From 441f2ca3820f3dd8cfce623054f5b07150b2b83a Mon Sep 17 00:00:00 2001 From: Henry Wilde Date: Wed, 15 Jul 2020 00:20:08 +0100 Subject: [PATCH 01/18] Write tests for new matching classes. --- tests/test_matchings.py | 99 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 99 insertions(+) create mode 100644 tests/test_matchings.py diff --git a/tests/test_matchings.py b/tests/test_matchings.py new file mode 100644 index 0000000..c62b9d6 --- /dev/null +++ b/tests/test_matchings.py @@ -0,0 +1,99 @@ +""" Tests for the matching classes. """ + +from hypothesis import given +from hypothesis.strategies import ( + composite, dictionaries, integers, lists, sampled_from, text +) + +from matching import SingleMatching, MultipleMatching +from matching.players import Hospital, Player + + +@composite +def singles(draw, names_from=text(), min_size=2, max_size=5): + """ A custom strategy for generating a matching for `SingleMatching` out of + Player instances. """ + + size = draw(integers(min_value=min_size, max_value=max_size)) + players = [Player(draw(names_from)) for _ in range(size)] + + midpoint = size // 2 + keys, values = players[:midpoint], players[midpoint:] + dictionary = dict(zip(keys, values)) + + return dictionary + + +@composite +def multiples( + draw, + host_names_from=text(), + player_names_from=text(), + min_hosts=2, + max_hosts=5, + min_players=10, + max_players=20, +): + """ A custom strategy for generating a matching for `MultipleMatching` out + of `Hospital` and lists of `Player` instances.""" + + num_hosts = draw(integers(min_value=min_hosts, max_value=max_hosts)) + num_players = draw(integers(min_value=min_players, max_value=max_players)) + + hosts = [ + Hospital(draw(host_names_from), max_players) for _ in range(num_hosts) + ] + players = [Player(draw(player_names_from)) for _ in range(num_players)] + + dictionary = {} + for host in hosts: + matches = draw(lists(sampled_from(players), min_size=0, unique=True)) + dictionary[host] = matches + + return dictionary + + +@given(dictionary=singles()) +def test_single_setitem_none(dictionary): + """ Test that a player key in a `SingleMatching` instance can have its + value set to `None`. """ + + matching = SingleMatching(dictionary) + key = list(dictionary.keys())[0] + + matching[key] = None + assert matching[key] is None + assert key.matching is None + + +@given(dictionary=singles()) +def test_single_setitem_player(dictionary): + """ Test that a player key in a `SingleMatching` instance can have its + value set to another player. """ + + matching = SingleMatching(dictionary) + key = list(dictionary.keys())[0] + val = list(dictionary.values())[-1] + + matching[key] = val + assert matching[key] == val + assert key.matching == val + assert val.matching == key + + +@given(dictionary=multiples()) +def test_multiple_setitem(dictionary): + """ Test that a host player key in a `MultipleMatching` instance can have + its value set to a sublist of the matching's values. """ + + matching = MultipleMatching(dictionary) + host = list(dictionary.keys())[0] + players = list( + {player for players in dictionary.values() for player in players} + )[:-1] + + matching[host] = players + assert matching[host] == players + assert host.matching == players + for player in players: + assert player.matching == host From 165eb936177ae9e8860d50752e7d180db9e99068 Mon Sep 17 00:00:00 2001 From: Henry Wilde Date: Wed, 15 Jul 2020 01:54:29 +0100 Subject: [PATCH 02/18] Write tests for new base class structure. --- tests/base/__init__.py | 0 tests/base/test_game.py | 127 ++++++++++++++++++++++++++++++++++++ tests/base/test_matching.py | 97 +++++++++++++++++++++++++++ tests/base/test_player.py | 114 ++++++++++++++++++++++++++++++++ tests/base/util.py | 22 +++++++ 5 files changed, 360 insertions(+) create mode 100644 tests/base/__init__.py create mode 100644 tests/base/test_game.py create mode 100644 tests/base/test_matching.py create mode 100644 tests/base/test_player.py create mode 100644 tests/base/util.py diff --git a/tests/base/__init__.py b/tests/base/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/tests/base/test_game.py b/tests/base/test_game.py new file mode 100644 index 0000000..2ce10b3 --- /dev/null +++ b/tests/base/test_game.py @@ -0,0 +1,127 @@ +""" Tests for the BaseGame class. """ +import warnings + +import pytest +from hypothesis import given +from hypothesis.strategies import booleans + +from matching import BaseGame, Player +from matching.exceptions import PlayerExcludedWarning, PreferencesChangedWarning + +from .util import player_others + + +class DummyGame(BaseGame): + def solve(self): + pass + + def check_stability(self): + pass + + def check_validity(self): + pass + + +@given(clean=booleans()) +def test_init(clean): + """ Make a BaseGame instance and test it has the correct attributes. """ + + game = DummyGame(clean) + + assert isinstance(game, BaseGame) + assert game.matching is None + assert game.blocking_pairs is None + assert game.clean is clean + + +@given(player_others=player_others()) +def test_remove_player(player_others): + """ Test that a player can be removed from a game and its players. """ + + player, others = player_others + + player.set_prefs(others) + for other in others: + other.set_prefs([player]) + + game = DummyGame() + game.players = [player] + game.others = others + + game._remove_player(player, "players", "others") + assert player not in game.players + assert all(player not in other.prefs for other in game.others) + + +@given(player_others=player_others(), clean=booleans()) +def test_check_inputs_player_prefs_unique(player_others, clean): + """ Test that a game can verify its players have unique preferences. """ + + player, others = player_others + + player.set_prefs(others + others[:1]) + + game = DummyGame(clean) + game.players = [player] + + with warnings.catch_warnings(record=True) as w: + game._check_inputs_player_prefs_unique("players") + + message = w[-1].message + assert isinstance(message, PreferencesChangedWarning) + assert str(message).startswith(player.name) + assert others[0].name in str(message) + if clean: + assert player._pref_names == [o.name for o in others] + + +@given(player_others=player_others(), clean=booleans()) +def test_check_inputs_player_prefs_all_in_party(player_others, clean): + """" Test that a game can verify its players have only got preferences in + the correct party. """ + + player, others = player_others + + outsider = Player("foo") + player.set_prefs([outsider]) + + game = DummyGame(clean) + game.players = [player] + game.others = others + + with warnings.catch_warnings(record=True) as w: + game._check_inputs_player_prefs_all_in_party("players", "others") + + message = w[-1].message + assert isinstance(message, PreferencesChangedWarning) + assert str(message).startswith(player.name) + assert "non-other" in str(message) + assert outsider.name in str(message) + if clean: + assert outsider not in player.prefs + + +@given(player_others=player_others(), clean=booleans()) +def test_check_inputs_player_prefs_nonempty(player_others, clean): + """" Test that a game can verify its players have got nonempty preference + lists. """ + + player, others = player_others + + player.set_prefs(others) + other = others[0] + + game = DummyGame(clean) + game.players = [player] + game.others = [other] + + with warnings.catch_warnings(record=True) as w: + game._check_inputs_player_prefs_nonempty("others", "players") + + message = w[-1].message + assert isinstance(message, PlayerExcludedWarning) + assert str(message).startswith(other.name) + + if clean: + assert other not in game.others + assert player.prefs == others[1:] diff --git a/tests/base/test_matching.py b/tests/base/test_matching.py new file mode 100644 index 0000000..5c1f0f8 --- /dev/null +++ b/tests/base/test_matching.py @@ -0,0 +1,97 @@ +""" Tests for the BaseMatching class. """ + +import pytest +from hypothesis import given +from hypothesis.strategies import dictionaries, text + +from matching import BaseMatching + + +DICTIONARIES = given( + dictionary=dictionaries( + keys=text(), + values=text(), + min_size=1, + max_size=3, + ) +) + + +@DICTIONARIES +def test_init(dictionary): + """ Make a matching and check their attributes are correct. """ + + matching = BaseMatching() + assert matching == {} + + matching = BaseMatching(dictionary) + assert matching == dictionary + + +@DICTIONARIES +def test_repr(dictionary): + """ Check that a matching is represented by a normal dictionary. """ + + matching = BaseMatching() + assert repr(matching) == "{}" + + matching = BaseMatching(dictionary) + assert repr(matching) == str(dictionary) + + +@DICTIONARIES +def test_keys(dictionary): + """ Check a matching can have its `keys` accessed. """ + + matching = BaseMatching() + assert list(matching.keys()) == [] + + matching = BaseMatching(dictionary) + assert list(matching.keys()) == list(dictionary.keys()) + + +@DICTIONARIES +def test_values(dictionary): + """ Check a matching can have its `values` accessed. """ + + matching = BaseMatching() + assert list(matching.values()) == [] + + matching = BaseMatching(dictionary) + assert list(matching.values()) == list(dictionary.values()) + + +@DICTIONARIES +def test_getitem(dictionary): + """ Check that you can access items in a matching correctly. """ + + matching = BaseMatching(dictionary) + for (mkey, mval), (dkey, dval) in zip(matching.items(), dictionary.items()): + assert matching[mkey] == mval + assert (mkey, mval) == (dkey, dval) + + +@DICTIONARIES +def test_setitem_check_player_in_keys(dictionary): + """ Check that a `ValueError` is raised if trying to add a new item to a + matching. """ + + key = list(dictionary.keys())[0] + matching = BaseMatching(dictionary) + assert matching._check_player_in_keys(key) is None + + with pytest.raises(ValueError): + matching._check_player_in_keys(key + "foo") + + +@DICTIONARIES +def test_setitem_check_new_valid_type(dictionary): + """ Check that a `ValueError` is raised if a new match is not one of the + provided types. """ + + val = list(dictionary.values())[0] + matching = BaseMatching(dictionary) + assert matching._check_new_valid_type(val, str) is None + + with pytest.raises(ValueError): + matching._check_new_valid_type(val, float) diff --git a/tests/base/test_player.py b/tests/base/test_player.py new file mode 100644 index 0000000..34887ab --- /dev/null +++ b/tests/base/test_player.py @@ -0,0 +1,114 @@ +""" Tests for the BasePlayer class. """ + +from hypothesis import given +from hypothesis.strategies import text, integers + +from matching import BasePlayer + +from .util import player_others + + +@given(name=text()) +def test_init(name): + """ Make a Player instance and test that their attributes are correct. """ + + player = BasePlayer(name) + assert player.name == name + assert player.prefs == [] + assert player.matching is None + assert player._pref_names == [] + assert player._original_prefs is None + + +@given(name=text()) +def test_repr(name): + """ Test that a Player instance is represented by the string version of + their name. """ + + player = BasePlayer(name) + assert repr(player) == name + + player = BasePlayer(0) + assert repr(player) == str(0) + + +@given(name=text()) +def test_unmatched_message(name): + """ Test that a Player instance can return a message saying they are + unmatched. This is could be a lie. """ + + player = BasePlayer(name) + + message = player.unmatched_message() + assert message.startswith(name) + assert "unmatched" in message + + +@given(player_others=player_others()) +def test_not_in_preferences_message(player_others): + """ Test that a Player instance can return a message saying they are matched + to another player who does not appear in their preferences. This could be a + lie. """ + + player, others = player_others + + other = others.pop() + player.set_prefs(others) + message = player.not_in_preferences_message(other) + assert message.startswith(player.name) + assert str(player.prefs) in message + assert other.name in message + + +@given(player_others=player_others()) +def test_set_prefs(player_others): + """ Test that a Player instance can set its preferences correctly. """ + + player, others = player_others + + player.set_prefs(others) + assert player.prefs == others + assert player._pref_names == [o.name for o in others] + assert player._original_prefs == others + + +@given(player_others=player_others()) +def test_keep_original_prefs(player_others): + """ Test that a Player instance keeps a record of their original preference + list even when their preferences are updated. """ + + player, others = player_others + + player.set_prefs(others) + player.set_prefs([]) + assert player.prefs == [] + assert player._pref_names == [] + assert player._original_prefs == others + + +@given(player_others=player_others()) +def test_forget(player_others): + """ Test that a Player instance can forget another player. """ + + player, others = player_others + player.set_prefs(others) + + for i, other in enumerate(others[:-1]): + player.forget(other) + assert player.prefs == others[i + 1:] + + player.forget(others[-1]) + assert player.prefs == [] + assert player._original_prefs == others + + +@given(player_others=player_others()) +def test_prefers(player_others): + """ Test that a Player instance can compare its preference between two + players. """ + + player, others = player_others + + player.set_prefs(others) + for i, other in enumerate(others[:-1]): + assert player.prefers(other, others[i + 1]) diff --git a/tests/base/util.py b/tests/base/util.py new file mode 100644 index 0000000..d5f45c3 --- /dev/null +++ b/tests/base/util.py @@ -0,0 +1,22 @@ +""" Useful functions for base class tests. """ + +from hypothesis.strategies import composite, text, integers, lists, sampled_from + +from matching import BasePlayer + +@composite +def player_others( + draw, + player_name_from=text(), + other_names_from=text(), + min_size=1, + max_size=10, +): + """ A custom strategy for creating a player and a set of other players, all + of whom are `BasePlayer` instances. """ + + size = draw(integers(min_value=min_size, max_value=max_size)) + player = BasePlayer(draw(player_name_from)) + others = [BasePlayer(draw(other_names_from)) for _ in range(size)] + + return player, others From 3da9ed32457c41d7e7384eaf40cb4fa82ba18b3c Mon Sep 17 00:00:00 2001 From: Henry Wilde Date: Wed, 15 Jul 2020 01:56:18 +0100 Subject: [PATCH 03/18] Clean up old tests. --- tests/players/test_player.py | 63 ------------------ tests/unit/test_game.py | 83 ----------------------- tests/unit/test_matching.py | 126 ----------------------------------- 3 files changed, 272 deletions(-) delete mode 100644 tests/unit/test_game.py delete mode 100644 tests/unit/test_matching.py diff --git a/tests/players/test_player.py b/tests/players/test_player.py index 44a2e2d..5172a4e 100644 --- a/tests/players/test_player.py +++ b/tests/players/test_player.py @@ -6,39 +6,6 @@ from matching import Player -@given(name=text()) -def test_init(name): - """ Make an instance of Player and check their attributes are correct. """ - - player = Player(name) - - assert player.name == name - assert player.prefs is None - assert player._original_prefs is None - assert player.matching is None - - -@given(name=text()) -def test_repr(name): - """ Verify that a Player instance is represented by their name. """ - - player = Player(name) - - assert repr(player) == name - - -@given(name=text(), pref_names=lists(text(), min_size=1)) -def test_set_prefs(name, pref_names): - """ Verify a Player can set its preferences correctly. """ - - player = Player(name) - others = [Player(other) for other in pref_names] - - player.set_prefs(others) - assert player.prefs == others - assert player._original_prefs == others - - @given(name=text(), pref_names=lists(text(), min_size=1)) def test_get_favourite(name, pref_names): """ Check the correct player is returned as the favourite of a player. """ @@ -74,23 +41,6 @@ def test_unmatch(name, pref_names): assert player.matching is None -@given(name=text(), pref_names=lists(text(), min_size=1)) -def test_forget(name, pref_names): - """ Test that a player can forget somebody. """ - - player = Player(name) - others = [Player(other) for other in pref_names] - - player.set_prefs(others) - for i, other in enumerate(others[:-1]): - player.forget(other) - assert player.prefs == others[i + 1 :] - - player.forget(others[-1]) - assert player.prefs == [] - assert player._original_prefs == others - - @given(name=text(), pref_names=lists(text(), min_size=1)) def test_get_successors(name, pref_names): """ Test that the correct successors to another player in a player's @@ -108,19 +58,6 @@ def test_get_successors(name, pref_names): assert player.get_successors() == [] -@given(name=text(), pref_names=lists(text(), min_size=1, unique=True)) -def test_prefers(name, pref_names): - """ Test that a comparison of preference between two other players can be - found for a player. """ - - player = Player(name) - others = [Player(other) for other in pref_names] - - player.set_prefs(others) - for i, other in enumerate(others[:-1]): - assert player.prefers(other, others[i + 1]) - - @given(name=text(), pref_names=lists(text(), min_size=1, unique=True)) def test_check_if_match_unacceptable(name, pref_names): """ Test that the acceptability of a match is caught correctly. """ diff --git a/tests/unit/test_game.py b/tests/unit/test_game.py deleted file mode 100644 index 7fcbbf2..0000000 --- a/tests/unit/test_game.py +++ /dev/null @@ -1,83 +0,0 @@ -""" Tests for the BaseGame class. """ -import warnings - -import pytest -from hypothesis import given -from hypothesis.strategies import booleans, lists, text - -from matching import BaseGame, Player -from matching.exceptions import PreferencesChangedWarning - - -class DummyGame(BaseGame): - def solve(self): - raise NotImplementedError() - - def check_stability(self): - raise NotImplementedError() - - def check_validity(self): - raise NotImplementedError() - - -def test_init(): - """ Test the default parameters makes a valid instance of BaseGame. """ - - match = DummyGame() - - assert isinstance(match, BaseGame) - assert match.matching is None - assert match.blocking_pairs is None - - -@given( - name=text(), - other_names=lists(text(), min_size=1, unique=True), - clean=booleans(), -) -def test_check_inputs_player_prefs_unique(name, other_names, clean): - """ Test that a game can verify its players have unique preferences. """ - - player = Player(name) - others = [Player(other) for other in other_names] - player.set_prefs(others + others[:1]) - - game = DummyGame(clean) - game.players = [player] - - with warnings.catch_warnings(record=True) as w: - game._check_inputs_player_prefs_unique("players") - - message = w[-1].message - assert isinstance(message, PreferencesChangedWarning) - assert str(message).startswith(name) - assert others[0].name in str(message) - if clean: - assert player.pref_names == other_names - - -def test_no_solve(): - """ Verify BaseGame raises a NotImplementedError when calling the `solve` - method. """ - - with pytest.raises(NotImplementedError): - match = DummyGame() - match.solve() - - -def test_no_check_stability(): - """ Verify BaseGame raises a NotImplementedError when calling the - `check_stability` method. """ - - with pytest.raises(NotImplementedError): - match = DummyGame() - match.check_stability() - - -def test_no_check_validity(): - """ Verify BaseGame raises a NotImplementError when calling the - `check_validity` method. """ - - with pytest.raises(NotImplementedError): - match = DummyGame() - match.check_validity() diff --git a/tests/unit/test_matching.py b/tests/unit/test_matching.py deleted file mode 100644 index 827f42e..0000000 --- a/tests/unit/test_matching.py +++ /dev/null @@ -1,126 +0,0 @@ -""" Unit tests for the Matching class. """ - -import pytest - -from matching import Matching, Player - -suitors = [Player("A"), Player("B"), Player("C")] -reviewers = [Player(1), Player(2), Player(3)] - -suitors[0].set_prefs(reviewers) -suitors[1].set_prefs([reviewers[1], reviewers[0], reviewers[2]]) -suitors[2].set_prefs([reviewers[0], reviewers[2], reviewers[1]]) - -reviewers[0].set_prefs([suitors[1], suitors[0], suitors[2]]) -reviewers[1].set_prefs([suitors[1], suitors[0], suitors[2]]) -reviewers[2].set_prefs(suitors) - -dictionary = dict(zip(suitors, reviewers)) - - -def test_init(): - """ Make an instance of the Matching class and check their attributes are - correct. """ - - matching = Matching() - assert matching == {} - - matching = Matching(dictionary) - assert matching == dictionary - - -def test_repr(): - """ Check that a Matching is represented by a normal dictionary. """ - - matching = Matching() - assert repr(matching) == "{}" - - matching = Matching(dictionary) - assert repr(matching) == str(dictionary) - - -def test_keys(): - """ Check a Matching can have its `keys` accessed. """ - - matching = Matching() - assert list(matching.keys()) == [] - - matching = Matching(dictionary) - assert list(matching.keys()) == suitors - - -def test_values(): - """ Check a Matching can have its `values` accessed. """ - - matching = Matching() - assert list(matching.values()) == [] - - matching = Matching(dictionary) - assert list(matching.values()) == reviewers - - -def test_getitem(): - """ Check that you can access items in a Matching correctly. """ - - matching = Matching(dictionary) - for key, val in matching.items(): - assert matching[key] == val - - -def test_setitem_key_error(): - """ Check that a ValueError is raised if trying to add a new item to a - Matching. """ - - matching = Matching(dictionary) - - with pytest.raises(ValueError): - matching["foo"] = "bar" - - -def test_setitem_single(): - """ Check that a key in Matching can have its value changed to another - Player instance. """ - - matching = Matching(dictionary) - suitor, reviewer = suitors[0], reviewers[-1] - - matching[suitor] = reviewer - assert matching[suitor] == reviewer - assert suitor.matching == reviewer - assert reviewer.matching == suitor - - -def test_setitem_none(): - """ Check can set item in Matching to be None. """ - - matching = Matching(dictionary) - suitor = suitors[0] - - matching[suitor] = None - assert matching[suitor] is None - assert suitor.matching is None - - -def test_setitem_multiple(): - """ Check can set item in Matching to be a group of Player instances. """ - - matching = Matching(dictionary) - suitor = suitors[0] - new_match = reviewers[:-1] - - matching[suitor] = new_match - assert set(matching[suitor]) == set(new_match) - for rev in new_match: - assert rev.matching == suitor - - -def test_setitem_val_error(): - """ Check that a ValueError is raised if trying to set an item with some - illegal new matching. """ - - matching = Matching(dictionary) - suitor = suitors[0] - new_match = [1, 2, 3] - - with pytest.raises(ValueError): - matching[suitor] = new_match From c09bca768641c38fe57ddd98ec6787682c988948 Mon Sep 17 00:00:00 2001 From: Henry Wilde Date: Wed, 15 Jul 2020 01:57:39 +0100 Subject: [PATCH 04/18] Implement base classes for players and matchings. --- src/matching/__init__.py | 17 +- src/matching/base.py | 260 +++++++++++++++++++++++++++ src/matching/game.py | 107 ----------- src/matching/matching.py | 63 ------- src/matching/matchings.py | 60 +++++++ src/matching/players/__init__.py | 3 +- src/matching/{ => players}/player.py | 49 +---- 7 files changed, 338 insertions(+), 221 deletions(-) create mode 100644 src/matching/base.py delete mode 100644 src/matching/game.py delete mode 100644 src/matching/matching.py create mode 100644 src/matching/matchings.py rename src/matching/{ => players}/player.py (58%) diff --git a/src/matching/__init__.py b/src/matching/__init__.py index 58b67de..8464834 100644 --- a/src/matching/__init__.py +++ b/src/matching/__init__.py @@ -7,9 +7,18 @@ warnings.simplefilter("always") -from .game import BaseGame -from .matching import Matching -from .player import Player +from .base import BaseGame, BaseMatching, BasePlayer +from .matchings import MultipleMatching, SingleMatching +from .players import Player from .version import __version__ -__all__ = [BaseGame, Matching, Player, __version__] +__all__ = [ + "BaseGame", + "BaseMatching", + "BasePlayer", + "Matching", + "MultipleMatching", + "Player", + "SingleMatching", + "__version__", +] diff --git a/src/matching/base.py b/src/matching/base.py new file mode 100644 index 0000000..a161e8c --- /dev/null +++ b/src/matching/base.py @@ -0,0 +1,260 @@ +""" Abstract base classes for inheritance. """ +import abc +import warnings + +from matching.exceptions import PlayerExcludedWarning, PreferencesChangedWarning + + +class BasePlayer: + """ An abstract base class to represent a player within a matching game. + + Parameters + ---------- + name : object + An identifier. This should be unique and descriptive. + + Attributes + ---------- + prefs : List[BasePlayer] + The player's preferences. Defaults to ``None`` and is updated using the + ``set_prefs`` method. + matching : Optional[BasePlayer] + The current match of the player. ``None`` if not currently matched. + _pref_names : Optional[List] + A list of the names in ``prefs``. Updates with ``prefs`` via + ``set_prefs`` method. + _original_prefs : Optional[List[BasePlayer]] + The original set of player preferences. Defaults to ``None`` and does + not update after the first ``set_prefs`` method call. + """ + + def __init__(self, name): + + self.name = name + self.prefs = [] + self.matching = None + + self._pref_names = [] + self._original_prefs = None + + def __repr__(self): + + return str(self.name) + + def unmatched_message(self): + + return f"{self} is unmatched." + + def not_in_preferences_message(self, other): + + return ( + f"{self} is matched to {other} but they do not appear in their " + f"preference list: {self.prefs}." + ) + + def set_prefs(self, players): + """ Set the player's preferences to be a list of players. """ + + self.prefs = players + self._pref_names = [player.name for player in players] + + if self._original_prefs is None: + self._original_prefs = players[:] + + def forget(self, other): + """ Forget another player by removing them from the player's preference + list. """ + + prefs = self.prefs[:] + prefs.remove(other) + self.prefs = prefs + + def prefers(self, player, other): + """ Determines whether the player prefers a player over some other + player. """ + + prefs = self._original_prefs + return prefs.index(player) < prefs.index(other) + + @abc.abstractmethod + def get_favourite(self): + """ A placeholder function for getting the player's favourite, feasible + player. """ + + @abc.abstractmethod + def match(self, other): + """ A placeholder function for assigning the player to be matched to + some other player. """ + + @abc.abstractmethod + def unmatch(self, other): + """ A placeholder function for unassigning the player from its match + with some other player. """ + + @abc.abstractmethod + def get_successors(self): + """ A placeholder function for getting the logically feasible + 'successors' of the player. """ + + @abc.abstractmethod + def check_if_match_is_unacceptable(self): + """ A placeholder for chacking the acceptability of the current + match(es) of the player. """ + + +class BaseGame(metaclass=abc.ABCMeta): + """ An abstract base class for facilitating various matching games. + + Parameters + ---------- + clean + Defaults to :code:`False`. If :code:`True`, when passing a set of + players to create a game instance, they will be automatically cleaned. + + Attributes + ---------- + matching + After solving the game, a :code:`Matching` object is found here. + Otherwise, :code:`None`. + blocking_pairs + After checking the stability of the game instance, a list of any pairs + that block the stability of the matching is found here. Otherwise, + :code:`None`. + """ + + def __init__(self, clean=False): + + self.matching = None + self.blocking_pairs = None + self.clean = clean + + def _remove_player(self, player, player_party, other_party): + """ Remove a player from the game instance as well as any relevant + player preference lists. """ + + party = vars(self)[player_party][:] + party.remove(player) + vars(self)[player_party].remove(player) + for other in vars(self)[other_party]: + if player in other.prefs: + other.forget(player) + + def _check_inputs_player_prefs_unique(self, party): + """ Check that each player in :code:`party` has not ranked another + player more than once. If so, and :code:`clean` is :code:`True`, then + take the first instance they appear in the preference list. """ + + for player in vars(self)[party]: + unique_prefs = [] + for other in player.prefs: + if other not in unique_prefs: + unique_prefs.append(other) + else: + warnings.warn( + PreferencesChangedWarning( + f"{player} has ranked {other} multiple times." + ) + ) + + if self.clean: + player.set_prefs(unique_prefs) + + def _check_inputs_player_prefs_all_in_party(self, party, other_party): + """ Check that each player in :code:`party` has ranked only players in + :code:`other_party`. If :code:`clean`, then forget any extra + preferences. """ + + players = vars(self)[party] + others = vars(self)[other_party] + for player in players: + + for other in player.prefs: + if other not in others: + warnings.warn( + PreferencesChangedWarning( + f"{player} has ranked a non-{other_party[:-1]}: " + f"{other}." + ) + ) + if self.clean: + player.forget(other) + + def _check_inputs_player_prefs_nonempty(self, party, other_party): + """ Make sure that each player in :code:`party` has a nonempty + preference list of players in :code:`other_party`. If :code:`clean`, + remove any such player. """ + + for player in vars(self)[party]: + + if not player.prefs: + warnings.warn( + PlayerExcludedWarning( + f"{player} has an empty preference list." + ) + ) + if self.clean: + self._remove_player(player, party, other_party) + + @abc.abstractmethod + def solve(self): + """ Placeholder for solving the given matching game. """ + + @abc.abstractmethod + def check_stability(self): + """ Placeholder for checking the stability of the current matching. """ + + @abc.abstractmethod + def check_validity(self): + """ Placeholder for checking the validity of the current matching. """ + + +class BaseMatching(dict, metaclass=abc.ABCMeta): + """ An abstract base class for the storing and updating of a matching. + + Attributes + ---------- + dictionary : dict or None + If not ``None``, a dictionary mapping a ``Player`` to one of: ``None``, + a single ``Player`` or a list of ``Player`` instances. + """ + + def __init__(self, dictionary=None): + + self._data = {} + if dictionary is not None: + self._data.update(dictionary) + + super().__init__(self._data) + + def __repr__(self): + + return repr(self._data) + + def keys(self): + + return self._data.keys() + + def values(self): + + return self._data.values() + + def __getitem__(self, player): + + return self._data[player] + + @abc.abstractmethod + def __setitem__(self, player, new_match): + """ A placeholder function for how to update the matching. """ + + def _check_player_in_keys(self, player): + """ Raise an error if :code:`player` is not in the dictionary. """ + + if player not in self._data.keys(): + raise ValueError(f"{player} is not a key in this matching.") + + def _check_new_valid_type(self, new, types): + """ Raise an error is :code:`new` is not an instance of one of + :code:`types`. """ + + if not isinstance(new, types): + raise ValueError(f"{new} is not one of {types} and is not valid.") diff --git a/src/matching/game.py b/src/matching/game.py deleted file mode 100644 index 7f75b7c..0000000 --- a/src/matching/game.py +++ /dev/null @@ -1,107 +0,0 @@ -""" The base game class for facilitating and solving matching games. """ -import abc -import warnings - -from matching.exceptions import PlayerExcludedWarning, PreferencesChangedWarning - - -class BaseGame(metaclass=abc.ABCMeta): - """ An abstract base class for facilitating various matching games. - - Attributes - ---------- - matching : None - Initialised to be :code:`None`. After solving the game, - a :code:`Matching` object is found here. - blocking_pairs : None - Initialised to be :code:`None`. After solving and checking the stability - of the game instance, a list of any pairs that block the stability of - the matching. - clean : bool - Defaults to :code:`False`. When passing a set of players to create a - game instance, this allows for the automatic cleaning of the players. - """ - - def __init__(self, clean=False): - - self.matching = None - self.blocking_pairs = None - self.clean = clean - - def _remove_player(self, player, player_party, other_party): - """ Remove a player from the game and any relevant preference lists. """ - - party = vars(self)[player_party][:] - party.remove(player) - vars(self)[player_party].remove(player) - for other in vars(self)[other_party]: - if player in other.prefs: - other.forget(player) - - def _check_inputs_player_prefs_unique(self, party): - """ Check that each player in :code:`party` has not ranked another - player more than once. If so, and :code:`clean` is :code:`True`, then - take the first instance they appear in the preference list. """ - - for player in vars(self)[party]: - unique_prefs = [] - for other in player.prefs: - if other not in unique_prefs: - unique_prefs.append(other) - else: - warnings.warn( - PreferencesChangedWarning( - f"{player} has ranked {other} multiple times." - ) - ) - - if self.clean: - player.set_prefs(unique_prefs) - - def _check_inputs_player_prefs_all_in_party(self, party, other_party): - """ Check that each player in :code:`party` has ranked only players in - :code:`other_party`. If :code:`clean`, then forget any extra - preferences. """ - - players = vars(self)[party] - others = vars(self)[other_party] - for player in players: - - for other in player.prefs: - if other not in others: - warnings.warn( - PreferencesChangedWarning( - f"{player} has ranked a non-{other_party[:-1]}: " - f"{other}." - ) - ) - if self.clean: - player.forget(other) - - def _check_inputs_player_prefs_nonempty(self, party, other_party): - """ Make sure that each player in :code:`party` has a nonempty - preference list of players in :code:`other_party`. If :code:`clean`, - remove any such player. """ - - for player in vars(self)[party]: - - if not player.prefs: - warnings.warn( - PlayerExcludedWarning( - f"{player} has an empty preference list." - ) - ) - if self.clean: - self._remove_player(player, party, other_party) - - @abc.abstractmethod - def solve(self): - """ Placeholder for solving the given matching game. """ - - @abc.abstractmethod - def check_stability(self): - """ Placeholder for checking the stability of the current matching. """ - - @abc.abstractmethod - def check_validity(self): - """ Placeholder for checking the validity of the current matching. """ diff --git a/src/matching/matching.py b/src/matching/matching.py deleted file mode 100644 index 0ade714..0000000 --- a/src/matching/matching.py +++ /dev/null @@ -1,63 +0,0 @@ -""" A dictionary-like object for matchings. """ - -from .player import Player - - -class Matching(dict): - """ A class to store, and allow for the easy updating of, matchings found by - a game solver. - - Attributes - ---------- - dictionary : dict or None - If not ``None``, a dictionary mapping a ``Player`` to one of: ``None``, - a single ``Player`` or a list of ``Player`` instances. - """ - - def __init__(self, dictionary=None): - - self.__data = {} - if dictionary is not None: - self.__data.update(dictionary) - - super().__init__(self.__data) - - def __repr__(self): - - return repr(self.__data) - - def __getitem__(self, player): - - return self.__data[player] - - def __setitem__(self, player, new_match): - - if player not in self.__data.keys(): - raise ValueError(f"{player} is not a key in this matching.") - - if isinstance(new_match, Player): - new_match.matching = player - player.matching = new_match - - elif new_match is None: - player.matching = new_match - - elif isinstance(new_match, (list, tuple)) and all( - [isinstance(new, Player) for new in new_match] - ): - player.matching = new_match - for new in new_match: - new.matching = player - - else: - raise ValueError(f"{new_match} is not a valid match.") - - self.__data[player] = new_match - - def keys(self): - - return self.__data.keys() - - def values(self): - - return self.__data.values() diff --git a/src/matching/matchings.py b/src/matching/matchings.py new file mode 100644 index 0000000..0e06b66 --- /dev/null +++ b/src/matching/matchings.py @@ -0,0 +1,60 @@ +""" A collection of dictionary-like objects for storing matchings. """ + +from matching.players import Player +from matching import BaseMatching + + +class SingleMatching(BaseMatching): + """ A dictionary-like object for storing and updating a matching with + singular matches such as those in an instance of SM or SR. + + Parameters + ---------- + dictionary + The dictionary of matches. Made up of :code:`Player, Optional[Player]` + key, value pairs. + """ + + def __init__(self, dictionary): + + super().__init__(dictionary) + + def __setitem__(self, player, new): + + self._check_player_in_keys(player) + self._check_new_valid_type(new, (type(None), Player)) + + player.matching = new + if isinstance(new, Player): + new.matching = player + + self._data[player] = new + + +class MultipleMatching(BaseMatching): + """ A dictionary-like object for storing and updating a matching with + multiple matches such as those in an instance of HR or SA. + + Parameters + ---------- + dictionary + The dictionary of matches. Made up of :code:`Hospital, List[Player]` + key, value pairs. + """ + + def __init__(self, dictionary): + + super().__init__(dictionary) + + def __setitem__(self, player, new): + + self._check_player_in_keys(player) + self._check_new_valid_type(new, (list, tuple)) + for other in new: + self._check_new_valid_type(other, Player) + + player.matching = new + for other in new: + other.matching = player + + self._data[player] = new diff --git a/src/matching/players/__init__.py b/src/matching/players/__init__.py index e5e5eb2..609980b 100644 --- a/src/matching/players/__init__.py +++ b/src/matching/players/__init__.py @@ -1,7 +1,8 @@ """ Top-level imports for the `matching.players` subpackage. """ from .hospital import Hospital +from .player import Player from .project import Project from .supervisor import Supervisor -__all__ = ["Hospital", "Project", "Supervisor"] +__all__ = ["Hospital", "Player", "Project", "Supervisor"] diff --git a/src/matching/player.py b/src/matching/players/player.py similarity index 58% rename from src/matching/player.py rename to src/matching/players/player.py index 1ab4d32..f27af83 100644 --- a/src/matching/player.py +++ b/src/matching/players/player.py @@ -1,7 +1,9 @@ """ The base Player class for use in various games. """ +from matching import BasePlayer -class Player: + +class Player(BasePlayer): """ A class to represent a player within the matching game. Parameters @@ -23,36 +25,6 @@ class Player: The original set of player preferences. """ - def __init__(self, name): - - self.name = name - self.prefs = None - self.pref_names = None - self.matching = None - self._original_prefs = None - - def __repr__(self): - - return str(self.name) - - def unmatched_message(self): - - return f"{self} is unmatched." - - def not_in_preferences_message(self, other): - - return ( - f"{self} is matched to {other} but they do not appear in their " - f"preference list: {self.prefs}." - ) - - def set_prefs(self, players): - """ Set the player's preferences to be a list of players. """ - - self.prefs = players - self.pref_names = [player.name for player in players] - self._original_prefs = players[:] - def get_favourite(self): """ Get the player's favourite player. """ @@ -68,27 +40,12 @@ def unmatch(self): self.matching = None - def forget(self, other): - """ Forget another player by removing them from the player's preference - list. """ - - prefs = self.prefs[:] - prefs.remove(other) - self.prefs = prefs - def get_successors(self): """ Get all the successors to the current match of the player. """ idx = self.prefs.index(self.matching) return self.prefs[idx + 1 :] - def prefers(self, player, other): - """ Determines whether the player prefers a player over some other - player. """ - - prefs = self._original_prefs - return prefs.index(player) < prefs.index(other) - def check_if_match_is_unacceptable(self, unmatched_okay=False): """ Check the acceptability of the current match, with the stipulation that being unmatched is okay (or not). """ From b30330f06b23d84f8c39db2936bf694526df87b6 Mon Sep 17 00:00:00 2001 From: Henry Wilde Date: Wed, 15 Jul 2020 01:58:07 +0100 Subject: [PATCH 05/18] Add compatability to games and hospital classes. --- src/matching/games/hospital_resident.py | 4 ++-- src/matching/games/stable_marriage.py | 4 ++-- src/matching/games/stable_roommates.py | 4 ++-- src/matching/games/student_allocation.py | 6 +++--- src/matching/players/hospital.py | 4 ++-- 5 files changed, 11 insertions(+), 11 deletions(-) diff --git a/src/matching/games/hospital_resident.py b/src/matching/games/hospital_resident.py index 6b0f16c..1114592 100644 --- a/src/matching/games/hospital_resident.py +++ b/src/matching/games/hospital_resident.py @@ -2,7 +2,7 @@ import copy import warnings -from matching import BaseGame, Matching +from matching import BaseGame, MultipleMatching from matching import Player as Resident from matching.algorithms import hospital_resident from matching.exceptions import ( @@ -84,7 +84,7 @@ def solve(self, optimal="resident"): """ Solve the instance of HR using either the resident- or hospital-oriented algorithm. Return the matching. """ - self.matching = Matching( + self.matching = MultipleMatching( hospital_resident(self.residents, self.hospitals, optimal) ) return self.matching diff --git a/src/matching/games/stable_marriage.py b/src/matching/games/stable_marriage.py index b951db3..2081f1d 100644 --- a/src/matching/games/stable_marriage.py +++ b/src/matching/games/stable_marriage.py @@ -2,7 +2,7 @@ import copy -from matching import BaseGame, Matching, Player +from matching import BaseGame, SingleMatching, Player from matching.algorithms import stable_marriage from matching.exceptions import MatchingError @@ -52,7 +52,7 @@ def solve(self, optimal="suitor"): """ Solve the instance of SM using either the suitor- or reviewer-oriented Gale-Shapley algorithm. Return the matching. """ - self.matching = Matching( + self.matching = SingleMatching( stable_marriage(self.suitors, self.reviewers, optimal) ) return self.matching diff --git a/src/matching/games/stable_roommates.py b/src/matching/games/stable_roommates.py index 94e9055..2c7c631 100644 --- a/src/matching/games/stable_roommates.py +++ b/src/matching/games/stable_roommates.py @@ -2,7 +2,7 @@ import copy -from matching import BaseGame, Matching, Player +from matching import BaseGame, SingleMatching, Player from matching.algorithms import stable_roommates from matching.exceptions import MatchingError @@ -43,7 +43,7 @@ def solve(self): """ Solve the instance of SR using Irving's algorithm. Return the matching. """ - self.matching = Matching(stable_roommates(self.players)) + self.matching = SingleMatching(stable_roommates(self.players)) return self.matching def check_validity(self): diff --git a/src/matching/games/student_allocation.py b/src/matching/games/student_allocation.py index 6547bda..d3f319b 100644 --- a/src/matching/games/student_allocation.py +++ b/src/matching/games/student_allocation.py @@ -1,8 +1,8 @@ -""" The SA solver and algorithm. """ +""" The SA game class and supporting functions. """ import copy import warnings -from matching import Matching +from matching import MultipleMatching from matching import Player as Student from matching.algorithms import student_allocation from matching.exceptions import ( @@ -122,7 +122,7 @@ def solve(self, optimal="student"): """ Solve the instance of SA using either the student- or supervisor-optimal algorithm. """ - self.matching = Matching( + self.matching = MultipleMatching( student_allocation( self.students, self.projects, self.supervisors, optimal ) diff --git a/src/matching/players/hospital.py b/src/matching/players/hospital.py index c3907ee..68e04e2 100644 --- a/src/matching/players/hospital.py +++ b/src/matching/players/hospital.py @@ -1,9 +1,9 @@ """ The Hospital class for use in instances of HR. """ -from matching import Player +from matching import BasePlayer -class Hospital(Player): +class Hospital(BasePlayer): """ A class to represent a hospital in an instance of HR. Also used as a parent class to ``Project`` and ``Supervisor``. From 953cdd4fb2f01f70ef800b2699e75eba4be99d16 Mon Sep 17 00:00:00 2001 From: Henry Wilde Date: Wed, 15 Jul 2020 02:05:09 +0100 Subject: [PATCH 06/18] Update game class tests. --- tests/hospital_resident/test_solver.py | 14 +++++++------- tests/stable_marriage/test_solver.py | 14 +++++++------- tests/stable_roommates/test_solver.py | 10 +++++----- tests/student_allocation/test_solver.py | 16 ++++++++-------- 4 files changed, 27 insertions(+), 27 deletions(-) diff --git a/tests/hospital_resident/test_solver.py b/tests/hospital_resident/test_solver.py index 1444381..6c985c7 100644 --- a/tests/hospital_resident/test_solver.py +++ b/tests/hospital_resident/test_solver.py @@ -3,7 +3,7 @@ import pytest -from matching import Matching +from matching import MultipleMatching from matching import Player as Resident from matching.exceptions import ( MatchingError, @@ -27,11 +27,11 @@ def test_init(resident_names, hospital_names, capacities, seed, clean): for resident, game_resident in zip(residents, game.residents): assert resident.name == game_resident.name - assert resident.pref_names == game_resident.pref_names + assert resident._pref_names == game_resident._pref_names for hospital, game_hospital in zip(hospitals, game.hospitals): assert hospital.name == game_hospital.name - assert hospital.pref_names == game_hospital.pref_names + assert hospital._pref_names == game_hospital._pref_names assert hospital.capacity == game_hospital.capacity assert all([resident.matching is None for resident in game.residents]) @@ -57,11 +57,11 @@ def test_create_from_dictionaries( ) for resident in game.residents: - assert resident.pref_names == resident_prefs[resident.name] + assert resident._pref_names == resident_prefs[resident.name] assert resident.matching is None for hospital in game.hospitals: - assert hospital.pref_names == hospital_prefs[hospital.name] + assert hospital._pref_names == hospital_prefs[hospital.name] assert hospital.capacity == capacities_[hospital.name] assert hospital.matching == [] @@ -272,13 +272,13 @@ def test_solve(resident_names, hospital_names, capacities, seed, clean): ) matching = game.solve(optimal) - assert isinstance(matching, Matching) + assert isinstance(matching, MultipleMatching) hospitals = sorted(hospitals, key=lambda h: h.name) matching_keys = sorted(matching.keys(), key=lambda k: k.name) for game_hospital, hospital in zip(matching_keys, hospitals): assert game_hospital.name == hospital.name - assert game_hospital.pref_names == hospital.pref_names + assert game_hospital._pref_names == hospital._pref_names assert game_hospital.capacity == hospital.capacity matched_residents = [ diff --git a/tests/stable_marriage/test_solver.py b/tests/stable_marriage/test_solver.py index c3fa972..e06ad82 100644 --- a/tests/stable_marriage/test_solver.py +++ b/tests/stable_marriage/test_solver.py @@ -1,7 +1,7 @@ """ Unit tests for the SM solver. """ import pytest -from matching import Matching +from matching import SingleMatching from matching.exceptions import MatchingError from matching.games import StableMarriage @@ -20,7 +20,7 @@ def test_init(player_names, seed): suitors + reviewers, game.suitors + game.reviewers ): assert player.name == game_player.name - assert player.pref_names == game_player.pref_names + assert player._pref_names == game_player._pref_names assert all( [player.matching is None for player in game.suitors + game.reviewers] @@ -37,11 +37,11 @@ def test_create_from_dictionaries(player_names, seed): game = StableMarriage.create_from_dictionaries(suitor_prefs, reviewer_prefs) for suitor in game.suitors: - assert suitor_prefs[suitor.name] == suitor.pref_names + assert suitor_prefs[suitor.name] == suitor._pref_names assert suitor.matching is None for reviewer in game.reviewers: - assert reviewer_prefs[reviewer.name] == reviewer.pref_names + assert reviewer_prefs[reviewer.name] == reviewer._pref_names assert reviewer.matching is None assert game.matching is None @@ -90,7 +90,7 @@ def test_solve(player_names, seed): game = StableMarriage(suitors, reviewers) matching = game.solve(optimal) - assert isinstance(matching, Matching) + assert isinstance(matching, SingleMatching) suitors = sorted(suitors, key=lambda s: s.name) reviewers = sorted(reviewers, key=lambda r: r.name) @@ -100,11 +100,11 @@ def test_solve(player_names, seed): for game_suitor, suitor in zip(matching_keys, suitors): assert game_suitor.name == suitor.name - assert game_suitor.pref_names == suitor.pref_names + assert game_suitor._pref_names == suitor._pref_names for game_reviewer, reviewer in zip(matching_values, reviewers): assert game_reviewer.name == reviewer.name - assert game_reviewer.pref_names == reviewer.pref_names + assert game_reviewer._pref_names == reviewer._pref_names @STABLE_MARRIAGE diff --git a/tests/stable_roommates/test_solver.py b/tests/stable_roommates/test_solver.py index aec2a31..e6abb2d 100644 --- a/tests/stable_roommates/test_solver.py +++ b/tests/stable_roommates/test_solver.py @@ -1,7 +1,7 @@ """ Unit tests for the SR solver. """ import pytest -from matching import Matching +from matching import SingleMatching from matching.exceptions import MatchingError from matching.games import StableRoommates @@ -18,7 +18,7 @@ def test_init(player_names, seed): for player, game_player in zip(players, game.players): assert player.name == game_player.name - assert player.pref_names == game_player.pref_names + assert player._pref_names == game_player._pref_names assert all([player.matching is None for player in game.players]) assert game.matching is None @@ -33,7 +33,7 @@ def test_create_from_dictionary(player_names, seed): game = StableRoommates.create_from_dictionary(player_prefs) for player in game.players: - assert player_prefs[player.name] == player.pref_names + assert player_prefs[player.name] == player._pref_names assert player.matching is None assert game.matching is None @@ -60,14 +60,14 @@ def test_solve(player_names, seed): game = StableRoommates(players) matching = game.solve() - assert isinstance(matching, Matching) + assert isinstance(matching, SingleMatching) players = sorted(players, key=lambda p: p.name) matching_keys = sorted(matching.keys(), key=lambda k: k.name) for game_player, player in zip(matching_keys, players): assert game_player.name == player.name - assert game_player.pref_names == player.pref_names + assert game_player._pref_names == player._pref_names for match in matching.values(): assert match is None or match in game.players diff --git a/tests/student_allocation/test_solver.py b/tests/student_allocation/test_solver.py index fa98c83..af75081 100644 --- a/tests/student_allocation/test_solver.py +++ b/tests/student_allocation/test_solver.py @@ -3,7 +3,7 @@ import pytest -from matching import Matching +from matching import MultipleMatching from matching import Player as Student from matching.exceptions import ( CapacityChangedWarning, @@ -29,17 +29,17 @@ def test_init( for student, game_student in zip(students, game.students): assert student.name == game_student.name - assert student.pref_names == game_student.pref_names + assert student._pref_names == game_student._pref_names for project, game_project in zip(projects, game.projects): assert project.name == game_project.name - assert project.pref_names == game_project.pref_names + assert project._pref_names == game_project._pref_names assert project.capacity == game_project.capacity assert project.supervisor.name == game_project.supervisor.name for supervisor, game_supervisor in zip(supervisors, game.supervisors): assert supervisor.name == game_supervisor.name - assert supervisor.pref_names == game_supervisor.pref_names + assert supervisor._pref_names == game_supervisor._pref_names assert supervisor.capacity == game_supervisor.capacity supervisor_projects = [p.name for p in supervisor.projects] @@ -70,7 +70,7 @@ def test_create_from_dictionaries( ) for student in game.students: - assert student.pref_names == stud_prefs[student.name] + assert student._pref_names == stud_prefs[student.name] assert student.matching is None for project in game.projects: @@ -78,7 +78,7 @@ def test_create_from_dictionaries( assert project.matching == [] for supervisor in game.supervisors: - assert supervisor.pref_names == sup_prefs[supervisor.name] + assert supervisor._pref_names == sup_prefs[supervisor.name] assert supervisor.matching == [] assert game.matching is None @@ -328,13 +328,13 @@ def test_solve( ) matching = game.solve(optimal) - assert isinstance(matching, Matching) + assert isinstance(matching, MultipleMatching) projects = sorted(projects, key=lambda p: p.name) matching_keys = sorted(matching.keys(), key=lambda k: k.name) for game_project, project in zip(matching_keys, projects): assert game_project.name == project.name - assert game_project.pref_names == project.pref_names + assert game_project._pref_names == project._pref_names assert game_project.capacity == project.capacity assert game_project.supervisor.name == project.supervisor.name From a619ea362045d9aeaf015d407d5bab3de73fbf07 Mon Sep 17 00:00:00 2001 From: Henry Wilde Date: Wed, 15 Jul 2020 02:13:56 +0100 Subject: [PATCH 07/18] Catch attribute typo in supervisor. --- src/matching/players/supervisor.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/matching/players/supervisor.py b/src/matching/players/supervisor.py index 76456a5..ddca04a 100644 --- a/src/matching/players/supervisor.py +++ b/src/matching/players/supervisor.py @@ -38,7 +38,7 @@ def set_prefs(self, students): projects. """ self.prefs = students - self.pref_names = [student.name for student in students] + self._pref_names = [student.name for student in students] self._original_prefs = students[:] for project in self.projects: From 308268aa68f5124d7d91ef3b300892928d42ed91 Mon Sep 17 00:00:00 2001 From: Henry Wilde Date: Wed, 15 Jul 2020 02:14:20 +0100 Subject: [PATCH 08/18] Add compatability to other player tests. --- tests/players/test_hospital.py | 8 ++++---- tests/players/test_project.py | 6 +++--- tests/players/test_supervisor.py | 13 +++++++------ 3 files changed, 14 insertions(+), 13 deletions(-) diff --git a/tests/players/test_hospital.py b/tests/players/test_hospital.py index 2b94a00..24bdc28 100644 --- a/tests/players/test_hospital.py +++ b/tests/players/test_hospital.py @@ -18,11 +18,11 @@ def test_init(name, capacity): assert hospital.name == name assert hospital.capacity == capacity - assert hospital._original_capacity == capacity - assert hospital.prefs is None - assert hospital.pref_names is None - assert hospital._original_prefs is None + assert hospital.prefs == [] assert hospital.matching == [] + assert hospital._pref_names == [] + assert hospital._original_prefs is None + assert hospital._original_capacity == capacity @given(name=text(), capacity=capacity, pref_names=pref_names) diff --git a/tests/players/test_project.py b/tests/players/test_project.py index 45fa8c0..b70f337 100644 --- a/tests/players/test_project.py +++ b/tests/players/test_project.py @@ -16,10 +16,10 @@ def test_init(name, capacity): assert project.name == name assert project.capacity == capacity assert project.supervisor is None - assert project.prefs is None - assert project.pref_names is None - assert project._original_prefs is None + assert project.prefs == [] assert project.matching == [] + assert project._pref_names == [] + assert project._original_prefs is None @given(name=text(), capacity=integers()) diff --git a/tests/players/test_supervisor.py b/tests/players/test_supervisor.py index c8bd3d0..f28b90c 100644 --- a/tests/players/test_supervisor.py +++ b/tests/players/test_supervisor.py @@ -17,10 +17,10 @@ def test_init(name, capacity): assert supervisor.name == name assert supervisor.capacity == capacity assert supervisor.projects == [] - assert supervisor.prefs is None - assert supervisor.pref_names is None - assert supervisor._original_prefs is None + assert supervisor.prefs == [] assert supervisor.matching == [] + assert supervisor._pref_names == [] + assert supervisor._original_prefs is None @given(name=text(), capacity=integers(), pref_names=lists(text(), min_size=1)) @@ -33,15 +33,16 @@ def test_set_prefs(name, capacity, pref_names): students = [] for sname in pref_names: student = Student(sname) - student.prefs = projects + student.set_prefs(projects) students.append(student) supervisor.projects = projects supervisor.set_prefs(students) assert supervisor.prefs == students - assert supervisor.pref_names == pref_names + assert supervisor._pref_names == pref_names assert supervisor._original_prefs == students + for project in supervisor.projects: assert project.prefs == students - assert project.pref_names == pref_names + assert project._pref_names == pref_names assert project._original_prefs == students From 94cba098c6989151a708920395f0952d44930a71 Mon Sep 17 00:00:00 2001 From: Henry Wilde Date: Wed, 15 Jul 2020 03:44:08 +0100 Subject: [PATCH 09/18] Catch attribute typo in SR test. --- tests/stable_roommates/test_algorithm.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/tests/stable_roommates/test_algorithm.py b/tests/stable_roommates/test_algorithm.py index 2e20d36..425c019 100644 --- a/tests/stable_roommates/test_algorithm.py +++ b/tests/stable_roommates/test_algorithm.py @@ -19,7 +19,7 @@ def test_first_phase(player_names, seed): for player in players: assert player.matching is None - assert {p.name for p in player.prefs}.issubset(player.pref_names) + assert {p.name for p in player.prefs}.issubset(player._pref_names) @STABLE_ROOMMATES From 12e319abb3001756fdb8aefffa47c6ce066a7f1a Mon Sep 17 00:00:00 2001 From: Henry Wilde Date: Wed, 15 Jul 2020 03:45:20 +0100 Subject: [PATCH 10/18] Implement composite strategies for HR tests. --- tests/hospital_resident/test_algorithm.py | 45 ++-- tests/hospital_resident/test_solver.py | 206 ++++++------------ .../hospital_resident/{params.py => util.py} | 91 +++++++- 3 files changed, 170 insertions(+), 172 deletions(-) rename tests/hospital_resident/{params.py => util.py} (54%) diff --git a/tests/hospital_resident/test_algorithm.py b/tests/hospital_resident/test_algorithm.py index d41540b..167c190 100644 --- a/tests/hospital_resident/test_algorithm.py +++ b/tests/hospital_resident/test_algorithm.py @@ -1,5 +1,6 @@ """ Tests for the Hospital-Resident algorithm. """ import numpy as np +from hypothesis import given from matching.algorithms.hospital_resident import ( hospital_optimal, @@ -7,22 +8,17 @@ resident_optimal, ) -from .params import HOSPITAL_RESIDENT, make_players +from .util import players -@HOSPITAL_RESIDENT -def test_hospital_resident( - resident_names, hospital_names, capacities, seed, clean -): - """ Verify that the hospital-resident algorithm produces a valid solution +@given(players=players()) +def test_hospital_resident(players): + """ Test that the hospital-resident algorithm produces a valid solution for an instance of HR. """ - np.random.seed(seed) - residents, hospitals = make_players( - resident_names, hospital_names, capacities - ) - matching = hospital_resident(residents, hospitals) + residents, hospitals = players + matching = hospital_resident(residents, hospitals) assert set(hospitals) == set(matching.keys()) matched_residents = {r for rs in matching.values() for r in rs} @@ -33,20 +29,16 @@ def test_hospital_resident( assert resident not in matched_residents -@HOSPITAL_RESIDENT -def test_resident_optimal( - resident_names, hospital_names, capacities, seed, clean -): - """ Verify that the resident-optimal algorithm produces a solution that is +@given(players=players()) +def test_resident_optimal(players): + """ Test that the resident-optimal algorithm produces a solution that is indeed resident-optimal. """ - np.random.seed(seed) - residents, hospitals = make_players( - resident_names, hospital_names, capacities - ) - matching = resident_optimal(residents, hospitals) + residents, hospitals = players + matching = resident_optimal(residents, hospitals) assert set(hospitals) == set(matching.keys()) + assert all( [ r in set(residents) @@ -61,17 +53,14 @@ def test_resident_optimal( assert resident.prefs.index(resident.matching) == 0 -@HOSPITAL_RESIDENT -def test_hospital_optimal( - resident_names, hospital_names, capacities, seed, clean -): +@given(players=players()) +def test_hospital_optimal(players): """ Verify that the hospital-optimal algorithm produces a solution that is indeed hospital-optimal. """ - np.random.seed(seed) - _, hospitals = make_players(resident_names, hospital_names, capacities) - matching = hospital_optimal(hospitals) + _, hospitals = players + matching = hospital_optimal(hospitals) assert set(hospitals) == set(matching.keys()) for hospital, matches in matching.items(): diff --git a/tests/hospital_resident/test_solver.py b/tests/hospital_resident/test_solver.py index 6c985c7..0bfdcea 100644 --- a/tests/hospital_resident/test_solver.py +++ b/tests/hospital_resident/test_solver.py @@ -2,6 +2,8 @@ import warnings import pytest +from hypothesis import given +from hypothesis.strategies import booleans, sampled_from from matching import MultipleMatching from matching import Player as Resident @@ -13,17 +15,17 @@ from matching.games import HospitalResident from matching.players import Hospital -from .params import HOSPITAL_RESIDENT, make_game, make_prefs +from .util import connections, players, games -@HOSPITAL_RESIDENT -def test_init(resident_names, hospital_names, capacities, seed, clean): +@given(players=players(), clean=booleans()) +def test_init(players, clean): """ Test that an instance of HospitalResident is created correctly when passed a set of players. """ - residents, hospitals, game = make_game( - resident_names, hospital_names, capacities, seed, clean - ) + residents, hospitals = players + + game = HospitalResident(residents, hospitals, clean) for resident, game_resident in zip(residents, game.residents): assert resident.name == game_resident.name @@ -37,23 +39,17 @@ def test_init(resident_names, hospital_names, capacities, seed, clean): assert all([resident.matching is None for resident in game.residents]) assert all([hospital.matching == [] for hospital in game.hospitals]) assert game.matching is None - assert game.clean is clean -@HOSPITAL_RESIDENT -def test_create_from_dictionaries( - resident_names, hospital_names, capacities, seed, clean -): +@given(connections=connections(), clean=booleans()) +def test_create_from_dictionaries(connections, clean): """ Test that HospitalResident is created correctly when passed a set of dictionaries for each party. """ - resident_prefs, hospital_prefs = make_prefs( - resident_names, hospital_names, seed - ) + resident_prefs, hospital_prefs, capacities = connections - capacities_ = dict(zip(hospital_names, capacities)) game = HospitalResident.create_from_dictionaries( - resident_prefs, hospital_prefs, capacities_, clean + resident_prefs, hospital_prefs, capacities, clean ) for resident in game.residents: @@ -62,21 +58,17 @@ def test_create_from_dictionaries( for hospital in game.hospitals: assert hospital._pref_names == hospital_prefs[hospital.name] - assert hospital.capacity == capacities_[hospital.name] + assert hospital.capacity == capacities[hospital.name] assert hospital.matching == [] assert game.matching is None assert game.clean is clean -@HOSPITAL_RESIDENT -def test_check_inputs(resident_names, hospital_names, capacities, seed, clean): +@given(game=games()) +def test_check_inputs(game): """ Test that inputs to an instance of HR can be verified. """ - _, _, game = make_game( - resident_names, hospital_names, capacities, seed, clean - ) - with warnings.catch_warnings(record=True) as w: game.check_inputs() @@ -85,18 +77,12 @@ def test_check_inputs(resident_names, hospital_names, capacities, seed, clean): assert game.hospitals == game._all_hospitals -@HOSPITAL_RESIDENT -def test_check_inputs_resident_prefs_all_hospitals( - resident_names, hospital_names, capacities, seed, clean -): +@given(game=games()) +def test_check_inputs_resident_prefs_all_hospitals(game): """ Test that every resident has only hospitals in its preference list. If not, check that a warning is caught and the player's preferences are changed. """ - _, _, game = make_game( - resident_names, hospital_names, capacities, seed, clean - ) - resident = game.residents[0] resident.prefs = [Resident("foo")] with warnings.catch_warnings(record=True) as w: @@ -106,22 +92,16 @@ def test_check_inputs_resident_prefs_all_hospitals( assert isinstance(message, PreferencesChangedWarning) assert resident.name in str(message) assert "foo" in str(message) - if clean: + if game.clean: assert resident.prefs == [] -@HOSPITAL_RESIDENT -def test_check_inputs_hospital_prefs_all_residents( - resident_names, hospital_names, capacities, seed, clean -): +@given(game=games()) +def test_check_inputs_hospital_prefs_all_residents(game): """ Test that every hospital has only residents in its preference list. If not, check that a warning is caught and the player's preferences are changed. """ - _, _, game = make_game( - resident_names, hospital_names, capacities, seed, clean - ) - hospital = game.hospitals[0] hospital.prefs = [Resident("foo")] with warnings.catch_warnings(record=True) as w: @@ -131,22 +111,16 @@ def test_check_inputs_hospital_prefs_all_residents( assert isinstance(message, PreferencesChangedWarning) assert hospital.name in str(message) assert "foo" in str(message) - if clean: + if game.clean: assert hospital.prefs == [] -@HOSPITAL_RESIDENT -def test_check_inputs_hospital_prefs_all_reciprocated( - resident_names, hospital_names, capacities, seed, clean -): +@given(game=games()) +def test_check_inputs_hospital_prefs_all_reciprocated(game): """ Test that each hospital has ranked only those residents that have ranked it. If not, check that a warning is caught and the hospital has forgotten any such players. """ - _, _, game = make_game( - resident_names, hospital_names, capacities, seed, clean - ) - hospital = game.hospitals[0] resident = hospital.prefs[0] resident.forget(hospital) @@ -157,22 +131,16 @@ def test_check_inputs_hospital_prefs_all_reciprocated( assert isinstance(message, PreferencesChangedWarning) assert hospital.name in str(message) assert resident.name in str(message) - if clean: + if game.clean: assert resident not in hospital.prefs -@HOSPITAL_RESIDENT -def test_check_inputs_hospital_reciprocated_all_prefs( - resident_names, hospital_names, capacities, seed, clean -): +@given(game=games()) +def test_check_inputs_hospital_reciprocated_all_prefs(game): """ Test that each hospital has ranked all those residents that have ranked it. If not, check that a warning is caught and any such resident has forgotten the hospital. """ - _, _, game = make_game( - resident_names, hospital_names, capacities, seed, clean - ) - hospital = game.hospitals[0] resident = hospital.prefs[0] hospital.forget(resident) @@ -185,21 +153,15 @@ def test_check_inputs_hospital_reciprocated_all_prefs( assert isinstance(message, PreferencesChangedWarning) assert hospital.name in str(message) assert resident.name in str(message) - if clean: + if game.clean: assert hospital not in resident.prefs -@HOSPITAL_RESIDENT -def test_check_inputs_resident_prefs_all_nonempty( - resident_names, hospital_names, capacities, seed, clean -): +@given(game=games()) +def test_check_inputs_resident_prefs_all_nonempty(game): """ Test that every resident has a non-empty preference list. If not, check that a warning is caught and the player has been removed from the game. """ - _, _, game = make_game( - resident_names, hospital_names, capacities, seed, clean - ) - resident = game.residents[0] resident.prefs = [] with warnings.catch_warnings(record=True) as w: @@ -208,21 +170,15 @@ def test_check_inputs_resident_prefs_all_nonempty( message = w[-1].message assert isinstance(message, PlayerExcludedWarning) assert resident.name in str(message) - if clean: + if game.clean: assert resident not in game.residents -@HOSPITAL_RESIDENT -def test_check_inputs_hospital_prefs_all_nonempty( - resident_names, hospital_names, capacities, seed, clean -): +@given(game=games()) +def test_check_inputs_hospital_prefs_all_nonempty(game): """ Test that every hospital has a non-empty preference list. If not, check that a warning is caught and the player has been removed from the game. """ - _, _, game = make_game( - resident_names, hospital_names, capacities, seed, clean - ) - hospital = game.hospitals[0] hospital.prefs = [] with warnings.catch_warnings(record=True) as w: @@ -231,22 +187,16 @@ def test_check_inputs_hospital_prefs_all_nonempty( message = w[-1].message assert isinstance(message, PlayerExcludedWarning) assert hospital.name in str(message) - if clean: + if game.clean: assert hospital not in game.hospitals -@HOSPITAL_RESIDENT -def test_check_inputs_hospital_capacity( - resident_names, hospital_names, capacities, seed, clean -): +@given(game=games()) +def test_check_inputs_hospital_capacity(game): """ Test that each hospital has enough space to accommodate their largest project, but does not offer a surplus of spaces from their projects. Otherwise, raise an Exception. """ - _, _, game = make_game( - resident_names, hospital_names, capacities, seed, clean - ) - hospital = game.hospitals[0] capacity = hospital.capacity hospital.capacity = 0 @@ -257,68 +207,50 @@ def test_check_inputs_hospital_capacity( message = w[-1].message assert isinstance(message, PlayerExcludedWarning) assert hospital.name in str(message) - if clean: + if game.clean: assert hospital not in game.hospitals -@HOSPITAL_RESIDENT -def test_solve(resident_names, hospital_names, capacities, seed, clean): - """ Test that HospitalResident can solve games correctly when passed - players. """ - - for optimal in ["resident", "hospital"]: - residents, hospitals, game = make_game( - resident_names, hospital_names, capacities, seed, clean - ) +@given(game=games(), optimal=sampled_from(["resident", "hospital"])) +def test_solve(game, optimal): + """ Test that HospitalResident can solve games correctly. """ - matching = game.solve(optimal) - assert isinstance(matching, MultipleMatching) + matching = game.solve(optimal) + assert isinstance(matching, MultipleMatching) - hospitals = sorted(hospitals, key=lambda h: h.name) - matching_keys = sorted(matching.keys(), key=lambda k: k.name) - for game_hospital, hospital in zip(matching_keys, hospitals): - assert game_hospital.name == hospital.name - assert game_hospital._pref_names == hospital._pref_names - assert game_hospital.capacity == hospital.capacity + hospitals = sorted(game.hospitals, key=lambda h: h.name) + matching_keys = sorted(matching.keys(), key=lambda k: k.name) + for game_hospital, hospital in zip(matching_keys, hospitals): + assert game_hospital.name == hospital.name + assert game_hospital._pref_names == hospital._pref_names + assert game_hospital.capacity == hospital.capacity - matched_residents = [ - resident for match in matching.values() for resident in match - ] + matched_residents = [ + resident for match in matching.values() for resident in match + ] - assert matched_residents != [] and set(matched_residents).issubset( - set(game.residents) - ) + assert matched_residents != [] and set(matched_residents).issubset( + set(game.residents) + ) - for resident in set(game.residents) - set(matched_residents): - assert resident.matching is None + for resident in set(game.residents) - set(matched_residents): + assert resident.matching is None -@HOSPITAL_RESIDENT -def test_check_validity( - resident_names, hospital_names, capacities, seed, clean -): +@given(game=games()) +def test_check_validity(game): """ Test that HospitalResident finds a valid matching when the game is solved. """ - _, _, game = make_game( - resident_names, hospital_names, capacities, seed, clean - ) - game.solve() assert game.check_validity() -@HOSPITAL_RESIDENT -def test_check_for_unacceptable_matches_residents( - resident_names, hospital_names, capacities, seed, clean -): +@given(game=games()) +def test_check_for_unacceptable_matches_residents(game): """ Test that HospitalResident recognises a valid matching requires each resident to have a preference of their match, if they have one. """ - _, _, game = make_game( - resident_names, hospital_names, capacities, seed, clean - ) - resident = game.residents[0] hospital = Hospital(name="foo", capacity=1) resident.matching = hospital @@ -337,17 +269,11 @@ def test_check_for_unacceptable_matches_residents( assert issue == error -@HOSPITAL_RESIDENT -def test_check_for_unacceptable_matches_hospitals( - resident_names, hospital_names, capacities, seed, clean -): +@given(game=games()) +def test_check_for_unacceptable_matches_hospitals(game): """ Test that HospitalResident recognises a valid matching requires each hospital to have a preference of each of its matches, if any. """ - _, _, game = make_game( - resident_names, hospital_names, capacities, seed, clean - ) - hospital = game.hospitals[0] resident = Resident(name="foo") hospital.matching.append(resident) @@ -366,17 +292,11 @@ def test_check_for_unacceptable_matches_hospitals( assert issue == error -@HOSPITAL_RESIDENT -def test_check_for_oversubscribed_hospitals( - resident_names, hospital_names, capacities, seed, clean -): +@given(game=games()) +def test_check_for_oversubscribed_hospitals(game): """ Test that HospitalResident recognises a valid matching requires all hospitals to not be oversubscribed. """ - _, _, game = make_game( - resident_names, hospital_names, capacities, seed, clean - ) - hospital = game.hospitals[0] hospital.matching = range(hospital.capacity + 1) diff --git a/tests/hospital_resident/params.py b/tests/hospital_resident/util.py similarity index 54% rename from tests/hospital_resident/params.py rename to tests/hospital_resident/util.py index 8b97d8b..9d4a203 100644 --- a/tests/hospital_resident/params.py +++ b/tests/hospital_resident/util.py @@ -5,13 +5,102 @@ import numpy as np from hypothesis import given -from hypothesis.strategies import booleans, integers, lists, sampled_from +from hypothesis.strategies import ( + booleans, composite, integers, lists, permutations, sampled_from, text +) from matching import Player as Resident from matching.games import HospitalResident from matching.players import Hospital +@composite +def names(draw, taken_from, size): + """ A strategy for getting player names. """ + + names = draw(lists(taken_from, min_size=size, max_size=size, unique=True)) + return names + + +@composite +def connections( + draw, + residents_from=text(), + hospitals_from=text(), + min_residents=1, + max_residents=5, + min_hospitals=1, + max_hospitals=3, +): + """ A custom strategy for making a set of connections between players. """ + + num_residents = draw(integers(min_residents, max_residents)) + num_hospitals = draw(integers(min_hospitals, max_hospitals)) + + resident_names = draw(names(residents_from, num_residents)) + hospital_names = draw(names(hospitals_from, num_hospitals)) + + resident_prefs = {} + hospital_prefs = {h: [] for h in hospital_names} + for resident in resident_names: + hospitals = draw( + lists(sampled_from(hospital_names), min_size=1, unique=True) + ) + resident_prefs[resident] = hospitals + for hospital in hospitals: + hospital_prefs[hospital].append(resident) + + capacities = {} + for hospital, residents in list(hospital_prefs.items()): + if residents: + capacities[hospital] = draw(integers(min_residents, max_residents)) + else: + del hospital_prefs[hospital] + + return resident_prefs, hospital_prefs, capacities + + +@composite +def players(draw, **kwargs): + """ A custom strategy for making a set of residents and hospitals. """ + + resident_prefs, hospital_prefs, capacities = draw(connections(**kwargs)) + + residents = [Resident(name) for name in resident_prefs] + hospitals = [Hospital(name, cap) for name, cap in capacities.items()] + + residents = _get_preferences(residents, hospitals, resident_prefs) + hospitals = _get_preferences(hospitals, residents, hospital_prefs) + + return residents, hospitals + + +def _get_preferences(party, others, preferences): + """ Get and assign preference instances. """ + + for player in party: + names = preferences[player.name] + prefs = [] + for name in names: + for other in others: + if other.name == name: + prefs.append(other) + break + + player.set_prefs(prefs) + + return party + + +@composite +def games(draw, clean=booleans(), **kwargs): + """ A custom strategy for making a game instance. """ + + residents, hospitals = draw(players(**kwargs)) + + return HospitalResident(residents, hospitals, clean) + + def make_players(resident_names, hospital_names, capacities): """ Given some names and capacities, make a set of players for HR. """ From 57d9fd7793e7e1df0eae1223e27c229fbb37d681 Mon Sep 17 00:00:00 2001 From: Henry Wilde Date: Wed, 15 Jul 2020 02:05:09 +0100 Subject: [PATCH 11/18] Update game class tests. Catch attribute typo in supervisor. Add compatability to other player tests. Catch attribute typo in SR test. --- src/matching/players/supervisor.py | 2 +- tests/hospital_resident/test_solver.py | 14 +++++++------- tests/players/test_hospital.py | 8 ++++---- tests/players/test_project.py | 6 +++--- tests/players/test_supervisor.py | 13 +++++++------ tests/stable_marriage/test_solver.py | 14 +++++++------- tests/stable_roommates/test_algorithm.py | 2 +- tests/stable_roommates/test_solver.py | 10 +++++----- tests/student_allocation/test_solver.py | 16 ++++++++-------- 9 files changed, 43 insertions(+), 42 deletions(-) diff --git a/src/matching/players/supervisor.py b/src/matching/players/supervisor.py index 76456a5..ddca04a 100644 --- a/src/matching/players/supervisor.py +++ b/src/matching/players/supervisor.py @@ -38,7 +38,7 @@ def set_prefs(self, students): projects. """ self.prefs = students - self.pref_names = [student.name for student in students] + self._pref_names = [student.name for student in students] self._original_prefs = students[:] for project in self.projects: diff --git a/tests/hospital_resident/test_solver.py b/tests/hospital_resident/test_solver.py index 1444381..6c985c7 100644 --- a/tests/hospital_resident/test_solver.py +++ b/tests/hospital_resident/test_solver.py @@ -3,7 +3,7 @@ import pytest -from matching import Matching +from matching import MultipleMatching from matching import Player as Resident from matching.exceptions import ( MatchingError, @@ -27,11 +27,11 @@ def test_init(resident_names, hospital_names, capacities, seed, clean): for resident, game_resident in zip(residents, game.residents): assert resident.name == game_resident.name - assert resident.pref_names == game_resident.pref_names + assert resident._pref_names == game_resident._pref_names for hospital, game_hospital in zip(hospitals, game.hospitals): assert hospital.name == game_hospital.name - assert hospital.pref_names == game_hospital.pref_names + assert hospital._pref_names == game_hospital._pref_names assert hospital.capacity == game_hospital.capacity assert all([resident.matching is None for resident in game.residents]) @@ -57,11 +57,11 @@ def test_create_from_dictionaries( ) for resident in game.residents: - assert resident.pref_names == resident_prefs[resident.name] + assert resident._pref_names == resident_prefs[resident.name] assert resident.matching is None for hospital in game.hospitals: - assert hospital.pref_names == hospital_prefs[hospital.name] + assert hospital._pref_names == hospital_prefs[hospital.name] assert hospital.capacity == capacities_[hospital.name] assert hospital.matching == [] @@ -272,13 +272,13 @@ def test_solve(resident_names, hospital_names, capacities, seed, clean): ) matching = game.solve(optimal) - assert isinstance(matching, Matching) + assert isinstance(matching, MultipleMatching) hospitals = sorted(hospitals, key=lambda h: h.name) matching_keys = sorted(matching.keys(), key=lambda k: k.name) for game_hospital, hospital in zip(matching_keys, hospitals): assert game_hospital.name == hospital.name - assert game_hospital.pref_names == hospital.pref_names + assert game_hospital._pref_names == hospital._pref_names assert game_hospital.capacity == hospital.capacity matched_residents = [ diff --git a/tests/players/test_hospital.py b/tests/players/test_hospital.py index 2b94a00..24bdc28 100644 --- a/tests/players/test_hospital.py +++ b/tests/players/test_hospital.py @@ -18,11 +18,11 @@ def test_init(name, capacity): assert hospital.name == name assert hospital.capacity == capacity - assert hospital._original_capacity == capacity - assert hospital.prefs is None - assert hospital.pref_names is None - assert hospital._original_prefs is None + assert hospital.prefs == [] assert hospital.matching == [] + assert hospital._pref_names == [] + assert hospital._original_prefs is None + assert hospital._original_capacity == capacity @given(name=text(), capacity=capacity, pref_names=pref_names) diff --git a/tests/players/test_project.py b/tests/players/test_project.py index 45fa8c0..b70f337 100644 --- a/tests/players/test_project.py +++ b/tests/players/test_project.py @@ -16,10 +16,10 @@ def test_init(name, capacity): assert project.name == name assert project.capacity == capacity assert project.supervisor is None - assert project.prefs is None - assert project.pref_names is None - assert project._original_prefs is None + assert project.prefs == [] assert project.matching == [] + assert project._pref_names == [] + assert project._original_prefs is None @given(name=text(), capacity=integers()) diff --git a/tests/players/test_supervisor.py b/tests/players/test_supervisor.py index c8bd3d0..f28b90c 100644 --- a/tests/players/test_supervisor.py +++ b/tests/players/test_supervisor.py @@ -17,10 +17,10 @@ def test_init(name, capacity): assert supervisor.name == name assert supervisor.capacity == capacity assert supervisor.projects == [] - assert supervisor.prefs is None - assert supervisor.pref_names is None - assert supervisor._original_prefs is None + assert supervisor.prefs == [] assert supervisor.matching == [] + assert supervisor._pref_names == [] + assert supervisor._original_prefs is None @given(name=text(), capacity=integers(), pref_names=lists(text(), min_size=1)) @@ -33,15 +33,16 @@ def test_set_prefs(name, capacity, pref_names): students = [] for sname in pref_names: student = Student(sname) - student.prefs = projects + student.set_prefs(projects) students.append(student) supervisor.projects = projects supervisor.set_prefs(students) assert supervisor.prefs == students - assert supervisor.pref_names == pref_names + assert supervisor._pref_names == pref_names assert supervisor._original_prefs == students + for project in supervisor.projects: assert project.prefs == students - assert project.pref_names == pref_names + assert project._pref_names == pref_names assert project._original_prefs == students diff --git a/tests/stable_marriage/test_solver.py b/tests/stable_marriage/test_solver.py index c3fa972..e06ad82 100644 --- a/tests/stable_marriage/test_solver.py +++ b/tests/stable_marriage/test_solver.py @@ -1,7 +1,7 @@ """ Unit tests for the SM solver. """ import pytest -from matching import Matching +from matching import SingleMatching from matching.exceptions import MatchingError from matching.games import StableMarriage @@ -20,7 +20,7 @@ def test_init(player_names, seed): suitors + reviewers, game.suitors + game.reviewers ): assert player.name == game_player.name - assert player.pref_names == game_player.pref_names + assert player._pref_names == game_player._pref_names assert all( [player.matching is None for player in game.suitors + game.reviewers] @@ -37,11 +37,11 @@ def test_create_from_dictionaries(player_names, seed): game = StableMarriage.create_from_dictionaries(suitor_prefs, reviewer_prefs) for suitor in game.suitors: - assert suitor_prefs[suitor.name] == suitor.pref_names + assert suitor_prefs[suitor.name] == suitor._pref_names assert suitor.matching is None for reviewer in game.reviewers: - assert reviewer_prefs[reviewer.name] == reviewer.pref_names + assert reviewer_prefs[reviewer.name] == reviewer._pref_names assert reviewer.matching is None assert game.matching is None @@ -90,7 +90,7 @@ def test_solve(player_names, seed): game = StableMarriage(suitors, reviewers) matching = game.solve(optimal) - assert isinstance(matching, Matching) + assert isinstance(matching, SingleMatching) suitors = sorted(suitors, key=lambda s: s.name) reviewers = sorted(reviewers, key=lambda r: r.name) @@ -100,11 +100,11 @@ def test_solve(player_names, seed): for game_suitor, suitor in zip(matching_keys, suitors): assert game_suitor.name == suitor.name - assert game_suitor.pref_names == suitor.pref_names + assert game_suitor._pref_names == suitor._pref_names for game_reviewer, reviewer in zip(matching_values, reviewers): assert game_reviewer.name == reviewer.name - assert game_reviewer.pref_names == reviewer.pref_names + assert game_reviewer._pref_names == reviewer._pref_names @STABLE_MARRIAGE diff --git a/tests/stable_roommates/test_algorithm.py b/tests/stable_roommates/test_algorithm.py index 2e20d36..425c019 100644 --- a/tests/stable_roommates/test_algorithm.py +++ b/tests/stable_roommates/test_algorithm.py @@ -19,7 +19,7 @@ def test_first_phase(player_names, seed): for player in players: assert player.matching is None - assert {p.name for p in player.prefs}.issubset(player.pref_names) + assert {p.name for p in player.prefs}.issubset(player._pref_names) @STABLE_ROOMMATES diff --git a/tests/stable_roommates/test_solver.py b/tests/stable_roommates/test_solver.py index aec2a31..e6abb2d 100644 --- a/tests/stable_roommates/test_solver.py +++ b/tests/stable_roommates/test_solver.py @@ -1,7 +1,7 @@ """ Unit tests for the SR solver. """ import pytest -from matching import Matching +from matching import SingleMatching from matching.exceptions import MatchingError from matching.games import StableRoommates @@ -18,7 +18,7 @@ def test_init(player_names, seed): for player, game_player in zip(players, game.players): assert player.name == game_player.name - assert player.pref_names == game_player.pref_names + assert player._pref_names == game_player._pref_names assert all([player.matching is None for player in game.players]) assert game.matching is None @@ -33,7 +33,7 @@ def test_create_from_dictionary(player_names, seed): game = StableRoommates.create_from_dictionary(player_prefs) for player in game.players: - assert player_prefs[player.name] == player.pref_names + assert player_prefs[player.name] == player._pref_names assert player.matching is None assert game.matching is None @@ -60,14 +60,14 @@ def test_solve(player_names, seed): game = StableRoommates(players) matching = game.solve() - assert isinstance(matching, Matching) + assert isinstance(matching, SingleMatching) players = sorted(players, key=lambda p: p.name) matching_keys = sorted(matching.keys(), key=lambda k: k.name) for game_player, player in zip(matching_keys, players): assert game_player.name == player.name - assert game_player.pref_names == player.pref_names + assert game_player._pref_names == player._pref_names for match in matching.values(): assert match is None or match in game.players diff --git a/tests/student_allocation/test_solver.py b/tests/student_allocation/test_solver.py index fa98c83..af75081 100644 --- a/tests/student_allocation/test_solver.py +++ b/tests/student_allocation/test_solver.py @@ -3,7 +3,7 @@ import pytest -from matching import Matching +from matching import MultipleMatching from matching import Player as Student from matching.exceptions import ( CapacityChangedWarning, @@ -29,17 +29,17 @@ def test_init( for student, game_student in zip(students, game.students): assert student.name == game_student.name - assert student.pref_names == game_student.pref_names + assert student._pref_names == game_student._pref_names for project, game_project in zip(projects, game.projects): assert project.name == game_project.name - assert project.pref_names == game_project.pref_names + assert project._pref_names == game_project._pref_names assert project.capacity == game_project.capacity assert project.supervisor.name == game_project.supervisor.name for supervisor, game_supervisor in zip(supervisors, game.supervisors): assert supervisor.name == game_supervisor.name - assert supervisor.pref_names == game_supervisor.pref_names + assert supervisor._pref_names == game_supervisor._pref_names assert supervisor.capacity == game_supervisor.capacity supervisor_projects = [p.name for p in supervisor.projects] @@ -70,7 +70,7 @@ def test_create_from_dictionaries( ) for student in game.students: - assert student.pref_names == stud_prefs[student.name] + assert student._pref_names == stud_prefs[student.name] assert student.matching is None for project in game.projects: @@ -78,7 +78,7 @@ def test_create_from_dictionaries( assert project.matching == [] for supervisor in game.supervisors: - assert supervisor.pref_names == sup_prefs[supervisor.name] + assert supervisor._pref_names == sup_prefs[supervisor.name] assert supervisor.matching == [] assert game.matching is None @@ -328,13 +328,13 @@ def test_solve( ) matching = game.solve(optimal) - assert isinstance(matching, Matching) + assert isinstance(matching, MultipleMatching) projects = sorted(projects, key=lambda p: p.name) matching_keys = sorted(matching.keys(), key=lambda k: k.name) for game_project, project in zip(matching_keys, projects): assert game_project.name == project.name - assert game_project.pref_names == project.pref_names + assert game_project._pref_names == project._pref_names assert game_project.capacity == project.capacity assert game_project.supervisor.name == project.supervisor.name From 1ad2d847d768dd9193ee1161c8f3514e386933cd Mon Sep 17 00:00:00 2001 From: Henry Wilde Date: Wed, 15 Jul 2020 04:41:49 +0100 Subject: [PATCH 12/18] Start implementing composites with SR. --- tests/stable_roommates/params.py | 44 ------------------ tests/stable_roommates/test_algorithm.py | 26 +++++------ tests/stable_roommates/test_solver.py | 49 ++++++++------------ tests/stable_roommates/util.py | 59 ++++++++++++++++++++++++ 4 files changed, 90 insertions(+), 88 deletions(-) delete mode 100644 tests/stable_roommates/params.py create mode 100644 tests/stable_roommates/util.py diff --git a/tests/stable_roommates/params.py b/tests/stable_roommates/params.py deleted file mode 100644 index e5927d4..0000000 --- a/tests/stable_roommates/params.py +++ /dev/null @@ -1,44 +0,0 @@ -""" Hypothesis decorators for SR tests. """ - -import numpy as np -from hypothesis import given -from hypothesis.strategies import integers, lists, sampled_from - -from matching import Player - - -def make_players(player_names, seed): - """ Given some names, make a valid set of players. """ - - np.random.seed(seed) - players = [Player(name) for name in player_names] - - for player in players: - player.set_prefs( - np.random.permutation([p for p in players if p != player]).tolist() - ) - - return players - - -def make_prefs(player_names, seed): - """ Given some names, make a valid set of preferences for the players. """ - - np.random.seed(seed) - player_prefs = { - name: np.random.permutation( - [p for p in player_names if p != name] - ).tolist() - for name in player_names - } - - return player_prefs - - -PLAYER_NAMES = lists( - sampled_from(["A", "B", "C", "D"]), min_size=4, max_size=4, unique=True -) - -STABLE_ROOMMATES = given( - player_names=PLAYER_NAMES, seed=integers(min_value=0, max_value=2 ** 32 - 1) -) diff --git a/tests/stable_roommates/test_algorithm.py b/tests/stable_roommates/test_algorithm.py index 425c019..63f8340 100644 --- a/tests/stable_roommates/test_algorithm.py +++ b/tests/stable_roommates/test_algorithm.py @@ -1,4 +1,6 @@ """ Integration and unit tests for the SR algorithm. """ +from hypothesis import assume, given + from matching.algorithms.stable_roommates import ( first_phase, locate_all_or_nothing_cycle, @@ -6,15 +8,14 @@ stable_roommates, ) -from .params import STABLE_ROOMMATES, make_players +from .util import players -@STABLE_ROOMMATES -def test_first_phase(player_names, seed): +@given(players=players()) +def test_first_phase(players): """ Verify that the first phase of the algorithm produces a valid set of reduced preference players. """ - players = make_players(player_names, seed) players = first_phase(players) for player in players: @@ -22,12 +23,11 @@ def test_first_phase(player_names, seed): assert {p.name for p in player.prefs}.issubset(player._pref_names) -@STABLE_ROOMMATES -def test_locate_all_or_nothing_cycle(player_names, seed): +@given(players=players()) +def test_locate_all_or_nothing_cycle(players): """ Verify that a cycle of (least-preferred, second-choice) players can be identified from a set of players. """ - players = make_players(player_names, seed) player = players[-1] cycle = locate_all_or_nothing_cycle(player) @@ -35,12 +35,11 @@ def test_locate_all_or_nothing_cycle(player_names, seed): assert second.prefs.index(last) == len(second.prefs) - 1 -@STABLE_ROOMMATES -def test_second_phase(player_names, seed): +@given(players=players()) +def test_second_phase(players): """ Verify that the second phase of the algorithm produces a valid set of players with appropriate matches. """ - players = make_players(player_names, seed) try: players = second_phase(players) @@ -50,14 +49,13 @@ def test_second_phase(player_names, seed): else: assert player.matching is None except (IndexError, ValueError): - pass + assume(False) -@STABLE_ROOMMATES -def test_stable_roommates(player_names, seed): +@given(players=players()) +def test_stable_roommates(players): """ Verify that the algorithm can terminate with a valid matching. """ - players = make_players(player_names, seed) matching = stable_roommates(players) for player, other in matching.items(): diff --git a/tests/stable_roommates/test_solver.py b/tests/stable_roommates/test_solver.py index e6abb2d..e88ad8a 100644 --- a/tests/stable_roommates/test_solver.py +++ b/tests/stable_roommates/test_solver.py @@ -1,68 +1,62 @@ """ Unit tests for the SR solver. """ import pytest +from hypothesis import given -from matching import SingleMatching +from matching import Player, SingleMatching from matching.exceptions import MatchingError from matching.games import StableRoommates -from .params import STABLE_ROOMMATES, make_players, make_prefs +from .util import connections, games, players -@STABLE_ROOMMATES -def test_init(player_names, seed): - """ Test that the StableRoommates solver takes a set of preformed players - correctly. """ +@given(players=players()) +def test_init(players): + """ Test that the StableRoommates solver has the correct attributes at + instantiation. """ - players = make_players(player_names, seed) game = StableRoommates(players) for player, game_player in zip(players, game.players): assert player.name == game_player.name assert player._pref_names == game_player._pref_names - assert all([player.matching is None for player in game.players]) assert game.matching is None -@STABLE_ROOMMATES -def test_create_from_dictionary(player_names, seed): +@given(preferences=connections()) +def test_create_from_dictionary(preferences): """ Test that StableRoommates solver can take a preference dictionary correctly. """ - player_prefs = make_prefs(player_names, seed) - game = StableRoommates.create_from_dictionary(player_prefs) + game = StableRoommates.create_from_dictionary(preferences) for player in game.players: - assert player_prefs[player.name] == player._pref_names + assert preferences[player.name] == player._pref_names assert player.matching is None assert game.matching is None -@STABLE_ROOMMATES -def test_check_inputs(player_names, seed): +@given(players=players()) +def test_check_inputs(players): """ Test StableRoommates raises a ValueError when a player has not ranked all other players. """ - players = make_players(player_names, seed) players[0].prefs = players[0].prefs[:-1] with pytest.raises(Exception): StableRoommates(players) -@STABLE_ROOMMATES -def test_solve(player_names, seed): - """ Test that StableRoommates can solve games correctly when passed players. +@given(game=games()) +def test_solve(game): + """ Test that StableRoommates can solve games correctly. """ - players = make_players(player_names, seed) - game = StableRoommates(players) - matching = game.solve() assert isinstance(matching, SingleMatching) - players = sorted(players, key=lambda p: p.name) + players = sorted(game.players, key=lambda p: p.name) matching_keys = sorted(matching.keys(), key=lambda k: k.name) for game_player, player in zip(matching_keys, players): @@ -73,14 +67,11 @@ def test_solve(player_names, seed): assert match is None or match in game.players -@STABLE_ROOMMATES -def test_check_validity(player_names, seed): +@given(game=games()) +def test_check_validity(game): """ Test that StableRoommates can raise a ValueError if any players are left unmatched. """ - players = make_players(player_names, seed) - game = StableRoommates(players) - matching = game.solve() if None in matching.values(): with pytest.raises(MatchingError): @@ -94,8 +85,6 @@ def test_stability(): """ Test that StableRoommates can recognise whether a matching is stable. """ - from matching import Player - players = [Player("A"), Player("B"), Player("C"), Player("D")] a, b, c, d = players diff --git a/tests/stable_roommates/util.py b/tests/stable_roommates/util.py new file mode 100644 index 0000000..0986af3 --- /dev/null +++ b/tests/stable_roommates/util.py @@ -0,0 +1,59 @@ +""" Strategies for SR tests. """ + +from hypothesis.strategies import composite, integers, lists, permutations, text + +from matching import Player +from matching.games import StableRoommates + + +@composite +def connections(draw, players_from=text(), min_players=4, max_players=10): + """ A strategy for making a set of connections between players. """ + + num_players = draw(integers(min_players, max_players)) + + players = draw( + lists( + players_from, + min_size=num_players, + max_size=num_players, + unique=True, + ) + ) + + preferences = {} + for player in players: + others = [p for p in players if p != player] + prefs = draw(permutations(others)) + preferences[player] = prefs + + return preferences + + +@composite +def players(draw, **kwargs): + """ A strategy for making a set of players. """ + + preferences = draw(connections(**kwargs)) + + players = [Player(name) for name in preferences] + for player in players: + names = preferences[player.name] + prefs = [] + for name in names: + for other in players: + if other.name == name: + prefs.append(other) + break + + player.set_prefs(prefs) + + return players + + +@composite +def games(draw, **kwargs): + """ A strategy for making an instance of SR. """ + + players_ = draw(players(**kwargs)) + return StableRoommates(players_) From 2fdf2a7a24bd69c6296a0f3707c66aece7e06718 Mon Sep 17 00:00:00 2001 From: Henry Wilde Date: Wed, 15 Jul 2020 04:42:14 +0100 Subject: [PATCH 13/18] Format codebase. --- src/matching/algorithms/stable_roommates.py | 1 + src/matching/games/stable_marriage.py | 3 +- src/matching/games/stable_roommates.py | 3 +- src/matching/matchings.py | 3 +- tests/base/test_game.py | 1 - tests/base/test_matching.py | 9 +- tests/base/test_player.py | 5 +- tests/base/util.py | 4 +- tests/hospital_resident/test_solver.py | 2 +- tests/hospital_resident/util.py | 111 ++------------------ tests/test_matchings.py | 7 +- 11 files changed, 19 insertions(+), 130 deletions(-) diff --git a/src/matching/algorithms/stable_roommates.py b/src/matching/algorithms/stable_roommates.py index 45587fc..5560c55 100644 --- a/src/matching/algorithms/stable_roommates.py +++ b/src/matching/algorithms/stable_roommates.py @@ -91,6 +91,7 @@ def locate_all_or_nothing_cycle(player): lasts.append(their_worst) player = their_worst + if lasts.count(player) > 1: break diff --git a/src/matching/games/stable_marriage.py b/src/matching/games/stable_marriage.py index 2081f1d..4068a50 100644 --- a/src/matching/games/stable_marriage.py +++ b/src/matching/games/stable_marriage.py @@ -1,8 +1,7 @@ """ The SM game class and supporting functions. """ - import copy -from matching import BaseGame, SingleMatching, Player +from matching import BaseGame, Player, SingleMatching from matching.algorithms import stable_marriage from matching.exceptions import MatchingError diff --git a/src/matching/games/stable_roommates.py b/src/matching/games/stable_roommates.py index 2c7c631..2409437 100644 --- a/src/matching/games/stable_roommates.py +++ b/src/matching/games/stable_roommates.py @@ -1,8 +1,7 @@ """ The SR game class and supporting functions. """ - import copy -from matching import BaseGame, SingleMatching, Player +from matching import BaseGame, Player, SingleMatching from matching.algorithms import stable_roommates from matching.exceptions import MatchingError diff --git a/src/matching/matchings.py b/src/matching/matchings.py index 0e06b66..fd47d60 100644 --- a/src/matching/matchings.py +++ b/src/matching/matchings.py @@ -1,7 +1,6 @@ """ A collection of dictionary-like objects for storing matchings. """ - -from matching.players import Player from matching import BaseMatching +from matching.players import Player class SingleMatching(BaseMatching): diff --git a/tests/base/test_game.py b/tests/base/test_game.py index 2ce10b3..dfd2b52 100644 --- a/tests/base/test_game.py +++ b/tests/base/test_game.py @@ -1,7 +1,6 @@ """ Tests for the BaseGame class. """ import warnings -import pytest from hypothesis import given from hypothesis.strategies import booleans diff --git a/tests/base/test_matching.py b/tests/base/test_matching.py index 5c1f0f8..5d42d51 100644 --- a/tests/base/test_matching.py +++ b/tests/base/test_matching.py @@ -1,19 +1,12 @@ """ Tests for the BaseMatching class. """ - import pytest from hypothesis import given from hypothesis.strategies import dictionaries, text from matching import BaseMatching - DICTIONARIES = given( - dictionary=dictionaries( - keys=text(), - values=text(), - min_size=1, - max_size=3, - ) + dictionary=dictionaries(keys=text(), values=text(), min_size=1, max_size=3,) ) diff --git a/tests/base/test_player.py b/tests/base/test_player.py index 34887ab..bbb8881 100644 --- a/tests/base/test_player.py +++ b/tests/base/test_player.py @@ -1,7 +1,6 @@ """ Tests for the BasePlayer class. """ - from hypothesis import given -from hypothesis.strategies import text, integers +from hypothesis.strategies import text from matching import BasePlayer @@ -95,7 +94,7 @@ def test_forget(player_others): for i, other in enumerate(others[:-1]): player.forget(other) - assert player.prefs == others[i + 1:] + assert player.prefs == others[i + 1 :] player.forget(others[-1]) assert player.prefs == [] diff --git a/tests/base/util.py b/tests/base/util.py index d5f45c3..1aaf301 100644 --- a/tests/base/util.py +++ b/tests/base/util.py @@ -1,9 +1,9 @@ """ Useful functions for base class tests. """ - -from hypothesis.strategies import composite, text, integers, lists, sampled_from +from hypothesis.strategies import composite, integers, text from matching import BasePlayer + @composite def player_others( draw, diff --git a/tests/hospital_resident/test_solver.py b/tests/hospital_resident/test_solver.py index 0bfdcea..1e38277 100644 --- a/tests/hospital_resident/test_solver.py +++ b/tests/hospital_resident/test_solver.py @@ -15,7 +15,7 @@ from matching.games import HospitalResident from matching.players import Hospital -from .util import connections, players, games +from .util import connections, games, players @given(players=players(), clean=booleans()) diff --git a/tests/hospital_resident/util.py b/tests/hospital_resident/util.py index 9d4a203..c9af988 100644 --- a/tests/hospital_resident/util.py +++ b/tests/hospital_resident/util.py @@ -1,12 +1,11 @@ -""" Toolbox for HR tests. """ - -import itertools as it -from collections import defaultdict - -import numpy as np -from hypothesis import given +""" Strategies for HR tests. """ from hypothesis.strategies import ( - booleans, composite, integers, lists, permutations, sampled_from, text + booleans, + composite, + integers, + lists, + sampled_from, + text, ) from matching import Player as Resident @@ -97,100 +96,4 @@ def games(draw, clean=booleans(), **kwargs): """ A custom strategy for making a game instance. """ residents, hospitals = draw(players(**kwargs)) - return HospitalResident(residents, hospitals, clean) - - -def make_players(resident_names, hospital_names, capacities): - """ Given some names and capacities, make a set of players for HR. """ - - residents = [Resident(name) for name in resident_names] - hospitals = [ - Hospital(name, capacity) - for name, capacity in zip(hospital_names, capacities) - ] - - possible_prefs = get_possible_prefs(hospitals) - logged_prefs = {} - for resident in residents: - prefs = possible_prefs[np.random.randint(len(possible_prefs))] - resident.set_prefs(prefs) - for hospital in prefs: - try: - logged_prefs[hospital] += [resident] - except KeyError: - logged_prefs[hospital] = [resident] - - for hospital, resids in logged_prefs.items(): - hospital.set_prefs(np.random.permutation(resids).tolist()) - - return residents, [hosp for hosp in hospitals if hosp.prefs is not None] - - -def get_possible_prefs(players): - """ Generate the list of all possible non-empty preference lists made from a - list of players. """ - - all_ordered_subsets = { - tuple(set(sub)) for sub in it.product(players, repeat=len(players)) - } - - possible_prefs = [ - list(perm) - for sub in all_ordered_subsets - for perm in it.permutations(sub) - ] - - return possible_prefs - - -def make_game(resident_names, hospital_names, capacities, seed, clean): - """ Make all of the residents and hospitals, and the match itself. """ - - np.random.seed(seed) - residents, hospitals = make_players( - resident_names, hospital_names, capacities - ) - game = HospitalResident(residents, hospitals, clean) - - return residents, hospitals, game - - -def make_prefs(resident_names, hospital_names, seed): - """ Make a valid set of preferences given a set of names. """ - - np.random.seed(seed) - resident_prefs, hospital_prefs = defaultdict(list), defaultdict(list) - possible_prefs = get_possible_prefs(hospital_names) - - for resident in resident_names: - prefs = possible_prefs[np.random.randint(len(possible_prefs))] - resident_prefs[resident].extend(prefs) - for hospital in prefs: - hospital_prefs[hospital].append(resident) - - for hospital in hospital_prefs: - np.random.shuffle(hospital_prefs[hospital]) - - return resident_prefs, hospital_prefs - - -HOSPITAL_RESIDENT = given( - resident_names=lists( - elements=sampled_from(["A", "B", "C", "D"]), - min_size=1, - max_size=4, - unique=True, - ), - hospital_names=lists( - elements=sampled_from(["X", "Y", "Z"]), - min_size=1, - max_size=3, - unique=True, - ), - capacities=lists( - elements=integers(min_value=2, max_value=4), min_size=3, max_size=3, - ), - seed=integers(min_value=0, max_value=2 ** 32 - 1), - clean=booleans(), -) diff --git a/tests/test_matchings.py b/tests/test_matchings.py index c62b9d6..605446b 100644 --- a/tests/test_matchings.py +++ b/tests/test_matchings.py @@ -1,11 +1,8 @@ """ Tests for the matching classes. """ - from hypothesis import given -from hypothesis.strategies import ( - composite, dictionaries, integers, lists, sampled_from, text -) +from hypothesis.strategies import composite, integers, lists, sampled_from, text -from matching import SingleMatching, MultipleMatching +from matching import MultipleMatching, SingleMatching from matching.players import Hospital, Player From 71523f33e231c23f264f9823799aff43290bf662 Mon Sep 17 00:00:00 2001 From: Henry Wilde Date: Wed, 15 Jul 2020 04:55:00 +0100 Subject: [PATCH 14/18] Catch typo in SA tutorial. --- docs/tutorials/project_allocation/main.ipynb | 22 ++++++++++---------- 1 file changed, 11 insertions(+), 11 deletions(-) diff --git a/docs/tutorials/project_allocation/main.ipynb b/docs/tutorials/project_allocation/main.ipynb index 19a393e..5519a62 100644 --- a/docs/tutorials/project_allocation/main.ipynb +++ b/docs/tutorials/project_allocation/main.ipynb @@ -1018,7 +1018,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAADX0AAAcqCAYAAACQOCfjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd7RsZ1k/8O+THiCFFqQHjHQpho5AKFIFAohBRAkICIqoiAULimJvKCBIDQKigIAC8kOBBEEMhBJaSOgk9ISSAglpz++PPXdx7j5zzpmZc+49k+TzWeusdefd+93PO7P37MnKme95qrsDAAAAAAAAAAAAAAAAwHLYY7sXAAAAAAAAAAAAAAAAAMD3CX0BAAAAAAAAAAAAAAAALBGhLwAAAAAAAAAAAAAAAIAlIvQFAAAAAAAAAAAAAAAAsESEvgAAAAAAAAAAAAAAAACWiNAXAAAAAAAAAAAAAAAAwBIR+gIAAAAAAAAAAAAAAABYIkJfAAAAAAAAAAAAAAAAAEtE6AsAAAAAAAAAAAAAAABgiQh9AQAAAAAAAAAAAAAAACwRoS8AAAAAAAAAAAAAAACAJSL0BQAAAAAAAAAAAAAAALBEhL4AAAAAAAAAAAAAAAAAlojQFwAAAAAAAAAAAAAAAMASEfoCAAAAAAAAAAAAAAAAWCJCXwAAAAAAAAAAAAAAAABLROgLAAAAAAAAAAAAAAAAYIkIfQEAAAAAAAAAAAAAAAAsEaEvAAAAAAAAAAAAAAAAgCUi9AUAAAAAAAAAAAAAAACwRIS+AAAAAAAAAAAAAAAAAJaI0BcAAAAAAAAAAAAAAADAEhH6AgAAAAAAAAAAAAAAAFgiQl8AAAAAAAAAAAAAAAAAS0ToCwAAAAAAAAAAAAAAAGCJCH0BAAAAAAAAAAAAAAAALBGhLwAAAAAAAAAAAAAAAIAlIvQFAAAAAAAAAAAAAAAAsESEvgAAAAAAAAAAAAAAAACWiNAXAAAAAAAAC6mqI6qqRz9HbPe6mE1VHVRVT6qq11TVp6rqm1V10eh8nrjd6wQAAAAAALgs2mu7FwAAAAAAAExXVXsluUmSGyc5ePKzZ5LvJDknyReTfD7J57v7e9u0TOASqKqekOQvkhyw3WsBAAAAAABgNaEvAAAAAABYIlW1b5IHJ3lMkh9Nsv8M0y6oqo8lOSHJO5P8V3efsetWCVySVdXvJfnD7V4HAAAAAAAAaxP6AgAAAACAJVFVD0zy3CTXmnPq3kluNfl5fJKLq+q53f3kLV4icAlXVYcn+YMpmzrJaUm+Pfn3DqfshmUBAAAAAAAwIvQFAAAAAADbrKoqQ9jriVt0yD2SXGeLjgVcujwlwz1ipT9N8lfd/c1tWA8AAAAAAABTCH0BAAAAAMD2e36GDl3TnJrkHUk+nuT0JN9JcoUkV0zyQ0kOT3KLJPvu+mUCl2RVtUeSB4yGX9Pdv70d6wEAAAAAAGBtQl8AAAAAALCNqurITA98fTDJbyR5R3f3Bse4XJL7JHnw5OfyW71OmKa7j0tS270OZnbjJAeMxv51OxYCAAAAAADA+oS+AAAAAABgm1RVJfnbKZtel+QR3f29WY7T3d+dzHldVR2U5NFJrrllCwUuLa4zZeyU3b4KAAAAAAAANiT0BQAAAAAA2+eOSQ4djX0pydGzBr7GuvvMJM/a5LqAS6eDpox9Z7evAgAAAAAAgA3tsd0LAAAAAACAy7D7Thk7prvP3u0rAS4L9psy1rt9FQAAAAAAAGxIpy8AAAAAANg+150y9oHdvoolV1X7JbldkhsluWKSC5J8Ocknk3ywu3dJaKWqDkxy2yRXS3LVDIGZM5KcnuT93f2lXVF3tIZDktw6yfUydGnqyRpe391n7Or6u1NVXS3JLTK8Lw5Msn+S85J8N8lXk3w+ySe7+5wtqrdnkh/J8NpeNcPr+80M5/eT3f3Rragzwzoulee4qg5OcpskP5jk4Ax/jPKbSd7S3V+Y81g/nOSwDOfpyhm6k52R5HNJTujuC7dw6Svr7p3hOVwr379GvjWp/fHuPmlX1F1UVV07w3vomhneQ/smOTfD6/WlJF9IcsqinSQ3qH2VDPfpH0xyQJIzM9ynP9Tdn9viWvsk+aEMnwlXy/BcO8O5+UaSj3b3J7ey5pQ1VJKbZbgur5Lhurw4ydlJTkvyiSSf3arPp6q6apLDkxyS4VrcM8O96mtJ3tvd39iKOpNaeya5QZIfntQ6YFLvu0nOSnJqhvvxZ7r74q2qCwAAAADAakJfAAAAAACwfQ6ZMvad3VW8qg7NEJpY6dHdfcwCxzouyV1XDL2zu4/YYM4RSY4dDd+tu4+bbL9+kt9NclSSy61xmFOr6uVJ/rS7N/3aVdW+SR6X5CeT3CHr/C6lqk5K8ookz543iLTe6zUJE/xUkl/KEKKoKYf4VFW9J0Oo4sorxk/s7lvNs5Ypa3takj8ZDd+/u/9zyr5HZJ1zOEOtg5P8QpKfTnKTGaZcVFUfm9R8bZL3zBuqqKpbJ/m1JPdKcqV19vtykjcn+fPu/sw8NSbzj8smz3GS4+atO1rDMUketcFunxuWM9XLuvvoDY75he4+dMX2+yZ5SpK7ZQiKjD06yTEbrClVdcskv5zk3kmuvs6uZ1fV25L8WXe/b6PjzqKqjkzymAzP4Qrr7PflJK+f1P7iVtSeV1VdM8mTkjwiyXVmmHJ+VX0oyduSvKa7P7zB8Z+Z5HdWDF3U3Xut2H63JL+d5O4Zgn3TjvH+JP+QoZPlQiGoqvqRJA/KcE5ul2SfDfb/epI3JfnL7j55kZprHPeIJE/I8HyvusHuX6uq/07yz0neOm9AqqoOynCPODJDQHWtN+rFVfXBJC9O8uLuvmCeOivq3SbJE5M8NEOQbiNnVdV7M7zO/7Y7gtAAAAAAAJc1U//HOwAAAAAAsFucN2VsWvevy5yqenSSj2UIiKwV+EqGkMPvJDmpqu6xyZo/nSFo8+wkd87GfzzvJhnCUZ+tqqM2U3vFGq6WIejzyiS3z9pf8k93n58hTLDSLSdhmc0Yh4S+kuStmzzmKlX1sAzd2v44swW+kiFEdIskv5Lk3UluOEe9q1TVvyR5X5KHZ53A18Q1MgQAP1FVfzcJBG7aPOf4kqSqrlBVr03yn0numemBr1mOc82qelWSDyY5OusHvpKhC9GDk7y3qv5tEiRcSFXdfhJieX2SB2SdwNfENZL8YpJPV9UfVdVu/d1rVT05ySlJfiuzBb6SISx1uwz3zROraqE/ElpVe1XV85K8I8P5Xu+53zrJS5IcV1VzfcZV1U2r6pMZumA+PcO9ed3A18QhGYJ7J1XV8yfdwRZWVbeaBDmPzRBE3ijwlQxdyB6Z4T3x2jlqVVU9Jclnk/xRhg5f690n9sjwGj8vySlVddd19p1Wb7+qelGS92b4zJ0l8JXJfj+W5O+S/Os8NQEAAAAAmI3QFwAAAAAAbJ+vThn7yd2+iiVTVU/MEBDYf45p10nyn1V1/wXq7VFVf5uha9e1552f4cv//1JVz1hg7sp1/ECS9yS5yxzTXjpl7NGbWMMdszpI9U/dfdGix1yjzmMzhARmCU5sRb3rZ3htj8r8Iau9kzw5yX9X1RU3uY5FzvHSq6rLJ3l7hg5BmznOrTIETx6excJwD0lyfFUdtkDtn0nyziS3XaDuvhm6Er5+8lrsclX1pxnCNrul3qh2JXlVho5X87hLkndOukzO6upJfmjOOitVkp+f1N0oxDf9AFWPSPK/2blz37xmClJV1f5JXpPkr7NxMHWa62W4Vz1mxnr7JnlLkp/LpSSACgAAAABwabLQX24DAAAAAAC2xHuSPH40ds+q+qXufvZ2LGgJ3D7JM1c8vjBDJ5m3JflShnDFdZM8MMmtRnP3SfJvVXVEdx8/R81XZgiZjH05Q5DlQ0nOyNCZ7UqTuvfN6s46T6+q07v7OXPU3mGPJK9Ocv0VY59N8uYkJ0/qXznDF/p/YscO3f2hqjoxycruXo+oqqd29wULrOPoKWPTgmULq6obJHlOVgcMzs1wrk9I8oUk52T4XdaBGYIfN01ymySHzlnvkAxdwaZ1jPpiktcl+USSb2boDnSLDJ2jrjza985J3lZVd+zu782zhomFzvEmnZrkwyseXymrg42fSHL+OvNn8YLsHJb6cobuRh9J8vUM53DH+3aqqrpdhvfbOMR0cYYw1v8l+XySb2cIhF47QwjnHtn5D13eMEMA9NbdfdYsi6+qJ2Xo8Dd2TpL/TvL+DB3vzk5yUJIbJLlXdn7fJcPze3Gm30+2zKSr4W9N2XRmkv9KcmKGa/s7Ge6ZB2S4X900wz32aptcwm9m52v0rCRvyPA6fT3JFZPcKEMI8FqjuddN8o6qulV3n7lA7W9muEd8IsP756wM52n/JFdJcrMM52Z8nd8+w3X6iHmKVdUvZrhfTXNahtf7Y0lOT3JRhuf+gxm6c90hw+s/a619MnzW3XHK5k9n6DL2kSTfyvDZeNUM98T7ZXjuO+yd5EVV9dXu/s8Nyv5ukiOmjJ+a4bmdlOGcnpfhvXlgksMyvM63zzaEDgEAAAAALkuqu7d7DQAAAAAAcJlUVVfNEG6Z1tHqjUn+orvfvQvrH5rkc6PhR3f3MQsc67js3AXlnd19xAZzjsjwJfaVzkuy3+Tf/zdZzylrzL9vkhcmueZo08lJbjlLMKeqfjXJ34yGv5jkKUlet1aHq6raK0NA6m+TrOwec36SO3b3Bzaoe1x2fr0uSrLn5N/fSPKrSV7RU36RM+mys8+O51dVT87Q8Welh3b369Zbw5Tj7p+h+9zKjjTv6e47rTPniKw+h3fr7uPWmfOiDF1lVnpFkqd09+kzrPMmGQInj09yz+4+eZ19K0Oo6r6jTecm+Z0kfz/tHE9ei2ck+bXsHChKkmd196/OsM7jskXneKtU1dFZHeK7Xnd/fo5jHJPkUSuGVj6vc5M8Lck/rBU6rKr9uvu80diVMoQrVwYpO0PHv2d092nrrOewJM9Lcs/Rpld391EzPJ87ZAiV7b1i+LtJ/iDJ87v77HXm3i1DyOt6o02/0N3P26j2oqZcW0nyF0n+qLvP2WBuZQgkPTzJY5Ic0t0XrrP/MzO8V3boDPe5HWGmFyf5tWkBrqraM8O99I+yOvz0ou5+3HprnRzjnkn+KcN1+4YkH+juizeYU0nun+RZGQJYKz24u9+wUd3JcX40QxB179GmTyf57SSvnfb+XTH/gCQPSPKLSc7t7vE1Ot7/uUl+YTT8sSS/2t1vW2fe5ZL8SoZ71so/+vrNJDfv7i+tM+/0JJdbMXxOkiclefkMr/O+GQJjj85wHd19vf0BAAAAAJif0BcAAAAAAGyjqvqLJL++zi5fytBt4/+SvC/Jx9f7gv6ctQ/N8oW+djguyX3H4ZApx7h+knclucZo09O7+482mHuzJB/Mzl/oPz7JfWbtQFNVt0jyP9k5KPX/unscMhrPOy6rQxtJ8rUkd+/uk2apPznWlTN0VtpnxfAbu3vNrkprHOenM4SvVnpcd79onTlHZP7Q1+nZuSvNsUnusV54Yo3j7JVkj+5eq0tVquoRGTq5rXRekh/v7rfPUOPxSf5xNNxJbtvd799g7nHZonO8VXZR6GuH7yS5X3f/zwLrenWSh60YujDJI7v7X2ecv0eSY5L8zGjTrdcLYFbVfklOyc5hs69luB4/PmPtK2a4B9xsxfDpSa7b3efOcox5TOqdkZ3DiDMFqKYc63Ld/d0N9hmHvlZ6Znf/3gx1jkzymuwcSEqSO3X3ezaYe/kk31vkc28SJnxHhu59O7yru+8yw9z9MoS7xqHidyR5yLxdyqrq0PXeZ1V1vwwB1ZVel+Sn1rvHjY5x3yT/kZ1f5+d09y+tsf+DMgTpVnpkd4/vmbPU3vBaAgAAAABgfuO/TAgAAAAAAOxeT88Q6FrLNTN00XhBkhOTnF1V762qv6+qn6iqq+2ORe5m30jyExsFvpKkuz+b5KenbPqFqhp3Zxl7WnYOfH0lQ2hl5i/zd/eHs7ozy32q6pazHmPksfOGgbr7Gxk6w6103wWujUePHn83yUyhm1lNOt9cZTT8onkDX0nS3RfOEIZ4ypSx35gl8DWp8YIkzx8N1xrHndXc5/gS4rcWDHzt6Nw2PtbM196kI9Fjk3xyfJwNpj46Owe+Lk7yoFkDX5Pa30ry4CQrO5tdNUMXrV3h0Kz+He8LFznQJkM6b5sl8DWp84YkfzZl05NnmPudRYPO3f3NDB0ZV7pzVd1ghumPyfQukg+YN/A1WcvnN9jl90ePT0zy8FkDX5Mab0nyzNHwz026ik5z/dHjc5L8y6z1RrUFvgAAAAAAdgGhLwAAAAAA2EaTYNP9sjq0s5b9ktw2yS9l6Jzylao6rqoeM+lMcmnwB5Mg00wmXaX+bTT8A0ketNacSZeznxwN/+4kwDGvf07yqdHYkQsc59juftMC85LkJaPHe2V116M1VdV1ktx9NPza7j57wfWs5YApYzOf63lU1e2THD4a/miS5855qKclGV8XiwYuN3OOl9lnMv/rusNvZAjS7fCpJM+a9yCTcMyfjobvX1X7TNt/0h3sqaPhl3X3exeo/ekM94GVHjzvcWa0295D6+jMENga+ZMMwdqVHlJVh2zNkqbr7hOTfGQ0/KPrzamqyvQOnD+7K8JNk46Jtx0N/3J3XzBl9438VYauezvsn+Tea+w7vpa+3d0XLVATAAAAAIBdROgLAAAAAAC2WXd/O0NA6WeTfHrO6ZXkrklenOSUqprW9eqS5LwkL19g3gumjN13nf2PzBCM2uE7WbzDSSd5y2j4rgsc6sWL1J94a5Ivj8aOnmP+o7Jz8CZJXrqJ9azlmxkCIyutG8DYhB+bMvaPk65QM5u8P181Gt47yRELrGkz53iZvXSRbm1VtWdWh6OO2UTw5M2jx/snuc0a+/5IVnc6etGCdafVvsMM3QYXMS3gtaveQ2v53+7+xDwTuvvcJK8YDe+d5B5btqq1jUO5t99g/5tn6Ki20rHdfcKWrWhn4053n1qka14ydEZL8s7R8FqfR+Nr6ZpVdb1F6gIAAAAAsGsIfQEAAAAAwBLowcuT3DjJAzKETM6a8zDXSfKKqnppVe271WvcTY7r7jMXmPe2rH691vti//hL8CdusoPL50aPb7XAMY5dtPgkJDMOy920qtYKvIw9avT4s1kdHNi0SWe7cdedp1bVQ7e6VpI7TRkbd4Sb1atnPP5GFj7HS27R53XLJAeOxt6z6CK6+/Ts3OUoWfu9OL4HXJDk/YvWzup7wOWS3HATx1vLyUnG98i/qqpFrsdFvWHBea+bMrZRAGuVqjqsqh5ZVX9RVa+tqv+qquOr6kNVdeL4J6u7GF5ngxJHTBlbJIw8q/G1uPB7YGLWz6NxV7tK8i9Vda1N1gcAAAAAYIvstfEuAAAAAADA7tLdFyZ5U5I3Tbrg3DJDF5dbZ+hMc8Mke25wmKOTXD7JT+66le4yH1hkUndfXFUfTnLnFcM3rqrLrRHmGgckbjoJByzqSqPHB1XV3t19wYzzv97d405d83pJkt8cjR2dZN3uNFV1lyQ/OBo+ZpHOTTN6aZJnrXi8X5LXVtXxSV6W5E3d/cUtqPMjo8df7O6vLnisDyS5ODv/QcXx8TeyFed4GXWSRd8704JK/1BV529iPePA61XmqP2+qnHDu4Xrrld7Yd19UVW9PMmTRnXeVVX/leSVSf6zu6d1BNsqC92nk3w4yUXZ+TPs8FkmTj4PHzv5ufWC9Xc4eIPtd5gy9r+brDlVVR2c5Kaj4fts8vPo6qPHa12HH0jy0SQ/vGLstkk+WVX/miHseuwkrAsAAAAAwDYQ+gIAAAAAgCU16d70gaz4gn1VXS7J7ZLcLcnDktxojekPq6pf6u5n7/KFbq1TNjH35Owc+qoMX3Y/deVOVbVPkquO5h6cjYMA87pSkq/NuO+s+62puz9ZVe9JcscVwz9VVU/p7u+tM/XRo8cXZwhf7SrPT/KIDOGClW4/+XleVX06ybszdF56d5KPzBNCqyG5Mw7ifWLRBXf3OVV1WpLrrhieN9Cz6XO8pM7ZRJe8aR2FbryZxUxx5Rlr753kFrup9mY9I8mPJzl0xVgluffkp6vqYxk6Rp2Q5F3d/cktrL/Qfbq7z62qU5Ncb8XwIRvNq6qbZei0dctF6k5x0AbbrzZ6/L0tfv1WukaGczeuP17DZky9Dru7q+qJSd6RZJ8Vm/bPEBg+Osn3quqEJMdn6Az2ru6+tN7LAAAAAACWzh4b7wIAAAAAACyL7v5udx/b3U/v7hsnuU+Sj6+x++9OQmKXJGdu8dxpQa5dFcQY23+Ofc/aopovHT2+YpIHrbVzVV0+yU+Mht/e3adO238rTAJo90/ytnV2OyxD4OA5GbpInVFVL6+q+1XVLL/fOjCrO+J9e4HlrvSt0eNxqGwjW3WOl81mntfueC+u9T7cztqb0t1nJLlnhs5Z01SG7k0/n+RFSU6pqi9X1fOq6s5rzJnHVt6n1w3bVtXNkxybrQt8JUPAbz3j9/Zm7x3r2dbrsLv/N8kDk6zVGW7fDN1Gn5rkNUm+WlUfr6pnVNUNtnylAAAAAADsROgLAAAAAAAuwbr7rUluk+QtUzYfkuHL3Jck39niuQdMGbviJmrsKhdu0XH+Ncm469K4k9dKD0tyhdHYODi25SahlXslOSorOtmt40pJHpnkzUlOqqqHbrD/tPO+mWtr2vxpNdazVed42WzmeW3ne3EZ7wMz6+7PZLj3PzHJLF2orp7kCUn+p6reW1V3Xbz0wp3dkjneR5OujK/J9K5670ry+xk6nt08Q/fGA5Ls1d218ifJK+dc44Gjx+fMOX8e234dTv474oZJ/jzJGTNMuUmSpyf5RFW9uqoO3XWrAwAAAAC4bBP6AgAAAACAS7juPjfJwzP9y9r32M3L2azLb/Hcs6eMnTtl7FnjoMAW/Hx+E89lId19dpLXjobvVVXXXGPKOBD27SSv3/KFTdGDV3f3rTOECJ6a5I1Zu+PMDjdM8tpJ16JaY59p530z19a0+dNqMJ9p78UDtvh9+NgZa79/F9wDXrHFr9dOuvuC7n5+d98wyW2T/F6S/87G1+Ztk7yjqn5zgbK1yQ6S87yPnphk3E3qU0kO7+67dPcfdvebu/uj3X1Gd5/T3RdNOc68HdfG3evGwditNO098KQtvg732mgR3f2N7v6tJNdIcr8kf53kfUkuWGfaHhmCwydW1T0XeO4AAAAAAGxA6AsAAAAAAC4FuvusJMdM2XTD3bSEvbfoOAdt8dxvTxmbFo673ibqLptxp649kvzMeKequn6SO4+GX9Xd5+2qha2luz/R3X/d3Q/s7qtkCHr8XJKXZ+3OM09I8ttrbDsryTj8cfAmlzme/81NHo/p5/bQbap9ib4HdPcJ3f3M7r5Xhmv1FkmelOTfMj1YtUeSP6uqoxYot5X36Wn36B1+avT4zCT36O4PzlnzSnPuPw6ebvbesZ6l+jyaBAnf0t1P7e7bZeh6dpcM99p3Znpnv4OSvK6qDtuNSwUAAAAAuEwQ+gIAAAAAgEuP900Zu8o6+0/r4LFoeOvKC84bG3d1mcc44NaZ8oX6STescXeVm2+i7rJ5Z5LPjsaOnrLf0UnGnbLGgbFt0d2f6u6XdPfPJvmBJA9IcsKUXX+7qlZd493dWR3cuPGi66mqyye5zmh4rTAas/valLHd9V4c175yVV1jN9Xepbr74u7+SHc/t7t/IslVkzwyyaen7P6XVbXnnCUWuk9X1f5Z/T76+hr7HpShI9lKx3T3aQuUvv6c+3919HjfqtpVAertfA9sqLvP6+53dfefdvcRSa6e5GkZAngrHZDkGbt7fQAAAAAAl3ZCXwAAAAAAcOkx/hJ2Mr0rxw5nTRk7cN6iVbV3Vn+Rf1GHLzKpqvZIcsvR8Ce6+7trTBkH5K63C7/Uv1tNAk/HjIZvWFV32PGgqirJz472+Xh3TwtWbavuvqi735TkjkneMtp8uST3WWPquBvQtarqagsu4/Cs/r3aBxY8Ft83Lah638tA7d2qu7/X3a9M8iNJPjLafO0kt5nzkAvdpzN0HxsHzNZ6H10zq0Op75q34CTIN+/n0/9NGbvTvLVn0d1fTvLF0fBdqupyu6LeZnX3Gd39Zxnux98ZbX7g5L8HAAAAAADYIkJfAAAAAABw6TEt0DKti8gO5yS5aDQ2b0eUZOjGsv8C86a526TDy7zumdWBtePX2f+/p4w9coG6y+plSS4ejT16xb/vnuS6o+0v2aUr2qTuvjBDh5mxtbrivGfK2E8sWP5hMx6f+bw7yXmjsQcseA+Y16X9HrDKpMvhH07ZNG9nqSMXXMJDpoytdZ+e1qXymwvUPGqBOcdNGfuZBY4zq7eNHu+b6fecpdHdJ2V1Z8grJLneNiwHAAAAAOBSS+gLAAAAAAAuPe4+Zewza+086Qj1ydHwbReo+/gF5qxlvywWvHjclLFxV6iV/mPK2JOr6koL1F463X1qkrePho+qqh3hvKNH2y5M8opdva4tcPKUsbUCQm+dMvb4SVe4mU0CSI8YDV+Q5Nh5jsNq3X1eVp+ng5L86m4o/39JTh+NHVFVR+yG2ttpnvfQWn60qm40z4Sq2i/JT4+GL8jq+9QO4y5SyfQg2Ho190nypHnmTHwsyadHY0dU1bwd0Wb171PGfreq9tpF9bbKVlxLAAAAAACsQ+gLAAAAAAC2SVU9oKq2pCtGVf1gkp+csulNG0z9wOjxravqBnPUPTzJT826/4z+oKquOMca7pzVHZy+mulfpE+SdPdHszr4dWCSl88bClpi4y4sByZ5SFUdmNUdd97c3V/fPcvalKtPGRsHd5Ik3f2+JO8fDd88yRPmrPnHScZhwFdfQl6vS4I/njL2tKq6w64s2t3nJ/nLKZteWlVX3pW1t9nM76F1VJJnzTnnaUmuMRp73Trvo69MGbvXnDX/MAt0r5wEov9iyqZ/qqrLzXu8Gfx7ko+Oxg5L8re7oNZW2oprCQAAAACAdVxafmkJAAAAAACXRPdP8smqeum8XVNWqqprJHl9kvGX0U9P8rYNpk/rhvVXM7YdGi8AACAASURBVNa9TpJXJ9l7lv3ncJUkr6mqfWdYw6FJ/nnKpud19wUbTH96kotGY/fLEPrYb4Z1TlvPTavqn+YJre1Cr0/y7dHYo5McldXXykt2x4Kq6o5V9ctVdcCCh/jlKWMfXmf/v5ky9ldVdddZilXVY5L8wmi4s/xhjEuM7j4hqwOa+yR5Q1XdaZFjVtV+VfWEqpp2vaz03KwOFx2a5C1Vdc0Fax9SVX9SVdM6L25aVR1ZVY+adLFaxJOnjK33HlrLvavqD2bZsap+PMlvT9n07LXmdPeXk3x2NPyzVXWzGWs+Lsmvz7LvGl6W5AujsRsleeOk+99cJp9VU01CZk+fsulJVfVHiwaRq+pOVbVmB8eq+rWquseCxz44yaNGw99M8sVFjgcAAAAAwHRCXwAAAAAAsL32SnJ0kk9U1fFV9aSqmtY9Y5WqulxVPSHJh5L88JRdfr27z9vgMK/L8EXtlR5QVS9cr6NJVT0kyfH5fheVjerMasdx7pHk7et1Hauqeyf5nyTXGm06OdO7tOykuz+c5DembPrZJMdPOrHVRsepqitW1WOq6r8ydGv5mSR7bjRvV5uc+1eNhu+W5NdGY19P8p+7ZVHJIRk6BH2xqp5fVfeqqg1Dg1V1har68yS/Mtp0ZtbpZtfdr8rq57Z/kjdP3mtTf1c2CQ39aZIXZuhqtNKzunvcIY/NeVxWB2wOSXJsVf15VV1towPU4PZV9TdJPp/keUnW7aTY3d/N0CHx/NGm2yT5YFX9wiwB0Krat6oeOAnYfCFDV6sDN5q3oMOSHJPk1Kr660mwZ8Pf+U7CaK9I8oDRppO6+0Nz1O8k35v8+/cn7+Opz7Wq9qyqX0vy2gyfdSu9qLv/d4Narx493ifJWyfdHaea3I+fk+QF+f7vws/aoM4qk05wR2X1tXH3JCdU1UM3OsbkvvXwqnp3khdtUO8NGa7Zsd/N8Fn4o7Osu6quUVVPrqrjk7w7yY+vs/vdkrytqj5aVb81a5fPqvrhJG/P6s/ef+nuC2c5BgAAAAAAs6nhD4cBAAAAAAC7W1U9P8nPr7H580nem+SkJGck+UaGL9sfmOS6SW6eIRh1+TXmv7q7j5pxHb+cIYgz9pUMX9Y/McnZSa6YodPJ/ZLccMV+/5Lk6klWdk96Z3cfsUHdI5IcOxp+WpJn5vuhqQszdCt7e5IvZfjS/6EZgguHTzns+Unu2t3Hr1d7tI4XJfm5NTafOlnjiRnOwXlJDsr3X4vDk9w0qwMNV+3uM9apeVzmfL0WUVW3SfK+DXb76+5+6oLHPyKrz+Hduvu4NfY/MkMHspXOTvLBDOHFz2XoTvadJPtlCBX8SJJ7Z3jdxx7X3euGKarqkAznb1qY8tQMwcdPTOpeJcktkzx48u+xDya5Y3d/b8q2cd3jshvO8Tyq6ugkLx0NX6+7Pz/HMY7Jzh1+vtDdh27B2m6RIcQ5LUD0vST/l+RdGToJfSvJvkkOTnKNJLdKcuusPmd/193joOC02o/JEMqZFvL8VpJ3Zgi5fj3D9XqFSe3rZbgH3Cqru+c9eBLk2VJV9dQkfzka/kaSD2S4zk/LcC2fO1nTdZPcNsk9MwQeV+ok9+zud6xT75lJfmfF0EVJfi/Jn6wYOzPJG5K8P8NrdHCSGyd5aJJrTzns55LcqrvPXKvupPZVknwm06+J45L8V4bPyiT5gSR3THKfDOdnh7dmeH0esWLsM9192Hq1V6zhCZkexkqG1/qtST6WobPmRRme+/Uz3LfulO+/5m/v7ntuUGuvDN0319rv5AzP+6QMYe0LJvWunOFz6PAMn80rr+Mzu/vgNeq9KUPH0ZU+n+E+95EkX8tw/V+c4RwcluQuSe6Q1e+V05PcrLu/vt5zBAAAAABgPuNfQAIAAAAAAMvh0MnPIl6WtUNM0zw7QzeQ8RfNr57klzaY+z9JHpPhi+pb4fgkT07y3MnjvTJ8if8+M8w9P8lD5wl8TTwuQwjhD/P9zjA7XCdDwOVR40mXBN19QlV9LMnN1tltHALa3Q7IEI6660Y7jvztRoGvJOnur0+65Py/JD802nydrO4etpZ3J3ngLIEv5tfdH66q22YI4d1ktHnfJEdMfnZF7ZdU1elJ/ilDiGalKyY5cvKzrK6c5F6Tn1ldnORX1gt8rePPMwSMdnS7Oiiz3ydPTXL3jQJfSdLdZ1TVIzMEysb35iOy8fXwkSQPT/KcGda11hqeX1VnJXlxhiDqStdO8thFjz2l1oVVdf8kf5fkCVN2udHkZ1c6dPLzkDnmfCvJQwS+AAAAAAC23vh/jgMAAAAAALvPy5O8MkNXlq3w2SQP6u6ju/uiWSd198VJHpjkTXPWe2WSe3f3uXPO22g9/5AhiHXeHNNOS3L/7p73OaQHf5wh9Pb+eeePnJWhY9A5mzzOVlov1PW+7v74blvJ0BFonvM6zRlJfq67nzLrhO7+bIauO6/O0N1oHhdkCEb+WHd/a865zKG7T8nQlepZSb67ycOdkDnCqN39xgzdwv49818jK12Y5I1JPrqJY6znjEmNzfhchgDjsxeZPPnM+KkM97p5vCtDJ8bPz1HrjUmOytBhbR7/keQu3b3pz9fu/uckd07ynk0c5msz1jq/u5+Y4Tl/ahP1dtRcq0tZknx1k8dPhuD3Hbv73VtwLAAAAAAARoS+AAAAAABgm3T3/3b3I5MckuQeGTpNvSPzBYa+liF8df8kN+zu/1hwLed29wMyfNH8I+vtmqHj0f26+5HdvdkAz1rreVGSm2cIxq0XKjstyZ8kuUl3v22TNY/t7ttk6Cr2miSnzzj1cxnCDw9L8gPd/bhd9bos6BUZgkvT7NYuX919bIauRA9K8g9JTkwya0DxA0memuSw7n7JArVP7+6jMoSK/jVDd5r1fCXJC5PcuLufvGTn9FKru7/T3b+aodvQH2Y47xfPMPXcJG9P8rQM5+y23f3WOWt/pruPTPLDSf4xQ5B2Ft9I8tokP5/kGt39wO7+zDy151jjMRk+Mx6R5CVJTs5sIbWLkxyX5PEZXp83b3IdF3T34zJ0FztugzV8MEP3ybkCXytqvTbD58ELs/7nwUUZPkMf0N0PmqWb2BxreH933ynJ/TJ0HjtrhmmnJnlBhvDZT89Z79UZuno9PMmbZ6yXJCcl+fvJOq/V3U9bp8Zjk1wvyZOS/FuSL89Y47sZArT37+67dvfJM84DAAAAAGBO1b2ZP1QHAAAAAABstaqqJNdM8kNJrpPkwCQHZPhS/VkZOp58JclHu3srOnVMW8O1k9whQ7jg4Axf8v5ckuO7+ytbVOOIJMeOhu/W3ceN9ts/ye0yfAH+Skm+l+H5fyrJ+3sX/bJjch5ukuQGGYJKV87wB/XOztCd7TNJTtb9aXOq6vIZrvXrJ/mBDNf63hnCj2cm+XSSj2xlgGNSd88MnZ0OTXLVDO+zbyf5epJPdvd64Ud2o6o6OMO5ulqG9+GBGcI/Z2W4F5yS5LPzdDico/a1k9wi378H7J/h2jwrQ6jn5O7+0lbXnUdVHZThPnX9DPfsK2Tne9UpGT4v5u6eVlXPTPI7K4Yu6u69pux31SS3n6zhChleny8n+dCk096WqKp9J3V23Jcr378fn7C77sdVtVeSw5NcN8P94+AMn01nJflCkpO6+7QtrLdnkltmuF/tuBYvznCOv5Xh8/Dk7t5Ul8mqunqSwzKEwa6U5PIZwnRnZ+gy97Ekp3T3ZrvNAQAAAAAwA6EvAAAAAABgW8wa+gJge8wa+gIAAAAAALbeHtu9AAAAAAAAAAAAAAAAAAC+T+gLAAAAAAAAAAAAAAAAYIkIfQEAAAAAAAAAAAAAAAAsEaEvAAAAAAAAAAAAAAAAgCUi9AUAAAAAAAAAAAAAAACwRIS+AAAAAAAAAAAAAAAAAJaI0BcAAAAAAAAAAAAAAADAEhH6AgAAAAAAAAAAAAAAAFgi1d3bvQYAAAAAAAAAAAAAAAAAJnT6AgAAAAAAAAAAAAAAAFgiQl8AAAAAAAAAAAAAAAAAS0ToCwAAAAAAAAAAAAAAAGCJCH0BAAAAAAAAAAAAAAAALBGhLwAAAAAAAAAAAAAAAIAlIvQFAAAAAAAAAAAAAAAAsESEvgAAAAAAAAAAAAAAAACWiNAXAAAAAAAAAAAAAAAAwBIR+gIAAAAAAAAAAAAAAABYIkJfAAAAAAAAAAAAAAAAAEtE6AsAAAAAAAAAAAAAAABgiQh9AQAAAAAAAAAAAAAAACyRvbZ7AbCWqjooyV1XDJ2W5PxtWg4AAAAAAAAAAAAAAACXLfskufaKx+/s7jN3R2GhL5bZXZP8+3YvAgAAAAAAAAAAAAAAAJI8KMl/7I5Ce+yOIgAAAAAAAAAAAAAAAADMRugLAAAAAAAAAAAAAAAAYInstd0LgHWctvLBG97whhx22GHbtRYAAAAAAAAAAAAAAAAuQz796U/nyCOPXDl02lr7bjWhL5bZ+SsfHHbYYbnpTW+6XWsBAAAAAAAAAAAAAADgsu38jXfZGnvsrkIAAAAAAAAAAAAAAAAAbEzoCwAAAAAAAAAAAAAAAGCJCH0BAAAAAAAAAAAAAAAALBGhLwAAAAAAAAAAAAAAAIAlIvQFAAAAAAAAAAAAAAAAsESEvgAAAAAAAAAAAAAAAACWiNAXAAAAAAAAAAAAAAAAwBIR+gIAAAAAAAAAAAAAAABYIkJfAAAAAAAAAAAAAAAAAEtE6AsAAAAAAAAAAAAAAABgiQh9AQAAAAAAAAAAAAAAACwRoS8AAAAAAAAAAAAAAACAJSL0BQAAAAAAAAAAAAAAALBEhL4AAAAAAAAAAAAAAAAAlojQFwAAAAAAAAAAAAAAAMASEfoCAAAAAAAAAAAAAAAAWCJCXwAAAAAAAAAAAAAAAABLROgLAAAAAAAAAAAAAAAAYIkIfQEAAAAAAAAAAAAAAAAsEaEvAAAAAAAAAAAAAAAAgCUi9AUAAAAAAAAAAAAAAACwRIS+AAAAAAAAAAAAAAAAAJaI0BcAAAAAAAAAAAAAAADAEhH6AgAAAAAAAAAAAAAAAFgiQl8AAAAAAAAAAAAAAAAAS0ToCwAAAAAAAAAAAAAAAGCJCH0BAAAAAAAAAAAAAAAALBGhLwAAAAAAAAAAAAAAAIAlIvQFAAAAAAAAAAAAAAAAsESEvgAAAAAAAAAAAAAAAACWiNAXAAAAAAAAAAAAAAAAwBIR+gIAAAAAAAAAAAAAAABYIkJfAAAAAAAAAAAAAAAAAEtE6AsAAAAAAAAAAAAAAABgiQh9AQAAAAAAAAAAAAAAACwRoS8AAAAAAAAAAAAAAACAJSL0BQAAAAAAAAAAAAAAALBEhL4AAAAAAAAAAAAAAAAAlojQFwAAAAAAAAAAAAAAAMASEfoCAAAAAAAAAAAAAAAAWCJCXwAAAAAAAAAAAAAAAABLROgLAAAAAAAAAAAAAAAAYIkIfQEAAAAAAAAAAAAAAAAsEaEvAAAAAAAAAAAAAAAAgCUi9AUAAAAAAAAAAAAAAACwRIS+AAAAAAAAAAAAAAAAAJaI0BcAAAAAAAAAAAAAAADAEhH6AgAAAAAAAAAAAAAAAFgiQl8AAAAAAMD/Z+9+Q36/6zqOv95nh1Nrm0q2aSpWbu2GVgNlUDmr4QyHs1RmQizpHxVWokgJLQoiEIQSxDREHEjrRmZh27L5Z8puKGyjpRRBtsjG2lpLl3M16bh3N86R/c7X65zr+p3fda7fe57HA64bn8/5/Dtc190nXwAAAAAAAAAGEX0BAAAAAAAAAAAAAAAADCL6AgAAAAAAAAAAAAAAABhE9AUAAAAAAAAAAAAAAAAwiOgLAAAAAAAAAAAAAAAAYBDRFwAAAAAAAAAAAAAAAMAgoi8AAAAAAAAAAAAAAACAQURfAAAAAAAAAAAAAAAAAIOIvgAAAAAAAAAAAAAAAAAGEX0BAAAAAAAAAAAAAAAADCL6AgAAAAAAAAAAAAAAABhE9AUAAAAAAAAAAAAAAAAwiOgLAAAAAAAAAAAAAAAAYBDRFwAAAAAAAAAAAAAAAMAgoi8AAAAAAAAAAAAAAACAQURfAAAAAAAAAAAAAAAAAIOIvgAAAAAAAAAAAAAAAAAGEX0BAAAAAAAAAAAAAAAADCL6AgAAAAAAAAAAAAAAABhE9AUAAAAAAAAAAAAAAAAwiOgLAAAAAAAAAAAAAAAAYBDRFwAAAAAAAAAAAAAAAMAgoi8AAAAAAAAAAAAAAACAQQ5v+wEAB6nectO2nwAAwB71H7xy208AAAAAAAAAAACArfClLwAAAAAAAAAAAAAAAIBBRF8AAAAAAAAAAAAAAAAAg4i+AAAAAAAAAAAAAAAAAAYRfQEAAAAAAAAAAAAAAAAMIvoCAAAAAAAAAAAAAAAAGET0BQAAAAAAAAAAAAAAADCI6AsAAAAAAAAAAAAAAABgENEXAAAAAAAAAAAAAAAAwCCiLwAAAAAAAAAAAAAAAIBBRF8AAAAAAAAAAAAAAAAAg4i+AAAAAAAAAAAAAAAAAAYRfQEAAAAAAAAAAAAAAAAMIvoCAAAAAAAAAAAAAAAAGET0BQAAAAAAAAAAAAAAADCI6AsAAAAAAAAAAAAAAABgENEXAAAAAAAAAAAAAAAAwCCiLwAAAAAAAAAAAAAAAIBBRF8AAAAAAAAAAAAAAAAAg4i+AAAAAAAAAAAAAAAAAAYRfQEAAAAAAAAAAAAAAAAMIvoCAAAAAAAAAAAAAAAAGET0BQAAAAAAAAAAAAAAADCI6AsAAAAAAAAAAAAAAABgENEXAAAAAAAAAAAAAAAAwCCiLwAAAAAAAAAAAAAAAIBBRF8AAAAAAAAAAAAAAAAAg4i+AAAAAAAAAAAAAAAAAAYRfQEAAAAAAAAAAAAAAAAMIvoCAAAAAAAAAAAAAAAAGET0BQAAAAAAAAAAAAAAADCI6AsAAAAAAAAAAAAAAABgENEXAAAAAAAAAAAAAAAAwCCiLwAAAAAAAAAAAAAAAIBBRF8AAAAAAAAAAAAAAAAAg4i+AAAAAAAAAAAAAAAAAAYRfQEAAAAAAAAAAAAAAAAMIvoCAAAAAAAAAAAAAAAAGET0BQAAAAAAAAAAAAAAADCI6AsAAAAAAAAAAAAAAABgENEXAAAAAAAAAAAAAAAAwCCiLwAAAAAAAAAAAAAAAIBBRF8AAAAAAAAAAAAAAAAAg4i+AAAAAAAAAAAAAAAAAAYRfQEAAAAAAAAAAAAAAAAMIvoCAAAAAAAAAAAAAAAAGET0BQAAAAAAAAAAAAAAADCI6AsAAAAAAAAAAAAAAABgENEXAAAAAAAAAAAAAAAAwCCiLwAAAAAAAAAAAAAAAIBBRF8AAAAAAAAAAAAAAAAAg4i+AAAAAAAAAAAAAAAAAAYRfQEAAAAAAAAAAAAAAAAMIvoCAAAAAAAAAAAAAAAAGET0BQAAAAAAAAAAAAAAADCI6AsAAAAAAAAAAAAAAABgENEXAAAAAAAAAAAAAAAAwCCiLwAAAAAAAAAAAAAAAIBBRF8AAAAAAAAAAAAAAAAAg4i+AAAAAAAAAAAAAAAAAAYRfQEAAAAAAAAAAAAAAAAMIvoCAAAAAAAAAAAAAAAAGET0BQAAAAAAAAAAAAAAADCI6AsAAAAAAAAAAAAAAABgENEXAAAAAAAAAAAAAAAAwCCiLwAAAAAAAAAAAAAAAIBBRF8AAAAAAAAAAAAAAAAAg4i+AAAAAAAAAAAAAAAAAAYRfQEAAAAAAAAAAAAAAAAMIvoCAAAAAAAAAAAAAAAAGET0BQAAAAAAAAAAAAAAADCI6AsAAAAAAAAAAAAAAABgENEXAAAAAAAAAAAAAAAAwCCiLwAAAAAAAAAAAAAAAIBBRF8AAAAAAAAAAAAAAAAAg4i+AAAAAAAAAAAAAAAAAAYRfQEAAAAAAAAAAAAAAAAMIvoCAAAAAAAAAAAAAAAAGET0BQAAAAAAAAAAAAAAADCI6AsAAAAAAAAAAAAAAABgENEXAAAAAAAAAAAAAAAAwCCiLwAAAAAAAAAAAAAAAIBBRF8AAAAAAAAAAAAAAAAAg4i+AAAAAAAAAAAAAAAAAAYRfQEAAAAAAAAAAAAAAAAMIvoCAAAAAAAAAAAAAAAAGET0BQAAAAAAAAAAAAAAADCI6AsAAAAAAAAAAAAAAABgENEXAAAAAAAAAAAAAAAAwCCiLwAAAAAAAAAAAAAAAIBBRF8AAAAAAAAAAAAAAAAAg4i+AAAAAAAAAAAAAAAAAAYRfQEAAAAAAAAAAAAAAAAMIvoCAAAAAAAAAAAAAAAAGET0BQAAAAAAAAAAAAAAADCI6AsAAAAAAAAAAAAAAABgENEXAAAAAAAAAAAAAAAAwCCiLwAAAAAAAAAAAAAAAIBBRF8AAAAAAAAAAAAAAAAAg4i+AAAAAAAAAAAAAAAAAAYRfQEAAAAAAAAAAAAAAAAMIvoCAAAAAAAAAAAAAAAAGET0BQAAAAAAAAAAAAAAADCI6AsAAAAAAAAAAAAAAABgENEXAAAAAAAAAAAAAAAAwCCiLwAAAAAAAAAAAAAAAIBBRF8AAAAAAAAAAAAAAAAAg4i+AAAAAAAAAAAAAAAAAAYRfQEAAAAAAAAAAAAAAAAMIvoCAAAAAAAAAAAAAAAAGET0BQAAAAAAAAAAAAAAADCI6AsAAAAAAAAAAAAAAABgENEXAAAAAAAAAAAAAAAAwCCiLwAAAAAAAAAAAAAAAIBBRF8AAAAAAAAAAAAAAAAAg4i+AAAAAAAAAAAAAAAAAAYRfQEAAAAAAAAAAAAAAAAMIvoCAAAAAAAAAAAAAAAAGET0BQAAAAAAAAAAAAAAADCI6AsAAAAAAAAAAAAAAABgENEXAAAAAAAAAAAAAAAAwCCiLwAAAAAAAAAAAAAAAIBBRF8AAAAAAAAAAAAAAAAAg4i+AAAAAAAAAAAAAAAAAAYRfQEAAAAAAAAAAAAAAAAMIvoCAAAAAAAAAAAAAAAAGET0BQAAAAAAAAAAAAAAADCI6AsAAAAAAAAAAAAAAABgENEXAAAAAAAAAAAAAAAAwCCiLwAAAAAAAAAAAAAAAIBBRF8AAAAAAAAAAAAAAAAAg4i+AAAAAAAAAAAAAAAAAAYRfQEAAAAAAAAAAAAAAAAMIvoCAAAAAAAAAAAAAAAAGET0BQAAAAAAAAAAAAAAADCI6AsAAAAAAAAAAAAAAABgENEXAAAAAAAAAAAAAAAAwCCiLwAAAAAAAAAAAAAAAIBBRF8AAAAAAAAAAAAAAAAAg4i+AAAAAAAAAAAAAAAAAAYRfQEAAAAAAAAAAAAAAAAMIvoCAAAAAAAAAAAAAAAAGET0BQAAAAAAAAAAAAAAADCI6AsAAAAAAAAAAAAAAABgENEXAAAAAAAAAAAAAAAAwCCiLwAAAAAAAAAAAAAAAIBBRF8AAAAAAAAAAAAAAAAAg4i+AAAAAAAAAAAAAAAAAAYRfQEAAAAAAAAAAAAAAAAMIvoCAAAAAAAAAAAAAAAAGET0BQAAAAAAAAAAAAAAADCI6AsAAAAAAAAAAAAAAABgENEXAAAAAAAAAAAAAAAAwCCiLwAAAAAAAAAAAAAAAIBBRF8AAAAAAAAAAAAAAAAAg4i+AAAAAAAAAAAAAAAAAAYRfQEAAAAAAAAAAAAAAAAMIvoCAAAAAAAAAAAAAAAAGET0BQAAAAAAAAAAAAAAADCI6AsAAAAAAAAAAAAAAABgENEXAAAAAAAAAAAAAAAAwCCiLwAAAAAAAAAAAAAAAIBBRF8AAAAAAAAAAAAAAAAAg4i+AAAAAAAAAAAAAAAAAAYRfQEAAAAAAAAAAAAAAAAMIvoCAAAAAAAAAAAAAAAAGET0BQAAAAAAAAAAAAAAADCI6AsAAAAAAAAAAAAAAABgENEXAAAAAAAAAAAAAAAAwCCiLwAAAAAAAAAAAAAAAIBBRF8AAAAAAAAAAAAAAAAAg4i+AAAAAAAAAAAAAAAAAAYRfQEAAAAAAAAAAAAAAAAMIvoCAAAAAAAAAAAAAAAAGET0BQAAAAAAAAAAAAAAADCI6AsAAAAAAAAAAAAAAABgENEXAAAAAAAAAAAAAAAAwCCiLwAAAAAAAAAAAAAAAIBBRF8AAAAAAAAAAAAAAAAAg4i+AAAAAAAAAAAAAAAAAAYRfQEAAAAAAAAAAAAAAAAMcnjbDzhbVdU5SS5J8vwkz0ry1CRfTfKlJPckuau7H93nO78tyYuTPCfJM5I8nOS+JHd29wP7eRcAAAAAAAAAAAAAAABwekRfB6iqnpvkNUmuSvKSJE85xfKvVdXHkryru2/Z8N7vSfJ7SV6d5LyT3HVbkrd19yc3uQsAAAAAAAAAAAAAAADYzKFtP+BsUVV/muQLSd6R5BU5dfCVJOckeXmSm6vqpqp6xmne+7NJPpfkuuwcfH39rpcl+URV/eHxr5ABAAAAAAAAAAAAAAAAW+BLXwfn0pPM35fk80n+I8d+H89LcllODPKuSXJ7Vf1odz+w1wur6qeTvD9JrUwfTXJnknuTXJjkRXkiQKskb07yLUl+da/3AAAAAAAAAAAAAAAAAPtH9LUdd+dYjPWR7r5n+Y9V9ewkv5Pkl1amL03ywar6ke7u3S6oqhcmuSEnBl8fTvLr3X3vyroLkrw1yfUr695QVZ/t7veu8X8CAAAAAAAAAAAAAAAA9sGh3ZewTzrJLUku7+4Xdve7dgq+kqS77+vuX843fm3riiSv2+N9b09yZGX850lesxp8Hb/rke7+7SRvWuz//eNBGAAAAAAAAAAAAAAAAHCARF8H57XdfU1337XXDd397iQfWkz/zG77qurKJC9dmXooya909+On2PbOJJ9aGV+Y5M17eykAAAAAAAAAAAAAAACwX0RfB6S7//U0t/7RYnzlHva8fjF+X3f/16k2dHfn2NfBTnUOAAAAAAAAAAAAAAAAcIaJvua7ezE+t6qedrLFVXVOi6jhFgAAIABJREFUklcupm/Y4123Jrl/ZXxxVf3AHvcCAAAAAAAAAAAAAAAA+0D0Nd/RHeaOnGL95UmevjK+v7v/aS8XdffjSW5fTF+9l70AAAAAAAAAAAAAAADA/hB9zXfJYnw0yUOnWP99i/Fn1rzv04vxC9bcDwAAAAAAAAAAAAAAAGxA9DXftYvxXce/yHUyz1+M/3nN++7Z5TwAAAAAAAAAAAAAAADgDBJ9DVZV5yf5hcX0X+6ybfllsH9b89rl+u9dcz8AAAAAAAAAAAAAAACwAdHXbG9L8syV8cNJ3rfLnqctxg+ueedy/QVV5e8EAAAAAAAAAAAAAAAADsjhbT+AnVXVq5P82mL6+u7+4i5bz1+M/3fNq5frK8l5SR5Z85wTD6m6KMmFa267eJM7AQAAAAAAAAAAAAAA4MlI9DVQVV2W5AOL6Y8mec8eti+jr8fWvH6nSOz8bBh9JXlDkt/d8AwAAAAAAAAAAAAAAAD4pndo2w/gRFX13CS35MR46wtJruvuPo0j191zOncAAAAAAAAAAAAAAAAA+0T0NUhVXZTkY0mevTL9QJKXdfd/7vGYryzG5675jJ3WL88EAAAAAAAAAAAAAAAAzpDD234Ax1TVtyf5eJJLV6YfSnJVd39+jaPORPT16Jpn7OTdST645p6Lk3x4H+4GAAAAAAAAAAAAAACAJw3R1wBV9dQkH03y/SvTX8qxL3z9w5rH/fdifOGa+y9ajL/c3Y+vecY36O4Hkzy4zp6q2vRaAAAAAAAAAAAAAAAAeNI5tO0HnO2q6oIkf5PkRSvTX07y8u7+u9M4cvlVsO9ac/9y/TpfGQMAAAAAAAAAAAAAAAA2JPraoqo6L8lfJ/nBlemvJLm6u+84zWP/cTG+ZM39z9vlPAAAAAAAAAAAAAAAAOAMEn1tSVWdm+TmJFesTP9Pkld096c3OPrvF+MfWnP/i3c5DwAAAAAAAAAAAAAAADiDRF9bUFXfmuSvkvzYyvRjSX6iu2/f8Pg7k3xxZfydVXXpHt91KMlLFtMf2fA9AAAAAAAAAAAAAAAAwBpEXwesqo4k+YskV61MfzXJq7r7E5ue391Hk9y0mP65PW7/8STPWhnf092f2/RNAAAAAAAAAAAAAAAAwN6Jvg5QVR1O8mdJrl6Z/r8k13b3rft41QcW41+sqqfvYd9v7nIOAAAAAAAAAAAAAAAAcIaJvg5IVZ2T5MYkP7kyfTTJ67r75v28q7tvS3LbytR3JPnjqjrp77uq3pjkypWph5K8Yz/fBQAAAAAAAAAAAAAAAOzu8LYfcBZ5f5KfWsz9VpK7q+q71zzrge5+bJc1v5HkM0mOHB9fm+RDVfXG7r7364uq6oIc+8LX9Yv913f3I2u+CwAAAAAAAAAAAAAAANiQ6OvgvH6Hubcf/1nXlUk+daoF3f23VfXzSf5kZfpVSa6pqjuS3JtjXwC7PMlTFtvf093vPY13AQAAAAAAAAAAAAAAABsSfX0T6+4bq+pIkncmOf/49OEkP3yyLcfXvuUAngcAAAAAAAAAAAAAAADs4NC2H8CZ1d03JLksyY1JHj3JsseTfDzJS7v7Td39tYN6HwAAAAAAAAAAAAAAAHAiX/o6IN1dW7z7X5JcV1XnJbkiyXOSXJTk4ST/nuSO7r5/W+8DAAAAAAAAAAAAAAAAniD6Oot096NJbt32OwAAAAAAAAAAAAAAAICTO7TtBwAAAAAAAAAAAAAAAADwBNEXAAAAAAAAAAAAAAAAwCCiLwAAAAAAAAAAAAAAAIBBRF8AAAAAAAAAAAAAAAAAg4i+AAAAAAAAAAAAAAAAAAYRfQEAAAAAAAAAAAAAAAAMIvoCAAAAAAAAAAAAAAAAGET0BQAAAAAAAAAAAAAAADCI6AsAAAAAAAAAAAAAAABgENEXAAAAAAAAAAAAAAAAwCCiLwAAAAAAAAAAAAAAAIBBRF8AAAAAAAAAAAAAAAAAg4i+AAAAAAAAAAAAAAAAAAYRfQEAAAAAAAAAAAAAAAAMIvoCAAAAAAAAAAAAAAAAGET0BQAAAAAAAAAAAAAAADCI6AsAAAAAAAAAAAAAAABgENEXAAAAAAAAAAAAAAAAwCCiLwAAAAAAAAAAAAAAAIBBRF8AAAAAAAAAAAAAAAAAg4i+AAAAAAAAAAAAAAAAAAYRfQEAAAAAAAAAAAAAAAAMIvoCAAAAAAAAAAAAAAAAGET0BQAAAAAAAAAAAAAAADCI6AsAAAAAAAAAAAAAAABgENEXAAAAAAAAAAAAAAAAwCCiLwAAAAAAAAAAAAAAAIBBRF8AAAAAAAAAAAAAAAAAg4i+AAAAAAAAAAAAAAAAAAYRfQEAAAAAAAAAAAAAAAAMIvoCAAAAAAAAAAAAAAAAGET0BQAAAAAAAAAAAAAAADCI6AsAAAAAAAAAAAAAAABgENEXAAAAAAAAAAAAAAAAwCCiLwAAAAAAAAAAAAAAAIBBRF8AAAAAAAAAAAAAAAAAg4i+AAAAAAAAAAAAAAAAAAYRfQEAAAAAAAAAAAAAAAAMIvoCAAAAAAAAAAAAAAAAGET0BQAAAAAAAAAAAAAAADCI6AsAAAAAAAAAAAAAAABgENEXAAAAAAAAAAAAAAAAwCCiLwAAAPh/9u4nxNa6AOP485vuokhJQr23LLt6qUCIRCwECVq5CGrRygiqtatahaW40BI3rTKiuwgh2hRF1lIIwhZlUGQiFZTGpbAuXULD2x/8tZi5eBru2IzOmfdpzucDh+G873nf8zAz2y8vAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFDmx9IBNNca4Mcn7kty68/OWJFeufOTZOefpV3nv+Rrn3TDnfOY13gMAAAAAAAAAAAAAAAB4FURfR2iM8cEkd2c79HrzsmsAAAAAAAAAAAAAAACARqKvo3VzkjuWHgEAAAAAAAAAAAAAAAD0En11+EeSc0nOrOHeP0ly5wGvObeGHQAAAAAAAAAAAAAAAMA+iL6O3r+SPJXkZ0me2Pn5ZJLbk/xwDd93cc75zBruCwAAAAAAAAAAAAAAAKyB6OtoPZLkq3POi7tPjDEWmAMAAAAAAAAAAAAAAAC0EX0doTnnhaU3AAAAAAAAAAAAAAAAAN22lh4AAAAAAAAAAAAAAAAAwMtEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARU4sPYC1u36M8fUk70/y1iRvTHIhyfkkP0/yoyTfnnP+dbmJAAAAAAAAAAAAAAAAwCWir+Pvhp3Xqmt3Xjcl+XiSL40xzia5d875wjpGjDGuTXLNAS87s44tAAAAAAAAAAAAAAAA0Ez0RbL99K9PJ/nQGOOjc86n1vAddyW5bw33BQAAAAAAAAAAAAAAgGNF9HV8/TvJ40keS/LLJOeSPJ/kiiTXJ/lAkk9k+4lfl7wryWNjjNvmnM8e7VwAAAAAAAAAAAAAAAAgEX0dV/ckOTvn/PMe53+R5NExxr3ZfvrWZ5OMnXOnknxnjHHrnHOufyoAAAAAAAAAAAAAAACwSvR1DM05v7DPz11McvcY41ySL6+cuiXJx5J88xBnfSXJtw54zZkk3zvEDQAAAAAAAAAAAAAAAFBP9EXmnA+PMe5I8pGVw3flEKOvnaeO7fXkscsaY/zvDwEAAAAAAAAAAAAAAMAxs7X0AGo8uOv9bWOMqxZZAgAAAAAAAAAAAAAAABtM9MUlP01yYeX965LctNAWAAAAAAAAAAAAAAAA2FiiL5Ikc86Xkvxh1+FrltgCAAAAAAAAAAAAAAAAm0z0xaoXd71/wyIrAAAAAAAAAAAAAAAAYIOJvlh19a735xdZAQAAAAAAAAAAAAAAABtM9EWSZIxxdZIbdx3+4xJbAAAAAAAAAAAAAAAAYJOJvrjkzvz3/8NzSZ5eaAsAAAAAAAAAAAAAAABsLNEXGWOcTHLPrsPfn3POJfYAAAAAAAAAAAAAAADAJhN9HSNjjHePMT58wGtOJflBkpMrh/+Z5MHD3AYAAAAAAAAAAAAAAADsz4mlB2yaMcbbcvnf+6ld70+MMU7vcZsX5pznL3P8LUkeHWM8meQbSb475/ztHjuuTPLJbD/h6+Su0w/MOX+3x3cDAAAAAAAAAAAAAAAAayT6OnqPJ3nHPj53XZLf73HukSSfeoVr35PkoSQPjTH+luRXSc4neT7JFUnenuS9ufzf/2tzzvv3sQ8AAAAAAAAAAAAAAABYA9HX8femJLfv43N/T/KZOefZNe8BAAAAAAAAAAAAAAAAXsHW0gM4VE8n+WKSHyd5cZ/X/CbJ55KcFnwBAAAAAAAAAAAAAADA8jzp64jNOU+v8d7PJfl8kowxtpK8M8mZJNcluSrJ67Mdg11I8qckT8w5/7KuPQAAAAAAAAAAAAAAAMDBib6OqTnnS0l+vfMCAAAAAAAAAAAAAAAA/k9sLT0AAAAAAAAAAAAAAAAAgJeJvgAAAAAAAAAAAAAAAACKiL4AAAAAgP+wd/dRtt11fcc/35uJkZCb8CCBUNIEA6khQChIWZbYQqDWEiQSpVQptqIQWoFaxYfFQxGVpaXUUrqStqAt1GUrDQ8liDzYIohQpAhxoRGoSRBCgCQEbhJEQpJv/5g9nZPLvWRmzp45e3Nfr7XOOr+zz9nf+d77/3ttAAAAAAAAAAAmRPQFAAAAAAAAAAAAAAAAMCGiLwAAAAAAAAAAAAAAAIAJEX0BAAAAAAAAAAAAAAAATIjoCwAAAAAAAAAAAAAAAGBCRF8AAAAAAAAAAAAAAAAAEyL6AgAAAAAAAAAAAAAAAJgQ0RcAAAAAAAAAAAAAAADAhIi+AAAAAAAAAAAAAAAAACZE9AUAAAAAAAAAAAAAAAAwIaIvAAAAAAAAAAAAAAAAgAkRfQEAAAAAAAAAAAAAAABMiOgLAAAAAAAAAAAAAAAAYEJEXwAAAAAAAAAAAAAAAAATIvoCAAAAAAAAAAAAAAAAmBDRFwAAAAAAAAAAAAAAAMCEiL4AAAAAAAAAAAAAAAAAJkT0BQAAAAAAAAAAAAAAADAhoi8AAAAAAAAAAAAAAACACRF9AQAAAAAAAAAAAAAAAEyI6AsAAAAAAAAAAAAAAABgQkRfAAAAAAAAAAAAAAAAABMi+gIAAAAAAAAAAAAAAACYENEXAAAAAAAAAAAAAAAAwISIvgAAAAAAAAAAAAAAAAAmRPQFAAAAAAAAAAAAAAAAMCGiLwAAAAAAAAAAAAAAAIAJEX0BAAAAAAAAAAAAAAAATIjoCwAAAAAAAAAAAAAAAGBCRF8AAAAAAAAAAAAAAAAAEyL6AgAAAAAAAAAAAAAAAJgQ0RcAAAAAAAAAAAAAAADAhIi+AAAAAAAAAAAAAAAAACZE9AUAAAAAAAAAAAAAAAAwIaIvAAAAAAAAAAAAAAAAgAkRfQEAAAAAAAAAAAAAAABMiOgLAAAAAAAAAAAAAAAAYEJEXwAAAAAAAAAAAAAAAAATIvoCAAAAAAAAAAAAAAAAmBDRFwAAAAAAAAAAAAAAAMCEiL4AAABBhGooAAAgAElEQVQAAAAAAAAAAAAAJkT0BQAAAAAAAAAAAAAAADAhoi8AAAAAAAAAAAAAAACACRF9AQAAAAAAAAAAAAAAAEyI6AsAAAAAAAAAAAAAAABgQkRfAAAAAAAAAAAAAAAAABMi+gIAAAAAAAAAAAAAAACYENEXAAAAAAAAAAAAAAAAwISIvgAAAAAAAAAAAAAAAAAmRPQFAAAAAAAAAAAAAAAAMCGiLwAAAAAAAAAAAAAAAIAJEX0BAAAAAAAAAAAAAAAATIjoCwAAAAAAAAAAAAAAAGBCRF8AAAAAAAAAAAAAAAAAEyL6AgAAAAAAAAAAAAAAAJgQ0RcAAAAAAAAAAAAAAADAhIi+AAAAAAAAAAAAAAAAACZE9AUAAAAAAAAAAAAAAAAwIaIvAAAAAAAAAAAAAAAAgAkRfQEAAAAAAAAAAAAAAABMiOgLAAAAAAAAAAAAAAAAYEJEXwAAAAAAAAAAAAAAAAATIvoCAAAAAAAAAAAAAAAAmBDRFwAAAAAAAAAAAAAAAMCEiL4AAAAAAAAAAAAAAAAAJkT0BQAAAAAAAAAAAAAAADAhoi8AAAAAAAAAAAAAAACACRF9AQAAAAAAAAAAAAAAAEyI6AsAAAAAAAAAAAAAAABgQmYTfVXVC6vqpFXvAQAAAAAAAAAAAAAAALCbZhN9JXlxkk9U1cVV9ZhVLwMAAAAAAAAAAAAAAACwG+YUfSXJWpLzk7yjqj5WVf+8qu666qUAAAAAAAAAAAAAAAAAxjK36GtDJbl/kpcl+XRVvbqqvmPFOwEAAAAAAAAAAAAAAAAsbU7R1/OSfCLrwVeS9HD+5iRPTfL7VXVpVV1QVcetZkUAAAAAAAAAAAAAAACA5cwm+uruX+7u05I8LsklSW7b+Gp4ryQPTnJR1p/+dVFVPXjvNwUAAAAAAAAAAAAAAADYudlEXxu6+23d/b1JTkny80muztc+/Wt/kguSfLiq3ldV/7CqvmklCwMAAAAAAAAAAAAAAABsw+yirw3dfXV3/1zW46/zk7xj8evhvZI8IslrklxdVf+qqu6/p4sCAAAAAAAAAAAAAAAAbMNso68N3X1bd/+P7v7uJKcleWmSa7P59K8M57sl+YkkH62q36mq86vqqL3fGAAAAAAAAAAAAAAAAODwZh99LeruT3T3zyY5OckPJnl3NuOvHs6V5JwkFyf5ZFW9uKrus4p9AQAAAAAAAAAAAAAAAA72DRV9bejur3b3b3b3o5OckeQVSb648XU246+TkrwgyZVV9caqOmclCwMAAAAAAAAAAAAAAAAMviGjr0Xd/bHu/vEkj0vyyY3LC68kOSrJE5L8TlV9uKrO3ftNAQAAAAAAAAAAAAAAAL7Bo6+qOqaqnlpV703yviQnH/yT4dULn89KcklVvb6qjt+7bQEAAAAAAAAAAAAAAACStVUvsBuq6vQkz0zyQ0nuunE563FXDZ8/k+SVSQ4keXqSM4brG7/53iT3rqqzu/vWPVodAAAAAAAAAAAAAAAAOMJ9wzzpq6rWqurJVfXOJH+a5J8luVs2I68M599L8uQkp3T3i7v75d19ZpJHJ3lrbh+H/Y0kz9jDfwYAAAAAAAAAAAAAAABwhJt99FVV962qX0pyVZL/muRvZzP06uH9S0n+fZIHdvejuvvi7r5lcU53v7u7z03yPUn+YuHeH9jtfwMAAAAAAAAAAAAAAADAhrVVL7ATVbUvyROSPDPJY7MeeR0celWSy7Iee72mu2/ayuzufktVvTTJi4dLDxxrbwAAAAAAAAAAAAAAAIA7Mqvoq6ruk+TpSX4kyUkbl7MeevVwvjXJm5Jc2N3v2uGfens2o6/jd7ovAAAAAAAAAAAAAAAAwHbNJvqqqjcleVySfTn0U70+m+RVSf5jd1+95J/73ML8+no/BAAAAAAAAAAAAAAAABjTbKKvJN+TzchrI8aqJO9JcmGSN3T3LSP/zY2niAEAAAAAAAAAAAAAAADsiTlFXxsqyU1JfiPJhd39x7vwNz6f5Nm7MBcAAAAAAAAAAAAAAADg65pb9PWxJBcleU1337hbf6S7b8r608MAAAAAAAAAAAAAAAAA9tScoq/Hdvc7V70EAAAAAAAAAAAAAAAAwG7at+oFtkrwBQAAAAAAAAAAAAAAABwJZhN9AQAAAAAAAAAAAAAAABwJRF8AAAAAAAAAAAAAAAAAE7K26gW2qqq+LclLh4+d5Ondfc02Z9wzySuT1HDpx7v7ivG2BAAAAAAAAAAAAAAAAFjObKKvJM9I8visB1/v2m7wlSTd/bmqOi7Jo4c5f5zkeaNuCQAAAAAAAAAAAAAAALCEfateYBueuHD+z0vMefXwXkm+f4k5AAAAAAAAAAAAAAAAAKObRfRVVacmOWX4eFuSS5YYd8kwI0lOq6q/ssQsAAAAAAAAAAAAAAAAgFHNIvpK8sDhvZP83+6+YaeDuvtAko8vXHrwMosBAAAAAAAAAAAAAAAAjGku0depC+c/G2He4oxTD/cjAAAAAAAAAAAAAAAAgL02l+hr/8L5wAjzFmccP8I8AAAAAAAAAAAAAAAAgFHMJfr6ysL5uBHmLc64bYR5AAAAAAAAAAAAAAAAAKOYS/R13cL55BHmLc74/AjzAAAAAAAAAAAAAAAAAEYxl+jrU8N7JTmrqu6y00HDvQ9ZuHT1MosBAAAAAAAAAAAAAAAAjGku0df7k9ycpLO+8zOXmHVBNv/dtyZ573KrAQAAAAAAAAAAAAAAAIxnFtFXd38563FWDa+fqarTtztnuOdnsx6PdZL3d/eNY+4KAAAAAAAAAAAAAAAAsIxZRF+DXxneO8kJSd5eVWdt9eaqelCStyY5PuvhWJL8m1E3BAAAAAAAAAAAAAAAAFjSbKKv7n5LkvdnPdjqJKckeX9V/duqesDh7quqM6rq5Un+IMmpG+OSfKC737i7WwMAAAAAAAAAAAAAAABsz9qqF9imv5/kg0nukfVw65gkz0ryrKq6LsllSb4wfHe3JGcMv002Y7FK8tkkT9rTzQEAAAAAAAAAAAAAAAC2YFbRV3dfVVXnJnlTkntnM+JK1uOuv3XQLbV4+/D5U0nO6+6rdnldAAAAAAAAAAAAAAAAgG3bt+oFtqu7/zDJQ5P8Vjajrh5eX/Pzg66/IcnDuvvSXV0SAAAAAAAAAAAAAAAAYIdmF30lSXdf091PyHr89aokV2Y9ADvU6/Ik/yHJWd39/d193Wq2BgAAAAAAAAAAAAAAALhja6teYBnDE7suSJKqOjHJSUnuPnx9XZLPdPe1K1oPAAAAAAAAAAAAAAAAYNtmHX0t6u5rklyz6j0AAAAAAAAAAAAAAAAAlrFv1QsAAAAAAAAAAAAAAAAAsEn0BQAAAAAAAAAAAAAAADAhoi8AAAAAAAAAAAAAAACACRF9AQAAAAAAAAAAAAAAAEzI2qoX2ImqWkvyxCTnJPnrSU5MckKSo7c5qrv7hJHXAwAAAAAAAAAAAAAAANix2UVfVfWUJP86yT02Li0xrpffCAAAAAAAAAAAAAAAAGA8s4q+quqXkvx0NkOvzs7DrWViMQAAAAAAAAAAAAAAAIBdMZvoq6q+L8nPDB83Qq8azlcl+UKSr65gNQAAAAAAAAAAAAAAAIDRzCb6SvKS4b2zHntdluTnk7ylu7+0sq0AAAAAAAAAAAAAAAAARjSL6Kuqzkhyejaf8PW/kpzb3TevbisAAAAAAAAAAAAAAACA8e1b9QJb9PDhvZLcmuRpgi8AAAAAAAAAAAAAAADgG9Fcoq97DO+d5IPd/alVLgMAAAAAAAAAAAAAAACwW+YSfd22cP7EqpYAAAAAAAAAAAAAAAAA2G1zib6uWjgfvbItAAAAAAAAAAAAAAAAAHbZXKKvjyyc77uyLQAAAAAAAAAAAAAAAAB22Syir+7+aJIPJqkkZ1XViSteCQAAAAAAAAAAAAAAAGBXzCL6GvzL4X1fkuetchEAAAAAAAAAAAAAAACA3TKb6Ku7X5/kP2X9aV/PqqqnrHglAAAAAAAAAAAAAAAAgNHNJvoa/JMkr8763v+lqi6qqvusdiUAAAAAAAAAAAAAAACA8ayteoGtqqpXDMebklyX5FuSXJDkGVX1kSSXJflCktu2M7e7nzPmngAAAAAAAAAAAAAAAADLmE30leRZSXrhcyep4XVWkgdvc14NM0RfAAAAAAAAAAAAAAAAwGTMKfo6lL7jnwAAAAAAAAAAAAAAAADMx9yir1r1AgAAAAAAAAAAAAAAAAC7aU7R14NWvQAAAAAAAAAAAAAAAADAbptN9NXdf7LqHQAAAAAAAAAAAAAAAAB2275VLwAAAAAAAAAAAAAAAADAJtEXAAAAAAAAAAAAAAAAwISIvgAAAAAAAAAAAAAAAAAmRPQFAAAAAAAAAAAAAAAAMCFrq15gGVV1QpLHJPnOJKcluVuS/UnS3WetcDUAAAAAAAAAAAAAAACAHZll9FVVd0/ywiRPS3Lng79O0oe576lJLhw+Xp/ktO6+dbf2BAAAAAAAAAAAAAAAANiufateYLuq6uwklyZ5dpLjsh55bdXFSW4e7js5yeNGXxAAAAAAAAAAAAAAAABgCbOKvqrq4UnenuTeB3+V5C/v6P7u/sskr1249MTxtgMAAAAAAAAAAAAAAABY3myir6ran+SSJHfauJTk3UnOS3J8kjOztad+vWnhfM6YOwIAAAAAAAAAAAAAAAAsazbRV5LnJrlnkh4+v6i7H93db+7umxau35H3JLkt64HYyVV18FPDAAAAAAAAAAAAAAAAAFZmTtHXM7IZdv16d//CToZ095eTXL5w6duWXQwAAAAAAAAAAAAAAABgLLOIvqrqIVl/yldl/Sldz19y5JUL5/suOQsAAAAAAAAAAAAAAABgNLOIvpKcObx3kj/q7k8vOe/Awvn4JWcBAAAAAAAAAAAAAAAAjGYu0deJC+crRph388L5TiPMAwAAAAAAAAAAAAAAABjFXKKvoxfOt4ww7y4L5wOH/RUAAAAAAAAAAAAAAADAHptL9HXtwvnEw/5q605fOF8/wjwAAAAAAAAAAAAAAACAUcwl+vrM8F5JHrrMoKq6V5L7L1z66DLzAAAAAAAAAAAAAAAAAMY0l+jrfUluGc4nVNW5S8y6YOF8IMmlS8wCAAAAAAAAAAAAAAAAGNUsoq/uviHJ/1649JKqOnq7c6rqtCQ/maSH19u6u8fZEgAAAAAAAAAAAAAAAGB5s4i+Bi9bOD8oyW9U1dpWb66q+yb57STHJalDzAQAAAAAAAAAAAAAAABYudlEX9395iTvzWaw9X1JLq2qJ369p35V1b2q6gVJLk1yv41xSV7f3R/azZ0BAAAAAAAAAAAAAAAAtmvLT8qaiCcl+T9J7j18fkCS1yX5cpIrF39YVRcnOT3JmVkPxSrrsVeSXJ7kR/ZgXwAAAAAAAAAAAAAAAIBtmc2TvpKkuz+b5O8muSKbEVclOTbrcdeGSnJ+kgdl/d+4+NuPJfl73X3j3m0OAAAAAAAAAAAAAAAAsDWzir6SpLsvS/KwJL+e5LaNy4d45aBzkvy3JN/R3ZfvzbYAAAAAAAAAAAAAAAAA2zO76CtJuvuG7v5HSf5akpcn+ZPhqzrE68+TvDLJQ7r7Kd39xRWsDAAAAAAAAAAAAAAAALAla6teYBndfUWSn0iSqjohyX2S3D3JNyW5Lsnnuvszq9sQAAAAAAAAAAAAAAAAYHtmHX0t6u4DSQ6seg8AAAAAAAAAAAAAAACAZexb9QIAAAAAAAAAAAAAAAAAbBJ9AQAAAAAAAAAAAAAAAEyI6AsAAAAAAAAAAAAAAABgQkRfAAAAAAAAAAAAAAAAABOytuoFtqqqLtmFsd3d5+3CXAAAAAAAAAAAAAAAAIAdmU30leTxSXrEeTXyPAAAAAAAAAAAAAAAAIClzSn6WlYtnMVeAAAAAAAAAAAAAAAAwCTNLfqqO/7JYW2EXrXkHAAAAAAAAAAAAAAAAIBdM6foa/82f39UkrsmOTPJ45P8UJJjk1w/nN896nYAAAAAAAAAAAAAAAAAI5hN9NXdX9rBbTck+fMkv11Vv5zk4iQPT/L6JOd19ztGXBEAAAAAAAAAAAAAAABgaftWvcBe6e5PJvmuJB9PckyS/15Vf3W1WwEAAAAAAAAAAAAAAADc3hETfSVJdx9I8pPDx/1Jfm512wAAAAAAAAAAAAAAAAB8rSMq+kqS7n5LkmuTVJInVdWdV7wSAAAAAAAAAAAAAAAAwP93xEVfgz8c3o9N8p2rXAQAAAAAAAAAAAAAAABg0ZEafV2/cD55ZVsAAAAAAAAAAAAAAAAAHORIjb72L5zvvrItAAAAAAAAAAAAAAAAAA5yxEVfVVVJHrFw6cCqdgEAAAAAAAAAAAAAAAA42BEXfSX50SQnLny+fFWLAAAAAAAAAAAAAAAAABzsiIq+quppSf5dkh4ufSXJe1a3EQAAAAAAAAAAAAAAAMDtra16ga2qqvN3cNtakrskeUCSxye5b5Iavuskv9bdXx5nQwAAAAAAAAAAAAAAAIDlzSb6SvK6bD6haycWY69KcmWSFy27FAAAAAAAAAAAAAAAAMCY9q16gR2oHbySzWCskvxRku/q7uv3bm0AAAAAAAAAAAAAAACAOza36Kvu+CeHva+SXJrkx5I8vLuvGG0rAAAAAAAAAAAAAAAAgJGsrXqBbXj2Du65JckNSa5J8qHu/sK4KwEAAAAAAAAAAAAAAACMazbRV3dfuOodAAAAAAAAAAAAAAAAAHbbvlUvAAAAAAAAAAAAAAAAAMAm0RcAAAAAAAAAAAAAAADAhIi+AAAAAAAAAAAAAAAAACZE9AUAAAAAAAAAAAAAAAAwIaIvAAAAAAAAAAAAAAAAgAlZW/UCW1VV56/qb3f3G1b1twEAAAAAAAAAAAAAAIAjy2yirySvS9Ir+Ludef0/AQAAAAAAAAAAAAAAADM2x5ipVr0AAAAAAAAAAAAAAAAAwG6ZW/S1GHwd/NSvw8VgW/0dAAAAAAAAAAAAAAAAwMrNKfp69vC+P8lPJblLNgOuTyT5QJKPJzkwXDshyelJHpHklOFaJ7k+ycuS3LjrGwMAAAAAAAAAAAAAAABs02yir+6+sKpOTfL2bAZfv5vkhd39vq93b1U9MskvJHlUkrsm+eEk393dV+7iygAAAAAAAAAAAAAAAADbtm/VC2xVVd05yduS3H+49MLufswdBV9J0t3v7e5zkvyLrMdi90vy9qrav2sLAwAAAAAAAAAAAAAAAOzAbKKvJM9PcnqSTvKr3f2S7Q7o7l9M8qtZD79OG2YCAAAAAAAAAAAAAAAATMYsoq+qOirJDw8fb81ysdbzk9wynP9xVc3i/wAAAAAAAAAAAAAAAAA4MswlePqbSe6Z9ad8faC7r9vpoO6+NskfZP1pX/dIcvYoGwIAAAAAAAAAAAAAAACMYC7R16kL50+OMO+qw8wGAAAAAAAAAAAAAAAAWKm5RF8nLZyPHWHenRbO9xphHgAAAAAAAAAAAAAAAMAo5hJ93bRwPnOEeYszbjrsrwAAAAAAAAAAAAAAAAD22Fyir08N75XkW6vqkTsdVFVnJzlt4dJVyywGAAAAAAAAAAAAAAAAMKa5RF/vSvKVJJ318Ouiqjpuu0Oqan+SixYu3Zzkd8dYEAAAAAAAAAAAAAAAAGAMs4i+uvvGJG/KevDVSR6Y5J1Vdb+tzhh++87h3gxz3jjMBgAAAAAAAAAAAAAAAJiEWURfg+cmuWnh87cn+UhVvaqqHjM8xet2qmp/VT22qn4tyUeSPDTrsVeSfCnJT+/20gAAAAAAAAAAAAAAAADbsbbqBbaqu6+qqqckuTjJ0VmPt45J8rThlaq6JskNw3cnJDlxYcTGU8IqyVeT/GB3X7Vn/wAAAAAAAAAAAAAAAACALZjTk77S3W9O8sQkn89mxJXhXEnumeT+SU4fzhvXk83g67ok53X3b+3d5gAAAAAAAAAAAAAAAABbM6voK0m6+61JHpDk1Uluzu2jrkO9Mvzm5uGeM7v7bXu3MQAAAAAAAAAAAAAAAMDWra16gZ3o7uuSPK2qfirJP0hydpJvz/rTvY4bfnZTks8l+WCS30/y2uE+AAAAAAAAAAAAAAAAgMmaZfS1obs/n+TC4ZUkqaqjhu9uXdVeAAAAAAAAAAAAAAAAADs16+jrUMReAAAAAAAAAAAAAAAAwJztW/UCAAAAAAAAAAAAAAAAAGwSfQEAAAAAAAAAAAAAAABMyNqqF1hWVVWSByc5LcndkuxPUt39KytdDAAAAAAAAAAAAAAAAGAHZht9VdVDkjw3yblJjj/ET74m+qqqxyZ5wvDxC939ot3bEAAAAAAAAAAAAAAAAGD7Zhd9VdUxSV6R5Ec3Lh3iZ32Y2y9P8k837qmq13b3ZaMvCQAAAAAAAAAAAAAAALBD+1a9wHZU1bFJfi/rwdd2Yq/1L7uvTPKOhXt/YNQFAQAAAAAAAAAAAAAAAJY0q+gryW8mefjC51uTvDHJc5L8WA4dgh3sDQvnvzPeagAAAAAAAAAAAAAAAADLW1v1AltVVU9I8vhsPs3rw0me3N1/Nnx/yhZHvXVjZJKHVtWx3f0Xoy4LAAAAAAAAAAAAAAAAsENzetLXCxbOH0vyqI3gazu6+9NJrhs+HpXkjBF2AwAAAAAAAAAAAAAAABjFLKKvqjoxycOy+ZSv53T3jUuM/NOF8+lLzAEAAAAAAAAAAAAAAAAY1SyirySPTFLD6zPd/T+XnHf9wvlblpwFAAAAAAAAAAAAAAAAMJq5RF/3Gt47yYdGmLf4lLDjRpgHAAAAAAAAAAAAAAAAMIq5RF93WTgfGGHenRfOXxlhHgAAAAAAAAAAAAAAAMAo5hJ9fXHhfPwI805aOH9+hHkAAAAAAAAAAAAAAAAAo5hL9HXtwvkBywyqqqOTPGTh0tXLzAMAAAAAAAAAAAAAAAAY01yir0uH90ryrVV12hKzzkvyzcP51iTvX2YxAAAAAAAAAAAA4P+xd/8hu991Hcdfn7vbucqpSyezltt0RqRY2sLYJCRiIDHWRBboHy2bSRJMRBhFsWb9I7SDRMT+SNogEyrXFDUKwRFtGeQWI1wwf+wM+3XQtthO+713f5zrcF/n6uzsvu77uu7v+7r3eMDFdX2+9+fz/b7P+f/JFwAAgFXaiOirqr6e5MG5Szfs5T6zt3z91snbJvlqVT26v+kAAAAAAAAAAAAAAAAAVmcjoq+Z22bfI8mvjDHes4d7/GGSt8ytb9n3VAAAAAAAAAAAAAAAAAArtEnR15Ek382JN3SNJH82xvjN2du7zmiMcfEY43NJrpudT5KjSf50XcMCAAAAAAAAAAAAAAAA7MX21APsVlU9Osb4QJK/nF3aTvK7ST48xvhskm/P7x9j/HySH0lyRZKfne0fsz8/neR9VfXsQcwOAAAAAAAAAAAAAAAAsFsbE30lSVXdMcb4aJKbs/PGr1cnef/C1pHkcwvrmvt8qKr+Yf0TAwAAAAAAAAAAAAAAACxna+oBllVVn0hyVZJHTl6afS+GXSM7b/Y6uX40yVVV9ckDGxgAAAAAAAAAAAAAAABgCRsXfSVJVX0+ySVJPpbku9mJu0ZOjb1OXjue5EiSS6rqCwc4KgAAAAAAAAAAAAAAAMBStqceYK+q6uEkvzPGuCnJW5O8I8kPJ3lVkrOSfCfJfyW5O8ldVfXMVLMCAAAAAAAAAAAAAAAA7NbGRl8nVVUluWf2AQAAAAAAAAAAAAAAANhoGxN9jTG2Tv6uquemnAUAAAAAAAAAAAAAAABgXbZeeMv0xhjXJnl69nlyjPG6aScCAAAAAAAAAAAAAAAAWI9NedPXa5OM2e97q+qhKYcBAAAAAAAAAAAAAAAAWJeNeNNXkv+dfVeSo1MOAgAAAAAAAAAAAAAAALBOmxJ9/efc7+cmmwIAAAAAAAAAAAAAAABgzTYl+npg7vcFk00BAAAAAAAAAAAAAAAAsGYbEX1V1T1JHkwyklw6xnj5tBMBAAAAAAAAAAAAAAAArMdGRF8zn5x9byf56JSDAAAAAAAAAAAAAAAAAKzLJkVfH09yb0687euGMcaVE88DAAAAAAAAAAAAAAAAsHIbE31V1TNJrk5yX5KXJLl9jHFkjPGD004GAAAAAAAAAAAAAAAAsDrbUw+wW2OMj8x+fibJxUnOSXJ9kl8fY/xTTrwF7FiSR5e5b1UdWeWcAAAAAAAAAAAAAAAAAPuxMdFXkt9PUnPrSjJy4t/w9tlnL0RfAAAAAAAAAAAAAAAAQBtbUw+wB2Pud+XUEGyv9wEAAAAAAAAAAAAAAABoYZPe9JXshFqCLQAAAAAAAAAAAAAAAOBQ2qTo68qpBwAAAAAAAAAAAAAAAABYt42JvqrqC1PPAAAAAAAAAAAAAAAAALBuW1MPAAAAAAAAAAAAAAAAAMAO0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEa2px7gpDHGkbnlx6rqkcmGAQAAAAAAAAAAAAAAAJhIm+gryYeT1Oz3J5KcMfoaY/zM3PIrVfXUugYDAAAAAAAAAAAAAAAAOCidoq8kGdkJv17InXN7L07y0DoGAgAAAAAAAAAAAAAAADhIW1MPsE9j6gEAAAAAAAAAAAAAAAAAVmnTo6/dvhUMAAAAAAAAAAAAAAAAYCNsevTlTV8AAAAAAAAAAAAAAADAobLp0RcAAAAAAAAAAAAAAADAoSL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI1sTz3Agpp9//QY46Ilzi27f+eBVX+3l3MAAAAAAAAAAAAAAAAA69At+kqSkeTTa9w/r26KgNcAACAASURBVNLz/wAAAAAAAAAAAAAAAAB4keoYPFVOhFy72XfSbvYDAAAAAAAAAAAAAAAAtNcx+kpODbrWsT8RigEAAAAAAAAAAAAAAAANdYq+Hsre4i0AAAAAAAAAAAAAAACAQ6NN9FVVF009AwAAAAAAAAAAAAAAAMDUtqYeAAAAAAAAAAAAAAAAAIAdoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAj21MPwMEYY7wkyeVJXpfktUkeS/LvSe6tqgcnHA0AAAAAAAAAAAAAAACYI/qayBjj9Ul+Ksmls++3JTlnbsvRqrpoBc85L8lNSX4xyQ88z567kxypqs/s93kAAAAAAAAAAAAAAADA/oi+DtAY451JfiMnQq/TBlgrft67ktya5DUvsPWyJJeNMT6V5INVdXzdswEAAAAAAAAAAAAAAACnJ/o6WD+R5IqDeNAsMLsjyVlzlyvJPUm+meSVSd6a5NVzf39fkpePMX6hqp47iDkBAAAAAAAAAAAAAACAU21NPQBJkieTfGNVNxtjXJDk9pwafN2V5E1VdWlVXVNVVyS5IMn1SZ6e23dlkt9b1SwAAAAAAAAAAAAAAADAckRfB+/pJP+c5I+TfDDJTyY5J8l1K3zGTUnOnVvfneTnqur++U1V9WRV/UGSaxbOf2SMceEK5wEAAAAAAAAAAAAAAAB2aXvqAV5kbktyS1U9sfiHMcZKHjDGeGOSX5q79FSSa0/3zJOq6o4xxm1z516a5MYk71/JUAAAAAAAAAAAAAAAAMCuedPXAaqqh88UX63Ie5N8z9z69qp6YBfnPr6wvmaMcfbqxgIAAAAAAAAAAAAAAAB2Q/R1+Fy9sP6T3RyqqvuT/OPcpe9PcsWqhgIAAAAAAAAAAAAAAAB2R/R1iIwxzk/y43OXnkly1xK3uHNh/a79zgQAAAAAAAAAAAAAAAAsR/R1uLx5YX1fVR1f4vzdC+s37XMeAAAAAAAAAAAAAAAAYEmir8PlxxbWX1/y/Dde4H4AAAAAAAAAAAAAAADAmom+DpdLFtYPLXn+6ML6VWOMc/cxDwAAAAAAAAAAAAAAALAk0dfh8sqF9bFlDlfVY0meWLj8in1NBAAAAAAAAAAAAAAAACxle+oBWKmXLawf38M9Hk9y9tz6nL2Ps2OM8Zok5y157A2reDYAAAAAAAAAAAAAAABsEtHX4bIYfS2+tWs3Hk9y7hnuuVcfSnLjiu4FAAAAAAAAAAAAAAAAh9bW1AOwVnVAZwAAAAAAAAAAAAAAAIAVEX0dLo8trL93D/dYPLN4TwAAAAAAAAAAAAAAAGCNtqcegJXqHH39UZK/WPLMG5J8dkXPBwAAAAAAAAAAAAAAgI0g+jpc/mdhfd4yh8cYL8v/j74e2ddEM1V1LMmxJedZxaMBAAAAAAAAAAAAAABgo2xNPQAr9cDC+sIlzy/u/++qengf8wAAAAAAAAAAAAAAAABLEn0dLvcvrC9Z8vzrF9Zf28csAAAAAAAAAAAAAAAAwB6Ivg6Xf1lYv2WM8X1LnL/8Be4HAAAAAAAAAAAAAAAArJno6xCpqv9Ict/cpe0k71jiFu9cWP/1fmcCAAAAAAAAAAAAAAAAliP6Onz+amH9y7s5NMb40SRvn7t0PMnfrmooAAAAAAAAAAAAAAAAYHdEX4fPp5I8O7d+9xjjjbs4d8PC+s+r6onVjQUAAAAAAAAAAAAAAADshujrkKmqB5LcNnfprCS3jjHOfr4zY4yrklw7d+mpJDetZUAAAAAAAAAAAAAAAADgjLanHuDFZoxxQU7//37+wnp7jHHR89zmsar6zhkec2OSq5OcO1tfluRLY4zrqupf52Z5aZJfTXLzwvmbq+roGe4PAAAAAAAAAAAAAAAArIno6+D9fZILd7Hvh5J863n+dltOfTPXKarq22OMdyf5m5x401eSXJ7ka2OMryb5ZpJXJHlbkvMWjn8+yW/vYj4AAAAAAAAAAAAAAABgDURfh1RV3TnGuDrJrdkJu0aSS2ef0/l0kg9U1bPrnxAAAAAAAAAAAAAAAAA4na2pB2B9quqLSd6c5JYkD59h61eSvKeq3ltVxw9kOAAAAAAAAAAAAAAAAOC0vOnrgFXVRQf8vGNJfm2McX2Sy5NcmOT8JMeT/FuSe6vqWwc5EwAAAAAAAAAAAAAAAPD8RF8vElX1VJIvTz0HAAAAAAAAAAAAAAAAcGZbUw8AAAAAAAAAAAAAAAAAwA7RFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAPwfe3fsauddx3H8870GtOog1NpBpEMRBUFBAgqi4NSCTk52UAQRwX9AWwp1EV0FdehUFxfB4mCRmIIOSinBwaWggxGMlCKxoqJL+nNISg6HJmnw3jwfz3m94Ay/5zzPuZ/7B7x5AAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjo6wDNzDdnZv0Pn2e2/h8AAAAAAAAAAAAAAADgWIm+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKnNt6APfEY0leuIv7/3lWQwAAAAAAAAAAAAAAAIDbE30dh5fXWpe3HgEAAAAAAAAAAAAAAADc2cnWAwAAAAAAAAAAAAAAAAC4SfQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0dRy+OjMXZ+bKzPxnZv4xM5dn5lcz862Z+eTWAwEAAAAAAAAAAAAAAIDrzm09gHvi83vntyZ5Z5KHknwqyRMzcynJ42uti/d6HAAAAAAAAAAAAAAAAHCT6IvXnU9yYWa+neTJtdY6zR+fmfckeeAuH3v4NDcAAAAAAAAAAAAAAADA/wPR12G7kuS5JC8meSnJ1SSvJbk/yUeTfDbJIzv3T5InkpwkefyUt3wtyVOn/JsAAAAAAAAAAAAAAABwcERfh+nFXI+5fnGbN3b9Jsn3ZuZ8kh8lef/Od9+YmRfWWj89450AAAAAAAAAAAAAAADAnpOtB3D61lrPrbUu3Cb42r33UpKPJ/n93lffmZm3nMlAAAAAAAAAAAAAAAAA4Ja86Yusta7OzGNJLiWZG5c/mOTTSS6e0p/5QZIf3+UzDyfxtjEAAAAAAAAAAAAAAACOiuiLJMla67czcyHJIzuXH80pRV9rrVeSvHI3z8zMnW8CAAAAAAAAAAAAAACAA3Oy9QCq/Hzv/OFNVgAAAAAAAAAAAAAAAMARE32x6/Le+YEtRgAAAAAAAAAAAAAAAMAxE32x69975/s2WQEAAAAAAAAAAAAAAABHTPTFrnfvnf+6yQoAAAAAAAAAAAAAAAA4YqIvdn1s7/yXTVYAAAAAAAAAAAAAAADAERN9kSSZmbcl+dze5V9uMAUAAAAAAAAAAAAAAACOmuiL1309yXt3zteS/GyjLQAAAAAAAAAAAAAAAHC0RF8HZma+MDMP3uUzX0ny1N7lZ9Zafzq9ZQAAAAAAAAAAAAAAAMCbIfo6PF9O8seZ+eHMfGZm3nGrG2fm/Mz8JMnTSWbnqytJnjzjnQAAAAAAAAAAAAAAAMAbOLf1AM7EfUm+eOPz2sz8IcnlJH9Pci3J/Uk+kuSN3gh2Ncmja62X781UAAAAAAAAAAAAAAAAYJfo6/CdJPnAjc+dPJ/kS2utP5/tJAAAAAAAAAAAAAAAAOBWRF+H57tJriT5RJKH3sT9/0pyIcn311rPn+UwAAAAAAAAAAAAAAAA4M5EXwdmrfVskmeTZGbeleRDSd6X5MEkb8/1N3+9muRvSV5K8ru11rVt1gIAAAAAAAAAAAAAAAD7RF8HbK31apJfb70DAAAAAAAAAAAAAAAAePNOth4AAAAAAAAAAAAAAAAAwE2iLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAwrqd5AAAIABJREFUgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAP7L3r0H23qX9QH/PifnBENOCE0xCFjSxJhJwj3okDihBUkbUO4Ngo6WtNHSjlA7MFU7HW6O0+o4jmWIOioUsRaLpBJuNaBYbpK2wxA6JpWRBBNqmntCYq7nBJ7+sU9k5WUfzt5nX97fWfvzmTlz5nnW+3vX9981e33XCwAAAAAAAAAAAAAMROkLAAAAAAAAAAAAAAAAYCBKXwAAAAAAAAAAAAAAAAADUfoCAAAAAAAAAAAAAAAAGIjSFwAAAAAAAAAAAAAAAMBAlL4AAAAAAAAAAAAAAAAABqL0BQAAAAAAAAAAAAAAADAQpS8AAAAAAAAAAAAAAACAgSh9AQAAAAAAAAAAAAAAAAxE6QsAAAAAAAAAAAAAAABgIEpfAAAAAAAAAAAAAAAAAANR+gIAAAAAAAAAAAAAAAAYiNIXAAAAAAAAAAAAAAAAwECUvgAAAAAAAAAAAAAAAAAGovQFAAAAAAAAAAAAAAAAMBClLwAAAAAAAAAAAAAAAICBKH0BAAAAAAAAAAAAAAAADETpCwAAAAAAAAAAAAAAAGAgSl8AAAAAAAAAAAAAAAAAA1H6AgAAAAAAAAAAAAAAABiI0hcAAAAAAAAAAAAAAADAQJS+AAAAAAAAAAAAAAAAAAai9AUAAAAAAAAAAAAAAAAwEKUvAAAAAAAAAAAAAAAAgIEofQEAAAAAAAAAAAAAAAAMROkLAAAAAAAAAAAAAAAAYCBKXwAAAAAAAAAAAAAAAAADUfoCAAAAAAAAAAAAAAAAGIjSFwAAAAAAAAAAAAAAAMBAlL4AAAAAAAAAAAAAAAAABrJ77gAAAAAAAAAAo6k3fGjuCAAArFH/8ovmjgAAAACbzpO+AAAAAAAAAAAAAAAAAAai9AUAAAAAAAAAAAAAAAAwEKUvAAAAAAAAAAAAAAAAgIEofQEAAAAAAAAAAAAAAAAMROkLAAAAAAAAAAAAAAAAYCBKXwAAAAAAAAAAAAAAAAADUfoCAAAAAAAAAAAAAAAAGIjSFwAAAAAAAAAAAAAAAMBAlL4AAAAAAAAAAAAAAAAABqL0BQAAAAAAAAAAAAAAADAQpS8AAAAAAAAAAAAAAACAgSh9AQAAAAAAAAAAAAAAAAxE6QsAAAAAAAAAAAAAAABgIEpfAAAAAAAAAAAAAAAAAANR+gIAAAAAAAAAAAAAAAAYiNIXAAAAAAAAAAAAAAAAwECUvgAAAAAAAAAAAAAAAAAGovQFAAAAAAAAAAAAAAAAMBClLwAAAAAAAAAAAAAAAICBKH0BAAAAAAAAAAAAAAAADETpCwAAAAAAAAAAAAAAAGAgSl8AAAAAAAAAAAAAAAAAA1H6AgAAAAAAAAAAAAAAABiI0hcAAAAAAAAAAAAAAADAQJS+AAAAAAAAAAAAAAAAAAai9AUAAAAAAAAAAAAAAAAwEKUvAAAAAAAAAAAAAAAAgIEofQEAAAAAAAAAAAAAAAAMROkLAAAAAAAAAAAAAAAAYCBKXwAAAAAAAAAAAAAAAAADUfoCAAAAAAAAAAAAAAAAGIjSFwAAAAAAAAAAAAAAAMBAlL4AAAAAAAAAAAAAAAAABqL0BQAAAAAAAAAAAAAAADAQpS8AAAAAAAAAAAAAAACAgSh9AQAAAAAAAAAAAAAAAAxE6QsAAAAAAAAAAAAAAABgIEpfAAAAAAAAAAAAAAAAAANR+gIAAAAAAAAAAAAAAAAYiNIXAAAAAAAAAAAAAAAAwECUvgAAAAAAAAAAAAAAAAAGovQFAAAAAAAAAAAAAAAAMBClLwAAAAAAAAAAAAAAAICBKH0BAAAAAAAAAAAAAAAADETpCwAAAAAAAAAAAAAAAGAgSl8AAAAAAAAAAAAAAAAAA1H6AgAAAAAAAAAAAAAAABiI0hcAAAAAAAAAAAAAAADAQJS+AAAAAAAAAAAAAAAAAAai9AUAAAAAAAAAAAAAAAAwEKUvAAAAAAAAAAAAAAAAgIEofQEAAAAAAAAAAAAAAAAMROkLAAAAAAAAAAAAAAAAYCBKXwAAAAAAAAAAAAAAAAADUfoCAAAAAAAAAAAAAAAAGIjSFwAAAAAAAAAAAAAAAMBAlL4AAAAAAAAAAAAAAAAABqL0BQAAAAAAAAAAAAAAADAQpS8AAAAAAAAAAAAAAACAgSh9AQAAAAAAAAAAAAAAAAxE6QsAAAAAAAAAAAAAAABgIEpfAAAAAAAAAAAAAAAAAANR+gIAAAAAAAAAAAAAAAAYiNIXAAAAAAAAAAAAAAAAwECUvgAAAAAAAAAAAAAAAAAGsnvuAAAAAAAAAAAAAABHgnrDh+aOAADAGvUvv2juCLAhnvQFAAAAAAAAAAAAAAAAMBClLwAAAAAAAAAAAAAAAICBKH0BAAAAAAAAAAAAAAAADETpCwAAAAAAAAAAAAAAAGAgSl8AAAAAAAAAAAAAAAAAA1H6AgAAAAAAAAAAAAAAABiI0hcAAAAAAAAAAAAAAADAQJS+AAAAAAAAAAAAAAAAAAai9AUAAAAAAAAAAAAAAAAwEKUvAAAAAAAAAAAAAAAAgIEofQEAAAAAAAAAAAAAAAAMROkLAAAAAAAAAAAAAAAAYCBKXwAAAAAAAAAAAAAAAAADUfoCAAAAAAAAAAAAAAAAGIjSFwAAAAAAAAAAAAAAAMBAlL4AAAAAAAAAAAAAAAAABqL0BQAAAAAAAAAAAAAAADAQpS8AAAAAAAAAAAAAAACAgSh9AQAAAAAAAAAAAAAAAAxE6QsAAAAAAAAAAAAAAABgIEpfAAAAAAAAAAAAAAAAAANR+gIAAAAAAAAAAAAAAAAYiNIXAAAAAAAAAAAAAAAAwECUvgAAAAAAAAAAAAAAAAAGovQFAAAAAAAAAAAAAAAAMBClLwAAAAAAAAAAAAAAAICBKH0BAAAAAAAAAAAAAAAADETpCwAAAAAAAAAAAAAAAGAgSl8AAAAAAAAAAAAAAAAAA1H6AgAAAAAAAAAAAAAAABiI0hcAAAAAAAAAAAAAAADAQJS+AAAAAAAAAAAAAAAAAAai9AUAAAAAAAAAAAAAAAAwEKUvAAAAAAAAAAAAAAAAgIEofQEAAAAAAAAAAAAAAAAMROkLAAAAAAAAAAAAAAAAYCBKXwAAAAAAAAAAAAAAAAADUfoCAAAAAAAAAAAAAAAAGIjSFwAAAAAAAAAAAAAAAMBAlL4AAAAAAAAAAAAAAAAABqL0BQAAAAAAAAAAAAAAADAQpS8AAAAAAAAAAAAAAACAgSh9AQAAAAAAAAAAAAAAAAxE6QsAAAAAAAAAAAAAAABgIEpfAAAAAAAAAAAAAAAAAANR+gIAAAAAAAAAAAAAAAAYiNIXAAAAAAAAAAAAAAAAwECUvgAAAAAAAAAAAAAAAAAGovQFAAAAAAAAAAAAAAAAMJDdcwdge1XVyUmenuTxSfYmuSHJdUk+293758wGAAAAAAAAAAAAAAAAKH3tGFV1QZLXJznnIJfcXlXvTfKm7r51+5IBAAAAAAAAAAAAAAAAi3bNHYCtVVV7q+r3krwvBy98JckJSf5Fkiur6vxtCQcAAAAAAAAAAAAAAAB8E6WvJVZVRyV5b5JXTV66JcnHslIE+3ySXnjtsUk+UFXnbktIAAAAAAAAAAAAAAAA4GGUvpbbLyT5gYV5f5LXJfnO7j6/u3+ou5+Z5MlJLl+47hFJLq2qx21fVAAAAAAAAAAAAAAAACBR+lpaVXVKkp+arF/R3Rd3977FZXf/nyTPy8OLX387yZu3NiUAAAAAAAAAAAAAAAAwpfS1vN6cZM/C/Nvd/YGDXdzd9yW5MMliIeyiA+UxAAAAAAAAAAAAAAAAYJsofS2hqjomyQWT9S8e6lx3/0WSSxdWu5P8yCZGAwAAAAAAAAAAAAAAAA5B6Ws5nZ/kkQvz5d39xTWefddkfvnmRAIAAAAAAAAAAAAAAADWQulrOT1/Mn9iHWc/neTBhfkZVfXYDScCAAAAAAAAAAAAAAAA1kTpazk9eTJfvtaD3X1Pkj+brJ+04UQAAAAAAAAAAAAAAADAmih9LaczJvPV6zx/zWQ+cwNZAAAAAAAAAAAAAAAAgHVQ+loyVXVCkhMm66+s8zbT67/78BMBAAAAAAAAAAAAAAAA67F77gBsukdP5nu7+5513uPmyXz8BvIkSarqxCTfvs5jpy8OV1+93geWwSpuXW8HEgCAuVx11VVzRwAAAGAn8zcFAIAjhr8psK18VgAAOGL4rMBmWKXLcvR2vXd193a9F9ugqp6a5H8vrG7r7ses8x7/MsnbFlZ/0N3/aIO53pLkzRu5BwAAAAAAAAAAAAAAAMzoJd39we14o13b8SZsq72T+f7DuMd9h7gnAAAAAAAAAAAAAAAAsEWUvpbf4TzKzePfAAAAAAAAAAAAAAAAYCa75w7Aprt7Mh9zGPeYnpne83D8WpL3rfPM3iTfk+SuJHcm+b9J9m1CFgBYFt+V5AML80uSXDNTFgAAYBw+KwAAAKvxWQEAAJjyOQEADu3oJH9nYf7kdr2x0tfyGbL01d03J7n5MI7+z42+NwAsq6qarq7p7qvmyAIAAIzDZwUAAGA1PisAAABTPicAwJpdMceb7prjTdlSd07mR1bVseu8x4mT+asbyAMAAAAAAAAAAAAAAACsg9LXkunu25LcMVk/cZ23OWkyf+nwEwEAAAAAAAAAAAAAAADrofS1nP58Mp+6zvOnHOJ+AAAAAAAAAAAAAAAAwBZR+lpOV07mc9Z6sKqOTfLUQ9wPAAAAAAAAAAAAAAAA2CJKX8vpssn8nHWcfXaS3QvzFd1904YTAQAAAAAAAAAAAAAAAGui9LWcPprkvoX5nKo6fY1nL5zM79+URAAAAAAAAAAAAAAAAMCaKH0toe6+N8klk/XPHOpcVZ2W5GULqweTvGcTowEAAAAAAAAAAAAAAACHoPS1vN6SZP/CfGFVvfhgF1fVtyV5V5KjF9bv7O5rtiYeAAAAAAAAAAAAAAAAsBqlryXV3V9O8rbJ+pKqem1VLRa7UlVnJPl4ku9bWN+W5K1bmxIAAAAAAAAAAAAAAACY2j13ALbUzyZ5UpIXHJj3JHl7kjdW1eeT/HWSU5KclaQWzu1L8rLuvmEbswIAAAAAAAAAAAAAAABR+lpq3f21qvqhJO9I8sqFl05M8vyDHLs5yau7+9NbnQ8AAAAAAAAAAAAAAAD4ZkpfS667707yqqq6JMkbkpx9kEtvT/LeJG/u7lu2Kx8AsCG3JHnrZAYAAPBZAQAAWI3PCgAAwJTPCQAwsOruuTOwjarq5CRnJXl8kmOT3JjkuiR/2t375swGAAAAAAAAAAAAAAAAKH0BAAAAAAAAAAAAAAAADGXX3AEAAAAAAAAAAAAAAAAA+AalLwAAAAAAAAAAAAAAAICBKH0BAAAAAAAAAAAAAAAADETpCwAAAAAAAAAAAAAAAGAgSl8AAAAAAAAAAAAAAAAAA1H6AgAAAAAAAAAAAAAAABiI0hcAAAAAAAAAAAAAAADAQJS+AAAAAAAAAAAAAAAAAAai9AUAAAAAAAAAAAAAAAAwEKUvAAAAAAAAAAAAAAAAgIEofQEAAAAAAAAAAAAAAAAMZPfcAQAAODxVdXKSpyd5fJK9SW5Icl2Sz3b3/jmzAQAAAAAAAAAAY6mqY5KcnuSkrHzn6Lgke5LcleS2JFcmuaq7H5wtJADwN6q7584AAMA6VNUFSV6f5JyDXHJ7kvcmeVN337ptwQAAAAAAgCFU1VFJTk1yZla+yHl8kgeS3JHkmiSf6+575ksIAABsl6r6J0m+P8mzknxXkl2HOHJ3kt9P8vbu/sIWxwMAvgWlLwCAI0RV7U3yW0letcYjNyV5dXd/dOtSAQAAc6uqU5J8b5LvOfD/WVn5Zc6HXNfdf3eGaAAAwDaqqicmeXmS85I8O8mjvsXlX0vyR0ku7u6PbEM8AABgJlX1V0mecBhHv5bk7Un+tSd/AcA8lL4AAI4AB36R84NJfmDy0i1JrkhyZ1Z+iecZSWrh9QeSnNfdn9mOnAAAwPaoquck+TdZKXqdcIjLlb4AAGDJVdV7kvzwYR7/cJIf7+6bNjESAAAwiFVKX/dm5QnAX0lyV1ae/HVCkqck+Y5VbnFpkgu6+2tbHBUAmNg9dwAAANbkF/Lwwtf+JK9P8pvdve+hZVWdmeQdSc45sHpEkkur6indfcN2hQUAALbc05P8w7lDAAAAwzjtIPvrk3wpyU1Z+Y7IKUmelpUvdT7khUk+VVV/v7tv3NKUAADAHO7Jyo9N/2GSzya5sru/vtqFVXV2kp9P8ryF9Uuz8j2lX9rinADAhCd9AQAMrqpOSfLFJHsW1i/t7g8c5Ppjknw83yh+JclvdPc/37qUAADAdqqqf5XkV1Z56YEkf5WVJwE/xJO+AABgyVXV55I888B4RZL/mOQPu/uaVa59QpI3Jflnk5c+k+TvtS+SAADAUqmqPd29fx3X70ry7iQ/urC+M8lju/uBzc4HABzcrkNfAgDAzN6chxe+fvtgha8k6e77klyYZN/C+qID5TEAAGB57E/yhaw87fc1WfmC53FJfnzOUAAAwCw6yUeSfG93n9XdF69W+EqS7r6+u1+T5CcnL52b5JVbnBMAANhm6yl8Hbj+61n5vHDPwvr4JM/dzFwAwKEpfQEADOzAU7sumKx/8VDnuvsvkly6sNqd5Ec2MRoAADCvdyd5VHc/o7t/ort/s7s/v94/3AIAAEvjFd39wu7+3FoPdPevJfmvk/WPbW4sAADgSNTdd2XlacCLTp0jCwDsZEpfAABjOz/JIxfmy7v7i2s8+67J/PLNiQQAAMytu+/o7vvnzgEAAIyhu689zKO/Opn9cj8AAPCQ2yfzcbOkAIAdTOkLAGBsz5/Mn1jH2U8neXBhfkZVPXbDiQAAAAAAgGVxxWQ+pqoePUsSAABgNCdN5v83SwoA2MGUvgAAxvbkyXz5Wg929z1J/myyftKGEwEAAAAAAMviwVV2R297CgAAYChVdVqSZy2sOsknZ4oDADuW0hcAwNjOmMxXr/P8NZP5zA1kAQAAAAAAlsupk/nBJLfOEQQAABhDVT0uyfuSHLWwvqS7r50nEQDsXLvnDgAAwOqq6oQkJ0zWX1nnbabXf/fhJwIAAAAAAJbMBZP5c9399VmSAAAAs6iq3Un+VlZ+nPqFSV6T5FELl3w5yWtniAYAO57SFwDAuB49me/t7nvWeY+bJ/PxG8gDAAAAAAAsiaram+Siyfr9c2QBAAC2T1X9hyQ/tcbL/3uSH+vu6XeQAIBtsGvuAAAAHNTeyXzfYdxjeua4w8wCAAAAAAAsl3+f5DsW5q8mecdMWQAAgLF8MMn53f393X393GEAYKfypC8AgHFNS1/3H8Y9pqWv6T0BAAAAAIAdpqpeluS1k/W/7e7b58gDAAAM5wVJjqqq+7v7U3OHAYCdypO+AACOHL1NZwAAAAAAgCVVVU9L8juT9ceS/PoMcQAAgO33c0lOXvh3ZpJnJ3ldkj85cM2eJD+Y5JNVdXFVHTVHUADY6TzpCwBgXHdP5mMO4x7TM9N7AgAAAAAAO0RVPTHJR5LsXVhfl+RHu9sPyQEAwA5w4Am/qz3l9zNJLq6qc5P8bpKTDux/MivfQbpoexICAA/xpC8AgHEpfQEAAAAAAJuiqk5M8kdJnrCwvjHJP+juW+ZJBQAAjKa7P5PkuUluW1j/06p6yUyRAGDHUvoCABjXnZP5kVV17DrvceJk/uoG8gAAAAAAAEegqjohyR8nOW1hfWuS87r7S/OkAgAARtXdf5nk5ybrn54jCwDsZEpfAACD6u7bktwxWT9xnbc5aTL7wy0AAAAAAOwgVXV8ko8lecrC+o6sPOHrqnlSAQAAR4D/MpnPrqpHz5IEAHYopS8AgLH9+WQ+dZ3nTznE/QAAAAAAgCVVVccluSzJMxfWdyV5fnd/YZ5UAADAkaC7b87Df7B6V5KTZ4oDADuS0hcAwNiunMznrPVgVR2b5KmHuB8AAAAAALCEDvyd4L8lOXthfXeSF3T3/5onFQAAcITZP5kfMUsKANihlL4AAMZ22WR+zjrOPjvJ7oX5iu6+acOJAAAAAACAoVXVMUk+nOTchfW9SX6wuz87TyoAAOBIUlXfluQxk7XvHgHANlL6AgAY20eT3Lcwn1NVp6/x7IWT+f2bkggAAAAAABjWgS9mfjAP/yG5+5O8uLs/NUsoAADgSPS8PPy75vcmuX6mLACwIyl9AQAMrLvvTXLJZP0zhzpXVaclednC6sEk79nEaAAAAAAAwGCq6ugkf5DkvIX1A0le2t0fnycVAABwpKmqXUneOFlf1t375sgDADuV0hcAwPjekmT/wnxhVb34YBcf+AXPdyU5emH9zu6+ZmviAQAAAAAAc6uq3Ul+P8kLFtb7k1zQ3R+dJxVyLvLKAAAdRklEQVQAADCnqnpdVT1unWf2JHlnkmdNXvrVTQsGAKyJ0hcAwOC6+8tJ3jZZX1JVrz3wi51/o6rOSPLxJN+3sL4tyVu3NiUAAAAAADCXqjoqyX9O8pKF9YNJXtndH54nFQAAMICLklxTVb9bVS+qquMOdmFVHVNVP5zkiiQXTl7+T939J1uYEwBYRXX33BkAADiEA3+s/VAe/uucSXJzks8n+eskpyQ5K0ktvL4vyXnd/entyAkAAGyfqvrOJLtXeensJL+3MF+f5NyD3Obu7r51s7MBAADbq6reneQfT9Y/neR9h3G7G7v7/o2nAgAA5lZVX0jytIVVJ7k6ybVJvpqV7xYdl+SkJGcm2bPKbT6clScIP7ClYQGAb6L0BQBwhKiqvUnekeSVazxyc5JXd/dlW5cKAACYS1Vdm5U/wm7Eu7v7wo2nAQAA5lRVm/nlj+d29yc28X4AAMBMVil9rcd9SX4+yS919/7NSwUArNWuuQMAALA23X13d78qySuS/I9vcentSX49yZMVvgAAAAAAAAAAYMf6iawUty5PstYndX0xyRuTnNbd/07hCwDm40lfAABHqKo6OclZSR6f5NgkNya5Lsmfdve+ObMBAABbz5O+AACAh3jSFwAAcChVtSfJGUlOSfKEJHuT7Elyd5K7klyb5IruvmOujADAwyl9AQAAAAAAAAAAAAAAAAxk19wBAAAAAAAAAAAAAAAAAPgGpS8AAAAAAAAAAAAAAACAgSh9AQAAAAAAAAAAAAAAAAxE6QsAAAAAAAAAAAAAAABgIEpfAAAAAAAAAAAAAAAAAANR+gIAAAAAAAAAAAAAAAAYiNIXAAAAAAAAAAAAAAAAwECUvgAAAAAAAAAAAAAAAAAGovQFAAAAAAAAAAAAAAAAMBClLwAAAAAAAAAAAAAAAICBKH0BAAAAAAAAAAAAAAAADETpCwAAAAAAAAAAAAAAAGAgSl8AAAAAAAAAAAAAAAAAA1H6AgAAAAAAAAAAAAAAABiI0hcAAAAAAAAAAAAAAADAQJS+AAAAAAAAAAAAAAAAAAai9AUAAAAAAAAAAAAAAAAwEKUvAAAAAAAAAAAAAAAAgIEofQEAAAAAAAAAAAAAAAAMROkLAAAAAAAAAAAAAAAAYCBKXwAAAAAAAAAAAAAAAAADUfoCAAAAAAAAAAAAAAAAGIjSFwAAAAAAAAAAAAAAAMBAlL4AAAAAAAAAAAAAAAAABqL0BQAAAAAAwBGvqh5TVT9bVX9cVTdU1f1V1Qv/3jJ3RgAAAAAAAFir3XMHAAAAAAAA2Emq6tokJ03Wf5nk9O7et8F7fXt337qhgEegqnpxkt9JcvzcWQAAAOD/t3fv0baf473Av092LjSJkBvR5kIuKq6lLiehtKWqdRRHq1UqqCqlp81BjhAJ1bqUVuVoa5y2QbWqQ1F63LWURFtUJIhERCpCReQu5PqcP35zNXPNrLnWnGutnT13fD5jrDHW+8738sw5fzt/WOPrAQAA2Aw6fQEAAAAAAGx7d0jy69u6iO1RVd0zyd9G4AsAAAAAAICbEZ2+AAAAAAAAFsMLq+qk7r58WxeynXlJkl3Gxu9LcmKSs5OMd0675KYsCgAAAAAAADZC6AsAAAAAAGAx7JPkOUmO39aFbC+qatckPzM2dXqSR3T3dduoJAAAAAAAANgUO2zrAgAAAAAAAPgvR1fVbbd1EduReybZMjZ+h8AXAAAAAAAANwdCXwAAAAAAANvWO8d+3y3Ji7ZVIduhyYDc17ZJFQAAAAAAALDJhL4AAAAAAAC2reOTfHds/LSqOmRbFbOd2W1ifM02qQIAAAAAAAA22Y7bugAAAAAAAIDvc19P8kdJ/vdovFOSlyb5xZvi8qraPcmRSX4wyT5JrkpyQZIzknymu/umqGOdtsr/wWFV7ZTkiCQHJLnd6J7Pd/c/zLC3kvxIkjtl+Dx3TXJhhi5kH+/uyzepxt0yfG+3H91zXW743v69u6/fjHvmqGfHJHcd/eydIZB3TZIrkpyf5MtJvtDd123CXUuf7w8muT7Dv6FTuvu8DZ67e5LDkxyW4T3smuTyJBcl+VyS0zaj/rH7bp/kvhm+v70yvJdLkpyV5NTuvmQDZx+e5G6js2+V4T18I8Mz+O0N1n1Ikrtn+Px3T9JJrkzyzSRfSXJ6d1+5kTsAAAAAAICkFvvvdAAAAAAAADcvVXVukgPHpvbJEI45J8meo7lOcp/u/vS8Z3X3hTPWcUSSFyX5iQxBs5VckOQvk7xso0GRzVJV6/nj1ou7+4SxM07I0GFtyY9390eqas8kv5MhcLdnlvtsd99zlbr2T3JsksdmCAyt5JokH0ryou7+1LxvYnTPw5Ick+QBmf69XZjkz5O8orsvXs89c9Rz2yQvSPL4DMGl1VyZ5ONJ3tLdb5hy3kEZgkNL3tjdR1XVliTPSPKsDIGvSZ3klCTP6+5T5qj/rkkel+RhSe6VZMsqyy9P8uYkr+ruc2a9Y+K+XZM8M8lTs/L7WHJ9kk8l+eskb+juS2c4e68kz03yhAyBrGnnnpLh38SH5qh7lyS/meRpSQ5dY/l1SU5N8s4kfyAABgAAAAAA6yP0BQAAAAAAcBOaFtSqquck+f2x+Q9390PWc9Yae3ZK8qdJnjJH2ZcmeWJ3v3uOPVvF1gp9ZQhkvTXTwzJTQ19VdUySFyfZZcZ6Osmrkhwzaye1qto7yVuSrPpMTPh2ksd09z/PsWdmVfUTSd6eZI85t57f3T805cyDMhH6yhD0ekdme++d5He7+7i1FlbVvZKsGqyc4rtJfq273zzPpqr62SRvyPRQ4DRPnhaSGzv7V5KcmKGr16zenOSp3X31Gmfvn+T9Se48x9lLDu3us9exDwAAAAAAvu/tuK0LAAAAAAAAIMkQ2Hh2kgNG45+sqod29wc364JR4Ov/JXnoxEvXJvlkkvOS3DLJ4UkOHnt9jyTvqKqndPebNqueBXLHDIG7pe5e38nwefxnkt0ypbNRVe2Q5C+SPGnipeuTnJ7k3NFZ+yS5b24IR1WGjkz7JjlqreKq6pAMoZs7Trx0eYbQ0jczdKg6KEO3qh1Gr++V5INV9cjufv9a98yjqg5N8g8Znpdx/5HkjCRLHcZuleQOGT7DaZ3J1jIZdjstyVKQ6JAkdx8vLckLq2pLdx+7xrk7TIw7Q+DsS0kuyxAEvE2Su+SGf5fJ8J7/sqq+191vm+UNVNXRGZ6xyTuvSPLvGb7DzvCd3TXJbWc5d3T2S5JMhtw6yZmj93L56H38aIZncckTkuxXVT/d3ddOOXvnJO/LjQNfF2V4xr+Z4XPaPcl+Gf7bseustQMAAAAAANMJfQEAAAAAACyA7r6qqo5PctLY9Mur6kOzdoOawe9meeCrk/xJkhO6+1vjC6vqyNFrdxtNbUny+qo6tbtP26R61uMOY78/Nsu7oz03yUohnEvWOPM1GUIrFyc5NslJ3X3V+IKqusMK+47L8sDXVUlenuR1K3yeOyZ5YpJXZwjgJMmTquoT3f36aYVV1Q9k6HI1Hvg6M8kLkryzu6+bWL9fhq5jTxtN7ZzkzVV1z+4+f9o96/CSLA98/WOSo7v7systrqpdkjwoyaOTPHiOex6ZGz6vDyV5VnefOXH2nZL8nywPhj2/qv5phtDkd5P8TZK/z9Bd74op9d81yYuS/PzY9F9U1T939wWrXVBVj87Q2a3Gpr+Q5IVJ/qG7r1lhz2EZnu+nr3H2k7I88HV9ktcleVV3f3VibSX5uSR/lLFwaZLfSfL8KVc8OUOQa8m5SX4jyfu6+/oV6qkk907yiCRPXa12AAAAAABgdbV5fyMEAAAAAABgLVV1bpIDx6b26e4LR6/tkOSzGTr9LHl8d79l3rNWWHuPJJ/J8uDJb3b3iavUuluSDya5/9j0J7v7vtP23JSq6qgsD8k9ubvfMMO+E5IcPzF9UZIHdffnZrz7fklOyQ2dmy5O8pPd/Zk19h022rfXaOrSJPt39+VT1r8uyTPHpt6b5H9093fXuOfoDAGzJSd191NW2zOrUbDn8tzQ0emsJHefDMqtsv+W0+qvqoMydNua9LdJfmmloNFo35YMHcHGQ1nnJjl0lS5Wt0qypbsvXun1KXtOyPJn58XdfcIq6/dO8uUMHc+WvD3JE9b6Dkf7d0xy65X+XVfVgRm6qi2F765K8qjuft8aZ+6b5OQMXdKS5LoMn9ONPveqek+Sh4+G1ya5c3efPbluyj1bkuywUqgNAAAAAABY2w5rLwEAAAAAAOCmMAq0HDsx/dKq2mkTjj86ywNff7da4GtUzxVJHpfkO2PT96mqH9uEehbNb80a+Bo5Lsv/1vbLawW+kqS7z0ryjLGpPXJDV65lqur2SX51bOrcJI+dJSzU3X+Q5D3j9VXV7dbaN6O9c0PgK0nePWvga1TbmvVP+FqSp04LfI3OvC7JU5KMdzM7KEOnsGl7Lpsn8DXykiTjne5+eY31v53lga/PZghyzvQZdPe104KcGTrbjXdb++21Al+jMy9I8vixqS2jOlcyHir97KyBr9E91wl8AQAAAADA+gl9AQAAAAAALJDufneSj41N3THJ0zdyZlXtkiG8NW4yXDatnq8m+ZOJ6aM2Us8COi/JX826uKoOTvKzY1Mf7e73znHf25L8x9h4WjDp15PsPDZ+cXdfOcc9452+dk7y03Psnce+W+ncJa8YBRBXNVrzionpozazkFHw7B1jU4dU1T4rrR117pv8t/tb8wTkpqmqXTOE3Jack+T1s+7v7k9m+X9npobjxmzt7xkAAAAAABgj9AUAAAAAALB4jpkYH1dVu23gvPsk2WVs/MlRx6lZvWli/IAN1LKI3rVaF6kVPGRi/NZ5LuvuTvLRsan7VdXOKyx96Njv12UIi83j40muHRs/cM7901w4+lny2KrarLMndZK/mWP9W0Z7lhxZVTVt8TRVtUtV7V1VB1bVQeM/SSa7dN15yjH3SLLX2PjM7v7IvLVM8YAs7/L1tjmf4ST5p7HfD6yqA1ZY88Wx3/evqufMeQcAAAAAALBOO27rAgAAAAAAAFiuuz9RVX+f5OdGU/smeU6SE9Z55I9OjE+Zc//nklyW5Faj8aFVtUd3X7rOehbNZ+ZcPxl6u2AUBprHeMeuWyS5fZJzlyaq6hZJ7j225rwke1fV3nPec0mSpT0Hz7l3Rd3dVfU3SZ41mrplkn+qqrdlCGh9aJbOXDP6cndfuPay/6rtwqo6Jze81z0zdMv78mr7ququGbrhPTDJXXLDZzaL20yZP2Ji/JE5zlzL5DP49XU8g1dPjO+Y5KsTc3+d5DFj49+vqkclOSnJe7r7G3PeCQAAAAAAzEjoCwAAAAAAYDE9P8kjkmwZjf9XVf1xd1+wjrP2nRjP0+VrKeRzVpaHx/ZNcnMJfc37me4/MZ63A9dK9sxY6CvJ7ZLsNDY+KMlXNuGOzXJCkofnhnDVlgyhqcclua6qTk3yiQzdxv55A+GguZ7VkS9lecBt30wJfVXVgUlek+RR67hnyR5T5vebGH9+A3dMmnwGXzP62YiVno+3j37Gg19Hjn5SVWdnCJGenORj3X3GBmsAAAAAAABGdtjWBQAAAAAAAHBjo/DEG8amdkty3DqPm+xEtJ6w1uSezQwQbWuXz7l+r61Qw+7b4I516+5vJ/lvSf5uhZe3ZOhS9qwMnb/Or6pTquqpVbXTCutXc9k6ypvpWa2qO2cIpm0k8JVM/5vr5Hd48QbvWe3szXCj56O7O0OQ7/eSfG+FPYck+ZUkr0/yhar6UlUdX1U3p/8+AAAAAADANiH0BQAAAAAAsLiOT/LdsfHTq+rgaYtXURPjXn9Jm3rG9mrnrXDm5Hd0U9yxId39re5+bJK7JXllktOz8nNRGQJif5bk9Kq6xzzXbLjQFc6oqh0zBNLGu3F9L8lfJjkqQ1e7/TKELXfs7lr6SfLkzapjA26y56O7r+3uF2ToNvecJB9LctWUMw7J0AXunKp63FaoEQAAAAAAvm/suK0LAAAAAAAAYGXdfX5VnZjkeaOpnZK8NMkvzXnURRPjPdZRzuSezexatL25MMlhY+Pbd/c3tsId4z7Q3Q/b5Ds2RXd/LskxSY6pqlsnuV+SI5M8OEPYa/xvkndK8uGquk93f2WG47fWs/qYJHcfG5+d5GHdfc4M599qxjomv8PN7H41efYR3f2JTTz/Rrr7m0leneTVVbVLknslOSLJA5P8ZIaA3JI9krylqq7q7nduzboAAAAAAODmSqcvAAAAAACAxfayLA+tPK6q7jXnGRdMjA9bcdUUVVVJDp2Y/tacNdycfHNiPNfnuUB3bLruvqS739/dL+ruH0ty2yTPTXLp2LK9kvzOjEeu531PPquTz3+S/NzE+NdmDHwlye1nXDcZBDx8xn2z2KbPR3df1d2f6O5Xd/ejMnynv5jkrLFlleS1VeVv0gAAAAAAsA7+B3YAAAAAAIAF1t2XZAh+LakkL5/zmE9NjI+Yc/9dsrx70pdGdX2/OmVi/FObfUF3X5bk82NTB1XVZJhp4XX3Rd39qiQPS9JjLz1yxjDQwVW196z3jdbecWzqoiQrhbnGP8vvJPnIrHdk9n8/J0+MHzTHHWvZ6s/gPLr76u5+a4Yub+ePvbR/kntvm6oAAAAAAGD7JvQFAAAAAACw+E5M8rWx8UOr6iFz7P9UkqvGxvedM0D0xInxx+fYe3P0/onxE6vqFjfBPU/bCnfcJLr7X5N8bmxq9ySzhLkqQwepWf3SaM+Sk7u7V1h367HfL5uy5sbFVB2S5MgZazktyzvi3bmqfmzGvWv5cJLrxsaPrKp9N+nsdRuFQd8+MX2HbVELAAAAAABs74S+AAAAAAAAFlx3fy/J8RPTL8/ycMta+/92Yvqls+ytqh9K8syJ6TfOsvfmqrtPT/LRsan9kxy7Fa76kyTXjo2fXVV32Qr33FSunRhfteKqGzumqnZba9FozfMmpqc9qxeP/b5vVd1mxlpemRn/xjoKkv3xxPRrqmrnGe9a7eyLk/zV2NRuSV610XM3yXq/ZwAAAAAAYIzQFwAAAAAAwPbhjUk+Pza+d5ID5tj/h0nGuxn9QlU9Y7UNVbVrkrdmCJQs+XR3f3TKlqV9PfHz4Dnq3F68IMs/z+Oq6lnzHlJV96uqH1npte4+O8lJY1O3SPKeqjp8zjt2qaqj5q1tlfPuWVWPrqotc+y5e5J7jE19o7svnXH7DyX586qa+rfN0Wt/Plq75Nwkfz9ly2fHft+S5LlrFVFVL07y6LXWTXhtkkvGxj+S5M1Vtcssm6tqx6qa1hHthCwPVD2xql4xz/cyuuPwlTqQVdUPVNWzq2r3Oc7aLcljJqbPmKceAAAAAABgIPQFAAAAAACwHeju67KBblLd/ZkkfzAx/bqqem1V7TW5vqr+W5KPJzlibPqqJL+63hpuTrr75Ayhm3EnVtV7q+rB0wJKNfjhqnpuVf1bkn/J8jDUpKOTnDY2PiDJp6rqd6tq/2mbquqWVfWQqnptkvOyPDy2UQcleXuSL1fVK6vqiKraaUodO1bVY5O8P8v/Njlrt7iljly/kOS9VXXYCnccluR9ozXjnt7dk12nlrx1Yvz8qnrpSh3FqupOVfX2JC8aTX1rxtrT3Rcl+ZUsDwj+fJJPVtUjq2rHlfZV1aFV9fwkZyd5xJSzv5Lk1yamn5fk41X136edPTr/oKr6jar6xwxh0p9YYdnOGUJrX6uqvxidOTUAVlX3TfLhJAeOTf9Ld581bQ8AAAAAADDd1P+hHwAAAAAAgMXS3e+qqpOTHLnOI47N0GloKeBRSZ6d5BlV9a9Jvpahm9Rdkhwysff6JM/s7lPXeffNTne/pKr2STLe4eunRz+XVtVnMgSErklyqyT7Jjk8yzunrXXHFVX1iCQfSPLDo+lbZvguj62qc5J8MUM3qR2T7JEhlHVIhg5WW9OBGTpkPTfJ1VX1hSTnj2rZkuR2GZ63PSb2fTHJS2e8491J9k7yM0l+KsmZVXVqhjBUZXifK4XmXtbdH5h2aHd/uKrem+ThY9MvSPI/R2G8b2T4ng5LcuexNWck+dMkfzRj/enud1fV0UlenRuCb3fL0IXs8qr6dJILMgTD9hq9dtsZz35TVd0uycvGzr5/kncluXL0DH4zyXeT7J7hszw8ya1nrT/Ds/vk0U9X1dlJzsnwPV87qvmuWd5lLUmuzI1DaQAAAAAAwIyEvgAAAAAAALYvx2TowDW37r66qh6e5P9m6D60ZMesHiS7LMmTuvud67n35qy7n11Vn0xyYoZwzJI9kjx4hiOuT3LpGnecV1X3yRA2+uWJl+84+lnLJTOs2Yidk9xz9LOak5M8pru/M+O5neQXMwSkfnw0t9o9neT3uvuFM5z9+CQfTPKjY3O7ZeWuV0lyaoauWw+d4ezlRXW/ZhTQOynJnmMv7Z7ZnpPVzn5lVZ02Ovt2Yy/9QGYPiF689pIkQ9Du0NHPas7P8D2fPuO5AAAAAADAhB3WXgIAAAAAAMCi6O6TM3TxWe/+q7v7SUkemCHwcs0qy7+V5A+THCzwNV13vynJARm6b505w5bvJfnHDB2yDujud8xwxxXd/YQMXa3enNlCOl9P8ldJfj7Lw0Ab9YEkj0nyZxk6bq2lk3wsQ2Dtgd19wTyXdfflGbp8Hb3KfZ3klCQPmDHwle6+JMkDkrwkyUWrLD0zQ9jy/t19/qx1r3DfuzJ0YTsuyVfWWH5thoDcM5L83Qxnvy/JHZL8RoZwWq+x5ZoMn9cJSQ7r7pU6l12a5EFJXpnk06Oa1nJmhn8Hh3X3v82wHgAAAAAAmKK61/rf+wEAAAAAALi5qqrdMwTAfjDJ3kmuyhD2OiPJp9sfk+ZWVfsluW+SfTN0ddohyeVJ/jNDKObM7r56g3fskOTuSQ4f3XHrDGGyy5Kcm+SM7j5vI3fMUcteSe6SIXS0V4YOU1eNajk7yand/e0ZzzooywNRb+zuoybW3DvJnZLcPkOntK8nOaW7v7qB97BLkvuN3sdtklyR4fs6Y2t1q6qqg5PcO8k+Gb6/qzOEz76U4TO7bANn75nk/kn2y/B87JThPV2Q5KwkX+zuK+c885YZPp+DM4QId80QLrssyVeTnNbd/7HemgEAAAAAgOWEvgAAAAAAAICFMEvoCwAAAAAA4PvBDtu6AAAAAAAAAAAAAAAAAABuIPQFAAAAAAAAAAAAAAAAsECEvgAAAAAAAAAAAAAAAAAWiNAXAAAAAAAAAAAAAAAAwAIR+gIAAAAAAAAAAAAAAABYIEJfAAAAAAAAAAAAAAAAAAtE6AsAAAAAAAAAAAAAAABggVR3b+saAAAAAAAAAAAAAAAAABjR6QsAAAAAAAAAAAAAAABggQh9AQAAAAAAAAAAAAAAACwQoS8AAAAAAAAAAAAAAACABSL0BQAAAAAAAAAAAAAAALBAhL4AAAAAAAAAAAAAAAAAFojQFwAAAAAAAAAAAAAAAMACEfoCAAAAAAAAAAAAAAAAWCBCXwAAAAAAAAAAAAAAAAALROgLAAAAAAAAAAAAAAAAYIEIfQEAAAAAAAAAAAAAAAAsEKEvAAAAAAAAAAAAAAAAgAUi9AUAAAAAAAAAAAAAAACwQIS+AAAAAAAAAAAAAAAAABaI0BcAAAAAAAAAAAAAAADAAhH6AgAAAAAAAAAAAAAAAFggQl8AAAAAAAAAAAAAAAAAC0ToCwAAAAAAAAAAAAAAAGCBCH0BAAAAAAAAAAAAAAAALBChLwAAAAAAAAAAAAAAAIAFIvQFAAAAAAAAAAAAAAAAsECEvgAAAAAAAAAAAAAAAAAWiNAXAAAAAAAAAAAAAAAAwAIR+gIAAAAAAAAAAAAAAABYIEJfAAAAAAAAAAAAAAAAAAtE6AsAAAAAAAAAAAAAAABggQh9AQAAAAAAAAAAAAAAACwQoS8AAAAAAAAAAAAAAACABSL0BQAAAAAAAAAAAAAAALBAhL4AAAAAAAAAAAAAAAAAFsj/B7tDIg0O0OZgAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAADX0AAAcqCAYAAACQOCfjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeby1dVkv/s/F5MAoAmohgpITpuaspUBaOaTinJkJmp0GraOZZtPPBqtTerQ8lZkJpQ0O4ZzpccAhA0ecZ0VEMUESAUFArt8f93qOm3uvvfdaa+/n2Qt8v1+v/fJZ33V/7+u77mEtXu712Vd1dwAAAAAAAAAAAAAAAABYDrtt9wIAAAAAAAAAAAAAAAAA+C6hLwAAAAAAAAAAAAAAAIAlIvQFAAAAAAAAAAAAAAAAsESEvgAAAAAAAAAAAAAAAACWiNAXAAAAAAAAAAAAAAAAwBIR+gIAAAAAAAAAAAAAAABYIkJfAAAAAAAAAAAAAAAAAEtE6AsAAAAAAAAAAAAAAABgiQh9AQAAAAAAAAAAAAAAACwRoS8AAAAAAAAAAAAAAACAJSL0BQAAAAAAAAAAAAAAALBEhL4AAAAAAAAAAAAAAAAAlojQFwAAAAAAAAAAAAAAAMASEfoCAAAAAAAAAAAAAAAAWCJCXwAAAAAAAAAAAAAAAABLROgLAAAAAAAAAAAAAAAAYIkIfQEAAAAAAAAAAAAAAAAsEaEvAAAAAAAAAAAAAAAAgCUi9AUAAAAAAAAAAAAAAACwRIS+AAAAAAAAAAAAAAAAAJaI0BcAAAAAAAAAAAAAAADAEhH6AgAAAAAAAAAAAAAAAFgiQl8AAAAAAAAAAAAAAAAAS0ToCwAAAAAAAAAAAAAAAGCJCH0BAAAAAAAAAAAAAAAALBGhLwAAAAAAAAAAAAAAAIAlIvQFAAAAAAAAAAAAAAAAsESEvgAAAAAAAAAAAAAAAACWiNAXAAAAAAAAAAAAAAAAwBIR+gIAAAAAAGBhVXVMVfXo55jtXhezqar9q+oJVfXyqvpMVZ1XVd8Znc/Tt3udAAAAAAAA32v22O4FAAAAAAAAa6uqPZLcMsktkhww+dk9yUVJLkxyVpIzkpzR3d/epmUCV0FV9QtJ/jTJvtu9FgAAAAAAAK5M6AsAAAAAAJZMVV0jyYOSPDbJjyS51gzTLquqjyZ5b5K3J3lTd5+781YJXJVV1e8k+f3tXgcAAAAAAADTCX0BAAAAAMASqaoHJPnLJIfOOXXPJD80+fn5JFdU1V92969s8RKBq7iqun2SZ0x5qpN8Kck3Jv/e4VO7YFkAAAAAAACsIPQFAAAAAABLoKoqQ9jrF7dol7slOWyL9gVcvTw5w3vESn+c5Fndfd42rAcAAAAAAIARoS8AAAAAAFgOz8/QoWuaM5O8NcnHkpyT5KIk+yS5TpIfSHL7JLdJco2dv0zgqqyqdkty/9Hwy7v7N7djPQAAAAAAAEwn9AUAAAAAANusqo7L9MDXB5I8Nclbu7s32Me1k9w7yYMmP3tv9Tphmu4+JUlt9zqY2S2S7Dsae+l2LAQAAAAAAIC1CX0BAAAAAMA2qqpK8pwpT52c5Ke7+9uz7Ke7vzWZc3JV7Z/khCTfv2ULBa4uDpsy9qldvgoAAAAAAADWJfQFAAAAAADb625JDh+NfTnJ8bMGvsa6+/wkz93kuoCrp/2njF20y1cBAAAAAADAunbb7gUAAAAAAMD3uPtMGTupuy/Y5SsBvhdcc8pY7/JVAAAAAAAAsC6dvgAAAAAAYHvdaMrY+3f5KpZcVV0zyZ2T3DzJdZJcluQrST6d5APdvVNCK1W1X5I7JblekoMzBGbOTXJOkvd195d3Rt3RGg5JcockR2To0tSTNbyyu8/d2fV3paq6XpLbZLgv9ktyrSSXJPlWkq8mOSPJp7v7wi2qt3uS22U4tgdnOL7nZTi/n+7uj2xFnRnWcbU8x1V1QJI7JrlJkgMy/EHK85K8obu/OOM+dkvyQxk6Ih6c5MAk38xwjj6b5IPdfcWWL36ofa0M9/8NkhySZJ8kX5/U/lB3f25n1F1EVVWSGye5dZLrZ7h/9khycZILk5yV794/l++E+t+X4VwfkWTvDOf5K0ne291f2eJa10py0wyfBwdleK2XJ/nvDPfN6d19xlbWnLKG3ZPcNsN1eVCG6/LyDNfmGUk+0d1nbmG9QzO8Nx48+ekM1+HZSU7t7m9uYa09k9wiya0yvK79JvUuTvKNJGcm+fzOPsYAAAAAAAh9AQAAAADAdjtkythFu6p4VR2e5Auj4RO6+6QF9nVKkqNXDL29u4/ZYM4xSd42Gj62u0+ZPH/jJL+d5BFJrr3Gbs6sqhcn+ePu3vSxq6prJHl8kocnuWvW+X1KVX08yUuSPG/eINJ6x2sS4HhkkidmCLvVlF18pqrenSFYcd0V46d39w/Ns5Ypa3t6kj8aDd+vu/9tyrbHZJ1zOEOtA5L8UpJHJbnlDFO+U1UfndR8RZJ3zxv6q6o7JPm1JD+eIdSw1nZfSfL6JP9rkYDPVpzjJKfMW3e0hpOSPGaDzb4wLGeqv+/u4zfY5xe7+/AVz98nyZOTHJtk9yn7PCHJSestqKrunuSXk/xY1jlHSc6rqn/LcP9/fL19zmISMntUkkcnuXumd0bbse0XkrwsybO2K5xXVTfNcJwekSGcupGLq+p9Sf49ySu6+9Mb7P+krH+uj0vy1AzvldNcUVX/keS53X3yDOubtoZKcrckD0hyTIag5rq/566qs5KcnOTZWxy+ekCSx07Wsf8G256Z5E1JXtzd71ig1iFJnpTk/kmOWmfTy6vqtCR/meSli4Ygq+rYJP8jw3G+1gzbn5vk1CSvyVU8oAoAAAAAsKx22+4FAAAAAADA97hLpoxN6/71PaeqTkjy0QwBkbUCX0lyWJLfSvLxqrrnJms+KkPQ5nkZAh8b/QG9W2YIR32+qh6xmdor1nC9DEGff0xyl0wPAyVJuvvSJP80Gr5tVd12k8sYh4TOTvLGTe5zlap6WIZubc/MbIGvZAgR3SbJ/0zyriQ3m6PeQVX1L0nek+Snsn6YKEm+L0MA8BNV9eeTQOCmzXOOr0qqap+qekWSf0tyr0wPfG20j5tOQlzvyBBk2ugcHZjkZ5J8pKpeOOkKuJCquneSjyT5hwxhs432dUSSp2W4/3910bqLqMEfZFjvr2S2wFcyhHnunuGemzuItKL+tavqX5O8MmsHvpLh99F3T/KvVfWqqjpozjpHJ/lihnv9qRk6r83yh00PzXBcPldVfzAJ8y2sqo6pqg8keXWSB2aDwNfEYUl+Lsnbq+ov5qi1V1X9fpLPJ/mNrB/4Sobj8cMZPgs+VFW3nrXWpN4BVXVykrdmuOc2DHxNHJTkJ5O8IMn/macmAAAAAACzEfoCAAAAAIDt9dUpYw/f5atYMlX1i0lelNm/fJ4MX7D/t6q63wL1dquq52To2nXDeecnOTjJv1TV7y0wd+U6rp/k3UnuMce0E6eMnbCJNdwtq4NU/9Dd31l0n2vU+bkkL81w7Ha6Sde4d2cINcwbstozQ4Dk/1bVdTa5jkXO8dKrqr2TvCXJQzaxj3smOS3JfRaYvluSx2UI2MwagFpZ+ykZurrNGj5cad8kz52EzmYJJG2Fv8/QBXGvXVTv/5mEH9+Q5MFzTn1gkrdU1XU33PK7jshi78k77JHhOL160XNTVf8zyZuTbKaD4n4z1jowQ3ew30my9wJ1bpXkP6rq/jPWu06Styd50AK1AAAAAADYyXbVLx0AAAAAAIDp3p3k50dj96qqJ3b387ZjQUvgLkn+cMXjyzN0IHlzki8nuUaGbmgPyOov4e+VoaPMMd196hw1/zFD56exr2QIsnwwybkZOrMdOKl7nwxBs5V+t6rO6e5Fup7sluRlSW68YuzzGYIon5zUv26GEMRDd2zQ3R+sqtOTrOzu9dNV9ZTuvmyBdRw/ZWxasGxhVXXTDJ1hxuGrizOc6/dm6O5zYYbfZ+2X5AYZOt7cMcnhc9Y7JEOnoBtMefqsJCcn+USS85IckqGT2IMyHO+V7p7kzVV1t+7+9jxrmFjoHG/SmUk+tOLxgVkdovlEkkvXmT+LF2TowrTDVzJ0/Ppwkq9lOIc77ttVJiGVf80QsFvp0gzXxGlJvpTk/CT7ZLgGfjTDOVnpTkleVVX3mPX6r6o/ydCxa+y8JP83yfsnr+FbSQ7IcB3eO6vDkY9L8o0kT5ml7qKq6jFJHj3lqXMydOT7SIbjf3GG4Oy+Ga6pozJ05dpUcDHJs3Pl0OK5Ge6hD0/+fVCSH8wQChuHOm+d5I1VddcF35++muF8fCLJGUm+meG87J3h3v3BDOfmkNG8n8zQlfGp8xSrqj9K8vQ1nv5shoDWpzIc+8pwbG+a5A6ZvSvZjloHJPmPJDef8vRHM4SzPpbhGkuG13jXJPfNcI532CfJy6vqh7v7/RuU/d8ZzsnYpzN85n4yydeTfHuy3wMyvL5bJblzhs9jAAAAAAB2kuru7V4DAAAAAAB8z6qqgzOEW6Z1tHptkj/t7nftxPqHJ/nCaPiE7j5pgX2dkuToFUNv7+5jNphzTJK3jYYvSXLNyb//c7KeT60x/z5J/jbJ94+e+mSS284SzKmqJ2X44vtKZyV5cpKT1+pwNekac3yS52T4MvwOlya520Zftp9yvL6TZPfJv7+e5ElJXtJTfplTVZVkrx2vr6p+JcmfjzZ7SHefvN4apuz3WhlCFSu70ry7u394nTnHZPU5PLa7T1lnzgszBGRWekmSJ3f3OTOs85YZQlE/n+Re3f3JdbatDKGqcfeoi5P8VpK/mHaOJ8fi95L8Woaw1krP7e4nzbDOU7JF53irVNXxWR3iO6K7z5hjHyclecyKoZWv6+IMIZm/WivUU1XX7O5LVjw+IskHMgRKdrg8w731Z+tdE1V12yQvTHL70VP/u7t/bYbX8qAMgaWV/jvJb2TocHfJ6ln/7/wcl+T5WR0wemB3v2aj2ouqqs8kOXLF0HcyHPO/2Oh6qardMwRrfzbJPbv7yA22PylXPtffzhCurSRXJPmzJM+Ydpyq6ppJ/r8MQavxPfSM7t6wM+Lkev2dDJ0fX9vdH55hzu4ZQrzPSnL9FU91kjt393s32sdkPw9N8vIpT52e5Gnd/aYN5l83Q3j0iUk+2N3Hb7D9KzNcUyu9O8P74mnrzDsgwzF6Uq4cpD0jya27+4I15t0ww39/rJxzTpLHdfdr11vrZP7eSX4syc8lOb+7H7XRHAAAAAAA5iP0BQAAAAAA26yq/jTJr6+zyZczdBP5zyTvSfKx7r58i2ofnuULfe1wSpL7rBW6WLGPGyd5Z5LvGz31u939BxvMvVWGsMnK7kKnJrl3d5+/3twV+7hNknfkykGpf+/ucchoPO+UXPl47fBfSX60uz8+S/3Jvq6bobPPXiuGX9vdU7sqrbOfR2UIX630+O5+4Tpzjsn8oa9zMnQD2uFtGQIoc/3iahK826271+pSlar66Qyd3Fa6JMlPdvdbZqjx80n+ZjTcSe7U3e/bYO4p2aJzvFV2Uuhrh4uS3Le73zHnmt6doWPRDt9Kcv/ufuuM8/dK8roMAZQdLktyk+7+0jrzDsnQ0Wj/FcOfyXBuzpqx9g0zBHMOXTH88SS3mvd6nrHeURm6Pq00U4Bqyr6u3d3f2mCbkzL9XCfJL3b382eo8wtJ/no0fFmSW3T35zaYu2+SCxc5llV1WIbPhpUdGf+5u396hrkHJ/lcrtxBKxlCYI+eN4xZVTfq7i+u8/y095m/SvKEWV97VZ2QIRy30m909/9aY/tfztBxcaVjuvvts9Qb7WvDawkAAAAAgPmN/6IaAAAAAACw6/1uhkDXWr4/yQlJXpChw8gFVXVaVf1FVT20qq63Kxa5i309yUM3CnwlSXd/Psm0DiO/VFV7Thlf6em5cuDr7AyhlZkCX5P6H0ryS6Phe086EC3i5+YNA3X31zN0hlvpPgtcGyeMHn8ryUvn3Me6JiGOg0bDL1wk1NHdl68X+Jp48pSxp84S+JrUeEGGbk4r1Rr7ndXc5/gq4jcWCHz9WK4c+EqSx84a+EqSyTXwsCTnrhjeMxufo1/NlQNf38oQ+Jwp8DWp/aUMXaVWumWSuQKXc7jxlLG/XWRHmwzpnDRL4GtS5/lJThoN75nkF2eYe8Gi4bnuPjOr35sfVlX7T9t+5ElZHfh6Z5JHLtJ9b4PA1x5JfnM0/O/d/cvzvPbuPjFD17uVnlRV11hjyvha+swiga9JbYEvAAAAAICdQOgLAAAAAAC22STYdN+sDu2s5ZpJ7pTkiRm6jpxdVadU1WOr6po7aZm72jMmQaaZTLpK/eto+PpJHrjWnEmXs4ePhn+7u/971ror/FOGDkErHbfAft7W3a9bYF6yusPLHkkePevkSVecHx0Nv6K7L1hwPWsZBymSIeS35arqLkluPxr+SJK/nHNXT08yvi4WDVxu5hwvs89l/uOaJE8bPX5nd88dNJwENf98NPygtbavqn2yOhD07EmIdN7a/5FkHCJcs/Ym7bL7Zx0XZ/V528jTJvNWOmGdQNJWeUOuHAbcI8md15swuTZ+eTR8aYYOX9/Z2uUlGUKDN1rxuDN8vi/i9yfzd7heVocqdxhfS7v6OgIAAAAAYANCXwAAAAAAsAS6+xsZAko/m+Szc06vJEcn+bskn6qqaV2vrkouSfLiBea9YMrYfdbZ/rgMAYAdLkryLwvUzaQbyxtGw0cvsKu/W6T+xBuTfGU0dvwc8x+T4Vpa6cRNrGct5+XKoYQk+ZGdUCdJfmzK2N909xXz7GRyf/7zaHjPJMcssKbNnONlduK8HZmq6sCsDhqOOxXN4/WjxzeqqhtN3TK5V5IDRmObOTfj2ovc/7OYFszZWffPWl7d3V+bZ8Jk+1eNhg/MEGDeaSb3+udGw3fZYNrRSfYbjb10vW5dm/TQ0eNTunve/w5I8v86z31kNLzWtTi+ln5wxi5oAAAAAADsIkJfAAAAAACwJHrw4iS3SHL/DCGTb865m8OSvKSqTtwFHVR2llMmXXvm9easPl7rfbl//EX407v7WwvU3eELo8c/tMA+3rZo8UkHmnFY7qiquuOMu3jM6PHnk7x90fWsZdLZ7sOj4adU1UO2ulaSH54yNu4IN6uXzbj/jSx8jpfcIq/r7lkdNHz3JtYwvgeTte/D8f3/5U2Gesa1D6+qcahsK7w3yTi0+LdVddROqLWWcXhrVidPGdsogLVKVd2qqk6oqudU1clV9eaqOq2qTp/2k+RWo10ctkGJY6aMLRJE3lBVVYb7YKXN3APJ7J9Fp40e753kXyZhTAAAAAAAlsAeG28CAAAAAADsSt19eZLXJXldVe2e5LYZOrncIcntktwsye4b7Ob4DF/gfvjOW+lO8/5FJnX3FVX1oVz5C/S3qKprrxHmGgd2jpoEBBY1/qL8/lW1Z3dfNuP8r3X3uFPXvF6U5GmjseMzBEXWVFX3SHKT0fBJ83ZumsOJSZ674vE1k7yiqk5N8vdJXtfdZ21BnduNHp/V3V9dcF/vzxC2WflHFcf738hWnONl1EkWuXemhvKqaiuvu4NmrH2dTd7/+6xR+xub2Ocq3X1eVb0mQ6fCHY5I8qGqenWGsPCbunvewPA8FnqPTvKBKWO3n2XiJMT8xCQnJLnlgvV32CiMd9fR4yuSnLrJmmu5RVZ/djymqn5yE/sch9rWugfemOTsJDdYMXbvJJ+vqn9M8ook75rjMwwAAAAAgC0m9AUAAAAAAEts0r3p/VnxJfuqunaSOyc5NsnDktx8jekPq6ondvfzdvpCt9anNjH3k7ly6KsyfOH9zJUbVdVeSQ4ezT0gG4cB5nVgkv+acdtZt1tTd3+6qt6d5G4rhh9ZVU/u7m+vM/WE0eMrMoSvdpbnJ/npJHcajd9l8vPXVfXZJO9K8r7J/354nhDapIPOOEzxiUUX3N0XVtWXktxoxfBaYYq1bPocL6kLF+ySd+iUsVtvdjEj152x9rWT3GYn1P7sFu8zSZ6S5B658vW9e5IHT36+U1UfTPKfGQKf79hkF7OVLk/yuUUmdvfnq+rSJHutGD5ko3lV9cMZ3o/GwdRF7b/B89cbPT6juy/Yotpj0+6BQ9cYX9TUe6C7L66qJ2QId63suLd/kl+a/Hyrqv4zQ1ew05K8s7v/ewvXBgAAAADAOnbbeBMAAAAAAGCZdPe3uvtt3f273X2LDJ05PrbG5r89CYldlZy/xXOnBbnWCoJstWvNse1WdeY5cfT4OkkeuNbGVbV3koeOht/S3WdO234rTAJo90vy5nU2OzJDl7L/k6GL1LlV9eKqum9VzfI7rv2yuiPeZrsujcMO41DZRnZm96XttOjr2hX34Vr34Lznbitrb0p3fy7JvZJ8YY1Nds/QGfKJSf4hyRlV9YWqenZVzdudbuyCTXYAHF8r6wZtq+rYJG/K1gW+kmTPDZ4fXxs7M+S0nfdAuvvkJD+T5KI1Nrl2knsm+c0kr87wPvy+qnpaVd1wy1cKAAAAAMCVCH0BAAAAAMBVXHe/Mckdk7xhytOHJHnArl3Rpq315fNF5+47Zew6m6ixs1y+Rft5aZJx16VxJ6+VHpZkn9HYODi25br73CQ/nuQRWdHJbh0HZggnvD7Jx6vqIRtsP+28b+bamjZ/Wo31bNU5XjaLvq5tuQ8nQdhrbEftrdLdH0xyqyRPS/KlGaYcnuTJSd5fVW+uqtsuWHqX3UNVdUCG97NxcPmKDEGwp2cIPR+VoevePkl27+5a+ZPk7XOucb/R4wvnnD+Pbf8s6u5/SnKzJH+VjQOcuyW5fZI/SfK5qnphVY27ZgIAAAAAsEWEvgAAAAAA4Gqguy9O8lNJzp3y9D138XI2a+8tnnvBlLGLp4w9dxwW2IKfMzbxWhbS3RckecVo+Mer6vvXmDIOhH0jySu3fGFT9OBl3X2HJLdM8pQkr03y9Q2m3izJK6rqr6uq1thm2nnfzLU1bf60GsxufB9+Yyfcg8+YUveSDMGhlV61E2qfsjMO2g6Tro9/muRGSY5O8odJ3pHp728r3TPJaVX1mAXK7sp76LeSjANF70ty8+7+ie7+k+5+Y3d/vLu/3t0Xdff4vCbzd1wbB5/GoditNO1cHbfF1+HhGy2iu7/c3b+c5PpJHpyhw+KHknxnnWl7Jnlckg9vQQc5AAAAAACmEPoCAAAAAICrie7+ZpKTpjx1s120hD23aD/7b/Hcb0wZmxaOO2ITdZfNuFPXbkkePd6oqm6c5O6j4X/u7kt21sLW0t2f6O5nd/cDuvugJDfNECh4caafryT5hSS/ucZz38zqwMIBm1zmeP55m9zf97rxeT1g0t1pp5oEg8bvC1fZ+38SnnxHd/9Odx+doVPVHTN09vq3TA8W7ZXk76rqHnOW23edoOUsxl20pr0/7/BTo8dfSnKv7v7MnDUPnHP7ceh0Z3bjWqrPou6+uLtf2d1P7O7bZnjP+7Ekv5fktKwOSyZDUOz1VXXdXbhUAAAAAIDvCUJfAAAAAABw9fKeKWMHrbP9ZVPGFg1vbdUXvm+6ibnjgFtnypfqJ92wxkGIW2+i7rJ5e5LPj8aOn7Ld8UnGAY5xYGxbdPdnuvtF3f2zGUIF90/y3imb/mZVrbrGu7uzOrxxi0XXU1V7JzlsNLxWGI3Z/NeUsV11H45r37SqrrGLau9U3X15d7+vu5/T3fdLckiGgORXRpvunuTP5tz9HkluvMi6quqIDGGzlb62xra3SHLoaPgvuvv8OWvuOWU/G/nq6PHhVbXvnPuY1XbeAxvq7gu7+83d/YzuvkuGrnJ/nKFb3krXT/LUXb5AAAAAAICrOaEvAAAAAAC4epn2hfjL19n+m1PGxp1YNjT5Yv04ELOo2y8yqap2S3Lb0fAnuvtba0wZB+SOqKpd1RVtp5oEnk4aDd+squ6648GkW8/Pjrb5WHdPC1Ztq+7+Tne/Lsndkrxh9PS1k9x7jakfGD0+tKqut+Aybp/Vv1t7/4L7YjAtpHqfbap9rSTH7KLau9QkuPM3SW6XoVvWSneqqhvOucuF3qPXmLfWPTRtTe9coOYPJbnmnHP+c/R4tyR3nbbhFvhwVgeo1no/23bdfVZ3/2aSH8/qTooP2YYlAQAAAABcrQl9AQAAAADA1cu0QMu0TiI7XJjVX9xepIvLnTKEJrbCsVW1/wLz7pXVgbVT19n+/04Z+5kF6i6rv09yxWjshBX//tEMXVtWetFOXdEmdfflSZ4+5am1OuO8e8rYQxcs/7AZ98/spt2Dj6iqPbap9tXp/l+lu/8rybOnPPWDc+7quAWX8OApY2u9R0/rUHneAjUfscCcU6aMPXqB/Wyouy9J8q7R8A2q6p47o95W6e53JnntaPgmVXXt7VgPAAAAAMDVldAXAAAAAABcvfzolLHPrbXxpCPUp0fDd1qg7s8vMGct18xi4YvHTxkbd4Va6TVTxn6lqg5coPbS6e4zk7xlNPyIqtoRzjt+9NzlSV6ys9e1BT45ZWytkOAbp4z9/KQr3MwmIcSfHg1fluRt8+yHK+vuL2d1p6cjsvra3BnemNUdlh55den2t4557p+1HFdVB88zYbL9A0fD52V6t7ckuWjK2LQg2Ho1D0jy2HnmTLw9yX+Pxh5eVeOQ7FZ59ZSxZ+ykWltpK64lAAAAAADWIfQFAAAAAADbqKruX1VHbNG+bpLk4VOeet0GU8ehiztU1U3nqHv7JI+cdfsZPaOqrjPHGu6e1R2cvprpX6ZPknT3R7I6+LVfkhfPGwpaYieOHu+X5MFVtV9Wd915fXd/bdcsa1NuMGXsnGkbdvd7krxvNHzrJL8wZ81nJhmHAV92FTley+6ZU8aeNc970CK6+9wkLxgN757kn1YEI6+OZr5/1nGtJH8y55w/STLuAnVid397je3PnjL243PW/D9JDphzTrr7W0meNxreKzvvs+HvMnxerfQjVfW0nVBrK42vpU5y7nYsBAAAAADg6urq8gtLAAAAAAC4qrpfkk9X1YlVdfNFd1JV35fklVn9pfpzkrx5g+nTumE9a8a6hyV5WZI9Z9l+DgcleXlVXWOGNVP2PDwAACAASURBVBye5J+mPPXX3X3ZBtN/N8l3RmP3TXJiVV1zhnVOW89RVfUP84TWdqJXJvnGaOyEJI/I6mvlRbtiQVV1t6r61arad8Fd/OqUsQ+ts/3/njL2rKo6epZiVfXYJL80Gu4kz5llPuvr7ldmdTBv/yRvqKqjFtlnVe1bVb9eVRt1DPzjrO4odbskr1z0/q2qG1XV86rqVovMn2H/x1fVQ6pq9wXm7pnV1/IVST66wFIeW1XTuitOq/v4rO64dVmSv15n2geTXDga+9WqOnTGmr+T5FGzbLuGP8/q9867J/nnWT6XpqxnzS5h3X1xpocf/6iqnjBvrRU1711Vf7XO88+oqjsvuO8bJnnQaPgTM3zmAgAAAAAwB6EvAAAAAADYfnskOT7JJ6rq1Kp6QlVN68aySlVdu6p+IcMX5H9wyia/3t2XbLCbk5OcNxq7f1X9bVWNg0Eraz84yalJbjwZ2qjOrHbs555J3rJex5+q+okk70gyDgJ8MsmfblSouz+U5KlTnvrZJKdOOrHVRvupqutU1WOr6k1JPpLk0Rm6Bm2rybn/59HwsUl+bTT2tST/tksWlRyS5LlJzqqq51fVj0/CKOuqqn2q6n8l+Z+jp87POt3suvufs/q1XSvJ6yf32tTfl1XVNavqj5P8bZLxNfDc7h53yGNxj8zq96AbJzmtqn6rqvbfaAdVtVtVHVtVz09yZob7//rrzenuryZ5TIYQ30o/keT9VfUzVbXHDLX3rqpHVNXJST6b5AlJFgqNzuC2SV6R5LNV9YdVdbtZJk1CR69JcsfRU2+eHIdZfTvfPV7Pr6pnrhWCqqprVNUzkzx/ytPP7O7PrVVkEh561Wj4Ohk+E2691ryq+r6q+qckv79i+Jtrbb9O/fMy/dp4eJL/rKp7bbSPFZ8LH0ryexts/pdZ3ZlytyTPq6pXVtVtZll3VR1RVU+rqg9nCHTfY53Nj8vwOXfqJIh72Iw17pbkrRk6R670klnmAwAAAAAwu+oe///UAAAAAADArjIJKPyPNZ4+I8lpST6e5NwkX8/wBfT9ktwoya0zBKP2XmP+y7r7ETOu41czBHHGzs4QMDg9yQUZvnR/8wzdsG62Yrt/SXKDJCu7J729u4/ZoO4xSd42Gn56kj/Md0NTl2foVvaWJF9OsleSw5PcP8ntp+z20iRHd/ep69UereOFSR63xtNnTtZ4eoZzcEmGTkQ7jsXtkxyVIby30sHdfe46NU/JnMdrEVV1xyTv2WCzZ3f3Uxbc/zFZfQ6P7e5T1tj+uAwdyFa6IMkHMoQXv5Chw85FGYIzh2bovvQTGY772OO7+4UbrPGQDOdvWpjyzAzBx09M6h6UIVjzoMm/xz6Q5G7d/e31ak7qnpJdcI7nUVXHJzlxNHxEd58xxz5OyhCI2eGL3X34Jtd1zwzhvL2mPH1Rkncl+Y8M70nfyNCp7oAkN8xwfdxu8nilX+/uDbsWVtVvJ/mDNZ7+rySnZOhGds5kLftNah2Z5A4Z3ovHwac7dve4g9mmVdVzs7rb3dkZrsvTk3wlw/G5NMk+Gd4r75bkmKzuyPjtJHfo7jU7fU0710lenyt3DDsnyb8m+XCG98jrZjgmD84Q8hx7f5K7btQVahL4/eiUdV+R5N8zBI/OyvDee4MMr/FeufK5eFGSm2TB+7Cq/iDJb6/x9GeSvCnJpzIcg8pwXdw0w/V41xVr//vuPn6DWvtkuM7XCnh9KMO1+JkMxzmTegdlON63z3dD2Dt8rLundp2rqtOn1PpUhuvoI5PXtKPb2Y7XdezktY19Jsltu/tba6wdAAAAAIAFbPiX6QAAAAAAgG1z+ORnEX+ftUNM0zwvyU9m+ML8SjdI8sQN5r4jyWMzdBXZCqcm+ZUMnU+S4fcZ9578bOTSJA+ZJ/A18fgMYaPfz9BdZaXDMoQeHjOedFXQ3e+tqo8mmfrF/4lxCGhX2zdDKOPojTYcec5Gga8k6e6vVdWPZAiK/MDo6cOyunvYWt6V5AGzBL6YT3e/paruniFkesPR03tnCP39xE6q/YdV9ZUM7znjDl3XS/KIyc+yukGS+01+ZvXtJI9eL/C1jidn6Cx598njg5P8woxzP5zkJzYKfCVJd3+6qp6Q5G9GT+2WIXh83w128dYM4bQ3zri2aWv4nao6L8mfZXX3xh/I6veThXX3hZN74MQkD5myyW2ydiBsq9xs8jPP9X5WkgcJfAEAAAAAbL3xLy0BAAAAAIBd68VJ/jHf7aaxWZ9P8sDuPr67vzPrpO6+IskDkrxuznr/mOEL/BfPOW+j9fxVhiDWJXNM+1KS+3X3vK8hPXhmhtDbZrvzfDPJC5NcuMn9bKX1Ql3v6e6P7bKVJOdnvvM6zblJHtfdT551Qnd/PskPJ3lZho5587gsQzDyx7r7v+ecy4y6+z0ZugidmOGYL7yrDB2R3jlH7Rdl6Mz01k3UTYZr+18ydJDbGb6W+a/fsY8m+dHufvkikyehx/skefWcU1+T5J7d/fUNt/xurRdkCG5dOmetFyW571YENLv7ORlCxx/ZxG6+NmOtC7r7oUl+MUNny804M+u/9391k/tPktcmucsu/gwBAAAAAPieIfQFAAAAAADbqLv/o7t/JskhSe6ZodPUWzNfYOi/MoSv7pfkZt39mgXXcnF33z9Dh48Pr7dpho5H9+3un+nuzQZ41lrPC5PcOkMwbr1Q2ZeS/FGSW3b3mzdZ823dfccMX/B/eZJzZpz6hQxBr4cluX53P35nHZcFvSRrh2h2aZev7n5bkusmeWCSv0pyepJZA4rvT/KUJEdOQjrz1j6nux+R5E5JXppkowDX2Un+NsktuvtXluycXi1197nd/dgkRyZ5VpKPZbaQ0wVJXp/kSUmO6O5ju/u0OWuf3t33THKXJP+QoYPRLM7OcI89JsP9/8juninkM6/u/qMk18/QXfEfM7z3zOKyDN0YH5Xktt397k2u46LuPi7De95719s0w+fFQ7r7gd197gK1/jpDGPClWT8MeGmGENI9uvtxW9mRb/LZcpskP5WhY+AsXa0+k+Qvktyuu586Z73nJ7lxhvDzm2esd0WSD2boSnZsksO7+9nr1Lh3kltkeE99XYYw7SzOz9BN9OjufkB3bzacBgAAAADAGqp7s38IDgAAAAAA2GpVVUm+P8kPJDksyX5J9s3wBfpvZgg4nJ3kI929Fd06pq3hhhk63xyS5IAMXzr/QpJTu/vsLapxTJK3jYaP7e5TRttdK8mdk9w8yYFJvp3h9X8myft6J/3CY3IebpnkphmCStfN8Ef1LsjQne1zST6p+9PmVNXeGa71G2cItOybZM8M4cfzk3w2yYe7+/wtrrt7kjskOTzJwRnus29k6Mrz6e5eL/zILlJVBye5fYZzdN0k+yS5KMN9eFaSTyb54s54H6iqIzO8B+y4//fKd6/LL2S4/3dKwGtWVXXdfPf+OSjD8UmG43Nekk8k+dgiIaiqOilDmG2HL3b34VO2OzTJHTPcS3tP6p6doZPgloWCJu8Vd8vwWg/M8Jl4XobPgvd29y7psFhV18jweg/NcF3unyGcfH6Gjpsf38rP5qraK8M9cGiGc3ydJJdnOMfnJvl0hvesTXXdrKrDktwkw3k8IMO5vCzDf3d8LUO3s89OuoMCAAAAALCTCX0BAAAAAADbZtbQFwC73qyhLwAAAAAAYOvttt0LAAAAAAAAAAAAAAAAAOC7hL4AAAAAAAAAAAAAAAAAlojQFwAAAAAAAAAAAAAAAMASEfoCAAAAAAAAAAAAAAAAWCJCXwAAAAAAAAAAAAAAAABLROgLAAAAAAAAAAAAAAAAYIkIfQEAAAAAAAAAAAAAAAAsEaEvAAAAAAAAAAAAAAAAgCVS3b3dawAAAAAAAAAAAAAAAABgQqcvAAAAAAAAAAAAAAAAgCUi9AUAAAAAAAAAAAAAAACwRIS+AAAAAAAAAAAAAAAAAJaI0BcAAAAAAAAAAAAAAADAEhH6AgAAAAAAAAAAAAAAAFgiQl8AAAAAAAAAAAAAAAAAS0ToCwAAAAAAAAAAAAAAAGCJCH0BAAAAAAAAAAAAAAAALBGhLwAAAAAAAAAAAAAAAIAlIvQFAAAAAAAAAAAAAAAAsESEvgAAAAAAAAAAAAAAAACWiNAXAAAAAAAAAAAAAAAAwBLZY7sXAGupqv2THL1i6EtJLt2m5QAAAAAAAAAAAAAAAPC9Za8kN1zx+O3dff6uKCz0xTI7Osmrt3sRAAAAAAAAAAAAAAAAkOSBSV6zKwrttiuKAAAAAAAAAAAAAAAAADAboS8AAAAAAAAAAAAAAACAJbLHdi8A1vGllQ9e9apX5cgjj9yutQAAAAAAAAAAAAAAAPA95LOf/WyOO+64lUNfWmvbrSb0xTK7dOWDI488MkcdddR2rQUAAAAAAAAAAAAAAIDvbZduvMnW2G1XFQIAAAAAAAAAAAAAAABgY0JfAAAAAAAAAAAAAAAAAEtE6AsAAAAAAAAAAAAAAABgiQh9AQAAAAAAAAAAAAAAACwRoS8AAAAAAAAAAAAAAACAJSL0BQAAAAAAAAAAAAAAALBEhL4AAAAAAAAAAAAAAAAAlojQFwAAAAAAAAAAAAAAAMASEfoCAAAAAAAAAAAAAAAAWCJCXwAAAAAAAAAAAAAAAABLROgLAAAAAAAAAAAAAAAAYIkIfQEAAAAAAAAAAAAAAAAsEaEvAAAAAAAAAAAAAAAAgCUi9AUAAAAAAAAAAAAAAACwRIS+AAAAAAAAAAAAAAAAAJaI0BcAAAAAAAAAAAAAAADAEhH6AgAAAAAAAAAAAAAAAFgiQl8AAAAAAAAAAAAAAAAAS0ToCwAAAAAAAAAAAAAAAGCJCH0BAAAAAAAAAAAAAAAALBGhLwAAAAAAAAAAAAAAAIAlIvQFAAAAAAAAAAAAAAAAsESEvgAAAAAAAAAAAAAAAACWiNAXAAAAAAAAAAAAAAAAwBIR+gIAAAAAAAAAAAAAAABYIkJfAAAAAAAAAAAAAAAAAEtE6AsAAAAAAAAAAAAAAABgiQh9AQAAAAAAAAAAAAAAACwRoS8AAAAAAAAAAAAAAACAJSL0BQAAAAAAAAAAAAAAALBEhL4AAAAAAAAAAAAAAAAAlojQFwAAAAAAAAAAAAAAAMASEfoCAAAAAAAAAAAAAAAAWCJCXwAAAAAAAAAAAAAAAABLROgLAAAAAAAAAAAAAAAAYIkIfQEAAAAAAAAAAAAAAAAsEaEvAAAAAAAAAAAAAAAAgCUi9AUAAAAAAAAAAAAAAACwRIS+AAAAAAAAAAAAAAAAAJaI0BcAAAAAAAAAAAAAAADAEhH6AgAAAAAAAAAAAAAAAFgiQl8AAAAAAAAAAAAAAAAAS0ToCwAAAAAAAAAAAAAAAGCJCH0BAAAAAAAAAAAAAAAALBGhLwAAAAAAAAAAAAAAAIAlIvQFAAAAAAAAAAAAAAAAsESEvgAAAAAAAAAAAAAAAACWiNAXAAAAAAAAAAAAAAAAwBIR+gIAAAAAAAAAAAAAAABYIkJfAAAAAAAAAAAAAAAAAEtE6AsAAAD4/9m7+9Dd67uO46/P8cybplO3FLeJxrwhpkuyRUM3pmCipJuK6dpNW7Qa3TGoP4JFiBBEgftjOIuI0sACx9SaWt6MiaC0sJ0h2xyYbkaWs6EWnryZ7r0/juF1vh7P77qu33V+11t9POD88fmc7+fzeR/O308uAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKCR7eseAGArjd/70rpHAABgTnXF+eseAQAAAAAAAAAAANbCL30BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoJHt6x7g9WqMsV+S45O8M8nbkhya5NkkTyR5MMm9VbVzxW++IcnpSY5J8tYkTyX5zyQ7quq7q3wLAAAAAAAAAAAAAAAAWI7oawuNMY5JclGSs5K8L8mb9vL5C2OM25NcWVU3b/LdI5JcnuTSJG9+hW/uSfLZqvriZt4CAAAAAAAAAAAAAAAANkf0tUXGGH+b5JcWOLJfknOSnDPGuCnJJ6vqe0u8e26Sq5McucGnpyU5bYxxbZJPrfpXxgAAAAAAAAAAAAAAAID5iL62zomvsP9IkgeSfC+7/j/ekeSUJNtmvjkvyV1jjPdX1aPzPjjGOCPJjUn2n9muJF9L8lCSw5L8dJIfn/n7jyR50xjjgqr64bxvAQAAAAAAAAAAAAAAAKuxbeNP2Ad2JPmdJMdX1dFVdWZVfaiqLq6qU5Mck+QvJmdOTPKFMcaY54ExxtFJrs/uwdfdSU6qqndX1SVVdXaSo5N8OskPZr47P8kfLfUvAwAAAAAAAAAAAAAAADZF9LV1KsnNSX62qk6tqiur6sE9flj1SFV9KslvTf7qvUkunfO9y5McPrO+J8lZVXX/5K1nq+pzSS6ZnP/dMcaxc74FAAAAAAAAAAAAAAAArIjoa+v8YlWdV1X3znugqq5K8sXJ9sc2OjfGOCHJx2e2nkvyiap6Zi9v3ZjkmpmtA5JcNu+sAAAAAAAAAAAAAAAAwGqIvrZIVX13yaOfn6zPnOPMh5PsN7O+vqoemOPcn0zWl4wxDpzjHAAAAAAAAAAAAAAAALAioq/+dkzWB40xDtvgzIWT9V/P81BV3Z/kqzNbb0xy9jxnAQAAAAAAAAAAAAAAgNUQffX3/B729n+lj8cYRyU53PTUMwAAIABJREFUZXL+7gXeu3OyPneBswAAAAAAAAAAAAAAAMAmib76O36yfj7J9/fy/cmT9X1VtXOB9+6ZrE9a4CwAAAAAAAAAAAAAAACwSaKv/i6erO+tqh/u5ft3Ttb/tuB7D25wHwAAAAAAAAAAAAAAALAPib4aG2McnORXJ9s3bHBs+stg/77gsw9P1m8ZYxy+4B0AAAAAAAAAAAAAAADAkkRfvf1xkqNm1k8m+csNzhw2WT+2yINV9VSSZybbhy5yBwAAAAAAAAAAAAAAALC87esegD0bY1yY5Lcn239QVY9vcPTgyfrpJZ5/OsmBM+tDlrhjN2OMI5McseCx4zb7LgAAAAAAAAAAAAAAALzaiL4aGmOckuRvJtu3JfmzOY5Po6/pr3bN4+kkh+/lzmX8ZpLLVnAPAAAAAAAAAAAAAAAAvKZtW/cA7G6McUySm7N7aPVwko9WVS1x5VadAQAAAAAAAAAAAAAAAFZA9NXIGOPIJLcnefvM9qNJfr6q/nvOa56arA9aYpTpmemdAAAAAAAAAAAAAAAAwD6yfd0DsMsY481J7khy4sz295OcVVUPLHBV1+jrqiRfWPDMcUn+fgVvAwAAAAAAAAAAAAAAwKuG6KuBMcahSW5L8q6Z7Sey6xe+vrngdf8zWR+x4CwH5+XR15MLzvAyVfVYkscWnGWzzwIAAAAAAAAAAAAAAMCrzrZ1D/B6N8Y4JMk/JfmZme3/TXJOVX19iSunvwp27ILnp98/XlVPLDEHAAAAAAAAAAAAAAAAsATR1xqNMd6Y5JYk75nZfirJuVX1L0tee/9kffyC598xWX9ryTkAAAAAAAAAAAAAAACAJYi+1mSMcVCSm5K8d2b7/5L8QlXds4mrvzFZ/9QY48cWOH/6BvcBAAAAAAAAAAAAAAAA+5Doaw3GGAcm+YckZ8xsP5PkA1V112burqr/SnLfzNb27B6WbeSMyfofNzMPAAAAAAAAAAAAAAAAsBjR1xYbY+yf5PokZ81sP5vkgqr68oqeuWGy/pU5Z/vJJD83s7UzyW0rmgkAAAAAAAAAAAAAAACYg+hrC40xtie5Lsm5M9s/SHJxVd26wqeuTfLCzPqiMcYJc5z7/cn6uqp6ZnVjAQAAAAAAAAAAAAAAABsRfW2RMcZ+2RVjfXBm+/kkl1bVTat8q6oeSHLNzNb+Sa4eYxy4l/k+mOQTM1vPJbl8lXMBAAAAAAAAAAAAAAAAG9u+7gFeR/4qySWTvc8k2THG+IkF73p0jl/guizJhUkOf3F9WpI7xhifrKpv//9HY4wDkvx6kism56+oqocXnAsAAAAAAAAAAAAAAADYJNHX1vnlPez96Yt/FnVmkjv39kFV/ccY46Ikt2bXL30lyelJvjXG+NckDyU5NMmpSY6YHL8pyR8uMRcAAAAAAAAAAAAAAACwSaKv17CqunOMcWGSq/NS2DWSvPvFP3vyd0l+rape2PcTAgAAAAAAAAAAAAAAAFPb1j0A+1ZV3ZLk5CR/nuSJvXz6z0kurqoPV9XOLRkOAAAAAAAAAAAAAAAAeBm/9LVFqmqs8e3HkvzGGOPTSU5PcmySo5LsTPJIkh1V9Z11zQcAAAAAAAAAAAAAAAC8RPT1OlJVzyX5yrrnAAAAAAAAAAAAAAAAAF7ZtnUPAAAAAAAAAAAAAAAAAMBLRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAA/Ii9+wmxtS7AOP78prsoUpJQ7y3Lrl4qECIRC0GCVi6CWrQygmrtqlZhKS60xE2rjOguQog2RZG1FIKwRRkUmUgFpXEprEuX0PD2B38tZi6ehjs2o3PmfZrz+cBhOO973vc8zMz2ywsAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQ5MTSAzbVGOPGJO9LcuvOz1uSXLnykWfnnKdf5b3na5x3w5zzmdd4DwAAAAAAAAAAAAAAAOBVEH0doTHGB5Pcne3Q683LrgEAAAAAAAAAAAAAAAAaib6O1s1J7lh6BAAAAAAAAAAAAAAAANBL9NXhH0nOJTmzhnv/JMmdB7zm3Bp2AAAAAAAAAAAAAAAAAPsg+jp6/0ryVJKfJXli5+eTSW5P8sM1fN/FOecza7gvAAAAAAAAAAAAAAAAsAair6P1SJKvzjkv7j4xxlhgDgAAAAAAAAAAAAAAANBG9HWE5pwXlt4AAAAAAAAAAAAAAAAAdNtaegAAAAAAAAAAAAAAAAAALxN9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUObH0ANbu+jHG15O8P8lbk7wxyYUk55P8PMmPknx7zvnX5SYCAAAAAAAAAAAAAAAAl4i+jr8bdl6rrt153ZTk40m+NMY4m+TeOecL6xgxxrg2yTUHvOzMOrYAAAAAAAAAAAAAAABAM9EXyfbTvz6d5ENjjI/OOZ9aw3fcleS+NdwXAAAAAAAAAAAAAAAAjhXR1/H17ySPJ3ksyS+TnEvyfJIrklyf5ANJPpHtJ35d8q4kj40xbptzPnu0cwEAAAAAAAAAAAAAAIBE9HVc3ZPk7Jzzz3uc/0WSR8cY92b76VufTTJ2zp1K8p0xxq1zzrn+qQAAAAAAAAAAAAAAAMAq0dcxNOf8wj4/dzHJ3WOMc0m+vHLqliQfS/LNQ5z1lSTfOuA1Z5J87xA3AAAAAAAAAAAAAAAAQD3RF5lzPjzGuCPJR1YO35VDjL52njq215PHLmuM8b8/BAAAAAAAAAAAAAAAAMfM1tIDqPHgrve3jTGuWmQJAAAAAAAAAAAAAAAAbDDRF5f8NMmFlfevS3LTQlsAAAAAAAAAAAAAAABgY4m+SJLMOV9K8oddh69ZYgsAAAAAAAAAAAAAAABsMtEXq17c9f4Ni6wAAAAAAAAAAAAAAACADSb6YtXVu96fX2QFAAAAAAAAAAAAAAAAbDDRF0mSMcbVSW7cdfiPS2wBAAAAAAAAAAAAAACATSb64pI789//D88leXqhLQAAAAAAAAAAAAAAALCxRF9kjHEyyT27Dn9/zjmX2AMAAAAAAAAAAAAAAACbTPR1jIwx3j3G+PABrzmV5AdJTq4c/meSBw9zGwAAAAAAAAAAAAAAALA/J5YesGnGGG/L5X/vp3a9PzHGOL3HbV6Yc56/zPG3JHl0jPFkkm8k+e6c87d77LgyySez/YSvk7tOPzDn/N0e3w0AAAAAAAAAAAAAAACskejr6D2e5B37+Nx1SX6/x7lHknzqFa59T5KHkjw0xvhbkl8lOZ/k+SRXJHl7kvfm8n//r80579/HPgAAAAAAAAAAAAAAAGANRF/H35uS3L6Pz/09yWfmnGfXvAcAAAAAAAAAAAAAAAB4BVtLD+BQPZ3ki0l+nOTFfV7zmySfS3Ja8AUAAAAAAAAAAAAAAADL86SvIzbnPL3Gez+X5PNJMsbYSvLOJGeSXJfkqiSvz3YMdiHJn5I8Mef8y7r2AAAAAAAAAAAAAAAAAAcn+jqm5pwvJfn1zgsAAAAAAAAAAAAAAAD4P7G19AAAAAAAAAAAAAAAAAAAXib6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAADgP+zdfbBtd13f8c/35gTkISEJhEASQiCQFEumoGAVQYgYHJVSQEnL2FZHGKsFcQbi4Eh5KAqDaGEKhY5apzIwFSoSocwUEJCUkvDktDA1CBQkgEAgJBASQp749o+zNmffm6dzzl7n7LXufb1m9uzfXmev7/7e+/97FgAAAAAAADAhoi8AAAAAAAAAAAAAAACACRF9AQAAAAAAAAAAAAAAAEyI6AsAAAAAAAAAAAAAAABgQkRfAAAAAAAAAAAAAAAAABMi+gIAAAAAAAAAAAAAAACYENEXAAAAAAAAAAAAAAAAwISIvgAAAAAAAAAAAAAAAAAmRPQFAAAAAAAAAAAAAAAAMCGiLwAAAAAAAAAAAAAAAIAJEX0BAAAAAAAAAAAAAAAATIjoCwAAAAAAAAAAAAAAAGBCRF8AAAAAAAAAAAAAAAAAEyL6AgAAAAAAAAAAAAAAAJgQ0RcAAAAAAAAAAAAAAADAhIi+AAAAAAAAAAAAAAAAACZE9AUAAAAAAAAAAAAAAAAwIaIvAAAAAAAAAAAAAAAAgAkRfQEAAAAAAAAAAAAAAABMiOgLAAAAAAAAAAAAAAAAYEJEXwAAAAAAAAAAAAAAAAATIvoCAAAAAAAAAAAAAAAAmBDRFwAAAAAAAAAAAAAAAMCEiL4AAAAAAAAAAAAAAAAAJkT0BQAAAAAAAAAAAAAAADAhoi8AAAAAAAAAAAAAAACACRF9AQAAAAAAAAAAAAAAAEyI6AsAAAAAAAAAAAAAAABgQkRfAAAAAAAAAAAAAAAAABMi+gIAAAAAAAAAAAAAAACYENEXAAAAAAAAAAAAAAAAwISIvgAAAAAAAAAAAAAAAAAmRPQFAAAAAAAAAAAAAAAAMCGiLwAAAAAAAAAAAAAAAIAJEX0BAAAAAAAAAAAAAAAATIjoCwAAAAAAAAAAAAAAAGBCRF8AAAAAAAAAAAAAAAAAEyL6AgAAAAAAAAAAAAAAAJgQ0RcAAAAAAAAAAAAAAADAhIi+AAAAAAAAAAAAAAAAACZE9AUAAAAAAAAAAAAAAAAwIaIvAAAAAAAAAAAAAAAAgAnmtKiSAAAgAElEQVQRfQEAAAAAAAAAAAAAAABMiOgLAAAAAAAAAAAAAAAAYEJEXwAAAAAAAAAAAAAAAAATIvoCAAAAAAAAAAAAAAAAmBDRFwAAAAAAAAAAAAAAAMCEiL4AAAAAAAAAAAAAAAAAJkT0BQAAAAAAAAAAAAAAADAhoi8AAAAAAAAAAAAAAACACRF9AQAAAAAAAAAAAAAAAEyI6AsAAAAAAAAAAAAAAABgQkRfAAAAAAAAAAAAAAAAABMi+gIAAAAAAAAAAAAAAACYENEXAAAAAAAAAAAAAAAAwISIvgAAAAAAAAAAAAAAAAAmRPQFAAAAAAAAAAAAAAAAMCGiLwAAAAAAAAAAAAAAAIAJEX0BAAAAAAAAAAAAAAAATIjoCwAAAAAAAAAAAAAAAGBCRF8AAAAAAAAAAAAAAAAAEyL6AgAAAAAAAAAAAAAAAJgQ0RcAAAAAAAAAAAAAAADAhIi+AAAAAAAAAAAAAAAAACZE9AUAAAAAAAAAAAAAAAAwIaIvAAAAAAAAAAAAAAAAgAkRfQEAAAAAAAAAAAAAAABMiOgLAAAAAAAAAAAAAAAAYEJEXwAAAAAAAAAAAAAAAAATIvoCAAAAAAAAAAAAAAAAmJDZRF9V9aaqevS69wAAAAAAAAAAAAAAAADYS7OJvpI8Jcl7q+oTVfWsqjpu3QsBAAAAAAAAAAAAAAAAjG1O0dfCWUlemeTvq+qPq+qH1r0QAAAAAAAAAAAAAAAAwFjmGH11kkpypyS/mOTiqvrrqnp6Vd15rZsBAAAAAAAAAAAAAAAArGhO0dcTkvyPbEZfWXqvJA9N8