diff --git a/CHANGELOG.md b/CHANGELOG.md
index f3057973..f82f1d50 100644
--- a/CHANGELOG.md
+++ b/CHANGELOG.md
@@ -1,7 +1,29 @@
+# v0.6.1 (12/12/2022)
+
+# Change-log
+Added quadtree csv reader ([#186](https://github.com/SCECcode/pycsep/pull/186))
+Non-Poissonian tests
+([#189](https://github.com/SCECcode/pycsep/pull/189),
+[#205](https://github.com/SCECcode/pycsep/pull/205),
+[#208](https://github.com/SCECcode/pycsep/pull/208),
+[#209](https://github.com/SCECcode/pycsep/pull/209))
+Added plots for p-values, and confidence ranges for consistency tests ([#190](https://github.com/SCECcode/pycsep/pull/190))
+Added NZ testing and collection regions ([#198](https://github.com/SCECcode/pycsep/pull/198))
+Fixed region border plotting issue ([#199](https://github.com/SCECcode/pycsep/pull/199))
+Added documentation for non-Poissonian tests ([#202](https://github.com/SCECcode/pycsep/pull/202))
+Support for BSI catalog ([#201](https://github.com/SCECcode/pycsep/pull/201))
+Fixed compatibility with new version of matplotlib ([#206](https://github.com/SCECcode/pycsep/pull/206))
+
+## Credits
+Pablo Iturrieta (@pabloitu)
+Jose Bayona (@bayonato89)
+Khawaja Asim (@khawajasim)
+William Savran (@wsavran)
+
# v0.6.0 (02/04/2022)
## Change-log
-Adds support for quadtree regions [#184](https://github.com/SCECcode/pycsep/pull/184)
+Adds support for quadtree regions ([#184])(https://github.com/SCECcode/pycsep/pull/184)
## Credits
Khawaja Asim (@khawajasim)
diff --git a/CITATION.cff b/CITATION.cff
index 670b50d9..5b01f9cd 100644
--- a/CITATION.cff
+++ b/CITATION.cff
@@ -14,6 +14,6 @@ authors:
given-names: Philip J.
orcid: 0000-0002-9221-7068
title: "pyCSEP - Tools for Earthquake Forecast Developers"
-version: 0.4.1
+version: 0.6.1
repository: https://github.com/SCECcode/pycsep
date-released: 2021-04-20
diff --git a/codemeta.json b/codemeta.json
index 31301e2c..c8f61d30 100644
--- a/codemeta.json
+++ b/codemeta.json
@@ -9,7 +9,7 @@
"downloadUrl": "https://github.com/SCECcode/pycsep",
"issueTracker": "https://github.com/SCECcode/pycsep/issues",
"name": "pyCSEP",
- "version": "v0.6.0",
+ "version": "v0.6.1",
"description": "The pyCSEP Toolkit helps earthquake forecast model developers evaluate their forecasts with the goal of understanding earthquake predictability.",
"applicationCategory": "Seismology",
"developmentStatus": "active",
@@ -30,7 +30,7 @@
"NumPy 1.21.3 or later (https://numpy.org)",
"SciPy 1.7.1 or later (https://scipy.org)",
"pandas 1.3.4 or later (https://pandas.pydata.org)",
- "cartopy 0.20.0 or later (https://scitools.org.uk/cartopy/docs/latest)",
+ "cartopy 0.21.5 or later (https://scitools.org.uk/cartopy/docs/latest)",
"GEOS 3.7.2 or later (https://trac.osgeo.org/geos/)",
"PROJ 8.0.0 or later (https://proj.org/)"
],
diff --git a/csep/__init__.py b/csep/__init__.py
index 4149d43c..de1a03f8 100644
--- a/csep/__init__.py
+++ b/csep/__init__.py
@@ -188,7 +188,9 @@ def load_catalog(filename, type='csep-csv', format='native', loader=None, apply_
def query_comcat(start_time, end_time, min_magnitude=2.50,
min_latitude=31.50, max_latitude=43.00,
- min_longitude=-125.40, max_longitude=-113.10, verbose=True,
+ min_longitude=-125.40, max_longitude=-113.10,
+ max_depth=1000,
+ verbose=True,
apply_filters=False, **kwargs):
"""
Access Comcat catalog through web service
@@ -201,11 +203,11 @@ def query_comcat(start_time, end_time, min_magnitude=2.50,
max_latitude: max latitude of bounding box
min_longitude: min latitude of bounding box
max_longitude: max longitude of bounding box
- region: :class:`csep.core.regions.CartesianGrid2D
+ max_depth: maximum depth of the bounding box
verbose (bool): print catalog summary statistics
Returns:
- :class:`csep.core.catalogs.ComcatCatalog
+ :class:`csep.core.catalogs.CSEPCatalog
"""
# Timezone should be in UTC
@@ -213,7 +215,8 @@ def query_comcat(start_time, end_time, min_magnitude=2.50,
eventlist = readers._query_comcat(start_time=start_time, end_time=end_time,
min_magnitude=min_magnitude,
min_latitude=min_latitude, max_latitude=max_latitude,
- min_longitude=min_longitude, max_longitude=max_longitude)
+ min_longitude=min_longitude, max_longitude=max_longitude,
+ max_depth=max_depth)
t1 = time.time()
comcat = catalogs.CSEPCatalog(data=eventlist, date_accessed=utc_now_datetime(), **kwargs)
print("Fetched ComCat catalog in {} seconds.\n".format(t1 - t0))
@@ -234,6 +237,59 @@ def query_comcat(start_time, end_time, min_magnitude=2.50,
return comcat
+
+def query_bsi(start_time, end_time, min_magnitude=2.50,
+ min_latitude=32.0, max_latitude=50.0,
+ min_longitude=2.0, max_longitude=21.0,
+ max_depth=1000,
+ verbose=True,
+ apply_filters=False, **kwargs):
+ """
+ Access BSI catalog through web service
+
+ Args:
+ start_time: datetime object of start of catalog
+ end_time: datetime object for end of catalog
+ min_magnitude: minimum magnitude to query
+ min_latitude: maximum magnitude to query
+ max_latitude: max latitude of bounding box
+ min_longitude: min latitude of bounding box
+ max_longitude: max longitude of bounding box
+ max_depth: maximum depth of the bounding box
+ verbose (bool): print catalog summary statistics
+
+ Returns:
+ :class:`csep.core.catalogs.CSEPCatalog
+ """
+
+ # Timezone should be in UTC
+ t0 = time.time()
+ eventlist = readers._query_bsi(start_time=start_time, end_time=end_time,
+ min_magnitude=min_magnitude,
+ min_latitude=min_latitude, max_latitude=max_latitude,
+ min_longitude=min_longitude, max_longitude=max_longitude,
+ max_depth=max_depth)
+ t1 = time.time()
+ bsi = catalogs.CSEPCatalog(data=eventlist, date_accessed=utc_now_datetime(), **kwargs)
+ print("Fetched BSI catalog in {} seconds.\n".format(t1 - t0))
+
+ if apply_filters:
+ try:
+ bsi = bsi.filter().filter_spatial()
+ except CSEPCatalogException:
+ bsi = bsi.filter()
+
+ if verbose:
+ print("Downloaded catalog from Bollettino Sismico Italiano (BSI) with following parameters")
+ print("Start Date: {}\nEnd Date: {}".format(str(bsi.start_time), str(bsi.end_time)))
+ print("Min Latitude: {} and Max Latitude: {}".format(bsi.min_latitude, bsi.max_latitude))
+ print("Min Longitude: {} and Max Longitude: {}".format(bsi.min_longitude, bsi.max_longitude))
+ print("Min Magnitude: {}".format(bsi.min_magnitude))
+ print(f"Found {bsi.event_count} events in the BSI catalog.")
+
+ return bsi
+
+
def load_evaluation_result(fname):
""" Load evaluation result stored as json file
diff --git a/csep/_version.py b/csep/_version.py
index d07e93fd..37416fa9 100644
--- a/csep/_version.py
+++ b/csep/_version.py
@@ -1,2 +1,2 @@
-__version__ = "0.6.0"
+__version__ = "0.6.1"
diff --git a/csep/artifacts/Regions/nz.collection.nodes.dat b/csep/artifacts/Regions/nz.collection.nodes.dat
new file mode 100644
index 00000000..6dd942d5
--- /dev/null
+++ b/csep/artifacts/Regions/nz.collection.nodes.dat
@@ -0,0 +1,9029 @@
+172.65 -33.45
+172.75 -33.45
+172.85 -33.45
+172.95 -33.45
+173.05 -33.45
+173.15 -33.45
+173.25 -33.45
+172.25 -33.55
+172.35 -33.55
+172.45 -33.55
+172.55 -33.55
+172.65 -33.55
+172.75 -33.55
+172.85 -33.55
+172.95 -33.55
+173.05 -33.55
+173.15 -33.55
+173.25 -33.55
+173.35 -33.55
+173.45 -33.55
+172.05 -33.65
+172.15 -33.65
+172.25 -33.65
+172.35 -33.65
+172.45 -33.65
+172.55 -33.65
+172.65 -33.65
+172.75 -33.65
+172.85 -33.65
+172.95 -33.65
+173.05 -33.65
+173.15 -33.65
+173.25 -33.65
+173.35 -33.65
+173.45 -33.65
+173.55 -33.65
+171.95 -33.75
+172.05 -33.75
+172.15 -33.75
+172.25 -33.75
+172.35 -33.75
+172.45 -33.75
+172.55 -33.75
+172.65 -33.75
+172.75 -33.75
+172.85 -33.75
+172.95 -33.75
+173.05 -33.75
+173.15 -33.75
+173.25 -33.75
+173.35 -33.75
+173.45 -33.75
+173.55 -33.75
+173.65 -33.75
+173.75 -33.75
+171.85 -33.85
+171.95 -33.85
+172.05 -33.85
+172.15 -33.85
+172.25 -33.85
+172.35 -33.85
+172.45 -33.85
+172.55 -33.85
+172.65 -33.85
+172.75 -33.85
+172.85 -33.85
+172.95 -33.85
+173.05 -33.85
+173.15 -33.85
+173.25 -33.85
+173.35 -33.85
+173.45 -33.85
+173.55 -33.85
+173.65 -33.85
+173.75 -33.85
+173.85 -33.85
+173.95 -33.85
+171.75 -33.95
+171.85 -33.95
+171.95 -33.95
+172.05 -33.95
+172.15 -33.95
+172.25 -33.95
+172.35 -33.95
+172.45 -33.95
+172.55 -33.95
+172.65 -33.95
+172.75 -33.95
+172.85 -33.95
+172.95 -33.95
+173.05 -33.95
+173.15 -33.95
+173.25 -33.95
+173.35 -33.95
+173.45 -33.95
+173.55 -33.95
+173.65 -33.95
+173.75 -33.95
+173.85 -33.95
+173.95 -33.95
+174.05 -33.95
+174.15 -33.95
+171.65 -34.05
+171.75 -34.05
+171.85 -34.05
+171.95 -34.05
+172.05 -34.05
+172.15 -34.05
+172.25 -34.05
+172.35 -34.05
+172.45 -34.05
+172.55 -34.05
+172.65 -34.05
+172.75 -34.05
+172.85 -34.05
+172.95 -34.05
+173.05 -34.05
+173.15 -34.05
+173.25 -34.05
+173.35 -34.05
+173.45 -34.05
+173.55 -34.05
+173.65 -34.05
+173.75 -34.05
+173.85 -34.05
+173.95 -34.05
+174.05 -34.05
+174.15 -34.05
+174.25 -34.05
+171.65 -34.15
+171.75 -34.15
+171.85 -34.15
+171.95 -34.15
+172.05 -34.15
+172.15 -34.15
+172.25 -34.15
+172.35 -34.15
+172.45 -34.15
+172.55 -34.15
+172.65 -34.15
+172.75 -34.15
+172.85 -34.15
+172.95 -34.15
+173.05 -34.15
+173.15 -34.15
+173.25 -34.15
+173.35 -34.15
+173.45 -34.15
+173.55 -34.15
+173.65 -34.15
+173.75 -34.15
+173.85 -34.15
+173.95 -34.15
+174.05 -34.15
+174.15 -34.15
+174.25 -34.15
+174.35 -34.15
+174.45 -34.15
+171.65 -34.25
+171.75 -34.25
+171.85 -34.25
+171.95 -34.25
+172.05 -34.25
+172.15 -34.25
+172.25 -34.25
+172.35 -34.25
+172.45 -34.25
+172.55 -34.25
+172.65 -34.25
+172.75 -34.25
+172.85 -34.25
+172.95 -34.25
+173.05 -34.25
+173.15 -34.25
+173.25 -34.25
+173.35 -34.25
+173.45 -34.25
+173.55 -34.25
+173.65 -34.25
+173.75 -34.25
+173.85 -34.25
+173.95 -34.25
+174.05 -34.25
+174.15 -34.25
+174.25 -34.25
+174.35 -34.25
+174.45 -34.25
+174.55 -34.25
+171.55 -34.35
+171.65 -34.35
+171.75 -34.35
+171.85 -34.35
+171.95 -34.35
+172.05 -34.35
+172.15 -34.35
+172.25 -34.35
+172.35 -34.35
+172.45 -34.35
+172.55 -34.35
+172.65 -34.35
+172.75 -34.35
+172.85 -34.35
+172.95 -34.35
+173.05 -34.35
+173.15 -34.35
+173.25 -34.35
+173.35 -34.35
+173.45 -34.35
+173.55 -34.35
+173.65 -34.35
+173.75 -34.35
+173.85 -34.35
+173.95 -34.35
+174.05 -34.35
+174.15 -34.35
+174.25 -34.35
+174.35 -34.35
+174.45 -34.35
+174.55 -34.35
+174.65 -34.35
+174.75 -34.35
+171.55 -34.45
+171.65 -34.45
+171.75 -34.45
+171.85 -34.45
+171.95 -34.45
+172.05 -34.45
+172.15 -34.45
+172.25 -34.45
+172.35 -34.45
+172.45 -34.45
+172.55 -34.45
+172.65 -34.45
+172.75 -34.45
+172.85 -34.45
+172.95 -34.45
+173.05 -34.45
+173.15 -34.45
+173.25 -34.45
+173.35 -34.45
+173.45 -34.45
+173.55 -34.45
+173.65 -34.45
+173.75 -34.45
+173.85 -34.45
+173.95 -34.45
+174.05 -34.45
+174.15 -34.45
+174.25 -34.45
+174.35 -34.45
+174.45 -34.45
+174.55 -34.45
+174.65 -34.45
+174.75 -34.45
+174.85 -34.45
+174.95 -34.45
+171.55 -34.55
+171.65 -34.55
+171.75 -34.55
+171.85 -34.55
+171.95 -34.55
+172.05 -34.55
+172.15 -34.55
+172.25 -34.55
+172.35 -34.55
+172.45 -34.55
+172.55 -34.55
+172.65 -34.55
+172.75 -34.55
+172.85 -34.55
+172.95 -34.55
+173.05 -34.55
+173.15 -34.55
+173.25 -34.55
+173.35 -34.55
+173.45 -34.55
+173.55 -34.55
+173.65 -34.55
+173.75 -34.55
+173.85 -34.55
+173.95 -34.55
+174.05 -34.55
+174.15 -34.55
+174.25 -34.55
+174.35 -34.55
+174.45 -34.55
+174.55 -34.55
+174.65 -34.55
+174.75 -34.55
+174.85 -34.55
+174.95 -34.55
+175.05 -34.55
+171.55 -34.65
+171.65 -34.65
+171.75 -34.65
+171.85 -34.65
+171.95 -34.65
+172.05 -34.65
+172.15 -34.65
+172.25 -34.65
+172.35 -34.65
+172.45 -34.65
+172.55 -34.65
+172.65 -34.65
+172.75 -34.65
+172.85 -34.65
+172.95 -34.65
+173.05 -34.65
+173.15 -34.65
+173.25 -34.65
+173.35 -34.65
+173.45 -34.65
+173.55 -34.65
+173.65 -34.65
+173.75 -34.65
+173.85 -34.65
+173.95 -34.65
+174.05 -34.65
+174.15 -34.65
+174.25 -34.65
+174.35 -34.65
+174.45 -34.65
+174.55 -34.65
+174.65 -34.65
+174.75 -34.65
+174.85 -34.65
+174.95 -34.65
+175.05 -34.65
+171.65 -34.75
+171.75 -34.75
+171.85 -34.75
+171.95 -34.75
+172.05 -34.75
+172.15 -34.75
+172.25 -34.75
+172.35 -34.75
+172.45 -34.75
+172.55 -34.75
+172.65 -34.75
+172.75 -34.75
+172.85 -34.75
+172.95 -34.75
+173.05 -34.75
+173.15 -34.75
+173.25 -34.75
+173.35 -34.75
+173.45 -34.75
+173.55 -34.75
+173.65 -34.75
+173.75 -34.75
+173.85 -34.75
+173.95 -34.75
+174.05 -34.75
+174.15 -34.75
+174.25 -34.75
+174.35 -34.75
+174.45 -34.75
+174.55 -34.75
+174.65 -34.75
+174.75 -34.75
+174.85 -34.75
+174.95 -34.75
+175.05 -34.75
+175.15 -34.75
+171.65 -34.85
+171.75 -34.85
+171.85 -34.85
+171.95 -34.85
+172.05 -34.85
+172.15 -34.85
+172.25 -34.85
+172.35 -34.85
+172.45 -34.85
+172.55 -34.85
+172.65 -34.85
+172.75 -34.85
+172.85 -34.85
+172.95 -34.85
+173.05 -34.85
+173.15 -34.85
+173.25 -34.85
+173.35 -34.85
+173.45 -34.85
+173.55 -34.85
+173.65 -34.85
+173.75 -34.85
+173.85 -34.85
+173.95 -34.85
+174.05 -34.85
+174.15 -34.85
+174.25 -34.85
+174.35 -34.85
+174.45 -34.85
+174.55 -34.85
+174.65 -34.85
+174.75 -34.85
+174.85 -34.85
+174.95 -34.85
+175.05 -34.85
+175.15 -34.85
+175.25 -34.85
+171.75 -34.95
+171.85 -34.95
+171.95 -34.95
+172.05 -34.95
+172.15 -34.95
+172.25 -34.95
+172.35 -34.95
+172.45 -34.95
+172.55 -34.95
+172.65 -34.95
+172.75 -34.95
+172.85 -34.95
+172.95 -34.95
+173.05 -34.95
+173.15 -34.95
+173.25 -34.95
+173.35 -34.95
+173.45 -34.95
+173.55 -34.95
+173.65 -34.95
+173.75 -34.95
+173.85 -34.95
+173.95 -34.95
+174.05 -34.95
+174.15 -34.95
+174.25 -34.95
+174.35 -34.95
+174.45 -34.95
+174.55 -34.95
+174.65 -34.95
+174.75 -34.95
+174.85 -34.95
+174.95 -34.95
+175.05 -34.95
+175.15 -34.95
+175.25 -34.95
+175.35 -34.95
+171.75 -35.05
+171.85 -35.05
+171.95 -35.05
+172.05 -35.05
+172.15 -35.05
+172.25 -35.05
+172.35 -35.05
+172.45 -35.05
+172.55 -35.05
+172.65 -35.05
+172.75 -35.05
+172.85 -35.05
+172.95 -35.05
+173.05 -35.05
+173.15 -35.05
+173.25 -35.05
+173.35 -35.05
+173.45 -35.05
+173.55 -35.05
+173.65 -35.05
+173.75 -35.05
+173.85 -35.05
+173.95 -35.05
+174.05 -35.05
+174.15 -35.05
+174.25 -35.05
+174.35 -35.05
+174.45 -35.05
+174.55 -35.05
+174.65 -35.05
+174.75 -35.05
+174.85 -35.05
+174.95 -35.05
+175.05 -35.05
+175.15 -35.05
+175.25 -35.05
+175.35 -35.05
+175.45 -35.05
+171.85 -35.15
+171.95 -35.15
+172.05 -35.15
+172.15 -35.15
+172.25 -35.15
+172.35 -35.15
+172.45 -35.15
+172.55 -35.15
+172.65 -35.15
+172.75 -35.15
+172.85 -35.15
+172.95 -35.15
+173.05 -35.15
+173.15 -35.15
+173.25 -35.15
+173.35 -35.15
+173.45 -35.15
+173.55 -35.15
+173.65 -35.15
+173.75 -35.15
+173.85 -35.15
+173.95 -35.15
+174.05 -35.15
+174.15 -35.15
+174.25 -35.15
+174.35 -35.15
+174.45 -35.15
+174.55 -35.15
+174.65 -35.15
+174.75 -35.15
+174.85 -35.15
+174.95 -35.15
+175.05 -35.15
+175.15 -35.15
+175.25 -35.15
+175.35 -35.15
+175.45 -35.15
+175.55 -35.15
+171.95 -35.25
+172.05 -35.25
+172.15 -35.25
+172.25 -35.25
+172.35 -35.25
+172.45 -35.25
+172.55 -35.25
+172.65 -35.25
+172.75 -35.25
+172.85 -35.25
+172.95 -35.25
+173.05 -35.25
+173.15 -35.25
+173.25 -35.25
+173.35 -35.25
+173.45 -35.25
+173.55 -35.25
+173.65 -35.25
+173.75 -35.25
+173.85 -35.25
+173.95 -35.25
+174.05 -35.25
+174.15 -35.25
+174.25 -35.25
+174.35 -35.25
+174.45 -35.25
+174.55 -35.25
+174.65 -35.25
+174.75 -35.25
+174.85 -35.25
+174.95 -35.25
+175.05 -35.25
+175.15 -35.25
+175.25 -35.25
+175.35 -35.25
+175.45 -35.25
+175.55 -35.25
+175.65 -35.25
+175.75 -35.25
+171.95 -35.35
+172.05 -35.35
+172.15 -35.35
+172.25 -35.35
+172.35 -35.35
+172.45 -35.35
+172.55 -35.35
+172.65 -35.35
+172.75 -35.35
+172.85 -35.35
+172.95 -35.35
+173.05 -35.35
+173.15 -35.35
+173.25 -35.35
+173.35 -35.35
+173.45 -35.35
+173.55 -35.35
+173.65 -35.35
+173.75 -35.35
+173.85 -35.35
+173.95 -35.35
+174.05 -35.35
+174.15 -35.35
+174.25 -35.35
+174.35 -35.35
+174.45 -35.35
+174.55 -35.35
+174.65 -35.35
+174.75 -35.35
+174.85 -35.35
+174.95 -35.35
+175.05 -35.35
+175.15 -35.35
+175.25 -35.35
+175.35 -35.35
+175.45 -35.35
+175.55 -35.35
+175.65 -35.35
+175.75 -35.35
+175.85 -35.35
+175.95 -35.35
+172.05 -35.45
+172.15 -35.45
+172.25 -35.45
+172.35 -35.45
+172.45 -35.45
+172.55 -35.45
+172.65 -35.45
+172.75 -35.45
+172.85 -35.45
+172.95 -35.45
+173.05 -35.45
+173.15 -35.45
+173.25 -35.45
+173.35 -35.45
+173.45 -35.45
+173.55 -35.45
+173.65 -35.45
+173.75 -35.45
+173.85 -35.45
+173.95 -35.45
+174.05 -35.45
+174.15 -35.45
+174.25 -35.45
+174.35 -35.45
+174.45 -35.45
+174.55 -35.45
+174.65 -35.45
+174.75 -35.45
+174.85 -35.45
+174.95 -35.45
+175.05 -35.45
+175.15 -35.45
+175.25 -35.45
+175.35 -35.45
+175.45 -35.45
+175.55 -35.45
+175.65 -35.45
+175.75 -35.45
+175.85 -35.45
+175.95 -35.45
+176.05 -35.45
+176.15 -35.45
+176.25 -35.45
+172.05 -35.55
+172.15 -35.55
+172.25 -35.55
+172.35 -35.55
+172.45 -35.55
+172.55 -35.55
+172.65 -35.55
+172.75 -35.55
+172.85 -35.55
+172.95 -35.55
+173.05 -35.55
+173.15 -35.55
+173.25 -35.55
+173.35 -35.55
+173.45 -35.55
+173.55 -35.55
+173.65 -35.55
+173.75 -35.55
+173.85 -35.55
+173.95 -35.55
+174.05 -35.55
+174.15 -35.55
+174.25 -35.55
+174.35 -35.55
+174.45 -35.55
+174.55 -35.55
+174.65 -35.55
+174.75 -35.55
+174.85 -35.55
+174.95 -35.55
+175.05 -35.55
+175.15 -35.55
+175.25 -35.55
+175.35 -35.55
+175.45 -35.55
+175.55 -35.55
+175.65 -35.55
+175.75 -35.55
+175.85 -35.55
+175.95 -35.55
+176.05 -35.55
+176.15 -35.55
+176.25 -35.55
+176.35 -35.55
+172.05 -35.65
+172.15 -35.65
+172.25 -35.65
+172.35 -35.65
+172.45 -35.65
+172.55 -35.65
+172.65 -35.65
+172.75 -35.65
+172.85 -35.65
+172.95 -35.65
+173.05 -35.65
+173.15 -35.65
+173.25 -35.65
+173.35 -35.65
+173.45 -35.65
+173.55 -35.65
+173.65 -35.65
+173.75 -35.65
+173.85 -35.65
+173.95 -35.65
+174.05 -35.65
+174.15 -35.65
+174.25 -35.65
+174.35 -35.65
+174.45 -35.65
+174.55 -35.65
+174.65 -35.65
+174.75 -35.65
+174.85 -35.65
+174.95 -35.65
+175.05 -35.65
+175.15 -35.65
+175.25 -35.65
+175.35 -35.65
+175.45 -35.65
+175.55 -35.65
+175.65 -35.65
+175.75 -35.65
+175.85 -35.65
+175.95 -35.65
+176.05 -35.65
+176.15 -35.65
+176.25 -35.65
+176.35 -35.65
+176.45 -35.65
+172.15 -35.75
+172.25 -35.75
+172.35 -35.75
+172.45 -35.75
+172.55 -35.75
+172.65 -35.75
+172.75 -35.75
+172.85 -35.75
+172.95 -35.75
+173.05 -35.75
+173.15 -35.75
+173.25 -35.75
+173.35 -35.75
+173.45 -35.75
+173.55 -35.75
+173.65 -35.75
+173.75 -35.75
+173.85 -35.75
+173.95 -35.75
+174.05 -35.75
+174.15 -35.75
+174.25 -35.75
+174.35 -35.75
+174.45 -35.75
+174.55 -35.75
+174.65 -35.75
+174.75 -35.75
+174.85 -35.75
+174.95 -35.75
+175.05 -35.75
+175.15 -35.75
+175.25 -35.75
+175.35 -35.75
+175.45 -35.75
+175.55 -35.75
+175.65 -35.75
+175.75 -35.75
+175.85 -35.75
+175.95 -35.75
+176.05 -35.75
+176.15 -35.75
+176.25 -35.75
+176.35 -35.75
+176.45 -35.75
+176.55 -35.75
+172.25 -35.85
+172.35 -35.85
+172.45 -35.85
+172.55 -35.85
+172.65 -35.85
+172.75 -35.85
+172.85 -35.85
+172.95 -35.85
+173.05 -35.85
+173.15 -35.85
+173.25 -35.85
+173.35 -35.85
+173.45 -35.85
+173.55 -35.85
+173.65 -35.85
+173.75 -35.85
+173.85 -35.85
+173.95 -35.85
+174.05 -35.85
+174.15 -35.85
+174.25 -35.85
+174.35 -35.85
+174.45 -35.85
+174.55 -35.85
+174.65 -35.85
+174.75 -35.85
+174.85 -35.85
+174.95 -35.85
+175.05 -35.85
+175.15 -35.85
+175.25 -35.85
+175.35 -35.85
+175.45 -35.85
+175.55 -35.85
+175.65 -35.85
+175.75 -35.85
+175.85 -35.85
+175.95 -35.85
+176.05 -35.85
+176.15 -35.85
+176.25 -35.85
+176.35 -35.85
+176.45 -35.85
+176.55 -35.85
+172.35 -35.95
+172.45 -35.95
+172.55 -35.95
+172.65 -35.95
+172.75 -35.95
+172.85 -35.95
+172.95 -35.95
+173.05 -35.95
+173.15 -35.95
+173.25 -35.95
+173.35 -35.95
+173.45 -35.95
+173.55 -35.95
+173.65 -35.95
+173.75 -35.95
+173.85 -35.95
+173.95 -35.95
+174.05 -35.95
+174.15 -35.95
+174.25 -35.95
+174.35 -35.95
+174.45 -35.95
+174.55 -35.95
+174.65 -35.95
+174.75 -35.95
+174.85 -35.95
+174.95 -35.95
+175.05 -35.95
+175.15 -35.95
+175.25 -35.95
+175.35 -35.95
+175.45 -35.95
+175.55 -35.95
+175.65 -35.95
+175.75 -35.95
+175.85 -35.95
+175.95 -35.95
+176.05 -35.95
+176.15 -35.95
+176.25 -35.95
+176.35 -35.95
+176.45 -35.95
+176.55 -35.95
+176.65 -35.95
+172.45 -36.05
+172.55 -36.05
+172.65 -36.05
+172.75 -36.05
+172.85 -36.05
+172.95 -36.05
+173.05 -36.05
+173.15 -36.05
+173.25 -36.05
+173.35 -36.05
+173.45 -36.05
+173.55 -36.05
+173.65 -36.05
+173.75 -36.05
+173.85 -36.05
+173.95 -36.05
+174.05 -36.05
+174.15 -36.05
+174.25 -36.05
+174.35 -36.05
+174.45 -36.05
+174.55 -36.05
+174.65 -36.05
+174.75 -36.05
+174.85 -36.05
+174.95 -36.05
+175.05 -36.05
+175.15 -36.05
+175.25 -36.05
+175.35 -36.05
+175.45 -36.05
+175.55 -36.05
+175.65 -36.05
+175.75 -36.05
+175.85 -36.05
+175.95 -36.05
+176.05 -36.05
+176.15 -36.05
+176.25 -36.05
+176.35 -36.05
+176.45 -36.05
+176.55 -36.05
+176.65 -36.05
+172.45 -36.15
+172.55 -36.15
+172.65 -36.15
+172.75 -36.15
+172.85 -36.15
+172.95 -36.15
+173.05 -36.15
+173.15 -36.15
+173.25 -36.15
+173.35 -36.15
+173.45 -36.15
+173.55 -36.15
+173.65 -36.15
+173.75 -36.15
+173.85 -36.15
+173.95 -36.15
+174.05 -36.15
+174.15 -36.15
+174.25 -36.15
+174.35 -36.15
+174.45 -36.15
+174.55 -36.15
+174.65 -36.15
+174.75 -36.15
+174.85 -36.15
+174.95 -36.15
+175.05 -36.15
+175.15 -36.15
+175.25 -36.15
+175.35 -36.15
+175.45 -36.15
+175.55 -36.15
+175.65 -36.15
+175.75 -36.15
+175.85 -36.15
+175.95 -36.15
+176.05 -36.15
+176.15 -36.15
+176.25 -36.15
+176.35 -36.15
+176.45 -36.15
+176.55 -36.15
+176.65 -36.15
+176.75 -36.15
+172.55 -36.25
+172.65 -36.25
+172.75 -36.25
+172.85 -36.25
+172.95 -36.25
+173.05 -36.25
+173.15 -36.25
+173.25 -36.25
+173.35 -36.25
+173.45 -36.25
+173.55 -36.25
+173.65 -36.25
+173.75 -36.25
+173.85 -36.25
+173.95 -36.25
+174.05 -36.25
+174.15 -36.25
+174.25 -36.25
+174.35 -36.25
+174.45 -36.25
+174.55 -36.25
+174.65 -36.25
+174.75 -36.25
+174.85 -36.25
+174.95 -36.25
+175.05 -36.25
+175.15 -36.25
+175.25 -36.25
+175.35 -36.25
+175.45 -36.25
+175.55 -36.25
+175.65 -36.25
+175.75 -36.25
+175.85 -36.25
+175.95 -36.25
+176.05 -36.25
+176.15 -36.25
+176.25 -36.25
+176.35 -36.25
+176.45 -36.25
+176.55 -36.25
+176.65 -36.25
+176.75 -36.25
+176.85 -36.25
+172.65 -36.35
+172.75 -36.35
+172.85 -36.35
+172.95 -36.35
+173.05 -36.35
+173.15 -36.35
+173.25 -36.35
+173.35 -36.35
+173.45 -36.35
+173.55 -36.35
+173.65 -36.35
+173.75 -36.35
+173.85 -36.35
+173.95 -36.35
+174.05 -36.35
+174.15 -36.35
+174.25 -36.35
+174.35 -36.35
+174.45 -36.35
+174.55 -36.35
+174.65 -36.35
+174.75 -36.35
+174.85 -36.35
+174.95 -36.35
+175.05 -36.35
+175.15 -36.35
+175.25 -36.35
+175.35 -36.35
+175.45 -36.35
+175.55 -36.35
+175.65 -36.35
+175.75 -36.35
+175.85 -36.35
+175.95 -36.35
+176.05 -36.35
+176.15 -36.35
+176.25 -36.35
+176.35 -36.35
+176.45 -36.35
+176.55 -36.35
+176.65 -36.35
+176.75 -36.35
+176.85 -36.35
+172.75 -36.45
+172.85 -36.45
+172.95 -36.45
+173.05 -36.45
+173.15 -36.45
+173.25 -36.45
+173.35 -36.45
+173.45 -36.45
+173.55 -36.45
+173.65 -36.45
+173.75 -36.45
+173.85 -36.45
+173.95 -36.45
+174.05 -36.45
+174.15 -36.45
+174.25 -36.45
+174.35 -36.45
+174.45 -36.45
+174.55 -36.45
+174.65 -36.45
+174.75 -36.45
+174.85 -36.45
+174.95 -36.45
+175.05 -36.45
+175.15 -36.45
+175.25 -36.45
+175.35 -36.45
+175.45 -36.45
+175.55 -36.45
+175.65 -36.45
+175.75 -36.45
+175.85 -36.45
+175.95 -36.45
+176.05 -36.45
+176.15 -36.45
+176.25 -36.45
+176.35 -36.45
+176.45 -36.45
+176.55 -36.45
+176.65 -36.45
+176.75 -36.45
+176.85 -36.45
+172.85 -36.55
+172.95 -36.55
+173.05 -36.55
+173.15 -36.55
+173.25 -36.55
+173.35 -36.55
+173.45 -36.55
+173.55 -36.55
+173.65 -36.55
+173.75 -36.55
+173.85 -36.55
+173.95 -36.55
+174.05 -36.55
+174.15 -36.55
+174.25 -36.55
+174.35 -36.55
+174.45 -36.55
+174.55 -36.55
+174.65 -36.55
+174.75 -36.55
+174.85 -36.55
+174.95 -36.55
+175.05 -36.55
+175.15 -36.55
+175.25 -36.55
+175.35 -36.55
+175.45 -36.55
+175.55 -36.55
+175.65 -36.55
+175.75 -36.55
+175.85 -36.55
+175.95 -36.55
+176.05 -36.55
+176.15 -36.55
+176.25 -36.55
+176.35 -36.55
+176.45 -36.55
+176.55 -36.55
+176.65 -36.55
+176.75 -36.55
+176.85 -36.55
+176.95 -36.55
+172.95 -36.65
+173.05 -36.65
+173.15 -36.65
+173.25 -36.65
+173.35 -36.65
+173.45 -36.65
+173.55 -36.65
+173.65 -36.65
+173.75 -36.65
+173.85 -36.65
+173.95 -36.65
+174.05 -36.65
+174.15 -36.65
+174.25 -36.65
+174.35 -36.65
+174.45 -36.65
+174.55 -36.65
+174.65 -36.65
+174.75 -36.65
+174.85 -36.65
+174.95 -36.65
+175.05 -36.65
+175.15 -36.65
+175.25 -36.65
+175.35 -36.65
+175.45 -36.65
+175.55 -36.65
+175.65 -36.65
+175.75 -36.65
+175.85 -36.65
+175.95 -36.65
+176.05 -36.65
+176.15 -36.65
+176.25 -36.65
+176.35 -36.65
+176.45 -36.65
+176.55 -36.65
+176.65 -36.65
+176.75 -36.65
+176.85 -36.65
+176.95 -36.65
+177.85 -36.65
+177.95 -36.65
+178.05 -36.65
+178.15 -36.65
+178.25 -36.65
+172.95 -36.75
+173.05 -36.75
+173.15 -36.75
+173.25 -36.75
+173.35 -36.75
+173.45 -36.75
+173.55 -36.75
+173.65 -36.75
+173.75 -36.75
+173.85 -36.75
+173.95 -36.75
+174.05 -36.75
+174.15 -36.75
+174.25 -36.75
+174.35 -36.75
+174.45 -36.75
+174.55 -36.75
+174.65 -36.75
+174.75 -36.75
+174.85 -36.75
+174.95 -36.75
+175.05 -36.75
+175.15 -36.75
+175.25 -36.75
+175.35 -36.75
+175.45 -36.75
+175.55 -36.75
+175.65 -36.75
+175.75 -36.75
+175.85 -36.75
+175.95 -36.75
+176.05 -36.75
+176.15 -36.75
+176.25 -36.75
+176.35 -36.75
+176.45 -36.75
+176.55 -36.75
+176.65 -36.75
+176.75 -36.75
+176.85 -36.75
+176.95 -36.75
+177.05 -36.75
+177.55 -36.75
+177.65 -36.75
+177.75 -36.75
+177.85 -36.75
+177.95 -36.75
+178.05 -36.75
+178.15 -36.75
+178.25 -36.75
+178.35 -36.75
+178.45 -36.75
+178.55 -36.75
+178.65 -36.75
+178.75 -36.75
+178.85 -36.75
+173.05 -36.85
+173.15 -36.85
+173.25 -36.85
+173.35 -36.85
+173.45 -36.85
+173.55 -36.85
+173.65 -36.85
+173.75 -36.85
+173.85 -36.85
+173.95 -36.85
+174.05 -36.85
+174.15 -36.85
+174.25 -36.85
+174.35 -36.85
+174.45 -36.85
+174.55 -36.85
+174.65 -36.85
+174.75 -36.85
+174.85 -36.85
+174.95 -36.85
+175.05 -36.85
+175.15 -36.85
+175.25 -36.85
+175.35 -36.85
+175.45 -36.85
+175.55 -36.85
+175.65 -36.85
+175.75 -36.85
+175.85 -36.85
+175.95 -36.85
+176.05 -36.85
+176.15 -36.85
+176.25 -36.85
+176.35 -36.85
+176.45 -36.85
+176.55 -36.85
+176.65 -36.85
+176.75 -36.85
+176.85 -36.85
+176.95 -36.85
+177.05 -36.85
+177.25 -36.85
+177.35 -36.85
+177.45 -36.85
+177.55 -36.85
+177.65 -36.85
+177.75 -36.85
+177.85 -36.85
+177.95 -36.85
+178.05 -36.85
+178.15 -36.85
+178.25 -36.85
+178.35 -36.85
+178.45 -36.85
+178.55 -36.85
+178.65 -36.85
+178.75 -36.85
+178.85 -36.85
+178.95 -36.85
+179.05 -36.85
+179.15 -36.85
+173.15 -36.95
+173.25 -36.95
+173.35 -36.95
+173.45 -36.95
+173.55 -36.95
+173.65 -36.95
+173.75 -36.95
+173.85 -36.95
+173.95 -36.95
+174.05 -36.95
+174.15 -36.95
+174.25 -36.95
+174.35 -36.95
+174.45 -36.95
+174.55 -36.95
+174.65 -36.95
+174.75 -36.95
+174.85 -36.95
+174.95 -36.95
+175.05 -36.95
+175.15 -36.95
+175.25 -36.95
+175.35 -36.95
+175.45 -36.95
+175.55 -36.95
+175.65 -36.95
+175.75 -36.95
+175.85 -36.95
+175.95 -36.95
+176.05 -36.95
+176.15 -36.95
+176.25 -36.95
+176.35 -36.95
+176.45 -36.95
+176.55 -36.95
+176.65 -36.95
+176.75 -36.95
+176.85 -36.95
+176.95 -36.95
+177.05 -36.95
+177.15 -36.95
+177.25 -36.95
+177.35 -36.95
+177.45 -36.95
+177.55 -36.95
+177.65 -36.95
+177.75 -36.95
+177.85 -36.95
+177.95 -36.95
+178.05 -36.95
+178.15 -36.95
+178.25 -36.95
+178.35 -36.95
+178.45 -36.95
+178.55 -36.95
+178.65 -36.95
+178.75 -36.95
+178.85 -36.95
+178.95 -36.95
+179.05 -36.95
+179.15 -36.95
+179.25 -36.95
+173.25 -37.05
+173.35 -37.05
+173.45 -37.05
+173.55 -37.05
+173.65 -37.05
+173.75 -37.05
+173.85 -37.05
+173.95 -37.05
+174.05 -37.05
+174.15 -37.05
+174.25 -37.05
+174.35 -37.05
+174.45 -37.05
+174.55 -37.05
+174.65 -37.05
+174.75 -37.05
+174.85 -37.05
+174.95 -37.05
+175.05 -37.05
+175.15 -37.05
+175.25 -37.05
+175.35 -37.05
+175.45 -37.05
+175.55 -37.05
+175.65 -37.05
+175.75 -37.05
+175.85 -37.05
+175.95 -37.05
+176.05 -37.05
+176.15 -37.05
+176.25 -37.05
+176.35 -37.05
+176.45 -37.05
+176.55 -37.05
+176.65 -37.05
+176.75 -37.05
+176.85 -37.05
+176.95 -37.05
+177.05 -37.05
+177.15 -37.05
+177.25 -37.05
+177.35 -37.05
+177.45 -37.05
+177.55 -37.05
+177.65 -37.05
+177.75 -37.05
+177.85 -37.05
+177.95 -37.05
+178.05 -37.05
+178.15 -37.05
+178.25 -37.05
+178.35 -37.05
+178.45 -37.05
+178.55 -37.05
+178.65 -37.05
+178.75 -37.05
+178.85 -37.05
+178.95 -37.05
+179.05 -37.05
+179.15 -37.05
+179.25 -37.05
+179.35 -37.05
+179.45 -37.05
+173.35 -37.15
+173.45 -37.15
+173.55 -37.15
+173.65 -37.15
+173.75 -37.15
+173.85 -37.15
+173.95 -37.15
+174.05 -37.15
+174.15 -37.15
+174.25 -37.15
+174.35 -37.15
+174.45 -37.15
+174.55 -37.15
+174.65 -37.15
+174.75 -37.15
+174.85 -37.15
+174.95 -37.15
+175.05 -37.15
+175.15 -37.15
+175.25 -37.15
+175.35 -37.15
+175.45 -37.15
+175.55 -37.15
+175.65 -37.15
+175.75 -37.15
+175.85 -37.15
+175.95 -37.15
+176.05 -37.15
+176.15 -37.15
+176.25 -37.15
+176.35 -37.15
+176.45 -37.15
+176.55 -37.15
+176.65 -37.15
+176.75 -37.15
+176.85 -37.15
+176.95 -37.15
+177.05 -37.15
+177.15 -37.15
+177.25 -37.15
+177.35 -37.15
+177.45 -37.15
+177.55 -37.15
+177.65 -37.15
+177.75 -37.15
+177.85 -37.15
+177.95 -37.15
+178.05 -37.15
+178.15 -37.15
+178.25 -37.15
+178.35 -37.15
+178.45 -37.15
+178.55 -37.15
+178.65 -37.15
+178.75 -37.15
+178.85 -37.15
+178.95 -37.15
+179.05 -37.15
+179.15 -37.15
+179.25 -37.15
+179.35 -37.15
+179.45 -37.15
+179.55 -37.15
+173.35 -37.25
+173.45 -37.25
+173.55 -37.25
+173.65 -37.25
+173.75 -37.25
+173.85 -37.25
+173.95 -37.25
+174.05 -37.25
+174.15 -37.25
+174.25 -37.25
+174.35 -37.25
+174.45 -37.25
+174.55 -37.25
+174.65 -37.25
+174.75 -37.25
+174.85 -37.25
+174.95 -37.25
+175.05 -37.25
+175.15 -37.25
+175.25 -37.25
+175.35 -37.25
+175.45 -37.25
+175.55 -37.25
+175.65 -37.25
+175.75 -37.25
+175.85 -37.25
+175.95 -37.25
+176.05 -37.25
+176.15 -37.25
+176.25 -37.25
+176.35 -37.25
+176.45 -37.25
+176.55 -37.25
+176.65 -37.25
+176.75 -37.25
+176.85 -37.25
+176.95 -37.25
+177.05 -37.25
+177.15 -37.25
+177.25 -37.25
+177.35 -37.25
+177.45 -37.25
+177.55 -37.25
+177.65 -37.25
+177.75 -37.25
+177.85 -37.25
+177.95 -37.25
+178.05 -37.25
+178.15 -37.25
+178.25 -37.25
+178.35 -37.25
+178.45 -37.25
+178.55 -37.25
+178.65 -37.25
+178.75 -37.25
+178.85 -37.25
+178.95 -37.25
+179.05 -37.25
+179.15 -37.25
+179.25 -37.25
+179.35 -37.25
+179.45 -37.25
+179.55 -37.25
+179.65 -37.25
+173.35 -37.35
+173.45 -37.35
+173.55 -37.35
+173.65 -37.35
+173.75 -37.35
+173.85 -37.35
+173.95 -37.35
+174.05 -37.35
+174.15 -37.35
+174.25 -37.35
+174.35 -37.35
+174.45 -37.35
+174.55 -37.35
+174.65 -37.35
+174.75 -37.35
+174.85 -37.35
+174.95 -37.35
+175.05 -37.35
+175.15 -37.35
+175.25 -37.35
+175.35 -37.35
+175.45 -37.35
+175.55 -37.35
+175.65 -37.35
+175.75 -37.35
+175.85 -37.35
+175.95 -37.35
+176.05 -37.35
+176.15 -37.35
+176.25 -37.35
+176.35 -37.35
+176.45 -37.35
+176.55 -37.35
+176.65 -37.35
+176.75 -37.35
+176.85 -37.35
+176.95 -37.35
+177.05 -37.35
+177.15 -37.35
+177.25 -37.35
+177.35 -37.35
+177.45 -37.35
+177.55 -37.35
+177.65 -37.35
+177.75 -37.35
+177.85 -37.35
+177.95 -37.35
+178.05 -37.35
+178.15 -37.35
+178.25 -37.35
+178.35 -37.35
+178.45 -37.35
+178.55 -37.35
+178.65 -37.35
+178.75 -37.35
+178.85 -37.35
+178.95 -37.35
+179.05 -37.35
+179.15 -37.35
+179.25 -37.35
+179.35 -37.35
+179.45 -37.35
+179.55 -37.35
+179.65 -37.35
+173.35 -37.45
+173.45 -37.45
+173.55 -37.45
+173.65 -37.45
+173.75 -37.45
+173.85 -37.45
+173.95 -37.45
+174.05 -37.45
+174.15 -37.45
+174.25 -37.45
+174.35 -37.45
+174.45 -37.45
+174.55 -37.45
+174.65 -37.45
+174.75 -37.45
+174.85 -37.45
+174.95 -37.45
+175.05 -37.45
+175.15 -37.45
+175.25 -37.45
+175.35 -37.45
+175.45 -37.45
+175.55 -37.45
+175.65 -37.45
+175.75 -37.45
+175.85 -37.45
+175.95 -37.45
+176.05 -37.45
+176.15 -37.45
+176.25 -37.45
+176.35 -37.45
+176.45 -37.45
+176.55 -37.45
+176.65 -37.45
+176.75 -37.45
+176.85 -37.45
+176.95 -37.45
+177.05 -37.45
+177.15 -37.45
+177.25 -37.45
+177.35 -37.45
+177.45 -37.45
+177.55 -37.45
+177.65 -37.45
+177.75 -37.45
+177.85 -37.45
+177.95 -37.45
+178.05 -37.45
+178.15 -37.45
+178.25 -37.45
+178.35 -37.45
+178.45 -37.45
+178.55 -37.45
+178.65 -37.45
+178.75 -37.45
+178.85 -37.45
+178.95 -37.45
+179.05 -37.45
+179.15 -37.45
+179.25 -37.45
+179.35 -37.45
+179.45 -37.45
+179.55 -37.45
+179.65 -37.45
+173.35 -37.55
+173.45 -37.55
+173.55 -37.55
+173.65 -37.55
+173.75 -37.55
+173.85 -37.55
+173.95 -37.55
+174.05 -37.55
+174.15 -37.55
+174.25 -37.55
+174.35 -37.55
+174.45 -37.55
+174.55 -37.55
+174.65 -37.55
+174.75 -37.55
+174.85 -37.55
+174.95 -37.55
+175.05 -37.55
+175.15 -37.55
+175.25 -37.55
+175.35 -37.55
+175.45 -37.55
+175.55 -37.55
+175.65 -37.55
+175.75 -37.55
+175.85 -37.55
+175.95 -37.55
+176.05 -37.55
+176.15 -37.55
+176.25 -37.55
+176.35 -37.55
+176.45 -37.55
+176.55 -37.55
+176.65 -37.55
+176.75 -37.55
+176.85 -37.55
+176.95 -37.55
+177.05 -37.55
+177.15 -37.55
+177.25 -37.55
+177.35 -37.55
+177.45 -37.55
+177.55 -37.55
+177.65 -37.55
+177.75 -37.55
+177.85 -37.55
+177.95 -37.55
+178.05 -37.55
+178.15 -37.55
+178.25 -37.55
+178.35 -37.55
+178.45 -37.55
+178.55 -37.55
+178.65 -37.55
+178.75 -37.55
+178.85 -37.55
+178.95 -37.55
+179.05 -37.55
+179.15 -37.55
+179.25 -37.55
+179.35 -37.55
+179.45 -37.55
+179.55 -37.55
+179.65 -37.55
+173.35 -37.65
+173.45 -37.65
+173.55 -37.65
+173.65 -37.65
+173.75 -37.65
+173.85 -37.65
+173.95 -37.65
+174.05 -37.65
+174.15 -37.65
+174.25 -37.65
+174.35 -37.65
+174.45 -37.65
+174.55 -37.65
+174.65 -37.65
+174.75 -37.65
+174.85 -37.65
+174.95 -37.65
+175.05 -37.65
+175.15 -37.65
+175.25 -37.65
+175.35 -37.65
+175.45 -37.65
+175.55 -37.65
+175.65 -37.65
+175.75 -37.65
+175.85 -37.65
+175.95 -37.65
+176.05 -37.65
+176.15 -37.65
+176.25 -37.65
+176.35 -37.65
+176.45 -37.65
+176.55 -37.65
+176.65 -37.65
+176.75 -37.65
+176.85 -37.65
+176.95 -37.65
+177.05 -37.65
+177.15 -37.65
+177.25 -37.65
+177.35 -37.65
+177.45 -37.65
+177.55 -37.65
+177.65 -37.65
+177.75 -37.65
+177.85 -37.65
+177.95 -37.65
+178.05 -37.65
+178.15 -37.65
+178.25 -37.65
+178.35 -37.65
+178.45 -37.65
+178.55 -37.65
+178.65 -37.65
+178.75 -37.65
+178.85 -37.65
+178.95 -37.65
+179.05 -37.65
+179.15 -37.65
+179.25 -37.65
+179.35 -37.65
+179.45 -37.65
+179.55 -37.65
+179.65 -37.65
+173.25 -37.75
+173.35 -37.75
+173.45 -37.75
+173.55 -37.75
+173.65 -37.75
+173.75 -37.75
+173.85 -37.75
+173.95 -37.75
+174.05 -37.75
+174.15 -37.75
+174.25 -37.75
+174.35 -37.75
+174.45 -37.75
+174.55 -37.75
+174.65 -37.75
+174.75 -37.75
+174.85 -37.75
+174.95 -37.75
+175.05 -37.75
+175.15 -37.75
+175.25 -37.75
+175.35 -37.75
+175.45 -37.75
+175.55 -37.75
+175.65 -37.75
+175.75 -37.75
+175.85 -37.75
+175.95 -37.75
+176.05 -37.75
+176.15 -37.75
+176.25 -37.75
+176.35 -37.75
+176.45 -37.75
+176.55 -37.75
+176.65 -37.75
+176.75 -37.75
+176.85 -37.75
+176.95 -37.75
+177.05 -37.75
+177.15 -37.75
+177.25 -37.75
+177.35 -37.75
+177.45 -37.75
+177.55 -37.75
+177.65 -37.75
+177.75 -37.75
+177.85 -37.75
+177.95 -37.75
+178.05 -37.75
+178.15 -37.75
+178.25 -37.75
+178.35 -37.75
+178.45 -37.75
+178.55 -37.75
+178.65 -37.75
+178.75 -37.75
+178.85 -37.75
+178.95 -37.75
+179.05 -37.75
+179.15 -37.75
+179.25 -37.75
+179.35 -37.75
+179.45 -37.75
+179.55 -37.75
+179.65 -37.75
+179.75 -37.75
+173.25 -37.85
+173.35 -37.85
+173.45 -37.85
+173.55 -37.85
+173.65 -37.85
+173.75 -37.85
+173.85 -37.85
+173.95 -37.85
+174.05 -37.85
+174.15 -37.85
+174.25 -37.85
+174.35 -37.85
+174.45 -37.85
+174.55 -37.85
+174.65 -37.85
+174.75 -37.85
+174.85 -37.85
+174.95 -37.85
+175.05 -37.85
+175.15 -37.85
+175.25 -37.85
+175.35 -37.85
+175.45 -37.85
+175.55 -37.85
+175.65 -37.85
+175.75 -37.85
+175.85 -37.85
+175.95 -37.85
+176.05 -37.85
+176.15 -37.85
+176.25 -37.85
+176.35 -37.85
+176.45 -37.85
+176.55 -37.85
+176.65 -37.85
+176.75 -37.85
+176.85 -37.85
+176.95 -37.85
+177.05 -37.85
+177.15 -37.85
+177.25 -37.85
+177.35 -37.85
+177.45 -37.85
+177.55 -37.85
+177.65 -37.85
+177.75 -37.85
+177.85 -37.85
+177.95 -37.85
+178.05 -37.85
+178.15 -37.85
+178.25 -37.85
+178.35 -37.85
+178.45 -37.85
+178.55 -37.85
+178.65 -37.85
+178.75 -37.85
+178.85 -37.85
+178.95 -37.85
+179.05 -37.85
+179.15 -37.85
+179.25 -37.85
+179.35 -37.85
+179.45 -37.85
+179.55 -37.85
+179.65 -37.85
+179.75 -37.85
+173.15 -37.95
+173.25 -37.95
+173.35 -37.95
+173.45 -37.95
+173.55 -37.95
+173.65 -37.95
+173.75 -37.95
+173.85 -37.95
+173.95 -37.95
+174.05 -37.95
+174.15 -37.95
+174.25 -37.95
+174.35 -37.95
+174.45 -37.95
+174.55 -37.95
+174.65 -37.95
+174.75 -37.95
+174.85 -37.95
+174.95 -37.95
+175.05 -37.95
+175.15 -37.95
+175.25 -37.95
+175.35 -37.95
+175.45 -37.95
+175.55 -37.95
+175.65 -37.95
+175.75 -37.95
+175.85 -37.95
+175.95 -37.95
+176.05 -37.95
+176.15 -37.95
+176.25 -37.95
+176.35 -37.95
+176.45 -37.95
+176.55 -37.95
+176.65 -37.95
+176.75 -37.95
+176.85 -37.95
+176.95 -37.95
+177.05 -37.95
+177.15 -37.95
+177.25 -37.95
+177.35 -37.95
+177.45 -37.95
+177.55 -37.95
+177.65 -37.95
+177.75 -37.95
+177.85 -37.95
+177.95 -37.95
+178.05 -37.95
+178.15 -37.95
+178.25 -37.95
+178.35 -37.95
+178.45 -37.95
+178.55 -37.95
+178.65 -37.95
+178.75 -37.95
+178.85 -37.95
+178.95 -37.95
+179.05 -37.95
+179.15 -37.95
+179.25 -37.95
+179.35 -37.95
+179.45 -37.95
+179.55 -37.95
+179.65 -37.95
+179.75 -37.95
+173.15 -38.05
+173.25 -38.05
+173.35 -38.05
+173.45 -38.05
+173.55 -38.05
+173.65 -38.05
+173.75 -38.05
+173.85 -38.05
+173.95 -38.05
+174.05 -38.05
+174.15 -38.05
+174.25 -38.05
+174.35 -38.05
+174.45 -38.05
+174.55 -38.05
+174.65 -38.05
+174.75 -38.05
+174.85 -38.05
+174.95 -38.05
+175.05 -38.05
+175.15 -38.05
+175.25 -38.05
+175.35 -38.05
+175.45 -38.05
+175.55 -38.05
+175.65 -38.05
+175.75 -38.05
+175.85 -38.05
+175.95 -38.05
+176.05 -38.05
+176.15 -38.05
+176.25 -38.05
+176.35 -38.05
+176.45 -38.05
+176.55 -38.05
+176.65 -38.05
+176.75 -38.05
+176.85 -38.05
+176.95 -38.05
+177.05 -38.05
+177.15 -38.05
+177.25 -38.05
+177.35 -38.05
+177.45 -38.05
+177.55 -38.05
+177.65 -38.05
+177.75 -38.05
+177.85 -38.05
+177.95 -38.05
+178.05 -38.05
+178.15 -38.05
+178.25 -38.05
+178.35 -38.05
+178.45 -38.05
+178.55 -38.05
+178.65 -38.05
+178.75 -38.05
+178.85 -38.05
+178.95 -38.05
+179.05 -38.05
+179.15 -38.05
+179.25 -38.05
+179.35 -38.05
+179.45 -38.05
+179.55 -38.05
+179.65 -38.05
+173.15 -38.15
+173.25 -38.15
+173.35 -38.15
+173.45 -38.15
+173.55 -38.15
+173.65 -38.15
+173.75 -38.15
+173.85 -38.15
+173.95 -38.15
+174.05 -38.15
+174.15 -38.15
+174.25 -38.15
+174.35 -38.15
+174.45 -38.15
+174.55 -38.15
+174.65 -38.15
+174.75 -38.15
+174.85 -38.15
+174.95 -38.15
+175.05 -38.15
+175.15 -38.15
+175.25 -38.15
+175.35 -38.15
+175.45 -38.15
+175.55 -38.15
+175.65 -38.15
+175.75 -38.15
+175.85 -38.15
+175.95 -38.15
+176.05 -38.15
+176.15 -38.15
+176.25 -38.15
+176.35 -38.15
+176.45 -38.15
+176.55 -38.15
+176.65 -38.15
+176.75 -38.15
+176.85 -38.15
+176.95 -38.15
+177.05 -38.15
+177.15 -38.15
+177.25 -38.15
+177.35 -38.15
+177.45 -38.15
+177.55 -38.15
+177.65 -38.15
+177.75 -38.15
+177.85 -38.15
+177.95 -38.15
+178.05 -38.15
+178.15 -38.15
+178.25 -38.15
+178.35 -38.15
+178.45 -38.15
+178.55 -38.15
+178.65 -38.15
+178.75 -38.15
+178.85 -38.15
+178.95 -38.15
+179.05 -38.15
+179.15 -38.15
+179.25 -38.15
+179.35 -38.15
+179.45 -38.15
+179.55 -38.15
+179.65 -38.15
+173.05 -38.25
+173.15 -38.25
+173.25 -38.25
+173.35 -38.25
+173.45 -38.25
+173.55 -38.25
+173.65 -38.25
+173.75 -38.25
+173.85 -38.25
+173.95 -38.25
+174.05 -38.25
+174.15 -38.25
+174.25 -38.25
+174.35 -38.25
+174.45 -38.25
+174.55 -38.25
+174.65 -38.25
+174.75 -38.25
+174.85 -38.25
+174.95 -38.25
+175.05 -38.25
+175.15 -38.25
+175.25 -38.25
+175.35 -38.25
+175.45 -38.25
+175.55 -38.25
+175.65 -38.25
+175.75 -38.25
+175.85 -38.25
+175.95 -38.25
+176.05 -38.25
+176.15 -38.25
+176.25 -38.25
+176.35 -38.25
+176.45 -38.25
+176.55 -38.25
+176.65 -38.25
+176.75 -38.25
+176.85 -38.25
+176.95 -38.25
+177.05 -38.25
+177.15 -38.25
+177.25 -38.25
+177.35 -38.25
+177.45 -38.25
+177.55 -38.25
+177.65 -38.25
+177.75 -38.25
+177.85 -38.25
+177.95 -38.25
+178.05 -38.25
+178.15 -38.25
+178.25 -38.25
+178.35 -38.25
+178.45 -38.25
+178.55 -38.25
+178.65 -38.25
+178.75 -38.25
+178.85 -38.25
+178.95 -38.25
+179.05 -38.25
+179.15 -38.25
+179.25 -38.25
+179.35 -38.25
+179.45 -38.25
+179.55 -38.25
+179.65 -38.25
+173.05 -38.35
+173.15 -38.35
+173.25 -38.35
+173.35 -38.35
+173.45 -38.35
+173.55 -38.35
+173.65 -38.35
+173.75 -38.35
+173.85 -38.35
+173.95 -38.35
+174.05 -38.35
+174.15 -38.35
+174.25 -38.35
+174.35 -38.35
+174.45 -38.35
+174.55 -38.35
+174.65 -38.35
+174.75 -38.35
+174.85 -38.35
+174.95 -38.35
+175.05 -38.35
+175.15 -38.35
+175.25 -38.35
+175.35 -38.35
+175.45 -38.35
+175.55 -38.35
+175.65 -38.35
+175.75 -38.35
+175.85 -38.35
+175.95 -38.35
+176.05 -38.35
+176.15 -38.35
+176.25 -38.35
+176.35 -38.35
+176.45 -38.35
+176.55 -38.35
+176.65 -38.35
+176.75 -38.35
+176.85 -38.35
+176.95 -38.35
+177.05 -38.35
+177.15 -38.35
+177.25 -38.35
+177.35 -38.35
+177.45 -38.35
+177.55 -38.35
+177.65 -38.35
+177.75 -38.35
+177.85 -38.35
+177.95 -38.35
+178.05 -38.35
+178.15 -38.35
+178.25 -38.35
+178.35 -38.35
+178.45 -38.35
+178.55 -38.35
+178.65 -38.35
+178.75 -38.35
+178.85 -38.35
+178.95 -38.35
+179.05 -38.35
+179.15 -38.35
+179.25 -38.35
+179.35 -38.35
+179.45 -38.35
+179.55 -38.35
+179.65 -38.35
+172.95 -38.45
+173.05 -38.45
+173.15 -38.45
+173.25 -38.45
+173.35 -38.45
+173.45 -38.45
+173.55 -38.45
+173.65 -38.45
+173.75 -38.45
+173.85 -38.45
+173.95 -38.45
+174.05 -38.45
+174.15 -38.45
+174.25 -38.45
+174.35 -38.45
+174.45 -38.45
+174.55 -38.45
+174.65 -38.45
+174.75 -38.45
+174.85 -38.45
+174.95 -38.45
+175.05 -38.45
+175.15 -38.45
+175.25 -38.45
+175.35 -38.45
+175.45 -38.45
+175.55 -38.45
+175.65 -38.45
+175.75 -38.45
+175.85 -38.45
+175.95 -38.45
+176.05 -38.45
+176.15 -38.45
+176.25 -38.45
+176.35 -38.45
+176.45 -38.45
+176.55 -38.45
+176.65 -38.45
+176.75 -38.45
+176.85 -38.45
+176.95 -38.45
+177.05 -38.45
+177.15 -38.45
+177.25 -38.45
+177.35 -38.45
+177.45 -38.45
+177.55 -38.45
+177.65 -38.45
+177.75 -38.45
+177.85 -38.45
+177.95 -38.45
+178.05 -38.45
+178.15 -38.45
+178.25 -38.45
+178.35 -38.45
+178.45 -38.45
+178.55 -38.45
+178.65 -38.45
+178.75 -38.45
+178.85 -38.45
+178.95 -38.45
+179.05 -38.45
+179.15 -38.45
+179.25 -38.45
+179.35 -38.45
+179.45 -38.45
+179.55 -38.45
+172.85 -38.55
+172.95 -38.55
+173.05 -38.55
+173.15 -38.55
+173.25 -38.55
+173.35 -38.55
+173.45 -38.55
+173.55 -38.55
+173.65 -38.55
+173.75 -38.55
+173.85 -38.55
+173.95 -38.55
+174.05 -38.55
+174.15 -38.55
+174.25 -38.55
+174.35 -38.55
+174.45 -38.55
+174.55 -38.55
+174.65 -38.55
+174.75 -38.55
+174.85 -38.55
+174.95 -38.55
+175.05 -38.55
+175.15 -38.55
+175.25 -38.55
+175.35 -38.55
+175.45 -38.55
+175.55 -38.55
+175.65 -38.55
+175.75 -38.55
+175.85 -38.55
+175.95 -38.55
+176.05 -38.55
+176.15 -38.55
+176.25 -38.55
+176.35 -38.55
+176.45 -38.55
+176.55 -38.55
+176.65 -38.55
+176.75 -38.55
+176.85 -38.55
+176.95 -38.55
+177.05 -38.55
+177.15 -38.55
+177.25 -38.55
+177.35 -38.55
+177.45 -38.55
+177.55 -38.55
+177.65 -38.55
+177.75 -38.55
+177.85 -38.55
+177.95 -38.55
+178.05 -38.55
+178.15 -38.55
+178.25 -38.55
+178.35 -38.55
+178.45 -38.55
+178.55 -38.55
+178.65 -38.55
+178.75 -38.55
+178.85 -38.55
+178.95 -38.55
+179.05 -38.55
+179.15 -38.55
+179.25 -38.55
+179.35 -38.55
+179.45 -38.55
+179.55 -38.55
+172.75 -38.65
+172.85 -38.65
+172.95 -38.65
+173.05 -38.65
+173.15 -38.65
+173.25 -38.65
+173.35 -38.65
+173.45 -38.65
+173.55 -38.65
+173.65 -38.65
+173.75 -38.65
+173.85 -38.65
+173.95 -38.65
+174.05 -38.65
+174.15 -38.65
+174.25 -38.65
+174.35 -38.65
+174.45 -38.65
+174.55 -38.65
+174.65 -38.65
+174.75 -38.65
+174.85 -38.65
+174.95 -38.65
+175.05 -38.65
+175.15 -38.65
+175.25 -38.65
+175.35 -38.65
+175.45 -38.65
+175.55 -38.65
+175.65 -38.65
+175.75 -38.65
+175.85 -38.65
+175.95 -38.65
+176.05 -38.65
+176.15 -38.65
+176.25 -38.65
+176.35 -38.65
+176.45 -38.65
+176.55 -38.65
+176.65 -38.65
+176.75 -38.65
+176.85 -38.65
+176.95 -38.65
+177.05 -38.65
+177.15 -38.65
+177.25 -38.65
+177.35 -38.65
+177.45 -38.65
+177.55 -38.65
+177.65 -38.65
+177.75 -38.65
+177.85 -38.65
+177.95 -38.65
+178.05 -38.65
+178.15 -38.65
+178.25 -38.65
+178.35 -38.65
+178.45 -38.65
+178.55 -38.65
+178.65 -38.65
+178.75 -38.65
+178.85 -38.65
+178.95 -38.65
+179.05 -38.65
+179.15 -38.65
+179.25 -38.65
+179.35 -38.65
+179.45 -38.65
+179.55 -38.65
+172.65 -38.75
+172.75 -38.75
+172.85 -38.75
+172.95 -38.75
+173.05 -38.75
+173.15 -38.75
+173.25 -38.75
+173.35 -38.75
+173.45 -38.75
+173.55 -38.75
+173.65 -38.75
+173.75 -38.75
+173.85 -38.75
+173.95 -38.75
+174.05 -38.75
+174.15 -38.75
+174.25 -38.75
+174.35 -38.75
+174.45 -38.75
+174.55 -38.75
+174.65 -38.75
+174.75 -38.75
+174.85 -38.75
+174.95 -38.75
+175.05 -38.75
+175.15 -38.75
+175.25 -38.75
+175.35 -38.75
+175.45 -38.75
+175.55 -38.75
+175.65 -38.75
+175.75 -38.75
+175.85 -38.75
+175.95 -38.75
+176.05 -38.75
+176.15 -38.75
+176.25 -38.75
+176.35 -38.75
+176.45 -38.75
+176.55 -38.75
+176.65 -38.75
+176.75 -38.75
+176.85 -38.75
+176.95 -38.75
+177.05 -38.75
+177.15 -38.75
+177.25 -38.75
+177.35 -38.75
+177.45 -38.75
+177.55 -38.75
+177.65 -38.75
+177.75 -38.75
+177.85 -38.75
+177.95 -38.75
+178.05 -38.75
+178.15 -38.75
+178.25 -38.75
+178.35 -38.75
+178.45 -38.75
+178.55 -38.75
+178.65 -38.75
+178.75 -38.75
+178.85 -38.75
+178.95 -38.75
+179.05 -38.75
+179.15 -38.75
+179.25 -38.75
+179.35 -38.75
+179.45 -38.75
+179.55 -38.75
+172.55 -38.85
+172.65 -38.85
+172.75 -38.85
+172.85 -38.85
+172.95 -38.85
+173.05 -38.85
+173.15 -38.85
+173.25 -38.85
+173.35 -38.85
+173.45 -38.85
+173.55 -38.85
+173.65 -38.85
+173.75 -38.85
+173.85 -38.85
+173.95 -38.85
+174.05 -38.85
+174.15 -38.85
+174.25 -38.85
+174.35 -38.85
+174.45 -38.85
+174.55 -38.85
+174.65 -38.85
+174.75 -38.85
+174.85 -38.85
+174.95 -38.85
+175.05 -38.85
+175.15 -38.85
+175.25 -38.85
+175.35 -38.85
+175.45 -38.85
+175.55 -38.85
+175.65 -38.85
+175.75 -38.85
+175.85 -38.85
+175.95 -38.85
+176.05 -38.85
+176.15 -38.85
+176.25 -38.85
+176.35 -38.85
+176.45 -38.85
+176.55 -38.85
+176.65 -38.85
+176.75 -38.85
+176.85 -38.85
+176.95 -38.85
+177.05 -38.85
+177.15 -38.85
+177.25 -38.85
+177.35 -38.85
+177.45 -38.85
+177.55 -38.85
+177.65 -38.85
+177.75 -38.85
+177.85 -38.85
+177.95 -38.85
+178.05 -38.85
+178.15 -38.85
+178.25 -38.85
+178.35 -38.85
+178.45 -38.85
+178.55 -38.85
+178.65 -38.85
+178.75 -38.85
+178.85 -38.85
+178.95 -38.85
+179.05 -38.85
+179.15 -38.85
+179.25 -38.85
+179.35 -38.85
+179.45 -38.85
+172.45 -38.95
+172.55 -38.95
+172.65 -38.95
+172.75 -38.95
+172.85 -38.95
+172.95 -38.95
+173.05 -38.95
+173.15 -38.95
+173.25 -38.95
+173.35 -38.95
+173.45 -38.95
+173.55 -38.95
+173.65 -38.95
+173.75 -38.95
+173.85 -38.95
+173.95 -38.95
+174.05 -38.95
+174.15 -38.95
+174.25 -38.95
+174.35 -38.95
+174.45 -38.95
+174.55 -38.95
+174.65 -38.95
+174.75 -38.95
+174.85 -38.95
+174.95 -38.95
+175.05 -38.95
+175.15 -38.95
+175.25 -38.95
+175.35 -38.95
+175.45 -38.95
+175.55 -38.95
+175.65 -38.95
+175.75 -38.95
+175.85 -38.95
+175.95 -38.95
+176.05 -38.95
+176.15 -38.95
+176.25 -38.95
+176.35 -38.95
+176.45 -38.95
+176.55 -38.95
+176.65 -38.95
+176.75 -38.95
+176.85 -38.95
+176.95 -38.95
+177.05 -38.95
+177.15 -38.95
+177.25 -38.95
+177.35 -38.95
+177.45 -38.95
+177.55 -38.95
+177.65 -38.95
+177.75 -38.95
+177.85 -38.95
+177.95 -38.95
+178.05 -38.95
+178.15 -38.95
+178.25 -38.95
+178.35 -38.95
+178.45 -38.95
+178.55 -38.95
+178.65 -38.95
+178.75 -38.95
+178.85 -38.95
+178.95 -38.95
+179.05 -38.95
+179.15 -38.95
+179.25 -38.95
+179.35 -38.95
+179.45 -38.95
+172.35 -39.05
+172.45 -39.05
+172.55 -39.05
+172.65 -39.05
+172.75 -39.05
+172.85 -39.05
+172.95 -39.05
+173.05 -39.05
+173.15 -39.05
+173.25 -39.05
+173.35 -39.05
+173.45 -39.05
+173.55 -39.05
+173.65 -39.05
+173.75 -39.05
+173.85 -39.05
+173.95 -39.05
+174.05 -39.05
+174.15 -39.05
+174.25 -39.05
+174.35 -39.05
+174.45 -39.05
+174.55 -39.05
+174.65 -39.05
+174.75 -39.05
+174.85 -39.05
+174.95 -39.05
+175.05 -39.05
+175.15 -39.05
+175.25 -39.05
+175.35 -39.05
+175.45 -39.05
+175.55 -39.05
+175.65 -39.05
+175.75 -39.05
+175.85 -39.05
+175.95 -39.05
+176.05 -39.05
+176.15 -39.05
+176.25 -39.05
+176.35 -39.05
+176.45 -39.05
+176.55 -39.05
+176.65 -39.05
+176.75 -39.05
+176.85 -39.05
+176.95 -39.05
+177.05 -39.05
+177.15 -39.05
+177.25 -39.05
+177.35 -39.05
+177.45 -39.05
+177.55 -39.05
+177.65 -39.05
+177.75 -39.05
+177.85 -39.05
+177.95 -39.05
+178.05 -39.05
+178.15 -39.05
+178.25 -39.05
+178.35 -39.05
+178.45 -39.05
+178.55 -39.05
+178.65 -39.05
+178.75 -39.05
+178.85 -39.05
+178.95 -39.05
+179.05 -39.05
+179.15 -39.05
+179.25 -39.05
+179.35 -39.05
+172.15 -39.15
+172.25 -39.15
+172.35 -39.15
+172.45 -39.15
+172.55 -39.15
+172.65 -39.15
+172.75 -39.15
+172.85 -39.15
+172.95 -39.15
+173.05 -39.15
+173.15 -39.15
+173.25 -39.15
+173.35 -39.15
+173.45 -39.15
+173.55 -39.15
+173.65 -39.15
+173.75 -39.15
+173.85 -39.15
+173.95 -39.15
+174.05 -39.15
+174.15 -39.15
+174.25 -39.15
+174.35 -39.15
+174.45 -39.15
+174.55 -39.15
+174.65 -39.15
+174.75 -39.15
+174.85 -39.15
+174.95 -39.15
+175.05 -39.15
+175.15 -39.15
+175.25 -39.15
+175.35 -39.15
+175.45 -39.15
+175.55 -39.15
+175.65 -39.15
+175.75 -39.15
+175.85 -39.15
+175.95 -39.15
+176.05 -39.15
+176.15 -39.15
+176.25 -39.15
+176.35 -39.15
+176.45 -39.15
+176.55 -39.15
+176.65 -39.15
+176.75 -39.15
+176.85 -39.15
+176.95 -39.15
+177.05 -39.15
+177.15 -39.15
+177.25 -39.15
+177.35 -39.15
+177.45 -39.15
+177.55 -39.15
+177.65 -39.15
+177.75 -39.15
+177.85 -39.15
+177.95 -39.15
+178.05 -39.15
+178.15 -39.15
+178.25 -39.15
+178.35 -39.15
+178.45 -39.15
+178.55 -39.15
+178.65 -39.15
+178.75 -39.15
+178.85 -39.15
+178.95 -39.15
+179.05 -39.15
+179.15 -39.15
+179.25 -39.15
+179.35 -39.15
+172.05 -39.25
+172.15 -39.25
+172.25 -39.25
+172.35 -39.25
+172.45 -39.25
+172.55 -39.25
+172.65 -39.25
+172.75 -39.25
+172.85 -39.25
+172.95 -39.25
+173.05 -39.25
+173.15 -39.25
+173.25 -39.25
+173.35 -39.25
+173.45 -39.25
+173.55 -39.25
+173.65 -39.25
+173.75 -39.25
+173.85 -39.25
+173.95 -39.25
+174.05 -39.25
+174.15 -39.25
+174.25 -39.25
+174.35 -39.25
+174.45 -39.25
+174.55 -39.25
+174.65 -39.25
+174.75 -39.25
+174.85 -39.25
+174.95 -39.25
+175.05 -39.25
+175.15 -39.25
+175.25 -39.25
+175.35 -39.25
+175.45 -39.25
+175.55 -39.25
+175.65 -39.25
+175.75 -39.25
+175.85 -39.25
+175.95 -39.25
+176.05 -39.25
+176.15 -39.25
+176.25 -39.25
+176.35 -39.25
+176.45 -39.25
+176.55 -39.25
+176.65 -39.25
+176.75 -39.25
+176.85 -39.25
+176.95 -39.25
+177.05 -39.25
+177.15 -39.25
+177.25 -39.25
+177.35 -39.25
+177.45 -39.25
+177.55 -39.25
+177.65 -39.25
+177.75 -39.25
+177.85 -39.25
+177.95 -39.25
+178.05 -39.25
+178.15 -39.25
+178.25 -39.25
+178.35 -39.25
+178.45 -39.25
+178.55 -39.25
+178.65 -39.25
+178.75 -39.25
+178.85 -39.25
+178.95 -39.25
+179.05 -39.25
+179.15 -39.25
+179.25 -39.25
+171.95 -39.35
+172.05 -39.35
+172.15 -39.35
+172.25 -39.35
+172.35 -39.35
+172.45 -39.35
+172.55 -39.35
+172.65 -39.35
+172.75 -39.35
+172.85 -39.35
+172.95 -39.35
+173.05 -39.35
+173.15 -39.35
+173.25 -39.35
+173.35 -39.35
+173.45 -39.35
+173.55 -39.35
+173.65 -39.35
+173.75 -39.35
+173.85 -39.35
+173.95 -39.35
+174.05 -39.35
+174.15 -39.35
+174.25 -39.35
+174.35 -39.35
+174.45 -39.35
+174.55 -39.35
+174.65 -39.35
+174.75 -39.35
+174.85 -39.35
+174.95 -39.35
+175.05 -39.35
+175.15 -39.35
+175.25 -39.35
+175.35 -39.35
+175.45 -39.35
+175.55 -39.35
+175.65 -39.35
+175.75 -39.35
+175.85 -39.35
+175.95 -39.35
+176.05 -39.35
+176.15 -39.35
+176.25 -39.35
+176.35 -39.35
+176.45 -39.35
+176.55 -39.35
+176.65 -39.35
+176.75 -39.35
+176.85 -39.35
+176.95 -39.35
+177.05 -39.35
+177.15 -39.35
+177.25 -39.35
+177.35 -39.35
+177.45 -39.35
+177.55 -39.35
+177.65 -39.35
+177.75 -39.35
+177.85 -39.35
+177.95 -39.35
+178.05 -39.35
+178.15 -39.35
+178.25 -39.35
+178.35 -39.35
+178.45 -39.35
+178.55 -39.35
+178.65 -39.35
+178.75 -39.35
+178.85 -39.35
+178.95 -39.35
+179.05 -39.35
+179.15 -39.35
+179.25 -39.35
+171.85 -39.45
+171.95 -39.45
+172.05 -39.45
+172.15 -39.45
+172.25 -39.45
+172.35 -39.45
+172.45 -39.45
+172.55 -39.45
+172.65 -39.45
+172.75 -39.45
+172.85 -39.45
+172.95 -39.45
+173.05 -39.45
+173.15 -39.45
+173.25 -39.45
+173.35 -39.45
+173.45 -39.45
+173.55 -39.45
+173.65 -39.45
+173.75 -39.45
+173.85 -39.45
+173.95 -39.45
+174.05 -39.45
+174.15 -39.45
+174.25 -39.45
+174.35 -39.45
+174.45 -39.45
+174.55 -39.45
+174.65 -39.45
+174.75 -39.45
+174.85 -39.45
+174.95 -39.45
+175.05 -39.45
+175.15 -39.45
+175.25 -39.45
+175.35 -39.45
+175.45 -39.45
+175.55 -39.45
+175.65 -39.45
+175.75 -39.45
+175.85 -39.45
+175.95 -39.45
+176.05 -39.45
+176.15 -39.45
+176.25 -39.45
+176.35 -39.45
+176.45 -39.45
+176.55 -39.45
+176.65 -39.45
+176.75 -39.45
+176.85 -39.45
+176.95 -39.45
+177.05 -39.45
+177.15 -39.45
+177.25 -39.45
+177.35 -39.45
+177.45 -39.45
+177.55 -39.45
+177.65 -39.45
+177.75 -39.45
+177.85 -39.45
+177.95 -39.45
+178.05 -39.45
+178.15 -39.45
+178.25 -39.45
+178.35 -39.45
+178.45 -39.45
+178.55 -39.45
+178.65 -39.45
+178.75 -39.45
+178.85 -39.45
+178.95 -39.45
+179.05 -39.45
+179.15 -39.45
+171.75 -39.55
+171.85 -39.55
+171.95 -39.55
+172.05 -39.55
+172.15 -39.55
+172.25 -39.55
+172.35 -39.55
+172.45 -39.55
+172.55 -39.55
+172.65 -39.55
+172.75 -39.55
+172.85 -39.55
+172.95 -39.55
+173.05 -39.55
+173.15 -39.55
+173.25 -39.55
+173.35 -39.55
+173.45 -39.55
+173.55 -39.55
+173.65 -39.55
+173.75 -39.55
+173.85 -39.55
+173.95 -39.55
+174.05 -39.55
+174.15 -39.55
+174.25 -39.55
+174.35 -39.55
+174.45 -39.55
+174.55 -39.55
+174.65 -39.55
+174.75 -39.55
+174.85 -39.55
+174.95 -39.55
+175.05 -39.55
+175.15 -39.55
+175.25 -39.55
+175.35 -39.55
+175.45 -39.55
+175.55 -39.55
+175.65 -39.55
+175.75 -39.55
+175.85 -39.55
+175.95 -39.55
+176.05 -39.55
+176.15 -39.55
+176.25 -39.55
+176.35 -39.55
+176.45 -39.55
+176.55 -39.55
+176.65 -39.55
+176.75 -39.55
+176.85 -39.55
+176.95 -39.55
+177.05 -39.55
+177.15 -39.55
+177.25 -39.55
+177.35 -39.55
+177.45 -39.55
+177.55 -39.55
+177.65 -39.55
+177.75 -39.55
+177.85 -39.55
+177.95 -39.55
+178.05 -39.55
+178.15 -39.55
+178.25 -39.55
+178.35 -39.55
+178.45 -39.55
+178.55 -39.55
+178.65 -39.55
+178.75 -39.55
+178.85 -39.55
+178.95 -39.55
+179.05 -39.55
+179.15 -39.55
+171.65 -39.65
+171.75 -39.65
+171.85 -39.65
+171.95 -39.65
+172.05 -39.65
+172.15 -39.65
+172.25 -39.65
+172.35 -39.65
+172.45 -39.65
+172.55 -39.65
+172.65 -39.65
+172.75 -39.65
+172.85 -39.65
+172.95 -39.65
+173.05 -39.65
+173.15 -39.65
+173.25 -39.65
+173.35 -39.65
+173.45 -39.65
+173.55 -39.65
+173.65 -39.65
+173.75 -39.65
+173.85 -39.65
+173.95 -39.65
+174.05 -39.65
+174.15 -39.65
+174.25 -39.65
+174.35 -39.65
+174.45 -39.65
+174.55 -39.65
+174.65 -39.65
+174.75 -39.65
+174.85 -39.65
+174.95 -39.65
+175.05 -39.65
+175.15 -39.65
+175.25 -39.65
+175.35 -39.65
+175.45 -39.65
+175.55 -39.65
+175.65 -39.65
+175.75 -39.65
+175.85 -39.65
+175.95 -39.65
+176.05 -39.65
+176.15 -39.65
+176.25 -39.65
+176.35 -39.65
+176.45 -39.65
+176.55 -39.65
+176.65 -39.65
+176.75 -39.65
+176.85 -39.65
+176.95 -39.65
+177.05 -39.65
+177.15 -39.65
+177.25 -39.65
+177.35 -39.65
+177.45 -39.65
+177.55 -39.65
+177.65 -39.65
+177.75 -39.65
+177.85 -39.65
+177.95 -39.65
+178.05 -39.65
+178.15 -39.65
+178.25 -39.65
+178.35 -39.65
+178.45 -39.65
+178.55 -39.65
+178.65 -39.65
+178.75 -39.65
+178.85 -39.65
+178.95 -39.65
+179.05 -39.65
+171.55 -39.75
+171.65 -39.75
+171.75 -39.75
+171.85 -39.75
+171.95 -39.75
+172.05 -39.75
+172.15 -39.75
+172.25 -39.75
+172.35 -39.75
+172.45 -39.75
+172.55 -39.75
+172.65 -39.75
+172.75 -39.75
+172.85 -39.75
+172.95 -39.75
+173.05 -39.75
+173.15 -39.75
+173.25 -39.75
+173.35 -39.75
+173.45 -39.75
+173.55 -39.75
+173.65 -39.75
+173.75 -39.75
+173.85 -39.75
+173.95 -39.75
+174.05 -39.75
+174.15 -39.75
+174.25 -39.75
+174.35 -39.75
+174.45 -39.75
+174.55 -39.75
+174.65 -39.75
+174.75 -39.75
+174.85 -39.75
+174.95 -39.75
+175.05 -39.75
+175.15 -39.75
+175.25 -39.75
+175.35 -39.75
+175.45 -39.75
+175.55 -39.75
+175.65 -39.75
+175.75 -39.75
+175.85 -39.75
+175.95 -39.75
+176.05 -39.75
+176.15 -39.75
+176.25 -39.75
+176.35 -39.75
+176.45 -39.75
+176.55 -39.75
+176.65 -39.75
+176.75 -39.75
+176.85 -39.75
+176.95 -39.75
+177.05 -39.75
+177.15 -39.75
+177.25 -39.75
+177.35 -39.75
+177.45 -39.75
+177.55 -39.75
+177.65 -39.75
+177.75 -39.75
+177.85 -39.75
+177.95 -39.75
+178.05 -39.75
+178.15 -39.75
+178.25 -39.75
+178.35 -39.75
+178.45 -39.75
+178.55 -39.75
+178.65 -39.75
+178.75 -39.75
+178.85 -39.75
+178.95 -39.75
+179.05 -39.75
+171.45 -39.85
+171.55 -39.85
+171.65 -39.85
+171.75 -39.85
+171.85 -39.85
+171.95 -39.85
+172.05 -39.85
+172.15 -39.85
+172.25 -39.85
+172.35 -39.85
+172.45 -39.85
+172.55 -39.85
+172.65 -39.85
+172.75 -39.85
+172.85 -39.85
+172.95 -39.85
+173.05 -39.85
+173.15 -39.85
+173.25 -39.85
+173.35 -39.85
+173.45 -39.85
+173.55 -39.85
+173.65 -39.85
+173.75 -39.85
+173.85 -39.85
+173.95 -39.85
+174.05 -39.85
+174.15 -39.85
+174.25 -39.85
+174.35 -39.85
+174.45 -39.85
+174.55 -39.85
+174.65 -39.85
+174.75 -39.85
+174.85 -39.85
+174.95 -39.85
+175.05 -39.85
+175.15 -39.85
+175.25 -39.85
+175.35 -39.85
+175.45 -39.85
+175.55 -39.85
+175.65 -39.85
+175.75 -39.85
+175.85 -39.85
+175.95 -39.85
+176.05 -39.85
+176.15 -39.85
+176.25 -39.85
+176.35 -39.85
+176.45 -39.85
+176.55 -39.85
+176.65 -39.85
+176.75 -39.85
+176.85 -39.85
+176.95 -39.85
+177.05 -39.85
+177.15 -39.85
+177.25 -39.85
+177.35 -39.85
+177.45 -39.85
+177.55 -39.85
+177.65 -39.85
+177.75 -39.85
+177.85 -39.85
+177.95 -39.85
+178.05 -39.85
+178.15 -39.85
+178.25 -39.85
+178.35 -39.85
+178.45 -39.85
+178.55 -39.85
+178.65 -39.85
+178.75 -39.85
+178.85 -39.85
+178.95 -39.85
+171.25 -39.95
+171.35 -39.95
+171.45 -39.95
+171.55 -39.95
+171.65 -39.95
+171.75 -39.95
+171.85 -39.95
+171.95 -39.95
+172.05 -39.95
+172.15 -39.95
+172.25 -39.95
+172.35 -39.95
+172.45 -39.95
+172.55 -39.95
+172.65 -39.95
+172.75 -39.95
+172.85 -39.95
+172.95 -39.95
+173.05 -39.95
+173.15 -39.95
+173.25 -39.95
+173.35 -39.95
+173.45 -39.95
+173.55 -39.95
+173.65 -39.95
+173.75 -39.95
+173.85 -39.95
+173.95 -39.95
+174.05 -39.95
+174.15 -39.95
+174.25 -39.95
+174.35 -39.95
+174.45 -39.95
+174.55 -39.95
+174.65 -39.95
+174.75 -39.95
+174.85 -39.95
+174.95 -39.95
+175.05 -39.95
+175.15 -39.95
+175.25 -39.95
+175.35 -39.95
+175.45 -39.95
+175.55 -39.95
+175.65 -39.95
+175.75 -39.95
+175.85 -39.95
+175.95 -39.95
+176.05 -39.95
+176.15 -39.95
+176.25 -39.95
+176.35 -39.95
+176.45 -39.95
+176.55 -39.95
+176.65 -39.95
+176.75 -39.95
+176.85 -39.95
+176.95 -39.95
+177.05 -39.95
+177.15 -39.95
+177.25 -39.95
+177.35 -39.95
+177.45 -39.95
+177.55 -39.95
+177.65 -39.95
+177.75 -39.95
+177.85 -39.95
+177.95 -39.95
+178.05 -39.95
+178.15 -39.95
+178.25 -39.95
+178.35 -39.95
+178.45 -39.95
+178.55 -39.95
+178.65 -39.95
+178.75 -39.95
+178.85 -39.95
+171.15 -40.05
+171.25 -40.05
+171.35 -40.05
+171.45 -40.05
+171.55 -40.05
+171.65 -40.05
+171.75 -40.05
+171.85 -40.05
+171.95 -40.05
+172.05 -40.05
+172.15 -40.05
+172.25 -40.05
+172.35 -40.05
+172.45 -40.05
+172.55 -40.05
+172.65 -40.05
+172.75 -40.05
+172.85 -40.05
+172.95 -40.05
+173.05 -40.05
+173.15 -40.05
+173.25 -40.05
+173.35 -40.05
+173.45 -40.05
+173.55 -40.05
+173.65 -40.05
+173.75 -40.05
+173.85 -40.05
+173.95 -40.05
+174.05 -40.05
+174.15 -40.05
+174.25 -40.05
+174.35 -40.05
+174.45 -40.05
+174.55 -40.05
+174.65 -40.05
+174.75 -40.05
+174.85 -40.05
+174.95 -40.05
+175.05 -40.05
+175.15 -40.05
+175.25 -40.05
+175.35 -40.05
+175.45 -40.05
+175.55 -40.05
+175.65 -40.05
+175.75 -40.05
+175.85 -40.05
+175.95 -40.05
+176.05 -40.05
+176.15 -40.05
+176.25 -40.05
+176.35 -40.05
+176.45 -40.05
+176.55 -40.05
+176.65 -40.05
+176.75 -40.05
+176.85 -40.05
+176.95 -40.05
+177.05 -40.05
+177.15 -40.05
+177.25 -40.05
+177.35 -40.05
+177.45 -40.05
+177.55 -40.05
+177.65 -40.05
+177.75 -40.05
+177.85 -40.05
+177.95 -40.05
+178.05 -40.05
+178.15 -40.05
+178.25 -40.05
+178.35 -40.05
+178.45 -40.05
+178.55 -40.05
+178.65 -40.05
+171.05 -40.15
+171.15 -40.15
+171.25 -40.15
+171.35 -40.15
+171.45 -40.15
+171.55 -40.15
+171.65 -40.15
+171.75 -40.15
+171.85 -40.15
+171.95 -40.15
+172.05 -40.15
+172.15 -40.15
+172.25 -40.15
+172.35 -40.15
+172.45 -40.15
+172.55 -40.15
+172.65 -40.15
+172.75 -40.15
+172.85 -40.15
+172.95 -40.15
+173.05 -40.15
+173.15 -40.15
+173.25 -40.15
+173.35 -40.15
+173.45 -40.15
+173.55 -40.15
+173.65 -40.15
