +175.85 -37.75 +175.95 -37.75 +176.05 -37.75 +176.15 -37.75 +176.25 -37.75 +176.35 -37.75 +176.45 -37.75 +176.55 -37.75 +176.65 -37.75 +176.75 -37.75 +176.85 -37.75 +176.95 -37.75 +177.05 -37.75 +177.15 -37.75 +177.25 -37.75 +177.35 -37.75 +177.45 -37.75 +177.55 -37.75 +177.65 -37.75 +177.75 -37.75 +177.85 -37.75 +177.95 -37.75 +178.05 -37.75 +178.15 -37.75 +178.25 -37.75 +178.35 -37.75 +178.45 -37.75 +178.55 -37.75 +178.65 -37.75 +178.75 -37.75 +178.85 -37.75 +178.95 -37.75 +179.05 -37.75 +179.15 -37.75 +179.25 -37.75 +179.35 -37.75 +179.45 -37.75 +179.55 -37.75 +179.65 -37.75 +179.75 -37.75 +173.25 -37.85 +173.35 -37.85 +173.45 -37.85 +173.55 -37.85 +173.65 -37.85 +173.75 -37.85 +173.85 -37.85 +173.95 -37.85 +174.05 -37.85 +174.15 -37.85 +174.25 -37.85 +174.35 -37.85 +174.45 -37.85 +174.55 -37.85 +174.65 -37.85 +174.75 -37.85 +174.85 -37.85 +174.95 -37.85 +175.05 -37.85 +175.15 -37.85 +175.25 -37.85 +175.35 -37.85 +175.45 -37.85 +175.55 -37.85 +175.65 -37.85 +175.75 -37.85 +175.85 -37.85 +175.95 -37.85 +176.05 -37.85 +176.15 -37.85 +176.25 -37.85 +176.35 -37.85 +176.45 -37.85 +176.55 -37.85 +176.65 -37.85 +176.75 -37.85 +176.85 -37.85 +176.95 -37.85 +177.05 -37.85 +177.15 -37.85 +177.25 -37.85 +177.35 -37.85 +177.45 -37.85 +177.55 -37.85 +177.65 -37.85 +177.75 -37.85 +177.85 -37.85 +177.95 -37.85 +178.05 -37.85 +178.15 -37.85 +178.25 -37.85 +178.35 -37.85 +178.45 -37.85 +178.55 -37.85 +178.65 -37.85 +178.75 -37.85 +178.85 -37.85 +178.95 -37.85 +179.05 -37.85 +179.15 -37.85 +179.25 -37.85 +179.35 -37.85 +179.45 -37.85 +179.55 -37.85 +179.65 -37.85 +179.75 -37.85 +173.15 -37.95 +173.25 -37.95 +173.35 -37.95 +173.45 -37.95 +173.55 -37.95 +173.65 -37.95 +173.75 -37.95 +173.85 -37.95 +173.95 -37.95 +174.05 -37.95 +174.15 -37.95 +174.25 -37.95 +174.35 -37.95 +174.45 -37.95 +174.55 -37.95 +174.65 -37.95 +174.75 -37.95 +174.85 -37.95 +174.95 -37.95 +175.05 -37.95 +175.15 -37.95 +175.25 -37.95 +175.35 -37.95 +175.45 -37.95 +175.55 -37.95 +175.65 -37.95 +175.75 -37.95 +175.85 -37.95 +175.95 -37.95 +176.05 -37.95 +176.15 -37.95 +176.25 -37.95 +176.35 -37.95 +176.45 -37.95 +176.55 -37.95 +176.65 -37.95 +176.75 -37.95 +176.85 -37.95 +176.95 -37.95 +177.05 -37.95 +177.15 -37.95 +177.25 -37.95 +177.35 -37.95 +177.45 -37.95 +177.55 -37.95 +177.65 -37.95 +177.75 -37.95 +177.85 -37.95 +177.95 -37.95 +178.05 -37.95 +178.15 -37.95 +178.25 -37.95 +178.35 -37.95 +178.45 -37.95 +178.55 -37.95 +178.65 -37.95 +178.75 -37.95 +178.85 -37.95 +178.95 -37.95 +179.05 -37.95 +179.15 -37.95 +179.25 -37.95 +179.35 -37.95 +179.45 -37.95 +179.55 -37.95 +179.65 -37.95 +179.75 -37.95 +173.15 -38.05 +173.25 -38.05 +173.35 -38.05 +173.45 -38.05 +173.55 -38.05 +173.65 -38.05 +173.75 -38.05 +173.85 -38.05 +173.95 -38.05 +174.05 -38.05 +174.15 -38.05 +174.25 -38.05 +174.35 -38.05 +174.45 -38.05 +174.55 -38.05 +174.65 -38.05 +174.75 -38.05 +174.85 -38.05 +174.95 -38.05 +175.05 -38.05 +175.15 -38.05 +175.25 -38.05 +175.35 -38.05 +175.45 -38.05 +175.55 -38.05 +175.65 -38.05 +175.75 -38.05 +175.85 -38.05 +175.95 -38.05 +176.05 -38.05 +176.15 -38.05 +176.25 -38.05 +176.35 -38.05 +176.45 -38.05 +176.55 -38.05 +176.65 -38.05 +176.75 -38.05 +176.85 -38.05 +176.95 -38.05 +177.05 -38.05 +177.15 -38.05 +177.25 -38.05 +177.35 -38.05 +177.45 -38.05 +177.55 -38.05 +177.65 -38.05 +177.75 -38.05 +177.85 -38.05 +177.95 -38.05 +178.05 -38.05 +178.15 -38.05 +178.25 -38.05 +178.35 -38.05 +178.45 -38.05 +178.55 -38.05 +178.65 -38.05 +178.75 -38.05 +178.85 -38.05 +178.95 -38.05 +179.05 -38.05 +179.15 -38.05 +179.25 -38.05 +179.35 -38.05 +179.45 -38.05 +179.55 -38.05 +179.65 -38.05 +173.15 -38.15 +173.25 -38.15 +173.35 -38.15 +173.45 -38.15 +173.55 -38.15 +173.65 -38.15 +173.75 -38.15 +173.85 -38.15 +173.95 -38.15 +174.05 -38.15 +174.15 -38.15 +174.25 -38.15 +174.35 -38.15 +174.45 -38.15 +174.55 -38.15 +174.65 -38.15 +174.75 -38.15 +174.85 -38.15 +174.95 -38.15 +175.05 -38.15 +175.15 -38.15 +175.25 -38.15 +175.35 -38.15 +175.45 -38.15 +175.55 -38.15 +175.65 -38.15 +175.75 -38.15 +175.85 -38.15 +175.95 -38.15 +176.05 -38.15 +176.15 -38.15 +176.25 -38.15 +176.35 -38.15 +176.45 -38.15 +176.55 -38.15 +176.65 -38.15 +176.75 -38.15 +176.85 -38.15 +176.95 -38.15 +177.05 -38.15 +177.15 -38.15 +177.25 -38.15 +177.35 -38.15 +177.45 -38.15 +177.55 -38.15 +177.65 -38.15 +177.75 -38.15 +177.85 -38.15 +177.95 -38.15 +178.05 -38.15 +178.15 -38.15 +178.25 -38.15 +178.35 -38.15 +178.45 -38.15 +178.55 -38.15 +178.65 -38.15 +178.75 -38.15 +178.85 -38.15 +178.95 -38.15 +179.05 -38.15 +179.15 -38.15 +179.25 -38.15 +179.35 -38.15 +179.45 -38.15 +179.55 -38.15 +179.65 -38.15 +173.05 -38.25 +173.15 -38.25 +173.25 -38.25 +173.35 -38.25 +173.45 -38.25 +173.55 -38.25 +173.65 -38.25 +173.75 -38.25 +173.85 -38.25 +173.95 -38.25 +174.05 -38.25 +174.15 -38.25 +174.25 -38.25 +174.35 -38.25 +174.45 -38.25 +174.55 -38.25 +174.65 -38.25 +174.75 -38.25 +174.85 -38.25 +174.95 -38.25 +175.05 -38.25 +175.15 -38.25 +175.25 -38.25 +175.35 -38.25 +175.45 -38.25 +175.55 -38.25 +175.65 -38.25 +175.75 -38.25 +175.85 -38.25 +175.95 -38.25 +176.05 -38.25 +176.15 -38.25 +176.25 -38.25 +176.35 -38.25 +176.45 -38.25 +176.55 -38.25 +176.65 -38.25 +176.75 -38.25 +176.85 -38.25 +176.95 -38.25 +177.05 -38.25 +177.15 -38.25 +177.25 -38.25 +177.35 -38.25 +177.45 -38.25 +177.55 -38.25 +177.65 -38.25 +177.75 -38.25 +177.85 -38.25 +177.95 -38.25 +178.05 -38.25 +178.15 -38.25 +178.25 -38.25 +178.35 -38.25 +178.45 -38.25 +178.55 -38.25 +178.65 -38.25 +178.75 -38.25 +178.85 -38.25 +178.95 -38.25 +179.05 -38.25 +179.15 -38.25 +179.25 -38.25 +179.35 -38.25 +179.45 -38.25 +179.55 -38.25 +179.65 -38.25 +173.05 -38.35 +173.15 -38.35 +173.25 -38.35 +173.35 -38.35 +173.45 -38.35 +173.55 -38.35 +173.65 -38.35 +173.75 -38.35 +173.85 -38.35 +173.95 -38.35 +174.05 -38.35 +174.15 -38.35 +174.25 -38.35 +174.35 -38.35 +174.45 -38.35 +174.55 -38.35 +174.65 -38.35 +174.75 -38.35 +174.85 -38.35 +174.95 -38.35 +175.05 -38.35 +175.15 -38.35 +175.25 -38.35 +175.35 -38.35 +175.45 -38.35 +175.55 -38.35 +175.65 -38.35 +175.75 -38.35 +175.85 -38.35 +175.95 -38.35 +176.05 -38.35 +176.15 -38.35 +176.25 -38.35 +176.35 -38.35 +176.45 -38.35 +176.55 -38.35 +176.65 -38.35 +176.75 -38.35 +176.85 -38.35 +176.95 -38.35 +177.05 -38.35 +177.15 -38.35 +177.25 -38.35 +177.35 -38.35 +177.45 -38.35 +177.55 -38.35 +177.65 -38.35 +177.75 -38.35 +177.85 -38.35 +177.95 -38.35 +178.05 -38.35 +178.15 -38.35 +178.25 -38.35 +178.35 -38.35 +178.45 -38.35 +178.55 -38.35 +178.65 -38.35 +178.75 -38.35 +178.85 -38.35 +178.95 -38.35 +179.05 -38.35 +179.15 -38.35 +179.25 -38.35 +179.35 -38.35 +179.45 -38.35 +179.55 -38.35 +179.65 -38.35 +172.95 -38.45 +173.05 -38.45 +173.15 -38.45 +173.25 -38.45 +173.35 -38.45 +173.45 -38.45 +173.55 -38.45 +173.65 -38.45 +173.75 -38.45 +173.85 -38.45 +173.95 -38.45 +174.05 -38.45 +174.15 -38.45 +174.25 -38.45 +174.35 -38.45 +174.45 -38.45 +174.55 -38.45 +174.65 -38.45 +174.75 -38.45 +174.85 -38.45 +174.95 -38.45 +175.05 -38.45 +175.15 -38.45 +175.25 -38.45 +175.35 -38.45 +175.45 -38.45 +175.55 -38.45 +175.65 -38.45 +175.75 -38.45 +175.85 -38.45 +175.95 -38.45 +176.05 -38.45 +176.15 -38.45 +176.25 -38.45 +176.35 -38.45 +176.45 -38.45 +176.55 -38.45 +176.65 -38.45 +176.75 -38.45 +176.85 -38.45 +176.95 -38.45 +177.05 -38.45 +177.15 -38.45 +177.25 -38.45 +177.35 -38.45 +177.45 -38.45 +177.55 -38.45 +177.65 -38.45 +177.75 -38.45 +177.85 -38.45 +177.95 -38.45 +178.05 -38.45 +178.15 -38.45 +178.25 -38.45 +178.35 -38.45 +178.45 -38.45 +178.55 -38.45 +178.65 -38.45 +178.75 -38.45 +178.85 -38.45 +178.95 -38.45 +179.05 -38.45 +179.15 -38.45 +179.25 -38.45 +179.35 -38.45 +179.45 -38.45 +179.55 -38.45 +172.85 -38.55 +172.95 -38.55 +173.05 -38.55 +173.15 -38.55 +173.25 -38.55 +173.35 -38.55 +173.45 -38.55 +173.55 -38.55 +173.65 -38.55 +173.75 -38.55 +173.85 -38.55 +173.95 -38.55 +174.05 -38.55 +174.15 -38.55 +174.25 -38.55 +174.35 -38.55 +174.45 -38.55 +174.55 -38.55 +174.65 -38.55 +174.75 -38.55 +174.85 -38.55 +174.95 -38.55 +175.05 -38.55 +175.15 -38.55 +175.25 -38.55 +175.35 -38.55 +175.45 -38.55 +175.55 -38.55 +175.65 -38.55 +175.75 -38.55 +175.85 -38.55 +175.95 -38.55 +176.05 -38.55 +176.15 -38.55 +176.25 -38.55 +176.35 -38.55 +176.45 -38.55 +176.55 -38.55 +176.65 -38.55 +176.75 -38.55 +176.85 -38.55 +176.95 -38.55 +177.05 -38.55 +177.15 -38.55 +177.25 -38.55 +177.35 -38.55 +177.45 -38.55 +177.55 -38.55 +177.65 -38.55 +177.75 -38.55 +177.85 -38.55 +177.95 -38.55 +178.05 -38.55 +178.15 -38.55 +178.25 -38.55 +178.35 -38.55 +178.45 -38.55 +178.55 -38.55 +178.65 -38.55 +178.75 -38.55 +178.85 -38.55 +178.95 -38.55 +179.05 -38.55 +179.15 -38.55 +179.25 -38.55 +179.35 -38.55 +179.45 -38.55 +179.55 -38.55 +172.75 -38.65 +172.85 -38.65 +172.95 -38.65 +173.05 -38.65 +173.15 -38.65 +173.25 -38.65 +173.35 -38.65 +173.45 -38.65 +173.55 -38.65 +173.65 -38.65 +173.75 -38.65 +173.85 -38.65 +173.95 -38.65 +174.05 -38.65 +174.15 -38.65 +174.25 -38.65 +174.35 -38.65 +174.45 -38.65 +174.55 -38.65 +174.65 -38.65 +174.75 -38.65 +174.85 -38.65 +174.95 -38.65 +175.05 -38.65 +175.15 -38.65 +175.25 -38.65 +175.35 -38.65 +175.45 -38.65 +175.55 -38.65 +175.65 -38.65 +175.75 -38.65 +175.85 -38.65 +175.95 -38.65 +176.05 -38.65 +176.15 -38.65 +176.25 -38.65 +176.35 -38.65 +176.45 -38.65 +176.55 -38.65 +176.65 -38.65 +176.75 -38.65 +176.85 -38.65 +176.95 -38.65 +177.05 -38.65 +177.15 -38.65 +177.25 -38.65 +177.35 -38.65 +177.45 -38.65 +177.55 -38.65 +177.65 -38.65 +177.75 -38.65 +177.85 -38.65 +177.95 -38.65 +178.05 -38.65 +178.15 -38.65 +178.25 -38.65 +178.35 -38.65 +178.45 -38.65 +178.55 -38.65 +178.65 -38.65 +178.75 -38.65 +178.85 -38.65 +178.95 -38.65 +179.05 -38.65 +179.15 -38.65 +179.25 -38.65 +179.35 -38.65 +179.45 -38.65 +179.55 -38.65 +172.65 -38.75 +172.75 -38.75 +172.85 -38.75 +172.95 -38.75 +173.05 -38.75 +173.15 -38.75 +173.25 -38.75 +173.35 -38.75 +173.45 -38.75 +173.55 -38.75 +173.65 -38.75 +173.75 -38.75 +173.85 -38.75 +173.95 -38.75 +174.05 -38.75 +174.15 -38.75 +174.25 -38.75 +174.35 -38.75 +174.45 -38.75 +174.55 -38.75 +174.65 -38.75 +174.75 -38.75 +174.85 -38.75 +174.95 -38.75 +175.05 -38.75 +175.15 -38.75 +175.25 -38.75 +175.35 -38.75 +175.45 -38.75 +175.55 -38.75 +175.65 -38.75 +175.75 -38.75 +175.85 -38.75 +175.95 -38.75 +176.05 -38.75 +176.15 -38.75 +176.25 -38.75 +176.35 -38.75 +176.45 -38.75 +176.55 -38.75 +176.65 -38.75 +176.75 -38.75 +176.85 -38.75 +176.95 -38.75 +177.05 -38.75 +177.15 -38.75 +177.25 -38.75 +177.35 -38.75 +177.45 -38.75 +177.55 -38.75 +177.65 -38.75 +177.75 -38.75 +177.85 -38.75 +177.95 -38.75 +178.05 -38.75 +178.15 -38.75 +178.25 -38.75 +178.35 -38.75 +178.45 -38.75 +178.55 -38.75 +178.65 -38.75 +178.75 -38.75 +178.85 -38.75 +178.95 -38.75 +179.05 -38.75 +179.15 -38.75 +179.25 -38.75 +179.35 -38.75 +179.45 -38.75 +179.55 -38.75 +172.55 -38.85 +172.65 -38.85 +172.75 -38.85 +172.85 -38.85 +172.95 -38.85 +173.05 -38.85 +173.15 -38.85 +173.25 -38.85 +173.35 -38.85 +173.45 -38.85 +173.55 -38.85 +173.65 -38.85 +173.75 -38.85 +173.85 -38.85 +173.95 -38.85 +174.05 -38.85 +174.15 -38.85 +174.25 -38.85 +174.35 -38.85 +174.45 -38.85 +174.55 -38.85 +174.65 -38.85 +174.75 -38.85 +174.85 -38.85 +174.95 -38.85 +175.05 -38.85 +175.15 -38.85 +175.25 -38.85 +175.35 -38.85 +175.45 -38.85 +175.55 -38.85 +175.65 -38.85 +175.75 -38.85 +175.85 -38.85 +175.95 -38.85 +176.05 -38.85 +176.15 -38.85 +176.25 -38.85 +176.35 -38.85 +176.45 -38.85 +176.55 -38.85 +176.65 -38.85 +176.75 -38.85 +176.85 -38.85 +176.95 -38.85 +177.05 -38.85 +177.15 -38.85 +177.25 -38.85 +177.35 -38.85 +177.45 -38.85 +177.55 -38.85 +177.65 -38.85 +177.75 -38.85 +177.85 -38.85 +177.95 -38.85 +178.05 -38.85 +178.15 -38.85 +178.25 -38.85 +178.35 -38.85 +178.45 -38.85 +178.55 -38.85 +178.65 -38.85 +178.75 -38.85 +178.85 -38.85 +178.95 -38.85 +179.05 -38.85 +179.15 -38.85 +179.25 -38.85 +179.35 -38.85 +179.45 -38.85 +172.45 -38.95 +172.55 -38.95 +172.65 -38.95 +172.75 -38.95 +172.85 -38.95 +172.95 -38.95 +173.05 -38.95 +173.15 -38.95 +173.25 -38.95 +173.35 -38.95 +173.45 -38.95 +173.55 -38.95 +173.65 -38.95 +173.75 -38.95 +173.85 -38.95 +173.95 -38.95 +174.05 -38.95 +174.15 -38.95 +174.25 -38.95 +174.35 -38.95 +174.45 -38.95 +174.55 -38.95 +174.65 -38.95 +174.75 -38.95 +174.85 -38.95 +174.95 -38.95 +175.05 -38.95 +175.15 -38.95 +175.25 -38.95 +175.35 -38.95 +175.45 -38.95 +175.55 -38.95 +175.65 -38.95 +175.75 -38.95 +175.85 -38.95 +175.95 -38.95 +176.05 -38.95 +176.15 -38.95 +176.25 -38.95 +176.35 -38.95 +176.45 -38.95 +176.55 -38.95 +176.65 -38.95 +176.75 -38.95 +176.85 -38.95 +176.95 -38.95 +177.05 -38.95 +177.15 -38.95 +177.25 -38.95 +177.35 -38.95 +177.45 -38.95 +177.55 -38.95 +177.65 -38.95 +177.75 -38.95 +177.85 -38.95 +177.95 -38.95 +178.05 -38.95 +178.15 -38.95 +178.25 -38.95 +178.35 -38.95 +178.45 -38.95 +178.55 -38.95 +178.65 -38.95 +178.75 -38.95 +178.85 -38.95 +178.95 -38.95 +179.05 -38.95 +179.15 -38.95 +179.25 -38.95 +179.35 -38.95 +179.45 -38.95 +172.35 -39.05 +172.45 -39.05 +172.55 -39.05 +172.65 -39.05 +172.75 -39.05 +172.85 -39.05 +172.95 -39.05 +173.05 -39.05 +173.15 -39.05 +173.25 -39.05 +173.35 -39.05 +173.45 -39.05 +173.55 -39.05 +173.65 -39.05 +173.75 -39.05 +173.85 -39.05 +173.95 -39.05 +174.05 -39.05 +174.15 -39.05 +174.25 -39.05 +174.35 -39.05 +174.45 -39.05 +174.55 -39.05 +174.65 -39.05 +174.75 -39.05 +174.85 -39.05 +174.95 -39.05 +175.05 -39.05 +175.15 -39.05 +175.25 -39.05 +175.35 -39.05 +175.45 -39.05 +175.55 -39.05 +175.65 -39.05 +175.75 -39.05 +175.85 -39.05 +175.95 -39.05 +176.05 -39.05 +176.15 -39.05 +176.25 -39.05 +176.35 -39.05 +176.45 -39.05 +176.55 -39.05 +176.65 -39.05 +176.75 -39.05 +176.85 -39.05 +176.95 -39.05 +177.05 -39.05 +177.15 -39.05 +177.25 -39.05 +177.35 -39.05 +177.45 -39.05 +177.55 -39.05 +177.65 -39.05 +177.75 -39.05 +177.85 -39.05 +177.95 -39.05 +178.05 -39.05 +178.15 -39.05 +178.25 -39.05 +178.35 -39.05 +178.45 -39.05 +178.55 -39.05 +178.65 -39.05 +178.75 -39.05 +178.85 -39.05 +178.95 -39.05 +179.05 -39.05 +179.15 -39.05 +179.25 -39.05 +179.35 -39.05 +172.15 -39.15 +172.25 -39.15 +172.35 -39.15 +172.45 -39.15 +172.55 -39.15 +172.65 -39.15 +172.75 -39.15 +172.85 -39.15 +172.95 -39.15 +173.05 -39.15 +173.15 -39.15 +173.25 -39.15 +173.35 -39.15 +173.45 -39.15 +173.55 -39.15 +173.65 -39.15 +173.75 -39.15 +173.85 -39.15 +173.95 -39.15 +174.05 -39.15 +174.15 -39.15 +174.25 -39.15 +174.35 -39.15 +174.45 -39.15 +174.55 -39.15 +174.65 -39.15 +174.75 -39.15 +174.85 -39.15 +174.95 -39.15 +175.05 -39.15 +175.15 -39.15 +175.25 -39.15 +175.35 -39.15 +175.45 -39.15 +175.55 -39.15 +175.65 -39.15 +175.75 -39.15 +175.85 -39.15 +175.95 -39.15 +176.05 -39.15 +176.15 -39.15 +176.25 -39.15 +176.35 -39.15 +176.45 -39.15 +176.55 -39.15 +176.65 -39.15 +176.75 -39.15 +176.85 -39.15 +176.95 -39.15 +177.05 -39.15 +177.15 -39.15 +177.25 -39.15 +177.35 -39.15 +177.45 -39.15 +177.55 -39.15 +177.65 -39.15 +177.75 -39.15 +177.85 -39.15 +177.95 -39.15 +178.05 -39.15 +178.15 -39.15 +178.25 -39.15 +178.35 -39.15 +178.45 -39.15 +178.55 -39.15 +178.65 -39.15 +178.75 -39.15 +178.85 -39.15 +178.95 -39.15 +179.05 -39.15 +179.15 -39.15 +179.25 -39.15 +179.35 -39.15 +172.05 -39.25 +172.15 -39.25 +172.25 -39.25 +172.35 -39.25 +172.45 -39.25 +172.55 -39.25 +172.65 -39.25 +172.75 -39.25 +172.85 -39.25 +172.95 -39.25 +173.05 -39.25 +173.15 -39.25 +173.25 -39.25 +173.35 -39.25 +173.45 -39.25 +173.55 -39.25 +173.65 -39.25 +173.75 -39.25 +173.85 -39.25 +173.95 -39.25 +174.05 -39.25 +174.15 -39.25 +174.25 -39.25 +174.35 -39.25 +174.45 -39.25 +174.55 -39.25 +174.65 -39.25 +174.75 -39.25 +174.85 -39.25 +174.95 -39.25 +175.05 -39.25 +175.15 -39.25 +175.25 -39.25 +175.35 -39.25 +175.45 -39.25 +175.55 -39.25 +175.65 -39.25 +175.75 -39.25 +175.85 -39.25 +175.95 -39.25 +176.05 -39.25 +176.15 -39.25 +176.25 -39.25 +176.35 -39.25 +176.45 -39.25 +176.55 -39.25 +176.65 -39.25 +176.75 -39.25 +176.85 -39.25 +176.95 -39.25 +177.05 -39.25 +177.15 -39.25 +177.25 -39.25 +177.35 -39.25 +177.45 -39.25 +177.55 -39.25 +177.65 -39.25 +177.75 -39.25 +177.85 -39.25 +177.95 -39.25 +178.05 -39.25 +178.15 -39.25 +178.25 -39.25 +178.35 -39.25 +178.45 -39.25 +178.55 -39.25 +178.65 -39.25 +178.75 -39.25 +178.85 -39.25 +178.95 -39.25 +179.05 -39.25 +179.15 -39.25 +179.25 -39.25 +171.95 -39.35 +172.05 -39.35 +172.15 -39.35 +172.25 -39.35 +172.35 -39.35 +172.45 -39.35 +172.55 -39.35 +172.65 -39.35 +172.75 -39.35 +172.85 -39.35 +172.95 -39.35 +173.05 -39.35 +173.15 -39.35 +173.25 -39.35 +173.35 -39.35 +173.45 -39.35 +173.55 -39.35 +173.65 -39.35 +173.75 -39.35 +173.85 -39.35 +173.95 -39.35 +174.05 -39.35 +174.15 -39.35 +174.25 -39.35 +174.35 -39.35 +174.45 -39.35 +174.55 -39.35 +174.65 -39.35 +174.75 -39.35 +174.85 -39.35 +174.95 -39.35 +175.05 -39.35 +175.15 -39.35 +175.25 -39.35 +175.35 -39.35 +175.45 -39.35 +175.55 -39.35 +175.65 -39.35 +175.75 -39.35 +175.85 -39.35 +175.95 -39.35 +176.05 -39.35 +176.15 -39.35 +176.25 -39.35 +176.35 -39.35 +176.45 -39.35 +176.55 -39.35 +176.65 -39.35 +176.75 -39.35 +176.85 -39.35 +176.95 -39.35 +177.05 -39.35 +177.15 -39.35 +177.25 -39.35 +177.35 -39.35 +177.45 -39.35 +177.55 -39.35 +177.65 -39.35 +177.75 -39.35 +177.85 -39.35 +177.95 -39.35 +178.05 -39.35 +178.15 -39.35 +178.25 -39.35 +178.35 -39.35 +178.45 -39.35 +178.55 -39.35 +178.65 -39.35 +178.75 -39.35 +178.85 -39.35 +178.95 -39.35 +179.05 -39.35 +179.15 -39.35 +179.25 -39.35 +171.85 -39.45 +171.95 -39.45 +172.05 -39.45 +172.15 -39.45 +172.25 -39.45 +172.35 -39.45 +172.45 -39.45 +172.55 -39.45 +172.65 -39.45 +172.75 -39.45 +172.85 -39.45 +172.95 -39.45 +173.05 -39.45 +173.15 -39.45 +173.25 -39.45 +173.35 -39.45 +173.45 -39.45 +173.55 -39.45 +173.65 -39.45 +173.75 -39.45 +173.85 -39.45 +173.95 -39.45 +174.05 -39.45 +174.15 -39.45 +174.25 -39.45 +174.35 -39.45 +174.45 -39.45 +174.55 -39.45 +174.65 -39.45 +174.75 -39.45 +174.85 -39.45 +174.95 -39.45 +175.05 -39.45 +175.15 -39.45 +175.25 -39.45 +175.35 -39.45 +175.45 -39.45 +175.55 -39.45 +175.65 -39.45 +175.75 -39.45 +175.85 -39.45 +175.95 -39.45 +176.05 -39.45 +176.15 -39.45 +176.25 -39.45 +176.35 -39.45 +176.45 -39.45 +176.55 -39.45 +176.65 -39.45 +176.75 -39.45 +176.85 -39.45 +176.95 -39.45 +177.05 -39.45 +177.15 -39.45 +177.25 -39.45 +177.35 -39.45 +177.45 -39.45 +177.55 -39.45 +177.65 -39.45 +177.75 -39.45 +177.85 -39.45 +177.95 -39.45 +178.05 -39.45 +178.15 -39.45 +178.25 -39.45 +178.35 -39.45 +178.45 -39.45 +178.55 -39.45 +178.65 -39.45 +178.75 -39.45 +178.85 -39.45 +178.95 -39.45 +179.05 -39.45 +179.15 -39.45 +171.75 -39.55 +171.85 -39.55 +171.95 -39.55 +172.05 -39.55 +172.15 -39.55 +172.25 -39.55 +172.35 -39.55 +172.45 -39.55 +172.55 -39.55 +172.65 -39.55 +172.75 -39.55 +172.85 -39.55 +172.95 -39.55 +173.05 -39.55 +173.15 -39.55 +173.25 -39.55 +173.35 -39.55 +173.45 -39.55 +173.55 -39.55 +173.65 -39.55 +173.75 -39.55 +173.85 -39.55 +173.95 -39.55 +174.05 -39.55 +174.15 -39.55 +174.25 -39.55 +174.35 -39.55 +174.45 -39.55 +174.55 -39.55 +174.65 -39.55 +174.75 -39.55 +174.85 -39.55 +174.95 -39.55 +175.05 -39.55 +175.15 -39.55 +175.25 -39.55 +175.35 -39.55 +175.45 -39.55 +175.55 -39.55 +175.65 -39.55 +175.75 -39.55 +175.85 -39.55 +175.95 -39.55 +176.05 -39.55 +176.15 -39.55 +176.25 -39.55 +176.35 -39.55 +176.45 -39.55 +176.55 -39.55 +176.65 -39.55 +176.75 -39.55 +176.85 -39.55 +176.95 -39.55 +177.05 -39.55 +177.15 -39.55 +177.25 -39.55 +177.35 -39.55 +177.45 -39.55 +177.55 -39.55 +177.65 -39.55 +177.75 -39.55 +177.85 -39.55 +177.95 -39.55 +178.05 -39.55 +178.15 -39.55 +178.25 -39.55 +178.35 -39.55 +178.45 -39.55 +178.55 -39.55 +178.65 -39.55 +178.75 -39.55 +178.85 -39.55 +178.95 -39.55 +179.05 -39.55 +179.15 -39.55 +171.65 -39.65 +171.75 -39.65 +171.85 -39.65 +171.95 -39.65 +172.05 -39.65 +172.15 -39.65 +172.25 -39.65 +172.35 -39.65 +172.45 -39.65 +172.55 -39.65 +172.65 -39.65 +172.75 -39.65 +172.85 -39.65 +172.95 -39.65 +173.05 -39.65 +173.15 -39.65 +173.25 -39.65 +173.35 -39.65 +173.45 -39.65 +173.55 -39.65 +173.65 -39.65 +173.75 -39.65 +173.85 -39.65 +173.95 -39.65 +174.05 -39.65 +174.15 -39.65 +174.25 -39.65 +174.35 -39.65 +174.45 -39.65 +174.55 -39.65 +174.65 -39.65 +174.75 -39.65 +174.85 -39.65 +174.95 -39.65 +175.05 -39.65 +175.15 -39.65 +175.25 -39.65 +175.35 -39.65 +175.45 -39.65 +175.55 -39.65 +175.65 -39.65 +175.75 -39.65 +175.85 -39.65 +175.95 -39.65 +176.05 -39.65 +176.15 -39.65 +176.25 -39.65 +176.35 -39.65 +176.45 -39.65 +176.55 -39.65 +176.65 -39.65 +176.75 -39.65 +176.85 -39.65 +176.95 -39.65 +177.05 -39.65 +177.15 -39.65 +177.25 -39.65 +177.35 -39.65 +177.45 -39.65 +177.55 -39.65 +177.65 -39.65 +177.75 -39.65 +177.85 -39.65 +177.95 -39.65 +178.05 -39.65 +178.15 -39.65 +178.25 -39.65 +178.35 -39.65 +178.45 -39.65 +178.55 -39.65 +178.65 -39.65 +178.75 -39.65 +178.85 -39.65 +178.95 -39.65 +179.05 -39.65 +171.55 -39.75 +171.65 -39.75 +171.75 -39.75 +171.85 -39.75 +171.95 -39.75 +172.05 -39.75 +172.15 -39.75 +172.25 -39.75 +172.35 -39.75 +172.45 -39.75 +172.55 -39.75 +172.65 -39.75 +172.75 -39.75 +172.85 -39.75 +172.95 -39.75 +173.05 -39.75 +173.15 -39.75 +173.25 -39.75 +173.35 -39.75 +173.45 -39.75 +173.55 -39.75 +173.65 -39.75 +173.75 -39.75 +173.85 -39.75 +173.95 -39.75 +174.05 -39.75 +174.15 -39.75 +174.25 -39.75 +174.35 -39.75 +174.45 -39.75 +174.55 -39.75 +174.65 -39.75 +174.75 -39.75 +174.85 -39.75 +174.95 -39.75 +175.05 -39.75 +175.15 -39.75 +175.25 -39.75 +175.35 -39.75 +175.45 -39.75 +175.55 -39.75 +175.65 -39.75 +175.75 -39.75 +175.85 -39.75 +175.95 -39.75 +176.05 -39.75 +176.15 -39.75 +176.25 -39.75 +176.35 -39.75 +176.45 -39.75 +176.55 -39.75 +176.65 -39.75 +176.75 -39.75 +176.85 -39.75 +176.95 -39.75 +177.05 -39.75 +177.15 -39.75 +177.25 -39.75 +177.35 -39.75 +177.45 -39.75 +177.55 -39.75 +177.65 -39.75 +177.75 -39.75 +177.85 -39.75 +177.95 -39.75 +178.05 -39.75 +178.15 -39.75 +178.25 -39.75 +178.35 -39.75 +178.45 -39.75 +178.55 -39.75 +178.65 -39.75 +178.75 -39.75 +178.85 -39.75 +178.95 -39.75 +179.05 -39.75 +171.45 -39.85 +171.55 -39.85 +171.65 -39.85 +171.75 -39.85 +171.85 -39.85 +171.95 -39.85 +172.05 -39.85 +172.15 -39.85 +172.25 -39.85 +172.35 -39.85 +172.45 -39.85 +172.55 -39.85 +172.65 -39.85 +172.75 -39.85 +172.85 -39.85 +172.95 -39.85 +173.05 -39.85 +173.15 -39.85 +173.25 -39.85 +173.35 -39.85 +173.45 -39.85 +173.55 -39.85 +173.65 -39.85 +173.75 -39.85 +173.85 -39.85 +173.95 -39.85 +174.05 -39.85 +174.15 -39.85 +174.25 -39.85 +174.35 -39.85 +174.45 -39.85 +174.55 -39.85 +174.65 -39.85 +174.75 -39.85 +174.85 -39.85 +174.95 -39.85 +175.05 -39.85 +175.15 -39.85 +175.25 -39.85 +175.35 -39.85 +175.45 -39.85 +175.55 -39.85 +175.65 -39.85 +175.75 -39.85 +175.85 -39.85 +175.95 -39.85 +176.05 -39.85 +176.15 -39.85 +176.25 -39.85 +176.35 -39.85 +176.45 -39.85 +176.55 -39.85 +176.65 -39.85 +176.75 -39.85 +176.85 -39.85 +176.95 -39.85 +177.05 -39.85 +177.15 -39.85 +177.25 -39.85 +177.35 -39.85 +177.45 -39.85 +177.55 -39.85 +177.65 -39.85 +177.75 -39.85 +177.85 -39.85 +177.95 -39.85 +178.05 -39.85 +178.15 -39.85 +178.25 -39.85 +178.35 -39.85 +178.45 -39.85 +178.55 -39.85 +178.65 -39.85 +178.75 -39.85 +178.85 -39.85 +178.95 -39.85 +171.25 -39.95 +171.35 -39.95 +171.45 -39.95 +171.55 -39.95 +171.65 -39.95 +171.75 -39.95 +171.85 -39.95 +171.95 -39.95 +172.05 -39.95 +172.15 -39.95 +172.25 -39.95 +172.35 -39.95 +172.45 -39.95 +172.55 -39.95 +172.65 -39.95 +172.75 -39.95 +172.85 -39.95 +172.95 -39.95 +173.05 -39.95 +173.15 -39.95 +173.25 -39.95 +173.35 -39.95 +173.45 -39.95 +173.55 -39.95 +173.65 -39.95 +173.75 -39.95 +173.85 -39.95 +173.95 -39.95 +174.05 -39.95 +174.15 -39.95 +174.25 -39.95 +174.35 -39.95 +174.45 -39.95 +174.55 -39.95 +174.65 -39.95 +174.75 -39.95 +174.85 -39.95 +174.95 -39.95 +175.05 -39.95 +175.15 -39.95 +175.25 -39.95 +175.35 -39.95 +175.45 -39.95 +175.55 -39.95 +175.65 -39.95 +175.75 -39.95 +175.85 -39.95 +175.95 -39.95 +176.05 -39.95 +176.15 -39.95 +176.25 -39.95 +176.35 -39.95 +176.45 -39.95 +176.55 -39.95 +176.65 -39.95 +176.75 -39.95 +176.85 -39.95 +176.95 -39.95 +177.05 -39.95 +177.15 -39.95 +177.25 -39.95 +177.35 -39.95 +177.45 -39.95 +177.55 -39.95 +177.65 -39.95 +177.75 -39.95 +177.85 -39.95 +177.95 -39.95 +178.05 -39.95 +178.15 -39.95 +178.25 -39.95 +178.35 -39.95 +178.45 -39.95 +178.55 -39.95 +178.65 -39.95 +178.75 -39.95 +178.85 -39.95 +171.15 -40.05 +171.25 -40.05 +171.35 -40.05 +171.45 -40.05 +171.55 -40.05 +171.65 -40.05 +171.75 -40.05 +171.85 -40.05 +171.95 -40.05 +172.05 -40.05 +172.15 -40.05 +172.25 -40.05 +172.35 -40.05 +172.45 -40.05 +172.55 -40.05 +172.65 -40.05 +172.75 -40.05 +172.85 -40.05 +172.95 -40.05 +173.05 -40.05 +173.15 -40.05 +173.25 -40.05 +173.35 -40.05 +173.45 -40.05 +173.55 -40.05 +173.65 -40.05 +173.75 -40.05 +173.85 -40.05 +173.95 -40.05 +174.05 -40.05 +174.15 -40.05 +174.25 -40.05 +174.35 -40.05 +174.45 -40.05 +174.55 -40.05 +174.65 -40.05 +174.75 -40.05 +174.85 -40.05 +174.95 -40.05 +175.05 -40.05 +175.15 -40.05 +175.25 -40.05 +175.35 -40.05 +175.45 -40.05 +175.55 -40.05 +175.65 -40.05 +175.75 -40.05 +175.85 -40.05 +175.95 -40.05 +176.05 -40.05 +176.15 -40.05 +176.25 -40.05 +176.35 -40.05 +176.45 -40.05 +176.55 -40.05 +176.65 -40.05 +176.75 -40.05 +176.85 -40.05 +176.95 -40.05 +177.05 -40.05 +177.15 -40.05 +177.25 -40.05 +177.35 -40.05 +177.45 -40.05 +177.55 -40.05 +177.65 -40.05 +177.75 -40.05 +177.85 -40.05 +177.95 -40.05 +178.05 -40.05 +178.15 -40.05 +178.25 -40.05 +178.35 -40.05 +178.45 -40.05 +178.55 -40.05 +178.65 -40.05 +171.05 -40.15 +171.15 -40.15 +171.25 -40.15 +171.35 -40.15 +171.45 -40.15 +171.55 -40.15 +171.65 -40.15 +171.75 -40.15 +171.85 -40.15 +171.95 -40.15 +172.05 -40.15 +172.15 -40.15 +172.25 -40.15 +172.35 -40.15 +172.45 -40.15 +172.55 -40.15 +172.65 -40.15 +172.75 -40.15 +172.85 -40.15 +172.95 -40.15 +173.05 -40.15 +173.15 -40.15 +173.25 -40.15 +173.35 -40.15 +173.45 -40.15 +173.55 -40.15 +173.65 -40.15 +173.75 -40.15 +173.85 -40.15 +173.95 -40.15 +174.05 -40.15 +174.15 -40.15 +174.25 -40.15 +174.35 -40.15 +174.45 -40.15 +174.55 -40.15 +174.65 -40.15 +174.75 -40.15 +174.85 -40.15 +174.95 -40.15 +175.05 -40.15 +175.15 -40.15 +175.25 -40.15 +175.35 -40.15 +175.45 -40.15 +175.55 -40.15 +175.65 -40.15 +175.75 -40.15 +175.85 -40.15 +175.95 -40.15 +176.05 -40.15 +176.15 -40.15 +176.25 -40.15 +176.35 -40.15 +176.45 -40.15 +176.55 -40.15 +176.65 -40.15 +176.75 -40.15 +176.85 -40.15 +176.95 -40.15 +177.05 -40.15 +177.15 -40.15 +177.25 -40.15 +177.35 -40.15 +177.45 -40.15 +177.55 -40.15 +177.65 -40.15 +177.75 -40.15 +177.85 -40.15 +177.95 -40.15 +178.05 -40.15 +178.15 -40.15 +178.25 -40.15 +178.35 -40.15 +178.45 -40.15 +170.95 -40.25 +171.05 -40.25 +171.15 -40.25 +171.25 -40.25 +171.35 -40.25 +171.45 -40.25 +171.55 -40.25 +171.65 -40.25 +171.75 -40.25 +171.85 -40.25 +171.95 -40.25 +172.05 -40.25 +172.15 -40.25 +172.25 -40.25 +172.35 -40.25 +172.45 -40.25 +172.55 -40.25 +172.65 -40.25 +172.75 -40.25 +172.85 -40.25 +172.95 -40.25 +173.05 -40.25 +173.15 -40.25 +173.25 -40.25 +173.35 -40.25 +173.45 -40.25 +173.55 -40.25 +173.65 -40.25 +173.75 -40.25 +173.85 -40.25 +173.95 -40.25 +174.05 -40.25 +174.15 -40.25 +174.25 -40.25 +174.35 -40.25 +174.45 -40.25 +174.55 -40.25 +174.65 -40.25 +174.75 -40.25 +174.85 -40.25 +174.95 -40.25 +175.05 -40.25 +175.15 -40.25 +175.25 -40.25 +175.35 -40.25 +175.45 -40.25 +175.55 -40.25 +175.65 -40.25 +175.75 -40.25 +175.85 -40.25 +175.95 -40.25 +176.05 -40.25 +176.15 -40.25 +176.25 -40.25 +176.35 -40.25 +176.45 -40.25 +176.55 -40.25 +176.65 -40.25 +176.75 -40.25 +176.85 -40.25 +176.95 -40.25 +177.05 -40.25 +177.15 -40.25 +177.25 -40.25 +177.35 -40.25 +177.45 -40.25 +177.55 -40.25 +177.65 -40.25 +177.75 -40.25 +177.85 -40.25 +177.95 -40.25 +178.05 -40.25 +178.15 -40.25 +170.85 -40.35 +170.95 -40.35 +171.05 -40.35 +171.15 -40.35 +171.25 -40.35 +171.35 -40.35 +171.45 -40.35 +171.55 -40.35 +171.65 -40.35 +171.75 -40.35 +171.85 -40.35 +171.95 -40.35 +172.05 -40.35 +172.15 -40.35 +172.25 -40.35 +172.35 -40.35 +172.45 -40.35 +172.55 -40.35 +172.65 -40.35 +172.75 -40.35 +172.85 -40.35 +172.95 -40.35 +173.05 -40.35 +173.15 -40.35 +173.25 -40.35 +173.35 -40.35 +173.45 -40.35 +173.55 -40.35 +173.65 -40.35 +173.75 -40.35 +173.85 -40.35 +173.95 -40.35 +174.05 -40.35 +174.15 -40.35 +174.25 -40.35 +174.35 -40.35 +174.45 -40.35 +174.55 -40.35 +174.65 -40.35 +174.75 -40.35 +174.85 -40.35 +174.95 -40.35 +175.05 -40.35 +175.15 -40.35 +175.25 -40.35 +175.35 -40.35 +175.45 -40.35 +175.55 -40.35 +175.65 -40.35 +175.75 -40.35 +175.85 -40.35 +175.95 -40.35 +176.05 -40.35 +176.15 -40.35 +176.25 -40.35 +176.35 -40.35 +176.45 -40.35 +176.55 -40.35 +176.65 -40.35 +176.75 -40.35 +176.85 -40.35 +176.95 -40.35 +177.05 -40.35 +177.15 -40.35 +177.25 -40.35 +177.35 -40.35 +177.45 -40.35 +177.55 -40.35 +177.65 -40.35 +177.75 -40.35 +177.85 -40.35 +177.95 -40.35 +178.05 -40.35 +178.15 -40.35 +170.75 -40.45 +170.85 -40.45 +170.95 -40.45 +171.05 -40.45 +171.15 -40.45 +171.25 -40.45 +171.35 -40.45 +171.45 -40.45 +171.55 -40.45 +171.65 -40.45 +171.75 -40.45 +171.85 -40.45 +171.95 -40.45 +172.05 -40.45 +172.15 -40.45 +172.25 -40.45 +172.35 -40.45 +172.45 -40.45 +172.55 -40.45 +172.65 -40.45 +172.75 -40.45 +172.85 -40.45 +172.95 -40.45 +173.05 -40.45 +173.15 -40.45 +173.25 -40.45 +173.35 -40.45 +173.45 -40.45 +173.55 -40.45 +173.65 -40.45 +173.75 -40.45 +173.85 -40.45 +173.95 -40.45 +174.05 -40.45 +174.15 -40.45 +174.25 -40.45 +174.35 -40.45 +174.45 -40.45 +174.55 -40.45 +174.65 -40.45 +174.75 -40.45 +174.85 -40.45 +174.95 -40.45 +175.05 -40.45 +175.15 -40.45 +175.25 -40.45 +175.35 -40.45 +175.45 -40.45 +175.55 -40.45 +175.65 -40.45 +175.75 -40.45 +175.85 -40.45 +175.95 -40.45 +176.05 -40.45 +176.15 -40.45 +176.25 -40.45 +176.35 -40.45 +176.45 -40.45 +176.55 -40.45 +176.65 -40.45 +176.75 -40.45 +176.85 -40.45 +176.95 -40.45 +177.05 -40.45 +177.15 -40.45 +177.25 -40.45 +177.35 -40.45 +177.45 -40.45 +177.55 -40.45 +177.65 -40.45 +177.75 -40.45 +177.85 -40.45 +177.95 -40.45 +178.05 -40.45 +170.65 -40.55 +170.75 -40.55 +170.85 -40.55 +170.95 -40.55 +171.05 -40.55 +171.15 -40.55 +171.25 -40.55 +171.35 -40.55 +171.45 -40.55 +171.55 -40.55 +171.65 -40.55 +171.75 -40.55 +171.85 -40.55 +171.95 -40.55 +172.05 -40.55 +172.15 -40.55 +172.25 -40.55 +172.35 -40.55 +172.45 -40.55 +172.55 -40.55 +172.65 -40.55 +172.75 -40.55 +172.85 -40.55 +172.95 -40.55 +173.05 -40.55 +173.15 -40.55 +173.25 -40.55 +173.35 -40.55 +173.45 -40.55 +173.55 -40.55 +173.65 -40.55 +173.75 -40.55 +173.85 -40.55 +173.95 -40.55 +174.05 -40.55 +174.15 -40.55 +174.25 -40.55 +174.35 -40.55 +174.45 -40.55 +174.55 -40.55 +174.65 -40.55 +174.75 -40.55 +174.85 -40.55 +174.95 -40.55 +175.05 -40.55 +175.15 -40.55 +175.25 -40.55 +175.35 -40.55 +175.45 -40.55 +175.55 -40.55 +175.65 -40.55 +175.75 -40.55 +175.85 -40.55 +175.95 -40.55 +176.05 -40.55 +176.15 -40.55 +176.25 -40.55 +176.35 -40.55 +176.45 -40.55 +176.55 -40.55 +176.65 -40.55 +176.75 -40.55 +176.85 -40.55 +176.95 -40.55 +177.05 -40.55 +177.15 -40.55 +177.25 -40.55 +177.35 -40.55 +177.45 -40.55 +177.55 -40.55 +177.65 -40.55 +177.75 -40.55 +177.85 -40.55 +177.95 -40.55 +170.55 -40.65 +170.65 -40.65 +170.75 -40.65 +170.85 -40.65 +170.95 -40.65 +171.05 -40.65 +171.15 -40.65 +171.25 -40.65 +171.35 -40.65 +171.45 -40.65 +171.55 -40.65 +171.65 -40.65 +171.75 -40.65 +171.85 -40.65 +171.95 -40.65 +172.05 -40.65 +172.15 -40.65 +172.25 -40.65 +172.35 -40.65 +172.45 -40.65 +172.55 -40.65 +172.65 -40.65 +172.75 -40.65 +172.85 -40.65 +172.95 -40.65 +173.05 -40.65 +173.15 -40.65 +173.25 -40.65 +173.35 -40.65 +173.45 -40.65 +173.55 -40.65 +173.65 -40.65 +173.75 -40.65 +173.85 -40.65 +173.95 -40.65 +174.05 -40.65 +174.15 -40.65 +174.25 -40.65 +174.35 -40.65 +174.45 -40.65 +174.55 -40.65 +174.65 -40.65 +174.75 -40.65 +174.85 -40.65 +174.95 -40.65 +175.05 -40.65 +175.15 -40.65 +175.25 -40.65 +175.35 -40.65 +175.45 -40.65 +175.55 -40.65 +175.65 -40.65 +175.75 -40.65 +175.85 -40.65 +175.95 -40.65 +176.05 -40.65 +176.15 -40.65 +176.25 -40.65 +176.35 -40.65 +176.45 -40.65 +176.55 -40.65 +176.65 -40.65 +176.75 -40.65 +176.85 -40.65 +176.95 -40.65 +177.05 -40.65 +177.15 -40.65 +177.25 -40.65 +177.35 -40.65 +177.45 -40.65 +177.55 -40.65 +177.65 -40.65 +177.75 -40.65 +177.85 -40.65 +177.95 -40.65 +170.35 -40.75 +170.45 -40.75 +170.55 -40.75 +170.65 -40.75 +170.75 -40.75 +170.85 -40.75 +170.95 -40.75 +171.05 -40.75 +171.15 -40.75 +171.25 -40.75 +171.35 -40.75 +171.45 -40.75 +171.55 -40.75 +171.65 -40.75 +171.75 -40.75 +171.85 -40.75 +171.95 -40.75 +172.05 -40.75 +172.15 -40.75 +172.25 -40.75 +172.35 -40.75 +172.45 -40.75 +172.55 -40.75 +172.65 -40.75 +172.75 -40.75 +172.85 -40.75 +172.95 -40.75 +173.05 -40.75 +173.15 -40.75 +173.25 -40.75 +173.35 -40.75 +173.45 -40.75 +173.55 -40.75 +173.65 -40.75 +173.75 -40.75 +173.85 -40.75 +173.95 -40.75 +174.05 -40.75 +174.15 -40.75 +174.25 -40.75 +174.35 -40.75 +174.45 -40.75 +174.55 -40.75 +174.65 -40.75 +174.75 -40.75 +174.85 -40.75 +174.95 -40.75 +175.05 -40.75 +175.15 -40.75 +175.25 -40.75 +175.35 -40.75 +175.45 -40.75 +175.55 -40.75 +175.65 -40.75 +175.75 -40.75 +175.85 -40.75 +175.95 -40.75 +176.05 -40.75 +176.15 -40.75 +176.25 -40.75 +176.35 -40.75 +176.45 -40.75 +176.55 -40.75 +176.65 -40.75 +176.75 -40.75 +176.85 -40.75 +176.95 -40.75 +177.05 -40.75 +177.15 -40.75 +177.25 -40.75 +177.35 -40.75 +177.45 -40.75 +177.55 -40.75 +177.65 -40.75 +177.75 -40.75 +177.85 -40.75 +170.25 -40.85 +170.35 -40.85 +170.45 -40.85 +170.55 -40.85 +170.65 -40.85 +170.75 -40.85 +170.85 -40.85 +170.95 -40.85 +171.05 -40.85 +171.15 -40.85 +171.25 -40.85 +171.35 -40.85 +171.45 -40.85 +171.55 -40.85 +171.65 -40.85 +171.75 -40.85 +171.85 -40.85 +171.95 -40.85 +172.05 -40.85 +172.15 -40.85 +172.25 -40.85 +172.35 -40.85 +172.45 -40.85 +172.55 -40.85 +172.65 -40.85 +172.75 -40.85 +172.85 -40.85 +172.95 -40.85 +173.05 -40.85 +173.15 -40.85 +173.25 -40.85 +173.35 -40.85 +173.45 -40.85 +173.55 -40.85 +173.65 -40.85 +173.75 -40.85 +173.85 -40.85 +173.95 -40.85 +174.05 -40.85 +174.15 -40.85 +174.25 -40.85 +174.35 -40.85 +174.45 -40.85 +174.55 -40.85 +174.65 -40.85 +174.75 -40.85 +174.85 -40.85 +174.95 -40.85 +175.05 -40.85 +175.15 -40.85 +175.25 -40.85 +175.35 -40.85 +175.45 -40.85 +175.55 -40.85 +175.65 -40.85 +175.75 -40.85 +175.85 -40.85 +175.95 -40.85 +176.05 -40.85 +176.15 -40.85 +176.25 -40.85 +176.35 -40.85 +176.45 -40.85 +176.55 -40.85 +176.65 -40.85 +176.75 -40.85 +176.85 -40.85 +176.95 -40.85 +177.05 -40.85 +177.15 -40.85 +177.25 -40.85 +177.35 -40.85 +177.45 -40.85 +177.55 -40.85 +177.65 -40.85 +177.75 -40.85 +177.85 -40.85 +170.15 -40.95 +170.25 -40.95 +170.35 -40.95 +170.45 -40.95 +170.55 -40.95 +170.65 -40.95 +170.75 -40.95 +170.85 -40.95 +170.95 -40.95 +171.05 -40.95 +171.15 -40.95 +171.25 -40.95 +171.35 -40.95 +171.45 -40.95 +171.55 -40.95 +171.65 -40.95 +171.75 -40.95 +171.85 -40.95 +171.95 -40.95 +172.05 -40.95 +172.15 -40.95 +172.25 -40.95 +172.35 -40.95 +172.45 -40.95 +172.55 -40.95 +172.65 -40.95 +172.75 -40.95 +172.85 -40.95 +172.95 -40.95 +173.05 -40.95 +173.15 -40.95 +173.25 -40.95 +173.35 -40.95 +173.45 -40.95 +173.55 -40.95 +173.65 -40.95 +173.75 -40.95 +173.85 -40.95 +173.95 -40.95 +174.05 -40.95 +174.15 -40.95 +174.25 -40.95 +174.35 -40.95 +174.45 -40.95 +174.55 -40.95 +174.65 -40.95 +174.75 -40.95 +174.85 -40.95 +174.95 -40.95 +175.05 -40.95 +175.15 -40.95 +175.25 -40.95 +175.35 -40.95 +175.45 -40.95 +175.55 -40.95 +175.65 -40.95 +175.75 -40.95 +175.85 -40.95 +175.95 -40.95 +176.05 -40.95 +176.15 -40.95 +176.25 -40.95 +176.35 -40.95 +176.45 -40.95 +176.55 -40.95 +176.65 -40.95 +176.75 -40.95 +176.85 -40.95 +176.95 -40.95 +177.05 -40.95 +177.15 -40.95 +177.25 -40.95 +177.35 -40.95 +177.45 -40.95 +177.55 -40.95 +177.65 -40.95 +177.75 -40.95 +170.05 -41.05 +170.15 -41.05 +170.25 -41.05 +170.35 -41.05 +170.45 -41.05 +170.55 -41.05 +170.65 -41.05 +170.75 -41.05 +170.85 -41.05 +170.95 -41.05 +171.05 -41.05 +171.15 -41.05 +171.25 -41.05 +171.35 -41.05 +171.45 -41.05 +171.55 -41.05 +171.65 -41.05 +171.75 -41.05 +171.85 -41.05 +171.95 -41.05 +172.05 -41.05 +172.15 -41.05 +172.25 -41.05 +172.35 -41.05 +172.45 -41.05 +172.55 -41.05 +172.65 -41.05 +172.75 -41.05 +172.85 -41.05 +172.95 -41.05 +173.05 -41.05 +173.15 -41.05 +173.25 -41.05 +173.35 -41.05 +173.45 -41.05 +173.55 -41.05 +173.65 -41.05 +173.75 -41.05 +173.85 -41.05 +173.95 -41.05 +174.05 -41.05 +174.15 -41.05 +174.25 -41.05 +174.35 -41.05 +174.45 -41.05 +174.55 -41.05 +174.65 -41.05 +174.75 -41.05 +174.85 -41.05 +174.95 -41.05 +175.05 -41.05 +175.15 -41.05 +175.25 -41.05 +175.35 -41.05 +175.45 -41.05 +175.55 -41.05 +175.65 -41.05 +175.75 -41.05 +175.85 -41.05 +175.95 -41.05 +176.05 -41.05 +176.15 -41.05 +176.25 -41.05 +176.35 -41.05 +176.45 -41.05 +176.55 -41.05 +176.65 -41.05 +176.75 -41.05 +176.85 -41.05 +176.95 -41.05 +177.05 -41.05 +177.15 -41.05 +177.25 -41.05 +177.35 -41.05 +177.45 -41.05 +177.55 -41.05 +177.65 -41.05 +169.95 -41.15 +170.05 -41.15 +170.15 -41.15 +170.25 -41.15 +170.35 -41.15 +170.45 -41.15 +170.55 -41.15 +170.65 -41.15 +170.75 -41.15 +170.85 -41.15 +170.95 -41.15 +171.05 -41.15 +171.15 -41.15 +171.25 -41.15 +171.35 -41.15 +171.45 -41.15 +171.55 -41.15 +171.65 -41.15 +171.75 -41.15 +171.85 -41.15 +171.95 -41.15 +172.05 -41.15 +172.15 -41.15 +172.25 -41.15 +172.35 -41.15 +172.45 -41.15 +172.55 -41.15 +172.65 -41.15 +172.75 -41.15 +172.85 -41.15 +172.95 -41.15 +173.05 -41.15 +173.15 -41.15 +173.25 -41.15 +173.35 -41.15 +173.45 -41.15 +173.55 -41.15 +173.65 -41.15 +173.75 -41.15 +173.85 -41.15 +173.95 -41.15 +174.05 -41.15 +174.15 -41.15 +174.25 -41.15 +174.35 -41.15 +174.45 -41.15 +174.55 -41.15 +174.65 -41.15 +174.75 -41.15 +174.85 -41.15 +174.95 -41.15 +175.05 -41.15 +175.15 -41.15 +175.25 -41.15 +175.35 -41.15 +175.45 -41.15 +175.55 -41.15 +175.65 -41.15 +175.75 -41.15 +175.85 -41.15 +175.95 -41.15 +176.05 -41.15 +176.15 -41.15 +176.25 -41.15 +176.35 -41.15 +176.45 -41.15 +176.55 -41.15 +176.65 -41.15 +176.75 -41.15 +176.85 -41.15 +176.95 -41.15 +177.05 -41.15 +177.15 -41.15 +177.25 -41.15 +177.35 -41.15 +177.45 -41.15 +177.55 -41.15 +169.85 -41.25 +169.95 -41.25 +170.05 -41.25 +170.15 -41.25 +170.25 -41.25 +170.35 -41.25 +170.45 -41.25 +170.55 -41.25 +170.65 -41.25 +170.75 -41.25 +170.85 -41.25 +170.95 -41.25 +171.05 -41.25 +171.15 -41.25 +171.25 -41.25 +171.35 -41.25 +171.45 -41.25 +171.55 -41.25 +171.65 -41.25 +171.75 -41.25 +171.85 -41.25 +171.95 -41.25 +172.05 -41.25 +172.15 -41.25 +172.25 -41.25 +172.35 -41.25 +172.45 -41.25 +172.55 -41.25 +172.65 -41.25 +172.75 -41.25 +172.85 -41.25 +172.95 -41.25 +173.05 -41.25 +173.15 -41.25 +173.25 -41.25 +173.35 -41.25 +173.45 -41.25 +173.55 -41.25 +173.65 -41.25 +173.75 -41.25 +173.85 -41.25 +173.95 -41.25 +174.05 -41.25 +174.15 -41.25 +174.25 -41.25 +174.35 -41.25 +174.45 -41.25 +174.55 -41.25 +174.65 -41.25 +174.75 -41.25 +174.85 -41.25 +174.95 -41.25 +175.05 -41.25 +175.15 -41.25 +175.25 -41.25 +175.35 -41.25 +175.45 -41.25 +175.55 -41.25 +175.65 -41.25 +175.75 -41.25 +175.85 -41.25 +175.95 -41.25 +176.05 -41.25 +176.15 -41.25 +176.25 -41.25 +176.35 -41.25 +176.45 -41.25 +176.55 -41.25 +176.65 -41.25 +176.75 -41.25 +176.85 -41.25 +176.95 -41.25 +177.05 -41.25 +177.15 -41.25 +177.25 -41.25 +177.35 -41.25 +177.45 -41.25 +177.55 -41.25 +169.75 -41.35 +169.85 -41.35 +169.95 -41.35 +170.05 -41.35 +170.15 -41.35 +170.25 -41.35 +170.35 -41.35 +170.45 -41.35 +170.55 -41.35 +170.65 -41.35 +170.75 -41.35 +170.85 -41.35 +170.95 -41.35 +171.05 -41.35 +171.15 -41.35 +171.25 -41.35 +171.35 -41.35 +171.45 -41.35 +171.55 -41.35 +171.65 -41.35 +171.75 -41.35 +171.85 -41.35 +171.95 -41.35 +172.05 -41.35 +172.15 -41.35 +172.25 -41.35 +172.35 -41.35 +172.45 -41.35 +172.55 -41.35 +172.65 -41.35 +172.75 -41.35 +172.85 -41.35 +172.95 -41.35 +173.05 -41.35 +173.15 -41.35 +173.25 -41.35 +173.35 -41.35 +173.45 -41.35 +173.55 -41.35 +173.65 -41.35 +173.75 -41.35 +173.85 -41.35 +173.95 -41.35 +174.05 -41.35 +174.15 -41.35 +174.25 -41.35 +174.35 -41.35 +174.45 -41.35 +174.55 -41.35 +174.65 -41.35 +174.75 -41.35 +174.85 -41.35 +174.95 -41.35 +175.05 -41.35 +175.15 -41.35 +175.25 -41.35 +175.35 -41.35 +175.45 -41.35 +175.55 -41.35 +175.65 -41.35 +175.75 -41.35 +175.85 -41.35 +175.95 -41.35 +176.05 -41.35 +176.15 -41.35 +176.25 -41.35 +176.35 -41.35 +176.45 -41.35 +176.55 -41.35 +176.65 -41.35 +176.75 -41.35 +176.85 -41.35 +176.95 -41.35 +177.05 -41.35 +177.15 -41.35 +177.25 -41.35 +177.35 -41.35 +177.45 -41.35 +169.65 -41.45 +169.75 -41.45 +169.85 -41.45 +169.95 -41.45 +170.05 -41.45 +170.15 -41.45 +170.25 -41.45 +170.35 -41.45 +170.45 -41.45 +170.55 -41.45 +170.65 -41.45 +170.75 -41.45 +170.85 -41.45 +170.95 -41.45 +171.05 -41.45 +171.15 -41.45 +171.25 -41.45 +171.35 -41.45 +171.45 -41.45 +171.55 -41.45 +171.65 -41.45 +171.75 -41.45 +171.85 -41.45 +171.95 -41.45 +172.05 -41.45 +172.15 -41.45 +172.25 -41.45 +172.35 -41.45 +172.45 -41.45 +172.55 -41.45 +172.65 -41.45 +172.75 -41.45 +172.85 -41.45 +172.95 -41.45 +173.05 -41.45 +173.15 -41.45 +173.25 -41.45 +173.35 -41.45 +173.45 -41.45 +173.55 -41.45 +173.65 -41.45 +173.75 -41.45 +173.85 -41.45 +173.95 -41.45 +174.05 -41.45 +174.15 -41.45 +174.25 -41.45 +174.35 -41.45 +174.45 -41.45 +174.55 -41.45 +174.65 -41.45 +174.75 -41.45 +174.85 -41.45 +174.95 -41.45 +175.05 -41.45 +175.15 -41.45 +175.25 -41.45 +175.35 -41.45 +175.45 -41.45 +175.55 -41.45 +175.65 -41.45 +175.75 -41.45 +175.85 -41.45 +175.95 -41.45 +176.05 -41.45 +176.15 -41.45 +176.25 -41.45 +176.35 -41.45 +176.45 -41.45 +176.55 -41.45 +176.65 -41.45 +176.75 -41.45 +176.85 -41.45 +176.95 -41.45 +177.05 -41.45 +177.15 -41.45 +177.25 -41.45 +177.35 -41.45 +169.45 -41.55 +169.55 -41.55 +169.65 -41.55 +169.75 -41.55 +169.85 -41.55 +169.95 -41.55 +170.05 -41.55 +170.15 -41.55 +170.25 -41.55 +170.35 -41.55 +170.45 -41.55 +170.55 -41.55 +170.65 -41.55 +170.75 -41.55 +170.85 -41.55 +170.95 -41.55 +171.05 -41.55 +171.15 -41.55 +171.25 -41.55 +171.35 -41.55 +171.45 -41.55 +171.55 -41.55 +171.65 -41.55 +171.75 -41.55 +171.85 -41.55 +171.95 -41.55 +172.05 -41.55 +172.15 -41.55 +172.25 -41.55 +172.35 -41.55 +172.45 -41.55 +172.55 -41.55 +172.65 -41.55 +172.75 -41.55 +172.85 -41.55 +172.95 -41.55 +173.05 -41.55 +173.15 -41.55 +173.25 -41.55 +173.35 -41.55 +173.45 -41.55 +173.55 -41.55 +173.65 -41.55 +173.75 -41.55 +173.85 -41.55 +173.95 -41.55 +174.05 -41.55 +174.15 -41.55 +174.25 -41.55 +174.35 -41.55 +174.45 -41.55 +174.55 -41.55 +174.65 -41.55 +174.75 -41.55 +174.85 -41.55 +174.95 -41.55 +175.05 -41.55 +175.15 -41.55 +175.25 -41.55 +175.35 -41.55 +175.45 -41.55 +175.55 -41.55 +175.65 -41.55 +175.75 -41.55 +175.85 -41.55 +175.95 -41.55 +176.05 -41.55 +176.15 -41.55 +176.25 -41.55 +176.35 -41.55 +176.45 -41.55 +176.55 -41.55 +176.65 -41.55 +176.75 -41.55 +176.85 -41.55 +176.95 -41.55 +177.05 -41.55 +177.15 -41.55 +177.25 -41.55 +177.35 -41.55 +169.35 -41.65 +169.45 -41.65 +169.55 -41.65 +169.65 -41.65 +169.75 -41.65 +169.85 -41.65 +169.95 -41.65 +170.05 -41.65 +170.15 -41.65 +170.25 -41.65 +170.35 -41.65 +170.45 -41.65 +170.55 -41.65 +170.65 -41.65 +170.75 -41.65 +170.85 -41.65 +170.95 -41.65 +171.05 -41.65 +171.15 -41.65 +171.25 -41.65 +171.35 -41.65 +171.45 -41.65 +171.55 -41.65 +171.65 -41.65 +171.75 -41.65 +171.85 -41.65 +171.95 -41.65 +172.05 -41.65 +172.15 -41.65 +172.25 -41.65 +172.35 -41.65 +172.45 -41.65 +172.55 -41.65 +172.65 -41.65 +172.75 -41.65 +172.85 -41.65 +172.95 -41.65 +173.05 -41.65 +173.15 -41.65 +173.25 -41.65 +173.35 -41.65 +173.45 -41.65 +173.55 -41.65 +173.65 -41.65 +173.75 -41.65 +173.85 -41.65 +173.95 -41.65 +174.05 -41.65 +174.15 -41.65 +174.25 -41.65 +174.35 -41.65 +174.45 -41.65 +174.55 -41.65 +174.65 -41.65 +174.75 -41.65 +174.85 -41.65 +174.95 -41.65 +175.05 -41.65 +175.15 -41.65 +175.25 -41.65 +175.35 -41.65 +175.45 -41.65 +175.55 -41.65 +175.65 -41.65 +175.75 -41.65 +175.85 -41.65 +175.95 -41.65 +176.05 -41.65 +176.15 -41.65 +176.25 -41.65 +176.35 -41.65 +176.45 -41.65 +176.55 -41.65 +176.65 -41.65 +176.75 -41.65 +176.85 -41.65 +176.95 -41.65 +177.05 -41.65 +177.15 -41.65 +177.25 -41.65 +169.25 -41.75 +169.35 -41.75 +169.45 -41.75 +169.55 -41.75 +169.65 -41.75 +169.75 -41.75 +169.85 -41.75 +169.95 -41.75 +170.05 -41.75 +170.15 -41.75 +170.25 -41.75 +170.35 -41.75 +170.45 -41.75 +170.55 -41.75 +170.65 -41.75 +170.75 -41.75 +170.85 -41.75 +170.95 -41.75 +171.05 -41.75 +171.15 -41.75 +171.25 -41.75 +171.35 -41.75 +171.45 -41.75 +171.55 -41.75 +171.65 -41.75 +171.75 -41.75 +171.85 -41.75 +171.95 -41.75 +172.05 -41.75 +172.15 -41.75 +172.25 -41.75 +172.35 -41.75 +172.45 -41.75 +172.55 -41.75 +172.65 -41.75 +172.75 -41.75 +172.85 -41.75 +172.95 -41.75 +173.05 -41.75 +173.15 -41.75 +173.25 -41.75 +173.35 -41.75 +173.45 -41.75 +173.55 -41.75 +173.65 -41.75 +173.75 -41.75 +173.85 -41.75 +173.95 -41.75 +174.05 -41.75 +174.15 -41.75 +174.25 -41.75 +174.35 -41.75 +174.45 -41.75 +174.55 -41.75 +174.65 -41.75 +174.75 -41.75 +174.85 -41.75 +174.95 -41.75 +175.05 -41.75 +175.15 -41.75 +175.25 -41.75 +175.35 -41.75 +175.45 -41.75 +175.55 -41.75 +175.65 -41.75 +175.75 -41.75 +175.85 -41.75 +175.95 -41.75 +176.05 -41.75 +176.15 -41.75 +176.25 -41.75 +176.35 -41.75 +176.45 -41.75 +176.55 -41.75 +176.65 -41.75 +176.75 -41.75 +176.85 -41.75 +176.95 -41.75 +177.05 -41.75 +177.15 -41.75 +169.15 -41.85 +169.25 -41.85 +169.35 -41.85 +169.45 -41.85 +169.55 -41.85 +169.65 -41.85 +169.75 -41.85 +169.85 -41.85 +169.95 -41.85 +170.05 -41.85 +170.15 -41.85 +170.25 -41.85 +170.35 -41.85 +170.45 -41.85 +170.55 -41.85 +170.65 -41.85 +170.75 -41.85 +170.85 -41.85 +170.95 -41.85 +171.05 -41.85 +171.15 -41.85 +171.25 -41.85 +171.35 -41.85 +171.45 -41.85 +171.55 -41.85 +171.65 -41.85 +171.75 -41.85 +171.85 -41.85 +171.95 -41.85 +172.05 -41.85 +172.15 -41.85 +172.25 -41.85 +172.35 -41.85 +172.45 -41.85 +172.55 -41.85 +172.65 -41.85 +172.75 -41.85 +172.85 -41.85 +172.95 -41.85 +173.05 -41.85 +173.15 -41.85 +173.25 -41.85 +173.35 -41.85 +173.45 -41.85 +173.55 -41.85 +173.65 -41.85 +173.75 -41.85 +173.85 -41.85 +173.95 -41.85 +174.05 -41.85 +174.15 -41.85 +174.25 -41.85 +174.35 -41.85 +174.45 -41.85 +174.55 -41.85 +174.65 -41.85 +174.75 -41.85 +174.85 -41.85 +174.95 -41.85 +175.05 -41.85 +175.15 -41.85 +175.25 -41.85 +175.35 -41.85 +175.45 -41.85 +175.55 -41.85 +175.65 -41.85 +175.75 -41.85 +175.85 -41.85 +175.95 -41.85 +176.05 -41.85 +176.15 -41.85 +176.25 -41.85 +176.35 -41.85 +176.45 -41.85 +176.55 -41.85 +176.65 -41.85 +176.75 -41.85 +176.85 -41.85 +176.95 -41.85 +177.05 -41.85 +169.05 -41.95 +169.15 -41.95 +169.25 -41.95 +169.35 -41.95 +169.45 -41.95 +169.55 -41.95 +169.65 -41.95 +169.75 -41.95 +169.85 -41.95 +169.95 -41.95 +170.05 -41.95 +170.15 -41.95 +170.25 -41.95 +170.35 -41.95 +170.45 -41.95 +170.55 -41.95 +170.65 -41.95 +170.75 -41.95 +170.85 -41.95 +170.95 -41.95 +171.05 -41.95 +171.15 -41.95 +171.25 -41.95 +171.35 -41.95 +171.45 -41.95 +171.55 -41.95 +171.65 -41.95 +171.75 -41.95 +171.85 -41.95 +171.95 -41.95 +172.05 -41.95 +172.15 -41.95 +172.25 -41.95 +172.35 -41.95 +172.45 -41.95 +172.55 -41.95 +172.65 -41.95 +172.75 -41.95 +172.85 -41.95 +172.95 -41.95 +173.05 -41.95 +173.15 -41.95 +173.25 -41.95 +173.35 -41.95 +173.45 -41.95 +173.55 -41.95 +173.65 -41.95 +173.75 -41.95 +173.85 -41.95 +173.95 -41.95 +174.05 -41.95 +174.15 -41.95 +174.25 -41.95 +174.35 -41.95 +174.45 -41.95 +174.55 -41.95 +174.65 -41.95 +174.75 -41.95 +174.85 -41.95 +174.95 -41.95 +175.05 -41.95 +175.15 -41.95 +175.25 -41.95 +175.35 -41.95 +175.45 -41.95 +175.55 -41.95 +175.65 -41.95 +175.75 -41.95 +175.85 -41.95 +175.95 -41.95 +176.05 -41.95 +176.15 -41.95 +176.25 -41.95 +176.35 -41.95 +176.45 -41.95 +176.55 -41.95 +176.65 -41.95 +176.75 -41.95 +176.85 -41.95 +176.95 -41.95 +168.95 -42.05 +169.05 -42.05 +169.15 -42.05 +169.25 -42.05 +169.35 -42.05 +169.45 -42.05 +169.55 -42.05 +169.65 -42.05 +169.75 -42.05 +169.85 -42.05 +169.95 -42.05 +170.05 -42.05 +170.15 -42.05 +170.25 -42.05 +170.35 -42.05 +170.45 -42.05 +170.55 -42.05 +170.65 -42.05 +170.75 -42.05 +170.85 -42.05 +170.95 -42.05 +171.05 -42.05 +171.15 -42.05 +171.25 -42.05 +171.35 -42.05 +171.45 -42.05 +171.55 -42.05 +171.65 -42.05 +171.75 -42.05 +171.85 -42.05 +171.95 -42.05 +172.05 -42.05 +172.15 -42.05 +172.25 -42.05 +172.35 -42.05 +172.45 -42.05 +172.55 -42.05 +172.65 -42.05 +172.75 -42.05 +172.85 -42.05 +172.95 -42.05 +173.05 -42.05 +173.15 -42.05 +173.25 -42.05 +173.35 -42.05 +173.45 -42.05 +173.55 -42.05 +173.65 -42.05 +173.75 -42.05 +173.85 -42.05 +173.95 -42.05 +174.05 -42.05 +174.15 -42.05 +174.25 -42.05 +174.35 -42.05 +174.45 -42.05 +174.55 -42.05 +174.65 -42.05 +174.75 -42.05 +174.85 -42.05 +174.95 -42.05 +175.05 -42.05 +175.15 -42.05 +175.25 -42.05 +175.35 -42.05 +175.45 -42.05 +175.55 -42.05 +175.65 -42.05 +175.75 -42.05 +175.85 -42.05 +175.95 -42.05 +176.05 -42.05 +176.15 -42.05 +176.25 -42.05 +176.35 -42.05 +176.45 -42.05 +176.55 -42.05 +176.65 -42.05 +176.75 -42.05 +168.85 -42.15 +168.95 -42.15 +169.05 -42.15 +169.15 -42.15 +169.25 -42.15 +169.35 -42.15 +169.45 -42.15 +169.55 -42.15 +169.65 -42.15 +169.75 -42.15 +169.85 -42.15 +169.95 -42.15 +170.05 -42.15 +170.15 -42.15 +170.25 -42.15 +170.35 -42.15 +170.45 -42.15 +170.55 -42.15 +170.65 -42.15 +170.75 -42.15 +170.85 -42.15 +170.95 -42.15 +171.05 -42.15 +171.15 -42.15 +171.25 -42.15 +171.35 -42.15 +171.45 -42.15 +171.55 -42.15 +171.65 -42.15 +171.75 -42.15 +171.85 -42.15 +171.95 -42.15 +172.05 -42.15 +172.15 -42.15 +172.25 -42.15 +172.35 -42.15 +172.45 -42.15 +172.55 -42.15 +172.65 -42.15 +172.75 -42.15 +172.85 -42.15 +172.95 -42.15 +173.05 -42.15 +173.15 -42.15 +173.25 -42.15 +173.35 -42.15 +173.45 -42.15 +173.55 -42.15 +173.65 -42.15 +173.75 -42.15 +173.85 -42.15 +173.95 -42.15 +174.05 -42.15 +174.15 -42.15 +174.25 -42.15 +174.35 -42.15 +174.45 -42.15 +174.55 -42.15 +174.65 -42.15 +174.75 -42.15 +174.85 -42.15 +174.95 -42.15 +175.05 -42.15 +175.15 -42.15 +175.25 -42.15 +175.35 -42.15 +175.45 -42.15 +175.55 -42.15 +175.65 -42.15 +175.75 -42.15 +175.85 -42.15 +175.95 -42.15 +176.05 -42.15 +176.15 -42.15 +176.25 -42.15 +176.35 -42.15 +176.45 -42.15 +176.55 -42.15 +168.65 -42.25 +168.75 -42.25 +168.85 -42.25 +168.95 -42.25 +169.05 -42.25 +169.15 -42.25 +169.25 -42.25 +169.35 -42.25 +169.45 -42.25 +169.55 -42.25 +169.65 -42.25 +169.75 -42.25 +169.85 -42.25 +169.95 -42.25 +170.05 -42.25 +170.15 -42.25 +170.25 -42.25 +170.35 -42.25 +170.45 -42.25 +170.55 -42.25 +170.65 -42.25 +170.75 -42.25 +170.85 -42.25 +170.95 -42.25 +171.05 -42.25 +171.15 -42.25 +171.25 -42.25 +171.35 -42.25 +171.45 -42.25 +171.55 -42.25 +171.65 -42.25 +171.75 -42.25 +171.85 -42.25 +171.95 -42.25 +172.05 -42.25 +172.15 -42.25 +172.25 -42.25 +172.35 -42.25 +172.45 -42.25 +172.55 -42.25 +172.65 -42.25 +172.75 -42.25 +172.85 -42.25 +172.95 -42.25 +173.05 -42.25 +173.15 -42.25 +173.25 -42.25 +173.35 -42.25 +173.45 -42.25 +173.55 -42.25 +173.65 -42.25 +173.75 -42.25 +173.85 -42.25 +173.95 -42.25 +174.05 -42.25 +174.15 -42.25 +174.25 -42.25 +174.35 -42.25 +174.45 -42.25 +174.55 -42.25 +174.65 -42.25 +174.75 -42.25 +174.85 -42.25 +174.95 -42.25 +175.05 -42.25 +175.15 -42.25 +175.25 -42.25 +175.35 -42.25 +175.45 -42.25 +175.55 -42.25 +175.65 -42.25 +175.75 -42.25 +175.85 -42.25 +175.95 -42.25 +176.05 -42.25 +176.15 -42.25 +176.25 -42.25 +176.35 -42.25 +168.55 -42.35 +168.65 -42.35 +168.75 -42.35 +168.85 -42.35 +168.95 -42.35 +169.05 -42.35 +169.15 -42.35 +169.25 -42.35 +169.35 -42.35 +169.45 -42.35 +169.55 -42.35 +169.65 -42.35 +169.75 -42.35 +169.85 -42.35 +169.95 -42.35 +170.05 -42.35 +170.15 -42.35 +170.25 -42.35 +170.35 -42.35 +170.45 -42.35 +170.55 -42.35 +170.65 -42.35 +170.75 -42.35 +170.85 -42.35 +170.95 -42.35 +171.05 -42.35 +171.15 -42.35 +171.25 -42.35 +171.35 -42.35 +171.45 -42.35 +171.55 -42.35 +171.65 -42.35 +171.75 -42.35 +171.85 -42.35 +171.95 -42.35 +172.05 -42.35 +172.15 -42.35 +172.25 -42.35 +172.35 -42.35 +172.45 -42.35 +172.55 -42.35 +172.65 -42.35 +172.75 -42.35 +172.85 -42.35 +172.95 -42.35 +173.05 -42.35 +173.15 -42.35 +173.25 -42.35 +173.35 -42.35 +173.45 -42.35 +173.55 -42.35 +173.65 -42.35 +173.75 -42.35 +173.85 -42.35 +173.95 -42.35 +174.05 -42.35 +174.15 -42.35 +174.25 -42.35 +174.35 -42.35 +174.45 -42.35 +174.55 -42.35 +174.65 -42.35 +174.75 -42.35 +174.85 -42.35 +174.95 -42.35 +175.05 -42.35 +175.15 -42.35 +175.25 -42.35 +175.35 -42.35 +175.45 -42.35 +175.55 -42.35 +175.65 -42.35 +175.75 -42.35 +175.85 -42.35 +175.95 -42.35 +176.05 -42.35 +176.15 -42.35 +168.45 -42.45 +168.55 -42.45 +168.65 -42.45 +168.75 -42.45 +168.85 -42.45 +168.95 -42.45 +169.05 -42.45 +169.15 -42.45 +169.25 -42.45 +169.35 -42.45 +169.45 -42.45 +169.55 -42.45 +169.65 -42.45 +169.75 -42.45 +169.85 -42.45 +169.95 -42.45 +170.05 -42.45 +170.15 -42.45 +170.25 -42.45 +170.35 -42.45 +170.45 -42.45 +170.55 -42.45 +170.65 -42.45 +170.75 -42.45 +170.85 -42.45 +170.95 -42.45 +171.05 -42.45 +171.15 -42.45 +171.25 -42.45 +171.35 -42.45 +171.45 -42.45 +171.55 -42.45 +171.65 -42.45 +171.75 -42.45 +171.85 -42.45 +171.95 -42.45 +172.05 -42.45 +172.15 -42.45 +172.25 -42.45 +172.35 -42.45 +172.45 -42.45 +172.55 -42.45 +172.65 -42.45 +172.75 -42.45 +172.85 -42.45 +172.95 -42.45 +173.05 -42.45 +173.15 -42.45 +173.25 -42.45 +173.35 -42.45 +173.45 -42.45 +173.55 -42.45 +173.65 -42.45 +173.75 -42.45 +173.85 -42.45 +173.95 -42.45 +174.05 -42.45 +174.15 -42.45 +174.25 -42.45 +174.35 -42.45 +174.45 -42.45 +174.55 -42.45 +174.65 -42.45 +174.75 -42.45 +174.85 -42.45 +174.95 -42.45 +175.05 -42.45 +175.15 -42.45 +175.25 -42.45 +175.35 -42.45 +175.45 -42.45 +175.55 -42.45 +175.65 -42.45 +175.75 -42.45 +175.85 -42.45 +175.95 -42.45 +168.35 -42.55 +168.45 -42.55 +168.55 -42.55 +168.65 -42.55 +168.75 -42.55 +168.85 -42.55 +168.95 -42.55 +169.05 -42.55 +169.15 -42.55 +169.25 -42.55 +169.35 -42.55 +169.45 -42.55 +169.55 -42.55 +169.65 -42.55 +169.75 -42.55 +169.85 -42.55 +169.95 -42.55 +170.05 -42.55 +170.15 -42.55 +170.25 -42.55 +170.35 -42.55 +170.45 -42.55 +170.55 -42.55 +170.65 -42.55 +170.75 -42.55 +170.85 -42.55 +170.95 -42.55 +171.05 -42.55 +171.15 -42.55 +171.25 -42.55 +171.35 -42.55 +171.45 -42.55 +171.55 -42.55 +171.65 -42.55 +171.75 -42.55 +171.85 -42.55 +171.95 -42.55 +172.05 -42.55 +172.15 -42.55 +172.25 -42.55 +172.35 -42.55 +172.45 -42.55 +172.55 -42.55 +172.65 -42.55 +172.75 -42.55 +172.85 -42.55 +172.95 -42.55 +173.05 -42.55 +173.15 -42.55 +173.25 -42.55 +173.35 -42.55 +173.45 -42.55 +173.55 -42.55 +173.65 -42.55 +173.75 -42.55 +173.85 -42.55 +173.95 -42.55 +174.05 -42.55 +174.15 -42.55 +174.25 -42.55 +174.35 -42.55 +174.45 -42.55 +174.55 -42.55 +174.65 -42.55 +174.75 -42.55 +174.85 -42.55 +174.95 -42.55 +175.05 -42.55 +175.15 -42.55 +175.25 -42.55 +175.35 -42.55 +175.45 -42.55 +175.55 -42.55 +175.65 -42.55 +168.25 -42.65 +168.35 -42.65 +168.45 -42.65 +168.55 -42.65 +168.65 -42.65 +168.75 -42.65 +168.85 -42.65 +168.95 -42.65 +169.05 -42.65 +169.15 -42.65 +169.25 -42.65 +169.35 -42.65 +169.45 -42.65 +169.55 -42.65 +169.65 -42.65 +169.75 -42.65 +169.85 -42.65 +169.95 -42.65 +170.05 -42.65 +170.15 -42.65 +170.25 -42.65 +170.35 -42.65 +170.45 -42.65 +170.55 -42.65 +170.65 -42.65 +170.75 -42.65 +170.85 -42.65 +170.95 -42.65 +171.05 -42.65 +171.15 -42.65 +171.25 -42.65 +171.35 -42.65 +171.45 -42.65 +171.55 -42.65 +171.65 -42.65 +171.75 -42.65 +171.85 -42.65 +171.95 -42.65 +172.05 -42.65 +172.15 -42.65 +172.25 -42.65 +172.35 -42.65 +172.45 -42.65 +172.55 -42.65 +172.65 -42.65 +172.75 -42.65 +172.85 -42.65 +172.95 -42.65 +173.05 -42.65 +173.15 -42.65 +173.25 -42.65 +173.35 -42.65 +173.45 -42.65 +173.55 -42.65 +173.65 -42.65 +173.75 -42.65 +173.85 -42.65 +173.95 -42.65 +174.05 -42.65 +174.15 -42.65 +174.25 -42.65 +174.35 -42.65 +174.45 -42.65 +174.55 -42.65 +174.65 -42.65 +174.75 -42.65 +174.85 -42.65 +174.95 -42.65 +175.05 -42.65 +175.15 -42.65 +168.15 -42.75 +168.25 -42.75 +168.35 -42.75 +168.45 -42.75 +168.55 -42.75 +168.65 -42.75 +168.75 -42.75 +168.85 -42.75 +168.95 -42.75 +169.05 -42.75 +169.15 -42.75 +169.25 -42.75 +169.35 -42.75 +169.45 -42.75 +169.55 -42.75 +169.65 -42.75 +169.75 -42.75 +169.85 -42.75 +169.95 -42.75 +170.05 -42.75 +170.15 -42.75 +170.25 -42.75 +170.35 -42.75 +170.45 -42.75 +170.55 -42.75 +170.65 -42.75 +170.75 -42.75 +170.85 -42.75 +170.95 -42.75 +171.05 -42.75 +171.15 -42.75 +171.25 -42.75 +171.35 -42.75 +171.45 -42.75 +171.55 -42.75 +171.65 -42.75 +171.75 -42.75 +171.85 -42.75 +171.95 -42.75 +172.05 -42.75 +172.15 -42.75 +172.25 -42.75 +172.35 -42.75 +172.45 -42.75 +172.55 -42.75 +172.65 -42.75 +172.75 -42.75 +172.85 -42.75 +172.95 -42.75 +173.05 -42.75 +173.15 -42.75 +173.25 -42.75 +173.35 -42.75 +173.45 -42.75 +173.55 -42.75 +173.65 -42.75 +173.75 -42.75 +173.85 -42.75 +173.95 -42.75 +174.05 -42.75 +174.15 -42.75 +174.25 -42.75 +174.35 -42.75 +174.45 -42.75 +174.55 -42.75 +174.65 -42.75 +174.75 -42.75 +174.85 -42.75 +174.95 -42.75 +175.05 -42.75 +167.95 -42.85 +168.05 -42.85 +168.15 -42.85 +168.25 -42.85 +168.35 -42.85 +168.45 -42.85 +168.55 -42.85 +168.65 -42.85 +168.75 -42.85 +168.85 -42.85 +168.95 -42.85 +169.05 -42.85 +169.15 -42.85 +169.25 -42.85 +169.35 -42.85 +169.45 -42.85 +169.55 -42.85 +169.65 -42.85 +169.75 -42.85 +169.85 -42.85 +169.95 -42.85 +170.05 -42.85 +170.15 -42.85 +170.25 -42.85 +170.35 -42.85 +170.45 -42.85 +170.55 -42.85 +170.65 -42.85 +170.75 -42.85 +170.85 -42.85 +170.95 -42.85 +171.05 -42.85 +171.15 -42.85 +171.25 -42.85 +171.35 -42.85 +171.45 -42.85 +171.55 -42.85 +171.65 -42.85 +171.75 -42.85 +171.85 -42.85 +171.95 -42.85 +172.05 -42.85 +172.15 -42.85 +172.25 -42.85 +172.35 -42.85 +172.45 -42.85 +172.55 -42.85 +172.65 -42.85 +172.75 -42.85 +172.85 -42.85 +172.95 -42.85 +173.05 -42.85 +173.15 -42.85 +173.25 -42.85 +173.35 -42.85 +173.45 -42.85 +173.55 -42.85 +173.65 -42.85 +173.75 -42.85 +173.85 -42.85 +173.95 -42.85 +174.05 -42.85 +174.15 -42.85 +174.25 -42.85 +174.35 -42.85 +174.45 -42.85 +174.55 -42.85 +174.65 -42.85 +174.75 -42.85 +174.85 -42.85 +174.95 -42.85 +167.85 -42.95 +167.95 -42.95 +168.05 -42.95 +168.15 -42.95 +168.25 -42.95 +168.35 -42.95 +168.45 -42.95 +168.55 -42.95 +168.65 -42.95 +168.75 -42.95 +168.85 -42.95 +168.95 -42.95 +169.05 -42.95 +169.15 -42.95 +169.25 -42.95 +169.35 -42.95 +169.45 -42.95 +169.55 -42.95 +169.65 -42.95 +169.75 -42.95 +169.85 -42.95 +169.95 -42.95 +170.05 -42.95 +170.15 -42.95 +170.25 -42.95 +170.35 -42.95 +170.45 -42.95 +170.55 -42.95 +170.65 -42.95 +170.75 -42.95 +170.85 -42.95 +170.95 -42.95 +171.05 -42.95 +171.15 -42.95 +171.25 -42.95 +171.35 -42.95 +171.45 -42.95 +171.55 -42.95 +171.65 -42.95 +171.75 -42.95 +171.85 -42.95 +171.95 -42.95 +172.05 -42.95 +172.15 -42.95 +172.25 -42.95 +172.35 -42.95 +172.45 -42.95 +172.55 -42.95 +172.65 -42.95 +172.75 -42.95 +172.85 -42.95 +172.95 -42.95 +173.05 -42.95 +173.15 -42.95 +173.25 -42.95 +173.35 -42.95 +173.45 -42.95 +173.55 -42.95 +173.65 -42.95 +173.75 -42.95 +173.85 -42.95 +173.95 -42.95 +174.05 -42.95 +174.15 -42.95 +174.25 -42.95 +174.35 -42.95 +174.45 -42.95 +174.55 -42.95 +174.65 -42.95 +174.75 -42.95 +174.85 -42.95 +167.75 -43.05 +167.85 -43.05 +167.95 -43.05 +168.05 -43.05 +168.15 -43.05 +168.25 -43.05 +168.35 -43.05 +168.45 -43.05 +168.55 -43.05 +168.65 -43.05 +168.75 -43.05 +168.85 -43.05 +168.95 -43.05 +169.05 -43.05 +169.15 -43.05 +169.25 -43.05 +169.35 -43.05 +169.45 -43.05 +169.55 -43.05 +169.65 -43.05 +169.75 -43.05 +169.85 -43.05 +169.95 -43.05 +170.05 -43.05 +170.15 -43.05 +170.25 -43.05 +170.35 -43.05 +170.45 -43.05 +170.55 -43.05 +170.65 -43.05 +170.75 -43.05 +170.85 -43.05 +170.95 -43.05 +171.05 -43.05 +171.15 -43.05 +171.25 -43.05 +171.35 -43.05 +171.45 -43.05 +171.55 -43.05 +171.65 -43.05 +171.75 -43.05 +171.85 -43.05 +171.95 -43.05 +172.05 -43.05 +172.15 -43.05 +172.25 -43.05 +172.35 -43.05 +172.45 -43.05 +172.55 -43.05 +172.65 -43.05 +172.75 -43.05 +172.85 -43.05 +172.95 -43.05 +173.05 -43.05 +173.15 -43.05 +173.25 -43.05 +173.35 -43.05 +173.45 -43.05 +173.55 -43.05 +173.65 -43.05 +173.75 -43.05 +173.85 -43.05 +173.95 -43.05 +174.05 -43.05 +174.15 -43.05 +174.25 -43.05 +174.35 -43.05 +174.45 -43.05 +174.55 -43.05 +174.65 -43.05 +174.75 -43.05 +167.65 -43.15 +167.75 -43.15 +167.85 -43.15 +167.95 -43.15 +168.05 -43.15 +168.15 -43.15 +168.25 -43.15 +168.35 -43.15 +168.45 -43.15 +168.55 -43.15 +168.65 -43.15 +168.75 -43.15 +168.85 -43.15 +168.95 -43.15 +169.05 -43.15 +169.15 -43.15 +169.25 -43.15 +169.35 -43.15 +169.45 -43.15 +169.55 -43.15 +169.65 -43.15 +169.75 -43.15 +169.85 -43.15 +169.95 -43.15 +170.05 -43.15 +170.15 -43.15 +170.25 -43.15 +170.35 -43.15 +170.45 -43.15 +170.55 -43.15 +170.65 -43.15 +170.75 -43.15 +170.85 -43.15 +170.95 -43.15 +171.05 -43.15 +171.15 -43.15 +171.25 -43.15 +171.35 -43.15 +171.45 -43.15 +171.55 -43.15 +171.65 -43.15 +171.75 -43.15 +171.85 -43.15 +171.95 -43.15 +172.05 -43.15 +172.15 -43.15 +172.25 -43.15 +172.35 -43.15 +172.45 -43.15 +172.55 -43.15 +172.65 -43.15 +172.75 -43.15 +172.85 -43.15 +172.95 -43.15 +173.05 -43.15 +173.15 -43.15 +173.25 -43.15 +173.35 -43.15 +173.45 -43.15 +173.55 -43.15 +173.65 -43.15 +173.75 -43.15 +173.85 -43.15 +173.95 -43.15 +174.05 -43.15 +174.15 -43.15 +174.25 -43.15 +174.35 -43.15 +174.45 -43.15 +174.55 -43.15 +174.65 -43.15 +167.55 -43.25 +167.65 -43.25 +167.75 -43.25 +167.85 -43.25 +167.95 -43.25 +168.05 -43.25 +168.15 -43.25 +168.25 -43.25 +168.35 -43.25 +168.45 -43.25 +168.55 -43.25 +168.65 -43.25 +168.75 -43.25 +168.85 -43.25 +168.95 -43.25 +169.05 -43.25 +169.15 -43.25 +169.25 -43.25 +169.35 -43.25 +169.45 -43.25 +169.55 -43.25 +169.65 -43.25 +169.75 -43.25 +169.85 -43.25 +169.95 -43.25 +170.05 -43.25 +170.15 -43.25 +170.25 -43.25 +170.35 -43.25 +170.45 -43.25 +170.55 -43.25 +170.65 -43.25 +170.75 -43.25 +170.85 -43.25 +170.95 -43.25 +171.05 -43.25 +171.15 -43.25 +171.25 -43.25 +171.35 -43.25 +171.45 -43.25 +171.55 -43.25 +171.65 -43.25 +171.75 -43.25 +171.85 -43.25 +171.95 -43.25 +172.05 -43.25 +172.15 -43.25 +172.25 -43.25 +172.35 -43.25 +172.45 -43.25 +172.55 -43.25 +172.65 -43.25 +172.75 -43.25 +172.85 -43.25 +172.95 -43.25 +173.05 -43.25 +173.15 -43.25 +173.25 -43.25 +173.35 -43.25 +173.45 -43.25 +173.55 -43.25 +173.65 -43.25 +173.75 -43.25 +173.85 -43.25 +173.95 -43.25 +174.05 -43.25 +174.15 -43.25 +174.25 -43.25 +174.35 -43.25 +174.45 -43.25 +174.55 -43.25 +174.65 -43.25 +167.45 -43.35 +167.55 -43.35 +167.65 -43.35 +167.75 -43.35 +167.85 -43.35 +167.95 -43.35 +168.05 -43.35 +168.15 -43.35 +168.25 -43.35 +168.35 -43.35 +168.45 -43.35 +168.55 -43.35 +168.65 -43.35 +168.75 -43.35 +168.85 -43.35 +168.95 -43.35 +169.05 -43.35 +169.15 -43.35 +169.25 -43.35 +169.35 -43.35 +169.45 -43.35 +169.55 -43.35 +169.65 -43.35 +169.75 -43.35 +169.85 -43.35 +169.95 -43.35 +170.05 -43.35 +170.15 -43.35 +170.25 -43.35 +170.35 -43.35 +170.45 -43.35 +170.55 -43.35 +170.65 -43.35 +170.75 -43.35 +170.85 -43.35 +170.95 -43.35 +171.05 -43.35 +171.15 -43.35 +171.25 -43.35 +171.35 -43.35 +171.45 -43.35 +171.55 -43.35 +171.65 -43.35 +171.75 -43.35 +171.85 -43.35 +171.95 -43.35 +172.05 -43.35 +172.15 -43.35 +172.25 -43.35 +172.35 -43.35 +172.45 -43.35 +172.55 -43.35 +172.65 -43.35 +172.75 -43.35 +172.85 -43.35 +172.95 -43.35 +173.05 -43.35 +173.15 -43.35 +173.25 -43.35 +173.35 -43.35 +173.45 -43.35 +173.55 -43.35 +173.65 -43.35 +173.75 -43.35 +173.85 -43.35 +173.95 -43.35 +174.05 -43.35 +174.15 -43.35 +174.25 -43.35 +174.35 -43.35 +174.45 -43.35 +174.55 -43.35 +167.35 -43.45 +167.45 -43.45 +167.55 -43.45 +167.65 -43.45 +167.75 -43.45 +167.85 -43.45 +167.95 -43.45 +168.05 -43.45 +168.15 -43.45 +168.25 -43.45 +168.35 -43.45 +168.45 -43.45 +168.55 -43.45 +168.65 -43.45 +168.75 -43.45 +168.85 -43.45 +168.95 -43.45 +169.05 -43.45 +169.15 -43.45 +169.25 -43.45 +169.35 -43.45 +169.45 -43.45 +169.55 -43.45 +169.65 -43.45 +169.75 -43.45 +169.85 -43.45 +169.95 -43.45 +170.05 -43.45 +170.15 -43.45 +170.25 -43.45 +170.35 -43.45 +170.45 -43.45 +170.55 -43.45 +170.65 -43.45 +170.75 -43.45 +170.85 -43.45 +170.95 -43.45 +171.05 -43.45 +171.15 -43.45 +171.25 -43.45 +171.35 -43.45 +171.45 -43.45 +171.55 -43.45 +171.65 -43.45 +171.75 -43.45 +171.85 -43.45 +171.95 -43.45 +172.05 -43.45 +172.15 -43.45 +172.25 -43.45 +172.35 -43.45 +172.45 -43.45 +172.55 -43.45 +172.65 -43.45 +172.75 -43.45 +172.85 -43.45 +172.95 -43.45 +173.05 -43.45 +173.15 -43.45 +173.25 -43.45 +173.35 -43.45 +173.45 -43.45 +173.55 -43.45 +173.65 -43.45 +173.75 -43.45 +173.85 -43.45 +173.95 -43.45 +174.05 -43.45 +174.15 -43.45 +174.25 -43.45 +174.35 -43.45 +174.45 -43.45 +167.15 -43.55 +167.25 -43.55 +167.35 -43.55 +167.45 -43.55 +167.55 -43.55 +167.65 -43.55 +167.75 -43.55 +167.85 -43.55 +167.95 -43.55 +168.05 -43.55 +168.15 -43.55 +168.25 -43.55 +168.35 -43.55 +168.45 -43.55 +168.55 -43.55 +168.65 -43.55 +168.75 -43.55 +168.85 -43.55 +168.95 -43.55 +169.05 -43.55 +169.15 -43.55 +169.25 -43.55 +169.35 -43.55 +169.45 -43.55 +169.55 -43.55 +169.65 -43.55 +169.75 -43.55 +169.85 -43.55 +169.95 -43.55 +170.05 -43.55 +170.15 -43.55 +170.25 -43.55 +170.35 -43.55 +170.45 -43.55 +170.55 -43.55 +170.65 -43.55 +170.75 -43.55 +170.85 -43.55 +170.95 -43.55 +171.05 -43.55 +171.15 -43.55 +171.25 -43.55 +171.35 -43.55 +171.45 -43.55 +171.55 -43.55 +171.65 -43.55 +171.75 -43.55 +171.85 -43.55 +171.95 -43.55 +172.05 -43.55 +172.15 -43.55 +172.25 -43.55 +172.35 -43.55 +172.45 -43.55 +172.55 -43.55 +172.65 -43.55 +172.75 -43.55 +172.85 -43.55 +172.95 -43.55 +173.05 -43.55 +173.15 -43.55 +173.25 -43.55 +173.35 -43.55 +173.45 -43.55 +173.55 -43.55 +173.65 -43.55 +173.75 -43.55 +173.85 -43.55 +173.95 -43.55 +174.05 -43.55 +174.15 -43.55 +174.25 -43.55 +174.35 -43.55 +174.45 -43.55 +167.05 -43.65 +167.15 -43.65 +167.25 -43.65 +167.35 -43.65 +167.45 -43.65 +167.55 -43.65 +167.65 -43.65 +167.75 -43.65 +167.85 -43.65 +167.95 -43.65 +168.05 -43.65 +168.15 -43.65 +168.25 -43.65 +168.35 -43.65 +168.45 -43.65 +168.55 -43.65 +168.65 -43.65 +168.75 -43.65 +168.85 -43.65 +168.95 -43.65 +169.05 -43.65 +169.15 -43.65 +169.25 -43.65 +169.35 -43.65 +169.45 -43.65 +169.55 -43.65 +169.65 -43.65 +169.75 -43.65 +169.85 -43.65 +169.95 -43.65 +170.05 -43.65 +170.15 -43.65 +170.25 -43.65 +170.35 -43.65 +170.45 -43.65 +170.55 -43.65 +170.65 -43.65 +170.75 -43.65 +170.85 -43.65 +170.95 -43.65 +171.05 -43.65 +171.15 -43.65 +171.25 -43.65 +171.35 -43.65 +171.45 -43.65 +171.55 -43.65 +171.65 -43.65 +171.75 -43.65 +171.85 -43.65 +171.95 -43.65 +172.05 -43.65 +172.15 -43.65 +172.25 -43.65 +172.35 -43.65 +172.45 -43.65 +172.55 -43.65 +172.65 -43.65 +172.75 -43.65 +172.85 -43.65 +172.95 -43.65 +173.05 -43.65 +173.15 -43.65 +173.25 -43.65 +173.35 -43.65 +173.45 -43.65 +173.55 -43.65 +173.65 -43.65 +173.75 -43.65 +173.85 -43.65 +173.95 -43.65 +174.05 -43.65 +174.15 -43.65 +174.25 -43.65 +174.35 -43.65 +174.45 -43.65 +166.95 -43.75 +167.05 -43.75 +167.15 -43.75 +167.25 -43.75 +167.35 -43.75 +167.45 -43.75 +167.55 -43.75 +167.65 -43.75 +167.75 -43.75 +167.85 -43.75 +167.95 -43.75 +168.05 -43.75 +168.15 -43.75 +168.25 -43.75 +168.35 -43.75 +168.45 -43.75 +168.55 -43.75 +168.65 -43.75 +168.75 -43.75 +168.85 -43.75 +168.95 -43.75 +169.05 -43.75 +169.15 -43.75 +169.25 -43.75 +169.35 -43.75 +169.45 -43.75 +169.55 -43.75 +169.65 -43.75 +169.75 -43.75 +169.85 -43.75 +169.95 -43.75 +170.05 -43.75 +170.15 -43.75 +170.25 -43.75 +170.35 -43.75 +170.45 -43.75 +170.55 -43.75 +170.65 -43.75 +170.75 -43.75 +170.85 -43.75 +170.95 -43.75 +171.05 -43.75 +171.15 -43.75 +171.25 -43.75 +171.35 -43.75 +171.45 -43.75 +171.55 -43.75 +171.65 -43.75 +171.75 -43.75 +171.85 -43.75 +171.95 -43.75 +172.05 -43.75 +172.15 -43.75 +172.25 -43.75 +172.35 -43.75 +172.45 -43.75 +172.55 -43.75 +172.65 -43.75 +172.75 -43.75 +172.85 -43.75 +172.95 -43.75 +173.05 -43.75 +173.15 -43.75 +173.25 -43.75 +173.35 -43.75 +173.45 -43.75 +173.55 -43.75 +173.65 -43.75 +173.75 -43.75 +173.85 -43.75 +173.95 -43.75 +174.05 -43.75 +174.15 -43.75 +174.25 -43.75 +174.35 -43.75 +174.45 -43.75 +166.85 -43.85 +166.95 -43.85 +167.05 -43.85 +167.15 -43.85 +167.25 -43.85 +167.35 -43.85 +167.45 -43.85 +167.55 -43.85 +167.65 -43.85 +167.75 -43.85 +167.85 -43.85 +167.95 -43.85 +168.05 -43.85 +168.15 -43.85 +168.25 -43.85 +168.35 -43.85 +168.45 -43.85 +168.55 -43.85 +168.65 -43.85 +168.75 -43.85 +168.85 -43.85 +168.95 -43.85 +169.05 -43.85 +169.15 -43.85 +169.25 -43.85 +169.35 -43.85 +169.45 -43.85 +169.55 -43.85 +169.65 -43.85 +169.75 -43.85 +169.85 -43.85 +169.95 -43.85 +170.05 -43.85 +170.15 -43.85 +170.25 -43.85 +170.35 -43.85 +170.45 -43.85 +170.55 -43.85 +170.65 -43.85 +170.75 -43.85 +170.85 -43.85 +170.95 -43.85 +171.05 -43.85 +171.15 -43.85 +171.25 -43.85 +171.35 -43.85 +171.45 -43.85 +171.55 -43.85 +171.65 -43.85 +171.75 -43.85 +171.85 -43.85 +171.95 -43.85 +172.05 -43.85 +172.15 -43.85 +172.25 -43.85 +172.35 -43.85 +172.45 -43.85 +172.55 -43.85 +172.65 -43.85 +172.75 -43.85 +172.85 -43.85 +172.95 -43.85 +173.05 -43.85 +173.15 -43.85 +173.25 -43.85 +173.35 -43.85 +173.45 -43.85 +173.55 -43.85 +173.65 -43.85 +173.75 -43.85 +173.85 -43.85 +173.95 -43.85 +174.05 -43.85 +174.15 -43.85 +174.25 -43.85 +174.35 -43.85 +174.45 -43.85 +166.75 -43.95 +166.85 -43.95 +166.95 -43.95 +167.05 -43.95 +167.15 -43.95 +167.25 -43.95 +167.35 -43.95 +167.45 -43.95 +167.55 -43.95 +167.65 -43.95 +167.75 -43.95 +167.85 -43.95 +167.95 -43.95 +168.05 -43.95 +168.15 -43.95 +168.25 -43.95 +168.35 -43.95 +168.45 -43.95 +168.55 -43.95 +168.65 -43.95 +168.75 -43.95 +168.85 -43.95 +168.95 -43.95 +169.05 -43.95 +169.15 -43.95 +169.25 -43.95 +169.35 -43.95 +169.45 -43.95 +169.55 -43.95 +169.65 -43.95 +169.75 -43.95 +169.85 -43.95 +169.95 -43.95 +170.05 -43.95 +170.15 -43.95 +170.25 -43.95 +170.35 -43.95 +170.45 -43.95 +170.55 -43.95 +170.65 -43.95 +170.75 -43.95 +170.85 -43.95 +170.95 -43.95 +171.05 -43.95 +171.15 -43.95 +171.25 -43.95 +171.35 -43.95 +171.45 -43.95 +171.55 -43.95 +171.65 -43.95 +171.75 -43.95 +171.85 -43.95 +171.95 -43.95 +172.05 -43.95 +172.15 -43.95 +172.25 -43.95 +172.35 -43.95 +172.45 -43.95 +172.55 -43.95 +172.65 -43.95 +172.75 -43.95 +172.85 -43.95 +172.95 -43.95 +173.05 -43.95 +173.15 -43.95 +173.25 -43.95 +173.35 -43.95 +173.45 -43.95 +173.55 -43.95 +173.65 -43.95 +173.75 -43.95 +173.85 -43.95 +173.95 -43.95 +174.05 -43.95 +174.15 -43.95 +174.25 -43.95 +174.35 -43.95 +174.45 -43.95 +166.65 -44.05 +166.75 -44.05 +166.85 -44.05 +166.95 -44.05 +167.05 -44.05 +167.15 -44.05 +167.25 -44.05 +167.35 -44.05 +167.45 -44.05 +167.55 -44.05 +167.65 -44.05 +167.75 -44.05 +167.85 -44.05 +167.95 -44.05 +168.05 -44.05 +168.15 -44.05 +168.25 -44.05 +168.35 -44.05 +168.45 -44.05 +168.55 -44.05 +168.65 -44.05 +168.75 -44.05 +168.85 -44.05 +168.95 -44.05 +169.05 -44.05 +169.15 -44.05 +169.25 -44.05 +169.35 -44.05 +169.45 -44.05 +169.55 -44.05 +169.65 -44.05 +169.75 -44.05 +169.85 -44.05 +169.95 -44.05 +170.05 -44.05 +170.15 -44.05 +170.25 -44.05 +170.35 -44.05 +170.45 -44.05 +170.55 -44.05 +170.65 -44.05 +170.75 -44.05 +170.85 -44.05 +170.95 -44.05 +171.05 -44.05 +171.15 -44.05 +171.25 -44.05 +171.35 -44.05 +171.45 -44.05 +171.55 -44.05 +171.65 -44.05 +171.75 -44.05 +171.85 -44.05 +171.95 -44.05 +172.05 -44.05 +172.15 -44.05 +172.25 -44.05 +172.35 -44.05 +172.45 -44.05 +172.55 -44.05 +172.65 -44.05 +172.75 -44.05 +172.85 -44.05 +172.95 -44.05 +173.05 -44.05 +173.15 -44.05 +173.25 -44.05 +173.35 -44.05 +173.45 -44.05 +173.55 -44.05 +173.65 -44.05 +173.75 -44.05 +173.85 -44.05 +173.95 -44.05 +174.05 -44.05 +174.15 -44.05 +174.25 -44.05 +174.35 -44.05 +174.45 -44.05 +166.55 -44.15 +166.65 -44.15 +166.75 -44.15 +166.85 -44.15 +166.95 -44.15 +167.05 -44.15 +167.15 -44.15 +167.25 -44.15 +167.35 -44.15 +167.45 -44.15 +167.55 -44.15 +167.65 -44.15 +167.75 -44.15 +167.85 -44.15 +167.95 -44.15 +168.05 -44.15 +168.15 -44.15 +168.25 -44.15 +168.35 -44.15 +168.45 -44.15 +168.55 -44.15 +168.65 -44.15 +168.75 -44.15 +168.85 -44.15 +168.95 -44.15 +169.05 -44.15 +169.15 -44.15 +169.25 -44.15 +169.35 -44.15 +169.45 -44.15 +169.55 -44.15 +169.65 -44.15 +169.75 -44.15 +169.85 -44.15 +169.95 -44.15 +170.05 -44.15 +170.15 -44.15 +170.25 -44.15 +170.35 -44.15 +170.45 -44.15 +170.55 -44.15 +170.65 -44.15 +170.75 -44.15 +170.85 -44.15 +170.95 -44.15 +171.05 -44.15 +171.15 -44.15 +171.25 -44.15 +171.35 -44.15 +171.45 -44.15 +171.55 -44.15 +171.65 -44.15 +171.75 -44.15 +171.85 -44.15 +171.95 -44.15 +172.05 -44.15 +172.15 -44.15 +172.25 -44.15 +172.35 -44.15 +172.45 -44.15 +172.55 -44.15 +172.65 -44.15 +172.75 -44.15 +172.85 -44.15 +172.95 -44.15 +173.05 -44.15 +173.15 -44.15 +173.25 -44.15 +173.35 -44.15 +173.45 -44.15 +173.55 -44.15 +173.65 -44.15 +173.75 -44.15 +173.85 -44.15 +173.95 -44.15 +174.05 -44.15 +174.15 -44.15 +174.25 -44.15 +174.35 -44.15 +166.35 -44.25 +166.45 -44.25 +166.55 -44.25 +166.65 -44.25 +166.75 -44.25 +166.85 -44.25 +166.95 -44.25 +167.05 -44.25 +167.15 -44.25 +167.25 -44.25 +167.35 -44.25 +167.45 -44.25 +167.55 -44.25 +167.65 -44.25 +167.75 -44.25 +167.85 -44.25 +167.95 -44.25 +168.05 -44.25 +168.15 -44.25 +168.25 -44.25 +168.35 -44.25 +168.45 -44.25 +168.55 -44.25 +168.65 -44.25 +168.75 -44.25 +168.85 -44.25 +168.95 -44.25 +169.05 -44.25 +169.15 -44.25 +169.25 -44.25 +169.35 -44.25 +169.45 -44.25 +169.55 -44.25 +169.65 -44.25 +169.75 -44.25 +169.85 -44.25 +169.95 -44.25 +170.05 -44.25 +170.15 -44.25 +170.25 -44.25 +170.35 -44.25 +170.45 -44.25 +170.55 -44.25 +170.65 -44.25 +170.75 -44.25 +170.85 -44.25 +170.95 -44.25 +171.05 -44.25 +171.15 -44.25 +171.25 -44.25 +171.35 -44.25 +171.45 -44.25 +171.55 -44.25 +171.65 -44.25 +171.75 -44.25 +171.85 -44.25 +171.95 -44.25 +172.05 -44.25 +172.15 -44.25 +172.25 -44.25 +172.35 -44.25 +172.45 -44.25 +172.55 -44.25 +172.65 -44.25 +172.75 -44.25 +172.85 -44.25 +172.95 -44.25 +173.05 -44.25 +173.15 -44.25 +173.25 -44.25 +173.35 -44.25 +173.45 -44.25 +173.55 -44.25 +173.65 -44.25 +173.75 -44.25 +173.85 -44.25 +173.95 -44.25 +174.05 -44.25 +174.15 -44.25 +174.25 -44.25 +166.25 -44.35 +166.35 -44.35 +166.45 -44.35 +166.55 -44.35 +166.65 -44.35 +166.75 -44.35 +166.85 -44.35 +166.95 -44.35 +167.05 -44.35 +167.15 -44.35 +167.25 -44.35 +167.35 -44.35 +167.45 -44.35 +167.55 -44.35 +167.65 -44.35 +167.75 -44.35 +167.85 -44.35 +167.95 -44.35 +168.05 -44.35 +168.15 -44.35 +168.25 -44.35 +168.35 -44.35 +168.45 -44.35 +168.55 -44.35 +168.65 -44.35 +168.75 -44.35 +168.85 -44.35 +168.95 -44.35 +169.05 -44.35 +169.15 -44.35 +169.25 -44.35 +169.35 -44.35 +169.45 -44.35 +169.55 -44.35 +169.65 -44.35 +169.75 -44.35 +169.85 -44.35 +169.95 -44.35 +170.05 -44.35 +170.15 -44.35 +170.25 -44.35 +170.35 -44.35 +170.45 -44.35 +170.55 -44.35 +170.65 -44.35 +170.75 -44.35 +170.85 -44.35 +170.95 -44.35 +171.05 -44.35 +171.15 -44.35 +171.25 -44.35 +171.35 -44.35 +171.45 -44.35 +171.55 -44.35 +171.65 -44.35 +171.75 -44.35 +171.85 -44.35 +171.95 -44.35 +172.05 -44.35 +172.15 -44.35 +172.25 -44.35 +172.35 -44.35 +172.45 -44.35 +172.55 -44.35 +172.65 -44.35 +172.75 -44.35 +172.85 -44.35 +172.95 -44.35 +173.05 -44.35 +173.15 -44.35 +173.25 -44.35 +173.35 -44.35 +173.45 -44.35 +173.55 -44.35 +173.65 -44.35 +173.75 -44.35 +173.85 -44.35 +173.95 -44.35 +174.05 -44.35 +174.15 -44.35 +166.15 -44.45 +166.25 -44.45 +166.35 -44.45 +166.45 -44.45 +166.55 -44.45 +166.65 -44.45 +166.75 -44.45 +166.85 -44.45 +166.95 -44.45 +167.05 -44.45 +167.15 -44.45 +167.25 -44.45 +167.35 -44.45 +167.45 -44.45 +167.55 -44.45 +167.65 -44.45 +167.75 -44.45 +167.85 -44.45 +167.95 -44.45 +168.05 -44.45 +168.15 -44.45 +168.25 -44.45 +168.35 -44.45 +168.45 -44.45 +168.55 -44.45 +168.65 -44.45 +168.75 -44.45 +168.85 -44.45 +168.95 -44.45 +169.05 -44.45 +169.15 -44.45 +169.25 -44.45 +169.35 -44.45 +169.45 -44.45 +169.55 -44.45 +169.65 -44.45 +169.75 -44.45 +169.85 -44.45 +169.95 -44.45 +170.05 -44.45 +170.15 -44.45 +170.25 -44.45 +170.35 -44.45 +170.45 -44.45 +170.55 -44.45 +170.65 -44.45 +170.75 -44.45 +170.85 -44.45 +170.95 -44.45 +171.05 -44.45 +171.15 -44.45 +171.25 -44.45 +171.35 -44.45 +171.45 -44.45 +171.55 -44.45 +171.65 -44.45 +171.75 -44.45 +171.85 -44.45 +171.95 -44.45 +172.05 -44.45 +172.15 -44.45 +172.25 -44.45 +172.35 -44.45 +172.45 -44.45 +172.55 -44.45 +172.65 -44.45 +172.75 -44.45 +172.85 -44.45 +172.95 -44.45 +173.05 -44.45 +173.15 -44.45 +173.25 -44.45 +173.35 -44.45 +173.45 -44.45 +173.55 -44.45 +173.65 -44.45 +173.75 -44.45 +173.85 -44.45 +173.95 -44.45 +174.05 -44.45 +174.15 -44.45 +166.05 -44.55 +166.15 -44.55 +166.25 -44.55 +166.35 -44.55 +166.45 -44.55 +166.55 -44.55 +166.65 -44.55 +166.75 -44.55 +166.85 -44.55 +166.95 -44.55 +167.05 -44.55 +167.15 -44.55 +167.25 -44.55 +167.35 -44.55 +167.45 -44.55 +167.55 -44.55 +167.65 -44.55 +167.75 -44.55 +167.85 -44.55 +167.95 -44.55 +168.05 -44.55 +168.15 -44.55 +168.25 -44.55 +168.35 -44.55 +168.45 -44.55 +168.55 -44.55 +168.65 -44.55 +168.75 -44.55 +168.85 -44.55 +168.95 -44.55 +169.05 -44.55 +169.15 -44.55 +169.25 -44.55 +169.35 -44.55 +169.45 -44.55 +169.55 -44.55 +169.65 -44.55 +169.75 -44.55 +169.85 -44.55 +169.95 -44.55 +170.05 -44.55 +170.15 -44.55 +170.25 -44.55 +170.35 -44.55 +170.45 -44.55 +170.55 -44.55 +170.65 -44.55 +170.75 -44.55 +170.85 -44.55 +170.95 -44.55 +171.05 -44.55 +171.15 -44.55 +171.25 -44.55 +171.35 -44.55 +171.45 -44.55 +171.55 -44.55 +171.65 -44.55 +171.75 -44.55 +171.85 -44.55 +171.95 -44.55 +172.05 -44.55 +172.15 -44.55 +172.25 -44.55 +172.35 -44.55 +172.45 -44.55 +172.55 -44.55 +172.65 -44.55 +172.75 -44.55 +172.85 -44.55 +172.95 -44.55 +173.05 -44.55 +173.15 -44.55 +173.25 -44.55 +173.35 -44.55 +173.45 -44.55 +173.55 -44.55 +173.65 -44.55 +173.75 -44.55 +173.85 -44.55 +173.95 -44.55 +174.05 -44.55 +165.95 -44.65 +166.05 -44.65 +166.15 -44.65 +166.25 -44.65 +166.35 -44.65 +166.45 -44.65 +166.55 -44.65 +166.65 -44.65 +166.75 -44.65 +166.85 -44.65 +166.95 -44.65 +167.05 -44.65 +167.15 -44.65 +167.25 -44.65 +167.35 -44.65 +167.45 -44.65 +167.55 -44.65 +167.65 -44.65 +167.75 -44.65 +167.85 -44.65 +167.95 -44.65 +168.05 -44.65 +168.15 -44.65 +168.25 -44.65 +168.35 -44.65 +168.45 -44.65 +168.55 -44.65 +168.65 -44.65 +168.75 -44.65 +168.85 -44.65 +168.95 -44.65 +169.05 -44.65 +169.15 -44.65 +169.25 -44.65 +169.35 -44.65 +169.45 -44.65 +169.55 -44.65 +169.65 -44.65 +169.75 -44.65 +169.85 -44.65 +169.95 -44.65 +170.05 -44.65 +170.15 -44.65 +170.25 -44.65 +170.35 -44.65 +170.45 -44.65 +170.55 -44.65 +170.65 -44.65 +170.75 -44.65 +170.85 -44.65 +170.95 -44.65 +171.05 -44.65 +171.15 -44.65 +171.25 -44.65 +171.35 -44.65 +171.45 -44.65 +171.55 -44.65 +171.65 -44.65 +171.75 -44.65 +171.85 -44.65 +171.95 -44.65 +172.05 -44.65 +172.15 -44.65 +172.25 -44.65 +172.35 -44.65 +172.45 -44.65 +172.55 -44.65 +172.65 -44.65 +172.75 -44.65 +172.85 -44.65 +172.95 -44.65 +173.05 -44.65 +173.15 -44.65 +173.25 -44.65 +173.35 -44.65 +173.45 -44.65 +173.55 -44.65 +173.65 -44.65 +173.75 -44.65 +173.85 -44.65 +173.95 -44.65 +165.85 -44.75 +165.95 -44.75 +166.05 -44.75 +166.15 -44.75 +166.25 -44.75 +166.35 -44.75 +166.45 -44.75 +166.55 -44.75 +166.65 -44.75 +166.75 -44.75 +166.85 -44.75 +166.95 -44.75 +167.05 -44.75 +167.15 -44.75 +167.25 -44.75 +167.35 -44.75 +167.45 -44.75 +167.55 -44.75 +167.65 -44.75 +167.75 -44.75 +167.85 -44.75 +167.95 -44.75 +168.05 -44.75 +168.15 -44.75 +168.25 -44.75 +168.35 -44.75 +168.45 -44.75 +168.55 -44.75 +168.65 -44.75 +168.75 -44.75 +168.85 -44.75 +168.95 -44.75 +169.05 -44.75 +169.15 -44.75 +169.25 -44.75 +169.35 -44.75 +169.45 -44.75 +169.55 -44.75 +169.65 -44.75 +169.75 -44.75 +169.85 -44.75 +169.95 -44.75 +170.05 -44.75 +170.15 -44.75 +170.25 -44.75 +170.35 -44.75 +170.45 -44.75 +170.55 -44.75 +170.65 -44.75 +170.75 -44.75 +170.85 -44.75 +170.95 -44.75 +171.05 -44.75 +171.15 -44.75 +171.25 -44.75 +171.35 -44.75 +171.45 -44.75 +171.55 -44.75 +171.65 -44.75 +171.75 -44.75 +171.85 -44.75 +171.95 -44.75 +172.05 -44.75 +172.15 -44.75 +172.25 -44.75 +172.35 -44.75 +172.45 -44.75 +172.55 -44.75 +172.65 -44.75 +172.75 -44.75 +172.85 -44.75 +172.95 -44.75 +173.05 -44.75 +173.15 -44.75 +173.25 -44.75 +173.35 -44.75 +173.45 -44.75 +173.55 -44.75 +173.65 -44.75 +173.75 -44.75 +165.65 -44.85 +165.75 -44.85 +165.85 -44.85 +165.95 -44.85 +166.05 -44.85 +166.15 -44.85 +166.25 -44.85 +166.35 -44.85 +166.45 -44.85 +166.55 -44.85 +166.65 -44.85 +166.75 -44.85 +166.85 -44.85 +166.95 -44.85 +167.05 -44.85 +167.15 -44.85 +167.25 -44.85 +167.35 -44.85 +167.45 -44.85 +167.55 -44.85 +167.65 -44.85 +167.75 -44.85 +167.85 -44.85 +167.95 -44.85 +168.05 -44.85 +168.15 -44.85 +168.25 -44.85 +168.35 -44.85 +168.45 -44.85 +168.55 -44.85 +168.65 -44.85 +168.75 -44.85 +168.85 -44.85 +168.95 -44.85 +169.05 -44.85 +169.15 -44.85 +169.25 -44.85 +169.35 -44.85 +169.45 -44.85 +169.55 -44.85 +169.65 -44.85 +169.75 -44.85 +169.85 -44.85 +169.95 -44.85 +170.05 -44.85 +170.15 -44.85 +170.25 -44.85 +170.35 -44.85 +170.45 -44.85 +170.55 -44.85 +170.65 -44.85 +170.75 -44.85 +170.85 -44.85 +170.95 -44.85 +171.05 -44.85 +171.15 -44.85 +171.25 -44.85 +171.35 -44.85 +171.45 -44.85 +171.55 -44.85 +171.65 -44.85 +171.75 -44.85 +171.85 -44.85 +171.95 -44.85 +172.05 -44.85 +172.15 -44.85 +172.25 -44.85 +172.35 -44.85 +172.45 -44.85 +172.55 -44.85 +172.65 -44.85 +172.75 -44.85 +172.85 -44.85 +172.95 -44.85 +173.05 -44.85 +173.15 -44.85 +165.55 -44.95 +165.65 -44.95 +165.75 -44.95 +165.85 -44.95 +165.95 -44.95 +166.05 -44.95 +166.15 -44.95 +166.25 -44.95 +166.35 -44.95 +166.45 -44.95 +166.55 -44.95 +166.65 -44.95 +166.75 -44.95 +166.85 -44.95 +166.95 -44.95 +167.05 -44.95 +167.15 -44.95 +167.25 -44.95 +167.35 -44.95 +167.45 -44.95 +167.55 -44.95 +167.65 -44.95 +167.75 -44.95 +167.85 -44.95 +167.95 -44.95 +168.05 -44.95 +168.15 -44.95 +168.25 -44.95 +168.35 -44.95 +168.45 -44.95 +168.55 -44.95 +168.65 -44.95 +168.75 -44.95 +168.85 -44.95 +168.95 -44.95 +169.05 -44.95 +169.15 -44.95 +169.25 -44.95 +169.35 -44.95 +169.45 -44.95 +169.55 -44.95 +169.65 -44.95 +169.75 -44.95 +169.85 -44.95 +169.95 -44.95 +170.05 -44.95 +170.15 -44.95 +170.25 -44.95 +170.35 -44.95 +170.45 -44.95 +170.55 -44.95 +170.65 -44.95 +170.75 -44.95 +170.85 -44.95 +170.95 -44.95 +171.05 -44.95 +171.15 -44.95 +171.25 -44.95 +171.35 -44.95 +171.45 -44.95 +171.55 -44.95 +171.65 -44.95 +171.75 -44.95 +171.85 -44.95 +171.95 -44.95 +172.05 -44.95 +172.15 -44.95 +172.25 -44.95 +172.35 -44.95 +172.45 -44.95 +172.55 -44.95 +165.45 -45.05 +165.55 -45.05 +165.65 -45.05 +165.75 -45.05 +165.85 -45.05 +165.95 -45.05 +166.05 -45.05 +166.15 -45.05 +166.25 -45.05 +166.35 -45.05 +166.45 -45.05 +166.55 -45.05 +166.65 -45.05 +166.75 -45.05 +166.85 -45.05 +166.95 -45.05 +167.05 -45.05 +167.15 -45.05 +167.25 -45.05 +167.35 -45.05 +167.45 -45.05 +167.55 -45.05 +167.65 -45.05 +167.75 -45.05 +167.85 -45.05 +167.95 -45.05 +168.05 -45.05 +168.15 -45.05 +168.25 -45.05 +168.35 -45.05 +168.45 -45.05 +168.55 -45.05 +168.65 -45.05 +168.75 -45.05 +168.85 -45.05 +168.95 -45.05 +169.05 -45.05 +169.15 -45.05 +169.25 -45.05 +169.35 -45.05 +169.45 -45.05 +169.55 -45.05 +169.65 -45.05 +169.75 -45.05 +169.85 -45.05 +169.95 -45.05 +170.05 -45.05 +170.15 -45.05 +170.25 -45.05 +170.35 -45.05 +170.45 -45.05 +170.55 -45.05 +170.65 -45.05 +170.75 -45.05 +170.85 -45.05 +170.95 -45.05 +171.05 -45.05 +171.15 -45.05 +171.25 -45.05 +171.35 -45.05 +171.45 -45.05 +171.55 -45.05 +171.65 -45.05 +171.75 -45.05 +171.85 -45.05 +171.95 -45.05 +172.05 -45.05 +172.15 -45.05 +172.25 -45.05 +172.35 -45.05 +172.45 -45.05 +172.55 -45.05 +165.45 -45.15 +165.55 -45.15 +165.65 -45.15 +165.75 -45.15 +165.85 -45.15 +165.95 -45.15 +166.05 -45.15 +166.15 -45.15 +166.25 -45.15 +166.35 -45.15 +166.45 -45.15 +166.55 -45.15 +166.65 -45.15 +166.75 -45.15 +166.85 -45.15 +166.95 -45.15 +167.05 -45.15 +167.15 -45.15 +167.25 -45.15 +167.35 -45.15 +167.45 -45.15 +167.55 -45.15 +167.65 -45.15 +167.75 -45.15 +167.85 -45.15 +167.95 -45.15 +168.05 -45.15 +168.15 -45.15 +168.25 -45.15 +168.35 -45.15 +168.45 -45.15 +168.55 -45.15 +168.65 -45.15 +168.75 -45.15 +168.85 -45.15 +168.95 -45.15 +169.05 -45.15 +169.15 -45.15 +169.25 -45.15 +169.35 -45.15 +169.45 -45.15 +169.55 -45.15 +169.65 -45.15 +169.75 -45.15 +169.85 -45.15 +169.95 -45.15 +170.05 -45.15 +170.15 -45.15 +170.25 -45.15 +170.35 -45.15 +170.45 -45.15 +170.55 -45.15 +170.65 -45.15 +170.75 -45.15 +170.85 -45.15 +170.95 -45.15 +171.05 -45.15 +171.15 -45.15 +171.25 -45.15 +171.35 -45.15 +171.45 -45.15 +171.55 -45.15 +171.65 -45.15 +171.75 -45.15 +171.85 -45.15 +171.95 -45.15 +172.05 -45.15 +172.15 -45.15 +172.25 -45.15 +172.35 -45.15 +172.45 -45.15 +165.35 -45.25 +165.45 -45.25 +165.55 -45.25 +165.65 -45.25 +165.75 -45.25 +165.85 -45.25 +165.95 -45.25 +166.05 -45.25 +166.15 -45.25 +166.25 -45.25 +166.35 -45.25 +166.45 -45.25 +166.55 -45.25 +166.65 -45.25 +166.75 -45.25 +166.85 -45.25 +166.95 -45.25 +167.05 -45.25 +167.15 -45.25 +167.25 -45.25 +167.35 -45.25 +167.45 -45.25 +167.55 -45.25 +167.65 -45.25 +167.75 -45.25 +167.85 -45.25 +167.95 -45.25 +168.05 -45.25 +168.15 -45.25 +168.25 -45.25 +168.35 -45.25 +168.45 -45.25 +168.55 -45.25 +168.65 -45.25 +168.75 -45.25 +168.85 -45.25 +168.95 -45.25 +169.05 -45.25 +169.15 -45.25 +169.25 -45.25 +169.35 -45.25 +169.45 -45.25 +169.55 -45.25 +169.65 -45.25 +169.75 -45.25 +169.85 -45.25 +169.95 -45.25 +170.05 -45.25 +170.15 -45.25 +170.25 -45.25 +170.35 -45.25 +170.45 -45.25 +170.55 -45.25 +170.65 -45.25 +170.75 -45.25 +170.85 -45.25 +170.95 -45.25 +171.05 -45.25 +171.15 -45.25 +171.25 -45.25 +171.35 -45.25 +171.45 -45.25 +171.55 -45.25 +171.65 -45.25 +171.75 -45.25 +171.85 -45.25 +171.95 -45.25 +172.05 -45.25 +172.15 -45.25 +172.25 -45.25 +172.35 -45.25 +172.45 -45.25 +165.25 -45.35 +165.35 -45.35 +165.45 -45.35 +165.55 -45.35 +165.65 -45.35 +165.75 -45.35 +165.85 -45.35 +165.95 -45.35 +166.05 -45.35 +166.15 -45.35 +166.25 -45.35 +166.35 -45.35 +166.45 -45.35 +166.55 -45.35 +166.65 -45.35 +166.75 -45.35 +166.85 -45.35 +166.95 -45.35 +167.05 -45.35 +167.15 -45.35 +167.25 -45.35 +167.35 -45.35 +167.45 -45.35 +167.55 -45.35 +167.65 -45.35 +167.75 -45.35 +167.85 -45.35 +167.95 -45.35 +168.05 -45.35 +168.15 -45.35 +168.25 -45.35 +168.35 -45.35 +168.45 -45.35 +168.55 -45.35 +168.65 -45.35 +168.75 -45.35 +168.85 -45.35 +168.95 -45.35 +169.05 -45.35 +169.15 -45.35 +169.25 -45.35 +169.35 -45.35 +169.45 -45.35 +169.55 -45.35 +169.65 -45.35 +169.75 -45.35 +169.85 -45.35 +169.95 -45.35 +170.05 -45.35 +170.15 -45.35 +170.25 -45.35 +170.35 -45.35 +170.45 -45.35 +170.55 -45.35 +170.65 -45.35 +170.75 -45.35 +170.85 -45.35 +170.95 -45.35 +171.05 -45.35 +171.15 -45.35 +171.25 -45.35 +171.35 -45.35 +171.45 -45.35 +171.55 -45.35 +171.65 -45.35 +171.75 -45.35 +171.85 -45.35 +171.95 -45.35 +172.05 -45.35 +172.15 -45.35 +172.25 -45.35 +172.35 -45.35 +172.45 -45.35 +165.25 -45.45 +165.35 -45.45 +165.45 -45.45 +165.55 -45.45 +165.65 -45.45 +165.75 -45.45 +165.85 -45.45 +165.95 -45.45 +166.05 -45.45 +166.15 -45.45 +166.25 -45.45 +166.35 -45.45 +166.45 -45.45 +166.55 -45.45 +166.65 -45.45 +166.75 -45.45 +166.85 -45.45 +166.95 -45.45 +167.05 -45.45 +167.15 -45.45 +167.25 -45.45 +167.35 -45.45 +167.45 -45.45 +167.55 -45.45 +167.65 -45.45 +167.75 -45.45 +167.85 -45.45 +167.95 -45.45 +168.05 -45.45 +168.15 -45.45 +168.25 -45.45 +168.35 -45.45 +168.45 -45.45 +168.55 -45.45 +168.65 -45.45 +168.75 -45.45 +168.85 -45.45 +168.95 -45.45 +169.05 -45.45 +169.15 -45.45 +169.25 -45.45 +169.35 -45.45 +169.45 -45.45 +169.55 -45.45 +169.65 -45.45 +169.75 -45.45 +169.85 -45.45 +169.95 -45.45 +170.05 -45.45 +170.15 -45.45 +170.25 -45.45 +170.35 -45.45 +170.45 -45.45 +170.55 -45.45 +170.65 -45.45 +170.75 -45.45 +170.85 -45.45 +170.95 -45.45 +171.05 -45.45 +171.15 -45.45 +171.25 -45.45 +171.35 -45.45 +171.45 -45.45 +171.55 -45.45 +171.65 -45.45 +171.75 -45.45 +171.85 -45.45 +171.95 -45.45 +172.05 -45.45 +172.15 -45.45 +172.25 -45.45 +172.35 -45.45 +165.15 -45.55 +165.25 -45.55 +165.35 -45.55 +165.45 -45.55 +165.55 -45.55 +165.65 -45.55 +165.75 -45.55 +165.85 -45.55 +165.95 -45.55 +166.05 -45.55 +166.15 -45.55 +166.25 -45.55 +166.35 -45.55 +166.45 -45.55 +166.55 -45.55 +166.65 -45.55 +166.75 -45.55 +166.85 -45.55 +166.95 -45.55 +167.05 -45.55 +167.15 -45.55 +167.25 -45.55 +167.35 -45.55 +167.45 -45.55 +167.55 -45.55 +167.65 -45.55 +167.75 -45.55 +167.85 -45.55 +167.95 -45.55 +168.05 -45.55 +168.15 -45.55 +168.25 -45.55 +168.35 -45.55 +168.45 -45.55 +168.55 -45.55 +168.65 -45.55 +168.75 -45.55 +168.85 -45.55 +168.95 -45.55 +169.05 -45.55 +169.15 -45.55 +169.25 -45.55 +169.35 -45.55 +169.45 -45.55 +169.55 -45.55 +169.65 -45.55 +169.75 -45.55 +169.85 -45.55 +169.95 -45.55 +170.05 -45.55 +170.15 -45.55 +170.25 -45.55 +170.35 -45.55 +170.45 -45.55 +170.55 -45.55 +170.65 -45.55 +170.75 -45.55 +170.85 -45.55 +170.95 -45.55 +171.05 -45.55 +171.15 -45.55 +171.25 -45.55 +171.35 -45.55 +171.45 -45.55 +171.55 -45.55 +171.65 -45.55 +171.75 -45.55 +171.85 -45.55 +171.95 -45.55 +172.05 -45.55 +172.15 -45.55 +172.25 -45.55 +165.15 -45.65 +165.25 -45.65 +165.35 -45.65 +165.45 -45.65 +165.55 -45.65 +165.65 -45.65 +165.75 -45.65 +165.85 -45.65 +165.95 -45.65 +166.05 -45.65 +166.15 -45.65 +166.25 -45.65 +166.35 -45.65 +166.45 -45.65 +166.55 -45.65 +166.65 -45.65 +166.75 -45.65 +166.85 -45.65 +166.95 -45.65 +167.05 -45.65 +167.15 -45.65 +167.25 -45.65 +167.35 -45.65 +167.45 -45.65 +167.55 -45.65 +167.65 -45.65 +167.75 -45.65 +167.85 -45.65 +167.95 -45.65 +168.05 -45.65 +168.15 -45.65 +168.25 -45.65 +168.35 -45.65 +168.45 -45.65 +168.55 -45.65 +168.65 -45.65 +168.75 -45.65 +168.85 -45.65 +168.95 -45.65 +169.05 -45.65 +169.15 -45.65 +169.25 -45.65 +169.35 -45.65 +169.45 -45.65 +169.55 -45.65 +169.65 -45.65 +169.75 -45.65 +169.85 -45.65 +169.95 -45.65 +170.05 -45.65 +170.15 -45.65 +170.25 -45.65 +170.35 -45.65 +170.45 -45.65 +170.55 -45.65 +170.65 -45.65 +170.75 -45.65 +170.85 -45.65 +170.95 -45.65 +171.05 -45.65 +171.15 -45.65 +171.25 -45.65 +171.35 -45.65 +171.45 -45.65 +171.55 -45.65 +171.65 -45.65 +171.75 -45.65 +171.85 -45.65 +171.95 -45.65 +172.05 -45.65 +172.15 -45.65 +165.15 -45.75 +165.25 -45.75 +165.35 -45.75 +165.45 -45.75 +165.55 -45.75 +165.65 -45.75 +165.75 -45.75 +165.85 -45.75 +165.95 -45.75 +166.05 -45.75 +166.15 -45.75 +166.25 -45.75 +166.35 -45.75 +166.45 -45.75 +166.55 -45.75 +166.65 -45.75 +166.75 -45.75 +166.85 -45.75 +166.95 -45.75 +167.05 -45.75 +167.15 -45.75 +167.25 -45.75 +167.35 -45.75 +167.45 -45.75 +167.55 -45.75 +167.65 -45.75 +167.75 -45.75 +167.85 -45.75 +167.95 -45.75 +168.05 -45.75 +168.15 -45.75 +168.25 -45.75 +168.35 -45.75 +168.45 -45.75 +168.55 -45.75 +168.65 -45.75 +168.75 -45.75 +168.85 -45.75 +168.95 -45.75 +169.05 -45.75 +169.15 -45.75 +169.25 -45.75 +169.35 -45.75 +169.45 -45.75 +169.55 -45.75 +169.65 -45.75 +169.75 -45.75 +169.85 -45.75 +169.95 -45.75 +170.05 -45.75 +170.15 -45.75 +170.25 -45.75 +170.35 -45.75 +170.45 -45.75 +170.55 -45.75 +170.65 -45.75 +170.75 -45.75 +170.85 -45.75 +170.95 -45.75 +171.05 -45.75 +171.15 -45.75 +171.25 -45.75 +171.35 -45.75 +171.45 -45.75 +171.55 -45.75 +171.65 -45.75 +171.75 -45.75 +171.85 -45.75 +171.95 -45.75 +172.05 -45.75 +172.15 -45.75 +165.05 -45.85 +165.15 -45.85 +165.25 -45.85 +165.35 -45.85 +165.45 -45.85 +165.55 -45.85 +165.65 -45.85 +165.75 -45.85 +165.85 -45.85 +165.95 -45.85 +166.05 -45.85 +166.15 -45.85 +166.25 -45.85 +166.35 -45.85 +166.45 -45.85 +166.55 -45.85 +166.65 -45.85 +166.75 -45.85 +166.85 -45.85 +166.95 -45.85 +167.05 -45.85 +167.15 -45.85 +167.25 -45.85 +167.35 -45.85 +167.45 -45.85 +167.55 -45.85 +167.65 -45.85 +167.75 -45.85 +167.85 -45.85 +167.95 -45.85 +168.05 -45.85 +168.15 -45.85 +168.25 -45.85 +168.35 -45.85 +168.45 -45.85 +168.55 -45.85 +168.65 -45.85 +168.75 -45.85 +168.85 -45.85 +168.95 -45.85 +169.05 -45.85 +169.15 -45.85 +169.25 -45.85 +169.35 -45.85 +169.45 -45.85 +169.55 -45.85 +169.65 -45.85 +169.75 -45.85 +169.85 -45.85 +169.95 -45.85 +170.05 -45.85 +170.15 -45.85 +170.25 -45.85 +170.35 -45.85 +170.45 -45.85 +170.55 -45.85 +170.65 -45.85 +170.75 -45.85 +170.85 -45.85 +170.95 -45.85 +171.05 -45.85 +171.15 -45.85 +171.25 -45.85 +171.35 -45.85 +171.45 -45.85 +171.55 -45.85 +171.65 -45.85 +171.75 -45.85 +171.85 -45.85 +171.95 -45.85 +172.05 -45.85 +172.15 -45.85 +165.05 -45.95 +165.15 -45.95 +165.25 -45.95 +165.35 -45.95 +165.45 -45.95 +165.55 -45.95 +165.65 -45.95 +165.75 -45.95 +165.85 -45.95 +165.95 -45.95 +166.05 -45.95 +166.15 -45.95 +166.25 -45.95 +166.35 -45.95 +166.45 -45.95 +166.55 -45.95 +166.65 -45.95 +166.75 -45.95 +166.85 -45.95 +166.95 -45.95 +167.05 -45.95 +167.15 -45.95 +167.25 -45.95 +167.35 -45.95 +167.45 -45.95 +167.55 -45.95 +167.65 -45.95 +167.75 -45.95 +167.85 -45.95 +167.95 -45.95 +168.05 -45.95 +168.15 -45.95 +168.25 -45.95 +168.35 -45.95 +168.45 -45.95 +168.55 -45.95 +168.65 -45.95 +168.75 -45.95 +168.85 -45.95 +168.95 -45.95 +169.05 -45.95 +169.15 -45.95 +169.25 -45.95 +169.35 -45.95 +169.45 -45.95 +169.55 -45.95 +169.65 -45.95 +169.75 -45.95 +169.85 -45.95 +169.95 -45.95 +170.05 -45.95 +170.15 -45.95 +170.25 -45.95 +170.35 -45.95 +170.45 -45.95 +170.55 -45.95 +170.65 -45.95 +170.75 -45.95 +170.85 -45.95 +170.95 -45.95 +171.05 -45.95 +171.15 -45.95 +171.25 -45.95 +171.35 -45.95 +171.45 -45.95 +171.55 -45.95 +171.65 -45.95 +171.75 -45.95 +171.85 -45.95 +171.95 -45.95 +172.05 -45.95 +172.15 -45.95 +165.15 -46.05 +165.25 -46.05 +165.35 -46.05 +165.45 -46.05 +165.55 -46.05 +165.65 -46.05 +165.75 -46.05 +165.85 -46.05 +165.95 -46.05 +166.05 -46.05 +166.15 -46.05 +166.25 -46.05 +166.35 -46.05 +166.45 -46.05 +166.55 -46.05 +166.65 -46.05 +166.75 -46.05 +166.85 -46.05 +166.95 -46.05 +167.05 -46.05 +167.15 -46.05 +167.25 -46.05 +167.35 -46.05 +167.45 -46.05 +167.55 -46.05 +167.65 -46.05 +167.75 -46.05 +167.85 -46.05 +167.95 -46.05 +168.05 -46.05 +168.15 -46.05 +168.25 -46.05 +168.35 -46.05 +168.45 -46.05 +168.55 -46.05 +168.65 -46.05 +168.75 -46.05 +168.85 -46.05 +168.95 -46.05 +169.05 -46.05 +169.15 -46.05 +169.25 -46.05 +169.35 -46.05 +169.45 -46.05 +169.55 -46.05 +169.65 -46.05 +169.75 -46.05 +169.85 -46.05 +169.95 -46.05 +170.05 -46.05 +170.15 -46.05 +170.25 -46.05 +170.35 -46.05 +170.45 -46.05 +170.55 -46.05 +170.65 -46.05 +170.75 -46.05 +170.85 -46.05 +170.95 -46.05 +171.05 -46.05 +171.15 -46.05 +171.25 -46.05 +171.35 -46.05 +171.45 -46.05 +171.55 -46.05 +171.65 -46.05 +171.75 -46.05 +171.85 -46.05 +171.95 -46.05 +172.05 -46.05 +172.15 -46.05 +165.15 -46.15 +165.25 -46.15 +165.35 -46.15 +165.45 -46.15 +165.55 -46.15 +165.65 -46.15 +165.75 -46.15 +165.85 -46.15 +165.95 -46.15 +166.05 -46.15 +166.15 -46.15 +166.25 -46.15 +166.35 -46.15 +166.45 -46.15 +166.55 -46.15 +166.65 -46.15 +166.75 -46.15 +166.85 -46.15 +166.95 -46.15 +167.05 -46.15 +167.15 -46.15 +167.25 -46.15 +167.35 -46.15 +167.45 -46.15 +167.55 -46.15 +167.65 -46.15 +167.75 -46.15 +167.85 -46.15 +167.95 -46.15 +168.05 -46.15 +168.15 -46.15 +168.25 -46.15 +168.35 -46.15 +168.45 -46.15 +168.55 -46.15 +168.65 -46.15 +168.75 -46.15 +168.85 -46.15 +168.95 -46.15 +169.05 -46.15 +169.15 -46.15 +169.25 -46.15 +169.35 -46.15 +169.45 -46.15 +169.55 -46.15 +169.65 -46.15 +169.75 -46.15 +169.85 -46.15 +169.95 -46.15 +170.05 -46.15 +170.15 -46.15 +170.25 -46.15 +170.35 -46.15 +170.45 -46.15 +170.55 -46.15 +170.65 -46.15 +170.75 -46.15 +170.85 -46.15 +170.95 -46.15 +171.05 -46.15 +171.15 -46.15 +171.25 -46.15 +171.35 -46.15 +171.45 -46.15 +171.55 -46.15 +171.65 -46.15 +171.75 -46.15 +171.85 -46.15 +171.95 -46.15 +172.05 -46.15 +165.15 -46.25 +165.25 -46.25 +165.35 -46.25 +165.45 -46.25 +165.55 -46.25 +165.65 -46.25 +165.75 -46.25 +165.85 -46.25 +165.95 -46.25 +166.05 -46.25 +166.15 -46.25 +166.25 -46.25 +166.35 -46.25 +166.45 -46.25 +166.55 -46.25 +166.65 -46.25 +166.75 -46.25 +166.85 -46.25 +166.95 -46.25 +167.05 -46.25 +167.15 -46.25 +167.25 -46.25 +167.35 -46.25 +167.45 -46.25 +167.55 -46.25 +167.65 -46.25 +167.75 -46.25 +167.85 -46.25 +167.95 -46.25 +168.05 -46.25 +168.15 -46.25 +168.25 -46.25 +168.35 -46.25 +168.45 -46.25 +168.55 -46.25 +168.65 -46.25 +168.75 -46.25 +168.85 -46.25 +168.95 -46.25 +169.05 -46.25 +169.15 -46.25 +169.25 -46.25 +169.35 -46.25 +169.45 -46.25 +169.55 -46.25 +169.65 -46.25 +169.75 -46.25 +169.85 -46.25 +169.95 -46.25 +170.05 -46.25 +170.15 -46.25 +170.25 -46.25 +170.35 -46.25 +170.45 -46.25 +170.55 -46.25 +170.65 -46.25 +170.75 -46.25 +170.85 -46.25 +170.95 -46.25 +171.05 -46.25 +171.15 -46.25 +171.25 -46.25 +171.35 -46.25 +171.45 -46.25 +171.55 -46.25 +171.65 -46.25 +171.75 -46.25 +171.85 -46.25 +171.95 -46.25 +172.05 -46.25 +165.25 -46.35 +165.35 -46.35 +165.45 -46.35 +165.55 -46.35 +165.65 -46.35 +165.75 -46.35 +165.85 -46.35 +165.95 -46.35 +166.05 -46.35 +166.15 -46.35 +166.25 -46.35 +166.35 -46.35 +166.45 -46.35 +166.55 -46.35 +166.65 -46.35 +166.75 -46.35 +166.85 -46.35 +166.95 -46.35 +167.05 -46.35 +167.15 -46.35 +167.25 -46.35 +167.35 -46.35 +167.45 -46.35 +167.55 -46.35 +167.65 -46.35 +167.75 -46.35 +167.85 -46.35 +167.95 -46.35 +168.05 -46.35 +168.15 -46.35 +168.25 -46.35 +168.35 -46.35 +168.45 -46.35 +168.55 -46.35 +168.65 -46.35 +168.75 -46.35 +168.85 -46.35 +168.95 -46.35 +169.05 -46.35 +169.15 -46.35 +169.25 -46.35 +169.35 -46.35 +169.45 -46.35 +169.55 -46.35 +169.65 -46.35 +169.75 -46.35 +169.85 -46.35 +169.95 -46.35 +170.05 -46.35 +170.15 -46.35 +170.25 -46.35 +170.35 -46.35 +170.45 -46.35 +170.55 -46.35 +170.65 -46.35 +170.75 -46.35 +170.85 -46.35 +170.95 -46.35 +171.05 -46.35 +171.15 -46.35 +171.25 -46.35 +171.35 -46.35 +171.45 -46.35 +171.55 -46.35 +171.65 -46.35 +171.75 -46.35 +171.85 -46.35 +171.95 -46.35 +172.05 -46.35 +165.35 -46.45 +165.45 -46.45 +165.55 -46.45 +165.65 -46.45 +165.75 -46.45 +165.85 -46.45 +165.95 -46.45 +166.05 -46.45 +166.15 -46.45 +166.25 -46.45 +166.35 -46.45 +166.45 -46.45 +166.55 -46.45 +166.65 -46.45 +166.75 -46.45 +166.85 -46.45 +166.95 -46.45 +167.05 -46.45 +167.15 -46.45 +167.25 -46.45 +167.35 -46.45 +167.45 -46.45 +167.55 -46.45 +167.65 -46.45 +167.75 -46.45 +167.85 -46.45 +167.95 -46.45 +168.05 -46.45 +168.15 -46.45 +168.25 -46.45 +168.35 -46.45 +168.45 -46.45 +168.55 -46.45 +168.65 -46.45 +168.75 -46.45 +168.85 -46.45 +168.95 -46.45 +169.05 -46.45 +169.15 -46.45 +169.25 -46.45 +169.35 -46.45 +169.45 -46.45 +169.55 -46.45 +169.65 -46.45 +169.75 -46.45 +169.85 -46.45 +169.95 -46.45 +170.05 -46.45 +170.15 -46.45 +170.25 -46.45 +170.35 -46.45 +170.45 -46.45 +170.55 -46.45 +170.65 -46.45 +170.75 -46.45 +170.85 -46.45 +170.95 -46.45 +171.05 -46.45 +171.15 -46.45 +171.25 -46.45 +171.35 -46.45 +171.45 -46.45 +171.55 -46.45 +171.65 -46.45 +171.75 -46.45 +171.85 -46.45 +171.95 -46.45 +165.35 -46.55 +165.45 -46.55 +165.55 -46.55 +165.65 -46.55 +165.75 -46.55 +165.85 -46.55 +165.95 -46.55 +166.05 -46.55 +166.15 -46.55 +166.25 -46.55 +166.35 -46.55 +166.45 -46.55 +166.55 -46.55 +166.65 -46.55 +166.75 -46.55 +166.85 -46.55 +166.95 -46.55 +167.05 -46.55 +167.15 -46.55 +167.25 -46.55 +167.35 -46.55 +167.45 -46.55 +167.55 -46.55 +167.65 -46.55 +167.75 -46.55 +167.85 -46.55 +167.95 -46.55 +168.05 -46.55 +168.15 -46.55 +168.25 -46.55 +168.35 -46.55 +168.45 -46.55 +168.55 -46.55 +168.65 -46.55 +168.75 -46.55 +168.85 -46.55 +168.95 -46.55 +169.05 -46.55 +169.15 -46.55 +169.25 -46.55 +169.35 -46.55 +169.45 -46.55 +169.55 -46.55 +169.65 -46.55 +169.75 -46.55 +169.85 -46.55 +169.95 -46.55 +170.05 -46.55 +170.15 -46.55 +170.25 -46.55 +170.35 -46.55 +170.45 -46.55 +170.55 -46.55 +170.65 -46.55 +170.75 -46.55 +170.85 -46.55 +170.95 -46.55 +171.05 -46.55 +171.15 -46.55 +171.25 -46.55 +171.35 -46.55 +171.45 -46.55 +171.55 -46.55 +171.65 -46.55 +171.75 -46.55 +171.85 -46.55 +165.45 -46.65 +165.55 -46.65 +165.65 -46.65 +165.75 -46.65 +165.85 -46.65 +165.95 -46.65 +166.05 -46.65 +166.15 -46.65 +166.25 -46.65 +166.35 -46.65 +166.45 -46.65 +166.55 -46.65 +166.65 -46.65 +166.75 -46.65 +166.85 -46.65 +166.95 -46.65 +167.05 -46.65 +167.15 -46.65 +167.25 -46.65 +167.35 -46.65 +167.45 -46.65 +167.55 -46.65 +167.65 -46.65 +167.75 -46.65 +167.85 -46.65 +167.95 -46.65 +168.05 -46.65 +168.15 -46.65 +168.25 -46.65 +168.35 -46.65 +168.45 -46.65 +168.55 -46.65 +168.65 -46.65 +168.75 -46.65 +168.85 -46.65 +168.95 -46.65 +169.05 -46.65 +169.15 -46.65 +169.25 -46.65 +169.35 -46.65 +169.45 -46.65 +169.55 -46.65 +169.65 -46.65 +169.75 -46.65 +169.85 -46.65 +169.95 -46.65 +170.05 -46.65 +170.15 -46.65 +170.25 -46.65 +170.35 -46.65 +170.45 -46.65 +170.55 -46.65 +170.65 -46.65 +170.75 -46.65 +170.85 -46.65 +170.95 -46.65 +171.05 -46.65 +171.15 -46.65 +171.25 -46.65 +171.35 -46.65 +171.45 -46.65 +171.55 -46.65 +171.65 -46.65 +165.55 -46.75 +165.65 -46.75 +165.75 -46.75 +165.85 -46.75 +165.95 -46.75 +166.05 -46.75 +166.15 -46.75 +166.25 -46.75 +166.35 -46.75 +166.45 -46.75 +166.55 -46.75 +166.65 -46.75 +166.75 -46.75 +166.85 -46.75 +166.95 -46.75 +167.05 -46.75 +167.15 -46.75 +167.25 -46.75 +167.35 -46.75 +167.45 -46.75 +167.55 -46.75 +167.65 -46.75 +167.75 -46.75 +167.85 -46.75 +167.95 -46.75 +168.05 -46.75 +168.15 -46.75 +168.25 -46.75 +168.35 -46.75 +168.45 -46.75 +168.55 -46.75 +168.65 -46.75 +168.75 -46.75 +168.85 -46.75 +168.95 -46.75 +169.05 -46.75 +169.15 -46.75 +169.25 -46.75 +169.35 -46.75 +169.45 -46.75 +169.55 -46.75 +169.65 -46.75 +169.75 -46.75 +169.85 -46.75 +169.95 -46.75 +170.05 -46.75 +170.15 -46.75 +170.25 -46.75 +170.35 -46.75 +170.45 -46.75 +170.55 -46.75 +170.65 -46.75 +170.75 -46.75 +170.85 -46.75 +170.95 -46.75 +171.05 -46.75 +171.15 -46.75 +171.25 -46.75 +171.35 -46.75 +171.45 -46.75 +165.55 -46.85 +165.65 -46.85 +165.75 -46.85 +165.85 -46.85 +165.95 -46.85 +166.05 -46.85 +166.15 -46.85 +166.25 -46.85 +166.35 -46.85 +166.45 -46.85 +166.55 -46.85 +166.65 -46.85 +166.75 -46.85 +166.85 -46.85 +166.95 -46.85 +167.05 -46.85 +167.15 -46.85 +167.25 -46.85 +167.35 -46.85 +167.45 -46.85 +167.55 -46.85 +167.65 -46.85 +167.75 -46.85 +167.85 -46.85 +167.95 -46.85 +168.05 -46.85 +168.15 -46.85 +168.25 -46.85 +168.35 -46.85 +168.45 -46.85 +168.55 -46.85 +168.65 -46.85 +168.75 -46.85 +168.85 -46.85 +168.95 -46.85 +169.05 -46.85 +169.15 -46.85 +169.25 -46.85 +169.35 -46.85 +169.45 -46.85 +169.55 -46.85 +169.65 -46.85 +169.75 -46.85 +169.85 -46.85 +169.95 -46.85 +170.05 -46.85 +170.15 -46.85 +170.25 -46.85 +170.35 -46.85 +170.45 -46.85 +170.55 -46.85 +170.65 -46.85 +170.75 -46.85 +170.85 -46.85 +170.95 -46.85 +171.05 -46.85 +171.15 -46.85 +171.25 -46.85 +165.65 -46.95 +165.75 -46.95 +165.85 -46.95 +165.95 -46.95 +166.05 -46.95 +166.15 -46.95 +166.25 -46.95 +166.35 -46.95 +166.45 -46.95 +166.55 -46.95 +166.65 -46.95 +166.75 -46.95 +166.85 -46.95 +166.95 -46.95 +167.05 -46.95 +167.15 -46.95 +167.25 -46.95 +167.35 -46.95 +167.45 -46.95 +167.55 -46.95 +167.65 -46.95 +167.75 -46.95 +167.85 -46.95 +167.95 -46.95 +168.05 -46.95 +168.15 -46.95 +168.25 -46.95 +168.35 -46.95 +168.45 -46.95 +168.55 -46.95 +168.65 -46.95 +168.75 -46.95 +168.85 -46.95 +168.95 -46.95 +169.05 -46.95 +169.15 -46.95 +169.25 -46.95 +169.35 -46.95 +169.45 -46.95 +169.55 -46.95 +169.65 -46.95 +169.75 -46.95 +169.85 -46.95 +169.95 -46.95 +170.05 -46.95 +170.15 -46.95 +170.25 -46.95 +170.35 -46.95 +170.45 -46.95 +170.55 -46.95 +170.65 -46.95 +170.75 -46.95 +170.85 -46.95 +170.95 -46.95 +171.05 -46.95 +171.15 -46.95 +165.75 -47.05 +165.85 -47.05 +165.95 -47.05 +166.05 -47.05 +166.15 -47.05 +166.25 -47.05 +166.35 -47.05 +166.45 -47.05 +166.55 -47.05 +166.65 -47.05 +166.75 -47.05 +166.85 -47.05 +166.95 -47.05 +167.05 -47.05 +167.15 -47.05 +167.25 -47.05 +167.35 -47.05 +167.45 -47.05 +167.55 -47.05 +167.65 -47.05 +167.75 -47.05 +167.85 -47.05 +167.95 -47.05 +168.05 -47.05 +168.15 -47.05 +168.25 -47.05 +168.35 -47.05 +168.45 -47.05 +168.55 -47.05 +168.65 -47.05 +168.75 -47.05 +168.85 -47.05 +168.95 -47.05 +169.05 -47.05 +169.15 -47.05 +169.25 -47.05 +169.35 -47.05 +169.45 -47.05 +169.55 -47.05 +169.65 -47.05 +169.75 -47.05 +169.85 -47.05 +169.95 -47.05 +170.05 -47.05 +170.15 -47.05 +170.25 -47.05 +170.35 -47.05 +170.45 -47.05 +170.55 -47.05 +170.65 -47.05 +170.75 -47.05 +170.85 -47.05 +170.95 -47.05 +165.75 -47.15 +165.85 -47.15 +165.95 -47.15 +166.05 -47.15 +166.15 -47.15 +166.25 -47.15 +166.35 -47.15 +166.45 -47.15 +166.55 -47.15 +166.65 -47.15 +166.75 -47.15 +166.85 -47.15 +166.95 -47.15 +167.05 -47.15 +167.15 -47.15 +167.25 -47.15 +167.35 -47.15 +167.45 -47.15 +167.55 -47.15 +167.65 -47.15 +167.75 -47.15 +167.85 -47.15 +167.95 -47.15 +168.05 -47.15 +168.15 -47.15 +168.25 -47.15 +168.35 -47.15 +168.45 -47.15 +168.55 -47.15 +168.65 -47.15 +168.75 -47.15 +168.85 -47.15 +168.95 -47.15 +169.05 -47.15 +169.15 -47.15 +169.25 -47.15 +169.35 -47.15 +169.45 -47.15 +169.55 -47.15 +169.65 -47.15 +169.75 -47.15 +169.85 -47.15 +169.95 -47.15 +170.05 -47.15 +170.15 -47.15 +170.25 -47.15 +170.35 -47.15 +170.45 -47.15 +170.55 -47.15 +170.65 -47.15 +170.75 -47.15 +170.85 -47.15 +165.85 -47.25 +165.95 -47.25 +166.05 -47.25 +166.15 -47.25 +166.25 -47.25 +166.35 -47.25 +166.45 -47.25 +166.55 -47.25 +166.65 -47.25 +166.75 -47.25 +166.85 -47.25 +166.95 -47.25 +167.05 -47.25 +167.15 -47.25 +167.25 -47.25 +167.35 -47.25 +167.45 -47.25 +167.55 -47.25 +167.65 -47.25 +167.75 -47.25 +167.85 -47.25 +167.95 -47.25 +168.05 -47.25 +168.15 -47.25 +168.25 -47.25 +168.35 -47.25 +168.45 -47.25 +168.55 -47.25 +168.65 -47.25 +168.75 -47.25 +168.85 -47.25 +168.95 -47.25 +169.05 -47.25 +169.15 -47.25 +169.25 -47.25 +169.35 -47.25 +169.45 -47.25 +169.55 -47.25 +169.65 -47.25 +169.75 -47.25 +169.85 -47.25 +169.95 -47.25 +170.05 -47.25 +170.15 -47.25 +170.25 -47.25 +170.35 -47.25 +170.45 -47.25 +170.55 -47.25 +170.65 -47.25 +165.95 -47.35 +166.05 -47.35 +166.15 -47.35 +166.25 -47.35 +166.35 -47.35 +166.45 -47.35 +166.55 -47.35 +166.65 -47.35 +166.75 -47.35 +166.85 -47.35 +166.95 -47.35 +167.05 -47.35 +167.15 -47.35 +167.25 -47.35 +167.35 -47.35 +167.45 -47.35 +167.55 -47.35 +167.65 -47.35 +167.75 -47.35 +167.85 -47.35 +167.95 -47.35 +168.05 -47.35 +168.15 -47.35 +168.25 -47.35 +168.35 -47.35 +168.45 -47.35 +168.55 -47.35 +168.65 -47.35 +168.75 -47.35 +168.85 -47.35 +168.95 -47.35 +169.05 -47.35 +169.15 -47.35 +169.25 -47.35 +169.35 -47.35 +169.45 -47.35 +169.55 -47.35 +169.65 -47.35 +169.75 -47.35 +169.85 -47.35 +169.95 -47.35 +170.05 -47.35 +170.15 -47.35 +170.25 -47.35 +170.35 -47.35 +170.45 -47.35 +170.55 -47.35 +166.05 -47.45 +166.15 -47.45 +166.25 -47.45 +166.35 -47.45 +166.45 -47.45 +166.55 -47.45 +166.65 -47.45 +166.75 -47.45 +166.85 -47.45 +166.95 -47.45 +167.05 -47.45 +167.15 -47.45 +167.25 -47.45 +167.35 -47.45 +167.45 -47.45 +167.55 -47.45 +167.65 -47.45 +167.75 -47.45 +167.85 -47.45 +167.95 -47.45 +168.05 -47.45 +168.15 -47.45 +168.25 -47.45 +168.35 -47.45 +168.45 -47.45 +168.55 -47.45 +168.65 -47.45 +168.75 -47.45 +168.85 -47.45 +168.95 -47.45 +169.05 -47.45 +169.15 -47.45 +169.25 -47.45 +169.35 -47.45 +169.45 -47.45 +169.55 -47.45 +169.65 -47.45 +169.75 -47.45 +169.85 -47.45 +169.95 -47.45 +170.05 -47.45 +170.15 -47.45 +170.25 -47.45 +166.05 -47.55 +166.15 -47.55 +166.25 -47.55 +166.35 -47.55 +166.45 -47.55 +166.55 -47.55 +166.65 -47.55 +166.75 -47.55 +166.85 -47.55 +166.95 -47.55 +167.05 -47.55 +167.15 -47.55 +167.25 -47.55 +167.35 -47.55 +167.45 -47.55 +167.55 -47.55 +167.65 -47.55 +167.75 -47.55 +167.85 -47.55 +167.95 -47.55 +168.05 -47.55 +168.15 -47.55 +168.25 -47.55 +168.35 -47.55 +168.45 -47.55 +168.55 -47.55 +168.65 -47.55 +168.75 -47.55 +168.85 -47.55 +168.95 -47.55 +169.05 -47.55 +169.15 -47.55 +169.25 -47.55 +169.35 -47.55 +169.45 -47.55 +169.55 -47.55 +169.65 -47.55 +169.75 -47.55 +169.85 -47.55 +166.15 -47.65 +166.25 -47.65 +166.35 -47.65 +166.45 -47.65 +166.55 -47.65 +166.65 -47.65 +166.75 -47.65 +166.85 -47.65 +166.95 -47.65 +167.05 -47.65 +167.15 -47.65 +167.25 -47.65 +167.35 -47.65 +167.45 -47.65 +167.55 -47.65 +167.65 -47.65 +167.75 -47.65 +167.85 -47.65 +167.95 -47.65 +168.05 -47.65 +168.15 -47.65 +168.25 -47.65 +168.35 -47.65 +168.45 -47.65 +168.55 -47.65 +168.65 -47.65 +168.75 -47.65 +168.85 -47.65 +168.95 -47.65 +169.05 -47.65 +169.15 -47.65 +169.25 -47.65 +169.35 -47.65 +169.45 -47.65 +166.25 -47.75 +166.35 -47.75 +166.45 -47.75 +166.55 -47.75 +166.65 -47.75 +166.75 -47.75 +166.85 -47.75 +166.95 -47.75 +167.05 -47.75 +167.15 -47.75 +167.25 -47.75 +167.35 -47.75 +167.45 -47.75 +167.55 -47.75 +167.65 -47.75 +167.75 -47.75 +167.85 -47.75 +167.95 -47.75 +168.05 -47.75 +168.15 -47.75 +168.25 -47.75 +168.35 -47.75 +168.45 -47.75 +168.55 -47.75 +168.65 -47.75 +168.75 -47.75 +168.85 -47.75 +168.95 -47.75 +169.05 -47.75 +169.15 -47.75 +169.25 -47.75 +166.35 -47.85 +166.45 -47.85 +166.55 -47.85 +166.65 -47.85 +166.75 -47.85 +166.85 -47.85 +166.95 -47.85 +167.05 -47.85 +167.15 -47.85 +167.25 -47.85 +167.35 -47.85 +167.45 -47.85 +167.55 -47.85 +167.65 -47.85 +167.75 -47.85 +167.85 -47.85 +167.95 -47.85 +168.05 -47.85 +168.15 -47.85 +168.25 -47.85 +168.35 -47.85 +168.45 -47.85 +168.55 -47.85 +168.65 -47.85 +168.75 -47.85 +168.85 -47.85 +168.95 -47.85 +169.05 -47.85 +166.55 -47.95 +166.65 -47.95 +166.75 -47.95 +166.85 -47.95 +166.95 -47.95 +167.05 -47.95 +167.15 -47.95 +167.25 -47.95 +167.35 -47.95 +167.45 -47.95 +167.55 -47.95 +167.65 -47.95 +167.75 -47.95 +167.85 -47.95 +167.95 -47.95 +168.05 -47.95 +168.15 -47.95 +168.25 -47.95 +168.35 -47.95 +168.45 -47.95 +168.55 -47.95 +168.65 -47.95 +168.75 -47.95 +168.85 -47.95 +168.95 -47.95 +166.65 -48.05 +166.75 -48.05 +166.85 -48.05 +166.95 -48.05 +167.05 -48.05 +167.15 -48.05 +167.25 -48.05 +167.35 -48.05 +167.45 -48.05 +167.55 -48.05 +167.65 -48.05 +167.75 -48.05 +167.85 -48.05 +167.95 -48.05 +168.05 -48.05 +168.15 -48.05 +168.25 -48.05 +168.35 -48.05 +168.45 -48.05 +168.55 -48.05 +166.75 -48.15 +166.85 -48.15 +166.95 -48.15 +167.05 -48.15 +167.15 -48.15 +167.25 -48.15 +167.35 -48.15 +167.45 -48.15 +167.55 -48.15 +167.65 -48.15 +167.75 -48.15 +167.85 -48.15 +167.95 -48.15 +168.05 -48.15 +168.15 -48.15 +167.25 -48.25 +167.35 -48.25 +167.45 -48.25 +167.55 -48.25 diff --git a/csep/artifacts/Regions/nz.testing.nodes.dat b/csep/artifacts/Regions/nz.testing.nodes.dat new file mode 100644 index 00000000..c4e876b9 --- /dev/null +++ b/csep/artifacts/Regions/nz.testing.nodes.dat @@ -0,0 +1,6343 @@ +165.75 -46.15 +165.85 -46.25 +165.85 -46.15 +165.85 -46.05 +165.85 -45.95 +165.85 -45.85 +165.85 -45.75 +165.85 -45.65 +165.85 -45.55 +165.95 -46.35 +165.95 -46.25 +165.95 -46.15 +165.95 -46.05 +165.95 -45.95 +165.95 -45.85 +165.95 -45.75 +165.95 -45.65 +165.95 -45.55 +165.95 -45.45 +166.05 -46.45 +166.05 -46.35 +166.05 -46.25 +166.05 -46.15 +166.05 -46.05 +166.05 -45.95 +166.05 -45.85 +166.05 -45.75 +166.05 -45.65 +166.05 -45.55 +166.05 -45.45 +166.05 -45.35 +166.15 -46.55 +166.15 -46.45 +166.15 -46.35 +166.15 -46.25 +166.15 -46.15 +166.15 -46.05 +166.15 -45.95 +166.15 -45.85 +166.15 -45.75 +166.15 -45.65 +166.15 -45.55 +166.15 -45.45 +166.15 -45.35 +166.15 -45.25 +166.25 -46.65 +166.25 -46.55 +166.25 -46.45 +166.25 -46.35 +166.25 -46.25 +166.25 -46.15 +166.25 -46.05 +166.25 -45.95 +166.25 -45.85 +166.25 -45.75 +166.25 -45.65 +166.25 -45.55 +166.25 -45.45 +166.25 -45.35 +166.25 -45.25 +166.25 -45.15 +166.35 -46.85 +166.35 -46.75 +166.35 -46.65 +166.35 -46.55 +166.35 -46.45 +166.35 -46.35 +166.35 -46.25 +166.35 -46.15 +166.35 -46.05 +166.35 -45.95 +166.35 -45.85 +166.35 -45.75 +166.35 -45.65 +166.35 -45.55 +166.35 -45.45 +166.35 -45.35 +166.35 -45.25 +166.35 -45.15 +166.35 -45.05 +166.45 -46.95 +166.45 -46.85 +166.45 -46.75 +166.45 -46.65 +166.45 -46.55 +166.45 -46.45 +166.45 -46.35 +166.45 -46.25 +166.45 -46.15 +166.45 -46.05 +166.45 -45.95 +166.45 -45.85 +166.45 -45.75 +166.45 -45.65 +166.45 -45.55 +166.45 -45.45 +166.45 -45.35 +166.45 -45.25 +166.45 -45.15 +166.45 -45.05 +166.45 -44.95 +166.55 -47.05 +166.55 -46.95 +166.55 -46.85 +166.55 -46.75 +166.55 -46.65 +166.55 -46.55 +166.55 -46.45 +166.55 -46.35 +166.55 -46.25 +166.55 -46.15 +166.55 -46.05 +166.55 -45.95 +166.55 -45.85 +166.55 -45.75 +166.55 -45.65 +166.55 -45.55 +166.55 -45.45 +166.55 -45.35 +166.55 -45.25 +166.55 -45.15 +166.55 -45.05 +166.55 -44.95 +166.55 -44.85 +166.65 -47.15 +166.65 -47.05 +166.65 -46.95 +166.65 -46.85 +166.65 -46.75 +166.65 -46.65 +166.65 -46.55 +166.65 -46.45 +166.65 -46.35 +166.65 -46.25 +166.65 -46.15 +166.65 -46.05 +166.65 -45.95 +166.65 -45.85 +166.65 -45.75 +166.65 -45.65 +166.65 -45.55 +166.65 -45.45 +166.65 -45.35 +166.65 -45.25 +166.65 -45.15 +166.65 -45.05 +166.65 -44.95 +166.65 -44.85 +166.65 -44.75 +166.75 -47.25 +166.75 -47.15 +166.75 -47.05 +166.75 -46.95 +166.75 -46.85 +166.75 -46.75 +166.75 -46.65 +166.75 -46.55 +166.75 -46.45 +166.75 -46.35 +166.75 -46.25 +166.75 -46.15 +166.75 -46.05 +166.75 -45.95 +166.75 -45.85 +166.75 -45.75 +166.75 -45.65 +166.75 -45.55 +166.75 -45.45 +166.75 -45.35 +166.75 -45.25 +166.75 -45.15 +166.75 -45.05 +166.75 -44.95 +166.75 -44.85 +166.75 -44.75 +166.75 -44.65 +166.85 -47.35 +166.85 -47.25 +166.85 -47.15 +166.85 -47.05 +166.85 -46.95 +166.85 -46.85 +166.85 -46.75 +166.85 -46.65 +166.85 -46.55 +166.85 -46.45 +166.85 -46.35 +166.85 -46.25 +166.85 -46.15 +166.85 -46.05 +166.85 -45.95 +166.85 -45.85 +166.85 -45.75 +166.85 -45.65 +166.85 -45.55 +166.85 -45.45 +166.85 -45.35 +166.85 -45.25 +166.85 -45.15 +166.85 -45.05 +166.85 -44.95 +166.85 -44.85 +166.85 -44.75 +166.85 -44.65 +166.85 -44.55 +166.95 -47.55 +166.95 -47.45 +166.95 -47.35 +166.95 -47.25 +166.95 -47.15 +166.95 -47.05 +166.95 -46.95 +166.95 -46.85 +166.95 -46.75 +166.95 -46.65 +166.95 -46.55 +166.95 -46.45 +166.95 -46.35 +166.95 -46.25 +166.95 -46.15 +166.95 -46.05 +166.95 -45.95 +166.95 -45.85 +166.95 -45.75 +166.95 -45.65 +166.95 -45.55 +166.95 -45.45 +166.95 -45.35 +166.95 -45.25 +166.95 -45.15 +166.95 -45.05 +166.95 -44.95 +166.95 -44.85 +166.95 -44.75 +166.95 -44.65 +166.95 -44.55 +167.05 -47.55 +167.05 -47.45 +167.05 -47.35 +167.05 -47.25 +167.05 -47.15 +167.05 -47.05 +167.05 -46.95 +167.05 -46.85 +167.05 -46.75 +167.05 -46.65 +167.05 -46.55 +167.05 -46.45 +167.05 -46.35 +167.05 -46.25 +167.05 -46.15 +167.05 -46.05 +167.05 -45.95 +167.05 -45.85 +167.05 -45.75 +167.05 -45.65 +167.05 -45.55 +167.05 -45.45 +167.05 -45.35 +167.05 -45.25 +167.05 -45.15 +167.05 -45.05 +167.05 -44.95 +167.05 -44.85 +167.05 -44.75 +167.05 -44.65 +167.05 -44.55 +167.05 -44.45 +167.15 -47.65 +167.15 -47.55 +167.15 -47.45 +167.15 -47.35 +167.15 -47.25 +167.15 -47.15 +167.15 -47.05 +167.15 -46.95 +167.15 -46.85 +167.15 -46.75 +167.15 -46.65 +167.15 -46.55 +167.15 -46.45 +167.15 -46.35 +167.15 -46.25 +167.15 -46.15 +167.15 -46.05 +167.15 -45.95 +167.15 -45.85 +167.15 -45.75 +167.15 -45.65 +167.15 -45.55 +167.15 -45.45 +167.15 -45.35 +167.15 -45.25 +167.15 -45.15 +167.15 -45.05 +167.15 -44.95 +167.15 -44.85 +167.15 -44.75 +167.15 -44.65 +167.15 -44.55 +167.15 -44.45 +167.15 -44.35 +167.25 -47.65 +167.25 -47.55 +167.25 -47.45 +167.25 -47.35 +167.25 -47.25 +167.25 -47.15 +167.25 -47.05 +167.25 -46.95 +167.25 -46.85 +167.25 -46.75 +167.25 -46.65 +167.25 -46.55 +167.25 -46.45 +167.25 -46.35 +167.25 -46.25 +167.25 -46.15 +167.25 -46.05 +167.25 -45.95 +167.25 -45.85 +167.25 -45.75 +167.25 -45.65 +167.25 -45.55 +167.25 -45.45 +167.25 -45.35 +167.25 -45.25 +167.25 -45.15 +167.25 -45.05 +167.25 -44.95 +167.25 -44.85 +167.25 -44.75 +167.25 -44.65 +167.25 -44.55 +167.25 -44.45 +167.25 -44.35 +167.25 -44.25 +167.35 -47.75 +167.35 -47.65 +167.35 -47.55 +167.35 -47.45 +167.35 -47.35 +167.35 -47.25 +167.35 -47.15 +167.35 -47.05 +167.35 -46.95 +167.35 -46.85 +167.35 -46.75 +167.35 -46.65 +167.35 -46.55 +167.35 -46.45 +167.35 -46.35 +167.35 -46.25 +167.35 -46.15 +167.35 -46.05 +167.35 -45.95 +167.35 -45.85 +167.35 -45.75 +167.35 -45.65 +167.35 -45.55 +167.35 -45.45 +167.35 -45.35 +167.35 -45.25 +167.35 -45.15 +167.35 -45.05 +167.35 -44.95 +167.35 -44.85 +167.35 -44.75 +167.35 -44.65 +167.35 -44.55 +167.35 -44.45 +167.35 -44.35 +167.35 -44.25 +167.35 -44.15 +167.45 -47.75 +167.45 -47.65 +167.45 -47.55 +167.45 -47.45 +167.45 -47.35 +167.45 -47.25 +167.45 -47.15 +167.45 -47.05 +167.45 -46.95 +167.45 -46.85 +167.45 -46.75 +167.45 -46.65 +167.45 -46.55 +167.45 -46.45 +167.45 -46.35 +167.45 -46.25 +167.45 -46.15 +167.45 -46.05 +167.45 -45.95 +167.45 -45.85 +167.45 -45.75 +167.45 -45.65 +167.45 -45.55 +167.45 -45.45 +167.45 -45.35 +167.45 -45.25 +167.45 -45.15 +167.45 -45.05 +167.45 -44.95 +167.45 -44.85 +167.45 -44.75 +167.45 -44.65 +167.45 -44.55 +167.45 -44.45 +167.45 -44.35 +167.45 -44.25 +167.45 -44.15 +167.45 -44.05 +167.55 -47.75 +167.55 -47.65 +167.55 -47.55 +167.55 -47.45 +167.55 -47.35 +167.55 -47.25 +167.55 -47.15 +167.55 -47.05 +167.55 -46.95 +167.55 -46.85 +167.55 -46.75 +167.55 -46.65 +167.55 -46.55 +167.55 -46.45 +167.55 -46.35 +167.55 -46.25 +167.55 -46.15 +167.55 -46.05 +167.55 -45.95 +167.55 -45.85 +167.55 -45.75 +167.55 -45.65 +167.55 -45.55 +167.55 -45.45 +167.55 -45.35 +167.55 -45.25 +167.55 -45.15 +167.55 -45.05 +167.55 -44.95 +167.55 -44.85 +167.55 -44.75 +167.55 -44.65 +167.55 -44.55 +167.55 -44.45 +167.55 -44.35 +167.55 -44.25 +167.55 -44.15 +167.55 -44.05 +167.55 -43.95 +167.65 -47.75 +167.65 -47.65 +167.65 -47.55 +167.65 -47.45 +167.65 -47.35 +167.65 -47.25 +167.65 -47.15 +167.65 -47.05 +167.65 -46.95 +167.65 -46.85 +167.65 -46.75 +167.65 -46.65 +167.65 -46.55 +167.65 -46.45 +167.65 -46.35 +167.65 -46.25 +167.65 -46.15 +167.65 -46.05 +167.65 -45.95 +167.65 -45.85 +167.65 -45.75 +167.65 -45.65 +167.65 -45.55 +167.65 -45.45 +167.65 -45.35 +167.65 -45.25 +167.65 -45.15 +167.65 -45.05 +167.65 -44.95 +167.65 -44.85 +167.65 -44.75 +167.65 -44.65 +167.65 -44.55 +167.65 -44.45 +167.65 -44.35 +167.65 -44.25 +167.65 -44.15 +167.65 -44.05 +167.65 -43.95 +167.65 -43.85 +167.75 -47.75 +167.75 -47.65 +167.75 -47.55 +167.75 -47.45 +167.75 -47.35 +167.75 -47.25 +167.75 -47.15 +167.75 -47.05 +167.75 -46.95 +167.75 -46.85 +167.75 -46.75 +167.75 -46.65 +167.75 -46.55 +167.75 -46.45 +167.75 -46.35 +167.75 -46.25 +167.75 -46.15 +167.75 -46.05 +167.75 -45.95 +167.75 -45.85 +167.75 -45.75 +167.75 -45.65 +167.75 -45.55 +167.75 -45.45 +167.75 -45.35 +167.75 -45.25 +167.75 -45.15 +167.75 -45.05 +167.75 -44.95 +167.75 -44.85 +167.75 -44.75 +167.75 -44.65 +167.75 -44.55 +167.75 -44.45 +167.75 -44.35 +167.75 -44.25 +167.75 -44.15 +167.75 -44.05 +167.75 -43.95 +167.75 -43.85 +167.75 -43.75 +167.85 -47.75 +167.85 -47.65 +167.85 -47.55 +167.85 -47.45 +167.85 -47.35 +167.85 -47.25 +167.85 -47.15 +167.85 -47.05 +167.85 -46.95 +167.85 -46.85 +167.85 -46.75 +167.85 -46.65 +167.85 -46.55 +167.85 -46.45 +167.85 -46.35 +167.85 -46.25 +167.85 -46.15 +167.85 -46.05 +167.85 -45.95 +167.85 -45.85 +167.85 -45.75 +167.85 -45.65 +167.85 -45.55 +167.85 -45.45 +167.85 -45.35 +167.85 -45.25 +167.85 -45.15 +167.85 -45.05 +167.85 -44.95 +167.85 -44.85 +167.85 -44.75 +167.85 -44.65 +167.85 -44.55 +167.85 -44.45 +167.85 -44.35 +167.85 -44.25 +167.85 -44.15 +167.85 -44.05 +167.85 -43.95 +167.85 -43.85 +167.85 -43.75 +167.85 -43.65 +167.95 -47.65 +167.95 -47.55 +167.95 -47.45 +167.95 -47.35 +167.95 -47.25 +167.95 -47.15 +167.95 -47.05 +167.95 -46.95 +167.95 -46.85 +167.95 -46.75 +167.95 -46.65 +167.95 -46.55 +167.95 -46.45 +167.95 -46.35 +167.95 -46.25 +167.95 -46.15 +167.95 -46.05 +167.95 -45.95 +167.95 -45.85 +167.95 -45.75 +167.95 -45.65 +167.95 -45.55 +167.95 -45.45 +167.95 -45.35 +167.95 -45.25 +167.95 -45.15 +167.95 -45.05 +167.95 -44.95 +167.95 -44.85 +167.95 -44.75 +167.95 -44.65 +167.95 -44.55 +167.95 -44.45 +167.95 -44.35 +167.95 -44.25 +167.95 -44.15 +167.95 -44.05 +167.95 -43.95 +167.95 -43.85 +167.95 -43.75 +167.95 -43.65 +168.05 -47.65 +168.05 -47.55 +168.05 -47.45 +168.05 -47.35 +168.05 -47.25 +168.05 -47.15 +168.05 -47.05 +168.05 -46.95 +168.05 -46.85 +168.05 -46.75 +168.05 -46.65 +168.05 -46.55 +168.05 -46.45 +168.05 -46.35 +168.05 -46.25 +168.05 -46.15 +168.05 -46.05 +168.05 -45.95 +168.05 -45.85 +168.05 -45.75 +168.05 -45.65 +168.05 -45.55 +168.05 -45.45 +168.05 -45.35 +168.05 -45.25 +168.05 -45.15 +168.05 -45.05 +168.05 -44.95 +168.05 -44.85 +168.05 -44.75 +168.05 -44.65 +168.05 -44.55 +168.05 -44.45 +168.05 -44.35 +168.05 -44.25 +168.05 -44.15 +168.05 -44.05 +168.05 -43.95 +168.05 -43.85 +168.05 -43.75 +168.05 -43.65 +168.05 -43.55 +168.15 -47.65 +168.15 -47.55 +168.15 -47.45 +168.15 -47.35 +168.15 -47.25 +168.15 -47.15 +168.15 -47.05 +168.15 -46.95 +168.15 -46.85 +168.15 -46.75 +168.15 -46.65 +168.15 -46.55 +168.15 -46.45 +168.15 -46.35 +168.15 -46.25 +168.15 -46.15 +168.15 -46.05 +168.15 -45.95 +168.15 -45.85 +168.15 -45.75 +168.15 -45.65 +168.15 -45.55 +168.15 -45.45 +168.15 -45.35 +168.15 -45.25 +168.15 -45.15 +168.15 -45.05 +168.15 -44.95 +168.15 -44.85 +168.15 -44.75 +168.15 -44.65 +168.15 -44.55 +168.15 -44.45 +168.15 -44.35 +168.15 -44.25 +168.15 -44.15 +168.15 -44.05 +168.15 -43.95 +168.15 -43.85 +168.15 -43.75 +168.15 -43.65 +168.15 -43.55 +168.15 -43.45 +168.25 -47.55 +168.25 -47.45 +168.25 -47.35 +168.25 -47.25 +168.25 -47.15 +168.25 -47.05 +168.25 -46.95 +168.25 -46.85 +168.25 -46.75 +168.25 -46.65 +168.25 -46.55 +168.25 -46.45 +168.25 -46.35 +168.25 -46.25 +168.25 -46.15 +168.25 -46.05 +168.25 -45.95 +168.25 -45.85 +168.25 -45.75 +168.25 -45.65 +168.25 -45.55 +168.25 -45.45 +168.25 -45.35 +168.25 -45.25 +168.25 -45.15 +168.25 -45.05 +168.25 -44.95 +168.25 -44.85 +168.25 -44.75 +168.25 -44.65 +168.25 -44.55 +168.25 -44.45 +168.25 -44.35 +168.25 -44.25 +168.25 -44.15 +168.25 -44.05 +168.25 -43.95 +168.25 -43.85 +168.25 -43.75 +168.25 -43.65 +168.25 -43.55 +168.25 -43.45 +168.25 -43.35 +168.35 -47.55 +168.35 -47.45 +168.35 -47.35 +168.35 -47.25 +168.35 -47.15 +168.35 -47.05 +168.35 -46.95 +168.35 -46.85 +168.35 -46.75 +168.35 -46.65 +168.35 -46.55 +168.35 -46.45 +168.35 -46.35 +168.35 -46.25 +168.35 -46.15 +168.35 -46.05 +168.35 -45.95 +168.35 -45.85 +168.35 -45.75 +168.35 -45.65 +168.35 -45.55 +168.35 -45.45 +168.35 -45.35 +168.35 -45.25 +168.35 -45.15 +168.35 -45.05 +168.35 -44.95 +168.35 -44.85 +168.35 -44.75 +168.35 -44.65 +168.35 -44.55 +168.35 -44.45 +168.35 -44.35 +168.35 -44.25 +168.35 -44.15 +168.35 -44.05 +168.35 -43.95 +168.35 -43.85 +168.35 -43.75 +168.35 -43.65 +168.35 -43.55 +168.35 -43.45 +168.35 -43.35 +168.35 -43.25 +168.45 -47.45 +168.45 -47.35 +168.45 -47.25 +168.45 -47.15 +168.45 -47.05 +168.45 -46.95 +168.45 -46.85 +168.45 -46.75 +168.45 -46.65 +168.45 -46.55 +168.45 -46.45 +168.45 -46.35 +168.45 -46.25 +168.45 -46.15 +168.45 -46.05 +168.45 -45.95 +168.45 -45.85 +168.45 -45.75 +168.45 -45.65 +168.45 -45.55 +168.45 -45.45 +168.45 -45.35 +168.45 -45.25 +168.45 -45.15 +168.45 -45.05 +168.45 -44.95 +168.45 -44.85 +168.45 -44.75 +168.45 -44.65 +168.45 -44.55 +168.45 -44.45 +168.45 -44.35 +168.45 -44.25 +168.45 -44.15 +168.45 -44.05 +168.45 -43.95 +168.45 -43.85 +168.45 -43.75 +168.45 -43.65 +168.45 -43.55 +168.45 -43.45 +168.45 -43.35 +168.45 -43.25 +168.45 -43.15 +168.55 -47.45 +168.55 -47.35 +168.55 -47.25 +168.55 -47.15 +168.55 -47.05 +168.55 -46.95 +168.55 -46.85 +168.55 -46.75 +168.55 -46.65 +168.55 -46.55 +168.55 -46.45 +168.55 -46.35 +168.55 -46.25 +168.55 -46.15 +168.55 -46.05 +168.55 -45.95 +168.55 -45.85 +168.55 -45.75 +168.55 -45.65 +168.55 -45.55 +168.55 -45.45 +168.55 -45.35 +168.55 -45.25 +168.55 -45.15 +168.55 -45.05 +168.55 -44.95 +168.55 -44.85 +168.55 -44.75 +168.55 -44.65 +168.55 -44.55 +168.55 -44.45 +168.55 -44.35 +168.55 -44.25 +168.55 -44.15 +168.55 -44.05 +168.55 -43.95 +168.55 -43.85 +168.55 -43.75 +168.55 -43.65 +168.55 -43.55 +168.55 -43.45 +168.55 -43.35 +168.55 -43.25 +168.55 -43.15 +168.55 -43.05 +168.65 -47.35 +168.65 -47.25 +168.65 -47.15 +168.65 -47.05 +168.65 -46.95 +168.65 -46.85 +168.65 -46.75 +168.65 -46.65 +168.65 -46.55 +168.65 -46.45 +168.65 -46.35 +168.65 -46.25 +168.65 -46.15 +168.65 -46.05 +168.65 -45.95 +168.65 -45.85 +168.65 -45.75 +168.65 -45.65 +168.65 -45.55 +168.65 -45.45 +168.65 -45.35 +168.65 -45.25 +168.65 -45.15 +168.65 -45.05 +168.65 -44.95 +168.65 -44.85 +168.65 -44.75 +168.65 -44.65 +168.65 -44.55 +168.65 -44.45 +168.65 -44.35 +168.65 -44.25 +168.65 -44.15 +168.65 -44.05 +168.65 -43.95 +168.65 -43.85 +168.65 -43.75 +168.65 -43.65 +168.65 -43.55 +168.65 -43.45 +168.65 -43.35 +168.65 -43.25 +168.65 -43.15 +168.65 -43.05 +168.75 -47.25 +168.75 -47.15 +168.75 -47.05 +168.75 -46.95 +168.75 -46.85 +168.75 -46.75 +168.75 -46.65 +168.75 -46.55 +168.75 -46.45 +168.75 -46.35 +168.75 -46.25 +168.75 -46.15 +168.75 -46.05 +168.75 -45.95 +168.75 -45.85 +168.75 -45.75 +168.75 -45.65 +168.75 -45.55 +168.75 -45.45 +168.75 -45.35 +168.75 -45.25 +168.75 -45.15 +168.75 -45.05 +168.75 -44.95 +168.75 -44.85 +168.75 -44.75 +168.75 -44.65 +168.75 -44.55 +168.75 -44.45 +168.75 -44.35 +168.75 -44.25 +168.75 -44.15 +168.75 -44.05 +168.75 -43.95 +168.75 -43.85 +168.75 -43.75 +168.75 -43.65 +168.75 -43.55 +168.75 -43.45 +168.75 -43.35 +168.75 -43.25 +168.75 -43.15 +168.75 -43.05 +168.75 -42.95 +168.85 -47.15 +168.85 -47.05 +168.85 -46.95 +168.85 -46.85 +168.85 -46.75 +168.85 -46.65 +168.85 -46.55 +168.85 -46.45 +168.85 -46.35 +168.85 -46.25 +168.85 -46.15 +168.85 -46.05 +168.85 -45.95 +168.85 -45.85 +168.85 -45.75 +168.85 -45.65 +168.85 -45.55 +168.85 -45.45 +168.85 -45.35 +168.85 -45.25 +168.85 -45.15 +168.85 -45.05 +168.85 -44.95 +168.85 -44.85 +168.85 -44.75 +168.85 -44.65 +168.85 -44.55 +168.85 -44.45 +168.85 -44.35 +168.85 -44.25 +168.85 -44.15 +168.85 -44.05 +168.85 -43.95 +168.85 -43.85 +168.85 -43.75 +168.85 -43.65 +168.85 -43.55 +168.85 -43.45 +168.85 -43.35 +168.85 -43.25 +168.85 -43.15 +168.85 -43.05 +168.85 -42.95 +168.85 -42.85 +168.95 -47.05 +168.95 -46.95 +168.95 -46.85 +168.95 -46.75 +168.95 -46.65 +168.95 -46.55 +168.95 -46.45 +168.95 -46.35 +168.95 -46.25 +168.95 -46.15 +168.95 -46.05 +168.95 -45.95 +168.95 -45.85 +168.95 -45.75 +168.95 -45.65 +168.95 -45.55 +168.95 -45.45 +168.95 -45.35 +168.95 -45.25 +168.95 -45.15 +168.95 -45.05 +168.95 -44.95 +168.95 -44.85 +168.95 -44.75 +168.95 -44.65 +168.95 -44.55 +168.95 -44.45 +168.95 -44.35 +168.95 -44.25 +168.95 -44.15 +168.95 -44.05 +168.95 -43.95 +168.95 -43.85 +168.95 -43.75 +168.95 -43.65 +168.95 -43.55 +168.95 -43.45 +168.95 -43.35 +168.95 -43.25 +168.95 -43.15 +168.95 -43.05 +168.95 -42.95 +168.95 -42.85 +168.95 -42.75 +169.05 -47.05 +169.05 -46.95 +169.05 -46.85 +169.05 -46.75 +169.05 -46.65 +169.05 -46.55 +169.05 -46.45 +169.05 -46.35 +169.05 -46.25 +169.05 -46.15 +169.05 -46.05 +169.05 -45.95 +169.05 -45.85 +169.05 -45.75 +169.05 -45.65 +169.05 -45.55 +169.05 -45.45 +169.05 -45.35 +169.05 -45.25 +169.05 -45.15 +169.05 -45.05 +169.05 -44.95 +169.05 -44.85 +169.05 -44.75 +169.05 -44.65 +169.05 -44.55 +169.05 -44.45 +169.05 -44.35 +169.05 -44.25 +169.05 -44.15 +169.05 -44.05 +169.05 -43.95 +169.05 -43.85 +169.05 -43.75 +169.05 -43.65 +169.05 -43.55 +169.05 -43.45 +169.05 -43.35 +169.05 -43.25 +169.05 -43.15 +169.05 -43.05 +169.05 -42.95 +169.05 -42.85 +169.05 -42.75 +169.05 -42.65 +169.15 -47.05 +169.15 -46.95 +169.15 -46.85 +169.15 -46.75 +169.15 -46.65 +169.15 -46.55 +169.15 -46.45 +169.15 -46.35 +169.15 -46.25 +169.15 -46.15 +169.15 -46.05 +169.15 -45.95 +169.15 -45.85 +169.15 -45.75 +169.15 -45.65 +169.15 -45.55 +169.15 -45.45 +169.15 -45.35 +169.15 -45.25 +169.15 -45.15 +169.15 -45.05 +169.15 -44.95 +169.15 -44.85 +169.15 -44.75 +169.15 -44.65 +169.15 -44.55 +169.15 -44.45 +169.15 -44.35 +169.15 -44.25 +169.15 -44.15 +169.15 -44.05 +169.15 -43.95 +169.15 -43.85 +169.15 -43.75 +169.15 -43.65 +169.15 -43.55 +169.15 -43.45 +169.15 -43.35 +169.15 -43.25 +169.15 -43.15 +169.15 -43.05 +169.15 -42.95 +169.15 -42.85 +169.15 -42.75 +169.15 -42.65 +169.15 -42.55 +169.25 -47.05 +169.25 -46.95 +169.25 -46.85 +169.25 -46.75 +169.25 -46.65 +169.25 -46.55 +169.25 -46.45 +169.25 -46.35 +169.25 -46.25 +169.25 -46.15 +169.25 -46.05 +169.25 -45.95 +169.25 -45.85 +169.25 -45.75 +169.25 -45.65 +169.25 -45.55 +169.25 -45.45 +169.25 -45.35 +169.25 -45.25 +169.25 -45.15 +169.25 -45.05 +169.25 -44.95 +169.25 -44.85 +169.25 -44.75 +169.25 -44.65 +169.25 -44.55 +169.25 -44.45 +169.25 -44.35 +169.25 -44.25 +169.25 -44.15 +169.25 -44.05 +169.25 -43.95 +169.25 -43.85 +169.25 -43.75 +169.25 -43.65 +169.25 -43.55 +169.25 -43.45 +169.25 -43.35 +169.25 -43.25 +169.25 -43.15 +169.25 -43.05 +169.25 -42.95 +169.25 -42.85 +169.25 -42.75 +169.25 -42.65 +169.25 -42.55 +169.25 -42.45 +169.35 -47.05 +169.35 -46.95 +169.35 -46.85 +169.35 -46.75 +169.35 -46.65 +169.35 -46.55 +169.35 -46.45 +169.35 -46.35 +169.35 -46.25 +169.35 -46.15 +169.35 -46.05 +169.35 -45.95 +169.35 -45.85 +169.35 -45.75 +169.35 -45.65 +169.35 -45.55 +169.35 -45.45 +169.35 -45.35 +169.35 -45.25 +169.35 -45.15 +169.35 -45.05 +169.35 -44.95 +169.35 -44.85 +169.35 -44.75 +169.35 -44.65 +169.35 -44.55 +169.35 -44.45 +169.35 -44.35 +169.35 -44.25 +169.35 -44.15 +169.35 -44.05 +169.35 -43.95 +169.35 -43.85 +169.35 -43.75 +169.35 -43.65 +169.35 -43.55 +169.35 -43.45 +169.35 -43.35 +169.35 -43.25 +169.35 -43.15 +169.35 -43.05 +169.35 -42.95 +169.35 -42.85 +169.35 -42.75 +169.35 -42.65 +169.35 -42.55 +169.35 -42.45 +169.45 -47.05 +169.45 -46.95 +169.45 -46.85 +169.45 -46.75 +169.45 -46.65 +169.45 -46.55 +169.45 -46.45 +169.45 -46.35 +169.45 -46.25 +169.45 -46.15 +169.45 -46.05 +169.45 -45.95 +169.45 -45.85 +169.45 -45.75 +169.45 -45.65 +169.45 -45.55 +169.45 -45.45 +169.45 -45.35 +169.45 -45.25 +169.45 -45.15 +169.45 -45.05 +169.45 -44.95 +169.45 -44.85 +169.45 -44.75 +169.45 -44.65 +169.45 -44.55 +169.45 -44.45 +169.45 -44.35 +169.45 -44.25 +169.45 -44.15 +169.45 -44.05 +169.45 -43.95 +169.45 -43.85 +169.45 -43.75 +169.45 -43.65 +169.45 -43.55 +169.45 -43.45 +169.45 -43.35 +169.45 -43.25 +169.45 -43.15 +169.45 -43.05 +169.45 -42.95 +169.45 -42.85 +169.45 -42.75 +169.45 -42.65 +169.45 -42.55 +169.45 -42.45 +169.45 -42.35 +169.55 -47.05 +169.55 -46.95 +169.55 -46.85 +169.55 -46.75 +169.55 -46.65 +169.55 -46.55 +169.55 -46.45 +169.55 -46.35 +169.55 -46.25 +169.55 -46.15 +169.55 -46.05 +169.55 -45.95 +169.55 -45.85 +169.55 -45.75 +169.55 -45.65 +169.55 -45.55 +169.55 -45.45 +169.55 -45.35 +169.55 -45.25 +169.55 -45.15 +169.55 -45.05 +169.55 -44.95 +169.55 -44.85 +169.55 -44.75 +169.55 -44.65 +169.55 -44.55 +169.55 -44.45 +169.55 -44.35 +169.55 -44.25 +169.55 -44.15 +169.55 -44.05 +169.55 -43.95 +169.55 -43.85 +169.55 -43.75 +169.55 -43.65 +169.55 -43.55 +169.55 -43.45 +169.55 -43.35 +169.55 -43.25 +169.55 -43.15 +169.55 -43.05 +169.55 -42.95 +169.55 -42.85 +169.55 -42.75 +169.55 -42.65 +169.55 -42.55 +169.55 -42.45 +169.55 -42.35 +169.55 -42.25 +169.65 -47.05 +169.65 -46.95 +169.65 -46.85 +169.65 -46.75 +169.65 -46.65 +169.65 -46.55 +169.65 -46.45 +169.65 -46.35 +169.65 -46.25 +169.65 -46.15 +169.65 -46.05 +169.65 -45.95 +169.65 -45.85 +169.65 -45.75 +169.65 -45.65 +169.65 -45.55 +169.65 -45.45 +169.65 -45.35 +169.65 -45.25 +169.65 -45.15 +169.65 -45.05 +169.65 -44.95 +169.65 -44.85 +169.65 -44.75 +169.65 -44.65 +169.65 -44.55 +169.65 -44.45 +169.65 -44.35 +169.65 -44.25 +169.65 -44.15 +169.65 -44.05 +169.65 -43.95 +169.65 -43.85 +169.65 -43.75 +169.65 -43.65 +169.65 -43.55 +169.65 -43.45 +169.65 -43.35 +169.65 -43.25 +169.65 -43.15 +169.65 -43.05 +169.65 -42.95 +169.65 -42.85 +169.65 -42.75 +169.65 -42.65 +169.65 -42.55 +169.65 -42.45 +169.65 -42.35 +169.65 -42.25 +169.65 -42.15 +169.75 -46.95 +169.75 -46.85 +169.75 -46.75 +169.75 -46.65 +169.75 -46.55 +169.75 -46.45 +169.75 -46.35 +169.75 -46.25 +169.75 -46.15 +169.75 -46.05 +169.75 -45.95 +169.75 -45.85 +169.75 -45.75 +169.75 -45.65 +169.75 -45.55 +169.75 -45.45 +169.75 -45.35 +169.75 -45.25 +169.75 -45.15 +169.75 -45.05 +169.75 -44.95 +169.75 -44.85 +169.75 -44.75 +169.75 -44.65 +169.75 -44.55 +169.75 -44.45 +169.75 -44.35 +169.75 -44.25 +169.75 -44.15 +169.75 -44.05 +169.75 -43.95 +169.75 -43.85 +169.75 -43.75 +169.75 -43.65 +169.75 -43.55 +169.75 -43.45 +169.75 -43.35 +169.75 -43.25 +169.75 -43.15 +169.75 -43.05 +169.75 -42.95 +169.75 -42.85 +169.75 -42.75 +169.75 -42.65 +169.75 -42.55 +169.75 -42.45 +169.75 -42.35 +169.75 -42.25 +169.75 -42.15 +169.75 -42.05 +169.85 -46.95 +169.85 -46.85 +169.85 -46.75 +169.85 -46.65 +169.85 -46.55 +169.85 -46.45 +169.85 -46.35 +169.85 -46.25 +169.85 -46.15 +169.85 -46.05 +169.85 -45.95 +169.85 -45.85 +169.85 -45.75 +169.85 -45.65 +169.85 -45.55 +169.85 -45.45 +169.85 -45.35 +169.85 -45.25 +169.85 -45.15 +169.85 -45.05 +169.85 -44.95 +169.85 -44.85 +169.85 -44.75 +169.85 -44.65 +169.85 -44.55 +169.85 -44.45 +169.85 -44.35 +169.85 -44.25 +169.85 -44.15 +169.85 -44.05 +169.85 -43.95 +169.85 -43.85 +169.85 -43.75 +169.85 -43.65 +169.85 -43.55 +169.85 -43.45 +169.85 -43.35 +169.85 -43.25 +169.85 -43.15 +169.85 -43.05 +169.85 -42.95 +169.85 -42.85 +169.85 -42.75 +169.85 -42.65 +169.85 -42.55 +169.85 -42.45 +169.85 -42.35 +169.85 -42.25 +169.85 -42.15 +169.85 -42.05 +169.85 -41.95 +169.95 -46.95 +169.95 -46.85 +169.95 -46.75 +169.95 -46.65 +169.95 -46.55 +169.95 -46.45 +169.95 -46.35 +169.95 -46.25 +169.95 -46.15 +169.95 -46.05 +169.95 -45.95 +169.95 -45.85 +169.95 -45.75 +169.95 -45.65 +169.95 -45.55 +169.95 -45.45 +169.95 -45.35 +169.95 -45.25 +169.95 -45.15 +169.95 -45.05 +169.95 -44.95 +169.95 -44.85 +169.95 -44.75 +169.95 -44.65 +169.95 -44.55 +169.95 -44.45 +169.95 -44.35 +169.95 -44.25 +169.95 -44.15 +169.95 -44.05 +169.95 -43.95 +169.95 -43.85 +169.95 -43.75 +169.95 -43.65 +169.95 -43.55 +169.95 -43.45 +169.95 -43.35 +169.95 -43.25 +169.95 -43.15 +169.95 -43.05 +169.95 -42.95 +169.95 -42.85 +169.95 -42.75 +169.95 -42.65 +169.95 -42.55 +169.95 -42.45 +169.95 -42.35 +169.95 -42.25 +169.95 -42.15 +169.95 -42.05 +169.95 -41.95 +169.95 -41.85 +170.05 -46.85 +170.05 -46.75 +170.05 -46.65 +170.05 -46.55 +170.05 -46.45 +170.05 -46.35 +170.05 -46.25 +170.05 -46.15 +170.05 -46.05 +170.05 -45.95 +170.05 -45.85 +170.05 -45.75 +170.05 -45.65 +170.05 -45.55 +170.05 -45.45 +170.05 -45.35 +170.05 -45.25 +170.05 -45.15 +170.05 -45.05 +170.05 -44.95 +170.05 -44.85 +170.05 -44.75 +170.05 -44.65 +170.05 -44.55 +170.05 -44.45 +170.05 -44.35 +170.05 -44.25 +170.05 -44.15 +170.05 -44.05 +170.05 -43.95 +170.05 -43.85 +170.05 -43.75 +170.05 -43.65 +170.05 -43.55 +170.05 -43.45 +170.05 -43.35 +170.05 -43.25 +170.05 -43.15 +170.05 -43.05 +170.05 -42.95 +170.05 -42.85 +170.05 -42.75 +170.05 -42.65 +170.05 -42.55 +170.05 -42.45 +170.05 -42.35 +170.05 -42.25 +170.05 -42.15 +170.05 -42.05 +170.05 -41.95 +170.05 -41.85 +170.05 -41.75 +170.15 -46.85 +170.15 -46.75 +170.15 -46.65 +170.15 -46.55 +170.15 -46.45 +170.15 -46.35 +170.15 -46.25 +170.15 -46.15 +170.15 -46.05 +170.15 -45.95 +170.15 -45.85 +170.15 -45.75 +170.15 -45.65 +170.15 -45.55 +170.15 -45.45 +170.15 -45.35 +170.15 -45.25 +170.15 -45.15 +170.15 -45.05 +170.15 -44.95 +170.15 -44.85 +170.15 -44.75 +170.15 -44.65 +170.15 -44.55 +170.15 -44.45 +170.15 -44.35 +170.15 -44.25 +170.15 -44.15 +170.15 -44.05 +170.15 -43.95 +170.15 -43.85 +170.15 -43.75 +170.15 -43.65 +170.15 -43.55 +170.15 -43.45 +170.15 -43.35 +170.15 -43.25 +170.15 -43.15 +170.15 -43.05 +170.15 -42.95 +170.15 -42.85 +170.15 -42.75 +170.15 -42.65 +170.15 -42.55 +170.15 -42.45 +170.15 -42.35 +170.15 -42.25 +170.15 -42.15 +170.15 -42.05 +170.15 -41.95 +170.15 -41.85 +170.15 -41.75 +170.25 -46.75 +170.25 -46.65 +170.25 -46.55 +170.25 -46.45 +170.25 -46.35 +170.25 -46.25 +170.25 -46.15 +170.25 -46.05 +170.25 -45.95 +170.25 -45.85 +170.25 -45.75 +170.25 -45.65 +170.25 -45.55 +170.25 -45.45 +170.25 -45.35 +170.25 -45.25 +170.25 -45.15 +170.25 -45.05 +170.25 -44.95 +170.25 -44.85 +170.25 -44.75 +170.25 -44.65 +170.25 -44.55 +170.25 -44.45 +170.25 -44.35 +170.25 -44.25 +170.25 -44.15 +170.25 -44.05 +170.25 -43.95 +170.25 -43.85 +170.25 -43.75 +170.25 -43.65 +170.25 -43.55 +170.25 -43.45 +170.25 -43.35 +170.25 -43.25 +170.25 -43.15 +170.25 -43.05 +170.25 -42.95 +170.25 -42.85 +170.25 -42.75 +170.25 -42.65 +170.25 -42.55 +170.25 -42.45 +170.25 -42.35 +170.25 -42.25 +170.25 -42.15 +170.25 -42.05 +170.25 -41.95 +170.25 -41.85 +170.25 -41.75 +170.25 -41.65 +170.35 -46.75 +170.35 -46.65 +170.35 -46.55 +170.35 -46.45 +170.35 -46.35 +170.35 -46.25 +170.35 -46.15 +170.35 -46.05 +170.35 -45.95 +170.35 -45.85 +170.35 -45.75 +170.35 -45.65 +170.35 -45.55 +170.35 -45.45 +170.35 -45.35 +170.35 -45.25 +170.35 -45.15 +170.35 -45.05 +170.35 -44.95 +170.35 -44.85 +170.35 -44.75 +170.35 -44.65 +170.35 -44.55 +170.35 -44.45 +170.35 -44.35 +170.35 -44.25 +170.35 -44.15 +170.35 -44.05 +170.35 -43.95 +170.35 -43.85 +170.35 -43.75 +170.35 -43.65 +170.35 -43.55 +170.35 -43.45 +170.35 -43.35 +170.35 -43.25 +170.35 -43.15 +170.35 -43.05 +170.35 -42.95 +170.35 -42.85 +170.35 -42.75 +170.35 -42.65 +170.35 -42.55 +170.35 -42.45 +170.35 -42.35 +170.35 -42.25 +170.35 -42.15 +170.35 -42.05 +170.35 -41.95 +170.35 -41.85 +170.35 -41.75 +170.35 -41.65 +170.35 -41.55 +170.45 -46.65 +170.45 -46.55 +170.45 -46.45 +170.45 -46.35 +170.45 -46.25 +170.45 -46.15 +170.45 -46.05 +170.45 -45.95 +170.45 -45.85 +170.45 -45.75 +170.45 -45.65 +170.45 -45.55 +170.45 -45.45 +170.45 -45.35 +170.45 -45.25 +170.45 -45.15 +170.45 -45.05 +170.45 -44.95 +170.45 -44.85 +170.45 -44.75 +170.45 -44.65 +170.45 -44.55 +170.45 -44.45 +170.45 -44.35 +170.45 -44.25 +170.45 -44.15 +170.45 -44.05 +170.45 -43.95 +170.45 -43.85 +170.45 -43.75 +170.45 -43.65 +170.45 -43.55 +170.45 -43.45 +170.45 -43.35 +170.45 -43.25 +170.45 -43.15 +170.45 -43.05 +170.45 -42.95 +170.45 -42.85 +170.45 -42.75 +170.45 -42.65 +170.45 -42.55 +170.45 -42.45 +170.45 -42.35 +170.45 -42.25 +170.45 -42.15 +170.45 -42.05 +170.45 -41.95 +170.45 -41.85 +170.45 -41.75 +170.45 -41.65 +170.45 -41.55 +170.45 -41.45 +170.55 -46.65 +170.55 -46.55 +170.55 -46.45 +170.55 -46.35 +170.55 -46.25 +170.55 -46.15 +170.55 -46.05 +170.55 -45.95 +170.55 -45.85 +170.55 -45.75 +170.55 -45.65 +170.55 -45.55 +170.55 -45.45 +170.55 -45.35 +170.55 -45.25 +170.55 -45.15 +170.55 -45.05 +170.55 -44.95 +170.55 -44.85 +170.55 -44.75 +170.55 -44.65 +170.55 -44.55 +170.55 -44.45 +170.55 -44.35 +170.55 -44.25 +170.55 -44.15 +170.55 -44.05 +170.55 -43.95 +170.55 -43.85 +170.55 -43.75 +170.55 -43.65 +170.55 -43.55 +170.55 -43.45 +170.55 -43.35 +170.55 -43.25 +170.55 -43.15 +170.55 -43.05 +170.55 -42.95 +170.55 -42.85 +170.55 -42.75 +170.55 -42.65 +170.55 -42.55 +170.55 -42.45 +170.55 -42.35 +170.55 -42.25 +170.55 -42.15 +170.55 -42.05 +170.55 -41.95 +170.55 -41.85 +170.55 -41.75 +170.55 -41.65 +170.55 -41.55 +170.55 -41.45 +170.55 -41.35 +170.65 -46.55 +170.65 -46.45 +170.65 -46.35 +170.65 -46.25 +170.65 -46.15 +170.65 -46.05 +170.65 -45.95 +170.65 -45.85 +170.65 -45.75 +170.65 -45.65 +170.65 -45.55 +170.65 -45.45 +170.65 -45.35 +170.65 -45.25 +170.65 -45.15 +170.65 -45.05 +170.65 -44.95 +170.65 -44.85 +170.65 -44.75 +170.65 -44.65 +170.65 -44.55 +170.65 -44.45 +170.65 -44.35 +170.65 -44.25 +170.65 -44.15 +170.65 -44.05 +170.65 -43.95 +170.65 -43.85 +170.65 -43.75 +170.65 -43.65 +170.65 -43.55 +170.65 -43.45 +170.65 -43.35 +170.65 -43.25 +170.65 -43.15 +170.65 -43.05 +170.65 -42.95 +170.65 -42.85 +170.65 -42.75 +170.65 -42.65 +170.65 -42.55 +170.65 -42.45 +170.65 -42.35 +170.65 -42.25 +170.65 -42.15 +170.65 -42.05 +170.65 -41.95 +170.65 -41.85 +170.65 -41.75 +170.65 -41.65 +170.65 -41.55 +170.65 -41.45 +170.65 -41.35 +170.65 -41.25 +170.75 -46.55 +170.75 -46.45 +170.75 -46.35 +170.75 -46.25 +170.75 -46.15 +170.75 -46.05 +170.75 -45.95 +170.75 -45.85 +170.75 -45.75 +170.75 -45.65 +170.75 -45.55 +170.75 -45.45 +170.75 -45.35 +170.75 -45.25 +170.75 -45.15 +170.75 -45.05 +170.75 -44.95 +170.75 -44.85 +170.75 -44.75 +170.75 -44.65 +170.75 -44.55 +170.75 -44.45 +170.75 -44.35 +170.75 -44.25 +170.75 -44.15 +170.75 -44.05 +170.75 -43.95 +170.75 -43.85 +170.75 -43.75 +170.75 -43.65 +170.75 -43.55 +170.75 -43.45 +170.75 -43.35 +170.75 -43.25 +170.75 -43.15 +170.75 -43.05 +170.75 -42.95 +170.75 -42.85 +170.75 -42.75 +170.75 -42.65 +170.75 -42.55 +170.75 -42.45 +170.75 -42.35 +170.75 -42.25 +170.75 -42.15 +170.75 -42.05 +170.75 -41.95 +170.75 -41.85 +170.75 -41.75 +170.75 -41.65 +170.75 -41.55 +170.75 -41.45 +170.75 -41.35 +170.75 -41.25 +170.75 -41.15 +170.85 -46.45 +170.85 -46.35 +170.85 -46.25 +170.85 -46.15 +170.85 -46.05 +170.85 -45.95 +170.85 -45.85 +170.85 -45.75 +170.85 -45.65 +170.85 -45.55 +170.85 -45.45 +170.85 -45.35 +170.85 -45.25 +170.85 -45.15 +170.85 -45.05 +170.85 -44.95 +170.85 -44.85 +170.85 -44.75 +170.85 -44.65 +170.85 -44.55 +170.85 -44.45 +170.85 -44.35 +170.85 -44.25 +170.85 -44.15 +170.85 -44.05 +170.85 -43.95 +170.85 -43.85 +170.85 -43.75 +170.85 -43.65 +170.85 -43.55 +170.85 -43.45 +170.85 -43.35 +170.85 -43.25 +170.85 -43.15 +170.85 -43.05 +170.85 -42.95 +170.85 -42.85 +170.85 -42.75 +170.85 -42.65 +170.85 -42.55 +170.85 -42.45 +170.85 -42.35 +170.85 -42.25 +170.85 -42.15 +170.85 -42.05 +170.85 -41.95 +170.85 -41.85 +170.85 -41.75 +170.85 -41.65 +170.85 -41.55 +170.85 -41.45 +170.85 -41.35 +170.85 -41.25 +170.85 -41.15 +170.95 -46.35 +170.95 -46.25 +170.95 -46.15 +170.95 -46.05 +170.95 -45.95 +170.95 -45.85 +170.95 -45.75 +170.95 -45.65 +170.95 -45.55 +170.95 -45.45 +170.95 -45.35 +170.95 -45.25 +170.95 -45.15 +170.95 -45.05 +170.95 -44.95 +170.95 -44.85 +170.95 -44.75 +170.95 -44.65 +170.95 -44.55 +170.95 -44.45 +170.95 -44.35 +170.95 -44.25 +170.95 -44.15 +170.95 -44.05 +170.95 -43.95 +170.95 -43.85 +170.95 -43.75 +170.95 -43.65 +170.95 -43.55 +170.95 -43.45 +170.95 -43.35 +170.95 -43.25 +170.95 -43.15 +170.95 -43.05 +170.95 -42.95 +170.95 -42.85 +170.95 -42.75 +170.95 -42.65 +170.95 -42.55 +170.95 -42.45 +170.95 -42.35 +170.95 -42.25 +170.95 -42.15 +170.95 -42.05 +170.95 -41.95 +170.95 -41.85 +170.95 -41.75 +170.95 -41.65 +170.95 -41.55 +170.95 -41.45 +170.95 -41.35 +170.95 -41.25 +170.95 -41.15 +170.95 -41.05 +171.05 -46.35 +171.05 -46.25 +171.05 -46.15 +171.05 -46.05 +171.05 -45.95 +171.05 -45.85 +171.05 -45.75 +171.05 -45.65 +171.05 -45.55 +171.05 -45.45 +171.05 -45.35 +171.05 -45.25 +171.05 -45.15 +171.05 -45.05 +171.05 -44.95 +171.05 -44.85 +171.05 -44.75 +171.05 -44.65 +171.05 -44.55 +171.05 -44.45 +171.05 -44.35 +171.05 -44.25 +171.05 -44.15 +171.05 -44.05 +171.05 -43.95 +171.05 -43.85 +171.05 -43.75 +171.05 -43.65 +171.05 -43.55 +171.05 -43.45 +171.05 -43.35 +171.05 -43.25 +171.05 -43.15 +171.05 -43.05 +171.05 -42.95 +171.05 -42.85 +171.05 -42.75 +171.05 -42.65 +171.05 -42.55 +171.05 -42.45 +171.05 -42.35 +171.05 -42.25 +171.05 -42.15 +171.05 -42.05 +171.05 -41.95 +171.05 -41.85 +171.05 -41.75 +171.05 -41.65 +171.05 -41.55 +171.05 -41.45 +171.05 -41.35 +171.05 -41.25 +171.05 -41.15 +171.05 -41.05 +171.05 -40.95 +171.15 -46.25 +171.15 -46.15 +171.15 -46.05 +171.15 -45.95 +171.15 -45.85 +171.15 -45.75 +171.15 -45.65 +171.15 -45.55 +171.15 -45.45 +171.15 -45.35 +171.15 -45.25 +171.15 -45.15 +171.15 -45.05 +171.15 -44.95 +171.15 -44.85 +171.15 -44.75 +171.15 -44.65 +171.15 -44.55 +171.15 -44.45 +171.15 -44.35 +171.15 -44.25 +171.15 -44.15 +171.15 -44.05 +171.15 -43.95 +171.15 -43.85 +171.15 -43.75 +171.15 -43.65 +171.15 -43.55 +171.15 -43.45 +171.15 -43.35 +171.15 -43.25 +171.15 -43.15 +171.15 -43.05 +171.15 -42.95 +171.15 -42.85 +171.15 -42.75 +171.15 -42.65 +171.15 -42.55 +171.15 -42.45 +171.15 -42.35 +171.15 -42.25 +171.15 -42.15 +171.15 -42.05 +171.15 -41.95 +171.15 -41.85 +171.15 -41.75 +171.15 -41.65 +171.15 -41.55 +171.15 -41.45 +171.15 -41.35 +171.15 -41.25 +171.15 -41.15 +171.15 -41.05 +171.15 -40.95 +171.15 -40.85 +171.25 -46.15 +171.25 -46.05 +171.25 -45.95 +171.25 -45.85 +171.25 -45.75 +171.25 -45.65 +171.25 -45.55 +171.25 -45.45 +171.25 -45.35 +171.25 -45.25 +171.25 -45.15 +171.25 -45.05 +171.25 -44.95 +171.25 -44.85 +171.25 -44.75 +171.25 -44.65 +171.25 -44.55 +171.25 -44.45 +171.25 -44.35 +171.25 -44.25 +171.25 -44.15 +171.25 -44.05 +171.25 -43.95 +171.25 -43.85 +171.25 -43.75 +171.25 -43.65 +171.25 -43.55 +171.25 -43.45 +171.25 -43.35 +171.25 -43.25 +171.25 -43.15 +171.25 -43.05 +171.25 -42.95 +171.25 -42.85 +171.25 -42.75 +171.25 -42.65 +171.25 -42.55 +171.25 -42.45 +171.25 -42.35 +171.25 -42.25 +171.25 -42.15 +171.25 -42.05 +171.25 -41.95 +171.25 -41.85 +171.25 -41.75 +171.25 -41.65 +171.25 -41.55 +171.25 -41.45 +171.25 -41.35 +171.25 -41.25 +171.25 -41.15 +171.25 -41.05 +171.25 -40.95 +171.25 -40.85 +171.25 -40.75 +171.35 -46.05 +171.35 -45.95 +171.35 -45.85 +171.35 -45.75 +171.35 -45.65 +171.35 -45.55 +171.35 -45.45 +171.35 -45.35 +171.35 -45.25 +171.35 -45.15 +171.35 -45.05 +171.35 -44.95 +171.35 -44.85 +171.35 -44.75 +171.35 -44.65 +171.35 -44.55 +171.35 -44.45 +171.35 -44.35 +171.35 -44.25 +171.35 -44.15 +171.35 -44.05 +171.35 -43.95 +171.35 -43.85 +171.35 -43.75 +171.35 -43.65 +171.35 -43.55 +171.35 -43.45 +171.35 -43.35 +171.35 -43.25 +171.35 -43.15 +171.35 -43.05 +171.35 -42.95 +171.35 -42.85 +171.35 -42.75 +171.35 -42.65 +171.35 -42.55 +171.35 -42.45 +171.35 -42.35 +171.35 -42.25 +171.35 -42.15 +171.35 -42.05 +171.35 -41.95 +171.35 -41.85 +171.35 -41.75 +171.35 -41.65 +171.35 -41.55 +171.35 -41.45 +171.35 -41.35 +171.35 -41.25 +171.35 -41.15 +171.35 -41.05 +171.35 -40.95 +171.35 -40.85 +171.35 -40.75 +171.35 -40.65 +171.45 -45.95 +171.45 -45.85 +171.45 -45.75 +171.45 -45.65 +171.45 -45.55 +171.45 -45.45 +171.45 -45.35 +171.45 -45.25 +171.45 -45.15 +171.45 -45.05 +171.45 -44.95 +171.45 -44.85 +171.45 -44.75 +171.45 -44.65 +171.45 -44.55 +171.45 -44.45 +171.45 -44.35 +171.45 -44.25 +171.45 -44.15 +171.45 -44.05 +171.45 -43.95 +171.45 -43.85 +171.45 -43.75 +171.45 -43.65 +171.45 -43.55 +171.45 -43.45 +171.45 -43.35 +171.45 -43.25 +171.45 -43.15 +171.45 -43.05 +171.45 -42.95 +171.45 -42.85 +171.45 -42.75 +171.45 -42.65 +171.45 -42.55 +171.45 -42.45 +171.45 -42.35 +171.45 -42.25 +171.45 -42.15 +171.45 -42.05 +171.45 -41.95 +171.45 -41.85 +171.45 -41.75 +171.45 -41.65 +171.45 -41.55 +171.45 -41.45 +171.45 -41.35 +171.45 -41.25 +171.45 -41.15 +171.45 -41.05 +171.45 -40.95 +171.45 -40.85 +171.45 -40.75 +171.45 -40.65 +171.45 -40.55 +171.55 -45.65 +171.55 -45.55 +171.55 -45.45 +171.55 -45.35 +171.55 -45.25 +171.55 -45.15 +171.55 -45.05 +171.55 -44.95 +171.55 -44.85 +171.55 -44.75 +171.55 -44.65 +171.55 -44.55 +171.55 -44.45 +171.55 -44.35 +171.55 -44.25 +171.55 -44.15 +171.55 -44.05 +171.55 -43.95 +171.55 -43.85 +171.55 -43.75 +171.55 -43.65 +171.55 -43.55 +171.55 -43.45 +171.55 -43.35 +171.55 -43.25 +171.55 -43.15 +171.55 -43.05 +171.55 -42.95 +171.55 -42.85 +171.55 -42.75 +171.55 -42.65 +171.55 -42.55 +171.55 -42.45 +171.55 -42.35 +171.55 -42.25 +171.55 -42.15 +171.55 -42.05 +171.55 -41.95 +171.55 -41.85 +171.55 -41.75 +171.55 -41.65 +171.55 -41.55 +171.55 -41.45 +171.55 -41.35 +171.55 -41.25 +171.55 -41.15 +171.55 -41.05 +171.55 -40.95 +171.55 -40.85 +171.55 -40.75 +171.55 -40.65 +171.55 -40.55 +171.55 -40.45 +171.65 -45.35 +171.65 -45.25 +171.65 -45.15 +171.65 -45.05 +171.65 -44.95 +171.65 -44.85 +171.65 -44.75 +171.65 -44.65 +171.65 -44.55 +171.65 -44.45 +171.65 -44.35 +171.65 -44.25 +171.65 -44.15 +171.65 -44.05 +171.65 -43.95 +171.65 -43.85 +171.65 -43.75 +171.65 -43.65 +171.65 -43.55 +171.65 -43.45 +171.65 -43.35 +171.65 -43.25 +171.65 -43.15 +171.65 -43.05 +171.65 -42.95 +171.65 -42.85 +171.65 -42.75 +171.65 -42.65 +171.65 -42.55 +171.65 -42.45 +171.65 -42.35 +171.65 -42.25 +171.65 -42.15 +171.65 -42.05 +171.65 -41.95 +171.65 -41.85 +171.65 -41.75 +171.65 -41.65 +171.65 -41.55 +171.65 -41.45 +171.65 -41.35 +171.65 -41.25 +171.65 -41.15 +171.65 -41.05 +171.65 -40.95 +171.65 -40.85 +171.65 -40.75 +171.65 -40.65 +171.65 -40.55 +171.65 -40.45 +171.75 -45.15 +171.75 -45.05 +171.75 -44.95 +171.75 -44.85 +171.75 -44.75 +171.75 -44.65 +171.75 -44.55 +171.75 -44.45 +171.75 -44.35 +171.75 -44.25 +171.75 -44.15 +171.75 -44.05 +171.75 -43.95 +171.75 -43.85 +171.75 -43.75 +171.75 -43.65 +171.75 -43.55 +171.75 -43.45 +171.75 -43.35 +171.75 -43.25 +171.75 -43.15 +171.75 -43.05 +171.75 -42.95 +171.75 -42.85 +171.75 -42.75 +171.75 -42.65 +171.75 -42.55 +171.75 -42.45 +171.75 -42.35 +171.75 -42.25 +171.75 -42.15 +171.75 -42.05 +171.75 -41.95 +171.75 -41.85 +171.75 -41.75 +171.75 -41.65 +171.75 -41.55 +171.75 -41.45 +171.75 -41.35 +171.75 -41.25 +171.75 -41.15 +171.75 -41.05 +171.75 -40.95 +171.75 -40.85 +171.75 -40.75 +171.75 -40.65 +171.75 -40.55 +171.75 -40.45 +171.75 -40.35 +171.85 -44.95 +171.85 -44.85 +171.85 -44.75 +171.85 -44.65 +171.85 -44.55 +171.85 -44.45 +171.85 -44.35 +171.85 -44.25 +171.85 -44.15 +171.85 -44.05 +171.85 -43.95 +171.85 -43.85 +171.85 -43.75 +171.85 -43.65 +171.85 -43.55 +171.85 -43.45 +171.85 -43.35 +171.85 -43.25 +171.85 -43.15 +171.85 -43.05 +171.85 -42.95 +171.85 -42.85 +171.85 -42.75 +171.85 -42.65 +171.85 -42.55 +171.85 -42.45 +171.85 -42.35 +171.85 -42.25 +171.85 -42.15 +171.85 -42.05 +171.85 -41.95 +171.85 -41.85 +171.85 -41.75 +171.85 -41.65 +171.85 -41.55 +171.85 -41.45 +171.85 -41.35 +171.85 -41.25 +171.85 -41.15 +171.85 -41.05 +171.85 -40.95 +171.85 -40.85 +171.85 -40.75 +171.85 -40.65 +171.85 -40.55 +171.85 -40.45 +171.85 -40.35 +171.85 -40.25 +171.95 -44.45 +171.95 -44.35 +171.95 -44.25 +171.95 -44.15 +171.95 -44.05 +171.95 -43.95 +171.95 -43.85 +171.95 -43.75 +171.95 -43.65 +171.95 -43.55 +171.95 -43.45 +171.95 -43.35 +171.95 -43.25 +171.95 -43.15 +171.95 -43.05 +171.95 -42.95 +171.95 -42.85 +171.95 -42.75 +171.95 -42.65 +171.95 -42.55 +171.95 -42.45 +171.95 -42.35 +171.95 -42.25 +171.95 -42.15 +171.95 -42.05 +171.95 -41.95 +171.95 -41.85 +171.95 -41.75 +171.95 -41.65 +171.95 -41.55 +171.95 -41.45 +171.95 -41.35 +171.95 -41.25 +171.95 -41.15 +171.95 -41.05 +171.95 -40.95 +171.95 -40.85 +171.95 -40.75 +171.95 -40.65 +171.95 -40.55 +171.95 -40.45 +171.95 -40.35 +171.95 -40.25 +171.95 -40.15 +172.05 -44.45 +172.05 -44.35 +172.05 -44.25 +172.05 -44.15 +172.05 -44.05 +172.05 -43.95 +172.05 -43.85 +172.05 -43.75 +172.05 -43.65 +172.05 -43.55 +172.05 -43.45 +172.05 -43.35 +172.05 -43.25 +172.05 -43.15 +172.05 -43.05 +172.05 -42.95 +172.05 -42.85 +172.05 -42.75 +172.05 -42.65 +172.05 -42.55 +172.05 -42.45 +172.05 -42.35 +172.05 -42.25 +172.05 -42.15 +172.05 -42.05 +172.05 -41.95 +172.05 -41.85 +172.05 -41.75 +172.05 -41.65 +172.05 -41.55 +172.05 -41.45 +172.05 -41.35 +172.05 -41.25 +172.05 -41.15 +172.05 -41.05 +172.05 -40.95 +172.05 -40.85 +172.05 -40.75 +172.05 -40.65 +172.05 -40.55 +172.05 -40.45 +172.05 -40.35 +172.05 -40.25 +172.05 -40.15 +172.05 -40.05 +172.15 -44.45 +172.15 -44.35 +172.15 -44.25 +172.15 -44.15 +172.15 -44.05 +172.15 -43.95 +172.15 -43.85 +172.15 -43.75 +172.15 -43.65 +172.15 -43.55 +172.15 -43.45 +172.15 -43.35 +172.15 -43.25 +172.15 -43.15 +172.15 -43.05 +172.15 -42.95 +172.15 -42.85 +172.15 -42.75 +172.15 -42.65 +172.15 -42.55 +172.15 -42.45 +172.15 -42.35 +172.15 -42.25 +172.15 -42.15 +172.15 -42.05 +172.15 -41.95 +172.15 -41.85 +172.15 -41.75 +172.15 -41.65 +172.15 -41.55 +172.15 -41.45 +172.15 -41.35 +172.15 -41.25 +172.15 -41.15 +172.15 -41.05 +172.15 -40.95 +172.15 -40.85 +172.15 -40.75 +172.15 -40.65 +172.15 -40.55 +172.15 -40.45 +172.15 -40.35 +172.15 -40.25 +172.15 -40.15 +172.15 -40.05 +172.15 -39.95 +172.25 -44.35 +172.25 -44.25 +172.25 -44.15 +172.25 -44.05 +172.25 -43.95 +172.25 -43.85 +172.25 -43.75 +172.25 -43.65 +172.25 -43.55 +172.25 -43.45 +172.25 -43.35 +172.25 -43.25 +172.25 -43.15 +172.25 -43.05 +172.25 -42.95 +172.25 -42.85 +172.25 -42.75 +172.25 -42.65 +172.25 -42.55 +172.25 -42.45 +172.25 -42.35 +172.25 -42.25 +172.25 -42.15 +172.25 -42.05 +172.25 -41.95 +172.25 -41.85 +172.25 -41.75 +172.25 -41.65 +172.25 -41.55 +172.25 -41.45 +172.25 -41.35 +172.25 -41.25 +172.25 -41.15 +172.25 -41.05 +172.25 -40.95 +172.25 -40.85 +172.25 -40.75 +172.25 -40.65 +172.25 -40.55 +172.25 -40.45 +172.25 -40.35 +172.25 -40.25 +172.25 -40.15 +172.25 -40.05 +172.25 -39.95 +172.25 -39.85 +172.25 -34.75 +172.25 -34.65 +172.25 -34.55 +172.25 -34.45 +172.25 -34.35 +172.35 -44.35 +172.35 -44.25 +172.35 -44.15 +172.35 -44.05 +172.35 -43.95 +172.35 -43.85 +172.35 -43.75 +172.35 -43.65 +172.35 -43.55 +172.35 -43.45 +172.35 -43.35 +172.35 -43.25 +172.35 -43.15 +172.35 -43.05 +172.35 -42.95 +172.35 -42.85 +172.35 -42.75 +172.35 -42.65 +172.35 -42.55 +172.35 -42.45 +172.35 -42.35 +172.35 -42.25 +172.35 -42.15 +172.35 -42.05 +172.35 -41.95 +172.35 -41.85 +172.35 -41.75 +172.35 -41.65 +172.35 -41.55 +172.35 -41.45 +172.35 -41.35 +172.35 -41.25 +172.35 -41.15 +172.35 -41.05 +172.35 -40.95 +172.35 -40.85 +172.35 -40.75 +172.35 -40.65 +172.35 -40.55 +172.35 -40.45 +172.35 -40.35 +172.35 -40.25 +172.35 -40.15 +172.35 -40.05 +172.35 -39.95 +172.35 -39.85 +172.35 -34.85 +172.35 -34.75 +172.35 -34.65 +172.35 -34.55 +172.35 -34.45 +172.35 -34.35 +172.35 -34.25 +172.35 -34.15 +172.45 -44.35 +172.45 -44.25 +172.45 -44.15 +172.45 -44.05 +172.45 -43.95 +172.45 -43.85 +172.45 -43.75 +172.45 -43.65 +172.45 -43.55 +172.45 -43.45 +172.45 -43.35 +172.45 -43.25 +172.45 -43.15 +172.45 -43.05 +172.45 -42.95 +172.45 -42.85 +172.45 -42.75 +172.45 -42.65 +172.45 -42.55 +172.45 -42.45 +172.45 -42.35 +172.45 -42.25 +172.45 -42.15 +172.45 -42.05 +172.45 -41.95 +172.45 -41.85 +172.45 -41.75 +172.45 -41.65 +172.45 -41.55 +172.45 -41.45 +172.45 -41.35 +172.45 -41.25 +172.45 -41.15 +172.45 -41.05 +172.45 -40.95 +172.45 -40.85 +172.45 -40.75 +172.45 -40.65 +172.45 -40.55 +172.45 -40.45 +172.45 -40.35 +172.45 -40.25 +172.45 -40.15 +172.45 -40.05 +172.45 -39.95 +172.45 -39.85 +172.45 -39.75 +172.45 -35.05 +172.45 -34.95 +172.45 -34.85 +172.45 -34.75 +172.45 -34.65 +172.45 -34.55 +172.45 -34.45 +172.45 -34.35 +172.45 -34.25 +172.45 -34.15 +172.45 -34.05 +172.55 -44.25 +172.55 -44.15 +172.55 -44.05 +172.55 -43.95 +172.55 -43.85 +172.55 -43.75 +172.55 -43.65 +172.55 -43.55 +172.55 -43.45 +172.55 -43.35 +172.55 -43.25 +172.55 -43.15 +172.55 -43.05 +172.55 -42.95 +172.55 -42.85 +172.55 -42.75 +172.55 -42.65 +172.55 -42.55 +172.55 -42.45 +172.55 -42.35 +172.55 -42.25 +172.55 -42.15 +172.55 -42.05 +172.55 -41.95 +172.55 -41.85 +172.55 -41.75 +172.55 -41.65 +172.55 -41.55 +172.55 -41.45 +172.55 -41.35 +172.55 -41.25 +172.55 -41.15 +172.55 -41.05 +172.55 -40.95 +172.55 -40.85 +172.55 -40.75 +172.55 -40.65 +172.55 -40.55 +172.55 -40.45 +172.55 -40.35 +172.55 -40.25 +172.55 -40.15 +172.55 -40.05 +172.55 -39.95 +172.55 -39.85 +172.55 -39.75 +172.55 -39.65 +172.55 -35.45 +172.55 -35.35 +172.55 -35.25 +172.55 -35.15 +172.55 -35.05 +172.55 -34.95 +172.55 -34.85 +172.55 -34.75 +172.55 -34.65 +172.55 -34.55 +172.55 -34.45 +172.55 -34.35 +172.55 -34.25 +172.55 -34.15 +172.55 -34.05 +172.65 -44.25 +172.65 -44.15 +172.65 -44.05 +172.65 -43.95 +172.65 -43.85 +172.65 -43.75 +172.65 -43.65 +172.65 -43.55 +172.65 -43.45 +172.65 -43.35 +172.65 -43.25 +172.65 -43.15 +172.65 -43.05 +172.65 -42.95 +172.65 -42.85 +172.65 -42.75 +172.65 -42.65 +172.65 -42.55 +172.65 -42.45 +172.65 -42.35 +172.65 -42.25 +172.65 -42.15 +172.65 -42.05 +172.65 -41.95 +172.65 -41.85 +172.65 -41.75 +172.65 -41.65 +172.65 -41.55 +172.65 -41.45 +172.65 -41.35 +172.65 -41.25 +172.65 -41.15 +172.65 -41.05 +172.65 -40.95 +172.65 -40.85 +172.65 -40.75 +172.65 -40.65 +172.65 -40.55 +172.65 -40.45 +172.65 -40.35 +172.65 -40.25 +172.65 -40.15 +172.65 -40.05 +172.65 -39.95 +172.65 -39.85 +172.65 -39.75 +172.65 -39.65 +172.65 -39.55 +172.65 -35.55 +172.65 -35.45 +172.65 -35.35 +172.65 -35.25 +172.65 -35.15 +172.65 -35.05 +172.65 -34.95 +172.65 -34.85 +172.65 -34.75 +172.65 -34.65 +172.65 -34.55 +172.65 -34.45 +172.65 -34.35 +172.65 -34.25 +172.65 -34.15 +172.65 -34.05 +172.65 -33.95 +172.75 -44.35 +172.75 -44.25 +172.75 -44.15 +172.75 -44.05 +172.75 -43.95 +172.75 -43.85 +172.75 -43.75 +172.75 -43.65 +172.75 -43.55 +172.75 -43.45 +172.75 -43.35 +172.75 -43.25 +172.75 -43.15 +172.75 -43.05 +172.75 -42.95 +172.75 -42.85 +172.75 -42.75 +172.75 -42.65 +172.75 -42.55 +172.75 -42.45 +172.75 -42.35 +172.75 -42.25 +172.75 -42.15 +172.75 -42.05 +172.75 -41.95 +172.75 -41.85 +172.75 -41.75 +172.75 -41.65 +172.75 -41.55 +172.75 -41.45 +172.75 -41.35 +172.75 -41.25 +172.75 -41.15 +172.75 -41.05 +172.75 -40.95 +172.75 -40.85 +172.75 -40.75 +172.75 -40.65 +172.75 -40.55 +172.75 -40.45 +172.75 -40.35 +172.75 -40.25 +172.75 -40.15 +172.75 -40.05 +172.75 -39.95 +172.75 -39.85 +172.75 -39.75 +172.75 -39.65 +172.75 -39.55 +172.75 -39.45 +172.75 -35.65 +172.75 -35.55 +172.75 -35.45 +172.75 -35.35 +172.75 -35.25 +172.75 -35.15 +172.75 -35.05 +172.75 -34.95 +172.75 -34.85 +172.75 -34.75 +172.75 -34.65 +172.75 -34.55 +172.75 -34.45 +172.75 -34.35 +172.75 -34.25 +172.75 -34.15 +172.75 -34.05 +172.75 -33.95 +172.85 -44.35 +172.85 -44.25 +172.85 -44.15 +172.85 -44.05 +172.85 -43.95 +172.85 -43.85 +172.85 -43.75 +172.85 -43.65 +172.85 -43.55 +172.85 -43.45 +172.85 -43.35 +172.85 -43.25 +172.85 -43.15 +172.85 -43.05 +172.85 -42.95 +172.85 -42.85 +172.85 -42.75 +172.85 -42.65 +172.85 -42.55 +172.85 -42.45 +172.85 -42.35 +172.85 -42.25 +172.85 -42.15 +172.85 -42.05 +172.85 -41.95 +172.85 -41.85 +172.85 -41.75 +172.85 -41.65 +172.85 -41.55 +172.85 -41.45 +172.85 -41.35 +172.85 -41.25 +172.85 -41.15 +172.85 -41.05 +172.85 -40.95 +172.85 -40.85 +172.85 -40.75 +172.85 -40.65 +172.85 -40.55 +172.85 -40.45 +172.85 -40.35 +172.85 -40.25 +172.85 -40.15 +172.85 -40.05 +172.85 -39.95 +172.85 -39.85 +172.85 -39.75 +172.85 -39.65 +172.85 -39.55 +172.85 -39.45 +172.85 -39.35 +172.85 -35.75 +172.85 -35.65 +172.85 -35.55 +172.85 -35.45 +172.85 -35.35 +172.85 -35.25 +172.85 -35.15 +172.85 -35.05 +172.85 -34.95 +172.85 -34.85 +172.85 -34.75 +172.85 -34.65 +172.85 -34.55 +172.85 -34.45 +172.85 -34.35 +172.85 -34.25 +172.85 -34.15 +172.85 -34.05 +172.85 -33.95 +172.95 -44.35 +172.95 -44.25 +172.95 -44.15 +172.95 -44.05 +172.95 -43.95 +172.95 -43.85 +172.95 -43.75 +172.95 -43.65 +172.95 -43.55 +172.95 -43.45 +172.95 -43.35 +172.95 -43.25 +172.95 -43.15 +172.95 -43.05 +172.95 -42.95 +172.95 -42.85 +172.95 -42.75 +172.95 -42.65 +172.95 -42.55 +172.95 -42.45 +172.95 -42.35 +172.95 -42.25 +172.95 -42.15 +172.95 -42.05 +172.95 -41.95 +172.95 -41.85 +172.95 -41.75 +172.95 -41.65 +172.95 -41.55 +172.95 -41.45 +172.95 -41.35 +172.95 -41.25 +172.95 -41.15 +172.95 -41.05 +172.95 -40.95 +172.95 -40.85 +172.95 -40.75 +172.95 -40.65 +172.95 -40.55 +172.95 -40.45 +172.95 -40.35 +172.95 -40.25 +172.95 -40.15 +172.95 -40.05 +172.95 -39.95 +172.95 -39.85 +172.95 -39.75 +172.95 -39.65 +172.95 -39.55 +172.95 -39.45 +172.95 -39.35 +172.95 -39.25 +172.95 -35.85 +172.95 -35.75 +172.95 -35.65 +172.95 -35.55 +172.95 -35.45 +172.95 -35.35 +172.95 -35.25 +172.95 -35.15 +172.95 -35.05 +172.95 -34.95 +172.95 -34.85 +172.95 -34.75 +172.95 -34.65 +172.95 -34.55 +172.95 -34.45 +172.95 -34.35 +172.95 -34.25 +172.95 -34.15 +172.95 -34.05 +172.95 -33.95 +173.05 -44.35 +173.05 -44.25 +173.05 -44.15 +173.05 -44.05 +173.05 -43.95 +173.05 -43.85 +173.05 -43.75 +173.05 -43.65 +173.05 -43.55 +173.05 -43.45 +173.05 -43.35 +173.05 -43.25 +173.05 -43.15 +173.05 -43.05 +173.05 -42.95 +173.05 -42.85 +173.05 -42.75 +173.05 -42.65 +173.05 -42.55 +173.05 -42.45 +173.05 -42.35 +173.05 -42.25 +173.05 -42.15 +173.05 -42.05 +173.05 -41.95 +173.05 -41.85 +173.05 -41.75 +173.05 -41.65 +173.05 -41.55 +173.05 -41.45 +173.05 -41.35 +173.05 -41.25 +173.05 -41.15 +173.05 -41.05 +173.05 -40.95 +173.05 -40.85 +173.05 -40.75 +173.05 -40.65 +173.05 -40.55 +173.05 -40.45 +173.05 -40.35 +173.05 -40.25 +173.05 -40.15 +173.05 -40.05 +173.05 -39.95 +173.05 -39.85 +173.05 -39.75 +173.05 -39.65 +173.05 -39.55 +173.05 -39.45 +173.05 -39.35 +173.05 -39.25 +173.05 -35.95 +173.05 -35.85 +173.05 -35.75 +173.05 -35.65 +173.05 -35.55 +173.05 -35.45 +173.05 -35.35 +173.05 -35.25 +173.05 -35.15 +173.05 -35.05 +173.05 -34.95 +173.05 -34.85 +173.05 -34.75 +173.05 -34.65 +173.05 -34.55 +173.05 -34.45 +173.05 -34.35 +173.05 -34.25 +173.05 -34.15 +173.05 -34.05 +173.05 -33.95 +173.15 -44.35 +173.15 -44.25 +173.15 -44.15 +173.15 -44.05 +173.15 -43.95 +173.15 -43.85 +173.15 -43.75 +173.15 -43.65 +173.15 -43.55 +173.15 -43.45 +173.15 -43.35 +173.15 -43.25 +173.15 -43.15 +173.15 -43.05 +173.15 -42.95 +173.15 -42.85 +173.15 -42.75 +173.15 -42.65 +173.15 -42.55 +173.15 -42.45 +173.15 -42.35 +173.15 -42.25 +173.15 -42.15 +173.15 -42.05 +173.15 -41.95 +173.15 -41.85 +173.15 -41.75 +173.15 -41.65 +173.15 -41.55 +173.15 -41.45 +173.15 -41.35 +173.15 -41.25 +173.15 -41.15 +173.15 -41.05 +173.15 -40.95 +173.15 -40.85 +173.15 -40.75 +173.15 -40.65 +173.15 -40.55 +173.15 -40.45 +173.15 -40.35 +173.15 -40.25 +173.15 -40.15 +173.15 -40.05 +173.15 -39.95 +173.15 -39.85 +173.15 -39.75 +173.15 -39.65 +173.15 -39.55 +173.15 -39.45 +173.15 -39.35 +173.15 -39.25 +173.15 -39.15 +173.15 -36.15 +173.15 -36.05 +173.15 -35.95 +173.15 -35.85 +173.15 -35.75 +173.15 -35.65 +173.15 -35.55 +173.15 -35.45 +173.15 -35.35 +173.15 -35.25 +173.15 -35.15 +173.15 -35.05 +173.15 -34.95 +173.15 -34.85 +173.15 -34.75 +173.15 -34.65 +173.15 -34.55 +173.15 -34.45 +173.15 -34.35 +173.15 -34.25 +173.15 -34.15 +173.15 -34.05 +173.15 -33.95 +173.25 -44.25 +173.25 -44.15 +173.25 -44.05 +173.25 -43.95 +173.25 -43.85 +173.25 -43.75 +173.25 -43.65 +173.25 -43.55 +173.25 -43.45 +173.25 -43.35 +173.25 -43.25 +173.25 -43.15 +173.25 -43.05 +173.25 -42.95 +173.25 -42.85 +173.25 -42.75 +173.25 -42.65 +173.25 -42.55 +173.25 -42.45 +173.25 -42.35 +173.25 -42.25 +173.25 -42.15 +173.25 -42.05 +173.25 -41.95 +173.25 -41.85 +173.25 -41.75 +173.25 -41.65 +173.25 -41.55 +173.25 -41.45 +173.25 -41.35 +173.25 -41.25 +173.25 -41.15 +173.25 -41.05 +173.25 -40.95 +173.25 -40.85 +173.25 -40.75 +173.25 -40.65 +173.25 -40.55 +173.25 -40.45 +173.25 -40.35 +173.25 -40.25 +173.25 -40.15 +173.25 -40.05 +173.25 -39.95 +173.25 -39.85 +173.25 -39.75 +173.25 -39.65 +173.25 -39.55 +173.25 -39.45 +173.25 -39.35 +173.25 -39.25 +173.25 -39.15 +173.25 -39.05 +173.25 -36.25 +173.25 -36.15 +173.25 -36.05 +173.25 -35.95 +173.25 -35.85 +173.25 -35.75 +173.25 -35.65 +173.25 -35.55 +173.25 -35.45 +173.25 -35.35 +173.25 -35.25 +173.25 -35.15 +173.25 -35.05 +173.25 -34.95 +173.25 -34.85 +173.25 -34.75 +173.25 -34.65 +173.25 -34.55 +173.25 -34.45 +173.25 -34.35 +173.25 -34.25 +173.25 -34.15 +173.25 -34.05 +173.35 -44.25 +173.35 -44.15 +173.35 -44.05 +173.35 -43.95 +173.35 -43.85 +173.35 -43.75 +173.35 -43.65 +173.35 -43.55 +173.35 -43.45 +173.35 -43.35 +173.35 -43.25 +173.35 -43.15 +173.35 -43.05 +173.35 -42.95 +173.35 -42.85 +173.35 -42.75 +173.35 -42.65 +173.35 -42.55 +173.35 -42.45 +173.35 -42.35 +173.35 -42.25 +173.35 -42.15 +173.35 -42.05 +173.35 -41.95 +173.35 -41.85 +173.35 -41.75 +173.35 -41.65 +173.35 -41.55 +173.35 -41.45 +173.35 -41.35 +173.35 -41.25 +173.35 -41.15 +173.35 -41.05 +173.35 -40.95 +173.35 -40.85 +173.35 -40.75 +173.35 -40.65 +173.35 -40.55 +173.35 -40.45 +173.35 -40.35 +173.35 -40.25 +173.35 -40.15 +173.35 -40.05 +173.35 -39.95 +173.35 -39.85 +173.35 -39.75 +173.35 -39.65 +173.35 -39.55 +173.35 -39.45 +173.35 -39.35 +173.35 -39.25 +173.35 -39.15 +173.35 -39.05 +173.35 -38.95 +173.35 -36.35 +173.35 -36.25 +173.35 -36.15 +173.35 -36.05 +173.35 -35.95 +173.35 -35.85 +173.35 -35.75 +173.35 -35.65 +173.35 -35.55 +173.35 -35.45 +173.35 -35.35 +173.35 -35.25 +173.35 -35.15 +173.35 -35.05 +173.35 -34.95 +173.35 -34.85 +173.35 -34.75 +173.35 -34.65 +173.35 -34.55 +173.35 -34.45 +173.35 -34.35 +173.35 -34.25 +173.35 -34.15 +173.45 -44.15 +173.45 -44.05 +173.45 -43.95 +173.45 -43.85 +173.45 -43.75 +173.45 -43.65 +173.45 -43.55 +173.45 -43.45 +173.45 -43.35 +173.45 -43.25 +173.45 -43.15 +173.45 -43.05 +173.45 -42.95 +173.45 -42.85 +173.45 -42.75 +173.45 -42.65 +173.45 -42.55 +173.45 -42.45 +173.45 -42.35 +173.45 -42.25 +173.45 -42.15 +173.45 -42.05 +173.45 -41.95 +173.45 -41.85 +173.45 -41.75 +173.45 -41.65 +173.45 -41.55 +173.45 -41.45 +173.45 -41.35 +173.45 -41.25 +173.45 -41.15 +173.45 -41.05 +173.45 -40.95 +173.45 -40.85 +173.45 -40.75 +173.45 -40.65 +173.45 -40.55 +173.45 -40.45 +173.45 -40.35 +173.45 -40.25 +173.45 -40.15 +173.45 -40.05 +173.45 -39.95 +173.45 -39.85 +173.45 -39.75 +173.45 -39.65 +173.45 -39.55 +173.45 -39.45 +173.45 -39.35 +173.45 -39.25 +173.45 -39.15 +173.45 -39.05 +173.45 -38.95 +173.45 -38.85 +173.45 -36.45 +173.45 -36.35 +173.45 -36.25 +173.45 -36.15 +173.45 -36.05 +173.45 -35.95 +173.45 -35.85 +173.45 -35.75 +173.45 -35.65 +173.45 -35.55 +173.45 -35.45 +173.45 -35.35 +173.45 -35.25 +173.45 -35.15 +173.45 -35.05 +173.45 -34.95 +173.45 -34.85 +173.45 -34.75 +173.45 -34.65 +173.45 -34.55 +173.45 -34.45 +173.45 -34.35 +173.45 -34.25 +173.45 -34.15 +173.55 -44.05 +173.55 -43.95 +173.55 -43.85 +173.55 -43.75 +173.55 -43.65 +173.55 -43.55 +173.55 -43.45 +173.55 -43.35 +173.55 -43.25 +173.55 -43.15 +173.55 -43.05 +173.55 -42.95 +173.55 -42.85 +173.55 -42.75 +173.55 -42.65 +173.55 -42.55 +173.55 -42.45 +173.55 -42.35 +173.55 -42.25 +173.55 -42.15 +173.55 -42.05 +173.55 -41.95 +173.55 -41.85 +173.55 -41.75 +173.55 -41.65 +173.55 -41.55 +173.55 -41.45 +173.55 -41.35 +173.55 -41.25 +173.55 -41.15 +173.55 -41.05 +173.55 -40.95 +173.55 -40.85 +173.55 -40.75 +173.55 -40.65 +173.55 -40.55 +173.55 -40.45 +173.55 -40.35 +173.55 -40.25 +173.55 -40.15 +173.55 -40.05 +173.55 -39.95 +173.55 -39.85 +173.55 -39.75 +173.55 -39.65 +173.55 -39.55 +173.55 -39.45 +173.55 -39.35 +173.55 -39.25 +173.55 -39.15 +173.55 -39.05 +173.55 -38.95 +173.55 -38.85 +173.55 -38.75 +173.55 -38.65 +173.55 -36.55 +173.55 -36.45 +173.55 -36.35 +173.55 -36.25 +173.55 -36.15 +173.55 -36.05 +173.55 -35.95 +173.55 -35.85 +173.55 -35.75 +173.55 -35.65 +173.55 -35.55 +173.55 -35.45 +173.55 -35.35 +173.55 -35.25 +173.55 -35.15 +173.55 -35.05 +173.55 -34.95 +173.55 -34.85 +173.55 -34.75 +173.55 -34.65 +173.55 -34.55 +173.55 -34.45 +173.55 -34.35 +173.55 -34.25 +173.65 -43.85 +173.65 -43.75 +173.65 -43.65 +173.65 -43.55 +173.65 -43.45 +173.65 -43.35 +173.65 -43.25 +173.65 -43.15 +173.65 -43.05 +173.65 -42.95 +173.65 -42.85 +173.65 -42.75 +173.65 -42.65 +173.65 -42.55 +173.65 -42.45 +173.65 -42.35 +173.65 -42.25 +173.65 -42.15 +173.65 -42.05 +173.65 -41.95 +173.65 -41.85 +173.65 -41.75 +173.65 -41.65 +173.65 -41.55 +173.65 -41.45 +173.65 -41.35 +173.65 -41.25 +173.65 -41.15 +173.65 -41.05 +173.65 -40.95 +173.65 -40.85 +173.65 -40.75 +173.65 -40.65 +173.65 -40.55 +173.65 -40.45 +173.65 -40.35 +173.65 -40.25 +173.65 -40.15 +173.65 -40.05 +173.65 -39.95 +173.65 -39.85 +173.65 -39.75 +173.65 -39.65 +173.65 -39.55 +173.65 -39.45 +173.65 -39.35 +173.65 -39.25 +173.65 -39.15 +173.65 -39.05 +173.65 -38.95 +173.65 -38.85 +173.65 -38.75 +173.65 -38.65 +173.65 -38.55 +173.65 -36.65 +173.65 -36.55 +173.65 -36.45 +173.65 -36.35 +173.65 -36.25 +173.65 -36.15 +173.65 -36.05 +173.65 -35.95 +173.65 -35.85 +173.65 -35.75 +173.65 -35.65 +173.65 -35.55 +173.65 -35.45 +173.65 -35.35 +173.65 -35.25 +173.65 -35.15 +173.65 -35.05 +173.65 -34.95 +173.65 -34.85 +173.65 -34.75 +173.65 -34.65 +173.65 -34.55 +173.65 -34.45 +173.65 -34.35 +173.75 -43.75 +173.75 -43.65 +173.75 -43.35 +173.75 -43.25 +173.75 -43.15 +173.75 -43.05 +173.75 -42.95 +173.75 -42.85 +173.75 -42.75 +173.75 -42.65 +173.75 -42.55 +173.75 -42.45 +173.75 -42.35 +173.75 -42.25 +173.75 -42.15 +173.75 -42.05 +173.75 -41.95 +173.75 -41.85 +173.75 -41.75 +173.75 -41.65 +173.75 -41.55 +173.75 -41.45 +173.75 -41.35 +173.75 -41.25 +173.75 -41.15 +173.75 -41.05 +173.75 -40.95 +173.75 -40.85 +173.75 -40.75 +173.75 -40.65 +173.75 -40.55 +173.75 -40.45 +173.75 -40.35 +173.75 -40.25 +173.75 -40.15 +173.75 -40.05 +173.75 -39.95 +173.75 -39.85 +173.75 -39.75 +173.75 -39.65 +173.75 -39.55 +173.75 -39.45 +173.75 -39.35 +173.75 -39.25 +173.75 -39.15 +173.75 -39.05 +173.75 -38.95 +173.75 -38.85 +173.75 -38.75 +173.75 -38.65 +173.75 -38.55 +173.75 -38.45 +173.75 -38.35 +173.75 -36.85 +173.75 -36.75 +173.75 -36.65 +173.75 -36.55 +173.75 -36.45 +173.75 -36.35 +173.75 -36.25 +173.75 -36.15 +173.75 -36.05 +173.75 -35.95 +173.75 -35.85 +173.75 -35.75 +173.75 -35.65 +173.75 -35.55 +173.75 -35.45 +173.75 -35.35 +173.75 -35.25 +173.75 -35.15 +173.75 -35.05 +173.75 -34.95 +173.75 -34.85 +173.75 -34.75 +173.75 -34.65 +173.75 -34.55 +173.75 -34.45 +173.75 -34.35 +173.85 -43.15 +173.85 -43.05 +173.85 -42.95 +173.85 -42.85 +173.85 -42.75 +173.85 -42.65 +173.85 -42.55 +173.85 -42.45 +173.85 -42.35 +173.85 -42.25 +173.85 -42.15 +173.85 -42.05 +173.85 -41.95 +173.85 -41.85 +173.85 -41.75 +173.85 -41.65 +173.85 -41.55 +173.85 -41.45 +173.85 -41.35 +173.85 -41.25 +173.85 -41.15 +173.85 -41.05 +173.85 -40.95 +173.85 -40.85 +173.85 -40.75 +173.85 -40.65 +173.85 -40.55 +173.85 -40.45 +173.85 -40.35 +173.85 -40.25 +173.85 -40.15 +173.85 -40.05 +173.85 -39.95 +173.85 -39.85 +173.85 -39.75 +173.85 -39.65 +173.85 -39.55 +173.85 -39.45 +173.85 -39.35 +173.85 -39.25 +173.85 -39.15 +173.85 -39.05 +173.85 -38.95 +173.85 -38.85 +173.85 -38.75 +173.85 -38.65 +173.85 -38.55 +173.85 -38.45 +173.85 -38.35 +173.85 -38.25 +173.85 -38.15 +173.85 -36.95 +173.85 -36.85 +173.85 -36.75 +173.85 -36.65 +173.85 -36.55 +173.85 -36.45 +173.85 -36.35 +173.85 -36.25 +173.85 -36.15 +173.85 -36.05 +173.85 -35.95 +173.85 -35.85 +173.85 -35.75 +173.85 -35.65 +173.85 -35.55 +173.85 -35.45 +173.85 -35.35 +173.85 -35.25 +173.85 -35.15 +173.85 -35.05 +173.85 -34.95 +173.85 -34.85 +173.85 -34.75 +173.85 -34.65 +173.85 -34.55 +173.85 -34.45 +173.95 -43.05 +173.95 -42.95 +173.95 -42.85 +173.95 -42.75 +173.95 -42.65 +173.95 -42.55 +173.95 -42.45 +173.95 -42.35 +173.95 -42.25 +173.95 -42.15 +173.95 -42.05 +173.95 -41.95 +173.95 -41.85 +173.95 -41.75 +173.95 -41.65 +173.95 -41.55 +173.95 -41.45 +173.95 -41.35 +173.95 -41.25 +173.95 -41.15 +173.95 -41.05 +173.95 -40.95 +173.95 -40.85 +173.95 -40.75 +173.95 -40.65 +173.95 -40.55 +173.95 -40.45 +173.95 -40.35 +173.95 -40.25 +173.95 -40.15 +173.95 -40.05 +173.95 -39.95 +173.95 -39.85 +173.95 -39.75 +173.95 -39.65 +173.95 -39.55 +173.95 -39.45 +173.95 -39.35 +173.95 -39.25 +173.95 -39.15 +173.95 -39.05 +173.95 -38.95 +173.95 -38.85 +173.95 -38.75 +173.95 -38.65 +173.95 -38.55 +173.95 -38.45 +173.95 -38.35 +173.95 -38.25 +173.95 -38.15 +173.95 -38.05 +173.95 -37.95 +173.95 -37.15 +173.95 -37.05 +173.95 -36.95 +173.95 -36.85 +173.95 -36.75 +173.95 -36.65 +173.95 -36.55 +173.95 -36.45 +173.95 -36.35 +173.95 -36.25 +173.95 -36.15 +173.95 -36.05 +173.95 -35.95 +173.95 -35.85 +173.95 -35.75 +173.95 -35.65 +173.95 -35.55 +173.95 -35.45 +173.95 -35.35 +173.95 -35.25 +173.95 -35.15 +173.95 -35.05 +173.95 -34.95 +173.95 -34.85 +173.95 -34.75 +173.95 -34.65 +173.95 -34.55 +173.95 -34.45 +174.05 -42.95 +174.05 -42.85 +174.05 -42.75 +174.05 -42.65 +174.05 -42.55 +174.05 -42.45 +174.05 -42.35 +174.05 -42.25 +174.05 -42.15 +174.05 -42.05 +174.05 -41.95 +174.05 -41.85 +174.05 -41.75 +174.05 -41.65 +174.05 -41.55 +174.05 -41.45 +174.05 -41.35 +174.05 -41.25 +174.05 -41.15 +174.05 -41.05 +174.05 -40.95 +174.05 -40.85 +174.05 -40.75 +174.05 -40.65 +174.05 -40.55 +174.05 -40.45 +174.05 -40.35 +174.05 -40.25 +174.05 -40.15 +174.05 -40.05 +174.05 -39.95 +174.05 -39.85 +174.05 -39.75 +174.05 -39.65 +174.05 -39.55 +174.05 -39.45 +174.05 -39.35 +174.05 -39.25 +174.05 -39.15 +174.05 -39.05 +174.05 -38.95 +174.05 -38.85 +174.05 -38.75 +174.05 -38.65 +174.05 -38.55 +174.05 -38.45 +174.05 -38.35 +174.05 -38.25 +174.05 -38.15 +174.05 -38.05 +174.05 -37.95 +174.05 -37.85 +174.05 -37.75 +174.05 -37.45 +174.05 -37.35 +174.05 -37.25 +174.05 -37.15 +174.05 -37.05 +174.05 -36.95 +174.05 -36.85 +174.05 -36.75 +174.05 -36.65 +174.05 -36.55 +174.05 -36.45 +174.05 -36.35 +174.05 -36.25 +174.05 -36.15 +174.05 -36.05 +174.05 -35.95 +174.05 -35.85 +174.05 -35.75 +174.05 -35.65 +174.05 -35.55 +174.05 -35.45 +174.05 -35.35 +174.05 -35.25 +174.05 -35.15 +174.05 -35.05 +174.05 -34.95 +174.05 -34.85 +174.05 -34.75 +174.05 -34.65 +174.05 -34.55 +174.15 -42.85 +174.15 -42.75 +174.15 -42.65 +174.15 -42.55 +174.15 -42.45 +174.15 -42.35 +174.15 -42.25 +174.15 -42.15 +174.15 -42.05 +174.15 -41.95 +174.15 -41.85 +174.15 -41.75 +174.15 -41.65 +174.15 -41.55 +174.15 -41.45 +174.15 -41.35 +174.15 -41.25 +174.15 -41.15 +174.15 -41.05 +174.15 -40.95 +174.15 -40.85 +174.15 -40.75 +174.15 -40.65 +174.15 -40.55 +174.15 -40.45 +174.15 -40.35 +174.15 -40.25 +174.15 -40.15 +174.15 -40.05 +174.15 -39.95 +174.15 -39.85 +174.15 -39.75 +174.15 -39.65 +174.15 -39.55 +174.15 -39.45 +174.15 -39.35 +174.15 -39.25 +174.15 -39.15 +174.15 -39.05 +174.15 -38.95 +174.15 -38.85 +174.15 -38.75 +174.15 -38.65 +174.15 -38.55 +174.15 -38.45 +174.15 -38.35 +174.15 -38.25 +174.15 -38.15 +174.15 -38.05 +174.15 -37.95 +174.15 -37.85 +174.15 -37.75 +174.15 -37.65 +174.15 -37.55 +174.15 -37.45 +174.15 -37.35 +174.15 -37.25 +174.15 -37.15 +174.15 -37.05 +174.15 -36.95 +174.15 -36.85 +174.15 -36.75 +174.15 -36.65 +174.15 -36.55 +174.15 -36.45 +174.15 -36.35 +174.15 -36.25 +174.15 -36.15 +174.15 -36.05 +174.15 -35.95 +174.15 -35.85 +174.15 -35.75 +174.15 -35.65 +174.15 -35.55 +174.15 -35.45 +174.15 -35.35 +174.15 -35.25 +174.15 -35.15 +174.15 -35.05 +174.15 -34.95 +174.15 -34.85 +174.15 -34.75 +174.15 -34.65 +174.15 -34.55 +174.25 -42.75 +174.25 -42.65 +174.25 -42.55 +174.25 -42.45 +174.25 -42.35 +174.25 -42.25 +174.25 -42.15 +174.25 -42.05 +174.25 -41.95 +174.25 -41.85 +174.25 -41.75 +174.25 -41.65 +174.25 -41.55 +174.25 -41.45 +174.25 -41.35 +174.25 -41.25 +174.25 -41.15 +174.25 -41.05 +174.25 -40.95 +174.25 -40.85 +174.25 -40.75 +174.25 -40.65 +174.25 -40.55 +174.25 -40.45 +174.25 -40.35 +174.25 -40.25 +174.25 -40.15 +174.25 -40.05 +174.25 -39.95 +174.25 -39.85 +174.25 -39.75 +174.25 -39.65 +174.25 -39.55 +174.25 -39.45 +174.25 -39.35 +174.25 -39.25 +174.25 -39.15 +174.25 -39.05 +174.25 -38.95 +174.25 -38.85 +174.25 -38.75 +174.25 -38.65 +174.25 -38.55 +174.25 -38.45 +174.25 -38.35 +174.25 -38.25 +174.25 -38.15 +174.25 -38.05 +174.25 -37.95 +174.25 -37.85 +174.25 -37.75 +174.25 -37.65 +174.25 -37.55 +174.25 -37.45 +174.25 -37.35 +174.25 -37.25 +174.25 -37.15 +174.25 -37.05 +174.25 -36.95 +174.25 -36.85 +174.25 -36.75 +174.25 -36.65 +174.25 -36.55 +174.25 -36.45 +174.25 -36.35 +174.25 -36.25 +174.25 -36.15 +174.25 -36.05 +174.25 -35.95 +174.25 -35.85 +174.25 -35.75 +174.25 -35.65 +174.25 -35.55 +174.25 -35.45 +174.25 -35.35 +174.25 -35.25 +174.25 -35.15 +174.25 -35.05 +174.25 -34.95 +174.25 -34.85 +174.25 -34.75 +174.25 -34.65 +174.35 -42.55 +174.35 -42.45 +174.35 -42.35 +174.35 -42.25 +174.35 -42.15 +174.35 -42.05 +174.35 -41.95 +174.35 -41.85 +174.35 -41.75 +174.35 -41.65 +174.35 -41.55 +174.35 -41.45 +174.35 -41.35 +174.35 -41.25 +174.35 -41.15 +174.35 -41.05 +174.35 -40.95 +174.35 -40.85 +174.35 -40.75 +174.35 -40.65 +174.35 -40.55 +174.35 -40.45 +174.35 -40.35 +174.35 -40.25 +174.35 -40.15 +174.35 -40.05 +174.35 -39.95 +174.35 -39.85 +174.35 -39.75 +174.35 -39.65 +174.35 -39.55 +174.35 -39.45 +174.35 -39.35 +174.35 -39.25 +174.35 -39.15 +174.35 -39.05 +174.35 -38.95 +174.35 -38.85 +174.35 -38.75 +174.35 -38.65 +174.35 -38.55 +174.35 -38.45 +174.35 -38.35 +174.35 -38.25 +174.35 -38.15 +174.35 -38.05 +174.35 -37.95 +174.35 -37.85 +174.35 -37.75 +174.35 -37.65 +174.35 -37.55 +174.35 -37.45 +174.35 -37.35 +174.35 -37.25 +174.35 -37.15 +174.35 -37.05 +174.35 -36.95 +174.35 -36.85 +174.35 -36.75 +174.35 -36.65 +174.35 -36.55 +174.35 -36.45 +174.35 -36.35 +174.35 -36.25 +174.35 -36.15 +174.35 -36.05 +174.35 -35.95 +174.35 -35.85 +174.35 -35.75 +174.35 -35.65 +174.35 -35.55 +174.35 -35.45 +174.35 -35.35 +174.35 -35.25 +174.35 -35.15 +174.35 -35.05 +174.35 -34.95 +174.35 -34.85 +174.35 -34.75 +174.45 -42.45 +174.45 -42.35 +174.45 -42.25 +174.45 -42.15 +174.45 -42.05 +174.45 -41.95 +174.45 -41.85 +174.45 -41.75 +174.45 -41.65 +174.45 -41.55 +174.45 -41.45 +174.45 -41.35 +174.45 -41.25 +174.45 -41.15 +174.45 -41.05 +174.45 -40.95 +174.45 -40.85 +174.45 -40.75 +174.45 -40.65 +174.45 -40.55 +174.45 -40.45 +174.45 -40.35 +174.45 -40.25 +174.45 -40.15 +174.45 -40.05 +174.45 -39.95 +174.45 -39.85 +174.45 -39.75 +174.45 -39.65 +174.45 -39.55 +174.45 -39.45 +174.45 -39.35 +174.45 -39.25 +174.45 -39.15 +174.45 -39.05 +174.45 -38.95 +174.45 -38.85 +174.45 -38.75 +174.45 -38.65 +174.45 -38.55 +174.45 -38.45 +174.45 -38.35 +174.45 -38.25 +174.45 -38.15 +174.45 -38.05 +174.45 -37.95 +174.45 -37.85 +174.45 -37.75 +174.45 -37.65 +174.45 -37.55 +174.45 -37.45 +174.45 -37.35 +174.45 -37.25 +174.45 -37.15 +174.45 -37.05 +174.45 -36.95 +174.45 -36.85 +174.45 -36.75 +174.45 -36.65 +174.45 -36.55 +174.45 -36.45 +174.45 -36.35 +174.45 -36.25 +174.45 -36.15 +174.45 -36.05 +174.45 -35.95 +174.45 -35.85 +174.45 -35.75 +174.45 -35.65 +174.45 -35.55 +174.45 -35.45 +174.45 -35.35 +174.45 -35.25 +174.45 -35.15 +174.45 -35.05 +174.45 -34.95 +174.45 -34.85 +174.55 -42.35 +174.55 -42.25 +174.55 -42.15 +174.55 -42.05 +174.55 -41.95 +174.55 -41.85 +174.55 -41.75 +174.55 -41.65 +174.55 -41.55 +174.55 -41.45 +174.55 -41.35 +174.55 -41.25 +174.55 -41.15 +174.55 -41.05 +174.55 -40.95 +174.55 -40.85 +174.55 -40.75 +174.55 -40.65 +174.55 -40.55 +174.55 -40.45 +174.55 -40.35 +174.55 -40.25 +174.55 -40.15 +174.55 -40.05 +174.55 -39.95 +174.55 -39.85 +174.55 -39.75 +174.55 -39.65 +174.55 -39.55 +174.55 -39.45 +174.55 -39.35 +174.55 -39.25 +174.55 -39.15 +174.55 -39.05 +174.55 -38.95 +174.55 -38.85 +174.55 -38.75 +174.55 -38.65 +174.55 -38.55 +174.55 -38.45 +174.55 -38.35 +174.55 -38.25 +174.55 -38.15 +174.55 -38.05 +174.55 -37.95 +174.55 -37.85 +174.55 -37.75 +174.55 -37.65 +174.55 -37.55 +174.55 -37.45 +174.55 -37.35 +174.55 -37.25 +174.55 -37.15 +174.55 -37.05 +174.55 -36.95 +174.55 -36.85 +174.55 -36.75 +174.55 -36.65 +174.55 -36.55 +174.55 -36.45 +174.55 -36.35 +174.55 -36.25 +174.55 -36.15 +174.55 -36.05 +174.55 -35.95 +174.55 -35.85 +174.55 -35.75 +174.55 -35.65 +174.55 -35.55 +174.55 -35.45 +174.55 -35.35 +174.55 -35.25 +174.55 -35.15 +174.55 -35.05 +174.55 -34.95 +174.65 -42.25 +174.65 -42.15 +174.65 -42.05 +174.65 -41.95 +174.65 -41.85 +174.65 -41.75 +174.65 -41.65 +174.65 -41.55 +174.65 -41.45 +174.65 -41.35 +174.65 -41.25 +174.65 -41.15 +174.65 -41.05 +174.65 -40.95 +174.65 -40.85 +174.65 -40.75 +174.65 -40.65 +174.65 -40.55 +174.65 -40.45 +174.65 -40.35 +174.65 -40.25 +174.65 -40.15 +174.65 -40.05 +174.65 -39.95 +174.65 -39.85 +174.65 -39.75 +174.65 -39.65 +174.65 -39.55 +174.65 -39.45 +174.65 -39.35 +174.65 -39.25 +174.65 -39.15 +174.65 -39.05 +174.65 -38.95 +174.65 -38.85 +174.65 -38.75 +174.65 -38.65 +174.65 -38.55 +174.65 -38.45 +174.65 -38.35 +174.65 -38.25 +174.65 -38.15 +174.65 -38.05 +174.65 -37.95 +174.65 -37.85 +174.65 -37.75 +174.65 -37.65 +174.65 -37.55 +174.65 -37.45 +174.65 -37.35 +174.65 -37.25 +174.65 -37.15 +174.65 -37.05 +174.65 -36.95 +174.65 -36.85 +174.65 -36.75 +174.65 -36.65 +174.65 -36.55 +174.65 -36.45 +174.65 -36.35 +174.65 -36.25 +174.65 -36.15 +174.65 -36.05 +174.65 -35.95 +174.65 -35.85 +174.65 -35.75 +174.65 -35.65 +174.65 -35.55 +174.65 -35.45 +174.65 -35.35 +174.65 -35.25 +174.65 -35.15 +174.65 -35.05 +174.75 -42.15 +174.75 -42.05 +174.75 -41.95 +174.75 -41.85 +174.75 -41.75 +174.75 -41.65 +174.75 -41.55 +174.75 -41.45 +174.75 -41.35 +174.75 -41.25 +174.75 -41.15 +174.75 -41.05 +174.75 -40.95 +174.75 -40.85 +174.75 -40.75 +174.75 -40.65 +174.75 -40.55 +174.75 -40.45 +174.75 -40.35 +174.75 -40.25 +174.75 -40.15 +174.75 -40.05 +174.75 -39.95 +174.75 -39.85 +174.75 -39.75 +174.75 -39.65 +174.75 -39.55 +174.75 -39.45 +174.75 -39.35 +174.75 -39.25 +174.75 -39.15 +174.75 -39.05 +174.75 -38.95 +174.75 -38.85 +174.75 -38.75 +174.75 -38.65 +174.75 -38.55 +174.75 -38.45 +174.75 -38.35 +174.75 -38.25 +174.75 -38.15 +174.75 -38.05 +174.75 -37.95 +174.75 -37.85 +174.75 -37.75 +174.75 -37.65 +174.75 -37.55 +174.75 -37.45 +174.75 -37.35 +174.75 -37.25 +174.75 -37.15 +174.75 -37.05 +174.75 -36.95 +174.75 -36.85 +174.75 -36.75 +174.75 -36.65 +174.75 -36.55 +174.75 -36.45 +174.75 -36.35 +174.75 -36.25 +174.75 -36.15 +174.75 -36.05 +174.75 -35.95 +174.75 -35.85 +174.75 -35.75 +174.75 -35.65 +174.75 -35.55 +174.75 -35.45 +174.75 -35.35 +174.75 -35.25 +174.75 -35.15 +174.85 -42.15 +174.85 -42.05 +174.85 -41.95 +174.85 -41.85 +174.85 -41.75 +174.85 -41.65 +174.85 -41.55 +174.85 -41.45 +174.85 -41.35 +174.85 -41.25 +174.85 -41.15 +174.85 -41.05 +174.85 -40.95 +174.85 -40.85 +174.85 -40.75 +174.85 -40.65 +174.85 -40.55 +174.85 -40.45 +174.85 -40.35 +174.85 -40.25 +174.85 -40.15 +174.85 -40.05 +174.85 -39.95 +174.85 -39.85 +174.85 -39.75 +174.85 -39.65 +174.85 -39.55 +174.85 -39.45 +174.85 -39.35 +174.85 -39.25 +174.85 -39.15 +174.85 -39.05 +174.85 -38.95 +174.85 -38.85 +174.85 -38.75 +174.85 -38.65 +174.85 -38.55 +174.85 -38.45 +174.85 -38.35 +174.85 -38.25 +174.85 -38.15 +174.85 -38.05 +174.85 -37.95 +174.85 -37.85 +174.85 -37.75 +174.85 -37.65 +174.85 -37.55 +174.85 -37.45 +174.85 -37.35 +174.85 -37.25 +174.85 -37.15 +174.85 -37.05 +174.85 -36.95 +174.85 -36.85 +174.85 -36.75 +174.85 -36.65 +174.85 -36.55 +174.85 -36.45 +174.85 -36.35 +174.85 -36.25 +174.85 -36.15 +174.85 -36.05 +174.85 -35.95 +174.85 -35.85 +174.85 -35.75 +174.85 -35.65 +174.85 -35.55 +174.85 -35.45 +174.85 -35.35 +174.85 -35.25 +174.85 -35.15 +174.95 -42.05 +174.95 -41.95 +174.95 -41.85 +174.95 -41.75 +174.95 -41.65 +174.95 -41.55 +174.95 -41.45 +174.95 -41.35 +174.95 -41.25 +174.95 -41.15 +174.95 -41.05 +174.95 -40.95 +174.95 -40.85 +174.95 -40.75 +174.95 -40.65 +174.95 -40.55 +174.95 -40.45 +174.95 -40.35 +174.95 -40.25 +174.95 -40.15 +174.95 -40.05 +174.95 -39.95 +174.95 -39.85 +174.95 -39.75 +174.95 -39.65 +174.95 -39.55 +174.95 -39.45 +174.95 -39.35 +174.95 -39.25 +174.95 -39.15 +174.95 -39.05 +174.95 -38.95 +174.95 -38.85 +174.95 -38.75 +174.95 -38.65 +174.95 -38.55 +174.95 -38.45 +174.95 -38.35 +174.95 -38.25 +174.95 -38.15 +174.95 -38.05 +174.95 -37.95 +174.95 -37.85 +174.95 -37.75 +174.95 -37.65 +174.95 -37.55 +174.95 -37.45 +174.95 -37.35 +174.95 -37.25 +174.95 -37.15 +174.95 -37.05 +174.95 -36.95 +174.95 -36.85 +174.95 -36.75 +174.95 -36.65 +174.95 -36.55 +174.95 -36.45 +174.95 -36.35 +174.95 -36.25 +174.95 -36.15 +174.95 -36.05 +174.95 -35.95 +174.95 -35.85 +174.95 -35.75 +174.95 -35.65 +174.95 -35.55 +174.95 -35.45 +174.95 -35.35 +174.95 -35.25 +175.05 -41.95 +175.05 -41.85 +175.05 -41.75 +175.05 -41.65 +175.05 -41.55 +175.05 -41.45 +175.05 -41.35 +175.05 -41.25 +175.05 -41.15 +175.05 -41.05 +175.05 -40.95 +175.05 -40.85 +175.05 -40.75 +175.05 -40.65 +175.05 -40.55 +175.05 -40.45 +175.05 -40.35 +175.05 -40.25 +175.05 -40.15 +175.05 -40.05 +175.05 -39.95 +175.05 -39.85 +175.05 -39.75 +175.05 -39.65 +175.05 -39.55 +175.05 -39.45 +175.05 -39.35 +175.05 -39.25 +175.05 -39.15 +175.05 -39.05 +175.05 -38.95 +175.05 -38.85 +175.05 -38.75 +175.05 -38.65 +175.05 -38.55 +175.05 -38.45 +175.05 -38.35 +175.05 -38.25 +175.05 -38.15 +175.05 -38.05 +175.05 -37.95 +175.05 -37.85 +175.05 -37.75 +175.05 -37.65 +175.05 -37.55 +175.05 -37.45 +175.05 -37.35 +175.05 -37.25 +175.05 -37.15 +175.05 -37.05 +175.05 -36.95 +175.05 -36.85 +175.05 -36.75 +175.05 -36.65 +175.05 -36.55 +175.05 -36.45 +175.05 -36.35 +175.05 -36.25 +175.05 -36.15 +175.05 -36.05 +175.05 -35.95 +175.05 -35.85 +175.05 -35.75 +175.05 -35.65 +175.05 -35.55 +175.05 -35.45 +175.05 -35.35 +175.15 -42.05 +175.15 -41.95 +175.15 -41.85 +175.15 -41.75 +175.15 -41.65 +175.15 -41.55 +175.15 -41.45 +175.15 -41.35 +175.15 -41.25 +175.15 -41.15 +175.15 -41.05 +175.15 -40.95 +175.15 -40.85 +175.15 -40.75 +175.15 -40.65 +175.15 -40.55 +175.15 -40.45 +175.15 -40.35 +175.15 -40.25 +175.15 -40.15 +175.15 -40.05 +175.15 -39.95 +175.15 -39.85 +175.15 -39.75 +175.15 -39.65 +175.15 -39.55 +175.15 -39.45 +175.15 -39.35 +175.15 -39.25 +175.15 -39.15 +175.15 -39.05 +175.15 -38.95 +175.15 -38.85 +175.15 -38.75 +175.15 -38.65 +175.15 -38.55 +175.15 -38.45 +175.15 -38.35 +175.15 -38.25 +175.15 -38.15 +175.15 -38.05 +175.15 -37.95 +175.15 -37.85 +175.15 -37.75 +175.15 -37.65 +175.15 -37.55 +175.15 -37.45 +175.15 -37.35 +175.15 -37.25 +175.15 -37.15 +175.15 -37.05 +175.15 -36.95 +175.15 -36.85 +175.15 -36.75 +175.15 -36.65 +175.15 -36.55 +175.15 -36.45 +175.15 -36.35 +175.15 -36.25 +175.15 -36.15 +175.15 -36.05 +175.15 -35.95 +175.15 -35.85 +175.15 -35.75 +175.15 -35.65 +175.15 -35.55 +175.15 -35.45 +175.25 -42.05 +175.25 -41.95 +175.25 -41.85 +175.25 -41.75 +175.25 -41.65 +175.25 -41.55 +175.25 -41.45 +175.25 -41.35 +175.25 -41.25 +175.25 -41.15 +175.25 -41.05 +175.25 -40.95 +175.25 -40.85 +175.25 -40.75 +175.25 -40.65 +175.25 -40.55 +175.25 -40.45 +175.25 -40.35 +175.25 -40.25 +175.25 -40.15 +175.25 -40.05 +175.25 -39.95 +175.25 -39.85 +175.25 -39.75 +175.25 -39.65 +175.25 -39.55 +175.25 -39.45 +175.25 -39.35 +175.25 -39.25 +175.25 -39.15 +175.25 -39.05 +175.25 -38.95 +175.25 -38.85 +175.25 -38.75 +175.25 -38.65 +175.25 -38.55 +175.25 -38.45 +175.25 -38.35 +175.25 -38.25 +175.25 -38.15 +175.25 -38.05 +175.25 -37.95 +175.25 -37.85 +175.25 -37.75 +175.25 -37.65 +175.25 -37.55 +175.25 -37.45 +175.25 -37.35 +175.25 -37.25 +175.25 -37.15 +175.25 -37.05 +175.25 -36.95 +175.25 -36.85 +175.25 -36.75 +175.25 -36.65 +175.25 -36.55 +175.25 -36.45 +175.25 -36.35 +175.25 -36.25 +175.25 -36.15 +175.25 -36.05 +175.25 -35.95 +175.25 -35.85 +175.25 -35.75 +175.25 -35.65 +175.25 -35.55 +175.35 -42.05 +175.35 -41.95 +175.35 -41.85 +175.35 -41.75 +175.35 -41.65 +175.35 -41.55 +175.35 -41.45 +175.35 -41.35 +175.35 -41.25 +175.35 -41.15 +175.35 -41.05 +175.35 -40.95 +175.35 -40.85 +175.35 -40.75 +175.35 -40.65 +175.35 -40.55 +175.35 -40.45 +175.35 -40.35 +175.35 -40.25 +175.35 -40.15 +175.35 -40.05 +175.35 -39.95 +175.35 -39.85 +175.35 -39.75 +175.35 -39.65 +175.35 -39.55 +175.35 -39.45 +175.35 -39.35 +175.35 -39.25 +175.35 -39.15 +175.35 -39.05 +175.35 -38.95 +175.35 -38.85 +175.35 -38.75 +175.35 -38.65 +175.35 -38.55 +175.35 -38.45 +175.35 -38.35 +175.35 -38.25 +175.35 -38.15 +175.35 -38.05 +175.35 -37.95 +175.35 -37.85 +175.35 -37.75 +175.35 -37.65 +175.35 -37.55 +175.35 -37.45 +175.35 -37.35 +175.35 -37.25 +175.35 -37.15 +175.35 -37.05 +175.35 -36.95 +175.35 -36.85 +175.35 -36.75 +175.35 -36.65 +175.35 -36.55 +175.35 -36.45 +175.35 -36.35 +175.35 -36.25 +175.35 -36.15 +175.35 -36.05 +175.35 -35.95 +175.35 -35.85 +175.35 -35.75 +175.35 -35.65 +175.35 -35.55 +175.45 -42.05 +175.45 -41.95 +175.45 -41.85 +175.45 -41.75 +175.45 -41.65 +175.45 -41.55 +175.45 -41.45 +175.45 -41.35 +175.45 -41.25 +175.45 -41.15 +175.45 -41.05 +175.45 -40.95 +175.45 -40.85 +175.45 -40.75 +175.45 -40.65 +175.45 -40.55 +175.45 -40.45 +175.45 -40.35 +175.45 -40.25 +175.45 -40.15 +175.45 -40.05 +175.45 -39.95 +175.45 -39.85 +175.45 -39.75 +175.45 -39.65 +175.45 -39.55 +175.45 -39.45 +175.45 -39.35 +175.45 -39.25 +175.45 -39.15 +175.45 -39.05 +175.45 -38.95 +175.45 -38.85 +175.45 -38.75 +175.45 -38.65 +175.45 -38.55 +175.45 -38.45 +175.45 -38.35 +175.45 -38.25 +175.45 -38.15 +175.45 -38.05 +175.45 -37.95 +175.45 -37.85 +175.45 -37.75 +175.45 -37.65 +175.45 -37.55 +175.45 -37.45 +175.45 -37.35 +175.45 -37.25 +175.45 -37.15 +175.45 -37.05 +175.45 -36.95 +175.45 -36.85 +175.45 -36.75 +175.45 -36.65 +175.45 -36.55 +175.45 -36.45 +175.45 -36.35 +175.45 -36.25 +175.45 -36.15 +175.45 -36.05 +175.45 -35.95 +175.45 -35.85 +175.45 -35.75 +175.45 -35.65 +175.55 -41.95 +175.55 -41.85 +175.55 -41.75 +175.55 -41.65 +175.55 -41.55 +175.55 -41.45 +175.55 -41.35 +175.55 -41.25 +175.55 -41.15 +175.55 -41.05 +175.55 -40.95 +175.55 -40.85 +175.55 -40.75 +175.55 -40.65 +175.55 -40.55 +175.55 -40.45 +175.55 -40.35 +175.55 -40.25 +175.55 -40.15 +175.55 -40.05 +175.55 -39.95 +175.55 -39.85 +175.55 -39.75 +175.55 -39.65 +175.55 -39.55 +175.55 -39.45 +175.55 -39.35 +175.55 -39.25 +175.55 -39.15 +175.55 -39.05 +175.55 -38.95 +175.55 -38.85 +175.55 -38.75 +175.55 -38.65 +175.55 -38.55 +175.55 -38.45 +175.55 -38.35 +175.55 -38.25 +175.55 -38.15 +175.55 -38.05 +175.55 -37.95 +175.55 -37.85 +175.55 -37.75 +175.55 -37.65 +175.55 -37.55 +175.55 -37.45 +175.55 -37.35 +175.55 -37.25 +175.55 -37.15 +175.55 -37.05 +175.55 -36.95 +175.55 -36.85 +175.55 -36.75 +175.55 -36.65 +175.55 -36.55 +175.55 -36.45 +175.55 -36.35 +175.55 -36.25 +175.55 -36.15 +175.55 -36.05 +175.55 -35.95 +175.55 -35.85 +175.55 -35.75 +175.55 -35.65 +175.65 -41.95 +175.65 -41.85 +175.65 -41.75 +175.65 -41.65 +175.65 -41.55 +175.65 -41.45 +175.65 -41.35 +175.65 -41.25 +175.65 -41.15 +175.65 -41.05 +175.65 -40.95 +175.65 -40.85 +175.65 -40.75 +175.65 -40.65 +175.65 -40.55 +175.65 -40.45 +175.65 -40.35 +175.65 -40.25 +175.65 -40.15 +175.65 -40.05 +175.65 -39.95 +175.65 -39.85 +175.65 -39.75 +175.65 -39.65 +175.65 -39.55 +175.65 -39.45 +175.65 -39.35 +175.65 -39.25 +175.65 -39.15 +175.65 -39.05 +175.65 -38.95 +175.65 -38.85 +175.65 -38.75 +175.65 -38.65 +175.65 -38.55 +175.65 -38.45 +175.65 -38.35 +175.65 -38.25 +175.65 -38.15 +175.65 -38.05 +175.65 -37.95 +175.65 -37.85 +175.65 -37.75 +175.65 -37.65 +175.65 -37.55 +175.65 -37.45 +175.65 -37.35 +175.65 -37.25 +175.65 -37.15 +175.65 -37.05 +175.65 -36.95 +175.65 -36.85 +175.65 -36.75 +175.65 -36.65 +175.65 -36.55 +175.65 -36.45 +175.65 -36.35 +175.65 -36.25 +175.65 -36.15 +175.65 -36.05 +175.65 -35.95 +175.65 -35.85 +175.65 -35.75 +175.65 -35.65 +175.75 -41.95 +175.75 -41.85 +175.75 -41.75 +175.75 -41.65 +175.75 -41.55 +175.75 -41.45 +175.75 -41.35 +175.75 -41.25 +175.75 -41.15 +175.75 -41.05 +175.75 -40.95 +175.75 -40.85 +175.75 -40.75 +175.75 -40.65 +175.75 -40.55 +175.75 -40.45 +175.75 -40.35 +175.75 -40.25 +175.75 -40.15 +175.75 -40.05 +175.75 -39.95 +175.75 -39.85 +175.75 -39.75 +175.75 -39.65 +175.75 -39.55 +175.75 -39.45 +175.75 -39.35 +175.75 -39.25 +175.75 -39.15 +175.75 -39.05 +175.75 -38.95 +175.75 -38.85 +175.75 -38.75 +175.75 -38.65 +175.75 -38.55 +175.75 -38.45 +175.75 -38.35 +175.75 -38.25 +175.75 -38.15 +175.75 -38.05 +175.75 -37.95 +175.75 -37.85 +175.75 -37.75 +175.75 -37.65 +175.75 -37.55 +175.75 -37.45 +175.75 -37.35 +175.75 -37.25 +175.75 -37.15 +175.75 -37.05 +175.75 -36.95 +175.75 -36.85 +175.75 -36.75 +175.75 -36.65 +175.75 -36.55 +175.75 -36.45 +175.75 -36.35 +175.75 -36.25 +175.75 -36.15 +175.75 -36.05 +175.75 -35.95 +175.75 -35.85 +175.75 -35.75 +175.85 -41.85 +175.85 -41.75 +175.85 -41.65 +175.85 -41.55 +175.85 -41.45 +175.85 -41.35 +175.85 -41.25 +175.85 -41.15 +175.85 -41.05 +175.85 -40.95 +175.85 -40.85 +175.85 -40.75 +175.85 -40.65 +175.85 -40.55 +175.85 -40.45 +175.85 -40.35 +175.85 -40.25 +175.85 -40.15 +175.85 -40.05 +175.85 -39.95 +175.85 -39.85 +175.85 -39.75 +175.85 -39.65 +175.85 -39.55 +175.85 -39.45 +175.85 -39.35 +175.85 -39.25 +175.85 -39.15 +175.85 -39.05 +175.85 -38.95 +175.85 -38.85 +175.85 -38.75 +175.85 -38.65 +175.85 -38.55 +175.85 -38.45 +175.85 -38.35 +175.85 -38.25 +175.85 -38.15 +175.85 -38.05 +175.85 -37.95 +175.85 -37.85 +175.85 -37.75 +175.85 -37.65 +175.85 -37.55 +175.85 -37.45 +175.85 -37.35 +175.85 -37.25 +175.85 -37.15 +175.85 -37.05 +175.85 -36.95 +175.85 -36.85 +175.85 -36.75 +175.85 -36.65 +175.85 -36.55 +175.85 -36.45 +175.85 -36.35 +175.85 -36.25 +175.85 -36.15 +175.85 -36.05 +175.85 -35.95 +175.85 -35.85 +175.95 -41.85 +175.95 -41.75 +175.95 -41.65 +175.95 -41.55 +175.95 -41.45 +175.95 -41.35 +175.95 -41.25 +175.95 -41.15 +175.95 -41.05 +175.95 -40.95 +175.95 -40.85 +175.95 -40.75 +175.95 -40.65 +175.95 -40.55 +175.95 -40.45 +175.95 -40.35 +175.95 -40.25 +175.95 -40.15 +175.95 -40.05 +175.95 -39.95 +175.95 -39.85 +175.95 -39.75 +175.95 -39.65 +175.95 -39.55 +175.95 -39.45 +175.95 -39.35 +175.95 -39.25 +175.95 -39.15 +175.95 -39.05 +175.95 -38.95 +175.95 -38.85 +175.95 -38.75 +175.95 -38.65 +175.95 -38.55 +175.95 -38.45 +175.95 -38.35 +175.95 -38.25 +175.95 -38.15 +175.95 -38.05 +175.95 -37.95 +175.95 -37.85 +175.95 -37.75 +175.95 -37.65 +175.95 -37.55 +175.95 -37.45 +175.95 -37.35 +175.95 -37.25 +175.95 -37.15 +175.95 -37.05 +175.95 -36.95 +175.95 -36.85 +175.95 -36.75 +175.95 -36.65 +175.95 -36.55 +175.95 -36.45 +175.95 -36.35 +175.95 -36.25 +175.95 -36.15 +175.95 -36.05 +175.95 -35.95 +176.05 -41.75 +176.05 -41.65 +176.05 -41.55 +176.05 -41.45 +176.05 -41.35 +176.05 -41.25 +176.05 -41.15 +176.05 -41.05 +176.05 -40.95 +176.05 -40.85 +176.05 -40.75 +176.05 -40.65 +176.05 -40.55 +176.05 -40.45 +176.05 -40.35 +176.05 -40.25 +176.05 -40.15 +176.05 -40.05 +176.05 -39.95 +176.05 -39.85 +176.05 -39.75 +176.05 -39.65 +176.05 -39.55 +176.05 -39.45 +176.05 -39.35 +176.05 -39.25 +176.05 -39.15 +176.05 -39.05 +176.05 -38.95 +176.05 -38.85 +176.05 -38.75 +176.05 -38.65 +176.05 -38.55 +176.05 -38.45 +176.05 -38.35 +176.05 -38.25 +176.05 -38.15 +176.05 -38.05 +176.05 -37.95 +176.05 -37.85 +176.05 -37.75 +176.05 -37.65 +176.05 -37.55 +176.05 -37.45 +176.05 -37.35 +176.05 -37.25 +176.05 -37.15 +176.05 -37.05 +176.05 -36.95 +176.05 -36.85 +176.05 -36.75 +176.05 -36.65 +176.05 -36.55 +176.05 -36.45 +176.05 -36.35 +176.05 -36.25 +176.05 -36.15 +176.05 -36.05 +176.15 -41.75 +176.15 -41.65 +176.15 -41.55 +176.15 -41.45 +176.15 -41.35 +176.15 -41.25 +176.15 -41.15 +176.15 -41.05 +176.15 -40.95 +176.15 -40.85 +176.15 -40.75 +176.15 -40.65 +176.15 -40.55 +176.15 -40.45 +176.15 -40.35 +176.15 -40.25 +176.15 -40.15 +176.15 -40.05 +176.15 -39.95 +176.15 -39.85 +176.15 -39.75 +176.15 -39.65 +176.15 -39.55 +176.15 -39.45 +176.15 -39.35 +176.15 -39.25 +176.15 -39.15 +176.15 -39.05 +176.15 -38.95 +176.15 -38.85 +176.15 -38.75 +176.15 -38.65 +176.15 -38.55 +176.15 -38.45 +176.15 -38.35 +176.15 -38.25 +176.15 -38.15 +176.15 -38.05 +176.15 -37.95 +176.15 -37.85 +176.15 -37.75 +176.15 -37.65 +176.15 -37.55 +176.15 -37.45 +176.15 -37.35 +176.15 -37.25 +176.15 -37.15 +176.15 -37.05 +176.15 -36.95 +176.15 -36.85 +176.15 -36.75 +176.15 -36.65 +176.15 -36.55 +176.15 -36.45 +176.15 -36.35 +176.15 -36.25 +176.25 -41.65 +176.25 -41.55 +176.25 -41.45 +176.25 -41.35 +176.25 -41.25 +176.25 -41.15 +176.25 -41.05 +176.25 -40.95 +176.25 -40.85 +176.25 -40.75 +176.25 -40.65 +176.25 -40.55 +176.25 -40.45 +176.25 -40.35 +176.25 -40.25 +176.25 -40.15 +176.25 -40.05 +176.25 -39.95 +176.25 -39.85 +176.25 -39.75 +176.25 -39.65 +176.25 -39.55 +176.25 -39.45 +176.25 -39.35 +176.25 -39.25 +176.25 -39.15 +176.25 -39.05 +176.25 -38.95 +176.25 -38.85 +176.25 -38.75 +176.25 -38.65 +176.25 -38.55 +176.25 -38.45 +176.25 -38.35 +176.25 -38.25 +176.25 -38.15 +176.25 -38.05 +176.25 -37.95 +176.25 -37.85 +176.25 -37.75 +176.25 -37.65 +176.25 -37.55 +176.25 -37.45 +176.25 -37.35 +176.25 -37.25 +176.25 -37.15 +176.25 -37.05 +176.25 -36.95 +176.25 -36.85 +176.25 -36.75 +176.25 -36.65 +176.25 -36.55 +176.25 -36.45 +176.25 -36.35 +176.35 -41.55 +176.35 -41.45 +176.35 -41.35 +176.35 -41.25 +176.35 -41.15 +176.35 -41.05 +176.35 -40.95 +176.35 -40.85 +176.35 -40.75 +176.35 -40.65 +176.35 -40.55 +176.35 -40.45 +176.35 -40.35 +176.35 -40.25 +176.35 -40.15 +176.35 -40.05 +176.35 -39.95 +176.35 -39.85 +176.35 -39.75 +176.35 -39.65 +176.35 -39.55 +176.35 -39.45 +176.35 -39.35 +176.35 -39.25 +176.35 -39.15 +176.35 -39.05 +176.35 -38.95 +176.35 -38.85 +176.35 -38.75 +176.35 -38.65 +176.35 -38.55 +176.35 -38.45 +176.35 -38.35 +176.35 -38.25 +176.35 -38.15 +176.35 -38.05 +176.35 -37.95 +176.35 -37.85 +176.35 -37.75 +176.35 -37.65 +176.35 -37.55 +176.35 -37.45 +176.35 -37.35 +176.35 -37.25 +176.35 -37.15 +176.35 -37.05 +176.35 -36.95 +176.35 -36.85 +176.35 -36.75 +176.35 -36.65 +176.35 -36.55 +176.45 -41.55 +176.45 -41.45 +176.45 -41.35 +176.45 -41.25 +176.45 -41.15 +176.45 -41.05 +176.45 -40.95 +176.45 -40.85 +176.45 -40.75 +176.45 -40.65 +176.45 -40.55 +176.45 -40.45 +176.45 -40.35 +176.45 -40.25 +176.45 -40.15 +176.45 -40.05 +176.45 -39.95 +176.45 -39.85 +176.45 -39.75 +176.45 -39.65 +176.45 -39.55 +176.45 -39.45 +176.45 -39.35 +176.45 -39.25 +176.45 -39.15 +176.45 -39.05 +176.45 -38.95 +176.45 -38.85 +176.45 -38.75 +176.45 -38.65 +176.45 -38.55 +176.45 -38.45 +176.45 -38.35 +176.45 -38.25 +176.45 -38.15 +176.45 -38.05 +176.45 -37.95 +176.45 -37.85 +176.45 -37.75 +176.45 -37.65 +176.45 -37.55 +176.45 -37.45 +176.45 -37.35 +176.45 -37.25 +176.45 -37.15 +176.45 -37.05 +176.45 -36.95 +176.55 -41.45 +176.55 -41.35 +176.55 -41.25 +176.55 -41.15 +176.55 -41.05 +176.55 -40.95 +176.55 -40.85 +176.55 -40.75 +176.55 -40.65 +176.55 -40.55 +176.55 -40.45 +176.55 -40.35 +176.55 -40.25 +176.55 -40.15 +176.55 -40.05 +176.55 -39.95 +176.55 -39.85 +176.55 -39.75 +176.55 -39.65 +176.55 -39.55 +176.55 -39.45 +176.55 -39.35 +176.55 -39.25 +176.55 -39.15 +176.55 -39.05 +176.55 -38.95 +176.55 -38.85 +176.55 -38.75 +176.55 -38.65 +176.55 -38.55 +176.55 -38.45 +176.55 -38.35 +176.55 -38.25 +176.55 -38.15 +176.55 -38.05 +176.55 -37.95 +176.55 -37.85 +176.55 -37.75 +176.55 -37.65 +176.55 -37.55 +176.55 -37.45 +176.55 -37.35 +176.55 -37.25 +176.65 -41.35 +176.65 -41.25 +176.65 -41.15 +176.65 -41.05 +176.65 -40.95 +176.65 -40.85 +176.65 -40.75 +176.65 -40.65 +176.65 -40.55 +176.65 -40.45 +176.65 -40.35 +176.65 -40.25 +176.65 -40.15 +176.65 -40.05 +176.65 -39.95 +176.65 -39.85 +176.65 -39.75 +176.65 -39.65 +176.65 -39.55 +176.65 -39.45 +176.65 -39.35 +176.65 -39.25 +176.65 -39.15 +176.65 -39.05 +176.65 -38.95 +176.65 -38.85 +176.65 -38.75 +176.65 -38.65 +176.65 -38.55 +176.65 -38.45 +176.65 -38.35 +176.65 -38.25 +176.65 -38.15 +176.65 -38.05 +176.65 -37.95 +176.65 -37.85 +176.65 -37.75 +176.65 -37.65 +176.65 -37.55 +176.65 -37.45 +176.65 -37.35 +176.75 -41.25 +176.75 -41.15 +176.75 -41.05 +176.75 -40.95 +176.75 -40.85 +176.75 -40.75 +176.75 -40.65 +176.75 -40.55 +176.75 -40.45 +176.75 -40.35 +176.75 -40.25 +176.75 -40.15 +176.75 -40.05 +176.75 -39.95 +176.75 -39.85 +176.75 -39.75 +176.75 -39.65 +176.75 -39.55 +176.75 -39.45 +176.75 -39.35 +176.75 -39.25 +176.75 -39.15 +176.75 -39.05 +176.75 -38.95 +176.75 -38.85 +176.75 -38.75 +176.75 -38.65 +176.75 -38.55 +176.75 -38.45 +176.75 -38.35 +176.75 -38.25 +176.75 -38.15 +176.75 -38.05 +176.75 -37.95 +176.75 -37.85 +176.75 -37.75 +176.75 -37.65 +176.75 -37.55 +176.75 -37.45 +176.75 -37.35 +176.85 -41.15 +176.85 -41.05 +176.85 -40.95 +176.85 -40.85 +176.85 -40.75 +176.85 -40.65 +176.85 -40.55 +176.85 -40.45 +176.85 -40.35 +176.85 -40.25 +176.85 -40.15 +176.85 -40.05 +176.85 -39.95 +176.85 -39.85 +176.85 -39.75 +176.85 -39.65 +176.85 -39.55 +176.85 -39.45 +176.85 -39.35 +176.85 -39.25 +176.85 -39.15 +176.85 -39.05 +176.85 -38.95 +176.85 -38.85 +176.85 -38.75 +176.85 -38.65 +176.85 -38.55 +176.85 -38.45 +176.85 -38.35 +176.85 -38.25 +176.85 -38.15 +176.85 -38.05 +176.85 -37.95 +176.85 -37.85 +176.85 -37.75 +176.85 -37.65 +176.85 -37.55 +176.85 -37.45 +176.85 -37.35 +176.95 -40.95 +176.95 -40.85 +176.95 -40.75 +176.95 -40.65 +176.95 -40.55 +176.95 -40.45 +176.95 -40.35 +176.95 -40.25 +176.95 -40.15 +176.95 -40.05 +176.95 -39.95 +176.95 -39.85 +176.95 -39.75 +176.95 -39.65 +176.95 -39.55 +176.95 -39.45 +176.95 -39.35 +176.95 -39.25 +176.95 -39.15 +176.95 -39.05 +176.95 -38.95 +176.95 -38.85 +176.95 -38.75 +176.95 -38.65 +176.95 -38.55 +176.95 -38.45 +176.95 -38.35 +176.95 -38.25 +176.95 -38.15 +176.95 -38.05 +176.95 -37.95 +176.95 -37.85 +176.95 -37.75 +176.95 -37.65 +176.95 -37.55 +176.95 -37.45 +177.05 -40.85 +177.05 -40.75 +177.05 -40.65 +177.05 -40.55 +177.05 -40.45 +177.05 -40.35 +177.05 -40.25 +177.05 -40.15 +177.05 -40.05 +177.05 -39.95 +177.05 -39.85 +177.05 -39.75 +177.05 -39.65 +177.05 -39.55 +177.05 -39.45 +177.05 -39.35 +177.05 -39.25 +177.05 -39.15 +177.05 -39.05 +177.05 -38.95 +177.05 -38.85 +177.05 -38.75 +177.05 -38.65 +177.05 -38.55 +177.05 -38.45 +177.05 -38.35 +177.05 -38.25 +177.05 -38.15 +177.05 -38.05 +177.05 -37.95 +177.05 -37.85 +177.05 -37.75 +177.05 -37.65 +177.05 -37.55 +177.05 -37.45 +177.15 -40.65 +177.15 -40.55 +177.15 -40.45 +177.15 -40.35 +177.15 -40.25 +177.15 -40.15 +177.15 -40.05 +177.15 -39.95 +177.15 -39.85 +177.15 -39.75 +177.15 -39.65 +177.15 -39.55 +177.15 -39.45 +177.15 -39.35 +177.15 -39.25 +177.15 -39.15 +177.15 -39.05 +177.15 -38.95 +177.15 -38.85 +177.15 -38.75 +177.15 -38.65 +177.15 -38.55 +177.15 -38.45 +177.15 -38.35 +177.15 -38.25 +177.15 -38.15 +177.15 -38.05 +177.15 -37.95 +177.15 -37.85 +177.15 -37.75 +177.15 -37.65 +177.15 -37.55 +177.15 -37.45 +177.25 -40.55 +177.25 -40.45 +177.25 -40.35 +177.25 -40.25 +177.25 -40.15 +177.25 -40.05 +177.25 -39.95 +177.25 -39.85 +177.25 -39.75 +177.25 -39.65 +177.25 -39.55 +177.25 -39.45 +177.25 -39.35 +177.25 -39.25 +177.25 -39.15 +177.25 -39.05 +177.25 -38.95 +177.25 -38.85 +177.25 -38.75 +177.25 -38.65 +177.25 -38.55 +177.25 -38.45 +177.25 -38.35 +177.25 -38.25 +177.25 -38.15 +177.25 -38.05 +177.25 -37.95 +177.25 -37.85 +177.25 -37.75 +177.25 -37.65 +177.25 -37.55 +177.25 -37.45 +177.25 -37.35 +177.35 -40.35 +177.35 -40.25 +177.35 -40.15 +177.35 -40.05 +177.35 -39.95 +177.35 -39.85 +177.35 -39.75 +177.35 -39.65 +177.35 -39.55 +177.35 -39.45 +177.35 -39.35 +177.35 -39.25 +177.35 -39.15 +177.35 -39.05 +177.35 -38.95 +177.35 -38.85 +177.35 -38.75 +177.35 -38.65 +177.35 -38.55 +177.35 -38.45 +177.35 -38.35 +177.35 -38.25 +177.35 -38.15 +177.35 -38.05 +177.35 -37.95 +177.35 -37.85 +177.35 -37.75 +177.35 -37.65 +177.35 -37.55 +177.35 -37.45 +177.35 -37.35 +177.45 -40.25 +177.45 -40.15 +177.45 -40.05 +177.45 -39.95 +177.45 -39.85 +177.45 -39.75 +177.45 -39.65 +177.45 -39.55 +177.45 -39.45 +177.45 -39.35 +177.45 -39.25 +177.45 -39.15 +177.45 -39.05 +177.45 -38.95 +177.45 -38.85 +177.45 -38.75 +177.45 -38.65 +177.45 -38.55 +177.45 -38.45 +177.45 -38.35 +177.45 -38.25 +177.45 -38.15 +177.45 -38.05 +177.45 -37.95 +177.45 -37.85 +177.45 -37.75 +177.45 -37.65 +177.45 -37.55 +177.45 -37.45 +177.45 -37.35 +177.55 -40.05 +177.55 -39.95 +177.55 -39.85 +177.55 -39.75 +177.55 -39.65 +177.55 -39.55 +177.55 -39.45 +177.55 -39.35 +177.55 -39.25 +177.55 -39.15 +177.55 -39.05 +177.55 -38.95 +177.55 -38.85 +177.55 -38.75 +177.55 -38.65 +177.55 -38.55 +177.55 -38.45 +177.55 -38.35 +177.55 -38.25 +177.55 -38.15 +177.55 -38.05 +177.55 -37.95 +177.55 -37.85 +177.55 -37.75 +177.55 -37.65 +177.55 -37.55 +177.55 -37.45 +177.55 -37.35 +177.55 -37.25 +177.65 -39.95 +177.65 -39.85 +177.65 -39.75 +177.65 -39.65 +177.65 -39.55 +177.65 -39.45 +177.65 -39.35 +177.65 -39.25 +177.65 -39.15 +177.65 -39.05 +177.65 -38.95 +177.65 -38.85 +177.65 -38.75 +177.65 -38.65 +177.65 -38.55 +177.65 -38.45 +177.65 -38.35 +177.65 -38.25 +177.65 -38.15 +177.65 -38.05 +177.65 -37.95 +177.65 -37.85 +177.65 -37.75 +177.65 -37.65 +177.65 -37.55 +177.65 -37.45 +177.65 -37.35 +177.65 -37.25 +177.75 -39.75 +177.75 -39.65 +177.75 -39.55 +177.75 -39.45 +177.75 -39.35 +177.75 -39.25 +177.75 -39.15 +177.75 -39.05 +177.75 -38.95 +177.75 -38.85 +177.75 -38.75 +177.75 -38.65 +177.75 -38.55 +177.75 -38.45 +177.75 -38.35 +177.75 -38.25 +177.75 -38.15 +177.75 -38.05 +177.75 -37.95 +177.75 -37.85 +177.75 -37.75 +177.75 -37.65 +177.75 -37.55 +177.75 -37.45 +177.75 -37.35 +177.75 -37.25 +177.85 -39.65 +177.85 -39.55 +177.85 -39.45 +177.85 -39.35 +177.85 -39.25 +177.85 -39.15 +177.85 -39.05 +177.85 -38.95 +177.85 -38.85 +177.85 -38.75 +177.85 -38.65 +177.85 -38.55 +177.85 -38.45 +177.85 -38.35 +177.85 -38.25 +177.85 -38.15 +177.85 -38.05 +177.85 -37.95 +177.85 -37.85 +177.85 -37.75 +177.85 -37.65 +177.85 -37.55 +177.85 -37.45 +177.85 -37.35 +177.85 -37.25 +177.85 -37.15 +177.95 -39.65 +177.95 -39.55 +177.95 -39.45 +177.95 -39.35 +177.95 -39.25 +177.95 -39.15 +177.95 -39.05 +177.95 -38.95 +177.95 -38.85 +177.95 -38.75 +177.95 -38.65 +177.95 -38.55 +177.95 -38.45 +177.95 -38.35 +177.95 -38.25 +177.95 -38.15 +177.95 -38.05 +177.95 -37.95 +177.95 -37.85 +177.95 -37.75 +177.95 -37.65 +177.95 -37.55 +177.95 -37.45 +177.95 -37.35 +177.95 -37.25 +177.95 -37.15 +178.05 -39.65 +178.05 -39.55 +178.05 -39.45 +178.05 -39.35 +178.05 -39.25 +178.05 -39.15 +178.05 -39.05 +178.05 -38.95 +178.05 -38.85 +178.05 -38.75 +178.05 -38.65 +178.05 -38.55 +178.05 -38.45 +178.05 -38.35 +178.05 -38.25 +178.05 -38.15 +178.05 -38.05 +178.05 -37.95 +178.05 -37.85 +178.05 -37.75 +178.05 -37.65 +178.05 -37.55 +178.05 -37.45 +178.05 -37.35 +178.05 -37.25 +178.05 -37.15 +178.15 -39.65 +178.15 -39.55 +178.15 -39.45 +178.15 -39.35 +178.15 -39.25 +178.15 -39.15 +178.15 -39.05 +178.15 -38.95 +178.15 -38.85 +178.15 -38.75 +178.15 -38.65 +178.15 -38.55 +178.15 -38.45 +178.15 -38.35 +178.15 -38.25 +178.15 -38.15 +178.15 -38.05 +178.15 -37.95 +178.15 -37.85 +178.15 -37.75 +178.15 -37.65 +178.15 -37.55 +178.15 -37.45 +178.15 -37.35 +178.15 -37.25 +178.15 -37.15 +178.15 -37.05 +178.25 -39.65 +178.25 -39.55 +178.25 -39.45 +178.25 -39.35 +178.25 -39.25 +178.25 -39.15 +178.25 -39.05 +178.25 -38.95 +178.25 -38.85 +178.25 -38.75 +178.25 -38.65 +178.25 -38.55 +178.25 -38.45 +178.25 -38.35 +178.25 -38.25 +178.25 -38.15 +178.25 -38.05 +178.25 -37.95 +178.25 -37.85 +178.25 -37.75 +178.25 -37.65 +178.25 -37.55 +178.25 -37.45 +178.25 -37.35 +178.25 -37.25 +178.25 -37.15 +178.35 -39.65 +178.35 -39.55 +178.35 -39.45 +178.35 -39.35 +178.35 -39.25 +178.35 -39.15 +178.35 -39.05 +178.35 -38.95 +178.35 -38.85 +178.35 -38.75 +178.35 -38.65 +178.35 -38.55 +178.35 -38.45 +178.35 -38.35 +178.35 -38.25 +178.35 -38.15 +178.35 -38.05 +178.35 -37.95 +178.35 -37.85 +178.35 -37.75 +178.35 -37.65 +178.35 -37.55 +178.35 -37.45 +178.35 -37.35 +178.35 -37.25 +178.35 -37.15 +178.45 -39.45 +178.45 -39.35 +178.45 -39.25 +178.45 -39.15 +178.45 -39.05 +178.45 -38.95 +178.45 -38.85 +178.45 -38.75 +178.45 -38.65 +178.45 -38.55 +178.45 -38.45 +178.45 -38.35 +178.45 -38.25 +178.45 -38.15 +178.45 -38.05 +178.45 -37.95 +178.45 -37.85 +178.45 -37.75 +178.45 -37.65 +178.45 -37.55 +178.45 -37.45 +178.45 -37.35 +178.45 -37.25 +178.45 -37.15 +178.55 -39.35 +178.55 -39.25 +178.55 -39.15 +178.55 -39.05 +178.55 -38.95 +178.55 -38.85 +178.55 -38.75 +178.55 -38.65 +178.55 -38.55 +178.55 -38.45 +178.55 -38.35 +178.55 -38.25 +178.55 -38.15 +178.55 -38.05 +178.55 -37.95 +178.55 -37.85 +178.55 -37.75 +178.55 -37.65 +178.55 -37.55 +178.55 -37.45 +178.55 -37.35 +178.55 -37.25 +178.65 -38.95 +178.65 -38.85 +178.65 -38.75 +178.65 -38.65 +178.65 -38.55 +178.65 -38.45 +178.65 -38.35 +178.65 -38.25 +178.65 -38.15 +178.65 -38.05 +178.65 -37.95 +178.65 -37.85 +178.65 -37.75 +178.65 -37.65 +178.65 -37.55 +178.65 -37.45 +178.65 -37.35 +178.65 -37.25 +178.75 -38.85 +178.75 -38.75 +178.75 -38.65 +178.75 -38.55 +178.75 -38.45 +178.75 -38.35 +178.75 -38.25 +178.75 -38.15 +178.75 -38.05 +178.75 -37.95 +178.75 -37.85 +178.75 -37.75 +178.75 -37.65 +178.75 -37.55 +178.75 -37.45 +178.75 -37.35 +178.85 -38.75 +178.85 -38.65 +178.85 -38.55 +178.85 -38.45 +178.85 -38.35 +178.85 -38.25 +178.85 -38.15 +178.85 -38.05 +178.85 -37.95 +178.85 -37.85 +178.85 -37.75 +178.85 -37.65 +178.85 -37.55 +178.85 -37.45 +178.85 -37.35 +178.95 -38.45 +178.95 -38.35 +178.95 -38.25 +178.95 -38.15 +178.95 -38.05 +178.95 -37.95 +178.95 -37.85 +178.95 -37.75 +178.95 -37.65 +178.95 -37.55 +178.95 -37.45 +178.95 -37.35 +179.05 -38.05 +179.05 -37.95 +179.05 -37.85 +179.05 -37.75 +179.05 -37.65 +179.05 -37.55 +179.05 -37.45 +179.15 -37.65 +179.15 -37.55 diff --git a/csep/core/binomial_evaluations.py b/csep/core/binomial_evaluations.py new file mode 100644 index 00000000..58fd7f50 --- /dev/null +++ b/csep/core/binomial_evaluations.py @@ -0,0 +1,395 @@ +import numpy +import scipy.stats +import scipy.spatial + +from csep.models import EvaluationResult +from csep.core.exceptions import CSEPCatalogException + + +def _nbd_number_test_ndarray(fore_cnt, obs_cnt, variance, epsilon=1e-6): + """ Computes delta1 and delta2 values from the Negative Binomial (NBD) number test. + + Args: + fore_cnt (float): parameter of negative binomial distribution coming from expected value of the forecast + obs_cnt (float): count of earthquakes observed during the testing period. + variance (float): variance parameter of negative binomial distribution coming from historical catalog. + A variance value of approximately 23541 has been calculated using M5.95+ earthquakes observed worldwide from 1982 to 2013. + epsilon (float): tolerance level to satisfy the requirements of two-sided p-value + + Returns + result (tuple): (delta1, delta2) + """ + var = variance + mean = fore_cnt + upsilon = 1.0 - ((var - mean) / var) + tau = (mean**2 /(var - mean)) + + delta1 = 1.0 - scipy.stats.nbinom.cdf(obs_cnt - epsilon, tau, upsilon, loc=0) + delta2 = scipy.stats.nbinom.cdf(obs_cnt + epsilon, tau, upsilon, loc=0) + + return delta1, delta2 + + +def negative_binomial_number_test(gridded_forecast, observed_catalog, variance): + """ Computes "negative binomial N-Test" on a gridded forecast. + + Computes Number (N) test for Observed and Forecasts. Both data sets are expected to be in terms of event counts. + We find the Total number of events in Observed Catalog and Forecasted Catalogs. Which are then employed to compute the + probablities of + (i) At least no. of events (delta 1) + (ii) At most no. of events (delta 2) assuming the negative binomial distribution. + + Args: + gridded_forecast: Forecast of a Model (Gridded) (Numpy Array) + A forecast has to be in terms of Average Number of Events in Each Bin + It can be anything greater than zero + observed_catalog: Observed (Gridded) seismicity (Numpy Array): + An Observation has to be Number of Events in Each Bin + It has to be a either zero or positive integer only (No Floating Point) + variance: Variance parameter of negative binomial distribution obtained from historical catalog. + + Returns: + out (tuple): (delta_1, delta_2) + """ + result = EvaluationResult() + + # observed count + obs_cnt = observed_catalog.event_count + + # forecasts provide the expeceted number of events during the time horizon of the forecast + fore_cnt = gridded_forecast.event_count + + epsilon = 1e-6 + + # stores the actual result of the number test + delta1, delta2 = _nbd_number_test_ndarray(fore_cnt, obs_cnt, variance, epsilon=epsilon) + + # store results + result.test_distribution = ('negative_binomial', fore_cnt) + result.name = 'NBD N-Test' + result.observed_statistic = obs_cnt + result.quantile = (delta1, delta2) + result.sim_name = gridded_forecast.name + result.obs_name = observed_catalog.name + result.status = 'normal' + result.min_mw = numpy.min(gridded_forecast.magnitudes) + + return result + + +def binary_joint_log_likelihood_ndarray(forecast, catalog): + """ Computes Bernoulli log-likelihood scores, assuming that earthquakes follow a binomial distribution. + + Args: + forecast: Forecast of a Model (Gridded) (Numpy Array) + A forecast has to be in terms of Average Number of Events in Each Bin + It can be anything greater than zero + catalog: Observed (Gridded) seismicity (Numpy Array): + An Observation has to be Number of Events in Each Bin + It has to be a either zero or positive integer only (No Floating Point) + """ + # First, we mask the forecast in cells where we could find log=0.0 singularities: + forecast_masked = numpy.ma.masked_where(forecast.ravel() <= 0.0, forecast.ravel()) + # Then, we compute the log-likelihood of observing one or more events given a Poisson distribution, i.e., 1 - Pr(0) + target_idx = numpy.nonzero(catalog.ravel()) + y = numpy.zeros(forecast_masked.ravel().shape) + y[target_idx[0]] = 1 + first_term = y * (numpy.log(1.0 - numpy.exp(-forecast_masked.ravel()))) + # Also, we estimate the log-likelihood in cells no events are observed: + second_term = (1-y) * (-forecast_masked.ravel().data) + # Finally, we sum both terms to compute the joint log-likelihood score: + return sum(first_term.data + second_term.data) + + + +def _simulate_catalog(sim_cells, sampling_weights, sim_fore, random_numbers=None): + # Modified this code to generate simulations in a way that every cell gets one earthquake + # Generate uniformly distributed random numbers in [0,1), this + if random_numbers is None: + # Reset simulation array to zero, but don't reallocate + sim_fore.fill(0) + num_active_cells = 0 + while num_active_cells < sim_cells: + random_num = numpy.random.uniform(0,1) + loc = numpy.searchsorted(sampling_weights, random_num, side='right') + if sim_fore[loc] == 0: + sim_fore[loc] = 1 + num_active_cells = num_active_cells + 1 + else: + # Find insertion points using binary search inserting to satisfy a[i-1] <= v < a[i] + pnts = numpy.searchsorted(sampling_weights, random_numbers, side='right') + # Create simulated catalog by adding to the original locations + numpy.add.at(sim_fore, pnts, 1) + + assert sim_fore.sum() == sim_cells, "simulated the wrong number of events!" + return sim_fore + + +def _binary_likelihood_test(forecast_data, observed_data, num_simulations=1000, random_numbers=None, + seed=None, use_observed_counts=True, verbose=True, normalize_likelihood=False): + """ Computes binary conditional-likelihood test from CSEP using an efficient simulation based approach. + + Args: + forecast_data (numpy.ndarray): nd array where [:, -1] are the magnitude bins. + observed_data (numpy.ndarray): same format as observation. + num_simulations: default number of simulations to use for likelihood based simulations + seed: used for reproducibility of the prng + random_numbers (numpy.ndarray): can supply an explicit list of random numbers, primarily used for software testing + use_observed_counts (bool): if true, will simulate catalogs using the observed events, if false will draw from poisson + distribution + """ + + # Array-masking that avoids log singularities: + forecast_data = numpy.ma.masked_where(forecast_data <= 0.0, forecast_data) + + # set seed for the likelihood test + if seed is not None: + numpy.random.seed(seed) + + # used to determine where simulated earthquake should be placed, by definition of cumsum these are sorted + sampling_weights = numpy.cumsum(forecast_data.ravel()) / numpy.sum(forecast_data) + + # data structures to store results + sim_fore = numpy.zeros(sampling_weights.shape) + simulated_ll = [] + n_active_cells = len(numpy.unique(numpy.nonzero(observed_data.ravel()))) + n_fore = numpy.sum(forecast_data) + expected_forecast_count = int(n_active_cells) + + # main simulation step in this loop + for idx in range(num_simulations): + if use_observed_counts: + num_cells_to_simulate = int(n_active_cells) + + if random_numbers is None: + sim_fore = _simulate_catalog(num_cells_to_simulate, sampling_weights, sim_fore) + else: + sim_fore = _simulate_catalog(num_cells_to_simulate, sampling_weights, sim_fore, + random_numbers=random_numbers[idx,:]) + + # compute joint log-likelihood + current_ll = binary_joint_log_likelihood_ndarray(forecast_data.data, sim_fore) + + # append to list of simulated log-likelihoods + simulated_ll.append(current_ll) + + # just be verbose + if verbose: + if (idx + 1) % 100 == 0: + print(f'... {idx + 1} catalogs simulated.') + + # observed joint log-likelihood + obs_ll = binary_joint_log_likelihood_ndarray(forecast_data.data, observed_data) + + # quantile score + qs = numpy.sum(simulated_ll <= obs_ll) / num_simulations + + # float, float, list + return qs, obs_ll, simulated_ll + + +def binary_spatial_test(gridded_forecast, observed_catalog, num_simulations=1000, seed=None, random_numbers=None, verbose=False): + """ Performs the binary spatial test on the Forecast using the Observed Catalogs. + + Note: The forecast and the observations should be scaled to the same time period before calling this function. This increases + transparency as no assumptions are being made about the length of the forecasts. This is particularly important for + gridded forecasts that supply their forecasts as rates. + + Args: + gridded_forecast: csep.core.forecasts.GriddedForecast + observed_catalog: csep.core.catalogs.Catalog + num_simulations (int): number of simulations used to compute the quantile score + seed (int): used fore reproducibility, and testing + random_numbers (numpy.ndarray): random numbers used to override the random number generation. injection point for testing. + + Returns: + evaluation_result: csep.core.evaluations.EvaluationResult + """ + + # grid catalog onto spatial grid + gridded_catalog_data = observed_catalog.spatial_counts() + + # simply call likelihood test on catalog data and forecast + qs, obs_ll, simulated_ll = _binary_likelihood_test( + gridded_forecast.spatial_counts(), + gridded_catalog_data, + num_simulations=num_simulations, + seed=seed, + random_numbers=random_numbers, + use_observed_counts=True, + verbose=verbose, + normalize_likelihood=True + ) + + +# populate result data structure + result = EvaluationResult() + result.test_distribution = simulated_ll + result.name = 'Binary S-Test' + result.observed_statistic = obs_ll + result.quantile = qs + result.sim_name = gridded_forecast.name + result.obs_name = observed_catalog.name + result.status = 'normal' + try: + result.min_mw = numpy.min(gridded_forecast.magnitudes) + except AttributeError: + result.min_mw = -1 + return result + + +def binary_conditional_likelihood_test(gridded_forecast, observed_catalog, num_simulations=1000, seed=None, random_numbers=None, verbose=False): + """ Performs the binary conditional likelihood test on Gridded Forecast using an Observed Catalog. + + Normalizes the forecast so the forecasted rate are consistent with the observations. This modification + eliminates the strong impact differences in the number distribution have on the forecasted rates. + + Note: The forecast and the observations should be scaled to the same time period before calling this function. This increases + transparency as no assumptions are being made about the length of the forecasts. This is particularly important for + gridded forecasts that supply their forecasts as rates. + + Args: + gridded_forecast: csep.core.forecasts.GriddedForecast + observed_catalog: csep.core.catalogs.Catalog + num_simulations (int): number of simulations used to compute the quantile score + seed (int): used fore reproducibility, and testing + random_numbers (numpy.ndarray): random numbers used to override the random number generation. injection point for testing. + + Returns: + evaluation_result: csep.core.evaluations.EvaluationResult + """ + + # grid catalog onto spatial grid + try: + _ = observed_catalog.region.magnitudes + except CSEPCatalogException: + observed_catalog.region = gridded_forecast.region + gridded_catalog_data = observed_catalog.spatial_magnitude_counts() + + # simply call likelihood test on catalog data and forecast + qs, obs_ll, simulated_ll = _binary_likelihood_test( + gridded_forecast.data, + gridded_catalog_data, + num_simulations=num_simulations, + seed=seed, + random_numbers=random_numbers, + use_observed_counts=True, + verbose=verbose, + normalize_likelihood=False + ) + + # populate result data structure + result = EvaluationResult() + result.test_distribution = simulated_ll + result.name = 'Binary CL-Test' + result.observed_statistic = obs_ll + result.quantile = qs + result.sim_name = gridded_forecast.name + result.obs_name = observed_catalog.name + result.status = 'normal' + result.min_mw = numpy.min(gridded_forecast.magnitudes) + + return result + + +def matrix_binary_t_test(target_event_rates1, target_event_rates2, n_obs, n_f1, n_f2, catalog, alpha=0.05): + """ Computes binary T test statistic by comparing two target event rate distributions. + + We compare Forecast from Model 1 and with Forecast of Model 2. Information Gain per Active Bin (IGPA) is computed, which is then + employed to compute T statistic. Confidence interval of Information Gain can be computed using T_critical. For a complete + explanation see Rhoades, D. A., et al., (2011). Efficient testing of earthquake forecasting models. Acta Geophysica, 59(4), + 728-747. doi:10.2478/s11600-011-0013-5, and Bayona J.A. et al., (2022). Prospective evaluation of multiplicative hybrid earthquake + forecasting models in California. doi: 10.1093/gji/ggac018. + + Args: + target_event_rates1 (numpy.ndarray): nd-array storing target event rates + target_event_rates2 (numpy.ndarray): nd-array storing target event rates + n_obs (float, int, numpy.ndarray): number of observed earthquakes, should be whole number and >= zero. + n_f1 (float): Total number of forecasted earthquakes by Model 1 + n_f2 (float): Total number of forecasted earthquakes by Model 2 + catalog: csep.core.catalogs.Catalog + alpha (float): tolerance level for the type-i error rate of the statistical test + + Returns: + out (dict): relevant statistics from the t-test + """ + # Some Pre Calculations - Because they are being used repeatedly. + N_p = n_obs + N = len(np.unique(np.nonzero(catalog.spatial_magnitude_counts().ravel()))) # Number of active bins + N1 = n_f1 + N2 = n_f2 + X1 = numpy.log(target_event_rates1) # Log of every element of Forecast 1 + X2 = numpy.log(target_event_rates2) # Log of every element of Forecast 2 + + + # Information Gain, using Equation (17) of Rhoades et al. 2011 + information_gain = (numpy.sum(X1 - X2) - (N1 - N2)) / N + + # Compute variance of (X1-X2) using Equation (18) of Rhoades et al. 2011 + first_term = (numpy.sum(numpy.power((X1 - X2), 2))) / (N - 1) + second_term = numpy.power(numpy.sum(X1 - X2), 2) / (numpy.power(N, 2) - N) + forecast_variance = first_term - second_term + + forecast_std = numpy.sqrt(forecast_variance) + t_statistic = information_gain / (forecast_std / numpy.sqrt(N)) + + # Obtaining the Critical Value of T from T distribution. + df = N - 1 + t_critical = scipy.stats.t.ppf(1 - (alpha / 2), df) # Assuming 2-Tail Distribution for 2 tail, divide 0.05/2. + + # Computing Information Gain Interval. + ig_lower = information_gain - (t_critical * forecast_std / numpy.sqrt(N)) + ig_upper = information_gain + (t_critical * forecast_std / numpy.sqrt(N)) + + # If T value greater than T critical, Then both Lower and Upper Confidence Interval limits will be greater than Zero. + # If above Happens, Then It means that Forecasting Model 1 is better than Forecasting Model 2. + return {'t_statistic': t_statistic, + 't_critical': t_critical, + 'information_gain': information_gain, + 'ig_lower': ig_lower, + 'ig_upper': ig_upper} + + +def binary_paired_t_test(forecast, benchmark_forecast, observed_catalog, alpha=0.05, scale=False): + """ Computes the binary t-test for gridded earthquake forecasts. + + This score is positively oriented, meaning that positive values of the information gain indicate that the + forecast is performing better than the benchmark forecast + + Args: + forecast (csep.core.forecasts.GriddedForecast): nd-array storing gridded rates, axis=-1 should be the magnitude column + benchmark_forecast (csep.core.forecasts.GriddedForecast): nd-array storing gridded rates, axis=-1 should be the magnitude + column + observed_catalog (csep.core.catalogs.AbstractBaseCatalog): number of observed earthquakes, should be whole number and >= zero. + alpha (float): tolerance level for the type-i error rate of the statistical test + scale (bool): if true, scale forecasted rates down to a single day + + Returns: + evaluation_result: csep.core.evaluations.EvaluationResult + """ + + # needs some pre-processing to put the forecasts in the context