gdJvlRVr66qB69hPwAAAAAAAAAAAAAAAICVzSb66u63d/fjk9wvyUuTfCWbwVey9fSvY5P8myQfq6r3V9VTq+rotSwMAAAAAAAAAAAAAAAAsAuzib4WuvsL3f1vk5yW5Lwk71n+8/BeSR6R5A1J/r6qXlZV99/fTQEAAAAAAAAAAAAAAAB2bnbR10J339Tdb+7uc5OcmeQVSa7I1tO/MpzvkeQ3knyqqt5RVf+0qmb77wYAAAAAAAAAAAAAAAAOb4dF/NTdn+nu85OckuRfJflAtuKvxdO/DiQ5N8lbklxaVS+oqpP3fVkAAAAAAAAAAAAAAACA23BYRF8L3X19d7+hux+V5MFJXpvkqmwFYDW8TknywiSfq6o/r6qfWMvCAAAAAAAAAAAAAAAAAIc4rKKvZd19SXc/M8nJSX45yV8v/jS8KslGkicmeWdVfaqqnlVVx6xlYQAAAAAAAAAAAAAAAIAcxtHXQndfm+R1SV6Z5NJsPfVrEX9luPaA4Tufq6rnVtXR+70rAAAAAAAAAAAAAAAAwGEdfVXVGVX1u0m+mOT1SU7LwaHX4pVsPf3r+CQvTfLRqjp9P/cFAAAAAAAAAAAAAAAAOOyir6o6qqqeXFXvSvLJJOcnOTFbcdci9HpfkqckeVySNye5cfj7Iv46O8lfVdUx+7c9AAAAAAAAAAAAAAAAcKTbWPcCY6mq+yT55SS/lORei8vZjLgWIdfV2Xzi12u6+xNLt7+7qk5K8uwkz0zyfcP3T0vy60l+Zz/+DQAAAAAAAAAAAAAAAACzftJXbXp8Vf33JJ9N8ltJ7p2tp3plOF+S5BlJTunuZx4SfCVJuvuy7n5ukh9Iclm2QrEn7vE/AwAAAAAAAAAAAAAAAOB7Zvmkr6q6V5KnD6/7LC7n4Kd63ZTkgiSv7e4Ltzu7uz9ZVb+T5D8Ol84ca28AAAAAAAAAAAAAAACA2zOr6Kuqzk3yK0ken83dF0/06sVXknw5yR8m+cPu/vIuf+ripfNddjkDAAAAAAAAAAAAAAAAYMdmE31V1aeT3H/xMQc/1auSXJjktUku6O4bV/y5K4b3vs1vAQAAAAAAAAAAAAAAAIxsNtFXkjOyFWEtYq+rk7w+yWu6+5I9+M1FXAYAAAAAAAAAAAAAAACwL+YUfS1UkkuS/Kckr+vuq/fgN76S5Jw9mAsAAAAAAAAAAAAAAABwm+YUfd2Y5K3ZfKrX+/byh7r7uiQX7uVvAAAAAAAAAAAAAAAAANySOUVfp3f3l9a9BAAAAAAAAAAAAAAAAMBeOrDuBbZL8AUAAAAAAAAAAAAAAAAcCWYTfQEAAAAAAAAAAAAAAAAcCURfAAAAAAAAAAAAAAAAABMym+irqh5RVZ8dXp+uqnvuYsZJVfWpYcZnquoH9mJXAAAAAAAAAAAAAAAAgN2aTfSV5OlJTk9y3yT/u7u/utMB3X1Zko8Nc04fZgIAAAAAAAAAAAAAAABMxpyir59ZOr9hhTmvXzo/YYU5AAAAAAAAAAAAAAAAAKObRfRVVQ9KcuLw8YYk71hh3DuHGZXk3lX1wBXXAwAAAAAAAAAAAAAAABjNLKKvJN8/vHeSv+nu63c7qLuvS/I3S5f+4SqLAQAAAAAAAAAAAAAAAIxpLtHXKUvnz48w79Kl86kjzAMAAAAAAAAAAAAAAAAYxVyir7sunb81wryrb2U2AAAAAAAAAAAAAAAAwFrNJfpajrSOH2He3ZbON4wwDwAAAAAAAAAAAAAAAGAUc4m+Ll86nzHCvOUZl9/qtwAAAAAAAAAAAAAAAAD22Vyir88O75XkrKo6dbeDhnsftHTp0lUWAwAAAAAAAAAAAAAAABjTXKKvjya5JkkPn5+zwqxnL52/k+TiFWYBAAAAAAAAAAAAAAAAjGoW0Vd335jkL7P5pK9K8qtV9ZidzhnueUY247FO8p7uvm68TQEAAAAAAAAAAAAAAABWM4voa/Cy4b2T3CHJX1TVU7Z7c1U9OckFSTayGY4tzwQAAAAAAAAAAAAAAACYhNlEX9394SR/ls1gq5Mcm+SNVfWeqjqvqu556D1VdWJVPaWq3j3ce7fFuCQXdPdF+7Q+AAAAAAAAAAAAAAAAwLZsrHuBHXpakgcneVA2w61K8pjhlaq6IsmVw99OGF4LtXTP/03yC/u0MwAAAAAAAAAAAAAAAMC2zeZJX0nS3VcnOTfJh7MVcWU4V5K7J3lAkgcO58X1ZCv4ujjJ47r7mv3bHAAAAAAAAAAAAAAAAGB7ZhV9JUl3fynJjyV5WZKrc3DUdUuvDN+5KsmLkzy6u7+ynzsDAAAAAAAAAAAAAAAAbNfGuhfYje6+PslvVdXLk/zLJI9N8ogk9zjkq19L8oEk707yhu6+al8XBQAAAAAAAAAAAAAAANihWUZfC939jSSvHl6pqqOS3H3489e7+6Z17QYAAAAAAAAAAAAAAACwG7OOvg41RF5fXfceAAAAAAAAAAAAAAAAALt1YN0LAAAAAAAAAAAAAAAAALBF9AUAAAAAAAAAAAAAAAAwIaIvAAAAAAAAAAAAAAAAgAnZWPcCY6iqOye5W5Kjd3pvd39+/I0AAAAAAAAAAAAAAAAAdmeW0VdVnZbkaUl+PMlDktx5l6M6M/0/AAAAAAAAAAAAAAAAAA5PswqeqmojyW8neU6SoxaX17cRAAAAAAAAAAAAAAAAwLhmE31VVSV5U5InZiv06uEl/AIAAAAAAAAAAAAAAAAOC7OJvpI8I8mTcnDoVUk+l+QTSa5McsO6lgMAAAAAAAAAAAAAAAAYwyyir+EpX8/LwU/1emuS53X3JWtbDAAAAAAAAAAAAAAAAGBks4i+kjwsyUnZesrXn3T309a7EgAAAAAAAAAAAAAAAMD4Dqx7gW06e3ivJN9J8uw17gIAAAAAAAAAAAAAAACwZ+YSfd1jeO8kH+zub65zGQAAAAAAAAAAAAAAAIC9Mpfo69ql85fXtgUAAAAAAAAAAAAAAADAHptL9PXFpfNd1rYFAAAAAAAAAAAAAAAAwB6bS/T1kSTfHc5nrXMRAAAAAAAAAAAAAAAAgL00i+iru7+Y5K+SVJKzqurMNa8EAAAAAAAAAAAAAAAAsCdmEX0NXpjkpuH80nUuAgAAAAAAAAAAAAAAALBXZhN9dfdF2Qy/KsmTqkr4BQAAAAAAAAAAAAAAABx2ZhN9JUl3vzTJbyTpJM+tqvdV1blVtbHm1QAAAAAAAAAAAAAAAABGMZtYqqreu/TxG0lOSPKoJO9Icm1VfSbJlUm+u4Ox3d2PHW9LAAAAAAAAAAAAAAAAgNXMJvpK8phsPuFroZPUcL5zkrMP+fvtqR1+HwAAAAAAAAAAAAAAAGDPzSn6uiWiLQAAAAAAAAAAAAAAAOCwMrfoq27/KwAAAAAAAAAAAAAAAADzNZvoq7sPrHsHAAAAAAAAAAAAAAAAgL0mpAIAAAAAAAAAAAAAAACYENEXAAAAAAAAAAAAAAAAwISIvgAAAAAAAAAAAAAAAAAmRPQFAAAAAAAAAAAAAAAAMCGiLwAAAAAAAAAAAAAAAIAJ2Vj3AquoqockeUKSRyU5I8kJSY5J0t19s39bVR2X5Njh43Xdfdl+7QoAAAAAAAAAAAAAAACwHbOMvqrq7CSvTHLO8uVt3HpOkjcP52uq6l7d/e2x9wMAAAAAAAAAAAAAAADYrQPrXmCnquoXk3wwmwHXoaFX387tb03y+eG+uyT52bH3AwAAAAAAAAAAAAAAAFjFrKKvqvrZJH+c5E7Ll5N8Icn/ye087au7v5vkTUuXnjD2jgAAAAAAAAAAAAAAAACrmE30VVX3TvK64ePiiV6vTXJGd5+e5MnbHPXWxcgkjx5tQQAAAAAAAAAAAAAAAIARbKx7gR14QZI7D+ebkvzz7v7zpb/3zW+5RR9JckOSo5Pcvaru191/N96aAAAAAAAAAAAAAAAAALs3iyd9VdVRSZ6azbCrk/zuIcHXtnX3jUn+dunSP1h9QwAAAAAAAAAAAAAAAIBxzCL6SvLDSY5NUtl8StfLV5z3xaXzfVacBQAAAAAAAAAAAAAAADCauURfDxjeO8lHuvuqFect33/sirMAAAAAAAAAAAAAAAAARjOX6OvEpfMXRpj33aXzxgjzAAAAAAAAAAAAAAAAAEYxl+irl85HjTDvhKXzN0aYBwAAAAAAAAAAAAAAADCKuURfX1s6nzzCvAcvnb8+wjwAAAAAAAAAAAAAAACAUcwl+vr88F5JHlpVR+92UFWdmeSUpUsfX2UxAAAAAAAAAAAAAAAAgDHNJfq6OMm1STrJnZI8dYVZz1o6X9bdn1xlMQAAAAAAAAAAAAAAAIAxzSL66u7rkrwnm0/6qiQvqarjdjqnqn40yb/OZjzWSd4y5p4AAAAAAAAAAAAAAAAAq5pF9DV4yfDeSU5J8q6quud2b66qc5K8LZv/5kpyU5LfH3tJAAAAAAAAAAAAAAAAgFXMJvrq7g8leWM2g61O8rAkf1tVz6+qs3IL/5aqOqqqHltVb0zy7iTHL93/H7r7c/u1PwAAAAAAAAAAAAAAAMB2bKx7gR16WpKzkjw0m+HWcUleNLyuX/5iVX0iyf2SHL24NNxTSS5K8pv7sTAAAAAAAAAAAAAAAADATszmSV9J0t3XJvnJJO/NVsSV4XzHQz6fleQOwznZCr7eleRnuvumfVobAAAAAAAAAAAAAAAAYNtmFX0lSXdfnuTcJM9NcnkOjroW78uvDN/5ZpLnZTP4umrfFgYAAAAAAAAAAAAAAADYgY11L7Ab3d1Jfq+qXp3kqdmMwB6Z5OQcHLJdmeSiJO9M8vru/uZ+7woAAAAAAAAAAAAAAACwE7OMvha6+ztJ/svwSlVVkuOT3CHJ17v7hjWuBwAAAAAAAAAAAAAAALBjs46+DjU8AeyKde8BAAAAAAAAAAAAAAAAsFsH1r0AAAAAAAAAAAAAAAAAAFtEXwAAAAAAAAAAAAAAAAATIvoCAAAAAAAAAAAAAAAAmBDRFwAAAAAAAAAAAAAAAMCEbKx7ge2qqs/uwdju7jP2YC4AAAAAAAAAAAAAAADArswm+kpyepJOUiPO7BFnAQAAAAAAAAAAAAAAAKxsTtHXwqqhVmX8eAwAAAAAAAAAAAAAAABgFHOKvj6fnQVfRyU5Psldhs+Le69JcvmIewEAAAAAAAAAAAAAAACMZjbRV3efvpv7quo+Sf5JkmcnuX82/80v6e7/PN52AAAAAAAAAAAAAAAAAOM4sO4F9lp3f6G7X5vk7CT/Lckdk/xBVf3KejcDAAAAAAAAAAAAAAAAuLnDPvpa6O5rk/x8kg8kqSSvqqqHrncrAAAAAAAAAAAAAAAAgIMdMdFXknT3TUmeM3w8KskL17gOAAAAAAAAAAAAAAAAwM0cUdFXknT3h5Ncms2nff1UVZ245pUAAAAAAAAAAAAAAAAAvueIi74GHx/eN5L8yDoXAQAAAAAAAAAAAAAAAFh2pEZfVy2dT13bFgAAAAAAAAAAAAAAAACHOFKjrxOXzsesbQsAAAAAAAAAAAAAAACAQxxx0VdVfV+SH1m6dMW6dgEAAAAAAAAAAAAAAAA41BEXfSV5fg5+utcl61oEAAAAAAAAAAAAAAAA4FBHTPRVVcdV1SuS/GaSHi5/I8kH17cVAAAAAAAAAAAAAAAAwME21r3AdlXVC3Zx20aS45J8f5IfTXKHJDX8rZO8srtvGmdDAAAAAAAAAAAAAAAAgNXNJvpK8qJsPaFrN5Zjr0pyUZKXr7gTAAAAAAAAAAAAAAAAwKgOrHuBfbQIxirJnyV5fHdfv8Z9AAAAAAAAAAAAAAAAAG5mTk/6Srae1rUbX07yniR/1N3vH2kfAAAAAAAAAAAAAAAAgFHNKfo6Zxf33JjkqiRf7e7LRt4HAAAAAAAAAAAAAAAAYHSzib66+8J17wAAAAAAAAAAAAAAAACw1w6sewEAAAAAAAAAAAAAAAAAtoi+AAAAAAAAAAAAAAAAACZE9AUAAAAAAAAAAAAAAAAwIaIvAAAAAAAAAAAAAAAAgAkRfQEAAAAAAAAAAAAAAABMyMa6F9iuqnrBun67u1+8rt8GAAAAAAAAAAAAAAAAjiyzib6SvChJr+m3RV8AAAAAAAAAAAAAAADAvphT9LWsbuX6oVHYdr93W7+zrtAMAAAAAAAAAAAAAAAAOALNLfpajrj6Fq5vJ/Kq2/geAAAAAAAAAAAAAAAAwFrNKfo6Z3h/QJKXJzkum/HWDUneleRDST6V5JvD9+6W5Mwk/zjJ45Icnc3464okz03y//ZrcQAAAAAAAAAAAAAAAIDtmk301d0XVtUjshV8dZLXJHlxd19+W/dW1T2SvDDJryY5PsnvJXl8d1+0t1sDAAAAAAAAAAAAAAAA7MyBdS+wXVV17yRvy2a0dUOS87r7WbcXfCVJd1/e3b+W5LwkN2YzGntbVZ2ylzsDAAAAAAAAAAAAAAAA7NRsoq8k/y7JCdl8wtdLuvstOx0w3POS4ePxw0wAAAAAAAAAAAAAAACAyZhF9FVVd0ryz4aP1yb59yuM+/1hRiV5yjAbAAAAAAAAAAAAAAAAYBJmEX0leVSSY7L5lK8Pdve3dztouPfi4eNdh9kAAAAAAAAAAAAAAAAAkzCX6OvUpfNlI8xbnnHqrX4LAAAAAAAAAAAAAAAAYJ/NJfq659L5uBHm3W3pfOII8wAAAAAAAAAAAAAAAABGMZfo64rhvZI8dJVBVVVJfnDp0pWrzAMAAAAAAAAAAAAAAAAY01yir79bOp9UVU9eYdaTk5x0K7MBAAAAAAAAAAAAAAAA1mou0deFSa5K0tl82terquq+Ox1SVacnedUwJ0m+leR9o2wIAAAAAAAAAAAAAAAAMIJZRF/dfX2S12Uz+OokJyf5QFX91HZnVNVPJ3l/knstzfmT7r5h/I0BAAAAAAAAAAAAAAAAdmdj3QvswPOT/Fw2o61F+PX2qvpIkj9N8qEkn87mE8GS5NgkD0zyw0memuRh2Yq9kuTLw0wAAAAAAAAAAAAAAACAyZhN9NXdVw1P63p3khOyGW9Vkh9K8vDbub0WY4bz15P8dHd/a4/WBQAAAAAAAAAAAAAAANiVA+teYCe6+2NJHp3k49l6atci5Lqt1/L3Ppbk0d398f3eHwAAAAAAAAAAAAAAAOD2zCr6SpLuviSbT/Y6P8ml2XqK1/e+MryW1fDd85M8fJgBAAAAAAAAAAAAAAAAMDkb615gN7r7xiSvqKpXJvmxJI9M8rAkJyU5fvjalUkuS/LRJP8ryf/s7kNjMAAAAAAAAAAAAAAAAIBJmWX0tTBEXBcOLwAAAAAAAAAAAAAAAIDZO7DuBQAAAAAAAAAAAAAAAADYIvoCAAAAAAAAAAAAAAAAmBDRFwAAAAAAAAAAAAAAAMCEbKx7gVVV1WlJHpXkjCQnJDkmSbr7aevcCwAAAAAAAAAAAAAAAGA3Zhl9VVUl+fkk5yc5+9A/J+kkN4u+qupJSX5t+HhFd//cXu4JAAAAAAAAAAAAAAAAsFOzi76q6uQkf5rkkYtLw3svnW/N+5P81yR3TNJV9YjuvmhPFgUAAAAAAAAAAAAAAADYhQPrXmAnhuDrg9kMvg4NvBZP+LpV3X15kguWLp036oIAAAAAAAAAAAAAAAAAK5pN9FVVRyV5e5JTly5/LclvJ/nxJOfm9p/0lSR/sXT+idEWBAAAAAAAAAAAAAAAABjBxroX2IFfSvKQbD3N6y1JfqG7r0mSqrrvNuf85fBeSR5UVcd395WjbgoAAAAAAAAAAAAAAACwS7N50leS85fO709y3iL42okh8Pri0qUHrboYAAAAAAAAAAAAAAAAwFhmEX1V1f2SPHDp0q9393dXGPmppfMDVpgDAAAAAAAAAAAAAAAAMKpZRF9JHj68d5JPd/fHVpz3jaXz8SvOAgAAAAAAAAAAAAAAABjNXKKvey6dLxlh3reXzncZYR4AAAAAAAAAAAAAAADAKOYSfd116XzNCPOOHXkeAAAAAAAAAAAAAAAAwCjmEn19fel8wgjzTruV2QAAAAAAAAAAAAAAAABrNZfo66vDeyX5R6sMqqq7Jjl76dKlq8wDAAAAAAAAAAAAAAAAGNNcoq8PLZ3vXVU/uMKsf5HkqOF83SGzAQAAAAAAAAAAAADg/7N3f7GSn3Udxz/P6bGUQqUrFksodqFgDG1QoQppjcGojb0w2Ea3ihcgoERvMNygRq1LjIkXJeqFEiWxvYAmiIgJwWhUikgtKq2itphCaxtR3DS26q4tS+nXi526s+P+OXPOzJnvTF+vZDLz/M7z/H7fnPt3fgCwUmsRfVXVF5P8/dSlw7u5zxjj4iQ/m6Qmn09U1fG9TwgAAAAAAAAAAAAAAACwGGsRfU385tTv68cYPzfP4THGhUk+kOSyJGNy+dcWNBsAAAAAAAAAAAAAAADAQqxT9PXeJA9Ofo8kh8cY7x9jXH6ug2OM703yV0m+Kyff8vU3VfXRZQ0LAAAAAAAAAAAAAAAAsBvbqx5gp6rqyTHGoSQfT/LsnAi/bkpyaIzx10kemN4/xnhnkm9I8j1JXjTZX5Pvx5L88P5NDwAAAAAAAAAAAAAAALAzaxN9JUlVfXqM8UNJbk9y4eTyVpJvm3yeNpL88tTv5GTw9V9JfrCqTonEAAAAAAAAAAAAAAAAADrYWvUA86qqjyR5TZJ7czLo+r8/T32mY69M1p9Nck1V/ek+jAoAAAAAAAAAAAAAAAAwt7WLvpKkqu5N8sokh5J8IsmTORF1TX8y9X13kjcnuWpyFgAAAAAAAAAAAAAAAKCl7VUPsFtVVUk+mOSDY4wLk7w2yYuTPD/J+UkeSfLvSf6yqh5Z2aAAAAAAAAAAAAAAAAAAc1iL6GuMcV6S50xdOlpVTz29qKr/SfJn+z4YAAAAAAAAAAAAAAAAwIJtrXqAHXpjkkcnn0eSvHC14wAAAAAAAAAAAAAAAAAsx1q86SvJ1yUZk993V9UXVjkMAAAAAAAAAAAAAAAAwLKsy5u+jk2+K8nDqxwEAAAAAAAAAAAAAAAAYJnWJfr64qoHAAAAAAAAAAAAAAAAANgP6xJ9/dPU7xevbAoAAAAAAAAAAAAAAACAJVuL6Kuq/i7J55KMJK8eYxxY8UgAAAAAAAAAAAAAAAAAS7EW0dfEb0++z0vy06scBAAAAAAAAAAAAAAAAGBZ1in6uiXJXTnxtq93jDFuWvE8AAAAAAAAAAAAAAAAAAu3NtFXVT2V5MYkn8qJt329f4zxW2OMK1Y7GQAAAAAAAAAAAAAAAMDibK96gJ0aY/zC5OfHkrwiyUVJ3pLkLWOMf0xyT5IjSf57nvtW1bsWOScAAAAAAAAAAAAAAADAXqxN9JXkF5PU1LqSjMnvq5Jcucv7ir4AAAAAAAAAAAAAAACANtYp+jqdOveWMxp7PA8AAAAAAAAAAAAAAACwcOsWfY1zbwEAAAAAAAAAAAAAAABYX+sUfX3nqgcAAAAAAAAAAAAAAAAAWLa1ib6q6uOrngEAAAAAAAAAAAAAAABg2dpEX2OMd08t31VVj61sGAAAAAAAAAAAAAAAAIAVaRN9JfmpJDX5/atJzhp9jTG+Y2p5V1UdX9ZgAAAAAAAAAAAAAAAAAPulU/SVJCMnw69zuWNq70uSPLyMgQAAAAAAAAAAAAAAAAD209aqB9ijseoBAAAAAAAAAAAAAAAAABZp3aOvnb4VDAAAAAAAAAAAAAAAAGAtrHv05U1fAAAAAAAAAAAAAAAAwEZZ9+gLAAAAAAAAAAAAAAAAYKOIvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAj26seYEZNvl87xjg4x7l59598YNWf7+YcAAAAAAAAAAAAAAAAwDJ0i76SZCS5fYn7p1V6/g8AAAAAAAAAAAAAAACAZ6iOwVPlRMi1k31P28l+AAAAAAAAAAAAAAAAgPY6Rl/JqUHXMvYnQjEAAAAAAAAAAAAAAACgoU7R18PZXbwFAAAAAAAAAAAAAAAAsDHaRF9VdSkwOQcAACAASURBVHDVMwAAAAAAAAAAAAAAAACs2taqBwAAAAAAAAAAAAAAAADgJNEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGtlc9APtjjPFVSa5N8vVJXpjkaJJ/TXJPVf3zCkcDAAAAAAAAAAAAAAAApoi+VmSM8dIk35rk6sn3q5JcNLXloao6uIDnXJLkcJKbknzNGfbcmeTdVfV7e30eAAAAAAAAAAAAAAAAsDeir300xnhdkp/JidDrtAHWgp93fZJbk7zgHFuvSXLNGON9Sd5WVceWPRsAAAAAAAAAAAAAAABweqKv/fXNSa7bjwdNArMPJzl/6nIluTvJA0kuTvItSb526u8/kuSrxxjfX1VP7cecAAAAAAAAAAAAAAAAwKm2Vj0ASZIvJfn8om42xrgsyYdyavD1ySRXVtXVVXWoqq5LclmStyf58tS+70vyS4uaBQAAAAAAAAAAAAAAAJiP6Gv/fTnJ3yZ5b5K3JXl1kouSvHWBzzic5MDU+s4k311V901vqqovVdWvJzk0c/4dY4zLFzgPAAAAAAAAAAAAAAAAsEPbqx7gGea2JO+pqidm/zDGWMgDxhgvT/LGqUvHk7zpdM98WlV9eIxx29S5ZyW5OcmbFzIUAAAAAAAAAAAAAAAAsGPe9LWPqurRs8VXC/KGJOdNrT9UVffv4NyvzKwPjTEuWNxYAAAAAAAAAAAAAAAAwE6IvjbPDTPr39nJoaq6L8mnpi49J8l1ixoKAAAAAAAAAAAAAAAA2BnR1wYZY1ya5JumLj2Z5JNz3OKOmfX1e50JAAAAAAAAAAAAAAAAmI/oa7NcNbP+TFUdm+P8nTPrK/c4DwAAAAAAAAAAAAAAADAn0ddmecXM+nNznv/8Oe4HAAAAAAAAAAAAAAAALJnoa7O8bGb98JznH5pZP3+McWAP8wAAAAAAAAAAAAAAAABzEn1tlotn1kfmOVxVR5M8MXP5eXuaCAAAAAAAAAAAAAAAAJjL9qoHYKGeO7N+fBf3eDzJBVPri3Y/zkljjBckuWTOY1cs4tkAAAAAAAAAAAAAAACwTkRfm2U2+pp9a9dOPJ7kwFnuuVs/meTmBd0LAAAAAAAAAAAAAAAANtbWqgdgqWqfzgAAAAAAAAAAAAAAAAALIvraLEdn1s/exT1mz8zeEwAAAAAAAAAAAAAAAFii7VUPwEJ1jr5+I8nvznnmiiR/sKDnAwAAAAAAAAAAAAAAwFoQfW2W/5xZXzLP4THGc/P/o6/H9jTRRFUdSXJkznkW8WgAAAAAAAAAAAAAAABYK1urHoCFun9mffmc52f3/0dVPbqHeQAAAAAAAAAAAAAAAIA5ib42y30z65fNef6lM+t79zALAAAAAAAAAAAAAAAAsAuir83yDzPrV44xLpzj/LXnuB8AAAAAAAAAAAAAAACwZKKvDVJV/5bkM1OXtpN8+xy3eN3M+g/3OhMAAAAAAAAAAAAAAAAwH9HX5vn9mfWP7uTQGOMbk7xm6tKxJH+8qKEAAAAAAAAAAAAAAACAnRF9bZ73JfnK1PrGMcbLd3DunTPrD1TVE4sbCwAAAAAAAAAAAAAAANgJ0deGqar7k9w2den8JLeOMS4405kxxuuTvGnq0vEkh5cyIAAAAAAAAAAAAAAAAHBW26se4JlmjHFZTv9/v3RmvT3GOHiG2xytqkfO8pibk9yQ5MBkfU2SPxljvLWqPjs1y7OS/HiSW2bO31JVD53l/gAAAAAAAAAAAAAAAMCSiL72318kuXwH+16U5MEz/O22nPpmrlNU1b+MMW5M8kc58aavJLk2yb1jjE8neSDJ85K8KsklM8c/kuTndzAfAAAAAAAAAAAAAAAAsASirw1VVXeMMW5IcmtOhl0jydWTz+ncnuTHquory58QAAAAAAAAAAAAAAAAOJ2tVQ/A8lTVR5NcleQ9SR49y9a7kvxAVb2hqo7ty3AAAAAAAAAAAAAAAADAaXnT1z6rqoP7/LwjSX5ijPH2JNcmuTzJpUmOJflCknuq6sH9nAkAAAAAAAAAAAAAAAA4M9HXM0RVHU/ysVXPAQAAAAAAAAAAAAAAAJzd1qoHAAAAAAAAAAAAAAAAAOAk0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAPC/7N2xq513Hcfxz/ca0KqDUGsHkQ5FFAQFCSiIglMLOjnZQRFEBP8BbSnURXQV1KFTXVwEi4NFYgo6KKUEB5eCDkYwUorEioou6c8hKTkcmqTBe/N8POf1gjP8nvM8537uH/DmAQAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioq8DNDPfnJn1P3ye2fp/AAAAAAAAAAAAAAAAgGMl+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKHJu6wHcE48leeEu7v/nWQ0BAAAAAAAAAAAAAAAAbk/0dRxeXmtd3noEAAAAAAAAAAAAAAAAcGcnWw8AAAAAAAAAAAAAAAAA4CbRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0ddx+OrMXJyZKzPzn5n5x8xcnplfzcy3ZuaTWw8EAAAAAAAAAAAAAAAArju39QDuic/vnd+a5J1JHkryqSRPzMylJI+vtS7e63EAAAAAAAAAAAAAAADATaIvXnc+yYWZ+XaSJ9da6zR/fGbek+SBu3zs4dPcAAAAAAAAAAAAAAAAAP8PRF+H7UqS55K8mOSlJFeTvJbk/iQfTfLZJI/s3D9JnkhykuTxU97ytSRPnfJvAgAAAAAAAAAAAAAAwMERfR2mF3M95vrFbd7Y9Zsk35uZ80l+lOT9O999Y2ZeWGv99Ix3AgAAAAAAAAAAAAAAAHtOth7A6VtrPbfWunCb4Gv33ktJPp7k93tffWdm3nImAwEAAAAAAAAAAAAAAIBb8qYvsta6OjOPJbmUZG5c/mCSTye5eEp/5gdJfnyXzzycxNvGAAAAAAAAAAAAAAAAOCqiL5Ika63fzsyFJI/sXH40pxR9rbVeSfLK3TwzM3e+CQAAAAAAAAAAAAAAAA7MydYDqPLzvfOHN1kBAAAAAAAAAAAAAAAAR0z0xa7Le+cHthgBAAAAAAAAAAAAAAAAx0z0xa5/753v22QFAAAAAAAAAAAAAAAAHDHRF7vevXf+6yYrAAAAAAAAAAAAAAAA4IiJvtj1sb3zXzZZAQAAAAAAAAAAAAAAAEdM9EWSZGbeluRze5d/ucEUAAAAAAAAAAAAAAAAOGqiL1739STv3TlfS/KzjbYAAAAAAAAAAAAAAADA0RJ9HZiZ+cLMPHiXz3wlyVN7l59Za/3p9JYBAAAAAAAAAAAAAAAAb4bo6/B8OckfZ+aHM/OZmXnHrW6cmfMz85MkTyeZna+uJHnyjHcCAAAAAAAAAAAAAAAAb+Dc1gM4E/cl+eKNz2sz84ckl5P8Pcm1JPcn+UiSN3oj2NUkj661Xr43UwEAAAAAAAAAAAAAAIBdoq/Dd5LkAzc+d/J8ki+ttf58tpMAAAAAAAAAAAAAAACAWxF9HZ7vJrmS5BNJHnoT9/8ryYUk319rPX+WwwAAAAAAAAAAAAAAAIA7E30dmLXWs0meTZKZeVeSDyV5X5IHk7w919/89WqSvyV5Kcnv1lrXtlkLAAAAAAAAAAAAAAAA7BN9HbC11qtJfr31DgAAAAAAAAAAAAAAAODNO9l6AAAAAAAAAAAAAAAAAAA3ib4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+OkfHxgAAIABJREFUAAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAPgve/cebOtd1gf8+5ycEww5ITTVIGCJiTEm4R50SJzQgsQGlLtB0NGSNlrsCLUDU22nAwHHaXUcp2WIOrVQpLVYJIVwqwGL5SZpOwyhY1IZSTChpuQeEnM9J/D0j30iKy/ncPY++/L+9tqfz8yZM8+z3t+7vv+u2eu7XgAAAAAAAAAAAABgIEpfAAAAAAAAAAAAAAAAAANR+gIAAAAAAAAAAAAAAAAYiNIXAAAAAAAAAAAAAAAAwECUvgAAAAAAAAAAAAAAAAAGovQFAAAAAAAAAAAAAAAAMBClLwAAAAAAAAAAAAAAAICBKH0BAAAAAAAAAAAAAAAADETpCwAAAAAAAAAAAAAAAGAgSl8AAAAAAAAAAAAAAAAAA1H6AgAAAAAAAAAAAAAAABiI0hcAAAAAAAAAAAAAAADAQJS+AAAAAAAAAAAAAAAAAAai9AUAAAAAAAAAAAAAAAAwEKUvAAAAAAAAAAAAAAAAgIEofQEAAAAAAAAAAAAAAAAMROkLAAAAAAAAAAAAAAAAYCBKXwAAAAAAAAAAAAAAAAADUfoCAAAAAAAAAAAAAAAAGIjSFwAAAAAAAAAAAAAAAMBAlL4AAAAAAAAAAAAAAAAABqL0BQAAAAAAAAAAAAAAADAQpS8AAAAAAAAAAAAAAACAgSh9AQAAAAAAAAAAAAAAAAxE6QsAAAAAAAAAAAAAAABgIEpfAAAAAAAAAAAAAAAAAANR+gIAAAAAAAAAAAAAAAAYiNIXAAAAAAAAAAAAAAAAwEB2zx0AAAAAAAAAYDT1+g/OHQEAgFXq33jh3BEAAABgw3nSFwAAAAAAAAAAAAAAAMBAlL4AAAAAAAAAAAAAAAAABqL0BQAAAAAAAAAAAAAAADAQpS8AAAAAAAAAAAAAAACAgSh9AQAAAAAAAAAAAAAAAAxE6QsAAAAAAAAAAAAAAABgIEpfAAAAAAAAAAAAAAAAAANR+gIAAAAAAAAAAAAAAAAYiNIXAAAAAAAAAAAAAAAAwECUvgAAAAAAAAAAAAAAAAAGovQFAAAAAAAAAAAAAAAAMBClLwAAAAAAAAAAAAAAAICBKH0BAAAAAAAAAAAAAAAADETpCwAAAAAAAAAAAAAAAGAgSl8AAAAAAAAAAAAAAAAAA1H6AgAAAAAAAAAAAAAAABiI0hcAAAAAAAAAAAAAAADAQJS+AAAAAAAAAAAAAAAAAAai9AUAAAAAAAAAAAAAAAAwEKUvAAAAAAAAAAAAAAAAgIEofQEAAAAAAAAAAAAAAAAMROkLAAAAAAAAAAAAAAAAYCBKXwAAAAAAAAAAAAAAAAADUfoCAAAAAAAAAAAAAAAAGIjSFwAAAAAAAAAAAAAAAMBAlL4AAAAAAAAAAAAAAAAABqL0BQAAAAAAAAAAAAAAADAQpS8AAAAAAAAAAAAAAACAgSh9AQAAAAAAAAAAAAAAAAxE6QsAAAAAAAAAAAAAAABgIEpfAAAAAAAAAAAAAAAAAANR+gIAAAAAAAAAAAAAAAAYiNIXAAAAAAAAAAAAAAAAwECUvgAAAAAAAAAAAAAAAAAGovQFAAAAAAAAAAAAAAAAMBClLwAAAAAAAAAAAAAAAICBKH0BAAAAAAAAAAAAAAAADETpCwAAAAAAAAAAAAAAAGAgSl8AAAAAAAAAAAAAAAAAA1H6AgAAAAAAAAAAAAAAABiI0hcAAAAAAAAAAAAAAADAQJS+AAAAAAAAAAAAAAAAAAai9AUAAAAAAAAAAAAAAAAwEKUvAAAAAAAAAAAAAAAAgIEofQEAAAAAAAAAAAAAAAAMROkLAAAAAAAAAAAAAAAAYCBKXwAAAAAAAAAAAAAAAAADUfoCAAAAAAAAAAAAAAAAGIjSFwAAAAAAAAAAAAAAAMBAlL4AAAAAAAAAAAAAAAAABqL0BQAAAAAAAAAAAAAAADAQpS8AAAAAAAAAAAAAAACAgSh9AQAAAAAAAAAAAAAAAAxE6QsAAAAAAAAAAAAAAABgIEpfAAAAAAAAAAAAAAAAAANR+gIAAAAAAAAAAAAAAAAYiNIXAAAAAAAAAAAAAAAAwECUvgAAAAAAAAAAAAAAAAAGovQFAAAAAAAAAAAAAAAAMBClLwAAAAAAAAAAAAAAAICBKH0BAAAAAAAAAAAAAAAADETpCwAAAAAAAAAAAAAAAGAgSl8AAAAAAAAAAAAAAAAAA1H6AgAAAAAAAAAAAAAAABiI0hcAAAAAAAAAAAAAAADAQHbPHQAAAAAAAAAAAABgO6jXf3DuCAAArFL/xgvnjgDr4klfAAAAAAAAAAAAAAAAAANR+gIAAAAAAAAAAAAAAAAYiNIXAAAAAAAAAAAAAAAAwECUvgAAAAAAAAAAAAAAAAAGovQFAAAAAAAAAAAAAAAAMBClLwAAAAAAAAAAAAAAAICBKH0BAAAAAAAAAAAAAAAADETpCwAAAAAAAAAAAAAAAGAgSl8AAAAAAAAAAAAAAAAAA1H6AgAAAAAAAAAAAAAAABiI0hcAAAAAAAAAAAAAAADAQJS+AAAAAAAAAAAAAAAAAAai9AUAAAAAAAAAAAAAAAAwEKUvAAAAAAAAAAAAAAAAgIEofQEAAAAAAAAAAAAAAAAMROkLAAAAAAAAAAAAAAAAYCBKXwAAAAAAAAAAAAAAAAADUfoCAAAAAAAAAAAAAAAAGIjSFwAAAAAAAAAAAAAAAMBAlL4AAAAAAAAAAAAAAAAABqL0BQAAAAAAAAAAAAAAADAQpS8AAAAAAAAAAAAAAACAgSh9AQAAAAAAAAAAAAAAAAxE6QsAAAAAAAAAAAAAAABgIEpfAAAAAAAAAAAAAAAAAANR+gIAAAAAAAAAAAAAAAAYiNIXAAAAAAAAAAAAAAAAwECUvgAAAAAAAAAAAAAAAAAGovQFAAAAAAAAAAAAAAAAMBClLwAAAAAAAAAAAAAAAICBKH0BAAAAAAAAAAAAAAAADETpCwAAAAAAAAAAAAAAAGAgSl8AAAAAAAAAAAAAAAAAA1H6AgAAAAAAAAAAAAAAABiI0hcAAAAAAAAAAAAAAADAQJS+AAAAAAAAAAAAAAAAAAai9AUAAAAAAAAAAAAAAAAwEKUvAAAAAAAAAAAAAAAAgIEofQEAAAAAAAAAAAAAAAAMROkLAAAAAAAAAAAAAAAAYCBKXwAAAAAAAAAAAAAAAAADUfoCAAAAAAAAAAAAAAAAGIjSFwAAAAAAAAAAAAAAAMBAlL4AAAAAAAAAAAAAAAAABqL0BQAAAAAAAAAAAAAAADAQpS8AAAAAAAAAAAAAAACAgSh9AQAAAAAAAAAAAAAAAAxE6QsAAAAAAAAAAAAAAABgIEpfAAAAAAAAAAAAAAAAAAPZPXcAtlZVnZzkaUkel2Rvkq8kuT7JZ7p7/5zZAAAAAAAAAAAAAAAAAKWvHaOqLkjyuiTnHOKS26vq3Une2N23bl0yAAAAAAAAAAAAAAAAYNGuuQOwuapqb1X9fpL35NCFryQ5Ick/SnJVVZ2/JeEAAAAAAAAAAAAAAACAb6L0tcSq6qgk707yyslLtyT5aFaKYJ9L0guvPSbJ+6vq3C0JCQAAAAAAAAAAAAAAADyM0tdy+9UkP7Iw70/y2iTf1d3nd/ePd/czkjwpyRUL1z0iyWVV9ditiwoAAAAAAAAAAAAAAAAkSl9Lq6pOSfILk/XLu/uS7t63uOzu/5PkuXl48etvJrl4c1MCAAAAAAAAAAAAAAAAU0pfy+viJHsW5t/t7vcf6uLuvi/JhUkWC2EXHSiPAQAAAAAAAAAAAAAAAFtE6WsJVdUxSS6YrH/tcOe6+8+TXLaw2p3kJzcwGgAAAAAAAAAAAAAAAHAYSl/L6fwkj1yYr+juL6zy7Dsm88s2JhIAAAAAAAAAAAAAAACwGkpfy+l5k/njazj7qSQPLsxPr6rHrDsRAAAAAAAAAAAAAAAAsCpKX8vpSZP5itUe7O57kvzpZP3EdScCAAAAAAAAAAAAAAAAVkXpazmdMZmvWeP5ayfzmevIAgAAAAAAAAAAAAAAAKyB0teSqaoTkpwwWX95jbeZXv+9R54IAAAAAAAAAAAAAAAAWIvdcwdgwz16Mt/b3fes8R43T+bj15EnSVJVJyb5jjUeO31xuOaatT6wDA7i1rV2IAEAmMvVV189dwQAAAB2Mn9TAADYNvxNgS3lswIAwLbhswIb4SBdlqO36r2ru7fqvdgCVfWUJP97YXVbd3/7Gu/xj5O8ZWH13u7+sXXmelOSi9dzDwAAAAAAAAAAAAAAAJjRi7v7A1vxRru24k3YUnsn8/1HcI/7DnNPAAAAAAAAAAAAAAAAYJMofS2/I3mUm8e/AQAAAAAAAAAAAAAAwEx2zx2ADXf3ZD7mCO4xPTO955H4rSTvWeOZvUm+P8ldSe5M8n+T7NuALACwLL4nyfsX5hcnuXamLAAAwDh8VgAAAA7GZwUAAGDK5wQAOLyjk/ythfkTW/XGSl/LZ8jSV3ffnOTmIzj6P9f73gCwrKpqurq2u6+eIwsAADAOnxUAAICD8VkBAACY8jkBAFbtyjnedNccb8qmunMyP7Kqjl3jPU6czF9dRx4AAAAAAAAAAAAAAABgDZS+lkx335bkjsn6CWu8zUmT+YtHnggAAAAAAAAAAAAAAABYC6Wv5fRnk/nUNZ4/5TD3AwAAAAAAAAAAAAAAADaJ0tdyumoyn7Pag1V1bJKnHOZ+AAAAAAAAAAAAAAAAwCZR+lpOl0/mZ6/h7LOS7F6Yr+zum9adCAAAAAAAAAAAAAAAAFgVpa/l9JEk9y3M51TV6as8e+Fkft+GJAIAAAAAAAAAAAAAAABWRelrCXX3vUkunax/6XDnquq0JC9dWD2Y5F0bGA0AAAAAAAAAAAAAAAA4DKWv5fWmJPsX5gur6kWHuriqvi3JO5IcvbB+e3dfuznxAAAAAAAAAAAAAAAAgINR+lpS3f2lJG+ZrC+tqtdU1WKxK1V1RpKPJfnBhfVtSd68uSkBAAAAAAAAAAAAAACAqd1zB2BT/bMkT0zy/APzniRvTfKGqvpckr9KckqSs5LUwrl9SV7a3V/ZwqwAAAAAAAAAAAAAAABAlL6WWnd/rap+PMnbkrxi4aUTkzzvEMduTvKq7v7UZucDAAAAAAAAAAAAAAAAvpnS15Lr7ruTvLKqLk3y+iRnH+LS25O8O8nF3X3LVuUDANblliRvnswAAAA+KwAAAAfjswIAADDlcwIADKy6e+4MbKGqOjnJWUkel+TYJDcmuT7Jn3T3vjmzAQAAAAAAAAAAAAAAAEpfAAAAAAAAAAAAAAAAAEPZNXcAAAAAAAAAAAAAAAAAAL5B6QsAAAAAAAAAAAAAAABgIEpfAAAAAAAAAAAAAAAAAANR+gIAAAAAAAAAAAAAAAAYiNIXAAAAAAAAAAAAAAAAwECUvgAAAAAAAAAAAAAAAAAGovQFAAAAAAAAAAAAAAAAMBClLwAAAAAAAAAAAAAAAICBKH0BAAAAAAAAAAAAAAAADETpCwAAAAAAAAAAAAAAAGAgSl8AAAAAAAAAAAAAAAAAA9k9dwAAAI5MVZ2c5GlJHpdkb5KvJLk+yWe6e/+c2QAAAAAAAAAAgLFU1TFJTk9yUla+c3Rckj1J7kpyW5Krklzd3Q/OFhIA+GvV3XNnAABgDarqgiSvS3LOIS65Pcm7k7yxu2/dsmAAAAAAAMAQquqoJKcmOTMrX+Q8PskDSe5Icm2Sz3b3PfMlBAAAtkpV/f0kP5TkmUm+J8muwxy5O8kfJHlrd39+k+MBAN+C0hcAwDZRVXuT/Lskr1zlkZuSvKq7P7J5qQAAgLlV1SlJfiDJ9x/4/6ys/DLnQ67v7u+eIRoAALCFquoJSV6W5Lwkz0ryqG9x+deS/FGSS7r7w1sQDwAAmElV/WWSxx/B0a8leWuSf+rJXwAwD6UvAIBt4MAvcn4gyY9MXrolyZVJ7szKL/E8PUktvP5AkvO6+9NbkRMAANgaVfXsJP88K0WvEw5zudIXAAAsuap6V5KfOMLjH0ryM9190wZGAgAABnGQ0te9WXkC8JeT3JWVJ3+dkOTJSb7zILe4LMkF3f21TY4KAEzsnjsAAACr8qt5eOFrf5LXJfmd7t730LKqzkzytiTnHFg9IsllVfXk7v7KVoUFAAA23dOS/N25QwAAAMM47RD7G5J8MclNWfmOyClJnpqVL3U+5AVJPllVf6e7b9zUlAAAwBzuycqPTf9hks8kuaq7v36wC6vq7CS/kuS5C+uXZOV7Sr++yTkBgAlP+gIAGFxVnZLkC0n2LKxf0t3vP8T1xyT5WL5R/EqSf9vdP7d5KQEAgK1UVf8kyb8+yEsPJPnLrDwJ+CGe9AUAAEuuqj6b5BkHxiuT/Pskf9jd1x7k2scneWOSfzh56dNJ/nb7IgkAACyVqtrT3fvXcP2uJO9M8lML6zuTPKa7H9jofADAoe06/CUAAMzs4jy88PW7hyp8JUl335fkwiT7FtYXHSiPAQAAy2N/ks9n5Wm/r87KFzyPS/Izc4YCAABm0Uk+nOQHuvus7r7kYIWvJOnuG7r71Ul+fvLSuUlesck5AQCALbaWwteB67+elc8L9yysj0/ynI3MBQAcntIXAMDADjy164LJ+tcOd667/zzJZQur3Ul+cgOjAQAA83pnkkd199O7+2e7+3e6+3Nr/cMtAACwNF7e3S/o7s+u9kB3/1aS/zJZ//TGxgIAALaj7r4rK08DXnTqHFkAYCdT+gIAGNv5SR65MF/R3V9Y5dl3TOaXbUwkAABgbt19R3ffP3cOAABgDN193REe/c3J7Jf7AQCAh9w+mY+bJQUA7GBKXwAAY3veZP74Gs5+KsmDC/PTq+ox604EAAAAAAAsiysn8zFV9ehZkgAAAKM5aTL/v1lSAMAOpvQFADC2J03mK1Z7sLvvSfKnk/UT150IAAAAAABYFg8eZHf0lqcAAACGUlWnJXnmwqqTfGKmOACwYyl9AQCM7YzJfM0az187mc9cRxYAAAAAAGC5nDqZH0xy6xxBAACAMVTVY5O8J8lRC+tLu/u6eRIBwM61e+4AAAAcXFWdkOSEyfrLa7zN9PrvPfJEAAAAAADAkrlgMn+2u78+SxIAAGAWVbU7yd/Iyo9TvyDJq5M8auGSLyV5zQzRAGDHU/oCABjXoyfzvd19zxrvcfNkPn4deQAAAAAAgCVRVXuTXDRZv2+OLAAAwNapqn+T5BdWefl/T/LT3T39DhIAsAV2zR0AAIBD2juZ7zuCe0zPHHeEWQAAAAAAgOXyr5J858L81SRvmykLAAAwlg8kOb+7f6i7b5g7DADsVJ70BQAwrmnp6/4juMe09DW9JwAAAAAAsMNU1UuTvGay/hfdffsceQAAgOE8P8lRVXV/d39y7jAAsFN50hcAwPbRW3QGAAAAAABYUlX11CT/YbL+aJLfniEOAACw9X45yckL/85M8qwkr03yxweu2ZPkR5N8oqouqaqj5ggKADudJ30BAIzr7sl8zBHcY3pmek8AAAAAAGCHqKonJPlwkr0L6+uT/FR3+yE5AADYAQ484fdgT/n9dJJLqurcJL+X5KQD+5/PyneQLtqahADAQzzpCwBgXEpfAAAAAADAhqiqE5P8UZLHL6xvTPLD3X3LPKkAAIDRdPenkzwnyW0L639QVS+eKRIA7FhKXwAA47pzMj+yqo5d4z1OnMxfXUceAAAAAABgG6qqE5L8tySnLaxvTXJed39xnlQAAMCouvsvkvzyZP2Lc2QBgJ1M6QsAYFDdfVuSOybrJ6zxNidNZn+4BQAAAACAHaSqjk/y0SRPXljfkZUnfF09TyoAAGAb+M+T+eyqevQsSQBgh1L6AgAY259N5lPXeP6Uw9wPAAAAAABYUlV1XJLLkzxjYX1Xkud19+fnSQUAAGwH3X1zHv6D1buSnDxTHADYkZS+AADGdtVkPme1B6vq2CRPOcz9AAAAAACAJXTg7wT/NcnZC+u7kzy/u//XPKkAAIBtZv9kfsQsKQBgh1L6AgAY2+WT+dlrOPusJLsX5iu7+6Z1JwIAAAAAAIZWVcck+VCScxfW9yb50e7+zDypAACA7aSqvi3Jt0/WvnsEAFtI6QsAYGwfSXLfwnxOVZ2+yrMXTub3bUgiAAAAAABgWAe+mPmBPPyH5O5P8qLu/uQsoQAAgO3ouXn4d83vTXLDTFkAYEdS+gIAGFh335vk0sn6lw53rqpOS/LShdWDSd61gdEAAAAAAIDBVNXRSd6b5LyF9QNJXtLdH5snFQAAsN1U1a4kb5isL+/ufXPkAYCdSukLAGB8b0qyf2G+sKpedKiLD/yC5zuSHL2wfnt3X7s58QAAAAAAgLlV1e4kf5Dk+Qvr/Uku6O6PzJMKAACYU1W9tqoeu8Yze5K8PckzJy/95oYFAwBWRekLAGBw3f2lJG+ZrC+tqtcc+MXOv1ZVZyT5WJIfXFjfluTNm5sSAAD4WJ9OAAAc4klEQVQAAACYS1UdleQ/JXnxwvrBJK/o7g/NkwoAABjARUmurarfq6oXVtVxh7qwqo6pqp9IcmWSCycv/8fu/uNNzAkAHER199wZAAA4jAN/rP1gHv7rnElyc5LPJfmrJKckOStJLby+L8l53f2prcgJAABsnar6riS7D/LS2Ul+f2G+Icm5h7jN3d1960ZnAwAAtlZVvTPJ35usfzHJe47gdjd29/3rTwUAAMytqj6f5KkLq05yTZLrknw1K98tOi7JSUnOTLLnILf5UFaeIPzApoYFAL6J0hcAwDZRVXuTvC3JK1Z55OYkr+ruyzcvFQAAMJequi4rf4Rdj3d294XrTwMAAMypqjbyyx/P6e6Pb+D9AACAmRyk9LUW9yX5lSS/3t37Ny4VALBau+YOAADA6nT33d39yiQvT/I/vsWltyf57SRPUvgCAAAAAAAAAIAd62ezUty6Islqn9T1hSRvSHJad/9LhS8AmI8nfQEAbFNVdXKSs5I8LsmxSW5Mcn2SP+nufXNmAwAANp8nfQEAAA/xpC8AAOBwqmpPkjOSnJLk8Un2JtmT5O4kdyW5LsmV3X3HXBkBgIdT+gIAAAAAAAAAAAAAAAAYyK65AwAAAAAAAAAAAAAAAADwDUpfAAAAAAAAAAAAAAAAAANR+gIAAAAAAAAAAAAAAAAYiNIXAAAAAAAAAAAAAAAAwECUvgAAAAAAAAAAAAAAAAAGovQFAAAAAAAAAAAAAAAAMBClLwAAAAAAAAAAAAAAAICBKH0BAAAAAAAAAAAAAAAADETpCwAAAAAAAAAAAAAAAGAgSl8AAAAAAAAAAAAAAAAAA1H6AgAAAAAAAAAAAAAAABiI0hcAAAAAAAAAAAAAAADAQJS+AAAAAAAAAAAAAAAAAAai9AUAAAAAAAAAAAAAAAAwEKUvAAAAAAAAAAAAAAAAgIEofQEAAAAAAAAAAAAAAAAMROkLAAAAAAAAAAAAAAAAYCBKXwAAAAAAAAAAAAAAAAADUfoCAAAAAAAAAAAAAAAAGIjSFwAAAAAAAAAAAAAAAMBAlL4AAAAAAAAAAAAAAAAABqL0BQAAAAAAAAAAAAAAADAQpS8AAAAAAAAAAAAAAACAgSh9AQAAAAAAAAAAAAAAAAxE6QsAAAAAAIBtraoeUVWvqqr3VtV1VXV3VfXCv4/PnREAAAAAAADWYvfcAQAAAAAAAHaSqrouyUmT9V8kOb27963zXt/R3beuK+A2U1Xfl+SyJKfPnQUAAAAAAAA2iid9AQAAAAAAzO/kJD83d4jtpqqOS/LhKHwBAAAAAACwZDzpCwAAAAAAYAz/v707j7KtLO8E/HsZBMNFBARRHGgZjBqNtCKowSFqosaO0Y5j2mBGHKImRGMaB9BoJB07SlCj3a1pNQmBhQujiSaKETqOQUU0BI1EcVYQEREVBd7+Y58Kp86tOnVOVd17D/g8a5217vftbzp777r/1PrV+/yq+vPuvnJHH+QG5DeSHDzW/nSSlyQ5L8lVY/3f356HAgAAAAAAgI0S+gIAAAAAAFgM+yV5dpITdvRBbkAeM/bvHyR5UHd/eUcdBgAAAAAAADbLTjv6AAAAAAAAAPyH46rqljv6EDcEVbVzksPHuj4k8AUAAAAAAMCNhdAXAAAAAADAjvXWsX9vSfLCHXWQG5i9kuw21v7SjjoIAAAAAAAAbDahLwAAAAAAgB3rhCTfG2v/RlUdsqMOcwOyZaL9wx1yCgAAAAAAANgGdtnRBwAAAAAAAPgR95UkJyf5/VF71yQvSfL47bF5Ve2Z5L5JDkyyX5Krk1yS5MIk53V3b49zrMM2++OGVXX3JHdMckCSPZJ8PcmbuntqsKyqbpXkyCT7J9k3yXcy3Mtzu/uzm3S2SnL46Hz7jc73jQyVzt7X3Vduxj5znum2Se6e5HZJ9kyyc5LvJrk0ycVJPtndV2zCPgckuVeGd3WvDM/lU0k+tJH3tKp2ynA/75jkNhm+wzVJLk/yhSQf3ozzj+23e5KjMtyvWyS5aZIrk3w+yb90979vYO19ktwnw7t7iyTfz/AcPt7dF2zw3HtneM6H5vpKe99L8q3R2S/s7i9vZA8AAAAAAOB6tbi/pwMAAAAAALjxqaqLk9x+rGu/DFWqPptkn1FfJzmiuz8671rd/Y0Zz3GfJC9M8tMZgmYruSTJm5O8rLsvm2Xdbamqzk5y/zmnndPdDxhb4wFJ3jt2/UXdfWJV7ZzkuCS/mWSlSmt7d/e3VjjTrkl+LcnTktx1yjk+k+TlSd7Q3dfM+R2WglXHJ/nFDGGelfwwyVlJXtjdH5l3jznPs1OSX03y9AxBoGk6yb8meXuSV3T3JauseXbGnm9316j/yCQvSPLQDIGySV9J8idJTp713o4CTI9K8sgk90ty8ynDr0vyviR/3N1/O8v6q+z5M0mePdpvtylDv5Tkb5K8rrs/OcO6leRxSX47yRFZPRD55SSnJPnT7v7eKmNWWv+BGUKpD8rK939yj3cmeVV3nz/rHgAAAAAAwNaEvgAAAAAAALaj1YJaVfXsJH881v+e7n7wetZaY86uSV6bIbAzqyuSPKm73z7HnE23rUJfSV6X5C1J7j1lna1CX1V1jySnJ7nDHOf5eJJHzFMRqaqeOzrntKDQuM4QMHvutqjUVlU3T/K2JEevY/pDuvusVdY9OxOhr6p6Woag0iyV3T6a5GHdfelaA6vqE5ke0lvNXyf59e6+atYJVXXLJKcmeeCcey17d1dZ+w5JzshQ/W1WF2d4B6dW/hqFyV6Z5JlzrL3kpd39/HXMAwAAAAAARnbZ0QcAAAAAAAAgyRBseUaS243aD6qqh3T3uzdrg1Hg6++SPGTi0jVJzk3yxSQ3TXLnJAePXd8ryZlV9avd/abNOs+C2C3JmUmOHLWvzRAe+uKofbsk95icVFWPSHJakh+buPTVJOcn+WaSPTLcy0PHrt89yYer6qju/tK0g42qab0hyTETl65L8skM4Z2rMlSLu1eG55QkleQ5SfZP8uRpe6zT6dk68PWdDN/7K0muTrJltP+dM72K1qqq6jFJXpXh+yRD5bmPJflWklsmOSrD+7rkHkneW1VHd/flayw/GSL7ZoZqZN8YfZc9khyU5CeyvBLe45NsqaqfnyVQV1U/keTvkxw4cakzPMPPJ/l2hmd3cJI7rnC21da+V4af58nKb5clOW/0XXbL8P79xNj1g5K8v6oe0N0fn7LF8dk68HVNkk+Mzn1Vhvu/d5IfT3LrWc4NAAAAAADMRugLAAAAAABgAXT31VV1QpI/H+s+qarO2sRqTS/N8sBXJ/mzJCdOVkeqqvuOri1VQ9o5yeuq6uPd/YlNOs+8Hp9k99G/b5Pkn8auvSXJs1eY8/011nx6kj0zBKlekeRl3X3Z+ICqum2GINBS+84ZKj6NB77+PskJ3f3PkxtU1eFJTs71QakDk5w6Ct1cO+VsL8jywNfVSU5K8uoVntcuSZ6U5H9mCOEkyTFV9cHuft2UPeZSVT+b5e/QZUmeleT07v7hKnPukuThSX5tzu1elyHw9fUM4aO3jN+vqtojyXFJnp/kJqPuu2QIUP63NdbuJO/L8Bzf0d2fW+Xse4/O/cIM70mSPCLJsRkq5q2qqvbJUBFtPPB1VYZn9KqVKpJV1c1G6x8z9p1WWvuAJG/N8sDXhzO8M1v9n1FVh2SoJPgLo669kpxeVffo7itXWH+vDPd1ybVJ/iDJyZMV78bm3CrJQ5P8cob7CwAAAAAAbEBt3u8IAQAAAAAAWEtVXZzk9mNd+3X3N0bXdspQLWm8Ks8Tu/vUeddaYexPZqj+U2Pdz+zuU6acdUuSd2eoqLTk3O6+12pztpeqOijJeFDnjd395BnmPSDJe1e49Evd/VczzF/pGZ3Y3S9aY94uGSqDPXqs+5jVKqdV1ZFJPpDrqz5dnuRB3X3eGvscNpq376jriiS3XSnYsx5V9ZokTx3remB3nz3j3Epyk+6+epXrZye5/0T315Ic3d0XTVn3F5KckSGYuOTB3f2eKXMO6u6LZzn3aPxPJjkn11dT+2ySQ7v7uilz/irJE8a6vprk4WtU1xqff0B3f22Va3+XIUi35PVJjl0jRJiqOjnLq3ed0N0vXmHcYzO8r0te1N0nznLu0fybdvf3Zh0PAAAAAABsbae1hwAAAAAAALA9jAIkx090v6Sqdt2E5Y/L8sDXW6YFvkbn+U6Sx2WoTrTkiKq63yacZ5G8YZbA18ijszzwdfpaga8k6e5rMlRvumSse6XKZEtekOW/y/ultQJfo33+LctDWXsl+Y215s1hPGR42ayBryTpwYqBrymeMi3wNVr3rUlePdH9rDXmXDzPIbr7/AyVrpbcIcm9VxtfVXfM8LOz5Nokj5k18DXac7XA1z2zPPD1wSS/uVbga+S4JOOV+n6rqnZbYdztJ9pnzLD2fxD4AgAAAACAjRP6AgAAAAAAWCDd/fYk/zTWdYckx25kzVGo43ET3ZPhstXO84UkfzbR/eSNnGcBnTTH2PEqSZ3k92edOArRvW6s666jimXLVNXBSX5urOuc7n7nHGc8I8nnx9o/P8fcedysqnbfRmsnyUe7+29mHPviJD8Ya/9cVe23yed5y0T7PlPGHpvlv4v9i+5+/yad45kT7eOnVRwbNwqGnTzWtV+mhNfG7D/j2QAAAAAAgE0i9AUAAAAAALB4njvRfkFVbdnAekckGa/mc+6oItSs3jTR/qkNnGXRXNDdn5llYFXtkeSosa5zu/tzc+733on20SuMefBE+7R5NujuTnLOWNeRVXWTedaY4lNj/941yf+oqlpt8AbNWn0t3X1ZkneNde2U2cJMy1TVzlW1V1XdpqoOGv8k2Xli+J2mLPWgifZr5z3LFOPvx9ey/FnPYpZ38FMT7Zdu8P8gAAAAAABgTrvs6AMAAAAAAACwXHd/sKr+JskjR137J3l2khPXueQ9J9ofmHP+vyT5dpKbjdqHVtVe3X3FOs+zSM6bY+xRGYJOSz67UqWuNUz+UcaDVxgzGaq7ZB37fHfs37snuXWSi+dcYyWnJjlurP2MJPevqtcnefs6QnDTfHgd4x8x1j4iydumTaiqvZM8KkNltbtlqKw36x/O3HuVNfdMctexrquSnDvjmlONqsDdaqzroiS3nzN3NxkAXOkdfE+SS3J9ha+jknxm9JzPTHLerNXFAAAAAACA9RH6AgAAAAAAWEz/PUOAZam60O9W1Wu6+5J1rLX/RHueKl/p7q6qf8vy8Nj+SW4Moa957udtJ9qPH302Yp8Z9jljg3ss7XPxRhfp7o9U1SuT/PZY992SnJzk5Kr6YoZQ4QeS/L8k548qj63HXO9pksmKbZPv/X+oqp2TPCfJ85Kst4LVXqv03zLJeArr09197Tr3mDT5bvxUko0G7bZ6B7v7u1X1lAzv3lII7oAM9+t5Sb5VVR9M8sEk/5TkQ939/Q2eAwAAAAAAGDPrX6kDAAAAAABgO+ruC5P837GuLUlesM7lJisSrSesNTlnpbDSDdGVc4zddxvsv+cO3Gdduvt3kvxOVn6PbpvkcRlCYOcl+WJVvbyqbrOOrb495/iZ3tGq2iXJXyd5WdYf+EpW/13r5PO7fAN7rLX2Zljx3ejuM5M8NEM1sUk3T/KwJC9O8t4kl1bVX1bVEdvgfAAAAAAA8CNJ6AsAAAAAAGBxnZDke2PtY6vq4HWsUxPt9VZe2uw1bmhusg3WnHw223OfdevuVya5fZKnJnlXkqtWGXpgkt9NclFVPWszzzCD1d7R30nyixN9H8pQ+euBSQ7JUMVrt+6u8c8mn2M9tuu70d3vTnKnJI/OEJT7+ipDtyR5YpJ/rqo3VNVNN/2UAAAAAADwI2aXHX0AAAAAAAAAVtbdX66qU5L83qhr1yQvSfKEOZf65kR7r3UcZ3LOZlYvuqH4xkT7+O5+2Tba57Cx9q27+6vbYJ8N6e4rkrw2yWtH1bPuluTeSY5O8pAsr7S1W5JXVlV395/OuMXNklw6x5HWfEer6iZJnjfW1Ul+pbvfuNbiVXWzGc8x+Z5sZlW8ybX/V3cfu4nrb6W7r0ly5uiTqjokw3O+b4bnfIeJKb+SoRLYo7fluQAAAAAA4MZOpS8AAAAAAIDF9rIsD688rqr+85xrXDLRPmzFUauoqkpy6ET3PGGcG4vJKkdz3ccF3GfTdPc13f2x7n51dz8+yf5JHp7k3ImhL62qm8+47Lzfe/IdnXzvk+T+WR4Oe/Msga+RW8847utZXt3rsKraeca5s6w9bru/G919UXe/ubuf0t0HJzk8yakTwx5VVQ/e3mcDAAAAAIAbE6EvAAAAAACABdbd38oQ/FpSSU6ac5mPTLTvM+f8u2R5UOYzo3P9qPlglod5HjIKxG22D0y0f2Yb7LFNdfe13f3ODFW/zhu7tCVDdahZHDXntkdOtCcDZ8nWwbC/nWP9mX5uuvs7Sc4f69qS5J5z7DPNBUmuGGvfu6r23KS116W7P97dT0zymolLj9oR5wEAAAAAgBsLoS8AAAAAAIDFd0qSL421HzJnFZ2PJLl6rH2vqpoMv0zzpIn2++aYe6PR3ZdmeYDpwCQP2wZb/cNE+0lVtfs22Geb6+6rk/zFRPd/mnH6E2bdp6r2zfJw3HUZQnqTJquMXbHCmNU8eY6xZ020j51j7qq6+9ok7xnr2i1b/3zuKK+faM/6nAEAAAAAgBUIfQEAAAAAACy47v5+khMmuk/KUPVr1vmnT3S/ZJa5VXWbJE+b6H7jLHNvpF410X55VW3ZzA26+5NJzhnrum2S4zdzj+3smon21SuO2to9quqRM459YZKbjLXfMQrpTbp8ov3jsyw+OsfRM54lSV6b5Nqx9pOqat7KZas5ZaJ9QlXdapPW3oj1PmcAAAAAAGAFQl8AAAAAAAA3DG9McsFY+x5JbjfH/Fck6bH2Y6vqqdMmVNUeSU5LMh5q+mh3n7PKlFTV2VXVY58T5zjjDcGbknxqrH2nJGdW1d7zLFJV+1XVo6cMeV6WP68XVNVvzbPHaJ8jq+rweedNWe+3q+oWc4zfOckTJ7ovnGPL11bVwWvs8QtJnj7RffIqw8+faP/W6D2ftv49k/z51FNO6O5/T/KXY127JDmjqu466xpVdcAqa5+d5N1jXfsneccooDmzqtqzqiafzdK1X6qqO82zXpJfnmjP85wBAAAAAIAJQl8AAAAAAAA3AN19bTZQ7am7z0vyJxPdr66qP62qfSfHV9W9k7wvyX3Guq9O8uvrPcONweg5/GKSb491PzjJJ6rqqVW152pzq2qfqnpcVZ2a5ItJnjlln/cnOXGi+5SqemdVPaCqVvw9Xw1+vKqeU1X/nORDSX5ypi83mxOTfLGqTht9l31WGzgKDb09yZFj3V9K8o8z7nV5kgOSvK+qHjv5natqj6p6foZg4s5jl/6qu89aZc0PJ/n8WPvQJO9eKeBUVVuq6veSnJ1k7yQrVQ6b5llJLhprH5jkA1X1wtWCc6Mg1hOq6h+SnDpl7WMy3Msld8/wDv7etFDeaP2fr6rXJ/lykj9cZehjklxQVe+tqqdX1UFT1tyvql6e5Lix7uuS/MWU8wMAAAAAAGvYZUcfAAAAAAAAgNl099uq6v1J7rvOJY5PcniSnx61K8kzkjy1qj6cIUSye5K7JDlkYu51SZ7W3R9f5943Gt19QVX91yRnJNlr1H2bJK/JEMz6ZJIvZAiG/ViSmyc5bDRmnn1eXFX7JRmv8PXQ0eeKqjovQxDph0lulqHi052zvDLbtrB7kseOPqmqzyf5TIaQ1tUZvu+dkkxW6Lo2ya919zUz7vPUJH+dIfh1WpKvV9VHk1yR5JZJjspwf8ddkOGdXlF3XzsKcp021n3vDAGnTyT5dIYKa7dOcq8ku43GXJOhktU7Zzx7uvtbVfXIJP+Q65/9liQvSnLCaL8vJLkyw/M7OMkdc32AbdWKet391ap6RJJ3jM6aDMG0P0pyUlVdmOSzGe7VbhmeycFJDsrwc7/km1O+QiV5wOjzqqq6LMP9vSzJVRnu/R2S3DXLQ3dJ8ofd/a9T1gYAAAAAANYg9AUAAAAAAHDD8twMFbjm1t0/qKqHJfnfGQIsS3bJ9CDZt5Mc091vXc++N0bdfVZV3TNDNaZ7jl3aOUPVpbvPsMzlM+zzjKo6N8kpGYJBS/bKEMZZy3UZgj/b0u1Hn2kuT/Kk7n7XrIt292lVtX+SVybZKUPQ6+FTpnwsyUO7e1qQKd19elUdluTFuT4AVRkqoq1UFe17SX65u/++qla4PHWvf62qI5KcnuTosUs7Zfb3ZLW1z6+qw5O8OcnPjF2qDOG/O8+wzJrv4Jh9k9xvjTHXJPmD7n7xHOsCAAAAAAAr2GlHHwAAAAAAAIDZdff7k7xtA/N/0N3HZAigvDtDlajVXJrkFUkOFvjaWndflKEa1H9JclaGKldruTBDgOvoJI+ecZ83Jbldhkptn55hyveT/GOS5yS5XXefOcs+M3pwhkpVHxjts5YvJDkpySHd/Xfzbtbdp2QIGr0rQ6WwlXwlw3c9srsvnXHdl2QIkH1syrBvJ3ljkrt29xkzH3rrvb7W3ffL8J6ckyEYNc3nMvzcPWWGtS/p7p/NcI/emqEC11o+l+T/JHlYlgcWxz0ryTMzVBKbJRi2dK/uJvAFAAAAAACbo7p7R58BAAAAAACAHaSq9swQQDowyS0yBJcuzRBO+mj7ZdLMqmr3JEdmqHq1b5I9MoRwLk9yUZILu/uyTdjnVhnCZvsn2SfDH3q8MsnXMoTCPt3dP9joPjOcY9ckd0lycJJbJ9lzdOnKDEGsTyS5aNZ3qKrOTnL/pXZ318T1W2W4vweO9rokyaeSfKi7r9vA9zgsyVEZKolVkq8n+VKS93f3LMG2effbM0NlvQMzvCc7ZwhNfSHJJ7v74g2svUuGINcho7X3TPLdDNXePpvhHfzanGvWaL1DM4QP90qya5LvJLksyQVJ/mV7vHMAAAAAAPCjROgLAAAAAAAA2OHWCn0BAAAAAAD8KNlpRx8AAAAAAAAAAAAAAAAAgOsJfQEAAAAAAAAAAAAAAAAsEKEvAAAAAAAAAAAAAAAAgAUi9AUAAAAAAAAAAAAAAACwQIS+AAAAAAAAAAAAAAAAABaI0BcAAAAAAAAAAAAAAADAAhH6AgAAAAAAAAAAAAAAAFgg1d07+gwAAAAAAAAAAAAAAAAAjKj0BQAAAAAAAAAAAAAAALBAhL4AAAAAAAAAAAAAAAAAFojQFwAAAAAAAAAAAAAAAMACEfoCAAAAAAAAAAAAAAAAWCBCXwAAAAAAAAAAAAAAAAALROgLAAAAAAAAAAAAAAAAYIEIfQEAAAAAAAAAAAAAAAAsEKEvAAAAAAAAAAAAAAAAgAUi9AUAAAAAAAAAAAAAAACwQIS+AAAAAAAAAAAAAAAAABaI0BcAAAAAAAAAAAAAAADAAhH6AgAAAAAAAAAAAAAAAFggQl8AAAAAAAAAAAAAAAAAC0ToCwAAAAAAAAAAAAAAAGCBCH0BAAAAAAAAAAAAAAAALBChLwAAAAAAAAAAAAAAAIAFIvQFAAAAAAAAAAAAAAAAsECEvgAAAAAAAAAAAAAAAAAWiNAXAAAAAAAAAAAAAAAAwAIR+gIAAAAAAAAAAAAAAABYIEJfAAAAAAAAAAAAAAAAAAtE6AsAAAAAAAAAAAAAAABggQh9AQAAAAAAAAAAAAAAACwQoS8AAAAAAAAAAAAAAACABSL0BQAAAAAAAAAAAAAAALBAhL4AAAAAAAAAAAAAAAAAFojQFwAAAAAAAAAAAAAAAMACEfoCAAAAAAAAAAAAAAAAWCBCXwAAAAAAAAAAAAAAAAAL5P8Dbg39SPyrlKcAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1054,7 +1054,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 27, @@ -1063,7 +1063,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAADX0AAAcqCAYAAACQOCfjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeZidZX038O8dEghLwqKASosQQTZFLSLIKwqiVEFcUVEBCVVbbalUqa1WwaXWtrQvVkWtS8KqgNSFF1xaF7BUERBQWZQiElbZIQECScj9/vEMw+TMmZlzzkxmziSfz3Wdi3nu597mPM9z5rqY+eZXaq0BAAAAAAAAAAAAAAAAoD/MmOoNAAAAAAAAAAAAAAAAAPA4oS8AAAAAAAAAAAAAAACAPiL0BQAAAAAAAAAAAAAAANBHhL4AAAAAAAAAAAAAAAAA+ojQFwAAAAAAAAAAAAAAAEAfEfoCAAAAAAAAAAAAAAAA6CNCXwAAAAAAAAAAAAAAAAB9ROgLAAAAAAAAAAAAAAAAoI8IfQEAAAAAAAAAAAAAAAD0EaEvAAAAAAAAAAAAAAAAgD4i9AUAAAAAAAAAAAAAAADQR4S+AAAAAAAAAAAAAAAAAPqI0BcAAAAAAAAAAAAAAABAHxH6AgAAAAAAAAAAAAAAAOgjQl8AAAAAAAAAAAAAAAAAfUToCwAAAAAAAAAAAAAAAKCPCH0BAAAAAAAAAAAAAAAA9BGhLwAAAAAAAAAAAAAAAIA+IvQFAAAAAAAAAAAAAAAA0EeEvgAAAAAAAAAAAAAAAAD6iNAXAAAAAAAAAAAAAAAAQB8R+gIAAAAAAAAAAAAAAADoI0JfAAAAAAAAAAAAAAAAAH1E6AsAAAAAAAAAAAAAAACgjwh9AQAAAAAAAAAAAAAAAPQRoS8AAAAAAAAAAAAAAACAPiL0BQAAAAAAAAAAAAAAANBHhL4AAAAAAAAAAAAAAAAA+ojQFwAAAAAAAAAAAAAAAEAfEfoCAAAAAACgr5RS9iml1JbXPlO9L9Z8pZSTWu67G/pxHN0ppWzT5jPliKneFwAAAAAAjGbmVG8AAAAAAACYXKWUmUl2TrJTkk0GXuskeTDJA0luTnJDkhtqrY9M0TYBAAAAAAAA1lpCXwAAAAAAsBYopayX5DVJjkzygiTrdzBseSnlyiSXJLkgyX/WWu9afbsEAAAAAAAAIElmTPUGAAAAAACA1auU8sok1yX5apKXprPAV5LMSvKcJO9IcnqS20spn1otmwToQSnlw6WUOvQ11XtiYrRe11LKh6d6TwAAAAAAMJlU+gIAAAAAgDVUKaUkOTHJOydoyhlJtp6guQAAAAAAAAAYgdAXAAAAAACsuT6fpkpXOzcm+WGSq5LcmeTBJBsl2TTJ9kl2S/KsJOut/m0CAAAAAAAAMJTQFwAAAAAArIFKKa9O+8DXZUnel+SHtdY6xhwbJHlZktcMvDac6H1CO7XW85OUqd4Ha59a6xFJjlhT11tb1VpviM8UAAAAAACmGaEvAAAAAABYw5RSSpIT2pz6epI311of6WSeWutDA2O+XkrZOMn8JFtN2EYBAAAAAAAAaEvoCwAAAAAA1jx7Jdmmpe2WJEd0GvhqVWu9P8knx7kvAAAAAAAAADowY6o3AAAAAAAATLiXt2k7qda6ZNJ3AgAAAAAAAEDXVPoCAAAAAIA1z1PbtP180nfR50ops5PskWTHJJsmWZ7k1iTXJrms1lpX07pzkzwvyZZJNk8yO8ldSe5Mcmmt9ZbVsW7LHrZI8twk2ybZOEkd2MM3aq13re71J1MpZcskz0rzXMxNsn6Sh5M8lOT3SW5Icm2t9YEJWm+dJH+U5r3dPM37e0+a63ttrfVXE7FOB/tYa64xg/fd9kmemea+m5tknTT3+eIkNyX5XZLf1lpXjnOtdZNsl+az80kDayXNfX5Pkl/VWn8znjWmgz561jdPsmeSeUk2SnJ/kjuS/KzWumgy9gAAAAAAwOoh9AUAAAAAAGueLdq0PThZi5dStkkTLhhqfq31pB7mOj/Ji4Y0XVBr3WeMMfsk+VFL87611vMHzs9L8sEkb0yywQjT3FhKOTXJJ2qt437vSinrJXl7kjckeX5G+R1NKeXqJKcl+XS3QaTR3q9SSknypiRHpQm7lTZT/G8p5Sdpwm9PGNJ+Ra31Od3spc3e3p/kH1qaD6y1frtN330yyjXsYK1NkrwryVuS7NzBkEdLKVcOrHl2kp90G/orpTw3yXuT7J9ks1H63ZrkvCT/VGv9bTdrDIw/P+O8xknO73bdUfbz4STHDW2rtbZbd6x5tkmHnxtt3oPW851cu5HmPinJW4c0Laq1btPBfD0Z73qllN2SvDPJwWlCR2NZXEq5OM09eHat9eYO13l2klcn2TfNvbXeGP3vTHJukn+ptV7d4Rr7ZPhzP9RxpZTjRjmfjPD+TfDPpSl/1gfO75PkA0n2SzJjhDmuTvO5+5XVFWQGAAAAAGD1afs/fwEAAAAAgGnt4TZt7ap/rXVKKfOTXJlkfkYOfCXJ1kn+LsnVpZT9xrnmW9IEbT6dZO+M/Y/y7Zzmj/SvL6W8cTxrD9nDlmmCPqenqQgzYiin1rosyVdamp89EPoYj7e2HN+W5HvjnHOYUsrr01Rr+3g6C3wlTUWkZyU5OsmFSXboYr0nllLOSHJxkkMySghkwFPSBACvKaX820AgcNy6ucZMf6WU9Uop/57mvvuTdBb4SpqqXC9JckKagONY6+xYSvlNksvThPtemDECXwM2T/M5e2Up5YsTdZ9PpT561tcrpXwxTUDupRn9d/47pwkRf7eUsuFErA8AAAAAwOQR+gIAAAAAgDXP79u0vWHSd9FnSinvTLIgyfpdDNs6ybdLKQf2sN6MUsoJaf7g/g+7HZ8mNHFGKeUjPYwduo8nJflJmrBGpxa2aZs/jj3sleFBqlNqrY/2OucI67wtyZlp3rvVbqBq3E/SVI3rNmQ1K8lfJvmvUsqm49xHL9eYaaqUsm6aClLvyOr/fe+Tkjx9HONLkrcl+XEpZe7EbGny9dGzPjvJd9K8p93YP83PsnXGsz4AAAAAAJNrrH9JEgAAAAAAmH5+kiYMMNRLSilH1Vo/PRUb6gN7Jvn7IccrkvwwyfeT3JKmcs1Tk7wyyXNaxq6b5D9KKfvUWi/qYs3T01SDaXVrkh+kqZxzV5rKbJsNrPvyNEGzoY4tpdxZa/1MF2s/ZkaSs5LMG9J2fZrAyK8H1n9Ckm2THPxYh1rr5aWUK5IMre715lLKMbXW5T3s44g2be2CZT0rpTw9yWcyPJCxNM21viTJoiQPpPkd2dwkT06yS5Ldk2zT5XpbpKkK9uQ2p29O8vUk1yS5J8kWaSqJvSbN+z3U3km+X0rZq9b6SDd7GNDTNZ7mrkuyycDXT0qyZcv5X3Qwxz0TuqPJ9f4k7SoQ3pTkP5NcneT2NJ8tG6S517dL8owkz08ynopP96Z5lq5J8tski9M8U+sneWKa52n/DP8ce16SL2X0APIDWfXaPavl/O1pH2oe6tYxznetj571pAku7zvk+DdpQmC/Hlh/4zQ/S16X4c/FC5P8VZJ/6XFtAAAAAAAmmdAXAAAAAACseb6dJujSWtHqU6WUlyb551rrhZO/rSl1XJLHKpz8NMn8Wutv2vT7cCnl5Um+mGSrIe3rJVlYSnl2J3+sX0r5qwwPfN2c5D1Jvj5ShatSysw0AakTkmw05NS/llJ+Wmv9+Vhrt9grj3/fd6f5g//Taq21zdp/kybg9piFSf5tyPETkxyUJuDQsVLK+mmq4wz1kxHe//F4X5rrNNRpSd5Ta71zrMGllJ3ThKJaA5Pt+pYkJ2V4CGRpkr9L8ql217iU8pdJPpLkvVm1QtMfJfnHNNenW+O5xtNSrXWwylEp5cNpnu+h55/dOmZNMVDp6ZiW5oeS/EWSk2utK8cYv16a8M/8rPoZN5rfp7nfv5Hk0g7WKGkCrJ9Msv2QU68vpRxcaz273bha66UZEjQtpbTew5+vtX64wz1PiD571vdIMnvg698nOWqk93LgWT8xyeEtp/6ulHJirXVpD+sDAAAAADDJZozdBQAAAAAAmE4GAi4jVYU6KMl/l1JuLqUsKKW8vZTyrIGw0ZrssT+UPz/Ji0cLHNVav5MmFNFaMWbHNMGiUZVSnpHkn1qaL0ryjFrr10YKfA2svaLW+qUkL0hTQecx62bVSmWdeiwMdHuSF9ZaT20XBhpYu7YE2k5Psqyl2xE97OG1aSoNDTWhVb4GvKrl+EdJDu8k8JUktdara60fTVPx6/oxur8pTahlqIeTHFRrPWGka1xrXVprfV+Sd7Y5/e5SynM72WuL8Vxjpp/9smogNEneVWtdOFYYK0lqrY/UWv+r1vrmDL+H27k4yR/WWt9fa724wzVqrfXbaUJKl7ecfk8Ha/aTfnrWH/s5dn2SPUcKfA2s/0Caz+vvtZzaJE0VMAAAAAAApgGhLwAAAAAAWDMdm6ai1Ui2SlPp5QtJrkiypJTys1LKp0opB5dStpyMTU6yu5McXGt9eKyOtdbrk7ylzal3lVJmjTH8/UmG9rktyQG11vs73Wit9RdJ3tXS/LJSSq8VjN5Wa726mwG11ruT/L+W5pf3cG/Mbzl+KMmZXc4xqlLKnDSVyIb60kjhp9EMBO9aw26t2gVX3ldr/UGHa3whyedbmssI83aq62vMtDSv5XhpmoBm12qtD3XSp9a6osf5783wSlPPH6iqN13027O+PMkbaq2LOli7jrDOH/e4NgAAAAAAk0zoCwAAAAAA1kADwaYDMjy0M5LZSZ6X5KgkX0tyWynl/FLKkaWU2aMPnTY+PBBk6kit9fwk/9HS/KQMryg1qJSyTZI3tDR/cCD80K2vJPnflrZX9zDPj2qt5/YwLkkWtBzPTHJYp4NLKVsneXFL89m11iU97mckc9q0dXytu1FK2TPJbi3Nv0pyYpdTvT9J633Ra+ByPNeY6aX1Xr+/11DWZKi1XpnkspbmF0zFXrrVp8/6V2qtP++080AQtPX9b/2eAAAAAADoU0JfAAAAAACwhqq13pcmoHR4kuu6HF6SvCjJl5P8ppTSrurVdPJwklN7GPeFNm0vH6X/q9MEox7zYJIzelj3sSot32lpflEPU325l/UHfC/JrS1tR3Qx/q1p7qWhFo5jPyO5J0lrVa/VFSx5aZu2f6+1ruxmkoHn86stzbOS7NPDnsZzjZleWsOMW5ZStpuSnXSuNby655Tsonv9+Kx/sYcxF7ccP72HOQAAAAAAmAJCXwAAAAAAsAarjVOT7JTkoDR/eL64y2m2TnJaKWVhKWW9id7jJDm/1np/D+O+n+Hv12iBhdZQ1hW11od6WPcxv2s5fk4Pc/yo18VrrY9meFhul1LK7h1O8daW4+uTXNDrfkYyUNnuly3Nx5RSXjfRayX5P23aWivCdeqsDucfS8/XmGnnZy3HJckZpZQ/nKwNlFKeVkp5Synln0opZ5dS/rOUclEp5fJSyhWtryT7t0yx9WTtdZz67VlfmuEBrk78tuV4nVLKRj3MAwAAAADAJJs5dhcAAAAAAGC6q7WuSHJuknNLKeskeXaaSkjPTfJHSXZIss4Y0xyRZMMkb1h9O11tft7LoFrrylLKL5LsPaR5p1LKBiOEuVr/iH+XgdBDrzZrOd64lDKr1rq8w/F31FpbK3V1a0GSv2lpOyLJJaMNKqW8MMnTWppPGqhgtjosTPLJIcezk5xdSrkoyclJzq213jwB6/xRy/HNtdbf9zjXz5OszKr/UGPr/GOZiGvMNFFrvaKUcnlWDYDuluTaUspZacJFP6y1Lp3IdUspM5L8SZK3J+k09DmSTca/o0nRb8/6oi4++4dqF3jeOMkDPcwFAAAAAMAkEvoCAAAAAIC1zED1pp9nSBCqlLJBkj2S7Jvk9Ul2HGH460spR9VaP73aNzqxfjOOsb/OqqGvkuSJSW4c2qmUsm6SzVvGbpKJDzhsluT2Dvt22m9EtdZrSyk/SbLXkOY3lVLeU2t9ZJSh81uOV6YJX60un0/y5iTPa2nfc+D1uVLKdUkuTHLpwH9/2U0IrZRSMjyId02vG661PlBKuSnJU4c0P7HLacZ9jZl23pXk/CRDKy/OTnL4wGtZKeWSJBelqQz241prz/dJKWWnJKent0qD7Ww8QfOsNn36rN/T4/LtgmKzepwLAAAAAIBJNGPsLgAAAAAAwJqu1vpQrfVHtdZja607JXlZkqtG6P7BgZDYdNKu0sl4xrYLcj1hHGt0Y/0u+i6eoDUXthxvmuRVI3UupWyY5OCW5h/UWm9s138iDATQDkzy/VG6bZemStlnklyR5K5SyqmllAMGKhmNZW6GV8S7r4ftDnVvy3Fr0GQsE3WNmSZqrRcleUWSu0bosm6aqoPvTVP56/ellKtLKR8tpezQzVqllGckuSATF/hKpkfgqB+f9V6qfAEAAAAAMI0JfQEAAAAAAMPUWr+XZPck32lzeoskr5zcHY3bgxM8dk6btk3HscbqsmKC5jkzyUMtba2VvIZ6fZKNWtpag2MTrtZ6V5L9k7wxQyrZjWKzJIcmOS/J1aWU143Rv911H8+91W58uzVGM1HXmGmk1vr9JDsk+URGDn8NtVOSDyW5ppRydill27EGlFJmpQmNtVYwTJL/SfLhNOGzZ6X5uTAnycxaaxn6yuqt8Le69OOzDgAAAADAWkboCwAAAAAAaKvWujTJIWkfKNhvkrczXhtO8NglbdqWtmn7ZGsAYgJeN4zje+lJrXVJkrNbmvcvpWw1wpDWQNh9Sb4x4RtrozbOqrU+N8nOSY5J8v+S3D3G0B2SnF1K+VwppYzQp911H8+91W58uzVgmFrrPbXWDyR5cprqjP+S5OIky0YZVpK8LskVpZQ/HmOJd6QJiw312yS711pfUGv9SK31vFrrL2utd9ZaH6i1Ptpmnm6qE/YLzzoAAAAAAFNO6AsAAAAAABhRrXVxkpPanNphkrYwa4Lm2XiCx97Xpq1dOG7MajrTSGulrhlJDmvtVEqZl2Tvluav1lofXl0bG0mt9Zpa67/WWl9Za31ikqcn+ZMkp2bk6kh/luQDI5xbnKQ11LLJOLfZOv6ecc43XU3Us77WqbWuqLV+r9b617XWPZLMTfMMvj/J+WlfDW5ukv8opTx9lKnf1HK8JMlLaq2XdrnFzbrs3w886wAAAAAATDmhLwAAAAAAYCwXt2l74ij9l7dp6zXQ8YQex7UaLdgwltaAW02bwNBANazWal+7jmPdfnNBkutb2o5o0++INNWEhmoNjE2JWuv/1loX1FoPT/KkJAcluaRN1w+UUobd47XWmuEVw1orIXWslLJhkq1bmkcKo/WrYc97KaWX532invW1Xq31kVrrhbXWf6y17pvmXv+bDA+rbpjkY+3mKKVslOT5Lc2n9FhpcF4PY6aUZx0AAAAAgH4g9AUAAAAAAIzl/jZt7SrHPGZxm7a53S46EBxp/SP5Xu3Wy6BSyowkz25pvqbW+tAIQ1oDctuWUiarKtpqNRCCOKmleYdSymAwpJRSkhze0ueqWmu7YNWUqrU+Wms9N8leSb7TcnqDJC8bYehlLcd/UErZssdt7Jbhv6/7eY9zTZUJed6TbDfejdBerfXuWus/J9kzTbWuoV5RSlmvzbCnZPi9+d/drl1K2SLTMPQ1wLMOAAAAAMCUEvoCAAAAAADG0u6P3G8fpf8DSR5taevlj/6fl2T9Hsa1s28pZeMexr0kwwMsF43S/7/atB3aw7r96uQkK1va5g/5+sVJntpyfsFq3dE41VpXJHl/m1MjVWn7SZu2g3tc/vUdzt/PWqtHJb097y/qcf1hAdRSyjo9zrVGq7X+JsmXW5o3SPK0Nt3bVXO8p4dl39jDmMe0/hyZ7OvqWQcAAAAAYEoJfQEAAAAAAGN5cZu2347UeaAi1LUtzc/rYd139DBmJLPTW/jq7W3aWqtCDXVOm7a/LKVs1sPafafWemOSH7Q0v7GU8lg474iWcyuSnLa69zUBft2mbaSQ4PfatL1joCpcxwZCiG9uaV6e5EfdzNMHftOmravnfeC9eEOP67dWrkqSjXqca23Q6b3+YJu2dkGwEQ1UazyqmzEtWq/tZF9XzzoAAAAAAFNK6AsAAAAAANYwpZSDSinbTtBcT0v7MMa5Ywz9ecvxc0spT+9i3d2SvKnT/h36cCll0y72sHeGV3X5fZJvjTSm1vqrDA9+zU1yardBgT62sOV4bpLXllLmJnlty7nzaq13TM62xuXJbdrubNex1npxkktbmndN8mddrvnxJK1hwLOmyfs11C/SBFiGag24jOW4DK+o16l727T1UmlsbdHpvX5bm7b9u1zruCTbdzlmqNZrO6nX1bMOAAAAAMBUW1N+uQgAAAAAADzuwCTXllIWllJ27HWSUspTknwjyQYtp+5M8v0xhrerhvUvHa67dZKzkszqpH8Xnpjka6WU9TrYwzZJvtLm1Odqra0Bl1bHJnm0pe2AJAtLKbM72Ge7/exSSjmlm9DaavSNJPe1tM1P8sYMv1cWTMaGSil7lVLeXUqZ0+MU727T9otR+v/fNm3/Ukp5USeLlVKOTPKuluaa5IROxveTWusjSc5vad6rlPK6TsaXUg5LcvQ4tvCrNm0HjGO+vlZK+atSykt7HDs3w6vx3Z/kxta+A4Gk1oqNbymlPKvDteYneX8P2xyq9dq+qJSy4Tjn7JZnHQAAAACAKSP0BQAAAAAAa6aZaf64/5pSykWllL8opbSr8DJMKWWDUsqfJbk8yTPbdPnrWuvDY0zz9ST3tLQdVEr5YimlNRg0dO3XJrkoj1d0GWudTj02z35JfjBa1bFSyh8n+XGSP2g59esk/zzWQrXWXyR5X5tThye5aKASWxlrnlLKpqWUI0sp/5km/HBYknXGGre6DVz7r7Y075vkvS1tdyT59qRsKtkiySeT3FxK+XwpZf9SypihwVLKRqWUf8rw0NH9GaWaXa31qxn+va2f5LyBZ63t7+BKKbNLKZ9I8sUkrffAJ2utrRXyposvtWk7pZTy6pEGlFI2LqUcn+TkNO9Fr8/6lUkWt7S9v5RyRCll/R7n7GcvSvKfpZQrSykf6DTYW0rZJU1Y96ktp86stS4bYdhZLcezkny3lLLPKOtsUkr5tyRfzuO/i269Pp36ScvxxknOLKXs1ON8XfOsAwAAAAAwlWZO9QYAAAAAAIDVbo+B16dLKTck+VmSq5PcleTuNFVH5qYJA+yaJhg1UjWVs2qtJ4+1YK314VLKR9MEcYZ6W5IDSylnJ7kiyZIkmybZMU11nh2G9D0jyZPThBzG6yNJ/j5NaOr/JLmqlPL9JD9IckuSdZNsk+SgJLu1Gb8syfwOwm5Jklrr/y2l7JzkT1pOPSvJOUluLKX8KM17cHeawMvGefy92C3JLunf3+UsTPLOIcczsuq1S5JTa60rJm9LSZr7+E8HXktKKZelCS/+Lk11sgeTzE4T6PujJH+c5n1vdUytdekYa81Pc/2Ghik3TPLpJH9dSvl6kmsG1n1ikmcnec3A160uy/irIk2lryf5eVZ9djZI8o1Syk/TBOhuSPNZs2WSPZO8LI+/9zXJe5J8ttuFa63LSymnZdVqShumuUe/VEq5Kc3nzMqWocfWWs/pdr0+skuSjyf5+MDn+uVpqtPdnuaeW5Hmedguyd5pPvdaw0d3JzlulDVOSPIXSTYZ0vakJD8qpfw4yffSXNeVA+17JXl5ko2G9H/sM/bwLr+/JDklzef20M/BA9P8DLk3zff6SMuYW2utE13pzbMOAAAAAMCU6NdfFAIAAAAAAKvHNgOvXpyc4SGm0Xw6ySuSvKSl/clJjhpj7I+THJnkO12sN5qLkvxlkhMHjmemCZ28rIOxy5K8rtZ6UZdrvj1N2OijebzizWO2TvLWgde0U2u9pJRyZZJnjNJt4WTtZwRz0gQGuw0NnlBrbVe5ahW11jtKKS9I8t0k27ec3jrDq4eN5MIkr6y1toZXpo1a64pSyluT/DTN+z7U8wdeozkq43vWP5bktWmCR0Otk5E/7zYbx3r9ZpuB12u6GHN/ktfWWn8/Uoda6z2llLekCaq2Vhl84cBrNFcmeX2a8FjXaq23lVL+PsmH25zedODVapM2bePiWQcAAAAAYKq0/oIRAAAAAACY/k5NcnqaqiMT4fokr6q1HlFrfbTTQbXWlUlemabKTzdOT/LHHVRa6kqt9bNpglgdVesacFOSA2ut3X4PqY2Ppwm9Xdrt+BaLk3wpyQPjnGcijRbqurjWetWk7aQJsHRzXdu5K8mf1Frf0+mAWuv1aSoonZWmWlU3lqcJRr601npvl2P7zsD13jfJHV0MeyDJm2utJ47Zc/S1f5/kxWmqja3pRgxpdeHCJHvVWn88Vsda67fTBLcWd7nGuUn2noB7+2NJ/i5N+HbKeNYBAAAAAJgKQl8AAAAAALCGqbX+T6310CRbJNkvTaWpH6a7wNDtacJXBybZodZ6To97WVprPSjJG5P8crSuaYIIB9RaD621jjfAM9J+vpRk1zTBuNFCZTcl+YckO9davz/ONX9Ua909TVWxryW5s8Ohv0sT9Hp9kifVWt++ut6XHp2WJszQzqRW+aq1/ijJE5K8Kslnk1yRpNOA4s+THJNku1rrgh7WvrPW+sYkz0tyZpKxQh23Jflikp1qrX/ZZ9d0XGqtP0+yQ5Ljk9wzStcH07wHO9davzpBa1+TZPc0ld0+meRHSW5OE1bqOKza72qtf5amqtefJzk7yS0dDl060P+Vtda9a61Xd7HmN9J8bv57Rv/cXJnk/DQh4YNqreMOHtdaV9Za/yHJVkn+Is0zdmWakOakPjuedQAAAAAAJluptdt/iAwAAAAAAJiOSiklzR/Ob59k6yRzk8xJE7hanGRJmj9S/9VA5ZzVsYc/TPL8NIG0TZI8lCbcdFGt9bYJWmOfNIGPofattZ7f0m/9JHsk2THJZkkeSfP9/2+SS+tq+iXKwHXYOcnT0wSVnpDmH+pbkqY622+T/FpFmPEppWyY5l6fl+RJae71WWnCj/cnuS7JL2ut90/wuuskedyt3JwAACAASURBVG6aYM7maZ6z+9JUwLq21jpa+HGNUUqZkSaEtWOa92HdNCGZq9M8749M4fbWKKWUJyfZLs09t1mSDdMEsJakCUddleYzZcUErLVems/NHfL4Z9djn1uX1FpHC/utUTzrAAAAAACsbkJfAAAAAADAGqXT0BcAAAAAAABAv5ox1RsAAAAAAAAAAAAAAAAA4HFCXwAAAAAAAAAAAAAAAAB9ROgLAAAAAAAAAAAAAAAAoI8IfQEAAAAAAAAAAAAAAAD0EaEvAAAAAAAAAAAAAAAAgD4i9AUAAAAAAAAAAAAAAADQR4S+AAAAAAAAAAAAAAAAAPqI0BcAAAAAAAAAAAAAAABAHym11qneAwAAAAAAAAAAAAAAAAADVPoCAAAAAAAAAAAAAAAA6CNCXwAAAAAAAAAAAAAAAAB9ROgLAAAAAAAAAAAAAAAAoI8IfQEAAAAAAAAAAAAAAAD0EaEvAAAAAAAAAAAAAAAAgD4i9AUAAAAAAAAAAAAAAADQR4S+AAAAAAAAAAAAAAAAAPqI0BcAAAAAAAAAAAAAAABAHxH6AgAAAAAAAAAAAAAAAOgjQl8AAAAAAAAAAAAAAAAAfUToCwAAAAAAAAAAAAAAAKCPCH0BAAAAAAAAAAAAAAAA9JGZU70BGEkpZeMkLxrSdFOSZVO0HQAAAAAAAAAAAAAAANYu6yb5wyHHF9Ra75+MhYW+6GcvSvKtqd4EAAAAAAAAAAAAAAAAJHlVknMmY6EZk7EIAAAAAAAAAAAAAAAAAJ0R+gIAAAAAAAAAAAAAAADoIzOnegMwipuGHnzzm9/MdtttN1V7AQAAAAAAAAAAAAAAYC1y3XXX5dWvfvXQpptG6jvRhL7oZ8uGHmy33XbZZZddpmovAAAAAAAAAAAAAAAArN2Wjd1lYsyYrIUAAAAAAAAAAAAAAAAAGJvQFwAAAAAAAAAAAAAAAEAfEfoCAAAAAAAAAAAAAAAA6CNCXwAAAAAAAAAAAAAAAAB9ROgLAAAAAAAAAAAAAAAAoI8IfQEAAAAAAAAAAAAAAAD0EaEvAAAAAAAAAAAAAAAAgD4i9AUAAAAAAAAAAAAAAADQR4S+AAAAAAAAAAAAAAAAAPqI0BcAAAAAAAAAAAAAAABAHxH6AgAAAAAAAAAAAAAAAOgjM6d6AwAAAAAAAAAAAAAA9InLT0/uu7Hz/ptsnTznLatvPwCwlhL6AgAAAAAAAAAAAACgccVXkkUXdt7/qS8Q+gKA1WDGVG8AAAAAAAAAAAAAAAAAgMep9AVD1FqzcuXK1FqneivAalBKyYwZM1JKmeqtAAAAAAAAAAAAAADAiIS+WKvVWvPwww9nyZIlWbJkSZYtWzbVWwImwbrrrps5c+Zkzpw5mT17thAYAAAAAAAAAAAAAAB9ReiLtdZDDz2UW2+9NcuXL5/qrQCTbNmyZbn77rtz9913Z9asWXnKU56SDTbYYKq3BQAAAAAAAAAAAAAASZIZU70BmAoPPfRQbrzxRoEvIMuXL8+NN96Yhx56aKq3AgAAAAAAAAAAAAAASYS+WAs9FviqtU71VoA+UWsV/AIAAAAAAAAAAAAAoG/MnOoNwGSqtebWW28dFviaNWtW5s6dm4022iizZs1KKWWKdgisTrXWLF++PA888EAWL168SrW/xz4fnva0p/kMAAAAAAAAAAAAAABgSgl9sVZ5+OGHVwl5JMmcOXOy1VZbCXnAWmLWrFnZYIMNsvnmm+eWW27JkiVLBs8tX748jzzySGbPnj2FOwQAAAAAAAAAAAAAYG03Y6o3AJNpaLgjacIfAl+wdiqlZKuttsqsWbNWaV+8ePEU7QgAAAAAAAAAAAAAABpCX6xVWkNfc+fOFfiCtVgpJXPnzl2lrfVzAgAAAAAAAAAAAAAAJpvQF2uNWmuWLVu2SttGG200RbsB+kXr58CyZctSa52i3QAAAAAAAAAAAAAAgNAXa5GVK1cOa5s1a9YU7AToJzNnzhzW1u7zAgAAAAAAAAAAAAAAJovQF2uNdpV7SilTsBOgn8yYMfxHoUpfAAAAAAAAAAAAAABMJaEvAAAAAAAAAAAAAAAAgD4i9AUAAAAAAAAAAAAAAADQR4S+AAAAAAAAAAAAAAAAAPqI0BcAAAAAAAAAAAAAAABAHxH6AgAAAAAAAAAAAAAAAOgjQl8AAAAAAAAAAAAAAAAAfUToCwAAAAAAAAAAAAAAAKCPCH0BAAAAAAAAAAAAAAAA9BGhLwAAAAAAAAAAAAAAAIA+IvQF0MY222yTUsqw1+c///me51ywYEHbObfZZpuJ2zgAAAAAAAAAAAAAADDtCX0BdGHhwoU9j12wYMEE7gQAAAAAAAAAAAAAAFhTCX0BdOHiiy/OVVdd1fW4a6+9Nv/zP/+zGnYEAAAAAAAAAAAAAACsaYS+ADowa9aswa97qfY1tMrX0LkAAAAAAAAAAAAAAABaCX0BdOAVr3jF4NennXZaVqxY0fHYRx99NKeccsrg8UEHHTShewMAAAAAAAAAAAAAANYsQl8AHTjyyCMHv7799ttz3nnndTz2O9/5Tm677ba2cwEAAAAAAAAAAAAAALQS+gLowJ577pmddtpp8HjhwoUdj12wYMHg1zvttFP22GOPCd0bAAAAAAAAAAAAAACwZpk51RsAmC7mz5+f973vfUmS8847L3fccUe22GKLUcfceeedOffccwePJ7LK19VXX51f/epXufPOO7N48eJsttlmefKTn5wXvOAFecITnjCuuZcsWZKrr7461157be666648+OCDmTNnTjbbbLM84xnPyK677pp11llngr6Tx1177bX5xS9+kZtvvjkrVqzI5ptvnt122y3PfOYzJ3wtAAAAAAAAAAAAAADoV0JfAB06/PDD84EPfCArVqzIihUrcuqpp+a9733vqGNOOeWULF++PEkyc+bMHHbYYePaw913353jjz8+p512Wm655Za2fWbMmJG99torxx13XF7ykpd0PPeVV16ZM888M9/73vdy2WWX5dFHHx2x75w5c3LooYfmmGOOybx58zqa/4Ybbsi22247ePzWt741J510UpLk3HPPzcc//vFcdNFFbcfOmzcvH/3oR/OWt7yl4+8HAAAAAAAAAAAAAACmK6Ev6MXlpydXfGWqd9G9Jz0zefk/Ttx8t/0y+e77xz/Ps9+cPKf/wzxbbrllDjjggJxzzjlJkoULF44Z+lq4cOHg1wcccEC23HLL3HXXXT2tf8opp+Soo47K4sWLR+23cuXKXHjhhXnpS1+aQw89NF/+8pez7rrrjjrmsssuy2677dbxXpYsWZLPfe5zOemkk/KFL3whhx56aMdjh3r00Udz9NFH5zOf+cyo/a6//voceuih+elPf5pPf/rTKaX0tB4AAAAAAAAAAAAAAEwHQl/Qi/tuTBZdONW7mHoP3z8x78M2Lxj/HJPkyCOPHAx9XXXVVbnkkkuy++67t+37s5/9LFddddUqY3t17LHH5mMf+9gqbaWU7LDDDtl+++0zZ86c3Hvvvbn00ktz5513DvY57bTTctttt+W73/1uZs4c+SN/5cqVw+bedttts/3222fu3LmZNWtW7r333lx11VW58cYbB/stXbo0hx12WGbPnp2DDz646+/r3e9+d0488cTBNXfdddfMmzcv6623XhYtWpRLLrkkK1asGOx/4oknZpdddsk73/nOrtcCAAAAAAAAAAAAAIDpQugLoAsHHnhgttxyy9x+++1JkgULFowY+lqwYMHg11tssUUOOOCAntY8+eSTVwl8zZgxI3/+53+eY445JltvvfUqfWut+da3vpV3v/vdg+GsH/zgB/nQhz6UT3ziE6Ous/766+eQQw7Jq171quy3337ZaKON2va78sor89GPfjRf+9rXBtuOPPLIvPCFL8wWW2zR8fd13nnnDVY9e9vb3pbjjjsuf/AHf7BKn1tuuSXveMc78u1vf3uw7W//9m9z+OGHZ8MNN+x4LQAAAAAAAAAAAAAAmE5mTPUGAKaTmTNn5tBDDx08PuOMM/Lwww8P67d06dKceeaZg8eHHXZYZs2a1fV6ixYtWqWq1XrrrZfzzjsvn/rUp4YFvpKmWtarX/3qXHLJJdluu+0G248//vj87ne/G3Gdpz/96bnllluyYMGCvOpVrxox8JUkz3jGM3LWWWfluOOOG2xbsmRJPvvZz3b1vT0W+PrsZz+bL37xi8MCX0my1VZb5Vvf+lZ22223wbbFixfnjDPO6GotAAAAAAAAAAAAAACYToS+ALp05JFHDn5933335Rvf+MawPmeffXbuv//+weP58+f3tNbxxx+fpUuXDh6fcMIJednLXjbmuC222CJf+cpXBo8fffTRnHDCCSP2nzt3bjbddNOu9nbsscdm1113HTw+/fTTuxqfJG9+85tXCbW1M3PmzHzkIx9Zpe2HP/xh12sBAAAAAAAAAAAAAMB0IfQF0KWdd945e+yxx+DxggULhvUZ2va85z0vu+yyS9frPPjgg6vMM2/evPzpn/5px+N333337L333oPH55xzTtd7GM2MGTPymte8ZvD4uuuuy5133tnVHB/60Ic66rf//vtn3XXXHTy+/PLLu1oHAAAAAAAAAAAAAACmE6EvgB4Mrfb1wx/+MDfeeOPg8fXXX58LLrhg8LjXKl8XXnjhKlW+Dj744MyY0d3H9r777jv49aJFi1bZZ6ceeeSR3HXXXVm0aFFuuOGGVV7rr7/+Kn2vueaajuedN29edtxxx476zpo1K0972tMGj++4446O1wEAAAAAAAAAAAAAgOlm5lRvAGA6OuSQQ3L00Udn6dKlWblyZU4++eTBqlULFixIrTVJsv766+dNb3pTT2tceOGFqxw/5SlPyQ033NDVHEOrYyVNIG3rrbcedcyVV16ZM888M//93/+dq666KnfddVfH6917770d991555077pskm2666eDX999/f1djAQAAAAAAAAAAAABgOhH6AujB3Llz87rXvS6nnXZakuSkk07KBz/4wdRac8oppwz2e+1rX5uNN964pzVuuummVY6PPvroHH300b1vOsk999wz4rlFixbl6KOPzje/+c2e5+8mjDU0xNWJWbNmDX69YsWKrsYCAAAAAAAAAAAAAMB0IvQF0KMjjzxyMPR1/fXX54ILLsjDDz+8Slhr/vz5Pc9/9913j3uPrZYsWdK2/Zprrsl+++2X2267bVzzr1y5suO+M2bMGNdaAAAAAAAAAAAAAACwpvIX9wA92meffbLtttsOHi9cuDALFiwYPH7qU5+aF7/4xT3Pv2zZsnHtr51a67C2FStW5JBDDlkl8DV79uwcdthhOemkk3LppZfmtttuywMPPJAVK1ak1jr4Wrhw4YTvEQAA+P/s3X2s3mV9x/HPdXp6WkpbKZPytFSeRBjPWzCTdcxaWUCdc8SNZCgUtmzGPTijwzGJoJlh4jbUDLeQRSdOtmw+BIEhoMwgsKpkDgSMRaZgKl0HpZ4ekdrTc+2PQjnn5rQ9d8/DfdX79UpOcn7Xff2u3/e0zfmr7/wAAAAAAAAAAIB+501fAHuplJI1a9bk8ssvT5J8+tOfzvbt23d+vmbNmpRS9vr8F7/4xROu77nnnrziFa/Y6/N25bOf/Wzuv//+ndfHHHNMbr311hx11FF7vHd4eHjG5wEAAAAAAAAAAAAAgH4n+oK9ccCK5CUrez1F9w45aWbPW/iimflzOGDF9M/okTVr1uS9731vxsbG8vTTT+9cfy4Im46DDz54wvW6detmJfq64YYbJlxfe+21Uwq+kuQHP/jBjM8DAAAAAAAAAAAAAAD9TvQFe+O083d89btDT04uurnXU/TUihUrsnr16tx+++0T1letWpUjjjhiWmefccYZufrqq3de33bbbbnwwgundeZkHn744Z3f77///nnlK1855XvvueeeGZ8HAAAAAAAAAAAA6KFuXzIw0y8lAACSiL4Apu3iiy9+QfR18cUXT/vc1atXZ968edm+fXuS5POf/3w2btyY5cuXT/vs8TZv3rzz+6VLl6aUMqX7vvOd7+Tuu++e0VkAAAAAAAAAAACAHjvnL3s9AQAQ0RfAtJ177rn5yle+MmHt9NNPn/a5y5Yty/nnn5/rrrsuSTIyMpJ3vvOdO69nyrJly3Z+v3Hjxjz11FMT1nblkksuydjY2IzOAgAAAAAAAAAAAAAAJAO9HgBgXzc0NJSVK1dO+FqwYMGMnH3FFVdMOOuTn/xk3vWud+18+9dUPfTQQ7nzzjsn/eyUU07Z+f327dvzwQ9+cI/nXX755fnc5z7X1QwAAAAAAAAAAAAAAMDUiL4AGnbkkUfm2muvnbB21VVXZeXKlbnxxhszOjq6y3u/973v5ZprrsmrXvWqnHDCCbnjjjsm3XfeeedNuL7yyitz2WWXZWRk5AV7v/3tb+fcc8/N+973viTJQQcd1O2PBAAAAAAAAAAAAAAA7MFgrwcAYPcuuOCCbNiwIZdeemnGxsaSJGvXrs3rX//6LFq0KKeddloOPvjg7LffftmyZUueeOKJPPTQQ9m8efOUzl+9enXOOeec3HLLLTvX3v/+9+fDH/5wXv7yl+fQQw/NyMhI1q1bl29961s79xx//PF5y1vekre97W0z+wMDAAAAAAAAAAAAAECfE30B7AMuueSSnHzyybnooouyYcOGnetPP/107r777imdsWzZsl1+dv311+ess87Kvffeu3NtZGRkl28HO/XUU3PTTTfl9ttvn+JPAAAAAAAAAAAAAAAATNVArwcAYGrOPvvsfPe7380111yTU089NaWU3e6fP39+zjjjjFxxxRVZt27dbt/IdcABB+Suu+7Ke97znhx44IG73Peyl70sH/jAB7J27docfvjhe/2zAAAAAAAAAAAAAAAAu1Zqrb2eASZVSjkhyQPPXT/wwAM54YQT9vq80dHRPPzwwxPWXvrSl2Zw0Avv2Ddt2rQpa9euzeOPP55NmzZl27ZtWbx4cZYvX55jjz02xx13XBYtWtT1uVu3bs1Xv/rVPPjgg3nqqaeyePHiHHLIITn++ONz0kknzcJP0lt+NwAAAAAAAAAAAAAAMJkHH3wwJ5544vilE2utD87Fs/2PdoB91IEHHpjXvOY1M37uggULcuaZZ+bMM8+c8bMBAAAAAAAAAAAAAIA9G+j1AAAAAAAAAAAAAAAAAAA8T/QFAAAAAAAAAAAAAAAA0BDRFwAAAAAAAAAAAAAAAEBDRF8AAAAAAAAAAAAAAAAADRns9QAAAAAAAAAAAAAAAOybyjtu7PUIAJOqf/1rvR4BpsWbvgAAAAAAAAAAAAAAAAAaIvoCAAAAAAAAAAAAAAAAaIjoCwAAAAAAAAAAAAAAAKAhoi8AAAAAAAAAAAAAAACAhoi+AAAAAAAAAAAAAAAAABoy2OsBAAAAAAAAAAAAAABoxOP3J8/8cMrbTxl4NPeNvWQWBwKA/iT6AgAAAAAAAAAAAABghy9cmjx615S3f2jBcVn148tmcSAA6E8DvR4AAAAAAAAAAAAAAAAAgOeJvgAAAAAAAAAAAAAAAAAaIvoCAAAAAAAAAAAAAAAAaIjoi75RSnnBWq21B5MALRkbG3vB2mS/LwAAAAAAAAAAAAAAYK6IvugbAwMv/Oe+bdu2HkwCtGR0dPQFa5P9vgAAAAAAAAAAAAAAgLnif7XTN0opGRoamrA2MjLSo2mAVnT+HhgaGvKmLwAAAAAAAAAAAAAAekr0RV9ZsmTJhOvh4eHUWns0DdBrtdYMDw9PWOv8PQEAAAAAAAAAAAAAAHNN9EVf6Yw5tm3blvXr1wu/oA/VWrN+/fps27ZtwvrSpUt7NBEAAAAAAAAAAAAAAOww2OsBYC4tXLgw8+fPnxB5bNmyJY888kiWLl2axYsXZ3BwMAMDekj4aTQ2NpbR0dGMjIxkeHj4BcHX/Pnzs2DBgh5NBwAAAAAAAAAAAAAAO4i+6CullBx22GF57LHHJrzda9u2bXnyySfz5JNP9nA6oJee+/1QSun1KAAAAAAAAAAAAAAA9DmvM6LvLFq0KCtWrBB2ADuVUrJixYosWrSo16MAAAAAAAAAAAAAAIDoi/70XPg1f/78Xo8C9Nj8+fMFXwAAAAAAAAAAAAAANGWw1wNAryxatChHH310tm7dmuHh4WzZsiU/+clPej0WMAeGhoayZMmSLF26NAsWLPDmPwAAAAAAAAAAAAAAmiL6oq+VUrJw4cIsXLgwy5cvT601Y2NjqbX2ejRgFpRSMjAwIPICAAAAAAAAAAAAAKBpoi8Yp5SSefPm9XoMAAAAAAAAAAAAAAAA+thArwcAAAAAAAAAAAAAAAAA4HmiLwAAAAAAAAAAAAAAAICGiL4AAAAAAAAAAAAAAAAAGiL6AgAAAAAAAAAAAAAAAGiI6AsAAAAAAAAAAAAAAACgIaIvAAAAAAAAAAAAAAAAgIaIvgAAAAAAAAAAAAAAAAAaIvoCAAAAAAAAAAAAAAAAaIjoCwAAAAAAAAAAAAAAAKAhoi8AAAAAAAAAAAAAAACAhoi+AAAAAAAAAAAAAAAAABoi+gIAAAAAAAAAAAAAAABoiOgLAAAAAAAAAAAAAAAAoCGiLwAAAAAAAAAAAAAAAICGiL4AAAAAAAAAAAAAAAAAGiL6AgAAAAAAAAAAAAAAAGiI6AsAAAAAAAAAAAAAAACgIaIvAAAAAAAAAAAAAAAAgIaIvgAAAAAAAAAAAAAAAAAaIvoCAAAAAAAAAAAAAAAAaIjoCwAAAAAAAAAAAAAAAKAhoi8AAAAAAAAAAAAAAACAhoi+AAAAAAAAAAAAAAAAABoi+gIAAAAAAAAAAAAAAABoiOgLAAAAAAAAAAAAAAAAoCGiLwAAAAAAAAAAAAAAAICGiL4AAAAAAAAAAAAAAAAAGiL6AgAAAAAAAAAAAAAAAGiI6AsAAAAAAAAAAAAAAACgIaIvAAAAAAAAAAAAAAAAgIYM9noAAAAAAAAAAAAAAAAacdHNXW1f9Y4bZ2kQAOhv3vQFAAAAAAAAAAAAAAAA0BDRFwAAAAAAAAAAAAAAAEBDRF8AAAAAAAAAAAAAAAAADRF9AQAAAAAAAAAAAAAAADRE9AUAAAAAAAAAAAAAAADQENEXAAAAAAAAAAAAAAAAQENEXwAAAAAAAAAAAAAAAAANEX0BAAAAAAAAAAAAAAAANET0BQAAAAAAAAAAAAAAANAQ0RcAAAAAAAAAAAAAAABAQ0RfAAAAAAAAAAAAAAAAAA0RfQEAAAAAAAAAAAAAAAA0RPQFAAAAAAAAAAAAAAAA0BDRFwAAAAAAAAAAAAAAAEBDRF8AAAAAAAAAAAAAAAAADRF9AQAAAAAAAAAAAAAAADRE9AUAAAAAAAAAAAAAAADQENEXAAAAAAAAAAAAAAAAQENEXwAAAAAAAAAAAAAAAAANGez1AAAAAAAAAAAAAAAANOLjr00evWvK2/9jv+Oy6seXzeJAANCfvOkLAAAAAAAAAAAAAAAAoCGiLwAAAAAAAAAAAAAAAICGiL4AAAAAAAAAAAAAAAAAGiL6AgAAAAAAAAAAAAAAAGiI6AsAAAAAAAAAAAAAAACgIaIvAAAAAAAAAAAAAAAAgIaIvgAAAAAAAAAAAAAAAAAaIvoCAAAAAAAAAAAAAAAAaIjoCwAAAAAAAAAAAAAAAKAhoi8AAAAAAAAAAAAAAACAhoi+AAAAAAAAAAAAAAAAABoi+gIAAAAAAAAAAAAAAABoiOgLAAAAAAAAAAAAAAAAoCGiLwAAAAAAAAAAAAAAAICGiL4AAAAAAAAAAAAAAAAAGiL6AgAAAAAAAAAAAAAAAGiI6AsAAAAAAAAAAAAAAACgIaIvAAAAAAAAAAAAAAAAgIaIvgAAAAAAAAAAAAAAAAAaIvoCAAAAAAAAAAAAAAAAaIjoCwAAAAAAAAAAAAAAAKAhoi8AAAAAAAAAAAAAAACAhoi+AAAAAAAAAAAAAAAAABoi+gIAAAAAAAAAAAAAAABoiOgLAAAAAAAAAAAAAAAAoCGiLwAAAAAAAAAAAAAAAICGiL4AAAAAAAAAAAAAAAAAGiL6AgAAAAAAAAAAAAAAAGiI6AsAAAAAAAAAAAAAAACgIaIvAAAAAAAAAAAAAAAAgIaIvgAAAAAAAAAAAAAAAAAaIvoCAAAAAAAAAAAAAAAAaIjoCwAAAAAAAAAAAAAAAKAhoi8AAAAAAAAAAAAAAACAhoi+AAAAAAAAAAAAAAAAABoi+gIAAAAAAAAAAAAAAABoiOgLAAAAAAAAAAAAAAAAoCGiLwAAAAAAAAAAAAAAAICGiL4AAAAAAAAAAAAAAAAAGiL6AgAAAAAAAAAAAAAAAGiI6AsAAAAAAAAAAAAAAACgIaIvAAAAAAAAAAAAAAAAgIaIvgAAAAAAAAAAAAAAAAAaIvoCAAAAAAAAAAAAAAAAaIjoCwAAAAAAAAAAAAAAAKAhg70eAAAAAAAAAAAAAACARpx9ZfLMD6e8/U8+et8sDgMA/Uv0BQAAAAAAAAAAAADADoee3NX2+8Y2z9IgANDfBno9AAAAAAAAAAAAAAAAAADPE30BAAAAAAAAAAAAAAAANET0BQAAAAAAAAAAAAAAANAQ0RcAAAAAAAAAAAAAAABAQ0RfAAAAAAAAAAAAAAAAAA0RfQEAAAAAAAAAAAAAAAA0RPQFAAAAAAAAAAAAAAAA0BDRFwAAAAAAAAAAAAAAAEBDRF8AAAAAAAAAAAAAAAAADRF9AQAAAAAAAAAAAAAAADRE9AUAAAAAAAAAAAAAAADQENEXAAAAAAAAAAAAAAAAQENEXwAAAAAAAAAAAAAAAAANEX0BAAAAAAAAAAAAAAAANET0BQAAAAAAAAAAAAAAANAQ0RcAAAAAAAAAAAAAAABAQ0RfAAAAAAAAAAAAAAAAAA0RfQEAAAAAAAAAAAAAAAA09HQCdgAAIABJREFUZLDXAwAAAAAAAAAAAAAA0Ihb/izZ8M0pb796wf55+9Y3z+JAANCfRF8AAAAAAAAAAAAAAOyw4ZvJo3dNefupA8fN4jAA0L8Gej0AAAAAAAAAAAAAAAAAAM8TfQEAAAAAAAAAAAAAAAA0RPQFAAAAAAAAAAAAAAAA0BDRFwAAAAAAAAAAAAAAAEBDRF8AAAAAAAAAAAAAAAAADRF9AQAAAAAAAAAAAAAAADRE9AUAAAAAAAAAAAAAAADQENEXAAAAAAAAAAAAAAAAQENEXwAAAAAAAAAAAAAAAAANEX0BAAAAAAAAAAAAAAAANET0BQAAAAAAAAAAAAAAANAQ0RcAAAAAAAAAAAAAAABAQ0RfAAAAAAAAAAAAAAAAAA0RfQEAAAAAAAAAAAAAAAA0RPQFAAAAAAAAAAAAAAAA0BDRFwAAAAAAAAAAAAAAAEBDRF8AAAAAAAAAAAAAAAAADRF9AQAAAAAAAAAAAAAAADRE9AUAAAAAAAAAAAAAAADQENEXAAAAAAAAAAAAAAAAQENEXwAAAAAAAAAAAAAAAAANEX0BAAAAAAAAAAAAAAAANET0BQAAAAAAAAAAAAAAANAQ0RcAAAAAAAAAAAAAAABAQ0RfAAAAAAAAAAAAAAAAAA0RfQEAAAAAAAAAAAAAAAA0RPQFAAAAAAAAAAAAAAAA0BDRFwAAAAAAAAAAAAAAAEBDRF8AAAAAAAAAAAAAAAAADRF9AQAAAAAAAAAAAAAAADRE9AUAAAAAAAAAAAAAAADQENEXAAAAAAAAAAAAAAAAQENEXwAAAAAAAAAAAAAAAAANEX0BAAAAAAAAAAAAAAAANET0BQAAAAAAAAAAAAAAANAQ0RcAAAAAAAAAAAAAAABAQ0RfAAAAAAAAAAAAAAAAAA0RfQEAAAAAAAAAAAAAAAA0RPQFAAAAAAAAAAAAAAAA0BDRFwAAAAAAAAAAAAAAAEBDBns9QL8qpcxLckySn0tyWJIXJdma5KkkjyS5t9b6oxl+5qIkv5TkZ5McnGRzkvVJvl5r3TCTzwIAAAAAAAAAAAAAAAD2juhrDpVSViQ5N8mrk/xykqW72b69lHJ7kr+ttd48zecemeR9SX4jyf67eNYdSa6stf7HdJ4FAAAAAAAAAAAAAAAATM9ArwfoF6WU65M8muTqJK/N7oOvJJmX5OwkN5VSbiylHLyXz12T5P4kb8rkwddzzzoryZdKKX/z7FvIAAAAAAAAAAAAAAAAgB7wpq+5c+wu1tcneTjJ/2bH38dRSU7JxCDvdUnuLKX8Sq11w1QfWEr57SQfS1LGLY8m+XqS7yc5KMkv5PkArSR5e5IFSf5gqs8BAAAAAAAAAAAAAAAAZo7oqze+kR0x1i211kc6PyylHJ7kPUl+b9zysUn+rZRyZq217ukBpZSfT/LxTAy+bkjyR7XW74/btyTJu5K8e9y+t5ZS7qu1XtvFzwQAAAAAAAAAAAAA7OtO/e3kiJVT3v6PX9g0i8MAQP8Sfc2dmuTmJFfUWu/d7cZa1yf5/VLKfUmuGffRyiTnJfmXKTzvqiRD464/neS8WutYx7O2JLmslPJ/ST407qO/KKX887OfAwAAAAAAAAAAAAD94LTzu9r+iZtunKVBAKC/DfR6gD7ym7XW1+0p+Bqv1vrRJJ/pWH7znu4rpaxKsnrc0hNJ3tIZfHX4SJIvj7s+KMnbpzYpAAAAAAAAAAAAAAAAMFNEX3Ok1vq9vbz1mo7rVVO454KO63+otT65uxtqrTU73g62u3MAAAAAAAAAAAAAAACAWSb6at83Oq73K6UcsKvNpZR5SX6tY/njU3zWrUkeH3d9dCnl5CneCwAAAAAAAAAAAAAAAMwA0Vf7RidZG9rN/tOT/My468drreum8qBa61iSOzuWz5nKvQAAAAAAAAAAAAAAAMDMEH2175iO69EkT+xm/4kd1//Z5fPu6bg+ocv7AQAAAAAAAAAAAAAAgGkQfbXvjR3X9z77Rq5d+bmO6+90+bxH9nAeAAAAAAAAAAAAAAAAMItEXw0rpSxO8jsdy5/bw22dbwZ7rMvHdu5/aZf3AwAAAAAAAAAAAAAAANMg+mrblUkOGXe9Ock/7OGeAzquN3b5zM79S0op/p0AAAAAAAAAAAAAAADAHBns9QBMrpTyG0n+sGP53bXWTXu4dXHH9Y+7fHTn/pJk/yRbujxn4iGlLE9yUJe3HT2dZwIAAAAAAAAAAAAAAMC+SPTVoFLKKUmu61i+LcnfTeH2zujrmS4fP1kktjjTjL6SvDXJ5dM8AwAAAAAAAAAAAAAAAH7qDfR6ACYqpaxIcnMmxluPJnlTrbXuxZHd3rM3zwAAAAAAAAAAAAAAAABmiOirIaWU5UluT3L4uOUNSc6qtf7fFI8Z6bjer8sxJtvfeSYAAAAAAAAAAAAAAAAwSwZ7PQA7lFIOTPLFJMeOW34iyatrrQ93cdRsRF8/6vKMyXw0yb91ec/RSW6YgWcDAAAAAAAAAAAAAADAPkP01YBSyouS3JbkpHHLT2XHG74e7PK4H3ZcH9Tl/cs7rodrrWNdnvECtdaNSTZ2c08pZbqPBQAAAAAAAAAAAAAAgH3OQK8H6HellCVJvpDkF8YtDyc5u9b633txZOdbwV7S5f2d+7t5yxgAAAAAAAAAAAAAAAAwTaKvHiql7J/k35P84rjlkSTn1Fq/tpfHfqvj+pgu7z9qD+cBAAAAAAAAAAAAAAAAs0j01SOllP2S3JRk5bjlp5O8ttZ6zzSOfqDj+hVd3v9LezgPAAAAAAAAAAAAAAAAmEWirx4opSxM8vkkrxy3/EyS19da75zm8V9Psmnc9aGllGOnONdAkl/uWL5lmvMAAAAAAAAAAAAAAAAAXRjs9QD9ppQylOSzSV49bnlrkjfUWr803fNrraOllBuTXDhu+aIkl07h9l9Ncti460dqrfdPdyYAAAAAAAAAAAAAYB/xjU8lmx+b8vYLBzflE6NnzuJAANCfRF9zqJQymORfk5wzbnlbkjfWWm+dwUddl4nR1++WUv6q1vrkHu67ZJJzAAAAAAAAAAAAAIB+8d/XJ4/eNeXta+YfJ/oCgFkw0OsB+kUpZV6STyX59XHLo0nOq7XeNJPPqrXekeSOcUsvTvL3pZRd/n2XUv44yapxS08kuXom5wIAAAAAAAAAAAAAAAD2zJu+5s7HkvxWx9qfJ/lGKeWILs/aUGt9Zg97/jTJfyYZevb6jUk+U0r541rr95/bVEpZkh1v+Hp3x/3vrrVu6XIuAAAAAAAAAAAAAAAAYJpEX3PngknWrnr2q1urknx5dxtqrf9VSrk4yT+NW35DkteVUr6W5PvZ8Qaw05Ms7bj972qt1+7FXAAAAAAAAAAAAAAAAMA0ib5+itVaP1VKGUrykSSLn10eTHLGrm55du875mA8AAAAAAAAAAAAAAAAYBIDvR6A2VVr/XiSU5J8KsmPdrFtLMkXk6yutf5JrXX7XM0HAAAAAAAAAAAAAAAATORNX3Ok1lp6+Oz/SfKmUsr+SVYm+dkky5NsTvKDJF+rtT7eq/kAAAAAAAAAAAAAAACA54m++kit9UdJbu31HAAAAAAAAAAAAAAAAMCuDfR6AAAAAAAAAAAAAAAAAACeJ/oCAAAAAAAAAAAAAAAAaIjoCwAAAAAAAAAAAAAAAKAhoi8AAAAAAAAAAAAAAACAhoi+AAAAAAAAAAAAAAAAABoi+gIAAAAAAAAAAAAAAABoiOgLAAAAAAAAAAAAAAAAoCGiLwAAAAAAAAAAAAAAAICGiL4AAAAAAAAAAAAAAAAAGiL6AgAAAAAAAAAAAAAAAGiI6AsAAAAAAAAAAAAAAACgIaIvAAAAAAAAAAAAAAAAgIaIvgAAAAAAAAAAAAAAAAAaIvoCAAAAAAAAAAAAAAAAaIjoCwAAAAAAAAAAAAAAAKAhoi8AAAAAAAAAAAAAAACAhoi+AAAAAAAAAAAAAAAAABoi+gIAAAAAAAAAAAAAAABoiOgLAAAAAAAAAAAAAAAAoCGiLwAAAAAAAAAAAAAAAICGiL4AAAAAAAAAAAAAAAAAGiL6AgAAAAAAAAAAAAAAAGiI6AsAAAAAAAAAAAAAAACgIaIvAAAAAAAAAAAAAAAAgIaIvgAAAAAAAOD/2bubFzvvOozD928cKRIFESzRRW0NSChUY6lS8AWzKVbBhSu1+LbtqqGLGkhxJe1KXWgRuqhZ2I0iaBS7KBQkG1+gSUNX3XQkYBFJWhSaYunjYibMUCyeafPMczPnumAYzpzvOXP/Ax8eAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKLK59AAAAAAAAAAAAAAAAEocvWNf5xdeODLTEABYb6IvAAAAAAAAAAAAAAC23fvovs5PPXhupiEAsN42lh4AAAAAAAAAAAAAAAAAwC7RFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAkc2lBwAAAAAAAAAAAAAAUOLvzyXXXln5/BMbW7n4xkdmHAQA60n0BQAAAAAAAAAAAADAtqdOJ1vnVz7/8U3Hc/LVMzMOAoD1tLH0AAAAAAAAAAAAAAAAAAB2ib4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIpsLj0AAAAAAAAAAAAAAIAS3/39vs5PPnhupiEAsN486QsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgyObSAwAAAAAAAAAAAAAAKPHEl5Ot8yufP/Oe4zn56pkZBwHAevKkLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKbSw8AAAAAAAAAAAAAAKDEFx9Jrr2y8vkDj12ccQwArC/RFwAAAAAAAAAAAAAA2z708X2dX3zj5ZmGAMB621h6AAAAAAAAAAAAAAAAAAC7RF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEU2lx4AAAAAAAAAAAAAAECJP3wveenSyuc/uulITr32zRkHAcB6En0BAAAAAAAAAAAAALDtpUvJ1vmVz09sHJ9xDACsr42lBwAAAAAAAAAAAAAAAACwS/QFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUGRz6QEAAAAAAAAAAAAAAJQ48Y3k1s+ufP7zp67MOAYA1pfoCwAAAAAAAAAAAACAbZ+8b1/nZ393bqYhALDeNpYeAAAAAAAAAAAAAAAAAMAu0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQJHNpQcAAAAAAAAAAAAAAFDi2V8kL/9t5fNvb17J2dc/P+MgAFhPoi8AAAAAAAAAAAAAALZdeDLZOr/y+XfefVz0BQAz2Fh6AAAAAAAAAAAAAAAAAAC7RF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFNpcesK7GGB9N8qkkd+38vjPJ+/acbE3TdOvb/O7pHc67bZqmF9/hdwAAAAAAAAAAAAAAAABvg+jrAI0xvpDkdLZDrw8suwYAAAAAAAAAAAAAAABoJPo6WCeS3LP0CAAAAAAAAAAAAAAAAKCX6KvDa0kuJzk2w3f/KcnX9vmZyzPsAAAAAAAAAAAAAAAAAFYg+jp4/0nyfJK/JvnLzu9LST6T5JkZ/t+1aZpenOF7AQAAAAAAAAAAAIDD5ugd+zq/8MKRmYYAwHoTfR2ss0l+Nk3TtTe/McZYYA4AAAAAAAAAAAAAwB73Prqv81MPnptpCACsN9HXAZqm6erSGwAAAAAAAAAAAAAAAIBuG0sPAAAAAAAAAAAAAAAAAGCX6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoMjm0gOY3S1jjCeSfDrJh5McSXI1yT+TPJvkj0l+NU3TleUmAgAAAAAAAAAAAAAAANeJvg6XyomKAAAgAElEQVS/23Z+9rp55+f2JPcl+eEY4/EkD0/T9O85Rowxbk7ywX1+7NgcWwAAAAAAAAAAAAAAAKCZ6Itk++lfDyT50hjjq9M0PT/D/7g/yfdn+F4AAAAAAAAAAAAAAAA4VERfh9frSc4neTrJc0kuJ/lXkvcmuSXJ55J8K9tP/LruY0meHmPcPU3T1sHOBQAAAAAAAAAAAAAAABLR12F1Jsnj0zT94y3ev5Dkt2OMh7P99K2Hkoyd944m+fUY465pmqb5pwIAAAAAAAAAAAAAAAB7ib4OoWmafrDi3bUkp8cYl5P8ZM9bdyb5epInb+Csx5L8cp+fOZbkNzdwAwAAAAAAAAAAAAAAANQTfZFpmn46xrgnyVf2/Pn+3MDoa+epY2/15LH/aYzx/48AAAAAAAAAAAAAAADgkNlYegA1HnnT67vHGO9fZAkAAAAAAAAAAAAAAACsMdEX1/05ydU9r9+V5PaFtgAAAAAAAAAAAAAAAPyXvXuPtq0szwP+vMdNiMoBvIGoFAxCUFSMiXWkkjSoI7ViNJLYpFrjJVXsGNpqzMV6aWKMMVrb2HRAW0kaaWraFC8VNKIZ9VLRGmMiFuMtVQQJyEX0ABYlcN7+sdfuXhw5sPdea+0159m/3xhrzG/O9c13PfvInz7jgx1L6YskSXfvTXLZPo/vs4wsAAAAAAAAAAAAAAAAsJMpfTHtpn3u77qUFAAAAAAAAAAAAAAAALCDKX0x7d773F+7lBQAAAAAAAAAAAAAAACwgyl9kSSpqnsn+b59Hl+xjCwAAAAAAAAAAAAAAACwkyl9seZnc9v/Hq5K8rklZQEAAAAAAAAAAAAAAIAda2XZAVi+qjoyySv3eXx+d/cy8gAAAAAAAAAAAAAAS3Ll/06+vWfD20/edWk+vfeYBQYCgJ1J6esAUlXfn+SE7j5/E+/cN8n5SY6cenxzktfNOR4AAAAAAAAAAAAAMHQX/PPk0gs3vP1NB5+YU2/a9/wJAGBWSl/brKoekNv/d7/vPvcrVXXsfsbc2N3X3s7zo5KcV1UXJ/nPSd7Z3X+1nxy7kzwrqyd8HbnP17/R3V/ez28DAAAAAAAAAAAAAAAAC6T0tf0uTLKR80vvn+SS/Xx3TpJn38G7D0vy+iSvr6o9ST6T5NokNyQ5JMnRSU7O7f/v/+bufs0G8gEAAAAAAAAAAAAAAAALoPR14DssyWM2sO9bSV7S3WcvOA8AAAAAAAAAAAAAAABwB3YtOwBz9bkkv5nko0lu2uA7X0zy8iTHKnwBAAAAAAAAAAAAAADA8jnpa5t197ELnH1VklckSVXtSnJ8kuOS3D/J4Um+N6tlsG8kuTLJn3X3NYvKAwAAAAAAAAAAAAAAAGye0tcBqrv3JvnC5AMAAAAAAAAAAAAAAACMxK5lBwAAAAAAAAAAAAAAAABgndIXAAAAAAAAAAAAAAAAwIAofQEAAAAAAAAAAAAAAAAMiNIXAAAAAAAAAAAAAAAAwIAofQEAAAAAAAAAAAAAAAAMiNIXAAAAAAAAAAAAAAAAwIAofQEAAAAAAAAAAAAAAAAMiNIXAAAAAAAAAAAAAAAAwIAofQEAAAAAAAAAAAAAAAAMiNIXAAAAAAAAAAAAAAAAwIAofQEAAAAAAAAAAAAAAAAMiNIXAAAAAAAAAAAAAAAAwIAofQEAAAAAAAAAAAAAAAAMiNIXAAAAAAAAAAAAAAAAwIAofQEAAAAAAAAAAAAAAAAMiNIXAAAAAAAAAAAAAAAAwIAofQEAAAAAAAAAAAAAAAAMiNIXAAAAAAAAAAAAAAAAwIAofQEAAAAAAAAAAAAAAAAMiNIXAAAAAAAAAAAAAAAAwIAofQEAAAAAAAAAAAAAAAAMiNIXAAAAAAAAAAAAAAAAwIAofQEAAAAAAAAAAAAAAAAMiNIXAAAAAAAAAAAAAAAAwIAofQEAAAAAAAAAAAAAAAAMiNIXAAAAAAAAAAAAAAAAwIAofQEAAAAAAAAAAAAAAAAMiNIXAAAAAAAAAAAAAAAAwIAofQEAAAAAAAAAAAAAAAAMiNIXAAAAAAAAAAAAAAAAwIAofQEAAAAAAAAAAAAAAAAMiNIXAAAAAAAAAAAAAAAAwIAofQEAAAAAAAAAAAAAAAAMiNIXAAAAAAAAAAAAAAAAwIAofQEAAAAAAAAAAAAAAAAMiNIXAAAAAAAAAAAAAAAAwIAofQEAAAAAAAAAAAAAAAAMiNIXAAAAAAAAAAAAAAAAwIAofQEAAAAAAAAAAAAAAAAMyMqyAwAAAAAAAAAAAAAAMBDPec+mtp/60vMXFAQAdjYnfQEAAAAAAAAAAAAAAAAMiNIXAAAAAAAAAAAAAAAAwIAofQEAAAAAAAAAAAAAAAAMiNIXAAAAAAAAAAAAAAAAwIAofQEAAAAAAAAAAAAAAAAMiNIXAAAAAAAAAAAAAAAAwIAofQEAAAAAAAAAAAAAAAAMiNIXAAAAAAAAAAAAAAAAwIAofQEAAAAAAAAAAAAAAAAMiNIXAAAAAAAAAAAAAAAAwIAofQEAAAAAAAAAAAAAAAAMiNIXAAAAAAAAAAAAAAAAwIAofQEAAAAAAAAAAAAAAAAMiNIXAAAAAAAAAAAAAAAAwIAofQEAAAAAAAAAAAAAAAAMiNIXAAAAAAAAAAAAAAAAwIAofQEAAAAAAAAAAAAAAAAMiNIXAAAAAAAAAAAAAAAAwIAofQEAAAAAAAAAAAAAAAAMyMqyAwAAAAAAAAAAAAAAMBC/f1py6YUb3v7Bu56YU2965QIDAcDO5KQvAAAAAAAAAAAAAAAAgAFR+gIAAAAAAAAAAAAAAAAYEKUvAAAAAAAAAAAAAAAAgAFR+gIAAAAAAAAAAAAAAAAYEKUvAAAAAAAAAAAAAAAAgAFR+gIAAAAAAAAAAAAAAAAYEKUvAAAAAAAAAAAAAAAAgAFR+gIAAAAAAAAAAAAAAAAYEKUvAAAAAAAAAAAAAAAAgAFR+gIAAAAAAAAAAAAAAAAYEKUvAAAAAAAAAAAAAAAAgAEZTemrql5VVUctOwcAAAAAAAAAAAAAAADAIo2m9JXk1Um+UlXnVtXjlh0GAAAAAAAAAAAAAAAAYBHGVPpKkpUkpyd5f1V9oapeUlX3WHYoAAAAAAAAAAAAAAAAgHkZW+lrTSU5Pskbk/x1Vb2lqn54yZkAAAAAAAAAAAAAAAAAZjam0tfLk3wlq4WvJOnJ+nuTPDPJhVV1UVWdUVWHLCciAAAAAAAAAAAAAAAAwGxGU/rq7t/q7uOSPDHJeUn2rn01uVaShyc5K6unf51VVQ/f/qQAAAAAAAAAAAAAAAAAWzea0tea7r6gu38yyTFJfj3JFfnu0792Jzkjyaeq6mNV9Y+q6nuWEhgAAAAAAAAAAAAAAABgE0ZX+lrT3Vd0969ltfx1epL3T389uVaSRyc5J8kVVfUvq+r4bQ0KAAAAAAAAAAAAAAAAsAmjLX2t6e693f3fu/sJSY5L8oYk12T99K9M1vdM8gtJPl9Vf1JVp1fVXbY/MQAAAAAAAAAAAAAAAMD+jb70Na27v9LdL0tydJKnJ/lw1stfPVlXkscmOTfJZVX16qp6wDLyAgAAAAAAAAAAAAAAAOzrgCp9renuv+nu/9rdpyZ5cJLfSfLNta+zXv46Kskrk1xSVe+sqscuJTAAAAAAAAAAAAAAAADAxAFZ+prW3V/o7hcneWKSy9YeT32S5C5JnpzkT6rqU1V12vYnBQAAAAAAAAAAAAAAADjAS19VdXBVPbOqPprkY0mO3nfL5NNT9ycnOa+q3l5Vh25fWgAAAAAAAAAAAAAAAIBkZdkBFqGqTkjygiQ/l+Qea4+zWu6qyf2VSd6cZE+S5yV58OT52p6fTHK/qjqlu2/dpugAAAAAAAAAAAAAAADADnfAnPRVVStV9TNV9YEkn0vyz5LcM+slr0zW/zPJzyQ5prtf3d1v6u6Tkpya5L25bTnsbyd5/jb+GQAAAAAAAAAAAAAAAMAON/rSV1U9sKpel+TyJH+Y5O9mvejVk+u3kvy7JA/t7h/r7nO7+5bpOd394e4+LclPJPm/U+/+w0X/DQAAAAAAAAAAAAAAAABrVpYdYCuqaleSJyd5QZLHZ7XktW/Rq5J8Nqtlr3O6+8aNzO7u91TVG5K8evLoofPKDQAAAAAAAAAAAAAAAHBnRlX6qqoHJHlekp9PctTa46wWvXqyvjXJu5Kc2d0f2uJPvS/rpa9Dt5oXAAAAAAAAAAAAAAAAYLNGU/qqqncleWKSXbn9U72+luTsJP+hu6+Y8eeumppfd7QRAAAAAAAAAAAAAAAAYJ5GU/pK8hNZL3mtlbEqyUeSnJnkHd19y5x/c+0UMQAAAAAAAAAAAAAAAIBtMabS15pKcmOStyY5s7s/s4Df+HqSFy1gLgAAAAAAAAAAAAAAAMAdGlvp6wtJzkpyTnffsKgf6e4bs3p6GAAAAAAAAAAAAAAAAMC2GlPp6/Hd/YFlhwAAAAAAAAAAAAAAAABYpF3LDrBRCl8AAAAAAAAAAAAAAADATjCa0hcAAAAAAAAAAAAAAADATqD0BQAAAAAAAAAAAAAAADAgK8sOsFFVdWKSN0xuO8nzuvvqTc44Msmbk9Tk0Yu7+8vzSwkAAAAAAAAAAAAAAAAwm9GUvpI8P8mTslr4+tBmC19J0t1XVdUhSU6dzPlMkpfPNSUAAAAAAAAAAAAAAADADHYtO8AmPHVq/fszzHnL5FpJfnqGOQAAAAAAAAAAAAAAAABzN4rSV1Udm+SYye3eJOfNMO68yYwkOa6q7j/DLAAAAAAAAAAAAAAAAIC5GkXpK8lDJ9dO8lfdff1WB3X3niRfnHr08FmCAQAAAAAAAAAAAAAAAMzTWEpfx06t/88c5k3POHZ/mwAAAAAAAAAAAAAAAAC221hKX7un1nvmMG96xqFzmAcAAAAAAAAAAAAAAAAwF2MpfX1nan3IHOZNz9g7h3kAAAAAAAAAAAAAAAAAc7Gy7AAbdO3U+ug5zJue8fU5zAMAAAAAAAAAAAAAGL8nvC759p4Nb3/xWZ9eYBgA2LnGUvr66uRaSU6uqsO7+5tbGVRVhyd5xNSjK2YNBwAAAAAAAAAAAABwQDjq4Zva/um9W/q/dQMAd2LXsgNs0MeT3Jyks5r5BTPMOiPrf/etST46WzQAAAAAAAAAAAAAAACA+RlF6au7b8pqOasmn1+pqhM2O2fyzsuyWh7rJB/v7hvmmRUAAAAAAAAAAAAAAABgFqMofU3868m1kxyW5H1VdfJGX66qhyV5b5JDs1ocS5LfnmtCAAAAAAAAAAAAAAAAgBmNpvTV3e9J8vGsFrY6yTFJPl5V/6aqHrK/96rqwVX1piR/muTYtXFJPtHd71xsagAAAAAAAAAAAAAAAIDNWVl2gE36B0k+meQ+WS1uHZzkhUleWFXXJvlskm9MvrtnkgdP9ibrZbFK8rUkT9vW5AAAAAAAAAAAAAAAAAAbMKrSV3dfXlWnJXlXkvtlvcSVrJa7fnSfV2r69cn9V5M8pbsvX3BcAAAAAAAAAAAAAAAAgE3btewAm9Xdf57kkUnenfVSV08+37V9n+fvSPKD3X3RQkMCAAAAAAAAAAAAAAAAbNHoSl9J0t1Xd/eTs1r+OjvJJVktgN3e50tJ/n2Sk7v7p7v72uWkBgAAAAAAAAAAAAAAALhzK8sOMIvJiV1nJElVHZHkqCT3mnx9bZIru/uaJcUDAAAAAAAAAAAAAAAA2LRRl76mdffVSa5edg4AAAAAAAAAAAAAAACAWexadgAAAAAAAAAAAAAAAAAA1il9AQAAAAAAAAAAAAAAAAyI0hcAAAAAAAAAAAAAAADAgCh9AQAAAAAAAAAAAAAAAAzIyrIDbEVVrSR5apLHJvmBJEckOSzJQZsc1d192JzjAQAAAAAAAAAAAAAAAGzZ6EpfVfWMJP8qyX3WHs0wrmdPBAAAAAAAAAAAAAAAADA/oyp9VdXrkvxy1otena0Xt2YpiwEAAAAAAAAAAAAAAAAsxGhKX1X1U0l+ZXK7VvSqyfryJN9I8jdLiAYAAAAAAAAAAAAAAAAwN6MpfSV57eTaWS17fTbJryd5T3d/a2mpAAAAAAAAAAAAAAAOFO99WfK1ize8/bcPvnte8p1nLjAQAOxMoyh9VdWDk5yQ9RO+/keS07r75uWlAgAAAAAAAAAAAAA4wHzt4uTSCze8/RG7TlxgGADYuXYtO8AGPWpyrSS3JnmuwhcAAAAAAAAAAAAAAABwIBpL6es+k2sn+WR3f3WZYQAAAAAAAAAAAAAAAAAWZSylr71T668sKwQAAAAAAAAAAAAAAADAoo2l9HX51PqgpaUAAAAAAAAAAAAAAAAAWLCxlL4unlo/cGkpAAAAAAAAAAAAAAAAABZsFKWv7v58kk8mqSQnV9URS44EAAAAAAAAAAAAAAAAsBCjKH1NvH5y3ZXk5csMAgAAAAAAAAAAAAAAALAooyl9dffbk/zHrJ729cKqesaSIwEAAAAAAAAAAAAAAADM3WhKXxP/JMlbspr7P1XVWVX1gOVGAgAAAAAAAAAAAAAAAJiflWUH2Kiq+p3J8sYk1ya5d5Izkjy/qi5O8tkk30iydzNzu/ufzjMnAAAAAAAAAAAAAAAAwCxGU/pK8sIkPXXfSWryOTnJwzc5ryYzlL4AAAAAAAAAAAAAAACAwRhT6ev29J1vAQAAAAAAAAAAAAAAABiPsZW+atkBAAAAAAAAAAAAAAAAABZpTKWvhy07AAAAAAAAAAAAAAAAAMCijab01d1/uewMAAAAAAAAAAAAAAAAAIu2a9kBAAAAAAAAAAAAAAAAAFin9AUAAAAAAAAAAAAAAAAwIEpfAAAAAAAAAAAAAAAAAAOi9AUAAAAAAAAAAAAAAAAwICvLDjCLqjosyeOS/EiS45LcM8nuJOnuk5cYDQAAAAAAAAAAAAAAAGBLRln6qqp7JXlVkucmufu+Xyfp/bz3zCRnTm6vS3Jcd9+6qJwAAAAAAAAAAAAAAAAAm7Vr2QE2q6pOSXJRkhclOSSrJa+NOjfJzZP3jk7yxLkHBAAAAAAAAAAAAAAAAJjBqEpfVfWoJO9Lcr99v0ry7Tt7v7u/neSPph49dX7pAAAAAAAAAAAAAAAAAGY3mtJXVe1Ocl6Su649SvLhJE9JcmiSk7KxU7/eNbV+7DwzAgAAAAAAAAAAAAAAAMxqNKWvJL+Y5MgkPbn/1e4+tbvP7+4bp57fmY8k2ZvVgtjRVbXvqWEAAAAAAAAAAAAAAAAASzOm0tfzs17s+oPufs1WhnT3TUm+NPXoxFmDAQAAAAAAAAAAAAAAAMzLKEpfVfWIrJ7yVVk9pesVM468ZGr9wBlnAQAAAAAAAAAAAAAAAMzNKEpfSU6aXDvJp7v7r2ect2dqfeiMswAAAAAAAAAAAAAAAADmZiylryOm1l+ew7ybp9Z3ncM8AAAAAAAAAAAAAAAAgLkYS+nroKn1LXOYd/jUes9+dwEAAAAAAAAAAAAAAABss7GUvq6ZWh+x310bd8LU+ro5zAMAAAAAAAAAAAAAAACYi7GUvq6cXCvJI2cZVFX3TXL81KPPzzIPAAAAAAAAAAAAAAAAYJ7GUvr6WJJbJuvDquq0GWadMbXek+SiGWYBAAAAAAAAAAAAAAAAzNUoSl/dfX2S/zX16LVVddBm51TVcUlemqQnnwu6u+eTEgAAAAAAAAAAAAAAAGB2oyh9Tbxxav2wJG+tqpWNvlxVD0zyx0kOSVK3MxMAAAAAAAAAAAAAAABg6UZT+uru85N8NOuFrZ9KclFVPfWOTv2qqvtW1SuTXJTkQWvjkry9u/9ikZkBAAAAAAAAAAAAAAAANmvDJ2UNxNOS/FmS+03uH5LkbUluSnLJ9MaqOjfJCUlOympRrLJa9kqSLyX5+W3ICwAAAAAAAAAAAAAAALApoznpK0m6+2tJ/l6SL2e9xFVJ7pbVcteaSnJ6kodl9W+c3vuFJH+/u2/YvuQAAAAAAAAAAAAAAAAAGzOq0leSdPdnk/xgkj9Isnft8e18ss86Sf5Lkh/u7i9tT1oAAAAAAAAAAAAAAACAzRld6StJuvv67n5Wku9P8qYkfzn5qm7nc2mSNyd5RHc/o7u/uYTIAAAAAAAAAAAAAAAAABuysuwAs+juLyf5hSSpqsOSPCDJvZJ8T5Jrk1zV3VcuLyEAAAAAAAAAAAAAAADA5oy69DWtu/ck2bPsHAAAAAAAAAAAAAAAAACz2LXsAAAAAAAAAAAAAAAAAACsU/oCAAAAAAAAAAAAAAAAGJCVZQcAAAAAAAAAAAAAAGAgHvH05NhTNrz9LRdct8AwALBzKX0BAAAAAAAAAAAAALDqB56xqe3nvPv8BQUBgJ1tNKWvqjpvAWO7u5+ygLkAAAAAAAAAAAAAAAAAWzKa0leSJyXpOc6rOc8DAAAAAAAAAAAAAAAAmNmYSl+zqqm1shcAAAAAAAAAAAAAAAAwSGMrfdWdb9mvtaJXzTgHAAAAAAAAAAAAAAAAYGHGVPravcn9d0lyjyQnJXlSkp9Lcrck103WH55rOgAAAAAAAAAAAAAAAIA5GE3pq7u/tYXXrk9yaZI/rqrfSnJukkcleXuSp3T3++cYEQAAAAAAAAAAAAAAAGBmu5YdYLt092VJfjzJF5McnOS/VdXfWm4qAAAAAAAAAAAAAAAAgNvaMaWvJOnuPUleOrndneTXlpcGAAAAAAAAAAAAAAAA4LvtqNJXknT3e5Jck6SSPK2q7r7kSAAAAAAAAAAAAAAAAAD/344rfU38+eR6tyQ/sswgAAAAAAAAAAAAAAAAANN2aunruqn10UtLAQAAAAAAAAAAAAAAALCPnVr62j21vtfSUgAAAAAAAAAAAAAAAADsY8eVvqqqkjx66tGeZWUBAAAAAAAAAAAAAAAA2NeOK30l+cdJjpi6/9KyggAAAAAAAAAAAAAAAADsa0eVvqrquUn+bZKePPpOko8sLxEAAAAAAAAAAAAAAADAba0sO8BGVdXpW3htJcnhSR6S5ElJHpikJt91kt/r7pvmkxAAAAAAAAAAAAAAAABgdqMpfSV5W9ZP6NqK6bJXJbkkya/OGgoAAAAAAAAAAAAAAABgnnYtO8AW1BY+yXphrJJ8OsmPd/d12xcbAAAAAAAAAAAAAAAA4M6N6aSvZL3AtdX3LkpydpKzu/uW+UQCAAAAAAAAAAAAADhAfOqtyTcv2/D2Z61cl3Nu+dEFBgKAnWlMpa8XbeGdW5Jcn+TqJH/R3d+YbyQAAAAAAAAAAAAAgAPIRX+YXHrhhrc/+6ATlb4AYAFGU/rq7jOXnQEAAAAAAAAAAAAAAABg0XYtOwAAAAAAAAAAAAAAAAAA65S+AAAAAAAAAAAAAAAAAAZE6QsAAAAAAAAAAAAAAABgQJS+AAAAAAAAAAAAAAAAAAZE6QsAAAAAAAAAAAAAAABgQFaWHWCjqur0Zf12d79jWb8NAAAAAAAAAAAAAAAA7CyjKX0leVuSXsLvdsb17wQAAAAAAAAAAAAAAACM2BjLTLXsAAAAAAAAAAAAAAAAAACLMrbS13Tha99Tv/ZXBtvoPgAAAAAAAAAAAAAAAIClG1Pp60WT6+4kv5Tk8KwXuL6S5BNJvphkz+TZYUlOSPLoJMdMnnWS65K8MckNC08MAAAAAAAAAAAAAAAAsEmjKX1195lVdWyS92W98PXBJK/q7o/d0btV9Zgkr0nyY0nukeQ5SZ7Q3ZcsMDIAAAAAAAAAAAAAAADApu1adoCNqqq7J7kgyfGTR6/q7sfdWeErSbr7o9392CT/IqtlsQcleV9V7V5YYAAAAAAAAAAAAAAAAIAtGE3pK8krkpyQpJP8bne/drMDuvs3kvxuVotfx01mAgAAAAAAAAAAAAAAAAzGKEpfVXWXJM+Z3N6a2cpar0hyy2T97Koaxb8BAAAAAAAAAAAAAAAAsDOMpfD0d5IcmdVTvj7R3ddudVB3X5PkT7N62td9kpwyl4QAAAAAAAAAAAAAAAAAczCW0texU+vL5jDv8v3MBgAAAAAAAAAAAAAAAFiqsZS+jppa320O8+46tb7vHOYBAAAAAAAAAAAAAAAAzMVYSl83Tq1PmsO86Rk37ncXAAAAAAAAAAAAAAAAwDYbS+nrq5NrJfm+qnrMVgdV1SlJjpt6dPkswQAAAAAAAAAAAAAAAADmaSylrw8l+U6Szmrx66yqOmSzQ6pqd5Kzph7dnOSD8wgIAAAAAAAAAAAAAAAAMA+jKH119w1J3pXVwlcneWiSD1TVgzY6Y7L3A5N3M5nzzslsAAAAAAAAAAAAAAAAgEEYRelr4heT3Dh1/0NJLq6qs6vqcZNTvG6jqnZX1eOr6veSXJzkkVkteyXJt5L88qJDAwAAAAAAAAAAAAAAAGzGyrIDbFR3X15Vz0hybpKDslreOjjJcyefVNXVSa6ffHdYkiOmRqydElZJ/ibJ07v78m37AwAAAAAAAAAAAAAAAAA2YEwnfaW7z0/y1CRfz3qJK5N1JTkyyfFJTpis154n64Wva5M8pbvfvX3JAQAAAAAAAAAAAAAAADZmVKWvJOnu9yZ5SJK3JLk5ty113d4nkz03T945qbsv2L7EAAAAAAAAAAAAAAAAABu3suwAW9Hd1yZ5blX9UpKfTXJKkh/K6uleh0y23ZjkqiSfTHJhkj+avAcAAAAAAAAAAAAAAAAwWKMsfa3p7q//P/buPUb2sr7j+OdZF0ERFBUDLZWjoKFqERVjI8ZoY4nEKsU0mmoa0aKmtvGeWBsaim3SmuipMa3xjxo5SdXexHu1xkRjkNqkAmIjbRD1EG+lyiWA3Pn2j53NzhnPOczszuzvmd3XK5nM7/nt83vme87/7/yS/O3okyRprT1o9Lf7hpoLAAAAAAAAAAAAAAAAYLOWOvo6GLEXAAAAAAAAAAAAAMxuEdAAACAASURBVAAAsMxWhh4AAAAAAAAAAAAAAAAAgA2iLwAAAAAAAAAAAAAAAICOrA49wFa11lqS05OckuSRSY5J0qpq76CDAQAAAAAAAAAAAAAAAGzC0kZfrbUzkrw9yYuSHHuQLb8QfbXWXpDkJaPlTVV10eImBAAAAAAAAAAAAAAAAJjd0kVfrbUjk7w/yQXrtw6yrQ7x+HVJ3rD+TGvtH6vq23MfEgAAAAAAAAAAAAAAAGCTVoYeYBattYcm+WrWgq9ZYq+1P1Z9L8kXx5793bkOCAAAAAAAAAAAAAAAALBFSxV9JfmHJM8cW9+X5BNJ3pjkD3PwEGzSpWPXvzm/0QAAAAAAAAAAAAAAAAC2bnXoAabVWntJkt/Kxtu8rkzy8qr6zujvJ0951OfXj0zy9NbaQ6vq53MdFgAAAAAAAAAAAAAAAGCTlulNXxeOXf9PkuetB1+zqKofJvnpaPmgJL86h9kAAAAAAAAAAAAAAAAA5mIpoq/W2mOSPCMbb/l6Y1XduoUjrxm7fuIWzgEAAAAAAAAAAAAAAACYq6WIvpKclaSNPj+uqi9t8bwbx64fvcWzAAAAAAAAAAAAAAAAAOZmWaKvE0bfleSKOZw3/pawh83hPAAAAAAAAAAAAAAAAIC5WJbo6xFj17fM4byjx67vmsN5AAAAAAAAAAAAAAAAAHOxLNHXzWPXx87hvBPHrn82h/MAAAAAAAAAAAAAAAAA5mJZoq//G7t+0lYOaq0dkeSMsVs/2sp5AAAAAAAAAAAAAAAAAPO0OvQAU7pq9N2SPL61dkpVXbfJs85NctTo+r4kX9/qcAAAAAAAAAAAAAAAO8IJvzbT9quuPXpBgwDA7rYU0VdVfae19v0ke0a33pHkdbOeM3rL14Xrxyb5RlXdOo8ZAQAAAAAAAAAAAACW3jl/NdP2t7ztMwsaBAB2t5WhB5jBvtF3S/L7rbXf2cQZf5Pk9LH1B7c8FQAAAAAAAAAAAAAAAMAcLVP0tTfJz7L2hq6W5KOttT8Zvb3rsFprj2utfTrJBaPnk2R/kr9f1LAAAAAAAAAAAAAAAAAAm7E69ADTqqpbW2uvTfIvo1urSf48yZtba59K8oPx/a21FyV5YpKzk/zGaH8b/fmeJK+sqvu2Y3YAAAAAAAAAAAAAAACAaS1N9JUkVfXJ1trbk7w3G2/8enSS10xsbUk+PbGusc8bqurfFz8xAAAAAAAAAAAAAAAAwGxWhh5gVlX1viTnJrl5/dboezLsatl4s9f6+tYk51bVh7ZtYAAAAAAAAAAAAAAAAIAZLF30lSRV9dkkpyZ5V5KfZSPuajkw9lq/d3uSvUlOrarPbeOoAAAAAAAAAAAAAAAAADNZHXqAzaqqm5L8WWvt4iRPS/KcJL+S5FFJHpzkp0n+N8nlSb5WVfcONSsAAAAAAAAAAAAAAADAtJY2+lpXVZXkitEHAAAAAAAAAAAAAAAAYKktTfTVWltZv66q+4ecBQAAAAAAAAAAAAAAAGBRVh54y/Baa+cnuWf0uau19thhJwIAAAAAAAAAAAAAAABYjGV509eJSdro+sqqun7IYQAAAAAAAAAAAAAAAAAWZSne9JXk56PvSrJ/yEEAAAAAAAAAAAAAAAAAFmlZoq+fjF3fP9gUAAAAAAAAAAAAAAAAAAu2LNHXtWPXJw02BQAAAAAAAAAAAAAAAMCCLUX0VVVXJPl+kpbkzNbascNOBAAAAAAAAAAAAAAAALAYSxF9jXxo9L2a5O1DDgIAAAAAAAAAAAAAAACwKMsUfb07yZVZe9vXO1prLx54HgAAAAAAAAAAAAAAAIC5W5roq6ruTXJekquTHJHk0tba3tbaLw07GQAAAAAAAAAAAAAAAMD8rA49wLRaa28dXX48yeOSHJPkTUn+qLX2n1l7C9gNSW6d5dyq2jvPOQEAAAAAAAAAAAAAltaPr07uvGXq7U9d2Z9v3n/yAgcCgN1paaKvJO9JUmPrStKy9m941uizGaIvAAAAAAAAAAAAAIAk+cI7k/2XTb39fUeeluffceECBwKA3Wll6AE2oY1dVw4MwTZ7DgAAAAAAAAAAAAAAAEAXlulNX8lGqCXYAgAAAAAAAAAAAAAAAHakZYq+Xjz0AAAAAAAAAAAAAAAAAACLtjTRV1V9bugZAAAAAAAAAAAAAAAAABZtZegBAAAAAAAAAAAAAAAAANgg+gIAAAAAAAAAAAAAAADoiOgLAAAAAAAAAAAAAAAAoCOrQw+wrrW2d2z5rqq6ebBhAAAAAAAAAAAAAAAAAAbSTfSV5M1JanT9viSHjb5aa88dW369qu5e1GAAAAAAAAAAAAAAAAAA26Wn6CtJWjbCrwfylbG9j0ty/SIGAgAAAAAAAAAAAAAAANhOK0MPsEVt6AEAAAAAAAAAAAAAAAAA5mnZo69p3woGAAAAAAAAAAAAAAAAsBSWPfrypi8AAAAAAAAAAAAAAABgR1n26AsAAAAAAAAAAAAAAABgRxF9AQAAAAAAAAAAAAAAAHRE9AUAAAAAAAAAAAAAAADQEdEXAAAAAAAAAAAAAAAAQEdEXwAAAAAAAAAAAAAAAAAdEX0BAAAAAAAAAAAAAAAAdET0BQAAAAAAAAAAAAAAANCR1aEHmFCj719vre2Z4blZ92/8YNVXN/McAAAAAAAAAAAAAAAAwCL0Fn0lSUvysQXuH1fp8/8AAAAAAAAAAAAAAAAA2KV6DJ4qayHXNPvWTbMfAAAAAAAAAAAAAAAAoHs9Rl/JgUHXIvYnQjEAAAAAAAAAAAAAAACgQz1FX9dnc/EWAAAAAAAAAAAAAAAAwI7RTfRVVXuGngEAAAAAAAAAAAAAAABgaCtDDwAAAAAAAAAAAAAAAADABtEXAAAAAAAAAAAAAAAAQEdEXwAAAAAAAAAAAAAAAAAdEX0BAAAAAAAAAAAAAAAAdET0BQAAAAAAAAAAAAAAANAR0RcAAAAAAAAAAAAAAABAR0RfAAAAAAAAAAAAAAAAAB0RfQEAAAAAAAAAAAAAAAB0RPQFAAAAAAAAAAAAAAAA0JHVoQdge7TWjkhyVpLHJjkxyW1JfpTkyqr6/oCjAQAAAAAAAAAAAAAAAGNEXwNprT0+yTOTnDn6fnqSY8a27K+qPXP4neOTXJzk5UkeeYg9lyfZW1Uf3+rvAQAAAAAAAAAAAAAAAFsj+tpGrbXnJXln1kKvgwZYc/69c5JckuQxD7D12Ume3Vr7SJLXV9Xti54NAAAAAAAAAAAAAAAAODjR1/Y6I8nZ2/FDo8Dsk0kePHa7klyR5LtJHpHkaUkePfb3VyY5trX221V1/3bMCQAAAAAAAAAAAAAAABxoZegBSJLcleS6eR3WWjspyaU5MPj6WpInV9WZVfWyqjo7yUlJ3pTknrF9L07yF/OaBQAAAAAAAAAAAAAAAJiN6Gv73ZPkqiR/l+T1SZ6R5JgkF8zxNy5OctzY+vIkL6iqa8Y3VdVdVfX+JC+beP6trbWT5zgPAAAAAAAAAAAAAAAAMKXVoQfYZfYl+WBV3Tn5h9baXH6gtfaEJK8au3V3kvMP9pvrquqTrbV9Y88dmeSiJK+Zy1AAAAAAAAAAAAAAAADA1LzpaxtV1U2Hi6/m5BVJHjS2vrSqrp3iuXdPrF/WWjtqfmMBAAAAAAAAAAAAAAAA0xB97TznTaw/PM1DVXVNkv8Yu3V0krPnNRQAAAAAAAAAAAAAAAAwHdHXDtJaOyHJU8du3ZvkazMc8ZWJ9TlbnQkAAAAAAAAAAAAAAACYzerQAzBXT5lYX11Vt8/w/OUT6ydvcR4AAAAAAAAAAAAAYJm8+nMzbX/+2z6zoEEAYHfzpq+d5UkT6+/M+Px1D3AeAAAAAAAAAAAAAAAAsGCir53l1In19TM+v39i/ajW2nFbmAcAAAAAAAAAAAAAAACYkehrZ3nExPqGWR6uqtuS3Dlx++FbmggAAAAAAAAAAAAAAACYyerQAzBXD5tY37GJM+5IctTY+pjNj7OhtfaYJMfP+Ngp8/htAAAAAAAAAAAAAAAAWCair51lMvqafGvXNO5IctxhztysNyS5aE5nAQAAAAAAAAAAAAAAwI61MvQALFRt0zMAAAAAAAAAAAAAAADAnIi+dpbbJtYP2cQZk89MngkAAAAAAAAAAAAAAAAs0OrQAzBXPUdfH0jyzzM+c0qST83p9wEAAAAAAAAAAAAAAGApiL52llsm1sfP8nBr7WH5xejr5i1NNFJVNyS5YcZ55vHTAAAAAAAAAAAAAAAAsFRWhh6Aubp2Yn3yjM9P7r+xqm7awjwAAAAAAAAAAAAAAADAjERfO8s1E+tTZ3z+8RPrb29hFgAAAAAAAAAAAAAAAGATRF87y39NrE9vrT10hufPeoDzAAAAAAAAAAAAAAAAgAUTfe0gVfXjJFeP3VpN8pwZjnjexPrzW50JAAAAAAAAAAAAAAAAmI3oa+f5xMT61dM81Fo7Lcmzxm7dnuSL8xoKAAAAAAAAAAAAAAAAmI7oa+f5SJL7xtYvba09YYrn3jGx/qequnN+YwEAAAAAAAAAAAAAAADTEH3tMFV1bZJ9Y7cenOSS1tpRh3qmtXZukvPHbt2d5OKFDAgAAAAAAAAAAAAAAAAc1urQA+w2rbWTcvD/9xMm1quttT2HOOa2qvrpYX7moiTnJTlutH52ki+11i6oqv8em+XIJK9L8t6J599bVfsPcz4AAAAAAAAAAAAAAACwIKKv7XdZkpOn2PfLSb53iL/ty4Fv5jpAVf2gtfbSJP+WtTd9JclZSb7dWvtGku8meXiSpyc5fuLxzyb50ynmAwAAAAAAAAAAAAAAABZA9LVDVdVXWmvnJbkkG2FXS3Lm6HMwH0vy2qq6b/ETAgAAAAAAAAAAAAAAAAcj+trBqupfW2tPSXJxkpcnOe4QW7+e5D1V9fFtGw4AAAAAAAAAAAAA6M+HX5Tsv2zq7V9+yGl5/h0XLnAgANidRF/brKr2bPPv3ZDkD1prb0pyVpKTk5yQ5PYkP0xyZVV9bztnAgAAAAAAAAAAAAAAAA5N9LVLVNXdSb489BwAAAAAAAAAAAAAAADA4a0MPQAAAAAAAAAAAAAAAAAAG0RfAAAAAAAAAAAAAAAAAB0RfQEAAAAAAAAAAAAAAAB0RPQFAAAAAAAAAAAAAAAA0BHRFwAAAAAAAAAAAAAAAEBHRF8AAAAAAAAAAAAAAAAAHRF9AQAAAAAAAAAAAAAAAHRE9AUAAAAAAAAAAAAAAADQEdEXAAAAAAAAAAAAAAAAQEdEXwAAAAAAAAAAAAAAAAAdEX0BAAAAAAAAAAAAAAAAdET0BQAAAAAAAAAAAAAAANAR0RcAAAAAAAAAAAAAAABAR0RfAAAAAAAAAAAAAAAAAB0RfQEAAAAAAAAAAAAAAAB0RPQFAAAAAAAAAAAAAAAA0BHRFwAAAAAAAAAAAAAAAEBHRF8AAAAAAAAAAAAAAAAAHRF9AQAAAAAAAAAAAAAAAHRE9AUAAAAAAAAAAAAAAADQEdEXAAAAAAAAAAAAAAAAQEdEXwAAAAAAAAAAAAAAAAAdEX0BAAAAAAAAAAAAAAAAdET0BQAAAAAAAAAAAAAAANAR0RcAAAAAAAAAAAAAAABAR0RfAAAAAAAAAAAAAAAAAB0RfQEAAAAAAAAAAAAAAAB0RPQFAAAAAAAAAAAAAAAA0BHRFwAAAAAAAAAAAAAAAEBHRF8AAAAAAAAAAAAAAAAAHRF9AQAAAAAAAAAAAAAAAHRE9AUAAAAAAAAAAAAAAADQEdEXAAAAAAAAAAAAAAAAQEdEXwAAAAAAAAAAAAAAAAAdEX0BAAAAAAAAAAAAAAAAdET0BQAAAAAAAAAAAAAAANAR0RcAAAAAAAAAAAAAAABAR0RfAAAAAAAAAAAAAAAAAB0RfQEAAAAAAAAAAAAAAAB0RPQFAAAAAAAAAAAAAAAA0BHRFwAAAAAAAAAAAAAAAEBHRF8AAAAAAAAAAAAAAAAAHRF9AQAAAAAAAAAAAAAAAHRkdegBAAAAAAAAAAAAAADoxAv/Mrnzlqm3v/kD31zgMACwe4m+AAAAAAAAAAAAAABYc+LpM23/5v03L2gQANjdVoYeAAAAAAAAAAAAAAAAAIANoi8AAAAAAAAAAAAAAACAjoi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoiOgLAAAAAAAAAAAAAAAAoCOiLwAAAAAAAAAAAAAAAICOiL4AAAAAAAAAAAAAAAAAOiL6AgAAAAAAAAAAAAAAAOiI6AsAAAAAAAAAAAAAAACgI6IvAAAAAAAAAAAAAAAAgI6IvgAAAAAAAAAAAAAAAAA6IvoCAAAAAAAAAAAAAAAA6IjoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjoi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoiOgLAAAAAAAAAAAAAAAAoCOiLwAAAAAAAAAAAAAAAICOrA49AAAAAAAAAAAAAAAAnfj8Hyc/+dbU2//6yKPzlrt+b4EDAcDuJPoCAAAAAAAAAAAAAGDNT76V7L9s6u1nrJy2wGEAYPdaGXoAAAAAAAAAAAAAAAAAADaIvgAAAAAAAAAAAAAAAAA6IvoCAAAAAAAAAAAAAAAA6IjoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjoi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoiOgLAAAAAAAAAAAAAAAAoCOiLwAAAAAAAAAAAAAAAICOiL4AAAAAAAAAAAAAAAAAOiL6AgAAAAAAAAAAAAAAAOiI6AsAAAAAAAAAAAAAAACgI6IvAAAAAAAAAAAAAAAAgI6IvgAAAAAAAAAAAAAAAAA6IvoCAAAAAAAAAAAAAAAA6IjoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjoi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoiOgLAAAAAAAAAAAAAAAAoCOiLwAAAAAAAAAAAAAAAICOiL4AAAAAAAAAAAAAAAAAOiL6AgAAAAAAAAAAAAAAAOiI6AsAAAAAAAAAAAAAAACgI6IvAAAAAAAAAAAAAAAAgI6IvgAAAAAAAAAAAAAAAAA6IvoCAAAAAAAAAAAAAAAA6IjoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjoi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoiOgLAAAAAAAAAAAAAAAAoCOiLwAAAAAAAAAAAAAAAICOiL4AAAAAAAAAAAAAAAAAOiL6AgAAAAAAAAAAAAAAAOiI6AsAAAAAAAAAAAAAAACgI6IvAAAAAAAAAAAAAAAAgI6IvgAAAAAAAAAAAAAAAAA6IvoCAAAAAAAAAAAAAAAA6IjoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjoi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoiOgLAAAAAAAAAAAAAAAAoCOrQw8AAAAAAAAAAAAAAEAnznhFsuc5U2+/5As3LnAYANi9RF8AAAAAAAAAAAAAAKx52itn2r7vs59Z0CAAsLutDD0AAAAAAAAAAAAAAAAAABtEXwAAAAAAAAAAAAAAAAAdEX0BAAAAAAAAAAAAAAAAdET0BQAAAAAAAAAAAAAAANAR0RcAAAAAAAAAAAAAAABAR0RfAAAAAAAAAAAAAAAAAB0RfQEAAAAAAAAAAAAAAAB0RPQFAAAAAAAAAAAAAAAA0BHRFwAAAAAAAAAAAAAAAEBHRF8AAAAAAAAAAAAAAAAAHRF9AQAAAAAAAAAAAAAAAHRE9AUAAAAAAAAAAAAAAADQEdEXAAAAAAAAAAAAAAAAQEdEXwAAAAAAAAAAAAAAAAAdEX0BAAAAAAAAAAAAAAAAdET0BQAAAAAAAAAAAAAAANAR0RcAAAAAAAAAAAAAAABAR0RfAAAAAAAAAAAAAAAAAB1ZHXoAAAAAAAAAAAAAAAA6ceVHkpuvn3r7q1ZvzL57n7vAgQBgdxJ9AQAAAAAAAAAAAACw5qqPJvsvm3r7+UecJvoCgAVYGXoAAAAAAAAAAAAAAAAAADaIvgAAAAAAAAAAAAAAAAA6IvoCAAAAAAAAAAAAAAAA6IjoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjoi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoiOgLAAAAAAAAAAAAAAAAoCOiLwAAAAAAAAAAAAAAAICOiL4AAAAAAAAAAAAAAAAAOiL6AgAAAAAAAAAAAAAAAOiI6AsAAAAAAAAAAAAAAACgI6IvAAAAAAAAAAAAAAAAgI6IvgAAAAAAAAAAAAAAAAA6IvoCAAAAAAAAAAAAAAAA6IjoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjoi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoiOgLAAAAAAAAAAAAAAAAoCOiLwAAAAAAAAAAAAAAAICOiL4AAAAAAAAAAAAAAAAAOiL6AgAAAAAAAAAAAAAAAOiI6AsAAAAAAAAAAAAAAACgI6IvAAAAAAAAAAAAAAAAgI6IvgAAAAAAAAAAAAAAAAA6IvoCAAAAAAAAAAAAAAAA6IjoCwAA4P/Zu59Xz+o6juOvz+2G2bQIzDQiDCQaCH8UQkElzErFVq2ysIyIoFXiIpUB24TuKigXbdJFboIkJk0mpYIpRKT8sRBy0Uw0NYhMIxUa5JwWV7mXizr30v3OeXXP4wF3cb73/b3zmj/gyQEAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKLI+9wAAAAAAAAAAAAAAAEpcesWuzp96/sCKhgDAsom+AAAAAAAAAAAAAADYcMM9uzq/9bYjKxoCAMu2NvcAAAAAAAAAAAAAAAAAADaJvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAiqzPPQAAAAAAAAAAAAAAgBJ/eyZ55aUdn1+1diJPn71shYMAYJlEXwAAAAAAAAAAAAAAbHjkjuTEsR2ff/eCgzn08uEVDgKAZVqbewAAAAAAAAAAAAAAAAAAm0RfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABF1uceAAAAAAAAAAAAAABAiS8/tKvzQ7cdWdEQAFg2b/oCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAVHwoEgAAIABJREFUAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKLI+9wAAAAAAAAAAAAAAAEr86MbkxLEdn//qwoM59PLhFQ4CgGXypi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqKvfWiM8a0xxvQ//Nw39/8BAAAAAAAAAAAAAAAAlkr0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQZH3uAZwXNyV5fBf3/1zVEAAAAAAAAAAAAAAAAOCtib6W4dQ0TcfnHgEAAAAAAAAAAAAAAACc29rcAwAAAAAAAAAAAAAAAADYJPoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6WoavjTEeHWOcHGO8Msb4xxjj+BjjN2OMb48xPj33QAAAAAAAAAAAAAAAAGDD+twDOC8+t+35giTvSnJZkmuT3DnGeDLJHdM0PXq+xwEAAAAAAAAAAAAAJa6/O3nlpR2ff+Pep1c4BgCWS/TF665JcnSMcXeSw9M0TXv5x8cY701y8S6/dvlebgAAAAAAAAAAAAAAzuF9V+7q/OmzZ1Y0BACWTfS1v51M8nCSJ5I8l+R0krNJLkrysSSfSXLdlvuR5M4ka0nu2OMtX09y1x7/TQAAAAAAAAAAAAAAANh3RF/70xPZiLl++RZv7Ppdku+PMa5J8kCSD2353e1jjMenafrZincCAAAAAAAAAAAAAAAA26zNPYC9N03Tw9M0HX2L4Gvr7ZNJPpHkj9t+dc8Y420rGQgAAAAAAAAAAAAAAAC8KW/6ItM0nR5j3JTkySTjtY8PJjmU5NE9+mfuTfKTXX7n8iTeNgYAAAAAAAAAAAAAAMCiiL5IkkzT9PsxxtEk1235+PrsUfQ1TdMLSV7YzXfGGOc+AgAAAAAAAAAAAAAAgH1mbe4BVHlk2/OVs6wAAAAAAAAAAAAAAACABRN9sdXxbc8XzzECAAAAAAAAAAAAAAAAlkz0xVYvb3u+cJYVAAAAAAAAAAAAAAAAsGCiL7Z6z7bnF2dZAQAAAAAAAAAAAAAAAAsm+mKrj297/ussKwAAAAAAAAAAAAAAAGDBRF8kScYY70jy2W0f/3qGKQAAAAAAAAAAAAAAALBooi9e980k79/y/GqSh2baAgAAAAAAAAAAAAAAAIsl+tpnxhg3jzEu2eV3vprkrm0f3zdN04m9WwYAAAAAAAAAAAAAAADshOhr//lKkj+NMe4fY9w4xjjwZodjjGvGGD9N8sMkY8uvTiY5vOKdAAAAAAAAAAAAAAAAwBtYn3sAK3Fhki++9nN2jPF8kuNJXkryapKLklyV5I3eCHY6yfXTNJ06P1MBAAAAAAAAAAAAAACArURf+99akg+/9nMujyW5ZZqmv6x2EgAAAAAAAAAAAAAAAPBmRF/7z/eSnEzyySSX7eD+X0mOJvnBNE2PrXIYAAAAAAAAAAAAAAAAcG6ir31mmqYHkzyYJGOMdyf5SJIPJLkkyTuz8eavM0n+nuS5JM9M0/TqPGsBAAAAAAAAAAAAAACA7URf+9g0TWeS/HbuHQAAAAAAAAAAAADA/4lf3J6cenbH59+54EBu/ffNKxwEAMsk+gIAAAAAAAAAAAAAYMOpZ5MTx3Z8fvXawRWOAYDlWpt7AAAAAAAAAAAAAAAAAACbRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARdbnHgAAAAAAAAAAAAAAQImrP5988FM7Pr/vkdMrHAMAyyX6AgAAAAAAAAAAAABgw0e/sKvz+39+ZEVDAGDZ1uYeAAAAAAAAAAAAAAAAAMAm0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQJH1uQcAAAAAAAAAAAAAAFDiDz9Ozvx5x+dfWj+d+/9z7QoHAcAyib4AAAAAAAAAAAAAANjw1APJiWM7Pr/l7QdFXwCwAmtzDwAAAAAAAAAAAAAAAABgk+gLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoMj63AMAAAAAAAAAAAAAAChx6RW7On/q+QMrGgIAyyb6AgAAAAAAAAAAAABgww337Or81tuOrGgIACzb2twDAAAAAAAAAAAAAAAAANgk+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAA+C97dxpmW1XeCfz/Xi8gg4IYRBEHIEQcQhBNPw5opE0aYqJphzj1Y0JiJzGNccygMY4xMdptG4ek1Xa2YzRilPjkUUmM2hLRx6iNiFODep1AQAIRGYXVH865zanNrVvn3DpVtU7V7/flPmvVWnu/VR/eu+vU/u8NAAAAAADQEaEvAAAAAAAAAAAAAAAAgI4IfQEAAAAAAAAAAAAAAAB0ROgLAAAAAAAAAAAAAAAAoCNCXwAAAAAAAAAAAAAAAAAdEfoCAAAAAAAAAAAAAAAA6IjQFwAAAAAAAAAAAAAAAEBHhL4AAAAAAAAAAAAAAAAAOiL0BQAAAAAAAAAAAAAAANARoS8AAAAAAAAAAAAAAACAjgh9AQAAAAAAAAAAAAAAAHRE6AsAAAAAAAAAAAAAAACgI0JfAAAAAAAAAAAAAAAAAB3ZvtEFAAAAAAAAAAAAAADQiQs+n1x9+dTLf2rbjpx9w53WsCAA2JqEvgAAAAAAAAAAAAAAGPngs5MdZ069/M/3OSYnXvVHa1gQAGxN2za6AAAAAAAAAAAAAAAAAABuJPQFAAAAAAAAAAAAAAAA0BGhLwAAAAAAAAAAAAAAAICOCH0BAAAAAAAAAAAAAAAAdEToCwAAAAAAAAAAAAAAAKAjQl8AAAAAAAAAAAAAAAAAHRH6AgAAAAAAAAAAAAAAAOiI0BcAAAAAAAAAAAAAAABAR4S+AAAAAAAAAAAAAAAAADoi9AUAAAAAAAAAAAAAAADQEaEvAAAAAAAAAAAAAAAAgI4IfQEAAAAAAAAAAAAAAAB0ROgLAAAAAAAAAAAAAAAAoCNCXwAAAAAAAAAAAAAAAAAdEfoCAAAAAAAAAAAAAAAA6IjQFwAAAAAAAAAAAAAAAEBHhL4AAAAAAAAAAAAAAAAAOiL0BQAAAAAAAAAAAAAAANARoS8AAAAAAAAAAAAAAACAjgh9AQAAAAAAAAAAAAAAAHRE6AsAAAAAAAAAAAAAAACgI0JfAAAAAAAAAAAAAAAAAB0R+gIAAAAAAAAAAAAAAADoiNAXAAAAAAAAAAAAAAAAQEeEvgAAAAAAAAAAAAAAAAA6IvQFAAAAAAAAAAAAAAAA0BGhLwAAAAAAAAAAAAAAAICOCH0BAAAAAAAAAAAAAAAAdEToCwAAAAAAAAAAAAAAAKAjQl8AAAAAAAAAAAAAAAAAHRH6AgAAAAAAAAAAAAAAAOiI0BcAAAAAAAAAAAAAAABAR4S+AAAAAAAAAAAAAAAAADoi9AUAAAAAAAAAAAAAAADQEaEvAAAAAAAAAAAAAAAAgI4IfQEAAAAAAAAAAAAAAAB0ROgLAAAAAAAAAAAAAAAAoCNCXwAAAAAAAAAAAAAAAAAdEfoCAAAAAAAAAAAAAAAA6IjQFwAAAAAAAAAAAAAAAEBHhL4AAAAAAAAAAAAAAAAAOiL0BQAAAAAAAAAAAAAAANARoS8AAAAAAAAAAAAAAACAjgh9AQAAAAAAAAAAAAAAAHRE6AsAAAAAAAAAAAAAAACgI9s3ugAAAAAAAAAAAAAAADrxa38/0/ITn/n+NSoEALY2oS9gSym/WACdai9/6EaXAAAAAAAAAAAAAAB0YttGFwAAAAAAAAAAAAAAAADAjYS+AAAAAAAAAAAAAAAAADoi9AUAAAAAAAAAAAAAAADQEaEvAAAAAAAAAAAAAAAAgI4IfQEAAAAAAAAAAAAAAAB0ROgLAAAAAAAAAAAAAAAAoCNCXwAAAAAAAAAAAAAAAAAdEfoCAAAAAAAAAAAAAAAA6IjQFwAAAAAAAAAAAAAAAEBHhL4AAAAAAAAAAAAAAAAAOiL0BQAAAAAAAAAAAAAAANARoS8AAAAAAAAAAAAAAACAjgh9AQAAAAAAAAAAAAAAAHRE6AsAAAAAAAAAAAAAAACgI0JfAAAAAAAAAAAAAAAAAB0R+gIAAAAAAAAAAAAAAADoiNAXAAAAAAAAAAAAAAAAQEeEvgAAAAAAAAAAAAAAAAA6sn2jCwAAAAAAAAAAAAAAoBNv/oVkx5lTL//IvsfkxKv+aA0LAoCtyZu+AAAAAAAAAAAAAAAAADoi9AUAAAAAAAAAAAAAAADQEaEvAAAAAAAAAAAAAAAAgI4IfQEAAAAAAAAAAAAAAAB0ROgLAAAAAAAAAAAAAAAAoCNCXwAAAAAAAAAAAAAAAAAdEfoCAAAAAAAAAAAAAAAA6IjQFwAAAAAAAAAAAAAAAEBHhL4AAAAAAAAAAAAAAAAAOiL0BQAAAAAAAAAAAAAAANARoS8AAAAAAAAAAAAAAACAjgh9AQAAAAAAAAAAAAAAAHRE6AsAAAAAAAAAAAAAAACgI0JfAAAAAAAAAAAAAAAAAB0R+gIAAAAAAAAAAAAAAADoiNAXAAAAAAAAAAAAAAAAQEeEvgAAAAAAAAAAAAAAAAA6IvQFAAAAAAAAAAAAAAAA0BGhLwAAAAAAAAAAAAAAAICOCH0BAAAAAAAAAAAAAAAAdEToCwAAAAAAAAAAAAAAAKAjQl8AAAAAAAAAAAAAAAAAHRH6AgAAAAAAAAAAAAAAAOiI0BcAAAAAAAAAAAAAAABAR4S+AAAAAAAAAAAAAAAAADoi9AUAAAAAAAAAAAAAAADQEaEvAAAAAAAAAAAAAAAAgI4IfQEAAAAAAAAAAAAAAAB0ROgLAAAAAAAAAAAAAAAAoCNCXwAAAAAAAAAAAAAAAAAdEfoCAAAAAAAAAAAAAAAA6IjQFwAAAAAAAAAAAAAAAEBHhL4AAAAAAAAAAAAAAAAAOiL0BQAAAAAAAAAAAAAAANARoS8AAAAAAAAAAAAAAACAjgh9AQAAAAAAAAAAAAAAAHRE6AsAAAAAAAAAAAAAAACgI0JfAAAAAAAAAAAAAAAAAB0R+gIAAAAAAAAAAAAAAADoiNAXAAAAAAAAAAAAAAAAQEeEvgAAAAAAAAAAAAAAAAA6IvQFAAAAAAAAAAAAAAAA0BGhLwAAAAAAAAAAAAAAAICOCH0BAAAAAAAAAAAAAAAAdEToCwAAAAAAAAAAAAAAAKAj2ze6AAAAAAAAAAAAAAAAOnHyS5KrL596+dP+8uw1LAYAti6hLwAAAJZVz3z/RpcAsEvt5Q/d6BIAAAAAAABgc7rdsTMtP/uGy9aoEADY2rZtdAEAAAAAAAAAAAAAAAAA3EjoCwAAAAAAAAAAAAAAAKAjQl8AAAAAAAAAAAAAAAAAHRH6AgAAAAAAAAAAAAAAAOiI0BcAAAAAAAAAAAAAAABAR4S+AAAAAAAAAAAAAAAAADoi9AUAAAAAAAAAAAAAAADQEaEvAAAAAAAAAAAAAAAAgI4IfQEAAAAAAAAAAAAAAAB0ROgLAAAAAAAAAAAAAAAAoCNCXwAAAAAAAAAAAAAAAAAdEfoCAAAAAAAAAAAAAAAA6IjQFwAAAAAAAAAAAAAAAEBHhL4AAAAAAAAAAAAAAAAAOiL0BQAAAAAAAAAAAAAAANARoS8AAAAAAAAAAAAAAACAjgh9AQAAAAAAAAAAAAAAAHRE6AsAAAAAAAAAAAAAAACgI9s3ugAAAAAAAAAAAAAAADrxgWclF54z9fJX7LN/nn7NE9awIADYmoS+AAAAAAAAAAAAAAAYufCcZMeZUy8/btsxa1gMAGxd2za6AAAAAAAAAAAAAAAAAABuJPQFAAAAAAAAAAAAAAAA0BGhLwAAAAAAAAAAAAAAAICOCH0BAAAAAAAAAAAAAAAAdEToCwAAAAAAAAAAAAAAAKAjQl8AAAAAAAAAAAAAAAAAHRH6AgAAAAAAAAAAAAAAAOiI0BcAAAAAAAAAAAAAAABAR4S+AAAAAAAAAAAAAAAAADoi9AUAAAAAAAAAAAAAAADQEaEvAAAAAAAAAAAAAAAAgI4IfQEAAAAAAAAAAAAAAAB0ROgLAAAAAAAAAAAAAAAAoCNCXwAAAAAAAAAAAAAAAAAdEfoCAAAAAAAAAAAAAAAA6IjQFwAAAAAAAAAAAAAAAEBHhL4AAAAAAAAAAAAAAAAAOiL0BQAAAAAAAAAAAAAAANARoS8AAAAAAAAAAAAAAACAjgh9AQAAAAAAAAAAAAAAAHRE6AsAAAAAAAAAAAAAAACgI0JfAAAAAAAAAAAAAAAAAB0R+gIAAAAAAAAAAAAAAADoiNAXAAAAAAAAAAAAAAAAQEeEvgAAAAAAAAAAAAAAAAA6IvQFAAAAAAAAAAAAAAAA0BGhLwAAAAAAAAAAAAAAAICOCH0BAAAAAAAAAAAAAAAAdEToCwAAAAAAAAAAAAAAAKAj2ze6ANZXVR2R5LgkhyU5IMkFSXYk+URr7bqNrA0AAAAAAAAAAAAAAAAQ+toyqupRSZ6R5L7LLLm0qt6V5HmttUvWrzIAAAAAAAAAAAAAAABg0raNLoC1VVUHVNVfJ3l3lg98JcnBSX47yReq6qR1KQ4AAAAAAAAAAAAAAAC4CaGvTayqbpbkXUkeO/jSxUnOyCgI9tkkbeJrhyY5vapOWJciAQAAAAAAAAAAAAAAgCWEvja3P0vykInxdUl+J8nhrbWTWmuPbq3dK8k9kpw1sW6fJO+rqtutX6kAAAAAAAAAAAAAAABAIvS1aVXVkUmeOpj+5dbaa1pr105Otta+mOTBWRr8unWS569tlQAAAAAAAAAAAAAAAMCQ0Nfm9fwke02M39JaO325xa21q5KckmQyEPbEcXgMAAAAAAAAAAAAAAAAWCdCX5tQVe2b5FGD6ZeutK+19tUk75uY2p7k8XMsDQAAAAAAAAAAAAAAAFiB0NfmdFKS/SbGZ7XWvjzl3jcPxo+YT0kAAAAAAAAAAAAAAADANIS+NqeTB+OPzrD340l+NDG+Z1UduuqKAAAAAAAAAAAAAAAAgKkIfW1O9xiMz5p2Y2vth0nOGUzffdUVAQAAAAAAAAAAAAAAAFMR+tqc7joYnzfj/vMH47utohYAAAAAAAAAAAAAAABgBkJfm0xVHZzk4MH0N2c8zHD90XteEQAAAAAAAAAAAAAAADCL7RtdAHN30GB8ZWvthzMe46LB+MBV1JMkqarbJDlkxm3HTA7OO2/WF5bBLlwyawYSYH2ce+65G10CwK65fgI65foJAAAAAAAA1sh3fpBcdP3Uy79+/ZXJ1e4vAPrj3gLmYRdZlr3X69zVWluvc7EOqurYJGdPTH2/tfZjMx7jKUleOTH1t621R66yrhckef5qjgEAAAAAAAAAAAAAAAAb6Jdaa3+3Hifath4nYV0dMBhfvQfHuGqFYwIAAAAAAAAAAAAAAABrROhr89uTV7l5/RsAAAAAAAAAAAAAAABskO0bXQBzd8VgvO8eHGO4Z3jMPfGXSd49454Dktw7yb8luTzJt5JcO4da2JqOSnL6xPiXkpy/QbUAMDt9HGCx6eMAi0sPB1hs+jjAYtPHARabPg6w2PRxgMWmjzNPeye5w8T4Y+t1YqGvzafL0Fdr7aIkF+3B1k+t9tyQJFU1nDq/tXbuRtQCwOz0cYDFpo8DLC49HGCx6eMAi00fB1hs+jjAYtPHARabPs4a+NxGnHTbRpyUNXX5YLxfVe0/4zFuMxhftop6AAAAAAAAAAAAAAAAgBkIfW0yrbXvJ/nXwfQdZzzMnQbj/7vnFQEAAAAAAAAAAAAAAACzEPranL40GP/4jPuPXOF4AAAAAAAAAAAAAAAAwBoR+tqcvjAY33fajVW1f5JjVzgeAAAAAAAAAAAAAAAAsEaEvjanDw7GD5ph7wOSbJ8Yf6619r1VVwQAAAALDLRNAAAgAElEQVQAAAAAAAAAAABMRehrc/pQkqsmxvetqmOm3HvKYPzeuVQEAAAAAAAAAAAAAAAATEXoaxNqrV2Z5LTB9B+stK+qfiLJwyemfpTkHXMsDQAAAAAAAAAAAAAAAFiB0Nfm9YIk102MT6mqhy23uKpunuTNSfaemH5ja+38tSkPAAAAAAAAAAAAAAAA2BWhr02qtfa1JK8cTJ9WVU+uqslgV6rqrkk+nOR+E9PfT/LCta0SAAAAAAAAAAAAAAAAGNq+0QWwpp6V5O5Jfn483ivJq5M8t6o+m+QHSY5McnySmth3bZKHt9YuWMdaAQAAAAAAAAAAAAAAgAh9bWqtteur6tFJ3pDkMRNfuk2Sk5fZdlGSX22tfXyt6wMAAAAAAAAAAAAAAABuSuhrk2utXZHksVV1WpJnJrnPMksvTfKuJM9vrV28XvXBOro4yQsHYwAWhz4OsNj0cYDFpYcDLDZ9HGCx6eMAi00fB1hs+jjAYtPH2RSqtbbRNbCOquqIJMcnOSzJ/kkuTLIjyT+31q7dyNoAAAAAAAAAAAAAAAAAoS8AAAAAAAAAAAAAAACArmzb6AIAAAAAAAAAAAAAAAAAuJHQFwAAAAAAAAAAAAAAAEBHhL4AAAAAAAAAAAAAAAAAOiL0BQAAAAAAAAAAAAAAANARoS8AAAAAAAAAAAAAAACAjgh9AQAAAAAAAAAAAAAAAHRE6AsAAAAAAAAAAAAAAACgI0JfAAAAAAAAAAAAAAAAAB0R+gIAAAAAAAAAAAAAAADoiNAXAAAAAAAAAAAAAAAAQEeEvgAAAAAAAAAAAAAAAAA6sn2jCwA2t6o6IslxSQ5LckCSC5LsSPKJ1tp1G1lbklTV9iTHJ7l7kkOS7J3kiiTfSfLVJOe21n60ynMclOR+SW6f5MeSXDI+/idaa5et5tgAa00fB1hsvffx9VBVt03y0xldjx+U5HtJvp3kn1trV25kbQAr0ccBFluvfbyqDk5y7yRHZHSNXEkuz+g6+dOttQvneK79ktw/yeFJDk1yWUaf28z1PABrQR8HWFwd9/DbJ7lvRtfGB2Z0/8h3k3yqtXbxnM/lXhVgYenjAKyVqjo+ydEZXScn4/sMW2ufm/N5XI8zN9Va2+gagE2oqh6V5BkZ/ZKzK5cmeVeS57XWLlm3wsaq6ugkv5vkMRn9Aracq5KcmeR/tNbeO+M57pnkeUkeklEIYeiaJB9I8sLW2v+Z5dgAa20r9vGqelCSj6yirB2ttTuvYj/A3PTSx6vqG0nuNKfDvbW1dsoM5/73SZ6d5MQkN9vFkiuSvC+jn8HX51IhwJxsxT5eVackefMqjv+x1tqDVrEfYG566eODmiqjz1FOTXLCCss/l+S1Sd60pw/TGd+c9aIkD0+y/y6WXJ/kn5K8pLW2ms9jAOZuK/bxqrpzklV9PtJaq9XsB5iHTnv4tiSPS/L7SY5dZtnO6+OXtdb+cZXnc68KsLC2Yh93rwqwWVTVkRk9kPfe43+PT3KLiSUb1q+qaq8kz0zyn5Mctcyy85K8Icl/X03A2PU4a0HoC5irqjogyf9M8tgpt3wvya+21j60dlXdaPxGmOdldPPnLG87fFdrbdrvKVX1rIz+oL3XFMuvTfLc1trLZqgHYE1s5T7ugzRgM+itj885LPDa1tpvT3HO7Un+W5KnZPSk65X8IMmprbW3r7I+gFXbyn1c6AvYDHrr4zuN3377joweiDCLzyR5bGvtvBnPd0qSV2f0JO6VtCR/nuT3WmvXz1gfwFxt5T4u9AUsus57+HsyesL/tF6X5KmttWv24HzuVQEW0lbu4+5VARbZuIc9O6Og18ErLN+QfjV+uPw7MwqhTWOPPhcfn8v1OGtilhtlAXarqm6W0ZM0HjL40sUZPVHu8owS0vfMjTdfHprk9Kr62dbamWtc375JTttFfS3JuUm+meSyjP4QfWSSY7IHfbKq/jDJnwymr0ry6YxeNX1YRin2m4+/tneSl1ZVa63911nPBzAv+jjAYuu9j8/Be6Zc9xdJfnMwd3lGH8xdkuSOGV2P73z71y2SvLWqrmmt/c08CgXYE/o4wGLrtY9X1SEZ3Th0zOBL143r2pHkhiSHJ7lXbvzcOuPxR6rqhNbajinP9/gkb8rSBzD8KKPPx7+V5JDxcW+5c0uSpyfZJ6O31wBsCH0cYHF13MMPS/LJJHcYfOmyJJ/K6G01Bye5T5IDJ77+W0luVVWPbTM8zd29KsCi0scBFtpxSf7DRhexnHF49x9y04dcnpfR/YaV5O5Z+vaveyU5o6ru01q7aIZzuR5nzbgJFpinP8vSX76uy+h1y69vrV27c7Kq7pbRKzB3voZ5nyTvq6qfbK1dsBaFVVVllNSerO/qJC8b1/edXezZL8nPZfQEkWuHX1/mPL+Y5MWD6dcnec7kK6XHf6D504xeFbrTS6vqnNbaB6c5F8Aa2PJ9fOCVGT1pelo/2oNzAMxTj338hOzZZw9PTvLMifE3knx4pU1VdWqWBr5aRtfnL2utXTGx7k5JXpXkYTunMgp+fbm19vk9qBdgHrZ8Hx/4vYwe+jCtq2c8PsC89djHk9FnG8OgwGuTPH/4B+uqOijJHyT5/STbxtOHZ/SE6pNXOlFVHZ/RWxsnA1+nJ/md1tq3JtbdYnye50ys+y9VdXZr7fXTfFMAa2DL9/GB9yT53ZmrBdgY3fXwqtoro146GRS4IqMe/YbW2nWDtb+R0d899x9PPzrJV5I8b8rzuVcFWGRbvo8PuFcF2AyuSfLtLA1Trauq2pbkfVka+LogySmttTMGa0/O6LPt246njkjy3vGDdFYM8LoeZ62VIDkwD1V1ZJIvZ+krKf9ja+30Zdbvm9HNPvedmH5da+1Ja1TfqUleMzF1QZIHt9a+NOX+7a213f6CNH7qyLlJ7jIx/YrW2jN2s+cVSZ42MfXFJMe21q6fpi6AedHH///rpj8yMfXC1toLZiwVYEP03sdnVVVfytIbmp7XWvvjFfYcmORrGT1Rb6enttZetcz6bUn+JskjJ6Y/1Fqb9SYogFXTx5OqOiWjP6bs9GuttbfMvzqA+eu1j1fVnZN8fTD9ktbaH66w78lJXj2Yvk9r7VMr7PvHJA+emDotyWNaazcss/6pWXoT08VJjmqt/WB35wGYN318l+d6a2vtlClLBdgwHffw38oopLvTNUlObK2dtZs9J4xr23tizzGttW+scC73qgALSx93rwqw2KrqaRmFXs9N8i8ZvdXqX5Kck+T+WdrfdrTW7ryOtT0hydsmpi5Ncq/l+nJVHZHkM0luNTH9uNbaO1c4j+tx1ty2lZcATOX5WfrL11uW++UrSVprVyU5JUvfvPLE8S9yc1VVd8zoiSA7XZ3kZ6cNCiTJSkGBsV/J0v+0v5Lk2SvsedZ43U53S/Kfpq0LYI70cYDF1m0fn1VV3T9LgwI3JHnLFFufkaWBr48sF/hKkvGNp09K8v2J6ZOq6oHTVwswN/o4wGLrtY8/dDD+XpIXTrHvL5IM34A7PNYSVXVilga+LknypOUCX2OvSvLRifEhSZ4+RX0A87bl+zjAAuuuh1dVZfTmxUkv3l1QYFzbmRk99X+nfZK8aIpTulcFWGT6OMBie2uSW7bW7tla+43W2utba5+dfCPiRhgHsYafoTxjd0Hc1trXM7rvZNKLxw8U3h3X46w5oS9g1cZP0HjUYPqlK+1rrX01o1dn7rQ9yePnWNpOz0lywMT4T1prX1yD8/zKYPyK1to1u9sw/vorVzgOwJrSxwEW2wL08Vn9+mB8RmvtW1Pse8JgPM3P4JIkbxxMux4H1pU+DrDYOu/jwxuezljpM+skaa21JO8fTB+9wrbhdfQbWmvf3+XKped52QrHAVhT+jjA4uq4h98jyRET46uTvGbKva8er9/pl6vqgOUWj7lXBVhI+jjA4mut/Wtr7eqVV667E7K0l38nyf+aYt/bx2t3OirJ/VbY43qcNSf0BczDSUn2mxif1Vr78pR73zwYP2I+JY1U1S2y9Je6H+am/1HO4zy3TvKAialrk7xjyu1/lWQy1f4zVXXwcosB1sCW7+MAC67bPj6r8R89Hj2YHoaydrXvuCz9wO67Sc6Y8rTDn8HDxk99AlgvW76PAyy4nvv4/oPxt2fYOwzs3mq5hePr5+EbZIbf23I+lOSCifFRVXXslHsB5mHL93GABdZrD3/gYPyp1tpl02xsrV2a5NMTUzdP8gvLrXevCrDgtnwfB2DNPHwwfltr7fqVNo3XDMNhy/4f43qc9SL0BczDyYPxR2fY+/EkP5oY37OqDl11RTd6TJa+HeY9rbUfzPH4O/1ckskbQz8z7Xlaa/+W5LMTU9vHxwNYL/o4wGLruY/Patj3L05y+hT7hj+Dj42far2i8R+PLpyYOiTJvafZCzAn+jjAYuu5j184GN98hr3DtZfuZu1PJ7n1xPiC8VO3V9RauyHJ/x5M//w0ewHmRB8HWFy99vDDB+MvzLj/nMF4d2EB96oAi0wfB2CtrOb/mOHa3X1e7XqcdSH0BczDPQbjs6bd2Fr7YW76i87dV13RjU4cjP9hjseetMc/g7FPDMbz/BkArEQfB1hsPffxWf36YPz21tp1u1y51Gqvx4frXY8D60kfB1hsPffxjw/Gx8+w916D8ad3uWrE5+PAItPHARZXrz18+HT+qd4Os5v1P7mbta7FgUWmjwMwd1W1T5IfH0x/coZDDK+Rj66qvZdZ63qcdSH0BczDXQfj82bcf/5gfLdV1DL07wbjs5KkqvatqsdX1d9V1flVdVVVXVZV51XVu6vqN6vqFjOcZ1hzTz8DgJXo47t2YlX9bVV9raquGJ/jO1X1map6TVU9sqr2WuU5AOah5z4+tao6Jsn9BtNvnHK763Fgkenju/bIqvr7qtpRVVdW1Q+r6ptVdVZVvbyqTq6qWsXxAeal5z7+4SRfmRg/oKqOXWlTVd0+ySMnpq5L8te72eJ6HFhk+viu/VRVvaOqvlpVl1fVNVV1QVWdXVVvqKonVNX+Mx4TYN567eHXDsb7zLh/uP6YqlruHj/X4sAi08d3zb0qAKtzlyx9+9ZF47dqTWW89pKJqZsl+YlllrseZ10IfQGrUlUH56ZPt/jmjIcZrj96zyu6UVUdlKVp7WuTfK2qfibJuUn+KslDkxyZ5OZJDkxyVJJHJXldkq9X1VOmPN0wFd7FzwBgJfr4bj0wycOTHJFk//E5DsvoaaqnJjltXM+pbjYFNkrPfXwPPHEw/mRr7YtT7nU9DiwkfXy3fjHJQ5LcMcm+SfZLcock90nyjCQfSPKlqnrMKs4BsCq99/HW2g0ZvYXxmvHUtiSnVdWdl9tTVYcmeV9GfXenF7fWvrubU7keBxaSPr5bxyV5XEbfzy2T7J3ktkmOzeja/21JvllVz3XDKbAROu/h3x+Mbzfj/uH6m2f0+ciuuBYHFpI+vlvuVQFYndVeI+9qz3L/x7geZ10IfQGrddBgfOX49cmzuGgwPnAV9Uy67WD83SSPSPJPGf1StJJbJ3llVb29qravsHb4cxh+TytZq58BwEr08dU5PMlrkrx/HFIDWG899/Gpjfv0EwbTb5hy77Ykw7c7uh4HFsWW7+OrdJck76yqN1XVrE9bBZiH7vt4a+0TGQVpLx5PHZ3k81X1iqo6qaqOqaq7VNWDq+pPM3rQzr0nDvG6JH+8wmnm/fn4LWZ8AjbAntLHV+fgJC9K8vGqOnyNzgGwnJ57+Jf+X3v3HndtWdYJ/3ewRxFFEDe5ARWFNEtJFJQJtRdrxpw0zdw0UNq0o3LXaJoOZmZjWmNvO0sTTZPetJnSGqVUVCDMbUaQGwRmFLdsZb/xmD/W4mU913Nv1r19rpv7+/181gfO8zp3a93P51jXWus6rnNQfuQK+y/UfrG1uVYF2KrE8bVxrQrA4tZ6jrxQH+fj7FIbdfErsH3sNyhfu4oxhn2GF2yu1vDNdL8kb8utCa8XJfn9JGdkcoeOOyd5dCZ3xDhkpt+zknwtyQuXmGutr8NGvQYAyxHHd3Zlkn9I8qFMfiD/eibP8YBMtmr+f5I8LZO7Kd3iPyT5n1V1fHffMOc8AOthzHF8JZ6Q5K4z5auT/MWcfYevQeJ8HNg6xPGdfTPJe5OcleTcafmGTM73vyvJ4zO5y+nuM31+Isk+VfXM7u5VzguwGlsijnf3P1TVEUmem+SZmdxM57nTx2L+LcnLu/sv55hivb8fr0zuZP2tFY4DsFLi+M6uS/LBTG6+dk6Sr2Ryfn/H6byPyeQ79/1n+jwiyWlVdUx3X77C+QBWa8wx/EOD8v2q6uju/sflOlbVo5Pcd4FDi63NtSrAViWO78y1KgDrYzPfY5yPsykkfQFrNXzDum4VYwzftBa6aHM1hskCB838/18mOaG7h3OfXVW/l+StSZ46U/+Cqvrr7v7IInOt9XXYqNcAYDni+K2+msnFoqd292Kvw8eSvL2qXpzkT5P84Myx70vym0mev8QcAOttzHF8JZ49KP9Fd181Z9+F1ut8HNgqxPFbfS7JU5L8dXfftEibjyZ5Y1UdluTtSR4+c+zpSc5O8rsrnBdgLbZSHL/lN8Hr52h7VpKTM7nQaB7r/f34LWNK+gI2mjh+q6uT/FKSU7r7ykXafCLJO6vqJUlen+SEmWNHZPKd+ZNXMCfAWow2hnf3V6vq/UkeN1P9uqo6trtvXqzfdCf11y1yeN6LTH03DmwV4vitXKsCsL428z3G+TibYrflmwCsyGruprxRd2BeLMZ9LMkzFkgUmCxm8uHpGdN2s351BXOv9Dm5CzUwFts2jnf3v3X3KUt8iTbb9quZ3DFpeJfUn6+qQ5frD7CBxhTH51JVd0/yA4PqN61xWOfjwFa1beN4d5/V3e9aIuFrtu3nkxyb5MzBoZdX1f4LdAHYLKOM41X1U0nOz+S7kcPn6HJMktOSfKaqHrWKKZ2PA1vVto3j3f2N7v7dJRK+Ztte0d0nJnnt4NCTVvm+AbAexhbDXzUoH53kz6pq74UaV9U+mdzg5qhFxvv2nPM6Fwe2qm0bx12rArDhNvM9xvk4G0LSF7BWw7s277uKMYZ9Vnon6MUsNs4Ll7uAaHp8ePeL46vq4DnnWunrsFGvAcByxPFV6u5OcmKSr8xU75WddzkA2EhjjuPzOiE77kR+XneftYL+C63X+TiwVYjjq9Td1yf50ex4B7wDp3UAm2X0cbyqXprkj5Pcfqb640l+Mslh0/p9kxyaya6JH5xp9+AkH6qq2Z1cFrLe348vNCbARhDH1+a/JPn0oO5nN2gugKFRx/Du/mB23o386UnOq6oXVNUjquqw6X9fmOS83PqdxnVJLhn0vXyRqVyrAmxV4vjq1+ZaFYClbeZ7jPNxNoWkL2CtxvwBbKFxLuruD8/TubvPSPLFQfX3zTmXN25gqxDH16C7r8nOX/QNdzkA2EhjjuPz+slBeaW7w0j6ArYycXwNuvviJG