+173.75 -40.15
+173.85 -40.15
+173.95 -40.15
+174.05 -40.15
+174.15 -40.15
+174.25 -40.15
+174.35 -40.15
+174.45 -40.15
+174.55 -40.15
+174.65 -40.15
+174.75 -40.15
+174.85 -40.15
+174.95 -40.15
+175.05 -40.15
+175.15 -40.15
+175.25 -40.15
+175.35 -40.15
+175.45 -40.15
+175.55 -40.15
+175.65 -40.15
+175.75 -40.15
+175.85 -40.15
+175.95 -40.15
+176.05 -40.15
+176.15 -40.15
+176.25 -40.15
+176.35 -40.15
+176.45 -40.15
+176.55 -40.15
+176.65 -40.15
+176.75 -40.15
+176.85 -40.15
+176.95 -40.15
+177.05 -40.15
+177.15 -40.15
+177.25 -40.15
+177.35 -40.15
+177.45 -40.15
+177.55 -40.15
+177.65 -40.15
+177.75 -40.15
+177.85 -40.15
+177.95 -40.15
+178.05 -40.15
+178.15 -40.15
+178.25 -40.15
+178.35 -40.15
+178.45 -40.15
+170.95 -40.25
+171.05 -40.25
+171.15 -40.25
+171.25 -40.25
+171.35 -40.25
+171.45 -40.25
+171.55 -40.25
+171.65 -40.25
+171.75 -40.25
+171.85 -40.25
+171.95 -40.25
+172.05 -40.25
+172.15 -40.25
+172.25 -40.25
+172.35 -40.25
+172.45 -40.25
+172.55 -40.25
+172.65 -40.25
+172.75 -40.25
+172.85 -40.25
+172.95 -40.25
+173.05 -40.25
+173.15 -40.25
+173.25 -40.25
+173.35 -40.25
+173.45 -40.25
+173.55 -40.25
+173.65 -40.25
+173.75 -40.25
+173.85 -40.25
+173.95 -40.25
+174.05 -40.25
+174.15 -40.25
+174.25 -40.25
+174.35 -40.25
+174.45 -40.25
+174.55 -40.25
+174.65 -40.25
+174.75 -40.25
+174.85 -40.25
+174.95 -40.25
+175.05 -40.25
+175.15 -40.25
+175.25 -40.25
+175.35 -40.25
+175.45 -40.25
+175.55 -40.25
+175.65 -40.25
+175.75 -40.25
+175.85 -40.25
+175.95 -40.25
+176.05 -40.25
+176.15 -40.25
+176.25 -40.25
+176.35 -40.25
+176.45 -40.25
+176.55 -40.25
+176.65 -40.25
+176.75 -40.25
+176.85 -40.25
+176.95 -40.25
+177.05 -40.25
+177.15 -40.25
+177.25 -40.25
+177.35 -40.25
+177.45 -40.25
+177.55 -40.25
+177.65 -40.25
+177.75 -40.25
+177.85 -40.25
+177.95 -40.25
+178.05 -40.25
+178.15 -40.25
+170.85 -40.35
+170.95 -40.35
+171.05 -40.35
+171.15 -40.35
+171.25 -40.35
+171.35 -40.35
+171.45 -40.35
+171.55 -40.35
+171.65 -40.35
+171.75 -40.35
+171.85 -40.35
+171.95 -40.35
+172.05 -40.35
+172.15 -40.35
+172.25 -40.35
+172.35 -40.35
+172.45 -40.35
+172.55 -40.35
+172.65 -40.35
+172.75 -40.35
+172.85 -40.35
+172.95 -40.35
+173.05 -40.35
+173.15 -40.35
+173.25 -40.35
+173.35 -40.35
+173.45 -40.35
+173.55 -40.35
+173.65 -40.35
+173.75 -40.35
+173.85 -40.35
+173.95 -40.35
+174.05 -40.35
+174.15 -40.35
+174.25 -40.35
+174.35 -40.35
+174.45 -40.35
+174.55 -40.35
+174.65 -40.35
+174.75 -40.35
+174.85 -40.35
+174.95 -40.35
+175.05 -40.35
+175.15 -40.35
+175.25 -40.35
+175.35 -40.35
+175.45 -40.35
+175.55 -40.35
+175.65 -40.35
+175.75 -40.35
+175.85 -40.35
+175.95 -40.35
+176.05 -40.35
+176.15 -40.35
+176.25 -40.35
+176.35 -40.35
+176.45 -40.35
+176.55 -40.35
+176.65 -40.35
+176.75 -40.35
+176.85 -40.35
+176.95 -40.35
+177.05 -40.35
+177.15 -40.35
+177.25 -40.35
+177.35 -40.35
+177.45 -40.35
+177.55 -40.35
+177.65 -40.35
+177.75 -40.35
+177.85 -40.35
+177.95 -40.35
+178.05 -40.35
+178.15 -40.35
+170.75 -40.45
+170.85 -40.45
+170.95 -40.45
+171.05 -40.45
+171.15 -40.45
+171.25 -40.45
+171.35 -40.45
+171.45 -40.45
+171.55 -40.45
+171.65 -40.45
+171.75 -40.45
+171.85 -40.45
+171.95 -40.45
+172.05 -40.45
+172.15 -40.45
+172.25 -40.45
+172.35 -40.45
+172.45 -40.45
+172.55 -40.45
+172.65 -40.45
+172.75 -40.45
+172.85 -40.45
+172.95 -40.45
+173.05 -40.45
+173.15 -40.45
+173.25 -40.45
+173.35 -40.45
+173.45 -40.45
+173.55 -40.45
+173.65 -40.45
+173.75 -40.45
+173.85 -40.45
+173.95 -40.45
+174.05 -40.45
+174.15 -40.45
+174.25 -40.45
+174.35 -40.45
+174.45 -40.45
+174.55 -40.45
+174.65 -40.45
+174.75 -40.45
+174.85 -40.45
+174.95 -40.45
+175.05 -40.45
+175.15 -40.45
+175.25 -40.45
+175.35 -40.45
+175.45 -40.45
+175.55 -40.45
+175.65 -40.45
+175.75 -40.45
+175.85 -40.45
+175.95 -40.45
+176.05 -40.45
+176.15 -40.45
+176.25 -40.45
+176.35 -40.45
+176.45 -40.45
+176.55 -40.45
+176.65 -40.45
+176.75 -40.45
+176.85 -40.45
+176.95 -40.45
+177.05 -40.45
+177.15 -40.45
+177.25 -40.45
+177.35 -40.45
+177.45 -40.45
+177.55 -40.45
+177.65 -40.45
+177.75 -40.45
+177.85 -40.45
+177.95 -40.45
+178.05 -40.45
+170.65 -40.55
+170.75 -40.55
+170.85 -40.55
+170.95 -40.55
+171.05 -40.55
+171.15 -40.55
+171.25 -40.55
+171.35 -40.55
+171.45 -40.55
+171.55 -40.55
+171.65 -40.55
+171.75 -40.55
+171.85 -40.55
+171.95 -40.55
+172.05 -40.55
+172.15 -40.55
+172.25 -40.55
+172.35 -40.55
+172.45 -40.55
+172.55 -40.55
+172.65 -40.55
+172.75 -40.55
+172.85 -40.55
+172.95 -40.55
+173.05 -40.55
+173.15 -40.55
+173.25 -40.55
+173.35 -40.55
+173.45 -40.55
+173.55 -40.55
+173.65 -40.55
+173.75 -40.55
+173.85 -40.55
+173.95 -40.55
+174.05 -40.55
+174.15 -40.55
+174.25 -40.55
+174.35 -40.55
+174.45 -40.55
+174.55 -40.55
+174.65 -40.55
+174.75 -40.55
+174.85 -40.55
+174.95 -40.55
+175.05 -40.55
+175.15 -40.55
+175.25 -40.55
+175.35 -40.55
+175.45 -40.55
+175.55 -40.55
+175.65 -40.55
+175.75 -40.55
+175.85 -40.55
+175.95 -40.55
+176.05 -40.55
+176.15 -40.55
+176.25 -40.55
+176.35 -40.55
+176.45 -40.55
+176.55 -40.55
+176.65 -40.55
+176.75 -40.55
+176.85 -40.55
+176.95 -40.55
+177.05 -40.55
+177.15 -40.55
+177.25 -40.55
+177.35 -40.55
+177.45 -40.55
+177.55 -40.55
+177.65 -40.55
+177.75 -40.55
+177.85 -40.55
+177.95 -40.55
+170.55 -40.65
+170.65 -40.65
+170.75 -40.65
+170.85 -40.65
+170.95 -40.65
+171.05 -40.65
+171.15 -40.65
+171.25 -40.65
+171.35 -40.65
+171.45 -40.65
+171.55 -40.65
+171.65 -40.65
+171.75 -40.65
+171.85 -40.65
+171.95 -40.65
+172.05 -40.65
+172.15 -40.65
+172.25 -40.65
+172.35 -40.65
+172.45 -40.65
+172.55 -40.65
+172.65 -40.65
+172.75 -40.65
+172.85 -40.65
+172.95 -40.65
+173.05 -40.65
+173.15 -40.65
+173.25 -40.65
+173.35 -40.65
+173.45 -40.65
+173.55 -40.65
+173.65 -40.65
+173.75 -40.65
+173.85 -40.65
+173.95 -40.65
+174.05 -40.65
+174.15 -40.65
+174.25 -40.65
+174.35 -40.65
+174.45 -40.65
+174.55 -40.65
+174.65 -40.65
+174.75 -40.65
+174.85 -40.65
+174.95 -40.65
+175.05 -40.65
+175.15 -40.65
+175.25 -40.65
+175.35 -40.65
+175.45 -40.65
+175.55 -40.65
+175.65 -40.65
+175.75 -40.65
+175.85 -40.65
+175.95 -40.65
+176.05 -40.65
+176.15 -40.65
+176.25 -40.65
+176.35 -40.65
+176.45 -40.65
+176.55 -40.65
+176.65 -40.65
+176.75 -40.65
+176.85 -40.65
+176.95 -40.65
+177.05 -40.65
+177.15 -40.65
+177.25 -40.65
+177.35 -40.65
+177.45 -40.65
+177.55 -40.65
+177.65 -40.65
+177.75 -40.65
+177.85 -40.65
+177.95 -40.65
+170.35 -40.75
+170.45 -40.75
+170.55 -40.75
+170.65 -40.75
+170.75 -40.75
+170.85 -40.75
+170.95 -40.75
+171.05 -40.75
+171.15 -40.75
+171.25 -40.75
+171.35 -40.75
+171.45 -40.75
+171.55 -40.75
+171.65 -40.75
+171.75 -40.75
+171.85 -40.75
+171.95 -40.75
+172.05 -40.75
+172.15 -40.75
+172.25 -40.75
+172.35 -40.75
+172.45 -40.75
+172.55 -40.75
+172.65 -40.75
+172.75 -40.75
+172.85 -40.75
+172.95 -40.75
+173.05 -40.75
+173.15 -40.75
+173.25 -40.75
+173.35 -40.75
+173.45 -40.75
+173.55 -40.75
+173.65 -40.75
+173.75 -40.75
+173.85 -40.75
+173.95 -40.75
+174.05 -40.75
+174.15 -40.75
+174.25 -40.75
+174.35 -40.75
+174.45 -40.75
+174.55 -40.75
+174.65 -40.75
+174.75 -40.75
+174.85 -40.75
+174.95 -40.75
+175.05 -40.75
+175.15 -40.75
+175.25 -40.75
+175.35 -40.75
+175.45 -40.75
+175.55 -40.75
+175.65 -40.75
+175.75 -40.75
+175.85 -40.75
+175.95 -40.75
+176.05 -40.75
+176.15 -40.75
+176.25 -40.75
+176.35 -40.75
+176.45 -40.75
+176.55 -40.75
+176.65 -40.75
+176.75 -40.75
+176.85 -40.75
+176.95 -40.75
+177.05 -40.75
+177.15 -40.75
+177.25 -40.75
+177.35 -40.75
+177.45 -40.75
+177.55 -40.75
+177.65 -40.75
+177.75 -40.75
+177.85 -40.75
+170.25 -40.85
+170.35 -40.85
+170.45 -40.85
+170.55 -40.85
+170.65 -40.85
+170.75 -40.85
+170.85 -40.85
+170.95 -40.85
+171.05 -40.85
+171.15 -40.85
+171.25 -40.85
+171.35 -40.85
+171.45 -40.85
+171.55 -40.85
+171.65 -40.85
+171.75 -40.85
+171.85 -40.85
+171.95 -40.85
+172.05 -40.85
+172.15 -40.85
+172.25 -40.85
+172.35 -40.85
+172.45 -40.85
+172.55 -40.85
+172.65 -40.85
+172.75 -40.85
+172.85 -40.85
+172.95 -40.85
+173.05 -40.85
+173.15 -40.85
+173.25 -40.85
+173.35 -40.85
+173.45 -40.85
+173.55 -40.85
+173.65 -40.85
+173.75 -40.85
+173.85 -40.85
+173.95 -40.85
+174.05 -40.85
+174.15 -40.85
+174.25 -40.85
+174.35 -40.85
+174.45 -40.85
+174.55 -40.85
+174.65 -40.85
+174.75 -40.85
+174.85 -40.85
+174.95 -40.85
+175.05 -40.85
+175.15 -40.85
+175.25 -40.85
+175.35 -40.85
+175.45 -40.85
+175.55 -40.85
+175.65 -40.85
+175.75 -40.85
+175.85 -40.85
+175.95 -40.85
+176.05 -40.85
+176.15 -40.85
+176.25 -40.85
+176.35 -40.85
+176.45 -40.85
+176.55 -40.85
+176.65 -40.85
+176.75 -40.85
+176.85 -40.85
+176.95 -40.85
+177.05 -40.85
+177.15 -40.85
+177.25 -40.85
+177.35 -40.85
+177.45 -40.85
+177.55 -40.85
+177.65 -40.85
+177.75 -40.85
+177.85 -40.85
+170.15 -40.95
+170.25 -40.95
+170.35 -40.95
+170.45 -40.95
+170.55 -40.95
+170.65 -40.95
+170.75 -40.95
+170.85 -40.95
+170.95 -40.95
+171.05 -40.95
+171.15 -40.95
+171.25 -40.95
+171.35 -40.95
+171.45 -40.95
+171.55 -40.95
+171.65 -40.95
+171.75 -40.95
+171.85 -40.95
+171.95 -40.95
+172.05 -40.95
+172.15 -40.95
+172.25 -40.95
+172.35 -40.95
+172.45 -40.95
+172.55 -40.95
+172.65 -40.95
+172.75 -40.95
+172.85 -40.95
+172.95 -40.95
+173.05 -40.95
+173.15 -40.95
+173.25 -40.95
+173.35 -40.95
+173.45 -40.95
+173.55 -40.95
+173.65 -40.95
+173.75 -40.95
+173.85 -40.95
+173.95 -40.95
+174.05 -40.95
+174.15 -40.95
+174.25 -40.95
+174.35 -40.95
+174.45 -40.95
+174.55 -40.95
+174.65 -40.95
+174.75 -40.95
+174.85 -40.95
+174.95 -40.95
+175.05 -40.95
+175.15 -40.95
+175.25 -40.95
+175.35 -40.95
+175.45 -40.95
+175.55 -40.95
+175.65 -40.95
+175.75 -40.95
+175.85 -40.95
+175.95 -40.95
+176.05 -40.95
+176.15 -40.95
+176.25 -40.95
+176.35 -40.95
+176.45 -40.95
+176.55 -40.95
+176.65 -40.95
+176.75 -40.95
+176.85 -40.95
+176.95 -40.95
+177.05 -40.95
+177.15 -40.95
+177.25 -40.95
+177.35 -40.95
+177.45 -40.95
+177.55 -40.95
+177.65 -40.95
+177.75 -40.95
+170.05 -41.05
+170.15 -41.05
+170.25 -41.05
+170.35 -41.05
+170.45 -41.05
+170.55 -41.05
+170.65 -41.05
+170.75 -41.05
+170.85 -41.05
+170.95 -41.05
+171.05 -41.05
+171.15 -41.05
+171.25 -41.05
+171.35 -41.05
+171.45 -41.05
+171.55 -41.05
+171.65 -41.05
+171.75 -41.05
+171.85 -41.05
+171.95 -41.05
+172.05 -41.05
+172.15 -41.05
+172.25 -41.05
+172.35 -41.05
+172.45 -41.05
+172.55 -41.05
+172.65 -41.05
+172.75 -41.05
+172.85 -41.05
+172.95 -41.05
+173.05 -41.05
+173.15 -41.05
+173.25 -41.05
+173.35 -41.05
+173.45 -41.05
+173.55 -41.05
+173.65 -41.05
+173.75 -41.05
+173.85 -41.05
+173.95 -41.05
+174.05 -41.05
+174.15 -41.05
+174.25 -41.05
+174.35 -41.05
+174.45 -41.05
+174.55 -41.05
+174.65 -41.05
+174.75 -41.05
+174.85 -41.05
+174.95 -41.05
+175.05 -41.05
+175.15 -41.05
+175.25 -41.05
+175.35 -41.05
+175.45 -41.05
+175.55 -41.05
+175.65 -41.05
+175.75 -41.05
+175.85 -41.05
+175.95 -41.05
+176.05 -41.05
+176.15 -41.05
+176.25 -41.05
+176.35 -41.05
+176.45 -41.05
+176.55 -41.05
+176.65 -41.05
+176.75 -41.05
+176.85 -41.05
+176.95 -41.05
+177.05 -41.05
+177.15 -41.05
+177.25 -41.05
+177.35 -41.05
+177.45 -41.05
+177.55 -41.05
+177.65 -41.05
+169.95 -41.15
+170.05 -41.15
+170.15 -41.15
+170.25 -41.15
+170.35 -41.15
+170.45 -41.15
+170.55 -41.15
+170.65 -41.15
+170.75 -41.15
+170.85 -41.15
+170.95 -41.15
+171.05 -41.15
+171.15 -41.15
+171.25 -41.15
+171.35 -41.15
+171.45 -41.15
+171.55 -41.15
+171.65 -41.15
+171.75 -41.15
+171.85 -41.15
+171.95 -41.15
+172.05 -41.15
+172.15 -41.15
+172.25 -41.15
+172.35 -41.15
+172.45 -41.15
+172.55 -41.15
+172.65 -41.15
+172.75 -41.15
+172.85 -41.15
+172.95 -41.15
+173.05 -41.15
+173.15 -41.15
+173.25 -41.15
+173.35 -41.15
+173.45 -41.15
+173.55 -41.15
+173.65 -41.15
+173.75 -41.15
+173.85 -41.15
+173.95 -41.15
+174.05 -41.15
+174.15 -41.15
+174.25 -41.15
+174.35 -41.15
+174.45 -41.15
+174.55 -41.15
+174.65 -41.15
+174.75 -41.15
+174.85 -41.15
+174.95 -41.15
+175.05 -41.15
+175.15 -41.15
+175.25 -41.15
+175.35 -41.15
+175.45 -41.15
+175.55 -41.15
+175.65 -41.15
+175.75 -41.15
+175.85 -41.15
+175.95 -41.15
+176.05 -41.15
+176.15 -41.15
+176.25 -41.15
+176.35 -41.15
+176.45 -41.15
+176.55 -41.15
+176.65 -41.15
+176.75 -41.15
+176.85 -41.15
+176.95 -41.15
+177.05 -41.15
+177.15 -41.15
+177.25 -41.15
+177.35 -41.15
+177.45 -41.15
+177.55 -41.15
+169.85 -41.25
+169.95 -41.25
+170.05 -41.25
+170.15 -41.25
+170.25 -41.25
+170.35 -41.25
+170.45 -41.25
+170.55 -41.25
+170.65 -41.25
+170.75 -41.25
+170.85 -41.25
+170.95 -41.25
+171.05 -41.25
+171.15 -41.25
+171.25 -41.25
+171.35 -41.25
+171.45 -41.25
+171.55 -41.25
+171.65 -41.25
+171.75 -41.25
+171.85 -41.25
+171.95 -41.25
+172.05 -41.25
+172.15 -41.25
+172.25 -41.25
+172.35 -41.25
+172.45 -41.25
+172.55 -41.25
+172.65 -41.25
+172.75 -41.25
+172.85 -41.25
+172.95 -41.25
+173.05 -41.25
+173.15 -41.25
+173.25 -41.25
+173.35 -41.25
+173.45 -41.25
+173.55 -41.25
+173.65 -41.25
+173.75 -41.25
+173.85 -41.25
+173.95 -41.25
+174.05 -41.25
+174.15 -41.25
+174.25 -41.25
+174.35 -41.25
+174.45 -41.25
+174.55 -41.25
+174.65 -41.25
+174.75 -41.25
+174.85 -41.25
+174.95 -41.25
+175.05 -41.25
+175.15 -41.25
+175.25 -41.25
+175.35 -41.25
+175.45 -41.25
+175.55 -41.25
+175.65 -41.25
+175.75 -41.25
+175.85 -41.25
+175.95 -41.25
+176.05 -41.25
+176.15 -41.25
+176.25 -41.25
+176.35 -41.25
+176.45 -41.25
+176.55 -41.25
+176.65 -41.25
+176.75 -41.25
+176.85 -41.25
+176.95 -41.25
+177.05 -41.25
+177.15 -41.25
+177.25 -41.25
+177.35 -41.25
+177.45 -41.25
+177.55 -41.25
+169.75 -41.35
+169.85 -41.35
+169.95 -41.35
+170.05 -41.35
+170.15 -41.35
+170.25 -41.35
+170.35 -41.35
+170.45 -41.35
+170.55 -41.35
+170.65 -41.35
+170.75 -41.35
+170.85 -41.35
+170.95 -41.35
+171.05 -41.35
+171.15 -41.35
+171.25 -41.35
+171.35 -41.35
+171.45 -41.35
+171.55 -41.35
+171.65 -41.35
+171.75 -41.35
+171.85 -41.35
+171.95 -41.35
+172.05 -41.35
+172.15 -41.35
+172.25 -41.35
+172.35 -41.35
+172.45 -41.35
+172.55 -41.35
+172.65 -41.35
+172.75 -41.35
+172.85 -41.35
+172.95 -41.35
+173.05 -41.35
+173.15 -41.35
+173.25 -41.35
+173.35 -41.35
+173.45 -41.35
+173.55 -41.35
+173.65 -41.35
+173.75 -41.35
+173.85 -41.35
+173.95 -41.35
+174.05 -41.35
+174.15 -41.35
+174.25 -41.35
+174.35 -41.35
+174.45 -41.35
+174.55 -41.35
+174.65 -41.35
+174.75 -41.35
+174.85 -41.35
+174.95 -41.35
+175.05 -41.35
+175.15 -41.35
+175.25 -41.35
+175.35 -41.35
+175.45 -41.35
+175.55 -41.35
+175.65 -41.35
+175.75 -41.35
+175.85 -41.35
+175.95 -41.35
+176.05 -41.35
+176.15 -41.35
+176.25 -41.35
+176.35 -41.35
+176.45 -41.35
+176.55 -41.35
+176.65 -41.35
+176.75 -41.35
+176.85 -41.35
+176.95 -41.35
+177.05 -41.35
+177.15 -41.35
+177.25 -41.35
+177.35 -41.35
+177.45 -41.35
+169.65 -41.45
+169.75 -41.45
+169.85 -41.45
+169.95 -41.45
+170.05 -41.45
+170.15 -41.45
+170.25 -41.45
+170.35 -41.45
+170.45 -41.45
+170.55 -41.45
+170.65 -41.45
+170.75 -41.45
+170.85 -41.45
+170.95 -41.45
+171.05 -41.45
+171.15 -41.45
+171.25 -41.45
+171.35 -41.45
+171.45 -41.45
+171.55 -41.45
+171.65 -41.45
+171.75 -41.45
+171.85 -41.45
+171.95 -41.45
+172.05 -41.45
+172.15 -41.45
+172.25 -41.45
+172.35 -41.45
+172.45 -41.45
+172.55 -41.45
+172.65 -41.45
+172.75 -41.45
+172.85 -41.45
+172.95 -41.45
+173.05 -41.45
+173.15 -41.45
+173.25 -41.45
+173.35 -41.45
+173.45 -41.45
+173.55 -41.45
+173.65 -41.45
+173.75 -41.45
+173.85 -41.45
+173.95 -41.45
+174.05 -41.45
+174.15 -41.45
+174.25 -41.45
+174.35 -41.45
+174.45 -41.45
+174.55 -41.45
+174.65 -41.45
+174.75 -41.45
+174.85 -41.45
+174.95 -41.45
+175.05 -41.45
+175.15 -41.45
+175.25 -41.45
+175.35 -41.45
+175.45 -41.45
+175.55 -41.45
+175.65 -41.45
+175.75 -41.45
+175.85 -41.45
+175.95 -41.45
+176.05 -41.45
+176.15 -41.45
+176.25 -41.45
+176.35 -41.45
+176.45 -41.45
+176.55 -41.45
+176.65 -41.45
+176.75 -41.45
+176.85 -41.45
+176.95 -41.45
+177.05 -41.45
+177.15 -41.45
+177.25 -41.45
+177.35 -41.45
+169.45 -41.55
+169.55 -41.55
+169.65 -41.55
+169.75 -41.55
+169.85 -41.55
+169.95 -41.55
+170.05 -41.55
+170.15 -41.55
+170.25 -41.55
+170.35 -41.55
+170.45 -41.55
+170.55 -41.55
+170.65 -41.55
+170.75 -41.55
+170.85 -41.55
+170.95 -41.55
+171.05 -41.55
+171.15 -41.55
+171.25 -41.55
+171.35 -41.55
+171.45 -41.55
+171.55 -41.55
+171.65 -41.55
+171.75 -41.55
+171.85 -41.55
+171.95 -41.55
+172.05 -41.55
+172.15 -41.55
+172.25 -41.55
+172.35 -41.55
+172.45 -41.55
+172.55 -41.55
+172.65 -41.55
+172.75 -41.55
+172.85 -41.55
+172.95 -41.55
+173.05 -41.55
+173.15 -41.55
+173.25 -41.55
+173.35 -41.55
+173.45 -41.55
+173.55 -41.55
+173.65 -41.55
+173.75 -41.55
+173.85 -41.55
+173.95 -41.55
+174.05 -41.55
+174.15 -41.55
+174.25 -41.55
+174.35 -41.55
+174.45 -41.55
+174.55 -41.55
+174.65 -41.55
+174.75 -41.55
+174.85 -41.55
+174.95 -41.55
+175.05 -41.55
+175.15 -41.55
+175.25 -41.55
+175.35 -41.55
+175.45 -41.55
+175.55 -41.55
+175.65 -41.55
+175.75 -41.55
+175.85 -41.55
+175.95 -41.55
+176.05 -41.55
+176.15 -41.55
+176.25 -41.55
+176.35 -41.55
+176.45 -41.55
+176.55 -41.55
+176.65 -41.55
+176.75 -41.55
+176.85 -41.55
+176.95 -41.55
+177.05 -41.55
+177.15 -41.55
+177.25 -41.55
+177.35 -41.55
+169.35 -41.65
+169.45 -41.65
+169.55 -41.65
+169.65 -41.65
+169.75 -41.65
+169.85 -41.65
+169.95 -41.65
+170.05 -41.65
+170.15 -41.65
+170.25 -41.65
+170.35 -41.65
+170.45 -41.65
+170.55 -41.65
+170.65 -41.65
+170.75 -41.65
+170.85 -41.65
+170.95 -41.65
+171.05 -41.65
+171.15 -41.65
+171.25 -41.65
+171.35 -41.65
+171.45 -41.65
+171.55 -41.65
+171.65 -41.65
+171.75 -41.65
+171.85 -41.65
+171.95 -41.65
+172.05 -41.65
+172.15 -41.65
+172.25 -41.65
+172.35 -41.65
+172.45 -41.65
+172.55 -41.65
+172.65 -41.65
+172.75 -41.65
+172.85 -41.65
+172.95 -41.65
+173.05 -41.65
+173.15 -41.65
+173.25 -41.65
+173.35 -41.65
+173.45 -41.65
+173.55 -41.65
+173.65 -41.65
+173.75 -41.65
+173.85 -41.65
+173.95 -41.65
+174.05 -41.65
+174.15 -41.65
+174.25 -41.65
+174.35 -41.65
+174.45 -41.65
+174.55 -41.65
+174.65 -41.65
+174.75 -41.65
+174.85 -41.65
+174.95 -41.65
+175.05 -41.65
+175.15 -41.65
+175.25 -41.65
+175.35 -41.65
+175.45 -41.65
+175.55 -41.65
+175.65 -41.65
+175.75 -41.65
+175.85 -41.65
+175.95 -41.65
+176.05 -41.65
+176.15 -41.65
+176.25 -41.65
+176.35 -41.65
+176.45 -41.65
+176.55 -41.65
+176.65 -41.65
+176.75 -41.65
+176.85 -41.65
+176.95 -41.65
+177.05 -41.65
+177.15 -41.65
+177.25 -41.65
+169.25 -41.75
+169.35 -41.75
+169.45 -41.75
+169.55 -41.75
+169.65 -41.75
+169.75 -41.75
+169.85 -41.75
+169.95 -41.75
+170.05 -41.75
+170.15 -41.75
+170.25 -41.75
+170.35 -41.75
+170.45 -41.75
+170.55 -41.75
+170.65 -41.75
+170.75 -41.75
+170.85 -41.75
+170.95 -41.75
+171.05 -41.75
+171.15 -41.75
+171.25 -41.75
+171.35 -41.75
+171.45 -41.75
+171.55 -41.75
+171.65 -41.75
+171.75 -41.75
+171.85 -41.75
+171.95 -41.75
+172.05 -41.75
+172.15 -41.75
+172.25 -41.75
+172.35 -41.75
+172.45 -41.75
+172.55 -41.75
+172.65 -41.75
+172.75 -41.75
+172.85 -41.75
+172.95 -41.75
+173.05 -41.75
+173.15 -41.75
+173.25 -41.75
+173.35 -41.75
+173.45 -41.75
+173.55 -41.75
+173.65 -41.75
+173.75 -41.75
+173.85 -41.75
+173.95 -41.75
+174.05 -41.75
+174.15 -41.75
+174.25 -41.75
+174.35 -41.75
+174.45 -41.75
+174.55 -41.75
+174.65 -41.75
+174.75 -41.75
+174.85 -41.75
+174.95 -41.75
+175.05 -41.75
+175.15 -41.75
+175.25 -41.75
+175.35 -41.75
+175.45 -41.75
+175.55 -41.75
+175.65 -41.75
+175.75 -41.75
+175.85 -41.75
+175.95 -41.75
+176.05 -41.75
+176.15 -41.75
+176.25 -41.75
+176.35 -41.75
+176.45 -41.75
+176.55 -41.75
+176.65 -41.75
+176.75 -41.75
+176.85 -41.75
+176.95 -41.75
+177.05 -41.75
+177.15 -41.75
+169.15 -41.85
+169.25 -41.85
+169.35 -41.85
+169.45 -41.85
+169.55 -41.85
+169.65 -41.85
+169.75 -41.85
+169.85 -41.85
+169.95 -41.85
+170.05 -41.85
+170.15 -41.85
+170.25 -41.85
+170.35 -41.85
+170.45 -41.85
+170.55 -41.85
+170.65 -41.85
+170.75 -41.85
+170.85 -41.85
+170.95 -41.85
+171.05 -41.85
+171.15 -41.85
+171.25 -41.85
+171.35 -41.85
+171.45 -41.85
+171.55 -41.85
+171.65 -41.85
+171.75 -41.85
+171.85 -41.85
+171.95 -41.85
+172.05 -41.85
+172.15 -41.85
+172.25 -41.85
+172.35 -41.85
+172.45 -41.85
+172.55 -41.85
+172.65 -41.85
+172.75 -41.85
+172.85 -41.85
+172.95 -41.85
+173.05 -41.85
+173.15 -41.85
+173.25 -41.85
+173.35 -41.85
+173.45 -41.85
+173.55 -41.85
+173.65 -41.85
+173.75 -41.85
+173.85 -41.85
+173.95 -41.85
+174.05 -41.85
+174.15 -41.85
+174.25 -41.85
+174.35 -41.85
+174.45 -41.85
+174.55 -41.85
+174.65 -41.85
+174.75 -41.85
+174.85 -41.85
+174.95 -41.85
+175.05 -41.85
+175.15 -41.85
+175.25 -41.85
+175.35 -41.85
+175.45 -41.85
+175.55 -41.85
+175.65 -41.85
+175.75 -41.85
+175.85 -41.85
+175.95 -41.85
+176.05 -41.85
+176.15 -41.85
+176.25 -41.85
+176.35 -41.85
+176.45 -41.85
+176.55 -41.85
+176.65 -41.85
+176.75 -41.85
+176.85 -41.85
+176.95 -41.85
+177.05 -41.85
+169.05 -41.95
+169.15 -41.95
+169.25 -41.95
+169.35 -41.95
+169.45 -41.95
+169.55 -41.95
+169.65 -41.95
+169.75 -41.95
+169.85 -41.95
+169.95 -41.95
+170.05 -41.95
+170.15 -41.95
+170.25 -41.95
+170.35 -41.95
+170.45 -41.95
+170.55 -41.95
+170.65 -41.95
+170.75 -41.95
+170.85 -41.95
+170.95 -41.95
+171.05 -41.95
+171.15 -41.95
+171.25 -41.95
+171.35 -41.95
+171.45 -41.95
+171.55 -41.95
+171.65 -41.95
+171.75 -41.95
+171.85 -41.95
+171.95 -41.95
+172.05 -41.95
+172.15 -41.95
+172.25 -41.95
+172.35 -41.95
+172.45 -41.95
+172.55 -41.95
+172.65 -41.95
+172.75 -41.95
+172.85 -41.95
+172.95 -41.95
+173.05 -41.95
+173.15 -41.95
+173.25 -41.95
+173.35 -41.95
+173.45 -41.95
+173.55 -41.95
+173.65 -41.95
+173.75 -41.95
+173.85 -41.95
+173.95 -41.95
+174.05 -41.95
+174.15 -41.95
+174.25 -41.95
+174.35 -41.95
+174.45 -41.95
+174.55 -41.95
+174.65 -41.95
+174.75 -41.95
+174.85 -41.95
+174.95 -41.95
+175.05 -41.95
+175.15 -41.95
+175.25 -41.95
+175.35 -41.95
+175.45 -41.95
+175.55 -41.95
+175.65 -41.95
+175.75 -41.95
+175.85 -41.95
+175.95 -41.95
+176.05 -41.95
+176.15 -41.95
+176.25 -41.95
+176.35 -41.95
+176.45 -41.95
+176.55 -41.95
+176.65 -41.95
+176.75 -41.95
+176.85 -41.95
+176.95 -41.95
+168.95 -42.05
+169.05 -42.05
+169.15 -42.05
+169.25 -42.05
+169.35 -42.05
+169.45 -42.05
+169.55 -42.05
+169.65 -42.05
+169.75 -42.05
+169.85 -42.05
+169.95 -42.05
+170.05 -42.05
+170.15 -42.05
+170.25 -42.05
+170.35 -42.05
+170.45 -42.05
+170.55 -42.05
+170.65 -42.05
+170.75 -42.05
+170.85 -42.05
+170.95 -42.05
+171.05 -42.05
+171.15 -42.05
+171.25 -42.05
+171.35 -42.05
+171.45 -42.05
+171.55 -42.05
+171.65 -42.05
+171.75 -42.05
+171.85 -42.05
+171.95 -42.05
+172.05 -42.05
+172.15 -42.05
+172.25 -42.05
+172.35 -42.05
+172.45 -42.05
+172.55 -42.05
+172.65 -42.05
+172.75 -42.05
+172.85 -42.05
+172.95 -42.05
+173.05 -42.05
+173.15 -42.05
+173.25 -42.05
+173.35 -42.05
+173.45 -42.05
+173.55 -42.05
+173.65 -42.05
+173.75 -42.05
+173.85 -42.05
+173.95 -42.05
+174.05 -42.05
+174.15 -42.05
+174.25 -42.05
+174.35 -42.05
+174.45 -42.05
+174.55 -42.05
+174.65 -42.05
+174.75 -42.05
+174.85 -42.05
+174.95 -42.05
+175.05 -42.05
+175.15 -42.05
+175.25 -42.05
+175.35 -42.05
+175.45 -42.05
+175.55 -42.05
+175.65 -42.05
+175.75 -42.05
+175.85 -42.05
+175.95 -42.05
+176.05 -42.05
+176.15 -42.05
+176.25 -42.05
+176.35 -42.05
+176.45 -42.05
+176.55 -42.05
+176.65 -42.05
+176.75 -42.05
+168.85 -42.15
+168.95 -42.15
+169.05 -42.15
+169.15 -42.15
+169.25 -42.15
+169.35 -42.15
+169.45 -42.15
+169.55 -42.15
+169.65 -42.15
+169.75 -42.15
+169.85 -42.15
+169.95 -42.15
+170.05 -42.15
+170.15 -42.15
+170.25 -42.15
+170.35 -42.15
+170.45 -42.15
+170.55 -42.15
+170.65 -42.15
+170.75 -42.15
+170.85 -42.15
+170.95 -42.15
+171.05 -42.15
+171.15 -42.15
+171.25 -42.15
+171.35 -42.15
+171.45 -42.15
+171.55 -42.15
+171.65 -42.15
+171.75 -42.15
+171.85 -42.15
+171.95 -42.15
+172.05 -42.15
+172.15 -42.15
+172.25 -42.15
+172.35 -42.15
+172.45 -42.15
+172.55 -42.15
+172.65 -42.15
+172.75 -42.15
+172.85 -42.15
+172.95 -42.15
+173.05 -42.15
+173.15 -42.15
+173.25 -42.15
+173.35 -42.15
+173.45 -42.15
+173.55 -42.15
+173.65 -42.15
+173.75 -42.15
+173.85 -42.15
+173.95 -42.15
+174.05 -42.15
+174.15 -42.15
+174.25 -42.15
+174.35 -42.15
+174.45 -42.15
+174.55 -42.15
+174.65 -42.15
+174.75 -42.15
+174.85 -42.15
+174.95 -42.15
+175.05 -42.15
+175.15 -42.15
+175.25 -42.15
+175.35 -42.15
+175.45 -42.15
+175.55 -42.15
+175.65 -42.15
+175.75 -42.15
+175.85 -42.15
+175.95 -42.15
+176.05 -42.15
+176.15 -42.15
+176.25 -42.15
+176.35 -42.15
+176.45 -42.15
+176.55 -42.15
+168.65 -42.25
+168.75 -42.25
+168.85 -42.25
+168.95 -42.25
+169.05 -42.25
+169.15 -42.25
+169.25 -42.25
+169.35 -42.25
+169.45 -42.25
+169.55 -42.25
+169.65 -42.25
+169.75 -42.25
+169.85 -42.25
+169.95 -42.25
+170.05 -42.25
+170.15 -42.25
+170.25 -42.25
+170.35 -42.25
+170.45 -42.25
+170.55 -42.25
+170.65 -42.25
+170.75 -42.25
+170.85 -42.25
+170.95 -42.25
+171.05 -42.25
+171.15 -42.25
+171.25 -42.25
+171.35 -42.25
+171.45 -42.25
+171.55 -42.25
+171.65 -42.25
+171.75 -42.25
+171.85 -42.25
+171.95 -42.25
+172.05 -42.25
+172.15 -42.25
+172.25 -42.25
+172.35 -42.25
+172.45 -42.25
+172.55 -42.25
+172.65 -42.25
+172.75 -42.25
+172.85 -42.25
+172.95 -42.25
+173.05 -42.25
+173.15 -42.25
+173.25 -42.25
+173.35 -42.25
+173.45 -42.25
+173.55 -42.25
+173.65 -42.25
+173.75 -42.25
+173.85 -42.25
+173.95 -42.25
+174.05 -42.25
+174.15 -42.25
+174.25 -42.25
+174.35 -42.25
+174.45 -42.25
+174.55 -42.25
+174.65 -42.25
+174.75 -42.25
+174.85 -42.25
+174.95 -42.25
+175.05 -42.25
+175.15 -42.25
+175.25 -42.25
+175.35 -42.25
+175.45 -42.25
+175.55 -42.25
+175.65 -42.25
+175.75 -42.25
+175.85 -42.25
+175.95 -42.25
+176.05 -42.25
+176.15 -42.25
+176.25 -42.25
+176.35 -42.25
+168.55 -42.35
+168.65 -42.35
+168.75 -42.35
+168.85 -42.35
+168.95 -42.35
+169.05 -42.35
+169.15 -42.35
+169.25 -42.35
+169.35 -42.35
+169.45 -42.35
+169.55 -42.35
+169.65 -42.35
+169.75 -42.35
+169.85 -42.35
+169.95 -42.35
+170.05 -42.35
+170.15 -42.35
+170.25 -42.35
+170.35 -42.35
+170.45 -42.35
+170.55 -42.35
+170.65 -42.35
+170.75 -42.35
+170.85 -42.35
+170.95 -42.35
+171.05 -42.35
+171.15 -42.35
+171.25 -42.35
+171.35 -42.35
+171.45 -42.35
+171.55 -42.35
+171.65 -42.35
+171.75 -42.35
+171.85 -42.35
+171.95 -42.35
+172.05 -42.35
+172.15 -42.35
+172.25 -42.35
+172.35 -42.35
+172.45 -42.35
+172.55 -42.35
+172.65 -42.35
+172.75 -42.35
+172.85 -42.35
+172.95 -42.35
+173.05 -42.35
+173.15 -42.35
+173.25 -42.35
+173.35 -42.35
+173.45 -42.35
+173.55 -42.35
+173.65 -42.35
+173.75 -42.35
+173.85 -42.35
+173.95 -42.35
+174.05 -42.35
+174.15 -42.35
+174.25 -42.35
+174.35 -42.35
+174.45 -42.35
+174.55 -42.35
+174.65 -42.35
+174.75 -42.35
+174.85 -42.35
+174.95 -42.35
+175.05 -42.35
+175.15 -42.35
+175.25 -42.35
+175.35 -42.35
+175.45 -42.35
+175.55 -42.35
+175.65 -42.35
+175.75 -42.35
+175.85 -42.35
+175.95 -42.35
+176.05 -42.35
+176.15 -42.35
+168.45 -42.45
+168.55 -42.45
+168.65 -42.45
+168.75 -42.45
+168.85 -42.45
+168.95 -42.45
+169.05 -42.45
+169.15 -42.45
+169.25 -42.45
+169.35 -42.45
+169.45 -42.45
+169.55 -42.45
+169.65 -42.45
+169.75 -42.45
+169.85 -42.45
+169.95 -42.45
+170.05 -42.45
+170.15 -42.45
+170.25 -42.45
+170.35 -42.45
+170.45 -42.45
+170.55 -42.45
+170.65 -42.45
+170.75 -42.45
+170.85 -42.45
+170.95 -42.45
+171.05 -42.45
+171.15 -42.45
+171.25 -42.45
+171.35 -42.45
+171.45 -42.45
+171.55 -42.45
+171.65 -42.45
+171.75 -42.45
+171.85 -42.45
+171.95 -42.45
+172.05 -42.45
+172.15 -42.45
+172.25 -42.45
+172.35 -42.45
+172.45 -42.45
+172.55 -42.45
+172.65 -42.45
+172.75 -42.45
+172.85 -42.45
+172.95 -42.45
+173.05 -42.45
+173.15 -42.45
+173.25 -42.45
+173.35 -42.45
+173.45 -42.45
+173.55 -42.45
+173.65 -42.45
+173.75 -42.45
+173.85 -42.45
+173.95 -42.45
+174.05 -42.45
+174.15 -42.45
+174.25 -42.45
+174.35 -42.45
+174.45 -42.45
+174.55 -42.45
+174.65 -42.45
+174.75 -42.45
+174.85 -42.45
+174.95 -42.45
+175.05 -42.45
+175.15 -42.45
+175.25 -42.45
+175.35 -42.45
+175.45 -42.45
+175.55 -42.45
+175.65 -42.45
+175.75 -42.45
+175.85 -42.45
+175.95 -42.45
+168.35 -42.55
+168.45 -42.55
+168.55 -42.55
+168.65 -42.55
+168.75 -42.55
+168.85 -42.55
+168.95 -42.55
+169.05 -42.55
+169.15 -42.55
+169.25 -42.55
+169.35 -42.55
+169.45 -42.55
+169.55 -42.55
+169.65 -42.55
+169.75 -42.55
+169.85 -42.55
+169.95 -42.55
+170.05 -42.55
+170.15 -42.55
+170.25 -42.55
+170.35 -42.55
+170.45 -42.55
+170.55 -42.55
+170.65 -42.55
+170.75 -42.55
+170.85 -42.55
+170.95 -42.55
+171.05 -42.55
+171.15 -42.55
+171.25 -42.55
+171.35 -42.55
+171.45 -42.55
+171.55 -42.55
+171.65 -42.55
+171.75 -42.55
+171.85 -42.55
+171.95 -42.55
+172.05 -42.55
+172.15 -42.55
+172.25 -42.55
+172.35 -42.55
+172.45 -42.55
+172.55 -42.55
+172.65 -42.55
+172.75 -42.55
+172.85 -42.55
+172.95 -42.55
+173.05 -42.55
+173.15 -42.55
+173.25 -42.55
+173.35 -42.55
+173.45 -42.55
+173.55 -42.55
+173.65 -42.55
+173.75 -42.55
+173.85 -42.55
+173.95 -42.55
+174.05 -42.55
+174.15 -42.55
+174.25 -42.55
+174.35 -42.55
+174.45 -42.55
+174.55 -42.55
+174.65 -42.55
+174.75 -42.55
+174.85 -42.55
+174.95 -42.55
+175.05 -42.55
+175.15 -42.55
+175.25 -42.55
+175.35 -42.55
+175.45 -42.55
+175.55 -42.55
+175.65 -42.55
+168.25 -42.65
+168.35 -42.65
+168.45 -42.65
+168.55 -42.65
+168.65 -42.65
+168.75 -42.65
+168.85 -42.65
+168.95 -42.65
+169.05 -42.65
+169.15 -42.65
+169.25 -42.65
+169.35 -42.65
+169.45 -42.65
+169.55 -42.65
+169.65 -42.65
+169.75 -42.65
+169.85 -42.65
+169.95 -42.65
+170.05 -42.65
+170.15 -42.65
+170.25 -42.65
+170.35 -42.65
+170.45 -42.65
+170.55 -42.65
+170.65 -42.65
+170.75 -42.65
+170.85 -42.65
+170.95 -42.65
+171.05 -42.65
+171.15 -42.65
+171.25 -42.65
+171.35 -42.65
+171.45 -42.65
+171.55 -42.65
+171.65 -42.65
+171.75 -42.65
+171.85 -42.65
+171.95 -42.65
+172.05 -42.65
+172.15 -42.65
+172.25 -42.65
+172.35 -42.65
+172.45 -42.65
+172.55 -42.65
+172.65 -42.65
+172.75 -42.65
+172.85 -42.65
+172.95 -42.65
+173.05 -42.65
+173.15 -42.65
+173.25 -42.65
+173.35 -42.65
+173.45 -42.65
+173.55 -42.65
+173.65 -42.65
+173.75 -42.65
+173.85 -42.65
+173.95 -42.65
+174.05 -42.65
+174.15 -42.65
+174.25 -42.65
+174.35 -42.65
+174.45 -42.65
+174.55 -42.65
+174.65 -42.65
+174.75 -42.65
+174.85 -42.65
+174.95 -42.65
+175.05 -42.65
+175.15 -42.65
+168.15 -42.75
+168.25 -42.75
+168.35 -42.75
+168.45 -42.75
+168.55 -42.75
+168.65 -42.75
+168.75 -42.75
+168.85 -42.75
+168.95 -42.75
+169.05 -42.75
+169.15 -42.75
+169.25 -42.75
+169.35 -42.75
+169.45 -42.75
+169.55 -42.75
+169.65 -42.75
+169.75 -42.75
+169.85 -42.75
+169.95 -42.75
+170.05 -42.75
+170.15 -42.75
+170.25 -42.75
+170.35 -42.75
+170.45 -42.75
+170.55 -42.75
+170.65 -42.75
+170.75 -42.75
+170.85 -42.75
+170.95 -42.75
+171.05 -42.75
+171.15 -42.75
+171.25 -42.75
+171.35 -42.75
+171.45 -42.75
+171.55 -42.75
+171.65 -42.75
+171.75 -42.75
+171.85 -42.75
+171.95 -42.75
+172.05 -42.75
+172.15 -42.75
+172.25 -42.75
+172.35 -42.75
+172.45 -42.75
+172.55 -42.75
+172.65 -42.75
+172.75 -42.75
+172.85 -42.75
+172.95 -42.75
+173.05 -42.75
+173.15 -42.75
+173.25 -42.75
+173.35 -42.75
+173.45 -42.75
+173.55 -42.75
+173.65 -42.75
+173.75 -42.75
+173.85 -42.75
+173.95 -42.75
+174.05 -42.75
+174.15 -42.75
+174.25 -42.75
+174.35 -42.75
+174.45 -42.75
+174.55 -42.75
+174.65 -42.75
+174.75 -42.75
+174.85 -42.75
+174.95 -42.75
+175.05 -42.75
+167.95 -42.85
+168.05 -42.85
+168.15 -42.85
+168.25 -42.85
+168.35 -42.85
+168.45 -42.85
+168.55 -42.85
+168.65 -42.85
+168.75 -42.85
+168.85 -42.85
+168.95 -42.85
+169.05 -42.85
+169.15 -42.85
+169.25 -42.85
+169.35 -42.85
+169.45 -42.85
+169.55 -42.85
+169.65 -42.85
+169.75 -42.85
+169.85 -42.85
+169.95 -42.85
+170.05 -42.85
+170.15 -42.85
+170.25 -42.85
+170.35 -42.85
+170.45 -42.85
+170.55 -42.85
+170.65 -42.85
+170.75 -42.85
+170.85 -42.85
+170.95 -42.85
+171.05 -42.85
+171.15 -42.85
+171.25 -42.85
+171.35 -42.85
+171.45 -42.85
+171.55 -42.85
+171.65 -42.85
+171.75 -42.85
+171.85 -42.85
+171.95 -42.85
+172.05 -42.85
+172.15 -42.85
+172.25 -42.85
+172.35 -42.85
+172.45 -42.85
+172.55 -42.85
+172.65 -42.85
+172.75 -42.85
+172.85 -42.85
+172.95 -42.85
+173.05 -42.85
+173.15 -42.85
+173.25 -42.85
+173.35 -42.85
+173.45 -42.85
+173.55 -42.85
+173.65 -42.85
+173.75 -42.85
+173.85 -42.85
+173.95 -42.85
+174.05 -42.85
+174.15 -42.85
+174.25 -42.85
+174.35 -42.85
+174.45 -42.85
+174.55 -42.85
+174.65 -42.85
+174.75 -42.85
+174.85 -42.85
+174.95 -42.85
+167.85 -42.95
+167.95 -42.95
+168.05 -42.95
+168.15 -42.95
+168.25 -42.95
+168.35 -42.95
+168.45 -42.95
+168.55 -42.95
+168.65 -42.95
+168.75 -42.95
+168.85 -42.95
+168.95 -42.95
+169.05 -42.95
+169.15 -42.95
+169.25 -42.95
+169.35 -42.95
+169.45 -42.95
+169.55 -42.95
+169.65 -42.95
+169.75 -42.95
+169.85 -42.95
+169.95 -42.95
+170.05 -42.95
+170.15 -42.95
+170.25 -42.95
+170.35 -42.95
+170.45 -42.95
+170.55 -42.95
+170.65 -42.95
+170.75 -42.95
+170.85 -42.95
+170.95 -42.95
+171.05 -42.95
+171.15 -42.95
+171.25 -42.95
+171.35 -42.95
+171.45 -42.95
+171.55 -42.95
+171.65 -42.95
+171.75 -42.95
+171.85 -42.95
+171.95 -42.95
+172.05 -42.95
+172.15 -42.95
+172.25 -42.95
+172.35 -42.95
+172.45 -42.95
+172.55 -42.95
+172.65 -42.95
+172.75 -42.95
+172.85 -42.95
+172.95 -42.95
+173.05 -42.95
+173.15 -42.95
+173.25 -42.95
+173.35 -42.95
+173.45 -42.95
+173.55 -42.95
+173.65 -42.95
+173.75 -42.95
+173.85 -42.95
+173.95 -42.95
+174.05 -42.95
+174.15 -42.95
+174.25 -42.95
+174.35 -42.95
+174.45 -42.95
+174.55 -42.95
+174.65 -42.95
+174.75 -42.95
+174.85 -42.95
+167.75 -43.05
+167.85 -43.05
+167.95 -43.05
+168.05 -43.05
+168.15 -43.05
+168.25 -43.05
+168.35 -43.05
+168.45 -43.05
+168.55 -43.05
+168.65 -43.05
+168.75 -43.05
+168.85 -43.05
+168.95 -43.05
+169.05 -43.05
+169.15 -43.05
+169.25 -43.05
+169.35 -43.05
+169.45 -43.05
+169.55 -43.05
+169.65 -43.05
+169.75 -43.05
+169.85 -43.05
+169.95 -43.05
+170.05 -43.05
+170.15 -43.05
+170.25 -43.05
+170.35 -43.05
+170.45 -43.05
+170.55 -43.05
+170.65 -43.05
+170.75 -43.05
+170.85 -43.05
+170.95 -43.05
+171.05 -43.05
+171.15 -43.05
+171.25 -43.05
+171.35 -43.05
+171.45 -43.05
+171.55 -43.05
+171.65 -43.05
+171.75 -43.05
+171.85 -43.05
+171.95 -43.05
+172.05 -43.05
+172.15 -43.05
+172.25 -43.05
+172.35 -43.05
+172.45 -43.05
+172.55 -43.05
+172.65 -43.05
+172.75 -43.05
+172.85 -43.05
+172.95 -43.05
+173.05 -43.05
+173.15 -43.05
+173.25 -43.05
+173.35 -43.05
+173.45 -43.05
+173.55 -43.05
+173.65 -43.05
+173.75 -43.05
+173.85 -43.05
+173.95 -43.05
+174.05 -43.05
+174.15 -43.05
+174.25 -43.05
+174.35 -43.05
+174.45 -43.05
+174.55 -43.05
+174.65 -43.05
+174.75 -43.05
+167.65 -43.15
+167.75 -43.15
+167.85 -43.15
+167.95 -43.15
+168.05 -43.15
+168.15 -43.15
+168.25 -43.15
+168.35 -43.15
+168.45 -43.15
+168.55 -43.15
+168.65 -43.15
+168.75 -43.15
+168.85 -43.15
+168.95 -43.15
+169.05 -43.15
+169.15 -43.15
+169.25 -43.15
+169.35 -43.15
+169.45 -43.15
+169.55 -43.15
+169.65 -43.15
+169.75 -43.15
+169.85 -43.15
+169.95 -43.15
+170.05 -43.15
+170.15 -43.15
+170.25 -43.15
+170.35 -43.15
+170.45 -43.15
+170.55 -43.15
+170.65 -43.15
+170.75 -43.15
+170.85 -43.15
+170.95 -43.15
+171.05 -43.15
+171.15 -43.15
+171.25 -43.15
+171.35 -43.15
+171.45 -43.15
+171.55 -43.15
+171.65 -43.15
+171.75 -43.15
+171.85 -43.15
+171.95 -43.15
+172.05 -43.15
+172.15 -43.15
+172.25 -43.15
+172.35 -43.15
+172.45 -43.15
+172.55 -43.15
+172.65 -43.15
+172.75 -43.15
+172.85 -43.15
+172.95 -43.15
+173.05 -43.15
+173.15 -43.15
+173.25 -43.15
+173.35 -43.15
+173.45 -43.15
+173.55 -43.15
+173.65 -43.15
+173.75 -43.15
+173.85 -43.15
+173.95 -43.15
+174.05 -43.15
+174.15 -43.15
+174.25 -43.15
+174.35 -43.15
+174.45 -43.15
+174.55 -43.15
+174.65 -43.15
+167.55 -43.25
+167.65 -43.25
+167.75 -43.25
+167.85 -43.25
+167.95 -43.25
+168.05 -43.25
+168.15 -43.25
+168.25 -43.25
+168.35 -43.25
+168.45 -43.25
+168.55 -43.25
+168.65 -43.25
+168.75 -43.25
+168.85 -43.25
+168.95 -43.25
+169.05 -43.25
+169.15 -43.25
+169.25 -43.25
+169.35 -43.25
+169.45 -43.25
+169.55 -43.25
+169.65 -43.25
+169.75 -43.25
+169.85 -43.25
+169.95 -43.25
+170.05 -43.25
+170.15 -43.25
+170.25 -43.25
+170.35 -43.25
+170.45 -43.25
+170.55 -43.25
+170.65 -43.25
+170.75 -43.25
+170.85 -43.25
+170.95 -43.25
+171.05 -43.25
+171.15 -43.25
+171.25 -43.25
+171.35 -43.25
+171.45 -43.25
+171.55 -43.25
+171.65 -43.25
+171.75 -43.25
+171.85 -43.25
+171.95 -43.25
+172.05 -43.25
+172.15 -43.25
+172.25 -43.25
+172.35 -43.25
+172.45 -43.25
+172.55 -43.25
+172.65 -43.25
+172.75 -43.25
+172.85 -43.25
+172.95 -43.25
+173.05 -43.25
+173.15 -43.25
+173.25 -43.25
+173.35 -43.25
+173.45 -43.25
+173.55 -43.25
+173.65 -43.25
+173.75 -43.25
+173.85 -43.25
+173.95 -43.25
+174.05 -43.25
+174.15 -43.25
+174.25 -43.25
+174.35 -43.25
+174.45 -43.25
+174.55 -43.25
+174.65 -43.25
+167.45 -43.35
+167.55 -43.35
+167.65 -43.35
+167.75 -43.35
+167.85 -43.35
+167.95 -43.35
+168.05 -43.35
+168.15 -43.35
+168.25 -43.35
+168.35 -43.35
+168.45 -43.35
+168.55 -43.35
+168.65 -43.35
+168.75 -43.35
+168.85 -43.35
+168.95 -43.35
+169.05 -43.35
+169.15 -43.35
+169.25 -43.35
+169.35 -43.35
+169.45 -43.35
+169.55 -43.35
+169.65 -43.35
+169.75 -43.35
+169.85 -43.35
+169.95 -43.35
+170.05 -43.35
+170.15 -43.35
+170.25 -43.35
+170.35 -43.35
+170.45 -43.35
+170.55 -43.35
+170.65 -43.35
+170.75 -43.35
+170.85 -43.35
+170.95 -43.35
+171.05 -43.35
+171.15 -43.35
+171.25 -43.35
+171.35 -43.35
+171.45 -43.35
+171.55 -43.35
+171.65 -43.35
+171.75 -43.35
+171.85 -43.35
+171.95 -43.35
+172.05 -43.35
+172.15 -43.35
+172.25 -43.35
+172.35 -43.35
+172.45 -43.35
+172.55 -43.35
+172.65 -43.35
+172.75 -43.35
+172.85 -43.35
+172.95 -43.35
+173.05 -43.35
+173.15 -43.35
+173.25 -43.35
+173.35 -43.35
+173.45 -43.35
+173.55 -43.35
+173.65 -43.35
+173.75 -43.35
+173.85 -43.35
+173.95 -43.35
+174.05 -43.35
+174.15 -43.35
+174.25 -43.35
+174.35 -43.35
+174.45 -43.35
+174.55 -43.35
+167.35 -43.45
+167.45 -43.45
+167.55 -43.45
+167.65 -43.45
+167.75 -43.45
+167.85 -43.45
+167.95 -43.45
+168.05 -43.45
+168.15 -43.45
+168.25 -43.45
+168.35 -43.45
+168.45 -43.45
+168.55 -43.45
+168.65 -43.45
+168.75 -43.45
+168.85 -43.45
+168.95 -43.45
+169.05 -43.45
+169.15 -43.45
+169.25 -43.45
+169.35 -43.45
+169.45 -43.45
+169.55 -43.45
+169.65 -43.45
+169.75 -43.45
+169.85 -43.45
+169.95 -43.45
+170.05 -43.45
+170.15 -43.45
+170.25 -43.45
+170.35 -43.45
+170.45 -43.45
+170.55 -43.45
+170.65 -43.45
+170.75 -43.45
+170.85 -43.45
+170.95 -43.45
+171.05 -43.45
+171.15 -43.45
+171.25 -43.45
+171.35 -43.45
+171.45 -43.45
+171.55 -43.45
+171.65 -43.45
+171.75 -43.45
+171.85 -43.45
+171.95 -43.45
+172.05 -43.45
+172.15 -43.45
+172.25 -43.45
+172.35 -43.45
+172.45 -43.45
+172.55 -43.45
+172.65 -43.45
+172.75 -43.45
+172.85 -43.45
+172.95 -43.45
+173.05 -43.45
+173.15 -43.45
+173.25 -43.45
+173.35 -43.45
+173.45 -43.45
+173.55 -43.45
+173.65 -43.45
+173.75 -43.45
+173.85 -43.45
+173.95 -43.45
+174.05 -43.45
+174.15 -43.45
+174.25 -43.45
+174.35 -43.45
+174.45 -43.45
+167.15 -43.55
+167.25 -43.55
+167.35 -43.55
+167.45 -43.55
+167.55 -43.55
+167.65 -43.55
+167.75 -43.55
+167.85 -43.55
+167.95 -43.55
+168.05 -43.55
+168.15 -43.55
+168.25 -43.55
+168.35 -43.55
+168.45 -43.55
+168.55 -43.55
+168.65 -43.55
+168.75 -43.55
+168.85 -43.55
+168.95 -43.55
+169.05 -43.55
+169.15 -43.55
+169.25 -43.55
+169.35 -43.55
+169.45 -43.55
+169.55 -43.55
+169.65 -43.55
+169.75 -43.55
+169.85 -43.55
+169.95 -43.55
+170.05 -43.55
+170.15 -43.55
+170.25 -43.55
+170.35 -43.55
+170.45 -43.55
+170.55 -43.55
+170.65 -43.55
+170.75 -43.55
+170.85 -43.55
+170.95 -43.55
+171.05 -43.55
+171.15 -43.55
+171.25 -43.55
+171.35 -43.55
+171.45 -43.55
+171.55 -43.55
+171.65 -43.55
+171.75 -43.55
+171.85 -43.55
+171.95 -43.55
+172.05 -43.55
+172.15 -43.55
+172.25 -43.55
+172.35 -43.55
+172.45 -43.55
+172.55 -43.55
+172.65 -43.55
+172.75 -43.55
+172.85 -43.55
+172.95 -43.55
+173.05 -43.55
+173.15 -43.55
+173.25 -43.55
+173.35 -43.55
+173.45 -43.55
+173.55 -43.55
+173.65 -43.55
+173.75 -43.55
+173.85 -43.55
+173.95 -43.55
+174.05 -43.55
+174.15 -43.55
+174.25 -43.55
+174.35 -43.55
+174.45 -43.55
+167.05 -43.65
+167.15 -43.65
+167.25 -43.65
+167.35 -43.65
+167.45 -43.65
+167.55 -43.65
+167.65 -43.65
+167.75 -43.65
+167.85 -43.65
+167.95 -43.65
+168.05 -43.65
+168.15 -43.65
+168.25 -43.65
+168.35 -43.65
+168.45 -43.65
+168.55 -43.65
+168.65 -43.65
+168.75 -43.65
+168.85 -43.65
+168.95 -43.65
+169.05 -43.65
+169.15 -43.65
+169.25 -43.65
+169.35 -43.65
+169.45 -43.65
+169.55 -43.65
+169.65 -43.65
+169.75 -43.65
+169.85 -43.65
+169.95 -43.65
+170.05 -43.65
+170.15 -43.65
+170.25 -43.65
+170.35 -43.65
+170.45 -43.65
+170.55 -43.65
+170.65 -43.65
+170.75 -43.65
+170.85 -43.65
+170.95 -43.65
+171.05 -43.65
+171.15 -43.65
+171.25 -43.65
+171.35 -43.65
+171.45 -43.65
+171.55 -43.65
+171.65 -43.65
+171.75 -43.65
+171.85 -43.65
+171.95 -43.65
+172.05 -43.65
+172.15 -43.65
+172.25 -43.65
+172.35 -43.65
+172.45 -43.65
+172.55 -43.65
+172.65 -43.65
+172.75 -43.65
+172.85 -43.65
+172.95 -43.65
+173.05 -43.65
+173.15 -43.65
+173.25 -43.65
+173.35 -43.65
+173.45 -43.65
+173.55 -43.65
+173.65 -43.65
+173.75 -43.65
+173.85 -43.65
+173.95 -43.65
+174.05 -43.65
+174.15 -43.65
+174.25 -43.65
+174.35 -43.65
+174.45 -43.65
+166.95 -43.75
+167.05 -43.75
+167.15 -43.75
+167.25 -43.75
+167.35 -43.75
+167.45 -43.75
+167.55 -43.75
+167.65 -43.75
+167.75 -43.75
+167.85 -43.75
+167.95 -43.75
+168.05 -43.75
+168.15 -43.75
+168.25 -43.75
+168.35 -43.75
+168.45 -43.75
+168.55 -43.75
+168.65 -43.75
+168.75 -43.75
+168.85 -43.75
+168.95 -43.75
+169.05 -43.75
+169.15 -43.75
+169.25 -43.75
+169.35 -43.75
+169.45 -43.75
+169.55 -43.75
+169.65 -43.75
+169.75 -43.75
+169.85 -43.75
+169.95 -43.75
+170.05 -43.75
+170.15 -43.75
+170.25 -43.75
+170.35 -43.75
+170.45 -43.75
+170.55 -43.75
+170.65 -43.75
+170.75 -43.75
+170.85 -43.75
+170.95 -43.75
+171.05 -43.75
+171.15 -43.75
+171.25 -43.75
+171.35 -43.75
+171.45 -43.75
+171.55 -43.75
+171.65 -43.75
+171.75 -43.75
+171.85 -43.75
+171.95 -43.75
+172.05 -43.75
+172.15 -43.75
+172.25 -43.75
+172.35 -43.75
+172.45 -43.75
+172.55 -43.75
+172.65 -43.75
+172.75 -43.75
+172.85 -43.75
+172.95 -43.75
+173.05 -43.75
+173.15 -43.75
+173.25 -43.75
+173.35 -43.75
+173.45 -43.75
+173.55 -43.75
+173.65 -43.75
+173.75 -43.75
+173.85 -43.75
+173.95 -43.75
+174.05 -43.75
+174.15 -43.75
+174.25 -43.75
+174.35 -43.75
+174.45 -43.75
+166.85 -43.85
+166.95 -43.85
+167.05 -43.85
+167.15 -43.85
+167.25 -43.85
+167.35 -43.85
+167.45 -43.85
+167.55 -43.85
+167.65 -43.85
+167.75 -43.85
+167.85 -43.85
+167.95 -43.85
+168.05 -43.85
+168.15 -43.85
+168.25 -43.85
+168.35 -43.85
+168.45 -43.85
+168.55 -43.85
+168.65 -43.85
+168.75 -43.85
+168.85 -43.85
+168.95 -43.85
+169.05 -43.85
+169.15 -43.85
+169.25 -43.85
+169.35 -43.85
+169.45 -43.85
+169.55 -43.85
+169.65 -43.85
+169.75 -43.85
+169.85 -43.85
+169.95 -43.85
+170.05 -43.85
+170.15 -43.85
+170.25 -43.85
+170.35 -43.85
+170.45 -43.85
+170.55 -43.85
+170.65 -43.85
+170.75 -43.85
+170.85 -43.85
+170.95 -43.85
+171.05 -43.85
+171.15 -43.85
+171.25 -43.85
+171.35 -43.85
+171.45 -43.85
+171.55 -43.85
+171.65 -43.85
+171.75 -43.85
+171.85 -43.85
+171.95 -43.85
+172.05 -43.85
+172.15 -43.85
+172.25 -43.85
+172.35 -43.85
+172.45 -43.85
+172.55 -43.85
+172.65 -43.85
+172.75 -43.85
+172.85 -43.85
+172.95 -43.85
+173.05 -43.85
+173.15 -43.85
+173.25 -43.85
+173.35 -43.85
+173.45 -43.85
+173.55 -43.85
+173.65 -43.85
+173.75 -43.85
+173.85 -43.85
+173.95 -43.85
+174.05 -43.85
+174.15 -43.85
+174.25 -43.85
+174.35 -43.85
+174.45 -43.85
+166.75 -43.95
+166.85 -43.95
+166.95 -43.95
+167.05 -43.95
+167.15 -43.95
+167.25 -43.95
+167.35 -43.95
+167.45 -43.95
+167.55 -43.95
+167.65 -43.95
+167.75 -43.95
+167.85 -43.95
+167.95 -43.95
+168.05 -43.95
+168.15 -43.95
+168.25 -43.95
+168.35 -43.95
+168.45 -43.95
+168.55 -43.95
+168.65 -43.95
+168.75 -43.95
+168.85 -43.95
+168.95 -43.95
+169.05 -43.95
+169.15 -43.95
+169.25 -43.95
+169.35 -43.95
+169.45 -43.95
+169.55 -43.95
+169.65 -43.95
+169.75 -43.95
+169.85 -43.95
+169.95 -43.95
+170.05 -43.95
+170.15 -43.95
+170.25 -43.95
+170.35 -43.95
+170.45 -43.95
+170.55 -43.95
+170.65 -43.95
+170.75 -43.95
+170.85 -43.95
+170.95 -43.95
+171.05 -43.95
+171.15 -43.95
+171.25 -43.95
+171.35 -43.95
+171.45 -43.95
+171.55 -43.95
+171.65 -43.95
+171.75 -43.95
+171.85 -43.95
+171.95 -43.95
+172.05 -43.95
+172.15 -43.95
+172.25 -43.95
+172.35 -43.95
+172.45 -43.95
+172.55 -43.95
+172.65 -43.95
+172.75 -43.95
+172.85 -43.95
+172.95 -43.95
+173.05 -43.95
+173.15 -43.95
+173.25 -43.95
+173.35 -43.95
+173.45 -43.95
+173.55 -43.95
+173.65 -43.95
+173.75 -43.95
+173.85 -43.95
+173.95 -43.95
+174.05 -43.95
+174.15 -43.95
+174.25 -43.95
+174.35 -43.95
+174.45 -43.95
+166.65 -44.05
+166.75 -44.05
+166.85 -44.05
+166.95 -44.05
+167.05 -44.05
+167.15 -44.05
+167.25 -44.05
+167.35 -44.05
+167.45 -44.05
+167.55 -44.05
+167.65 -44.05
+167.75 -44.05
+167.85 -44.05
+167.95 -44.05
+168.05 -44.05
+168.15 -44.05
+168.25 -44.05
+168.35 -44.05
+168.45 -44.05
+168.55 -44.05
+168.65 -44.05
+168.75 -44.05
+168.85 -44.05
+168.95 -44.05
+169.05 -44.05
+169.15 -44.05
+169.25 -44.05
+169.35 -44.05
+169.45 -44.05
+169.55 -44.05
+169.65 -44.05
+169.75 -44.05
+169.85 -44.05
+169.95 -44.05
+170.05 -44.05
+170.15 -44.05
+170.25 -44.05
+170.35 -44.05
+170.45 -44.05
+170.55 -44.05
+170.65 -44.05
+170.75 -44.05
+170.85 -44.05
+170.95 -44.05
+171.05 -44.05
+171.15 -44.05
+171.25 -44.05
+171.35 -44.05
+171.45 -44.05
+171.55 -44.05
+171.65 -44.05
+171.75 -44.05
+171.85 -44.05
+171.95 -44.05
+172.05 -44.05
+172.15 -44.05
+172.25 -44.05
+172.35 -44.05
+172.45 -44.05
+172.55 -44.05
+172.65 -44.05
+172.75 -44.05
+172.85 -44.05
+172.95 -44.05
+173.05 -44.05
+173.15 -44.05
+173.25 -44.05
+173.35 -44.05
+173.45 -44.05
+173.55 -44.05
+173.65 -44.05
+173.75 -44.05
+173.85 -44.05
+173.95 -44.05
+174.05 -44.05
+174.15 -44.05
+174.25 -44.05
+174.35 -44.05
+174.45 -44.05
+166.55 -44.15
+166.65 -44.15
+166.75 -44.15
+166.85 -44.15
+166.95 -44.15
+167.05 -44.15
+167.15 -44.15
+167.25 -44.15
+167.35 -44.15
+167.45 -44.15
+167.55 -44.15
+167.65 -44.15
+167.75 -44.15
+167.85 -44.15
+167.95 -44.15
+168.05 -44.15
+168.15 -44.15
+168.25 -44.15
+168.35 -44.15
+168.45 -44.15
+168.55 -44.15
+168.65 -44.15
+168.75 -44.15
+168.85 -44.15
+168.95 -44.15
+169.05 -44.15
+169.15 -44.15
+169.25 -44.15
+169.35 -44.15
+169.45 -44.15
+169.55 -44.15
+169.65 -44.15
+169.75 -44.15
+169.85 -44.15
+169.95 -44.15
+170.05 -44.15
+170.15 -44.15
+170.25 -44.15
+170.35 -44.15
+170.45 -44.15
+170.55 -44.15
+170.65 -44.15
+170.75 -44.15
+170.85 -44.15
+170.95 -44.15
+171.05 -44.15
+171.15 -44.15
+171.25 -44.15
+171.35 -44.15
+171.45 -44.15
+171.55 -44.15
+171.65 -44.15
+171.75 -44.15
+171.85 -44.15
+171.95 -44.15
+172.05 -44.15
+172.15 -44.15
+172.25 -44.15
+172.35 -44.15
+172.45 -44.15
+172.55 -44.15
+172.65 -44.15
+172.75 -44.15
+172.85 -44.15
+172.95 -44.15
+173.05 -44.15
+173.15 -44.15
+173.25 -44.15
+173.35 -44.15
+173.45 -44.15
+173.55 -44.15
+173.65 -44.15
+173.75 -44.15
+173.85 -44.15
+173.95 -44.15
+174.05 -44.15
+174.15 -44.15
+174.25 -44.15
+174.35 -44.15
+166.35 -44.25
+166.45 -44.25
+166.55 -44.25
+166.65 -44.25
+166.75 -44.25
+166.85 -44.25
+166.95 -44.25
+167.05 -44.25
+167.15 -44.25
+167.25 -44.25
+167.35 -44.25
+167.45 -44.25
+167.55 -44.25
+167.65 -44.25
+167.75 -44.25
+167.85 -44.25
+167.95 -44.25
+168.05 -44.25
+168.15 -44.25
+168.25 -44.25
+168.35 -44.25
+168.45 -44.25
+168.55 -44.25
+168.65 -44.25
+168.75 -44.25
+168.85 -44.25
+168.95 -44.25
+169.05 -44.25
+169.15 -44.25
+169.25 -44.25
+169.35 -44.25
+169.45 -44.25
+169.55 -44.25
+169.65 -44.25
+169.75 -44.25
+169.85 -44.25
+169.95 -44.25
+170.05 -44.25
+170.15 -44.25
+170.25 -44.25
+170.35 -44.25
+170.45 -44.25
+170.55 -44.25
+170.65 -44.25
+170.75 -44.25
+170.85 -44.25
+170.95 -44.25
+171.05 -44.25
+171.15 -44.25
+171.25 -44.25
+171.35 -44.25
+171.45 -44.25
+171.55 -44.25
+171.65 -44.25
+171.75 -44.25
+171.85 -44.25
+171.95 -44.25
+172.05 -44.25
+172.15 -44.25
+172.25 -44.25
+172.35 -44.25
+172.45 -44.25
+172.55 -44.25
+172.65 -44.25
+172.75 -44.25
+172.85 -44.25
+172.95 -44.25
+173.05 -44.25
+173.15 -44.25
+173.25 -44.25
+173.35 -44.25
+173.45 -44.25
+173.55 -44.25
+173.65 -44.25
+173.75 -44.25
+173.85 -44.25
+173.95 -44.25
+174.05 -44.25
+174.15 -44.25
+174.25 -44.25
+166.25 -44.35
+166.35 -44.35
+166.45 -44.35
+166.55 -44.35
+166.65 -44.35
+166.75 -44.35
+166.85 -44.35
+166.95 -44.35
+167.05 -44.35
+167.15 -44.35
+167.25 -44.35
+167.35 -44.35
+167.45 -44.35
+167.55 -44.35
+167.65 -44.35
+167.75 -44.35
+167.85 -44.35
+167.95 -44.35
+168.05 -44.35
+168.15 -44.35
+168.25 -44.35
+168.35 -44.35
+168.45 -44.35
+168.55 -44.35
+168.65 -44.35
+168.75 -44.35
+168.85 -44.35
+168.95 -44.35
+169.05 -44.35
+169.15 -44.35
+169.25 -44.35
+169.35 -44.35
+169.45 -44.35
+169.55 -44.35
+169.65 -44.35
+169.75 -44.35
+169.85 -44.35
+169.95 -44.35
+170.05 -44.35
+170.15 -44.35
+170.25 -44.35
+170.35 -44.35
+170.45 -44.35
+170.55 -44.35
+170.65 -44.35
+170.75 -44.35
+170.85 -44.35
+170.95 -44.35
+171.05 -44.35
+171.15 -44.35
+171.25 -44.35
+171.35 -44.35
+171.45 -44.35
+171.55 -44.35
+171.65 -44.35
+171.75 -44.35
+171.85 -44.35
+171.95 -44.35
+172.05 -44.35
+172.15 -44.35
+172.25 -44.35
+172.35 -44.35
+172.45 -44.35
+172.55 -44.35
+172.65 -44.35
+172.75 -44.35
+172.85 -44.35
+172.95 -44.35
+173.05 -44.35
+173.15 -44.35
+173.25 -44.35
+173.35 -44.35
+173.45 -44.35
+173.55 -44.35
+173.65 -44.35
+173.75 -44.35
+173.85 -44.35
+173.95 -44.35
+174.05 -44.35
+174.15 -44.35
+166.15 -44.45
+166.25 -44.45
+166.35 -44.45
+166.45 -44.45
+166.55 -44.45
+166.65 -44.45
+166.75 -44.45
+166.85 -44.45
+166.95 -44.45
+167.05 -44.45
+167.15 -44.45
+167.25 -44.45
+167.35 -44.45
+167.45 -44.45
+167.55 -44.45
+167.65 -44.45
+167.75 -44.45
+167.85 -44.45
+167.95 -44.45
+168.05 -44.45
+168.15 -44.45
+168.25 -44.45
+168.35 -44.45
+168.45 -44.45
+168.55 -44.45
+168.65 -44.45
+168.75 -44.45
+168.85 -44.45
+168.95 -44.45
+169.05 -44.45
+169.15 -44.45
+169.25 -44.45
+169.35 -44.45
+169.45 -44.45
+169.55 -44.45
+169.65 -44.45
+169.75 -44.45
+169.85 -44.45
+169.95 -44.45
+170.05 -44.45
+170.15 -44.45
+170.25 -44.45
+170.35 -44.45
+170.45 -44.45
+170.55 -44.45
+170.65 -44.45
+170.75 -44.45
+170.85 -44.45
+170.95 -44.45
+171.05 -44.45
+171.15 -44.45
+171.25 -44.45
+171.35 -44.45
+171.45 -44.45
+171.55 -44.45
+171.65 -44.45
+171.75 -44.45
+171.85 -44.45
+171.95 -44.45
+172.05 -44.45
+172.15 -44.45
+172.25 -44.45
+172.35 -44.45
+172.45 -44.45
+172.55 -44.45
+172.65 -44.45
+172.75 -44.45
+172.85 -44.45
+172.95 -44.45
+173.05 -44.45
+173.15 -44.45
+173.25 -44.45
+173.35 -44.45
+173.45 -44.45
+173.55 -44.45
+173.65 -44.45
+173.75 -44.45
+173.85 -44.45
+173.95 -44.45
+174.05 -44.45
+174.15 -44.45
+166.05 -44.55
+166.15 -44.55
+166.25 -44.55
+166.35 -44.55
+166.45 -44.55
+166.55 -44.55
+166.65 -44.55
+166.75 -44.55
+166.85 -44.55
+166.95 -44.55
+167.05 -44.55
+167.15 -44.55
+167.25 -44.55
+167.35 -44.55
+167.45 -44.55
+167.55 -44.55
+167.65 -44.55
+167.75 -44.55
+167.85 -44.55
+167.95 -44.55
+168.05 -44.55
+168.15 -44.55
+168.25 -44.55
+168.35 -44.55
+168.45 -44.55
+168.55 -44.55
+168.65 -44.55
+168.75 -44.55
+168.85 -44.55
+168.95 -44.55
+169.05 -44.55
+169.15 -44.55
+169.25 -44.55
+169.35 -44.55
+169.45 -44.55
+169.55 -44.55
+169.65 -44.55
+169.75 -44.55
+169.85 -44.55
+169.95 -44.55
+170.05 -44.55
+170.15 -44.55
+170.25 -44.55
+170.35 -44.55
+170.45 -44.55
+170.55 -44.55
+170.65 -44.55
+170.75 -44.55
+170.85 -44.55
+170.95 -44.55
+171.05 -44.55
+171.15 -44.55
+171.25 -44.55
+171.35 -44.55
+171.45 -44.55
+171.55 -44.55
+171.65 -44.55
+171.75 -44.55
+171.85 -44.55
+171.95 -44.55
+172.05 -44.55
+172.15 -44.55
+172.25 -44.55
+172.35 -44.55
+172.45 -44.55
+172.55 -44.55
+172.65 -44.55
+172.75 -44.55
+172.85 -44.55
+172.95 -44.55
+173.05 -44.55
+173.15 -44.55
+173.25 -44.55
+173.35 -44.55
+173.45 -44.55
+173.55 -44.55
+173.65 -44.55
+173.75 -44.55
+173.85 -44.55
+173.95 -44.55
+174.05 -44.55
+165.95 -44.65
+166.05 -44.65
+166.15 -44.65
+166.25 -44.65
+166.35 -44.65
+166.45 -44.65
+166.55 -44.65
+166.65 -44.65
+166.75 -44.65
+166.85 -44.65
+166.95 -44.65
+167.05 -44.65
+167.15 -44.65
+167.25 -44.65
+167.35 -44.65
+167.45 -44.65
+167.55 -44.65
+167.65 -44.65
+167.75 -44.65
+167.85 -44.65
+167.95 -44.65
+168.05 -44.65
+168.15 -44.65
+168.25 -44.65
+168.35 -44.65
+168.45 -44.65
+168.55 -44.65
+168.65 -44.65
+168.75 -44.65
+168.85 -44.65
+168.95 -44.65
+169.05 -44.65
+169.15 -44.65
+169.25 -44.65
+169.35 -44.65
+169.45 -44.65
+169.55 -44.65
+169.65 -44.65
+169.75 -44.65
+169.85 -44.65
+169.95 -44.65
+170.05 -44.65
+170.15 -44.65
+170.25 -44.65
+170.35 -44.65
+170.45 -44.65
+170.55 -44.65
+170.65 -44.65
+170.75 -44.65
+170.85 -44.65
+170.95 -44.65
+171.05 -44.65
+171.15 -44.65
+171.25 -44.65
+171.35 -44.65
+171.45 -44.65
+171.55 -44.65
+171.65 -44.65
+171.75 -44.65
+171.85 -44.65
+171.95 -44.65
+172.05 -44.65
+172.15 -44.65
+172.25 -44.65
+172.35 -44.65
+172.45 -44.65
+172.55 -44.65
+172.65 -44.65
+172.75 -44.65
+172.85 -44.65
+172.95 -44.65
+173.05 -44.65
+173.15 -44.65
+173.25 -44.65
+173.35 -44.65
+173.45 -44.65
+173.55 -44.65
+173.65 -44.65
+173.75 -44.65
+173.85 -44.65
+173.95 -44.65
+165.85 -44.75
+165.95 -44.75
+166.05 -44.75
+166.15 -44.75
+166.25 -44.75
+166.35 -44.75
+166.45 -44.75
+166.55 -44.75
+166.65 -44.75
+166.75 -44.75
+166.85 -44.75
+166.95 -44.75
+167.05 -44.75
+167.15 -44.75
+167.25 -44.75
+167.35 -44.75
+167.45 -44.75
+167.55 -44.75
+167.65 -44.75
+167.75 -44.75
+167.85 -44.75
+167.95 -44.75
+168.05 -44.75
+168.15 -44.75
+168.25 -44.75
+168.35 -44.75
+168.45 -44.75
+168.55 -44.75
+168.65 -44.75
+168.75 -44.75
+168.85 -44.75
+168.95 -44.75
+169.05 -44.75
+169.15 -44.75
+169.25 -44.75
+169.35 -44.75
+169.45 -44.75
+169.55 -44.75
+169.65 -44.75
+169.75 -44.75
+169.85 -44.75
+169.95 -44.75
+170.05 -44.75
+170.15 -44.75
+170.25 -44.75
+170.35 -44.75
+170.45 -44.75
+170.55 -44.75
+170.65 -44.75
+170.75 -44.75
+170.85 -44.75
+170.95 -44.75
+171.05 -44.75
+171.15 -44.75
+171.25 -44.75
+171.35 -44.75
+171.45 -44.75
+171.55 -44.75
+171.65 -44.75
+171.75 -44.75
+171.85 -44.75
+171.95 -44.75
+172.05 -44.75
+172.15 -44.75
+172.25 -44.75
+172.35 -44.75
+172.45 -44.75
+172.55 -44.75
+172.65 -44.75
+172.75 -44.75
+172.85 -44.75
+172.95 -44.75
+173.05 -44.75
+173.15 -44.75
+173.25 -44.75
+173.35 -44.75
+173.45 -44.75
+173.55 -44.75
+173.65 -44.75
+173.75 -44.75
+165.65 -44.85
+165.75 -44.85
+165.85 -44.85
+165.95 -44.85
+166.05 -44.85
+166.15 -44.85
+166.25 -44.85
+166.35 -44.85
+166.45 -44.85
+166.55 -44.85
+166.65 -44.85
+166.75 -44.85
+166.85 -44.85
+166.95 -44.85
+167.05 -44.85
+167.15 -44.85
+167.25 -44.85
+167.35 -44.85
+167.45 -44.85
+167.55 -44.85
+167.65 -44.85
+167.75 -44.85
+167.85 -44.85
+167.95 -44.85
+168.05 -44.85
+168.15 -44.85
+168.25 -44.85
+168.35 -44.85
+168.45 -44.85
+168.55 -44.85
+168.65 -44.85
+168.75 -44.85
+168.85 -44.85
+168.95 -44.85
+169.05 -44.85
+169.15 -44.85
+169.25 -44.85
+169.35 -44.85
+169.45 -44.85
+169.55 -44.85
+169.65 -44.85
+169.75 -44.85
+169.85 -44.85
+169.95 -44.85
+170.05 -44.85
+170.15 -44.85
+170.25 -44.85
+170.35 -44.85
+170.45 -44.85
+170.55 -44.85
+170.65 -44.85
+170.75 -44.85
+170.85 -44.85
+170.95 -44.85
+171.05 -44.85
+171.15 -44.85
+171.25 -44.85
+171.35 -44.85
+171.45 -44.85
+171.55 -44.85
+171.65 -44.85
+171.75 -44.85
+171.85 -44.85
+171.95 -44.85
+172.05 -44.85
+172.15 -44.85
+172.25 -44.85
+172.35 -44.85
+172.45 -44.85
+172.55 -44.85
+172.65 -44.85
+172.75 -44.85
+172.85 -44.85
+172.95 -44.85
+173.05 -44.85
+173.15 -44.85
+165.55 -44.95
+165.65 -44.95
+165.75 -44.95
+165.85 -44.95
+165.95 -44.95
+166.05 -44.95
+166.15 -44.95
+166.25 -44.95
+166.35 -44.95
+166.45 -44.95
+166.55 -44.95
+166.65 -44.95
+166.75 -44.95
+166.85 -44.95
+166.95 -44.95
+167.05 -44.95
+167.15 -44.95
+167.25 -44.95
+167.35 -44.95
+167.45 -44.95
+167.55 -44.95
+167.65 -44.95
+167.75 -44.95
+167.85 -44.95
+167.95 -44.95
+168.05 -44.95
+168.15 -44.95
+168.25 -44.95
+168.35 -44.95
+168.45 -44.95
+168.55 -44.95
+168.65 -44.95
+168.75 -44.95
+168.85 -44.95
+168.95 -44.95
+169.05 -44.95
+169.15 -44.95
+169.25 -44.95
+169.35 -44.95
+169.45 -44.95
+169.55 -44.95
+169.65 -44.95
+169.75 -44.95
+169.85 -44.95
+169.95 -44.95
+170.05 -44.95
+170.15 -44.95
+170.25 -44.95
+170.35 -44.95
+170.45 -44.95
+170.55 -44.95
+170.65 -44.95
+170.75 -44.95
+170.85 -44.95
+170.95 -44.95
+171.05 -44.95
+171.15 -44.95
+171.25 -44.95
+171.35 -44.95
+171.45 -44.95
+171.55 -44.95
+171.65 -44.95
+171.75 -44.95
+171.85 -44.95
+171.95 -44.95
+172.05 -44.95
+172.15 -44.95
+172.25 -44.95
+172.35 -44.95
+172.45 -44.95
+172.55 -44.95
+165.45 -45.05
+165.55 -45.05
+165.65 -45.05
+165.75 -45.05
+165.85 -45.05
+165.95 -45.05
+166.05 -45.05
+166.15 -45.05
+166.25 -45.05
+166.35 -45.05
+166.45 -45.05
+166.55 -45.05
+166.65 -45.05
+166.75 -45.05
+166.85 -45.05
+166.95 -45.05
+167.05 -45.05
+167.15 -45.05
+167.25 -45.05
+167.35 -45.05
+167.45 -45.05
+167.55 -45.05
+167.65 -45.05
+167.75 -45.05
+167.85 -45.05
+167.95 -45.05
+168.05 -45.05
+168.15 -45.05
+168.25 -45.05
+168.35 -45.05
+168.45 -45.05
+168.55 -45.05
+168.65 -45.05
+168.75 -45.05
+168.85 -45.05
+168.95 -45.05
+169.05 -45.05
+169.15 -45.05
+169.25 -45.05
+169.35 -45.05
+169.45 -45.05
+169.55 -45.05
+169.65 -45.05
+169.75 -45.05
+169.85 -45.05
+169.95 -45.05
+170.05 -45.05
+170.15 -45.05
+170.25 -45.05
+170.35 -45.05
+170.45 -45.05
+170.55 -45.05
+170.65 -45.05
+170.75 -45.05
+170.85 -45.05
+170.95 -45.05
+171.05 -45.05
+171.15 -45.05
+171.25 -45.05
+171.35 -45.05
+171.45 -45.05
+171.55 -45.05
+171.65 -45.05
+171.75 -45.05
+171.85 -45.05
+171.95 -45.05
+172.05 -45.05
+172.15 -45.05
+172.25 -45.05
+172.35 -45.05
+172.45 -45.05
+172.55 -45.05
+165.45 -45.15
+165.55 -45.15
+165.65 -45.15
+165.75 -45.15
+165.85 -45.15
+165.95 -45.15
+166.05 -45.15
+166.15 -45.15
+166.25 -45.15
+166.35 -45.15
+166.45 -45.15
+166.55 -45.15
+166.65 -45.15
+166.75 -45.15
+166.85 -45.15
+166.95 -45.15
+167.05 -45.15
+167.15 -45.15
+167.25 -45.15
+167.35 -45.15
+167.45 -45.15
+167.55 -45.15
+167.65 -45.15
+167.75 -45.15
+167.85 -45.15
+167.95 -45.15
+168.05 -45.15
+168.15 -45.15
+168.25 -45.15
+168.35 -45.15
+168.45 -45.15
+168.55 -45.15
+168.65 -45.15
+168.75 -45.15
+168.85 -45.15
+168.95 -45.15
+169.05 -45.15
+169.15 -45.15
+169.25 -45.15
+169.35 -45.15
+169.45 -45.15
+169.55 -45.15
+169.65 -45.15
+169.75 -45.15
+169.85 -45.15
+169.95 -45.15
+170.05 -45.15
+170.15 -45.15
+170.25 -45.15
+170.35 -45.15
+170.45 -45.15
+170.55 -45.15
+170.65 -45.15
+170.75 -45.15
+170.85 -45.15
+170.95 -45.15
+171.05 -45.15
+171.15 -45.15
+171.25 -45.15
+171.35 -45.15
+171.45 -45.15
+171.55 -45.15
+171.65 -45.15
+171.75 -45.15
+171.85 -45.15
+171.95 -45.15
+172.05 -45.15
+172.15 -45.15
+172.25 -45.15
+172.35 -45.15
+172.45 -45.15
+165.35 -45.25
+165.45 -45.25
+165.55 -45.25
+165.65 -45.25
+165.75 -45.25
+165.85 -45.25
+165.95 -45.25
+166.05 -45.25
+166.15 -45.25
+166.25 -45.25
+166.35 -45.25
+166.45 -45.25
+166.55 -45.25
+166.65 -45.25
+166.75 -45.25
+166.85 -45.25
+166.95 -45.25
+167.05 -45.25
+167.15 -45.25
+167.25 -45.25
+167.35 -45.25
+167.45 -45.25
+167.55 -45.25
+167.65 -45.25
+167.75 -45.25
+167.85 -45.25
+167.95 -45.25
+168.05 -45.25
+168.15 -45.25
+168.25 -45.25
+168.35 -45.25
+168.45 -45.25
+168.55 -45.25
+168.65 -45.25
+168.75 -45.25
+168.85 -45.25
+168.95 -45.25
+169.05 -45.25
+169.15 -45.25
+169.25 -45.25
+169.35 -45.25
+169.45 -45.25
+169.55 -45.25
+169.65 -45.25
+169.75 -45.25
+169.85 -45.25
+169.95 -45.25
+170.05 -45.25
+170.15 -45.25
+170.25 -45.25
+170.35 -45.25
+170.45 -45.25
+170.55 -45.25
+170.65 -45.25
+170.75 -45.25
+170.85 -45.25
+170.95 -45.25
+171.05 -45.25
+171.15 -45.25
+171.25 -45.25
+171.35 -45.25
+171.45 -45.25
+171.55 -45.25
+171.65 -45.25
+171.75 -45.25
+171.85 -45.25
+171.95 -45.25
+172.05 -45.25
+172.15 -45.25
+172.25 -45.25
+172.35 -45.25
+172.45 -45.25
+165.25 -45.35
+165.35 -45.35
+165.45 -45.35
+165.55 -45.35
+165.65 -45.35
+165.75 -45.35
+165.85 -45.35
+165.95 -45.35
+166.05 -45.35
+166.15 -45.35
+166.25 -45.35
+166.35 -45.35
+166.45 -45.35
+166.55 -45.35
+166.65 -45.35
+166.75 -45.35
+166.85 -45.35
+166.95 -45.35
+167.05 -45.35
+167.15 -45.35
+167.25 -45.35
+167.35 -45.35
+167.45 -45.35
+167.55 -45.35
+167.65 -45.35
+167.75 -45.35
+167.85 -45.35
+167.95 -45.35
+168.05 -45.35
+168.15 -45.35
+168.25 -45.35
+168.35 -45.35
+168.45 -45.35
+168.55 -45.35
+168.65 -45.35
+168.75 -45.35
+168.85 -45.35
+168.95 -45.35
+169.05 -45.35
+169.15 -45.35
+169.25 -45.35
+169.35 -45.35
+169.45 -45.35
+169.55 -45.35
+169.65 -45.35
+169.75 -45.35
+169.85 -45.35
+169.95 -45.35