that is required for the t-test. this is different + # for cumulative forecasts (eg, multiple time-horizons) and static file-based forecasts. + target_event_rate_forecast1p, n_fore1 = forecast.target_event_rates(observed_catalog, scale=scale) + target_event_rate_forecast2p, n_fore2 = benchmark_forecast.target_event_rates(observed_catalog, scale=scale) + + target_event_rate_forecast1 = forecast.data.ravel()[np.unique(np.nonzero(observed_catalog.spatial_magnitude_counts().ravel()))] + target_event_rate_forecast2 = benchmark_forecast.data.ravel()[np.unique(np.nonzero(observed_catalog.spatial_magnitude_counts(). + ravel()))] + + # call the primative version operating on ndarray + out = matrix_binary_t_test(target_event_rate_forecast1, target_event_rate_forecast2, observed_catalog.event_count, n_fore1, n_fore2, + observed_catalog, + alpha=alpha) + + # storing this for later + result = EvaluationResult() + result.name = 'binary paired T-Test' + result.test_distribution = (out['ig_lower'], out['ig_upper']) + result.observed_statistic = out['information_gain'] + result.quantile = (out['t_statistic'], out['t_critical']) + result.sim_name = (forecast.name, benchmark_forecast.name) + result.obs_name = observed_catalog.name + result.status = 'normal' + result.min_mw = np.min(forecast.magnitudes) + return result diff --git a/csep/core/catalogs.py b/csep/core/catalogs.py index 25603ad8..3b0fecfe 100644 --- a/csep/core/catalogs.py +++ b/csep/core/catalogs.py @@ -737,16 +737,16 @@ def spatial_magnitude_counts(self, mag_bins=None, tol=0.00001): """ Return counts of events in space-magnitude region. We figure out the index of the polygons and create a map that relates the spatial coordinate in the - Cartesian grid with with the polygon in region. + Cartesian grid with the polygon in region. Args: - mag_bins: magnitude bins (optional). tries to use magnitue bins associated with region + mag_bins (list, numpy.array): magnitude bins (optional), if empty tries to use magnitude bins associated with region + tol (float): tolerance for comparisons within magnitude bins Returns: output: unnormalized event count in each bin, 1d ndarray where index corresponds to midpoints """ - # make sure region is specified with catalog if self.region is None: raise CSEPCatalogException("Cannot create binned rates without region information.") @@ -784,8 +784,8 @@ def get_bvalue(self, mag_bins=None, return_error=True): If that fails, uses the default magnitude bins provided in constants. Args: - reterr (bool): returns errors mag_bins (list or array_like): monotonically increasing set of magnitude bin edges + return_error (bool): returns errors Returns: bval (float): b-value @@ -824,6 +824,10 @@ def p(): else: return bval + def b_positive(self): + """ Implements the b-positive indicator from Nicholas van der Elst """ + pass + def plot(self, ax=None, show=False, extent=None, set_global=False, plot_args=None): """ Plot catalog according to plate-carree projection @@ -1028,9 +1032,10 @@ def read_catalog_line(line): raise ValueError( "catalog_id should be monotonically increasing and events should be ordered by catalog_id") # yield final catalog, note: since this is just loading catalogs, it has no idea how many should be there - yield cls(data=events, catalog_id=prev_id, **kwargs) + cat = cls(data=events, catalog_id=prev_id, **kwargs) + yield cat - if os.path.isdir(filename): + elif os.path.isdir(filename): raise NotImplementedError("reading from directory or batched files not implemented yet!") @classmethod diff --git a/csep/core/forecasts.py b/csep/core/forecasts.py index 9d6599d9..4b2f863f 100644 --- a/csep/core/forecasts.py +++ b/csep/core/forecasts.py @@ -397,22 +397,23 @@ def load_ascii(cls, ascii_fname, start_date=None, end_date=None, name=None, swap data = numpy.loadtxt(ascii_fname) # this is very ugly, but since unique returns a sorted list, we want to get the index, sort that and then return # from the original array. same for magnitudes below. - all_polys = data[:,:4] - all_poly_mask = data[:,-1] + all_polys = data[:, :4] + all_poly_mask = data[:, -1] sorted_idx = numpy.sort(numpy.unique(all_polys, return_index=True, axis=0)[1], kind='stable') unique_poly = all_polys[sorted_idx] # gives the flag for a spatial cell in the order it was presented in the file poly_mask = all_poly_mask[sorted_idx] # create magnitudes bins using Mag_0, ignoring Mag_1 bc they are regular until last bin. we dont want binary search for this - all_mws = data[:,-4] + all_mws = data[:, -4] sorted_idx = numpy.sort(numpy.unique(all_mws, return_index=True)[1], kind='stable') mws = all_mws[sorted_idx] # csep1 stores the lat lons as min values and not (x,y) tuples - bboxes = [tuple(itertools.product(bbox[:2], bbox[2:])) for bbox in unique_poly] if swap_latlon: - bboxes = [tuple(itertools.product(bbox[2:], bbox[:2])) for bbox in unique_poly] + bboxes = [((i[2], i[0]), (i[3], i[0]), (i[3], i[1]), (i[2], i[1])) for i in unique_poly] + else: + bboxes = [((i[0], i[2]), (i[0], i[3]), (i[1], i[3]), (i[1], i[2])) for i in unique_poly] # the spatial cells are arranged fast in latitude, so this only works for the specific csep1 file format - dh = float(unique_poly[0,3] - unique_poly[0,2]) + dh = float(unique_poly[0, 3] - unique_poly[0, 2]) # create CarteisanGrid of points region = CartesianGrid2D([Polygon(bbox) for bbox in bboxes], dh, mask=poly_mask) # get dims of 2d np.array @@ -648,7 +649,7 @@ def magnitude_counts(self): self.get_expected_rates() return self.expected_rates.magnitude_counts() - def get_event_counts(self): + def get_event_counts(self, verbose=True): """ Returns a numpy array containing the number of event counts for each catalog. Note: This function can take a while to compute if called without already iterating through a forecast that @@ -660,7 +661,13 @@ def get_event_counts(self): """ if len(self._event_counts) == 0: # event counts is filled while iterating over the catalog - for _ in self: + t0 = time.time() + for i, _ in enumerate(self): + if verbose: + tens_exp = numpy.floor(numpy.log10(i + 1)) + if (i + 1) % 10 ** tens_exp == 0: + t1 = time.time() + print(f'Processed {i + 1} catalogs in {t1 - t0:.2f} seconds', flush=True) pass return numpy.array(self._event_counts) @@ -696,7 +703,7 @@ def get_expected_rates(self, verbose=False): tens_exp = numpy.floor(numpy.log10(i + 1)) if (i + 1) % 10 ** tens_exp == 0: t1 = time.time() - print(f'Processed {i + 1} catalogs in {t1 - t0} seconds', flush=True) + print(f'Processed {i + 1} catalogs in {t1 - t0:.3f} seconds', flush=True) # after we iterate through the catalogs, we know self.n_cat data = data / self.n_cat self.expected_rates = GriddedForecast(self.start_time, self.end_time, data=data, region=self.region, diff --git a/csep/core/regions.py b/csep/core/regions.py index 48295b40..04795c01 100644 --- a/csep/core/regions.py +++ b/csep/core/regions.py @@ -8,6 +8,8 @@ import numpy import numpy as np import mercantile +from shapely import geometry +from shapely.ops import unary_union # PyCSEP imports from csep.utils.calc import bin1d_vec, cleaner_range, first_nonnan, last_nonnan @@ -192,6 +194,90 @@ def italy_csep_collection_region(dh_scale=1, magnitudes=None, name="csep-italy-c return relm_region +def nz_csep_region(dh_scale=1, magnitudes=None, name="csep-nz", use_midpoint=True): + """ Return collection region for the New Zealand CSEP testing region + + Args: + dh_scale (int): factor of two multiple to change the grid size + mangitudes (array-like): array representing the lower bin edges of the magnitude bins + name (str): human readable identifer + use_midpoints (bool): if true, treat values in file as midpoints. default = true. + + Returns: + :class:`csep.core.spatial.CartesianGrid2D` + + Raises: + ValueError: dh_scale must be a factor of two + + """ + if dh_scale % 2 != 0 and dh_scale != 1: + raise ValueError("dh_scale must be a factor of two or dh_scale must equal unity.") + + # we can hard-code the dh because we hard-code the filename + dh = 0.1 + root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) + filepath = os.path.join(root_dir, 'artifacts', 'Regions', 'nz.testing.nodes.dat') + points = numpy.loadtxt(filepath) + if use_midpoint: + origins = numpy.array(points) - dh / 2 + else: + origins = numpy.array(points) + + if dh_scale > 1: + origins = increase_grid_resolution(origins, dh, dh_scale) + dh = dh / dh_scale + + # turn points into polygons and make region object + bboxes = compute_vertices(origins, dh) + nz_region = CartesianGrid2D([Polygon(bbox) for bbox in bboxes], dh, name=name) + + if magnitudes is not None: + nz_region.magnitudes = magnitudes + + return nz_region + +def nz_csep_collection_region(dh_scale=1, magnitudes=None, name="csep-nz-collection", use_midpoint=True): + """ Return collection region for the New Zealand CSEP collection region + + Args: + dh_scale (int): factor of two multiple to change the grid size + mangitudes (array-like): array representing the lower bin edges of the magnitude bins + name (str): human readable identifer + use_midpoints (bool): if true, treat values in file as midpoints. default = true. + + Returns: + :class:`csep.core.spatial.CartesianGrid2D` + + Raises: + ValueError: dh_scale must be a factor of two + + """ + if dh_scale % 2 != 0 and dh_scale != 1: + raise ValueError("dh_scale must be a factor of two or dh_scale must equal unity.") + + # we can hard-code the dh because we hard-code the filename + dh = 0.1 + root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) + filepath = os.path.join(root_dir, 'artifacts', 'Regions', 'nz.collection.nodes.dat') + points = numpy.loadtxt(filepath) + if use_midpoint: + origins = numpy.array(points) - dh / 2 + else: + origins = numpy.array(points) + + if dh_scale > 1: + origins = increase_grid_resolution(origins, dh, dh_scale) + dh = dh / dh_scale + + # turn points into polygons and make region object + bboxes = compute_vertices(origins, dh) + nz_collection_region = CartesianGrid2D([Polygon(bbox) for bbox in bboxes], dh, name=name) + + if magnitudes is not None: + nz_collection_region.magnitudes = magnitudes + + return nz_collection_region + def global_region(dh=0.1, name="global", magnitudes=None): """ Creates a global region used for evaluating gridded forecasts on the global scale. @@ -517,6 +603,9 @@ def __init__(self, polygons, dh, name='cartesian2d', mask=None): # index values of polygons array into the 2d cartesian grid, based on the midpoint. self.xs = xs self.ys = ys + # Bounds [origin, top_right] + orgs = self.origins() + self.bounds = numpy.column_stack((orgs, orgs + dh)) def __eq__(self, other): return self.to_dict() == other.to_dict() @@ -542,14 +631,14 @@ def get_index_of(self, lons, lats): raise ValueError("at least one lon and lat pair contain values that are outside of the valid region.") if numpy.any(self.bbox_mask[idy, idx] == 1): raise ValueError("at least one lon and lat pair contain values that are outside of the valid region.") - return self.idx_map[idy,idx].astype(numpy.int) + return self.idx_map[idy, idx].astype(numpy.int64) def get_location_of(self, indices): """ Returns the polygon associated with the index idx. Args: - idx: index of polygon in region + indices: index of polygon in region Returns: Polygon @@ -719,35 +808,19 @@ def _build_bitmask_vec(self): return a, xs, ys - def tight_bbox(self): - # creates tight bounding box around the region, probably a faster way to do this. - ny, nx = self.idx_map.shape - asc = [] - desc = [] - for j in range(ny): - row = self.idx_map[j, :] - argmin = first_nonnan(row) - argmax = last_nonnan(row) - # points are stored clockwise - poly_min = self.polygons[int(row[argmin])].points - asc.insert(0, poly_min[0]) - asc.insert(0, poly_min[1]) - poly_max = self.polygons[int(row[argmax])].points - lat_0 = poly_max[2][1] - lat_1 = poly_max[3][1] - # last two points are 'right hand side of polygon' - if lat_0 < lat_1: - desc.append(poly_max[2]) - desc.append(poly_max[3]) - else: - desc.append(poly_max[3]) - desc.append(poly_max[2]) - # close the loop - poly = np.array(asc + desc) + def tight_bbox(self, precision=4): + # creates tight bounding box around the region + poly = np.array([i.points for i in self.polygons]) + sorted_idx = np.sort(np.unique(poly, return_index=True, axis=0)[1], kind='stable') unique_poly = poly[sorted_idx] - unique_poly = np.append(unique_poly, [unique_poly[0, :]], axis=0) - return unique_poly + + # merges all the cell polygons into one + polygons = [geometry.Polygon(np.round(i, precision)) for i in unique_poly] + joined_poly = unary_union(polygons) + bounds = np.array([i for i in joined_poly.boundary.xy]).T + + return bounds def get_cell_area(self): """ Compute the area of each polygon in sq. kilometers. @@ -772,13 +845,16 @@ def geographical_area_from_bounds(lon1, lat1, lon2, lat2): Returns: Area of cell in Km2 """ - earth_radius_km = 6371. - R2 = earth_radius_km ** 2 - rad_per_deg = numpy.pi / 180.0e0 + if lon1 == lon2 or lat1 == lat2: + return 0 + else: + earth_radius_km = 6371. + R2 = earth_radius_km ** 2 + rad_per_deg = numpy.pi / 180.0e0 - strip_area_steradian = 2 * numpy.pi * (1.0e0 - numpy.cos((90.0e0 - lat1) * rad_per_deg)) \ + strip_area_steradian = 2 * numpy.pi * (1.0e0 - numpy.cos((90.0e0 - lat1) * rad_per_deg)) \ - 2 * numpy.pi * (1.0e0 - numpy.cos((90.0e0 - lat2) * rad_per_deg)) - area_km2 = strip_area_steradian * R2 / (360.0 / (lon2 - lon1)) + area_km2 = strip_area_steradian * R2 / (360.0 / (lon2 - lon1)) return area_km2 def quadtree_grid_bounds(quadk): diff --git a/csep/utils/basic_types.py b/csep/utils/basic_types.py index 5e1f5aa5..c8c5168e 100644 --- a/csep/utils/basic_types.py +++ b/csep/utils/basic_types.py @@ -51,7 +51,7 @@ def add(self, data): # need to know the range of the data to be inserted on discretized grid (min, max) # this is to determine the discretization of the data - eps=np.finfo(np.float).eps + eps = np.finfo(np.float64).eps disc_min = np.floor((data_min+eps-self.anchor)*self.rec_dh)/self.rec_dh+self.anchor disc_max = np.ceil((data_max+eps-self.anchor)*self.rec_dh)/self.rec_dh+self.anchor diff --git a/csep/utils/calc.py b/csep/utils/calc.py index e0071f47..dc208cda 100644 --- a/csep/utils/calc.py +++ b/csep/utils/calc.py @@ -79,9 +79,9 @@ def bin1d_vec(p, bins, tol=None, right_continuous=False): else: h = bins[1] - bins[0] - a0_tol = numpy.abs(a0) * numpy.finfo(numpy.float).eps - h_tol = numpy.abs(h) * numpy.finfo(numpy.float).eps - p_tol = numpy.abs(p) * numpy.finfo(numpy.float).eps + a0_tol = numpy.abs(a0) * numpy.finfo(numpy.float64).eps + h_tol = numpy.abs(h) * numpy.finfo(numpy.float64).eps + p_tol = numpy.abs(p) * numpy.finfo(numpy.float64).eps # absolute tolerance if tol is None: @@ -97,7 +97,7 @@ def bin1d_vec(p, bins, tol=None, right_continuous=False): try: idx[(idx < 0)] = -1 idx[(idx >= len(bins) - 1)] = len(bins) - 1 - except (TypeError): + except TypeError: if idx >= len(bins) - 1: idx = len(bins) - 1 if idx < 0: @@ -105,12 +105,12 @@ def bin1d_vec(p, bins, tol=None, right_continuous=False): else: try: idx[((idx < 0) | (idx >= len(bins)))] = -1 - except (TypeError): + except TypeError: if idx < 0 or idx >= len(bins): idx = -1 try: - idx = idx.astype(numpy.int) - except (AttributeError): + idx = idx.astype(numpy.int64) + except AttributeError: idx = int(idx) return idx diff --git a/csep/utils/comcat.py b/csep/utils/comcat.py index da0d2558..ecaea5f9 100644 --- a/csep/utils/comcat.py +++ b/csep/utils/comcat.py @@ -1,8 +1,9 @@ # python imports -from datetime import datetime, timedelta +from datetime import datetime, timedelta, timezone from urllib import request -from urllib.error import HTTPError +from urllib.error import HTTPError, URLError from urllib.parse import urlparse, urlencode +import ssl import json import time from collections import OrderedDict @@ -293,6 +294,39 @@ def _search(**newargs): except Exception as msg: raise Exception( 'Error downloading data from url %s. "%s".' % (url, msg)) + + except ssl.SSLCertVerificationError as SSLe: + # Fails to verify SSL certificate, when there is a hostname mismatch + if SSLe.verify_code == 62: + try: + context = ssl._create_unverified_context() + fh = request.urlopen(url, timeout=TIMEOUT, context=context) + data = fh.read().decode('utf8') + fh.close() + jdict = json.loads(data) + events = [] + for feature in jdict['features']: + events.append(SummaryEvent(feature)) + except Exception as msg: + raise Exception( + 'Error downloading data from url %s. "%s".' % (url, msg)) + + except URLError as URLe: + # Fails to verify SSL certificate, when there is a hostname mismatch + if isinstance(URLe.reason, ssl.SSLCertVerificationError) and URLe.reason.verify_code == 62: + try: + context = ssl._create_unverified_context() + fh = request.urlopen(url, timeout=TIMEOUT, context=context) + data = fh.read().decode('utf8') + fh.close() + jdict = json.loads(data) + events = [] + for feature in jdict['features']: + events.append(SummaryEvent(feature)) + except Exception as msg: + raise Exception( + 'Error downloading data from url %s. "%s".' % (url, msg)) + except Exception as msg: raise Exception( 'Error downloading data from url %s. "%s".' % (url, msg)) @@ -358,7 +392,11 @@ def id(self): Returns: str: Authoritative origin ID. """ - return self._jdict['id'] + ## comcat has an id key in each feature, whereas bsi has eventId within the properties dict + try: + return self._jdict['id'] + except: + return self._jdict['properties']['eventId'] @property def time(self): @@ -367,6 +405,10 @@ def time(self): datetime: Authoritative origin time. """ time_in_msec = self._jdict['properties']['time'] + # Comcat gives the event time in a ms timestamp, whereas bsi in datetime isoformat + if isinstance(time_in_msec, str): + event_dtime = datetime.fromisoformat(time_in_msec).replace(tzinfo=timezone.utc) + time_in_msec = event_dtime.timestamp() * 1000 time_in_sec = time_in_msec // 1000 msec = time_in_msec - (time_in_sec * 1000) dtime = datetime.utcfromtimestamp(time_in_sec) diff --git a/csep/utils/plots.py b/csep/utils/plots.py index c8c20153..f4369fb0 100644 --- a/csep/utils/plots.py +++ b/csep/utils/plots.py @@ -6,6 +6,7 @@ import scipy.stats import matplotlib +import matplotlib.lines from matplotlib import cm from matplotlib.collections import PatchCollection import matplotlib.pyplot as pyplot @@ -1512,6 +1513,7 @@ def plot_comparison_test(results_t, results_w=None, axes=None, plot_args=None): return ax + def plot_poisson_consistency_test(eval_results, normalize=False, one_sided_lower=False, axes=None, plot_args=None, show=False): """ Plots results from CSEP1 tests following the CSEP1 convention. @@ -1555,7 +1557,7 @@ def plot_poisson_consistency_test(eval_results, normalize=False, one_sided_lower figsize= plot_args.get('figsize', None) title = plot_args.get('title', results[0].name) title_fontsize = plot_args.get('title_fontsize', None) - xlabel = plot_args.get('xlabel', 'X') + xlabel = plot_args.get('xlabel', '') xlabel_fontsize = plot_args.get('xlabel_fontsize', None) xticks_fontsize = plot_args.get('xticks_fontsize', None) ylabel_fontsize = plot_args.get('ylabel_fontsize', None) @@ -1565,6 +1567,7 @@ def plot_poisson_consistency_test(eval_results, normalize=False, one_sided_lower hbars = plot_args.get('hbars', True) tight_layout = plot_args.get('tight_layout', True) percentile = plot_args.get('percentile', 95) + plot_mean = plot_args.get('mean', False) if axes is None: fig, ax = pyplot.subplots(figsize=figsize) @@ -1578,6 +1581,7 @@ def plot_poisson_consistency_test(eval_results, normalize=False, one_sided_lower if res.test_distribution[0] == 'poisson': plow = scipy.stats.poisson.ppf((1 - percentile/100.)/2., res.test_distribution[1]) phigh = scipy.stats.poisson.ppf(1 - (1 - percentile/100.)/2., res.test_distribution[1]) + mean = res.test_distribution[1] observed_statistic = res.observed_statistic # empirical distributions else: @@ -1594,12 +1598,14 @@ def plot_poisson_consistency_test(eval_results, normalize=False, one_sided_lower else: plow = numpy.percentile(test_distribution, (100 - percentile)/2.) phigh = numpy.percentile(test_distribution, 100 - (100 - percentile)/2.) + mean = numpy.mean(res.test_distribution) if not numpy.isinf(observed_statistic): # Check if test result does not diverges - low = observed_statistic - plow - high = phigh - observed_statistic - ax.errorbar(observed_statistic, index, xerr=numpy.array([[low, high]]).T, - fmt=_get_marker_style(observed_statistic, (plow, phigh), one_sided_lower), + percentile_lims = numpy.array([[mean - plow, phigh - mean]]).T + ax.plot(observed_statistic, index, + _get_marker_style(observed_statistic, (plow, phigh), one_sided_lower)) + ax.errorbar(mean, index, xerr=percentile_lims, + fmt='ko'*plot_mean, capsize=capsize, linewidth=linewidth, ecolor=color) # determine the limits to use xlims.append((plow, phigh, observed_statistic)) @@ -1883,3 +1889,265 @@ def add_labels_for_publication(figure, style='bssa', labelsize=16): ax.annotate(f'({annot})', (0.025, 1.025), xycoords='axes fraction', fontsize=labelsize) return + + +def plot_consistency_test(eval_results, normalize=False, axes=None, one_sided_lower=False, variance=None, plot_args=None, show=False): + """ Plots results from CSEP1 tests following the CSEP1 convention. + + Note: All of the evaluations should be from the same type of evaluation, otherwise the results will not be + comparable on the same figure. + + Args: + eval_results (list): Contains the tests results :class:`csep.core.evaluations.EvaluationResult` (see note above) + normalize (bool): select this if the forecast likelihood should be normalized by the observed likelihood. useful + for plotting simulation based simulation tests. + one_sided_lower (bool): select this if the plot should be for a one sided test + plot_args(dict): optional argument containing a dictionary of plotting arguments, with keys as strings and items as described below + + Optional plotting arguments: + * figsize: (:class:`list`/:class:`tuple`) - default: [6.4, 4.8] + * title: (:class:`str`) - default: name of the first evaluation result type + * title_fontsize: (:class:`float`) Fontsize of the plot title - default: 10 + * xlabel: (:class:`str`) - default: 'X' + * xlabel_fontsize: (:class:`float`) - default: 10 + * xticks_fontsize: (:class:`float`) - default: 10 + * ylabel_fontsize: (:class:`float`) - default: 10 + * color: (:class:`float`/:class:`None`) If None, sets it to red/green according to :func:`_get_marker_style` - default: 'black' + * linewidth: (:class:`float`) - default: 1.5 + * capsize: (:class:`float`) - default: 4 + * hbars: (:class:`bool`) Flag to draw horizontal bars for each model - default: True + * tight_layout: (:class:`bool`) Set matplotlib.figure.tight_layout to remove excess blank space in the plot - default: True + + Returns: + ax (:class:`matplotlib.pyplot.axes` object) + """ + + + try: + results = list(eval_results) + except TypeError: + results = [eval_results] + results.reverse() + # Parse plot arguments. More can be added here + if plot_args is None: + plot_args = {} + figsize= plot_args.get('figsize', None) + title = plot_args.get('title', results[0].name) + title_fontsize = plot_args.get('title_fontsize', None) + xlabel = plot_args.get('xlabel', '') + xlabel_fontsize = plot_args.get('xlabel_fontsize', None) + xticks_fontsize = plot_args.get('xticks_fontsize', None) + ylabel_fontsize = plot_args.get('ylabel_fontsize', None) + color = plot_args.get('color', 'black') + linewidth = plot_args.get('linewidth', None) + capsize = plot_args.get('capsize', 4) + hbars = plot_args.get('hbars', True) + tight_layout = plot_args.get('tight_layout', True) + percentile = plot_args.get('percentile', 95) + plot_mean = plot_args.get('mean', False) + + if axes is None: + fig, ax = pyplot.subplots(figsize=figsize) + else: + ax = axes + fig = ax.get_figure() + + xlims = [] + + for index, res in enumerate(results): + # handle analytical distributions first, they are all in the form ['name', parameters]. + if res.test_distribution[0] == 'poisson': + plow = scipy.stats.poisson.ppf((1 - percentile/100.)/2., res.test_distribution[1]) + phigh = scipy.stats.poisson.ppf(1 - (1 - percentile/100.)/2., res.test_distribution[1]) + mean = res.test_distribution[1] + observed_statistic = res.observed_statistic + + elif res.test_distribution[0] == 'negative_binomial': + var = variance + observed_statistic = res.observed_statistic + mean = res.test_distribution[1] + upsilon = 1.0 - ((var - mean) / var) + tau = (mean**2 /(var - mean)) + phigh = scipy.stats.nbinom.ppf((1 - percentile/100.)/2., tau, upsilon) + plow = scipy.stats.nbinom.ppf(1 - (1 - percentile/100.)/2., tau, upsilon) + + # empirical distributions + else: + if normalize: + test_distribution = numpy.array(res.test_distribution) - res.observed_statistic + observed_statistic = 0 + else: + test_distribution = numpy.array(res.test_distribution) + observed_statistic = res.observed_statistic + # compute distribution depending on type of test + if one_sided_lower: + plow = numpy.percentile(test_distribution, 5) + phigh = numpy.percentile(test_distribution, 100) + else: + plow = numpy.percentile(test_distribution, 2.5) + phigh = numpy.percentile(test_distribution, 97.5) + mean = numpy.mean(res.test_distribution) + + if not numpy.isinf(observed_statistic): # Check if test result does not diverges + percentile_lims = numpy.array([[mean - plow, phigh - mean]]).T + ax.plot(observed_statistic, index, + _get_marker_style(observed_statistic, (plow, phigh), one_sided_lower)) + ax.errorbar(mean, index, xerr=percentile_lims, + fmt='ko'*plot_mean, + capsize=capsize, linewidth=linewidth, ecolor=color) + # determine the limits to use + xlims.append((plow, phigh, observed_statistic)) + # we want to only extent the distribution where it falls outside of it in the acceptable tail + if one_sided_lower: + if observed_statistic >= plow and phigh < observed_statistic: + # draw dashed line to infinity + xt = numpy.linspace(phigh, 99999, 100) + yt = numpy.ones(100) * index + ax.plot(xt, yt, linestyle='--', linewidth=linewidth, color=color) + + else: + print('Observed statistic diverges for forecast %s, index %i.' + ' Check for zero-valued bins within the forecast'% (res.sim_name, index)) + ax.barh(index, 99999, left=-10000, height=1, color=['red'], alpha=0.5) + + + try: + ax.set_xlim(*_get_axis_limits(xlims)) + except ValueError: + raise ValueError('All EvaluationResults have infinite observed_statistics') + ax.set_yticks(numpy.arange(len(results))) + ax.set_yticklabels([res.sim_name for res in results], fontsize=ylabel_fontsize) + ax.set_ylim([-0.5, len(results)-0.5]) + if hbars: + yTickPos = ax.get_yticks() + if len(yTickPos) >= 2: + ax.barh(yTickPos, numpy.array([99999] * len(yTickPos)), left=-10000, + height=(yTickPos[1] - yTickPos[0]), color=['w', 'gray'], alpha=0.2, zorder=0) + ax.set_title(title, fontsize=title_fontsize) + ax.set_xlabel(xlabel, fontsize=xlabel_fontsize) + ax.tick_params(axis='x', labelsize=xticks_fontsize) + if tight_layout: + ax.figure.tight_layout() + fig.tight_layout() + + if show: + pyplot.show() + + return ax + + +def plot_pvalues_and_intervals(test_results, ax, var=None): + """ Plots p-values and intervals for a list of Poisson or NBD test results + + Args: + test_results (list): list of EvaluationResults for N-test. All tests should use the same distribution + (ie Poisson or NBD). + ax (matplotlib.axes.Axes.axis): axes to use for plot. create using matplotlib + var (float): variance of the NBD distribution. Must be used for NBD plots. + + Returns: + ax (matplotlib.axes.Axes.axis): axes handle containing this plot + + Raises: + ValueError: throws error if NBD tests are supplied without a variance + """ + + variance = var + percentile = 97.5 + p_values = [] + + # Differentiate between N-tests and other consistency tests + if test_results[0].name == 'NBD N-Test' or test_results[0].name == 'Poisson N-Test': + legend_elements = [matplotlib.lines.Line2D([0], [0], marker='o', color='red', lw=0, label=r'p < 10e-5', markersize=10, markeredgecolor='k'), + matplotlib.lines.Line2D([0], [0], marker='o', color='#FF7F50', lw=0, label=r'10e-5 $\leq$ p < 10e-4', markersize=10, markeredgecolor='k'), + matplotlib.lines.Line2D([0], [0], marker='o', color='gold', lw=0, label=r'10e-4 $\leq$ p < 10e-3', markersize=10, markeredgecolor='k'), + matplotlib.lines.Line2D([0], [0], marker='o', color='white', lw=0, label=r'10e-3 $\leq$ p < 0.0125', markersize=10, markeredgecolor='k'), + matplotlib.lines.Line2D([0], [0], marker='o', color='skyblue', lw=0, label=r'0.0125 $\leq$ p < 0.025', markersize=10, markeredgecolor='k'), + matplotlib.lines.Line2D([0], [0], marker='o', color='blue', lw=0, label=r'p $\geq$ 0.025', markersize=10, markeredgecolor='k')] + ax.legend(handles=legend_elements, loc=4, fontsize=13, edgecolor='k') + # Act on Negative binomial tests + if test_results[0].name == 'NBD N-Test': + if var is None: + raise ValueError("var must not be None if N-tests use the NBD distribution.") + + for i in range(len(test_results)): + mean = test_results[i].test_distribution[1] + upsilon = 1.0 - ((variance - mean) / variance) + tau = (mean**2 /(variance - mean)) + phigh97 = scipy.stats.nbinom.ppf((1 - percentile/100.)/2., tau, upsilon) + plow97 = scipy.stats.nbinom.ppf(1 - (1 - percentile/100.)/2., tau, upsilon) + low97 = test_results[i].observed_statistic - plow97 + high97 = phigh97 - test_results[i].observed_statistic + ax.errorbar(test_results[i].observed_statistic, (len(test_results)-1) - i, xerr=numpy.array([[low97, high97]]).T, capsize=4, + color='slategray', alpha=1.0, zorder=0) + p_values.append(test_results[i].quantile[1] * 2.0) # Calculated p-values according to Meletti et al., (2021) + + if p_values[i] < 10e-5: + ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='red', markersize=8, zorder=2) + if p_values[i] >= 10e-5 and p_values[i] < 10e-4: + ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='#FF7F50', markersize=8, zorder=2) + if p_values[i] >= 10e-4 and p_values[i] < 10e-3: + ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='gold', markersize=8, zorder=2) + if p_values[i] >= 10e-3 and p_values[i] < 0.0125: + ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='white', markersize=8, zorder=2) + if p_values[i] >= 0.0125 and p_values[i] < 0.025: + ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='skyblue', markersize=8, zorder=2) + if p_values[i] >= 0.025: + ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='blue', markersize=8, zorder=2) + # Act on Poisson N-test + if test_results[0].name == 'Poisson N-Test': + for i in range(len(test_results)): + plow97 = scipy.stats.poisson.ppf((1 - percentile/100.)/2., test_results[i].test_distribution[1]) + phigh97 = scipy.stats.poisson.ppf(1 - (1 - percentile/100.)/2., test_results[i].test_distribution[1]) + low97 = test_results[i].observed_statistic - plow97 + high97 = phigh97 - test_results[i].observed_statistic + ax.errorbar(test_results[i].observed_statistic, (len(test_results)-1) - i, xerr=numpy.array([[low97, high97]]).T, capsize=4, + color='slategray', alpha=1.0, zorder=0) + p_values.append(test_results[i].quantile[1] * 2.0) + if p_values[i] < 10e-5: + ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='red', markersize=8, zorder=2) + elif p_values[i] >= 10e-5 and p_values[i] < 10e-4: + ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='#FF7F50', markersize=8, zorder=2) + elif p_values[i] >= 10e-4 and p_values[i] < 10e-3: + ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='gold', markersize=8, zorder=2) + elif p_values[i] >= 10e-3 and p_values[i] < 0.0125: + ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='white', markersize=8, zorder=2) + elif p_values[i] >= 0.0125 and p_values[i] < 0.025: + ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='skyblue', markersize=8, zorder=2) + elif p_values[i] >= 0.025: + ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='blue', markersize=8, zorder=2) + # Operate on all other consistency tests + else: + for i in range(len(test_results)): + plow97 = numpy.percentile(test_results[i].test_distribution, 2.5) + phigh97 = numpy.percentile(test_results[i].test_distribution, 97.5) + low97 = test_results[i].observed_statistic - plow97 + high97 = phigh97 - test_results[i].observed_statistic + ax.errorbar(test_results[i].observed_statistic, (len(test_results)-1) -i, xerr=numpy.array([[low97, high97]]).T, capsize=4, + color='slategray', alpha=1.0, zorder=0) + p_values.append(test_results[i].quantile) + + if p_values[i] < 10e-5: + ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='red', markersize=8, zorder=2) + elif p_values[i] >= 10e-5 and p_values[i] < 10e-4: + ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='#FF7F50', markersize=8, zorder=2) + elif p_values[i] >= 10e-4 and p_values[i] < 10e-3: + ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='gold', markersize=8, zorder=2) + elif p_values[i] >= 10e-3 and p_values[i] < 0.025: + ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='white', markersize=8, zorder=2) + elif p_values[i] >= 0.025 and p_values[i] < 0.05: + ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='skyblue', markersize=8, zorder=2) + elif p_values[i] >= 0.05: + ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='blue', markersize=8, zorder=2) + + legend_elements = [ + matplotlib.lines.Line2D([0], [0], marker='o', color='red', lw=0, label=r'p < 10e-5', markersize=10, markeredgecolor='k'), + matplotlib.lines.Line2D([0], [0], marker='o', color='#FF7F50', lw=0, label=r'10e-5 $\leq$ p < 10e-4', markersize=10, markeredgecolor='k'), + matplotlib.lines.Line2D([0], [0], marker='o', color='gold', lw=0, label=r'10e-4 $\leq$ p < 10e-3', markersize=10, markeredgecolor='k'), + matplotlib.lines.Line2D([0], [0], marker='o', color='white', lw=0, label=r'10e-3 $\leq$ p < 0.025', markersize=10, markeredgecolor='k'), + matplotlib.lines.Line2D([0], [0], marker='o', color='skyblue', lw=0, label=r'0.025 $\leq$ p < 0.05', markersize=10, markeredgecolor='k'), + matplotlib.lines.Line2D([0], [0], marker='o', color='blue', lw=0, label=r'p $\geq$ 0.05', markersize=10, markeredgecolor='k')] + + ax.legend(handles=legend_elements, loc=4, fontsize=13, edgecolor='k') + + return ax diff --git a/csep/utils/readers.py b/csep/utils/readers.py index 753d57fa..4569634b 100644 --- a/csep/utils/readers.py +++ b/csep/utils/readers.py @@ -655,8 +655,9 @@ def jma_csv(fname): return events def _query_comcat(start_time, end_time, min_magnitude=2.50, - min_latitude=31.50, max_latitude=43.00, - min_longitude=-125.40, max_longitude=-113.10, extra_comcat_params=None): + min_latitude=31.50, max_latitude=43.00, + min_longitude=-125.40, max_longitude=-113.10, + max_depth=1000, extra_comcat_params=None): """ Return eventlist from ComCat web service. @@ -668,6 +669,7 @@ def _query_comcat(start_time, end_time, min_magnitude=2.50, max_latitude (float): maximum latitude of query min_longitude (float): minimum longitude of query max_longitude (float): maximum longitude of query + max_depth (float): maximum depth of query extra_comcat_params (dict): additional parameters to pass to comcat search function Returns: @@ -679,10 +681,30 @@ def _query_comcat(start_time, end_time, min_magnitude=2.50, eventlist = search(minmagnitude=min_magnitude, minlatitude=min_latitude, maxlatitude=max_latitude, minlongitude=min_longitude, maxlongitude=max_longitude, - starttime=start_time, endtime=end_time, **extra_comcat_params) + starttime=start_time, endtime=end_time, + maxdepth=max_depth, **extra_comcat_params) return eventlist +def _query_bsi(start_time, end_time, min_magnitude=2.50, + min_latitude=32.0, max_latitude=50.0, + min_longitude=2.0, max_longitude=21.0, + max_depth=1000, extra_bsi_params=None): + """ + Queries INGV Bulletino Sismico Italiano, revised version. + :return: csep.core.Catalog object + """ + extra_bsi_params = extra_bsi_params or {} + bsi_host = 'webservices.rm.ingv.it' + extra_bsi_params.update({'host': bsi_host, 'limit': 15000, 'offset': 0}) + # get eventlist from Comcat + eventlist = search(minmagnitude=min_magnitude, + minlatitude=min_latitude, maxlatitude=max_latitude, + minlongitude=min_longitude, maxlongitude=max_longitude, + maxdepth=max_depth, + starttime=start_time, endtime=end_time, **extra_bsi_params) + + return eventlist def _parse_datetime_to_zmap(date, time): """ Helping function to return datetime in zmap format. @@ -719,7 +741,7 @@ def _parse_datetime_to_zmap(date, time): out['second'] = dt.second return out -def load_quadtree_forecast(ascii_fname): +def quadtree_ascii_loader(ascii_fname): """ Load quadtree forecasted stored as ascii text file Note: This function is adapted form csep.forecasts.load_ascii @@ -756,4 +778,33 @@ def load_quadtree_forecast(ascii_fname): # reshape rates into correct 2d format rates = data[:, -1].reshape(n_poly, n_mag_bins) + return rates, region, mws + + +def quadtree_csv_loader(csv_fname): + """ Load quadtree forecasted stored as csv file + + The format expects forecast as a comma separated file, in which first column corresponds to quadtree grid cell (quadkey). + The second and thrid columns indicate depth range. + The corresponding enteries in the respective row are forecast rates corresponding to the magnitude bins. + The first line of forecast is a header, and its format is listed here: + 'Quadkey', depth_min, depth_max, Mag_0, Mag_1, Mag_2, Mag_3 , .... + Quadkey is a string. Rest of the values are floats. + For the purposes of defining region objects quadkey is used. + + We assume that the starting value of magnitude bins are provided in the header. + Args: + csv_fname: file name of csep forecast in csv format + Returns: + rates, region, mws (numpy.ndarray, QuadtreeRegion2D, numpy.ndarray): rates, region, and magnitude bins needed + to define QuadTree forecasts + """ + + data = numpy.genfromtxt(csv_fname, dtype='str', delimiter=',') + quadkeys = data[1:, 0] + mws = data[0, 3:] + rates = data[1:, 3:] + rates = rates.astype(float) + region = QuadtreeGrid2D.from_quadkeys(quadkeys, magnitudes=mws) + return rates, region, mws \ No newline at end of file diff --git a/docs/reference/api_reference.rst b/docs/reference/api_reference.rst index 9f8a6b36..6e3ce176 100644 --- a/docs/reference/api_reference.rst +++ b/docs/reference/api_reference.rst @@ -16,6 +16,7 @@ Loading catalogs and forecasts load_stochastic_event_sets load_catalog query_comcat + query_bsi load_gridded_forecast load_catalog_forecast diff --git a/examples/tutorials/catalog_filtering.py b/examples/tutorials/catalog_filtering.py index 406ee565..a21937ff 100644 --- a/examples/tutorials/catalog_filtering.py +++ b/examples/tutorials/catalog_filtering.py @@ -30,8 +30,9 @@ # Load catalog # ------------ # -# PyCSEP provides access to the ComCat web API using :func:`csep.query_comcat`. This function requires a -# :class:`datetime.datetime` to specify the start and end dates. +# PyCSEP provides access to the ComCat web API using :func:`csep.query_comcat` and to the Bollettino Sismico Italiano +# API using :func:`csep.query_bsi`. These functions require a :class:`datetime.datetime` to specify the start and end +# dates. start_time = csep.utils.time_utils.strptime_to_utc_datetime('2019-01-01 00:00:00.0') end_time = csep.utils.time_utils.utc_now_datetime() diff --git a/notebooks/CSEP_tests.ipynb b/notebooks/CSEP_tests.ipynb index da30f86c..b377641c 100644 --- a/notebooks/CSEP_tests.ipynb +++ b/notebooks/CSEP_tests.ipynb @@ -72,7 +72,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fetched ComCat catalog in 5.9399449825286865 seconds.\n", + "Fetched ComCat catalog in 5.9891064167022705 seconds.\n", "\n", "Downloaded catalog from ComCat with following parameters\n", "Start Date: 2010-01-10 00:27:39.320000+00:00\n", @@ -134,6 +134,33 @@ "\n", "where $\\lambda(m_i, s_j)$ and $\\omega(m_i, s_j)$ are the expected counts from the forecast and observed counts in cell $m_i, s_j$ respectively. We can calculate the likelihood directly given the forecast and discretised observations.\n", "\n", + "#### Binary consistency tests\n", + "\n", + "It is known that the Poisson distribution insufficiently captures the variability of earthquakes, as it could be dispersed with respect to the true distribution of seismicity, especially in the presence of clustered earthquakes (Werner and Sornette, 2008; Lombardi and Marzocchi, 2010; Nandan et al., 2019). Therefore, CSEP has recently introduced a set of new consistency tests based on the negative binomial distribution (NBD) and a binary likelihood function, with the aim of reducing the sensitivity of traditional Poisson-based tests to clustering (Bayona et al., 2022).\n", + "\n", + "The NBD has been shown to better describe non-declustered seismicity, because it has a greater variance than the Poisson distribution to account for spatiotemporal earthquake clustering (Werner et al., 2011a,b). Hence, one can fit a NBD to the rates of observed earthquakes in each forecast's testing region to evaluate number consistencies between forecasts and observations. The probability mass function of an NBD is defined by:\n", + "\n", + "$P (\\omega\\hspace{0.1cm}|\\hspace{0.1cm}\\tau, \\nu) = \\frac{\\Gamma(\\tau + \\omega)}{\\Gamma(\\tau)\\omega!} \\nu^\\omega (1-\\nu)^{\\omega},$\n", + "\n", + "where $\\omega = 0,1,2,...$ is the number of events, $\\tau > 0$ and $0 \\leq \\nu \\leq 1$ are parameters, and $\\Gamma$ is the Gamma function. The mean $\\mu$ and variance $\\sigma^2$ of the NBD are given by\n", + "\n", + "$\\mu = \\tau\\frac{1 - \\nu}{\\nu}; \\hspace{0.1cm} \\sigma^2=\\tau \\frac{1 - \\nu}{\\nu^2}$.\n", + "\n", + "Following the approach by Werner et al. (2011b), one can use the expected number earthquakes by the forecast as the mean and estimate the variance from historical catalogs.\n", + "\n", + "The binary likelihood function can also make the assumption that earthquakes are Poisson distributed less critical by calculating the probability of observing one or more earthquakes in a forecast cell/bin, rather than the likelihood of observing $\\omega =$ 1,2, .., n events. The probability of observing $\\omega = $ 0 earthquakes given an expected number/rate $\\lambda$, assuming a Poisson distribution, is P$_\\mathrm{0}$ = exp(-$\\lambda)$, while the probability of observing one or more events is P$_\\mathrm{_1}$ = 1 - P$_\\mathrm{0}$ = 1 - exp($-\\lambda)$. Accordingly, one can compute the log-likelihood score in each cell/bin based on the binary (or Bernoulli) distribution as:\n", + "\n", + "$$ L(\\boldsymbol{\\Omega} | \\boldsymbol{\\Lambda}) = X(m_i, s_j) \\hspace{0.1cm} \\mathrm{log} \\hspace{0.1cm} \\mathrm{P_1} + (1 -X(m_i, s_j)) \\hspace{0.1cm} \\mathrm{log} \\hspace{0.1cm} \\mathrm{P_0} = X(m_i, s_j) \\hspace{0.1cm} \\mathrm{log} \\hspace{0.1cm} (1-\\mathrm{exp}(-\\lambda(m_i, s_j))) + (1 -X_i) \\hspace{0.1cm} \\mathrm{log} \\hspace{0.1cm} (\\mathrm{exp}(-\\lambda(m_i, s_j)))$$\n", + "\n", + "where the first term represents the contribution to the score if a bin $(m_i, s_j)$ contains one or more events, i.e. $X(m_i, s_j)$ = 1, and the second term is the contribution if that cell/bin contains no earthquakes, i.e. $X(m_i, s_j)$ = 0.\n", + "\n", + "Similar to the example above, the joint likelihood of observing events in individual bins, based on the binary likelihood function, is the sum of each individual log score, i.e.:\n", + "\n", + "\n", + "$$ L(\\boldsymbol{\\Omega} | \\boldsymbol{\\Lambda}) = \\sum_{m_i , s_j \\in \\boldsymbol{R}} \\hspace{0.05cm}[X(m_i, s_j) \\hspace{0.1cm} \\mathrm{log} \\hspace{0.1cm} (1-\\mathrm{exp}(-\\lambda(m_i, s_j))) + (1 - X(m_i, s_j)) \\hspace{0.1cm} \\mathrm{log} \\hspace{0.1cm} (\\mathrm{exp}(-\\lambda(m_i, s_j)))]$$\n", + "\n", + "\n", + "\n", " Forecast uncertainty \n", "\n", "A simulation based approach is used to account for uncertainty in the forecast. We simulate realizations of catalogs that are consistent with the forecast to obtain distributions of scores. In the pyCSEP package, as in the original CSEP tests, simulation is carried out using the cumulative probability density of the forecast obtained by ordering the rates in each bin. We shall call $F_{m_is_j}$ the cumulative probability density in cell $(m_i, s_j)$. The simulation approach then works as follows:\n", @@ -141,6 +168,7 @@ "* For each forecast bin, draw a random number $z$ from a uniform distribution between 0 and 1\n", "* Assign this event to a space-magnitude bin through the inverse cumulative density distribution at this point $F^{-1}_{m_i, s_j}(z)$\n", "* Iterate over all simulated events to generate a catalog containing $N_{sim}$ events consistent with the forecast\n", + "* In the case of binary tests, simulate catalogs that are consistent with the number of active cells/bins.\n", "\n", "For each of these tests, we can plot the distribution of likelihoods computed from theses simulated catalogs relative to the observations using the `plots.plot_poisson_consistency_test` function. We also calculate a quantile score to diagnose a particular forecast with repsect. The number of simulations can be supplied to the Poisson consistency test functions using the `num_simulations` argument: for best results we suggest 100,000 simulations to ensure convergence.\n", "\n", @@ -158,7 +186,9 @@ "\n", "Whether a forecast can be said to pass an evaluation depends on the significance level chosen for the testing process. The quantile score explicitly tells us something about the significance of the result: the observation is consistent with the forecast with $100(1-\\gamma)\\%$ confidence (Zechar, 2011). Low $\\gamma$ values demonstrate that the observed likelihood score is less than most of the simulated catalogs. The consistency tests, excluding the N-test, are considered to be one-sided tests: values which are too small are ruled inconsistent with the forecast, but very large values may not necessarily be inconsistent with the forecast and additional testing should be used to further clarify this (Schorlemmer et al, 2007). \n", "\n", - "Different CSEP experiments have used different sensitivity values. Schorlemmer et al (2010b) consider $\\gamma \\lt 0.05$ while the implementation in the Italian CSEP testing experiment uses $\\gamma$ < 0.01 (Taroni et al, 2018). However, the consistency tests are most useful as diagnostic tools where the quantile score assesses the level of consistency between observations and data. Temporal variations in seismicity make it difficult to formally reject a model from a consistency test over a single evaluation period." + "Different CSEP experiments have used different sensitivity values. Schorlemmer et al (2010b) consider $\\gamma \\lt 0.05$ while the implementation in the Italian CSEP testing experiment uses $\\gamma$ < 0.01 (Taroni et al, 2018). However, the consistency tests are most useful as diagnostic tools where the quantile score assesses the level of consistency between observations and data. Temporal variations in seismicity make it difficult to formally reject a model from a consistency test over a single evaluation period. \n", + "\n", + "Performing multiple tests among samples of the same distribution increases the probability of observing at least one rare events, and consequently, increases the probability of obtaining an apparently statistically significant result (Kato, 2019). Therefore, CSEP has recently included consistency test results at a Bonferroni-adjusted significance level $\\gamma_{B}$ = 0.05 /2 = 0.025 to control the overall type II error rate, that is, the false-positive rate or the \"false-inconsistency\" rate (see Bayona et al., 2022)." ] }, { @@ -187,7 +217,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAQ8klEQVR4nO3de7BeVX3G8e9DQrkE5GIQxFuoBZEqpSZa8TahUrVYrResKFbRWiuiaGeoiGEg9VKlMLXeEMGZiFVq63hFxpqKAo4FQ4IhhFGpihRHUHBQBGwKYfWPd0VfD+eeQ87vnHw/M++c9a6919prnX3Oec7e7373m9YakiRVs8NsD0CSpNEYUJKkkgwoSVJJBpQkqSQDSpJUkgElSSrJgJIklWRASZJKMqAkTUmSPZO8blu31fbHgJK2M0lenOTcJG+eZhd7AtMNma1pq+2MASVtR5KcCDwKWAW8YJrdvBt4ZJL1Sc7s/b4syZpe9+EkC5IsSnJRkquTbEzy4tHaSmOJ9+KTtg9JdgX+BzgQWAjs1Vq7bhr9LAG+2Fp7TH/+aOAfgRe01u5OcjZwBXAn8KzW2l/39fYA9hpuK41n4WwPQNI2cwRwQ2vttv78luGFSb4C7DdKuxWttc+P0+/TgaXAlUkAdgF+ClwAnJXkDAah9PUke23lHLQdMaCk7cfTgNVjLWytHTnNfgOc31o75T4LkqXAUcC7kqwGPjbNbWg75GtQ0vbjScA3k+wDkOQBSQ6ZRj+/BHYfen4xcHSSB/V+907yiCT7A3e11j4OnAU8bpS20pg8gpK2A0mWA3cDK4BHJfkGcCFwzlT7aq39LMk3kmwEvtRa+7skpwKrk+zQt3MCsAdwZpJ7e93xo7WdiflpfvIiCUlSSZ7ikySVZEBJkkoyoCRJJRlQkqSSvIpPACxevLgtWbJktochaR5Zt27dra21fabb3oASAEuWLGHt2rWzPQxJ80iSG7amvaf4JEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgNG0rV66c7SFI2oa29e98WmvbdIOqadmyZW3t2rVTapMEf3400n5n7cdP7vzJfer3XbQvN5908yyMSDNlqr/zSda11pZNd3sTHkElWZJk4xQGtDLJSdMd0FA/b0qy61TXS/LWrd32JLZ5cJL1Sb6V5JFJXjqDff8wyeIZ6OeOmRiPNFWjhdN49dJYFs72AMbxJuDjwF1TXO+twD9MZUNJFrTWNk+hyfOAz7fWTk+yHHgpcMH9uL2yli9fPttDUDVHjL3InxdNxWRfg1qQ5Lwk1yZZnWSXfuTwH0nWJfl6koNHNkpySZL3JLksybeTPD7JZ5L8d5J39HUWJbkoydVJNiZ5cZITgf2BryX5Wl/vGUkuT3JVkk8l2W3kekneDezSj24+0du9LMmaXvfhJAt6/R1J3pbkm8Dho006yWlJruzjOjcDRzEIxVf3sb0beGrv/2+TLEhyZm+3Icnf9L6W9zFeAFwz2ryHNv2GPs9rtnxfk+yd5HO9zyuSHNrrd0uyqq+7IckLR8xhcf++PXuU+b0mydoka2+55ZZJ/ihI0jbSWhv3ASwB7gEO68//HXgZcDFwYK/7I+CrvbwSOKmXLwHO6OU3Aj8GHgzsBPwIeCDwQuC8oe3t0b/+EFjcy4uBy4BF/fnJwGkj1+vP7xgqPxq4ENixPz8beHkvN+AvJpj73kPlfwGeM8oclwNfHFrvNcCpvbwTsBY4oK93J3BAXzbevN/Qy68DPtLL7wdO7+U/Btb38hnAPw/1s9eW7wOwL/BN4E8m2s9Lly5tUzX48ZF+GysZ86G5baq/88DaNsHfnvEekz3Fd31rbX0vr2MQWk8CPpVkyzo7jdH2C/3rNcC1rbWbAJL8AHhYrz8ryRn9D/3XR+njicAhwDf69n4HuHwS4346sBS4srfbBfhpX7YZ+PQE7Y9I8mZgV2Bv4FoGgTeeZwCHJjm6P98DOBD4P2BNa+36Xj/evD/Tv64DXtDLT2EQarTWvprkgUn2AI4EjtnSsLV2Wy/uyOCfiBNaa5dOMGZJKmeyAbVpqLyZwX/mP2+tHTaFtveO6OdeYGFr7bokS4GjgHclWd1ae9uIPgL8Z2vtJZMc73C781trp4yy7H/bOK8DJdmZwRHXstbajUlWAjtPcptvaK19eUR/yxkcQQEwwby3fJ8285t99Ov/BIa0Xj/aZTX3MAi4ZwIGlLaZfRftO+ZVfNJUTPd9ULcD1yd5EUB/beYPptNRkv2Bu1prHwfOAh7XF/0S2L2XrwCenOT3eptdkxw0ynoAdyfZsZcvBo5O8qDebu8kj5jk0LaE0a1JdgOOHmO9kdv/MnD8ljEkOSjJopGNxpn3WC4Dju1tlwO3ttZuB1YDrx/qd69ebMCrgIOTvGWCvqfl9NNPvz+61Rx380k3005v93l4ifnct61/57fmKr5jgQ8lOZXB6aRPAldPo5/HAmcmuRe4Gzi+158LfCnJTa21I5IcB/xrki2nEk8Frhu5Xn++IclVrbVj+/hWJ9mh938CcMNEg2qt/TzJeQxOxf0QuHKMVTcA9yS5Gvgo8F4Gp0CvyuC84i0Mrvqb7LzHshJYlWQDgysWX9Hr3wF8MIO3AmwG/p5+irC1tjnJMcCFSW5vrZ09wTamxDfqStsX36irWTGdN+pK0nhyf79RV5Kk2VD5jbrbTJLPMrgUfNjJIy90kCRtOwYU0Fp7/myPQZL02zzFJ0kqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklpbU222NQAUluAW6Y7XEAi4FbZ3sQ25Dznd+29/k+orW2z3Q7M6BUSpK1rbVlsz2ObcX5zm/Od+t4ik+SVJIBJUkqyYBSNefO9gC2Mec7vznfreBrUJKkkjyCkiSVZEBJkkoyoDRrkrw9yYYk65OsTrL/0LJTknwvyXeTPHOofmmSa/qy9yXJ7Ix+apKcmeQ7fb6fTbJnr1+S5Ff9e7A+yTlDbebkXGHs+fZl82rfAiR5UZJrk9ybZNlQ/Xzdv6POty+buf3bWvPhY1YewAOGyicC5/TyIcDVwE7AAcD3gQV92RrgcCDAl4A/ne15THKuzwAW9vIZwBm9vATYOEabOTnXCeY77/ZtH/ujgUcBlwDLhurn6/4da74zun89gtKsaa3dPvR0EbDlip0/Bz7ZWtvUWrse+B7whCQPZhBql7fBT/zHgOdtyzFPV2ttdWvtnv70CuCh460/l+cK48533u1bgNbat1tr353s+vN4vjO6fw0ozaok70xyI3AscFqvfghw49BqP+p1D+nlkfVzzasY/Ae5xQFJvpXk0iRP7XXzZa7w2/Od7/t2NPN9/w6b0f27cEaHJo2Q5CvAfqMsWtFa+3xrbQWwIskpwOuB0xmcAhipjVNfwkRz7eusAO4BPtGX3QQ8vLX2syRLgc8l+X2KzxWmPd85uW9hcvMdxbzev6M1G6Vu2vvXgNL9qrV25CRXvQC4iEFA/Qh42NCyhwI/7vUPHaW+hInmmuQVwJ8BT++nOWitbQI29fK6JN8HDqL4XGF682WO7luY0s/ycJt5u3/HMKP711N8mjVJDhx6+lzgO738BeCYJDslOQA4EFjTWrsJ+GWSJ/YrgF4OjPWfXClJngWcDDy3tXbXUP0+SRb08u8ymOsP5vJcYez5Mg/37Xjm6/4dx8zu39m+GsTH9vsAPg1sBDYAFwIPGVq2gsEVQN9l6GofYFlv833gA/S7oVR/MHix+EZgfX9suWLxhcC1DK58ugp4zlyf63jznY/7to/9+QyOEjYBPwG+PM/376jznen9662OJEkleYpPklSSASVJKsmAkiSVZEBJkkoyoCRJJRlQ0hyS5I77oc+PJjm6lz+S5JCpbivJcUk+0MuvTfLyXr5k5N2uZ2jM90u/qsU7SUj6tdbaq2egj3MmXkuamEdQ0hyX5LAkVwx99tJevf7xve7yDD6faeMk+rrPkUmSxb2PZ/c7I3w6yZX98eRR+liZ5KShqhclWZPkui03S02yc5JV/fOBvpXkiAnqd0nyyT6ffwN2mf53THOFASXNfR8DTm6tHQpcw+B+hgCrgNe21g4HNk+n4yT7MrhH4mmttYuA9wLvaa09nsFdEj4yiW4WttaeALxpaGwnALTWHgu8BDg/yc7j1B8P3NXn+E5g6XTmo7nFU3zSHJZkD2DP1tqlvep84FMZfILt7q21/+r1FzC4cetU7AhcDJww1P+RwCFDH4b6gCS7T9DPZ/rXdQw+wA/gKcD7AVpr30lyA4ObqI5V/zTgfb1+Q5INU5yL5iADSpqfxvw47SSrgD8EftxaO2qcPu5hECrPBLYE1A7A4a21X43oc7yxbOpfN/ObvzljNRivI+/Ltp3xFJ80h7XWfgHcNvRBeH8JXNpau41+9+hef8xQm1e21g6bIJxgEAivAg5O8pZet5rB53YBg9e/pjn0yxh8SCVJDgIezuDmopOpfwxw6DS3qznEIyhpbtk1yfAnk/4T8ArgnCS7Aj8AXtmX/RVwXpI7gUuAX0x1Y621zUmOAS5McjtwIvDBfoptIYPgeO005nF2H/M1DI7UjmutbUoyVv2HgFV9u+uBNdPYpuYY72YuzVNJdmut3dHLbwEe3Fp74ywPS5o0j6Ck+evZSU5h8Ht+A3Dc7A5HmhqPoCRJJXmRhCSpJANKklSSASVJKsmAkiSVZEBJkkr6f1jYDgSAZ3c+AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAQ8klEQVR4nO3de7BeVX3G8e9DQrkE5GIQxFuoBZEqpSZa8TahUrVYrResKFbRWiuiaGeoiGEg9VKlMLXeEMGZiFVq63hFxpqKAo4FQ4IhhFGpihRHUHBQBGwKYfWPd0VfD+eeQ87vnHw/M++c9a6919prnX3Oec7e7373m9YakiRVs8NsD0CSpNEYUJKkkgwoSVJJBpQkqSQDSpJUkgElSSrJgJIklWRASZJKMqAkTUmSPZO8blu31fbHgJK2M0lenOTcJG+eZhd7AtMNma1pq+2MASVtR5KcCDwKWAW8YJrdvBt4ZJL1Sc7s/b4syZpe9+EkC5IsSnJRkquTbEzy4tHaSmOJ9+KTtg9JdgX+BzgQWAjs1Vq7bhr9LAG+2Fp7TH/+aOAfgRe01u5OcjZwBXAn8KzW2l/39fYA9hpuK41n4WwPQNI2cwRwQ2vttv78luGFSb4C7DdKuxWttc+P0+/TgaXAlUkAdgF+ClwAnJXkDAah9PUke23lHLQdMaCk7cfTgNVjLWytHTnNfgOc31o75T4LkqXAUcC7kqwGPjbNbWg75GtQ0vbjScA3k+wDkOQBSQ6ZRj+/BHYfen4xcHSSB/V+907yiCT7A3e11j4OnAU8bpS20pg8gpK2A0mWA3cDK4BHJfkGcCFwzlT7aq39LMk3kmwEvtRa+7skpwKrk+zQt3MCsAdwZpJ7e93xo7WdiflpfvIiCUlSSZ7ikySVZEBJkkoyoCRJJRlQkqSSvIpPACxevLgtWbJktochaR5Zt27dra21fabb3oASAEuWLGHt2rWzPQxJ80iSG7amvaf4JEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgNG0rV66c7SFI2oa29e98WmvbdIOqadmyZW3t2rVTapMEf3400n5n7cdP7vzJfer3XbQvN5908yyMSDNlqr/zSda11pZNd3sTHkElWZJk4xQGtDLJSdMd0FA/b0qy61TXS/LWrd32JLZ5cJL1Sb6V5JFJXjqDff8wyeIZ6OeOmRiPNFWjhdN49dJYFs72AMbxJuDjwF1TXO+twD9MZUNJFrTWNk+hyfOAz7fWTk+yHHgpcMH9uL2yli9fPttDUDVHjL3InxdNxWRfg1qQ5Lwk1yZZnWSXfuTwH0nWJfl6koNHNkpySZL3JLksybeTPD7JZ5L8d5J39HUWJbkoydVJNiZ5cZITgf2BryX5Wl/vGUkuT3JVkk8l2W3kekneDezSj24+0du9LMmaXvfhJAt6/R1J3pbkm8Dho006yWlJruzjOjcDRzEIxVf3sb0beGrv/2+TLEhyZm+3Icnf9L6W9zFeAFwz2ryHNv2GPs9rtnxfk+yd5HO9zyuSHNrrd0uyqq+7IckLR8xhcf++PXuU+b0mydoka2+55ZZJ/ihI0jbSWhv3ASwB7gEO68//HXgZcDFwYK/7I+CrvbwSOKmXLwHO6OU3Aj8GHgzsBPwIeCDwQuC8oe3t0b/+EFjcy4uBy4BF/fnJwGkj1+vP7xgqPxq4ENixPz8beHkvN+AvJpj73kPlfwGeM8oclwNfHFrvNcCpvbwTsBY4oK93J3BAXzbevN/Qy68DPtLL7wdO7+U/Btb38hnAPw/1s9eW7wOwL/BN4E8m2s9Lly5tUzX48ZF+GysZ86G5baq/88DaNsHfnvEekz3Fd31rbX0vr2MQWk8CPpVkyzo7jdH2C/3rNcC1rbWbAJL8AHhYrz8ryRn9D/3XR+njicAhwDf69n4HuHwS4346sBS4srfbBfhpX7YZ+PQE7Y9I8mZgV2Bv4FoGgTeeZwCHJjm6P98DOBD4P2BNa+36Xj/evD/Tv64DXtDLT2EQarTWvprkgUn2AI4EjtnSsLV2Wy/uyOCfiBNaa5dOMGZJKmeyAbVpqLyZwX/mP2+tHTaFtveO6OdeYGFr7bokS4GjgHclWd1ae9uIPgL8Z2vtJZMc73C781trp4yy7H/bOK8DJdmZwRHXstbajUlWAjtPcptvaK19eUR/yxkcQQEwwby3fJ8285t99Ov/BIa0Xj/aZTX3MAi4ZwIGlLaZfRftO+ZVfNJUTPd9ULcD1yd5EUB/beYPptNRkv2Bu1prHwfOAh7XF/0S2L2XrwCenOT3eptdkxw0ynoAdyfZsZcvBo5O8qDebu8kj5jk0LaE0a1JdgOOHmO9kdv/MnD8ljEkOSjJopGNxpn3WC4Dju1tlwO3ttZuB1YDrx/qd69ebMCrgIOTvGWCvqfl9NNPvz+61Rx380k3005v93l4ifnct61/57fmKr5jgQ8lOZXB6aRPAldPo5/HAmcmuRe4Gzi+158LfCnJTa21I5IcB/xrki2nEk8Frhu5Xn++IclVrbVj+/hWJ9mh938CcMNEg2qt/TzJeQxOxf0QuHKMVTcA9yS5Gvgo8F4Gp0CvyuC84i0Mrvqb7LzHshJYlWQDgysWX9Hr3wF8MIO3AmwG/p5+irC1tjnJMcCFSW5vrZ09wTamxDfqStsX36irWTGdN+pK0nhyf79RV5Kk2VD5jbrbTJLPMrgUfNjJIy90kCRtOwYU0Fp7/myPQZL02zzFJ0kqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklpbU222NQAUluAW6Y7XEAi4FbZ3sQ25Dznd+29/k+orW2z3Q7M6BUSpK1rbVlsz2ObcX5zm/Od+t4ik+SVJIBJUkqyYBSNefO9gC2Mec7vznfreBrUJKkkjyCkiSVZEBJkkoyoDRrkrw9yYYk65OsTrL/0LJTknwvyXeTPHOofmmSa/qy9yXJ7Ix+apKcmeQ7fb6fTbJnr1+S5Ff9e7A+yTlDbebkXGHs+fZl82rfAiR5UZJrk9ybZNlQ/Xzdv6POty+buf3bWvPhY1YewAOGyicC5/TyIcDVwE7AAcD3gQV92RrgcCDAl4A/ne15THKuzwAW9vIZwBm9vATYOEabOTnXCeY77/ZtH/ujgUcBlwDLhurn6/4da74zun89gtKsaa3dPvR0EbDlip0/Bz7ZWtvUWrse+B7whCQPZhBql7fBT/zHgOdtyzFPV2ttdWvtnv70CuCh460/l+cK48533u1bgNbat1tr353s+vN4vjO6fw0ozaok70xyI3AscFqvfghw49BqP+p1D+nlkfVzzasY/Ae5xQFJvpXk0iRP7XXzZa7w2/Od7/t2NPN9/w6b0f27cEaHJo2Q5CvAfqMsWtFa+3xrbQWwIskpwOuB0xmcAhipjVNfwkRz7eusAO4BPtGX3QQ8vLX2syRLgc8l+X2KzxWmPd85uW9hcvMdxbzev6M1G6Vu2vvXgNL9qrV25CRXvQC4iEFA/Qh42NCyhwI/7vUPHaW+hInmmuQVwJ8BT++nOWitbQI29fK6JN8HDqL4XGF682WO7luY0s/ycJt5u3/HMKP711N8mjVJDhx6+lzgO738BeCYJDslOQA4EFjTWrsJ+GWSJ/YrgF4OjPWfXClJngWcDDy3tXbXUP0+SRb08u8ymOsP5vJcYez5Mg/37Xjm6/4dx8zu39m+GsTH9vsAPg1sBDYAFwIPGVq2gsEVQN9l6GofYFlv833gA/S7oVR/MHix+EZgfX9suWLxhcC1DK58ugp4zlyf63jznY/7to/9+QyOEjYBPwG+PM/376jznen9662OJEkleYpPklSSASVJKsmAkiSVZEBJkkoyoCRJJRlQ0hyS5I77oc+PJjm6lz+S5JCpbivJcUk+0MuvTfLyXr5k5N2uZ2jM90u/qsU7SUj6tdbaq2egj3MmXkuamEdQ0hyX5LAkVwx99tJevf7xve7yDD6faeMk+rrPkUmSxb2PZ/c7I3w6yZX98eRR+liZ5KShqhclWZPkui03S02yc5JV/fOBvpXkiAnqd0nyyT6ffwN2mf53THOFASXNfR8DTm6tHQpcw+B+hgCrgNe21g4HNk+n4yT7MrhH4mmttYuA9wLvaa09nsFdEj4yiW4WttaeALxpaGwnALTWHgu8BDg/yc7j1B8P3NXn+E5g6XTmo7nFU3zSHJZkD2DP1tqlvep84FMZfILt7q21/+r1FzC4cetU7AhcDJww1P+RwCFDH4b6gCS7T9DPZ/rXdQw+wA/gKcD7AVpr30lyA4ObqI5V/zTgfb1+Q5INU5yL5iADSpqfxvw47SSrgD8EftxaO2qcPu5hECrPBLYE1A7A4a21X43oc7yxbOpfN/ObvzljNRivI+/Ltp3xFJ80h7XWfgHcNvRBeH8JXNpau41+9+hef8xQm1e21g6bIJxgEAivAg5O8pZet5rB53YBg9e/pjn0yxh8SCVJDgIezuDmopOpfwxw6DS3qznEIyhpbtk1yfAnk/4T8ArgnCS7Aj8AXtmX/RVwXpI7gUuAX0x1Y621zUmOAS5McjtwIvDBfoptIYPgeO005nF2H/M1DI7UjmutbUoyVv2HgFV9u+uBNdPYpuYY72YuzVNJdmut3dHLbwEe3Fp74ywPS5o0j6Ck+evZSU5h8Ht+A3Dc7A5HmhqPoCRJJXmRhCSpJANKklSSASVJKsmAkiSVZEBJkkr6f1jYDgSAZ3c+AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -222,7 +252,7 @@ }, { "cell_type": "markdown", - "id": "34cf0e89", + "id": "missing-frequency", "metadata": { "tags": [] }, @@ -248,7 +278,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAUIklEQVR4nO3de5BmdX3n8feHGZZrgsKg0SgMGBVRLnHGRCNmRyGaELPRVcQ4BGJKSakhMRVvMJYMVtzAYm12s4qCKdHIgLUaL4k3UAwXg1xmcG54Dxe1JBGSIMIkLMx894/z6+Wx7Znu6enp/rX9flU91ef5nfP7ne95+vJ5znlOn5OqQpKk3uwx1wVIkjQRA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSlqAkpyU5IYkG5N8O8nZSf4gybt3cdxHJHntXPXXTxcDSlpgkpwGvBl4SVUdDRwLbAGOBjbt4vCPAHYlYHa1v36KGFDSApLkZ4H/Abysqr4HUFX3VdX5wFHsekCdCzwhyfok57d1npLkxtZ2YZJFSfZL8ukkG5JsTnLy9vpr4Vo81wVImlUvBm6oqlsnmPc0YPMujv8W4GlVdSxAkqcAJwPPrqoHk1wArATuB75fVb/Zljtgov5a2AwoaWF5KrB+fGOSxwM/qqofbq9jki8APzfBrFVV9cntdDseWAbclARgH+AHwKXAO5OcB3yqqq7dmY3QwmBASQvL/QwhMd6knz9V1QnTWF+AD1bVmT8xI1kGnAj8eZIrqurt0xhfP8X8DEpaWD4DnJTk0QBJ9kryambm8yeAHwE/M/L8SuClSR7V1ndgkkOTPBbYUlWXAO8Enr6d/lrA4v2gpIUlye8CfwosYjiKcglwJPDrDAEBcGdVPWua41/KsEf22ap6YzsB4kyGN8QPAq8DDgDOB7a1ttdU1dqJ+k9rI/VTwYCSJHXJQ3ySpC4ZUJKkLhlQkqQuGVCSpC75f1ACYMmSJbV06dK5LkPSArRu3bq7q+rg8e0GlABYunQpa9eunesyJC1ASe6YqN1DfJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVDq0urVq+e6BEnTMJO/uwaUdt6aNbB0Keyxx/B1zZoZX8U555wz42NK2v1m8nd30oBKsjTJ5qkOmGR1kjfsWlmQ5PVJ9t3Z5ZKctavrnsI6j0iyPslXkjwhyStmcOzbkyyZgXHum4l6fsKaNXD66XDHHVA1fD399N0SUpIWtsVzXcAOvB64BNiyk8udBfy3nVlRkkVVtXUnurwI+GRVnZ1kBfAK4NLduL5+rFoFW8Z9S7ZsGdpXrpzRVa1YsWJGx5M0v0z1EN+iJO9LckuSK5Ls0/YcPpdkXZJrkxwxvlOSq5L8RZJrknwtyTOSfCzJt5L8WVtmvySfTrIhyeYkJyf5I+CxwN8n+fu23POTfDnJzUk+kmT/8cslORfYp+3drGn9TklyY2u7MMmi1n5fkrcnuQF41kQbneRtSW5qdV2UwYkMofiqVtu5wHPa+H+SZFGS81u/jUn+oI21otV4KbBpou0eWfUZbTs3jb2uSQ5M8ok25vVJjm7t+ye5uC27MclLxm3Dkva6/eYE23d6krVJ1t51111T+0n4znd2rl2SpquqdvgAlgIPAce25/8HOAW4Enhia/tl4IttejXwhjZ9FXBem/5j4PvAY4C9gO8BBwEvAd43sr4D2tfbgSVteglwDbBfe/5m4G3jl2vP7xuZfgrwd8Ce7fkFwKltuoCXTbLtB45Mfwj4rQm2cQXwqZHlTgfe2qb3AtYCh7Xl7gcOa/N2tN1ntOnXAn/Vpv83cHabfh6wvk2fB/zPkXEeOfY6AI8GbgB+bbLv87Jly2pKDj20aji49+OPQw+dWv8pGn40Jc030/ndBdbWBH+XproHdVtVrW/T6xhC61eAjyRZD1zIEDwT+dv2dRNwS1XdWVUPALcCj2/tJyQ5L8lzquqHE4zxTOBI4B/a+k4DDp1C3ccDy4CbWr/jgcPbvK3A30zS/7lJbkiyiSEUnjqFdT4fOLWt7waGEH5im3djVd3Wpne03R9rX8dea4DjGEKSqvoicFCSA4ATgHePdayqf2uTezK8iXhTVX1+CnVPzTveAfuO+2hw332HdkmaQVP9DOqBkemtDO/M76mqY3ei77Zx42wDFlfVN5MsA04E/jzJFVX19nFjBPh8Vf3OFOsd7ffBqjpzgnn/UTv4HCjJ3gx7XMur6rtJVgN7T3GdZ1TV5ePGW8GwBwXAJNs99jpt5eHvUSZYV7X2mmDeQwwB9wLg6inUPTVjnzOtWjUc1jvkkCGcZvjzJ0ma7mnm9wK3JTkJoH02c8x0BkryWGBLVV0CvBN4epv1I+Bn2vT1wLOT/ELrs2+SJ02wHMCDSfZs01cCL03yqNbvwCRT2fOCh8Po7iT7Ay/dznLj13858JqxGpI8Kcl+4zvtYLu35xpgZeu7Ari7qu4FrgD+cGTcR7bJAn4fOCLJWyYZe+esXAm33w7btg1fd0M4nX322TM+pqTdbyZ/d3flLL6VwHuSvJXhcNKHgQ3TGOco4Pwk24AHgde09ouAzya5s6qem+T3gMuS7NXmvxX45vjl2vONSW6uqpWtviuS7NHGfx1wx2RFVdU9Sd7HcCjuduCm7Sy6EXgoyQbgA8D/Yjgsd3OSAHcxnPU31e3entXAxUk2MpyxeFpr/zPg3Rn+FWArcA7tEGFVbU3ycuDvktxbVRdMso5u+I+60vw0k7+7GT6f0kK3fPnyWrt27VyXIWkBSrKuqpaPb/dKEpKkLvX8j7qzJsnHGU4FH/Xm8Sc6SJJmjwEFVNWL57oGSdKP8xCfJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLqaq5rkEdSHIXcMccrHoJcPccrHdXWffsm6+1W/fkDq2qg8c3GlCaU0nWVtXyua5jZ1n37JuvtVv39HmIT5LUJQNKktQlA0pz7aK5LmCarHv2zdfarXua/AxKktQl96AkSV0yoCRJXTKgNGuSnJ/k60k2Jvl4kkeMzDszybeTfCPJC0balyXZ1Ob9ZZLMQd0nJbklybYky0fa/1OSi1t9G5KsmCd175nkg62+ryU5c57UvTLJ+pHHtiTH9l53m3d0ki+3+ZuS7N173UmWJvn3kdf7vSPzZqfuqvLhY1YewPOBxW36POC8Nn0ksAHYCzgM+EdgUZt3I/AsIMBngd+Yg7qfAjwZuApYPtL+OuDiNv0oYB2wxzyo+xXAh9v0vsDtwNLe6x63zFHArSPPu60bWAxsBI5pzw+aJz/fS4HN2+kzK3W7B6VZU1VXVNVD7en1wOPa9G8z/MF8oKpuA74N/FKSxwA/W1VfruG34q+BF81B3V+rqm9MMOtI4Mq2zA+Ae4Dl86DuAvZLshjYB/i/wL3zoO5RvwNcBjAP6n4+sLGqNrTl/qWqts6Duic0m3UbUJorv8/wzgvg54Hvjsz7Xmv7+TY9vr0XG4DfTrI4yWHAMuDx9F/3R4H7gTuB7wDvrKp/pf+6R51MCyj6r/tJQCW5PMnNSd7U2nuvG+CwJF9JcnWS57S2Wat78e4YVAtXki8APzfBrFVV9cm2zCrgIWDNWLcJlq8dtM+4qdQ9gfczHB5Zy3Adw+sYtqv3un8J2Ao8FngkcG0bp/e6x/r+MrClqjaPNU2wWE91LwaOA54BbAGuTLIOuHeCZXuq+07gkKr6lyTLgE8keSqz+HobUJpRVXXCjuYnOQ14IXB8OzwAwzuwx48s9jjg+639cRO0z7jJ6t5On4eAPxl7nuQ64FvAv9Fx3QyfQX2uqh4EfpDkH4DlwLX0XfeYl/Pw3hN0/nPCUN/VVXU3QJLPAE8HLqHjuqvqAeCBNr0uyT8y7A3O2uvtIT7NmiS/DrwZ+C9VtWVk1t8CL0+yVztU9kTgxqq6E/hRkme2s4ROBXb47no2Jdk3yX5t+teAh6rqq73XzXBY73kZ7Ac8E/j6PKibJHsAJwEfHmubB3VfDhzdfl4WA/8Z6P7nJMnBSRa16cMZfi9vndW6Z/uMER8L98Fw8sN3gfXt8d6ReasYzt77BiNnBDG8s9/c5r2LdvWTWa77xQzvGh8A/hm4vLUvbfV+DfgCwy0D5kPd+wMfAW4Bvgq8cT7U3eatAK6foE/vdZ/SXu/NwH+fD3UDL2k1bwBuBn5rtuv2UkeSpC55iE+S1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNK6lySDyR5aZv+qyRHtumzxi133e5c91Tap7mOq8auop3kM0ke0a6kvXmyviNjrE7yhjb99iQntOnbkyyZiTrHrW+3jKsfZ0BJ80hVvaqqvtqenjVu3q/MQUkzqqpOrKp7dnGMt1XVF2aoJM0hA0qaQUlOzXC/qw1JPtTaDk1yZWu/Mskhrf0D7V461yW5dWQvKUneleSrST7NcCuPsfGvSrI8ybnAPu0+PWvavPtG+p+fZHOGe/ac3NpXtP4fzXBfrjXtSgAkeVuSm1qfi8bap7jNx2e4oOimJO9PsldrP7Gt50ttOz81hbF+Ys8kyeFt/GckeUKSzyVZl+TaJEdMMMb4vbszMlykddPY8kkOTPKJ9j25PsnRk7QflOSKVseFTHw9Os0wA0qaIRkupLkKeF5VHQP8cZv1LuCvq+pohgvk/uVIt8cwXEj0hcC5re3FDPfnOQp4NfATe0ZV9Rbg36vq2KpaOW72fwWOBY4BTgDOz3CLBIBfBF7PcKuQw4Fnj9VYVc+oqqcx3ILjhVPc5r2BDwAnV9VRDNf3fE1rv5DhqiDHAQdPZbwJxn8y8DfAK6vqJuAi4IyqWga8AbhgCsPcXVVPB97T+gCcA3ylfU/OYrhlxI7azwa+VFW/yHBprkOmsz3aOQaUNHOeB3y02kVBa7iFBQw3dru0TX+IIZDGfKKqtrXDdo9ubb8KXFZVW6vq+8AXd7KO40b6/zNwNcOVtGG4xuH3qmobw+Wmlrb25ya5Icmmth1PneK6ngzcVlXfbM8/2Oo/guG6bbe19ssm6jyJgxmu8XZKVa1Psj9DWH8kyXqGAHzMDvqP+Vj7uo6Ht/c4hu8FVfVF4KAkB+yg/VcZLu5KVX2a4YLA2s28mrk0c8LUbjswuswD4/pPtMx06tie0fVtBRa3vZ0LGO6m+t0kq4G9d3Fd260hyeUMYby2ql61g7F/yHDtxmczXBNuD+Ceqjp2irWNGdvmrTz8N286t3jxunCzzD0oaeZcCbwsyUEwfJ7R2q9juEUEwErgS5OMcw3D1d0XtUNzz93Ocg8m2XM7/U9u/Q9mePd/4w7WNxZGd7e9lJ05O+/rwNIkv9Ce/y7DHtvXgcOTLG3tJ491qKoXtEOTOwonGO70+yLg1CSvqKp7gduSnAT//7O2Y3ai1lHXMHwvSLKC4TDgvVNs/w2G+2hpN3MPSpohVXVLkncAVyfZCnwF+D3gj4D3J3kjcBfwykmG+jjDYbZNwDcZ/uBP5CJgY5Kbx30O9XGGw4obGN71v6mq/mmiEwpa3fckeV9b3+3ATZNt60jf/0jySobDbotb3/dW1QNJXgt8Lsnd7DggdzT+/UleCHw+yf0MIfGeJG8F9mS47caGaQy9Grg4yUaGmwieNkn7OcBlSW5m+H58Zzrbo53j1cwl7RZJ9q+q+9oZge8GvlVVfzHXdWn+8BCfpN3l1e1khluAAxhOapCmzD0oSVKX3IOSJHXJgJIkdcmAkiR1yYCSJHXJgJIkden/ASnV5vr0NT7jAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAUIklEQVR4nO3de5BmdX3n8feHGZZrgsKg0SgMGBVRLnHGRCNmRyGaELPRVcQ4BGJKSakhMRVvMJYMVtzAYm12s4qCKdHIgLUaL4k3UAwXg1xmcG54Dxe1JBGSIMIkLMx894/z6+Wx7Znu6enp/rX9flU91ef5nfP7ne95+vJ5znlOn5OqQpKk3uwx1wVIkjQRA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSlqAkpyU5IYkG5N8O8nZSf4gybt3cdxHJHntXPXXTxcDSlpgkpwGvBl4SVUdDRwLbAGOBjbt4vCPAHYlYHa1v36KGFDSApLkZ4H/Abysqr4HUFX3VdX5wFHsekCdCzwhyfok57d1npLkxtZ2YZJFSfZL8ukkG5JsTnLy9vpr4Vo81wVImlUvBm6oqlsnmPc0YPMujv8W4GlVdSxAkqcAJwPPrqoHk1wArATuB75fVb/Zljtgov5a2AwoaWF5KrB+fGOSxwM/qqofbq9jki8APzfBrFVV9cntdDseWAbclARgH+AHwKXAO5OcB3yqqq7dmY3QwmBASQvL/QwhMd6knz9V1QnTWF+AD1bVmT8xI1kGnAj8eZIrqurt0xhfP8X8DEpaWD4DnJTk0QBJ9kryambm8yeAHwE/M/L8SuClSR7V1ndgkkOTPBbYUlWXAO8Enr6d/lrA4v2gpIUlye8CfwosYjiKcglwJPDrDAEBcGdVPWua41/KsEf22ap6YzsB4kyGN8QPAq8DDgDOB7a1ttdU1dqJ+k9rI/VTwYCSJHXJQ3ySpC4ZUJKkLhlQkqQuGVCSpC75f1ACYMmSJbV06dK5LkPSArRu3bq7q+rg8e0GlABYunQpa9eunesyJC1ASe6YqN1DfJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVDq0urVq+e6BEnTMJO/uwaUdt6aNbB0Keyxx/B1zZoZX8U555wz42NK2v1m8nd30oBKsjTJ5qkOmGR1kjfsWlmQ5PVJ9t3Z5ZKctavrnsI6j0iyPslXkjwhyStmcOzbkyyZgXHum4l6fsKaNXD66XDHHVA1fD399N0SUpIWtsVzXcAOvB64BNiyk8udBfy3nVlRkkVVtXUnurwI+GRVnZ1kBfAK4NLduL5+rFoFW8Z9S7ZsGdpXrpzRVa1YsWJGx5M0v0z1EN+iJO9LckuSK5Ls0/YcPpdkXZJrkxwxvlOSq5L8RZJrknwtyTOSfCzJt5L8WVtmvySfTrIhyeYkJyf5I+CxwN8n+fu23POTfDnJzUk+kmT/8cslORfYp+3drGn9TklyY2u7MMmi1n5fkrcnuQF41kQbneRtSW5qdV2UwYkMofiqVtu5wHPa+H+SZFGS81u/jUn+oI21otV4KbBpou0eWfUZbTs3jb2uSQ5M8ok25vVJjm7t+ye5uC27MclLxm3Dkva6/eYE23d6krVJ1t51111T+0n4znd2rl2SpquqdvgAlgIPAce25/8HOAW4Enhia/tl4IttejXwhjZ9FXBem/5j4PvAY4C9gO8BBwEvAd43sr4D2tfbgSVteglwDbBfe/5m4G3jl2vP7xuZfgrwd8Ce7fkFwKltuoCXTbLtB45Mfwj4rQm2cQXwqZHlTgfe2qb3AtYCh7Xl7gcOa/N2tN1ntOnXAn/Vpv83cHabfh6wvk2fB/zPkXEeOfY6AI8GbgB+bbLv87Jly2pKDj20aji49+OPQw+dWv8pGn40Jc030/ndBdbWBH+XproHdVtVrW/T6xhC61eAjyRZD1zIEDwT+dv2dRNwS1XdWVUPALcCj2/tJyQ5L8lzquqHE4zxTOBI4B/a+k4DDp1C3ccDy4CbWr/jgcPbvK3A30zS/7lJbkiyiSEUnjqFdT4fOLWt7waGEH5im3djVd3Wpne03R9rX8dea4DjGEKSqvoicFCSA4ATgHePdayqf2uTezK8iXhTVX1+CnVPzTveAfuO+2hw332HdkmaQVP9DOqBkemtDO/M76mqY3ei77Zx42wDFlfVN5MsA04E/jzJFVX19nFjBPh8Vf3OFOsd7ffBqjpzgnn/UTv4HCjJ3gx7XMur6rtJVgN7T3GdZ1TV5ePGW8GwBwXAJNs99jpt5eHvUSZYV7X2mmDeQwwB9wLg6inUPTVjnzOtWjUc1jvkkCGcZvjzJ0ma7mnm9wK3JTkJoH02c8x0BkryWGBLVV0CvBN4epv1I+Bn2vT1wLOT/ELrs2+SJ02wHMCDSfZs01cCL03yqNbvwCRT2fOCh8Po7iT7Ay/dznLj13858JqxGpI8Kcl+4zvtYLu35xpgZeu7Ari7qu4FrgD+cGTcR7bJAn4fOCLJWyYZe+esXAm33w7btg1fd0M4nX322TM+pqTdbyZ/d3flLL6VwHuSvJXhcNKHgQ3TGOco4Pwk24AHgde09ouAzya5s6qem+T3gMuS7NXmvxX45vjl2vONSW6uqpWtviuS7NHGfx1wx2RFVdU9Sd7HcCjuduCm7Sy6EXgoyQbgA8D/Yjgsd3OSAHcxnPU31e3entXAxUk2MpyxeFpr/zPg3Rn+FWArcA7tEGFVbU3ycuDvktxbVRdMso5u+I+60vw0k7+7GT6f0kK3fPnyWrt27VyXIWkBSrKuqpaPb/dKEpKkLvX8j7qzJsnHGU4FH/Xm8Sc6SJJmjwEFVNWL57oGSdKP8xCfJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLqaq5rkEdSHIXcMccrHoJcPccrHdXWffsm6+1W/fkDq2qg8c3GlCaU0nWVtXyua5jZ1n37JuvtVv39HmIT5LUJQNKktQlA0pz7aK5LmCarHv2zdfarXua/AxKktQl96AkSV0yoCRJXTKgNGuSnJ/k60k2Jvl4kkeMzDszybeTfCPJC0balyXZ1Ob9ZZLMQd0nJbklybYky0fa/1OSi1t9G5KsmCd175nkg62+ryU5c57UvTLJ+pHHtiTH9l53m3d0ki+3+ZuS7N173UmWJvn3kdf7vSPzZqfuqvLhY1YewPOBxW36POC8Nn0ksAHYCzgM+EdgUZt3I/AsIMBngd+Yg7qfAjwZuApYPtL+OuDiNv0oYB2wxzyo+xXAh9v0vsDtwNLe6x63zFHArSPPu60bWAxsBI5pzw+aJz/fS4HN2+kzK3W7B6VZU1VXVNVD7en1wOPa9G8z/MF8oKpuA74N/FKSxwA/W1VfruG34q+BF81B3V+rqm9MMOtI4Mq2zA+Ae4Dl86DuAvZLshjYB/i/wL3zoO5RvwNcBjAP6n4+sLGqNrTl/qWqts6Duic0m3UbUJorv8/wzgvg54Hvjsz7Xmv7+TY9vr0XG4DfTrI4yWHAMuDx9F/3R4H7gTuB7wDvrKp/pf+6R51MCyj6r/tJQCW5PMnNSd7U2nuvG+CwJF9JcnWS57S2Wat78e4YVAtXki8APzfBrFVV9cm2zCrgIWDNWLcJlq8dtM+4qdQ9gfczHB5Zy3Adw+sYtqv3un8J2Ao8FngkcG0bp/e6x/r+MrClqjaPNU2wWE91LwaOA54BbAGuTLIOuHeCZXuq+07gkKr6lyTLgE8keSqz+HobUJpRVXXCjuYnOQ14IXB8OzwAwzuwx48s9jjg+639cRO0z7jJ6t5On4eAPxl7nuQ64FvAv9Fx3QyfQX2uqh4EfpDkH4DlwLX0XfeYl/Pw3hN0/nPCUN/VVXU3QJLPAE8HLqHjuqvqAeCBNr0uyT8y7A3O2uvtIT7NmiS/DrwZ+C9VtWVk1t8CL0+yVztU9kTgxqq6E/hRkme2s4ROBXb47no2Jdk3yX5t+teAh6rqq73XzXBY73kZ7Ac8E/j6PKibJHsAJwEfHmubB3VfDhzdfl4WA/8Z6P7nJMnBSRa16cMZfi9vndW6Z/uMER8L98Fw8sN3gfXt8d6ReasYzt77BiNnBDG8s9/c5r2LdvWTWa77xQzvGh8A/hm4vLUvbfV+DfgCwy0D5kPd+wMfAW4Bvgq8cT7U3eatAK6foE/vdZ/SXu/NwH+fD3UDL2k1bwBuBn5rtuv2UkeSpC55iE+S1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNK6lySDyR5aZv+qyRHtumzxi133e5c91Tap7mOq8auop3kM0ke0a6kvXmyviNjrE7yhjb99iQntOnbkyyZiTrHrW+3jKsfZ0BJ80hVvaqqvtqenjVu3q/MQUkzqqpOrKp7dnGMt1XVF2aoJM0hA0qaQUlOzXC/qw1JPtTaDk1yZWu/Mskhrf0D7V461yW5dWQvKUneleSrST7NcCuPsfGvSrI8ybnAPu0+PWvavPtG+p+fZHOGe/ac3NpXtP4fzXBfrjXtSgAkeVuSm1qfi8bap7jNx2e4oOimJO9PsldrP7Gt50ttOz81hbF+Ys8kyeFt/GckeUKSzyVZl+TaJEdMMMb4vbszMlykddPY8kkOTPKJ9j25PsnRk7QflOSKVseFTHw9Os0wA0qaIRkupLkKeF5VHQP8cZv1LuCvq+pohgvk/uVIt8cwXEj0hcC5re3FDPfnOQp4NfATe0ZV9Rbg36vq2KpaOW72fwWOBY4BTgDOz3CLBIBfBF7PcKuQw4Fnj9VYVc+oqqcx3ILjhVPc5r2BDwAnV9VRDNf3fE1rv5DhqiDHAQdPZbwJxn8y8DfAK6vqJuAi4IyqWga8AbhgCsPcXVVPB97T+gCcA3ylfU/OYrhlxI7azwa+VFW/yHBprkOmsz3aOQaUNHOeB3y02kVBa7iFBQw3dru0TX+IIZDGfKKqtrXDdo9ubb8KXFZVW6vq+8AXd7KO40b6/zNwNcOVtGG4xuH3qmobw+Wmlrb25ya5Icmmth1PneK6ngzcVlXfbM8/2Oo/guG6bbe19ssm6jyJgxmu8XZKVa1Psj9DWH8kyXqGAHzMDvqP+Vj7uo6Ht/c4hu8FVfVF4KAkB+yg/VcZLu5KVX2a4YLA2s28mrk0c8LUbjswuswD4/pPtMx06tie0fVtBRa3vZ0LGO6m+t0kq4G9d3Fd260hyeUMYby2ql61g7F/yHDtxmczXBNuD+Ceqjp2irWNGdvmrTz8N286t3jxunCzzD0oaeZcCbwsyUEwfJ7R2q9juEUEwErgS5OMcw3D1d0XtUNzz93Ocg8m2XM7/U9u/Q9mePd/4w7WNxZGd7e9lJ05O+/rwNIkv9Ce/y7DHtvXgcOTLG3tJ491qKoXtEOTOwonGO70+yLg1CSvqKp7gduSnAT//7O2Y3ai1lHXMHwvSLKC4TDgvVNs/w2G+2hpN3MPSpohVXVLkncAVyfZCnwF+D3gj4D3J3kjcBfwykmG+jjDYbZNwDcZ/uBP5CJgY5Kbx30O9XGGw4obGN71v6mq/mmiEwpa3fckeV9b3+3ATZNt60jf/0jySobDbotb3/dW1QNJXgt8Lsnd7DggdzT+/UleCHw+yf0MIfGeJG8F9mS47caGaQy9Grg4yUaGmwieNkn7OcBlSW5m+H58Zzrbo53j1cwl7RZJ9q+q+9oZge8GvlVVfzHXdWn+8BCfpN3l1e1khluAAxhOapCmzD0oSVKX3IOSJHXJgJIkdcmAkiR1yYCSJHXJgJIkden/ASnV5vr0NT7jAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -290,7 +320,7 @@ "\n", "Aim: The number or N-test is the most conceptually simple test of a forecast: To test whether the number of observed events is consistent with that of the forecast.\n", "\n", - "Method: The originial N-test was introduced by Schorlemmer et al (2007) and modified by Zechar et al (2010). The observed number of events is given by,\n", + "Method: The original N-test was introduced by Schorlemmer et al (2007) and modified by Zechar et al (2010). The observed number of events is given by,\n", "\n", "$$N_{obs} = \\sum_{m_i, s_j \\in R} \\omega(m_i, s_j).$$\n", "\n", @@ -338,7 +368,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAATPklEQVR4nO3debRdZX3G8e9DoBAGUYwiqDUOuLRajCVO1bZxqNahjsGhUKFa5wGstCqLkuhyVRC1tNY6gAIq1IXz0IG4BMS6EEggJCBVVwWtCgrLsjCCVMKvf+z34uF6x3CT+97r97PWWXef97z73e97dnKes4ezd6oKSZJ6s9N8d0CSpIkYUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVDSApZka5KNSS5L8skku09R95lJ3ryD+7c2yY1J7j5StmVcnae0MWxMsiXJt9r0R2exnMOT7D+Xfdf8M6Ckhe2mqlpRVQ8F/g945WQVq+oLVXXcjuvaba4D3jjZi1V1VhvDCmA9cEh7/uJZLONwwIBaZAwoafH4GvCAJPsk+VySTUm+keRAuG0r45/a9MFtq+vSJOe1sockubBtvWxKckAr/6tW97IkR7ay5UmuSHJSksuTrEuydJJ+fQR4QZJ9ZjOYJIeO9OeDSZa0x6mtL5uTvCHJamAlcHqrO1k/tMAYUNIikGRn4KnAZuCtwCVVdSBwNDDRrrJjgadU1cOAZ7ayVwL/0LZkVgI/SHIQ8BfAo4BHAy9L8vBW/wDgfVX1EOB64HmTdG8LQ0gdMYvxPBh4AfDY1p+twCHACuCeVfXQqvpd4JSq+hS33/K6aabLUd8MKGlhW5pkI8MH9PeBDwOPAz4GUFVnA3dNsve4+b4OnJrkZcCSVnY+cHSSNwH3aR/0jwM+W1U/r6otwGeAP2j1r6yqjW16A7B8in7+I3BYkjvNcFxPBA4CLmrjeyJwP+C7wP2SvDfJnwA3zLA9LUA7z3cHJN0hN7UtjNskyQT1bnfRzap6ZZJHAU8HNiZZUVVnJLmglZ2V5C+Bidoac/PI9FZg0l1rVXV9kjOAV4/08zXAy9rTp1XVj0aHAZxWVW8Z31aShwFPAV4DPB94yRR91ALmFpS0+JzHsDuMJKuA66rqdlsaSe5fVRdU1bEMJzHcO8n9gO9W1T8CXwAObG09O8nuSfYAnsNwrGtbvAd4Be2LcVW9b+zkiHHhBPAVYPXY2X/tuNp9kiwDdqqqTwN/C/xeq/8zYK9t7Jc65RaUtPisBU5Jsgm4EThsgjontJMgwhAGlwJvBg5N8kvgGuBtVfXTJKcCF7b5Tq6qS5Isn22nquq6JJ8F3jCDut9McgywLslOwC8ZtphuamMb+3I9toV1KvCBJDcBj/E41OIQb7chSeqRu/gkSV0yoCRJXTKgJEldMqAkSV3yLD4BsGzZslq+fPl8d0PSb6ANGzZcV1V3G19uQAmA5cuXs379+vnuhqTfQEm+N1G5u/gkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqC0zdauXTvfXZDUmbn8XEhVzVljWrhWrlxZ69evn7bePd51D3788x//Wvm+e+zLNUddsz26JmkBScJscyXJhqpaOb582i2oJMuTXDaLBa1NctSsejdxO0cm2X229ZIcfUeXPYNlPijJxiSXJLl/kj+bw7avSrJsDtrZMhf9GW+icJqqXJK21c7z3YEpHAl8HLhxlvWOBv5uNgtKsqSqts5ilmcDn6+qNUlWAX8GnLEdl7cgrFq1ar67IGkRmekxqCVJTkpyeZJ1SZa2LYf/SLIhydeSPGj8TEnOTfL3Sc5LckWSRyT5TJLvJHl7q7NHkn9NcmmSy5K8IMnrgf2Bc5Kc0+o9Ocn5SS5O8skke46vl+Q4YGnbujm9zXdokgtb2QeTLGnlW5K8LckFwGMmGnSSY5Nc1Pr1oQyexhCKf9n6dhzwB639NyRZkuSENt+mJK9oba1qfTwD2DzRuEcW/bo2zs1j72uSfZJ8rrX5jSQHtvI9k5zS6m5K8rxxY1jW3renTzC+lydZn2T9tddeO8N/CpK0g1TVlA9gOXALsKI9PxM4FPgKcEArexRwdpteCxzVps8Fjm/TRwA/AvYDdgV+ANwVeB5w0sjy9m5/rwKWtellwHnAHu35m4Bjx9drz7eMTD8Y+CKwS3v+z8CL23QBz59m7PuMTH8M+NMJxrgK+NJIvZcDx7TpXYH1wH1bvZ8D922vTTXu17XpVwMnt+n3Amva9BOAjW36eODEkXbuMvY+APsCFwB/PN16Puigg2omWMukD0kaYmXW86yvCT6XZrqL78qq2timNzCE1u8Dn0wyVmfXSeb9Qvu7Gbi8qq4GSPJd4N6t/F1Jjm8f9F+boI1HA78DfL0t77eA82fQ7ycCBwEXtfmWAj9pr20FPj3N/I9P8jfA7sA+wOUMgTeVJwMHJlndnu8NHAD8H3BhVV3Zyqca92fa3w3Ac9v04xhCjao6O8ldk+wNPAl44diMVfW/bXIXhi8Rr6mqr07TZ0nqzkwD6uaR6a0M38yvr6oVs5j31nHt3ArsXFXfTnIQ8DTgHUnWVdXbxrUR4MtV9aIZ9nd0vtOq6i0TvPaLmuI4UJLdGLa4VlbV/yRZC+w2w2W+rqrOGtfeKoYtKACmGffY+7SVX62j274JjKhWPtEpM7cwBNxTgDkLqH332HfSs/gkaS5t6++gbgCuTHIwQDs287BtaSjJ/sCNVfVx4F3A77WXfgbs1aa/ATw2yQPaPLsneeAE9QB+mWSXNv0VYHWSu7f59klynxl2bSyMrkuyJ7B6knrjl38W8KqxPiR5YJI9xs80xbgncx5wSJt3FXBdVd0ArANeO9LuXdpkAS8BHpTkzdO0PWPXHHUNtaaoNcWaWnPbtKeYSwJYs2bNnLV1R87iOwR4f5JjGHYnfQK4dBva+V3ghCS3Ar8EXtXKPwT8e5Krq+rxSQ4H/iXJ2K7EY4Bvj6/Xnm9KcnFVHdL6ty7JTq391wDfm65TVXV9kpMYdsVdBVw0SdVNwC1JLgVOBf6BYRfoxRn2K17LcNbfTMc9mbXAKUk2MZyxeFgrfzvwvgw/BdgKvJW2i7CqtiZ5IfDFJDdU1T9Ps4xZ8Ye6ksbzh7qaczP9oa4kzbVs6w91JUmaDz3/UHeHSfJZhlPBR71p/IkOkqQdx4ACquo5890HSdLtuYtPktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1KVU1Xz3QR1Ici3wve24iGXAddux/fmyWMcFi3dsi3VcsHDHdp+qutv4QgNKO0SS9VW1cr77MdcW67hg8Y5tsY4LFt/Y3MUnSeqSASVJ6pIBpR3lQ/Pdge1ksY4LFu/YFuu4YJGNzWNQkqQuuQUlSeqSASVJ6pIBpTmV5N5JzklyRZLLkxzRytcm+WGSje3xtPnu62wl2S3JhUkubWN7ayvfJ8mXk3yn/b3LfPd1NqYY14JfZwBJliS5JMmX2vMFvb5GTTC2RbHOxngMSnMqyX7AflV1cZK9gA3As4HnA1uq6l3z2b87IkmAPapqS5JdgP8EjgCeC/y0qo5L8mbgLlX1pvns62xMMa4/YYGvM4AkfwWsBO5UVc9I8k4W8PoaNcHY1rII1tkYt6A0p6rq6qq6uE3/DLgCuOf89mpu1GBLe7pLexTwLOC0Vn4aQyAvGFOMa8FLci/g6cDJI8ULen2NmWRsi4oBpe0myXLg4cAFrei1STYl+chC3a3SdqlsBH4CfLmqLgD2raqrYQho4O7z2MVtMsm4YOGvsxOBvwFuHSlb8OurOZFfHxss/HV2GwNK20WSPYFPA0dW1Q3A+4H7AyuAq4F3z1/vtl1Vba2qFcC9gEcmeeg8d2lOTDKuBb3OkjwD+ElVbZjvvsy1Kca2oNfZeAaU5lw7jvFp4PSq+gxAVf24fQjeCpwEPHI++3hHVdX1wLkMx2l+3I69jR2D+8n89eyOGR3XIlhnjwWemeQq4BPAE5J8nMWxviYc2yJYZ7djQGlOtQPuHwauqKr3jJTvN1LtOcBlO7pvd1SSuyW5c5teCjwJ+C/gC8BhrdphwOfnpYPbaLJxLfR1VlVvqap7VdVy4IXA2VV1KAt8fcHkY1vo62y8nee7A1p0Hgv8ObC5HdMAOBp4UZIVDAffrwJeMR+du4P2A05LsoThy92ZVfWlJOcDZyZ5KfB94OD57OQ2mGxcH1sE62wix7Gw19dU3rmY1pmnmUuSuuQuPklSlwwoSVKXDChJUpcMKElSlwwoSVKXDCipQ0kqybtHnh/VLgQ6F22fmmT1XLQ1zXIOble1P2d7L2uCZR+eZP8dvVzNLQNK6tPNwHOTLJvvjoxqv5WaqZcCr66qx2+v/kzhcMCAWuAMKKlPtwAfAt4w/oXxW0BJtrS/q5J8NcmZSb6d5Lgkh7R7PW1Ocv+RZp6U5Gut3jPa/EuSnJDkonax0VeMtHtOkjOAzRP050Wt/cuSHN/KjgUeB3wgyQkTzPPXI8sZu//U8UlePVJnbZI3TlF/edtCOynDfazWJVna3puVwOkZ7om0tL0X32zzL4pbUfxGqCofPnx09gC2AHdiuBrA3sBRwNr22qnA6tG67e8q4HqGK0PsCvwQeGt77QjgxJH5/4PhC+oBwA+A3YCXA8e0OrsC64H7tnZ/Dtx3gn7uz3A1hrsxXJnmbODZ7bVzgZUTzPNkhvBN68OXgD9kuPL9V0fqfRP47SnqL2cI8hWt/pnAoeOXDewDfItfXZjgzvO9fn3M7OEWlNSpGq4C/1Hg9bOY7aIa7sl1M/DfwLpWvpnhA33MmVV1a1V9B/gu8CCGIHhxu0TVBcBdGQIM4MKqunKC5T0COLeqrq2qW4DTGcJjKk9uj0uAi9uyD6iqS4C7J9k/ycOA/62q709Wv7V1ZVVtbNMbxo1xzA3AL4CTkzwXuHGa/qkTXotP6tuJDB/Kp4yU3ULbPd8uzvtbI6/dPDJ968jzW7n9//fx1zgrhi2U11XVWaMvJFnFsAU1kUzT/8nmeUdVfXCC1z4FrAbuwXCV7knrt/uNjY53K7B0fINVdUuSRwJPZLiw6muBJ2xDv7WDuQUldayqfsqw6+qlI8VXAQe16Wcx3AF3tg5OslM7LnU/hl1gZwGvardLIckDk+wxTTsXAH+UZFk7geJFwFenmecs4CXtnmEkuWeSsZsGfoIhRFYzhNV09SfzM2CvVn9PYO+q+jfgSIZ7JWkBcAtK6t+7Gb71jzkJ+HySC4GvMPnWzVS+xRAk+wKvrKpfJDmZYRfZxW3L7FqmuR16VV2d5C3AOQxbOv9WVVPevqKq1iV5MHD+sBi2AIcy3IDv8iR7AT+sX931drL6W6dYzKkMJ2jcBDyV4f3arfXx1048UZ+8mrkkqUvu4pMkdcmAkiR1yYCSJHXJgJIkdcmAkiR1yYCSJHXJgJIkden/AfCEdh3W3Aw6AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAATPklEQVR4nO3debRdZX3G8e9DoBAGUYwiqDUOuLRajCVO1bZxqNahjsGhUKFa5wGstCqLkuhyVRC1tNY6gAIq1IXz0IG4BMS6EEggJCBVVwWtCgrLsjCCVMKvf+z34uF6x3CT+97r97PWWXef97z73e97dnKes4ezd6oKSZJ6s9N8d0CSpIkYUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVDSApZka5KNSS5L8skku09R95lJ3ryD+7c2yY1J7j5StmVcnae0MWxMsiXJt9r0R2exnMOT7D+Xfdf8M6Ckhe2mqlpRVQ8F/g945WQVq+oLVXXcjuvaba4D3jjZi1V1VhvDCmA9cEh7/uJZLONwwIBaZAwoafH4GvCAJPsk+VySTUm+keRAuG0r45/a9MFtq+vSJOe1sockubBtvWxKckAr/6tW97IkR7ay5UmuSHJSksuTrEuydJJ+fQR4QZJ9ZjOYJIeO9OeDSZa0x6mtL5uTvCHJamAlcHqrO1k/tMAYUNIikGRn4KnAZuCtwCVVdSBwNDDRrrJjgadU1cOAZ7ayVwL/0LZkVgI/SHIQ8BfAo4BHAy9L8vBW/wDgfVX1EOB64HmTdG8LQ0gdMYvxPBh4AfDY1p+twCHACuCeVfXQqvpd4JSq+hS33/K6aabLUd8MKGlhW5pkI8MH9PeBDwOPAz4GUFVnA3dNsve4+b4OnJrkZcCSVnY+cHSSNwH3aR/0jwM+W1U/r6otwGeAP2j1r6yqjW16A7B8in7+I3BYkjvNcFxPBA4CLmrjeyJwP+C7wP2SvDfJnwA3zLA9LUA7z3cHJN0hN7UtjNskyQT1bnfRzap6ZZJHAU8HNiZZUVVnJLmglZ2V5C+Bidoac/PI9FZg0l1rVXV9kjOAV4/08zXAy9rTp1XVj0aHAZxWVW8Z31aShwFPAV4DPB94yRR91ALmFpS0+JzHsDuMJKuA66rqdlsaSe5fVRdU1bEMJzHcO8n9gO9W1T8CXwAObG09O8nuSfYAnsNwrGtbvAd4Be2LcVW9b+zkiHHhBPAVYPXY2X/tuNp9kiwDdqqqTwN/C/xeq/8zYK9t7Jc65RaUtPisBU5Jsgm4EThsgjontJMgwhAGlwJvBg5N8kvgGuBtVfXTJKcCF7b5Tq6qS5Isn22nquq6JJ8F3jCDut9McgywLslOwC8ZtphuamMb+3I9toV1KvCBJDcBj/E41OIQb7chSeqRu/gkSV0yoCRJXTKgJEldMqAkSV3yLD4BsGzZslq+fPl8d0PSb6ANGzZcV1V3G19uQAmA5cuXs379+vnuhqTfQEm+N1G5u/gkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqC0zdauXTvfXZDUmbn8XEhVzVljWrhWrlxZ69evn7bePd51D3788x//Wvm+e+zLNUddsz26JmkBScJscyXJhqpaOb582i2oJMuTXDaLBa1NctSsejdxO0cm2X229ZIcfUeXPYNlPijJxiSXJLl/kj+bw7avSrJsDtrZMhf9GW+icJqqXJK21c7z3YEpHAl8HLhxlvWOBv5uNgtKsqSqts5ilmcDn6+qNUlWAX8GnLEdl7cgrFq1ar67IGkRmekxqCVJTkpyeZJ1SZa2LYf/SLIhydeSPGj8TEnOTfL3Sc5LckWSRyT5TJLvJHl7q7NHkn9NcmmSy5K8IMnrgf2Bc5Kc0+o9Ocn5SS5O8skke46vl+Q4YGnbujm9zXdokgtb2QeTLGnlW5K8LckFwGMmGnSSY5Nc1Pr1oQyexhCKf9n6dhzwB639NyRZkuSENt+mJK9oba1qfTwD2DzRuEcW/bo2zs1j72uSfZJ8rrX5jSQHtvI9k5zS6m5K8rxxY1jW3renTzC+lydZn2T9tddeO8N/CpK0g1TVlA9gOXALsKI9PxM4FPgKcEArexRwdpteCxzVps8Fjm/TRwA/AvYDdgV+ANwVeB5w0sjy9m5/rwKWtellwHnAHu35m4Bjx9drz7eMTD8Y+CKwS3v+z8CL23QBz59m7PuMTH8M+NMJxrgK+NJIvZcDx7TpXYH1wH1bvZ8D922vTTXu17XpVwMnt+n3Amva9BOAjW36eODEkXbuMvY+APsCFwB/PN16Puigg2omWMukD0kaYmXW86yvCT6XZrqL78qq2timNzCE1u8Dn0wyVmfXSeb9Qvu7Gbi8qq4GSPJd4N6t/F1Jjm8f9F+boI1HA78DfL0t77eA82fQ7ycCBwEXtfmWAj9pr20FPj3N/I9P8jfA7sA+wOUMgTeVJwMHJlndnu8NHAD8H3BhVV3Zyqca92fa3w3Ac9v04xhCjao6O8ldk+wNPAl44diMVfW/bXIXhi8Rr6mqr07TZ0nqzkwD6uaR6a0M38yvr6oVs5j31nHt3ArsXFXfTnIQ8DTgHUnWVdXbxrUR4MtV9aIZ9nd0vtOq6i0TvPaLmuI4UJLdGLa4VlbV/yRZC+w2w2W+rqrOGtfeKoYtKACmGffY+7SVX62j274JjKhWPtEpM7cwBNxTgDkLqH332HfSs/gkaS5t6++gbgCuTHIwQDs287BtaSjJ/sCNVfVx4F3A77WXfgbs1aa/ATw2yQPaPLsneeAE9QB+mWSXNv0VYHWSu7f59klynxl2bSyMrkuyJ7B6knrjl38W8KqxPiR5YJI9xs80xbgncx5wSJt3FXBdVd0ArANeO9LuXdpkAS8BHpTkzdO0PWPXHHUNtaaoNcWaWnPbtKeYSwJYs2bNnLV1R87iOwR4f5JjGHYnfQK4dBva+V3ghCS3Ar8EXtXKPwT8e5Krq+rxSQ4H/iXJ2K7EY4Bvj6/Xnm9KcnFVHdL6ty7JTq391wDfm65TVXV9kpMYdsVdBVw0SdVNwC1JLgVOBf6BYRfoxRn2K17LcNbfTMc9mbXAKUk2MZyxeFgrfzvwvgw/BdgKvJW2i7CqtiZ5IfDFJDdU1T9Ps4xZ8Ye6ksbzh7qaczP9oa4kzbVs6w91JUmaDz3/UHeHSfJZhlPBR71p/IkOkqQdx4ACquo5890HSdLtuYtPktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1KVU1Xz3QR1Ici3wve24iGXAddux/fmyWMcFi3dsi3VcsHDHdp+qutv4QgNKO0SS9VW1cr77MdcW67hg8Y5tsY4LFt/Y3MUnSeqSASVJ6pIBpR3lQ/Pdge1ksY4LFu/YFuu4YJGNzWNQkqQuuQUlSeqSASVJ6pIBpTmV5N5JzklyRZLLkxzRytcm+WGSje3xtPnu62wl2S3JhUkubWN7ayvfJ8mXk3yn/b3LfPd1NqYY14JfZwBJliS5JMmX2vMFvb5GTTC2RbHOxngMSnMqyX7AflV1cZK9gA3As4HnA1uq6l3z2b87IkmAPapqS5JdgP8EjgCeC/y0qo5L8mbgLlX1pvns62xMMa4/YYGvM4AkfwWsBO5UVc9I8k4W8PoaNcHY1rII1tkYt6A0p6rq6qq6uE3/DLgCuOf89mpu1GBLe7pLexTwLOC0Vn4aQyAvGFOMa8FLci/g6cDJI8ULen2NmWRsi4oBpe0myXLg4cAFrei1STYl+chC3a3SdqlsBH4CfLmqLgD2raqrYQho4O7z2MVtMsm4YOGvsxOBvwFuHSlb8OurOZFfHxss/HV2GwNK20WSPYFPA0dW1Q3A+4H7AyuAq4F3z1/vtl1Vba2qFcC9gEcmeeg8d2lOTDKuBb3OkjwD+ElVbZjvvsy1Kca2oNfZeAaU5lw7jvFp4PSq+gxAVf24fQjeCpwEPHI++3hHVdX1wLkMx2l+3I69jR2D+8n89eyOGR3XIlhnjwWemeQq4BPAE5J8nMWxviYc2yJYZ7djQGlOtQPuHwauqKr3jJTvN1LtOcBlO7pvd1SSuyW5c5teCjwJ+C/gC8BhrdphwOfnpYPbaLJxLfR1VlVvqap7VdVy4IXA2VV1KAt8fcHkY1vo62y8nee7A1p0Hgv8ObC5HdMAOBp4UZIVDAffrwJeMR+du4P2A05LsoThy92ZVfWlJOcDZyZ5KfB94OD57OQ2mGxcH1sE62wix7Gw19dU3rmY1pmnmUuSuuQuPklSlwwoSVKXDChJUpcMKElSlwwoSVKXDCipQ0kqybtHnh/VLgQ6F22fmmT1XLQ1zXIOble1P2d7L2uCZR+eZP8dvVzNLQNK6tPNwHOTLJvvjoxqv5WaqZcCr66qx2+v/kzhcMCAWuAMKKlPtwAfAt4w/oXxW0BJtrS/q5J8NcmZSb6d5Lgkh7R7PW1Ocv+RZp6U5Gut3jPa/EuSnJDkonax0VeMtHtOkjOAzRP050Wt/cuSHN/KjgUeB3wgyQkTzPPXI8sZu//U8UlePVJnbZI3TlF/edtCOynDfazWJVna3puVwOkZ7om0tL0X32zzL4pbUfxGqCofPnx09gC2AHdiuBrA3sBRwNr22qnA6tG67e8q4HqGK0PsCvwQeGt77QjgxJH5/4PhC+oBwA+A3YCXA8e0OrsC64H7tnZ/Dtx3gn7uz3A1hrsxXJnmbODZ7bVzgZUTzPNkhvBN68OXgD9kuPL9V0fqfRP47SnqL2cI8hWt/pnAoeOXDewDfItfXZjgzvO9fn3M7OEWlNSpGq4C/1Hg9bOY7aIa7sl1M/DfwLpWvpnhA33MmVV1a1V9B/gu8CCGIHhxu0TVBcBdGQIM4MKqunKC5T0COLeqrq2qW4DTGcJjKk9uj0uAi9uyD6iqS4C7J9k/ycOA/62q709Wv7V1ZVVtbNMbxo1xzA3AL4CTkzwXuHGa/qkTXotP6tuJDB/Kp4yU3ULbPd8uzvtbI6/dPDJ968jzW7n9//fx1zgrhi2U11XVWaMvJFnFsAU1kUzT/8nmeUdVfXCC1z4FrAbuwXCV7knrt/uNjY53K7B0fINVdUuSRwJPZLiw6muBJ2xDv7WDuQUldayqfsqw6+qlI8VXAQe16Wcx3AF3tg5OslM7LnU/hl1gZwGvardLIckDk+wxTTsXAH+UZFk7geJFwFenmecs4CXtnmEkuWeSsZsGfoIhRFYzhNV09SfzM2CvVn9PYO+q+jfgSIZ7JWkBcAtK6t+7Gb71jzkJ+HySC4GvMPnWzVS+xRAk+wKvrKpfJDmZYRfZxW3L7FqmuR16VV2d5C3AOQxbOv9WVVPevqKq1iV5MHD+sBi2AIcy3IDv8iR7AT+sX931drL6W6dYzKkMJ2jcBDyV4f3arfXx1048UZ+8mrkkqUvu4pMkdcmAkiR1yYCSJHXJgJIkdcmAkiR1yYCSJHXJgJIkden/AfCEdh3W3Aw6AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -416,7 +446,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAU40lEQVR4nO3df7xldV3v8ddb4PLTi8IoRhJjCg8vyDQ5449CcyREs6uhYoJwA62USr3oxRDlyuj1FgSllj9KvEH+pChRSAIUUYhAmIFhAC008AcPRZkMaUD5MXzuH+t7YHs4P2fOzPkeej0fj/M4a3/Xd33XZ+199n6ftfbea6WqkCSpN4+Y7wIkSZqIASVJ6pIBJUnqkgElSeqSASVJ6pIBJUnqkgElLUBJNiRZk+T6JGcl2WGKvi9O8pYtXN/KJJXkSSNtb2xty0fa9mvbsSbJD5Lc3KY/P4t1HZxkn7neBs0/A0pamH5UVUur6inAPcDRk3WsqnOq6qQtV9oDrgMOHbl9CPCV0Q5VdV3bjqXAOcCb2+0DZ7GegwED6mHIgJIWvkuBJyXZJcmnk6xNckWSJQBJjkryvjb98rbXdW2SS1rbvkmubHsua5Ps1drf1Ppen+SY1rY4yVeTnJbkhiQXJtl+kro+DfxaW+5ngR8Ct81kg5IclOTyJFe3PcSdWvtJSb7S6jw1yS8CLwZOafU/caPuQXXJgJIWsCRbA7/CsLfyDuCaqloCvBX4yASLvB14flX9HMMLOwx7X+9tezHLgVuSLANeBTwDeCbw20l+vvXfC3h/Ve0L3A68bJLy7gC+neQpwGHAX89wmxYBJwAHVtVTgVXAm5LsArwE2Ldt47uq6p/4yT2vf53JOrQwGFDSwrR9kjUML97fAv4f8CzgowBV9QVg1yQ7j1vuMuCMJL8NbNXaLgfemuQ4YM+q+lEb6+yqurOq1gOfAp7d+t9cVWva9Gpg8RR1nslwmO9g4OwZbtszGQ7ZXda28UhgT4bA+zHw4SQvBe6a4XhaoAwoaWEaew9qaVW9vqruATJBv5842WZVHc2wd7IHsCbJrlX1CYa9qR8BFyQ5YJKxxtw9Mr0B2HqKvucC/wP4VlXdMdaY5CUjH45YPm6ZAJ8b2b59quo3q+o+4OnA3zEE3vlTrFcPAwaU9PBxCXA4QJIVwLrRUGjtT6yqL1fV24F1wB7t/aGbqupPGQ6XLWljHZxkhyQ7Mhxau3S2BbW9seOA/zuu/eyRAFo1brErgP3HPgHYati7vQ+1c1WdBxwDLG39/wN45GxrU/+m+s9H0sKyEjg9yVqGw19HTtDnlPYhiAAXAdcCbwGOSHIvcCvwzqr6QZIzgCvbch+uqmuSLJ5tUVV15iz735bkKOCTSbZtzScwBNFnkmzX6n9jm3cmcFqSNwCH+D7Uw0e83IYkqUce4pMkdcmAkiR1yYCSJHXJgJIkdclP8QmARYsW1eLFi+e7DEn/iaxevXpdVT1msvkGlABYvHgxq1aN/zqKJG0+Sb451XwP8UmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQGmjrVy5cr5LkNSJzfF6kKqa80G18CxfvrxWrVo1q2WSMN3fz+NOfRzfu/N7D2nfbcfduPXYW2e1Pkn9msnrwQTLrK6q5ZPNn3YPKsniJNfPYoUrkxw70/5TjHNMkh1m2y/JWzd13TNY55OTrElyTZInJnnlHI79jSSL5mCc9XNRz6aaKJymapekMVvPdwFTOAb4GHDXLPu9FfiD2awoyVZVtWEWixwMfKaqTkyyAngl8InNuL5urVixYuoOz92EZSX9pzbT96C2SnJakhuSXJhk+7bncH6S1UkuTfLk8Qsl+WKSdye5JMlXkzwtyaeSfC3Ju1qfHZN8Nsm1Sa5P8ookbwB2By5OcnHrd1CSy5NcneSsJDuN75fkJGD7tnfz8bbcEUmubG1/kWSr1r4+yTuTfBn4hYk2Osnbk1zV6vpQBi9kCMXfarWdBDy7jf/GJFslOaUttzbJa9tYK1qNnwCum2i7R1b9+rad143dr0l2SfLpNuYVSZa09p2SnN76rk3ysnHbsKjdb786wfa9JsmqJKtuu+22Gf4pSNIWUlVT/gCLgfuApe323wBHABcBe7W2ZwBfaNMrgWPb9BeBk9v0/wS+A/wUsC1wC7Ar8DLgtJH17dx+fwNY1KYXAZcAO7bbxwFvH9+v3V4/Mv3fgHOBbdrtDwC/0aYL+PVptn2XkemPAi+aYBtXAH8/0u81wAlteltgFfCE1u9O4Alt3lTb/fo2/bvAh9v0nwEntukDgDVt+mTgPSPjPHrsfgB2A74MPG+6x3nZsmU1W8OfzzR9VjLpj6SHj5m8HkywzKqa4nVppof4bq6qNW16NUNo/SJwVpKxPttOsuw57fd1wA1V9V2AJDcBe7T2U5Oc3F7oL51gjGcC+wCXtfX9F+DyGdT9y8Ay4Kq23PbA99u8DcDfTbP8c5P8PrADsAtwA0PgTeUgYEmSQ9rtnYG9gHuAK6vq5tY+1XZ/qv1eDby0TT+LIdSoqi8k2TXJzsCBwKFjC1bVv7fJbRj+ifi9qvrSNDVLUndmGlB3j0xvYPjP/PaqWjqLZe8fN879wNZVdWOSZcALgT9McmFVvXPcGAE+V1WHzbDe0eX+qqqOn2Dej2uK94GSbMewx7W8qr6dZCWw3QzX+fqqumDceCsY9qAAmGa7x+6nDTz4GD3wn8CIau0TfXTmPoaAez4wbwG12467TfopPkmaysZ+D+oO4OYkLwdo78383MYMlGR34K6q+hhwKvDUNus/gEe26SuA/ZM8qS2zQ5K9J+gHcG+Sbdr0RcAhSR7bltslyZ4zLG0sjNYl2Qk4ZJJ+49d/AfA7YzUk2TvJjuMXmmK7J3MJcHhbdgWwrqruAC4EXjcy7qPbZAGvBp6c5C3TjL1RTjzxxGn73HrsrdSJ9ZAfP2IuPbzM5PVgtjblU3yHAx9McgLD4aQzgWs3Ypz9gFOS3A/cC/xOa/8Q8A9JvltVz01yFPDJJGOHEk8Abhzfr91em+Tqqjq81Xdhkke08X8P+OZ0RVXV7UlOYzgU9w3gqkm6rgXuS3ItcAbwXoZDoFdnOK54G8On/ma63ZNZCZyeZC3DJxaPbO3vAt6f4asAG4B30A4RVtWGJIcC5ya5o6o+MM06ZsUv6koa4xd1tdlszBd1JWlTZFO/qCtJ0nzo+Yu6W0ySsxk+Cj7quPEfdJAkbTkGFFBVL5nvGiRJP8lDfJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuparmuwZ1IMltwDfneNhFwLo5HnNzsda5t1DqhIVT60KpE2ZW655V9ZjJZhpQ2mySrKqq5fNdx0xY69xbKHXCwql1odQJc1Orh/gkSV0yoCRJXTKgtDl9aL4LmAVrnXsLpU5YOLUulDphDmr1PShJUpfcg5IkdcmAkiR1yYDSnEtySpJ/TrI2ydlJHtXat0nyV0muS/LVJMfPc6mT1trmLUlyeZIbWs3b9Vhnm/8zSdYnOXaeShytZbLH/3lJVrf7cnWSA3qss807PsnXk/xLkufPY5lj9by8/R3en2T5SHuPz6kJa23zZvWcMqC0OXwOeEpVLQFuBMaeNC8Htq2q/YBlwGuTLJ6fEh8wYa1JtgY+BhxdVfsCK4B756tIJr9Px7wb+IctXtXEJqt1HfCi9vgfCXx0nuobM9ljvw9wKLAv8ALgA0m2mrcqB9cDLwUuGdfe43Nqwlo35jllQGnOVdWFVXVfu3kF8PixWcCO7Q91e+Ae4I55KPEBU9R6ELC2qq5t/f6tqjbMR41t/ZPVSZKDgZuAG+ahtIeYrNaquqaqvtPabwC2S7LtfNTY6pnsPv014Myquruqbga+Djx9PmocU1Vfrap/mWgW/T2nJqt11s8pA0qb26t58D/7vwXuBL4LfAs4tap+MF+FTWC01r2BSnJBkquT/P481jXeA3Um2RE4DnjHvFY0udH7dNTLgGuq6u4tXM9kRuv8aeDbI/NuaW096v05NWrWz6mtt0BRehhK8nngcRPMeltVfab1eRtwH/DxNu/pwAZgd+DRwKVJPl9VN3VY69bAs4CnAXcBFyVZXVUXdVbnO4B3V9X6JJurtIfYyFrHlt0XOJnhP+oe65zojtzs38eZSa0T6PY5NYFZP6cMKG2UqjpwqvlJjgT+O/DL9eCX7V4JnF9V9wLfT3IZsJzh8FRvtd4CfKmq1rU+5wFPBTZbQG1knc8ADknyR8CjgPuT/Liq3re56tyEWknyeOBs4Deq6l83Z42wSY/9HiPdHg98Z/yyc226WifR5XNqErN+TnmIT3MuyQsYDju9uKruGpn1LeCADHYEngn883zUOGaKWi8AliTZoR3ffw7wlfmoESavs6qeXVWLq2ox8B7gDzZ3OE1nslrbp+Q+CxxfVZfNU3kPmOKxPwc4NMm2SZ4A7AVcOR81zkB3z6kpzPo55ZkkNOeSfB3YFvi31nRFVR2dZCfgdGAfhsMop1fVKfNUJjB5rW3eEQyf7CrgvKqat/ehpqpzpM9KYH1VnbqFy/sJUzz+JzDcn18b6X5QVX1/S9cI0z72b2N4X+o+4JiqmtdPSCZ5CfBnwGOA24E1VfX8Tp9TE9ba5s3qOWVASZK65CE+SVKXDChJUpcMKElSlwwoSVKXDChJUpcMKGkLSlJJ/njk9rHt4+FbsoYvjp1lOsl5GXdm9I0Yb0WSv5+qPcmLk7ylTZ+R5JBZjL++/d49yd+26aOSzPn3vTbXuNo4BpS0Zd0NvDTJoo1ZuH3Bcc5U1Qur6va5HHOS9ZxTVSdt4hjfqaoZB5sWPgNK2rLuAz4EvHH8jCR7Jrkow/WJLkryM639jCR/kuRi4OR2+4NJLk5yU5LnJPnLDNcDOmNkvA8mWZXh2jsTnkw2yTeSLEpydJI17efmti6SHJTh+j1XJzmrfTGUJC/IcC2lf2S4tMKUJtszSfJ/2vY8Ismbk1zVtv8h9SZZnOT6kabdk5yf5GvtVE9j/Q7LcK2h65OcPIP2VyW5McmXgP2n2xZtOQaUtOW9Hzg8yc7j2t8HfKRdn+jjwJ+OzNsbOLCq/le7/WjgAIagO5fhelD7AvslWdr6vK2qlgNLgOckWTJZQVX151W1lOFEnrcAf9L28k5o630qsAp4U4aLzJ0GvAh4NhOfNHRaLVQeC7wKOJDhlEJPB5YCy5L80jRDLAVeAewHvCLJHkl2ZzgR7QFt/tOSHDxF+08xnHB3f+B5DGdkUCcMKGkLq6o7gI8Abxg36xeAT7TpjzKc+XnMWeOunXNuO7npdcD3quq6qrqf4TpLi1ufX09yNXANQ3jN5MX3vcAXqupchvO67QNclmQNw0UG9wSeDNxcVV9rNXxsBuOO97+BR1XVa9sYB7Wfa4Cr2zr2mmaMi6rqh1X1Y4Zzuu3JELBfrKrb2rWePg780hTtzxhpvwf4643YFm0mns1cmh/vYXghPn2KPqPnIbtz3Lyx6yjdPzI9dnvrdpLTY4GnVdW/t0N/U15eO8lRDC/yrxtrAj5XVYeN67eUTb/8xFUMe0m7tOsXBfjDqvqLWYwxut0bGF7PJrvmyFTXIvF8b51yD0qaB+1F+W+A3xxp/ieGS40DHA784yas4r8yhNoPk+wG/MpUnZMsYwi0I9qeGAxXmd0/yZNanx2S7M1wtuwnJHli63fYQwac3vnAScBnkzyS4UzXrx55j+unkzx2I8b9MsPhzEUZLtN+GPCladpXJNk1yTYMl1BXJ9yDkubPH/Pg3goMh/z+MsmbgdsY3pvZKFV1bZJrGA753QRMd3mL1wG7ABdnuPDhqqr6rbZX9ck8eGn2E6rqxiSvYQiXdQxB+pSNqPGsFk7nAC9kOLx5eVv/euAIYFZnOq+q7yY5HriYYa/pvJELE07WvhK4nOGqtFcDW812W7R5eDZzSVKXPMQnSeqSASVJ6pIBJUnqkgElSeqSASVJ6pIBJUnqkgElSerS/weph5TRs1E/+QAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAU40lEQVR4nO3df7xldV3v8ddb4PLTi8IoRhJjCg8vyDQ5449CcyREs6uhYoJwA62USr3oxRDlyuj1FgSllj9KvEH+pChRSAIUUYhAmIFhAC008AcPRZkMaUD5MXzuH+t7YHs4P2fOzPkeej0fj/M4a3/Xd33XZ+199n6ftfbea6WqkCSpN4+Y7wIkSZqIASVJ6pIBJUnqkgElSeqSASVJ6pIBJUnqkgElLUBJNiRZk+T6JGcl2WGKvi9O8pYtXN/KJJXkSSNtb2xty0fa9mvbsSbJD5Lc3KY/P4t1HZxkn7neBs0/A0pamH5UVUur6inAPcDRk3WsqnOq6qQtV9oDrgMOHbl9CPCV0Q5VdV3bjqXAOcCb2+0DZ7GegwED6mHIgJIWvkuBJyXZJcmnk6xNckWSJQBJjkryvjb98rbXdW2SS1rbvkmubHsua5Ps1drf1Ppen+SY1rY4yVeTnJbkhiQXJtl+kro+DfxaW+5ngR8Ct81kg5IclOTyJFe3PcSdWvtJSb7S6jw1yS8CLwZOafU/caPuQXXJgJIWsCRbA7/CsLfyDuCaqloCvBX4yASLvB14flX9HMMLOwx7X+9tezHLgVuSLANeBTwDeCbw20l+vvXfC3h/Ve0L3A68bJLy7gC+neQpwGHAX89wmxYBJwAHVtVTgVXAm5LsArwE2Ldt47uq6p/4yT2vf53JOrQwGFDSwrR9kjUML97fAv4f8CzgowBV9QVg1yQ7j1vuMuCMJL8NbNXaLgfemuQ4YM+q+lEb6+yqurOq1gOfAp7d+t9cVWva9Gpg8RR1nslwmO9g4OwZbtszGQ7ZXda28UhgT4bA+zHw4SQvBe6a4XhaoAwoaWEaew9qaVW9vqruATJBv5842WZVHc2wd7IHsCbJrlX1CYa9qR8BFyQ5YJKxxtw9Mr0B2HqKvucC/wP4VlXdMdaY5CUjH45YPm6ZAJ8b2b59quo3q+o+4OnA3zEE3vlTrFcPAwaU9PBxCXA4QJIVwLrRUGjtT6yqL1fV24F1wB7t/aGbqupPGQ6XLWljHZxkhyQ7Mhxau3S2BbW9seOA/zuu/eyRAFo1brErgP3HPgHYati7vQ+1c1WdBxwDLG39/wN45GxrU/+m+s9H0sKyEjg9yVqGw19HTtDnlPYhiAAXAdcCbwGOSHIvcCvwzqr6QZIzgCvbch+uqmuSLJ5tUVV15iz735bkKOCTSbZtzScwBNFnkmzX6n9jm3cmcFqSNwCH+D7Uw0e83IYkqUce4pMkdcmAkiR1yYCSJHXJgJIkdclP8QmARYsW1eLFi+e7DEn/iaxevXpdVT1msvkGlABYvHgxq1aN/zqKJG0+Sb451XwP8UmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQGmjrVy5cr5LkNSJzfF6kKqa80G18CxfvrxWrVo1q2WSMN3fz+NOfRzfu/N7D2nfbcfduPXYW2e1Pkn9msnrwQTLrK6q5ZPNn3YPKsniJNfPYoUrkxw70/5TjHNMkh1m2y/JWzd13TNY55OTrElyTZInJnnlHI79jSSL5mCc9XNRz6aaKJymapekMVvPdwFTOAb4GHDXLPu9FfiD2awoyVZVtWEWixwMfKaqTkyyAngl8InNuL5urVixYuoOz92EZSX9pzbT96C2SnJakhuSXJhk+7bncH6S1UkuTfLk8Qsl+WKSdye5JMlXkzwtyaeSfC3Ju1qfHZN8Nsm1Sa5P8ookbwB2By5OcnHrd1CSy5NcneSsJDuN75fkJGD7tnfz8bbcEUmubG1/kWSr1r4+yTuTfBn4hYk2Osnbk1zV6vpQBi9kCMXfarWdBDy7jf/GJFslOaUttzbJa9tYK1qNnwCum2i7R1b9+rad143dr0l2SfLpNuYVSZa09p2SnN76rk3ysnHbsKjdb786wfa9JsmqJKtuu+22Gf4pSNIWUlVT/gCLgfuApe323wBHABcBe7W2ZwBfaNMrgWPb9BeBk9v0/wS+A/wUsC1wC7Ar8DLgtJH17dx+fwNY1KYXAZcAO7bbxwFvH9+v3V4/Mv3fgHOBbdrtDwC/0aYL+PVptn2XkemPAi+aYBtXAH8/0u81wAlteltgFfCE1u9O4Alt3lTb/fo2/bvAh9v0nwEntukDgDVt+mTgPSPjPHrsfgB2A74MPG+6x3nZsmU1W8OfzzR9VjLpj6SHj5m8HkywzKqa4nVppof4bq6qNW16NUNo/SJwVpKxPttOsuw57fd1wA1V9V2AJDcBe7T2U5Oc3F7oL51gjGcC+wCXtfX9F+DyGdT9y8Ay4Kq23PbA99u8DcDfTbP8c5P8PrADsAtwA0PgTeUgYEmSQ9rtnYG9gHuAK6vq5tY+1XZ/qv1eDby0TT+LIdSoqi8k2TXJzsCBwKFjC1bVv7fJbRj+ifi9qvrSNDVLUndmGlB3j0xvYPjP/PaqWjqLZe8fN879wNZVdWOSZcALgT9McmFVvXPcGAE+V1WHzbDe0eX+qqqOn2Dej2uK94GSbMewx7W8qr6dZCWw3QzX+fqqumDceCsY9qAAmGa7x+6nDTz4GD3wn8CIau0TfXTmPoaAez4wbwG12467TfopPkmaysZ+D+oO4OYkLwdo78383MYMlGR34K6q+hhwKvDUNus/gEe26SuA/ZM8qS2zQ5K9J+gHcG+Sbdr0RcAhSR7bltslyZ4zLG0sjNYl2Qk4ZJJ+49d/AfA7YzUk2TvJjuMXmmK7J3MJcHhbdgWwrqruAC4EXjcy7qPbZAGvBp6c5C3TjL1RTjzxxGn73HrsrdSJ9ZAfP2IuPbzM5PVgtjblU3yHAx9McgLD4aQzgWs3Ypz9gFOS3A/cC/xOa/8Q8A9JvltVz01yFPDJJGOHEk8Abhzfr91em+Tqqjq81Xdhkke08X8P+OZ0RVXV7UlOYzgU9w3gqkm6rgXuS3ItcAbwXoZDoFdnOK54G8On/ma63ZNZCZyeZC3DJxaPbO3vAt6f4asAG4B30A4RVtWGJIcC5ya5o6o+MM06ZsUv6koa4xd1tdlszBd1JWlTZFO/qCtJ0nzo+Yu6W0ySsxk+Cj7quPEfdJAkbTkGFFBVL5nvGiRJP8lDfJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuparmuwZ1IMltwDfneNhFwLo5HnNzsda5t1DqhIVT60KpE2ZW655V9ZjJZhpQ2mySrKqq5fNdx0xY69xbKHXCwql1odQJc1Orh/gkSV0yoCRJXTKgtDl9aL4LmAVrnXsLpU5YOLUulDphDmr1PShJUpfcg5IkdcmAkiR1yYDSnEtySpJ/TrI2ydlJHtXat0nyV0muS/LVJMfPc6mT1trmLUlyeZIbWs3b9Vhnm/8zSdYnOXaeShytZbLH/3lJVrf7cnWSA3qss807PsnXk/xLkufPY5lj9by8/R3en2T5SHuPz6kJa23zZvWcMqC0OXwOeEpVLQFuBMaeNC8Htq2q/YBlwGuTLJ6fEh8wYa1JtgY+BhxdVfsCK4B756tIJr9Px7wb+IctXtXEJqt1HfCi9vgfCXx0nuobM9ljvw9wKLAv8ALgA0m2mrcqB9cDLwUuGdfe43Nqwlo35jllQGnOVdWFVXVfu3kF8PixWcCO7Q91e+Ae4I55KPEBU9R6ELC2qq5t/f6tqjbMR41t/ZPVSZKDgZuAG+ahtIeYrNaquqaqvtPabwC2S7LtfNTY6pnsPv014Myquruqbga+Djx9PmocU1Vfrap/mWgW/T2nJqt11s8pA0qb26t58D/7vwXuBL4LfAs4tap+MF+FTWC01r2BSnJBkquT/P481jXeA3Um2RE4DnjHvFY0udH7dNTLgGuq6u4tXM9kRuv8aeDbI/NuaW096v05NWrWz6mtt0BRehhK8nngcRPMeltVfab1eRtwH/DxNu/pwAZgd+DRwKVJPl9VN3VY69bAs4CnAXcBFyVZXVUXdVbnO4B3V9X6JJurtIfYyFrHlt0XOJnhP+oe65zojtzs38eZSa0T6PY5NYFZP6cMKG2UqjpwqvlJjgT+O/DL9eCX7V4JnF9V9wLfT3IZsJzh8FRvtd4CfKmq1rU+5wFPBTZbQG1knc8ADknyR8CjgPuT/Liq3re56tyEWknyeOBs4Deq6l83Z42wSY/9HiPdHg98Z/yyc226WifR5XNqErN+TnmIT3MuyQsYDju9uKruGpn1LeCADHYEngn883zUOGaKWi8AliTZoR3ffw7wlfmoESavs6qeXVWLq2ox8B7gDzZ3OE1nslrbp+Q+CxxfVZfNU3kPmOKxPwc4NMm2SZ4A7AVcOR81zkB3z6kpzPo55ZkkNOeSfB3YFvi31nRFVR2dZCfgdGAfhsMop1fVKfNUJjB5rW3eEQyf7CrgvKqat/ehpqpzpM9KYH1VnbqFy/sJUzz+JzDcn18b6X5QVX1/S9cI0z72b2N4X+o+4JiqmtdPSCZ5CfBnwGOA24E1VfX8Tp9TE9ba5s3qOWVASZK65CE+SVKXDChJUpcMKElSlwwoSVKXDChJUpcMKGkLSlJJ/njk9rHt4+FbsoYvjp1lOsl5GXdm9I0Yb0WSv5+qPcmLk7ylTZ+R5JBZjL++/d49yd+26aOSzPn3vTbXuNo4BpS0Zd0NvDTJoo1ZuH3Bcc5U1Qur6va5HHOS9ZxTVSdt4hjfqaoZB5sWPgNK2rLuAz4EvHH8jCR7Jrkow/WJLkryM639jCR/kuRi4OR2+4NJLk5yU5LnJPnLDNcDOmNkvA8mWZXh2jsTnkw2yTeSLEpydJI17efmti6SHJTh+j1XJzmrfTGUJC/IcC2lf2S4tMKUJtszSfJ/2vY8Ismbk1zVtv8h9SZZnOT6kabdk5yf5GvtVE9j/Q7LcK2h65OcPIP2VyW5McmXgP2n2xZtOQaUtOW9Hzg8yc7j2t8HfKRdn+jjwJ+OzNsbOLCq/le7/WjgAIagO5fhelD7AvslWdr6vK2qlgNLgOckWTJZQVX151W1lOFEnrcAf9L28k5o630qsAp4U4aLzJ0GvAh4NhOfNHRaLVQeC7wKOJDhlEJPB5YCy5L80jRDLAVeAewHvCLJHkl2ZzgR7QFt/tOSHDxF+08xnHB3f+B5DGdkUCcMKGkLq6o7gI8Abxg36xeAT7TpjzKc+XnMWeOunXNuO7npdcD3quq6qrqf4TpLi1ufX09yNXANQ3jN5MX3vcAXqupchvO67QNclmQNw0UG9wSeDNxcVV9rNXxsBuOO97+BR1XVa9sYB7Wfa4Cr2zr2mmaMi6rqh1X1Y4Zzuu3JELBfrKrb2rWePg780hTtzxhpvwf4643YFm0mns1cmh/vYXghPn2KPqPnIbtz3Lyx6yjdPzI9dnvrdpLTY4GnVdW/t0N/U15eO8lRDC/yrxtrAj5XVYeN67eUTb/8xFUMe0m7tOsXBfjDqvqLWYwxut0bGF7PJrvmyFTXIvF8b51yD0qaB+1F+W+A3xxp/ieGS40DHA784yas4r8yhNoPk+wG/MpUnZMsYwi0I9qeGAxXmd0/yZNanx2S7M1wtuwnJHli63fYQwac3vnAScBnkzyS4UzXrx55j+unkzx2I8b9MsPhzEUZLtN+GPCladpXJNk1yTYMl1BXJ9yDkubPH/Pg3goMh/z+MsmbgdsY3pvZKFV1bZJrGA753QRMd3mL1wG7ABdnuPDhqqr6rbZX9ck8eGn2E6rqxiSvYQiXdQxB+pSNqPGsFk7nAC9kOLx5eVv/euAIYFZnOq+q7yY5HriYYa/pvJELE07WvhK4nOGqtFcDW812W7R5eDZzSVKXPMQnSeqSASVJ6pIBJUnqkgElSeqSASVJ6pIBJUnqkgElSerS/weph5TRs1E/+QAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -499,7 +529,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAVQUlEQVR4nO3de7QlZX3m8e/DZZCLotCYYNRuMCgXRQwgopJ0ouKo0cEFJo6NIMYQHSOQGTMqsLDBy8AwK0ZHSWwcwRg0E9eIgg4BgrQkyK0bmm4ISxPlMghJYEXUBkUuv/mj3mNvjufa3fR5+/D9rLXXfvdbVW+9v304/VC196lKVSFJUm+2mOsJSJI0EQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDStrMJHkkyaokNyX5UpLtplj3DUnev4nn97wky9scb0mybNzyk9qyVSO1rEpy3Cz2ceLGn7l6E/8OStq8JFlbVTu09nnAyqr6kzme1s8luRg4q6q+2l6/oKrWTLLuz2uZ5T7WazttXjyCkjZvfwf8apKdknwlyeokVyfZFyDJ25J8srXf1I66bkxyRevbJ8m17QhmdZI9Wv9/buvelOSE1reoHRGdneTmJJck2XaCOe0K3Dn2YrJwGpVkyyRnJrmuzeMPWv+uSa4YOWI8JMnpwLat77wNevfUNQNK2kwl2Qp4DbAGOBW4oar2BU4E/mKCTU4BXl1VLwTe0PreCXy8qvYDDgDuTLI/cAxwEPAS4PeTvKitvwfwqaraB7gPOHyC/XwM+EaSi5L8UZKnzqCc3wN+WFUHAge2fe4GvAW4uM3vhcCqqno/8JOq2q+qlsxgbG2mDChp87NtklXACuAO4H8BLwc+D1BV3wB2TrLjuO2uBM5N8vvAlq3vKuDEJO8DFlbVT9pY51fV/VW1FvgycEhb/9aqWtXaK4FF4ydXVecAewFfAhYDVyfZZpqaDgWOanVdA+zMEIbXAcckWQq8oKp+PM04mke2musJSJq1n7Qjip9LkgnWe8wHzFX1ziQHAa8DViXZr6q+kOSa1ndxkncAE4015sGR9iPARKf4qKq7gM8Cn01yE/D8JH8IvAi4q6peO26TAO+pqovHj5Xk19v8Pp/kzKqa6OhQ85BHUNL8cAWwBCDJYuDeqvrR6ApJnlNV11TVKcC9wLOS7A58r6o+AVwA7NvGOizJdkm2B97I8FnXjCT590m2bu1fZjga+n5VHdNOy40PJ4CLgXeNbPfcJNsnWQj8a1WdzXCk+Gtt/YfG1tX85RGUND8sBc5Jshp4ADh6gnXObF+CCHAZcCPwfuDIJA8B/wycVlX/luRc4Nq23Weq6oYki2Y4l0OBjyf5aXv9x1X1z9Ns8xmG04XXt6PBe4DDGE4R/nGb31rgqLb+MmB1kuv9HGr+8mvmkqQueYpPktQlA0qS1CUDSpLUJQNKktQlv8UnABYsWFCLFi2a62lImodWrlx5b1XtMtvtDCgBsGjRIlasWDHX05A0DyW5fX228xSfJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUNoqlS5fO9RQkbSKb6vfdgNLsnXceLFoEW2wxPJ93Hqeeeupcz0rSJrKpft+nDagki5LcNNMBkyxN8t4NmxYkOSHJdrNdL8mJG7rvGexzzySrktyQ5DlJ3rIRx74tyYKNMM7ajTGfX3DeeXDssXD77VA1PB97LP/xcdmZpCeyreZ6AlM4AfhL4IFZrnci8NHZ7CjJllX1yCw2OQz4alV9MMli4C3AFx7H/fXjpJPggXE/kgce4KPA4sWL52JGkuapmZ7i2zLJ2UluTnJJkm3bkcPfJFmZ5O+S7Dl+oyTLk3wsyRVJbklyYJIvJ/nHJB9u62yf5OtJbkxyU5LfTXIc8Azg8iSXt/UOTXJVkuuTfCnJDuPXS3I6sG07ujmvbXdkkmtb36eTbNn61yY5Lck1wMETFZ3klCTXtXkty+C1DKH4jja304FD2vh/lGTLJGe27VYn+YM21uI2xy8Aayaqe2TX72l1rhl7X5PslOQrbcyrk+zb+ndIck5bd3WSw8fVsKC9b6+boL5jk6xIsuKee+6Z2X8Jd9wxYfezZ7a1JM1cVU35ABYBDwP7tdd/DRwJXAbs0foOAr7R2kuB97b2cuCM1j4euAvYFdgGuBPYGTgcOHtkfzu259uABa29ALgC2L69fh9wyvj12uu1I+29gAuBrdvrs4CjWruA35mm9p1G2p8HXj9BjYuBr42sdyxwcmtvA6wAdmvr3Q/s1pZNVfd7Wvs/AZ9p7f8JfLC1fwtY1dpnAH86Ms7Txt4H4JeAa4BXTfdz3n///WtGFi6sGk7uPeZxK8xse0mbPWb5+w6sqGn+DZroMdMjqFuralVrr2QIrZcCX0qyCvg0Q/BM5IL2vAa4uarurqoHge8Bz2r9r0xyRpJDquqHE4zxEmBv4Mq2v6OBhTOY9yuA/YHr2navAHZvyx4B/s802/9mkmuSrGEIhX1msM9DgaPa/q5hCOE92rJrq+rW1p6q7i+357H3GuDlDCFJVX0D2DnJjsArgU+NbVhVP2jNrRn+J+K/VtWlM5j3zHzkI7DduI8Gt9uOx/2DP0lPODMNqAdH2o8AOwH3VdV+I4+9ptn20XHjPApsVVXfYQiRNcB/S3LKBGMEuHRkX3tX1e/NYN4BPjey3fOqamlb9tOa4nOgJE9iOOI6oqpeAJwNPGmG+3zPyD53q6pL2rL7x1aapu6x9+kR1n1OmAn2Va2/Jlj2MEPAvXoGc565JUtg2TJYuBCS4XnZMr64UXciSev/NfMfAbcmeRNA+2zmheszUJJnAA9U1V8C/wP4tbbox8CTW/tq4GVJfrVts12S506wHsBDSbZu7cuAI5I8vW23U5KZHHnBujC6N8kOwBGTrDd+/xcD7xqbQ5LnJtl+/EZT1D2ZK4AlbdvFwL1V9SPgEuAPR8Z9WmsW8HZgzyTvn2bs2VmyBG67DR59dHhesoQPfvCDG3UXkvq1qX7fN+RbfEuAP0tyMsPppL8CblyPcV4AnJnkUeAh4F2tfxlwUZK7q+o3k7wN+GKSbdryk4HvjF+vvV6d5PqqWtLmd0mSLdr47wZun25SVXVfkrMZjnBuA66bZNXVwMNJbgTOBT7OcFru+iQB7mH41t9M657MUuCcJKsZvrF4dOv/MPCpDH8K8AhwKu0UYVU9kuTNwIVJflRVZ02zj/XmH+pKTxyb6vc9w+dXeqI74IADasWKFXM9DUnzUJKVVXXAbLfzShKSpC71/Ie6m0yS8xm+Cj7qfVV18VzMR5JkQAFQVW+c6zlIkh7LU3ySpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLqWq5noO6kCSe4Db53oeM7AAuHeuJ7GJWOv880SpEx5b68Kq2mW2AxhQ2qwkWVFVB8z1PDYFa51/nih1wsap1VN8kqQuGVCSpC4ZUNrcLJvrCWxC1jr/PFHqhI1Qq59BSZK65BGUJKlLBpQkqUsGlLqU5E1Jbk7yaJIDRvpfnGRVe9yY5I0jy/ZPsibJPyX5RJLMzexnZ4paX5VkZatpZZLfGlk232rdOcnlSdYm+eS4beZVrW3ZB1o9307y6pH+zbLWUUlemOSqVseFSZ4ysmzCuidVVT58dPcA9gKeBywHDhjp3w7YqrV3Bf515PW1wMFAgIuA18x1HRtY64uAZ7T284Hvjyybb7VuD7wceCfwyXHbzLda9wZuBLYBdgO+C2y5Odc6ru7rgN9o7bcDH5qu7skeHkGpS1V1S1V9e4L+B6rq4fbySUABJNkVeEpVXVXDb8NfAIdtqvluiClqvaGq7movbwaelGSbeVrr/VX198BPR/vnY63AfwD+qqoerKpbgX8CXrw51zrO84ArWvtS4PDWnrDuqQYyoLTZSXJQkpuBNcA7W2D9CnDnyGp3tr754nDghqp6kPlf66j5WOuvAP9v5PVYTfOl1puAN7T2m4BntfZkdU9qq40+NWmGkvwt8MsTLDqpqr462XZVdQ2wT5K9gM8luYjhlMgvrLpxZrrh1rfWtu0+wBnAoWNdE6w2L2qdaLgJ+jb3WierqetaR01VN8NpvU8kOQW4APjZ2GYTrD9lfQaU5kxVvXIDt78lyf0Mn8/cCTxzZPEzgbsm3HAOrG+tSZ4JnA8cVVXfbd3zstZJzMda72TdUQWsq6nrWkfNoO5DAZI8F3hd65us7kl5ik+blSS7JdmqtRcynO++raruBn6c5CXtm09HAbP9v/WuJHkq8HXgA1V15Vj/fKx1MvO01guAN7fPE3cD9gCunS+1Jnl6e94COBn487ZowrqnHGyuv/Hhw8dED+CNDP/H9SDwL8DFrf+tDF8YWAVcDxw2ss0BDOe/vwt8knallN4fU9R6MnB/q3Xs8fT5WGtbdhvwb8Dats7e87jWk1o932bkm3qba63j6j4e+E57nD5aw2R1T/bwUkeSpC55ik+S1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNK6liS25IsaO1vbYTx3jb+auEbU5ITkmw38vr/tr/nmmqbn9c4Wf9Y7UkWJ/naLOZzbpIjWvszSfZu7bUzHWM2Hq9xn6gMKOlxMvYHxRtLVb10Y473ODmB4YrzAFTVa6vqvg0ddGPUXlXvqKp/2NBxtOkYUNIkkixKckuSs9t9fS5Jsm1btl+Sq5OsTnJ+kqe1/uVJPprkm8Dx7fXHklzRxjowyZeT/GOSD4/s6ysZ7vl0c5JjJ5nP2vZ8WtbdE+v7Sc5p/Ucmubb1fzrJlq3/mCTfaXN62SRj/8bImDckeXI7Wrmi1fcPSf68XR2AJH+WZEWb76mt7zjgGcDlSS5vfaNHQdPWOMXP4heOTNp7eUOS3TPcR+mbbfyLM1wZfPz6y/PYe1B9JMM9xa5O8kutb2GSy9rP9bIkz56mf7cM9z66LsmHZlOTZmCu/+rYh49eH8Ai4GFgv/b6r4EjW3s16+55cxrwp629HDhrZIzlwBmtfTzDtcd2Zbgnzp3Azm3ZTu15W4YrCYz13wYsaO214+a3Y5vH/gz3HroQ2LotO4vhUjm7AncAuwD/DriScfdbautfCLystXdguE7nYobbX+wObMlw64Qjxs13y1bjvuPnO8H8p61x3Jx+ofY2p68BLwVWAs8Gtga+BezS1vld4LOtfe7InJfT7svEcJHS17f2fwdOHnkfjm7ttwNfmab/AobrJAK8e/zPyMeGPTyCkqZ2a1Wtau2VwKIkOwJPrapvtv7PAb8+ss3/HjfGBe15DXBzVd1dw20zvse6i2cel+RG4OrWt8dUk2rXajsP+FhVrQRewRBU1yVZ1V7vDhwELK+qe6rqZxPMbcyVwJ+0o6Cn1rp7bl1bVd+rqkeALzLcVBDgd5JcD9wA7MNwM7rpzKrGKewFLGMImDsYrsf4fODSVvvJPPaiqxP5GUPQQfu5tvbBwBda+/Osq3ey/pcxvC9j/dqIvJq5NLUHR9qPMPzf/3Tun2SMR8eN9yiwVZLFwCuBg6vqgSTLGW7GOJWlwJ1VdU57HeBzVfWB0ZWSHMYMbtlQVacn+TrwWuDqJGNXqx6/bWW40Od7gQOr6gdJzp1uvutZ42Tubtu+iOGINAzBf/Asxnio2mEPw891sn8LJ3vvagbraAN5BCXNUlX9EPhBkkNa11uBb06xyXR2BH7Q/uHeE3jJVCsn+W3gVcBxI92XAUdk3ZWkd8pwtfdrgMVJdk6yNcMN5CYa8zlVtaaqzgBWAHu2RS9un7NswXDq7O+BpzCE8A/bZzevGRnqx8CTN7TGadzHcAuHj7bg+zawS5KDWy1bZ7iH1vr4FvDm1l7CUO9U/VeO69dGZEBJ6+do4Mwkq4H9GD6HWl9/w3AktRr4EMMpsKn8F4YvI4x9IeK0Gr6ddjJwSRvnUmDXGm7hsBS4CvhbhivAT+SEJDe1U3A/AS5q/VcxXJH6JuBW4PyqupHh1N7NwGcZ/pEeswy4aOxLEhtQ45Sq6l+A1wOfYjiSOgI4o81/FcNnVOvjOOCYNs+3MnxuOFX/8cC7k1zHEMLaiLyauaQJtaOT91bVb8/xVPQE5RGUJKlLHkFJkrrkEZQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpS/8fL5YZrfxFHYUAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAVQUlEQVR4nO3de7QlZX3m8e/DZZCLotCYYNRuMCgXRQwgopJ0ouKo0cEFJo6NIMYQHSOQGTMqsLDBy8AwK0ZHSWwcwRg0E9eIgg4BgrQkyK0bmm4ISxPlMghJYEXUBkUuv/mj3mNvjufa3fR5+/D9rLXXfvdbVW+9v304/VC196lKVSFJUm+2mOsJSJI0EQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDStrMJHkkyaokNyX5UpLtplj3DUnev4nn97wky9scb0mybNzyk9qyVSO1rEpy3Cz2ceLGn7l6E/8OStq8JFlbVTu09nnAyqr6kzme1s8luRg4q6q+2l6/oKrWTLLuz2uZ5T7WazttXjyCkjZvfwf8apKdknwlyeokVyfZFyDJ25J8srXf1I66bkxyRevbJ8m17QhmdZI9Wv9/buvelOSE1reoHRGdneTmJJck2XaCOe0K3Dn2YrJwGpVkyyRnJrmuzeMPWv+uSa4YOWI8JMnpwLat77wNevfUNQNK2kwl2Qp4DbAGOBW4oar2BU4E/mKCTU4BXl1VLwTe0PreCXy8qvYDDgDuTLI/cAxwEPAS4PeTvKitvwfwqaraB7gPOHyC/XwM+EaSi5L8UZKnzqCc3wN+WFUHAge2fe4GvAW4uM3vhcCqqno/8JOq2q+qlsxgbG2mDChp87NtklXACuAO4H8BLwc+D1BV3wB2TrLjuO2uBM5N8vvAlq3vKuDEJO8DFlbVT9pY51fV/VW1FvgycEhb/9aqWtXaK4FF4ydXVecAewFfAhYDVyfZZpqaDgWOanVdA+zMEIbXAcckWQq8oKp+PM04mke2musJSJq1n7Qjip9LkgnWe8wHzFX1ziQHAa8DViXZr6q+kOSa1ndxkncAE4015sGR9iPARKf4qKq7gM8Cn01yE/D8JH8IvAi4q6peO26TAO+pqovHj5Xk19v8Pp/kzKqa6OhQ85BHUNL8cAWwBCDJYuDeqvrR6ApJnlNV11TVKcC9wLOS7A58r6o+AVwA7NvGOizJdkm2B97I8FnXjCT590m2bu1fZjga+n5VHdNOy40PJ4CLgXeNbPfcJNsnWQj8a1WdzXCk+Gtt/YfG1tX85RGUND8sBc5Jshp4ADh6gnXObF+CCHAZcCPwfuDIJA8B/wycVlX/luRc4Nq23Weq6oYki2Y4l0OBjyf5aXv9x1X1z9Ns8xmG04XXt6PBe4DDGE4R/nGb31rgqLb+MmB1kuv9HGr+8mvmkqQueYpPktQlA0qS1CUDSpLUJQNKktQlv8UnABYsWFCLFi2a62lImodWrlx5b1XtMtvtDCgBsGjRIlasWDHX05A0DyW5fX228xSfJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUNoqlS5fO9RQkbSKb6vfdgNLsnXceLFoEW2wxPJ93Hqeeeupcz0rSJrKpft+nDagki5LcNNMBkyxN8t4NmxYkOSHJdrNdL8mJG7rvGexzzySrktyQ5DlJ3rIRx74tyYKNMM7ajTGfX3DeeXDssXD77VA1PB97LP/xcdmZpCeyreZ6AlM4AfhL4IFZrnci8NHZ7CjJllX1yCw2OQz4alV9MMli4C3AFx7H/fXjpJPggXE/kgce4KPA4sWL52JGkuapmZ7i2zLJ2UluTnJJkm3bkcPfJFmZ5O+S7Dl+oyTLk3wsyRVJbklyYJIvJ/nHJB9u62yf5OtJbkxyU5LfTXIc8Azg8iSXt/UOTXJVkuuTfCnJDuPXS3I6sG07ujmvbXdkkmtb36eTbNn61yY5Lck1wMETFZ3klCTXtXkty+C1DKH4jja304FD2vh/lGTLJGe27VYn+YM21uI2xy8Aayaqe2TX72l1rhl7X5PslOQrbcyrk+zb+ndIck5bd3WSw8fVsKC9b6+boL5jk6xIsuKee+6Z2X8Jd9wxYfezZ7a1JM1cVU35ABYBDwP7tdd/DRwJXAbs0foOAr7R2kuB97b2cuCM1j4euAvYFdgGuBPYGTgcOHtkfzu259uABa29ALgC2L69fh9wyvj12uu1I+29gAuBrdvrs4CjWruA35mm9p1G2p8HXj9BjYuBr42sdyxwcmtvA6wAdmvr3Q/s1pZNVfd7Wvs/AZ9p7f8JfLC1fwtY1dpnAH86Ms7Txt4H4JeAa4BXTfdz3n///WtGFi6sGk7uPeZxK8xse0mbPWb5+w6sqGn+DZroMdMjqFuralVrr2QIrZcCX0qyCvg0Q/BM5IL2vAa4uarurqoHge8Bz2r9r0xyRpJDquqHE4zxEmBv4Mq2v6OBhTOY9yuA/YHr2navAHZvyx4B/s802/9mkmuSrGEIhX1msM9DgaPa/q5hCOE92rJrq+rW1p6q7i+357H3GuDlDCFJVX0D2DnJjsArgU+NbVhVP2jNrRn+J+K/VtWlM5j3zHzkI7DduI8Gt9uOx/2DP0lPODMNqAdH2o8AOwH3VdV+I4+9ptn20XHjPApsVVXfYQiRNcB/S3LKBGMEuHRkX3tX1e/NYN4BPjey3fOqamlb9tOa4nOgJE9iOOI6oqpeAJwNPGmG+3zPyD53q6pL2rL7x1aapu6x9+kR1n1OmAn2Va2/Jlj2MEPAvXoGc565JUtg2TJYuBCS4XnZMr64UXciSev/NfMfAbcmeRNA+2zmheszUJJnAA9U1V8C/wP4tbbox8CTW/tq4GVJfrVts12S506wHsBDSbZu7cuAI5I8vW23U5KZHHnBujC6N8kOwBGTrDd+/xcD7xqbQ5LnJtl+/EZT1D2ZK4AlbdvFwL1V9SPgEuAPR8Z9WmsW8HZgzyTvn2bs2VmyBG67DR59dHhesoQPfvCDG3UXkvq1qX7fN+RbfEuAP0tyMsPppL8CblyPcV4AnJnkUeAh4F2tfxlwUZK7q+o3k7wN+GKSbdryk4HvjF+vvV6d5PqqWtLmd0mSLdr47wZun25SVXVfkrMZjnBuA66bZNXVwMNJbgTOBT7OcFru+iQB7mH41t9M657MUuCcJKsZvrF4dOv/MPCpDH8K8AhwKu0UYVU9kuTNwIVJflRVZ02zj/XmH+pKTxyb6vc9w+dXeqI74IADasWKFXM9DUnzUJKVVXXAbLfzShKSpC71/Ie6m0yS8xm+Cj7qfVV18VzMR5JkQAFQVW+c6zlIkh7LU3ySpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLqWq5noO6kCSe4Db53oeM7AAuHeuJ7GJWOv880SpEx5b68Kq2mW2AxhQ2qwkWVFVB8z1PDYFa51/nih1wsap1VN8kqQuGVCSpC4ZUNrcLJvrCWxC1jr/PFHqhI1Qq59BSZK65BGUJKlLBpQkqUsGlLqU5E1Jbk7yaJIDRvpfnGRVe9yY5I0jy/ZPsibJPyX5RJLMzexnZ4paX5VkZatpZZLfGlk232rdOcnlSdYm+eS4beZVrW3ZB1o9307y6pH+zbLWUUlemOSqVseFSZ4ysmzCuidVVT58dPcA9gKeBywHDhjp3w7YqrV3Bf515PW1wMFAgIuA18x1HRtY64uAZ7T284Hvjyybb7VuD7wceCfwyXHbzLda9wZuBLYBdgO+C2y5Odc6ru7rgN9o7bcDH5qu7skeHkGpS1V1S1V9e4L+B6rq4fbySUABJNkVeEpVXVXDb8NfAIdtqvluiClqvaGq7movbwaelGSbeVrr/VX198BPR/vnY63AfwD+qqoerKpbgX8CXrw51zrO84ArWvtS4PDWnrDuqQYyoLTZSXJQkpuBNcA7W2D9CnDnyGp3tr754nDghqp6kPlf66j5WOuvAP9v5PVYTfOl1puAN7T2m4BntfZkdU9qq40+NWmGkvwt8MsTLDqpqr462XZVdQ2wT5K9gM8luYjhlMgvrLpxZrrh1rfWtu0+wBnAoWNdE6w2L2qdaLgJ+jb3WierqetaR01VN8NpvU8kOQW4APjZ2GYTrD9lfQaU5kxVvXIDt78lyf0Mn8/cCTxzZPEzgbsm3HAOrG+tSZ4JnA8cVVXfbd3zstZJzMda72TdUQWsq6nrWkfNoO5DAZI8F3hd65us7kl5ik+blSS7JdmqtRcynO++raruBn6c5CXtm09HAbP9v/WuJHkq8HXgA1V15Vj/fKx1MvO01guAN7fPE3cD9gCunS+1Jnl6e94COBn487ZowrqnHGyuv/Hhw8dED+CNDP/H9SDwL8DFrf+tDF8YWAVcDxw2ss0BDOe/vwt8knallN4fU9R6MnB/q3Xs8fT5WGtbdhvwb8Dats7e87jWk1o932bkm3qba63j6j4e+E57nD5aw2R1T/bwUkeSpC55ik+S1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNK6liS25IsaO1vbYTx3jb+auEbU5ITkmw38vr/tr/nmmqbn9c4Wf9Y7UkWJ/naLOZzbpIjWvszSfZu7bUzHWM2Hq9xn6gMKOlxMvYHxRtLVb10Y473ODmB4YrzAFTVa6vqvg0ddGPUXlXvqKp/2NBxtOkYUNIkkixKckuSs9t9fS5Jsm1btl+Sq5OsTnJ+kqe1/uVJPprkm8Dx7fXHklzRxjowyZeT/GOSD4/s6ysZ7vl0c5JjJ5nP2vZ8WtbdE+v7Sc5p/Ucmubb1fzrJlq3/mCTfaXN62SRj/8bImDckeXI7Wrmi1fcPSf68XR2AJH+WZEWb76mt7zjgGcDlSS5vfaNHQdPWOMXP4heOTNp7eUOS3TPcR+mbbfyLM1wZfPz6y/PYe1B9JMM9xa5O8kutb2GSy9rP9bIkz56mf7cM9z66LsmHZlOTZmCu/+rYh49eH8Ai4GFgv/b6r4EjW3s16+55cxrwp629HDhrZIzlwBmtfTzDtcd2Zbgnzp3Azm3ZTu15W4YrCYz13wYsaO214+a3Y5vH/gz3HroQ2LotO4vhUjm7AncAuwD/DriScfdbautfCLystXdguE7nYobbX+wObMlw64Qjxs13y1bjvuPnO8H8p61x3Jx+ofY2p68BLwVWAs8Gtga+BezS1vld4LOtfe7InJfT7svEcJHS17f2fwdOHnkfjm7ttwNfmab/AobrJAK8e/zPyMeGPTyCkqZ2a1Wtau2VwKIkOwJPrapvtv7PAb8+ss3/HjfGBe15DXBzVd1dw20zvse6i2cel+RG4OrWt8dUk2rXajsP+FhVrQRewRBU1yVZ1V7vDhwELK+qe6rqZxPMbcyVwJ+0o6Cn1rp7bl1bVd+rqkeALzLcVBDgd5JcD9wA7MNwM7rpzKrGKewFLGMImDsYrsf4fODSVvvJPPaiqxP5GUPQQfu5tvbBwBda+/Osq3ey/pcxvC9j/dqIvJq5NLUHR9qPMPzf/3Tun2SMR8eN9yiwVZLFwCuBg6vqgSTLGW7GOJWlwJ1VdU57HeBzVfWB0ZWSHMYMbtlQVacn+TrwWuDqJGNXqx6/bWW40Od7gQOr6gdJzp1uvutZ42Tubtu+iOGINAzBf/Asxnio2mEPw891sn8LJ3vvagbraAN5BCXNUlX9EPhBkkNa11uBb06xyXR2BH7Q/uHeE3jJVCsn+W3gVcBxI92XAUdk3ZWkd8pwtfdrgMVJdk6yNcMN5CYa8zlVtaaqzgBWAHu2RS9un7NswXDq7O+BpzCE8A/bZzevGRnqx8CTN7TGadzHcAuHj7bg+zawS5KDWy1bZ7iH1vr4FvDm1l7CUO9U/VeO69dGZEBJ6+do4Mwkq4H9GD6HWl9/w3AktRr4EMMpsKn8F4YvI4x9IeK0Gr6ddjJwSRvnUmDXGm7hsBS4CvhbhivAT+SEJDe1U3A/AS5q/VcxXJH6JuBW4PyqupHh1N7NwGcZ/pEeswy4aOxLEhtQ45Sq6l+A1wOfYjiSOgI4o81/FcNnVOvjOOCYNs+3MnxuOFX/8cC7k1zHEMLaiLyauaQJtaOT91bVb8/xVPQE5RGUJKlLHkFJkrrkEZQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpS/8fL5YZrfxFHYUAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -987,6 +1017,10 @@ "metadata": {}, "source": [ "### References\n", + "\n", + "Bayona, J.A., Savran, W.H., Rhoades, D.A. and Werner, M.J., 2022. Prospective evaluation of multiplicative hybrid earthquake forecasting models in California. Geophysical Journal International, 229(3), pp.1736-1753.\n", + "doi: https://doi.org/10.1093/gji/ggac018\n", + "\n", "Field, E. H., K. R. Milner, J. L. Hardebeck, M. T. Page, N. J. van der Elst, T. H. Jordan, A. J. Michael, B. E. Shaw, and M. J. Werner (2017). A spatiotemporal clustering model for the third Uniform California Earthquake Rupture Forecast (UCERF3-ETAS): Toward an operational earthquake forecast, Bull. Seismol. Soc. Am. 107, 1049–1081.\n", "\n", "Harte, D., and D. Vere-Jones (2005), The entropy score and its uses in earthquake forecasting, Pure Appl. Geophys. 162 , 6-7, 1229-1253, DOI: 10.1007/\n", @@ -1000,6 +1034,16 @@ "Imoto, M., and D.A. Rhoades (2010), Seismicity models of moderate earthquakes in Kanto, Japan utilizing multiple predictive parameters, Pure Appl. Geophys.\n", "167, 6-7, 831-843, DOI: 10.1007/s00024-010-0066-4.\n", "\n", + "Kato, M., 2019. On the apparently inappropriate use of multiple hypothesis testing in earthquake prediction studies. Seismological Research Letters, 90(3), pp.1330-1334. doi: \n", + "https://doi.org/10.1785/0220180378\n", + "\n", + "\n", + "Lombardi, A.M. and Marzocchi, W., 2010. The assumption of Poisson seismic-rate variability in CSEP/RELM experiments. Bulletin of the Seismological Society of America, 100(5A), pp.2293-2300, doi: \n", + "https://doi.org/10.1785/0120100012\n", + "\n", + "Nandan, S., Ouillon, G., Sornette, D. and Wiemer, S., 2019. Forecasting the full distribution of earthquake numbers is fair, robust, and better. Seismological Research Letters, 90(4), pp.1650-1659. doi: \n", + "https://doi.org/10.1785/0220180374\n", + "\n", "Rhoades, D.A, D., Schorlemmer, M.C.Gerstenberger, A. Christophersen, J. D. Zechar & M. Imoto (2011) Efficient testing of earthquake forecasting models, Acta Geophysica 59\n", "\n", "Savran, W., M. J. Werner, W. Marzocchi, D. Rhoades, D. D. Jackson, K. R. Milner, E. H. Field, and A. J. Michael (2020). Pseudoprospective evaluation of UCERF3-ETAS forecasts during the 2019 Ridgecrest Sequence, Bulletin of the Seismological Society of America.\n", @@ -1014,8 +1058,12 @@ "\n", "M. Taroni, W. Marzocchi, D. Schorlemmer, M. J. Werner, S. Wiemer, J. D. Zechar, L. Heiniger, F. Euchner; Prospective CSEP Evaluation of 1‐Day, 3‐Month, and 5‐Yr Earthquake Forecasts for Italy. Seismological Research Letters 2018;; 89 (4): 1251–1261. doi: https://doi.org/10.1785/0220180031\n", "\n", + "\n", "Werner, M. J., A. Helmstetter, D. D. Jackson, and Y. Y. Kagan (2011a). High-Resolution Long-Term and Short-Term Earthquake Forecasts for California, Bulletin of the Seismological Society of America 101 1630-1648\n", "\n", + "Werner, M.J. and Sornette, D., 2008. Magnitude uncertainties impact seismic rate estimates, forecasts, and predictability experiments. Journal of Geophysical Research: Solid Earth, 113(B8). doi: https://doi.org/10.1029/2007JB005427\n", + "\n", + "\n", "Werner, M.J. J.D. Zechar, W. Marzocchi, and S. Wiemer (2011b), Retrospective evaluation of the five-year and ten-year CSEP-Italy earthquake forecasts, Annals of Geophysics 53, no. 3, 11–30, doi:10.4401/ag-4840.\n", "\n", "Zechar, 2011: Evaluating earthquake predictions and earthquake forecasts: a guide for students and new researchers, CORSSA (http://www.corssa.org/en/articles/theme_6/)\n", @@ -1025,6 +1073,14 @@ "Zechar, J.D., D. Schorlemmer, M. Liukis, J. Yu, F. Euchner, P.J. Maechling, and T.H. Jordan (2010b), The Collaboratory for the Study of Earthquake Predictability perspective on computational earthquake science, Concurr. Comp-Pract. E., doi:10.1002/cpe.1519.