8dVDsfBzbTqON4VT02ySsH1ScnOaq739zdX+jua7r7uu6+sLtP7e7HJvnp3HqH0d2TvGmZnVs2Iunr6hWOAbAa4vgaTC82/W+D6uOrqtZ7LoAFjDqGT70wyTsGdYdmslPi2Uk+N/3vbyU5ZHr820l+fIG1SPoCbmvE8TVwrQrAkiR9cZsj6QtYqysG5dtV1e0XbLm44a4r6/UhZ6Fxzl7hGB8dlI9YpN3wdbjLCufZqNcAYDni+Nq9d1D+rg2YA2AxY47jy6qqYzO5K/UtbkzyZysZo7u/nZ2/+HI+DmwV2z6Or4Ph+fhDNnl+YHsbexx/VZLZC+/f0t2vmF6kv6ju/uNp31vsnuT1S3RZ7+/Hr5ye5wNsNHF87d43KN8lyd03aC6AWWOP4enuG7v7GUmel+TSObpckORxSd6VnWPp1xbp41oVYKsSx9fOtSoAC1vrOXIy/3uM83E2haQvYE26+5Iklw2q773CYe4zKH9+9SvawUVJrh/UfWWhhku4eFA+cJF2wzUPn9NyNuo1AFiSOL4uLhyU96qqO27APAA7GXkcn8ezB+V3d/fXVzGO83FgSxLH18WFg/JqfrgBWJUxx/Gq+o4kjxxUv2IFQ/xmkmtnykdW1WKJtc7HgS1JHF+77r4s63MxFcCKjDmGD3X3f89kZ5ifSfJXSb6Y5FtJrpv+/3sy2RXmQd19epL7JdlrZogvdPdiF386Fwe2JHF8XVw4KLtWBWBirefIC/VZ7D3G+TibQtIXsB7OG5Tvv8L+911mvFXp7puTfHZQPUweWM6w/T6LtBvlawAwp1HGsE2O42tx7QJ1q9kWGmC1RhnHl1NVd0jy1EH1m1Y53JZ8DQCmtmQMW+c4vhbD83Hn4sBmG2sc/55B+YvdfcG8nbv76uy84/ojFmk+1tcAYB5jjWGbGcfXyjk5sKuMNYbvpLuv7O43dPePdPf9unv/7t53+v8/1N1v6+5b4unRg+4fXWLoLfMaACxgy8SwDYzja+FaFYCFfTbJzTPlg6e/a86lqvZPctBM1c1ZPBlry7yXsbVJ+gLWwzmD8vCDy6Km2zIP7yo3HG8tPjMo32mF/YftL1mk3apfg6lHLTMewEYSx9fmoAXqNmIegMWMOY4v5ceS3G6m/OUk71vlWGs9Hz9mmfEANpI4vjbD8/Fv7oI1ANvbWOP48DuRr65ijGGfhb4DSXw/Dmxt4vgaVFUlOXBQ7Zwc2CxjjeFr9bhB+fQl2joXB7YycXxtXKsCsIDuvj7J+YPqlZwnD68f+fx0zIU4H2dTSPoC1sN7B+XjVtD32CR7zJQ/1d1fW/OKbvV3g/KDVtj/wYPylxZp9/fZMTP8yHkzw6ftHjZTddN0PIDNIo6vzfDuqN/o7hs3YB6AxYw5ji/l2YPym6e7PK7G8DX4d9OLjpZVVYcnudtM1TeTfHyV6wBYDXF8bYbn4xfvgjUA29tY4/jlg/LtVzHGfoPyVYu0+1iSS2fKd6+qB8wzQVXtlsnrMOt/zbc8gHUhjq/NQ5PsOVP+dlaXoAawGmON4as2vX7kKTNVVyX5iyW6uFYF2MrE8bVxrQrA4tbyHjNsu9T31c7H2RSSvoD18L7suF3w0dMLJ+dx4qD8P9ZlRbd6T5LZDOuHV9Wd5+lYVQckOWpQ/ZGF2nb3N5OcMVO1V5JnzLnGZ2bHH0M+3N2XLtYYYANs+zi+RsN4f/oGzAGwlDHH8QVV1Xdmxx8iOsmbVzted38qyYUzVd+R5Pg5u584KP/NLkpaALavbR/H1+jpg/Lpu2IRwLY21jg+TIJ9YFXdbsGWi3vYoLzgRfzdfVOSdw+qf2LOOY5Pco+Z8vndPdz5HWAjbfs4vkbD78c/0d0bkVwGsJCxxvC1+MXsmOj75939rcUau1YF2OK2fRxfI9eqACxu+L7w41W1+3Kdpm2etcxY/z/n42wWSV/AmnX3NUneOah+0XL9pnf6fNJM1U1J/nwdl5bph6bZte2d5KQ5u5+UZJ+Z8kVZeuvMtw7Kz6uqvZeaYHr8uYPqt8y5PoB1IY6vXlUdl+TJg+q/Xs85AJYz5ji+hOHuMB/s7i+uccw/G5TneQ0OTPKcQfXwvB5gQ4njq1dVJyT53kG183FgU404jn8myWUz5X2S/Pi8navqCZncTGHWGQu1nRqeRz9ner69nP+yzDgAG0ocX73pBbk/N6h2Pg5smhHH8FWZxtWXzlRdleQ35ujqWhVgSxLH1zTXcXGtCsBSPpLkgpnyPbNzMtdCnpUdv085P8mZy/RxPs6Gk/QFrJeTk8xuD3xiVT1xscZVtU8md4Dea6b6Td19/lKTVFUPHsfNsbaXJblhpvySqjp6mXmOTvKrg+pXd3cv0e0tST47U35glv/g9uppu1ucm+Tty/QB2AgnZxvH8ao6vqq+e461zPZ5RJJ3JamZ6s8m+YuVjAOwTk7OeOP4cIw9s/NFSm9a6TgLeF2S2bsePaaqfmGJdeyW5I+SzF6I+r7u/tA6rAVgpU7ONo7jVfXkqrrvCvs8IckbBtXv7+7lfngB2AgnZ2RxfLp77fDCqd+sqgcvNcd0nntncq4868zu/soS830gyQdmqg5K8kfT8+7F5vnFJI+Zqfpmkt9Zbn0AG+DkbOM4XlWPqKpjlxt30OcBSf4uyb4z1Zck+b2VjAOwDk7OyGL4TJ89lmsz0/aBSf4hO8bVX+nui+bo7loVYCs7Ods4jrtWBWA+K43j0+9V/uug+rer6pAl5jgkO38//avd/e1llud8nA0n6QtYF9O7Ob9+UP3OqjqpqmY/ZKWqjkjy/iTHzFRfkuQVG7S2C5K8ZqZq7ySnVdXPTi9Uml3bHlX100lOy44fDv8pkw+MS81zc5IXJplNKHh+Vb1heEfTqjqoqv44yfNmh0jyguk4AJtKHM8xST5VVe+tqhOr6uDFGlbVvarqtzK5I8idZw7dmOTnuvumuZ4YwDoacxxfwBOT3GWmfFmSv1rroN19RZKXD6pfX1WvqKr9ZiunFz/9jyRPmam+PjvvMgCwKcTxPDHJZ6vqnVX1o1V1x8UaVtXhVfXGJH+TyWeDW1yZ5JfWuA6AVRlxHP+1JNfOlO+U5Kzpum43bFxVe9VkF8VPZOfdYX5ljvl+OTveuOcpSd5VVfcazHOHqnplkv8+6P/S6a7vAJtKHM8RST5cVWdW1c8P4/ZgjoOq6qVJPp7k0MHh50+/nwHYNCOO4UlySlW9vaqeUFX7LtSgqu5RVScn+VR2jN1/m+T355nEtSrAViaOu1YF2Pqq6p5VdcjwkeRug6Z7LNRu+jhoA5b29iQfnSnfOZPvVY5f4Dk8Psk/JjlgpvqszJFQ63yczVBLb1oDML+q2j3Ju5P84ODQ15N8Msm3ktw3ycOy450mbkjy/d39kTnmGAatx3T36XP0q0zefJ86OHR5krMz2RHgzkkemckPJrO+nOSR3f2l5Y5wfMwAABXLSURBVOaZzvWSJK8aVF+bycnDV5PcPclR2fHOHknyou5+TQB2ke0cx6dfwg3v7vHlTO7CcXkmcfyOSR4wfQzdnOTE7n7bcs8FYKOMOY4PxvjbJP9+pur3unvRHblWavoF2U8Nqi/P5GKkS5LcK5Pz8dm783WSp3e3O+ABu8x2juNVdUqSEwbVFyT5QpIrMnmOByR5UJJ7LzDEtUmeMN1lBmCXGGscr6onJfnLJLsPDl2bSVLAxUm+nckP8N+bZL/s7KXdvdydSW+Z75lJht+P3JTJDXn+TyY7gD08yf6DNn/Y3T83zxwAG2E7x/GqOjE73zTtG5ncZfrSJFdnErcPTfLg7Pj8b/GS7n71Us8FYKOMOIa/M8mPTIs3JjkvyYXT9dwpk+84FoqrpyV5Undfs9y6BvO5VgXYkrZzHHetCnBbUFUXJrnPGod5S3efuMQcq73m8O6ZXFs4/H3x80n+NZMY/qAk9x8cvzCT6w2/ttwcM3M5H2fDSPoC1tX0DvpvTPK0Obt8PckJ3f3eOcdf9cVJVbV3JncG+ek515ZMfoh+UndfvII+qapfyeQuInsu1zaTD4Uv6+7/tpI5ADbCdo3ji3yRNq8vJvlP3X3mKvsDrJsxx/Fp/+9IclF2vFDpod396XnHmGOOPZK8LskvZOGLkIauSnJSd79lvdYAsFrbNY4vkvQ1r08leVZ3n7uWNQCsh7HG8ar6D0nelOSuc67rFlcneXF3/95KOlXVTyT53SyceDDU07buZArscts1ji+S9DWvbyR5Tnf/zSr7A6yLMcbwQbLAPG5K8ltJXr7a3VpcqwJsVds1jrtWBbgtGHPS17TvA5KcmuShc67lk0me1t1fmLP97FzOx9kQu+3qBQC3Ld19VXf/WCY7sZy9RNNLk/xhkgfP++FrHdZ2fXf/TJLvT/L3mdzpYjHnJDkxyTErTfiazvXqJI9I8teZ3FVkITdMjx/lTRsYi20cx/8myR8k+Zdlxr3FTZls4XxCku/0JRowFmOO41MnZsdEgU+uZ8JXknT3Td39S5m8X7w/k7tdL+TqTHYgeIiEL2AstnEcf0uSP03yuUwu/l/O9Zl8JnhykodL+ALGYqxxvLv/Nsl3JnlJkvPn6PK1JK9N8qCVJnxN53tzku9O8vZMzrsX8u0k/5Dkcd39XAlfwBhs4zh+RpLfzmSX9MV+19xhSUn+OZMb7txPwhcwBiON4acm+UCS65Zp961Mknsf3N0vWW3CV+JaFWDr2sZx3LUqABusuz+XyTnyr2SSMLuY86dtHrmahK/pXM7H2RB2+gI2VFUdmsnWyvdIcvtMtqi8KMmZ3T3PjwYbuba7JHlkJltmHpTJB7CvJTmru7+0jvMckOSYJN+R5MAkl2SyDfNZ3X3Zes0DsBG2Yxyvqn0y+QH9PtOx75DJ3TeuSnJZkguSfLy7r1nTEwDYBGOO45ulqu6e5KhMzsfvmMmd//5PJq/BYhegAozCdozj0zu63nI+frdMnvceSa7M5Hz885kkm90mnz9w2zLWOF5V90xyZCbfe9wpkx1yr8hkt5ZPrfYH7UXmun2SRye5Z5KDk1ye5OIk/9TdX1mveQA2wnaM41W1Z5LDkxyayfPeP8nemSTxXpbJdyof6+4r1vIcADbamGJ4Ve2V5CFJDsskdt8uk4v2v57k3CSf6O4bN2Be16oAW9Z2jOOuVQHYHFV1ZJIHZPIek0y+r/5cd39inedxPs66kfQFAAAAAAAAAAAAAAAAMCK77eoFAAAAAAAAAAAAAAAAAHArSV8AAAAAAAAAAAAAAAAAIyLpCwAAAAAAAAAAAAAAAGBEJH0BAAAAAAAAAAAAAAAAjIikLwAAAAAAAAAAAAAAAIARkfQFAAAAAAAAAAAAAAAAMCKSvgAAAAAAAAAAAAAAAABGRNIXAAAAAAAAAAAAAAAAwIhI+gIAAAAAAAAAAAAAAAAYEUlfAAAAAAAAAAAAAAAAACMi6QsAAAAAAAAAAAAAAABgRCR9AQAAAAAAAAAAAAAAAIyIpC8AAAAAAAAAAAAAAACAEZH0BQAAAAAAAAAAAAAAADAikr4AAAAAAAAAAAAAAAAARkTSFwAAAAAAAAAAAAAAAMCISPoCAAAAAAAAAAAAAAAAGBFJXwAAAAAAAAAAAAAAAAAjIukLAAAAAAAAAAAAAAAAYEQkfQEAAAAAAAAAAAAAAACMiKQvAAAAAAAAAAAAAAAAgBGR9AUAAAAAAAAAAAAAAAAwIpK+AAAAAAAAAAAAAAAAAEZE0hcAAAAAAAAAAAAAAADAiEj6AgAAAAAAAAAAAAAAABgRSV8AAAAAAACQpKqOq6qeeZy8TPvTZ9uv59jbWVUdMnitTtnVawIAAAAAANhskr4AAAAAAABYV1V14iBp5/Q1jDVMlrpw/VYKAAAAAAAA4yTpCwAAAAAAgNuEqjplkCB2yK5e03ZUVScP/g7H7eo1AQAAAAAAbDWSvgAAAAAAAAAAAAAAAABGRNIXAAAAAAAAAAAAAAAAwIjssasXAAAAAAAAAGPQ3acnqa029m1Nd18YrxUAAAAAALDN2ekLAAAAAAAAAAAAAAAAYEQkfQEAAAAAAAAAAAAAAACMyB67egEAAAAAAADA4qpqjyQPnj4OSrJfkhuTXJXky0nOT3Jud9+8irHvl+TwJPdJsn+STnJZkouTfLS7v7Eez2GzVVUleVgmz+3gJHsn+UYmr9cZ3X3VBsx3VJLDktwjyQ1Jvjqd60vrORcAAAAAALA9SPoCAAAAAABgy6qqE5O8eZHDF0xycRZ0UXcfMhjruCQfnKl6RXefvLYVrn7sqrprkpcmeUaSA5eZ4pqqOiPJO7r7lCXGvH2SJyR5cpLjMkmIWmoNn0zy20lOXSqpbIHnN+uDS/wd0t07HKyqQ5JcMFP1lu4+cal1zvQ9KMlLkjwryV0WaXZDVX0gycnd/dE5xz0xO/47+4nuPqWqdkvy3CQnJTl0kb4fSfLL884FAAAAAACQJLvt6gUAAAAAAAAAO6qqxyb5bJJfyPIJX0lyuyTHJ/n1Zdq9I8mpSX40yyR8TT0syduSnFZViyVRjUJV/XCSLyZ5XhZP+EqSvZL8QJKzq+oN053UVjPfwUk+kOR1WSTha+rYJB+pqmesZh4AAAAAAGB7stMXAAAAAAAAjEhVHZbkPUn2HRy6KMl5SS6blvfPJNnosCR7zjn88KaQVyY5N8nXk3wryT5J7pnkIYP5H5vkvVV1THdfP+dcm6aqfjLJn2Tn53d+Js/vmiT3TnJUkt1njv/nJPeuqh/q7ptWMOW+mfyNHj4tX5/k40m+PB3/iCTfOdN+zySnVNU53f2ZFcwDAAAAAABsU5K+AAAAAAAA2MremeT06f+/NsmPzBw7NsmXFum3kgSfzfZr2THh6gNJnt/d/7xQ46raO8n3JXlSkuPmGP+fM9m96++6+9xFxrxdkmckeVVu3RHsYUlekeTFC3Q5O7fudvXcJL80c+zp0+Mboqq+J8kfZseEr08n+fnuPmvQ9i5JXpnkp2eqfyCT1/wlK5j215IclOTaJP81yR9099WDuY5K8vYk959W7Znkd5I8bgXzAAAAAAAA25SkLwAAAAAAALas7r4qyVVJUlVXDQ5/qbsv3PRFrUFVVZIfmqn6XJJ/v9TuWtNjpyU5raqGu4MNnTTPa9Ld1yR5Y1WdluSMJPeaHvrZqvqN7r5y0P66JBdOn8Plg+G+usF/hzcl2WumfEaSx0+fww66+xtJfqaqvpDkt2YOvaiq3tHd/zLnnAcluTrJY7r7Yws16O5/qqrHJTknyR2m1Y+pqvt39xfmnAcAAAAAANimdlu+CQAAAAAAALBJDkpy+5nyu5dK+Brq7muXOX7hShbT3f87yfNmqvbPjklpu1RVPSaTHchucWWSpy2U8DWru1+b5D0zVbtlx+c5j+ctlvA1M8//TvKGmapK8pgVzgMAAAAAAGxDkr4AAAAAAABgvA7e1QtI8u4kN8yUj9lVC1nACYPy73f3xXP2ffGg/PSq2nvOvl9O8uY5275nUH7onP0AAAAAAIBtTNIXAAAAAAAAjMc3p49bPKWqjt3oSatqt6q6Q1Xdo6oOmX0kuUeSS2eaH7HR61mBRw/Kb5u3Y3f/a5JPzlTtk+TIObu/r7tvmrPteYPyGBL5AAAAAACAkZP0BQAAAAAAACPR3Z3k1JmqfZN8sKpOraofrqr91mOeqrp9VT2tqv68qs5Ncn2SKzPZweqCBR53m+l+wHqsYa2q6oAk95upujw7J1gt56xB+eFz9jt3BXNcNijfcQV9AQAAAACAbWqPXb0AAAAAAAAAYAcnJ/nB3JrQtHuSp00fN1fVp5P8Y5Izkny4u7+yksGr6jlJfiPJXVa5vrEkLQ3X//lp0txK/NugPO8uXMNErkV1941VNVu157x9AQAAAACA7ctOXwAAAAAAAKy3YeLNWn6T2n2ZsW9zuvuSJEcnedcCh3dPcmSSkzLZEezLVXVWVT27qpZNJqqq30nyJ1l9wlcynt8YhzuOXbGKMYZ97jxnv2+vYi4AAAAAAIC5jeUHGQAAAAAAAG47vjUo77eGse4wKF+5hrG2jO7+Rnc/Jcl3JXlNkn/JwglvlUmC2BuT/EtVffdiY1bVU5M8d1D9r0leluTxSR6Y5E5J9unumn0kuWitz2kD1KC8HgmBt/mkQgAAAAAAYGvYY1cvAAAAAAAAgNucywblO61hrGHf4di3ad19TpIXJXlRVd0pySOSPCrJcZkke83+3vfAJO+vqod39wULDPeKQfllSV7V3fMkOu2/0rVvgksH5TuuYoxhn2317wsAAAAAABgvO30BAAAAAACw3r4yKN+nqvZd5ViHD8pfXeU4W153X97d7+vul3f3v0ty1yS/nOSKmWYHJnnlsG9VHZbkiJmqD3f3r8+T8DX9260lcW+jfGNQfsAqxnjgoPz1Va4FAAAAAABgXUn6AgAAAAAAYL19NsnlM+Xdkjx0lWMdOSifvUTbeXasus3o7ku7+7VJHp8dn/sTq2r4O+Bhg/J7VjDV0UlqJUtbQdtV6+7Lkpw/U3WnqjpisfaLOGZQ/tjaVgUAAAAAALA+JH0BAAAAAACwrqa7R501qH7qSsepqoOTHDeoPnOJLtcPynuvdM6tqLs/muScmao7JDlo0Gy4U9cVmd+JK1zSZv4dzhiUnzlvx2mC2GxS4XVJPrEeiwIAAAAAAFgrSV8AAAAAAABshFMG5Z+sqruvcIwXJ9ljpnxOdy+1E9Plg/JK59vKbhqUh4lXlw3Kh88zaFV9b5IfW+FaNvPv8NZB+aSqutucfV89KJ/a3cPXDQAAAAAAYJeQ9AUAAAAAAMBG+Ksk58+U90/yjqq6wzydq+qpSX5xUP3aZbqdNygfP89cY1JV31NVT6qq3VfQ5yFJvnum6ivdPdzJ658H5ROWS46qqvsm+cske867lqlN+zt09weSfHqm6o6Z/Dvbd6l+VfW8JP9xdqgkv7P+KwQAAAAAAFgdSV8AAAAAAACsu+6+OcmJ2XEHqu9L8rGqempV7bVQv6o6tKr+IMmpSWYTn/5Xdt7VaehDmSTv3OIFVfXKqnp0VR1WVYfMPO650ue0SQ7JNGGuql5TVcdU1YJJV1W1R1U9Jcn7suPvfm8Ztu3ui5OcMVN15yQfrKpHLjDu3lX1nCRnT9dzXZKrVvAcPj5o/2NV9f9W1WOr6gGDv8MhKxh3Mc9OcsNM+bgkH6mqRwwbVtVBVfX7SX57cOg13f2ZdVgLAAAAAADAuthjVy8AAAAAAACA26buPqOqTkryB7k1KemBSf6/JNdW1SeTfC2TpKIDkjwgyf0WGOozSZ7V3b3Asdn5Lqyqv0ryI9OqvZL86vQxdFEmCU1jdZ8kvzx93FBV5yb5cpLLM0mGu1uSh2ays9Wsf0vy64uM+aJMEuNu+Y3w8CT/WFWfTXJOJolTd01yVJL9Zvr9Qiav4Wzdorr76qp6Q5IXTKsqyUnTx0JqnnGXmO+T039nf5Rb/50dmeTsqvpCkn/N5N/YvTJ5bsPfSP8+ycvWsgYAAAAAAID1JukLAAAAAACADdPdb6iqC5L8WZKDZw7tm+RRcwzx50l+qruvmXPK/5zkHkmOXtFCx22vJN8zfSzlzCRP7u6rFzrY3WdV1U8l+eMks7uHPXD6GLo5yfO7+41VtVDi3FJemuSwJE9cYb9V6e4/qarLkrw5Oyan3X/6WMyfJvmZ7r5xI9cHAAAAAACwUrst3wQAAAAAAABWr7tPS3Jokl/MZNeuJXfsSnJFknckObK7n7mChK9096VJjk3yw0neOp3v0iRbJanntCRPTvLGJF+Yo30n+UiSZyY5tru/vmTj7lMyeX1OX6LZdUneleSo7v7dOdaw0DzXd/d/TPL9mSSZfSLJJZnsJrYhuvudmewU9/ok31yi6Y2ZvM6P6u5nS/gCAAAAAADGqLqX+00NAAAAAAAA1k9VHZDkkUnunuSAJPskuTyT5Kzzknymu7+961Y4HlV1YJIHZZI0d2CS2yW5PsmVmSSFfbq7L1nl2PfOZLe1e2Sy89fXk1yc5Mzu/tbaV7/rVNVuSY5McniSuyTZO5NEsC8lOWOrPz8AAAAAAOC2T9IXAAAAAAAAAAAAAAAAwIjstqsXAAAAAAAAAAAAAAAAAMCtJH0BAAAAAAAAAAAAAAAAjIikLwAAAAAAAAAAAAAAAIARkfQFAAAAAAAAAAAAAAAAMCKSvgAAAAAAAAAAAAAAAABGRNIXAAAAAAAAAAAAAAAAwIhI+gIAAAAAAAAAAAAAAAAYEUlfAAAAAAAAAAAAAAAAACMi6QsAAAAAAAAAAAAAAABgRCR9AQAAAAAAAAAAAAAAAIyIpC8AAAAAAAAAAAAAAACAEZH0BQAAAAAAAAAAAAAAADAikr4AAAAAAAAAAAAAAAAARkTSFwAAAAAAAAAAAAAAAMCISPoCAAAAAAAAAAAAAAAAGBFJXwAAAAAAAAAAAAAAAAAjIukLAAAAAAAAAAAAAAAAYEQkfQEAAAAAAAAAAAAAAACMiKQvAAAAAAAAAAAAAAAAgBGR9AUAAAAAAAAAAAAAAAAwIpK+AAAAAAAAAAAAAAAAAEZE0hcAAAAAAAAAAAAAAADAiEj6AgAAAAAAAAAAAAAAABgRSV8AAAAAAAAAAAAAAAAAIyLpCwAAAAAAAAAAAAAAAGBEJH0BAAAAAAAAAAAAAAAAjIikLwAAAAAAAAAAAAAAAIARkfQFAAAAAAAAAAAAAAAAMCKSvgAAAAAAAAAAAAAAAABGRNIXAAAAAAAAAAAAAAAAwIhI+gIAAAAAAAAAAAAAAAAYEUlfAAAAAAAAAAAAAAAAACMi6QsAAAAAAAAAAAAAAABgRCR9AQAAAAAAAAAAAAAAAIyIpC8AAAAAAAAAAAAAAACAEZH0BQAAAAAAAAAAAAAAADAi/xePrkDiHn7zoQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAADX0AAAcqCAYAAACQOCfjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeZidZX038O8dEghLwqKASosQQTZFLSLIKwqiVEFcUVEBCVVbbalUqa1WwaXWtrQvVkWtS8KqgNSFF1xaF7BUERBQWZQiElbZIQECScj9/vEMw+TMmZlzzkxmziSfz3Wdi3nu597mPM9z5rqY+eZXaq0BAAAAAAAAAAAAAAAAoD/MmOoNAAAAAAAAAAAAAAAAAPA4oS8AAAAAAAAAAAAAAACAPiL0BQAAAAAAAAAAAAAAANBHhL4AAAAAAAAAAAAAAAAA+ojQFwAAAAAAAAAAAAAAAEAfEfoCAAAAAAAAAAAAAAAA6CNCXwAAAAAAAAAAAAAAAAB9ROgLAAAAAAAAAAAAAAAAoI8IfQEAAAAAAAAAAAAAAAD0EaEvAAAAAAAAAAAAAAAAgD4i9AUAAAAAAAAAAAAAAADQR4S+AAAAAAAAAAAAAAAAAPqI0BcAAAAAAAAAAAAAAABAHxH6AgAAAAAAAAAAAAAAAOgjQl8AAAAAAAAAAAAAAAAAfUToCwAAAAAAAAAAAAAAAKCPCH0BAAAAAAAAAAAAAAAA9BGhLwAAAAAAAAAAAAAAAIA+IvQFAAAAAAAAAAAAAAAA0EeEvgAAAAAAAAAAAAAAAAD6iNAXAAAAAAAAAAAAAAAAQB8R+gIAAAAAAAAAAAAAAADoI0JfAAAAAAAAAAAAAAAAAH1E6AsAAAAAAAAAAAAAAACgjwh9AQAAAAAAAAAAAAAAAPQRoS8AAAAAAAAAAAAAAACAPiL0BQAAAAAAAAAAAAAAANBHhL4AAAAAAAAAAAAAAAAA+ojQFwAAAAAAAAAAAAAAAEAfEfoCAAAAAACgr5RS9iml1JbXPlO9L9Z8pZSTWu67G/pxHN0ppWzT5jPliKneFwAAAAAAjGbmVG8AAAAAAACYXKWUmUl2TrJTkk0GXuskeTDJA0luTnJDkhtqrY9M0TYBAAAAAAAA1lpCXwAAAAAAsBYopayX5DVJjkzygiTrdzBseSnlyiSXJLkgyX/WWu9afbsEAAAAAAAAIElmTPUGAAAAAACA1auU8sok1yX5apKXprPAV5LMSvKcJO9IcnqS20spn1otmwToQSnlw6WUOvQ11XtiYrRe11LKh6d6TwAAAAAAMJlU+gIAAAAAgDVUKaUkOTHJOydoyhlJtp6guQAAAAAAAAAYgdAXAAAAAACsuT6fpkpXOzcm+WGSq5LcmeTBJBsl2TTJ9kl2S/KsJOut/m0CAAAAAAAAMJTQFwAAAAAArIFKKa9O+8DXZUnel+SHtdY6xhwbJHlZktcMvDac6H1CO7XW85OUqd4Ha59a6xFJjlhT11tb1VpviM8UAAAAAACmGaEvAAAAAABYw5RSSpIT2pz6epI311of6WSeWutDA2O+XkrZOMn8JFtN2EYBAAAAAAAAaEvoCwAAAAAA1jx7Jdmmpe2WJEd0GvhqVWu9P8knx7kvAAAAAAAAADowY6o3AAAAAAAATLiXt2k7qda6ZNJ3AgAAAAAAAEDXVPoCAAAAAIA1z1PbtP180nfR50ops5PskWTHJJsmWZ7k1iTXJrms1lpX07pzkzwvyZZJNk8yO8ldSe5Mcmmt9ZbVsW7LHrZI8twk2ybZOEkd2MM3aq13re71J1MpZcskz0rzXMxNsn6Sh5M8lOT3SW5Icm2t9YEJWm+dJH+U5r3dPM37e0+a63ttrfVXE7FOB/tYa64xg/fd9kmemea+m5tknTT3+eIkNyX5XZLf1lpXjnOtdZNsl+az80kDayXNfX5Pkl/VWn8znjWmgz561jdPsmeSeUk2SnJ/kjuS/KzWumgy9gAAAAAAwOoh9AUAAAAAAGueLdq0PThZi5dStkkTLhhqfq31pB7mOj/Ji4Y0XVBr3WeMMfsk+VFL87611vMHzs9L8sEkb0yywQjT3FhKOTXJJ2qt437vSinrJXl7kjckeX5G+R1NKeXqJKcl+XS3QaTR3q9SSknypiRHpQm7lTZT/G8p5Sdpwm9PGNJ+Ra31Od3spc3e3p/kH1qaD6y1frtN330yyjXsYK1NkrwryVuS7NzBkEdLKVcOrHl2kp90G/orpTw3yXuT7J9ks1H63ZrkvCT/VGv9bTdrDIw/P+O8xknO73bdUfbz4STHDW2rtbZbd6x5tkmHnxtt3oPW851cu5HmPinJW4c0Laq1btPBfD0Z73qllN2SvDPJwWlCR2NZXEq5OM09eHat9eYO13l2klcn2TfNvbXeGP3vTHJukn+ptV7d4Rr7ZPhzP9RxpZTjRjmfjPD+TfDPpSl/1gfO75PkA0n2SzJjhDmuTvO5+5XVFWQGAAAAAGD1afs/fwEAAAAAgGnt4TZt7ap/rXVKKfOTXJlkfkYOfCXJ1kn+LsnVpZT9xrnmW9IEbT6dZO+M/Y/y7Zzmj/SvL6W8cTxrD9nDlmmCPqenqQgzYiin1rosyVdamp89EPoYj7e2HN+W5HvjnHOYUsrr01Rr+3g6C3wlTUWkZyU5OsmFSXboYr0nllLOSHJxkkMySghkwFPSBACvKaX820AgcNy6ucZMf6WU9Uop/57mvvuTdBb4SpqqXC9JckKagONY6+xYSvlNksvThPtemDECXwM2T/M5e2Up5YsTdZ9PpT561tcrpXwxTUDupRn9d/47pwkRf7eUsuFErA8AAAAAwOQR+gIAAAAAgDXP79u0vWHSd9FnSinvTLIgyfpdDNs6ybdLKQf2sN6MUsoJaf7g/g+7HZ8mNHFGKeUjPYwduo8nJflJmrBGpxa2aZs/jj3sleFBqlNqrY/2OucI67wtyZlp3rvVbqBq3E/SVI3rNmQ1K8lfJvmvUsqm49xHL9eYaaqUsm6aClLvyOr/fe+Tkjx9HONLkrcl+XEpZe7EbGny9dGzPjvJd9K8p93YP83PsnXGsz4AAAAAAJNrrH9JEgAAAAAAmH5+kiYMMNRLSilH1Vo/PRUb6gN7Jvn7IccrkvwwyfeT3JKmcs1Tk7wyyXNaxq6b5D9KKfvUWi/qYs3T01SDaXVrkh+kqZxzV5rKbJsNrPvyNEGzoY4tpdxZa/1MF2s/ZkaSs5LMG9J2fZrAyK8H1n9Ckm2THPxYh1rr5aWUK5IMre715lLKMbXW5T3s44g2be2CZT0rpTw9yWcyPJCxNM21viTJoiQPpPkd2dwkT06yS5Ldk2zT5XpbpKkK9uQ2p29O8vUk1yS5J8kWaSqJvSbN+z3U3km+X0rZq9b6SDd7GNDTNZ7mrkuyycDXT0qyZcv5X3Qwxz0TuqPJ9f4k7SoQ3pTkP5NcneT2NJ8tG6S517dL8owkz08ynopP96Z5lq5J8tski9M8U+sneWKa52n/DP8ce16SL2X0APIDWfXaPavl/O1pH2oe6tYxznetj571pAku7zvk+DdpQmC/Hlh/4zQ/S16X4c/FC5P8VZJ/6XFtAAAAAAAmmdAXAAAAAACseb6dJujSWtHqU6WUlyb551rrhZO/rSl1XJLHKpz8NMn8Wutv2vT7cCnl5Um+mGSrIe3rJVlYSnl2J3+sX0r5qwwPfN2c5D1Jvj5ShatSysw0AakTkmw05NS/llJ+Wmv9+Vhrt9grj3/fd6f5g//Taq21zdp/kybg9piFSf5tyPETkxyUJuDQsVLK+mmq4wz1kxHe//F4X5rrNNRpSd5Ta71zrMGllJ3ThKJaA5Pt+pYkJ2V4CGRpkr9L8ql217iU8pdJPpLkvVm1QtMfJfnHNNenW+O5xtNSrXWwylEp5cNpnu+h55/dOmZNMVDp6ZiW5oeS/EWSk2utK8cYv16a8M/8rPoZN5rfp7nfv5Hk0g7WKGkCrJ9Msv2QU68vpRxcaz273bha66UZEjQtpbTew5+vtX64wz1PiD571vdIMnvg698nOWqk93LgWT8xyeEtp/6ulHJirXVpD+sDAAAAADDJZozdBQAAAAAAmE4GAi4jVYU6KMl/l1JuLqUsKKW8vZTyrIGw0ZrssT+UPz/Ji0cLHNVav5MmFNFaMWbHNMGiUZVSnpHkn1qaL0ryjFrr10YKfA2svaLW+qUkL0hTQecx62bVSmWdeiwMdHuSF9ZaT20XBhpYu7YE2k5Psqyl2xE97OG1aSoNDTWhVb4GvKrl+EdJDu8k8JUktdara60fTVPx6/oxur8pTahlqIeTHFRrPWGka1xrXVprfV+Sd7Y5/e5SynM72WuL8Vxjpp/9smogNEneVWtdOFYYK0lqrY/UWv+r1vrmDL+H27k4yR/WWt9fa724wzVqrfXbaUJKl7ecfk8Ha/aTfnrWH/s5dn2SPUcKfA2s/0Caz+vvtZzaJE0VMAAAAAAApgGhLwAAAAAAWDMdm6ai1Ui2SlPp5QtJrkiypJTys1LKp0opB5dStpyMTU6yu5McXGt9eKyOtdbrk7ylzal3lVJmjTH8/UmG9rktyQG11vs73Wit9RdJ3tXS/LJSSq8VjN5Wa726mwG11ruT/L+W5pf3cG/Mbzl+KMmZXc4xqlLKnDSVyIb60kjhp9EMBO9aw26t2gVX3ldr/UGHa3whyedbmssI83aq62vMtDSv5XhpmoBm12qtD3XSp9a6osf5783wSlPPH6iqN13027O+PMkbaq2LOli7jrDOH/e4NgAAAAAAk0zoCwAAAAAA1kADwaYDMjy0M5LZSZ6X5KgkX0tyWynl/FLKkaWU2aMPnTY+PBBk6kit9fwk/9HS/KQMryg1qJSyTZI3tDR/cCD80K2vJPnflrZX9zDPj2qt5/YwLkkWtBzPTHJYp4NLKVsneXFL89m11iU97mckc9q0dXytu1FK2TPJbi3Nv0pyYpdTvT9J633Ra+ByPNeY6aX1Xr+/11DWZKi1XpnkspbmF0zFXrrVp8/6V2qtP++080AQtPX9b/2eAAAAAADoU0JfAAAAAACwhqq13pcmoHR4kuu6HF6SvCjJl5P8ppTSrurVdPJwklN7GPeFNm0vH6X/q9MEox7zYJIzelj3sSot32lpflEPU325l/UHfC/JrS1tR3Qx/q1p7qWhFo5jPyO5J0lrVa/VFSx5aZu2f6+1ruxmkoHn86stzbOS7NPDnsZzjZleWsOMW5ZStpuSnXSuNby655Tsonv9+Kx/sYcxF7ccP72HOQAAAAAAmAJCXwAAAAAAsAarjVOT7JTkoDR/eL64y2m2TnJaKWVhKWW9id7jJDm/1np/D+O+n+Hv12iBhdZQ1hW11od6WPcxv2s5fk4Pc/yo18VrrY9meFhul1LK7h1O8daW4+uTXNDrfkYyUNnuly3Nx5RSXjfRayX5P23aWivCdeqsDucfS8/XmGnnZy3HJckZpZQ/nKwNlFKeVkp5Synln0opZ5dS/rOUclEp5fJSyhWtryT7t0yx9WTtdZz67VlfmuEBrk78tuV4nVLKRj3MAwAAAADAJJs5dhcAAAAAAGC6q7WuSHJuknNLKeskeXaaSkjPTfJHSXZIss4Y0xyRZMMkb1h9O11tft7LoFrrylLKL5LsPaR5p1LKBiOEuVr/iH+XgdBDrzZrOd64lDKr1rq8w/F31FpbK3V1a0GSv2lpOyLJJaMNKqW8MMnTWppPGqhgtjosTPLJIcezk5xdSrkoyclJzq213jwB6/xRy/HNtdbf9zjXz5OszKr/UGPr/GOZiGvMNFFrvaKUcnlWDYDuluTaUspZacJFP6y1Lp3IdUspM5L8SZK3J+k09DmSTca/o0nRb8/6oi4++4dqF3jeOMkDPcwFAAAAAMAkEvoCAAAAAIC1zED1pp9nSBCqlLJBkj2S7Jvk9Ul2HGH460spR9VaP73aNzqxfjOOsb/OqqGvkuSJSW4c2qmUsm6SzVvGbpKJDzhsluT2Dvt22m9EtdZrSyk/SbLXkOY3lVLeU2t9ZJSh81uOV6YJX60un0/y5iTPa2nfc+D1uVLKdUkuTHLpwH9/2U0IrZRSMjyId02vG661PlBKuSnJU4c0P7HLacZ9jZl23pXk/CRDKy/OTnL4wGtZKeWSJBelqQz241prz/dJKWWnJKent0qD7Ww8QfOsNn36rN/T4/LtgmKzepwLAAAAAIBJNGPsLgAAAAAAwJqu1vpQrfVHtdZja607JXlZkqtG6P7BgZDYdNKu0sl4xrYLcj1hHGt0Y/0u+i6eoDUXthxvmuRVI3UupWyY5OCW5h/UWm9s138iDATQDkzy/VG6bZemStlnklyR5K5SyqmllAMGKhmNZW6GV8S7r4ftDnVvy3Fr0GQsE3WNmSZqrRcleUWSu0bosm6aqoPvTVP56/ellKtLKR8tpezQzVqllGckuSATF/hKpkfgqB+f9V6qfAEAAAAAMI0JfQEAAAAAAMPUWr+XZPck32lzeoskr5zcHY3bgxM8dk6btk3HscbqsmKC5jkzyUMtba2VvIZ6fZKNWtpag2MTrtZ6V5L9k7wxQyrZjWKzJIcmOS/J1aWU143Rv911H8+91W58uzVGM1HXmGmk1vr9JDsk+URGDn8NtVOSDyW5ppRydill27EGlFJmpQmNtVYwTJL/SfLhNOGzZ6X5uTAnycxaaxn6yuqt8Le69OOzDgAAAADAWkboCwAAAAAAaKvWujTJIWkfKNhvkrczXhtO8NglbdqWtmn7ZGsAYgJeN4zje+lJrXVJkrNbmvcvpWw1wpDWQNh9Sb4x4RtrozbOqrU+N8nOSY5J8v+S3D3G0B2SnF1K+VwppYzQp911H8+91W58uzVgmFrrPbXWDyR5cprqjP+S5OIky0YZVpK8LskVpZQ/HmOJd6QJiw312yS711pfUGv9SK31vFrrL2utd9ZaH6i1Ptpmnm6qE/YLzzoAAAAAAFNO6AsAAAAAABhRrXVxkpPanNphkrYwa4Lm2XiCx97Xpq1dOG7MajrTSGulrhlJDmvtVEqZl2Tvluav1lofXl0bG0mt9Zpa67/WWl9Za31ikqcn+ZMkp2bk6kh/luQDI5xbnKQ11LLJOLfZOv6ecc43XU3Us77WqbWuqLV+r9b617XWPZLMTfMMvj/J+WlfDW5ukv8opTx9lKnf1HK8JMlLaq2XdrnFzbrs3w886wAAAAAATDmhLwAAAAAAYCwXt2l74ij9l7dp6zXQ8YQex7UaLdgwltaAW02bwNBANazWal+7jmPdfnNBkutb2o5o0++INNWEhmoNjE2JWuv/1loX1FoPT/KkJAcluaRN1w+UUobd47XWmuEVw1orIXWslLJhkq1bmkcKo/WrYc97KaWX532invW1Xq31kVrrhbXWf6y17pvmXv+bDA+rbpjkY+3mKKVslOT5Lc2n9FhpcF4PY6aUZx0AAAAAgH4g9AUAAAAAAIzl/jZt7SrHPGZxm7a53S46EBxp/SP5Xu3Wy6BSyowkz25pvqbW+tAIQ1oDctuWUiarKtpqNRCCOKmleYdSymAwpJRSkhze0ueqWmu7YNWUqrU+Wms9N8leSb7TcnqDJC8bYehlLcd/UErZssdt7Jbhv6/7eY9zTZUJed6TbDfejdBerfXuWus/J9kzTbWuoV5RSlmvzbCnZPi9+d/drl1K2SLTMPQ1wLMOAAAAAMCUEvoCAAAAAADG0u6P3G8fpf8DSR5taevlj/6fl2T9Hsa1s28pZeMexr0kwwMsF43S/7/atB3aw7r96uQkK1va5g/5+sVJntpyfsFq3dE41VpXJHl/m1MjVWn7SZu2g3tc/vUdzt/PWqtHJb097y/qcf1hAdRSyjo9zrVGq7X+JsmXW5o3SPK0Nt3bVXO8p4dl39jDmMe0/hyZ7OvqWQcAAAAAYEoJfQEAAAAAAGN5cZu2347UeaAi1LUtzc/rYd139DBmJLPTW/jq7W3aWqtCDXVOm7a/LKVs1sPafafWemOSH7Q0v7GU8lg474iWcyuSnLa69zUBft2mbaSQ4PfatL1joCpcxwZCiG9uaV6e5EfdzNMHftOmravnfeC9eEOP67dWrkqSjXqca23Q6b3+YJu2dkGwEQ1UazyqmzEtWq/tZF9XzzoAAAAAAFNK6AsAAAAAANYwpZSDSinbTtBcT0v7MMa5Ywz9ecvxc0spT+9i3d2SvKnT/h36cCll0y72sHeGV3X5fZJvjTSm1vqrDA9+zU1yardBgT62sOV4bpLXllLmJnlty7nzaq13TM62xuXJbdrubNex1npxkktbmndN8mddrvnxJK1hwLOmyfs11C/SBFiGag24jOW4DK+o16l727T1UmlsbdHpvX5bm7b9u1zruCTbdzlmqNZrO6nX1bMOAAAAAMBUW1N+uQgAAAAAADzuwCTXllIWllJ27HWSUspTknwjyQYtp+5M8v0xhrerhvUvHa67dZKzkszqpH8Xnpjka6WU9TrYwzZJvtLm1Odqra0Bl1bHJnm0pe2AJAtLKbM72Ge7/exSSjmlm9DaavSNJPe1tM1P8sYMv1cWTMaGSil7lVLeXUqZ0+MU727T9otR+v/fNm3/Ukp5USeLlVKOTPKuluaa5IROxveTWusjSc5vad6rlPK6TsaXUg5LcvQ4tvCrNm0HjGO+vlZK+atSykt7HDs3w6vx3Z/kxta+A4Gk1oqNbymlPKvDteYneX8P2xyq9dq+qJSy4Tjn7JZnHQAAAACAKSP0BQAAAAAAa6aZaf64/5pSykWllL8opbSr8DJMKWWDUsqfJbk8yTPbdPnrWuvDY0zz9ST3tLQdVEr5YimlNRg0dO3XJrkoj1d0GWudTj02z35JfjBa1bFSyh8n+XGSP2g59esk/zzWQrXWXyR5X5tThye5aKASWxlrnlLKpqWUI0sp/5km/HBYknXGGre6DVz7r7Y075vkvS1tdyT59qRsKtkiySeT3FxK+XwpZf9SypihwVLKRqWUf8rw0NH9GaWaXa31qxn+va2f5LyBZ63t7+BKKbNLKZ9I8sUkrffAJ2utrRXyposvtWk7pZTy6pEGlFI2LqUcn+TkNO9Fr8/6lUkWt7S9v5RyRCll/R7n7GcvSvKfpZQrSykf6DTYW0rZJU1Y96ktp86stS4bYdhZLcezkny3lLLPKOtsUkr5tyRfzuO/i269Pp36ScvxxknOLKXs1ON8XfOsAwAAAAAwlWZO9QYAAAAAAIDVbo+B16dLKTck+VmSq5PcleTuNFVH5qYJA+yaJhg1UjWVs2qtJ4+1YK314VLKR9MEcYZ6W5IDSylnJ7kiyZIkmybZMU11nh2G9D0jyZPThBzG6yNJ/j5NaOr/JLmqlPL9JD9IckuSdZNsk+SgJLu1Gb8syfwOwm5Jklrr/y2l7JzkT1pOPSvJOUluLKX8KM17cHeawMvGefy92C3JLunf3+UsTPLOIcczsuq1S5JTa60rJm9LSZr7+E8HXktKKZelCS/+Lk11sgeTzE4T6PujJH+c5n1vdUytdekYa81Pc/2Ghik3TPLpJH9dSvl6kmsG1n1ikmcnec3A160uy/irIk2lryf5eVZ9djZI8o1Syk/TBOhuSPNZs2WSPZO8LI+/9zXJe5J8ttuFa63LSymnZdVqShumuUe/VEq5Kc3nzMqWocfWWs/pdr0+skuSjyf5+MDn+uVpqtPdnuaeW5Hmedguyd5pPvdaw0d3JzlulDVOSPIXSTYZ0vakJD8qpfw4yffSXNeVA+17JXl5ko2G9H/sM/bwLr+/JDklzef20M/BA9P8DLk3zff6SMuYW2utE13pzbMOAAAAAMCU6NdfFAIAAAAAAKvHNgOvXpyc4SGm0Xw6ySuSvKSl/clJjhpj7I+THJnkO12sN5qLkvxlkhMHjmemCZ28rIOxy5K8rtZ6UZdrvj1N2OijebzizWO2TvLWgde0U2u9pJRyZZJnjNJt4WTtZwRz0gQGuw0NnlBrbVe5ahW11jtKKS9I8t0k27ec3jrDq4eN5MIkr6y1toZXpo1a64pSyluT/DTN+z7U8wdeozkq43vWP5bktWmCR0Otk5E/7zYbx3r9ZpuB12u6GHN/ktfWWn8/Uoda6z2llLekCaq2Vhl84cBrNFcmeX2a8FjXaq23lVL+PsmH25zedODVapM2bePiWQcAAAAAYKq0/oIRAAAAAACY/k5NcnqaqiMT4fokr6q1HlFrfbTTQbXWlUlemabKTzdOT/LHHVRa6kqt9bNpglgdVesacFOSA2ut3X4PqY2Ppwm9Xdrt+BaLk3wpyQPjnGcijRbqurjWetWk7aQJsHRzXdu5K8mf1Frf0+mAWuv1aSoonZWmWlU3lqcJRr601npvl2P7zsD13jfJHV0MeyDJm2utJ47Zc/S1f5/kxWmqja3pRgxpdeHCJHvVWn88Vsda67fTBLcWd7nGuUn2noB7+2NJ/i5N+HbKeNYBAAAAAJgKQl8AAAAAALCGqbX+T6310CRbJNkvTaWpH6a7wNDtacJXBybZodZ6To97WVprPSjJG5P8crSuaYIIB9RaD621jjfAM9J+vpRk1zTBuNFCZTcl+YckO9davz/ONX9Ua909TVWxryW5s8Ohv0sT9Hp9kifVWt++ut6XHp2WJszQzqRW+aq1/ijJE5K8Kslnk1yRpNOA4s+THJNku1rrgh7WvrPW+sYkz0tyZpKxQh23Jflikp1qrX/ZZ9d0XGqtP0+yQ5Ljk9wzStcH07wHO9davzpBa1+TZPc0ld0+meRHSW5OE1bqOKza72qtf5amqtefJzk7yS0dDl060P+Vtda9a61Xd7HmN9J8bv57Rv/cXJnk/DQh4YNqreMOHtdaV9Za/yHJVkn+Is0zdmWakOakPjuedQAAAAAAJluptdt/iAwAAAAAAJiOSiklzR/Ob59k6yRzk8xJE7hanGRJmj9S/9VA5ZzVsYc/TPL8NIG0TZI8lCbcdFGt9bYJWmOfNIGPofattZ7f0m/9JHsk2THJZkkeSfP9/2+SS+tq+iXKwHXYOcnT0wSVnpDmH+pbkqY622+T/FpFmPEppWyY5l6fl+RJae71WWnCj/cnuS7JL2ut90/wuuskedyt3JwAACAASURBVG6aYM7maZ6z+9JUwLq21jpa+HGNUUqZkSaEtWOa92HdNCGZq9M8749M4fbWKKWUJyfZLs09t1mSDdMEsJakCUddleYzZcUErLVems/NHfL4Z9djn1uX1FpHC/utUTzrAAAAAACsbkJfAAAAAADAGqXT0BcAAAAAAABAv5ox1RsAAAAAAAAAAAAAAAAA4HFCXwAAAAAAAAAAAAAAAAB9ROgLAAAAAAAAAAAAAAAAoI8IfQEAAAAAAAAAAAAAAAD0EaEvAAAAAAAAAAAAAAAAgD4i9AUAAAAAAAAAAAAAAADQR4S+AAAAAAAAAAAAAAAAAPqI0BcAAAAAAAAAAAAAAABAHym11qneAwAAAAAAAAAAAAAAAAADVPoCAAAAAAAAAAAAAAAA6CNCXwAAAAAAAAAAAAAAAAB9ROgLAAAAAAAAAAAAAAAAoI8IfQEAAAAAAAAAAAAAAAD0EaEvAAAAAAAAAAAAAAAAgD4i9AUAAAAAAAAAAAAAAADQR4S+AAAAAAAAAAAAAAAAAPqI0BcAAAAAAAAAAAAAAABAHxH6AgAAAAAAAAAAAAAAAOgjQl8AAAAAAAAAAAAAAAAAfUToCwAAAAAAAAAAAAAAAKCPCH0BAAAAAAAAAAAAAAAA9JGZU70BGEkpZeMkLxrSdFOSZVO0HQAAAAAAAAAAAAAAANYu6yb5wyHHF9Ra75+MhYW+6GcvSvKtqd4EAAAAAAAAAAAAAAAAJHlVknMmY6EZk7EIAAAAAAAAAAAAAAAAAJ0R+gIAAAAAAAAAAAAAAADoIzOnegMwipuGHnzzm9/MdtttN1V7AQAAAAAAAAAAAAAAYC1y3XXX5dWvfvXQpptG6jvRhL7oZ8uGHmy33XbZZZddpmovAAAAAAAAAAAAAAAArN2Wjd1lYsyYrIUAAAAAAAAAAAAAAAAAGJvQFwAAAAAAAAAAAAAAAEAfEfoCAAAAAAAAAAAAAAAA6CNCXwAAAAAAAAAAAAAAAAB9ROgLAAAAAAAAAAAAAAAAoI8IfQEAAAAAAAAAAAAAAAD0EaEvAAAAAAAAAAAAAAAAgD4i9AUAAAAAAAAAAAAAAADQR4S+AAAAAAAAAAAAAAAAAPqI0BcAAAAAAAAAAAAAAABAHxH6AgAAAAAAAAAAAAAAAOgjM6d6AwAAAAAAAAAAAAAA9InLT0/uu7Hz/ptsnTznLatvPwCwlhL6AgAAAAAAAAAAAACgccVXkkUXdt7/qS8Q+gKA1WDGVG8AAAAAAAAAAAAAAAAAgMep9AVD1FqzcuXK1FqneivAalBKyYwZM1JKmeqtAAAAAAAAAAAAAADAiIS+WKvVWvPwww9nyZIlWbJkSZYtWzbVWwImwbrrrps5c+Zkzpw5mT17thAYAAAAAAAAAAAAAAB9ReiLtdZDDz2UW2+9NcuXL5/qrQCTbNmyZbn77rtz9913Z9asWXnKU56SDTbYYKq3BQAAAAAAAAAAAAAASZIZU70BmAoPPfRQbrzxRoEvIMuXL8+NN96Yhx56aKq3AgAAAAAAAAAAAAAASYS+WAs9FviqtU71VoA+UWsV/AIAAAAAAAAAAAAAoG/MnOoNwGSqtebWW28dFviaNWtW5s6dm4022iizZs1KKWWKdgisTrXWLF++PA888EAWL168SrW/xz4fnva0p/kMAAAAAAAAAAAAAABgSgl9sVZ5+OGHVwl5JMmcOXOy1VZbCXnAWmLWrFnZYIMNsvnmm+eWW27JkiVLBs8tX748jzzySGbPnj2FOwQAAAAAAAAAAAAAYG03Y6o3AJNpaLgjacIfAl+wdiqlZKuttsqsWbNWaV+8ePEU7QgAAAAAAAAAAAAAABpCX6xVWkNfc+fOFfiCtVgpJXPnzl2lrfVzAgAAAAAAAAAAAAAAJpvQF2uNWmuWLVu2SttGG200RbsB+kXr58CyZctSa52i3QAAAAAAAAAAAAAAgNAXa5GVK1cOa5s1a9YU7AToJzNnzhzW1u7zAgAAAAAAAAAAAAAAJovQF2uNdpV7SilTsBOgn8yYMfxHoUpfAAAAAAAAAAAAAABMJaEvAAAAAAAAAAAAAAAAgD4i9AUAAAAAAAAAAAAAAADQR4S+AAAAAAAAAAAAAAAAAPqI0BcAAAAAAAAAAAAAAABAHxH6AgAAAAAAAAAAAAAAAOgjQl8AAAAAAAAAAAAAAAAAfUToCwAAAAAAAAAAAAAAAKCPCH0BAAAAAAAAAAAAAAAA9BGhLwAAAAAAAAAAAAAAAIA+IvQF0MY222yTUsqw1+c///me51ywYEHbObfZZpuJ2zgAAAAAAAAAAAAAADDtCX0BdGHhwoU9j12wYMEE7gQAAAAAAAAAAAAAAFhTCX0BdOHiiy/OVVdd1fW4a6+9Nv/zP/+zGnYEAAAAAAAAAAAAAACsaYS+ADowa9aswa97qfY1tMrX0LkAAAAAAAAAAAAAAABaCX0BdOAVr3jF4NennXZaVqxY0fHYRx99NKeccsrg8UEHHTShewMAAAAAAAAAAAAAANYsQl8AHTjyyCMHv7799ttz3nnndTz2O9/5Tm677ba2cwEAAAAAAAAAAAAAALQS+gLowJ577pmddtpp8HjhwoUdj12wYMHg1zvttFP22GOPCd0bAAAAAAAAAAAAAACwZpk51RsAmC7mz5+f973vfUmS8847L3fccUe22GKLUcfceeedOffccwePJ7LK19VXX51f/epXufPOO7N48eJsttlmefKTn5wXvOAFecITnjCuuZcsWZKrr7461157be666648+OCDmTNnTjbbbLM84xnPyK677pp11llngr6Tx1177bX5xS9+kZtvvjkrVqzI5ptvnt122y3PfOYzJ3wtAAAAAAAAAAAAAADoV0JfAB06/PDD84EPfCArVqzIihUrcuqpp+a9733vqGNOOeWULF++PEkyc+bMHHbYYePaw913353jjz8+p512Wm655Za2fWbMmJG99torxx13XF7ykpd0PPeVV16ZM888M9/73vdy2WWX5dFHHx2x75w5c3LooYfmmGOOybx58zqa/4Ybbsi22247ePzWt741J510UpLk3HPPzcc//vFcdNFFbcfOmzcvH/3oR/OWt7yl4+8HAAAAAAAAAAAAAACmK6Ev6MXlpydXfGWqd9G9Jz0zefk/Ttx8t/0y+e77xz/Ps9+cPKf/wzxbbrllDjjggJxzzjlJkoULF44Z+lq4cOHg1wcccEC23HLL3HXXXT2tf8opp+Soo47K4sWLR+23cuXKXHjhhXnpS1+aQw89NF/+8pez7rrrjjrmsssuy2677dbxXpYsWZLPfe5zOemkk/KFL3whhx56aMdjh3r00Udz9NFH5zOf+cyo/a6//voceuih+elPf5pPf/rTKaX0tB4AAAAAAAAAAAAAAEwHQl/Qi/tuTBZdONW7mHoP3z8x78M2Lxj/HJPkyCOPHAx9XXXVVbnkkkuy++67t+37s5/9LFddddUqY3t17LHH5mMf+9gqbaWU7LDDDtl+++0zZ86c3Hvvvbn00ktz5513DvY57bTTctttt+W73/1uZs4c+SN/5cqVw+bedttts/3222fu3LmZNWtW7r333lx11VW58cYbB/stXbo0hx12WGbPnp2DDz646+/r3e9+d0488cTBNXfdddfMmzcv6623XhYtWpRLLrkkK1asGOx/4oknZpdddsk73/nOrtcCAAAAAAAAAAAAAIDpQugLoAsHHnhgttxyy9x+++1JkgULFowY+lqwYMHg11tssUUOOOCAntY8+eSTVwl8zZgxI3/+53+eY445JltvvfUqfWut+da3vpV3v/vdg+GsH/zgB/nQhz6UT3ziE6Ous/766+eQQw7Jq171quy3337ZaKON2va78sor89GPfjRf+9rXBtuOPPLIvPCFL8wWW2zR8fd13nnnDVY9e9vb3pbjjjsuf/AHf7BKn1tuuSXveMc78u1vf3uw7W//9m9z+OGHZ8MNN+x4LQAAAAAAAAAAAAAAmE5mTPUGAKaTmTNn5tBDDx08PuOMM/Lwww8P67d06dKceeaZg8eHHXZYZs2a1fV6ixYtWqWq1XrrrZfzzjsvn/rUp4YFvpKmWtarX/3qXHLJJdluu+0G248//vj87ne/G3Gdpz/96bnllluyYMGCvOpVrxox8JUkz3jGM3LWWWfluOOOG2xbsmRJPvvZz3b1vT0W+PrsZz+bL37xi8MCX0my1VZb5Vvf+lZ22223wbbFixfnjDPO6GotAAAAAAAAAAAAAACYToS+ALp05JFHDn5933335Rvf+MawPmeffXbuv//+weP58+f3tNbxxx+fpUuXDh6fcMIJednLXjbmuC222CJf+cpXBo8fffTRnHDCCSP2nzt3bjbddNOu9nbsscdm1113HTw+/fTTuxqfJG9+85tXCbW1M3PmzHzkIx9Zpe2HP/xh12sBAAAAAAAAAAAAAMB0IfQF0KWdd945e+yxx+DxggULhvUZ2va85z0vu+yyS9frPPjgg6vMM2/evPzpn/5px+N333337L333oPH55xzTtd7GM2MGTPymte8ZvD4uuuuy5133tnVHB/60Ic66rf//vtn3XXXHTy+/PLLu1oHAAAAAAAAAAAAAACmE6EvgB4Mrfb1wx/+MDfeeOPg8fXXX58LLrhg8LjXKl8XXnjhKlW+Dj744MyY0d3H9r777jv49aJFi1bZZ6ceeeSR3HXXXVm0aFFuuOGGVV7rr7/+Kn2vueaajuedN29edtxxx476zpo1K0972tMGj++4446O1wEAAAAAAAAAAAAAgOlm5lRvAGA6OuSQQ3L00Udn6dKlWblyZU4++eTBqlULFixIrTVJsv766+dNb3pTT2tceOGFqxw/5SlPyQ033NDVHEOrYyVNIG3rrbcedcyVV16ZM888M//93/+dq666KnfddVfH6917770d991555077pskm2666eDX999/f1djAQAAAAAAAAAAAABgOhH6AujB3Llz87rXvS6nnXZakuSkk07KBz/4wdRac8oppwz2e+1rX5uNN964pzVuuummVY6PPvroHH300b1vOsk999wz4rlFixbl6KOPzje/+c2e5+8mjDU0xNWJWbNmDX69YsWKrsYCAAAAAAAAAAAAAMB0IvQF0KMjjzxyMPR1/fXX54ILLsjDDz+8Slhr/vz5Pc9/9913j3uPrZYsWdK2/Zprrsl+++2X2267bVzzr1y5suO+M2bMGNdaAAAAAAAAAAAAAACwpvIX9wA92meffbLtttsOHi9cuDALFiwYPH7qU5+aF7/4xT3Pv2zZsnHtr51a67C2FStW5JBDDlkl8DV79uwcdthhOemkk3LppZfmtttuywMPPJAVK1ak1jr4Wrhw4YTvEQAA+P/s3XuQ3eV93/HPs9rVCiEEIkaA6ciYmyHcm9itZZWCZXfASZxY44SJaYwgF7uZzjhtPLhOqQWeeqjtuo4zxW2ZTuLLmHYSB2IDwUDieDBo5A4tMeESSyZGTGUUFSRZWi5C0j79QyB2jy579noecV6vmZ3Z5zm/3/P7LjDnL97zAwAAAAAAAAAA+p03fQFMUSklq1evzpo1a5IkX//617N37979n69evTqllCmf/4Y3vGHceu3atXn7298+5fMO5bbbbssjjzyyf33GGWfknnvuyWmnnTbhvTt27JjxeQAAAAAAAAAAAAAAoN+JvmAqjluWvGlFr6eYvJPOn9nzFhw7M/8cjls2/TN6ZPXq1bnxxhszOjqaF154Yf/+q0HYdJx44onj1uvXr5+V6Osb3/jGuPUtt9zSVfCVJD/+8Y9nfB4AAAAAAAAAAAAAAOh3oi+Yiouv2vfT706+ILnmrl5P0VPLli3LypUrc999943bv+yyy3LqqadO6+zly5fn85///P71vffem6uvvnpaZx7Mhg0b9v9+9NFH59JLL+363rVr1874PAAAAAAAAAAAAEAPTfYlAzP9UgIAIInoC2Darr322gOir2uvvXba565cuTLz5s3L3r17kyTf/OY3s2XLlixdunTaZ4+1ffv2/b8vXrw4pZSu7vvhD3+YBx98cEZnAQAAAAAAAAAAAHrsiv/Q6wkAgIi+AKZt1apV+e53vztu761vfeu0z12yZEmuuuqqfOUrX0mSjIyM5KMf/ej+9UxZsmTJ/t+3bNmSbdu2jds7lOuuuy6jo6MzOgsAAAAAAAAAAAAAAJAM9HoAgCPd/Pnzs2LFinE/w8PDM3L2DTfcMO6sr371q/nYxz62/+1f3Xr88cdz//33H/SzCy+8cP/ve/fuzWc/+9kJz1uzZk1uv/32Sc0AAAAAAAAAAAAAAAB0R/QF0LA3v/nNueWWW8btfeYzn8mKFStyxx13ZM+ePYe896mnnsrNN9+cd77znTn33HPz7W9/+6DXXXnllePWN910U66//vqMjIwccO0PfvCDrFq1Kp/85CeTJCeccMJk/yQAAAAAAAAAAAAAAGACg70eAIDD++AHP5jNmzfn4x//eEZHR5Mk69aty3vf+94sXLgwF198cU488cQcddRR2blzZ5599tk8/vjj2b59e1fnr1y5MldccUXuvvvu/Xuf+tSn8oUvfCFve9vbcvLJJ2dkZCTr16/PE088sf+ac845Jx/+8IfzkY98ZGb/YAAAAAAAAAAAAAAA6HOiL4AjwHXXXZcLLrgg11xzTTZv3rx//4UXXsiDDz7Y1RlLliw55Ge33npr3v3ud+ehhx7avzcyMnLIt4NddNFFufPOO3Pfffd1+RcAAAAAAAAAAAAAAADdGuj1AAB05/LLL8+PfvSj3HzzzbnoootSSjns9UNDQ1m+fHluuOGGrF+//rBv5DruuOPywAMP5BOf+ESOP/74Q173lre8JZ/+9Kezbt26nHLKKVP+WwAAAAAAAAAAAAAAgEMrtdZezwAHVUo5N8mjr64fffTRnHvuuVM+b8+ePdmwYcO4vTPPPDODg154x5Fp69atWbduXZ555pls3bo1u3fvzqJFi7J06dKcddZZOfvss7Nw4cJJn7tr165873vfy2OPPZZt27Zl0aJFOemkk3LOOefk/PPPn4W/pLd8NwAAAAAAAAAAAAAAcDCPPfZYzjvvvLFb59VaH5uLZ/s/2gGOUMcff3ze8573zPi5w8PDueSSS3LJJZfM+NkAAAAAAAAAAAAAAMDEBno9AAAAAAAAAAAAAAAAAACvEX0BAAAAAAAAAAAAAAAANET0BQAAAAAAAAAAAAAAANAQ0RcAAAAAAAAAAAAAAABAQwZ7PQAAAAAAAAAAAAAAAEem8rt39HoEgIOqn/uFXo8A0+JNXwAAAAAAAAAAAAAAAAANEX0BAAAAAAAAAAAAAAAANET0BQAAAAAAAAAAAAAAANAQ0RcAAAAAAAAAAAAAAABAQ0RfAAAAAAAAAAAAAAAAAA0Z7PUAAAAAAAAAAAAAAAA04plHkpd+0vXlFw5szPdH3zSLAwFAfxJ9AQAAAAAAAAAAAACwz7c+nmx8oOvLf3/47Fz24vWzOBAA9KeBXg8AAAAAAAAAAAAAAAAAwGtEXwAAAAAAAAAAAAAAAAANEX0BAAAAAAAAAAAAAAAANET0Rd8opRywV2vtwSRAS0ZHRw/YO9j3BQAAAAAAAAAAAAAAzBXRF31jYODA/9x3797dg0mAluzZs+eAvYN9XwAAAAAAAAAAAAAAwFzxf7XTN0opmT9//ri9kZGRHk0DtKLze2D+/Pne9AUAAAAAAAAAAAAAQE+JvugrxxxzzLj1jh07Umvt0TRAr9Vas2PHjnF7nd8TAAAAAAAAAAAAAAAw10Rf9JXOmGP37t3ZtGmT8Av6UK01mzZtyu7du8ftL168uEcTAQAAAAAAAAAAAADAPoO9HgDm0oIFCzI0NDQu8ti5c2eefPLJLF68OIsWLcrg4GAGBvSQ8Ho0OjqaPXv2ZGRkJDt27Dgg+BoaGsrw8HCPpgMAAAAAAAAAAAAAgH1EX/SVUkre+MY35umnnx73dq/du3fnueeey3PPPdfD6YBeevX7oZTS61EAAAAAAAAAAAAAAOhzXmdE31m4cGGWLVsm7AD2K6Vk2bJlWbhwYa9HAQAAAAAAAAAAAAAA0Rf96dXwa2hoqNejAD02NDQk+AIAAAAAAAAAAAAAoCmDvR4AemXhwoU5/fTTs2vXruzYsSM7d+7Myy+/3OuxgDkwf/78HHPMMVm8eHGGh4e9+Q8AAAAAAAAAAAAAgKaIvuhrpZQsWLAgCxYsyNKlS1NrzejoaGqtvR4NmAWllAwMDIi8AAAAAAAAAAAAAABomugLxiilZN68eb0eAwAAAAAAAAAAAAAAgD420OsBAAAAAAAAAAAAAAAAAHiN6AsAAAAAAAAAAAAAAACgIaIvAAAAAAAAAAAAAAAAgIaIvgAAAAAAAAAAAAAAAAAaIvoCAAAAAAAAAAAAAAAAaIjoCwAAAAAAAAAAAAAAAKAhoi8AAAAAAAAAAAAAAACAhoi+AAAAAAAAAAAAAAAAABoi+gIAAAAAAAAAAAAAAABoiOgLAAAAAAAAAAAAAAAAoCGiLwAAAAAAAAAAAAAAAICGiL4AAAAAAAAAAAAAAAAAGiL6AgAAAAAAAAAAAAAAAGiI6AsAAAAAAAAAAAAAAACgIaIvAAAAAAAAAAAAAAAAgIaIvgAAAAAAAAAAAAAAAAAaIvoCAAAAAAAAAAAAAAAAaIjoCwAAAAAAAAAAAAAAAKAhoi8AAAAAAAAAAAAAAACAhoi+AAAAAAAAAAAAAAAAABoi+gIAAAAAAAAAAAAAAABoiOgLAAAAAAAAAAAAAAAAoCGiLwAAAAAAAAAAAAAAAICGiL4AAAAAAAAAAAAAAAAAGiL6AgAAAAAAAAAAAAAAAGiI6AsAAAAAAAAAAAAAAACgIaIvAAAAAAAAAAAAAAAAgIaIvgAAAAAAAAAAAAAAAAAaIvoCAAAAAAAAAAAAAAAAaIjoCwAAAAAAAAAAAAAAAKAhg70eAAAAAAAAAAAAAACARlxz16Quv+x375ilQQCgv3nTFwAAAAAAAAAAAAAAAEBDRF8AAAAAAAAAAAAAAAAADRF9AQAAAAAAAAAAAAAAADRE9AUAAAAAAAAAAAAAAADQENEXAAAAAAAAAAAAAAAAQENEXwAAAAAAAAAAAAAAAAANEX0BAAAAAAAAAAAAAAAANET0BQAAAAAAAAAAAAAAANAQ0RcAAAAAAAAAAAAAAABAQ0RfAAAAAAAAAAAAAAAAAA0RfQEAAAAAAAAAAAAAAAA0RPQFAAAAAAAAAAAAAAAA0BDRFwAAAAAAAAAAAAAAAEBDRF8AAAAAAAAAAAAAAAAADRF9AQAAAAAAAAAAAAAAADRE9AUAAAAAAAAAAAAAAADQENEXAAAAAAAAAAAAAAAAQENEXwAAAAAAAAAAAAAAAAANEX0BAAAAAAAAAAAAAAAANGSw1wMAAAAAAAAAAAAAANCIP/q5ZOMDXV/+V0ednctevH4WBwKA/uRNXwAAAAAAAAAAAAAAAAANEX0BAAAAAAAAAAAAAAAANET0BQAAAAAAAAAAAAAAANAQ0RcAAAAAAAAAAAAAAABAQ0RfAAAAAAAAAAAAAAAAAA0RfQEAAAAAAAAAAAAAAAA0RPQFAAAAAAAAAAAAAAAA0BDRFwAAAAAAAAAAAAAAAEBDRF8AAAAAAAAAAAAAAAAADRF9AQAAAAAAAAAAAAAAADRE9AUAAAAAAAAAAAAAAADQENEXAAAAAAAAAAAAAAAAQENEXwAAAAAAAAAAAAAAAAANEX0BAAAAAAAAAAAAAAAANET0BQAAAAAAAAAAAAAAANAQ0RcAAAAAAAAAAAAAAABAQ0RfAAAAAAAAAAAAAAAAAA0RfQEAAAAAAAAAAAAAAAA0RPQFAAAAAAAAAAAAAAAA0BDRFwAAAAAAAAAAAAAAAEBDRF8AAAAAAAAAAAAAAAAADRF9AQAAAAAAAAAAAAAAADRE9AUAAAAAAAAAAAAAAADQENEXAAAAAAAAAAAAAAAAQENEXwAAAAAAAAAAAAAAAAANEX0BAAAAAAAAAAAAAAAANET0BQAAAAAAAAAAAAAAANAQ0RcAAAAAAAAAAAAAAABAQ0RfAAAAAAAAAAAAAAAAAA0RfQEAAAAAAAAAAAAAAAA0RPQFAAAAAAAAAAAAAAAA0BDRFwAAAAAAAAAAAAAAAEBDRF8AAAAAAAAAAAAAAAAADRF9AQAAAAAAAAAAAAAAADRE9AUAAAAAAAAAAAAAAADQENEXAAAAAAAAAAAAAAAAQENEXwAAAAAAAAAAAAAAAAANEX0BAAAAAAAAAAAAAAAANET0BQAAAAAAAAAAAAAAANAQ0RcAAAAAAAAAAAAAAABAQ0RfAAAAAAAAAAAAAAAAAA0RfQEAAAAAAAAAAAAAAAA0RPQFAAAAAAAAAAAAAAAA0BDRFwAAAAAAAAAAAAAAAEBDRF8AAAAAAAAAAAAAAAAADRns9QAAAAAAAAAAAAAAADTi8puSl37S9eW/88Xvz+IwANC/RF8AAAAAAAAAAAAAAOxz8gWTuvz7o9tnaRAA6G8DvR4AAAAAAAAAAAAAAAAAgNeIvgAAAAAAAAAAAAAAAAAaIvoCAAAAAAAAAAAAAAAAaIjoCwAAAAAAAAAAAAAAAKAhoi8AAAAAAAAAAAAAAACAhoi+AAAAAAAAAAAAAAAAABoi+gIAAAAAAAAAAAAAAABoiOgLAAAAAAAAAAAAAAAAoCGiLwAAAAAAAAAAAAAAAICGiL4AAAAAAAAAAAAAAAAAGiL6AgAAAAAAAAAAAAAAAGiI6AsAAAAAAAAAAAAAAACgIaIvAAAAAAAAAAAAAAAAgIaIvgAAAAAAAAAAAAAAAAAaIvoCAAAAAAAAAAAAAAAAaIjoCwAAAAAAAAAAAAAAAKAhoi8AAAAAAAAAAAAAAACAhoi+AAAAAAAAAAAAFqD1bQAAIABJREFUAAAAABoy2OsBAAAAAAAAAAAAAABoxN3/Jtn8N11f/vnho/Ovdv3aLA4EAP1J9AUAAAAAAAAAAAAAwD6b/ybZ+EDXl180cPYsDgMA/Wug1wMAAAAAAAAAAAAAAAAA8BrRFwAAAAAAAAAAAAAAAEBDRF8AAAAAAAAAAAAAAAAADRF9AQAAAAAAAAAAAAAAADRE9AUAAAAAAAAAAAAAAADQENEXAAAAAAAAAAAAAAAAQENEXwAAAAAAAAAAAAAAAAANEX0BAAAAAAAAAAAAAAAANET0BQAAAAAAAAAAAAAAANAQ0RcAAAAAAAAAAAAAAABAQ0RfAAAAAAAAAAAAAAAAAA0RfQEAAAAAAAAAAAAAAAA0RPQFAAAAAAAAAAAAAAAA0BDRFwAAAAAAAAAAAAAAAEBDRF8AAAAAAAAAAAAAAAAADRF9AQAAAAAAAAAAAAAAADRE9AUAAAAAAAAAAAAAAADQENEXAAAAAAAAAAAAAAAAQENEXwAAAAAAAAAAAAAAAAANEX0BAAAAAAAAAAAAAAAANET0BQAAAAAAAAAAAAAAANAQ0RcAAAAAAAAAAAAAAABAQ0RfAAAAAAAAAAAAAAAAAA0RfQEAAAAAAAAAAAAAAAA0RPQFAAAAAAAAAAAAAAAA0BDRFwAAAAAAAAAAAAAAAEBDRF8AAAAAAAAAAAAAAAAADRF9AQAAAAAAAAAAAAAAADRE9AUAAAAAAAAAAAAAAADQENEXAAAAAAAAAAAAAAAAQENEXwAAAAAAAAAAAAAAAAANEX0BAAAAAAAAAAAAAAAANET0BQAAAAAAAAAAAAAAANAQ0RcAAAAAAAAAAAAAAABAQ0RfAAAAAAAAAAAAAAAAAA0RfQEAAAAAAAAAAAAAAAA0RPQFAAAAAAAAAAAAAAAA0BDRFwAAAAAAAAAAAAAAAEBDRF8AAAAAAAAAAAAAAAAADRF9AQAAAAAAAAAAAAAAADRksNcD9KtSyrwkZyT56SRvTHJskl1JtiV5MslDtdbnZ/iZQ0nekWRZkpOTjCT5cZKHa61PzeSzAAAAAAAAAAAAAAAAgKkRfc2hUsqyJKuSvCvJP0my+DCX7y2l3JfkP9da75rmc09IcmOSK5Mcf4hr1ib5T7XWP53OswAAAAAAAAAAAAAAAIDpEX3NkVLKrUl+dRK3zEtyeZLLSyl3JvmNWuvfT+G5VyT5UpKlE1y6PMnyUsrXknxopt8yBgAAAAAAAAAAAAAAAHRH9DV3zjrE/qYkG5L8ffb9+zgtyYVJBsZc8/NJ7i+l/NNa6+ZuH1hKuTTJnyWZP2a7Jvk/Sf4uyXFJLk7yhjGfX5VkcSnll2qto90+CwAAAAAAAAAAAAAAAJgZoq/eeDjJHya5u9b6ZOeHpZRTknwiyW+N2T4ryZ+UUi6ptdaJHlBK+QdJbsv44OvBJL9Za31izHXDST6U5D8mGXpl+xeS/PskvzeZPwoAAAAAAAAAAAAAOMJd9IHk1BVdX/6lb22dxWEAoH+JvuZOTXJXkhtqrQ8d9sJaNyX5UCnl+0luHvPRiiRXJvmfXTzvxiRLxqzXJnlXrfWljmftSvIHpZSnk9w+5qN/XUr5b7XWjV08CwAAAAAAAAAAAAB4Pbj4qkld/uU775ilQQCgvw30eoA+8su11p+fKPgaq9b6xSR/2rH9axPdV0o5M8nVY7ZeTrK6M/jqeNafJfnymK3hJGu6nRUAAAAAAAAAAAAAAACYGaKvOVJrfWqKt97csb6si3s+kGTemPVttdYNXdz36Y71r5RSFnRxHwAAAAAAAAAAAAAAADBDRF/te7hjfVQp5bgJ7nlfx/qPunlQrfWJJN8bs3V0kn/Wzb0AAAAAAAAAAAAAAADAzBB9tW/PQfbmH+riUspJSS7suP/BSTzvOx3rKyZxLwAAAAAAAAAAAAAAADBNoq/2ndGx3pPk2cNcf17H+pFa6/OTeN7ajvW5k7gXAAAAAAAAAAAAAAAAmCbRV/ve37F+qNY6epjrf7pj/cNJPu/JCc4DAAAAAAAAAAAAAAAAZpHoq2GllEVJfr1j+/YJbut8M9jTk3zsxo71T5VSlkzyDAAAAAAAAAAAAAAAAGCKRF9tuynJSWPW25P89wnuOa5jvWUyD6y1jiR5qWP72MmcAQAAAAAAAAAAAAAAAEzdYK8H4OBKKe9L8i87tv9trXXrBLcu6li/OIXHv5hkwZj1MVM4Y5xSytIkJ0zyttOn+1wAAAAAAAAAAAAAAAA40oi+GlRKuTDJVzq2703yX7q4vTP66nxrVzdeTLLkMGdOxW8nWTMD5wAAAAAAAAAAAAAAAMDr2kCvB2C8UsqyJHdlfGi1Mck/r7XWKRw5V/cAAAAAAAAAAAAAAAAAM0D01ZBSytIk9yU5Zcz25iTvrrX+vy6PGelYHzWFUTrv6TwTAAAAAAAAAAAAAAAAmCWDvR6AfUopxyf5iyRnjdl+Nsm7aq0bJnFUq9HXF5P8ySTvOT3JN2bg2QAAAAAAAAAAAAAAAHDEEH01oJRybJJ7k5w/Zntb9r3h67FJHveTjvUJk5xlUQ6MvrZPcoYD1Fq3JNkyyVmm+1gAAAAAAAAAAAAAAAA44gz0eoB+V0o5Jsm3kvzMmO0dSS6vtf71FI7sfCvYmyZ5f+f1W2ut26YwBwAAAAAAAAAAAAAAADAFoq8eKqUcneTPk/zjMdsjSa6otf6vKR77RMf6jEnef1rH+vEpzgEAAAAAAAAAAAAAAABMgeirR0opRyW5M8mKMdsvJPm5WuvaaRz9aMf6glLKwknc/44JzgMAAAAAAAAAAAAAAABmkeirB0opC5J8M8mlY7ZfSvLeWuv90zm71vpMkkfGbA1mfFg2kUs71ndPZx4AAAAAAAAAAAAAAABgcgZ7PUC/KaXMT3JbkneN2d6V5JdqrX85Q4+5PckFY9bXJLm3i9nOTvKPxmw93819AAAAAAAAAAAAAMDrxMNfS7Y/3fXlVw9uzZf3XDKLAwFAfxJ9zaFSymCSP05yxZjt3UneX2u9ZwYf9bUk1yeZ98p6VSnlzFrrhgnu+1jH+o9rrS/N4FwAAAAAAAAAAAAAQMv++tZk4wNdX7566GzRFwDMgoFeD9AvSinzsi/G+sUx23uSXFlrvXMmn/VK3PXlMVvzk3yplLLgMPP9YpLVY7ZeTnLjTM4FAAAAAAAAAAAAAAAATMybvubOHyb5lY6930vycCnl1EmetbmLN3CtSfK+JEteWS9P8hellN+otf7tqxeVUoaT/FaSz3Xc/7la68ZJzgUAAAAAAAAAAAAAAABMk+hr7nzwIHufeeVnsi5L8p3DXVBr/b+llFVJ7sm+N30lyTuSPF5K+d9J/i7JsUn+YZITOm6/M8m/m8JcAAAAAAAAAAAAAAAAwDSJvl7Haq3fKaW8L8mX8lrYVZL87Cs/B/M/kvxmrXXv7E8IAAAAAAAAAAAAAAAAdBro9QDMrlrrnyc5L8l/TbLtMJeuS/L+WusHaq3Pz8lwAAAAAAAAAAAAAAAAwAG86WuO1FpLD5+9Jcm/KKV8JMk7krwpyUlJnk+yKcnDtdYf9Wo+AAAAAAAAAAAAAAAA4DWirz5Sa305yV/1eg4AAAAAAAAAAAAAAADg0AZ6PQAAAAAAAAAAAAAAAAAArxF9AQAAAAAAAAAAAAAAADRE9AUAAAAAAAAAAAAAAADQENEXAAAAAAAAAAAAAAAAQENEXwAAAAAAAAAAAAAAAAANEX0BAAAAAAAAAAAAAAAANET0BQAAAAAAAAAAAAAAANAQ0RcAAAAAAAAAAAAAAABAQ0RfAAAAAAAAAAAAAAAAAA0RfQEAAAAAAAAAAAAAAAA0RPQFAAAAAAAAAAAAAAAA0BDRFwAAAAAAAAAAAAAAAEBDRF8AAAAAAAAAAAAAAAAADRF9AQAAAAAAAAAAAAAAADRE9AUAAAAAAAAAAAAAAADQENEXAAAAAAAAAAAAAAAAQENEXwAAAAAAAAAAAAAAAAANEX0BAAAAAAAAAAAAAAAANET0BQAAAAAAAAAAAAAAANAQ0RcAAAAAAAAAAAAAAABAQ0RfAAAAAAAAAAAAAAAAAA0RfQEAAAAAAAAAAAAAAAA0RPQFAAAAAAAAAAAAAAAA0BDRFwAAAAAAAAAAAAAAAEBDRF8AwP9n725e7LzrMA7fv3GkSBREsEQXtTUgoVCNpUrBF8ymWAUXrtTi27arhi5qIMWVtCt1oUXoomZhN4qgUeyiUJBsfIEmDV1105GARSRpUWiKpY+LmTBDsXimzTPPzZzrgmE4c77nzP0PfHgAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACiyufQAAAAAAAAAAAAAAABKHL1jX+cXXjgy0xAAWG+iLwAAAAAAAAAAAAAAtt376L7OTz14bqYhALDeNpYeAAAAAAAAAAAAAAAAAMAu0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQJHNpQcAAAAAAAAAAAAAAFDi788l115Z+fwTG1u5+MZHZhwEAOtJ9AUAAAAAAAAAAAAAwLanTidb51c+//FNx3Py1TMzDgKA9bSx9AAAAAAAAAAAAAAAAAAAdom+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKbC49AAAAAAAAAAAAAACAEt/9/b7OTz54bqYhALDePOkLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoMjm0gMAAAAAAAAAAAAAACjxxJeTrfMrnz/znuM5+eqZGQcBwHrypC8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAim0sPAAAAAAAAAAAAAACgxBcfSa69svL5A49dnHEMAKwv0RcAAAAAAAAAAAAAANs+9PF9nV984+WZhgDAettYegAAAAAAAAAAAAAAAAAAu0RfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFNpceAAAAAAAAAAAAAABAiT98L3np0srnP7rpSE699s0ZBwHAehJ9AQAAAAAAAAAAAACw7aVLydb5lc9PbByfcQwArK+NpQcAAAAAAAAAAAAAAAAAsEv0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBkc+kBAAAAAAAAAAAAAACUOPGN5NbPrnz+86euzDgGANaX6AsAAAAAAAAAAAAAgG2fvG9f52d/d26mIQCw3jaWHgAAAAAAAAAAAAAAAADALtEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAECRzaUHAAAAAAAAAAAAAABQ4tlfJC//beXzb29eydnXPz/jIABYT6IvAAAAAAAAAAAAAAC2XXgy2Tq/8vl33n1c9AUAM9hYegAAAAAAAAAAAAAAAAAAu0RfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARTaXHrCuxhgfTfKpJHft/L4zyfv2nGxN03Tr2/zu6R3Ou22aphff4XcAAAAAAAAAAAAAAAAAb4Po6wCNMb6Q5HS2Q68PLLsGAAAAAAAAAAAAAAAAaCT6Olgnktyz9AgAAAAAAAAAAAAAAACgl+irw2tJLic5NsN3/ynJ1/b5mcsz7AAAAAAAAAAAAAAAAABWIPo6eP9J8nySvyb5y87vS0k+k+SZGf7ftWmaXpzhewEAAAAAAAAAAACAw+boHfs6v/DCkZmGAMB6E30drLNJfjZN07U3vzHGWGAOAAAAAAAAAAAAAMAe9z66r/NTD56baQgArDfR1wGapunq0hsAAAAAAAAAAAAAAACAbhtLDwAAAAAAAAAAAAAAAABgl+gLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKDI5tIDmN0tY4wnknw6yYeTHElyNck/kzyb5I9JfjVN05XlJgIAAAAAAAAqseF2AAAgAElEQVQAAAAAAADXib4Ov9t2fva6eefn9iT3JfnhGOPxJA9P0/TvOUaMMW5O8sF9fuzYHFsAAAAAAAAAAAAAAACgmeiLZPvpXw8k+dIY46vTND0/w/+4P8n3Z/heAAAAAAAAAAAAAAAAOFREX4fX60nOJ3k6yXNJLif5V5L3JrklyeeSfCvbT/y67mNJnh5j3D1N09bBzgUAAAAAAAAAAAAAAAAS0ddhdSbJ49M0/eMt3r+Q5LdjjIez/fSth5KMnfeOJvn1GOOuaZqm+acCAAAAAAAAAAAAAAAAe4m+DqFpmn6w4t21JKfHGJeT/GTPW3cm+XqSJ2/grMeS/HKfnzmW5Dc3cAMAAAAAAAAAAAAAAADUE32RaZp+Osa4J8lX9vz5/tzA6GvnqWNv9eSx/2mM8f+PAAAAAAAAAAAAAAAA4JDZWHoANR550+u7xxjvX2QJAAAAAAAAAAAAAAAArDHRF9f9OcnVPa/fleT2hbYAAAAAAAAA8F/27j1Yu7I8D/h1f2xUVI6CgKB+ioKm0khq0sQztZgmWmtMtbGZVFsdm1RrGzWj9VyjRk0qjVY6Mc1ERttqY7SKnaj1xKjgIZkETSBqPYBGRJGTGOR494+9tvv9thz24d37Xevbv9/MmvdZ633W/V77g3+veQAAAAAA2LWUvkiSdPdNSS5a8/ioRWQBAAAAAAAAAAAAAACA3Uzpi1nXrLk/aCEpAAAAAAAAAAAAAAAAYBdT+mLWkWvuL11ICgAAAAAAAAAAAAAAANjFlL5IklTVkUnuvebxNxeRBQAAAAAAAAAAAAAAAHYzpS9W/FL2/f/hkiQXLCgLAAAAAAAAAAAAAAAA7FpLiw7A4lXV0UlevObxWd3di8gDAAAAAAAAAAAAACzIxZ9LfnDlurf/+J4Lc95N99zGQACwOyl97Ueq6qQkJ3b3WRt455gkZyU5eubxdUl+a87xAAAAAAAAAAAAAICxe/9/SC78xLq3/+fb3y+nXrP2/AkAYKuUvnZYVR2fm/93P2bN/VJV7b2FMVd396U38/zYJO+tqs8neVuSd3f3l24hx8FJnpLlE76OXvP1K7v7K7fw2wAAAAAAAAAAAAAAAMA2UvraeZ9Isp7zS49L8tVb+O7MJE+9lXdPTvLaJK+tqiuT/GWSS5N8L8mdk9w9yY/n5v/7v7m7f3Md+QAAAAAAAAAAAAAAAIBtoPS1/zs0yUPWse/7SX69u39/m/MAAAAAAAAAAAAAAAAAt2LPogMwVxckeXWSTya5Zp3vfDHJC5PsVfgCAAAAAAAAAAAAAACAxXPS1w7r7r3bOPuSJC9Kkqrak+S+SU5IclySw5LcIctlsMuTXJzks939ne3KAwAAAAAAAAAAAAAAAGyc0td+qrtvSvKF4QIAAAAAAAAAAAAAAAAmYs+iAwAAAAAAAAAAAAAAAACwSukLAAAAAAAAAAAAAAAAYESUvgAAAAAAAAAAAAAAAABGROkLAAAAAAAAAAAAAAAAYESUvgAAAAAAAAAAAAAAAABGROkLAAAAAAAAAAAAAAAAYESUvgAAAAAAAAAAAAAAAABGROkLAAAAAAAAAAAAAAAAYESUvgAAAAAAAAAAAAAAAABGROkLAAAAAAAAAAAAAAAAYESUvgAAAAAAAAAAAAAAAABGROkLAAAAAAAAAAAAAAAAYESUvgAAAAAAAAAAAAAAAABGROkLAAAAAAAAAAAAAAAAYESUvgAAAAAAAAAAAAAAAABGROkLAAAAAAAAAAAAAAAAYESUvgAAAAAAAAAAAAAAAABGROkLAAAAAAAAAAAAAAAAYESUvgAAAAAAAAAAAAAAAABGROkLAAAAAAAAAAAAAAAAYESUvgAAAAAAAAAAAAAAAABGROkLAAAAAAAAAAAAAAAAYESUvgAAAAAAAAAAAAAAAABGROkLAAAAAAAAAAAAAAAAYESUvgAAAAAAAAAAAAAAAABGROkLAAAAAAAAAAAAAAAAYESUvgAAAAAAAAAAAAAAAABGROkLAAAAAAAAAAAAAAAAYESUvgAAAAAAAAAAAAAAAABGROkLAAAAAAAAAAAAAAAAYESUvgAAAAAAAAAAAAAAAABGROkLAAAAAAAAAAAAAAAAYESUvgAAAAAAAAAAAAAAAABGROkLAAAAAAAAAAAAAAAAYESUvgAAAAAAAAAAAAAAAABGROkLAAAAAAAAAAAAAAAAYESUvgAAAAAAAAAAAAAAAABGROkLAAAAAAAAAAAAAAAAYESUvgAAAAAAAAAAAAAAAABGZGnRAQAAAAAAAAAAAAAAGIl/+X82tP3U5561TUEAYHdz0hcAAAAAAAAAAAAAAADAiCh9AQAAAAAAAAAAAAAAAIyI0hcAAAAAAAAAAAAAAADAiCh9AQAAAAAAAAAAAAAAAIyI0hcAAAAAAAAAAAAAAADAiCh9AQAAAAAAAAAAAAAAAIyI0hcAAAAAAAAAAAAAAADAiCh9AQAAAAAAAAAAAAAAAIyI0hcAAAAAAAAAAAAAAADAiCh9AQAAAAAAAAAAAAAAAIyI0hcAAAAAAAAAAAAAAADAiCh9AQAAAAAAAAAAAAAAAIyI0hcAAAAAAAAAAAAAAADAiCh9AQAAAAAAAAAAAAAAAIyI0hcAAAAAAAAAAAAAAADAiCh9AQAAAAAAAAAAAAAAAIyI0hcAAAAAAAAAAAAAAADAiCh9AQAAAAAAAAAAAAAAAIyI0hcAAAAAAAAAAAAAAADAiCwtOgAAAAAAAAAAAAAAACPxh49JLvzEurd/9KD75dRrXryNgQBgd3LSFwAAAAAAAAAAAAAAAMCIKH0BAAAAAAAAAAAAAAAAjIjSFwAAAAAAAAAAAAAAAMCIKH0BAAAAAAAAAAAAAAAAjIjSFwAAAAAAAAAAAAAAAMCIKH0BAAAAAAAAAAAAAAAAjIjSFwAAAAAAAAAAAAAAAMCIKH0BAAAAAAAAAAAAAAAAjIjSFwAAAAAAAAAAAAAAAMCIKH0BAAAAAAAAAAAAAAAAjIjSFwAAAAAAAAAAAAAAAMCIKH0BAAAAAAAAAAAAAAAAjIjSFwAAAAAAAAAAAAAAAMCITKb0VVXvqKpHLDoHAAAAAAAAAAAAAAAAwHaaTOkryROTfKSqLqiqZ1fVYYsOBAAAAAAAAAAAAAAAADBvUyp9rTgpyelJ/qaq/qCqfmrRgQAAAAAAAAAAAAAAAADmZYqlr05SSQ5K8tQk51bVn1XV06vqjgtNBgAAAAAAAAAAAAAAALBFUyp9PS7Jn2S59JWZz0pySpLfS/LNqnpjVT1gAfkAAAAAAAAAAAAAAAAAtmwypa/ufl93PzbJvZK8Osm3slz4SlZP/zokyb9Jcl5VfbyqnlxVBy4kMAAAAAAAAAAAAAAAAMAmTKb0taK7v97dL05yjyRPSvLh2a+Hz0ry4CRvS/I3VfWaqrr3ziYFAAAAAAAAAAAAAAAA2LjJlb5WdPeN3f3O7j4tyYlJXp/ksqye/pVhfWSS30jyxap6f1X9k6qa7N8NAAAAAAAAAAAAAAAA7N/2i/JTd3+5u5+X5Lgk/yLJJ7Na/lo5/WtPktOSvCvJhVX10qq6246HBQAAAAAAAAAAAAAAALgV+0Xpa0V3X9fdb+vuhyV5QJIzklyV1QJYDddxSV6W5GtV9cdV9Q8XEhgAAAAAAAAAAAAAAABgjf2q9DWru8/v7mcluVuSZyT5s5WvhquSLCV5fJIPVNUXq+rZVXXwQgIDAAAAAAAAAAAAAAAAZD8ufa3o7muSnJnk9CQXZvXUr5XyV4Zn9xn2fK2qnl9VB+50VgAAAAAAAAAAAAAAAID9uvRVVSdU1WuTfCPJW5PcI/sWvVauZPX0r8OTvDrJn1bV3p3MCwAAAAAAAAAAAAAAALDflb6q6oCqekJVfTDJF5I8L8lRWS13rRS9PpbkiUkeneSdSW4Yvl8pf52c5KNVdfDOpQcAAAAAAAAAAAAAAAB2u6VFB5iXqrp7kmck+VdJjll5nOUS10qR6+osn/j1pu6+YOb1D1XV0Umek+RZSe4w7L9Hkn+X5JU78TcAAAAAAAAAAAAAAAAATPqkr1r22Ko6K8lXkrwwybFZPdUrw/r8JM9Mclx3P2tN4StJ0t2XdPfzk/xEkkuyWhR7/Db/GQAAAAAAAAAAAAAAAAA/NMmTvqrqmCRPH667rzzOvqd63Zjk3UnO6O6z1zu7u79QVa9M8l+GRyfOKzcAAAAAAAAAAAAAAADAbZlU6auqTkvyq0kem+XsKyd69cqWJBcneXOSN3f3xZv8qXNn1nfa5AwAAAAAAAAAAAAAAACADZtM6auqvpTk3iu32fdUr0pydpIzkry7u2/Y4s9dNnz2re4CAAAAAAAAAAAAAAAAmLPJlL6SnJDVEtZK2evqJG9N8qbuPn8bfnOlXAYAAAAAAAAAAAAAAACwI6ZU+lpRSc5P8l+TnNndV2/Db3wryanbMBcAAAAAAAAAAAAAAADgVk2p9HVDkvdk+VSvj23nD3X3tUnO3s7fAAAAAAAAAAAAAAAAALg5Uyp97e3uby46BAAAAAAAAAAAAAAAAMB22rPoAOul8AUAAAAAAAAAAAAAAADsBpMpfQEAAAAAAAAAAAAAAADsBkpfAAAAAAAAAAAAAAAAACMymdJXVT24qr4yXF+qqrtuYsbRVfXFYcaXq+ontiMrAAAAAAAAAAAAAAAAwGZNpvSV5OlJ9ia5Z5I/7+5vb3RAd1+S5Lxhzt5hJgAAAAAAAAAAAAAAAMBoTKn09ZiZ9du2MOetM+vHbWEOAAAAAAAAAAAAAAAAwNxNovRVVfdPctRwe32S929h3AeGGZXk2Kq67xbjAQAAAAAAAAAAAAAAAMzNJEpfSX5s+Owkf9Xd1212UHdfm+SvZh79na0EAwAAAAAAAAAAAAAAAJinqZS+jptZXzSHeRfOrI+fwzwAAAAAAAAAAAAAAACAuVhadIB1uvPM+ntzmHf1LcwGAAAAAAAAAAAAANi9/tFvJT+4ct3b//0Z521jGADYvaZS+potaR0+h3mHzqyvn8M8AAAAAAAAAAAAAIDpO/bvbmj7eTddsU1BAGB327PoAOt06cz6hDnMm51x6S3uAgAAAAAAAAAAAAAAANhhUyl9fWX4rCQnVdXxmx00vHv/mUcXbiUYAAAAAAAAAAAAAAAAwDxNpfT1p0m+n6SH++duYdZzZtY/SHLuFmYBAAAAAAAAAAAAAAAAzNUkSl/dfUOS/5vlk74qya9V1SM3Omd455lZLo91kg9397XzSwoAAAAAAAAAAAAAAACwNZMofQ1eM3x2ktsl+d9V9cT1vlxVT0jy7iRLWS6Ozc4EAAAAAAAAAAAAAAAAGIXJlL66+zNJ/ijLha1OckiSt1fVh6vqSVV117XvVNVRVfXEqvrQ8O6hK+OSvLu7z9mh+AAAAAAAAAAAAAAAAADrsrToABv0tCQPSHL/LBe3KskjhytVdVmSy4fvjhiuFTXzzl8mecoOZQYAAAAAAAAAAAAAAABYt8mc9JUk3X11ktOSfCarJa4M60pylyT3SXLfYb3yPFktfJ2b5NHd/f2dSw4AAAAAAAAAAAAAAACwPpMqfSVJd38zycOTvCbJ1dm31HVzV4Y9VyV5RZJHdPe3djIzAAAAAAAAAAAAAAAAwHotLTrAZnT3dUleWFWvS/IrSR6V5MFJjlyz9TtJPpnkQ0ne1t1X7WhQAAAAAAAAAAAAAAAAgA2aZOlrRXdfkeSNw5WqOiDJXYavv9vdNy4qGwAAAAAAAAAAAAAAAMBmTLr0tdZQ8vr2onMAAAAAAAAAAAAAAAAAbNaeRQcAAAAAAAAAAAAAAAAAYJXSFwAAAAAAAAAAAAAAAMCIKH0BAAAAAAAAAAAAAAAAjMjSogPMQ1XdMcmhSQ7c6LvdfdH8EwEAAAAAAAAAAAAAAABsziRLX1V1jyRPS/IPkjwwyR03Oaoz0X8DAAAAAAAAAAAAAAAAYP80qcJTVS0l+c0kz01ywMrjxSUCAAAAAAAAAAAAAAAAmK/JlL6qqpK8I8njs1r06uFS/AIAAAAAAAAAAAAA2Ko/eUHyrc+ve/vpt79Tfv3aX9nGQACwO02m9JXkmUl+IfsWvSrJ15JckOTyJNcvKhwAAAAAAAAAAAAAwOR96/PJhZ9Y9/YH7rnfNoYBgN1rEqWv4ZSvF2XfU73ek+RF3X3+woIBAAAAAAAAAAAAAAAAzNkkSl9JHpTk6Kye8vWW7n7aYiMBAAAAAAAAAAAAAAAAzN+eRQdYp5OHz0rygyTPWWAWAAAAAAAAAAAAAAAAgG0zldLXkcNnJ/lUd1+5yDAAAAAAAAAAAAAAAAAA22Uqpa9rZtYXLywFAAAAAAAAAAAAAAAAwDabSunrGzPrOy0sBQAAAAAAAAAAAAAAAMA2m0rp67NJbhrWJy0yCAAAAAAAAAAAAAAAAMB2mkTpq7u/keSjSSrJSVV14oIjAQAAAAAAAAAAAAAAAGyLSZS+Bi9LcuOwfvUigwAAAAAAAAAAAAAAAABsl8mUvrr7nCwXvyrJL1SV4hcAAAAAAAAAAAAAAACw35lM6StJuvvVSX4jSSd5flV9rKpOq6qlBUcDAAAAAAAAAAAAAAAAmIvJlKWq6iMzt1ckOSLJw5K8P8k1VfXlJJcnuWkDY7u7HzW/lAAAAAAAAAAAAAAAAABbM5nSV5JHZvmErxWdpIb1HZOcvOb721Ib3A8AAAAAAAAAAAAAAACw7aZU+ro5SlsAAAAAAAAAAAAAAADAfmVqpa+67S0AAAAAAAAAAAAAAAAA0zWZ0ld371l0BgAAAAAAAAAAAAAAAIDtpkgFAAAAAAAAAAAAAAAAMCJKXwAAAAAAAAAAAAAAAAAjovQFAAAAAAAAAAAAAAAAMCJKXwAAAAAAAAAAAAAAAAAjovQFAAAAAAAAAAAAAAAAMCJLiw6wFVX1wCSPS/KwJCckOSLJwUm6u3/kb6uqw5IcMtxe292X7FRWAAAAAAAAAAAAAAAAgPWYZOmrqk5OcnqSU2cfr+PVU5O8c1h/v6qO6e6/nXc+AAAAAAAAAAAAAAAAgM3as+gAG1VVT03yqSwXuNYWvfo2Xn9PkouG9+6U5BfnnQ8AAAAAAAAAAAAAAABgKyZV+qqqX0zyB0kOmn2c5OtJ/iK3cdpXd9+U5B0zjx4374wAAAAAAAAAAAAAAAAAWzGZ0ldVHZvkzOF25USvM5Kc0N17kzxhnaPeszIyySPmFhAAAAAAAAAAAAAAAABgDpYWHWADXprkjsP6xiS/1N1/PPN9/+grN+uzSa5PcmCSu1TVvbr7q/OLCQAAAAAAAAAAAAAAALB5kzjpq6oOSPLkLBe7Oslr1xS+1q27b0jy1zOP7rf1hAAAAAAAAAAAAAAAAADzMYnSV5KfTnJIksryKV2v2+K8b8ys777FWQAAAAAAAAAAAAAAAABzM5XS132Gz07y2e6+aovzZt8/ZIuzAAAAAAAAAAAAAAAAAOZmKqWvo2bWX5/DvJtm1ktzmAcAAAAAAAAAAAAAAAAwF1MpffXM+oA5zDtiZn3FHOYBAAAAAAAAAAAAAAAAzMVUSl/fmVnfbQ7zHjCz/u4c5gEAAAAAAAAAAAAAAADMxVRKXxcNn5XklKo6cLODqurEJMfNPPrcVoIBAAAAAAAAAAAAAAAAzNNUSl/nJrkmSSc5KMmTtzDr2TPrS7r7C1sJBgAAAAAAAAAAAAAAADBPkyh9dfe1ST6c5ZO+Ksmrquqwjc6pqock+ddZLo91knfNMycAAAAAAAAAAAAAAADAVk2i9DV41fDZSY5L8sGquut6X66qU5O8N8t/cyW5McnvzDskAAAAAAAAAAAAAAAAwFZMpvTV3Z9O8vYsF7Y6yYOS/HVVvaSqTsrN/C1VdUBVPaqq3p7kQ0kOn3n/d7v7azuVHwAAAAAAAAAAAAAAAGA9lhYdYIOeluSkJKdkubh1WJKXD9d1sxur6oIk90py4Mqj4Z1Kck6SF+xEYAAAAAAAAAAAAAAAAICNmMxJX0nS3dck+dkkH8lqiSvD+vZr7k9KcrthnawWvj6Y5DHdfeMOxQYAAAAAAAAAAAAAAABYt0mVvpKkuy9NclqS5ye5NPuWulY+Z68Me65M8qIsF76u2rHAAAAAAAAAAAAAAAAAABuwtOgAm9HdneS3q+qNSZ6c5RLYQ5PcLfsW2S5Pck6SDyR5a3dfudNZAQAAAAAAAAAAAAAAADZikqWvFd39gyR/OFypqkpyeJLbJflud1+/wHgAAAAAAAAAAAAAAAAAGzbp0tdawwlgly06BwAAAAAAAAAAAAAAAMBm7VelLwAAAAAAAAAAAAAAtuCB/zzZ+9B1b3/L+53ZAQDbQekLAAAAAAAAAAAAAIBlp/zyhraf+b6ztikIAOxuexYdAAAAAAAAAAAAAAAAAIBVSl8AAAAAAAAAAAAAAAAAI7K06ADrVVVf2Yax3d0nbMNcAAAAAAAAAAAAAAAAgE2ZTOkryd4knaTmOLPnOAsAAAAAAAAAAAAAAABgy6ZU+lqx1aJWZf7lMQAAAAAAAAAAAAAAAIC5mFLp66JsrPB1QJLDk9xpuF959/tJLp1jLgAAAAAAAAAAAAAAAIC5mUzpq7v3bua9qrp7kn+c5DlJ7p3lv/lV3f3f5pcOAAAAAAAAAAAAAAAAYD72LDrAduvur3f3GUlOTvK/ktw+ye9V1a8uNhkAAAAAAAAAAAAAAADAj9rvS18ruvuaJL+c5JNJKskbquqUxaYCAAAAAAAAAAAAAAAA2NeuKX0lSXffmOS5w+0BSV62wDgAAAAAAAAAAAAAAAAAP2JXlb6SpLs/k+TCLJ/29XNVddSCIwEAAAAAAAAAAAAAAAD80K4rfQ0+N3wuJfmZRQYBAAAAAAAAAAAAAAAAmLVbS19XzayPX1gKAAAAAAAAAAAAAAAAgDV2a+nrqJn1wQtLAQAAAAAAAAAAAAAAALDGrit9VdUdkvzMzKPLFpUFAAAAAAAAAAAAAAAAYK1dV/pK8pLse7rX+YsKAgAAAAAAAAAAAAAAALDWril9VdVhVfX6JC9I0sPjK5J8anGpAAAAAAAAAAAAAAAAAPa1tOgA61VVL93Ea0tJDkvyY0kekuR2SWr4rpOc3t03zichAAAAAAAAAAAAAAAAwNZNpvSV5OVZPaFrM2bLXpXknCSv22ImAAAAAAAAAAAAAID9x5//9+SKi9a9/SlLl+XMGx6+jYEAYHeaUulrq1bKXpXkj5I8o7uvW2wkAAAAAAAAAAAAAIAR+Yv/kVz4iXVvf+qB91P6AoBtMLXSV932llt0cZIPJ/n97v74nPIAAAAAAAAAAAAAAAAAzNWUSl+nbuKdG5JcleTb3X3JnPMAAAAAAAAAAAAAAAAAzN1kSl/dffaiMwAAAAAAAAAAAAAAAABstz2LDgAAAAAAAAAAAAAAAADAKqUvAAAAAAAAAAAAAAAAgBFR+gIAAAAAAAAAAAAAAAAYEaUvAAAAAAAAAAAAAAAAgBFR+gIAAAAAAAAAAAAAAAAYkaVFB1ivqnrpon67u1+xqN8GAAAAAAAAAAAAAAAAdpfJlL6SvDxJL+i3lb4AAAAAAAAAAAAAAACAHTGl0tesuoXna0th6913a7+zqKIZAAAAAAAAAAAAAAAAsAtNrfQ1W+Lqm3m+npJX3co+AAAAAAAAAAAAAAAAgIWaUunr1OHzPklel+SwLJe3rk/ywSSfTvLFJFcO+w5NcmKSv5/k0UkOzHL567Ikz0/y/3YqOAAAAAAAAAAAAAAAAMB6Tab01d1nV9WDs1r46iRvSvKK7r701t6tqiOTvCzJryU5PMlvJ3lsd5+zvakBAAAAAAAAAAAAAAAANmbPogOsV1Udm+S9WS5tXZ/kSd397NsqfCVJd1/a3f82yZOS3JDl0th7q+q47cwMAAAAAAAAAAAAAAAAsFGTKX0l+Y9JjsjyCV+v6u53bXTA8M6rhtvDh5kAAAAAAAAAAAAAAAAAozGJ0ldVHZTknw231yT5T1sY9zvDjEryxGE2AAAAAAAAAAAAAAAAwChMovSV5GFJDs7yKV+f6u6/3eyg4d1zh9s7D7MBAAAAAAAAAAAAAAAARmEqpa/jZ9aXzGHe7Izjb3EXAAAAAAAAAAAAAAAAwA6bSunrrjPrw+Yw79CZ9VFzmAcAAAAAAAAAAAAAAAAwF1MpfV02fFaSU7YyqKoqyd+beXT5VuYBAAAAAAAAAAAAAAAAzNNUSl9fnVkfXVVP2MKsJyQ5+hZmAwAAAAAAAAAAAAAAACzUVEpfZye5Kkln+bSvN1TVPTc6pKr2JnnDMCdJvpfkY3NJCAAAAAAAAAAAAAAAADAHkyh9dfd1Sc7McuGrk9wtySer6ufWO6Oqfj7Jx5McMzPnLd19/fwTAwAAAAAAAAAAAAAAAGzO0qIDbMBLkvzTLJe2Vopf76uqzyb5n0k+neRLWT4RLEkOSXLfJD+d5MlJHpTVsleSXDzMBAAAAAAAAAAAAAAAABiNyZS+uvuq4bSuDyU5IsvlrUryU0l+8jZer5Uxw/q7SX6+u7+3TXEBAAAAAAAAAAAAAAAANmXPogNsRHefl+QRST6X1VO7Vopct3bN7jsvySO6+3M7nR8AAAAAAAAAAAAAAADgtkyq9JUk3X1+lk/2el6SC7N6itcPtwzXrBr2Pi/JTw4zAAAAAAAAAAAAAAAAAEZnadEBNqO7b0jy+qo6PcnDkzw0yYOSHJ3k/7N3r7GyXnUdx39rd0OhF+CAra0UToFiChQoNyEtEiqX0BijJXqqoCm0KNHEcE0Ag2LRqCSC6As0kYT2BW2C3AwV8MqlpRYFetOCFoqnASm1tkV76IXSvy/OHPd0OJeZvWf2s2bvzyeZzLOevZ41/5xX5803z47RttuSfDvJF5JcluSzVTUZgwEAAAAAAAAAAAAAAAB0ZSmjr31GEddnRiEnevkAACAASURBVB8AAAAAAAAAAAAAAACApbcy9AAAAAAAAAAAAAAAAAAArBF9AQAAAAAAAAAAAAAAAHRE9AUAAAAAAAAAAAAAAADQkdWhB9io1tqjk/x4kscleXiSo5Okqs4bci4AAAAAAAAAAAAAAACA9VjK6Ku11pK8PMkbkzx58s9JKskPRF+ttbOS/PpoeWtV/ewi5wQAAAAAAAAAAAAAAACY1dJFX621H0lycZLn7rs1+q6x6wO5NMlFSQ5PUq2106rq8oUMCgAAAAAAAAAAAAAAALAOK0MPMItR8HVF9gZfk4HXvjd8HVBV3ZLkI2O3ds11QAAAAAAAAAAAAAAAAIANWproq7V2WJJLkpwwdvu/kvxOkp9I8qIc+k1fSfLRsesXzm1AAAAAAAAAAAAAAAAAgDlYHXqAGZyb5NSsvc3rw0nOqao9SdJa2znlOX87+m5JntBa21FVt811UgAAAAAAAAAAAAAAAIB1Wpo3fSV549j1pUl27Qu+ZjEKvL4xdusJGx0MAAAAAAAAAAAAAAAAYF6WIvpqrT0myePHbr2mqu7bwJH/PnZ90gbOAQAAAAAAAAAAAAAAAJirpYi+kjxr9F1Jrq+qqzd43u1j1zs2eBYAAAAAAAAAAAAAAADA3CxL9HXs2PV1czjvu2PXR87hPAAAAAAAAAAAAAAAAIC5WJbo66ix6z1zOO8hcz4PAAAAAAAAAAAAAAAAYC5Whx5gSv89dv3wOZz36AOcDQAAAAAAAAAAAACwfR335Jm2X3X9kQsaBAC2t2WJvm4efbckT93IQa21o5KM/09k90bOAwAAAAAAAAAAAADYMs78g5m2v+4NH1vQIACwva0MPcCUPj92fXxr7RkbOOsXkxw2ur574mwAAAAAAAAAAAAAAACAQS1F9FVVNyW5duzW+es5p7X2sCS/kaRGn0ur6p6NTwgAAAAAAAAAAAAAAAAwH0sRfY386dj1ma21t87ycGvtiCQfSHJCkja6/cdzmg0AAAAAAAAAAAAAAABgLpYp+npvkq+PrluS81trF7XWdh7qwdbaS5L8U5IXZO0tX1+oqo8valgAAAAAAAAAAAAAAACA9VgdeoBpVdW9rbVdST6T5MHZG36dnWRXa+2fk9wwvr+19qYkP5rkRUkeOdpfo+/bk/zC5k0PAAAAAAAAAAAAAAAAMJ2lib6SpKq+2Fr7+SQXJzlidHslyY+NPvu0JL83dp2sBV//k+Tnqup+kRgAAAAAAAAAAAAAAABAD1aGHmBWVXVJkmcnuS5rQdf//3nsMx57ZbT+SpLTqurvN2FUAAAAAAAAAAAAAAAAgJktXfSVJFV1XZKnJNmV5NIk92Zv1DX+ydj3l5Kcm+SU0bMAAAAAAAAAAAAAAAAAXVodeoD1qqpK8sEkH2ytHZHkOUkeleQRSR6Y5JYk307yj1V1y2CDAgAAAAAAAAAAAAAAAMxgKaKv1tphSY4cu3VHVd23b1FV303yD5s+GAAAAAAAAAAAAAAAAMCcrQw9wJTOSXLb6HNLkuOHHQcAAAAAAAAAAAAAAABgMZbiTV9JfjhJG11/qaq+OeQwAAAAAAAAAAAAAAAAAIuyLG/62jP6riQ3DjkIAAAAAAAAAAAAAAAAwCItS/R109ADAAAAAAAAAAAAAAAAAGyGZYm+/m3s+lGDTQEAAAAAAAAAAAAAAACwYEsRfVXV1Um+mqQleUZrbcfAIwEAAAAAAAAAAAAAAAAsxFJEXyN/Pvo+LMmbhxwEAAAAAAAAAAAAAAAAYFGWKfp6Z5IrsvdtX69vrZ098DwAAAAAAAAAAAAAAAAAc7c69ADTqqr7WmsvTfKRJM9OclFr7QVJ3lFVXxt2OgAAAAAAAAAAAACALeBb1yR3fWfq7U9d2Z2r79u5wIEAYHtamuirtfZbo8tPJXlikqOTnJfkvNbavya5MsnNSf53lnOr6u3znBMAAAAAAAAAAAAAYGl98i3J7sum3v7uw0/OGXe+dYEDAcD2tDTRV5LfTlJj60rSRtenJHnSOs8VfQEAAAAAAAAAAAAAAADdWKboa3/q0FsOqG3weQAAAAAAAAAAAAAAAIC5W7boqx16CwAAAAAAAAAAAAAAAMDyWqbo64yhBwAAAAAAAAAAAAAAAABYtKWJvqrqM0PPAAAAAAAAAAAAAAAAALBo3URfrbV3jS3fXlW3DzYMAAAAAAAAAAAAAAAAwEC6ib6SvDZJja7fneSg0Vdr7Xljyyuq6p5FDQYAAAAAAAAAAAAAAACwWXqKvpKkZS38OpRPj+19TJIbFzEQAAAAAAAAAAAAAAAAwGZaGXqADWpDDwAAAAAAAAAAAAAAAAAwT8sefU37VjAAAAAAAAAAAAAAAACApbDs0Zc3fQEAAAAAAAAAAAAAAABbyrJHXwAAAAAAAAAAAAAAAABbiugLAAAAAAAAAAAAAAAAoCOiLwAAAAAAAAAAAAAAAICOiL4AAAAAAAAAAAAAAAAAOiL6AgAAAAAAAAAAAAAAAOiI6AsAAAAAAAAAAAAAAACgI6IvAAAAAAAAAAAAAAAAgI6sDj3AhBp9P6e1duIMz826f+0Hqz67nucAAAAAAAAAAAAAAAAAFqG36CtJWpKLF7h/XKXPfwMAAAAAAAAAAAAAAABgm+oxeKrsDbmm2bfPNPsBAAAAAAAAAAAAAAAAutdj9JXcP+haxP5EKAYAAAAAAAAAAAAAAAB0qKfo68asL94CAAAAAAAAAAAAAAAA2DK6ib6q6sShZwAAAAAAAAAAAAAAAAAY2srQAwAAAAAAAAAAAAAAAACwRvQFAAAAAAAAAAAAAAAA0BHRFwAAAAAAAAAAAAAAAEBHRF8AAAAAAAAAAAAAAAAAHRF9AQAAAAAAAAAAAAAAAHRE9AUAAAAAAAAAAAAAAADQEdEXAAAAAAAAAAAAAAAAQEdEXwAAAAAAAAAAAAAAAAAdEX0BAAAAAAAAAAAAAAAAdET0BQAAAAAAAAAAAAAAANAR0RcAAAAAAAAAAAAAAABAR1aHHoDN0Vp7QJLTkzw6yfFJ7kjyn0murKr/GHA0AAAAAAAAAAAAAAAAYIzoayCttccmeVaSZ46+n57k6LEtu6vqxDn8zjFJzk9ydpKHH2DP5UneVVUf2ujvAQAAAAAAAAAAAAAAABsj+tpErbXnJ3lL9oZe+w2w5vx7Zya5IMmxh9h6WpLTWmvvT/Lqqtqz6NkAAAAAAAAAAAAAAACA/RN9ba5Tk7x4M35oFJh9NMkDx25Xki8luSHJw5I8LckPjf395Uke0lr7maq6bzPmBAAAAAAAAAAAAAAAAO5vZegBSJLcneRr8zqstXZCkg/n/sHX55I8qaqeWVW7qurFSU5I8pok3xvb91NJfndeswAAAAAAAAAAAAAAAACzEX1tvu8luSrJe5O8Oskzkhyd5FVz/I3zk+wYW1+e5IVV9eXxTVV1d1X9SZJdE8+/vrW2c47zAAAAAAAAAAAAAAAAAFNaHXqAbebCJH9WVXdN/qG1NpcfaK09Psk5Y7fuSfKK/f3mPlX10dbahWPPHZ7kbUnOnctQAAAAAAAAAAAAAAAAwNS86WsTVdVtB4uv5uRlSQ4bW3+4qq6f4rl3TKx3tdYeNL+xAAAAAAAAAAAAAAAAgGmIvraesybW75vmoar6cpLPj906MsmL5zUUAAAAAAAAAAAAAAAAMB3R1xbSWjsuyVPHbt2b5HMzHPHpifWZG50JAAAAAAAAAAAAAAAAmM3q0AMwV6dMrK+pqj0zPH/5xPpJG5wHAAAAAAAAAAAAAFgmr/yrmbaf8YaPLWgQANjevOlra3nixPqrMz7/tUOcBwAAAAAAAAAAAAAAACyY6GtrOWlifeOMz++eWD+itbZjA/MAAAAAAAAAAAAAAAAAMxJ9bS0Pm1jfPMvDVXVHkrsmbj90QxMBAAAAAAAAAAAAAAAAM1kdegDm6qiJ9Z3rOOPOJA8aWx+9/nHWtNaOTXLMjI89bh6/DQAAAAAAAAAAAAAAAMtE9LW1TEZfk2/tmsadSXYc5Mz1+rUkb5vTWQAAAAAAAAAAAAAAALBlrQw9AAtVm/QMAAAAAAAAAAAAAAAAMCeir63ljon1g9dxxuQzk2cCAAAAAAAAAAAAAAAAC7Q69ADMVc/R13uS/MWMzzwuyV/O6fcBAAAAAAAAAAAAAABgKYi+tpbvTKyPmeXh1tpR+cHo6/YNTTRSVTcnuXnGeebx0wAAAAAAAAAAAAAAALBUVoYegLm6fmK9c8bnJ/ffWlW3bWAeAAAAAAAAAAAAAAAAYEair63lyxPrk2Z8/rET6+s2MAsAAAAAAAAAAAAAAACwDqKvreVfJtZPaa0dMcPzpx/iPAAAAAAAAAAAAAAAAGDBRF9bSFV9K8k1Y7dWkzx3hiOeP7H+xEZnAgAAAAAAAAAAAAAAAGYj+tp6PjKxfuU0D7XWTk7y7LFbe5L8zbyGAgAAAAAAAAAAAAAAAKYj+tp63p/k+2Prl7bWHj/Fc2+aWH+gqu6a31gAAAAAAAAAAAAAAADANERfW0xVXZ/kwrFbD0xyQWvtQQd6prX200leMXbrniTnL2RAAAAAAAAAAAAAAAAA4KBWhx5gu2mtnZD9/7sfN7Feba2deIBj7qiqWw7yM29LclaSHaP1aUn+rrX2qqr6ytgshyf5lSTvnHj+nVW1+yDnAwAAAAAAAAAAAAAAAAsi+tp8lyXZOcW+Ryb5+gH+dmHu/2au+6mqb7TWXprkr7P3TV9JcnqS61prX0xyQ5KHJnl6kmMmHr8kyW9OMR8AAAAAAAAAAAAAAACwAKKvLaqqPt1aOyvJBVkLu1qSZ44++3Nxkl+uqu8vfkIAAAAAAAAAAAAAAABgf0RfW1hVfby1dkqS85OcnWTHAbZekeQPq+pDmzYcAAAAAAAAAAAAANCf9/1ksvuyqbd/6sEn54w737rAgQBgexJ9bbKqOnGTf+/mJL/aWntNktOT7ExyXJI9Sb6Z5Mqq+vpmzgQAAAAAAAAAAAAAAAAcmOhrm6iqe5J8aug5AAAAAAAAAAAAAAAAgINbGXoAAAAAAAAAAAAAAAAAANaIvgAAAAAAAAAAAAAAAAA6IvoCAAAAAAAAAAAAAAAA6IjoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjoi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoiOgLAAAAAAAAAAAAAAAAoCOiLwAAAAAAAAAAAAAAAICOiL4AAAAAAAAAAAAAAAAAOiL6AgAAAAAAAAAAAAAAAOiI6AsAAAAAAAAAAAAAAACgI6IvAAAAAAAAAAAAAAAAgI6IvgAAAAAAAAAAAAAAAAA6IvoCAAAAAAAAAAAAAAAA6IjoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjoi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoiOgLAAAAAAAAAAAAAAAAoCOiLwAAAAAAAAAAAAAAAICOiL4AAAAAAAAAAAAAAAAAOiL6AgAAAAAAAAAAAAAAAOiI6AsAAAAAAAAAAAAAAACgI6IvAAAAAAAAAAAAAAAAgI6IvgAAAAAAAAAAAAAAAAA6IvoCAAAAAAAAAAAAAAAA6IjoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjoi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoiOgLAAAAAAAAAAAAAAAAoCOiLwAAAAAAAAAAAAAAAICOiL4AAAAAAAAAAAAAAAAAOiL6AgAAAAAAAAAAAAAAAOiI6AsAAAAAAAAAAAAAAACgI6IvAAAAAAAAAAAAAAAAgI6IvgAAAAAAAAAAAAAAAAA6IvoCAAAAAAAAAAAAAAAA6IjoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjoi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoyOrQAwAAAAAAAAAAAAAA0ImX/H5y13em3v7a91y9wGEAYPsSfQEAAAAAAAAAAAAAsNfxT5lp+9X33b6gQQBge1sZegAAAAAAAAAAAAAAAAAA1oi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoiOgLAAAAAAAAAAAAAAAAoCOiLwAAAAAAAAAAAAAAAICOiL4AAAAAAAAAAAAAAAAAOiL6AgAAAAAAAAAAAAAAAOiI6AsAAAAAAAAAAAAAAACgI6IvAAAAAAAAAAAAAAAAgI6IvgAAAAAAAAAAAAAAAAA6IvoCAAAAAAAAAAAAAAAA6IjoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjoi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoiOgLAAAAAAAAAAAAAAAAoCOiLwAAAAAAAAAAAAAAAICOiL4AAAAAAAAAAAAAAAAAOrI69AAAAAAAAAAAAAAAAHTiE29Obrp26u1/dPiRed3dv7TAgQBgexJ9AQAAAAAAAAAAAACw103XJrsvm3r7qSsnL3AYANi+VoYeAAAAAAAAAAAAAAAAAIA1oi8AAAAAAAAAAAAAAACAjoi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoiOgLAAAAAAAAAAAAAAAAoCOiLwAAAAAAAAAAAAAAAICOiL4AAAAAAAAAAAAAAAAAOiL6AgAAAAAAAAAAAAAAAOiI6AsAAAAAAAAAAAAAAACgI6IvAAAAAAAAAAAAAAAAgI6IvgAAAAAAAAAAAAAAAAA6IvoCAAAAAAAAAAAAAAAA6IjoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjoi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoiOgLAAAAAAAAAAAAAAAAoCOiLwAAAAAAAAAAAAAAAICOiL4AAAAAAAAAAAAAAAAAOiL6AgAAAAAAAAAAAAAAAOiI6AsAAAAAAAAAAAAAAACgI6IvAAAAAAAAAAAAAAAAgI6IvgAAAAAAAAAAAAAAAAA6IvoCAAAAAAAAAAAAAAAA6IjoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjoi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoiOgLAAAAAAAAAAAAAAAAoCOiLwAAAAAAAAAAAAAAAICOiL4AAAAAAAAAAAAAAAAAOiL6AgAAAAAAAAAAAAAAAOiI6AsAAAAAAAAAAAAAAACgI6IvAAAAAAAAAAAAAAAAgI6IvgAAAAAAAAAAAAAAAAA6IvoCAAAAAAAAAAAAAAAA6IjoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjoi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoiOgLAAAAAAAAAAAAAAAAoCOiLwAAAAAAAAAAAAAAAICOiL4AAAAAAAAAAAAAAAAAOiL6AgAAAAAAAAAAAAAAAOjI6tADAAAAAAAAAAAAAADQiVNflpz43Km3X/DJWxc4DABsX6IvAAAAAAAAAAAAAAD2etrLZ9p+4SUfW9AgALC9rQw9AAAAAAAAAAAAAAAAAABrRF8AAAAAAAAAAAAAAAAAHRF9AQAAAAAAAAAAAAAAAHRE9AUAAAAAAAAAAAAAAADQEdEXAAAAAAAAAAAAAAAAQEdEXwAAAAAAAAAAAAAAAAAdEX0BAAAAAAAAAAAAAAAAdET0BQAAAAAAAAAAAAAAANAR0RcAAAAAAAAAAAAAAABAR0RfAAAAAAAAAAAAAAAAAB0RfQEAAAAAAAAAAAAAAAB0RPQFAAAAAAAAAAAAAAAA0BHRFwAAAAAAAAAAAAAAAEBHRF8AAAAAAAAAAAAAAAAAHRF9AQAAAAAAAAAAAAAAAHRE9AUAAAAAAAAAAAAAAADQEdEXAAAAAAAAAAAAAAAAQEdEXwAAAAAAAAAAAAAAAAAdWR16AAAAAAAAAAAAAAAAOnHl+5Pbb5x6+zmrt+bCe5+3wIEAYHsSfQEAAAAAAAAAAAAAsNdVFyW7L5t6+ysecLLoCwAWYGXoAQAAAAAAAAAAAAAAAABYI/oCAAAAAAAAAAAAAAAA6IjoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjoi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoiOgLAAAAAAAAAAAAAAAAoCOiLwAAAAAAAAAAAAAAAICOiL4AAAAAAAAAAAAAAAAAOiL6AgAAAAAAAAAAAAAAAOiI6AsAAAAAAAAAAAAAAACgI6IvAAAAAAAAAAAAAAAAgI6IvgAAAAAAAAAAAAAAAAA6IvoCAAAAAAAAAAAAAAAA6IjoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjoi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoiOgLAAAAAAAAAAAAAAAAoCOiLwAAAAAAAAAAAAAAAICOiL4AAAAAAAAAAAAAAAAAOiL6AgAAAAAAAAAAAAAAAOiI6AsAAAAAAAAAAAAAAACgI6IvAAAAAAAAAAAAAAAAgI6IvgAAAAAAAAAAAAAAAAA6IvoCAAAAAAAAAAAAAAAA6IjoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjoi+/o+9+3n1rK7jOP763G6YTYvATCPCQKKB8EchFFTCrFRs1SoLy4gIWiUuUhmwTeiugnLRJl3kJkhi0mRSKphCRMofCyEXzURTg8g0UqFBzmlxlXu5qHMv3e+cV/c8HnAX53vf3zuv+QOeHAAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAi63MPAAAAAAAAAAAAAACgxKVX7Or8qecPrGgIACyb6AsAAAAAAAAAAAAAgA033LOr81tvO7KiIQCwbGtzDwAAAAAAAAAAAAAAAABgk+gLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKDI+twDAAAAAAAAAAAAAAAo8bdnklde2vH5VWsn8vTZy1Y4CACWSfQFAAAAAAAAAAAAAMCGR+5IThzb8fl3LziYQy8fXuEgAFimtbkHAAAAAAAAAAAAAAAAALBJ9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUGR97gEAAAAAAAAAAAAAAJT48kO7Oj9025EVDQGAZfOmLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAFBRRMwAAIABJREFUAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAi63MPAAAAAAAAAAAAAACgxI9uTE4c2/H5ry48mEMvH17hIABYJm/6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+tqHxhjfGmNM/8PPfXP/HwAAAAAAAAAAAAAAAGCpRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEXW5x7AeXFTksd3cf/PVQ0BAAAAAAAAAAAAAAAA3proaxlOTdN0fO4RAAAAAAAAAAAAAAAAwLmtzT0AAAAAAAAAAAAAAAAAgE2iLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioq9l+NoY49ExxskxxitjjH+MMY6PMX4zxvj2GOPTcw8EAAAAAAAAAAAAAAAANqzPPYDz4nPbni9I8q4klyW5NsmdY4wnk9wxTdOj53scAAAAAAAAAAAAAFDi+ruTV17a8fk37n16hWMAYLlEX7zumiRHxxh3Jzk8TdO0l398jPHeJBfv8muX7+UGAAAAAAAAAAAAAOAc3nflrs6fPntmRUMAYNlEX/vbySQPJ3kiyXNJTic5m+SiJB9L8pkk1225H0nuTLKW5I493vL1JHft8d8EAAAAAAAAAAAAAACAfUf0tT89kY2Y65dv8cau3yX5/hjjmiQPJPnQlt/dPsZ4fJqmn614JwAAAAAAAAAAAAAAALDN2twD2HvTND08TdPRtwi+tt4+meQTSf647Vf3jDHetpKBAAAAAAAAAAAAAAAAwJvypi8yTdPpMcZNSZ5MMl77+GCSQ0ke3aN/5t4kP9nldy5P4m1jAAAAAAAAAAAAAAAALIroiyTJNE2/H2McTXLdlo+vzx5FX9M0vZDkhd18Z4xx7iMAAAAAAAAAAAAAAADYZ9bmHkCVR7Y9XznLCgAAAAAAAAAAAAAAAFgw0RdbHd/2fPEcIwAAAAAAAAAAAAAAAGDJRF9s9fK25wtnWQEAAAAAAAAAAAAAAAALJvpiq/dse35xlhUAAAAAAAAAAAAAAACwYKIvtvr4tue/zrICAAAAAAAAAAAAAAAAFkz0RZJkjPGOJJ/d9vGvZ5gCAAAAAAAAAAAAAAAAiyb64nXfTPL+Lc+vJnlopi0AAAAAAAAAAAAAAACwWKKvfWaMcfMY45JdfuerSe7a9vF90zSd2LtlAAAAAAAAAAAAAAAAwE6IvvafryT50xjj/jHGjWOMA292OMa4Zozx0yQ/TDK2/OpkksMr3gkAAAAAAAAAAAAAAAC8gfW5B7ASFyb54ms/Z8cYzyc5nuSlJK8muSjJVUne6I1gp5NcP03TqfMzFQAAAAAAAAAAAAAAANhK9LX/rSX58Gs/5/JYklumafrLaicBAAAAAAAAAAAAAAAAb0b0tf98L8nJJJ9MctkO7v+V5GiSH0zT9NgqhwEAAAAAAAAAAAAAAADnJvraZ6ZpejDJg0kyxnh3ko8k+UCSS5K8Mxtv/jqT5O9JnkvyzDRNr86zFgAAAAAAAAAAAAAAANhO9LWPTdN0Jslv594BAAAAAAAAAAAAAPyf+MXtyalnd3z+nQsO5NZ/37zCQQCwTKIvAAAAAAAAAAAAAAA2nHo2OXFsx+dXrx1c4RgAWK61uQcAAAAAAAAAAAAAAAAAsEn0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBkfe4BAAAAAAAAAAAAAACUuPrzyQc/tePz+x45vcIxALBcoi8AAAAAAAAAAAAAADZ89Au7Or//50dWNAQAlm1t7gEAAAAAAAAAAAAAAAAAbBJ9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUWZ97AAAAAAAAAAAAAAAAJf7w4+TMn3d8/qX107n/P9eucBAALJPoCwAAAAAAAAAAAACADU89kJw4tuPzW95+UPQFACuwNvcAAAAAAAAAAAAAAAAAADaJvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKrM89AAAAAAAAAAAAAACAEpdesavzp54/sKIhALBsoi8AAAAAAAAAAAAAADbccM+uzm+97ciKhgDAsq3NPQAAAAAAAAAAAAAAAACATaIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAACA/7J370G2XXWdwL+/yyUPEgTCIxAQSDASHjK8tAgENYVAeI3DG3GQKMM4FowyxFFQDKCgwBSDFOgAA4IgSAoQIjUlIogUmQQqAsMjvCYBgkBCApjwyouw5o9z7txzd253n9Pdp3vt7s+nKlVZ+6y197rnj1//Tvf57g0AAAAAAAAAANARoS8AAAAAAAAAAAAAAACAjgh9AQAAAAAAAAAAAAAAAHRE6AsAAAAAAAAAAAAAAACgI0JfAAAAAAAAAAAAAAAAAB0R+gIAAAAAAAAAAAAAAADoiNAXAAAAAAAAAAAAAAAAQEeEvgAAAAAAAAAAAAAAAAA6IvQFAAAAAAAAAAAAAAAA0BGhLwAAAAAAAAAAAAAAAICOCH0BAAAAAAAAAAAAAAAAdEToCwAAAAAAAAAAAAAAAKAje7d7AwAAAAAAAAAAAAAAdOKiTyZXXj739H+z58J84ke3W+KGAGB3EvoCAAAAAAAAAAAAAGDiPc9OLjxr7ul/eugJOfmK5yxxQwCwO+3Z7g0AAAAAAAAAAAAAAAAAsJ/QFwAAAAAAAAAAAAAAAEBHhL4AAAAAAAAAAAAAAAAAOiL0BQAAAAAAAAAAAAAAANARoS8AAAAAAAAAAAAAAACAjgh9AQAAAAAAAAAAAAAAAHRE6AsAAAAAAAAAAAAAAACgI0JfAAAAAAAAAAAAAAAAAB0R+gIAAAAAAAAAAAAAAADoiNAXAAAAAAAAAAAAAAAAQEeEvgAAAAAAAAAAAAAAAAA6IvQFAAAAAAAAAAAAAAAA0BGhLwAAAAAAAAAAAAAAAICOCH0BAAAAAAAAAAAAAAAAdEToCwAAAAAAAAAAAAAAAKAjQl8AAAAAAAAAAAAAAAAAHRH6AgAAAAAAAAAAAAAAAOiI0BcAAAAAAAAAAAAAAABAR4S+AAAAAAAAAAAAAAAAADoi9AUAAAAAAAAAAAAAAADQEaEvAAAAAAAAAAAAAAAAgI4IfQEAAAAAAAAAAAAAAAB0ROgLAAAAAAAAAAAAAAAAoCNCXwAAAAAAAAAAAAAAAAAdEfoCAAAAAAAAAAAAAAAA6IjQFwAAAAAAAAAAAAAAAEBHhL4AAAAAAAAAAAAAAAAAOiL0BQAAAAAAAAAAAAAAANARoS8AAAAAAAAAAAAAAACAjgh9AQAAAAAAAAAAAAAAAHRE6AsAAAAAAAAAAAAAAACgI0JfAAAAAAAAAAAAAAAAAB0R+gIAAAAAAAAAAAAAAADoiNAXAAAAAAAAAAAAAAAAQEeEvgAAAAAAAAAAAAAAAAA6IvQFAAAAAAAAAAAAAAAA0BGhLwAAAAAAAAAAAAAAAICOCH0BAAAAAAAAAAAAAAAAdEToCwAAAAAAAAAAAAAAAKAjQl8AAAAAAAAAAAAAAAAAHRH6AgAAAAAAAAAAAAAAAOiI0BcAAAAAAAAAAAAAAABAR4S+AAAAAAAAAAAAAAAAADoi9AUAAAAAAAAAAAAAAADQEaEvAAAAAAAAAAAAAAAAgI7s3e4NAAAAAAAAAAAAAADQiV/9XwtNP/m0dy9pIwCwuwl9AbtK+WABdKq99BHbvQUAAAAAAAAAAAAAoBN7tnsDAAAAAAAAAAAAAAAAAOwn9AUAAAAAAAAAAAAAAADQEaEvAAAAAAAAAAAAAAAAgI4IfQEAAAAAAAAAAAAAAAB0ROgLAAAAAAAAAAAAAAAAoCNCXwAAAAAAAAAAAAAAAAAdEfoCAAAAAAAAAAAAAAAA6IjQFwAAAAAAAAAAAAAAAEBHhL4AAAAAAAAAAAAAAAAAOiL0BQAAAAAAAAAAAAAAANARoS8AAAAAAAAAAAAAAACAjgh9AQAAAAAAAAAAAAAAAHRE6AsAAAAAAAAAAAAAAACgI0JfAAAAAAAAAAAAAAAAAB0R+gIAAAAAAAAAAAAAAADoiNAXAAAAAAAAAAAAAAAAQEeEvgAAAAAAAAAAAAAAAAA6IvQFAAAAAAAAAAAAAAAA0JG9270BAAAAAAAAAAAAAAA68fqHJReeNff0Dxx+Qk6+4jlL3BAA7E6e9AUAAAAAAAAAAAAAAADQEaEvAAAAAAAAAAAAAAAAgI4IfQEAAAAAAAAAAAAAAAB0ROgLAAAAAAAAAAAAAAAAoCNCXwAAAAAAAAAAAAAAAAAdEfoCAAAAAAAAAAAAAAAA6IjQFwAAAAAAAAAAAAAAAEBHhL4AAAAAAAAAAAAAAAAAOiL0BQAAAAAAAAAAAAAAANARoS8AAAAAAAAAAAAAAACAjgh9AQAAAAAAAAAAAAAAAHRE6AsAAAAAAAAAAAAAAACgI0JfAAAAAAAAAAAAAAAAAB0R+gIAAAAAAAAAAAAAAADoiNAXAAAAAAAAAAAAAAAAQEeEvgAAAAAAAAAAAAAAAAA6IvQFAAAAAAAAAAAAAAAA0BGhLwAAAAAAAAAAAAAAAICOCH0BAAAAAAAAAAAAAAAAdEToCwAAAAAAAAAAAAAAAKAjQl8AAAAAAAAAAAAAAAAAHRH6AgAAAAAAAAAAAAAAAOiI0BcAAAAAAAAAAAAAAABAR4S+AAAAAAAAAAAAAAAAADoi9AUAAAAAAAAAAAAAAADQEaEvAAAAAAAAAAAAAAAAgI4IfQEAAAAAAAAAAAAAAAB0ROgLAAAAAAAAAAAAAAAAoCNCXwAAAAAAAAAAAAAAAAAdEfoCAAAAAAAAAAAAAAAA6IjQFwAAAAAAAAAAAAAAAEBHhL4AAAAAAAAAAAAAAAAAOiL0BQAAAAAAAAAAAAAAANARoS8AAAAAAAAAAAAAAACAjgh9AQAAAAAAAAAAAAAAAHRE6AsAAAAAAAAAAAAAAACgI0JfAAAAAAAAAAAAAAAAAB0R+gIAAAAAAAAAAAAAAADoiNAXAAAAAAAAAAAAAAAAQEeEvgAAAAAAAAAAAAAAAAA6IvQFAAAAAAAAAAAAAAAA0BGhLwAAAAAAAAAAAAAAAICOCH0BAAAAAAAAAAAAAAAAdEToCwAAAAAAAAAAAAAAAKAjQl8AAAAAAAAAAAAAAAAAHdm73RsAAAAAAAAAAAAAAKATp/xJcuXlc09/xp9/YombAYDdS+gLAACAFdVp797uLQAcVHvpI7Z7CwAAAAAAALAz3epuC03/xI8uW9JGAGB327PdGwAAAAAAAAAAAAAAAABgP6EvAAAAAAAAAAAAAAAAgI4IfQEAAAAAAAAAAAAAAAB0ROgLAAAAAAAAAAAAAAAAoCNCXwAAAAAAAAAAAAAAAAAdEfoCAAAAAAAAAAAAAAAA6IjQFwAAAAAAAAAAAAAAAEBHhL4AAAAAAAAAAAAAAAAAOiL0BQAAAAAAAAAAAAAAANARoS8AAAAAAAAAAAAAAACAjgh9AQAAAAAAAAAAAAAAAHRE6AsAAAAAAAAAAAAAAACgI0JfAAAAAAAAAAAAAAAAAB0R+gIAAAAAAAAAAAAAAADoiNAXAAAAAAAAAAAAAAAAQEeEvgAAAAAAAAAAAAAAAAA6IvQFAAAAAAAAAAAAAAAA0BGhLwAAAAAAAAAAAAAAAICO7N3uDQAAAAAAAAAAAAAA0Im/e1Zy8afmnv6yQ4/If7nqSUvcEADsTkJfAAAAAAAAAAAAAABMXPyp5MKz5p5+9z0nLHEzALB77dnuDQAAAAAAAAAAAAAAAACwn9AXAAAAAAAAAAAAAAAAQEeEvgAAAAAAAAAAAAAAAAA6IvQFAAAAAAAAAAAAAAAA0BGhLwAAAAAAAAAAAAAAAICOCH0BAAAAAAAAAAAAAAAAdEToCwAAAAAAAAAAAAAAAKAjQl8AAAAAAAAAAAAAAAAAHRH6AgAAAAAAAAAAAAAAAOiI0BcAAAAAAAAAAAAAAABAR4S+AAAAAAAAAAAAAAAAADoi9AUAAAAAAAAAAAAAAADQEaEvAAAAAAAAAAAAAAAAgI4IfQEAAAAAAAAAAAAAAAB0ROgLAAAAAAAAAAAAAAAAoCNCXwAAAAAAAAAAAAAAAAAdEfoCAAAAAAAAAAAAAAAA6IjQFwAAAAAAAAAAAAAAAEBHhL4AAAAAAAAAAAAAAAAAOiL0BQAAAAAAAAAAAAAAANARoS8AAAAAAAAAAAAAAACAjgh9AQAAAAAAAAAAAAAAAHRE6AsAAAAAAAAAAAAAAACgI0JfAAAAAAAAAAAAAAAAAB0R+gIAAAAAAAAAAAAAAADoiNAXAAAAAAAAAAAAAAAAQEeEvgAAAAAAAAAAAAAAAAA6IvQFAAAAAAAAAAAAAAAA0BGhLwAAAAAAAAAAAAAAAICO7N3uDbC1qurYJHdPckySI5NclOTCJGe31q7Zzr0BAAAAAAAAAAAAAAAAQl+7RlU9Jskzk5y4wpRvV9UZSU5vrX1z63YGAAAAAAAAAAAAAAAAzNqz3RtguarqyKr66yRvy8qBryQ5KslvJPl0VT14SzYHAAAAAAAAAAAAAAAAXIfQ1w5WVddLckaSJwxeujTJezMJgn0sSZt57egkZ1bVSVuySQAAAAAAAAAAAAAAAOAAQl8724uSPHRmfE2S/5zkNq21B7fWHtdau1eSuyY5Z2beoUneVVW32rqtAgAAAAAAAAAAAAAAAInQ145VVccl+a3B4ce21l7ZWrt69mBr7TNJHpADg183TfLc5e4SAAAAAAAAAAAAAAAAGBL62rmem+T6M+M3tNbOXGlya+2KJKcmmQ2EPWUaHgMAAAAAAAAAAAAAAAC2iNDXDlRVhyd5zODwi9da11r7QpJ3zRzam+SJm7g1AAAAAAAAAAAAAAAAYA1CXzvTg5PcYGZ8Tmvtc3Ouff1g/KjN2RIAAAAAAAAAAAAAAAAwD6GvnemUwfifFlj7oSQ/nBnfo6qO3vCOAAAAAAAAAAAAAAAAgLkIfe1Mdx2Mz5l3YWvt+0k+NTh8lw3vCAAAAAAAAAAAAAAAAJiL0NfOdKfB+PwF118wGN95A3sBAAAAAAAAAAAAAAAAFiD0tcNU1VFJjhoc/sqCpxnOP379OwIAAAAAAAAAAAAAAAAWsXe7N8Cmu/Fg/IPW2vcXPMclg/GNNrCfJElV3SLJzRdcdsLs4PzzF31gGRzENxfNQAJsjfPOO2+7twBwcPonoFP6JwAAAAAAAFiSr303ueTauad/6dofJFf6fgHQH98tYDMcJMtyyFZdu1prW3UttkBV3S3JJ2YOfau1drMFz/GbSV4+c+hvWmuP3uC+npfkuRs5BwAAAAAAAAAAAAAAAGyjX2yt/e1WXGjPVlyELXXkYHzlOs5xxRrnBAAAAAAAAAAAAAAAAJZE6GvnW8+j3Dz+DQAAAAAAAAAAAAAAALbJ3u3eAJvue4Px4es4x3DN8Jzr8edJ3rbgmiOT3DvJd5JcnuRfkly9CXthd7pDkjNnxr+Y5IJt2gsAi1PHAcZNHQcYLzUcYNzUcYBxU8cBxk0dBxg3dRxg3NRxNtMhSX58ZvzBrbqw0NfO02Xoq7V2SZJL1rH0Ixu9NiRJVQ0PXdBaO2879gLA4tRxgHFTxwHGSw0HGDd1HGDc1HGAcVPHAcZNHQcYN3WcJfj4dlx0z3ZclKW6fDC+QVUdseA5bjEYX7aB/QAAAAAAAAAAAAAAAAALEPraYVpr30ryr4PDt13wNLcbjP/v+ncEAAAAAAAAAAAAAAAALELoa2f67GD8EwuuP26N8wEAAAAAAAAAAAAAAABLIvS1M316MD5x3oVVdUSSu61xPgAAAAAAAAAAAAAAAGBJhL52pvcMxj+/wNr7J9k7M/54a+0bG94RAAAAAAAAAAAAAAAAMBehr51KmQLVAAAgAElEQVTp75NcMTM+sapOmHPtqYPxOzdlRwAAAAAAAAAAAAAAAMBchL52oNbaD5K8fXD4d9daV1U/meSRM4d+mOQtm7g1AAAAAAAAAAAAAAAAYA1CXzvX85JcMzM+tar+7UqTq+qwJK9PcsjM4de11i5YzvYAAAAAAAAAAAAAAACAgxH62qFaa19M8vLB4bdX1dOrajbYlaq6U5L3J7nvzOFvJXn+cncJAAAAAAAAAAAAAAAADO3d7g2wVM9KcpckD5mOr5/kFUn+oKo+luS7SY5Lcs8kNbPu6iSPbK1dtIV7BQAAAAAAAAAAAAAAACL0taO11q6tqscleW2Sx8+8dIskp6yw7JIkT26tfWjZ+wMAAAAAAAAAAAAAAACuS+hrh2utfS/JE6rq7UlOS3KfFaZ+O8kZSZ7bWrt0q/YHW+jSJM8fjAEYD3UcYNzUcYDxUsMBxk0dBxg3dRxg3NRxgHFTxwHGTR1nR6jW2nbvgS1UVccmuWeSY5IckeTiJBcm+d+ttau3c28AAAAAAAAAAAAAAACA0BcAAAAAAAAAAAAAAABAV/Zs9wYAAAAAAAAAAAAAAAAA2E/oCwAAAAAAAAAAAAAAAKAjQl8AAAAAAAAAAAAAAAAAHRH6AgAAAAAAAAAAAAAAAOiI0BcAAAAAAAAAAAAAAABAR4S+AAAAAAAAAAAAAAAAADoi9AUAAAAAAAAAAAAAAADQEaEvAAAAAAAAAAAAAAAAgI4IfQEAAAAAAAAAAAAAAAB0ROgLAAAAAAAAAAAAAAAAoCNCXwAAAAAAAAAAAAAAAAAd2bvdGwB2tqo6NsndkxyT5MgkFyW5MMnZrbVrtnNvSVJVe5PcM8ldktw8ySFJvpfka0m+kOS81toPN3iNGye5b5JbJ7lZkm9Oz392a+2yjZwbYNnUcYBx672ObwX9ODBm6jjAuPVax6vqqCT3TnJskhsnqSSXJ/lqknNbaxdv4rX048BoqeMA49VxDb91khOTHJ3kRpn0x19P8pHW2qWbfC29ODBa6jgAy1JV90xyfCZ9cjL9nmFr7eObfB39OJumWmvbvQdgB6qqxyR5ZiYfcg7m20nOSHJ6a+2bW7axqao6Psl/TfL4JD+2ytQrkpyV5H+01t654DXukeT0JA/NJIQwdFWSv0vy/Nba/1nk3ADLthvreFX9fJIPbGBbF7bWbr+B9QCbppc6XlVfTnK7TTrdX7bWTl3g2vpxYLR2Yx3XjwM7SS91fLCnyuT3KE9LctIa0z+e5FVJ/mK9N9PRjwNjthvruH4c2Ck6reF7kvxSkt9JcrcVpl2b5B+TvKS19r4NXk8vDozWbqzjenFgp6iq45L8dCY3qvnpTG7kfsOZKdtWr6rq+klOS/IfktxhhWnnJ3ltkv++kYCxfpxlEPoCNlVVHZnkfyZ5wpxLvpHkya21v1/ervabPhHm9CTPzmJPOzyjtTbvvylV9awkf5jk+nNMvzrJH7TWXrLAfgCWYjfXcb9IA3aC3ur4JocFXtVa+405r6sfB0ZpN9dx/TiwE/RWx/epqlsmeUuSkxdc+tEkT2itnb/g9fTjwCjt5jquHwfGrvMa/o5M7vA/r1cn+a3W2lXruJ5eHBil3VzH9eLAmE1r2LMzCXodtcb0balX05vLvzWTENo81vV78em19OMsxSJflAVYVVVdL5M7aTx08NKlmdxR7vJMEtL3SFLT145OcmZV/UJr7awl7+/wJG8/yP5akvOSfCXJZZk8Evq4JCdkHXWyqn4vyQsHh69Icm4mj5o+JpMU+2HT1w5J8uKqaq21/7bo9QA2izoOMG691/FN8I55JunHgbFSxwHGrdc6XlU3z+SLQycMXrpmuq8Lk/woyW2S3Cv7++RMxx+oqpNaaxfOeT39ODBK6jjAeHVcw49J8uEkPz546bIkH8nkaTVHJblPkhvNvP7rSW5SVU9oC9zNXS8OjJU6DjBqd0/yoO3exEqm4d1/yHVvcnl+Jt83rCR3yYFP/7pXkvdW1X1aa5cscC39OEvjS7DAZnpRDvzwdU0mj1t+TWvt6n0Hq+rOmTwCc99jmA9N8q6q+qnW2kXL2FhVVSZJ7dn9XZnkJdP9fe0ga26Q5IGZ3EHk6uHrK1zn4UleMDj8miS/P/tI6ekfaP44k0eF7vPiqvpUa+0981wLYAl2fR0feHmSP11g/g/XcQ2AzdRjHT8p6/vdw9OTnDYz/nKS96+1SD8OjNyur+MD+nFgbHqs48mklg6DAq9K8tzhH6yr6sZJfjfJ7yTZMz18m0zuUH3KWhfSjwMjt+vr+IB+HBiT7mp4VV0/kxvgzAYFvpdJjX5ta+2awdynZvJ3zyOmhx+X5PNJTp/zenpxYMx2fR0f0IsDO8FVSb6aA8NUW6qq9iR5Vw4MfF2U5NTW2nsHc09J8vokt5weOjbJO6c30lkzwKsfZ9lKkBzYDFV1XJLP5cBHUv671tqZK8w/PJMv+5w4c/jVrbX/tKT9PS3JK2cOXZTkAa21z865fm9rbdUPSNO7jpyX5I4zh1/WWnvmKmteluQZM4c+k+RurbVr59kXwGZRx///46Y/MHPo+a215y24VYBt0XsdX1RVfTYHfqHp9NbaH62xRj8OjJY6rh8Hxq3XOl5Vt0/ypcHhP2mt/d4a656e5BWDw/dprX1klTX6cWC01HH9ODBeHdfwX88kpLvPVUlObq2ds8qak6Z7O2RmzQmttS+vcS29ODBa6rheHBi3qnpGJqHX85L8cyZPtfrnJJ9Kcr8cWN8ubK3dfgv39qQkb5w59O0k91qpLlfVsUk+muQmM4d/qbX21jWuox9n6fasPQVgLs/NgR++3rDSh68kaa1dkeTUHPjkladMP8htqqq6bSZ3BNnnyiS/MG9QIEnWCgpM/UoO/KH9+STPXmPNs6bz9rlzkl+ed18Am0gdBxi3buv4oqrqfjkwKPCjJG+YY6l+HBgzdRxg3Hqt448YjL+R5PlzrPuzJJ9c41xD+nFgzNRxgPHqroZXVWXy5MVZL1gtKDDd21mZ3PV/n0OT/OEcl9SLA2OmjgOM218m+bHW2j1aa09trb2mtfax2ScibodpEGv4O5RnrhbEba19KZMnTc56wfSJYavRj7N0Ql/Ahk3voPGYweEXr7WutfaFTB6duc/eJE/cxK3t8/tJjpwZv7C19pklXOdXBuOXtdauWm3B9PWXr3EegKVSxwHGbQR1fFG/Nhi/t7X2L3Os048Do6SOA4xb53V8+IWn967VIydJa60leffg8PFrLNOPA6OkjgOMV8c1/K5Jjp0ZX5nklXOufcV0/j6PraojV5o8pRcHRkkdBxi/1tq/ttauXHvmljspB9byryX5qznWvWk6d587JLnvGmv04yyd0BewGR6c5AYz43Naa5+bc+3rB+NHbc6WJqrqhjnwQ933c90flJtxnZsmuf/MoauTvGXO5W9OMptq/7mqOmqz9gYwh11fxwFGrts6vqjpHz0eNzj8ujnW6ceBMdv1dRxg5Hqu40cMxl9dYO0wsHuTlSbqx4GR2/V1HGDEeq3hPzsYf6S1dtk8C1tr305y7syhw5I8bKX5enFg5HZ9HQdgaR45GL+xtXbtWoumc4bhsBV/xujH2SpCX8BmOGUw/qcF1n4oyQ9nxveoqqM3vKP9Hp8Dnw7zjtbadzfx/Ps8MMn1ZsYfnfc6rbXvJPnYzKG90/MBbBV1HGDceq7jixrW/UuTnDnHOv04MGbqOMC49VzHLx6MD1tg7XDut1eZqx8HxkwdBxivXmv4bQbjTy+4/lOD8WphAb04MGbqOADLspGfMcO5D1llrn6cLSH0BWyGuw7G58y7sLX2/Vz3g85dNryj/U4ejP9hE889a93vwdTZg/FmvgcAa1HHAcat5zq+qF8bjN/UWrvmoDMPpB8HxkwdBxi3nuv4hwbjey6w9l6D8bkHnTWhHwfGTB0HGK9ea/jw7vxzPR1mlfk/tcpcvTgwZuo4AJuuqg5N8hODwx9e4BTDHvn4qjpkhbn6cbaE0BewGe40GJ+/4PoLBuM7b2AvQz8zGJ+TJFV1eFU9sar+tqouqKorquqyqjq/qt5WVf+xqm64wHWGe+7pPQBYizp+cCdX1d9U1Rer6nvTa3ytqj5aVa+sqkdX1fU3eA2AzdBzHZ9bVZ2Q5L6Dw6+bc7l+HBgzdfzg9OPAWPRcx9+f5PMz4/tX1d3WWlRVt07y6JlD1yT561WW6MeBMVPHD04/DoxBrzX86sH40AXXD+efUFUrfcdPLw6MmTp+cHpxgI25Yw58+tYl06dqzWU695szh66X5CdXmK4fZ0sIfQEbUlVH5bp3t/jKgqcZzj9+/Tvar6punAPT2lcn+WJV/VyS85K8OckjkhyX5LAkN0pyhySPSfLqJF+qqt+c83LDVHgX7wHAWtTxVf1skkcmOTbJEdNrHJPJ3VSfluTt0/08rapqA9cBWLee6/g6PGUw/nBr7TNzrtWPA6Okjq9KPw50r/c63lr7USZPYbxqemhPkrdX1e1XWlNVRyd5V5IbzBx+QWvt66tcSj8OjJI6vir9ONC1zmv4twbjWy24fjj/sCS3XWGuXhwYJXV8VXpxgI3ZaI98sDUr/YzRj7MlhL6AjbrxYPyD6eOTF3HJYHyjDexn1i0H468neVSSf8zkQ9Fabprk5VX1pqrau8bc4fsw/DetZVnvAcBa1PGNuU2SVyZ59zSkBrDVeq7jc5vW6ScNDr92gVPox4GxUsc3Rj8ObLfu63hr7ewkD09y6fTQ8Uk+WVUvq6oHV9UJVXXHqnpAVf1xJjfauffMKV6d5I/WuIx+HBgrdXxj9OPAduq5hn92ML7PgusPNn+lvenFgbFSxzdGLw6wso32yAdbox9nWy3ry6/A7nHkYHzFOs4xXHPDde5laPjD9Mgkf5X9gdcLk/xZkrMyuUPHUUlOyuSOGLefWffvk3wjyW+vcq2Nvg/Leg8A1qKOX9d3krwvyQcz+QP5JZn8G2+SyaOaH5jk8ZncTWmfhyV5V1U9qLV29ZzXAdgMPdfxRTw8ydEz4+8nOWOB9fpxYKzU8evSjwNjMoo63lp7X1XdKckzkvxyJjfTecb0v5V8LsnprbW3zXEJ/TgwVur4denHgbHouYZ/cDC+Q1Wd2Fo7Z62FVXVSkuMO8tJKe9OLA2Oljl+XXhxgc2zlzxj9OFtC6AvYqOEPrCvXcY7hD63hOddrGBa42cz/vy3Jk1trw2t/uKpemeSNSR47c/y0qjqztfahFa610fdhWe8BwFrU8f0uTvKrSd7aWlvpfTg3yZur6llJ/iLJQ2Ze+7kkL0ryzFWuAbDZeq7ji3jKYHxGa+17C6zXjwNjpY7vpx8HxmhMdXzf3wSvmmPu2Umel8kXjeahHwfGSh3fTz8OjE23Nby1dnFVvT/JA2YOv7Sq7t9au3alddMnqb90hZfn/ZKpXhwYC3V8P704wObayp8x+nG2xJ61pwAspG3RmnmsVOPOTfLEgwQFJpuZfHh64nTerOcscO1F/03Leg8AFrVr63hr7XOttTes8ku02bkXZ3LHpOFdUp9WVceutR5giXqq43OpqlslOWVw+HUbPK1+HBirXVvH9ePADtFlHa+qpya5IJPfjZwwx5L7Jnlvkk9W1f3WcUn9ODBWu7aO68eBHaC3Gv7CwfjEJG+qqkMPNrmqDkvy5iQ/s8L5fjTndfXiwFjt2jquFwdYuq38GaMfZymEvoCNGt61+fB1nGO4ZtE7Qa9kpfP8dmvth6stnL4+vPvFg6rqFnNea9H3YVnvAcBa1PF1aq21JKcmuWjm8CG57lMOAJap5zo+ryfnwCeRf7a1dvaC59CPA2Oljq+Tfhz+X3t3Hi3rWdUJ+LczJ0wJhDAKQQhhEoFIgChtABvUpSiTzE0aVLA72iC6QBA7iIANtLS2oiA0QRliC7hsUCG2ECHEoExCSGQISVwkQDADEDISdv9RlU7d756hznTPV/c8z1q1kvf93qnq3LXPPqfOro+RGH0cr6oXJ3lDkpvMdH8syTOTHDXtPzjJXZI8OckHZ8bdJ8nfV9UzVtlGPg4sKnF8neTjwAiMOoZ39weT/N6g+8lJzqmq51fVg6rqqOl/fyXJOUl+Zjru6iSXDOZevsxWcnFgUYnj6z+bXBxgZXvye4x8nD1C0RewUWP+AWypdS7o7g/NM7m7T0/ypUH3D8+5l2/cwKIQxzegu6/M7r/oG97lAGArjTmOz+uZg/Z67vIlHwcWlTi+AfJxYARGHcer6uFJXjboPinJsd395u7+Yndf2d1Xd/f53X1Kdz88ybNz4yeM7pvkTavcKUY+DiwqcXwD5OPANht1DJ/6lSTvGPTdJclrkpyZ5PPT/746yZHT699N8vQlzqLoC9jbiOMbIBcHWJGiL/Y6ir6AjfrGoH1IVd1kyZHLG951ZbN+yFlqnTPXuMZHB+17LjNu+Drceo37bNVrALAacXzj3jdof98W7AGwnDHH8VVV1UMz+VTqG1yX5E/XsZR8HFhU4vjGyceB7TT2OP7yJDXTfkt3v3T6idDL6u43TOfeYN8kv7vCFPk4sKjE8Y2TjwPbZewxPN19XXc/Jcnzklw6x5TzkjwiybuS3G5w7WvLzJGLA4tKHN84uTjA0jaaIyfzf4+Rj7NHKPoCNqS7L0ly2aD7Tmtc5s6D9hfWf6JdXJDkmkHfV5YauIKLBu1bLTNueObhc1rNVr0GACsSxzfF+YP2AVV1iy3YB2A3I4/j83jWoP2e7r54HevIx4GFJI5vivMHbfk4sMeMOY5X1R2SPHjQ/dI1LPHbSa6aaR9TVfddZqx8HFhI4vimOH/Qlo8De8SYY/hQd/+PTO4M85wk707ypSTfSnL19P/fm8ldYe7d3acluWuSA2aW+GJ3L/fHn3JxYCGJ45vi/EFbLg4wsdEceak5y32PkY+zRyj6AjbDOYP23dY4/3tXWW9duvv6JJ8bdA+LB1YzHH/QMuNG+RoAzGmUMWwPx/GNuGqJvvXcFhpgvUYZx1dTVTdL8oRB95vWudxCvgYAUwsZwzY5jm+EfBzYbmON4/cbtL/U3efNO7m7v53d77j+oGWGj/U1AJjHWGPYnozjGyEfB7bTWGP4brr7m939+u5+XHfftbtv3t0HT///J7v7rd19Q0x9yGD6R1dYemFeA4AlLEwM28I4vhFycYClfS7J9TPtI6bva86lqm6e5PCZruuzfDHWwnwvY7Ep+gI2w1mD9vAHl2VNb8s8/FS54Xob8elB+9A1zh+Ov2SZcet+DaZ+cJX1ALaSOL4xhy/RtxX7ACxnzHF8JU9KcshM+8Ik71/nWvJxYJGJ4xsjHwe221jj+PB3Il9dxxrDOUvF3EQ+Diw2cXxj5OPAdhprDN+oRwzap60wVi4OLDJxfGPk4gBL6O5rkpw76F5LnnzcoP2F6ZpLkY+zRyj6AjbD+wbt49cw96FJ9ptpf7K7v7bhE93orwfte69x/n0G7S8vM+5vs2tl+DHzVoZPxz1gpus70/UA9hRxfGOGn4769e6+bgv2AVjOmOP4Sp41aL95epfH9ZCPA4tMHN8Y+Tiw3cYaxy8ftG+yjjVuOmhfscw4+TiwyMTxjZGPA9tprDF83ab58eNnuq5I8mcrTJGLA4tMHN8YuTjA8jbyPWY49m9WGCsfZ49Q9AVshvdn19sFP6Sq7jHn3BMG7b/YlBPd6L1JZiusH1hVt5xnYlUdluTYQfeHlxrb3f+W5PSZrgOSPGXOMz41yf4z7Q9196VzzgXYDDs+jm/QMN6ftgV7AKxkzHF8SVV1r+z6RkQnefN615OPAwtux8fxDZKPA9ttrHH8okH76Ko6ZMmRy3vAoL3kXWbk48CC2/FxfIPk48B2GmsM34hfyq6Fvm/v7m8tN1guDiy4HR/HN0guDrC84feFp1fVvqtNmo552ipr/X/ycfYURV/AhnX3lUneOeh+wWrzquruSR4z0/WdJG/fxKNl+kPT7NkOTHLinNNPTHLQTPuCrHzrzD8ZtJ9XVQeutMH0+nMH3W+Z83wAm0IcX7+qOj7JYwfdf7mZewCsZsxxfAXDu8N8sLu/tME15ePAQhLH108+DozBiOP4p5NcNtM+KMnT551cVT+R5A6D7tOXGjslHwcWkji+fvJxYLuNOIavy7TQ4cUzXVckecUcU+XiwEISxze01/GRiwOs5MNJzptp3zG7F3Mt5WnZ9fcp5yb5yCpz5ONsOUVfwGY5Kcns7YFPqKpHLze4qg7K5BOgD5jpflN3n7vSJlXVg8fxc5ztJUmunWm/qKoesso+D0ny64PuV3Z3rzDtLUk+N9M+Oqv/4PbK6bgbnJ3kbavMAdgKJ2UHx/GqemRVff8cZ5md86Ak70pSM92fS/Jna1kHYJOclPHG8eEa+2f3P1J601rXWYJ8HFhkJ2UHx3H5OLAXOCkji+PdfX12/8Op366q+6y0x3SfOyX5o0H3R7r7KytMk48Di+yk7OA4Lh8HFtxJGVkMn5mz32pjZsYeneT/Jjl4pvvXuvuCOabLxYFFdlJ2cByXiwPMZ61xfPp7lf866P6dqjpyhT2OTPLaQfevd/d3VzmefJwtp+gL2BTTT3P+3UH3O6vqxKqa/SErVXXPJH+X5LiZ7kuSvHSLznZeklfNdB2Y5NSq+oXpHyrNnm2/qnp2klOz6w+H/5jJD4wr7XN9kl9JMltQ8MtV9fqqutVgn8Or6g1Jnje7RJLnT9cB2KPE8RyX5JNV9b6qOqGqjlhuYFV9T1W9OpNPBLnlzKXrkvyn7v7OXE8MYBONOY4v4dFJbj3TvizJuze6qHwcWGTiuHwcWGwjjuO/meSqmfahSc6YnuuQ4eCqOqCqnpHk49n97jC/ttJG8nFgkYnj8nFgcY04hifJyVX1tqr6iao6eKkBVXX7qjopySeza+z+qyR/MM8mcnFgkYnjcnFg8VXVHavqyOEjyW0HQ/dbatz0cfgWHO1tST46075lJr9XeeQSz+FRSf4hyWEz3WdkjoJa+Th7Qq180xqA+VXVvknek+THBpcuTvKJJN9K8r1JHpBdP2ni2iQ/0t0fnmOPYdB6WHefNse8yuSb7xMGly5PcmaSSzP5hv7gTN4wmXVhkgd395dX22e614uSvHzQfVUmycNXk9wuybHZ9ZM9kuQF3f2qAGyTnRzHp7+EG366x4WZfArH5ZnE8Vskufv0MXR9khO6+62rPReArTLmOD5Y46+S/PhM1+939y+uZY1V1pePAwtpJ8dx+TiwNxhrHK+qxyT58yT7Di5dlUlRwEVJvpvJG/A/kOSmSyzz4u5e7ZNJb9hPPg4spJ0cx+XjwKIbcQx/Z5LHTZvXJTknyfnT8xya5E5J7jM4UzL5cMvHdPeVq51rsJ9cHFhIOzmOy8WBvUFVnZ/kzhtc5i3dfcIKe6z3bw5vl8nfFt5pcOkLST6bSQy/d5K7Da6fn8nfG35ttT1m9pKPs2Xmvv0owGq6+/qq+pkkb0zyxJlLRyT50WWmXZzkGfP88LXBs3VVPT2TooBnz1w6dIWzJZM7wzymuy9aw16vmCYYL01ywx1oDk5y/DJTrkvyEt+0ge0mju/mDtn901CX8qUk/6G7P7KOPQA2zZjj+A2q6g5JHjXoftNm7iEfBxaVOL4b+TiwUMYax7v7L6rqpzKJ17eZuXRwkh9aZfq3k7ywu39/DfvJx4GFJI7vRj4OLIyxxvCB/ZPcd/pYzneSvDrJb6znbi1ycWBRieO7kYsDbJLu/kpV/fskpyS5/8ylo6aPpXwiyRPXUvA13Us+zpbZZ7sPAOxduvuK7n5SJndiOXOFoZcm+cMk9+nu9+2hs13T3c9J8iNJ/jaTT7pYzllJTkhy3HoKBbr7lUkelOQvM/lUkaVcO71+bHf/t7XuAbAVdnAc/z9JXpfkM6use4PvZHIL52ckuZdfogFjMeY4PnVCdv1k6k9096c2exP5OLCodnAcl48De4WxxvHu/qsk90ryoiTnzjHla0lek+Te6ykUkI8Di2oHx3H5OLDwRhrDT0nygSRXrzLuW5kU996nu1+0kUIBuTiwqHZwHJeLA2yx7v58Jjnyr2VSMLucc6djHtzdX1znXvJxtkR1D+92B7B5quoumdxa+fZJbpLJLSovSPKR7l7uG9qeOtutkzw4k1tmHp7JD2BfS3JGd395E/c5LMlxmXwCx62SXJLJbZjP6O7LNmsfgK2wE+N4VR2UyRvod56ufbNMPn3jiiSXJTkvyce6+8oNPQGAPWDMcXxPkY8Di2wnxnH5OLA3GWscr6o7Jjkmkzh7aJJK8o0kX0/yyfW+ob3MXvJxYGHtxDguHwf2FmOK4VV1QCZ3hjkqk9h6SCZ/tH9xkrOTfLy7r9uCfeXiwMLaiXFcLg6wZ1TVMUnunsn3mCS5KMnnu/vjm7yPfJxNo+gLAAAAAAAAAAAAAAAAYET22e4DAAAAAAAAAAAAAAAAAHAjRV8AAAAAAAAAAAAAAAAAI6LoCwAAAAAAAAAAAAAAAGBEFH0BAAAAAAAAAAAAAAAAjIiiLwAAAAAAAAAAAAAAAIARUfQFAAAAAAAAAAAAAAAAMCKKvgAAAAAAAAAAAAAAAABGRNEXAAAAAAAAAAAAAAAAwIgo+gIAAAAAAAAAAAAAAAAYEUVfAAAAAAAAAAAAAAAAACOi6AsAAAAAAAAAAAAAAABgRBR9AQAAAAAAAAAAAAAAAIyIoi8AAAAAAAAAAAAAAACAEVH0BQAAAAAAAAAAAAAAADAiir4AAAAAAAAAAAAAAAAARkTRFwAAAAAAAAAAAAAAAMCIKPoCAAAAAAAAAAAAAAAAGBFFXwAAAAAAAAAAAAAAAAAjougLAAAAAAAAAAAAAAAAYEQUfQEAAAAAAAAAAAAAAACMiKIvAAAAAAAAAAAAAAAAgBFR9AUAAAAAAAAAAAAAAAAwIoq+AAAAAAAAAIbiCPMAAA81SURBVAAAAAAAAEZE0RcAAAAAAAAAAAAAAADAiCj6AgAAAAAAAAAAAAAAABgRRV8AAAAAAACQpKqOr6qeeZy0yvjTZsdv5to7WVUdOXitTt7uMwEAAAAAAOxpir4AAAAAAADYVFV1wqBo57QNrDUsljp/804KAAAAAAAA46ToCwAAAAAAgL1CVZ08KBA7crvPtBNV1UmDr8Px230mAAAAAACARaPoCwAAAAAAAAAAAAAAAGBEFH0BAAAAAAAAAAAAAAAAjMh+230AAAAAAAAAGIPuPi1JLdrae5vuPj9eKwAAAAAAYIdzpy8AAAAAAAAAAAAAAACAEVH0BQAAAAAAAAAAAAAAADAi+233AQAAAAAAAIDlVdV+Se4zfRye5KZJrktyRZILk5yb5Ozuvn4da981yT2S3DnJzZN0ksuSXJTko9399c14DntaVVWSB2Ty3I5IcmCSr2fyep3e3VdswX7HJjkqye2TXJvkq9O9vryZewEAAAAAADuDoi8AAAAAAAAWVlWdkOTNy1w+b1KLs6QLuvvIwVrHJ/ngTNdLu/ukjZ1w/WtX1W2SvDjJU5LcapUtrqyq05O8o7tPXmHNmyT5iSSPTXJ8JgVRK53hE0l+J8kpKxWVLfH8Zn1wha9DunuXi1V1ZJLzZrre0t0nrHTOmbmHJ3lRkqclufUyw66tqg8kOam7Pzrnuidk139n/7G7T66qfZI8N8mJSe6yzNwPJ/nVefcCAAAAAABIkn22+wAAAAAAAADArqrq4Uk+l+QXs3rBV5IckuSRSX5rlXHvSHJKkp/JKgVfUw9I8tYkp1bVckVUo1BVP53kS0mel+ULvpLkgCQ/muTMqnr99E5q69nviCQfSPLfs0zB19RDk3y4qp6ynn0AAAAAAICdyZ2+AAAAAAAAYESq6qgk701y8ODSBUnOSXLZtH3zTIqNjkqy/5zLDz8U8ptJzk5ycZJvJTkoyR2T3Hew/8OTvK+qjuvua+bca4+pqmcm+ePs/vzOzeT5XZnkTkmOTbLvzPWfT3KnqvrJ7v7OGrY8OJOv0QOn7WuSfCzJhdP175nkXjPj909yclWd1d2fXsM+AAAAAADADqXoCwAAAAAAgEX2ziSnTf//NUkeN3PtoUm+vMy8tRT47Gm/mV0Lrj6Q5Je7+5+XGlxVByb54SSPSXL8HOv/cyZ37/rr7j57mTUPSfKUJC/PjXcEe0CSlyZ54RJTzsyNd7t6bpL/MnPtydPrW6Kq7pfkD7Nrwdenkvzn7j5jMPbWSV6W5Nkz3T+ayWv+ojVs+5tJDk9yVZL/muR13f3twV7HJnlbkrtNu/ZP8tokj1jDPgAAAAAAwA6l6AsAAAAAAICF1d1XJLkiSarqisHlL3f3+Xv8UBtQVZXkJ2e6Pp/kx1e6u9b02qlJTq2q4d3Bhk6c5zXp7iuTvLGqTk1yepLvmV76hap6RXd/czD+6iTnT5/D5YPlvrrFX4c3JTlgpn16kkdNn8MuuvvrSZ5TVV9M8uqZSy+oqnd092fm3PPwJN9O8rDu/qelBnT3P1bVI5KcleRm0+6HVdXduvuLc+4DAAAAAADsUPusPgQAAAAAAADYQw5PcpOZ9ntWKvga6u6rVrl+/loO093/muR5M103z65Faduqqh6WyR3IbvDNJE9cquBrVne/Jsl7Z7r2ya7Pcx7PW67ga2aff03y+pmuSvKwNe4DAAAAAADsQIq+AAAAAAAAYLyO2O4DJHlPkmtn2sdt10GW8IxB+w+6+6I5575w0H5yVR0459wLk7x5zrHvHbTvP+c8AAAAAABgB1P0BQAAAAAAAOPxb9PHDR5fVQ/d6k2rap+qullV3b6qjpx9JLl9kktnht9zq8+zBj80aL913ond/dkkn5jpOijJMXNOf393f2fOsecM2mMo5AMAAAAAAEZO0RcAAAAAAACMRHd3klNmug5O8sGqOqWqfrqqbroZ+1TVTarqiVX19qo6O8k1Sb6ZyR2szlvicduZ6Ydtxhk2qqoOS3LXma7Ls3uB1WrOGLQfOOe8s9ewx2WD9i3WMBcAAAAAANih9tvuAwAAAAAAAAC7OCnJj+XGgqZ9kzxx+ri+qj6V5B+SnJ7kQ939lbUsXlU/m+QVSW69zvONpWhpeP4vTIvm1uJfBu1578I1LORaVndfV1WzXfvPOxcAAAAAANi53OkLAAAAAACAzTYsvNnIe1L7rrL2Xqe7L0nykCTvWuLyvkmOSXJiJncEu7CqzqiqZ1XVqsVEVfXaJH+c9Rd8JeN5j3F4x7FvrGON4Zxbzjnvu+vYCwAAAAAAYG5jeUMGAAAAAACAvce3Bu2bbmCtmw3a39zAWguju7/e3Y9P8n1JXpXkM1m64K0yKRB7Y5LPVNX3L7dmVT0hyXMH3Z9N8pIkj0pydJJDkxzU3TX7SHLBRp/TFqhBezMKAvf6okIAAAAAAGAx7LfdBwAAAAAAAGCvc9mgfegG1hrOHa69V+vus5K8IMkLqurQJA9K8oNJjs+k2Gv2/b6jk/xdVT2wu89bYrmXDtovSfLy7p6n0Onmaz37HnDpoH2LdawxnLOj/n0BAAAAAADj5U5fAAAAAAAAbLavDNp3rqqD17nWPQbtr65znYXX3Zd39/u7+ze6+98luU2SX03yjZlht0rysuHcqjoqyT1nuj7U3b81T8HX9Gu3kcK9rfL1Qfvu61jj6EH74nWeBQAAAAAAYFMp+gIAAAAAAGCzfS7J5TPtfZLcf51rHTNon7nC2HnuWLXX6O5Lu/s1SR6VXZ/7o6tq+D7gUYP2e9ew1UOS1FqOtoax69bdlyU5d6br0Kq653Ljl3HcoP1PGzsVAAAAAADA5lD0BQAAAAAAwKaa3j3qjEH3E9a6TlUdkeT4QfdHVphyzaB94Fr3XETd/dEkZ8103SzJ4YNhwzt1fSPzO2GNR9qTX4fTB+2nzjtxWiA2W1R4dZKPb8ahAAAAAAAANkrRFwAAAAAAAFvh5EH7mVV1uzWu8cIk+820z+rule7EdPmgvdb9Ftl3Bu1h4dVlg/Y95lm0qn4gyZPWeJY9+XX4k0H7xKq67ZxzXzlon9Ldw9cNAAAAAABgWyj6AgAAAAAAYCu8O8m5M+2bJ3lHVd1snslV9YQkvzTofs0q084ZtB85z15jUlX3q6rHVNW+a5hz3yTfP9P1le4e3snrnwftZ6xWHFVV35vkz5PsP+9ZpvbY16G7P5DkUzNdt8jk39nBK82rqucl+anZpZK8dvNPCAAAAAAAsD6KvgAAAAAAANh03X19khOy6x2ofjjJP1XVE6rqgKXmVdVdqup1SU5JMlv49DfZ/a5OQ3+fSfHODZ5fVS+rqh+qqqOq6siZxx3X+pz2kCMzLZirqldV1XFVtWTRVVXtV1WPT/L+7Pq+31uGY7v7oiSnz3TdMskHq+rBS6x7YFX9bJIzp+e5OskVa3gOHxuMf1JV/c+qenhV3X3wdThyDesu51lJrp1pH5/kw1X1oOHAqjq8qv4gye8MLr2quz+9CWcBAAAAAADYFPtt9wEAAAAAAADYO3X36VV1YpLX5caipKOT/O8kV1XVJ5J8LZOiosOS3D3JXZdY6tNJntbdvcS12f3Or6p3J3nctOuAJL8+fQxdkElB01jdOcmvTh/XVtXZSS5McnkmxXC3TXL/TO5sNetfkvzWMmu+IJPCuBveI7xHkn+oqs8lOSuTwqnbJDk2yU1n5v1iJq/hbN+yuvvbVfX6JM+fdlWSE6ePpdQ8666w3yem/87+KDf+OzsmyZlV9cUkn83k39j3ZPLchu+R/m2Sl2zkDAAAAAAAAJtN0RcAAAAAAABbprtfX1XnJfnTJEfMXDo4yQ/OscTbk/xcd18555Y/n+T2SR6ypoOO2wFJ7jd9rOQjSR7b3d9e6mJ3n1FVP5fkDUlm7x529PQxdH2SX+7uN1bVUoVzK3lxkqOSPHqN89alu/+4qi5L8ubsWpx2t+ljOf8ryXO6+7qtPB8AAAAAAMBa7bP6EAAAAAAAAFi/7j41yV2S/FImd+1a8Y5dSb6R5B1Jjunup66h4CvdfWmShyb56SR/Mt3v0iSLUtRzapLHJnljki/OMb6TfDjJU5M8tLsvXnFw98mZvD6nrTDs6iTvSnJsd//eHGdYap9ruvunkvxIJkVmH09ySSZ3E9sS3f3OTO4U97tJ/m2Foddl8jr/YHc/S8EXAAAAAAAwRtW92ntqAAAAAAAAsHmq6rAkD05yuySHJTkoyeWZFGedk+TT3f3d7TvheFTVrZLcO5OiuVslOSTJNUm+mUlR2Ke6+5J1rn2nTO62dvtM7vx1cZKLknyku7+18dNvn6raJ8kxSe6R5NZJDsykEOzLSU5f9OcHAAAAAADs/RR9AQAAAAAAAAAAAAAAAIzIPtt9AAAAAAAAAAAAAAAAAABupOgLAAAAAAAAAAAAAAAAYEQUfQEAAAAAAAAAAAAAAACMiKIvAAAAAAAAAAAAAAAAgBFR9AUAAAAAAAAAAAAAAAAwIoq+AAAAAAAAAAAAAAAAAEZE0RcAAAAAAAAAAAAAAADAiCj6AgAAAAAAAAAAAAAAABgRRV8AAAAAAAAAAAAAAAAAI6LoCwAAAAAAAAAAAAAAAGBEFH0BAAAAAAAAAAAAAAAAjIiiLwAAAAAAAAAAAAAAAIARUfQFAAAAAAAAAAAAAAAAMCKKvgAAAAAAAAAAAAAAAABGRNEXAAAAAAAAAAAAAAAAwIgo+gIAAAAAAAAAAAAAAAAYEUVfAAAAAAAAAAAAAAAAACOi6AsAAAAAAAAAAAAAAABgRBR9AQAAAAAAAAAAAAAAAIyIoi8AAAAAAAAAAAAAAACAEVH0BQAAAAAAAAAAAAAAADAiir4AAAAAAAAAAAAAAAAARkTRFwAAAAAAAAAAAAAAAMCIKPoCAAAAAAAAAAAAAAAAGBFFXwAAAAAAAAAAAAAAAAAjougLAAAAAAAAAAAAAAAAYEQUfQEAAAAAAAAAAAAAAACMiKIvAAAAAAAAAAAAAAAAgBFR9AUAAAAAAAAAAAAAAAAwIoq+AAAAAAAAAAAAAAAAAEZE0RcAAAAAAAAAAAAAAADAiCj6AgAAAAAAAAAAAAAAABgRRV8AAAAAAAAAAAAAAAAAI6LoCwAAAAAAAAAAAAAAAGBEFH0BAAAAAAAAAAAAAAAAjIiiLwAAAAAAAAAAAAAAAIAR+X/qMDlRy5hTeQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1137,7 +1137,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAADX0AAAcqCAYAAACQOCfjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdZ5ytVXk34P99QEBBmoAoiqho7IoVxQQLtmhsmFiiCb5RY0vUxJJXU0wx+saSplFS1BhjYuxGjR3BEkUQsCMaBBsC0gQFEe73w7NPnLPPnpk9eyrnXNfvtz/s9Txr3Wv2rP3wYfifu7o7AAAAAAAAAAAAAAAAAGwMm9Z7AwAAAAAAAAAAAAAAAAD8jNAXAAAAAAAAAAAAAAAAwAYi9AUAAAAAAAAAAAAAAACwgQh9AQAAAAAAAAAAAAAAAGwgQl8AAAAAAAAAAAAAAAAAG4jQFwAAAAAAAAAAAAAAAMAGIvQFAAAAAAAAAAAAAAAAsIEIfQEAAAAAAAAAAAAAAABsIEJfAAAAAAAAAAAAAAAAABuI0BcAAAAAAAAAAAAAAADABiL0BQAAAAAAAAAAAAAAALCBCH0BAAAAAAAAAAAAAAAAbCBCXwAAAAAAAAAAAAAAAAAbiNAXAAAAAAAAAAAAAAAAwAYi9AUAAAAAAAAAAAAAAACwgQh9AQAAAAAAAAAAAAAAAGwgQl8AAAAAAAAAAAAAAAAAG4jQFwAAAAAAAAAAAAAAAMAGIvQFAAAAAAAAAAAAAAAAsIEIfQEAAAAAAAAAAAAAAABsIEJfAAAAAAAAAAAAAAAAABuI0BcAAAAAAAAAAAAAAADABiL0BQAAAAAAAAAAAAAAALCBCH0BAAAAAAAAAAAAAAAAbCBCXwAAAAAAAAAAAAAAAAAbiNAXAAAAAAAAAAAAAAAAwAYi9AUAAAAAAAAAAAAAAACwgQh9AQAAAAAAAAAAAAAAAGwgQl8AAAAAAAAAAAAAAAAAG4jQFwAAAAAAwDqqqm9XVc95/eN674npVdWeVfVbVfXWqvp6VZ1fVVeM/U5PWO99AgAAAAAAcNWy43pvAAAAAAAAAK6KquppSV6SZLf13gsAAAAAAADbFqEvAAAAAABgJlV1UJLTlzDl0iQXjl5fS3Jiko8nOaa7r1zp/cFqqqo/TvKH670PAAAAAAAAtk1CXwAAAAAAwFrZZfS6dpKbJnnQaPybVfXKJH/d3T9dr82xMVXVJ5IcNmfoI919xHrtJ0mq6i5Jfn/CpU5yZoZgY88ZP3Ut9gUAAAAAAMC2Q+gLAAAAAABYbwcleVmSR1fVo7v7tHXeDyzmd5JsGhv7sySv6O7z12E/AAAAAAAAbGOEvgAAAAAAgJV0SZKvz3PtGkn2SbLXPNfvkOTDVXVYd397NTYHy1VVO+RnXeo2+7fu/oP12A8AAAAAAADbJqEvAAAAAABgJZ3Q3fdY6IaqunGSRyV5ZoYQ2FwHJnlLkruuyu42oO6+3nrvgSW5VYYA41xvXo+NAAAAAAAAsO3atN4bAAAAAAAAti/d/Y3uflGSWyc5fsIth1bVL6/xtmBaB04YO3XNdwEAAAAAAMA2TegLAAAAAABYF919VpIHJTlrwuXfXOPtwLT2mDB2yZrvAgAAAAAAgG2a0BcAAAAAALBuuvucJH8x4dLdq+oaa70fmMIuE8Z6zXcBAAAAAADANm3H9d4AAAAAAACw3Xt7kleMje2c5JZJPjvrolW1U5I7Jvm5JPuM1rwoyWe6+zNLWGfPJHdJcu0k+2b4R/XOSfL9JJ/t7nNn3eNqqapNSW6f5AZJ9kuyV4af/ZwkpyU5ubuvXKXamz/362X43PdKcmmSC5N8I8mXu/v7q1F7W1NVeyW5U5IbZ+gwtinJeUne191nLmGdSnLr0Tr7JrlWhu5k5yQ5PckJ3f3Tld39/9beKcPPcECGs7h7kvNHtb/U3V9ZjbqzqqoDk9w2yXUz7HXnJD/O8Hl9J8k3k3ytuy9bhdr7Jrlzht/TNTN8Z76T5KTu/uYK19opyU2S3CzDs233DOHF80avz3f3aStZc8Ie5p7LfTKcyyuT/DDJmUm+0t3/s4L19ktyhwzfgf2y5bP809193grW2iHDf3tuneFn2z1JJflRfvbznZ7kG90tNAoAAAAAwERCXwAAAAAAwLrq7jOq6pIku45d2nfS/VV1VJLXjQ3fcHMooqpumeS5SY6csGaS/HOSBUNfVbVjkt9I8rgkhybZYZ5br6yqE5O8KcmrZwmCVNW3MwRiNvun7n7CUtcZrXV4kqcmOSLJ3gvc+oOqel+SF69E6Gb0ef1qksckuXuSBbu0VdVXk7w/yeu7+5QJa12+wPR7V9U0IYnrd/e3p7hvQVX1xgw/20K+NeRXJtrq9zlhzW9098Fzrj8wybOS3COTz97jkrxxkT2lqm6f5BlJ7ptk/wVuvaiqPpTk/3X3zEHLsdoPT/L4JPfM5O/h5vu+k+QdSV7S3d9ZidpLVVXXT/K0DOf3+lNM+UlVnZTkg0ne0t1fWGT9lyR53pyhy7p7lznX753k+Rl+35vmWeOzSV7V3f88xf7m28cdkjwkw+/kzkl2WuT+7yf5zyQv6+5TZ607Yd17JfnNJPfKEIha6N6zknwoyb8m+dBSw6pVtUeS307y0CSHZAheTbL5Wf4PSV43awiyqu6c5ClJHp4h6LWYC6vqM0nek+Rt3f3dWeoCAAAAALBtmvhHAwAAAAAAgDV24YSxPZe6SFX9fpKTk/xaFgiaLLLGfZN8KclrkhyW+QNfyfC3ljsl+cskp1bVQ2apuVxVdbOqen+SjyX5lSwc+EqGjjqPS/LFqjq6qnZeRu1fSfLVJK/PEC5aMPA1crMkz0xyclX99qy1tzVVdc2qekeGAMi9s/DZW2id61XVm5OckOG7sFDgKxnCKUcmOb6q3jIKysykqu42Cii9LcmDsvj38IAkT0/y9ap6YS2QnlsNVfWsDOf3eZku8JUMYam7JPmDJJ9fRu2rVdXfJ/lwhgDUQn+7vVOS11fVMaOQ2lLq3KaqTstwHv4gQzBzwcDXyLWTPCHJl6vqVVV1taXUnbCPO1TVcUk+kuE5tWDga2T/DM+q9yf59yXU2lRVz8nQTetPMnQ+XOhsbX6W/32GZ/nPT1trVO/qVfXaJJ9OclSmC3wlQwe/+yb5mwzhYQAAAAAA+F9CXwAAAAAAwEYwKWRywVIWqKpXJvnTJDvOuomqemKS9yW56QzTb5DkHaMQyZqpqvtkCBrcb4bpm5I8KcnHqmq/JdbdoapenuTNSW48Q+3Npg1HbNOqarckx2ToSLScde6Q5PgMoZpZAlSPSPLfVXWjGWoflSF4eMcZ6u6S5I+SvK2qpgkOLltVvTTJKzJdUHGla2/K8N154hKn3iPJsVV14BLmXDfJwYveNb9NGToIHlNVs4ZpH5fkE0mWFKYaM9WzYnR+3pbkL5LsNUOdGyX5cFX9+pT1dknygQyd7dY0tAgAAAAAwLZt5j96AgAAAAAArISqukEmdwM6ZwnLPDHJ0+a8vzjJh5J8Msn3M4QWrpfknkmumGcfj8/Q5WVcJ/lUkv9K8q3R/Otl6M5yeLbsxlRJXlFV3d1/tYT9z6SqHprkLdn6bz4/ydBN5zNJvp2hk9o1kxyUoYPUYWP3H5rk7VV1j+7+6ZTl35QhWDTJFzJ8/v+T5NwkV8vQfeyWGbrp3C7zhyM6ySlz3h+cLc/HxUm+McX+fjLFPdM4Y2w/e2frjlBfTnL5PPPPnLLOPya5w5z330ny3gyf5TkZgpEHZoFQWFXdLcPnPh5iuiLJsRnCgadnOA/XyPBzHJ6tu0zdPMl7q+pO3X3xNJuvqmdm6Hg37uIkH8zQZep7o/d7ZAhW3i/Jbcfuf1iG7+Fjp6k7q6q6X5JnT7h0QYb9npLhu3NJkp0zfH9ukOEMH5pkSSHJCZ6f4Wfd7MIk70xyYoZn1t4Zfg9HZuiGNtcNk3y0qg7p7h/OUPsHST6b5CsZzsNFGX4vV8/QfetWGX431xubd1iSV2foHje1UTe/v57n8pkZPu8vZTjnV2QIah2c4ftwaIbPf9paOyf5aIZObONOyxCs/EKS80a19k1y5yS/mKED4mY7JXltVZ3V3R9YpOwfZXKY7YwMP9tXkpyd5NIMz7Ldk9wkw1m6a9YhdAgAAAAAwFVDdfd67wEAAAAAALgKqqqDMgQG5jq2u++xxHWelaHbzlw/SbJ3d18y4f6jkrxubPiK/Cx89Zokv9/dP5in3i7dfenY2E2TfC5bh88+n+Q3uvuEeda6ZZLXZggNjO//0O4+adK8sTW+nS1DHf/U3U+YYt6NMwRE5nZJ+2mSlyd5WXefu8DcQ5L8U5JDxi79RXc/b4rav5fkxRMufTTJc7v7xEXmXy9DYOy3Mvy8f7bAvZ/IliG1j3T3EYvtcbVU1ROS/MPY8PW7+9tLWOONSX51ztDc8/ujJL+X5NXzBfDmOcP7JDkpWwZ1erTXP11of6Pz/5oMoci53tTdvzphyvj8u2cI08wNH16SIQxz9ELBsao6YrTHg8YuPam7xz/nFTPhXCXDmX7RpOfO2NzK0M3s0Uke390LdpOqqpckmfu9ujLDd3Wn0fujM3xvLpowd4ckz0nyx3Pu3+w13f2UhWqP1rh/hu/76zIEyz7X3VcuMqeS/FKGIN9417df6u73LFZ3tM7hST6crYOppyX5v939tkXm757kwRlCvRd29/0Xuf/oDN0L5/p8kmd190cXmHeNJL+b4czODfL+IMmtu/t788zbLUNYbZc5wz/M0BntTVN8zrtk6N72f5Ls1d33Weh+AAAAAAC2L0JfAAAAAADATFYi9DUKqnwhyf5jlz7a3feeZ85R2Tr0tdnvdvd4gGyafXw0Wwdejk9yn0lBjLG5V8/QBezwsUsnd/d4qGrS/FlDX5/JlmGzi5M8qLuPXWzuaP7OSd6XocvTZj9JcsPu/u4C826bIWy2w9illyd5Ti/hj0+jQMt1FgkkbQ+hr80uTnL/7v7kDPt6e7bsHHV5ksd091unnL8pyRszBJnmOqS7T15g3jWSfC1bnuHvJbl3d39lytp7J/lEhs5Wm52V4SxeOnnW7EbPnbOzZbe5qQJUE9a6Rnf/aJF7xkNfc72wu/94ijpHJnlztvzedZK7dvdnFpm7a5JLu3til8NF5u6TIdB3qznDx3T3veaZMnfu1TN05bvO2KUPJzlysWfrhPUO6u5vLnD9wUneNTb8H0ke293zdeIbX+NBGYJxcz/nv+ruZ81z/5FJxr9jj+ruN09Tb2ytRc8SAAAAAADbl03rvQEAAAAAAGD7VFX7JXl3tg58JVuHaqbxthkDX7fL1oGvC5M8dJpQQnf/OEPY5uyxS7erqkWDEbOoqgdk6+5iR00b+EqS7r4sySOSnDdneKckE8MNc7wgWwe+3tDdz15K4Gu0hyuWEpbaDjxnxsDXrbNl4GvzWlMFvpJk1JHo8RlCOnMt1vntN7Jl4OuKJA+eNvA1qn1ehv3P7Wy2f5Jfn3aNJbphtgx8JbM9c7LMkM77pwl8jeq8LclLx4YrQ7e8xeZeMkvgazT33CRHjQ3fc9RpcDFPzNaBry9l6BS2pMDXaC/fXOSWPxx7f0KSX5028DWq8Z5s3cXwiaNg4iTjXdAuTPKWaeuN1Rb4AgAAAABgC0JfAAAAAADAmqqqG1XV72Xo8HXXCbd8NkNHm6W4MsmzZ9zS0yeM/XF3f2/aBbr7/CTPn3LtlTAexDlmFApZktG+/3ZseDw89L9GQY8jx4bPyur9nNuTryU5esa54+fhq9n697qoURDwJWPDD6qqHSfdP+rU9rtjw6/t7hNmqH1qtv7ez3sWl+maE8Z+sEq15tNJnrHEOX+WrcOljxh141o13X1iki+PDR826d7NRp3jJj2TH7dK3duOSHKHseFndPdPJ92/iL9I8uM573dNct957h0/S+ePApQAAAAAALBsQl8AAAAAAMBKumNVnTzP69Sq+kGGTkIvTrLfhPnfSfLLS+0YleSjU3SBmc99xt5fmuR1M6zzr0kuGBu79yj8sGKqat8kvzA2/I/LWPK9Y+9vXFUHTLwzeVC2/vvSq7v7h8uoz+C1M5z7jAJZDxkbft0ygifj52G3bB2m2exOSW4wNraSZ/Gw+QJnyzQp4HX3VaizkGO7+2tLmdDdl2R4zsy1c7buVLgaTht7f+gi9x+S5PpjYx/q7pNWbktbeMTY+69296dmWWj0PPv42PDh89w+fpYOrKoDZ6kLAAAAAADjVuOPJAAAAAAAwPZr1yS3nXHuyUke1d1nzDD3mFkKjsJN4/+D/oe7ezy8tajuvrSq3pPksXOGd09yqySfn2V/8/iFJDU2NlO4YeT0CWOHZAjgjbvHhLF/WUZtfmamM5whkLXb2NjM56G7v1dVlybZZc7wIUk+M+H28SDMZUk+N2vtbH0Wd0tycIbOZSvpy0kuzpaf2yuq6hvd/ekVrjWfd8447+1JnjU2dmiStyxlkaq6yWjerZPcOMOz6poZQmTjz5dk63DfYsGme0wYW81nxfhZ/OQy1xs/i4fMc9/492JTkjdX1ZHd/d1l7gEAAAAAgO2c0BcAAAAAALDezkzyqiR/2d2Xz7jGrEGTSR2MTphxrST5bLYMfSXJ7bOyoa/DJoy9s2pSTmMqkybuM8+9dx17/73unhQaY2muTHLKjHMnnYe/r6qfLGM/439DnO88jNfelOSEZZzFnSeMzVd7Zt19eVW9McmT5wzvl+RTVfWBDN203tfd56107TlOnHHeyRnOy9yOe/N1YttCVe2Q5ElJnpDhubQcey5yffxZkSw/iDVRVV0ryc3Ghh9UVScvY9nrjL2f7xwenyFEeIs5Y4cmOa2q3pzkP5J8rLsvXcZeAAAAAADYTgl9AQAAAAAAa+WyJBcluSDJ1zKEHo5Lckx3X7nMtc+ecd6k/5H/K8vYx5enrLEc15swNmt3tflca3yghiTPvmPDX1jhuturC7v7shnnTjoPN1/OZibY6jzMU/tqWYOzuEL+KMkDk1x/zlgluf/o1VX1hQxd0z6b5OPdfdoK1j91lkndfXFVfSdb7nu/xeZV1W0ydNq6zSx1J9hjkevXHnv/o+7+nxWqPe6AeeqP72E5Jp7D7r6yqp6S5MMZzv9m10jy+NHrsqo6PsmnM4TEjuvuWf+bBQAAAADAdkToCwAAAAAAWEnHdvc91qHuRTPO22vC2AXL2Mf5E8b2XsZ6k6xWCGauq08Y2zNbdhdKJv+8LN2s5zdZv/Ow3rWXpbvPrqp7J3lbkltPuKUyBKRuk1FHsKr6bpJ3JnlTdy+3a9WFy5w7N/S1YNetqjokQyhpJZ9FV1vk+nit1XxWrOs57O7jquohSd6YyZ/xzkl+fvRKklTVF5O8Ncm/dvfXV3ivAAAAAABsI8b/MAcAAAAAAHBV9NMZ511zwtgly9jHpLmTaizHpKDaWth9wtjFa76LbdOs5zdZv/Ow3rWXbdS5645Jnp5kmi5e103y1CSfqKr/rqq7z1j6p939kxnnJls/Z+Z9xlTVzknekslhpOOS/GGGjme3ydDJb7ckO3Z3zX0lefMS9zj+vFjNZ8W6n8Pu/q8kP5fkpUl+MMWUWyV5YZJTq+rfq+rAVdweAAAAAABXUTp9AQAAAAAA27MfThjbdRnrTZo7qcZy/Hjs/bndve8K15hkUjeq3dagLgsbPw+dZNfuHh9frdpzA0ef7u67rkHdFTMKX70qyauq6s5J7pfkF5LcJQsHNg9NcmxVPbe7X77EsjtW1U7LCH6NP2cWesY8PcmNx8ZOTfKo7j55CTWX2nFt/Hmxms+KSWf9yd199CrW3Ep3n5vkuVX1giT3SXLvDN29bpf5O6NtSvLIJPerqod39zFrslkAAAAAAK4ShL4AAAAAAIDt2fkTxvZcxnqT5p63jPUmOXfs/T5Vdc3uXulw2bgLklyRZIc5Y+veYYetzkMluUGSr65R7f3mvL/hGtRcNd19fJLjk6SqNiW5dYbQzr0yhHjGg0ubkrysqr7Z3W9bYrk9kpwz41b3GHt/wQL3PnrCvffu7u8sseakTmELGe92tZrPivHvQLKOZ7G7L0/yvtErVbVLkjsnuXuGUOHdsvXf6fdM8s6qul13n76G2wUAAAAAYAPbtN4bAAAAAAAAWEeTQhc3X8Z6t5gwNimQsBzfnzB26xWusZXu7iRnr3VdFjXpPNxmnWpfu6r2m3jnVUx3X9ndp3T3K7v74Un2TfJrSb4x4faXjUJiS3HTWfZVVbsmOWBsePx7ufnevZPcfmz4n2YIfCVLD1GdNfb+GlU13nFspaznd2BR3X1pdx/X3X/e3YcnuW6SF2Trbmi7J3nhWu8PAAAAAICNS+gLAAAAAADYnp04YeyOy1jvTlPWWI7jJ4w9YIVrzOe/x95fp6putEa1mWw9z8N61l5To+DOv2QIUX1x7PJB2TpctZg7zLiVQ7L133jne8ZcL0Pnt7k+vtSCVXVgtg6aLWb8WZEkhy219jS6+8xsHTK7x6jD1obT3ed0959n+Dx+NHb5IVU13gUMAAAAAIDtlNAXAAAAAACw3eru7yY5c2z4iKraY6lrjQIGvzQ2fGGSL824vfl8aMLYo6tqhxWuM8nHJow9bpVr/nTs/Vr8nFclxyW5bGzsIVV1zTWoPeksPnYN6q6b7r4oyZ9NuLTUzlIPnXELD58w9ul57t1nwth5M9R85AxzPjZhbDWfFR8ee3/1JEeuYr1l6+4vJnnD2PAeSQ5ch+0AAAAAALABCX0BAAAAAADbuw+Mvd8lyVEzrPPoJHuOjX2ku6+cZVPz6e4zkpwyNnzjrH74Kkn+M8kVY2NPXuWA0Q/H3u+2irWucrr7R9k68LJXkmesQflPJPnB2NgRVXX3Nai9nr46YWypQdF7VNVNljKhqq6R5DFjw5clOWaeKZdMGJsUBFuo5s5JnraUOSOnJDl9bOyIqlpqR7RpvWvC2B9cBbpmrcRZAgAAAABgGyX0BQAAAAAAbO9eNWHshVW137QLVNWeSV484dLfzryrhb1owtgrqurgVaqXJOnubyZ589jw/kleuYplzx97f6NVrHVVNanz1O9X1Z1Xs2h3X5bk5RMu/XNV7bWatdfZdSaMnbPENSrJXy5xzguSXHts7K3dfe48939vwth9l1jzRUlusMQ5GYVdXzrh0htGXRFX2tuTfGVs7Ofm2cNGshJnCQAAAACAbZTQFwAAAAAAsF3r7lOSfHRseM8k76iqXRebPwowvC1bhzE+190fW5FNbu2tSU4eG9sryX9V1c1nWbCqdq+q51XVoxe59c+T/HRs7Neq6qVVVUusuUNVXW+R274w9n7vqrrLUups67r700neOza8c5J3V9VdZ1mzqnapqqdW1dMXufVvk3x/bOxGGc7ipEDLNLX3r6qXVNXhs8yfYv0jq+rXqmqnGeZWkt+ecGm8+940HlhVvz9l3Ycmee7YcGeBYGl3n5nkjLHhx1fVLaas+eQkvzPNvfN4bZJvjY3dMsO5XHJ3wKo6aL5ro5DZH0649MyqeuFSn01zav58Vb1hgevPqap7zrj2Xtm6Q+O5Sb47y3oAAAAAAGx7hL4AAAAAAACSpyS5ZGzsbkk+XlW3m2/SKDxxTJJ7jV36SZInrOgO5+juTvLIJBeMXTo4yfFV9X+ravfF1hmFru5dVUcnOTPJS7J1eG289peSPG/CpWcn+VBV3X6KutepqmcmOS3JUYvc/qkJY6+vqsOryt+6fuY3snXA5tpJPlZVL56mc10N7lpVf5UhLPSqJActNKe7L85wFi8fu3SXJJ+rqidX1c5T1N65qh5SVf+a5JsZztiSg0FTukmSf05yxiiseLdpQkFVde0kb0rygLFLX+ju8XDiQq7M8IxIkj+tqlfNF4IafUefk+Tfk+w4dvno7v7MIrXeMvZ+5yQfrKrD5ptQVXtX1d8leXWGjmRJctEidbYy6gT3qGx9Nu6T5ISqethia1TVblX16Kr6VJLXLFLvrUn+YcKlP0ry4aq62zT7rqoDquoZVfWZJMcl+cUFbr93ko9W1Smj0OxNpqxxmwxh4+uOXXrTKMAGAAAAAABb/WEAAAAAAABgu9PdX6uq38rQmWauQ5KcWFWfSPL+JN/OENg4IENw4Z5Jdpiw5PO6+6RV3PLmPT8yyXuSXG3Opd0ydON6QVV9PMknk5yVISB2jQxdzK6f5A5Jbp9kjxlqv6Kq7phkvCvYvTN8Xqck+VCS0zN0rrlahk5kt0hyx1HtqQJb3f3Jqjo1yc/NGb5Zko8l+XFVfSvJjydMvW93nz31D3UV193fr6qHZAip7Dbn0k5Jfi/Js0bBmY8n+U6S8zMEgPZKcp0MZ+EOSfaZofaxVfW0JEfnZyGhJNk/Q3DoRVV1bJLPJDk7yQ9He9wryQ1HdW+X4Xyupf0zhBWfneTcqjoxQwe9b2f4fC5NsmuSGyS5c5IjkuwytsaVSRbrhjbu8iQvSvIno/dPTfKYqnpHkhOTnJPhe3qLJEcmmdQN7xvZuvPXJC9N8uRseSYOSPKJqjomyQfzs25g+yc5LMn9M/zcm70vw+/skVPU20J3f6qqnpXklWOXbprk7VV1ZpIPJPlihmfFFRl+9htnOJOH5Wef+QemKPm0DOHX8e5b90pyr6r6SoZnx1eS/CBD18I9k1wrya0ynMWbZstzPI3bjF4vqarTk3wuyecznPfzM5yT3Ud7OzzJoRNqfD/Jny6xLgAAAAAA2zChLwAAAAAAgCTd/bqq2jFDSGVukGtTkl8YvRZdJslzuvuvVmGLWxfr/mBVHZ6hm88BY5d3zRDeuP8qlX9chpDCMydcu+3otVJ+K0PobjwodvUMAY1JdlrB+lcJ3X1SVd05ydszBOPm2jlDEGY8DLNStf+hqs7J0EFrvMvc3kkeNnptVPskud/oNa0rkzy9u4+bod6LMoSaHjp6v2eSx49ei/lmknt19w8Xu7G7z66qx2U4E+Mho2nOw0kZwp1/P8W+5tvDq6rqogxduMa7vh2Y5Imzrj2h1uVV9YAkfzvPujcfvVbTDUevI5cw57wkD+vuc1dnSwAAAAAAXBVN9S8oArL4PrkAACAASURBVAAAAAAAbA+6+x+S/GKS02aYfkaSh3f3y1d2Vwvr7v/OEB755wxda2ZeKskxST4xZd0ruvtZSR6Tn3UKmqXmOVPU+lCGAMV207lrVt39lQxdqf4mkzugLcVnMl13pc2135mhk9t/ZvjdzuryJO9K8qVlrLGQzR2lluN/kjywu189y+TuvjLJryR53RKnHpvk8O4+cwm13pnkUUkuWWKtd4xqXbTEeZP28C8ZgrOfXsYy35+y1mXd/aQMz6avL6NeMnRJfM0i15frY0nuOnqWAwAAAADA/xL6AgAAAAAAmKO7P5jkFkmekuS/s3A45MokJyR5VpKfG4Ur1lx3n93dRyU5OMkrknx5yqk/TPKeJM9IclB336u7T1hi7X/L0G3rKUmOyxDYWXBKklOS/HmSm3b30VPWeWeSG2QIr7w2yWczBC4uyfICRtuc7v5hdz8jyUFJ/jTJ5zKc1cX8OMmHk/xekpt196GjwN1Sap/W3Q9OcpsM3aFOn3LquRk61j0pyQHd/dDunnbuknT3PybZN8mvZghdnZrpztAVGYKRT0xy8+5+/zL3cXl3/58M3fiOXWQPJyR5fHffYymBrzm1/iPD7+Sfkly6wK1XJPlIhkDbw6fpJraEPRzf3XdN8qAMob5pwmRnJDk6yd27+9eXWO/fMnS8e0yS92V43i06LUPY8K+TPCDJ9br79xeocVSSG2XoRvj2JN+bcnuXJHlzkl/s7nt299emnAcAAAAAwHakuv0NDAAAAAAAYD5VtVeSuyS5dpL9klSG7lRnJzm+uxftVLXI+t9Lsv+coaO7+8nLWXO07n4ZOoDtm+RaSXbLEDT4YZJvJ/lqkjN6hf9YVFW7Zfi89h/V3lz3ggxdd77U3eetZE0WV1V7JrlThjN8rSS7J/lRhvPw3QzBp9O7e7kdsCbVPjBD4GifUe1dklycIfRzRpKvdvd3V7ruUow+n5tkCPDsl+Hcbsrw+Zyf4fP5Ynf/aIa1X5LkeXOGLuvuXSbct1+G786NRvUvyvC7+dxKBuCqapckh2YIa+6d4Zm2+fv52e6+YKVqLbKPHTN0hjsww7NizySXZfi5v5nkK939rRWst0OSQzKEIa+V4We/MsPv+LwMHR6/2t1L7Yg2Xue6GQK4B41q7JohTHdRhnDjl5Kc2t3L6cwIAAAAAMB2QOgLAAAAAABgHVXVBUn2mDP0su5+znrtB1hZ04a+AAAAAAAA5tq03hsAAAAAAADYXo067uw+NnzheuwFAAAAAAAA2DiEvgAAAAAAANbPLZPU2NhX12MjAAAAAAAAwMYh9AUAAAAAALB+HjVh7KQ13wUAAAAAAACwoey43hsAAAAAAADY3lTVrkmelOSZY5dO7u5vrMOWAAAAAAAAgA1E6AsAAAAAAGANVNXTkjwxyW5JbpDJf6f5mzXdFAAAAAAAALAhCX0BAAAAAACsjeskue0C19+f5PVrsxUAAAAAAABgI9u03hsAAAAAAAAgb0zysO7u9d4IAAAAAAAAsP50+gIAAAAAAFhblye5IMkZST6e5A3dffL6bgkAAAAAAADYSMo/GAkAAAAAAAAAAAAAAACwcWxa7w0AAAAAAAAAAAAAAAAA8DNCXwAAAAAAAAAAAAAAAAAbiNAXAAAAAAAAAAAAAAAAwAYi9AUAAAAAAAAAAAAAAACwgQh9AQAAAAAAAAAAAAAAAGwgQl8AAAAAAAAAAAAAAAAAG4jQFwAAAAAAAAAAAAAAAMAGIvQFAAAAAAAAAAAAAAAAsIEIfQEAAAAAAAAAAAAAAABsIEJfAAAAAAAAAAAAAAAAABuI0BcAAAAAAAAAAAAAAADABrLjem9ge1VVOyQ5OMktklw3yR5JLktyfpJvJDmhuy9Zvx0CAAAAAAAAAAAAAAAA66G6e733sN2oqgOTPDzJEUl+PsnuC9x+RZIPJXlld793iXUOSnL6bLscdHctZ/5KqKo9khw+Z+hbSX6yTtsBAAAAAAAAAAAAAABg+7JTkuvPeX9sd1+4FoWFvtZIVb0pyaNnnP6eJE/o7u9PWeugbBuhrwcnedd67wMAAAAAAAAAAAAAAACSPKS7370WhXZciyIkSW46z/h3kpyW5PsZfh83SnLbJJvm3POgJMdV1eHdfdaq7hIAAAAAAAAAAAAAAABYV0Jf6+OkJK9N8l/d/Y3xi1V1QJI/TPKkOcM3TfKWqvqFXnp7trclefasmwUAAAAAAAAAAAAAAADWjtDX2ukk703ywu4+YcEbu7+T5Der6pQkr5pz6e5JHpnk35dY++Lu/uYS52wE35r75p3vfGcOPvjg9doLAAAAAAAAAAAAAAAA25Gvf/3reehDHzp36Fvz3bvShL7Wzi8vNXjV3X9XVfdKcuSc4cdl6aGvq6qfzH1z8MEH55a3vOV67QUAAAAAAAAAAAAAAIDt208Wv2VlbFqrQtu7ZXTaetXY+3sucysAAAAAAAAAAAAAAADABib0tfGdNPb+6lW157rsBAAAAAAAAAAAAAAAAFh1Ql8b308njO205rsAAAAAAAAAAAAAAAAA1oTQ18Z38Nj7nyY5dz02AgAAAAAAAAAAAAAAAKy+Hdd7AyzqEWPvT+juK5e4xm2r6k1J7pjk2kl2SXJekrOTfDbJsUne3t2XLHezAAAAAAAAAAAAAAAAwPLo9LWBVdVuSX5jbPgdMyx1uySPTnKTJLsn2SnJ/kluM1r/DUnOrKo/qKqrzb5jAAAAAAAAAAAAAAAAYLl0+trYXpwhnLXZBUn+cZVq7Z3kT5I8sKoe0d3fXsnFq2q/JPsucdqNV3IPAAAAAAAAAAAAAAAAcFUg9LVBVdXDkjx9bPgF3X3eEpa5NMkxST6a5ItJvpfkkiR7JLlhknsmeWyG7l+b3SXJB6vqbt19wYzbn+SpSf5oBdcDAAAAAAAAAAAAAACAbZLQ1wZUVbdN8oax4Q8mefWUS1yS5BlJXt/dF81zz4lJ3lpVz0/y10l+fc61myd5bZKHT71pAAAAAAAAAAAAAAAAYEVsWu8NsKWqOjDJe5PsNmf4jCSP7e6eZo3uPqe7/2aBwNfcey/s7qOSvGzs0sOq6rAptw0AAAAAAAAAAAAAAACsEJ2+NpCq2i/Jh5IcMGf4rCT36e5zVrn8c5MckeR2c8aekuSTK7T+3yV5yxLn3DjJu1aoPgAAAAAAAAAAAAAAAFwlCH1tEFW1d5IPJ7npnOFzkxzR3aetdv3u7qr6f0n+bc7wfauqpu0wtsj6Zyc5eylzqmq5ZQEAAAAAAAAAAAAAAOAqZ9N6b4CkqvZI8sEkt54zfH6GDl9fWsOtfGDs/b5JrrOG9QEAAAAAAAAAAAAAAGC7J/S1zqrqmknen+QOc4YvSnL/7j55LffS3ecnuXBseN+13AMAAAAAAAAAAAAAAABs74S+1lFV7ZrkfUkOnTN8cZIHdPfx67Or/Hjs/dXXZRcAAAAAAAAAAAAAAACwnRL6WidVdfUk70ly9znDP0rywO7+1DrtqZJca2z43PXYCwAAAAAAAAAAAAAAAGyvhL7WQVXtkuTdSe4xZ/jSJA/u7uPWZVODQ5Jcbc77K5OctU57AQAAAAAAAAAAAAAAgO2S0Ncaq6qdkrw9yRFzhi9L8tDu/sj67Op/PWbs/YndffG67AQAAAAAAAAAAAAAAAC2U0Jfa6iqdkzyH0keMGf48iSP6O4PrM+uBlV1syRPHRt+13rsBQAAAAAAAAAAAAAAALZnQl9rpKp2SPKvSR4yZ/inSR7Z3e9ZwTp3qaqfX+KcmyZ5X5Krzxn+QZJXrtS+AAAAAAAAAAAAAAAAgOnsuN4b2I68NsmvjI09P8lJVXXQEtc6q7svnefazZO8rqo+leRNSd7d3d+adGNV7ZPkN5M8L8k1xy7/TndfuMR9AQAAAAAAAAAAAAAAAMsk9LV2fm3C2F+MXkt1zyQfW+Seu41er6yqc5J8Ocl5SS5JsnuSGya5VZKaMPf53f2GGfYFAAAAAAAAAAAAAAAALJPQ1/Zh3ySHT3HfOUme0N3vXuX9AAAAAAAAAAAAAAAAAPPYtN4bYMV9IskrkpyQ5CdT3N9JTknyW0luLPAFAAAAAAAAAAAAAAAA60unrzXS3bVGdb6e5HeTpKquluRmSW6Y5LpJdk+yc5JLkpyf5FtJPtvdF67F3gAAAAAAAAAAAAAAAIDFCX1tw7r78iRfGL0AAAAAAAAAAAAAAACAq4BN670BAAAAAAAAAAAAAAAAAH5G6AsAAAAAAAAAAAAAAABgAxH6AgAAAAAAAAAAAAAAANhAhL4AAAAAAAAAAAAAAAAANhChLwAAAAAAAAAAAAAAAIANROgLAAAAAAAAAAAAAAAAYAMR+gIAAAAAAAAAAAAAAADYQIS+AAAAAAAAAAAAAAAAADYQoS8AAAAAAAAAAAAAAACADUToCwAAAAAAAAAAAAAAAGADEfoCAAAAAAAAAAAAAAAA2ECEvgAAAAAAAAAAAAAAAAA2EKEvAAAAAAAAAAAAAAAAgA1E6AsAAAAAAAAAAAAAAABgAxH6AgAAAAAAAAAAAAAAANhAhL4AAAAAAAAAAAAAAAAANhChLwAAAAAAAAAAAAAAAIANROgLAAAAAAAAAAAAAAAAYAMR+gIAAAAAAAAAAAAAAADYQIS+AAAAAAAAAAAAAAAAADYQoS8AAAAAAAAAAAAAAACADUToCwAAAAAAAAAAAAAAAGADEfoCAAAAAAAAAAAAAAAA2ECEvgAAAAAAAAAAAAAAAAA2EKEvAAAAAAAAAAAAAAAAgA1E6AsAAAAAAAAAAAAAAABgAxH6AgCA/8/e/Yb8fhZ0HP9cZ4fV2paSbabGKrf2QDNhIhRu1miGQ5dOVoJYKImG1WiICS0SRBAEE0KnyJgg1IPMwrbln+mUPVBog5kogXPgGmNrLbXpatJxlw/OkX7n6znn/v3OfZ/791nn9Xp2Xff17+a+n775AgAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAECRg9t+AMB+Gm+5edtPADgtzPdcte0nAAAAAAAAAAAAAMCTli99AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUObjtBwAAAOsbb7l5208AOC3M91y17ScAAAAAAAAAAACnMV/6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAAChycNsPOF2NMc5IclGS5yR5ZpKnJPlekm8luTfJXXPOx/b4zp9I8qIkP5vk6Um+neSBJHfOOR/ay7sAAAAAAAAAAAAAAACAkyP62kdjjAuSvCrJFUkuS/KTJ1j+/THGbUneN+e8dZf3/kKSdyS5OsnZx7nr9iTvmnN+bjd3AQAAAAAAAAAAAAAAALtzYNsPOF2MMf4myX1J3pvkZTlx8JUkZyR5aZJbxhg3jzGefpL3vi7Jl5O8NscOvn5410uSfHaM8ZdHvkIGAAAAAAAAAAAAAAAAbIEvfe2fi48z/0CSe5L8ew7/PZ6d5Pk5Osh7eZI7xhi/Nud8aN0LxxivSXJTkrEyfSjJnUnuT3Jekhfk/wK0keS6JD+W5A/XvQcAAAAAAAAAAAAAAADYO6Kv7bg7h2OsT8w5713+cIzxrCR/keSNK9MXJ/noGOPFc8650wVjjEuSfDhHB18fT/LHc877V9adm+RtSa5fWffmMca/IbHX8gAAIABJREFUzDk/tMHvBAAAAAAAAAAAAAAAAOyBAzsvYY/MJLcmeeGc85I55/uOFXwlyZzzgTnnm/KjX9u6NMmr17zv3UnOXBn/XZJXrQZfR+76zpzzz5P8yWL/O48EYQAAAAAAAAAAAAAAAMA+En3tn9+ec758znnXuhvmnDck+dhi+nd32jfGuDzJb6xMPZLkD+acT5xg218l+fzK+Lwk1633UgAAAAAAAAAAAAAAAGCviL72yZzzGye59f2L8eVr7Pm9xfjGOed/nmjDnHPm8NfBTnQOAAAAAAAAAAAAAAAAcIqJvvrdvRifNcZ46vEWjzHOSHLVYvrDa971qSQProwvHGP88pp7AQAAAAAAAAAAAAAAgD0g+up36BhzZ55g/QuTPG1l/OCc82vrXDTnfCLJHYvpK9fZCwAAAAAAAAAAAAAAAOwN0Ve/ixbjQ0keOcH6X1qMv7jhfV9YjJ+74X4AAAAAAAAAAAAAAABgF0Rf/a5ZjO868kWu43nOYvz1De+7d4fzAAAAAAAAAAAAAAAAgFNI9FVsjHFOkt9fTP/DDtuWXwb7tw2vXa7/xQ33AwAAAAAAAAAAAAAAALsg+ur2riQ/szL+dpIbd9jz1MX44Q3vXK4/d4zh/wQAAAAAAAAAAAAAAAD2ycFtP4BjG2NcneSPFtPXzzm/ucPWcxbj/9nw6uX6keTsJN/Z8JyjDxnj/CTnbbjtwt3cCQAAAAAAAAAAAAAAAE9Goq9CY4znJ/nIYvrTST6wxvZl9PX4htcfKxI7J7uMvpK8Ocnbd3kGAAAAAAAAAAAAAAAA/L93YNsP4GhjjAuS3Jqj4637krx2zjlP4shN95zMHQAAAAAAAAAAAAAAAMAeEX0VGWOcn+S2JM9amX4oyUvmnP+x5jHfXYzP2vAZx1q/PBMAAAAAAAAAAAAAAAA4RQ5u+wEcNsb4qSSfSXLxyvQjSa6Yc96zwVGnIvp6bMMzjuWGJB/dcM+FST6+B3cDAAAAAAAAAAAAAADAk4boq8AY4ylJPp3keSvT38rhL3x9dcPj/msxPm/D/ecvxo/OOZ/Y8IwfMed8OMnDm+wZY+z2WgAAAAAAAAAAAAAAAHjSObDtB5zuxhjnJvlkkhesTD+a5KVzzi+dxJHLr4L93Ib7l+s3+coYAAAAAAAAAAAAAAAAsEuiry0aY5yd5J+S/MrK9HeTXDnn/OeTPPZfF+OLNtz/7B3OAwAAAAAAAAAAAAAAAE4h0deWjDHOSnJLkktXpv87ycvmnF/YxdFfWYx/dcP9L9rhPAAAAAAAAAAAAAAAAOAUEn1twRjjx5P8Y5JfX5l+PMlvzTnv2OXxdyb55sr4GWOMi9d814Ekly2mP7HL9wAAAAAAAAAAAAAAAAAbEH3tszHGmUn+PskVK9PfS/LKOednd3v+nPNQkpsX069fc/tvJnnmyvjeOeeXd/smAAAAAAAAAAAAAAAAYH2ir300xjiY5G+TXLky/b9JrplzfmoPr/rIYvyGMcbT1tj3pzucAwAAAAAAAAAAAAAAAJxioq99MsY4I8lfJ3nFyvShJK+ec96yl3fNOW9PcvvK1E8n+eAY47h/7zHGtUkuX5l6JMl79/JdAAAAAAAAAAAAAAAAwM4ObvsBp5GbkvzOYu7Pktw9xvj5Dc96aM75+A5r3prki0nOPDK+JsnHxhjXzjnv/+GiMca5OfyFr+sX+6+fc/6AvXtXsauOwzD8WyHYeCgsrCw8XIAiplELRbCysLQQC69AsPIWLG0UGxHMRQiCtkaxEVuJGEypIIGI6N8iAxNDRpwZ9t4v5nlgs2Dtdfhu4GX9dspdAAAAAAAAAAAAAAAAwDmJvvbnzbuce+/od1ovzcyX/3bBWuvbbdvemplPbzv92sy8um3blZn5aW59AezSzDx0x+0frLU+OsMuAAAAAAAAAAAAAAAA4JxEX/9ja63L27bdNzPvz8wDR6cvzsxzJ91ydO07e5gHAAAAAAAAAAAAAAAA3MWFQw9gt9ZaH8/MUzNzeWZunHDZXzPz+cy8vNZ6e6315772AQAAAAAAAAAAAAAAAP/kS197stbaDvjuH2bmjW3b7p+ZF2bm0Zl5ZGZ+nZmfZ+bKWuv6ofYBAAAAAAAAAAAAAAAAx0Rf95C11o2Z+ezQOwAAAAAAAAAAAAAAAICTXTj0AAAAAAAAAAAAAAAAAACOib4AAAAAAAAAAAAAAAAAQkRfAAAAAAAAAAAAAAAAACGiLwAAAAAAAAAAAAAAAIAQ0RcAAAAAAAAAAAAAAABAiOgLAAAAAAAAAAAAAAAAIET0BQAAAAAAAAAAAAAAABAi+gIAAAAAAAAAAAAAAAAIEX0BAAAAAAAAAAAAAAAAhIi+AAAAAAAAAAAAAAAAAEJEXwAAAAAAAAAAAAAAAAAhoi8AAAAAAAAAAAAAAACAENEXAAAAAAAAAAAAAAAAQIjoCwAAAAAAAAAAAAAAACBE9AUAAAAAAAAAAAAAAAAQIvoCAAAAAAAAAAAAAAAACBF9AQAAAAAAAAAAAAAAAISIvgAAAAAAAAAAAAAAAABCRF8AAAAAAAAAAAAAAAAAIaIvAAAAAAAAAAAAAAAAgBDRFwAAAAAAAAAAAAAAAECI6AsAAAAAAAAAAAAAAAAgRPQFAAAAAAAAAAAAAAAAECL6AgAAAAAAAAAAAAAAAAgRfQEAAAAAAAAAAAAAAACEiL4AAAAAAAAAAAAAAAAAQkRfAAAAAAAAAAAAAAAAACGiLwAAAAAAAAAAAAAAAIAQ0RcAAAAAAAAAAAAAAABAiOgLAAAAAAAAAAAAAAAAIET0BQAAAAAAAAAAAAAAABAi+gIAAAAAAAAAAAAAAAAIEX0BAAAAAAAAAAAAAAAAhIi+AAAAAAAAAAAAAAAAAEJEXwAAAAAAAAAAAAAAAAAhoi8AAAAAAAAAAAAAAACAENEXAAAAAAAAAAAAAAAAQIjoCwAAAAAAAAAAAAAAACBE9AUAAAAAAAAAAAAAAAAQIvoCAAAAAAAAAAAAAAAACBF9AQAAAAAAAAAAAAAAAISIvgAAAAAAAAAAAAAAAABCRF8AAAAAAAAAAAAAAAAAIaIvAAAAAAAAAAAAAAAAgBDRFwAAAAAAAAAAAAAAAECI6AsAAAAAAAAAAAAAAAAgRPQFAAAAAAAAAAAAAAAAECL6AgAAAAAAAAAAAAAAAAgRfQEAAAAAAAAAAAAAAACEiL4AAAAAAAAAAAAAAAAAQkRfAAAAAAAAAAAAAAAAACGiLwAAAAAAAAAAAAAAAIAQ0RcAAAAAAAAAAAAAAABAiOgLAAAAAAAAAAAAAAAAIET0BQAAAAAAAAAAAAAAABAi+gIAAAAAAAAAAAAAAAAIEX0BAAAAAAAAAAAAAAAAhIi+AAAAAAAAAAAAAAAAAEJEXwAAAAAAAAAAAAAAAAAhoi8AAAAAAAAAAAAAAACAENEXAAAAAAAAAAAAAAAAQIjoCwAAAAAAAAAAAAAAACBE9AUAAAAAAAAAAAAAAAAQIvoCAAAAAAAAAAAAAAAACBF9AQAAAAAAAAAAAAAAAISIvgAAAAAAAAAAAAAAAABCRF8AAAAAAAAAAAAAAAAAIaIvAAAAAAAAAAAAAAAAgBDRFwAAAAAAAAAAAAAAAECI6AsAAAAAAAAAAAAAAAAgRPQFAAAAAAAAAAAAAAAAECL6AgAAAAAAAAAAAAAAAAgRfQEAAAAAAAAAAAAAAACEiL4AAAAAAAAAAAAAAAAAQkRfAAAAAAAAAAAAAAAAACGiLwAAAAAAAAAAAAAAAIAQ0RcAAAAAAAAAAAAAAABAiOgLAAAAAAAAAAAAAAAAIET0BQAAAAAAAAAAAAAAABAi+gIAAAAAAAAAAAAAAAAIEX0BAAAAAAAAAAAAAAAAhIi+AAAAAAAAAAAAAAAAAEJEXwAAAAAAAAAAAAAAAAAhoi8AAAAAAAAAAAAAAACAENEXAAAAAAAAAAAAAAAAQIjoCwAAAAAAAAAAAAAAACBE9AUAAAAAAAAAAAAAAAAQIvoCAAAAAAAAAAAAAAAACBF9AQAAAAAAAAAAAAAAAISIvgAAAAAAAAAAAAAAAABCRF8AAAAAAAAAAAAAAAAAIaIvAAAAAAAAAAAAAAAAgBDRFwAAAAAAAAAAAAAAAECI6AsAAAAAAAAAAAAAAAAgRPQFAAAAAAAAAAAAAAAAECL6AgAAAAAAAAAAAAAAAAgRfQEAAAAAAAAAAAAAAACEiL4AAAAAAAAAAAAAAAAAQkRfAAAAAAAAAAAAAAAAACGiLwAAAAAAAAAAAAAAAIAQ0RcAAAAAAAAAAAAAAABAiOgLAAAAAAAAAAAAAAAAIET0BQAAAAAAAAAAAAAAABAi+gIAAAAAAAAAAAAAAAAIEX0BAAAAAAAAAAAAAAAAhIi+AAAAAAAAAAAAAAAAAEJEXwAAAAAAAAAAAAAAAAAhoi8AAAAAAAAAAAAAAACAENEXAAAAAAAAAAAAAAAAQIjoCwAAAAAAAAAAAAAAACBE9AUAAAAAAAAAAAAAAAAQIvoCAAAAAAAAAAAAAAAACBF9AQAAAAAAAAAAAAAAAISIvgAAAAAAAAAAAAAAAABCRF8AAAAAAAAAAAAAAAAAIaIvAAAAAAAAAAAAAAAAgBDRFwAAAAAAAAAAAAAAAECI6AsAAAAAAAAAAAAAAAAgRPQFAAAAAAAAAAAAAAAAECL6AgAAAAAAAAAAAAAAAAgRfQEAAAAAAAAAAAAAAACEiL4AAAAAAAAAAAAAAAAAQkRfAAAAAAAAAAAAAAAAACGiLwAAAAAAAAAAAAAAAIAQ0RcAAAAAAAAAAAAAAABAiOgLAAAAAAAAAAAAAAAAIET0BQAAAAAAAAAAAAAAABAi+gIAAAAAAAAAAAAAAAAIEX0BAAAAAAAAAAAAAAAAhIi+AAAAAAAAAAAAAAAAAEJEXwAAAAAAAAAAAAAAAAAhoi8AAAAAAAAAAAAAAACAENEXAAAAAAAAAAAAAAAAQIjoCwAAAAAAAAAAAAAAACBE9AUAAAAAAAAAAAAAAAAQIvoCAAAAAAAAAAAAAAAACBF9AQAAAAAAAAAAAAAAAISIvgAAAAAAAAAAAAAAAABCRF8AAAAAAAAAAAAAAAAAIaIvAAAAAAAAAAAAAAAAgBDRFwAAAAAAAAAAAAAAAECI6AsAAAAAAAAAAAAAAAAgRPQFAAAAAAAAAAAAAAAAECL6AgAAAAAAAAAAAAAAAAgRfQEAAAAAAAAAAAAAAACEiL4AAAAAAAAAAAAAAAAAQkRfAAAAAAAAAAAAAAAAACGiLwAAAAAAAAAAAAAAAIAQ0RcAAAAAAAAAAAAAAABAiOgLAAAAAAAAAAAAAAAAIET0BQAAAAAAAAAAAAAAABAi+gIAAAAAAAAAAAAAAAAIEX0BAAAAAAAAAAAAAAAAhIi+AAAAAAAAAAAAAAAAAEJEXwAAAAAAAAAAAAAAAAAhoi8AAAAAAAAAAAAAAACAENEXAAAAAAAAAAAAAAAAQIjoCwAAAAAAAAAAAAAAACBE9AUAAAAAAAAAAAAAAAAQIvoCAAAAAAAAAAAAAAAACBF9AQAAAAAAAAAAAAAAAISIvgAAAAAAAAAAAAAAAABCRF8AAAAAAAAAAAAAAAAAIaIvAAAAAAAAAAAAAAAAgBDRFwAAAAAAAAAAAAAAAECI6AsAAAAAAAAAAAAAAAAgRPQFAAAAAAAAAAAAAAAAECL6AgAAAAAAAAAAAAAAAAgRfQEAAAAAAAAAAAAAAACEiL4AAAAAAAAAAAAAAAAAQkRfAAAAAAAAAAAAAAAAACGiLwAAAAAAAAAAAAAAAIAQ0RcAAAAAAAAAAAAAAABAiOgLAAAAAAAAAAAAAAAAIET0BQAAAAAAAAAAAAAAABAi+gIAAAAAAAAAAAAAAAAIEX0BAAAAAAAAAAAAAAAAhIi+AAAAAAAAAAAAAAAAAEJEXwAAAAAAAAAAAAAAAAAhoi8AAAAAAAAAAAAAAACAENEXAAAAAAAAAAAAAAAAQIjoCwAAAAAAAAAAAAAAACBE9AUAAAAAAAAAAAAAAAAQIvoCAAAAAAAAAAAAAAAACBF9AQAAAAAAAAAAAAAAAISIvgAAAAAAAAAAAAAAAABCRF8AAAAAAAAAAAAAAAAAIaIvAAAAAAAAAAAAAAAAgBDRFwAAAAAAAAAAAAAAAECI6AsAAAAAAAAAAAAAAAAgRPQFAAAAAAAAAAAAAAAAECL6AgAAAAAAAAAAAAAAAAgRfQEAAAAAAAAAAAAAAACEiL4AAAAAAAAAAAAAAAAAQkRfAAAAAAAAAAAAAAAAACGiLwAAAAAAAAAAAAAAAIAQ0RcAAAAAAAAAAAAAAABAiOgLAAAAAAAAAAAAAAAAIET0BQAAAAAAAAAAAAAAABAi+gIAAAAAAAAAAAAAAAAIEX0BAAAAAAAAAAAAAAAAhIi+AAAAAAAAAAAAAAAAAEJEXwAAAAAAAAAAAAAAAAAhoi8AAAAAAAAAAAAAAACAENEXAAAAAAAAAAAAAAAAQIjoCwAAAAAAAAAAAAAAACBE9AUAAAAAAAAAAAAAAAAQIvoCAAAAAAAAAAAAAAAACBF9AQAAAAAAAAAAAAAAAISIvgAAAAAAAAAAAAAAAABCRF8AAAAAAAAAAAAAAAAAIaIvAAAAAAAAAAAAAAAAgBDRFwAAAAAAAAAAAAAAAECI6AsAAAAAAAAAAAAAAAAgRPQFAAAAAAAAAAAAAAAAECL6AgAAAAAAAAAAAAAAAAgRfQEAAAAAAAAAAAAAAACEiL4AAAAAAAAAAAAAAAAAQkRfAAAAAAAAAAAAAAAAACGiLwAAAAAAAAAAAAAAAIAQ0RcAAAAAAAAAAAAAAABAiOgLAAAAAAAAAAAAAAAAIET0BQAAAAAAAAAAAAAAABAi+gIAAAAAAAAAAAAAAAAIEX0BAAAAAAAAAAAAAAAAhIi+AAAAAAAAAAAAAAAAAEJEXwAAAAAAAAAAAAAAAAAhoi8AAAAAAAAAAAAAAACAENEXAAAAAAAAAAAAAAAAQIjoCwAAAAAAAAAAAAAAACBE9AUAAAAAAAAAAAAAAAAQIvoCAAAAAAAAAAAAAAAACBF9AQAAAAAAAAAAAAAAAISIvgAAAAAAAAAAAAAAAABCRF8AAAAAAAAAAAAAAAAAIaIvAAAAAAAAAAAAAAAAgBDRFwAAAAAAAAAAAAAAAECI6AsAAAAAAAAAAAAAAAAgRPQFAAAAAAAAAAAAAAAAECL6AgAAAAAAAAAAAAAAAAgRfQEAAAAAAAAAAAAAAACEiL4AAAAAAAAAAAAAAAAAQkRfAAAAAAAAAAAAAAAAACGiLwAAAAAAAAAAAAAAAIAQ0RcAAAAAAAAAAAAAAABAiOgLAAAAAAAAAAAAAAAAIET0BQAAAAAAAAAAAAAAABAi+gIAAAAAAAAAAAAAAAAIEX0BAAAAAAAAAAAAAAAAhIi+AAAAAAAAAAAAAAAAAEJEXwAAAAAAAAAAAAAAAAAhoi8AAAAAAAAAAAAAAACAENEXAAAAAAAAAAAAAAAAQIjoCwAAAAAAAAAAAAAAACBE9AUAAAAAAAAAAAAAAAAQIvoCAAAAAAAAAAAAAAAACBF9AQAAAAAAAAAAAAAAAISIvgAAAAAAAAAAAAAAAABCRF8AAAAAAAAAAAAAAAAAIaIvAAAAAAAAAAAAAAAAgBDRFwAAAAAAAAAAAAAAAECI6AsAAAAAAAAAAAAAAAAgRPQFAAAAAAAAAAAAAAAAECL6AgAAAAAAAAAAAAAAAAgRfQEAAAAAAAAAAAAAAACEiL4AAAAAAAAAAAAAAAAAQkRfAAAAAAAAAAAAAAAAACGiLwAAAAAAAAAAAAAAAIAQ0RcAAAAAAAAAAAAAAABAiOgLAAAAAAAAAAAAAAAAIET0BQAAAAAAAAAAAAAAABAi+gIAAAAAAAAAAAAAAAAIEX0BAAAAAAAAAAAAAAAAhIi+AAAAAAAAAAAAAAAAAEJEXwAAAAAAAAAAAAAAAAAhoi8AAAAAAAAAAAAAAACAENEXAAAAAAAAAAAAAAAAQIjoCwAAAAAAAAAAAAAAACBE9AUAAAAAAAAAAAAAAAAQIvoCAAAAAAAAAAAAAAAACBF9AQAAAAAAAAAAAAAAAISIvgAAAAAAAAAAAAAAAABCRF8AAAAAAAAAAAAAAAAAIaIvAAAAAAAAAAAAAAAAgJCLhx5wr9q27YmZuTQzzx4dn5mZB2+75Me11mNnfPY657zH11pXz/kMAAAAAAAAAAAAAAAA4AxEX3u0bduLM/Pu3Aq9Hj7sGgAAAAAAAAAAAAAAAKBI9LVfT8/MK4ceAQAAAAAAAAAAAAAAAHSJvhp+n5lrM/PkDp791cy8fsp7ru1gBwAAAAAAAAAAAAAAAPAfiL7274+Z+X5mvpmZr4+O383M8zPzxQ7ed3OtdXUHzwUAAAAAAAAAAAAAAAB2QPS1X5/MzIdrrZt3/rFt2wHmAAAAAAAAAAAAAAAAADWirz1aa/1y6A0AAAAAAAAAAAAAAABA24VDDwAAAAAAAAAAAAAAAADgmOiLv9m783BN6/I+4N97OMaNAdxYVAQcIREUrEtMqrZutam4RKI1xmoSjWKNWpOYmCrWGGON1lprA00labRpbCwuBTUusca9xriQumJkUREEBnAEoyJw94/znJ7XcQbOOe975n2fmc/nup7r+T3b/X7PwL/f6wcAAAAAAAAAAAAAAAAsEKUvAAAAAAAAAAAAAAAAgAWyNO8AbLo7VdWfJPnJJLdPcsskVybZnuQzST6U5M3dfcX8IgIAAAAAAAAAAAAAAAArlL72fkcNx6SDh+PYJE9M8uqqOj3Ji7r76s0IUVUHJ7ndOj/bthlZAAAAAAAAAAAAAAAAYJEpfZEs7/713CQPr6qTuvvzm/Abz0zy4k2YCwAAAAAAAAAAAAAAAHsVpa+917VJPpLkfUn+b5ILk1yVZP8kd0rygCRPzvKOXyuOSfK+qvqp7v7qno0LAAAAAAAAAAAAAAAAJEpfe6tTkpze3Zfu5vnZSc6qqhdlefet5yep4dmhSd5aVffu7t78qAAAAAAAAAAAAAAAAMAkpa+9UHe/bI3vfS/Jv66qC5P8wcSjeyZ5QpI3zjDWaUnOWOc325KcOcMMAAAAAAAAAAAAAAAAsPCUvkh3n1pVD0vyqInbz8wMS1/DrmO723lsl6rqxl8CAAAAAAAAAAAAAACAvcyWeQdgYbx8p+ufqqqD5pIEAAAAAAAAAAAAAAAA9mFKX6z4RJIrJ673S3LsnLIAAAAAAAAAAAAAAADAPkvpiyRJd1+f5Gs73b7dPLIAAAAAAAAAAAAAAADAvkzpi0nf3en65nNJAQAAAAAAAAAAAAAAAPswpS8m3Xan6+1zSQEAAAAAAAAAAAAAAAD7MKUvkiRVddskd97p9kXzyAIAAAAAAAAAAAAAAAD7MqUvVvx8fvj/h0uSfHFOWQAAAAAAAAAAAAAAAGCfpfRFquqQJKfsdPvt3d3zyAMAAAAAAAAAAAAAAAD7MqWvvUhV/XhVPXKd3xya5B1JDpm4fU2Sl88yGwAAAAAAAAAAAAAAALA2S/MOsK+pqjtm1//uh+50vVRVR+5mzNXdvX0X9w9LclZVfTbJf0/ytu7+u93k2JrkF7O8w9chOz3+ve4+bze/DQAAAAAAAAAAAAAAAGwipa897yNJjljDe3dIcv5unr0hyS/dwLd3T/KKJK+oqh1JPpdke5Krkuyf5PAkJ2TX//1f190vXUM+AAAAAAAAAAAAAAAAYBMofe39DkxyvzW8950kv9bdp29yHgAAAAAAAAAAAAAAAOAGbJl3AGbqi0n+bZKPJvnuGr/5cpIXJDlS4QsAAAAAAAAAAAAAAADmz05fe1h3H7mJsy9J8sIkqaotSY5Osi3JHZIclORmWS6DXZnk4iR/092XbVYeAAAAAAAAAAAAAAAAYP2UvvZS3X19knOGAwAAAAAAAAAAAAAAABiJLfMOAAAAAAAAAAAAAAAAAMAqpS8AAAAAAAAAAAAAAACABaL0BQAAAAAAAAAAAAAAALBAlL4AAAAAAAAAAAAAAAAAFojSFwAAAAAAAAAAAAAAAMACUfoCAAAAAAAAAAAAAAAAWCBKXwAAAAAAAAAAAAAAAAALROkLAAAAAAAAAAAAAAAAYIEofQEAAAAAAAAAAAAAAAAsEKUvAAAAAAAAAAAAAAAAgAWi9AUAAAAAAAAAAAAAAACwQJS+AAAAAAAAAAAAAAAAABaI0hcAAAAAAAAAAAAAAADAAlH6AgAAAAAAAAAAAAAAAFggSl8AAAAAAAAAAAAAAAAAC0TpCwAAAAAAAAAAAAAAAGCBKH0BAAAAAAAAAAAAAAAALBClLwAAAAAAAAAAAAAAAIAFovQFAAAAAAAAAAAAAAAAsECUvgAAAAAAAAAAAAAAAAAWiNIXAAAAAAAAAAAAAAAAwAJR+gIAAAAAAAAAAAAAAABYIEpfAAAAAAAAAAAAAAAAAAtE6QsAAAAAAAAAAAAAAABggSh9AQAAAAAAAAAAAAAAACwQpS8AAAAAAAAAAAAAAACABaL0BQAAAAAAAAAAAAAAALBAlL4AAAAAAAAAAAAAAAAAFojSFwAAAAAAAAAAAAAAAMACUfoCAAAAAAAAAAAAAAAAWCCjKX1V1Yuq6rB55wAAAAAAAAAAAAAAAADYTKMpfSV5SZILquqMqnrIvMMAAAAAAAAAAAAAAAAAbIYxlb6SZCnJSUneW1XnVNWvVdWt5h0KAAAAAAAAAAAAAAAAYFbGVvpaUUmOTvKqJN+oqtdX1U/PORMAAAAAAAAAAAAAAADA1MZU+npBkguyXPhKkh7WN0vypCQfqaqzq+rkqtp/PhEBAAAAAAAAAAAAAAAApjOa0ld3/353b0vy8CRnJbl+5dFwriTHJzkty7t/nVZVx+/5pAAAAAAAAAAAAAB1i8/8AAAgAElEQVQAAAAbN5rS14rufnd3/2ySI5L8bpKL8qO7f21NcnKSz1TVx6rqX1TVj80lMAAAAAAAAAAAAAAAAMA6jK70taK7L+ru38ly+eukJO+dfDycK8l9k7whyUVV9e+q6ug9GhQAAAAAAAAAAAAAAABgHUZb+lrR3dd39//q7p9Jsi3JK5NcltXdvzKsb53k15N8qar+sqpOqqr99nxiAAAAAAAAAAAAAAAAgN0bfelrUndf0N2/neTwJL+Q5INZLX/1sK4kD05yRpKvVdVLquqO88gLAAAAAAAAAAAAAAAAsLO9qvS1ort/0N1/3t0PSnLXJK9N8q2Vx1ktfx2W5JQk51fV26rqwXMJDAAAAAAAAAAAAAAAADDYK0tfk7r7nO5+bpKHJ/nayu2JI0n2S/KoJH9ZVZ+pqhP3fFIAAAAAAAAAAAAAAACAvbz0VVU3raonVdVHk3wsyeE7vzIcPXF9QpKzquotVXXAnksLAAAAAAAAAAAAAAAAkCzNO8BmqKpjkjwjyZOT3GrldpbLXTVcX5zkdUl2JHlakrsO91fe+dkkt6+q+3f3dXsoOgAAAAAAAAAAAAAAALCP22t2+qqqpap6fFW9P8kXk/yrJLfOaskrw/pDSR6f5Ijufkl3v6a7j0vyoCTvyg+Xw34yydP34J8BAAAAAAAAAAAAAAAA7ONGX/qqqqOq6uVJLkzyxiT/OKtFrx7O30nyn5Pcrbsf2N1ndPe1k3O6+4PdfWKSRyb5+4lvn7DZfwMAAAAAAAAAAAAAAADAiqV5B9iIqtqS5FFJnpHkoVkuee1c9KokX8hy2esN3X31WmZ39zur6pVJXjLcutuscgMAAAAAAAAAAAAAAADcmFGVvqrqjkmeluSpSQ5buZ3lolcP6+uSnJnk1O7+wAZ/6j1ZLX0dsNG8AAAAAAAAAAAAAAAAAOs1mtJXVZ2Z5OFJtmTXu3p9M8npSf5Ld1805c9dMjG/buhFAAAAAAAAAAAAAAAAgFkaTekrySOzWvJaKWNVkg8nOTXJW7v72hn/5souYgAAAAAAAAAAAAAAAAB7xJhKXysqydVJ/izJqd39uU34jcuTPHsT5gIAAAAAAAAAAAAAAADcoLGVvs5JclqSN3T3VZv1I919dZZ3DwMAAAAAAAAAAAAAAADYo8ZU+npod79/3iEAAAAAAAAAAAAAAAAANtOWeQdYK4UvAAAAAAAAAAAAAAAAYF8wmtIXAAAAAAAAAAAAAAAAwL5A6QsAAAAAAAAAAAAAAABggSzNO8BaVdVPJHnlcNlJntbdl65zxiFJXpekhlvP7e7zZpcSAAAAAAAAAAAAAAAAYDqjKX0leXqSR2S58PWB9Ra+kqS7L6mq/ZM8aJjzuSQvmGlKAAAAAAAAAAAAAAAAgClsmXeAdXjMxPpPppjz+uFcSR47xRwAAAAAAAAAAAAAAACAmRtF6auqjkxyxHB5fZKzphh31jAjSbZV1R2mmAUAAAAAAAAAAAAAAAAwU6MofSW523DuJH/X3d/e6KDu3pHkyxO3jp8mGAAAAAAAAAAAAAAAAMAsjaX0deTE+iszmDc548jdvQQAAAAAAAAAAAAAAACwp42l9LV1Yr1jBvMmZxwwg3kAAAAAAAAAAAAAAAAAMzGW0tf3J9b7z2De5IzrZzAPAAAAAAAAAAAAAAAAYCbGUvraPrE+fAbzJmdcPoN5AAAAAAAAAAAAAAAAADMxltLX14dzJTmhqg7a6KDh23tM3LpommAAAAAAAAAAAAAAAAAAszSW0tfHk1yTpLOc+RlTzDo5q3/3dUk+Ol00AAAAAAAAAAAAAAAAgNkZRemru7+b5XJWDcfzq+qY9c4ZvvntLJfHOsnHu/uqWWYFAAAAAAAAAAAAAAAAmMYoSl+DVw/nTnJgkvdU1Qlr/biq7p7kXUkOyHJxLEn+w0wTAgAAAAAAAAAAAAAAAExpNKWv7n5nko9nubDVSY5I8vGq+o9Vdezuvququ1bVa5L8dZIjV8Yl+UR3v21zUwMAAAAAAAAAAAAAAACsz9K8A6zTP0/yySS3y3Jx66ZJnpXkWVW1PckXklw5PLt1krsO7yarZbFK8s0kj9ujyQEAAAAAAAAAAAAAAADWYFSlr+6+sKpOTHJmkttntcSVLJe7/tFOn9Tk58P115M8ursv3OS4AAAAAAAAAAAAAAAAAOu2Zd4B1qu7P5XknknekdVSVw/Hj7y+0/23JrlXd5+9qSEBAAAAAAAAAAAAAAAANmh0pa8k6e5Lu/tRWS5/nZ7k/CwXwHZ1nJvkD5Oc0N2P7e7t80kNAAAAAAAAAAAAAAAAcOOW5h1gGsOOXScnSVUdnOSwJLcZHm9PcnF3XzaneAAAAAAAAAAAAAAAAADrNurS16TuvjTJpfPOAQAAAAAAAAAAAAAAADCNLfMOAAAAAAAAAAAAAAAAAMAqpS8AAAAAAAAAAAAAAACABaL0BQAAAAAAAAAAAAAAALBAlL4AAAAAAAAAAAAAAAAAFsjSvANsRFUtJXlMkgcn+QdJDk5yYJKbrHNUd/eBM44HAAAAAAAAAAAAAAAAsGGjK31V1ROT/Pskt1u5NcW4nj4RAAAAAAAAAAAAAAAAwOyMqvRVVS9P8ltZLXp1Nl7cmqYsBgAAAAAAAAAAAAAAALApRlP6qqqfS/L84XKl6FXD+sIkVyb5wRyiAQAAAAAAAAAAAAAAAMzMaEpfSV42nDvLZa8vJPndJO/s7u/MLRUAAAAAAAAAAAAAAADADI2i9FVVd01yTFZ3+PrfSU7s7mvmlwoAAAAAAAAAAAAAAABg9rbMO8Aa3Wc4V5LrkjxF4QsAAAAAAAAAAAAAAADYG42l9HW74dxJPtndX59nGAAAAAAAAAAAAAAAAIDNMpbS1/UT6wvmFQIAAAAAAAAAAAAAAABgs42l9HXhxPomc0sBAAAAAAAAAAAAAAAAsMnGUvr67MT6qLmlAAAAAAAAAAAAAAAAANhkoyh9dfeXknwySSU5oaoOnnMkAAAAAAAAAAAAAAAAgE0xitLX4BXDeUuSF8wzCAAAAAAAAAAAAAAAAMBmGU3pq7vfkuS/Znm3r2dV1RPnHAkAAAAAAAAAAAAAAABg5kZT+hr8yySvz3Lu/1ZVp1XVHecbCQAAAAAAAAAAAAAAAGB2luYdYK2q6rXD8uok25PcNsnJSZ5eVZ9N8oUkVya5fj1zu/s5s8wJAAAAAAAAAAAAAAAAMI3RlL6SPCtJT1x3khqOE5Icv855NcxQ+gIAAAAAAAAAAAAAAAAWxphKX7vSN/4KAAAAAAAAAAAAAAAAwHiMrfRV8w4AAAAAAAAAAAAAAAAAsJnGVPq6+7wDAAAAAAAAAAAAAAAAAGy20ZS+uvvz884AAAAAAAAAAAAAAAAAsNm2zDsAAAAAAAAAAAAAAAAAAKuUvgAAAAAAAAAAAAAAAAAWiNIXAAAAAAAAAAAAAAAAwAJR+gIAAAAAAAAAAAAAAABYIEvzDjCNqjowyUOSPCDJtiS3TrI1Sbr7hDlGAwAAAAAAAAAAAAAAANiQUZa+quo2SV6U5ClJbrnz4yS9m++elOTU4fKKJNu6+7rNygkAAAAAAAAAAAAAAACwXlvmHWC9qur+Sc5O8uwk+2e55LVWZyS5Zvju8CQPn3lAAAAAAAAAAAAAAAAAgCmMqvRVVfdJ8p4kt9/5UZLv3dj33f29JG+auPWY2aUDAAAAAAAAAAAAAAAAmN5oSl9VtTXJWUluvnIryQeTPDrJAUmOy9p2/TpzYv3gWWYEAAAAAAAAAAAAAAAAmNZoSl9JnpfkkCQ9XL+4ux/U3W/v7qsn7t+YDye5PssFscOrauddwwAAAAAAAAAAAAAAAADmZkylr6dntdj1p9390o0M6e7vJjl34tZPTBsMAAAAAAAAAAAAAAAAYFZGUfqqqntkeZevyvIuXS+ccuT5E+ujppwFAAAAAAAAAAAAAAAAMDOjKH0lOW44d5K/7e5vTDlvx8T6gClnAQAAAAAAAAAAAAAAAMzMWEpfB0+sz5vBvGsm1jefwTwAAAAAAAAAAAAAAACAmRhL6esmE+trZzDvoIn1jt2+BQAAAAAAAAAAAAAAALCHjaX0ddnE+uDdvrV2x0ysr5jBPAAAAAAAAAAAAAAAAICZGEvp6+LhXEnuOc2gqjo0ydETt740zTwAAAAAAAAAAAAAAACAWRpL6etjSa4d1gdW1YlTzDp5Yr0jydlTzAIAAAAAAAAAAAAAAACYqVGUvrr720n+z8Stl1XVTdY7p6q2JfmNJD0c7+7unk1KAAAAAAAAAAAAAAAAgOmNovQ1eNXE+u5J/qyqltb6cVUdleQvkuyfpHYxEwAAAAAAAAAAAAAAAGDuRlP66u63J/loVgtbP5fk7Kp6zA3t+lVVh1bVKUnOTnKXlXFJ3tLdn97MzAAAAAAAAAAAAAAAAADrteadshbE45L8TZLbD9fHJnlzku8mOX/yxao6I8kxSY7LclGsslz2SpJzkzx1D+QFAAAAAAAAAAAAAAAAWJfR7PSVJN39zST/NMl5WS1xVZJbZLnctaKSnJTk7ln+GyffPSfJP+vuq/ZccgAAAAAAAAAAAAAAAIC1GVXpK0m6+wtJ7pXkT5Ncv3J7F0d2WifJ/0jy09197p5JCwAAAAAAAAAAAAAAALA+oyt9JUl3f7u7fzHJjyd5TZLPD49qF8dXk7wuyT26+4nd/a05RAYAAAAAAAAAAAAAAABYk6V5B5hGd5+X5NeTpKoOTHLHJLdJ8mNJtie5pLsvnl9CAAAAAAAAAAAAAAAAgPUZdelrUnfvSLJj3jkAAAAAAAAAAAAAAAAAprFl3gEAAAAAAAAAAAAAAAAAWKX0BQAAAAAAAAAAAAAAALBAlL4AAAAAAAAAAAAAAAAAFojSFwAAAAAAAAAAAAAAAMACWZp3gLWqqrM2YWx396M3YS4AAAAAAAAAAAAAAADAhoym9JXkEUl6hvNqxvMAAAAAAAAAAAAAAAAApjam0te0amKt7AUAAAAAAAAAAAAAAAAspLGVvurGX9mtlaJXTTkHAAAAAAAAAAAAAAAAYNOMqfS1dZ3v75fkVkmOS/KIJE9OcoskVwzrD840HQAAAAAAAAAAAAAAAMAMjKb01d3f2cBn307y1SR/UVW/n+SMJPdJ8pYkj+7u984wIgAAAAAAAAAAAAAAAMDUtsw7wJ7S3V9L8rAkX05y0yT/s6ruNN9UAAAAAAAAAAAAAAAAAD9snyl9JUl370jyG8Pl1iS/M780AAAAAAAAAAAAAAAAAD9qnyp9JUl3vzPJZUkqyeOq6pZzjgQAAAAAAAAAAAAAAADw/+1zpa/Bp4bzLZI8YJ5BAAAAAAAAAAAAAAAAACbtq6WvKybWh88tBQAAAAAAAAAAAAAAAMBO9tXS19aJ9W3mlgIAAAAAAAAAAAAAAABgJ/tc6auqKsl9J27tmFcWAAAAAAAAAAAAAAAAgJ3tc6WvJL+S5OCJ63PnFQQAAAAAAAAAAAAAAABgZ/tU6auqnpLkPyXp4db3k3x4fokAAAAAAAAAAAAAAAAAftjSvAOsVVWdtIHPlpIclOTYJI9IclSSGp51kj/u7u/OJiEAAAAAAAAAAAAAAADA9EZT+kry5qzu0LURk2WvSnJ+khdPGwoAAAAAAAAAAAAAAABglrbMO8AG1AaOZLUwVkn+NsnDuvuKPRcbAAAAAAAAAAAAAAAA4MaNrfRVN/7Kbr+rJGcn+dUk9+nu82aWCgAAAAAAAAAAAAAAAGBGluYdYB2evYFvrk3y7SSXJvl0d18520gAAAAAAAAAAAAAAAAAszWa0ld3nzrvDAAAAAAAAAAAAAAAAACbbcu8AwAAAAAAAAAAAAAAAACwSukLAAAAAAAAAAAAAAAAYIEofQEAAAAAAAAAAAAAAAAsEKUvAAAAAAAAAAAAAAAAgAWi9AUAAAAAAAAAAAAAAACwQJbmHWCtquqkef12d791Xr8NAAAAAAAAAAAAAAAA7FtGU/pK8uYkPYff7Yzr3wkAAAAAAAAAAAAAAAAYsTGWmWreAQAAAAAAAAAAAAAAAAA2y9hKX5OFr513/dpdGWyt7wEAAAAAAAAAAAAAAADM3ZhKX88ezluT/GaSg7Ja4LogySeSfDnJjuHegUmOSXLfJEcM9zrJFUleleSqTU8MAAAAAAAAAAAAAAAAsE6jKX1196lVdWSS92S18PVXSV7U3R+7oW+r6n5JXprkgUluleSXk/xMd5+/iZEBAAAAAAAAAAAAAAAA1m3LvAOsVVXdMsm7kxw93HpRdz/kxgpfSdLdH+3uByf5N1kui90lyXuqauumBQYAAAAAAAAAAAAAAADYgNGUvpK8MMkxSTrJH3X3y9Y7oLt/L8kfZbn4tW2YCQAAAAAAAAAAAAAAALAwRlH6qqr9kvzycHldpitrvTDJtcP6l6pqFP8GAAAAAAAAAAAAAAAAwL5hLIWnf5jkkCzv8vWJ7t6+0UHdfVmSv87ybl+3S3L/mSQEAAAAAAAAAAAAAAAAmIGxlL6OnFh/bQbzLtzNbAAAAAAAAAAAAAAAAIC5Gkvp67CJ9S1mMO/mE+tDZzAPAAAAAAAAAAAAAAAAYCbGUvq6emJ93AzmTc64erdvAQAAAAAAAAAAAAAAAOxhYyl9fX04V5I7V9X9Njqoqu6fZNvErQunCQYAAAAAAAAAAAAAAAAwS2MpfX0gyfeTdJaLX6dV1f7rHVJVW5OcNnHrmiR/NYuAAAAAAAAAAAAAAAAAALMwitJXd1+V5MwsF746yd2SvL+q7rLWGcO77x++zTDnbcNsAAAAAAAAAAAAAAAAgIUwitLX4HlJrp64vneSz1bV6VX1kGEXrx9SVVur6qFV9cdJPpvknlkueyXJd5L81maHBgAAAAAAAAAAAAAAAFiPpXkHWKvuvrCqnpjkjCQ3yXJ566ZJnjIcqapLk3x7eHZgkoMnRqzsElZJfpDkF7r7wj32BwAAAAAAAAAAAAAAAACswZh2+kp3vz3JY5JcntUSV4Z1JTkkydFJjhnWK/eT1cLX9iSP7u537LnkAAAAAAAAAAAAAAAAAGszqtJXknT3u5Icm+T1Sa7JD5e6dnVkeOea4Zvjuvvdey4xAAAAAAAAAAAAAAAAwNotzTvARnT39iRPqarfTPLzSe6f5N5Z3t1r/+G1q5NckuSTST6S5E3DdwAAAAAAAAAAAAAAAAALa5SlrxXdfXmSU4cjSVJV+w3PrptXLgAAAAAAAAAAAAAAAICNGnXpa1eUvQAAAAAAAAAAAAAAAIAx2zLvAAAAAAAAAAAAAAAAAACsUvoCAAAAAAAAAAAAAAAAWCBL8w4wraqqJMcn2Zbk1km2JqnufvVcgwEAAAAAAAAAAAAAAABswGhLX1V1jyTPS3JikgN28cqPlL6q6qFJHjVcXtndL968hAAAAAAAAAAAAAAAAADrN7rSV1XdNMlrk/zKyq1dvNa7+fzcJM9c+aaq3tTdX5h5SAAAAAAAAAAAAAAAAIAN2jLvAOtRVbdI8qEsF77WU/Zafth9fpL3Tnz7hJkGBAAAAAAAAAAAAAAAAJjSqEpfSf48yX0mrq9L8rYkz0nyq9l1EWxnb51Y/5PZRQMAAAAAAAAAAAAAAACY3tK8A6xVVT0qySOyupvXZ5I8vru/Mjw/Yo2j3rUyMsk9q+oW3f33Mw0LAAAAAAAAAAAAAAAAsEFj2unrlIn1OUkeuFL4Wo/u/kaS7cPlfknuOoNsAAAAAAAAAAAAAAAAADMxitJXVR2c5F5Z3eXrOd191RQjvzixPmaKOQAAAAAAAAAAAAAAAAAzNYrSV5L7JanhuLi73zflvCsm1redchYAAAAAAAAAAAAAAADAzIyl9HXocO4kn57BvMldwvafwTwAAAAAAAAAAAAAAACAmRhL6eugifWOGcy75cT6+zOYBwAAAAAAAAAAAAAAADATYyl9fWtifcAM5h02sb58BvMAAAAAAAAAAAAAAAAAZmIspa/LJtbHTjOoqm6S5B4Tty6aZh4AAAAAAAAAAAAAAADALI2l9HX2cK4kd66qbVPMenSSmw3r65J8fJpgAAAAAAAAAAAAAAAAALM0itJXd38lyQUTt56/kTnDLl+nrIxN8qnuvmq6dAAAAAAAAAAAAAAAAACzM4rS1+ANw7mSPLWqHruBGX+Q5PiJ6z+cOhUAAAAAAAAAAAAAAADADI2p9PXqJJdneYeuSvLGqnrBsHvXDaqqo6rqrOT/sXd/oZadZx3Hf+/xNI3atI1tSqqxmbapiC1qa6SSFCkigSIhpkiE9sJYUotFSKmF4oXEVG8KZiheSC8sJmApqI2ptooiGMTECppIkEaI/ZNQ/w3VRJIx//N4MWc4e7aTyd7n7H3Ws/d8PrDZ+13nfdd6Zu6/rNy0dz5JHk7ye+saFgAAAAAAAAAAAAAAAOAgdqceYFFV9fgY44NJ/nDv0m6SX0/ykTHGF5J8c3b/GOOnknxfkmuS/MTe/rH352eTvL+qnj+K2QEAAAAAAAAAAAAAAAAWtTHRV5JU1V1jjI8luS37b/x6bZIPzG0dSf54bl0znw9X1d+uf2IAAAAAAAAAAAAAAACA5exMPcCyqupTSa5L8tjpS3vf82HXyP6bvU6vH09yXVV95sgGBgAAAAAAAAAAAAAAAFjCxkVfSVJVX0xyRZJPJPmv7MddI2fGXqevnUxyPMkVVfWlIxwVAAAAAAAAAAAAAAAAYCm7Uw9wUFX1aJJfG2PcmuTtSd6V5HuTvCbJBUm+leQ/k9yb5J6qem6qWQEAAAAAAAAAAAAAAAAWtbHR12lVVUnu2/sAAAAAAAAAAAAAAAAAbLSNib7GGDunf1fVC1POAgAAAAAAAAAAAAAAALAuOy+9ZXpjjBuTPLv3eXqM8YZpJwIAAAAAAAAAAAAAAABYj01509frk4y93/dX1SNTDgMAAAAAAAAAAAAAAACwLhvxpq8k/7v3XUkennIQAAAAAAAAAAAAAAAAgHXalOjrP2Z+vzDZFAAAAAAAAAAAAAAAAABrtinR10Mzvy+bbAoAAAAAAAAAAAAAAACANduI6Kuq7kvyjSQjyZVjjFdOOxEAAAAAAAAAAAAAAADAemxE9LXnM3vfu0k+NuUgAAAAAAAAAAAAAAAAAOuySdHXJ5Pcn1Nv+/r4GOPaiecBAAAAAAAAAAAAAAAAWLmNib6q6rkk1yd5IMnLktw5xjg+xvjuaScDAAAAAAAAAAAAAAAAWJ3dqQdY1Bjjo3s/P5/kjUkuSnJzkl8aY/x9Tr0F7ESSx5e5b1UdX+WcAAAAAAAAAAAAAAAAAIexMdFXkt9MUjPrSjJy6t/wzr3PQYi+AAAAAAAAAAAAAAAAgDZ2ph7gAMbM78qZIdhB7wMAAAAAAAAAAAAAAADQwia96SvZD7UEWwAAAAAAAAAAAAAAAMBW2qTo69qpBwAAAAAAAAAAAAAAAABYt42JvqrqS1PPAAAAAAAAAAAAAAAAALBuO1MPAAAAAAAAAAAAAAAAAMA+0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZ2px7gtDHG8ZnlJ6rqscmGAQAAAAAAAAAAAAAAAJhIm+gryUeS1N7vTyU5Z/Q1xvjxmeWXq+qZdQ0GAAAAAAAAAAAAAAAAcFQ6RV9JMrIffr2Uu2f2vjHJI+sYCAAAAAAAAAAAAAAAAOAo7Uw9wCGNqQcAAAAAAAAAAAAAAAAAWKVNj74WfSsYAAAAAAAAAAAAAAAAwEbY9OjLm74AAAAAAAAAAAAAAACArbLp0RcAAAAAAAAAAAAAAADAVhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZ2px5gTu19/9gY49gS55bdv//Aqr8+yDkAAAAAAAAAAAAAAACAdegWfSXJSPK5Ne6fVen5fwAAAAAAAAAAAAAAAACcpzoGT5VTIdci+05bZD8AAAAAAAAAAAAAAABAex2jr+TMoGsd+xOhGAAAAAAAAAAAAAAAANBQp+jrkRws3gIAAAAAAAAAAAAAAADYGm2ir6o6NvUMAAAAAAAAAAAAAAAAAFPbmXoAAAAAAAAAAAAAAAAAAPaJvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhkd+J0B7gAACAASURBVOoBOBpjjJcluTrJG5K8PskTSf4tyf1V9Y0JRwMAAAAAAAAAAAAAAABmiL4mMsZ4U5IfTXLl3vc7klw0s+Xhqjq2gudckuTWJD+b5LteZM+9SY5X1ecP+zwAAAAAAAAAAAAAAADgcERfR2iM8e4kv5JToddZA6wVP+89SW5P8rqX2HpVkqvGGJ9N8qGqOrnu2QAAAAAAAAAAAAAAAICzE30drR9Ocs1RPGgvMLsryQUzlyvJfUm+luTVSd6e5LUzf39/kleOMX66ql44ijkBAAAAAAAAAAAAAACAM+1MPQBJkqeTfHVVNxtjXJbkzpwZfN2T5K1VdWVV3VBV1yS5LMnNSZ6d2Xdtkt9Y1SwAAAAAAAAAAAAAAADAckRfR+/ZJP+Y5HeSfCjJjyS5KMlNK3zGrUkunlnfm+Qnq+rB2U1V9XRV/VaSG+bOf3SMcfkK5wEAAAAAAAAAAAAAAAAWtDv1AOeZO5J8uqqemv/DGGMlDxhjvCXJz81ceibJjWd75mlVddcY446Zcy9PckuSD6xkKAAAAAAAAAAAAAAAAGBh3vR1hKrq0XPFVyvyviTfNrO+s6oeWuDcJ+fWN4wxLlzdWAAAAAAAAAAAAAAAAMAiRF/b5/q59e8ucqiqHkzydzOXvjPJNasaCgAAAAAAAAAAAAAAAFiM6GuLjDEuTfJDM5eeS3LPEre4e279nsPOBAAAAAAAAAAAAAAAACxH9LVd3ja3fqCqTi5x/t659VsPOQ8AAAAAAAAAAAAAAACwJNHXdvmBufW/LHn+qy9xPwAAAAAAAAAAAAAAAGDNRF/b5Yq59SNLnn94bv2aMcbFh5gHAAAAAAAAAAAAAAAAWJLoa7u8em59YpnDVfVEkqfmLr/qUBMBAAAAAAAAAAAAAAAAS9mdegBW6hVz6ycPcI8nk1w4s77o4OPsG2O8LsklSx578yqeDQAAAAAAAAAAAAAAAJtE9LVd5qOv+bd2LeLJJBef454H9eEkt6zoXgAAAAAAAAAAAAAAALC1RF/brY7oDAAAAMBCxi//ydQjAJwX6rZrpx4BAAAAAAAAgEPYmXoAVuqJufW3H+Ae82fm7wkAAAAAAAAAAAAAAACskTd9bZfO0ddvJ/mDJc+8OckXVvR8AAAAAAAAAAAAAAAA2Aiir+3yP3PrS5Y5PMZ4Rf5/9PXYoSbaU1UnkpxYcp5VPBoAAAAAAAAAAAAAAAA2ys7UA7BSD82tL1/y/Pz+/66qRw8xDwAAAAAAAAAAAAAAALAk0dd2eXBufcWS5980t/7KIWYBAAAAAAAAAAAAAAAADkD0tV3+aW79g2OM71ji/NUvcT8AAAAAAAAAAAAAAABgzURfW6Sq/j3JAzOXdpO8a4lbvHtu/WeHnQkAAAAAAAAAAAAAAABYjuhr+/zR3PrnFzk0xvj+JO+cuXQyyV+saigAAAAAAAAAAAAAAABgMaKv7fPZJM/PrN87xnjLAuc+Prf+/ap6anVjAQAAAAAAAAAAAAAAAIsQfW2ZqnooyR0zly5IcvsY48IXOzPGuC7JjTOXnkly61oGBAAAAAAAAAAAAAAAAM5pd+oBzjdjjMty9v/3S+fWu2OMYy9ymyeq6lvneMwtSa5PcvHe+qokfznGuKmq/nlmlpcn+YUkt82dv62qHj7H/QEAAAAAAAAAAAAAAIA1EX0dvb9JcvkC+74nyddf5G935Mw3c52hqr45xnhvkj/PqTd9JcnVSb4yxviHJF9L8qok70hyydzxLyb51QXmAwAAAAAAAAAAAAAAANZA9LWlquruMcb1SW7Pftg1kly59zmbzyX5YFU9v/4JAQAAAAAAAAAAAAAAgLPZmXoA1qeq/jTJ25J8Osmj59j65SQ/U1Xvq6qTRzIcAAAAAAAAAAAAAAAAcFbe9HXEqurYET/vRJJfHGPcnOTqJJcnuTTJyST/muT+qvr6Uc4EAAAAAAAAAAAAAAAAvDjR13miqp5J8ldTzwEAAAAAAAAAAAAAAACc287UAwAAAAAAAAAAAAAAAACwT/QFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0Mj/sXf/LpbddRjHn8+4oFELIcYUIimCKAgKsqAgClYJaBorUyiCiGCbQhMCsRFtUghqYRUbG8EgwSDrBrRQQlgsbAJauIIrIcgaUdFm87XYDXsZsr9wZs6zc18vuMU595w7z/wBb76iLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAiZ7YeAAAAAAAAAACcjHnsua0nAOyN9fQjW08AAAAA7mJO+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+jqFZuabM7P+j88zW/8PAAAAAAAAAAAAAAAAsK9EXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARc5sPYAT8WiSF+/g+X8d1xAAAAAAAAAAAAAAAADg5kRf++GVtdbFrUcAAAAAAAAAAAAAAAAAt3aw9QAAAAAAAAAAAAAAAAAArhN9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfe2Hr87M+Zm5NDP/nZl/zszFmfn1zHxrZj659UAAAAAAAAAAAAAAAADgqjNbD+BEfP7Q9VuTvDPJA0k+leSJmbmQ5PG11vmTHgcAAAAAAAAAAAAAAABcJ/riDWeTnJuZbyd5cq21jvLHZ+Y9Se67w9cePMoNAAAAAAAAAAAAAAAAcDcQfZ1ul5I8n+SlJC8nuZzk9ST3Jvloks8meWjn+UnyRJKDJI8f8ZavJXnqiH8TAAAAAAAAAAAAAAAATh3R1+n0Uq7GXL+8yYldv03yvZk5m+THSd6/8903ZubFtdbPjnknAAAAAAAAAAAAAAAAcMjB1gM4emut59da524SfO0+eyHJx5P84dBX35mZtxzLQAAAAAAAAAAAAAAAAOCGnPRF1lqXZ+bRJBeSzLXbH0zy6STnj+jP/CDJT+7wnQeTOG0MAAAAAAAAAAAAAACAvSL6Ikmy1vrdzJxL8tDO7YdzRNHXWuvVJK/eyTszc+uHAAAAAAAAAAAAAAAA4JQ52HoAVX5x6PrDm6wAAAAAAAAAAAAAAACAPSb6YtfFQ9f3bTECAAAAAAAAAAAAAAAA9pnoi13/OXR9zyYrAAAAAAAAAAAAAAAAYI+Jvtj17kPXf9tkBQAAAAAAAAAAAAAAAOwx0Re7Pnbo+q+brAAAAAAAAAAAAAAAAIA9JvoiSTIzb0vyuUO3f7XBFAAAAAAAAAAAAAAAANhroi/e8PUk7925vpLk5xttAQAAAAAAAAAAAAAAgL0l+jplZuYLM3P/Hb7zlSRPHbr9zFrrz0e3DAAAAAAAAAAAAAAAALgdoq/T58tJ/jQzP5qZz8zMO2704MycnZmfJvlhktn56lKSJ495JwAAAAAAAAAAAAAAAPAmzmw9gGNxT5IvXvu8PjN/THIxyT+SXElyb5KPJHmzE8EuJ3l4rfXKyUwFAAAAAAAAAAAAAAAAdom+Tr+DJB+49rmVF5J8aa31l+OdBAAAAAAAAAAAAAAAANyI6Ov0+W6SS0k+keSB23j+30nOJfn+WuuF4xwGAAAAAAAAAAAAAAAA3Jro65RZaz2b5NkkmZl3JflQkvcluT/J23P15K/Xkvw9yctJfr/WurLNWgAAAAAAAAAAAAAAAOAw0dcpttZ6Lclvtt4BAAAAAAAAAAAAAAAA3L6DrQcAAAAAAAAAAAAAAAAAcJ3oCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAozE6XAAAIABJREFUAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKDIma0HAAAAAAAA3C3msee2ngCwF9bTj2w9AQAAAAAANuWkLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAD4H3v3Hu1rXdcJ/P05HMTDRQlLvCVIZnhLRUpxNC8wA5p5C1NbOVHqME02NjJlNRnYsslW6eRSayY1dGayVCrvIcloeaEpRqggXAoGJsodMW5ywM/88dvEj4d9PPv+PGfv12uts9jfz+/5PvvNX8/6/fbv/TwAAAAAAAAAADAhSl8AAAAAAAAAAAAAAAAAE6L0BQAAAAAAAAAAAAAAADAhSl8AAAAAAAAAAAAAAAAAE6L0BQAAAAAAAAAAAAAAADAhSl8AAAAAAAAAAAAAAAAAE6L0BQAAAAAAAAAAAAAAADAhSl8AAAAAAAAAAAAAAAAAE6L0BQAAAAAAAAAAAAAAADAhSl8AAAAAAAAAAAAAAAAAE6L0BQAAAAAAAAAAAAAAADAhSl8AAAAAAAAAAAAAAAAAE6L0BQAAAAAAAAAAAAAAADAhSl8AAAAAAAAAAAAAAAAAE6L0BQAAAAAAAAAAAAAAADAhSl8AAAAAAAAAAAAAAAAAE6L0BQAAAAAAAAAAAAAAADAhSl8AAAAAAAAAAAAAAAAAE6L0BQAAAAAAAAAAAAAAADAhSl8AAAAAAAAAAAAAAAAAE6L0BQAAAAAAAAAAAAAAADAhSl8AAAAAAAAAAAAAAAAAE6L0BQAAAAAAAAAAAAAAADAhSl8AAAAAAAAAAAAAAAAAE6L0BQAAAAAAAAAAAAAAADAhSl8AAAAAAAAAAAAAAAAAE6L0BQAAAAAAAAAAAAAAADAhSl8AAAAAAAAAAAAAAAAAE6L0BQAAAAAAAAAAAAAAADAhSl8AAAAAAAAAAAAAAAAAE6L0BQAAAAAAAAAAAAAAADAhSl8AAAAAAAAAAAAAAAAAE7J97AAAAAAAAAAAAACwVHXSB8eOALAl9Ot/aOwIAABbmid9AQAAAAAAAAAAAAAAAEyI0hcAAAAAAAAAAAAAAADAhCh9AQAAAAAAAAAAAAAAAEyI0hcAAAAAAAAAAAAAAADAhCh9AQAAAAAAAAAAAAAAAEyI0hcAAAAAAAAAAAAAAADAhCh9AQAAAAAAAAAAAAAAAEyI0hcAAAAAAAAAAAAAAADAhCh9AQAAAAAAAAAAAAAAAEyI0hcAAAAAAAAAAAAAAADAhCh9AQAAAAAAAAAAAAAAAEyI0hcAAAAAAAAAAAAAAADAhCh9AQAAAAAAAAAAAAAAAEyI0hcAAAAAAAAAAAAAAADAhCh9AQAAAAAAAAAAAAAAAEyI0hcAAAAAAAAAAAAAAADAhCh9AQAAAAAAAAAAAAAAAEyI0hcAAAAAAAAAAAAAAADAhCh9AQAAAAAAAAAAAAAAAEyI0hcAAAAAAAAAAAAAAADAhCh9AQAAAAAAAAAAAAAAAEyI0hcAAAAAAAAAAAAAAADAhCh9AQAAAAAAAAAAAAAAAEyI0hcAAAAAAAAAAAAAAADAhCh9AQAAAAAAAAAAAAAAAEyI0hcAAAAAAAAAAAAAAADAhCh9AQAAAAAAAAAAAAAAAEyI0hcAAAAAAAAAAAAAAADAhCh9AQAAAAAAAAAAAAAAAEyI0hcAAAAAAAAAAAAAAADAhCh9AQAAAAAAAAAAAAAAAEyI0hcAAAAAAAAAAAAAAADAhCh9AQAAAAAAAAAAAAAAAEyI0hcAAAAAAAAAAAAAAADAhCh9AQAAAAAAAAAAAAAAAEyI0hcAAAAAAAAAAAAAAADAhCh9AQAAAAAAAAAAAAAAAEyI0hcAAAAAAAAAAAAAAADAhCh9AQAAAAAAAAAAAAAAAEyI0hcAAAAAAAAAAAAAAADAhCh9AQAAAAAAAAAAAAAAAEyI0hcAAAAAAAAAAAAAAADAhCh9AQAAAAAAAAAAAAAAAEyI0hcAAAAAAAAAAAAAAADAhCh9AQAAAAAAAAAAAAAAAEyI0hcAAAAAAAAAAAAAAADAhCh9AQAAAAAAAAAAAAAAAEyI0hcAAAAAAAAAAAAAAADAhCh9AQAAAAAAAAAAAAAAAEyI0hcAAAAAAAAAAAAAAADAhCh9AQAAAAAAAAAAAAAAAEyI0hcAAAAAAAAAAAAAAADAhCh9AQAAAAAAAAAAAAAAAEyI0hcAAAAAAAAAAAAAAADAhCh9AQAAAAAAAAAAAAAAAEyI0hcAAAAAAAAAAAAAAADAhCh9AQAAAAAAAAAAAAAAAEyI0hcAAAAAAAAAAAAAAADAhCh9AQAAAAAAAAAAAAAAAEyI0hcAAAAAAAAAAAAAAADAhCh9AQAAAAAAAAAAAAAAAEyI0hcAAAAAAAAAAAAAAADAhGwfOwAAAAAAAAAAAAAAwFZRJ31w7AgAW0K//ofGjgCr4klfAAAAAAAAAAAAAAAAABOi9AUAAAAAAAAAAAAAAAAwIUpfAAAAAAAAAAAAAAAAABOi9AUAAAAAAAAAAAAAAAAwIUpfAAAAAAAAAAAAAAAAABOi9AUAAAAAAAAAAAAAAAAwIUpfAAAAAAAAAAAAAAAAABOi9AUAAAAAAAAAAAAAAAAwIUpfAAAAAAAAAAAAAAAAABOi9AUAAAAAAAAAAAAAAAAwIUpfAAAAAAAAAAAAAAAAABOi9AUAAAAAAAAAAAAAAAAwIUpfAAAAAAAAAAAAAAAAABOi9AUAAAAAAAAAAAAAAAAwIUpfAAAAAAAAAAAAAAAAABOi9AUAAAAAAAAAAAAAAAAwIUpfAAAAAAAAAAAAAAAAABOi9AUAAAAAAAAAAAAAAAAwIUpfAAAAAAAAAAAAAAAAABOi9AUAAAAAAAAAAAAAAAAwIUpfAAAAAAAAAAAAAAAAABOi9AUAAAAAAAAAAAAAAAAwIUpfAAAAAAAAAAAAAAAAABOi9AUAAAAAAAAAAAAAAAAwIUpfAAAAAAAAAAAAAAAAABOi9AUAAAAAAAAAAAAAAAAwIUpfAAAAAAAAAAAAAAAAABOi9AUAAAAAAAAAAAAAAAAwIUpfAAAAAAAAAAAAAAAAABOi9AUAAAAAAAAAAAAAAAAwIUpfAAAAAAAAAAAAAAAAABOi9AUAAAAAAAAAAAAAAAAwIUpfAAAAAAAAAAAAAAAAABOi9AUAAAAAAAAAAAAAAAAwIUpfAAAAAAAAAAAAAAAAABOi9AUAAAAAAAAAAAAAAAAwIUpfAAAAAAAAAAAAAAAAABOi9AUAAAAAAAAAAAAAAAAwIUpfAAAAAAAAAAAAAAAAABOi9AUAAAAAAAAAAAAAAAAwIUpfAAAAAAAAAAAAAAAAABOi9AUAAAAAAAAAAAAAAAAwIUpfAAAAAAAAAAAAAAAAABOi9AUAAAAAAAAAAAAAAAAwIUpfAAAAAAAAAAAAAAAAABOi9AUAAAAAAAAAAAAAAAAwIUpfAAAAAAAAAAAAAAAAABOyfewAbKyqelCSRye5X5L9k3w1ySVJPtPdO8fMBgAAAAAAAAAAAAAAACh9bRlVdXySVyY5aheHXFNV707yK9191cYlAwAAAAAAAAAAAAAAAOZtGzsA66uq9q+qP0zy3uy68JUkByX5qSTnVdWxGxIOAAAAAAAAAAAAAAAAuAulr02sqvZK8u4kLxy8dGWSMzIrgn02Sc+9dnCS91fVEzckJAAAAAAAAAAAAAAAAHAnSl+b2+uSPGNuvTPJzyR5QHcf290/0t2PTfKIJGfNHbdPkvdV1X03LioAAAAAAAAAAAAAAACQKH1tWlV1WJJXDMbP7+43d/ct88Pu/ockR+fOxa97JTl5fVMCAAAAAAAAAAAAAAAAQ0pfm9fJSfaeW7+ju9+/q4O7+6YkJySZL4S9ZKE8BgAAAAAAAAAAAAAAAGwQpa9NqKp2JDl+MP6N3e3r7s8ned/caHuSH13DaAAAAAAAAAAAAAAAAMBuKH1tTscm2XdufVZ3f26Je08drJ+3NpEAAAAAAAAAAAAAAACApVD62pyOG6w/sYy9n0xy69z6MVV18KoTAQAAAAAAAAAAAAAAAEui9LU5PWKwPmupG7v7hiR/Pxg/fNWJAAAAAAAAAAAAAAAAgCVR+tqcHjpYX7jM/RcN1g9bRRYAAAAAAAAAAAAAAABgGZS+NpmqOijJQYPxl5Z5muHx373yRAAAAAAAAAAAAAAAAMBybB87AGvuwMH6xu6+YZnnuGKwvucq8iRJqureSb5jmdsOn19ceOFyH1gGi7hquR1IAFbi/PPPHzvC5uVaBrAhXMvWkWsZwIZwLVtHrmUAG8K1bB25lgFsGNezdeR6BrAhXMvWkWsZwIZwLWMtLNJludtG/e7q7o36XWyAqvreJH87N7q6u799mef4j0neODf6k+7+4VXmOiXJyas5BwAAAAAAAAAAAAAAAIzo2d39gY34Rds24pewofYfrG9ewTlu2s05AQAAAAAAAAAAAAAAgHWi9LX5reRRbh7/BgAAAAAAAAAAAAAAACPZPnYA1tz1g/WOFZxjuGd4zpX4nSTvXeae/ZMcmeTrSa5L8k9JblmDLAB7iu9K8v659bOTXDRSFgBYCdcyAPZ0rmUA7OlcywDY07mWAbAZuJ4BsKdzLQO2ursl+c659V9s1C9W+tp8Jln66u4rklyxgq3/d7W/G2BPVVXD0UXdff4YWQBgJVzLANjTuZYBsKdzLQNgT+daBsBm4HoGwJ7OtQwgSXLOGL902xi/lHV13WC9b1Xtt8xz3Huw/toq8gAAAAAAAAAAAAAAAADLoPS1yXT31UmuHYwfuMzTHDJYf2HliQAAAAAAAAAAAAAAAIDlUPranC4YrB+8zP2H7eZ8AAAAAAAAAAAAAAAAwDpR+tqczhusj1rqxqraL8n37uZ8AAAAAAAAAAAAAAAAwDpR+tqcTh+sn7KMvU9Ksn1ufU53X77qRAAAAAAAAAAAAAAAAMCSKH1tTh9NctPc+qiqOnyJe08YrP90TRIBAAAAAAAAAAAAAAAAS6L0tQl1941JThuMX7W7fVX1kCTPnRvdmuRdaxgNAAAAAAAAAAAAAAAA2A2lr83rlCQ759YnVNWzdnVwVd09yalJ7jY3fnt3X7Q+8QAAAAAAAAAAAAAAAIDFKH1tUt39xSRvHIxPq6qXV9V8sStV9dAkZyZ5wtz46iSvWd+UAAAAAAAAAAAAAAAAwND2sQOwrn4hycOTPH1hvXeSNyV5dVV9Nsk/JzksyRFJam7fLUme291f3cCsAAAAAAAAAAAAAAAAQJS+NrXuvq2qfiTJ25K8YO6leyc5bhfbrkjy4939yfXOBwAAAAAAAAAAAAAAANyV0tcm193XJ3lhVZ2W5KQkj9/FodckeXeSk7v7yo3KB8C3dGWS1wzWALAncS0DYE/nWgbAns61DIA9nWsZAJuB6xkAezrXMoCRVHePnYENVFUPSnJEkvsl2S/JZUkuSfLp7r5lzGwAAAAAAAAAAAAAAACA0hcAAAAAAAAAAAAAAADApGwbOwAAAAAAAAAAAAAAAAAAd1D6AgAAAAAAAAAAAAAAAJgQpS8AAAAAAAAAAAAAAACACVH6AgAAAAAAAAAAAAAAAJgQpS8AAAAAAAAAAAAAAACACVH6AgAAAAAAAAAAAAAAAJgQpS8AAAAAAAAAAAAAAACACVH6AgAAAAAAAAAAAAAAAJgQpS8AAAAAAAAAAAAAAACACVH6AgAAAAAAAAAAAAAAAJgQpS8AAAAAAAAAAAAAAACACdk+dgAA4K6q6kFJHp3kfkn2T/LVJJck+Ux37xwzGwAAAAAwTVW1I8nhSQ7J7LPFA5LsneTrSa5Ocl6S87v71tFCAgAAAAB7pKo6PMmjkjwgyY4kNye5IsmFSf62u28YMR7AplTdPXYGAGBBVR2f5JVJjtrFIdckeXeSX+nuqzYsGAAAwBZQVXsleXCSh2X2Rfl7JvlGkmuTXJTkbH+sAmBqquonkjwtyeOSfFeSbbvZcn2S9yR5U3efu87xAAAAAIA9WFXdM8nPJvmJzG42tSu3JTk3yWnd/bqNyAawFSh9AcAEVNX+Sd6a5IVL3HJ5kh/v7o+uXyoAWJ6qOizJ9yU5cuG/R2R2V/nbXdLdh44QDQB2qaoemOR5SY5J8qQk9/gWh9+W5M+TvLm7P7wB8QBgt6rqy0nuv4KttyV5U5Kf8+QvAPYEVfVHSV4wGPvMEYBJqKpTkpy8ilO8s7tPWJs0ALA2qur5SX43yb2Wse3y7r7POkUC2HK2jx0AALa6hTvJvzvJMwYvXZnknCTXZXaH3sckqYXXDk7y/qo6prs/tVFZAWCoqp6S5BczK3odNG4aAFieqnpXkhctY8teSY5LclxVfSjJS7v78nUJBwArd2NmT6j8UpKvZ/bkr4OSPDLJ/Jct9srsDr2HVtXx3X3bRgcFgKWqqmflroUvAAAA1klVnZzklEVe+lKSz2f2/ca7J7lvZp897rdh4QC2EKUvABjf63LnwtfOJK9M8nvdfcvtw6p6WJK3JTlqYbRPkvdV1SO7+6sbFRYABh6d5N+MHQIAVughu5hfmuQLmT1leXuSw5I8KrMvzd/umUn+sqqe3N2XrWtKAPjWbkjygSR/luQzSc7r7m8udmBVPT7Ja5McPTd+TmafR/7mOucEgBWpqgMzu7M8AAAAG6CqTspdC19/mOTXu/vvFzl+W2bfa/zhJMeue0CALaS6e+wMALBlVdVhST6XZO+58XO6+/27OH5HkjNzR/ErSf5Hd//79UsJALtWVT+b5L8t8tI3knw5s6dV3u6S7j50I3IBwFJU1dlJHruwPCfJ7yf5s+6+aJFj75/kV5L8u8FLn0ryA+2DVgBGUlV7d/fOZRy/Lck7k/zY3Pi6JAd39zfWOh8ArFZVvT3JTy4s/znJAXMv+8wRgEmoqlOSnDw3elGSv1rGKa7v7qvWNBQArEBVPSrJ2bnj4TI7k/xod5+2xP3bu/vW9coHsNVs2/0hAMA6Ojl3Lny9Y1eFryTp7puSnJDklrnxSxbKYwAwlp1Jzs3siZQnZvbl+QOSvHTMUACwBJ3kw0m+r7uP6O43L1b4SpLuvrS7T0zy04OXnpjkBeucEwB2aTmFr4Xjv5nZ9eyGufE9kzx1LXMBwFqoqmNyR+Hr1sxuxgEAe4LLuvviZfxT+AJgdFW1PbObJG6fG5+41MJXkih8AawtpS8AGMnCU7uOH4x/Y3f7uvvzSd43N9qe5EfXMBoALMc7k9yjux/T3S/r7t/r7s8u90uHADCS53f3M7v77KVu6O7fSfLHg/GL1zYWAKyv7v56Zk+rnPfgMbIAwK5U1X5J3jo3ekNmN58CAABgfTw/yRFz6zO7+9SxwgCg9AUAYzo2yb5z67O6+3NL3Dt8I/W8tYkEAMvT3dd2981j5wCAlejui1e49S2DtSejALAnumawPmCUFACwa7+e5NCFn7+Y5JTRkgAAAGwNJw7W/3WUFAD8C6UvABjPcYP1J5ax95NJ5h+D/JiqOnjViQAAAFiKcwbrHVV14ChJAGDlDhmsvzJKCgBYRFU9IclPz41O7O6bxsoDAACw2VXVg5M8eW50cZKPj5MGgNspfQHAeB4xWJ+11I3dfUOSvx+MH77qRAAAACzFrYvM7rbhKQBgharqIUkeNzfqJH8xUhwAuJOq2ifJ7+eO77S8s7s/NmIkAACAreCpg/WZ3d2jJAHgXyh9AcB4HjpYX7jM/RcN1g9bRRYAAACW7sGD9a1JrhojCAAsV1XdN8l7k+w1Nz6tuy8eJxEA3MUpSb5n4ecrk5w0XhQAAIAt4/sH67OSpGaOqapTq+ofquq6qrqhqi6pqo9V1S9U1aEbnhZgi9g+dgAA2Iqq6qAkBw3GX1rmaYbHf/fKEwEAALAMxw/WZ3f3N0dJAgC7UVXbk3xbZjehemaSE5PcY+6QLyZ5+QjRAOAuquqIJP95bvSz3X31WHkAYBVOrKpfzuy92L2S7ExydZJLknwqyend/ckR8wHA0JGD9QULZa63J3naIsc/cOHf0Ul+taremuTnuvvG9QwJsNUofQHAOA4crG/s7huWeY4rBut7riIPAAAAS1BV+yd5yWD8p2NkAYDFVNVvJ3nFEg//eJIXd/fws0YA2HALReXfzx3fZTm9u981YiQAWI0XDtb7JNk/ySFJfiDJL1XV2Ul+sbs/ttHhAGAR9x2s903yN0m+fQl7907yH5IcVVU/2N1fXetwAFvVtrEDAMAWtf9gfdMKzjHcc8AKswAAALB0v57kPnPrryV520hZAGClPpDk2O5+WndfOnYYAFjwC0ketfDzDUl+asQsALARjkxyRlX9WlXV2GEA2PKGN7I/NXcUvm5I8vokxyQ5PMljk/xkZk+vnPeYJH9cVXuvY06ALcWTvgBgHMPS180rOMew9DU8JwAAAGuoqp6b5OWD8X/p7mvGyAMAq/D0JHtV1c3d/ZdjhwGAqnpYkl+eG726uy8eKQ4ArMalST6S5K+TXJDkmiTfTHKvJEckeWaSY+eOryS/lNkN/H9xQ5MCwIKq2iezp1LOe8DCf/8hyXHd/U+D1z+b5NSqOinJb83Nj0ryqiSvXY+sAFtNdffYGQBgy6mqJyT59Nzoy939ncs8x0uTvHVudEZ3H7ur4wFgo1XVU5J8fG50SXcfOk4aAFidqnpUZncrnL/hxhmZ/ZHLh6wATEZVHZTkHnOjHZl9ufDRSZ6b5GmDLW9J8oruvm1jEgLAnVXVtsz+bvb4hdH/S/K4xa5NPnMEYKqq6hlJbk3y57v7vLCqjkzyriTfPXjpOd39/nWKCAC7VFX7ZvY0r6HrkjxykcLXcP8bkvynudE1SQ7p7uvXLiXA1rRt7AAAsEUN38zsWME5hnu8QQIAAFgHVfXAJB/OnQtflyT5MYUvAKamu6/p7ovn/l3Q3Z/q7jd399FJnpTZdex2P53k98ZJCwBJklfkjsLXrUleqowMwJ6muz/S3Wcs5fPC7j47s2vf5wcvva6q9lqXgADwLXT3jZk9mXLoDbsrfC14dWYFsdsdlOTpa5ENYKtT+gKAcSh9AQAA7AGq6t5J/jzJ/efGlyX519195TipAGDluvtTSZ6a5Oq58U9W1bNHigTAFlZVhyV57dzoDd197lh5AGCjdPc1SV6UZL4kdnhm79cAYAyLPenrfy5lY3ffkORPBuOnrDYQAEpfADCW6wbrfatqv2We496D9ddWkQcAAICBqjooyceSPGRufFWSY7r7C+OkAoDV6+5/TPKrg/HPj5EFgK2rqirJW5PsuzD6YpJTRgsEABusuz+b5IzB+LgxsgBA7vr9w8u7++Jl7P+rwfqhq4sDQKL0BQCj6O6rk1wsOJ/9AAAgAElEQVQ7GD9wmac5ZLD2hUMAAIA1UlX3zOwLF4+cG1+b2RO+zh8nFQCsqT8arB9fVQeOkgSAreplSZ42tz6xu28aKwwAjOT0wfp7R0kBAMnnB+uvLnP/Vwbre60iCwALto8dAAC2sAuSPGFu/eCF2VIdtsj5AAAAWKWqOiCzL1s8dm789STHdfe546QCgLXV3VdU1bVJvm1htC3Jg5KcM14qALaY18z9/JEkF1bVobvZc5/Bevsie77S3besKhkAbJyLB+vvGCMEACQ5P8nRc+tvLHP/8Pi7ry4OAInSFwCM6bzcufR1VJIPLmVjVe2Xu97d6bw1ygUAALBlLbzf+kiSx8+Nr0/y9O7+63FSAcC62TlY7zNKCgC2qh1zPz8jyT+u4Bz3X2TfY5K4YQcAe4rhUy53LHoUAKy/vxusD1zm/uHxV68iCwALto0dAAC2sNMH66csY++Tcufy9jndffmqEwEAAGxhVbUjyYeSPHFufGOSH+zuz4yTCgDWR1XdPcm3D8Y+YwQAANhYw/dlV42SAgCSP0vSc+vDFj5DXKpHDNZfXn0kAJS+AGA8H82d79h0VFUdvsS9JwzWf7omiQAAALaohT9afSB3viHHzUme1d1/OUooAFhfR+fOfyu8McmlI2UBAADYqh43WH9llBQAbHnd/ZUkZ82N9s7sM8SlOm6w/uSqQwGg9AUAY+nuG5OcNhi/anf7quohSZ47N7o1ybvWMBoAAMCWUlV3S/InSY6ZG38jyXO6+8xxUgHA+qmqbUlePRif3t23jJEHgK2puw/s7lrOvyRPHZzmkkWOO3eM/x8AWK6FG1E9bzD+xAhRAOB2pw7Wr1zKpqp6UpLvnxt9M8lH1ioUwFam9AUA4zolyc659QlV9axdHbzwgd+pSe42N357d1+0PvEAAAA2t6ranuQ9SZ4+N96Z5Pju/ug4qQBgaarqZ6rqvsvcs3eSt+eud5N/y5oFAwAAYCleleT+c+vbknx4pCwAkMy+m3jB3PppVfUti19Vde/ctSz2Ht9pBFgbSl8AMKLu/mKSNw7Gp1XVyxfuNP8vquqhSc5M8oS58dVJXrO+KQEAADanqtoryR8kefbc+NYkL+juD42TCgCW5SVJLqqq/11VP1RVB+zqwKraUVUvSnJOkhMGL/+v7v4/65gTAABg06qqF1fVwcvc87IkJw/G7+juS9YuGQAsT3ffluQVmT2p63avr6o3VtW3DY+vqmOSfDrJd82Nr03yS+saFGALqe4eOwMAbGkLXzL8YO58V/kkuSLJZ5P8c5LDkhyRpOZevyXJMd39yY3ICQC7UlUPSLJ9kZcen+QP59aXJnniLk5zfXdftdbZAOBbqap3Jvm3g/HPJ3nvCk53WXffvPpUALB0VXVukkfNjTrJhUkuTvK1zD5DPCDJIUkelmTvRU7zocyecPmNdQ0LAGugqp6S5ONzo0u6+9Bx0gDATFV9Isn3Z/a54nuSfKK7b9jFsUdm9kX45w5eujTJkd192TpGBYAlqaqXJ3nTYLwzyV9lds3akeTRmX3uOO+WJM/q7o+ue0iALULpCwAmoKr2T/K2JC9Y4pYrkvx4d5++fqkAYGmq6uLc9YO85Xpnd5+w+jQAsHRVtZYfjj61uz+xhucDgN1apPS1HDcleW2S3+zunWuXCgDWj9IXAFO0UPp68tzom0m+kNkNOa5LcluSe2X2/m2xJ4Jdk+TJ3X3eugYFgGWoqp9K8ltJ9l3ilsuTPK+7P7N+qQC2nsXuxA4AbLDuvj7JC6vqtCQnZfZklMVck+TdSU7u7is3Kh8AAAAAMEkvS/KsJEcnOSLJPkvY87kkf5DkHd395XXMBgAAsFVtS/I9C/9258wkJ3h/BsDUdPfvVtUZSU5J8uwkB+zi0MuS/Pckv93d121QPIAtQ+kLACaku09LclpVPSizL2ncL8l+mb0xuiTJp7v7lhEjAgAAAAAT0d1/k+Rvkry6qvZO8tAkhyW5f5L9k+yd5PokX8/sDvPndPe146QFAADYtN6Y5NIk/yrJIUs4/oYkZyR5S3efuZ7BAGA1uvuiJC+uqh2ZXecekOQ+SW5JcmWSv+3uvxsxIsCmV909dgYAAAAAAAAAAACAPVpVHZjk4Um+M8nBSfbN7MlfX0tybZILkvxdd982WkgAAGCPofQFAAAAwP9v787Dra3LeoF/b94X0ABRGRSKQRlMHNMcAk0rzSyPqceyTBM1M007xVHJERzKIS3TY+V1Kocss8vUtONsaQpWauKIICKJaCIyi4LAff541o61F3vtvdbe+2WvFz+f61rXtZ/f+g33etaz3z/Y15cbAAAAAAAAAABYILtsdQEAAAAAAAAAAAAAAAAAXEPoCwAAAAAAAAAAAAAAAGCBCH0BAAAAAAAAAAAAAAAALBChLwAAAAAAAAAAAAAAAIAFIvQFAAAAAAAAAAAAAAAAsECEvgAAAAAAAAAAAAAAAAAWiNAXAAAAAAAAAAAAAAAAwAIR+gIAAAAAAAAAAAAAAABYIEJfAAAAAAAAAAAAAAAAAAtE6AsAAAAAAAAAAAAAAABggQh9AQAAAAAAAAAAAAAAACwQoS8AAAAAAAAAAAAAAACABSL0BQAAAAAAAAAAAAAAALBAhL4AAAAAAAAAAAAAAAAAFojQFwAAAAAAAAAAAAAAAMACEfoCAAAAAAAAAAAAAAAAWCBCXwAAAAAAAAAAAAAAAAALROgLAAAAAAAAAAAAAAAAYIEIfQEAAAAAAAAAAAAAAAAsEKEvAAAAAAAAAAAAAAAAgAUi9AUAAAAAAAAAAAAAAACwQIS+AAAAAAAAAAAAAAAAABaI0BcAAAAAAAAAAAAAAADAAhH6AgAAAAAAYKdXVftW1e9W1fur6utV9d2q6rHXiVtdIwAAAAAAAMxq+1YXAAAAAAAA8P2kqs5KcsjE8JeT/HB3X7HBvfbr7vM2VOBOqKoemOT1Sfbe6loAAAAAAABgM+j0BQAAAAAAsPVukeQ3trqInVFV3THJ30XgCwAAAAAAgOsRnb4AAAAAAAAWw7Oq6jXdfclWF7KTeV6S3ceu353klUnOSDLeOe3C67IoAAAAAAAA2AihLwAAAAAAgMWwX5KnJDlhqwvZWVTVHkl+dmzoM0ke0N1XbVFJAAAAAAAAsCl22eoCAAAAAAAA+G/HVdXNtrqIncgdk2wbu36rwBcAAAAAAADXB0JfAAAAAAAAW+ttYz/vmeQ5W1XITmgyIPfVLakCAAAAAAAANpnQFwAAAAAAwNY6Icl3xq4fV1WHb1UxO5k9J66/tyVVAAAAAAAAwCbbvtUFAAAAAAAAfJ/7WpI/TvK7o+tdk7wgyS9dF4dX1V5Jjknyg0n2S3J5knOTnJrkk93d10Ud67RD/geHVbVrkqOTHJzk5qNzPtfd/zjD2kryI0luleF+7pHkvAxdyD7S3ZdsUo17ZvjeDhydc1Wu+d7+o7uv3oxz5qhne5Lbjl77ZgjkfS/JpUnOSfKlJJ/v7qs24ayl+/uDSa7O8Dt0cnefvcF990pyVJIjM3yGPZJckuT8JJ9N8unNqH/svAOT3DXD97dPhs9yYZLTk5zS3RduYO+jktxutPeNMnyGr2d4Br+1wboPT3L7DPd/rySd5LIk30jy5SSf6e7LNnIGAAAAAACQ1GL/nQ4AAAAAAOD6parOSnLI2NB+GcIxZya56Wisk9yluz8x717dfd6MdRyd5DlJfjJD0Gwl5yb5qyQv3GhQZLNU1Xr+uPXc7j5xbI8TM3RYW/IT3f3BqrppkudnCNzdNMt9qrvvuEpdByV5RpKHZggMreR7Sd6f5Dnd/fF5P8TonPslOT7JPTL9ezsvyV8keXF3X7Cec+ao52ZJnpnk4RmCS6u5LMlHkryxu187Zb9DMwSHlryuu4+tqm1JnpDkSRkCX5M6yclJntbdJ89R/22TPCzJ/ZLcKcm2VaZfkuQNSV7a3WfOesbEeXskeWKSx2blz7Hk6iQfT/I3SV7b3RfNsPc+SZ6a5BEZAlnT9j05w+/E++eoe/ckv5XkcUmOWGP6VUlOSfK2JH8oAAYAAAAAAOsj9AUAAAAAAHAdmhbUqqqnJPmDsfEPdPd91rPXGmt2TfJnSR4zR9kXJXlkd79jjjU7xI4KfWUIZL0p08MyU0NfVXV8kucm2X3GejrJS5McP2sntaraN8kbk6z6TEz4VpKHdPe/zLFmZlX1k0nekmTvOZee090/NGXPQzMR+soQ9HprZvvsneT3uvvZa02sqjslWTVYOcV3kvx6d79hnkVV9XNJXpvpocBpHj0tJDe2968meWWGrl6zekOSx3b3FWvsfVCS9yS59Rx7Lzmiu89YxzoAAAAAAPi+t32rCwAAAAAAACDJENh4cpKDR9c/VVX37e73bdYBo8DX/0ty34m3rkzysSRnJ7lhkqOSHDb2/t5J3lpVj+nu129WPQvklhkCd0vdvb6d4X78V5I9M6WzUVXtkuQvkzxq4q2rk3wmyVmjvfZLctdcE46qDB2Z9k9y7FrFVdXhGUI3t5x465IMoaVvZOhQdWiGblW7jN7fJ8n7quqB3f2etc6ZR1UdkeQfMzwv4/4zyalJljqM3SjJLTLcw2mdydYyGXb7dJKlINHhSW4/XlqSZ1XVtu5+xhr77jJx3RkCZ19McnGGIOBNktwm1/xeJsNn/quq+m53v3mWD1BVx2V4xibPvDTJf2T4DjvDd3bbJDebZd/R3s9LMhly6ySnjT7LJaPP8aMZnsUlj0hyQFX9THdfOWXv3ZK8O9cOfJ2f4Rn/Rob7tFeSAzL827HHrLUDAAAAAADTCX0BAAAAAAAsgO6+vKpOSPKaseEXVdX7Z+0GNYPfy/LAVyf50yQndvc3xydW1TGj9243GtqW5NVVdUp3f3qT6lmPW4z9/NAs74721CQrhXAuXGPPl2cIrVyQ5BlJXtPdl49PqKpbrLDu2Vke+Lo8yYuSvGqF+7k9ySOTvCxDACdJHlVVH+3uV08rrKp+IEOXq/HA12lJnpnkbd191cT8AzJ0HXvcaGi3JG+oqjt29znTzlmH52V54OufkhzX3Z9aaXJV7Z7kXkkenOTec5zzwFxzv96f5EndfdrE3rdK8n+yPBj29Kr65xlCk99J8rdJ/iFDd71Lp9R/2yTPSfILY8N/WVX/0t3nrnZAVT04Q2e3Ghv+fJJnJfnH7v7eCmuOzPB8P36NvR+V5YGvq5O8KslLu/srE3Mryc8n+eOMhUuTPD/J06cc8egMQa4lZyX5zSTv7u6rV6inktw5yQOSPHa12gEAAAAAgNXV5v2NEAAAAAAAgLVU1VlJDhkb2q+7zxu9t0uST2Xo9LPk4d39xnn3WmHuHZJ8MsuDJ7/V3a9cpdY9k7wvyd3Hhj/W3Xedtua6VFXHZnlI7tHd/doZ1p2Y5ISJ4fOT3Ku7Pzvj2XdLcnKu6dx0QZKf6u5PrrHuyNG6fUZDFyU5qLsvmTL/VUmeODb0riT/s7u/s8Y5x2UImC15TXc/ZrU1sxoFey7JNR2dTk9y+8mg3Crrbzit/qo6NEO3rUl/l+SXVwoajdZty9ARbDyUdVaSI1bpYnWjJNu6+4KV3p+y5sQsf3ae290nrjJ/3yRfytDxbMlbkjxire9wtH57khuv9HtdVYdk6Kq2FL67PMmDuvvda+y5f5KTMnRJS5KrMtyna933qnpnkvuPLq9McuvuPmNy3pRztiXZZaVQGwAAAAAAsLZd1p4CAAAAAADAdWEUaHnGxPALqmrXTdj+uCwPfP39aoGvUT2XJnlYkm+PDd+lqn58E+pZNL89a+Br5NlZ/re2X1kr8JUk3X16kieMDe2da7pyLVNVByb5tbGhs5I8dJawUHf/YZJ3jtdXVTdfa92M9s01ga8kecesga9RbWvWP+GrSR47LfA12vOqJI9JMt7N7NAMncKmrbl4nsDXyPOSjHe6+5U15v9Olge+PpUhyDnTPejuK6cFOTN0thvvtvY7awW+Rnuem+ThY0PbRnWuZDxU+qlZA1+jc64S+AIAAAAAgPUT+gIAAAAAAFgg3f2OJB8eG7plksdvZM+q2j1DeGvcZLhsWj1fSfKnE8PHbqSeBXR2kr+edXJVHZbk58aGPtTd75rjvDcn+c+x62nBpN9IstvY9XO7+7I5zhnv9LVbkp+ZY+089t9B+y558SiAuKrRnBdPDB+7mYWMgmdvHRs6vKr2W2nuqHPf5O/ub88TkJumqvbIEHJbcmaSV8+6vrs/luX/zkwNx43Z0d8zAAAAAAAwRugLAAAAAABg8Rw/cf3sqtpzA/vdJcnuY9cfG3WcmtXrJ67vsYFaFtHbV+sitYL7TFy/aZ7DuruTfGhs6G5VtdsKU+879vNVGcJi8/hIkivHru855/ppzhu9ljy0qjZr70md5G/nmP/G0Zolx1RVTZs8TVXtXlX7VtUhVXXo+CvJZJeuW0/Z5g5J9hm7Pq27PzhvLVPcI8u7fL15zmc4Sf557OdDqurgFeZ8Yezng6rqKXOeAQAAAAAArNP2rS4AAAAAAACA5br7o1X1D0l+fjS0f5KnJDlxnVv+6MT1yXOu/2ySi5PcaHR9RFXt3d0XrbOeRfPJOedPht7OHYWB5jHesesGSQ5MctbSQFXdIMmdx+acnWTfqtp3znMuTLK05rA5166ou7uq/jbJk0ZDN0zyz1X15gwBrffP0plrRl/q7vPWnvbftZ1XVWfmms960wzd8r602rqqum2Gbnj3THKbXHPPZnGTKeNHT1x/cI491zL5DH5tHc/gFRPXt0zylYmxv0nykLHrP6iqByV5TZJ3dvfX5zwTAAAAAACYkdAXAAAAAADAYnp6kgck2Ta6/t9V9Sfdfe469tp/4nqeLl9LIZ/Tszw8tn+S60voa957etDE9bwduFZy04yFvpLcPMmuY9eHJvnyJpyxWU5Mcv9cE67aliE09bAkV1XVKUk+mqHb2L9sIBw017M68sUsD7jtnymhr6o6JMnLkzxoHecs2XvK+AET15/bwBmTJp/Bl49eG7HS8/GW0Ws8+HXM6JWqOiNDiPSkJB/u7lM3WAMAAAAAADCyy1YXAAAAAAAAwLWNwhOvHRvaM8mz17ndZCei9YS1JtdsZoBoq10y5/x9dkANe23BGevW3d9K8mNJ/n6Ft7dl6FL2pAydv86pqpOr6rFVtesK81dz8TrKm+lZrapbZwimbSTwlUz/m+vkd3jBBs9Zbe/NcK3no7s7Q5Dv95N8d4U1hyf51SSvTvL5qvpiVZ1QVdenfx8AAAAAAGBLCH0BAAAAAAAsrhOSfGfs+vFVddi0yauoietef0mbusfOarcdsOfkd3RdnLEh3f3N7n5oktsleUmSz2Tl56IyBMT+PMlnquoO8xyz4UJX2KOqtmcIpI134/pukr9KcmyGrnYHZAhbbu/uWnolefRm1bEB19nz0d1XdvczM3Sbe0qSDye5fMoeh2foAndmVT1sB9QIAAAAAADfN7ZvdQEAAAAAAACsrLvPqapXJnnaaGjXJC9I8stzbnX+xPXe6yhncs1mdi3a2ZyX5Mix6wO7++s74Ixx7+3u+23yGZuiuz+b5Pgkx1fVjZPcLckxSe6dIew1/jfJWyX5QFXdpbu/PMP2O+pZfUiS249dn5Hkft195gz732jGOia/w83sfjW599Hd/dFN3P9auvsbSV6W5GVVtXuSOyU5Osk9k/xUhoDckr2TvLGqLu/ut+3IugAAAAAA4PpKpy8AAAAAAIDF9sIsD608rKruNOce505cH7nirCmqqpIcMTH8zTlruD75xsT1XPdzgc7YdN19YXe/p7uf090/nuRmSZ6a5KKxafskef6MW67nc08+q5PPf5L8/MT1r88Y+EqSA2ecNxkEPGrGdbPY0uejuy/v7o9298u6+0EZvtNfSnL62LRK8oqq8jdpAAAAAABYB/+BHQAAAAAAYIF194UZgl9LKsmL5tzm4xPXR8+5/jZZ3j3pi6O6vl+dPHH905t9QHdfnORzY0OHVtVkmGnhdff53f3SJPdL0mNvPXDGMNBhVbXvrOeN5t5ybOj8JCuFucbv5beTfHDWMzL7789JE9f3muOMtezwZ3Ae3X1Fd78pQ5e3c8beOijJnbemKgAAAAAA2LkJfQEAAAAAACy+Vyb56tj1favqPnOs/3iSy8eu7zpngOiRE9cfmWPt9dF7Jq4fWVU3uA7OedwOOOM60d3/luSzY0N7JZklzFUZOkjN6pdHa5ac1N29wrwbj/188ZQ51y6m6vAkx8xYy6ezvCPeravqx2dcu5YPJLlq7PqBVbX/Ju29bqMw6Fsmhm+xFbUAAAAAAMDOTugLAAAAAABgwXX3d5OcMDH8oiwPt6y1/u8mhl8wy9qq+qEkT5wYft0sa6+vuvszST40NnRQkmfsgKP+NMmVY9dPrqrb7IBzritXTlxfvuKsazu+qvZca9JoztMmhqc9qxeM/bx/Vd1kxlpekhn/xjoKkv3JxPDLq2q3Gc9abe8Lkvz12NCeSV660X03yXq/ZwAAAAAAYIzQFwAAAAAAwM7hdUk+N3Z95yQHz7H+j5KMdzP6xap6wmoLqmqPJG/KEChZ8onu/tCUJUvreuJ17znq3Fk8M8vv57Or6knzblJVd6uqH1npve4+I8lrxoZukOSdVXXUnGfsXlXHzlvbKvvdsaoeXFXb5lhz+yR3GBv6endfNOPyH0ryF1U19W+bo/f+YjR3yVlJ/mHKkk+N/bwtyVPXKqKqnpvkwWvNm/CKJBeOXf9IkjdU1e6zLK6q7VU1rSPaiVkeqHpkVb14nu9ldMZRK3Ugq6ofqKonV9Vec+y1Z5KHTAyfOk89AAAAAADAQOgLAAAAAABgJ9DdV2UD3aS6+5NJ/nBi+FVV9Yqq2mdyflX9WJKPJDl6bPjyJL+23hquT7r7pAyhm3GvrKp3VdW9pwWUavDDVfXUqvr3JP+a5WGoSccl+fTY9cFJPl5Vv1dVB01bVFU3rKr7VNUrkpyd5eGxjTo0yVuSfKmqXlJVR1fVrlPq2F5VD03yniz/2+Ss3eKWOnL9YpJ3VdWRK5xxZJJ3j+aMe3x3T3adWvKmieunV9ULVuooVlW3qqq3JHnOaOibM9ae7j4/ya9meUDwF5J8rKoeWFXbV1pXVUdU1dOTnJHkAVP2/nKSX58YflqSj1TV/5i292j/Q6vqN6vqnzKESX9yhWm7ZQitfbWq/nK059QAWFXdNckHkhwyNvyv3X36tDUAAAAAAMB0U/9DPwAAAAAAAIulu99eVSclOWadWzwjQ6ehpYBHJXlykidU1b8l+WqGblK3SXL4xNqrkzyxu09Z59nXO939vKraL8l4h6+fGb0uqqpPZggIfS/JjZLsn+SoLO+cttYZl1bVA5K8N8kPj4ZvmOG7fEZVnZnkCxm6SW1PsneGUNbhGTpY7UiHZOiQ9dQkV1TV55OcM6plW5KbZ3je9p5Y94UkL5jxjHck2TfJzyb56SSnVdUpGcJQleFzrhSae2F3v3fapt39gap6V5L7jw0/M8n/GoXxvp7hezoyya3H5pya5M+S/PGM9ae731FVxyV5Wa4Jvt0uQxeyS6rqE0nOzRAM22f03s1m3Pv1VXXzJC8c2/vuSd6e5LLRM/iNJN9JsleGe3lUkhvPWn+GZ/fRo1dX1RlJzszwPV85qvm2Wd5lLUkuy7VDaQAAAAAAwIyEvgAAAAAAAHYux2fowDW37r6iqu6f5P9m6D60ZHtWD5JdnORR3f229Zx7fdbdT66qjyV5ZYZwzJK9k9x7hi2uTnLRGmecXVV3yRA2+pWJt285eq3lwhnmbMRuSe44eq3mpCQP6e5vz7hvJ/mlDAGpnxiNrXZOJ/n97n7WDHs/PMn7kvzo2NieWbnrVZKckqHr1n1n2Ht5Ud0vHwX0XpPkpmNv7ZXZnpPV9n5JVX16tPfNx976gcweEL1g7SlJhqDdEaPXas7J8D1/ZsZ9AQAAAACACbusPQUAAAAAAIBF0d0nZejis971V3T3o5LcM0Pg5XurTP9mkj9KcpjA13Td/fokB2fovnXaDEu+m+SfMnTIOri73zrDGZd29yMydLV6Q2YL6XwtyV8n+YUsDwNt1HuTPCTJn2fouLWWTvLhDIG1e3b3ufMc1t2XZOjyddwq53WSk5PcY8bAV7r7wiT3SPK8JOevMvW0DGHLu3f3ObPWvcJ5b8/Qhe3ZSb68xvQrMwTknpDk72fY+91JbpHkNzOE03qNJd/LcL9OTHJkd6/UueyiJPdK8pIknxjVtJbTMvweHNnd/z7DfAAAAAAAYIrqXuu/9wMAAAAAAHB9VVV7ZQiA/WCSfZNcniHsdWqST7Q/Js2tqg5Ictck+2fo6rRLkkuS/FeGUMxp3X3FBs/YJcntkxw1OuPGGcJkFyc5K8mp3X32Rs6Yo5Z9ktwmQ+honwwdpi4f1XJGklO6+1sz7nVolgeiXtfdx07MuXOSWyU5MEOntK8lObm7v7KBz7B7kruNPsdNklya4fs6dUd1q6qqw5LcOcl+Gb6/KzKEz76Y4Z5dvIG9b5rk7kkOyPB87JrhM52b5PQkX+juy+bc84YZ7s9hGUKEe2QIl12c5CtJPt3d/7nemgEAAAAAgOWEvgAAAAAAAICFMEvoCwAAAAAA4PvBLltdAAAAAAAAAAAAAAAAAADXEPoCAAAAAAAAAAAAAAAAWCBCXwAAAAAAAAAAAAAAAAALROgLAAAAAAAAAAAAAAAAYIEIfQEAAAAAAAAAAAAAAAAsEKEvAAAAAAAAAAAAAAAAgAUi9AUAAAAAAAAAAAAAAACwQKq7t7oGAAAAAAAAAAAAAAAAAEZ0+gIAAAAAAAAAAAAAAABYIEJfAAAAAAAAAAAAAAAAAAtE6AsAAAAAAAAAAAAAAABggQh9AQAAAAAAAAAAAAAAACwQoS8AAAAAAAAAAAAAAACABaBBkEgAAAGWSURBVCL0BQAAAAAAAAAAAAAAALBAhL4AAAAAAAAAAAAAAAAAFojQFwAAAAAAAAAAAAAAAMACEfoCAAAAAAAAAAAAAAAAWCBCXwAAAAAAAAAAAAAAAAALROgLAAAAAAAAAAAAAAAAYIEIfQEAAAAAAAAAAAAAAAAsEKEvAAAAAAAAAAAAAAAAgAUi9AUAAAAAAAAAAAAAAACwQIS+AAAAAAAAAAAAAAAAABaI0BcAAAAAAAAAAAAAAADAAhH6AgAAAAAAAAAAAAAAAFggQl8AAAAAAAAAAAAAAAAAC0ToCwAAAAAAAAAAAAAAAGCBCH0BAAAAAAAAAAAAAAAALBChLwAAAAAAAAAAAAAAAIAFIvQFAAAAAAAAAAAAAAAAsECEvgAAAAAAAAAAAAAAAAAWiNAXAAAAAAAAAAAAAAAAwAIR+gIAAAAAAAAAAAAAAABYIEJfAAAAAAAAAAAAAAAAAAtE6AsAAAAAAAAAAAAAAABggQh9AQAAAAAAAAAAAAAAACwQoS8AAAAAAAAAAAAAAACABfL/AYCvXtExV/CwAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAADX0AAAcqCAYAAACQOCfjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd7SsdXkv8O9zQCyAIAJiRAQlGHvvDSyJxoZdo8aWYqJeozExMfFeb4yaGE0x0RiTWGJi4rW32NBgjR17AxTFgoKIAiKIPPePd07cZ87svWd2m+Gcz2etWYv5ve/v9/xm5p13r8U+3/1UdwcAAAAAAAAAAAAAAACAxbBt3hsAAAAAAAAAAAAAAAAA4GeEvgAAAAAAAAAAAAAAAAAWiNAXAAAAAAAAAAAAAAAAwAIR+gIAAAAAAAAAAAAAAABYIEJfAAAAAAAAAAAAAAAAAAtE6AsAAAAAAAAAAAAAAABggQh9AQAAAAAAAAAAAAAAACwQoS8AAAAAAAAAAAAAAACABSL0BQAAAAAAAAAAAAAAALBAhL4AAAAAAAAAAAAAAAAAFojQFwAAAAAAAAAAAAAAAMACEfoCAAAAAAAAAAAAAAAAWCBCXwAAAAAAAAAAAAAAAAALROgLAAAAAAAAAAAAAAAAYIEIfQEAAAAAAAAAAAAAAAAsEKEvAAAAAAAAAAAAAAAAgAUi9AUAAAAAAAAAAAAAAACwQIS+AAAAAAAAAAAAAAAAABaI0BcAAAAAAAAAAAAAAADAAhH6AgAAAAAAAAAAAAAAAFggQl8AAAAAAAAAAAAAAAAAC0ToCwAAAAAAAAAAAAAAAGCBCH0BAAAAAAAAAAAAAAAALBChLwAAAAAAAAAAAAAAAIAFIvQFAAAAAAAAAAAAAAAAsECEvgAAAAAAAAAAAAAAAAAWiNAXAAAAAAAAAAAAAAAAwAIR+gIAAAAAAAAAAAAAAABYIEJfAAAAAAAAAAAAAAAAAAtE6AsAAAAAAGCOquqUquolj5fOe09Mr6r2q6rHVtWrqurEqjqzqn469pl+ct77BAAAAAAA4OJlz3lvAAAAAAAAAC6OqurRSZ6dZN957wUAAAAAAIBdi9AXAAAAAACwLlV1eJKvzjDlx0l+MHp8OcnHk7wvyX9190UbvT/YDFX11CR/Mu99AAAAAAAAsGsS+gIAAAAAALbapUaPKyQ5KsndRuOnVNXfJfmb7r5wXptjsVTV8Ulut2ToPd199Hx2M6iqGyV52oRDneTUJGeN/nu7L23BtgAAAAAAANiFCH0BAAAAAACL4vAkz0nyoKp6UHefOOf9wHKemGTb2Nizkjynu8+cw34AAAAAAADYxQh9AQAAAAAAm+HcJCctc+wySQ5Mcrlljt8oyXFVdavu/sZmbA7Wqqq2Jbn72PCruvsp89gPAAAAAAAAuyahLwAAAAAAYDN8rLuPXumEqrpakgcm+Z0MIbClDkvyqiS32JTdLZDuPnzee2Am10iy79jYK+exEQAAAAAAAHZd2+a9AQAAAAAAYPfU3Sd39zOSXCfJRyaccvOqut8WbwtWc9iEsS9t+S4AAAAAAADYpQl9AQAAAAAAc9XdpyW5W5LTJhz+zS3eDqxmvwlj5275LgAAAAAAANilCX0BAAAAAABz192nJ3n2hEO3rqrLbPV+YAWXmjDWW74LAAAAAAAAdml7znsDAAAAAAAAI69N8pdjY5dMcq0kH13LglW1R5LrJ7lmkitkCOycm+TT3f2uKdfYP8lNkxyS5KAkeyT57ujx0VFgbaFU1bYkN0hyeIY9H5Dkh0lOT3JSkhO6+6JNqr1XkhsnOTTJ5ZNcLsn5o/onJ/n8qLsbqxhdezdJcrUk+2f4g45nJnlrd39tyjXmeS1cOsN354pJDk6yT5LvjWp/qrtP3oy6a1FVleSqSa6b4bt+2Qy/Sz0vyTlJvpHklCRf7u4LN6H+z2X4rI9IsneGz/lbGe4x39rgWpdOclSSX0hyYIbXemGS7yc5I8knu/uUjaw5YQ/b782Hj/ZwwGgPP8zwPn+hu7++gfUOTXK9DN+BgzIENU9P8u0kH+ruH25grUskuUaSa2d4XZcd1TsvyVlJvp7kK5v9HgMAAAAAcPEn9AUAAAAAACyE7v5aVZ2bIfCw1EHj51bV0Un+a2z4mO4+fnT8sCS/n+RXMoSOxr0nybKhr6raM8kjkvxqkltkCHpN3HZVfTzJvyd5fnefv9yaK9Q6JclVlgy9rLsfPus6o7Vuk+QxSe6UIWywnDOr6j+TPKu7P7+WWmN198jwXj84yW2SrNidraq+nOStGV7rCROOr9Q563arHN/uiI0IVVTVS5M8bJXTvjpkhiba6fOcsObXuvvwJcfvkuSJSY7J5GvvEUleutKG5ngtbMtwHTw0w7UwqTPa9nO/muT/JXlOd5+x3tprUVVHZXifHpAhGLqa86rqY0neluTV3f3lVdZ/aVb+rI/NcK+6xTJLXFRVH0jy19392in2N2kPleSWSe6R5OgkN8wqvyeuqm9kCOI+d4PDV/dI8sjRPvZb5dyvJ3lHkpd393vXUOvgJE9IcvcM4eHlXFhVH07y/CSvXGsIsqqOSfKbGd7nS09x/hlJPpTkjUleN6/vAAAAAAAAi2vbvDcAAAAAAACwxA8mjO0/ywJV9agkX8gQ5JgU+Fpt/h2SfDbJi5LcOssHvpKkMnS1em6SL1fVvWattxGq6qhRcOe9GcIrK4V8Mjr+kCSfqap/qqplgzlT1L5Pki8m+Zckv5RVAl8jRyV5fJJPVNUT11p7V1NV+1TVq5P8Z5I7ZuVrb7k15nkt3DnJZzJcC3fKCoGvkSOSPDnJV6rq8WutuxY1eHqG/f6vTBf4SoYwz22SPCPDe7zW+pepqtckeV2WD3wlw+9zb5PkNVX1+qo6cMY6t0vytSTvzxAuu2mm+8Ogh2Z4X06uqqePwnxrVlVHV9UnkrwhyT2zSuBr5LAkv5bkPVX1vBlq7VVVf5LkK0n+ICsHvpLh/bhVklck+VRVXXfaWqN6+1fVa5O8O8N3btXA18iBSe6W4WfN381SEwAAAACA3YPQFwAAAAAAsEgmBQHOmnZyVf1ekn/KdMGjSfMfkaGDz9XXMP2wDMGM31tL7bUahdQ+nOQua5i+LcmjMoQqpg29bK+7raqeneTVSY5cQ+3tLruOubuMqto7Q/e5+6xjjblcC6PaT0ryliTXXEPtfZP89Sh0Nk0gaSO8LMkfJ9lri+r9j6q6ZIZOd/eeceo9k7yrqi4/w5wjklx5xjpL7ZnhfXrDWj+bqvqdJMclucE69jHVfaKqDsjQHeyp2blr5DSuneQDVXX3KetdLkPnyLkEfgEAAAAA2LVt1S9NAAAAAAAAVlRVV8nkf6R/+pRL/GKGri7bnZ/kv5Icn+S0JBdm6F5zsyT7TKj/0CQvnrBuJ/nvDCGNU0frXClDJ6NjsmM3pkry7Krq7n7OlPtes1Ew4TVJLjF26IIMXWc+PNrzDzK85sOT3D5D56Clbprk9VV12+7+yZTlX57kV5Y59tkk70xycpIzRvs7IEMg6CYZwh+1wtqfWvLfR2bH6+LcJCdNsb8LpjhnGl8f288B2TlE84UV6n19yjovyvA5bPetDB2/Pp3kuxlCL1dJco9Jk+d5LVTVn2Xo2DXuzAzXwcdHr+FHGTr3XSvJnbNzuPJRGUKeT5qm7lpV1cOSPHTCodOTvD1D969vJTkvQ9emfTOEp66VoSvXzB0Exzw3yW2XPD8jyWszfNZnZOgAdZ0MobCDxuZeN8nbq+oWM3xXlzotw+fxhSSnJPlhhs9l7yQHj+reefTfS90tyTMzdAubWlU9M8kfLnP4pAwBrS9leO8rw3t7VIYOitN2Jdtea/8kH0jyCxMOfzZDOOtz+VmQ+OAMn+cvZ/iMt9snyauq6lbd/fFVyv5lhs9k3JczBN2+mOR7GX4e7ZPh+j8qQ7jsZkkuueoLAwAAAABgt1XdPe89AAAAAAAAF2NVdXiSr44Nv6e7j55xnSdk+Af0S12Q5IDuPnfs3KMzBLqW+ml+FsB6TZIndPepy9S6VHf/eMnzI5OckJ3DYJ9N8qju/sgy61wjQ1Ds5mOHfpLklt39sUnzxtY4JUOYZ7uXdffDp5h3RJJPZAgRbHdhkr9K8hfdvWxYrqqun6Ej2o3GDv1ld//uFLWflOQvJhw6Psnvd/dHV5l/pST3S/K4JC/v7qetcO7xSW63ZGjma2sjVdXDk7xkbPiI7j5lhjVemuRhS4aWXrvnZQjJvGC5UM+E63ee18K9MgSWlvp+hgDmvyzd59i8SnJskhdm54DRPbv7javVXquqOjE7dqf7aYb3/Hndff4qc/fI8H3/1SR36O4Vu9xN+KzPz9BdrJJclOF79LRJ71NVXSrJ/8kQtNo2dvhp3f1/V6o9WuPhGbpevTjJm7r701PM2SPJA5M8J8khSw51kput9v1ess59k7xqwqFPJnlyd79jlfmXz9BB63FJTljtvlhVr8twTS31wSRP7O4PrzBv/wzv0ROyYxj1lCTX7e6zl5l35SRfG5tzeoafGW9aaa+j+XtnCA//WpIfdPeDV5sDAAAAAMDuRegLAAAAAABYl40IfVXVgRm66xwydujd3X2HCecfnZ1DX9v9bZLH9wy/BKmqd2T4x/dLfTxDqOMHq8y9VJK3ZOiatNRnuntSB5jx+adkbaGvD2boUrPdj5Lcvbvfvdrc0fy9krw5O77unyS52nJhudG8a2cIbewxduivk/xud180Tf3RWnsk+blV6h2fXT/0td25SX65u987457mdS0cnKGj0X5Lhk9Mcvvu/saUta+cIZhz6JLhzye59izf4WlV1bUyhDmXmipANWGty3T3j1Y556WZ/FknyW919wunqPPoJH8/NvyTJNfo7pNXmbtvknPW8l5W1WFJ3pfksCXD/97dy3X4Wzr3oAyd/vYdO/SqJA9dLVw3Yb2rdPfXVjj+G0n+YWz4BUkeO+1rr6pHZOduj3/Q3X++zPmPSfJ3Y8NHd/d7pqk3ttaq1xIAAAAAALuf8b8IBwAAAAAAsKVGwZE3ZufAV5L844zLfSRDh69ZAl/Xzs6Br7MzdBtaMfCVJKMOPfdOctrYoetU1S9Ou49ZVNWdsmPIJ0keOW3IJ0m6+4IM3bbOWDJ8iSRPXGXqU7Jz4OsV3f2EWQJfoz38dKVQ0W7oD9YQ+JrntfD47Bj4+lGSO08b+BrVPjVDV6mlrpnkHtOuMaOrThib9T6TJFlnSOel0wS+RnVemOSlY8OXSPJbU8w9e63hue7+epLfHhu+X1XtN+n8MU/IzoGv9yV50KyBr9FeVgp87ZnhvrTU27r7MbO89u5+SYaud0s9oaouucyU8WvpxLUEvka1Bb4AAAAAANiJ0BcAAAAAADAXVXXVqvqDDB2+xkMrSfLRJK+ccdnf6+6fzjjnsRPGnt7d35x2gVE47A+mXHsjPHns+fu6e9b3avu+/2Zs+F7LnT/q6nb/seHTM0X4hFWdnOT5a5g3r2thn+wcCHpud39lDbU/kORd09Zep/EgUpJ8b5NqLee87Py5rebJo3lLPWKFQNJGeWt2DAPumeRmK00YXRuPGRu+IEOHr1nvz9N4YHbslthJHrfGtf5kNH+7K2Tyz6dk52tpq68jAAAAAAB2cUJfAAAAAADAZrhxVX1ymceXqup7GUIuz0py8IT530xyvxk71Jw4a5ekkfEuXxck+ec1rPMfSc4cGzumqsa7Yq1LVR2Q5PZjw+PdaWbxlrHnV6mqq0w8M7lrdu7y9cLu/uE66jN4yawdmeZ8Ldwxyf5jY2v53ixX+3brWGslk4I5t96kWst5Q3d/d5YJo/NfPzZ8QJKbbtiuJte9KMO9eqmbrzLtdkkuOzb2ypW6da3TfceeH9/dJ61loVHnuc+MDS93LY5fS9eZsgsaAAAAAABMZc95bwAAAAAAANgl7Z3kemuc+8kkD1xDQOD4WQtV1RWSXHVs+N3dPR7eWlV3n19Vb0zy8CXD+2R4Hz4x63oruE2SGhv74DrW++qEsRskmfT+Hz1h7OXrqM3P/Nca5szzWhgPwnxznaGe8dqHV9X+3X3WOtac5KNJLsqOfxzzH6vq7t39uQ2utZzx8Na0XpvkQWNjN0/yvlkWqaprJ7lJkutm6JB12Qxdq5brGnbk2PPDVilx9ISxTblPVFVl+B4stZ7vQDJci9dd8vwGy5z34bHneyf5j6p68Fp+hgAAAAAAwDihLwAAAAAAYFF8Pcnzk/xVd/9kDfPXEqy60YSxj61hne0+mh1DX0lyw2xs6OtWE8ZeU1UzdYlaxYHLjN9i7Pnp3X3iBtbdXXWGsOOs5nktjNe+XFWt5TVst88ytTc09NXdZ47CmccuGT4iyaeq6g1J/j3JOza5e93H1zhv0n1k0j1sJ1V1ySSPS/KIJNdcY/3txju8jRu/T1yU5EPrrLmca2ToeLbUw6rqbutYczzUttx34O1Jvp3kikvG7pzkK1X1b0leneT9a/x5BgAAAAAAQl8AAAAAAMCWOz/JDzOEOb6cIQDx3iT/1d0XrWPd765hzqR/zP+Fdezh81PWWI9DJ4xdd8LYelx+mfGDx55/ZoPr7q7O6e4frWHePK+F8dqXydq7+61U+6QNXjNJnpTkttkxLLRHknuPHj+tqhOS/HeGIOd719nFbKkLk5y8lond/ZWquiDJXkuGx7+TO6mqWyV5WZKrraXuBPutcvwKY89P6e6zN6j2uEnfgUOXGV+rid+B7j6vqh6bIdy1tOPefkl+e/T4UVX9d4auYB9O8r7u/v4G7g0AAAAAgF2Y0BcAAAAAALAZ3tPdR29xzbV05rnchLH1dBaa9I/5x7vQrNdyIZyNdOnxgaraN8klxoaFFzbGWrtKzeVaGNno63qW2uvS3SdX1R2TvCZDl69xeyS58eiRJKmqU5K8Nsm/dfd6Oved3d3r6cT2w+wYJF2x61ZVHZPkzRlCeRtl/D4wbvza2Mz7xDy/A+nu11bVQ5K8KMneE065TJI7jB5JctEoUPiqJK/o7lM3erMAAAAAAOw6ts17AwAAAAAAABvkwjXM2XfC2Lnr2MOkuZNqrMekoNpWuOyEsXO2fBe7prVcu8mcroWqukySS86j9kbp7hOSXDvJk5NME7w5PMkTk3y8qo6rquuvsfR67i+T5i97f6mq/ZO8MjsHvi5K8o4kf5jkzkmulSFItk+SPbq7lj6SvGfGPY7fKzbzPjGv++H/6O5XJLl6khdk9QDntiQ3SvJnSU6uqn+qqoM2eYsAAAAAAFxM6fQFAAAAAADszs6eMDapW8u0Js2dVGM9zht7flZ3b0XwYVKYYZ8tqMvy5nUt/DhDcGjpH5h8fXffawtqb5ju/lGSZ1fVXyS5TZI7Jbltkptk5S5jd0jy4ar6je5+2Yxl13N/mTR/pfvLHyUZDxR9LMmvdPeJM9SctePaD7Njt6/NvE+MfweS5NjufsMm1txJd38zyWOq6kkZgnS3z3BNXTtD57hJLpHkUUnuWlV3XWcHOQAAAAAAdkFCXwAAAAAAwO7s+xPG9l/HepPmnrmO9SY5Y7xmVe3f3WdtcJ0ddPfZVXVBkr2WDM+9y85ubl7XwkVVdVZ2DPYcsZk1N1N3d5L3jh6pqj2TXD9DaOeOSY7JzsGnvZL8c1V9tbvfO0O5fauqRjXXYryL1kqf9QPHnp+a5I7d/YMZax6w+ik7+N7YnM28T4x/B5I5XovdfV6S140eqap9ktw8ya0zhMFukh3DkklySJK3VNW1u/t7W7hdAAAAAAAW3Pj/UAYAAAAAANidnD5h7BrrWO+aE8YmhRLW4zsTxq67wTWmrX2dLarLZIt0LRxVVZfcotqbqrsv7O6Pdfdfdfddkxyc5NFJvjV26h5J/mLG5fdMctW17KuqjsiOocsk+e4y514jyaFjw8+bNfBVVZeYsM5qTht7fnhV7TvjGtOa53dgVd19Tncf191P6+6bJ7lKkmdl6Ja31CFJfn/LNwgAAAAAwEIT+gIAAAAAAHZnn5gwduN1rHeTCWMfX8d6k3xkwthdNrjGcv577PlBVXXUFtVmZ/O8FsZrXzrJ0VtUe0uNgjv/kOSGGbplLXXTqrryjEveaI1bmTRvufvLpD29bw01b5DkUjPOGb9PbEtyizXUnsans3OA6s6bVGvduvsb3f2UJL+Y5Kdjh+8zhy0BAAAAALDAhL4AAAAAAIDdVnd/J8lXxoaPqaoDZl2rqvZKco+x4XMyhBI20jsnjD2gqvbc4DqTHD9h7KGbXPPCsed7bHK9i5N5XguTaj9kC+rOzeh+8dwJh2bteHfsGrdw7wljH1rm3AMnjJ25hpoPWMOc4yeMbcp9ort/nOT9Y8NXrKo7bEa9jdLd70vyprHhq1XVZeaxHwAAAAAAFpPQFwAAAAAAsLt7+9jzSyZ5xBrWeUCSy4+Nvbu7x7u5rEt3fzM7d/c5IsnDN7LOMt6cnUNYv1lVl93EmmePPd9nE2tdrMz5Wnh7du6w9KCquvoW1J6nL04Y22/GNY6tqoNmmTA6/55jw2dmcre3JDl3wtikINhKNfdP8shZ5oy8J8n3x8buX1VXWcNa03jDhLGnbVKtjbQR1xIAAAAAALswoS8AAAAAAGB39/wJY0+tqitOu8Ao9PTnEw797Zp3tbJnTBh7TlUdtUn1kiTdfWqSV4wNH5Tk7zex7Hh45Iiqqk2sd3Ezr2vhjCQvGhveI8krqurSm1l7zibdF06fcY1LJ/mzGef8WZLxLlAv6e7zlzn/2xPGfnHGmn+XZP8Z56S7f5Sd7317JXl5VW3G76f/OclpY2O3rqonb0KtjTR+LXWSM+axEQAAAAAAFpPQFwAAAAAAsFvr7s8lecfY8H5JXldV+642v6oumeTV2fkf8H+6u4/bmF3uqLtfl+RjY8P7JXlrVV1rLWtW1b5V9XtV9ZBVTn1Wkp+Mjf1KVf3lrGGsqtqjqq68ymmfGXu+X5JbzlJnV7YA18J4R6kbZvjuXG6Nta9SVX9bVddey/wp1n94Vd2nqvZYw9xLJPntseGLknx2DVt5ZFX9+pR1fz07d9z6SVYOW56Q5JyxscdX1aFT1nxqkgdPc+4y/ibJWWNjt0ny76N75kxW6hLW3edlcvjxmVX12FlrLal556p6wQrHn1ZVN1vj2ldOcq+x4S909/i9FQAAAACA3ZjQFwAAAAAAwBDkOHts7GZJ3ltVN1xuUlX9QpJ3J7nT2KGfJHnUhu5wZw9KcubY2FWTfLiq/qiq9lttgaraVlXHVNULk3w9ybOTHLLSnO7+YpInTTj0hCTvqqobT1H3ilX1v5J8Kau/Tx+cMPbi0b79rmswr2vhtCQPy9ChaKlfSvLxqnpIVe05Re29q+oBVfXaJCcleWySS602b42unyGkeVJV/elK3++xPV4lyRuT3GTs0HGj92Fa5+dn79cLq+oZy4WgquqSVfWMJC+ccPgZ3X3yckVG4aHXjw1fLsN39LrLzauqn6uqVyT5kyXDP1zu/BXqn5nJ18b9k/x3Vd1xtTWq6nJV9ciq+lSS/7vK6c9P8oaxsW1J/raqXldV15tm31V1RFU9uao+neStSW67wunHJvlQVX2oqh5fVYdNWeOWGX5uXHbs0L9OMx8AAAAAgN3Hqr9kAQAAAAAA2NV198lV9Zgk/zJ26PpJPlpVH0jytiSnJvlpkisluWOS22fy71ue0t3j3Zc2VHefVFX3T/KfSfZacmjvJH+a5A+r6v1JPpDk2xm67lwmyf5JrpyhI9MNR89nrf28qrpJkvFOUMdkeL8+neSdSb6S5Iwkl8gQOLlGkhuPHlMFtrr7w1X1+STXXDJ8VIbQxHlV9Y0kP5ow9Ze7+1vTv6qLrzlfC6+pqv+d5Oljh45I8vIkz6mq4zN0Izs9Q2ewy45qHZnhWrhukpm7P63T4Un+KMkfVdW3k3wiySeTfCvD+3NBkn1G590yydEZruOlzk/yuzPWPS3JWzIETbcleUqSX6+q1yT5dJLvJbl8hvfk3kkOnrDGx5M8c4paT0/ygLF9H5XkhKp6W4bv0Dcy3MOumOE13jE7fhYvTnK1JLeb6tUt0d1vHIXW/njs0A2SvLOqTszQZfFLGa6NynBdHJXherzFkr2fsEqtHnWme3+S8YDXsUmOHYXHjk9yYob3OaN6B2Z4v2+UISw5q5uNHn9dVV/KcB19ZvSatnc72/66jhm9tnEnZuiOBgAAAAAA/0PoCwAAAAAAIEl3v7yqLpHkH7Lj71C2JbnN6LHqMkn+sLufswlb3LlY97uq6jYZOhddeezw3hk6Lv3SJpV/WIYAy6SuX9cdPTbK4zKEQ/YYG790kp9fZs5ey4zvkuZ5LXT3n1bVtzJ0Wxrv0HWFDMGjB2xG7Q1yxSR3HT2mdX6Sh3b3Z9dQ74lJrpOf3VMOSvLoKed+OskvjTp5rai7v1xVj81wT1tqW5JfHj1W8u4M4bS3T7m3SXt4alWdmeQvsvP39+ez/Pd3LbXOGX0HXpLkPhNOuV52DoRttKuPHrNc799Icq/unhReBQAAAABgNzbVX1AEAAAAAADYHXT3i5PcJcmX1zD91CT37e4/39hdray7P5Khc8xLkqwaBFlpqQxdcN43Zd2Luvv3kjwwySnrqHn6FLXeneReSb6zxjq7hXldC6PaL87Qmend66ibJD9O8h9Jvr7OdZbz3Qyvbz0+m+T23f2qtUzu7vMz3GfeMOPUNya5Q3d/b9Uzf1brRRmCWxfMWOvFGbrlnT/jvEl7+Kskd87Q/WqtvjtlrbO7+75JfivJN9dRLxmuwZescPy0da6fJG9KcvPu/twGrAUAAAAAwC5G6AsAAAAAAGCJ7j4uybWS/GaSDyT56UqnJ/l4kt9NclR3v3bzdzhhE91ndPcjkxyZ5DlJPpfpgi1nJ3lLkickOaK7j+nuD89Y+5VJjsrwfr0n04VLPp3kWUmu3t3Pn7LOm5IcnuT+Sf45yUcyhC7OzfpDPLuMOV8Ln+zuOyS5eZJ/ydDBaBrfTvKvGbrHHdLdD+ruqUI+s+ruZyY5JMkjk/xbkq9OOfUnSd6a5MFJrt/dH1znPs7t7mOT3C/JR1c6NcECKQYAACAASURBVMn7k9ynu+/Z3WesodbfZwgDvjIrhwEvyBBCum13P2ojAl9L9nBchi5bD0zytiTTdLU6Mcnzktywu39/xnovTHLVJL+e5Lgp612U5IQMXcmOSXJ4dz93hRp3TnKNDN0O35xk2s/mB0leluR23X2P7l5vOA0AAAAAgF1UdfsdGAAAAAAAwHKqav8MIZYrJDkoyR4ZulN9J8lH1xtOqapTkxy6ZOifu/vX1rPmaN2Dktwow54vn2SfDAGpszOEcb6Y5Gu9wb8sqqq9k9wsyRWTHJhk31Hds5KclOTzs3QqYv3mdS2Mah+Z5JqjupdPsleSczIEX76a5IubFfCaVlVdPsnPZwgJHZjh/UmG9+fMJF9I8rm1hKCq6qUZwmzbfa27D59w3qFJbpIh2Lj3qO63k3xkI0NBo+/nLTO81gMyhMrOzBCw+mh3n7NRtVbZxyUzvN5DM1yX+yU5L8N18ZUM94mN6KS1vd5eGb4Dh2b4jC+X5MIMn/EZGbo7frm7z1tnncOSXC3D57h/hs/yJ0l+mKFb2WeSnNTdF62nDgAAAAAAuwehLwAAAAAAgDmqqjMyhGG2++vufsK89gNsnGlDXwAAAAAAAOO2zXsDAAAAAAAAu6uqukSGjjNL/WAeewEAAAAAAAAWh9AXAAAAAADA/FwzO/++5ovz2AgAAAAAAACwOIS+AAAAAAAA5ueBE8ZO2PJdAAAAAAAAAAtlz3lvAAAAAAAAYHdTVZdJ8utJfnfs0Ge7+0tz2BIAAAAAAACwQIS+AAAAAAAAtkBVPTrJo5Psk+Qqmfx7mudt6aYAAAAAAACAhST0BQAAAAAAsDUOSXK9FY4fl+SftmgvAAAAAAAAwALbNu8NAAAAAAAAkH9Pco/u7nlvBAAAAAAAAJg/nb4AAAAAAAC21k+SnJXk60nel+Tl3f2J+W4JAAAAAAAAWCTlD0YCAAAAAAAAAAAAAAAALI5t894AAAAAAAAAAAAAAAAAAD8j9AUAAAAAAAAAAAAAAACwQIS+AAAAAAAAAAAAAAAAABaI0BcAAAAAAAAAAAAAAADAAhH6AgAAAAAAAAAAAAAAAFggQl8AAAAAAAAAAAAAAAAAC0ToCwAAAAAAAAAAAAAAAGCBCH0BAAAAAAAAAAAAAAAALBChLwAAAAAAAAAAAAAAAIAFIvQFAAAAAAAAAAAAAAAAsECEvgAAAAAAAAAAAAAAAAAWyJ7z3sDuqqr2SHJkkmsm+bkk+yU5P8n3k5yc5GPdfe78dggAAAAAAAAAAAAAAADMQ3X3vPew26iqw5LcO8kdk9wmyWVXOP2nSd6Z5O+6+y1rqLXeD/aI7j5lnWusS1Xtl+R2S4ZOTXLBnLYDAAAAAAAAAAAAAADA7mWvJFde8vw93f2DrSgs9LVFquoVSR60xulvTvJr3f2dGertCqGveyR5wzz3AAAAAAAAAAAAAAAAACP37O43bkWhPbeiCEmSo5YZ/2aSE5N8J8PncdUk10uybck5d0vy3qq6XXeftqm7BAAAAAAAAAAAAAAAAOZK6Gs+Tkjy4iRv7e6Txw9W1ZWS/O8kv7Fk+Kgkr6qq2/bs7dk+nOSBM875xoznAwAAAAAAAAAAAAAAABtA6GvrdJK3JHlad39sxRO7v5nkN6vqU0mev+TQrZM8IMl/zFj7x919yoxzFsGpS5+8/vWvz5FHHjmvvQAAAAAAAAAAAAAAALAbOemkk3LssccuHTp1uXM3mtDX1rnfrMGr7n5BVd0+yX2WDD80s4e+Lq4uWPrkyCOPzLWuda157QUAAAAAAAAAAAAAAIDd2wWrn7Ixtm1Vod3dOjptPX/s+THr3AoAAAAAAAAAAAAAAACwwIS+Ft8JY88vXVX7z2UnAAAAAAAAAAAAAAAAwKYT+lp8F04Y22vLdwEAAAAAAAAAAAAAAABsCaGvxXfk2PMLk5wxj40AAAAAAAAAAAAAAAAAm2/PeW+AVd137PnHuvuiGdc4rKpekuSmSX4uyd5Jvp8hPHZCkvcmeXV3n7nezQIAAAAAAAAAAAAAAADrI/S1wKpqnySPGht+3RqWOmL0WOrg0eOaSR6c5C+r6h+TPLW7z1lDDQAAAAAAAAAAAAAAAGADCH0ttmclOWTJ87OS/NMm1do7ye8k+eWqund3f24jF6+qg5McNOO0q23kHgAAAAAAAAAAAAAAAODiQOhrQVXVvZI8dmz4j7r7zBmWuTDJ+5Mcl+TTSb6R5Owk+yQ5LMltkvxqho5f2x2V5Liqunl3f22N25/kt5P8nw1cDwAAAAAAAAAAAAAAAHZJQl8LqKqul+RfxobfkeTvZ1jmj5P8Y3d/d5njn0zyxqp6aoYw1pOT1OjYIUleW1U37u6eoSYAAAAAAAAAAAAAAACwTtvmvQF2VFWHJXlLhm5c230tyUNmCWB19zNWCHwtPe/H3f2HSR43duiGSR40bT0AAAAAAAAAAAAAAABgY+j0tUCq6uAk70xypSXDpyW5U3efvpm1u/v5VfWLSe6xZPi3k7xig0q8IMmrZpxztSRv2KD6AAAAAAAAAAAAAAAAcLEg9LUgquqAJMclOWrJ8BlJ7tjdJ27RNp6VHUNfN6+q/bv7rPUuPOo6tmrnsaWqar1lAQAAAAAAAAAAAAAA4GJn27w3QFJV+yV5R5LrLBn+foYOX5/bwq18ZFR3uz2SXHML6wMAAAAAAAAAAAAAAMBuT+hrzqpq3yRvS3KjJcM/THLn7v7kVu6luy9K8vWx4YO2cg8AAAAAAAAAAAAAAACwuxP6mqOq2jvJfya5+ZLhc5Lcpbs/Mp9d5byx55eeyy4AAAAAAAAAAAAAAABgNyX0NSdVdekkb05y6yXDP0py1+7+4Hx2lSQ5cOz5GXPZBQAAAAAAAAAAAAAAAOymhL7moKouleSNSY5eMvzjJPfo7vfOZVNJqurAJFcdG/7WPPYCAAAAAAAAAAAAAAAAuyuhry1WVXsleW2SOy4ZPj/Jsd39rvns6n88MDteE99J8oU57QUAAAAAAAAAAAAAAAB2S0JfW6iq9kzy/5LcZcnwT5Lct7vfPp9dDarqCkn+eGz4Td3d89gPAAAAAAAAAAAAAAAA7K6EvrZIVe2R5N+S3HPJ8IVJHtDdb97AOlevqrvPOOeQJG9OcoUlwxckedZG7QsAAAAAAAAAAAAAAACYzp7z3sBu5MVJ7j829pQkJ1TV4TOudVp3/3iZY1dM8saq+kySf03yuu4+cdKJVbVvkodl6PB1hbHDf9rdX5lxXwAAAAAAAAAAAAAAAMA6CX1tnV+dMPbs0WNWxyQ5fpVzrpPkz5P8eVX9IMlnk5yR5Owk+yS5cpLrZfI18KLufvoa9gUAAAAAAAAAAAAAAACsk9DX7mG/JLea4rxzkzyhu/9xk/cDAAAAAAAAAAAAAAAALGPbvDfAhvtCkmcm+UCS86ac8+UkT0lyuMAXAAAAAAAAAAAAAAAAzJdOX1uku2uL6nwnyR8lSVVtS/LzSa6W5EpJ9k9yqQxhsO8n+XaSj3b36VuxNwAAAAAAAAAAAAAAAGB1Ql+7sO6+KMmXRg8AAAAAAAAAAAAAAADgYmDbvDcAAAAAAAAAAAAAAAAAwM8IfQEAAAAAAAAAAAAAAAAsEKEvAAAAAAAAAAAAAAAAgAUi9AUAAAAAAAAAAAAAAACwQIS+AAAAAAAAAAAAAAAAABaI0BcAAAAAAAAAAAAAAADAAhH6AgAAAAAAAAAAAAAAAFggQl8AAAAAAAAAAAAAAAAAC0ToCwAAAAAAAAAAAAAAAGCBCH0BAAAAAAAAAAAAAAAALBChLwAAAAAAAAAAAAAAAIAFIvQFAAAAAAAAAAAAAAAAsECEvgAAAAAAAAAAAAAAAAAWiNAXAAAAAAAAAAAAAAAAwAIR+gIAAAAAAAAAAAAAAABYIEJfAAAAAAAAAAAAAAAAAAtE6AsAAAAAAAAAAAAAAABggQh9AQAAAAAAAAAAAAAAACwQoS8AAAAAAAAAAAAAAACABSL0BQAAAAAAAAAAAAAAALBAhL4AAAAAAAAAAAAAAAAAFojQFwAAAAAAAAAAAAAAAMACEfoCAAAAAAAAAAAAAAAAWCBCXwAAAAAAAAAAAAAAAAALROgLAAAAAAAAAAAAAAAAYIEIfQEAAAAAAAAAAAAAAAAsEKEvAAAAAAAAAAAAAAAAgAUi9AUAAAAAAAAAAAAAAACwQIS+AAAAAAAAAAAAAAAAABaI0BcAAAAAAAAAAAAAAADAAhH6AgAAAAAAAAAAAAAAAFggQl8AAAAAAAAAAAAAAAAAC0ToCwAAAAAAAAAAAAAAAGCBCH0BAAAAAAAAAAAAAAAALBChLwAAAAAAAAAAAP4/e/cfunt513H8dR1PR03nj5Vim+iYTmKzJDMKNaZgw8M0f2Da1qpFK6kVQvtjUIQIg7GB+yPWijE2F6xgMt3mj1IXyGBS4Tox2gxMm5HlTjJXnDN/770/jtF9Ph7P977v732+99udxwPOH9d1Ptd1vQ/n7yc3AAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI9vXPQDAVhrvu2PdIwAcFurmy9c9AgAAAAAAAAAAAAC8avmlLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANDI9nUPAAAAzG+87451jwBwWKibL1/3CAAAAAAAAAAAwGHML30BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoJHt6x7gcDXGOCLJmUnenOR1SY5P8mySp5I8kuTBqtq74jd/KMkFSU5L8mNJ9iT5zyS7quqbq3wLAAAAAAAAAAAAAAAAWI7oawuNMU5LcnWSS5L8fJLjDvL5i2OM+5J8tKru2uS7JyW5Kcl1SV77Ct88kOQjVfW5zbwFAAAAAAAAAAAAAAAAbI7oa4uMMf4yyTsWOHJEkkuTXDrGuDPJe6rqW0u8uzPJLUlO3uDT85OcP8b4TJLrV/0rYwAAAAAAAAAAAAAAAMB8RF9b56xX2H88ycNJvpV9/x9vTHJOkm0z31yW5MtjjLdW1RPzPjjGuCjJ55PsmNmuJP+Y5NEkJyT5qSQ/OvP3v5LkuDHGlVX1vXnfAgAAAAAAAAAAAAAAAFZj28afcAjsSvL7Sc6sqlOr6uKq+uWquqaqzk1yWpKPT86cleTWMcaY54ExxqlJbsv+wddXkrylqs6rqmur6m1JTk1yQ5LnZ767PMkHlvqXAQAAAAAAAAAAAAAAAJsi+to6leSuJD9TVedW1Uer6pEDflj1eFVdn+S9k7+6MMl1c753U5ITZ9YPJLmkqh6avPVsVf1Jkmsn5/9gjHH6nG8BAAAAAAAAAAAAAAAAKyL62jq/VFWXVdWD8x6oqo8l+dxk+1c3OjfGeFOSX5/Zei7Ju6vqmYO89fkkn57ZOjLJjfPOCgAAAAAAAAAAAAAAAKyG6GuLVNU3lzz6p5P1xXOceWeSI2bWt1XVw3Oc+9Bkfe0Y46g5zgEAAAAAAAAAAAAAAAArIvrqb9dkffQY44QNzlw1WX9qnoeq6qEkfz+zdUySt81zFgAAAAAAAAAAAAAAAFgN0Vd/Lxxgb8crfTzGOCXJOZPzX1ngvfsn650LnAUAAAAAAAAAAAAAAAA2SfTV35mT9QtJnjzI92dP1l+rqr0LvPfAZP2WBc4CAAAAAAAAAAAAAAAAmyT66u+ayfrBqvreQb5/82T9rwu+98gG9wEAAAAAAAAAAAAAAACHkOirsTHGsUl+c7J9+wbHpr8M9u8LPvvYZP0jY4wTF7wDAAAAAAAAAAAAAAAAWJLoq7cPJjllZv2dJJ/YF4+EagAAIABJREFU4MwJk/XuRR6sqj1JnplsH7/IHQAAAAAAAAAAAAAAAMDytq97AA5sjHFVkt+bbP9RVX17g6PHTtZPL/H800mOmlm/Zok79jPGODnJSQseO2Oz7wIAAAAAAAAAAAAAAMCrjeiroTHGOUn+YrJ9b5I/m+P4NPqa/mrXPJ5OcuJB7lzG7ya5cQX3AAAAAAAAAAAAAAAAwA+0besegP2NMU5Lclf2D60eS/KuqqolrtyqMwAAAAAAAAAAAAAAAMAKiL4aGWOcnOS+JK+f2X4iyS9U1X/Pec2eyfroJUaZnpneCQAAAAAAAAAAAAAAABwi29c9APuMMV6b5EtJzprZfjLJJVX18AJXdY2+Ppbk1gXPnJHkCyt4GwAAAAAAAAAAAAAAAF41RF8NjDGOT3Jvkp+Y2X4q+37h6+sLXvc/k/VJC85ybF4efX1nwRlepqp2J9m94CybfRYAAAAAAAAAAAAAAABedbate4DD3RjjNUn+JslPz2z/b5JLq+qflrhy+qtgpy94fvr9t6vqqSXmAAAAAAAAAAAAAAAAAJYg+lqjMcYxSe5O8nMz23uS7Kyqf1jy2ocm6zMXPP/GyfobS84BAAAAAAAAAAAAAAAALEH0tSZjjKOT3Jnkwpnt7yZ5e1U9sImr/3my/skxxg8vcP6CDe4DAAAAAAAAAAAAAAAADiHR1xqMMY5K8sUkF81sP5PkF6vqy5u5u6r+K8nXZra2Z/+wbCMXTdZ/vZl5AAAAAAAAAAAAAAAAgMWIvrbYGGNHktuSXDKz/WySK6vqb1f0zO2T9W/MOduPJ/nZma29Se5d0UwAAAAAAAAAAAAAAADAHERfW2iMsT3JZ5PsnNl+Psk1VXXPCp/6TJIXZ9ZXjzHeNMe590/Wn62qZ1Y3FgAAAAAAAAAAAAAAALAR0dcWGWMckX0x1hUz2y8kua6q7lzlW1X1cJJPz2ztSHLLGOOog8x3RZJ3z2w9l+SmVc4FAAAAAAAAAAAAAAAAbGz7ugc4jHwyybWTvT9MsmuM8YYF73pijl/gujHJVUlOfGl9fpIvjTHeU1X/8n8fjTGOTPLbSW6enL+5qh5bcC4AAAAAAAAAAAAAAABgk0RfW+fXDrD34Zf+LOriJPcf7IOq+o8xxtVJ7sm+X/pKkguSfGOM8dUkjyY5Psm5SU6aHL8zyR8vMRcAAAAAAAAAAAAAAACwSaKvH2BVdf8Y46okt+T/w66R5LyX/hzIXyX5rap68dBPCAAAAAAAAAAAAAAAAExtW/cAHFpVdXeSs5P8eZKnDvLp3yW5pqreWVV7t2Q4AAAAAAAAAAAAAAAA4GX80tcWqaqxxrd3J/mdMcYNSS5IcnqSU5LsTfJ4kl1V9W/rmg8AAAAAAAAAAAAA4Pvs3bHKJfUBxuF3xM7YCLGwkKyCRaogSRoJpEqR0koQvIBUaS0kd5A6kCLY5xIWFkIaMRBIsN/AlkELLUwiTIr9ZEUQXJfznR/r88AwxTnzn/cGfgwA8Ijo63vkPM//brt37R0AAAAAAAAAAAAAAADAN3vm2gMAAAAAAAAAAAAAAAAAeET0BQAAAAAAAAAAAAAAABAi+gIAAAAAAAAAAAAAAAAIEX0BAAAAAAAAAAAAAAAAhIi+AAAAAAAAAAAAAAAAAEJEXwAAAAAAAAAAAAAAAAAhoi8AAAAAAAAAAAAAAACAENEXAAAAAAAAAAAAAAAAQIjoCwAAAAAAAAAAAAAAACBE9AUAAAAAAAAAAAAAAAAQIvoCAAAAAAAAAAAAAAAACBF9AQAAAAAAAAAAAAAAAISIvgAAAAAAAAAAAAAAAABCRF8AAAAAAAAAAAAAAAAAIaIvAAAAAAAAAAAAAAAAgBDRFwAAAAAAAAAAAAAAAECI6AsAAAAAAAAAAAAAAAAgRPQFAAAAAAAAAAAAAAAAECL6AgAAAAAAAAAAAAAAAAgRfQEAAAAAAAAAAAAAAACEiL4AAAAAAAAAAAAAAAAAQkRfAAAAAAAAAAAAAAAAACGiLwAAAAAAAAAAAAAAAIAQ0RcAAAAAAAAAAAAAAABAiOgLAAAAAAAAAAAAAAAAIET0BQAAAAAAAAAAAAAAABAi+gIAAAAAAAAAAAAAAAAIEX0BAAAAAAAAAAAAAAAAhIi+AAAAAAAAAAAAAAAAAEJEXwAAAAAAAAAAAAAAAAAhoi8AAAAAAAAAAAAAAACAENEXAAAAAAAAAAAAAAAAQIjoCwAAAAAAAAAAAAAAACBE9AUAAAAAAAAAAAAAAAAQIvoCAAAAAAAAAAAAAAAACBF9AQAAAAAAAAAAAAAAAISIvgAAAAAAAAAAAAAAAABCRF8AAAAAAAAAAAAAAAAAIaIvAAAAAAAAAAAAAAAAgBDRFwAAAAAAAAAAAAAAAECI6AsAAAAAAAAAAAAAAAAgRPQFAAAAAAAAAAAAAAAAECL6AgAAAAAAAAAAAAAAAAgRfQEAAAAAAAAAAAAAAACEiL4AAAAAAAAAAAAAAAAAQkRfAAAAAAAAAAAAAAAAACGiLwAAAAAAAAAAAAAAAIAQ0RcAAAAAAAAAAAAAAABAiOgLAAAAAAAAAAAAAAAAIET0BQAAAAAAAAAAAAAAABAi+gIAAAAAAAAAAAAAAAAIEX0BAAAAAAAAAAAAAAAAhIi+AAAAAAAAAAAAAAAAAEJEXwAAAAAAAAAAAAAAAAAhoi8AAAAAAAAAAAAAAACAENEXAAAAAAAAAAAAAAAAQIjoCwAAAAAAAAAAAAAAACBE9AUAAAAAAAAAAAAAAAAQIvoCAAAAAAAAAAAAAAAACBF9AQAAAAAAAAAAAAAAAISIvgAAAAAAAAAAAAAAAABCRF8AAAAAAAAAAAAAAAAAIaIvAAAAAAAAAAAAAAAAgBDRFwAAAAAAAAAAAAAAAECI6AsAAAAAAAAAAAAAAAAgRPQFAAAAAAAAAAAAAAAAECL6AgAAAAAAAAAAAAAAAAgRfQEAAAAAAAAAAAAAAACEiL4AAAAAAAAAAAAAAAAAQkRfAAAAAAAAAAAAAAAAACGiLwAAAAAAAAAAAAAAAIAQ0RcAAAAAAAAAAAAAAABAiOgLAAAAAAAAAAAAAAAAIET0BQAAAAAAAAAAAAAAABAi+gIAAAAAAAAAAAAAAAAIEX0BAAAAAAAAAAAAAAAAhIi+AAAAAAAAAAAAAAAAAEJEXwAAAAAAAAAAAAAAAAAhoi8AAAAAAAAAAAAAAACAENEXAAAAAAAAAAAAAAAAQIjoCwAAAAAAAAAAAAAAACBE9AUAAAAAAAAAAAAAAAAQIvoCAAAAAAAAAAAAAAAACBF9AQAAAAAAAAAAAAAAAISIvgAAAAAAAAAAAAAAAABCRF8AAAAAAAAAAAAAAAAAIaIvAAAAAAAAAAAAAAAAgBDRFwAAAAAAAAAAAAAAAECI6AsAAAAAAAAAAAAAAAAgRPQFAAAAAAAAAAAAAAAAECL6AgAAAAAAAAAAAAAAAAgRfQEAAAAAAAAAAAAAAACEiL4AAAAAAAAAAAAAAAAAQkRfAAAAAAAAAAAAAAAAACGiLwAAAAAAAAAAAAAAAIAQ0RcAAAAAAAAAAAAAAABAiOgLAAAAAAAAAAAAAAAAIET0BQAAAAAAAAAAAAAAABAi+gIAAAAAAAAAAAAAAAAIEX0BAAAAAAAAAAAAAAAAhIi+AAAAAAAAAAAAAAAAAEJEXwAAAAAAAAAAAAAAAAAhoi8AAAAAAAAAAAAAAACAENEXAAAAAAAAAAAAAAAAQIjoCwAAAAAAAAAAAAAAACBE9AUAAAAAAAAAAAAAAAAQIvoCAAAAAAAAAAAAAAAACBF9AQAAAAAAAAAAAAAAAISIvgAAAAAAAAAAAAAAAABCRF8AAAAAAAAAAAAAAAAAIaIvAAAAAAAAAAAAAAAAgBDRFwAAAAAAAAAAAAAAAECI6AsAAAAAAAAAAAAAAAAgRPQFAAAAAAAAAAAAAAAAECL6AgAAAAAAAAAAAAAAAAgRfQEAAAAAAAAAAAAAAACEiL4AAAAAAAAAAAAAAAAAQkRfAAAAAAAAAAAAAAAAACGiLwAAAAAAAAAAAAAAAIAQ0RcAAAAAAAAAAAAAAABAiOgLAAAAAAAAAAAAAAAAIET0BQAAAAAAAAAAAAAAABAi+gIAAAAAAAAAAAAAAAAIEX0BAAAAAAAAAAAAAAAAhIi+AAAAAAAAAAAAAAAAAEJEXwAAAAAAAAAAAAAAAAAhoi8AAAAAAAAAAAAAAACAENEXAAAAAAAAAAAAAAAAQIjoCwAAAAAAAAAAAAAAACBE9AUAAAAAAAAAAAAAAAAQIvoCAAAAAAAAAAAAAAAACBF9AQAAAAAAAAAAAAAAAISIvgAAAAAAAAAAAAAAAABCRF8AAAAAAAAAAAAAAAAAIaIvAAAAAAAAAAAAAAAAgBDRFwAAAAAAAAAAAAAAAECI6AsAAAAAAAAAAAAAAAAgRPQFAAAAAAAAAAAAAAAAECL6AgAAAAAAAAAAAAAAAAgRfQEAAAAAAAAAAAAAAACEiL4AAAAAAAAAAAAAAAAAQkRfAAAAAAAAAAAAAAAAACGiLwAAAAAAAAAAAAAAAIAQ0RcAAAAAAAAAAAAAAABAiOgLAAAAAAAAAAAAAAAAIET0BQAAAAAAAAAAAAAAABAi+gIAAAAAAAAAAAAAAAAIEX0BAAAAAAAAAAAAAAAAhIi+AAAAAAAAAAAAAAAAAEJEXwAAAAAAAAAAAAAAAAAhoi8AAAAAAAAAAAAAAACAENEXAAAAAAAAAAAAAAAAQIjoCwAAAAAAAAAAAAAAACBE9AUAAAAAAAAAAAAAAAAQIvoCAAAAAAAAAAAAAAAACBF9AQAAAAAAAAAAAAAAAISIvgAAAAAAAAAAAAAAAABCRF8AAAAAAAAAAAAAAAAAIaIvAAAAAAAAAAAAAAAAgBDRFwAAAAAAAAAAAAAAAECI6AsAAAAAAAAAAAAAAAAgRPQFAAAAAAAAAAAAAAAAECL6AgAAAAAAAAAAAAAAAAgRfQEAAAAAAAAAAAAAAACEiL4AAAAAAAAAAAAAAAAAQkRfAAAAAAAAAAAAAAAAACGiLwAAAAAAAAAAAAAAAIAQ0RcAAAAAAAAAAAAAAABAiOgLAAAAAAAAAAAAAAAAIET0BQAAAAAAAAAAAAAAABAi+gIAAAAAAAAAAAAAAAAIEX0BAAAAAAAAAAAAAAAAhIi+AAAAAAAAAAAAAAAAAEJEXwAAAAAAAAAAAAAAAAAhoi8AAAAAAAAAAAAAAACAENEXAAAAAAAAAAAAAAAAQIjoCwAAAAAAAAAAAAAAACBE9AUAAAAAAAAAAAAAAAAQIvoCAAAAAAAAAAAAAAAACBF9AQAAAAAAAAAAAAAAAISIvgAAAAAAAAAAAAAAAABCRF8AAAAAAAAAAAAAAAAAIaIvAAAAAAAAAAAAAAAAgBDRFwAAAAAAAAAAAAAAAECI6AsAAAAAAAAAAAAAAAAgRPQFAAAAAAAAAAAAAAAAECL6AgAAAAAAAAAAAAAAAAgRfQEAAAAAAAAAAAAAAACEiL4AAAAAAAAAAAAAAAAAQkRfAAAAAAAAAAAAAAAAACGiLwAAAAAAAAAAAAAAAIAQ0RcAAAAAAAAAAAAAAABAiOgLAAAAAAAAAAAAAAAAIET0BQAAAAAAAAAAAAAAABAi+gIAAAAAAAAAAAAAAAAIEX0BAAAAAAAAAAAAAAAAhIi+AAAAAAAAAAAAAAAAAEJEXwAAAAAAAAAAAAAAAAAhoi8AAAAAAAAAAAAAAACAENEXAAAAAAAAAAAAAAAAQIjoCwAAAAAAAAAAAAAAACBE9AUAAAAAAAAAAAAAAAAQIvoCAAAAAAAAAAAAAAAACBF9AQAAAAAAAAAAAAAAAISIvgAAAAAAAAAAAAAAAABCRF8AAAAAAAAAAAAAAAAAIaIvAAAAAAAAAAAAAAAAgBDRFwAAAAAAAAAAAAAAAECI6AsAAAAAAAAAAAAAAAAgRPQFAAAAAAAAAAAAAAAAECL6AgAAAAAAAAAAAAAAAAgRfQEAAAAAAAAAAAAAAACEiL4AAAAAAAAAAAAAAAAAQkRfAAAAAAAAAAAAAAAAACGiLwAAAAAAAAAAAAAAAIAQ0RcAAAAAAAAAAAAAAABAiOgLAAAAAAAAAAAAAAAAIET0BQAAAAAAAAAAAAAAABAi+gIAAAAAAAAAAAAAAAAIEX0BAAAAAAAAAAAAAAAAhIi+AAAAAAAAAAAAAAAAAEJEXwAAAAAAAAAAAAAAAAAhoi8AAAAAAAAAAAAAAACAENEXAAAAAAAAAAAAAAAAQIjoCwAAAAAAAAAAAAAAACBE9AUAAAAAAAAAAAAAAAAQIvoCAAAAAAAAAAAAAAAACBF9AQAAAAAAAAAAAAAAAISIvgAAAAAAAAAAAAAAAABCRF8AAAAAAAAAAAAAAAAAIaIvAAAAAAAAAAAAAAAAgBDRFwAAAAAAAAAAAAAAAECI6AsAAAAAAAAAAAAAAAAgRPQFAAAAAAAAAAAAAAAAECL6AgAAAAAAAAAAAAAAAAgRfQEAAAAAAAAAAAAAAACEiL4AAAAAAAAAAAAAAAAAQkRfAAAAAAAAAAAAAAAAACGiLwAAAAAAAAAAAAAAAIAQ0RcAAAAAAAAAAAAAAABAiOgLAAAAAAAAAAAAAAAAIET0BQAAAAAAAAAAAAAAABAi+gIAAAAAAAAAAAAAAAAIEX0BAAAAAAAAAAAAAAAAhIi+AAAAAAAAAAAAAAAAAEJEXwAAAAAAAAAAAAAAAAAhoi8AAAAAAAAAAAAAAACAENEXAAAAAAAAAAAAAAAAQIjoCwAAAAAAAAAAAAAAACBE9AUAAAAAAAAAAAAAAAAQIvoCAAAAAAAAAAAAAAAACBF9AQAAAAAAAAAAAAAAAISIvgAAAAAAAAAAAAAAAABCRF8AAAAAAAAAAAAAAAAAIaIvAAAAAAAAAAAAAAAAgBDRFwAAAAAAAAAAAAAAAECI6AsAAAAAAAAAAAAAAAAgRPQFAAAAAAAAAAAAAAAAECL6AgAAAAAAAAAAAAAAAAgRfQEAAAAAAAAAAAAAAACEiL4AAAAAAAAAAAAAAAAAQkRfAAAAAAAAAAAAAAAAACGiLwAAAAAAAAAAAAAAAIAQ0RcAAAAAAAAAAAAAAABAiOgLAAAAAAAAAAAAAAAAIET0BQAAAAAAAAAAAAAAABAi+gIAAAAAAAAAAAAAAAAIEX0BAAAAAAAAAAAAAAAAhIi+AAAAAAAAAAAAAAAAAEJEXwAAAAAAAAAAAAAAAAAhoi8AAAAAAAAAAAAAAACAENEXAAAAAAAAAAAAAAAAQIjoCwAAAAAAAAAAAAAAACBE9AUAAAAAAAAAAAAAAAAQIvoCAAAAAAAAAAAAAAAACBF9AQAAAAAAAAAAAAAAAISIvgAAAAAAAAAAAAAAAABCRF8AAAAAAAAAAAAAAAAAIaIvAAAAAAAAAAAAAAAAgBDRFwAAAAAAAAAAAAAAAECI6AsAAAAAAAAAAAAAAAAgRPQFAAAAAAAAAAAAAAAAECL6AgAAAAAAAAAAAAAAAAgRfQEAAAAAAAAAAAAAAACEPHvtAd9Xx3G8su1n2356c3992/Nf+cu/zvP80Xc8+3zCeXfO87z/hGcAAAAAAAAAAAAAAAAA34Ho6xYdx/HLbe/uYej1wnXXAAAAAAAAAAAAAAAAAEWir9v1k22/uvYIAAAAAAAAAAAAAAAAoEv01fCfbQ+2vXqBsz/Y9tZjPvPgAjsAAAAAAAAAAAAAAACAb0H0dfv+t+2jbX/b9uHN/Z/b3th27wLv+/w8z/sXOBcAAAAAAAAAAAAAAAC4ANHX7Xp/2x/O8/z86z8cx3GFOQAAAAAAAAAAAAAAAECN6OsWnef5ybU3AAAAAAAAAAAAAAAAAG3PXHsAAAAAAAAAAAAAAAAAAI+IvgAAAAAAAAAAAAAAAABCRF8AAAAAAAAAAAAAAAAAIc9eewAX9/JxHH/a9vNtL217btsn2/697e/b/rLtz+d5fny9iQAAAAAAAAAAAAAAAMCXRF9Pvzs311e9eHP9eNvb235/HMcft713nudnlxhxHMeL2374mI+9eoktAAAAAAAAAAAAAAAAUCb6Ynv49a/fbvv1cRxvnuf50QXe8Zttv7vAuQAAAAAAAAAAAAAAAPBUEX09vb7Y9tdtd7f9Y9uDbZ9u+8G2l7f9Yts7e/jFry+9tu3u8X/27j7Y27quE/j7c3NQQXkU5FFEUVhdmdTUDDUlw13LXLUgmXZXJ5220mxWaWh9fghSK500adKazdHxIU3SnF01MVkSVHQ2rUBxRUESUQREEHn87B/nOp7ffeCG8/A75/e77vv1mrnm+l5Pn9/73PDve75Vj+nuS7Y2LgAAAAAAAAAAAAAAAJAofe2sXpbk7d39nR08/6ckH66ql2dx961Tk9Tw7OAkH6yqR3Z3b35UAAAAAAAAAAAAAAAAYJLS106ou09b5Xs/SvI/quqyJH868egRSU5O8u4pxjojyfvX+M1RST40xQwAAAAAAAAAAAAAAAAw95S+SHe/taqenORpE7d/K1MsfQ27ju1o57E7VFV3/RIAAAAAAAAAAAAAAADsZLbNOgBz4w9WXD+mqvadSRIAAAAAAAAAAAAAAADYhSl9seRzSa6euN4tyUNmlAUAAAAAAAAAAAAAAAB2WUpfJEm6+7Ykl664feAssgAAAAAAAAAAAAAAAMCuTOmLSTesuN5jJikAAAAAAAAAAAAAAABgF6b0xaQDVlxfOZMUAAAAAAAAAAAAAAAAsAtT+iJJUlUHJHnAitvfmkUWAAAAAAAAAAAAAAAA2JUpfbHkWdn+/4crklw4oywAAAAAAAAAAAAAAACwy1L6IlV1UJKXrbj9d93ds8gDAAAAAAAAAAAAAAAAuzKlr51IVR1TVb+4xm8OTvKRJAdN3L4pyR9MMxsAAAAAAAAAAAAAAACwOguzDrCrqarDc8f/7gevuF6oqiN3MOa67r7yDu4fkuTDVfXPSd6V5Mzu/uoOcuyV5NlZ3OHroBWPf7+7L97BbwMAAAAAAAAAAAAAAACbSOlr6/1jkvut4r3Dknx9B8/ekeQ5d/LtsUlen+T1VfX9JP+S5MokP0hyryT3TfITueP//m/r7teuIh8AAAAAAAAAAAAAAACwCZS+dn77JHnsKt67Psl/7+63b3IeAAAAAAAAAAAAAAAA4E5sm3UApurCJKcn+XSSG1b5zUVJXpLkSIUvAAAAAAAAAAAAAAAAmD07fW2x7j5yE2dfkeSlSVJV25I8KMlRSQ5Lsm+Se2SxDHZ1ksuTnN/d392sPAAAAAAAAAAAAAAAAMDaKX3tpLr7tiRfGQ4AAAAAAAAAAAAAAABgJLbNOgAAAAAAAAAAAAAAAAAAy5S+AAAAAAAAAAAAAAAAAOaI0hcAAAAAAAAAAAAAAADAHFH6AgAAAAAAAAAAAAAAAJgjSl8AAAAAAAAAAAAAAAAAc0TpCwAAAAAAAAAAAAAAAGCOKH0BAAAAAAAAAAAAAAAAzBGlLwAAAAAAAAAAAAAAAIA5ovQFAAAAAAAAAAAAAAAAMEeUvgAAAAAAAAAAAAAAAADmiNIXAAAAAAAAAAAAAAAAwBxR+gIAAAAAAAAAAAAAAACYI0pfAAAAAAAAAAAAAAAAAHNE6QsAAAAAAAAAAAAAAABgjih9AQAAAAAAAAAAAAAAAMwRpS8AAAAAAAAAAAAAAACAOaL0BQAAAAAAAAAAAAAAADBHlL4AAAAAAAAAAAAAAAAA5ojSFwAAAAAAAAAAAAAAAMAcUfoCAAAAAAAAAAAAAAAAmCNKXwAAAAAAAAAAAAAAAABzROkLAAAAAAAAAAAAAAAAYI4ofQEAAAAAAAAAAAAAAADMEaUvAAAAAAAAAAAAAAAAgDmi9AUAAAAAAAAAAAAAAAAwR5S+AAAAAAAAAAAAAAAAAOaI0hcAAAAAAAAAAAAAAADAHFH6AgAAAAAAAAAAAAAAAJgjSl8AAAAAAAAAAAAAAAAAc0TpCwAAAAAAAAAAAAAAAGCOKH0BAAAAAAAAAAAAAAAAzBGlLwAAAAAAAAAAAAAAAIA5MprSV1W9r6qeMOscAAAAAAAAAAAAAAAAAJtpNKWvJCcm+WRVXVhVL6yqfWcdCAAAAAAAAAAAAAAAAGDaxlT6WnJMkjcl+beq+suqevSsAwEAAAAAAAAAAAAAAABMyxhLX52kkuyR5DlJzquqL1TV86pqz5kmAwAAAAAAAAAAAAAAANigMZW+npbkf2ex9JWJcyV5eJI/T/KtqnpLVT10BvkAAAAAAAAAAAAAAAAANmw0pa/u/kh3PzXJ/ZOcnuTbWSx8Jcu7f+2d5LeSfLGqzqmqk6tq95kEBgAAAAAAAAAAAAAAAFiH0ZS+lnT3N7v7ZUmOSHJSkrMmHw/nSnJckncl+beqel1VPWBrkwIAAAAAAAAAAAAAAACs3ehKX0u6+9bu/kB3n5Dk6CRvTHJVlnf/yrA+IMnvJrmoqj5aVf+pqkb7dwMAAAAAAAAAAAAAAAA7t52i/NTdX+vuU5IcluS/Jvl0lstfS7t/bUtyQpIPJrmkql5RVYdueVgAAAAAAAAAAAAAAACAO7FTlL6WdPdN3f2u7n58kocmOSPJtVkugNVwHJbklUm+UVV/U1U/N5PAAAAAAAAAAAAAAAAAACvsVKWvSd19QXe/IMmhSX49yReWHg1HJVlI8vQkH6uqi6rqhVW110wCAwAAAAAAAAAAAAAAAGQnLn0t6e4bkrwjyZuSXJLlXb+Wyl8Z7j1weOcbVXVqVe2+1VkBAAAAAAAAAAAAAAAAdurSV1UdVVWvT3JZkncmOSLbF72WjmR596/9kpye5PNVdeRW5gUAAAAAAAAAAAAAAADY6UpfVbVbVT2zqj6e5CtJTklyYJbLXUtFr08lOTHJk5N8IMktw/Ol8texSf6hqvbauvSfGdu9AAAgAElEQVQAAAAAAAAAAAAAAADArm5h1gGmparum+TXk/xakoOXbmexxLVU5Louizt+vbW7L5z4/BNVdVCSFyV5QZJ7DO8fkeR3kvz+VvwNAAAAAAAAAAAAAAAAAKPe6asWPbWq/i7JxUlekuSQLO/qlWF9QZLnJzmsu1+wovCVJOnuK7r71CSPSHJFlotiT9/kPwMAAAAAAAAAAAAAAADgx0a501dVHZzkecNx36Xb2X5Xr1uTnJnkjO4+e7Wzu/srVfX7Sf50uHX0tHIDAAAAAAAAAAAAAAAA3JVRlb6q6oQkv5HkqVnMvrSjVy+9kuTyJG9L8rbuvnydP3XexPqe65wBAAAAAAAAAAAAAAAAsGajKX1V1VeTPGDpMtvv6lVJzk5yRpIzu/uWDf7cVcO57/QtAAAAAAAAAAAAAAAAgCkbTekryVFZLmEtlb2uS/LOJG/t7gs24TeXymUAAAAAAAAAAAAAAAAAW2JMpa8lleSCJH+W5B3dfd0m/Ma3kxy/CXMBAAAAAAAAAAAAAAAA7tSYSl+3JPlQFnf1+tRm/lB335jk7M38DQAAAAAAAAAAAAAAAIA7MqbS15Hd/a1ZhwAAAAAAAAAAAAAAAADYTNtmHWC1FL4AAAAAAAAAAAAAAACAXcFoSl8AAAAAAAAAAAAAAAAAuwKlLwAAAAAAAAAAAAAAAIA5MprSV1UdV1UXD8dXq+o+65hxUFVdNMz4WlU9YjOyAgAAAAAAAAAAAAAAAKzXaEpfSZ6X5Mgk90vyf7v7O2sd0N1XJPniMOfIYSYAAAAAAAAAAAAAAADA3BhT6esXJtbv2sCcd06sn7aBOQAAAAAAAAAAAAAAAABTN4rSV1U9OMmBw+XNST66gXEfG2ZUkkOq6kEbjAcAAAAAAAAAAAAAAAAwNaMofSV5yHDuJP/a3Tetd1B335jkXydu/fuNBAMAAAAAAAAAAAAAAACYprGUvg6bWF86hXmXTKwPn8I8AAAAAAAAAAAAAAAAgKkYS+nrXhPrH0xh3nU7mA0AAAAAAAAAAAAAAAAwU2MpfU2WtPabwrx9JtY3T2EeAAAAAAAAAAAAAAAAwFSMpfR15cT6qCnMm5xx5Q7fAgAAAAAAAAAAAAAAANhiYyl9XTycK8kxVXX4egcN3z544tYlGwkGAAAAAAAAAAAAAAAAME1jKX19Psn1SXq4fvEGZr1oYv2jJOdtYBYAAAAAAAAAAAAAAADAVI2i9NXdtyT5+yzu9FVJfrOqnrjWOcM3z89ieayTnNXdN04vKQAAAAAAAAAAAAAAAMDGjKL0NXjdcO4kd0vyt1V14mo/rqpnJjkzyUIWi2OTMwEAAAAAAAAAAAAAAADmwmhKX939uSTvz2Jhq5PsneS9VXVWVZ1UVfdZ+U1VHVhVJ1bVJ4Zv91kal+TM7j53i+IDAAAAAAAAAAAAAAAArMrCrAOs0XOTPDTJg7NY3KokTxyOVNVVSa4enu0/HEtq4pt/SfLsLcoMAAAAAAAAAAAAAAAAsGqj2ekrSbr7uiQnJPlclktcGdaV5N5JHpjkQcN66X6yXPg6L8mTu/v6rUsOAAAAAAAAAAAAAAAAsDqjKn0lSXd/K8nPJHldkuuyfanrjo4M71yb5DVJntDd397KzAAAAAAAAAAAAAAAAACrtTDrAOvR3TcleUlVvSHJf0nypCTHJTlgxavfTfLpJJ9I8q7uvnZLgwIAAAAAAAAAAAAAAACs0ShLX0u6+5okbxmOVNVuSe49PP5ed986q2wAAAAAAAAAAAAAAAAA6zHq0tdKQ8nrO7POAQAAAAAAAAAAAAAAALBe22YdAAAAAAAAAAAAAAAAAIBlSl8AAAAAAAAAAAAAAAAAc0TpCwAAAAAAAAAAAAAAAGCOLMw6wDRU1Z5J9kmy+1q/7e5Lp58IAAAAAAAAAAAAAAAAYH1GWfqqqiOSPDfJzyZ5WJI91zmqM9J/AwAAAAAAAAAAAAAAAGDnNKrCU1UtJHltkhcn2W3p9uwSAQAAAAAAAAAAAAAAAEzXaEpfVVVJ3pfk6VkuevVwKH4BAAAAAAAAAAAAAAAAO4XRlL6SPD/JM7J90auSfCPJhUmuTnLzrMIBAAAAAAAAAAAAAAAATMMoSl/DLl8vzfa7en0oyUu7+4KZBQMAAAAAAAAAAAAAAACYslGUvpI8MslBWd7l66+6+7mzjQQAAAAAAAAAAAAAAAAwfdtmHWCVjh3OleRHSV40wywAAAAAAAAAAAAAAAAAm2Yspa8DhnMn+Ux3f3+WYQAAAAAAAAAAAAAAAAA2y1hKXzdMrC+fWQoAAAAAAAAAAAAAAACATTaW0tdlE+t7ziwFAAAAAAAAAAAAAAAAwCYbS+nr/CS3DetjZhkEAAAAAAAAAAAAAAAAYDONovTV3Zcl+YckleSYqjp6xpEAAAAAAAAAAAAAAAAANsUoSl+DVya5dVifPssgAAAAAAAAAAAAAAAAAJtlNKWv7j43i8WvSvKMqlL8AgAAAAAAAAAAAAAAAHY6oyl9JUl3n57kd5N0klOr6lNVdUJVLcw4GgAAAAAAAAAAAAAAAMBUjKYsVVWfnLi8Jsn+SR6f5KNJbqiqryW5Osltaxjb3f2k6aUEAAAAAAAAAAAAAAAA2JjRlL6SPDGLO3wt6SQ1rPdMcuyK53el1vg+AAAAAAAAAAAAAAAAwKYbU+nrjihtAQAAAAAAAAAAAAAAADuVsZW+6q5fAQAAAAAAAAAAAAAAABiv0ZS+unvbrDMAAAAAAAAAAAAAAAAAbDZFKgAAAAAAAAAAAAAAAIA5ovQFAAAAAAAAAAAAAAAAMEeUvgAAAAAAAAAAAAAAAADmiNIXAAAAAAAAAAAAAAAAwBxR+gIAAAAAAAAAAAAAAACYIwuzDrARVfWwJE9L8vgkRyXZP8leSbq7b/e3VdW+SfYeLm/s7iu2KisAAAAAAAAAAAAAAADAaoyy9FVVxyZ5U5LjJ2+v4tPjk3xgWF9fVQd39w+nnQ8AAAAAAAAAAAAAAABgvbbNOsBaVdVzknwmiwWulUWvvovPP5Tk0uG7eyb5pWnnAwAAAAAAAAAAAAAAANiIUZW+quqXkvxlkj0mbyf5ZpJ/yl3s9tXdtyV538Stp007IwAAAAAAAAAAAAAAAMBGjKb0VVWHJHnHcLm0o9cZSY7q7iOTPHOVoz60NDLJE6YWEAAAAAAAAAAAAAAAAGAKFmYdYA1ekWTPYX1rkmd1999MPO/bf3KHzk9yc5Ldk9y7qu7f3V+fXkwAAAAAAAAAAAAAAACA9RvFTl9VtVuSk7NY7Ookr19R+Fq17r4lyZcnbv27jScEAAAAAAAAAAAAAAAAmI5RlL6SPCbJ3kkqi7t0vWGD8y6bWN93g7MAAAAAAAAAAAAAAAAApmYspa8HDudOcn53X7vBeZPf773BWQAAAAAAAAAAAAAAAABTM5bS14ET629OYd5tE+uFKcwDAAAAAAAAAAAAAAAAmIqxlL56Yr3bFObtP7G+ZgrzAAAAAAAAAAAAAAAAAKZiLKWv706sD53CvIdOrL83hXkAAAAAAAAAAAAAAAAAUzGW0telw7mSPLyqdl/voKo6OslhE7e+tJFgAAAAAAAAAAAAAAAAANM0ltLXeUluSNJJ9khy8gZmvXBifUV3f2UjwQAAAAAAAAAAAAAAAACmaRSlr+6+MclZWdzpq5KcVlX7rnVOVT02yX/LYnmsk3xwmjkBAAAAAAAAAAAAAAAANmoUpa/BacO5kxyW5ONVdZ/VflxVxyf5cBb/5kpya5I/mnZIAAAAAAAAAAAAAAAAgI0YTemruz+b5L1ZLGx1kkcm+XJVvbyqjskd/C1VtVtVPamq3pvkE0n2m/j+T7r7G1uVHwAAAAAAAAAAAAAAAGA1FmYdYI2em+SYJA/PYnFr3ySvGo6bJl+sqguT3D/J7ku3hm8qyblJfm8rAgMAAAAAAAAAAAAAAACsxWh2+kqS7r4hyX9I8sksl7gyrO++4vqYJHcb1sly4evjSX6hu2/dotgAAAAAAAAAAAAAAAAAqzaq0leSdPeVSU5IcmqSK7N9qWvpPHlkeOf7SV6axcLXtVsWGAAAAAAAAAAAAAAAAGANFmYdYD26u5P8YVW9JcnJWSyBPS7Jodm+yHZ1knOTfCzJO7v7+1udFQAAAAAAAAAAAAAAAGAtRln6WtLdP0ryP4cjVVVJ9ktytyTf6+6bZxgPAAAAAAAAAAAAAAAAYM1GXfpaadgB7KpZ5wAAAAAAAAAAAAAAAABYr22zDgAAAAAAAAAAAAAAAADAMqUvAAAAAAAAAAAAAAAAgDmi9AUAAAAAAAAAAAAAAAAwR5S+AAAAAAAAAAAAAAAAAObIwqwDrFZVXbwJY7u7j9qEuQAAAAAAAAAAAAAAAADrMprSV5Ijk3SSmuLMnuIsAAAAAAAAAAAAAAAAgA0bU+lryUaLWpXpl8cAAAAAAAAAAAAAAAAApmJMpa9Ls7bC125J9ktyz+F66dvrk1w5xVwAAAAAAAAAAAAAAAAAUzOa0ld3H7me76rqvkl+McmLkjwgi3/zad39F9NLBwAAAAAAAAAAAAAAADAd22YdYLN19ze7+4wkxyb56yR3T/LnVfUbs00GAAAAAAAAAAAAAAAAcHs7felrSXffkORXk3w6SSV5c1U9fLapAAAAAAAAAAAAAAAAALa3y5S+kqS7b03y4uFytySvnGEcAAAAAAAAAAAAAAAAgNvZpUpfSdLdn0tySRZ3+3pKVR0440gAAAAAAAAAAAAAAAAAP7bLlb4GXxrOC0l+epZBAAAAAAAAAAAAAAAAACbtqqWvayfWh88sBQAAAAAAAAAAAAAAAMAKu2rp68CJ9V4zSwEAAAAAAAAAAAAAAACwwi5X+qqqeyT56YlbV80qCwAAAAAAAAAAAAAAAMBKu1zpK8nLs/3uXhfMKggAAAAAAAAAAAAAAADASrtM6auq9q2qNyb5vSQ93L4myWdmlwoAAAAAAAAAAAAAAABgewuzDrBaVfWKdXy2kGTfJA9J8tgkd0tSw7NO8qbuvnU6CQEAAAAAAAAAAAAAAAA2bjSlrySvyvIOXesxWfaqJOcmecMGMwEAAAAAAAAAAAAAAABM1bZZB9hCS4WxSvL+JE/t7ptmmAcAAAAAAAAAAAAAAADgdsa001eyvFvXelye5Kwkb+/uc6aUBwAAAAAAAAAAAAAAAGCqxlT6On4d39yS5Nok3+nuK6acBwAAAAAAAAAAAAAAAGDqRlP66u6zZ50BAAAAAAAAAAAAAAAAYLNtm3UAAAAAAAAAAAAAAAAAAJYpfQEAAAAAAAAAAAAAAADMEaUvAAAAAAAAAAAAAAAAgDmi9AUAAAAAAAAAAAAAAAAwR5S+AAAAAAAAAAAAAAAAAObIwqwDrFZVvWJWv93dr5nVbwMAAAAAAAAAAAAAAAC7ltGUvpK8KknP6LeVvgAAAAAAAAAAAAAAAIAtMabS16Tawf2VpbDVvndnvzOrohkAAAAAAAAAAAAAAACwCxpb6WuyxNV3cH81Ja+6k/cAAAAAAAAAAAAAAAAAZmpMpa/jh/MDk7whyb5ZLG/dnOTjST6b5KIk3x/e2yfJ0Ul+KsmTk+yexfLXVUlOTfL/tio4AAAAAAAAAAAAAAAAwGqNpvTV3WdX1XFZLnx1krcmeU13X3ln31bVAUlemeQ3k+yX5A+TPLW7z93c1AAAAAAAAAAAAAAAAABrs23WAVarqg5J8uEslrZuTnJSd7/wrgpfSdLdV3b3byc5KcktWSyNfbiqDtvMzAAAAAAAAAAAAAAAAABrNZrSV5JXJ9k/izt8ndbdH1zrgOGb04bL/YaZAAAAAAAAAAAAAAAAAHNjFKWvqtojya8Mlzck+eMNjPujYUYlOXGYDQAAAAAAAAAAAAAAADAXRlH6SvL4JHtlcZevz3T3D9c7aPj2vOHyXsNsAAAAAAAAAAAAAAAAgLkwltLX4RPrK6Ywb3LG4Tt8CwAAAAAAAAAAAAAAAGCLjaX0dZ+J9b5TmLfPxPrAKcwDAAAAAAAAAAAAAAAAmIqxlL6uGs6V5OEbGVRVleQnJ25dvZF5AAAAAAAAAAAAAAAAANM0ltLX1yfWB1XVMzcw65lJDtrBbAAAAAAAAAAAAAAAAICZGkvp6+wk1ybpLO729eaqut9ah1TVkUnePMxJkh8k+dRUEgIAAAAAAAAAAAAAAABMwShKX919U5J3ZLHw1UkOTfLpqnrKamdU1c8nOSfJwRNz/qq7b55+YgAAAAAAAAAAAAAAAID1WZh1gDV4eZJfzmJpa6n49ZGqOj/Je5J8NslXs7gjWJLsneRBSR6T5OQkj8xy2StJLh9mAgAAAAAAAAAAAAAAAMyN0ZS+uvvaYbeuTyTZP4vlrUry6CSPuovPa2nMsP5ekp/v7h9sUlwAAAAAAAAAAAAAAACAddk26wBr0d1fTPKEJF/K8q5dS0WuOzsm3/tikid095e2Oj8AAAAAAAAAAAAAAADAXRlV6StJuvuCLO7sdUqSS7K8i9ePXxmOSTW8e0qSRw0zAAAAAAAAAAAAAAAAAObOwqwDrEd335LkjVX1piQ/k+RxSR6Z5KAk+w2vXZ3kiiSfT/KPSf5Pd68sgwEAAAAAAAAAAAAAAADMlVGWvpYMJa6zhwMAAAAAAAAAAAAAAABg9LbNOgAAAAAAAAAAAAAAAAAAy5S+AAAAAAAAAAAAAAAAAOaI0hcAAAAAAAAAAAAAAADAHFmYdYCNqqojkjw+yVFJ9k+yV5J093NnmQsAAAAAAAAAAAAAAABgPUZZ+qqqSvKrSU5JcuzKx0k6ye1KX1X1jCS/PVxe1d2/vJk5AQAAAAAAAAAAAAAAANZqdKWvqjo0yXuSPG7p1nDuifWOnJPk3UnunqSr6rjuPndTggIAAAAAAAAAAAAAAACsw7ZZB1iLofD1mSwWvlYWvJZ2+Nqh7r4yyZkTt06aakAAAAAAAAAAAAAAAACADRpN6auqdkvykSSHT9z+bpLXJvnZJCfkrnf6SpK/nVj/3NQCAgAAAAAAAAAAAAAAAEzBwqwDrMGvJXlYlnfz+mCSZ3f39UlSVfdb5Zy/H86V5MFVtV93Xz3VpAAAAAAAAAAAAAAAAADrNJqdvpKcMrE+J8lJS4WvtRgKXpdN3HrwRoMBAAAAAAAAAAAAAAAATMsoSl9Vdf8kD5q49TvdfdsGRl40sX7gBuYAAAAAAAAAAAAAAAAATNUoSl9JHjWcO8lXu/uLG5x3zcR6vw3OAgAAAAAAAAAAAAAAAJiasZS+7jOxvmAK8344sb7nFOYBAAAAAAAAAAAAAAAATMVYSl/3mlhfP4V5e095HgAAAAAAAAAAAAAAAMBUjKX09b2J9f5TmHfEDmYDAAAAAAAAAAAAAAAAzNRYSl/fGc6V5Cc2Mqiq7pXk2Ilbl2xkHgAAAAAAAAAAAAAAAMA0jaX09dmJ9SFV9ZMbmPWfk+w2rG9cMRsAAAAAAAAAAAAAAABgpkZR+urubyf554lbr17PnKraN8lLkvRwnNPdN208IQAAAAAAAAAAAAAAAMB0jKL0NfizifVTqupla/m4qvZM8tdJDk9Sw+0/mVI2AAAAAAAAAAAAAAAAgKkYU+nrL5J8fVhXkldX1bur6n539WFV/cckn0vypCzv8vX57v5fmxUWAAAAAAAAAAAAAAAAYD0WZh1gtbr7lqo6KcnZSfbIYvHrV5KcVFXnJ7l48v2qOjXJ0UlOSHLY8H4P52uSnLx16QEAAAAAAAAAAAAAAABWZzSlryTp7i9U1bOSvCfJnsPtbUkePRxLKsnpE+tkufB1bZITu3u7khgAAAAAAAAAAAAAAADAPNg26wBr1d0fSfJTSS7IcqHrx48njsmyV4brLyc5rrvP2oKoAAAAAAAAAAAAAPD/2bubmFnPuo7jv+v0oZSXCkcollDsgUJiaIMKJZLWEExMExZE25iS4AIElOgGgwt1obXEDYsS4sIQNbFdIAlvYjQajZECUsrCFoi2mvJiG/HlpLEYz7GlQP8uztOcOcN5mXmembn/M+fzSSYz1/1c133/8+y/uQEAYGlbF30lSVU9kOTVSW5N8rkk382pqGv2k5nv+5K8I8l1+2cBAAAAAAAAAAAAAAAAWtqbeoCDqqpK8vEkHx9jPDvJ65O8NMkLklya5NEk/5XkC1X16GSDAgAAAAAAAAAAAAAAACxhK6KvMcYlSZ4zc+lEVT319KKq/i/J3218MAAAAAAAAAAAAAAAAIAVOzL1AAt6W5LH9j+PJnnxtOMAAAAAAAAAAAAAAAAArMdWvOkryQ8lGfu/76uqb045DAAAAAAAAAAAAAAAAMC6bMubvk7uf1eSR6YcBAAAAAAAAAAAAAAAAGCdtiX6+s+pBwAAAAAAAAAAAAAAAADYhG2Jvv5l5vdLJ5sCAAAAAAAAAAAAAAAAYM22Ivqqqi8n+WqSkeS1Y4yjE48EAAAAAAAAAAAAAAAAsBZbEX3t+8P970uS/MaUgwAAAAAAAAAAAAAAAACsyzZFX3ckuTen3vb13jHGWyaeBwAAAAAAAAAAAAAAAGDltib6qqqnktyS5Is59bavPxlj/MEY45ppJwMAAAAAAAAAAAAAAABYnb2pB1jUGOO3939+Osmrklye5J1J3jnG+Kck9yc5nuR/l7lvVb1vlXMCAAAAAAAAAAAAAAAAHMbWRF9JfidJzawrydj/fV2Saw94X9EXAAAAAAAAAAAAAAAA0MY2RV9nUxfeck7jkOcBAAAAAAAAAAAAAAAAVm7boq9x4S0AAAAAAAAAAAAAAAAA22uboq+fmnoAAAAAAAAAAAAAAAAAgHXbmuirqj4z9QwAAAAAAAAAAAAAAAAA69Ym+hpjfGBm+b6q+tZkwwAAAAAAAAAAAAAAAABMpE30leRXk9T+7w8mOW/0NcZ4w8zy3qp6cl2DAQAAAAAAAAAAAAAAAGxKp+grSUZOh18XcvfM3pcleWQdAwEAAAAAAAAAAAAAAABs0pGpBzikMfUAAAAAAAAAAAAAAAAAAKu07dHXom8FAwAAAAAAAAAAAAAAANgK2x59edMXAAAAAAAAAAAAAAAAsFO2PfoCAAAAAAAAAAAAAAAA2CmiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANDI3tQDzKn979ePMY4tcW7Z/acfWPXZg5wDAAAAAAAAAAAAAAAAWIdu0VeSjCQfWeP+WZWe/wMAAAAAAAAAAAAAAADgItUxeKqcCrkW2fe0RfYDAAAAAAAAAAAAAAAAtNcx+krODLrWsT8RigEAAAAAAAAAAAAAAAANdYq+HsnB4i0AAAAAAAAAAAAAAACAndEm+qqqY1PPAAAAAAAAAAAAAAAAADC1I1MPAAAAAAAAAAAAAAAAAMBpoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhkb+oB2IwxxjOS3Jjkh5O8OMmJJP+e5P6q+tcJRwMAAAAAAAAAAAAAAABmiL4mMsZ4eZLXJbl+//s1SS6f2fJwVR1bwXOuSHJ7krck+cFz7LknyQeq6hOHfR4AAAAAAAAAAAAAAABwOKKvDRpjvDHJb+ZU6HXWAGvFz3tTkjuTvOgCW29IcsMY48NJ3l1VJ9c9GwAAAAAAAAAAAAAAAHB2oq/N+rEkN23iQfuB2aeSXDpzuZLcl+TrSZ6f5MeTvHDm7z+f5AfGGD9bVU9tYk4AAAAAAAAAAAAAAADgTEemHoAkybeTfG1VNxtjXJXkkzkz+Pp8kmur6vqqurWqbkpyVZL3JPnOzL43J/ndVc0CAAAAAAAAAAAAAAAALEf0tXnfSfKlJH+U5N1JXpvk8iTvWuEzbk9ydGZ9T5KfrqoHZzdV1ber6veS3Dp3/r1jjKtXOA8AAAAAAAAAAAAAAACwoL2pB7jI3JXkQ1X1xPwfxhgrecAY45VJ3jZz6ckkbz/bM59WVZ8aY9w1c+6ZSW5L8o6VDAUAAAAAAAAAAAAAAAAszJu+NqiqHjtffLUib01yycz6k1X10ALn3j+3vnWMcdnqxgIAAAAAAAAAAAAAAAAWIfraPTfPrf94kUNV9WCSL85cek6Sm1Y1FAAAAFlHtGcAACAASURBVAAAAAAAAAAAALAY0dcOGWNcmeRHZy59N8nnl7jF3XPrNx12JgAAAAAAAAAAAAAAAGA5oq/dct3c+itVdXKJ8/fMra895DwAAAAAAAAAAAAAAADAkkRfu+VVc+uvLnn+axe4HwAAAAAAAAAAAAAAALBmoq/d8oq59SNLnn94bv2CMcbRQ8wDAAAAAAAAAAAAAAAALEn0tVueP7c+vszhqjqR5Im5y8871EQAAAAAAAAAAAAAAADAUvamHoCVeu7c+vED3OPxJJfNrC8/+DinjTFelOSKJY9ds4pnAwAAAAAAAAAAAAAAwDYRfe2W+ehr/q1di3g8ydHz3POgfiXJbSu6FwAAAAAAAAAAAAAAAOws0dduqw2dAQAAAFjI+LU/n3oEgItC3fHmqUcAAAAAAAAA4BCOTD0AK3Vibv2sA9xj/sz8PQEAAAAAAAAAAAAAAIA18qav3dI5+vr9JB9b8sw1Sf5sRc8HAAAAAAAAAAAAAACArSD62i3/M7e+YpnDY4zn5vujr28daqJ9VXU8yfEl51nFowEAAAAAAAAAAAAAAGCrHJl6AFbqobn11Uuen9//31X12CHmAQAAAAAAAAAAAAAAAJYk+totD86tX7Hk+ZfPrR84xCwAAAAAAAAAAAAAAADAAYi+dss/zq1fPcZ49hLnb7zA/QAAAAAAAAAAAAAAAIA1E33tkKr6jyRfmbm0l+Qnl7jFG+fWf3XYmQAAAAAAAAAAAAAAAIDliL52z5/OrX9hkUNjjB9J8hMzl04m+ZtVDQUAAAAAAAAAAAAAAAAsRvS1ez6c5Hsz61vGGK9c4Nyvz60/WlVPrG4sAAAAAAAAAAAAAAAAYBGirx1TVQ8luWvm0qVJ7hxjXHauM2OMn0ny9plLTya5fS0DAgAAAAAAAAAAAAAAAOe1N/UAF5sxxlU5+//9yrn13hjj2Dluc6KqHj3PY25LcnOSo/vrG5L87RjjXVX1zzOzPDPJLyW5Y+78HVX18HnuDwAAAAAAAAAAAAAAAKyJ6Gvz/j7J1Qvse0mSb5zjb3flzDdznaGq/m2McUuSv86pN30lyY1JHhhj/EOSryd5XpLXJLli7vhfJPmtBeYDAAAAAAAAAAAAAAAA1kD0taOq6u4xxs1J7szpsGskuX7/czYfSfKLVfW99U8IAAAAAAAAAAAAAAAAnM2RqQdgfarqL5Ncl+RDSR47z9Z7k/xcVb21qk5uZDgAAAAAAAAAAAAAAADgrLzpa8Oq6tiGn3c8yS+PMd6T5MYkVye5MsnJJN9Mcn9VfWOTMwEAAAAAAAAAAAAAAADnJvq6SFTVk0k+PfUcAAAAAAAAAAAAAAAAwPkdmXoAAAAAAAAAAAAAAAAAAE4TfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAID/Z+/+XSy76zCOP59xQaMWQowpRFIEURAUZEFBFKwS0DRWplAEEcE2hSYEYiPapBDUwio2NoJBgkHWDWihhLBY2AS0cAVXQpA1oqLN5muxG/YyZH/hzJxn575ecItz7jl3nvkD3nwBAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKDIma0HAAAAAAAAAAAnYx57busJAHtjPf3I1hMAAACAu5iTvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvk6hmfnmzKz/4/PM1v8DAAAAAAAAAAAAAAAA7CvRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAkTNbD+BEPJrkxTt4/l/HNQQAAAAAAAAAAAAAAAC4OdHXfnhlrXVx6xEAAAAAAAAAAAAAAADArR1sPQAAAAAAAAAAAAAAAACA60RfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEX/vhqzNzfmYuzcx/Z+afM3NxZn49M9+amU9uPRAAAAAAAAAAAAAAAAC46szWAzgRnz90/dYk70zyQJJPJXliZi4keXytdf6kxwEAAAAAAAAAAAAAAADXib54w9kk52bm20meXGuto/zxmXlPkvvu8LUHj3IDAAAAAAAAAAAAAAAA3A1EX6fbpSTPJ3kpyctJLid5Pcm9ST6a5LNJHtp5fpI8keQgyeNHvOVrSZ464t8EAAAAAAAAAAAAAACAU0f0dTq9lKsx1y9vcmLXb5N8b2bOJvlxkvfvfPeNmXlxrfWzY94JAAAAAAAAAAAAAAAAHHKw9QCO3lrr+bXWuZsEX7vPXkjy8SR/OPTVd2bmLccyEAAAAAAAAAAAAAAAALghJ32RtdblmXk0yYUkc+32B5N8Osn5I/ozP0jykzt858EkThsDAAAAAAAAAAAAAABgr4i+SJKstX43M+eSPLRz++EcUfS11no1yat38s7M3PohAAAAAAAAAAAAAAAAOGUOth5AlV8cuv7wJisAAAAAAAAAAAAAAABgj4m+2HXx0PV9W4wAAAAAAAAAAAAAAACAfSb6Ytd/Dl3fs8kKAAAAAAAAAAAAAAAA2GOiL3a9+9D13zZZAQAAAAAAAAAAAAAAAHtM9MWujx26/usmKwAAAAAAAAAAAAAAAGCPib5IkszM25J87tDtX20wBQAAAAAAAAAAAAAAAPaa6Is3fD3Je3euryT5+UZbAAAAAAAAAAAAAAAAYG+Jvk6ZmfnCzNx/h+98JclTh24/s9b689EtAwAAAAAAAAAAAAAAAG6H6Ov0+XKSP83Mj2bmMzPzjhs9ODNnZ+anSX6YZHa+upTkyWPeCQAAAAAAAAAAAAAAALyJM1sP4Fjck+SL1z6vz8wfk1xM8o8kV5Lcm+QjSd7sRLDLSR5ea71yMlMBAAAAAAAAAAAAAACAXaKv0+8gyQeufW7lhSRfWmv95XgnAQAAAAAAAAAAAAAAADci+jp9vpvkUpJPJHngNp7/d5JzSb6/1nrhOIcBAAAAAAAAAAAAAAAAtyb6OmXWWs8meTZJZuZdST6U5H1J7k/y9lw9+eu1JH9P8nKS36+1rmyzFgAAAAAAAAAAAAAAADhM9HWKrbVeS/KbrXcAAAAAAAAAAAAAAAAAt+9g6wEAAAAAAAAAAAAAAAAAXCf6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAA62lxOwAAIABJREFUAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAAChyZusBAAAAAAAAd4t57LmtJwDshfX0I1tPAAAAAACATTnpCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoMj/2Lv3aF/ruk7g78/hIB4uSljiLUEyw1sqUoqjeYEZ0MxbmNrKifEyTJONjUxZTQa2nMlW6eRSayY1dGayVCrvIcloeaEpRqggXAoGJsodMS7KAT/zx28TPx724ez785y9X6+1zmJ/P7/n++w3fz3r99u/9/MofQEAAAAAAAAAAAAAAABMiNIXAAAAAAAAAAAAAAAAwIQofQEAAAAAAAAAAAAAAABMiNIXAAAAAAAAAAAAAAAAwIQofQEAAAAAAAAAAAAAAABMiNIXAAAAAAAAAAAAAAAAwIQofQEAAAAAAAAAAAAAAABMiNIXAAAAAAAAAAAAAAAAwIQofQEAAAAAAAAAAAAAAABMiNIXAAAAAAAAAAAAAAAAwIQofQEAAAAAAAAAAAAAAABMiNIXAAAAAAAAAAAAAAAAwIQofQEAAAAAAAAAAAAAAABMiNIXAAAAAAAAAAAAAAAAwIQofQEAAAAAAAAAAAAAAABMiNIXAAAAAAAAAAAAAAAAwIQofQEAAAAAAAAAAAAAAABMiNIXAAAAAAAAAAAAAAAAwIQofQEAAAAAAAAAAAAAAABMiNIXAAAAAAAAAAAAAAAAwIQofQEAAAAAAAAAAAAAAABMiNIXAAAAAAAAAAAAAAAAwIQofQEAAAAAAAAAAAAAAABMyPaxAwAAAAAAAAAAAMBS1UkfGjsCwJbQb/iRsSMAAGxpnvQFAAAAAAAAAAAAAAAAMCFKXwAAAAAAAAAAAAAAAAATovQFAAAAAAAAAAAAAAAAMCFKXwAAAAAAAAAAAAAAAAATovQFAAAAAAAAAAAAAAAAMCFKXwAAAAAAAAAAAAAAAAATovQFAAAAAAAAAAAAAAAAMCFKXwAAAAAAAAAAAAAAAAATovQFAAAAAAAAAAAAAAAAMCFKXwAAAAAAAAAAAAAAAAATovQFAAAAAAAAAAAAAAAAMCFKXwAAAAAAAAAAAAAAAAATovQFAAAAAAAAAAAAAAAAMCFKXwAAAAAAAAAAAAAAAAATovQFAAAAAAAAAAAAAAAAMCFKXwAAAAAAAAAAAAAAAAATovQFAAAAAAAAAAAAAAAAMCFKXwAAAAAAAAAAAAAAAAATovQFAAAAAAAAAAAAAAAAMCFKXwAAAAAAAAAAAAAAAAATovQFAAAAAAAAAAAAAAAAMCFKXwAAAAAAAAAAAAAAAAATovQFAAAAAAAAAAAAAAAAMCFKXwAAAAAAAAAAAAAAAAATovQFAAAAAAAAAAAAAAAAMCFKXwAAAAAAAAAAAAAAAAATovQFAAAAAAAAAAAAAAAAMCFKXwAAAAAAAAAAAAAAAAATovQFAAAAAAAAAAAAAAAAMCFKXwAAAAAAAAAAAAAAAAATovQFAAAAAAAAAAAAAAAAMCFKXwAAAAAAAAAAAAAAAAATovQFAAAAAAAAAAAAAAAAMCFKXwAAAAAAAAAAAAAAAAATovQFAAAAAAAAAAAAAAAAMCFKXwAAAAAAAAAAAAAAAAATovQFAAAAAAAAAAAAAAAAMCFKXwAAAAAAAAAAAAAAAAATovQFAAAAAAAAAAAAAAAAMCFKXwAAAAAAAAAAAAAAAAATovQFAAAAAAAAAAAAAAAAMCFKXwAAAAAAAAAAAAAAAAATovQFAAAAAAAAAAAAAAAAMCFKXwAAAAAAAAAAAAAAAAATovQFAAAAAAAAAAAAAAAAMCFKXwAAAAAAAAAAAAAAAAATovQFAAAAAAAAAAAAAAAAMCFKXwAAAAAAAAAAAAAAAAATovQFAAAAAAAAAAAAAAAAMCFKXwAAAAAAAAAAAAAAAAATovQFAAAAAAAAAAAAAAAAMCFKXwAAAAAAAAAAAAAAAAATovQFAAAAAAAAAAAAAAAAMCFKXwAAAAAAAAAAAAAAAAATovQFAAAAAAAAAAAAAAAAMCFKXwAAAAAAAAAAAAAAAAATovQFAAAAAAAAAAAAAAAAMCFKXwAAAAAAAAAAAAAAAAATovQFAAAAAAAAAAAAAAAAMCFKXwAAAAAAAAAAAAAAAAATovQFAAAAAAAAAAAAAAAAMCFKXwAAAAAAAAAAAAAAAAATsn3sAAAAAAAAAAAAAAAAW0Wd9KGxIwBsCf2GHxk7AqyKJ30BAAAAAAAAAAAAAAAATIjSFwAAAAAAAAAAAAAAAMCEKH0BAAAAAAAAAAAAAAAATIjSFwAAAAAAAAAAAAAAAMCEKH0BAAAAAAAAAAAAAAAATIjSFwAAAAAAAAAAAAAAAMCEKH0BAAAAAAAAAAAAAAAATIjSFwAAAAAAAAAAAAAAAMCEKH0BAAAAAAAAAAAAAAAATIjSFwAAAAAAAAAAAAAAAMCEKH0BAAAAAAAAAAAAAAAATIjSFwAAAAAAAAAAAAAAAMCEKH0BAAAAAAAAAAAAAAAATIjSFwAAAAAAAAAAAAAAAMCEKH0BAAAAAAAAAAAAAAAATIjSFwAAAAAAAAAAAAAAAMCEKH0BAAAAAAAAAAAAAAAATIjSFwAAAAAAAAAAAAAAAMCEKH0BAAAAAAAAAAAAAAAATIjSFwAAAAAAAAAAAAAAAMCEKH0BAAAAAAAAAAAAAAAATIjSFwAAAAAAAAAAAAAAAMCEKH0BAAAAAAAAAAAAAAAATIjSFwAAAAAAAAAAAAAAAMCEKH0BAAAAAAAAAAAAAAAATIjSFwAAAAAAAAAAAAAAAMCEKH0BAAAAAAAAAAAAAAAATIjSFwAAAAAAAAAAAAAAAMCEKH0BAAAAAAAAAAAAAAAATIjSFwAAAAAAAAAAAAAAAMCEKH0BAAAAAAAAAAAAAAAATIjSFwAAAAAAAAAAAAAAAMCEKH0BAAAAAAAAAAAAAAAATIjSFwAAAAAAAAAAAAAAAMCEKH0BAAAAAAAAAAAAAAAATIjSFwAAAAAAAAAAAAAAAMCEKH0BAAAAAAAAAAAAAAAATIjSFwAAAAAAAAAAAAAAAMCEKH0BAAAAAAAAAAAAAAAATIjSFwAAAAAAAAAAAAAAAMCEKH0BAAAAAAAAAAAAAAAATIjSFwAAAAAAAAAAAAAAAMCEKH0BAAAAAAAAAAAAAAAATIjSFwAAAAAAAAAAAAAAAMCEKH0BAAAAAAAAAAAAAAAATIjSFwAAAAAAAAAAAAAAAMCEKH0BAAAAAAAAAAAAAAAATMj2sQOwsarqQUkeneR+SfZP8rUklyT5bHfvHDMbAAAAAAAAAAAAAAAAoPS1ZVTV8UleleSoXRxyTVW9J8mvdPdVG5cMAAAAAAAAAAAAAAAAmLdt7ACsr6rav6r+IMn7suvCV5IclOSnkpxXVcduSDgAAAAAAAAAAAAAAADgTpS+NrGq2ivJe5K8cPDSlUnOyKwI9rkkPffawUk+UFVP3JCQAAAAAAAAAAAAAAAAwB0ofW1ur0/yjLn1ziQ/k+QB3X1sd/9Ydz82ySOSnDV33D5J3l9V9924qAAAAAAAAAAAAAAAAECi9LVpVdVhSV45GD+/u9/S3TfPD7v775McnTsWv+6V5OT1TQkAAAAAAAAAAAAAAAAMKX1tXicn2Xtu/c7u/sCuDu7um5KckGS+EPbShfIYAAAAAAAAAAAAAAAAsEGUvjahqtqR5PjB+Nd3t6+7v5Dk/XOj7Ul+fA2jAQAAAAAAAAAAAAAAALuh9LU5HZtk37n1Wd39+SXuPXWwft7aRAIAAAAAAAAAAAAAAACWQulrczpusP7kMvZ+Ksktc+vHVNXBq04EAAAAAAAAAAAAAAAALInS1+b0iMH6rKVu7O4bkvzdYPzwVScCAAAAAAAAAAAAAAAAlkTpa3N66GB94TL3XzRYP2wVWQAAAAAAAAAAAAAAAIBlUPraZKrqoCQHDcZfXuZphsd/78oTAQAAAAAAAAAAAAAAAMuxfewArLkDB+sbu/uGZZ7jisH6nqvIkySpqnsn+a5lbjt8fnHhhct9YBks4qrldiABWInzzz9/7Aibl2sZwIZwLVtHrmUAG8K1bB25lgFsCNeydeRaBrBhXM/WkesZwIZwLVtHrmUAG8K1jLWwSJflbhv1u6u7N+p3sQGq6vuT/M3c6Oru/s5lnuM/JHnT3OiPu/tHV5nrlCQnr+YcAAAAAAAAAAAAAAAAMKJnd/cHN+IXbduIX8KG2n+w/uYKznHTbs4JAAAAAAAAAAAAAAAArBOlr81vJY9y8/g3AAAAAAAAAAAAAAAAGMn2sQOw5q4frHes4BzDPcNzrsRvJ3nfMvfsn+TIJN9Icl2Sf0xy8xpkAdhTfE+SD8ytn53kopGyAMBKuJYBsKdzLQNgT+daBsCezrUMgM3A9QyAPZ1rGbDV3S3Jd8+t/3yjfrHS1+YzydJXd1+R5IoVbP2/q/3dAHuqqhqOLuru88fIAgAr4VoGwJ7OtQyAPZ1rGQB7OtcyADYD1zMA9nSuZQBJknPG+KXbxvilrKvrBut9q2q/ZZ7j3oP111eRBwAAAAAAAAAAAAAAAFgGpa9NpruvTnLtYPzAZZ7mkMH6iytPBAAAAAAAAAAAAAAAACyH0tfmdMFg/eBl7j9sN+cDAAAAAAAAAAAAAAAA1onS1+Z03mB91FI3VtV+Sb5/N+cDAAAAAAAAAAAAAAAA1onS1+Z0+mD9lGXsfVKS7XPrc7r78lUnAgAAAAAAAAAAAAAAAJZE6Wtz+liSm+bWR1XV4Uvce8Jg/SdrkggAAAAAAAAAAAAAAABYEqWvTai7b0xy2mD86t3tq6qHJHnu3OiWJO9ew2gAAAAAAAAAAAAAAADAbih9bV6nJNk5tz6hqp61q4Or6u5JTk1yt7nxO7r7ovWJBwAAAAAAAAAAAAAAACxG6WuT6u4vJXnTYHxaVb2iquaLXamqhyY5M8kT5sZXJ3nt+qYEAAAAAAAAAAAAAAAAhraPHYB19QtJHp7k6QvrvZO8OclrqupzSf4pyWFJjkhSc/tuTvLc7v7aBmYFAAAAAAAAAAAAAAAAovS1qXX3rVX1Y0nenuQFcy/dO8lxu9h2RZKf7O5PrXc+AAAAAAAAAAAAAAAA4M6Uvja57r4+yQur6rQkJyV5/C4OvSbJe5Kc3N1XblQ+AO7SlUleO1gDwJ7EtQyAPZ1rGQB7OtcyAPZ0rmUAbAauZwDs6VzLAEZS3T12BjZQVT0oyRFJ7pdkvySXJbkkyWe6++YxswEAAAAAAAAAAAAAAABKXwAAAAAAAAAAAAAAAACTsm3sAAAAAAAAAAAAAAAAAADcTukLAAAAAAAAAAAAAAAAYEKUvgAAAAAAAAAAAAAAAAAmROkLAAAAAAAAAAAAAAAAYEKUvgAAAAAAAAAAAAAAAAAmROkLAAAAAAAAAAAAAAAAYEKUvgAAAAAAAAAAAAAAAAAmROkLAAAAAAAAAAAAAAAAYEKUvgAAAAAAAAAAAAAAAAAmROkLAAAAAAAAAAAAAAAAYEKUvgAAAAAAAAAAAAAAAAAmZPvYAQCAO6uqByV5dJL7Jdk/ydeSXJLks929c8xsAAAAAMA0VdWOJIcnOSSzzxYPSLJ3km8kuTrJeUnO7+5bRgsJAAAAAOyRqurwJI9K8oAkO5J8M8kVSS5M8jfdfcOI8QA2perusTMAAAuq6vgkr0py1C4OuSbJe5L8SndftWHBAAAAtoCq2ivJg5M8LLMvyt8zybeSXJvkoiRn+2MVAFNTVf8mydOSPC7J9yTZtpst1yd5b5I3d/e56xwPAAAAANiDVdWBSV6Z5CVJHngXh96a5Nwkp3X36zciG8BWoPQFABNQVfsneVuSFy5xy+VJfrK7P7Z+qQBgearqsCQ/kOTIhf8ekdld5W9zSXcfOkI0ANilqnpgkuclOSbJk5Lc4y4OvzXJnyV5S3d/ZAPiAcBuVdVXktx/BVtvTfLmJD/nyV8A7Amq6g+TvGAw9pkjAJNQVackOXkVp3hXd5+wNmkAYG1U1fOT/E6Sey1j2+XdfZ91igSw5WwfOwAAbHULd5J/T5JnDF66Msk5Sa7L7A69j0lSC68dnOQDVXVMd396o7ICwFBVPSXJL2ZW9Dpo3DQAsDxV9e4kL1rGlr2SHJfkuKr6cJKXdffl6xIOAFbuxsyeUPnlJN/I7MlfByV5ZJL5L1vsleRnkxxaVcd3960bHRQAlqqqnpU7F74AAABYJ1V1cpJTFnnpy0m+kNn3G++e5L6Zffa434aFA9hClL4AYHyvzx0LXzuTvCrJ73b3zbcNq+phSd6e5KiF0T5J3l9Vj+zur21UWAAYeHSSfzV2CABYoYfsYn5pki9m9pTl7UkOS/KozL40f5tnJvmLqnpyd1+2rikB4K7dkOSDSf40yWeTnNfd317swKp6fJLXJTl6bvyczD6P/I11zgkAK1JVB2Z2Z3kAAAA2QFWdlDsXvv4gya91998tcvy2zL7X+KNJjl33gABbSHX32BkAYMuqqsOSfD7J3nPj53T3B3Zx/I4kZ+b24leS/I/u/nfrlxIAdq2qfjbJf1vkpW8l+UpmT6u8zSXdfehG5AKApaiqs5M8dmF5TpLfS/Kn3X3RIsfeP8mvJPm3g5c+neSH2getAIykqvbu7p3LOH5bkncl+Ym58XVJDu7ub611PgBYrap6R5KXLCz/KckBcy/7zBGASaiqU5KcPDd6UZK/XMYpru/uq9Y0FACsQFU9KsnZuf3hMjuT/Hh3n7bE/du7+5b1ygew1Wzb/SEAwDo6OXcsfL1zV4WvJOnum5KckOTmufFLF8pjADCWnUnOzeyJlCdm9uX5A5K8bMxQALAEneQjSX6gu4/o7rcsVvhKku6+tLtPTPLTg5eemOQF65wTAHZpOYWvheO/ndn17Ia58T2TPHUtcwHAWqiqY3J74euWzG7GAQB7gsu6++Jl/FP4AmB0VbU9s5skbp8bn7jUwleSKHwBrC2lLwAYycJTu44fjH99d/u6+wtJ3j832p7kx9cwGgAsx7uS3KO7H9PdL+/u3+3uzy33S4cAMJLnd/czu/vspW7o7t9O8keD8YvXNhYArK/u/kZmT6uc9+AxsgDArlTVfkneNjd6Y2Y3nwIAAGB9PD/JEXPrM7v71LHCAKD0BQBjOjbJvnPrs7r780vcO3wj9by1iQQAy9Pd13b3N8fOAQAr0d0Xr3DrWwdrT0YBYE90zWB9wCgpAGDXfi3JoQs/fynJKaMlAQAA2BpOHKz/6ygpAPhnSl8AMJ7jButPLmPvp5LMPwb5MVV18KoTAQAAsBTnDNY7qurAUZIAwModMlh/dZQUALCIqnpCkp+eG53Y3TeNlQcAAGCzq6oHJ3ny3OjiJJ8YJw0At1H6AoDxPGKwPmupG7v7hiR/Nxg/fNWJAAAAWIpbFpndbcNTAMAKVdVDkjxubtRJ/nykOABwB1W1T5Lfy+3faXlXd398xEgAAABbwVMH6zO7u0dJAsA/U/oCgPE8dLC+cJn7LxqsH7aKLAAAACzdgwfrW5JcNUYQAFiuqrpvkvcl2WtufFp3XzxOIgC4k1OSfN/Cz1cmOWm8KAAAAFvGDw7WZyVJzRxTVadW1d9X1XVVdUNVXVJVH6+qX6iqQzc8LcAWsX3sAACwFVXVQUkOGoy/vMzTDI//3pUnAgAAYBmOH6zP7u5vj5IEAHajqrYn+Y7MbkL1zCQnJrnH3CFfSvKKEaIBwJ1U1RFJ/tPc6Ge7++qx8gDAKpxYVb+c2XuxeyXZmeTqJJck+XSS07v7UyPmA4ChIwfrCxbKXO9I8rRFjn/gwr+jk/xqVb0tyc91943rGRJgq1H6AoBxHDhY39jdNyzzHFcM1vdcRR4AAACWoKr2T/LSwfhPxsgCAIupqt9K8solHv6JJC/u7uFnjQCw4RaKyr+X27/Lcnp3v3vESACwGi8crPdJsn+SQ5L8UJJfqqqzk/xid398o8MBwCLuO1jvm+Svk3znEvbuneTfJzmqqn64u7+21uEAtqptYwcAgC1q/8H6phWcY7jngBVmAQAAYOl+Lcl95tZfT/L2kbIAwEp9MMmx3f207r507DAAsOAXkjxq4ecbkvzUiFkAYCMcmeSMqvovVVVjhwFgyxveyP7U3F74uiHJG5Ick+TwJI9N8pLMnl457zFJ/qiq9l7HnABbiid9AcA4hqWvb67gHMPS1/CcAAAArKGqem6SVwzG/7m7rxkjDwCswtOT7FVV3+zuvxg7DABU1cOS/PLc6DXdffFIcQBgNS5N8tEkf5XkgiTXJPl2knslOSLJM5McO3d8JfmlzG7g/4sbmhQAFlTVPpk9lXLeAxb++/dJjuvufxy8/rkkp1bVSUl+c25+VJJXJ3ndemQF2Gqqu8fOAABbTlU9Icln5kZf6e7vXuY5XpbkbXOjM7r72F0dDwAbraqekuQTc6NLuvvQcdIAwOpU1aMyu1vh/A03zsjsj1w+ZAVgMqrqoCT3mBvtyOzLhY9O8twkTxtseWuSV3b3rRuTEADuqKq2ZfZ3s8cvjP5fksctdm3ymSMAU1VVz0hyS5I/293nhVV1ZJJ3J/newUvP6e4PrFNEANilqto3s6d5DV2X5JGLFL6G+9+Y5D/Oja5Jckh3X792KQG2pm1jBwCALWr4ZmbHCs4x3OMNEgAAwDqoqgcm+UjuWPi6JMlPKHwBMDXdfU13Xzz374Lu/nR3v6W7j07ypMyuY7f56SS/O05aAEiSvDK3F75uSfIyZWQA9jTd/dHuPmMpnxd299mZXfu+MHjp9VW117oEBIC70N03ZvZkyqE37q7wteA1mRXEbnNQkqevRTaArU7pCwDGofQFAACwB6iqeyf5syT3nxtfluRfdveV46QCgJXr7k8neWqSq+fGL6mqZ48UCYAtrKoOS/K6udEbu/vcsfIAwEbp7muSvCjJfEns8MzerwHAGBZ70tf/XMrG7r4hyR8Pxk9ZbSAAlL4AYCzXDdb7VtV+yzzHvQfrr68iDwAAAANVdVCSjyd5yNz4qiTHdPcXx0kFAKvX3f+Q5FcH458fIwsAW1dVVZK3Jdl3YfSlJKeMFggANlh3fy7JGYPxcWNkAYDc+fuHl3f3xcvY/5eD9UNXFweAROkLAEbR3VcnuXYwfuAyT3PIYO0LhwAAAGukqu6Z2RcuHjk3vjazJ3ydP04qAFhTfzhYP76qDhwlCQBb1cuTPG1ufWJ33zRWGAAYyemD9fePkgIAki8M1l9b5v6vDtb3WkUWABZsHzsAAGxhFyR5wtz6wQuzpTpskfMBAACwSlV1QGZftnjs3PgbSY7r7nPHSQUAa6u7r6iqa5N8x8JoW5IHJTlnvFQAbDGvnfv5o0kurKpDd7PnPoP19kX2fLW7b15VMgDYOBcP1t81RggASHJ+kqPn1t9a5v7h8XdfXRwAEqUvABjTeblj6euoJB9aysaq2i93vrvTeWuUCwAAYMtaeL/10SSPnxtfn+Tp3f1X46QCgHWzc7DeZ5QUAGxVO+Z+fkaSf1jBOe6/yL7HJHHDDgD2FMOnXO5Y9CgAWH9/O1gfuMz9w+OvXkUWABZsGzsAAGxhpw/WT1nG3ifljuXtc7r78lUnAgAA2MKqakeSDyd54tz4xiQ/3N2fHScVAKyPqrp7ku8cjH3GCAAAsLGG78uuGiUFACR/mqTn1octfIa4VI8YrL+y+kgAKH0BwHg+ljvesemoqjp8iXtPGKz/ZE0SAQAAbFELf7T6YO54Q45vJnlWd//FKKEAYH0dnTv+rfDGJJeOlAUAAGCretxg/dVRUgCw5XV1s9YBAAAfhUlEQVT3V5OcNTfaO7PPEJfquMH6U6sOBYDSFwCMpbtvTHLaYPzq3e2rqockee7c6JYk717DaAAAAFtKVd0tyR8nOWZu/K0kz+nuM8dJBQDrp6q2JXnNYHx6d988Rh4AtqbuPrC7azn/kjx1cJpLFjnu3DH+fwBguRZuRPW8wfiTI0QBgNucOli/aimbqupJSX5wbvTtJB9dq1AAW5nSFwCM65QkO+fWJ1TVs3Z18MIHfqcmudvc+B3dfdH6xAMAANjcqmp7kvcmefrceGeS47v7Y+OkAoClqaqfqar7LnPP3knekTvfTf6taxYMAACApXh1kvvPrW9N8pGRsgBAMvtu4gVz66dV1V0Wv6rq3rlzWey9vtMIsDaUvgBgRN39pSRvGoxPq6pXLNxp/p9V1UOTnJnkCXPjq5O8dn1TAgAAbE5VtVeS30/y7LnxLUle0N0fHicVACzLS5NcVFX/u6p+pKoO2NWBVbWjql6U5JwkJwxe/l/d/X/WMScAAMCmVVUvrqqDl7nn5UlOHozf2d2XrF0yAFie7r41ySsze1LXbd5QVW+qqu8YHl9VxyT5TJLvmRtfm+SX1jUowBZS3T12BgDY0ha+ZPih3PGu8klyRZLPJfmnJIclOSJJzb1+c5JjuvtTG5ETAHalqh6QZPsiLz0+yR/MrS9N8sRdnOb67r5qrbMBwF2pqncl+deD8c8ned8KTndZd39z9akAYOmq6twkj5obdZILk1yc5OuZfYZ4QJJDkjwsyd6LnObDmT3h8lvrGhYA1kBVPSXJJ+ZGl3T3oeOkAYCZqvpkkh/M7HPF9yb5ZHffsItjj8zsi/DPHbx0aZIju/uydYwKAEtSVa9I8ubBeGeSv8zsmrUjyaMz+9xx3s1JntXdH1v3kABbhNIXAExAVe2f5O1JXrDELVck+cnuPn39UgHA0lTVxbnzB3nL9a7uPmH1aQBg6apqLT8cfWp3f3INzwcAu7VI6Ws5bkryuiS/0d071y4VAKwfpS8Apmih9PXkudG3k3wxsxtyXJfk1iT3yuz922JPBLsmyZO7+7x1DQoAy1BVP5XkN5Psu8Qtlyd5Xnd/dv1SAWw9i92JHQDYYN19fZIXVtVpSU7K7Mkoi7kmyXuSnNzdV25UPgAAAABgkl6e5FlJjk5yRJJ9lrDn80l+P8k7u/sr65gNAABgq9qW5PsW/u3OmUlO8P4MgKnp7t+pqjOSnJLk2UkO2MWhlyX570l+q7uv26B4AFuG0hcATEh3n5bktKp6UGZf0rhfkv0ye2N0SZLPdPfNI0YEAAAAACaiu/86yV8neU1V7Z3koUkOS3L/JPsn2TvJ9Um+kdkd5s/p7mvHSQsAALBpvSnJpUn+RZJDlnD8DUnOSPLW7j5zPYMBwGp090VJXlxVOzK7zj0gyX2S3JzkyiR/091/O2JEgE2vunvsDAAAAAAAAAAAAAB7tKo6MMnDk3x3koOT7JvZk7++nuTaJBck+dvuvnW0kAAAwB5D6QsAAAAAAAAAAAAAAABgQraNHQAAAAAAAAAAAAAAAACA2yl9AQAAAAAAAAAAAAAAAEyI0hcAAAAAAAAAAAAAAADAhCh9AQAAAAAAAAAAAAAAAEyI0hcAAAAAAAAAAAAAAADAhCh9AQAAAAAAAAAAAAAAAEyI0hcAAAAAAAAAAAAAAADAhCh9AQAAAAAAAAAAAAD/v717D7e2LusE/r05CAaIgCCKCsnBU5qMIqjhIbXUnEwnj41hRzykFmk2eABNk5mclFDTmdFGrQguHExTSzFh8hgqohGapHhWEBERFQXu/njWK2sv9l57rb33y14vfD7Xta7r/f2e32k9z7Pff/b13TcAAAtE6AsAAAAAAAAAAAAAAABggQh9AQAAAAAAAAAAAAAAACwQoS8AAAAAAAAAAAAAAACABSL0BQAAAAAAAAAAAAAAALBAhL4AAAAAAAAAAAAAAAAAFojQFwAAAAAAAAAAAAAAAMACEfoCAAAAAAAAAAAAAAAAWCBCXwAAAAAAAAAAAAAAAAALROgLAAAAAAAAAAAAAAAAYIEIfQEAAAAAAAAAAAAAAAAsEKEvAAAAAAAAAAAAAAAAgAUi9AUAAAAAAAAAAAAAAACwQIS+AAAAAAAAAAAAAAAAABaI0BcAAAAAAAAAAAAAAADAAhH6AgAAAAAAAAAAAAAAAFggQl8AAAAAAABs06pqp6o6qqr+X1VdWFXfraoe+5y52WcEAAAAAACAeeyw2QcAAAAAAAC4MamqC5PsP9H9+SR37O4frnOtvbv7m+s64Damqu6Q5K1J7rjZZwEAAAAAAICNotIXAAAAAADA5vvJJE/Z7ENsa6pqtyTviMAXAAAAAAAANzAqfQEAAAAAACyG51fVX3T35Zt9kG3IbyU5cKz9mSQvSXJOkivG+n9wfR4KAAAAAAAA1kvoCwAAAAAAYDHsneTZSY7b7INsQx4z9u8fJnlQd39lsw4DAAAAAAAAG2W7zT4AAAAAAAAAP3ZMVd1ysw+xLaiq7ZMcOtb1YYEvAAAAAAAAbiiEvgAAAAAAADbXW8f+vWuSF27WQbYxuyfZaaz95c06CAAAAAAAAGw0oS8AAAAAAIDNdVyS74+1f6uqDtqsw2xDdp1o/2hTTgEAAAAAAABbwQ6bfQAAAAAAAIAbua8mOTHJH47aOyZ5SZLHXx+bV9VuSe6bZL8keye5MslFSc5Pck539/VxjjXYan/csKrunuQOSfZNskuSbyR5U3dPDZZV1a2SHJ5knyR7Jfluhnt5dnd/boPOVkkOHZ1v79H5vpmh0tn7u/vyjdhnzjPdNsndk9wuyW5Jtk/yvSQXJ7kwyae6+7IN2GffJPfK8K7unuG5fDrJh9fznlbVdhnu5x2S3CbDd7gqyaVJvpjkIxtx/rH9dk5yRIb7dYskN01yeZIvJPmX7v73day9Z5L7ZHh3b5HkBxmewye6+7x1nnuPDM/54Fxbae/7Sb49Ovv53f2V9ewBAAAAAABcqxb393QAAAAAAAA3PFV1YZL9x7r2zlCl6nNJ9hz1dZLDuvtj867V3d+c8Rz3SfLCJD+bIWi2nIuSvDnJy7r7klnW3Zqq6swk959z2lnd/YCxNR6Q5H1j11/U3cdX1fZJjkny20mWq7S2R3d/e5kz7ZjkN5I8Lcldp5zjs0lenuQN3X3VnN9hS7Dq2CS/nCHMs5wfJTkjyQu7+6Pz7jHnebZL8utJnp4hCDRNJ/nXJG9P8oruvmiFNc/M2PPt7hr1H57kBUkemiFQNumrSf40yYmz3ttRgOlRSR6Z5H5Jbj5l+DVJ3p/kT7r772ZZf4U9fy7Js0f77TRl6JeT/G2S13X3p2ZYt5I8LsnvJjksKwciv5LkpCR/1t3fX2HMcus/MEMo9UFZ/v5P7vGuJK/q7nNn3QMAAAAAALguoS8AAAAAAIDr0UpBrap6dpI/Get/b3c/eC1rrTJnxySvzRDYmdVlSZ7U3W+fY86G21qhrySvS/KWJPeess51Ql9VdY8kpya5/Rzn+USSR8xTEamqnjs657Sg0LjOEDB77tao1FZVN0/ytiRHrmH6Q7r7jBXWPTMToa+qelqGoNIsld0+luRh3X3xagOr6pOZHtJbyd8k+c3uvmLWCVV1yyQnJ3ngnHsteXdXWPv2SU7LUP1tVhdmeAenVv4ahclemeSZc6y9xUu7+/lrmAcAAAAAAIzssNkHAAAAAAAAIMkQbHlGktuN2g+qqod093s2aoNR4OsdSR4ycemqJGcn+VKSmya5c5IDx67vnuT0qvr17n7TRp1nQeyU5PQkh4/aV2cID31p1L5dkntMTqqqRyQ5JclPTFz6WpJzk3wryS4Z7uXBY9fvnuQjVXVEd3952sFG1bTekOSoiUvXJPlUhvDOFRmqxd0rw3NKkkrynCT7JHnytD3W6NRcN/D13Qzf+6tJrkyy62j/O2d6Fa0VVdVjkrwqw/dJhspzH0/y7SS3THJEhvd1i3skeV9VHdndl66y/GSI7FsZqpF9c/RddklyQJKfytJKeI9PsmtV/eIsgbqq+qkkf59kv4lLneEZfiHJdzI8uwOT3GGZs6209r0y/DxPVn67JMk5o++yU4b376fGrh+Q5ANV9YDu/sSULY7NdQNfVyX55OjcV2S4/3skuWOSW89ybgAAAAAAYDZCXwAAAAAAAAugu6+squOS/MVY9wlVdcYGVmt6aZYGvjrJnyc5frI6UlXdd3RtSzWk7ZO8rqo+0d2f3KDzzOvxSXYe/fs2Sf5p7Npbkjx7mTk/WGXNpyfZLUOQ6hVJXtbdl4wPqKrbZggCbWnfOUPFp/HA198nOa67/3lyg6o6NMmJuTYotV+Sk0ehm6unnO0FWRr4ujLJCUlevczz2iHJk5L8zwwhnCQ5qqo+1N2vm7LHXKrq57P0HbokybOSnNrdP1phzl2SPDzJb8y53esyBL6+kSF89Jbx+1VVuyQ5Jsnzk9xk1H2XDAHK/7rK2p3k/Rme4zu7+/MrnH2P0blfmOE9SZJHJDk6Q8W8FVXVnhkqoo0Hvq7I8IxetVxFsqq62Wj9o8a+03Jr75vkrVka+PpIhnfmOv9nVNVBGSoJ/tKoa/ckp1bVPbr78mXW3z3Dfd3i6iR/lOTEyYp3Y3NuleShSX41w/0FAAAAAADWoTbud4QAAAAAAACspqouTLL/WNfe3f3N0bXtMlRLGq/K88TuPnnetZYZ+9MZqv/UWPczu/ukKWfdNcl7MlRU2uLs7r7XSnOuL1V1QJLxoM4bu/vJM8x7QJL3LXPpV7r7r2eYv9wzOr67X7TKvB0yVAZ79Fj3UStVTquqw5N8MNdWfbo0yYO6+5xV9jlkNG+vUddlSW67XLBnLarqNUmeOtb1wO4+c8a5leQm3X3lCtfPTHL/ie6vJzmyuy+Ysu4vJTktQzBxiwd393unzDmguy+c5dyj8T+d5KxcW03tc0kO7u5rpsz56yRPGOv6WpKHr1Jda3z+vt399RWuvSNDkG6L1yc5epUQYarqxCyt3nVcd794mXGPzfC+bvGi7j5+lnOP5t+0u78/63gAAAAAAOC6tlt9CAAAAAAAANeHUYDk2Inul1TVjhuw/DFZGvh6y7TA1+g8303yuAzVibY4rKrutwHnWSRvmCXwNfLoLA18nbpa4CtJuvuqDNWbLhrrXq4y2RYvyNLf5f3KaoGv0T7/lqWhrN2T/NZq8+YwHjK8ZNbAV5L0YNnA1xRPmRb4Gq371iSvnuh+1ipzLpznEN19boZKV1vcPsm9VxpfVXfI8LOzxdVJHjNr4Gu050qBr3tmaeDrQ0l+e7XA18gxScYr9f1OVe20zLj9J9qnzbD2jwl8AQAAAADA+gl9AQAAAAAALJDufnuSfxrrun2So9ez5ijU8biJ7slw2Urn+WKSP5/ofvJ6zrOATphj7HiVpE7yh7NOHIXoXjfWdddRxbIlqurAJL8w1nVWd79rjjOeluQLY+1fnGPuPG5WVTtvpbWT5GPd/bczjn1xkh+OtX+hqvbe4PO8ZaJ9nyljj87S38X+ZXd/YIPO8cyJ9rHTKo6NGwXDThzr2jtTwmtj9pnxbAAAAAAAwAYR+gIAAAAAAFg8z51ov6Cqdl3HeoclGa/mc/aoItSs3jTR/pl1nGXRnNfdn51lYFXtkuSIsa6zu/vzc+73von2kcuMefBE+5R5NujuTnLWWNfhVXWTedaY4tNj/94xyf+oqlpp8DrNWn0t3X1JknePdW2X2cJMS1TV9lW1e1XdpqoOGP8k2X5i+J2mLPWgifZr5z3LFOPvx9ez9FnPYpZ38NMT7Zeu8/8gAAAAAABgTjts9gEAAAAAAABYqrs/VFV/m+SRo659kjw7yfFrXPKeE+0Pzjn/X5J8J8nNRu2Dq2r37r5sjedZJOfMMfaIDEGnLT63XKWuVUz+UcYDlxkzGaq7aA37fG/s3zsnuXWSC+dcYzknJzlmrP2MJPevqtcnefsaQnDTfGQN4x8x1j4sydumTaiqPZI8KkNltbtlqKw36x/O3GOFNXdLctexriuSnD3jmlONqsDdaqzrgiT7z5m7mwwALvcOvjfJRbm2wtcRST47es6nJzln1upiAAAAAADA2gh9AQAAAAAALKb/liHAsqW60O9X1Wu6+6I1rLXPRHueKl/p7q6qf8vS8Ng+SW4Ioa957udtJ9qPH33WY88Z9jltnXts2efC9S7S3R+tqlcm+d2x7rslOTHJiVX1pQyhwg8m+f9Jzh1VHluLud7TJJMV2ybf+x+rqu2TPCfJ85KstYLV7iv03zLJeArrM9199Rr3mDT5bvxMkvUG7a7zDnb396rqKRnevS0huH0z3K/nJfl2VX0oyYeS/FOSD3f3D9Z5DgAAAAAAYMysf6UOAAAAAACA61F3n5/k/4517ZrkBWtcbrIi0VrCWpNzlgsrbYsun2PsXlth/902cZ816e7fS/J7Wf49um2Sx2UIgZ2T5EtV9fKqus0atvrOnONnekeraockf5PkZVl74CtZ+Xetk8/v0nXssdraG2HZd6O7T0/y0AzVxCbdPMnDkrw4yfuSXFxVf1VVh22F8wEAAAAAwI2S0BcAAAAAAMDiOi7J98faR1fVgWtYpybaa628tNFrbGtushXWnHw21+c+a9bdr0yyf5KnJnl3kitWGLpfkt9PckFVPWsjzzCDld7R30vyyxN9H85Q+euBSQ7KUMVrp+6u8c8Gn2Mtrtd3o7vfk+ROSR6dISj3jRWG7prkiUn+uareUFU33fBTAgAAAADAjcwOm30AAAAAAAAAltfdX6mqk5L8wahrxyQvSfKEOZf61kR79zUcZ3LORlYv2lZ8c6J9bHe/bCvtc8hY+9bd/bWtsM+6dPdlSV6b5LWj6ll3S3LvJEcmeUiWVtraKckrq6q7+89m3OJmSS6e40irvqNVdZMkzxvr6iS/1t1vXG3xqrrZjOeYfE82sire5Nr/q7uP3sD1r6O7r0py+uiTqjoow3O+b4bnfPuJKb+WoRLYo7fmuQAAAAAA4IZOpS8AAAAAAIDF9rIsDa88rqr+05xrXDTRPmTZUSuoqkpy8ET3PGGcG4rJKkdz3ccF3GfDdPdV3f3x7n51dz8+yT5JHp7k7ImhL62qm8+47Lzfe/IdnXzvk+T+WRoOe/Msga+RW8847htZWt3rkKrafsa5s6w97np/N7r7gu5+c3c/pbsPTHJokpMnhj2qqh58fZ8NAAAAAABuSIS+AAAAAAAAFlh3fztD8GuLSnLCnMt8dKJ9nznn3yVLgzKfHZ3rxuZDWRrmecgoELfRPjjR/rmtsMdW1d1Xd/e7MlT9Omfs0q4ZqkPN4og5tz18oj0ZOEuuGwz7uznWn+nnpru/m+Tcsa5dk9xzjn2mOS/JZWPte1fVbhu09pp09ye6+4lJXjNx6VGbcR4AAAAAALihEPoCAAAAAABYfCcl+fJY+yFzVtH5aJIrx9r3qqrJ8Ms0T5pov3+OuTcY3X1xlgaY9kvysK2w1T9MtJ9UVTtvhX22uu6+MslfTnT/5IzTnzDrPlW1V5aG467JENKbNFll7LJlxqzkyXOMPWOiffQcc1fU3Vcnee9Y10657s/nZnn9RHvW5wwAAAAAACxD6AsAAAAAAGDBdfcPkhw30X1Chqpfs84/daL7JbPMrarbJHnaRPcbZ5l7A/WqifbLq2rXjdyguz+V5KyxrtsmOXYj97ieXTXRvnLZUdd1j6p65IxjX5jkJmPtd45CepMunWjfcZbFR+c4csazJMlrk1w91n5SVc1buWwlJ020j6uqW23Q2uux1ucMAAAAAAAsQ+gLAAAAAABg2/DGJOeNte+R5HZzzH9Fkh5rP7aqnjptQlXtkuSUJOOhpo9191krTElVnVlVPfY5fo4zbgvelOTTY+07JTm9qvaYZ5Gq2ruqHj1lyPOy9Hm9oKp+Z549RvscXlWHzjtvynq/W1W3mGP89kmeONF9/hxbvraqDlxlj19K8vSJ7hNXGH7uRPt3Ru/5tPXvmeQvpp5yQnf/e5K/GuvaIclpVXXXWdeoqn1XWPvMJO8Z69onyTtHAc2ZVdVuVTX5bLZc+5WqutM86yX51Yn2PM8ZAAAAAACYIPQFAAAAAACwDejuq7OOak/dfU6SP53ofnVV/VlV7TU5vqruneT9Se4z1n1lkt9c6xluCEbP4ZeTfGes+8FJPllVT62q3VaaW1V7VtXjqurkJF9K8swp+3wgyfET3SdV1buq6gFVtezv+Wpwx6p6TlX9c5IPJ/npmb7cbI5P8qWqOmX0XfZcaeAoNPT2JIePdX85yT/OuNelSfZN8v6qeuzkd66qXarq+RmCiduPXfrr7j5jhTU/kuQLY+2Dk7xnuYBTVe1aVX+Q5MwkeyRZrnLYNM9KcsFYe78kH6yqF64UnBsFsZ5QVf+Q5OQpax+V4V5ucfcM7+AfTAvljdb/xap6fZKvJPnjFYY+Jsl5VfW+qnp6VR0wZc29q+rlSY4Z674myV9OOT8AAAAAALCKHTb7AAAAAAAAAMymu99WVR9Ict81LnFskkOT/OyoXUmekeSpVfWRDCGSnZPcJclBE3OvSfK07v7EGve+weju86rqvyQ5Lcnuo+7bJHlNhmDWp5J8MUMw7CeS3DzJIaMx8+zz4qraO8l4ha+Hjj6XVdU5GYJIP0pyswwVn+6cpZXZtoadkzx29ElVfSHJZzOEtK7M8H3vlGSyQtfVSX6ju6+acZ+nJvmbDMGvU5J8o6o+luSyJLdMckSG+zvuvAzv9LK6++pRkOuUse57Zwg4fTLJZzJUWLt1knsl2Wk05qoMlazeNePZ093frqpHJvmHXPvsd03yoiTHjfb7YpLLMzy/A5PcIdcG2FasqNfdX6uqRyR55+isyRBM++9JTqiq85N8LsO92inDMzkwyQEZfu63+NaUr1BJHjD6vKqqLslwfy9JckWGe3/7JHfN0tBdkvxxd//rlLUBAAAAAIBVCH0BAAAAAABsW56boQLX3Lr7h1X1sCT/O0OAZYsdMj1I9p0kR3X3W9ey7w1Rd59RVffMUI3pnmOXts9QdenuMyxz6Qz7PKOqzk5yUoZg0Ba7ZwjjrOaaDMGfrWn/0WeaS5M8qbvfPeui3X1KVe2T5JVJtssQ9Hr4lCkfT/LQ7p4WZEp3n1pVhyR5ca4NQFWGimjLVUX7fpJf7e6/r6plLk/d61+r6rAkpyY5cuzSdpn9PVlp7XOr6tAkb07yc2OXKkP4784zLLPqOzhmryT3W2XMVUn+qLtfPMe6AAAAAADAMrbb7AMAAAAAAAAwu+7+QJK3rWP+D7v7qAwBlPdkqBK1kouTvCLJgQJf19XdF2SoBvWfk5yRocrVas7PEOA6MsmjZ9znTUlul6FS22dmmPKDJP+Y5DlJbtfdp8+yz4wenKFS1QdH+6zmi0lOSHJQd79j3s26+6QMQaN3Z6gUtpyvZviuh3f3xTOu+5IMAbKPTxn2nSRvTHLX7j5t5kNfd6+vd/f9MrwnZ2UIRk3z+Qw/d0+ZYe2LuvvnM9yjt2aowLWazyf5P0kelqWBxXHPSvLMDJXEZgmGbblXdxP4AgAAAACAjVHdvdlnAAAAAAAAYJNU1W4ZAkj7JblFhuDSxRnCSR9rv0yaWVXtnOTwDFWv9kqyS4YQzqVJLkhyfndfsgH73CpD2GyfJHtm+EOPlyf5eoZQ2Ge6+4fr3WeGc+yY5C5JDkxy6yS7jS5dniGI9ckkF8z6DlXVmUnuv6Xd3TVx/VYZ7u9+o70uSvLpJB/u7mvW8T0OSXJEhkpileQbSb6c5APdPUuwbd79dstQWW+/DO/J9hlCU19M8qnuvnAda++QIch10Gjt3ZJ8L0O1t89leAe/PueaNVrv4Azhw92T7Jjku0kuSXJekn+5Pt45AAAAAAC4MRH6AgAAAAAAADbdaqEvAAAAAACAG5PtNvsAAAAAAAAAAAAAAAAAAFxL6AsAAAAAAAAAAAAAAABggQh9AQAAAAAAAAAAAAAAACwQoS8AAAAAAAAAAAAAAACABSL0BQAAAAAAAAAAAAAAALBAhL4AAAAAAAAAAAAAAAAAFojQFwAAAAAAAAAAAAAAAMACqe7e7DMAAAAAAAAAAAAAAAAAMKLSFwAAAAAAAAAAAAAAAMACEfoCAAAAAAAAAAAAAAAAWCBCXwAAAAAAAAAAAAAAAAALROgLAAAAAAAAAAAAAAAAYIEIfQEAAAAAAAAAAAAAAAAsEKEvAAAAAAAAAAAAAAAAgAUi9AUAAAAAAAAAAAAAAACwQIS+AAAAAAAAAAAAAAAAABaI0BcAAAAAAAAAAAAAAADAAhH6AgAAAAAAAAAAAAAAAFggQl8AAAAAAAAAAAAAAAAAC0ToCwAAAAAAAAAAAAAAAGCBCH0BAAAAAAAAAAAAAAAALBChLwAAAAAAAAAAAAAAAIAFIvQFAAAAAAAAAAAAAAAAsECEvgAAAAAAAAAAAAAAAAAWiNAXAAAAAAAAAAAAAAAAwAIR+gIAAAAAAAAAAAAAAABYIEJfAAAAAAAAAAAAAAAAAAtE6AsAAAAAAAAAAAAAAABggQh9AQAAAAAAAAAAAAAAACwQoS8AAAAAAAAAAAAAAACABSL0BQAAAAAAAAAAAAAAALBAhL4AAAAAAAAAAAAAAAAAFojQFwAAAAAAAAAAAAAAAMACEfoCAAAAAAAAAAAAAAAAWCBCXwAAAAAAAAAAAAAAAAALROgLAAAAAAAAAAAAAAAAYIEIfQEAAAAAAAAAAAAAAAAskP8AV5pDjTApJCkAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1172,7 +1172,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 30, @@ -1181,7 +1181,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAADX0AAAcqCAYAAACQOCfjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdebSdZX0v8O8vJGGQhEEJKhaZxAHEAacqThWtY9GKFRUcqNXa1kqvVq1WuWotba166zy0ARG94iwXVJwHHEFFBVQEBWQQEqaEOcNz/9gn8WRnn2TvfU7O3kk+n7X2Wuf9ve/zPL/9nn1e1nL7zVOttQAAAAAAAAAAAAAAAAAwHuaMugEAAAAAAAAAAAAAAAAA/kDoCwAAAAAAAAAAAAAAAGCMCH0BAAAAAAAAAAAAAAAAjBGhLwAAAAAAAAAAAAAAAIAxIvQFAAAAAAAAAAAAAAAAMEaEvgAAAAAAAAAAAAAAAADGiNAXAAAAAAAAAAAAAAAAwBgR+gIAAAAAAAAAAAAAAAAYI0JfAAAAAAAAAAAAAAAAAGNE6AsAAAAAAAAAAAAAAABgjAh9AQAAAAAAAAAAAAAAAIwRoS8AAAAAAAAAAAAAAACAMSL0BQAAAAAAAAAAAAAAADBGhL4AAAAAAAAAAAAAAAAAxojQFwAAAAAAAAAAAAAAAMAYEfoCAAAAAAAAAAAAAAAAGCNCXwAAAAAAAAAAAAAAAABjROgLAAAAAAAAAAAAAAAAYIwIfQEAAAAAAAAAAAAAAACMEaEvAAAAAAAAAAAAAAAAgDEi9AUAAAAAAAAAAAAAAAAwRoS+AAAAAAAAAAAAAAAAAMaI0BcAAAAAAAAAAAAAAADAGBH6AgAAAAAAAAAAAAAAABgjQl8AAAAAAAAAAAAAAAAAY0ToCwAAAAAAAAAAAAAAAGCMCH0BAAAAAAAAAAAAAAAAjBGhLwAAAAAAAAAAAAAAAIAxIvQFAAAAAAAAAAAAAAAAMEaEvgAAAAAAALZAVXVpVbVJr/8edU9sHarqpK7P3gXjOI7BVNV+Xfe5VdWRo+4LAAAAAAC2VEJfAAAAAAAAAAAAAAAAAGNk7qgbAAAAAAAAmKyq9kry2wGG3JLk+onX+Ul+lOTbSb7eWls90/0BAAAAAAAAbGp2+gIAAAAAADZ32yXZPcn+SZ6c5NgkX0lyYVW9vKr8I3isp6rOqKo26fWVUfc0KlX1L133YuWoe2L6qmpu1++1VdU/j7ovAAAAAACgP0JfAAAAAADAlmqvJP+Z5PtVdbcR9wIAAAAAAADQN/+yJQAAAAAAsDm4MckFU5zbIckdkuwyxfmDk3ylqh7WWrt0UzQHAAAAAAAAMJOEvgAAAAAAgM3BWa21R23ogqraN8kRSY5JJwQ22Z5JPpHkjzdJd2OotXaXUffA1qm1dmSSI7fU9bZWrbULktSo+wAAAAAAgK3FnFE3AAAAAAAAMBNaaxe21t6c5N5JftjjkodU1TNmuS0AAAAAAACAgQl9AQAAAAAAW5TW2u+TPDnJ73ucfvEstwMAAAAAAAAwMKEvAAAAAABgi9NaW5LkP3qcOqSqdpjtfgAAAAAAAAAGMXfUDQAAAAAAAGwin07ytq7atkkOSHLmsJNW1fwkD0hy9yR3mJhzWZIftNZ+MMA8Oyd5cJLdk+yWzj/WtyTJlUnObK0tHbbHTaWq5iS5f5K7JlmUZJd03vuSJL9OcnZrbfUmWnvNfb9LOvd9lyS3JLk+yYVJzmutXbkp1mbrUFXbJNk/yb3T+ZtckGSbJDel8zm/JMlFSS6c7ud84vN8tyT3SOcZsDBJS3JtkquT/Ly1dv501tgcTNzzg5Pslc493ynJNUmuSnJ+a+2cWepjUZKHJNk7yY7pPFeuSvL91tols9EDAAAAAAB0E/oCAAAAAAC2SK21i6vqxiS36zq1W6/rq+r5SY7vKu/dWrto4vwBSV6Z5Ok95kySDyXZYOirquYm+cskR6UTMNhmiktXV9WPknw0yXtba7duaN4p1ro0yR6TSv/TWnvhoPNMzPXIJH+T5NAku27g0qur6vNJjmut/WKYtbrWnZvkOUmeneSQJBvcpa2qfpnki0lOaK39tMdcKzYw/DFV1fpo649aa5f2cV3fqupfkrx2UmlVa23g7/Gqar90wneTHdVaO6nHtWckedgUU23T572Yau6T0vm9rXFha22/PuYbynTXq6oHJnlJOn/bC/sYsqyqfpDk1CSfaq1d1uc6909yWJJHpxP4nL+R66+aWOMtrbVf9rnGoUm+vIFL3lRVb9rIND3v3yCfr42pqgcl+V9JHpdOgHOq6y5L5x78e2vtt0Os0/05/2pr7dBJ5/8kyWvS+Z3MmWKOc5O8OcnHWmv9/F0AAAAAAMCM6Pk/XAMAAAAAAGwhru9R23nQSarqn5OcneS56R346meOxyU5N8n70gkhTBX4Sjrf4TwwyduT/KqqDhtmzemqqntU1ReTfCPJX2TDga8kuX06gbZzqur9VbXtNNb+iyS/THJCOsGQDQa+JtwjyTFJzq6qvx92bbYOVbVdVf13OmHNF6S/wFcmrntskv9KcnIf6xxQVecn+VGS1yd5eDYS+JqwKMnRSc6rqvdN7A62WauqRVX18XTu+TOzgcDXhD2SvDjJL6vqbdN5pnT1sV1VLU7y1SSPyYa/Nz8gnQDuaVXVz3MIAAAAAABmhNAXAAAAAACwJdupR+26QSaoqncleVOSgXdemjTHXyX5fJL9hxh+1ySfqap/GHb9YVTVY5N8P8mfDjF8TpIXJflGVS0acN1tquqt6YRp9h1i7TX6DfCwFZoID30hnZ33ahMvd6ckd5vG+Eon+PTNqtpxZlqafRM7hX03yTOGGD4/yT8k+WJV9XquD9LH9klOTyfoN4gnJDm1qnzHDgAAAADArBj6y0kAAAAAAIBxVlV3Te9duZYMMM1fJfnbScc3JPlyku8kuTKdcNNdkjw6yaop+nhBkg/0ONXSCUB8IcnvJsbfJZ1drR6ZdXcCqyRvq6rWWvs/A/Q/lKp6apJPZP3vkm5LZ2ecHyS5NJ2d1BYk2Sud3XIe1nX9Q5J8uqoe1Vpb2efyH01nV7Fefp7O/f9NkqVJ5qWz+9gB6eyMdt9MHeBpSX466Xi/rPv5uCHJhX30d1sf12wOfp1kTYDojkl27zr/02zcNTPa0ez65ySP6lG/JMmXkpyX5Kokt6TzOVmYzmfmwHQ+10Pt+DfhmiRnJvlFOp/lZel8/rZPcoeJNR6X5I+6xj0knWfJszcw9/Ks+7u7T9f536fz7NqQSzZyfmBVdcckZ2T9z1nSef59Op2d/a5JZ4ez+yZ5WtbfXfBRSb5cVYe01ob9W/xQkkdMOv5lOs/hX02sv1OS+yd5+kQvkz06yd8n2eTPYQAAAAAAEPoCAAAAAAC2VH/eo3ZbOmGOfr1q0s/vS/LPrbWre1z3r1W1XXexqvZP8s4e1/8syV+21s7qce7fq+qAJIuTPKjHuW+21n7SX/uDq6p9k5yQdb9HWpnkrUn+s7W2dIqhx1bV/ZL8T5L7Tao/LMmbs+69nGrtV6d34OtrSV7ZWvvRRsbfZWL8S7vPtdZWpRMkWXPtGVk3pPaD1tqhG+txS9FaW7vLUVX9S5LXTjq9qrV23/VHbRmqaock/6urfEOSv0vy4dba6o2M3zad8NELsn4oaCpXJDk+yWeT/KiPNSrJk9IJF03e8e5ZVfXx1tpne41rrf0gE5/zqpqbZEXXJe9urf1Lnz3PiIn3cmLWD3zdlOSfkryr1/2oqr9P8sZ0fleTw5wPTOeZ8o9DtPOwJGue1ZcneWlr7dNT9P2qJO9N8pyuU/9cVe9trd06xPoAAAAAANC3OaNuAAAAAAAAYKZV1R2SvLLHqTNaazcOMNWa3bZe3lp7yRSBryRJa+2WHuX3Zf0dgX6Y5OFTBL7WzHVuOqGSb3admp9OGGxT+mg6O92scUOSQ1trr95A4CtJMhFG++N0QlqTHVNVd97Q2Kq6T5JeYZS3Tqy/wcDXxPqXttbels6OTCds7Hq2Wo9NskNX7a9bax/aWBgrSVprt7bWTm+tHZHkyX2s970ke7bWXttaO7PPNVpr7dR0gp/du651B9bG3VHp3PPJbk7y5NbaO6a6H621m1prr8i6uy2u8fKJkOmg1gS+LkjykKkCXxPrL0/y3HR2N5zs9unsQgYAAAAAAJuU0BcAAAAAALBFqapFSU5Jcscepz84xJSfmggSDdrHfZM8uqt8fZKnttaWbWx8a+3mdIIFV3Wdum9V/cmg/fSjqp6Q9XcXe35rrTt8NqWJ3W8OT3LNpPL8JP+wkaGvzR9Cdmuc2Fp7RWut9bv+RA+rWmuXDjKGrco+Xcc3JPnYMBO11m7q45obW2srh5z/miTP7yo/fGIXwc1Fr7/9l7fWvt7P4Nbae5P8d1e5ppi3H7cleUZr7Xd9rL16inX+dMi1AQAAAACgb0JfAAAAAADAFqGq9qmqVyf5eTq7TXU7M8nJA067Oskrhmzp73rU3tBau6LfCVpr1yZ5TZ9zz4RXdR1/vbX2qUEnmej7nV3lKXfGqap9kzy9q/z7bLr3ydZtQdfxda21VSPppA+ttbOT/KyrfMgoehlUVR2S5L5d5bOTvH/AqV6VTmh2smdO7Oo4qA9P3NO+tNZ+nvXv/8FDrAsAAAAAAAMR+gIAAAAAADYHD6iqs6d4/aqqrk5yYZLjkizqMf6ydHZ2GWjHqCRfa61dNGTPj+06viXJ8UPM85Ek13XVHlNVM/o9T1XtluQRXeXu3XUGcVrX8b5VtccU1z45639v9d7W2vJprA9TubrreI+q2nsknfTv113HDxlJF4Prfg4myfsmdtDq28SOZ92h3flJHjlET8Ps+PjDruO7DzEHAAAAAAAMZO6oGwAAAAAAAOjD7ZLcZ8ixZyc5orV28RBjvz7MghPhpj27yl9prXWHtzaqtXZLVZ2a5MhJ5YVJDsz6u89MxyOSVFftu9OY77c9avdLJ4DX7VE9ah+extqwIT/oOq4kH6uqp7fWLp2NBqpqv3SCWwcl2Sedv+mFSbbN+n+HyfrPk+7jcfWwHrWBdw+c8PEkL+ox/yDz3ZjkR0OsfWHX8fyq2q61dssQcwEAAAAAQF+EvgAAAAAAgC3VJUneneTtrbUVQ87x4yHHHdyjdtaQcyXJmVk39JUk98/Mhr56hTM+W9Urf9KXXgPvMMW1f9x1fEVrrVdoDGbCj5L8PMm9J9UelOT8qjo5nXDR12c60FNV2yR54cTrAdOcbufpdzQr7t91fFFrbemQc52VpGXdZ0v3/Bvz29bayiHWvr5Hbad0dnAEAAAAAIBNQugLAAAAAADY3N2aZFmS65Kcn06g41vphDZWT3Puq4Yc1yvc9Itp9HFen2tMx1161IbdXW0qt+8uVCdVtltX+eczvC6s1VprVfWSJF9LMn/Sqe2TPH/idWtVnZnk++nsDPbt1tqVw65ZVQems3vdfYedo8tOMzTPJjMRcusOpw39HGytXV9VlyfZY1J50OfgNUMu3ys4PG/IuQAAAAAAoC9CXwAAAAAAwObgm621R41g3WVDjtulR+26afRxbY/artOYr5f1AlmbwPY9ajsnmdNV6/V+Yca01r5TVX+W5CPp/dnfNskhE68kSVWdl+STST7SWju/37Wq6qAkX83MBjU3h8DRzll/x7/pPAeTzrNhcuhr0OfgsLs+AgAAAADArOv+Ag0AAAAAAIA/WDnkuAU9ajdOo49eY3utMR29gmqzYWGP2g2z3gVbndba6UnunuTfkyztY8i9krw+yS+q6uNVtdfGBlTV/CSfSO/A17eTHJvkyUkOSmfHuwVJ5rbWavIrnXDa5mamn4O9xs/0cxAAAAAAAMaGnb4AAAAAAABm3vIetdtNY75eY3utMR03dx0vba3tNsNr9NJrN7UdZ2FdSGvt6iSvrqrXJTk0yWOSPDzJ/TL1blpzkjwjyeOq6vDW2lc2sMRLkuzfVft1kiNaaz8eoNVeu+SNu5l+DvYaP9PPQQAAAAAAGBtCXwAAAAAAADPv2h61nacxX6+x10xjvl66dzq6Q1UtaK1t6lDFdUlWJdlmUm1Uu45t7qYKKbERrbUVSb4w8UpVbZfkgUkOSfKnSR6W9b9b3SnJp6vq/q21C6aY+lldx9cneUxr7XcDtrjrgNePg+uStCQ1qTad52Cv8TP9HAQAAAAAgLExZ9QNAAAAAAAAbIGW9Kjdcxrz3atHrTukNV1X9qjde4bXWE9rrSW5arbXHTMruo63qaphvse7/Uw0Q9Jau6W19u3W2nGttUcluVOSf0ontDXZgiRv6DVHVe2U5EFd5ROGCHwlyT5DjBmp1tqqrB+AHfo5WFULk+zRVZ7p5yAAAAAAAIwNoS8AAAAAAICZ96MetQdMY74H9rnGdPywR+0JM7zGVL7XdXynqtrsQi7TsKxHbcEQ8+w33UborbW2tLX2b0kemuTGrtN/VlW9dlnbI+vucpUk3x507aq6c5I9Bx03Jn7cdbxXVd1hyLkekPXv50w/BwEAAAAAYGwIfQEAAAAAAMyw1trlSS7pKh86sfPPQKpquyRP6Spfn+TcIdubypd71J5VVdvM8Dq9fKNH7ahNvObKruPZeJ9Tua5HbZjQ2yOHXL/7XvgOcQqttfOSHN9V3jHJ3j0u7xVuumaIZZ85xJgkWZWkddVm+3P+3R61pw851zP6nB8AAAAAALYIvrABAAAAAADYNE7vOt4uyfOHmOdZSXbuqn21tbZ6mKam0lq7OMlPu8r7ZtOHr5Lk/6UTUJnsr6tqmN2u+rW863jHTbjWxvyqR+1Bg0xQVbskOXzI9bvvRVXV7Yaca2vwyx61XoHO7h3Bkt5BsClV1fwkfzfImDVaa61HD7P9Oe9+DibJi6qqe8euDZr4fB/RVb41yTeHbQwAAAAAAMad0BcAAAAAAMCm8e4etf9dVYv6naCqdk5yXI9T7xy6qw17c4/a26pqv020XpKktXZRkpO7yndM8q5NuOy1XcfD7Kw1U87O+qG3Zw84xxsyfKCn+14ko70f4+5OPWpLetSu6FF73IBrvTHT+12M9HPeWvtuOp/vye6f5K8GnOq4rB9+/VhrbemwvQEAAAAAwLgT+gIAAAAAANgEWms/TfK1rvLOST7Tzy5KVbVdkk8l2b3r1I9ba9+YkSbX98msH9DYJckXquqew0xYVQur6lVV9ayNXPqvSVZ21Z5bVW8ZYlegbarqLhu57Oddx7tW1YMHWWemtNZuSvKtrvIjquqwfsZX1QuSvHQaLXTfiyR54jTmG2tV9fKqesyQY3dO8ryu8jVJLu2+trV2eZLfdJWfW1UH9rnWXyX5x2H6nKT7d/uoqtp+mnMO6m09am+vqkP6GVxVL0ry4q5yS/L26TYGAAAAAADjTOgLAAAAAABg03lJkhu7ag9N8u2quu9Ug6rqXkm+nuRPuk7dluSFM9rhJK21luSZSa7rOrVfkh9W1T9V1cKNzTMRunpMVb0/ySVJ/i3rh9e61z43yat6nHpFki9X1f37WPdOVXVMkl8nef5GLv9uj9oJVfXIqhrFd2j/3aP2kap6ylQDqmrnqnpbksUTpVuGXPtnSW7oqr22qo4aQUBoNjw6yVeq6udV9eqq2r+fQVV17yRfTdIdKPxYa607sLjGx7uO5yc5vaoevoF1dqmqdyX5QP7wfe6yfnrsoftzvmuSk6vq7kPON4yTkpzeVdshnTDp30wV6qyq7avqP5K8t8fp/5wI1gIAAAAAwBZr7qgbAAAAAAAA2FK11s6vqpfmD6GcNe6X5EdVdUaSL6azS9DqJHskeWw6oZRtekz5qtbaTzZhy2t6fmaSU5PMm3Rqx3R243ptVX07yXeS/D6dgNgO6exi9kdJDk5y/yQ7DbH226rqAUm6dwV7TDr366dJvpzkt0mWTvS3S5J7JXnAxNp9BbZaa9+pql8lmRx+uUeSbyS5uap+l+TmHkMf11q7qu831b+Pp7Or0+Qw4O2SnFJV30lyWpKL09nhaPckf5zk8UnWhPBWJ3l5kncPunBr7daq+miSF00qL0hyYpLjq+qSdEJhq7uGvqa19vlB1xsjByY5LslxVXVRkh+nE4C7Msm16bzfhemEHh+Rzj3vDigtSfKGDazx1iR/kz/8npLkzkm+VVXfSPKlJBdN1O+YTij08en8va1xepKrkzx7gPe2xocm+pv8PHlKkqdU1bXpvNdbu8Zc0lr7syHW6qm11qrq+ensIjg5/LljOp/XV1bVp5P8Mp3nyR3SeUY+Lcnte0x5ZpJ/nqn+AAAAAABgXAl9AQAAAAAAbEKtteOram46u9VMDl7MSSdI8oh+pknyj621/7MJWlx/sda+VFWPTPKJdIJok90unVDK4zfR8kelE0Q5pse5+0y8ZspL0wnddQfFtk8y1e5P82dw/bVaayur6nnphOl27Dr9sInXlMPTCRZ9dRotvCHJYVl/R7Ztkuw9xZhdp7HeuNlr4vXnA4y5NsmfbygE2FpbWlVHJvls1v+cPWritSE/S3JEkncN0Nfk9S+tquPSOyS1y8SrW/fnb9paa7+f2N3si0n26Tp91yT/0OdU30zy1NbabTPZHwAAAAAAjKO+/qVDAAAAAAAAhtda+2CSJyb59RDDL04nWPLWme1qw1pr30tnx64PJVk5namSfD3JGX2uu6q19g/p7Gp08TTWXNLHWl9O8vQkm2LnroG11n6Wzq5mSwcYtizJEa21909z7csn1t6kO8mNid/PwBzfSvLQ1tpGP9ettf+X5JlJlg+4xilJHtFau26I/iY7Nsnrk6yY5jzT0lr7dTq7pX1yiOErkvxXkj+dgfsBAAAAAACbBaEvAAAAAACAWdBa+1KSeyV5SZLvJVm1gctXJzkrnd1v7t5a++ym73B9rbWrWmvPT7JfkrclOa/PocuTnJrkZUn2aq39SWvtrAHX/r/p7Lb1knQCNhsLrLQkP03yr0n27zcENXFv75rObkqLk5yZTijoxok5Z1Vr7YdJ7p7krensJDWVG5K8P8kBrbWPz9Da5yY5OJ3dp/4ryTeSXJpOsGz1TKwxDlprL0xn97K/S/KpJJf3OfSmJB9P8qTW2iNba78cYM1PJjkoyQeT3LyBS1cl+VqSp7TWDmutXd/vGhtYe3Vr7U3p7Nr30iQnJzk3nXDhLdOdf8BermqtPSPJg9O5lxsLcF2e5ANJ7tFaO6a1duum7hEAAAAAAMZFtTbr31UBAAAAAABs9apql3SCD7snWZSk0tmd6qokP2ytbXSnqo3Mf0WSO04qvb+19tfTmXNi3kXp7AC2W5LbJ9kxnYDU8nQCQr9McnGb4S+hqmrHdO7XHSfWXrPudUkuSHJua+2amVxz1KpqmyQPTHKPJHdIMj/JNemE734gADNzqupO6YQb906ya5LbpRPAWp5OOOqcJL9qrU1n17s1a22b5CHphBpvn87f/nVJLkxyZmttQ2G/Lcqkz/hd03kOLkgn7LgkyfkTu98BAAAAAMBWSegLAAAAAABgC1RV1yXZaVLpP1tr/ziqfgAAAAAAAID+zRl1AwAAAAAAAMysqtouycKu8vWj6AUAAAAAAAAYnNAXAAAAAADAlueAJNVV++UoGgEAAAAAAAAGJ/QFAAAAAACw5TmiR+0ns94FAAAAAAAAMJS5o24AAAAAAACAmVFVt0vyoiTHdJ06u7V24QhaAgAAAAAAAIYg9AUAAAAAALAZq6q/TfJXSXZMctf0/v7nHbPaFAAAAAAAADAtQl8AAAAAAACbtzsluc8Gzn8xyQmz0woAAAAAAAAwE+aMugEAAAAAAAA2mZOSPK211kbdCAAAAAAAANA/O30BAAAAAABsGVYkuS7JxUm+neTE1trZo20JAAAAAAAAGEb5hx0BAAAAAAAAAAAAAAAAxsecUTcAAAAAAAAAAAAAAAAAwB8IfQEAAAAAAAAAAAAAAACMEaEvAAAAAAAAAAAAAAAAgDEi9AUAAAAAAAAAAAAAAAAwRoS+AAAAAAAAAAAAAAAAAMaI0BcAAAAAAAAAAAAAAADAGBH6AgAAAAAAAAAAAAAAABgjQl8AAAAAAAAAAAAAAAAAY0ToCwAAAAAAAAAAAAAAAGCMCH0BAAAAAAAAAAAAAAAAjBGhLwAAAAAAAAAAAAAAAIAxMnfUDWytqmqbJPsluVeSOyfZKcmtSa5NcmGSs1prN46uQwAAAAAAAAAAAAAAAGAUqrU26h62GlW1Z5I/T3JokocnWbiBy1cl+XKSd7XWThtwnb2S/Ha4LjtaazWd8TOhqnZK8shJpd8luW1E7QAAAAAAAAAAAAAAALB1mZ/kjyYdf7O1dv1sLCz0NUuq6qNJnjXk8FOTvLC1dmWfa+2VLSP09WdJPjfqPgAAAAAAAAAAAAAAACDJYa21U2ZjobmzsQhJkv2nqF+W5NdJrkzn97FPkvskmTPpmicn+VZVPbK19vtN2iUAAAAAAAAAAAAAAAAwUkJfo/GTJIuTfKG1dmH3yaraI8nrk7xoUnn/JJ+oqke0wbdn+1SSVwzbLAAAAAAAAAAAAAAAADB7hL5mT0tyWpL/3Vo7a4MXtnZZkhdX1U+TvHvSqUOSPDPJxwZc+4bW2kUDjhkHv5t88NnPfjb77bffqHoBAAAAAAAAAAAAAABgK3LBBRfkqU996uTS76a6dqYJfc2eZwwavGqtvaeq/iTJ0yeVj8rgoa/N1W2TD/bbb78ccMABo+oFAAAAAAAAAAAAAACArdttG79kZsyZrYW2dtPYaevdXcePnmYrAAAAAAAAAAAAAAAAwBgT+hp/P+k63r6qdh5JJwAAAAAAAAAAAAAAAMAmJ/Q1/lb2qM2f9S4AAAAAAAAAAAAAAACAWSH0Nf726zpemWTpKBoBAAAAAAAAAAAAAAAANr25o26AjTq86/is1trqAee4T1V9NMkDkuyeZLsk1yS5KsmZSb6Z5NOttRun2ywAAAAAAAAAAAAAAAAwPXb6GmNVtWOSv+wqf2aIqe6b5FlJ7pZkYZL5Se6Y5KCJ+U9McklVva6q5g3fMQAAAAAAAAAAAAAAADBddvoab8elE85a47ok/72J1rWnvawAACAASURBVNo1yRuTPKmqDm+tXTqTk1fVoiS7DThs35nsAQAAAAAAAAAAAAAAADYHQl9jqqqeluTvusqvba1dM8A0tyT5epKvJTknyRVJbkyyU5K9kzw6yZHp7P61xoOTfKmqHtpau27I9nv5myTHzuB8AAAAAAAAAAAAAAAAsEUS+hpDVXWfJCd2lb+U5L19TnFjkpclOaG1tmyKa36U5JNV9Zok/5XkeZPO3TPJ4iR/3nfTAAAAAAAAAAAAAAAAwIyYM+oGWFdV7ZnktCQ7TipfnOTI1lrrZ47W2pLW2js2EPiafO31rbXnJ/nPrlNPq6qH9dk2AAAAAAAAAAAAAAAAMEPs9DVGqmpRki8n2WNS+fdJHttaW7KJl39lkkOT3HdS7SVJvjND878nyScGHLNvks/N0PoAAAAAAAAAAAAAAACwWRD6GhNVtWuSryTZf1J5aZJDW2u/3tTrt9ZaVf17kv87qfy4qqp+dxjbyPxXJblqkDFVNd1lAQAAAAAAYOvxk48k113S//U775nc7zmbrh8AAAAAAGBoQl9joKp2SvKlJPeeVL42nR2+zp3FVk7vOt4tyZ2SXD6LPQAAAAAAAADDOPujycVn9H/9XQ8R+gIAAAAAgDE1Z9QNbO2qakGSLyY5eFJ5WZLHt9bOns1eWmvXJrm+q7zbbPYAAAAAAAAAAAAAAAAAWzs7fY1QVd0uyeeTPGRS+YYkT2it/XA0XeXmJDtNOt5+RH2MRGstq1evTmtt1K0Am0BVZc6cOamqUbcCAAAAAAAAAAAAAABTEvoakaraPsmpSQ6ZVL4pyZNaa98dUU+V5PZd5aWj6GW2tNZyyy23ZPny5Vm+fHluu+22UbcEzIL58+dnwYIFWbBgQbbbbjshMAAAAAAAAAAAAAAAxorQ1whU1XZJTknyqEnlW5L8WWvtWyNpquN+SeZNOl6d5Pcj6mWTu+mmm3L55ZdnxYoVo24FmGW33XZbrr766lx99dWZN29e7nznO2eHHXYYdVsAAAAAAAAAAAAAAJAkmTPqBrY2VTU/yaeTHDqpfGuSp7bWvjqartZ6dtfxj1prN4ykk03spptuyiWXXCLwBWTFihW55JJLctNNN426FQAAAAAAAAAAAAAASCL0Nauqam6Sjyd5wqTyiiSHt9ZOH01XHVV1jyR/01X+3Ch62dTWBL5aa6NuBRgTrTXBLwAAAAAAAAAAAAAAxsbcUTewtaiqbZJ8JMlhk8orkzyztXbqDK7z4CTzW2vfHmDM/kk+n2T7SeWrk7xrpvoaF621XH755esFvubNm5eFCxdmxx13zLx581JVI+oQ2JRaa1mxYkVuuOGGLFu2bJ3d/tY8H/bdd1/PAAAAAAAAAAAAAAAARkroa/YsTvIXXbXXJPlJVe014Fy/b63dMsW5eyY5vqq+m+SjSU5prf2u14VVdYckL07yqiQLuk7/r9ba9QP2NfZuueWWdUIeSbJgwYLsscceQh6wlZg3b1522GGH7LbbbrnsssuyfPnytedWrFiRW2+9Ndttt90IOwQAAAAAAAAAAAAAYGsn9DV7ntuj9h8Tr0E9Osk3NnLNQyde76qqJUnOS3JNkhuTLEyyd5IDk/RKOr2mtXbiEH2NvcnhjqQT/hD4gq1TVWWPPfbIhRdeuE4YdNmyZUJfAAAAAAAAAAAAAACMlNDX1mG3JI/s47olSV7YWjtlE/czMt2hr4ULFwp8wVasqrJw4cJcffXVa2vLly/PokWLRtgVAAAAAAAAAAAAAABbuzmjboAZd0aStyU5K8ltfVzfkvw0yUuT7LslB75aa7nttnVvyY477jiiboBx0f0cuO2229JaG1E3AAAAAAAAAAAAAABgp69Z01qble2kWmsXJHl5klTVvCT3SLJ3kjsnWZhk2yQ3Jrk2ye+SnNlau342ehu11atXr1ebN2/eCDoBxsncuev/p3D16tXZZpttRtANAAAAAAAAAAAAAAAIfW3RWmsrkvx84rXV67VzT9WsZPGAMTZnzvqbXtrpCwAAAAAAAAAAAACAUVr//+kOAAAAAAAAAAAAAAAAwMgIfQEAAAAAAAAAAAAAAACMEaEvAAAAAAAAAAAAAAAAgDEi9AUAAAAAAAAAAAAAAAAwRoS+AAAAAAAAAAAAAAAAAMaI0BcAAAAAAAAAAAAAAADAGBH6AgAAAAAAAAAAAAAAABgjQl8AAAAAAAAAAAAAAAAAY0ToCwAAAAAAAAAAAAAAAGCMCH0B9LDXXnulqtZ7ve997xt6zsWLF/ecc6+99pq5xgEAAAAAAAAAAAAAgM2e0BfAAI4//vihxy5evHgGOwEAAAAAAAAAAAAAALZUQl8AA/jhD3+Yc889d+Bx559/fr7zne9sgo4AAAAAAAAAAAAAAIAtjdAXQB/mzZu39udhdvuavMvX5LkAAAAAAAAAAAAAAAC6CX0B9OHJT37y2p9POumkrFy5su+xq1atyoknnrj2+ClPecqM9gYAAAAAAAAAAAAAAGxZhL4A+nD00Uev/fnKK6/Maaed1vfYL3zhC7niiit6zgUAAAAAAAAAAAAAANBN6AugDw95yENyz3vec+3x8ccf3/fYxYsXr/35nve8Zx784AfPaG8AAAAAAAAAAAAAAMCWZe6oGwDYXLzgBS/IK1/5yiTJaaedlquuuiqLFi3a4JglS5bk1FNPXXs8k7t8nXfeefn5z3+eJUuWZNmyZdl1111zpzvdKYccckhuf/vbT2vu5cuX57zzzsv555+fpUuX5sYbb8yCBQuy66675sADD8xBBx2UbbbZZobeyR+cf/75+elPf5pLL700K1euzG677ZaDDz449773vWd8LQAAAAAAAAAAAAAAGFdCXwB9eu5zn5vXvOY1WblyZVauXJkPf/jDefnLX77BMSeeeGJWrFiRJJk7d26OOuqoafVw9dVX5y1veUtOOumkXHbZZT2vmTNnTh760Ifm2GOPzaGHHtr33Oecc05OPvnknH766fnxj3+cVatWTXntggULcuSRR+YVr3hF9tlnn77mv+iii7L33nuvPX7e856XE044IUly6qmn5s1vfnO+//3v9xy7zz775I1vfGOe85zn9P1+AAAAAAAAAAAAAABgcyX0BcP4yUeSsz866i4Gd8d7J0/4t5mb74qfJV/8p+nPc99nJ/cb/zDP7rvvnic+8Yk55ZRTkiTHH3/8RkNfxx9//Nqfn/jEJ2b33XfP0qVLh1r/xBNPzEtf+tIsW7Zsg9etXr06Z5xxRh772MfmyCOPzP/8z/9k/vz5Gxzz4x//OAcffHDfvSxfvjzvfe97c8IJJ+QDH/hAjjzyyL7HTrZq1aocc8wxede73rXB637zm9/kyCOPzPe+9728853vTFUNtR4AAAAAAAAAAAAAAGwOhL5gGNddklx8xqi7GL1brp+Z+7DXIdOfY5YcffTRa0Nf5557bs4888w88IEP7HntD37wg5x77rnrjB3W61//+rzpTW9ap1ZVufvd75673e1uWbBgQa699tqcddZZWbJkydprTjrppFxxxRX54he/mLlzp37kr169er25995779ztbnfLwoULM2/evFx77bU599xzc8kll6y97uabb85RRx2V7bbbLocffvjA7+tlL3tZ3v3ud69d86CDDso+++yTbbfdNhdffHHOPPPMrFy5cu317373u3PAAQfkJS95ycBrAQAAAAAAAAAAAADA5kLoC2AAT3rSk7L77rvnyiuvTJIsXrx4ytDX4sWL1/68aNGiPPGJTxxqzQ996EPrBL7mzJmTv/3bv80rXvGK7Lnnnutc21rL5z73ubzsZS9bG8766le/mte97nU57rjjNrjO9ttvnyOOOCKHHXZYHvOYx2THHXfsed0555yTN77xjfnEJz6xtnb00UfnEY94RBYtWtT3+zrttNPW7nr2whe+MMcee2zucpe7rHPNZZddlhe96EX5/Oc/v7b26le/Os997nNzu9vdru+1AAAAAAAAAAAAAABgczJn1A0AbE7mzp2bI488cu3xxz72sdxyyy3rXXfzzTfn5JNPXnt81FFHZd68eQOvd/HFF6+zq9W2226b0047Le94xzvWC3wlnd2ynvrUp+bMM8/Mfvvtt7b+lre8Jb/97W+nXGf//ffPZZddlsWLF+ewww6bMvCVJAceeGA+/vGP59hjj11bW758ed7znvcM9N7WBL7e85735IMf/OB6ga8k2WOPPfK5z30uBx988NrasmXL8rGPfWygtQAAAAAAAAAAAAAAYHMi9AUwoKOPPnrtz9ddd10+85nPrHfNJz/5yVx//fVrj1/wghcMtdZb3vKW3HzzzWuP3/72t+fxj3/8RsctWrQoH/3oR9cer1q1Km9/+9unvH7hwoXZZZddBurt9a9/fQ466KC1xx/5yEcGGp8kz372s9cJtfUyd+7cvOENb1in9rWvfW3gtQAAAAAAAAAAAAAAYHMh9AUwoHvd61558IMfvPZ48eLF610zufagBz0oBxxwwMDr3HjjjevMs88+++TFL35x3+Mf+MAH5uEPf/ja41NOOWXgHjZkzpw5edrTnrb2+IILLsiSJUsGmuN1r3tdX9c97nGPy/z589ce/+QnPxloHQAAAAAAAAAAAAAA2JwIfQEMYfJuX1/72tdyySWXrD3+zW9+k29+85trj4fd5euMM85YZ5evww8/PHPmDPbYfvSjH73254svvnidPvt16623ZunSpbn44otz0UUXrfPafvvt17n2F7/4Rd/z7rPPPrnHPe7R17Xz5s3Lvvvuu/b4qquu6nsdAAAAAAAAAAAAAADY3MwddQMAm6MjjjgixxxzTG6++easXr06H/rQh9buWrV48eK01pIk22+/fZ71rGcNtcYZZ5yxzvGd73znXHTRRQPNMXl3rKQTSNtzzz03OOacc87JySefnG9/+9s599xzs3Tp0r7Xu/b/s3f/sV7V9x3HX+dy7+V6hQu4Cv5YUNTaKorYxSZ1jKnMRPsrGc1iU6cF/tjMlqU0a3RmRK1ZY2uzmS5lf5BFjHb+M9fWqnGWzK0WDU1JulnRFGorGgoz8sPLnRHv5Z79Yb1w+fnl3i+cD9zHIyG553M/53PeF833r/vk7NzZ8t5LL7205b1JMmPGjJGv33777WO6FwAAAAAAAAAAAAAATiaiL4Ax6Ovry+c+97l85zvfSZI89NBDWbFiReq6zsMPPzyyb/HixZk2bdqYnvHGG2+Mul6+fHmWL18+9qGT7Nix47Df27x5c5YvX57vf//7Yz7/WGKs/SOuVnR1dY18PTQ0dEz3AgAAAAAAAAAAAADAyUT0BTBGy5YtG4m+fvWrX+VHP/pR3n333VGx1tKlS8d8/vbt28c944F27959yPVXXnklixYtytatW8d1/vDwcMt7Ozo6xvUsAAAAAAAAAAAAAAA4VfmNe4AxuuaaazJnzpyR69WrV+fBBx8cuT7vvPNy3XXXjfn89957b1zzHUpd1wetDQ0N5fOf//yo4Kunpye33HJLHnrooaxfvz5bt27NwMBAhoaGUtf1yJ/Vq1e3fUYAAAAAAAAAAAAAAJjovOkLYIyqqsqSJUty9913J0kee+yx7N27d+T7S5YsSVVVYz7/Qx/60KjrF154IZ/4xCfGfN7hfPe7382LL744cn3RRRflmWeeyQUXXHDUe/v7+9s+DwAAAAAAAAAAAAAATHSiLxiL6bOT8xY0PcWxO+vy9p7XM609fw/TZ4//jIYsWbIkX/3qVzM8PJx33nlnZP2DIGw8Zs2aNep648aNxyX6evzxx0ddr1q1qqXgK0l+85vftH0eAAAAAAAAAAAAAACY6ERfMBZX3vz+n4nu7HnJ0qeanqJRs2fPzqJFi7JmzZpR69dee23OP//8cZ199dVX54EHHhi5/uEPf5gvfvGL4zrzUDZt2jTy9emnn55rrrmm5XtfeOGFts8DAAAAAACM0bH+A4Dt/gcDAQAAAACAthF9AYzTsmXLDoq+li1bNu5zFy1alEmTJmXv3r1Jkh/84Ad58803M3PmzHGfvb9du3aNfN3X15eqqlq675e//GWef/75ts4CAAAAAACMw41fb3oCAAAAAACgTURfAOO0ePHi/PjHPx61dtVVV4373BkzZuTmm2/Oww8/nCQZGBjIV77ylZHrdpkxY8bI12+++WZ27tw5au1wbr/99gwPD7d1FgAAAAAAAAAAAAAAIOloegCAk113d3cWLFgw6s/kyZPbcvY999wz6qxHHnkkd9xxx8jbv1r18ssv57nnnjvk96644oqRr/fu3ZtvfvObRz3v7rvvzve+971jmgEAAAAAAAAAAAAAAGiN6AugYHPmzMmqVatGrd1///1ZsGBBnnjiiQwNDR323tdeey0rV67Mddddl7lz5+bZZ5895L6bbrpp1PV9992XFStWZGBg4KC9v/jFL7J48eLce++9SZIzzzzzWH8kAAAAAAAAAAAAAADgKDqbHgCAI7v11luzbdu23HnnnRkeHk6SrFu3Lp/97GfT29ubK6+8MrNmzcppp52W3bt356233srLL7+cXbt2tXT+okWLcuONN+bpp58eWfva176Wb33rW/n4xz+es88+OwMDA9m4cWNeeeWVkT2XXHJJbrvttnzpS19q7w8MAAAAAAAAAAAAAAATnOgL4CRw++23Z968eVm6dGm2bds2sv7OO+/k+eefb+mMGTNmHPZ7jz76aK6//vqsX79+ZG1gYOCwbwebP39+nnzyyaxZs6bFnwAAAAAAAAAAAAAAAGhVR9MDANCaG264Ib/+9a+zcuXKzJ8/P1VVHXF/V1dXrr766txzzz3ZuHHjEd/INX369KxduzZ33XVXzjjjjMPu+8hHPpJvfOMbWbduXc4999wx/ywAAAAAAAAAAAAAAMDhVXVdNz0DHFJVVXOTvPTB9UsvvZS5c+eO+byhoaFs2rRp1NqHP/zhdHZ64R0npx07dmTdunXZunVrduzYkcHBwUyZMiUzZ87MxRdfnI9+9KPp7e095nP37NmTn/zkJ9mwYUN27tyZKVOm5Kyzzsoll1ySyy+//Dj8JM3y2QAAAAAAAAAAAAAAwKFs2LAhl1122f5Ll9V1veFEPNtvtAOcpM4444x88pOfbPu5kydPzsKFC7Nw4cK2nw0AAAAAAAAAAAAAABxdR9MDAAAAAAAAAAAAAAAAALCP6AsAAAAAAAAAAAAAAACgIKIvAAAAAAAAAAAAAAAAgIKIvgAAAAAAAAAAAAAAAAAK0tn0AAAAAAAAAAAAAAAAnJyqv36i6READqn++880PQKMizd9AQAAAAAAAAAAAAAAABRE9AUAAAAAAAAAAAAAAABQENEXAAAAAAAAAAAAAAAAQEFEXwAAAAAAAAAAAAAAAAAFEX0BAAAAAAAAAAAAAAAAFKSz6QEAAAAAAAAAaIOtLybvvt36/p5pydnzjt88AAAAAADAmIm+AAAAAAAAAE4F/35nsnlt6/vPW5Asfer4zQMAAAAAAIxZR9MDAAAAAAAAAAAAAAAAALCP6AsAAAAAAAAAAAAAAACgIKIvAAAAAAAAAAAAAAAAgIKIvpgwqqo6aK2u6wYmAUoyPDx80NqhPi8AAAAAAAAAAAAAAOBEEX0xYXR0HPy/++DgYAOTACUZGho6aO1QnxcAAAAAAAAAAAAAAHCi+K12JoyqqtLd3T1qbWBgoKFpgFIc+DnQ3d3tTV8AAAAAAAAAAAAAADRK9MWEMnXq1FHX/f39qeu6oWmAptV1nf7+/lFrB35OAAAAAAAAAAAAAADAiSb6YkI5MOYYHBzMli1bhF8wAdV1nS1btmRwcHDUel9fX0MTAQAAAAAAAAAAAADA+zqbHgBOpJ6ennR1dY2KPHbv3p1XX301fX19mTJlSjo7O9PRoYeEU9Hw8HCGhoYyMDCQ/v7+g4Kvrq6uTJ48uaHpAAAAAAAAAAAAAADgfaIvJpSqqnLOOefk9ddfH/V2r8HBwWzfvj3bt29vcDqgSR98PlRV1fQoAAAAAAAAAAAAAABMcF5nxITT29ub2bNnCzuAEVVVZfbs2ent7W16FAAAAAAAAAAAAAAAEH0xMX0QfnV1dTU9CtCwrq4uwRcAAAAAAAAAAAAAAEXpbHoAaEpvb28uvPDC7NmzJ/39/dm9e3fee++9pscCToDu7u5MnTo1fX19mTx5sjf/AQAAAAAAAAAAAABQFNEXE1pVVenp6UlPT09mzpyZuq4zPDycuq6bHg04DqqqSkdHh8gLAAAAAAAAAAAAAICiib5gP1VVZdKkSU2PAQAAAAAAAAAAAAAAwATW0fQAAAAAAAAAAAAAAAAAAOwj+gIAAAAAAAAAAAAAAAAoiOgLAAAAAAAAAAAAAAAAoCCiLwAAAAAAAAAAAAAAAICCiL4AAAAAAAAAAAAAAAAACiL6AgAAAAAAAAAAAAAAACiI6AsAAAAAAAAAAAAAAACgIKIvAAAAAAAAAAAAAAAAgIKIvgAAAAAAAAAAAAAAAAAKIvoCAAAAAAAAAAAAAAAAKIjoCwAAAAAAAAAAAAAAAKAgoi8AAAAAAAAAAAAAAACAgoi+AAAAAAAAAAAAAAAAAAoi+gIAAAAAAAAAAAAAAAAoiOgLAAAAAAAAAAAAAAAAoCCiLwAAAAAAAAAAAAAAAICCiL4AAAAAAAAAAAAAAAAACiL6AgAAAAAAAAAAAAAAACiI6AsAAAAAAAAAAAAAAACgIKIvAAAAAAAAAAAAAAAAgIKIvgAAAAAAAAAAAAAAAAAKIvoCAAAAAAAAAAAAAAAAKIjoCwAAAAAAAAAAAAAAAKAgoi8AAAAAAAAAAAAAAACAgoi+AAAAAAAAAAAAAAAAAAoi+gIAAAAAAAAAAAAAAAAoiOgLAAAAAAAAAAAAAAAAoCCiLwAAAAAAAAAAAAAAAICCiL4AAAAAAAAAAAAAAAAACiL6AgAAAAAAAAAAAAAAAChIZ9MDAAAAAAAAANAGS59qegIAAAAAAKBNvOkLAAAAAAAAAAAAAAAAoCCiLwAAAAAAAAAAAAAAAICCiL4AAAAAAAAAAAAAAAAACiL6AgAAAAAAAAAAAAAAACiI6AsAAAAAAAAAAAAAAACgIKIvAAAAAAAAAAAAAAAAgIKIvgAAAAAAAAAAAAAAAAAKIvoCAAAAAAAAAAAAAAAAKIjoCwAAAAAAAAAAAAAAAKAgoi8AAAAAAAAAAAAAAACAgoi+AAAAAAAAAAAAAAAAAAoi+gIAAAAAAAAAAAAAAAAoiOgLAAAAAAAAAAAAAAAAoCCiLwAAAAAAAAAAAAAAAICCiL4AAAAAAAAAAAAAAAAACiL6AgAAAAAAAAAAAAAAACiI6AsAAAAAAAAAAAAAAACgIKIvAAAAAAAAAAAAAAAAgIKIvgAAAAAAAAAAAAAAAAAK0tn0AAAAAAAAAAC0wepPJZvXtr7/vAXJ0qeO3zwAAAAAAMCYedMXAAAAAAAAAAAAAAAAQEFEXwAAAAAAAAAAAAAAAAAFEX0BAAAAAAAAAAAAAAAAFET0BQAAAAAAAAAAAAAAAFAQ0RcAAAAAAAAAAAAAAABAQURfAAAAAAAAAAAAAAAAAAURfQEAAAAAAAAAAAAAAAAURPQFAAAAAAAAAAAAAAAAUBDRFwAAAAAAAAAAAAAAAEBBRF8AAAAAAAAAAAAAAAAABRF9AQAAAAAAAAAAAAAAABRE9AUAAAAAAAAAAAAAAABQENEXAAAAAAAAAAAAAAAAQEFEXwAAAAAAAAAAAAAAAAAFEX0BAAAAAAAAAAAAAAAAFET0BQAAAAAAAAAAAAAAAFAQ0RcAAAAAAAAAAAAAAABAQURfAAAAAAAAAAAAAAAAAAURfQEAAAAAAAAAAAAAAAAURPQFAAAAAAAAAAAAAAAAUBDRFwAAAAAAAAAAAAAAAEBBRF8AAAAAAAAAAAAAAAAABRF9AQAAAAAAAAAAAAAAABRE9AUAAAAAAAAAAAAAAABQENEXAAAAAAAAAAAAAAAAQEFEXwAAAAAAAAAAAAAAAAAFEX0BAAAAAAAAAAAAAAAAFET0BQAAAAAAAAAAAAAAAFAQ0RcAAAAAAAAAAAAAAABAQURfAAAAAAAAAAAAAAAAAAURfQEAAAAAAAAAAAAAAAAURPQFAAAAAAAAAAAAAAAAUBDRFwAAAAAAAAAAAAAAAEBBRF8AAAAAAAAAAAAAAAAABRF9AQAAAAAAAAAAAAAAABRE9AUAAAAAAAAAAAAAAABQENEXAAAAAAAAAAAAAAAAQEFEXwAAAAAAAAAAAAAAAAAFEX0BAAAAAAAAAAAAAAAAFET0BQAAAAAAAAAAAAAAAFAQ0RcAAAAAAAAAAAAAAABAQURfAAAAAAAAAAAAAAAAAAURfQEAAAAAAAAAAAAAAAAURPQFAAAAAAAAAAAAAAAAUBDRFwAAAAAAAAAAAAAAAEBBOpseAAAAAAAAAIA2uOG+5N23W9/fM+34zQIAAAAAAIyL6AsAAAAAAADgVHD2vKYnAAAAAAAA2qSj6QEAAAAAAAAAAAAAAAAA2Ef0BQAAAAAAAAAAAAAAAFAQ0RcAAAAAAAAAAAAAAABAQURfAAAAAAAAAAAAAAAAAAURfQEAAAAAAAAAAAAAAAAURPQFAAAAAAAAAAAAAAAAUBDRFwAAAAAAAAAAAAAAAEBBRF8AAAAAAAAAAAAAAAAABRF9AQAAAAAAAAAAAAAAABRE9AUAAAAAAAAAAAAAAABQENEXAAAAAAAAAAAAAAAAQEFEXwAAAAAAAAAAAAAAAAAFEX0BAAAAAAAAAAAAAAAAFET0BQAAAAAAAAAAAAAAAFAQ0RcAAAAAAAAAAAAAAABAQURfAAAAAAAAAAAAAAAAAAURfQEAAAAAAAAAAAAAAAAURPQFAAAAAAAAAAAAAAAAUJDOpgcAAAAAAAAAoA2e/ptk289b33/W5cmNXz9+8wAAAAAAdFVafwAAIABJREFUAGMm+gIAAAAAAAA4FWz7ebJ5bdNTAAAAAAAAbdDR9AAAAAAAAAAAAAAAAAAA7CP6AgAAAAAAAAAAAAAAACiI6AsAAAAAAAAAAAAAAACgIKIvAAAAAAAAAAAAAAAAgIKIvgAAAAAAAAAAAAAAAAAKIvoCAAAAAAAAAAAAAAAAKIjoCwAAAAAAAAAAAAAAAKAgoi8AAAAAAAAAAAAAAACAgoi+AAAAAAAAAAAAAAAAAAoi+gIAAAAAAAAAAAAAAAAoiOgLAAAAAAAAAAAAAAAAoCCiLwAAAAAAAAAAAAAAAICCiL4AAAAAAAAAAAAAAAAACiL6AgAAAAAAAAAAAAAAACiI6AsAAAAAAAAAAAAAAACgIKIvAAAAAAAAAAAAAAAAgIKIvgAAAAAAAAAAAAAAAAAKIvoCAAAAAAAAAAAAAAAAKIjoCwAAAAAAAAAAAAAAAKAgoi8AAAAAAAAAAAAAAACAgoi+AAAAAAAAAAAAAAAAAAoi+gIAAAAAAAAAAAAAAAAoiOgLAAAAAAAAAAAAAAAAoCCiLwAAAAAAAAAAAAAAAICCiL4AAAAAAAAAAAAAAAAACiL6AgAAAAAAAAAAAAAAACiI6AsAAAAAAAAAAAAAAACgIKIvAAAAAAAAAAAAAAAAgIKIvgAAAAAAAAAAAAAAAAAKIvoCAAAAAAAAAAAAAAAAKIjoCwAAAAAAAAAAAAAAAKAgoi8AAAAAAAAAAAAAAACAgoi+AAAAAAAAAAAAAAAAAAoi+gIAAAAAAAAAAAAAAAAoiOgLAAAAAAAAAAAAAAAAoCCiLwAAAAAAAAAAAAAAAICCiL4AAAAAAAAAAAAAAAAACiL6AgAAAAAAAAAAAAAAACiI6AsAAAAAAAAAAAAAAACgIKIvAAAAAAAAAAAAAAAAgIKIvgAAAAAAAAAAAAAAAAAKIvoCAAAAAAAAAAAAAAAAKIjoCwAAAAAAAAAAAAAAAKAgoi8AAAAAAAAAAAAAAACAgnQ2PQAAAAAAAAAAbTD/C8n5C1rfP3328ZsFAAAAAAAYF9EXAAAAAAAAwKngypubngAAAAAAAGiTjqYHAAAAAAAAAAAAAAAAAGAf0RcAAAAAAAAAAAAAAABAQURfAAAAAAAAAAAAAAAAAAURfQEAAAAAAAAAAAAAAAAURPQFAAAAAAAAAAAAAAAAUBDRFwAAAAAAAAAAAAAAAEBBRF8AAAAAAAAAAAAAAAAABRF9AQAAAAAAAAAAAAAAABRE9AUAAAAAAAAAAAAAAABQENEXAAAAAAAAAAAAAAAAQEFEXwAAAAAAAAAAAAAAAAAFEX0BAAAAAAAAAAAAAAAAFET0BQAAAAAAAAAAAAAAAFAQ0RcAAAAAAAAAAAAAAABAQURfAAAAAAAAAAAAAAAAAAURfQEAAAAAAAAAAAAAAAAURPQFAAAAAAAAAAAAAAAAUBDRFwAAAAAAAAAAAAAAAEBBOpseAAAAAAAAAIA2+Nm/JLteb33/9NnJlTcfv3kAAAAAAIAxE30BAAAAAAAAnAr++9Fk89rW95+3QPQFAAAAAACF6mh6AAAAAAAAAAAAAAAAAAD2EX0BAAAAAAAAAAAAAAAAFET0BQAAAAAAAAAAAAAAAFAQ0RcAAAAAAAAAAAAAAABAQURfAAAAAAAAAAAAAAAAAAURfQEAAAAAAAAAAAAAAAAURPQFAAAAAAAAAAAAAAAAUBDRFwAAAAAAAAAAAAAAAEBBRF8AAAAAAAAAAAAAAAAABRF9AQAAAAAAAAAAAAAAABRE9AUAAAAAAAAAAAAAAABQENEXAAAAAAAAAAAAAAAAQEFEXwAAAAAAAAAAAAAAAAAFEX0BAAAAAAAAAAAAAAAAFET0BQAAAAAAAAAAAAAAAFAQ0RcAAAAAAAAAAAAAAABAQURfAAAAAAAAAAAAAAAAAAURfQEAAAAAAAAAAAAAAAAURPQFAAAAAAAAAAAAAAAAUBDRFwAAAAAAAAAAAAAAAEBBRF8AAAAAAAAAAAAAAAAABRF9AQAAAAAAAAAAAAAAABRE9AUAAAAAAAAAAAAAAABQENEXAAAAAAAAAAAAAAAAQEFEXwAAAAAAAAAAAAAAAAAFEX0BAAAAAAAAAAAAAAAAFET0BQAAAAAAAAAAAAAAAFAQ0RcAAAAAAAAAAAAAAABAQURfAAAAAAAAAAAAAAAAAAXpbHqAiaqqqklJLkpyaZJzkkxLsifJziSvJllf1/X/tfmZvUl+P8nvJpmVZFeSLUl+Wtf1tnY+CwAAAAAAAAAAAAAAABgb0dcJVFXV7CSLk/xRkj9I0neE7XurqlqT5Nt1XT81zufOSXJvkj9OcvphnvVskvvquv7P8TwLAAAAAAAAAAAAAAAAGJ+OpgeYKKqqejTJ5iQPJPlUjhx8JcmkJDckebKqqieqqpo1xucuSfJikj/NoYOvD551fZL/qKrqH377FjIAAAAAAAAAAAAAAACgAd70deJcfJj1LUk2JfnfvP/f44IkV2R0kPfpJM9VVfWHdV1va/WBVVV9IcmDSar9loeS/DTJG0nOTPJ72RegVUm+nGRykr9s9TkAAAAAAAAAAAAAAABA+4i+mvGzvB9jPV3X9asHfrOqqnOT3JXkz/ZbvjjJv1ZVtbCu6/poD6iq6mNJVmd08PV4kr+q6/qN/fZNTXJHkr/db99fVFX1P3VdrzqGnwkAAAAAAAAAAAAAAABog46jb6FN6iRPJbmqruuP1XX97UMFX0lS1/WWuq7/PAe/bWtBkptafN79Sbr3u34syeL9g6/fPmt3Xdcrkiw/4P6/+20QBgAAAAAAAAAAAAAAAJxAoq8T50/quv50XdfrW72hrut/SvJvByzfcrT7qqq6Nsmi/ZbeSnJbXdfDR7jtH5P8137XZyb5cmuTAgAAAAAAAAAAAAAAAO0i+jpB6rp+bYy3rjzg+toW7rn1gOt/rut6+5FuqOu6zvtvBzvSOQAAAAAAAAAAAAAAAMBxJvoq388OuD6tqqrph9tcVdWkJJ85YHl1i896JsnW/a4vrKpqXov3AgAAAAAAAAAAAAAAAG0g+irf0CHWuo+w/6okv7Pf9da6rje28qC6roeTPHfA8o2t3AsAAAAAAAAAAAAAAPw/e/cSovlVp3H8OTVFiCQxwUtIVBLxkoVjdGQQvPSA4gUbnRmFoKAiRF0NIoIojlm4NAgiuFARGUGMC0XFS7yNI4MEhSgqXnAxKrSChhicRI22GD0u0lKV126r3qq36v+k8/lAL87hnPP/QfX2ywuwGaKvfo9bWd+T5I6/c/6JK+uvr/m9r62s/3HN+wAAAAAAAAAAAAAAAMAhiL76Xbey/uaZX+Q6lyesrH+05vd+vMd7AAAAAAAAAAAAAAAAwBESfRUbY1yc5DUr25/c49rqL4P9dM3Prp5//Jr3AQAAAAAAAAAAAAAAgEMQfXV7e5Irdq3vTPKBPe5ctrK+fc1vrp6/ZIzh/wkAAAAAAAAAAAAAAAAck+2lB+DsxhgvSfK6le0b5py/2uPqxSvr36/56dXzI8lFSX6z5jv3fWSMy5M8fM1rjz3MNwEAAAAAAAAAAAAAAOD+SPRVaIzx5CQfWtn+UpL37uP6avR1es3Pny0SuziHjL6S/EeStx3yDQAAAAAAAOBcrrj2aM8DAAAAAADHRvRVZoxxVZKbc99461SSV8455wGeXPfOQb4BAAAAAAAALO3kjUtPAAAAAAAAbMjW0gOwY4xxeZL/TvLIXdu3JXnenPOX+3zmtyvrB605xtnOr74JAAAAAAAAAAAAAAAAHBG/9FVijPGQJF9Ocs2u7TuSPHfO+X9rPHUU0dfda75xNu9J8rE17zw2yac28G0AAAAAAAAAAAAAAAC43xB9FRhjXJrkS0mu3bX9/7n3F75+sOZzd62sH77m/ctX1r+ec/55zTf+xpzz9iS3r3NnjHHYzwIAAAAAAAAAAAAAAMD9ztbSAzzQjTEuSfKFJP+8a/vXSV4w5/zOAZ5c/VWwq9e8v3p+nV8ZAwAAAAAAAAAAAAAAAA5J9LWgMcZFST6X5Gm7tn+b5OSc89YDPvvDlfXj1rz/mD3eAwAAAAAAAAAAAAAAAI6Q6GshY4wHJflskhO7tn+X5IVzzq8d4unvr6yfvub9Z+7xHgAAAAAAAAAAAAAAAHCERF8LGGNcmOTTSZ61a/t0kn+bc371kM9/I8mvdq2vHGNcs8+5tpL8y8r25w85DwAAAAAAAAAAAAAAALAG0dcxG2NckOQTSZ67a/sPSV485/yfw74/57wnyWdWtq/f5/XnJ3nErvWP55zfPexMAAAAAAAAAAAAAAAAwP6Jvo7RGGM7yUeTnNy1/cck1805v7jBT31oZf3aMcZD93HvzXu8AwAAAAAAAAAAAAAAABwx0dcxGWP8Q5Kbkvz7ru17krxszvnZTX5rzvmVJF/ZtfWwJO8bY5zz7z3GeH2SZ+/auiPJuzY5FwAAAAAAAAAAAAAAALC37aUHeAD5ryQvXdl7a5JvjzEeveZbt805T+9x5k1Jvp7kgjPr65J8fIzx+jnnz/56aIxxSe79ha8bVu7fMOf8zZpzAQAAAAAAAAAAAAAAAIck+jo+rzrL3jvO/FvXs5P87987MOf81hjj1Uk+vGv7xUleNMa4NcnPcu8vgD01yYNXrr93zvn+A8wFAAAAAAAAAAAAAAAAHJLo6zw257xpjHFBkncnufjM9naSZ5zrypmzbzyG8QAAAAAAAAAAAAAAAICz2Fp6AI7WnPODSZ6c5KYkd5/j2J+TfDnJc+acb5hz/um45gMAAAAAAAAAAAAAAADuyy99HZM551jw2z9J8soxxkVJTiR5VJLLk9yZ5OdJbp1z/mKp+QAAAAAAAAAAAAAAAIAdoq8HkDnn3Um+uPQcAAAAAAAAAAAAAAAAwLltLT0AAAAAAAAAAAAAAAAAADtEXwAAAAAAAAAAAAAAAABFtpceAAAAAAAAAIAN+MV3k9N37f/8hZcmVz7p6OYBAAAAAAAOTPQFAAAAAAAAcD74wn8mp27Z//mrTyTX33x08wAAAAAAAAe2tfQAAAAAAAAAAAAAAAAAAOwQfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFNleegAAAAAAAAAANuD6m5eeAAAAAAAA2BC/9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQZHvpAQAAAAAAAADYgA++MDl1y/7PX30iuf7mo5sHAAAAAAA4ML/0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUGR76QEAAAAAAAAA2IAXvD05fdf+z1946dHNAgAAAAAAHIroCwAAAAAAAOB8cOWTlp4AAAAAAADYkK2lBwAAAAAAAAAAAAAAAABgh+gLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKDI9tIDAAAAAAAAALABn39Lctv39n/+imuTkzce3TwAAAAAAMCBib4AAAAAAAAAzge3fS85dcvSUwAAAAAAABuwtfQAAAAAAAAAAAAAAAAAAOwQfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAU2V56AIDjNN74maVHADir+c5/XXoEAAAAAAAAAAAAAKCEX/oCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACgi+gIAAAAAAAAAAAAAAAAoIvoCAAAAAAAAAAAAAAAAKCL6AgAAAAAAAAAAAAAAACiyvfQAAAAAAAAAAGzAP708efSJ/Z+/7KqjmwUAAAAAADgU0RcAAAAAAADA+eApr1h6AgAAAAAAYEO2lh4AAAAAAAAAAAAAAAAAgB2iLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIttLDwAAAAAAAADABnz7puTOn+7//GVXJU95xdHNAwAAAAAAHJjoCwAAAAAAAOB88J2PJKdu2f/5q0+IvgAAAAAAoNTW0gMAAAAAAAAAAAAAAAAAsEP0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBke+kBAAAAAAAAANiAK6492vMAAAAAAMCxEX0BAAAAAAAAnA9O3rj0BAAAAAAAwIZsLT0AAAAAAAAAAAAAAAAAADtEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF/wF/buPNrWurwP+Pe5HuPEFRyYVARESRQBNRqTiq3TssYxktgkUk00VWyWtmZoHKkxxjrUpjYtNJWkalPtgEPBEIekDhGtUyIJzqkyeCNB+R3vAAAgAElEQVQKBLyAFRV5+sfZJ2d75co5Z+993v3e+/ms9a73907P/p4L/37XDwAAAAAAAAAAAAAAAJaI0hcAAAAAAAAAAAAAAADAElH6AgAAAAAAAAAAAAAAAFgiSl8AAAAAAAAAAAAAAAAAS2Rl6AAAAAAAAAAAzMGlf5Vct3vj79/ywOTwExaXBwAAAAAA2DKlLwAAAAAAAIB9wbtekFx83sbfP/Kk5GnnLi4PAAAAAACwZTuGDgAAAAAAAAAAAAAAAADAOqUvAAAAAAAAAAAAAAAAgCWi9AUAAAAAAAAAAAAAAACwRJS+AAAAAAAAAAAAAAAAAJaI0hcAAAAAAAAAAAAAAADAElH6AgAAAAAAAAAAAAAAAFgiSl8AAAAAAAAAAAAAAAAAS0TpCwAAAAAAAAAAAAAAAGCJKH0BAAAAAAAAAAAAAAAALBGlLwAAAAAAAAAAAAAAAIAlovQFAAAAAAAAAAAAAAAAsESUvgAAAAAAAAAAAAAAAACWiNIXAAAAAAAAAAAAAAAAwBJR+gIAAAAAAAAAAAAAAABYIkpfAAAAAAAAAAAAAAAAAEtkZegA+6uquluSByS5/+R8vyQ7p165uLuP2uLsnjHe0d190YwzAAAAAAAAAAAAAAAAgC1Q+tpGVfWQJC/IatHr9sOmAQAAAAAAAAAAAAAAAJaR0tf2uk+SRw4dAgAAAAAAAAAAAAAAAFheSl/L4VtJdiU5ZgGzP5rk5zb5za4F5AAAAAAAAAAAAAAAAAA2QOlr+30nyaeTfCLJxyfnC5I8KMn7FvB713X3RQuYCwAAAAAAAAAAAAAAACyA0tf2emOS3+vu6/Z8UFUDxAEAAAAAAAAAAAAAAACWjdLXNuruq4bOAAAAAAAAAAAAAAAAACy3HUMHAAAAAAAAAAAAAAAAAGCd0hcAAAAAAAAAAAAAAADAElH6AgAAAAAAAAAAAAAAAFgiK0MHYOHuWlWvT/JjSe6U5DZJrkpyRZJPJvmzJG/p7iuHiwgAAAAAAAAAAAAAAACsUfra9x09OaYdMjnuleSUJL9TVWcmOa27r11EiKo6JMnBm/zsmEVkAQAAAAAAAAAAAAAAgGWm9EWyuvvXc5M8uqpO7u5PL+A3fjnJSxYwFwAAAAAAAAAAAAAAAPYpSl/7ruuTnJfkT5P8VZJdSa5JckCSuyZ5cJKnZnXHrzXHJvnTqvrx7r54e+MCAAAAAAAAAAAAAAAAidLXvurFSc7s7sv28vz8JOdU1WlZ3X3reUlq8uywJG+rqvt3dy8+KgAAAAAAAAAAAAAAADBN6Wsf1N0v3+B71yV5QVXtSvIfph7dL8nPJ3nzHGOdkeSsTX5zTJKz55gBAAAAAAAAAAAAAAAAlp7SF+nu06vqkUkeP3X7lzPH0tdk17G97Tx2o6rqpl8CAAAAAAAAAAAAAACAfcyOoQOwNF6xx/WPV9VBgyQBAAAAAAAAAAAAAACA/ZjSF2s+luSqqeubJbnXQFkAAAAAAAAAAAAAAABgv6X0RZKku29Icsketw8eIgsAAAAAAAAAAAAAAADsz5S+mPbNPa5vNUgKAAAAAAAAAAAAAAAA2I8pfTHtjntcXzFICgAAAAAAAAAAAAAAANiPKX2RJKmqOya52x63vzJEFgAAAAAAAAAAAAAAANifKX2x5ufyvf8/fC3JZwfKAgAAAAAAAAAAAAAAAPstpS9SVYcmefEet9/R3T1EHgAAAAAAAAAAAAAAANifKX3tQ6rqh6vqcZv85rAkf5Tk0Knb307yinlmAwAAAAAAAAAAAAAAADZmZegA+5uquktu/N/9sD2uV6rqqL2Muba7r7iR+4cnOaeqLkjyX5O8vbv/ei85dib5hazu8HXoHo9/u7u/tJffBgAAAAAAAAAAAAAAABZI6Wv7nZfkyA28d+ckF+7l2RuT/OIP+Pb4JK9K8qqq2p3kU0muSHJNkgOSHJHkxNz4f//XdffLNpAPAAAAAAAAAAAAAAAAWAClr33fgUketIH3vpHkV7r7zAXnAQAAAAAAAAAAAAAAAH6AHUMHYK4+m+RfJflQkm9u8JsvJHlhkqMUvgAAAAAAAAAAAAAAAGB4dvraZt191AJnfy3Ji5KkqnYkuUeSY5LcOclBSW6Z1TLYVUkuTfLx7r58UXkAAAAAAACAbfS0c4dOAAAAAAAAzInS1z6qu29I8vnJAQAAAAAAAAAAAAAAAIzEjqEDAAAAAAAAAAAAAAAAALBO6QsAAAAAAAAAAAAAAABgiSh9AQAAAAAAAAAAAAAAACwRpS8AAAAAAAAAAAAAAACAJaL0BQAAAAAAAAAAAAAAALBElL4AAAAAAAAAAAAAAAAAlojSFwAAAAAAAAAAAAAAAMASUfoCAAAAAAAAAAAAAAAAWCJKXwAAAAAAAAAAAAAAAABLROkLAAAAAAAAAAAAAAAAYIkofQEAAAAAAAAAAAAAAAAsEaUvAAAAAAAAAAAAAAAAgCWi9AUAAAAAAAAAAAAAAACwRJS+AAAAAAAAAAAAAAAAAJaI0hcAAAAAAAAAAAAAAADAElH6AgAAAAAAAAAAAAAAAFgiSl8AAAAAAAAAAAAAAAAAS0TpCwAAAAAAAAAAAAAAAGCJrAwdAAAAAAAAAIA5eP1jkovP2/j7R56UPO3cxeUBAAAAAAC2zE5fAAAAAAAAAAAAAAAAAEtE6QsAAAAAAAAAAAAAAABgiSh9AQAAAAAAAAAAAAAAACwRpS8AAAAAAAAAAAAAAACAJaL0BQAAAAAAAAAAAAAAALBElL4AAAAAAAAAAAAAAAAAlojSFwAAAAAAAAAAAAAAAMASUfoCAAAAAAAAAAAAAAAAWCJKXwAAAAAAAAAAAAAAAABLROkLAAAAAAAAAAAAAAAAYIkofQEAAAAAAAAAAAAAAAAskdGUvqrqtKo6fOgcAAAAAAAAAAAAAAAAAIs0mtJXkpcmuaiqzqqqhw8dBgAAAAAAAAAAAAAAAGARxlT6SpKVJCcneU9Vfb6qfqWqbjd0KAAAAAAAAAAAAAAAAIB5GVvpa00luUeS1yT5m6p6Q1X9xMCZAAAAAAAAAAAAAAAAAGY2ptLXC5NclNXCV5L0ZH3LJE9Jcl5VnV9Vp1bVAcNEBAAAAAAAAAAAAAAAAJjNaEpf3f3K7j4myaOTnJPkhrVHk3MlOSHJGVnd/euMqjph+5MCAAAAAAAAAAAAAAAAbN1oSl9ruvtd3f1TSY5M8ltJvpLv3/1rZ5JTk3yyqj5cVf+4qn5okMAAAAAAAAAAAAAAAAAAmzC60tea7v5Kd/9mVstfJyd5z/TjybmSPDDJG5N8par+dVXdY1uDAgAAAAAAAAAAAAAAAGzCaEtfa7r7hu7+X939qCTHJHl1ksuzvvtXJuvbJ/nVJJ+rqj+pqpOr6mbbnxgAAAAAAAAAAAAAAABg70Zf+prW3Rd19/OTHJHkyUk+kPXyV0/WleRhSc5KcklVvbSq7jJEXgAAAAAAAAAAAAAAAIA97VOlrzXd/Z3u/u/d/dAk90zyu0m+vvY46+Wvw5O8OMmFVfX2qnrYIIEBAAAAAAAAAAAAAAAAJvbJ0te07v58dz83yaOTXLJ2e+pIkpsleXySP6mqT1bVY7Y/KQAAAAAAAAAAAAAAAMA+XvqqqltU1VOq6kNJPpzkiD1fmRw9dX1iknOq6q1VddvtSwsAAAAAAAAAAAAAAACQrAwdYBGq6tgkz0ry1CS3W7ud1XJXTa4vTfK6JLuTPCPJPSf31975qSR3qqqTuvu72xQdAAAAAAAAAAAAAAAA2M/tMzt9VdVKVf1sVb03yWeT/PMkt896ySuT9Z8l+dkkR3b3S7v7td19XJKHJnlnvrcc9mNJnrmNfwYAAAAAAAAAAAAAAACwnxt96auqjq6qVyTZleTNSf5B1otePTl/I8l/THLv7n5Id5/V3ddPz+nuD3T3Y5I8Lsn/m/r25xf9NwAAAAAAAAAAAAAAAACsWRk6wFZU1Y4kj0/yrCSPyGrJa8+iVyX5TFbLXm/s7ms3Mru7z62qVyd56eTWveeVGwAAAAAAAAAAAAAAAOCmjKr0VVV3SfKMJL+U5PC121ktevVk/d0kZyc5vbvfv8WfenfWS1+33WpeAAAAAAAAAAAAAAAAgM0aTemrqs5O8ugkO3Lju3p9NcmZSf5Td39lxp/72tT8+kEvAgAAAAAAAAAAAAAAAMzTaEpfSR6X9ZLXWhmrknwwyelJ3tbd18/5N9d2EQMAAAAAAAAAAAAAAADYFmMqfa2pJNcmeVOS07v7Uwv4jb9N8pwFzAUAAAAAAAAAAAAAAAD4gcZW+vp8kjOSvLG7r1nUj3T3tVndPQwAAAAAAAAAAAAAAABgW42p9PWI7n7v0CEAAAAAAAAAAAAAAAAAFmnH0AE2SuELAAAAAAAAAAAAAAAA2B+MpvQFAAAAAAAAAAAAAAAAsD9Q+gIAAAAAAAAAAAAAAABYIitDB9ioqvqRJK+eXHaSZ3T3ZZuccWiS1yWpya3ndveX5pcSAAAAAAAAAAAAAAAAYDajKX0leWaSx2a18PX+zRa+kqS7v1ZVByR56GTOp5K8cK4pAQAAAAAAAAAAAAAAAGawY+gAm/DEqfXrZ5jzhsm5kvzMDHMAAAAAAAAAAAAAAAAA5m4Upa+qOirJkZPLG5KcM8O4cyYzkuSYqrrzDLMAAAAAAAAAAAAAAAAA5moUpa8k956cO8lfd/fVWx3U3buTfGHq1gmzBAMAAAAAAAAAAAAAAACYp7GUvo6aWv/fOcybnnHU3l4CAAAAAAAAAAAAAAAA2G5jKX3tnFrvnsO86Rm3ncM8AAAAAAAAAAAAAAAAgLkYS+nrW1PrA+Ywb3rGDXOYBwAAAAAAAAAAAAAAADAXK0MH2KArptZHzGHe9Iy/ncM8AAAAAAAAgGE96hXJdbs3/v4tD1xcFgAAAAAAYCZjKX19eXKuJCdW1UHd/fWtDKqqg5LcZ+rWV2YNBwAAAAAAADC4w08YOgEAAAAAADAnO4YOsEEfSfLtJJ3VzM+aYdapWf+7v5vkQ7NFAwAAAAAAAAAAAAAAAJifUZS+uvubWS1n1eR4XlUdu9k5k2+en9XyWCf5SHdfM8+sAAAAAAAAAAAAAAAAALMYRelr4ncm505yYJJ3V9WJG/24qo5P8s4kt81qcSxJ/u1cEwIAAAAAAAAAAAAAAADMaDSlr+4+N8lHslrY6iRHJvlIVf27qrrX3r6rqntW1WuTfDTJUWvjknysu9++2NQAAAAAAAAAAAAAAAAAm7MydIBN+kdJPpHk4KwWt26R5NlJnl1VVyT5TJKrJs9un+Sek3eT9bJYJflqkidta3IAAAAAAAAAAAAAAACADRhV6au7d1XVY5KcneROWS9xJavlrr+/xyc1/fnk+stJntDduxYcFwAAAAAAAAAAAAAAAGDTdgwdYLO6+8+T3C/JH2W91NWT4/te3+P+25L8aHefv9CQAAAAAAAAAAAAAAAAAFs0utJXknT3Zd39+KyWv85McmFWC2A3dnwxye8lObG7f6a7rxgmNQAAAAAAAAAAAAAAAMBNWxk6wCwmO3admiRVdUiSw5PcYfL4iiSXdvflA8UDAAAAAAAAAAAAAAAA2LRRl76mdfdlSS4bOgcAAAAAAAAAAAAAAADALHYMHQAAAAAAAAAAAAAAAACAdUpfAAAAAAAAAAAAAAAAAEtE6QsAAAAAAAAAAAAAAABgiSh9AQAAAAAAAAAAAAAAACyRlaEDbEVVrSR5YpKHJblvkkOSHJjk5psc1d194JzjAQAAAAAAAAAAAAAAAGzZ6EpfVXVKkn+T5OC1WzOM69kTAQAAAAAAAAAAAAAAAMzPqEpfVfWKJL+R9aJXZ+vFrVnKYgAAAAAAAAAAAAAAAAALMZrSV1X9dJLnTS7Xil41We9KclWS7wwQDQAAAAAAAAAAAAAAAGBuRlP6SvLyybmzWvb6TJLfSnJud39jsFQAAAAAAAAAy+Cdz0++esHG3z/s+OQnX7m4PAAAAAAAwJaNovRVVfdMcmzWd/j630ke093fHi4VAAAAAAAAwBL56gXJxecNnQIAAAAAAJiDHUMH2KAHTM6V5LtJnq7wBQAAAAAAAAAAAAAAAOyLxlL6Onhy7iSf6O4vDxkGAAAAAAAAAAAAAAAAYFHGUvq6YWp90VAhAAAAAAAAAAAAAAAAABZtLKWvXVPrmw+WAgAAAAAAAAAAAAAAAGDBxlL6umBqffRgKQAAAAAAAAAAAAAAAAAWbBSlr+7+XJJPJKkkJ1bVIQNHAgAAAAAAAAAAAAAAAFiIUZS+Jl41Oe9I8sIhgwAAAAAAAAAAAAAAAAAsymhKX9391iT/Oau7fT27qk4ZOBIAAAAAAAAAAAAAAADA3I2m9DXxT5O8Iau5/0tVnVFVdxk2EgAAAAAAAAAAAAAAAMD8rAwdYKOq6ncny2uTXJHkjklOTfLMqrogyWeSXJXkhs3M7e5/Ns+cAAAAAAAAAAAAAAAAALMYTekrybOT9NR1J6nJcWKSEzY5ryYzlL4AAAAAAAAAAAAAAACApTGm0teN6Zt+BQAAAAAAAAAAAAAAAGA8xlb6qqEDAAAAAAAAAAAAAAAAACzSmEpfxw8dAAAAAAAAAAAAAAAAAGDRRlP66u5PD50BAAAAAAAAAAAAAAAAYNF2DB0AAAAAAAAAAAAAAAAAgHVKXwAAAAAAAAAAAAAAAABLROkLAAAAAAAAAAAAAAAAYIkofQEAAAAAAAAAAAAAAAAskZWhA8yiqg5M8vAkD05yTJLbJ9mZJN194oDRAAAAAAAAAAAAAAAAALZklKWvqrpDktOSPD3JbfZ8nKT38t1Tkpw+ubwyyTHd/d1F5QQAAAAAAAAAAAAAAADYrB1DB9isqjopyflJnpPkgKyWvDbqrCTfnnx3RJJHzz0gAAAAAAAAAAAAAAAAwAxGVfqqqgckeXeSO+35KMl1N/V9d1+X5H9M3Xri/NIBAAAAAAAAAAAAAAAAzG40pa+q2pnknCS3WruV5ANJnpDktkmOy8Z2/Tp7av2weWYEAAAAAAAAAAAAAAAAmNVoSl9Jfj3JoUl6cv2S7n5od7+ju6+dun9TPpjkhqwWxI6oqj13DQMAAAAAAAAAAAAAAAAYzJhKX8/MerHrD7v7ZVsZ0t3fTPLFqVs/MmswAAAAAAAAAAAAAAAAgHkZRemrqu6T1V2+Kqu7dL1oxpEXTq2PnnEWAAAAAAAAAAAAAAAAwNyMovSV5LjJuZP8ZXf/zYzzdk+tbzvjLAAAAAAAAAAAAAAAAIC5GUvp65Cp9ZfmMO/bU+tbzWEeAAAAAAAAAAAAAAAAwFyMpfR186n19XOYd9DUevde3wIAAAAAAAAAAAAAAADYZmMpfV0+tT5kr29t3LFT6yvnMA8AAAAAAAAAAAAAAABgLsZS+rp0cq4k95tlUFUdluQeU7c+N8s8AAAAAAAAAAAAAAAAgHkaS+nrw0mun6wPrKrHzDDr1Kn17iTnzzALAAAAAAAAAAAAAAAAYK5GUfrq7quT/J+pWy+vqptvdk5VHZPk15L05HhXd/d8UgIAAAAAAAAAAAAAAADMbhSlr4nXTK2PT/KmqlrZ6MdVdXSSP05yQJK6kZkAAAAAAAAAAAAAAAAAgxtN6au735HkQ1kvbP10kvOr6ok/aNevqjqsql6c5Pwkd18bl+St3f0Xi8wMAAAAAAAAAAAAAAAAsFkb3ilrSTwpyceT3Glyfa8kb0nyzSQXTr9YVWclOTbJcVktilVWy15J8sUkv7QNeQEAAAAAAAAAAAAAAAA2ZTQ7fSVJd381yT9M8qWsl7gqya2zWu5aU0lOTnJ8Vv/G6Xc/n+Qnu/ua7UsOAAAAAAAAAAAAAAAAsDGjKn0lSXd/JsmPJvnDJDes3b6RI3usk+S/JfmJ7v7i9qQFAAAAAAAAAAAAAAAA2JzRlb6SpLuv7u5fSPLDSV6b5NOTR3Ujx8VJXpfkPt19Snd/fYDIAAAAAAAAAAAAAAAAABuyMnSAWXT3l5L8apJU1YFJ7pLkDkl+KMkVSb7W3ZcOlxAAAAAAAAAAAAAAAABgc0Zd+prW3buT7B46BwAAAAAAAAAAAAAAAMAsdgwdAAAAAAAAAAAAAAAAAIB1Sl8AAAAAAAAAAAAAAAAAS2Rl6AAAAAAAAAAAzMF9npwcddLG3z/orovLAgAAAAAAzETpCwAAAAAAAGBfcN9Thk4AAAAAAADMyWhKX1V1zgLGdnc/YQFzAQAAAAAAAAAAAAAAALZkNKWvJI9N0nOcV3OeBwAAAAAAAAAAAAAAADCzMZW+ZlVTa2UvAAAAAAAAAAAAAAAAYCmNrfRVN/3KXq0VvWrGOQAAAAAAAAAAAAAAAAALM6bS185Nvn+zJLdLclySxyZ5apJbJ7lysv7AXNMBAAAAAAAAAAAAAAAAzMFoSl/d/Y0tfHZ1kouT/HFVvTLJWUkekOStSZ7Q3e+ZY0QAAAAAAAAAAAAAAACAme0YOsB26e5LkjwyyReS3CLJ/6yquw6bCgAAAAAAAAAAAAAAAOB77TelryTp7t1Jfm1yuTPJbw6XBgAAAAAAAAAAAAAAAOD77VelryTp7nOTXJ6kkjypqm4zcCQAAAAAAAAAAAAAAACAv7Pflb4m/nxyvnWSBw8ZBAAAAAAAAAAAAAAAAGDa/lr6unJqfcRgKQAAAAAAAAAAAAAAAAD2sL+WvnZOre8wWAoAAAAAAAAAAAAAAACAPex3pa+qqiQPnLq1e6gsAAAAAAAAAAAAAAAAAHva70pfSf5JkkOmrr84VBAAAAAAAAAAAAAAAACAPe1Xpa+qenqSf5+kJ7e+leSDwyUCAAAAAAAAAAAAAAAA+F4rQwfYqKo6eQufrSQ5KMm9kjw2ydFJavKsk/xBd39zPgkBAAAAAAAAAAAAAAAAZjea0leSt2R9h66tmC57VZILk7xk1lAAAAAAAAAAAAAAAAAA87Rj6ABbUFs4kvXCWCX5yySP7O4rty82AAAAAAAAAAAAAAAAwE0b005fyXqBa6vfnZ/kzCRndvf184kEAAAAAAAAsAQ++abk65ds/P2D7prc95TF5QEAAAAAALZsTKWv52zhm+uTXJ3ksiR/0d1XzTcSAAAAAAAAwJI4/83Jxedt/P0jT1L6AgAAAACAJTWa0ld3nz50BgAAAAAAAAAAAAAAAIBF2zF0AAAAAAAAAAAAAAAAAADWKX0BAAAAAAAAAAAAAAAALBGlLwAAAAAAAAAAAAAAAIAlovQFAAAAAAAAAAAAAAAAsESUvgAAAAAAAAAAAAAAAACWyMrQATaqqk4e6re7+21D/TYAAAAAAAAAAAAAAACwfxlN6SvJW5L0AL/bGde/EwAAAAAAAAAAAAAAADBiYywz1dABAAAAAAAAAAAAAAAAABZlbKWv6cLXnrt+7a0MttH3AAAAAAAAAAAAAAAAAAY3ptLXcybnnUn+RZKDsl7guijJx5J8Icnuyb0Dkxyb5IFJjpzc6yRXJnlNkmsWnhgAAAAAAAAAAAAAAABgk0ZT+uru06vqqCTvznrh631JTuvuD/+gb6vqQUleluQhSW6X5GlJHtXdFy4wMgAAAAAAAAAAAAAAAMCm7Rg6wEZV1W2SvCvJPSa3Tuvuh99U4StJuvtD3f2wJP8yq2Wxuyd5d1XtXFhgAAAAAAAAAAAAAAAAgC0YTekryYuSHJukk/x+d798swO6+7eT/H5Wi1/HTGYCAAAAAAAAAAAAAAAALI1RlL6q6mZJnja5/G5mK2u9KMn1k/UvVtUo/g0AAAAAAAAAAAAAAACA/cNYCk9/L8mhWd3l62PdfcVWB3X35Uk+mtXdvg5OctJcEgIAAAAAAAAAAAAAAADMwVhKX0dNrS+Zw7xde5kNAAAAAAAAAAAAAAAAMKixlL4On1rfeg7zbjW1PmwO8wAAAAAAAAAAAAAAAADmYiylr2un1sfNYd70jGv3+hYAAAAAAAAAAAAAAADANhtL6evLk3MluVtVPWirg6rqpCTHTN3aNUswAAAAAAAAAAAAAAAAgHkaS+nr/Um+laSzWvw6o6oO2OyQqtqZ5IypW99O8r55BAQAAAAAAAAAAAAAAACYh1GUvrr7miRnZ7Xw1UnuneS9VXX3jc6YvPveybeZzHn7ZDYAAAAAAAAAAAAAAADAUhhF6Wvi15NcO3V9/yQXVNWZVfXwyS5e36OqdlbVI6rqD5JckOR+WS17Jck3kvzGokMDAAAAAAAAAAAAAAAAbMbK0AE2qrt3VdUpSc5KcvOslrdukeTpkyNVdVmSqyfPDkxyyNSItV3CKsl3kjy5u3dt2x8AAAAAAPx/9u42VraqvuP4bx0PggoIKhZa2nsVND6VomJshBDaWBJjkWKMthojWNTUNmqtjbGxodi+qEmhxrSNL2qEtNbaVnykWmMiIUhtomBJIzaIcokPFS+Cgas8//vizskZxstl5szM2WsOn08ymb32WXvNH8I78s0GAAAAAAAAAGAKq/Smr1TVp5Ock+TWbEZcGV23JD+X5GlJnj663rifbAZfe5OcXVWf2b7JAQAAAAAAAAAAAAAAAKazUtFXklTVZ5M8K8klSe7Jg6OuA30y2nPP6JlnV9Xntm9iAAAAAAAAAAAAAAAAgOmtDz3AVlTV3iSvb639cZLfTnJaklOy/+1eh4+23ZnkB0m+kuSqJB8dPQcAAAAAAAAAAAAAAADQrZWMvjZU1a1J/nb0SZK01h41+tv9Q80FAAAAAAAAAAAAAAAAsFUrHX0diNgLAAAAAAAAAAAAAAAAWGVrQw8AAAAAAAAAAAAAAAAAwCbRFwAAAAAAAAAAAAAAAEBH1oceYF6ttZbkpCQnJHlCkiOStKq6eNDBAAAAAAAAAAAAAAAAALZgZaOv1trJSd6R5KVJjjzAlp+JvlprL07ystHytqq6YHkTAgAAAAAAAAAAAAAAAAO8vDYAACAASURBVMxu5aKv1tqhSd6f5PyNWwfYVg/x+I1J3rzxTGvto1X19YUPCQAAAAAAAAAAAAAAALBFa0MPMIvW2mOTXJn9wdcssdf+P1Z9O8nnx579nYUOCAAAAAAAAAAAAAAAADCnlYq+kvxzkheMre9P8vEkb0ny+zlwCDbpsrHr31jcaAAAAAAAAAAAAAAAAADzWx96gGm11l6W5Dez+Tava5O8qqq+Ofr7rimP+uzGkUme11p7bFX9ZKHDAgAAAAAAAAAAAAAAAGzRKr3p691j1/+b5IyN4GsWVfXdJHtHy0cleeYCZgMAAAAAAAAAAAAAAABYiJWIvlprT07y/Gy+5estVXXHHEdeP3b99DnOAQAAAAAAAAAAAAAAAFiolYi+kpyapI0+36+qL8x53o/Grp8051kAAAAAAAAAAAAAAAAAC7Mq0dexo+9Kcs0Czht/S9jhCzgPAAAAAAAAAAAAAAAAYCFWJfo6auz6xws473Fj13cv4DwAAAAAAAAAAAAAAACAhViV6Ov2sesjF3DecWPXty7gPAAAAAAAAAAAAAAAAICFWJXo64dj18+a56DW2iFJTh679b15zgMAAAAAAAAAAAAAAABYpPWhB5jS10bfLclTW2snVNWNWzzr7CSHja7vT/LleYcDAAAAAAAAGNyxv7zc/QAAAAAAwLZZieirqr7ZWrspye7RrXcmeeOs54ze8vXujWOTfLWq7ljEjAAAAAAAAACDeslfDj0BAAAAAACwIGtDDzCDS0ffLcnvttZesYUz/ibJSWPrD8w9FQAAAAAAAAAAAAAAAMACrVL0dXGSW7P/DV0tyT+11v5k9Paug2qtPaW19qkk54+eT5I9Sf5xWcMCAAAAAAAAAAAAAAAAbMX60ANMq6ruaK29Icm/jW6tJ/nzJG9rrX0yyXfG97fWXprk6UnOTPLro/1t9Od7k7ymqu7fjtkBAAAAAAAAAAAAAAAAprUy0VeSVNUnWmvvSHJRNt/49aQkr5/Y2pJ8amJdY583V9V/Ln9iAAAAAAAAAAAAAAAAgNmsDT3ArKrqfUnOTnL7xq3R92TY1bL5Zq+N9R1Jzq6qD27bwAAAAAAAAAAAAAAAAAAzWLnoK0mq6jNJTkzyniS3ZjPuanlw7LVxb1+Si5OcWFWXb+OoAAAAAAAAAAAAAAAAADNZH3qAraqq25L8WWvtwiTPTXJakl9M8sQkj06yN8kPklyd5EtVdd9QswIAAAAAAAAAAAAAAABMa2Wjrw1VVUmuGX0AAAAAAAAAAAAAAAAAVtrKRF+ttbWN66p6YMhZAAAAAAAAAAAAAAAAAJZl7eG3DK+1dm6Se0efu1trvzTsRAAAAAAAAAAAAAAAAADLsSpv+jouSRtdX1tVNw85DAAAAAAAAAAAAAAAAMCyrMSbvpL8ZPRdSfYMOQgAAAAAAAAAAAAAAADAMq1K9PV/Y9cPDDYFAAAAAAAAAAAAAAAAwJKtSvR1w9j18YNNAQAAAAAAAAAAAAAAALBkKxF9VdU1SW5K0pKc0lo7ctiJAAAAAAAAAAAAAAAAAJZjJaKvkQ+OvteTvGPIQQAAAAAAAAAAAAAAAACWZZWir/cmuTb73/b1ztbaWQPPAwAAAAAAAAAAAAAAALBwKxN9VdV9Sc5Jcl2SQ5Jc1lq7uLX288NOBgAAAAAAAAAAAAAAALA460MPMK3W2ttHlx9L8pQkRyR5a5I/aK19JfvfAnZLkjtmObeqLl7knAAAAAAAAACD+P51yV0/nn7/YY9PjjtpefMAAAAAAABbtjLRV5K/SlJj60rSsv+f4YWjz1aIvgAAAAAAAIDV97l3JXuumn7/rtOS8y5f3jwAAAAAAMCWrQ09wBa0sevKg0OwrZ4DAAAAAAAAAAAAAAAA0IVVetNXshlqCbYAAAAAAAAAAAAAAACAHWmVoq+zhh4AAAAAAAAAAAAAAAAAYNlWJvqqqsuHngEAAAAAAAAAAAAAAABg2daGHgAAAAAAAAAAAAAAAACATaIvAAAAAAAAAAAAAAAAgI6IvgAAAAAAAAAAAAAAAAA6sj70ABtaaxePLd9TVbcPNgwAAAAAAAAAAAAAAADAQLqJvpK8LUmNrt+X5KDRV2vt9LHll6vqnmUNBgAAAAAAAAAAAAAAALBdeoq+kqRlM/x6OFeM7X1KkpuXMRAAAAAAAAAAAAAAAADAdlobeoA5taEHAAAAAAAAAAAAAAAAAFikVY++pn0rGAAAAAAAAAAAAAAAAMBKWPXoy5u+AAAAAAAAAAAAAAAAgB1l1aMvAAAAAAAAAAAAAAAAgB1F9AUAAAAAAAAAAAAAAADQEdEXAAAAAAAAAAAAAAAAQEdEXwAAAAAAAAAAAAAAAAAdEX0BAAAAAAAAAAAAAAAAdET0BQAAAAAAAAAAAAAAANAR0RcAAAAAAAAAAAAAAABAR9aHHmBCjb5/tbW2e4bnZt2/+YNVV27lOQAAAAAAAAAAAAAAAIBl6C36SpKW5CNL3D+u0ue/AwAAAAAAAAAAAAAAAOARqsfgqbI/5Jpm34Zp9gMAAAAAAAAAAAAAAAB0r8foK3lw0LWM/YlQDAAAAAAAAAAAAAAAAOhQT9HXzdlavAUAAAAAAAAAAAAAAACwY3QTfVXV7qFnAAAAAAAAAAAAAAAAABja2tADAAAAAAAAAAAAAAAAALBJ9AUAAAAAAAAAAAAAAADQEdEXAAAAAAAAAAAAAAAAQEdEXwAAAAAAAAAAAAAAAAAdEX0BAAAAAAAAAAAAAAAAdET0BQAAAAAAAAAAAAAAANAR0RcAAAAAAAAAAAAAAABAR0RfAAAAAAAAAAAAAAAAAB0RfQEAAAAAAAAAAAAAAAB0RPQFAAAAAAAAAAAAAAAA0BHRFwAAAAAAAAAAAAAAAEBHRF8AAAAAAAAAAAAAAAAAHRF9AQAAAAAAAAAAAAAAAHRE9AUAAAAAAAAAAAAAAADQEdEXAAAAAAAAAAAAAAAAQEdEXwAAAAAAAAAAAAAAAAAdEX0BAAAAAAAAAAAAAAAAdET0BQAAAAAAAAAAAAAAANAR0RcAAAAAAAAAAAAAAABAR9aHHgAAAAAAAACABTjv8qEnAAAAAAAAFsSbvgAAAAAAAAAAAAAAAAA6IvoCAAAAAAAAAAAAAAAA6IjoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjoi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoiOgLAAAAAAAAAAAAAAAAoCOiLwAAAAAAAAAAAAAAAICOiL4AAAAAAAAAAAAAAAAAOiL6AgAAAAAAAAAAAAAAAOiI6AsAAAAAAAAAAAAAAACgI6IvAAAAAAAAAAAAAAAAgI6IvgAAAAAAAAAAAAAAAAA6IvoCAAAAAAAAAAAAAAAA6IjoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjqwPPQDbo7V2SJJTk/xSkuOS3Jnke0muraqbBhwNAAAAAAAAAAAAAAAAGCP6Gkhr7alJXpDklNH385IcMbZlT1XtXsDvHJPkwiSvSvKEh9hzdZKLq+pj8/4eAAAAAAAAAAAAAAAAMB/R1zZqrZ2R5F3ZH3odMMBa8O+9JMklSZ78MFtflORFrbUPJ3lTVe1b9mwAAAAAAAAAAAAAAADAgYm+ttfJSc7cjh8aBWafSPLosduV5Jok30pyVJLnJnnS2N9fk+TI1tpvVdUD2zEnAAAAAAAAsCAfemmy56rp9+86LTnv8uXNAwAAAAAAbNna0AOQJLk7yY2LOqy1dnySy/Lg4OtLSZ5dVadU1Sur6swkxyd5a5J7x/adleQvFjULAAAAAAAAAAAAAAAAMBvR1/a7N8nXkvx9kjcleX6SI5Kcv8DfuDDJ0WPrq5O8uKquH99UVXdX1fuTvHLi+be31nYtcB4AAAAAAAAAAAAAAABgSutDD/AIc2mSD1TVXZN/aK0t5Adaa09L8rqxW/ckOfdAv7mhqj7RWrt07LlDk1yQ5PULGQoAAAAAAAAAAAAAAACYmjd9baOquu1g8dWCvDrJo8bWl1XVDVM8996J9Stba4ctbiwAAAAAAAAAAAAAAABgGqKvneecifWHpnmoqq5P8l9jtx6X5MxFDQUAAAAAAAAAAAAAAABMR/S1g7TWjk3yK2O37kvypRmOuGJi/ZJ5ZwIAAAAAAAAAAAAAAABmI/raWZ4zsb6uqvbN8PzVE+tnzzkPAAAAAAAAAAAAAAAAMCPR187yrIn1N2d8/saHOQ8AAAAAAAAAAAAAAABYMtHXznLixPrmGZ/fM7F+Ymvt6DnmAQAAAAAAAAAAAAAAAGYk+tpZjppY3zLLw1V1Z5K7Jm4/fq6JAAAAAAAAAAAAAAAAgJmsDz0AC3X4xPqnWzjjp0kOG1sfsfVxNrXWnpzkmBkfO2ERvw0AAAAAAAAAAAAAAACrRPS1s0xGX5Nv7ZrGT5McfZAzt+rNSS5Y0FkAAAAAAAAAAAAAAACwY4m+drbapmcAAAAAAADoVPujTw89Atvki4/ZmzNm+D/AV9y4N7/mvw8GVBedNfQIAAAAAADdWht6ABbqzon1Y7ZwxuQzk2cCAAAAAAAAAAAAAAAAS+RNXztLz9HX3yX51xmfOSHJJxf0+wAAAAAAAAAAAAAAALASRF87y48n1sfM8nBr7fD8bPR1+1wTjVTVLUlumXGeRfw0AAAAAAAAAAAAAAAArJS1oQdgoW6YWO+a8fnJ/T+qqtvmmAcAAAAAAAAAAAAAAACYkehrZ7l+Yn3ijM8/dWL99TlmAQAAAAAAAAAAAAAAALZA9LWz/M/E+qTW2mNneP7UhzkPAAAAAAAAAAAAAAAAWDLR1w5SVd9Pct3YrfUkp81wxBkT68/OOxMAAAAAAAAAAAAAAAAwG9HXzvPxifV50zzUWntGkheO3dqX5POLGgoAAAAAAAAAAAAAAACYjuhr5/lwkvvH1i9vrT1tiufeObH+l6q6a3FjAQAAAAAAAAAAAAAAANMQfe0wVXVDkkvHbj06ySWttcMe6pnW2tlJzh27dU+SC5cyIAAAAAAAAAAAAAAAAHBQ60MP8EjTWjs+B/73fuzEer21tvshjrmzqvYe5GcuSHJOkqNH6xcl+UJr7fyq+sbYLIcmeWOSiyaev6iq9hzkfAAAAAAAAAAAAAAAAGBJRF/b76oku6bY9wtJvv0Qf7s0D34z14NU1Xdaay9P8h/Z/6avJDk1yddba19N8q0kj0/yvCTHTDz+mSR/OsV8AAAAAAAAAAAAAAAAwBKIvnaoqrqitXZOkkuyGXa1JKeMPgfykSRvqKr7lz8hAAAAAAAAAAAAAAAAcCBrQw/A8lTVvyd5TpIPJLntIFu/nOQVVfXqqtq3LcMBAAAAAAAAAAAAAAAAB+RNX9usqnZv8+/dkuT3WmtvTXJqkl1Jjk2yL8l3k1xbVd/ezpkAAAAAAAAAAAAAAACAhyb6eoSoqnuSfHHoOQAAAAAAAAAAAAAAAICDWxt6AAAAAAAAAAAAAAAAAAA2ib4AAAAAAAAAAAAAAAAAOiL6AgAAAAAAAAAAAAAAAOiI6AsAAAAAAAAAAAAAAACgI6IvAAAAAAAAAAAAAAAAgI6IvgAAAAAAAAAAAAAAAAA6IvoCAAAAAAAAAAAAAAAA6IjoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjoi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoiOgLAAAAAAAAAAAAAAAAoCOiLwAAAAAAAAAAAAAAAICOiL4AAAAAAAAAAAAAAAAAOiL6AgAAAAAAAAAAAAAAAOiI6AsAAAAAAAAAAAAAAACgI+tDDwAAAAAAAADA/N5292tz1D37pt5/ez1uidMAAAAAAADzEH0BAAAAAAAA7AD//cCuoUcAAAAAAAAWZG3oAQAAAAAAAAAAAAAAAADYJPoCAAAAAAAAAAAAAAAA6IjoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjoi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoiOgLAAAAAAAAAAAAAAAAoCOiLwAAAAAAAAAAAAAAAICOiL4AAAAAAAAAAAAAAAAAOiL6AgAAAAAAAAAAAAAAAOiI6AsAAAAAAAAAAAAAAACgI6IvAAAAAAAAAAAAAAAAgI6IvgAAAAAAAAAAAAAAAAA6IvoCAAAAAAAAAAAAAAAA6IjoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjoi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoyPrQAwAAAAAAAAAwv78+9B9y8tqeqfd/7YFd+cO7X7vEiQAAAAAAgK0SfQEAAAAAAADsACev7ckZ69+Y/oH7ljcLAAAAAAAwn7WhBwAAAAAAAAAAAAAAAABgk+gLAAAAAAAAAAAAAAAAoCOiLwAAAAAAAAAAAAAAAICOiL4AAAAAAAAAAAAAAAAAOiL6AgAAAAAAAAAAAAAAAOiI6AsAAAAAAAAAAAAAAACgI6IvAAAAAAAAAAAAAAAAgI6IvgAAAAAAAAAAAAAAAAA6IvoCAAAAAAAAAAAAAAAA6IjoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjoi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoiOgLAAAAAAAAAAAAAAAAoCOiLwAAAAAAAAAAAAAAAICOiL4AAAAAAAAAAAAAAAAAOiL6AgAAAAAAAAAAAAAAAOiI6AsAAAAAAAAAAAAAAACgI6IvAAAAAAAAAAAAAAAAgI6IvgAAAAAAAAAAAAAAAAA6IvoCAAAAAAAAAAAAAAAA6IjoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjoi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoiOgLAAAAAAAAAAAAAAAAoCOiLwAAAAAAAAAAAAAAAICOiL4AAAAAAAAAAAAAAAAAOiL6AgAAAAAAAAAAAAAAAOiI6AsAAAAAAAAAAAAAAACgI6IvAAAAAAAAAAAAAAAAgI6IvgAAAAAAAAAAAAAAAAA6IvoCAAAAAAAAAAAAAAAA6IjoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjoi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoiOgLAAAAAAAAAAAAAAAAoCOiLwAAAAAAAAAAAAAAAICOiL4AAAAAAAAAAAAAAAAAOiL6AgAAAAAAAAAAAAAAAOiI6AsAAAAAAAAAAAAAAACgI6IvAAAAAAAAAAAAAAAAgI6IvgAAAAAAAAAAAAAAAAA6sj70AAAAAAAAAADM75J7T88V9z9z6v03PXDMEqcBAAAAAADmIfoCAAAAAAAA2AEuve/0oUcAAAAAAAAWZG3oAQAAAAAAAAAAAAAAAADYJPoCAAAAAAAAAAAAAAAA6IjoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjoi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoiOgLAAAAAAAAAAAAAAAAoCOiLwAAAAAAAAAAAAAAAICOiL4AAAAAAAAAAAAAAAAAOiL6AgAAAAAAAAAAAAAAAOiI6AsAAAAAAAAAAAAAAACgI6IvAAAAAAAAAAAAAAAAgI6IvgAAAAAAAAAAAAAAAAA6IvoCAAAAAAAAAAAAAAAA6IjoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjoi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoyPrQAwAAAAAAAAAwv9etX5ndaz+cev9NDxyTS+87fYkTAQAAAAAAWyX6AgAAAAAAANgBzj3kypyx/o2p919x3zNEXwAAAAAA0Km1oQcAAAAAAAAAAAAAAAAAYJPoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjoi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoiOgLAAAAAAAAAAAAAAAAoCOiLwAAAAAAAAAAAAAAAICOiL4AAAAAAAAAAAAAAAAAOiL6AgAAAAAAAAAAAAAAAOiI6AsAAAAAAAAAAAAAAACgI6IvAAAAAAAAAAAAAAAAgI6IvgAAAAAAAAAAAAAAAAA6IvoCAAAAAAAAAAAAAAAA6IjoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjoi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoiOgLAAAAAAAAAAAAAAAAoCOiLwAAAAAAAAAAAAAAAICOiL4AAAAAAAAAAAAAAAAAOiL6AgAAAAAAAAAAAAAAAOiI6Iv/Z+8OXjytCziOf77TL8zsINjmIWIDiTaClBAKomU9KZSXTnnYEiKCTomHUhbsUNRFKqgOnRShS5CEJLEpbUIhIqFdXOrQLrQhFrZRslmz83RQmWlSd2Znfvt8+s3rBb/D8/y+z28+8we8eQAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIou5BwAAAAAAAACwd89sHE7Wd3keAAAAAACoJPoCAAAAAAAAWAF3vXx87gkAAAAAAMA+WZt7AAAAAAAAAAAAAAAAAACbRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEUWcw8AAAAAAAAAYO9uXDuba8dLOz5/fromz24cXuIiAAAAAADgcom+AAAAAAAAAFbAt696KMcWp3d8/tT6kdxy4cQSFwEAAAAAAJdrbe4BAAAAAAAAAAAAAAAAAGwSfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFFnMPQAAAAAAAACAvbvlwom5JwAAAAAAAPvEm74AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAk3AKKAAAIABJREFUAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAiizmHgAAAAAAAADA3v3i6q/l2OL0js+fWj+SWy6cWOIiAAAAAADgcnnTFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQJHF3AMAAAAAAAAA2LsvvXw81/7rpR2fPz9ds8Q1AAAAAADAXoi+AAAAAAAAAFbAsxuH554AAAAAAADsk7W5BwAAAAAAAAAAAAAAAACwSfS1gsYYXx1jTHv4PDD3/wAAAAAAAAAAAAAAAAAHlegLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKDIYu4BXBF3JHlyF+f/sawhAAAAAAAAAAAAAAAAwJsTfR0Mz0/TdGbuEQAAAAAAAAAAAAAAAMClrc09AAAAAAAAAAAAAAAAAIBNoi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqKvg+ELY4zHxhjnxhj/HGP8fYxxZozxyzHG18cYH597IAAAAAAAAAAAAAAAAPCKxdwDuCI+ve36qiTvSHI4ydEk944xnk5yzzRNj13pcQAAAAAAAAAAAAAAAMAm0RevuTnJyTHGN5KcmKZp2s8fH2O8K8mhXT52w35uAAAAAAAAAAAAAAAAgP8Hoq/Vdi7Jo0meSvJckheTbCS5LsmHk3wyya1bzo8k9yZZS3LPPm/5YpL79vk3AQAAAAAAAAAAAAAAYOWIvlbTU3kl5vr5m7yx69dJvjvGuDnJD5O8b8t3XxljPDlN00+WvBMAACg37n5k7gkAr2u6//a5JwAAAAAAAAAAwNKszT2A/TdN06PTNJ18k+Br69mnk3w0ye+2ffXNMcZbljIQAAAAAAAAAAAAAAAAeEPe9EWmaXpxjHFHkqeTjFdvH0lyS5LH9unPfD/Jj3b5zA1JvG0MAAAAAAAAAAAAAACAA0X0RZJkmqbfjDFOJrl1y+3bsk/R1zRNLyR5YTfPjDEufQgAAAAAAABIknzrqody09rZHZ9/ZuNw7nr5+BIXAQAAAAAAl0v0xVY/y39HXx+aawgAAAAAAACwOzetnc2xxemdP7C+vC0AAAAAAMDerM09gCpntl0fmmMEAAAAAAAAAAAAAAAAHGSiL7a6sO366llWAAAAAAAAAAAAAAAAwAEm+mKrd267/sssKwAAAAAAAAAAAAAAAOAAE32x1Ue2Xf9plhUAAAAAAAAAAAAAAABwgIm+SJKMMd6W5FPbbp+aYQoAAAAAAAAAAAAAAAAcaKIvXvPlJO/ecn0xyU9n2gIAAAAAAAAAAAAAAAAHluhrxYwxjo8xrt/lM59Pct+22w9M03R2/5YBAAAAAAAAAAAAAAAAOyH6Wj2fS/KHMcaDY4xPjDGueaODY4ybxxg/TvKDJGPLV+eSnFjyTgAAAAAAAAAAAAAAAOB1LOYewFJcneQzr342xhi/T3Imyd+SXExyXZIbk7zeG8FeTHLbNE3PX5mpAAAAAAAAAAAAAAAAwFair9W3luT9r34u5fEkd07T9MflTgIAAAAAAAAAAAAAAADeiOhr9XwnybkkH0tyeAfnX0pyMsn3pml6fJnDAAAAAAAAAAAAAAAAgEsTfa2YaZoeTvJwkowxrk3ywSTvSXJ9krfnlTd/nU/y1yTPJfntNE0X51kLAAAAAAAAAAAAAAAAbCf6WmHTNJ1P8qu5dwAAAAAAAAAAAAAAAAA7tzb3AAAAAAAAAAAAAAAAAAA2ib4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKLOYeAAAAAAAAAMDePfDvozl18QM7Pn9m49AS1wAAAAAAAHsh+gIAAAAAAABYAQ+uH517AgAAAAAAsE/W5h4AAAAAAAAAAAAAAAAAwCbRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAkcXcAwAAAABgt8bdj8w9AeB/TPffPvcEAAAAAAAAAFaEN30BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABRZzD0AAAAAAAAAgL377OKJvHftzzs+f2bjUB5cP7rERQAAAAAAwOUSfQEAAAAAAACsgDvf+kSOLU7v+Pyp9SOiLwAAAAAAKLU29wAAAAAAAAAAAAAAAAAANom+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIos5h4AAAAAAAAAwN49s3E4Wd/leQAAAADgP+zdfbSlVX0f8O9vuLwPlZCgltggKAbEGgHN8oW0UG0kWbVGQ4TQuqSxpnVpEyK2aRsiuGoakyYxJCbVJMa3VEMhEbRrNaGxscWAKa1EkYRYiB1fgiISjMIAM7D7xznjnHmYYc6595x79tz7+fzD3fvs/Tw/1mKt++O5+3segC4JfQEAAAAAAABsAD/2wMuXXQIAAAAAADAnW5ZdAAAAAAAAAAAAAAAAAAC7CX0BAAAAAAAAAAAAAAAAdEToCwAAAAAAAAAAAAAAAKAjQl8AAAAAAAAAAAAAAAAAHRH6AgAAAAAAAAAAAAAAAOiI0BcAAAAAAAAAAAAAAABAR4S+AAAAAAAAAAAAAAAAADoi9AUAAAAAAAAAAAAAAADQkZVlFwAAAAAAAAAAbD518YeWXQLAXrWff9GySwAAAADwpi8AAAAAAAAAAAAAAACAngh9AQAAAAAAAAAAAAAAAHRE6AsAAAAAAAAAAAAAAACgI0JfAAAAAAAAAAAAAAAAAB0R+gIAAAAAAAAAAAAAAADoiNAXAAAAAAAAAAAAAAAAQEeEvgAAAAAAAAAAAAAAAAA6IvQFAAAAAAAAAAAAAAAA0BGhLwAAAAAAAAAAAAAAAICOrCy7AAAAAAAAAADW7ju2bMvRde/U6+9pR+YTDx+/wIoAAAAAAIDVEvoCAAAAAAAA2AB+8dD35qyVW6de/5GdJ+fs7ZcssCIAAAAAAGC1tiy7AAAAAAAAAAAAAAAAAAB2E/oCAAAAAAAAAAAAAAAA6IjQFwAAAAAAAAAAAAAAAEBHhL4AAAAAAAAAAAAAAAAAOiL0BQAAAAAAAAAAAAAAANARoS8AAAAAAAAAAAAAAACAjgh9AQAAAAAAAAAAAAAAAHRE6AsAAAAAAAAAAAAAAACgI0JfAAAAAAAAAAAAAAAAAB0R+gIAAAAAAAAAAAAAAADoiNAXAAAAAAAAAAAAAAAAQEeEvgAAAAAAAAAAAAAAAAA6IvQFAAAAAAAAAAAAAAAA0BGhLwAAAAAAAAAAAAAAAICOCH0BAAAAAAAAAAAAAAAAdEToCwAAAAAAAAAAAAAAAKAjQl8AAAAAAAAAAAAAAAAAHRH6AgAAAAAAAAAAAAAAAOiI0BcAAAAAAAAAAAAAAABAR4S+AAAAAAAAAAAAAAAAADoi9AUAAAAAAAAAAAAAAADQEaEvAAAAAAAAAAAAAAAAgI4IfQEAAAAAAAAAAAAAAAB0ROgLAAAAAAAAAAAAAAAAoCNCXwAAAAAAAAAAAAAAAAAdEfoCAAAAAAAAAAAAAAAA6IjQFwAAAAAAAAAAAAAAAEBHhL4AAAAAAAAAAAAAAAAAOiL0BQAAAAAAAAAAAAAAANARoS8AAAAAAAAAAAAAAACAjgh9AQAAAAAAAAAAAAAAAHRE6AsAAAAAAAAAAAAAAACgI0JfAAAAAAAAAAAAAAAAAB0R+gIAAAAAAAAAAAAAAADoiNAXAAAAAAAAAAAAAAAAQEeEvgAAAAAAAAAAAAAAAAA6IvQFAAAAAAAAAAAAAAAA0BGhLwAAAAAAAAAAAAAAAICOCH0BAAAAAAAAAAAAAAAAdEToCwAAAAAAAAAAAAAAAKAjQl8AAAAAAAAAAAAAAAAAHRH6AgAAAAAAAAAAAAAAAOiI0BcAAAAAAAAAAAAAAABAR4S+AAAAAAAAAAAAAAAAADoi9AUAAAAAAAAAAAAAAADQkZVlFwAAAAAAAADA2p29/ZJllwAAAAAAAMyJN30BAAAAAAAAAAAAAAAAdEToCwAAAAAAAAAAAAAAAKAjQl8AAAAAAAAAAAAAAAAAHRH6AgAAAAAAAAAAAAAAAOiI0BcAAAAAAAAAAAAAAABAR1aWXQAAAAAAAGwEdfGHll0CAAAAc+D/7wAAAIAeeNMXAAAAAAAAAAAAAAAAQEeEvgAAAAAAAAAAAAAAAAA6IvQFAAAAAAAAAAAAAAAA0BGhLwAAAAAAAAAAAAAAAICOCH0BAAAAAAAAAAAAAAAAdEToCwAAAAAAAAAAAAAAAKAjQl8AAAAAAAAAAAAAAAAAHRH6AgAAAAAAAAAAAAAAAOiI0BcAAAAAAAAAAAAAAABAR4S+AAAAAAAAAAAAAAAAADoi9AUAAAAAAAAAAAAAAADQEaEvAAAAAAAAAAAAAAAAgI4IfQEAAAAAAAAAAAAAAAB0ZGXZBQAAAAAAAACwdn94+Jty1sqtU6//yM6Tc/b2SxZYEQAAAAAAsFre9AUAAAAAAAAAAAAAAADQEaEvAAAAAAAAAAAAAAAAgI4IfQEAAAAAAAAAAAAAAAB0ROgLAAAAAAAAAAAAAAAAoCNCXwAAAAAAAAAAAAAAAAAdEfoCAAAAAAAAAAAAAAAA6IjQFwAAAAAAAAAAAAAAAEBHhL4AAAAAAAAAAAAAAAAAOiL0BQAAAAAAAAAAAAAAANARoS8AAAAAAAAAAAAAAACAjgh9AQAAAAAAAAAAAAAAAHRE6AsAAAAAAAAAAAAAAACgI0JfAAAAAAAAAAAAAAAAAB0R+gIAAAAAAAAAAAAAAADoiNAXAAAAAAAAAAAAAAAAQEeEvgAAAAAAAAAAAAAAAAA6IvQFAAAAAAAAAAAAAAAA0BGhLwAAAAAAAAAAAAAAAICOCH0BAAAAAAAAAAAAAAAAdEToCwAAAAAAAAAAAAAAAKAjQl8AAAAAAAAAAAAAAAAAHRH6AgAAAAAAAAAAAAAAAOiI0BcAAAAAAAAAAAAAAABAR4S+AAAAAAAAAAAAAAAAADoi9AUAAAAAAAAAAAAAAADQEaEvAAAAAAAAAAAAAAAAgI4IfQEAAAAAAAAAAAAAAAB0ROgLAAAAAAAAAAAAAAAAoCNCXwAAAAAAAAAAAAAAAAAdEfoCAAAAAAAAAAAAAAAA6IjQFwAAAAAAAAAAAAAAAEBHhL4AAAAAAAAAAAAAAAAAOiL0BQAAAAAAAAAAAAAAANARoS8AAAAAAAAAAAAAAACAjgh9AQAAAAAAAAAAAAAAAHRE6AsAAAAAAAAAAAAAAACgI0JfAAAAAAAAAAAAAAAAAB0R+gIAAAAAAAAAAAAAAADoiNAXAAAAAAAAAAAAAAAAQEeEvgAAAAAAAAAAAAAAAAA6IvQFAAAAAAAAAAAAAAAA0BGhLwAAAAAAAAAAAAAAAICOCH0BAAAAAAAAAAAAAAAAdEToCwAAAAAAAAAAAAAAAKAjQl8AAAAAAAAAAAAAAAAAHVlZdgEAAAAAAAAArN1FD7w8Rz9479Tr72lHLrAaAAAAAABgLYS+AAAAAAAAADaATzx8/LJLAAAAAAAA5mTLsgsAAAAAAAAAAAAAAAAAYDehLwAAAAAAAAAAAAAAAICOCH0BAAAAAAAAAAAAAAAAdEToCwAAAAAAAAAAAAAAAKAjQl8AAAAAAAAAAAAAAAAAHRH6AgAAAAAAAAAAAAAAAOiI0BcAAAAAAAAAAAAAAABAR4S+AAAAAAAAAAAAAAAAADoi9AUAAAAAAAAAAAAAAADQEaEvAAAAAAAAAAAAAAAAgI4IfQEAAAAAAAAAAAAAAAB0ROgLAAAAAAAAAAAAAAAAoCNCXwAAAAAAAAAAAAAAAAAdEfoCAAAAAAAAAAAAAAAA6IjQFwAAAAAAAAAAAAAAAEBHhL4AAAAAAAAAAAAAAAAAOiL0BQAAAAAAAAAAAAAAANARoS8AAAAAAAAAAAAAAACAjqwsuwAAAAAAAAAA1u4th743z9iyber1f/Lw8fmxB16+wIoAAAAAAIDVEvoCAAAAAAAA2ACesWVbzlq5dfoNOxdXCwAAAAAAsDZbll0AAAAAAAAAAAAAAAAAALsJfQEAAAAAAAAAAAAAAAB0ROgLAAAAAAAAAAAAAAAAoCNCXwAAAAAAAAAAAAAAAAAdEfoCAAAAAAAAAAAAAAAA6IjQFwAAAAAAAAAAAAAAAEBHhL4AAAAAAAAAAAAAAAAAOiL0BQAAAAAAAAAAAAAAANARoS8AAAAAAAAAAAAAAACAjgh9AQAAAAAAAAAAAAAAAHRE6AsAAAAAAAAAAAAAAACgI0JfAAAAAAAAAAAAAAAAAB0R+gIAAAAAAAAAAAAAAADoiNAXAAAAAAAAAAAAAAAAQEeEvgAAAAAAAAAAAAAAAAA6IvQFAAAAAAAAAAAAAAAA0BGhLwAAAAAAAAAAAAAAAICOCH0BAAAAAAAAAAAAAAAAdEToCwAAAAAAAAAAAAAAAKAjQl8AAAAAAAAAAAAAAAAAHRH6AgAAAAAAAAAAAAAAAOiI0BcAAAAAAAAAAAAAAABAR4S+AAAAAAAAAAAAAAAAADoi9AUAAAAAAAAAAAAAAADQEaEvAAAAAAAAAAAAAAAAgI4IfQEAAAAAAAAAAAAAAAB0ROgLAAAAAAAAAAAAAAAAoCNCXwAAAAAAAAAAAAAAAAAdEfoCAAAAAAAAAAAAAAAA6MjKsgtgfVXVCUmekeS4JFuT3JFkW5LrW2s7llkbAAAAAAAAAAAAAAAAIPS1aVTVuUlel+Q5+1hyd1VdkeQNrbW71q8yAAAAAAAAAAAAAAAAYNKWZRfAYlXV1qp6f5Irs+/AV5Ick+TVST5VVS9cl+IAAAAAAAAAAAAAAACARxD62sCq6qAkVyQ5f/DRl5Ncm1EQ7ONJ2sRnj0tyTVWduS5FAgAAAAAAAAAAAAAAAHsQ+trY3pzkeyfGO5L8iyRPaK29sLX2stbaGUmeluSGiXWHJrm6qv7m+pUKAAAAAAAAAAAAAAAAJEJfG1ZVnZjkRwfTP9Bae2tr7cHJydbanyZ5fvYMfn1zkksXWyUAAAAAAAAAAAAAAAAwJPS1cV2a5OCJ8btaa9fsa3FrbXuSC5NMBsJeOQ6PAQAAAAAAAAAAAAAAAOtE6GsDqqrDk5w7mP6Z/e1rrX06ydUTUytJLphjaQAAAAAAAAAAAAAAAMB+CH1tTC9McsTE+IbW2q1T7n3nYPzS+ZQEAAAAAAAAAAAAAAAATEPoa2M6ZzD+yAx7r0uyc2J8WlU9bs0VAQAAAAAAAAAAAAAAAFMR+tqYnjYY3zDtxtbavUluHkyfuuaKAAAAAAAAAAAAAAAAgKkIfW1MpwzGt824//bB+KlrqAUAAAAAAAAAAAAAAACYgdDXBlNVxyQ5ZjD92RkvM1x/0uorAgAAAAAAAAAAAAAAAGaxsuwCmLujB+P7Wmv3zniNOwfjx6yhniRJVT02ybEzbjt5cnDbbbO+sAz24q5ZM5AA6+OWW25ZdgkAe6d/AgAAgAPGZw67L8ce9ND06x+6L7nf//sDAAAAABuTs5nMw16yLIes172rtbZe92IdVNXTk3xiYuorrbVvmfEaP5Lk8omp322tff8a67osyaVruQYAAAAAAAAAAAAAAAAs0Ytbax9cjxttWY+bsK62Dsb3r+Ia2/dzTQAAAAAAAAAAAAAAAGBBhL42vtW8ys3r3wAAAAAAAAAAAAAAAGBJVpZdAHP39cH48FVcY7hneM3V+NUkV864Z2uSZyb56yRfTfK5JA/OoRY2pycluWZi/OIkty+pFgCAA4H+CQBgenonAIDZ6J8AAGajfwIAmI3+iXk6JMnfmhj/j/W6sdDXxtNl6Ku1dmeSO1ex9Y/Xem9IkqoaTt3eWrtlGbUAABwI9E8AANPTOwEAzEb/BAAwG/0TAMBs9E8swE3LuOmWZdyUhfrqYHxEVR054zUeOxjfs4Z6AAAAAAAAAAAAAAAAgBkIfW0wrbWvJPmrwfS3zXiZ4wfj/7v6igAAAAAAAAAAAAAAAIBZCH1tTH82GD95xv0n7ud6AAAAAAAAAAAAAAAAwIIIfW1MnxqMnzPtxqo6MsnT93M9AAAAAAAAAAAAAAAAYEGEvjam3xuMz5ph73clWZkY39Ra+9KaKwIAAAAAAAAAAAAAAACmIvS1Mf1+ku0T4+dU1clT7r1wMP7AXCoCAAAAAAAAAAAAAAAApiL0tQG11u5LctVg+sf3t6+qnpLkJRNTO5O8b46lAQAAAAAAAAAAAAAAAPsh9LVxXZZkx8T4wqr6h/taXFWHJXlnkkMmpt9biuR8AAAgAElEQVTRWrt9MeUBAAAAAAAAAAAAAAAAeyP0tUG11v4iyeWD6auq6rVVNRnsSlWdkuTDSZ47Mf2VJG9cbJUAAAAAAAAAAAAAAADA0MqyC2Ch/nWSU5N8z3h8cJJfTvKTVfXxJF9LcmKS05PUxL4Hk7yktXbHOtYKAAAAAAAAAAAAAAAAROhrQ2utPVRVL0vyG0nOm/josUnO2ce2O5O8orV23aLrAwAAAAAAAAAAAAAAAB5J6GuDa619Pcn5VXVVkouTPHsfS+9OckWSS1trX16v+mAdfTnJGwdjAAD2Tf8EADA9vRMAwGz0TwAAs9E/AQDMRv/EhlCttWXXwDqqqhOSnJ7kuCRHJvlikm1J/qi19uAyawMAAAAAAAAAAAAAAACEvgAAAAAAAAAAAAAAAAC6smXZBQAAAAAAAAAAAAAAAACwm9AXAAAAAAAAAAAAAAAAQEeEvgAAAAAAAAAAAAAAAAA6IvQFAAAAAAAAAAAAAAAA0BGhLwAAAAAAAAAAAAAAAICOCH0BAAAAAAAAAAAAAAAAdEToCwAAAAAAAAAAAAAAAKAjQl8AAAAAAAAAAAAAAAAAHRH6AgAAAAAAAAAAAAAAAOiI0BcAAAAAAAAAAAAAAABAR4S+AAAAAAAAAAAAAAAAADqysuwCAIaq6oQkz0hyXJKtSe5Isi3J9a21HUuu7fQkJyX51vHUF5J8urV20/KqAgA2u976p6o6PMkpSU5Ocuy4pq8nuTvJp5Lc3Frbud51AQDs0lv/BADQu977p6paSXJ6klMzeh51SEbPo76Q5NNJbvE8CgBYT732T1V1TJJnJjkhydFJKslXk3w+yY2ttS8uqzYAgB45O86yVWtt2TUAJEmq6twkr0vynH0suTvJFUne0Fq7ax3rOjjJxUn+aZIn7WPZbUl+I8kv9PCHLQBgc+ipfxo/4Pi+JH8vyXcmOfhRlt87ruvy1tonF1kXAMCknvqnaVTVEUluTnLi4KN3t9YuXP+KAIDNpvf+qapOSvL6JOclecyjLN2e5KNJ/mNr7QPrURsAsDn12D9VVWXUL70myZn7WX5Tkrcl+U2heQBgkarqxCTPyiiQ/qyMvtDnqIkl21prT1xCac6O0xWhL2Dpqmprkl9Pcv6UW76U5BWttd9fXFUj4z8U/XZGjcQ0/k+S81trty2uKgBgs+upf6qqw5LckkceRJ7GQ0l+LslPevgBACxST/3TLKrqLUku2stHQl8AwEL13j+N3+z1hiT/JsnKDFuvaK1N++8EADC1Xvunqnp8kvclOXvGrc5AAQBzV1VnZfQ855lJjtnP8qWEvpwdpzdCX8BSVdVBST6Y5HsHH305o2+O+WpGCenTMnqd+C4PJHlBa+2jC6zt8Uk+luT4wUe3ZXSwuZKcmkcmuD+T5NmttTsXVRsAsHn11j+N/4D1tb181JL8eZLPJrkrydYkT8vew2G/m+Q83xYIACxCb/3TtKrq2Un+KMmWvXws9AUALEzv/VNVHZ7kqr3U1zL6G95nk9yT0fOoE5OcnN3BMKEvAGDueu2fqurYJP8zo35o0o5xXduSPJzkCUnOSHLYYN3nk5zZWtu2iPoAgM2nqi5K8pYpl6976MvZcXo0yzdeASzCm7PnA48dGb3i/Ndaaw/umqyqp2b0Csxdrz4/NMnVVfW3W2t3zLuoqtqS5Ors+Uv7jiQXttauHaw9J8k7kzx+PHVCkg9U1ZlNshYAmL8u+6exh5Jcm+TdST7cWrtruKCqzkjyC0n+zsT0S5NcluSSBdUFAGxuPfdPe1VVhyR5R3YHvr6W5Kj1rAEA2NS67Z+qqjL6puXJ+u5P8rPj+r6wlz1HJPn7Gb1148Hh5wAAc9Br//SLeWTg621JLh0eSK6qo5P8eJJ/ld3PpJ6Q5O1JzllAbQAAkx7IKHA+DFOtG2fH6ZU3fQFLU1UnJrk1ycET09/XWrtmH+sPT/Lh7H7wkSRvb6398wXU9vIk75mYujvJGa21/7eP9Sdk9HrOb5qY/sHW2m/PuzYAYPPqsX8av+nrroz+QPXm1trnp9hzUJL3JvnBiekHkzzFNwUCAPPUY/80jap6U5KfGA+3JbkyyesnlnjTFwCwEL33T1X1miRvnZi6I8nzW2t/NuX+FW+bBwDmqdf+qaqemNEbJyb9dGvt3+5n32uT/PJg+tmttT+eX3UAwGY1ftPXz2b01qz/neTG8T9vTvK8JH84sXxd3/Tl7Di92rL/JQALc2n2fODxrn098EiS1tr2JBdmz2/ge+X44cncjA8hv3Ew/bp9/dIe1/aZjL6hZ9KbxqlvAIB56bF/uj/Jk1trr50m8DWu66Ekr0zyuYnpQ5K8bI51AQAkffZPj6qqviOjb1Xe5dVJ7l2v+wMAm163/VNVfVtGb9HY5f4kL5g28JUkAl8AwAL02j+9aDD+Uh55HmpvfiXJJ/dzLQCA1Xp3kr/RWjuttfaq1tqvtdY+3lrbscyinB2nZ/6DApZi/K015w6mf2Z/+1prn87o1Zm7rCS5YI6lJcmZGb1mc5cvJPmtKfa9d7x2lyclee4c6wIANrFe+6fW2s5pw16Dfdszes35pLPnUxUAQL/906OpqpUkvzm+Z5K8v7X2X9fj3gAAB0D/9BNJtk6Mf6q19qcLuA8AwFQ675+GIbJrW2sP7G9Ta60l+dBg+qS5VQUAbGqttb9qrd2/7Dr2wtlxuiX0BSzLC5McMTG+obV265R7h4eDXzqfkr7hJYPxe8Zvo3hU4zXDX/Dzrg0A2Lx67p9W66bB+LilVAEAbFQHYv/0L5OcPv757iQXrdN9AQCSjvunqjoqex6EvjfJ5fO8BwDAKnTbPyU5cjCe5UscPzcYf9MaawEA6J2z43RL6AtYlnMG44/MsPe6JDsnxqdV1ePWXNFua6ltuPZ71lQJAMBuPfdPq7VzMD5kKVUAABvVAdU/VdW3J7l0Yuri1tqdi7wnAMBAz/3TednzLV+/01r72hyvDwCwGj33T18cjA+bYe9w7d1rrAUAoHfOjtMtoS9gWZ42GN8w7cbW2r1Jbh5Mn7rmipJU1aFJnjyY/tgMl7h+MD6pqhxeBgDmocv+aY2GfdcdS6kCANioDpj+qaq2JHlHkkPHU/+9tfauRd0PAGAfeu6fzh6M/9scrw0AsFo990/XDcan73XV3p0xGN+4xloAALrl7Di9E/oCluWUwfi2GfffPhg/dQ21TPr2JAdNjO9srf31tJvHa++amDooyVPmVBsAsLn12j+txbmD8f9aShUAwEZ1IPVPr03yvPHP25P8swXeCwBgX3run75zML4hSarq8Kq6oKo+WFW3V9X2qrqnqm6rqiur6oer6qg51gEAMKnn/unDSf58YvxdVfX0/W2qqm9N8v0TUzuSvH+OdQEA9MbZcbom9AWsu6o6Jskxg+nPzniZ4fqTVl/RHoZJ7Vnr2tueedUGAGxSnfdPq1JVz8rug827fGAZtQAAG8+B1D9V1ROT/PuJqTe21mY9IAQAsCY9909VdXT2/Bveg0n+oqr+bpJbkvynJC9KcmKSw5I8JsmTMvrCobcn+UxV/cg8agEA2KXn/ilJWmsPJ/mhJA+Mp7YkuWr8LGqvqupxSa5OcsTE9Jtaa385r7oAADrk7DhdW1l2AcCmdPRgfN/4leWzuHMwfswa6pk0rG14n2ksqjYAYPPquX+aWVUdnNGBm0nXtda86QsAmJcDqX/69SRHjn/+RJKfX9B9AAAeTc/90+MH479M8tIk/znTfdHtNye5fPwlRP+ktbZzTnUBAJtbz/1TkqS1dn1V/YMk70tybEaHjz9ZVe9I8ntJtiVpSZ6Q5PlJfjij3mmXtyf5d/OsCQCgQ86O0zWhL2AZtg7G21dxjeGeo1ZZy1DPtQEAm9dG61H+Q5LTJsY7kvi2ZQBgng6I/qmqXpnkBePhw0le5RAyALAkPfdPw4M3W5P8VnYHvrYl+ZUkH03ylYzeuHFmktckeeLEvn+c5EtJXj+nugCAza3n/ukbWmt/UFWnJLkoyT9KcsL454seZdutSd7QWrty3vUAAHTogOjr2LyEvoBlGP5yvH8V1xj+chxec7V6rg0A2Lw2TI9SVT+U5EcH05e11v5kGfUAABtW9/1TVR2X5Ocmpn6ptXbjPO8BADCDnvunYejrWyZ+vjLJK1prw3t/rKremuQ9SX5gYv7iqrqmtXbdnGoDADavnvunoV3nRB+YYu31SS5L8gcLqgUAoDcHUl/HJrRl/0sAFq6t057V6Lk2AGDzOiB7lKo6J8nbBtP/JclPL6EcAGBz6bF/+tXsPsC8LcklC74fAMAseuqf9nWu4cYkF+wl8DUqprX7k1wwXjdJ3wUALEJP/dM3VNWrktyeUQ908hRbnpvk2iSfrKrnLbI2AIBOddnXsXkJfQHL8PXB+PBVXGO4Z3jN1eq5NgBg8zrge5TxH4V+J8nBE9MfTXJea82DDwBg3rrun6rq/CQvnph6dWvt3nldHwBgFXrun/Z1nde31nY+2sbx568bTH93VT32/7d358G2leWdgH8vILMKCqjE4HVAcGijEhFQWzS2mu7E2TiXtCbRVJNEk7K0HTrglJRta2t3TJxaTCdKd0zyhyYqtkIUEecJZxFIMSgqIDIIim//sTdh3+UZ9pnuWfee56naVXzf+oZ3n3OK89Xd63fWulQGAGxlYz4/JUmq6iVJ3pJkv5nuzyR5VpLDp/37JLljkqckOX1m3D2T/HNVPXM9awIAGKHRn+vY2oS+gM0w5l+OY64NANi6duozSlUdleQfk+w70/2pJP+hu6/ZUXUAAFvKaM9PVXVQkjfOdL27u9+/HmsDAKzBaM9Pi6xzQXd/dJ7J3X1mku8Muh+85qoAgK1uzOenVNVDk7xi0H1SkqO7+x3d/e3uvqa7f9Ld53f3qd390CTPyU1Pqtg9yds98QsA2MWN+lwHQl/AZvjRoL1vVe234MjFDf/63hVrqGfWsLaDV7HGRtUGAGxdYz4/Lamq7pXktCS3nOn+fJJHdPeVO6IGAGBLGvP56Y256d+cLkvyvHVaFwBgLcZ8flponbNXuMYnB+27rbIWAIAbjfn8lCSvSlIz7Xd298nd3YtNSJLufst07o12T/KGdawLAGBs3DvOqAl9ATtcd/8wyeWD7sNWuMwdBu1vrb6iJdcZ7jOPjaoNANiiRn5+WlRV3T3J/0tyq5nuc5I8vLv94wYAsGHGen6qqiOSPGWm679nckPQtqVeSQ4YLLX/YMxK3xsAwHbGen6auiDJdYO+S1a4xsWD9q1XXw4AwLjPT1X1S0mOGXSfvIIl/izJtTPto6Z/6BEAYFfk3nFGTegL2CxfG7TvssL5d1pmvdX6RpIbZtqHVNXN551cVbdIctBM1w3xixsAWB9jPT8taHpD84ez/V+/+XqSh3X3DzZybwCAqTGen/YZtF+e5Lw5Xn84mPf4wfUvrUNtAABjPD+lu2/I5DO8WcMQ2HKG4/defUUAAP9qlOenJPcetL/T3efNO7m7r84vPln1/muuCgBgnNw7zqgJfQGb5ZxB+9h5J04fhT786zHD9Valu69Lcu6ge+7akhw3aH9ruiYAwFqN8vy0yH53SfKRJLed6f5Wkod29/c2al8AgIGd5vwEADASYz4/DUPuwyehLmc4/odrqAUA4EZjPT8Nzz7fXcUawzkHLTgKAGAn595xxk7oC9gsHxi0j1/B3Acl2WOm/fl1vnl4LbUNx75/TZUAANxkzOenf1VVd8wk8HXoTPd3Mgl8XbIRewIALGKnOD8BAIzImM9P/zRo32OF8+85aF+4hloAAG401vPTFYP2fqtYY/9B+6pV1gIAsDNw7zijJfQFbJYPJrl2pn1sVR0559wTBu1/WJeKFl/vGVW1+3KTpmOevsxaAACrNebzU5Kkqg7LJPD1yzPdF2QS+HIjDQCwo43u/NTdX+juWukrycmDpd45GLPSJ10AACxkdOenGe9LMvsXku9XVbeaZ2JVHZjk6EH3x9arMABgSxvr+eniQfuIqtp3hWvcd9BezdPCAAB2Fu4dZ7SEvoBN0d3XJHnPoPuFy82rqrsmeexM18+SvGsdS0smH/KcN9O+fX7xF/JCnp7kl2ba5yb5+DrWBQBsYSM/P6WqDk3y4STbZrovyiTwdcF67wcAsJyxn58AAMZmzOen7v5xtq9tryQnzjn9xCR7z7QvSHLOOpUGAGxhIz4/fSnJ5TPtvZM8Y97JVfUb2f4eqCQ5cx3qAgAYK/eOM1pCX8BmOinJT2faJ1TVoxYbXFV7J3lHkj1nut/e3ecutUlV9eB1/FLju/uGJH8y6H5dVW1bYo9tSV4/6H5pd/98qb0AAFbopIzw/FRVh2QS+LrLTPclSR7S3d9Zai4AwAY7KSM8PwEAjNhJGe/56WVJrp9pv7iqjl1mn2OTvHTQ/afd3XPsBwAwj5MysvPT9N6nYRjtz6rqnkvtMd3nsCR/Oej+eHdfstxcAICxcO84uxKhL2DTTG8AfsOg+z1VdWJVzf7DRqrqbpncSHzcTPcPk5y8QeX9TZJPzrRvleSsqnr4cGBVPSLJJ5IcONN9VpL/s0G1AQBb1BjPT1V1QJIPJTlypvvqJM9O8tOq2raS13rWBgAwxvMTAMCYjfn81N3nJXnNTNdeSU6rqt+rqpsNatujqp6T5LRsf0P1pzK5yRoAYF2M+Pz08iTXzrQPyOTepxOrat/h4Kras6qemeSz+cWnfP3nDagPANiiqur2i9wzdNvB0D2WuMfooA0ozb3jjFL5A1bAZqqq3ZO8N8mvDy5dmuRzSX6c5E5J7pukZq5fn+Rh3f2xOfYY/o/uId19xhzzbpfk7CSHDS59K8lXpvXcI9s/0SJJzk9yTHd/b7k9AABWamznp+lfwjl9ntrn0d21/CgAgPmN7fy0GlV1Urb/64Lv7O4T1mt9AIBZYz4/VVVlcvPMEweXrsjkc73LMrkh55hMbmyedVEmn+FduNw+AAArMdbzU1U9NsnfJtl9cOnaTMJdFyf5eSY3WP9qkv0XWOYl3f3q5eoDAJhXVZ2f5A5rXGbJz8rcO86uZI/NLgDY2rr7hqr6rSRvS/KkmUuHJHnkItMuTfLMef7BY421XVJV/y7JqUnuM3Pp8OlrIZ9L8iS/tAGAjTLm8xMAwBg5PwEArMyYz0/d3VX1jEzCXc+ZuXTAErUlkyd8Pba7L97I+gCArWms56fu/oeqenSStye5zcylfZI8cJnpVyd5UXf/z42qDwBgbNw7zhjtttkFAHT3Vd395Ez+It/ZSwy9LMlfJLlnd39gB9X2zST3z+Qx5d9ZYui50zHHdPe3d0RtAMDWNebzEwDAGDk/AQCszJjPT919XXc/N8nDknwoyQ1LDD8nyQlJjhP4AgA20ljPT939j0nunuTFmdzftJzvJXltknsIfAEAW5F7xxmb6h4+uQ5gc1XVHTN5nPmhSfZL8t0kFyT5eHdfv8m1HZXkrtPaksljzr/Z3Z/dvKoAgK1uzOcnAIAxcn4CAFiZMZ+fqurgJMckuV2Sg5L8OJOblc/q7gs3szYAYOsa6/mpqm6f5KhMzk4HJKkkP0ry/SSfd8MyAMD23DvOZhP6AgAAAAAAAAAAAAAAABiR3Ta7AAAAAAAAAAAAAAAAAABuIvQFAAAAAAAAAAAAAAAAMCJCXwAAAAAAAAAAAAAAAAAjIvQFAAAAAAAAAAAAAAAAMCJCXwAAAAAAAAAAAAAAAAAjIvQFAAAAAAAAAAAAAAAAMCJCXwAAAAAAAAAAAAAAAAAjIvQFAAAAAAAAAAAAAAAAMCJCXwAAAAAAAAAAAAAAAAAjIvQFAAAAAAAAAAAAAAAAMCJCXwAAAAAAAAAAAAAAAAAjIvQFAAAAAAAAAAAAAAAAMCJCXwAAAAAAAAAAAAAAAAAjIvQFAAAAAAAAAAAAAAAAMCJCXwAAAAAAAAAAAAAAAAAjIvQFAAAAAAAAAAAAAAAAMCJCXwAAAAAAAAAAAAAAAAAjIvQFAAAAAAAAAAAAAAAAMCJCXwAAAAAAAAAAAAAAAAAjIvQFAAAAAAAAAAAAAAAAMCJCXwAAAAAAAAAAAAAAAAAjIvQFAAAAAAAAAAAAAAAAMCJCXwAAAAAAAAAAAAAAAAAjIvQFAAAAAAAAAAAAAAAAMCJCXwAAAAAAAAAAAAAAAAAjIvQFAAAAAAAASarq+KrqmddJy4w/Y3b8eq69lVXVtsHX6pTNrgkAAAAAAGBHE/oCAAAAAABgXVXVCYPQzhlrWGsYljp//SoFAAAAAACAcRL6AgAAAAAAYJdQVacMAmLbNrumraiqThp8H47f7JoAAAAAAAB2NkJfAAAAAAAAAAAAAAAAACMi9AUAAAAAAAAAAAAAAAAwIntsdgEAAAAAAAAwBt19RpLa2dbe1XT3+fG1AgAAAAAAtjhP+gIAAAAAAAAAAAAAAAAYEaEvAAAAAAAAAAAAAAAAgBHZY7MLAAAAAAAAABZXVXskuef0dVCS/ZP8NMlVSS5Kcm6Sr3b3DatY+85JjkxyhyS3SNJJLk9ycZJPdvf31+M97GhVVUnum8l7OyTJXkm+n8nX68zuvmoD9js6yeFJDk1yfZLvTve6cD33AgAAAAAAtgahLwAAAAAAAHZaVXVCkncscvm8SRZnQRd097bBWscnOX2m6+TuPmltFa5+7aq6TZKXJHlqklsvs8U1VXVmknd39ylLrLlfkt9I8rgkx2cSiFqqhs8leV2SU5cKlS3w/madvsT3Id293cWq2pbkvJmud3b3CUvVOTP3oCQvTvL0JAcvMuz6qvpIkpO6+5NzrntCtv85+4/dfUpV7ZbkeUlOTHLHReZ+LMkL5t0LAAAAAAAgSXbb7AIAAAAAAACA7VXVQ5N8I8nvZ/nAV5Lsm+ThSV65zLh3Jzk1yW9lmcDX1H2T/HWS06pqsRDVKFTVY5J8J8nzs3jgK0n2TPLIJGdX1ZunT1JbzX6HJPlIkv+WRQJfUw9K8rGqeupq9gEAAAAAALYmT/oCAAAAAACAEamqw5O8L8k+g0sXJPlaksun7VtkEjY6PMnN5lx++Echr0zy1SSXJvlxkr2T3D7JvQb7PzTJB6rquO6+bs69dpiqelaSt+YX39+5mby/a5IcluToJLvPXP/dJIdV1W92989WsOU+mXyP7jdtX5fkM0kumq5/tyR3nxl/sySnVNU53f2lFewDAAAAAABsUUJfAAAAAAAA7Mzek+SM6X+/NsnjZ649KMmFi8xbScBnR3t5tg9cfSTJH3X3FxcaXFV7JXlwkscmOX6O9b+YydO7/qm7v7rImvsmeWqSV+WmJ4LdN8nJSV60wJSzc9PTrp6X5A9nrj1len1DVNW9k/xFtg98fSHJf+ruswZjD07yiiTPmel+ZCZf8xevYNuXJzkoybVJ/iTJm7r76sFeRyf5myR3mXbdLMnrk/zaCvYBAAAAAAC2KKEvAAAAAAAAdlrdfVWSq5Kkqq4aXL6wu8/f4UWtQVVVkt+c6fpmkn+/1NO1ptdOS3JaVQ2fDjZ04jxfk+6+Jsnbquq0JGcm+eXppd+rqld395WD8T9Jcv70PVwxWO67G/x9eHuSPWfaZyZ5xPQ9bKe7v5/kuVX17ST/debSC6vq3d395Tn3PCjJ1Uke0t2fXmhAd3+qqn4tyTlJbj7tfkhV3aW7vz3nPgAAAAAAwBa12/JDAAAAAAAAgB3koCT7zbTfu1Tga6i7r13m+vkrKaa7/yXJ82e6bpHtQ2mbqqoekskTyG50ZZInLRT4mtXdr03yvpmu3bL9+5zH8xcLfM3s8y9J3jzTVUkessJ9AAAAAACALUjoCwAAAAAAAMbrkM0uIMl7k1w/0z5uswpZwDMH7T/v7ovnnPuiQfspVbXXnHMvSvKOOce+b9C+z5zzAAAAAACALUzoCwAAAAAAAMbjB9PXjZ5QVQ/a6E2rarequnlVHVpV22ZfSQ5NctnM8LttdD0r8MBB+6/nndjdX0nyuZmuvZMcNef0D3b3z+Yc+7VBewxBPgAAAAAAYOSEvgAAAAAAAGAkuruTnDrTtU+S06vq1Kp6TFXtvx77VNV+VfWkqnpXVX01yXVJrszkCVbnLfC67cz0A9ejhrWqqgOT3Hmm64r8YsBqOWcN2vebc95XV7DH5YP2LVcwFwAAAAAA2KL22OwCAAAAAAAAgO2clOTXc1OgafckT5q+bqiqLyT5RJIzk3y0uy9ZyeJV9dtJXp3k4FXWN5bQ0rD+b01Dcyvx9UF73qdwDYNci+run1bVbNfN5p0LAAAAAABsXZ70BQAAAAAAwHobBm/W8pnU7susvcvp7h8mOTbJ3y1wefckRyU5MZMngl1UVWdV1bOratkwUVW9Pslbs/rAVzKezxiHTxz70SrWGM651Zzzfr6KvQAAAAAAAOY2lg9kAAAAAAAA2HX8eNDefw1r3XzQvnINa+00uvv73f2EJP8myWuSfDkLB94qk4DY25J8uap+ZbE1q+qJSZ436P5KkpcleUSSI5IckGTv7q7ZV5IL1vqeNkAN2usRCNzlQ4UAAAAAAMDOYY/NLgAAAAAAAIBdzuWD9gFrWGs4d7j2Lq27z0nywiQvrKoDktw/yQOSHJ9J2Gv2874jkny4qu7X3ectsNzJg/bLkryqu+cJOt1ipbXvAJcN2rdcxRrDOVvq5wsAAAAAABgvT/oCAAAAAABgvV0yaN+hqvZZ5VpHDtrfXeU6O73uvqK7P9jd/6W7/22S2yR5QZIfzQy7dZJXDOdW1eFJ7jbT9dHufuU8ga/p924twb2N8v1B+66rWOOIQfvSVdYCAAAAAACwroS+AAAAAAAAWG/fSHLFTHu3JPdZ5VpHDdpnLzF2nidW7TK6+7Lufm2SR2T79/6oqhp+Dnj4oP2+FWx1bJJaSWkrGLtq3X15knNnug6oqrstNn4Rxw3an15bVQAAAKYZjqEAAAbfSURBVAAAAOtD6AsAAAAAAIB1NX161FmD7ieudJ2qOiTJ8YPujy8x5bpBe6+V7rkz6u5PJjlnpuvmSQ4aDBs+qetHmd8JKyxpR34fzhy0nzbvxGlAbDZU+JMkn12PogAAAAAAANZK6AsAAAAAAICNcMqg/ayqut0K13hRkj1m2ud091JPYrpi0F7pfjuznw3aw+DV5YP2kfMsWlW/muTJK6xlR34f/mrQPrGqbjvn3D8dtE/t7uHXDQAAAAAAYFMIfQEAAAAAALAR/j7JuTPtWyR5d1XdfJ7JVfXEJH8w6H7tMtO+Nmg/fJ69xqSq7l1Vj62q3Vcw515JfmWm65LuHj7J64uD9jOXC0dV1Z2S/G2Sm81by9QO+z5090eSfGGm65aZ/Jzts9S8qnp+kkfPLpXk9etfIQAAAAAAwOoIfQEAAAAAALDuuvuGJCdk+ydQPTjJp6vqiVW150LzquqOVfWmJKcmmQ0+vT+/+FSnoX/OJLxzoz+uqldU1QOr6vCq2jbzuv1K39MOsi3TwFxVvaaqjquqBUNXVbVHVT0hyQez/ed+7xyO7e6Lk5w503WrJKdX1TELrLtXVf12krOn9fwkyVUreA+fGYx/clX9j6p6aFXddfB92LaCdRfz7CTXz7SPT/Kxqrr/cGBVHVRVf57kdYNLr+nuL61DLQAAAAAAAOtij80uAAAAAAAAgF1Td59ZVScmeVNuCiUdkeT/Jrm2qj6X5HuZhIoOTHLXJHdeYKkvJXl6d/cC12b3O7+q/j7J46ddeyZ56fQ1dEEmgaaxukOSF0xf11fVV5NclOSKTMJwt01yn0yebDXr60leuciaL8wkGHfjZ4RHJvlEVX0jyTmZBKduk+ToJPvPzPv9TL6Gs32L6u6rq+rNSf542lVJTpy+FlLzrLvEfp+b/pz9ZW76OTsqydlV9e0kX8nkZ+yXM3lvw89IP5TkZWupAQAAAAAAYL0JfQEAAAAAALBhuvvNVXVekv+d5JCZS/skecAcS7wrye909zVzbvm7SQ5NcuyKCh23PZPce/payseTPK67r17oYnefVVW/k+QtSWafHnbE9DV0Q5I/6u63VdVCwbmlvCTJ4UketcJ5q9Ldb62qy5O8I9uH0+4yfS3mfyV5bnf/dCPrAwAAAAAAWKndlh8CAAAAAAAAq9fdpyW5Y5I/yOSpXUs+sSvJj5K8O8lR3f20FQS+0t2XJXlQksck+avpfpcl2VlCPacleVyStyX59hzjO8nHkjwtyYO6+9IlB3efksnX54wlhv0kyd8lObq73zhHDQvtc113PzrJwzIJmX02yQ8zeZrYhuju92TypLg3JPnBEkN/msnX+QHd/WyBLwAAAAAAYIyqe7nP1AAAAAAAAGD9VNWBSY5JcrskBybZO8kVmYSzvpbkS939882rcDyq6tZJ7pFJaO7WSfZNcl2SKzMJhX2hu3+4yrUPy+Rpa4dm8uSvS5NcnOTj3f3jtVe/eapqtyRHJTkyycFJ9sokCHZhkjN39vcHAAAAAADs+oS+AAAAAAAAAAAAAAAAAEZkt80uAAAAAAAAAAAAAAAAAICbCH0BAAAAAAAAAAAAAAAAjIjQFwAAAAAAAAAAAAAAAMCICH0BAAAAAAAAAAAAAAAAjIjQFwAAAAAAAAAAAAAAAMCICH0BAAAAAAAAAAAAAAAAjIjQFwAAAAAAAAAAAAAAAMCICH0BAAAAAAAAAAAAAAAAjIjQFwAAAAAAAAAAAAAAAMCICH0BAAAAAAAAAAAAAAAAjIjQFwAAAAAAAAAAAAAAAMCICH0BAAAAAAAAAAAAAAAAjIjQFwAAAAAAAAAAAAAAAMCICH0BAAAAAAAAAAAAAAAAjIjQFwAAAAAAAAAAAAAAAMCICH0BAAAAAAAAAAAAAAAAjIjQFwAAAAAAAAAAAAAAAMCICH0BAAAAAAAAAAAAAAAAjIjQFwAAAAAAAAAAAAAAAMCICH0BAAAAAAAAAAAAAAAAjIjQFwAAAAAAAAAAAAAAAMCICH0BAAAAAAAAAAAAAAAAjIjQFwAAAAAAAAAAAAAAAMCICH0BAAAAAAAAAAAAAAAAjIjQFwAAAAAAAAAAAAAAAMCICH0BAAAAAAAAAAAAAAAAjIjQFwAAAAAAAAAAAAAAAMCICH0BAAAAAAAAAAAAAAAAjIjQFwAAAAAAAAAAAAAAAMCICH0BAAAAAAAAAAAAAAAAjIjQFwAAAAAAAAAAAAAAAMCICH0BAAAAAAAAAAAAAAAAjIjQFwAAAAAAAAAAAAAAAMCICH0BAAAAAAAAAAAAAAAAjIjQFwAAAAAAAAAAAAAAAMCICH0BAAAAAAAAAAAAAAAAjMj/B/+AgQ03xNLsAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAADX0AAAcqCAYAAACQOCfjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdebicZX0//vcnJOwJi7IoiuwKKFoRRQsqdWnFXVFRAQWtti5Vq7Vqv4rVWlrxV6wWa10CIi6o1UrBXUTFDVBcWJSCsogsYU1Yk5D798cc4slkTjIz5+TMSfJ6XddcnufzPPd9f+Y5M4/X5fGdu1prAQAAAAAAAAAAAAAAAGBmmDXqBgAAAAAAAAAAAAAAAAD4I6EvAAAAAAAAAAAAAAAAgBlE6AsAAAAAAAAAAAAAAABgBhH6AgAAAAAAAAAAAAAAAJhBhL4AAAAAAAAAAAAAAAAAZhChLwAAAAAAAAAAAAAAAIAZROgLAAAAAAAAAAAAAAAAYAYR+gIAAAAAAAAAAAAAAACYQYS+AAAAAAAAAAAAAAAAAGYQoS8AAAAAAAAAAAAAAACAGUToCwAAAAAAAAAAAAAAAGAGEfoCAAAAAAAAAAAAAAAAmEGEvgAAAAAAAAAAAAAAAABmEKEvAAAAAAAAAAAAAAAAgBlE6AsAAAAAAAAAAAAAAABgBhH6AgAAAAAAAAAAAAAAAJhBhL4AAAAAAAAAAAAAAAAAZhChLwAAAAAAAAAAAAAAAIAZROgLAAAAAAAAAAAAAAAAYAYR+gIAAAAAAAAAAAAAAACYQYS+AAAAAAAAAAAAAAAAAGYQoS8AAAAAAAAAAAAAAACAGUToCwAAAAAAAAAAAAAAAGAGEfoCAAAAAAAAAAAAAAAAmEGEvgAAAAAAAAAAAAAAAABmEKEvAAAAAAAAAAAAAAAAgBlE6AsAAAAAAAAAAAAAAABgBhH6AgAAAAAAAAAAAAAAAJhBhL4AAAAAAAAAAAAAAAAAZhChLwAAAAAAgHVMVV1WVW3c68RR98T6oapO7PrsXTYTxzGYqtqp6z63qnrpqPsCAAAAAIB1mdAXAAAAAAAAAAAAAAAAwAwye9QNAAAAAAAAdKuqnZL8boAhdya5Zex1cZKfJvl+ku+01pZNdX8AAAAAAAAAa5KdvgAAAAAAgHXBxkm2S7JHkqclOTrJt5JcWlVvrCr/EB7LVdWZVdXGvc4cdU+jUlXv7LoXbdQ9MTW6f69V9c5R9wQAAAAAAPRP6AsAAAAAAFiX7ZTkfUl+XFW7j7gXAAAAAAAAgL74Vy0BAAAAAIC1xW1JLpng3KZJ7p1kqwnO75vkW1X1p62136+J5gAAAAAAAACmitAXAAAAAACwtji3tfb4VV1QVbsmOTTJ69MJgY23Y5LPJ3n0GuluBmmt7TTqHlg/tdZemuSl6+p666vW2mVJatR9AAAAAADA+mTWqBsAAAAAAACYKq21S1tr70nykCRn97hk/6p63jS3BQAAAAAAADAQoS8AAAAAAGCd01q7JsnTklzT4/Qrp7kdAAAAAAAAgIEIfQEAAAAAAOuk1tqCJO/tceqAqtp0uvsBAAAAAAAA6NfsUTcAAAAAAACwBn0xyb911TZKsneSc4aZsKo2SPKwJHsl2S7JxkluS/LL1tq3+5xjyySPTLJ9km2SbJDkurHXOWOBtRmlqmYl+ZMkO6XT89ZJFiZZkOSSJOe11patobU3TPKIJPdLcq8kWyW5a2z9S5NcOLa7Gwxl7Hu9e5KHpPP5npfO9/L2dD5nVyb5XZJLJ/s5H/s875bkQek8A+aNnbpx7PWr1tpvJrPG2mDsnj88yc7p3PMt0nn/C5Jc3Fr71TT1sU2S/ZPskmTzJLek8yz+SWvt8unoAQAAAAAAehH6AgAAAAAA1lmttcur6rYkm3Wd2qb72qp6fJLvdJUPaq2dOXZ+xyRvTvKidEJH3b6bZMLQV1XNTnJkkiOSPDqdQEnPtqvqp0k+k+T41tpdE825irUuS/KAcaVPtNZeOug8Y3MdmOTVSZ6UTtBrIjdW1VeSHNNau3CYtbrW3SCde/3iJAcmWeXubFV1cZKvpvNez+txvq1i+ONWc/4eO7fWLuvjur5V1TuTHD2+1lqrIebZKZ1Q0nhHttZO7HHtmUket4q5+rkXE819YpKXjCtd3lrbqY/5hjLZ9apq3yR/neSQdEJHq7Owqs5OcnqSL7TWft/nOg9L8qwkByV5VDrh01VdvyDJaUne1+/3aYJn2HhHV9XRqzifTHD/Bvl8rU5VPSLJG5M8Oat4plTVH9K5z//aWrt0iHXOzIqf8++21h4/7vzjk7wtyROSzJpgjguT/HOST7fW+vleAAAAAADAlOn5P14DAAAAAACsQ27pUdtykAmq6mVJLkon/NQr8LW68U9Icn6SjyQ5IBMHvpKk0tnV6v9LcnFVPXvQ9aZCVe0xFuL6XpIXZNWBr4ydPyzJr6rqY1W18STWfm6SXyc5KcmfZzWBrzF7JHldkp9V1d8Ouzbrh6raqKr+K8nZSV6W/gJfSWdXricmOS7JF/pY50FV9Zsk56UT7ntsVhP4GrNNOiHR86vqo1XVz5gZraruXVWfTeeeH5rVP1Pum+Qvk1xUVf8+Vfdg7Hf/0XQCck/Kqv9mvleSk5N8raq6w8MAAAAAALBGCX0BAAAAAADrul5hjpv7HVxVf5fkY+kveNRr/JFJvpbkgUMM3zHJf4/1MG3GQmo/SfKUIYbPSidE892q2m7AdWdV1XvTCdPsNsTa95g3ibGs46pqw3R2kHpF1vzfS7dPJ5A4rEry8iTfq6q19nNdVbsk+WE6AdJBd7Kbk+RvknyzqgYO3Xb1sXE6OwK+fMChT07ylbEdCAEAAAAAYFrMHnUDAAAAAAAAa0pVPSBJr91ZFvQ5xZOTvGXc8V3p7A5zZpJrkixNcr8kj0qyeY/1D08yv8e8LcmP0gkfXDk2zw7p7DpzUFbcCaySvLeqWmvtfX32PbSqenqS/04naDHe4iRnpBMGuzKdHdQ2T7JTkj9LcmDX9Y9M8j9V9djW2pI+l/9kkhdNcO78JN9McmmS68f62zqdnXj2S/InWXWY5Bfjft4tK34ubktySR/9Le7jmrXBJfnjbnfbJ+kO5/0iq3fjlHY0vd6a5Ak96lcm+UaSC5Ncm+TOdMKe89L5zDw4yaPT+5nSr5uSnJPOzoGXJlmY5NYkmyS5d5K903nu7Ng17pHphE+fv4q5b82Kv7uHdp2/Np3n1qr8YTXnB1ZV2yY5K8l9epz+fZIvpnM/bkyybTp9PzvJvbquPTDJt6rqMa21u4ZsZ346z9h7/Cad5/Cvx9bfIp1nyXOz8vfisUnekGSNP4cBAAAAACAR+gIAAAAAANZtz+lRW5xOqKMfb84fg0T/neQNrbUre104toPM+OPdknyox6XnJ3lZa+3sHufeW1V7phNM2L/r3D9X1ZmttXP77H1gVbVzkpOyYuBraZLjkhzbWpsoLPfOqnpYOqGUfcfV90/yL0ne2Mfab0rvwNeZSd7cWjtnNeN3SPK8JK/tdb619rBx156Z5HHjTp/bWnv86npcV7TWlu9yVFXvTHJ01/mHdY9ZV4x9T9/UVb49yWuSfKK1tmw14zdKJ/xzZDpBzX5ck+TEJF9K57O2ujUqnV323p9k93GnnldVh7TWvtBr3NizYfznvHVd8uHW2jv77HlKjL2XE7Ny4OuOJP+Q5AOttbt7jPubJP+YzrNj/G5sD0/nmfKGIdp5VJJ7ntPXJHntRPeyqv4+yfFJjug69Q9VdXxr7Y4h1gcAAAAAgIHMWv0lAAAAAAAAa5+qunc6oa1uZ7XWbutzmnt23PpgkudNFPhKktbanV2lD2Xl3b9+muSACQJf98xzUTo70ZzRdWpOeu8aNpU+lT/uAJV0wjB/3lp78yoCX0mS1trPkzwmnd24xnttVd1/VWOr6sHpBDm6vT/JE1YX+Bpb/6rW2vuT7JHk46u7nvXWE7Ly9/JVrbUTVhfGSpLW2l2ttW+21l6UTjBrdc5Ocv/W2ltba2f3uUZrrX0lnZDSeV2n/7aPNWeSF2bl+3Rnkqe31o7rFfhKktbaHa21Nyf56x6nX1dVjxiil3sCX79Nsv9Ega+x9W9N8tIkX+86tWU6u4ABAAAAAMAaJ/QFAAAAAACsc6pq2ySnJtm+x+mPDjjd2ens8NW9a86q1n9wkid1lRcleWZr7ZbVjR8LkD0nnd1oxntIVT253z4GUVVPSvLorvJRrbXu8NmEWmuL09lt6/px5TlZfVDlbfljwO4en26tvaGfkExXD3evKpzHem+XruM70gk7Dqy1dns/17TWlg45/01ZeaepR1fVXsPMNyK9vvtvbq19u5/BrbWPJPlwV7kmmLcfS5I8v7V2eR9rtwnW+fMh1wYAAAAAgIEIfQEAAAAAAOuMqtqlqt6S5FdZOcCUJOckOWXAaf9uot1oVuE1PWrvbq1d1e8EY+Gwt/Q591T4+67j77fWBr1X9/T9713lZ090fVXtlOT5XeUF6b3DD0zW3K7jW4YNZU2H1tr5SX7WVT5gFL0Mqqr2T7JvV/lXSY4fcKq3Jrmpq3ZIVW03RFufbq39tN+LW2sXZuX73/2eAAAAAABgjRD6AgAAAAAA1haPqKqfT/D6TVXdkOTSJMck2bbH+KuSPG+QHbuS/F9r7XtD9Nq9y9fiJB8fYp7PJrmxq3ZQVXXvijUpVbV1kj/rKn9sElOe3nX8gKp6wATXPjUr7/L14dbawkmsDxO5oet4u6rabSSd9O//uo73H0kXg+t+DibJfw2xe9/NST7TVZ6T5PFD9DToTo9JZ7fH8fYYYg4AAAAAABjY7FE3AAAAAAAA0KfNkjx0yLE/T3Joa+3yAcedOehCY7vP7NJVPqO11h3eWq3W2l1VdWqSl44rb57OfejefWYyDkxSXbUfTmK+3/Wo/UmSXvf/8T1qn5zE2rAqP+k6riSfrapnt9aunI4GqmrXdIJb+yTZNcm8sddGWfl7mCQ7ruZ4pvrTHrX/HnKuzyV5VY/5B9mN8I6sHODqx6VdxxtU1eattVuHmAsAAAAAAPom9AUAAAAAAKzLrkhyfJLjWmtLhhg/TLBq3x61c4eY5x7nZMXQV5I8PFMb+uoZzqiqQXZFW517T1B/dNfxgtZa985GMCVaaz+vqvPSCSHeY98kF1fV59IJF53RWrtjKtetqllJXpbkL5PsN8nptpx8R9Pi4V3Hv2+tXTPkXD9NsizJrFXMvzqXD/nfA7f0qG2RROgLAAAAAIA1SugLAAAAAABYF9yVZGGSm5NcnE5A4HtJvtNaWzaJea8bYkyvcNNFk+jhwj7XmIz79ajtM8Vr3GuC+rZdx7+a4nWh26vS2cVvo3G1jZMcMfZaXFXnJPlxOjuDfa+1du2wi1XVnkk+lRWDZpOxxRTNs8ZUVSXZuqs89HOwtXZrVV2Z5AHjyoM+BwfebXFMr6DYnCHnAgAAAACAvgl9AQAAAAAAa4vvttYeP81rLhxizFY9ajdPooebetS6wxSTNVEgaypt0l2oqrlZOTzR6/3ClGmt/biqnpbkM+kdHNownd3vlu+AV1UXJflCkk+11n7T71pV9eAkZyTZZlJNr2htCBzNS7JBV20yz8Gk82wYH/oa9Dk4zC5fAAAAAAAwMrNG3QAAAAAAAMAMtnSIMXN71G6bRA+9xvZaYzJ6BdWmw7wetVunvQvWO621byV5YJJjklzfx5A9k7w9yUVV9YWq2nl1A6pqTpLPpXfg6wdJ3pnkaUkems6Od3OTzG6t1fhXkk/00d9MM9XPwV7jp/o5CAAAAAAAM4qdvgAAAAAAAKbWoh61zSYxX6+xvdaYjDu6jm9urU1HEKzXTmqbT8O6kNbajUneVlXvSPKEJE9M8tgkD0tnt69eKslzkzypqp7fWvv6KpZ4RTphsfEuTXJoa+3cAVpdaZe8tcBUPwd7jZ/q5yAAAAAAAMwoQl8AAAAAAABT66YetS0nMV+vsTdOYr5eunc62rKqtmyt3TzF66ygtbaoqhZnxYDNqHYdW9vNGXUDa6vW2tIkXx97pao2SrJfkgOS/PnYf3b/XXVekv+uqoe31i6eYOoXdh0vSvLE1tplA7a49YDXzwQLk9ydZINxtck8B3uNn+rnIAAAAAAAzCizRt0AAAAAAADAOmZBj1r3bj+D2KtHrTukNVnX9qjtM8Vr9Lv2Q6Zp3ZliSXehqoYJcN1rCnohSWvtrtbaWa21f2mtHZRk+yR/n6Q7BLlZknf3mqOqNk/y6K7ySUMEvpJklyHGjFRrrSW5oas89HOwqjZLsmNXeaqfgwAAAAAAMKMIfQEAAAAAAEytn/WoPWIS8+3Xo/bTSczXy9k9ak+Z4jUm8qOu422qao9pWnsmWNijNm+IeXabbCP01lq7obX23iT7p7Nb13hPG9sZrNt9s/LfYr8/6NpVtW3WwtDXmO5n4f2qarsh59o3K9/PqX4OAgAAAADAjCL0BQAAAAAAMIVaa9cm+W1X+aCq2nrQuapqwyTP6CrfmuSXQ7Y3kW/2qL2gqmZP8Tq9nNmjdvgaXnNp1/EGa3i9VenePSoZLuTzuCHX774XqapR3o8Zq7X2myQf7ypvmmTXHpffu0ftxiGWfcEQY+5xd9fxdP9ef9ijdsiQcz2vz/kBAAAAAGCdIfQFAAAAAAAw9b7edbxRkiOHmOcFSe7VVTujtdYd5piU1tpVWXnXnJ2TvHQq15nAaVk5ePTKqhpmt6t+de/WtPkaXGt1ftOj9shBJqiqLZI8f8j1u+9FMtr7MdP9ukdtix6123rUegXBJlRVc5K8dpAxXUb9Oe9+DibJK6pqoL9Rj32+X9RVXpLkO8M2BgAAAAAAawOhLwAAAAAAgKl3fI/a26vqPv1OMBZ6+tcepz44dFer9p4etfdV1R5raL0kSWvtyiSf7ipvk+Q/1+CyN3Ud71xVtQbXW5VfpBNgGa874LI6RycZNiTXfS+S4XYaW1/0+g4v6FG7ukftyQOudXSS3QccM17373Zaf6+ttbOTnNtV3ifJXw041XuSdO+U+LnW2nXD9gYAAAAAAGsDoS8AAAAAAIAp1lq7IMk3uspbJPlSVc1d3fiq2ijJF7JywOSXrbVvTU2XK2qtfSkrBzS2SPLVqtp7mDmram5V/V1VHbaaS49Jj+BTVf3boGGsqtqgqu6/mst+1XW8RZLHDLLOVGmt3ZXkzK7yY6rquf2Mr6rDk7x+Ei1034skOXgS881oVfWGqnrSkGPnZeXd725JckX3tWOBpIu7yi+uqof2udaRSd46RJvjdf9uH1dVm01yzkH9W4/a+6rqcf0Mrqqjkryqq9ySHDfZxgAAAAAAYKYT+gIAAAAAAFgzXpVkUVftUUm+V1UPn2hQVT0oyRlJuoMpS5K8bEo7XNkLk9zYVdslyU+q6h+qaovVTVBVs6rqoKr6cDphmPcm2X5VY1prv07yph6n3pDk21X1iD7WvU9V/U2S32T19+mHPWrzx/oexd/PPtajdlJVPWuiAVW1RVUdm+QTSSrJnUOufX6ShV21t1bVS6tqkyHnnMkel+QbVXV+Vb1t7Pu2WmPBx28leUDXqVNaa4snGPa5ruM5Sb5WVY9fxTpbVtW/J/l4/vi33O7fT7+6P+dbJDmlqvYccr6BtdY+k+QrXeVNkpxeVa+Z6PtWVRtX1TFJPprO53u897fWfjr13QIAAAAAwMwye9QNAAAAAAAArItaa5dW1auTnNR16mFJzqmqHyT5WpIrk9ydZIckT0zyZ+n9N5y3tda6d+KaUq21S6rq+emENDYcd2qzJP+UThjorCQ/SHJ1kpuTbJpkyyT3T/LwsdeWQ6z9garaL0n3rmAHpXO/fpnkm0l+m+T6dAI0WyXZM8kjxl59BbZaaz+pqguT7DWuvEc6Ybs7qur3SW7vMfTg1tof+n9Xfftikp8m2XdcbdN0dob7UZLTklyWzg5H2yXZP8lfpBPiyVj9b5N8aNCFW2tLqurkrLib0mZJTkjysaq6Mp3w4rKuoe9orZ066HozyN5J3pPkPVV1WZLzkvwiybXpfK6XJpmXZLckByb506wcProhydGrWOO4JK/Jit+H7ZN8p6q+l+Tr6fxel43VH5PkKUk2H3f9t5NcleSIAd9f0nn2/FNWfJ48NclTq+qmdN7rXV1j/tBam+qd3o5M8vOsuHPhZkk+mOTvquqLSS5K577fO51n5LPHfu72s0x+BzQAAAAAAFgrCH0BAAAAAACsIa21T1bVnCT/lRX/LjMrnSDJgf1Mk+StrbX3rYEWV16stW9X1YFJvpBOkGu8zZL8+dhrTXhJkmvSe9evfcZeU+W1Sb6RZIOu+iZJdp9gzIYT1Celtba0ql6S5EdJ5nadfvTYa1Vem+Srk2jh3Umek5V3ZNsgyU4TjNl6EuvNNDuNvZ49wJhbkjyntXbNRBe01m6sqhcnOTUrf84eO/ZalfOTPC+d8NjAWmtXV9U/JXlnj9Nbjb26DRzY7KOP66rqgHRCrt3frR2TvL7Pqc5K8ozWWndQDQAAAAAA1kl9/WuHAAAAAAAADKe1Nj+d3XsuHmL4lUkOaa3969R2tWqttbPT2bHrhCRLJjNVkjOTfL/PdZe11v4uyaHp7IA07JoL+ljrjHRCPtcOuc6Uaq1dkM6uZtcNMOzWJC9qrR0/ybWvSWeHuZ9OZp61xIQhrQGcleQxrbXvre7C1tpX0gluLRxwjdOSHNhau2mI/sZ7d5J/SLJ4kvNMSmvtt+nslva5dL6jg1iSzq5gT5qC+wEAAAAAAGsNoS8AAAAAAIA1rLX2rSR7J3llkh8kuXtVl6cTvnljkj1aa19c8x32aKK161trRyXZLcn7klyQ/sIai5KcnuQNSXZurR3UWvvJgGufkmSPdO7Xd9NfYOWXSY5J8sB+Q1Cttf9NZ4en5yf5eJKz0wkF3ZbBgymT1lr7aZIHJjk2yY2ruPS2JB9Nsldr7TNTtPZFSfZL8rgk70/ynSS/TyestKrP61qltfZX6fzOX53ObnZX9Tn0jrHrn9FaO7C1duEAa34pnV3q/mtsnoksSyck+czW2tNbazf3u8Yq1l7WWvvnJDskeU2SU9LZQez6JHdOdv4Be1nQWntBkkeO9bG6ANfV6XzO92yt/U1rbVr7BQAAAACAUavWpv3vVQAAAAAAAOu1qtoyyf5JtkuyTZIN0tmd6tok57TWBtntqdf8Vya537jSx1trL5/MnGPzbpNk33R6vleSzdMJIC1KJyD06ySXtyn+A1RVbZbkUUnuk+TeSeaOrXtzkkuSXNhau2Eq1xy1qpqVTgjrQenc7w3TCclcmOTHrbW7RtjeOqWq7pNOuHGnJFsn2SydANaidMJRFyT5dWtt6RSstVE6n+UHpvMdmpXO5/jSdL77qwr7rVOqaoMkj0jnvm+TZF469+K6JBe31n45uu4AAAAAAGD0hL4AAAAAAADWMVV1fTqBknu8v7X2hlH1AwAAAAAAAAxm1qgbAAAAAAAAYOpU1ZwkW3WVbxlFLwAAAAAAAMBwhL4AAAAAAADWLXtl5b8B/XoUjQAAAAAAAADDEfoCAAAAAABYtxzao3betHcBAAAAAAAADG32qBsAAAAAAABg8qpq0yR/meSNXafOb639ZgQtAQAAAAAAAEMS+gIAAAAAAFhLVdVfJfmrJJsneUB6/+3nA9PaFAAAAAAAADBpQl8AAAAAAABrr+2TPHQV57+V5GPT1AsAAAAAAAAwRWaNugEAAAAAAADWiM8keUZrrY26EQAAAAAAAGAwdvoCAAAAAABY+y1JcnOSK5J8P8knW2s/G21LAAAAAAAAwLDKP+4IAAAAAAAAAAAAAAAAMHPMGnUDAAAAAAAAAAAAAAAAAPyR0BcAAAAAAAAAAAAAAADADCL0BQAAAAAAAAAAAAAAADCDCH0BAAAAAAAAAAAAAAAAzCBCXwAAAAAAAAAAAAAAAAAziNAXAAAAAAAAAAAAAAAAwAwi9AUAAAAAAAAAAAAAAAAwgwh9AQAAAAAAAAAAAAAAAMwgQl8AAAAAAAAAAAAAAAAAM4jQFwAAAAAAAAAAAAAAAMAMIvQFAAAAAAAAAAAAAAAAMIPMHnUD66uq2iDJbkn2SnLfJFskuSvJTUkuTXJua+220XUIAAAAAAAAAAAAAAAAjEK11kbdw3qjqnZM8pwkT0xyYJJ5q7j87iTfTPIfrbXTh1hrsr/YnVtrl01yjkmpqi2SPG5c6coki0fUDgAAAAAAAAAAAAAAAOuXDZPcf9zxd1trt0zHwkJf06SqPp3khUMOPy3Jy1tr1w6w3roQ+npGki+PsgcAAAAAAAAAAAAAAAAY88zW2qnTsdDs6ViEJMkeE9SvSvJ/Sa5N5/exS5KHJpk17pqnJfleVT2utXbNGu0SAAAAAAAAAAAAAAAAGCmhr9E4L8n8JF9trV3afbKqdkjyjiSvGFfeI8nnq+qxbfDt2X6S5NABx/x+wOsBAAAAAAAAAAAAAACAKSD0NX1aktOTvLO1du4qL2ztqiSvrKpfJDl+3KkDkrwgyWcHXPvO1tplA46ZCa4cf/A///M/2W233UbVCwAAAAAAAAAAAAAAAOuRSy65JM961rPGl66c6NqpJvQ1fZ43aPCqtfahqvqzJM8dVz48g4e+1laLxx/stttu2XvvvUfVCwAAAAAAAAAAAAAAAOu3xau/ZGrMmq6F1neT2Gnr+K7jgybZCgAAAAAAAAAAAAAAADCDCX3NfOd1HW