+170.05 -45.35
+170.15 -45.35
+170.25 -45.35
+170.35 -45.35
+170.45 -45.35
+170.55 -45.35
+170.65 -45.35
+170.75 -45.35
+170.85 -45.35
+170.95 -45.35
+171.05 -45.35
+171.15 -45.35
+171.25 -45.35
+171.35 -45.35
+171.45 -45.35
+171.55 -45.35
+171.65 -45.35
+171.75 -45.35
+171.85 -45.35
+171.95 -45.35
+172.05 -45.35
+172.15 -45.35
+172.25 -45.35
+172.35 -45.35
+172.45 -45.35
+165.25 -45.45
+165.35 -45.45
+165.45 -45.45
+165.55 -45.45
+165.65 -45.45
+165.75 -45.45
+165.85 -45.45
+165.95 -45.45
+166.05 -45.45
+166.15 -45.45
+166.25 -45.45
+166.35 -45.45
+166.45 -45.45
+166.55 -45.45
+166.65 -45.45
+166.75 -45.45
+166.85 -45.45
+166.95 -45.45
+167.05 -45.45
+167.15 -45.45
+167.25 -45.45
+167.35 -45.45
+167.45 -45.45
+167.55 -45.45
+167.65 -45.45
+167.75 -45.45
+167.85 -45.45
+167.95 -45.45
+168.05 -45.45
+168.15 -45.45
+168.25 -45.45
+168.35 -45.45
+168.45 -45.45
+168.55 -45.45
+168.65 -45.45
+168.75 -45.45
+168.85 -45.45
+168.95 -45.45
+169.05 -45.45
+169.15 -45.45
+169.25 -45.45
+169.35 -45.45
+169.45 -45.45
+169.55 -45.45
+169.65 -45.45
+169.75 -45.45
+169.85 -45.45
+169.95 -45.45
+170.05 -45.45
+170.15 -45.45
+170.25 -45.45
+170.35 -45.45
+170.45 -45.45
+170.55 -45.45
+170.65 -45.45
+170.75 -45.45
+170.85 -45.45
+170.95 -45.45
+171.05 -45.45
+171.15 -45.45
+171.25 -45.45
+171.35 -45.45
+171.45 -45.45
+171.55 -45.45
+171.65 -45.45
+171.75 -45.45
+171.85 -45.45
+171.95 -45.45
+172.05 -45.45
+172.15 -45.45
+172.25 -45.45
+172.35 -45.45
+165.15 -45.55
+165.25 -45.55
+165.35 -45.55
+165.45 -45.55
+165.55 -45.55
+165.65 -45.55
+165.75 -45.55
+165.85 -45.55
+165.95 -45.55
+166.05 -45.55
+166.15 -45.55
+166.25 -45.55
+166.35 -45.55
+166.45 -45.55
+166.55 -45.55
+166.65 -45.55
+166.75 -45.55
+166.85 -45.55
+166.95 -45.55
+167.05 -45.55
+167.15 -45.55
+167.25 -45.55
+167.35 -45.55
+167.45 -45.55
+167.55 -45.55
+167.65 -45.55
+167.75 -45.55
+167.85 -45.55
+167.95 -45.55
+168.05 -45.55
+168.15 -45.55
+168.25 -45.55
+168.35 -45.55
+168.45 -45.55
+168.55 -45.55
+168.65 -45.55
+168.75 -45.55
+168.85 -45.55
+168.95 -45.55
+169.05 -45.55
+169.15 -45.55
+169.25 -45.55
+169.35 -45.55
+169.45 -45.55
+169.55 -45.55
+169.65 -45.55
+169.75 -45.55
+169.85 -45.55
+169.95 -45.55
+170.05 -45.55
+170.15 -45.55
+170.25 -45.55
+170.35 -45.55
+170.45 -45.55
+170.55 -45.55
+170.65 -45.55
+170.75 -45.55
+170.85 -45.55
+170.95 -45.55
+171.05 -45.55
+171.15 -45.55
+171.25 -45.55
+171.35 -45.55
+171.45 -45.55
+171.55 -45.55
+171.65 -45.55
+171.75 -45.55
+171.85 -45.55
+171.95 -45.55
+172.05 -45.55
+172.15 -45.55
+172.25 -45.55
+165.15 -45.65
+165.25 -45.65
+165.35 -45.65
+165.45 -45.65
+165.55 -45.65
+165.65 -45.65
+165.75 -45.65
+165.85 -45.65
+165.95 -45.65
+166.05 -45.65
+166.15 -45.65
+166.25 -45.65
+166.35 -45.65
+166.45 -45.65
+166.55 -45.65
+166.65 -45.65
+166.75 -45.65
+166.85 -45.65
+166.95 -45.65
+167.05 -45.65
+167.15 -45.65
+167.25 -45.65
+167.35 -45.65
+167.45 -45.65
+167.55 -45.65
+167.65 -45.65
+167.75 -45.65
+167.85 -45.65
+167.95 -45.65
+168.05 -45.65
+168.15 -45.65
+168.25 -45.65
+168.35 -45.65
+168.45 -45.65
+168.55 -45.65
+168.65 -45.65
+168.75 -45.65
+168.85 -45.65
+168.95 -45.65
+169.05 -45.65
+169.15 -45.65
+169.25 -45.65
+169.35 -45.65
+169.45 -45.65
+169.55 -45.65
+169.65 -45.65
+169.75 -45.65
+169.85 -45.65
+169.95 -45.65
+170.05 -45.65
+170.15 -45.65
+170.25 -45.65
+170.35 -45.65
+170.45 -45.65
+170.55 -45.65
+170.65 -45.65
+170.75 -45.65
+170.85 -45.65
+170.95 -45.65
+171.05 -45.65
+171.15 -45.65
+171.25 -45.65
+171.35 -45.65
+171.45 -45.65
+171.55 -45.65
+171.65 -45.65
+171.75 -45.65
+171.85 -45.65
+171.95 -45.65
+172.05 -45.65
+172.15 -45.65
+165.15 -45.75
+165.25 -45.75
+165.35 -45.75
+165.45 -45.75
+165.55 -45.75
+165.65 -45.75
+165.75 -45.75
+165.85 -45.75
+165.95 -45.75
+166.05 -45.75
+166.15 -45.75
+166.25 -45.75
+166.35 -45.75
+166.45 -45.75
+166.55 -45.75
+166.65 -45.75
+166.75 -45.75
+166.85 -45.75
+166.95 -45.75
+167.05 -45.75
+167.15 -45.75
+167.25 -45.75
+167.35 -45.75
+167.45 -45.75
+167.55 -45.75
+167.65 -45.75
+167.75 -45.75
+167.85 -45.75
+167.95 -45.75
+168.05 -45.75
+168.15 -45.75
+168.25 -45.75
+168.35 -45.75
+168.45 -45.75
+168.55 -45.75
+168.65 -45.75
+168.75 -45.75
+168.85 -45.75
+168.95 -45.75
+169.05 -45.75
+169.15 -45.75
+169.25 -45.75
+169.35 -45.75
+169.45 -45.75
+169.55 -45.75
+169.65 -45.75
+169.75 -45.75
+169.85 -45.75
+169.95 -45.75
+170.05 -45.75
+170.15 -45.75
+170.25 -45.75
+170.35 -45.75
+170.45 -45.75
+170.55 -45.75
+170.65 -45.75
+170.75 -45.75
+170.85 -45.75
+170.95 -45.75
+171.05 -45.75
+171.15 -45.75
+171.25 -45.75
+171.35 -45.75
+171.45 -45.75
+171.55 -45.75
+171.65 -45.75
+171.75 -45.75
+171.85 -45.75
+171.95 -45.75
+172.05 -45.75
+172.15 -45.75
+165.05 -45.85
+165.15 -45.85
+165.25 -45.85
+165.35 -45.85
+165.45 -45.85
+165.55 -45.85
+165.65 -45.85
+165.75 -45.85
+165.85 -45.85
+165.95 -45.85
+166.05 -45.85
+166.15 -45.85
+166.25 -45.85
+166.35 -45.85
+166.45 -45.85
+166.55 -45.85
+166.65 -45.85
+166.75 -45.85
+166.85 -45.85
+166.95 -45.85
+167.05 -45.85
+167.15 -45.85
+167.25 -45.85
+167.35 -45.85
+167.45 -45.85
+167.55 -45.85
+167.65 -45.85
+167.75 -45.85
+167.85 -45.85
+167.95 -45.85
+168.05 -45.85
+168.15 -45.85
+168.25 -45.85
+168.35 -45.85
+168.45 -45.85
+168.55 -45.85
+168.65 -45.85
+168.75 -45.85
+168.85 -45.85
+168.95 -45.85
+169.05 -45.85
+169.15 -45.85
+169.25 -45.85
+169.35 -45.85
+169.45 -45.85
+169.55 -45.85
+169.65 -45.85
+169.75 -45.85
+169.85 -45.85
+169.95 -45.85
+170.05 -45.85
+170.15 -45.85
+170.25 -45.85
+170.35 -45.85
+170.45 -45.85
+170.55 -45.85
+170.65 -45.85
+170.75 -45.85
+170.85 -45.85
+170.95 -45.85
+171.05 -45.85
+171.15 -45.85
+171.25 -45.85
+171.35 -45.85
+171.45 -45.85
+171.55 -45.85
+171.65 -45.85
+171.75 -45.85
+171.85 -45.85
+171.95 -45.85
+172.05 -45.85
+172.15 -45.85
+165.05 -45.95
+165.15 -45.95
+165.25 -45.95
+165.35 -45.95
+165.45 -45.95
+165.55 -45.95
+165.65 -45.95
+165.75 -45.95
+165.85 -45.95
+165.95 -45.95
+166.05 -45.95
+166.15 -45.95
+166.25 -45.95
+166.35 -45.95
+166.45 -45.95
+166.55 -45.95
+166.65 -45.95
+166.75 -45.95
+166.85 -45.95
+166.95 -45.95
+167.05 -45.95
+167.15 -45.95
+167.25 -45.95
+167.35 -45.95
+167.45 -45.95
+167.55 -45.95
+167.65 -45.95
+167.75 -45.95
+167.85 -45.95
+167.95 -45.95
+168.05 -45.95
+168.15 -45.95
+168.25 -45.95
+168.35 -45.95
+168.45 -45.95
+168.55 -45.95
+168.65 -45.95
+168.75 -45.95
+168.85 -45.95
+168.95 -45.95
+169.05 -45.95
+169.15 -45.95
+169.25 -45.95
+169.35 -45.95
+169.45 -45.95
+169.55 -45.95
+169.65 -45.95
+169.75 -45.95
+169.85 -45.95
+169.95 -45.95
+170.05 -45.95
+170.15 -45.95
+170.25 -45.95
+170.35 -45.95
+170.45 -45.95
+170.55 -45.95
+170.65 -45.95
+170.75 -45.95
+170.85 -45.95
+170.95 -45.95
+171.05 -45.95
+171.15 -45.95
+171.25 -45.95
+171.35 -45.95
+171.45 -45.95
+171.55 -45.95
+171.65 -45.95
+171.75 -45.95
+171.85 -45.95
+171.95 -45.95
+172.05 -45.95
+172.15 -45.95
+165.15 -46.05
+165.25 -46.05
+165.35 -46.05
+165.45 -46.05
+165.55 -46.05
+165.65 -46.05
+165.75 -46.05
+165.85 -46.05
+165.95 -46.05
+166.05 -46.05
+166.15 -46.05
+166.25 -46.05
+166.35 -46.05
+166.45 -46.05
+166.55 -46.05
+166.65 -46.05
+166.75 -46.05
+166.85 -46.05
+166.95 -46.05
+167.05 -46.05
+167.15 -46.05
+167.25 -46.05
+167.35 -46.05
+167.45 -46.05
+167.55 -46.05
+167.65 -46.05
+167.75 -46.05
+167.85 -46.05
+167.95 -46.05
+168.05 -46.05
+168.15 -46.05
+168.25 -46.05
+168.35 -46.05
+168.45 -46.05
+168.55 -46.05
+168.65 -46.05
+168.75 -46.05
+168.85 -46.05
+168.95 -46.05
+169.05 -46.05
+169.15 -46.05
+169.25 -46.05
+169.35 -46.05
+169.45 -46.05
+169.55 -46.05
+169.65 -46.05
+169.75 -46.05
+169.85 -46.05
+169.95 -46.05
+170.05 -46.05
+170.15 -46.05
+170.25 -46.05
+170.35 -46.05
+170.45 -46.05
+170.55 -46.05
+170.65 -46.05
+170.75 -46.05
+170.85 -46.05
+170.95 -46.05
+171.05 -46.05
+171.15 -46.05
+171.25 -46.05
+171.35 -46.05
+171.45 -46.05
+171.55 -46.05
+171.65 -46.05
+171.75 -46.05
+171.85 -46.05
+171.95 -46.05
+172.05 -46.05
+172.15 -46.05
+165.15 -46.15
+165.25 -46.15
+165.35 -46.15
+165.45 -46.15
+165.55 -46.15
+165.65 -46.15
+165.75 -46.15
+165.85 -46.15
+165.95 -46.15
+166.05 -46.15
+166.15 -46.15
+166.25 -46.15
+166.35 -46.15
+166.45 -46.15
+166.55 -46.15
+166.65 -46.15
+166.75 -46.15
+166.85 -46.15
+166.95 -46.15
+167.05 -46.15
+167.15 -46.15
+167.25 -46.15
+167.35 -46.15
+167.45 -46.15
+167.55 -46.15
+167.65 -46.15
+167.75 -46.15
+167.85 -46.15
+167.95 -46.15
+168.05 -46.15
+168.15 -46.15
+168.25 -46.15
+168.35 -46.15
+168.45 -46.15
+168.55 -46.15
+168.65 -46.15
+168.75 -46.15
+168.85 -46.15
+168.95 -46.15
+169.05 -46.15
+169.15 -46.15
+169.25 -46.15
+169.35 -46.15
+169.45 -46.15
+169.55 -46.15
+169.65 -46.15
+169.75 -46.15
+169.85 -46.15
+169.95 -46.15
+170.05 -46.15
+170.15 -46.15
+170.25 -46.15
+170.35 -46.15
+170.45 -46.15
+170.55 -46.15
+170.65 -46.15
+170.75 -46.15
+170.85 -46.15
+170.95 -46.15
+171.05 -46.15
+171.15 -46.15
+171.25 -46.15
+171.35 -46.15
+171.45 -46.15
+171.55 -46.15
+171.65 -46.15
+171.75 -46.15
+171.85 -46.15
+171.95 -46.15
+172.05 -46.15
+165.15 -46.25
+165.25 -46.25
+165.35 -46.25
+165.45 -46.25
+165.55 -46.25
+165.65 -46.25
+165.75 -46.25
+165.85 -46.25
+165.95 -46.25
+166.05 -46.25
+166.15 -46.25
+166.25 -46.25
+166.35 -46.25
+166.45 -46.25
+166.55 -46.25
+166.65 -46.25
+166.75 -46.25
+166.85 -46.25
+166.95 -46.25
+167.05 -46.25
+167.15 -46.25
+167.25 -46.25
+167.35 -46.25
+167.45 -46.25
+167.55 -46.25
+167.65 -46.25
+167.75 -46.25
+167.85 -46.25
+167.95 -46.25
+168.05 -46.25
+168.15 -46.25
+168.25 -46.25
+168.35 -46.25
+168.45 -46.25
+168.55 -46.25
+168.65 -46.25
+168.75 -46.25
+168.85 -46.25
+168.95 -46.25
+169.05 -46.25
+169.15 -46.25
+169.25 -46.25
+169.35 -46.25
+169.45 -46.25
+169.55 -46.25
+169.65 -46.25
+169.75 -46.25
+169.85 -46.25
+169.95 -46.25
+170.05 -46.25
+170.15 -46.25
+170.25 -46.25
+170.35 -46.25
+170.45 -46.25
+170.55 -46.25
+170.65 -46.25
+170.75 -46.25
+170.85 -46.25
+170.95 -46.25
+171.05 -46.25
+171.15 -46.25
+171.25 -46.25
+171.35 -46.25
+171.45 -46.25
+171.55 -46.25
+171.65 -46.25
+171.75 -46.25
+171.85 -46.25
+171.95 -46.25
+172.05 -46.25
+165.25 -46.35
+165.35 -46.35
+165.45 -46.35
+165.55 -46.35
+165.65 -46.35
+165.75 -46.35
+165.85 -46.35
+165.95 -46.35
+166.05 -46.35
+166.15 -46.35
+166.25 -46.35
+166.35 -46.35
+166.45 -46.35
+166.55 -46.35
+166.65 -46.35
+166.75 -46.35
+166.85 -46.35
+166.95 -46.35
+167.05 -46.35
+167.15 -46.35
+167.25 -46.35
+167.35 -46.35
+167.45 -46.35
+167.55 -46.35
+167.65 -46.35
+167.75 -46.35
+167.85 -46.35
+167.95 -46.35
+168.05 -46.35
+168.15 -46.35
+168.25 -46.35
+168.35 -46.35
+168.45 -46.35
+168.55 -46.35
+168.65 -46.35
+168.75 -46.35
+168.85 -46.35
+168.95 -46.35
+169.05 -46.35
+169.15 -46.35
+169.25 -46.35
+169.35 -46.35
+169.45 -46.35
+169.55 -46.35
+169.65 -46.35
+169.75 -46.35
+169.85 -46.35
+169.95 -46.35
+170.05 -46.35
+170.15 -46.35
+170.25 -46.35
+170.35 -46.35
+170.45 -46.35
+170.55 -46.35
+170.65 -46.35
+170.75 -46.35
+170.85 -46.35
+170.95 -46.35
+171.05 -46.35
+171.15 -46.35
+171.25 -46.35
+171.35 -46.35
+171.45 -46.35
+171.55 -46.35
+171.65 -46.35
+171.75 -46.35
+171.85 -46.35
+171.95 -46.35
+172.05 -46.35
+165.35 -46.45
+165.45 -46.45
+165.55 -46.45
+165.65 -46.45
+165.75 -46.45
+165.85 -46.45
+165.95 -46.45
+166.05 -46.45
+166.15 -46.45
+166.25 -46.45
+166.35 -46.45
+166.45 -46.45
+166.55 -46.45
+166.65 -46.45
+166.75 -46.45
+166.85 -46.45
+166.95 -46.45
+167.05 -46.45
+167.15 -46.45
+167.25 -46.45
+167.35 -46.45
+167.45 -46.45
+167.55 -46.45
+167.65 -46.45
+167.75 -46.45
+167.85 -46.45
+167.95 -46.45
+168.05 -46.45
+168.15 -46.45
+168.25 -46.45
+168.35 -46.45
+168.45 -46.45
+168.55 -46.45
+168.65 -46.45
+168.75 -46.45
+168.85 -46.45
+168.95 -46.45
+169.05 -46.45
+169.15 -46.45
+169.25 -46.45
+169.35 -46.45
+169.45 -46.45
+169.55 -46.45
+169.65 -46.45
+169.75 -46.45
+169.85 -46.45
+169.95 -46.45
+170.05 -46.45
+170.15 -46.45
+170.25 -46.45
+170.35 -46.45
+170.45 -46.45
+170.55 -46.45
+170.65 -46.45
+170.75 -46.45
+170.85 -46.45
+170.95 -46.45
+171.05 -46.45
+171.15 -46.45
+171.25 -46.45
+171.35 -46.45
+171.45 -46.45
+171.55 -46.45
+171.65 -46.45
+171.75 -46.45
+171.85 -46.45
+171.95 -46.45
+165.35 -46.55
+165.45 -46.55
+165.55 -46.55
+165.65 -46.55
+165.75 -46.55
+165.85 -46.55
+165.95 -46.55
+166.05 -46.55
+166.15 -46.55
+166.25 -46.55
+166.35 -46.55
+166.45 -46.55
+166.55 -46.55
+166.65 -46.55
+166.75 -46.55
+166.85 -46.55
+166.95 -46.55
+167.05 -46.55
+167.15 -46.55
+167.25 -46.55
+167.35 -46.55
+167.45 -46.55
+167.55 -46.55
+167.65 -46.55
+167.75 -46.55
+167.85 -46.55
+167.95 -46.55
+168.05 -46.55
+168.15 -46.55
+168.25 -46.55
+168.35 -46.55
+168.45 -46.55
+168.55 -46.55
+168.65 -46.55
+168.75 -46.55
+168.85 -46.55
+168.95 -46.55
+169.05 -46.55
+169.15 -46.55
+169.25 -46.55
+169.35 -46.55
+169.45 -46.55
+169.55 -46.55
+169.65 -46.55
+169.75 -46.55
+169.85 -46.55
+169.95 -46.55
+170.05 -46.55
+170.15 -46.55
+170.25 -46.55
+170.35 -46.55
+170.45 -46.55
+170.55 -46.55
+170.65 -46.55
+170.75 -46.55
+170.85 -46.55
+170.95 -46.55
+171.05 -46.55
+171.15 -46.55
+171.25 -46.55
+171.35 -46.55
+171.45 -46.55
+171.55 -46.55
+171.65 -46.55
+171.75 -46.55
+171.85 -46.55
+165.45 -46.65
+165.55 -46.65
+165.65 -46.65
+165.75 -46.65
+165.85 -46.65
+165.95 -46.65
+166.05 -46.65
+166.15 -46.65
+166.25 -46.65
+166.35 -46.65
+166.45 -46.65
+166.55 -46.65
+166.65 -46.65
+166.75 -46.65
+166.85 -46.65
+166.95 -46.65
+167.05 -46.65
+167.15 -46.65
+167.25 -46.65
+167.35 -46.65
+167.45 -46.65
+167.55 -46.65
+167.65 -46.65
+167.75 -46.65
+167.85 -46.65
+167.95 -46.65
+168.05 -46.65
+168.15 -46.65
+168.25 -46.65
+168.35 -46.65
+168.45 -46.65
+168.55 -46.65
+168.65 -46.65
+168.75 -46.65
+168.85 -46.65
+168.95 -46.65
+169.05 -46.65
+169.15 -46.65
+169.25 -46.65
+169.35 -46.65
+169.45 -46.65
+169.55 -46.65
+169.65 -46.65
+169.75 -46.65
+169.85 -46.65
+169.95 -46.65
+170.05 -46.65
+170.15 -46.65
+170.25 -46.65
+170.35 -46.65
+170.45 -46.65
+170.55 -46.65
+170.65 -46.65
+170.75 -46.65
+170.85 -46.65
+170.95 -46.65
+171.05 -46.65
+171.15 -46.65
+171.25 -46.65
+171.35 -46.65
+171.45 -46.65
+171.55 -46.65
+171.65 -46.65
+165.55 -46.75
+165.65 -46.75
+165.75 -46.75
+165.85 -46.75
+165.95 -46.75
+166.05 -46.75
+166.15 -46.75
+166.25 -46.75
+166.35 -46.75
+166.45 -46.75
+166.55 -46.75
+166.65 -46.75
+166.75 -46.75
+166.85 -46.75
+166.95 -46.75
+167.05 -46.75
+167.15 -46.75
+167.25 -46.75
+167.35 -46.75
+167.45 -46.75
+167.55 -46.75
+167.65 -46.75
+167.75 -46.75
+167.85 -46.75
+167.95 -46.75
+168.05 -46.75
+168.15 -46.75
+168.25 -46.75
+168.35 -46.75
+168.45 -46.75
+168.55 -46.75
+168.65 -46.75
+168.75 -46.75
+168.85 -46.75
+168.95 -46.75
+169.05 -46.75
+169.15 -46.75
+169.25 -46.75
+169.35 -46.75
+169.45 -46.75
+169.55 -46.75
+169.65 -46.75
+169.75 -46.75
+169.85 -46.75
+169.95 -46.75
+170.05 -46.75
+170.15 -46.75
+170.25 -46.75
+170.35 -46.75
+170.45 -46.75
+170.55 -46.75
+170.65 -46.75
+170.75 -46.75
+170.85 -46.75
+170.95 -46.75
+171.05 -46.75
+171.15 -46.75
+171.25 -46.75
+171.35 -46.75
+171.45 -46.75
+165.55 -46.85
+165.65 -46.85
+165.75 -46.85
+165.85 -46.85
+165.95 -46.85
+166.05 -46.85
+166.15 -46.85
+166.25 -46.85
+166.35 -46.85
+166.45 -46.85
+166.55 -46.85
+166.65 -46.85
+166.75 -46.85
+166.85 -46.85
+166.95 -46.85
+167.05 -46.85
+167.15 -46.85
+167.25 -46.85
+167.35 -46.85
+167.45 -46.85
+167.55 -46.85
+167.65 -46.85
+167.75 -46.85
+167.85 -46.85
+167.95 -46.85
+168.05 -46.85
+168.15 -46.85
+168.25 -46.85
+168.35 -46.85
+168.45 -46.85
+168.55 -46.85
+168.65 -46.85
+168.75 -46.85
+168.85 -46.85
+168.95 -46.85
+169.05 -46.85
+169.15 -46.85
+169.25 -46.85
+169.35 -46.85
+169.45 -46.85
+169.55 -46.85
+169.65 -46.85
+169.75 -46.85
+169.85 -46.85
+169.95 -46.85
+170.05 -46.85
+170.15 -46.85
+170.25 -46.85
+170.35 -46.85
+170.45 -46.85
+170.55 -46.85
+170.65 -46.85
+170.75 -46.85
+170.85 -46.85
+170.95 -46.85
+171.05 -46.85
+171.15 -46.85
+171.25 -46.85
+165.65 -46.95
+165.75 -46.95
+165.85 -46.95
+165.95 -46.95
+166.05 -46.95
+166.15 -46.95
+166.25 -46.95
+166.35 -46.95
+166.45 -46.95
+166.55 -46.95
+166.65 -46.95
+166.75 -46.95
+166.85 -46.95
+166.95 -46.95
+167.05 -46.95
+167.15 -46.95
+167.25 -46.95
+167.35 -46.95
+167.45 -46.95
+167.55 -46.95
+167.65 -46.95
+167.75 -46.95
+167.85 -46.95
+167.95 -46.95
+168.05 -46.95
+168.15 -46.95
+168.25 -46.95
+168.35 -46.95
+168.45 -46.95
+168.55 -46.95
+168.65 -46.95
+168.75 -46.95
+168.85 -46.95
+168.95 -46.95
+169.05 -46.95
+169.15 -46.95
+169.25 -46.95
+169.35 -46.95
+169.45 -46.95
+169.55 -46.95
+169.65 -46.95
+169.75 -46.95
+169.85 -46.95
+169.95 -46.95
+170.05 -46.95
+170.15 -46.95
+170.25 -46.95
+170.35 -46.95
+170.45 -46.95
+170.55 -46.95
+170.65 -46.95
+170.75 -46.95
+170.85 -46.95
+170.95 -46.95
+171.05 -46.95
+171.15 -46.95
+165.75 -47.05
+165.85 -47.05
+165.95 -47.05
+166.05 -47.05
+166.15 -47.05
+166.25 -47.05
+166.35 -47.05
+166.45 -47.05
+166.55 -47.05
+166.65 -47.05
+166.75 -47.05
+166.85 -47.05
+166.95 -47.05
+167.05 -47.05
+167.15 -47.05
+167.25 -47.05
+167.35 -47.05
+167.45 -47.05
+167.55 -47.05
+167.65 -47.05
+167.75 -47.05
+167.85 -47.05
+167.95 -47.05
+168.05 -47.05
+168.15 -47.05
+168.25 -47.05
+168.35 -47.05
+168.45 -47.05
+168.55 -47.05
+168.65 -47.05
+168.75 -47.05
+168.85 -47.05
+168.95 -47.05
+169.05 -47.05
+169.15 -47.05
+169.25 -47.05
+169.35 -47.05
+169.45 -47.05
+169.55 -47.05
+169.65 -47.05
+169.75 -47.05
+169.85 -47.05
+169.95 -47.05
+170.05 -47.05
+170.15 -47.05
+170.25 -47.05
+170.35 -47.05
+170.45 -47.05
+170.55 -47.05
+170.65 -47.05
+170.75 -47.05
+170.85 -47.05
+170.95 -47.05
+165.75 -47.15
+165.85 -47.15
+165.95 -47.15
+166.05 -47.15
+166.15 -47.15
+166.25 -47.15
+166.35 -47.15
+166.45 -47.15
+166.55 -47.15
+166.65 -47.15
+166.75 -47.15
+166.85 -47.15
+166.95 -47.15
+167.05 -47.15
+167.15 -47.15
+167.25 -47.15
+167.35 -47.15
+167.45 -47.15
+167.55 -47.15
+167.65 -47.15
+167.75 -47.15
+167.85 -47.15
+167.95 -47.15
+168.05 -47.15
+168.15 -47.15
+168.25 -47.15
+168.35 -47.15
+168.45 -47.15
+168.55 -47.15
+168.65 -47.15
+168.75 -47.15
+168.85 -47.15
+168.95 -47.15
+169.05 -47.15
+169.15 -47.15
+169.25 -47.15
+169.35 -47.15
+169.45 -47.15
+169.55 -47.15
+169.65 -47.15
+169.75 -47.15
+169.85 -47.15
+169.95 -47.15
+170.05 -47.15
+170.15 -47.15
+170.25 -47.15
+170.35 -47.15
+170.45 -47.15
+170.55 -47.15
+170.65 -47.15
+170.75 -47.15
+170.85 -47.15
+165.85 -47.25
+165.95 -47.25
+166.05 -47.25
+166.15 -47.25
+166.25 -47.25
+166.35 -47.25
+166.45 -47.25
+166.55 -47.25
+166.65 -47.25
+166.75 -47.25
+166.85 -47.25
+166.95 -47.25
+167.05 -47.25
+167.15 -47.25
+167.25 -47.25
+167.35 -47.25
+167.45 -47.25
+167.55 -47.25
+167.65 -47.25
+167.75 -47.25
+167.85 -47.25
+167.95 -47.25
+168.05 -47.25
+168.15 -47.25
+168.25 -47.25
+168.35 -47.25
+168.45 -47.25
+168.55 -47.25
+168.65 -47.25
+168.75 -47.25
+168.85 -47.25
+168.95 -47.25
+169.05 -47.25
+169.15 -47.25
+169.25 -47.25
+169.35 -47.25
+169.45 -47.25
+169.55 -47.25
+169.65 -47.25
+169.75 -47.25
+169.85 -47.25
+169.95 -47.25
+170.05 -47.25
+170.15 -47.25
+170.25 -47.25
+170.35 -47.25
+170.45 -47.25
+170.55 -47.25
+170.65 -47.25
+165.95 -47.35
+166.05 -47.35
+166.15 -47.35
+166.25 -47.35
+166.35 -47.35
+166.45 -47.35
+166.55 -47.35
+166.65 -47.35
+166.75 -47.35
+166.85 -47.35
+166.95 -47.35
+167.05 -47.35
+167.15 -47.35
+167.25 -47.35
+167.35 -47.35
+167.45 -47.35
+167.55 -47.35
+167.65 -47.35
+167.75 -47.35
+167.85 -47.35
+167.95 -47.35
+168.05 -47.35
+168.15 -47.35
+168.25 -47.35
+168.35 -47.35
+168.45 -47.35
+168.55 -47.35
+168.65 -47.35
+168.75 -47.35
+168.85 -47.35
+168.95 -47.35
+169.05 -47.35
+169.15 -47.35
+169.25 -47.35
+169.35 -47.35
+169.45 -47.35
+169.55 -47.35
+169.65 -47.35
+169.75 -47.35
+169.85 -47.35
+169.95 -47.35
+170.05 -47.35
+170.15 -47.35
+170.25 -47.35
+170.35 -47.35
+170.45 -47.35
+170.55 -47.35
+166.05 -47.45
+166.15 -47.45
+166.25 -47.45
+166.35 -47.45
+166.45 -47.45
+166.55 -47.45
+166.65 -47.45
+166.75 -47.45
+166.85 -47.45
+166.95 -47.45
+167.05 -47.45
+167.15 -47.45
+167.25 -47.45
+167.35 -47.45
+167.45 -47.45
+167.55 -47.45
+167.65 -47.45
+167.75 -47.45
+167.85 -47.45
+167.95 -47.45
+168.05 -47.45
+168.15 -47.45
+168.25 -47.45
+168.35 -47.45
+168.45 -47.45
+168.55 -47.45
+168.65 -47.45
+168.75 -47.45
+168.85 -47.45
+168.95 -47.45
+169.05 -47.45
+169.15 -47.45
+169.25 -47.45
+169.35 -47.45
+169.45 -47.45
+169.55 -47.45
+169.65 -47.45
+169.75 -47.45
+169.85 -47.45
+169.95 -47.45
+170.05 -47.45
+170.15 -47.45
+170.25 -47.45
+166.05 -47.55
+166.15 -47.55
+166.25 -47.55
+166.35 -47.55
+166.45 -47.55
+166.55 -47.55
+166.65 -47.55
+166.75 -47.55
+166.85 -47.55
+166.95 -47.55
+167.05 -47.55
+167.15 -47.55
+167.25 -47.55
+167.35 -47.55
+167.45 -47.55
+167.55 -47.55
+167.65 -47.55
+167.75 -47.55
+167.85 -47.55
+167.95 -47.55
+168.05 -47.55
+168.15 -47.55
+168.25 -47.55
+168.35 -47.55
+168.45 -47.55
+168.55 -47.55
+168.65 -47.55
+168.75 -47.55
+168.85 -47.55
+168.95 -47.55
+169.05 -47.55
+169.15 -47.55
+169.25 -47.55
+169.35 -47.55
+169.45 -47.55
+169.55 -47.55
+169.65 -47.55
+169.75 -47.55
+169.85 -47.55
+166.15 -47.65
+166.25 -47.65
+166.35 -47.65
+166.45 -47.65
+166.55 -47.65
+166.65 -47.65
+166.75 -47.65
+166.85 -47.65
+166.95 -47.65
+167.05 -47.65
+167.15 -47.65
+167.25 -47.65
+167.35 -47.65
+167.45 -47.65
+167.55 -47.65
+167.65 -47.65
+167.75 -47.65
+167.85 -47.65
+167.95 -47.65
+168.05 -47.65
+168.15 -47.65
+168.25 -47.65
+168.35 -47.65
+168.45 -47.65
+168.55 -47.65
+168.65 -47.65
+168.75 -47.65
+168.85 -47.65
+168.95 -47.65
+169.05 -47.65
+169.15 -47.65
+169.25 -47.65
+169.35 -47.65
+169.45 -47.65
+166.25 -47.75
+166.35 -47.75
+166.45 -47.75
+166.55 -47.75
+166.65 -47.75
+166.75 -47.75
+166.85 -47.75
+166.95 -47.75
+167.05 -47.75
+167.15 -47.75
+167.25 -47.75
+167.35 -47.75
+167.45 -47.75
+167.55 -47.75
+167.65 -47.75
+167.75 -47.75
+167.85 -47.75
+167.95 -47.75
+168.05 -47.75
+168.15 -47.75
+168.25 -47.75
+168.35 -47.75
+168.45 -47.75
+168.55 -47.75
+168.65 -47.75
+168.75 -47.75
+168.85 -47.75
+168.95 -47.75
+169.05 -47.75
+169.15 -47.75
+169.25 -47.75
+166.35 -47.85
+166.45 -47.85
+166.55 -47.85
+166.65 -47.85
+166.75 -47.85
+166.85 -47.85
+166.95 -47.85
+167.05 -47.85
+167.15 -47.85
+167.25 -47.85
+167.35 -47.85
+167.45 -47.85
+167.55 -47.85
+167.65 -47.85
+167.75 -47.85
+167.85 -47.85
+167.95 -47.85
+168.05 -47.85
+168.15 -47.85
+168.25 -47.85
+168.35 -47.85
+168.45 -47.85
+168.55 -47.85
+168.65 -47.85
+168.75 -47.85
+168.85 -47.85
+168.95 -47.85
+169.05 -47.85
+166.55 -47.95
+166.65 -47.95
+166.75 -47.95
+166.85 -47.95
+166.95 -47.95
+167.05 -47.95
+167.15 -47.95
+167.25 -47.95
+167.35 -47.95
+167.45 -47.95
+167.55 -47.95
+167.65 -47.95
+167.75 -47.95
+167.85 -47.95
+167.95 -47.95
+168.05 -47.95
+168.15 -47.95
+168.25 -47.95
+168.35 -47.95
+168.45 -47.95
+168.55 -47.95
+168.65 -47.95
+168.75 -47.95
+168.85 -47.95
+168.95 -47.95
+166.65 -48.05
+166.75 -48.05
+166.85 -48.05
+166.95 -48.05
+167.05 -48.05
+167.15 -48.05
+167.25 -48.05
+167.35 -48.05
+167.45 -48.05
+167.55 -48.05
+167.65 -48.05
+167.75 -48.05
+167.85 -48.05
+167.95 -48.05
+168.05 -48.05
+168.15 -48.05
+168.25 -48.05
+168.35 -48.05
+168.45 -48.05
+168.55 -48.05
+166.75 -48.15
+166.85 -48.15
+166.95 -48.15
+167.05 -48.15
+167.15 -48.15
+167.25 -48.15
+167.35 -48.15
+167.45 -48.15
+167.55 -48.15
+167.65 -48.15
+167.75 -48.15
+167.85 -48.15
+167.95 -48.15
+168.05 -48.15
+168.15 -48.15
+167.25 -48.25
+167.35 -48.25
+167.45 -48.25
+167.55 -48.25
diff --git a/csep/artifacts/Regions/nz.testing.nodes.dat b/csep/artifacts/Regions/nz.testing.nodes.dat
new file mode 100644
index 00000000..c4e876b9
--- /dev/null
+++ b/csep/artifacts/Regions/nz.testing.nodes.dat
@@ -0,0 +1,6343 @@
+165.75 -46.15
+165.85 -46.25
+165.85 -46.15
+165.85 -46.05
+165.85 -45.95
+165.85 -45.85
+165.85 -45.75
+165.85 -45.65
+165.85 -45.55
+165.95 -46.35
+165.95 -46.25
+165.95 -46.15
+165.95 -46.05
+165.95 -45.95
+165.95 -45.85
+165.95 -45.75
+165.95 -45.65
+165.95 -45.55
+165.95 -45.45
+166.05 -46.45
+166.05 -46.35
+166.05 -46.25
+166.05 -46.15
+166.05 -46.05
+166.05 -45.95
+166.05 -45.85
+166.05 -45.75
+166.05 -45.65
+166.05 -45.55
+166.05 -45.45
+166.05 -45.35
+166.15 -46.55
+166.15 -46.45
+166.15 -46.35
+166.15 -46.25
+166.15 -46.15
+166.15 -46.05
+166.15 -45.95
+166.15 -45.85
+166.15 -45.75
+166.15 -45.65
+166.15 -45.55
+166.15 -45.45
+166.15 -45.35
+166.15 -45.25
+166.25 -46.65
+166.25 -46.55
+166.25 -46.45
+166.25 -46.35
+166.25 -46.25
+166.25 -46.15
+166.25 -46.05
+166.25 -45.95
+166.25 -45.85
+166.25 -45.75
+166.25 -45.65
+166.25 -45.55
+166.25 -45.45
+166.25 -45.35
+166.25 -45.25
+166.25 -45.15
+166.35 -46.85
+166.35 -46.75
+166.35 -46.65
+166.35 -46.55
+166.35 -46.45
+166.35 -46.35
+166.35 -46.25
+166.35 -46.15
+166.35 -46.05
+166.35 -45.95
+166.35 -45.85
+166.35 -45.75
+166.35 -45.65
+166.35 -45.55
+166.35 -45.45
+166.35 -45.35
+166.35 -45.25
+166.35 -45.15
+166.35 -45.05
+166.45 -46.95
+166.45 -46.85
+166.45 -46.75
+166.45 -46.65
+166.45 -46.55
+166.45 -46.45
+166.45 -46.35
+166.45 -46.25
+166.45 -46.15
+166.45 -46.05
+166.45 -45.95
+166.45 -45.85
+166.45 -45.75
+166.45 -45.65
+166.45 -45.55
+166.45 -45.45
+166.45 -45.35
+166.45 -45.25
+166.45 -45.15
+166.45 -45.05
+166.45 -44.95
+166.55 -47.05
+166.55 -46.95
+166.55 -46.85
+166.55 -46.75
+166.55 -46.65
+166.55 -46.55
+166.55 -46.45
+166.55 -46.35
+166.55 -46.25
+166.55 -46.15
+166.55 -46.05
+166.55 -45.95
+166.55 -45.85
+166.55 -45.75
+166.55 -45.65
+166.55 -45.55
+166.55 -45.45
+166.55 -45.35
+166.55 -45.25
+166.55 -45.15
+166.55 -45.05
+166.55 -44.95
+166.55 -44.85
+166.65 -47.15
+166.65 -47.05
+166.65 -46.95
+166.65 -46.85
+166.65 -46.75
+166.65 -46.65
+166.65 -46.55
+166.65 -46.45
+166.65 -46.35
+166.65 -46.25
+166.65 -46.15
+166.65 -46.05
+166.65 -45.95
+166.65 -45.85
+166.65 -45.75
+166.65 -45.65
+166.65 -45.55
+166.65 -45.45
+166.65 -45.35
+166.65 -45.25
+166.65 -45.15
+166.65 -45.05
+166.65 -44.95
+166.65 -44.85
+166.65 -44.75
+166.75 -47.25
+166.75 -47.15
+166.75 -47.05
+166.75 -46.95
+166.75 -46.85
+166.75 -46.75
+166.75 -46.65
+166.75 -46.55
+166.75 -46.45
+166.75 -46.35
+166.75 -46.25
+166.75 -46.15
+166.75 -46.05
+166.75 -45.95
+166.75 -45.85
+166.75 -45.75
+166.75 -45.65
+166.75 -45.55
+166.75 -45.45
+166.75 -45.35
+166.75 -45.25
+166.75 -45.15
+166.75 -45.05
+166.75 -44.95
+166.75 -44.85
+166.75 -44.75
+166.75 -44.65
+166.85 -47.35
+166.85 -47.25
+166.85 -47.15
+166.85 -47.05
+166.85 -46.95
+166.85 -46.85
+166.85 -46.75
+166.85 -46.65
+166.85 -46.55
+166.85 -46.45
+166.85 -46.35
+166.85 -46.25
+166.85 -46.15
+166.85 -46.05
+166.85 -45.95
+166.85 -45.85
+166.85 -45.75
+166.85 -45.65
+166.85 -45.55
+166.85 -45.45
+166.85 -45.35
+166.85 -45.25
+166.85 -45.15
+166.85 -45.05
+166.85 -44.95
+166.85 -44.85
+166.85 -44.75
+166.85 -44.65
+166.85 -44.55
+166.95 -47.55
+166.95 -47.45
+166.95 -47.35
+166.95 -47.25
+166.95 -47.15
+166.95 -47.05
+166.95 -46.95
+166.95 -46.85
+166.95 -46.75
+166.95 -46.65
+166.95 -46.55
+166.95 -46.45
+166.95 -46.35
+166.95 -46.25
+166.95 -46.15
+166.95 -46.05
+166.95 -45.95
+166.95 -45.85
+166.95 -45.75
+166.95 -45.65
+166.95 -45.55
+166.95 -45.45
+166.95 -45.35
+166.95 -45.25
+166.95 -45.15
+166.95 -45.05
+166.95 -44.95
+166.95 -44.85
+166.95 -44.75
+166.95 -44.65
+166.95 -44.55
+167.05 -47.55
+167.05 -47.45
+167.05 -47.35
+167.05 -47.25
+167.05 -47.15
+167.05 -47.05
+167.05 -46.95
+167.05 -46.85
+167.05 -46.75
+167.05 -46.65
+167.05 -46.55
+167.05 -46.45
+167.05 -46.35
+167.05 -46.25
+167.05 -46.15
+167.05 -46.05
+167.05 -45.95
+167.05 -45.85
+167.05 -45.75
+167.05 -45.65
+167.05 -45.55
+167.05 -45.45
+167.05 -45.35
+167.05 -45.25
+167.05 -45.15
+167.05 -45.05
+167.05 -44.95
+167.05 -44.85
+167.05 -44.75
+167.05 -44.65
+167.05 -44.55
+167.05 -44.45
+167.15 -47.65
+167.15 -47.55
+167.15 -47.45
+167.15 -47.35
+167.15 -47.25
+167.15 -47.15
+167.15 -47.05
+167.15 -46.95
+167.15 -46.85
+167.15 -46.75
+167.15 -46.65
+167.15 -46.55
+167.15 -46.45
+167.15 -46.35
+167.15 -46.25
+167.15 -46.15
+167.15 -46.05
+167.15 -45.95
+167.15 -45.85
+167.15 -45.75
+167.15 -45.65
+167.15 -45.55
+167.15 -45.45
+167.15 -45.35
+167.15 -45.25
+167.15 -45.15
+167.15 -45.05
+167.15 -44.95
+167.15 -44.85
+167.15 -44.75
+167.15 -44.65
+167.15 -44.55
+167.15 -44.45
+167.15 -44.35
+167.25 -47.65
+167.25 -47.55
+167.25 -47.45
+167.25 -47.35
+167.25 -47.25
+167.25 -47.15
+167.25 -47.05
+167.25 -46.95
+167.25 -46.85
+167.25 -46.75
+167.25 -46.65
+167.25 -46.55
+167.25 -46.45
+167.25 -46.35
+167.25 -46.25
+167.25 -46.15
+167.25 -46.05
+167.25 -45.95
+167.25 -45.85
+167.25 -45.75
+167.25 -45.65
+167.25 -45.55
+167.25 -45.45
+167.25 -45.35
+167.25 -45.25
+167.25 -45.15
+167.25 -45.05
+167.25 -44.95
+167.25 -44.85
+167.25 -44.75
+167.25 -44.65
+167.25 -44.55
+167.25 -44.45
+167.25 -44.35
+167.25 -44.25
+167.35 -47.75
+167.35 -47.65
+167.35 -47.55
+167.35 -47.45
+167.35 -47.35
+167.35 -47.25
+167.35 -47.15
+167.35 -47.05
+167.35 -46.95
+167.35 -46.85
+167.35 -46.75
+167.35 -46.65
+167.35 -46.55
+167.35 -46.45
+167.35 -46.35
+167.35 -46.25
+167.35 -46.15
+167.35 -46.05
+167.35 -45.95
+167.35 -45.85
+167.35 -45.75
+167.35 -45.65
+167.35 -45.55
+167.35 -45.45
+167.35 -45.35
+167.35 -45.25
+167.35 -45.15
+167.35 -45.05
+167.35 -44.95
+167.35 -44.85
+167.35 -44.75
+167.35 -44.65
+167.35 -44.55
+167.35 -44.45
+167.35 -44.35
+167.35 -44.25
+167.35 -44.15
+167.45 -47.75
+167.45 -47.65
+167.45 -47.55
+167.45 -47.45
+167.45 -47.35
+167.45 -47.25
+167.45 -47.15
+167.45 -47.05
+167.45 -46.95
+167.45 -46.85
+167.45 -46.75
+167.45 -46.65
+167.45 -46.55
+167.45 -46.45
+167.45 -46.35
+167.45 -46.25
+167.45 -46.15
+167.45 -46.05
+167.45 -45.95
+167.45 -45.85
+167.45 -45.75
+167.45 -45.65
+167.45 -45.55
+167.45 -45.45
+167.45 -45.35
+167.45 -45.25
+167.45 -45.15
+167.45 -45.05
+167.45 -44.95
+167.45 -44.85
+167.45 -44.75
+167.45 -44.65
+167.45 -44.55
+167.45 -44.45
+167.45 -44.35
+167.45 -44.25
+167.45 -44.15
+167.45 -44.05
+167.55 -47.75
+167.55 -47.65
+167.55 -47.55
+167.55 -47.45
+167.55 -47.35
+167.55 -47.25
+167.55 -47.15
+167.55 -47.05
+167.55 -46.95
+167.55 -46.85
+167.55 -46.75
+167.55 -46.65
+167.55 -46.55
+167.55 -46.45
+167.55 -46.35
+167.55 -46.25
+167.55 -46.15
+167.55 -46.05
+167.55 -45.95
+167.55 -45.85
+167.55 -45.75
+167.55 -45.65
+167.55 -45.55
+167.55 -45.45
+167.55 -45.35
+167.55 -45.25
+167.55 -45.15
+167.55 -45.05
+167.55 -44.95
+167.55 -44.85
+167.55 -44.75
+167.55 -44.65
+167.55 -44.55
+167.55 -44.45
+167.55 -44.35
+167.55 -44.25
+167.55 -44.15
+167.55 -44.05
+167.55 -43.95
+167.65 -47.75
+167.65 -47.65
+167.65 -47.55
+167.65 -47.45
+167.65 -47.35
+167.65 -47.25
+167.65 -47.15
+167.65 -47.05
+167.65 -46.95
+167.65 -46.85
+167.65 -46.75
+167.65 -46.65
+167.65 -46.55
+167.65 -46.45
+167.65 -46.35
+167.65 -46.25
+167.65 -46.15
+167.65 -46.05
+167.65 -45.95
+167.65 -45.85
+167.65 -45.75
+167.65 -45.65
+167.65 -45.55
+167.65 -45.45
+167.65 -45.35
+167.65 -45.25
+167.65 -45.15
+167.65 -45.05
+167.65 -44.95
+167.65 -44.85
+167.65 -44.75
+167.65 -44.65
+167.65 -44.55
+167.65 -44.45
+167.65 -44.35
+167.65 -44.25
+167.65 -44.15
+167.65 -44.05
+167.65 -43.95
+167.65 -43.85
+167.75 -47.75
+167.75 -47.65
+167.75 -47.55
+167.75 -47.45
+167.75 -47.35
+167.75 -47.25
+167.75 -47.15
+167.75 -47.05
+167.75 -46.95
+167.75 -46.85
+167.75 -46.75
+167.75 -46.65
+167.75 -46.55
+167.75 -46.45
+167.75 -46.35
+167.75 -46.25
+167.75 -46.15
+167.75 -46.05
+167.75 -45.95
+167.75 -45.85
+167.75 -45.75
+167.75 -45.65
+167.75 -45.55
+167.75 -45.45
+167.75 -45.35
+167.75 -45.25
+167.75 -45.15
+167.75 -45.05
+167.75 -44.95
+167.75 -44.85
+167.75 -44.75
+167.75 -44.65
+167.75 -44.55
+167.75 -44.45
+167.75 -44.35
+167.75 -44.25
+167.75 -44.15
+167.75 -44.05
+167.75 -43.95
+167.75 -43.85
+167.75 -43.75
+167.85 -47.75
+167.85 -47.65
+167.85 -47.55
+167.85 -47.45
+167.85 -47.35
+167.85 -47.25
+167.85 -47.15
+167.85 -47.05
+167.85 -46.95
+167.85 -46.85
+167.85 -46.75
+167.85 -46.65
+167.85 -46.55
+167.85 -46.45
+167.85 -46.35
+167.85 -46.25
+167.85 -46.15
+167.85 -46.05
+167.85 -45.95
+167.85 -45.85
+167.85 -45.75
+167.85 -45.65
+167.85 -45.55
+167.85 -45.45
+167.85 -45.35
+167.85 -45.25
+167.85 -45.15
+167.85 -45.05
+167.85 -44.95
+167.85 -44.85
+167.85 -44.75
+167.85 -44.65
+167.85 -44.55
+167.85 -44.45
+167.85 -44.35
+167.85 -44.25
+167.85 -44.15
+167.85 -44.05
+167.85 -43.95
+167.85 -43.85
+167.85 -43.75
+167.85 -43.65
+167.95 -47.65
+167.95 -47.55
+167.95 -47.45
+167.95 -47.35
+167.95 -47.25
+167.95 -47.15
+167.95 -47.05
+167.95 -46.95
+167.95 -46.85
+167.95 -46.75
+167.95 -46.65
+167.95 -46.55
+167.95 -46.45
+167.95 -46.35
+167.95 -46.25
+167.95 -46.15
+167.95 -46.05
+167.95 -45.95
+167.95 -45.85
+167.95 -45.75
+167.95 -45.65
+167.95 -45.55
+167.95 -45.45
+167.95 -45.35
+167.95 -45.25
+167.95 -45.15
+167.95 -45.05
+167.95 -44.95
+167.95 -44.85
+167.95 -44.75
+167.95 -44.65
+167.95 -44.55
+167.95 -44.45
+167.95 -44.35
+167.95 -44.25
+167.95 -44.15
+167.95 -44.05
+167.95 -43.95
+167.95 -43.85
+167.95 -43.75
+167.95 -43.65
+168.05 -47.65
+168.05 -47.55
+168.05 -47.45
+168.05 -47.35
+168.05 -47.25
+168.05 -47.15
+168.05 -47.05
+168.05 -46.95
+168.05 -46.85
+168.05 -46.75
+168.05 -46.65
+168.05 -46.55
+168.05 -46.45
+168.05 -46.35
+168.05 -46.25
+168.05 -46.15
+168.05 -46.05
+168.05 -45.95
+168.05 -45.85
+168.05 -45.75
+168.05 -45.65
+168.05 -45.55
+168.05 -45.45
+168.05 -45.35
+168.05 -45.25
+168.05 -45.15
+168.05 -45.05
+168.05 -44.95
+168.05 -44.85
+168.05 -44.75
+168.05 -44.65
+168.05 -44.55
+168.05 -44.45
+168.05 -44.35
+168.05 -44.25
+168.05 -44.15
+168.05 -44.05
+168.05 -43.95
+168.05 -43.85
+168.05 -43.75
+168.05 -43.65
+168.05 -43.55
+168.15 -47.65
+168.15 -47.55
+168.15 -47.45
+168.15 -47.35
+168.15 -47.25
+168.15 -47.15
+168.15 -47.05
+168.15 -46.95
+168.15 -46.85
+168.15 -46.75
+168.15 -46.65
+168.15 -46.55
+168.15 -46.45
+168.15 -46.35
+168.15 -46.25
+168.15 -46.15
+168.15 -46.05
+168.15 -45.95
+168.15 -45.85
+168.15 -45.75
+168.15 -45.65
+168.15 -45.55
+168.15 -45.45
+168.15 -45.35
+168.15 -45.25
+168.15 -45.15
+168.15 -45.05
+168.15 -44.95
+168.15 -44.85
+168.15 -44.75
+168.15 -44.65
+168.15 -44.55
+168.15 -44.45
+168.15 -44.35
+168.15 -44.25
+168.15 -44.15
+168.15 -44.05
+168.15 -43.95
+168.15 -43.85
+168.15 -43.75
+168.15 -43.65
+168.15 -43.55
+168.15 -43.45
+168.25 -47.55
+168.25 -47.45
+168.25 -47.35
+168.25 -47.25
+168.25 -47.15
+168.25 -47.05
+168.25 -46.95
+168.25 -46.85
+168.25 -46.75
+168.25 -46.65
+168.25 -46.55
+168.25 -46.45
+168.25 -46.35
+168.25 -46.25
+168.25 -46.15
+168.25 -46.05
+168.25 -45.95
+168.25 -45.85
+168.25 -45.75
+168.25 -45.65
+168.25 -45.55
+168.25 -45.45
+168.25 -45.35
+168.25 -45.25
+168.25 -45.15
+168.25 -45.05
+168.25 -44.95
+168.25 -44.85
+168.25 -44.75
+168.25 -44.65
+168.25 -44.55
+168.25 -44.45
+168.25 -44.35
+168.25 -44.25
+168.25 -44.15
+168.25 -44.05
+168.25 -43.95
+168.25 -43.85
+168.25 -43.75
+168.25 -43.65
+168.25 -43.55
+168.25 -43.45
+168.25 -43.35
+168.35 -47.55
+168.35 -47.45
+168.35 -47.35
+168.35 -47.25
+168.35 -47.15
+168.35 -47.05
+168.35 -46.95
+168.35 -46.85
+168.35 -46.75
+168.35 -46.65
+168.35 -46.55
+168.35 -46.45
+168.35 -46.35
+168.35 -46.25
+168.35 -46.15
+168.35 -46.05
+168.35 -45.95
+168.35 -45.85
+168.35 -45.75
+168.35 -45.65
+168.35 -45.55
+168.35 -45.45
+168.35 -45.35
+168.35 -45.25
+168.35 -45.15
+168.35 -45.05
+168.35 -44.95
+168.35 -44.85
+168.35 -44.75
+168.35 -44.65
+168.35 -44.55
+168.35 -44.45
+168.35 -44.35
+168.35 -44.25
+168.35 -44.15
+168.35 -44.05
+168.35 -43.95
+168.35 -43.85
+168.35 -43.75
+168.35 -43.65
+168.35 -43.55
+168.35 -43.45
+168.35 -43.35
+168.35 -43.25
+168.45 -47.45
+168.45 -47.35
+168.45 -47.25
+168.45 -47.15
+168.45 -47.05
+168.45 -46.95
+168.45 -46.85
+168.45 -46.75
+168.45 -46.65
+168.45 -46.55
+168.45 -46.45
+168.45 -46.35
+168.45 -46.25
+168.45 -46.15
+168.45 -46.05
+168.45 -45.95
+168.45 -45.85
+168.45 -45.75
+168.45 -45.65
+168.45 -45.55
+168.45 -45.45
+168.45 -45.35
+168.45 -45.25
+168.45 -45.15
+168.45 -45.05
+168.45 -44.95
+168.45 -44.85
+168.45 -44.75
+168.45 -44.65
+168.45 -44.55
+168.45 -44.45
+168.45 -44.35
+168.45 -44.25
+168.45 -44.15
+168.45 -44.05
+168.45 -43.95
+168.45 -43.85
+168.45 -43.75
+168.45 -43.65
+168.45 -43.55
+168.45 -43.45
+168.45 -43.35
+168.45 -43.25
+168.45 -43.15
+168.55 -47.45
+168.55 -47.35
+168.55 -47.25
+168.55 -47.15
+168.55 -47.05
+168.55 -46.95
+168.55 -46.85
+168.55 -46.75
+168.55 -46.65
+168.55 -46.55
+168.55 -46.45
+168.55 -46.35
+168.55 -46.25
+168.55 -46.15
+168.55 -46.05
+168.55 -45.95
+168.55 -45.85
+168.55 -45.75
+168.55 -45.65
+168.55 -45.55
+168.55 -45.45
+168.55 -45.35
+168.55 -45.25
+168.55 -45.15
+168.55 -45.05
+168.55 -44.95
+168.55 -44.85
+168.55 -44.75
+168.55 -44.65
+168.55 -44.55
+168.55 -44.45
+168.55 -44.35
+168.55 -44.25
+168.55 -44.15
+168.55 -44.05
+168.55 -43.95
+168.55 -43.85
+168.55 -43.75
+168.55 -43.65
+168.55 -43.55
+168.55 -43.45
+168.55 -43.35
+168.55 -43.25
+168.55 -43.15
+168.55 -43.05
+168.65 -47.35
+168.65 -47.25
+168.65 -47.15
+168.65 -47.05
+168.65 -46.95
+168.65 -46.85
+168.65 -46.75
+168.65 -46.65
+168.65 -46.55
+168.65 -46.45
+168.65 -46.35
+168.65 -46.25
+168.65 -46.15
+168.65 -46.05
+168.65 -45.95
+168.65 -45.85
+168.65 -45.75
+168.65 -45.65
+168.65 -45.55
+168.65 -45.45
+168.65 -45.35
+168.65 -45.25
+168.65 -45.15
+168.65 -45.05
+168.65 -44.95
+168.65 -44.85
+168.65 -44.75
+168.65 -44.65
+168.65 -44.55
+168.65 -44.45
+168.65 -44.35
+168.65 -44.25
+168.65 -44.15
+168.65 -44.05
+168.65 -43.95
+168.65 -43.85
+168.65 -43.75
+168.65 -43.65
+168.65 -43.55
+168.65 -43.45
+168.65 -43.35
+168.65 -43.25
+168.65 -43.15
+168.65 -43.05
+168.75 -47.25
+168.75 -47.15
+168.75 -47.05
+168.75 -46.95
+168.75 -46.85
+168.75 -46.75
+168.75 -46.65
+168.75 -46.55
+168.75 -46.45
+168.75 -46.35
+168.75 -46.25
+168.75 -46.15
+168.75 -46.05
+168.75 -45.95
+168.75 -45.85
+168.75 -45.75
+168.75 -45.65
+168.75 -45.55
+168.75 -45.45
+168.75 -45.35
+168.75 -45.25
+168.75 -45.15
+168.75 -45.05
+168.75 -44.95
+168.75 -44.85
+168.75 -44.75
+168.75 -44.65
+168.75 -44.55
+168.75 -44.45
+168.75 -44.35
+168.75 -44.25
+168.75 -44.15
+168.75 -44.05
+168.75 -43.95
+168.75 -43.85
+168.75 -43.75
+168.75 -43.65
+168.75 -43.55
+168.75 -43.45
+168.75 -43.35
+168.75 -43.25
+168.75 -43.15
+168.75 -43.05
+168.75 -42.95
+168.85 -47.15
+168.85 -47.05
+168.85 -46.95
+168.85 -46.85
+168.85 -46.75
+168.85 -46.65
+168.85 -46.55
+168.85 -46.45
+168.85 -46.35
+168.85 -46.25
+168.85 -46.15
+168.85 -46.05
+168.85 -45.95
+168.85 -45.85
+168.85 -45.75
+168.85 -45.65
+168.85 -45.55
+168.85 -45.45
+168.85 -45.35
+168.85 -45.25
+168.85 -45.15
+168.85 -45.05
+168.85 -44.95
+168.85 -44.85
+168.85 -44.75
+168.85 -44.65
+168.85 -44.55
+168.85 -44.45
+168.85 -44.35
+168.85 -44.25
+168.85 -44.15
+168.85 -44.05
+168.85 -43.95
+168.85 -43.85
+168.85 -43.75
+168.85 -43.65
+168.85 -43.55
+168.85 -43.45
+168.85 -43.35
+168.85 -43.25
+168.85 -43.15
+168.85 -43.05
+168.85 -42.95
+168.85 -42.85
+168.95 -47.05
+168.95 -46.95
+168.95 -46.85
+168.95 -46.75
+168.95 -46.65
+168.95 -46.55
+168.95 -46.45
+168.95 -46.35
+168.95 -46.25
+168.95 -46.15
+168.95 -46.05
+168.95 -45.95
+168.95 -45.85
+168.95 -45.75
+168.95 -45.65
+168.95 -45.55
+168.95 -45.45
+168.95 -45.35
+168.95 -45.25
+168.95 -45.15
+168.95 -45.05
+168.95 -44.95
+168.95 -44.85
+168.95 -44.75
+168.95 -44.65
+168.95 -44.55
+168.95 -44.45
+168.95 -44.35
+168.95 -44.25
+168.95 -44.15
+168.95 -44.05
+168.95 -43.95
+168.95 -43.85
+168.95 -43.75
+168.95 -43.65
+168.95 -43.55
+168.95 -43.45
+168.95 -43.35
+168.95 -43.25
+168.95 -43.15
+168.95 -43.05
+168.95 -42.95
+168.95 -42.85
+168.95 -42.75
+169.05 -47.05
+169.05 -46.95
+169.05 -46.85
+169.05 -46.75
+169.05 -46.65
+169.05 -46.55
+169.05 -46.45
+169.05 -46.35
+169.05 -46.25
+169.05 -46.15
+169.05 -46.05
+169.05 -45.95
+169.05 -45.85
+169.05 -45.75
+169.05 -45.65
+169.05 -45.55
+169.05 -45.45
+169.05 -45.35
+169.05 -45.25
+169.05 -45.15
+169.05 -45.05
+169.05 -44.95
+169.05 -44.85
+169.05 -44.75
+169.05 -44.65
+169.05 -44.55
+169.05 -44.45
+169.05 -44.35
+169.05 -44.25
+169.05 -44.15
+169.05 -44.05
+169.05 -43.95
+169.05 -43.85
+169.05 -43.75
+169.05 -43.65
+169.05 -43.55
+169.05 -43.45
+169.05 -43.35
+169.05 -43.25
+169.05 -43.15
+169.05 -43.05
+169.05 -42.95
+169.05 -42.85
+169.05 -42.75
+169.05 -42.65
+169.15 -47.05
+169.15 -46.95
+169.15 -46.85
+169.15 -46.75
+169.15 -46.65
+169.15 -46.55
+169.15 -46.45
+169.15 -46.35
+169.15 -46.25
+169.15 -46.15
+169.15 -46.05
+169.15 -45.95
+169.15 -45.85
+169.15 -45.75
+169.15 -45.65
+169.15 -45.55
+169.15 -45.45
+169.15 -45.35
+169.15 -45.25
+169.15 -45.15
+169.15 -45.05
+169.15 -44.95
+169.15 -44.85
+169.15 -44.75
+169.15 -44.65
+169.15 -44.55
+169.15 -44.45
+169.15 -44.35
+169.15 -44.25
+169.15 -44.15
+169.15 -44.05
+169.15 -43.95
+169.15 -43.85
+169.15 -43.75
+169.15 -43.65
+169.15 -43.55
+169.15 -43.45
+169.15 -43.35
+169.15 -43.25
+169.15 -43.15
+169.15 -43.05
+169.15 -42.95
+169.15 -42.85
+169.15 -42.75
+169.15 -42.65
+169.15 -42.55
+169.25 -47.05
+169.25 -46.95
+169.25 -46.85
+169.25 -46.75
+169.25 -46.65
+169.25 -46.55
+169.25 -46.45
+169.25 -46.35
+169.25 -46.25
+169.25 -46.15
+169.25 -46.05
+169.25 -45.95
+169.25 -45.85
+169.25 -45.75
+169.25 -45.65
+169.25 -45.55
+169.25 -45.45
+169.25 -45.35
+169.25 -45.25
+169.25 -45.15
+169.25 -45.05
+169.25 -44.95
+169.25 -44.85
+169.25 -44.75
+169.25 -44.65
+169.25 -44.55
+169.25 -44.45
+169.25 -44.35
+169.25 -44.25
+169.25 -44.15
+169.25 -44.05
+169.25 -43.95
+169.25 -43.85
+169.25 -43.75
+169.25 -43.65
+169.25 -43.55
+169.25 -43.45
+169.25 -43.35
+169.25 -43.25
+169.25 -43.15
+169.25 -43.05
+169.25 -42.95
+169.25 -42.85
+169.25 -42.75
+169.25 -42.65
+169.25 -42.55
+169.25 -42.45
+169.35 -47.05
+169.35 -46.95
+169.35 -46.85
+169.35 -46.75
+169.35 -46.65
+169.35 -46.55
+169.35 -46.45
+169.35 -46.35
+169.35 -46.25
+169.35 -46.15
+169.35 -46.05
+169.35 -45.95
+169.35 -45.85
+169.35 -45.75
+169.35 -45.65
+169.35 -45.55
+169.35 -45.45
+169.35 -45.35
+169.35 -45.25
+169.35 -45.15
+169.35 -45.05
+169.35 -44.95
+169.35 -44.85
+169.35 -44.75
+169.35 -44.65
+169.35 -44.55
+169.35 -44.45
+169.35 -44.35
+169.35 -44.25
+169.35 -44.15
+169.35 -44.05
+169.35 -43.95
+169.35 -43.85
+169.35 -43.75
+169.35 -43.65
+169.35 -43.55
+169.35 -43.45
+169.35 -43.35
+169.35 -43.25
+169.35 -43.15
+169.35 -43.05
+169.35 -42.95
+169.35 -42.85
+169.35 -42.75
+169.35 -42.65
+169.35 -42.55
+169.35 -42.45
+169.45 -47.05
+169.45 -46.95
+169.45 -46.85
+169.45 -46.75
+169.45 -46.65
+169.45 -46.55
+169.45 -46.45
+169.45 -46.35
+169.45 -46.25
+169.45 -46.15
+169.45 -46.05
+169.45 -45.95
+169.45 -45.85
+169.45 -45.75
+169.45 -45.65
+169.45 -45.55
+169.45 -45.45
+169.45 -45.35
+169.45 -45.25
+169.45 -45.15
+169.45 -45.05
+169.45 -44.95
+169.45 -44.85
+169.45 -44.75
+169.45 -44.65
+169.45 -44.55
+169.45 -44.45
+169.45 -44.35
+169.45 -44.25
+169.45 -44.15
+169.45 -44.05
+169.45 -43.95
+169.45 -43.85
+169.45 -43.75
+169.45 -43.65
+169.45 -43.55
+169.45 -43.45
+169.45 -43.35
+169.45 -43.25
+169.45 -43.15
+169.45 -43.05
+169.45 -42.95
+169.45 -42.85
+169.45 -42.75
+169.45 -42.65
+169.45 -42.55
+169.45 -42.45
+169.45 -42.35
+169.55 -47.05
+169.55 -46.95
+169.55 -46.85
+169.55 -46.75
+169.55 -46.65
+169.55 -46.55
+169.55 -46.45
+169.55 -46.35
+169.55 -46.25
+169.55 -46.15
+169.55 -46.05
+169.55 -45.95
+169.55 -45.85
+169.55 -45.75
+169.55 -45.65
+169.55 -45.55
+169.55 -45.45
+169.55 -45.35
+169.55 -45.25
+169.55 -45.15
+169.55 -45.05
+169.55 -44.95
+169.55 -44.85
+169.55 -44.75
+169.55 -44.65
+169.55 -44.55
+169.55 -44.45
+169.55 -44.35
+169.55 -44.25
+169.55 -44.15
+169.55 -44.05
+169.55 -43.95
+169.55 -43.85
+169.55 -43.75
+169.55 -43.65
+169.55 -43.55
+169.55 -43.45
+169.55 -43.35
+169.55 -43.25
+169.55 -43.15
+169.55 -43.05
+169.55 -42.95
+169.55 -42.85
+169.55 -42.75
+169.55 -42.65
+169.55 -42.55
+169.55 -42.45
+169.55 -42.35
+169.55 -42.25
+169.65 -47.05
+169.65 -46.95
+169.65 -46.85
+169.65 -46.75
+169.65 -46.65
+169.65 -46.55
+169.65 -46.45
+169.65 -46.35
+169.65 -46.25
+169.65 -46.15
+169.65 -46.05
+169.65 -45.95
+169.65 -45.85
+169.65 -45.75
+169.65 -45.65
+169.65 -45.55
+169.65 -45.45
+169.65 -45.35
+169.65 -45.25
+169.65 -45.15
+169.65 -45.05
+169.65 -44.95
+169.65 -44.85
+169.65 -44.75
+169.65 -44.65
+169.65 -44.55
+169.65 -44.45
+169.65 -44.35
+169.65 -44.25
+169.65 -44.15
+169.65 -44.05
+169.65 -43.95
+169.65 -43.85
+169.65 -43.75
+169.65 -43.65
+169.65 -43.55
+169.65 -43.45
+169.65 -43.35
+169.65 -43.25
+169.65 -43.15
+169.65 -43.05
+169.65 -42.95
+169.65 -42.85
+169.65 -42.75
+169.65 -42.65
+169.65 -42.55
+169.65 -42.45
+169.65 -42.35
+169.65 -42.25
+169.65 -42.15
+169.75 -46.95
+169.75 -46.85
+169.75 -46.75
+169.75 -46.65
+169.75 -46.55
+169.75 -46.45
+169.75 -46.35
+169.75 -46.25
+169.75 -46.15
+169.75 -46.05
+169.75 -45.95
+169.75 -45.85
+169.75 -45.75
+169.75 -45.65
+169.75 -45.55
+169.75 -45.45
+169.75 -45.35
+169.75 -45.25
+169.75 -45.15
+169.75 -45.05
+169.75 -44.95
+169.75 -44.85
+169.75 -44.75
+169.75 -44.65
+169.75 -44.55
+169.75 -44.45
+169.75 -44.35
+169.75 -44.25
+169.75 -44.15
+169.75 -44.05
+169.75 -43.95
+169.75 -43.85
+169.75 -43.75
+169.75 -43.65
+169.75 -43.55
+169.75 -43.45
+169.75 -43.35
+169.75 -43.25
+169.75 -43.15
+169.75 -43.05
+169.75 -42.95
+169.75 -42.85
+169.75 -42.75
+169.75 -42.65
+169.75 -42.55
+169.75 -42.45
+169.75 -42.35
+169.75 -42.25
+169.75 -42.15
+169.75 -42.05
+169.85 -46.95
+169.85 -46.85
+169.85 -46.75
+169.85 -46.65
+169.85 -46.55
+169.85 -46.45
+169.85 -46.35
+169.85 -46.25
+169.85 -46.15
+169.85 -46.05
+169.85 -45.95
+169.85 -45.85
+169.85 -45.75
+169.85 -45.65
+169.85 -45.55
+169.85 -45.45
+169.85 -45.35
+169.85 -45.25
+169.85 -45.15
+169.85 -45.05
+169.85 -44.95
+169.85 -44.85
+169.85 -44.75
+169.85 -44.65
+169.85 -44.55
+169.85 -44.45
+169.85 -44.35
+169.85 -44.25
+169.85 -44.15
+169.85 -44.05
+169.85 -43.95
+169.85 -43.85
+169.85 -43.75
+169.85 -43.65
+169.85 -43.55
+169.85 -43.45
+169.85 -43.35
+169.85 -43.25
+169.85 -43.15
+169.85 -43.05
+169.85 -42.95
+169.85 -42.85
+169.85 -42.75
+169.85 -42.65
+169.85 -42.55
+169.85 -42.45
+169.85 -42.35
+169.85 -42.25
+169.85 -42.15
+169.85 -42.05
+169.85 -41.95
+169.95 -46.95
+169.95 -46.85
+169.95 -46.75
+169.95 -46.65
+169.95 -46.55
+169.95 -46.45
+169.95 -46.35
+169.95 -46.25
+169.95 -46.15
+169.95 -46.05
+169.95 -45.95
+169.95 -45.85
+169.95 -45.75
+169.95 -45.65
+169.95 -45.55
+169.95 -45.45
+169.95 -45.35
+169.95 -45.25
+169.95 -45.15
+169.95 -45.05
+169.95 -44.95
+169.95 -44.85
+169.95 -44.75
+169.95 -44.65
+169.95 -44.55
+169.95 -44.45
+169.95 -44.35
+169.95 -44.25
+169.95 -44.15
+169.95 -44.05
+169.95 -43.95
+169.95 -43.85
+169.95 -43.75
+169.95 -43.65
+169.95 -43.55
+169.95 -43.45
+169.95 -43.35
+169.95 -43.25
+169.95 -43.15
+169.95 -43.05
+169.95 -42.95
+169.95 -42.85
+169.95 -42.75
+169.95 -42.65
+169.95 -42.55
+169.95 -42.45
+169.95 -42.35
+169.95 -42.25
+169.95 -42.15
+169.95 -42.05
+169.95 -41.95
+169.95 -41.85
+170.05 -46.85
+170.05 -46.75
+170.05 -46.65
+170.05 -46.55
+170.05 -46.45
+170.05 -46.35
+170.05 -46.25
+170.05 -46.15
+170.05 -46.05
+170.05 -45.95
+170.05 -45.85
+170.05 -45.75
+170.05 -45.65
+170.05 -45.55
+170.05 -45.45
+170.05 -45.35
+170.05 -45.25
+170.05 -45.15
+170.05 -45.05
+170.05 -44.95
+170.05 -44.85
+170.05 -44.75
+170.05 -44.65
+170.05 -44.55
+170.05 -44.45
+170.05 -44.35
+170.05 -44.25
+170.05 -44.15
+170.05 -44.05
+170.05 -43.95
+170.05 -43.85
+170.05 -43.75
+170.05 -43.65
+170.05 -43.55
+170.05 -43.45
+170.05 -43.35
+170.05 -43.25
+170.05 -43.15
+170.05 -43.05
+170.05 -42.95
+170.05 -42.85
+170.05 -42.75
+170.05 -42.65
+170.05 -42.55
+170.05 -42.45
+170.05 -42.35
+170.05 -42.25
+170.05 -42.15
+170.05 -42.05
+170.05 -41.95
+170.05 -41.85
+170.05 -41.75
+170.15 -46.85
+170.15 -46.75
+170.15 -46.65
+170.15 -46.55
+170.15 -46.45
+170.15 -46.35
+170.15 -46.25
+170.15 -46.15
+170.15 -46.05
+170.15 -45.95
+170.15 -45.85
+170.15 -45.75
+170.15 -45.65
+170.15 -45.55
+170.15 -45.45
+170.15 -45.35
+170.15 -45.25
+170.15 -45.15
+170.15 -45.05
+170.15 -44.95
+170.15 -44.85
+170.15 -44.75
+170.15 -44.65
+170.15 -44.55
+170.15 -44.45
+170.15 -44.35
+170.15 -44.25
+170.15 -44.15
+170.15 -44.05
+170.15 -43.95
+170.15 -43.85
+170.15 -43.75
+170.15 -43.65
+170.15 -43.55
+170.15 -43.45
+170.15 -43.35
+170.15 -43.25
+170.15 -43.15
+170.15 -43.05
+170.15 -42.95
+170.15 -42.85
+170.15 -42.75
+170.15 -42.65
+170.15 -42.55
+170.15 -42.45
+170.15 -42.35
+170.15 -42.25
+170.15 -42.15
+170.15 -42.05
+170.15 -41.95
+170.15 -41.85
+170.15 -41.75
+170.25 -46.75
+170.25 -46.65
+170.25 -46.55
+170.25 -46.45
+170.25 -46.35
+170.25 -46.25
+170.25 -46.15
+170.25 -46.05
+170.25 -45.95
+170.25 -45.85
+170.25 -45.75
+170.25 -45.65
+170.25 -45.55
+170.25 -45.45
+170.25 -45.35
+170.25 -45.25
+170.25 -45.15
+170.25 -45.05
+170.25 -44.95
+170.25 -44.85
+170.25 -44.75
+170.25 -44.65
+170.25 -44.55
+170.25 -44.45
+170.25 -44.35
+170.25 -44.25
+170.25 -44.15
+170.25 -44.05
+170.25 -43.95
+170.25 -43.85
+170.25 -43.75
+170.25 -43.65
+170.25 -43.55
+170.25 -43.45
+170.25 -43.35
+170.25 -43.25
+170.25 -43.15
+170.25 -43.05
+170.25 -42.95
+170.25 -42.85
+170.25 -42.75
+170.25 -42.65
+170.25 -42.55
+170.25 -42.45
+170.25 -42.35
+170.25 -42.25
+170.25 -42.15
+170.25 -42.05
+170.25 -41.95
+170.25 -41.85
+170.25 -41.75
+170.25 -41.65
+170.35 -46.75
+170.35 -46.65
+170.35 -46.55
+170.35 -46.45
+170.35 -46.35
+170.35 -46.25
+170.35 -46.15
+170.35 -46.05
+170.35 -45.95
+170.35 -45.85
+170.35 -45.75
+170.35 -45.65
+170.35 -45.55
+170.35 -45.45
+170.35 -45.35
+170.35 -45.25
+170.35 -45.15
+170.35 -45.05
+170.35 -44.95
+170.35 -44.85
+170.35 -44.75
+170.35 -44.65
+170.35 -44.55
+170.35 -44.45
+170.35 -44.35
+170.35 -44.25
+170.35 -44.15
+170.35 -44.05
+170.35 -43.95
+170.35 -43.85
+170.35 -43.75
+170.35 -43.65
+170.35 -43.55
+170.35 -43.45
+170.35 -43.35
+170.35 -43.25
+170.35 -43.15
+170.35 -43.05
+170.35 -42.95
+170.35 -42.85
+170.35 -42.75
+170.35 -42.65
+170.35 -42.55
+170.35 -42.45
+170.35 -42.35
+170.35 -42.25
+170.35 -42.15
+170.35 -42.05
+170.35 -41.95
+170.35 -41.85
+170.35 -41.75
+170.35 -41.65
+170.35 -41.55
+170.45 -46.65
+170.45 -46.55
+170.45 -46.45
+170.45 -46.35
+170.45 -46.25
+170.45 -46.15
+170.45 -46.05
+170.45 -45.95
+170.45 -45.85
+170.45 -45.75
+170.45 -45.65
+170.45 -45.55
+170.45 -45.45
+170.45 -45.35
+170.45 -45.25
+170.45 -45.15
+170.45 -45.05
+170.45 -44.95
+170.45 -44.85
+170.45 -44.75
+170.45 -44.65
+170.45 -44.55
+170.45 -44.45
+170.45 -44.35
+170.45 -44.25
+170.45 -44.15
+170.45 -44.05
+170.45 -43.95
+170.45 -43.85
+170.45 -43.75
+170.45 -43.65
+170.45 -43.55
+170.45 -43.45
+170.45 -43.35
+170.45 -43.25
+170.45 -43.15
+170.45 -43.05
+170.45 -42.95
+170.45 -42.85
+170.45 -42.75
+170.45 -42.65
+170.45 -42.55
+170.45 -42.45
+170.45 -42.35
+170.45 -42.25
+170.45 -42.15
+170.45 -42.05
+170.45 -41.95
+170.45 -41.85
+170.45 -41.75
+170.45 -41.65
+170.45 -41.55
+170.45 -41.45
+170.55 -46.65
+170.55 -46.55
+170.55 -46.45
+170.55 -46.35
+170.55 -46.25
+170.55 -46.15
+170.55 -46.05
+170.55 -45.95
+170.55 -45.85
+170.55 -45.75
+170.55 -45.65
+170.55 -45.55
+170.55 -45.45
+170.55 -45.35
+170.55 -45.25
+170.55 -45.15
+170.55 -45.05
+170.55 -44.95
+170.55 -44.85
+170.55 -44.75
+170.55 -44.65
+170.55 -44.55
+170.55 -44.45
+170.55 -44.35
+170.55 -44.25
+170.55 -44.15
+170.55 -44.05
+170.55 -43.95
+170.55 -43.85
+170.55 -43.75
+170.55 -43.65
+170.55 -43.55
+170.55 -43.45
+170.55 -43.35
+170.55 -43.25
+170.55 -43.15
+170.55 -43.05
+170.55 -42.95
+170.55 -42.85
+170.55 -42.75
+170.55 -42.65
+170.55 -42.55
+170.55 -42.45
+170.55 -42.35
+170.55 -42.25
+170.55 -42.15
+170.55 -42.05
+170.55 -41.95
+170.55 -41.85
+170.55 -41.75
+170.55 -41.65
+170.55 -41.55
+170.55 -41.45
+170.55 -41.35
+170.65 -46.55
+170.65 -46.45
+170.65 -46.35
+170.65 -46.25
+170.65 -46.15
+170.65 -46.05
+170.65 -45.95
+170.65 -45.85
+170.65 -45.75
+170.65 -45.65
+170.65 -45.55
+170.65 -45.45
+170.65 -45.35
+170.65 -45.25
+170.65 -45.15
+170.65 -45.05
+170.65 -44.95
+170.65 -44.85
+170.65 -44.75
+170.65 -44.65
+170.65 -44.55
+170.65 -44.45
+170.65 -44.35
+170.65 -44.25
+170.65 -44.15
+170.65 -44.05
+170.65 -43.95
+170.65 -43.85
+170.65 -43.75
+170.65 -43.65
+170.65 -43.55
+170.65 -43.45
+170.65 -43.35
+170.65 -43.25
+170.65 -43.15
+170.65 -43.05
+170.65 -42.95
+170.65 -42.85
+170.65 -42.75
+170.65 -42.65
+170.65 -42.55
+170.65 -42.45
+170.65 -42.35
+170.65 -42.25
+170.65 -42.15
+170.65 -42.05
+170.65 -41.95
+170.65 -41.85
+170.65 -41.75
+170.65 -41.65
+170.65 -41.55
+170.65 -41.45
+170.65 -41.35
+170.65 -41.25
+170.75 -46.55
+170.75 -46.45
+170.75 -46.35
+170.75 -46.25
+170.75 -46.15
+170.75 -46.05
+170.75 -45.95
+170.75 -45.85
+170.75 -45.75
+170.75 -45.65
+170.75 -45.55
+170.75 -45.45
+170.75 -45.35
+170.75 -45.25
+170.75 -45.15
+170.75 -45.05
+170.75 -44.95
+170.75 -44.85
+170.75 -44.75
+170.75 -44.65
+170.75 -44.55
+170.75 -44.45
+170.75 -44.35
+170.75 -44.25
+170.75 -44.15
+170.75 -44.05
+170.75 -43.95
+170.75 -43.85
+170.75 -43.75
+170.75 -43.65
+170.75 -43.55
+170.75 -43.45
+170.75 -43.35
+170.75 -43.25
+170.75 -43.15
+170.75 -43.05
+170.75 -42.95
+170.75 -42.85
+170.75 -42.75
+170.75 -42.65
+170.75 -42.55
+170.75 -42.45
+170.75 -42.35
+170.75 -42.25
+170.75 -42.15
+170.75 -42.05
+170.75 -41.95
+170.75 -41.85
+170.75 -41.75
+170.75 -41.65
+170.75 -41.55
+170.75 -41.45
+170.75 -41.35
+170.75 -41.25
+170.75 -41.15
+170.85 -46.45
+170.85 -46.35
+170.85 -46.25
+170.85 -46.15
+170.85 -46.05
+170.85 -45.95
+170.85 -45.85
+170.85 -45.75
+170.85 -45.65
+170.85 -45.55
+170.85 -45.45
+170.85 -45.35
+170.85 -45.25
+170.85 -45.15
+170.85 -45.05
+170.85 -44.95
+170.85 -44.85
+170.85 -44.75
+170.85 -44.65
+170.85 -44.55
+170.85 -44.45
+170.85 -44.35
+170.85 -44.25
+170.85 -44.15
+170.85 -44.05
+170.85 -43.95
+170.85 -43.85
+170.85 -43.75
+170.85 -43.65
+170.85 -43.55
+170.85 -43.45
+170.85 -43.35
+170.85 -43.25
+170.85 -43.15
+170.85 -43.05
+170.85 -42.95
+170.85 -42.85
+170.85 -42.75
+170.85 -42.65
+170.85 -42.55
+170.85 -42.45
+170.85 -42.35
+170.85 -42.25
+170.85 -42.15
+170.85 -42.05
+170.85 -41.95
+170.85 -41.85
+170.85 -41.75
+170.85 -41.65
+170.85 -41.55
+170.85 -41.45
+170.85 -41.35
+170.85 -41.25
+170.85 -41.15
+170.95 -46.35
+170.95 -46.25
+170.95 -46.15
+170.95 -46.05
+170.95 -45.95
+170.95 -45.85
+170.95 -45.75
+170.95 -45.65
+170.95 -45.55
+170.95 -45.45
+170.95 -45.35
+170.95 -45.25
+170.95 -45.15
+170.95 -45.05
+170.95 -44.95
+170.95 -44.85
+170.95 -44.75
+170.95 -44.65
+170.95 -44.55
+170.95 -44.45
+170.95 -44.35
+170.95 -44.25
+170.95 -44.15
+170.95 -44.05
+170.95 -43.95
+170.95 -43.85
+170.95 -43.75
+170.95 -43.65
+170.95 -43.55
+170.95 -43.45
+170.95 -43.35
+170.95 -43.25
+170.95 -43.15
+170.95 -43.05
+170.95 -42.95
+170.95 -42.85
+170.95 -42.75
+170.95 -42.65
+170.95 -42.55
+170.95 -42.45
+170.95 -42.35
+170.95 -42.25
+170.95 -42.15
+170.95 -42.05
+170.95 -41.95
+170.95 -41.85
+170.95 -41.75
+170.95 -41.65
+170.95 -41.55
+170.95 -41.45
+170.95 -41.35
+170.95 -41.25
+170.95 -41.15
+170.95 -41.05
+171.05 -46.35
+171.05 -46.25
+171.05 -46.15
+171.05 -46.05
+171.05 -45.95
+171.05 -45.85
+171.05 -45.75
+171.05 -45.65
+171.05 -45.55
+171.05 -45.45
+171.05 -45.35
+171.05 -45.25
+171.05 -45.15
+171.05 -45.05
+171.05 -44.95
+171.05 -44.85
+171.05 -44.75
+171.05 -44.65
+171.05 -44.55
+171.05 -44.45
+171.05 -44.35
+171.05 -44.25
+171.05 -44.15
+171.05 -44.05
+171.05 -43.95
+171.05 -43.85
+171.05 -43.75
+171.05 -43.65
+171.05 -43.55
+171.05 -43.45
+171.05 -43.35
+171.05 -43.25
+171.05 -43.15
+171.05 -43.05
+171.05 -42.95
+171.05 -42.85
+171.05 -42.75
+171.05 -42.65
+171.05 -42.55
+171.05 -42.45
+171.05 -42.35
+171.05 -42.25
+171.05 -42.15
+171.05 -42.05
+171.05 -41.95
+171.05 -41.85
+171.05 -41.75
+171.05 -41.65
+171.05 -41.55
+171.05 -41.45
+171.05 -41.35
+171.05 -41.25
+171.05 -41.15
+171.05 -41.05
+171.05 -40.95
+171.15 -46.25
+171.15 -46.15
+171.15 -46.05
+171.15 -45.95
+171.15 -45.85
+171.15 -45.75
+171.15 -45.65
+171.15 -45.55
+171.15 -45.45
+171.15 -45.35
+171.15 -45.25
+171.15 -45.15
+171.15 -45.05
+171.15 -44.95
+171.15 -44.85
+171.15 -44.75
+171.15 -44.65
+171.15 -44.55
+171.15 -44.45
+171.15 -44.35
+171.15 -44.25
+171.15 -44.15
+171.15 -44.05
+171.15 -43.95
+171.15 -43.85
+171.15 -43.75
+171.15 -43.65
+171.15 -43.55
+171.15 -43.45
+171.15 -43.35
+171.15 -43.25
+171.15 -43.15
+171.15 -43.05
+171.15 -42.95
+171.15 -42.85
+171.15 -42.75
+171.15 -42.65
+171.15 -42.55
+171.15 -42.45
+171.15 -42.35
+171.15 -42.25
+171.15 -42.15
+171.15 -42.05
+171.15 -41.95
+171.15 -41.85
+171.15 -41.75
+171.15 -41.65
+171.15 -41.55
+171.15 -41.45
+171.15 -41.35
+171.15 -41.25
+171.15 -41.15
+171.15 -41.05
+171.15 -40.95
+171.15 -40.85
+171.25 -46.15
+171.25 -46.05
+171.25 -45.95
+171.25 -45.85
+171.25 -45.75
+171.25 -45.65
+171.25 -45.55
+171.25 -45.45
+171.25 -45.35
+171.25 -45.25
+171.25 -45.15
+171.25 -45.05
+171.25 -44.95
+171.25 -44.85
+171.25 -44.75
+171.25 -44.65
+171.25 -44.55
+171.25 -44.45
+171.25 -44.35
+171.25 -44.25
+171.25 -44.15
+171.25 -44.05
+171.25 -43.95
+171.25 -43.85
+171.25 -43.75
+171.25 -43.65
+171.25 -43.55
+171.25 -43.45
+171.25 -43.35
+171.25 -43.25
+171.25 -43.15
+171.25 -43.05
+171.25 -42.95
+171.25 -42.85
+171.25 -42.75
+171.25 -42.65
+171.25 -42.55
+171.25 -42.45
+171.25 -42.35
+171.25 -42.25
+171.25 -42.15
+171.25 -42.05
+171.25 -41.95
+171.25 -41.85
+171.25 -41.75
+171.25 -41.65
+171.25 -41.55
+171.25 -41.45
+171.25 -41.35
+171.25 -41.25
+171.25 -41.15
+171.25 -41.05
+171.25 -40.95
+171.25 -40.85
+171.25 -40.75
+171.35 -46.05
+171.35 -45.95
+171.35 -45.85
+171.35 -45.75
+171.35 -45.65
+171.35 -45.55
+171.35 -45.45
+171.35 -45.35
+171.35 -45.25
+171.35 -45.15
+171.35 -45.05
+171.35 -44.95
+171.35 -44.85
+171.35 -44.75
+171.35 -44.65
+171.35 -44.55
+171.35 -44.45
+171.35 -44.35
+171.35 -44.25
+171.35 -44.15
+171.35 -44.05
+171.35 -43.95
+171.35 -43.85
+171.35 -43.75
+171.35 -43.65
+171.35 -43.55
+171.35 -43.45
+171.35 -43.35
+171.35 -43.25
+171.35 -43.15
+171.35 -43.05
+171.35 -42.95
+171.35 -42.85
+171.35 -42.75
+171.35 -42.65
+171.35 -42.55
+171.35 -42.45
+171.35 -42.35
+171.35 -42.25
+171.35 -42.15
+171.35 -42.05
+171.35 -41.95
+171.35 -41.85
+171.35 -41.75
+171.35 -41.65
+171.35 -41.55
+171.35 -41.45
+171.35 -41.35
+171.35 -41.25
+171.35 -41.15
+171.35 -41.05
+171.35 -40.95
+171.35 -40.85
+171.35 -40.75
+171.35 -40.65
+171.45 -45.95
+171.45 -45.85
+171.45 -45.75
+171.45 -45.65
+171.45 -45.55
+171.45 -45.45
+171.45 -45.35
+171.45 -45.25
+171.45 -45.15
+171.45 -45.05
+171.45 -44.95
+171.45 -44.85
+171.45 -44.75
+171.45 -44.65
+171.45 -44.55
+171.45 -44.45
+171.45 -44.35
+171.45 -44.25
+171.45 -44.15
+171.45 -44.05
+171.45 -43.95
+171.45 -43.85
+171.45 -43.75
+171.45 -43.65
+171.45 -43.55
+171.45 -43.45
+171.45 -43.35
+171.45 -43.25
+171.45 -43.15
+171.45 -43.05
+171.45 -42.95
+171.45 -42.85
+171.45 -42.75
+171.45 -42.65
+171.45 -42.55
+171.45 -42.45
+171.45 -42.35
+171.45 -42.25
+171.45 -42.15
+171.45 -42.05
+171.45 -41.95
+171.45 -41.85
+171.45 -41.75
+171.45 -41.65
+171.45 -41.55
+171.45 -41.45
+171.45 -41.35
+171.45 -41.25
+171.45 -41.15
+171.45 -41.05
+171.45 -40.95
+171.45 -40.85
+171.45 -40.75
+171.45 -40.65
+171.45 -40.55
+171.55 -45.65
+171.55 -45.55
+171.55 -45.45
+171.55 -45.35
+171.55 -45.25
+171.55 -45.15
+171.55 -45.05
+171.55 -44.95
+171.55 -44.85
+171.55 -44.75
+171.55 -44.65
+171.55 -44.55
+171.55 -44.45
+171.55 -44.35
+171.55 -44.25
+171.55 -44.15
+171.55 -44.05
+171.55 -43.95
+171.55 -43.85
+171.55 -43.75
+171.55 -43.65
+171.55 -43.55
+171.55 -43.45
+171.55 -43.35
+171.55 -43.25
+171.55 -43.15
+171.55 -43.05
+171.55 -42.95
+171.55 -42.85
+171.55 -42.75
+171.55 -42.65
+171.55 -42.55
+171.55 -42.45
+171.55 -42.35
+171.55 -42.25
+171.55 -42.15
+171.55 -42.05
+171.55 -41.95
+171.55 -41.85
+171.55 -41.75
+171.55 -41.65
+171.55 -41.55
+171.55 -41.45
+171.55 -41.35
+171.55 -41.25
+171.55 -41.15
+171.55 -41.05
+171.55 -40.95
+171.55 -40.85
+171.55 -40.75
+171.55 -40.65
+171.55 -40.55
+171.55 -40.45
+171.65 -45.35
+171.65 -45.25
+171.65 -45.15
+171.65 -45.05
+171.65 -44.95
+171.65 -44.85
+171.65 -44.75
+171.65 -44.65
+171.65 -44.55
+171.65 -44.45
+171.65 -44.35