\n", "\n" ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fifty-wright", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -1043,7 +1099,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.8" + "version": "3.8.6" } }, "nbformat": 4, diff --git a/requirements.txt b/requirements.txt index e5f26286..6a95af5b 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,4 +1,4 @@ -numpy<=1.21.5 +numpy scipy pandas matplotlib @@ -9,6 +9,7 @@ python-dateutil pytest vcrpy pytest-cov +shapely sphinx sphinx-gallery sphinx-rtd-theme diff --git a/requirements.yml b/requirements.yml index 75a1c52a..14caee7e 100644 --- a/requirements.yml +++ b/requirements.yml @@ -4,7 +4,7 @@ channels: - defaults dependencies: - python>=3.7 - - numpy<=1.21.5 + - numpy - pandas - scipy - matplotlib @@ -13,6 +13,7 @@ dependencies: - python-dateutil - pytest - cartopy + - shapely - sphinx - sphinx-gallery - sphinx_rtd_theme diff --git a/setup.py b/setup.py index ae8d3fa3..5390de9f 100644 --- a/setup.py +++ b/setup.py @@ -12,6 +12,7 @@ def get_version(): raise RuntimeError("Unable to find version string in %s." % (VERSIONFILE,)) return verstr + with open("README.md",'r') as fh: long_description = fh.read() @@ -25,7 +26,7 @@ def get_version(): description='Python tools from the Collaboratory for the Study of Earthquake Predictability', long_description=long_description, long_description_content_type='text/markdown', - install_requires = [ + install_requires=[ 'numpy', 'scipy', 'pandas', @@ -34,7 +35,8 @@ def get_version(): 'obspy', 'pyproj', 'python-dateutil', - 'mercantile' + 'mercantile', + 'shapely' ], extras_require = { 'test': [ diff --git a/tests/artifacts/BSI/vcr_search.yaml b/tests/artifacts/BSI/vcr_search.yaml new file mode 100644 index 00000000..76053c90 --- /dev/null +++ b/tests/artifacts/BSI/vcr_search.yaml @@ -0,0 +1,46 @@ +interactions: +- request: + body: null + headers: + Connection: + - close + Host: + - webservices.rm.ingv.it + User-Agent: + - Python-urllib/3.10 + method: GET + uri: https://webservices.rm.ingv.it/fdsnws/event/1/query?format=geojson&starttime=2009-04-06T00%3A00%3A00&endtime=2009-04-07T00%3A00%3A00&limit=15000&maxdepth=1000&maxmagnitude=10.0&mindepth=-100&minmagnitude=5.5&offset=0&orderby=time-asc&eventtype=earthquake + response: + body: + string: '{"type":"FeatureCollection","features":[{"type":"Feature","properties":{"eventId":1895389,"originId":755599,"time":"2009-04-06T01:32:40.400000","author":"BULLETIN-SISPICK","magType":"Mw","mag":6.1,"magAuthor":"--","type":"earthquake","place":"2 + km SW L''Aquila (AQ)","version":1000,"geojson_creationTime":"2022-09-21T12:18:03"},"geometry":{"type":"Point","coordinates":[13.38,42.342,8.3]}}]}' + headers: + Access-Control-Allow-Origin: + - '*' + Cache-Control: + - public, max-age=60 + Connection: + - close + Content-Type: + - application/json + Date: + - Wed, 21 Sep 2022 12:18:03 GMT + Server: + - nginx + Transfer-Encoding: + - chunked + Vary: + - Accept-Encoding + - Accept-Encoding + X-Cache-Status: + - EXPIRED + X-RateLimit-Limit: + - '10' + X-RateLimit-Reset: + - '1' + X-UA-Compatible: + - IE=Edge + status: + code: 200 + message: OK +version: 1 diff --git a/tests/artifacts/BSI/vcr_summary.yaml b/tests/artifacts/BSI/vcr_summary.yaml new file mode 100644 index 00000000..9349aa3d --- /dev/null +++ b/tests/artifacts/BSI/vcr_summary.yaml @@ -0,0 +1,46 @@ +interactions: +- request: + body: null + headers: + Connection: + - close + Host: + - webservices.rm.ingv.it + User-Agent: + - Python-urllib/3.10 + method: GET + uri: https://webservices.rm.ingv.it/fdsnws/event/1/query?format=geojson&starttime=2009-04-06T00%3A00%3A00&endtime=2009-04-07T00%3A00%3A00&limit=15000&maxdepth=1000&maxmagnitude=10.0&mindepth=-100&minmagnitude=5.5&offset=0&orderby=time-asc&eventtype=earthquake + response: + body: + string: '{"type":"FeatureCollection","features":[{"type":"Feature","properties":{"eventId":1895389,"originId":755599,"time":"2009-04-06T01:32:40.400000","author":"BULLETIN-SISPICK","magType":"Mw","mag":6.1,"magAuthor":"--","type":"earthquake","place":"2 + km SW L''Aquila (AQ)","version":1000,"geojson_creationTime":"2022-09-21T12:14:55"},"geometry":{"type":"Point","coordinates":[13.38,42.342,8.3]}}]}' + headers: + Access-Control-Allow-Origin: + - '*' + Cache-Control: + - public, max-age=60 + Connection: + - close + Content-Type: + - application/json + Date: + - Wed, 21 Sep 2022 12:14:55 GMT + Server: + - nginx + Transfer-Encoding: + - chunked + Vary: + - Accept-Encoding + - Accept-Encoding + X-Cache-Status: + - MISS + X-RateLimit-Limit: + - '10' + X-RateLimit-Reset: + - '1' + X-UA-Compatible: + - IE=Edge + status: + code: 200 + message: OK +version: 1 diff --git a/tests/artifacts/regions/NZTestArea.dat b/tests/artifacts/regions/NZTestArea.dat new file mode 100644 index 00000000..c4e876b9 --- /dev/null +++ b/tests/artifacts/regions/NZTestArea.dat @@ -0,0 +1,6343 @@ +165.75 -46.15 +165.85 -46.25 +165.85 -46.15 +165.85 -46.05 +165.85 -45.95 +165.85 -45.85 +165.85 -45.75 +165.85 -45.65 +165.85 -45.55 +165.95 -46.35 +165.95 -46.25 +165.95 -46.15 +165.95 -46.05 +165.95 -45.95 +165.95 -45.85 +165.95 -45.75 +165.95 -45.65 +165.95 -45.55 +165.95 -45.45 +166.05 -46.45 +166.05 -46.35 +166.05 -46.25 +166.05 -46.15 +166.05 -46.05 +166.05 -45.95 +166.05 -45.85 +166.05 -45.75 +166.05 -45.65 +166.05 -45.55 +166.05 -45.45 +166.05 -45.35 +166.15 -46.55 +166.15 -46.45 +166.15 -46.35 +166.15 -46.25 +166.15 -46.15 +166.15 -46.05 +166.15 -45.95 +166.15 -45.85 +166.15 -45.75 +166.15 -45.65 +166.15 -45.55 +166.15 -45.45 +166.15 -45.35 +166.15 -45.25 +166.25 -46.65 +166.25 -46.55 +166.25 -46.45 +166.25 -46.35 +166.25 -46.25 +166.25 -46.15 +166.25 -46.05 +166.25 -45.95 +166.25 -45.85 +166.25 -45.75 +166.25 -45.65 +166.25 -45.55 +166.25 -45.45 +166.25 -45.35 +166.25 -45.25 +166.25 -45.15 +166.35 -46.85 +166.35 -46.75 +166.35 -46.65 +166.35 -46.55 +166.35 -46.45 +166.35 -46.35 +166.35 -46.25 +166.35 -46.15 +166.35 -46.05 +166.35 -45.95 +166.35 -45.85 +166.35 -45.75 +166.35 -45.65 +166.35 -45.55 +166.35 -45.45 +166.35 -45.35 +166.35 -45.25 +166.35 -45.15 +166.35 -45.05 +166.45 -46.95 +166.45 -46.85 +166.45 -46.75 +166.45 -46.65 +166.45 -46.55 +166.45 -46.45 +166.45 -46.35 +166.45 -46.25 +166.45 -46.15 +166.45 -46.05 +166.45 -45.95 +166.45 -45.85 +166.45 -45.75 +166.45 -45.65 +166.45 -45.55 +166.45 -45.45 +166.45 -45.35 +166.45 -45.25 +166.45 -45.15 +166.45 -45.05 +166.45 -44.95 +166.55 -47.05 +166.55 -46.95 +166.55 -46.85 +166.55 -46.75 +166.55 -46.65 +166.55 -46.55 +166.55 -46.45 +166.55 -46.35 +166.55 -46.25 +166.55 -46.15 +166.55 -46.05 +166.55 -45.95 +166.55 -45.85 +166.55 -45.75 +166.55 -45.65 +166.55 -45.55 +166.55 -45.45 +166.55 -45.35 +166.55 -45.25 +166.55 -45.15 +166.55 -45.05 +166.55 -44.95 +166.55 -44.85 +166.65 -47.15 +166.65 -47.05 +166.65 -46.95 +166.65 -46.85 +166.65 -46.75 +166.65 -46.65 +166.65 -46.55 +166.65 -46.45 +166.65 -46.35 +166.65 -46.25 +166.65 -46.15 +166.65 -46.05 +166.65 -45.95 +166.65 -45.85 +166.65 -45.75 +166.65 -45.65 +166.65 -45.55 +166.65 -45.45 +166.65 -45.35 +166.65 -45.25 +166.65 -45.15 +166.65 -45.05 +166.65 -44.95 +166.65 -44.85 +166.65 -44.75 +166.75 -47.25 +166.75 -47.15 +166.75 -47.05 +166.75 -46.95 +166.75 -46.85 +166.75 -46.75 +166.75 -46.65 +166.75 -46.55 +166.75 -46.45 +166.75 -46.35 +166.75 -46.25 +166.75 -46.15 +166.75 -46.05 +166.75 -45.95 +166.75 -45.85 +166.75 -45.75 +166.75 -45.65 +166.75 -45.55 +166.75 -45.45 +166.75 -45.35 +166.75 -45.25 +166.75 -45.15 +166.75 -45.05 +166.75 -44.95 +166.75 -44.85 +166.75 -44.75 +166.75 -44.65 +166.85 -47.35 +166.85 -47.25 +166.85 -47.15 +166.85 -47.05 +166.85 -46.95 +166.85 -46.85 +166.85 -46.75 +166.85 -46.65 +166.85 -46.55 +166.85 -46.45 +166.85 -46.35 +166.85 -46.25 +166.85 -46.15 +166.85 -46.05 +166.85 -45.95 +166.85 -45.85 +166.85 -45.75 +166.85 -45.65 +166.85 -45.55 +166.85 -45.45 +166.85 -45.35 +166.85 -45.25 +166.85 -45.15 +166.85 -45.05 +166.85 -44.95 +166.85 -44.85 +166.85 -44.75 +166.85 -44.65 +166.85 -44.55 +166.95 -47.55 +166.95 -47.45 +166.95 -47.35 +166.95 -47.25 +166.95 -47.15 +166.95 -47.05 +166.95 -46.95 +166.95 -46.85 +166.95 -46.75 +166.95 -46.65 +166.95 -46.55 +166.95 -46.45 +166.95 -46.35 +166.95 -46.25 +166.95 -46.15 +166.95 -46.05 +166.95 -45.95 +166.95 -45.85 +166.95 -45.75 +166.95 -45.65 +166.95 -45.55 +166.95 -45.45 +166.95 -45.35 +166.95 -45.25 +166.95 -45.15 +166.95 -45.05 +166.95 -44.95 +166.95 -44.85 +166.95 -44.75 +166.95 -44.65 +166.95 -44.55 +167.05 -47.55 +167.05 -47.45 +167.05 -47.35 +167.05 -47.25 +167.05 -47.15 +167.05 -47.05 +167.05 -46.95 +167.05 -46.85 +167.05 -46.75 +167.05 -46.65 +167.05 -46.55 +167.05 -46.45 +167.05 -46.35 +167.05 -46.25 +167.05 -46.15 +167.05 -46.05 +167.05 -45.95 +167.05 -45.85 +167.05 -45.75 +167.05 -45.65 +167.05 -45.55 +167.05 -45.45 +167.05 -45.35 +167.05 -45.25 +167.05 -45.15 +167.05 -45.05 +167.05 -44.95 +167.05 -44.85 +167.05 -44.75 +167.05 -44.65 +167.05 -44.55 +167.05 -44.45 +167.15 -47.65 +167.15 -47.55 +167.15 -47.45 +167.15 -47.35 +167.15 -47.25 +167.15 -47.15 +167.15 -47.05 +167.15 -46.95 +167.15 -46.85 +167.15 -46.75 +167.15 -46.65 +167.15 -46.55 +167.15 -46.45 +167.15 -46.35 +167.15 -46.25 +167.15 -46.15 +167.15 -46.05 +167.15 -45.95 +167.15 -45.85 +167.15 -45.75 +167.15 -45.65 +167.15 -45.55 +167.15 -45.45 +167.15 -45.35 +167.15 -45.25 +167.15 -45.15 +167.15 -45.05 +167.15 -44.95 +167.15 -44.85 +167.15 -44.75 +167.15 -44.65 +167.15 -44.55 +167.15 -44.45 +167.15 -44.35 +167.25 -47.65 +167.25 -47.55 +167.25 -47.45 +167.25 -47.35 +167.25 -47.25 +167.25 -47.15 +167.25 -47.05 +167.25 -46.95 +167.25 -46.85 +167.25 -46.75 +167.25 -46.65 +167.25 -46.55 +167.25 -46.45 +167.25 -46.35 +167.25 -46.25 +167.25 -46.15 +167.25 -46.05 +167.25 -45.95 +167.25 -45.85 +167.25 -45.75 +167.25 -45.65 +167.25 -45.55 +167.25 -45.45 +167.25 -45.35 +167.25 -45.25 +167.25 -45.15 +167.25 -45.05 +167.25 -44.95 +167.25 -44.85 +167.25 -44.75 +167.25 -44.65 +167.25 -44.55 +167.25 -44.45 +167.25 -44.35 +167.25 -44.25 +167.35 -47.75 +167.35 -47.65 +167.35 -47.55 +167.35 -47.45 +167.35 -47.35 +167.35 -47.25 +167.35 -47.15 +167.35 -47.05 +167.35 -46.95 +167.35 -46.85 +167.35 -46.75 +167.35 -46.65 +167.35 -46.55 +167.35 -46.45 +167.35 -46.35 +167.35 -46.25 +167.35 -46.15 +167.35 -46.05 +167.35 -45.95 +167.35 -45.85 +167.35 -45.75 +167.35 -45.65 +167.35 -45.55 +167.35 -45.45 +167.35 -45.35 +167.35 -45.25 +167.35 -45.15 +167.35 -45.05 +167.35 -44.95 +167.35 -44.85 +167.35 -44.75 +167.35 -44.65 +167.35 -44.55 +167.35 -44.45 +167.35 -44.35 +167.35 -44.25 +167.35 -44.15 +167.45 -47.75 +167.45 -47.65 +167.45 -47.55 +167.45 -47.45 +167.45 -47.35 +167.45 -47.25 +167.45 -47.15 +167.45 -47.05 +167.45 -46.95 +167.45 -46.85 +167.45 -46.75 +167.45 -46.65 +167.45 -46.55 +167.45 -46.45 +167.45 -46.35 +167.45 -46.25 +167.45 -46.15 +167.45 -46.05 +167.45 -45.95 +167.45 -45.85 +167.45 -45.75 +167.45 -45.65 +167.45 -45.55 +167.45 -45.45 +167.45 -45.35 +167.45 -45.25 +167.45 -45.15 +167.45 -45.05 +167.45 -44.95 +167.45 -44.85 +167.45 -44.75 +167.45 -44.65 +167.45 -44.55 +167.45 -44.45 +167.45 -44.35 +167.45 -44.25 +167.45 -44.15 +167.45 -44.05 +167.55 -47.75 +167.55 -47.65 +167.55 -47.55 +167.55 -47.45 +167.55 -47.35 +167.55 -47.25 +167.55 -47.15 +167.55 -47.05 +167.55 -46.95 +167.55 -46.85 +167.55 -46.75 +167.55 -46.65 +167.55 -46.55 +167.55 -46.45 +167.55 -46.35 +167.55 -46.25 +167.55 -46.15 +167.55 -46.05 +167.55 -45.95 +167.55 -45.85 +167.55 -45.75 +167.55 -45.65 +167.55 -45.55 +167.55 -45.45 +167.55 -45.35 +167.55 -45.25 +167.55 -45.15 +167.55 -45.05 +167.55 -44.95 +167.55 -44.85 +167.55 -44.75 +167.55 -44.65 +167.55 -44.55 +167.55 -44.45 +167.55 -44.35 +167.55 -44.25 +167.55 -44.15 +167.55 -44.05 +167.55 -43.95 +167.65 -47.75 +167.65 -47.65 +167.65 -47.55 +167.65 -47.45 +167.65 -47.35 +167.65 -47.25 +167.65 -47.15 +167.65 -47.05 +167.65 -46.95 +167.65 -46.85 +167.65 -46.75 +167.65 -46.65 +167.65 -46.55 +167.65 -46.45 +167.65 -46.35 +167.65 -46.25 +167.65 -46.15 +167.65 -46.05 +167.65 -45.95 +167.65 -45.85 +167.65 -45.75 +167.65 -45.65 +167.65 -45.55 +167.65 -45.45 +167.65 -45.35 +167.65 -45.25 +167.65 -45.15 +167.65 -45.05 +167.65 -44.95 +167.65 -44.85 +167.65 -44.75 +167.65 -44.65 +167.65 -44.55 +167.65 -44.45 +167.65 -44.35 +167.65 -44.25 +167.65 -44.15 +167.65 -44.05 +167.65 -43.95 +167.65 -43.85 +167.75 -47.75 +167.75 -47.65 +167.75 -47.55 +167.75 -47.45 +167.75 -47.35 +167.75 -47.25 +167.75 -47.15 +167.75 -47.05 +167.75 -46.95 +167.75 -46.85 +167.75 -46.75 +167.75 -46.65 +167.75 -46.55 +167.75 -46.45 +167.75 -46.35 +167.75 -46.25 +167.75 -46.15 +167.75 -46.05 +167.75 -45.95 +167.75 -45.85 +167.75 -45.75 +167.75 -45.65 +167.75 -45.55 +167.75 -45.45 +167.75 -45.35 +167.75 -45.25 +167.75 -45.15 +167.75 -45.05 +167.75 -44.95 +167.75 -44.85 +167.75 -44.75 +167.75 -44.65 +167.75 -44.55 +167.75 -44.45 +167.75 -44.35 +167.75 -44.25 +167.75 -44.15 +167.75 -44.05 +167.75 -43.95 +167.75 -43.85 +167.75 -43.75 +167.85 -47.75 +167.85 -47.65 +167.85 -47.55 +167.85 -47.45 +167.85 -47.35 +167.85 -47.25 +167.85 -47.15 +167.85 -47.05 +167.85 -46.95 +167.85 -46.85 +167.85 -46.75 +167.85 -46.65 +167.85 -46.55 +167.85 -46.45 +167.85 -46.35 +167.85 -46.25 +167.85 -46.15 +167.85 -46.05 +167.85 -45.95 +167.85 -45.85 +167.85 -45.75 +167.85 -45.65 +167.85 -45.55 +167.85 -45.45 +167.85 -45.35 +167.85 -45.25 +167.85 -45.15 +167.85 -45.05 +167.85 -44.95 +167.85 -44.85 +167.85 -44.75 +167.85 -44.65 +167.85 -44.55 +167.85 -44.45 +167.85 -44.35 +167.85 -44.25 +167.85 -44.15 +167.85 -44.05 +167.85 -43.95 +167.85 -43.85 +167.85 -43.75 +167.85 -43.65 +167.95 -47.65 +167.95 -47.55 +167.95 -47.45 +167.95 -47.35 +167.95 -47.25 +167.95 -47.15 +167.95 -47.05 +167.95 -46.95 +167.95 -46.85 +167.95 -46.75 +167.95 -46.65 +167.95 -46.55 +167.95 -46.45 +167.95 -46.35 +167.95 -46.25 +167.95 -46.15 +167.95 -46.05 +167.95 -45.95 +167.95 -45.85 +167.95 -45.75 +167.95 -45.65 +167.95 -45.55 +167.95 -45.45 +167.95 -45.35 +167.95 -45.25 +167.95 -45.15 +167.95 -45.05 +167.95 -44.95 +167.95 -44.85 +167.95 -44.75 +167.95 -44.65 +167.95 -44.55 +167.95 -44.45 +167.95 -44.35 +167.95 -44.25 +167.95 -44.15 +167.95 -44.05 +167.95 -43.95 +167.95 -43.85 +167.95 -43.75 +167.95 -43.65 +168.05 -47.65 +168.05 -47.55 +168.05 -47.45 +168.05 -47.35 +168.05 -47.25 +168.05 -47.15 +168.05 -47.05 +168.05 -46.95 +168.05 -46.85 +168.05 -46.75 +168.05 -46.65 +168.05 -46.55 +168.05 -46.45 +168.05 -46.35 +168.05 -46.25 +168.05 -46.15 +168.05 -46.05 +168.05 -45.95 +168.05 -45.85 +168.05 -45.75 +168.05 -45.65 +168.05 -45.55 +168.05 -45.45 +168.05 -45.35 +168.05 -45.25 +168.05 -45.15 +168.05 -45.05 +168.05 -44.95 +168.05 -44.85 +168.05 -44.75 +168.05 -44.65 +168.05 -44.55 +168.05 -44.45 +168.05 -44.35 +168.05 -44.25 +168.05 -44.15 +168.05 -44.05 +168.05 -43.95 +168.05 -43.85 +168.05 -43.75 +168.05 -43.65 +168.05 -43.55 +168.15 -47.65 +168.15 -47.55 +168.15 -47.45 +168.15 -47.35 +168.15 -47.25 +168.15 -47.15 +168.15 -47.05 +168.15 -46.95 +168.15 -46.85 +168.15 -46.75 +168.15 -46.65 +168.15 -46.55 +168.15 -46.45 +168.15 -46.35 +168.15 -46.25 +168.15 -46.15 +168.15 -46.05 +168.15 -45.95 +168.15 -45.85 +168.15 -45.75 +168.15 -45.65 +168.15 -45.55 +168.15 -45.45 +168.15 -45.35 +168.15 -45.25 +168.15 -45.15 +168.15 -45.05 +168.15 -44.95 +168.15 -44.85 +168.15 -44.75 +168.15 -44.65 +168.15 -44.55 +168.15 -44.45 +168.15 -44.35 +168.15 -44.25 +168.15 -44.15 +168.15 -44.05 +168.15 -43.95 +168.15 -43.85 +168.15 -43.75 +168.15 -43.65 +168.15 -43.55 +168.15 -43.45 +168.25 -47.55 +168.25 -47.45 +168.25 -47.35 +168.25 -47.25 +168.25 -47.15 +168.25 -47.05 +168.25 -46.95 +168.25 -46.85 +168.25 -46.75 +168.25 -46.65 +168.25 -46.55 +168.25 -46.45 +168.25 -46.35 +168.25 -46.25 +168.25 -46.15 +168.25 -46.05 +168.25 -45.95 +168.25 -45.85 +168.25 -45.75 +168.25 -45.65 +168.25 -45.55 +168.25 -45.45 +168.25 -45.35 +168.25 -45.25 +168.25 -45.15 +168.25 -45.05 +168.25 -44.95 +168.25 -44.85 +168.25 -44.75 +168.25 -44.65 +168.25 -44.55 +168.25 -44.45 +168.25 -44.35 +168.25 -44.25 +168.25 -44.15 +168.25 -44.05 +168.25 -43.95 +168.25 -43.85 +168.25 -43.75 +168.25 -43.65 +168.25 -43.55 +168.25 -43.45 +168.25 -43.35 +168.35 -47.55 +168.35 -47.45 +168.35 -47.35 +168.35 -47.25 +168.35 -47.15 +168.35 -47.05 +168.35 -46.95 +168.35 -46.85 +168.35 -46.75 +168.35 -46.65 +168.35 -46.55 +168.35 -46.45 +168.35 -46.35 +168.35 -46.25 +168.35 -46.15 +168.35 -46.05 +168.35 -45.95 +168.35 -45.85 +168.35 -45.75 +168.35 -45.65 +168.35 -45.55 +168.35 -45.45 +168.35 -45.35 +168.35 -45.25 +168.35 -45.15 +168.35 -45.05 +168.35 -44.95 +168.35 -44.85 +168.35 -44.75 +168.35 -44.65 +168.35 -44.55 +168.35 -44.45 +168.35 -44.35 +168.35 -44.25 +168.35 -44.15 +168.35 -44.05 +168.35 -43.95 +168.35 -43.85 +168.35 -43.75 +168.35 -43.65 +168.35 -43.55 +168.35 -43.45 +168.35 -43.35 +168.35 -43.25 +168.45 -47.45 +168.45 -47.35 +168.45 -47.25 +168.45 -47.15 +168.45 -47.05 +168.45 -46.95 +168.45 -46.85 +168.45 -46.75 +168.45 -46.65 +168.45 -46.55 +168.45 -46.45 +168.45 -46.35 +168.45 -46.25 +168.45 -46.15 +168.45 -46.05 +168.45 -45.95 +168.45 -45.85 +168.45 -45.75 +168.45 -45.65 +168.45 -45.55 +168.45 -45.45 +168.45 -45.35 +168.45 -45.25 +168.45 -45.15 +168.45 -45.05 +168.45 -44.95 +168.45 -44.85 +168.45 -44.75 +168.45 -44.65 +168.45 -44.55 +168.45 -44.45 +168.45 -44.35 +168.45 -44.25 +168.45 -44.15 +168.45 -44.05 +168.45 -43.95 +168.45 -43.85 +168.45 -43.75 +168.45 -43.65 +168.45 -43.55 +168.45 -43.45 +168.45 -43.35 +168.45 -43.25 +168.45 -43.15 +168.55 -47.45 +168.55 -47.35 +168.55 -47.25 +168.55 -47.15 +168.55 -47.05 +168.55 -46.95 +168.55 -46.85 +168.55 -46.75 +168.55 -46.65 +168.55 -46.55 +168.55 -46.45 +168.55 -46.35 +168.55 -46.25 +168.55 -46.15 +168.55 -46.05 +168.55 -45.95 +168.55 -45.85 +168.55 -45.75 +168.55 -45.65 +168.55 -45.55 +168.55 -45.45 +168.55 -45.35 +168.55 -45.25 +168.55 -45.15 +168.55 -45.05 +168.55 -44.95 +168.55 -44.85 +168.55 -44.75 +168.55 -44.65 +168.55 -44.55 +168.55 -44.45 +168.55 -44.35 +168.55 -44.25 +168.55 -44.15 +168.55 -44.05 +168.55 -43.95 +168.55 -43.85 +168.55 -43.75 +168.55 -43.65 +168.55 -43.55 +168.55 -43.45 +168.55 -43.35 +168.55 -43.25 +168.55 -43.15 +168.55 -43.05 +168.65 -47.35 +168.65 -47.25 +168.65 -47.15 +168.65 -47.05 +168.65 -46.95 +168.65 -46.85 +168.65 -46.75 +168.65 -46.65 +168.65 -46.55 +168.65 -46.45 +168.65 -46.35 +168.65 -46.25 +168.65 -46.15 +168.65 -46.05 +168.65 -45.95 +168.65 -45.85 +168.65 -45.75 +168.65 -45.65 +168.65 -45.55 +168.65 -45.45 +168.65 -45.35 +168.65 -45.25 +168.65 -45.15 +168.65 -45.05 +168.65 -44.95 +168.65 -44.85 +168.65 -44.75 +168.65 -44.65 +168.65 -44.55 +168.65 -44.45 +168.65 -44.35 +168.65 -44.25 +168.65 -44.15 +168.65 -44.05 +168.65 -43.95 +168.65 -43.85 +168.65 -43.75 +168.65 -43.65 +168.65 -43.55 +168.65 -43.45 +168.65 -43.35 +168.65 -43.25 +168.65 -43.15 +168.65 -43.05 +168.75 -47.25 +168.75 -47.15 +168.75 -47.05 +168.75 -46.95 +168.75 -46.85 +168.75 -46.75 +168.75 -46.65 +168.75 -46.55 +168.75 -46.45 +168.75 -46.35 +168.75 -46.25 +168.75 -46.15 +168.75 -46.05 +168.75 -45.95 +168.75 -45.85 +168.75 -45.75 +168.75 -45.65 +168.75 -45.55 +168.75 -45.45 +168.75 -45.35 +168.75 -45.25 +168.75 -45.15 +168.75 -45.05 +168.75 -44.95 +168.75 -44.85 +168.75 -44.75 +168.75 -44.65 +168.75 -44.55 +168.75 -44.45 +168.75 -44.35 +168.75 -44.25 +168.75 -44.15 +168.75 -44.05 +168.75 -43.95 +168.75 -43.85 +168.75 -43.75 +168.75 -43.65 +168.75 -43.55 +168.75 -43.45 +168.75 -43.35 +168.75 -43.25 +168.75 -43.15 +168.75 -43.05 +168.75 -42.95 +168.85 -47.15 +168.85 -47.05 +168.85 -46.95 +168.85 -46.85 +168.85 -46.75 +168.85 -46.65 +168.85 -46.55 +168.85 -46.45 +168.85 -46.35 +168.85 -46.25 +168.85 -46.15 +168.85 -46.05 +168.85 -45.95 +168.85 -45.85 +168.85 -45.75 +168.85 -45.65 +168.85 -45.55 +168.85 -45.45 +168.85 -45.35 +168.85 -45.25 +168.85 -45.15 +168.85 -45.05 +168.85 -44.95 +168.85 -44.85 +168.85 -44.75 +168.85 -44.65 +168.85 -44.55 +168.85 -44.45 +168.85 -44.35 +168.85 -44.25 +168.85 -44.15 +168.85 -44.05 +168.85 -43.95 +168.85 -43.85 +168.85 -43.75 +168.85 -43.65 +168.85 -43.55 +168.85 -43.45 +168.85 -43.35 +168.85 -43.25 +168.85 -43.15 +168.85 -43.05 +168.85 -42.95 +168.85 -42.85 +168.95 -47.05 +168.95 -46.95 +168.95 -46.85 +168.95 -46.75 +168.95 -46.65 +168.95 -46.55 +168.95 -46.45 +168.95 -46.35 +168.95 -46.25 +168.95 -46.15 +168.95 -46.05 +168.95 -45.95 +168.95 -45.85 +168.95 -45.75 +168.95 -45.65 +168.95 -45.55 +168.95 -45.45 +168.95 -45.35 +168.95 -45.25 +168.95 -45.15 +168.95 -45.05 +168.95 -44.95 +168.95 -44.85 +168.95 -44.75 +168.95 -44.65 +168.95 -44.55 +168.95 -44.45 +168.95 -44.35 +168.95 -44.25 +168.95 -44.15 +168.95 -44.05 +168.95 -43.95 +168.95 -43.85 +168.95 -43.75 +168.95 -43.65 +168.95 -43.55 +168.95 -43.45 +168.95 -43.35 +168.95 -43.25 +168.95 -43.15 +168.95 -43.05 +168.95 -42.95 +168.95 -42.85 +168.95 -42.75 +169.05 -47.05 +169.05 -46.95 +169.05 -46.85 +169.05 -46.75 +169.05 -46.65 +169.05 -46.55 +169.05 -46.45 +169.05 -46.35 +169.05 -46.25 +169.05 -46.15 +169.05 -46.05 +169.05 -45.95 +169.05 -45.85 +169.05 -45.75 +169.05 -45.65 +169.05 -45.55 +169.05 -45.45 +169.05 -45.35 +169.05 -45.25 +169.05 -45.15 +169.05 -45.05 +169.05 -44.95 +169.05 -44.85 +169.05 -44.75 +169.05 -44.65 +169.05 -44.55 +169.05 -44.45 +169.05 -44.35 +169.05 -44.25 +169.05 -44.15 +169.05 -44.05 +169.05 -43.95 +169.05 -43.85 +169.05 -43.75 +169.05 -43.65 +169.05 -43.55 +169.05 -43.45 +169.05 -43.35 +169.05 -43.25 +169.05 -43.15 +169.05 -43.05 +169.05 -42.95 +169.05 -42.85 +169.05 -42.75 +169.05 -42.65 +169.15 -47.05 +169.15 -46.95 +169.15 -46.85 +169.15 -46.75 +169.15 -46.65 +169.15 -46.55 +169.15 -46.45 +169.15 -46.35 +169.15 -46.25 +169.15 -46.15 +169.15 -46.05 +169.15 -45.95 +169.15 -45.85 +169.15 -45.75 +169.15 -45.65 +169.15 -45.55 +169.15 -45.45 +169.15 -45.35 +169.15 -45.25 +169.15 -45.15 +169.15 -45.05 +169.15 -44.95 +169.15 -44.85 +169.15 -44.75 +169.15 -44.65 +169.15 -44.55 +169.15 -44.45 +169.15 -44.35 +169.15 -44.25 +169.15 -44.15 +169.15 -44.05 +169.15 -43.95 +169.15 -43.85 +169.15 -43.75 +169.15 -43.65 +169.15 -43.55 +169.15 -43.45 +169.15 -43.35 +169.15 -43.25 +169.15 -43.15 +169.15 -43.05 +169.15 -42.95 +169.15 -42.85 +169.15 -42.75 +169.15 -42.65 +169.15 -42.55 +169.25 -47.05 +169.25 -46.95 +169.25 -46.85 +169.25 -46.75 +169.25 -46.65 +169.25 -46.55 +169.25 -46.45 +169.25 -46.35 +169.25 -46.25 +169.25 -46.15 +169.25 -46.05 +169.25 -45.95 +169.25 -45.85 +169.25 -45.75 +169.25 -45.65 +169.25 -45.55 +169.25 -45.45 +169.25 -45.35 +169.25 -45.25 +169.25 -45.15 +169.25 -45.05 +169.25 -44.95 +169.25 -44.85 +169.25 -44.75 +169.25 -44.65 +169.25 -44.55 +169.25 -44.45 +169.25 -44.35 +169.25 -44.25 +169.25 -44.15 +169.25 -44.05 +169.25 -43.95 +169.25 -43.85 +169.25 -43.75 +169.25 -43.65 +169.25 -43.55 +169.25 -43.45 +169.25 -43.35 +169.25 -43.25 +169.25 -43.15 +169.25 -43.05 +169.25 -42.95 +169.25 -42.85 +169.25 -42.75 +169.25 -42.65 +169.25 -42.55 +169.25 -42.45 +169.35 -47.05 +169.35 -46.95 +169.35 -46.85 +169.35 -46.75 +169.35 -46.65 +169.35 -46.55 +169.35 -46.45 +169.35 -46.35 +169.35 -46.25 +169.35 -46.15 +169.35 -46.05 +169.35 -45.95 +169.35 -45.85 +169.35 -45.75 +169.35 -45.65 +169.35 -45.55 +169.35 -45.45 +169.35 -45.35 +169.35 -45.25 +169.35 -45.15 +169.35 -45.05 +169.35 -44.95 +169.35 -44.85 +169.35 -44.75 +169.35 -44.65 +169.35 -44.55 +169.35 -44.45 +169.35 -44.35 +169.35 -44.25 +169.35 -44.15 +169.35 -44.05 +169.35 -43.95 +169.35 -43.85 +169.35 -43.75 +169.35 -43.65 +169.35 -43.55 +169.35 -43.45 +169.35 -43.35 +169.35 -43.25 +169.35 -43.15 +169.35 -43.05 +169.35 -42.95 +169.35 -42.85 +169.35 -42.75 +169.35 -42.65 +169.35 -42.55 +169.35 -42.45 +169.45 -47.05 +169.45 -46.95 +169.45 -46.85 +169.45 -46.75 +169.45 -46.65 +169.45 -46.55 +169.45 -46.45 +169.45 -46.35 +169.45 -46.25 +169.45 -46.15 +169.45 -46.05 +169.45 -45.95 +169.45 -45.85 +169.45 -45.75 +169.45 -45.65 +169.45 -45.55 +169.45 -45.45 +169.45 -45.35 +169.45 -45.25 +169.45 -45.15 +169.45 -45.05 +169.45 -44.95 +169.45 -44.85 +169.45 -44.75 +169.45 -44.65 +169.45 -44.55 +169.45 -44.45 +169.45 -44.35 +169.45 -44.25 +169.45 -44.15 +169.45 -44.05 +169.45 -43.95 +169.45 -43.85 +169.45 -43.75 +169.45 -43.65 +169.45 -43.55 +169.45 -43.45 +169.45 -43.35 +169.45 -43.25 +169.45 -43.15 +169.45 -43.05 +169.45 -42.95 +169.45 -42.85 +169.45 -42.75 +169.45 -42.65 +169.45 -42.55 +169.45 -42.45 +169.45 -42.35 +169.55 -47.05 +169.55 -46.95 +169.55 -46.85 +169.55 -46.75 +169.55 -46.65 +169.55 -46.55 +169.55 -46.45 +169.55 -46.35 +169.55 -46.25 +169.55 -46.15 +169.55 -46.05 +169.55 -45.95 +169.55 -45.85 +169.55 -45.75 +169.55 -45.65 +169.55 -45.55 +169.55 -45.45 +169.55 -45.35 +169.55 -45.25 +169.55 -45.15 +169.55 -45.05 +169.55 -44.95 +169.55 -44.85 +169.55 -44.75 +169.55 -44.65 +169.55 -44.55 +169.55 -44.45 +169.55 -44.35 +169.55 -44.25 +169.55 -44.15 +169.55 -44.05 +169.55 -43.95 +169.55 -43.85 +169.55 -43.75 +169.55 -43.65 +169.55 -43.55 +169.55 -43.45 +169.55 -43.35 +169.55 -43.25 +169.55 -43.15 +169.55 -43.05 +169.55 -42.95 +169.55 -42.85 +169.55 -42.75 +169.55 -42.65 +169.55 -42.55 +169.55 -42.45 +169.55 -42.35 +169.55 -42.25 +169.65 -47.05 +169.65 -46.95 +169.65 -46.85 +169.65 -46.75 +169.65 -46.65 +169.65 -46.55 +169.65 -46.45 +169.65 -46.35 +169.65 -46.25 +169.65 -46.15 +169.65 -46.05 +169.65 -45.95 +169.65 -45.85 +169.65 -45.75 +169.65 -45.65 +169.65 -45.55 +169.65 -45.45 +169.65 -45.35 +169.65 -45.25 +169.65 -45.15 +169.65 -45.05 +169.65 -44.95 +169.65 -44.85 +169.65 -44.75 +169.65 -44.65 +169.65 -44.55 +169.65 -44.45 +169.65 -44.35 +169.65 -44.25 +169.65 -44.15 +169.65 -44.05 +169.65 -43.95 +169.65 -43.85 +169.65 -43.75 +169.65 -43.65 +169.65 -43.55 +169.65 -43.45 +169.65 -43.35 +169.65 -43.25 +169.65 -43.15 +169.65 -43.05 +169.65 -42.95 +169.65 -42.85 +169.65 -42.75 +169.65 -42.65 +169.65 -42.55 +169.65 -42.45 +169.65 -42.35 +169.65 -42.25 +169.65 -42.15 +169.75 -46.95 +169.75 -46.85 +169.75 -46.75 +169.75 -46.65 +169.75 -46.55 +169.75 -46.45 +169.75 -46.35 +169.75 -46.25 +169.75 -46.15 +169.75 -46.05 +169.75 -45.95 +169.75 -45.85 +169.75 -45.75 +169.75 -45.65 +169.75 -45.55 +169.75 -45.45 +169.75 -45.35 +169.75 -45.25 +169.75 -45.15 +169.75 -45.05 +169.75 -44.95 +169.75 -44.85 +169.75 -44.75 +169.75 -44.65 +169.75 -44.55 +169.75 -44.45 +169.75 -44.35 +169.75 -44.25 +169.75 -44.15 +169.75 -44.05 +169.75 -43.95 +169.75 -43.85 +169.75 -43.75 +169.75 -43.65 +169.75 -43.55 +169.75 -43.45 +169.75 -43.35 +169.75 -43.25 +169.75 -43.15 +169.75 -43.05 +169.75 -42.95 +169.75 -42.85 +169.75 -42.75 +169.75 -42.65 +169.75 -42.55 +169.75 -42.45 +169.75 -42.35 +169.75 -42.25 +169.75 -42.15 +169.75 -42.05 +169.85 -46.95 +169.85 -46.85 +169.85 -46.75 +169.85 -46.65 +169.85 -46.55 +169.85 -46.45 +169.85 -46.35 +169.85 -46.25 +169.85 -46.15 +169.85 -46.05 +169.85 -45.95 +169.85 -45.85 +169.85 -45.75 +169.85 -45.65 +169.85 -45.55 +169.85 -45.45 +169.85 -45.35 +169.85 -45.25 +169.85 -45.15 +169.85 -45.05 +169.85 -44.95 +169.85 -44.85 +169.85 -44.75 +169.85 -44.65 +169.85 -44.55 +169.85 -44.45 +169.85 -44.35 +169.85 -44.25 +169.85 -44.15 +169.85 -44.05 +169.85 -43.95 +169.85 -43.85 +169.85 -43.75 +169.85 -43.65 +169.85 -43.55 +169.85 -43.45 +169.85 -43.35 +169.85 -43.25 +169.85 -43.15 +169.85 -43.05 +169.85 -42.95 +169.85 -42.85 +169.85 -42.75 +169.85 -42.65 +169.85 -42.55 +169.85 -42.45 +169.85 -42.35 +169.85 -42.25 +169.85 -42.15 +169.85 -42.05 +169.85 -41.95 +169.95 -46.95 +169.95 -46.85 +169.95 -46.75 +169.95 -46.65 +169.95 -46.55 +169.95 -46.45 +169.95 -46.35 +169.95 -46.25 +169.95 -46.15 +169.95 -46.05 +169.95 -45.95 +169.95 -45.85 +169.95 -45.75 +169.95 -45.65 +169.95 -45.55 +169.95 -45.45 +169.95 -45.35 +169.95 -45.25 +169.95 -45.15 +169.95 -45.05 +169.95 -44.95 +169.95 -44.85 +169.95 -44.75 +169.95 -44.65 +169.95 -44.55 +169.95 -44.45 +169.95 -44.35 +169.95 -44.25 +169.95 -44.15 +169.95 -44.05 +169.95 -43.95 +169.95 -43.85 +169.95 -43.75 +169.95 -43.65 +169.95 -43.55 +169.95 -43.45 +169.95 -43.35 +169.95 -43.25 +169.95 -43.15 +169.95 -43.05 +169.95 -42.95 +169.95 -42.85 +169.95 -42.75 +169.95 -42.65 +169.95 -42.55 +169.95 -42.45 +169.95 -42.35 +169.95 -42.25 +169.95 -42.15 +169.95 -42.05 +169.95 -41.95 +169.95 -41.85 +170.05 -46.85 +170.05 -46.75 +170.05 -46.65 +170.05 -46.55 +170.05 -46.45 +170.05 -46.35 +170.05 -46.25 +170.05 -46.15 +170.05 -46.05 +170.05 -45.95 +170.05 -45.85 +170.05 -45.75 +170.05 -45.65 +170.05 -45.55 +170.05 -45.45 +170.05 -45.35 +170.05 -45.25 +170.05 -45.15 +170.05 -45.05 +170.05 -44.95 +170.05 -44.85 +170.05 -44.75 +170.05 -44.65 +170.05 -44.55 +170.05 -44.45 +170.05 -44.35 +170.05 -44.25 +170.05 -44.15 +170.05 -44.05 +170.05 -43.95 +170.05 -43.85 +170.05 -43.75 +170.05 -43.65 +170.05 -43.55 +170.05 -43.45 +170.05 -43.35 +170.05 -43.25 +170.05 -43.15 +170.05 -43.05 +170.05 -42.95 +170.05 -42.85 +170.05 -42.75 +170.05 -42.65 +170.05 -42.55 +170.05 -42.45 +170.05 -42.35 +170.05 -42.25 +170.05 -42.15 +170.05 -42.05 +170.05 -41.95 +170.05 -41.85 +170.05 -41.75 +170.15 -46.85 +170.15 -46.75 +170.15 -46.65 +170.15 -46.55 +170.15 -46.45 +170.15 -46.35 +170.15 -46.25 +170.15 -46.15 +170.15 -46.05 +170.15 -45.95 +170.15 -45.85 +170.15 -45.75 +170.15 -45.65 +170.15 -45.55 +170.15 -45.45 +170.15 -45.35 +170.15 -45.25 +170.15 -45.15 +170.15 -45.05 +170.15 -44.95 +170.15 -44.85 +170.15 -44.75 +170.15 -44.65 +170.15 -44.55 +170.15 -44.45 +170.15 -44.35 +170.15 -44.25 +170.15 -44.15 +170.15 -44.05 +170.15 -43.95 +170.15 -43.85 +170.15 -43.75 +170.15 -43.65 +170.15 -43.55 +170.15 -43.45 +170.15 -43.35 +170.15 -43.25 +170.15 -43.15 +170.15 -43.05 +170.15 -42.95 +170.15 -42.85 +170.15 -42.75 +170.15 -42.65 +170.15 -42.55 +170.15 -42.45 +170.15 -42.35 +170.15 -42.25 +170.15 -42.15 +170.15 -42.05 +170.15 -41.95 +170.15 -41.85 +170.15 -41.75 +170.25 -46.75 +170.25 -46.65 +170.25 -46.55 +170.25 -46.45 +170.25 -46.35 +170.25 -46.25 +170.25 -46.15 +170.25 -46.05 +170.25 -45.95 +170.25 -45.85 +170.25 -45.75 +170.25 -45.65 +170.25 -45.55 +170.25 -45.45 +170.25 -45.35 +170.25 -45.25 +170.25 -45.15 +170.25 -45.05 +170.25 -44.95 +170.25 -44.85 +170.25 -44.75 +170.25 -44.65 +170.25 -44.55 +170.25 -44.45 +170.25 -44.35 +170.25 -44.25 +170.25 -44.15 +170.25 -44.05 +170.25 -43.95 +170.25 -43.85 +170.25 -43.75 +170.25 -43.65 +170.25 -43.55 +170.25 -43.45 +170.25 -43.35 +170.25 -43.25 +170.25 -43.15 +170.25 -43.05 +170.25 -42.95 +170.25 -42.85 +170.25 -42.75 +170.25 -42.65 +170.25 -42.55 +170.25 -42.45 +170.25 -42.35 +170.25 -42.25 +170.25 -42.15 +170.25 -42.05 +170.25 -41.95 +170.25 -41.85 +170.25 -41.75 +170.25 -41.65 +170.35 -46.75 +170.35 -46.65 +170.35 -46.55 +170.35 -46.45 +170.35 -46.35 +170.35 -46.25 +170.35 -46.15 +170.35 -46.05 +170.35 -45.95 +170.35 -45.85 +170.35 -45.75 +170.35 -45.65 +170.35 -45.55 +170.35 -45.45 +170.35 -45.35 +170.35 -45.25 +170.35 -45.15 +170.35 -45.05 +170.35 -44.95 +170.35 -44.85 +170.35 -44.75 +170.35 -44.65 +170.35 -44.55 +170.35 -44.45 +170.35 -44.35 +170.35 -44.25 +170.35 -44.15 +170.35 -44.05 +170.35 -43.95 +170.35 -43.85 +170.35 -43.75 +170.35 -43.65 +170.35 -43.55 +170.35 -43.45 +170.35 -43.35 +170.35 -43.25 +170.35 -43.15 +170.35 -43.05 +170.35 -42.95 +170.35 -42.85 +170.35 -42.75 +170.35 -42.65 +170.35 -42.55 +170.35 -42.45 +170.35 -42.35 +170.35 -42.25 +170.35 -42.15 +170.35 -42.05 +170.35 -41.95 +170.35 -41.85 +170.35 -41.75 +170.35 -41.65 +170.35 -41.55 +170.45 -46.65 +170.45 -46.55 +170.45 -46.45 +170.45 -46.35 +170.45 -46.25 +170.45 -46.15 +170.45 -46.05 +170.45 -45.95 +170.45 -45.85 +170.45 -45.75 +170.45 -45.65 +170.45 -45.55 +170.45 -45.45 +170.45 -45.35 +170.45 -45.25 +170.45 -45.15 +170.45 -45.05 +170.45 -44.95 +170.45 -44.85 +170.45 -44.75 +170.45 -44.65 +170.45 -44.55 +170.45 -44.45 +170.45 -44.35 +170.45 -44.25 +170.45 -44.15 +170.45 -44.05 +170.45 -43.95 +170.45 -43.85 +170.45 -43.75 +170.45 -43.65 +170.45 -43.55 +170.45 -43.45 +170.45 -43.35 +170.45 -43.25 +170.45 -43.15 +170.45 -43.05 +170.45 -42.95 +170.45 -42.85 +170.45 -42.75 +170.45 -42.65 +170.45 -42.55 +170.45 -42.45 +170.45 -42.35 +170.45 -42.25 +170.45 -42.15 +170.45 -42.05 +170.45 -41.95 +170.45 -41.85 +170.45 -41.75 +170.45 -41.65 +170.45 -41.55 +170.45 -41.45 +170.55 -46.65 +170.55 -46.55 +170.55 -46.45 +170.55 -46.35 +170.55 -46.25 +170.55 -46.15 +170.55 -46.05 +170.55 -45.95 +170.55 -45.85 +170.55 -45.75 +170.55 -45.65 +170.55 -45.55 +170.55 -45.45 +170.55 -45.35 +170.55 -45.25 +170.55 -45.15 +170.55 -45.05 +170.55 -44.95 +170.55 -44.85 +170.55 -44.75 +170.55 -44.65 +170.55 -44.55 +170.55 -44.45 +170.55 -44.35 +170.55 -44.25 +170.55 -44.15 +170.55 -44.05 +170.55 -43.95 +170.55 -43.85 +170.55 -43.75 +170.55 -43.65 +170.55 -43.55 +170.55 -43.45 +170.55 -43.35 +170.55 -43.25 +170.55 -43.15 +170.55 -43.05 +170.55 -42.95 +170.55 -42.85 +170.55 -42.75 +170.55 -42.65 +170.55 -42.55 +170.55 -42.45 +170.55 -42.35 +170.55 -42.25 +170.55 -42.15 +170.55 -42.05 +170.55 -41.95 +170.55 -41.85 +170.55 -41.75 +170.55 -41.65 +170.55 -41.55 +170.55 -41.45 +170.55 -41.35 +170.65 -46.55 +170.65 -46.45 +170.65 -46.35 +170.65 -46.25 +170.65 -46.15 +170.65 -46.05 +170.65 -45.95 +170.65 -45.85 +170.65 -45.75 +170.65 -45.65 +170.65 -45.55 +170.65 -45.45 +170.65 -45.35 +170.65 -45.25 +170.65 -45.15 +170.65 -45.05 +170.65 -44.95 +170.65 -44.85 +170.65 -44.75 +170.65 -44.65 +170.65 -44.55 +170.65 -44.45 +170.65 -44.35 +170.65 -44.25 +170.65 -44.15 +170.65 -44.05 +170.65 -43.95 +170.65 -43.85 +170.65 -43.75 +170.65 -43.65 +170.65 -43.55 +170.65 -43.45 +170.65 -43.35 +170.65 -43.25 +170.65 -43.15 +170.65 -43.05 +170.65 -42.95 +170.65 -42.85 +170.65 -42.75 +170.65 -42.65 +170.65 -42.55 +170.65 -42.45 +170.65 -42.35 +170.65 -42.25 +170.65 -42.15 +170.65 -42.05 +170.65 -41.95 +170.65 -41.85 +170.65 -41.75 +170.65 -41.65 +170.65 -41.55 +170.65 -41.45 +170.65 -41.35 +170.65 -41.25 +170.75 -46.55 +170.75 -46.45 +170.75 -46.35 +170.75 -46.25 +170.75 -46.15 +170.75 -46.05 +170.75 -45.95 +170.75 -45.85 +170.75 -45.75 +170.75 -45.65 +170.75 -45.55 +170.75 -45.45 +170.75 -45.35 +170.75 -45.25 +170.75 -45.15 +170.75 -45.05 +170.75 -44.95 +170.75 -44.85 +170.75 -44.75 +170.75 -44.65 +170.75 -44.55 +170.75 -44.45 +170.75 -44.35 +170.75 -44.25 +170.75 -44.15 +170.75 -44.05 +170.75 -43.95 +170.75 -43.85 +170.75 -43.75 +170.75 -43.65 +170.75 -43.55 +170.75 -43.45 +170.75 -43.35 +170.75 -43.25 +170.75 -43.15 +170.75 -43.05 +170.75 -42.95 +170.75 -42.85 +170.75 -42.75 +170.75 -42.65 +170.75 -42.55 +170.75 -42.45 +170.75 -42.35 +170.75 -42.25 +170.75 -42.15 +170.75 -42.05 +170.75 -41.95 +170.75 -41.85 +170.75 -41.75 +170.75 -41.65 +170.75 -41.55 +170.75 -41.45 +170.75 -41.35 +170.75 -41.25 +170.75 -41.15 +170.85 -46.45 +170.85 -46.35 +170.85 -46.25 +170.85 -46.15 +170.85 -46.05 +170.85 -45.95 +170.85 -45.85 +170.85 -45.75 +170.85 -45.65 +170.85 -45.55 +170.85 -45.45 +170.85 -45.35 +170.85 -45.25 +170.85 -45.15 +170.85 -45.05 +170.85 -44.95 +170.85 -44.85 +170.85 -44.75 +170.85 -44.65 +170.85 -44.55 +170.85 -44.45 +170.85 -44.35 +170.85 -44.25 +170.85 -44.15 +170.85 -44.05 +170.85 -43.95 +170.85 -43.85 +170.85 -43.75 +170.85 -43.65 +170.85 -43.55 +170.85 -43.45 +170.85 -43.35 +170.85 -43.25 +170.85 -43.15 +170.85 -43.05 +170.85 -42.95 +170.85 -42.85 +170.85 -42.75 +170.85 -42.65 +170.85 -42.55 +170.85 -42.45 +170.85 -42.35 +170.85 -42.25 +170.85 -42.15 +170.85 -42.05 +170.85 -41.95 +170.85 -41.85 +170.85 -41.75 +170.85 -41.65 +170.85 -41.55 +170.85 -41.45 +170.85 -41.35 +170.85 -41.25 +170.85 -41.15 +170.95 -46.35 +170.95 -46.25 +170.95 -46.15 +170.95 -46.05 +170.95 -45.95 +170.95 -45.85 +170.95 -45.75 +170.95 -45.65 +170.95 -45.55 +170.95 -45.45 +170.95 -45.35 +170.95 -45.25 +170.95 -45.15 +170.95 -45.05 +170.95 -44.95 +170.95 -44.85 +170.95 -44.75 +170.95 -44.65 +170.95 -44.55 +170.95 -44.45 +170.95 -44.35 +170.95 -44.25 +170.95 -44.15 +170.95 -44.05 +170.95 -43.95 +170.95 -43.85 +170.95 -43.75 +170.95 -43.65 +170.95 -43.55 +170.95 -43.45 +170.95 -43.35 +170.95 -43.25 +170.95 -43.15 +170.95 -43.05 +170.95 -42.95 +170.95 -42.85 +170.95 -42.75 +170.95 -42.65 +170.95 -42.55 +170.95 -42.45 +170.95 -42.35 +170.95 -42.25 +170.95 -42.15 +170.95 -42.05 +170.95 -41.95 +170.95 -41.85 +170.95 -41.75 +170.95 -41.65 +170.95 -41.55 +170.95 -41.45 +170.95 -41.35 +170.95 -41.25 +170.95 -41.15 +170.95 -41.05 +171.05 -46.35 +171.05 -46.25 +171.05 -46.15 +171.05 -46.05 +171.05 -45.95 +171.05 -45.85 +171.05 -45.75 +171.05 -45.65 +171.05 -45.55 +171.05 -45.45 +171.05 -45.35 +171.05 -45.25 +171.05 -45.15 +171.05 -45.05 +171.05 -44.95 +171.05 -44.85 +171.05 -44.75 +171.05 -44.65 +171.05 -44.55 +171.05 -44.45 +171.05 -44.35 +171.05 -44.25 +171.05 -44.15 +171.05 -44.05 +171.05 -43.95 +171.05 -43.85 +171.05 -43.75 +171.05 -43.65 +171.05 -43.55 +171.05 -43.45 +171.05 -43.35 +171.05 -43.25 +171.05 -43.15 +171.05 -43.05 +171.05 -42.95 +171.05 -42.85 +171.05 -42.75 +171.05 -42.65 +171.05 -42.55 +171.05 -42.45 +171.05 -42.35 +171.05 -42.25 +171.05 -42.15 +171.05 -42.05 +171.05 -41.95 +171.05 -41.85 +171.05 -41.75 +171.05 -41.65 +171.05 -41.55 +171.05 -41.45 +171.05 -41.35 +171.05 -41.25 +171.05 -41.15 +171.05 -41.05 +171.05 -40.95 +171.15 -46.25 +171.15 -46.15 +171.15 -46.05 +171.15 -45.95 +171.15 -45.85 +171.15 -45.75 +171.15 -45.65 +171.15 -45.55 +171.15 -45.45 +171.15 -45.35 +171.15 -45.25 +171.15 -45.15 +171.15 -45.05 +171.15 -44.95 +171.15 -44.85 +171.15 -44.75 +171.15 -44.65 +171.15 -44.55 +171.15 -44.45 +171.15 -44.35 +171.15 -44.25 +171.15 -44.15 +171.15 -44.05 +171.15 -43.95 +171.15 -43.85 +171.15 -43.75 +171.15 -43.65 +171.15 -43.55 +171.15 -43.45 +171.15 -43.35 +171.15 -43.25 +171.15 -43.15 +171.15 -43.05 +171.15 -42.95 +171.15 -42.85 +171.15 -42.75 +171.15 -42.65 +171.15 -42.55 +171.15 -42.45 +171.15 -42.35 +171.15 -42.25 +171.15 -42.15 +171.15 -42.05 +171.15 -41.95 +171.15 -41.85 +171.15 -41.75 +171.15 -41.65 +171.15 -41.55 +171.15 -41.45 +171.15 -41.35 +171.15 -41.25 +171.15 -41.15 +171.15 -41.05 +171.15 -40.95 +171.15 -40.85 +171.25 -46.15 +171.25 -46.05 +171.25 -45.95 +171.25 -45.85 +171.25 -45.75 +171.25 -45.65 +171.25 -45.55 +171.25 -45.45 +171.25 -45.35 +171.25 -45.25 +171.25 -45.15 +171.25 -45.05 +171.25 -44.95 +171.25 -44.85 +171.25 -44.75 +171.25 -44.65 +171.25 -44.55 +171.25 -44.45 +171.25 -44.35 +171.25 -44.25 +171.25 -44.15 +171.25 -44.05 +171.25 -43.95 +171.25 -43.85 +171.25 -43.75 +171.25 -43.65 +171.25 -43.55 +171.25 -43.45 +171.25 -43.35 +171.25 -43.25 +171.25 -43.15 +171.25 -43.05 +171.25 -42.95 +171.25 -42.85 +171.25 -42.75 +171.25 -42.65 +171.25 -42.55 +171.25 -42.45 +171.25 -42.35 +171.25 -42.25 +171.25 -42.15 +171.25 -42.05 +171.25 -41.95 +171.25 -41.85 +171.25 -41.75 +171.25 -41.65 +171.25 -41.55 +171.25 -41.45 +171.25 -41.35 +171.25 -41.25 +171.25 -41.15 +171.25 -41.05 +171.25 -40.95 +171.25 -40.85 +171.25 -40.75 +171.35 -46.05 +171.35 -45.95 +171.35 -45.85 +171.35 -45.75 +171.35 -45.65 +171.35 -45.55 +171.35 -45.45 +171.35 -45.35 +171.35 -45.25 +171.35 -45.15 +171.35 -45.05 +171.35 -44.95 +171.35 -44.85 +171.35 -44.75 +171.35 -44.65 +171.35 -44.55 +171.35 -44.45 +171.35 -44.35 +171.35 -44.25 +171.35 -44.15 +171.35 -44.05 +171.35 -43.95 +171.35 -43.85 +171.35 -43.75 +171.35 -43.65 +171.35 -43.55 +171.35 -43.45 +171.35 -43.35 +171.35 -43.25 +171.35 -43.15 +171.35 -43.05 +171.35 -42.95 +171.35 -42.85 +171.35 -42.75 +171.35 -42.65 +171.35 -42.55 +171.35 -42.45 +171.35 -42.35 +171.35 -42.25 +171.35 -42.15 +171.35 -42.05 +171.35 -41.95 +171.35 -41.85 +171.35 -41.75 +171.35 -41.65 +171.35 -41.55 +171.35 -41.45 +171.35 -41.35 +171.35 -41.25 +171.35 -41.15 +171.35 -41.05 +171.35 -40.95 +171.35 -40.85 +171.35 -40.75 +171.35 -40.65 +171.45 -45.95 +171.45 -45.85 +171.45 -45.75 +171.45 -45.65 +171.45 -45.55 +171.45 -45.45 +171.45 -45.35 +171.45 -45.25 +171.45 -45.15 +171.45 -45.05 +171.45 -44.95 +171.45 -44.85 +171.45 -44.75 +171.45 -44.65 +171.45 -44.55 +171.45 -44.45 +171.45 -44.35 +171.45 -44.25 +171.45 -44.15 +171.45 -44.05 +171.45 -43.95 +171.45 -43.85 +171.45 -43.75 +171.45 -43.65 +171.45 -43.55 +171.45 -43.45 +171.45 -43.35 +171.45 -43.25 +171.45 -43.15 +171.45 -43.05 +171.45 -42.95 +171.45 -42.85 +171.45 -42.75 +171.45 -42.65 +171.45 -42.55 +171.45 -42.45 +171.45 -42.35 +171.45 -42.25 +171.45 -42.15 +171.45 -42.05 +171.45 -41.95 +171.45 -41.85 +171.45 -41.75 +171.45 -41.65 +171.45 -41.55 +171.45 -41.45 +171.45 -41.35 +171.45 -41.25 +171.45 -41.15 +171.45 -41.05 +171.45 -40.95 +171.45 -40.85 +171.45 -40.75 +171.45 -40.65 +171.45 -40.55 +171.55 -45.65 +171.55 -45.55 +171.55 -45.45 +171.55 -45.35 +171.55 -45.25 +171.55 -45.15 +171.55 -45.05 +171.55 -44.95 +171.55 -44.85 +171.55 -44.75 +171.55 -44.65 +171.55 -44.55 +171.55 -44.45 +171.55 -44.35 +171.55 -44.25 +171.55 -44.15 +171.55 -44.05 +171.55 -43.95 +171.55 -43.85 +171.55 -43.75 +171.55 -43.65 +171.55 -43.55 +171.55 -43.45 +171.55 -43.35 +171.55 -43.25 +171.55 -43.15 +171.55 -43.05 +171.55 -42.95 +171.55 -42.85 +171.55 -42.75 +171.55 -42.65 +171.55 -42.55 +171.55 -42.45 +171.55 -42.35 +171.55 -42.25 +171.55 -42.15 +171.55 -42.05 +171.55 -41.95 +171.55 -41.85 +171.55 -41.75 +171.55 -41.65 +171.55 -41.55 +171.55 -41.45 +171.55 -41.35 +171.55 -41.25 +171.55 -41.15 +171.55 -41.05 +171.55 -40.95 +171.55 -40.85 +171.55 -40.75 +171.55 -40.65 +171.55 -40.55 +171.55 -40.45 +171.65 -45.35 +171.65 -45.25 +171.65 -45.15 +171.65 -45.05 +171.65 -44.95 +171.65 -44.85 +171.65 -44.75 +171.65 -44.65 +171.65 -44.55 +171.65 -44.45 +171.65 -44.35 +171.65 -44.25 +171.65 -44.15 +171.65 -44.05 +171.65 -43.95 +171.65 -43.85 +171.65 -43.75 +171.65 -43.65 +171.65 -43.55 +171.65 -43.45 +171.65 -43.35 +171.65 -43.25 +171.65 -43.15 +171.65 -43.05 +171.65 -42.95 +171.65 -42.85 +171.65 -42.75 +171.65 -42.65 +171.65 -42.55 +171.65 -42.45 +171.65 -42.35 +171.65 -42.25 +171.65 -42.15 +171.65 -42.05 +171.65 -41.95 +171.65 -41.85 +171.65 -41.75 +171.65 -41.65 +171.65 -41.55 +171.65 -41.45 +171.65 -41.35 +171.65 -41.25 +171.65 -41.15 +171.65 -41.05 +171.65 -40.95 +171.65 -40.85 +171.65 -40.75 +171.65 -40.65 +171.65 -40.55 +171.65 -40.45 +171.75 -45.15 +171.75 -45.05 +171.75 -44.95 +171.75 -44.85 +171.75 -44.75 +171.75 -44.65 +171.75 -44.55 +171.75 -44.45 +171.75 -44.35 +171.75 -44.25 +171.75 -44.15 +171.75 -44.05 +171.75 -43.95 +171.75 -43.85 +171.75 -43.75 +171.75 -43.65 +171.75 -43.55 +171.75 -43.45 +171.75 -43.35 +171.75 -43.25 +171.75 -43.15 +171.75 -43.05 +171.75 -42.95 +171.75 -42.85 +171.75 -42.75 +171.75 -42.65 +171.75 -42.55 +171.75 -42.45 +171.75 -42.35 +171.75 -42.25 +171.75 -42.15 +171.75 -42.05 +171.75 -41.95 +171.75 -41.85 +171.75 -41.75 +171.75 -41.65 +171.75 -41.55 +171.75 -41.45 +171.75 -41.35 +171.75 -41.25 +171.75 -41.15 +171.75 -41.05 +171.75 -40.95 +171.75 -40.85 +171.75 -40.75 +171.75 -40.65 +171.75 -40.55 +171.75 -40.45 +171.75 -40.35 +171.85 -44.95 +171.85 -44.85 +171.85 -44.75 +171.85 -44.65 +171.85 -44.55 +171.85 -44.45 +171.85 -44.35 +171.85 -44.25 +171.85 -44.15 +171.85 -44.05 +171.85 -43.95 +171.85 -43.85 +171.85 -43.75 +171.85 -43.65 +171.85 -43.55 +171.85 -43.45 +171.85 -43.35 +171.85 -43.25 +171.85 -43.15 +171.85 -43.05 +171.85 -42.95 +171.85 -42.85 +171.85 -42.75 +171.85 -42.65 +171.85 -42.55 +171.85 -42.45 +171.85 -42.35 +171.85 -42.25 +171.85 -42.15 +171.85 -42.05 +171.85 -41.95 +171.85 -41.85 +171.85 -41.75 +171.85 -41.65 +171.85 -41.55 +171.85 -41.45 +171.85 -41.35 +171.85 -41.25 +171.85 -41.15 +171.85 -41.05 +171.85 -40.95 +171.85 -40.85 +171.85 -40.75 +171.85 -40.65 +171.85 -40.55 +171.85 -40.45 +171.85 -40.35 +171.85 -40.25 +171.95 -44.45 +171.95 -44.35 +171.95 -44.25 +171.95 -44.15 +171.95 -44.05 +171.95 -43.95 +171.95 -43.85 +171.95 -43.75 +171.95 -43.65 +171.95 -43.55 +171.95 -43.45 +171.95 -43.35 +171.95 -43.25 +171.95 -43.15 +171.95 -43.05 +171.95 -42.95 +171.95 -42.85 +171.95 -42.75 +171.95 -42.65 +171.95 -42.55 +171.95 -42.45 +171.95 -42.35 +171.95 -42.25 +171.95 -42.15 +171.95 -42.05 +171.95 -41.95 +171.95 -41.85 +171.95 -41.75 +171.95 -41.65 +171.95 -41.55 +171.95 -41.45 +171.95 -41.35 +171.95 -41.25 +171.95 -41.15 +171.95 -41.05 +171.95 -40.95 +171.95 -40.85 +171.95 -40.75 +171.95 -40.65 +171.95 -40.55 +171.95 -40.45 +171.95 -40.35 +171.95 -40.25 +171.95 -40.15 +172.05 -44.45 +172.05 -44.35 +172.05 -44.25 +172.05 -44.15 +172.05 -44.05 +172.05 -43.95 +172.05 -43.85 +172.05 -43.75 +172.05 -43.65 +172.05 -43.55 +172.05 -43.45 +172.05 -43.35 +172.05 -43.25 +172.05 -43.15 +172.05 -43.05 +172.05 -42.95 +172.05 -42.85 +172.05 -42.75 +172.05 -42.65 +172.05 -42.55 +172.05 -42.45 +172.05 -42.35 +172.05 -42.25 +172.05 -42.15 +172.05 -42.05 +172.05 -41.95 +172.05 -41.85 +172.05 -41.75 +172.05 -41.65 +172.05 -41.55 +172.05 -41.45 +172.05 -41.35 +172.05 -41.25 +172.05 -41.15 +172.05 -41.05 +172.05 -40.95 +172.05 -40.85 +172.05 -40.75 +172.05 -40.65 +172.05 -40.55 +172.05 -40.45 +172.05 -40.35 +172.05 -40.25 +172.05 -40.15 +172.05 -40.05 +172.15 -44.45 +172.15 -44.35 +172.15 -44.25 +172.15 -44.15 +172.15 -44.05 +172.15 -43.95 +172.15 -43.85 +172.15 -43.75 +172.15 -43.65 +172.15 -43.55 +172.15 -43.45 +172.15 -43.35 +172.15 -43.25 +172.15 -43.15 +172.15 -43.05 +172.15 -42.95 +172.15 -42.85 +172.15 -42.75 +172.15 -42.65 +172.15 -42.55 +172.15 -42.45 +172.15 -42.35 +172.15 -42.25 +172.15 -42.15 +172.15 -42.05 +172.15 -41.95 +172.15 -41.85 +172.15 -41.75 +172.15 -41.65 +172.15 -41.55 +172.15 -41.45 +172.15 -41.35 +172.15 -41.25 +172.15 -41.15 +172.15 -41.05 +172.15 -40.95 +172.15 -40.85 +172.15 -40.75 +172.15 -40.65 +172.15 -40.55 +172.15 -40.45 +172.15 -40.35 +172.15 -40.25 +172.15 -40.15 +172.15 -40.05 +172.15 -39.95 +172.25 -44.35 +172.25 -44.25 +172.25 -44.15 +172.25 -44.05 +172.25 -43.95 +172.25 -43.85 +172.25 -43.75 +172.25 -43.65 +172.25 -43.55 +172.25 -43.45 +172.25 -43.35 +172.25 -43.25 +172.25 -43.15 +172.25 -43.05 +172.25 -42.95 +172.25 -42.85 +172.25 -42.75 +172.25 -42.65 +172.25 -42.55 +172.25 -42.45 +172.25 -42.35 +172.25 -42.25 +172.25 -42.15 +172.25 -42.05 +172.25 -41.95 +172.25 -41.85 +172.25 -41.75 +172.25 -41.65 +172.25 -41.55 +172.25 -41.45 +172.25 -41.35 +172.25 -41.25 +172.25 -41.15 +172.25 -41.05 +172.25 -40.95 +172.25 -40.85 +172.25 -40.75 +172.25 -40.65 +172.25 -40.55 +172.25 -40.45 +172.25 -40.35 +172.25 -40.25 +172.25 -40.15 +172.25 -40.05 +172.25 -39.95 +172.25 -39.85 +172.25 -34.75 +172.25 -34.65 +172.25 -34.55 +172.25 -34.45 +172.25 -34.35 +172.35 -44.35 +172.35 -44.25 +172.35 -44.15 +172.35 -44.05 +172.35 -43.95 +172.35 -43.85 +172.35 -43.75 +172.35 -43.65 +172.35 -43.55 +172.35 -43.45 +172.35 -43.35 +172.35 -43.25 +172.35 -43.15 +172.35 -43.05 +172.35 -42.95 +172.35 -42.85 +172.35 -42.75 +172.35 -42.65 +172.35 -42.55 +172.35 -42.45 +172.35 -42.35 +172.35 -42.25 +172.35 -42.15 +172.35 -42.05 +172.35 -41.95 +172.35 -41.85 +172.35 -41.75 +172.35 -41.65 +172.35 -41.55 +172.35 -41.45 +172.35 -41.35 +172.35 -41.25 +172.35 -41.15 +172.35 -41.05 +172.35 -40.95 +172.35 -40.85 +172.35 -40.75 +172.35 -40.65 +172.35 -40.55 +172.35 -40.45 +172.35 -40.35 +172.35 -40.25 +172.35 -40.15 +172.35 -40.05 +172.35 -39.95 +172.35 -39.85 +172.35 -34.85 +172.35 -34.75 +172.35 -34.65 +172.35 -34.55 +172.35 -34.45 +172.35 -34.35 +172.35 -34.25 +172.35 -34.15 +172.45 -44.35 +172.45 -44.25 +172.45 -44.15 +172.45 -44.05 +172.45 -43.95 +172.45 -43.85 +172.45 -43.75 +172.45 -43.65 +172.45 -43.55 +172.45 -43.45 +172.45 -43.35 +172.45 -43.25 +172.45 -43.15 +172.45 -43.05 +172.45 -42.95 +172.45 -42.85 +172.45 -42.75 +172.45 -42.65 +172.45 -42.55 +172.45 -42.45 +172.45 -42.35 +172.45 -42.25 +172.45 -42.15 +172.45 -42.05 +172.45 -41.95 +172.45 -41.85 +172.45 -41.75 +172.45 -41.65 +172.45 -41.55 +172.45 -41.45 +172.45 -41.35 +172.45 -41.25 +172.45 -41.15 +172.45 -41.05 +172.45 -40.95 +172.45 -40.85 +172.45 -40.75 +172.45 -40.65 +172.45 -40.55 +172.45 -40.45 +172.45 -40.35 +172.45 -40.25 +172.45 -40.15 +172.45 -40.05 +172.45 -39.95 +172.45 -39.85 +172.45 -39.75 +172.45 -35.05 +172.45 -34.95 +172.45 -34.85 +172.45 -34.75 +172.45 -34.65 +172.45 -34.55 +172.45 -34.45 +172.45 -34.35 +172.45 -34.25 +172.45 -34.15 +172.45 -34.05 +172.55 -44.25 +172.55 -44.15 +172.55 -44.05 +172.55 -43.95 +172.55 -43.85 +172.55 -43.75 +172.55 -43.65 +172.55 -43.55 +172.55 -43.45 +172.55 -43.35 +172.55 -43.25 +172.55 -43.15 +172.55 -43.05 +172.55 -42.95 +172.55 -42.85 +172.55 -42.75 +172.55 -42.65 +172.55 -42.55 +172.55 -42.45 +172.55 -42.35 +172.55 -42.25 +172.55 -42.15 +172.55 -42.05 +172.55 -41.95 +172.55 -41.85 +172.55 -41.75 +172.55 -41.65 +172.55 -41.55 +172.55 -41.45 +172.55 -41.35 +172.55 -41.25 +172.55 -41.15 +172.55 -41.05 +172.55 -40.95 +172.55 -40.85 +172.55 -40.75 +172.55 -40.65 +172.55 -40.55 +172.55 -40.45 +172.55 -40.35 +172.55 -40.25 +172.55 -40.15 +172.55 -40.05 +172.55 -39.95 +172.55 -39.85 +172.55 -39.75 +172.55 -39.65 +172.55 -35.45 +172.55 -35.35 +172.55 -35.25 +172.55 -35.15 +172.55 -35.05 +172.55 -34.95 +172.55 -34.85 +172.55 -34.75 +172.55 -34.65 +172.55 -34.55 +172.55 -34.45 +172.55 -34.35 +172.55 -34.25 +172.55 -34.15 +172.55 -34.05 +172.65 -44.25 +172.65 -44.15 +172.65 -44.05 +172.65 -43.95 +172.65 -43.85 +172.65 -43.75 +172.65 -43.65 +172.65 -43.55 +172.65 -43.45 +172.65 -43.35 +172.65 -43.25 +172.65 -43.15 +172.65 -43.05 +172.65 -42.95 +172.65 -42.85 +172.65 -42.75 +172.65 -42.65 +172.65 -42.55 +172.65 -42.45 +172.65 -42.35 +172.65 -42.25 +172.65 -42.15 +172.65 -42.05 +172.65 -41.95 +172.65 -41.85 +172.65 -41.75 +172.65 -41.65 +172.65 -41.55 +172.65 -41.45 +172.65 -41.35 +172.65 -41.25 +172.65 -41.15 +172.65 -41.05 +172.65 -40.95 +172.65 -40.85 +172.65 -40.75 +172.65 -40.65 +172.65 -40.55 +172.65 -40.45 +172.65 -40.35 +172.65 -40.25 +172.65 -40.15 +172.65 -40.05 +172.65 -39.95 +172.65 -39.85 +172.65 -39.75 +172.65 -39.65 +172.65 -39.55 +172.65 -35.55 +172.65 -35.45 +172.65 -35.35 +172.65 -35.25 +172.65 -35.15 +172.65 -35.05 +172.65 -34.95 +172.65 -34.85 +172.65 -34.75 +172.65 -34.65 +172.65 -34.55 +172.65 -34.45 +172.65 -34.35 +172.65 -34.25 +172.65 -34.15 +172.65 -34.05 +172.65 -33.95 +172.75 -44.35 +172.75 -44.25 +172.75 -44.15 +172.75 -44.05 +172.75 -43.95 +172.75 -43.85 +172.75 -43.75 +172.75 -43.65 +172.75 -43.55 +172.75 -43.45 +172.75 -43.35 +172.75 -43.25 +172.75 -43.15 +172.75 -43.05 +172.75 -42.95 +172.75 -42.85 +172.75 -42.75 +172.75 -42.65 +172.75 -42.55 +172.75 -42.45 +172.75 -42.35 +172.75 -42.25 +172.75 -42.15 +172.75 -42.05 +172.75 -41.95 +172.75 -41.85 +172.75 -41.75 +172.75 -41.65 +172.75 -41.55 +172.75 -41.45 +172.75 -41.35 +172.75 -41.25 +172.75 -41.15 +172.75 -41.05 +172.75 -40.95 +172.75 -40.85 +172.75 -40.75 +172.75 -40.65 +172.75 -40.55 +172.75 -40.45 +172.75 -40.35 +172.75 -40.25 +172.75 -40.15 +172.75 -40.05 +172.75 -39.95 +172.75 -39.85 +172.75 -39.75 +172.75 -39.65 +172.75 -39.55 +172.75 -39.45 +172.75 -35.65 +172.75 -35.55 +172.75 -35.45 +172.75 -35.35 +172.75 -35.25 +172.75 -35.15 +172.75 -35.05 +172.75 -34.95 +172.75 -34.85 +172.75 -34.75 +172.75 -34.65 +172.75 -34.55 +172.75 -34.45 +172.75 -34.35 +172.75 -34.25 +172.75 -34.15 +172.75 -34.05 +172.75 -33.95 +172.85 -44.35 +172.85 -44.25 +172.85 -44.15 +172.85 -44.05 +172.85 -43.95 +172.85 -43.85 +172.85 -43.75 +172.85 -43.65 +172.85 -43.55 +172.85 -43.45 +172.85 -43.35 +172.85 -43.25 +172.85 -43.15 +172.85 -43.05 +172.85 -42.95 +172.85 -42.85 +172.85 -42.75 +172.85 -42.65 +172.85 -42.55 +172.85 -42.45 +172.85 -42.35 +172.85 -42.25 +172.85 -42.15 +172.85 -42.05 +172.85 -41.95 +172.85 -41.85 +172.85 -41.75 +172.85 -41.65 +172.85 -41.55 +172.85 -41.45 +172.85 -41.35 +172.85 -41.25 +172.85 -41.15 +172.85 -41.05 +172.85 -40.95 +172.85 -40.85 +172.85 -40.75 +172.85 -40.65 +172.85 -40.55 +172.85 -40.45 +172.85 -40.35 +172.85 -40.25 +172.85 -40.15 +172.85 -40.05 +172.85 -39.95 +172.85 -39.85 +172.85 -39.75 +172.85 -39.65 +172.85 -39.55 +172.85 -39.45 +172.85 -39.35 +172.85 -35.75 +172.85 -35.65 +172.85 -35.55 +172.85 -35.45 +172.85 -35.35 +172.85 -35.25 +172.85 -35.15 +172.85 -35.05 +172.85 -34.95 +172.85 -34.85 +172.85 -34.75 +172.85 -34.65 +172.85 -34.55 +172.85 -34.45 +172.85 -34.35 +172.85 -34.25 +172.85 -34.15 +172.85 -34.05 +172.85 -33.95 +172.95 -44.35 +172.95 -44.25 +172.95 -44.15 +172.95 -44.05 +172.95 -43.95 +172.95 -43.85 +172.95 -43.75 +172.95 -43.65 +172.95 -43.55 +172.95 -43.45 +172.95 -43.35 +172.95 -43.25 +172.95 -43.15 +172.95 -43.05 +172.95 -42.95 +172.95 -42.85 +172.95 -42.75 +172.95 -42.65 +172.95 -42.55 +172.95 -42.45 +172.95 -42.35 +172.95 -42.25 +172.95 -42.15 +172.95 -42.05 +172.95 -41.95 +172.95 -41.85 +172.95 -41.75 +172.95 -41.65 +172.95 -41.55 +172.95 -41.45 +172.95 -41.35 +172.95 -41.25 +172.95 -41.15 +172.95 -41.05 +172.95 -40.95 +172.95 -40.85 +172.95 -40.75 +172.95 -40.65 +172.95 -40.55 +172.95 -40.45 +172.95 -40.35 +172.95 -40.25 +172.95 -40.15 +172.95 -40.05 +172.95 -39.95 +172.95 -39.85 +172.95 -39.75 +172.95 -39.65 +172.95 -39.55 +172.95 -39.45 +172.95 -39.35 +172.95 -39.25 +172.95 -35.85 +172.95 -35.75 +172.95 -35.65 +172.95 -35.55 +172.95 -35.45 +172.95 -35.35 +172.95 -35.25 +172.95 -35.15 +172.95 -35.05 +172.95 -34.95 +172.95 -34.85 +172.95 -34.75 +172.95 -34.65 +172.95 -34.55 +172.95 -34.45 +172.95 -34.35 +172.95 -34.25 +172.95 -34.15 +172.95 -34.05 +172.95 -33.95 +173.05 -44.35 +173.05 -44.25 +173.05 -44.15 +173.05 -44.05 +173.05 -43.95 +173.05 -43.85 +173.05 -43.75 +173.05 -43.65 +173.05 -43.55 +173.05 -43.45 +173.05 -43.35 +173.05 -43.25 +173.05 -43.15 +173.05 -43.05 +173.05 -42.95 +173.05 -42.85 +173.05 -42.75 +173.05 -42.65 +173.05 -42.55 +173.05 -42.45 +173.05 -42.35 +173.05 -42.25 +173.05 -42.15 +173.05 -42.05 +173.05 -41.95 +173.05 -41.85 +173.05 -41.75 +173.05 -41.65 +173.05 -41.55 +173.05 -41.45 +173.05 -41.35 +173.05 -41.25 +173.05 -41.15 +173.05 -41.05 +173.05 -40.95 +173.05 -40.85 +173.05 -40.75 +173.05 -40.65 +173.05 -40.55 +173.05 -40.45 +173.05 -40.35 +173.05 -40.25 +173.05 -40.15 +173.05 -40.05 +173.05 -39.95 +173.05 -39.85 +173.05 -39.75 +173.05 -39.65 +173.05 -39.55 +173.05 -39.45 +173.05 -39.35 +173.05 -39.25 +173.05 -35.95 +173.05 -35.85 +173.05 -35.75 +173.05 -35.65 +173.05 -35.55 +173.05 -35.45 +173.05 -35.35 +173.05 -35.25 +173.05 -35.15 +173.05 -35.05 +173.05 -34.95 +173.05 -34.85 +173.05 -34.75 +173.05 -34.65 +173.05 -34.55 +173.05 -34.45 +173.05 -34.35 +173.05 -34.25 +173.05 -34.15 +173.05 -34.05 +173.05 -33.95 +173.15 -44.35 +173.15 -44.25 +173.15 -44.15 +173.15 -44.05 +173.15 -43.95 +173.15 -43.85 +173.15 -43.75 +173.15 -43.65 +173.15 -43.55 +173.15 -43.45 +173.15 -43.35 +173.15 -43.25 +173.15 -43.15 +173.15 -43.05 +173.15 -42.95 +173.15 -42.85 +173.15 -42.75 +173.15 -42.65 +173.15 -42.55 +173.15 -42.45 +173.15 -42.35 +173.15 -42.25 +173.15 -42.15 +173.15 -42.05 +173.15 -41.95 +173.15 -41.85 +173.15 -41.75 +173.15 -41.65 +173.15 -41.55 +173.15 -41.45 +173.15 -41.35 +173.15 -41.25 +173.15 -41.15 +173.15 -41.05 +173.15 -40.95 +173.15 -40.85 +173.15 -40.75 +173.15 -40.65 +173.15 -40.55 +173.15 -40.45 +173.15 -40.35 +173.15 -40.25 +173.15 -40.15 +173.15 -40.05 +173.15 -39.95 +173.15 -39.85 +173.15 -39.75 +173.15 -39.65 +173.15 -39.55 +173.15 -39.45 +173.15 -39.35 +173.15 -39.25 +173.15 -39.15 +173.15 -36.15 +173.15 -36.05 +173.15 -35.95 +173.15 -35.85 +173.15 -35.75 +173.15 -35.65 +173.15 -35.55 +173.15 -35.45 +173.15 -35.35 +173.15 -35.25 +173.15 -35.15 +173.15 -35.05 +173.15 -34.95 +173.15 -34.85 +173.15 -34.75 +173.15 -34.65 +173.15 -34.55 +173.15 -34.45 +173.15 -34.35 +173.15 -34.25 +173.15 -34.15 +173.15 -34.05 +173.15 -33.95 +173.25 -44.25 +173.25 -44.15 +173.25 -44.05 +173.25 -43.95 +173.25 -43.85 +173.25 -43.75 +173.25 -43.65 +173.25 -43.55 +173.25 -43.45 +173.25 -43.35 +173.25 -43.25 +173.25 -43.15 +173.25 -43.05 +173.25 -42.95 +173.25 -42.85 +173.25 -42.75 +173.25 -42.65 +173.25 -42.55 +173.25 -42.45 +173.25 -42.35 +173.25 -42.25 +173.25 -42.15 +173.25 -42.05 +173.25 -41.95 +173.25 -41.85 +173.25 -41.75 +173.25 -41.65 +173.25 -41.55 +173.25 -41.45 +173.25 -41.35 +173.25 -41.25 +173.25 -41.15 +173.25 -41.05 +173.25 -40.95 +173.25 -40.85 +173.25 -40.75 +173.25 -40.65 +173.25 -40.55 +173.25 -40.45 +173.25 -40.35 +173.25 -40.25 +173.25 -40.15 +173.25 -40.05 +173.25 -39.95 +173.25 -39.85 +173.25 -39.75 +173.25 -39.65 +173.25 -39.55 +173.25 -39.45 +173.25 -39.35 +173.25 -39.25 +173.25 -39.15 +173.25 -39.05 +173.25 -36.25 +173.25 -36.15 +173.25 -36.05 +173.25 -35.95 +173.25 -35.85 +173.25 -35.75 +173.25 -35.65 +173.25 -35.55 +173.25 -35.45 +173.25 -35.35 +173.25 -35.25 +173.25 -35.15 +173.25 -35.05 +173.25 -34.95 +173.25 -34.85 +173.25 -34.75 +173.25 -34.65 +173.25 -34.55 +173.25 -34.45 +173.25 -34.35 +173.25 -34.25 +173.25 -34.15 +173.25 -34.05 +173.35 -44.25 +173.35 -44.15 +173.35 -44.05 +173.35 -43.95 +173.35 -43.85 +173.35 -43.75 +173.35 -43.65 +173.35 -43.55 +173.35 -43.45 +173.35 -43.35 +173.35 -43.25 +173.35 -43.15 +173.35 -43.05 +173.35 -42.95 +173.35 -42.85 +173.35 -42.75 +173.35 -42.65 +173.35 -42.55 +173.35 -42.45 +173.35 -42.35 +173.35 -42.25 +173.35 -42.15 +173.35 -42.05 +173.35 -41.95 +173.35 -41.85 +173.35 -41.75 +173.35 -41.65 +173.35 -41.55 +173.35 -41.45 +173.35 -41.35 +173.35 -41.25 +173.35 -41.15 +173.35 -41.05 +173.35 -40.95 +173.35 -40.85 +173.35 -40.75 +173.35 -40.65 +173.35 -40.55 +173.35 -40.45 +173.35 -40.35 +173.35 -40.25 +173.35 -40.15 +173.35 -40.05 +173.35 -39.95 +173.35 -39.85 +173.35 -39.75 +173.35 -39.65 +173.35 -39.55 +173.35 -39.45 +173.35 -39.35 +173.35 -39.25 +173.35 -39.15 +173.35 -39.05 +173.35 -38.95 +173.35 -36.35 +173.35 -36.25 +173.35 -36.15 +173.35 -36.05 +173.35 -35.95 +173.35 -35.85 +173.35 -35.75 +173.35 -35.65 +173.35 -35.55 +173.35 -35.45 +173.35 -35.35 +173.35 -35.25 +173.35 -35.15 +173.35 -35.05 +173.35 -34.95 +173.35 -34.85 +173.35 -34.75 +173.35 -34.65 +173.35 -34.55 +173.35 -34.45 +173.35 -34.35 +173.35 -34.25 +173.35 -34.15 +173.45 -44.15 +173.45 -44.05 +173.45 -43.95 +173.45 -43.85 +173.45 -43.75 +173.45 -43.65 +173.45 -43.55 +173.45 -43.45 +173.45 -43.35 +173.45 -43.25 +173.45 -43.15 +173.45 -43.05 +173.45 -42.95 +173.45 -42.85 +173.45 -42.75 +173.45 -42.65 +173.45 -42.55 +173.45 -42.45 +173.45 -42.35 +173.45 -42.25 +173.45 -42.15 +173.45 -42.05 +173.45 -41.95 +173.45 -41.85 +173.45 -41.75 +173.45 -41.65 +173.45 -41.55 +173.45 -41.45 +173.45 -41.35 +173.45 -41.25 +173.45 -41.15 +173.45 -41.05 +173.45 -40.95 +173.45 -40.85 +173.45 -40.75 +173.45 -40.65 +173.45 -40.55 +173.45 -40.45 +173.45 -40.35 +173.45 -40.25 +173.45 -40.15 +173.45 -40.05 +173.45 -39.95 +173.45 -39.85 +173.45 -39.75 +173.45 -39.65 +173.45 -39.55 +173.45 -39.45 +173.45 -39.35 +173.45 -39.25 +173.45 -39.15 +173.45 -39.05 +173.45 -38.95 +173.45 -38.85 +173.45 -36.45 +173.45 -36.35 +173.45 -36.25 +173.45 -36.15 +173.45 -36.05 +173.45 -35.95 +173.45 -35.85 +173.45 -35.75 +173.45 -35.65 +173.45 -35.55 +173.45 -35.45 +173.45 -35.35 +173.45 -35.25 +173.45 -35.15 +173.45 -35.05 +173.45 -34.95 +173.45 -34.85 +173.45 -34.75 +173.45 -34.65 +173.45 -34.55 +173.45 -34.45 +173.45 -34.35 +173.45 -34.25 +173.45 -34.15 +173.55 -44.05 +173.55 -43.95 +173.55 -43.85 +173.55 -43.75 +173.55 -43.65 +173.55 -43.55 +173.55 -43.45 +173.55 -43.35 +173.55 -43.25 +173.55 -43.15 +173.55 -43.05 +173.55 -42.95 +173.55 -42.85 +173.55 -42.75 +173.55 -42.65 +173.55 -42.55 +173.55 -42.45 +173.55 -42.35 +173.55 -42.25 +173.55 -42.15 +173.55 -42.05 +173.55 -41.95 +173.55 -41.85 +173.55 -41.75 +173.55 -41.65 +173.55 -41.55 +173.55 -41.45 +173.55 -41.35 +173.55 -41.25 +173.55 -41.15 +173.55 -41.05 +173.55 -40.95 +173.55 -40.85 +173.55 -40.75 +173.55 -40.65 +173.55 -40.55 +173.55 -40.45 +173.55 -40.35 +173.55 -40.25 +173.55 -40.15 +173.55 -40.05 +173.55 -39.95 +173.55 -39.85 +173.55 -39.75 +173.55 -39.65 +173.55 -39.55 +173.55 -39.45 +173.55 -39.35 +173.55 -39.25 +173.55 -39.15 +173.55 -39.05 +173.55 -38.95 +173.55 -38.85 +173.55 -38.75 +173.55 -38.65 +173.55 -36.55 +173.55 -36.45 +173.55 -36.35 +173.55 -36.25 +173.55 -36.15 +173.55 -36.05 +173.55 -35.95 +173.55 -35.85 +173.55 -35.75 +173.55 -35.65 +173.55 -35.55 +173.55 -35.45 +173.55 -35.35 +173.55 -35.25 +173.55 -35.15 +173.55 -35.05 +173.55 -34.95 +173.55 -34.85 +173.55 -34.75 +173.55 -34.65 +173.55 -34.55 +173.55 -34.45 +173.55 -34.35 +173.55 -34.25 +173.65 -43.85 +173.65 -43.75 +173.65 -43.65 +173.65 -43.55 +173.65 -43.45 +173.65 -43.35 +173.65 -43.25 +173.65 -43.15 +173.65 -43.05 +173.65 -42.95 +173.65 -42.85 +173.65 -42.75 +173.65 -42.65 +173.65 -42.55 +173.65 -42.45 +173.65 -42.35 +173.65 -42.25 +173.65 -42.15 +173.65 -42.05 +173.65 -41.95 +173.65 -41.85 +173.65 -41.75 +173.65 -41.65 +173.65 -41.55 +173.65 -41.45 +173.65 -41.35 +173.65 -41.25 +173.65 -41.15 +173.65 -41.05 +173.65 -40.95 +173.65 -40.85 +173.65 -40.75 +173.65 -40.65 +173.65 -40.55 +173.65 -40.45 +173.65 -40.35 +173.65 -40.25 +173.65 -40.15 +173.65 -40.05 +173.65 -39.95 +173.65 -39.85 +173.65 -39.75 +173.65 -39.65 +173.65 -39.55 +173.65 -39.45 +173.65 -39.35 +173.65 -39.25 +173.65 -39.15 +173.65 -39.05 +173.65 -38.95 +173.65 -38.85 +173.65 -38.75 +173.65 -38.65 +173.65 -38.55 +173.65 -36.65 +173.65 -36.55 +173.65 -36.45 +173.65 -36.35 +173.65 -36.25 +173.65 -36.15 +173.65 -36.05 +173.65 -35.95 +173.65 -35.85 +173.65 -35.75 +173.65 -35.65 +173.65 -35.55 +173.65 -35.45 +173.65 -35.35 +173.65 -35.25 +173.65 -35.15 +173.65 -35.05 +173.65 -34.95 +173.65 -34.85 +173.65 -34.75 +173.65 -34.65 +173.65 -34.55 +173.65 -34.45 +173.65 -34.35 +173.75 -43.75 +173.75 -43.65 +173.75 -43.35 +173.75 -43.25 +173.75 -43.15 +173.75 -43.05 +173.75 -42.95 +173.75 -42.85 +173.75 -42.75 +173.75 -42.65 +173.75 -42.55 +173.75 -42.45 +173.75 -42.35 +173.75 -42.25 +173.75 -42.15 +173.75 -42.05 +173.75 -41.95 +173.75 -41.85 +173.75 -41.75 +173.75 -41.65 +173.75 -41.55 +173.75 -41.45 +173.75 -41.35 +173.75 -41.25 +173.75 -41.15 +173.75 -41.05 +173.75 -40.95 +173.75 -40.85 +173.75 -40.75 +173.75 -40.65 +173.75 -40.55 +173.75 -40.45 +173.75 -40.35 +173.75 -40.25 +173.75 -40.15 +173.75 -40.05 +173.75 -39.95 +173.75 -39.85 +173.75 -39.75 +173.75 -39.65 +173.75 -39.55 +173.75 -39.45 +173.75 -39.35 +173.75 -39.25 +173.75 -39.15 +173.75 -39.05 +173.75 -38.95 +173.75 -38.85 +173.75 -38.75 +173.75 -38.65 +173.75 -38.55 +173.75 -38.45 +173.75 -38.35 +173.75 -36.85 +173.75 -36.75 +173.75 -36.65 +173.75 -36.55 +173.75 -36.45 +173.75 -36.35 +173.75 -36.25 +173.75 -36.15 +173.75 -36.05 +173.75 -35.95 +173.75 -35.85 +173.75 -35.75 +173.75 -35.65 +173.75 -35.55 +173.75 -35.45 +173.75 -35.35 +173.75 -35.25 +173.75 -35.15 +173.75 -35.05 +173.75 -34.95 +173.75 -34.85 +173.75 -34.75 +173.75 -34.65 +173.75 -34.55 +173.75 -34.45 +173.75 -34.35 +173.85 -43.15 +173.85 -43.05 +173.85 -42.95 +173.85 -42.85 +173.85 -42.75 +173.85 -42.65 +173.85 -42.55 +173.85 -42.45 +173.85 -42.35 +173.85 -42.25 +173.85 -42.15 +173.85 -42.05 +173.85 -41.95 +173.85 -41.85 +173.85 -41.75 +173.85 -41.65 +173.85 -41.55 +173.85 -41.45 +173.85 -41.35 +173.85 -41.25 +173.85 -41.15 +173.85 -41.05 +173.85 -40.95 +173.85 -40.85 +173.85 -40.75 +173.85 -40.65 +173.85 -40.55 +173.85 -40.45 +173.85 -40.35 +173.85 -40.25 +173.85 -40.15 +173.85 -40.05 +173.85 -39.95 +173.85 -39.85 +173.85 -39.75 +173.85 -39.65 +173.85 -39.55 +173.85 -39.45 +173.85 -39.35 +173.85 -39.25 +173.85 -39.15 +173.85 -39.05 +173.85 -38.95 +173.85 -38.85 +173.85 -38.75 +173.85 -38.65 +173.85 -38.55 +173.85 -38.45 +173.85 -38.35 +173.85 -38.25 +173.85 -38.15 +173.85 -36.95 +173.85 -36.85 +173.85 -36.75 +173.85 -36.65 +173.85 -36.55 +173.85 -36.45 +173.85 -36.35 +173.85 -36.25 +173.85 -36.15 +173.85 -36.05 +173.85 -35.95 +173.85 -35.85 +173.85 -35.75 +173.85 -35.65 +173.85 -35.55 +173.85 -35.45 +173.85 -35.35 +173.85 -35.25 +173.85 -35.15 +173.85 -35.05 +173.85 -34.95 +173.85 -34.85 +173.85 -34.75 +173.85 -34.65 +173.85 -34.55 +173.85 -34.45 +173.95 -43.05 +173.95 -42.95 +173.95 -42.85 +173.95 -42.75 +173.95 -42.65 +173.95 -42.55 +173.95 -42.45 +173.95 -42.35 +173.95 -42.25 +173.95 -42.15 +173.95 -42.05 +173.95 -41.95 +173.95 -41.85 +173.95 -41.75 +173.95 -41.65 +173.95 -41.55 +173.95 -41.45 +173.95 -41.35 +173.95 -41.25 +173.95 -41.15 +173.95 -41.05 +173.95 -40.95 +173.95 -40.85 +173.95 -40.75 +173.95 -40.65 +173.95 -40.55 +173.95 -40.45 +173.95 -40.35 +173.95 -40.25 +173.95 -40.15 +173.95 -40.05 +173.95 -39.95 +173.95 -39.85 +173.95 -39.75 +173.95 -39.65 +173.95 -39.55 +173.95 -39.45 +173.95 -39.35 +173.95 -39.25 +173.95 -39.15 +173.95 -39.05 +173.95 -38.95 +173.95 -38.85 +173.95 -38.75 +173.95 -38.65 +173.95 -38.55 +173.95 -38.45 +173.95 -38.35 +173.95 -38.25 +173.95 -38.15 +173.95 -38.05 +173.95 -37.95 +173.95 -37.15 +173.95 -37.05 +173.95 -36.95 +173.95 -36.85 +173.95 -36.75 +173.95 -36.65 +173.95 -36.55 +173.95 -36.45 +173.95 -36.35 +173.95 -36.25 +173.95 -36.15 +173.95 -36.05 +173.95 -35.95 +173.95 -35.85 +173.95 -35.75 +173.95 -35.65 +173.95 -35.55 +173.95 -35.45 +173.95 -35.35 +173.95 -35.25 +173.95 -35.15 +173.95 -35.05 +173.95 -34.95 +173.95 -34.85 +173.95 -34.75 +173.95 -34.65 +173.95 -34.55 +173.95 -34.45 +174.05 -42.95 +174.05 -42.85 +174.05 -42.75 +174.05 -42.65 +174.05 -42.55 +174.05 -42.45 +174.05 -42.35 +174.05 -42.25 +174.05 -42.15 +174.05 -42.05 +174.05 -41.95 +174.05 -41.85 +174.05 -41.75 +174.05 -41.65 +174.05 -41.55 +174.05 -41.45 +174.05 -41.35 +174.05 -41.25 +174.05 -41.15 +174.05 -41.05 +174.05 -40.95 +174.05 -40.85 +174.05 -40.75 +174.05 -40.65 +174.05 -40.55 +174.05 -40.45 +174.05 -40.35 +174.05 -40.25 +174.05 -40.15 +174.05 -40.05 +174.05 -39.95 +174.05 -39.85 +174.05 -39.75 +174.05 -39.65 +174.05 -39.55 +174.05 -39.45 +174.05 -39.35 +174.05 -39.25 +174.05 -39.15 +174.05 -39.05 +174.05 -38.95 +174.05 -38.85 +174.05 -38.75 +174.05 -38.65 +174.05 -38.55 +174.05 -38.45 +174.05 -38.35 +174.05 -38.25 +174.05 -38.15 +174.05 -38.05 +174.05 -37.95 +174.05 -37.85 +174.05 -37.75 +174.05 -37.45 +174.05 -37.35 +174.05 -37.25 +174.05 -37.15 +174.05 -37.05 +174.05 -36.95 +174.05 -36.85 +174.05 -36.75 +174.05 -36.65 +174.05 -36.55 +174.05 -36.45 +174.05 -36.35 +174.05 -36.25 +174.05 -36.15 +174.05 -36.05 +174.05 -35.95 +174.05 -35.85 +174.05 -35.75 +174.05 -35.65 +174.05 -35.55 +174.05 -35.45 +174.05 -35.35 +174.05 -35.25 +174.05 -35.15 +174.05 -35.05 +174.05 -34.95 +174.05 -34.85 +174.05 -34.75 +174.05 -34.65 +174.05 -34.55 +174.15 -42.85 +174.15 -42.75 +174.15 -42.65 +174.15 -42.55 +174.15 -42.45 +174.15 -42.35 +174.15 -42.25 +174.15 -42.15 +174.15 -42.05 +174.15 -41.95 +174.15 -41.85 +174.15 -41.75 +174.15 -41.65 +174.15 -41.55 +174.15 -41.45 +174.15 -41.35 +174.15 -41.25 +174.15 -41.15 +174.15 -41.05 +174.15 -40.95 +174.15 -40.85 +174.15 -40.75 +174.15 -40.65 +174.15 -40.55 +174.15 -40.45 +174.15 -40.35 +174.15 -40.25 +174.15 -40.15 +174.15 -40.05 +174.15 -39.95 +174.15 -39.85 +174.15 -39.75 +174.15 -39.65 +174.15 -39.55 +174.15 -39.45 +174.15 -39.35 +174.15 -39.25 +174.15 -39.15 +174.15 -39.05 +174.15 -38.95 +174.15 -38.85 +174.15 -38.75 +174.15 -38.65 +174.15 -38.55 +174.15 -38.45 +174.15 -38.35 +174.15 -38.25 +174.15 -38.15 +174.15 -38.05 +174.15 -37.95 +174.15 -37.85 +174.15 -37.75 +174.15 -37.65 +174.15 -37.55 +174.15 -37.45 +174.15 -37.35 +174.15 -37.25 +174.15 -37.15 +174.15 -37.05 +174.15 -36.95 +174.15 -36.85 +174.15 -36.75 +174.15 -36.65 +174.15 -36.55 +174.15 -36.45 +174.15 -36.35 +174.15 -36.25 +174.15 -36.15 +174.15 -36.05 +174.15 -35.95 +174.15 -35.85 +174.15 -35.75 +174.15 -35.65 +174.15 -35.55 +174.15 -35.45 +174.15 -35.35 +174.15 -35.25 +174.15 -35.15 +174.15 -35.05 +174.15 -34.95 +174.15 -34.85 +174.15 -34.75 +174.15 -34.65 +174.15 -34.55 +174.25 -42.75 +174.25 -42.65 +174.25 -42.55 +174.25 -42.45 +174.25 -42.35 +174.25 -42.25 +174.25 -42.15 +174.25 -42.05 +174.25 -41.95 +174.25 -41.85 +174.25 -41.75 +174.25 -41.65 +174.25 -41.55 +174.25 -41.45 +174.25 -41.35 +174.25 -41.25 +174.25 -41.15 +174.25 -41.05 +174.25 -40.95 +174.25 -40.85 +174.25 -40.75 +174.25 -40.65 +174.25 -40.55 +174.25 -40.45 +174.25 -40.35 +174.25 -40.25 +174.25 -40.15 +174.25 -40.05 +174.25 -39.95 +174.25 -39.85 +174.25 -39.75 +174.25 -39.65 +174.25 -39.55 +174.25 -39.45 +174.25 -39.35 +174.25 -39.25 +174.25 -39.15 +174.25 -39.05 +174.25 -38.95 +174.25 -38.85 +174.25 -38.75 +174.25 -38.65 +174.25 -38.55 +174.25 -38.45 +174.25 -38.35 +174.25 -38.25 +174.25 -38.15 +174.25 -38.05 +174.25 -37.95 +174.25 -37.85 +174.25 -37.75 +174.25 -37.65 +174.25 -37.55 +174.25 -37.45 +174.25 -37.35 +174.25 -37.25 +174.25 -37.15 +174.25 -37.05 +174.25 -36.95 +174.25 -36.85 +174.25 -36.75 +174.25 -36.65 +174.25 -36.55 +174.25 -36.45 +174.25 -36.35 +174.25 -36.25 +174.25 -36.15 +174.25 -36.05 +174.25 -35.95 +174.25 -35.85 +174.25 -35.75 +174.25 -35.65 +174.25 -35.55 +174.25 -35.45 +174.25 -35.35 +174.25 -35.25 +174.25 -35.15 +174.25 -35.05 +174.25 -34.95 +174.25 -34.85 +174.25 -34.75 +174.25 -34.65 +174.35 -42.55 +174.35 -42.45 +174.35 -42.35 +174.35 -42.25 +174.35 -42.15 +174.35 -42.05 +174.35 -41.95 +174.35 -41.85 +174.35 -41.75 +174.35 -41.65 +174.35 -41.55 +174.35 -41.45 +174.35 -41.35 +174.35 -41.25 +174.35 -41.15 +174.35 -41.05 +174.35 -40.95 +174.35 -40.85 +174.35 -40.75 +174.35 -40.65 +174.35 -40.55 +174.35 -40.45 +174.35 -40.35 +174.35 -40.25 +174.35 -40.15 +174.35 -40.05 +174.35 -39.95 +174.35 -39.85 +174.35 -39.75 +174.35 -39.65 +174.35 -39.55 +174.35 -39.45 +174.35 -39.35 +174.35 -39.25 +174.35 -39.15 +174.35 -39.05 +174.35 -38.95 +174.35 -38.85 +174.35 -38.75 +174.35 -38.65 +174.35 -38.55 +174.35 -38.45 +174.35 -38.35 +174.35 -38.25 +174.35 -38.15 +174.35 -38.05 +174.35 -37.95 +174.35 -37.85 +174.35 -37.75 +174.35 -37.65 +174.35 -37.55 +174.35 -37.45 +174.35 -37.35 +174.35 -37.25 +174.35 -37.15 +174.35 -37.05 +174.35 -36.95 +174.35 -36.85 +174.35 -36.75 +174.35 -36.65 +174.35 -36.55 +174.35 -36.45 +174.35 -36.35 +174.35 -36.25 +174.35 -36.15 +174.35 -36.05 +174.35 -35.95 +174.35 -35.85 +174.35 -35.75 +174.35 -35.65 +174.35 -35.55 +174.35 -35.45 +174.35 -35.35 +174.35 -35.25 +174.35 -35.15 +174.35 -35.05 +174.35 -34.95 +174.35 -34.85 +174.35 -34.75 +174.45 -42.45 +174.45 -42.35 +174.45 -42.25 +174.45 -42.15 +174.45 -42.05 +174.45 -41.95 +174.45 -41.85 +174.45 -41.75 +174.45 -41.65 +174.45 -41.55 +174.45 -41.45 +174.45 -41.35 +174.45 -41.25 +174.45 -41.15 +174.45 -41.05 +174.45 -40.95 +174.45 -40.85 +174.45 -40.75 +174.45 -40.65 +174.45 -40.55 +174.45 -40.45 +174.45 -40.35 +174.45 -40.25 +174.45 -40.15 +174.45 -40.05 +174.45 -39.95 +174.45 -39.85 +174.45 -39.75 +174.45 -39.65 +174.45 -39.55 +174.45 -39.45 +174.45 -39.35 +174.45 -39.25 +174.45 -39.15 +174.45 -39.05 +174.45 -38.95 +174.45 -38.85 +174.45 -38.75 +174.45 -38.65 +174.45 -38.55 +174.45 -38.45 +174.45 -38.35 +174.45 -38.25 +174.45 -38.15 +174.45 -38.05 +174.45 -37.95 +174.45 -37.85 +174.45 -37.75 +174.45 -37.65 +174.45 -37.55 +174.45 -37.45 +174.45 -37.35 +174.45 -37.25 +174.45 -37.15 +174.45 -37.05 +174.45 -36.95 +174.45 -36.85 +174.45 -36.75 +174.45 -36.65 +174.45 -36.55 +174.45 -36.45 +174.45 -36.35 +174.45 -36.25 +174.45 -36.15 +174.45 -36.05 +174.45 -35.95 +174.45 -35.85 +174.45 -35.75 +174.45 -35.65 +174.45 -35.55 +174.45 -35.45 +174.45 -35.35 +174.45 -35.25 +174.45 -35.15 +174.45 -35.05 +174.45 -34.95 +174.45 -34.85 +174.55 -42.35 +174.55 -42.25 +174.55 -42.15 +174.55 -42.05 +174.55 -41.95 +174.55 -41.85 +174.55 -41.75 +174.55 -41.65 +174.55 -41.55 +174.55 -41.45 +174.55 -41.35 +174.55 -41.25 +174.55 -41.15 +174.55 -41.05 +174.55 -40.95 +174.55 -40.85 +174.55 -40.75 +174.55 -40.65 +174.55 -40.55 +174.55 -40.45 +174.55 -40.35 +174.55 -40.25 +174.55 -40.15 +174.55 -40.05 +174.55 -39.95 +174.55 -39.85 +174.55 -39.75 +174.55 -39.65 +174.55 -39.55 +174.55 -39.45 +174.55 -39.35 +174.55 -39.25 +174.55 -39.15 +174.55 -39.05 +174.55 -38.95 +174.55 -38.85 +174.55 -38.75 +174.55 -38.65 +174.55 -38.55 +174.55 -38.45 +174.55 -38.35 +174.55 -38.25 +174.55 -38.15 +174.55 -38.05 +174.55 -37.95 +174.55 -37.85 +174.55 -37.75 +174.55 -37.65 +174.55 -37.55 +174.55 -37.45 +174.55 -37.35 +174.55 -37.25 +174.55 -37.15 +174.55 -37.05 +174.55 -36.95 +174.55 -36.85 +174.55 -36.75 +174.55 -36.65 +174.55 -36.55 +174.55 -36.45 +174.55 -36.35 +174.55 -36.25 +174.55 -36.15 +174.55 -36.05 +174.55 -35.95 +174.55 -35.85 +174.55 -35.75 +174.55 -35.65 +174.55 -35.55 +174.55 -35.45 +174.55 -35.35 +174.55 -35.25 +174.55 -35.15 +174.55 -35.05 +174.55 -34.95 +174.65 -42.25 +174.65 -42.15 +174.65 -42.05 +174.65 -41.95 +174.65 -41.85 +174.65 -41.75 +174.65 -41.65 +174.65 -41.55 +174.65 -41.45 +174.65 -41.35 +174.65 -41.25 +174.65 -41.15 +174.65 -41.05 +174.65 -40.95 +174.65 -40.85 +174.65 -40.75 +174.65 -40.65 +174.65 -40.55 +174.65 -40.45 +174.65 -40.35 +174.65 -40.25 +174.65 -40.15 +174.65 -40.05 +174.65 -39.95 +174.65 -39.85 +174.65 -39.75 +174.65 -39.65 +174.65 -39.55 +174.65 -39.45 +174.65 -39.35 +174.65 -39.25 +174.65 -39.15 +174.65 -39.05 +174.65 -38.95 +174.65 -38.85 +174.65 -38.75 +174.65 -38.65 +174.65 -38.55 +174.65 -38.45 +174.65 -38.35 +174.65 -38.25 +174.65 -38.15 +174.65 -38.05 +174.65 -37.95 +174.65 -37.85 +174.65 -37.75 +174.65 -37.65 +174.65 -37.55 +174.65 -37.45 +174.65 -37.35 +174.65 -37.25 +174.65 -37.15 +174.65 -37.05 +174.65 -36.95 +174.65 -36.85 +174.65 -36.75 +174.65 -36.65 +174.65 -36.55 +174.65 -36.45 +174.65 -36.35 +174.65 -36.25 +174.65 -36.15 +174.65 -36.05 +174.65 -35.95 +174.65 -35.85 +174.65 -35.75 +174.65 -35.65 +174.65 -35.55 +174.65 -35.45 +174.65 -35.35 +174.65 -35.25 +174.65 -35.15 +174.65 -35.05 +174.75 -42.15 +174.75 -42.05 +174.75 -41.95 +174.75 -41.85 +174.75 -41.75 +174.75 -41.65 +174.75 -41.55 +174.75 -41.45 +174.75 -41.35 +174.75 -41.25 +174.75 -41.15 +174.75 -41.05 +174.75 -40.95 +174.75 -40.85 +174.75 -40.75 +174.75 -40.65 +174.75 -40.55 +174.75 -40.45 +174.75 -40.35 +174.75 -40.25 +174.75 -40.15 +174.75 -40.05 +174.75 -39.95 +174.75 -39.85 +174.75 -39.75 +174.75 -39.65 +174.75 -39.55 +174.75 -39.45 +174.75 -39.35 +174.75 -39.25 +174.75 -39.15 +174.75 -39.05 +174.75 -38.95 +174.75 -38.85 +174.75 -38.75 +174.75 -38.65 +174.75 -38.55 +174.75 -38.45 +174.75 -38.35 +174.75 -38.25 +174.75 -38.15 +174.75 -38.05 +174.75 -37.95 +174.75 -37.85 +174.75 -37.75 +174.75 -37.65 +174.75 -37.55 +174.75 -37.45 +174.75 -37.35 +174.75 -37.25 +174.75 -37.15 +174.75 -37.05 +174.75 -36.95 +174.75 -36.85 +174.75 -36.75 +174.75 -36.65 +174.75 -36.55 +174.75 -36.45 +174.75 -36.35 +174.75 -36.25 +174.75 -36.15 +174.75 -36.05 +174.75 -35.95 +174.75 -35.85 +174.75 -35.75 +174.75 -35.65 +174.75 -35.55 +174.75 -35.45 +174.75 -35.35 +174.75 -35.25 +174.75 -35.15 +174.85 -42.15 +174.85 -42.05 +174.85 -41.95 +174.85 -41.85 +174.85 -41.75 +174.85 -41.65 +174.85 -41.55 +174.85 -41.45 +174.85 -41.35 +174.85 -41.25 +174.85 -41.15 +174.85 -41.05 +174.85 -40.95 +174.85 -40.85 +174.85 -40.75 +174.85 -40.65 +174.85 -40.55 +174.85 -40.45 +174.85 -40.35 +174.85 -40.25 +174.85 -40.15 +174.85 -40.05 +174.85 -39.95 +174.85 -39.85 +174.85 -39.75 +174.85 -39.65 +174.85 -39.55 +174.85 -39.45 +174.85 -39.35 +174.85 -39.25 +174.85 -39.15 +174.85 -39.05 +174.85 -38.95 +174.85 -38.85 +174.85 -38.75 +174.85 -38.65 +174.85 -38.55 +174.85 -38.45 +174.85 -38.35 +174.85 -38.25 +174.85 -38.15 +174.85 -38.05 +174.85 -37.95 +174.85 -37.85 +174.85 -37.75 +174.85 -37.65 +174.85 -37.55 +174.85 -37.45 +174.85 -37.35 +174.85 -37.25 +174.85 -37.15 +174.85 -37.05 +174.85 -36.95 +174.85 -36.85 +174.85 -36.75 +174.85 -36.65 +174.85 -36.55 +174.85 -36.45 +174.85 -36.35 +174.85 -36.25 +174.85 -36.15 +174.85 -36.05 +174.85 -35.95 +174.85 -35.85 +174.85 -35.75 +174.85 -35.65 +174.85 -35.55 +174.85 -35.45 +174.85 -35.35 +174.85 -35.25 +174.85 -35.15 +174.95 -42.05 +174.95 -41.95 +174.95 -41.85 +174.95 -41.75 +174.95 -41.65 +174.95 -41.55 +174.95 -41.45 +174.95 -41.35 +174.95 -41.25 +174.95 -41.15 +174.95 -41.05 +174.95 -40.95 +174.95 -40.85 +174.95 -40.75 +174.95 -40.65 +174.95 -40.55 +174.95 -40.45 +174.95 -40.35 +174.95 -40.25 +174.95 -40.15 +174.95 -40.05 +174.95 -39.95 +174.95 -39.85 +174.95 -39.75 +174.95 -39.65 +174.95 -39.55 +174.95 -39.45 +174.95 -39.35 +174.95 -39.25 +174.95 -39.15 +174.95 -39.05 +174.95 -38.95 +174.95 -38.85 +174.95 -38.75 +174.95 -38.65 +174.95 -38.55 +174.95 -38.45 +174.95 -38.35 +174.95 -38.25 +174.95 -38.15 +174.95 -38.05 +174.95 -37.95 +174.95 -37.85 +174.95 -37.75 +174.95 -37.65 +174.95 -37.55 +174.95 -37.45 +174.95 -37.35 +174.95 -37.25 +174.95 -37.15 +174.95 -37.05 +174.95 -36.95 +174.95 -36.85 +174.95 -36.75 +174.95 -36.65 +174.95 -36.55 +174.95 -36.45 +174.95 -36.35 +174.95 -36.25 +174.95 -36.15 +174.95 -36.05 +174.95 -35.95 +174.95 -35.85 +174.95 -35.75 +174.95 -35.65 +174.95 -35.55 +174.95 -35.45 +174.95 -35.35 +174.95 -35.25 +175.05 -41.95 +175.05 -41.85 +175.05 -41.75 +175.05 -41.65 +175.05 -41.55 +175.05 -41.45 +175.05 -41.35 +175.05 -41.25 +175.05 -41.15 +175.05 -41.05 +175.05 -40.95 +175.05 -40.85 +175.05 -40.75 +175.05 -40.65 +175.05 -40.55 +175.05 -40.45 +175.05 -40.35 +175.05 -40.25 +175.05 -40.15 +175.05 -40.05 +175.05 -39.95 +175.05 -39.85 +175.05 -39.75 +175.05 -39.65 +175.05 -39.55 +175.05 -39.45 +175.05 -39.35 +175.05 -39.25 +175.05 -39.15 +175.05 -39.05 +175.05 -38.95 +175.05 -38.85 +175.05 -38.75 +175.05 -38.65 +175.05 -38.55 +175.05 -38.45 +175.05 -38.35 +175.05 -38.25 +175.05 -38.15 +175.05 -38.05 +175.05 -37.95 +175.05 -37.85 +175.05 -37.75 +175.05 -37.65 +175.05 -37.55 +175.05 -37.45 +175.05 -37.35 +175.05 -37.25 +175.05 -37.15 +175.05 -37.05 +175.05 -36.95 +175.05 -36.85 +175.05 -36.75 +175.05 -36.65 +175.05 -36.55 +175.05 -36.45 +175.05 -36.35 +175.05 -36.25 +175.05 -36.15 +175.05 -36.05 +175.05 -35.95 +175.05 -35.85 +175.05 -35.75 +175.05 -35.65 +175.05 -35.55 +175.05 -35.45 +175.05 -35.35 +175.15 -42.05 +175.15 -41.95 +175.15 -41.85 +175.15 -41.75 +175.15 -41.65 +175.15 -41.55 +175.15 -41.45 +175.15 -41.35 +175.15 -41.25 +175.15 -41.15 +175.15 -41.05 +175.15 -40.95 +175.15 -40.85 +175.15 -40.75 +175.15 -40.65 +175.15 -40.55 +175.15 -40.45 +175.15 -40.35 +175.15 -40.25 +175.15 -40.15 +175.15 -40.05 +175.15 -39.95 +175.15 -39.85 +175.15 -39.75 +175.15 -39.65 +175.15 -39.55 +175.15 -39.45 +175.15 -39.35 +175.15 -39.25 +175.15 -39.15 +175.15 -39.05 +175.15 -38.95 +175.15 -38.85 +175.15 -38.75 +175.15 -38.65 +175.15 -38.55 +175.15 -38.45 +175.15 -38.35 +175.15 -38.25 +175.15 -38.15 +175.15 -38.05 +175.15 -37.95 +175.15 -37.85 +175.15 -37.75 +175.15 -37.65 +175.15 -37.55 +175.15 -37.45 +175.15 -37.35 +175.15 -37.25 +175.15 -37.15 +175.15 -37.05 +175.15 -36.95 +175.15 -36.85 +175.15 -36.75 +175.15 -36.65 +175.15 -36.55 +175.15 -36.45 +175.15 -36.35 +175.15 -36.25 +175.15 -36.15 +175.15 -36.05 +175.15 -35.95 +175.15 -35.85 +175.15 -35.75 +175.15 -35.65 +175.15 -35.55 +175.15 -35.45 +175.25 -42.05 +175.25 -41.95 +175.25 -41.85 +175.25 -41.75 +175.25 -41.65 +175.25 -41.55 +175.25 -41.45 +175.25 -41.35 +175.25 -41.25 +175.25 -41.15 +175.25 -41.05 +175.25 -40.95 +175.25 -40.85 +175.25 -40.75 +175.25 -40.65 +175.25 -40.55 +175.25 -40.45 +175.25 -40.35 +175.25 -40.25 +175.25 -40.15 +175.25 -40.05 +175.25 -39.95 +175.25 -39.85 +175.25 -39.75 +175.25 -39.65 +175.25 -39.55 +175.25 -39.45 +175.25 -39.35 +175.25 -39.25 +175.25 -39.15 +175.25 -39.05 +175.25 -38.95 +175.25 -38.85 +175.25 -38.75 +175.25 -38.65 +175.25 -38.55 +175.25 -38.45 +175.25 -38.35 +175.25 -38.25 +175.25 -38.15 +175.25 -38.05 +175.25 -37.95 +175.25 -37.85 +175.25 -37.75 +175.25 -37.65 +175.25 -37.55 +175.25 -37.45 +175.25 -37.35 +175.25 -37.25 +175.25 -37.15 +175.25 -37.05 +175.25 -36.95 +175.25 -36.85 +175.25 -36.75 +175.25 -36.65 +175.25 -36.55 +175.25 -36.45 +175.25 -36.35 +175.25 -36.25 +175.25 -36.15 +175.25 -36.05 +175.25 -35.95 +175.25 -35.85 +175.25 -35.75 +175.25 -35.65 +175.25 -35.55 +175.35 -42.05 +175.35 -41.95 +175.35 -41.85 +175.35 -41.75 +175.35 -41.65 +175.35 -41.55 +175.35 -41.45 +175.35 -41.35 +175.35 -41.25 +175.35 -41.15 +175.35 -41.05 +175.35 -40.95 +175.35 -40.85 +175.35 -40.75 +175.35 -40.65 +175.35 -40.55 +175.35 -40.45 +175.35 -40.35 +175.35 -40.25 +175.35 -40.15 +175.35 -40.05 +175.35 -39.95 +175.35 -39.85 +175.35 -39.75 +175.35 -39.65 +175.35 -39.55 +175.35 -39.45 +175.35 -39.35 +175.35 -39.25 +175.35 -39.15 +175.35 -39.05 +175.35 -38.95 +175.35 -38.85 +175.35 -38.75 +175.35 -38.65 +175.35 -38.55 +175.35 -38.45 +175.35 -38.35 +175.35 -38.25 +175.35 -38.15 +175.35 -38.05 +175.35 -37.95 +175.35 -37.85 +175.35 -37.75 +175.35 -37.65 +175.35 -37.55 +175.35 -37.45 +175.35 -37.35 +175.35 -37.25 +175.35 -37.15 +175.35 -37.05 +175.35 -36.95 +175.35 -36.85 +175.35 -36.75 +175.35 -36.65 +175.35 -36.55 +175.35 -36.45 +175.35 -36.35 +175.35 -36.25 +175.35 -36.15 +175.35 -36.05 +175.35 -35.95 +175.35 -35.85 +175.35 -35.75 +175.35 -35.65 +175.35 -35.55 +175.45 -42.05 +175.45 -41.95 +175.45 -41.85 +175.45 -41.75 +175.45 -41.65 +175.45 -41.55 +175.45 -41.45 +175.45 -41.35 +175.45 -41.25 +175.45 -41.15 +175.45 -41.05 +175.45 -40.95 +175.45 -40.85 +175.45 -40.75 +175.45 -40.65 +175.45 -40.55 +175.45 -40.45 +175.45 -40.35 +175.45 -40.25 +175.45 -40.15 +175.45 -40.05 +175.45 -39.95 +175.45 -39.85 +175.45 -39.75 +175.45 -39.65 +175.45 -39.55 +175.45 -39.45 +175.45 -39.35 +175.45 -39.25 +175.45 -39.15 +175.45 -39.05 +175.45 -38.95 +175.45 -38.85 +175.45 -38.75 +175.45 -38.65 +175.45 -38.55 +175.45 -38.45 +175.45 -38.35 +175.45 -38.25 +175.45 -38.15 +175.45 -38.05 +175.45 -37.95 +175.45 -37.85 +175.45 -37.75 +175.45 -37.65 +175.45 -37.55 +175.45 -37.45 +175.45 -37.35 +175.45 -37.25 +175.45 -37.15 +175.45 -37.05 +175.45 -36.95 +175.45 -36.85 +175.45 -36.75 +175.45 -36.65 +175.45 -36.55 +175.45 -36.45 +175.45 -36.35 +175.45 -36.25 +175.45 -36.15 +175.45 -36.05 +175.45 -35.95 +175.45 -35.85 +175.45 -35.75 +175.45 -35.65 +175.55 -41.95 +175.55 -41.85 +175.55 -41.75 +175.55 -41.65 +175.55 -41.55 +175.55 -41.45 +175.55 -41.35 +175.55 -41.25 +175.55 -41.15 +175.55 -41.05 +175.55 -40.95 +175.55 -40.85 +175.55 -40.75 +175.55 -40.65 +175.55 -40.55 +175.55 -40.45 +175.55 -40.35 +175.55 -40.25 +175.55 -40.15 +175.55 -40.05 +175.55 -39.95 +175.55 -39.85 +175.55 -39.75 +175.55 -39.65 +175.55 -39.55 +175.55 -39.45 +175.55 -39.35 +175.55 -39.25 +175.55 -39.15 +175.55 -39.05 +175.55 -38.95 +175.55 -38.85 +175.55 -38.75 +175.55 -38.65 +175.55 -38.55 +175.55 -38.45 +175.55 -38.35 +175.55 -38.25 +175.55 -38.15 +175.55 -38.05 +175.55 -37.95 +175.55 -37.85 +175.55 -37.75 +175.55 -37.65 +175.55 -37.55 +175.55 -37.45 +175.55 -37.35 +175.55 -37.25 +175.55 -37.15 +175.55 -37.05 +175.55 -36.95 +175.55 -36.85 +175.55 -36.75 +175.55 -36.65 +175.55 -36.55 +175.55 -36.45 +175.55 -36.35 +175.55 -36.25 +175.55 -36.15 +175.55 -36.05 +175.55 -35.95 +175.55 -35.85 +175.55 -35.75 +175.55 -35.65 +175.65 -41.95 +175.65 -41.85 +175.65 -41.75 +175.65 -41.65 +175.65 -41.55 +175.65 -41.45 +175.65 -41.35 +175.65 -41.25 +175.65 -41.15 +175.65 -41.05 +175.65 -40.95 +175.65 -40.85 +175.65 -40.75 +175.65 -40.65 +175.65 -40.55 +175.65 -40.45 +175.65 -40.35 +175.65 -40.25 +175.65 -40.15 +175.65 -40.05 +175.65 -39.95 +175.65 -39.85 +175.65 -39.75 +175.65 -39.65 +175.65 -39.55 +175.65 -39.45 +175.65 -39.35 +175.65 -39.25 +175.65 -39.15 +175.65 -39.05 +175.65 -38.95 +175.65 -38.85 +175.65 -38.75 +175.65 -38.65 +175.65 -38.55 +175.65 -38.45 +175.65 -38.35 +175.65 -38.25 +175.65 -38.15 +175.65 -38.05 +175.65 -37.95 +175.65 -37.85 +175.65 -37.75 +175.65 -37.65 +175.65 -37.55 +175.65 -37.45 +175.65 -37.35 +175.65 -37.25 +175.65 -37.15 +175.65 -37.05 +175.65 -36.95 +175.65 -36.85 +175.65 -36.75 +175.65 -36.65 +175.65 -36.55 +175.65 -36.45 +175.65 -36.35 +175.65 -36.25 +175.65 -36.15 +175.65 -36.05 +175.65 -35.95 +175.65 -35.85 +175.65 -35.75 +175.65 -35.65 +175.75 -41.95 +175.75 -41.85 +175.75 -41.75 +175.75 -41.65 +175.75 -41.55 +175.75 -41.45 +175.75 -41.35 +175.75 -41.25 +175.75 -41.15 +175.75 -41.05 +175.75 -40.95 +175.75 -40.85 +175.75 -40.75 +175.75 -40.65 +175.75 -40.55 +175.75 -40.45 +175.75 -40.35 +175.75 -40.25 +175.75 -40.15 +175.75 -40.05 +175.75 -39.95 +175.75 -39.85 +175.75 -39.75 +175.75 -39.65 +175.75 -39.55 +175.75 -39.45 +175.75 -39.35 +175.75 -39.25 +175.75 -39.15 +175.75 -39.05 +175.75 -38.95 +175.75 -38.85 +175.75 -38.75 +175.75 -38.65 +175.75 -38.55 +175.75 -38.45 +175.75 -38.35 +175.75 -38.25 +175.75 -38.15 +175.75 -38.05 +175.75 -37.95 +175.75 -37.85 +175.75 -37.75 +175.75 -37.65 +175.75 -37.55 +175.75 -37.45 +175.75 -37.35 +175.75 -37.25 +175.75 -37.15 +175.75 -37.05 +175.75 -36.95 +175.75 -36.85 +175.75 -36.75 +175.75 -36.65 +175.75 -36.55 +175.75 -36.45 +175.75 -36.35 +175.75 -36.25 +175.75 -36.15 +175.75 -36.05 +175.75 -35.95 +175.75 -35.85 +175.75 -35.75 +175.85 -41.85 +175.85 -41.75 +175.85 -41.65 +175.85 -41.55 +175.85 -41.45 +175.85 -41.35 +175.85 -41.25 +175.85 -41.15 +175.85 -41.05 +175.85 -40.95 +175.85 -40.85 +175.85 -40.75 +175.85 -40.65 +175.85 -40.55 +175.85 -40.45 +175.85 -40.35 +175.85 -40.25 +175.85 -40.15 +175.85 -40.05 +175.85 -39.95 +175.85 -39.85 +175.85 -39.75 +175.85 -39.65 +175.85 -39.55 +175.85 -39.45 +175.85 -39.35 +175.85 -39.25 +175.85 -39.15 +175.85 -39.05 +175.85 -38.95 +175.85 -38.85 +175.85 -38.75 +175.85 -38.65 +175.85 -38.55 +175.85 -38.45 +175.85 -38.35 +175.85 -38.25 +175.85 -38.15 +175.85 -38.05 +175.85 -37.95 +175.85 -37.85 +175.85 -37.75 +175.85 -37.65 +175.85 -37.55 +175.85 -37.45 +175.85 -37.35 +175.85 -37.25 +175.85 -37.15 +175.85 -37.05 +175.85 -36.95 +175.85 -36.85 +175.85 -36.75 +175.85 -36.65 +175.85 -36.55 +175.85 -36.45 +175.85 -36.35 +175.85 -36.25 +175.85 -36.15 +175.85 -36.05 +175.85 -35.95 +175.85 -35.85 +175.95 -41.85 +175.95 -41.75 +175.95 -41.65 +175.95 -41.55 +175.95 -41.45 +175.95 -41.35 +175.95 -41.25 +175.95 -41.15 +175.95 -41.05 +175.95 -40.95 +175.95 -40.85 +175.95 -40.75 +175.95 -40.65 +175.95 -40.55 +175.95 -40.45 +175.95 -40.35 +175.95 -40.25 +175.95 -40.15 +175.95 -40.05 +175.95 -39.95 +175.95 -39.85 +175.95 -39.75 +175.95 -39.65 +175.95 -39.55 +175.95 -39.45 +175.95 -39.35 +175.95 -39.25 +175.95 -39.15 +175.95 -39.05 +175.95 -38.95 +175.95 -38.85 +175.95 -38.75 +175.95 -38.65 +175.95 -38.55 +175.95 -38.45 +175.95 -38.35 +175.95 -38.25 +175.95 -38.15 +175.95 -38.05 +175.95 -37.95 +175.95 -37.85 +175.95 -37.75 +175.95 -37.65 +175.95 -37.55 +175.95 -37.45 +175.95 -37.35 +175.95 -37.25 +175.95 -37.15 +175.95 -37.05 +175.95 -36.95 +175.95 -36.85 +175.95 -36.75 +175.95 -36.65 +175.95 -36.55 +175.95 -36.45 +175.95 -36.35 +175.95 -36.25 +175.95 -36.15 +175.95 -36.05 +175.95 -35.95 +176.05 -41.75 +176.05 -41.65 +176.05 -41.55 +176.05 -41.45 +176.05 -41.35 +176.05 -41.25 +176.05 -41.15 +176.05 -41.05 +176.05 -40.95 +176.05 -40.85 +176.05 -40.75 +176.05 -40.65 +176.05 -40.55 +176.05 -40.45 +176.05 -40.35 +176.05 -40.25 +176.05 -40.15 +176.05 -40.05 +176.05 -39.95 +176.05 -39.85 +176.05 -39.75 +176.05 -39.65 +176.05 -39.55 +176.05 -39.45 +176.05 -39.35 +176.05 -39.25 +176.05 -39.15 +176.05 -39.05 +176.05 -38.95 +176.05 -38.85 +176.05 -38.75 +176.05 -38.65 +176.05 -38.55 +176.05 -38.45 +176.05 -38.35 +176.05 -38.25 +176.05 -38.15 +176.05 -38.05 +176.05 -37.95 +176.05 -37.85 +176.05 -37.75 +176.05 -37.65 +176.05 -37.55 +176.05 -37.45 +176.05 -37.35 +176.05 -37.25 +176.05 -37.15 +176.05 -37.05 +176.05 -36.95 +176.05 -36.85 +176.05 -36.75 +176.05 -36.65 +176.05 -36.55 +176.05 -36.45 +176.05 -36.35 +176.05 -36.25 +176.05 -36.15 +176.05 -36.05 +176.15 -41.75 +176.15 -41.65 +176.15 -41.55 +176.15 -41.45 +176.15 -41.35 +176.15 -41.25 +176.15 -41.15 +176.15 -41.05 +176.15 -40.95 +176.15 -40.85 +176.15 -40.75 +176.15 -40.65 +176.15 -40.55 +176.15 -40.45 +176.15 -40.35 +176.15 -40.25 +176.15 -40.15 +176.15 -40.05 +176.15 -39.95 +176.15 -39.85 +176.15 -39.75 +176.15 -39.65 +176.15 -39.55 +176.15 -39.45 +176.15 -39.35 +176.15 -39.25 +176.15 -39.15 +176.15 -39.05 +176.15 -38.95 +176.15 -38.85 +176.15 -38.75 +176.15 -38.65 +176.15 -38.55 +176.15 -38.45 +176.15 -38.35 +176.15 -38.25 +176.15 -38.15 +176.15 -38.05 +176.15 -37.95 +176.15 -37.85 +176.15 -37.75 +176.15 -37.65 +176.15 -37.55 +176.15 -37.45 +176.15 -37.35 +176.15 -37.25 +176.15 -37.15 +176.15 -37.05 +176.15 -36.95 +176.15 -36.85 +176.15 -36.75 +176.15 -36.65 +176.15 -36.55 +176.15 -36.45 +176.15 -36.35 +176.15 -36.25 +176.25 -41.65 +176.25 -41.55 +176.25 -41.45 +176.25 -41.35 +176.25 -41.25 +176.25 -41.15 +176.25 -41.05 +176.25 -40.95 +176.25 -40.85 +176.25 -40.75 +176.25 -40.65 +176.25 -40.55 +176.25 -40.45 +176.25 -40.35 +176.25 -40.25 +176.25 -40.15 +176.25 -40.05 +176.25 -39.95 +176.25 -39.85 +176.25 -39.75 +176.25 -39.65 +176.25 -39.55 +176.25 -39.45 +176.25 -39.35 +176.25 -39.25 +176.25 -39.15 +176.25 -39.05 +176.25 -38.95 +176.25 -38.85 +176.25 -38.75 +176.25 -38.65 +176.25 -38.55 +176.25 -38.45 +176.25 -38.35 +176.25 -38.25 +176.25 -38.15 +176.25 -38.05 +176.25 -37.95 +176.25 -37.85 +176.25 -37.75 +176.25 -37.65 +176.25 -37.55 +176.25 -37.45 +176.25 -37.35 +176.25 -37.25 +176.25 -37.15 +176.25 -37.05 +176.25 -36.95 +176.25 -36.85 +176.25 -36.75 +176.25 -36.65 +176.25 -36.55 +176.25 -36.45 +176.25 -36.35 +176.35 -41.55 +176.35 -41.45 +176.35 -41.35 +176.35 -41.25 +176.35 -41.15 +176.35 -41.05 +176.35 -40.95 +176.35 -40.85 +176.35 -40.75 +176.35 -40.65 +176.35 -40.55 +176.35 -40.45 +176.35 -40.35 +176.35 -40.25 +176.35 -40.15 +176.35 -40.05 +176.35 -39.95 +176.35 -39.85 +176.35 -39.75 +176.35 -39.65 +176.35 -39.55 +176.35 -39.45 +176.35 -39.35 +176.35 -39.25 +176.35 -39.15 +176.35 -39.05 +176.35 -38.95 +176.35 -38.85 +176.35 -38.75 +176.35 -38.65 +176.35 -38.55 +176.35 -38.45 +176.35 -38.35 +176.35 -38.25 +176.35 -38.15 +176.35 -38.05 +176.35 -37.95 +176.35 -37.85 +176.35 -37.75 +176.35 -37.65 +176.35 -37.55 +176.35 -37.45 +176.35 -37.35 +176.35 -37.25 +176.35 -37.15 +176.35 -37.05 +176.35 -36.95 +176.35 -36.85 +176.35 -36.75 +176.35 -36.65 +176.35 -36.55 +176.45 -41.55 +176.45 -41.45 +176.45 -41.35 +176.45 -41.25 +176.45 -41.15 +176.45 -41.05 +176.45 -40.95 +176.45 -40.85 +176.45 -40.75 +176.45 -40.65 +176.45 -40.55 +176.45 -40.45 +176.45 -40.35 +176.45 -40.25 +176.45 -40.15 +176.45 -40.05 +176.45 -39.95 +176.45 -39.85 +176.45 -39.75 +176.45 -39.65 +176.45 -39.55 +176.45 -39.45 +176.45 -39.35 +176.45 -39.25 +176.45 -39.15 +176.45 -39.05 +176.45 -38.95 +176.45 -38.85 +176.45 -38.75 +176.45 -38.65 +176.45 -38.55 +176.45 -38.45 +176.45 -38.35 +176.45 -38.25 +176.45 -38.15 +176.45 -38.05 +176.45 -37.95 +176.45 -37.85 +176.45 -37.75 +176.45 -37.65 +176.45 -37.55 +176.45 -37.45 +176.45 -37.35 +176.45 -37.25 +176.45 -37.15 +176.45 -37.05 +176.45 -36.95 +176.55 -41.45 +176.55 -41.35 +176.55 -41.25 +176.55 -41.15 +176.55 -41.05 +176.55 -40.95 +176.55 -40.85 +176.55 -40.75 +176.55 -40.65 +176.55 -40.55 +176.55 -40.45 +176.55 -40.35 +176.55 -40.25 +176.55 -40.15 +176.55 -40.05 +176.55 -39.95 +176.55 -39.85 +176.55 -39.75 +176.55 -39.65 +176.55 -39.55 +176.55 -39.45 +176.55 -39.35 +176.55 -39.25 +176.55 -39.15 +176.55 -39.05 +176.55 -38.95 +176.55 -38.85 +176.55 -38.75 +176.55 -38.65 +176.55 -38.55 +176.55 -38.45 +176.55 -38.35 +176.55 -38.25 +176.55 -38.15 +176.55 -38.05 +176.55 -37.95 +176.55 -37.85 +176.55 -37.75 +176.55 -37.65 +176.55 -37.55 +176.55 -37.45 +176.55 -37.35 +176.55 -37.25 +176.65 -41.35 +176.65 -41.25 +176.65 -41.15 +176.65 -41.05 +176.65 -40.95 +176.65 -40.85 +176.65 -40.75 +176.65 -40.65 +176.65 -40.55 +176.65 -40.45 +176.65 -40.35 +176.65 -40.25 +176.65 -40.15 +176.65 -40.05 +176.65 -39.95 +176.65 -39.85 +176.65 -39.75 +176.65 -39.65 +176.65 -39.55 +176.65 -39.45 +176.65 -39.35 +176.65 -39.25 +176.65 -39.15 +176.65 -39.05 +176.65 -38.95 +176.65 -38.85 +176.65 -38.75 +176.65 -38.65 +176.65 -38.55 +176.65 -38.45 +176.65 -38.35 +176.65 -38.25 +176.65 -38.15 +176.65 -38.05 +176.65 -37.95 +176.65 -37.85 +176.65 -37.75 +176.65 -37.65 +176.65 -37.55 +176.65 -37.45 +176.65 -37.35 +176.75 -41.25 +176.75 -41.15 +176.75 -41.05 +176.75 -40.95 +176.75 -40.85 +176.75 -40.75 +176.75 -40.65 +176.75 -40.55 +176.75 -40.45 +176.75 -40.35 +176.75 -40.25 +176.75 -40.15 +176.75 -40.05 +176.75 -39.95 +176.75 -39.85 +176.75 -39.75 +176.75 -39.65 +176.75 -39.55 +176.75 -39.45 +176.75 -39.35 +176.75 -39.25 +176.75 -39.15 +176.75 -39.05 +176.75 -38.95 +176.75 -38.85 +176.75 -38.75 +176.75 -38.65 +176.75 -38.55 +176.75 -38.45 +176.75 -38.35 +176.75 -38.25 +176.75 -38.15 +176.75 -38.05 +176.75 -37.95 +176.75 -37.85 +176.75 -37.75 +176.75 -37.65 +176.75 -37.55 +176.75 -37.45 +176.75 -37.35 +176.85 -41.15 +176.85 -41.05 +176.85 -40.95 +176.85 -40.85 +176.85 -40.75 +176.85 -40.65 +176.85 -40.55 +176.85 -40.45 +176.85 -40.35 +176.85 -40.25 +176.85 -40.15 +176.85 -40.05 +176.85 -39.95 +176.85 -39.85 +176.85 -39.75 +176.85 -39.65 +176.85 -39.55 +176.85 -39.45 +176.85 -39.35 +176.85 -39.25 +176.85 -39.15 +176.85 -39.05 +176.85 -38.95 +176.85 -38.85 +176.85 -38.75 +176.85 -38.65 +176.85 -38.55 +176.85 -38.45 +176.85 -38.35 +176.85 -38.25 +176.85 -38.15 +176.85 -38.05 +176.85 -37.95 +176.85 -37.85 +176.85 -37.75 +176.85 -37.65 +176.85 -37.55 +176.85 -37.45 +176.85 -37.35 +176.95 -40.95 +176.95 -40.85 +176.95 -40.75 +176.95 -40.65 +176.95 -40.55 +176.95 -40.45 +176.95 -40.35 +176.95 -40.25 +176.95 -40.15 +176.95 -40.05 +176.95 -39.95 +176.95 -39.85 +176.95 -39.75 +176.95 -39.65 +176.95 -39.55 +176.95 -39.45 +176.95 -39.35 +176.95 -39.25 +176.95 -39.15 +176.95 -39.05 +176.95 -38.95 +176.95 -38.85 +176.95 -38.75 +176.95 -38.65 +176.95 -38.55 +176.95 -38.45 +176.95 -38.35 +176.95 -38.25 +176.95 -38.15 +176.95 -38.05 +176.95 -37.95 +176.95 -37.85 +176.95 -37.75 +176.95 -37.65 +176.95 -37.55 +176.95 -37.45 +177.05 -40.85 +177.05 -40.75 +177.05 -40.65 +177.05 -40.55 +177.05 -40.45 +177.05 -40.35 +177.05 -40.25 +177.05 -40.15 +177.05 -40.05 +177.05 -39.95 +177.05 -39.85 +177.05 -39.75 +177.05 -39.65 +177.05 -39.55 +177.05 -39.45 +177.05 -39.35 +177.05 -39.25 +177.05 -39.15 +177.05 -39.05 +177.05 -38.95 +177.05 -38.85 +177.05 -38.75 +177.05 -38.65 +177.05 -38.55 +177.05 -38.45 +177.05 -38.35 +177.05 -38.25 +177.05 -38.15 +177.05 -38.05 +177.05 -37.95 +177.05 -37.85 +177.05 -37.75 +177.05 -37.65 +177.05 -37.55 +177.05 -37.45 +177.15 -40.65 +177.15 -40.55 +177.15 -40.45 +177.15 -40.35 +177.15 -40.25 +177.15 -40.15 +177.15 -40.05 +177.15 -39.95 +177.15 -39.85 +177.15 -39.75 +177.15 -39.65 +177.15 -39.55 +177.15 -39.45 +177.15 -39.35 +177.15 -39.25 +177.15 -39.15 +177.15 -39.05 +177.15 -38.95 +177.15 -38.85 +177.15 -38.75 +177.15 -38.65 +177.15 -38.55 +177.15 -38.45 +177.15 -38.35 +177.15 -38.25 +177.15 -38.15 +177.15 -38.05 +177.15 -37.95 +177.15 -37.85 +177.15 -37.75 +177.15 -37.65 +177.15 -37.55 +177.15 -37.45 +177.25 -40.55 +177.25 -40.45 +177.25 -40.35 +177.25 -40.25 +177.25 -40.15 +177.25 -40.05 +177.25 -39.95 +177.25 -39.85 +177.25 -39.75 +177.25 -39.65 +177.25 -39.55 +177.25 -39.45 +177.25 -39.35 +177.25 -39.25 +177.25 -39.15 +177.25 -39.05 +177.25 -38.95 +177.25 -38.85 +177.25 -38.75 +177.25 -38.65 +177.25 -38.55 +177.25 -38.45 +177.25 -38.35 +177.25 -38.25 +177.25 -38.15 +177.25 -38.05 +177.25 -37.95 +177.25 -37.85 +177.25 -37.75 +177.25 -37.65 +177.25 -37.55 +177.25 -37.45 +177.25 -37.35 +177.35 -40.35 +177.35 -40.25 +177.35 -40.15 +177.35 -40.05 +177.35 -39.95 +177.35 -39.85 +177.35 -39.75 +177.35 -39.65 +177.35 -39.55 +177.35 -39.45 +177.35 -39.35 +177.35 -39.25 +177.35 -39.15 +177.35 -39.05 +177.35 -38.95 +177.35 -38.85 +177.35 -38.75 +177.35 -38.65 +177.35 -38.55 +177.35 -38.45 +177.35 -38.35 +177.35 -38.25 +177.35 -38.15 +177.35 -38.05 +177.35 -37.95 +177.35 -37.85 +177.35 -37.75 +177.35 -37.65 +177.35 -37.55 +177.35 -37.45 +177.35 -37.35 +177.45 -40.25 +177.45 -40.15 +177.45 -40.05 +177.45 -39.95 +177.45 -39.85 +177.45 -39.75 +177.45 -39.65 +177.45 -39.55 +177.45 -39.45 +177.45 -39.35 +177.45 -39.25 +177.45 -39.15 +177.45 -39.05 +177.45 -38.95 +177.45 -38.85 +177.45 -38.75 +177.45 -38.65 +177.45 -38.55 +177.45 -38.45 +177.45 -38.35 +177.45 -38.25 +177.45 -38.15 +177.45 -38.05 +177.45 -37.95 +177.45 -37.85 +177.45 -37.75 +177.45 -37.65 +177.45 -37.55 +177.45 -37.45 +177.45 -37.35 +177.55 -40.05 +177.55 -39.95 +177.55 -39.85 +177.55 -39.75 +177.55 -39.65 +177.55 -39.55 +177.55 -39.45 +177.55 -39.35 +177.55 -39.25 +177.55 -39.15 +177.55 -39.05 +177.55 -38.95 +177.55 -38.85 +177.55 -38.75 +177.55 -38.65 +177.55 -38.55 +177.55 -38.45 +177.55 -38.35 +177.55 -38.25 +177.55 -38.15 +177.55 -38.05 +177.55 -37.95 +177.55 -37.85 +177.55 -37.75 +177.55 -37.65 +177.55 -37.55 +177.55 -37.45 +177.55 -37.35 +177.55 -37.25 +177.65 -39.95 +177.65 -39.85 +177.65 -39.75 +177.65 -39.65 +177.65 -39.55 +177.65 -39.45 +177.65 -39.35 +177.65 -39.25 +177.65 -39.15 +177.65 -39.05 +177.65 -38.95 +177.65 -38.85 +177.65 -38.75 +177.65 -38.65 +177.65 -38.55 +177.65 -38.45 +177.65 -38.35 +177.65 -38.25 +177.65 -38.15 +177.65 -38.05 +177.65 -37.95 +177.65 -37.85 +177.65 -37.75 +177.65 -37.65 +177.65 -37.55 +177.65 -37.45 +177.65 -37.35 +177.65 -37.25 +177.75 -39.75 +177.75 -39.65 +177.75 -39.55 +177.75 -39.45 +177.75 -39.35 +177.75 -39.25 +177.75 -39.15 +177.75 -39.05 +177.75 -38.95 +177.75 -38.85 +177.75 -38.75 +177.75 -38.65 +177.75 -38.55 +177.75 -38.45 +177.75 -38.35 +177.75 -38.25 +177.75 -38.15 +177.75 -38.05 +177.75 -37.95 +177.75 -37.85 +177.75 -37.75 +177.75 -37.65 +177.75 -37.55 +177.75 -37.45 +177.75 -37.35 +177.75 -37.25 +177.85 -39.65 +177.85 -39.55 +177.85 -39.45 +177.85 -39.35 +177.85 -39.25 +177.85 -39.15 +177.85 -39.05 +177.85 -38.95 +177.85 -38.85 +177.85 -38.75 +177.85 -38.65 +177.85 -38.55 +177.85 -38.45 +177.85 -38.35 +177.85 -38.25 +177.85 -38.15 +177.85 -38.05 +177.85 -37.95 +177.85 -37.85 +177.85 -37.75 +177.85 -37.65 +177.85 -37.55 +177.85 -37.45 +177.85 -37.35 +177.85 -37.25 +177.85 -37.15 +177.95 -39.65 +177.95 -39.55 +177.95 -39.45 +177.95 -39.35 +177.95 -39.25 +177.95 -39.15 +177.95 -39.05 +177.95 -38.95 +177.95 -38.85 +177.95 -38.75 +177.95 -38.65 +177.95 -38.55 +177.95 -38.45 +177.95 -38.35 +177.95 -38.25 +177.95 -38.15 +177.95 -38.05 +177.95 -37.95 +177.95 -37.85 +177.95 -37.75 +177.95 -37.65 +177.95 -37.55 +177.95 -37.45 +177.95 -37.35 +177.95 -37.25 +177.95 -37.15 +178.05 -39.65 +178.05 -39.55 +178.05 -39.45 +178.05 -39.35 +178.05 -39.25 +178.05 -39.15 +178.05 -39.05 +178.05 -38.95 +178.05 -38.85 +178.05 -38.75 +178.05 -38.65 +178.05 -38.55 +178.05 -38.45 +178.05 -38.35 +178.05 -38.25 +178.05 -38.15 +178.05 -38.05 +178.05 -37.95 +178.05 -37.85 +178.05 -37.75 +178.05 -37.65 +178.05 -37.55 +178.05 -37.45 +178.05 -37.35 +178.05 -37.25 +178.05 -37.15 +178.15 -39.65 +178.15 -39.55 +178.15 -39.45 +178.15 -39.35 +178.15 -39.25 +178.15 -39.15 +178.15 -39.05 +178.15 -38.95 +178.15 -38.85 +178.15 -38.75 +178.15 -38.65 +178.15 -38.55 +178.15 -38.45 +178.15 -38.35 +178.15 -38.25 +178.15 -38.15 +178.15 -38.05 +178.15 -37.95 +178.15 -37.85 +178.15 -37.75 +178.15 -37.65 +178.15 -37.55 +178.15 -37.45 +178.15 -37.35 +178.15 -37.25 +178.15 -37.15 +178.15 -37.05 +178.25 -39.65 +178.25 -39.55 +178.25 -39.45 +178.25 -39.35 +178.25 -39.25 +178.25 -39.15 +178.25 -39.05 +178.25 -38.95 +178.25 -38.85 +178.25 -38.75 +178.25 -38.65 +178.25 -38.55 +178.25 -38.45 +178.25 -38.35 +178.25 -38.25 +178.25 -38.15 +178.25 -38.05 +178.25 -37.95 +178.25 -37.85 +178.25 -37.75 +178.25 -37.65 +178.25 -37.55 +178.25 -37.45 +178.25 -37.35 +178.25 -37.25 +178.25 -37.15 +178.35 -39.65 +178.35 -39.55 +178.35 -39.45 +178.35 -39.35 +178.35 -39.25 +178.35 -39.15 +178.35 -39.05 +178.35 -38.95 +178.35 -38.85 +178.35 -38.75 +178.35 -38.65 +178.35 -38.55 +178.35 -38.45 +178.35 -38.35 +178.35 -38.25 +178.35 -38.15 +178.35 -38.05 +178.35 -37.95 +178.35 -37.85 +178.35 -37.75 +178.35 -37.65 +178.35 -37.55 +178.35 -37.45 +178.35 -37.35 +178.35 -37.25 +178.35 -37.15 +178.45 -39.45 +178.45 -39.35 +178.45 -39.25 +178.45 -39.15 +178.45 -39.05 +178.45 -38.95 +178.45 -38.85 +178.45 -38.75 +178.45 -38.65 +178.45 -38.55 +178.45 -38.45 +178.45 -38.35 +178.45 -38.25 +178.45 -38.15 +178.45 -38.05 +178.45 -37.95 +178.45 -37.85 +178.45 -37.75 +178.45 -37.65 +178.45 -37.55 +178.45 -37.45 +178.45 -37.35 +178.45 -37.25 +178.45 -37.15 +178.55 -39.35 +178.55 -39.25 +178.55 -39.15 +178.55 -39.05 +178.55 -38.95 +178.55 -38.85 +178.55 -38.75 +178.55 -38.65 +178.55 -38.55 +178.55 -38.45 +178.55 -38.35 +178.55 -38.25 +178.55 -38.15 +178.55 -38.05 +178.55 -37.95 +178.55 -37.85 +178.55 -37.75 +178.55 -37.65 +178.55 -37.55 +178.55 -37.45 +178.55 -37.35 +178.55 -37.25 +178.65 -38.95 +178.65 -38.85 +178.65 -38.75 +178.65 -38.65 +178.65 -38.55 +178.65 -38.45 +178.65 -38.35 +178.65 -38.25 +178.65 -38.15 +178.65 -38.05 +178.65 -37.95 +178.65 -37.85 +178.65 -37.75 +178.65 -37.65 +178.65 -37.55 +178.65 -37.45 +178.65 -37.35 +178.65 -37.25 +178.75 -38.85 +178.75 -38.75 +178.75 -38.65 +178.75 -38.55 +178.75 -38.45 +178.75 -38.35 +178.75 -38.25 +178.75 -38.15 +178.75 -38.05 +178.75 -37.95 +178.75 -37.85 +178.75 -37.75 +178.75 -37.65 +178.75 -37.55 +178.75 -37.45 +178.75 -37.35 +178.85 -38.75 +178.85 -38.65 +178.85 -38.55 +178.85 -38.45 +178.85 -38.35 +178.85 -38.25 +178.85 -38.15 +178.85 -38.05 +178.85 -37.95 +178.85 -37.85 +178.85 -37.75 +178.85 -37.65 +178.85 -37.55 +178.85 -37.45 +178.85 -37.35 +178.95 -38.45 +178.95 -38.35 +178.95 -38.25 +178.95 -38.15 +178.95 -38.05 +178.95 -37.95 +178.95 -37.85 +178.95 -37.75 +178.95 -37.65 +178.95 -37.55 +178.95 -37.45 +178.95 -37.35 +179.05 -38.05 +179.05 -37.95 +179.05 -37.85 +179.05 -37.75 +179.05 -37.65 +179.05 -37.55 +179.05 -37.45 +179.15 -37.65 +179.15 -37.55 diff --git a/tests/test_bsi.py b/tests/test_bsi.py new file mode 100644 index 00000000..4673bfc8 --- /dev/null +++ b/tests/test_bsi.py @@ -0,0 +1,42 @@ +from datetime import datetime +import os.path +import vcr +from csep.utils.comcat import search + +HOST = 'webservices.rm.ingv.it' + + +def get_datadir(): + root_dir = os.path.dirname(os.path.abspath(__file__)) + data_dir = os.path.join(root_dir, 'artifacts', 'BSI') + return data_dir + + +def test_search(): + datadir = get_datadir() + tape_file = os.path.join(datadir, 'vcr_search.yaml') + with vcr.use_cassette(tape_file): + # L'Aquila + eventlist = search(starttime=datetime(2009, 4, 6, 0, 0, 0), + endtime=datetime(2009, 4, 7, 0, 0, 0), + minmagnitude=5.5, host=HOST, limit=15000, offset=0) + event = eventlist[0] + assert event.id == 1895389 + + +def test_summary(): + datadir = get_datadir() + tape_file = os.path.join(datadir, 'vcr_summary.yaml') + with vcr.use_cassette(tape_file): + eventlist = search(starttime=datetime(2009, 4, 6, 0, 0, 0), + endtime=datetime(2009, 4, 7, 0, 0, 0), + minmagnitude=5.5, host=HOST, limit=15000, offset=0) + event = eventlist[0] + cmp = '1895389 2009-04-06 01:32:40.400000 (42.342,13.380) 8.3 km M6.1' + assert str(event) == cmp + assert event.id == 1895389 + assert event.time == datetime(2009, 4, 6, 1, 32, 40, 400000) + assert event.latitude == 42.342 + assert event.longitude == 13.380 + assert event.depth == 8.3 + assert event.magnitude == 6.1 diff --git a/tests/test_csep1_evaluations.py b/tests/test_csep1_evaluations.py index a733003f..d095e677 100644 --- a/tests/test_csep1_evaluations.py +++ b/tests/test_csep1_evaluations.py @@ -21,6 +21,7 @@ def get_datadir(): data_dir = os.path.join(root_dir, 'artifacts', 'example_csep1_forecasts') return data_dir + class TestCSEP1NTestThreeMonthsEEPAS(unittest.TestCase): def __init__(self, *args, **kwargs): @@ -61,8 +62,8 @@ def test_ntest_three_months_eepas_model(self): test_evaluation_dict['event_count_forecast'] = fore.event_count test_evaluation_dict['event_count'] = cata.event_count # comparing floats, so we will just map to ndarray and use allclose - expected = numpy.array([v for k,v in result_dict.items()]) - computed = numpy.array([v for k,v in test_evaluation_dict.items()]) + expected = numpy.array([v for k, v in result_dict.items()]) + computed = numpy.array([v for k, v in test_evaluation_dict.items()]) numpy.testing.assert_allclose(expected, computed, rtol=1e-5) @@ -82,13 +83,13 @@ def _parse_xml_result(self): xml_result['event_count'] = float(child.find('ns0:eventCount', ns).text) return xml_result -class TestGriddedForecastTests(unittest.TestCase): +class TestGriddedForecastTests(unittest.TestCase): def test_n_test(self): - forecast = numpy.zeros((10,10))+0.0015 + forecast = numpy.zeros((10, 10))+0.0015 forecast = forecast / forecast.size - observation = numpy.zeros((10,10)) + observation = numpy.zeros((10, 10)) expected_output = (1.0, 0.9985011244377109) print('N Test: Running Unit Test') numpy.testing.assert_allclose(_number_test_ndarray(forecast.sum(), observation.sum()), expected_output) @@ -116,18 +117,18 @@ def test_t_test(self): the equations from """ - forecast_A = numpy.array([[8, 2], [3, 5]]) - forecast_B = numpy.array([[6, 4], [2, 8]]) + forecast_a = numpy.array([[8, 2], [3, 5]]) + forecast_b = numpy.array([[6, 4], [2, 8]]) obs = numpy.array([[5, 8], [4, 2]]) - t_test_expected = {'t_critical': 2.10092204024096, - 't_statistic': 1.5385261717159382, + t_test_expected = {'t_statistic': 1.5385261717159382, + 't_critical': 2.10092204024096, 'information_gain': 0.08052612477654024, 'ig_lower': -0.029435677283374914, 'ig_upper': 0.19048792683645538} - - print('T Test: Running Unit Test') - self.assertEqual(_t_test_ndarray(forecast_A, forecast_B, numpy.sum(obs), forecast_A.sum(), forecast_B.sum()), t_test_expected, 'Failed T Test') + numpy.testing.assert_allclose( + [v for k, v in _t_test_ndarray(forecast_a, forecast_b, numpy.sum(obs), forecast_a.sum(), forecast_b.sum()).items()], + [v for k, v in t_test_expected.items()]) if __name__ == '__main__': diff --git a/tests/test_evaluations.py b/tests/test_evaluations.py index df6e22e6..c7468528 100644 --- a/tests/test_evaluations.py +++ b/tests/test_evaluations.py @@ -2,13 +2,15 @@ import numpy import unittest -from csep.core.poisson_evaluations import _simulate_catalog, _poisson_likelihood_test +import csep.core.poisson_evaluations as poisson +import csep.core.binomial_evaluations as binary def get_datadir(): root_dir = os.path.dirname(os.path.abspath(__file__)) data_dir = os.path.join(root_dir, 'artifacts', 'Comcat') return data_dir + class TestPoissonLikelihood(unittest.TestCase): def __init__(self, *args, **kwargs): @@ -22,7 +24,7 @@ def __init__(self, *args, **kwargs): def test_simulate_catalog(self): # expecting the sampling weights to be [0.25, 0.5, 0.75, 1.0] - # assuming the random numbers are equal to thhe following: + # assuming the random numbers are equal to the following: random_numbers = numpy.array([[0.5488135, 0.71518937, 0.60276338, 0.54488318]]) num_events = 4 @@ -45,21 +47,21 @@ def test_simulate_catalog(self): # this is taken from the test likelihood function sim_fore = numpy.empty(sampling_weights.shape) - sim_fore = _simulate_catalog(num_events, sampling_weights, sim_fore, + sim_fore = poisson._simulate_catalog(num_events, sampling_weights, sim_fore, random_numbers=self.random_matrix) # final statement numpy.testing.assert_allclose(expected_catalog, sim_fore) # test again to ensure that fill works properply - sim_fore = _simulate_catalog(num_events, sampling_weights, sim_fore, + sim_fore = poisson._simulate_catalog(num_events, sampling_weights, sim_fore, random_numbers=self.random_matrix) # final statement numpy.testing.assert_allclose(expected_catalog, sim_fore) def test_likelihood(self): - qs, obs_ll, simulated_ll = _poisson_likelihood_test(self.forecast_data, self.observed_data, num_simulations=1, + qs, obs_ll, simulated_ll = poisson._poisson_likelihood_test(self.forecast_data, self.observed_data, num_simulations=1, random_numbers=self.random_matrix, use_observed_counts=True) # very basic result to pass "laugh" test @@ -71,3 +73,47 @@ def test_likelihood(self): # calculated by hand given the expected data, see explanation in zechar et al., 2010. numpy.testing.assert_allclose(simulated_ll[0], -7.178053830347945) + +class TestBinomialLikelihood(unittest.TestCase): + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self.seed = 0 + numpy.random.seed(self.seed) + self.forecast_data = numpy.array([[0.1, 0.3, 0.4], [0.2, 0.1, 0.1]]) + self.observed_data = numpy.array([[0, 1, 2], [1, 1, 0]]) + self.random_matrix = numpy.random.rand(1, 9) + + def test_joint_likelihood_calculation(self): + bill = binary.binary_joint_log_likelihood_ndarray(self.forecast_data, self.observed_data) + numpy.testing.assert_allclose(bill, -6.7197988064) + + def test_simulate_active_cells(self): + #With fixed seed we get the same random numbers if we get all the number at once or one by one. + #Making sure random number generated by seed 0 match. + expected_random_numbers = numpy.array([[0.5488135, 0.71518937, 0.60276338, 0.54488318, 0.4236548, 0.64589411, + 0.4375872112626925, 0.8917730007820798, 0.9636627605010293]]) + + numpy.testing.assert_allclose(expected_random_numbers, self.random_matrix) + + #We can expect the following catalog, if we get the above random numbers. + #We get 4 active cells after 9th random sample. + expected_catalog = [0, 0, 1, 1, 1, 1] + + sampling_weights = numpy.cumsum(self.forecast_data.ravel()) / numpy.sum(self.forecast_data) + sim_fore = numpy.zeros(sampling_weights.shape) + obs_active_cells = len(numpy.unique(numpy.nonzero(self.observed_data.ravel()))) + #resetting seed again to 0, to make sure _simulate_catalog uses this. + seed = 0 + numpy.random.seed(seed) + sim_fore = binary._simulate_catalog(obs_active_cells, sampling_weights, sim_fore) + numpy.testing.assert_allclose(expected_catalog, sim_fore) + + def test_binomial_likelihood(self): + qs, bill, simulated_ll = binary._binary_likelihood_test(self.forecast_data,self.observed_data, num_simulations=1,seed=0, verbose=True) + numpy.testing.assert_allclose(bill, -6.7197988064) + numpy.testing.assert_allclose(qs, 1) + numpy.testing.assert_allclose(simulated_ll[0], -7.921741654647629) + + +if __name__ == '__main__': + unittest.main() diff --git a/tests/test_forecast.py b/tests/test_forecast.py index f63d8a3e..7b427586 100644 --- a/tests/test_forecast.py +++ b/tests/test_forecast.py @@ -1,14 +1,24 @@ -import os, unittest +import os +import unittest import numpy from csep import load_catalog_forecast + def get_test_catalog_root(): root_dir = os.path.dirname(os.path.abspath(__file__)) data_dir = os.path.join(root_dir, 'artifacts', 'test_ascii_catalogs') return data_dir + class TestCatalogForecastCreation(unittest.TestCase): + def test_all_present(self): + fname = os.path.join(get_test_catalog_root(), 'all_present.csv') + test_fore = load_catalog_forecast(fname) + total_event_count = numpy.array([cat.event_count for cat in test_fore]).sum() + self.assertEqual(10, test_fore.n_cat) + self.assertEqual(10, total_event_count) + def test_ascii_load_all_empty(self): fname = os.path.join(get_test_catalog_root(), 'all_empty.csv') test_fore = load_catalog_forecast(fname) @@ -56,5 +66,12 @@ def test_get_event_counts(self): test_fore = load_catalog_forecast(fname) numpy.testing.assert_array_equal(numpy.ones(10), test_fore.get_event_counts()) + def test_multiple_iterations(self): + fname = os.path.join(get_test_catalog_root(), 'all_present.csv') + test_fore = load_catalog_forecast(fname) + ec1 = [cat.event_count for cat in test_fore] + ec2 = [cat.event_count for cat in test_fore] + numpy.testing.assert_array_equal(ec1, ec2) + if __name__ == '__main__': unittest.main() diff --git a/tests/test_regions.py b/tests/test_regions.py index ac5921ec..a1e2cced 100644 --- a/tests/test_regions.py +++ b/tests/test_regions.py @@ -3,7 +3,7 @@ import numpy -from csep.core.regions import italy_csep_region, california_relm_region +from csep.core.regions import italy_csep_region, california_relm_region, nz_csep_region def get_italy_region_fname(): root_dir = os.path.dirname(os.path.abspath(__file__)) @@ -15,6 +15,11 @@ def get_california_region_fname(): data_dir = os.path.join(root_dir, 'artifacts', 'regions', 'RELMTestArea.dat') return data_dir +def get_nz_region_fname(): + root_dir = os.path.dirname(os.path.abspath(__file__)) + data_dir = os.path.join(root_dir, 'artifacts', 'regions', 'NZTestArea.dat') + return data_dir + class TestItalyRegion(unittest.TestCase): def __init__(self, *args, **kwargs): @@ -58,4 +63,26 @@ def test_origins(self): def test_eq_oper(self): r = california_relm_region() - assert self.r == r \ No newline at end of file + assert self.r == r + +class TestNZRegion(unittest.TestCase): + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + def setUp(self): + + self.from_dat = numpy.loadtxt(get_nz_region_fname()) + self.num_nodes = len(self.from_dat) + + def test_node_count(self): + """ Ensures the node counts are consistent between the two files. """ + r = nz_csep_region() + self.assertEqual(self.num_nodes, r.num_nodes) + + + def test_origins(self): + """ Compares XML file against the simple .dat file containing the region. """ + r = nz_csep_region() + # they dont have to be in the same order, but they need + numpy.testing.assert_array_equal(r.midpoints().sort(), self.from_dat.sort())