+171.65 -44.25
+171.65 -44.15
+171.65 -44.05
+171.65 -43.95
+171.65 -43.85
+171.65 -43.75
+171.65 -43.65
+171.65 -43.55
+171.65 -43.45
+171.65 -43.35
+171.65 -43.25
+171.65 -43.15
+171.65 -43.05
+171.65 -42.95
+171.65 -42.85
+171.65 -42.75
+171.65 -42.65
+171.65 -42.55
+171.65 -42.45
+171.65 -42.35
+171.65 -42.25
+171.65 -42.15
+171.65 -42.05
+171.65 -41.95
+171.65 -41.85
+171.65 -41.75
+171.65 -41.65
+171.65 -41.55
+171.65 -41.45
+171.65 -41.35
+171.65 -41.25
+171.65 -41.15
+171.65 -41.05
+171.65 -40.95
+171.65 -40.85
+171.65 -40.75
+171.65 -40.65
+171.65 -40.55
+171.65 -40.45
+171.75 -45.15
+171.75 -45.05
+171.75 -44.95
+171.75 -44.85
+171.75 -44.75
+171.75 -44.65
+171.75 -44.55
+171.75 -44.45
+171.75 -44.35
+171.75 -44.25
+171.75 -44.15
+171.75 -44.05
+171.75 -43.95
+171.75 -43.85
+171.75 -43.75
+171.75 -43.65
+171.75 -43.55
+171.75 -43.45
+171.75 -43.35
+171.75 -43.25
+171.75 -43.15
+171.75 -43.05
+171.75 -42.95
+171.75 -42.85
+171.75 -42.75
+171.75 -42.65
+171.75 -42.55
+171.75 -42.45
+171.75 -42.35
+171.75 -42.25
+171.75 -42.15
+171.75 -42.05
+171.75 -41.95
+171.75 -41.85
+171.75 -41.75
+171.75 -41.65
+171.75 -41.55
+171.75 -41.45
+171.75 -41.35
+171.75 -41.25
+171.75 -41.15
+171.75 -41.05
+171.75 -40.95
+171.75 -40.85
+171.75 -40.75
+171.75 -40.65
+171.75 -40.55
+171.75 -40.45
+171.75 -40.35
+171.85 -44.95
+171.85 -44.85
+171.85 -44.75
+171.85 -44.65
+171.85 -44.55
+171.85 -44.45
+171.85 -44.35
+171.85 -44.25
+171.85 -44.15
+171.85 -44.05
+171.85 -43.95
+171.85 -43.85
+171.85 -43.75
+171.85 -43.65
+171.85 -43.55
+171.85 -43.45
+171.85 -43.35
+171.85 -43.25
+171.85 -43.15
+171.85 -43.05
+171.85 -42.95
+171.85 -42.85
+171.85 -42.75
+171.85 -42.65
+171.85 -42.55
+171.85 -42.45
+171.85 -42.35
+171.85 -42.25
+171.85 -42.15
+171.85 -42.05
+171.85 -41.95
+171.85 -41.85
+171.85 -41.75
+171.85 -41.65
+171.85 -41.55
+171.85 -41.45
+171.85 -41.35
+171.85 -41.25
+171.85 -41.15
+171.85 -41.05
+171.85 -40.95
+171.85 -40.85
+171.85 -40.75
+171.85 -40.65
+171.85 -40.55
+171.85 -40.45
+171.85 -40.35
+171.85 -40.25
+171.95 -44.45
+171.95 -44.35
+171.95 -44.25
+171.95 -44.15
+171.95 -44.05
+171.95 -43.95
+171.95 -43.85
+171.95 -43.75
+171.95 -43.65
+171.95 -43.55
+171.95 -43.45
+171.95 -43.35
+171.95 -43.25
+171.95 -43.15
+171.95 -43.05
+171.95 -42.95
+171.95 -42.85
+171.95 -42.75
+171.95 -42.65
+171.95 -42.55
+171.95 -42.45
+171.95 -42.35
+171.95 -42.25
+171.95 -42.15
+171.95 -42.05
+171.95 -41.95
+171.95 -41.85
+171.95 -41.75
+171.95 -41.65
+171.95 -41.55
+171.95 -41.45
+171.95 -41.35
+171.95 -41.25
+171.95 -41.15
+171.95 -41.05
+171.95 -40.95
+171.95 -40.85
+171.95 -40.75
+171.95 -40.65
+171.95 -40.55
+171.95 -40.45
+171.95 -40.35
+171.95 -40.25
+171.95 -40.15
+172.05 -44.45
+172.05 -44.35
+172.05 -44.25
+172.05 -44.15
+172.05 -44.05
+172.05 -43.95
+172.05 -43.85
+172.05 -43.75
+172.05 -43.65
+172.05 -43.55
+172.05 -43.45
+172.05 -43.35
+172.05 -43.25
+172.05 -43.15
+172.05 -43.05
+172.05 -42.95
+172.05 -42.85
+172.05 -42.75
+172.05 -42.65
+172.05 -42.55
+172.05 -42.45
+172.05 -42.35
+172.05 -42.25
+172.05 -42.15
+172.05 -42.05
+172.05 -41.95
+172.05 -41.85
+172.05 -41.75
+172.05 -41.65
+172.05 -41.55
+172.05 -41.45
+172.05 -41.35
+172.05 -41.25
+172.05 -41.15
+172.05 -41.05
+172.05 -40.95
+172.05 -40.85
+172.05 -40.75
+172.05 -40.65
+172.05 -40.55
+172.05 -40.45
+172.05 -40.35
+172.05 -40.25
+172.05 -40.15
+172.05 -40.05
+172.15 -44.45
+172.15 -44.35
+172.15 -44.25
+172.15 -44.15
+172.15 -44.05
+172.15 -43.95
+172.15 -43.85
+172.15 -43.75
+172.15 -43.65
+172.15 -43.55
+172.15 -43.45
+172.15 -43.35
+172.15 -43.25
+172.15 -43.15
+172.15 -43.05
+172.15 -42.95
+172.15 -42.85
+172.15 -42.75
+172.15 -42.65
+172.15 -42.55
+172.15 -42.45
+172.15 -42.35
+172.15 -42.25
+172.15 -42.15
+172.15 -42.05
+172.15 -41.95
+172.15 -41.85
+172.15 -41.75
+172.15 -41.65
+172.15 -41.55
+172.15 -41.45
+172.15 -41.35
+172.15 -41.25
+172.15 -41.15
+172.15 -41.05
+172.15 -40.95
+172.15 -40.85
+172.15 -40.75
+172.15 -40.65
+172.15 -40.55
+172.15 -40.45
+172.15 -40.35
+172.15 -40.25
+172.15 -40.15
+172.15 -40.05
+172.15 -39.95
+172.25 -44.35
+172.25 -44.25
+172.25 -44.15
+172.25 -44.05
+172.25 -43.95
+172.25 -43.85
+172.25 -43.75
+172.25 -43.65
+172.25 -43.55
+172.25 -43.45
+172.25 -43.35
+172.25 -43.25
+172.25 -43.15
+172.25 -43.05
+172.25 -42.95
+172.25 -42.85
+172.25 -42.75
+172.25 -42.65
+172.25 -42.55
+172.25 -42.45
+172.25 -42.35
+172.25 -42.25
+172.25 -42.15
+172.25 -42.05
+172.25 -41.95
+172.25 -41.85
+172.25 -41.75
+172.25 -41.65
+172.25 -41.55
+172.25 -41.45
+172.25 -41.35
+172.25 -41.25
+172.25 -41.15
+172.25 -41.05
+172.25 -40.95
+172.25 -40.85
+172.25 -40.75
+172.25 -40.65
+172.25 -40.55
+172.25 -40.45
+172.25 -40.35
+172.25 -40.25
+172.25 -40.15
+172.25 -40.05
+172.25 -39.95
+172.25 -39.85
+172.25 -34.75
+172.25 -34.65
+172.25 -34.55
+172.25 -34.45
+172.25 -34.35
+172.35 -44.35
+172.35 -44.25
+172.35 -44.15
+172.35 -44.05
+172.35 -43.95
+172.35 -43.85
+172.35 -43.75
+172.35 -43.65
+172.35 -43.55
+172.35 -43.45
+172.35 -43.35
+172.35 -43.25
+172.35 -43.15
+172.35 -43.05
+172.35 -42.95
+172.35 -42.85
+172.35 -42.75
+172.35 -42.65
+172.35 -42.55
+172.35 -42.45
+172.35 -42.35
+172.35 -42.25
+172.35 -42.15
+172.35 -42.05
+172.35 -41.95
+172.35 -41.85
+172.35 -41.75
+172.35 -41.65
+172.35 -41.55
+172.35 -41.45
+172.35 -41.35
+172.35 -41.25
+172.35 -41.15
+172.35 -41.05
+172.35 -40.95
+172.35 -40.85
+172.35 -40.75
+172.35 -40.65
+172.35 -40.55
+172.35 -40.45
+172.35 -40.35
+172.35 -40.25
+172.35 -40.15
+172.35 -40.05
+172.35 -39.95
+172.35 -39.85
+172.35 -34.85
+172.35 -34.75
+172.35 -34.65
+172.35 -34.55
+172.35 -34.45
+172.35 -34.35
+172.35 -34.25
+172.35 -34.15
+172.45 -44.35
+172.45 -44.25
+172.45 -44.15
+172.45 -44.05
+172.45 -43.95
+172.45 -43.85
+172.45 -43.75
+172.45 -43.65
+172.45 -43.55
+172.45 -43.45
+172.45 -43.35
+172.45 -43.25
+172.45 -43.15
+172.45 -43.05
+172.45 -42.95
+172.45 -42.85
+172.45 -42.75
+172.45 -42.65
+172.45 -42.55
+172.45 -42.45
+172.45 -42.35
+172.45 -42.25
+172.45 -42.15
+172.45 -42.05
+172.45 -41.95
+172.45 -41.85
+172.45 -41.75
+172.45 -41.65
+172.45 -41.55
+172.45 -41.45
+172.45 -41.35
+172.45 -41.25
+172.45 -41.15
+172.45 -41.05
+172.45 -40.95
+172.45 -40.85
+172.45 -40.75
+172.45 -40.65
+172.45 -40.55
+172.45 -40.45
+172.45 -40.35
+172.45 -40.25
+172.45 -40.15
+172.45 -40.05
+172.45 -39.95
+172.45 -39.85
+172.45 -39.75
+172.45 -35.05
+172.45 -34.95
+172.45 -34.85
+172.45 -34.75
+172.45 -34.65
+172.45 -34.55
+172.45 -34.45
+172.45 -34.35
+172.45 -34.25
+172.45 -34.15
+172.45 -34.05
+172.55 -44.25
+172.55 -44.15
+172.55 -44.05
+172.55 -43.95
+172.55 -43.85
+172.55 -43.75
+172.55 -43.65
+172.55 -43.55
+172.55 -43.45
+172.55 -43.35
+172.55 -43.25
+172.55 -43.15
+172.55 -43.05
+172.55 -42.95
+172.55 -42.85
+172.55 -42.75
+172.55 -42.65
+172.55 -42.55
+172.55 -42.45
+172.55 -42.35
+172.55 -42.25
+172.55 -42.15
+172.55 -42.05
+172.55 -41.95
+172.55 -41.85
+172.55 -41.75
+172.55 -41.65
+172.55 -41.55
+172.55 -41.45
+172.55 -41.35
+172.55 -41.25
+172.55 -41.15
+172.55 -41.05
+172.55 -40.95
+172.55 -40.85
+172.55 -40.75
+172.55 -40.65
+172.55 -40.55
+172.55 -40.45
+172.55 -40.35
+172.55 -40.25
+172.55 -40.15
+172.55 -40.05
+172.55 -39.95
+172.55 -39.85
+172.55 -39.75
+172.55 -39.65
+172.55 -35.45
+172.55 -35.35
+172.55 -35.25
+172.55 -35.15
+172.55 -35.05
+172.55 -34.95
+172.55 -34.85
+172.55 -34.75
+172.55 -34.65
+172.55 -34.55
+172.55 -34.45
+172.55 -34.35
+172.55 -34.25
+172.55 -34.15
+172.55 -34.05
+172.65 -44.25
+172.65 -44.15
+172.65 -44.05
+172.65 -43.95
+172.65 -43.85
+172.65 -43.75
+172.65 -43.65
+172.65 -43.55
+172.65 -43.45
+172.65 -43.35
+172.65 -43.25
+172.65 -43.15
+172.65 -43.05
+172.65 -42.95
+172.65 -42.85
+172.65 -42.75
+172.65 -42.65
+172.65 -42.55
+172.65 -42.45
+172.65 -42.35
+172.65 -42.25
+172.65 -42.15
+172.65 -42.05
+172.65 -41.95
+172.65 -41.85
+172.65 -41.75
+172.65 -41.65
+172.65 -41.55
+172.65 -41.45
+172.65 -41.35
+172.65 -41.25
+172.65 -41.15
+172.65 -41.05
+172.65 -40.95
+172.65 -40.85
+172.65 -40.75
+172.65 -40.65
+172.65 -40.55
+172.65 -40.45
+172.65 -40.35
+172.65 -40.25
+172.65 -40.15
+172.65 -40.05
+172.65 -39.95
+172.65 -39.85
+172.65 -39.75
+172.65 -39.65
+172.65 -39.55
+172.65 -35.55
+172.65 -35.45
+172.65 -35.35
+172.65 -35.25
+172.65 -35.15
+172.65 -35.05
+172.65 -34.95
+172.65 -34.85
+172.65 -34.75
+172.65 -34.65
+172.65 -34.55
+172.65 -34.45
+172.65 -34.35
+172.65 -34.25
+172.65 -34.15
+172.65 -34.05
+172.65 -33.95
+172.75 -44.35
+172.75 -44.25
+172.75 -44.15
+172.75 -44.05
+172.75 -43.95
+172.75 -43.85
+172.75 -43.75
+172.75 -43.65
+172.75 -43.55
+172.75 -43.45
+172.75 -43.35
+172.75 -43.25
+172.75 -43.15
+172.75 -43.05
+172.75 -42.95
+172.75 -42.85
+172.75 -42.75
+172.75 -42.65
+172.75 -42.55
+172.75 -42.45
+172.75 -42.35
+172.75 -42.25
+172.75 -42.15
+172.75 -42.05
+172.75 -41.95
+172.75 -41.85
+172.75 -41.75
+172.75 -41.65
+172.75 -41.55
+172.75 -41.45
+172.75 -41.35
+172.75 -41.25
+172.75 -41.15
+172.75 -41.05
+172.75 -40.95
+172.75 -40.85
+172.75 -40.75
+172.75 -40.65
+172.75 -40.55
+172.75 -40.45
+172.75 -40.35
+172.75 -40.25
+172.75 -40.15
+172.75 -40.05
+172.75 -39.95
+172.75 -39.85
+172.75 -39.75
+172.75 -39.65
+172.75 -39.55
+172.75 -39.45
+172.75 -35.65
+172.75 -35.55
+172.75 -35.45
+172.75 -35.35
+172.75 -35.25
+172.75 -35.15
+172.75 -35.05
+172.75 -34.95
+172.75 -34.85
+172.75 -34.75
+172.75 -34.65
+172.75 -34.55
+172.75 -34.45
+172.75 -34.35
+172.75 -34.25
+172.75 -34.15
+172.75 -34.05
+172.75 -33.95
+172.85 -44.35
+172.85 -44.25
+172.85 -44.15
+172.85 -44.05
+172.85 -43.95
+172.85 -43.85
+172.85 -43.75
+172.85 -43.65
+172.85 -43.55
+172.85 -43.45
+172.85 -43.35
+172.85 -43.25
+172.85 -43.15
+172.85 -43.05
+172.85 -42.95
+172.85 -42.85
+172.85 -42.75
+172.85 -42.65
+172.85 -42.55
+172.85 -42.45
+172.85 -42.35
+172.85 -42.25
+172.85 -42.15
+172.85 -42.05
+172.85 -41.95
+172.85 -41.85
+172.85 -41.75
+172.85 -41.65
+172.85 -41.55
+172.85 -41.45
+172.85 -41.35
+172.85 -41.25
+172.85 -41.15
+172.85 -41.05
+172.85 -40.95
+172.85 -40.85
+172.85 -40.75
+172.85 -40.65
+172.85 -40.55
+172.85 -40.45
+172.85 -40.35
+172.85 -40.25
+172.85 -40.15
+172.85 -40.05
+172.85 -39.95
+172.85 -39.85
+172.85 -39.75
+172.85 -39.65
+172.85 -39.55
+172.85 -39.45
+172.85 -39.35
+172.85 -35.75
+172.85 -35.65
+172.85 -35.55
+172.85 -35.45
+172.85 -35.35
+172.85 -35.25
+172.85 -35.15
+172.85 -35.05
+172.85 -34.95
+172.85 -34.85
+172.85 -34.75
+172.85 -34.65
+172.85 -34.55
+172.85 -34.45
+172.85 -34.35
+172.85 -34.25
+172.85 -34.15
+172.85 -34.05
+172.85 -33.95
+172.95 -44.35
+172.95 -44.25
+172.95 -44.15
+172.95 -44.05
+172.95 -43.95
+172.95 -43.85
+172.95 -43.75
+172.95 -43.65
+172.95 -43.55
+172.95 -43.45
+172.95 -43.35
+172.95 -43.25
+172.95 -43.15
+172.95 -43.05
+172.95 -42.95
+172.95 -42.85
+172.95 -42.75
+172.95 -42.65
+172.95 -42.55
+172.95 -42.45
+172.95 -42.35
+172.95 -42.25
+172.95 -42.15
+172.95 -42.05
+172.95 -41.95
+172.95 -41.85
+172.95 -41.75
+172.95 -41.65
+172.95 -41.55
+172.95 -41.45
+172.95 -41.35
+172.95 -41.25
+172.95 -41.15
+172.95 -41.05
+172.95 -40.95
+172.95 -40.85
+172.95 -40.75
+172.95 -40.65
+172.95 -40.55
+172.95 -40.45
+172.95 -40.35
+172.95 -40.25
+172.95 -40.15
+172.95 -40.05
+172.95 -39.95
+172.95 -39.85
+172.95 -39.75
+172.95 -39.65
+172.95 -39.55
+172.95 -39.45
+172.95 -39.35
+172.95 -39.25
+172.95 -35.85
+172.95 -35.75
+172.95 -35.65
+172.95 -35.55
+172.95 -35.45
+172.95 -35.35
+172.95 -35.25
+172.95 -35.15
+172.95 -35.05
+172.95 -34.95
+172.95 -34.85
+172.95 -34.75
+172.95 -34.65
+172.95 -34.55
+172.95 -34.45
+172.95 -34.35
+172.95 -34.25
+172.95 -34.15
+172.95 -34.05
+172.95 -33.95
+173.05 -44.35
+173.05 -44.25
+173.05 -44.15
+173.05 -44.05
+173.05 -43.95
+173.05 -43.85
+173.05 -43.75
+173.05 -43.65
+173.05 -43.55
+173.05 -43.45
+173.05 -43.35
+173.05 -43.25
+173.05 -43.15
+173.05 -43.05
+173.05 -42.95
+173.05 -42.85
+173.05 -42.75
+173.05 -42.65
+173.05 -42.55
+173.05 -42.45
+173.05 -42.35
+173.05 -42.25
+173.05 -42.15
+173.05 -42.05
+173.05 -41.95
+173.05 -41.85
+173.05 -41.75
+173.05 -41.65
+173.05 -41.55
+173.05 -41.45
+173.05 -41.35
+173.05 -41.25
+173.05 -41.15
+173.05 -41.05
+173.05 -40.95
+173.05 -40.85
+173.05 -40.75
+173.05 -40.65
+173.05 -40.55
+173.05 -40.45
+173.05 -40.35
+173.05 -40.25
+173.05 -40.15
+173.05 -40.05
+173.05 -39.95
+173.05 -39.85
+173.05 -39.75
+173.05 -39.65
+173.05 -39.55
+173.05 -39.45
+173.05 -39.35
+173.05 -39.25
+173.05 -35.95
+173.05 -35.85
+173.05 -35.75
+173.05 -35.65
+173.05 -35.55
+173.05 -35.45
+173.05 -35.35
+173.05 -35.25
+173.05 -35.15
+173.05 -35.05
+173.05 -34.95
+173.05 -34.85
+173.05 -34.75
+173.05 -34.65
+173.05 -34.55
+173.05 -34.45
+173.05 -34.35
+173.05 -34.25
+173.05 -34.15
+173.05 -34.05
+173.05 -33.95
+173.15 -44.35
+173.15 -44.25
+173.15 -44.15
+173.15 -44.05
+173.15 -43.95
+173.15 -43.85
+173.15 -43.75
+173.15 -43.65
+173.15 -43.55
+173.15 -43.45
+173.15 -43.35
+173.15 -43.25
+173.15 -43.15
+173.15 -43.05
+173.15 -42.95
+173.15 -42.85
+173.15 -42.75
+173.15 -42.65
+173.15 -42.55
+173.15 -42.45
+173.15 -42.35
+173.15 -42.25
+173.15 -42.15
+173.15 -42.05
+173.15 -41.95
+173.15 -41.85
+173.15 -41.75
+173.15 -41.65
+173.15 -41.55
+173.15 -41.45
+173.15 -41.35
+173.15 -41.25
+173.15 -41.15
+173.15 -41.05
+173.15 -40.95
+173.15 -40.85
+173.15 -40.75
+173.15 -40.65
+173.15 -40.55
+173.15 -40.45
+173.15 -40.35
+173.15 -40.25
+173.15 -40.15
+173.15 -40.05
+173.15 -39.95
+173.15 -39.85
+173.15 -39.75
+173.15 -39.65
+173.15 -39.55
+173.15 -39.45
+173.15 -39.35
+173.15 -39.25
+173.15 -39.15
+173.15 -36.15
+173.15 -36.05
+173.15 -35.95
+173.15 -35.85
+173.15 -35.75
+173.15 -35.65
+173.15 -35.55
+173.15 -35.45
+173.15 -35.35
+173.15 -35.25
+173.15 -35.15
+173.15 -35.05
+173.15 -34.95
+173.15 -34.85
+173.15 -34.75
+173.15 -34.65
+173.15 -34.55
+173.15 -34.45
+173.15 -34.35
+173.15 -34.25
+173.15 -34.15
+173.15 -34.05
+173.15 -33.95
+173.25 -44.25
+173.25 -44.15
+173.25 -44.05
+173.25 -43.95
+173.25 -43.85
+173.25 -43.75
+173.25 -43.65
+173.25 -43.55
+173.25 -43.45
+173.25 -43.35
+173.25 -43.25
+173.25 -43.15
+173.25 -43.05
+173.25 -42.95
+173.25 -42.85
+173.25 -42.75
+173.25 -42.65
+173.25 -42.55
+173.25 -42.45
+173.25 -42.35
+173.25 -42.25
+173.25 -42.15
+173.25 -42.05
+173.25 -41.95
+173.25 -41.85
+173.25 -41.75
+173.25 -41.65
+173.25 -41.55
+173.25 -41.45
+173.25 -41.35
+173.25 -41.25
+173.25 -41.15
+173.25 -41.05
+173.25 -40.95
+173.25 -40.85
+173.25 -40.75
+173.25 -40.65
+173.25 -40.55
+173.25 -40.45
+173.25 -40.35
+173.25 -40.25
+173.25 -40.15
+173.25 -40.05
+173.25 -39.95
+173.25 -39.85
+173.25 -39.75
+173.25 -39.65
+173.25 -39.55
+173.25 -39.45
+173.25 -39.35
+173.25 -39.25
+173.25 -39.15
+173.25 -39.05
+173.25 -36.25
+173.25 -36.15
+173.25 -36.05
+173.25 -35.95
+173.25 -35.85
+173.25 -35.75
+173.25 -35.65
+173.25 -35.55
+173.25 -35.45
+173.25 -35.35
+173.25 -35.25
+173.25 -35.15
+173.25 -35.05
+173.25 -34.95
+173.25 -34.85
+173.25 -34.75
+173.25 -34.65
+173.25 -34.55
+173.25 -34.45
+173.25 -34.35
+173.25 -34.25
+173.25 -34.15
+173.25 -34.05
+173.35 -44.25
+173.35 -44.15
+173.35 -44.05
+173.35 -43.95
+173.35 -43.85
+173.35 -43.75
+173.35 -43.65
+173.35 -43.55
+173.35 -43.45
+173.35 -43.35
+173.35 -43.25
+173.35 -43.15
+173.35 -43.05
+173.35 -42.95
+173.35 -42.85
+173.35 -42.75
+173.35 -42.65
+173.35 -42.55
+173.35 -42.45
+173.35 -42.35
+173.35 -42.25
+173.35 -42.15
+173.35 -42.05
+173.35 -41.95
+173.35 -41.85
+173.35 -41.75
+173.35 -41.65
+173.35 -41.55
+173.35 -41.45
+173.35 -41.35
+173.35 -41.25
+173.35 -41.15
+173.35 -41.05
+173.35 -40.95
+173.35 -40.85
+173.35 -40.75
+173.35 -40.65
+173.35 -40.55
+173.35 -40.45
+173.35 -40.35
+173.35 -40.25
+173.35 -40.15
+173.35 -40.05
+173.35 -39.95
+173.35 -39.85
+173.35 -39.75
+173.35 -39.65
+173.35 -39.55
+173.35 -39.45
+173.35 -39.35
+173.35 -39.25
+173.35 -39.15
+173.35 -39.05
+173.35 -38.95
+173.35 -36.35
+173.35 -36.25
+173.35 -36.15
+173.35 -36.05
+173.35 -35.95
+173.35 -35.85
+173.35 -35.75
+173.35 -35.65
+173.35 -35.55
+173.35 -35.45
+173.35 -35.35
+173.35 -35.25
+173.35 -35.15
+173.35 -35.05
+173.35 -34.95
+173.35 -34.85
+173.35 -34.75
+173.35 -34.65
+173.35 -34.55
+173.35 -34.45
+173.35 -34.35
+173.35 -34.25
+173.35 -34.15
+173.45 -44.15
+173.45 -44.05
+173.45 -43.95
+173.45 -43.85
+173.45 -43.75
+173.45 -43.65
+173.45 -43.55
+173.45 -43.45
+173.45 -43.35
+173.45 -43.25
+173.45 -43.15
+173.45 -43.05
+173.45 -42.95
+173.45 -42.85
+173.45 -42.75
+173.45 -42.65
+173.45 -42.55
+173.45 -42.45
+173.45 -42.35
+173.45 -42.25
+173.45 -42.15
+173.45 -42.05
+173.45 -41.95
+173.45 -41.85
+173.45 -41.75
+173.45 -41.65
+173.45 -41.55
+173.45 -41.45
+173.45 -41.35
+173.45 -41.25
+173.45 -41.15
+173.45 -41.05
+173.45 -40.95
+173.45 -40.85
+173.45 -40.75
+173.45 -40.65
+173.45 -40.55
+173.45 -40.45
+173.45 -40.35
+173.45 -40.25
+173.45 -40.15
+173.45 -40.05
+173.45 -39.95
+173.45 -39.85
+173.45 -39.75
+173.45 -39.65
+173.45 -39.55
+173.45 -39.45
+173.45 -39.35
+173.45 -39.25
+173.45 -39.15
+173.45 -39.05
+173.45 -38.95
+173.45 -38.85
+173.45 -36.45
+173.45 -36.35
+173.45 -36.25
+173.45 -36.15
+173.45 -36.05
+173.45 -35.95
+173.45 -35.85
+173.45 -35.75
+173.45 -35.65
+173.45 -35.55
+173.45 -35.45
+173.45 -35.35
+173.45 -35.25
+173.45 -35.15
+173.45 -35.05
+173.45 -34.95
+173.45 -34.85
+173.45 -34.75
+173.45 -34.65
+173.45 -34.55
+173.45 -34.45
+173.45 -34.35
+173.45 -34.25
+173.45 -34.15
+173.55 -44.05
+173.55 -43.95
+173.55 -43.85
+173.55 -43.75
+173.55 -43.65
+173.55 -43.55
+173.55 -43.45
+173.55 -43.35
+173.55 -43.25
+173.55 -43.15
+173.55 -43.05
+173.55 -42.95
+173.55 -42.85
+173.55 -42.75
+173.55 -42.65
+173.55 -42.55
+173.55 -42.45
+173.55 -42.35
+173.55 -42.25
+173.55 -42.15
+173.55 -42.05
+173.55 -41.95
+173.55 -41.85
+173.55 -41.75
+173.55 -41.65
+173.55 -41.55
+173.55 -41.45
+173.55 -41.35
+173.55 -41.25
+173.55 -41.15
+173.55 -41.05
+173.55 -40.95
+173.55 -40.85
+173.55 -40.75
+173.55 -40.65
+173.55 -40.55
+173.55 -40.45
+173.55 -40.35
+173.55 -40.25
+173.55 -40.15
+173.55 -40.05
+173.55 -39.95
+173.55 -39.85
+173.55 -39.75
+173.55 -39.65
+173.55 -39.55
+173.55 -39.45
+173.55 -39.35
+173.55 -39.25
+173.55 -39.15
+173.55 -39.05
+173.55 -38.95
+173.55 -38.85
+173.55 -38.75
+173.55 -38.65
+173.55 -36.55
+173.55 -36.45
+173.55 -36.35
+173.55 -36.25
+173.55 -36.15
+173.55 -36.05
+173.55 -35.95
+173.55 -35.85
+173.55 -35.75
+173.55 -35.65
+173.55 -35.55
+173.55 -35.45
+173.55 -35.35
+173.55 -35.25
+173.55 -35.15
+173.55 -35.05
+173.55 -34.95
+173.55 -34.85
+173.55 -34.75
+173.55 -34.65
+173.55 -34.55
+173.55 -34.45
+173.55 -34.35
+173.55 -34.25
+173.65 -43.85
+173.65 -43.75
+173.65 -43.65
+173.65 -43.55
+173.65 -43.45
+173.65 -43.35
+173.65 -43.25
+173.65 -43.15
+173.65 -43.05
+173.65 -42.95
+173.65 -42.85
+173.65 -42.75
+173.65 -42.65
+173.65 -42.55
+173.65 -42.45
+173.65 -42.35
+173.65 -42.25
+173.65 -42.15
+173.65 -42.05
+173.65 -41.95
+173.65 -41.85
+173.65 -41.75
+173.65 -41.65
+173.65 -41.55
+173.65 -41.45
+173.65 -41.35
+173.65 -41.25
+173.65 -41.15
+173.65 -41.05
+173.65 -40.95
+173.65 -40.85
+173.65 -40.75
+173.65 -40.65
+173.65 -40.55
+173.65 -40.45
+173.65 -40.35
+173.65 -40.25
+173.65 -40.15
+173.65 -40.05
+173.65 -39.95
+173.65 -39.85
+173.65 -39.75
+173.65 -39.65
+173.65 -39.55
+173.65 -39.45
+173.65 -39.35
+173.65 -39.25
+173.65 -39.15
+173.65 -39.05
+173.65 -38.95
+173.65 -38.85
+173.65 -38.75
+173.65 -38.65
+173.65 -38.55
+173.65 -36.65
+173.65 -36.55
+173.65 -36.45
+173.65 -36.35
+173.65 -36.25
+173.65 -36.15
+173.65 -36.05
+173.65 -35.95
+173.65 -35.85
+173.65 -35.75
+173.65 -35.65
+173.65 -35.55
+173.65 -35.45
+173.65 -35.35
+173.65 -35.25
+173.65 -35.15
+173.65 -35.05
+173.65 -34.95
+173.65 -34.85
+173.65 -34.75
+173.65 -34.65
+173.65 -34.55
+173.65 -34.45
+173.65 -34.35
+173.75 -43.75
+173.75 -43.65
+173.75 -43.35
+173.75 -43.25
+173.75 -43.15
+173.75 -43.05
+173.75 -42.95
+173.75 -42.85
+173.75 -42.75
+173.75 -42.65
+173.75 -42.55
+173.75 -42.45
+173.75 -42.35
+173.75 -42.25
+173.75 -42.15
+173.75 -42.05
+173.75 -41.95
+173.75 -41.85
+173.75 -41.75
+173.75 -41.65
+173.75 -41.55
+173.75 -41.45
+173.75 -41.35
+173.75 -41.25
+173.75 -41.15
+173.75 -41.05
+173.75 -40.95
+173.75 -40.85
+173.75 -40.75
+173.75 -40.65
+173.75 -40.55
+173.75 -40.45
+173.75 -40.35
+173.75 -40.25
+173.75 -40.15
+173.75 -40.05
+173.75 -39.95
+173.75 -39.85
+173.75 -39.75
+173.75 -39.65
+173.75 -39.55
+173.75 -39.45
+173.75 -39.35
+173.75 -39.25
+173.75 -39.15
+173.75 -39.05
+173.75 -38.95
+173.75 -38.85
+173.75 -38.75
+173.75 -38.65
+173.75 -38.55
+173.75 -38.45
+173.75 -38.35
+173.75 -36.85
+173.75 -36.75
+173.75 -36.65
+173.75 -36.55
+173.75 -36.45
+173.75 -36.35
+173.75 -36.25
+173.75 -36.15
+173.75 -36.05
+173.75 -35.95
+173.75 -35.85
+173.75 -35.75
+173.75 -35.65
+173.75 -35.55
+173.75 -35.45
+173.75 -35.35
+173.75 -35.25
+173.75 -35.15
+173.75 -35.05
+173.75 -34.95
+173.75 -34.85
+173.75 -34.75
+173.75 -34.65
+173.75 -34.55
+173.75 -34.45
+173.75 -34.35
+173.85 -43.15
+173.85 -43.05
+173.85 -42.95
+173.85 -42.85
+173.85 -42.75
+173.85 -42.65
+173.85 -42.55
+173.85 -42.45
+173.85 -42.35
+173.85 -42.25
+173.85 -42.15
+173.85 -42.05
+173.85 -41.95
+173.85 -41.85
+173.85 -41.75
+173.85 -41.65
+173.85 -41.55
+173.85 -41.45
+173.85 -41.35
+173.85 -41.25
+173.85 -41.15
+173.85 -41.05
+173.85 -40.95
+173.85 -40.85
+173.85 -40.75
+173.85 -40.65
+173.85 -40.55
+173.85 -40.45
+173.85 -40.35
+173.85 -40.25
+173.85 -40.15
+173.85 -40.05
+173.85 -39.95
+173.85 -39.85
+173.85 -39.75
+173.85 -39.65
+173.85 -39.55
+173.85 -39.45
+173.85 -39.35
+173.85 -39.25
+173.85 -39.15
+173.85 -39.05
+173.85 -38.95
+173.85 -38.85
+173.85 -38.75
+173.85 -38.65
+173.85 -38.55
+173.85 -38.45
+173.85 -38.35
+173.85 -38.25
+173.85 -38.15
+173.85 -36.95
+173.85 -36.85
+173.85 -36.75
+173.85 -36.65
+173.85 -36.55
+173.85 -36.45
+173.85 -36.35
+173.85 -36.25
+173.85 -36.15
+173.85 -36.05
+173.85 -35.95
+173.85 -35.85
+173.85 -35.75
+173.85 -35.65
+173.85 -35.55
+173.85 -35.45
+173.85 -35.35
+173.85 -35.25
+173.85 -35.15
+173.85 -35.05
+173.85 -34.95
+173.85 -34.85
+173.85 -34.75
+173.85 -34.65
+173.85 -34.55
+173.85 -34.45
+173.95 -43.05
+173.95 -42.95
+173.95 -42.85
+173.95 -42.75
+173.95 -42.65
+173.95 -42.55
+173.95 -42.45
+173.95 -42.35
+173.95 -42.25
+173.95 -42.15
+173.95 -42.05
+173.95 -41.95
+173.95 -41.85
+173.95 -41.75
+173.95 -41.65
+173.95 -41.55
+173.95 -41.45
+173.95 -41.35
+173.95 -41.25
+173.95 -41.15
+173.95 -41.05
+173.95 -40.95
+173.95 -40.85
+173.95 -40.75
+173.95 -40.65
+173.95 -40.55
+173.95 -40.45
+173.95 -40.35
+173.95 -40.25
+173.95 -40.15
+173.95 -40.05
+173.95 -39.95
+173.95 -39.85
+173.95 -39.75
+173.95 -39.65
+173.95 -39.55
+173.95 -39.45
+173.95 -39.35
+173.95 -39.25
+173.95 -39.15
+173.95 -39.05
+173.95 -38.95
+173.95 -38.85
+173.95 -38.75
+173.95 -38.65
+173.95 -38.55
+173.95 -38.45
+173.95 -38.35
+173.95 -38.25
+173.95 -38.15
+173.95 -38.05
+173.95 -37.95
+173.95 -37.15
+173.95 -37.05
+173.95 -36.95
+173.95 -36.85
+173.95 -36.75
+173.95 -36.65
+173.95 -36.55
+173.95 -36.45
+173.95 -36.35
+173.95 -36.25
+173.95 -36.15
+173.95 -36.05
+173.95 -35.95
+173.95 -35.85
+173.95 -35.75
+173.95 -35.65
+173.95 -35.55
+173.95 -35.45
+173.95 -35.35
+173.95 -35.25
+173.95 -35.15
+173.95 -35.05
+173.95 -34.95
+173.95 -34.85
+173.95 -34.75
+173.95 -34.65
+173.95 -34.55
+173.95 -34.45
+174.05 -42.95
+174.05 -42.85
+174.05 -42.75
+174.05 -42.65
+174.05 -42.55
+174.05 -42.45
+174.05 -42.35
+174.05 -42.25
+174.05 -42.15
+174.05 -42.05
+174.05 -41.95
+174.05 -41.85
+174.05 -41.75
+174.05 -41.65
+174.05 -41.55
+174.05 -41.45
+174.05 -41.35
+174.05 -41.25
+174.05 -41.15
+174.05 -41.05
+174.05 -40.95
+174.05 -40.85
+174.05 -40.75
+174.05 -40.65
+174.05 -40.55
+174.05 -40.45
+174.05 -40.35
+174.05 -40.25
+174.05 -40.15
+174.05 -40.05
+174.05 -39.95
+174.05 -39.85
+174.05 -39.75
+174.05 -39.65
+174.05 -39.55
+174.05 -39.45
+174.05 -39.35
+174.05 -39.25
+174.05 -39.15
+174.05 -39.05
+174.05 -38.95
+174.05 -38.85
+174.05 -38.75
+174.05 -38.65
+174.05 -38.55
+174.05 -38.45
+174.05 -38.35
+174.05 -38.25
+174.05 -38.15
+174.05 -38.05
+174.05 -37.95
+174.05 -37.85
+174.05 -37.75
+174.05 -37.45
+174.05 -37.35
+174.05 -37.25
+174.05 -37.15
+174.05 -37.05
+174.05 -36.95
+174.05 -36.85
+174.05 -36.75
+174.05 -36.65
+174.05 -36.55
+174.05 -36.45
+174.05 -36.35
+174.05 -36.25
+174.05 -36.15
+174.05 -36.05
+174.05 -35.95
+174.05 -35.85
+174.05 -35.75
+174.05 -35.65
+174.05 -35.55
+174.05 -35.45
+174.05 -35.35
+174.05 -35.25
+174.05 -35.15
+174.05 -35.05
+174.05 -34.95
+174.05 -34.85
+174.05 -34.75
+174.05 -34.65
+174.05 -34.55
+174.15 -42.85
+174.15 -42.75
+174.15 -42.65
+174.15 -42.55
+174.15 -42.45
+174.15 -42.35
+174.15 -42.25
+174.15 -42.15
+174.15 -42.05
+174.15 -41.95
+174.15 -41.85
+174.15 -41.75
+174.15 -41.65
+174.15 -41.55
+174.15 -41.45
+174.15 -41.35
+174.15 -41.25
+174.15 -41.15
+174.15 -41.05
+174.15 -40.95
+174.15 -40.85
+174.15 -40.75
+174.15 -40.65
+174.15 -40.55
+174.15 -40.45
+174.15 -40.35
+174.15 -40.25
+174.15 -40.15
+174.15 -40.05
+174.15 -39.95
+174.15 -39.85
+174.15 -39.75
+174.15 -39.65
+174.15 -39.55
+174.15 -39.45
+174.15 -39.35
+174.15 -39.25
+174.15 -39.15
+174.15 -39.05
+174.15 -38.95
+174.15 -38.85
+174.15 -38.75
+174.15 -38.65
+174.15 -38.55
+174.15 -38.45
+174.15 -38.35
+174.15 -38.25
+174.15 -38.15
+174.15 -38.05
+174.15 -37.95
+174.15 -37.85
+174.15 -37.75
+174.15 -37.65
+174.15 -37.55
+174.15 -37.45
+174.15 -37.35
+174.15 -37.25
+174.15 -37.15
+174.15 -37.05
+174.15 -36.95
+174.15 -36.85
+174.15 -36.75
+174.15 -36.65
+174.15 -36.55
+174.15 -36.45
+174.15 -36.35
+174.15 -36.25
+174.15 -36.15
+174.15 -36.05
+174.15 -35.95
+174.15 -35.85
+174.15 -35.75
+174.15 -35.65
+174.15 -35.55
+174.15 -35.45
+174.15 -35.35
+174.15 -35.25
+174.15 -35.15
+174.15 -35.05
+174.15 -34.95
+174.15 -34.85
+174.15 -34.75
+174.15 -34.65
+174.15 -34.55
+174.25 -42.75
+174.25 -42.65
+174.25 -42.55
+174.25 -42.45
+174.25 -42.35
+174.25 -42.25
+174.25 -42.15
+174.25 -42.05
+174.25 -41.95
+174.25 -41.85
+174.25 -41.75
+174.25 -41.65
+174.25 -41.55
+174.25 -41.45
+174.25 -41.35
+174.25 -41.25
+174.25 -41.15
+174.25 -41.05
+174.25 -40.95
+174.25 -40.85
+174.25 -40.75
+174.25 -40.65
+174.25 -40.55
+174.25 -40.45
+174.25 -40.35
+174.25 -40.25
+174.25 -40.15
+174.25 -40.05
+174.25 -39.95
+174.25 -39.85
+174.25 -39.75
+174.25 -39.65
+174.25 -39.55
+174.25 -39.45
+174.25 -39.35
+174.25 -39.25
+174.25 -39.15
+174.25 -39.05
+174.25 -38.95
+174.25 -38.85
+174.25 -38.75
+174.25 -38.65
+174.25 -38.55
+174.25 -38.45
+174.25 -38.35
+174.25 -38.25
+174.25 -38.15
+174.25 -38.05
+174.25 -37.95
+174.25 -37.85
+174.25 -37.75
+174.25 -37.65
+174.25 -37.55
+174.25 -37.45
+174.25 -37.35
+174.25 -37.25
+174.25 -37.15
+174.25 -37.05
+174.25 -36.95
+174.25 -36.85
+174.25 -36.75
+174.25 -36.65
+174.25 -36.55
+174.25 -36.45
+174.25 -36.35
+174.25 -36.25
+174.25 -36.15
+174.25 -36.05
+174.25 -35.95
+174.25 -35.85
+174.25 -35.75
+174.25 -35.65
+174.25 -35.55
+174.25 -35.45
+174.25 -35.35
+174.25 -35.25
+174.25 -35.15
+174.25 -35.05
+174.25 -34.95
+174.25 -34.85
+174.25 -34.75
+174.25 -34.65
+174.35 -42.55
+174.35 -42.45
+174.35 -42.35
+174.35 -42.25
+174.35 -42.15
+174.35 -42.05
+174.35 -41.95
+174.35 -41.85
+174.35 -41.75
+174.35 -41.65
+174.35 -41.55
+174.35 -41.45
+174.35 -41.35
+174.35 -41.25
+174.35 -41.15
+174.35 -41.05
+174.35 -40.95
+174.35 -40.85
+174.35 -40.75
+174.35 -40.65
+174.35 -40.55
+174.35 -40.45
+174.35 -40.35
+174.35 -40.25
+174.35 -40.15
+174.35 -40.05
+174.35 -39.95
+174.35 -39.85
+174.35 -39.75
+174.35 -39.65
+174.35 -39.55
+174.35 -39.45
+174.35 -39.35
+174.35 -39.25
+174.35 -39.15
+174.35 -39.05
+174.35 -38.95
+174.35 -38.85
+174.35 -38.75
+174.35 -38.65
+174.35 -38.55
+174.35 -38.45
+174.35 -38.35
+174.35 -38.25
+174.35 -38.15
+174.35 -38.05
+174.35 -37.95
+174.35 -37.85
+174.35 -37.75
+174.35 -37.65
+174.35 -37.55
+174.35 -37.45
+174.35 -37.35
+174.35 -37.25
+174.35 -37.15
+174.35 -37.05
+174.35 -36.95
+174.35 -36.85
+174.35 -36.75
+174.35 -36.65
+174.35 -36.55
+174.35 -36.45
+174.35 -36.35
+174.35 -36.25
+174.35 -36.15
+174.35 -36.05
+174.35 -35.95
+174.35 -35.85
+174.35 -35.75
+174.35 -35.65
+174.35 -35.55
+174.35 -35.45
+174.35 -35.35
+174.35 -35.25
+174.35 -35.15
+174.35 -35.05
+174.35 -34.95
+174.35 -34.85
+174.35 -34.75
+174.45 -42.45
+174.45 -42.35
+174.45 -42.25
+174.45 -42.15
+174.45 -42.05
+174.45 -41.95
+174.45 -41.85
+174.45 -41.75
+174.45 -41.65
+174.45 -41.55
+174.45 -41.45
+174.45 -41.35
+174.45 -41.25
+174.45 -41.15
+174.45 -41.05
+174.45 -40.95
+174.45 -40.85
+174.45 -40.75
+174.45 -40.65
+174.45 -40.55
+174.45 -40.45
+174.45 -40.35
+174.45 -40.25
+174.45 -40.15
+174.45 -40.05
+174.45 -39.95
+174.45 -39.85
+174.45 -39.75
+174.45 -39.65
+174.45 -39.55
+174.45 -39.45
+174.45 -39.35
+174.45 -39.25
+174.45 -39.15
+174.45 -39.05
+174.45 -38.95
+174.45 -38.85
+174.45 -38.75
+174.45 -38.65
+174.45 -38.55
+174.45 -38.45
+174.45 -38.35
+174.45 -38.25
+174.45 -38.15
+174.45 -38.05
+174.45 -37.95
+174.45 -37.85
+174.45 -37.75
+174.45 -37.65
+174.45 -37.55
+174.45 -37.45
+174.45 -37.35
+174.45 -37.25
+174.45 -37.15
+174.45 -37.05
+174.45 -36.95
+174.45 -36.85
+174.45 -36.75
+174.45 -36.65
+174.45 -36.55
+174.45 -36.45
+174.45 -36.35
+174.45 -36.25
+174.45 -36.15
+174.45 -36.05
+174.45 -35.95
+174.45 -35.85
+174.45 -35.75
+174.45 -35.65
+174.45 -35.55
+174.45 -35.45
+174.45 -35.35
+174.45 -35.25
+174.45 -35.15
+174.45 -35.05
+174.45 -34.95
+174.45 -34.85
+174.55 -42.35
+174.55 -42.25
+174.55 -42.15
+174.55 -42.05
+174.55 -41.95
+174.55 -41.85
+174.55 -41.75
+174.55 -41.65
+174.55 -41.55
+174.55 -41.45
+174.55 -41.35
+174.55 -41.25
+174.55 -41.15
+174.55 -41.05
+174.55 -40.95
+174.55 -40.85
+174.55 -40.75
+174.55 -40.65
+174.55 -40.55
+174.55 -40.45
+174.55 -40.35
+174.55 -40.25
+174.55 -40.15
+174.55 -40.05
+174.55 -39.95
+174.55 -39.85
+174.55 -39.75
+174.55 -39.65
+174.55 -39.55
+174.55 -39.45
+174.55 -39.35
+174.55 -39.25
+174.55 -39.15
+174.55 -39.05
+174.55 -38.95
+174.55 -38.85
+174.55 -38.75
+174.55 -38.65
+174.55 -38.55
+174.55 -38.45
+174.55 -38.35
+174.55 -38.25
+174.55 -38.15
+174.55 -38.05
+174.55 -37.95
+174.55 -37.85
+174.55 -37.75
+174.55 -37.65
+174.55 -37.55
+174.55 -37.45
+174.55 -37.35
+174.55 -37.25
+174.55 -37.15
+174.55 -37.05
+174.55 -36.95
+174.55 -36.85
+174.55 -36.75
+174.55 -36.65
+174.55 -36.55
+174.55 -36.45
+174.55 -36.35
+174.55 -36.25
+174.55 -36.15
+174.55 -36.05
+174.55 -35.95
+174.55 -35.85
+174.55 -35.75
+174.55 -35.65
+174.55 -35.55
+174.55 -35.45
+174.55 -35.35
+174.55 -35.25
+174.55 -35.15
+174.55 -35.05
+174.55 -34.95
+174.65 -42.25
+174.65 -42.15
+174.65 -42.05
+174.65 -41.95
+174.65 -41.85
+174.65 -41.75
+174.65 -41.65
+174.65 -41.55
+174.65 -41.45
+174.65 -41.35
+174.65 -41.25
+174.65 -41.15
+174.65 -41.05
+174.65 -40.95
+174.65 -40.85
+174.65 -40.75
+174.65 -40.65
+174.65 -40.55
+174.65 -40.45
+174.65 -40.35
+174.65 -40.25
+174.65 -40.15
+174.65 -40.05
+174.65 -39.95
+174.65 -39.85
+174.65 -39.75
+174.65 -39.65
+174.65 -39.55
+174.65 -39.45
+174.65 -39.35
+174.65 -39.25
+174.65 -39.15
+174.65 -39.05
+174.65 -38.95
+174.65 -38.85
+174.65 -38.75
+174.65 -38.65
+174.65 -38.55
+174.65 -38.45
+174.65 -38.35
+174.65 -38.25
+174.65 -38.15
+174.65 -38.05
+174.65 -37.95
+174.65 -37.85
+174.65 -37.75
+174.65 -37.65
+174.65 -37.55
+174.65 -37.45
+174.65 -37.35
+174.65 -37.25
+174.65 -37.15
+174.65 -37.05
+174.65 -36.95
+174.65 -36.85
+174.65 -36.75
+174.65 -36.65
+174.65 -36.55
+174.65 -36.45
+174.65 -36.35
+174.65 -36.25
+174.65 -36.15
+174.65 -36.05
+174.65 -35.95
+174.65 -35.85
+174.65 -35.75
+174.65 -35.65
+174.65 -35.55
+174.65 -35.45
+174.65 -35.35
+174.65 -35.25
+174.65 -35.15
+174.65 -35.05
+174.75 -42.15
+174.75 -42.05
+174.75 -41.95
+174.75 -41.85
+174.75 -41.75
+174.75 -41.65
+174.75 -41.55
+174.75 -41.45
+174.75 -41.35
+174.75 -41.25
+174.75 -41.15
+174.75 -41.05
+174.75 -40.95
+174.75 -40.85
+174.75 -40.75
+174.75 -40.65
+174.75 -40.55
+174.75 -40.45
+174.75 -40.35
+174.75 -40.25
+174.75 -40.15
+174.75 -40.05
+174.75 -39.95
+174.75 -39.85
+174.75 -39.75
+174.75 -39.65
+174.75 -39.55
+174.75 -39.45
+174.75 -39.35
+174.75 -39.25
+174.75 -39.15
+174.75 -39.05
+174.75 -38.95
+174.75 -38.85
+174.75 -38.75
+174.75 -38.65
+174.75 -38.55
+174.75 -38.45
+174.75 -38.35
+174.75 -38.25
+174.75 -38.15
+174.75 -38.05
+174.75 -37.95
+174.75 -37.85
+174.75 -37.75
+174.75 -37.65
+174.75 -37.55
+174.75 -37.45
+174.75 -37.35
+174.75 -37.25
+174.75 -37.15
+174.75 -37.05
+174.75 -36.95
+174.75 -36.85
+174.75 -36.75
+174.75 -36.65
+174.75 -36.55
+174.75 -36.45
+174.75 -36.35
+174.75 -36.25
+174.75 -36.15
+174.75 -36.05
+174.75 -35.95
+174.75 -35.85
+174.75 -35.75
+174.75 -35.65
+174.75 -35.55
+174.75 -35.45
+174.75 -35.35
+174.75 -35.25
+174.75 -35.15
+174.85 -42.15
+174.85 -42.05
+174.85 -41.95
+174.85 -41.85
+174.85 -41.75
+174.85 -41.65
+174.85 -41.55
+174.85 -41.45
+174.85 -41.35
+174.85 -41.25
+174.85 -41.15
+174.85 -41.05
+174.85 -40.95
+174.85 -40.85
+174.85 -40.75
+174.85 -40.65
+174.85 -40.55
+174.85 -40.45
+174.85 -40.35
+174.85 -40.25
+174.85 -40.15
+174.85 -40.05
+174.85 -39.95
+174.85 -39.85
+174.85 -39.75
+174.85 -39.65
+174.85 -39.55
+174.85 -39.45
+174.85 -39.35
+174.85 -39.25
+174.85 -39.15
+174.85 -39.05
+174.85 -38.95
+174.85 -38.85
+174.85 -38.75
+174.85 -38.65
+174.85 -38.55
+174.85 -38.45
+174.85 -38.35
+174.85 -38.25
+174.85 -38.15
+174.85 -38.05
+174.85 -37.95
+174.85 -37.85
+174.85 -37.75
+174.85 -37.65
+174.85 -37.55
+174.85 -37.45
+174.85 -37.35
+174.85 -37.25
+174.85 -37.15
+174.85 -37.05
+174.85 -36.95
+174.85 -36.85
+174.85 -36.75
+174.85 -36.65
+174.85 -36.55
+174.85 -36.45
+174.85 -36.35
+174.85 -36.25
+174.85 -36.15
+174.85 -36.05
+174.85 -35.95
+174.85 -35.85
+174.85 -35.75
+174.85 -35.65
+174.85 -35.55
+174.85 -35.45
+174.85 -35.35
+174.85 -35.25
+174.85 -35.15
+174.95 -42.05
+174.95 -41.95
+174.95 -41.85
+174.95 -41.75
+174.95 -41.65
+174.95 -41.55
+174.95 -41.45
+174.95 -41.35
+174.95 -41.25
+174.95 -41.15
+174.95 -41.05
+174.95 -40.95
+174.95 -40.85
+174.95 -40.75
+174.95 -40.65
+174.95 -40.55
+174.95 -40.45
+174.95 -40.35
+174.95 -40.25
+174.95 -40.15
+174.95 -40.05
+174.95 -39.95
+174.95 -39.85
+174.95 -39.75
+174.95 -39.65
+174.95 -39.55
+174.95 -39.45
+174.95 -39.35
+174.95 -39.25
+174.95 -39.15
+174.95 -39.05
+174.95 -38.95
+174.95 -38.85
+174.95 -38.75
+174.95 -38.65
+174.95 -38.55
+174.95 -38.45
+174.95 -38.35
+174.95 -38.25
+174.95 -38.15
+174.95 -38.05
+174.95 -37.95
+174.95 -37.85
+174.95 -37.75
+174.95 -37.65
+174.95 -37.55
+174.95 -37.45
+174.95 -37.35
+174.95 -37.25
+174.95 -37.15
+174.95 -37.05
+174.95 -36.95
+174.95 -36.85
+174.95 -36.75
+174.95 -36.65
+174.95 -36.55
+174.95 -36.45
+174.95 -36.35
+174.95 -36.25
+174.95 -36.15
+174.95 -36.05
+174.95 -35.95
+174.95 -35.85
+174.95 -35.75
+174.95 -35.65
+174.95 -35.55
+174.95 -35.45
+174.95 -35.35
+174.95 -35.25
+175.05 -41.95
+175.05 -41.85
+175.05 -41.75
+175.05 -41.65
+175.05 -41.55
+175.05 -41.45
+175.05 -41.35
+175.05 -41.25
+175.05 -41.15
+175.05 -41.05
+175.05 -40.95
+175.05 -40.85
+175.05 -40.75
+175.05 -40.65
+175.05 -40.55
+175.05 -40.45
+175.05 -40.35
+175.05 -40.25
+175.05 -40.15
+175.05 -40.05
+175.05 -39.95
+175.05 -39.85
+175.05 -39.75
+175.05 -39.65
+175.05 -39.55
+175.05 -39.45
+175.05 -39.35
+175.05 -39.25
+175.05 -39.15
+175.05 -39.05
+175.05 -38.95
+175.05 -38.85
+175.05 -38.75
+175.05 -38.65
+175.05 -38.55
+175.05 -38.45
+175.05 -38.35
+175.05 -38.25
+175.05 -38.15
+175.05 -38.05
+175.05 -37.95
+175.05 -37.85
+175.05 -37.75
+175.05 -37.65
+175.05 -37.55
+175.05 -37.45
+175.05 -37.35
+175.05 -37.25
+175.05 -37.15
+175.05 -37.05
+175.05 -36.95
+175.05 -36.85
+175.05 -36.75
+175.05 -36.65
+175.05 -36.55
+175.05 -36.45
+175.05 -36.35
+175.05 -36.25
+175.05 -36.15
+175.05 -36.05
+175.05 -35.95
+175.05 -35.85
+175.05 -35.75
+175.05 -35.65
+175.05 -35.55
+175.05 -35.45
+175.05 -35.35
+175.15 -42.05
+175.15 -41.95
+175.15 -41.85
+175.15 -41.75
+175.15 -41.65
+175.15 -41.55
+175.15 -41.45
+175.15 -41.35
+175.15 -41.25
+175.15 -41.15
+175.15 -41.05
+175.15 -40.95
+175.15 -40.85
+175.15 -40.75
+175.15 -40.65
+175.15 -40.55
+175.15 -40.45
+175.15 -40.35
+175.15 -40.25
+175.15 -40.15
+175.15 -40.05
+175.15 -39.95
+175.15 -39.85
+175.15 -39.75
+175.15 -39.65
+175.15 -39.55
+175.15 -39.45
+175.15 -39.35
+175.15 -39.25
+175.15 -39.15
+175.15 -39.05
+175.15 -38.95
+175.15 -38.85
+175.15 -38.75
+175.15 -38.65
+175.15 -38.55
+175.15 -38.45
+175.15 -38.35
+175.15 -38.25
+175.15 -38.15
+175.15 -38.05
+175.15 -37.95
+175.15 -37.85
+175.15 -37.75
+175.15 -37.65
+175.15 -37.55
+175.15 -37.45
+175.15 -37.35
+175.15 -37.25
+175.15 -37.15
+175.15 -37.05
+175.15 -36.95
+175.15 -36.85
+175.15 -36.75
+175.15 -36.65
+175.15 -36.55
+175.15 -36.45
+175.15 -36.35
+175.15 -36.25
+175.15 -36.15
+175.15 -36.05
+175.15 -35.95
+175.15 -35.85
+175.15 -35.75
+175.15 -35.65
+175.15 -35.55
+175.15 -35.45
+175.25 -42.05
+175.25 -41.95
+175.25 -41.85
+175.25 -41.75
+175.25 -41.65
+175.25 -41.55
+175.25 -41.45
+175.25 -41.35
+175.25 -41.25
+175.25 -41.15
+175.25 -41.05
+175.25 -40.95
+175.25 -40.85
+175.25 -40.75
+175.25 -40.65
+175.25 -40.55
+175.25 -40.45
+175.25 -40.35
+175.25 -40.25
+175.25 -40.15
+175.25 -40.05
+175.25 -39.95
+175.25 -39.85
+175.25 -39.75
+175.25 -39.65
+175.25 -39.55
+175.25 -39.45
+175.25 -39.35
+175.25 -39.25
+175.25 -39.15
+175.25 -39.05
+175.25 -38.95
+175.25 -38.85
+175.25 -38.75
+175.25 -38.65
+175.25 -38.55
+175.25 -38.45
+175.25 -38.35
+175.25 -38.25
+175.25 -38.15
+175.25 -38.05
+175.25 -37.95
+175.25 -37.85
+175.25 -37.75
+175.25 -37.65
+175.25 -37.55
+175.25 -37.45
+175.25 -37.35
+175.25 -37.25
+175.25 -37.15
+175.25 -37.05
+175.25 -36.95
+175.25 -36.85
+175.25 -36.75
+175.25 -36.65
+175.25 -36.55
+175.25 -36.45
+175.25 -36.35
+175.25 -36.25
+175.25 -36.15
+175.25 -36.05
+175.25 -35.95
+175.25 -35.85
+175.25 -35.75
+175.25 -35.65
+175.25 -35.55
+175.35 -42.05
+175.35 -41.95
+175.35 -41.85
+175.35 -41.75
+175.35 -41.65
+175.35 -41.55
+175.35 -41.45
+175.35 -41.35
+175.35 -41.25
+175.35 -41.15
+175.35 -41.05
+175.35 -40.95
+175.35 -40.85
+175.35 -40.75
+175.35 -40.65
+175.35 -40.55
+175.35 -40.45
+175.35 -40.35
+175.35 -40.25
+175.35 -40.15
+175.35 -40.05
+175.35 -39.95
+175.35 -39.85
+175.35 -39.75
+175.35 -39.65
+175.35 -39.55
+175.35 -39.45
+175.35 -39.35
+175.35 -39.25
+175.35 -39.15
+175.35 -39.05
+175.35 -38.95
+175.35 -38.85
+175.35 -38.75
+175.35 -38.65
+175.35 -38.55
+175.35 -38.45
+175.35 -38.35
+175.35 -38.25
+175.35 -38.15
+175.35 -38.05
+175.35 -37.95
+175.35 -37.85
+175.35 -37.75
+175.35 -37.65
+175.35 -37.55
+175.35 -37.45
+175.35 -37.35
+175.35 -37.25
+175.35 -37.15
+175.35 -37.05
+175.35 -36.95
+175.35 -36.85
+175.35 -36.75
+175.35 -36.65
+175.35 -36.55
+175.35 -36.45
+175.35 -36.35
+175.35 -36.25
+175.35 -36.15
+175.35 -36.05
+175.35 -35.95
+175.35 -35.85
+175.35 -35.75
+175.35 -35.65
+175.35 -35.55
+175.45 -42.05
+175.45 -41.95
+175.45 -41.85
+175.45 -41.75
+175.45 -41.65
+175.45 -41.55
+175.45 -41.45
+175.45 -41.35
+175.45 -41.25
+175.45 -41.15
+175.45 -41.05
+175.45 -40.95
+175.45 -40.85
+175.45 -40.75
+175.45 -40.65
+175.45 -40.55
+175.45 -40.45
+175.45 -40.35
+175.45 -40.25
+175.45 -40.15
+175.45 -40.05
+175.45 -39.95
+175.45 -39.85
+175.45 -39.75
+175.45 -39.65
+175.45 -39.55
+175.45 -39.45
+175.45 -39.35
+175.45 -39.25
+175.45 -39.15
+175.45 -39.05
+175.45 -38.95
+175.45 -38.85
+175.45 -38.75
+175.45 -38.65
+175.45 -38.55
+175.45 -38.45
+175.45 -38.35
+175.45 -38.25
+175.45 -38.15
+175.45 -38.05
+175.45 -37.95
+175.45 -37.85
+175.45 -37.75
+175.45 -37.65
+175.45 -37.55
+175.45 -37.45
+175.45 -37.35
+175.45 -37.25
+175.45 -37.15
+175.45 -37.05
+175.45 -36.95
+175.45 -36.85
+175.45 -36.75
+175.45 -36.65
+175.45 -36.55
+175.45 -36.45
+175.45 -36.35
+175.45 -36.25
+175.45 -36.15
+175.45 -36.05
+175.45 -35.95
+175.45 -35.85
+175.45 -35.75
+175.45 -35.65
+175.55 -41.95
+175.55 -41.85
+175.55 -41.75
+175.55 -41.65
+175.55 -41.55
+175.55 -41.45
+175.55 -41.35
+175.55 -41.25
+175.55 -41.15
+175.55 -41.05
+175.55 -40.95
+175.55 -40.85
+175.55 -40.75
+175.55 -40.65
+175.55 -40.55
+175.55 -40.45
+175.55 -40.35
+175.55 -40.25
+175.55 -40.15
+175.55 -40.05
+175.55 -39.95
+175.55 -39.85
+175.55 -39.75
+175.55 -39.65
+175.55 -39.55
+175.55 -39.45
+175.55 -39.35
+175.55 -39.25
+175.55 -39.15
+175.55 -39.05
+175.55 -38.95
+175.55 -38.85
+175.55 -38.75
+175.55 -38.65
+175.55 -38.55
+175.55 -38.45
+175.55 -38.35
+175.55 -38.25
+175.55 -38.15
+175.55 -38.05
+175.55 -37.95
+175.55 -37.85
+175.55 -37.75
+175.55 -37.65
+175.55 -37.55
+175.55 -37.45
+175.55 -37.35
+175.55 -37.25
+175.55 -37.15
+175.55 -37.05
+175.55 -36.95
+175.55 -36.85
+175.55 -36.75
+175.55 -36.65
+175.55 -36.55
+175.55 -36.45
+175.55 -36.35
+175.55 -36.25
+175.55 -36.15
+175.55 -36.05
+175.55 -35.95
+175.55 -35.85
+175.55 -35.75
+175.55 -35.65
+175.65 -41.95
+175.65 -41.85
+175.65 -41.75
+175.65 -41.65
+175.65 -41.55
+175.65 -41.45
+175.65 -41.35
+175.65 -41.25
+175.65 -41.15
+175.65 -41.05
+175.65 -40.95
+175.65 -40.85
+175.65 -40.75
+175.65 -40.65
+175.65 -40.55
+175.65 -40.45
+175.65 -40.35
+175.65 -40.25
+175.65 -40.15
+175.65 -40.05
+175.65 -39.95
+175.65 -39.85
+175.65 -39.75
+175.65 -39.65
+175.65 -39.55
+175.65 -39.45
+175.65 -39.35
+175.65 -39.25
+175.65 -39.15
+175.65 -39.05
+175.65 -38.95
+175.65 -38.85
+175.65 -38.75
+175.65 -38.65
+175.65 -38.55
+175.65 -38.45
+175.65 -38.35
+175.65 -38.25
+175.65 -38.15
+175.65 -38.05
+175.65 -37.95
+175.65 -37.85
+175.65 -37.75
+175.65 -37.65
+175.65 -37.55
+175.65 -37.45
+175.65 -37.35
+175.65 -37.25
+175.65 -37.15
+175.65 -37.05
+175.65 -36.95
+175.65 -36.85
+175.65 -36.75
+175.65 -36.65
+175.65 -36.55
+175.65 -36.45
+175.65 -36.35
+175.65 -36.25
+175.65 -36.15
+175.65 -36.05
+175.65 -35.95
+175.65 -35.85
+175.65 -35.75
+175.65 -35.65
+175.75 -41.95
+175.75 -41.85
+175.75 -41.75
+175.75 -41.65
+175.75 -41.55
+175.75 -41.45
+175.75 -41.35
+175.75 -41.25
+175.75 -41.15
+175.75 -41.05
+175.75 -40.95
+175.75 -40.85
+175.75 -40.75
+175.75 -40.65
+175.75 -40.55
+175.75 -40.45
+175.75 -40.35
+175.75 -40.25
+175.75 -40.15
+175.75 -40.05
+175.75 -39.95
+175.75 -39.85
+175.75 -39.75
+175.75 -39.65
+175.75 -39.55
+175.75 -39.45
+175.75 -39.35
+175.75 -39.25
+175.75 -39.15
+175.75 -39.05
+175.75 -38.95
+175.75 -38.85
+175.75 -38.75
+175.75 -38.65
+175.75 -38.55
+175.75 -38.45
+175.75 -38.35
+175.75 -38.25
+175.75 -38.15
+175.75 -38.05
+175.75 -37.95
+175.75 -37.85
+175.75 -37.75
+175.75 -37.65
+175.75 -37.55
+175.75 -37.45
+175.75 -37.35
+175.75 -37.25
+175.75 -37.15
+175.75 -37.05
+175.75 -36.95
+175.75 -36.85
+175.75 -36.75
+175.75 -36.65
+175.75 -36.55
+175.75 -36.45
+175.75 -36.35
+175.75 -36.25
+175.75 -36.15
+175.75 -36.05
+175.75 -35.95
+175.75 -35.85
+175.75 -35.75
+175.85 -41.85
+175.85 -41.75
+175.85 -41.65
+175.85 -41.55
+175.85 -41.45
+175.85 -41.35
+175.85 -41.25
+175.85 -41.15
+175.85 -41.05
+175.85 -40.95
+175.85 -40.85
+175.85 -40.75
+175.85 -40.65
+175.85 -40.55
+175.85 -40.45
+175.85 -40.35
+175.85 -40.25
+175.85 -40.15
+175.85 -40.05
+175.85 -39.95
+175.85 -39.85
+175.85 -39.75
+175.85 -39.65
+175.85 -39.55
+175.85 -39.45
+175.85 -39.35
+175.85 -39.25
+175.85 -39.15
+175.85 -39.05
+175.85 -38.95
+175.85 -38.85
+175.85 -38.75
+175.85 -38.65
+175.85 -38.55
+175.85 -38.45
+175.85 -38.35
+175.85 -38.25
+175.85 -38.15
+175.85 -38.05
+175.85 -37.95
+175.85 -37.85
+175.85 -37.75
+175.85 -37.65
+175.85 -37.55
+175.85 -37.45
+175.85 -37.35
+175.85 -37.25
+175.85 -37.15
+175.85 -37.05
+175.85 -36.95
+175.85 -36.85
+175.85 -36.75
+175.85 -36.65
+175.85 -36.55
+175.85 -36.45
+175.85 -36.35
+175.85 -36.25
+175.85 -36.15
+175.85 -36.05
+175.85 -35.95
+175.85 -35.85
+175.95 -41.85
+175.95 -41.75
+175.95 -41.65
+175.95 -41.55
+175.95 -41.45
+175.95 -41.35
+175.95 -41.25
+175.95 -41.15
+175.95 -41.05
+175.95 -40.95
+175.95 -40.85
+175.95 -40.75
+175.95 -40.65
+175.95 -40.55
+175.95 -40.45
+175.95 -40.35
+175.95 -40.25
+175.95 -40.15
+175.95 -40.05
+175.95 -39.95
+175.95 -39.85
+175.95 -39.75
+175.95 -39.65
+175.95 -39.55
+175.95 -39.45
+175.95 -39.35
+175.95 -39.25
+175.95 -39.15
+175.95 -39.05
+175.95 -38.95
+175.95 -38.85
+175.95 -38.75
+175.95 -38.65
+175.95 -38.55
+175.95 -38.45
+175.95 -38.35
+175.95 -38.25
+175.95 -38.15
+175.95 -38.05
+175.95 -37.95
+175.95 -37.85
+175.95 -37.75
+175.95 -37.65
+175.95 -37.55
+175.95 -37.45
+175.95 -37.35
+175.95 -37.25
+175.95 -37.15
+175.95 -37.05
+175.95 -36.95
+175.95 -36.85
+175.95 -36.75
+175.95 -36.65
+175.95 -36.55
+175.95 -36.45
+175.95 -36.35
+175.95 -36.25
+175.95 -36.15
+175.95 -36.05
+175.95 -35.95
+176.05 -41.75
+176.05 -41.65
+176.05 -41.55
+176.05 -41.45
+176.05 -41.35
+176.05 -41.25
+176.05 -41.15
+176.05 -41.05
+176.05 -40.95
+176.05 -40.85
+176.05 -40.75
+176.05 -40.65
+176.05 -40.55
+176.05 -40.45
+176.05 -40.35
+176.05 -40.25
+176.05 -40.15
+176.05 -40.05
+176.05 -39.95
+176.05 -39.85
+176.05 -39.75
+176.05 -39.65
+176.05 -39.55
+176.05 -39.45
+176.05 -39.35
+176.05 -39.25
+176.05 -39.15
+176.05 -39.05
+176.05 -38.95
+176.05 -38.85
+176.05 -38.75
+176.05 -38.65
+176.05 -38.55
+176.05 -38.45
+176.05 -38.35
+176.05 -38.25
+176.05 -38.15
+176.05 -38.05
+176.05 -37.95
+176.05 -37.85
+176.05 -37.75
+176.05 -37.65
+176.05 -37.55
+176.05 -37.45
+176.05 -37.35
+176.05 -37.25
+176.05 -37.15
+176.05 -37.05
+176.05 -36.95
+176.05 -36.85
+176.05 -36.75
+176.05 -36.65
+176.05 -36.55
+176.05 -36.45
+176.05 -36.35
+176.05 -36.25
+176.05 -36.15
+176.05 -36.05
+176.15 -41.75
+176.15 -41.65
+176.15 -41.55
+176.15 -41.45
+176.15 -41.35
+176.15 -41.25
+176.15 -41.15
+176.15 -41.05
+176.15 -40.95
+176.15 -40.85
+176.15 -40.75
+176.15 -40.65
+176.15 -40.55
+176.15 -40.45
+176.15 -40.35
+176.15 -40.25
+176.15 -40.15
+176.15 -40.05
+176.15 -39.95
+176.15 -39.85
+176.15 -39.75
+176.15 -39.65
+176.15 -39.55
+176.15 -39.45
+176.15 -39.35
+176.15 -39.25
+176.15 -39.15
+176.15 -39.05
+176.15 -38.95
+176.15 -38.85
+176.15 -38.75
+176.15 -38.65
+176.15 -38.55
+176.15 -38.45
+176.15 -38.35
+176.15 -38.25
+176.15 -38.15
+176.15 -38.05
+176.15 -37.95
+176.15 -37.85
+176.15 -37.75
+176.15 -37.65
+176.15 -37.55
+176.15 -37.45
+176.15 -37.35
+176.15 -37.25
+176.15 -37.15
+176.15 -37.05
+176.15 -36.95
+176.15 -36.85
+176.15 -36.75
+176.15 -36.65
+176.15 -36.55
+176.15 -36.45
+176.15 -36.35
+176.15 -36.25
+176.25 -41.65
+176.25 -41.55
+176.25 -41.45
+176.25 -41.35
+176.25 -41.25
+176.25 -41.15
+176.25 -41.05
+176.25 -40.95
+176.25 -40.85
+176.25 -40.75
+176.25 -40.65
+176.25 -40.55
+176.25 -40.45
+176.25 -40.35
+176.25 -40.25
+176.25 -40.15
+176.25 -40.05
+176.25 -39.95
+176.25 -39.85
+176.25 -39.75
+176.25 -39.65
+176.25 -39.55
+176.25 -39.45
+176.25 -39.35
+176.25 -39.25
+176.25 -39.15
+176.25 -39.05
+176.25 -38.95
+176.25 -38.85
+176.25 -38.75
+176.25 -38.65
+176.25 -38.55
+176.25 -38.45
+176.25 -38.35
+176.25 -38.25
+176.25 -38.15
+176.25 -38.05
+176.25 -37.95
+176.25 -37.85
+176.25 -37.75
+176.25 -37.65
+176.25 -37.55
+176.25 -37.45
+176.25 -37.35
+176.25 -37.25
+176.25 -37.15
+176.25 -37.05
+176.25 -36.95
+176.25 -36.85
+176.25 -36.75
+176.25 -36.65
+176.25 -36.55
+176.25 -36.45
+176.25 -36.35
+176.35 -41.55
+176.35 -41.45
+176.35 -41.35
+176.35 -41.25
+176.35 -41.15
+176.35 -41.05
+176.35 -40.95
+176.35 -40.85
+176.35 -40.75
+176.35 -40.65
+176.35 -40.55
+176.35 -40.45
+176.35 -40.35
+176.35 -40.25
+176.35 -40.15
+176.35 -40.05
+176.35 -39.95
+176.35 -39.85
+176.35 -39.75
+176.35 -39.65
+176.35 -39.55
+176.35 -39.45
+176.35 -39.35
+176.35 -39.25
+176.35 -39.15
+176.35 -39.05
+176.35 -38.95
+176.35 -38.85
+176.35 -38.75
+176.35 -38.65
+176.35 -38.55
+176.35 -38.45
+176.35 -38.35
+176.35 -38.25
+176.35 -38.15
+176.35 -38.05
+176.35 -37.95
+176.35 -37.85
+176.35 -37.75
+176.35 -37.65
+176.35 -37.55
+176.35 -37.45
+176.35 -37.35
+176.35 -37.25
+176.35 -37.15
+176.35 -37.05
+176.35 -36.95
+176.35 -36.85
+176.35 -36.75
+176.35 -36.65
+176.35 -36.55
+176.45 -41.55
+176.45 -41.45
+176.45 -41.35
+176.45 -41.25
+176.45 -41.15
+176.45 -41.05
+176.45 -40.95
+176.45 -40.85
+176.45 -40.75
+176.45 -40.65
+176.45 -40.55
+176.45 -40.45
+176.45 -40.35
+176.45 -40.25
+176.45 -40.15
+176.45 -40.05
+176.45 -39.95
+176.45 -39.85
+176.45 -39.75
+176.45 -39.65
+176.45 -39.55
+176.45 -39.45
+176.45 -39.35
+176.45 -39.25
+176.45 -39.15
+176.45 -39.05
+176.45 -38.95
+176.45 -38.85
+176.45 -38.75
+176.45 -38.65
+176.45 -38.55
+176.45 -38.45
+176.45 -38.35
+176.45 -38.25
+176.45 -38.15
+176.45 -38.05
+176.45 -37.95
+176.45 -37.85
+176.45 -37.75
+176.45 -37.65
+176.45 -37.55
+176.45 -37.45
+176.45 -37.35
+176.45 -37.25
+176.45 -37.15
+176.45 -37.05
+176.45 -36.95
+176.55 -41.45
+176.55 -41.35
+176.55 -41.25
+176.55 -41.15
+176.55 -41.05
+176.55 -40.95
+176.55 -40.85
+176.55 -40.75
+176.55 -40.65
+176.55 -40.55
+176.55 -40.45
+176.55 -40.35
+176.55 -40.25
+176.55 -40.15
+176.55 -40.05
+176.55 -39.95
+176.55 -39.85
+176.55 -39.75
+176.55 -39.65
+176.55 -39.55
+176.55 -39.45
+176.55 -39.35
+176.55 -39.25
+176.55 -39.15
+176.55 -39.05
+176.55 -38.95
+176.55 -38.85
+176.55 -38.75
+176.55 -38.65
+176.55 -38.55
+176.55 -38.45
+176.55 -38.35
+176.55 -38.25
+176.55 -38.15
+176.55 -38.05
+176.55 -37.95
+176.55 -37.85
+176.55 -37.75
+176.55 -37.65
+176.55 -37.55
+176.55 -37.45
+176.55 -37.35
+176.55 -37.25
+176.65 -41.35
+176.65 -41.25
+176.65 -41.15
+176.65 -41.05
+176.65 -40.95
+176.65 -40.85
+176.65 -40.75
+176.65 -40.65
+176.65 -40.55
+176.65 -40.45
+176.65 -40.35
+176.65 -40.25
+176.65 -40.15
+176.65 -40.05
+176.65 -39.95
+176.65 -39.85
+176.65 -39.75
+176.65 -39.65
+176.65 -39.55
+176.65 -39.45
+176.65 -39.35
+176.65 -39.25
+176.65 -39.15
+176.65 -39.05
+176.65 -38.95
+176.65 -38.85
+176.65 -38.75
+176.65 -38.65
+176.65 -38.55
+176.65 -38.45
+176.65 -38.35
+176.65 -38.25
+176.65 -38.15
+176.65 -38.05
+176.65 -37.95
+176.65 -37.85
+176.65 -37.75
+176.65 -37.65
+176.65 -37.55
+176.65 -37.45
+176.65 -37.35
+176.75 -41.25
+176.75 -41.15
+176.75 -41.05
+176.75 -40.95
+176.75 -40.85
+176.75 -40.75
+176.75 -40.65
+176.75 -40.55
+176.75 -40.45
+176.75 -40.35
+176.75 -40.25
+176.75 -40.15
+176.75 -40.05
+176.75 -39.95
+176.75 -39.85
+176.75 -39.75
+176.75 -39.65
+176.75 -39.55
+176.75 -39.45
+176.75 -39.35
+176.75 -39.25
+176.75 -39.15
+176.75 -39.05
+176.75 -38.95
+176.75 -38.85
+176.75 -38.75
+176.75 -38.65
+176.75 -38.55
+176.75 -38.45
+176.75 -38.35
+176.75 -38.25
+176.75 -38.15
+176.75 -38.05
+176.75 -37.95
+176.75 -37.85
+176.75 -37.75
+176.75 -37.65
+176.75 -37.55
+176.75 -37.45
+176.75 -37.35
+176.85 -41.15
+176.85 -41.05
+176.85 -40.95
+176.85 -40.85
+176.85 -40.75
+176.85 -40.65
+176.85 -40.55
+176.85 -40.45
+176.85 -40.35
+176.85 -40.25
+176.85 -40.15
+176.85 -40.05
+176.85 -39.95
+176.85 -39.85
+176.85 -39.75
+176.85 -39.65
+176.85 -39.55
+176.85 -39.45
+176.85 -39.35
+176.85 -39.25
+176.85 -39.15
+176.85 -39.05
+176.85 -38.95
+176.85 -38.85
+176.85 -38.75
+176.85 -38.65
+176.85 -38.55
+176.85 -38.45
+176.85 -38.35
+176.85 -38.25
+176.85 -38.15
+176.85 -38.05
+176.85 -37.95
+176.85 -37.85
+176.85 -37.75
+176.85 -37.65
+176.85 -37.55
+176.85 -37.45
+176.85 -37.35
+176.95 -40.95
+176.95 -40.85
+176.95 -40.75
+176.95 -40.65
+176.95 -40.55
+176.95 -40.45
+176.95 -40.35
+176.95 -40.25
+176.95 -40.15
+176.95 -40.05
+176.95 -39.95
+176.95 -39.85
+176.95 -39.75
+176.95 -39.65
+176.95 -39.55
+176.95 -39.45
+176.95 -39.35
+176.95 -39.25
+176.95 -39.15
+176.95 -39.05
+176.95 -38.95
+176.95 -38.85
+176.95 -38.75
+176.95 -38.65
+176.95 -38.55
+176.95 -38.45
+176.95 -38.35
+176.95 -38.25
+176.95 -38.15
+176.95 -38.05
+176.95 -37.95
+176.95 -37.85
+176.95 -37.75
+176.95 -37.65
+176.95 -37.55
+176.95 -37.45
+177.05 -40.85
+177.05 -40.75
+177.05 -40.65
+177.05 -40.55
+177.05 -40.45
+177.05 -40.35
+177.05 -40.25
+177.05 -40.15
+177.05 -40.05
+177.05 -39.95
+177.05 -39.85
+177.05 -39.75
+177.05 -39.65
+177.05 -39.55
+177.05 -39.45
+177.05 -39.35
+177.05 -39.25
+177.05 -39.15
+177.05 -39.05
+177.05 -38.95
+177.05 -38.85
+177.05 -38.75
+177.05 -38.65
+177.05 -38.55
+177.05 -38.45
+177.05 -38.35
+177.05 -38.25
+177.05 -38.15
+177.05 -38.05
+177.05 -37.95
+177.05 -37.85
+177.05 -37.75
+177.05 -37.65
+177.05 -37.55
+177.05 -37.45
+177.15 -40.65
+177.15 -40.55
+177.15 -40.45
+177.15 -40.35
+177.15 -40.25
+177.15 -40.15
+177.15 -40.05
+177.15 -39.95
+177.15 -39.85
+177.15 -39.75
+177.15 -39.65
+177.15 -39.55
+177.15 -39.45
+177.15 -39.35
+177.15 -39.25
+177.15 -39.15
+177.15 -39.05
+177.15 -38.95
+177.15 -38.85
+177.15 -38.75
+177.15 -38.65
+177.15 -38.55
+177.15 -38.45
+177.15 -38.35
+177.15 -38.25
+177.15 -38.15
+177.15 -38.05
+177.15 -37.95
+177.15 -37.85
+177.15 -37.75
+177.15 -37.65
+177.15 -37.55
+177.15 -37.45
+177.25 -40.55
+177.25 -40.45
+177.25 -40.35
+177.25 -40.25
+177.25 -40.15
+177.25 -40.05
+177.25 -39.95
+177.25 -39.85
+177.25 -39.75
+177.25 -39.65
+177.25 -39.55
+177.25 -39.45
+177.25 -39.35
+177.25 -39.25
+177.25 -39.15
+177.25 -39.05
+177.25 -38.95
+177.25 -38.85
+177.25 -38.75
+177.25 -38.65
+177.25 -38.55
+177.25 -38.45
+177.25 -38.35
+177.25 -38.25
+177.25 -38.15
+177.25 -38.05
+177.25 -37.95
+177.25 -37.85
+177.25 -37.75
+177.25 -37.65
+177.25 -37.55
+177.25 -37.45
+177.25 -37.35
+177.35 -40.35
+177.35 -40.25
+177.35 -40.15
+177.35 -40.05
+177.35 -39.95
+177.35 -39.85
+177.35 -39.75
+177.35 -39.65
+177.35 -39.55
+177.35 -39.45
+177.35 -39.35
+177.35 -39.25
+177.35 -39.15
+177.35 -39.05
+177.35 -38.95
+177.35 -38.85
+177.35 -38.75
+177.35 -38.65
+177.35 -38.55
+177.35 -38.45
+177.35 -38.35
+177.35 -38.25
+177.35 -38.15
+177.35 -38.05
+177.35 -37.95
+177.35 -37.85
+177.35 -37.75
+177.35 -37.65
+177.35 -37.55
+177.35 -37.45
+177.35 -37.35
+177.45 -40.25
+177.45 -40.15
+177.45 -40.05
+177.45 -39.95
+177.45 -39.85
+177.45 -39.75
+177.45 -39.65
+177.45 -39.55
+177.45 -39.45
+177.45 -39.35
+177.45 -39.25
+177.45 -39.15
+177.45 -39.05
+177.45 -38.95
+177.45 -38.85
+177.45 -38.75
+177.45 -38.65
+177.45 -38.55
+177.45 -38.45
+177.45 -38.35
+177.45 -38.25
+177.45 -38.15
+177.45 -38.05
+177.45 -37.95
+177.45 -37.85
+177.45 -37.75
+177.45 -37.65
+177.45 -37.55
+177.45 -37.45
+177.45 -37.35
+177.55 -40.05
+177.55 -39.95
+177.55 -39.85
+177.55 -39.75
+177.55 -39.65
+177.55 -39.55
+177.55 -39.45
+177.55 -39.35
+177.55 -39.25
+177.55 -39.15
+177.55 -39.05
+177.55 -38.95
+177.55 -38.85
+177.55 -38.75
+177.55 -38.65
+177.55 -38.55
+177.55 -38.45
+177.55 -38.35
+177.55 -38.25
+177.55 -38.15
+177.55 -38.05
+177.55 -37.95
+177.55 -37.85
+177.55 -37.75
+177.55 -37.65
+177.55 -37.55
+177.55 -37.45
+177.55 -37.35
+177.55 -37.25
+177.65 -39.95
+177.65 -39.85
+177.65 -39.75
+177.65 -39.65
+177.65 -39.55
+177.65 -39.45
+177.65 -39.35
+177.65 -39.25
+177.65 -39.15
+177.65 -39.05
+177.65 -38.95
+177.65 -38.85
+177.65 -38.75
+177.65 -38.65
+177.65 -38.55
+177.65 -38.45
+177.65 -38.35
+177.65 -38.25
+177.65 -38.15
+177.65 -38.05
+177.65 -37.95
+177.65 -37.85
+177.65 -37.75
+177.65 -37.65
+177.65 -37.55
+177.65 -37.45
+177.65 -37.35
+177.65 -37.25
+177.75 -39.75
+177.75 -39.65
+177.75 -39.55
+177.75 -39.45
+177.75 -39.35
+177.75 -39.25
+177.75 -39.15
+177.75 -39.05
+177.75 -38.95
+177.75 -38.85
+177.75 -38.75
+177.75 -38.65
+177.75 -38.55
+177.75 -38.45
+177.75 -38.35
+177.75 -38.25
+177.75 -38.15
+177.75 -38.05
+177.75 -37.95
+177.75 -37.85
+177.75 -37.75
+177.75 -37.65
+177.75 -37.55
+177.75 -37.45
+177.75 -37.35
+177.75 -37.25
+177.85 -39.65
+177.85 -39.55
+177.85 -39.45
+177.85 -39.35
+177.85 -39.25
+177.85 -39.15
+177.85 -39.05
+177.85 -38.95
+177.85 -38.85
+177.85 -38.75
+177.85 -38.65
+177.85 -38.55
+177.85 -38.45
+177.85 -38.35
+177.85 -38.25
+177.85 -38.15
+177.85 -38.05
+177.85 -37.95
+177.85 -37.85
+177.85 -37.75
+177.85 -37.65
+177.85 -37.55
+177.85 -37.45
+177.85 -37.35
+177.85 -37.25
+177.85 -37.15
+177.95 -39.65
+177.95 -39.55
+177.95 -39.45
+177.95 -39.35
+177.95 -39.25
+177.95 -39.15
+177.95 -39.05
+177.95 -38.95
+177.95 -38.85
+177.95 -38.75
+177.95 -38.65
+177.95 -38.55
+177.95 -38.45
+177.95 -38.35
+177.95 -38.25
+177.95 -38.15
+177.95 -38.05
+177.95 -37.95
+177.95 -37.85
+177.95 -37.75
+177.95 -37.65
+177.95 -37.55
+177.95 -37.45
+177.95 -37.35
+177.95 -37.25
+177.95 -37.15
+178.05 -39.65
+178.05 -39.55
+178.05 -39.45
+178.05 -39.35
+178.05 -39.25
+178.05 -39.15
+178.05 -39.05
+178.05 -38.95
+178.05 -38.85
+178.05 -38.75
+178.05 -38.65
+178.05 -38.55
+178.05 -38.45
+178.05 -38.35
+178.05 -38.25
+178.05 -38.15
+178.05 -38.05
+178.05 -37.95
+178.05 -37.85
+178.05 -37.75
+178.05 -37.65
+178.05 -37.55
+178.05 -37.45
+178.05 -37.35
+178.05 -37.25
+178.05 -37.15
+178.15 -39.65
+178.15 -39.55
+178.15 -39.45
+178.15 -39.35
+178.15 -39.25
+178.15 -39.15
+178.15 -39.05
+178.15 -38.95
+178.15 -38.85
+178.15 -38.75
+178.15 -38.65
+178.15 -38.55
+178.15 -38.45
+178.15 -38.35
+178.15 -38.25
+178.15 -38.15
+178.15 -38.05
+178.15 -37.95
+178.15 -37.85
+178.15 -37.75
+178.15 -37.65
+178.15 -37.55
+178.15 -37.45
+178.15 -37.35
+178.15 -37.25
+178.15 -37.15
+178.15 -37.05
+178.25 -39.65
+178.25 -39.55
+178.25 -39.45
+178.25 -39.35
+178.25 -39.25
+178.25 -39.15
+178.25 -39.05
+178.25 -38.95
+178.25 -38.85
+178.25 -38.75
+178.25 -38.65
+178.25 -38.55
+178.25 -38.45
+178.25 -38.35
+178.25 -38.25
+178.25 -38.15
+178.25 -38.05
+178.25 -37.95
+178.25 -37.85
+178.25 -37.75
+178.25 -37.65
+178.25 -37.55
+178.25 -37.45
+178.25 -37.35
+178.25 -37.25
+178.25 -37.15
+178.35 -39.65
+178.35 -39.55
+178.35 -39.45
+178.35 -39.35
+178.35 -39.25
+178.35 -39.15
+178.35 -39.05
+178.35 -38.95
+178.35 -38.85
+178.35 -38.75
+178.35 -38.65
+178.35 -38.55
+178.35 -38.45
+178.35 -38.35
+178.35 -38.25
+178.35 -38.15
+178.35 -38.05
+178.35 -37.95
+178.35 -37.85
+178.35 -37.75
+178.35 -37.65
+178.35 -37.55
+178.35 -37.45
+178.35 -37.35
+178.35 -37.25
+178.35 -37.15
+178.45 -39.45
+178.45 -39.35
+178.45 -39.25
+178.45 -39.15
+178.45 -39.05
+178.45 -38.95
+178.45 -38.85
+178.45 -38.75
+178.45 -38.65
+178.45 -38.55
+178.45 -38.45
+178.45 -38.35
+178.45 -38.25
+178.45 -38.15
+178.45 -38.05
+178.45 -37.95
+178.45 -37.85
+178.45 -37.75
+178.45 -37.65
+178.45 -37.55
+178.45 -37.45
+178.45 -37.35
+178.45 -37.25
+178.45 -37.15
+178.55 -39.35
+178.55 -39.25
+178.55 -39.15
+178.55 -39.05
+178.55 -38.95
+178.55 -38.85
+178.55 -38.75
+178.55 -38.65
+178.55 -38.55
+178.55 -38.45
+178.55 -38.35
+178.55 -38.25
+178.55 -38.15
+178.55 -38.05
+178.55 -37.95
+178.55 -37.85
+178.55 -37.75
+178.55 -37.65
+178.55 -37.55
+178.55 -37.45
+178.55 -37.35
+178.55 -37.25
+178.65 -38.95
+178.65 -38.85
+178.65 -38.75
+178.65 -38.65
+178.65 -38.55
+178.65 -38.45
+178.65 -38.35
+178.65 -38.25
+178.65 -38.15
+178.65 -38.05
+178.65 -37.95
+178.65 -37.85
+178.65 -37.75
+178.65 -37.65
+178.65 -37.55
+178.65 -37.45
+178.65 -37.35
+178.65 -37.25
+178.75 -38.85
+178.75 -38.75
+178.75 -38.65
+178.75 -38.55
+178.75 -38.45
+178.75 -38.35
+178.75 -38.25
+178.75 -38.15
+178.75 -38.05
+178.75 -37.95
+178.75 -37.85
+178.75 -37.75
+178.75 -37.65
+178.75 -37.55
+178.75 -37.45
+178.75 -37.35
+178.85 -38.75
+178.85 -38.65
+178.85 -38.55
+178.85 -38.45
+178.85 -38.35
+178.85 -38.25
+178.85 -38.15
+178.85 -38.05
+178.85 -37.95
+178.85 -37.85
+178.85 -37.75
+178.85 -37.65
+178.85 -37.55
+178.85 -37.45
+178.85 -37.35
+178.95 -38.45
+178.95 -38.35
+178.95 -38.25
+178.95 -38.15
+178.95 -38.05
+178.95 -37.95
+178.95 -37.85
+178.95 -37.75
+178.95 -37.65
+178.95 -37.55
+178.95 -37.45
+178.95 -37.35
+179.05 -38.05
+179.05 -37.95
+179.05 -37.85
+179.05 -37.75
+179.05 -37.65
+179.05 -37.55
+179.05 -37.45
+179.15 -37.65
+179.15 -37.55
diff --git a/csep/core/binomial_evaluations.py b/csep/core/binomial_evaluations.py
new file mode 100644
index 00000000..58fd7f50
--- /dev/null
+++ b/csep/core/binomial_evaluations.py
@@ -0,0 +1,395 @@
+import numpy
+import scipy.stats
+import scipy.spatial
+
+from csep.models import EvaluationResult
+from csep.core.exceptions import CSEPCatalogException
+
+
+def _nbd_number_test_ndarray(fore_cnt, obs_cnt, variance, epsilon=1e-6):
+ """ Computes delta1 and delta2 values from the Negative Binomial (NBD) number test.
+
+ Args:
+ fore_cnt (float): parameter of negative binomial distribution coming from expected value of the forecast
+ obs_cnt (float): count of earthquakes observed during the testing period.
+ variance (float): variance parameter of negative binomial distribution coming from historical catalog.
+ A variance value of approximately 23541 has been calculated using M5.95+ earthquakes observed worldwide from 1982 to 2013.
+ epsilon (float): tolerance level to satisfy the requirements of two-sided p-value
+
+ Returns
+ result (tuple): (delta1, delta2)
+ """
+ var = variance
+ mean = fore_cnt
+ upsilon = 1.0 - ((var - mean) / var)
+ tau = (mean**2 /(var - mean))
+
+ delta1 = 1.0 - scipy.stats.nbinom.cdf(obs_cnt - epsilon, tau, upsilon, loc=0)
+ delta2 = scipy.stats.nbinom.cdf(obs_cnt + epsilon, tau, upsilon, loc=0)
+
+ return delta1, delta2
+
+
+def negative_binomial_number_test(gridded_forecast, observed_catalog, variance):
+ """ Computes "negative binomial N-Test" on a gridded forecast.
+
+ Computes Number (N) test for Observed and Forecasts. Both data sets are expected to be in terms of event counts.
+ We find the Total number of events in Observed Catalog and Forecasted Catalogs. Which are then employed to compute the
+ probablities of
+ (i) At least no. of events (delta 1)
+ (ii) At most no. of events (delta 2) assuming the negative binomial distribution.
+
+ Args:
+ gridded_forecast: Forecast of a Model (Gridded) (Numpy Array)
+ A forecast has to be in terms of Average Number of Events in Each Bin
+ It can be anything greater than zero
+ observed_catalog: Observed (Gridded) seismicity (Numpy Array):
+ An Observation has to be Number of Events in Each Bin
+ It has to be a either zero or positive integer only (No Floating Point)
+ variance: Variance parameter of negative binomial distribution obtained from historical catalog.
+
+ Returns:
+ out (tuple): (delta_1, delta_2)
+ """
+ result = EvaluationResult()
+
+ # observed count
+ obs_cnt = observed_catalog.event_count
+
+ # forecasts provide the expeceted number of events during the time horizon of the forecast
+ fore_cnt = gridded_forecast.event_count
+
+ epsilon = 1e-6
+
+ # stores the actual result of the number test
+ delta1, delta2 = _nbd_number_test_ndarray(fore_cnt, obs_cnt, variance, epsilon=epsilon)
+
+ # store results
+ result.test_distribution = ('negative_binomial', fore_cnt)
+ result.name = 'NBD N-Test'
+ result.observed_statistic = obs_cnt
+ result.quantile = (delta1, delta2)
+ result.sim_name = gridded_forecast.name
+ result.obs_name = observed_catalog.name
+ result.status = 'normal'
+ result.min_mw = numpy.min(gridded_forecast.magnitudes)
+
+ return result
+
+
+def binary_joint_log_likelihood_ndarray(forecast, catalog):
+ """ Computes Bernoulli log-likelihood scores, assuming that earthquakes follow a binomial distribution.
+
+ Args:
+ forecast: Forecast of a Model (Gridded) (Numpy Array)
+ A forecast has to be in terms of Average Number of Events in Each Bin
+ It can be anything greater than zero
+ catalog: Observed (Gridded) seismicity (Numpy Array):
+ An Observation has to be Number of Events in Each Bin
+ It has to be a either zero or positive integer only (No Floating Point)
+ """
+ # First, we mask the forecast in cells where we could find log=0.0 singularities:
+ forecast_masked = numpy.ma.masked_where(forecast.ravel() <= 0.0, forecast.ravel())
+ # Then, we compute the log-likelihood of observing one or more events given a Poisson distribution, i.e., 1 - Pr(0)
+ target_idx = numpy.nonzero(catalog.ravel())
+ y = numpy.zeros(forecast_masked.ravel().shape)
+ y[target_idx[0]] = 1
+ first_term = y * (numpy.log(1.0 - numpy.exp(-forecast_masked.ravel())))
+ # Also, we estimate the log-likelihood in cells no events are observed:
+ second_term = (1-y) * (-forecast_masked.ravel().data)
+ # Finally, we sum both terms to compute the joint log-likelihood score:
+ return sum(first_term.data + second_term.data)
+
+
+
+def _simulate_catalog(sim_cells, sampling_weights, sim_fore, random_numbers=None):
+ # Modified this code to generate simulations in a way that every cell gets one earthquake
+ # Generate uniformly distributed random numbers in [0,1), this
+ if random_numbers is None:
+ # Reset simulation array to zero, but don't reallocate
+ sim_fore.fill(0)
+ num_active_cells = 0
+ while num_active_cells < sim_cells:
+ random_num = numpy.random.uniform(0,1)
+ loc = numpy.searchsorted(sampling_weights, random_num, side='right')
+ if sim_fore[loc] == 0:
+ sim_fore[loc] = 1
+ num_active_cells = num_active_cells + 1
+ else:
+ # Find insertion points using binary search inserting to satisfy a[i-1] <= v < a[i]
+ pnts = numpy.searchsorted(sampling_weights, random_numbers, side='right')
+ # Create simulated catalog by adding to the original locations
+ numpy.add.at(sim_fore, pnts, 1)
+
+ assert sim_fore.sum() == sim_cells, "simulated the wrong number of events!"
+ return sim_fore
+
+
+def _binary_likelihood_test(forecast_data, observed_data, num_simulations=1000, random_numbers=None,
+ seed=None, use_observed_counts=True, verbose=True, normalize_likelihood=False):
+ """ Computes binary conditional-likelihood test from CSEP using an efficient simulation based approach.
+
+ Args:
+ forecast_data (numpy.ndarray): nd array where [:, -1] are the magnitude bins.
+ observed_data (numpy.ndarray): same format as observation.
+ num_simulations: default number of simulations to use for likelihood based simulations
+ seed: used for reproducibility of the prng
+ random_numbers (numpy.ndarray): can supply an explicit list of random numbers, primarily used for software testing
+ use_observed_counts (bool): if true, will simulate catalogs using the observed events, if false will draw from poisson
+ distribution
+ """
+
+ # Array-masking that avoids log singularities:
+ forecast_data = numpy.ma.masked_where(forecast_data <= 0.0, forecast_data)
+
+ # set seed for the likelihood test
+ if seed is not None:
+ numpy.random.seed(seed)
+
+ # used to determine where simulated earthquake should be placed, by definition of cumsum these are sorted
+ sampling_weights = numpy.cumsum(forecast_data.ravel()) / numpy.sum(forecast_data)
+
+ # data structures to store results
+ sim_fore = numpy.zeros(sampling_weights.shape)
+ simulated_ll = []
+ n_active_cells = len(numpy.unique(numpy.nonzero(observed_data.ravel())))
+ n_fore = numpy.sum(forecast_data)
+ expected_forecast_count = int(n_active_cells)
+
+ # main simulation step in this loop
+ for idx in range(num_simulations):
+ if use_observed_counts:
+ num_cells_to_simulate = int(n_active_cells)
+
+ if random_numbers is None:
+ sim_fore = _simulate_catalog(num_cells_to_simulate, sampling_weights, sim_fore)
+ else:
+ sim_fore = _simulate_catalog(num_cells_to_simulate, sampling_weights, sim_fore,
+ random_numbers=random_numbers[idx,:])
+
+ # compute joint log-likelihood
+ current_ll = binary_joint_log_likelihood_ndarray(forecast_data.data, sim_fore)
+
+ # append to list of simulated log-likelihoods
+ simulated_ll.append(current_ll)
+
+ # just be verbose
+ if verbose:
+ if (idx + 1) % 100 == 0:
+ print(f'... {idx + 1} catalogs simulated.')
+
+ # observed joint log-likelihood
+ obs_ll = binary_joint_log_likelihood_ndarray(forecast_data.data, observed_data)
+
+ # quantile score
+ qs = numpy.sum(simulated_ll <= obs_ll) / num_simulations
+
+ # float, float, list
+ return qs, obs_ll, simulated_ll
+
+
+def binary_spatial_test(gridded_forecast, observed_catalog, num_simulations=1000, seed=None, random_numbers=None, verbose=False):
+ """ Performs the binary spatial test on the Forecast using the Observed Catalogs.
+
+ Note: The forecast and the observations should be scaled to the same time period before calling this function. This increases
+ transparency as no assumptions are being made about the length of the forecasts. This is particularly important for
+ gridded forecasts that supply their forecasts as rates.
+
+ Args:
+ gridded_forecast: csep.core.forecasts.GriddedForecast
+ observed_catalog: csep.core.catalogs.Catalog
+ num_simulations (int): number of simulations used to compute the quantile score
+ seed (int): used fore reproducibility, and testing
+ random_numbers (numpy.ndarray): random numbers used to override the random number generation. injection point for testing.
+
+ Returns:
+ evaluation_result: csep.core.evaluations.EvaluationResult
+ """
+
+ # grid catalog onto spatial grid
+ gridded_catalog_data = observed_catalog.spatial_counts()
+
+ # simply call likelihood test on catalog data and forecast
+ qs, obs_ll, simulated_ll = _binary_likelihood_test(
+ gridded_forecast.spatial_counts(),
+ gridded_catalog_data,
+ num_simulations=num_simulations,
+ seed=seed,
+ random_numbers=random_numbers,
+ use_observed_counts=True,
+ verbose=verbose,
+ normalize_likelihood=True
+ )
+
+
+# populate result data structure
+ result = EvaluationResult()
+ result.test_distribution = simulated_ll
+ result.name = 'Binary S-Test'
+ result.observed_statistic = obs_ll
+ result.quantile = qs
+ result.sim_name = gridded_forecast.name
+ result.obs_name = observed_catalog.name
+ result.status = 'normal'
+ try:
+ result.min_mw = numpy.min(gridded_forecast.magnitudes)
+ except AttributeError:
+ result.min_mw = -1
+ return result
+
+
+def binary_conditional_likelihood_test(gridded_forecast, observed_catalog, num_simulations=1000, seed=None, random_numbers=None, verbose=False):
+ """ Performs the binary conditional likelihood test on Gridded Forecast using an Observed Catalog.
+
+ Normalizes the forecast so the forecasted rate are consistent with the observations. This modification
+ eliminates the strong impact differences in the number distribution have on the forecasted rates.
+
+ Note: The forecast and the observations should be scaled to the same time period before calling this function. This increases
+ transparency as no assumptions are being made about the length of the forecasts. This is particularly important for
+ gridded forecasts that supply their forecasts as rates.
+
+ Args:
+ gridded_forecast: csep.core.forecasts.GriddedForecast
+ observed_catalog: csep.core.catalogs.Catalog
+ num_simulations (int): number of simulations used to compute the quantile score
+ seed (int): used fore reproducibility, and testing
+ random_numbers (numpy.ndarray): random numbers used to override the random number generation. injection point for testing.
+
+ Returns:
+ evaluation_result: csep.core.evaluations.EvaluationResult
+ """
+
+ # grid catalog onto spatial grid
+ try:
+ _ = observed_catalog.region.magnitudes
+ except CSEPCatalogException:
+ observed_catalog.region = gridded_forecast.region
+ gridded_catalog_data = observed_catalog.spatial_magnitude_counts()
+
+ # simply call likelihood test on catalog data and forecast
+ qs, obs_ll, simulated_ll = _binary_likelihood_test(
+ gridded_forecast.data,
+ gridded_catalog_data,
+ num_simulations=num_simulations,
+ seed=seed,
+ random_numbers=random_numbers,
+ use_observed_counts=True,
+ verbose=verbose,
+ normalize_likelihood=False
+ )
+
+ # populate result data structure
+ result = EvaluationResult()
+ result.test_distribution = simulated_ll
+ result.name = 'Binary CL-Test'
+ result.observed_statistic = obs_ll
+ result.quantile = qs
+ result.sim_name = gridded_forecast.name
+ result.obs_name = observed_catalog.name
+ result.status = 'normal'
+ result.min_mw = numpy.min(gridded_forecast.magnitudes)
+
+ return result
+
+
+def matrix_binary_t_test(target_event_rates1, target_event_rates2, n_obs, n_f1, n_f2, catalog, alpha=0.05):
+ """ Computes binary T test statistic by comparing two target event rate distributions.
+
+ We compare Forecast from Model 1 and with Forecast of Model 2. Information Gain per Active Bin (IGPA) is computed, which is then
+ employed to compute T statistic. Confidence interval of Information Gain can be computed using T_critical. For a complete
+ explanation see Rhoades, D. A., et al., (2011). Efficient testing of earthquake forecasting models. Acta Geophysica, 59(4),
+ 728-747. doi:10.2478/s11600-011-0013-5, and Bayona J.A. et al., (2022). Prospective evaluation of multiplicative hybrid earthquake
+ forecasting models in California. doi: 10.1093/gji/ggac018.
+
+ Args:
+ target_event_rates1 (numpy.ndarray): nd-array storing target event rates
+ target_event_rates2 (numpy.ndarray): nd-array storing target event rates
+ n_obs (float, int, numpy.ndarray): number of observed earthquakes, should be whole number and >= zero.
+ n_f1 (float): Total number of forecasted earthquakes by Model 1
+ n_f2 (float): Total number of forecasted earthquakes by Model 2
+ catalog: csep.core.catalogs.Catalog
+ alpha (float): tolerance level for the type-i error rate of the statistical test
+
+ Returns:
+ out (dict): relevant statistics from the t-test
+ """
+ # Some Pre Calculations - Because they are being used repeatedly.
+ N_p = n_obs
+ N = len(np.unique(np.nonzero(catalog.spatial_magnitude_counts().ravel()))) # Number of active bins
+ N1 = n_f1
+ N2 = n_f2
+ X1 = numpy.log(target_event_rates1) # Log of every element of Forecast 1
+ X2 = numpy.log(target_event_rates2) # Log of every element of Forecast 2
+
+
+ # Information Gain, using Equation (17) of Rhoades et al. 2011
+ information_gain = (numpy.sum(X1 - X2) - (N1 - N2)) / N
+
+ # Compute variance of (X1-X2) using Equation (18) of Rhoades et al. 2011
+ first_term = (numpy.sum(numpy.power((X1 - X2), 2))) / (N - 1)
+ second_term = numpy.power(numpy.sum(X1 - X2), 2) / (numpy.power(N, 2) - N)
+ forecast_variance = first_term - second_term
+
+ forecast_std = numpy.sqrt(forecast_variance)
+ t_statistic = information_gain / (forecast_std / numpy.sqrt(N))
+
+ # Obtaining the Critical Value of T from T distribution.
+ df = N - 1
+ t_critical = scipy.stats.t.ppf(1 - (alpha / 2), df) # Assuming 2-Tail Distribution for 2 tail, divide 0.05/2.
+
+ # Computing Information Gain Interval.
+ ig_lower = information_gain - (t_critical * forecast_std / numpy.sqrt(N))
+ ig_upper = information_gain + (t_critical * forecast_std / numpy.sqrt(N))
+
+ # If T value greater than T critical, Then both Lower and Upper Confidence Interval limits will be greater than Zero.
+ # If above Happens, Then It means that Forecasting Model 1 is better than Forecasting Model 2.
+ return {'t_statistic': t_statistic,
+ 't_critical': t_critical,
+ 'information_gain': information_gain,
+ 'ig_lower': ig_lower,
+ 'ig_upper': ig_upper}
+
+
+def binary_paired_t_test(forecast, benchmark_forecast, observed_catalog, alpha=0.05, scale=False):
+ """ Computes the binary t-test for gridded earthquake forecasts.
+
+ This score is positively oriented, meaning that positive values of the information gain indicate that the
+ forecast is performing better than the benchmark forecast
+
+ Args:
+ forecast (csep.core.forecasts.GriddedForecast): nd-array storing gridded rates, axis=-1 should be the magnitude column
+ benchmark_forecast (csep.core.forecasts.GriddedForecast): nd-array storing gridded rates, axis=-1 should be the magnitude
+ column
+ observed_catalog (csep.core.catalogs.AbstractBaseCatalog): number of observed earthquakes, should be whole number and >= zero.
+ alpha (float): tolerance level for the type-i error rate of the statistical test
+ scale (bool): if true, scale forecasted rates down to a single day
+
+ Returns:
+ evaluation_result: csep.core.evaluations.EvaluationResult
+ """
+
+ # needs some pre-processing to put the forecasts in the context that is required for the t-test. this is different
+ # for cumulative forecasts (eg, multiple time-horizons) and static file-based forecasts.
+ target_event_rate_forecast1p, n_fore1 = forecast.target_event_rates(observed_catalog, scale=scale)
+ target_event_rate_forecast2p, n_fore2 = benchmark_forecast.target_event_rates(observed_catalog, scale=scale)
+
+ target_event_rate_forecast1 = forecast.data.ravel()[np.unique(np.nonzero(observed_catalog.spatial_magnitude_counts().ravel()))]
+ target_event_rate_forecast2 = benchmark_forecast.data.ravel()[np.unique(np.nonzero(observed_catalog.spatial_magnitude_counts().
+ ravel()))]
+
+ # call the primative version operating on ndarray
+ out = matrix_binary_t_test(target_event_rate_forecast1, target_event_rate_forecast2, observed_catalog.event_count, n_fore1, n_fore2,
+ observed_catalog,
+ alpha=alpha)
+
+ # storing this for later
+ result = EvaluationResult()
+ result.name = 'binary paired T-Test'
+ result.test_distribution = (out['ig_lower'], out['ig_upper'])
+ result.observed_statistic = out['information_gain']
+ result.quantile = (out['t_statistic'], out['t_critical'])
+ result.sim_name = (forecast.name, benchmark_forecast.name)
+ result.obs_name = observed_catalog.name
+ result.status = 'normal'
+ result.min_mw = np.min(forecast.magnitudes)
+ return result
diff --git a/csep/core/catalogs.py b/csep/core/catalogs.py
index 25603ad8..3b0fecfe 100644
--- a/csep/core/catalogs.py
+++ b/csep/core/catalogs.py
@@ -737,16 +737,16 @@ def spatial_magnitude_counts(self, mag_bins=None, tol=0.00001):
""" Return counts of events in space-magnitude region.
We figure out the index of the polygons and create a map that relates the spatial coordinate in the
- Cartesian grid with with the polygon in region.
+ Cartesian grid with the polygon in region.
Args:
- mag_bins: magnitude bins (optional). tries to use magnitue bins associated with region
+ mag_bins (list, numpy.array): magnitude bins (optional), if empty tries to use magnitude bins associated with region
+ tol (float): tolerance for comparisons within magnitude bins
Returns:
output: unnormalized event count in each bin, 1d ndarray where index corresponds to midpoints
"""
-
# make sure region is specified with catalog
if self.region is None:
raise CSEPCatalogException("Cannot create binned rates without region information.")
@@ -784,8 +784,8 @@ def get_bvalue(self, mag_bins=None, return_error=True):
If that fails, uses the default magnitude bins provided in constants.
Args:
- reterr (bool): returns errors
mag_bins (list or array_like): monotonically increasing set of magnitude bin edges
+ return_error (bool): returns errors
Returns:
bval (float): b-value
@@ -824,6 +824,10 @@ def p():
else:
return bval
+ def b_positive(self):
+ """ Implements the b-positive indicator from Nicholas van der Elst """
+ pass
+
def plot(self, ax=None, show=False, extent=None, set_global=False, plot_args=None):
""" Plot catalog according to plate-carree projection
@@ -1028,9 +1032,10 @@ def read_catalog_line(line):
raise ValueError(
"catalog_id should be monotonically increasing and events should be ordered by catalog_id")
# yield final catalog, note: since this is just loading catalogs, it has no idea how many should be there
- yield cls(data=events, catalog_id=prev_id, **kwargs)
+ cat = cls(data=events, catalog_id=prev_id, **kwargs)
+ yield cat
- if os.path.isdir(filename):
+ elif os.path.isdir(filename):
raise NotImplementedError("reading from directory or batched files not implemented yet!")
@classmethod
diff --git a/csep/core/forecasts.py b/csep/core/forecasts.py
index 9d6599d9..4b2f863f 100644
--- a/csep/core/forecasts.py
+++ b/csep/core/forecasts.py
@@ -397,22 +397,23 @@ def load_ascii(cls, ascii_fname, start_date=None, end_date=None, name=None, swap
data = numpy.loadtxt(ascii_fname)
# this is very ugly, but since unique returns a sorted list, we want to get the index, sort that and then return
# from the original array. same for magnitudes below.
- all_polys = data[:,:4]
- all_poly_mask = data[:,-1]
+ all_polys = data[:, :4]
+ all_poly_mask = data[:, -1]
sorted_idx = numpy.sort(numpy.unique(all_polys, return_index=True, axis=0)[1], kind='stable')
unique_poly = all_polys[sorted_idx]
# gives the flag for a spatial cell in the order it was presented in the file
poly_mask = all_poly_mask[sorted_idx]
# create magnitudes bins using Mag_0, ignoring Mag_1 bc they are regular until last bin. we dont want binary search for this
- all_mws = data[:,-4]
+ all_mws = data[:, -4]
sorted_idx = numpy.sort(numpy.unique(all_mws, return_index=True)[1], kind='stable')
mws = all_mws[sorted_idx]
# csep1 stores the lat lons as min values and not (x,y) tuples
- bboxes = [tuple(itertools.product(bbox[:2], bbox[2:])) for bbox in unique_poly]
if swap_latlon:
- bboxes = [tuple(itertools.product(bbox[2:], bbox[:2])) for bbox in unique_poly]
+ bboxes = [((i[2], i[0]), (i[3], i[0]), (i[3], i[1]), (i[2], i[1])) for i in unique_poly]
+ else:
+ bboxes = [((i[0], i[2]), (i[0], i[3]), (i[1], i[3]), (i[1], i[2])) for i in unique_poly]
# the spatial cells are arranged fast in latitude, so this only works for the specific csep1 file format
- dh = float(unique_poly[0,3] - unique_poly[0,2])
+ dh = float(unique_poly[0, 3] - unique_poly[0, 2])
# create CarteisanGrid of points
region = CartesianGrid2D([Polygon(bbox) for bbox in bboxes], dh, mask=poly_mask)
# get dims of 2d np.array
@@ -648,7 +649,7 @@ def magnitude_counts(self):
self.get_expected_rates()
return self.expected_rates.magnitude_counts()
- def get_event_counts(self):
+ def get_event_counts(self, verbose=True):
""" Returns a numpy array containing the number of event counts for each catalog.
Note: This function can take a while to compute if called without already iterating through a forecast that
@@ -660,7 +661,13 @@ def get_event_counts(self):
"""
if len(self._event_counts) == 0:
# event counts is filled while iterating over the catalog
- for _ in self:
+ t0 = time.time()
+ for i, _ in enumerate(self):
+ if verbose:
+ tens_exp = numpy.floor(numpy.log10(i + 1))
+ if (i + 1) % 10 ** tens_exp == 0:
+ t1 = time.time()
+ print(f'Processed {i + 1} catalogs in {t1 - t0:.2f} seconds', flush=True)
pass
return numpy.array(self._event_counts)
@@ -696,7 +703,7 @@ def get_expected_rates(self, verbose=False):
tens_exp = numpy.floor(numpy.log10(i + 1))
if (i + 1) % 10 ** tens_exp == 0:
t1 = time.time()
- print(f'Processed {i + 1} catalogs in {t1 - t0} seconds', flush=True)
+ print(f'Processed {i + 1} catalogs in {t1 - t0:.3f} seconds', flush=True)
# after we iterate through the catalogs, we know self.n_cat
data = data / self.n_cat
self.expected_rates = GriddedForecast(self.start_time, self.end_time, data=data, region=self.region,
diff --git a/csep/core/regions.py b/csep/core/regions.py
index 48295b40..04795c01 100644
--- a/csep/core/regions.py
+++ b/csep/core/regions.py
@@ -8,6 +8,8 @@
import numpy
import numpy as np
import mercantile
+from shapely import geometry
+from shapely.ops import unary_union
# PyCSEP imports
from csep.utils.calc import bin1d_vec, cleaner_range, first_nonnan, last_nonnan
@@ -192,6 +194,90 @@ def italy_csep_collection_region(dh_scale=1, magnitudes=None, name="csep-italy-c
return relm_region
+def nz_csep_region(dh_scale=1, magnitudes=None, name="csep-nz", use_midpoint=True):
+ """ Return collection region for the New Zealand CSEP testing region
+
+ Args:
+ dh_scale (int): factor of two multiple to change the grid size
+ mangitudes (array-like): array representing the lower bin edges of the magnitude bins
+ name (str): human readable identifer
+ use_midpoints (bool): if true, treat values in file as midpoints. default = true.
+
+ Returns:
+ :class:`csep.core.spatial.CartesianGrid2D`
+
+ Raises:
+ ValueError: dh_scale must be a factor of two
+
+ """
+ if dh_scale % 2 != 0 and dh_scale != 1:
+ raise ValueError("dh_scale must be a factor of two or dh_scale must equal unity.")
+
+ # we can hard-code the dh because we hard-code the filename
+ dh = 0.1
+ root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
+ filepath = os.path.join(root_dir, 'artifacts', 'Regions', 'nz.testing.nodes.dat')
+ points = numpy.loadtxt(filepath)
+ if use_midpoint:
+ origins = numpy.array(points) - dh / 2
+ else:
+ origins = numpy.array(points)
+
+ if dh_scale > 1:
+ origins = increase_grid_resolution(origins, dh, dh_scale)
+ dh = dh / dh_scale
+
+ # turn points into polygons and make region object
+ bboxes = compute_vertices(origins, dh)
+ nz_region = CartesianGrid2D([Polygon(bbox) for bbox in bboxes], dh, name=name)
+
+ if magnitudes is not None:
+ nz_region.magnitudes = magnitudes
+
+ return nz_region
+
+def nz_csep_collection_region(dh_scale=1, magnitudes=None, name="csep-nz-collection", use_midpoint=True):
+ """ Return collection region for the New Zealand CSEP collection region
+
+ Args:
+ dh_scale (int): factor of two multiple to change the grid size
+ mangitudes (array-like): array representing the lower bin edges of the magnitude bins
+ name (str): human readable identifer
+ use_midpoints (bool): if true, treat values in file as midpoints. default = true.
+
+ Returns:
+ :class:`csep.core.spatial.CartesianGrid2D`
+
+ Raises:
+ ValueError: dh_scale must be a factor of two
+
+ """
+ if dh_scale % 2 != 0 and dh_scale != 1:
+ raise ValueError("dh_scale must be a factor of two or dh_scale must equal unity.")
+
+ # we can hard-code the dh because we hard-code the filename
+ dh = 0.1
+ root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
+ filepath = os.path.join(root_dir, 'artifacts', 'Regions', 'nz.collection.nodes.dat')
+ points = numpy.loadtxt(filepath)
+ if use_midpoint:
+ origins = numpy.array(points) - dh / 2
+ else:
+ origins = numpy.array(points)
+
+ if dh_scale > 1:
+ origins = increase_grid_resolution(origins, dh, dh_scale)
+ dh = dh / dh_scale
+
+ # turn points into polygons and make region object
+ bboxes = compute_vertices(origins, dh)
+ nz_collection_region = CartesianGrid2D([Polygon(bbox) for bbox in bboxes], dh, name=name)
+
+ if magnitudes is not None:
+ nz_collection_region.magnitudes = magnitudes
+
+ return nz_collection_region
+
def global_region(dh=0.1, name="global", magnitudes=None):
""" Creates a global region used for evaluating gridded forecasts on the global scale.
@@ -517,6 +603,9 @@ def __init__(self, polygons, dh, name='cartesian2d', mask=None):
# index values of polygons array into the 2d cartesian grid, based on the midpoint.
self.xs = xs
self.ys = ys
+ # Bounds [origin, top_right]
+ orgs = self.origins()
+ self.bounds = numpy.column_stack((orgs, orgs + dh))
def __eq__(self, other):
return self.to_dict() == other.to_dict()
@@ -542,14 +631,14 @@ def get_index_of(self, lons, lats):
raise ValueError("at least one lon and lat pair contain values that are outside of the valid region.")
if numpy.any(self.bbox_mask[idy, idx] == 1):
raise ValueError("at least one lon and lat pair contain values that are outside of the valid region.")
- return self.idx_map[idy,idx].astype(numpy.int)
+ return self.idx_map[idy, idx].astype(numpy.int64)
def get_location_of(self, indices):
"""
Returns the polygon associated with the index idx.
Args:
- idx: index of polygon in region
+ indices: index of polygon in region
Returns:
Polygon
@@ -719,35 +808,19 @@ def _build_bitmask_vec(self):
return a, xs, ys
- def tight_bbox(self):
- # creates tight bounding box around the region, probably a faster way to do this.
- ny, nx = self.idx_map.shape
- asc = []
- desc = []
- for j in range(ny):
- row = self.idx_map[j, :]
- argmin = first_nonnan(row)
- argmax = last_nonnan(row)
- # points are stored clockwise
- poly_min = self.polygons[int(row[argmin])].points
- asc.insert(0, poly_min[0])
- asc.insert(0, poly_min[1])
- poly_max = self.polygons[int(row[argmax])].points
- lat_0 = poly_max[2][1]
- lat_1 = poly_max[3][1]
- # last two points are 'right hand side of polygon'
- if lat_0 < lat_1:
- desc.append(poly_max[2])
- desc.append(poly_max[3])
- else:
- desc.append(poly_max[3])
- desc.append(poly_max[2])
- # close the loop
- poly = np.array(asc + desc)
+ def tight_bbox(self, precision=4):
+ # creates tight bounding box around the region
+ poly = np.array([i.points for i in self.polygons])
+
sorted_idx = np.sort(np.unique(poly, return_index=True, axis=0)[1], kind='stable')
unique_poly = poly[sorted_idx]
- unique_poly = np.append(unique_poly, [unique_poly[0, :]], axis=0)
- return unique_poly
+
+ # merges all the cell polygons into one
+ polygons = [geometry.Polygon(np.round(i, precision)) for i in unique_poly]
+ joined_poly = unary_union(polygons)
+ bounds = np.array([i for i in joined_poly.boundary.xy]).T
+
+ return bounds
def get_cell_area(self):
""" Compute the area of each polygon in sq. kilometers.
@@ -772,13 +845,16 @@ def geographical_area_from_bounds(lon1, lat1, lon2, lat2):
Returns:
Area of cell in Km2
"""
- earth_radius_km = 6371.
- R2 = earth_radius_km ** 2
- rad_per_deg = numpy.pi / 180.0e0
+ if lon1 == lon2 or lat1 == lat2:
+ return 0
+ else:
+ earth_radius_km = 6371.
+ R2 = earth_radius_km ** 2
+ rad_per_deg = numpy.pi / 180.0e0
- strip_area_steradian = 2 * numpy.pi * (1.0e0 - numpy.cos((90.0e0 - lat1) * rad_per_deg)) \
+ strip_area_steradian = 2 * numpy.pi * (1.0e0 - numpy.cos((90.0e0 - lat1) * rad_per_deg)) \
- 2 * numpy.pi * (1.0e0 - numpy.cos((90.0e0 - lat2) * rad_per_deg))
- area_km2 = strip_area_steradian * R2 / (360.0 / (lon2 - lon1))
+ area_km2 = strip_area_steradian * R2 / (360.0 / (lon2 - lon1))
return area_km2
def quadtree_grid_bounds(quadk):
diff --git a/csep/utils/basic_types.py b/csep/utils/basic_types.py
index 5e1f5aa5..c8c5168e 100644
--- a/csep/utils/basic_types.py
+++ b/csep/utils/basic_types.py
@@ -51,7 +51,7 @@ def add(self, data):
# need to know the range of the data to be inserted on discretized grid (min, max)
# this is to determine the discretization of the data
- eps=np.finfo(np.float).eps
+ eps = np.finfo(np.float64).eps
disc_min = np.floor((data_min+eps-self.anchor)*self.rec_dh)/self.rec_dh+self.anchor
disc_max = np.ceil((data_max+eps-self.anchor)*self.rec_dh)/self.rec_dh+self.anchor
diff --git a/csep/utils/calc.py b/csep/utils/calc.py
index e0071f47..dc208cda 100644
--- a/csep/utils/calc.py
+++ b/csep/utils/calc.py
@@ -79,9 +79,9 @@ def bin1d_vec(p, bins, tol=None, right_continuous=False):
else:
h = bins[1] - bins[0]
- a0_tol = numpy.abs(a0) * numpy.finfo(numpy.float).eps
- h_tol = numpy.abs(h) * numpy.finfo(numpy.float).eps
- p_tol = numpy.abs(p) * numpy.finfo(numpy.float).eps
+ a0_tol = numpy.abs(a0) * numpy.finfo(numpy.float64).eps
+ h_tol = numpy.abs(h) * numpy.finfo(numpy.float64).eps
+ p_tol = numpy.abs(p) * numpy.finfo(numpy.float64).eps
# absolute tolerance
if tol is None:
@@ -97,7 +97,7 @@ def bin1d_vec(p, bins, tol=None, right_continuous=False):
try:
idx[(idx < 0)] = -1
idx[(idx >= len(bins) - 1)] = len(bins) - 1
- except (TypeError):
+ except TypeError:
if idx >= len(bins) - 1:
idx = len(bins) - 1
if idx < 0:
@@ -105,12 +105,12 @@ def bin1d_vec(p, bins, tol=None, right_continuous=False):
else:
try:
idx[((idx < 0) | (idx >= len(bins)))] = -1
- except (TypeError):
+ except TypeError:
if idx < 0 or idx >= len(bins):
idx = -1
try:
- idx = idx.astype(numpy.int)
- except (AttributeError):
+ idx = idx.astype(numpy.int64)
+ except AttributeError:
idx = int(idx)
return idx
diff --git a/csep/utils/comcat.py b/csep/utils/comcat.py
index da0d2558..ecaea5f9 100644
--- a/csep/utils/comcat.py
+++ b/csep/utils/comcat.py
@@ -1,8 +1,9 @@
# python imports
-from datetime import datetime, timedelta
+from datetime import datetime, timedelta, timezone
from urllib import request
-from urllib.error import HTTPError
+from urllib.error import HTTPError, URLError
from urllib.parse import urlparse, urlencode
+import ssl
import json
import time
from collections import OrderedDict
@@ -293,6 +294,39 @@ def _search(**newargs):
except Exception as msg:
raise Exception(
'Error downloading data from url %s. "%s".' % (url, msg))
+
+ except ssl.SSLCertVerificationError as SSLe:
+ # Fails to verify SSL certificate, when there is a hostname mismatch
+ if SSLe.verify_code == 62:
+ try:
+ context = ssl._create_unverified_context()
+ fh = request.urlopen(url, timeout=TIMEOUT, context=context)
+ data = fh.read().decode('utf8')
+ fh.close()
+ jdict = json.loads(data)
+ events = []
+ for feature in jdict['features']:
+ events.append(SummaryEvent(feature))
+ except Exception as msg:
+ raise Exception(
+ 'Error downloading data from url %s. "%s".' % (url, msg))
+
+ except URLError as URLe:
+ # Fails to verify SSL certificate, when there is a hostname mismatch
+ if isinstance(URLe.reason, ssl.SSLCertVerificationError) and URLe.reason.verify_code == 62:
+ try:
+ context = ssl._create_unverified_context()
+ fh = request.urlopen(url, timeout=TIMEOUT, context=context)
+ data = fh.read().decode('utf8')
+ fh.close()
+ jdict = json.loads(data)
+ events = []
+ for feature in jdict['features']:
+ events.append(SummaryEvent(feature))
+ except Exception as msg:
+ raise Exception(
+ 'Error downloading data from url %s. "%s".' % (url, msg))
+
except Exception as msg:
raise Exception(
'Error downloading data from url %s. "%s".' % (url, msg))
@@ -358,7 +392,11 @@ def id(self):
Returns:
str: Authoritative origin ID.
"""
- return self._jdict['id']
+ ## comcat has an id key in each feature, whereas bsi has eventId within the properties dict
+ try:
+ return self._jdict['id']
+ except:
+ return self._jdict['properties']['eventId']
@property
def time(self):
@@ -367,6 +405,10 @@ def time(self):
datetime: Authoritative origin time.
"""
time_in_msec = self._jdict['properties']['time']
+ # Comcat gives the event time in a ms timestamp, whereas bsi in datetime isoformat
+ if isinstance(time_in_msec, str):
+ event_dtime = datetime.fromisoformat(time_in_msec).replace(tzinfo=timezone.utc)
+ time_in_msec = event_dtime.timestamp() * 1000
time_in_sec = time_in_msec // 1000
msec = time_in_msec - (time_in_sec * 1000)
dtime = datetime.utcfromtimestamp(time_in_sec)
diff --git a/csep/utils/plots.py b/csep/utils/plots.py
index c8c20153..f4369fb0 100644
--- a/csep/utils/plots.py
+++ b/csep/utils/plots.py
@@ -6,6 +6,7 @@
import scipy.stats
import matplotlib
+import matplotlib.lines
from matplotlib import cm
from matplotlib.collections import PatchCollection
import matplotlib.pyplot as pyplot
@@ -1512,6 +1513,7 @@ def plot_comparison_test(results_t, results_w=None, axes=None, plot_args=None):
return ax
+
def plot_poisson_consistency_test(eval_results, normalize=False, one_sided_lower=False, axes=None, plot_args=None, show=False):
""" Plots results from CSEP1 tests following the CSEP1 convention.
@@ -1555,7 +1557,7 @@ def plot_poisson_consistency_test(eval_results, normalize=False, one_sided_lower
figsize= plot_args.get('figsize', None)
title = plot_args.get('title', results[0].name)
title_fontsize = plot_args.get('title_fontsize', None)
- xlabel = plot_args.get('xlabel', 'X')
+ xlabel = plot_args.get('xlabel', '')
xlabel_fontsize = plot_args.get('xlabel_fontsize', None)
xticks_fontsize = plot_args.get('xticks_fontsize', None)
ylabel_fontsize = plot_args.get('ylabel_fontsize', None)
@@ -1565,6 +1567,7 @@ def plot_poisson_consistency_test(eval_results, normalize=False, one_sided_lower
hbars = plot_args.get('hbars', True)
tight_layout = plot_args.get('tight_layout', True)
percentile = plot_args.get('percentile', 95)
+ plot_mean = plot_args.get('mean', False)
if axes is None:
fig, ax = pyplot.subplots(figsize=figsize)
@@ -1578,6 +1581,7 @@ def plot_poisson_consistency_test(eval_results, normalize=False, one_sided_lower
if res.test_distribution[0] == 'poisson':
plow = scipy.stats.poisson.ppf((1 - percentile/100.)/2., res.test_distribution[1])
phigh = scipy.stats.poisson.ppf(1 - (1 - percentile/100.)/2., res.test_distribution[1])
+ mean = res.test_distribution[1]
observed_statistic = res.observed_statistic
# empirical distributions
else:
@@ -1594,12 +1598,14 @@ def plot_poisson_consistency_test(eval_results, normalize=False, one_sided_lower
else:
plow = numpy.percentile(test_distribution, (100 - percentile)/2.)
phigh = numpy.percentile(test_distribution, 100 - (100 - percentile)/2.)
+ mean = numpy.mean(res.test_distribution)
if not numpy.isinf(observed_statistic): # Check if test result does not diverges
- low = observed_statistic - plow
- high = phigh - observed_statistic
- ax.errorbar(observed_statistic, index, xerr=numpy.array([[low, high]]).T,
- fmt=_get_marker_style(observed_statistic, (plow, phigh), one_sided_lower),
+ percentile_lims = numpy.array([[mean - plow, phigh - mean]]).T
+ ax.plot(observed_statistic, index,
+ _get_marker_style(observed_statistic, (plow, phigh), one_sided_lower))
+ ax.errorbar(mean, index, xerr=percentile_lims,
+ fmt='ko'*plot_mean,
capsize=capsize, linewidth=linewidth, ecolor=color)
# determine the limits to use
xlims.append((plow, phigh, observed_statistic))
@@ -1883,3 +1889,265 @@ def add_labels_for_publication(figure, style='bssa', labelsize=16):
ax.annotate(f'({annot})', (0.025, 1.025), xycoords='axes fraction', fontsize=labelsize)
return
+
+
+def plot_consistency_test(eval_results, normalize=False, axes=None, one_sided_lower=False, variance=None, plot_args=None, show=False):
+ """ Plots results from CSEP1 tests following the CSEP1 convention.
+
+ Note: All of the evaluations should be from the same type of evaluation, otherwise the results will not be
+ comparable on the same figure.
+
+ Args:
+ eval_results (list): Contains the tests results :class:`csep.core.evaluations.EvaluationResult` (see note above)
+ normalize (bool): select this if the forecast likelihood should be normalized by the observed likelihood. useful
+ for plotting simulation based simulation tests.
+ one_sided_lower (bool): select this if the plot should be for a one sided test
+ plot_args(dict): optional argument containing a dictionary of plotting arguments, with keys as strings and items as described below
+
+ Optional plotting arguments:
+ * figsize: (:class:`list`/:class:`tuple`) - default: [6.4, 4.8]
+ * title: (:class:`str`) - default: name of the first evaluation result type
+ * title_fontsize: (:class:`float`) Fontsize of the plot title - default: 10
+ * xlabel: (:class:`str`) - default: 'X'
+ * xlabel_fontsize: (:class:`float`) - default: 10
+ * xticks_fontsize: (:class:`float`) - default: 10
+ * ylabel_fontsize: (:class:`float`) - default: 10
+ * color: (:class:`float`/:class:`None`) If None, sets it to red/green according to :func:`_get_marker_style` - default: 'black'
+ * linewidth: (:class:`float`) - default: 1.5
+ * capsize: (:class:`float`) - default: 4
+ * hbars: (:class:`bool`) Flag to draw horizontal bars for each model - default: True
+ * tight_layout: (:class:`bool`) Set matplotlib.figure.tight_layout to remove excess blank space in the plot - default: True
+
+ Returns:
+ ax (:class:`matplotlib.pyplot.axes` object)
+ """
+
+
+ try:
+ results = list(eval_results)
+ except TypeError:
+ results = [eval_results]
+ results.reverse()
+ # Parse plot arguments. More can be added here
+ if plot_args is None:
+ plot_args = {}
+ figsize= plot_args.get('figsize', None)
+ title = plot_args.get('title', results[0].name)
+ title_fontsize = plot_args.get('title_fontsize', None)
+ xlabel = plot_args.get('xlabel', '')
+ xlabel_fontsize = plot_args.get('xlabel_fontsize', None)
+ xticks_fontsize = plot_args.get('xticks_fontsize', None)
+ ylabel_fontsize = plot_args.get('ylabel_fontsize', None)
+ color = plot_args.get('color', 'black')
+ linewidth = plot_args.get('linewidth', None)
+ capsize = plot_args.get('capsize', 4)
+ hbars = plot_args.get('hbars', True)
+ tight_layout = plot_args.get('tight_layout', True)
+ percentile = plot_args.get('percentile', 95)
+ plot_mean = plot_args.get('mean', False)
+
+ if axes is None:
+ fig, ax = pyplot.subplots(figsize=figsize)
+ else:
+ ax = axes
+ fig = ax.get_figure()
+
+ xlims = []
+
+ for index, res in enumerate(results):
+ # handle analytical distributions first, they are all in the form ['name', parameters].
+ if res.test_distribution[0] == 'poisson':
+ plow = scipy.stats.poisson.ppf((1 - percentile/100.)/2., res.test_distribution[1])
+ phigh = scipy.stats.poisson.ppf(1 - (1 - percentile/100.)/2., res.test_distribution[1])
+ mean = res.test_distribution[1]
+ observed_statistic = res.observed_statistic
+
+ elif res.test_distribution[0] == 'negative_binomial':
+ var = variance
+ observed_statistic = res.observed_statistic
+ mean = res.test_distribution[1]
+ upsilon = 1.0 - ((var - mean) / var)
+ tau = (mean**2 /(var - mean))
+ phigh = scipy.stats.nbinom.ppf((1 - percentile/100.)/2., tau, upsilon)
+ plow = scipy.stats.nbinom.ppf(1 - (1 - percentile/100.)/2., tau, upsilon)
+
+ # empirical distributions
+ else:
+ if normalize:
+ test_distribution = numpy.array(res.test_distribution) - res.observed_statistic
+ observed_statistic = 0
+ else:
+ test_distribution = numpy.array(res.test_distribution)
+ observed_statistic = res.observed_statistic
+ # compute distribution depending on type of test
+ if one_sided_lower:
+ plow = numpy.percentile(test_distribution, 5)
+ phigh = numpy.percentile(test_distribution, 100)
+ else:
+ plow = numpy.percentile(test_distribution, 2.5)
+ phigh = numpy.percentile(test_distribution, 97.5)
+ mean = numpy.mean(res.test_distribution)
+
+ if not numpy.isinf(observed_statistic): # Check if test result does not diverges
+ percentile_lims = numpy.array([[mean - plow, phigh - mean]]).T
+ ax.plot(observed_statistic, index,
+ _get_marker_style(observed_statistic, (plow, phigh), one_sided_lower))
+ ax.errorbar(mean, index, xerr=percentile_lims,
+ fmt='ko'*plot_mean,
+ capsize=capsize, linewidth=linewidth, ecolor=color)
+ # determine the limits to use
+ xlims.append((plow, phigh, observed_statistic))
+ # we want to only extent the distribution where it falls outside of it in the acceptable tail
+ if one_sided_lower:
+ if observed_statistic >= plow and phigh < observed_statistic:
+ # draw dashed line to infinity
+ xt = numpy.linspace(phigh, 99999, 100)
+ yt = numpy.ones(100) * index
+ ax.plot(xt, yt, linestyle='--', linewidth=linewidth, color=color)
+
+ else:
+ print('Observed statistic diverges for forecast %s, index %i.'
+ ' Check for zero-valued bins within the forecast'% (res.sim_name, index))
+ ax.barh(index, 99999, left=-10000, height=1, color=['red'], alpha=0.5)
+
+
+ try:
+ ax.set_xlim(*_get_axis_limits(xlims))
+ except ValueError:
+ raise ValueError('All EvaluationResults have infinite observed_statistics')
+ ax.set_yticks(numpy.arange(len(results)))
+ ax.set_yticklabels([res.sim_name for res in results], fontsize=ylabel_fontsize)
+ ax.set_ylim([-0.5, len(results)-0.5])
+ if hbars:
+ yTickPos = ax.get_yticks()
+ if len(yTickPos) >= 2:
+ ax.barh(yTickPos, numpy.array([99999] * len(yTickPos)), left=-10000,
+ height=(yTickPos[1] - yTickPos[0]), color=['w', 'gray'], alpha=0.2, zorder=0)
+ ax.set_title(title, fontsize=title_fontsize)
+ ax.set_xlabel(xlabel, fontsize=xlabel_fontsize)
+ ax.tick_params(axis='x', labelsize=xticks_fontsize)
+ if tight_layout:
+ ax.figure.tight_layout()
+ fig.tight_layout()
+
+ if show:
+ pyplot.show()
+
+ return ax
+
+
+def plot_pvalues_and_intervals(test_results, ax, var=None):
+ """ Plots p-values and intervals for a list of Poisson or NBD test results
+
+ Args:
+ test_results (list): list of EvaluationResults for N-test. All tests should use the same distribution
+ (ie Poisson or NBD).
+ ax (matplotlib.axes.Axes.axis): axes to use for plot. create using matplotlib
+ var (float): variance of the NBD distribution. Must be used for NBD plots.
+
+ Returns:
+ ax (matplotlib.axes.Axes.axis): axes handle containing this plot
+
+ Raises:
+ ValueError: throws error if NBD tests are supplied without a variance
+ """
+
+ variance = var
+ percentile = 97.5
+ p_values = []
+
+ # Differentiate between N-tests and other consistency tests
+ if test_results[0].name == 'NBD N-Test' or test_results[0].name == 'Poisson N-Test':
+ legend_elements = [matplotlib.lines.Line2D([0], [0], marker='o', color='red', lw=0, label=r'p < 10e-5', markersize=10, markeredgecolor='k'),
+ matplotlib.lines.Line2D([0], [0], marker='o', color='#FF7F50', lw=0, label=r'10e-5 $\leq$ p < 10e-4', markersize=10, markeredgecolor='k'),
+ matplotlib.lines.Line2D([0], [0], marker='o', color='gold', lw=0, label=r'10e-4 $\leq$ p < 10e-3', markersize=10, markeredgecolor='k'),
+ matplotlib.lines.Line2D([0], [0], marker='o', color='white', lw=0, label=r'10e-3 $\leq$ p < 0.0125', markersize=10, markeredgecolor='k'),
+ matplotlib.lines.Line2D([0], [0], marker='o', color='skyblue', lw=0, label=r'0.0125 $\leq$ p < 0.025', markersize=10, markeredgecolor='k'),
+ matplotlib.lines.Line2D([0], [0], marker='o', color='blue', lw=0, label=r'p $\geq$ 0.025', markersize=10, markeredgecolor='k')]
+ ax.legend(handles=legend_elements, loc=4, fontsize=13, edgecolor='k')
+ # Act on Negative binomial tests
+ if test_results[0].name == 'NBD N-Test':
+ if var is None:
+ raise ValueError("var must not be None if N-tests use the NBD distribution.")
+
+ for i in range(len(test_results)):
+ mean = test_results[i].test_distribution[1]
+ upsilon = 1.0 - ((variance - mean) / variance)
+ tau = (mean**2 /(variance - mean))
+ phigh97 = scipy.stats.nbinom.ppf((1 - percentile/100.)/2., tau, upsilon)
+ plow97 = scipy.stats.nbinom.ppf(1 - (1 - percentile/100.)/2., tau, upsilon)
+ low97 = test_results[i].observed_statistic - plow97
+ high97 = phigh97 - test_results[i].observed_statistic
+ ax.errorbar(test_results[i].observed_statistic, (len(test_results)-1) - i, xerr=numpy.array([[low97, high97]]).T, capsize=4,
+ color='slategray', alpha=1.0, zorder=0)
+ p_values.append(test_results[i].quantile[1] * 2.0) # Calculated p-values according to Meletti et al., (2021)
+
+ if p_values[i] < 10e-5:
+ ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='red', markersize=8, zorder=2)
+ if p_values[i] >= 10e-5 and p_values[i] < 10e-4:
+ ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='#FF7F50', markersize=8, zorder=2)
+ if p_values[i] >= 10e-4 and p_values[i] < 10e-3:
+ ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='gold', markersize=8, zorder=2)
+ if p_values[i] >= 10e-3 and p_values[i] < 0.0125:
+ ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='white', markersize=8, zorder=2)
+ if p_values[i] >= 0.0125 and p_values[i] < 0.025:
+ ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='skyblue', markersize=8, zorder=2)
+ if p_values[i] >= 0.025:
+ ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='blue', markersize=8, zorder=2)
+ # Act on Poisson N-test
+ if test_results[0].name == 'Poisson N-Test':
+ for i in range(len(test_results)):
+ plow97 = scipy.stats.poisson.ppf((1 - percentile/100.)/2., test_results[i].test_distribution[1])
+ phigh97 = scipy.stats.poisson.ppf(1 - (1 - percentile/100.)/2., test_results[i].test_distribution[1])
+ low97 = test_results[i].observed_statistic - plow97
+ high97 = phigh97 - test_results[i].observed_statistic
+ ax.errorbar(test_results[i].observed_statistic, (len(test_results)-1) - i, xerr=numpy.array([[low97, high97]]).T, capsize=4,
+ color='slategray', alpha=1.0, zorder=0)
+ p_values.append(test_results[i].quantile[1] * 2.0)
+ if p_values[i] < 10e-5:
+ ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='red', markersize=8, zorder=2)
+ elif p_values[i] >= 10e-5 and p_values[i] < 10e-4:
+ ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='#FF7F50', markersize=8, zorder=2)
+ elif p_values[i] >= 10e-4 and p_values[i] < 10e-3:
+ ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='gold', markersize=8, zorder=2)
+ elif p_values[i] >= 10e-3 and p_values[i] < 0.0125:
+ ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='white', markersize=8, zorder=2)
+ elif p_values[i] >= 0.0125 and p_values[i] < 0.025:
+ ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='skyblue', markersize=8, zorder=2)
+ elif p_values[i] >= 0.025:
+ ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='blue', markersize=8, zorder=2)
+ # Operate on all other consistency tests
+ else:
+ for i in range(len(test_results)):
+ plow97 = numpy.percentile(test_results[i].test_distribution, 2.5)
+ phigh97 = numpy.percentile(test_results[i].test_distribution, 97.5)
+ low97 = test_results[i].observed_statistic - plow97
+ high97 = phigh97 - test_results[i].observed_statistic
+ ax.errorbar(test_results[i].observed_statistic, (len(test_results)-1) -i, xerr=numpy.array([[low97, high97]]).T, capsize=4,
+ color='slategray', alpha=1.0, zorder=0)
+ p_values.append(test_results[i].quantile)
+
+ if p_values[i] < 10e-5:
+ ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='red', markersize=8, zorder=2)
+ elif p_values[i] >= 10e-5 and p_values[i] < 10e-4:
+ ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='#FF7F50', markersize=8, zorder=2)
+ elif p_values[i] >= 10e-4 and p_values[i] < 10e-3:
+ ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='gold', markersize=8, zorder=2)
+ elif p_values[i] >= 10e-3 and p_values[i] < 0.025:
+ ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='white', markersize=8, zorder=2)
+ elif p_values[i] >= 0.025 and p_values[i] < 0.05:
+ ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='skyblue', markersize=8, zorder=2)
+ elif p_values[i] >= 0.05:
+ ax.plot(test_results[i].observed_statistic, (len(test_results)-1) - i, marker='o', color='blue', markersize=8, zorder=2)
+
+ legend_elements = [
+ matplotlib.lines.Line2D([0], [0], marker='o', color='red', lw=0, label=r'p < 10e-5', markersize=10, markeredgecolor='k'),
+ matplotlib.lines.Line2D([0], [0], marker='o', color='#FF7F50', lw=0, label=r'10e-5 $\leq$ p < 10e-4', markersize=10, markeredgecolor='k'),
+ matplotlib.lines.Line2D([0], [0], marker='o', color='gold', lw=0, label=r'10e-4 $\leq$ p < 10e-3', markersize=10, markeredgecolor='k'),
+ matplotlib.lines.Line2D([0], [0], marker='o', color='white', lw=0, label=r'10e-3 $\leq$ p < 0.025', markersize=10, markeredgecolor='k'),
+ matplotlib.lines.Line2D([0], [0], marker='o', color='skyblue', lw=0, label=r'0.025 $\leq$ p < 0.05', markersize=10, markeredgecolor='k'),
+ matplotlib.lines.Line2D([0], [0], marker='o', color='blue', lw=0, label=r'p $\geq$ 0.05', markersize=10, markeredgecolor='k')]
+
+ ax.legend(handles=legend_elements, loc=4, fontsize=13, edgecolor='k')
+
+ return ax
diff --git a/csep/utils/readers.py b/csep/utils/readers.py
index 753d57fa..4569634b 100644
--- a/csep/utils/readers.py
+++ b/csep/utils/readers.py
@@ -655,8 +655,9 @@ def jma_csv(fname):
return events
def _query_comcat(start_time, end_time, min_magnitude=2.50,
- min_latitude=31.50, max_latitude=43.00,
- min_longitude=-125.40, max_longitude=-113.10, extra_comcat_params=None):
+ min_latitude=31.50, max_latitude=43.00,
+ min_longitude=-125.40, max_longitude=-113.10,
+ max_depth=1000, extra_comcat_params=None):
"""
Return eventlist from ComCat web service.
@@ -668,6 +669,7 @@ def _query_comcat(start_time, end_time, min_magnitude=2.50,
max_latitude (float): maximum latitude of query
min_longitude (float): minimum longitude of query
max_longitude (float): maximum longitude of query
+ max_depth (float): maximum depth of query
extra_comcat_params (dict): additional parameters to pass to comcat search function
Returns:
@@ -679,10 +681,30 @@ def _query_comcat(start_time, end_time, min_magnitude=2.50,
eventlist = search(minmagnitude=min_magnitude,
minlatitude=min_latitude, maxlatitude=max_latitude,
minlongitude=min_longitude, maxlongitude=max_longitude,
- starttime=start_time, endtime=end_time, **extra_comcat_params)
+ starttime=start_time, endtime=end_time,
+ maxdepth=max_depth, **extra_comcat_params)
return eventlist
+def _query_bsi(start_time, end_time, min_magnitude=2.50,
+ min_latitude=32.0, max_latitude=50.0,
+ min_longitude=2.0, max_longitude=21.0,
+ max_depth=1000, extra_bsi_params=None):
+ """
+ Queries INGV Bulletino Sismico Italiano, revised version.
+ :return: csep.core.Catalog object
+ """
+ extra_bsi_params = extra_bsi_params or {}
+ bsi_host = 'webservices.rm.ingv.it'
+ extra_bsi_params.update({'host': bsi_host, 'limit': 15000, 'offset': 0})
+ # get eventlist from Comcat
+ eventlist = search(minmagnitude=min_magnitude,
+ minlatitude=min_latitude, maxlatitude=max_latitude,
+ minlongitude=min_longitude, maxlongitude=max_longitude,
+ maxdepth=max_depth,
+ starttime=start_time, endtime=end_time, **extra_bsi_params)
+
+ return eventlist
def _parse_datetime_to_zmap(date, time):
""" Helping function to return datetime in zmap format.
@@ -719,7 +741,7 @@ def _parse_datetime_to_zmap(date, time):
out['second'] = dt.second
return out
-def load_quadtree_forecast(ascii_fname):
+def quadtree_ascii_loader(ascii_fname):
""" Load quadtree forecasted stored as ascii text file
Note: This function is adapted form csep.forecasts.load_ascii
@@ -756,4 +778,33 @@ def load_quadtree_forecast(ascii_fname):
# reshape rates into correct 2d format
rates = data[:, -1].reshape(n_poly, n_mag_bins)
+ return rates, region, mws
+
+
+def quadtree_csv_loader(csv_fname):
+ """ Load quadtree forecasted stored as csv file
+
+ The format expects forecast as a comma separated file, in which first column corresponds to quadtree grid cell (quadkey).
+ The second and thrid columns indicate depth range.
+ The corresponding enteries in the respective row are forecast rates corresponding to the magnitude bins.
+ The first line of forecast is a header, and its format is listed here:
+ 'Quadkey', depth_min, depth_max, Mag_0, Mag_1, Mag_2, Mag_3 , ....
+ Quadkey is a string. Rest of the values are floats.
+ For the purposes of defining region objects quadkey is used.
+
+ We assume that the starting value of magnitude bins are provided in the header.
+ Args:
+ csv_fname: file name of csep forecast in csv format
+ Returns:
+ rates, region, mws (numpy.ndarray, QuadtreeRegion2D, numpy.ndarray): rates, region, and magnitude bins needed
+ to define QuadTree forecasts
+ """
+
+ data = numpy.genfromtxt(csv_fname, dtype='str', delimiter=',')
+ quadkeys = data[1:, 0]
+ mws = data[0, 3:]
+ rates = data[1:, 3:]
+ rates = rates.astype(float)
+ region = QuadtreeGrid2D.from_quadkeys(quadkeys, magnitudes=mws)
+
return rates, region, mws
\ No newline at end of file
diff --git a/docs/reference/api_reference.rst b/docs/reference/api_reference.rst
index 9f8a6b36..6e3ce176 100644
--- a/docs/reference/api_reference.rst
+++ b/docs/reference/api_reference.rst
@@ -16,6 +16,7 @@ Loading catalogs and forecasts
load_stochastic_event_sets
load_catalog
query_comcat
+ query_bsi
load_gridded_forecast
load_catalog_forecast
diff --git a/examples/tutorials/catalog_filtering.py b/examples/tutorials/catalog_filtering.py
index 406ee565..a21937ff 100644
--- a/examples/tutorials/catalog_filtering.py
+++ b/examples/tutorials/catalog_filtering.py
@@ -30,8 +30,9 @@
# Load catalog
# ------------
#
-# PyCSEP provides access to the ComCat web API using :func:`csep.query_comcat`. This function requires a
-# :class:`datetime.datetime` to specify the start and end dates.
+# PyCSEP provides access to the ComCat web API using :func:`csep.query_comcat` and to the Bollettino Sismico Italiano
+# API using :func:`csep.query_bsi`. These functions require a :class:`datetime.datetime` to specify the start and end
+# dates.
start_time = csep.utils.time_utils.strptime_to_utc_datetime('2019-01-01 00:00:00.0')
end_time = csep.utils.time_utils.utc_now_datetime()
diff --git a/notebooks/CSEP_tests.ipynb b/notebooks/CSEP_tests.ipynb
index da30f86c..b377641c 100644
--- a/notebooks/CSEP_tests.ipynb
+++ b/notebooks/CSEP_tests.ipynb
@@ -72,7 +72,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "Fetched ComCat catalog in 5.9399449825286865 seconds.\n",
+ "Fetched ComCat catalog in 5.9891064167022705 seconds.\n",
"\n",
"Downloaded catalog from ComCat with following parameters\n",
"Start Date: 2010-01-10 00:27:39.320000+00:00\n",
@@ -134,6 +134,33 @@
"\n",
"where $\\lambda(m_i, s_j)$ and $\\omega(m_i, s_j)$ are the expected counts from the forecast and observed counts in cell $m_i, s_j$ respectively. We can calculate the likelihood directly given the forecast and discretised observations.\n",
"\n",
+ "#### Binary consistency tests\n",
+ "\n",
+ "It is known that the Poisson distribution insufficiently captures the variability of earthquakes, as it could be dispersed with respect to the true distribution of seismicity, especially in the presence of clustered earthquakes (Werner and Sornette, 2008; Lombardi and Marzocchi, 2010; Nandan et al., 2019). Therefore, CSEP has recently introduced a set of new consistency tests based on the negative binomial distribution (NBD) and a binary likelihood function, with the aim of reducing the sensitivity of traditional Poisson-based tests to clustering (Bayona et al., 2022).\n",
+ "\n",
+ "The NBD has been shown to better describe non-declustered seismicity, because it has a greater variance than the Poisson distribution to account for spatiotemporal earthquake clustering (Werner et al., 2011a,b). Hence, one can fit a NBD to the rates of observed earthquakes in each forecast's testing region to evaluate number consistencies between forecasts and observations. The probability mass function of an NBD is defined by:\n",
+ "\n",
+ "$P (\\omega\\hspace{0.1cm}|\\hspace{0.1cm}\\tau, \\nu) = \\frac{\\Gamma(\\tau + \\omega)}{\\Gamma(\\tau)\\omega!} \\nu^\\omega (1-\\nu)^{\\omega},$\n",
+ "\n",
+ "where $\\omega = 0,1,2,...$ is the number of events, $\\tau > 0$ and $0 \\leq \\nu \\leq 1$ are parameters, and $\\Gamma$ is the Gamma function. The mean $\\mu$ and variance $\\sigma^2$ of the NBD are given by\n",
+ "\n",
+ "$\\mu = \\tau\\frac{1 - \\nu}{\\nu}; \\hspace{0.1cm} \\sigma^2=\\tau \\frac{1 - \\nu}{\\nu^2}$.\n",
+ "\n",
+ "Following the approach by Werner et al. (2011b), one can use the expected number earthquakes by the forecast as the mean and estimate the variance from historical catalogs.\n",
+ "\n",
+ "The binary likelihood function can also make the assumption that earthquakes are Poisson distributed less critical by calculating the probability of observing one or more earthquakes in a forecast cell/bin, rather than the likelihood of observing $\\omega =$ 1,2, .., n events. The probability of observing $\\omega = $ 0 earthquakes given an expected number/rate $\\lambda$, assuming a Poisson distribution, is P$_\\mathrm{0}$ = exp(-$\\lambda)$, while the probability of observing one or more events is P$_\\mathrm{_1}$ = 1 - P$_\\mathrm{0}$ = 1 - exp($-\\lambda)$. Accordingly, one can compute the log-likelihood score in each cell/bin based on the binary (or Bernoulli) distribution as:\n",
+ "\n",
+ "$$ L(\\boldsymbol{\\Omega} | \\boldsymbol{\\Lambda}) = X(m_i, s_j) \\hspace{0.1cm} \\mathrm{log} \\hspace{0.1cm} \\mathrm{P_1} + (1 -X(m_i, s_j)) \\hspace{0.1cm} \\mathrm{log} \\hspace{0.1cm} \\mathrm{P_0} = X(m_i, s_j) \\hspace{0.1cm} \\mathrm{log} \\hspace{0.1cm} (1-\\mathrm{exp}(-\\lambda(m_i, s_j))) + (1 -X_i) \\hspace{0.1cm} \\mathrm{log} \\hspace{0.1cm} (\\mathrm{exp}(-\\lambda(m_i, s_j)))$$\n",
+ "\n",
+ "where the first term represents the contribution to the score if a bin $(m_i, s_j)$ contains one or more events, i.e. $X(m_i, s_j)$ = 1, and the second term is the contribution if that cell/bin contains no earthquakes, i.e. $X(m_i, s_j)$ = 0.\n",
+ "\n",
+ "Similar to the example above, the joint likelihood of observing events in individual bins, based on the binary likelihood function, is the sum of each individual log score, i.e.:\n",
+ "\n",
+ "\n",
+ "$$ L(\\boldsymbol{\\Omega} | \\boldsymbol{\\Lambda}) = \\sum_{m_i , s_j \\in \\boldsymbol{R}} \\hspace{0.05cm}[X(m_i, s_j) \\hspace{0.1cm} \\mathrm{log} \\hspace{0.1cm} (1-\\mathrm{exp}(-\\lambda(m_i, s_j))) + (1 - X(m_i, s_j)) \\hspace{0.1cm} \\mathrm{log} \\hspace{0.1cm} (\\mathrm{exp}(-\\lambda(m_i, s_j)))]$$\n",
+ "\n",
+ "\n",
+ "\n",
" Forecast uncertainty \n",
"\n",
"A simulation based approach is used to account for uncertainty in the forecast. We simulate realizations of catalogs that are consistent with the forecast to obtain distributions of scores. In the pyCSEP package, as in the original CSEP tests, simulation is carried out using the cumulative probability density of the forecast obtained by ordering the rates in each bin. We shall call $F_{m_is_j}$ the cumulative probability density in cell $(m_i, s_j)$. The simulation approach then works as follows:\n",
@@ -141,6 +168,7 @@
"* For each forecast bin, draw a random number $z$ from a uniform distribution between 0 and 1\n",
"* Assign this event to a space-magnitude bin through the inverse cumulative density distribution at this point $F^{-1}_{m_i, s_j}(z)$\n",
"* Iterate over all simulated events to generate a catalog containing $N_{sim}$ events consistent with the forecast\n",
+ "* In the case of binary tests, simulate catalogs that are consistent with the number of active cells/bins.\n",
"\n",
"For each of these tests, we can plot the distribution of likelihoods computed from theses simulated catalogs relative to the observations using the `plots.plot_poisson_consistency_test` function. We also calculate a quantile score to diagnose a particular forecast with repsect. The number of simulations can be supplied to the Poisson consistency test functions using the `num_simulations` argument: for best results we suggest 100,000 simulations to ensure convergence.\n",
"\n",
@@ -158,7 +186,9 @@
"\n",
"Whether a forecast can be said to pass an evaluation depends on the significance level chosen for the testing process. The quantile score explicitly tells us something about the significance of the result: the observation is consistent with the forecast with $100(1-\\gamma)\\%$ confidence (Zechar, 2011). Low $\\gamma$ values demonstrate that the observed likelihood score is less than most of the simulated catalogs. The consistency tests, excluding the N-test, are considered to be one-sided tests: values which are too small are ruled inconsistent with the forecast, but very large values may not necessarily be inconsistent with the forecast and additional testing should be used to further clarify this (Schorlemmer et al, 2007). \n",
"\n",
- "Different CSEP experiments have used different sensitivity values. Schorlemmer et al (2010b) consider $\\gamma \\lt 0.05$ while the implementation in the Italian CSEP testing experiment uses $\\gamma$ < 0.01 (Taroni et al, 2018). However, the consistency tests are most useful as diagnostic tools where the quantile score assesses the level of consistency between observations and data. Temporal variations in seismicity make it difficult to formally reject a model from a consistency test over a single evaluation period."
+ "Different CSEP experiments have used different sensitivity values. Schorlemmer et al (2010b) consider $\\gamma \\lt 0.05$ while the implementation in the Italian CSEP testing experiment uses $\\gamma$ < 0.01 (Taroni et al, 2018). However, the consistency tests are most useful as diagnostic tools where the quantile score assesses the level of consistency between observations and data. Temporal variations in seismicity make it difficult to formally reject a model from a consistency test over a single evaluation period. \n",
+ "\n",
+ "Performing multiple tests among samples of the same distribution increases the probability of observing at least one rare events, and consequently, increases the probability of obtaining an apparently statistically significant result (Kato, 2019). Therefore, CSEP has recently included consistency test results at a Bonferroni-adjusted significance level $\\gamma_{B}$ = 0.05 /2 = 0.025 to control the overall type II error rate, that is, the false-positive rate or the \"false-inconsistency\" rate (see Bayona et al., 2022)."
]
},
{
@@ -187,7 +217,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAQ8klEQVR4nO3de7BeVX3G8e9DQrkE5GIQxFuoBZEqpSZa8TahUrVYrResKFbRWiuiaGeoiGEg9VKlMLXeEMGZiFVq63hFxpqKAo4FQ4IhhFGpihRHUHBQBGwKYfWPd0VfD+eeQ87vnHw/M++c9a6919prnX3Oec7e7373m9YakiRVs8NsD0CSpNEYUJKkkgwoSVJJBpQkqSQDSpJUkgElSSrJgJIklWRASZJKMqAkTUmSPZO8blu31fbHgJK2M0lenOTcJG+eZhd7AtMNma1pq+2MASVtR5KcCDwKWAW8YJrdvBt4ZJL1Sc7s/b4syZpe9+EkC5IsSnJRkquTbEzy4tHaSmOJ9+KTtg9JdgX+BzgQWAjs1Vq7bhr9LAG+2Fp7TH/+aOAfgRe01u5OcjZwBXAn8KzW2l/39fYA9hpuK41n4WwPQNI2cwRwQ2vttv78luGFSb4C7DdKuxWttc+P0+/TgaXAlUkAdgF+ClwAnJXkDAah9PUke23lHLQdMaCk7cfTgNVjLWytHTnNfgOc31o75T4LkqXAUcC7kqwGPjbNbWg75GtQ0vbjScA3k+wDkOQBSQ6ZRj+/BHYfen4xcHSSB/V+907yiCT7A3e11j4OnAU8bpS20pg8gpK2A0mWA3cDK4BHJfkGcCFwzlT7aq39LMk3kmwEvtRa+7skpwKrk+zQt3MCsAdwZpJ7e93xo7WdiflpfvIiCUlSSZ7ikySVZEBJkkoyoCRJJRlQkqSSvIpPACxevLgtWbJktochaR5Zt27dra21fabb3oASAEuWLGHt2rWzPQxJ80iSG7amvaf4JEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgNG0rV66c7SFI2oa29e98WmvbdIOqadmyZW3t2rVTapMEf3400n5n7cdP7vzJfer3XbQvN5908yyMSDNlqr/zSda11pZNd3sTHkElWZJk4xQGtDLJSdMd0FA/b0qy61TXS/LWrd32JLZ5cJL1Sb6V5JFJXjqDff8wyeIZ6OeOmRiPNFWjhdN49dJYFs72AMbxJuDjwF1TXO+twD9MZUNJFrTWNk+hyfOAz7fWTk+yHHgpcMH9uL2yli9fPttDUDVHjL3InxdNxWRfg1qQ5Lwk1yZZnWSXfuTwH0nWJfl6koNHNkpySZL3JLksybeTPD7JZ5L8d5J39HUWJbkoydVJNiZ5cZITgf2BryX5Wl/vGUkuT3JVkk8l2W3kekneDezSj24+0du9LMmaXvfhJAt6/R1J3pbkm8Dho006yWlJruzjOjcDRzEIxVf3sb0beGrv/2+TLEhyZm+3Icnf9L6W9zFeAFwz2ryHNv2GPs9rtnxfk+yd5HO9zyuSHNrrd0uyqq+7IckLR8xhcf++PXuU+b0mydoka2+55ZZJ/ihI0jbSWhv3ASwB7gEO68//HXgZcDFwYK/7I+CrvbwSOKmXLwHO6OU3Aj8GHgzsBPwIeCDwQuC8oe3t0b/+EFjcy4uBy4BF/fnJwGkj1+vP7xgqPxq4ENixPz8beHkvN+AvJpj73kPlfwGeM8oclwNfHFrvNcCpvbwTsBY4oK93J3BAXzbevN/Qy68DPtLL7wdO7+U/Btb38hnAPw/1s9eW7wOwL/BN4E8m2s9Lly5tUzX48ZF+GysZ86G5baq/88DaNsHfnvEekz3Fd31rbX0vr2MQWk8CPpVkyzo7jdH2C/3rNcC1rbWbAJL8AHhYrz8ryRn9D/3XR+njicAhwDf69n4HuHwS4346sBS4srfbBfhpX7YZ+PQE7Y9I8mZgV2Bv4FoGgTeeZwCHJjm6P98DOBD4P2BNa+36Xj/evD/Tv64DXtDLT2EQarTWvprkgUn2AI4EjtnSsLV2Wy/uyOCfiBNaa5dOMGZJKmeyAbVpqLyZwX/mP2+tHTaFtveO6OdeYGFr7bokS4GjgHclWd1ae9uIPgL8Z2vtJZMc73C781trp4yy7H/bOK8DJdmZwRHXstbajUlWAjtPcptvaK19eUR/yxkcQQEwwby3fJ8285t99Ov/BIa0Xj/aZTX3MAi4ZwIGlLaZfRftO+ZVfNJUTPd9ULcD1yd5EUB/beYPptNRkv2Bu1prHwfOAh7XF/0S2L2XrwCenOT3eptdkxw0ynoAdyfZsZcvBo5O8qDebu8kj5jk0LaE0a1JdgOOHmO9kdv/MnD8ljEkOSjJopGNxpn3WC4Dju1tlwO3ttZuB1YDrx/qd69ebMCrgIOTvGWCvqfl9NNPvz+61Rx380k3005v93l4ifnct61/57fmKr5jgQ8lOZXB6aRPAldPo5/HAmcmuRe4Gzi+158LfCnJTa21I5IcB/xrki2nEk8Frhu5Xn++IclVrbVj+/hWJ9mh938CcMNEg2qt/TzJeQxOxf0QuHKMVTcA9yS5Gvgo8F4Gp0CvyuC84i0Mrvqb7LzHshJYlWQDgysWX9Hr3wF8MIO3AmwG/p5+irC1tjnJMcCFSW5vrZ09wTamxDfqStsX36irWTGdN+pK0nhyf79RV5Kk2VD5jbrbTJLPMrgUfNjJIy90kCRtOwYU0Fp7/myPQZL02zzFJ0kqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklpbU222NQAUluAW6Y7XEAi4FbZ3sQ25Dznd+29/k+orW2z3Q7M6BUSpK1rbVlsz2ObcX5zm/Od+t4ik+SVJIBJUkqyYBSNefO9gC2Mec7vznfreBrUJKkkjyCkiSVZEBJkkoyoDRrkrw9yYYk65OsTrL/0LJTknwvyXeTPHOofmmSa/qy9yXJ7Ix+apKcmeQ7fb6fTbJnr1+S5Ff9e7A+yTlDbebkXGHs+fZl82rfAiR5UZJrk9ybZNlQ/Xzdv6POty+buf3bWvPhY1YewAOGyicC5/TyIcDVwE7AAcD3gQV92RrgcCDAl4A/ne15THKuzwAW9vIZwBm9vATYOEabOTnXCeY77/ZtH/ujgUcBlwDLhurn6/4da74zun89gtKsaa3dPvR0EbDlip0/Bz7ZWtvUWrse+B7whCQPZhBql7fBT/zHgOdtyzFPV2ttdWvtnv70CuCh460/l+cK48533u1bgNbat1tr353s+vN4vjO6fw0ozaok70xyI3AscFqvfghw49BqP+p1D+nlkfVzzasY/Ae5xQFJvpXk0iRP7XXzZa7w2/Od7/t2NPN9/w6b0f27cEaHJo2Q5CvAfqMsWtFa+3xrbQWwIskpwOuB0xmcAhipjVNfwkRz7eusAO4BPtGX3QQ8vLX2syRLgc8l+X2KzxWmPd85uW9hcvMdxbzev6M1G6Vu2vvXgNL9qrV25CRXvQC4iEFA/Qh42NCyhwI/7vUPHaW+hInmmuQVwJ8BT++nOWitbQI29fK6JN8HDqL4XGF682WO7luY0s/ycJt5u3/HMKP711N8mjVJDhx6+lzgO738BeCYJDslOQA4EFjTWrsJ+GWSJ/YrgF4OjPWfXClJngWcDDy3tXbXUP0+SRb08u8ymOsP5vJcYez5Mg/37Xjm6/4dx8zu39m+GsTH9vsAPg1sBDYAFwIPGVq2gsEVQN9l6GofYFlv833gA/S7oVR/MHix+EZgfX9suWLxhcC1DK58ugp4zlyf63jznY/7to/9+QyOEjYBPwG+PM/376jznen9662OJEkleYpPklSSASVJKsmAkiSVZEBJkkoyoCRJJRlQ0hyS5I77oc+PJjm6lz+S5JCpbivJcUk+0MuvTfLyXr5k5N2uZ2jM90u/qsU7SUj6tdbaq2egj3MmXkuamEdQ0hyX5LAkVwx99tJevf7xve7yDD6faeMk+rrPkUmSxb2PZ/c7I3w6yZX98eRR+liZ5KShqhclWZPkui03S02yc5JV/fOBvpXkiAnqd0nyyT6ffwN2mf53THOFASXNfR8DTm6tHQpcw+B+hgCrgNe21g4HNk+n4yT7MrhH4mmttYuA9wLvaa09nsFdEj4yiW4WttaeALxpaGwnALTWHgu8BDg/yc7j1B8P3NXn+E5g6XTmo7nFU3zSHJZkD2DP1tqlvep84FMZfILt7q21/+r1FzC4cetU7AhcDJww1P+RwCFDH4b6gCS7T9DPZ/rXdQw+wA/gKcD7AVpr30lyA4ObqI5V/zTgfb1+Q5INU5yL5iADSpqfxvw47SSrgD8EftxaO2qcPu5hECrPBLYE1A7A4a21X43oc7yxbOpfN/ObvzljNRivI+/Ltp3xFJ80h7XWfgHcNvRBeH8JXNpau41+9+hef8xQm1e21g6bIJxgEAivAg5O8pZet5rB53YBg9e/pjn0yxh8SCVJDgIezuDmopOpfwxw6DS3qznEIyhpbtk1yfAnk/4T8ArgnCS7Aj8AXtmX/RVwXpI7gUuAX0x1Y621zUmOAS5McjtwIvDBfoptIYPgeO005nF2H/M1DI7UjmutbUoyVv2HgFV9u+uBNdPYpuYY72YuzVNJdmut3dHLbwEe3Fp74ywPS5o0j6Ck+evZSU5h8Ht+A3Dc7A5HmhqPoCRJJXmRhCSpJANKklSSASVJKsmAkiSVZEBJkkr6f1jYDgSAZ3c+AAAAAElFTkSuQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAQ8klEQVR4nO3de7BeVX3G8e9DQrkE5GIQxFuoBZEqpSZa8TahUrVYrResKFbRWiuiaGeoiGEg9VKlMLXeEMGZiFVq63hFxpqKAo4FQ4IhhFGpihRHUHBQBGwKYfWPd0VfD+eeQ87vnHw/M++c9a6919prnX3Oec7e7373m9YakiRVs8NsD0CSpNEYUJKkkgwoSVJJBpQkqSQDSpJUkgElSSrJgJIklWRASZJKMqAkTUmSPZO8blu31fbHgJK2M0lenOTcJG+eZhd7AtMNma1pq+2MASVtR5KcCDwKWAW8YJrdvBt4ZJL1Sc7s/b4syZpe9+EkC5IsSnJRkquTbEzy4tHaSmOJ9+KTtg9JdgX+BzgQWAjs1Vq7bhr9LAG+2Fp7TH/+aOAfgRe01u5OcjZwBXAn8KzW2l/39fYA9hpuK41n4WwPQNI2cwRwQ2vttv78luGFSb4C7DdKuxWttc+P0+/TgaXAlUkAdgF+ClwAnJXkDAah9PUke23lHLQdMaCk7cfTgNVjLWytHTnNfgOc31o75T4LkqXAUcC7kqwGPjbNbWg75GtQ0vbjScA3k+wDkOQBSQ6ZRj+/BHYfen4xcHSSB/V+907yiCT7A3e11j4OnAU8bpS20pg8gpK2A0mWA3cDK4BHJfkGcCFwzlT7aq39LMk3kmwEvtRa+7skpwKrk+zQt3MCsAdwZpJ7e93xo7WdiflpfvIiCUlSSZ7ikySVZEBJkkoyoCRJJRlQkqSSvIpPACxevLgtWbJktochaR5Zt27dra21fabb3oASAEuWLGHt2rWzPQxJ80iSG7amvaf4JEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgNG0rV66c7SFI2oa29e98WmvbdIOqadmyZW3t2rVTapMEf3400n5n7cdP7vzJfer3XbQvN5908yyMSDNlqr/zSda11pZNd3sTHkElWZJk4xQGtDLJSdMd0FA/b0qy61TXS/LWrd32JLZ5cJL1Sb6V5JFJXjqDff8wyeIZ6OeOmRiPNFWjhdN49dJYFs72AMbxJuDjwF1TXO+twD9MZUNJFrTWNk+hyfOAz7fWTk+yHHgpcMH9uL2yli9fPttDUDVHjL3InxdNxWRfg1qQ5Lwk1yZZnWSXfuTwH0nWJfl6koNHNkpySZL3JLksybeTPD7JZ5L8d5J39HUWJbkoydVJNiZ5cZITgf2BryX5Wl/vGUkuT3JVkk8l2W3kekneDezSj24+0du9LMmaXvfhJAt6/R1J3pbkm8Dho006yWlJruzjOjcDRzEIxVf3sb0beGrv/2+TLEhyZm+3Icnf9L6W9zFeAFwz2ryHNv2GPs9rtnxfk+yd5HO9zyuSHNrrd0uyqq+7IckLR8xhcf++PXuU+b0mydoka2+55ZZJ/ihI0jbSWhv3ASwB7gEO68//HXgZcDFwYK/7I+CrvbwSOKmXLwHO6OU3Aj8GHgzsBPwIeCDwQuC8oe3t0b/+EFjcy4uBy4BF/fnJwGkj1+vP7xgqPxq4ENixPz8beHkvN+AvJpj73kPlfwGeM8oclwNfHFrvNcCpvbwTsBY4oK93J3BAXzbevN/Qy68DPtLL7wdO7+U/Btb38hnAPw/1s9eW7wOwL/BN4E8m2s9Lly5tUzX48ZF+GysZ86G5baq/88DaNsHfnvEekz3Fd31rbX0vr2MQWk8CPpVkyzo7jdH2C/3rNcC1rbWbAJL8AHhYrz8ryRn9D/3XR+njicAhwDf69n4HuHwS4346sBS4srfbBfhpX7YZ+PQE7Y9I8mZgV2Bv4FoGgTeeZwCHJjm6P98DOBD4P2BNa+36Xj/evD/Tv64DXtDLT2EQarTWvprkgUn2AI4EjtnSsLV2Wy/uyOCfiBNaa5dOMGZJKmeyAbVpqLyZwX/mP2+tHTaFtveO6OdeYGFr7bokS4GjgHclWd1ae9uIPgL8Z2vtJZMc73C781trp4yy7H/bOK8DJdmZwRHXstbajUlWAjtPcptvaK19eUR/yxkcQQEwwby3fJ8285t99Ov/BIa0Xj/aZTX3MAi4ZwIGlLaZfRftO+ZVfNJUTPd9ULcD1yd5EUB/beYPptNRkv2Bu1prHwfOAh7XF/0S2L2XrwCenOT3eptdkxw0ynoAdyfZsZcvBo5O8qDebu8kj5jk0LaE0a1JdgOOHmO9kdv/MnD8ljEkOSjJopGNxpn3WC4Dju1tlwO3ttZuB1YDrx/qd69ebMCrgIOTvGWCvqfl9NNPvz+61Rx380k3005v93l4ifnct61/57fmKr5jgQ8lOZXB6aRPAldPo5/HAmcmuRe4Gzi+158LfCnJTa21I5IcB/xrki2nEk8Frhu5Xn++IclVrbVj+/hWJ9mh938CcMNEg2qt/TzJeQxOxf0QuHKMVTcA9yS5Gvgo8F4Gp0CvyuC84i0Mrvqb7LzHshJYlWQDgysWX9Hr3wF8MIO3AmwG/p5+irC1tjnJMcCFSW5vrZ09wTamxDfqStsX36irWTGdN+pK0nhyf79RV5Kk2VD5jbrbTJLPMrgUfNjJIy90kCRtOwYU0Fp7/myPQZL02zzFJ0kqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklGVCSpJIMKElSSQaUJKkkA0qSVJIBJUkqyYCSJJVkQEmSSjKgJEklpbU222NQAUluAW6Y7XEAi4FbZ3sQ25Dznd+29/k+orW2z3Q7M6BUSpK1rbVlsz2ObcX5zm/Od+t4ik+SVJIBJUkqyYBSNefO9gC2Mec7vznfreBrUJKkkjyCkiSVZEBJkkoyoDRrkrw9yYYk65OsTrL/0LJTknwvyXeTPHOofmmSa/qy9yXJ7Ix+apKcmeQ7fb6fTbJnr1+S5Ff9e7A+yTlDbebkXGHs+fZl82rfAiR5UZJrk9ybZNlQ/Xzdv6POty+buf3bWvPhY1YewAOGyicC5/TyIcDVwE7AAcD3gQV92RrgcCDAl4A/ne15THKuzwAW9vIZwBm9vATYOEabOTnXCeY77/ZtH/ujgUcBlwDLhurn6/4da74zun89gtKsaa3dPvR0EbDlip0/Bz7ZWtvUWrse+B7whCQPZhBql7fBT/zHgOdtyzFPV2ttdWvtnv70CuCh460/l+cK48533u1bgNbat1tr353s+vN4vjO6fw0ozaok70xyI3AscFqvfghw49BqP+p1D+nlkfVzzasY/Ae5xQFJvpXk0iRP7XXzZa7w2/Od7/t2NPN9/w6b0f27cEaHJo2Q5CvAfqMsWtFa+3xrbQWwIskpwOuB0xmcAhipjVNfwkRz7eusAO4BPtGX3QQ8vLX2syRLgc8l+X2KzxWmPd85uW9hcvMdxbzev6M1G6Vu2vvXgNL9qrV25CRXvQC4iEFA/Qh42NCyhwI/7vUPHaW+hInmmuQVwJ8BT++nOWitbQI29fK6JN8HDqL4XGF682WO7luY0s/ycJt5u3/HMKP711N8mjVJDhx6+lzgO738BeCYJDslOQA4EFjTWrsJ+GWSJ/YrgF4OjPWfXClJngWcDDy3tXbXUP0+SRb08u8ymOsP5vJcYez5Mg/37Xjm6/4dx8zu39m+GsTH9vsAPg1sBDYAFwIPGVq2gsEVQN9l6GofYFlv833gA/S7oVR/MHix+EZgfX9suWLxhcC1DK58ugp4zlyf63jznY/7to/9+QyOEjYBPwG+PM/376jznen9662OJEkleYpPklSSASVJKsmAkiSVZEBJkkoyoCRJJRlQ0hyS5I77oc+PJjm6lz+S5JCpbivJcUk+0MuvTfLyXr5k5N2uZ2jM90u/qsU7SUj6tdbaq2egj3MmXkuamEdQ0hyX5LAkVwx99tJevf7xve7yDD6faeMk+rrPkUmSxb2PZ/c7I3w6yZX98eRR+liZ5KShqhclWZPkui03S02yc5JV/fOBvpXkiAnqd0nyyT6ffwN2mf53THOFASXNfR8DTm6tHQpcw+B+hgCrgNe21g4HNk+n4yT7MrhH4mmttYuA9wLvaa09nsFdEj4yiW4WttaeALxpaGwnALTWHgu8BDg/yc7j1B8P3NXn+E5g6XTmo7nFU3zSHJZkD2DP1tqlvep84FMZfILt7q21/+r1FzC4cetU7AhcDJww1P+RwCFDH4b6gCS7T9DPZ/rXdQw+wA/gKcD7AVpr30lyA4ObqI5V/zTgfb1+Q5INU5yL5iADSpqfxvw47SSrgD8EftxaO2qcPu5hECrPBLYE1A7A4a21X43oc7yxbOpfN/ObvzljNRivI+/Ltp3xFJ80h7XWfgHcNvRBeH8JXNpau41+9+hef8xQm1e21g6bIJxgEAivAg5O8pZet5rB53YBg9e/pjn0yxh8SCVJDgIezuDmopOpfwxw6DS3qznEIyhpbtk1yfAnk/4T8ArgnCS7Aj8AXtmX/RVwXpI7gUuAX0x1Y621zUmOAS5McjtwIvDBfoptIYPgeO005nF2H/M1DI7UjmutbUoyVv2HgFV9u+uBNdPYpuYY72YuzVNJdmut3dHLbwEe3Fp74ywPS5o0j6Ck+evZSU5h8Ht+A3Dc7A5HmhqPoCRJJXmRhCSpJANKklSSASVJKsmAkiSVZEBJkkr6f1jYDgSAZ3c+AAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
@@ -222,7 +252,7 @@
},
{
"cell_type": "markdown",
- "id": "34cf0e89",
+ "id": "missing-frequency",
"metadata": {
"tags": []
},
@@ -248,7 +278,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAUIklEQVR4nO3de5BmdX3n8feHGZZrgsKg0SgMGBVRLnHGRCNmRyGaELPRVcQ4BGJKSakhMRVvMJYMVtzAYm12s4qCKdHIgLUaL4k3UAwXg1xmcG54Dxe1JBGSIMIkLMx894/z6+Wx7Znu6enp/rX9flU91ef5nfP7ne95+vJ5znlOn5OqQpKk3uwx1wVIkjQRA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSlqAkpyU5IYkG5N8O8nZSf4gybt3cdxHJHntXPXXTxcDSlpgkpwGvBl4SVUdDRwLbAGOBjbt4vCPAHYlYHa1v36KGFDSApLkZ4H/Abysqr4HUFX3VdX5wFHsekCdCzwhyfok57d1npLkxtZ2YZJFSfZL8ukkG5JsTnLy9vpr4Vo81wVImlUvBm6oqlsnmPc0YPMujv8W4GlVdSxAkqcAJwPPrqoHk1wArATuB75fVb/Zljtgov5a2AwoaWF5KrB+fGOSxwM/qqofbq9jki8APzfBrFVV9cntdDseWAbclARgH+AHwKXAO5OcB3yqqq7dmY3QwmBASQvL/QwhMd6knz9V1QnTWF+AD1bVmT8xI1kGnAj8eZIrqurt0xhfP8X8DEpaWD4DnJTk0QBJ9kryambm8yeAHwE/M/L8SuClSR7V1ndgkkOTPBbYUlWXAO8Enr6d/lrA4v2gpIUlye8CfwosYjiKcglwJPDrDAEBcGdVPWua41/KsEf22ap6YzsB4kyGN8QPAq8DDgDOB7a1ttdU1dqJ+k9rI/VTwYCSJHXJQ3ySpC4ZUJKkLhlQkqQuGVCSpC75f1ACYMmSJbV06dK5LkPSArRu3bq7q+rg8e0GlABYunQpa9eunesyJC1ASe6YqN1DfJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVDq0urVq+e6BEnTMJO/uwaUdt6aNbB0Keyxx/B1zZoZX8U555wz42NK2v1m8nd30oBKsjTJ5qkOmGR1kjfsWlmQ5PVJ9t3Z5ZKctavrnsI6j0iyPslXkjwhyStmcOzbkyyZgXHum4l6fsKaNXD66XDHHVA1fD399N0SUpIWtsVzXcAOvB64BNiyk8udBfy3nVlRkkVVtXUnurwI+GRVnZ1kBfAK4NLduL5+rFoFW8Z9S7ZsGdpXrpzRVa1YsWJGx5M0v0z1EN+iJO9LckuSK5Ls0/YcPpdkXZJrkxwxvlOSq5L8RZJrknwtyTOSfCzJt5L8WVtmvySfTrIhyeYkJyf5I+CxwN8n+fu23POTfDnJzUk+kmT/8cslORfYp+3drGn9TklyY2u7MMmi1n5fkrcnuQF41kQbneRtSW5qdV2UwYkMofiqVtu5wHPa+H+SZFGS81u/jUn+oI21otV4KbBpou0eWfUZbTs3jb2uSQ5M8ok25vVJjm7t+ye5uC27MclLxm3Dkva6/eYE23d6krVJ1t51111T+0n4znd2rl2SpquqdvgAlgIPAce25/8HOAW4Enhia/tl4IttejXwhjZ9FXBem/5j4PvAY4C9gO8BBwEvAd43sr4D2tfbgSVteglwDbBfe/5m4G3jl2vP7xuZfgrwd8Ce7fkFwKltuoCXTbLtB45Mfwj4rQm2cQXwqZHlTgfe2qb3AtYCh7Xl7gcOa/N2tN1ntOnXAn/Vpv83cHabfh6wvk2fB/zPkXEeOfY6AI8GbgB+bbLv87Jly2pKDj20aji49+OPQw+dWv8pGn40Jc030/ndBdbWBH+XproHdVtVrW/T6xhC61eAjyRZD1zIEDwT+dv2dRNwS1XdWVUPALcCj2/tJyQ5L8lzquqHE4zxTOBI4B/a+k4DDp1C3ccDy4CbWr/jgcPbvK3A30zS/7lJbkiyiSEUnjqFdT4fOLWt7waGEH5im3djVd3Wpne03R9rX8dea4DjGEKSqvoicFCSA4ATgHePdayqf2uTezK8iXhTVX1+CnVPzTveAfuO+2hw332HdkmaQVP9DOqBkemtDO/M76mqY3ei77Zx42wDFlfVN5MsA04E/jzJFVX19nFjBPh8Vf3OFOsd7ffBqjpzgnn/UTv4HCjJ3gx7XMur6rtJVgN7T3GdZ1TV5ePGW8GwBwXAJNs99jpt5eHvUSZYV7X2mmDeQwwB9wLg6inUPTVjnzOtWjUc1jvkkCGcZvjzJ0ma7mnm9wK3JTkJoH02c8x0BkryWGBLVV0CvBN4epv1I+Bn2vT1wLOT/ELrs2+SJ02wHMCDSfZs01cCL03yqNbvwCRT2fOCh8Po7iT7Ay/dznLj13858JqxGpI8Kcl+4zvtYLu35xpgZeu7Ari7qu4FrgD+cGTcR7bJAn4fOCLJWyYZe+esXAm33w7btg1fd0M4nX322TM+pqTdbyZ/d3flLL6VwHuSvJXhcNKHgQ3TGOco4Pwk24AHgde09ouAzya5s6qem+T3gMuS7NXmvxX45vjl2vONSW6uqpWtviuS7NHGfx1wx2RFVdU9Sd7HcCjuduCm7Sy6EXgoyQbgA8D/Yjgsd3OSAHcxnPU31e3entXAxUk2MpyxeFpr/zPg3Rn+FWArcA7tEGFVbU3ycuDvktxbVRdMso5u+I+60vw0k7+7GT6f0kK3fPnyWrt27VyXIWkBSrKuqpaPb/dKEpKkLvX8j7qzJsnHGU4FH/Xm8Sc6SJJmjwEFVNWL57oGSdKP8xCfJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLqaq5rkEdSHIXcMccrHoJcPccrHdXWffsm6+1W/fkDq2qg8c3GlCaU0nWVtXyua5jZ1n37JuvtVv39HmIT5LUJQNKktQlA0pz7aK5LmCarHv2zdfarXua/AxKktQl96AkSV0yoCRJXTKgNGuSnJ/k60k2Jvl4kkeMzDszybeTfCPJC0balyXZ1Ob9ZZLMQd0nJbklybYky0fa/1OSi1t9G5KsmCd175nkg62+ryU5c57UvTLJ+pHHtiTH9l53m3d0ki+3+ZuS7N173UmWJvn3kdf7vSPzZqfuqvLhY1YewPOBxW36POC8Nn0ksAHYCzgM+EdgUZt3I/AsIMBngd+Yg7qfAjwZuApYPtL+OuDiNv0oYB2wxzyo+xXAh9v0vsDtwNLe6x63zFHArSPPu60bWAxsBI5pzw+aJz/fS4HN2+kzK3W7B6VZU1VXVNVD7en1wOPa9G8z/MF8oKpuA74N/FKSxwA/W1VfruG34q+BF81B3V+rqm9MMOtI4Mq2zA+Ae4Dl86DuAvZLshjYB/i/wL3zoO5RvwNcBjAP6n4+sLGqNrTl/qWqts6Duic0m3UbUJorv8/wzgvg54Hvjsz7Xmv7+TY9vr0XG4DfTrI4yWHAMuDx9F/3R4H7gTuB7wDvrKp/pf+6R51MCyj6r/tJQCW5PMnNSd7U2nuvG+CwJF9JcnWS57S2Wat78e4YVAtXki8APzfBrFVV9cm2zCrgIWDNWLcJlq8dtM+4qdQ9gfczHB5Zy3Adw+sYtqv3un8J2Ao8FngkcG0bp/e6x/r+MrClqjaPNU2wWE91LwaOA54BbAGuTLIOuHeCZXuq+07gkKr6lyTLgE8keSqz+HobUJpRVXXCjuYnOQ14IXB8OzwAwzuwx48s9jjg+639cRO0z7jJ6t5On4eAPxl7nuQ64FvAv9Fx3QyfQX2uqh4EfpDkH4DlwLX0XfeYl/Pw3hN0/nPCUN/VVXU3QJLPAE8HLqHjuqvqAeCBNr0uyT8y7A3O2uvtIT7NmiS/DrwZ+C9VtWVk1t8CL0+yVztU9kTgxqq6E/hRkme2s4ROBXb47no2Jdk3yX5t+teAh6rqq73XzXBY73kZ7Ac8E/j6PKibJHsAJwEfHmubB3VfDhzdfl4WA/8Z6P7nJMnBSRa16cMZfi9vndW6Z/uMER8L98Fw8sN3gfXt8d6ReasYzt77BiNnBDG8s9/c5r2LdvWTWa77xQzvGh8A/hm4vLUvbfV+DfgCwy0D5kPd+wMfAW4Bvgq8cT7U3eatAK6foE/vdZ/SXu/NwH+fD3UDL2k1bwBuBn5rtuv2UkeSpC55iE+S1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNK6lySDyR5aZv+qyRHtumzxi133e5c91Tap7mOq8auop3kM0ke0a6kvXmyviNjrE7yhjb99iQntOnbkyyZiTrHrW+3jKsfZ0BJ80hVvaqqvtqenjVu3q/MQUkzqqpOrKp7dnGMt1XVF2aoJM0hA0qaQUlOzXC/qw1JPtTaDk1yZWu/Mskhrf0D7V461yW5dWQvKUneleSrST7NcCuPsfGvSrI8ybnAPu0+PWvavPtG+p+fZHOGe/ac3NpXtP4fzXBfrjXtSgAkeVuSm1qfi8bap7jNx2e4oOimJO9PsldrP7Gt50ttOz81hbF+Ys8kyeFt/GckeUKSzyVZl+TaJEdMMMb4vbszMlykddPY8kkOTPKJ9j25PsnRk7QflOSKVseFTHw9Os0wA0qaIRkupLkKeF5VHQP8cZv1LuCvq+pohgvk/uVIt8cwXEj0hcC5re3FDPfnOQp4NfATe0ZV9Rbg36vq2KpaOW72fwWOBY4BTgDOz3CLBIBfBF7PcKuQw4Fnj9VYVc+oqqcx3ILjhVPc5r2BDwAnV9VRDNf3fE1rv5DhqiDHAQdPZbwJxn8y8DfAK6vqJuAi4IyqWga8AbhgCsPcXVVPB97T+gCcA3ylfU/OYrhlxI7azwa+VFW/yHBprkOmsz3aOQaUNHOeB3y02kVBa7iFBQw3dru0TX+IIZDGfKKqtrXDdo9ubb8KXFZVW6vq+8AXd7KO40b6/zNwNcOVtGG4xuH3qmobw+Wmlrb25ya5Icmmth1PneK6ngzcVlXfbM8/2Oo/guG6bbe19ssm6jyJgxmu8XZKVa1Psj9DWH8kyXqGAHzMDvqP+Vj7uo6Ht/c4hu8FVfVF4KAkB+yg/VcZLu5KVX2a4YLA2s28mrk0c8LUbjswuswD4/pPtMx06tie0fVtBRa3vZ0LGO6m+t0kq4G9d3Fd260hyeUMYby2ql61g7F/yHDtxmczXBNuD+Ceqjp2irWNGdvmrTz8N286t3jxunCzzD0oaeZcCbwsyUEwfJ7R2q9juEUEwErgS5OMcw3D1d0XtUNzz93Ocg8m2XM7/U9u/Q9mePd/4w7WNxZGd7e9lJ05O+/rwNIkv9Ce/y7DHtvXgcOTLG3tJ491qKoXtEOTOwonGO70+yLg1CSvqKp7gduSnAT//7O2Y3ai1lHXMHwvSLKC4TDgvVNs/w2G+2hpN3MPSpohVXVLkncAVyfZCnwF+D3gj4D3J3kjcBfwykmG+jjDYbZNwDcZ/uBP5CJgY5Kbx30O9XGGw4obGN71v6mq/mmiEwpa3fckeV9b3+3ATZNt60jf/0jySobDbotb3/dW1QNJXgt8Lsnd7DggdzT+/UleCHw+yf0MIfGeJG8F9mS47caGaQy9Grg4yUaGmwieNkn7OcBlSW5m+H58Zzrbo53j1cwl7RZJ9q+q+9oZge8GvlVVfzHXdWn+8BCfpN3l1e1khluAAxhOapCmzD0oSVKX3IOSJHXJgJIkdcmAkiR1yYCSJHXJgJIkden/ASnV5vr0NT7jAAAAAElFTkSuQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAUIklEQVR4nO3de5BmdX3n8feHGZZrgsKg0SgMGBVRLnHGRCNmRyGaELPRVcQ4BGJKSakhMRVvMJYMVtzAYm12s4qCKdHIgLUaL4k3UAwXg1xmcG54Dxe1JBGSIMIkLMx894/z6+Wx7Znu6enp/rX9flU91ef5nfP7ne95+vJ5znlOn5OqQpKk3uwx1wVIkjQRA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSlqAkpyU5IYkG5N8O8nZSf4gybt3cdxHJHntXPXXTxcDSlpgkpwGvBl4SVUdDRwLbAGOBjbt4vCPAHYlYHa1v36KGFDSApLkZ4H/Abysqr4HUFX3VdX5wFHsekCdCzwhyfok57d1npLkxtZ2YZJFSfZL8ukkG5JsTnLy9vpr4Vo81wVImlUvBm6oqlsnmPc0YPMujv8W4GlVdSxAkqcAJwPPrqoHk1wArATuB75fVb/Zljtgov5a2AwoaWF5KrB+fGOSxwM/qqofbq9jki8APzfBrFVV9cntdDseWAbclARgH+AHwKXAO5OcB3yqqq7dmY3QwmBASQvL/QwhMd6knz9V1QnTWF+AD1bVmT8xI1kGnAj8eZIrqurt0xhfP8X8DEpaWD4DnJTk0QBJ9kryambm8yeAHwE/M/L8SuClSR7V1ndgkkOTPBbYUlWXAO8Enr6d/lrA4v2gpIUlye8CfwosYjiKcglwJPDrDAEBcGdVPWua41/KsEf22ap6YzsB4kyGN8QPAq8DDgDOB7a1ttdU1dqJ+k9rI/VTwYCSJHXJQ3ySpC4ZUJKkLhlQkqQuGVCSpC75f1ACYMmSJbV06dK5LkPSArRu3bq7q+rg8e0GlABYunQpa9eunesyJC1ASe6YqN1DfJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVDq0urVq+e6BEnTMJO/uwaUdt6aNbB0Keyxx/B1zZoZX8U555wz42NK2v1m8nd30oBKsjTJ5qkOmGR1kjfsWlmQ5PVJ9t3Z5ZKctavrnsI6j0iyPslXkjwhyStmcOzbkyyZgXHum4l6fsKaNXD66XDHHVA1fD399N0SUpIWtsVzXcAOvB64BNiyk8udBfy3nVlRkkVVtXUnurwI+GRVnZ1kBfAK4NLduL5+rFoFW8Z9S7ZsGdpXrpzRVa1YsWJGx5M0v0z1EN+iJO9LckuSK5Ls0/YcPpdkXZJrkxwxvlOSq5L8RZJrknwtyTOSfCzJt5L8WVtmvySfTrIhyeYkJyf5I+CxwN8n+fu23POTfDnJzUk+kmT/8cslORfYp+3drGn9TklyY2u7MMmi1n5fkrcnuQF41kQbneRtSW5qdV2UwYkMofiqVtu5wHPa+H+SZFGS81u/jUn+oI21otV4KbBpou0eWfUZbTs3jb2uSQ5M8ok25vVJjm7t+ye5uC27MclLxm3Dkva6/eYE23d6krVJ1t51111T+0n4znd2rl2SpquqdvgAlgIPAce25/8HOAW4Enhia/tl4IttejXwhjZ9FXBem/5j4PvAY4C9gO8BBwEvAd43sr4D2tfbgSVteglwDbBfe/5m4G3jl2vP7xuZfgrwd8Ce7fkFwKltuoCXTbLtB45Mfwj4rQm2cQXwqZHlTgfe2qb3AtYCh7Xl7gcOa/N2tN1ntOnXAn/Vpv83cHabfh6wvk2fB/zPkXEeOfY6AI8GbgB+bbLv87Jly2pKDj20aji49+OPQw+dWv8pGn40Jc030/ndBdbWBH+XproHdVtVrW/T6xhC61eAjyRZD1zIEDwT+dv2dRNwS1XdWVUPALcCj2/tJyQ5L8lzquqHE4zxTOBI4B/a+k4DDp1C3ccDy4CbWr/jgcPbvK3A30zS/7lJbkiyiSEUnjqFdT4fOLWt7waGEH5im3djVd3Wpne03R9rX8dea4DjGEKSqvoicFCSA4ATgHePdayqf2uTezK8iXhTVX1+CnVPzTveAfuO+2hw332HdkmaQVP9DOqBkemtDO/M76mqY3ei77Zx42wDFlfVN5MsA04E/jzJFVX19nFjBPh8Vf3OFOsd7ffBqjpzgnn/UTv4HCjJ3gx7XMur6rtJVgN7T3GdZ1TV5ePGW8GwBwXAJNs99jpt5eHvUSZYV7X2mmDeQwwB9wLg6inUPTVjnzOtWjUc1jvkkCGcZvjzJ0ma7mnm9wK3JTkJoH02c8x0BkryWGBLVV0CvBN4epv1I+Bn2vT1wLOT/ELrs2+SJ02wHMCDSfZs01cCL03yqNbvwCRT2fOCh8Po7iT7Ay/dznLj13858JqxGpI8Kcl+4zvtYLu35xpgZeu7Ari7qu4FrgD+cGTcR7bJAn4fOCLJWyYZe+esXAm33w7btg1fd0M4nX322TM+pqTdbyZ/d3flLL6VwHuSvJXhcNKHgQ3TGOco4Pwk24AHgde09ouAzya5s6qem+T3gMuS7NXmvxX45vjl2vONSW6uqpWtviuS7NHGfx1wx2RFVdU9Sd7HcCjuduCm7Sy6EXgoyQbgA8D/Yjgsd3OSAHcxnPU31e3entXAxUk2MpyxeFpr/zPg3Rn+FWArcA7tEGFVbU3ycuDvktxbVRdMso5u+I+60vw0k7+7GT6f0kK3fPnyWrt27VyXIWkBSrKuqpaPb/dKEpKkLvX8j7qzJsnHGU4FH/Xm8Sc6SJJmjwEFVNWL57oGSdKP8xCfJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLqaq5rkEdSHIXcMccrHoJcPccrHdXWffsm6+1W/fkDq2qg8c3GlCaU0nWVtXyua5jZ1n37JuvtVv39HmIT5LUJQNKktQlA0pz7aK5LmCarHv2zdfarXua/AxKktQl96AkSV0yoCRJXTKgNGuSnJ/k60k2Jvl4kkeMzDszybeTfCPJC0balyXZ1Ob9ZZLMQd0nJbklybYky0fa/1OSi1t9G5KsmCd175nkg62+ryU5c57UvTLJ+pHHtiTH9l53m3d0ki+3+ZuS7N173UmWJvn3kdf7vSPzZqfuqvLhY1YewPOBxW36POC8Nn0ksAHYCzgM+EdgUZt3I/AsIMBngd+Yg7qfAjwZuApYPtL+OuDiNv0oYB2wxzyo+xXAh9v0vsDtwNLe6x63zFHArSPPu60bWAxsBI5pzw+aJz/fS4HN2+kzK3W7B6VZU1VXVNVD7en1wOPa9G8z/MF8oKpuA74N/FKSxwA/W1VfruG34q+BF81B3V+rqm9MMOtI4Mq2zA+Ae4Dl86DuAvZLshjYB/i/wL3zoO5RvwNcBjAP6n4+sLGqNrTl/qWqts6Duic0m3UbUJorv8/wzgvg54Hvjsz7Xmv7+TY9vr0XG4DfTrI4yWHAMuDx9F/3R4H7gTuB7wDvrKp/pf+6R51MCyj6r/tJQCW5PMnNSd7U2nuvG+CwJF9JcnWS57S2Wat78e4YVAtXki8APzfBrFVV9cm2zCrgIWDNWLcJlq8dtM+4qdQ9gfczHB5Zy3Adw+sYtqv3un8J2Ao8FngkcG0bp/e6x/r+MrClqjaPNU2wWE91LwaOA54BbAGuTLIOuHeCZXuq+07gkKr6lyTLgE8keSqz+HobUJpRVXXCjuYnOQ14IXB8OzwAwzuwx48s9jjg+639cRO0z7jJ6t5On4eAPxl7nuQ64FvAv9Fx3QyfQX2uqh4EfpDkH4DlwLX0XfeYl/Pw3hN0/nPCUN/VVXU3QJLPAE8HLqHjuqvqAeCBNr0uyT8y7A3O2uvtIT7NmiS/DrwZ+C9VtWVk1t8CL0+yVztU9kTgxqq6E/hRkme2s4ROBXb47no2Jdk3yX5t+teAh6rqq73XzXBY73kZ7Ac8E/j6PKibJHsAJwEfHmubB3VfDhzdfl4WA/8Z6P7nJMnBSRa16cMZfi9vndW6Z/uMER8L98Fw8sN3gfXt8d6ReasYzt77BiNnBDG8s9/c5r2LdvWTWa77xQzvGh8A/hm4vLUvbfV+DfgCwy0D5kPd+wMfAW4Bvgq8cT7U3eatAK6foE/vdZ/SXu/NwH+fD3UDL2k1bwBuBn5rtuv2UkeSpC55iE+S1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNK6lySDyR5aZv+qyRHtumzxi133e5c91Tap7mOq8auop3kM0ke0a6kvXmyviNjrE7yhjb99iQntOnbkyyZiTrHrW+3jKsfZ0BJ80hVvaqqvtqenjVu3q/MQUkzqqpOrKp7dnGMt1XVF2aoJM0hA0qaQUlOzXC/qw1JPtTaDk1yZWu/Mskhrf0D7V461yW5dWQvKUneleSrST7NcCuPsfGvSrI8ybnAPu0+PWvavPtG+p+fZHOGe/ac3NpXtP4fzXBfrjXtSgAkeVuSm1qfi8bap7jNx2e4oOimJO9PsldrP7Gt50ttOz81hbF+Ys8kyeFt/GckeUKSzyVZl+TaJEdMMMb4vbszMlykddPY8kkOTPKJ9j25PsnRk7QflOSKVseFTHw9Os0wA0qaIRkupLkKeF5VHQP8cZv1LuCvq+pohgvk/uVIt8cwXEj0hcC5re3FDPfnOQp4NfATe0ZV9Rbg36vq2KpaOW72fwWOBY4BTgDOz3CLBIBfBF7PcKuQw4Fnj9VYVc+oqqcx3ILjhVPc5r2BDwAnV9VRDNf3fE1rv5DhqiDHAQdPZbwJxn8y8DfAK6vqJuAi4IyqWga8AbhgCsPcXVVPB97T+gCcA3ylfU/OYrhlxI7azwa+VFW/yHBprkOmsz3aOQaUNHOeB3y02kVBa7iFBQw3dru0TX+IIZDGfKKqtrXDdo9ubb8KXFZVW6vq+8AXd7KO40b6/zNwNcOVtGG4xuH3qmobw+Wmlrb25ya5Icmmth1PneK6ngzcVlXfbM8/2Oo/guG6bbe19ssm6jyJgxmu8XZKVa1Psj9DWH8kyXqGAHzMDvqP+Vj7uo6Ht/c4hu8FVfVF4KAkB+yg/VcZLu5KVX2a4YLA2s28mrk0c8LUbjswuswD4/pPtMx06tie0fVtBRa3vZ0LGO6m+t0kq4G9d3Fd260hyeUMYby2ql61g7F/yHDtxmczXBNuD+Ceqjp2irWNGdvmrTz8N286t3jxunCzzD0oaeZcCbwsyUEwfJ7R2q9juEUEwErgS5OMcw3D1d0XtUNzz93Ocg8m2XM7/U9u/Q9mePd/4w7WNxZGd7e9lJ05O+/rwNIkv9Ce/y7DHtvXgcOTLG3tJ491qKoXtEOTOwonGO70+yLg1CSvqKp7gduSnAT//7O2Y3ai1lHXMHwvSLKC4TDgvVNs/w2G+2hpN3MPSpohVXVLkncAVyfZCnwF+D3gj4D3J3kjcBfwykmG+jjDYbZNwDcZ/uBP5CJgY5Kbx30O9XGGw4obGN71v6mq/mmiEwpa3fckeV9b3+3ATZNt60jf/0jySobDbotb3/dW1QNJXgt8Lsnd7DggdzT+/UleCHw+yf0MIfGeJG8F9mS47caGaQy9Grg4yUaGmwieNkn7OcBlSW5m+H58Zzrbo53j1cwl7RZJ9q+q+9oZge8GvlVVfzHXdWn+8BCfpN3l1e1khluAAxhOapCmzD0oSVKX3IOSJHXJgJIkdcmAkiR1yYCSJHXJgJIkden/ASnV5vr0NT7jAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
@@ -290,7 +320,7 @@
"\n",
"Aim: The number or N-test is the most conceptually simple test of a forecast: To test whether the number of observed events is consistent with that of the forecast.\n",
"\n",
- "Method: The originial N-test was introduced by Schorlemmer et al (2007) and modified by Zechar et al (2010). The observed number of events is given by,\n",
+ "Method: The original N-test was introduced by Schorlemmer et al (2007) and modified by Zechar et al (2010). The observed number of events is given by,\n",
"\n",
"$$N_{obs} = \\sum_{m_i, s_j \\in R} \\omega(m_i, s_j).$$\n",
"\n",
@@ -338,7 +368,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAATPklEQVR4nO3debRdZX3G8e9DoBAGUYwiqDUOuLRajCVO1bZxqNahjsGhUKFa5wGstCqLkuhyVRC1tNY6gAIq1IXz0IG4BMS6EEggJCBVVwWtCgrLsjCCVMKvf+z34uF6x3CT+97r97PWWXef97z73e97dnKes4ezd6oKSZJ6s9N8d0CSpIkYUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVDSApZka5KNSS5L8skku09R95lJ3ryD+7c2yY1J7j5StmVcnae0MWxMsiXJt9r0R2exnMOT7D+Xfdf8M6Ckhe2mqlpRVQ8F/g945WQVq+oLVXXcjuvaba4D3jjZi1V1VhvDCmA9cEh7/uJZLONwwIBaZAwoafH4GvCAJPsk+VySTUm+keRAuG0r45/a9MFtq+vSJOe1sockubBtvWxKckAr/6tW97IkR7ay5UmuSHJSksuTrEuydJJ+fQR4QZJ9ZjOYJIeO9OeDSZa0x6mtL5uTvCHJamAlcHqrO1k/tMAYUNIikGRn4KnAZuCtwCVVdSBwNDDRrrJjgadU1cOAZ7ayVwL/0LZkVgI/SHIQ8BfAo4BHAy9L8vBW/wDgfVX1EOB64HmTdG8LQ0gdMYvxPBh4AfDY1p+twCHACuCeVfXQqvpd4JSq+hS33/K6aabLUd8MKGlhW5pkI8MH9PeBDwOPAz4GUFVnA3dNsve4+b4OnJrkZcCSVnY+cHSSNwH3aR/0jwM+W1U/r6otwGeAP2j1r6yqjW16A7B8in7+I3BYkjvNcFxPBA4CLmrjeyJwP+C7wP2SvDfJnwA3zLA9LUA7z3cHJN0hN7UtjNskyQT1bnfRzap6ZZJHAU8HNiZZUVVnJLmglZ2V5C+Bidoac/PI9FZg0l1rVXV9kjOAV4/08zXAy9rTp1XVj0aHAZxWVW8Z31aShwFPAV4DPB94yRR91ALmFpS0+JzHsDuMJKuA66rqdlsaSe5fVRdU1bEMJzHcO8n9gO9W1T8CXwAObG09O8nuSfYAnsNwrGtbvAd4Be2LcVW9b+zkiHHhBPAVYPXY2X/tuNp9kiwDdqqqTwN/C/xeq/8zYK9t7Jc65RaUtPisBU5Jsgm4EThsgjontJMgwhAGlwJvBg5N8kvgGuBtVfXTJKcCF7b5Tq6qS5Isn22nquq6JJ8F3jCDut9McgywLslOwC8ZtphuamMb+3I9toV1KvCBJDcBj/E41OIQb7chSeqRu/gkSV0yoCRJXTKgJEldMqAkSV3yLD4BsGzZslq+fPl8d0PSb6ANGzZcV1V3G19uQAmA5cuXs379+vnuhqTfQEm+N1G5u/gkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqC0zdauXTvfXZDUmbn8XEhVzVljWrhWrlxZ69evn7bePd51D3788x//Wvm+e+zLNUddsz26JmkBScJscyXJhqpaOb582i2oJMuTXDaLBa1NctSsejdxO0cm2X229ZIcfUeXPYNlPijJxiSXJLl/kj+bw7avSrJsDtrZMhf9GW+icJqqXJK21c7z3YEpHAl8HLhxlvWOBv5uNgtKsqSqts5ilmcDn6+qNUlWAX8GnLEdl7cgrFq1ar67IGkRmekxqCVJTkpyeZJ1SZa2LYf/SLIhydeSPGj8TEnOTfL3Sc5LckWSRyT5TJLvJHl7q7NHkn9NcmmSy5K8IMnrgf2Bc5Kc0+o9Ocn5SS5O8skke46vl+Q4YGnbujm9zXdokgtb2QeTLGnlW5K8LckFwGMmGnSSY5Nc1Pr1oQyexhCKf9n6dhzwB639NyRZkuSENt+mJK9oba1qfTwD2DzRuEcW/bo2zs1j72uSfZJ8rrX5jSQHtvI9k5zS6m5K8rxxY1jW3renTzC+lydZn2T9tddeO8N/CpK0g1TVlA9gOXALsKI9PxM4FPgKcEArexRwdpteCxzVps8Fjm/TRwA/AvYDdgV+ANwVeB5w0sjy9m5/rwKWtellwHnAHu35m4Bjx9drz7eMTD8Y+CKwS3v+z8CL23QBz59m7PuMTH8M+NMJxrgK+NJIvZcDx7TpXYH1wH1bvZ8D922vTTXu17XpVwMnt+n3Amva9BOAjW36eODEkXbuMvY+APsCFwB/PN16Puigg2omWMukD0kaYmXW86yvCT6XZrqL78qq2timNzCE1u8Dn0wyVmfXSeb9Qvu7Gbi8qq4GSPJd4N6t/F1Jjm8f9F+boI1HA78DfL0t77eA82fQ7ycCBwEXtfmWAj9pr20FPj3N/I9P8jfA7sA+wOUMgTeVJwMHJlndnu8NHAD8H3BhVV3Zyqca92fa3w3Ac9v04xhCjao6O8ldk+wNPAl44diMVfW/bXIXhi8Rr6mqr07TZ0nqzkwD6uaR6a0M38yvr6oVs5j31nHt3ArsXFXfTnIQ8DTgHUnWVdXbxrUR4MtV9aIZ9nd0vtOq6i0TvPaLmuI4UJLdGLa4VlbV/yRZC+w2w2W+rqrOGtfeKoYtKACmGffY+7SVX62j274JjKhWPtEpM7cwBNxTgDkLqH332HfSs/gkaS5t6++gbgCuTHIwQDs287BtaSjJ/sCNVfVx4F3A77WXfgbs1aa/ATw2yQPaPLsneeAE9QB+mWSXNv0VYHWSu7f59klynxl2bSyMrkuyJ7B6knrjl38W8KqxPiR5YJI9xs80xbgncx5wSJt3FXBdVd0ArANeO9LuXdpkAS8BHpTkzdO0PWPXHHUNtaaoNcWaWnPbtKeYSwJYs2bNnLV1R87iOwR4f5JjGHYnfQK4dBva+V3ghCS3Ar8EXtXKPwT8e5Krq+rxSQ4H/iXJ2K7EY4Bvj6/Xnm9KcnFVHdL6ty7JTq391wDfm65TVXV9kpMYdsVdBVw0SdVNwC1JLgVOBf6BYRfoxRn2K17LcNbfTMc9mbXAKUk2MZyxeFgrfzvwvgw/BdgKvJW2i7CqtiZ5IfDFJDdU1T9Ps4xZ8Ye6ksbzh7qaczP9oa4kzbVs6w91JUmaDz3/UHeHSfJZhlPBR71p/IkOkqQdx4ACquo5890HSdLtuYtPktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1KVU1Xz3QR1Ici3wve24iGXAddux/fmyWMcFi3dsi3VcsHDHdp+qutv4QgNKO0SS9VW1cr77MdcW67hg8Y5tsY4LFt/Y3MUnSeqSASVJ6pIBpR3lQ/Pdge1ksY4LFu/YFuu4YJGNzWNQkqQuuQUlSeqSASVJ6pIBpTmV5N5JzklyRZLLkxzRytcm+WGSje3xtPnu62wl2S3JhUkubWN7ayvfJ8mXk3yn/b3LfPd1NqYY14JfZwBJliS5JMmX2vMFvb5GTTC2RbHOxngMSnMqyX7AflV1cZK9gA3As4HnA1uq6l3z2b87IkmAPapqS5JdgP8EjgCeC/y0qo5L8mbgLlX1pvns62xMMa4/YYGvM4AkfwWsBO5UVc9I8k4W8PoaNcHY1rII1tkYt6A0p6rq6qq6uE3/DLgCuOf89mpu1GBLe7pLexTwLOC0Vn4aQyAvGFOMa8FLci/g6cDJI8ULen2NmWRsi4oBpe0myXLg4cAFrei1STYl+chC3a3SdqlsBH4CfLmqLgD2raqrYQho4O7z2MVtMsm4YOGvsxOBvwFuHSlb8OurOZFfHxss/HV2GwNK20WSPYFPA0dW1Q3A+4H7AyuAq4F3z1/vtl1Vba2qFcC9gEcmeeg8d2lOTDKuBb3OkjwD+ElVbZjvvsy1Kca2oNfZeAaU5lw7jvFp4PSq+gxAVf24fQjeCpwEPHI++3hHVdX1wLkMx2l+3I69jR2D+8n89eyOGR3XIlhnjwWemeQq4BPAE5J8nMWxviYc2yJYZ7djQGlOtQPuHwauqKr3jJTvN1LtOcBlO7pvd1SSuyW5c5teCjwJ+C/gC8BhrdphwOfnpYPbaLJxLfR1VlVvqap7VdVy4IXA2VV1KAt8fcHkY1vo62y8nee7A1p0Hgv8ObC5HdMAOBp4UZIVDAffrwJeMR+du4P2A05LsoThy92ZVfWlJOcDZyZ5KfB94OD57OQ2mGxcH1sE62wix7Gw19dU3rmY1pmnmUuSuuQuPklSlwwoSVKXDChJUpcMKElSlwwoSVKXDCipQ0kqybtHnh/VLgQ6F22fmmT1XLQ1zXIOble1P2d7L2uCZR+eZP8dvVzNLQNK6tPNwHOTLJvvjoxqv5WaqZcCr66qx2+v/kzhcMCAWuAMKKlPtwAfAt4w/oXxW0BJtrS/q5J8NcmZSb6d5Lgkh7R7PW1Ocv+RZp6U5Gut3jPa/EuSnJDkonax0VeMtHtOkjOAzRP050Wt/cuSHN/KjgUeB3wgyQkTzPPXI8sZu//U8UlePVJnbZI3TlF/edtCOynDfazWJVna3puVwOkZ7om0tL0X32zzL4pbUfxGqCofPnx09gC2AHdiuBrA3sBRwNr22qnA6tG67e8q4HqGK0PsCvwQeGt77QjgxJH5/4PhC+oBwA+A3YCXA8e0OrsC64H7tnZ/Dtx3gn7uz3A1hrsxXJnmbODZ7bVzgZUTzPNkhvBN68OXgD9kuPL9V0fqfRP47SnqL2cI8hWt/pnAoeOXDewDfItfXZjgzvO9fn3M7OEWlNSpGq4C/1Hg9bOY7aIa7sl1M/DfwLpWvpnhA33MmVV1a1V9B/gu8CCGIHhxu0TVBcBdGQIM4MKqunKC5T0COLeqrq2qW4DTGcJjKk9uj0uAi9uyD6iqS4C7J9k/ycOA/62q709Wv7V1ZVVtbNMbxo1xzA3AL4CTkzwXuHGa/qkTXotP6tuJDB/Kp4yU3ULbPd8uzvtbI6/dPDJ968jzW7n9//fx1zgrhi2U11XVWaMvJFnFsAU1kUzT/8nmeUdVfXCC1z4FrAbuwXCV7knrt/uNjY53K7B0fINVdUuSRwJPZLiw6muBJ2xDv7WDuQUldayqfsqw6+qlI8VXAQe16Wcx3AF3tg5OslM7LnU/hl1gZwGvardLIckDk+wxTTsXAH+UZFk7geJFwFenmecs4CXtnmEkuWeSsZsGfoIhRFYzhNV09SfzM2CvVn9PYO+q+jfgSIZ7JWkBcAtK6t+7Gb71jzkJ+HySC4GvMPnWzVS+xRAk+wKvrKpfJDmZYRfZxW3L7FqmuR16VV2d5C3AOQxbOv9WVVPevqKq1iV5MHD+sBi2AIcy3IDv8iR7AT+sX931drL6W6dYzKkMJ2jcBDyV4f3arfXx1048UZ+8mrkkqUvu4pMkdcmAkiR1yYCSJHXJgJIkdcmAkiR1yYCSJHXJgJIkden/AfCEdh3W3Aw6AAAAAElFTkSuQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAATPklEQVR4nO3debRdZX3G8e9DoBAGUYwiqDUOuLRajCVO1bZxqNahjsGhUKFa5wGstCqLkuhyVRC1tNY6gAIq1IXz0IG4BMS6EEggJCBVVwWtCgrLsjCCVMKvf+z34uF6x3CT+97r97PWWXef97z73e97dnKes4ezd6oKSZJ6s9N8d0CSpIkYUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVDSApZka5KNSS5L8skku09R95lJ3ryD+7c2yY1J7j5StmVcnae0MWxMsiXJt9r0R2exnMOT7D+Xfdf8M6Ckhe2mqlpRVQ8F/g945WQVq+oLVXXcjuvaba4D3jjZi1V1VhvDCmA9cEh7/uJZLONwwIBaZAwoafH4GvCAJPsk+VySTUm+keRAuG0r45/a9MFtq+vSJOe1sockubBtvWxKckAr/6tW97IkR7ay5UmuSHJSksuTrEuydJJ+fQR4QZJ9ZjOYJIeO9OeDSZa0x6mtL5uTvCHJamAlcHqrO1k/tMAYUNIikGRn4KnAZuCtwCVVdSBwNDDRrrJjgadU1cOAZ7ayVwL/0LZkVgI/SHIQ8BfAo4BHAy9L8vBW/wDgfVX1EOB64HmTdG8LQ0gdMYvxPBh4AfDY1p+twCHACuCeVfXQqvpd4JSq+hS33/K6aabLUd8MKGlhW5pkI8MH9PeBDwOPAz4GUFVnA3dNsve4+b4OnJrkZcCSVnY+cHSSNwH3aR/0jwM+W1U/r6otwGeAP2j1r6yqjW16A7B8in7+I3BYkjvNcFxPBA4CLmrjeyJwP+C7wP2SvDfJnwA3zLA9LUA7z3cHJN0hN7UtjNskyQT1bnfRzap6ZZJHAU8HNiZZUVVnJLmglZ2V5C+Bidoac/PI9FZg0l1rVXV9kjOAV4/08zXAy9rTp1XVj0aHAZxWVW8Z31aShwFPAV4DPB94yRR91ALmFpS0+JzHsDuMJKuA66rqdlsaSe5fVRdU1bEMJzHcO8n9gO9W1T8CXwAObG09O8nuSfYAnsNwrGtbvAd4Be2LcVW9b+zkiHHhBPAVYPXY2X/tuNp9kiwDdqqqTwN/C/xeq/8zYK9t7Jc65RaUtPisBU5Jsgm4EThsgjontJMgwhAGlwJvBg5N8kvgGuBtVfXTJKcCF7b5Tq6qS5Isn22nquq6JJ8F3jCDut9McgywLslOwC8ZtphuamMb+3I9toV1KvCBJDcBj/E41OIQb7chSeqRu/gkSV0yoCRJXTKgJEldMqAkSV3yLD4BsGzZslq+fPl8d0PSb6ANGzZcV1V3G19uQAmA5cuXs379+vnuhqTfQEm+N1G5u/gkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqC0zdauXTvfXZDUmbn8XEhVzVljWrhWrlxZ69evn7bePd51D3788x//Wvm+e+zLNUddsz26JmkBScJscyXJhqpaOb582i2oJMuTXDaLBa1NctSsejdxO0cm2X229ZIcfUeXPYNlPijJxiSXJLl/kj+bw7avSrJsDtrZMhf9GW+icJqqXJK21c7z3YEpHAl8HLhxlvWOBv5uNgtKsqSqts5ilmcDn6+qNUlWAX8GnLEdl7cgrFq1ar67IGkRmekxqCVJTkpyeZJ1SZa2LYf/SLIhydeSPGj8TEnOTfL3Sc5LckWSRyT5TJLvJHl7q7NHkn9NcmmSy5K8IMnrgf2Bc5Kc0+o9Ocn5SS5O8skke46vl+Q4YGnbujm9zXdokgtb2QeTLGnlW5K8LckFwGMmGnSSY5Nc1Pr1oQyexhCKf9n6dhzwB639NyRZkuSENt+mJK9oba1qfTwD2DzRuEcW/bo2zs1j72uSfZJ8rrX5jSQHtvI9k5zS6m5K8rxxY1jW3renTzC+lydZn2T9tddeO8N/CpK0g1TVlA9gOXALsKI9PxM4FPgKcEArexRwdpteCxzVps8Fjm/TRwA/AvYDdgV+ANwVeB5w0sjy9m5/rwKWtellwHnAHu35m4Bjx9drz7eMTD8Y+CKwS3v+z8CL23QBz59m7PuMTH8M+NMJxrgK+NJIvZcDx7TpXYH1wH1bvZ8D922vTTXu17XpVwMnt+n3Amva9BOAjW36eODEkXbuMvY+APsCFwB/PN16Puigg2omWMukD0kaYmXW86yvCT6XZrqL78qq2timNzCE1u8Dn0wyVmfXSeb9Qvu7Gbi8qq4GSPJd4N6t/F1Jjm8f9F+boI1HA78DfL0t77eA82fQ7ycCBwEXtfmWAj9pr20FPj3N/I9P8jfA7sA+wOUMgTeVJwMHJlndnu8NHAD8H3BhVV3Zyqca92fa3w3Ac9v04xhCjao6O8ldk+wNPAl44diMVfW/bXIXhi8Rr6mqr07TZ0nqzkwD6uaR6a0M38yvr6oVs5j31nHt3ArsXFXfTnIQ8DTgHUnWVdXbxrUR4MtV9aIZ9nd0vtOq6i0TvPaLmuI4UJLdGLa4VlbV/yRZC+w2w2W+rqrOGtfeKoYtKACmGffY+7SVX62j274JjKhWPtEpM7cwBNxTgDkLqH332HfSs/gkaS5t6++gbgCuTHIwQDs287BtaSjJ/sCNVfVx4F3A77WXfgbs1aa/ATw2yQPaPLsneeAE9QB+mWSXNv0VYHWSu7f59klynxl2bSyMrkuyJ7B6knrjl38W8KqxPiR5YJI9xs80xbgncx5wSJt3FXBdVd0ArANeO9LuXdpkAS8BHpTkzdO0PWPXHHUNtaaoNcWaWnPbtKeYSwJYs2bNnLV1R87iOwR4f5JjGHYnfQK4dBva+V3ghCS3Ar8EXtXKPwT8e5Krq+rxSQ4H/iXJ2K7EY4Bvj6/Xnm9KcnFVHdL6ty7JTq391wDfm65TVXV9kpMYdsVdBVw0SdVNwC1JLgVOBf6BYRfoxRn2K17LcNbfTMc9mbXAKUk2MZyxeFgrfzvwvgw/BdgKvJW2i7CqtiZ5IfDFJDdU1T9Ps4xZ8Ye6ksbzh7qaczP9oa4kzbVs6w91JUmaDz3/UHeHSfJZhlPBR71p/IkOkqQdx4ACquo5890HSdLtuYtPktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1KVU1Xz3QR1Ici3wve24iGXAddux/fmyWMcFi3dsi3VcsHDHdp+qutv4QgNKO0SS9VW1cr77MdcW67hg8Y5tsY4LFt/Y3MUnSeqSASVJ6pIBpR3lQ/Pdge1ksY4LFu/YFuu4YJGNzWNQkqQuuQUlSeqSASVJ6pIBpTmV5N5JzklyRZLLkxzRytcm+WGSje3xtPnu62wl2S3JhUkubWN7ayvfJ8mXk3yn/b3LfPd1NqYY14JfZwBJliS5JMmX2vMFvb5GTTC2RbHOxngMSnMqyX7AflV1cZK9gA3As4HnA1uq6l3z2b87IkmAPapqS5JdgP8EjgCeC/y0qo5L8mbgLlX1pvns62xMMa4/YYGvM4AkfwWsBO5UVc9I8k4W8PoaNcHY1rII1tkYt6A0p6rq6qq6uE3/DLgCuOf89mpu1GBLe7pLexTwLOC0Vn4aQyAvGFOMa8FLci/g6cDJI8ULen2NmWRsi4oBpe0myXLg4cAFrei1STYl+chC3a3SdqlsBH4CfLmqLgD2raqrYQho4O7z2MVtMsm4YOGvsxOBvwFuHSlb8OurOZFfHxss/HV2GwNK20WSPYFPA0dW1Q3A+4H7AyuAq4F3z1/vtl1Vba2qFcC9gEcmeeg8d2lOTDKuBb3OkjwD+ElVbZjvvsy1Kca2oNfZeAaU5lw7jvFp4PSq+gxAVf24fQjeCpwEPHI++3hHVdX1wLkMx2l+3I69jR2D+8n89eyOGR3XIlhnjwWemeQq4BPAE5J8nMWxviYc2yJYZ7djQGlOtQPuHwauqKr3jJTvN1LtOcBlO7pvd1SSuyW5c5teCjwJ+C/gC8BhrdphwOfnpYPbaLJxLfR1VlVvqap7VdVy4IXA2VV1KAt8fcHkY1vo62y8nee7A1p0Hgv8ObC5HdMAOBp4UZIVDAffrwJeMR+du4P2A05LsoThy92ZVfWlJOcDZyZ5KfB94OD57OQ2mGxcH1sE62wix7Gw19dU3rmY1pmnmUuSuuQuPklSlwwoSVKXDChJUpcMKElSlwwoSVKXDCipQ0kqybtHnh/VLgQ6F22fmmT1XLQ1zXIOble1P2d7L2uCZR+eZP8dvVzNLQNK6tPNwHOTLJvvjoxqv5WaqZcCr66qx2+v/kzhcMCAWuAMKKlPtwAfAt4w/oXxW0BJtrS/q5J8NcmZSb6d5Lgkh7R7PW1Ocv+RZp6U5Gut3jPa/EuSnJDkonax0VeMtHtOkjOAzRP050Wt/cuSHN/KjgUeB3wgyQkTzPPXI8sZu//U8UlePVJnbZI3TlF/edtCOynDfazWJVna3puVwOkZ7om0tL0X32zzL4pbUfxGqCofPnx09gC2AHdiuBrA3sBRwNr22qnA6tG67e8q4HqGK0PsCvwQeGt77QjgxJH5/4PhC+oBwA+A3YCXA8e0OrsC64H7tnZ/Dtx3gn7uz3A1hrsxXJnmbODZ7bVzgZUTzPNkhvBN68OXgD9kuPL9V0fqfRP47SnqL2cI8hWt/pnAoeOXDewDfItfXZjgzvO9fn3M7OEWlNSpGq4C/1Hg9bOY7aIa7sl1M/DfwLpWvpnhA33MmVV1a1V9B/gu8CCGIHhxu0TVBcBdGQIM4MKqunKC5T0COLeqrq2qW4DTGcJjKk9uj0uAi9uyD6iqS4C7J9k/ycOA/62q709Wv7V1ZVVtbNMbxo1xzA3AL4CTkzwXuHGa/qkTXotP6tuJDB/Kp4yU3ULbPd8uzvtbI6/dPDJ968jzW7n9//fx1zgrhi2U11XVWaMvJFnFsAU1kUzT/8nmeUdVfXCC1z4FrAbuwXCV7knrt/uNjY53K7B0fINVdUuSRwJPZLiw6muBJ2xDv7WDuQUldayqfsqw6+qlI8VXAQe16Wcx3AF3tg5OslM7LnU/hl1gZwGvardLIckDk+wxTTsXAH+UZFk7geJFwFenmecs4CXtnmEkuWeSsZsGfoIhRFYzhNV09SfzM2CvVn9PYO+q+jfgSIZ7JWkBcAtK6t+7Gb71jzkJ+HySC4GvMPnWzVS+xRAk+wKvrKpfJDmZYRfZxW3L7FqmuR16VV2d5C3AOQxbOv9WVVPevqKq1iV5MHD+sBi2AIcy3IDv8iR7AT+sX931drL6W6dYzKkMJ2jcBDyV4f3arfXx1048UZ+8mrkkqUvu4pMkdcmAkiR1yYCSJHXJgJIkdcmAkiR1yYCSJHXJgJIkden/AfCEdh3W3Aw6AAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
@@ -416,7 +446,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAU40lEQVR4nO3df7xldV3v8ddb4PLTi8IoRhJjCg8vyDQ5449CcyREs6uhYoJwA62USr3oxRDlyuj1FgSllj9KvEH+pChRSAIUUYhAmIFhAC008AcPRZkMaUD5MXzuH+t7YHs4P2fOzPkeej0fj/M4a3/Xd33XZ+199n6ftfbea6WqkCSpN4+Y7wIkSZqIASVJ6pIBJUnqkgElSeqSASVJ6pIBJUnqkgElLUBJNiRZk+T6JGcl2WGKvi9O8pYtXN/KJJXkSSNtb2xty0fa9mvbsSbJD5Lc3KY/P4t1HZxkn7neBs0/A0pamH5UVUur6inAPcDRk3WsqnOq6qQtV9oDrgMOHbl9CPCV0Q5VdV3bjqXAOcCb2+0DZ7GegwED6mHIgJIWvkuBJyXZJcmnk6xNckWSJQBJjkryvjb98rbXdW2SS1rbvkmubHsua5Ps1drf1Ppen+SY1rY4yVeTnJbkhiQXJtl+kro+DfxaW+5ngR8Ct81kg5IclOTyJFe3PcSdWvtJSb7S6jw1yS8CLwZOafU/caPuQXXJgJIWsCRbA7/CsLfyDuCaqloCvBX4yASLvB14flX9HMMLOwx7X+9tezHLgVuSLANeBTwDeCbw20l+vvXfC3h/Ve0L3A68bJLy7gC+neQpwGHAX89wmxYBJwAHVtVTgVXAm5LsArwE2Ldt47uq6p/4yT2vf53JOrQwGFDSwrR9kjUML97fAv4f8CzgowBV9QVg1yQ7j1vuMuCMJL8NbNXaLgfemuQ4YM+q+lEb6+yqurOq1gOfAp7d+t9cVWva9Gpg8RR1nslwmO9g4OwZbtszGQ7ZXda28UhgT4bA+zHw4SQvBe6a4XhaoAwoaWEaew9qaVW9vqruATJBv5842WZVHc2wd7IHsCbJrlX1CYa9qR8BFyQ5YJKxxtw9Mr0B2HqKvucC/wP4VlXdMdaY5CUjH45YPm6ZAJ8b2b59quo3q+o+4OnA3zEE3vlTrFcPAwaU9PBxCXA4QJIVwLrRUGjtT6yqL1fV24F1wB7t/aGbqupPGQ6XLWljHZxkhyQ7Mhxau3S2BbW9seOA/zuu/eyRAFo1brErgP3HPgHYati7vQ+1c1WdBxwDLG39/wN45GxrU/+m+s9H0sKyEjg9yVqGw19HTtDnlPYhiAAXAdcCbwGOSHIvcCvwzqr6QZIzgCvbch+uqmuSLJ5tUVV15iz735bkKOCTSbZtzScwBNFnkmzX6n9jm3cmcFqSNwCH+D7Uw0e83IYkqUce4pMkdcmAkiR1yYCSJHXJgJIkdclP8QmARYsW1eLFi+e7DEn/iaxevXpdVT1msvkGlABYvHgxq1aN/zqKJG0+Sb451XwP8UmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQGmjrVy5cr5LkNSJzfF6kKqa80G18CxfvrxWrVo1q2WSMN3fz+NOfRzfu/N7D2nfbcfduPXYW2e1Pkn9msnrwQTLrK6q5ZPNn3YPKsniJNfPYoUrkxw70/5TjHNMkh1m2y/JWzd13TNY55OTrElyTZInJnnlHI79jSSL5mCc9XNRz6aaKJymapekMVvPdwFTOAb4GHDXLPu9FfiD2awoyVZVtWEWixwMfKaqTkyyAngl8InNuL5urVixYuoOz92EZSX9pzbT96C2SnJakhuSXJhk+7bncH6S1UkuTfLk8Qsl+WKSdye5JMlXkzwtyaeSfC3Ju1qfHZN8Nsm1Sa5P8ookbwB2By5OcnHrd1CSy5NcneSsJDuN75fkJGD7tnfz8bbcEUmubG1/kWSr1r4+yTuTfBn4hYk2Osnbk1zV6vpQBi9kCMXfarWdBDy7jf/GJFslOaUttzbJa9tYK1qNnwCum2i7R1b9+rad143dr0l2SfLpNuYVSZa09p2SnN76rk3ysnHbsKjdb786wfa9JsmqJKtuu+22Gf4pSNIWUlVT/gCLgfuApe323wBHABcBe7W2ZwBfaNMrgWPb9BeBk9v0/wS+A/wUsC1wC7Ar8DLgtJH17dx+fwNY1KYXAZcAO7bbxwFvH9+v3V4/Mv3fgHOBbdrtDwC/0aYL+PVptn2XkemPAi+aYBtXAH8/0u81wAlteltgFfCE1u9O4Alt3lTb/fo2/bvAh9v0nwEntukDgDVt+mTgPSPjPHrsfgB2A74MPG+6x3nZsmU1W8OfzzR9VjLpj6SHj5m8HkywzKqa4nVppof4bq6qNW16NUNo/SJwVpKxPttOsuw57fd1wA1V9V2AJDcBe7T2U5Oc3F7oL51gjGcC+wCXtfX9F+DyGdT9y8Ay4Kq23PbA99u8DcDfTbP8c5P8PrADsAtwA0PgTeUgYEmSQ9rtnYG9gHuAK6vq5tY+1XZ/qv1eDby0TT+LIdSoqi8k2TXJzsCBwKFjC1bVv7fJbRj+ifi9qvrSNDVLUndmGlB3j0xvYPjP/PaqWjqLZe8fN879wNZVdWOSZcALgT9McmFVvXPcGAE+V1WHzbDe0eX+qqqOn2Dej2uK94GSbMewx7W8qr6dZCWw3QzX+fqqumDceCsY9qAAmGa7x+6nDTz4GD3wn8CIau0TfXTmPoaAez4wbwG12467TfopPkmaysZ+D+oO4OYkLwdo78383MYMlGR34K6q+hhwKvDUNus/gEe26SuA/ZM8qS2zQ5K9J+gHcG+Sbdr0RcAhSR7bltslyZ4zLG0sjNYl2Qk4ZJJ+49d/AfA7YzUk2TvJjuMXmmK7J3MJcHhbdgWwrqruAC4EXjcy7qPbZAGvBp6c5C3TjL1RTjzxxGn73HrsrdSJ9ZAfP2IuPbzM5PVgtjblU3yHAx9McgLD4aQzgWs3Ypz9gFOS3A/cC/xOa/8Q8A9JvltVz01yFPDJJGOHEk8Abhzfr91em+Tqqjq81Xdhkke08X8P+OZ0RVXV7UlOYzgU9w3gqkm6rgXuS3ItcAbwXoZDoFdnOK54G8On/ma63ZNZCZyeZC3DJxaPbO3vAt6f4asAG4B30A4RVtWGJIcC5ya5o6o+MM06ZsUv6koa4xd1tdlszBd1JWlTZFO/qCtJ0nzo+Yu6W0ySsxk+Cj7quPEfdJAkbTkGFFBVL5nvGiRJP8lDfJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuparmuwZ1IMltwDfneNhFwLo5HnNzsda5t1DqhIVT60KpE2ZW655V9ZjJZhpQ2mySrKqq5fNdx0xY69xbKHXCwql1odQJc1Orh/gkSV0yoCRJXTKgtDl9aL4LmAVrnXsLpU5YOLUulDphDmr1PShJUpfcg5IkdcmAkiR1yYDSnEtySpJ/TrI2ydlJHtXat0nyV0muS/LVJMfPc6mT1trmLUlyeZIbWs3b9Vhnm/8zSdYnOXaeShytZbLH/3lJVrf7cnWSA3qss807PsnXk/xLkufPY5lj9by8/R3en2T5SHuPz6kJa23zZvWcMqC0OXwOeEpVLQFuBMaeNC8Htq2q/YBlwGuTLJ6fEh8wYa1JtgY+BhxdVfsCK4B756tIJr9Px7wb+IctXtXEJqt1HfCi9vgfCXx0nuobM9ljvw9wKLAv8ALgA0m2mrcqB9cDLwUuGdfe43Nqwlo35jllQGnOVdWFVXVfu3kF8PixWcCO7Q91e+Ae4I55KPEBU9R6ELC2qq5t/f6tqjbMR41t/ZPVSZKDgZuAG+ahtIeYrNaquqaqvtPabwC2S7LtfNTY6pnsPv014Myquruqbga+Djx9PmocU1Vfrap/mWgW/T2nJqt11s8pA0qb26t58D/7vwXuBL4LfAs4tap+MF+FTWC01r2BSnJBkquT/P481jXeA3Um2RE4DnjHvFY0udH7dNTLgGuq6u4tXM9kRuv8aeDbI/NuaW096v05NWrWz6mtt0BRehhK8nngcRPMeltVfab1eRtwH/DxNu/pwAZgd+DRwKVJPl9VN3VY69bAs4CnAXcBFyVZXVUXdVbnO4B3V9X6JJurtIfYyFrHlt0XOJnhP+oe65zojtzs38eZSa0T6PY5NYFZP6cMKG2UqjpwqvlJjgT+O/DL9eCX7V4JnF9V9wLfT3IZsJzh8FRvtd4CfKmq1rU+5wFPBTZbQG1knc8ADknyR8CjgPuT/Liq3re56tyEWknyeOBs4Deq6l83Z42wSY/9HiPdHg98Z/yyc226WifR5XNqErN+TnmIT3MuyQsYDju9uKruGpn1LeCADHYEngn883zUOGaKWi8AliTZoR3ffw7wlfmoESavs6qeXVWLq2ox8B7gDzZ3OE1nslrbp+Q+CxxfVZfNU3kPmOKxPwc4NMm2SZ4A7AVcOR81zkB3z6kpzPo55ZkkNOeSfB3YFvi31nRFVR2dZCfgdGAfhsMop1fVKfNUJjB5rW3eEQyf7CrgvKqat/ehpqpzpM9KYH1VnbqFy/sJUzz+JzDcn18b6X5QVX1/S9cI0z72b2N4X+o+4JiqmtdPSCZ5CfBnwGOA24E1VfX8Tp9TE9ba5s3qOWVASZK65CE+SVKXDChJUpcMKElSlwwoSVKXDChJUpcMKGkLSlJJ/njk9rHt4+FbsoYvjp1lOsl5GXdm9I0Yb0WSv5+qPcmLk7ylTZ+R5JBZjL++/d49yd+26aOSzPn3vTbXuNo4BpS0Zd0NvDTJoo1ZuH3Bcc5U1Qur6va5HHOS9ZxTVSdt4hjfqaoZB5sWPgNK2rLuAz4EvHH8jCR7Jrkow/WJLkryM639jCR/kuRi4OR2+4NJLk5yU5LnJPnLDNcDOmNkvA8mWZXh2jsTnkw2yTeSLEpydJI17efmti6SHJTh+j1XJzmrfTGUJC/IcC2lf2S4tMKUJtszSfJ/2vY8Ismbk1zVtv8h9SZZnOT6kabdk5yf5GvtVE9j/Q7LcK2h65OcPIP2VyW5McmXgP2n2xZtOQaUtOW9Hzg8yc7j2t8HfKRdn+jjwJ+OzNsbOLCq/le7/WjgAIagO5fhelD7AvslWdr6vK2qlgNLgOckWTJZQVX151W1lOFEnrcAf9L28k5o630qsAp4U4aLzJ0GvAh4NhOfNHRaLVQeC7wKOJDhlEJPB5YCy5L80jRDLAVeAewHvCLJHkl2ZzgR7QFt/tOSHDxF+08xnHB3f+B5DGdkUCcMKGkLq6o7gI8Abxg36xeAT7TpjzKc+XnMWeOunXNuO7npdcD3quq6qrqf4TpLi1ufX09yNXANQ3jN5MX3vcAXqupchvO67QNclmQNw0UG9wSeDNxcVV9rNXxsBuOO97+BR1XVa9sYB7Wfa4Cr2zr2mmaMi6rqh1X1Y4Zzuu3JELBfrKrb2rWePg780hTtzxhpvwf4643YFm0mns1cmh/vYXghPn2KPqPnIbtz3Lyx6yjdPzI9dnvrdpLTY4GnVdW/t0N/U15eO8lRDC/yrxtrAj5XVYeN67eUTb/8xFUMe0m7tOsXBfjDqvqLWYwxut0bGF7PJrvmyFTXIvF8b51yD0qaB+1F+W+A3xxp/ieGS40DHA784yas4r8yhNoPk+wG/MpUnZMsYwi0I9qeGAxXmd0/yZNanx2S7M1wtuwnJHli63fYQwac3vnAScBnkzyS4UzXrx55j+unkzx2I8b9MsPhzEUZLtN+GPCladpXJNk1yTYMl1BXJ9yDkubPH/Pg3goMh/z+MsmbgdsY3pvZKFV1bZJrGA753QRMd3mL1wG7ABdnuPDhqqr6rbZX9ck8eGn2E6rqxiSvYQiXdQxB+pSNqPGsFk7nAC9kOLx5eVv/euAIYFZnOq+q7yY5HriYYa/pvJELE07WvhK4nOGqtFcDW812W7R5eDZzSVKXPMQnSeqSASVJ6pIBJUnqkgElSeqSASVJ6pIBJUnqkgElSerS/weph5TRs1E/+QAAAABJRU5ErkJggg==\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAU40lEQVR4nO3df7xldV3v8ddb4PLTi8IoRhJjCg8vyDQ5449CcyREs6uhYoJwA62USr3oxRDlyuj1FgSllj9KvEH+pChRSAIUUYhAmIFhAC008AcPRZkMaUD5MXzuH+t7YHs4P2fOzPkeej0fj/M4a3/Xd33XZ+199n6ftfbea6WqkCSpN4+Y7wIkSZqIASVJ6pIBJUnqkgElSeqSASVJ6pIBJUnqkgElLUBJNiRZk+T6JGcl2WGKvi9O8pYtXN/KJJXkSSNtb2xty0fa9mvbsSbJD5Lc3KY/P4t1HZxkn7neBs0/A0pamH5UVUur6inAPcDRk3WsqnOq6qQtV9oDrgMOHbl9CPCV0Q5VdV3bjqXAOcCb2+0DZ7GegwED6mHIgJIWvkuBJyXZJcmnk6xNckWSJQBJjkryvjb98rbXdW2SS1rbvkmubHsua5Ps1drf1Ppen+SY1rY4yVeTnJbkhiQXJtl+kro+DfxaW+5ngR8Ct81kg5IclOTyJFe3PcSdWvtJSb7S6jw1yS8CLwZOafU/caPuQXXJgJIWsCRbA7/CsLfyDuCaqloCvBX4yASLvB14flX9HMMLOwx7X+9tezHLgVuSLANeBTwDeCbw20l+vvXfC3h/Ve0L3A68bJLy7gC+neQpwGHAX89wmxYBJwAHVtVTgVXAm5LsArwE2Ldt47uq6p/4yT2vf53JOrQwGFDSwrR9kjUML97fAv4f8CzgowBV9QVg1yQ7j1vuMuCMJL8NbNXaLgfemuQ4YM+q+lEb6+yqurOq1gOfAp7d+t9cVWva9Gpg8RR1nslwmO9g4OwZbtszGQ7ZXda28UhgT4bA+zHw4SQvBe6a4XhaoAwoaWEaew9qaVW9vqruATJBv5842WZVHc2wd7IHsCbJrlX1CYa9qR8BFyQ5YJKxxtw9Mr0B2HqKvucC/wP4VlXdMdaY5CUjH45YPm6ZAJ8b2b59quo3q+o+4OnA3zEE3vlTrFcPAwaU9PBxCXA4QJIVwLrRUGjtT6yqL1fV24F1wB7t/aGbqupPGQ6XLWljHZxkhyQ7Mhxau3S2BbW9seOA/zuu/eyRAFo1brErgP3HPgHYati7vQ+1c1WdBxwDLG39/wN45GxrU/+m+s9H0sKyEjg9yVqGw19HTtDnlPYhiAAXAdcCbwGOSHIvcCvwzqr6QZIzgCvbch+uqmuSLJ5tUVV15iz735bkKOCTSbZtzScwBNFnkmzX6n9jm3cmcFqSNwCH+D7Uw0e83IYkqUce4pMkdcmAkiR1yYCSJHXJgJIkdclP8QmARYsW1eLFi+e7DEn/iaxevXpdVT1msvkGlABYvHgxq1aN/zqKJG0+Sb451XwP8UmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQGmjrVy5cr5LkNSJzfF6kKqa80G18CxfvrxWrVo1q2WSMN3fz+NOfRzfu/N7D2nfbcfduPXYW2e1Pkn9msnrwQTLrK6q5ZPNn3YPKsniJNfPYoUrkxw70/5TjHNMkh1m2y/JWzd13TNY55OTrElyTZInJnnlHI79jSSL5mCc9XNRz6aaKJymapekMVvPdwFTOAb4GHDXLPu9FfiD2awoyVZVtWEWixwMfKaqTkyyAngl8InNuL5urVixYuoOz92EZSX9pzbT96C2SnJakhuSXJhk+7bncH6S1UkuTfLk8Qsl+WKSdye5JMlXkzwtyaeSfC3Ju1qfHZN8Nsm1Sa5P8ookbwB2By5OcnHrd1CSy5NcneSsJDuN75fkJGD7tnfz8bbcEUmubG1/kWSr1r4+yTuTfBn4hYk2Osnbk1zV6vpQBi9kCMXfarWdBDy7jf/GJFslOaUttzbJa9tYK1qNnwCum2i7R1b9+rad143dr0l2SfLpNuYVSZa09p2SnN76rk3ysnHbsKjdb786wfa9JsmqJKtuu+22Gf4pSNIWUlVT/gCLgfuApe323wBHABcBe7W2ZwBfaNMrgWPb9BeBk9v0/wS+A/wUsC1wC7Ar8DLgtJH17dx+fwNY1KYXAZcAO7bbxwFvH9+v3V4/Mv3fgHOBbdrtDwC/0aYL+PVptn2XkemPAi+aYBtXAH8/0u81wAlteltgFfCE1u9O4Alt3lTb/fo2/bvAh9v0nwEntukDgDVt+mTgPSPjPHrsfgB2A74MPG+6x3nZsmU1W8OfzzR9VjLpj6SHj5m8HkywzKqa4nVppof4bq6qNW16NUNo/SJwVpKxPttOsuw57fd1wA1V9V2AJDcBe7T2U5Oc3F7oL51gjGcC+wCXtfX9F+DyGdT9y8Ay4Kq23PbA99u8DcDfTbP8c5P8PrADsAtwA0PgTeUgYEmSQ9rtnYG9gHuAK6vq5tY+1XZ/qv1eDby0TT+LIdSoqi8k2TXJzsCBwKFjC1bVv7fJbRj+ifi9qvrSNDVLUndmGlB3j0xvYPjP/PaqWjqLZe8fN879wNZVdWOSZcALgT9McmFVvXPcGAE+V1WHzbDe0eX+qqqOn2Dej2uK94GSbMewx7W8qr6dZCWw3QzX+fqqumDceCsY9qAAmGa7x+6nDTz4GD3wn8CIau0TfXTmPoaAez4wbwG12467TfopPkmaysZ+D+oO4OYkLwdo78383MYMlGR34K6q+hhwKvDUNus/gEe26SuA/ZM8qS2zQ5K9J+gHcG+Sbdr0RcAhSR7bltslyZ4zLG0sjNYl2Qk4ZJJ+49d/AfA7YzUk2TvJjuMXmmK7J3MJcHhbdgWwrqruAC4EXjcy7qPbZAGvBp6c5C3TjL1RTjzxxGn73HrsrdSJ9ZAfP2IuPbzM5PVgtjblU3yHAx9McgLD4aQzgWs3Ypz9gFOS3A/cC/xOa/8Q8A9JvltVz01yFPDJJGOHEk8Abhzfr91em+Tqqjq81Xdhkke08X8P+OZ0RVXV7UlOYzgU9w3gqkm6rgXuS3ItcAbwXoZDoFdnOK54G8On/ma63ZNZCZyeZC3DJxaPbO3vAt6f4asAG4B30A4RVtWGJIcC5ya5o6o+MM06ZsUv6koa4xd1tdlszBd1JWlTZFO/qCtJ0nzo+Yu6W0ySsxk+Cj7quPEfdJAkbTkGFFBVL5nvGiRJP8lDfJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuparmuwZ1IMltwDfneNhFwLo5HnNzsda5t1DqhIVT60KpE2ZW655V9ZjJZhpQ2mySrKqq5fNdx0xY69xbKHXCwql1odQJc1Orh/gkSV0yoCRJXTKgtDl9aL4LmAVrnXsLpU5YOLUulDphDmr1PShJUpfcg5IkdcmAkiR1yYDSnEtySpJ/TrI2ydlJHtXat0nyV0muS/LVJMfPc6mT1trmLUlyeZIbWs3b9Vhnm/8zSdYnOXaeShytZbLH/3lJVrf7cnWSA3qss807PsnXk/xLkufPY5lj9by8/R3en2T5SHuPz6kJa23zZvWcMqC0OXwOeEpVLQFuBMaeNC8Htq2q/YBlwGuTLJ6fEh8wYa1JtgY+BhxdVfsCK4B756tIJr9Px7wb+IctXtXEJqt1HfCi9vgfCXx0nuobM9ljvw9wKLAv8ALgA0m2mrcqB9cDLwUuGdfe43Nqwlo35jllQGnOVdWFVXVfu3kF8PixWcCO7Q91e+Ae4I55KPEBU9R6ELC2qq5t/f6tqjbMR41t/ZPVSZKDgZuAG+ahtIeYrNaquqaqvtPabwC2S7LtfNTY6pnsPv014Myquruqbga+Djx9PmocU1Vfrap/mWgW/T2nJqt11s8pA0qb26t58D/7vwXuBL4LfAs4tap+MF+FTWC01r2BSnJBkquT/P481jXeA3Um2RE4DnjHvFY0udH7dNTLgGuq6u4tXM9kRuv8aeDbI/NuaW096v05NWrWz6mtt0BRehhK8nngcRPMeltVfab1eRtwH/DxNu/pwAZgd+DRwKVJPl9VN3VY69bAs4CnAXcBFyVZXVUXdVbnO4B3V9X6JJurtIfYyFrHlt0XOJnhP+oe65zojtzs38eZSa0T6PY5NYFZP6cMKG2UqjpwqvlJjgT+O/DL9eCX7V4JnF9V9wLfT3IZsJzh8FRvtd4CfKmq1rU+5wFPBTZbQG1knc8ADknyR8CjgPuT/Liq3re56tyEWknyeOBs4Deq6l83Z42wSY/9HiPdHg98Z/yyc226WifR5XNqErN+TnmIT3MuyQsYDju9uKruGpn1LeCADHYEngn883zUOGaKWi8AliTZoR3ffw7wlfmoESavs6qeXVWLq2ox8B7gDzZ3OE1nslrbp+Q+CxxfVZfNU3kPmOKxPwc4NMm2SZ4A7AVcOR81zkB3z6kpzPo55ZkkNOeSfB3YFvi31nRFVR2dZCfgdGAfhsMop1fVKfNUJjB5rW3eEQyf7CrgvKqat/ehpqpzpM9KYH1VnbqFy/sJUzz+JzDcn18b6X5QVX1/S9cI0z72b2N4X+o+4JiqmtdPSCZ5CfBnwGOA24E1VfX8Tp9TE9ba5s3qOWVASZK65CE+SVKXDChJUpcMKElSlwwoSVKXDChJUpcMKGkLSlJJ/njk9rHt4+FbsoYvjp1lOsl5GXdm9I0Yb0WSv5+qPcmLk7ylTZ+R5JBZjL++/d49yd+26aOSzPn3vTbXuNo4BpS0Zd0NvDTJoo1ZuH3Bcc5U1Qur6va5HHOS9ZxTVSdt4hjfqaoZB5sWPgNK2rLuAz4EvHH8jCR7Jrkow/WJLkryM639jCR/kuRi4OR2+4NJLk5yU5LnJPnLDNcDOmNkvA8mWZXh2jsTnkw2yTeSLEpydJI17efmti6SHJTh+j1XJzmrfTGUJC/IcC2lf2S4tMKUJtszSfJ/2vY8Ismbk1zVtv8h9SZZnOT6kabdk5yf5GvtVE9j/Q7LcK2h65OcPIP2VyW5McmXgP2n2xZtOQaUtOW9Hzg8yc7j2t8HfKRdn+jjwJ+OzNsbOLCq/le7/WjgAIagO5fhelD7AvslWdr6vK2qlgNLgOckWTJZQVX151W1lOFEnrcAf9L28k5o630qsAp4U4aLzJ0GvAh4NhOfNHRaLVQeC7wKOJDhlEJPB5YCy5L80jRDLAVeAewHvCLJHkl2ZzgR7QFt/tOSHDxF+08xnHB3f+B5DGdkUCcMKGkLq6o7gI8Abxg36xeAT7TpjzKc+XnMWeOunXNuO7npdcD3quq6qrqf4TpLi1ufX09yNXANQ3jN5MX3vcAXqupchvO67QNclmQNw0UG9wSeDNxcVV9rNXxsBuOO97+BR1XVa9sYB7Wfa4Cr2zr2mmaMi6rqh1X1Y4Zzuu3JELBfrKrb2rWePg780hTtzxhpvwf4643YFm0mns1cmh/vYXghPn2KPqPnIbtz3Lyx6yjdPzI9dnvrdpLTY4GnVdW/t0N/U15eO8lRDC/yrxtrAj5XVYeN67eUTb/8xFUMe0m7tOsXBfjDqvqLWYwxut0bGF7PJrvmyFTXIvF8b51yD0qaB+1F+W+A3xxp/ieGS40DHA784yas4r8yhNoPk+wG/MpUnZMsYwi0I9qeGAxXmd0/yZNanx2S7M1wtuwnJHli63fYQwac3vnAScBnkzyS4UzXrx55j+unkzx2I8b9MsPhzEUZLtN+GPCladpXJNk1yTYMl1BXJ9yDkubPH/Pg3goMh/z+MsmbgdsY3pvZKFV1bZJrGA753QRMd3mL1wG7ABdnuPDhqqr6rbZX9ck8eGn2E6rqxiSvYQiXdQxB+pSNqPGsFk7nAC9kOLx5eVv/euAIYFZnOq+q7yY5HriYYa/pvJELE07WvhK4nOGqtFcDW812W7R5eDZzSVKXPMQnSeqSASVJ6pIBJUnqkgElSeqSASVJ6pIBJUnqkgElSerS/weph5TRs1E/+QAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
@@ -499,7 +529,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAVQUlEQVR4nO3de7QlZX3m8e/DZZCLotCYYNRuMCgXRQwgopJ0ouKo0cEFJo6NIMYQHSOQGTMqsLDBy8AwK0ZHSWwcwRg0E9eIgg4BgrQkyK0bmm4ISxPlMghJYEXUBkUuv/mj3mNvjufa3fR5+/D9rLXXfvdbVW+9v304/VC196lKVSFJUm+2mOsJSJI0EQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDStrMJHkkyaokNyX5UpLtplj3DUnev4nn97wky9scb0mybNzyk9qyVSO1rEpy3Cz2ceLGn7l6E/8OStq8JFlbVTu09nnAyqr6kzme1s8luRg4q6q+2l6/oKrWTLLuz2uZ5T7WazttXjyCkjZvfwf8apKdknwlyeokVyfZFyDJ25J8srXf1I66bkxyRevbJ8m17QhmdZI9Wv9/buvelOSE1reoHRGdneTmJJck2XaCOe0K3Dn2YrJwGpVkyyRnJrmuzeMPWv+uSa4YOWI8JMnpwLat77wNevfUNQNK2kwl2Qp4DbAGOBW4oar2BU4E/mKCTU4BXl1VLwTe0PreCXy8qvYDDgDuTLI/cAxwEPAS4PeTvKitvwfwqaraB7gPOHyC/XwM+EaSi5L8UZKnzqCc3wN+WFUHAge2fe4GvAW4uM3vhcCqqno/8JOq2q+qlsxgbG2mDChp87NtklXACuAO4H8BLwc+D1BV3wB2TrLjuO2uBM5N8vvAlq3vKuDEJO8DFlbVT9pY51fV/VW1FvgycEhb/9aqWtXaK4FF4ydXVecAewFfAhYDVyfZZpqaDgWOanVdA+zMEIbXAcckWQq8oKp+PM04mke2musJSJq1n7Qjip9LkgnWe8wHzFX1ziQHAa8DViXZr6q+kOSa1ndxkncAE4015sGR9iPARKf4qKq7gM8Cn01yE/D8JH8IvAi4q6peO26TAO+pqovHj5Xk19v8Pp/kzKqa6OhQ85BHUNL8cAWwBCDJYuDeqvrR6ApJnlNV11TVKcC9wLOS7A58r6o+AVwA7NvGOizJdkm2B97I8FnXjCT590m2bu1fZjga+n5VHdNOy40PJ4CLgXeNbPfcJNsnWQj8a1WdzXCk+Gtt/YfG1tX85RGUND8sBc5Jshp4ADh6gnXObF+CCHAZcCPwfuDIJA8B/wycVlX/luRc4Nq23Weq6oYki2Y4l0OBjyf5aXv9x1X1z9Ns8xmG04XXt6PBe4DDGE4R/nGb31rgqLb+MmB1kuv9HGr+8mvmkqQueYpPktQlA0qS1CUDSpLUJQNKktQlv8UnABYsWFCLFi2a62lImodWrlx5b1XtMtvtDCgBsGjRIlasWDHX05A0DyW5fX228xSfJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUNoqlS5fO9RQkbSKb6vfdgNLsnXceLFoEW2wxPJ93Hqeeeupcz0rSJrKpft+nDagki5LcNNMBkyxN8t4NmxYkOSHJdrNdL8mJG7rvGexzzySrktyQ5DlJ3rIRx74tyYKNMM7ajTGfX3DeeXDssXD77VA1PB97LP/xcdmZpCeyreZ6AlM4AfhL4IFZrnci8NHZ7CjJllX1yCw2OQz4alV9MMli4C3AFx7H/fXjpJPggXE/kgce4KPA4sWL52JGkuapmZ7i2zLJ2UluTnJJkm3bkcPfJFmZ5O+S7Dl+oyTLk3wsyRVJbklyYJIvJ/nHJB9u62yf5OtJbkxyU5LfTXIc8Azg8iSXt/UOTXJVkuuTfCnJDuPXS3I6sG07ujmvbXdkkmtb36eTbNn61yY5Lck1wMETFZ3klCTXtXkty+C1DKH4jja304FD2vh/lGTLJGe27VYn+YM21uI2xy8Aayaqe2TX72l1rhl7X5PslOQrbcyrk+zb+ndIck5bd3WSw8fVsKC9b6+boL5jk6xIsuKee+6Z2X8Jd9wxYfezZ7a1JM1cVU35ABYBDwP7tdd/DRwJXAbs0foOAr7R2kuB97b2cuCM1j4euAvYFdgGuBPYGTgcOHtkfzu259uABa29ALgC2L69fh9wyvj12uu1I+29gAuBrdvrs4CjWruA35mm9p1G2p8HXj9BjYuBr42sdyxwcmtvA6wAdmvr3Q/s1pZNVfd7Wvs/AZ9p7f8JfLC1fwtY1dpnAH86Ms7Txt4H4JeAa4BXTfdz3n///WtGFi6sGk7uPeZxK8xse0mbPWb5+w6sqGn+DZroMdMjqFuralVrr2QIrZcCX0qyCvg0Q/BM5IL2vAa4uarurqoHge8Bz2r9r0xyRpJDquqHE4zxEmBv4Mq2v6OBhTOY9yuA/YHr2navAHZvyx4B/s802/9mkmuSrGEIhX1msM9DgaPa/q5hCOE92rJrq+rW1p6q7i+357H3GuDlDCFJVX0D2DnJjsArgU+NbVhVP2jNrRn+J+K/VtWlM5j3zHzkI7DduI8Gt9uOx/2DP0lPODMNqAdH2o8AOwH3VdV+I4+9ptn20XHjPApsVVXfYQiRNcB/S3LKBGMEuHRkX3tX1e/NYN4BPjey3fOqamlb9tOa4nOgJE9iOOI6oqpeAJwNPGmG+3zPyD53q6pL2rL7x1aapu6x9+kR1n1OmAn2Va2/Jlj2MEPAvXoGc565JUtg2TJYuBCS4XnZMr64UXciSev/NfMfAbcmeRNA+2zmheszUJJnAA9U1V8C/wP4tbbox8CTW/tq4GVJfrVts12S506wHsBDSbZu7cuAI5I8vW23U5KZHHnBujC6N8kOwBGTrDd+/xcD7xqbQ5LnJtl+/EZT1D2ZK4AlbdvFwL1V9SPgEuAPR8Z9WmsW8HZgzyTvn2bs2VmyBG67DR59dHhesoQPfvCDG3UXkvq1qX7fN+RbfEuAP0tyMsPppL8CblyPcV4AnJnkUeAh4F2tfxlwUZK7q+o3k7wN+GKSbdryk4HvjF+vvV6d5PqqWtLmd0mSLdr47wZun25SVXVfkrMZjnBuA66bZNXVwMNJbgTOBT7OcFru+iQB7mH41t9M657MUuCcJKsZvrF4dOv/MPCpDH8K8AhwKu0UYVU9kuTNwIVJflRVZ02zj/XmH+pKTxyb6vc9w+dXeqI74IADasWKFXM9DUnzUJKVVXXAbLfzShKSpC71/Ie6m0yS8xm+Cj7qfVV18VzMR5JkQAFQVW+c6zlIkh7LU3ySpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLqWq5noO6kCSe4Db53oeM7AAuHeuJ7GJWOv880SpEx5b68Kq2mW2AxhQ2qwkWVFVB8z1PDYFa51/nih1wsap1VN8kqQuGVCSpC4ZUNrcLJvrCWxC1jr/PFHqhI1Qq59BSZK65BGUJKlLBpQkqUsGlLqU5E1Jbk7yaJIDRvpfnGRVe9yY5I0jy/ZPsibJPyX5RJLMzexnZ4paX5VkZatpZZLfGlk232rdOcnlSdYm+eS4beZVrW3ZB1o9307y6pH+zbLWUUlemOSqVseFSZ4ysmzCuidVVT58dPcA9gKeBywHDhjp3w7YqrV3Bf515PW1wMFAgIuA18x1HRtY64uAZ7T284Hvjyybb7VuD7wceCfwyXHbzLda9wZuBLYBdgO+C2y5Odc6ru7rgN9o7bcDH5qu7skeHkGpS1V1S1V9e4L+B6rq4fbySUABJNkVeEpVXVXDb8NfAIdtqvluiClqvaGq7movbwaelGSbeVrr/VX198BPR/vnY63AfwD+qqoerKpbgX8CXrw51zrO84ArWvtS4PDWnrDuqQYyoLTZSXJQkpuBNcA7W2D9CnDnyGp3tr754nDghqp6kPlf66j5WOuvAP9v5PVYTfOl1puAN7T2m4BntfZkdU9qq40+NWmGkvwt8MsTLDqpqr462XZVdQ2wT5K9gM8luYjhlMgvrLpxZrrh1rfWtu0+wBnAoWNdE6w2L2qdaLgJ+jb3WierqetaR01VN8NpvU8kOQW4APjZ2GYTrD9lfQaU5kxVvXIDt78lyf0Mn8/cCTxzZPEzgbsm3HAOrG+tSZ4JnA8cVVXfbd3zstZJzMda72TdUQWsq6nrWkfNoO5DAZI8F3hd65us7kl5ik+blSS7JdmqtRcynO++raruBn6c5CXtm09HAbP9v/WuJHkq8HXgA1V15Vj/fKx1MvO01guAN7fPE3cD9gCunS+1Jnl6e94COBn487ZowrqnHGyuv/Hhw8dED+CNDP/H9SDwL8DFrf+tDF8YWAVcDxw2ss0BDOe/vwt8knallN4fU9R6MnB/q3Xs8fT5WGtbdhvwb8Dats7e87jWk1o932bkm3qba63j6j4e+E57nD5aw2R1T/bwUkeSpC55ik+S1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNK6liS25IsaO1vbYTx3jb+auEbU5ITkmw38vr/tr/nmmqbn9c4Wf9Y7UkWJ/naLOZzbpIjWvszSfZu7bUzHWM2Hq9xn6gMKOlxMvYHxRtLVb10Y473ODmB4YrzAFTVa6vqvg0ddGPUXlXvqKp/2NBxtOkYUNIkkixKckuSs9t9fS5Jsm1btl+Sq5OsTnJ+kqe1/uVJPprkm8Dx7fXHklzRxjowyZeT/GOSD4/s6ysZ7vl0c5JjJ5nP2vZ8WtbdE+v7Sc5p/Ucmubb1fzrJlq3/mCTfaXN62SRj/8bImDckeXI7Wrmi1fcPSf68XR2AJH+WZEWb76mt7zjgGcDlSS5vfaNHQdPWOMXP4heOTNp7eUOS3TPcR+mbbfyLM1wZfPz6y/PYe1B9JMM9xa5O8kutb2GSy9rP9bIkz56mf7cM9z66LsmHZlOTZmCu/+rYh49eH8Ai4GFgv/b6r4EjW3s16+55cxrwp629HDhrZIzlwBmtfTzDtcd2Zbgnzp3Azm3ZTu15W4YrCYz13wYsaO214+a3Y5vH/gz3HroQ2LotO4vhUjm7AncAuwD/DriScfdbautfCLystXdguE7nYobbX+wObMlw64Qjxs13y1bjvuPnO8H8p61x3Jx+ofY2p68BLwVWAs8Gtga+BezS1vld4LOtfe7InJfT7svEcJHS17f2fwdOHnkfjm7ttwNfmab/AobrJAK8e/zPyMeGPTyCkqZ2a1Wtau2VwKIkOwJPrapvtv7PAb8+ss3/HjfGBe15DXBzVd1dw20zvse6i2cel+RG4OrWt8dUk2rXajsP+FhVrQRewRBU1yVZ1V7vDhwELK+qe6rqZxPMbcyVwJ+0o6Cn1rp7bl1bVd+rqkeALzLcVBDgd5JcD9wA7MNwM7rpzKrGKewFLGMImDsYrsf4fODSVvvJPPaiqxP5GUPQQfu5tvbBwBda+/Osq3ey/pcxvC9j/dqIvJq5NLUHR9qPMPzf/3Tun2SMR8eN9yiwVZLFwCuBg6vqgSTLGW7GOJWlwJ1VdU57HeBzVfWB0ZWSHMYMbtlQVacn+TrwWuDqJGNXqx6/bWW40Od7gQOr6gdJzp1uvutZ42Tubtu+iOGINAzBf/Asxnio2mEPw891sn8LJ3vvagbraAN5BCXNUlX9EPhBkkNa11uBb06xyXR2BH7Q/uHeE3jJVCsn+W3gVcBxI92XAUdk3ZWkd8pwtfdrgMVJdk6yNcMN5CYa8zlVtaaqzgBWAHu2RS9un7NswXDq7O+BpzCE8A/bZzevGRnqx8CTN7TGadzHcAuHj7bg+zawS5KDWy1bZ7iH1vr4FvDm1l7CUO9U/VeO69dGZEBJ6+do4Mwkq4H9GD6HWl9/w3AktRr4EMMpsKn8F4YvI4x9IeK0Gr6ddjJwSRvnUmDXGm7hsBS4CvhbhivAT+SEJDe1U3A/AS5q/VcxXJH6JuBW4PyqupHh1N7NwGcZ/pEeswy4aOxLEhtQ45Sq6l+A1wOfYjiSOgI4o81/FcNnVOvjOOCYNs+3MnxuOFX/8cC7k1zHEMLaiLyauaQJtaOT91bVb8/xVPQE5RGUJKlLHkFJkrrkEZQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpS/8fL5YZrfxFHYUAAAAASUVORK5CYII=\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAVQUlEQVR4nO3de7QlZX3m8e/DZZCLotCYYNRuMCgXRQwgopJ0ouKo0cEFJo6NIMYQHSOQGTMqsLDBy8AwK0ZHSWwcwRg0E9eIgg4BgrQkyK0bmm4ISxPlMghJYEXUBkUuv/mj3mNvjufa3fR5+/D9rLXXfvdbVW+9v304/VC196lKVSFJUm+2mOsJSJI0EQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDStrMJHkkyaokNyX5UpLtplj3DUnev4nn97wky9scb0mybNzyk9qyVSO1rEpy3Cz2ceLGn7l6E/8OStq8JFlbVTu09nnAyqr6kzme1s8luRg4q6q+2l6/oKrWTLLuz2uZ5T7WazttXjyCkjZvfwf8apKdknwlyeokVyfZFyDJ25J8srXf1I66bkxyRevbJ8m17QhmdZI9Wv9/buvelOSE1reoHRGdneTmJJck2XaCOe0K3Dn2YrJwGpVkyyRnJrmuzeMPWv+uSa4YOWI8JMnpwLat77wNevfUNQNK2kwl2Qp4DbAGOBW4oar2BU4E/mKCTU4BXl1VLwTe0PreCXy8qvYDDgDuTLI/cAxwEPAS4PeTvKitvwfwqaraB7gPOHyC/XwM+EaSi5L8UZKnzqCc3wN+WFUHAge2fe4GvAW4uM3vhcCqqno/8JOq2q+qlsxgbG2mDChp87NtklXACuAO4H8BLwc+D1BV3wB2TrLjuO2uBM5N8vvAlq3vKuDEJO8DFlbVT9pY51fV/VW1FvgycEhb/9aqWtXaK4FF4ydXVecAewFfAhYDVyfZZpqaDgWOanVdA+zMEIbXAcckWQq8oKp+PM04mke2musJSJq1n7Qjip9LkgnWe8wHzFX1ziQHAa8DViXZr6q+kOSa1ndxkncAE4015sGR9iPARKf4qKq7gM8Cn01yE/D8JH8IvAi4q6peO26TAO+pqovHj5Xk19v8Pp/kzKqa6OhQ85BHUNL8cAWwBCDJYuDeqvrR6ApJnlNV11TVKcC9wLOS7A58r6o+AVwA7NvGOizJdkm2B97I8FnXjCT590m2bu1fZjga+n5VHdNOy40PJ4CLgXeNbPfcJNsnWQj8a1WdzXCk+Gtt/YfG1tX85RGUND8sBc5Jshp4ADh6gnXObF+CCHAZcCPwfuDIJA8B/wycVlX/luRc4Nq23Weq6oYki2Y4l0OBjyf5aXv9x1X1z9Ns8xmG04XXt6PBe4DDGE4R/nGb31rgqLb+MmB1kuv9HGr+8mvmkqQueYpPktQlA0qS1CUDSpLUJQNKktQlv8UnABYsWFCLFi2a62lImodWrlx5b1XtMtvtDCgBsGjRIlasWDHX05A0DyW5fX228xSfJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUNoqlS5fO9RQkbSKb6vfdgNLsnXceLFoEW2wxPJ93Hqeeeupcz0rSJrKpft+nDagki5LcNNMBkyxN8t4NmxYkOSHJdrNdL8mJG7rvGexzzySrktyQ5DlJ3rIRx74tyYKNMM7ajTGfX3DeeXDssXD77VA1PB97LP/xcdmZpCeyreZ6AlM4AfhL4IFZrnci8NHZ7CjJllX1yCw2OQz4alV9MMli4C3AFx7H/fXjpJPggXE/kgce4KPA4sWL52JGkuapmZ7i2zLJ2UluTnJJkm3bkcPfJFmZ5O+S7Dl+oyTLk3wsyRVJbklyYJIvJ/nHJB9u62yf5OtJbkxyU5LfTXIc8Azg8iSXt/UOTXJVkuuTfCnJDuPXS3I6sG07ujmvbXdkkmtb36eTbNn61yY5Lck1wMETFZ3klCTXtXkty+C1DKH4jja304FD2vh/lGTLJGe27VYn+YM21uI2xy8Aayaqe2TX72l1rhl7X5PslOQrbcyrk+zb+ndIck5bd3WSw8fVsKC9b6+boL5jk6xIsuKee+6Z2X8Jd9wxYfezZ7a1JM1cVU35ABYBDwP7tdd/DRwJXAbs0foOAr7R2kuB97b2cuCM1j4euAvYFdgGuBPYGTgcOHtkfzu259uABa29ALgC2L69fh9wyvj12uu1I+29gAuBrdvrs4CjWruA35mm9p1G2p8HXj9BjYuBr42sdyxwcmtvA6wAdmvr3Q/s1pZNVfd7Wvs/AZ9p7f8JfLC1fwtY1dpnAH86Ms7Txt4H4JeAa4BXTfdz3n///WtGFi6sGk7uPeZxK8xse0mbPWb5+w6sqGn+DZroMdMjqFuralVrr2QIrZcCX0qyCvg0Q/BM5IL2vAa4uarurqoHge8Bz2r9r0xyRpJDquqHE4zxEmBv4Mq2v6OBhTOY9yuA/YHr2navAHZvyx4B/s802/9mkmuSrGEIhX1msM9DgaPa/q5hCOE92rJrq+rW1p6q7i+357H3GuDlDCFJVX0D2DnJjsArgU+NbVhVP2jNrRn+J+K/VtWlM5j3zHzkI7DduI8Gt9uOx/2DP0lPODMNqAdH2o8AOwH3VdV+I4+9ptn20XHjPApsVVXfYQiRNcB/S3LKBGMEuHRkX3tX1e/NYN4BPjey3fOqamlb9tOa4nOgJE9iOOI6oqpeAJwNPGmG+3zPyD53q6pL2rL7x1aapu6x9+kR1n1OmAn2Va2/Jlj2MEPAvXoGc565JUtg2TJYuBCS4XnZMr64UXciSev/NfMfAbcmeRNA+2zmheszUJJnAA9U1V8C/wP4tbbox8CTW/tq4GVJfrVts12S506wHsBDSbZu7cuAI5I8vW23U5KZHHnBujC6N8kOwBGTrDd+/xcD7xqbQ5LnJtl+/EZT1D2ZK4AlbdvFwL1V9SPgEuAPR8Z9WmsW8HZgzyTvn2bs2VmyBG67DR59dHhesoQPfvCDG3UXkvq1qX7fN+RbfEuAP0tyMsPppL8CblyPcV4AnJnkUeAh4F2tfxlwUZK7q+o3k7wN+GKSbdryk4HvjF+vvV6d5PqqWtLmd0mSLdr47wZun25SVXVfkrMZjnBuA66bZNXVwMNJbgTOBT7OcFru+iQB7mH41t9M657MUuCcJKsZvrF4dOv/MPCpDH8K8AhwKu0UYVU9kuTNwIVJflRVZ02zj/XmH+pKTxyb6vc9w+dXeqI74IADasWKFXM9DUnzUJKVVXXAbLfzShKSpC71/Ie6m0yS8xm+Cj7qfVV18VzMR5JkQAFQVW+c6zlIkh7LU3ySpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLqWq5noO6kCSe4Db53oeM7AAuHeuJ7GJWOv880SpEx5b68Kq2mW2AxhQ2qwkWVFVB8z1PDYFa51/nih1wsap1VN8kqQuGVCSpC4ZUNrcLJvrCWxC1jr/PFHqhI1Qq59BSZK65BGUJKlLBpQkqUsGlLqU5E1Jbk7yaJIDRvpfnGRVe9yY5I0jy/ZPsibJPyX5RJLMzexnZ4paX5VkZatpZZLfGlk232rdOcnlSdYm+eS4beZVrW3ZB1o9307y6pH+zbLWUUlemOSqVseFSZ4ysmzCuidVVT58dPcA9gKeBywHDhjp3w7YqrV3Bf515PW1wMFAgIuA18x1HRtY64uAZ7T284Hvjyybb7VuD7wceCfwyXHbzLda9wZuBLYBdgO+C2y5Odc6ru7rgN9o7bcDH5qu7skeHkGpS1V1S1V9e4L+B6rq4fbySUABJNkVeEpVXVXDb8NfAIdtqvluiClqvaGq7movbwaelGSbeVrr/VX198BPR/vnY63AfwD+qqoerKpbgX8CXrw51zrO84ArWvtS4PDWnrDuqQYyoLTZSXJQkpuBNcA7W2D9CnDnyGp3tr754nDghqp6kPlf66j5WOuvAP9v5PVYTfOl1puAN7T2m4BntfZkdU9qq40+NWmGkvwt8MsTLDqpqr462XZVdQ2wT5K9gM8luYjhlMgvrLpxZrrh1rfWtu0+wBnAoWNdE6w2L2qdaLgJ+jb3WierqetaR01VN8NpvU8kOQW4APjZ2GYTrD9lfQaU5kxVvXIDt78lyf0Mn8/cCTxzZPEzgbsm3HAOrG+tSZ4JnA8cVVXfbd3zstZJzMda72TdUQWsq6nrWkfNoO5DAZI8F3hd65us7kl5ik+blSS7JdmqtRcynO++raruBn6c5CXtm09HAbP9v/WuJHkq8HXgA1V15Vj/fKx1MvO01guAN7fPE3cD9gCunS+1Jnl6e94COBn487ZowrqnHGyuv/Hhw8dED+CNDP/H9SDwL8DFrf+tDF8YWAVcDxw2ss0BDOe/vwt8knallN4fU9R6MnB/q3Xs8fT5WGtbdhvwb8Dats7e87jWk1o932bkm3qba63j6j4e+E57nD5aw2R1T/bwUkeSpC55ik+S1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNK6liS25IsaO1vbYTx3jb+auEbU5ITkmw38vr/tr/nmmqbn9c4Wf9Y7UkWJ/naLOZzbpIjWvszSfZu7bUzHWM2Hq9xn6gMKOlxMvYHxRtLVb10Y473ODmB4YrzAFTVa6vqvg0ddGPUXlXvqKp/2NBxtOkYUNIkkixKckuSs9t9fS5Jsm1btl+Sq5OsTnJ+kqe1/uVJPprkm8Dx7fXHklzRxjowyZeT/GOSD4/s6ysZ7vl0c5JjJ5nP2vZ8WtbdE+v7Sc5p/Ucmubb1fzrJlq3/mCTfaXN62SRj/8bImDckeXI7Wrmi1fcPSf68XR2AJH+WZEWb76mt7zjgGcDlSS5vfaNHQdPWOMXP4heOTNp7eUOS3TPcR+mbbfyLM1wZfPz6y/PYe1B9JMM9xa5O8kutb2GSy9rP9bIkz56mf7cM9z66LsmHZlOTZmCu/+rYh49eH8Ai4GFgv/b6r4EjW3s16+55cxrwp629HDhrZIzlwBmtfTzDtcd2Zbgnzp3Azm3ZTu15W4YrCYz13wYsaO214+a3Y5vH/gz3HroQ2LotO4vhUjm7AncAuwD/DriScfdbautfCLystXdguE7nYobbX+wObMlw64Qjxs13y1bjvuPnO8H8p61x3Jx+ofY2p68BLwVWAs8Gtga+BezS1vld4LOtfe7InJfT7svEcJHS17f2fwdOHnkfjm7ttwNfmab/AobrJAK8e/zPyMeGPTyCkqZ2a1Wtau2VwKIkOwJPrapvtv7PAb8+ss3/HjfGBe15DXBzVd1dw20zvse6i2cel+RG4OrWt8dUk2rXajsP+FhVrQRewRBU1yVZ1V7vDhwELK+qe6rqZxPMbcyVwJ+0o6Cn1rp7bl1bVd+rqkeALzLcVBDgd5JcD9wA7MNwM7rpzKrGKewFLGMImDsYrsf4fODSVvvJPPaiqxP5GUPQQfu5tvbBwBda+/Osq3ey/pcxvC9j/dqIvJq5NLUHR9qPMPzf/3Tun2SMR8eN9yiwVZLFwCuBg6vqgSTLGW7GOJWlwJ1VdU57HeBzVfWB0ZWSHMYMbtlQVacn+TrwWuDqJGNXqx6/bWW40Od7gQOr6gdJzp1uvutZ42Tubtu+iOGINAzBf/Asxnio2mEPw891sn8LJ3vvagbraAN5BCXNUlX9EPhBkkNa11uBb06xyXR2BH7Q/uHeE3jJVCsn+W3gVcBxI92XAUdk3ZWkd8pwtfdrgMVJdk6yNcMN5CYa8zlVtaaqzgBWAHu2RS9un7NswXDq7O+BpzCE8A/bZzevGRnqx8CTN7TGadzHcAuHj7bg+zawS5KDWy1bZ7iH1vr4FvDm1l7CUO9U/VeO69dGZEBJ6+do4Mwkq4H9GD6HWl9/w3AktRr4EMMpsKn8F4YvI4x9IeK0Gr6ddjJwSRvnUmDXGm7hsBS4CvhbhivAT+SEJDe1U3A/AS5q/VcxXJH6JuBW4PyqupHh1N7NwGcZ/pEeswy4aOxLEhtQ45Sq6l+A1wOfYjiSOgI4o81/FcNnVOvjOOCYNs+3MnxuOFX/8cC7k1zHEMLaiLyauaQJtaOT91bVb8/xVPQE5RGUJKlLHkFJkrrkEZQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpS/8fL5YZrfxFHYUAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
@@ -987,6 +1017,10 @@
"metadata": {},
"source": [
"### References\n",
+ "\n",
+ "Bayona, J.A., Savran, W.H., Rhoades, D.A. and Werner, M.J., 2022. Prospective evaluation of multiplicative hybrid earthquake forecasting models in California. Geophysical Journal International, 229(3), pp.1736-1753.\n",
+ "doi: https://doi.org/10.1093/gji/ggac018\n",
+ "\n",
"Field, E. H., K. R. Milner, J. L. Hardebeck, M. T. Page, N. J. van der Elst, T. H. Jordan, A. J. Michael, B. E. Shaw, and M. J. Werner (2017). A spatiotemporal clustering model for the third Uniform California Earthquake Rupture Forecast (UCERF3-ETAS): Toward an operational earthquake forecast, Bull. Seismol. Soc. Am. 107, 1049–1081.\n",
"\n",
"Harte, D., and D. Vere-Jones (2005), The entropy score and its uses in earthquake forecasting, Pure Appl. Geophys. 162 , 6-7, 1229-1253, DOI: 10.1007/\n",
@@ -1000,6 +1034,16 @@
"Imoto, M., and D.A. Rhoades (2010), Seismicity models of moderate earthquakes in Kanto, Japan utilizing multiple predictive parameters, Pure Appl. Geophys.\n",
"167, 6-7, 831-843, DOI: 10.1007/s00024-010-0066-4.\n",
"\n",
+ "Kato, M., 2019. On the apparently inappropriate use of multiple hypothesis testing in earthquake prediction studies. Seismological Research Letters, 90(3), pp.1330-1334. doi: \n",
+ "https://doi.org/10.1785/0220180378\n",
+ "\n",
+ "\n",
+ "Lombardi, A.M. and Marzocchi, W., 2010. The assumption of Poisson seismic-rate variability in CSEP/RELM experiments. Bulletin of the Seismological Society of America, 100(5A), pp.2293-2300, doi: \n",
+ "https://doi.org/10.1785/0120100012\n",
+ "\n",
+ "Nandan, S., Ouillon, G., Sornette, D. and Wiemer, S., 2019. Forecasting the full distribution of earthquake numbers is fair, robust, and better. Seismological Research Letters, 90(4), pp.1650-1659. doi: \n",
+ "https://doi.org/10.1785/0220180374\n",
+ "\n",
"Rhoades, D.A, D., Schorlemmer, M.C.Gerstenberger, A. Christophersen, J. D. Zechar & M. Imoto (2011) Efficient testing of earthquake forecasting models, Acta Geophysica 59\n",
"\n",
"Savran, W., M. J. Werner, W. Marzocchi, D. Rhoades, D. D. Jackson, K. R. Milner, E. H. Field, and A. J. Michael (2020). Pseudoprospective evaluation of UCERF3-ETAS forecasts during the 2019 Ridgecrest Sequence, Bulletin of the Seismological Society of America.\n",
@@ -1014,8 +1058,12 @@
"\n",
"M. Taroni, W. Marzocchi, D. Schorlemmer, M. J. Werner, S. Wiemer, J. D. Zechar, L. Heiniger, F. Euchner; Prospective CSEP Evaluation of 1‐Day, 3‐Month, and 5‐Yr Earthquake Forecasts for Italy. Seismological Research Letters 2018;; 89 (4): 1251–1261. doi: https://doi.org/10.1785/0220180031\n",
"\n",
+ "\n",
"Werner, M. J., A. Helmstetter, D. D. Jackson, and Y. Y. Kagan (2011a). High-Resolution Long-Term and Short-Term Earthquake Forecasts for California, Bulletin of the Seismological Society of America 101 1630-1648\n",
"\n",
+ "Werner, M.J. and Sornette, D., 2008. Magnitude uncertainties impact seismic rate estimates, forecasts, and predictability experiments. Journal of Geophysical Research: Solid Earth, 113(B8). doi: https://doi.org/10.1029/2007JB005427\n",
+ "\n",
+ "\n",
"Werner, M.J. J.D. Zechar, W. Marzocchi, and S. Wiemer (2011b), Retrospective evaluation of the five-year and ten-year CSEP-Italy earthquake forecasts, Annals of Geophysics 53, no. 3, 11–30, doi:10.4401/ag-4840.\n",
"\n",
"Zechar, 2011: Evaluating earthquake predictions and earthquake forecasts: a guide for students and new researchers, CORSSA (http://www.corssa.org/en/articles/theme_6/)\n",
@@ -1025,6 +1073,14 @@
"Zechar, J.D., D. Schorlemmer, M. Liukis, J. Yu, F. Euchner, P.J. Maechling, and T.H. Jordan (2010b), The Collaboratory for the Study of Earthquake Predictability perspective on computational earthquake science, Concurr. Comp-Pract. E., doi:10.1002/cpe.1519.\n",
"\n"
]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "fifty-wright",
+ "metadata": {},
+ "outputs": [],
+ "source": []
}
],
"metadata": {
@@ -1043,7 +1099,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.7.8"
+ "version": "3.8.6"
}
},
"nbformat": 4,
diff --git a/requirements.txt b/requirements.txt
index e5f26286..6a95af5b 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -1,4 +1,4 @@
-numpy<=1.21.5
+numpy
scipy
pandas
matplotlib
@@ -9,6 +9,7 @@ python-dateutil
pytest
vcrpy
pytest-cov
+shapely
sphinx
sphinx-gallery
sphinx-rtd-theme
diff --git a/requirements.yml b/requirements.yml
index 75a1c52a..14caee7e 100644
--- a/requirements.yml
+++ b/requirements.yml
@@ -4,7 +4,7 @@ channels:
- defaults
dependencies:
- python>=3.7
- - numpy<=1.21.5
+ - numpy
- pandas
- scipy
- matplotlib
@@ -13,6 +13,7 @@ dependencies:
- python-dateutil
- pytest
- cartopy
+ - shapely
- sphinx
- sphinx-gallery
- sphinx_rtd_theme
diff --git a/setup.py b/setup.py
index ae8d3fa3..5390de9f 100644
--- a/setup.py
+++ b/setup.py
@@ -12,6 +12,7 @@ def get_version():
raise RuntimeError("Unable to find version string in %s." % (VERSIONFILE,))
return verstr
+
with open("README.md",'r') as fh:
long_description = fh.read()
@@ -25,7 +26,7 @@ def get_version():
description='Python tools from the Collaboratory for the Study of Earthquake Predictability',
long_description=long_description,
long_description_content_type='text/markdown',
- install_requires = [
+ install_requires=[
'numpy',
'scipy',
'pandas',
@@ -34,7 +35,8 @@ def get_version():
'obspy',
'pyproj',
'python-dateutil',
- 'mercantile'
+ 'mercantile',
+ 'shapely'
],
extras_require = {
'test': [
diff --git a/tests/artifacts/BSI/vcr_search.yaml b/tests/artifacts/BSI/vcr_search.yaml
new file mode 100644
index 00000000..76053c90
--- /dev/null
+++ b/tests/artifacts/BSI/vcr_search.yaml
@@ -0,0 +1,46 @@
+interactions:
+- request:
+ body: null
+ headers:
+ Connection:
+ - close
+ Host:
+ - webservices.rm.ingv.it
+ User-Agent:
+ - Python-urllib/3.10
+ method: GET
+ uri: https://webservices.rm.ingv.it/fdsnws/event/1/query?format=geojson&starttime=2009-04-06T00%3A00%3A00&endtime=2009-04-07T00%3A00%3A00&limit=15000&maxdepth=1000&maxmagnitude=10.0&mindepth=-100&minmagnitude=5.5&offset=0&orderby=time-asc&eventtype=earthquake
+ response:
+ body:
+ string: '{"type":"FeatureCollection","features":[{"type":"Feature","properties":{"eventId":1895389,"originId":755599,"time":"2009-04-06T01:32:40.400000","author":"BULLETIN-SISPICK","magType":"Mw","mag":6.1,"magAuthor":"--","type":"earthquake","place":"2
+ km SW L''Aquila (AQ)","version":1000,"geojson_creationTime":"2022-09-21T12:18:03"},"geometry":{"type":"Point","coordinates":[13.38,42.342,8.3]}}]}'
+ headers:
+ Access-Control-Allow-Origin:
+ - '*'
+ Cache-Control:
+ - public, max-age=60
+ Connection:
+ - close
+ Content-Type:
+ - application/json
+ Date:
+ - Wed, 21 Sep 2022 12:18:03 GMT
+ Server:
+ - nginx
+ Transfer-Encoding:
+ - chunked
+ Vary:
+ - Accept-Encoding
+ - Accept-Encoding
+ X-Cache-Status:
+ - EXPIRED
+ X-RateLimit-Limit:
+ - '10'
+ X-RateLimit-Reset:
+ - '1'
+ X-UA-Compatible:
+ - IE=Edge
+ status:
+ code: 200
+ message: OK
+version: 1
diff --git a/tests/artifacts/BSI/vcr_summary.yaml b/tests/artifacts/BSI/vcr_summary.yaml
new file mode 100644
index 00000000..9349aa3d
--- /dev/null
+++ b/tests/artifacts/BSI/vcr_summary.yaml
@@ -0,0 +1,46 @@
+interactions:
+- request:
+ body: null
+ headers:
+ Connection:
+ - close
+ Host:
+ - webservices.rm.ingv.it
+ User-Agent:
+ - Python-urllib/3.10
+ method: GET
+ uri: https://webservices.rm.ingv.it/fdsnws/event/1/query?format=geojson&starttime=2009-04-06T00%3A00%3A00&endtime=2009-04-07T00%3A00%3A00&limit=15000&maxdepth=1000&maxmagnitude=10.0&mindepth=-100&minmagnitude=5.5&offset=0&orderby=time-asc&eventtype=earthquake
+ response:
+ body:
+ string: '{"type":"FeatureCollection","features":[{"type":"Feature","properties":{"eventId":1895389,"originId":755599,"time":"2009-04-06T01:32:40.400000","author":"BULLETIN-SISPICK","magType":"Mw","mag":6.1,"magAuthor":"--","type":"earthquake","place":"2
+ km SW L''Aquila (AQ)","version":1000,"geojson_creationTime":"2022-09-21T12:14:55"},"geometry":{"type":"Point","coordinates":[13.38,42.342,8.3]}}]}'
+ headers:
+ Access-Control-Allow-Origin:
+ - '*'
+ Cache-Control:
+ - public, max-age=60
+ Connection:
+ - close
+ Content-Type:
+ - application/json
+ Date:
+ - Wed, 21 Sep 2022 12:14:55 GMT
+ Server:
+ - nginx
+ Transfer-Encoding:
+ - chunked
+ Vary:
+ - Accept-Encoding
+ - Accept-Encoding
+ X-Cache-Status:
+ - MISS
+ X-RateLimit-Limit:
+ - '10'
+ X-RateLimit-Reset:
+ - '1'
+ X-UA-Compatible:
+ - IE=Edge
+ status:
+ code: 200
+ message: OK
+version: 1
diff --git a/tests/artifacts/regions/NZTestArea.dat b/tests/artifacts/regions/NZTestArea.dat
new file mode 100644
index 00000000..c4e876b9
--- /dev/null
+++ b/tests/artifacts/regions/NZTestArea.dat
@@ -0,0 +1,6343 @@
+165.75 -46.15
+165.85 -46.25
+165.85 -46.15
+165.85 -46.05
+165.85 -45.95
+165.85 -45.85
+165.85 -45.75
+165.85 -45.65
+165.85 -45.55
+165.95 -46.35
+165.95 -46.25
+165.95 -46.15
+165.95 -46.05
+165.95 -45.95
+165.95 -45.85
+165.95 -45.75
+165.95 -45.65
+165.95 -45.55
+165.95 -45.45
+166.05 -46.45
+166.05 -46.35
+166.05 -46.25
+166.05 -46.15
+166.05 -46.05
+166.05 -45.95
+166.05 -45.85
+166.05 -45.75
+166.05 -45.65
+166.05 -45.55
+166.05 -45.45
+166.05 -45.35
+166.15 -46.55
+166.15 -46.45
+166.15 -46.35
+166.15 -46.25
+166.15 -46.15
+166.15 -46.05
+166.15 -45.95
+166.15 -45.85
+166.15 -45.75
+166.15 -45.65
+166.15 -45.55
+166.15 -45.45
+166.15 -45.35
+166.15 -45.25
+166.25 -46.65
+166.25 -46.55
+166.25 -46.45
+166.25 -46.35
+166.25 -46.25
+166.25 -46.15
+166.25 -46.05
+166.25 -45.95
+166.25 -45.85
+166.25 -45.75
+166.25 -45.65
+166.25 -45.55
+166.25 -45.45
+166.25 -45.35
+166.25 -45.25
+166.25 -45.15
+166.35 -46.85
+166.35 -46.75
+166.35 -46.65
+166.35 -46.55
+166.35 -46.45
+166.35 -46.35
+166.35 -46.25
+166.35 -46.15
+166.35 -46.05
+166.35 -45.95
+166.35 -45.85
+166.35 -45.75
+166.35 -45.65
+166.35 -45.55
+166.35 -45.45
+166.35 -45.35
+166.35 -45.25
+166.35 -45.15
+166.35 -45.05
+166.45 -46.95
+166.45 -46.85
+166.45 -46.75
+166.45 -46.65
+166.45 -46.55
+166.45 -46.45
+166.45 -46.35
+166.45 -46.25
+166.45 -46.15
+166.45 -46.05
+166.45 -45.95
+166.45 -45.85
+166.45 -45.75
+166.45 -45.65
+166.45 -45.55
+166.45 -45.45
+166.45 -45.35
+166.45 -45.25
+166.45 -45.15
+166.45 -45.05
+166.45 -44.95
+166.55 -47.05
+166.55 -46.95
+166.55 -46.85
+166.55 -46.75
+166.55 -46.65
+166.55 -46.55
+166.55 -46.45
+166.55 -46.35
+166.55 -46.25
+166.55 -46.15
+166.55 -46.05
+166.55 -45.95
+166.55 -45.85
+166.55 -45.75
+166.55 -45.65
+166.55 -45.55
+166.55 -45.45
+166.55 -45.35
+166.55 -45.25
+166.55 -45.15
+166.55 -45.05
+166.55 -44.95
+166.55 -44.85
+166.65 -47.15
+166.65 -47.05
+166.65 -46.95
+166.65 -46.85
+166.65 -46.75
+166.65 -46.65
+166.65 -46.55
+166.65 -46.45
+166.65 -46.35
+166.65 -46.25
+166.65 -46.15
+166.65 -46.05
+166.65 -45.95
+166.65 -45.85
+166.65 -45.75
+166.65 -45.65
+166.65 -45.55
+166.65 -45.45
+166.65 -45.35
+166.65 -45.25
+166.65 -45.15
+166.65 -45.05
+166.65 -44.95
+166.65 -44.85
+166.65 -44.75
+166.75 -47.25
+166.75 -47.15
+166.75 -47.05
+166.75 -46.95
+166.75 -46.85
+166.75 -46.75
+166.75 -46.65
+166.75 -46.55
+166.75 -46.45
+166.75 -46.35
+166.75 -46.25
+166.75 -46.15
+166.75 -46.05
+166.75 -45.95
+166.75 -45.85
+166.75 -45.75
+166.75 -45.65
+166.75 -45.55
+166.75 -45.45
+166.75 -45.35
+166.75 -45.25
+166.75 -45.15
+166.75 -45.05
+166.75 -44.95
+166.75 -44.85
+166.75 -44.75
+166.75 -44.65
+166.85 -47.35
+166.85 -47.25
+166.85 -47.15
+166.85 -47.05
+166.85 -46.95
+166.85 -46.85
+166.85 -46.75
+166.85 -46.65
+166.85 -46.55
+166.85 -46.45
+166.85 -46.35
+166.85 -46.25
+166.85 -46.15
+166.85 -46.05
+166.85 -45.95
+166.85 -45.85
+166.85 -45.75
+166.85 -45.65
+166.85 -45.55
+166.85 -45.45
+166.85 -45.35
+166.85 -45.25
+166.85 -45.15
+166.85 -45.05
+166.85 -44.95
+166.85 -44.85
+166.85 -44.75
+166.85 -44.65
+166.85 -44.55
+166.95 -47.55
+166.95 -47.45
+166.95 -47.35
+166.95 -47.25
+166.95 -47.15
+166.95 -47.05
+166.95 -46.95
+166.95 -46.85
+166.95 -46.75
+166.95 -46.65
+166.95 -46.55
+166.95 -46.45
+166.95 -46.35
+166.95 -46.25
+166.95 -46.15
+166.95 -46.05
+166.95 -45.95
+166.95 -45.85
+166.95 -45.75
+166.95 -45.65
+166.95 -45.55
+166.95 -45.45
+166.95 -45.35
+166.95 -45.25
+166.95 -45.15
+166.95 -45.05
+166.95 -44.95
+166.95 -44.85
+166.95 -44.75
+166.95 -44.65
+166.95 -44.55
+167.05 -47.55
+167.05 -47.45
+167.05 -47.35
+167.05 -47.25
+167.05 -47.15
+167.05 -47.05
+167.05 -46.95
+167.05 -46.85
+167.05 -46.75
+167.05 -46.65
+167.05 -46.55
+167.05 -46.45
+167.05 -46.35
+167.05 -46.25
+167.05 -46.15
+167.05 -46.05
+167.05 -45.95
+167.05 -45.85
+167.05 -45.75
+167.05 -45.65
+167.05 -45.55
+167.05 -45.45
+167.05 -45.35
+167.05 -45.25
+167.05 -45.15
+167.05 -45.05
+167.05 -44.95
+167.05 -44.85
+167.05 -44.75
+167.05 -44.65
+167.05 -44.55
+167.05 -44.45
+167.15 -47.65
+167.15 -47.55
+167.15 -47.45
+167.15 -47.35
+167.15 -47.25
+167.15 -47.15
+167.15 -47.05
+167.15 -46.95
+167.15 -46.85
+167.15 -46.75
+167.15 -46.65
+167.15 -46.55
+167.15 -46.45
+167.15 -46.35
+167.15 -46.25
+167.15 -46.15
+167.15 -46.05
+167.15 -45.95
+167.15 -45.85
+167.15 -45.75
+167.15 -45.65
+167.15 -45.55
+167.15 -45.45
+167.15 -45.35
+167.15 -45.25
+167.15 -45.15
+167.15 -45.05
+167.15 -44.95
+167.15 -44.85
+167.15 -44.75
+167.15 -44.65
+167.15 -44.55
+167.15 -44.45
+167.15 -44.35
+167.25 -47.65
+167.25 -47.55
+167.25 -47.45
+167.25 -47.35
+167.25 -47.25
+167.25 -47.15
+167.25 -47.05
+167.25 -46.95
+167.25 -46.85
+167.25 -46.75
+167.25 -46.65
+167.25 -46.55
+167.25 -46.45
+167.25 -46.35
+167.25 -46.25
+167.25 -46.15
+167.25 -46.05
+167.25 -45.95
+167.25 -45.85
+167.25 -45.75
+167.25 -45.65
+167.25 -45.55
+167.25 -45.45
+167.25 -45.35
+167.25 -45.25
+167.25 -45.15
+167.25 -45.05
+167.25 -44.95
+167.25 -44.85
+167.25 -44.75
+167.25 -44.65
+167.25 -44.55
+167.25 -44.45
+167.25 -44.35
+167.25 -44.25
+167.35 -47.75
+167.35 -47.65
+167.35 -47.55
+167.35 -47.45
+167.35 -47.35
+167.35 -47.25
+167.35 -47.15
+167.35 -47.05
+167.35 -46.95
+167.35 -46.85
+167.35 -46.75
+167.35 -46.65
+167.35 -46.55
+167.35 -46.45
+167.35 -46.35
+167.35 -46.25
+167.35 -46.15
+167.35 -46.05
+167.35 -45.95
+167.35 -45.85
+167.35 -45.75
+167.35 -45.65
+167.35 -45.55
+167.35 -45.45
+167.35 -45.35
+167.35 -45.25
+167.35 -45.15
+167.35 -45.05
+167.35 -44.95
+167.35 -44.85
+167.35 -44.75
+167.35 -44.65
+167.35 -44.55
+167.35 -44.45
+167.35 -44.35
+167.35 -44.25
+167.35 -44.15
+167.45 -47.75
+167.45 -47.65
+167.45 -47.55
+167.45 -47.45
+167.45 -47.35
+167.45 -47.25
+167.45 -47.15
+167.45 -47.05
+167.45 -46.95
+167.45 -46.85
+167.45 -46.75
+167.45 -46.65
+167.45 -46.55
+167.45 -46.45
+167.45 -46.35
+167.45 -46.25
+167.45 -46.15
+167.45 -46.05
+167.45 -45.95
+167.45 -45.85
+167.45 -45.75
+167.45 -45.65
+167.45 -45.55
+167.45 -45.45
+167.45 -45.35
+167.45 -45.25
+167.45 -45.15
+167.45 -45.05
+167.45 -44.95
+167.45 -44.85
+167.45 -44.75
+167.45 -44.65
+167.45 -44.55
+167.45 -44.45
+167.45 -44.35
+167.45 -44.25
+167.45 -44.15
+167.45 -44.05
+167.55 -47.75
+167.55 -47.65
+167.55 -47.55
+167.55 -47.45
+167.55 -47.35
+167.55 -47.25
+167.55 -47.15
+167.55 -47.05
+167.55 -46.95
+167.55 -46.85
+167.55 -46.75
+167.55 -46.65
+167.55 -46.55
+167.55 -46.45
+167.55 -46.35
+167.55 -46.25
+167.55 -46.15
+167.55 -46.05
+167.55 -45.95
+167.55 -45.85
+167.55 -45.75
+167.55 -45.65
+167.55 -45.55
+167.55 -45.45
+167.55 -45.35
+167.55 -45.25
+167.55 -45.15
+167.55 -45.05
+167.55 -44.95
+167.55 -44.85
+167.55 -44.75
+167.55 -44.65
+167.55 -44.55
+167.55 -44.45
+167.55 -44.35
+167.55 -44.25
+167.55 -44.15
+167.55 -44.05
+167.55 -43.95
+167.65 -47.75
+167.65 -47.65
+167.65 -47.55
+167.65 -47.45
+167.65 -47.35
+167.65 -47.25
+167.65 -47.15
+167.65 -47.05
+167.65 -46.95
+167.65 -46.85
+167.65 -46.75
+167.65 -46.65
+167.65 -46.55
+167.65 -46.45
+167.65 -46.35
+167.65 -46.25
+167.65 -46.15
+167.65 -46.05
+167.65 -45.95
+167.65 -45.85
+167.65 -45.75
+167.65 -45.65
+167.65 -45.55
+167.65 -45.45
+167.65 -45.35
+167.65 -45.25
+167.65 -45.15
+167.65 -45.05
+167.65 -44.95
+167.65 -44.85
+167.65 -44.75
+167.65 -44.65
+167.65 -44.55
+167.65 -44.45
+167.65 -44.35
+167.65 -44.25
+167.65 -44.15
+167.65 -44.05
+167.65 -43.95
+167.65 -43.85
+167.75 -47.75
+167.75 -47.65
+167.75 -47.55
+167.75 -47.45
+167.75 -47.35
+167.75 -47.25
+167.75 -47.15
+167.75 -47.05
+167.75 -46.95
+167.75 -46.85
+167.75 -46.75
+167.75 -46.65
+167.75 -46.55
+167.75 -46.45
+167.75 -46.35
+167.75 -46.25
+167.75 -46.15
+167.75 -46.05
+167.75 -45.95
+167.75 -45.85
+167.75 -45.75
+167.75 -45.65
+167.75 -45.55
+167.75 -45.45
+167.75 -45.35
+167.75 -45.25
+167.75 -45.15
+167.75 -45.05
+167.75 -44.95
+167.75 -44.85
+167.75 -44.75
+167.75 -44.65
+167.75 -44.55
+167.75 -44.45
+167.75 -44.35
+167.75 -44.25
+167.75 -44.15
+167.75 -44.05
+167.75 -43.95
+167.75 -43.85
+167.75 -43.75
+167.85 -47.75
+167.85 -47.65
+167.85 -47.55
+167.85 -47.45
+167.85 -47.35
+167.85 -47.25
+167.85 -47.15
+167.85 -47.05
+167.85 -46.95
+167.85 -46.85
+167.85 -46.75
+167.85 -46.65
+167.85 -46.55
+167.85 -46.45
+167.85 -46.35
+167.85 -46.25
+167.85 -46.15
+167.85 -46.05
+167.85 -45.95
+167.85 -45.85
+167.85 -45.75
+167.85 -45.65
+167.85 -45.55
+167.85 -45.45
+167.85 -45.35
+167.85 -45.25
+167.85 -45.15
+167.85 -45.05
+167.85 -44.95
+167.85 -44.85
+167.85 -44.75
+167.85 -44.65
+167.85 -44.55
+167.85 -44.45
+167.85 -44.35
+167.85 -44.25
+167.85 -44.15
+167.85 -44.05
+167.85 -43.95
+167.85 -43.85
+167.85 -43.75
+167.85 -43.65
+167.95 -47.65
+167.95 -47.55
+167.95 -47.45
+167.95 -47.35
+167.95 -47.25
+167.95 -47.15
+167.95 -47.05
+167.95 -46.95
+167.95 -46.85
+167.95 -46.75
+167.95 -46.65
+167.95 -46.55
+167.95 -46.45
+167.95 -46.35
+167.95 -46.25
+167.95 -46.15
+167.95 -46.05
+167.95 -45.95
+167.95 -45.85
+167.95 -45.75
+167.95 -45.65
+167.95 -45.55
+167.95 -45.45
+167.95 -45.35
+167.95 -45.25
+167.95 -45.15
+167.95 -45.05
+167.95 -44.95
+167.95 -44.85
+167.95 -44.75
+167.95 -44.65
+167.95 -44.55
+167.95 -44.45
+167.95 -44.35
+167.95 -44.25
+167.95 -44.15
+167.95 -44.05
+167.95 -43.95
+167.95 -43.85
+167.95 -43.75
+167.95 -43.65
+168.05 -47.65
+168.05 -47.55
+168.05 -47.45
+168.05 -47.35
+168.05 -47.25
+168.05 -47.15
+168.05 -47.05
+168.05 -46.95
+168.05 -46.85
+168.05 -46.75
+168.05 -46.65
+168.05 -46.55
+168.05 -46.45
+168.05 -46.35
+168.05 -46.25
+168.05 -46.15
+168.05 -46.05
+168.05 -45.95
+168.05 -45.85
+168.05 -45.75
+168.05 -45.65
+168.05 -45.55
+168.05 -45.45
+168.05 -45.35
+168.05 -45.25
+168.05 -45.15
+168.05 -45.05
+168.05 -44.95
+168.05 -44.85
+168.05 -44.75
+168.05 -44.65
+168.05 -44.55
+168.05 -44.45
+168.05 -44.35
+168.05 -44.25
+168.05 -44.15
+168.05 -44.05
+168.05 -43.95
+168.05 -43.85
+168.05 -43.75
+168.05 -43.65
+168.05 -43.55
+168.15 -47.65
+168.15 -47.55
+168.15 -47.45
+168.15 -47.35
+168.15 -47.25
+168.15 -47.15
+168.15 -47.05
+168.15 -46.95
+168.15 -46.85
+168.15 -46.75
+168.15 -46.65
+168.15 -46.55
+168.15 -46.45
+168.15 -46.35
+168.15 -46.25
+168.15 -46.15
+168.15 -46.05
+168.15 -45.95
+168.15 -45.85
+168.15 -45.75
+168.15 -45.65
+168.15 -45.55
+168.15 -45.45
+168.15 -45.35
+168.15 -45.25
+168.15 -45.15
+168.15 -45.05
+168.15 -44.95
+168.15 -44.85
+168.15 -44.75
+168.15 -44.65
+168.15 -44.55
+168.15 -44.45
+168.15 -44.35
+168.15 -44.25
+168.15 -44.15
+168.15 -44.05
+168.15 -43.95
+168.15 -43.85
+168.15 -43.75
+168.15 -43.65
+168.15 -43.55
+168.15 -43.45
+168.25 -47.55
+168.25 -47.45
+168.25 -47.35
+168.25 -47.25
+168.25 -47.15
+168.25 -47.05
+168.25 -46.95
+168.25 -46.85
+168.25 -46.75
+168.25 -46.65
+168.25 -46.55
+168.25 -46.45
+168.25 -46.35
+168.25 -46.25
+168.25 -46.15
+168.25 -46.05
+168.25 -45.95
+168.25 -45.85
+168.25 -45.75
+168.25 -45.65
+168.25 -45.55
+168.25 -45.45
+168.25 -45.35
+168.25 -45.25
+168.25 -45.15
+168.25 -45.05
+168.25 -44.95
+168.25 -44.85
+168.25 -44.75
+168.25 -44.65
+168.25 -44.55
+168.25 -44.45
+168.25 -44.35
+168.25 -44.25
+168.25 -44.15
+168.25 -44.05
+168.25 -43.95
+168.25 -43.85
+168.25 -43.75
+168.25 -43.65
+168.25 -43.55
+168.25 -43.45
+168.25 -43.35
+168.35 -47.55
+168.35 -47.45
+168.35 -47.35
+168.35 -47.25
+168.35 -47.15
+168.35 -47.05
+168.35 -46.95
+168.35 -46.85
+168.35 -46.75
+168.35 -46.65
+168.35 -46.55
+168.35 -46.45
+168.35 -46.35
+168.35 -46.25
+168.35 -46.15
+168.35 -46.05
+168.35 -45.95
+168.35 -45.85
+168.35 -45.75
+168.35 -45.65
+168.35 -45.55
+168.35 -45.45
+168.35 -45.35
+168.35 -45.25
+168.35 -45.15
+168.35 -45.05
+168.35 -44.95
+168.35 -44.85
+168.35 -44.75
+168.35 -44.65
+168.35 -44.55
+168.35 -44.45
+168.35 -44.35
+168.35 -44.25
+168.35 -44.15
+168.35 -44.05
+168.35 -43.95
+168.35 -43.85
+168.35 -43.75
+168.35 -43.65
+168.35 -43.55
+168.35 -43.45
+168.35 -43.35
+168.35 -43.25
+168.45 -47.45
+168.45 -47.35
+168.45 -47.25
+168.45 -47.15
+168.45 -47.05
+168.45 -46.95
+168.45 -46.85
+168.45 -46.75
+168.45 -46.65
+168.45 -46.55
+168.45 -46.45
+168.45 -46.35
+168.45 -46.25
+168.45 -46.15
+168.45 -46.05
+168.45 -45.95
+168.45 -45.85
+168.45 -45.75
+168.45 -45.65
+168.45 -45.55
+168.45 -45.45
+168.45 -45.35
+168.45 -45.25
+168.45 -45.15
+168.45 -45.05
+168.45 -44.95
+168.45 -44.85
+168.45 -44.75
+168.45 -44.65
+168.45 -44.55
+168.45 -44.45
+168.45 -44.35
+168.45 -44.25
+168.45 -44.15
+168.45 -44.05
+168.45 -43.95
+168.45 -43.85
+168.45 -43.75
+168.45 -43.65
+168.45 -43.55
+168.45 -43.45
+168.45 -43.35
+168.45 -43.25
+168.45 -43.15
+168.55 -47.45
+168.55 -47.35
+168.55 -47.25
+168.55 -47.15
+168.55 -47.05
+168.55 -46.95
+168.55 -46.85
+168.55 -46.75
+168.55 -46.65
+168.55 -46.55
+168.55 -46.45
+168.55 -46.35
+168.55 -46.25
+168.55 -46.15
+168.55 -46.05
+168.55 -45.95
+168.55 -45.85
+168.55 -45.75
+168.55 -45.65
+168.55 -45.55
+168.55 -45.45
+168.55 -45.35
+168.55 -45.25
+168.55 -45.15
+168.55 -45.05
+168.55 -44.95
+168.55 -44.85
+168.55 -44.75
+168.55 -44.65
+168.55 -44.55
+168.55 -44.45
+168.55 -44.35
+168.55 -44.25
+168.55 -44.15
+168.55 -44.05
+168.55 -43.95
+168.55 -43.85
+168.55 -43.75
+168.55 -43.65
+168.55 -43.55
+168.55 -43.45
+168.55 -43.35
+168.55 -43.25
+168.55 -43.15
+168.55 -43.05
+168.65 -47.35
+168.65 -47.25
+168.65 -47.15
+168.65 -47.05
+168.65 -46.95
+168.65 -46.85
+168.65 -46.75
+168.65 -46.65
+168.65 -46.55
+168.65 -46.45
+168.65 -46.35
+168.65 -46.25
+168.65 -46.15
+168.65 -46.05
+168.65 -45.95
+168.65 -45.85
+168.65 -45.75
+168.65 -45.65
+168.65 -45.55
+168.65 -45.45
+168.65 -45.35
+168.65 -45.25
+168.65 -45.15
+168.65 -45.05
+168.65 -44.95
+168.65 -44.85
+168.65 -44.75
+168.65 -44.65
+168.65 -44.55
+168.65 -44.45
+168.65 -44.35
+168.65 -44.25
+168.65 -44.15
+168.65 -44.05
+168.65 -43.95
+168.65 -43.85
+168.65 -43.75
+168.65 -43.65
+168.65 -43.55
+168.65 -43.45
+168.65 -43.35
+168.65 -43.25
+168.65 -43.15
+168.65 -43.05
+168.75 -47.25
+168.75 -47.15
+168.75 -47.05
+168.75 -46.95
+168.75 -46.85
+168.75 -46.75
+168.75 -46.65
+168.75 -46.55
+168.75 -46.45
+168.75 -46.35
+168.75 -46.25
+168.75 -46.15
+168.75 -46.05
+168.75 -45.95
+168.75 -45.85
+168.75 -45.75
+168.75 -45.65
+168.75 -45.55
+168.75 -45.45
+168.75 -45.35
+168.75 -45.25
+168.75 -45.15
+168.75 -45.05
+168.75 -44.95
+168.75 -44.85
+168.75 -44.75
+168.75 -44.65
+168.75 -44.55
+168.75 -44.45
+168.75 -44.35
+168.75 -44.25
+168.75 -44.15
+168.75 -44.05
+168.75 -43.95
+168.75 -43.85
+168.75 -43.75
+168.75 -43.65
+168.75 -43.55
+168.75 -43.45
+168.75 -43.35
+168.75 -43.25
+168.75 -43.15
+168.75 -43.05
+168.75 -42.95
+168.85 -47.15
+168.85 -47.05
+168.85 -46.95
+168.85 -46.85
+168.85 -46.75
+168.85 -46.65
+168.85 -46.55
+168.85 -46.45
+168.85 -46.35
+168.85 -46.25
+168.85 -46.15
+168.85 -46.05
+168.85 -45.95
+168.85 -45.85
+168.85 -45.75
+168.85 -45.65
+168.85 -45.55
+168.85 -45.45
+168.85 -45.35
+168.85 -45.25
+168.85 -45.15
+168.85 -45.05
+168.85 -44.95
+168.85 -44.85
+168.85 -44.75
+168.85 -44.65
+168.85 -44.55
+168.85 -44.45
+168.85 -44.35
+168.85 -44.25
+168.85 -44.15
+168.85 -44.05
+168.85 -43.95
+168.85 -43.85
+168.85 -43.75
+168.85 -43.65
+168.85 -43.55
+168.85 -43.45
+168.85 -43.35
+168.85 -43.25
+168.85 -43.15
+168.85 -43.05
+168.85 -42.95
+168.85 -42.85
+168.95 -47.05
+168.95 -46.95
+168.95 -46.85
+168.95 -46.75
+168.95 -46.65
+168.95 -46.55
+168.95 -46.45
+168.95 -46.35
+168.95 -46.25
+168.95 -46.15
+168.95 -46.05
+168.95 -45.95
+168.95 -45.85
+168.95 -45.75
+168.95 -45.65
+168.95 -45.55
+168.95 -45.45
+168.95 -45.35
+168.95 -45.25
+168.95 -45.15
+168.95 -45.05
+168.95 -44.95
+168.95 -44.85
+168.95 -44.75
+168.95 -44.65
+168.95 -44.55
+168.95 -44.45
+168.95 -44.35
+168.95 -44.25
+168.95 -44.15
+168.95 -44.05
+168.95 -43.95
+168.95 -43.85
+168.95 -43.75
+168.95 -43.65
+168.95 -43.55
+168.95 -43.45
+168.95 -43.35
+168.95 -43.25
+168.95 -43.15
+168.95 -43.05
+168.95 -42.95
+168.95 -42.85
+168.95 -42.75
+169.05 -47.05
+169.05 -46.95
+169.05 -46.85
+169.05 -46.75
+169.05 -46.65
+169.05 -46.55
+169.05 -46.45
+169.05 -46.35
+169.05 -46.25
+169.05 -46.15
+169.05 -46.05
+169.05 -45.95
+169.05 -45.85
+169.05 -45.75
+169.05 -45.65
+169.05 -45.55
+169.05 -45.45
+169.05 -45.35
+169.05 -45.25
+169.05 -45.15
+169.05 -45.05
+169.05 -44.95
+169.05 -44.85
+169.05 -44.75
+169.05 -44.65
+169.05 -44.55
+169.05 -44.45
+169.05 -44.35
+169.05 -44.25
+169.05 -44.15
+169.05 -44.05
+169.05 -43.95
+169.05 -43.85
+169.05 -43.75
+169.05 -43.65
+169.05 -43.55
+169.05 -43.45
+169.05 -43.35
+169.05 -43.25
+169.05 -43.15
+169.05 -43.05
+169.05 -42.95
+169.05 -42.85
+169.05 -42.75
+169.05 -42.65
+169.15 -47.05
+169.15 -46.95
+169.15 -46.85
+169.15 -46.75
+169.15 -46.65
+169.15 -46.55
+169.15 -46.45
+169.15 -46.35
+169.15 -46.25
+169.15 -46.15
+169.15 -46.05
+169.15 -45.95
+169.15 -45.85
+169.15 -45.75
+169.15 -45.65
+169.15 -45.55
+169.15 -45.45
+169.15 -45.35
+169.15 -45.25
+169.15 -45.15
+169.15 -45.05
+169.15 -44.95
+169.15 -44.85
+169.15 -44.75
+169.15 -44.65
+169.15 -44.55
+169.15 -44.45
+169.15 -44.35
+169.15 -44.25
+169.15 -44.15
+169.15 -44.05
+169.15 -43.95
+169.15 -43.85
+169.15 -43.75
+169.15 -43.65
+169.15 -43.55
+169.15 -43.45
+169.15 -43.35
+169.15 -43.25
+169.15 -43.15
+169.15 -43.05
+169.15 -42.95
+169.15 -42.85
+169.15 -42.75
+169.15 -42.65
+169.15 -42.55
+169.25 -47.05
+169.25 -46.95
+169.25 -46.85
+169.25 -46.75
+169.25 -46.65
+169.25 -46.55
+169.25 -46.45
+169.25 -46.35
+169.25 -46.25
+169.25 -46.15
+169.25 -46.05
+169.25 -45.95
+169.25 -45.85
+169.25 -45.75
+169.25 -45.65
+169.25 -45.55
+169.25 -45.45
+169.25 -45.35
+169.25 -45.25
+169.25 -45.15
+169.25 -45.05
+169.25 -44.95
+169.25 -44.85
+169.25 -44.75
+169.25 -44.65
+169.25 -44.55
+169.25 -44.45
+169.25 -44.35
+169.25 -44.25
+169.25 -44.15
+169.25 -44.05
+169.25 -43.95
+169.25 -43.85
+169.25 -43.75
+169.25 -43.65
+169.25 -43.55
+169.25 -43.45
+169.25 -43.35
+169.25 -43.25
+169.25 -43.15
+169.25 -43.05
+169.25 -42.95
+169.25 -42.85
+169.25 -42.75
+169.25 -42.65
+169.25 -42.55
+169.25 -42.45
+169.35 -47.05
+169.35 -46.95
+169.35 -46.85
+169.35 -46.75
+169.35 -46.65
+169.35 -46.55
+169.35 -46.45
+169.35 -46.35
+169.35 -46.25
+169.35 -46.15
+169.35 -46.05
+169.35 -45.95
+169.35 -45.85
+169.35 -45.75
+169.35 -45.65
+169.35 -45.55
+169.35 -45.45
+169.35 -45.35
+169.35 -45.25
+169.35 -45.15
+169.35 -45.05
+169.35 -44.95
+169.35 -44.85
+169.35 -44.75
+169.35 -44.65
+169.35 -44.55
+169.35 -44.45
+169.35 -44.35
+169.35 -44.25
+169.35 -44.15
+169.35 -44.05
+169.35 -43.95
+169.35 -43.85
+169.35 -43.75
+169.35 -43.65
+169.35 -43.55
+169.35 -43.45
+169.35 -43.35
+169.35 -43.25
+169.35 -43.15
+169.35 -43.05
+169.35 -42.95
+169.35 -42.85
+169.35 -42.75
+169.35 -42.65
+169.35 -42.55
+169.35 -42.45
+169.45 -47.05
+169.45 -46.95
+169.45 -46.85
+169.45 -46.75
+169.45 -46.65
+169.45 -46.55
+169.45 -46.45
+169.45 -46.35
+169.45 -46.25
+169.45 -46.15
+169.45 -46.05
+169.45 -45.95
+169.45 -45.85
+169.45 -45.75
+169.45 -45.65
+169.45 -45.55
+169.45 -45.45
+169.45 -45.35
+169.45 -45.25
+169.45 -45.15
+169.45 -45.05
+169.45 -44.95
+169.45 -44.85
+169.45 -44.75
+169.45 -44.65
+169.45 -44.55
+169.45 -44.45
+169.45 -44.35
+169.45 -44.25
+169.45 -44.15
+169.45 -44.05
+169.45 -43.95
+169.45 -43.85
+169.45 -43.75
+169.45 -43.65
+169.45 -43.55
+169.45 -43.45
+169.45 -43.35
+169.45 -43.25
+169.45 -43.15
+169.45 -43.05
+169.45 -42.95
+169.45 -42.85
+169.45 -42.75
+169.45 -42.65
+169.45 -42.55
+169.45 -42.45
+169.45 -42.35
+169.55 -47.05
+169.55 -46.95
+169.55 -46.85
+169.55 -46.75
+169.55 -46.65
+169.55 -46.55
+169.55 -46.45
+169.55 -46.35
+169.55 -46.25
+169.55 -46.15
+169.55 -46.05
+169.55 -45.95
+169.55 -45.85
+169.55 -45.75
+169.55 -45.65
+169.55 -45.55
+169.55 -45.45
+169.55 -45.35
+169.55 -45.25
+169.55 -45.15
+169.55 -45.05
+169.55 -44.95
+169.55 -44.85
+169.55 -44.75
+169.55 -44.65
+169.55 -44.55
+169.55 -44.45
+169.55 -44.35
+169.55 -44.25
+169.55 -44.15
+169.55 -44.05
+169.55 -43.95
+169.55 -43.85
+169.55 -43.75
+169.55 -43.65
+169.55 -43.55
+169.55 -43.45
+169.55 -43.35
+169.55 -43.25
+169.55 -43.15
+169.55 -43.05
+169.55 -42.95
+169.55 -42.85
+169.55 -42.75
+169.55 -42.65
+169.55 -42.55
+169.55 -42.45
+169.55 -42.35
+169.55 -42.25
+169.65 -47.05
+169.65 -46.95
+169.65 -46.85
+169.65 -46.75
+169.65 -46.65
+169.65 -46.55
+169.65 -46.45
+169.65 -46.35
+169.65 -46.25
+169.65 -46.15
+169.65 -46.05
+169.65 -45.95
+169.65 -45.85
+169.65 -45.75
+169.65 -45.65
+169.65 -45.55
+169.65 -45.45
+169.65 -45.35
+169.65 -45.25
+169.65 -45.15
+169.65 -45.05
+169.65 -44.95
+169.65 -44.85
+169.65 -44.75
+169.65 -44.65
+169.65 -44.55
+169.65 -44.45
+169.65 -44.35
+169.65 -44.25
+169.65 -44.15
+169.65 -44.05
+169.65 -43.95
+169.65 -43.85
+169.65 -43.75
+169.65 -43.65
+169.65 -43.55
+169.65 -43.45
+169.65 -43.35
+169.65 -43.25
+169.65 -43.15
+169.65 -43.05
+169.65 -42.95
+169.65 -42.85
+169.65 -42.75
+169.65 -42.65
+169.65 -42.55
+169.65 -42.45
+169.65 -42.35
+169.65 -42.25
+169.65 -42.15
+169.75 -46.95
+169.75 -46.85
+169.75 -46.75
+169.75 -46.65
+169.75 -46.55
+169.75 -46.45
+169.75 -46.35
+169.75 -46.25
+169.75 -46.15
+169.75 -46.05
+169.75 -45.95
+169.75 -45.85
+169.75 -45.75
+169.75 -45.65
+169.75 -45.55
+169.75 -45.45
+169.75 -45.35
+169.75 -45.25
+169.75 -45.15
+169.75 -45.05
+169.75 -44.95
+169.75 -44.85
+169.75 -44.75
+169.75 -44.65
+169.75 -44.55
+169.75 -44.45
+169.75 -44.35
+169.75 -44.25
+169.75 -44.15
+169.75 -44.05
+169.75 -43.95
+169.75 -43.85
+169.75 -43.75
+169.75 -43.65
+169.75 -43.55
+169.75 -43.45
+169.75 -43.35
+169.75 -43.25
+169.75 -43.15
+169.75 -43.05
+169.75 -42.95
+169.75 -42.85
+169.75 -42.75
+169.75 -42.65
+169.75 -42.55
+169.75 -42.45
+169.75 -42.35
+169.75 -42.25
+169.75 -42.15
+169.75 -42.05
+169.85 -46.95
+169.85 -46.85
+169.85 -46.75
+169.85 -46.65
+169.85 -46.55
+169.85 -46.45
+169.85 -46.35
+169.85 -46.25
+169.85 -46.15
+169.85 -46.05
+169.85 -45.95
+169.85 -45.85
+169.85 -45.75
+169.85 -45.65
+169.85 -45.55
+169.85 -45.45
+169.85 -45.35
+169.85 -45.25
+169.85 -45.15
+169.85 -45.05
+169.85 -44.95
+169.85 -44.85
+169.85 -44.75
+169.85 -44.65
+169.85 -44.55
+169.85 -44.45
+169.85 -44.35
+169.85 -44.25
+169.85 -44.15
+169.85 -44.05
+169.85 -43.95
+169.85 -43.85
+169.85 -43.75
+169.85 -43.65
+169.85 -43.55
+169.85 -43.45
+169.85 -43.35
+169.85 -43.25
+169.85 -43.15
+169.85 -43.05
+169.85 -42.95
+169.85 -42.85
+169.85 -42.75
+169.85 -42.65
+169.85 -42.55
+169.85 -42.45
+169.85 -42.35
+169.85 -42.25
+169.85 -42.15
+169.85 -42.05
+169.85 -41.95
+169.95 -46.95
+169.95 -46.85
+169.95 -46.75
+169.95 -46.65
+169.95 -46.55
+169.95 -46.45
+169.95 -46.35
+169.95 -46.25
+169.95 -46.15
+169.95 -46.05
+169.95 -45.95
+169.95 -45.85
+169.95 -45.75
+169.95 -45.65
+169.95 -45.55
+169.95 -45.45
+169.95 -45.35
+169.95 -45.25
+169.95 -45.15
+169.95 -45.05
+169.95 -44.95
+169.95 -44.85
+169.95 -44.75
+169.95 -44.65
+169.95 -44.55
+169.95 -44.45
+169.95 -44.35
+169.95 -44.25
+169.95 -44.15
+169.95 -44.05
+169.95 -43.95
+169.95 -43.85
+169.95 -43.75
+169.95 -43.65
+169.95 -43.55
+169.95 -43.45
+169.95 -43.35
+169.95 -43.25
+169.95 -43.15
+169.95 -43.05
+169.95 -42.95
+169.95 -42.85
+169.95 -42.75
+169.95 -42.65
+169.95 -42.55
+169.95 -42.45
+169.95 -42.35
+169.95 -42.25
+169.95 -42.15
+169.95 -42.05
+169.95 -41.95
+169.95 -41.85
+170.05 -46.85
+170.05 -46.75
+170.05 -46.65
+170.05 -46.55
+170.05 -46.45
+170.05 -46.35
+170.05 -46.25
+170.05 -46.15
+170.05 -46.05
+170.05 -45.95
+170.05 -45.85
+170.05 -45.75
+170.05 -45.65
+170.05 -45.55
+170.05 -45.45
+170.05 -45.35
+170.05 -45.25
+170.05 -45.15
+170.05 -45.05
+170.05 -44.95
+170.05 -44.85
+170.05 -44.75
+170.05 -44.65
+170.05 -44.55
+170.05 -44.45
+170.05 -44.35
+170.05 -44.25
+170.05 -44.15
+170.05 -44.05
+170.05 -43.95
+170.05 -43.85
+170.05 -43.75
+170.05 -43.65
+170.05 -43.55
+170.05 -43.45
+170.05 -43.35
+170.05 -43.25
+170.05 -43.15
+170.05 -43.05
+170.05 -42.95
+170.05 -42.85
+170.05 -42.75
+170.05 -42.65
+170.05 -42.55
+170.05 -42.45
+170.05 -42.35
+170.05 -42.25
+170.05 -42.15
+170.05 -42.05
+170.05 -41.95
+170.05 -41.85
+170.05 -41.75
+170.15 -46.85
+170.15 -46.75
+170.15 -46.65
+170.15 -46.55
+170.15 -46.45
+170.15 -46.35
+170.15 -46.25
+170.15 -46.15
+170.15 -46.05
+170.15 -45.95
+170.15 -45.85
+170.15 -45.75
+170.15 -45.65
+170.15 -45.55
+170.15 -45.45
+170.15 -45.35
+170.15 -45.25
+170.15 -45.15
+170.15 -45.05
+170.15 -44.95
+170.15 -44.85
+170.15 -44.75
+170.15 -44.65
+170.15 -44.55
+170.15 -44.45
+170.15 -44.35
+170.15 -44.25
+170.15 -44.15
+170.15 -44.05
+170.15 -43.95
+170.15 -43.85
+170.15 -43.75
+170.15 -43.65
+170.15 -43.55
+170.15 -43.45
+170.15 -43.35
+170.15 -43.25
+170.15 -43.15
+170.15 -43.05
+170.15 -42.95
+170.15 -42.85
+170.15 -42.75
+170.15 -42.65
+170.15 -42.55
+170.15 -42.45
+170.15 -42.35
+170.15 -42.25
+170.15 -42.15
+170.15 -42.05
+170.15 -41.95
+170.15 -41.85
+170.15 -41.75
+170.25 -46.75
+170.25 -46.65
+170.25 -46.55
+170.25 -46.45
+170.25 -46.35
+170.25 -46.25
+170.25 -46.15
+170.25 -46.05
+170.25 -45.95
+170.25 -45.85
+170.25 -45.75
+170.25 -45.65
+170.25 -45.55
+170.25 -45.45
+170.25 -45.35
+170.25 -45.25
+170.25 -45.15
+170.25 -45.05
+170.25 -44.95
+170.25 -44.85
+170.25 -44.75
+170.25 -44.65
+170.25 -44.55
+170.25 -44.45
+170.25 -44.35
+170.25 -44.25
+170.25 -44.15
+170.25 -44.05
+170.25 -43.95
+170.25 -43.85
+170.25 -43.75
+170.25 -43.65
+170.25 -43.55
+170.25 -43.45
+170.25 -43.35
+170.25 -43.25
+170.25 -43.15
+170.25 -43.05
+170.25 -42.95
+170.25 -42.85
+170.25 -42.75
+170.25 -42.65
+170.25 -42.55
+170.25 -42.45
+170.25 -42.35
+170.25 -42.25
+170.25 -42.15
+170.25 -42.05
+170.25 -41.95
+170.25 -41.85
+170.25 -41.75
+170.25 -41.65
+170.35 -46.75
+170.35 -46.65
+170.35 -46.55
+170.35 -46.45
+170.35 -46.35
+170.35 -46.25
+170.35 -46.15
+170.35 -46.05
+170.35 -45.95
+170.35 -45.85
+170.35 -45.75
+170.35 -45.65
+170.35 -45.55
+170.35 -45.45
+170.35 -45.35
+170.35 -45.25
+170.35 -45.15
+170.35 -45.05
+170.35 -44.95
+170.35 -44.85
+170.35 -44.75
+170.35 -44.65
+170.35 -44.55
+170.35 -44.45
+170.35 -44.35
+170.35 -44.25
+170.35 -44.15
+170.35 -44.05
+170.35 -43.95
+170.35 -43.85
+170.35 -43.75
+170.35 -43.65
+170.35 -43.55
+170.35 -43.45
+170.35 -43.35
+170.35 -43.25
+170.35 -43.15
+170.35 -43.05
+170.35 -42.95
+170.35 -42.85
+170.35 -42.75
+170.35 -42.65
+170.35 -42.55
+170.35 -42.45
+170.35 -42.35
+170.35 -42.25
+170.35 -42.15
+170.35 -42.05
+170.35 -41.95
+170.35 -41.85
+170.35 -41.75
+170.35 -41.65
+170.35 -41.55
+170.45 -46.65
+170.45 -46.55
+170.45 -46.45
+170.45 -46.35
+170.45 -46.25
+170.45 -46.15
+170.45 -46.05
+170.45 -45.95
+170.45 -45.85
+170.45 -45.75
+170.45 -45.65
+170.45 -45.55
+170.45 -45.45
+170.45 -45.35
+170.45 -45.25
+170.45 -45.15
+170.45 -45.05
+170.45 -44.95
+170.45 -44.85
+170.45 -44.75
+170.45 -44.65
+170.45 -44.55
+170.45 -44.45
+170.45 -44.35
+170.45 -44.25
+170.45 -44.15
+170.45 -44.05
+170.45 -43.95
+170.45 -43.85
+170.45 -43.75
+170.45 -43.65
+170.45 -43.55
+170.45 -43.45
+170.45 -43.35
+170.45 -43.25
+170.45 -43.15
+170.45 -43.05
+170.45 -42.95
+170.45 -42.85
+170.45 -42.75
+170.45 -42.65
+170.45 -42.55
+170.45 -42.45
+170.45 -42.35
+170.45 -42.25
+170.45 -42.15
+170.45 -42.05
+170.45 -41.95
+170.45 -41.85
+170.45 -41.75
+170.45 -41.65
+170.45 -41.55
+170.45 -41.45
+170.55 -46.65
+170.55 -46.55
+170.55 -46.45
+170.55 -46.35
+170.55 -46.25
+170.55 -46.15
+170.55 -46.05
+170.55 -45.95
+170.55 -45.85
+170.55 -45.75
+170.55 -45.65
+170.55 -45.55
+170.55 -45.45
+170.55 -45.35
+170.55 -45.25
+170.55 -45.15
+170.55 -45.05
+170.55 -44.95
+170.55 -44.85
+170.55 -44.75
+170.55 -44.65
+170.55 -44.55
+170.55 -44.45
+170.55 -44.35
+170.55 -44.25
+170.55 -44.15
+170.55 -44.05
+170.55 -43.95
+170.55 -43.85
+170.55 -43.75
+170.55 -43.65
+170.55 -43.55
+170.55 -43.45
+170.55 -43.35
+170.55 -43.25
+170.55 -43.15
+170.55 -43.05
+170.55 -42.95
+170.55 -42.85
+170.55 -42.75
+170.55 -42.65
+170.55 -42.55
+170.55 -42.45
+170.55 -42.35
+170.55 -42.25
+170.55 -42.15
+170.55 -42.05
+170.55 -41.95
+170.55 -41.85
+170.55 -41.75
+170.55 -41.65
+170.55 -41.55
+170.55 -41.45
+170.55 -41.35
+170.65 -46.55
+170.65 -46.45
+170.65 -46.35
+170.65 -46.25
+170.65 -46.15
+170.65 -46.05
+170.65 -45.95
+170.65 -45.85
+170.65 -45.75
+170.65 -45.65
+170.65 -45.55
+170.65 -45.45
+170.65 -45.35
+170.65 -45.25
+170.65 -45.15
+170.65 -45.05
+170.65 -44.95
+170.65 -44.85
+170.65 -44.75
+170.65 -44.65
+170.65 -44.55
+170.65 -44.45
+170.65 -44.35
+170.65 -44.25
+170.65 -44.15
+170.65 -44.05
+170.65 -43.95
+170.65 -43.85
+170.65 -43.75
+170.65 -43.65
+170.65 -43.55
+170.65 -43.45
+170.65 -43.35
+170.65 -43.25
+170.65 -43.15
+170.65 -43.05
+170.65 -42.95
+170.65 -42.85
+170.65 -42.75
+170.65 -42.65
+170.65 -42.55
+170.65 -42.45
+170.65 -42.35
+170.65 -42.25
+170.65 -42.15
+170.65 -42.05
+170.65 -41.95
+170.65 -41.85
+170.65 -41.75
+170.65 -41.65
+170.65 -41.55
+170.65 -41.45
+170.65 -41.35
+170.65 -41.25
+170.75 -46.55
+170.75 -46.45
+170.75 -46.35
+170.75 -46.25
+170.75 -46.15
+170.75 -46.05
+170.75 -45.95
+170.75 -45.85
+170.75 -45.75
+170.75 -45.65
+170.75 -45.55
+170.75 -45.45
+170.75 -45.35
+170.75 -45.25
+170.75 -45.15
+170.75 -45.05
+170.75 -44.95
+170.75 -44.85
+170.75 -44.75
+170.75 -44.65
+170.75 -44.55
+170.75 -44.45
+170.75 -44.35
+170.75 -44.25
+170.75 -44.15
+170.75 -44.05
+170.75 -43.95
+170.75 -43.85
+170.75 -43.75
+170.75 -43.65
+170.75 -43.55
+170.75 -43.45
+170.75 -43.35
+170.75 -43.25
+170.75 -43.15
+170.75 -43.05
+170.75 -42.95
+170.75 -42.85
+170.75 -42.75
+170.75 -42.65
+170.75 -42.55
+170.75 -42.45
+170.75 -42.35
+170.75 -42.25
+170.75 -42.15
+170.75 -42.05
+170.75 -41.95
+170.75 -41.85
+170.75 -41.75
+170.75 -41.65
+170.75 -41.55
+170.75 -41.45
+170.75 -41.35
+170.75 -41.25
+170.75 -41.15
+170.85 -46.45
+170.85 -46.35
+170.85 -46.25
+170.85 -46.15
+170.85 -46.05
+170.85 -45.95
+170.85 -45.85
+170.85 -45.75
+170.85 -45.65
+170.85 -45.55
+170.85 -45.45
+170.85 -45.35
+170.85 -45.25
+170.85 -45.15
+170.85 -45.05
+170.85 -44.95
+170.85 -44.85
+170.85 -44.75
+170.85 -44.65
+170.85 -44.55
+170.85 -44.45
+170.85 -44.35
+170.85 -44.25
+170.85 -44.15
+170.85 -44.05
+170.85 -43.95
+170.85 -43.85
+170.85 -43.75
+170.85 -43.65
+170.85 -43.55
+170.85 -43.45
+170.85 -43.35
+170.85 -43.25
+170.85 -43.15
+170.85 -43.05
+170.85 -42.95
+170.85 -42.85
+170.85 -42.75
+170.85 -42.65
+170.85 -42.55
+170.85 -42.45
+170.85 -42.35
+170.85 -42.25
+170.85 -42.15
+170.85 -42.05
+170.85 -41.95
+170.85 -41.85
+170.85 -41.75
+170.85 -41.65
+170.85 -41.55
+170.85 -41.45
+170.85 -41.35
+170.85 -41.25
+170.85 -41.15
+170.95 -46.35
+170.95 -46.25
+170.95 -46.15
+170.95 -46.05
+170.95 -45.95
+170.95 -45.85
+170.95 -45.75
+170.95 -45.65
+170.95 -45.55
+170.95 -45.45
+170.95 -45.35
+170.95 -45.25
+170.95 -45.15
+170.95 -45.05
+170.95 -44.95
+170.95 -44.85
+170.95 -44.75
+170.95 -44.65
+170.95 -44.55
+170.95 -44.45
+170.95 -44.35
+170.95 -44.25
+170.95 -44.15
+170.95 -44.05
+170.95 -43.95
+170.95 -43.85
+170.95 -43.75
+170.95 -43.65
+170.95 -43.55
+170.95 -43.45
+170.95 -43.35
+170.95 -43.25
+170.95 -43.15
+170.95 -43.05
+170.95 -42.95
+170.95 -42.85
+170.95 -42.75
+170.95 -42.65
+170.95 -42.55
+170.95 -42.45
+170.95 -42.35
+170.95 -42.25
+170.95 -42.15
+170.95 -42.05
+170.95 -41.95
+170.95 -41.85
+170.95 -41.75
+170.95 -41.65
+170.95 -41.55
+170.95 -41.45
+170.95 -41.35
+170.95 -41.25
+170.95 -41.15
+170.95 -41.05
+171.05 -46.35
+171.05 -46.25
+171.05 -46.15
+171.05 -46.05
+171.05 -45.95
+171.05 -45.85
+171.05 -45.75
+171.05 -45.65
+171.05 -45.55
+171.05 -45.45
+171.05 -45.35
+171.05 -45.25
+171.05 -45.15
+171.05 -45.05
+171.05 -44.95
+171.05 -44.85
+171.05 -44.75
+171.05 -44.65
+171.05 -44.55
+171.05 -44.45
+171.05 -44.35
+171.05 -44.25
+171.05 -44.15
+171.05 -44.05
+171.05 -43.95
+171.05 -43.85
+171.05 -43.75
+171.05 -43.65
+171.05 -43.55
+171.05 -43.45
+171.05 -43.35
+171.05 -43.25
+171.05 -43.15
+171.05 -43.05
+171.05 -42.95
+171.05 -42.85
+171.05 -42.75
+171.05 -42.65
+171.05 -42.55
+171.05 -42.45
+171.05 -42.35
+171.05 -42.25
+171.05 -42.15
+171.05 -42.05
+171.05 -41.95
+171.05 -41.85
+171.05 -41.75
+171.05 -41.65
+171.05 -41.55
+171.05 -41.45
+171.05 -41.35
+171.05 -41.25
+171.05 -41.15
+171.05 -41.05
+171.05 -40.95
+171.15 -46.25
+171.15 -46.15
+171.15 -46.05
+171.15 -45.95
+171.15 -45.85
+171.15 -45.75
+171.15 -45.65
+171.15 -45.55
+171.15 -45.45
+171.15 -45.35
+171.15 -45.25
+171.15 -45.15
+171.15 -45.05
+171.15 -44.95
+171.15 -44.85
+171.15 -44.75
+171.15 -44.65
+171.15 -44.55
+171.15 -44.45
+171.15 -44.35
+171.15 -44.25
+171.15 -44.15
+171.15 -44.05
+171.15 -43.95
+171.15 -43.85
+171.15 -43.75
+171.15 -43.65
+171.15 -43.55
+171.15 -43.45
+171.15 -43.35
+171.15 -43.25
+171.15 -43.15
+171.15 -43.05
+171.15 -42.95
+171.15 -42.85
+171.15 -42.75
+171.15 -42.65
+171.15 -42.55
+171.15 -42.45
+171.15 -42.35
+171.15 -42.25
+171.15 -42.15
+171.15 -42.05
+171.15 -41.95
+171.15 -41.85
+171.15 -41.75
+171.15 -41.65
+171.15 -41.55
+171.15 -41.45
+171.15 -41.35
+171.15 -41.25
+171.15 -41.15
+171.15 -41.05
+171.15 -40.95
+171.15 -40.85
+171.25 -46.15
+171.25 -46.05
+171.25 -45.95
+171.25 -45.85
+171.25 -45.75
+171.25 -45.65
+171.25 -45.55
+171.25 -45.45
+171.25 -45.35
+171.25 -45.25
+171.25 -45.15
+171.25 -45.05
+171.25 -44.95
+171.25 -44.85
+171.25 -44.75
+171.25 -44.65
+171.25 -44.55
+171.25 -44.45
+171.25 -44.35
+171.25 -44.25
+171.25 -44.15
+171.25 -44.05
+171.25 -43.95
+171.25 -43.85
+171.25 -43.75
+171.25 -43.65
+171.25 -43.55
+171.25 -43.45
+171.25 -43.35
+171.25 -43.25
+171.25 -43.15
+171.25 -43.05
+171.25 -42.95
+171.25 -42.85
+171.25 -42.75
+171.25 -42.65
+171.25 -42.55
+171.25 -42.45
+171.25 -42.35
+171.25 -42.25
+171.25 -42.15
+171.25 -42.05
+171.25 -41.95
+171.25 -41.85
+171.25 -41.75
+171.25 -41.65
+171.25 -41.55
+171.25 -41.45
+171.25 -41.35
+171.25 -41.25
+171.25 -41.15
+171.25 -41.05
+171.25 -40.95
+171.25 -40.85
+171.25 -40.75
+171.35 -46.05
+171.35 -45.95
+171.35 -45.85
+171.35 -45.75
+171.35 -45.65
+171.35 -45.55
+171.35 -45.45
+171.35 -45.35
+171.35 -45.25
+171.35 -45.15
+171.35 -45.05
+171.35 -44.95
+171.35 -44.85
+171.35 -44.75
+171.35 -44.65
+171.35 -44.55
+171.35 -44.45
+171.35 -44.35
+171.35 -44.25
+171.35 -44.15
+171.35 -44.05
+171.35 -43.95
+171.35 -43.85
+171.35 -43.75
+171.35 -43.65
+171.35 -43.55
+171.35 -43.45
+171.35 -43.35
+171.35 -43.25
+171.35 -43.15
+171.35 -43.05
+171.35 -42.95
+171.35 -42.85
+171.35 -42.75
+171.35 -42.65
+171.35 -42.55
+171.35 -42.45
+171.35 -42.35
+171.35 -42.25
+171.35 -42.15
+171.35 -42.05
+171.35 -41.95
+171.35 -41.85
+171.35 -41.75
+171.35 -41.65
+171.35 -41.55
+171.35 -41.45
+171.35 -41.35
+171.35 -41.25
+171.35 -41.15
+171.35 -41.05
+171.35 -40.95
+171.35 -40.85
+171.35 -40.75
+171.35 -40.65
+171.45 -45.95
+171.45 -45.85
+171.45 -45.75
+171.45 -45.65
+171.45 -45.55
+171.45 -45.45
+171.45 -45.35
+171.45 -45.25
+171.45 -45.15
+171.45 -45.05
+171.45 -44.95
+171.45 -44.85
+171.45 -44.75
+171.45 -44.65
+171.45 -44.55
+171.45 -44.45
+171.45 -44.35
+171.45 -44.25
+171.45 -44.15
+171.45 -44.05
+171.45 -43.95
+171.45 -43.85
+171.45 -43.75
+171.45 -43.65
+171.45 -43.55
+171.45 -43.45
+171.45 -43.35
+171.45 -43.25
+171.45 -43.15
+171.45 -43.05
+171.45 -42.95
+171.45 -42.85
+171.45 -42.75
+171.45 -42.65
+171.45 -42.55
+171.45 -42.45
+171.45 -42.35
+171.45 -42.25
+171.45 -42.15
+171.45 -42.05
+171.45 -41.95
+171.45 -41.85
+171.45 -41.75
+171.45 -41.65
+171.45 -41.55
+171.45 -41.45
+171.45 -41.35
+171.45 -41.25
+171.45 -41.15
+171.45 -41.05
+171.45 -40.95
+171.45 -40.85
+171.45 -40.75
+171.45 -40.65
+171.45 -40.55
+171.55 -45.65
+171.55 -45.55
+171.55 -45.45
+171.55 -45.35
+171.55 -45.25
+171.55 -45.15
+171.55 -45.05
+171.55 -44.95
+171.55 -44.85
+171.55 -44.75
+171.55 -44.65
+171.55 -44.55
+171.55 -44.45
+171.55 -44.35
+171.55 -44.25
+171.55 -44.15
+171.55 -44.05
+171.55 -43.95
+171.55 -43.85
+171.55 -43.75
+171.55 -43.65
+171.55 -43.55
+171.55 -43.45
+171.55 -43.35
+171.55 -43.25
+171.55 -43.15
+171.55 -43.05
+171.55 -42.95
+171.55 -42.85
+171.55 -42.75
+171.55 -42.65
+171.55 -42.55
+171.55 -42.45
+171.55 -42.35
+171.55 -42.25
+171.55 -42.15
+171.55 -42.05
+171.55 -41.95
+171.55 -41.85
+171.55 -41.75
+171.55 -41.65
+171.55 -41.55
+171.55 -41.45
+171.55 -41.35
+171.55 -41.25
+171.55 -41.15
+171.55 -41.05
+171.55 -40.95
+171.55 -40.85
+171.55 -40.75
+171.55 -40.65
+171.55 -40.55
+171.55 -40.45
+171.65 -45.35
+171.65 -45.25
+171.65 -45.15
+171.65 -45.05
+171.65 -44.95
+171.65 -44.85
+171.65 -44.75
+171.65 -44.65
+171.65 -44.55
+171.65 -44.45
+171.65 -44.35
+171.65 -44.25
+171.65 -44.15
+171.65 -44.05
+171.65 -43.95
+171.65 -43.85
+171.65 -43.75
+171.65 -43.65
+171.65 -43.55
+171.65 -43.45
+171.65 -43.35
+171.65 -43.25
+171.65 -43.15
+171.65 -43.05
+171.65 -42.95
+171.65 -42.85
+171.65 -42.75
+171.65 -42.65
+171.65 -42.55
+171.65 -42.45
+171.65 -42.35
+171.65 -42.25
+171.65 -42.15
+171.65 -42.05
+171.65 -41.95
+171.65 -41.85
+171.65 -41.75
+171.65 -41.65
+171.65 -41.55
+171.65 -41.45
+171.65 -41.35
+171.65 -41.25
+171.65 -41.15
+171.65 -41.05
+171.65 -40.95
+171.65 -40.85
+171.65 -40.75
+171.65 -40.65
+171.65 -40.55
+171.65 -40.45
+171.75 -45.15
+171.75 -45.05
+171.75 -44.95
+171.75 -44.85
+171.75 -44.75
+171.75 -44.65
+171.75 -44.55
+171.75 -44.45
+171.75 -44.35
+171.75 -44.25
+171.75 -44.15
+171.75 -44.05
+171.75 -43.95
+171.75 -43.85
+171.75 -43.75
+171.75 -43.65
+171.75 -43.55
+171.75 -43.45
+171.75 -43.35
+171.75 -43.25
+171.75 -43.15
+171.75 -43.05
+171.75 -42.95
+171.75 -42.85
+171.75 -42.75
+171.75 -42.65
+171.75 -42.55
+171.75 -42.45
+171.75 -42.35
+171.75 -42.25
+171.75 -42.15
+171.75 -42.05
+171.75 -41.95
+171.75 -41.85
+171.75 -41.75
+171.75 -41.65
+171.75 -41.55
+171.75 -41.45
+171.75 -41.35
+171.75 -41.25
+171.75 -41.15
+171.75 -41.05
+171.75 -40.95
+171.75 -40.85
+171.75 -40.75
+171.75 -40.65
+171.75 -40.55
+171.75 -40.45
+171.75 -40.35
+171.85 -44.95
+171.85 -44.85
+171.85 -44.75
+171.85 -44.65
+171.85 -44.55
+171.85 -44.45
+171.85 -44.35
+171.85 -44.25
+171.85 -44.15
+171.85 -44.05
+171.85 -43.95
+171.85 -43.85
+171.85 -43.75
+171.85 -43.65
+171.85 -43.55
+171.85 -43.45
+171.85 -43.35
+171.85 -43.25
+171.85 -43.15
+171.85 -43.05
+171.85 -42.95
+171.85 -42.85
+171.85 -42.75
+171.85 -42.65
+171.85 -42.55
+171.85 -42.45
+171.85 -42.35
+171.85 -42.25
+171.85 -42.15
+171.85 -42.05
+171.85 -41.95
+171.85 -41.85
+171.85 -41.75
+171.85 -41.65
+171.85 -41.55
+171.85 -41.45
+171.85 -41.35
+171.85 -41.25
+171.85 -41.15
+171.85 -41.05
+171.85 -40.95
+171.85 -40.85
+171.85 -40.75
+171.85 -40.65
+171.85 -40.55
+171.85 -40.45
+171.85 -40.35
+171.85 -40.25
+171.95 -44.45
+171.95 -44.35
+171.95 -44.25
+171.95 -44.15
+171.95 -44.05
+171.95 -43.95
+171.95 -43.85
+171.95 -43.75
+171.95 -43.65
+171.95 -43.55
+171.95 -43.45
+171.95 -43.35
+171.95 -43.25
+171.95 -43.15
+171.95 -43.05
+171.95 -42.95
+171.95 -42.85
+171.95 -42.75
+171.95 -42.65
+171.95 -42.55
+171.95 -42.45
+171.95 -42.35
+171.95 -42.25
+171.95 -42.15
+171.95 -42.05
+171.95 -41.95
+171.95 -41.85
+171.95 -41.75
+171.95 -41.65
+171.95 -41.55
+171.95 -41.45
+171.95 -41.35
+171.95 -41.25
+171.95 -41.15
+171.95 -41.05
+171.95 -40.95
+171.95 -40.85
+171.95 -40.75
+171.95 -40.65
+171.95 -40.55
+171.95 -40.45
+171.95 -40.35
+171.95 -40.25
+171.95 -40.15
+172.05 -44.45
+172.05 -44.35
+172.05 -44.25
+172.05 -44.15
+172.05 -44.05
+172.05 -43.95
+172.05 -43.85
+172.05 -43.75
+172.05 -43.65
+172.05 -43.55
+172.05 -43.45
+172.05 -43.35
+172.05 -43.25
+172.05 -43.15
+172.05 -43.05
+172.05 -42.95
+172.05 -42.85
+172.05 -42.75
+172.05 -42.65
+172.05 -42.55
+172.05 -42.45
+172.05 -42.35
+172.05 -42.25
+172.05 -42.15
+172.05 -42.05
+172.05 -41.95
+172.05 -41.85
+172.05 -41.75
+172.05 -41.65
+172.05 -41.55
+172.05 -41.45
+172.05 -41.35
+172.05 -41.25
+172.05 -41.15
+172.05 -41.05
+172.05 -40.95
+172.05 -40.85
+172.05 -40.75
+172.05 -40.65
+172.05 -40.55
+172.05 -40.45
+172.05 -40.35
+172.05 -40.25
+172.05 -40.15
+172.05 -40.05
+172.15 -44.45
+172.15 -44.35
+172.15 -44.25
+172.15 -44.15
+172.15 -44.05
+172.15 -43.95
+172.15 -43.85
+172.15 -43.75
+172.15 -43.65
+172.15 -43.55
+172.15 -43.45
+172.15 -43.35
+172.15 -43.25
+172.15 -43.15
+172.15 -43.05
+172.15 -42.95
+172.15 -42.85
+172.15 -42.75
+172.15 -42.65
+172.15 -42.55
+172.15 -42.45
+172.15 -42.35
+172.15 -42.25
+172.15 -42.15
+172.15 -42.05
+172.15 -41.95
+172.15 -41.85
+172.15 -41.75
+172.15 -41.65
+172.15 -41.55
+172.15 -41.45
+172.15 -41.35
+172.15 -41.25
+172.15 -41.15
+172.15 -41.05
+172.15 -40.95
+172.15 -40.85
+172.15 -40.75
+172.15 -40.65
+172.15 -40.55
+172.15 -40.45
+172.15 -40.35
+172.15 -40.25
+172.15 -40.15
+172.15 -40.05
+172.15 -39.95
+172.25 -44.35
+172.25 -44.25
+172.25 -44.15
+172.25 -44.05
+172.25 -43.95
+172.25 -43.85
+172.25 -43.75
+172.25 -43.65
+172.25 -43.55
+172.25 -43.45
+172.25 -43.35
+172.25 -43.25
+172.25 -43.15
+172.25 -43.05
+172.25 -42.95
+172.25 -42.85
+172.25 -42.75
+172.25 -42.65
+172.25 -42.55
+172.25 -42.45
+172.25 -42.35
+172.25 -42.25
+172.25 -42.15
+172.25 -42.05
+172.25 -41.95
+172.25 -41.85
+172.25 -41.75
+172.25 -41.65
+172.25 -41.55
+172.25 -41.45
+172.25 -41.35
+172.25 -41.25
+172.25 -41.15
+172.25 -41.05
+172.25 -40.95
+172.25 -40.85
+172.25 -40.75
+172.25 -40.65
+172.25 -40.55
+172.25 -40.45
+172.25 -40.35
+172.25 -40.25
+172.25 -40.15
+172.25 -40.05
+172.25 -39.95
+172.25 -39.85
+172.25 -34.75
+172.25 -34.65
+172.25 -34.55
+172.25 -34.45
+172.25 -34.35
+172.35 -44.35
+172.35 -44.25
+172.35 -44.15
+172.35 -44.05
+172.35 -43.95
+172.35 -43.85
+172.35 -43.75
+172.35 -43.65
+172.35 -43.55
+172.35 -43.45
+172.35 -43.35
+172.35 -43.25
+172.35 -43.15
+172.35 -43.05
+172.35 -42.95
+172.35 -42.85
+172.35 -42.75
+172.35 -42.65
+172.35 -42.55
+172.35 -42.45
+172.35 -42.35
+172.35 -42.25
+172.35 -42.15
+172.35 -42.05
+172.35 -41.95
+172.35 -41.85
+172.35 -41.75
+172.35 -41.65
+172.35 -41.55
+172.35 -41.45
+172.35 -41.35
+172.35 -41.25
+172.35 -41.15
+172.35 -41.05
+172.35 -40.95
+172.35 -40.85
+172.35 -40.75
+172.35 -40.65
+172.35 -40.55
+172.35 -40.45
+172.35 -40.35
+172.35 -40.25
+172.35 -40.15
+172.35 -40.05
+172.35 -39.95
+172.35 -39.85
+172.35 -34.85
+172.35 -34.75
+172.35 -34.65
+172.35 -34.55
+172.35 -34.45
+172.35 -34.35
+172.35 -34.25
+172.35 -34.15
+172.45 -44.35
+172.45 -44.25
+172.45 -44.15
+172.45 -44.05
+172.45 -43.95
+172.45 -43.85
+172.45 -43.75
+172.45 -43.65
+172.45 -43.55
+172.45 -43.45
+172.45 -43.35
+172.45 -43.25
+172.45 -43.15
+172.45 -43.05
+172.45 -42.95
+172.45 -42.85
+172.45 -42.75
+172.45 -42.65
+172.45 -42.55
+172.45 -42.45
+172.45 -42.35
+172.45 -42.25
+172.45 -42.15
+172.45 -42.05
+172.45 -41.95
+172.45 -41.85
+172.45 -41.75
+172.45 -41.65
+172.45 -41.55
+172.45 -41.45
+172.45 -41.35
+172.45 -41.25
+172.45 -41.15
+172.45 -41.05
+172.45 -40.95
+172.45 -40.85
+172.45 -40.75
+172.45 -40.65
+172.45 -40.55
+172.45 -40.45
+172.45 -40.35
+172.45 -40.25
+172.45 -40.15
+172.45 -40.05
+172.45 -39.95
+172.45 -39.85
+172.45 -39.75
+172.45 -35.05
+172.45 -34.95
+172.45 -34.85
+172.45 -34.75
+172.45 -34.65
+172.45 -34.55
+172.45 -34.45
+172.45 -34.35
+172.45 -34.25
+172.45 -34.15
+172.45 -34.05
+172.55 -44.25
+172.55 -44.15
+172.55 -44.05
+172.55 -43.95
+172.55 -43.85
+172.55 -43.75
+172.55 -43.65
+172.55 -43.55
+172.55 -43.45
+172.55 -43.35
+172.55 -43.25
+172.55 -43.15
+172.55 -43.05
+172.55 -42.95
+172.55 -42.85
+172.55 -42.75
+172.55 -42.65
+172.55 -42.55
+172.55 -42.45
+172.55 -42.35
+172.55 -42.25
+172.55 -42.15
+172.55 -42.05
+172.55 -41.95
+172.55 -41.85
+172.55 -41.75
+172.55 -41.65
+172.55 -41.55
+172.55 -41.45
+172.55 -41.35
+172.55 -41.25
+172.55 -41.15
+172.55 -41.05
+172.55 -40.95
+172.55 -40.85
+172.55 -40.75
+172.55 -40.65
+172.55 -40.55
+172.55 -40.45
+172.55 -40.35
+172.55 -40.25
+172.55 -40.15
+172.55 -40.05
+172.55 -39.95
+172.55 -39.85
+172.55 -39.75
+172.55 -39.65
+172.55 -35.45
+172.55 -35.35
+172.55 -35.25
+172.55 -35.15
+172.55 -35.05
+172.55 -34.95
+172.55 -34.85
+172.55 -34.75
+172.55 -34.65
+172.55 -34.55
+172.55 -34.45
+172.55 -34.35
+172.55 -34.25
+172.55 -34.15
+172.55 -34.05
+172.65 -44.25
+172.65 -44.15
+172.65 -44.05
+172.65 -43.95
+172.65 -43.85
+172.65 -43.75
+172.65 -43.65
+172.65 -43.55
+172.65 -43.45
+172.65 -43.35
+172.65 -43.25
+172.65 -43.15
+172.65 -43.05
+172.65 -42.95
+172.65 -42.85
+172.65 -42.75
+172.65 -42.65
+172.65 -42.55
+172.65 -42.45
+172.65 -42.35
+172.65 -42.25
+172.65 -42.15
+172.65 -42.05
+172.65 -41.95
+172.65 -41.85
+172.65 -41.75
+172.65 -41.65
+172.65 -41.55
+172.65 -41.45
+172.65 -41.35
+172.65 -41.25
+172.65 -41.15
+172.65 -41.05
+172.65 -40.95
+172.65 -40.85
+172.65 -40.75
+172.65 -40.65
+172.65 -40.55
+172.65 -40.45
+172.65 -40.35
+172.65 -40.25
+172.65 -40.15
+172.65 -40.05
+172.65 -39.95
+172.65 -39.85
+172.65 -39.75
+172.65 -39.65
+172.65 -39.55
+172.65 -35.55
+172.65 -35.45
+172.65 -35.35
+172.65 -35.25
+172.65 -35.15
+172.65 -35.05
+172.65 -34.95
+172.65 -34.85
+172.65 -34.75
+172.65 -34.65
+172.65 -34.55
+172.65 -34.45
+172.65 -34.35
+172.65 -34.25
+172.65 -34.15
+172.65 -34.05
+172.65 -33.95
+172.75 -44.35
+172.75 -44.25
+172.75 -44.15
+172.75 -44.05
+172.75 -43.95
+172.75 -43.85
+172.75 -43.75
+172.75 -43.65
+172.75 -43.55
+172.75 -43.45
+172.75 -43.35
+172.75 -43.25
+172.75 -43.15
+172.75 -43.05
+172.75 -42.95
+172.75 -42.85
+172.75 -42.75
+172.75 -42.65
+172.75 -42.55
+172.75 -42.45
+172.75 -42.35
+172.75 -42.25
+172.75 -42.15
+172.75 -42.05
+172.75 -41.95
+172.75 -41.85
+172.75 -41.75
+172.75 -41.65
+172.75 -41.55
+172.75 -41.45
+172.75 -41.35
+172.75 -41.25
+172.75 -41.15
+172.75 -41.05
+172.75 -40.95
+172.75 -40.85
+172.75 -40.75
+172.75 -40.65
+172.75 -40.55
+172.75 -40.45
+172.75 -40.35
+172.75 -40.25
+172.75 -40.15
+172.75 -40.05
+172.75 -39.95
+172.75 -39.85
+172.75 -39.75
+172.75 -39.65
+172.75 -39.55
+172.75 -39.45
+172.75 -35.65
+172.75 -35.55
+172.75 -35.45
+172.75 -35.35
+172.75 -35.25
+172.75 -35.15
+172.75 -35.05
+172.75 -34.95
+172.75 -34.85
+172.75 -34.75
+172.75 -34.65
+172.75 -34.55
+172.75 -34.45
+172.75 -34.35
+172.75 -34.25
+172.75 -34.15
+172.75 -34.05
+172.75 -33.95
+172.85 -44.35
+172.85 -44.25
+172.85 -44.15
+172.85 -44.05
+172.85 -43.95
+172.85 -43.85
+172.85 -43.75
+172.85 -43.65
+172.85 -43.55
+172.85 -43.45
+172.85 -43.35
+172.85 -43.25
+172.85 -43.15
+172.85 -43.05
+172.85 -42.95
+172.85 -42.85
+172.85 -42.75
+172.85 -42.65
+172.85 -42.55
+172.85 -42.45
+172.85 -42.35
+172.85 -42.25
+172.85 -42.15
+172.85 -42.05
+172.85 -41.95
+172.85 -41.85
+172.85 -41.75
+172.85 -41.65
+172.85 -41.55
+172.85 -41.45
+172.85 -41.35
+172.85 -41.25
+172.85 -41.15
+172.85 -41.05
+172.85 -40.95
+172.85 -40.85
+172.85 -40.75
+172.85 -40.65
+172.85 -40.55
+172.85 -40.45
+172.85 -40.35
+172.85 -40.25
+172.85 -40.15
+172.85 -40.05
+172.85 -39.95
+172.85 -39.85
+172.85 -39.75
+172.85 -39.65
+172.85 -39.55
+172.85 -39.45
+172.85 -39.35
+172.85 -35.75
+172.85 -35.65
+172.85 -35.55
+172.85 -35.45
+172.85 -35.35
+172.85 -35.25
+172.85 -35.15
+172.85 -35.05
+172.85 -34.95
+172.85 -34.85
+172.85 -34.75
+172.85 -34.65
+172.85 -34.55
+172.85 -34.45
+172.85 -34.35
+172.85 -34.25
+172.85 -34.15
+172.85 -34.05
+172.85 -33.95
+172.95 -44.35
+172.95 -44.25
+172.95 -44.15
+172.95 -44.05
+172.95 -43.95
+172.95 -43.85
+172.95 -43.75
+172.95 -43.65
+172.95 -43.55
+172.95 -43.45
+172.95 -43.35
+172.95 -43.25
+172.95 -43.15
+172.95 -43.05
+172.95 -42.95
+172.95 -42.85
+172.95 -42.75
+172.95 -42.65
+172.95 -42.55
+172.95 -42.45
+172.95 -42.35
+172.95 -42.25
+172.95 -42.15
+172.95 -42.05
+172.95 -41.95
+172.95 -41.85
+172.95 -41.75
+172.95 -41.65
+172.95 -41.55
+172.95 -41.45
+172.95 -41.35
+172.95 -41.25
+172.95 -41.15
+172.95 -41.05
+172.95 -40.95
+172.95 -40.85
+172.95 -40.75
+172.95 -40.65
+172.95 -40.55
+172.95 -40.45
+172.95 -40.35
+172.95 -40.25
+172.95 -40.15
+172.95 -40.05
+172.95 -39.95
+172.95 -39.85
+172.95 -39.75
+172.95 -39.65
+172.95 -39.55
+172.95 -39.45
+172.95 -39.35
+172.95 -39.25
+172.95 -35.85
+172.95 -35.75
+172.95 -35.65
+172.95 -35.55
+172.95 -35.45
+172.95 -35.35
+172.95 -35.25
+172.95 -35.15
+172.95 -35.05
+172.95 -34.95
+172.95 -34.85
+172.95 -34.75
+172.95 -34.65
+172.95 -34.55
+172.95 -34.45
+172.95 -34.35
+172.95 -34.25
+172.95 -34.15
+172.95 -34.05
+172.95 -33.95
+173.05 -44.35
+173.05 -44.25
+173.05 -44.15
+173.05 -44.05
+173.05 -43.95
+173.05 -43.85
+173.05 -43.75
+173.05 -43.65
+173.05 -43.55
+173.05 -43.45
+173.05 -43.35
+173.05 -43.25
+173.05 -43.15
+173.05 -43.05
+173.05 -42.95
+173.05 -42.85
+173.05 -42.75
+173.05 -42.65
+173.05 -42.55
+173.05 -42.45
+173.05 -42.35
+173.05 -42.25
+173.05 -42.15
+173.05 -42.05
+173.05 -41.95
+173.05 -41.85
+173.05 -41.75
+173.05 -41.65
+173.05 -41.55
+173.05 -41.45
+173.05 -41.35
+173.05 -41.25
+173.05 -41.15
+173.05 -41.05
+173.05 -40.95
+173.05 -40.85
+173.05 -40.75
+173.05 -40.65
+173.05 -40.55
+173.05 -40.45
+173.05 -40.35
+173.05 -40.25
+173.05 -40.15
+173.05 -40.05
+173.05 -39.95
+173.05 -39.85
+173.05 -39.75
+173.05 -39.65
+173.05 -39.55
+173.05 -39.45
+173.05 -39.35
+173.05 -39.25
+173.05 -35.95
+173.05 -35.85
+173.05 -35.75
+173.05 -35.65
+173.05 -35.55
+173.05 -35.45
+173.05 -35.35
+173.05 -35.25
+173.05 -35.15
+173.05 -35.05
+173.05 -34.95
+173.05 -34.85
+173.05 -34.75
+173.05 -34.65
+173.05 -34.55
+173.05 -34.45
+173.05 -34.35
+173.05 -34.25
+173.05 -34.15
+173.05 -34.05
+173.05 -33.95
+173.15 -44.35
+173.15 -44.25
+173.15 -44.15
+173.15 -44.05
+173.15 -43.95
+173.15 -43.85
+173.15 -43.75
+173.15 -43.65
+173.15 -43.55
+173.15 -43.45
+173.15 -43.35
+173.15 -43.25
+173.15 -43.15
+173.15 -43.05
+173.15 -42.95
+173.15 -42.85
+173.15 -42.75
+173.15 -42.65
+173.15 -42.55
+173.15 -42.45
+173.15 -42.35
+173.15 -42.25
+173.15 -42.15
+173.15 -42.05
+173.15 -41.95
+173.15 -41.85
+173.15 -41.75
+173.15 -41.65
+173.15 -41.55
+173.15 -41.45
+173.15 -41.35
+173.15 -41.25
+173.15 -41.15
+173.15 -41.05
+173.15 -40.95
+173.15 -40.85
+173.15 -40.75
+173.15 -40.65
+173.15 -40.55
+173.15 -40.45
+173.15 -40.35
+173.15 -40.25
+173.15 -40.15
+173.15 -40.05
+173.15 -39.95
+173.15 -39.85
+173.15 -39.75
+173.15 -39.65
+173.15 -39.55
+173.15 -39.45
+173.15 -39.35
+173.15 -39.25
+173.15 -39.15
+173.15 -36.15
+173.15 -36.05
+173.15 -35.95
+173.15 -35.85
+173.15 -35.75
+173.15 -35.65
+173.15 -35.55
+173.15 -35.45
+173.15 -35.35
+173.15 -35.25
+173.15 -35.15
+173.15 -35.05
+173.15 -34.95
+173.15 -34.85
+173.15 -34.75
+173.15 -34.65
+173.15 -34.55
+173.15 -34.45
+173.15 -34.35
+173.15 -34.25
+173.15 -34.15
+173.15 -34.05
+173.15 -33.95
+173.25 -44.25
+173.25 -44.15
+173.25 -44.05
+173.25 -43.95
+173.25 -43.85
+173.25 -43.75
+173.25 -43.65
+173.25 -43.55
+173.25 -43.45
+173.25 -43.35
+173.25 -43.25
+173.25 -43.15
+173.25 -43.05
+173.25 -42.95
+173.25 -42.85
+173.25 -42.75
+173.25 -42.65
+173.25 -42.55
+173.25 -42.45
+173.25 -42.35
+173.25 -42.25
+173.25 -42.15
+173.25 -42.05
+173.25 -41.95
+173.25 -41.85
+173.25 -41.75
+173.25 -41.65
+173.25 -41.55
+173.25 -41.45
+173.25 -41.35
+173.25 -41.25
+173.25 -41.15
+173.25 -41.05
+173.25 -40.95
+173.25 -40.85
+173.25 -40.75
+173.25 -40.65
+173.25 -40.55
+173.25 -40.45
+173.25 -40.35
+173.25 -40.25
+173.25 -40.15
+173.25 -40.05
+173.25 -39.95
+173.25 -39.85
+173.25 -39.75
+173.25 -39.65
+173.25 -39.55
+173.25 -39.45
+173.25 -39.35
+173.25 -39.25
+173.25 -39.15
+173.25 -39.05
+173.25 -36.25
+173.25 -36.15
+173.25 -36.05
+173.25 -35.95
+173.25 -35.85
+173.25 -35.75
+173.25 -35.65
+173.25 -35.55
+173.25 -35.45
+173.25 -35.35
+173.25 -35.25
+173.25 -35.15
+173.25 -35.05
+173.25 -34.95
+173.25 -34.85
+173.25 -34.75
+173.25 -34.65
+173.25 -34.55
+173.25 -34.45
+173.25 -34.35
+173.25 -34.25
+173.25 -34.15
+173.25 -34.05
+173.35 -44.25
+173.35 -44.15
+173.35 -44.05
+173.35 -43.95
+173.35 -43.85
+173.35 -43.75
+173.35 -43.65
+173.35 -43.55
+173.35 -43.45
+173.35 -43.35
+173.35 -43.25
+173.35 -43.15
+173.35 -43.05
+173.35 -42.95
+173.35 -42.85
+173.35 -42.75
+173.35 -42.65
+173.35 -42.55
+173.35 -42.45
+173.35 -42.35
+173.35 -42.25
+173.35 -42.15
+173.35 -42.05
+173.35 -41.95
+173.35 -41.85
+173.35 -41.75
+173.35 -41.65
+173.35 -41.55
+173.35 -41.45
+173.35 -41.35
+173.35 -41.25
+173.35 -41.15
+173.35 -41.05
+173.35 -40.95
+173.35 -40.85
+173.35 -40.75
+173.35 -40.65
+173.35 -40.55
+173.35 -40.45
+173.35 -40.35
+173.35 -40.25
+173.35 -40.15
+173.35 -40.05
+173.35 -39.95
+173.35 -39.85
+173.35 -39.75
+173.35 -39.65
+173.35 -39.55
+173.35 -39.45
+173.35 -39.35
+173.35 -39.25
+173.35 -39.15
+173.35 -39.05
+173.35 -38.95
+173.35 -36.35
+173.35 -36.25
+173.35 -36.15
+173.35 -36.05
+173.35 -35.95
+173.35 -35.85
+173.35 -35.75
+173.35 -35.65
+173.35 -35.55
+173.35 -35.45
+173.35 -35.35
+173.35 -35.25
+173.35 -35.15
+173.35 -35.05
+173.35 -34.95
+173.35 -34.85
+173.35 -34.75
+173.35 -34.65
+173.35 -34.55
+173.35 -34.45
+173.35 -34.35
+173.35 -34.25
+173.35 -34.15
+173.45 -44.15
+173.45 -44.05
+173.45 -43.95
+173.45 -43.85
+173.45 -43.75
+173.45 -43.65
+173.45 -43.55
+173.45 -43.45
+173.45 -43.35
+173.45 -43.25
+173.45 -43.15
+173.45 -43.05
+173.45 -42.95
+173.45 -42.85
+173.45 -42.75
+173.45 -42.65
+173.45 -42.55
+173.45 -42.45
+173.45 -42.35
+173.45 -42.25
+173.45 -42.15
+173.45 -42.05
+173.45 -41.95
+173.45 -41.85
+173.45 -41.75
+173.45 -41.65
+173.45 -41.55
+173.45 -41.45
+173.45 -41.35
+173.45 -41.25
+173.45 -41.15
+173.45 -41.05
+173.45 -40.95
+173.45 -40.85
+173.45 -40.75
+173.45 -40.65
+173.45 -40.55
+173.45 -40.45
+173.45 -40.35
+173.45 -40.25
+173.45 -40.15
+173.45 -40.05
+173.45 -39.95
+173.45 -39.85
+173.45 -39.75
+173.45 -39.65
+173.45 -39.55
+173.45 -39.45
+173.45 -39.35
+173.45 -39.25
+173.45 -39.15
+173.45 -39.05
+173.45 -38.95
+173.45 -38.85
+173.45 -36.45
+173.45 -36.35
+173.45 -36.25
+173.45 -36.15
+173.45 -36.05
+173.45 -35.95
+173.45 -35.85
+173.45 -35.75
+173.45 -35.65
+173.45 -35.55
+173.45 -35.45
+173.45 -35.35
+173.45 -35.25
+173.45 -35.15
+173.45 -35.05
+173.45 -34.95
+173.45 -34.85
+173.45 -34.75
+173.45 -34.65
+173.45 -34.55
+173.45 -34.45
+173.45 -34.35
+173.45 -34.25
+173.45 -34.15
+173.55 -44.05
+173.55 -43.95
+173.55 -43.85
+173.55 -43.75
+173.55 -43.65
+173.55 -43.55
+173.55 -43.45
+173.55 -43.35
+173.55 -43.25
+173.55 -43.15
+173.55 -43.05
+173.55 -42.95
+173.55 -42.85
+173.55 -42.75
+173.55 -42.65
+173.55 -42.55
+173.55 -42.45
+173.55 -42.35
+173.55 -42.25
+173.55 -42.15
+173.55 -42.05
+173.55 -41.95
+173.55 -41.85
+173.55 -41.75
+173.55 -41.65
+173.55 -41.55
+173.55 -41.45
+173.55 -41.35
+173.55 -41.25
+173.55 -41.15
+173.55 -41.05
+173.55 -40.95
+173.55 -40.85
+173.55 -40.75
+173.55 -40.65
+173.55 -40.55
+173.55 -40.45
+173.55 -40.35
+173.55 -40.25
+173.55 -40.15
+173.55 -40.05
+173.55 -39.95
+173.55 -39.85
+173.55 -39.75
+173.55 -39.65
+173.55 -39.55
+173.55 -39.45
+173.55 -39.35
+173.55 -39.25
+173.55 -39.15
+173.55 -39.05
+173.55 -38.95
+173.55 -38.85
+173.55 -38.75
+173.55 -38.65
+173.55 -36.55
+173.55 -36.45
+173.55 -36.35
+173.55 -36.25
+173.55 -36.15
+173.55 -36.05
+173.55 -35.95
+173.55 -35.85
+173.55 -35.75
+173.55 -35.65
+173.55 -35.55
+173.55 -35.45
+173.55 -35.35
+173.55 -35.25
+173.55 -35.15
+173.55 -35.05
+173.55 -34.95
+173.55 -34.85
+173.55 -34.75
+173.55 -34.65
+173.55 -34.55
+173.55 -34.45
+173.55 -34.35
+173.55 -34.25
+173.65 -43.85
+173.65 -43.75
+173.65 -43.65
+173.65 -43.55
+173.65 -43.45
+173.65 -43.35
+173.65 -43.25
+173.65 -43.15
+173.65 -43.05
+173.65 -42.95
+173.65 -42.85
+173.65 -42.75
+173.65 -42.65
+173.65 -42.55
+173.65 -42.45
+173.65 -42.35
+173.65 -42.25
+173.65 -42.15
+173.65 -42.05
+173.65 -41.95
+173.65 -41.85
+173.65 -41.75
+173.65 -41.65
+173.65 -41.55
+173.65 -41.45
+173.65 -41.35
+173.65 -41.25
+173.65 -41.15
+173.65 -41.05
+173.65 -40.95
+173.65 -40.85
+173.65 -40.75
+173.65 -40.65
+173.65 -40.55
+173.65 -40.45
+173.65 -40.35
+173.65 -40.25
+173.65 -40.15
+173.65 -40.05
+173.65 -39.95
+173.65 -39.85
+173.65 -39.75
+173.65 -39.65
+173.65 -39.55
+173.65 -39.45
+173.65 -39.35
+173.65 -39.25
+173.65 -39.15
+173.65 -39.05
+173.65 -38.95
+173.65 -38.85
+173.65 -38.75
+173.65 -38.65
+173.65 -38.55
+173.65 -36.65
+173.65 -36.55
+173.65 -36.45
+173.65 -36.35
+173.65 -36.25
+173.65 -36.15
+173.65 -36.05
+173.65 -35.95
+173.65 -35.85
+173.65 -35.75
+173.65 -35.65
+173.65 -35.55
+173.65 -35.45
+173.65 -35.35
+173.65 -35.25
+173.65 -35.15
+173.65 -35.05
+173.65 -34.95
+173.65 -34.85
+173.65 -34.75
+173.65 -34.65
+173.65 -34.55
+173.65 -34.45
+173.65 -34.35
+173.75 -43.75
+173.75 -43.65
+173.75 -43.35
+173.75 -43.25
+173.75 -43.15
+173.75 -43.05
+173.75 -42.95
+173.75 -42.85
+173.75 -42.75
+173.75 -42.65
+173.75 -42.55
+173.75 -42.45
+173.75 -42.35
+173.75 -42.25
+173.75 -42.15
+173.75 -42.05
+173.75 -41.95
+173.75 -41.85
+173.75 -41.75
+173.75 -41.65
+173.75 -41.55
+173.75 -41.45
+173.75 -41.35
+173.75 -41.25
+173.75 -41.15
+173.75 -41.05
+173.75 -40.95
+173.75 -40.85
+173.75 -40.75
+173.75 -40.65
+173.75 -40.55
+173.75 -40.45
+173.75 -40.35
+173.75 -40.25
+173.75 -40.15
+173.75 -40.05
+173.75 -39.95
+173.75 -39.85
+173.75 -39.75
+173.75 -39.65
+173.75 -39.55
+173.75 -39.45
+173.75 -39.35
+173.75 -39.25
+173.75 -39.15
+173.75 -39.05
+173.75 -38.95
+173.75 -38.85
+173.75 -38.75
+173.75 -38.65
+173.75 -38.55
+173.75 -38.45
+173.75 -38.35
+173.75 -36.85
+173.75 -36.75
+173.75 -36.65
+173.75 -36.55
+173.75 -36.45
+173.75 -36.35
+173.75 -36.25
+173.75 -36.15
+173.75 -36.05
+173.75 -35.95
+173.75 -35.85
+173.75 -35.75
+173.75 -35.65
+173.75 -35.55
+173.75 -35.45
+173.75 -35.35
+173.75 -35.25
+173.75 -35.15
+173.75 -35.05
+173.75 -34.95
+173.75 -34.85
+173.75 -34.75
+173.75 -34.65
+173.75 -34.55
+173.75 -34.45
+173.75 -34.35
+173.85 -43.15
+173.85 -43.05
+173.85 -42.95
+173.85 -42.85
+173.85 -42.75
+173.85 -42.65
+173.85 -42.55
+173.85 -42.45
+173.85 -42.35
+173.85 -42.25
+173.85 -42.15
+173.85 -42.05
+173.85 -41.95
+173.85 -41.85
+173.85 -41.75
+173.85 -41.65
+173.85 -41.55
+173.85 -41.45
+173.85 -41.35
+173.85 -41.25
+173.85 -41.15
+173.85 -41.05
+173.85 -40.95
+173.85 -40.85
+173.85 -40.75
+173.85 -40.65
+173.85 -40.55
+173.85 -40.45
+173.85 -40.35
+173.85 -40.25
+173.85 -40.15
+173.85 -40.05
+173.85 -39.95
+173.85 -39.85
+173.85 -39.75
+173.85 -39.65
+173.85 -39.55
+173.85 -39.45
+173.85 -39.35
+173.85 -39.25
+173.85 -39.15
+173.85 -39.05
+173.85 -38.95
+173.85 -38.85
+173.85 -38.75
+173.85 -38.65
+173.85 -38.55
+173.85 -38.45
+173.85 -38.35
+173.85 -38.25
+173.85 -38.15
+173.85 -36.95
+173.85 -36.85
+173.85 -36.75
+173.85 -36.65
+173.85 -36.55
+173.85 -36.45
+173.85 -36.35
+173.85 -36.25
+173.85 -36.15
+173.85 -36.05
+173.85 -35.95
+173.85 -35.85
+173.85 -35.75
+173.85 -35.65
+173.85 -35.55
+173.85 -35.45
+173.85 -35.35
+173.85 -35.25
+173.85 -35.15
+173.85 -35.05
+173.85 -34.95
+173.85 -34.85
+173.85 -34.75
+173.85 -34.65
+173.85 -34.55
+173.85 -34.45
+173.95 -43.05
+173.95 -42.95
+173.95 -42.85
+173.95 -42.75
+173.95 -42.65
+173.95 -42.55
+173.95 -42.45
+173.95 -42.35
+173.95 -42.25
+173.95 -42.15
+173.95 -42.05
+173.95 -41.95
+173.95 -41.85
+173.95 -41.75
+173.95 -41.65
+173.95 -41.55
+173.95 -41.45
+173.95 -41.35
+173.95 -41.25
+173.95 -41.15
+173.95 -41.05
+173.95 -40.95
+173.95 -40.85
+173.95 -40.75
+173.95 -40.65
+173.95 -40.55
+173.95 -40.45
+173.95 -40.35
+173.95 -40.25
+173.95 -40.15
+173.95 -40.05
+173.95 -39.95
+173.95 -39.85
+173.95 -39.75
+173.95 -39.65
+173.95 -39.55
+173.95 -39.45
+173.95 -39.35
+173.95 -39.25
+173.95 -39.15
+173.95 -39.05
+173.95 -38.95
+173.95 -38.85
+173.95 -38.75
+173.95 -38.65
+173.95 -38.55
+173.95 -38.45
+173.95 -38.35
+173.95 -38.25
+173.95 -38.15
+173.95 -38.05
+173.95 -37.95
+173.95 -37.15
+173.95 -37.05
+173.95 -36.95
+173.95 -36.85
+173.95 -36.75
+173.95 -36.65
+173.95 -36.55
+173.95 -36.45
+173.95 -36.35
+173.95 -36.25
+173.95 -36.15
+173.95 -36.05
+173.95 -35.95
+173.95 -35.85
+173.95 -35.75
+173.95 -35.65
+173.95 -35.55
+173.95 -35.45
+173.95 -35.35
+173.95 -35.25
+173.95 -35.15
+173.95 -35.05
+173.95 -34.95
+173.95 -34.85
+173.95 -34.75
+173.95 -34.65
+173.95 -34.55
+173.95 -34.45
+174.05 -42.95
+174.05 -42.85
+174.05 -42.75
+174.05 -42.65
+174.05 -42.55
+174.05 -42.45
+174.05 -42.35
+174.05 -42.25
+174.05 -42.15
+174.05 -42.05
+174.05 -41.95
+174.05 -41.85
+174.05 -41.75
+174.05 -41.65
+174.05 -41.55
+174.05 -41.45
+174.05 -41.35
+174.05 -41.25
+174.05 -41.15
+174.05 -41.05
+174.05 -40.95
+174.05 -40.85
+174.05 -40.75
+174.05 -40.65
+174.05 -40.55
+174.05 -40.45
+174.05 -40.35
+174.05 -40.25
+174.05 -40.15
+174.05 -40.05
+174.05 -39.95
+174.05 -39.85
+174.05 -39.75
+174.05 -39.65
+174.05 -39.55
+174.05 -39.45
+174.05 -39.35
+174.05 -39.25
+174.05 -39.15
+174.05 -39.05
+174.05 -38.95
+174.05 -38.85
+174.05 -38.75
+174.05 -38.65
+174.05 -38.55
+174.05 -38.45
+174.05 -38.35
+174.05 -38.25
+174.05 -38.15
+174.05 -38.05
+174.05 -37.95
+174.05 -37.85
+174.05 -37.75
+174.05 -37.45
+174.05 -37.35
+174.05 -37.25
+174.05 -37.15
+174.05 -37.05
+174.05 -36.95
+174.05 -36.85
+174.05 -36.75
+174.05 -36.65
+174.05 -36.55
+174.05 -36.45
+174.05 -36.35
+174.05 -36.25
+174.05 -36.15
+174.05 -36.05
+174.05 -35.95
+174.05 -35.85
+174.05 -35.75
+174.05 -35.65
+174.05 -35.55
+174.05 -35.45
+174.05 -35.35
+174.05 -35.25
+174.05 -35.15
+174.05 -35.05
+174.05 -34.95
+174.05 -34.85
+174.05 -34.75
+174.05 -34.65
+174.05 -34.55
+174.15 -42.85
+174.15 -42.75
+174.15 -42.65
+174.15 -42.55
+174.15 -42.45
+174.15 -42.35
+174.15 -42.25
+174.15 -42.15
+174.15 -42.05
+174.15 -41.95
+174.15 -41.85
+174.15 -41.75
+174.15 -41.65
+174.15 -41.55
+174.15 -41.45
+174.15 -41.35
+174.15 -41.25
+174.15 -41.15
+174.15 -41.05
+174.15 -40.95
+174.15 -40.85
+174.15 -40.75
+174.15 -40.65
+174.15 -40.55
+174.15 -40.45
+174.15 -40.35
+174.15 -40.25
+174.15 -40.15
+174.15 -40.05
+174.15 -39.95
+174.15 -39.85
+174.15 -39.75
+174.15 -39.65
+174.15 -39.55
+174.15 -39.45
+174.15 -39.35
+174.15 -39.25
+174.15 -39.15
+174.15 -39.05
+174.15 -38.95
+174.15 -38.85
+174.15 -38.75
+174.15 -38.65
+174.15 -38.55
+174.15 -38.45
+174.15 -38.35
+174.15 -38.25
+174.15 -38.15
+174.15 -38.05
+174.15 -37.95
+174.15 -37.85
+174.15 -37.75
+174.15 -37.65
+174.15 -37.55
+174.15 -37.45
+174.15 -37.35
+174.15 -37.25
+174.15 -37.15
+174.15 -37.05
+174.15 -36.95
+174.15 -36.85
+174.15 -36.75
+174.15 -36.65
+174.15 -36.55
+174.15 -36.45
+174.15 -36.35
+174.15 -36.25
+174.15 -36.15
+174.15 -36.05
+174.15 -35.95
+174.15 -35.85
+174.15 -35.75
+174.15 -35.65
+174.15 -35.55
+174.15 -35.45
+174.15 -35.35
+174.15 -35.25
+174.15 -35.15
+174.15 -35.05
+174.15 -34.95
+174.15 -34.85
+174.15 -34.75
+174.15 -34.65
+174.15 -34.55
+174.25 -42.75
+174.25 -42.65
+174.25 -42.55
+174.25 -42.45
+174.25 -42.35
+174.25 -42.25
+174.25 -42.15
+174.25 -42.05
+174.25 -41.95
+174.25 -41.85
+174.25 -41.75
+174.25 -41.65
+174.25 -41.55
+174.25 -41.45
+174.25 -41.35
+174.25 -41.25
+174.25 -41.15
+174.25 -41.05
+174.25 -40.95
+174.25 -40.85
+174.25 -40.75
+174.25 -40.65
+174.25 -40.55
+174.25 -40.45
+174.25 -40.35
+174.25 -40.25
+174.25 -40.15
+174.25 -40.05
+174.25 -39.95
+174.25 -39.85
+174.25 -39.75
+174.25 -39.65
+174.25 -39.55
+174.25 -39.45
+174.25 -39.35
+174.25 -39.25
+174.25 -39.15
+174.25 -39.05
+174.25 -38.95
+174.25 -38.85
+174.25 -38.75
+174.25 -38.65
+174.25 -38.55
+174.25 -38.45
+174.25 -38.35
+174.25 -38.25
+174.25 -38.15
+174.25 -38.05
+174.25 -37.95
+174.25 -37.85
+174.25 -37.75
+174.25 -37.65
+174.25 -37.55
+174.25 -37.45
+174.25 -37.35
+174.25 -37.25
+174.25 -37.15
+174.25 -37.05
+174.25 -36.95
+174.25 -36.85
+174.25 -36.75
+174.25 -36.65
+174.25 -36.55
+174.25 -36.45
+174.25 -36.35
+174.25 -36.25
+174.25 -36.15
+174.25 -36.05
+174.25 -35.95
+174.25 -35.85
+174.25 -35.75
+174.25 -35.65
+174.25 -35.55
+174.25 -35.45
+174.25 -35.35
+174.25 -35.25
+174.25 -35.15
+174.25 -35.05
+174.25 -34.95
+174.25 -34.85
+174.25 -34.75
+174.25 -34.65
+174.35 -42.55
+174.35 -42.45
+174.35 -42.35
+174.35 -42.25
+174.35 -42.15
+174.35 -42.05
+174.35 -41.95
+174.35 -41.85
+174.35 -41.75
+174.35 -41.65
+174.35 -41.55
+174.35 -41.45
+174.35 -41.35
+174.35 -41.25
+174.35 -41.15
+174.35 -41.05
+174.35 -40.95
+174.35 -40.85
+174.35 -40.75
+174.35 -40.65
+174.35 -40.55
+174.35 -40.45
+174.35 -40.35
+174.35 -40.25
+174.35 -40.15
+174.35 -40.05
+174.35 -39.95
+174.35 -39.85
+174.35 -39.75
+174.35 -39.65
+174.35 -39.55
+174.35 -39.45
+174.35 -39.35
+174.35 -39.25
+174.35 -39.15
+174.35 -39.05
+174.35 -38.95
+174.35 -38.85
+174.35 -38.75
+174.35 -38.65
+174.35 -38.55
+174.35 -38.45
+174.35 -38.35
+174.35 -38.25
+174.35 -38.15
+174.35 -38.05
+174.35 -37.95
+174.35 -37.85
+174.35 -37.75
+174.35 -37.65
+174.35 -37.55
+174.35 -37.45
+174.35 -37.35
+174.35 -37.25
+174.35 -37.15
+174.35 -37.05
+174.35 -36.95
+174.35 -36.85
+174.35 -36.75
+174.35 -36.65
+174.35 -36.55
+174.35 -36.45
+174.35 -36.35
+174.35 -36.25
+174.35 -36.15
+174.35 -36.05
+174.35 -35.95
+174.35 -35.85
+174.35 -35.75
+174.35 -35.65
+174.35 -35.55
+174.35 -35.45
+174.35 -35.35
+174.35 -35.25
+174.35 -35.15
+174.35 -35.05
+174.35 -34.95
+174.35 -34.85
+174.35 -34.75
+174.45 -42.45
+174.45 -42.35
+174.45 -42.25
+174.45 -42.15
+174.45 -42.05
+174.45 -41.95
+174.45 -41.85
+174.45 -41.75
+174.45 -41.65
+174.45 -41.55
+174.45 -41.45
+174.45 -41.35
+174.45 -41.25
+174.45 -41.15
+174.45 -41.05
+174.45 -40.95
+174.45 -40.85
+174.45 -40.75
+174.45 -40.65
+174.45 -40.55
+174.45 -40.45
+174.45 -40.35
+174.45 -40.25
+174.45 -40.15
+174.45 -40.05
+174.45 -39.95
+174.45 -39.85
+174.45 -39.75
+174.45 -39.65
+174.45 -39.55
+174.45 -39.45
+174.45 -39.35
+174.45 -39.25
+174.45 -39.15
+174.45 -39.05
+174.45 -38.95
+174.45 -38.85
+174.45 -38.75
+174.45 -38.65
+174.45 -38.55
+174.45 -38.45
+174.45 -38.35
+174.45 -38.25
+174.45 -38.15
+174.45 -38.05
+174.45 -37.95
+174.45 -37.85
+174.45 -37.75
+174.45 -37.65
+174.45 -37.55
+174.45 -37.45
+174.45 -37.35
+174.45 -37.25
+174.45 -37.15
+174.45 -37.05
+174.45 -36.95
+174.45 -36.85
+174.45 -36.75
+174.45 -36.65
+174.45 -36.55
+174.45 -36.45
+174.45 -36.35
+174.45 -36.25
+174.45 -36.15
+174.45 -36.05
+174.45 -35.95
+174.45 -35.85
+174.45 -35.75
+174.45 -35.65
+174.45 -35.55
+174.45 -35.45
+174.45 -35.35
+174.45 -35.25
+174.45 -35.15
+174.45 -35.05
+174.45 -34.95
+174.45 -34.85
+174.55 -42.35
+174.55 -42.25
+174.55 -42.15
+174.55 -42.05
+174.55 -41.95
+174.55 -41.85
+174.55 -41.75
+174.55 -41.65
+174.55 -41.55
+174.55 -41.45
+174.55 -41.35
+174.55 -41.25
+174.55 -41.15
+174.55 -41.05
+174.55 -40.95
+174.55 -40.85
+174.55 -40.75
+174.55 -40.65
+174.55 -40.55
+174.55 -40.45
+174.55 -40.35
+174.55 -40.25
+174.55 -40.15
+174.55 -40.05
+174.55 -39.95
+174.55 -39.85
+174.55 -39.75
+174.55 -39.65
+174.55 -39.55
+174.55 -39.45
+174.55 -39.35
+174.55 -39.25
+174.55 -39.15
+174.55 -39.05
+174.55 -38.95
+174.55 -38.85
+174.55 -38.75
+174.55 -38.65
+174.55 -38.55
+174.55 -38.45
+174.55 -38.35
+174.55 -38.25
+174.55 -38.15
+174.55 -38.05
+174.55 -37.95
+174.55 -37.85
+174.55 -37.75
+174.55 -37.65
+174.55 -37.55
+174.55 -37.45
+174.55 -37.35
+174.55 -37.25
+174.55 -37.15
+174.55 -37.05
+174.55 -36.95
+174.55 -36.85
+174.55 -36.75
+174.55 -36.65
+174.55 -36.55
+174.55 -36.45
+174.55 -36.35
+174.55 -36.25
+174.55 -36.15
+174.55 -36.05
+174.55 -35.95
+174.55 -35.85
+174.55 -35.75
+174.55 -35.65
+174.55 -35.55
+174.55 -35.45
+174.55 -35.35
+174.55 -35.25
+174.55 -35.15
+174.55 -35.05
+174.55 -34.95
+174.65 -42.25
+174.65 -42.15
+174.65 -42.05
+174.65 -41.95
+174.65 -41.85
+174.65 -41.75
+174.65 -41.65
+174.65 -41.55
+174.65 -41.45
+174.65 -41.35
+174.65 -41.25
+174.65 -41.15
+174.65 -41.05
+174.65 -40.95
+174.65 -40.85
+174.65 -40.75
+174.65 -40.65
+174.65 -40.55
+174.65 -40.45
+174.65 -40.35
+174.65 -40.25
+174.65 -40.15
+174.65 -40.05
+174.65 -39.95
+174.65 -39.85
+174.65 -39.75
+174.65 -39.65
+174.65 -39.55
+174.65 -39.45
+174.65 -39.35
+174.65 -39.25
+174.65 -39.15
+174.65 -39.05
+174.65 -38.95
+174.65 -38.85
+174.65 -38.75
+174.65 -38.65
+174.65 -38.55
+174.65 -38.45
+174.65 -38.35
+174.65 -38.25
+174.65 -38.15
+174.65 -38.05
+174.65 -37.95
+174.65 -37.85
+174.65 -37.75
+174.65 -37.65
+174.65 -37.55
+174.65 -37.45
+174.65 -37.35
+174.65 -37.25
+174.65 -37.15
+174.65 -37.05
+174.65 -36.95
+174.65 -36.85
+174.65 -36.75
+174.65 -36.65
+174.65 -36.55
+174.65 -36.45
+174.65 -36.35
+174.65 -36.25
+174.65 -36.15
+174.65 -36.05
+174.65 -35.95
+174.65 -35.85
+174.65 -35.75
+174.65 -35.65
+174.65 -35.55
+174.65 -35.45
+174.65 -35.35
+174.65 -35.25
+174.65 -35.15
+174.65 -35.05
+174.75 -42.15
+174.75 -42.05
+174.75 -41.95
+174.75 -41.85
+174.75 -41.75
+174.75 -41.65
+174.75 -41.55
+174.75 -41.45
+174.75 -41.35
+174.75 -41.25
+174.75 -41.15
+174.75 -41.05
+174.75 -40.95
+174.75 -40.85
+174.75 -40.75
+174.75 -40.65
+174.75 -40.55
+174.75 -40.45
+174.75 -40.35
+174.75 -40.25
+174.75 -40.15
+174.75 -40.05
+174.75 -39.95
+174.75 -39.85
+174.75 -39.75
+174.75 -39.65
+174.75 -39.55
+174.75 -39.45
+174.75 -39.35
+174.75 -39.25
+174.75 -39.15
+174.75 -39.05
+174.75 -38.95
+174.75 -38.85
+174.75 -38.75
+174.75 -38.65
+174.75 -38.55
+174.75 -38.45
+174.75 -38.35
+174.75 -38.25
+174.75 -38.15
+174.75 -38.05
+174.75 -37.95
+174.75 -37.85
+174.75 -37.75
+174.75 -37.65
+174.75 -37.55
+174.75 -37.45
+174.75 -37.35
+174.75 -37.25
+174.75 -37.15
+174.75 -37.05
+174.75 -36.95
+174.75 -36.85
+174.75 -36.75
+174.75 -36.65
+174.75 -36.55
+174.75 -36.45
+174.75 -36.35
+174.75 -36.25
+174.75 -36.15
+174.75 -36.05
+174.75 -35.95
+174.75 -35.85
+174.75 -35.75
+174.75 -35.65
+174.75 -35.55
+174.75 -35.45
+174.75 -35.35
+174.75 -35.25
+174.75 -35.15
+174.85 -42.15
+174.85 -42.05
+174.85 -41.95
+174.85 -41.85
+174.85 -41.75
+174.85 -41.65
+174.85 -41.55
+174.85 -41.45
+174.85 -41.35
+174.85 -41.25
+174.85 -41.15
+174.85 -41.05
+174.85 -40.95
+174.85 -40.85
+174.85 -40.75
+174.85 -40.65
+174.85 -40.55
+174.85 -40.45
+174.85 -40.35
+174.85 -40.25
+174.85 -40.15
+174.85 -40.05
+174.85 -39.95
+174.85 -39.85
+174.85 -39.75
+174.85 -39.65
+174.85 -39.55
+174.85 -39.45
+174.85 -39.35
+174.85 -39.25
+174.85 -39.15
+174.85 -39.05
+174.85 -38.95
+174.85 -38.85
+174.85 -38.75
+174.85 -38.65
+174.85 -38.55
+174.85 -38.45
+174.85 -38.35
+174.85 -38.25
+174.85 -38.15
+174.85 -38.05
+174.85 -37.95
+174.85 -37.85
+174.85 -37.75
+174.85 -37.65
+174.85 -37.55
+174.85 -37.45
+174.85 -37.35
+174.85 -37.25
+174.85 -37.15
+174.85 -37.05
+174.85 -36.95
+174.85 -36.85
+174.85 -36.75
+174.85 -36.65
+174.85 -36.55
+174.85 -36.45
+174.85 -36.35
+174.85 -36.25
+174.85 -36.15
+174.85 -36.05
+174.85 -35.95
+174.85 -35.85
+174.85 -35.75
+174.85 -35.65
+174.85 -35.55
+174.85 -35.45
+174.85 -35.35
+174.85 -35.25
+174.85 -35.15
+174.95 -42.05
+174.95 -41.95
+174.95 -41.85
+174.95 -41.75
+174.95 -41.65
+174.95 -41.55
+174.95 -41.45
+174.95 -41.35
+174.95 -41.25
+174.95 -41.15
+174.95 -41.05
+174.95 -40.95
+174.95 -40.85
+174.95 -40.75
+174.95 -40.65
+174.95 -40.55
+174.95 -40.45
+174.95 -40.35
+174.95 -40.25
+174.95 -40.15
+174.95 -40.05
+174.95 -39.95
+174.95 -39.85
+174.95 -39.75
+174.95 -39.65
+174.95 -39.55
+174.95 -39.45
+174.95 -39.35
+174.95 -39.25
+174.95 -39.15
+174.95 -39.05
+174.95 -38.95
+174.95 -38.85
+174.95 -38.75
+174.95 -38.65
+174.95 -38.55
+174.95 -38.45
+174.95 -38.35
+174.95 -38.25
+174.95 -38.15
+174.95 -38.05
+174.95 -37.95
+174.95 -37.85
+174.95 -37.75
+174.95 -37.65
+174.95 -37.55
+174.95 -37.45
+174.95 -37.35
+174.95 -37.25
+174.95 -37.15
+174.95 -37.05
+174.95 -36.95
+174.95 -36.85
+174.95 -36.75
+174.95 -36.65
+174.95 -36.55
+174.95 -36.45
+174.95 -36.35
+174.95 -36.25
+174.95 -36.15
+174.95 -36.05
+174.95 -35.95
+174.95 -35.85
+174.95 -35.75
+174.95 -35.65
+174.95 -35.55
+174.95 -35.45
+174.95 -35.35
+174.95 -35.25
+175.05 -41.95
+175.05 -41.85
+175.05 -41.75
+175.05 -41.65
+175.05 -41.55
+175.05 -41.45
+175.05 -41.35
+175.05 -41.25
+175.05 -41.15
+175.05 -41.05
+175.05 -40.95
+175.05 -40.85
+175.05 -40.75
+175.05 -40.65
+175.05 -40.55
+175.05 -40.45
+175.05 -40.35
+175.05 -40.25
+175.05 -40.15
+175.05 -40.05
+175.05 -39.95
+175.05 -39.85
+175.05 -39.75
+175.05 -39.65
+175.05 -39.55
+175.05 -39.45
+175.05 -39.35
+175.05 -39.25
+175.05 -39.15
+175.05 -39.05
+175.05 -38.95
+175.05 -38.85
+175.05 -38.75
+175.05 -38.65
+175.05 -38.55
+175.05 -38.45
+175.05 -38.35
+175.05 -38.25
+175.05 -38.15
+175.05 -38.05
+175.05 -37.95
+175.05 -37.85
+175.05 -37.75
+175.05 -37.65
+175.05 -37.55
+175.05 -37.45
+175.05 -37.35
+175.05 -37.25
+175.05 -37.15
+175.05 -37.05
+175.05 -36.95
+175.05 -36.85
+175.05 -36.75
+175.05 -36.65
+175.05 -36.55
+175.05 -36.45
+175.05 -36.35
+175.05 -36.25
+175.05 -36.15
+175.05 -36.05
+175.05 -35.95
+175.05 -35.85
+175.05 -35.75
+175.05 -35.65
+175.05 -35.55
+175.05 -35.45
+175.05 -35.35
+175.15 -42.05
+175.15 -41.95
+175.15 -41.85
+175.15 -41.75
+175.15 -41.65
+175.15 -41.55
+175.15 -41.45
+175.15 -41.35
+175.15 -41.25
+175.15 -41.15
+175.15 -41.05
+175.15 -40.95
+175.15 -40.85
+175.15 -40.75
+175.15 -40.65
+175.15 -40.55
+175.15 -40.45
+175.15 -40.35
+175.15 -40.25
+175.15 -40.15
+175.15 -40.05
+175.15 -39.95
+175.15 -39.85
+175.15 -39.75
+175.15 -39.65
+175.15 -39.55
+175.15 -39.45
+175.15 -39.35
+175.15 -39.25
+175.15 -39.15
+175.15 -39.05
+175.15 -38.95
+175.15 -38.85
+175.15 -38.75
+175.15 -38.65
+175.15 -38.55
+175.15 -38.45
+175.15 -38.35
+175.15 -38.25
+175.15 -38.15
+175.15 -38.05
+175.15 -37.95
+175.15 -37.85
+175.15 -37.75
+175.15 -37.65
+175.15 -37.55
+175.15 -37.45
+175.15 -37.35
+175.15 -37.25
+175.15 -37.15
+175.15 -37.05
+175.15 -36.95
+175.15 -36.85
+175.15 -36.75
+175.15 -36.65
+175.15 -36.55
+175.15 -36.45
+175.15 -36.35
+175.15 -36.25
+175.15 -36.15
+175.15 -36.05
+175.15 -35.95
+175.15 -35.85
+175.15 -35.75
+175.15 -35.65
+175.15 -35.55
+175.15 -35.45
+175.25 -42.05
+175.25 -41.95
+175.25 -41.85
+175.25 -41.75
+175.25 -41.65
+175.25 -41.55
+175.25 -41.45
+175.25 -41.35
+175.25 -41.25
+175.25 -41.15
+175.25 -41.05
+175.25 -40.95
+175.25 -40.85
+175.25 -40.75
+175.25 -40.65
+175.25 -40.55
+175.25 -40.45
+175.25 -40.35
+175.25 -40.25
+175.25 -40.15
+175.25 -40.05
+175.25 -39.95
+175.25 -39.85
+175.25 -39.75
+175.25 -39.65
+175.25 -39.55
+175.25 -39.45
+175.25 -39.35
+175.25 -39.25
+175.25 -39.15
+175.25 -39.05
+175.25 -38.95
+175.25 -38.85
+175.25 -38.75
+175.25 -38.65
+175.25 -38.55
+175.25 -38.45
+175.25 -38.35
+175.25 -38.25
+175.25 -38.15
+175.25 -38.05
+175.25 -37.95
+175.25 -37.85
+175.25 -37.75
+175.25 -37.65
+175.25 -37.55
+175.25 -37.45
+175.25 -37.35
+175.25 -37.25
+175.25 -37.15
+175.25 -37.05
+175.25 -36.95
+175.25 -36.85
+175.25 -36.75
+175.25 -36.65
+175.25 -36.55
+175.25 -36.45
+175.25 -36.35
+175.25 -36.25
+175.25 -36.15
+175.25 -36.05
+175.25 -35.95
+175.25 -35.85
+175.25 -35.75
+175.25 -35.65
+175.25 -35.55
+175.35 -42.05
+175.35 -41.95
+175.35 -41.85
+175.35 -41.75
+175.35 -41.65
+175.35 -41.55
+175.35 -41.45
+175.35 -41.35
+175.35 -41.25
+175.35 -41.15
+175.35 -41.05
+175.35 -40.95
+175.35 -40.85
+175.35 -40.75
+175.35 -40.65
+175.35 -40.55
+175.35 -40.45
+175.35 -40.35
+175.35 -40.25
+175.35 -40.15
+175.35 -40.05
+175.35 -39.95
+175.35 -39.85
+175.35 -39.75
+175.35 -39.65
+175.35 -39.55
+175.35 -39.45
+175.35 -39.35
+175.35 -39.25
+175.35 -39.15
+175.35 -39.05
+175.35 -38.95
+175.35 -38.85
+175.35 -38.75
+175.35 -38.65
+175.35 -38.55
+175.35 -38.45
+175.35 -38.35
+175.35 -38.25
+175.35 -38.15
+175.35 -38.05
+175.35 -37.95
+175.35 -37.85
+175.35 -37.75
+175.35 -37.65
+175.35 -37.55
+175.35 -37.45
+175.35 -37.35
+175.35 -37.25
+175.35 -37.15
+175.35 -37.05
+175.35 -36.95
+175.35 -36.85
+175.35 -36.75
+175.35 -36.65
+175.35 -36.55
+175.35 -36.45
+175.35 -36.35
+175.35 -36.25
+175.35 -36.15
+175.35 -36.05
+175.35 -35.95
+175.35 -35.85
+175.35 -35.75
+175.35 -35.65
+175.35 -35.55
+175.45 -42.05
+175.45 -41.95
+175.45 -41.85
+175.45 -41.75
+175.45 -41.65
+175.45 -41.55
+175.45 -41.45
+175.45 -41.35
+175.45 -41.25
+175.45 -41.15
+175.45 -41.05
+175.45 -40.95
+175.45 -40.85
+175.45 -40.75
+175.45 -40.65
+175.45 -40.55
+175.45 -40.45
+175.45 -40.35
+175.45 -40.25
+175.45 -40.15
+175.45 -40.05
+175.45 -39.95
+175.45 -39.85
+175.45 -39.75
+175.45 -39.65
+175.45 -39.55
+175.45 -39.45
+175.45 -39.35
+175.45 -39.25
+175.45 -39.15
+175.45 -39.05
+175.45 -38.95
+175.45 -38.85
+175.45 -38.75
+175.45 -38.65
+175.45 -38.55
+175.45 -38.45
+175.45 -38.35
+175.45 -38.25
+175.45 -38.15
+175.45 -38.05
+175.45 -37.95
+175.45 -37.85
+175.45 -37.75
+175.45 -37.65
+175.45 -37.55
+175.45 -37.45
+175.45 -37.35
+175.45 -37.25
+175.45 -37.15
+175.45 -37.05
+175.45 -36.95
+175.45 -36.85
+175.45 -36.75
+175.45 -36.65
+175.45 -36.55
+175.45 -36.45
+175.45 -36.35
+175.45 -36.25
+175.45 -36.15
+175.45 -36.05
+175.45 -35.95
+175.45 -35.85
+175.45 -35.75
+175.45 -35.65
+175.55 -41.95
+175.55 -41.85
+175.55 -41.75
+175.55 -41.65
+175.55 -41.55
+175.55 -41.45
+175.55 -41.35
+175.55 -41.25
+175.55 -41.15
+175.55 -41.05
+175.55 -40.95
+175.55 -40.85
+175.55 -40.75
+175.55 -40.65
+175.55 -40.55
+175.55 -40.45
+175.55 -40.35
+175.55 -40.25
+175.55 -40.15
+175.55 -40.05
+175.55 -39.95
+175.55 -39.85
+175.55 -39.75
+175.55 -39.65
+175.55 -39.55
+175.55 -39.45
+175.55 -39.35
+175.55 -39.25
+175.55 -39.15
+175.55 -39.05
+175.55 -38.95
+175.55 -38.85
+175.55 -38.75
+175.55 -38.65
+175.55 -38.55
+175.55 -38.45
+175.55 -38.35
+175.55 -38.25
+175.55 -38.15
+175.55 -38.05
+175.55 -37.95
+175.55 -37.85
+175.55 -37.75
+175.55 -37.65
+175.55 -37.55
+175.55 -37.45
+175.55 -37.35
+175.55 -37.25
+175.55 -37.15
+175.55 -37.05
+175.55 -36.95
+175.55 -36.85
+175.55 -36.75
+175.55 -36.65
+175.55 -36.55
+175.55 -36.45
+175.55 -36.35
+175.55 -36.25
+175.55 -36.15
+175.55 -36.05
+175.55 -35.95
+175.55 -35.85
+175.55 -35.75
+175.55 -35.65
+175.65 -41.95
+175.65 -41.85
+175.65 -41.75
+175.65 -41.65
+175.65 -41.55
+175.65 -41.45
+175.65 -41.35
+175.65 -41.25
+175.65 -41.15
+175.65 -41.05
+175.65 -40.95
+175.65 -40.85
+175.65 -40.75
+175.65 -40.65
+175.65 -40.55
+175.65 -40.45
+175.65 -40.35
+175.65 -40.25
+175.65 -40.15
+175.65 -40.05
+175.65 -39.95
+175.65 -39.85
+175.65 -39.75
+175.65 -39.65
+175.65 -39.55
+175.65 -39.45
+175.65 -39.35
+175.65 -39.25
+175.65 -39.15
+175.65 -39.05
+175.65 -38.95
+175.65 -38.85
+175.65 -38.75
+175.65 -38.65
+175.65 -38.55
+175.65 -38.45
+175.65 -38.35
+175.65 -38.25
+175.65 -38.15
+175.65 -38.05
+175.65 -37.95
+175.65 -37.85
+175.65 -37.75
+175.65 -37.65
+175.65 -37.55
+175.65 -37.45
+175.65 -37.35
+175.65 -37.25
+175.65 -37.15
+175.65 -37.05
+175.65 -36.95
+175.65 -36.85
+175.65 -36.75
+175.65 -36.65
+175.65 -36.55
+175.65 -36.45
+175.65 -36.35
+175.65 -36.25
+175.65 -36.15
+175.65 -36.05
+175.65 -35.95
+175.65 -35.85
+175.65 -35.75
+175.65 -35.65
+175.75 -41.95
+175.75 -41.85
+175.75 -41.75
+175.75 -41.65
+175.75 -41.55
+175.75 -41.45
+175.75 -41.35
+175.75 -41.25
+175.75 -41.15
+175.75 -41.05
+175.75 -40.95
+175.75 -40.85
+175.75 -40.75
+175.75 -40.65
+175.75 -40.55
+175.75 -40.45
+175.75 -40.35
+175.75 -40.25
+175.75 -40.15
+175.75 -40.05
+175.75 -39.95
+175.75 -39.85
+175.75 -39.75
+175.75 -39.65
+175.75 -39.55
+175.75 -39.45
+175.75 -39.35
+175.75 -39.25
+175.75 -39.15
+175.75 -39.05
+175.75 -38.95
+175.75 -38.85
+175.75 -38.75
+175.75 -38.65
+175.75 -38.55
+175.75 -38.45
+175.75 -38.35
+175.75 -38.25
+175.75 -38.15
+175.75 -38.05
+175.75 -37.95
+175.75 -37.85
+175.75 -37.75
+175.75 -37.65
+175.75 -37.55
+175.75 -37.45
+175.75 -37.35
+175.75 -37.25
+175.75 -37.15
+175.75 -37.05
+175.75 -36.95
+175.75 -36.85
+175.75 -36.75
+175.75 -36.65
+175.75 -36.55
+175.75 -36.45
+175.75 -36.35
+175.75 -36.25
+175.75 -36.15
+175.75 -36.05
+175.75 -35.95
+175.75 -35.85
+175.75 -35.75
+175.85 -41.85
+175.85 -41.75
+175.85 -41.65
+175.85 -41.55
+175.85 -41.45
+175.85 -41.35
+175.85 -41.25
+175.85 -41.15
+175.85 -41.05
+175.85 -40.95
+175.85 -40.85
+175.85 -40.75
+175.85 -40.65
+175.85 -40.55
+175.85 -40.45
+175.85 -40.35
+175.85 -40.25
+175.85 -40.15
+175.85 -40.05
+175.85 -39.95
+175.85 -39.85
+175.85 -39.75
+175.85 -39.65
+175.85 -39.55
+175.85 -39.45
+175.85 -39.35
+175.85 -39.25
+175.85 -39.15
+175.85 -39.05
+175.85 -38.95
+175.85 -38.85
+175.85 -38.75
+175.85 -38.65
+175.85 -38.55
+175.85 -38.45
+175.85 -38.35
+175.85 -38.25
+175.85 -38.15
+175.85 -38.05
+175.85 -37.95
+175.85 -37.85
+175.85 -37.75
+175.85 -37.65
+175.85 -37.55
+175.85 -37.45
+175.85 -37.35
+175.85 -37.25
+175.85 -37.15
+175.85 -37.05
+175.85 -36.95
+175.85 -36.85
+175.85 -36.75
+175.85 -36.65
+175.85 -36.55
+175.85 -36.45
+175.85 -36.35
+175.85 -36.25
+175.85 -36.15
+175.85 -36.05
+175.85 -35.95
+175.85 -35.85
+175.95 -41.85
+175.95 -41.75
+175.95 -41.65
+175.95 -41.55
+175.95 -41.45
+175.95 -41.35
+175.95 -41.25
+175.95 -41.15
+175.95 -41.05
+175.95 -40.95
+175.95 -40.85
+175.95 -40.75
+175.95 -40.65
+175.95 -40.55
+175.95 -40.45
+175.95 -40.35
+175.95 -40.25
+175.95 -40.15
+175.95 -40.05
+175.95 -39.95
+175.95 -39.85
+175.95 -39.75
+175.95 -39.65
+175.95 -39.55
+175.95 -39.45
+175.95 -39.35
+175.95 -39.25
+175.95 -39.15
+175.95 -39.05
+175.95 -38.95
+175.95 -38.85
+175.95 -38.75
+175.95 -38.65
+175.95 -38.55
+175.95 -38.45
+175.95 -38.35
+175.95 -38.25
+175.95 -38.15
+175.95 -38.05
+175.95 -37.95
+175.95 -37.85
+175.95 -37.75
+175.95 -37.65
+175.95 -37.55
+175.95 -37.45
+175.95 -37.35
+175.95 -37.25
+175.95 -37.15
+175.95 -37.05
+175.95 -36.95
+175.95 -36.85
+175.95 -36.75
+175.95 -36.65
+175.95 -36.55
+175.95 -36.45
+175.95 -36.35
+175.95 -36.25
+175.95 -36.15
+175.95 -36.05
+175.95 -35.95
+176.05 -41.75
+176.05 -41.65
+176.05 -41.55
+176.05 -41.45
+176.05 -41.35
+176.05 -41.25
+176.05 -41.15
+176.05 -41.05
+176.05 -40.95
+176.05 -40.85
+176.05 -40.75
+176.05 -40.65
+176.05 -40.55
+176.05 -40.45
+176.05 -40.35
+176.05 -40.25
+176.05 -40.15
+176.05 -40.05
+176.05 -39.95
+176.05 -39.85
+176.05 -39.75
+176.05 -39.65
+176.05 -39.55
+176.05 -39.45
+176.05 -39.35
+176.05 -39.25
+176.05 -39.15
+176.05 -39.05
+176.05 -38.95
+176.05 -38.85
+176.05 -38.75
+176.05 -38.65
+176.05 -38.55
+176.05 -38.45
+176.05 -38.35
+176.05 -38.25
+176.05 -38.15
+176.05 -38.05
+176.05 -37.95
+176.05 -37.85
+176.05 -37.75
+176.05 -37.65
+176.05 -37.55
+176.05 -37.45
+176.05 -37.35
+176.05 -37.25
+176.05 -37.15
+176.05 -37.05
+176.05 -36.95
+176.05 -36.85
+176.05 -36.75
+176.05 -36.65
+176.05 -36.55
+176.05 -36.45
+176.05 -36.35
+176.05 -36.25
+176.05 -36.15
+176.05 -36.05
+176.15 -41.75
+176.15 -41.65
+176.15 -41.55
+176.15 -41.45
+176.15 -41.35
+176.15 -41.25
+176.15 -41.15
+176.15 -41.05
+176.15 -40.95
+176.15 -40.85
+176.15 -40.75
+176.15 -40.65
+176.15 -40.55
+176.15 -40.45
+176.15 -40.35
+176.15 -40.25
+176.15 -40.15
+176.15 -40.05
+176.15 -39.95
+176.15 -39.85
+176.15 -39.75
+176.15 -39.65
+176.15 -39.55
+176.15 -39.45
+176.15 -39.35
+176.15 -39.25
+176.15 -39.15
+176.15 -39.05
+176.15 -38.95
+176.15 -38.85
+176.15 -38.75
+176.15 -38.65
+176.15 -38.55
+176.15 -38.45
+176.15 -38.35
+176.15 -38.25
+176.15 -38.15
+176.15 -38.05
+176.15 -37.95
+176.15 -37.85
+176.15 -37.75
+176.15 -37.65
+176.15 -37.55
+176.15 -37.45
+176.15 -37.35
+176.15 -37.25
+176.15 -37.15
+176.15 -37.05
+176.15 -36.95
+176.15 -36.85
+176.15 -36.75
+176.15 -36.65
+176.15 -36.55
+176.15 -36.45
+176.15 -36.35
+176.15 -36.25
+176.25 -41.65
+176.25 -41.55
+176.25 -41.45
+176.25 -41.35
+176.25 -41.25
+176.25 -41.15
+176.25 -41.05
+176.25 -40.95
+176.25 -40.85
+176.25 -40.75
+176.25 -40.65
+176.25 -40.55
+176.25 -40.45
+176.25 -40.35
+176.25 -40.25
+176.25 -40.15
+176.25 -40.05
+176.25 -39.95
+176.25 -39.85
+176.25 -39.75
+176.25 -39.65
+176.25 -39.55
+176.25 -39.45
+176.25 -39.35
+176.25 -39.25
+176.25 -39.15
+176.25 -39.05
+176.25 -38.95
+176.25 -38.85
+176.25 -38.75
+176.25 -38.65
+176.25 -38.55
+176.25 -38.45
+176.25 -38.35
+176.25 -38.25
+176.25 -38.15
+176.25 -38.05
+176.25 -37.95
+176.25 -37.85
+176.25 -37.75
+176.25 -37.65
+176.25 -37.55
+176.25 -37.45
+176.25 -37.35
+176.25 -37.25
+176.25 -37.15
+176.25 -37.05
+176.25 -36.95
+176.25 -36.85
+176.25 -36.75
+176.25 -36.65
+176.25 -36.55
+176.25 -36.45
+176.25 -36.35
+176.35 -41.55
+176.35 -41.45
+176.35 -41.35
+176.35 -41.25
+176.35 -41.15
+176.35 -41.05
+176.35 -40.95
+176.35 -40.85
+176.35 -40.75
+176.35 -40.65
+176.35 -40.55
+176.35 -40.45
+176.35 -40.35
+176.35 -40.25
+176.35 -40.15
+176.35 -40.05
+176.35 -39.95
+176.35 -39.85
+176.35 -39.75
+176.35 -39.65
+176.35 -39.55
+176.35 -39.45
+176.35 -39.35
+176.35 -39.25
+176.35 -39.15
+176.35 -39.05
+176.35 -38.95
+176.35 -38.85
+176.35 -38.75
+176.35 -38.65
+176.35 -38.55
+176.35 -38.45
+176.35 -38.35
+176.35 -38.25
+176.35 -38.15
+176.35 -38.05
+176.35 -37.95
+176.35 -37.85
+176.35 -37.75
+176.35 -37.65
+176.35 -37.55
+176.35 -37.45
+176.35 -37.35
+176.35 -37.25
+176.35 -37.15
+176.35 -37.05
+176.35 -36.95
+176.35 -36.85
+176.35 -36.75
+176.35 -36.65
+176.35 -36.55
+176.45 -41.55
+176.45 -41.45
+176.45 -41.35
+176.45 -41.25
+176.45 -41.15
+176.45 -41.05
+176.45 -40.95
+176.45 -40.85
+176.45 -40.75
+176.45 -40.65
+176.45 -40.55
+176.45 -40.45
+176.45 -40.35
+176.45 -40.25
+176.45 -40.15
+176.45 -40.05
+176.45 -39.95
+176.45 -39.85
+176.45 -39.75
+176.45 -39.65
+176.45 -39.55
+176.45 -39.45
+176.45 -39.35
+176.45 -39.25
+176.45 -39.15
+176.45 -39.05
+176.45 -38.95
+176.45 -38.85
+176.45 -38.75
+176.45 -38.65
+176.45 -38.55
+176.45 -38.45
+176.45 -38.35
+176.45 -38.25
+176.45 -38.15
+176.45 -38.05
+176.45 -37.95
+176.45 -37.85
+176.45 -37.75
+176.45 -37.65
+176.45 -37.55
+176.45 -37.45
+176.45 -37.35
+176.45 -37.25
+176.45 -37.15
+176.45 -37.05
+176.45 -36.95
+176.55 -41.45
+176.55 -41.35
+176.55 -41.25
+176.55 -41.15
+176.55 -41.05
+176.55 -40.95
+176.55 -40.85
+176.55 -40.75
+176.55 -40.65
+176.55 -40.55
+176.55 -40.45
+176.55 -40.35
+176.55 -40.25
+176.55 -40.15
+176.55 -40.05
+176.55 -39.95
+176.55 -39.85
+176.55 -39.75
+176.55 -39.65
+176.55 -39.55
+176.55 -39.45
+176.55 -39.35
+176.55 -39.25
+176.55 -39.15
+176.55 -39.05
+176.55 -38.95
+176.55 -38.85
+176.55 -38.75
+176.55 -38.65
+176.55 -38.55
+176.55 -38.45
+176.55 -38.35
+176.55 -38.25
+176.55 -38.15
+176.55 -38.05
+176.55 -37.95
+176.55 -37.85
+176.55 -37.75
+176.55 -37.65
+176.55 -37.55
+176.55 -37.45
+176.55 -37.35
+176.55 -37.25
+176.65 -41.35
+176.65 -41.25
+176.65 -41.15
+176.65 -41.05
+176.65 -40.95
+176.65 -40.85
+176.65 -40.75
+176.65 -40.65
+176.65 -40.55
+176.65 -40.45
+176.65 -40.35
+176.65 -40.25
+176.65 -40.15
+176.65 -40.05
+176.65 -39.95
+176.65 -39.85
+176.65 -39.75
+176.65 -39.65
+176.65 -39.55
+176.65 -39.45
+176.65 -39.35
+176.65 -39.25
+176.65 -39.15
+176.65 -39.05
+176.65 -38.95
+176.65 -38.85
+176.65 -38.75
+176.65 -38.65
+176.65 -38.55
+176.65 -38.45
+176.65 -38.35
+176.65 -38.25
+176.65 -38.15
+176.65 -38.05
+176.65 -37.95
+176.65 -37.85
+176.65 -37.75
+176.65 -37.65
+176.65 -37.55
+176.65 -37.45
+176.65 -37.35
+176.75 -41.25
+176.75 -41.15
+176.75 -41.05
+176.75 -40.95
+176.75 -40.85
+176.75 -40.75
+176.75 -40.65
+176.75 -40.55
+176.75 -40.45
+176.75 -40.35
+176.75 -40.25
+176.75 -40.15
+176.75 -40.05
+176.75 -39.95
+176.75 -39.85
+176.75 -39.75
+176.75 -39.65
+176.75 -39.55
+176.75 -39.45
+176.75 -39.35
+176.75 -39.25
+176.75 -39.15
+176.75 -39.05
+176.75 -38.95
+176.75 -38.85
+176.75 -38.75
+176.75 -38.65
+176.75 -38.55
+176.75 -38.45
+176.75 -38.35
+176.75 -38.25
+176.75 -38.15
+176.75 -38.05
+176.75 -37.95
+176.75 -37.85
+176.75 -37.75
+176.75 -37.65
+176.75 -37.55
+176.75 -37.45
+176.75 -37.35
+176.85 -41.15
+176.85 -41.05
+176.85 -40.95
+176.85 -40.85
+176.85 -40.75
+176.85 -40.65
+176.85 -40.55
+176.85 -40.45
+176.85 -40.35
+176.85 -40.25
+176.85 -40.15
+176.85 -40.05
+176.85 -39.95
+176.85 -39.85
+176.85 -39.75
+176.85 -39.65
+176.85 -39.55
+176.85 -39.45
+176.85 -39.35
+176.85 -39.25
+176.85 -39.15
+176.85 -39.05
+176.85 -38.95
+176.85 -38.85
+176.85 -38.75
+176.85 -38.65
+176.85 -38.55
+176.85 -38.45
+176.85 -38.35
+176.85 -38.25
+176.85 -38.15
+176.85 -38.05
+176.85 -37.95
+176.85 -37.85
+176.85 -37.75
+176.85 -37.65
+176.85 -37.55
+176.85 -37.45
+176.85 -37.35
+176.95 -40.95
+176.95 -40.85
+176.95 -40.75
+176.95 -40.65
+176.95 -40.55
+176.95 -40.45
+176.95 -40.35
+176.95 -40.25
+176.95 -40.15
+176.95 -40.05
+176.95 -39.95
+176.95 -39.85
+176.95 -39.75
+176.95 -39.65
+176.95 -39.55
+176.95 -39.45
+176.95 -39.35
+176.95 -39.25
+176.95 -39.15
+176.95 -39.05
+176.95 -38.95
+176.95 -38.85
+176.95 -38.75
+176.95 -38.65
+176.95 -38.55
+176.95 -38.45
+176.95 -38.35
+176.95 -38.25
+176.95 -38.15
+176.95 -38.05
+176.95 -37.95
+176.95 -37.85
+176.95 -37.75
+176.95 -37.65
+176.95 -37.55
+176.95 -37.45
+177.05 -40.85
+177.05 -40.75
+177.05 -40.65
+177.05 -40.55
+177.05 -40.45
+177.05 -40.35
+177.05 -40.25
+177.05 -40.15
+177.05 -40.05
+177.05 -39.95
+177.05 -39.85
+177.05 -39.75
+177.05 -39.65
+177.05 -39.55
+177.05 -39.45
+177.05 -39.35
+177.05 -39.25
+177.05 -39.15
+177.05 -39.05
+177.05 -38.95
+177.05 -38.85
+177.05 -38.75
+177.05 -38.65
+177.05 -38.55
+177.05 -38.45
+177.05 -38.35
+177.05 -38.25
+177.05 -38.15
+177.05 -38.05
+177.05 -37.95
+177.05 -37.85
+177.05 -37.75
+177.05 -37.65
+177.05 -37.55
+177.05 -37.45
+177.15 -40.65
+177.15 -40.55
+177.15 -40.45
+177.15 -40.35
+177.15 -40.25
+177.15 -40.15
+177.15 -40.05
+177.15 -39.95
+177.15 -39.85
+177.15 -39.75
+177.15 -39.65
+177.15 -39.55
+177.15 -39.45
+177.15 -39.35
+177.15 -39.25
+177.15 -39.15
+177.15 -39.05
+177.15 -38.95
+177.15 -38.85
+177.15 -38.75
+177.15 -38.65
+177.15 -38.55
+177.15 -38.45
+177.15 -38.35
+177.15 -38.25
+177.15 -38.15
+177.15 -38.05
+177.15 -37.95
+177.15 -37.85
+177.15 -37.75
+177.15 -37.65
+177.15 -37.55
+177.15 -37.45
+177.25 -40.55
+177.25 -40.45
+177.25 -40.35
+177.25 -40.25
+177.25 -40.15
+177.25 -40.05
+177.25 -39.95
+177.25 -39.85
+177.25 -39.75
+177.25 -39.65
+177.25 -39.55
+177.25 -39.45
+177.25 -39.35
+177.25 -39.25
+177.25 -39.15
+177.25 -39.05
+177.25 -38.95
+177.25 -38.85
+177.25 -38.75
+177.25 -38.65
+177.25 -38.55
+177.25 -38.45
+177.25 -38.35
+177.25 -38.25
+177.25 -38.15
+177.25 -38.05
+177.25 -37.95
+177.25 -37.85
+177.25 -37.75
+177.25 -37.65
+177.25 -37.55
+177.25 -37.45
+177.25 -37.35
+177.35 -40.35
+177.35 -40.25
+177.35 -40.15
+177.35 -40.05
+177.35 -39.95
+177.35 -39.85
+177.35 -39.75
+177.35 -39.65
+177.35 -39.55
+177.35 -39.45
+177.35 -39.35
+177.35 -39.25
+177.35 -39.15
+177.35 -39.05
+177.35 -38.95
+177.35 -38.85
+177.35 -38.75
+177.35 -38.65
+177.35 -38.55
+177.35 -38.45
+177.35 -38.35
+177.35 -38.25
+177.35 -38.15
+177.35 -38.05
+177.35 -37.95
+177.35 -37.85
+177.35 -37.75
+177.35 -37.65
+177.35 -37.55
+177.35 -37.45
+177.35 -37.35
+177.45 -40.25
+177.45 -40.15
+177.45 -40.05
+177.45 -39.95
+177.45 -39.85
+177.45 -39.75
+177.45 -39.65
+177.45 -39.55
+177.45 -39.45
+177.45 -39.35
+177.45 -39.25
+177.45 -39.15
+177.45 -39.05
+177.45 -38.95
+177.45 -38.85
+177.45 -38.75
+177.45 -38.65
+177.45 -38.55
+177.45 -38.45
+177.45 -38.35
+177.45 -38.25
+177.45 -38.15
+177.45 -38.05
+177.45 -37.95
+177.45 -37.85
+177.45 -37.75
+177.45 -37.65
+177.45 -37.55
+177.45 -37.45
+177.45 -37.35
+177.55 -40.05
+177.55 -39.95
+177.55 -39.85
+177.55 -39.75
+177.55 -39.65
+177.55 -39.55
+177.55 -39.45
+177.55 -39.35
+177.55 -39.25
+177.55 -39.15
+177.55 -39.05
+177.55 -38.95
+177.55 -38.85
+177.55 -38.75
+177.55 -38.65
+177.55 -38.55
+177.55 -38.45
+177.55 -38.35
+177.55 -38.25
+177.55 -38.15
+177.55 -38.05
+177.55 -37.95
+177.55 -37.85
+177.55 -37.75
+177.55 -37.65
+177.55 -37.55
+177.55 -37.45
+177.55 -37.35
+177.55 -37.25
+177.65 -39.95
+177.65 -39.85
+177.65 -39.75
+177.65 -39.65
+177.65 -39.55
+177.65 -39.45
+177.65 -39.35
+177.65 -39.25
+177.65 -39.15
+177.65 -39.05
+177.65 -38.95
+177.65 -38.85
+177.65 -38.75
+177.65 -38.65
+177.65 -38.55
+177.65 -38.45
+177.65 -38.35
+177.65 -38.25
+177.65 -38.15
+177.65 -38.05
+177.65 -37.95
+177.65 -37.85
+177.65 -37.75
+177.65 -37.65
+177.65 -37.55
+177.65 -37.45
+177.65 -37.35
+177.65 -37.25
+177.75 -39.75
+177.75 -39.65
+177.75 -39.55
+177.75 -39.45
+177.75 -39.35
+177.75 -39.25
+177.75 -39.15
+177.75 -39.05
+177.75 -38.95
+177.75 -38.85
+177.75 -38.75
+177.75 -38.65
+177.75 -38.55
+177.75 -38.45
+177.75 -38.35
+177.75 -38.25
+177.75 -38.15
+177.75 -38.05
+177.75 -37.95
+177.75 -37.85
+177.75 -37.75
+177.75 -37.65
+177.75 -37.55
+177.75 -37.45
+177.75 -37.35
+177.75 -37.25
+177.85 -39.65
+177.85 -39.55
+177.85 -39.45
+177.85 -39.35
+177.85 -39.25
+177.85 -39.15
+177.85 -39.05
+177.85 -38.95
+177.85 -38.85
+177.85 -38.75
+177.85 -38.65
+177.85 -38.55
+177.85 -38.45
+177.85 -38.35
+177.85 -38.25
+177.85 -38.15
+177.85 -38.05
+177.85 -37.95
+177.85 -37.85
+177.85 -37.75
+177.85 -37.65
+177.85 -37.55
+177.85 -37.45
+177.85 -37.35
+177.85 -37.25
+177.85 -37.15
+177.95 -39.65
+177.95 -39.55
+177.95 -39.45
+177.95 -39.35
+177.95 -39.25
+177.95 -39.15
+177.95 -39.05
+177.95 -38.95
+177.95 -38.85
+177.95 -38.75
+177.95 -38.65
+177.95 -38.55
+177.95 -38.45
+177.95 -38.35
+177.95 -38.25
+177.95 -38.15
+177.95 -38.05
+177.95 -37.95
+177.95 -37.85
+177.95 -37.75
+177.95 -37.65
+177.95 -37.55
+177.95 -37.45
+177.95 -37.35
+177.95 -37.25
+177.95 -37.15
+178.05 -39.65
+178.05 -39.55
+178.05 -39.45
+178.05 -39.35
+178.05 -39.25
+178.05 -39.15
+178.05 -39.05
+178.05 -38.95
+178.05 -38.85
+178.05 -38.75
+178.05 -38.65
+178.05 -38.55
+178.05 -38.45
+178.05 -38.35
+178.05 -38.25
+178.05 -38.15
+178.05 -38.05
+178.05 -37.95
+178.05 -37.85
+178.05 -37.75
+178.05 -37.65
+178.05 -37.55
+178.05 -37.45
+178.05 -37.35
+178.05 -37.25
+178.05 -37.15
+178.15 -39.65
+178.15 -39.55
+178.15 -39.45
+178.15 -39.35
+178.15 -39.25
+178.15 -39.15
+178.15 -39.05
+178.15 -38.95
+178.15 -38.85
+178.15 -38.75
+178.15 -38.65
+178.15 -38.55
+178.15 -38.45
+178.15 -38.35
+178.15 -38.25
+178.15 -38.15
+178.15 -38.05
+178.15 -37.95
+178.15 -37.85
+178.15 -37.75
+178.15 -37.65
+178.15 -37.55
+178.15 -37.45
+178.15 -37.35
+178.15 -37.25
+178.15 -37.15
+178.15 -37.05
+178.25 -39.65
+178.25 -39.55
+178.25 -39.45
+178.25 -39.35
+178.25 -39.25
+178.25 -39.15
+178.25 -39.05
+178.25 -38.95
+178.25 -38.85
+178.25 -38.75
+178.25 -38.65
+178.25 -38.55
+178.25 -38.45
+178.25 -38.35
+178.25 -38.25
+178.25 -38.15
+178.25 -38.05
+178.25 -37.95
+178.25 -37.85
+178.25 -37.75
+178.25 -37.65
+178.25 -37.55
+178.25 -37.45
+178.25 -37.35
+178.25 -37.25
+178.25 -37.15
+178.35 -39.65
+178.35 -39.55
+178.35 -39.45
+178.35 -39.35
+178.35 -39.25
+178.35 -39.15
+178.35 -39.05
+178.35 -38.95
+178.35 -38.85
+178.35 -38.75
+178.35 -38.65
+178.35 -38.55
+178.35 -38.45
+178.35 -38.35
+178.35 -38.25
+178.35 -38.15
+178.35 -38.05
+178.35 -37.95
+178.35 -37.85
+178.35 -37.75
+178.35 -37.65
+178.35 -37.55
+178.35 -37.45
+178.35 -37.35
+178.35 -37.25
+178.35 -37.15
+178.45 -39.45
+178.45 -39.35
+178.45 -39.25
+178.45 -39.15
+178.45 -39.05
+178.45 -38.95
+178.45 -38.85
+178.45 -38.75
+178.45 -38.65
+178.45 -38.55
+178.45 -38.45
+178.45 -38.35
+178.45 -38.25
+178.45 -38.15
+178.45 -38.05
+178.45 -37.95
+178.45 -37.85
+178.45 -37.75
+178.45 -37.65
+178.45 -37.55
+178.45 -37.45
+178.45 -37.35
+178.45 -37.25
+178.45 -37.15
+178.55 -39.35
+178.55 -39.25
+178.55 -39.15
+178.55 -39.05
+178.55 -38.95
+178.55 -38.85
+178.55 -38.75
+178.55 -38.65
+178.55 -38.55
+178.55 -38.45
+178.55 -38.35
+178.55 -38.25
+178.55 -38.15
+178.55 -38.05
+178.55 -37.95
+178.55 -37.85
+178.55 -37.75
+178.55 -37.65
+178.55 -37.55
+178.55 -37.45
+178.55 -37.35
+178.55 -37.25
+178.65 -38.95
+178.65 -38.85
+178.65 -38.75
+178.65 -38.65
+178.65 -38.55
+178.65 -38.45
+178.65 -38.35
+178.65 -38.25
+178.65 -38.15
+178.65 -38.05
+178.65 -37.95
+178.65 -37.85
+178.65 -37.75
+178.65 -37.65
+178.65 -37.55
+178.65 -37.45
+178.65 -37.35
+178.65 -37.25
+178.75 -38.85
+178.75 -38.75
+178.75 -38.65
+178.75 -38.55
+178.75 -38.45
+178.75 -38.35
+178.75 -38.25
+178.75 -38.15
+178.75 -38.05
+178.75 -37.95
+178.75 -37.85
+178.75 -37.75
+178.75 -37.65
+178.75 -37.55
+178.75 -37.45
+178.75 -37.35
+178.85 -38.75
+178.85 -38.65
+178.85 -38.55
+178.85 -38.45
+178.85 -38.35
+178.85 -38.25
+178.85 -38.15
+178.85 -38.05
+178.85 -37.95
+178.85 -37.85
+178.85 -37.75
+178.85 -37.65
+178.85 -37.55
+178.85 -37.45
+178.85 -37.35
+178.95 -38.45
+178.95 -38.35
+178.95 -38.25
+178.95 -38.15
+178.95 -38.05
+178.95 -37.95
+178.95 -37.85
+178.95 -37.75
+178.95 -37.65
+178.95 -37.55
+178.95 -37.45
+178.95 -37.35
+179.05 -38.05
+179.05 -37.95
+179.05 -37.85
+179.05 -37.75
+179.05 -37.65
+179.05 -37.55
+179.05 -37.45
+179.15 -37.65
+179.15 -37.55
diff --git a/tests/test_bsi.py b/tests/test_bsi.py
new file mode 100644
index 00000000..4673bfc8
--- /dev/null
+++ b/tests/test_bsi.py
@@ -0,0 +1,42 @@
+from datetime import datetime
+import os.path
+import vcr
+from csep.utils.comcat import search
+
+HOST = 'webservices.rm.ingv.it'
+
+
+def get_datadir():
+ root_dir = os.path.dirname(os.path.abspath(__file__))
+ data_dir = os.path.join(root_dir, 'artifacts', 'BSI')
+ return data_dir
+
+
+def test_search():
+ datadir = get_datadir()
+ tape_file = os.path.join(datadir, 'vcr_search.yaml')
+ with vcr.use_cassette(tape_file):
+ # L'Aquila
+ eventlist = search(starttime=datetime(2009, 4, 6, 0, 0, 0),
+ endtime=datetime(2009, 4, 7, 0, 0, 0),
+ minmagnitude=5.5, host=HOST, limit=15000, offset=0)
+ event = eventlist[0]
+ assert event.id == 1895389
+
+
+def test_summary():
+ datadir = get_datadir()
+ tape_file = os.path.join(datadir, 'vcr_summary.yaml')
+ with vcr.use_cassette(tape_file):
+ eventlist = search(starttime=datetime(2009, 4, 6, 0, 0, 0),
+ endtime=datetime(2009, 4, 7, 0, 0, 0),
+ minmagnitude=5.5, host=HOST, limit=15000, offset=0)
+ event = eventlist[0]
+ cmp = '1895389 2009-04-06 01:32:40.400000 (42.342,13.380) 8.3 km M6.1'
+ assert str(event) == cmp
+ assert event.id == 1895389
+ assert event.time == datetime(2009, 4, 6, 1, 32, 40, 400000)
+ assert event.latitude == 42.342
+ assert event.longitude == 13.380
+ assert event.depth == 8.3
+ assert event.magnitude == 6.1
diff --git a/tests/test_csep1_evaluations.py b/tests/test_csep1_evaluations.py
index a733003f..d095e677 100644
--- a/tests/test_csep1_evaluations.py
+++ b/tests/test_csep1_evaluations.py
@@ -21,6 +21,7 @@ def get_datadir():
data_dir = os.path.join(root_dir, 'artifacts', 'example_csep1_forecasts')
return data_dir
+
class TestCSEP1NTestThreeMonthsEEPAS(unittest.TestCase):
def __init__(self, *args, **kwargs):
@@ -61,8 +62,8 @@ def test_ntest_three_months_eepas_model(self):
test_evaluation_dict['event_count_forecast'] = fore.event_count
test_evaluation_dict['event_count'] = cata.event_count
# comparing floats, so we will just map to ndarray and use allclose
- expected = numpy.array([v for k,v in result_dict.items()])
- computed = numpy.array([v for k,v in test_evaluation_dict.items()])
+ expected = numpy.array([v for k, v in result_dict.items()])
+ computed = numpy.array([v for k, v in test_evaluation_dict.items()])
numpy.testing.assert_allclose(expected, computed, rtol=1e-5)
@@ -82,13 +83,13 @@ def _parse_xml_result(self):
xml_result['event_count'] = float(child.find('ns0:eventCount', ns).text)
return xml_result
-class TestGriddedForecastTests(unittest.TestCase):
+class TestGriddedForecastTests(unittest.TestCase):
def test_n_test(self):
- forecast = numpy.zeros((10,10))+0.0015
+ forecast = numpy.zeros((10, 10))+0.0015
forecast = forecast / forecast.size
- observation = numpy.zeros((10,10))
+ observation = numpy.zeros((10, 10))
expected_output = (1.0, 0.9985011244377109)
print('N Test: Running Unit Test')
numpy.testing.assert_allclose(_number_test_ndarray(forecast.sum(), observation.sum()), expected_output)
@@ -116,18 +117,18 @@ def test_t_test(self):
the equations from
"""
- forecast_A = numpy.array([[8, 2], [3, 5]])
- forecast_B = numpy.array([[6, 4], [2, 8]])
+ forecast_a = numpy.array([[8, 2], [3, 5]])
+ forecast_b = numpy.array([[6, 4], [2, 8]])
obs = numpy.array([[5, 8], [4, 2]])
- t_test_expected = {'t_critical': 2.10092204024096,
- 't_statistic': 1.5385261717159382,
+ t_test_expected = {'t_statistic': 1.5385261717159382,
+ 't_critical': 2.10092204024096,
'information_gain': 0.08052612477654024,
'ig_lower': -0.029435677283374914,
'ig_upper': 0.19048792683645538}
-
- print('T Test: Running Unit Test')
- self.assertEqual(_t_test_ndarray(forecast_A, forecast_B, numpy.sum(obs), forecast_A.sum(), forecast_B.sum()), t_test_expected, 'Failed T Test')
+ numpy.testing.assert_allclose(
+ [v for k, v in _t_test_ndarray(forecast_a, forecast_b, numpy.sum(obs), forecast_a.sum(), forecast_b.sum()).items()],
+ [v for k, v in t_test_expected.items()])
if __name__ == '__main__':
diff --git a/tests/test_evaluations.py b/tests/test_evaluations.py
index df6e22e6..c7468528 100644
--- a/tests/test_evaluations.py
+++ b/tests/test_evaluations.py
@@ -2,13 +2,15 @@
import numpy
import unittest
-from csep.core.poisson_evaluations import _simulate_catalog, _poisson_likelihood_test
+import csep.core.poisson_evaluations as poisson
+import csep.core.binomial_evaluations as binary
def get_datadir():
root_dir = os.path.dirname(os.path.abspath(__file__))
data_dir = os.path.join(root_dir, 'artifacts', 'Comcat')
return data_dir
+
class TestPoissonLikelihood(unittest.TestCase):
def __init__(self, *args, **kwargs):
@@ -22,7 +24,7 @@ def __init__(self, *args, **kwargs):
def test_simulate_catalog(self):
# expecting the sampling weights to be [0.25, 0.5, 0.75, 1.0]
- # assuming the random numbers are equal to thhe following:
+ # assuming the random numbers are equal to the following:
random_numbers = numpy.array([[0.5488135, 0.71518937, 0.60276338, 0.54488318]])
num_events = 4
@@ -45,21 +47,21 @@ def test_simulate_catalog(self):
# this is taken from the test likelihood function
sim_fore = numpy.empty(sampling_weights.shape)
- sim_fore = _simulate_catalog(num_events, sampling_weights, sim_fore,
+ sim_fore = poisson._simulate_catalog(num_events, sampling_weights, sim_fore,
random_numbers=self.random_matrix)
# final statement
numpy.testing.assert_allclose(expected_catalog, sim_fore)
# test again to ensure that fill works properply
- sim_fore = _simulate_catalog(num_events, sampling_weights, sim_fore,
+ sim_fore = poisson._simulate_catalog(num_events, sampling_weights, sim_fore,
random_numbers=self.random_matrix)
# final statement
numpy.testing.assert_allclose(expected_catalog, sim_fore)
def test_likelihood(self):
- qs, obs_ll, simulated_ll = _poisson_likelihood_test(self.forecast_data, self.observed_data, num_simulations=1,
+ qs, obs_ll, simulated_ll = poisson._poisson_likelihood_test(self.forecast_data, self.observed_data, num_simulations=1,
random_numbers=self.random_matrix, use_observed_counts=True)
# very basic result to pass "laugh" test
@@ -71,3 +73,47 @@ def test_likelihood(self):
# calculated by hand given the expected data, see explanation in zechar et al., 2010.
numpy.testing.assert_allclose(simulated_ll[0], -7.178053830347945)
+
+class TestBinomialLikelihood(unittest.TestCase):
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+ self.seed = 0
+ numpy.random.seed(self.seed)
+ self.forecast_data = numpy.array([[0.1, 0.3, 0.4], [0.2, 0.1, 0.1]])
+ self.observed_data = numpy.array([[0, 1, 2], [1, 1, 0]])
+ self.random_matrix = numpy.random.rand(1, 9)
+
+ def test_joint_likelihood_calculation(self):
+ bill = binary.binary_joint_log_likelihood_ndarray(self.forecast_data, self.observed_data)
+ numpy.testing.assert_allclose(bill, -6.7197988064)
+
+ def test_simulate_active_cells(self):
+ #With fixed seed we get the same random numbers if we get all the number at once or one by one.
+ #Making sure random number generated by seed 0 match.
+ expected_random_numbers = numpy.array([[0.5488135, 0.71518937, 0.60276338, 0.54488318, 0.4236548, 0.64589411,
+ 0.4375872112626925, 0.8917730007820798, 0.9636627605010293]])
+
+ numpy.testing.assert_allclose(expected_random_numbers, self.random_matrix)
+
+ #We can expect the following catalog, if we get the above random numbers.
+ #We get 4 active cells after 9th random sample.
+ expected_catalog = [0, 0, 1, 1, 1, 1]
+
+ sampling_weights = numpy.cumsum(self.forecast_data.ravel()) / numpy.sum(self.forecast_data)
+ sim_fore = numpy.zeros(sampling_weights.shape)
+ obs_active_cells = len(numpy.unique(numpy.nonzero(self.observed_data.ravel())))
+ #resetting seed again to 0, to make sure _simulate_catalog uses this.
+ seed = 0
+ numpy.random.seed(seed)
+ sim_fore = binary._simulate_catalog(obs_active_cells, sampling_weights, sim_fore)
+ numpy.testing.assert_allclose(expected_catalog, sim_fore)
+
+ def test_binomial_likelihood(self):
+ qs, bill, simulated_ll = binary._binary_likelihood_test(self.forecast_data,self.observed_data, num_simulations=1,seed=0, verbose=True)
+ numpy.testing.assert_allclose(bill, -6.7197988064)
+ numpy.testing.assert_allclose(qs, 1)
+ numpy.testing.assert_allclose(simulated_ll[0], -7.921741654647629)
+
+
+if __name__ == '__main__':
+ unittest.main()
diff --git a/tests/test_forecast.py b/tests/test_forecast.py
index f63d8a3e..7b427586 100644
--- a/tests/test_forecast.py
+++ b/tests/test_forecast.py
@@ -1,14 +1,24 @@
-import os, unittest
+import os
+import unittest
import numpy
from csep import load_catalog_forecast
+
def get_test_catalog_root():
root_dir = os.path.dirname(os.path.abspath(__file__))
data_dir = os.path.join(root_dir, 'artifacts', 'test_ascii_catalogs')
return data_dir
+
class TestCatalogForecastCreation(unittest.TestCase):
+ def test_all_present(self):
+ fname = os.path.join(get_test_catalog_root(), 'all_present.csv')
+ test_fore = load_catalog_forecast(fname)
+ total_event_count = numpy.array([cat.event_count for cat in test_fore]).sum()
+ self.assertEqual(10, test_fore.n_cat)
+ self.assertEqual(10, total_event_count)
+
def test_ascii_load_all_empty(self):
fname = os.path.join(get_test_catalog_root(), 'all_empty.csv')
test_fore = load_catalog_forecast(fname)
@@ -56,5 +66,12 @@ def test_get_event_counts(self):
test_fore = load_catalog_forecast(fname)
numpy.testing.assert_array_equal(numpy.ones(10), test_fore.get_event_counts())
+ def test_multiple_iterations(self):
+ fname = os.path.join(get_test_catalog_root(), 'all_present.csv')
+ test_fore = load_catalog_forecast(fname)
+ ec1 = [cat.event_count for cat in test_fore]
+ ec2 = [cat.event_count for cat in test_fore]
+ numpy.testing.assert_array_equal(ec1, ec2)
+
if __name__ == '__main__':
unittest.main()
diff --git a/tests/test_regions.py b/tests/test_regions.py
index ac5921ec..a1e2cced 100644
--- a/tests/test_regions.py
+++ b/tests/test_regions.py
@@ -3,7 +3,7 @@
import numpy
-from csep.core.regions import italy_csep_region, california_relm_region
+from csep.core.regions import italy_csep_region, california_relm_region, nz_csep_region
def get_italy_region_fname():
root_dir = os.path.dirname(os.path.abspath(__file__))
@@ -15,6 +15,11 @@ def get_california_region_fname():
data_dir = os.path.join(root_dir, 'artifacts', 'regions', 'RELMTestArea.dat')
return data_dir
+def get_nz_region_fname():
+ root_dir = os.path.dirname(os.path.abspath(__file__))
+ data_dir = os.path.join(root_dir, 'artifacts', 'regions', 'NZTestArea.dat')
+ return data_dir
+
class TestItalyRegion(unittest.TestCase):
def __init__(self, *args, **kwargs):
@@ -58,4 +63,26 @@ def test_origins(self):
def test_eq_oper(self):
r = california_relm_region()
- assert self.r == r
\ No newline at end of file
+ assert self.r == r
+
+class TestNZRegion(unittest.TestCase):
+
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+
+ def setUp(self):
+
+ self.from_dat = numpy.loadtxt(get_nz_region_fname())
+ self.num_nodes = len(self.from_dat)
+
+ def test_node_count(self):
+ """ Ensures the node counts are consistent between the two files. """
+ r = nz_csep_region()
+ self.assertEqual(self.num_nodes, r.num_nodes)
+
+
+ def test_origins(self):
+ """ Compares XML file against the simple .dat file containing the region. """
+ r = nz_csep_region()
+ # they dont have to be in the same order, but they need
+ numpy.testing.assert_array_equal(r.midpoints().sort(), self.from_dat.sort())