9SVVuOpBMAAAAAAAAAAAAAAABgjRP6mvmW9qhtOO1dAAAAAAAAAAAAAAAAANNC6Gvm263reGmS60fRCAAAAAAAAAAAAAAAALDmzR51A6zWIV3H57bWlg04x45VdUKSRya5b5LNktyUTnjsvCTfS/KF1tqNk20WAAAAAAAAAAAAAAAAmByhrxmsqjZP8rKu8peGmGrnsdd424699kry4iT/VlUfTfL21tqtQ6wBAAAAAAAAAAAAAAAATAGhr5ntmCTbjzu+OcnH1tBamyV5fZKDq+o5rbULpnLyqto2yTYDDtt1KnsAAAAAAAAAAAAAAACAtYHQ1wxVVc9O8pqu8pputXwAACAASURBVD+01m4cYJqlSc5K8q0kv0zy+ySLkmyeZMckByY5Ip0dv+6xR5JvVdX+rbXLh2y/l1clOXoK5wMAAAAAAAAAAAAAAIB1ktDXDFRVD01yUlf5G0n+c4Bp/l+Sj7bWrpvg/M+TnFpVb08njPX3SWrs3PZJvlhVj2ittQHWBAAAAAAAAAAAAAAAACZp1qgbYEVVtWOS09PZjeselyc5bJAAVmvtPasIfI2/7s7W2luTvLbr1MOTvLDf9QAAAAAAAAAAAAAAAICpYaevGaSqtk3yzSQ7jCtfk+RJrbUFa3Lt1trxVfXkJM8YV35Vkk9P0RIfSvL5AcfsmuTLU7Q+AAAAAAAAAAAAAAAArBWEvmaIqto6ybeS7DGufH2SJ7bW/m+a2jgmK4a+9q+qLVtrN0924rFdx1a789h4VTXZZQEAAAAAAGD9cd6nkpuv6P/6LXdM/uTFa64fAAAAAABgaEJfM0BVbZHkG0keMq58Uzo7fF0wja2cPbbuVmPHGyTZK8kPp7EHAAAAAAAAYBg//3Ry+Vn9X/+AA4S+AAAAAABghpo16gbWd1U1N8nXkuw7rrwwyV+01n4+nb201pYl6f6n/7aZzh4AAAAAAAAAAAAAAABgfWenrxGqqs2SfCXJ/uPKtyZ5Smvt7NF0lTu6jjcZSRcj0lrLsmXL0lobdSvAGlBVmTVrVqpq1K0AAAAAAAAAAAAAAMCEhL5GpKo2SXJakgPGlW9P8tTW2g9H01WS5N5dx9ePpItp0lrLnXfemUWLFmXRokVZvHjxqFsCpsGGG26YuXPnZu7cudl4442FwAAAAAAAAAAAAAAAmFGEvkagqjZOcmqSx48r35nkGa21742kqSRVde8ku3SV/zCKXqbD7bffnj/84Q9ZsmTJqFsBptnixYtzww035IYbbsicOXNy3/veN5tuuumo2wIAAAAAAAAAAAAAgCTJrFE3sL6pqg2TfDHJE8eV70ryrNbat0fT1XKHZsXPxLVJLhpRL2vU7bffniuuuELgC8iSJUtyxRVX5Pbbbx91KwAAAAAAAAAAAAAAkEToa1pV1ewkn0vylHHlJUkOaa19fTRddVTVdkn+X1f5f1trbRT9rEn3BL7WwbcGDKm1JvgFAAAAAAAAAAAAAMCMMXvUDawvqmqDJJ9K8sxx5aVJXtBaO20K13lgkj1aa/87wJjtk/xvku3GlRcnOWaq+popWmv5wx/+sFLga86cOZk3b14233zzzJkzJ1U1og6BNam1liVLluTWW2/NwoULV9jt757nw6677uoZAAAAAAAAAAAAAADASAl9TZ/5SZ7fVXtbkvOqaqcB57qmtXbnBOfuk+TUqvpVkpOTfKm19n+9LqyquUleks4OX9t1nf6n1tpvB+xrxrvzzjtXCHkkydy5c7PDDjsIecB6Ys6cOdl0002zzTbb5KqrrsqiRYuWn1uyZEnuuuuubLzxxiPsEAAAAAAAAAAAAACA9Z3Q1/Q5okftvWOvQR2U5MzVXPOQJP+a5F+r6pYk5ye5PsmiJJsnuX+Sh6b3Z+AjrbV3D9HXjDc+3JF0wh8CX7B+qqrssMMOufTSS1cIgy5cuFDoCwAAAAAAAAAAAACAkRL6Wj9skeRP+7jutiRvaK19dA33MzLdoa958+YJfMF6rKoyb9683HDDDctrixYtyrbbbjvCrgAAAAAAAAAAAAAAWN/NGnUDTLmLkvxzkh8kuaPPMRcneVuSndblwFdrLYsXL16htvnmm4+oG2Cm6H4OLF68OK21EXUDAAAAAAAAAAAAAAB2+po2rbVp2U6qtXZtkn9IkqqalWT3JLsm2SHJlkk2TicMdlOSq5Oc01pbMB29jdqyZctWqs2ZM2cEnQAzyezZK/9X4bJly7LBBhuMoBsAAAAAAAAAAAAAABD6Wqe11pYl+c3Ya73Xa+eeqmnJ4gEz2KxZK296aacvAAAAAAAAAAAAAABGaeX/pzsAAAAAAAAAAAAAAAAAIyP0BQAAAAAAAAAAAAAAADCDCH0BAAAAAAAAAAAAAAAAzCBCXwAAAAAAAAAAAAAAAAAziNAXAAAAAAAAAAAAAAAAwAwi9AUAAAAAAAAAAAAAAAAwgwh9AQAAAAAAAAAAAAAAAMwgQl8AAAAAAAAAAAAAAAAAM4jQFwAAAAAAAAAAAAAAAMAMIvQF0MNOO+2Uqlrp9eEPf3joOefPn99zzp122mnqGgcAAAAAAAAAAAAAANZ6Ql8AAzjhhBOGHjt//vwp7AQAAAAAAAAAAAAAAFhXCX0BDODss8/OBRdcMPC4iy++OD/4wQ/WQEcAAAAAAAAAAAAAAMC6RugLoA9z5sxZ/vMwu32N3+Vr/FwAAAAAAAAAAAAAAADdhL4A+vC0pz1t+c8nn3xyli5d2vfYu+++OyeddNLy46c//elT2hsAAAAAAAAAAAAAALBuEfoC6MNRRx21/Odrr702p59+et9jv/rVr+bqq6/uORcAAAAAAAAAAAAAAEA3oS+APuy///7Zc889lx+fcMIJfY+dP3/+8p/33HPPPOpRj5rS3gAAAAAAAAAAAAAAgHXL7FE3ALC2OPLII/PmN785SXL66afnuuuuy7bbbrvKMQsWLMhpp522/Hgqd/m68MIL86tf/SoLFizIwoULs/XWW+c+97lPDjjggNzrXvea1NyLFi3KhRdemIsvvjjXX399brvttsydOzdbb711HvzgB2efffbJBhtsMEXv5I8uvvji/OIXv8jvf//7LF26NNtss0323XffPOQhD5nytQAAAAAAAAAAAAAAYKYS+gLo0xFHHJG3ve1tWbp0aZYuXZpPfvKTeeMb37jKMSeddFKWLFmSJJk9e3YOP/zwSfVwww035Nhjj83JJ5+cq666quc1s2bNymMe85gcffTReeITn9j33Oeff35OOeWUfP3rX8/Pfvaz3H333RNeO3fu3Bx22GF505velF122aWv+S+77LLsvPPOy49f8pKX5MQTT0ySnHbaaXnPe96TH//4xz3H7rLLLnnXu96VF7/4xX2/HwAAAAAAAAAAAAAAWFsJfcEwzvtU8vNPj7qLwW3/kOQp/zJ18139y+Rrb538PA97UfInMz/Ms9122+Xggw/OqaeemiQ54YQTVhv6OuGEE5b/fPDBB2e77bbL9ddfP9T6J510Ul772tdm4cKFq7xu2bJlOeuss/KkJz0phx12WD7+8Y9nww03XOWYn/3sZ9l333377mXRokX5z//8z5x44on5yEc+ksMOO6zvsePdfffdef3rX5//+I//WOV1v/3tb3PYYYflRz/6UT74wQ+mqoZaDwAAAAAAAAAAAAAA1gZCXzCMm69ILj9r1F2M3p23TM192OmAyc8xTY466qjloa8LLrgg55xzTvbbb7+e1/7kJz/JBRdcsMLYYb3jHe/Iu9/97hVqVZUHPvCB2X333TN37tzcdNNNOffcc7NgwYLl15x88sm5+uqr87WvfS2zZ0/8yF+2bNlKc++8887ZfffdM2/evMyZMyc33XRTLrjgglxxxRXLr7vjjjty+OGHZ+ONN84hhxwy8Pt63etel+OPP375mvvss0922WWXbLTRRrn88stzzjnnZOnSpcuvP/7447P33nvnr//6rwdeCwAAAAAAAAAAAAAA1hZCXwADeOpTn5rtttsu1157bZJk/vz5E4a+5s+fv/znbbfdNgcffPBQa37iE59YIfA1a9asvPrVr86b3vSm7Ljjjitc21rLl7/85bzuda9bHs769re/nbe//e055phjVrnOJptskkMPPTTPfOYz84QnPCGbb755z+vOP//8vOtd78rnP//55bWjjjoqj33sY7Ptttv2/b5OP/305buevfzlL8/RRx+d+93vfitcc9VVV+UVr3hFvvKVryyvveUtb8kRRxyRzTbbrO+1AAAAAAAAAAAAAABgbTJr1A0ArE1mz56dww47bPnxZz/72dx5550rXXfHHXfklFNOWX58+OGHZ86cOQOvd/nll6+wq9VGG22U008/PR/4wAdWCnwlnd2ynvWsZ+Wcc87Jbrvttrx+7LHH5ne/+92E6+yxxx656qqrMn/+/Dzzmc+cMPCVJA9+8IPzuc99LkcfffTy2qJFi/KhD31ooPd2T+DrQx/6UD760Y+uFPhKkh122CFf/vKXs++++y6vLVy4MJ/97GcHWgsAAAAAAAAAAAAAANYmQl8AAzrqqKOW/3zzzTfnS1/60krXfOELX8gtt9yy/PjII48caq1jjz02d9xxx/Lj4447Ln/xF3+x2nHbbrttPv3pTy8/vvvuu3PcccdNeP28efOy1VZbDdTbO97xjuyzzz7Ljz/1qU8NND5JXvSiF60Qautl9uzZ+cd//McVamecccbAawEAAAAAAAAAAAAAwNpC6AtgQHvttVce9ahHLT+eP3/+SteMrz3ykY/M3nvvPfA6t9122wrz7LLLLnnlK1/Z9/j99tsvBx544PLjU089deAeVmXWrFl59rOfvfz4kksuyYIFCwaa4+1vf3tf1z35yU/OhhtuuPz4vPPOG2gdAAAAAAAAAAAAAABYmwh9AQxh/G5fZ5xxRq644orlx7/97W/z3e9+d/nxsLt8nXXWWSvs8nXIIYdk1qzBHtsHHXTQ8p8vv/zyFfrs11133ZXrr78+l19+eS677LIVXptssskK11500UV9z7vLLrvkQQ96UF/XzpkzJ7vuuuvy4+uuu67vdQAAAAAAAAAAAAAAYG0ze9QNAKyNDj300Lz+9a/PHXfckWXLluUTn/jE8l2r5s+fn9ZakmSTTTbJC1/4wqHWOOuss1Y4vu9975vLLrtsoDnG746VdAJpO+644yrHnH/++TnllFPy/e9/PxdccEGuv/76vte76aab+r52r7326vvaJNlqq62W/3zLLbcMNBYAAAAAAAAAAAAAANYmQl8AQ5g3b16e+9zn5uSTT06SnHjiifl//z979x9rdX3fcfz1vdwL1yvyK4pim4tatXX4s5lNyphTaRvp2mYjW3UlViBL2mRZJFtjZ2KqNmusbbamy9wf/lGcTf1nrbVV41qSZrVAMCFzsSIpVCs2CDWC9nJrhHu5n/1hvHAvIId7D5yP3scjucn5fs7n+/2+D5Dz133yveOOlFLy4IMPju5bvnx5Zs+ePaF7/Pa3vx1zvGbNmqxZs2biQyfZu3fvMd/bsWNH1qxZk0ceeWTC1z+RGOvwiKsVPT09o6+Hh4dP6FwAAAAAAAAAAAAAAHg3EX0BTNDq1atHo68XXnghP//5z/Pmm2+OibVWrVo14evv2bNn0jOOt2/fvqOub926NUuXLs2uXbsmdf2RkZGW93Z1dU3qXgAAAAAAAAAAAAAA8F7lN+4BJujaa6/N+eefP3q8du3afOc73xk9XrhwYa6//voJX//AgQOTmu9oSilHrA0PD+emm24aE3z19vbm5ptvzgMPPJDNmzdn165dGRwczPDwcEopoz9r165t+4wAAAAAAAAAAAAAADDVedIXwAQ1TZOVK1fmzjvvTJJ8//vfz8GDB0ffX7lyZZqmmfD1zzzzzDHHGzduzEc/+tEJX+9YHn744TzzzDOjxxdeeGF+8pOf5IILLjjuuQMDA22fBwAAAAAAAAAAAAAApjrRF0zEnP5k4ZJOT3Hizrmsvdfrnd2eP4c5/ZO/RoesXLkyd999d0ZGRvLGG2+Mrr8dhE3G2WefPeZ427ZtJyX6+tGPfjTm+P77728p+EqSl19+ue3zAAAAAAAAAAAAAADAVCf6gom4asVbP1PdgsuTVY93eoqO6u/vz9KlS7Nu3box69ddd13OO++8SV178eLF+da3vjV6/NOf/jS33HLLpK55NNu3bx99ffrpp+faa69t+dyNGze2fR4AAAAAAGCCTvQ/AGz3fxgIAAAAAAC0jegLYJJWr159RPS1evXqSV936dKlmTZtWg4ePJgk+fGPf5xXXnkl8+fPn/S1D/f666+Pvp41a1aapmnpvF//+tfZsGFDW2cBAAAAAAAmYdnXOz0BAAAAAADQJqIvgElavnx5fvGLX4xZu/rqqyd93blz52bFihV58MEHkySDg4P50pe+NHrcLnPnzh19/corr+S1114bs3Yst912W0ZGRto6CwAAAAAAAAAAAAAAkHR1egCAd7vp06dnyZIlY35mzJjRlmvfddddY6713e9+N1/+8pdHn/7Vqueeey5PPvnkUd+74oorRl8fPHgw3/zmN497vTvvvDM//OEPT2gGAAAAAAAAAAAAAACgNaIvgIqdf/75uf/++8esfeMb38iSJUvy6KOPZnh4+Jjnvvjii7nvvvty/fXXZ9GiRfnZz3521H033njjmON77rknd9xxRwYHB4/Y+6tf/SrLly/PV7/61STJWWeddaIfCQAAAAAAAAAAAAAAOI7uTg8AwDv7/Oc/n927d+f222/PyMhIkmTTpk35zGc+k76+vlx11VU5++yzc9ppp2Xfvn159dVX89xzz+X1119v6fpLly7NsmXL8sQTT4yufe1rX8u3v/3tfOQjH8mCBQsyODiYbdu2ZevWraN7Lrnkknzxi1/Mrbfe2t4PDAAAAAAAAAAAAAAAU5zoC+Bd4Lbbbsvll1+eVatWZffu3aPrb7zxRjZs2NDSNebOnXvM9x566KF8/OMfz+bNm0fXBgcHj/l0sCuvvDKPPfZY1q1b1+InAAAAAAAAAAAAAAAAWtXV6QEAaM0NN9yQ3/zmN7nvvvty5ZVXpmmad9zf09OTxYsX56677sq2bdve8Ylcc+bMyfr16/OVr3wl8+bNO+a+D37wg7n33nuzadOmvO9975vwZwEAAAAAAAAAAAAAAI6tKaV0egY4qqZpFiV59u3jZ599NosWLZrw9YaHh7N9+/YxaxdddFG6uz3wjnenvXv3ZtOmTdm1a1f27t2boaGhzJw5M/Pnz8/FF1+cD33oQ+nr6zvh6+7fvz9PPfVUtmzZktdeey0zZ87MOeeck0suuSSXXXbZSfgkneW7AQAAAAAAAAAAAACAo9myZUsuvfTSw5cuLaVsORX39hvtAO9S8+bNyyc/+cm2X3fGjBm55pprcs0117T92gAAAAAAAAAAAAAAwPF1dXoAAAAAAAAAAAAAAAAAAA4RfQEAAAAAAAAAAAAAAABURPQFAAAAAAAAAAAAAAAAUBHRFwAAAAAAAAAAAAAAAEBFujs9AAAAAAAAAAAAAAAA707NPz7a6REAjqr8y6c7PQJMiid9AQAAAAAAAAAAAAAAAFRE9AUAAAAAAAAAAAAAAABQEdEXAAAAAAAAAAAAAAAAQEVEXwAAAAAAAAAAAAAAAAAVEX0BAAAAAAAAAAAAAAAAVKS70wMAAAAAAAAA0Aa7nkne/H3r+3tnJwsuP3nzAAAAAAAAEyb6AgAAAAAAAHgv+O/bkx3rW9+/cEmy6vGTNw8AAAAAADBhXZ0eAAAAAAAAAAAAAAAAAIBDRF8AAAAAAAAAAAAAAAAAFRF9AQAAAAAAAAAAAAAAAFRE9MWU0TTNEWullA5MAtRkZGTkiLWjfV8AAAAAAAAAAAAAAMCpIvpiyujqOvKf+9DQUAcmAWoyPDx8xNrRvi8AAAAAAAAAAAAAAOBU8VvtTBlN02T69Olj1gYHBzs0DVCL8d8D06dP96QvAAAAAAAAAAAAAAA6SvTFlHLGGWeMOR4YGEgppUPTAJ1WSsnAwMCYtfHfEwAAAAAAAAAAAAAAcKqJvphSxsccQ0ND2blzp/ALpqBSSnbu3JmhoaEx67NmzerQRAAAAAAAAAAAAAAA8JbuTg8Ap1Jvb296enrGRB779u3L888/n1mzZmXmzJnp7u5OV5ceEt6LRkZGMjw8nMHBwQwMDBwRfPX09GTGjBkdmg4AAAAAAAAAAAAAAN4i+mJKaZom5557bl566aUxT/caGhrKnj17smfPng5OB3TS298PTdN0ehQAAAAAAAAAAAAAAKY4jzNiyunr60t/f7+wAxjVNE36+/vT19fX6VEAAAAAAAAAAAAAAED0xdT0dvjV09PT6VGADuvp6RF8AQAAAAAAAAAAAABQle5ODwCd0tfXlw984APZv39/BgYGsm/fvhw4cKDTYwGnwPTp03PGGWdk1qxZmTFjhif/AQAAAAAAAAAAAABQFdEXU1rTNOnt7U1vb2/mz5+fUkpGRkZSSun0aMBJ0DRNurq6RF4AAAAAAAAAAAAAAFRN9AWHaZom06ZN6/QYAAAAAAAAAAAAAAAATGFdnR4AAAAAAAAAAAAAAAAAgENEXwAAAAAAAAAAAAAAAAAVEX0BAAAAAAAAAAAAAAAAVET0BQAAAAAAAAAAAAAAAFAR0RcAAAAAAAAAAAAAAABARURfAAAAAAAAAAAAAAAAABURfQEAAAAAAAAAAAAAAABURPQFAAAAAAAAAAAAAAAAUBHRFwAAAAAAAAAAAAAAAEBFRF8AAAAAAAAAAAAAAAAAFRF9AQAAAAAAAAAAAAAAAFRE9AUAAAAAAAAAAAAAAABQEdEXAAAAAAAAAAAAAAAAQEVEXwAAAAAAAAAAAAAAAAAVEX0BAAAAAAAAAAAAAAAAVET0BQAAAAAAAAAAAAAAAFAR0RcAAAAAAAAAAAAAAABARURfAAAAAAAAAAAAAAAAABURfQEAAAAAAAAAAAAAAABURPQFAAAAAAAAAAAAAAAAUBHRFwAAAAAAAAAAAAAAAEBFRF8AAAAAAAAAAAAAAAAAFRF9AQAAAAAAAAAAAAAAAFRE9AUAAAAAAAAAAAAAAABQEdEXAAAAAAAAAAAAAAAAQEVEXwAAAAAAAAAAAAAAAAAVEX0BAAAAAAAAAAAAAAAAVET0BQAAAAAAAAAAAAAAAFAR0RcAAAAAAAAAAAAAAABARURfAAAAAAAAAAAAAAAAABXp7vQAAAAAAAAAALTBqsc7PQEAAAAAANAmnvQFAAAAAAAAAAAAAAAAUBHRFwAAAAAAAAAAAAAAAEBFRF8AAAAAAAAAAAAAAAAAFRF9AQAAAAAAAAAAAAAAAFRE9AUAAAAAAAAAAAAAAABQEdEXAAAAAAAAAAAAAAAAQEVEXwAAAAAAAAAAAAAAAAAVEX0BAAAAAAAAAAAAAAAAVET0BQAAAAAAAAAAAAAAAFAR0RcAAAAAAAAAAAAAAABARURfAAAAAAAAAAAAAAAAABURfQEAAAAAAAAAAAAAAABURPQFAAAAAAAAAAAAAAAAUBHRFwAAAAAAAAAAAAAAAEBFRF8AAAAAAAAAAAAAAAAAFRF9AQAAAAAAAAAAAAAAAFRE9AUAAAAAAAAAAAAAAABQEdEXAAAAAAAAAAAAAAAAQEVEXwAAAAAAAAAAAAAAAAAV6e70AAAAAAAAAAC0wdo/T3asb33/wiXJqsdP3jwAAAAAAMCEedIXAAAAAAAAAAAAAAAAQEVEXwAAAAAAAAAAAAAAAAAVEX0BAAAAAAAAAAAAAAAAVET0BQAAAAAAAAAAAAAAAFAR0RcAAAAAAAAAAAAAAABARURfAAAAAAAAAAAAAAAAABURfQEAAAAAAAAAAAAAAABURPQFAAAAAAAAAAAAAAAAUBHRFwAAAAAAAAAAAAAAAEBFRF8AAAAAAAAAAAAAAAAAFRF9AQAAAAAAAAAAAAAAAFRE9AUAAAAAAAAAAAAAAABQEdEXAAAAAAAAAAAAAAAAQEVEXwAAAAAAAAAAAAAAAAAVEX0BAAAAAAAAAAAAAAAAVET0BQAAAAAAAAAAAAAAAFAR0RcAAAAAAAAAAAAAAABARURfAAAAAAAAAAAAAAAAABURfQEAAAAAAAAAAAAAAABURPQFAAAAAAAAAAAAAAAAUBHRFwAAAAAAAAAAAAAAAEBFRF8AAAAAAAAAAAAAAAAAFRF9AQAAAAAAAAAAAAAAAFRE9AUAAAAAAAAAAAAAAABQEdEXAAAAAAAAAAAAAAAAQEVEXwAAAAAAAAAAAAAAAAAVEX0BAAAAAAAAAAAAAAAAVET0BQAAAAAAAAAAAAAAAFAR0RcAAAAAAAAAAAAAAABARURfAAAAAAAAAAAAAAAAABURfQEAAAAAAAAAAAAAAABURPQFAAAAAAAAAAAAAAAAUBHRFwAAAAAAAAAAAAAAAEBFRF8AAAAAAAAAAAAAAAAAFRF9AQAAAAAAAAAAAAAAAFRE9AUAAAAAAAAAAAAAAABQEdEXAAAAAAAAAAAAAAAAQEVEXwAAAAAAAAAAAAAAAAAVEX0BAAAAAAAAAAAAAAAAVET0BQAAAAAAAAAAAAAAAFAR0RcAAAAAAAAAAAAAAABARURfAAAAAAAAAAAAAAAAABURfQEAAAAAAAAAAAAAAABURPQFAAAAAAAAAAAAAAAAUBHRFwAAAAAAAAAAAAAAAEBFujs9AAAAAAAAAABtcMM9yZu/b31/7+yTNwsAAAAAADApoi8AAAAAAACA94IFl3d6AgAAAAAAoE26Oj0AAAAAAAAAAAAAAAAAAIeIvgAAAAAAAAAAAAAAAAAqIvoCAAAAAAAAAAAAAAAAqIjoCwAAAAAAAAAAAAAAAKAioi8AAAAAAAAAAAAAAACAioi+AAAAAAAAAAAAAAAAACoi+gIAAAAAAAAAAAAAAACoiOgLAAAAAAAAAAAAAAAAoCKiLwAAAAAAAAAAAAAAAICKiL4AAAAAAAAAAAAAAAAAKiL6AgAAAAAAAAAAAAAAAKiI6AsAAAAAAAAAAAAAAACgIqIvAAAAAAAAAAAAAAAAgIqIvgAAAAAAAAAAAAAAAAAqIvoCAAAAAAAAAAAAAAAAqIjoCwAAAAAAAAAAAAAAAKAioi8AAAAAAAAAAAAAAACAioi+AAAAAAAAAAAAAAAAACrS3ekBAAAAAAAAAGiDJ/4p2f3L1vefc1my7Osnbx4AAAAAAGDCRF8AAAAAAAAA7wW7f5nsWN/pKQAAAAAAgDbo6vQAAAAAAAAAAAAAesMO4wAAIABJREFUAAAAABwi+gIAAAAAAAAAAAAAAACoiOgLAAAAAAAAAAAAAAAAoCKiLwAAAAAAAAAAAAAAAICKiL4AAAAAAAAAAAAAAAAAKiL6AgAAAAAAAAAAAAAAAKiI6AsAAAAAAAAAAAAAAACgIqIvAAAAAAAAAAAAAAAAgIqIvgAAAAAAAAAAAAAAAAAqIvoCAAAAAAAAAAAAAAAAqIjoCwAAAAAAAAAAAAAAAKAioi8AAAAAAAAAAAAAAACAioi+AAAAAAAAAAAAAAAAACoi+gIAAAAAAAAAAAAAAACoiOgLAAAAAAAAAAAAAAAAoCKiLwAAAAAAAAAAAAAAAICKiL4AAAAAAAAAAAAAAAAAKiL6AgAAAAAAAAAAAAAAAKiI6AsAAAAAAAAAAAAAAACgIqIvAAAAAAAAAAAAAAAAgIqIvgAAAAAAAAAAAAAAAAAqIvoCAAAAAAAAAAAAAAAAqIjoCwAAAAAAAAAAAAAAAKAioi8AAAAAAAAAAAAAAACAioi+AAAAAAAAAAAAAAAAACoi+gIAAAAAAAAAAAAAAACoiOgLAAAAAAAAAAAAAAAAoCKiLwAAAAAAAAAAAAAAAICKiL4AAAAAAAAAAAAAAAAAKiL6AgAAAAAAAAAAAAAAAKiI6AsAAAAAAAAAAAAAAACgIqIvAAAAAAAAAAAAAAAAgIqIvgAAAAAAAAAAAAAAAAAqIvoCAAAAAAAAAAAAAAAAqIjoCwAAAAAAAAAAAAAAAKAioi8AAAAAAAAAAAAAAACAioi+AAAAAAAAAAAAAAAAACoi+gIAAAAAAAAAAAAAAACoiOgLAAAAAAAAAAAAAAAAoCKiLwAAAAAAAAAAAAAAAICKiL4AAAAAAAAAAAAAAAAAKiL6AgAAAAAAAAAAAAAAAKiI6AsAAAAAAAAAAAAAAACgIqIvAAAAAAAAAAAAAAAAgIp0d3oAAAAAAAAAANrgys8l5y1pff+c/pM3CwAAAAAAMCmiLwAAAAAAAID3gqtWdHoCAAAAAACgTbo6PQAAAAAAAAAAAAAAAAAAh4i+AAAAAAAAAAAAAAAAACoi+gIAAAAAAAAAAAAAAACoiOgLAAAAAAAAAAAAAAAAoCKiLwAAAAAAAAAAAAAAAICKiL4AAAAAAAAAAAAAAAAAKiL6AgAAAAAAAAAAAAAAAKiI6AsAAAAAAAAAAAAAAACgIqIvAAAAAAAAAAAAAAAAgIqIvgAAAAAAAAAAAAAAAAAqIvoCAAAAAAAAAAAAAAAAqIjoCwAAAAAAAAAAAAAAAKAioi8AAAAAAAAAAAAAAACAioi+AAAAAAAAAAAAAAAAACoi+gIAAAAAAAAAAAAAAACoiOgLAAAAAAAAAAAAAAAAoCKiLwAAAAAAAAAAAAAAAICKiL4AAAAAAAAAAAAAAAAAKtLd6QEAAAAAAAAAaIOnv5e8/lLr++f0J1etOHnzAAAAAAAAEyb6AgAAAAAAAHgv+L+Hkh3rW9+/cInoCwAAAAAAKtXV6QEAAAAAAAAAAAAAAAAAOET0BQAAAAAAAAAAAAAAAFAR0RcAAAAAAAAAAAAAAABARURfAAAAAAAAAAAAAAAAABURfQEAAAAAAAAAAAAAAABURPQFAAAAAAAAAAAAAAAAUBHRFwAAAAAAAAAAAAAAAEBFRF8AAAAAAAAAAAAAAAAAFRF9AQAAAAAAAAAAAAAAAFRE9AUAAAAAAAAAAAAAAABQEdEXAAAAAAAAAAAAAAAAQEVEXwAAAAAAAAAAAAAAAAAVEX0BAAAAAAAAAAAAAAAAVET0BQAAAAAAAAAAAAAAAFAR0RcAAAAAAAAAAAAAAABARURfAAAAAAAAAAAAAAAAABURfQEAAAAAAAAAAAAAAABURPQFAAAAAAAAAAAAAAAAUBHRFwAAAAAAAAAAAAAAAEBFRF8AAAAAAAAAAAAAAAAAFRF9AQAAAAAAAAAAAAAAAFRE9AUAAAAAAAAAAAAAAABQEdEXAAAAAAAAAAAAAAAAQEVEXwAAAAAAAAAAAAAAAAAVEX0BAAAAAAAAAAAAAAAAVET0BQAAAAAAAAAAAAAAAFAR0RcAAAAAAAAAAAAAAABARURfAAAAAAAAAAAAAAAAABURfQEAAAAAAAAAAAAAAABUpLvTA0xVTdNMS3Jhkj9Kcm6S2Un2J3ktyfNJNpdS/tDme/Yk+ZMk/UkWJBlM8nKSp0spL7bzXgAAAAAAAAAAAAAAAMDEiL5OoaZp+pMsT/KxJH+aZNY7bD/YNM26JP9eSnl8kvc9K8ndSW5MMu8YezYm+ddSyg8mcy8AAAAAAAAAAAAAAABgckRfp0jTNA8l+ZsTOGVakhuS3NA0zWNJ/raU8rsJ3HdZkgeSzD/O1sVJFjdN870kX2j3U8YAAAAAAAAAAAAAAACA1oi+Tp2Lj7G+M8n2JL/LW38fFyS5IknXYXs+leTJpmn+rJSyu9UbNk1zbZJHkkw/bLkk+d8kLySZk+SqJGce9v6KJLOapvmLUspIq/cCAAAAAAAAAAAAAAAA2qPr+Fs4CZ5O8vdJLiylvL+Ucl0p5aZSyl+VUj6cpD/J/ePOuTjJfzVN07Ryg6Zp3p/k4YwNvjYkWVRK+eNSymdLKZ9I8v4ktyYZOmzfp5P884Q+GQAAAAAAAAAAAAAAADApoq9TpyR5PMnVpZQPl1L+vZTy/FE3lrKzlPKFJH837q0lSW5s8X53J5l72PHGJB8rpWwdd6/9pZR/S/LZcef/Q9M0C1u8FwAAAAAAAAAAAAAAANAmoq9T569LKZ8qpWxu9YRSyn8k+cG45ZuPd17TNBclueWwpQNJVpZS3nyHez2S5D8PW5qR5M5WZwUAAAAAAAAAAAAAAADaQ/R1ipRSXpzgqfeNO76uhXM+l2TaYccPl1K2t3DeveOOP9s0TW8L5wEAAAAAAAAAAAAAAABtIvqq39Pjjk9rmmbOcc75y3HHa1u5USlla5KnDls6PcknWjkXAAAAAAAAAAAAAAAAaA/RV/2Gj7I2/Vibm6Y5J8kV487fcAL3+59xx8tO4FwAAAAAAAAAAAAAAABgkkRf9btw3PFwklffYf+l446fKaX84QTut3Hc8aITOBcAAAAAAAAAAAAAAOD/2bu7V8uv+o7jn3V6sKONTGKJjBQyom0RadLaFlrMXChYcBC1kaCgpTRUhUqhF73oE0V6ZRByW3tR6gPYggVFTXyIlkoJIqJEtNWC1TKiGFIxSUmaqQ9dvUjK2dmZzpy9zz7n98nk9YJ9sRZrrd/3H3izgSMSffW7dW39hTnn/1zm/IvX1v+24fe+cYX3AAAAAAAAAAAAAAAAgGMk+io2xrgmye+ubX/oCtfW/xnsWxt+9sLa+qfHGNdt+AYAAAAAAAAAAAAAAACwJdFXt3ckObOyfjDJX1/hzrVr6/s3+eCc8+EkF9e2T2/yBgAAAAAAAAAAAAAAALC9/aUH4NLGGLck+f217T+bc37/ClevWVs/usXnH01yamX97C3eeIIxxnOTXL/htRce9bsAAAAAAAAAAAAAAADwVCP6KjTG+MUk71vbvjvJuw5xfT36Wv/XrsN4NMl1l3lzG29L8vYdvAMAAAAAAABcypkbj/c8AAAAAABwYkRfZcYYNyS5K08MrS4k+a0559ziyZO6AwAAAAAAACzp/O1LTwAAAAAAAOzI3tIDcGCM8dwkn0ryMyvb9yX5jTnnfxzymYfX1s/cYpT1O+tvAgAAAAAAAAAAAAAAAMfEP32VGGM8J8mnk/z8yvb3krxizvn1DZ5qjb7+Msnfb3jnhUk+vINvAwAAAAAAAAAAAAAAwFOG6KvAGON0kruT3Liy/UAe+4evf9nwuYfW1tdvOMs1eXL09eCGMzzJnPP+JPdvOMtRPwsAAAAAAAAAAAAAAABPOXtLD/B0N8Z4dpJPJPmVle3/TPLKOeeXtnhy/V/Bzm54f/389+ecD2wxBwAAAAAAAAAAAAAAALAF0deCxhg/leRjSX59ZfvhJOfnnJ/f8tmvra1/dsP7L1hbf3XLOQAAAAAAAAAAAAAAAIAtiL4WMsZ4ZpI7k5xb2f6vJK+ac372CE//89r6pjHGsza4f/MV3gMAAAAAAAAAAAAAAACOkehrAWOMU0k+kuRlK9sXk7xmzvlPR3l7zvndJF9e2drPE8OyK3nZ2vrjR5kHAAAAAAAAAAAAAAAA2Izo64SNMZ6R5INJXrGy/d9JfnPO+Q87+syH1ta3HXK2FyX5tZWtR5LcvaOZAAAAAAAAAAAAAAAAgEMQfZ2gMcZ+kg8kOb+y/cMkt845P7nDT70/yY9X1q8bY/zcIe790dr6A3POi7sbCwAAAAAAAAAAAAAAALgS0dcJGWP8RB6LsV67sv2jJG+Yc965y2/NOb+e5L0rW89I8p4xxqnLzPfaJL+zsvWDJH+xy7kAAAAAAAAAAAAAAACAK9tfeoCnkb9J8vq1vT9Ncu8Y4/kbvnXfIf6B6+1Jbkly3ePrlyb59BjjzXPOf/2/Q2OMn0zy1iR3rN2/Y855YcO5AAAAAAAAAAAAAAAAgCMSfZ2c377E3jsf/23q5Uk+c7kDc85vjzFel+STeeyfvpLk5iRfHWN8Mck3k5xO8stJrl+7fmeSP99iLgAAAAAAAAAAAAAAAOCIRF9XsTnnZ8YYtyR5Tw7CrpHkVx//XcrfJXnLnPPHxz8hAAAAAAAAAAAAAAAAsG5v6QE4XnPOjyX5hSR/leSByxz9XJJb55xvnHM+ciLDAQAAAAAAAAAAAAAAAE/in75OyJxzLPjt+5P83hjjD5LcnORskjNJHknynST3zjn/fan5AAAAAAAAAAAAAAAAgAOir6eROecPkvzj0nMAAAAAAAAAAAAAAAAA/7+9pQcAAAAAAAAAAAAAAAAA4IDoCwAAAAAAAAAAAAAAAKDI/tIDAAAAAAAAALAD3/1ycvGhw58/dTp53k3HNw8AAAAAALA10RcAAAAAAADA1eATf5JcuOfw58+eS2676/jmAQAAAAAAtra39AAAAAAAAAAAAAAAAAAAHBB9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAU2V96AAAAAAAAAAB24La7lp4AAAAAAADYEf/0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBkf+kBAAAAAAAAANiBd78quXDP4c+fPZfcdtfxzQMAAAAAAGzNP30BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAU2V96AAAAAAAAAAB24JXvSC4+dPjzp04f3ywAAAAAAMCRiL4AAAAAAAAArgbPu2npCQAAAAAAgB3ZW3oAAAAAAAAAAAAAAAAAAA6IvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAiuwvPQAAAAAAAAAAO/DxP07u+8rhz5+5MTl/+/HNAwAAAAAAbE30BQAAAAAAAHA1uO8ryYV7lp4CAAAAAADYgb2lBwAAAAAAAAAAAAAAAADggOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoMj+0gMAnKTxhx9degSAS5p3vHrpEQAAAAAAAAAAAACAEv7pCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgyP7SAwAAAAAAAACwA7/0xuT55w5//tobjm8WAAAAAADgSERfAAAAAAAAAFeDl7xp6QkAAAAAAIAd2Vt6AAAAAAAAAAAAAAAAAAAOiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIrsLz0AAAAAAAAAADtw7/uTB791+PPX3pC85E3HNw8AAAAAALA10RcAAAAAAADA1eBLf5tcuOfw58+eE30BAAAAAECpvaUHAAAAAAAAAAAAAAAAAOCA6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgyP7SAwAAAAAAAACwA2duPN7zAAAAAADAiRF9AQAAAAAAAFwNzt++9AQAAAAAAMCO7C09AAAAAAAAAAAAAAAAAAAHRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEX/wve/cerGtZngf8ujcL4wnZIGcQtqJQraRijTUeqsRi6yHWkGqlThOtjk3U2laTwbOpEU9JdaqRNtqMYbSpVqPV6EQtHqgIKmY0GiFqVUAiogiCGM7c/WN9K+tjyYZ1+NZ6v3cTwNkGAAAgAElEQVSv32/mnfd5T/d3LeA/5poHAAAAAAAAAAAAAAAAmCNKXwAAAAAAAAAAAAAAAABzROkLAAAAAAAAAAAAAAAAYI4sDB0AAAAAAAAAgBm45CvJtVeu/v077psc+vOblwcAAAAAAFg3pS8AAAAAAACAPcFHX5xceNbq3z/q4ckzPrJ5eQAAAAAAgHXbMXQAAAAAAAAAAAAAAAAAAJYpfQEAAAAAAAAAAAAAAADMEaUvAAAAAAAAAAAAAAAAgDmi9AUAAAAAAAAAAAAAAAAwR5S+AAAAAAAAAAAAAAAAAOaI0hcAAAAAAAAAAAAAAADAHFH6AgAAAAAAAAAAAAAAAJgjSl8AAAAAAAAAAAAAAAAAc0TpCwAAAAAAAAAAAAAAAGCOKH0BAAAAAAAAAAAAAAAAzBGlLwAAAAAAAAAAAAAAAIA5ovQFAAAAAAAAAAAAAAAAMEeUvgAAAAAAAAAAAAAAAADmiNIXAAAAAAAAAAAAAAAAwBxR+gIAAAAAAAAAAAAAAACYIwtDB9iuqupeSX4hyYMm5wcm2WfqlQu7e9c6Z/cG492zuy/Y4AwAAAAAAAAAAAAAAABgHZS+tlBVPSrJi7NY9Np/2DQAAAAAAAAAAAAAAADAPFL62loPSPKYoUMAAAAAAAAAAAAAAAAA80vpaz5cl+TiJEdvwuzPJ3nqGr+5eBNyAAAAAAAAAAAAAAAAAKug9LX1bkjytSRfTHLu5PzVJA9L8qlN+L1ru/uCTZgLAAAAAAAAAAAAAAAAbAKlr611epL/1t3XrnxQVQPEAQAAAAAAAAAAAAAAAOaN0tcW6u4rhs4AAAAAAAAAAAAAAAAAzLcdQwcAAAAAAAAAAAAAAAAAYJnSFwAAAAAAAAAAAAAAAMAcUfoCAAAAAAAAAAAAAAAAmCMLQwdg0x1ZVe9I8uAkhyW5S5IrklyW5EtJ/m+S93X35cNFBAAAAAAAAAAAAAAAAJYofe357jk5ph00Oe6X5GlJ3lhVb0/y8u6+ejNCVNVBSQ5c42dHb0YWAAAAAAAAAAAAAAAAmGdKXySLu3/9hySPq6qTuvtrm/Abz0nyyk2YCwAAAAAAAAAAAAAAAHsUpa89141JzkpyRpKvJLk4yU+S3DXJkUkekeTXsrjj15JjkpxRVQ/p7gu3Ni4AAAAAAAAAAAAAAACQKH3tqV6W5O3d/YPdPP9ykg9V1cuzuPvWKUlq8uyQJO+vqgd1d29+VAAAAAAAAAAAAAAAAGCa0tceqLtPXeV71yZ5cVVdnOQPph49MMnJSf5khrFOS/LeNX5zdJIPzjADAAAAAAAAAAAAAAAAzD2lL9Ldb62qxyR54tTt52SGpa/JrmO723nsVlXV7b8EAAAAAAAAAAAAAAAAe5gdQwdgbrx2xfVDqmrnIEkAAAAAAAAAAAAAAABgG1P6YskXklwxdb1XkvsNlAUAAAAAAAAAAAAAAAC2LaUvkiTdfXOSi1bcPnCILAAAAAAAAAAAAAAAALCdKX0x7ZoV13caJAUAAAAAAAAAAAAAAABsY0pfTDtgxfVlg6QAAAAAAAAAAAAAAACAbUzpiyRJVR2Q5F4rbn9viCwAAAAAAAAAAAAAAACwnSl9seSpueV/D5cmOX+gLAAAAAAAAAAAAAAAALBtKX2Rqjo4yctW3P6z7u4h8gAAAAAAAAAAAAAAAMB2pvS1B6mqY6vql9f4zSFJPpzk4Knb1yd57SyzAQAAAAAAAAAAAAAAAKuzMHSA7aaqjsit/3M/ZMX1QlXt2s2Yq7v7slu5f2iSD1XVV5O8K8kHuvubu8mxT5Jfz+IOXwevePzq7v72bn4bAAAAAAAAAAAAAAAA2ERKX1vvrCRHreK9w5N8ZzfPTk/y9Nv49rgkr0/y+qq6MslfJbksyU+S3DXJPZL8g9z6v/+3dffvriIfAAAAAAAAAAAAAAAAsAmUvvZ8+yZ52Cre+2mS/9jdb9/kPAAAAAAAAAAAAAAAAMBt2DF0AGbq/CSvSfLZJNes8ptvJHlJkl0KXwAAAAAAAAAAAAAAADA8O31tse7etYmzL03y0iSpqh1J7pPk6CSHJ9mZ5I5ZLINdkeSSJOd29w83Kw8AAAAAAACwhZ7xkaETAAAAAAAAM6L0tYfq7puTfH1yAAAAAAAAAAAAAAAAACOxY+gAAAAAAAAAAAAAAAAAACxT+gIAAAAAAAAAAAAAAACYI0pfAAAAAAAAAAAAAAAAAHNE6QsAAAAAAAAAAAAAAABgjih9AQAAAAAAAAAAAAAAAMwRpS8AAAAAAAAAAAAAAACAOaL0BQAAAAAAAAAAAAAAADBHlL4AAAAAAAAAAAAAAAAA5ojSFwAAAAAAAAAAAAAAAMAcUfoCAAAAAAAAAAAAAAAAmCNKXwAAAAAAAAAAAAAAAABzROkLAAAAAAAAAAAAAAAAYI4ofQEAAAAAAAAAAAAAAADMEaUvAAAAAAAAAAAAAAAAgDmi9AUAAAAAAAAAAAAAAAAwR5S+AAAAAAAAAAAAAAAAAOaI0hcAAAAAAAAAAAAAAADAHFH6AgAAAAAAAAAAAAAAAJgjC0MHAAAAAAAAAGAG3vH45MKzVv/+UQ9PnvGRzcsDAAAAAACsm52+AAAAAAAAAAAAAAAAAOaI0hcAAAAAAAAAAAAAAADAHFH6AgAAAAAAAAAAAAAAAJgjSl8AAAAAAAAAAAAAAAAAc0TpCwAAAAAAAAAAAAAAAGCOKH0BAAAAAAAAAAAAAAAAzBGlLwAAAAAAAAAAAAAAAIA5ovQFAAAAAAAAAAAAAAAAMEeUvgAAAAAAAAAAAAAAAADmiNIXAAAAAAAAAAAAAAAAwBxR+gIAAAAAAAAAAAAAAACYI0pfAAAAAAAAAAAAAAAAAHNE6QsAAAAAAAAAAAAAAABgjoym9FVV76mqRw6dAwAAAAAAAAAAAAAAAGAzjab0leTJST5ZVedX1fOraufQgQAAAAAAAAAAAAAAAABmbUylryXHJnlTkr+pqj+qqgcPHQgAAAAAAAAAAAAAAABgVsZY+uokleROSZ6e5Jyq+ouqelZV3XnQZAAAAAAAAAAAAAAAAAAbNKbS1xOT/HkWS1+ZOleS45P8YZLvVdVbqur+A+QDAAAAAAAAAAAAAAAA2LDRlL66+8Pd/YQk90zymiTfz2LhK1ne/etuSZ6T5C+r6jNVdXJV7T1IYAAAAAAAAAAAAAAAAIB1GE3pa0l3f7e7X5bkyCRPSfKJ6ceTcyV5aJJ3JfmbqnpdVd1ra5MCAAAAAAAAAAAAAAAArN3oSl9Luvum7n5fd5+Y5Jgkb0xyeZZ3/8pkfUCS307yjar6aFX986oa7d8NAAAAAAAAAAAAAAAA7Nn2iPJTd3+ru38ryeFJfi3JZ7Nc/lra/WtHkhOTvD/JhVX1iqo6bMvDAgAAAAAAAAAAAAAAANyGPaL0taS7r+/ud3X3I5LcP8lpSa7KcgGsJsfhSV6Z5IKq+tOq+ieDBAYAAAAAAAAAAAAAAABYYY8qfU3r7vO6+3lJDkvy7CR/sfRoclSShSRPSvKxqvpGVT2/qvYZJDAAAAAAAAAAAAAAAABA9uDS15LuvibJ6UnelOTCLO/6tVT+yuTevSfvXFBVp1TV3ludFQAAAAAAAAAAAAAAAGCPLn1V1dFV9fokFyd5Z5Ijc8ui19KRLO/+tV+S1yT5YlXt2sq8AAAAAAAAAAAAAAAAAHtc6auq9qqqk6rq40m+nuS3khyY5XLXUtHr00menOQxSd6X5MbJ86Xy13FJPlVV+2xdegAAAAAAAAAAAAAAAGC7Wxg6wKxU1T2SPDvJv0lyyNLtLJa4lopcV2dxx6+3dvf5U5+fUVUHJ3lBkucluePk/SOT/Pskr96KvwEAAAAAAAAAAAAAAABg1Dt91aInVNWfJfl2kpckOTTLu3plsj4vyXOTHN7dz1tR+EqSdPel3X1KkgcmuTTLRbEnbfKfAQAAAAAAAAAAAAAAAPB3RrnTV1UdkuRZk+MeS7dzy129bkrygSSndfeZq53d3V+vqlcn+YPJrWNmlRsAAAAAAAAAAAAAAADg9oyq9FVVJyb5jSRPyGL2pR29eumVJJckeVuSt3X3Jev8qXOm1ndZ5wwAAAAAAAAAAAAAAACANRtN6auqvpnkXkuXueWuXpXkzCSnJflAd9+4wZ+7fHLu23wLAAAAAAAAAAAAAAAAYMZGU/pKcnSWS1hLZa+rk7wzyVu7+7xN+M2lchkAAAAAAAAAAAAAAADAlhhT6WtJJTkvyX9Ncnp3X70Jv/H9JCdswlwAAAAAAAAAAAAAAACA2zSm0teNST6YxV29Pr2ZP9Td1yU5czN/AwAAAAAAAAAAAAAAAODWjKn0tau7vzd0CAAAAAAAAAAAAAAAAIDNtGPoAKul8AUAAAAAAAAAAAAAAABsB6MpfQEAAAAAAAAAAAAAAABsB0pfAAAAAAAAAAAAAAAAAHNkNKWvqnpoVX17cnyzqg5ax4yDq+obkxnfqqoHbkZWAAAAAAAAAAAAAAAAgPUaTekrybOS7EpyVJIvdfcP1jqguy9N8peTObsmMwEAAAAAAAAAAAAAAADmxphKX4+fWr9rA3PeObV+4gbmAAAAAAAAAAAAAAAAAMzcKEpfVXXfJAdOLm9I8tENjPvYZEYlObSq7rPBeAAAAAAAAAAAAAAAAAAzM4rSV5L7Tc6d5Gvdff16B3X3dUm+NnXr728kGAAAAAAAAAAAAAAAAMAsjaX0dfjU+qIZzLtwan3EDOYBAAAAAAAAAAAAAAAAzMTC0AFW6a5T65/MYN7Vu5kNAAAAAAAAME7/7LXJtVeu/v077rt5WQAAAAAAgA0ZS+lruqS13wzmTf/fixtmMA8AAAAAAABgWIf+/NAJAAAAAACAGdkxdIBVumxqffQM5k3PuGy3bwEAAAAAAAAAAAAAAABssbGUvr49OVeSY6vqiPUOmnx736lbF24kGAAAAAAAAAAAAAAAAMAsjaX09cUkP03Sk+sXbmDWC6bW1yY5ZwOzAAAAAAAAAAAAAAAAAGZqFKWv7r4xyf/J4k5fleQ3q+pRa50z+ea5WSyPdZJPdPd1s0sKAAAAAAAAAAAAAAAAsDGjKH1NvG5y7iR3SPK/q+rJq/24qk5K8oEkC1ksjk3PBAAAAAAAAAAAAAAAAJgLoyl9dfcXkrw3i4WtTnK3JO+uqk9U1VOq6qCV31TVgVX15Ko6Y/Ltvkvjknygu8/eovgAAAAAAAAAAAAAAAAAq7IwdIA1emaS+ye5bxaLW5XkUZMjVXV5kismz/afHEtq6pu/SvLrW5QZAAAAAAAAAAAAAAAAYNVGs9NXknT31UlOTPKFLJe4MllXkrsnuXeS+0zWS/eT5cLXOUke090/3brkAAAAAAAAAAAAAAAAAKszqtJXknT395L84ySvS3J1blnqurUjk3euSvKqJI/s7u9vZWYAAAAAAAAAAAAAAACA1VoYOsB6dPf1SV5SVW9I8q+TPDrJQ5McsOLVHyb5bJIzkryru6/a0qAAAAAAAAAAAAAAAAAAazTK0teS7v5xkrdMjlTVXknuPnn8o+6+aahsAAAAAAAAAAAAAAAAAOsx6tLXSpOS1w+GzgEAAAAAAAAAAAAAAACwXjuGDgAAAAAAAAAAAAAAAADAMqUvAAAAAAAAAAAAAAAAgDmi9AUAAAAAAAAAAAAAAAAwRxaGDjALVXXnJPsm2Xut33b3RbNPBAAAAAAAAAAAAAAAALA+oyx9VdWRSZ6Z5JeSPCDJndc5qjPSfwYAAAAAAAAAAAAAAADAnmlUhaeqWkjyu0lemGSvpdvDJQIAAAAAAAAAAAAAAACYrdGUvqqqkrwnyZOyXPTqyaH4BQAAAAAAAGxvf/6i5PtfXf37hxyXPPZ1m5cHAAAAAABYt9GUvpI8N8mv5JZFr0pyQZLzk1yR5IahwgEAAAAAAAAM6vtfTS48a+gUAAAAAADADIyi9DXZ5eulueWuXh9M8tLuPm+wYAAAAAAAAAAAAAAAAAAzNorSV5IHJTk4y7t8/XF3P3PYSAAAAAAAAAAAAAAAAACzt2PoAKt03ORcSa5N8oIBswAAAAAAAAAAAAAAAABsmrGUvg6YnDvJ57r7yiHDAAAAAAAAAAAAAAAAAGyWsZS+rplaXzJYCgAAAAAAAAAAAAAAAIBNNpbS18VT67sMlgIAAAAAAAAAAAAAAABgk42l9HVukpsn62OHDAIAAAAAAAAAAAAAAACwmUZR+urui5N8KkklObaqjhk4EgAAAAAAAAAAAAAAAMCmGEXpa+KVSW6arF8zZBAAAAAAAAAAAAAAAACAzTKa0ld3n53F4lcl+ZWqUvwCAAAAAAAAAAAAAAAA9jijKX0lSXe/JslvJ+kkp1TVp6vqxKpaGDgaAAAAAAAAAAAAAAAAwEyMpixVVZ+cuvxxkv2TPCLJR5NcU1XfSnJFkpvXMLa7+9GzSwkAAAAAAAAAAAAAAACwMaMpfSV5VBZ3+FrSSWqyvnOS41Y8vz21xvcBAAAAAAAAAAAAAAAANt2YSl+3RmkLAAAAAAAAAAAAAAAA2KOMrfRVt/8KAAAAAAAAAAAAAAAAwHiNpvTV3TuGzgAAAAAAAAAAAAAAAACw2RSpAAAAAAAAAAAAAAAAAOaI0hcAAAAAAAAAAAAAAADAHFH6AgAAAAAAAAAAAAAAAJgjSl8AAAAAAAAAAAAAAAAAc0TpCwAAAAAAAAAAAAAAAGCOLAwdYCOq6gFJnpjkEUmOTrJ/kn2SdHf/zN9WVTuT3G1yeV13X7pVWQEAAAAAAAAAAAAAAABWY5Slr6o6LsmbkpwwfXsVn56Q5H2T9U+r6pDu/ttZ5wMAAAAAAAAAAAAAAABYrx1DB1irqnp6ks9lscC1sujVt/P5B5NcNPnuLkl+ddb5AAAAAAAAAAAAAAAAADZiVKWvqvrVJH+U5E7Tt5N8N8mXczu7fXX3zUneM3XribPOCAAAAAAAAAAAAAAAALARoyl9VdWhSU6fXC7t6HVakqO7e1eSk1Y56oNLI5M8cmYBAQAAAAAAAAAAAAAAAGZgYegAa/CKJHeerG9K8tTu/tOp5/2zn9yqc5PckGTvJHevqnt293dmFxMAAAAAAAAAAAAAAABg/Uax01dV7ZXk5CwWuzrJ61cUvlatu29M8tdTt/7exhMCAAAAAAAAAAAAAAAAzMYoSl9JHpLkbkkqi7t0vWGD8y6eWt9jg7MAAAAAAAAAAAAAAAAAZmYspa97T86d5NzuvmqD86a/v9sGZwEAAAAAAAAAAAAAAADMzFhKXwdOrb87g3k3T60XZjAPAAAAAAAAAAAAAAAAYCbGUvrqqfVeM5i3/9T6xzOYBwAAAAAAAAAAAAAAADATYyl9/XBqfdgM5t1/av2jGcwDAAAAAAAAAAAAAAAAmImxlL4umpwryfFVtfd6B1XVMUkOn7r1lY0EAwAAAAAAAAAAAAAAAJilsZS+zklyTZJOcqckJ29g1vOn1pd299c3EgwAAAAAAAAAAAAAAABglkZR+uru65J8Ios7fVWSU6tq51rnVNXDkvzbLJbHOsn7Z5kTAAAAAAAAAAAAAAAAYKNGUfqaOHVy7iSHJ/l4VR202o+r6oQkH8ri31xJbkry+7MOCQAAAAAAAAAAAAAAALARoyl9dffnk7w7i4WtTvKgJH9dVS+vqmNzK39LVe1VVY+uqncnOSPJflPf/5fuvmCr8gMAAAAAAAAAAAAAAACsxsLQAdbomUmOTXJ8FotbO5P8zuS4fvrFqjo/yT2T7L10a/JNJTk7yYu2IjAAAAAAAAAAAAAAAADAWoxmp68k6e5rkvzTJJ/Mcokrk/XPrbg+NskdJutkufD18SSP7+6btig2AAAAAAAAAAAAAAAAwKqNqvSVJN19WZITk5yS5LLcstS1dJ4+MnnnyiQvzWLh66otCwwAAAAAAAAAAAAAAACwBgtDB1iP7u4kv1dVb0lychZLYA9PclhuWWS7IsnZST6W5J3dfeVWZwUAAAAAAAAAAAAAAABYi1GWvpZ097VJ3jE5UlWVZL8kd0jyo+6+YcB4AAAAAAAAAAAAAAAAAGs26tLXSpMdwC4fOgcAAAAAAAAAAAAAAADAeu1RpS8AAAAAAACAbesB/yrZ9fDVv7/zyM3LAgAAAAAAbIjSFwAAAAAAAMCe4PinDZ0AAAAAAACYkR1DBwAAAAAAAAAAAAAAAABgmdIXAAAAAAAAAAAAAAAAwBxZGDrAalXVtzdhbHf30ZswFwAAAAAAAAAAAAAAAGBdRlP6SrIrSSepGc7sGc4CAAAAAAAAAAAAAAAA2LAxlb6WbLSoVZl9eQwAAAAAAAAAAAAAAABgJsZU+rooayt87ZVkvyR3mVwvffvTJJfNMBcAAAAAAAAAAAAAAADAzIym9NXdu9bzXVXdI8kvJ3lBkntl8W8+tbv/++zSAQAAAAAAAAAAAAAAAMzGjqEDbLbu/m53n5bkuCT/K8nPJfnDqvqNYZMBAAAAAAAAAAAAAAAA/Kw9vvS1pLuvSfK0JJ9NUkneXFXHD5sKAAAAAAAAAAAAAAAA4Ja2TekrSbr7piQvnFzuleSVA8YBAAAAAAAAAAAAAAAA+BnbqvSVJN39hSQXZnG3r8dW1YEDRwIAAAAAAAAAAAAAAAD4O9uu9DXxlcl5IckvDhkEAAAAAAAAAAAAAAAAYNp2LX1dNbU+YrAUAAAAAAAAAAAAAAAAACts19LXgVPrfQZLAQAAAAAAAAAAAAAAALDCtit9VdUdk/zi1K3Lh8oCAAAAAAAAAAAAAAAAsNK2K30leXluubvXeUMFAQAAAAAAAAAAAAAAAFhp25S+qmpnVb0xyYuS9OT2j5N8brhUAAAAAAAAAAAAAAAAALe0MHSA1aqqV6zjs4UkO5PcL8nDktwhSU2edZI3dfdNs0kIAAAAAAAAAAAAAAAAsHGjKX0l+Z0s79C1HtNlr0pydpI3bDATAAAAAAAAwHz40v9IfnzR6t/feWRy/NM2Lw8AAAAAALBuYyp9bdRS2auSvDfJs7v7+mEjAQAAAAAAAMzIl/8kufCs1b9/1MOVvgAAAAAAYE6NrfRVt//Kbl2S5BNJ3t7dn5lRHgAAAAAAAAAAAAAAAICZGlPp64R1fHNjkquS/KC7L51xHgAAAAAAAAAAAAAAAICZG03pq7vPHDoDAAAAAAAAAAAAAAAAwGbbMXQAAAAAAAAAAAAAAAAAAJYpfQEAAAAAAAAAAAAAAADMEaUvAAAAAAAAAAAAAAAAgDmi9AUAAAAAAAAAAAAAAAAwR5S+AAAAAAAAAAAAAAAAAObIwtABVquqXjHUb3f3q4b6bQAAAAAAAAAAAAAAAGB7GU3pK8nvJOmBflvpCwAAAAAAAAAAAAAAANgSYyp9Tavd3F9ZClvte7f1O0MVzQAAAAAAAAAAAAAAAIBtaGylr+kSV9/K/dWUvOo23gMAAAAAAAAAAAAAAAAY1JhKXydMzvdO8oYkO7NY3rohyceTfD7JN5JcOXlv3yTHJPlHSR6TZO8slr8uT3JKkv+3VcEBAAAAAAAAAAAAAAAAVms0pa/uPrOqHprlwlcneWuSV3X3Zbf1bVUdkOSVSX4zyX5Jfi/JE7r77M1NDQAAAAAAAAAAAAAAALA2O4YOsFpVdWiSD2WxtHVDkqd09/Nvr/CVJN19WXf/uyRPSXJjFktjH6qqwzczMwAAAAAAAAAAAAAAAMBajab0leQ/Jdk/izt8ndrd71/rgMk3p04u95vMBAAAAAAAAAAAAAAAAJgboyh9VdWdkvzLyeU1Sf7zBsb9/mRGJXnyZDYAAAAAAAAAAAAAAADAXBhF6SvJI5Lsk8Vdvj7X3X+73kGTb8+ZXN51MhsAAAAAAAAAAAAAAABgLoyl9HXE1PrSGcybnnHEbt8CAAAAAAAAAAAAAAAA2GJjKX0dNLXeOYN5+06tD5zBPAAAAAAAAAAAAAAAAICZGEvp6/LJuZIcv5FBVVVJ/uHUrSs2Mg8AAAAAAAAAAAAAAABglsZS+vrO1PrgqjppA7NOSnLwbmYDAAAAAAAAAAAAAAAADGospa8zk1yVpLO429ebq+qotQ6pql1J3jyZkyQ/SfLpmSQEAAAAAAAAAAAAAAAAmIFRlL66+/okp2ex8NVJDkvy2ap67GpnVNXjknwmySFTc/64u2+YfWIAAAAAAAAAAAAAAACA9VkYOsAavDzJv8hiaWup+PXhqjo3yf9M8vkk38zijmBJcrck90nykCQnJ3lQlsteSXLJZCYAAAAAAAAAAAAAAADA3BhN6au7r5rs1nVGkv2zWN6qJA9O8gu383ktjZmsf5Tkcd39/9m711hZr7qO47+1u6GlF+kBC60UTrkZLgUqFCFtLUUusTFES/CgICkFlGhiQGyCGBWLxsiLgvpCSSShjYEmiIAR8C6lLbUot1Yt1VLgNCBQKi3SA205nL8vOoc9Hc5lZs/Mftbsfj7JZJ717PWs+eek75pvnm8uaVwAAAAAAAAAAAAAAACATVkbeoBZVNW1SZ6V5LpsvLVrf8h1qM/4vmuTPKuqrtvq+QEAAAAAAAAAAAAAAAAOZ6WirySpqutzz5u9LkyyOxtv8freltFnXBvtvTDJ00dnAAAAAAAAAAAAAAAAAHRnfegBNqOq9iZ5S2vtrUnOTnJWktOTPDTJjtG225J8NcnHk1yV5IqqmozBAAAAAAAAAAAAAAAAALqyktHXfqOI6yOjDwAAAAAAAAAAAAAAAMDKWxt6AAAAAAAAAAAAAAAAAAA2iL4AAAAAAAAAAAAAAAAAOiL6AgAAAAAAAAAAAAAAAOjI+tADzKu19ogkP5bk0UkelOS4JKmqVw45FwAAAAAAAAAAAAAAAMBmrGT01VprSV6a5MIkT5r8c5JK8n3RV2vtvCS/Mlp+vapetMw5AQAAAAAAAAAAAAAAAGa1ctFXa+2HkrZJ11oAACAASURBVFyW5Kz9t0bfNXZ9MFcmeVeSI5NUa+2Mqrp6KYMCAAAAAAAAAAAAAAAAbMLa0APMYhR8XZN7gq/JwGv/G74OqqpuTfK+sVu7FjogAAAAAAAAAAAAAAAAwJxWJvpqrR2R5ANJTh67/bUkv5vkx5M8L4d/01eSvH/s+rkLGxAAAAAAAAAAAAAAAABgAdaHHmAGr0hyWjbe5vXeJOdX1Z4kaa3tnPKcfxh9tySPb63tqKrbFjopAAAAAAAAAAAAAAAAwCatzJu+klw4dn1lkl37g69ZjAKvL47devy8gwEAAAAAAAAAAAAAAAAsykpEX621RyZ57Nit11TVvjmO/O+x68fMcQ4AAAAAAAAAAAAAAADAQq1E9JXk6aPvSnJjVV0753m3j13vmPMsAAAAAAAAAAAAAAAAgIVZlejrIWPX1y/gvG+NXR+zgPMAAAAAAAAAAAAAAAAAFmJVoq9jx673LOC8H1jweQAAAAAAAAAAAAAAAAALsT70AFP637HrBy3gvEcc5GwAAAAAAACA1XTik5a7HwAAAAAA2DKrEn3dMvpuSZ4yz0GttWOTjP/fi93znAcAAAAAAADQhXP/YOgJAAAAAACABVkbeoApfWzs+qTW2tPmOOvnkxwxur5r4mwAAAAAAAAAAAAAAACAQa1E9FVVX0ny72O3LtrMOa2145P8RpIafa6sqrvnnxAAAAAAAAAAAAAAAABgMVYi+hr507Hrc1trvznLw621o5O8O8nJSdro9h8taDYAAAAAAAAAAAAAAACAhVil6OvtST4/um5JLmqtvau1tvNwD7bWfiLJvyZ5Tjbe8vXxqvrQsoYFAAAAAAAAAAAAAAAA2Iz1oQeYVlXtba3tSvKRJA/IPeHXi5Psaq39W5LPje9vrb0+yQ8neV6Sh4321+j79iQ/t3XTAwAAAAAAAAAAAAAAAExnZaKvJKmqT7TWfjbJZUmOHt1eS/Kjo89+Lcnvj10nG8HX/yX5maq6VyQGAAAAAAAAAAAAAAAA0IO1oQeYVVV9IMkzklyfjaDre38e+4zHXhmtb0hyRlX90xaMCgAAAAAAAAAAAAAAADCzlYu+kqSqrk/y5CS7klyZZG/uibrGPxn7/mSSVyQ5dfQsAAAAAAAAAAAAAAAAQJfWhx5gs6qqkrwnyXtaa0cneWaShyd5cJL7J7k1yVeT/EtV3TrYoAAAAAAAAAAAAAAAAAAzWInoq7V2RJJjxm7dUVX79i+q6ltJ/nnLBwMAAAAAAAAAAAAAAABYsLWhB5jS+UluG31uTXLSsOMAAAAAAAAAAAAAAAAALMdKvOkryUOTtNH1J6vqS0MOAwAAAAAAAAAAAAAAALAsq/Kmrz2j70py85CDAAAAAAAAAAAAAAAAACzTqkRfXxl6AAAAAAAAAAAAAAAAAICtsCrR13+NXT98sCkAAAAAAAAAAAAAAAAAlmwloq+qujbJZ5O0JE9rre0YeCQAAAAAAAAAAAAAAACApViJ6Gvkz0bfRyT59SEHAQAAAAAAAAAAAAAAAFiWVYq+Lk5yTe5529frWmsvHngeAAAAAAAAAAAAAAAAgIVbH3qAaVXVvtbaC5O8L8kzkryrtfacJG+uqpuGnQ4AAAAAAABgYF++LrnzG9PvP+qByUlPXt48AAAAAADApq1M9NVa++3R5YeTPCHJcUlemeSVrbX/TPKpJLck+eYs51bVmxY5JwAAAAAAAMAg/vYNye6rpt+/86zkgg8ubx4AAAAAAGDTVib6SvI7SWpsXUna6PrUJE/c5LmiLwAAAAAAAAAAAAAAAKAbqxR9HUgdfstBtTmfBwAAAAAAAAAAAAAAAFi4VYu+2uG3AAAAAAAAAAAAAAAAAKyuVYq+nj30AAAAAAAAAAAAAAAAAADLtjLRV1V9ZOgZAAAAAAAAAAAAAAAAAJatm+irtfaWseWbqur2wYYBAAAAAAAAAAAAAAAAGEg30VeS1yap0fUfJjlk9NVaO3tseU1V3b2swQAAAAAAAAAAAAAAAAC2Sk/RV5K0bIRfh3P52N5HJrl5GQMBAAAAAAAAAAAAAAAAbKW1oQeYUxt6AAAAAAAAAAAAAAAAAIBFWvXoa9q3ggEAAAAAAAAAAAAAAACshFWPvrzpCwAAAAAAAAAAAAAAANhWVj36AgAAAAAAAAAAAAAAANhWRF8AAAAAAAAAAAAAAAAAHRF9AQAAAAAAAAAAAAAAAHRE9AUAAAAAAAAAAAAAAADQEdEXAAAAAAAAAAAAAAAAQEdEXwAAAAAAAAAAAAAAAAAdEX0BAAAAAAAAAAAAAAAAdGR96AEm1Oj7ma21U2Z4btb9Gz9YdcVmngMAAAAAAAAAAAAAAABYht6iryRpSS5b4v5xlT7/DQAAAAAAAAAAAAAAAID7qB6Dp8o9Idc0+/abZj8AAAAAAAAAAAAAAABA93qMvpJ7B13L2J8IxQAAAAAAAAAAAAAAAIAO9RR93ZzNxVsAAAAAAAAAAAAAAAAA20Y30VdVnTL0DAAAAAAAAAAAAAAAAABDWxt6AAAAAAAAAAAAAAAAAAA2iL4AAAAAAAAAAAAAAAAAOiL6AgAAAAAAAAAAAAAAAOiI6AsAAAAAAAAAAAAAAACgI6IvAAAAAAAAAAAAAAAAgI6IvgAAAAAAAAAAAAAAAAA6IvoCAAAAAAAAAAAAAAAA6IjoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjoi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoiOgLAAAAAAAAAAAAAAAAoCOiLwAAAAAAAAAAAAAAAICOiL4AAAAAAAAAAAAAAAAAOiL6AgAAAAAAAAAAAAAAAOiI6AsAAAAAAAAAAAAAAACgI6IvAAAAAAAAAAAAAAAAgI6IvgAAAAAAAAAAAAAAAAA6IvoCAAAAAAAAAAAAAAAA6IjoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjqwPPQAAAAAAAAAAC3DBB4eeAAAAAAAAWBBv+gIAAAAAAAAAAAAAAADoiOgLAAAAAAAAAAAAAAAAoCOiLwAAAAAAAAAAAAAAAICOiL4AAAAAAAAAAAAAAAAAOiL6AgAAAAAAAAAAAAAAAOiI6AsAAAAAAAAAAAAAAACgI6IvAAAAAAAAAAAAAAAAgI6IvgAAAAAAAAAAAAAAAAA6IvoCAAAAAAAAAAAAAAAA6IjoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjoi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoiOgLAAAAAAAAAAAAAAAAoCOiLwAAAAAAAAAAAAAAAICOiL4AAAAAAAAAAAAAAAAAOrI+9ABsjdba/ZKcmeQRSU5KckeS/0nyqar6woCjAQAAAAAAAAAAAAAAAGNEXwNprT0qydOTnD76fmqS48a27K6qUxbwOyckuSjJi5M86CB7rk7ylqr6y3l/DwAAAAAAAAAAAAAAAJiP6GsLtdbOSfKG3BN6HTDAWvDvnZvkkiQPOczWM5Kc0Vp7Z5JXV9WeZc8GAAAAAAAAAAAAAAAAHJjoa2udluT5W/FDo8Ds/UnuP3a7knwyyeeSHJ/kR5L84NjfX5rkB1prP11V+7ZiTgAAAAAAAGBB3vGTye6rpt+/86zkgg8ubx4AAAAAAGDT1oYegCTJXUluWtRhrbWTk7w39w6+PprkiVV1elXtqqrnJzk5yWuSfGds3wuS/N6iZgEAAAAAAAAAAAAAAABmI/raet9J8ukkb0/y6iRPS3Jcklct8DcuSrJjbH11kudW1WfGN1XVXVX1x0l2TTz/utbazgXOAwAAAAAAAAAAAAAAAExpfegB7mMuTfK2qrpz8g+ttYX8QGvtsUnOH7t1d5KXH+g396uq97fWLh177sgkb0zyioUMBQAAAAAAAAAAAAAAAEzNm762UFXddqj4akFekuSIsfV7q+rGKZ5788R6V2vtqMWNBQAAAAAAAAAAAAAAAExD9LX9nDexfsc0D1XVZ5J8bOzWMUmev6ihAAAAAAAAAAAAAAAAgOmIvraR1tqJSZ4ydmtvko/OcMTlE+tz550JAAAAAAAAAAAAAAAAmI3oa3s5dWJ9XVXtmeH5qyfWT5xzHgAAAAAAAAAAAAAAAGBGoq/t5QkT68/O+PxNhzkPAAAAAAAAAAAAAAAAWDLR1/bymIn1zTM+v3ti/eDW2o455gEAAAAAAAAAAAAAAABmJPraXo6fWN8yy8NVdUeSOyduP3CuiQAAAAAAAAAAAAAAAICZrA89AAt17MT625s449tJjhpbH7f5cTa01h6S5IQZH3v0In4bAAAAAAAAAAAAAAAAVonoa3uZjL4m39o1jW8n2XGIMzfrl5O8cUFnAQAAAAAAAAAAAAAAwLYl+treaoueAQAAAAAAoFPt1/566BHYIh9+wK05Z4b/A3z5Tbfm2f77YEB18QuGHgEAAAAAoFtrQw/AQt0xsX7AJs6YfGbyTAAAAAAAAAAAAAAAAGCJvOlre+k5+vqTJH8x4zOPTvJXC/p9AAAAAAAAAAAAAAAAWAmir+3lGxPrE2Z5uLV2bL4/+rp9rolGquqWJLfMOM8ifhoAAAAAAAAAAAAAAABWytrQA7BQN06sd874/OT+r1fVbXPMAwAAAAAAAAAAAAAAAMxI9LW9fGZi/ZgZn3/UxPr6OWYBAAAAAAAAAAAAAAAANkH0tb38x8T6ya21o2d4/szDnAcAAAAAAAAAAAAAAAAsmehrG6mqLye5buzWepKzZjjinIn138w7EwAAAAAAAAAAAAAAADAb0df2876J9QXTPNRae1ySZ4zd2pPk7xc1FAAAAAAAAAAAAAAAADAd0df2884k3x1bv7C19tgpnnv9xPrdVXXn4sYCAAAAAAAAAAAAAAAApiH62maq6sYkl47dun+SS1prRx3smdbaTyV5+ditu5NctJQBAQAAAAAAAAAAAAAAgENaH3qA+5rW2sk58L/7iRPr9dbaKQc55o6quvUQP/PGJOcl2TFan5HkH1trr6qqG8ZmOTLJLya5eOL5i6tq9yHOBwAAAAAAAAAAAAAAAJZE9LX1rkqyc4p9D0vy+YP87dLc+81c91JVX2ytvTDJ3+WeN30lyZlJrm+tfSLJ55I8MMlTk5ww8fgHkvzWFPMBAAAAAAAAAAAAAAAASyD62qaq6vLW2nlJLslG2NWSnD76HMhlSX6hqr67/AkBAAAAAAAAAAAAAACAA1kbegCWp6o+lOTUJG9Lctshtl6T5EVV9ZKq2rMlwwEAAAAAAAAAAAAAAAAH5E1fW6yqTtni37slyS+11l6T5MwkO5OcmGRPki8l+VRVfX4rZwIAAAAAAAAAAAAAAAAOTvR1H1FVdyf58NBzAAAAAAAAAAAAAAAAAIe2NvQAAAAAAAAAAAAAAAAAAGwQfQEAAAAAAAAAAAAAAAB0RPQFAAAAAAAAAAAAAAAA0BHRFwAAAAAAAAAAAAAAAEBHRF8AAAAAAAAAAAAAAAAAHRF9AQAAAAAAAAAAAAAAAHRE9AUAAAAAAAAAAAAAAADQEdEXAAAAAAAAAAAAAAAAQEdEXwAAAAAAAAAAAAAAAAAdEX0BAAAAAAAAAAAAAAAAdET0BQAAAAAAAAAAAAAAANAR0RcAAAAAAAAAAAAAAABAR0RfAAAAAAAAAAAAAAAAAB0RfQEAAAAAAAAAAAAAAAB0RPQFAAAAAAAAAAAAAAAA0BHRFwAAAAAAAAAAAAAAAEBH1oceAAAAAAAAAID5vfaul+X4u/dMvf/2OmaJ0wAAAAAAAPMQfQEAAAAAAABsA9fu2zn0CAAAAAAAwIKsDT0AAAAAAAAAAAAAAAAAABtEXwAAAAAAAAAAAAAAAAAdEX0BAAAAAAAAAAAAAAAAdET0BQAAAAAAAAAAAAAAANAR0RcAAAAAAAAAAAAAAABAR0RfAAAAAAAAAAAAAAAAAB0RfQEAAAAAAAAAAAAAAAB0RPQFAAAAAAAAAAAAAAAA0BHRFwAAAAAAAAAAAAAAAEBHRF8AAAAAAAAAAAAAAAAAHRF9AQAAAAAAAAAAAAAAAHRE9AUAAAAAAAAAAAAAAADQEdEXAAAAAAAAAAAAAAAAQEdEXwAAAAAAAAAAAAAAAAAdEX0BAAAAAAAAAAAAAAAAdET0BQAAAAAAAAAAAAAAANAR0RcAAAAAAAAAAAAAAABAR0RfAAAAAAAAAAAAAAAAAB1ZH3oAAAAAAAAAAOb31iP/PKet7Z56/6f37cyv3vWyJU4EAAAAAABslugLAAAAAAAAYBs4bW13zlm/YfoH9i5vFgAAAAAAYD5rQw8AAAAAAAAAAAAAAAAAwAbRFwAAAAAAAAAAAAAAAEBHRF8AAAAAAAAAAAAAAAAAHRF9AQAAAAAAAAAAAAAAAHRE9AUAAAAAAAAAAAAAAADQEdEXAAAAAAAAAAAAAAAAQEdEXwAAAAAAAAAAAAAAAAAdEX0BAAAAAAAAAAAAAAAAdET0BQAAAAAAAAAAAAAAANAR0RcAAAAAAAAAAAAAAABAR0RfAAAAAAAAAAAAAAAAAB0RfQEAAAAAAAAAAAAAAAB0RPQFAAAAAAAAAAAAAAAA0BHRFwAAAAAAAAAAAAAAAEBHRF8AAAAAAAAAAAAAAAAAHRF9AQAAAAAAAAAAAAAAAHRE9AUAAAAAAAAAAAAAAADQEdEXAAAAAAAAAAAAAAAAQEdEXwAAAAAAAAAAAAAAAAAdEX0BAAAAAAAAAAAAAAAAdET0BQAAAAAAAAAAAAAAANAR0RcAAAAAAAAAAAAAAABAR0RfAAAAAAAAAAAAAAAAAB0RfQEAAAAAAAAAAAAAAAB0RPQFAAAAAAAAAAAAAAAA0BHRFwAAAAAAAAAAAAAAAEBHRF8AAAAAAAAAAAAAAAAAHRF9AQAAAAAAAAAAAAAAAHRE9AUAAAAAAAAAAAAAAADQEdEXAAAAAAAAAAAAAAAAQEdEXwAAAAAAAAAAAAAAAAAdEX0BAAAAAAAAAAAAAAAAdET0BQAAAAAAAAAAAAAAANAR0RcAAAAAAAAAAAAAAABAR0RfAAAAAAAAAAAAAAAAAB0RfQEAAAAAAAAAAAAAAAB0RPQFAAAAAAAAAAAAAAAA0BHRFwAAAAAAAAAAAAAAAEBHRF8AAAAAAAAAAAAAAAAAHRF9AQAAAAAAAAAAAAAAAHRE9AUAAAAAAAAAAAAAAADQEdEXAAAAAAAAAAAAAAAAQEdEXwAAAAAAAAAAAAAAAAAdEX0BAAAAAAAAAAAAAAAAdGR96AEAAAAAAAAAmN8l3zk7l3/38VPv/8K+E5Y4DQAAAAAAMA/RFwAAAAAAAMA2cOnes4ceAQAAAAAAWJC1oQcAAAAAAAAAAAAAAAAAYIPoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjoi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoiOgLAAAAAAAAAAAAAAAAoCOiLwAAAAAAAAAAAAAAAICOiL4AAAAAAAAAAAAAAAAAOiL6AgAAAAAAAAAAAAAAAOiI6AsAAAAAAAAAAAAAAACgI6IvAAAAAAAAAAAAAAAAgI6IvgAAAAAAAAAAAAAAAAA6IvoCAAAAAAAAAAAAAAAA6IjoCwAAAAAAAAAAAAAAAKAjoi8AAAAAAAAAAAAAAACAjoi+AAAAAAAAAAAAAAAAADoi+gIAAAAAAAAAAAAAAADoiOgLAAAAAAAAAAAAAAAAoCPrQw8AAAAAAAAAwPzOX78ip6x9ber9X9h3Qi7de/YSJwIAAAAAADZL9AUAAAAAAACwDbz8flfknPUbpt5/+d7Hib4AAAAAAKBTa0MPAAAAAAAAAAAAAAAAAMAG0RcAAAAAAAAAAAAAAABAR0RfAAAAAAAAAAAAAAAAAB0RfQEAAAAAAAAAAAAAAAB0RPQFAAAAAAAAAAAAAAAA0BHRFwAAAAAAAAAAAAAAAEBHRF8AAAAAAAAAAAAAAAAAHRF9AQAAAAAAAAAAAAAAAHRE9AUAAAAAAAAAAAAAAADQEdEXAAAAAAAAAAAAAAAAQEdEXwAAAAAAAAAAAAAAAAAdEX0BAAAAAAAAAAAAAAAAdET0BQAAAAAAAAAAAAAAANAR0RcAAAAAAAAAAAAAAABAR0RfAAAAAAAAAAAAAAAAAB0RfQEAAAAAAAAAAAAAAAB0RPQFAAAAAAAAAAAAAAAA0BHRFwAAAAAAAAAAAAAAAEBHRF8AAAAAAAAAAAAAAAAAHRF9AQAAAAAAAAAAAAAAAHRE9AUAAAAAAAAAAAAAAADQEdEXAAAAAAAAAAAAAAAAQEdEXwAAAAAAAAAAAAAAAAAdEX0B8P/s3cGrZnUBxvHn9/aGmS0Em1xETCDRRJASQkE0zKwUyk2rXEwJEUGrxEUpA7YoaiMVVItWitAmSEKSmJQmoRCR0DYOtWgGmhALmyiZpu7c00Jlbjd17p1775yn934+8C7OeX/nvc/9A74cAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKDIcu4BAAAAAAAAAOzcs+sHk7VtngcAAAAAACqJvgAAAAAAAABWwN0Xjs09AQAAAAAA2CWLuQcAAAAAAAAAAAAAAAAAcInoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgyHLuAQAAAAAAAADs3M2LM7l+vLzl8+em6/Lc+sE9XAQAAAAAAFwp0RcAAAAAAADACvj2NQ/nyPLUls+fXDuUo+eP7+EiAAAAAADgSi3mHgAAAAAAAAAAAAAAAADAJaIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAiy7kHAAAAAAAAALBzR88fn3sCAAAAAACwS7zpCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKDIcu4BAAAAAAAAAOzcL679Wo4sT235FRQ+LAAAIABJREFU/Mm1Qzl6/vgeLgIAAAAAAK6UN30BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUWc49AAAAAAAAAICd+9KFY7n+Xy9v+fy56bo9XAMAAAAAAOyE6AsAAAAAAABgBTy3fnDuCQAAAAAAwC5ZzD0AAAAAAAAAAAAAAAAAgEtEXytojPHVMca0g8+Dc/8PAAAAAAAAAAAAAAAAsF+JvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAiiznHsBVcWeSp7Zx/h97NQQAAAAAAAAAAAAAAAB4c6Kv/eGFaZpOzz0CAAAAAAAAAAAAAAAAuLzF3AMAAAAAAAAAAAAAAAAAuET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9LU/fGGM8fgY4+wY459jjL+PMU6PMX45xvj6GOPjcw8EAAAAAAAAAAAAAAAAXrGcewBXxac3XV+T5B1JDiY5nOS+McYzSe6dpunxqz0OAAAAAAAAAAAAAAAAuET0xWtuTXJijPGNJMenaZp288fHGO9KcmCbj920mxsAAAAAAAAAAAAAAADg/4Hoa7WdTfJYkqeTPJ/kpSTrSW5I8uEkn0xy24bzI8l9SRZJ7t3lLV9Mcv8u/yYAAAAAAAAAAAAAAACsHNHXano6r8RcP3+TN3b9Osl3xxi3Jvlhkvdt+O4rY4ynpmn6yR7vBAAAyo17Hp17AsDrmh64Y+4JAAAAAAAAAACwZxZzD2D3TdP02DRNJ94k+Np49pkkH03yu01ffXOM8ZY9GQgAAAAAAAAAAAAAAAC8IW/6ItM0vTTGuDPJM0nGq7cPJTma5PFd+jPfT/KjbT5zUxJvGwMAAAAAAAAAAAAAAGBfEX2RJJmm6TdjjBNJbttw+/bsUvQ1TdOLSV7czjNjjMsfAgAAAAAAAJIk37rm4dyyOLPl88+uH8zdF47t4SIAAAAAAOBKib7Y6Gf57+jrQ3MNAQAAAAAAALbnlsWZHFme2voDa3u3BQAAAAAA2JnF3AOocnrT9YE5RgAAAAAAAAAAAAAAAMB+Jvpio/Obrq+dZQUAAAAAAAAAAAAAAADsY6IvNnrnpuu/zLICAAAAAAAAAAAAAAAA9jHRFxt9ZNP1n2ZZAQAAAAAAAAAAAAAAAPuY6IskyRjjbUk+ten2yRmmAAAAAAAAAAAAAAAAwL4m+uI1X07y7g3XF5P8dKYtAAAAAAAAAAAAAAAAsG+JvlbMGOPYGOPGbT7z+ST3b7r94DRNZ3ZvGQAAAAAAAAAAAAAAALAVoq/V87kkfxhjPDTG+MQY47o3OjjGuHWM8eMkP0gyNnx1NsnxPd4JAAAAAAAAAAAAAAAAvI7l3APYE9cm+cyrn/Uxxu+TnE7ytyQXk9yQ5OYkr/dGsJeS3D5N0wtXZyoAAAAAAAAAAAAAAACwkehr9S2SvP/Vz+U8keSuaZr+uLeTAAAAAAAAAAAAAAAAgDci+lo930lyNsnHkhzcwvmXk5xI8r1pmp7Yy2EAAAAAAAAAAAAAAADA5Ym+Vsw0TY8keSRJxhjXJ/lgkvckuTHJ2/PKm7/OJflrkueT/HaapovzrAUAAAAAAAAAAAAAAAA2E32tsGmaziX51dw7AAAAAAAAAAAAAAAAgK1bzD0AAAAAAAAAAAAAAAAAgEtEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEWWcw8AAAAAAAAAYOce/PfhnLz4gS2fP71+YA/XAAAAAAAAOyH6AgAAAAAAAFgBD60dnnsCAAAAAACwSxZzDwAAAAAAAAAAAAAAAADgEtEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAECR5dwDAAAAAGC7xj2Pzj0B4H9MD9wx9wQAAAAAAAAAVoQ3fQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFFnOPQAAAAAAAACAnfvs8sm8d/HnLZ8/vX4gD60d3sNFAAAAAADAlRJ9AQAAAAAAAKyAu976ZI4sT235/Mm1Q6IvAAAAAAAotZh7AAAAAAAAAAAAAAAAAACXiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAiiznHgAAAAAAAADAzj27fjBZ2+Z5AAAAAACgkugLAAAAAAAAYAXcfeHY3BMAAAAAAIBdsph7AAAAAAAAAAAAAAAA8B/27j7K1qq+D/j3dxneL5GQoJbYICgGhBoBzfKFtFBtJWmN0RBBWpdUa1qXNqFimrYSwRXbmDSJITGJmhjfEg2FRNBmJaGxmmLAhFSiSEIsxF5fgiISjMLl5cLuH3Ou99yHudxzZs6Zs+/M5/MPs/fZ+3l+rMVa8+OZ/T0PAOwi9AUAAAAAAAAAAAAAAADQEaEvAAAAAAAAAAAAAAAAgI4IfQEAAAAAAAAAAAAAAAB0ROgLAAAAAAAAAAAAAAAAoCNCXwAAAAAAAAAAAAAAAAAdEfoCAAAAAAAAAAAAAAAA6IjQFwAAAAAAAAAAAAAAAEBHlhZdAAAAAAAAAACw+dQFH1x0CQAraj/73EWXAAAAAOBNXwAAAAAAAAAAAAAAAAA9EfoCAAAAAAAAAAAAAAAA6IjQFwAAAAAAAAAAAAAAAEBHhL4AAAAAAAAAAAAAAAAAOiL0BQAAAAAAAAAAAAAAANARoS8AAAAAAAAAAAAAAACAjgh9AQAAAAAAAAAAAAAAAHRE6AsAAAAAAAAAAAAAAACgI0JfAAAAAAAAAAAAAAAAAB1ZWnQBAAAAAAAAAKzdd27ZlsPrronX39kOzScePHqOFQEAAAAAAKsl9AUAAAAAAACwAfz8ge/J6Us3Tbz+IzuOzxnbL5xjRQAAAAAAwGptWXQBAAAAAAAAAAAAAAAAAOwi9AUAAAAAAAAAAAAAAADQEaEvAAAAAAAAAAAAAAAAgI4IfQEAAAAAAAAAAAAAAAB0ROgLAAAAAAAAAAAAAAAAoCNCXwAAAAAAAAAAAAAAAAAdEfoCAAAAAAAAAAAAAAAA6IjQFwAAAAAAAAAAAAAAAEBHhL4AAAAAAAAAAAAAAAAAOiL0BQAAAAAAAAAAAAAAANARoS8AAAAAAAAAAAAAAACAjgh9AQAAAAAAAAAAAAAAAHRE6AsAAAAAAAAAAAAAAACgI0JfAAAAAAAAAAAAAAAAAB0R+gIAAAAAAAAAAAAAAADoiNAXAAAAAAAAAAAAAAAAQEeEvgAAAAAAAAAAAAAAAAA6IvQFAAAAAAAAAAAAAAAA0BGhLwAAAAAAAAAAAAAAAICOCH0BAAAAAAAAAAAAAAAAdEToCwAAAAAAAAAAAAAAAKAjQl8AAAAAAAAAAAAAAAAAHRH6AgAAAAAAAAAAAAAAAOiI0BcAAAAAAAAAAAAAAABAR4S+AAAAAAAAAAAAAAAAADoi9AUAAAAAAAAAAAAAAADQEaEvAAAAAAAAAAAAAAAAgI4IfQEAAAAAAAAAAAAAAAB0ROgLAAAAAAAAAAAAAAAAoCNCXwAAAAAAAAAAAAAAAAAdEfoCAAAAAAAAAAAAAAAA6IjQFwAAAAAAAAAAAAAAAEBHhL4AAAAAAAAAAAAAAAAAOiL0BQAAAAAAAAAAAAAAANARoS8AAAAAAAAAAAAAAACAjgh9AQAAAAAAAAAAAAAAAHRE6AsAAAAAAAAAAAAAAACgI0JfAAAAAAAAAAAAAAAAAB0R+gIAAAAAAAAAAAAAAADoiNAXAAAAAAAAAAAAAAAAQEeEvgAAAAAAAAAAAAAAAAA6IvQFAAAAAAAAAAAAAAAA0BGhLwAAAAAAAAAAAAAAAICOCH0BAAAAAAAAAAAAAAAAdEToCwAAAAAAAAAAAAAAAKAjS4suAAAAAAAAAIC1O2P7hYsuAQAAAAAAmBFv+gIAAAAAAAAAAAAAAADoiNAXAAAAAAAAAAAAAAAAQEeEvgAAAAAAAAAAAAAAAAA6IvQFAAAAAAAAAAAAAAAA0BGhLwAAAAAAAAAAAAAAAICOLC26AAAAAAAA2Ajqgg8uugQAAABmwP/fAQAAAD3wpi8AAAAAAAAAAAAAAACAjgh9AQAAAAAAAAAAAAAAAHRE6AsAAAAAAAAAAAAAAACgI0JfAAAAAAAAAAAAAAAAAB0R+gIAAAAAAAAAAAAAAADoiNAXAAAAAAAAAAAAAAAAQEeEvgAAAAAAAAAAAAAAAAA6IvQFAAAAAAAAAAAAAAAA0BGhLwAAAAAAAAAAAAAAAICOCH0BAAAAAAAAAAAAAAAAdEToCwAAAAAAAAAAAAAAAKAjQl8AAAAAAAAAAAAAAAAAHRH6AgAAAAAAAAAAAAAAAOjI0qILAAAAAAAAAGDtPnzwG3L60k0Tr//IjuNzxvYL51gRAAAAAACwWt70BQAAAAAAAAAAAAAAANARoS8AAAAAAAAAAAAAAACAjgh9AQAAAAAAAAAAAAAAAHRE6AsAAAAAAAAAAAAAAACgI0JfAAAAAAAAAAAAAAAAAB0R+gIAAAAAAAAAAAAAAADoiNAXAAAAAAAAAAAAAAAAQEeEvgAAAAAAAAAAAAAAAAA6IvQFAAAAAAAAAAAAAAAA0BGhLwAAAAAAAAAAAAAAAICOCH0BAAAAAAAAAAAAAAAAdEToCwAAAAAAAAAAAAAAAKAjQl8AAAAAAAAAAAAAAAAAHRH6AgAAAAAAAAAAAAAAAOiI0BcAAAAAAAAAAAAAAABAR4S+AAAAAAAAAAAAAAAAADoi9AUAAAAAAAAAAAAAAADQEaEvAAAAAAAAAAAAAAAAgI4IfQEAAAAAAAAAAAAAAAB0ROgLAAAAAAAAAAAAAAAAoCNCXwAAAAAAAAAAAAAAAAAdEfoCAAAAAAAAAAAAAAAA6IjQFwAAAAAAAAAAAAAAAEBHhL4AAAAAAAAAAAAAAAAAOiL0BQAAAAAAAAAAAAAAANARoS8AAAAAAAAAAAAAAACAjgh9AQAAAAAAAAAAAAAAAHRE6AsAAAAAAAAAAAAAAACgI0JfAAAAAAAAAAAAAAAAAB0R+gIAAAAAAAAAAAAAAADoiNAXAAAAAAAAAAAAAAAAQEeEvgAAAAAAAAAAAAAAAAA6IvQFAAAAAAAAAAAAAAAA0BGhLwAAAAAAAAAAAAAAAICOCH0BAAAAAAAAAAAAAAAAdEToCwAAAAAAAAAAAAAAAKAjQl8AAAAAAAAAAAAAAAAAHRH6AgAAAAAAAAAAAAAAAOiI0BcAAAAAAAAAAAAAAABAR4S+AAAAAAAAAAAAAAAAADoi9AUAAAAAAAAAAAAAAADQEaEvAAAAAAAAAAAAAAAAgI4IfQEAAAAAAAAAAAAAAAB0ROgLAAAAAAAAAAAAAAAAoCNCXwAAAAAAAAAAAAAAAAAdWVp0AQAAAAAAAACs3fn3vjiH33fXxOvvbIfOsRoAAAAAAGAthL4AAAAAAAAANoBPPHj0oksAAAAAAABmZMuiCwAAAAAAAAAAAAAAAABgF6EvAAAAAAAAAAAAAAAAgI4IfQEAAAAAAAAAAAAAAAB0ROgLAAAAAAAAAAAAAAAAoCNCXwAAAAAAAAAAAAAAAAAdEfoCAAAAAAAAAAAAAAAA6IjQFwAAAAAAAAAAAAAAAEBHhL4AAAAAAAAAAAAAAAAAOiL0BQAAAAAAAAAAAAAAANARoS8AAAAAAAAAAAAAAACAjgh9AQAAAAAAAAAAAAAAAHRE6AsAAAAAAAAAAAAAAACgI0JfAAAAAAAAAAAAAAAAAB0R+gIAAAAAAAAAAAAAAADoiNAXAAAAAAAAAAAAAAAAQEeEvgAAAAAAAAAAAAAAAAA6IvQFAAAAAAAAAAAAAAAA0BGhLwAAAAAAAAAAAAAAAICOLC26AAAAAAAAAADW7k0HvidP3rJt4vV//uDR+ff3vniOFQEAAAAAAKsl9AUAAAAAAACwATx5y7acvnTT5Bt2zK8WAAAAAABgbbYsugAAAAAAAAAAAAAAAAAAdhH6AgAAAAAAAAAAAAAAAOiI0BcAAAAAAAAAAAAAAABAR4S+AAAAAAAAAAAAAAAAADoi9AUAAAAAAAAAAAAAAADQEaEvAAAAAAAAAAAAAAAAgI4IfQEAAAAAAAAAAAAAAAB0ROgLAAAAAAAAAAAAAAAAoCNCXwAAAAAAAAAAAAAAAAAdEfoCAAAAAAAAAAAAAAAA6IjQFwAAAAAAAAAAAAAAAEBHhL4AAAAAAAAAAAAAAAAAOiL0BQAAAAAAAAAAAAAAANARoS8AAAAAAAAAAAAAAACAjgh9AQAAAAAAAAAAAAAAAHRE6AsAAAAAAAAAAAAAAACgI0JfAAAAAAAAAAAAAAAAAB0R+gIAAAAAAAAAAAAAAADoiNAXAAAAAAAAAAAAAAAAQEeEvgAAAAAAAAAAAAAAAAA6IvQFAAAAAAAAAAAAAAAA0BGhLwAAAAAAAAAAAAAAAICOCH0BAAAAAAAAAAAAAAAAdEToCwAAAAAAAAAAAAAAAKAjQl8AAAAAAAAAAAAAAAAAHRH6AgAAAAAAAAAAAAAAAOiI0BcAAAAAAAAAAAAAAABAR4S+AAAAAAAAAAAAAAAAADoi9AUAAAAAAAAAAAAAAADQkaVFF8D6qqpjkjw5yVFJtia5Ncm2JNe01u5fZG0AAAAAAAAAAAAAAACA0NemUVVnJXl1kqfvYckdVXVpkte11m5fv8oAAAAAAAAAAAAAAACAcVsWXQDzVVVbq+p9SS7LngNfSXJEklck+VRVPWddigMAAAAAAAAAAAAAAAAeQuhrA6uq/ZJcmuScwUdfTnJVloNgH0/Sxj57VJIrq+q0dSkSAAAAAAAAAAAAAAAA2I3Q18b2xiTfOza+P8m/S/KY1tpzWmsvbK2dmuSkJNeOrTswyRVV9ffWr1QAAAAAAAAAAAAAAAAgEfrasKrq2CQ/Mpj+wdbam1tr941Pttb+Ismzsnvw61uSXDTfKgEAAAAAAAAAAAAAAIAhoa+N66Ik+4+N39lau3JPi1tr25Ocl2Q8EPayUXgMAAAAAAAAAAAAAAAAWCdCXxtQVR2c5KzB9E/tbV9r7dNJrhibWkpy7gxLAwAAAAAAAAAAAAAAAPZC6Gtjek6SQ8bG17bWbppw7zsG4xfMpiQAAAAAAAAAAAAAAABgEkJfG9OZg/FHpth7dZIdY+OTq+pRa64IAAAAAAAAAAAAAAAAmIjQ18Z00mB87aQbW2t3JblhMH3imisCAAAAAAAAAAAAAAAAJiL0tTGdMBjfPOX+WwbjJ66hFgAAAAAAAAAAAAAAAGAKQl8bTFUdkeSIwfRnp7zMcP1xq68IAAAAAAAAAAAAAAAAmMbSogtg5g4fjO9urd015TVuG4wfsYZ6kiRV9cgkR0657fjxwc03T/vCMljB7dNmIAHWx4033rjoEgBWpn8CAACAfcZnDro7R+73wOTrH7g7ucf/+wMAAAAAG5OzmczCClmWA9br3tVaW697sQ6q6klJPjE29ZXW2rdOeY0fTnLJ2NTvtNZ+YI11XZzkorVcAwAAAAAAAAAAAAAAABboea21D6zHjbasx01YV1sH43tWcY3te7kmAAAAAAAAAAAAAAAAMCdCXxvfal7l5vVvAAAAAAAAAAAAAAAAsCBLiy6Amfv6YHzwKq4x3DO85mr8cpLLptyzNclTkvxdkq8m+VyS+2ZQC5vT45JcOTZ+XpJbFlQLAMC+QP8EADA5vRMAwHT0TwAA09E/AQBMR//ELB2Q5O+Pjf9ovW4s9LXxdBn6aq3dluS2VWz9k7XeG5KkqoZTt7TWblxELQAA+wL9EwDA5PROAADT0T8BAExH/wQAMB39E3Nw/SJuumURN2WuvjoYH1JVh055jUcOxneuoR4AAAAAAAAAAAAAAABgCkJfG0xr7StJ/nYw/e1TXubowfj/rr4iAAAAAAAAAAAAAAAAYBpCXxvTXw7Gj59y/7F7uR4AAAAAAAAAAAAAAAAwJ0JfG9OnBuOnT7qxqg5N8qS9XA8AAAAAAAAAAAAAAACYE6Gvjen3B+PTp9j73UmWxsbXt9a+tOaKAAAAAAAAAAAAAAAAgIkIfW1Mf5Bk+9j46VV1/IR7zxuM3z+TigAAAAAAAAAAAAAAAICJCH1tQK21u5NcPpj+sb3tq6onJHn+2NSOJO+dYWkAAAAAAAAAAAAAAADAXgh9bVwXJ7l/bHxeVX3fnhZX1UFJ3pHkgLHpt7fWbplPeQAAAAAAAAAAAAAAAMBKhL42qNbaXye5ZDB9eVW9qqrGg12pqhOSfCjJM8amv5Lk9fOtEgAAAAAAAAAxFoXtAAAgAElEQVQAAAAAABhaWnQBzNV/THJiku8ZjfdP8otJfryqPp7ka0mOTXJKkhrbd1+S57fWbl3HWgEAAAAAAAAAAAAAAIAIfW1orbUHquqFSX4tydljHz0yyZl72HZbkpe01q6ed30AAAAAAAAAAAAAAADAQwl9bXCtta8nOaeqLk9yQZKn7WHpHUkuTXJRa+3L61UfrKMvJ3n9YAwAwJ7pnwAAJqd3AgCYjv4JAGA6+icAgOnon9gQqrW26BpYR1V1TJJTkhyV5NAkX0yyLckft9buW2RtAAAAAAAAAAAAAAAAgNAXAAAAAAAAAAAAAAAAQFe2LLoAAAAAAAAAAAAAAAAAAHYR+gIAAAAAAAAAAAAAAADoiNAXAAAAAAAAAAAAAAAAQEeEvgAAAAAAAAAAAAAAAAA6IvQFAAAAAAAAAAAAAAAA0BGhLwAAAAAAAAAAAAAAAICOCH0BAAAAAAAAAAAAAAAAdEToCwAAAAAAAAAAAAAAAKAjQl8AAAAAAAAAAAAAAAAAHRH6AgAAAAAAAAAAAAAAAOiI0BcAAAAAAAAAAAAAAABAR5YWXQDAUFUdk+TJSY5KsjXJrUm2JbmmtXb/gms7JclxSb5tNPWFJJ9urV2/uKoAgM2ut/6pqg5OckKS45McOarp60nuSPKpJDe01nasd10AADv11j8BAPSu9/6pqpaSnJLkxCw/jzogy8+jvpDk00lu9DwKAFhPvfZPVXVEkqckOSbJ4UkqyVeTfD7Jda21Ly6qNgCAHjk7zqJVa23RNQAkSarqrCSvTvL0PSy5I8mlSV7XWrt9HevaP8kFSf51ksftYdnNSX4tyc/18IctAGBz6Kl/Gj3g+P4k/zjJdyXZ/2GW3zWq65LW2ifnWRcAwLie+qdJVNUhSW5Icuzgo3e11s5b/4oAgM2m9/6pqo5L8qNJzk7yTQ+zdHuSjyb5ldba+9ejNgBgc+qxf6qqynK/9Mokp+1l+fVJ3pLk14XmAYB5qqpjkzw1y4H0p2b5C30OG1uyrbX22AWU5uw4XRH6AhauqrYm+dUk50y45UtJXtJa+4P5VbVs9Iei38pyIzGJ/5PknNbazfOrCgDY7Hrqn6rqoCQ35qEHkSfxQJKfSfLjHn4AAPPUU/80jap6U5LzV/hI6AsAmKve+6fRm71el+Q/JVmaYuulrbVJ/50AACbWa/9UVY9O8t4kZ0y51RkoAGDmqur0LD/PeUqSI/ayfCGhL2fH6Y3QF7BQVbVfkg8k+d7BR1/O8jfHfDXLCemTs/w68Z3uTfLs1tpH51jbo5N8LMnRg49uzvLB5kpyYh6a4P5Mkqe11m6bV20AwObVW/80+gPW11b4qCX5qySfTXJ7kq1JTsrK4bDfSXK2bwsEAOaht/5pUlX1tCR/nGTLCh8LfQEAc9N7/1RVBye5fIX6Wpb/hvfZJHdm+XnUsUmOz65gmNAXADBzvfZPVXVkkv+d5X5o3P2jurYleTDJY5KcmuSgwbrPJzmttbZtHvUBAJtPVZ2f5E0TLl/30Jez4/Romm+8ApiHN2b3Bx73Z/kV529rrd23c7KqnpjlV2DufPX5gUmuqKp/0Fq7ddZFVdWWJFdk91/atyY5r7V21WDtmUnekeTRo6ljkry/qk5rkrUAwOx12T+NPJDkqiTvSvKh1trtwwVVdWqSn0vyD8emX5Dk4iQXzqkuAGBz67l/WlFVHZDk7dkV+PpaksPWswYAYFPrtn+qqsryNy2P13dPkp8e1feFFfYckuSfZPmtG/cNPwcAmIFe+6efz0MDX29JctHwQHJVHZ7kx5L8h+x6JvWYJG9NcuYcagMAGHdvlgPnwzDVunF2nF550xewMFV1bJKbkuw/Nv39rbUr97D+4CQfyq4HH0ny1tbav51DbS9O8u6xqTuSnNpa+397WH9Mll/P+c1j0y9qrf3WrGsDADavHvun0Zu+bs/yH6je2Fr7/AR79kvyniQvGpu+L8kTfFMgADBLPfZPk6iqNyR57Wi4LcllSV4ztsSbvgCAuei9f6qqVyZ589jUrUme1Vr7ywn3L3nbPAAwS732T1X12Cy/cWLcT7bW/vNe9r0qyS8Opp/WWvuT2VUHAGxWozd9/XSW35r1Z0muG/3zhiTPTPLhseXr+qYvZ8fp1Za9LwGYm4uy+wOPd+7pgUeStNa2Jzkvu38D38tGD09mZnQI+fWD6Vfv6Zf2qLbPZPkbesa9YZT6BgCYlR77p3uSPL619qpJAl+juh5I8rIknxubPiDJC2dYFwBA0mf/9LCq6juz/K3KO70iyV3rdX8AYNPrtn+qqm/P8ls0dronybMnDXwlicAXADAHvfZPzx2Mv5SHnodayS8l+eRergUAsFrvSvJNrbWTW2svb629rbX28dba/YssytlxeuY/KGAhRt9ac9Zg+qf2tq+19uksvzpzp6Uk586wtCQ5Lcuv2dzpC0l+Y4J97xmt3elxSZ4xw7oAgE2s1/6ptbZj0rDXYN/2LL/mfNwZs6kKAKDf/unhVNVSkl8f3TNJ3tda+731uDcAwD7QP702ydax8X9prf3FHO4DADCRzvunYYjsqtbavXvb1FprST44mD5uZlUBAJtaa+1vW2v3LLqOFTg7TreEvoBFeU6SQ8bG17bWbppw7/Bw8AtmU9I3PH8wfvfobRQPa7Rm+At+1rUBAJtXz/3Tal0/GB+1kCoAgI1qX+yffjTJKaOf70hy/jrdFwAg6bh/qqrDsvtB6LuSXDLLewAArEK3/VOSQwfjab7E8XOD8TevsRYAgN45O063hL6ARTlzMP7IFHuvTrJjbHxyVT1qzRXtspbahmu/Z02VAADs0nP/tFo7BuMDFlIFALBR7VP9U1V9R5KLxqYuaK3dNs97AgAM9Nw/nZ3d3/L12621r83w+gAAq9Fz//TFwfigKfYO196xxloAAHrn7DjdEvoCFuWkwfjaSTe21u5KcsNg+sQ1V5Skqg5M8vjB9MemuMQ1g/FxVeXwMgAwC132T2s07LtuXUgVAMBGtc/0T1W1Jcnbkxw4mvpfrbV3zut+AAB70HP/dMZg/D9neG0AgNXquX+6ejA+ZcVVKzt1ML5ujbUAAHTL2XF6J/QFLMoJg/HNU+6/ZTB+4hpqGfcdSfYbG9/WWvu7STeP1t4+NrVfkifMqDYAYHPrtX9ai7MG4z9dSBUAwEa1L/VPr0ryzNHP25P8mzneCwBgT3run75rML42Sarq4Ko6t6o+UFW3VNX2qrqzqm6uqsuq6oeq6rAZ1gEAMK7n/ulDSf5qbPzdVfWkvW2qqm9L8gNjU/cned8M6wIA6I2z43RN6AtYd1V1RJIjBtOfnfIyw/XHrb6i3QyT2tPWtdKeWdUGAGxSnfdPq1JVT82ug807vX8RtQAAG8++1D9V1WOT/Nexqde31qY9IAQAsCY9909VdXh2/xvefUn+uqr+UZIbk/xmkucmOTbJQUkekeRxWf7Cobcm+UxV/fAsagEA2Knn/ilJWmsPJnlpkntHU1uSXD56FrWiqnpUkiuSHDI2/YbW2t/Mqi4AgA45O07XlhZdALApHT4Y3z16Zfk0bhuMH7GGesYNaxveZxLzqg0A2Lx67p+mVlX7Z/nAzbirW2ve9AUAzMq+1D/9apJDRz9/IsnPzuk+AAAPp+f+6dGD8d8keUGS/57Jvuj2W5JcMvoSon/VWtsxo7oAgM2t5/4pSdJau6aq/nmS9yY5MsuHjz9ZVW9P8vtJtiVpSR6T5FlJfijLvdNOb03yE7OsCQCgQ86O0zWhL2ARtg7G21dxjeGew1ZZy1DPtQEAm9dG61H+W5KTx8b3J/FtywDALO0T/VNVvSzJs0fDB5O83CFkAGBBeu6fhgdvtib5jewKfG1L8ktJPprkK1l+48ZpSV6Z5LFj+/5lki8lec2M6gIANree+6dvaK39YVWdkOT8JP8iyTGjn89/mG03JXlda+2yWdcDANChfaKvY/MS+gIWYfjL8Z5VXGP4y3F4zdXquTYAYPPaMD1KVb00yY8Mpi9urf35IuoBADas7vunqjoqyc+MTf1Ca+26Wd4DAGAKPfdPw9DXt479fFmSl7TWhvf+WFW9Ocm7k/zg2PwFVXVla+3qGdUGAGxePfdPQzvPid47wdprklyc5A/nVAsAQG/2pb6OTWjL3pcAzF1bpz2r0XNtAMDmtU/2KFV1ZpK3DKb/R5KfXEA5AMDm0mP/9MvZdYB5W5IL53w/AIBp9NQ/7elcw3VJzl0h8LVcTGv3JDl3tG6cvgsAmIee+qdvqKqXJ7klyz3Q8RNseUaSq5J8sqqeOc/aAAA61WVfx+Yl9AUswtcH44NXcY3hnuE1V6vn2gCAzWuf71FGfxT67ST7j01/NMnZrTUPPgCAWeu6f6qqc5I8b2zqFa21u2Z1fQCAVei5f9rTdV7TWtvxcBtHn796MP1Pq+qRM6kMANjMeu6fkiRV9dokb0ty6Nj0nyV5aZLjRvMHJzkmyYuSfHhs3UlJ/qiqXjLLmgAAOtR9X8fmJvQFLELPvxx7rg0A2Lz26R6lqk5N8rtJDhmb/tMk/6y1dvf/b+/Og22tyjsB/164MigqKKASxeuA4NBGJSKgtkBsNV2Js3Eu6ZhEU00STcrSduhcnJIytrZ2x8SoLaYTpTsm+UM7KrZKKyLGOOMsAikGR0AEERDf/mNvwr6fZ9hnuue79zxP1a5yre9ba737nFOy6u7vt9euqgMA2FJGu3+qqoOTvHGm613d/b71mBsAYA1Gu39aZJ4Lu/uj8wzu7rOSfGvQ/bA1VwUAbHVj3j+lqk5K8opB944kx3T327v7m9394+7+SXdf0N2nd/dJSZ6Tm06q2DvJ25z4BQDs4Ua9rwOhL2Az/HDQvnlV3WLBOxc3/Pa9K9ZQz6xhbYesYo6Nqg0A2LrGvH9aUlXdN8kZSW490/3ZJI/s7it3RQ0AwJY05v3TG3PTvzldluR56zQvAMBajHn/tNA856xwjk8O2vdcZS0AADca8/4pSV6VpGba7+juU7u7FxuQJN39l9OxN9o7yRvWsS4AgLHx7DijJvQF7HLd/YMklw+6D1/hNHcetL+x+oqWnGe4zjw2qjYAYIsa+f5pUVV1ryT/N8ltZrrPTfKI7vaPGwDAhhnr/qmqjkzy1Jmu/5rJA0Hbl3olOXAw1QGDe1b63gAAdjLW/dPUhUmuHfRdusI5Lhm0b7v6cgAAxr1/qqpfSHLsoPvUFUzxJ0mumWkfPf2iRwCAPZFnxxk1oS9gs3xl0L77CsffdZn5VutrSW6YaR9aVbecd3BV3SrJwTNdN8R/uAGA9THW/dOCpg80fyg7f/vNV5M8vLu/v5FrAwBMjXH/tP+g/fIk58/x+v3BuCcMrn9hHWoDABjj/indfUMmn+HNGobAljO8f7/VVwQA8K9GuX9Kcr9B+1vdff68g7v76vz8yaoPWnNVAADj5NlxRk3oC9gs5w7ax807cHoU+vDbY4bzrUp3X5vkvEH33LUlOX7Q/sZ0TgCAtRrl/mmR9e6e5MNJbj/T/Y0kJ3X3dzZqXQCAgd1m/wQAMBJj3j8NQ+7Dk1CXM7z/B2uoBQDgRmPdPw33Pt9exRzDMQcveBcAwG7Os+OMndAXsFneP2ifsIKxD02ybab92XV+eHgttQ3vfd+aKgEAuMmY90//qqrukkng67CZ7m9lEvi6dCPWBABYxG6xfwIAGJEx75/+cdC+9wrH32fQvmgNtQAA3Gis+6crBu1brGKOAwbtq1ZZCwDA7sCz44yW0BewWT6Q5JqZ9nFVddScY08etP9hXSpafL5nVtXeyw2a3vOMZeYCAFitMe+fkiRVdXgmga87zXRfmEngy4M0AMCuNrr9U3d/rrtrpa8kpw6mesfgnpWedAEAsJDR7Z9mvDfJ7DckP7CqbjPPwKo6KMkxg+6PrVdhAMCWNtb90yWD9pFVdfMVzvGAQXs1p4UBAOwuPDvOaAl9AZuiu3+c5N2D7hcuN66q7pHkcTNdP03yznUsLZl8yHP+TPuO+fn/IC/kGUl+YaZ9XpKPr2NdAMAWNvL9U6rqsCQfSrJ9pvviTAJfF673egAAyxn7/gkAYGzGvH/q7h9l59r2TXLKnMNPSbLfTPvCJOeuU2kAwBY24v3TF5JcPtPeL8kz5x1cVb+anZ+BSpKz1qEuAICx8uw4oyX0BWymHUmun2mfXFWPXuzmqtovyduT7DPT/bbuPm+pRaqqB68Tlrq/u29I8keD7tdV1fYl1tie5PWD7pd298+WWgsAYIV2ZIT7p6o6NJPA191nui9NcmJ3f2upsQAAG2xHRrh/AgAYsR0Z7/7pZUmum2m/uKqOW2ad45K8dND9x93dc6wHADCPHRnZ/mn67NMwjPYnVXWfpdaYrnN4kr8YdH+8uy9dbiwAwFh4dpw9idAXsGmmDwC/YdD97qo6papm/2EjVXXPTB4kPn6m+wdJTt2g8v4mySdn2rdJcnZVPWJ4Y1U9Msknkhw00312kv+1QbUBAFvUGPdPVXVgkg8mOWqm++okz05yfVVtX8lrPWsDABjj/gkAYMzGvH/q7vOTvGama98kZ1TV71TVzQa1bauq5yQ5Izs/UP1PmTxkDQCwLka8f3p5kmtm2gdm8uzTKVV18+HNVbVPVT0ryafz86d8/acNqA8A2KKq6o6LPDN0+8Gt25Z4xujgDSjNs+OMUvkCK2AzVdXeSd6T5FcGl76b5DNJfpTkrkkekKRmrl+X5OHd/bE51hj+H92J3X3mHOPukOScJIcPLn0jyZem9dw7O59okSQXJDm2u7+z3BoAACs1tv3T9JtwPjJP7fPo7lr+LgCA+Y1t/7QaVbUjO3+74Du6++T1mh8AYNaY909VVZk8PPOkwaUrMvlc77JMHsg5NpMHm2ddnMlneBcttw4AwEqMdf9UVY9L8rdJ9h5cuiaTcNclSX6WyQPWv5TkgAWmeUl3v3q5+gAA5lVVFyS58xqnWfKzMs+OsyfZttkFAFtbd99QVb+e5K1Jnjxz6dAkj1pk2HeTPGuef/BYY22XVtW/S3J6kvvPXDpi+lrIZ5I82X+0AYCNMub9EwDAGNk/AQCszJj3T93dVfXMTMJdz5m5dOAStSWTE74e192XbGR9AMDWNNb9U3f/Q1U9Jsnbktxu5tL+SR6yzPCrk7you//7RtUHADA2nh1njPba7AIAuvuq7n5KJt/Id84St16W5M+T3Ke737+Lavt6kgdlckz5t5a49bzpPcd29zd3RW0AwNY15v0TAMAY2T8BAKzMmPdP3X1tdz83ycOTfDDJDUvcfm6Sk5McL/AFAGykse6fuvv/JLlXkhdn8nzTcr6T5LVJ7i3wBQBsRZ4dZ2yqe3hyHcDmqqq7ZHKc+WFJbpHk20kuTPLx7r5uk2s7Osk9prUlk2POv97dn968qgCArW7M+ycAgDGyfwIAWJkx75+q6pAkxya5Q5KDk/wok4eVz+7uizazNgBg6xrr/qmq7pjk6Ez2TgcmqSQ/TPK9JJ/1wDIAwM48O85mE/oCAAAAAAAAAAAAAAAAGJG9NrsAAAAAAAAAAAAAAAAAAG4i9AUAAAAAAAAAAAAAAAAwIkJfAAAAAAAAAAAAAAAAACMi9AUAAAAAAAAAAAAAAAAwIkJfAAAAAAAAAAAAAAAAACMi9AUAAAAAAAAAAAAAAAAwIkJfAAAAAAAAAAAAAAAAACMi9AUAAAAAAAAAAAAAAAAwIkJfAAAAAAAAAAAAAAAAACMi9AUAAAAAAAAAAAAAAAAwIkJfAAAAAAAAAAAAAAAAACMi9AUAAAAAAAAAAAAAAAAwIkJfAAAAAAAAAAAAAAAAACMi9AUAAAAAAAAAAAAAAAAwIkJfAAAAAAAAAAAAAAAAACMi9AUAAAAAAAAAAAAAAAAwIkJfAAAAAAAAAAAAAAAAACMi9AUAAAAAAAAAAAAAAAAwIkJfAAAAAAAAAAAAAAAAACMi9AUAAAAAAAAAAAAAAAAwIkJfAAAAAAAAAAAAAAAAACMi9AUAAAAAAAAAAAAAAAAwIkJfAAAAAAAAAAAAAAAAACMi9AUAAAAAAAAAAAAAAAAwIkJfAAAAAAAAAAAAAAAAACMi9AUAAAAAAABJquqEquqZ145l7j9z9v71nHsrq6rtg5/VaZtdEwAAAAAAwK4m9AUAAAAAAMC6qqqTB6GdM9cw1zAsdcH6VQoAAAAAAADjJPQFAAAAAADAHqGqThsExLZvdk1bUVXtGPweTtjsmgAAAAAAAHY3Ql8AAAAAAAAAAAAAAAAAIyL0BQAAAAAAAAAAAAAAADAi2za7AAAAAAAAABiD7j4zSe1uc+9puvuC+FkBAAAAAABbnJO+AAAAAAAAAAAAAAAAAEZE6AsAAAAAAAAAAAAAAABgRLZtdgEAAAAAAADA4qpqW5L7TF8HJzkgyfVJrkpycZLzkny5u29Yxdx3S3JUkjsnuVWSTnJ5kkuSfLK7v7ce72FXq6pK8oBM3tuhSfZN8r1Mfl5ndfdVG7DeMUmOSHJYkuuSfHu61kXruRYAAAAAALA1CH0BAAAAAACw26qqk5O8fZHL50+yOAu6sLu3D+Y6IclHZrpO7e4da6tw9XNX1e2SvCTJ05LcdpklflxVZyV5V3eftsSct0jyq0ken+SETAJRS9XwmSSvS3L6UqGyBd7frI8s8XtId+90saq2Jzl/pusd3X3yUnXOjD04yYuTPCPJIYvcdl1VfTjJju7+5Jzznpyd/87+Q3efVlV7JXleklOS3GWRsR9L8oJ51wIAAAAAAEiSvTa7AAAAAAAAAGBnVXVSkq8l+d0sH/hKkpsneUSSVy5z37uSnJ7k17NM4GvqAUn+OskZVbVYiGoUquqxSb6V5PlZPPCVJPskeVSSc6rqzdOT1Faz3qFJPpzkv2SRwNfUQ5N8rKqetpp1AAAAAACArclJXwAAAAAAADAiVXVEkvcm2X9w6cIkX0ly+bR9q0zCRkckudmc0w+/FPLKJF9O8t0kP0qyX5I7JrnvYP2Tkry/qo7v7mvnXGuXqarfSPKW/Pz7Oy+T9/fjJIcnOSbJ3jPXfzvJ4VX1a9390xUsuX8mv6MHTtvXJvnnJBdP579nknvN3H+zJKdV1bnd/YUVrAMAAAAAAGxRQl8AAAAAAADszt6d5Mzp/35tkifMXHtokosWGbeSgM+u9vLsHLj6cJI/6O7PL3RzVe2b5GFJHpfkhDnm/3wmp3f9Y3d/eZE5b57kaUlelZtOBHtAklOTvGiBIefkptOunpfk92euPXV6fUNU1f2S/Hl2Dnx9Lsl/7O6zB/cekuQVSZ4z0/2oTH7mL17Bsi9PcnCSa5L8UZI3dffVg7WOSfI3Se4+7bpZktcn+eUVrAMAAAAAAGxRQl8AAAAAAADstrr7qiRXJUlVXTW4fFF3X7DLi1qDqqokvzbT9fUk/36p07Wm185IckZVDU8HGzplnp9Jd/84yVur6owkZyW50/TS71TVq7v7ysH9P0lywfQ9XDGY7tsb/Ht4W5J9ZtpnJXnk9D3spLu/l+S5VfXNJH86c+mFVfWu7v7inGsenOTqJCd296cWuqG7/6mqfjnJuUluOe0+saru3t3fnHMdAAAAAABgi9pr+VsAAAAAAACAXeTgJLeYab9nqcDXUHdfs8z1C1ZSTHf/S5Lnz3TdKjuH0jZVVZ2YyQlkN7oyyZMXCnzN6u7XJnnvTNde2fl9zuP5iwW+Ztb5lyRvnumqJCeucB0AAAAAAGALEvoCAAAAAACA8Tp0swtI8p4k1820j9+sQhbwrEH7z7r7kjnHvmjQfmpV7Tvn2IuTvH3Oe987aN9/znEAAAAAAMAWJvQFAAAAAAAA4/H96etGT6yqh270olW1V1XdsqoOq6rts68khyW5bOb2e250PSvwkEH7r+cd2N1fSvKZma79khw95/APdPdP57z3K4P2GIJ8AAAAAADAyAl9AQAAAAAAwEh0dyc5faZr/yQfqarTq+qxVXXAeqxTVbeoqidX1Tur6stJrk1yZSYnWJ2/wOv2M8MPWo8a1qqqDkpyt5muK/LzAavlnD1oP3DOcV9ewRqXD9q3XsFYAAAAAABgi9q22QUAAAAAAAAAO9mR5FdyU6Bp7yRPnr5uqKrPJflEkrOSfLS7L13J5FX1m0leneSQVdY3ltDSsP5vTENzK/HVQXveU7iGQa5Fdff1VTXbdbN5xwIAAAAAAFuXk74AAAAAAABYb8PgzVo+k9p7mbn3ON39gyTHJfm7BS7vneToJKdkciLYxVV1dlU9u6qWDRNV1euTvCWrD3wl4/mMcXji2A9XMcdwzG3mHPezVawFAAAAAAAwt7F8IAMAAAAAAMCe40eD9gFrmOuWg/aVa5hrt9Hd3+vuJyb5N0lek+SLWTjwVpkExN6a5ItV9YuLzVlVT0ryvEH3l5K8LMkjkxyZ5MAk+3V3zb6SXLjW97QBatBej0DgHh8qBAAAAAAAdg/bNrsAAAAAAAAA9jiXD9oHrmGu4djh3Hu07j43yQuTvLCqDkzyoCQPTnJCJmGv2c/7jkzyoap6YHefv8B0pw7aL0vyqu6eJ+h0q5XWvgtcNmjfehVzDMdsqb8vAAAAAABgvJz0BQAAAAAAwHq7dNC+c1Xtv8q5jhq0v73KeXZ73X1Fd3+gu/9zd//bJLdL8oIkP5y57bZJXjEcW1VHJLnnTNdHu/uV8wS+pr+7tQT3Nsr3Bu17rGKOIwft766yFgAAAAAAgHUl9AUAAAAAAMB6+1qSK2baeyW5/yrnOnrQPmeJe+c5sWqP0d2XdfdrkzwyO7/3R1fV8HPAIwbt965gqeOS1EpKW8G9q9bdlyc5b6brwKq652L3L+L4QftTa6sKAAAAAABgfQh9AQAAAAAAsK6mp0edPeh+0krnqapDk5ww6P74EkOuHbT3Xemau6Pu/mSSc2e6bpnk4MFtw5O6fmGtuO0AAAahSURBVJj5nbzCknbl7+GsQfvp8w6cBsRmQ4U/SfLp9SgKAAAAAABgrYS+AAAAAAAA2AinDdq/UVV3WOEcL0qybaZ9bncvdRLTFYP2Stfbnf100B4Gry4ftI+aZ9Kq+qUkT1lhLbvy9/BXg/YpVXX7Ocf+8aB9encPf24AAAAAAACbQugLAAAAAACAjfD3Sc6bad8qybuq6pbzDK6qJyX5vUH3a5cZ9pVB+xHzrDUmVXW/qnpcVe29gjH3TfKLM12XdvfwJK/PD9rPWi4cVVV3TfK3SW42by1Tu+z30N0fTvK5ma5bZ/J3tv9S46rq+UkeMztVktevf4UAAAAAAACrI/QFAAAAAADAuuvuG5KcnJ1PoHpYkk9V1ZOqap+FxlXVXarqTUlOTzIbfHpffv5Up6H/l0l450Z/WFWvqKqHVNURVbV95nXHlb6nXWR7poG5qnpNVR1fVQuGrqpqW1U9MckHsvPnfu8Y3tvdlyQ5a6brNkk+UlXHLjDvvlX1m0nOmdbzkyRXreA9/PPg/qdU1X+rqpOq6h6D38P2Fcy7mGcnuW6mfUKSj1XVg4Y3VtXBVfVnSV43uPSa7v7COtQCAAAAAACwLrZtdgEAAAAAAADsmbr7rKo6JcmbclMo6cgk/zvJNVX1mSTfySRUdFCSeyS52wJTfSHJM7q7F7g2u94FVfX3SZ4w7donyUunr6ELMwk0jdWdk7xg+rquqr6c5OIkV2QShrt9kvtncrLVrK8meeUic74wk2DcjZ8RHpXkE1X1tSTnZhKcul2SY5IcMDPudzP5Gc72Laq7r66qNyf5w2lXJTll+lpIzTPvEut9Zvp39he56e/s6CTnVNU3k3wpk7+xO2Xy3oafkX4wycvWUgMAAAAAAMB6E/oCAAAAAABgw3T3m6vq/CT/M8mhM5f2T/LgOaZ4Z5Lf6u4fz7nkbyc5LMlxKyp03PZJcr/paykfT/L47r56oYvdfXZV/VaSv0wye3rYkdPX0A1J/qC731pVCwXnlvKSJEckefQKx61Kd7+lqi5P8vbsHE67+/S1mP+R5Lndff1G1gcAAAAAALBSey1/CwAAAAAAAKxed5+R5C5Jfi+TU7uWPLEryQ+TvCvJ0d399BUEvtLdlyV5aJLHJvmr6XqXJdldQj1nJHl8krcm+eYc93eSjyV5epKHdvd3l7y5+7RMfj5nLnHbT5L8XZJjuvuNc9Sw0DrXdvdjkjw8k5DZp5P8IJPTxDZEd787k5Pi3pDk+0vcen0mP+cHd/ezBb4AAAAAAIAxqu7lPlMDAAAAAACA9VNVByU5NskdkhyUZL8kV2QSzvpKki909882r8LxqKrbJrl3JqG52ya5eZJrk1yZSSjsc939g1XOfXgmp60dlsnJX99NckmSj3f3j9Ze/eapqr2SHJ3kqCSHJNk3kyDYRUnO2t3fHwAAAAAAsOcT+gIAAAAAAAAAAAAAAAAYkb02uwAAAAAAAAAAAAAAAAAAbiL0BQAAAAAAAAAAAAAAADAiQl8AAAAAAAAAAAAAAAAAIyL0BQAAAAAAAAAAAAAAADAiQl8AAAAAAAAAAAAAAAAAIyL0BQAAAAAAAAAAAAAAADAiQl8AAAAAAAAAAAAAAAAAIyL0BQAAAAAAAAAAAAAAADAiQl8AAAAAAAAAAAAAAAAAIyL0BQAAAAAAAAAAAAAAADAiQl8AAAAAAAAAAAAAAAAAIyL0BQAAAAAAAAAAAAAAADAiQl8AAAAAAAAAAAAAAAAAIyL0BQAAAAAAAAAAAAAAADAiQl8AAAAAAAAAAAAAAAAAIyL0BQAAAAAAAAAAAAAAADAiQl8AAAAAAAAAAAAAAAAAIyL0BQAAAAAAAAAAAAAAADAiQl8AAAAAAAAAAAAAAAAAIyL0BQAAAAAAAAAAAAAAADAiQl8AAAAAAAAAAAAAAAAAIyL0BQAAAAAAAAAAAAAAADAiQl8AAAAAAAAAAAAAAAAAIyL0BQAAAAAAAAAAAAAAADAiQl8AAAAAAAAAAAAAAAAAIyL0BQAAAAAAAAAAAAAAADAiQl8AAAAAAAAAAAAAAAAAIyL0BQAAAAAAAAAAAAAAADAiQl8AAAAAAAAAAAAAAAAAIyL0BQAAAAAAAAAAAAAAADAiQl8AAAAAAAAAAAAAAAAAIyL0BQAAAAAAAAAAAAAAADAiQl8AAAAAAAAAAAAAAAAAIyL0BQAAAAAAAAAAAAAAADAiQl8AAAAAAAAAAAAAAAAAIyL0BQAAAAAAAAAAAAAAADAi/x8QFXn3S6Wb/QAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1235,7 +1235,7 @@ "for project, project_students in matching.items():\n", " for student in project_students:\n", " inverted_matching[student.name] = project.name\n", - " student_preference_of_matching.append(student.pref_names.index(project.name))" + " student_preference_of_matching.append(student._pref_names.index(project.name))" ] }, { @@ -1499,7 +1499,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAADX0AAAcqCAYAAACQOCfjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd7isV10+/PubTkijJaGFBEKHUCI1KEFAKQKhKqBUQRRRULEgYkApFkQFqdJeiiIiIKEpJZEQQu8kgQABEhIghJAQ0lm/P9acN/s8e/beM7PbnHM+n+uaC2bNPGutp8+V89z7W621AAAAAAAAAAAAAAAAADAfdtrsCQAAAAAAAAAAAAAAAABwBaEvAAAAAAAAAAAAAAAAgDki9AUAAAAAAAAAAAAAAAAwR4S+AAAAAAAAAAAAAAAAAOaI0BcAAAAAAAAAAAAAAADAHBH6AgAAAAAAAAAAAAAAAJgjQl8AAAAAAAAAAAAAAAAAc0ToCwAAAAAAAAAAAAAAAGCOCH0BAAAAAAAAAAAAAAAAzBGhLwAAAAAAAAAAAAAAAIA5IvQFAAAAAAAAAAAAAAAAMEeEvgAAAAAAAAAAAAAAAADmiNAXAAAAAAAAAAAAAAAAwBwR+gIAAAAAAAAAAAAAAACYI0JfAAAAAAAAAAAAAAAAAHNE6AsAAAAAAAAAAAAAAABgjgh9AQAAAAAAAAAAAAAAAMwRoS8AAAAAAAAAAAAAAACAOSL0BQAAAAAAAAAAAAAAADBHhL4AAAAAAAAAAAAAAAAA5ojQFwAAAAAAAAAAAAAAAMAcEfoCAAAAAAAAAAAAAAAAmCNCXwAAAAAAAAAAAAAAAABzROgLAAAAAAAAAAAAAAAAYI4IfQEAAAAAAAAAAAAAAADMEaEvAAAAAAAAAAAAAAAAgDki9AUAAAAAAAAAAAAAAAAwR4S+AAAAAAAAAAAAAAAAAOaI0BcAAAAAAAAAAAAAAADAHBH6AgAAAACAOVRVR1ZVG7yO3Ox5AUurqoPHnLeP2cDxXTfYrlTVlarqcVX1pqo6uap+WFWXDY7xszd7ngAAAAAAsB522ewJAAAAAAAw36pqlyQ3S3LTJPuNXjsnuSDJT5KcnuS0JKe11i7epGkCANuRqnpwkpcnufpmzwUAAAAAADaD0BcAAAAAAItU1e5JHpjkcUnukuRKEyx2aVV9KcknkxyX5H9aa6pvAABTqarHJnnNZs8DAAAAAAA2006bPQEAAAAAAOZLVd0/yalJ/i3JPTNZ4CtJdk1ymyRPTPKmJN+rqn+ecMxjq6oteB07/czZkVXVkYNjqFXVkZs9L6ZnX8KOraoOSvIvS3x8RpIvJvn8gtcXN2hqAAAAAACwoVT6AgAAAAAgSVJVlf6Q9W+vUZc7JTlojfoCAHYMT87iwPmrkvxla+3MTZgPAAAAAABsCqEvAAAAAAC2eHl6la5xvp3kQ0m+nOQHSS5IsleSqyS5YZLDk9wqye7rP00AYDt21OD9Ca21pX6fAAAAAADAdkvoCwAAAACAVNVRGR/4+kySP07yodZaW6GPPZPcK8kDR68rr/U8AVhaa+3YJLXZ84BZVdV+6WHyhf5jM+YCAAAAAACbTegLAAAAAGAHV1WV5EVjPvqvJI9orV08ST+ttZ+Olvmvqto3yWOTXHvNJgoAbO+um8XBxVM2YyIAAAAAALDZhL4AAAAAALhzkoMHbWckecykga+h1tqPk/zjKucFAOxY9h3TdsGGzwIAAAAAAObATps9AQAAAAAANt29x7S9rrV2/obPBADYke0xpq1t+CwAAAAAAGAOqPQFAAAAAMD1xrR9esNnsZ2rqkpyeJIbJrlWkl2TnJPk5CSfaK1dtEHzuE6SWyW5xujVkvwgyZlJTmytnbcBc7hh+ra4dpLdk/wwyXeTHN9a+9F6jz9PquqgJD+Xfh5eOcn5SU5NcsI026KqbprkNkmumWS3JN9P8vX0bXrZGs53ryQ3SXKjJFdLsneSi5P8aDTmp1prZ63VeBuhqvZNcrskB+SKdbog/fz8apKvrMd5UVW3SN9nBybZOcnZSb6Tvs/msrJRVV0pyR3Tj4GrJLkw/frxpSSfb62taThntG/unH7NPCD9WPtuks+21k5ey7HWW1XtkeQOuWLbXZq+Ll9N8pm13nZjxt8zye3T70FXTf934h8n+XBr7ctT9nXDJDfNFfeRi9OPg9PT7yMbcj+b1eCc3z/9PnR2+jp8srX23Q2YwwHp1/5DkuyTK+7Fb2+t/XCKfnZOctv0e8g10o+tH6evz1eTfG4Djq3d0o/tm6ZfQy9JX5dT0rfnz9Zp3APS1/0ao3H3TL+Hbhn7pNbahWs01m7px8y104+ZfdLvez9I8uXW2klrMc6C8Q5M/612vdFYeyS5KP3edFaS05J8dV7vFQAAAADA2hH6AgAAAABg/zFt6/4QaVUt9xDyXVf4fItDWmunDfp9TJLXrvS9SYyZw7Nba0dP2ceVk/xZkt9IctASX7ugqv49yXNba9+cdp4TzGH/JE9Lcr8kN1/mq5dV1ceT/EuSt0z7oPZy26uqdkry6CR/kOQWS3RxeVUdm+SZrbUTJxjv6CR/ucxXPtyzdst6fWvtMSt9aVqj9bjrgqbjWmtHLvj8YUmenv7Q/zgXV9V/JHlGa+30JcbYPclvJXlKkkOX6OfcqnpZkr9urf10qpXoY+yS5BeT3DfJkUlumWTZjVpVX0/y5iT/3Fo7e8Jxjs4G7stR6OPJSR6QHkDceZmvX15Vn0xyTHoVxDMmGWOJcXdP8jtJfi/JwUt87ZKqenf6efCVKfs/MsmHB813a60du8JyR2ew/VtrteDzGyR5ZpKHpQcrxvleVb00yQtXG0SoqiOSPCPJPdJDjOO+c2qSf07y8tbapaO216VfZ7b4Vmvt4NXMZYK5HplltnlVXT992/1qlt52366qNyR5/rTbboJ9d6f0a8190sNNQ89OsmLoa3QMPG3UzyHLfPWiqvq/JP/QWnv/BP3+dZI/X+FrH1nm/P9ga+0eE4yzR5InJnloenBxyX8nr6ovJ3lDkpfMsD+OT3LEuPmNwt+PTL9m3y7jr6UnJzl+gnHuluS308+Rqyzz1bNH15Pnt9ZOmWglrhjjSUleNmi+5pZgb1VdK/33zaPSg0njnFNVr0nyvLUIdY/G/P3043Cp3xJbXDzaH+9M8sZZxq+qByV5bJK7pQezl/reGUnenuQFs94jquqq6felRya58QSLXF5VX0zyoSRvTfLx9Q74AQAAAAAbb6fNngAAAAAAAJtuXEWOcdW/mFJV3T3JV9IfaF8q8JX0B4kfn+RLVfXoZb437fi7VdVzknwjyZ9m+cBX0h+CPyI9sPP5qjpsjeZxnfSH2F+T5R/S3jnJ3ZN8rKqeuxZjz5uq2qeqjknyliwd+Ep6OOM30o+JXxzTz02TfCrJP2XpwFeS7Jf+UP7nq+q6U871YekV4N6fHlI6LCsEvkZukOQvknyrqp48zZjrrap2rqo/T6+S8tz0ykfLBb4y+vyOSf46fZ1uP+PYN0/yuST/kKUDX0kPOT0wyRdGoYtNNdqHX0rymCwdWkp61aRnpx+zN5xxrD2q6lVJPpIe6hgb+Bo5ND309alRsGruVNVj07fdY7P8tjso/T7xldF9Yy3G3rWqXpLko+nH07jA1yT97DsK852UHkhZLvCV9IpEv5TkfVV13Oj6v6mq6lFJvpZ+vbxLVv7DqDdP8oIk36iqh67RHK6Z5P/Sw2S3z2TX0nH93Kyq/ic96PPQLB/4SpKrpwchv1xVLx1VrFq1qnp4+jHxu1k68JX0qnJ/lOTkqjp8FePtVVX/lF7B8o+zcuAr6cf83dOvE2dU1dWmGO/Oo7Dv25L8SpYJfI1cO31bnFpVR9cEKeXBeI9Ir8z2nEwW+Er6venW6WH6j8VvdwAAAADYLgl9AQAAAABw1pi2h234LLYzVfUrSd6T5cNeQ3smed1aBD1GFSP+Jz18s9LDyuPcIslHq+p+q5zH9ZOcmOROUy76jFEFmO1GVe2d/qD+fadYbN8k76qqWy/o59bpoZhJHnrf4tAkx1bVcg/nD90sPTAwqz2TvGRUaWzTVdVVkrwvPby134zd7JzlwztLjX27JCckucmUY72sqp4w7Xhrpaqel+Ql6UGeSR2c5PiquvaUY10pybuS/GamC8Qcln6tOnia8dZbVf12etD1SlMsdlCS91TVNNeIcWPvnOQ/00NaM4WLRv0ckn7c/naSXWfo4heSfHJ0/G+4UcjzxUlen2SW8Nn+Sd5SVc9a5Tyumb4d77LKfu6Vfj+95wyL75y+Hz9UVau5rqeqfj89HD7N/WT/9IqNN5thvOunh5p+L9Ndixa6UiY8hqtXjD02ywezl7JHeuW9t1XVRPeKUbD2jUkmDqUBAAAAADuOlf6KGQAAAAAA278Tkjxx0HaPqnpKa+3F6zju5xf8/0OzdTDpgiSnTtDHJWs6ozVSVXdKrw4xrKjR0h/Yfk+S7yS5LP1B9F9Ofzh+S8WhlyR5xirG3y+9usu4gMmXkhyX5MtJzh217Z8eyrpPkr0XfHevJG+tqiNaa5+eYSp7J3lvegWMpK//CUk+kOTbSX6S5Brp1cUemMUPc/9ZVb2rtfbxJfo/K1ccR3ulV5ha6OujMZbz7RU+X0uvT7Kw0smn07fPN9PneWCSX0xyv2z9h/v2TPL6qrptegjrmFzxcPilST6cHib7bvoxdXCSByS5w2D86yd5fnoQZBbfSvLZ9Op1pyc5P8mF6dv+WukVR345Pai20JOq6outtZcu0/e67suq2jdLh64uTQ8UHJvkjCQ/Sr8eXSN9ne6Yvu1mdZ0kf5crAhKXjcb68Gi8i5JcM8nd0gOBw8pj/1BV/9taO20Vc5haVf1WepW4LX6Qfrx+cvT/90i/dj8wi6sI7p/kFekVcib1b0nuMab9R0n+O/18+X76drx+kvunBxOTfu68Pf26Ng+2VIbb4rL0c/QD6ft89/SqPPdPcpvBsrulB0aObK2dOOP4zxn1vcU5uWLffT89AHOdJPdOvy4vsiBos/+Yjz+efo85Jf0+slv6MXzEqM+F974D04Nst22tfWdMX2dm698D487/U9N/F4yz3G+Ff0/ykDHtZyT5YPr17IdJLk6vSHWb9PvgwoBYJXl2VX2/tfbyZcZaypYA3sEL2r6e5N1JTh6Nf7X0Y3rcXPskqh6cXiFyeH24eLQun0j/XXFe+r33kPQqV3cefP+IJP9ZVXdvrV0+w/ocleRFC96fmx6mPTH92NolfV3vn8Whqb2TvLaq7jzp2KPj8OMZH0D+afrvmeOTfC993fdJP+Zum77uB04yzoLxnpqt12+Ln6QH6T+Vfsz+JP1ed6P0+96tBt9/YJJXJvn1Fca7xWi8YTjzp+nXi0/nit9Lu6Zvw2ulh75vl+n+sAAAAAAAsA2q1sb+d3wAAAAAAHYQVXWN9DDHuGok70ryt62149d5DscmueuCpuNaa0fO2Ndjkrx20HzILIGJqhr+R/Rnt9aOXmGZ3ZN8LovDJV9N8tjW2glLLHdYelWYLaGgC7N4n9yttXbsBPN+e/qD2QudkOQPlglQbQmL/UWSp2XrB5BPS3JYa+38FcYdbq+LckWQ6+NJfqe19pkllj04PSh328FH72+t3Wu5cUfLH5keolloou21HsYc0xenBz2SHvJ6YmvtA0sse3h6IOCAwUePSPJruSLM8YH0bfq1Jfp5TJJ/zdYhgZ8luV5r7fQJ1uHoJA9K8uok71lqnMEyu6eHSP86W1eBuTjJDVprZ0zQx5FZw31ZVZXkHdk6BJP0sMurkxy90ryq6lZJHpm+bkctNZfRcfzNQfPC8+C9SX5/mX12WJJ3ZuuASJK8orW2YgXAWbfdaF//5RLzvjTJs5L8Y2vtojHLVpLfTfKP2TqsmCR3miS4VFWPSg9FDr0oyV+01sYGfqrqIUn+JVcEk4bXzW+11g5eafzVWGKbL9znH0u/9p+yxPL3TvKqXBGO3eLkJLdurV28wvhHZ/G+uzz9vL88yfOS/M0y23CP4X4dnccnZPH1+J1J/mSpdRkte60kf5/k4YOPTkxyRGvtZyuszz2S/O+g+een/R1SVU9P8reD5m8n+YMk71gqdFRVuyR5XJJ/yNZh9IuT3LG19rkVxj0+PVi1xZZ9kfSw5NOSvLmN+Uf60bm0a2vtkkH7DdPDPwtD2Zemb+cXttZ+uMx8Dk+/zg1DSc9rrf35CuvypCTDSo1bju2W5G+SPL+1dt4Syz8y/XfNMAD/wNbaO5Ybe7T8nunnz2GDjy5O3z9/01r78TLLV/q+eHSS30hycGttXHXbLd+/S/q5vPAP516Qfn69orW2ZPB4dNy+Kouv3U9srb1qmeXemH5vWei1Sf6otXbOUsstWP4WSR6afm+600aHgwEAAACA9Tf8hxcAAAAAAHYwrbUfpFeWGud+ST5SVadX1Wuq6glVdavRQ9GM9ydZHPg6Kf1h97GBryRprX0hPSS05TvjQngrqqonZnHg66VJ7rJc4Gs0h3Nba3+Y5PGDjw5O8jszTGdL6OGYJEcuFfgajX1aknumV+tY6J5VtT1UstgS+DopyZ2XCnwlyaiq2oOyuALPP+aK4NK/Jbn3ckGs1trrsjgMslOSR0045xe11g5rrf3TJIGv0ZgXjyoE/nx61ZUtds/sFcZW67eyOPB1cZJHtNaeMEkQrbX2+dbaH6dXVfnClONvOQ9eleRXVthnX0ivdnXh4KOHjwIQG2mP9O1079baC8YFvpKkdS9OD4wO/eZKg4zWa1xlnd9rrf3BUmGl0dj/mX7d/P6oaabr5jrYss+PTfKLy4WkWmvvTa/0+N3BRzdJ8sczjr9zesDz4a21Z62wDcft17/K4sDXH7XWjlpuXUb9fbe19ogkzx18dMf06kfrbhTSfN6g+aNJbtlae9tyVaZaa5e11l6Zfg1bGHTePX27TGtL4OvMJL/QWnvTuMDXaOw2JvBV6RXLFga+zk8/rp6xXOBr1Oen07f9cYOP/qCqhsHiSeyRfmz9Wmvtz5YKfI3GflOS3x7z0YrXhZHnZXHg65wk9xit+5KBr9H4rbV2fGvtCem/Y3601HdH16F/z9aBrzOT3K619sLlAl+jsT6QHto/afDRc6pqWMV0y5iV/jt7ofe21h43SeBrNO6XWmt/mX5vWvFeBgAAAABse4S+AAAAAABIehWXjy3z+bWTPDbJK9OrWJ1fVR+vqn+uqofM+ODwdqeqds3iB5wvTfLg1trZKy0/ejD/QUnOnXH8XZI8Y9D8vtbak5d6yHyJebw2vULUQk8bVX+Z1mlJfn2pwMhg3HOSPHvQvFN6GGx7cHGSX12u0sgWo4DgewfNW6oZnZLkN1trl00w5guz+Hi69wTLZaUH6ldY9gtZfCwOw4TrbnRO/umYj57SWvv3aftrrZ036cP4A59Ir8q2bJWj0RhfT/LiQfM+Se40w7ir9fTW2gcn/O7fZXHo4JcnWO7hSa46aHvLKEi2otbayZk8RLKRfpjkIRNe+76RxdV+kuR3RsfwLF7UWnvrtAtV1dWyOKD5ktbaC6fpp7X2zCyugDbuXFwPz8jW4Z0zktx3uYDSUGvts0meMmi+76iy0iweNzpWp/UrWRzAe9Q0lc9Gx+CDs/W9YI8kT51hPknygtbaf0w49muyOCh795X+eMDod+UTB80/S/Kgaau+jeZxVlu+at7js3W1vcuT3L+1NgxxLTfGOenBxoX35gPTK42Nc/VsXREzWfzba9KxL22tXTrLsgAAAADAfBP6AgAAAABgywPB90nyrgkX2SPJ7dMfiH5rkjOr6tiqetxSFQ12EEelP+C70EumfGj4e5mtmkiS/FqS6y3sLosfWp/Uc7J1pakDMlvo5NlThof+Pf1h64UOn2HcefSG1toXp/j+25Zof05r7aeTdDA6t48ZNN96VGFkvb0xWx9D+1fVjTZg3IWG50SSvL+19qoNnsefTBjS2+KNY9o2+jz4RpJ/mfTLo8DBWwbN16mq/cd9f4FhsOPyJH806bijsd+VZMnqeZvk6JWqMC3UWjs2i8/5A5M8YIaxz09y9AzLJf2esbCq3HlZHOCc1HMG73+uqq4zY18TqaobpAecFlqxKtQS3pDkmwu7z+JKmpP439ba+2ZYLunVQ4d9vWPaTkbH4vB8nqXy2jlZXEVtJcPr2R5JbrbCMr+XxZX7XtxaG1YsW7Wq2jnJHw6aX9Na+9S0fY0q4Q2vg0tt573HtE18zQAAAAAAdgxCXwAAAAAAJElaa+emP1z+qCSnTrl4JblrklcnOaWqxlUs2RGMq6A0S7jkdUkumWG5hwzeH9tam3ZfJklaa99JMgwo3XXKbi5I8uYpx/1Rkq8Nmm885bjz6tVTfv+zY9rOTw9arqafvbJ1RZN1MQpZfH/QfMf1Hnfg/mPa/naD5/C1UaBnGl9OP38W2ujz4DWTVCYb+MSYtiXnXVV7J/m5QfP7W2unTzluMv35tZ4uSg8MTeuVY9omqsw38JbW2k9mWC5ZfB95S2vt/Bn7+kh6aGyhae8j03pgkp0XvD8/yURVqYZGx/+w4uIs85/p2KyqA5McMWieqRLUyLsH7288GmMabx5VJZ3GVNeFkeG1+/Ik/zDluJO6XRaHg9dyOx+xRGWzcQGvu6xiXAAAAABgOyT0BQAAAADA/691b0hy0yT3S/JvWfzA9koOSvLGqnptVe2+1nOcc8NAy8nTVPnaorV2TpJjp1lmVLnp5wfNJ0w79sA3B+9vM+XyJ7bWZgmvfX3wft8Z+pg3P03y6SmX+daYthNHFZWmcdqYtv2m7CPV/VxV/VZVvaSq3lFVH6yqT1bV58a9klx10M1B0447q9E5MQxonNFa+9BGzWHk/6ZdYBQ2OW3QvNHnwSwVdYbnbrL8vG+fxf9e+Z4Zxt2yXFvxWxvj2BkrS30gi++5swQlPzzDMqmqq2dxBaaZ7yOttcuTfGfQPO19ZFrDc/4zo4qHs1rtfTCZcX9kfMBsNff14bokya2n7GPdrwuj4/Dmw3Fba9+eYexJDLfzxUk+s4r+htt5rySHDr80ukacMmh+RlXdbxVjAwAAAADbmXF/UQoAAAAAgB1ca+2yJMckOaaqdk5/KPgu6RVZbpteoWHnpXtIkjwmyZWTPGz9Zjo/qmrPJDcZNE8b8hku+0tTfP+mWRyweXRV/coq5jAM6Fx9yuWHFbsmNQxLbA+hr2/NENYaV11nlspt4/qZeJtW1b5J/jDJbyQ5eIbxF5o6bLYKN0hyjUHbaoOQs9hWz4NZ5j0u6LTcvG85pm2msEVr7byq+nrGhCs2wUzX/tbaz6rq89k6wHvTqtqztfbTKbqaNbBy5/TKnQs9s6qeOmN/SXLI4P2095FpDStjHTYKoM7qaoP3V6mqnaaogndGa21Y8XBSw3VJ+u+yGbtbtG+TjbmvT3tduGMWz/WjM4w7qeF23inJp1axncf9wYOltvNrk7xgwfs9k/x3VX00yf+X5JjW2ndnnQgAAAAAsO0T+gIAAAAAYFmjSh2fzoKH2EcBpzskuVuSh2Zx2GmLh1bVU1prL173iW6+a2TxQ8rDCg7TOHnK719nibZx7bMaPvy+knNmHGcYjtp1xn7myY+mXaC1dumYh86n7ieLt2cy4TatqgckeUWSA2YYd5yNDC6Nm/MXN3D8LbbV82CWeU97rI27ppw2w7hbfDPzEfpa7bV/Yeir0gMj01Q5mjVkNO5+cYMZ+1rKtPeRiY1+m1xl0HyVMW2rsdOovx9O+P1Z90Uyfn/cahX9jbMR9/Vprwsbfe0ebudds3Hb+cVJfjWLK8gdMXqlqr6a5Pgknxr975daa/NS1RAAAAAAWGc7bfYEAAAAAADY9rTWftpa+3Br7VmttZsmuVeSLy/x9WeOHsTe3o2rYDSuusWkpl123R6kX+BKU35/2spW27O12hYbtk2r6uFJ3pa1C3wlGxtcGla+S2YLza3WNnkezFCZbhbjwjgbed1cL2u9DtNWyDtvxrHn8T4yjY2YfzLdOsy6L5L53B8bcV3Y6Gv3pm3nUQW/eyc5bpllb5TkcUlemuQLSX5QVa+vqntVlec9AAAAAGA75z8CAgAAAACwaq219ye5XZL3jvl4/yT339gZbYq9x7RdsIr+pl12LSuZsIOrqhskeW2SnQcfXZrk7UmeluQeSW6c/oD+lZPs1Fqrha8k39rAaQ/tM6btJxs+C5az+5i2S1bR38WrWHYtrfW1f9z9ZUmttctmHHtbv4/M4/xn3RfJfK7PRtjoa/embufW2veS/GKSRyb53ASLXC3Jo9J/c3+xqnaE39gAAAAAsMPaZbMnAAAAAADA9qG1dmFV/VqSrye5+uDjuyf5942f1YY6f0zblVfR37TLXjim7ajW2jtXMQd2XC/I4kDO+5I8rrV25hT9rGdVn5WMq7Cz14bPguWMq2q1d2av6jMuLLIZ1vraP+7+sh7G3Udu0VpbqpLnvBk3/79vrT19w2eyNobrc1Zr7ZqbMpONtdHX7guzdbDyxNbandZxvEVaaz9L8uYkb66qmye5T5K7JrlTxlc+2+JmSd5ZVf/UWnvq+s8UAAAAANhoKn0BAAAAALBmWmvnJXndmI9uvMFTWbWq2nXKRc4d07bvKqYw7bJnj2k7ZBXjs4Oqqisnud+g+TNJ7j9l4CvZ3AoqPxzTtqNWzplX48JdV1tFf6tZdi2t9bV/3P1lPWzr95Ftff5Dw/U5sKo2M0i7UTb62j3czpt6zLTWvtxa+7vW2q+k/xGFmyR5Qnoo7JwlFvv9qvrDjZojAAAAALBxhL4AAAAAAFhrnxjTNqz8tZ4uHdM2bYArmT488IMkbdC2mrDbTab8/vfGtB22ivHZcf1CFlf5en5rbdy5taSqum5mO/fWyllj2pwT8+U7Y9puOUtHVVVJbrG66ayZG61i2eF9o2V8mGk9bOv3kXOTXDJo25bmPzRuf8x0fmxjNvraPdzOB1TV/us43sRad0pr7V9ba49MckCSo5J8dszXn1VVqwmcAgAAAABzSOgLAAAAAIC19uMxbZdt4PjnjWnbZ4Z+Dp3my621n2d755MAACAASURBVCY5edB8+AzjzrrsF5JcNGi71yrGZ8d13TFtH5mhnzutdiKr0Vr7RhY/zH/nzZgLSxoXEr7jjH3dLLNd69fDTNf+qtopya0HzSeN7i8bYdz+uPcGjb1qrbWW5JOD5htW1Q02Yz5rYJveH6twYhaH6I9Yx/G2me3cWrustfbO9OvkBwcf75Pknhs/KwAAAABgPQl9AQAAAACw1g4Y0zauWsVCw1DYzqsY/9wxbdefoZ+7zrDMiYP3N6mqaSt2paquMu34rbWLkhw/aL5mVd192vG3UeOChas5jnZk4yrznTNDP7864/hruS+PG7y/1g50TmwLTsniY+vXRlW7pvXINZjPWrnbjBV37pHFwbXhfWXdtNZOTXLaoPlO21ho6n/HtP36hs9ibYxbl4ePwoHbrdbaOUm+OGj+hao6aJ2G3OaOmdbaJUn+fMxH23JlOwAAAABgjO36PwgDAAAAALApfnFM29dXWOb8wfu9VjH+KWPabj9NB1W1c5LHzTD2e8e0PWGGfh6dZPcZlnvnmLajZ+hnWzQ8hpLVHUc7sgvGtI0Lgi1pFBJ5wIzjr+W+fPuYtqfP2BdrbFSZ6a2D5oMyZWBwFJT9zbWa1xrYI7OFRsbdL8bdV9bT8D6yc5K/2OA5rMa4++BTq2q/DZ/JKrXWvp7ky4PmGyd5xCZMZ6MNr907J/nDdRrr+CQ/HLTdo6rusk7jrZVhddkkmSVsCgAAAADMMaEvAAAAAIAdXFXdr6oOWaO+bpDkYWM+OmaFRX80eH/IjJVe0lr7fpLTB80PGwW5JvXkzFYd7B1ZXNXsd6vqxpN2UFXXSPKsGcZOklcnOWvQdpeq+pMZ+9uWDI+hZLZ9SHLmmLZfmnThURWa12T26lxruS/fmuQbg7ZfrqpZwpisj5eNafuHqtp/ij5elOQaazSftXL0KIw2kar6+SQPGTSflfEhpvX090kuHrQ9uqqGc5tLrbXPJXnPoHm/JK+f9XfFJnvumLZ/WqvfbXPsJVkcQP7dqpqlCuuyWmsXJ3nhmI9eP805vAmuOabtBxs+CwAAAABgXQl9AQAAAABw3yRfrarXVtVNZu2kqq6VXplhz8FHP0jygRUW/+Lg/b5J7jzrXLK4MspBSZ46yYJVdfckfzvLoK21S5O8dNC8W5K3VdXVJhh7zyT/lWSmh4xbaxdm/APiz6uq352lz9G87lVVw/WaN99J8uNB2302YyLbgY+MaXtmVe2z0oKjwNcrkvzCKsZfs33ZWrs848+JF1fVVNWkkqSq9qmqq84yF8ZrrX0+yX8Pmq+Z5AOj+8qSqmrnqnphenXEeXP1JG+tqhWrNlbVwUnePOajl43uKxumtXZ6kpeP+eh1VXXULH2O9tPDq+o5q5vdxJ6V5GeDtvsnefUk+2OcqrplVb1xkuvgGntLFv9GumqS900TKF+oqvatqj+b5Rq4UVprZ2fx76mdkvxXVR0xbX9VdeAK+/7FWRzav36S91bVuHDVpGO+YKmgWlXdtap+t6quPEv/SX5/TNvnZ+wLAAAAAJhTQl8AAAAAACTJLkkek+Skqjpx9BDqRA+5VtWeVfWkJJ9NcssxX3l6a+2iFbo5YUzba6rqbqMQybT+dUzb31TVby1V6aOq9hhVxHpvkt2TrDTnpfxtklMGbTdPcnxV3XGpharqFkmOTXKXUdOFM47/L1lcGWan9JDL26vqVpN0UlWHVNWfVNUX0rfJakI866611pJ8bNB8j6p6/pQVg3Z4rbUzkxw/aD40yfur6npLLVdVN0ryviS/OWq6LMlPZxh/Tfdla+01Sd42aN49yb9V1Suq6tor9VFVN6+qFyT5dpLDpp0DK3pSFld4u2X6PelPh8fd6L7z4CSfTPIHo+ZLk3x63Wc6mS33j7sn+eDo3Birqn45yf8luc7go5MzYwB5DfxZFm/LK6cHbl45aZWpUVDqr5Kcmh5q25Bzp7X26fR1GHpskhOr6r6T9FNVV62qx1fV/6aHaR6ZDf739dbaz5L8apLzBh/dKMknR/fpvVfqZxS8u0dVvTL9Ova8zF91vKFnJfnMoO2q6YHQv66qfZdbuLo7jdb5tCwTqG+t/SR9Ow9DlndI8pmqetKEAc7dq+oBVfWm0Zh/kmSp/XPN9LDZ6VX10tH+2WWCMfapqhelXzcXOjvJ+1daHgAAAADYtqz4Hw0BAAAAANjh3GH0enFVnZbk40m+kv4w6Q+TtCT7JLle+gPcd09/GHyc/2itvX6lAVtrH6+qryS52YLmGyX5UJILq+r0jA+P3Ke19t0x/X2iqt6Z5AELmndOr17y5Kp6e/pD6JekP/R8eHoloYWBkqdmfLWTldbloqp6bHqAa7cFH90kyQlVdUKS96RXM/pZkmsn+aUkR47mmCSXJ3l2khfMMH6rql9PD+0MA15HJTmqqj4/mt/X0vdpkuyXXpnmsPTtcf1px54Dr0lyr0Hbnyb506o6M8k56UGkhf67tfasjZjcNuYvk3xw0HbH9KqA70w/vs5Kskf6MXzPJD+frf/t6TlJHp9+rZjWWu/LxyW5aba+xlSSJyZ57Oi8/HCS76aHj66cK86HO6Zfj1gnrbUzq+o30isdLrxu7pPk+UmeX1Vnp1eO3DvJAUl2HXTz5+kB28MXtF2+bpNe3rOT/HX6Nf2IJF+uqg+kn1NnpK/jwUnul63nu8UlSR47QWB6XbTWLhxV9Tox/fzeopI8IcnjquqTSY5LD7ack37u75e+b26dvl4rBirXS2vtb6vqZllcBe7WSY6pqm+ln/OfT78PXpReZfQq6deKw9OPp52zyVprJ1XVr6UHuhce93un/054ZlV9JD1Af2Z6pcQ909fluklum74+G12lbFVGv6cekv47dGFAbY/08/1pVXVs+v3oe+nBuL2THJi+n++cxWHK5cY7rqqenF6tcuEfCDgwycuSPLeqjhvN5/tJzk+yV/p2PiR9G986iyvermS/JL89ev24qj6T5HPp59aPklww6vM6ozF+KeP35dNaa5dMOTYAAAAAMOeEvgAAAAAAWM7Bo9csXp8e+JjUU5L8TxY/YH2lJDdcYpndlmhPegWE2yW51qD9lhlfkWyhv2utvaKqpg59JUlr7WOjKjRvG8yx0gMAR6zQxVOSnDTL2KPxf1JVP5/ktUkePOYrt8riQNj24G3poYq7j/nsmqPX0OfWdUbbqNbah0aVrf508NFuSR46ei3njemhl2muAQut6b5srZ1XVXdJ8tYxfe6a5K6jF5uktfbuqnpQkv9MD3UMXX30GueFrbW/q6o3DtqH1ZE2yolJfi+98mLS/032XlkcZBznkiQPbq2duE5zm0hr7fSqul2S/8gVFSi32Dk9DLlk9co58dgk30gPsQ4rdF0vvcLpNqG19t6qulv6/hj+rtkryb1Hr+1Ka+2bVXWHJO9KD+EttGd6YP8+azjeq6rqB+m/YYfBqqsmeeDotV72TXK30Wsaz2+tDa9/AAAAAMB2YPgftwEAAAAA2PG8Icmbkpy7Rv19I8kDWmuPaa1NXGWltfah9Adpv7cWk2itnZX+oPqpUyx2SZI/aq398RqMf0yS+6ZX9JrUhUke31p72RqMf35r7SHplSPOWGV3304PkM211trPkjwkyZs3ey7biWekB7faFMtcnuR5SR7dWptmua2sx75srf0oPXRzdHqFlllclM0LEm33WmvvTq+u9oEJF/lekke21v5o9P4qg89/vFZzm1Zr7aXpVbGmqdb1nST3Hd0/Nl1r7cz08Mmz0isOrcZX0kOXG6Z1z0mvjPSZVXb34ySvyviqoxuitfbR9Kpdb8jiSofT+Fl6qPaEtZjXemutfTO9atfLklw6Yzfnpv/Gm2S8dyT5ufSg2cz3sfS5vjPJl5eZ08Wr6D/p18BHtdaescp+AAAAAIA5JfQFAAAAALCDa619tLX260n2T6+A85wkH0rykym6+V56cOy+SW7cWvvvGefyrvTKYg9L8uokn0hyVpILMsODt6MHhQ9LD6+cucxXL0nyliS3aa29cNpxlhn/A0luluS5WT78dWF6VYlbttZes1bjj+bw8iTXTw8ffCCTPbD+sySfTfJ36Q/8H7yW22U9tdbOba09MslN0sM9xyT5enpgYdaHxXdIo8DEX6SHJ9+bflws5afpAa3DW2t/PgptrXb8Nd+XrbXLWmvPTnJIkr9K8oWsfG25JMmxSZ6W5NqttdWGR1hGa+1rrbV7Jrl9+jXok0m+m77PL0jytfTw0KPTr00Lg4EHDro7Z/1nvLTW2r+m34PekH6dX8p30sOSNxvdN+bG6Jz5q/TKWE9P8tFMdv5dOvrus5PcrrV289bam9ZvpktrrX2wtXZ4eiWs/0xy9oSLfiM96PWQJAe21p7YWpsoOLReWmvfa609Kr0C6osyeVXQ89JDTL+Xft7cY1u6lrXWzmut/U6SGyV5cfq9YCUXJHl3kselX7snvh6MrkP3Tz9/X5nkmxMuenb69emJozGPGv0WHTfG+9KrFz4oycvT70eT3Dtb+u/jpyW5YWvtDRPODQAAAADYBtUq/sgiAAAAAADbsaqqJNdOf7D4oCT7JNk7/WHT89Ir5ZyZ5Iujqlpzr6oOS3Kr9Ids90yv3HFKko+11qYJuc0ydqVXjrhRkmsm2S09kHByko+31pYLBKzlPHZLcniS66Rvh6ukVww5P/1h5a8m+epGzYdtR1Xtlx4AOyhXHDdnp59Dn2ytrbZiyaaoqgPTq+fsn35O7JYeet2ybie11jatug+TqaorpV/Td13Q/FettWet87hHJvnwoPlurbVjx8zvDukhxqumV/g5Mz3E9qnVVMbbaFW1Z5Lbpd/LrpZkv/T1OT/J99PPm6+11uYyaDu6H988/ffN1UavndLnf256oOik1tpaVUBdV1V1QPo17Orp67JXeuDpvCSnp//O+Pa2dIxNoqoOSQ9lXX302rIPz0o/Bk9ey2Owqg5aMN7VkuyRfq84L8m3RuN9d5Vj7JV+XF4/yQHpv7t3GY3z4/TqtV9orak4CQAAAAA7CKEvAAAAAAAAYJtWVUclefug+X6ttWPWedwjM0HoCwAAAAAAYFo7bfYEAAAAAAAAAFbp6YP3lyb52GZMBAAAAAAAYC0IfQEAAAAAAADbrKp6epI7D5r/q7X2w82YDwAAAAAAwFoQ+gIAAAAAAAA2VVUdUVWPqardp1hmp6r6iyQvGPPxS9ZudgAAAAAAABtP6AsAAAAAAADYbNdN8tokp1fVv1bVUVV13XFfrKobVdWTk5yU5DlZ/G+e/9paO359pwsAAAAAALC+dtnsCQAAAAAAAACMXD3J40evVNX5SX6Y5CdJ9hp9vtcyy38hye+v8xwBAAAAAADWndAXAAAAAAAAMK/2Hr0m8Z4kD2+t/XQd5wMAAAAAALAhdtrsCQAAAAAAAAA7vK8m+dSMy56U5DFJ7tdaO2/NZgQAAAAAALCJVPoCAAAAAAAANlVr7TNJbldV101y1yR3THKTJNdLcvUkeyapJOcmOSfJt5Icn+S4JB9prbXNmDcAAAAAAMB6Kf/+AQAAAAAAAAAAAAAAADA/dtrsCQAAAAAAAAAAAAAAAABwBaEvAAAAAAAAAAAAAAAAgDki9AUAAAAAAAAAAAAAAAAwR4S+AAAAAAAAAAAAAAAAAOaI0BcAAAAAAAAAAAAAAADAHBH6AgAAAAAAAAAAAAAAAJgjQl8AAAAAAAAAAAAAAAAAc0ToCwAAAAAAAAAAAAAAAGCOCH0BAAAAAAAAAAAAAAAAzBGhLwAAAAAAAAAAAAAAAIA5IvQFAAAAAAAAAAAAAAAAMEeEvgAAAAAAAAAAAAAAAADmyC6bPQFYSlXtm+SuC5q+k+SSTZoOAAAAAAAAAAAAAAAAO5bdklx3wfvjWms/3oiBhb6YZ3dN8s7NngQAAAAAAAAAAAAAAAAkeUCS/96IgXbaiEEAAAAAAAAAAAAAAAAAmIzQFwAAAAAAAAAAAAAAAMAc2WWzJwDL+M7CN+94xzty6KGHbtZcAAAAAAAAAAAAAAAA2IGceuqpOeqooxY2fWep7641oS/m2SUL3xx66KG5+c1vvllzAQAAAAAAAAAAAAAAYMd2ycpfWRs7bdRAAAAAAAAAAAAAAAAAAKxM6AsAAAAAAAAAAAAAAABgjgh9AQAAAAAAAAAAAAAAAMwRoS8AAAAAAAAAAAAAAACAOSL0BQAAAAAAAAAAAAAAADBHhL4AAAAAAAAAAAAAAAAA5ojQFwAAAAAAAAAAAAAAAMAcEfoCAAAAAAAAAAAAAAAAmCNCXwAAAAAAAAAAAAAAAABzROgLAAAAAAAAAAAAAAAAYI4IfQEAAAAAAAAAAAAAAADMEaEvAAAAAAAAAAAAAAAAgDki9AUAAAAAAAAAAAAAAAAwR4S+AAAAAAAAAAAAAAAAAOaI0BcAAAAAAAAAAAAAAADAHBH6AgAAAAAAAAAAAAAAAJgjQl8AAAAAAAAAAAAAAAAAc0ToCwAAAAAAAAAAAAAAAGCOCH0BAAAAAAAAAAAAAAAAzBGhLwAAAAAAAAAAAAAAAIA5IvQFAAAAAAAAAAAAAAAAMEeEvgAAAAAAAAAAAAAAAADmiNAXAAAAAAAAAAAAAAAAwBwR+gIAAAAAAAAAAAAAAACYI0JfAAAAAAAAAAAAAAAAAHNE6AsAAAAAAAAAAAAAAABgjgh9AQAAAAAAAAAAAAAAAMwRoS8AAAAAAAAAAAAAAACAOSL0BQAAAAAAAAAAAAAAADBHhL4AAAAAAAAAAAAAAAAA5ojQFwAAAAAAAAAAAAAAAMAcEfoCAAAAAAAAAAAAAAAAmCNCXwAAAAAAAAAAAAAAAABzROgLAAAAAAAAAAAAAAAAYI4IfQEAAAAAAAAAAAAAAADMEaEvAAAAAAAAAAAAAAAAgDki9AUAAAAAAAAAAAAAAAAwR4S+AAAAAAAAAAAAAAD+H3v3Erp7Ve9x/LN2/5OWlVoZdk6kdKGwKIqg0DOoiKCgK2Fggy4UYRFGBTWoVAiigQ4adA7EqYRz43S6UXQjyElSg0oicmBZRhkYZZGbbaatBv3Bx6e9dT+X///5uH29YMOz1v+31u8rjt/8AACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACKiL4AAAAAAAAAAAAAAAAAioi+AAAAAAAAAAAAAAAAAIqIvgAAAAAAAAAAAAAAAACK7O16AAAAgFWN93551yNAtXnVK3Y9AgAAAAAAAAAAABvwpS8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAL069BwAAIABJREFUAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAioi8AAAAAAAAAAAAAAACAIqIvAAAAAAAAAAAAAAAAgCKiLwAAAAAAAAAAAAAAAIAie7segMMxxvinJBcleWKSxye5PcktSX445/zFDkcDAAAAAAAAAAAAAAAAFoi+Co0x/jfJ65e2b55znr/GXeckuXL/vkef4Jnrklw95/zcqvcDAAAAAAAAAAAAAAAA23Vk1wNwb2OMV+Yfg69173pZkh8nuTQnCL72XZjk/8cY/znGOGMb7wYAAAAAAAAAAAAAAADW40tfRcYYZyX5ty3d9cIkX0zy0IXtmeQHSW5KclaS5yR57MLf35DkUWOMV885/7qNOQAAAAAAAAAAAAAAAIDV+NJXl6uS/PP+7z+te8kY4wlJPp97B1/fSfKMOefz5pwXzzlfmuQJSS5L8peF516R5CPrvhsAAAAAAAAAAAAAAADYjOirxBjjJUnesr+8K8mHN7juyiRnL6yvS/KSOecNiw/NOf885/x4kouXzr9njHHeBu8HAAAAAAAAAAAAAAAA1iT6KjDGOCPJJxe2rk5y/Zp3PTXJGxe27kzypjnnHSc6M+f8YpJrFrZOS3L5Ou8HAAAAAAAAAAAAAAAANiP66vDRJOfv/74pyRUb3HVJkocsrD8/57zxJM59bGl98Rjj9A3mAAAAAAAAAAAAAAAAANYg+tqxMcaFSd65sPX2OeexDa58zdL60ydzaM55Q5LvLWydkeSlG8wBAAAAAAAAAAAAAAAArEH0tUNjjNOSfCr3/H+4Zs75rQ3uOzfJsxe27krynRWuuHZp/bJ1ZwEAAAAAAAAAAAAAAADWI/rarSuSPG3/92+TvHfD+565tP7RnPPoCuevW1o/Y8N5AAAAAAAAAAAAAAAAgBWJvnZkjPHcJO9b2Hr3nPN3G157wdL6pyue/9n93AcAAAAAAAAAAAAAAAAcMNHXDowx9pJ8Ksne/tbX55z/vYWrn7K0/uWK529eWj9mjHH2BvMAAAAAAAAAAAAAAAAAKxJ97cYHkjx7//fRJJdu6d6zlta3rnJ4znl7kjuWts/caCIAAAAAAAAAAAAAAABgJXv3/wjbNMa4IMkHF7Y+NOf8xZauf8TS+tgadxxLcvrC+pHrj3OPMcbjkpyz4rEnb+PdAAAAAAAAAAAAAAAA8EAi+jpEY4wjSf4jyWn7W99P8vEtvmI5+lr+atfJOJbk7Pu4c13vSHL5lu4CAAAAAAAAAAAAAACAU9aRXQ/wIHNZkhfs/74ryVvnnHcf4PvmIZ0BAAAAAAAAAAAAAAAAtkT0dUjGGE9K8pGFravnnNdv+TW3L60ftsYdy2eW7wQAAAAAAAAAAAAAAAAO0N6uB3gwGGOMJJ9M8vD9rZuSXHEAr2qOvj6R5LMrnnlyki9t6f0AAAAAAAAAAAAAAADwgCD6OhxvS/LihfXb55zHDuA9f1xan7PK4THGI/KP0dcfNppo35zz1iS3rjjPNl4NAAAAAAAAAAAAAAAADyiir8Nx5cLvryb56Rjj/Ps5c+7Seu84Z26Zc965sL5x6e/nneR8J3r+93PO21a8AwAAAAAAAAAAAAAAANiA6OtwLH496+VJfr7GHf9ynHPPSXL9wvqGpb8/ZcV3PGlp/ZMVzwMAAAAAAAAAAAAAAAAbOrLrAdiqHy+tnzXGePgK5y+6n/sAAAAAAAAAAAAAAACAAyb6OoXMOX+T5EcLW3tJ/nWFK164tP7apjMBAAAAAAAAAAAAAAAAqxF9HYI551lzzrHKvyQvWrrm5uM8d/1xXveFpfWbT2bGMcbTkzx/Yetokm+e9H8kAAAAAAAAAAAAAAAAsBWir1PPfyW5e2H92jHGU0/i3PuX1v8357xje2MBAAAAAAAAAAAAAAAAJ0P0dYqZc96Y5JqFrYcm+cwY4/QTnRljvCrJmxa27kxy5YEMCAAAAAAAAAAAAAAAANwn0dep6fIkty2sL0zyrTHG0xcfGmOcNsZ4V5LPLp2/as558wHPCAAAAAAAAAAAAAAAABzH3q4HYPvmnL8aY7w2yTfy9y99JclFSX4yxvh+kpuSnJnkuUnOWTr+lSQfOqxZAQAAAAAAAAAAAAAAgHsTfZ2i5pzXjjFek+QzuSfsGkmet//veP4nydvmnHcf/IQAAAAAAAAAAAAAAADA8RzZ9QAcnDnnV5M8M8m/J7ntPh79bpLXzTkvmXMePZThAAAAAAAAAAAAAAAAgOPypa9Sc85r8/cvc216z61JLh1jXJbkoiTnJTk3ydEkv07ywznnzzd9DwAAAAAAAAAAAAAAALAdoq8HiTnnnUm+ves5AAAAAAAAAAAAAAAAgPt2ZNcDAAAAAAAAAAAAAAAAAHAP0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwAAAAAAAAAAAAAAAEAR0RcAAAAAAAAAAAAAAABAEdEXAAAAAAAAAAAAAAAAQBHRFwDwN/buNvT3e47j+OtzzjSbHZux5SKNDWkubsmmuRpRUkYpEcnFLSNa4gZSrm5wA7mIKHckobCSi4RprWVuoMnVXLRMOeVgZpaZjxvnLL99/f/n///9z287r789HnVufD6/z/fz/p5zbj/7AgAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUOSUk/0C91ZjjNOSPDbJeUkemuRQkvskuTnJn5Jcn+Snc85/bWjegSQXJTn/2Lx/Jrnp2IyfbWIGAAAAAAAAAAAAAAAAcOJEX/egMcarkjwrR+OrC7Lzl9ZuGWN8IclH5pw/2uPMM5K8PckrcjT22urMT5J8LMmn5pxzL3MAAAAAAAAAAAAAAACAzdgpOmKz3p3k5Ukend3925+R5NVJfjjG+OAYY61Ib4zx5CQ/TvLWbBN8HfPEJJ9M8s0xxrnrzAAAAAAAAAAAAAAAAAA2y5e+Tq5bk/w6yY1Jbs7REOzsJE9I8uCVcweTvCnJI8YYL55z3rHTxWOMC5N8M8lZi5+uT/KLJKfnaOz1sJXfnpPka2OMZ8w5b93T3wgAAAAAAAAAAAAAAAA4IaKve9bfk1yZ5OtJrkly/Zzz31sdHGNcnOQ9SZ69sv3CJFck+cDxhowx7pfka7lr8PXzJK+cc/5g5dzBJC9J8okkh45tPynJp5O8bNd/KwAAAAAAAAAAAAAAAGBjDpzsF7iXefyc87I55yfmnD/ZLvhKkjnntUmem+Szi5/eNsY4dYc5VyR5xMr6hiSXrAZfx2bcMef8XI6GZbev/PTSMcZTdpgBAAAAAAAAAAAAAAAA3A1EX/egOeftO5+6y/l/J7k8R78Qdqczk1y63TNjjLOSvHmx/do555HjzLkuyfsW2+9d510BAAAAAAAAAAAAAACAzRB9lZtz3pzk6sX2o47zyGVJ7r+yvnbOedUuRn04yW0r60vHGA/f3VsCAAAAAAAAAAAAAAAAmyL62h+WX+k6dJyzL1qsP7ObAXPOPyf56g53AQAAAAAAAAAAAAAAAHcz0df+cN5i/YetDo0xDiR5zmL7e2vMWZ593hrPAgAAAAAAAAAAAAAAABsg+io3xnhMkotWtmaSq7Y5fn6S01fWR+acv1xj3DWL9ePWeBYAAAAAAAAAAAAAAADYANFXsTHGQ5J8McnBle0vzTl/t80jFy7WN6w58teL9cPHGIfWvAMAAAAAAAAAAAAAAAA4AaKvImOMU8YY54wxnj7GeH+Snyd54sqR3yR5/XGueNRifeM68+ecf09yZIc7AQAAAAAAAAAAAAAAgLvRKSf7Be7NxhgfSvLGXR7/bpJXzDkPH+fMWYv18c5u53CSs1fWZ+7hjv8xxjg3yTlrPnbBJmYDAAAAAAAAAAAAAADAfiL66ndlko/NOb+1i7NnLNb/2MO85TOH9nDHVl6X5J0bugsAAAAAAAAAAAAAAAD+b4m++j0vycExxm1zzu/vcHYZfd22h3nL6Gt5JwAAAAAAAAAAAAAAAHA3OnCyX+Be7l1JHrny58IkT0vyhiTfOXbmPkmen+SqMcZHxxgH17h/7uGd9vIMAAAAAAAAAAAAAAAAsCG+9HUSzTmPJDmyxU9XJ/noGOOpST6b5Lxj+5cnOS3Ja7a58pbF+rQ9vNbymeVctTW0AAAgAElEQVSde/XxJF9c85kLknx1Q/MBAAAAAAAAAAAAAABgXxB9FZtzXj3GuDTJdUkeeGz71WOMK+ecW8VQtdHXnPNwksPrPDPG2MRoAAAAAAAAAAAAAAAA2FcOnOwX4PjmnL9N8q7F9lu2Of7XxfqcPYw8d7H+yx7uAAAAAAAAAAAAAAAAAPZI9LU/fH6xvniMcdYW5361WJ+3zpAxxun57xfF7nTDOncAAAAAAAAAAAAAAAAAJ0b0tQ/MOQ8n+fPK1oEkj9zi6M8W6wvWHLU8//s559/WvAMAAAAAAAAAAAAAAAA4AaKv/eP2xfrULc78JsmtK+sHjjEes8aMSxbr69d4FgAAAAAAAAAAAAAAANgA0dc+MMa4b5IHLbb/uDw357wjybcX289cY9Ty7NfXeBYAAAAAAAAAAAAAAADYANHX/vDs3PX/6tYkN21z9suL9at2M2CM8YAkL1hsf2VXbwcAAAAAAAAAAAAAAABsjOir3BjjQJJ3LLa/8R/27jXatrus7/jvOZyAgZyESwkESRMMSQkBQlGKVqxyGWgJF4lSqylWQQgdBWvFCwNMFZWqiJbakbTl0kKpWhsuEkAuVi5FwlWJDaZADYkQA4QQOOEgEpI8fbHndi8OOZy991p7zzk5n88Yc6z/mmvO/3z2fv8ds7tvOMQtv5/k+oXv31pV37mJR/14kqMXvr+1uz+2+UkBAAAAAAAAAAAAAACAVRB97ZKqenpVnbDFe45K8pIkDzrop/MPdU93fy7J8w86/eLhTV6Hes4DkzzroNPP3sKoAAAAAAAAAAAAAAAAwIqIvnbPk5JcXlX/vaoeXVX7DnVhVR1dVT+Y5ANJfuSgn1/e3W85zLN+M8mVC9/vmeTiIe5afM6e4Tl/lOTWCz/9bne/6zDPAAAAAAAAAAAAAAAAAHbA3rEHOMIcneSc4eiq+ousxVmfS3JDkn1JTkpy7yRH3cL9r0vy5MM9pLu/UFVnJbk4yXHD6XsleW9VXZrkI0m+IcmZSe5+0O3vT/JjW/qrAAAAAAAAAAAAAAAAgJURfY2nkpw6HIfzxSS/nOTXu/vLm9m8uy+rqu9O8jtJvmnhp/sOxy35X0nO6e6/3swzAAAAAAAAAAAAAAAAgNXbM/YAR5AnZy3celeSL23yng8lOS/Jad39bzcbfK3r7vdk7W1ev5bkE1/j0kuTnJvkEd19zVaeAQAAAAAAAAAAAAAAAKyWN33tku5+X5L3JTmvqo5KcnrW3sD1jUmOSXJUkgNJrk9yZZIPdPdnV/DcA0meWVXPSvKtwzPvluSGJFcn+WB3X7bscwAAAAAAAAAAAAAAAIDVEH2NYHhj1/8Zjt165s1JLh4OAAAAAAAAAAAAAAAAYKL2jD0AAAAAAAAAAAAAAAAAABtEXwAAAAAAAAAAAAAAAAATIvoCAAAAAAAAAAAAAAAAmBDRFwAAAAAAAAAAAAAAAMCEiL4AAAAAAAAAAAAAAAAAJkT0BQAAAAAAAAAAAAAAADAhoi8AAAAAAAAAAAAAAACACRF9AQAAAAAAAAAAAAAAAEyI6AsAAAAAAAAAAAAAAABgQkRfAAAAAAAAAAAAAAAAABMi+gIAAAAAAAAAAAAAAACYENEXAAAAAAAAAAAAAAAAwISIvgAAAAAAAAAAAAAAAAAmRPQFAAAAAAAAAAAAAAAAMCGiLwAAAAAAAAAAAAAAAIAJEX0BAAAAAAAAAAAAAAAATIjoCwAAAAAAAAAAAAAAAGBCRF8AAAAAAAAAAAAAAAAAEyL6AgAAAAAAAAAAAAAAAJgQ0RcAAAAAAAAAAAAAAADAhIi+AAAAAAAAAAAAAAAAACZE9AUAAAAAAAAAAAAAAAAwIaIvAAAAAAAAAAAAAAAAgAkRfQEAAAAAAAAAAAAAAABMiOgLAAAAAAAAAAAAAAAAYEJEXwAAAAAAAAAAAAAAAAATIvoCAAAAAAAAAAAAAAAAmBDRFwAAAAAAAAAAAAAAAMCEiL4AAAAAAAAAAAAAAAAAJkT0BQAAAAAAAAAAAAAAADAhoi8AAAAAAAAAAAAAAACACRF9AQAAAAAAAAAAAAAAAEyI6AsAAAAAAAAAAAAAAABgQkRfAAAAAAAAAAAAAAAAABMi+gIAAAAAAAAAAAAAAACYENEXAAAAAAAAAAAAAAAAwISIvgAAAAAAAAAAAAAAAAAmRPQFAAAAAAAAAAAAAAAAMCGiLwAAAAAAAAAAAAAAAIAJEX0BAAAAAAAAAAAAAAAATIjoCwAAAAAAAAAAAAAAAGBCRF8AAAAAAAAAAAAAAAAAEyL6AgAAAAAAAAAAAAAAAJgQ0RcAAAAAAAAAAAAAAADAhIi+AAAAAAAAAAAAAAAAACZE9AUAAAAAAAAAAAAAAAAwIaIvAAAAAAAAAAAAAAAAgAkRfQEAAAAAAAAAAAAAAABMiOgLAAAAAAAAAAAAAAAAYEJEXwAAAAAAAAAAAAAAAAATIvoCAAAAAAAAAAAAAAAAmBDRFwAAAAAAAAAAAAAAAMCEiL4AAAAAAAAAAAAAAAAAJkT0BQAAAAAAAAAAAAAAADAhoi8AAAAAAAAAAAAAAACACRF9AQAAAAAAAAAAAAAAAEyI6AsAAAAAAAAAAAAAAABgQkRfAAAAAAAAAAAAAAAAABMi+gIAAAAAAAAAAAAAAACYENEXAAAAAAAAAAAAAAAAwISIvgAAAAAAAAAAAAAAAAAmRPQFAAAAAAAAAAAAAAAAMCGiLwAAAAAAAAAAAAAAAIAJEX0BAAAAAAAAAAAAAAAATIjoCwAAAAAAAAAAAAAAAGBCRF8AAAAAAAAAAAAAAAAAEyL6AgAAAAAAAAAAAAAAAJgQ0RcAAAAAAAAAAAAAAADAhIi+AAAAAAAAAAAAAAAAACZE9AUAAAAAAAAAAAAAAAAwIaIvAAAAAAAAAAAAAAAAgAkRfQEAAAAAAAAAAAAAAABMyGyir6o6r6pOGHsOAAAAAAAAAAAAAAAAgJ00m+gryXOSXFlVF1bVw8YeBgAAAAAAAAAAAAAAAGAnzCn6SpK9Sc5O8uaq+nBV/euqusPYQwEAAAAAAAAAAAAAAACsytyir3WV5NQkz0/yV1X10qr6tpFnAgAAAAAAAAAAAAAAAFjanKKvZyW5MmvBV5L0sP6GJE9I8sdVdUlVnVtVx4wzIgAAAAAAAAAAAAAAAMByZhN9dfevdvcpSR6Z5KIkN6//NHxWkvsluSBrb/+6oKrut/uTAgAAAAAAAAAAAAAAAGzfbKKvdd39xu7+3iQnJfnFJFfnq9/+tS/JuUk+UFUXV9U/q6pbjzIwAAAAAAAAAAAAAAAAwBbMLvpa191Xd/cvZC3+OjvJmxd/Hj4ryYOSvCzJ1VX161V16q4OCgAAAAAAAAAAAAAAALAFs42+1nX3zd39+939PUlOSfK8JJ/Oxtu/MqzvmOQnk3yoqv6wqs6uqlvt/sQAAAAAAAAAAAAAAAAAhzb76GtRd1/Z3c9McmKSH0ry9mzEXz2sK8lDk1yY5GNV9ZyquvsY8wIAAAAAAAAAAAAAAAAc7Osq+lrX3V/u7v/R3Q9JcnqS30ryufWfsxF/nZDk55JcUVWvrqqHjjIwAAAAAAAAAAAAAAAAwODrMvpa1N0f7u6fSPLIJB9bP71wJMmtkjwmyR9W1Qeq6qzdnxQAAAAAAAAAAAAAAADg6zz6qqrbVNUTquqdSS5OcuLBlwxHL3w/M8lFVfXKqjp296YFAAAAAAAAAAAAAAAASPaOPcBOqKrTkjw1yQ8nucP66azFXTV8/0SSFybZn+TJSU4fzq9f871J7lZVD+7um3ZpdAAAAAAAAAAAAAAAAOAI93Xzpq+q2ltVP1BVb0nyf5P8qyR3zEbklWH9v5P8QJKTuvs53f2C7j4jyUOSvCFfGYf9gyRP2cU/AwAAAAAAAAAAAAAAADjCzT76qqp7VNWvJLkqye8k+c5shF49fH4hyX9Mcp/u/q7uvrC7b1zcp7vf3t1nJXl0kr9euPcHd/pvAAAAAAAAAAAAAAAAAFi3d+wBtqOq9iR5TJKnJnl41iKvg0OvSnJZ1mKvl3X3gc3s3d2vr6rnJXnOcOo+q5obAAAAAAAAAAAAAAAA4HBmFX1V1d2TPDnJk5KcsH46a6FXD+ubkrwmyfnd/bZtPupN2Yi+jt3uvAAAAAAAAAAAAAAAAABbNZvoq6pek+SRSfbklt/q9ckkL0ryn7v76iUf96mF/etrXQgAAAAAAAAAAAAAAACwSrOJvpI8OhuR13qMVUnekeT8JK/q7htX/Mz1t4gBAAAAAAAAAAAAAAAA7Io5RV/rKsmBJL+d5Pzu/uAOPOMzSZ6+A/sCAAAAAAAAAAAAAAAAfE1zi74+nOSCJC/r7s/v1EO6+0DW3h4GAAAAAAAAAAAAAAAAsKvmFH09vLvfMvYQAAAAAAAAAAAAAAAAADtpz9gDbJbgCwAAAAAAAAAAAAAAADgSzCb6AgAAAAAAAAAAAAAAADgSiL4AAAAAAAAAAAAAAAAAJmTv2ANsVlXdK8nzhq+d5Mndfc0W97hLkhcmqeHUT3T3R1c3JQAAAAAAAAAAAAAAAMByZhN9JXlKkkdlLfh621aDryTp7k9V1TFJHjLs88Ekz1rplAAAAAAAAAAAAAAAAABL2DP2AFvwuIX1f11in5cOn5Xk+5fYBwAAAAAAAAAAAAAAAGDlZhF9VdXJSU4avt6c5KIltrto2CNJTqmqb1xiLwAAAAAAAAAAAAAAAICVmkX0leQ+w2cn+X/dff12N+ru/Uk+snDqfssMBgAAAAAAAAAAAAAAALBKc4m+Tl5Y/8UK9lvc4+RDXQQAAAAAAAAAAAAAAACw2+YSfe1bWO9fwX6Lexy7gv0AAAAAAAAAAAAAAAAAVmIu0deXFtbHrGC/xT1uXsF+AAAAAAAAAAAAAAAAACsxl+jr2oX1iSvYb3GPz6xgPwAAAAAAAAAAAAAAAICVmEv09fHhs5KcWVW33+5Gw733Xzh19TKDAQAAAAAAAAAAAAAAAKzSXKKvdye5IUlnbeanLrHXudn4u29K8s7lRgMAAAAAAAAAAAAAAABYnVlEX939xazFWTUcP1tVp211n+GeZ2YtHusk7+7uz69yVgAAAAAAAAAAAAAAAIBlzCL6Gvzm8NlJjkvypqo6c7M3V9V9k7whybFZC8eS5N+tdEIAAAAAAAAAAAAAAACAJc0m+uru1yd5d9aCrU5yUpJ3V9W/r6p7H+q+qjq9ql6Q5D1JTl7fLsl7u/vVOzs1AAAAAAAAAAAAAAAAwNbsHXuALfonSd6f5M5ZC7duk+RpSZ5WVdcmuSzJZ4ff7pjk9OHaZCMWqySfTPL4XZ0cAAAAAAAAAAAAAAAAYBNmFX1191VVdVaS1yS5WzYirmQt7vpHB91Si7cP3z+e5LHdfdUOjwsAAAAAAAAAAAAAAACwZXvGHmCruvtPkjwgyeuyEXX1cHzV5Qedf1WSb+7uS3Z0SAAAAAAAAAAAAAAAAIBtml30lSTdfU13PyZr8deLklyRtQDslo7Lk/ynJGd29/d397XjTA0AAAAAAAAAAAAAAABweHvHHmAZwxu7zk2Sqjo+yQlJ7jT8fG2ST3T3p0caDwAAAAAAAAAAAAAAAGDLZh19Lerua5JcM/YcAAAAAAAAAAAAAAAAAMvYM/YAAAAAAAAAAAAAAAAAAGwQfQEAAAAAAAAAAAAAAABMiOgLAAAAAAAAAAAAAAAAYEJEXwAAAAAAAAAAAAAAAAATsnfsAbajqvYmeVyShyb5+0mOT3JckqO2uFV393ErHg8AAAAAAAAAAAAAAABg22YXfVXVOUl+I8md108tsV0vPxEAAAAAAAAAAAAAAADA6swq+qqqX0nyM9kIvTrbD7eWicUAAAAAAAAAAAAAAAAAdsRsoq+q+r4kPzt8XQ+9alhfleSzSb48wmgAAAAAAAAAAAAAAAAAKzOb6CvJc4fPzlrsdVmSX0zy+u7+wmhTAQAAAAAAAAAAAAAAAKzQLKKvqjo9yWnZeMPXHyU5q7tvGG8qAAAAAAAAAAAAAAAAgNXbM/YAm/TA4bOS3JTkiYIvAAAAAAAAAAAAAAAA4OvRXKKvOw+fneT93f3xMYcBAAAAAAAAAAAAAAAA2Clzib5uXlhfOdYQAAAAAAAAAAAAAAAAADttLtHXVQvro0abAgAAAAAAAAAAAAAAAGCHzSX6unRhfY/RpgAAAAAAAAAAAAAAAADYYbOIvrr7Q0nen6SSnFlVx488EgAAAAAAAAAAAAAAAMCOmEX0Nfi14XNPkmeNOQgAAAAAAAAAAAAAAADATplN9NXdr0zyX7L2tq+nVdU5I48EAAAAAAAAAAAAAAAAsHKzib4G/yLJS7M293+rqguq6u7jjgQAAAAAAAAAAAAAAACwOnvHHmCzquq3huWBJNcm+TtJzk3ylKq6NMllST6b5Oat7NvdP77KOQEAAAAAAAAAAAAAAACWMZvoK8nTkvTC905Sw3Fmkvttcb8a9hB9AQAAAAAAAAAAAAAAAJMxp+jrlvThLwEAAAAAAAAAAAAAAACYj7lFXzX2AAAAAAAAAAAAAAAAAAA7aU7R133HHgAAAAAAAAAAAAAAAABgp80m+uruPx97BgAAAAAAAAAAAAAAAICdtmfsAQAAAAAAAAAAAAAAAADYIPoCAAAAAAAAAAAAAAAAmBDRFwAAAAAAAAAAAAAAAMCEiL4AAAAAAAAAAAAAAAAAJmTv2AMso6qOS/KwJN+R5JQkd0yyL0m6+8wRRwMAAACWVM947dgjwKT1bzx67BEAAAAAAAAAANghs4y+qupOSc5L8sQktzv45yR9iPuekOT84et1SU7p7pt2ak4AAAAAAAAAAAAAAACArdoz9gBbVVUPTnJJkqcnOSZrkddmXZjkhuG+E5M8cuUDAgAAAAAAAAAAAAAAACxhVtFXVT0wyZuS3O3gn5L8zeHu7+6/SfJ7C6cet7rpAAAAAAAAAAAAAAAAAJY3m+irqvYluSjJ0eunkrw9yWOTHJvkjGzurV+vWVg/dJUzAgAAAAAAAAAAAAAAACxrNtFXkp9KcpckPXz/+e5+SHe/trsPLJw/nHckuTlrgdiJVXXwW8MAAAAAAAAAAAAAAAAARjOn6Osp2Qi7Xt7dv7SdTbr7i0kuXzh1r2UHAwAAAAAAAAAAAAAAAFiVWURfVXX/rL3lq7L2lq5nL7nlFQvreyy5FwAAAAAAAAAAAAAAAMDKzCL6SnLG8NlJ/qy7/2rJ/fYvrI9dci8AAAAAAAAAAAAAAACAlZlL9HX8wvqjK9jvhoX10SvYDwAAAAAAAAAAAAAAAGAl5hJ9HbWwvnEF+91+Yb3/kFcBAAAAAAAAAAAAAAAA7LK5RF+fXlgff8irNu+0hfV1K9gPAAAAAAAAAAAAAAAAYCXmEn19YvisJA9YZqOqumuSUxdOfWiZ/QAAAAAAAAAAAAAAAABWaS7R18VJbhzWx1XVWUvsde7Cen+SS5bYCwAAAAAAAAAAAAAAAGClZhF9dff1Sd61cOq5VXXUVvepqlOSPCNJD8cbu7tXMyUAAAAAAAAAAAAAAADA8mYRfQ2ev7C+b5Lfrqq9m725qu6R5A+SHJOkbmFPAAAAAAAAAAAAAAAAgNHNJvrq7tcmeWc2gq3vS3JJVT3ua731q6ruWlU/l+SSJPdc3y7JK7v7T3dyZgAAAAAAAAAAAAAAAICt2vSbsibi8Unel+Ruw/d7J3lFki8muWLxwqq6MMlpSc7IWihWWYu9kuTyJE/ahXkBAAAAAAAAAAAAAAAAtmQ2b/pKku7+ZJLvTvLRbERcleS2WYu71lWSs5PcN2t/4+K1H07yj7v787s3OQAAAAAAAAAAAAAAAMDmzCr6SpLuvizJNyd5eZKb10/fwpGD1knyu0m+rbsv351pAQAAAAAAAAAAAAAAALZmdtFXknT39d39z5P8vSQvSPLnw091C8dfJnlhkvt39znd/bkRRgYAAAAAAAAAAAAAAADYlL1jD7CM7v5okp9Mkqo6Lsndk9wpya2TXJvkU939ifEmBAAAAAAAAAAAAAAAANiaWUdfi7p7f5L9Y88BAAAAAAAAAAAAAAAAsIw9Yw8AAAAAAAAAAAAAAAAAwAbRFwAAAAAAAAAAAAAAAMCEiL4AAAAAAAAAAAAAAAAAJkT0BQAAAAAAAAAAAAAAADAhe8ceYLOq6qId2La7+7E7sC8AAAAAAAAAAAAAAADAtswm+kryqCS9wv1qxfsBAAAAAAAAAAAAAAAALG1O0deyamEt9gIAAAAAAAAAAAAAAAAmaW7RVx3+kkNaD71qyX0AAAAAAAAAAAAAAAAAdsycoq99W7z+VknukOSMJI9K8sNJbpvkumH99pVOBwAAAAAAAAAAAAAAALACs4m+uvsL27jt+iR/meQPqupXk1yY5IFJXpnksd395hWOCAAAAAAAAAAAAAAAALC0PWMPsFu6+2NJHpHkI0luk+R/VtXfHXcqAAAAAAAAAAAAAAAAgK90xERfSdLd+5M8Y/i6L8kvjDcNAAAAAAAAAAAAAAAAwFc7oqKvJOnu1yf5dJJK8viqut3IIwEAAAAAAAAAAAAAAAD8rSMu+hr8yfB52yTfMeYgAAAAAAAAAAAAAAAAAIuO1OjruoX1iaNNAQAAAAAAAAAAAAAAAHCQIzX62rewvtNoUwAAAAAAAAAAAAAAAAAc5IiLvqqqkjxo4dT+sWYBAAAAAAAAAAAAAAAAONgRF30l+bEkxy98v3ysQQAAAAAAAAAAAAAAAAAOdkRFX1X1xCT/IUkPp76U5B3jTQQAAAAAAAAAAAAAAADwlfaOPcBmVdXZ27htb5LbJ7l3kkcluUeSGn7rJC/p7i+uZkIAAAAAAAAAAAAAAACA5c0m+kryimy8oWs7FmOvSnJFkp9fdigAAAAAAAAAAAAAAACAVdoz9gDbUNs4ko1grJL8WZJHdPd1uzc2AAAAAAAAAAAAAAAAwOHNLfqqw19yyPsqySVJ/mWSB3b3R1c2FQAAAAAAAAAAAAAAAMCK7B17gC14+jbuuTHJ9UmuSfKn3f3Z1Y4EAAAAAAAAAAAAAAAAsFqzib66+/yxZwAAAAAAAAAAAAAAAADYaXvGHgAAAAAAAAAAAAAAAACADaIvAAAAAAAAAAAAAAAAgAkRfQEAAAAAAAAAAAAAAABMiOgLAAAAAAAAAAAAAAAAYEJEXwAAAAAAAAAAAAAAAAATsnfsATarqs4e69nd/aqxng0AAAAAAAAAAAAAAAAcWWYTfSV5RZIe4bmdef2fAAAAAAAAAAAAAAAAgBmbY8xUYw8AAAAAAAAAAAAAAAAAsFPmFn0tBl8Hv/XrUDHYZq8DAAAAAAAAAAAAAAAAGN2coq+nD5/7kvx0kttnI+C6Msl7k3wkyf7h3HFJTkvyoCQnDec6yXVJnp/k8zs+MQAAAAAAAAAAAAAAAMAWzSb66u7zq+rkJG/KRvD11iTndffFX+veqvr2JL+U5LuS3CHJjyb5nu6+YgdHBgAAAAAAAAAAAAAAANiyPWMPsFlVdbskb0xy6nDqvO5+2OGCryTp7nd290OT/JusxWL3TPKmqtq3YwMDAAAAAAAAAAAAAAAAbMNsoq8kz05yWpJO8uLufu5WN+juX07y4qyFX6cMewIAAAAAAAAAAAAAAABMxiyir6q6VZIfHb7elOVirWcnuXFY/0hVzeJ/AAAAAAAAAAAAAAAAABwZ5hI8/cMkd8naW77e293Xbnej7v50kvdk7W1fd07y4JVMCAAAAAAAAAAAAAAAALACc4m+Tl5Yf2wF+111iL0BAAAAAAAAAAAAAAAARjWX6OuEhfVtV7Df0Qvru65gPwAAAAAAAAAAAAAAAICVmEv0dWBhfcYK9lvc48AhrwIAAAAAAAAAAAAAAADYZXOJvj4+fFaSb6qqb9/uRlX14CSnLJy6apnBAAAAAAAAAAAAAAAAAFZpLtHX25J8KUlnLfy6oKqO2eomVbUvyQULp25I8tZVDAgAAAAAAAAAAAAAAACwCrOIvrr780lek7Xgq5PcJ8lbquqem91juPYtw70Z9nn1sDcAAAAAAAAAAAAAAADAJMwi+hr8VJIDC9+/JcmlVfWiqnrY8Bavr1BV+6rq4VX1kiSXJnlA1mKvJPlCkp/Z6aEBAAAAAAAAAAAAAAAAtmLv2ANsVndfVVXnJLkwyVFZi7duk+SJw5GquibJ9cNvxyU5fmGL9beEVZIvJ/mh7r5q1/4AAAAAAAAAAAAAAAAAgE2Y05u+0t2vTfK4JJ/JRsSVYV1J7pLk1CSnDev188lG8HVtksd29+t2b3IAAAAAAAAAAAAAAACAzZlV9JUk3f2GJPdO8tIkN+Qro65bOjJcc8Nwzxnd/cbdmxgAAAAAAAAAAAAAAABg8/aOPcB2dPe1SZ5YVT+d5J8meXCSb8na272OGS47kORTSd6f5I+T/N5wHwAAAAAAAAAAAAAAAMBkzTL6Wtfdn0ly/nAkSarqVsNvN401FwAAAAAAAAAAAAAAAMB2zTr6uiViLwAAAAAAAAAAAAAAAGDO9ow9AAAAAAAAAAAAAAAAAAAbRF8AAAAAAAAAAAAAAAAAE7J37AGWVVWV5H7/n717j7XsLOs4/numQ7n0AgFargKltYmogGAjSkEqhUBaKJAqUZEg4CUFa1GUhBJRNCESLYQgEMIlEsALN4FW5CppIhCoLRKVKFRpa2kpLS0MRSptH/+YPZk9m7mcffY+Z7+7/XySk7PWO+t91zOd/vvNSnJ8krsnOSpJdfd5Kx0MAAAAAAAAAAAAAAAAYBPWNvqqqocneXGS05IcvZ9HfiD6qqpTkzx1cnt9d7986yYEAAAAAAAAAAAAAAAAmN/aRV9Vdcckr03y/D1L+3msD7D90iRn7dlTVX/T3f++9CEBAAAAAAAAAAAAAAAANmnHqgeYR9JQimsAACAASURBVFXdJcmF2R18zRN77f7D7v9O8tGpvb+41AEBAAAAAAAAAAAAAAAAFrRW0VeSv05y0tT9LUnen+TsJC/I/kOwWe+bun7C8kYDAAAAAAAAAAAAAAAAWNzOVQ+wUVX11CSnZ+/XvC5J8szu/srkzx+4waM+vOfIJI+oqrt093eXOiwAAAAAAAAAAAAAAADAJq3Tl75eNnX9H0ketyf4mkd3X5nk2sntYUl+ZAmzAQAAAAAAAAAAAAAAACzFWkRfVXVskkdm71e+zu7uXQsc+aWp6xMXOAcAAAAAAAAAAAAAAABgqdYi+kry6CQ1+bmquz++4HnfnLq+54JnAQAAAAAAAAAAAAAAACzNukRf95787iQXL+G86a+EHbmE8wAAAAAAAAAAAAAAAACWYl2ir7tNXX9rCecdMXV90xLOAwAAAAAAAAAAAAAAAFiKdYm+bpi6PnoJ591n6vq6JZwHAAAAAAAAAAAAAAAAsBTrEn19Y+r6IYscVFV3SPLwqaWvLXIeAAAAAAAAAAAAAAAAwDKtS/T1hcnvSvLgqjp+gbPOSHKnyfUtST67yGAAAAAAAAAAAAAAAAAAy7QW0Vd3fyXJV6eWXrKZcyZf+XrZnmOT/HN371psOgAAAAAAAAAAAAAAAIDlWYvoa+IvJ78ryfOq6sxNnPG6JA+dun/jwlMBAAAAAAAAAAAAAAAALNE6RV/nJbkuu7/QVUneVVUvnXy966Cq6riq+mCS50/2J8llSd6xVcMCAAAAAAAAAAAAAAAAbMbOVQ+wUd29q6p+Lcl7Jks7k/xxknOq6gNJ/mf6+ao6LcmJSZ6Y5Ocmz9fkj7+f5Je7+5btmB0AAAAAAAAAAAAAAABgo9Ym+kqS7v67qnpxkj/P3i9+3TPJc2cerSQfnLnvqZ+zuvszWz8xAAAAAAAAAAAAAAAAwHx2rHqAeXX3a5KckeSGPUuT37NhV2Xvl7323O9KckZ3v2XbBgYAAAAAAAAAAAAAAACYw9pFX0nS3ecnOSHJK5Jcl71xV2Xf2GvP2o1JzktyQndfsI2jAgAAAAAAAAAAAAAAAMxl56oH2Kzuvj7JH1bVHyX5iSQnJ/mhJPdIcniSa5N8Pcmnk/xTd9+8qlkBAAAAAAAAAAAAAAAANmpto689uruTXDz5AQAAAAAAAAAAAAAAAFhraxN9VdWOPdfdfesqZwEAAAAAAAAAAAAAAADYKjsO/cjqVdVzknx/8nNTVT1gtRMBAAAAAAAAAAAAAAAAbI11+dLXfZLU5PqS7r58lcMAAAAAAAAAAAAAAAAAbJW1+NJXku9OfneSy1Y5CAAAAAAAAAAAAAAAAMBWWpfo6+qp61tXNgUAAAAAAAAAAAAAAADAFluX6OvLU9f3X9kUAAAAAAAAAAAAAAAAAFtsLaKv7r44yVeTVJKfrKqjVzsRAAAAAAAAAAAAAAAAwNZYi+hr4i2T3zuTvHiVgwAAAAAAAAAAAAAAAABslXWKvv40ySXZ/bWvl1TVU1Y8DwAAAAAAAAAAAAAAAMDSrU301d03J3l6ki8muUOS91XVeVV139VOBgAAAAAAAAAAAAAAALA8O1c9wEZV1e9MLt+b5LgkRyX57SQvrKqLsvsrYNck2TXPud193jLnBAAAAAAAAAAAAAAAAFjE2kRfSf4sSU/dd5LK7r/DT01+NkP0BQAAAAAAAAAAAAAAAAxjx6oH2ISauu7sG4Jt9hwAAAAAAAAAAAAAAACAIazTl76SvaGWYAsAAAAAAAAAAAAAAAC4TVqn6Ospqx4AAAAAAAAAAAAAAAAAYKutTfTV3ResegYAAAAAAAAAAAAAAACArbZj1QMAAAAAAAAAAAAAAAAAsJfoCwAAAAAAAAAAAAAAAGAgoi8AAAAAAAAAAAAAAACAgexc9QB7VNV5U7ev6O4bVjYMAAAAAAAAAAAAAAAAwIoME30lOSdJT65fk+Sg0VdVPXbq9rPd/X9bNRgAAAAAAAAAAAAAAADAdhkp+kqSyt7w61A+NfXscUku34qBAAAAAAAAAAAAAAAAALbTjlUPsKBa9QAAAAAAAAAAAAAAAAAAy7Tu0ddGvwoGAAAAAAAAAAAAAAAAsBbWPfrypS8AAAAAAAAAAAAAAADgNmXdoy8AAAAAAAAAAAAAAACA2xTRFwAAAAAAAAAAAAAAAMBARF8AAAAAAAAAAAAAAAAAAxF9AQAAAAAAAAAAAAAAAAxE9AUAAAAAAAAAAAAAAAAwENEXAAAAAAAAAAAAAAAAwEBEXwAAAAAAAAAAAAAAAAAD2bnqAWb05PejqupBc+yb9/m9L+y+cDP7AAAAAAAAAAAAAAAAALbCaNFXklSSv9rC56d1xvxvAAAAAAAAAAAAAAAAANxOjRg8dXaHXBt5bo+NPA8AAAAAAAAAAAAAAAAwvBGjr2TfoGsrnk+EYgAAAAAAAAAAAAAAAMCARoq+Ls/m4i0AAAAAAAAAAAAAAACA24xhoq/uftCqZwAAAAAAAAAAAAAAAABYtR2rHgAAAAAAAAAAAAAAAACAvURfAAAAAAAAAAAAAAAAAAMRfQEAAAAAAAAAAAAAAAAMRPQFAAAAAAAAAAAAAAAAMBDRFwAAAAAAAAAAAAAAAMBARF8AAAAAAAAAAAAAAAAAAxF9AQAAAAAAAAAAAAAAAAxE9AUAAAAAAAAAAAAAAAAwENEXAAAAAAAAAAAAAAAAwEB2rnqA26uqOizJCUkekuS+Se6a5KYk1ye5NMlF3X3jkt95lySPTnL/JPdKckOSK5N8vruvXua7AAAAAAAAAAAAAAAAgM0RfW2jqnpAkmckOTXJY5IcfZDHb6mqjyV5XXdfsOB7j0vyiiRPT3LEAd71ySSv7O5/XORdAAAAAAAAAAAAAAAAwGJ2rHqA24uqeleSy5K8OslpOXjwlSSHJXlSkvOr6kNVda9Nvvc5Sb6Y5FnZf/C1511PSPKJqjpv8hUyAAAAAAAAAAAAAAAAYAV86Wv7nHiA9SuTfDnJ17P73+PBSR6WfYO805NcWFU/291Xb/SFVfVLSd6apKaWb07y+SRXJDkmySOzN0CrJC9KcsckL9joewAAAAAAAAAAAAAAAIDlEX2txiXZHWN9uLsvnf3Dqrpfkj9I8utTyycmeXdVPba7+1AvqKpHJHlb9g2+PpDkt7r7iqnnjkrykiTnTj13VlX9S3e/aY6/EwAAAAAAAAAAAAAAALAEOw79CEvSSS5IclJ3P6K7X7e/4CtJuvvK7v6N/ODXtk5O8swNvu9VSQ6fun9PkmdMB1+Td+3q7pclOWdm/59MgjAAAAAAAAAAAAAAAABgG4m+ts/Pd/fp3X3RRjd09+uTvHdm+VcOta+qTkny+Kmla5P8ZnffepBtr03yqan7Y5K8aGOTAgAAAAAAAAAAAAAAAMsi+tom3f3VTW79i5n7Uzaw59kz92/u7usOtqG7O7u/DnawcwAAAAAAAAAAAAAAAIAtJvoa3yUz93euqrsd6OGqOizJU2aW37bBd30kyVVT98dX1UM3uBcAAAAAAAAAAAAAAABYAtHX+G7ez9rhB3n+pCT3mLq/qrv/cyMv6u5bk1w4s/zkjewFAAAAAAAAAAAAAAAAlkP0Nb4TZu5vTnLtQZ7/sZn7z8z5vk/P3P/onPsBAAAAAAAAAAAAAACABYi+xnfmzP1Fky9yHchDZu6/Muf7Lj3EeQAAAAAAAAAAAAAAAMAWEn0NrKqOTPK8meX3H2Lb7JfBLp/ztbPP//Cc+wEAAAAAAAAAAAAAAIAFiL7G9sok9566vyHJmw+x524z99fM+c7Z54+qKv+fAAAAAAAAAAAAAAAAwDbZueoB2L+qenqSF84sn9vd3zzE1iNn7v93zlfPPl9Jjkiya85z9j2k6tgkx8y57fhF3gkAAAAAAAAAAAAAAADrSPQ1oKp6WJK3zyx/NMkbNrB9Nvr63pyv318kdmQWjL6SnJXk5QueAQAAAAAAAAAAAAAAALd5O1Y9APuqqgckuSD7xluXJXlWd/cmjpx3z2beAQAAAAAAAAAAAAAAACyJ6GsgVXVsko8lud/U8tVJntDd39jgMd+Zub/znGPs7/nZMwEAAAAAAAAAAAAAAIAtsnPVA7BbVd09yceTnDi1fG2SU7v7y3MctRXR141znrE/r0/y7jn3HJ/kA0t4NwAAAAAAAAAAAAAAAKwN0dcAququST6a5Menlq/P7i98/ducx31r5v6YOfcfO3P/7e6+dc4zfkB3X5Pkmnn2VNWirwUAAAAAAAAAAAAAAIC1s2PVA9zeVdVRSf4hySOnlr+d5End/YVNHDn7VbAHzrl/9vl5vjIGAAAAAAAAAAAAAAAALEj0tUJVdUSSv0/yqKnl7yR5cnd/bpPHfmnm/oQ59z/4EOcBAAAAAAAAAAAAAAAAW0j0tSJVdeck5yc5eWr5u0lO6+5PL3D0v87c//Sc+x99iPMAAAAAAAAAAAAAAACALST6WoGqulOSDyZ53NTy95I8tbsvXPD4zyf55tT9farqxA3OtSPJY2aWP7zgPAAAAAAAAAAAAAAAAMAcRF/brKoOT/K+JKdOLd+U5Gnd/YlFz+/um5N8aGb5Vze4/YlJ7jt1f2l3f3HRmQAAAAAAAAAAAAAAAICNE31to6rameRvkzx5avn7Sc7s7o8s8VVvn7l/flXdYwP7fv8Q5wAAAAAAAAAAAAAAAABbTPS1TarqsCTvTHLG1PLNSZ7Z3ecv813d/ckkn5xaumeSN1bVAf+9q+rsJKdMLV2b5NXLnAsAAAAAAAAAAAAAAAA4tJ2rHuB25K1JfmFm7aVJLqmqB8151tXd/b1DPPN7ST6T5PDJ/ZlJ3ltVZ3f3FXseqqqjsvsLX+fO7D+3u3fNORcAAAAAAAAAAAAAAACwINHX9nn2ftZeNfmZ1ylJPnWwB7r74qp6bpJ3TC0/LcnpVfW5JFdk9xfATkpy9Mz2N3T3mzYxFwAAAAAAAAAAAAAAALAg0ddtWHe/s6oOT/LaJEdOlncm+ZkDbZk8+7vbMB4AAAAAAAAAAAAAAACwHztWPQBbq7vfluRhSd6Z5MYDPHZrko8neXx3n9Pdt2zXfAAAAAAAAAAAAAAAAMC+fOlrm3R3rfDd/5XkWVV1RJKTk9w/ybFJbkjytSSf6+6rVjUfAAAAAAAAAAAAAAAAsJfo63aku29M8pFVzwEAAAAAAAAAAAAAAAAc2I5VDwAAAAAAAAAAAAAAAADAXqIvAAAAAAAAAAAAAAAAgIGIvgAAAAAAAAAAAAAAAAAGIvoCAAAAAAAAAAAAAAAAGIjoCwAAAAAAAAAAAAAAAGAgoi8AAAAAAAAAAAAAAACAgYi+AAAAAAAAAAAAAAAAAAYi+gIAAAAAAAAAAAAAAAAYiOgLAAAAAAAAAAAAAAAAYCCiLwAAAAAAAAAAAAAAAICBiL4AAAAAAAAAAAAAAAAABiL6AgAAAAAAAAAAAAAAABiI6AsAAAAAAAAAAAAAAABgIKIvAAAAAAAAAAAAAAAAgIGIvgAAAAAAAAAAAAAAAAAGIvoCAAAAAAAAAAAAAAAAGIjoCwAAAAAAAAAAAAAAAGAgoi8AAAAAAAAAAAAAAACAgYi+AAAAAAAAAAAAAAAAAAYi+gIAAAAAAAAAAAAAAAAYiOgLAAAAAAAAAAAAAAAAYCCiLwAAAAAAAAAAAAAAAICBiL4AAAAAAAAAAAAAAAAABiL6AgAAAAAAAAAAAAAAABiI6AsAAAAAAAAAAAAAAABgIKIvAAAAAAAAAAAAAAAAgIGIvgAAAAAAAAAAAAAAAAAGIvoCAAAAAAAAAAAAAAAAGIjoCwAAAAAAAAAAAAAAAGAgoi8AAAAAAAAAAAAAAACAgYi+AAAAAAAAAAAAAAAAAAYi+gIAAAAAAAAAAAAAAAAYiOgLAAAAAAAAAAAAAAAAYCCiLwAAAAAAAAAAAAAAAICBiL4AAAAAAAAAAAAAAAAABiL6AgAAAAAAAAAAAAAAABiI6AsAAAAAAAAAAAAAAABgIKIvAAAAAAAAAAAAAAAAgIGIvgAAAAAAAAAAAAAAAAAGIvoCAAAAAAAAAAAAAAAAGIjoCwAAAAAAAAAAAAAAAGAgoi8AAAAAAAAAAAAAAACAgYi+AAAAAAAAAAAAAAAAAAYi+gIAAAAAAAAAAAAAAAAYiOgLAAAAAAAAAAAAAAAAYCCiLwAAAAAAAAAAAAAAAICBiL4AAAAAAAAAAAAAAAAABiL6AgAAAAAAAAAAAAAAABiI6AsAAAAAAAAAAAAAAABgIKIvAAAAAAAAAAAAAAAAgIGIvgAAAAAAAAAAAAAAAAAGIvoCAAAAAAAAAAAAAAAAGIjoCwAAAAAAAAAAAAAAAGAgoi8AAAAAAAAAAAAAAACAgYi+AAAAAAAAAAAAAAAAAAYi+gIAAAAAAAAAAAAAAAAYiOgLAAAAAAAAAAAAAAAAYCCiLwAAAAAAAAAAAAAAAICBiL4AAAAAAAAAAAAAAAAABiL6AgAAAAAAAAAAAAAAABiI6AsAAAAAAAAAAAAAAABgIKIvAAAAAAAAAAAAAAAAgIGIvgAAAAAAAAAAAAAAAAAGIvoCAAAAAAAAAAAAAAAAGIjoCwAAAAAAAAAAAAAAAGAgoi8AAAAAAAAAAAAAAACAgYi+AAAAAAAAAAAAAAAAAAYi+gIAAAAAAAAAAAAAAAAYiOgLAAAAAAAAAAAAAAAAYCCiLwAAAAAAAAAAAAAAAICBiL4AAAAAAAAAAAAAAAAABiL6AgAAAAAAAAAAAAAAABiI6AsAAAAAAAAAAAAAAABgIKIvAAAAAAAAAAAAAAAAgIGIvgAAAAAAAAAAAAAAAAAGIvoCAAAAAAAAAAAAAAAAGIjoCwAAAAAAAAAAAAAAAGAgoi8AAAAAAAAAAAAAAACAgYi+AAAAAAAAAAAAAAAAAAYi+gIAAAAAAAAAAAAAAAAYiOgLAAAAAAAAAAAAAAAAYCCiLwAAAAAAAAAAAAAAAICBiL4AAAAAAAAAAAAAAAAABiL6AgAAAAAAAAAAAAAAABiI6AsAAAAAAAAAAAAAAABgIKIvAAAAAAAAAAAAAAAAgIGIvgAAAAAAAAAAAAAAAAAGIvoCAAAAAAAAAAAAAAAAGIjoCwAAAAAAAAAAAAAAAGAgoi8AAAAAAAAAAAAAAACAgYi+AAAAAAAAAAAAAAAAAAYi+gIAAAAAAAAAAAAAAAAYiOgLAAAAAAAAAAAAAAAAYCCiLwAAAAAAAAAAAAAAAICBiL4AAAAAAAAAAAAAAAAABiL6AgAAAAAAAAAAAAAAABiI6AsAAAAAAAAAAAAAAABgIKIvAAAAAAAAAAAAAAAAgIGIvgAAAAAAAAAAAAAAAAAGIvoCAAAAAAAAAAAAAAAAGIjoCwAAAAAAAAAAAAAAAGAgoi8AAAAAAAAAAAAAAACAgYi+AAAAAAAAAAAAAAAAAAYi+gIAAAAAAAAAAAAAAAAYiOgLAAAAAAAAAAAAAAAAYCCiLwAAAAAAAAAAAAAAAICBiL4AAAAAAAAAAAAAAAAABiL6AgAAAAAAAAAAAAAAABiI6AsAAAAAAAAAAAAAAABgIKIvAAAAAAAAAAAAAAAAgIGIvgAAAAAAAAAAAAAAAAAGIvoCAAAAAAAAAAAAAAAAGIjoCwAAAAAAAAAAAAAAAGAgoi8AAAAAAAAAAAAAAACAgYi+AAAAAAAAAAAAAAAAAAYi+gIAAAAAAAAAAAAAAAAYiOgLAAAAAAAAAAAAAAAAYCCiLwAAAAAAAAAAAAAAAICBiL4AAAAAAAAAAAAAAAAABiL6AgAAAAAAAAAAAAAAABiI6AsAAAAAAAAAAAAAAABgIKIvAAAAAAAAAAAAAAAAgIGIvgAAAAAAAAAAAAAAAAAGIvoCAAAAAAAAAAAAAAAAGIjoCwAAAAAAAAAAAAAAAGAgoi8AAAAAAAAAAAAAAACAgYi+AAAAAAAAAAAAAAAAAAYi+gIAAAAAAAAAAAAAAAAYiOgLAAAAAAAAAAAAAAAAYCCiLwAAAAAAAAAAAAAAAICBiL4AAAAAAAAAAAAAAAAABiL6AgAAAAAAAAAAAAAAABiI6AsAAAAAAAAAAAAAAABgIKIvAAAAAAAAAAAAAAAAgIGIvgAAAAAAAAAAAAAAAAAGIvoCAAAAAAAAAAAAAAAAGIjoCwAAAAAAAAAAAAAAAGAgoi8AAAAAAAAAAAAAAACAgYi+AAAAAAAAAAAAAAAAAAYi+gIAAAAAAAAAAAAAAAAYiOgLAAAAAAAAAAAAAAAAYCCiLwAAAAAAAAAAAAAAAICBiL4AAAAAAAAAAAAAAAAABiL6AgAAAAAAAAAAAAAAABiI6AsAAAAAAAAAAAAAAABgIKIvAAAAAAAAAAAAAAAAgIGIvgAAAAAAAAAAAAAAAAAGIvoCAAAAAAAAAAAAAAAAGIjoCwAAAAAAAAAAAAAAAGAgoi8AAAAAAAAAAAAAAACAgYi+AAAAAAAAAAAAAAAAAAYi+gIAAAAAAAAAAAAAAAAYiOgLAAAAAAAAAAAAAAAAYCCiLwAAAAAAAAAAAAAAAICBiL4AAAAAAAAAAAAAAAAABiL6AgAAAAAAAAAAAAAAABiI6AsAAAAAAAAAAAAAAABgIKIvAAAAAAAAAAAAAAAAgIGIvgAAAAAAAOD/2bubUNvKOo7jv+d2SistrQwjSSmFSOnFjEAbOAjBgZQSBjXoBUtqImQQDUKEJkE2aBANgnQQQZEZRlEENSipQRkRGZiV0QtIZIEX37KngTfc7u69nn3PPmf/7vbzgcPlv/Z61vpz518WAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAWjdC0AAAIABJREFUAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABQRfQEAAAAAAAAAAAAAAAAUEX0BAAAAAAAAAAAAAAAAFBF9AQAAAAAAAAAAAAAAABTZ2fQCHIwxxnOTXJbkVUlekeShJH9Ncvec848bXA0AAAAAAAAAAAAAAABYIPrakDHGq5O8JcklR/69OMnpC7fcP+c8bw3vOSvJzUneneQlx7jnriSfm3N+Y6/vAwAAAAAAAAAAAAAAAPZG9HWAxhiXJ/lkngy9jhpgrfl9Vya5NcnLn+HWS5NcOsb4SpLr55yH93s3AAAAAAAAAAAAAAAA4OhEXwfrjUmuOIgXHQnM7kjyvIXLM8kvkvw+yRlJ3pTkZQu/vzfJi8YY75xz/ucg9gQAAAAAAAAAAAAAAACe7tCmFyBJ8miS+9b1sDHGOUluz9ODr58kuXDOecmc89o55xVJzklyQ5LHF+67Ksmn17ULAAAAAAAAAAAAAAAAsBrR18F7PMkvk3wpyfVJ3pzk9CTXrfEdNyc5c2G+K8nb55z3LN4053x0zvn5JNcunf/YGOPcNe4DAAAAAAAAAAAAAAAA7NLOphd4lrktyRfnnI8s/zDGWMsLxhgXJHnfwqXHkrz/aO/8nznnHWOM2xbOnZLkpiQfXMtSAAAAAAAAAAAAAAAAwK750tcBmnM+eLz4ak3ek+Q5C/Ptc857d3HuM0vztWOMU9e3FgAAAAAAAAAAAAAAALAboq/tc/XS/OXdHJpz3pPkZwuXXpjkinUtBQAAAAAAAAAAAAAAAOyO6GuLjDHOTvKGhUv/TvKTFR7xo6X5yr3uBAAAAAAAAAAAAAAAAKxG9LVdLlqafzXnPLzC+buW5gv3uA8AAAAAAAAAAAAAAACwItHXdnnd0vy7Fc/f9wzPAwAAAAAAAAAAAAAAAPaZ6Gu7nL80/2nF8/cvzS8dY5y5h30AAAAAAAAAAAAAAACAFYm+tssZS/MDqxyecz6U5JGlyy/e00YAAAAAAAAAAAAAAADASnY2vQBrddrS/PAJPOPhJKcuzKef+DpPGWO8PMlZKx57zTreDQAAAAAAAAAAAAAAACcT0dd2WY6+lr/atRsPJznzOM88UR9NctOangUAAAAAAAAAAAAAAABb69CmF2BfzQM6AwAAAAAAAAAAAAAAAKyJ6Gu7PLQ0P/8EnrF8ZvmZAAAAAAAAAAAAAAAAwD7a2fQCrFVz9PWFJF9f8cxrknxrTe8HAAAAAAAAAAAAAACAk4Loa7v8a2k+a5XDY4zT8v/R1z/3tNERc84Hkjyw4j7reDUAAAAAAAAAAAAAAACcVA5tegHW6t6l+dwVzy/f/48554N72AcAAAAAAAAAAAAAAABYkehru9yzNJ+/4vlXL82/2cMuAAAAAAAAAAAAAAAAwAkQfW2XXy/Nrx9jvGCF85c9w/MAAAAAAAAAAAAAAACAfSb62iJzzr8l+dXCpZ0kb1vhEZcvzd/d604AAAAAAAAAAAAAAADAakRf2+ebS/MHdnNojPHaJG9duHQ4yffXtRQAAAAAAAAAAAAAAACwO6Kv7fOVJE8szNeMMS7YxblPLM1fm3M+sr61AAAAAAAAAAAAAAAAgN0QfW2ZOee9SW5buPS8JLeOMU491pkxxjuSvH/h0mNJbt6XBQEAAAAAAAAAAAAAAIDj2tn0As82Y4xzcvT/97OX5p0xxnnHeMxDc86/H+c1NyW5OsmZR+ZLk/xgjHHdnPO3C7uckuTDSW5ZOn/LnPP+4zwfAAAAAAAAAAAAAAAA2Ceir4P34yTn7uK+Vyb5wzF+uy1P/zLX08w5/zzGuCbJ9/Lkl76S5LIkvxlj/DzJ75O8OMnFSc5aOv7tJJ/axX4AAAAAAAAAAAAAAADAPhB9bak554/GGFcnuTVPhV0jySVH/o7mq0k+NOd8Yv83BAAAAAAAAAAAAAAAAI7m0KYXYP/MOb+T5KIkX0zy4HFu/WmSd8053zPnPHwgywEAAAAAAAAAAAAAAABH5UtfB2zOed4Bv++BJB8ZY9yQ5LIk5yY5O8nhJH9Jcvec8w8HuRMAAAAAAAAAAAAAAABwbKKvZ4k552NJfrjpPQAAAAAAAAAAAAAAAIDjO7TpBQAAAAAAAAAAAAAAAAB4iugLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKCI6AsAAAAAAAAAAAAAAACgiOgLAAAAAAAAAAAAAAAAoIjoCwAAAAAAAAAAAAAAAKDIzqYXADhI48sf3/QKUG1+4LObXgEAAAAAOEmNG+/c9ApQa95y1aZXAAAAAADgJONLXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARXY2vQAAAAAAALDdxo13bnoFqDVvuWrTKwAAAAAAAFDIl74AAAAAAAAAAAAAAAAAioi+AAAAAAAAAADgv+zdfbCtZXkf4N8Nh28iiILKGIKIRlCDoEnF6EQLGUkKsRpQa5MJjUbrR2IUW6lR0WlSsQ2mJmpm/CJmWpWqiYbaUaNNoibUxkiMikYhFahVUDCoiHx594+9HRYv52Pvsz/Wc9a+rpkzZ9/Pep/nvf9Z85yz9vo9LwAAAAAMROgLAAAAAAAAAAAAAAAAYCBCXwAAAAAAAAAAAAAAAAADEfoCAAAAAAAAAAAAAAAAGIjQFwAAAAAAAAAAAAAAAMBAhL4AAAAAAAAAAAAAAAAABiL0BQAAAAAAAAAAAAAAADAQoS8AAAAAAAAAAAAAAACAgQh9AQAAAAAAAAAAAAAAAAxE6AsAAAAAAAAAAAAAAABgIEJfAAAAAAAAAAAAAAAAAAMR+gIAAAAAAAAAAAAAAAAYiNAXAAAAAAAAAAAAAAAAwECEvgAAAAAAAAAAAAAAAAAGIvQFAAAAAAAAAAAAAAAAMBChLwAAAAAAAAAAAAAAAICBCH0BAAAAAAAAAAAAAAAADEToCwAAAAAAAAAAAAAAAGAgQl8AAAAAAAAAAAAAAAAAAxH6AgAAAAAAAAAAAAAAABiI0BcAAAAAAAAAAAAAAADAQIS+AAAAAAAAAAAAAAAAAAYi9AUAAAAAAAAAAAAAAAAwEKEvAAAAAAAAAAAAAAAAgIEIfQEAAAAAAAAAAAAAAAAMROgLAAAAAAAAAAAAAAAAYCBCXwAAAAAAAAAAAAAAAAADEfoCAAAAAAAAAAAAAAAAGIjQFwAAAAAAAAAAAAAAAMBAhL4AAAAAAAAAAAAAAAAABiL0BQAAAAAAAAAAAAAAADCQbfNuAAAAAADYuuqci+fdAgytLzhj3i0AAAAAAAAAMAee9AUAAAAAAAAAAAAAAAAwEKEvAAAAAAAAAAAAAAAAgIEIfQEAAAAAAAAAAAAAAAAMROgLAAAAAAAAAAAAAAAAYCBCXwAAAAAAAAAAAAAAAAADEfoCAAAAAAAAAAAAAAAAGIjQFwAAAAAAAAAAAAAAAMBAhL4AAAAAAAAAAAAAAAAABiL0BQAAAAAAAAAAAAAAADAQoS8AAAAAAAAAAAAAAACAgQh9AQAAAAAAAAAAAAAAAAxE6AsAAAAAAAAAAAAAAABgIEJfAAAAAAAAAAAAAAAAAAMR+gIAAAAAAAAAAAAAAAAYiNAXAAAAAAAAAAAAAAAAwECEvgAAAAAAAAAAAAAAAAAGIvQFAAAAAAAAAAAAAAAAMBChLwAAAAAAAAAAAAAAAICBCH0BAAAAAAAAAAAAAAAADEToCwAAAAAAAAAAAAAAAGAgQl8AAAAAAAAAAAAAAAAAAxH6AgAAAAAAAAAAAAAAABiI0BcAAAAAAAAAAAAAAADAQIS+AAAAAAAAAAAAAAAAAAYi9AUAAAAAAAAAAAAAAAAwEKEvAAAAAAAAAAAAAAAAgIEIfQEAAAAAAAAAAAAAAAAMROgLAAAAAAAAAAAAAAAAYCBCXwAAAAAAAAAAAAAAAAADEfoCAAAAAAAAAAAAAAAAGIjQFwAAAAAAAAAAAAAAAMBAhL4AAAAAAAAAAAAAAAAABiL0BQAAAAAAAAAAAAAAADAQoS8AAAAAAAAAAAAAAACAgQh9AQAAAAAAAAAAAAAAAAxE6AsAAAAAAAAAAAAAAABgIEJfAAAAAAAAAAAAAAAAAAMR+gIAAAAAAAAAAAAAAAAYiNAXAAAAAAAAAAAAAAAAwECEvgAAAAAAAAAAAAAAAAAGIvQFAAAAAAAAAAAAAAAAMBChLwAAAAAAAAAAAAAAAICBCH0BAAAAAAAAAAAAAAAADEToCwAAAAAAAAAAAAAAAGAgQl8AAAAAAAAAAAAAAAAAAxH6AgAAAAAAAAAAAAAAABiI0BcAAAAAAAAAAAAAAADAQIS+AAAAAAAAAAAAAAAAAAYi9AUAAAAAAAAAAAAAAAAwEKEvAAAAAAAAAAAAAAAAgIEIfQEAAAAAAAAAAAAAAAAMROgLAAAAAAAAAAAAAAAAYCBCXwAAAAAAAAAAAAAAAAADEfoCAAAAAAAAAAAAAAAAGIjQFwAAAAAAAAAAAAAAAMBAhL4AAAAAAAAAAAAAAAAABiL0BQAAAAAAAAAAAAAAADAQoS8AAAAAAAAAAAAAAACAgQh9AQAAAAAAAAAAAAAAAAxE6AsAAAAAAAAAAAAAAABgIEJfAAAAAAAAAAAAAAAAAAMR+gIAAAAAAAAAAAAAAAAYiNAXAAAAAAAAAAAAAAAAwECEvgAAAAAAAAAAAAAAAAAGIvQFAAAAAAAAAAAAAAAAMBChLwAAAAAAAAAAAAAAAICBCH0BAAAAAAAAAAAAAAAADEToCwAAAAAAAAAAAAAAAGAgQl8AAAAAAAAAAAAAAAAAAxH6AgAAAAAAAAAAAAAAABiI0BcAAAAAAAAAAAAAAADAQIS+AAAAAAAAAAAAAAAAAAYi9AUAAAAAAAAAAAAAAAAwEKEvAAAAAAAAAAAAAAAAgIEIfQEAAAAAAAAAAAAAAAAMROgLAAAAAAAAAAAAAAAAYCBCXwAAAAAAAAAAAAAAAAADEfoCAAAAAAAAAAAAAAAAGIjQFwAAAAAAAAAAAAAAAMBAhL4AAAAAAAAAAAAAAAAABiL0BQAAAAAAAAAAAAAAADAQoS8AAAAAAAAAAAAAAACAgQh9AQAAAAAAAAAAAAAAAAxE6AsAAAAAAAAAAAAAAABgIEJfAAAAAAAAAAAAAAAAAAMR+gIAAAAAAAAAAAAAAAAYiNAXAAAAAAAAAAAAAAAAwECEvgAAAAAAAAAAAAAAAAAGIvQFAAAAAAAAAAAAAAAAMBChLwAAAAAAAAAAAAAAAICBCH0BAAAAAAAAAAAAAAAADEToCwAAAAAAAAAAAAAAAGAgQl8AAAAAAAAAAAAAAAAAAxH6AgAAAAAAAAAAAAAAABiI0BcAAAAAAAAAAAAAAADAQIS+AAAAAAAAAAAAAAAAAAYi9AUAAAAAAAAAAAAAAAAwEKEvAAAAAAAAAAAAAAAAgIFsm3cDAAAAAAAAAADAGOqci+fdAgytLzhj3i0AAACwRXjSFwAAAAAAAAAAAAAAAMBAhL4AAAAAAAAAAAAAAAAABiL0BQAAAAAAAAAAAAAAADAQoS8AAAAAAAAAAAAAAACAgQh9AQAAAAAAAAAAAAAAAAxE6AsAAAAAAAAAAAAAAABgIEJfAAAAAAAAAAAAAAAAAAMR+gIAAAAAAAAAAAAAAAAYiNAXAAAAAAAAAAAAAAAAwECEvgAAAAAAAAAAAAAAAAAGIvQFAAAAAAAAAAAAAAAAMBChLwAAAAAAAAAAAAAAAICBCH0BAAAAAAAAAAAAAAAADEToCwAAAAAAAAAAAAAAAGAgQl8AAAAAAAAAAAAAAAAAAxH6AgAAAAAAAAAAAAAAABiI0BcAAAAAAAAAAAAAAADAQIS+AAAAAAAAAAAAAAAAAAYi9AUAAAAAAAAAAAAAAAAwEKEvAAAAAAAAAAAAAAAAgIEIfQEAAAAAAAAAAAAAAAAMROgLAAAAAAAAAAAAAAAAYCBCXwAAAAAAAAAAAAAAAAADEfoCAAAAAAAAAAAAAAAAGIjQFwAAAAAAAAAAAAAAAMBAhL4AAAAAAAAAAAAAAAAABiL0BQAAAAAAAAAAAAAAADAQoS8AAAAAAAAAAAAAAACAgQh9AQAAAAAAAAAAAAAAAAxE6AsAAAAAAAAAAAAAAABgIEJfAAAAAAAAAAAAAAAAAAPZNu8GAAAAAAAAAAAAAID1VedcPO8WYFh9wRnzbmFdeJ/Dzi3Ke52ty5O+AAAAAAAAAAAAAAAAAAYi9AUAAAAAAAAAAAAAAAAwEKEvAAAAAAAAAAAAAAAAgIEIfQEAAAAAAAAAAAAAAAAMROgLAAAAAAAAAAAAAAAAYCBCXwAAAAAAAAAAAAAAAAADEfoCAAAAAAAAAAAAAAAAGIjQFwAAAAAAAAAAAAAAAMBAhL4AAAAAAAAAAAAAAAAABiL0BQAAAAAAAAAAAAAAADAQoS8AAAAAAAAAAAAAAACAgQh9AQAAAAAAAAAAAAAAAAxE6AsAAAAAAAAAAAAAAABgIEJfAAAAAAAAAAAAAAAAAAMR+gIAAAAAAAAAAAAAAAAYiNAXAAAAAAAAAAAAAAAAwECEvgAAAAAAAAAAAAAAAAAGsm3eDbC5qup+SR6W5MgkByf5apIrk/xVd986z94AAAAAAAAAAAAAAAAAoa8to6rOTPLCJCfv4JLrq+qiJC/v7m9sXmcAAAAAAAAAAAAAAADArL3m3QAbq6oOrqp3JHlXdhz4SpLDkjw7yWer6vGb0hwAAAAAAAAAAAAAAABwF0JfC6yq9k5yUZKnTl76epIPZSkI9qkkPfPavZK8r6oevSlNAgAAAAAAAAAAAAAAAHci9LXYzk/yszP1rUl+Ncl9u/vx3f3k7n54kockuWTmuv2SvLeq7rN5rQIAAAAAAAAAAAAAAACJ0NfCqqpjkjx/MnxWd7+uu2+ZHezuy5KckjsHv+6R5LyN7RIAAAAAAAAAAAAAAACYEvpaXOcl2Wem/oPuft+OLu7um5KcnWQ2EPb05fAYAAAAAAAAAAAAAAAAsEmEvhZQVR2Q5MzJ8Kt3Na+7v5jkvTND25I8bR1bAwAAAAAAAAAAAAAAAHZB6GsxPT7JgTP1Jd39hRXOvXBSP2l9WgIAAAAAAAAAAAAAAABWQuhrMZ02qf98FXM/luS2mfrEqrrXmjsCAAAAAAAAAAAAAAAAVkToazE9ZFJfstKJ3X1jks9Mhh+85o4AAAAAAAAAAAAAAACAFRH6WkzHTerLVzn/ikl9/Bp6AQAAAAAAAAAAAAAAAFZB6GvBVNVhSQ6bDF+1ymWm1z9g9zsCAAAAAAAAAAAAAAAAVmPbvBtg3R06qb/b3Teuco1rJ/Uha+gnSVJVRyQ5fJXTHjRbXH75ah9YBtvxlW/MuwMY2uc+97l5twCwMt9Y7bkGsLUszJ7uvQ475b0OW4P3Oiy+hXmfJ97rsBML9V4HFp89HXbKvg7sUezrsEMLs6d7n8NOLcx7nbnaTpZl3826d3X3Zt2LTVBVP5bk0zND13X3PVe5xq8lee3M0B9198+vsa9XJDlvLWsAAAAAAAAAAAAAAADAHD2hu/9kM26012bchE118KT+3m6scdMu1gQAAAAAAAAAAAAAAAA2iNDX4tudR7l5/BsAAAAAAAAAAAAAAADMybZ5N8C6+86kPmA31pjOma65O96Q5F2rnHNwkkck+VaSG5JcneSWdegFmL/7J3nfTP2EJFfMqRcAYG3s6wCwGOzpALA47OsAsBjs6QCwOOzrALBn2zfJD8/Uf7FZNxb6WjxDhr66+9ok1+7G1E+s9d7AeKpqOnRFd39uHr0AAGtjXweAxWBPB4DFYV8HgMVgTweAxWFfB4CFcOk8brrXPG7KhrphUh9YVQetco0jJvU/rqEfAAAAAAAAAAAAAAAAYBWEvhZMd1+X5JuT4aNWucyPTOov7X5HAAAAAAAAAAAAAAAAwGoIfS2mz0/qY1c5/5hdrAcAAAAAAAAAAAAAAABsEKGvxfTZSX3ySidW1UFJfmwX6wEAAAAAAAAAAAAAAAAbROhrMX1gUj92FXMfk2RYITC7AAAgAElEQVTbTH1pd1+z5o4AAAAAAAAAAAAAAACAFRH6WkwfTHLTTH1yVT1ohXPPntR/vC4dAQAAAAAAAAAAAAAAACsi9LWAuvu7Sd49GX7xruZV1QOTPHFm6LYkb1/H1gAAAAAAAAAAAAAAAIBdEPpaXK9IcutMfXZV/dyOLq6q/ZNcmGTfmeG3dPcVG9MeAAAAAAAAAAAAAAAAsD1CXwuqu/8hyWsnw++uqudV1WywK1V1XJKPJHnUzPB1SV65sV0CAAAAAAAAAAAAAAAAU9vm3QAb6twkD07yM8v1Pkl+L8nLqupTSb6d5JgkJyWpmXm3JHlid391E3sFAAAAAAAAAAAAAAAAIvS10Lr79qp6cpI3J3nKzEtHJDltB9OuTfJL3f2xje4PAAAAAAAAAAAAAAAAuCuhrwXX3d9J8tSqeneSc5I8cgeXXp/koiTndffXN6s/YMv6epJXTmoAYM9kXweAxWBPB4DFYV8HgMVgTweAxWFfBwB2S3X3vHtgE1XV/ZKclOTIJAcl+VqSK5P8ZXffMs/eAAAAAAAAAAAAAAAAAKEvAAAAAAAAAAAAAAAAgKHsNe8GAAAAAAAAAAAAAAAAALiD0BcAAAAAAAAAAAAAAADAQIS+AAAAAAAAAAAAAAAAAAYi9AUAAAAAAAAAAAAAAAAwEKEvAAAAAAAAAAAAAAAAgIEIfQEAAAAAAAAAAAAAAAAMROgLAAAAAAAAAAAAAAAAYCBCXwAAAAAAAAAAAAAAAAADEfoCAAAAAAAAAAAAAAAAGIjQFwAAAAAAAAAAAAAAAMBAhL4AAAAAAAAAAAAAAAAABrJt3g0AAACwZ6qq+yV5WJIjkxyc5KtJrkzyV9196zx7AwAAAACARVBVD0pyQpL7JjkgyfeSXJvk8iSf7u4b59geALATVXVAln6nflySuyfZP8m3srSXfyrJ5d3d8+sQABhd+bcCAAAAq1FVZyZ5YZKTd3DJ9UkuSvLy7v7GpjUGAKxYVe2d5Ngkx2cpwH1IkpuTfDPJFUk+6UtjAAAAMB9VdUiSX0/yr5L8yE4uvT3J3yZ5d3efvxm9AQC7VlUnZ2kv/+dJ9t3JpV9J8pYkr+3u6zejNwBgzyL0BbDAqurLuesHwP8nyYO6+5Y1rnX4PL/EXVWPTfJn23npt7r7pWtc6/3dffrudwcAi6mqDk7ypiRPXeGUa5L8Und/cOO6AgBWqqqOSvKkJKcmeUySu+3k8tuT/GmS13X3+zehPQBgA1TVO5M8ZTJ8ZXcfPYd2AIAVqKqzkvx+knusYto13X3vDWoJAFihqtqW5D8neU6SWsXUa5Kc3d0f2JDGAIA91rZ5NwDAprtfkn+d5Hfn3cgGeUFVvb67vzrvRgBgkSw/DeSiJD87eenrSS5NckOS+yc5MXd8eH2vJO+rqlO7++Ob1SsAcFdV9fYk/2IVU/ZOclqS06rqvyd5RndfsyHNAQAboqp+LncNfAEAA6uq85K8YjsvXZXki1n6TH7/JPdJ8tAkB21acwDATlVVJXlHkjO38/IXknw+yU1JDk/yiCR3n3n9B79bf4LgFwAwS+gLYGt6aVVd2N3fnncjG+DAJOdlKdgGAKyf83PnwNetSV6Y5I2zTxCtquOTvDnJyctD+yV5b1U9VCgbAObqgTsY/0qSL2XpFNFtSY5JckKSvWauOT3JR6vqp7r7axvaJQCwLqrq0Cw9IQQA2ENU1Tm5a+DrHUle1d2f2c71e2Xps/ifT/L4DW8QANiVZ+Suga+PJnlud392dnD5iWC/mOR3khyyPLxvkrdV1QO7+4aNbhYA2DPstetLAFhAhyd50byb2EBPr6odfZkNAFilqjomyfMnw2d19+tmA19J0t2XJTklySUzw/fIUigbABjDpUl+Ncmx3X3f7n5cdz+1u8/s7pOSHJXkjZM5D0zyruWTSgGA8V2Q5MjlnxfxADgAWChVdUKWDl/7gVuz9Dn807YX+EqS7v5+d/9ld78wSwe4AADz9ZJJ/dEkp04DX0nS3bd194VJTk1y88xLR8Rh5wDADKEvgK3rhVV1r3k3sUG2JfmteTcBAAvkvCT7zNR/0N3v29HF3X1TkrOTzAbCnr4cHgMA5qOTvD/Jj3f3Scvh7Su2e2H3V7r7WUmeO3np0UmessF9AgBrVFWnJvnl5fK2JC+fYzsAwC4sP+njrVn6PfcPPKu7373SNbr7tnVvDABYsap6aJKjJ8O/1t237mxed38yyZsmw2esY2sAwB5O6Atga3nvzM8HZ7F+0fuxJNfN1GdW1U/MqxkAWBRVdUCSMyfDr97VvO7+Yu78b49tSZ62jq0BAKtzVnefvvwL5BXp7jckec9k+BfXty0AYD1V1UG585fFXpPkb+fUDgCwMmclOWmm/sjykz8AgD3H9ADUq7v70yucOz1w9QHr0A8AsCCEvgC2lvOS3DRT/0pVHTuvZtbZt3LXp3udP49GAGDBPD7JgTP1Jd39hRXOnf5S+knr0xIAsFrd/eXdnPr6Sf24NbYCAGysV+WOk8X/Ickr5tYJALBSz5rU/2EuXQAAa3HQpP6/q5h79aS++xp7AQAWiNAXwNby/5K8dqbeJ8lvbvRNq+r+VfXPquo5VXVuVb24qp5ZVadX1eHreKs3JLlypn5cVZ22jusDwFY03Uv/fBVzP5bktpn6xKq615o7AgA206WT+oCqOnQunQAAO1VVj0ry3JmhZ3X3TTu6HgCYv+VDWn9qZujLSf5sPt0AAGvwtUm9/yrmTq+9fo29AAALZNu8GwBg052f5JlJDluun1xV/6m7/2a9blBVByU5PUtP83hskiN2cf2nkrwmyTu7+/bdvW9331xVL0vyhzPD51fVB7u7d3ddANjiHjKpL1npxO6+sao+k+TEmeEHJ7lmPRoDADbFbdsZ23fTuwAAdqqq9kvy1txx6OfbuvvDc2wJAFiZ6RO1P+J32wCwR/rrJDcn2W+5Pq6qDljhYSwP385aAABJPOkLYMvp7huSvGpmqJK8ep1v844k70zy5Owi8LXspCT/JcmH1uHJX/81yd/N1Cck+ZdrXBMAtrLjJvXlq5x/xaQ+fg29AACb79hJfVuSb8yjEQBgp16R5EeXf/56knPm1woAsAo/MakvSZJacmpVXVhVl1XVDVV1Y1VdWVUfrqpzq+roTe8WANiu7v527nxQ+f5Jnr6reVW1d5LnTYbfto6tAQB7OKEvgK3p95JcNVOfUlU/vY7rT/eXbyX5X0n+JEuhrPck+USS6Ukm/zTJB5ZPJN0t3f39JP9uMvzvq8op5ACwSlV1WO54OugPXLW9a3diev0Ddr8jAGAOzpzUn1z+vzcAMIiqOinJi2aGfr27r5tXPwDAqjxiUn9+Ocz14SR/muTsLB3OdrckByY5KskpWTro9YtV9fqqOnCzmgUAdurcJF+eqf9jVZ26o4urap8kb0xy4szw/8zSd+sAAJIIfQFsSd19c5LzJsPnV1Wt420+neTfJHlwdx/S3Sd39xO6+xe6+8zufmSSeyb5lSTXzsw7Kckr13Lj7v4fSf5iZujoJM9ey5oAsEUdOqm/2903rnKNayf1IWvoBwDYRFV1cO56Eukfz6MXAGD7qmpbkrcm2bY89IHufvscWwIAVuc+k/rAJH+dpQNTd2WfJM9J8vGqmq4DAGyy7r4+yeOSXLo8dECSD1bVRVV1VlU9tKqOrapHVtULknwmyS/PLPG/k5zZ3b25nQMAIxP6Ati6/jDJZ2fqk5I8dZ3Wfl53P6y7f7u7L9vRRd393e5+c5IfT3L1zEvPrqq7rbGHF0/ql1bVD61xTQDYag6e1NOndK7EdI79GAD2HK9Kcu+Z+h+TvHlOvQAA23dukhOWf74xDkADgD3N9PC1C7N0eGqytLdfkOTUJA9K8vAsfTH845M5JyZ5z/LTQgCAOeruLyf5J0memeSTSSrJk5P8tyR/l+RLSS5J8pokP7o87bokv5Hk0d39zU1uGQAYnNAXwBbV3d9P8pLJ8G+uxwfBy/95Xc31VyV5wczQ3ZKcscYePpHkj2aG7pnk365lTQDYgqahr+/txhrT0Nd0TQBgQFX1xCTPmwz/xvJJpQDAAKrq+CQvnRl62Wo/nwcA5qeq9kuy32T4vst/X5bkuO5+UXd/pLv/vrs/1d0XdvdjkrxoMu/k3PVgVABgPvZe/nNzkl09tevqLO3rr+nuWze6MQBgzyP0BbCFdffFST42M3RMkmfNqZ2Lk9wyUz9qHdZ8SZLbZuoXVNW9d3QxALBLu/pAer3mAABzVFUnZOkJ4bM+lOT359AOALAdVbVXkrfkji+K/02S351fRwDAbth7B+M3JDmtu6/e0cTuviDJ70yGX1BVDl4DgDmqqp9M8vksfZ7+k9n197R/OEtP+ryqqp6xwe0BAHsgoS8Apqd9vWyjPgiuqr2q6oeq6siqOnr2T5Ijk8yeFn7cWu/X3X+f5K0zQwclefla1wWALeQ7k/qA3VhjOme6JgAwkKo6Ksn7c+enc16Z5Be6W5gbAMbx/CSPXP75tiTP6O7b59gPALBK3f3dJN/fzkuv2Vnga8bLshQQ+4HDkvzMevQGAKxeVZ2S5MNJjp4Z/kqSc5OcmOTQJPsmuXeS05K8LXccaH54kjdV1Rur/n979x51bV3WCfx7IYiAyEEgEPOAB0LNREkFZQYNK80YNQ2dpqQpNVsudbKsnEwtM5g0R8lxLM3TJGrkIZU0NU8pHlIBNbAQNE+onEU5e80fe7+639vnsPf7PM+79/O+n89ae639u/b9+93X3txrAfvZ3/tXtb16BgAWn9AXwE6uu89M8taJ0kEZbRm9ZlW1V1WdWFWvq6p/zWjL6isz+p/ZC5d4TO7Ctd969JDkOUm+OzF+XFXdaZ3WBoAdndAXAOxEquqgJO9OcuhE+aIkD+rub82nKwBgqKoOS/LcidKfd/dZ8+oHAFiT7yxRG+6+vaTu/k6SNw3Kx621IQBgdlV1YJLTktxsovy2JHfp7lO6+6zuvqK7r+/ub3T3u7r7pCTHJrlkYs7jkjx9uzUOACw8oS8AkuT3k0zeAfRp4x96bbPxdtMXJnl9ksdktHPXrjMssc9azr9Fd38tyYsmSrsm+ZP1WBsAdgJXDMZ7VtVeM64x/G+Ky9fQDwCwQapq/4zuQHrnifLFSY7v7n+fT1cAwND4bt9/lWTPcemCJM+eW0MAwFoNvzP/Rnd/cYb5Hx2Mj1hbOwDANvqtjHbr2uK8JL/Y3VeuNKm7P5rkxEH5WWv97R4AsOMQ+gIg3X1ukldNlG6e5Jnbul5VvTCjPzofuNqxK1jPf0edkq3viPLIqjpqHdcHgB1Sd1+S5LJB+TYzLnPbwdiPxgFgwVTVPkn+McmPT5Qvy2iHr8/NpysAYBmPS/LAifETuvvqeTUDAKzZvw3GX59x/tcG41uuoRcAYNs9ajA+pbuvmWZid783yYcmSnskefR6NQYAbG5CXwBs8awkk38YfkJV3WHWRarqUUmeOih/LqMQ2c8kOTzJvklu1t01+UjypW1rfWXdfUWS5022mVEQDABY3bmD8R1nnH/YKusBAHNUVXsneWeSe02Ur0zys9191ny6AgBW8JyJ52ckOb+qbrfSI8nBgzV2XeK4m26vNwAAbGV4s5VrZ5w/PP5ma+gFANgGVbVXkuHv7N474zLvGYzvs+0dAQA7kl3n3QAAi6G7v1pVpyZ5+ri0W5LnJnnMjEs9ZzB+ZpI/6e6eYu4tZjzXLF6S5Cn5we4kD6yqn+nud23gOQFgR/DZJMdMjI9O8rZpJo6/3L77EusBAAtg/O/qM5Lcd6J8VZIHd/fH59MVALCKPSaePyTJhduwxqFLzDsyicA3AGx/5wzG+844f3j8JWvoBQDYNkv9+/uiGdcYHn/ANvYCAOxg7PQFwKQ/TXLZxPjEqrrntJOr6k5JjpgofbC7nztN4Kuq9sjsX2BPrbuvTfKHg/LJVVUbdU4A2EG8czA+boa5x2brm418uru/seaOAIA1G/9/+NuT3H+i/N0kP9fdH5lPVwAAALDT+Yckk39PP6yqZtmt626D8VfW3hIAMKPLl6jtNeMaNx+Mr9rGXgCAHYzQFwDf192XZxT82qKSnDzDEncajN8+w9yjx+fbSK9N8pmJ8T0y+05mALCzeVeSqyfGR1fVj00596TB+M3r0hEAsCbjH4/9fbYOc1+T5ITu/uBcmgIAAICdUHd/LcmZE6XdkvzUDEv87GD8oTU3BQDMpLu/k+TKQfnIGZe512A8605hAMAOSugLgKFTs/Xdvx5UVcdPOXe4U9cVM5z3pBmO3Sbd/b0kzxiU/zjJTTf63ACwWXX3d5OcPij/7mrzqurOSR4+UbohyevWsTUAYBtU1U2TvCnJ5P/rX5vkYd393vl0BQBMq7v37e6a5ZHkAYNlvrTEcWfN4/0AAEmSVw7GvzXNpKo6Nsm9J0rfS3LGejUFAMzk/YPx46edWFUHJzlhUBbkBgCSCH0BMNDd1yR51qB8cqbbheuywXiqXUCq6qgkj57m2LXq7rcnmbxr+WFJfmN7nBsANrFnJ7l+YnxSVQ2/dP6+8e4hr8zWwepXdPcXNqY9AGAaVbVrkjcmefBE+fokj+zud82nKwAAANjpvTLJuRPjB1bVisGvqjooPxwWe6Pv4QFgbt4wGJ9YVf9ttUlVtXuS1ya5+UT5qiS+swcAkgh9AbC0Vyf53MT4XkluM8W8swfjx47vRLKsqjosyd8m2W2mDtdmuDvJw5c8CgBIknT3BUleNCifXlVPGu8W8n1VdUSS9yY5ZqJ8SZLnbGyXAMBKquomSf4myX+ZKN+Q5MTxDVIAAACAOejuG5M8JaOdurZ4QVW9qKr2Gx5fVccn+XCSO0yUL0vyjA1tFABYyeuz9W/nKslrxv8+P2SpCVX1gCQfTXL84KVTunt483UAYCdV3T3vHgDYIFX1xSS3nSgd2N0XTzn3hCRvXeGQJdeqqg8luf9E6bwkv9rdHx0ct3uSX07yvCQHJrkmox+bbblryZe6+3Yr9HdckvdNlN7R3Q9dod/h/Ddl+bDXTGsBwM5g/EPxt2XrnUGS5JtJPpXk2xntoHnPbL1D6HVJju/uD22PPgGApVXVq5P8yqD89IxuxDKri8Y7hQMAm8AS36ev+P07ADAfVfWkJKcOytdn9GPwrybZI8k9svVvAJLR9/An2MUbAOarqu6YUTD7oMFL30tyTpILklydZP8kRyZZ6mbqZyR5WHdfv4GtAgCbiNAXwA5sLaGv8fx/TnK/ZV5eLvR1TJIPJNl18NLnk3w2oy+cfyTJvbP1ttSPS/IHE/1udOjrx8b93GSJl4W+AGAJVXXzJC9PcuKUU76Z5LHd/c6N6woAmEZVrecXwQ/o7vev43oAwAYS+gKAzaOqnpjk+Un2nHLKN5I8ors/snFdAQDTGv8m7bVJjppxaif5qyRP7e6r170xAGDT2mXeDQCw0H531gnjL5Mfl9EdxyYdnuQXkjwmyQPzg8DXjUme0t0vX0OfM+vu85K8cnueEwA2u+6+qrsfneRRGd1ZdDmXJnlpkrsJfAEAAAAAwHS6+6VJ7p7k/yX59gqHXpTk2UkOF/gCgMUx/k3a0Ukem+TMjMJcK7k6yd8kOaa7nyDwBQAMDXdhAYDv6+4PV9XfJzlhxnmvqqpzk5yc5LhlDrsmyTuSPK+7P7WmRrfds5L8UpI95nR+ANiUuvv0JKdX1e2T3DPJrZLsldEfmb+U5MPdfd0cWwQAAAAAgE2pu7+Q5Jerao8k90ty6yQHJ7kuybeSnN3d58yxRQBgBd19Q5LXJHlNVe2T0a5ft0+yb5LdMwp2X5bks0k+Mz4eAGBJ1b1aiBwAtl1V3SajL6JvlWS3JN9M8rWMfgy+0p3JAAAAAAAAAAAAAABgpyT0BQAAAAAAAAAAAAAAALBAdpl3AwAAAAAAAAAAAAAAAAD8gNAXAAAAAAAAAAAAAAAAwAIR+gIAAAAAAAAAAAAAAABYIEJfAAAAAAAAAAAAAAAAAAtE6AsAAAAAAAAAAAAAAABggQh9AQAAAAAAAAAAAAAAACwQoS8AAAAAAAAAAAAAAACABSL0BQAAAAAAAAAAAAAAALBAhL4AAAAAAAAAAAAAAAAAFojQFwAAAAAAAAAAAAAAAMACEfoCAAAAAAAAAAAAAAAAWCBCXwAAAAAAAAAAAAAAAAALROgLAAAAAAAAAAAAAAAAYIEIfQEAAAAAAAAAAAAAAAAsEKEvAAAAAAAAAAAAAAAAgAUi9AUAAAAAAAAAAAAAAACwQIS+AAAAAAAAAAAAAAAAABaI0BcAAAAAAAAAAAAAAADAAhH6AgAAAAAAAAAAAAAAAFggQl8AAAAAAAAAAAAAAAAAC0ToCwAAAAAAAAAAAAAAAGCBCH0BAAAAAAAAAAAAAAAALBChLwAAAAAAAAAAAAAAAIAFIvQFAAAAAAAAAAAAAAAAsECEvgAAAAAAAGAdVNVtquq5VfWhqvpGVV1XVT3xOGnePQIAAAAAALA57DrvBgAAAAAAANhcquqLSW67ymHfS3JFksuTnJvkE0n+rrs/s7HdzUdVPS7JqUl2n3cvAAAAAAAAbH52+gIAAAAAAGAj7JJkvyS3T/KQJM9Kck5VfaCqjphrZ+usqh6S5GUR+AIAAAAAAGCdVHfPuwcAAAAAAAA2kSl3+lrJNUke091vWZ+O5quqzk5y94nS65K8IsmXk1w/Ub+4u6/anr0BAAAAAACwOQl9AQAAAAAAMJMlQl+PSfLRwWE3SXLLJPdM8tgk9x28fk2SY7v7Xzaoze2iqg5Pct5E6Yzu/rl59QMAAAAAAMCOYdd5NwAAAAAAAMCmd1F3f3GJ+heSfDzJ/62qJyV5cZIav3azJC9Mcux26XDjHDUYnz6XLgAAAAAAANih7DLvBgAAAAAAANjxdfdfJPnzQfn+VXXkPPpZRz8yGH9lLl0AAAAAAACwQxH6AgAAAAAAYHt5XpLrB7Wfnkcj6+jmg/Hw/QEAAAAAAMDMdp13AwAAAAAAAOwcuvvSqvqXJEdPlO8y6zpVdXiSuyU5JMk+SS5O8vruvmKKuYckuU+Sg5LcMslVSb6Z5BPdfcGsvWSdb7JYVTfL6PO5TZIDk1SSbyU5P8lHu/uGdT7fbZMcmdFnuX+Sy5O8ubu/NsXc/ZMck+TgJAckuWbc61nd/bn17HN8vrsnuWuSQ5N0Rv/czuzu89dp/b0z+uxvldH72S3JlUkuTPKZ7v7yGtZe7+sOAAAAAADYwQl9AQAAAAAAsD19OVuHvg6YfLGqbpdRyGaLV3f3SePXfi3Jk5PcfYl1P5bkrKVOWFW7Jfm1JL+Z5MeXa6yq/j3J85P89XLhqiX6G3pfVS1V/9XuftUK575Pkv+Z5Pgkeyxz2JVVdVqSP5omlDVetyeGH+ju48b1hyV5epL7ZhQsm/TVJG9ZZr1KcmKSpyb5ySwTequqryY5NcmLu/vqKfo8Lsn7JkrP6e5nj197bJLfzijot9Tcs5P8Xne/c7XzLDF3lyS/kNH7uXdW+Pvp+Pp4U5K/nCaotZ7XHQAAAAAAsPNZ1zsPAgAAAAAAwCqWTEStOKFq76p6W5KXZ+nA10pz75XkvCQvzQrBm7E7JXlZkk9U1aGz9rktqmrPqnpdko8m+fksH/hKklskeUKSf6+qR27j+XatqpcneXNG4bup/3lU1WFJPpnktIx2rVrpb42HJjk5yb9W1V23sde9qupvk7wqywS+xn4iyT9U1dNnXP/OST6V5I0Z7Vi22g0z75Tkd5P84RRrL/R1BwAAAAAALD47fQEAAAAAALA93XowvniV4yvJq5M8dDzuJOdktNvWdeP1fnLJiVUPTfKGJHsOXvp6krOTXJpkryR3ySh4s8U9knysqu7b3V9Zpb9tVlUHJnlnknsOXro6yaeTfC3JjUl+NKP3uNv49T2TvLGqfr27/3rG0z4/o92ntvh8kn9L8p0kh2T5z/LeSd6Rwc5sSS4Z93pxkt0z+hwnA1q3S/Lhqjquu5fciW0ZuyR5XZITxuMbMwqcfXn8/I5JjszWobVTquoz3f0Pqy0+3lnsLUn2Gbx0w/j9fDXJd5Psm+TwJIdlyoDcol93AAAAAADA5iD0BQAAAAAAwHZRVfsludegfO4q0x6eZO/x81cneWZ3f3mw7gFJrh3U7pLk9dk6ePPOJM/q7o8v0duRSV6U5Nhx6dAkp43DSjdOHPqVJLefGD81yVMmxo/JaNeuoa3CbVW1S0Y7Zk0Gvr6W5A+SvK67h+9n3yRPz2inqV0yCiC9pKo+2d1nL3G+pdwzyX8eP39Hkt/p7q0+/6raO6Pw1mTt4IwCUpOBr48leWaS93R3D46/Y5I/S/KwcWmfjEJq9+rub0/Z6xPH57txvNbzu/uSwXkOT/KaJPeeKL+4qu487Gkw77Akb8rWga9LkvxJkld095VLzDkgo2vxv6/U9AZedwAAAAAAwE5ml3k3AAAAAAAAwE7j95LcdFB79ypztgS+ntHdJw0DX0nS3RdPhonGgao3ZLSb0hbP7u4HLxW8Ga/x6SQPzCgMtMX9k/zS4LgbuvuLWx5JLh8sddHk6xOPqwbHPS3JT02MP5Xk7t39ymHga3zey7v7GUlOzGi3syS5WZIXLvV+lrHls3xZkp8fBr7G5/l2dw93X3tFRruATY7v193vXipc1d3nd/fDk7x4onynJP9jhl63BL4e1t2/Pwx8jc/z+SQPymj3ry3umNE/x5W8Nsl+E+Pzktyru1+4VOBrfK6Lu/uvuvvojK7jH7KR1x0AAAAAALDzEfoCAAAAAABgw1XVbyT5nUH5I939ySmmv7e7/3SG0z0iyd0mxm/s7uesNqm7b0jy2CTfnCj/9gznnUpV7ZGtP4srkjx0qWDTUHefnuSlE6UHVNU9lzt+CecmefJKO2ENej0qyUMmSmcmeXZCaK8AAAmmSURBVPyUu1D9VpJzJsZPqqrdlzt4Cad099tXOmAc0jplUF429FVVD0pyzETpqowCcF+atqnuvmiZlxb6ugMAAAAAADYXoS8AAAAAAADW6uCqut3gcYeqOqqqHl9V/5xRUKkm5lybUShoGifP2M+TJ553ltmZaSnjHbleNlH68aq63YznX81jkhw4Mf7f3f31Gea/YDA+YYa5f97d181w/JMH42d09/emmTgOhr1oonRgkqOnPO/V+eH3uZxhMOzIFY594mD8gu4+f8rzrGbRrzsAAAAAAGATEfoCAAAAAABgrU5LcuHgcX6ST2QUZLnf4Phrk/xSd39sirW/neSfpm2kqvZKct+J0ie6+8Jp54+9bzA+dsb5q3nQYPyGWSZ39wVJ/mOiNEt/b53lXEmOn3h+UZIPzDh/Wz/LM7v70mkOHO/S9d2J0kFLHVdVuyQ5blB+2RKHzmyTXHcAAAAAAMAmsuu8GwAAAAAAAGCn8pEkT+juz055/NnT7iw1dt8ku02ML9iGHZOGN068w4zzV3P/iefXJbl2G3q8NMltxs+n7e8r3f2taU9QVXdIcshE6fwkt62qZWYs6aaD8bS9/ussJ0lyeZI9x8/3WeaYI5LsNzH+/Iw7rK1kM1x3AAAAAADAJiL0BQAAAAAAwEb4Xka7dF2e5LwkH0/ypu4+a8Z1vjnj8T86GD96/FiL/dc4//vGu03daqJ00yRfWOOy0/a31s/y/hnt4rYW0/Z62YzrXj/xfLdljjlkMP7cjOdYyUJfdwAAAAAAwOYj9AUAAAAAAMBaPaC7379Ba397xuNvuQE97L2Oa+2XH97Raa2m7W8zfZaz7O42reH7mTVYNsva62E9rzsAAAAAAGCTWe8/KAEAAAAAAMA83XQD1qx1XGsj+tsoi/5ZrlWv41o7+mcFAAAAAABsZ3b6AgAAAAAAYEdy8WD8jO7+07l0srRLBuN/6+7D59LJ6oaf5V929xPm0sn6GL6f/Tdw7UW77gAAAAAAgE3GTl8AAAAAAADsSL4xGN95Ll0so7uvS3LZROn2VbXbvPpZxUJ/ltvg64PxXdZx7R3tswIAAAAAAOZM6AsAAAAAAIAdyZlJemL8oKqqeTWzjI9MPN8tyXFz6mM1n0tyxcT46Krae17NrINzk1w6MT68qg5ep7U3w3UHAAAAAABsIkJfAAAAAAAA7DC6+1tJPj1ROjTJg+fUznLeNRg/bi5drKK7b0zy3onS7kl+eU7trFl3d5J/mihVksev09qb4boDAAAAAAA2EaEvAAAAAAAAdjR/MRg/v6puPpdOlvbaJJdPjB9VVT81r2ZWcepg/KyqOmQunayPlwzGT6uqw9Zp7UW/7gAAAAAAgE1E6AsAAAAAAIAdzWuSnDcxPiLJm6tqv1kWqaoDq+oR69pZku6+PMmfDcqnV9X9Z1mnqm5SVY+oqv3Xr7utdff7k7x7onRQkjOq6tazrFNVe1fVf13P3rbF+P18cKJ0iyR/X1U/Ou0aVXXwMi8t9HUHAAAAAABsLkJfAAAAAAAA7FC6+8Ykj0xy5UT5+CTnVNUTq2rv5eZW1f5VdWJVnZbky0mevEFt/q8k/zgx3jfJ+6vqJVV1+Ar97VZVx1TVKUm+kOTvMgoubaTHJvnKxPgeGX2WT6+qA5abNA56nVBVr0jy1STP2+A+p/UrSS6ZGN81ySer6snLXRtVdUBV/XpVnZnk5KWO2STXHQAAAAAAsEnsOu8GAAAAAAAAYL119+eq6heSnJ5kn3H51kn+T5JTq+ozSf4jo4DOnhmFru48PmZ79HdDVf1ikjOSHDMu3yTJbyb5zar6apLPJrk0oxs53mLc248l2W179DjR69er6qHjXm81Lu+X5JQkJ1fVuUkuSHJFkt0z+izvkOR2SWpiqUu3V88r6e4vjXfSemtGvSbJgUlelOQFVfWpjEJqV+cH18Ud8oP38vkV1l7o6w4AAAAAANg8hL4AAAAAAADYIXX3e6rqqCSnJTlq4qWbZLRb1T2mWOayjegtSbr7iqo6LqOdo54y7muLQ8eP1Xw3ybXr393WuvvsqjoyyWuT/PTES5XkLuPHajbss5xVd3+wqu6b0U5pd514adck917j2gt93QEAAAAAAJvDLvNuAAAAAAAAADZKd5+fUYjn55O8J9MFpM5NcmqSY5M8YuO6S7r7+u5+Wka7Pb00yTemmHZJkjclOSnJj3T31zeuwx/o7m92988k+U9J3pLkO1NMuzDJy5M8OFsHoOauuz+f5CeS/EqSf0nSq0w5N8kfJ/nDKdZe6OsOAAAAAABYfNW92t8uAAAAAAAAYMdQVTdLcp8kt01yyyR7ZRReuizJ+UnO7e5L5tdhUlVHJLl7Rv3tm+SGJFcm+XKS85Jc0AvwR76q2jWjINcdM+p174x2HrsiyQUZfZYXza/D2VTVAUmOTnJIRu+nM3ovFyY5ey3hus1w3QEAAAAAAItF6AsAAAAAAAAAAAAAAABggewy7wYAAAAAAAAAAAAAAAAA+AGhLwAAAAAAAAAAAAAAAIAFIvQFAAAAAAAAAAAAAAAAsECEvgAAAAAAAAAAAAAAAAAWiNAXAAAAAAAAAAAAAAAAwAIR+gIAAAAAAAAAAAAAAABYIEJfAAAAAAAAAAAAAAAAAAtE6AsAAAAAAAAAAAAAAABggQh9AQAAAAAAAAAAAAAAACwQoS8AAAAAAAAAAAAAAACABSL0BQAAAAAAAAAAAAAAALBAhL4AAAAAAAAAAAAAAAAAFojQFwAAAAAAAAAAAAAAAMACEfoCAAAAAAAAAAAAAAAAWCBCXwAAAAAAAAAAAAAAAAALROgLAAAAAAAAAAAAAAAAYIEIfQEAAAAAAAAAAAAAAAAsEKEvAAAAAAAAAAAAAAAAgAUi9AUAAAAAAAAAAAAAAACwQIS+AAAAAAAAAAAAAAAAABaI0BcAAAAAAAAAAAAAAADAAhH6AgAAAAAAAAAAAAAAAFggQl8AAAAAAAAAAAAAAAAAC0ToCwAAAAAAAAAAAAAAAGCBCH0BAAAAAAAAAAAAAAAALBChLwAAAAAAAAAAAAAAAIAFIvQFAAAAAAAAAAAAAAAAsECEvgAAAAAAAAAAAAAAAAAWiNAXAAAAAAAAAAAAAAAAwAIR+gIAAAAAAAAAAAAAAABYIEJfAAAAAAAAAAAAAAAAAAtE6AsAAAAAAAAAAAAAAABggQh9AQAAAAAAAAAAAAAAACwQoS8AAAAAAAAAAAAAAACABSL0BQAAAAAAAAAAAAAAALBAhL4AAAAAAAAAAAAAAAAAFsj/B317DIS4cNImAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAADX0AAAcqCAYAAACQOCfjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd7R0V1k/8O+TTkihhBKBkECogVBCr0FAmoFQBBGRgFJUUEEQBMHQUaQoiKJUQYUf0gMIRhIUIXQIvYQEgrSEEAikh/37Y8819z137r0zc9u8bz6ftWatzJ5z9t5z6qy853ufaq0FAAAAAAAAAAAAAAAAgPmw01ZPAAAAAAAAAAAAAAAAAICLCX0BAAAAAAAAAAAAAAAAzBGhLwAAAAAAAAAAAAAAAIA5IvQFAAAAAAAAAAAAAAAAMEeEvgAAAAAAAAAAAAAAAADmiNAXAAAAAAAAAAAAAAAAwBwR+gIAAAAAAAAAAAAAAACYI0JfAAAAAAAAAAAAAAAAAHNE6AsAAAAAAAAAAAAAAABgjgh9AQAAAAAAAAAAAAAAAMwRoS8AAAAAAAAAAAAAAACAOSL0BQAAAAAAAAAAAAAAADBHhL4AAAAAAAAAAAAAAAAA5ojQFwAAAAAAAAAAAAAAAMAcEfoCAAAAAAAAAAAAAAAAmCNCXwAAAAAAAAAAAAAAAABzROgLAAAAAAAAAAAAAAAAYI4IfQEAAAAAAAAAAAAAAADMEaEvAAAAAAAAAAAAAAAAgDki9AUAAAAAAAAAAAAAAAAwR4S+AAAAAAAAAAAAAAAAAOaI0BcAAAAAAAAAAAAAAADAHBH6AgAAAAAAAAAAAAAAAJgjQl8AAAAAAAAAAAAAAAAAc0ToCwAAAAAAAAAAAAAAAGCOCH0BAAAAAAAAAAAAAAAAzBGhLwAAAAAAAAAAAAAAAIA5IvQFAAAAAAAAAAAAAAAAMEeEvgAAAAAAAAAAAAAAAADmiNAXAAAAAADMqao6vKra4HX4Vs8LWF5VHTjmvD1qE8d33WCHUVX7VtVjq+otVfX1qjqjqi4aHN+f3ep5AgAAAADARthlqycAAAAAAMD8q6pdklw/yfWSXGb02jnJz5P8LMl3kpyS5JTW2nlbNE0AYAdRVY9J8pdJ9t7quQAAAAAAwFYQ+gIAAAAAYKyq2j3JfZM8IsntklxqgtUuqKovJPlEkg8l+UBr7fSNmyUAsKOpqqcnedZWzwMAAAAAALbSTls9AQAAAAAA5k9V3TvJN5L8a5K7ZrLAV5LsmuQmSR6V5J+T/KCq/mbCMY+vqrbodfz0M+eSrKoOHxxDraoO3+p5MT37Ei65quqwJEeP+agl+XaSE5N8btHrq5s2OQAAAAAA2EQqfQEAAAAA8H+qqpL8bZLfXacud0pywDr1BQDs+J6QpX+89PlJ/qq1dsYWzAcAAAAAALaE0BcAAAAAAIv9fXqVrnG+neSDSb6Y5LQkP0+yV5LLJrlWksOS3CjJ7hs/TQBgR1NVOyU5YtD8ltbaU7diPgAAAAAAsJWEvgAAAAAASJJU1ZEZH/j6dJI/SfLB1lpbpY89k9w9yX1Hr0uv9zwBWF5r7fgktdXzgBldL8neg7Y3b8VEAAAAAABgqwl9AQAAAACQqqokLxnz0duS/EZr7bxJ+mmtnT1a521VtW+Shye5yrpNFADYkR0wpu2rmz4LAAAAAACYA0JfAAAAAAAkyW2SHDho+98kR00a+Bpqrf0kyUvXOC8A4JJj3zFtP9/0WQAAAAAAwBzYaasnAAAAAADAXLjHmLbXtdbO2vSZAACXVHuMaWubPgsAAAAAAJgDKn0BAAAAAJAkVx/T9qlNn8UOrqoqyWFJrpXkl5LsmuSMJF9J8vHW2rmbNI+rJrlRkiuMXi3JaUm+l+SE1tpPN2EO10rfFldJsnuSHyX5bpIPt9Z+vNHjz5OqOiDJzdLPw0snOSvJN5J8ZJptUVXXS3KTJPsn2S3JD5OclL5NL1zH+e6V5LpJrp3k8kn2TnJekh+Pxvxka+376zXeZqiqfZPcPMmVcvF3+nn6+fm1JF/aiPOiqm6Qvs+unGTnJKcnOTV9n81ldaOqulSSW6UfA5dNck769eMLST7XWlvXgM5o39wm/Zp5pfRj7btJPtNa+8p6jrXRqmqPJLfMxdvugvTv8rUkn17vbTdm/D2T3CL9HnS59H8r/kmS41prX5yinxskOTjJFdPPl7PTj4FTknyitXbB+s58fVXVfunX3Cum3wMXzr0fpN8Df7QJczgg/dy/evr15qLR+G9urZ09YR+XSt+f+6d/l73S76WnpZ+LJ23A1Idz2Df9enCt9CptPxuN/+mNPD9HvyGul2S/0Wun9Hvnd9N/U32ttXbROo21T/p2vlL68bJH+vFyWvr97n/XY5zRWJXkGkkOTb8v7JN+np6Tvm2/k36efW097+sAAAAAwPwS+gIAAAAAIOkPCw9teOCgqlZ6wP2Oq3y+4KDW2imDfo9K8trVlpvEmDk8s7V29JR9XDrJnyZ5aJIDllns51X1piTPba2dPO08J5jDFZM8PskRSQ5ZYdELq+pjSf42/eHzX0w5zrLbq6p2SvKwJE9IcoNlurioqo5P8mettRMmGO/oJH++wiLH9WeoV/T61tpRqy00rdH3uOOipg+11g5f9PkDkzwpPXwwznlV9f+SPLW19p1lxtg9yaOTPC49hDHOmVX1d0meM2mYYDDGLkl+Ocm9khye5IZJVtyoVXVSkn9J8jettdMnHOfobOK+HIUVfj/JfdIDiDuvsPhFVfWJJMekV0Gc+SH/0T77vSR/kOTAZRY7v6rek34efGnK/g9Pctyg+U6tteNXWe/oDLZ/a60WfX7NJH+W5IFJ9lymmx9U1SuSvGitobWqum2Spya5S3qIcdwy30jyN0n+fiFoVFWvS7/OLPhWa+3AtcxlgrkenhW2eVVdI33bPSjLb7tvV9Ubkjx/2m03wb67dfq15p7pIduhZyZZMfRVVYcm+aMkd0sP4C3nZ1V1bJK/mPAa/rpsu7/GOXmFc3+ic34U3Hlskvumn+/Lddiq6jNJXp3kVa2181frezDOKdk2SP9/86uqXZP8TpLfTb+OjnNceqhnuf53SvKQ9N8Tt8/4ymgLy56c5P8l+atJr8OL1n1dVjiPqurG6cf0vdMD7OP6+FaSF2XR+bkWVXWj9OvmXZNcbZXFz6yqD6Z//7fPsB93T/LI9OvdrbPCcxVV9aUkb0zystbaz6YZZ1Ef106/Hz0oPVy2mnOq6pNJ/j3Jv7XWvjbLuAAAAADA/NtpqycAAAAAAMBcGFdhalz1L6ZUVXdO8qUkT8vyga+kV3j67SRfqKrVHoCfZvzdqupZSb6Z5ClZOfCV9Aebb5se2Pnc6EH/9ZjHVZN8OMlrsnzgK+nBmzsn+WhVPXc9xp43VbVPVR2T5M1ZPvCV9HDGQ9OPiV8e08/1knwyyV9n+cBXklwmPXT4uapa7UH54RgPTK8A9/70h+0PzSqBr5FrJnl6km9V1e9PM+ZGq6qdq+pp6cGK56ZXcFkp8JXR57dK8pz073SLGcc+JMlnk7w4ywe+kh5yum+SE6vqMbOMtZ5G+/ALSY7K8qGlpIcVnpl+zF5rxrH2qKp/TPLf6SGlsYGvkYPTQ1+fHAWr5k5VPTx92z08K2+7A9LvE18a3TfWY+xdq+rlSf4n/XgaF/harY/9q+qf04/bh2flwFfSq00dmX4Nf0dVXW7aMddTdX+Yfg98bvo1d6VrWCW5aXrw+Wvjrr0zzuNaST6d5BVZPvC1Wh93T/L5JP+UHnxaNvA1clCSJyf55mgbrFlV7VRVz06/99w/ywS+Rq6efn5+bBQ8n3XMg6rqbUk+k+QRWT3wlfT73v2SvGk012nGe0iSryd5WXqwbrU/pHv9JM9L384PmnKsGm3Pz6ffYycJfCXJpUZze26S/5pmTAAAAABg+yL0BQAAAABAknx/TNsDN30WO5iq+tUk783KYa+hPZO8bj2CHqOH7T+QHr659Axd3CDJ/1TVEWucxzWSnJBeLWMaT62q56xl7HlTVXsn+WB61axJ7Zvk3aPKKgv93Dg9FLNSgG7o4CTHjyreTOr6SfabYvmhPZO8fFRpbMtV1WXTK6M8Jz0UMIuds3J4Z7mxb57kI0muO+VYf1dVj5x2vPVSVc9L8vKsHjBZ7MAkH66qq0w51qWSvDu9GtIk4cIFh6Zfqw6cZryNVlW/mx50vdQUqx2Q5L1VNc01YtzYOyf5t/TqQdNsy8V93CjJx5P8xox93CfJCaMqRpuuqvZID/28NMnlZ+ji6knev9bzr6qum+Sjme56PezjiUnek35NntbeSV5aVa8aVW6cdQ47pQfO/iyrB2UXu0mS/6qqvWYY805JPpEeWpzpOE4y0T1vFGh7SXrVrqkC0iNXSPKmqnrmFOu8Pn17rhRuBQAAAAAuwWb+n7oAAAAAAOxQPpLkUYO2u1TV41prL9vAcT+36L8PzrbBpJ8n+cYEfZy/rjNaJ1V16yRvzdIHeVt6AOq9SU5NcmGSqya5W5I75OIHqV+e5KlrGP8y6dVdxgVMvpDkQ0m+mOTMUdsV00NZ90x/QHzBXkneUlW3ba19aoap7J3kfUkWwh8t/Xg7Nsm3k/ws/UHp26Y/1D0MlvxpVb27tfaxZfr/fi4+jvZKrzC12EmjMVby7VU+X0+vT3LYovefSt8+J6fP88pJfjnJEdn2j/ftmeT1VXXT9BDWMbk4xHBBkuPSw2TfTT+mDkwPXNxyMP41kjw/PQgyi2+lV1v5UpLvJDkryTnp2/6Xktw4/Vjed7DeY6rq8621V6zQ94buy6raN8uHri5ID2Ucn+R/k/w4/Xp0hfTvdKv0bTerqyZ5YS4OH1w4Guu40XjnJtk/yZ3SA4HDQMWLq+o/WmunrGEOU6uqR6dXiVtwWvrx+onRf++Rfu2+b5ZWEbxiklcm+dUphvzXJHcZ0/7jJO9KP19+mL4dr5Hk3rk4BHPlJG9Pv67Ng4XKcAsuTD9Hj03f57unh4runR6KWWy3JG+tqsNbayfMOP6zRn0vOCMX77sfpgfRrprkHunX5W1U1c3Sj89hUOcX6YHTj6Rft85c1Ncd0ys1Lj5+r5UeYjustfaTMfP8drb9LXC5LA3cfDnL3+vHnvNVtWt66Pn2Yz4+Kf27nZi+XS5Mv67ePP0eeIVFy+6S5JVV9f3W2ruXmcNK9kw/dheHzr6Qvi9OSj+2r5jk2kl+bZnv8oL0il1DZyT5j1x8XpydHmY9JMndk1xnsPxvp++vJ87wPZJeVeohi96fmh5E+3yS09OPleulVwA7aLDudZK8IMljJx1sFHx8R8Y/03B6+rn0yfRr0bnp3/2A9Gput8m2v2Um8c9Jfn1M+3eT/Gf6ve/00ViXSz9v75Glwf5nVNVprbWXrzTYqKrrQ8d8dFp6dc3Pj8Y+J/0c2zt9ux6S/nvtshN9KwAAAABgu1atLfl/+AAAAAAAXMJU1RXSwxzjqpG8O8lfttY+vMFzOD79gfEFH2qtHT5jX0clee2g+aBZAhNVNfwf6c9srR29yjq7J/lsloZLvpbk4a21jyyz3qHpVWEWQkELD/oudqfW2vETzPvtSY4cNH8kyRNWCFAthMWenuTx2baqxilJDm2tnbXKuMPtdW4uDnJ9LMnvtdY+vcy6B6YH5W46+Oj9rbW7rzTuaP3D0x/kX2yi7bURxhzT56UHPZIelnhUa+3YZdY9LP1h+isNPvqN9IfSF8Icx6Zv068v089RSV6VbUMYv0hy9dbadyb4DkcnuV+SVyd573LjDNbZPT1E+pxsW2HlvCTXbK397wR9HJ513JdVVenhgXsPPmrp3+3o1eY1qnr0kPTvduRycxkdxycPmhefB+9L8ocr7LNDk7wzPbi32Ctba6tWAJx124329Z8vM+8LkjwjyUtba+eOWbfSwxwvzbZhxSS59STBpar6rfRQ5NBLkjy9tfbzZdZ7QJK/TQ/OJEuvm99qrR242vhrscw2X7zPP5p+7f/qMuvfI8k/5uJw7IKvJLlxa+28VcY/Okv33UXp5/1FSZ6X5C9W2IZ7LN6vo4p4n87SY/C16efKSuHKa6bvj7sNPnpba+3+K32P0fpHZR3u31X110n+YND8pfR723+0Zf6RfFRt7g/TQ3O7LvrozCQ3Wum7j9Y/JT3Mt2BhPyT9PvrY1tp7lll3lyRprV24qO2+Sd42WPTHSZ6S5J/GnY+j9Sr9N8Df5+JzY8F9WmvvWuV7vC7JwxY1nZ++PSo97PvHSV7TWrtozLq7pm+/pww+uij93jPJPeCa6YGuYUXGHyQ5OsmrFm+nMevvnn4MPjrJ9VtrwxDacPnHJ3nxoPk7SZ6Qfuwu+Z6j9XZJclT6dWpxQPL8JLdZKSxfVV9PD80uuCg9ZPs3E5zzO6cHS38ryZ1bawevtDwAAAAAsP0a/qMLAAAAAACXQK2109IrS41zRJL/rqrvVNVrquqRVXWjhYeTGevJWRr4+nKS2y4X+EqS1tqJ6SGhhWXGhfBWVVWPytLA1yuS3G6lwNdoDme21v44vSLIYgcm+b0ZprMQejgmyeHLBb5GY5+S5K7pD3UvdteqGlbS2B4tBL6+nP4w+NjAV5KMHhS/X5ZW4HlpLg4u/WuSe6wUxGqtvS5LwyA7pT8oPomXtNYOba399SSBr9GY540qBN4+yU8XfbR7Zq8wtlaPztLA13lJfqO19shJQgittc+11v4kvarLiVOOv3Ae/GOSX11ln52YXu3qnMFHD66qPaccd632SN9O92itvWC5gEnrXpYeGB36ndUGGX2vl4z56A9aa09YLqw0Gvvf0q+bPxw1zXTd3AAL+/z4JL+8XOArSVpr70uv9PjdwUfXTfInM46/c3rA88GttWessg2H+/Vvs23g66Ikv9lae8RqoafW2knp1Y+Gwa37VdWw8uCGqKq7ZWng651JbtJa+8Byga8kaa2d01p7QXrFvQsWfXSZbFv1blILga+vpv8GGBv4Go194SDwdcUs3Y5fTw9g/8Ny5+Oor9Zae3t61athwPf5o1DYNHZLD3ydkeT2rbV/XC4I1Vq7oLX2p+nXu8V2TvLwCcd7Y5YGvr6Y5Oattb9fKfA1msN5rbV3tdbulV5BcVlVdYMkfzFoPiHJDVprb1nue47GubC19qokt8u297vdsm2lv+GYh2TbwFeSPLu19sLVAl+jcS9qrf1Pa+3RSQ5dbXkAAAAAYPsl9AUAAAAAwIJnpFcjWc5V0h/W/Yf0KlZnVdXHqupvquoBVTWsSHSJNKpw8buD5guS3L+1dvpq648ezL9felWRWcbfJclTB83/3lr7/ZUedB8zj9emV4ha7PGj6hnTOiU9MLDsA+qLxj0jyTMHzTulh8F2BOcleVBr7furLTgKCL5v0LxQseWrSX5ntQffR16UpcfTPSZYL621n0yy3DLrnpilx+IwTLjhRufksOJMkjyutfamaftrrf10dJxO6+PpVdl+McEYJyV52aB5nyS3nmHctXpSa+0/J1z2hUmGAbphxadxHpzkcoO2N4+CZKtqrX0lE4TLtsCPkjxgwmvfN9MryQ393ugYnsVLWmtvmWaFqrpOkgcNmp/WWvvnSfsY3WsenR5wXWzcebgRnjF4f2KSX2utnT9pB621/8jSe9HDZ/ytc2F6+G4Y6lvNHybZd9H7s5PcvU1QpXFBa+3U9OqQi10/S0Owk3p4a+1zEy77lPSKd4utej2oql9Jr2K12OlJ7jr6PlOZoErcn2bbqm7fS3LPae5/o20yDMbfvapuvMwq1xjTNgzJTTr22bOsBwAAAABsH4S+AAAAAABI8n+VPu6Z5N0TrrJHklskeVyStyT5XlUdX1WPqKo9Vl51h3ZkkisP2l7eWhs+/L6s1toPkjx7xvF/PcnVF3eXvo9m8axsW2nqSpktdPLMKcNDb0qvLLPYYTOMO4/e0Fr7/BTLv3WZ9mdN+qD36Nw+ZtB84xkqvczijdn2GLpiVV17E8ZdbHhOJMn7W2szPWC/Bk+eMKS34I1j2jb7PPhmetWnibTWLkjy5kHzVUcVi1byqMH7i5I8cdJxR2O/O8my1fO2yNGttR9NunBr7fgsPeevnOQ+M4x9VpKjZ1jvSdn235BPTvJX03YyOhaeN2i+x0b/Pqiq2yW5zaD58aP5TOvF6dtxwe6ZMDA78IbW2memWaGq9srSENGLRuHAqbTW/ifJMLh532n7SfKh1tq7phj3jCTvHTTfuKpWe0bhyWPaHtda+96kY0+qqg5M8sBB85+11n48Q3f/kl6JbbFh1dUFe49pm/haAQAAAABccgh9AQAAAADwf1prZ6Y/XP5bSb4x5eqV5I5JXp3kq1U1rmLJJcG4B8JnCZe8LsnEVUkWecDg/fGttWn3ZZL/qxAyDCjdccpufp7+IPQ04/44Sx+cvs6U486rV0+5/LigwFnpQcu19LNXevW+DTUK+/1w0Dys4LLRxlW0+ctNnsPXR4GeaXwx/fxZbLPPg9dMUpls4ONj2padd1XtneRmg+b3T1PNaJFpz6+NdG6SN8yw3j+MaZslaPTm1trPpllhFAS936D5da21YQh3UsPAz+5JbjljX5Ma3gNPbq19cJaOWmvnJDlu0DztPTCZ7bi8S5LLrEM/C94zeD/L95jlt8zwerDivaeq9snSuZ2S6e95kzoyyS6L3v88PXg+tVGFu2F1zuW287iA1+1mGRcAAAAA2LEJfQEAAAAAsI3WvSHJ9ZIckeRfk/x0ym4OSPLGqnptVe2+3nOcc8NAy1emqfK1YFQh4/hp1hk9sH/7QfNHph174OTB+5tMuf4JrbVZwmsnDd7vO0Mf8+bsJJ+acp1vjWk7YYaqNaeMaRsGClZV3c2q6tFV9fKqekdV/WdVfaKqPjvuleRyg24OmHbcWY3OieFD9/87awhkDf5r2hVGYatTBs2bfR58aIZ1hudusvK8b5Gl/2Y5DAtN6r3ZtrLcVjp+ygqHC47N0nvuLEHJYVhpEocmueygbeZ7yOg+NtwG095DpjU837f6HnhOkhNmGHfcdWvc/WBSw+9xYFVNew/YjOvB7ZPsPGj7lzUED1cz3M6fnbSK5jImPV4+kWQYqP3HqjpkDWMDAAAAADugXVZfBAAAAACAS6LW2oVJjklyTFXtnOTG6VUIbpbkpumVW4YP5g4dleTSSR64cTOdH1W1Z5LrDpqnDfkM1/2VKZa/XpYGbB5WVb+6hjkMAzr7Tbn+sGLXpIZBgR0h9PWtGcJaZ41pm6Vy27h+Jt6mVbVvkj9O8tAkB84w/mJTh83W4JpJrjBoW2sIZBbb63kwy7zHBZ1WmvcNx7R9eoZx01r7aVWdlOTgWdZfZzNd+1trv6iqz2XbAO/1qmrPKcMos2zD245pe1lVnTdDXwv2HLyf9h4ysVHVuEMHzXcdhU9ndeXB+2nnf+KMgaXhvrjsGr/HXmPa9kty5oTrnztj9b1prwe3HtP2PzOMO6nhdj5kjdt5+Bts36radXjvb62dUVXvSq80tuCgJJ+rqnem/8GFD7TWpv2jCwAAAADADkboCwAAAACAVY0eWP5UFj3EPgo43TLJnZL8WpaGnRb8WlU9rrX2sg2f6Na7QpIatH11Df19Zcrlr7pM27j2WV1+yuXPmHGcYThq1xn7mSc/nnaF1toFvVjV2vrJ0u2ZTLhNq+o+SV6Z5EozjDvOZgaXxs3585s4/oLt9TyYZd7THmvjrimnzDDugpMzH6GvtV77F4e+Kj2g8+0p+vjhDOOOu1csd2+f1bT3kGnsn6VV4644eq2Xaec/y35Ilu6LPZPcaMa+lnP5TB4iXq9rWLLy9WDTrtlVtVuWhoIvk/UPJl8uyQ/GtD8xyR2ybVBs5yT3G70uqqrPJPloemWw/1pjtTcAAAAAYDs0/J/eAAAAAAAwkdba2a2141prz2itXS/J3ZN8cZnF/2wUEtvRjXtQeFyVi0lNu+5GPky/4FJTLj9tZasd2Xpti03bplX14CRvzfoFvpLNDS4Nq64ks4Xm1mq7PA9mqEw3i8uOadvM6+ZGWe/vMG0QZZYKQfN4D5nGZsx/jymXn7VS07hr13qbZl9s1jVsM6/Zm3G8JMts59baSUnukh5UHWfn9Oq6j0vyT0lOqaqTq+pFVXXTDZkpAAAAADB3hL4AAAAAAFgXrbX3J7l5kveN+fiKSe69uTPaEnuPafv5Gvqbdt1x4QmYSVVdM8lr0x88X+yCJG9P8vj0B9avk/6g/qWT7NRaq8WvJFtZmWSfMW0/2/RZsJLdx7Sdv4b+zlvDuutpva/94+4vy2qtXTjDuNv7PWQe5z/1fhiF5MedF5cE467ZazmXVrLlx0tr7TNJbpDkyUlOnWCVA5M8IcmnqurYqrrxBk4PAAAAAJgDu2z1BAAAAAAA2HG01s6pql9PclKS/QYf3znJmzZ/VpvqrDFtl15Df9Oue86YtiNba+9cwxy45HpBlgYP/j3JI1pr35uin42s7LOacVV29tr0WbCScVWt9s7s1X3GhUa2wnpf+8fdX9bbuHvIZVtrZ27C2Oth3Pz/qLX215s+k7U5N8kvsu0fcH1Ha+2+WzSfzTTumn3pbExYd9zx8tLW2uM3YKxltdbOTvKXVfXCJLdPctckd0j/Qwor3T/vnORjVfWo1trrN36mAAAAAMBWUOkLAAAAAIB11Vr7aZLXjfnoOps8lTWrql2nXGXcg/H7rmEK0657+pi2g9YwPpdQVXXpJEcMmj+d5N5TBr6Sra2m8qMxbVte3YVtjAt3XX4N/a1l3fW03tf+zQhejbuHHLgJ466XHeIe2Fr7RZbu7+3ue8xoM6/Zc3W8tO6/WmtPb63dMT3AevP0yl7vzfiQ2m5JXl1Vd9jEqQIAAAAAm0joCwAAAACAjfDxMW3Dyl8b6YIxbdMGuJLpwwOnJWmDtrWE3a475fI/GNN26BrG55LrDlla5ev5rbVx59ayqupqme3cWy/fH9PmnJgvp45pu+EsHVVVJbnB2qazbq69hnWH942W8QGV9ba930O29/kvNvwu166q4TV5R7Rp1+zW2llZGqSam+OltXZha+2TrbWXtNbulfKkEbwAACAASURBVOSKSR6T5LuDRXdO8sJNnyAAAAAAsCmEvgAAAAAA2Ag/GdN24SaO/9MxbfvM0M/B0yzcWjs7yVcGzYfNMO6s656Y5NxB293XMD6XXFcb0/bfM/Rz67VOZC1aa9/M0vDEbbZiLixrXEj4VjP2df3Mdq3fCDNd+6tqpyQ3HjR/eXR/2Wjj9sU9NmHcddFa+2GSUwbNt62qvbdgOms13BeXSnL4Fsxjs310TNttN3C84XY+qKrmsjJta+1nrbVXJrlploZlbzEKWQMAAAAAOxihLwAAAAAANsKVxrSNq8Cx2DAUtvMaxj9zTNs1ZujnjjOsc8Lg/XWratqKXamqy047fmvt3CQfHjTvX1V3nnb87dS4YOFajqNLsnGV+c6YoZ8HzTj+eu7LDw3e/9Il6JzYHnw1S4+tXx9V7ZrWQ9ZhPuvlTlW17wzr3SVLg2vD+8pG+UiSnw/a7jW6H20vjh283y3JA7diImv0H2PafnPTZ7H5/jtLr/+/UVUbdS/f7rZza+0HSV405qOZKiQCAAAAAPNN6AsAAAAAgI3wy2PaTlplnbMG7/daw/hfHdN2i2k6GD1g/IgZxn7fmLZHztDPw5LsPsN67xzTdvQM/WyPhsdQsrbj6JJsGPxIxgfBllVV10xynxnHX899+fYxbU+asS/WWWutJXnLoPmATBkYHAWTfme95rUO9shs4ZFx94tx95V111o7P8m/D5r3TvLHmzH+Ohl3D3xaVe226TNZm/dnaeXOB89rFar10lr7WZL/HDRfPRsX3HvXmLY/qKrLbdB462VYVTZJZgmZAgAAAABzTugLAAAAAIBU1RFVddA69XXNjH8495hVVv3x4P1BM1Z6SWvth0m+M2h+4JSVIn4/s1UHe0eWVjV77DQPalfVFZI8Y4axk+TVSb4/aLtdVT15xv62J8NjKJltH5J8b0zbr0y6clXtlOQ1mb0613ruy7ck+eag7W5VNUsYk43xd2PaXlxVV5yij5ckucI6zWe9HD1Nlayqun2SBwyav5/xQaaN8twxbX9SVbfbxDmsxXuSfHbQdlCSv96CucystXZ6kn8YNO+c5F+q6lJbMKXN9Bdj2v6mqvZf74Faa5/P0uDXPkneMLqPzatx2+K0TZ8FAAAAALDh5vl/VAIAAAAAsHnuleRrVfXaqrrurJ1U1S+lV9XZc/DRaUmOXWX1zw/e75vkNrPOJUsroxyQ5I8mWbGq7pzkL2cZtLV2QZJXDJp3S/LWqrr8BGPvmeRtSSYOCgzGPyfjH9p/XlU9dpY+R/O6e1UNv9e8OTXJTwZt99yKiewA/ntM259V1T6rrTh6UP6VSe6whvHXbV+21i7K+HPiZVU1VTWpJKmqfbaDKjDbldba57I0eLF/kmNH95VlVdXOVfWi9OqI82a/JG+pqlWrNlbVgUn+ZcxHfze6r2yK1tpnkrx10LxrkrdX1UzndFXtXlWPqqrHr3mCqxhVjnv6mI8eU1XPnzXIU1W3rqpx+2cjPT9Lqy7eNH1fzPQboaquXlUvq6obrHl2G6S1dlyW3oP2S/KBqrrqtP2Nzq2VPCPJRYO2eyZ5bVXtMe14ozEPqap/Wm4/VdVRVXX/Kf8YwcK6uyb5vUHzL5J8YYapAgAAAABzTugLAAAAAIAFuyQ5KsmXq+qEqnrspFUVqmrPqnpMks8kueGYRZ7UWjt3lW4+MqbtNVV1pxkf0n7VmLa/qKpHL1dBrKr2GFXEel+S3ZOsNufl/GWSrw7aDkny4aq61XIrjR7CPj7JQkWVc2Yc/2+ztDLMTukhl7dX1Y0m6aSqDqqqJ1fVienbZC0hng03etj/o4Pmu4we9J+mYtAlXmvte0k+PGg+OMn7q+rqy61XVddO8u9JfmfUdGGSs2cYf133ZWvtNVkaZNk9yb9W1Sur6iqr9TF6iP8FSb6d5NBp58CqHpOlFd5umH5PesrwuBvdd+6f5BNJnjBqviDJpzZ8ppNZuH/cOcl/js6Nsarqbkn+K8kw0PKVzBhAXqNHJzl50LZf+vd4YVVdeZJOquqWo0DeKelB0Guu6yyX0Vo7JsnLxnz0lCTHTRpeq6r9q+pxVfWR9N8o917Haa6qtfb99DBjG3x0tySfqqrfrKpdVuunqi5dVQ+qqrcl+UaSxyaZKcy0iX4ryRmDthsk+eQoQLji966q3arqV6vq3Uk+uNKyo9DpnywzhxNG1XBXrTxbVZetqkdU1QfS/5DBQ7N8tcsbJ/m3JN+oqudU1U1X6380xtXTA7I3H3x07Oh4AQAAAAB2MKv+T2AAAAAAAC6Rbjl6vayqTknysSRfSnJ6kh+lP4C8T5Krp4cf7pzk0sv09f9aa69fbcDW2seq6ktJrr+o+drpD+ueU1XfyfjwyD1ba98d09/Hq+qdSe6zqHnnJH+f5Per6u3pDz+fn+QKSQ5Lr+ywOFDyR6Plp9JaO7eqHp4e4Npt0UfXTfKR0QPk702vZvSLJFdJ8itJDs/FDwhflOSZSV4ww/itqn4zPbQzDHgdmeTIqvrcaH5fT9+nSXKZ9Af7D03fHteYduw58Jokdx+0PSXJU6rqe+kPkV84+PxdrbVnbMbktjN/nuQ/B223Sq8K+M704+v76eGBqyS5a5LbZ9t/f3pWkt9Ov1ZMa7335SOSXC/bXmMqyaOSPHx0Xh6X5Lvp4aNL5+Lz4Vbp1yM2SGvte1X10PRKh4uvm/ukVzx6flWdnl45cu8kV0qvQLXY09IDtoctahtW8Nksz0zynPRr+m2TfLGqjk0/p/43/TsemOSIbDvfBecnefgEgel111r7UVXdO/0c33fRR7skeWKSP6iqj6YH1b6Tfr7snn4P2T/JTZLcLP3eulUen37O3m3QfockH6qqr6bfA7+Yfi25IH3+l8vFx9B1ssV/RLW19taqekaSZw8+OijJG5L8VVUdn+ST6efGz9PPmcukB3Vvln4NW7Xa3DxprZ1SVQ9JDzgtPs+vlB4gfE5V/Ud6yPO09JDlZZJcLb0a2u1y8bH7rQnGe3FVXT/9frXYjUZz+HZVHZfks+m/mc4d9X/Z9N92h6UfN9M+f3Fg+nXraaP72qdHY3w3yZnp14G9RsvdJv134vC6d16SP55yXAAAAABgOyH0BQAAAADAag4cvWbx+ix9gHYlj0vygSytjHCpJNdaZp3dlmlPeuWYmyf5pUH7DTO+ItliL2ytvbKqpg59JUlr7aOjKjRvHcyx0gMAt12li8cl+fIsY4/G/1lV3T7Ja5Pcf8wiN8rSQNiO4K3poYo7j/ls/9Fr6LMbOqPtVGvtg6PKVk8ZfLRbkl8bvVbyxvTQyzTXgMXWdV+21n5aVbdL8pYxfe6a5I6jF1uktfaeqrpfegWccZWI9hu9xnlRa+2FVfXGQftP13OOUzghyR+kV15M+r/L3j1Lg4zjnJ/k/q21EzZobqtqrX2hqm6eHsK7weDj3TLn50tr7aKqOiLJi9MrWw1dZ/Sae62151TVd9OPpeF5caUkDxq9diittX+vql9JvxdcbvDxFZL8xui1Xh6ZXuHuWVka9jsgveraw9ZxvKH9k9xr9JrUeUke2lr7wsZMCQAAAADYalv6l8kAAAAAAJgbb0jyz+lVBdbDN5Pcp7V2VGtt4iorrbUPJrlvkh+sxyRaa99Pr/bwjSlWOz/JE1trf7IO4x+T/vDuqVOsdk6S326t/d06jH9Wa+0BSX43vbLMWnw7PUA211prv0jygCT/stVz2UE8NT241aZY56Ikz0vysNbaNOttYyP2ZWvtx+mhm6OTnDVjN+dm64JEO7zW2nvSKxMdO+EqP0jykNbaE0fvLzv4/CfrNbdptdZekR4kmaZa16lJ7jW6f2yp1trX06t+vji9gtRafDK9wuWmaa1d0Fp7XHpA9Wtr7O6HSV6x9lnNprX2miS3Tq9+uhbnJnlT+j197rXWjk9yiyRrOR8m+k3ZuucmuUv68boWP03yqiQ/W+bzH2a6++o4X0jyy621t6yxHwAAAABgjgl9AQAAAACQ1tr/tNZ+M8kV0yvgPCv9weLlHlYd5wfpwbF7JblOa+1dM87l3emVxR6Y5NVJPp7k++kPnE/9gGxr7eT0AMFTk3xvhUXPT/LmJDdprb1o2nFWGP/YJNdP8tysHP46J70y2g1HD3evm9ba3ye5Rnr44NgkZ0+w2i+SfCbJC5PcKcmB67ldNlJr7czW2kOSXDc93HNMkpOS/DjJBVs4te3O6CH4p6eHJ9+Xflws5+z0gNZhrbWnjUJbax1/3fdla+3C1tozkxyU5NlJTszq15bzkxyf5PFJrtJa+/QsYzOZ1trXW2t3TQ97vDDJJ5J8N32f/zzJ19Mrtj0s/dq0OBh45UF3Z2z8jJfXWntV+j3oDenX+eWcmh6WvP7ovjEXWmtnt9b+OP2+fHR6GGaSMPe56b8jnprkkNbazVtrmxr6WtBa+7ck10uvhnVMJg8CfjnJy9J/11xlPcLga9Fa+2xr7c5JbpXkn5J8Z8JVv5deefFhSa7cWntwa+2HGzTNdddaO6m1dkT69/7nJKdNsNoPR8sekR6Wm2a841prN08PCL9lwvGSXiXsVekhwyu31h7ZWhsb+GytPS/9WvWI0TxPnnCMC9LvxQ9JcuPW2kcmXA8AAAAA2E7VGv7AIgAAAAAAO7iqqiRXSXKtJAck2SfJ3ukBiZ+mV8r5XpLPj6pqzb2qOjTJjZLsl2TP9Ie/v5rko621aUJus4xdSW6W5NpJ9k+yW3og4StJPtZaWykQsJ7z2C3JYUmumr4dLpvkwvT9eXp6RZSvbdZ82H5U1WXSA2AH5OLj5vT0c+gTrbXztnB6M6uqKye5aXrwdb/0c/Nnufi7fbm1NklYki1UVZdKv6bvuqj52a21Z2zwuIcnOW7QfKdRlaLh/G6ZHmK8XJLz0u+hX0/yybVUxttMVbVvkpunny+XT7JveqDtrPRw3leTfHOaSp+bqap2Tv8dcFD6/C+f/rvmrPR78teTfGWjfxOsh6o6OD1YvvA9Fq5dP0kPEn1lewp4TWL0W+pGSa6Z5Arp59LCb5hT08N631yv82k03vXTf7stbOedRuOdmR5E/sqokuRaxrl8+u/ta6Tfh/YafbRwXH45yRe31/ssAAAAADAboS8AAAAAAABgu1dVRyZ5+6D5iNbaMRs87uGZIPQFAAAAAAAwjZ22egIAAAAAAAAA6+BJg/cXJPnoVkwEAAAAAABgrYS+AAAAAAAAgO1aVT0pyW0GzW9rrf1oK+YDAAAAAACwVkJfAAAAAAAAwJarqttW1VFVtfsU6+xUVU9P8oIxH798/WYHAAAAAACwuYS+AAAAAAAAgHlwtSSvTfKdqnpVVR1ZVVcbt2BVXbuqfj/Jl5M8K0v/3fNVrbUPb+x0AQAAAAAANs4uWz0BAAAAAAAAgEX2S/Lbo1eq6qwkP0rysyR7jT7fa4X1T0zyhxs8RwAAAAAAgA0l9AUAAAAAAADMs71Hr0m8N8mDW2tnb+B8AAAAAAAANtxOWz0BAAAAAAAAgCRfS/LJGdf9cpKjkhzRWvvpus0IAAAAAABgi6j0BQAAAAAAAGy51tqnk9y8qq6W5I5JbpXkukmunmS/JHsmqSRnJjkjybeSfDjJh5L8d2utbcW8AQAAAAAANkL5tw8AAAAAAAAAAAAAAACA+bHTVk8AAAAAAAAAAAAAAAAAgIsJfQEAAAAAAAAAAAAAAADMEaEvAAAAAAAAAAAAAAAAgDki9AUAAAAAAAAAAAAAAAAwR4S+AAAAAAAAAAAAAAAAAOaI0BcAAAAAAAAAAAAAAADAHBH6AgAAAAAAAAAAAAAAAJgjQl8AAAAAAAAAAAAAAAAAc0ToCwAAAAAAAAAAAAAAAGCOCH0BAAAAAAAAAAAAAAAAzBGhLwAAAAAAAAAAAAAAAIA5IvQFAAAAAAAAAAAAAAAAMEd22eoJwHKqat8kd1zUdGqS87doOgAAAAAAAAAAAAAAAFyy7Jbkaovef6i19pPNGFjoi3l2xyTv3OpJAAAAAAAAAAAAAAAAQJL7JHnXZgy002YMAgAAAAAAAAAAAAAAAMBkhL4AAAAAAAAAAAAAAAAA5sguWz0BWMGpi9+84x3vyMEHH7xVcwEAAAAAAAAAAAAAAOAS5Bvf+EaOPPLIxU2nLrfsehP6Yp6dv/jNwQcfnEMOOWSr5gIAAAAAAAAAAAAAAMAl2/mrL7I+dtqsgQAAAAAAAAAAAAAAAABYndAXAAAAAAAAAAAAAAAAwBwR+gIAAAAAAAAAAAAAAACYI0JfAAAAAAAAAAAAAAAAAHNE6AsAAAAAAAAAAAAAAABgjgh9AQAAAAAAAAAAAAAAAMwRoS8AAAAAAAAAAAAAAACAOSL0BQAAAAAAAAAAAAAAADBHhL4AAAAAAAAAAAAAAAAA5ojQFwAAAAAAAAAAAAAAAMAcEfoCAAAAAAAAAAAAAAAAmCNCXwAAAAAAAAAAAAAAAABzROgLAAAAAAAAAAAAAAAAYI4IfQEAAAAAAAAAAAAAAADMEaEvAAAAAAAAAAAAAAAAgDki9AUAAAAAAAAAAAAAAAAwR4S+AAAAAAAAAAAAAAAAAOaI0BcAAAAAAAAAAAAAAADAHBH6AgAAAAAAAAAAAAAAAJgjQl8AAAAAAAAAAAAAAAAAc0ToCwAAAAAAAAAAAAAAAGCOCH0BAAAAAAAAAAAAAAAAzBGhLwAAAAAAAAAAAAAAAIA5IvQFAAAAAAAAAAAAAAAAMEeEvgAAAAAAAAAAAAAAAADmiNAXAAAAAAAAAAAAAAAAwBwR+gIAAAAAAAAAAAAAAACYI0JfAAAAAAAAAAAAAAAAAHNE6AsAAAAAAAAAAAAAAABgjgh9AQAAAAAAAAAAAAAAAMwRoS8AAAAAAAAAAAAAAACAOSL0BQAAAAAAAAAAAAAAADBHhL4AAAAAAAAAAAAAAAAA5ojQFwAAAAAAAAAAAAAAAMAcEfoCAAAAAAAAAAAAAAAAmCNCXwAAAAAAAP+fvbsJubws4zj+u6enxtRSK8NKUnwhUUkUodAWFiIYWClhYIssErEII4NaZCoI0UIXLiqQTKE3sswo7AUhN0otTBHRhaZOlMFEWeQwNmlXCx+Y43FG57w8z7kcPx8YOPf9/O/7f4nrL38AAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANCL6AgAAAAAAAAAAAAAAAGhE9AUAAAAAAAAAAAAAAADQiOgLAAAAAAAAAAAAAAAAoBHRFwAAAAAAAAAAAAAAAEAjoi8AAAAAAAAAAAAAAACARkRfAAAAAAAAAAAAAAAAAI2IvgAAAAAAAAAAAAAAAAAaEX0BAAAAAAAAAAAAAAAANLK26gEAAABmNa74+apHgNbquvNWPQIAAAAAAAAAAAAL8KUvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9UdBQxAAAIABJREFUAQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADQi+gIAAAAAAAAAAAAAAABoRPQFAAAAAAAAAAAAAAAA0IjoCwAAAAAAAAAAAAAAAKAR0RcAAAAAAAAAAAAAAABAI6IvAAAAAAAAAAAAAAAAgEZEXwAAAAAAAAAAAAAAAACNiL4AAAAAAAAAAAAAAAAAGhF9AQAAAAAAAAAAAAAAADSytuoB2BxjjNcmOTPJO5O8LcnTSZ5Mcl9VPbHC0QAAAAAAAAAAAAAAAIAJoq+Gxhg/TPKxqe1tVXX0HHcdnuSa9fvetJdn7klyfVX9ZNb7AQAAAAAAAAAAAAAAgOXasuoBeKExxofy4uBr3rvOTfJgksuyl+Br3RlJfjzG+O4Y46BlvBsAAAAAAAAAAAAAAACYjy99NTLGODTJN5d011lJbk/yuontSvKHJI8lOTTJqUneMvH3jyd54xjjI1X1v2XMAQAAAAAAAAAAAAAAAMzGl756uS7J29d//3veS8YYRya5LS8Mvu5OclJVnV5VF1bVOUmOTHJ5kv9OPHdekmvnfTcAAAAAAAAAAAAAAACwGNFXE2OMs5N8an35bJKvLnDdNUkOm1jfk+Tsqnp48qGq+k9V3ZDkwqnzXxhjHLXA+wEAAAAAAAAAAAAAAIA5ib4aGGMclOTGia3rk9w/513HJ/nExNauJBdX1TN7O1NVtye5ZWJra5Kr5nk/AAAAAAAAAAAAAAAAsBjRVw9fS3L0+u/Hkly9wF0XJXnNxPq2qnpkH859fWp94RjjgAXmAAAAAAAAAAAAAAAAAOYg+lqxMcYZST47sXVpVe1c4Mrzp9bf2ZdDVfVwkt9PbB2U5JwF5gAAAAAAAAAAAAAAAADmIPpaoTHG1iQ3Zff/h1uq6s4F7jsiySkTW88muXuGK+6aWp877ywAAAAAAAAAAAAAAADAfERfq3V1knet//5bkisWvO/kqfUDVbVjhvP3TK1PWnAeAAAAAAAAAAAAAAAAYEairxUZY5yW5IsTW5+vqr8veO2JU+tHZzz/x5e5DwAAAAAAAAAAAAAAANhgoq8VGGOsJbkpydr61q+q6vtLuPq4qfWfZjy/bWr95jHGYQvMAwAAAAAAAAAAAAAAAMxI9LUaX05yyvrvHUkuW9K9h06tt89yuKqeTvLM1PYhC00EAAAAAAAAAAAAAAAAzGTt5R9hmcYYJyb5ysTWlVX1xJKuP3hqvXOOO3YmOWBi/Yb5x9ltjPHWJIfPeOzYZbwbAAAAAAAAAAAAAAAAXklEX5tojLElybeTbF3fujfJDUt8xXT0Nf3Vrn2xM8lhL3HnvD6T5Kol3QUAAAAAAAAAAAAAAAD7rS2rHuBV5vIk713//WyST1fVcxv4vtqkMwAAAAAAAAAAAAAAAMCSiL42yRjjmCTXTmxdX1X3L/k1T0+tXz/HHdNnpu8EAAAAAAAAAAAAAAAANtDaqgd4NRhjjCQ3JjlwfeuxJFdvwKs6R1/fSHLrjGeOTfKzJb0fAAAAAAAAAAAAAAAAXhFEX5vjkiQfmFhfWlU7N+A9/5paHz7L4THGwXlx9PXPhSZaV1Xbk2yfcZ5lvBoAAAAAAAAAAAAAAABeUURfm+Oaid93JHl0jHH0y5w5Ymq9toczT1bVron1I1N/P2of59vb8/+oqqdmvAMAAAAAAAAAAAAAAABYgOhrc0x+PeuDSR6f44537OHcqUnun1g/PPX342Z8xzFT64dmPA8AAAAAAAAAAAAAAAAsaMuqB2CpHpxav3uMceAM5898mfsAAAAAAAAAAAAAAACADSb62o9U1V+TPDCxtZbkfTNccdbU+peLzgQAAAAAAAAAAAAAAADMRvS1Carq0Koas/xL8v6pa7bt4bn79/C6n06tP7kvM44xTkjynomtHUl+s8//kQAAAAAAAAAAAAAAAMBSiL72P99L8tzE+oIxxvH7cO5LU+sfVdUzyxsLAAAAAAAAAAAAAAAA2Beir/1MVT2S5JaJrdcluXmMccDezowxPpzk4omtXUmu2ZABAQAAAAAAAAAAAAAAgJck+to/XZXkqYn1GUnuHGOcMPnQGGPrGONzSW6dOn9dVW3b4BkBAAAAAAAAAAAAAACAPVhb9QAsX1X9eYxxQZJf5/kvfSXJmUkeGmPcm+SxJIckOS3J4VPHf5Hkys2aFQAAAAAAAAAAAAAAAHgh0dd+qqruGmOcn+Tm7A67RpLT1//tyQ+SXFJVz238hAAAAAAAAAAAAAAAAMCebFn1AGycqrojyclJvpXkqZd49HdJPlpVF1XVjk0ZDgAAAAAAAAAAAAAAANgjX/pqqqruyvNf5lr0nu1JLhtjXJ7kzCRHJTkiyY4kf0lyX1U9vuh7AAAAAAAAAAAAAAAAgOUQfb1KVNWuJL9d9RwAAAAAAAAAAAAAAADAS9uy6gEAAAAAAAAAAAAAAAAA2E30BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAAAAANCI6AsAAAAAAAAAAAAAAACgEdEXAAAAAAAAAAAAAAAAQCOiLwAAAAAAAAAAAAAAAIBGRF8AAAAAAAAAAAAAAAAAjYi+AAAAAAAAAAAAAAAAABoRfQEAAAAAAAAAAAAAAAA0IvoCAAAAAAAAAAAAAAAAaET0BQAAAAAAAAAAAMD/2bubkE2rOo7jv+M4qfk6voRGNJkaZVa0UrIgKwSpyCAMeqEyQsqicNGiFqK1iaKiLNpF4CLSxNwELSpDh6KoEMuFaebCaKCxZMwpzdPCiW5vZ56Z+5lnnN+Tnw/M4pz7nOt/PbP/cgEAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFjj7SL/BcNcY4LsnLk2xP8sIkJybZmuSRJH9NcneS3805n9igeVuTXJzkxUnOSrI7yUNJfjPnfGAjZgAAAAAAAAAAAAAAAACHTvT1LBpjfCjJm5JcmOScHPhLa7vHGN9L8vU552/XOfOMJNcleXeSU/dzZkeSL885v7+eGQAAAAAAAAAAAAAAAMDGOVB0xMb6XJL3JTkvB/d/f0KSK5P8aozxlTHGSpHeGOOyPPXFsI9mP8HXXq9LcvMY48YxxvGrzAAAAAAAAAAAAAAAAAA2li99HVn/SHJfkgeTPJKnQrBTk7wqyZkL57Yk+VSSl4wx3jXn/PeBHjzGeGOSW5M8b2F7Jvl1kvuTnJLktUlOX/j9vUlOGmNcPud8cp1/EwAAAAAAAAAAAAAAAHAIRF/PrkeT3Jbkh0l2JLl7f3HVGOOiJJ9P8uaF7cuTXJPki2sNGWO8KMkteXrwdWeSj8w571k4d0ySq5J8KcnWvdtv3zv3Mwf9VwEAAAAAAAAAAAAAAAAb5qgj/QLPMRfMOd8x5/zWnPOutb6mNef8eZJLk9y49NNn98Zaa7kuybaF9Y4kb1kMvvbO+Oec82tJrli6f80YY/sBZgAAAAAAAAAAAAAAAACHgejrWTTnfHzF808muTpPfSHsv05Ocsn+7owxzkvygYWtfyX54Jxzzxpzbk3ynYWtY5Jcu8q7AgAAAAAAAAAAAAAAABtD9FVuzvlIkjuWts9d48p7kmxZWN8y57z3IEZ9YWl9xRjj2IO4BwAAAAAAAAAAAAAAAGwg0dfmsGtpfeIaZ9+5tP72wQyYc96T5BcLW8cnufRg7gIAAAAAAAAAAAAAAAAbR/S1OWxfWj+0r0NjjDOTvGZh64kkd64w56dL68tWuAsAAAAAAAAAAAAAAABsANFXuTHGy5JcuLA1k9y+n+MXLK3vmnM+usK4HUvrV65wFwAAAAAAAAAAAAAAANgAoq9iY4yzktyUZMvC9s1zzgf2c+X8pfUfVhx53wGeBwAAAAAAAAAAAAAAABxmRx/pF+B/xhhHJ9mW5BVJ3pbkqiQnLRy5P8nH13jEuUvrB1d8hT8trU8bY2ybcz684nMAAAAAAAAAAAAAAACAdRJ9HUFjjK8m+eRBHv9JkvfPOXeuceaUpfVaZ59hzrl7jLEnybEL2ycnOeToa4zxgiRnrHjtnEOdCwAAAAAAAAAAAAAAAJuN6KvfbUm+Mef80UGcPWFp/dg65j2Wp0dfJ67jGfvysSTXbtCzAAAAAAAAAAAAAAAA4P+W6KvfZUm2jDH2zDl/doCzy9HXnnXMeyzJtjWeCQAAAAAAAAAAAAAAABxGRx3pF3iOuz7J2Qv/zk/yhiSfSPLjvWe2JnlrktvHGDd4McxOAAAgAElEQVSMMbas8Py5jndazx0AAAAAAAAAAAAAAABgg/jS1xE059yVZNc+frojyQ1jjNcnuTHJ9r37Vyc5LsmH9/PI3Uvr49bxWst3lp+5Xt9MctOKd85J8oMNmg8AAAAAAAAAAAAAAACbguir2JzzjjHGJUl+meS0vdtXjjFum3PuK4aqjb7mnDuT7FzlzhhjI0YDAAAAAAAAAAAAAADApnLUkX4B1jbn/GOS65e2P72f439fWp+xyqwxxgl5ZvT1t1WeAQAAAAAAAAAAAAAAABwa0dfm8N2l9UVjjFP2ce7epfX2Fecsn98153x4xWcAAAAAAAAAAAAAAAAAh0D0tQnMOXcmWYyvjkpy9j6O3rO0PnfFUS9dWv9+xfsAAAAAAAAAAAAAAADAIRJ9bR6PL62P2ceZu5fWrx5jPH+FGRcf4HkAAAAAAAAAAAAAAADAYSb62gTGGMcmOX1p+y/L5+acf05y18LWf9i792Dd7jnP45/vyT4IciWCuISQYKhqRt9cmrSJqe5Gk25mMl0zYwY9bVy6Cl3pahO0QWma1DAy0z2jhmKqaZqh1TQmLhkjQShDTcetkbhHR0IkIpfjO388a9vP2ZKcfXn2ftY65/WqWvWsZ+21fuv7nPP3u34rSR62iVc9ct33v9nEswAAAAAAAAAAAAAAAMACiL6m4VHZ///qR0m+eRP3vnPd93+1kRdU1X2S/OLcpauTvH+jAwIAAAAAAAAAAAAAAACLIfoauarak+SsdZff293X3cQj/z3Jvrnvp1fVvTfwqjPXff/L7v7xBscEAAAAAAAAAAAAAAAAFkT0tUuq6llVdadNPrM3yeuz/w5cSfK6m3qmu7+U5I1zl26R5A1Vdaubec9vJnny3KXrkvzxZmYFAAAAAAAAAAAAAAAAFkP0tXuekuTLVfXmqnpsVR1xUzdW1eFVdUaST2f/GCtJ3tTdHzzAu16Y5Iq57w9Jcm5V3Wfde25ZVc9K8rZ1z7+quy85wDsAAAAAAAAAAAAAAACAHbCy7AEOMYcn+Z3h6Kr6uyQXJ/l+ZrtrHZHk7knul2TvjTz/niRPO9BLuvsbVXV6kvdlttNXkjw0yUVV9akkX0lyVJIHJTnuRt5x1qZ+FQAAAAAAAAAAAAAAALAwoq/lqST3Ho4DuSbJS5K8sruv38ji3f3hqnpCkjdkLeyqJA8ejhvzF0me1t37NvIOAAAAAAAAAAAAAAAAYPH2LHuAQ8jTMgu3Lkhy7Qaf+Xxmu26d3N0v22jwtaq7/2eS+yf5z0muuJlbP5bkt7v7n3X31Zt5BwAAAAAAAAAAAAAAALBYdvraJd19YZILk5xVVXuT3DfJPZOckOS2SfYmuSrJlUkuTvLp7r65UGuj7/1ukqdX1e8neWiSuye5Y5Krk3xzeM9Xt/seAAAAAAAAAAAAAAAAYDFEX0sw7Nj12eHYrXdel+RDu/U+AAAAAAAAAAAAAAAAYGv2LHsAAAAAAAAAAAAAAAAAANaIvgAAAAAAAAAAAAAAAABGRPQFAAAAAAAAAAAAAAAAMCKiLwAAAAAAAAAAAAAAAIAREX0BAAAAAAAAAAAAAAAAjIjoCwAAAAAAAAAAAAAAAGBERF8AAAAAAAAAAAAAAAAAIyL6AgAAAAAAAAAAAAAAABgR0RcAAAAAAAAAAAAAAADAiIi+AAAAAAAAAAAAAAAAAEZE9AUAAAAAAAAAAAAAAAAwIqIvAAAAAAAAAAAAAAAAgBERfQEAAAAAAAAAAAAAAACMiOgLAAAAAAAAAAAAAAAAYEREXwAAAAAAAAAAAAAAAAAjIvoCAAAAAAAAAAAAAAAAGBHRFwAAAAAAAAAAAAAAAMCIiL4AAAAAAAAAAAAAAAAARkT0BQAAAAAAAAAAAAAAADAioi8AAAAAAAAAAAAAAACAERF9AQAAAAAAAAAAAAAAAIyI6AsAAAAAAAAAAAAAAABgRERfAAAAAAAAAAAAAAAAACMi+gIAAAAAAAAAAAAAAAAYEdEXAAAAAAAAAAAAAAAAwIiIvgAAAAAAAAAAAAAAAABGRPQFAAAAAAAAAAAAAAAAMCKiLwAAAAAAAAAAAAAAAIAREX0BAAAAAAAAAAAAAAAAjIjoCwAAAAAAAAAAAAAAAGBERF8AAAAAAAAAAAAAAAAAIyL6AgAAAAAAAAAAAAAAABgR0RcAAAAAAAAAAAAAAADAiIi+AAAAAAAAAAAAAAAAAEZE9AUAAAAAAAAAAAAAAAAwIqIvAAAAAAAAAAAAAAAAgBERfQEAAAAAAAAAAAAAAACMiOgLAAAAAAAAAAAAAAAAYEREXwAAAAAAAAAAAAAAAAAjIvoCAAAAAAAAAAAAAAAAGBHRFwAAAAAAAAAAAAAAAMCIiL4AAAAAAAAAAAAAAAAARkT0BQAAAAAAAAAAAAAAADAioi8AAAAAAAAAAAAAAACAERF9AQAAAAAAAAAAAAAAAIyI6AsAAAAAAAAAAAAAAABgRERfAAAAAAAAAAAAAAAAACMi+gIAAAAAAAAAAAAAAAAYEdEXAAAAAAAAAAAAAAAAwIiIvgAAAAAAAAAAAAAAAABGRPQFAAAAAAAAAAAAAAAAMCKiLwAAAAAAAAAAAAAAAIAREX0BAAAAAAAAAAAAAAAAjIjoCwAAAAAAAAAAAAAAAGBERF8AAAAAAAAAAAAAAAAAIyL6AgAAAAAAAAAAAAAAABgR0RcAAAAAAAAAAAAAAADAiIi+AAAAAAAAAAAAAAAAAEZE9AUAAAAAAAAAAAAAAAAwIqIvAAAAAAAAAAAAAAAAgBERfQEAAAAAAAAAAAAAAACMiOgLAAAAAAAAAAAAAAAAYEREXwAAAAAAAAAAAAAAAAAjIvoCAAAAAAAAAAAAAAAAGBHRFwAAAAAAAAAAAAAAAMCIiL4AAAAAAAAAAAAAAAAARkT0BQAAAAAAAAAAAAAAADAioi8AAAAAAAAAAAAAAACAERF9AQAAAAAAAAAAAAAAAIyI6AsAAAAAAAAAAAAAAABgRERfAAAAAAAAAAAAAAAAACMi+gIAAAAAAAAAAAAAAAAYEdEXAAAAAAAAAAAAAAAAwIiIvgAAAAAAAAAAAAAAAABGZDLRV1W9taoesew5AAAAAAAAAAAAAAAAAHbSZKKvJE9M8sGq+lxVPbuqjl72QAAAAAAAAAAAAAAAAACLNqXoa9UpSc5O8s2qen1V/cKyBwIAAAAAAAAAAAAAAABYlClGX52kkhye5MlJLqiqT1XVU6vq1kudDAAAAAAAAAAAAAAAAGCbphR9PS7J32QWfWXus5I8MMmfJflWVb22qu6/hPkAAAAAAAAAAAAAAAAAtm0y0Vd3v6e7H5PkHkleluQ7mQVfydruX0cm+bdJPlNVH6mqM6pq71IGBgAAAAAAAAAAAAAAANiCyURfq7r7693975LcLcmTknxg/s/DZyV5SJI3J/lmVb28qu65u5MCAAAAAAAAAAAAAAAAbN7koq9V3b2vu9/e3aclOTnJq5NcnrXdvzKc3z7JHyT5YlW9t6p+s6om+7sBAAAAAAAAAAAAAACAg9tBET9195e7+3lJTkjyL5J8NGvx1+ruX3uSnJbkHUkuqaoXVNWdd31YAAAAAAAAAAAAAAAAgJtxUERfq7r7uu5+c3c/PMn9k5yT5MqsBWA1HCckeWGSi6vqr6rqHy1lYAAAAAAAAAAAAAAAAIB1Dqroa153X9Tdz0xy5yS/m+RTq38ajkqykuTxSd5XVV+sqmdX1RFLGRgAAAAAAAAAAAAAAAAgB3H0taq7r0nyxiRnJ7kka7t+rcZfGa7da7jn4qo6s6r27vasAAAAAAAAAAAAAAAAAAd19FVVJ1XVnyT5RpI3Jblb9g+9Vo9kbfevY5K8LMknq+rE3ZwXAAAAAAAAAAAAAAAA4KCLvqrqsKo6varen+QLSZ6X5LisxV2rodeHkzwxyaOTvD3JDcPfV+OvByT5UFUdsXvTAwAAAAAAAAAAAAAAAIe6lWUPsChVddckv5vkXye54+rlzCKu1ZDrqsx2/Hpdd39u7vFzq+r4JM9J8swktxruv1uS30/ykt34DQAAAAAAAAAAAAAAAACT3umrZh5TVX+d5CtJ/ijJnbK2q1eG84uSPCPJCd39zHXBV5Kkuy/t7jOTPCjJpVkLxR6/wz8DAAAAAAAAAAAAAAAA4KcmudNXVd0xyVOH466rl7P/rl77krwzyTndfd5G1+7uL1TVS5L8x+HSyYuaGwAAAAAAAAAAAAAAAOBAJhV9VdVpSX4vyWMym311R69evSXJt5P8eZI/7+5vb/FVF8yd32aLawAAAAAAAAAAAAAAAABs2mSir6r6UpJ7rn7N/rt6VZLzkpyT5J3dfcM2X3f58Nk3excAAAAAAAAAAAAAAADAgk0m+kpyUtYirNXY66okb0ryuu6+aAfeuRqXAQAAAAAAAAAAAAAAAOyKKUVfqyrJRUn+U5I3dvdVO/CO7yQ5dQfWBQAAAAAAAAAAAAAAALhZU4q+bkjyrsx29frwTr6ou69Nct5OvgMAAAAAAAAAAAAAAADgxkwp+jqxu7+17CEAAAAAAAAAAAAAAAAAdtKeZQ+wUYIvAAAAAAAAAAAAAAAA4FAwmegLAAAAAAAAAAAAAAAA4FAg+gIAAAAAAAAAAAAAAAAYkclEX1X1kKr6ynB8qarusIU1jq+qLw5rfLmqHrQTswIAAAAAAAAAAAAAAABs1WSiryRPTXJikrsn+XR3f3ezC3T3pUk+M6xz4rAmAAAAAAAAAAAAAAAAwGhMKfr6jbnzN29jnTfNnT9uG+sAAAAAAAAAAAAAAAAALNwkoq+qum+S44av1yd57zaWe9+wRiW5U1Xde5vjAQAAAAAAAAAAAAAAACzMJKKvJPcbPjvJ33b3dVtdqLuvTfK3c5f+wXYGAwAAAAAAAAAAAAAAAFikqURfJ8ydf20B610yd36XBawHAAAAAAAAAAAAAAAAsBBTib5uO3f+wwWsd9VNrA0AAAAAAAAAAAAAAACwVFOJvuYjrWMWsN5Rc+fXL2A9AAAAAAAAAAAAAAAAgIWYSvR12dz5SQtYb36Ny27yLgAAAAAAAAAAAAAAAIBdNpXo6yvDZyU5parustWFhmfvO3fpku0MBgAAAAAAAAAAAAAAALBIU4m+Ppnk6iQ9fH/uNtZ6ztz5j5NcsI21AAAAAAAAAAAAAAAAABZqEtFXd9+Q5H9lttNXJXl6VT1ys+sMzzwjs3isk3ygu69d3KQAAAAAAAAAAAAAAAAA2zOJ6Gvw8uGzk9wiyf+oqidu9OGqOj3JO5OsZBaOza8JAAAAAAAAAAAAAAAAMAqTib66+xNJ3pZZsNVJjkzylqr6QFU9qarusP6Zqjquqp5YVecOzx61ulySd3b3+bs0PgAAAAAAAAAAAAAAAMCGrCx7gE16SpL7J7lvZuFWJXnkcKSqLk9yxfC3Y4djVc098/+S/MtdmhkAAAAAAAAAAAAAAABgwyaz01eSdPdVSU5L8omsRVwZzivJ7ZLcK8m9h/PV68la8HVBkkd399W7NzkAAAAAAAAAAAAAAADAxkwq+kqS7v5Wkl9J8vIkV2X/qOvGjgz3XJnkxUke0d3f2c2ZAQAAAAAAAAAAAAAAADZqZdkDbEV3X5fkj6rqFUn+eZJHJXlIktuvu/Xvk3w0yblJ3tzdV+7qoAAAAAAAAAAAAAAAAACbNMnoa1V3fz/Ja4cjVXVYktsNf/5ed+9b1mwAAAAAAAAAAAAAAAAAWzHp6Gu9IfL67rLnAAAAAAAAAAAAAAAAANiqPcseAAAAAAAAAAAAAAAAAIA1oi8AAAAAAAAAAAAAAACAERF9AQAAAAAAAAAAAAAAAIzIyrIHWISqunWSo5Ls3eyz3f21xU8EAAAAAAAAAAAAAAAAsDWTjL6q6m5JnpLkV5P8XJJbb3GpzkT/DQAAAAAAAAAAAAAAAICD06SCp6paSfLvkzw3yWGrl5c3EQAAAAAAAAAAAAAAAMBiTSb6qqpK8tYkj89a6NXDIfwCAAAAAAAAAAAAAAAADgqTib6SPCPJE7J/6FVJLk7yuSRXJLl+WcMBAAAAAAAAAAAAAAAALMIkoq9hl6/nZ/9dvd6V5PndfdHSBgMAAAAAAAAAAAAAAABYsElEX0kenOT4rO3y9YbufspyRwIAAAAAAAAAAAAAAABYvD3LHmCDHjB8VpIfJ3nOEmcBAAAAAAAAAAAAAAAA2DFTib5uP3x2ko919w+WOQwAAAAAAAAAAAAAAADATplK9HXN3Pm3lzYFAAAAAAAAAAAAAAAAwA6bSvT1jbnz2yxtCgAAAAAAAAAAAAAAAIAdNpXo68IkPxnOT1nmIAAAAAAAAAAAAAAAAAA7aRLRV3d/I8mHklSSU6rq5CWPBAAAAAAAAAAAAAAAALAjJhF9DV6YZN9w/rJlDgIAAAAAAAAAAAAAAACwUyYTfXX3+ZmFX5XkCVUl/AIAAAAAAAAAAAAAAAAOOpOJvpKku1+W5A+SdJIzq+rDVXVaVa0seTQAAAAAAAAAAAAAAACAhZhMLFVVH5z7+v0kxyZ5eJL3Jrmmqr6c5IokP9nEst3dj1rclAAAAAAAAAAAAAAAAADbM5noK8kjM9vha1UnqeH81kkesO7vB1KbvB8AAAAAAAAAAAAAAABgx00p+roxoi0AAAAAAAAAAAAAAADgoDK16KsOfAsAAAAAAAAAAAAAAADAdE0m+uruPcueAQAAAAAAAAAAAAAAAGCnCakAAAAAAAAAAAAAAAAARkT0BQAAAAAAAAAAAAAAADAioi8AAAAAAAAAAAAAAACAEVlZ9gAAAAAAN6ae+9fLHgFGrV/12GWPAAAAAAAAAADADrHTFwAAAAAAAAAAAAAAAMCITHqnr6r6uSSPS/LwJCclOTbJEUm6u3/mt1XV0UmOHL5e292X7tasAAAAAAAAAAAAAAAAABsxyeirqh6Q5Owkp85f3sCjpyZ5+3B+dVXdsbt/tOj5AAAAAAAAAAAAAAAAALZqz7IH2KyqenKSj2UWcK0PvfoAj78rydeG526T5LcWPR8AAAAAAAAAAAAAAADAdkwq+qqq30ry+iSHz19O8vUk/zcH2O2ru3+S5K1zlx636BkBAAAAAAAAAAAAAAAAtmMy0VdV3SnJG4evqzt6nZPkpO4+McnpG1zqXatLJnnEwgYEAAAAAAAAAAAAAAAAWICVZQ+wCS9IcuvhfF+Sf9rdfzX39/7ZR27UhUmuT7I3ye2q6h7d/dXFjQkAAAAAAAAAAAAAAACwdZPY6auqDktyRmZhVyf5k3XB14Z19w1JPj936T7bnxAAAAAAAAAAAAAAAABgMSYRfSX5pSRHJqnMdul6xTbX+8bc+V23uRYAAAAAAAAAAAAAAADAwkwl+rrX8NlJLuzuK7e53vzzR25zLQAAAAAAAAAAAAAAAICFmUr0ddzc+dcXsN5P5s5XFrAeAAAAAAAAAAAAAAAAwEJMJfrqufPDFrDesXPn31/AegAAAAAAAAAAAAAAAAALMZXo6+/nzu+8gPXuP3f+vQWsBwAAAAAAAAAAAAAAALAQU4m+vjZ8VpIHVtXerS5UVScnOWHu0me3MxgAAAAAAAAAAAAAAADAIk0l+rogyTVJOsnhSc7YxlrPnju/tLu/sJ3BAAAAAAAAAAAAAAAAABZpEtFXd1+b5AOZ7fRVSV5aVUdvdp2qemiSf5NZPNZJ3rHIOQEAAAAAAAAAAAAAAAC2axLR1+Clw2cnOSHJ+6vqDht9uKpOTfLuzH5zJdmX5E8XPSQAAAAAAAAAAAAAAADAdkwm+urujyd5S2bBVid5cJLPV9VZVXVKbuS3VNVhVfWoqnpLknOTHDP3/H/o7ot3a34AAAAAAAAAAAAAAACAjVhZ9gCb9JQkpyR5YGbh1tFJXjQc183fWFWfS3KPJHtXLw3PVJLzk/zhbgwMAAAAAAAAAAAAAAAAsBmT2ekrSbr7miT/OMkHsxZxZTi/5brvpyS5xXCerAVf70/yG929b5fGBgAAAAAAAAAAAAAAANiwSUVfSdLdlyU5LcmZSS7L/lHX6uf8keGeHyR5fmbB15W7NjAAAAAAAAAAAAAAAADAJqwse4Ct6O5O8sqqem2SMzKLwB6W5M7ZP2S7Isn5Sd6X5E3d/YPdnhUAAAAAAAAAAAAAAABgMyYZfa3q7h8n+W/DkaqqJMckuUWS73X39UscDwAAAAAAAAAAAAAAAGDTJh19rTfsAHb5sucAAAAAAAAAAAAAAAAA2Ko9yx4AAAAAAAAAAAAAAAAAgDWiLwAAAAAAAAAAAAAAAIAREX0BAAAAAAAAAAAAAAAAjIjoCwAAAAAAAAAAAAAAAGBEVpY9wEZV1Vd2YNnu7pN2YF0AAAAAAAAAAAAAAACALZlM9JXkxCSdpBa4Zi9wLQAAAAAAAAAAAAAAAIBtm1L0tWq7oVZl8fEYAAAAAAAAAAAAAAAAwEJMKfr6WjYXfB2W5Jgktxm+rz57dZLLFjgXAAAAAAAAAAAAAAAAwMJMJvrq7hO38lxV3TXJY5M8J8k9M/vNL+3u/7q46QAAAAAAAAAAAAAAAAAWY8+yB9hp3f317j4nyQOS/GWSWyb5s6r6veVOBgAAAAAAAAAAAAAAAPCzDvroa1V3X5Pkd5J8NEkleU1VPXC5UwEAAAAAAAAAAAAAAADs75CJvpKku/clee7w9bAkL1ziOAAAAAAAAAAAAAAAAAA/45CKvpKkuz+R5JLMdvv6tao6bskjAQAAAAAAAAAAAAAAAPzUIRd9DT47fK4k+eVlDgIAAAAAAAAAAAAAAAAw71CNvq6cO7/L0qYAAAAAAAAAAAAAAAAAWOdQjb6Omzs/YmlTAAAAAAAAAAAAAAAAAKxzyEVfVXWrJL88d+nyZc0CAAAAAAAAAAAAAAAAsN4hF30lOSv77+510bIGAQAAAAAAAAAAAAAAAFjvkIm+quroqnp1kj9M0sPl7yf52PKmAgAAAAAAAAAAAAAAANjfyrIH2KiqesEWHltJcnSS+yV5aJJbJKnhb53k7O7et5gJAQAAAAAAAAAAAAAAALZvMtFXkhdlbYeurZiPvSrJ+Ulesc2ZAAAAAAAAAAAAAAAAABZqz7IH2EWrwVgleVuSx3T3dUucBwAAAAAAAAAAAAAAAOBnTGmnr2Rtt66t+HaSDyT5L939kQXNAwAAAAAAAAAAAAAAALBQU4q+Tt3CMzckuTLJd7v70gXPAwAAAAAAAAAAAAAAALBwk4m+uvu8Zc8AAAAAAAAAAAAAAAAAsNP2LHsAAAAAAAAAAAAAAAAAANaIvgAAAAAAAAAAAAAAAABGRPQFAAAAAAAAAAAAAAAAMCKiLwAAAAAAAAAAAAAAAIAREX0BAAAAAAAAAAAAAAAAjMjKsgfYqKp6wbLe3d0vXta7AQAAAAAAAAAAAAAAgEPLZKKvJC9K0kt6t+gLAAAAAAAAAAAAAAAA2BVTir7m1U1cXx+FbfS+m3vPskIzAAAAAAAAAAAAAAAA4BA0tehrPuLqG7m+kcirbuY+AAAAAAAAAAAAAAAAgKWaUvR16vB5rySvSHJ0ZvHW9Unen+TjSb6Y5AfDfUclOTnJLyZ5dJK9mcVflyc5M8nf7dbgAAAAAAAAAAAAAAAAABs1meiru8+rqodkLfjqJK9L8uLuvuzmnq2q2yd5YZKnJzkmySuTPKa7z9/ZqQEAAAAAAAAAAAAAAAA2Z8+yB9ioqrpTkndnFm1dn+RJ3f3sAwVfSdLdl3X3s5I8KckNmUVj766qE3ZyZgAAAAAAAAAAAAAAAIDNmkz0leSPkxyb2Q5fL+3ud2x2geGZlw5fjxnWBAAAAAAAAAAAAAAAABiNSURfVXV4kn8yfL0myau2sdyfDmtUkicOawMAAAAAAAAAAAAAAACMwiSiryQPT3JEZrt8fay7f7TVhYZnLxi+3nZYGwAAAAAAAAAAAAAAAGAUphJ93WXu/NIFrDe/xl1u8i4AAAAAAAAAAAAAAACAXTaV6OsOc+dHL2C9o+bOj1vAegAAAAAAAAAAAAAAAAALMZXo6/Lhs5I8cDsLVVUl+Ydzl67YznoAAAAAAAAAAAAAAAAAizSV6Ourc+fHV9Xp21jr9CTH38TaAAAAAAAAAAAAAAAAAEs1lejrvCRXJunMdvt6TVXdfbOLVNWJSV4zrJMkP0zy4YVMCAAAAAAAAAAAAAAAALAAk4i+uvu6JG/MLPjqJHdO8tGq+rWNrlFVv57kI0nuOLfOG7r7+sVPDAAAAAAAAAAAAAAAALA1K8seYBPOSvLbmUVbq+HXe6rqwiR/keTjSb6U2Y5gSXJkknsn+aUkZyR5cNZiryT59rAmAAAAAAAAAAAAAAAAwGhMJvrq7iuH3brOTXJsZvFWJfmFJD9/gMdrdZnh/HtJfr27f7hD4wIAAAAAAAAAAAAAAABsyZ5lD7AZ3f2ZJI9I8tms7dq1GnLd3DF/32eSPKK7P7vb8wMAAAAAAAAAAAAAAAAcyKSiryTp7osy29nreUkuydouXj+9ZTjm1XDv85L8/LAGAAAAAAAAAAAAAAAAwOisLHuArejuG5K8uqrOTvIrSR6W5MFJjk9yzHDbFUkuTfLJJP8nyf/u7vUxGAAAAAAAAAAAAAAAAMCoTDL6WjVEXOcNBwD/n717D7a1rus4/vmec0KucjHIC4IKMqko5SUd0JJCByZLYfDgrTSxnC6OjeOMjV0Ma2pqRqca08ac0maEGS9oDVreEmUkNJS0RAtvMFKIJGSggMi3P86ms1hwzt5r77X3+i14vWb2rOf5nef3e77o3+95AAAAAAAAAAAAAACApbdt0QMAAAAAAAAAAAAAAAAAsJvoCwAAAAAAAAAAAAAAAGAgoi8AAAAAAAAAAAAAAACAgexY9AAbVVVHJXlKkmOSHJbkoCTp7rMXORcAAAAAAAAAAAAAAADAeh3t7JIAACAASURBVCxl9FVVleT5SV6Z5NHT/5ykk9wl+qqq05O8bOX2W9195mbOCQAAAAAAAAAAAAAAADCrpYu+quqBSc5L8uQ7llZ+e+J6Ty5Kcm6S+yTpqjqxuy/elEEBAAAAAAAAAAAAAAAA1mHbogeYxUrwdUl2BV/TgdcdX/jao+6+Lsl7JpZ2znVAAAAAAAAAAAAAAAAAgA1amuirqrYnuSDJkRPL30zye0l+MsnTsvqXvpLkvRPXp8xtQAAAAAAAAAAAAAAAAIA52LHoAWbw4iQ/kt1f8zo/yQu7+6Ykqaqj13jOh1Z+K8kjqurQ7r5+rpMCAAAAAAAAAAAAAAAArNPSfOkrySsnri9KsvOO4GsWK4HX1yeWHrHRwQAAAAAAAAAAAAAAAADmZSmir6p6aJKHTyy9vLtv38CR/zFxfewGzgEAAAAAAAAAAAAAAACYq6WIvpI8YeW3k1zR3Z/d4Hk3TFwfusGzAAAAAAAAAAAAAAAAAOZmWaKvIyauL5/Ded+ZuD5gDucBAAAAAAAAAAAAAAAAzMWyRF8HTlzfNIfz7jvn8wAAAAAAAAAAAAAAAADmYlmir/+euD5sDucdtYezAQAAAAAAAAAAAAAAABZqWaKva1d+K8kJGzmoqg5M8uiJpSs3ch4AAAAAAAAAAAAAAADAPC1L9PXJiesHVNXjNnDWC5JsX7m+ZepsAAAAAAAAAAAAAAAAgIVaiuiru69J8q8TS+es55yqOiTJq5P0yt9F3X3rxicEAAAAAAAAAAAAAAAAmI+liL5WvGni+rSq+q1ZNlfV/knekeTIJLWy/Kdzmg0AAAAAAAAAAAAAAABgLpYp+npLkq+uXFeSc6rq3Ko6erWNVXVqkk8l+ans/srXpd39/s0aFgAAAAAAAAAAAAAAAGA9dix6gLXq7tuqameSjyXZL7vCr7OS7Kyqf07ylcnnq+pVSY5L8rQkD1p5vld+b0jy3K2bHgAAAAAAAAAAAAAAAGBtlib6SpLu/nRVPSfJeUn2X1neluTHVv7uUEn+YOI62R18fTvJs7v7TpEYAAAAAAAAAAAAAAAAwAi2LXqAWXX3BUmemOTy7A66/v+fJ/4mY6+s3H8xyYnd/ZEtGBUAAAAAAAAAAAAAAABgZksXfSVJd1+e5DFJdia5KMlt2RV1Tf5l4vczSV6c5PiVvQAAAAAAAAAAAAAAAABD2rHoAdaruzvJu5K8q6r2T/KkJA9Ocr8k+yS5Lsk3kvxTd1+3sEEBAAAAAAAAAAAAAAAAZrAU0VdVbU9ywMTSjd19+x033f2dJP+45YMBAAAAAAAAAAAAAAAAzNm2RQ+wRi9Mcv3K33VJHrDYcQAAAAAAAAAAAAAAAAA2x1J86SvJDyWplevPdPfVixwGAAAAAAAAAAAAAAAAYLMsy5e+blr57SRXLXIQAAAAAAAAAAAAAAAAgM20LNHXNYseAAAAAAAAAAAAAAAAAGArLEv09e8T1w9e2BQAAAAAAAAAAAAAAAAAm2wpoq/u/mySLyWpJI+rqkMXPBIAAAAAAAAAAAAAAADApliK6GvFX678bk/yG4scBAAAAAAAAAAAAAAAAGCzLFP09bokl2TX175eUVVnLXgeAAAAAAAAAAAAAAAAgLlbmuiru29PckaST2bX177Orao3V9Uxi50MAAAAAAAAAAAAAAAAYH52LHqAtaqq31m5/GiSRyY5KMnZSc6uqs8nuSzJtUn+d5Zzu/u185wTAAAAAAAAAAAAAAAAYCOWJvpK8rtJeuK+k9TK9fFJHrXOc0VfAAAAAAAAAAAAAAAAwDCWKfq6O736I3tUG9wPAAAAAAAAAAAAAAAAMHfLFn3V6o8AAAAAAAAAAAAAAAAALK9lir5OXvQAAAAAAAAAAAAAAAAAAJttaaKv7v7YomcAAAAAAAAAAAAAAAAA2GzDRF9V9fqJ29d29w0LGwYAAAAAAAAAAAAAAABgQYaJvpL8epJeuf6TJHuNvqrqxyduL+nuWzdrMAAAAAAAAAAAAAAAAICtMlL0lSSV3eHXai6cePahSa7ajIEAAAAAAAAAAAAAAAAAttK2RQ+wQbXoAQAAAAAAAAAAAAAAAADmadmjr7V+FQwAAAAAAAAAAAAAAABgKSx79OVLXwAAAAAAAAAAAAAAAMA9yrJHXwAAAAAAAAAAAAAAAAD3KKIvAAAAAAAAAAAAAAAAgIGIvgAAAAAAAAAAAAAAAAAGIvoCAAAAAAAAAAAAAAAAGIjoCwAAAAAAAAAAAAAAAGAgoi8AAAAAAAAAAAAAAACAgYi+AAAAAAAAAAAAAAAAAAayY9EDTOmV3ydV1UNm2Dfr87tf2P3x9ewDAAAAAAAAAAAAAAAA2AyjRV9JUknO28TnJ3XG/N8AAAAAAAAAAAAAAAAAuJcaMXjq7Aq51vLcHdbyPAAAAAAAAAAAAAAAAMDwRoy+kjsHXZvxfCIUAwAAAAAAAAAAAAAAAAY0UvR1VdYXbwEAAAAAAAAAAAAAAADcYwwTfXX3QxY9AwAAAAAAAAAAAAAAAMCibVv0AAAAAAAAAAAAAAAAAADsJvoCAAAAAAAAAAAAAAAAGIjoCwAAAAAAAAAAAAAAAGAgoi8AAAAAAAAAAAAAAACAgYi+AAAAAAAAAAAAAAAAAAYi+gIAAAAAAAAAAAAAAAAYiOgLAAAAAAAAAAAAAAAAYCCiLwAAAAAAAAAAAAAAAICBiL4AAAAAAAAAAAAAAAAABiL6AgAAAAAAAAAAAAAAABiI6AsAAAAAAAAAAAAAAABgIDsWPcC9VVVtT3JskkcmeWCSg5PckuT6JF9Ocml33zTnd/5AkpOSHJXkAUluTPKfSS7r7q/N810AAAAAAAAAAAAAAADA+oi+tlBVHZXkjCSnJHlKkvvu5fHvV9WHkryhu9+3wfcenuScJGclOWwPz1yc5PXd/e6NvAsAAAAAAAAAAAAAAADYGNHXFqmqc5M8d4Yt25OcmuTUqrogyUu6+xvreO9pSd6a5IhVHj0xyYlV9fYkL533V8YAAAAAAAAAAAAAAACAtRF9bZ3j9rB+dZIrknwju/7/eFiSE5Jsm3jmGUk+XlU/0d3XrPWFVfXUJO9Nss/Ecif5TJKvJDkkyY8m+cGJf39+kvtW1bO6+/a1vgsAAAAAAAAAAAAAAACYj22rP8ImuCzJy5Ic291HdvfJ3f2c7j6zux+b5Kgkb57ac1ySd1ZVreUFVXVkkvNz5+DrE0ke1d2P7+6d3f30JEcmeXmS70089zNJfn9d/2UAAAAAAAAAAAAAAADAhoi+tk4neV+SJ3T3Y7v7Dd395bt9sPvq7n5pkl+d+qcnJzlrje87J8mhE/cXJzmlu78w9a5buvvPkuyc2v+Kqjp6je8CAAAAAAAAAAAAAAAA5kT0tXWe3d3P6O5L17qhu9+Y5N1Tyz+32r6qeniSF04s3ZrkRd19817e9d4kb5tYuk+S16x1VgAAAAAAAAAAAAAAAGA+RF9bpLu/ts6tfz51f/Ia9jwvyfaJ+/O7+4o17PujqfudVbXvGvYBAAAAAAAAAAAAAAAAcyL6Gt9lU/f7VdUhq+w5fer+r9fyou7+QpJPTiwdkOTpa9kLAAAAAAAAAAAAAAAAzIfoa3y33c3aPnt6uKrun+SEqf2fmOF9F07dnzbDXgAAAAAAAAAAAAAAAGCDRF/jO3bq/rYk1+3l+eOn7j/X3TfN8L6Lp+4fNcNeAAAAAAAAAAAAAAAAYINEX+M7c+r+0u6+fS/PP3Lq/kszvu/Lq5wHAAAAAAAAAAAAAAAAbCLR18Cq6sAkZ08tv2eVbdNfBrtqxtdeOXV/v6o6dMYzAAAAAAAAAAAAAAAAgHUSfY3tD5Pcf+L+hiRvWWXPIVP3187ywu6+McnNU8sHz3IGAAAAAAAAAAAAAAAAsH47Fj0Ad6+qTk/ya1PLv9nd31pl64FT999dx+u/m2TfifuD1nHGnVTVEUkOn3HbMRt9LwAAAAAAAAAAAAAAACwb0deAquqEJH8ztfzBJG9aw/bp6Gv6q11r8d0kh+7lzPX4lSSvmcM5AAAAAAAAAAAAAAAAcI+2bdEDcGdVdVSS9+XOodWVSV7Q3b2OI7dqDwAAAAAAAAAAAAAAADAHoq+BVNURST6U5EETy9ckeVp3f3ONx9w4db/fOkaZ3jN9JgAAAAAAAAAAAAAAALBJdix6AHapqsOSfDjJcRPL1yU5pbuvmOGoUaOvNyZ554x7jknyt3N4NwAAAAAAAAAAAAAAACwN0dcAqurgJB9M8uiJ5euz6wtfn5/xuP+Zuj98xlkOzF2jrxtmnOEuuvvaJNfOOMtGXwsAAAAAAAAAAAAAAABLZ9uiB7i3q6qDkvxDksdNLH87yand/S/rOHL6q2BHz7h/+vlvdff165gDAAAAAAAAAAAAAAAAWAfR1wJV1QFJ3p/kSRPLNyY5rbs/tc5jvzB1f+yM+x82dX/5OucAAAAAAAAAAAAAAAAA1kH0tSBVtV+SC5I8eWL5O0l+ursv3sDR/zZ1/5iq2n+G/Setch4AAAAAAAAAAAAAAACwiURfC1BV+yb5uyRPnVi+OcnPdvfHN3J2d/9Xks9NLO3IncOy1Tx16v7vNzIPAAAAAAAAAAAAAAAAMBvR1xarqn2SnJ/klInlW5I8q7s/MqfXvGfq/hfWONsPJ3nixNJNST44p5kAAAAAAAAAAAAAAACANRB9baGq2pHkHUlOm1j+XpIzu/sDc3zV25N8f+L+jKp6+Br2vWrq/h3dffP8xgIAAAAAAAAAAAAAAABWI/raIlW1PbtirGdOLN+W5KzuvmCe7+ruK5K8bWJpnyRvrap99zLfM5O8aGLp1iTnzHMuAAAAAAAAAAAAAAAAYHU7Fj3AvchfJdk5tfbqJJdV1UNmPOuaNXyB6zVJTk9y6Mr9iUk+XFUv6e4v3vFQVd0nyS8led3U/td195UzzgUAAAAAAAAAAAAAAABskOhr6/z83az98crfrE5OcuHeHujur1fVGUk+kF1f+kqSk5JcXlWfTvKVJAcneWySw6e2X5Dkt9cxFwAAAAAAAAAAAAAAALBBoq97sO6+sKpOT/LW7A67KsnjV/7uznlJfrG7v7/5EwIAAAAAAAAAAAAAAADTti16ADZXd78/yfFJ/iLJ9Xt59JIkZ3b387r7pi0ZDgAAAAAAAAAAAAAAALgLX/raIt1dC3z3tUl+uapenuSkJEcnuX+Sm5JcneSy7v7qouYDAAAAAAAAAAAAAAAAdhN93Yt0961JPrroOQAAAAAAAAAAAAAAAIA927boAQAAAAAAAAAAAAAAAADYTfQFAAAAAAAAAAAAAAAAMBDRFwAAAAAAAAAAAAAAAMBARF8AAAAAAAAAAAAAAAAAAxF9AQAAAAAAAAAAAAAAAAxE9AUAAAAAAAAAAAAAAAAwENEXAAAAAAAAAAAAAAAAwEBEXwAAAAAAAAAAAAAAAAADEX0BAAAAAAAAAAAAAAAADET0BQAAAAAAAAAAAAAAADAQ0RcAAAAAAAAAAAAAAADAQERfAAAAAAAAAAAAAAAAAAMRfQEAAAAAAAAAAAAAAAAMRPQFAAAAAAAAAAAAAAAAMBDRFwAAAAAAAAAAAAAAAMBARF8AAAAAAAAAAAAAAAAAAxF9AQAAAAAAAAAAAAAAAAxE9AUAAAAAAAAAAAAAAAAwENEXAAAAAAAAAAAAAAAAwEBEXwAAAAAAAAAAAAAAAAADEX0BAAAAAAAAAAAAAAAADET0BQAAAAAAAAAAAAAAADAQ0RcAAAAAAAAAAAAAAADAQERfAAAAAAAAAAAAAAAAAAMRfQEAAAAAAAAAAAAAAAAMRPQFAAAAAAAAAAAAAAAAMBDRFwAAAAAAAAAAAAAAAMBARF8AAAAAAAAAAAAAAAAAAxF9AQAAAAAAAAAAAAAAAAxE9AUAAAAAAAAAAAAAAAAwENEXAAAAAAAAAAAAAAAAwEBEXwAAAAAAAAAAAAAAAAADEX0BAAAAAAAAAAAAAAAADET0BQAAAAAAAAAAAAAAADAQ0RcAAAAAAAAAAAAAAADAQERfAAAAAAAAAAAAAAAAAAMRfQEAAAAAAAAAAAAAAAAMRPQFAAAAAAAAAAAAAAAAMBDRFwAAAAAAAAAAAAAAAMBARF8AAAAAAAAAAAAAAAAAAxF9AQAAAAAAAAAAAAAAAAxE9AUAAAAAAAAAAAAAAAAwENEXAAAAAAAAAAAAAAAAwEBEXwAAAAAAAAAAAAAAAAADEX0BAAAAAAAAAAAAAAAADET0BQAAAAAAAAAAAAAAADAQ0RcAAAAAAAAAAAAAAADAQERfAAAAAAAAAAAAAAAAAAMRfQEAAAAAAAAAAAAAAAAMRPQFAAAAAAAAAAAAAAAAMBDRFwAAAAAAAAAAAAAAAMBARF8AAAAAAAAAAAAAAAAAAxF9AQAAAAAAAAAAAAAAAAxE9AUAAAAAAAAAAAAAAAAwENEXAAAAAAAAAAAAAAAAwEBEXwAAAAAAAAAAAAAAAAADEX0BAAAAAAAAAAAAAAAADET0BQAAAAAAAAAAAAAAADAQ0RcAAAAAAAAAAAAAAADAQERfAAAAAAAAAAAAAAAAAAMRfQEAAAAAAAAAAAAAAAAMRPQFAAAAAAAAAAAAAAAAMBDRFwAAAAAAAAAAAAAAAMBARF8AAAAAAAAAAAAAAAAAAxF9AQAAAAAAAAAAAAAAAAxE9AUAAAAAAAAAAAAAAAAwENEXAAAAAAAAAAAAAAAAwEBEXwAAAAAAAAAAAAAAAAADEX0BAAAAAAAAAAAAAAAADET0BQAAAAAAAAAAAAAAADAQ0RcAAAAAAAAAAAAAAADAQERfAAAAAAAAAAAAAAAAAAMRfQEAAAAAAAAAAAAAAAAMRPQFAAAAAAAAAAAAAAAAMBDRFwAAAAAAAAAAAAAAAMBARF8AAAAAAAAAAAAAAAAAAxF9AQAAAAAAAAAAAAAAAAxE9AUAAAAAAAAAAAAAAAAwENEXAAAAAAAAAAAAAAAAwEBEXwAAAAAAAAAAAAAAAAADEX0BAAAAAAAAAAAAAAAADET0BQAAAAAAAAAAAAAAADAQ0RcAAAAAAAAAAAAAAADAQERfAAAAAAAAAAAAAAAAAAMRfQEAAAAAAAAAAAAAAAAMRPQFAAAAAAAAAAAAAAAAMBDRFwAAAAAAAAAAAAAAAMBARF8AAAAAAAAAAAAAAAAAAxF9AQAAAAAAAAAAAAAAAAxE9AUAAAAAAAAAAAAAAAAwENEXAAAAAAAAAAAAAAAAwEBEXwAAAAAAAAAAAAAAAAADEX0BAAAAAAAAAAAAAAAADET0BQAAAAAAAAAAAAAAADAQ0RcAAAAAAAAAAAAAAADAQERfAAAAAAAAAAAAAAAAAAMRfQEAAAAAAAAAAAAAAAAMRPQFAAAAAAAAAAAAAAAAMBDRFwAAAAAAAAAAAAAAAMBARF8AAAAAAAAAAAAAAAAAAxF9AQAAAAAAAAAAAAAAAAxE9AUAAAAAAAAAAAAAAAAwENEXAAAAAAAAAAAAAAAAwEBEXwAAAAAAAAAAAAAAAAADEX0BAAAAAAAAAAAAAAAADET0BQAAAAAAAAAAAAAAADAQ0RcAAAAAAAAAAAAAAADAQERfAAAAAAAAAAAAAAAAAAMRfQEAAAAAAAAAAAAAAAAMRPQFAAAAAAAAAAAAAAAAMBDRFwAAAAAAAAAAAAAAAMBARF8AAAAAAAAAAAAAAAAAAxF9AQAAAAAAAAAAAAAAAAxE9AUAAAAAAAAAAAAAAAAwENEXAAAAAAAAAAAAAAAAwEBEXwAAAAAAAAAAAAAAAAADEX0BAAAAAAAAAAAAAAAADET0BQAAAAAAAAAAAAAAADAQ0RcAAAAAAAAAAAAAAADAQERfAAAAAAAAAAAAAAAAAAMRfQEAAAAAAAAAAAAAAAAMRPQFAAAAAAAAAAAAAAAAMBDRFwAAAAAAAAAAAAAAAMBARF8AAAAAAAAAAAAAAAAAAxF9AQAAAAAAAAAAAAAAAAxE9AUAAAAAAAAAAAAAAAAwENEXAAAAAAAAAAAAAAAAwEBEXwAAAAAAAAAAAAAAAAADEX0BAAAAAAAAAAAAAAAADET0BQAAAAAAAAAAAAAAADAQ0RcAAAAAAAAAAAAAAADAQERfAAAAAAAAAAAAAAAAAAMRfQEAAAAAAAAAAAAAAAAMRPQFAAAAAAAAAAAAAAAAMBDRFwAAAAAAAAAAAAAAAMBARF8AAAAAAAAAAAAAAAAAAxF9AQAAAAAAAAAAAAAAAAxE9AUAAAAAAAAAAAAAAAAwENEXAAAAAAAAAAAAAAAAwEBEXwAAAAAAAAAAAAAAAAADEX0BAAAAAAAAAAAAAAAADET0BQAAAAAAAAAAAAAAADAQ0RcAAAAAAAAAAAAAAADAQERfAAAAAAAAAAAAAAAAAAMRfQEAAAAAAAAAAAAAAAAMRPQFAAAAAAAAAAAAAAAAMBDRFwAAAAAAAAAAAAAAAMBARF8AAAAAAAAAAAAAAAAAAxF9AQAAAAAAAAAAAAAAAAxE9AUAAAAAAAAAAAAAAAAwENEXAAAAAAAAAAAAAAAAwEBEXwAAAAAAAAAAAAAAAAADEX0BAAAAAAAAAAAAAAAADET0BQAAAAAAAAAAAAAAADAQ0RcAAAAAAAAAAAAAAADAQERfAAAAAADA/7F3NyGXlnUcx3/XNKmVplaKkaSkQaT0agTawkUILqSMMKhFGpXURqggWoQIbYJs0SJaBOpCgqIyiqIIcpFSi16QyMC0jF5AIgscfMuuFk54PM2Mz5nnPM/5zfHzgYfhf5/7uu8/s/9yAwAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAuTHxdwAAIABJREFUAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQ5OCmF2B/jDFemOSyJK9O8sokjyT5a5JfzTn/uMHVAAAAAAAAAAAAAAAAgAWirw0ZY7wmyduSXHL437ckOW3hlgfnnOev4T1nJbkpyfuSvOwo99yd5Itzzm/u9n0AAAAAAAAAAAAAAADA7oi+9tEY4/Ikn8nTodcRA6w1v+/KJLcmOfs5br00yaVjjNuTXD/nPLTXuwEAAAAAAAAAAAAAAABHJvraX29KcsV+vOhwYHZHkpMWLs8kv0zyQJIzkrw5ySsWfv9AkpeOMd495/zPfuwJAAAAAAAAAAAAAAAAPNuBTS9AkuTxJPev62FjjHOTfCvPDr7uSnLRnPOSOec1c84rkpyb5IYkTy7cd1WSz61rFwAAAAAAAAAAAAAAAGA1oq/992SSXyf5apLrk7w1yWlJPrzGd9yU5MyF+e4k75xz3rt405zz8Tnnl5Jcs3T+E2OM89a4DwAAAAAAAAAAAAAAALBDBze9wPPMbUm+Mud8bPmHMcZaXjDGeG2SDy5ceiLJtUd65//MOe8YY9y2cO7kJDcm+dBalgIAAAAAAAAAAAAAAAB2zJe+9tGc8+FjxVdr8v4kL1iYvzXnvG8H5z6/NF8zxjhlfWsBAAAAAAAAAAAAAAAAOyH62j5XL8237OTQnPPeJD9fuPSSJFesaykAAAAAAAAAAAAAAABgZ0RfW2SMcU6SNy5c+neSu1Z4xJ1L85W73QkAAAAAAAAAAAAAAABYjehru1y8NN8z5zy0wvm7l+aLdrkPAAAAAAAAAAAAAAAAsCLR13Z5/dL8+xXP3/8czwMAAAAAAAAAAAAAAAD2mOhru1y4NP9pxfMPLs0vH2OcuYt9AAAAAAAAAAAAAAAAgBWJvrbLGUvzQ6scnnM+kuSxpcun72ojAAAAAAAAAAAAAAAAYCUHN70Aa3Xq0vzocTzj0SSnLMynHf86zxhjnJ3krBWPXbCOdwMAAAAAAAAAAAAAAMCJRPS1XZajr+Wvdu3Eo0nOPMYzj9fHk9y4pmcBAAAAAAAAAAAAAADA1jqw6QXYU3OfzgAAAAAAAAAAAAAAAABrIvraLo8szS86jmcsn1l+JgAAAAAAAAAAAAAAALCHDm56AdaqOfr6cpJvrHjmgiTfWdP7AQAAAAAAAAAAAAAA4IQg+tou/1qaz1rl8Bjj1Px/9PXPXW102JzzoSQPrbjPOl4NAAAAAAAAAAAAAAAAJ5QDm16AtbpvaT5vxfPL9/9jzvnwLvYBAAAAAAAAAAAAAAAAViT62i73Ls0Xrnj+NUvzb3exCwAAAAAAAAAAAAAAAHAcRF/b5TdL8xvGGC9e4fxlz/E8AAAAAAAAAAAAAAAAYI+JvrbInPNvSe5ZuHQwyTtWeMTlS/MPdrsTAAAAAAAAAAAAAAAAsBrR1/b59tJ83U4OjTFel+TtC5cOJfnRupYCAAAAAAAAAAAAAAAAdkb0tX1uT/LUwvyeMcZrd3Du00vz1+ecj61vLQAAAAAAAAAAAAAAAGAnRF9bZs55X5LbFi6dlOTWMcYpRzszxnhXkmsXLj2R5KY9WRAAAAAAAAAAAAAAAAA4poObXuD5Zoxxbo78/37O0nxwjHH+UR7zyJzz78d4zY1Jrk5y5uH50iQ/HmN8eM75u4VdTk7y0SQ3L52/ec754DGeDwAAAAAAAAAAAAAAAOwR0df++2mS83Zw36uS/OEov92WZ3+Z61nmnH8eY7wnyQ/z9Je+kuSyJL8dY/wiyQNJTk/yliRnLR3/XpLP7mA/AAAAAAAAAAAAAAAAYA+IvrbUnPPOMcbVSW7NM2HXSHLJ4b8j+VqSj8w5n9r7DQEAAAAAAAAAAAAAAIAjObDpBdg7c87vJ7k4yVeSPHyMW3+W5L1zzvfPOQ/ty3IAAAAAAAAAAAAAAADAEfnS1z6bc56/z+97KMnHxhg3JLksyXlJzklyKMlfkvxqzvmH/dwJAAAAAAAAAAAAAAAAODrR1/PEnPOJJD/Z9B4AAAAAAAAAAAAAAADAsR3Y9AIAAAAAAAAAAAAAAAAAPEP0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQRPQFAAAAAAAAAAAAAAAAUET0BQAAAAAAAAAAAAAAAFBE9AUAAAAAAAAAAAAAAABQ5OCmFwDYT+OWT216Bag1r/vCplcAAAAAAE5Q45Pf3fQKUG3efNWmVwAAAAAA4ATjS18AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAAAAAEVEXwAAAAAAAAAAAAAAAABFRF8AAAAAAAAAAAAAAAAARURfAAAAAAAAAAAAAP9l7+6DbS3L84BfNxxAPqL4ASpjiCIaQQ2CJhWjE610oKnEagCpbSaMGqkfiRFstUYFp0nFtpiaqJkxKjHTqlRMJNSOGm0SMaE2RmJUtAqpQK0CgkGDyIfe/WNvh8XL+dj77I/1nLV/v5kznPtZ7/Ou6581L2ftfb0vAADAQLbNOwAAAAAAALDY6uxL5h0BhtXnnzzvCAAAAAAAAAzIk74AAAAAAAAAAAAAAAAABqL0BQAAAAAAAAAAAAAAADAQpS8AAAAAAAAAAAAAAACAgSh9AQAAAAAAAAAAAAAAAAxE6QsAAAAAAAAAAAAAAABgIEpfAAAAAAAAAAAAAAAAAANR+gIAAAAAAAAAAAAAAAAYiNIXAAAAAAAAAAAAAAAAwECUvgAAAAAAAAAAAAAAAAAGovQFAAAAAAAAAAAAAAAAMBClLwAAAAAAAAAAAAAAAICBKH0BAAAAAAAAAAAAAAAADETpCwAAAAAAAAAAAAAAAGAgSl8AAAAAAAAAAAAAAAAAA1H6AgAAAAAAAAAAAAAAABiI0hcAAAAAAAAAAAAAAADAQJS+AAAAAAAAAAAAAAAAAAai9AUAAAAAAAAAAAAAAAAwEKUvAAAAAAAAAAAAAAAAgIEofQEAAAAAAAAAAAAAAAAMROkLAAAAAAAAAAAAAAAAYCBKXwAAAAAAAAAAAAAAAAADUfoCAAAAAAAAAAAAAAAAGIjSFwAAAAAAAAAAAAAAAMBAlL4AAAAAAAAAAAAAAAAABqL0BQAAAAAAAAAAAAAAADAQpS8AAAAAAAAAAAAAAACAgSh9AQAAAAAAAAAAAAAAAAxE6QsAAAAAAAAAAAAAAABgIEpfAAAAAAAAAAAAAAAAAANR+gIAAAAAAAAAAAAAAAAYiNIXAAAAAAAAAAAAAAAAwEC2zTsAAAAAALB11dmXzDsCDKvPP3neEQAAAAAAAACYE0/6AgAAAAAAAAAAAAAAABiI0hcAAAAAAAAAAAAAAADAQJS+AAAAAAAAAAAAAAAAAAai9AUAAAAAAAAAAAAAAAAwEKUvAAAAAAAAAAAAAAAAgIEofQEAAAAAAAAAAAAAAAAMROkLAAAAAAAAAAAAAAAAYCBKXwAAAAAAAAAAAAAAAAADUfoCAAAAAAAAAAAAAAAAGIjSFwAAAAAAAAAAAAAAAMBAlL4AAAAAAAAAAAAAAAAABqL0BQAAAAAAAAAAAAAAADAQpS8AAAAAAAAAAAAAAACAgSh9AQAAAAAAAAAAAAAAAAxE6QsAAAAAAAAAAAAAAABgIEpfAAAAAAAAAAAAAAAAAANR+gIAAAAAAAAAAAAAAAAYiNIXAAAAAAAAAAAAAAAAwECUvgAAAAAAAAAAAAAAAAAGovQFAAAAAAAAAAAAAAAAMBClLwAAAAAAAAAAAAAAAICBKH0BAAAAAAAAAAAAAAAADETpCwAAAAAAAAAAAAAAAGAgSl8AAAAAAAAAAAAAAAAAA1H6AgAAAAAAAAAAAAAAABiI0hcAAAAAAAAAAAAAAADAQJS+AAAAAAAAAAAAAAAAAAai9AUAAAAAAAAAAAAAAAAwEKUvAAAAAAAAAAAAAAAAgIEofQEAAAAAAAAAAAAAAAAMROkLAAAAAAAAAAAAAAAAYCBKXwAAAAAAAAAAAAAAAAADUfoCAAAAAAAAAAAAAAAAGIjSFwAAAAAAAAAAAAAAAMBAlL4AAAAAAAAAAAAAAAAABqL0BQAAAAAAAAAAAAAAADAQpS8AAAAAAAAAAAAAAACAgSh9AQAAAAAAAAAAAAAAAAxE6QsAAAAAAAAAAAAAAABgIEpfAAAAAAAAAAAAAAAAAANR+gIAAAAAAAAAAAAAAAAYiNIXAAAAAAAAAAAAAAAAwECUvgAAAAAAAAAAAAAAAAAGovQFAAAAAAAAAAAAAAAAMBClLwAAAAAAAAAAAAAAAICBKH0BAAAAAAAAAAAAAAAADETpCwAAAAAAAAAAAAAAAGAgSl8AAAAAAAAAAAAAAAAAA1H6AgAAAAAAAAAAAAAAABiI0hcAAAAAAAAAAAAAAADAQJS+AAAAAAAAAAAAAAAAAAai9AUAAAAAAAAAAAAAAAAwEKUvAAAAAAAAAAAAAAAAgIEofQEAAAAAAAAAAAAAAAAMROkLAAAAAAAAAAAAAAAAYCBKXwAAAAAAAAAAAAAAAAADUfoCAAAAAAAAAAAAAAAAGIjSFwAAAAAAAAAAAAAAAMBAlL4AAAAAAAAAAAAAAAAABqL0BQAAAAAAAAAAAAAAADAQpS8AAAAAAAAAAAAAAACAgSh9AQAAAAAAAAAAAAAAAAxE6QsAAAAAAAAAAAAAAABgIEpfAAAAAAAAAAAAAAAAAANR+gIAAAAAAAAAAAAAAAAYiNIXAAAAAAAAAAAAAAAAwECUvgAAAAAAAAAAAAAAAAAGovQFAAAAAAAAAAAAAAAAMBClLwAAAAAAAAAAAAAAAICBKH0BAAAAAAAAAAAAAAAADETpCwAAAAAAAAAAAAAAAGAgSl8AAAAAAAAAAAAAAAAAA1H6AgAAAAAAAAAAAAAAABiI0hcAAAAAAAAAAAAAAADAQJS+AAAAAAAAAAAAAAAAAAai9AUAAAAAAAAAAAAAAAAwEKUvAAAAAAAAAAAAAAAAgIEofQEAAAAAAAAAAAAAAAAMROkLAAAAAAAAAAAAAAAAYCBKXwAAAAAAAAAAAAAAAAADUfoCAAAAAAAAAAAAAAAAGIjSFwAAAAAAAAAAAAAAAMBAlL4AAAAAAAAAAAAAAAAABqL0BQAAAAAAAAAAAAAAADAQpS8AAAAAAAAAAAAAAACAgSh9AQAAAAAAAAAAAAAAAAxE6QsAAAAAAAAAAAAAAABgIEpfAAAAAAAAAAAAAAAAAANR+gIAAAAAAAAAAAAAAAAYiNIXAAAAAAAAAAAAAAAAwECUvgAAAAAAAAAAAAAAAAAGovQFAAAAAAAAAAAAAAAAMBClLwAAAAAAAAAAAAAAAICBKH0BAAAAAAAAAAAAAAAADETpCwAAAAAAAAAAAAAAAGAgSl8AAAAAAAAAAAAAAAAAA1H6AgAAAAAAAAAAAAAAABiI0hcAAAAAAAAAAAAAAADAQLbNOwAAAAAAAAAAADCGOvuSeUeAofX5J887AgAAAFuEJ30BAAAAAAAAAAAAAAAADETpCwAAAAAAAAAAAAAAAGAgSl8AAAAAAAAAAAAAAAAAA1H6AgAAAAAAAAAAAAAAABiI0hcAAAAAAAAAAAAAAADAQJS+AAAAAAAAAAAAAAAAAAai9AUAAAAAAAAAAAAAAAAwEKUvAAAAAAAAAAAAAAAAgIEofQEAAAAAAAAAAAAAAAAMROkLAAAAAAAAAAAAAAAAYCBKXwAAAAAAAAAAAAAAAAADUfoCAAAAAAAAAAAAAAAAGIjSFwAAAAAAAAAAAAAAAMBAlL4AAAAAAAAAAAAAAAAABqL0BQAAAAAAAAAAAAAAADAQpS8AAAAAAAAAAAAAAACAgSh9AQAAAAAAAAAAAAAAAAxE6QsAAAAAAAAAAAAAAABgIEpfAAAAAAAAAAAAAAAAAANR+gIAAAAAAAAAAAAAAAAYiNIXAAAAAAAAAAAAAAAAwECUvgAAAAAAAAAAAAAAAAAGovQFAAAAAAAAAAAAAAAAMBClLwAAAAAAAAAAAAAAAICBKH0BAAAAAAAAAAAAAAAADETpCwAAAAAAAAAAAAAAAGAgSl8AAAAAAAAAAAAAAAAAA1H6AgAAAAAAAAAAAAAAABiI0hcAAAAAAAAAAAAAAADAQJS+AAAAAAAAAAAAAAAAAAai9AUAAAAAAAAAAAAAAAAwkG3zDgAAAAAAAAAAAAAArJ86+5J5R4Ch9fknzzvCuvBZh51blM86W5cnfQEAAAAAAAAAAAAAAAAMROkLAAAAAAAAAAAAAAAAYCBKXwAAAAAAAAAAAAAAAAADUfoCAAAAAAAAAAAAAAAAGIjSFwAAAAAAAAAAAAAAAMBAlL4AAAAAAAAAAAAAAAAABqL0BQAAAAAAAAAAAAAAADAQpS8AAAAAAAAAAAAAAACAgSh9AQAAAAAAAAAAAAAAAAxE6QsAAAAAAAAAAAAAAABgIEpfAAAAAAAAAAAAAAAAAANR+gIAAAAAAAAAAAAAAAAYiNIXAAAAAAAAAAAAAAAAwECUvgAAAAAAAAAAAAAAAAAGovQFAAAAAAAAAAAAAAAAMBClLwAAAAAAAAAAAAAAAICBKH0BAAAAAAAAAAAAAAAADGTbvAOwuarqYUkel+SwJAcl+XqSq5P8RXffMc9sAAAAAAAAAAAAAAAAgNLXllFVpyQ5K8nxOzjkpqq6MMnruvubm5cMAAAAAAAAAAAAAAAAmLXXvAOwsarqoKp6b5L3Z8eFryS5X5IXJfl8VZ24KeEAAAAAAAAAAAAAAACAe1D6WmBVtXeSC5OcPnnphiQfzVIR7DNJeua1Bya5uKqevCkhAQAAAAAAAAAAAAAAgLtR+lps5yX52Zn5jiS/nOQh3X1id5/W3Y9P8pgkl80ct1+SD1bVgzcvKgAAAAAAAAAAAAAAAJAofS2sqjoiycsmy6d291u6+/bZxe6+IsnTc/fi1/2TnLOxKQEAAAAAAAAAAAAAAIAppa/FdU6SfWbm3+vui3d0cHffmuSMJLOFsOcvl8cAAAAAAAAAAAAAAACATaL0tYCqav8kp0yW37irfd395SQfnFnaluS56xgNAAAAAAAAAAAAAAAA2AWlr8V0YpIDZubLuvtLK9x7wWR+9vpEAgAAAAAAAAAAAAAAAFZC6WsxnTSZ/3QVey9NcufMfGxVPXDNiQAAAAAAAAAAAAAAAIAVUfpaTI+ZzJetdGN335Lkc5PlR685EQAAAAAAAAAAAAAAALAiSl+L6ajJfOUq9181mY9eQxYAAAAAAAAAAAAAAABgFZS+FkxV3S/J/SbL16zyNNPjH7H7iQAAAAAAAAAAAAAAAIDV2DbvAKy7gyfzd7v7llWe4/rJfJ815EmSVNWhSQ5Z5bZHzQ5XXrnaB5bBdnztm/NOAMP6whe+MO8IACv3zdXe1wC2loW5rvusw075rMPiW5jPeeKzDjuxMJ91n3PYqYX5rANbg+s67JTrOrDHcE2HnVqYa7rPOuzUwnzWmavtdFn23az3ru7erPdiE1TVTyT57MzSjd39gFWe41eSvHlm6Q+6++fXmOvcJOes5RwAAAAAAAAAAAAAAAAwR8/s7j/ajDfaazPehE110GT+3m6c49ZdnBMAAAAAAAAAAAAAAADYIEpfi293HuXm8W8AAAAAAAAAAAAAAAAwJ9vmHYB19/eTef/dOMd0z/Scu+NtSd6/yj0HJXlCkm8nuTnJtUluX4cswPw9PMnFM/Mzk1w1pywAwNq4rgPAYnBNB4DF4boOAIvBNR0AFofrOgDs2fZN8qMz859t1hsrfS2eIUtf3X19kut3Y+un1vrewHiqarp0VXd/YR5ZAIC1cV0HgMXgmg4Ai8N1HQAWg2s6ACwO13UAWAiXz+NN95rHm7Khbp7MB1TVgas8x6GT+e/WkAcAAAAAAAAAAAAAAABYBaWvBdPdNyb51mT58FWe5scm81d2PxEAAAAAAAAAAAAAAACwGkpfi+mLk/nIVe4/YhfbzSArAAAgAElEQVTnAwAAAAAAAAAAAAAAADaI0tdi+vxkPn6lG6vqwCQ/sYvzAQAAAAAAAAAAAAAAABtE6WsxfXgyP3UVe5+SZNvMfHl3X7fmRAAAAAAAAAAAAAAAAMCKKH0tpo8kuXVmPr6qHrXCvWdM5j9cl0QAAAAAAAAAAAAAAADAiih9LaDu/m6SiybLr9zVvqp6ZJJnzSzdmeQ96xgNAAAAAAAAAAAAAAAA2AWlr8V1bpI7ZuYzqurndnRwVd0ryQVJ9p1Zfmd3X7Ux8QAAAAAAAAAAAAAAAIDtUfpaUN39t0nePFm+qKpeWlWzxa5U1VFJPp7kSTPLNyZ5/camBAAAAAAAAAAAAAAAAKa2zTsAG+pVSR6d5B8vz/sk+e0kr62qzyT5TpIjkhyXpGb23Z7kWd399U3MCgAAAAAAAAAAAAAAAETpa6F19/er6rQk70jynJmXDk1y0g62XZ/kF7v70o3OBwAAAAAAAAAAAAAAANyT0teC6+6/T3J6VV2U5OwkT9zBoTcluTDJOd19w2blA7asG5K8fjIDAHsm13UAWAyu6QCwOFzXAWAxuKYDwOJwXQcAdkt197wzsImq6mFJjktyWJIDk3wjydVJ/ry7b59nNgAAAAAAAAAAAAAAAEDpCwAAAAAAAAAAAAAAAGAoe807AAAAAAAAAAAAAAAAAAB3UfoCAAAAAAAAAAAAAAAAGIjSFwAAAAAAAAAAAAAAAMBAlL4AAAAAAAAAAAAAAAAABqL0BQAAAAAAAAAAAAAAADAQpS8AAAAAAAAAAAAAAACAgSh9AQAAAAAAAAAAAAAAAAxE6QsAAAAAAAAAAAAAAABgIEpfAAAAAAAAAAAAAAAAAANR+gIAAAAAAAAAAAAAAAAYiNIXAAAAAAAAAAAAAAAAwEC2zTsAAAAAe6aqeliSxyU5LMlBSb6e5Ookf9Hdd8wzGwAAAAAALIKqelSSY5I8JMn+Sb6X5PokVyb5bHffMsd4AMBOVNX+WfqZ+lFJ7pvkXkm+naVr+WeSXNndPb+EAMDoyv8rAAAAsBpVdUqSs5Icv4NDbkpyYZLXdfc3Ny0YALBiVbV3kiOTHJ2lAvd9ktyW5FtJrkryab80BgAAAPNRVQcneVmS5yU5fCeHfj/JXye5qLvP24xsAMCuVdXxSX41yT9Nsu9ODv1akncmeXN337QZ2QCAPYvSF8ACq6qvJvmxyfL/SfKo7r59jec6ZJ6/xF1VT03yJ9t56Te6+zVrPNeHuvsZu58OABZTVR2U5HeTnL7CLdcl+cXu/sjGpQIAVqqqDk/y7CQnJHlKknvv5PDvJ/njJG/p7g9tQjwAYANU1fuSPGeyfHV3P3QOcQCAFaiqU5P8TpL7r2Lbdd39oA2KBACsUFVtS/Kfkrw4Sa1i63VJzujuD29IMABgj7Vt3gEA2HQPS/Ivk/zWvINskJdX1Vu7++vzDgIAi2T5aSAXJvnZyUs3JLk8yc1JHp7k2Nz15fUDk1xcVSd09yc3KysAcE9V9Z4k/2wVW/ZOclKSk6rqvyV5QXdftyHhAIANUVU/l3sWvgCAgVXVOUnO3c5L1yT5cpa+k79XkgcneWySAzctHACwU1VVSd6b5JTtvPylJF9McmuSQ5I8Icl9Z17/4c/Wn6n4BQDMUvoC2JpeU1UXdPd35h1kAxyQ5JwsFdsAgPVzXu5e+LojyVlJ3j77BNGqOjrJO5Icv7y0X5IPVtVjlbIBYK4euYP1ryX5SpbuIrotyRFJjkmy18wxz0jyiar6me7+xoamBADWRVUdnKUnhAAAe4iqOjv3LHy9N8kbuvtz2zl+ryx9F//zSU7c8IAAwK68IPcsfH0iyUu6+/Ozi8tPBPuFJL+Z5D7Ly/smeXdVPbK7b97osADAnmGvXR8CwAI6JMkr5h1iAz2/qnb0y2wAwCpV1RFJXjZZPrW73zJb+EqS7r4iydOTXDazfP8slbIBgDFcnuSXkxzZ3Q/p7qd19+ndfUp3H5fk8CRvn+x5ZJL3L9+pFAAY3/lJDlv++yLeAA4AFkpVHZOlm6/90B1Z+h7+udsrfCVJd/+gu/+8u8/K0g1cAID5evVk/kSSE6aFryTp7ju7+4IkJyS5bealQ+Nm5wDADKUvgK3rrKp64LxDbJBtSX5j3iEAYIGck2Sfmfn3uvviHR3c3bcmOSPJbCHs+cvlMQBgPjrJh5L8ZHcft1zevmq7B3Z/rbvPTPKSyUtPTvKcDc4JAKxRVZ2Q5HnL451JXjfHOADALiw/6eNdWfo59w+d2d0XrfQc3X3nugcDAFasqh6b5KGT5V/p7jt2tq+7P53kdyfLJ69jNABgD6f0BbC1fHDm7wdlsX7Qe2mSG2fmU6rqp+YVBgAWRVXtn+SUyfIbd7Wvu7+cu/+/x7Ykz13HaADA6pza3c9Y/gHyinT325J8YLL8C+sbCwBYT1V1YO7+y2JvSvLXc4oDAKzMqUmOm5k/vvzkDwBgzzG9Aeq13f3ZFe6d3nD1EeuQBwBYEEpfAFvLOUlunZl/qaqOnFeYdfbt3PPpXufNIwgALJgTkxwwM1/W3V9a4d7pD6WfvT6RAIDV6u6v7ubWt07mp60xCgCwsd6Qu+4s/rdJzp1bEgBgpc6czP9uLikAgLU4cDL/31XsvXYy33eNWQCABaL0BbC1/L8kb56Z90ny6xv9plX18Kr6J1X14qp6VVW9sqpeWFXPqKpD1vGt3pbk6pn5aVV10jqeHwC2oum19E9XsffSJHfOzMdW1QPXnAgA2EyXT+b9q+rguSQBAHaqqp6U5CUzS2d29607Oh4AmL/lm7T+zMzSV5P8yXzSAABr8I3JfK9V7J0ee9MaswAAC2TbvAMAsOnOS/LCJPdbnk+rqv/Q3X+1Xm9QVQcmeUaWnubx1CSH7uL4zyR5U5L3dff3d/d9u/u2qnptkt+fWT6vqj7S3b275wWALe4xk/mylW7s7luq6nNJjp1ZfnSS69YjGACwKe7cztq+m54CANipqtovybty100/393dH5tjJABgZaZP1P64n20DwB7pL5PclmS/5fmoqtp/hTdjefx2zgUAkMSTvgC2nO6+OckbZpYqyRvX+W3em+R9SU7LLgpfy45L8p+TfHQdnvz1X5L8zcx8TJJ/vsZzAsBWdtRkvnKV+6+azEevIQsAsPmOnMx3JvnmPIIAADt1bpIfX/77DUnOnl8UAGAVfmoyX5YkteSEqrqgqq6oqpur6paqurqqPlZVr6qqh256WgBgu7r7O7n7jcrvleT5u9pXVXsneelk+d3rGA0A2MMpfQFsTb+d5JqZ+elV9Y/W8fzT68u3k/zPJH+UpVLWB5J8Ksn0Tib/MMmHl+9Iulu6+wdJ/s1k+d9WlbuQA8AqVdX9ctfTQX/omu0duxPT4x+x+4kAgDk4ZTJ/evnf3gDAIKrquCSvmFn61e6+cV55AIBVecJk/uJymetjSf44yRlZujnbvZMckOTwJE/P0o1ev1xVb62qAzYrLACwU69K8tWZ+d9X1Qk7Oriq9kny9iTHziz/jyz9bh0AQBKlL4AtqbtvS3LOZPm8qqp1fJvPJvlXSR7d3ffp7uO7+5nd/S+6+5TufmKSByT5pSTXz+w7Lsnr1/LG3f3fk/zZzNJDk7xoLecEgC3q4Mn83e6+ZZXnuH4y32cNeQCATVRVB+WedyL9w3lkAQC2r6q2JXlXkm3LSx/u7vfMMRIAsDoPnswHJPnLLN0wdVf2SfLiJJ+squl5AIBN1t03JXlaksuXl/ZP8pGqurCqTq2qx1bVkVX1xKp6eZLPJXnezCn+V5JTurs3NzkAMDKlL4Ct6/eTfH5mPi7J6et07pd29+O6+z929xU7Oqi7v9vd70jyk0munXnpRVV17zVmeOVkfk1V/cgazwkAW81Bk3n6lM6VmO5xPQaAPccbkjxoZv67JO+YUxYAYPteleSY5b/fEjdAA4A9zfTmaxdk6eapydK1/fwkJyR5VJLHZ+kXwz852XNskg8sPy0EAJij7v5qkn+Q5IVJPp2kkpyW5L8m+ZskX0lyWZI3Jfnx5W03Jvm1JE/u7m9tcmQAYHBKXwBbVHf/IMmrJ8u/vh5fBC//43U1x1+T5OUzS/dOcvIaM3wqyR/MLD0gyb9eyzkBYAualr6+txvnmJa+pucEAAZUVc9K8tLJ8q8t36kUABhAVR2d5DUzS69d7ffzAMD8VNV+SfabLD9k+b9XJDmqu1/R3R/v7v/d3Z/p7gu6+ylJXjHZd3zueWNUAGA+9l7+c1uSXT2169osXdff1N13bHQwAGDPo/QFsIV19yVJLp1ZOiLJmXOKc0mS22fmJ63DOV+d5M6Z+eVV9aAdHQwA7NKuvpBerz0AwBxV1TFZekL4rI8m+Z05xAEAtqOq9kryztz1i+J/leS35pcIANgNe+9g/eYkJ3X3tTva2N3nJ/nNyfLLq8qN1wBgjqrqp5N8MUvfp/90dv172j+apSd9XlNVL9jgeADAHkjpC4Dp3b5eu1FfBFfVXlX1I1V1WFU9dPZPksOS/P/27j3a1nu8F/j3yT0SciERVERcgtFqgyNEUgmp0laqRYMiOR1NaTmD1kGPuldVlLaOGo5qXQ/KCVV1bam4JFJal6BxqUiUIESucpHLc/6Yc8vcr3WZc6+195x77c9njDnG+j3z/f3eZ757jbH3nnN+39/k3cLvvNbzdfeXk7xmorRXkmevdV0A2IFcPhjvuQVrDOcM1wQAFkhVHZzkPdl8d87zkjy6u4W5AWBxPCnJvcY/X5vkt7v7ujn2AwDMqLuvSHL9Ek/9+UqBrwnPyiggtsn+SR60Hr0BALOrqvsn+WCSQybK30ryh0kOT7Jvkt2SHJTkgUlenxtuaH5AkldX1V9XVW2rngGAxSf0BbCD6+5PJPmHidKBGW0ZvWZVtVdVnVBVb66q/8hoy+pLM/rP7NeXeEzuwrXfevSQ5HlJrpgYn1xVd1intQFgoxP6AoAdSFUdmOSfk9xqovydJL/Q3d+bT1cAwFBVHZrkBROlP+/uz86rHwBgTX64RG24+/aSuvuHSd4xKB+z1oYAgNlV1QFJ3pJkj4nyPya5S3ef0t2f7e5Luvua7v5ud3+gu09KcnSSCyfmnJzkaduscQBg4Ql9AZAk/yvJ5B1AnzL+otcWG283/fUkf5fkkRnt3LXLDEvss5bzb9Ld5yd52URplyR/sh5rA8AO4JLB+EZVtdeMawz/TXHxGvoBALaSqto/ozuQ3nGi/P0kx3X3V+fTFQAwNL7b96uT3GhcOifJc+fWEACwVsP3zL/b3efOMP/MwfjOa2sHANhCf5DRbl2bfCnJb3T3pStN6u4zk5wwKD9nrd/dAwA2DqEvANLdZyd53URp7yTP2tL1quovMvrQ+YDVjl3Bev4ddUo2vyPKw6rqHuu4PgBsSN19YZKLBuWDZ1zmNoOxL40DwIKpqn2S/FOSn5koX5TRDl9fnE9XAMAyTk5yv4nx47r7ynk1AwCs2VcG42/POP/8wfima+gFANhyDx+MT+nuq6aZ2N0fSvKxidKeSR6xXo0BANs3oS8ANnlOkskPhh9XVbebdZGqeniSJw/KX8woRPaLSQ5Lsm+SPbq7Jh9Jztuy1lfW3ZckeeFkmxkFwQCA1Z09GN9+xvmHrrIeADBHVXXjJO9PcveJ8qVJHtjdn51PVwDACp438fN7k/xnVR2y0iPJQYM1dlniuN221QsAADYzvNnK1TPOHx6/xxp6AQC2QFXtlWT4PbsPzbjMBwfjI7a8IwBgI9ll3g0AsBi6+1tV9fIkTxuXdk3ygiSPnHGp5w3Gz0ryJ93dU8y9yYznmsUrkjwpN+xOcr+q+sXu/sBWPCcAbARfSHLkxPjeSf5xmonjN7fvusR6AMACGP9d/d4k95ooX57kQd39yfl0BQCsYs+Jn38pyde3YI1bLTHv8CQC3wCw7Z01GO874/zh8ReuoRcAYMss9ff3d2ZcY3j8zbawFwBgg7HTFwCT/jTJRRPjE6rqbtNOrqo7JLnzROmj3f2CaQJfVbVnZn8De2rdfXWSZw/KL6qq2lrnBIAN4v2D8TEzzD06m99s5DPd/d01dwQArNn4/+HvTnLURPmKJL/c3WfMpysAAADY4bwvyeTn6YdW1Sy7df30YPzNtbcEAMzo4iVqe824xt6D8eVb2AsAsMEIfQHwY919cUbBr00qyYtmWOIOg/G7Z5h77/H5tqY3Jvn8xPjnMvtOZgCwo/lAkisnxveuqjtNOfekwfjv16UjAGBNxl8ee1c2D3NfleT47v7oXJoCAACAHVB3n5/kExOlXZPcf4YlHjgYf2zNTQEAM+nuHya5dFA+fMZl7j4Yz7pTGACwQQl9ATD08mx+969fqKrjppw73KnrkhnOe9IMx26R7r4+yTMG5T9OstvWPjcAbK+6+4okpw7KT19tXlXdMcmvTZSuTfLmdWwNANgCVbVbknckmfy//tVJHtLdH5pPVwDAtLp73+6uWR5Jjh0sc94Sx312Hq8HAEiSvHYw/oNpJlXV0UnuOVG6Psl716spAGAmpw3GvzPtxKo6KMnxg7IgNwCQROgLgIHuvirJcwblF2W6XbguGoyn2gWkqu6R5BHTHLtW3f3uJJN3LT80yeO3xbkBYDv23CTXTIxPqqrhm84/Nt495LXZPFj9t939ta3THgAwjaraJcnbkjxoonxNkod19wfm0xUAAADs8F6b5OyJ8f2qasXgV1UdmJ8Mi73N+/AAMDdvHYxPqKpHrzapqnZP8sYke0+UL0/iPXsAIInQFwBLe32SL06M757k4CnmfW4wPnF8J5JlVdWhSf5fkl1n6nBthruT/NqSRwEASZLuPifJywblU6vqiePdQn6squ6c5ENJjpwoX5jkeVu3SwBgJVW1c5I3JfnVifK1SU4Y3yAFAAAAmIPuvi7JkzLaqWuTl1bVy6pqv+HxVXVcktOT3G6ifFGSZ2zVRgGAlfxdNv/uXCV5w/jv81ssNaGqjk1yZpLjBk+d0t3Dm68DADuo6u559wDAVlJV5ya5zUTpgO7+/pRzj0/yDyscsuRaVfWxJEdNlL6U5L9395mD43ZP8pgkL0xyQJKrMvqy2aa7lpzX3Yes0N8xST48UXpPd//KCv0O578jy4e9ZloLAHYE4y+K/2M23xkkSS5I8ukkl2W0g+bdsvkOoT9Kclx3f2xb9AkALK2qXp/ksYPy0zK6EcusvjPeKRwA2A4s8X76iu+/AwDzUVVPTPLyQfmajL4M/q0keyb5uWz+HYBk9D788XbxBoD5qqrbZxTMPnDw1PVJzkpyTpIrk+yf5PAkS91M/b1JHtLd12zFVgGA7YjQF8AGtpbQ13j+x5PcZ5mnlwt9HZnkI0l2GTz15SRfyOgN55snuWc235b65CTPnOh3a4e+7jTuZ+clnhb6AoAlVNXeSf4myQlTTrkgyYnd/f6t1xUAMI2qWs83go/t7tPWcT0AYCsS+gKA7UdV/W6SlyS50ZRTvpvk17v7jK3XFQAwrfF30t6Y5B4zTu0kr07y5O6+ct0bAwC2WzvNuwEAFtrTZ50wfjP55IzuODbpsCQPTfLIJPfLDYGv65I8qbv/Zg19zqy7v5TktdvynACwvevuy7v7EUkentGdRZfzgySvTPLTAl8AAAAAADCd7n5lkrsm+b9JLlvh0O8keW6SwwS+AGBxjL+Tdu8kJyb5REZhrpVcmeRNSY7s7scJfAEAQ8NdWADgx7r79Kp6V5LjZ5z3uqo6O8mLkhyzzGFXJXlPkhd296fX1OiWe06S30yy55zODwDbpe4+NcmpVXXbJHdLcsske2X0IfN5SU7v7h/NsUUAAAAAANgudffXkjymqvZMcp8kP5XkoCQ/SvK9JJ/r7rPm2CIAsILuvjbJG5K8oar2yWjXr9sm2TfJ7hkFuy9K8oUknx8fDwCwpOpeLUQOAFuuqg7O6I3oWybZNckFSc7P6MvgK92ZDAAAAAAAAAAAAAAAdkhCXwAAAAAAAAAAAAAAAAALZKd5NwAAAAAAAAAAAAAAAADADYS+AAAAAAAAAAAAAAAAABaI0BcAAAAAAAAAAAAAAADAAhH6AgAAAAAAAAAAAAAAAFggQl8AAAAAAAAAAAAAAAAAC0ToCwAAAAAAAAAAAAAAAGCBCH0BAAAAAAAAAAAAAAAALBChLwAAAAAAAAAAAAAAAIAFIvQFAAAAAAAAAAAAAAAAsECEvgAAAAAAAAAAAAAAAAAWiNAXAAAAAAAAAAAAAAAAwAIR+gIAAAAAAAAAAAAAAABYIEJfAAAAAAAAAAAAAAAAAAtE6AsAAAAAAAAAAAAAAABggQh9AQAAAAAAAAAAAAAAACwQoS8AAAAAAAAAAAAAAACABSL0BQAAAAAAAAAAAAAAALBAhL4AAAAAAAAAAAAAAAAAFojQFwAAAAAAAAAAAAAAAMACEfoCAAAAAAAAAAAAAAAAWCBCXwAAAAAAAAAAAAAAAAALROgLAAAAAAAAAAAAAAAAYIEIfQEAAAAAAAAAAAAAAAAsEKEvAAAAAAAAAAAAAAAAgAUi9AUAAAAAAABrVFW7V9WJVfWOqjq3qi6vqp54nDbvHgEAAAAAANh+7DLvBgAAAAAAANj+VNW5SW6zymHXJ7kkycVJzk7yqSRv7+7Pb93utq2qOizJO5Pcad69AAAAAAAAsDFUd8+7BwAAAAAAALYzU4a+lvPRJI/v7rPXr6P5qKobJ/lMktutcuhHuvuYrd8RAAAAAAAAG4GdvgAAAAAAANjWfj7Jp6vqkd39znk3s0YnZ/PA15eTvCCjINgPJ+pXbcumAAAAAAAA2L7Z6QsAAAAAAICZLbHT1yOTnDk4bOckN01ytyQnJrnX4Pmrkhzd3f+2ldrc6qrqE7nhdf0oyaHd/a05tgQAAAAAAMAGIPQFAAAAAADAzJYIfR3b3aetMueJSf53kpoof7y7j173BreBqto5o928dh+XPtrd951jSwAAAAAAAGwQO827AQAAAAAAAHYM3f1XSf58UD6qqg6fRz/rYJ/cEPhKkm/OqxEAAAAAAAA2FqEvAAAAAAAAtqUXJrlmUHvAPBpZB3sPxsPXBQAAAAAAAFtkl3k3AAAAAAAAwI6ju39QVf+W5N4T5bvMskZVHZjkiCS3SHKzJJcneX93f2WVeXuMz3twkgOSVJLvJfnPJGd297Wz9JGtcIPFqrpLkp/JqL+bJPlBkm8n+Xh3X7jO59ozyVFJbpXk5kmuS/LJ7v7oKvMqyeFJDhv3uVeS72e009nHu/uyde7zxkmOTnLrJPsnuSjJ18bnunKdzrHput80yX5Jrsrod+PsJGd199VbuO4uSe6Z5NCMrtXu43XPTXJ6d1+15uYBAAAAAIANSegLAAAAAACAbe2/snno62aTT1bVuUluMx6e192HjOtHJ3l2kmOT7DxY8/eTLBn6qqojkvxRkuOS7LlMT5dW1VuSPL+7z1+u8ao6Lcl9l3n6xKo6cYn6R7r7mBXWvGmSpyZ5dEYBrKVcX1VnJHled39wubUG674uyWQ/t+3uc6vq1hntuPaQ/ORuZf+QZMnQ13jeM5I8LIM/swnXVNUHkzy7u/9tyj5Py8Q17e4a12817vNhSW60xNSrqupVGV2Ti6Y51+C8t07ytCQPzyj0tpwrq+rDSV6f5O3dfd0Ua985yTOT/EpG4b3l1n1XRtdqxcAiAAAAAACw41n3uw8CAAAAAADAKmrmCVXPT3JaRsGtYeBruTk3qqo3JzkzyYOzfOArGQVzHpfkq1X1sFn721JV9dgk5yR5epYPfCWjz/WOSvLPVfXGqtptC8/3kCRnZRQwGwa+Vpr39CRfTfL4LB/4SpJdkzwoySer6sXjXcG2pM9fSvK5JI/N0oGvJNkjyZOSnDEOcE27dlXVMzPa4e2JWTnwlYx+b34pyVsz2m1spbV3rqq/SPKFJI/K8oGvTeuekOSLVfWkKdsHAAAAAAB2EHb6AgAAAAAAYFv7qcH4+ysdXFVPTvKsidJ5GYVqLs0osHP4EnMOSPL+JHcbPHVlks8kOT/JdRmFeP5bRmGlZBQweltV/XZ3v2aaF7OlxkG2Zw3KneTLGQWsLkuyX5J7JDlg4phHJ7lFVT2wu6+d4ZRHZLRb1e7j8cVJPpXR9d83yV2W6HGnJK/J5juGJcn1ST6f5NwkPxz3d88k+2yamtHuZQcmOWmGHlNV90nyjok+v5vk00kuGvd5RJKbTky5U5K3VtVR3X39KmvvkuTvkjx0iae/M35N3x+f++ZJfjZThuOqas8k70zygMFT1yT5bJJvJrk6yUEZXatNYbZdkvxlVe3X3c+d5lwAAAAAAMDGJ/QFAAAAAADANlNV+yW5+6B89gpTDkzyZ+OfP5Hk97v7Xwdr7p6JENA4qPSWbB74Oj/JM5O8ubuvHszfN8nTMtpta6eMAkuvqKp/7+7PDfp5REY7TCWj8NrHJp57e5L/ucRruGpYqKoTs3ng6/okr0jyku7+xuDYSvKrSV6W5OBx+f5J/jjJ/1rifMt5dUZhpm+O+zy1u68bnOc2gznPyuaBr6uTvCjJK7r7e4M+d0nymCQvzSisliQnVtUnuvtVM/T5znGfZyV5Snd/cInzPDHJS3LDrm/3TvKbSd64ytovzU8Gvt6b5Lnd/anhwePfpXtl9Od+0iprvyKbB74uSfLcJH/b3ZcN1t0zye8leUFu+H16dlX9a3e/b5XzAAAAAAAAO4Dq7nn3AAAAAAAAwHamqs7N5gGhY7v7tCnmnZJRwGrSPbr731dYO0neneSh3f2jKc7x1CQvnih9OskDuvvCVeY9LMnbMgp9JcmHu/t+Kxx/SJKvT5Re390nTdHfbTIKuu05Ll2d5CHd/f5V5h2Y5PQktx+Xrktyh+7++jLHvy4/uUPXOUnu293fnKLPI5KckVEQLhnttHX/7v7MKvPuOJ63KYh3Sa49rksAAAtLSURBVJJbD4NPE8efluS+g/KHkzy4u3+4wnmenOQvJkof7+6jVzj+AUk+MCj/YXefstycwfx9k1zV3UuF+B6e0e/OJuclOaa7z11lzSOTfCg3BL/+M8lhq+1YBgAAAAAAbHw7rX4IAAAAAAAArF1VPT7JUwflMyYDX8v4XpITpwx87Tk4xyVJfmW1wFeSdPepSV45UTq2qu623PFr8NTcEPhKRruXrRj4SpLuviDJoyZKOyf5/RnPfdI0ga+xZ2XzzxN/c7XAV5J091eS/O5EaZ8kJ0/fYi5O8oiVAl9jf5XkOxPje43//Jfz7MH4/0wb+EqS7r54mcBXDda+NsnxqwW+xmueMZh7+yQPmbYnAAAAAABg4xL6AgAAAAAAYD0cVFWHDB63q6p7VNXvVNXHMwpU1cScq5P8wRRr/3V3/2DKPh6Z5ICJ8V9297ennJskLx2Mj59h7qqqaq8kvzVROifJq6ad392fSvKxidIs/Z3e3R9b/bCkqm6X5JcnSh/p7vfNcK5TM9rtapNZ+nzVOOC2ou6+NslkWG6XJD+z1LFVddck95koXZbk6TP0tJJjk/z0xPhN3X3WDPNfkWQyTLauv3MAAAAAAMD2aZd5NwAAAAAAAMCG8JYZj786o52j/nWKY985w7q/MBi/dYa56e5zquobSQ4el46eZf4Ujsrmu3yd2t3Xz7jGh3NDX7epqoO7+xtTzJvlOh43GM96HbuqPpLksePSEVW12zS7tSV5zwynOnswPnCZ4+4/GL+5uy+d4TwrWevv3BVV9ckkPz8urffvHAAAAAAAsB0S+gIAAAAAAGBbOyPJ47r7C1Mce12SWXZNOmri5x8lubqqDplhfpL8IDeEvm4349zVHDUYn78F/Q2DU4cmmSb09ZkZzjHs84It6POKiZ/3SHLLJOdOMe8/ZjjHRYPxPsscd+RgfNoM51jN8Fr9YAuu1WQA7ZCq2mkLwoAAAAAAAMAGIvQFAAAAAADA1nJ9ksuSXJzkS0k+meQd3f3ZGda4ZMrdoVJVO2UULNpktyRfm+FcS9l/jfOHbj0Y/+X4sRbT9njBDGsO+zx1hrnL2T/Thb6GQa6VXDMY77rMcbcYjL84wzlWM7xWZ65xvZ2S7JtR+BAAAAAAANhBCX0BAAAAAACwHo7t7tO2wrqXzXDsfhkFZtbTjdd5vZuu83rJ9D3Oci3n1udW2uFq+HpmCZbNuvZ6uHGEvgAAAAAAYIe23h96AQAAAAAAwLzsNu8GprA1eqytsOb20ueW6nVca6NfKwAAAAAAYA7s9AUAAAAAAMBGceFg/JXuPmwunSzv+4Pxkd39ibl0srLvJ7njxPiW3f3teTWzDobXff8k31rHtW85/vmqJDfq7vUMlQEAAAAAADsgO30BAAAAAACwIXT3j5JcNFG6bVXtOq9+lvHdwfiOSx41f9tLn9MaBtbuso5rT16rPZIcvI5rAwAAAAAAOyihLwAAAAAAADaSMyZ+3jXJMXPqYzlnDMYPmEsXq9te+pzW6YPxMeu49ka7VgAAAAAAwAIQ+gIAAAAAAGAj+cBgfPJculjeh5JcNzE+vqoOnFczKxhex8dU1R5z6WR9fHAwflRV3Xid1h5eq99ep3UBAAAAAIAdmNAXAAAAAAAAG8kbk1w8MX54Vd1/Xs0MdfdFSd40Udo7yUvm1M6yuvvzST4yUbp1kmfMqZ016+4vZvPXc5Mkf7pOy78vydcmxvesqt9ap7UBAAAAAIAdlNAXAAAAAAAAG0Z3X5zkzwblU6vqqFnWqaqdq+rXq2r/9evux56b5OqJ8WOq6pSq2nmWRarqLlX18+va2eb+KElPjJ9VVU+cdZGqOqKqDl+/trbY8wfjJ1TVU6adXFX7LLXbWXdfm+TZg/Irq+rXZ22wqo6rqkNnnQcAAAAAAGw8Ql8AAAAAAABsNC9O8k8T432TnFZVr6iqw5abVFW7VtWRVXVKRjs3vT2jHaHWVXd/PcnvDMpPS/LxqnpwVe2yQo+HVNUTqupfknwxyf3Wu7+JPk/PKKA26eVV9b6qOqaqlvyssUbuVFVPrapPJjkzyc9urT6n1d3/kuSlg/JLqupdVXX3peZU1U5Vde+qelmS/0py0DJrvznJayZKuyV5e1W9abm1x+vvXFWHV9Vzquo/kvxzkoNneFkAAAAAAMAGtewHRgAAAAAAALA96u5rq+o3krw3yZHj8s5Jfi/J71XVt5J8IckPMrpJ4k2S/FSSOyXZdRv1+IaqOijJn+aGGzXeK8m7klxRVZ9J8t0kVya5cZKbJblLRgG2baa7n19VBySZ3OHrgePHJeM+v5fkmoyu44HjPvfeln3O4OkZhaoePlF7cJIHV9X5ST6f5MIku2cU8LprRtd/Go9Psl+SX5uoPSrJo6rqe0k+N177+oyu1S2T3DnJT+weBgAAAAAAIPQFAAAAAADAhtPdl1TVMUlelORJGYW+NrnV+LGaK5Jcvf7djXT3i6vqrCSvzeY7SN0oyX2mXOaidW9soLv/R1V9KsnLs/nOZ/skOWaKJa5PcslWaG1m3X1dVZ2Q0S5pf5TNQ363HD+2dO1rquqhSZ6a5HnZPMx1QJLjpljmmiQ/3NIeAAAAAACAjWOn1Q8BAAAAAACA7U93X9PdT0lyxySvzGjnrNVcmOQdSU5KcvPu/vbW6zDp7vcnuW2SJyT5bJJeZco1Sc5I8twkd+zul23N/jbp7jdktEPWM5J8eYopVyX5l4wCUAd3999vxfZm0iPPS3JYkldntOPbSi5P8s4kD0nyjSnWfnFGf6YvSnLeFC1dltGudE9Icovu/tQUcwAAAAAAgA2uulf73AgAAAAAAAA2hqq6c5K7Jrlpkn2TXJvk0iT/leRLSc7pOX6AVlX7J7lXklsk2T+jnaguT3JBkq8k+VJ3XzGv/japqlskuWeSAzPqc6eMwkvfySgU9uXu/tH8OpxeVe2U5G5J7pTkZkn2zmi3rQsy+p04q7uvWcP6tx2vf0CS/TLa+eyyJOeP1/9qd1+3ltcAAAAAAABsPEJfAAAAAAAAAAAAAAAAAAtkp3k3AAAAAAAAAAAAAAAAAMANhL4AAAAAAAAAAAAAAAAAFojQFwAAAAAAAAAAAAAAAMACEfoCAAAAAAAAAAAAAAAAWCBCXwAAAAAAAAAAAAAAAAALROgLAAAAAAAAAAAAAAAAYIEIfQEAAAAAAAAAAAAAAAAsEKEvAAAAAAAAAAAAAAAAgAUi9AUAAAAAAAAAAAAAAACwQIS+AAAAAAAAAAAAAAAAABaI0BcAAAAAAAAAAAAAAADAAhH6AgAAAAAAAAAAAAAAAFggQl8AAAAAAAAAAAAAAAAAC0ToCwAAAAAAAAAAAAAAAGCBCH0BAAAAAAAAAAAAAAAALBChLwAAAAAAAAAAAAAAAIAFIvQFAAAAAAAAAAAAAAAAsECEvgAAAAAAAAAAAAAAAAAWiNAXAAAAAAAAAAAAAAAAwAIR+gIAAAAAAAAAAAAAAABYIEJfAAAAAAAAAAAAAAAAAAtE6AsAAAAAAAAAAAAAAABggQh9AQAAAAAAAAAAAAAAACwQoS8AAAAAAAAAAAAAAACABSL0BQAAAAAAAAAAAAAAALBAhL4AAAAAAAAAAAAAAAAAFojQFwAAAAAAAAAAAAAAAMACEfoCAAAAAAAAAAAAAAAAWCBCXwAAAAAAAAAAAAAAAAALROgLAAAAAAAAAAAAAAAAYIEIfQEAAAAAAAAAAAAAAAAsEKEvAAAAAAAAAAAAAAAAgAUi9AUAAAAAAAAAAAAAAACwQIS+AAAAAAAAAAAAAAAAABaI0BcAAAAAAAAAAAAAAADAAhH6AgAAAAAAAAAAAAAAAFgg/x+cH/c+cgPo4gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1547,7 +1547,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 36, @@ -1556,7 +1556,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAADWMAAAcqCAYAAACpX5a4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd7gkVbWw8XcNQ84SRUREBIwIiEpQx4SKATBfTKjXrNeI+VOM1xyuOQGKOYtZEVCRpKKiICAIIiggOcdZ3x+7jtNTp06f7uo4Z97f89QDvbur9u6qXbuqz+xVKzITSZIkSZIkSZIkSZIkSZIkSZIkSVJ3iybdAEmSJEmSJEmSJEmSJEmSJEmSJElaERiMJUmSJEmSJEmSJEmSJEmSJEmSJEk9MBhLkiRJkiRJkiRJkiRJkiRJkiRJknpgMJYkSZIkSZIkSZIkSZIkSZIkSZIk9cBgLEmSJEmSJEmSJEmSJEmSJEmSJEnqgcFYkiRJkiRJkiRJkiRJkiRJkiRJktQDg7EkSZIkSZIkSZIkSZIkSZIkSZIkqQcGY0mSJEmSJEmSJEmSJEmSJEmSJElSDwzGkiRJkiRJkiRJkiRJkiRJkiRJkqQeGIwlSZIkSZIkSZIkSZIkSZIkSZIkST0wGEuSJEmSJEmSJEmSJEmSJEmSJEmSemAwliRJkiRJkiRJkiRJkiRJkiRJkiT1wGAsSZIkSZIkSZIkSZIkSZIkSZIkSeqBwViSJEmSJEmSJEmSJEmSJEmSJEmS1AODsSRJkiRJkiRJkiRJkiRJkiRJkiSpBwZjSZIkSZIkSZIkSZIkSZIkSZIkSVIPDMaSJEmSJEmSJEmSJEmSJEmSJEmSpB4YjCVJkiRJkiRJkiRJkiRJkiRJkiRJPTAYS5IkSZIkSZIkSZIkSZIkSZIkSZJ6YDCWJEmSJEmSJEmSJEmSJEmSJEmSJPXAYCxJkiRJkiRJkiRJkiRJkiRJkiRJ6oHBWJIkSZIkSZIkSZIkSZIkSZIkSZLUA4OxJEmSJEmSJEmSJEmSJEmSJEmSJKkHBmNJkiRJkiRJkiRJkiRJkiRJkiRJUg8MxpIkSZIkSZIkSZIkSZIkSZIkSZKkHhiMJUmSJEmSJEmSJEmSJEmSJEmSJEk9MBhLkiRJkiRJkiRJkiRJkiRJkiRJknpgMJYkSZIkSZIkSZIkSZIkSZIkSZIk9cBgLEmSJEmSJEmSJEmSJEmSJEmSJEnqgcFYkiRJkiRJUg8iYklEZG1ZMul2SeMWEefUzoNDJ90mLRwra//yGqNeRPHwiPh4RPwuIi6MiBsa+s5dJ91WSRAR942ID0XE8RHxr4i4ruF8fdik2zmXiHhnra3XT7pN4xIRF9S++ycm3SapVxGxRsNY85ox1r9DQ/1PGlf9kiRJkiRJ47J40g2QJEmSJElSfyJiMXBn4E7ABtWyCnANcDVwHnAOcE5m3jChZkqSJGlIqgCrLwF3m3RbJHUXEVtRztc9Jt0WSZIkSZIkSdJoGIwlSZIkSZK0AoiI1YH9gGcCewJr9rDaTRHxZ+A3wC+An2bmxaNrpSRJkoatCsQ6Hlh70m2R1F1E3Iby+2vTSbdFkiRJkiRJkjQ6iybdAEmSJEmSJHUXEY8GzgS+DDyE3gKxAFYFdgKeA3wRuDAi/q/HOo+OiOxYju6/5VqZRcSSWh/KiFgy6XZJGq6IOKh+rk+6TdJCEhFBuQdsCsS6BDgV+GNtuW5sDZRUdzDNgVhXAKcx+3y9clgVR8QODfffTxrW9qWVieeTJEmSJEmS5mNmLEmSJEmSpClVTb79KPD8IW1yEbDVkLYlSZKk0XsYcNda2bHA8zPz5Am0R9IcIuJuwF614lOBZwPHZaYBy5IkSZIkSZK0QBiMJUmSJEmSNL0+Qclq1eRc4EjgFODfwDXAOsCGwB2BXYAdgdVH30xJkiSNyL6111cDj8rMSyfRGEld1c/XpcA+mXnmJBojSZIkSZIkSRodg7EkSZIkSZKmUETsS3Mg1knAq4Aj53uyekSsRcmmsF+1rD3sdkqSpMFl5tFATLodmkr3qr0+wkAsaWrVz9eTDMRaMWXm5pNug7SiyszT8L5WkiRJkiStBAzGkiRJkiRJmjIREcAHGt76FrB/Zt7Qy3Yy89pqnW9FxPrAM4DbDK2hkiRJGrWtaq9Pn0grJPXC81WSJEmSJEmSVhIGY0mSJEmSJE2f3YGta2XnAwf0GohVl5lXAB8csF2SJEkar/Vqr6+ZSCsk9WL92mvPV0mSJEmSJElaoBZNugGSJEmSJEma5eENZYdm5lVjb4kkSZImIiIWM/vBijmJtkjqyRq1156vkiRJkiRJkrRAmRlLkiRJkiRp+tyuoex3Y2/FAhcRAewC3BHYAlgVuBQ4DTgxM68fUzu2BHYENqmWBP4N/As4PjOvHEMb7kjZF7cBVgcuAf4JHJOZl426/mkSEZsC9wRuT8lukMDFwLcz8+Ie1t8Q2IHSrzYE1gGupfStCyl969LRtH5WW9YE7lO1Z0PgOkrf+jPwx8x0gvCYRcRmlPP9dpRsN2sC11P6yAXAOcAZmXn1pNq4ooiI2wK7UvblWiw7x36dmReOqM5VKePDbSnj9frA5ZTz6tTMPGUU9Q5DRKwF3IsyNt2K8u9DVwBHTaLd1TX4HsDdgU2BVSjXvXOBY9tmAu2j/lWq+u8MbEYJoLgGODkzf97ntjahXEM3pfSLVSh94kLghMy8ZIhNH7qqX+8KbMmyfn0Z5dp3SmaeOoY2rF21obN/Xg4cmZl/6XNb21Gue5sCGwM3UI7HPyj3VSPtW1Ub7k7pX5tTHox5MaVvH5OZ146ozpl9eGvK916Pcm25HPgr5VgO5Z6uOn/vBtyB0mc2opw//wbOBn6bmTcPo65hqs77e1KuG5tS9tGlwEXA6dM8hk+76hqzG7A9sAHL7jlPzsyTR1jvxM/3NjrOobtQfoeuSdlnZ2Tm9ybUps0p9wm3B9alnNNnU67JF/WxnTtQzrPbUK6tF1fb+eUwj0f1O2d7yvGfGfNuopzTlwAnZea5w6pvHMY5jtfq3Y5lfwtYlWV/C/hVlWF96kTEasC9gTtRrkE3Us7904HfZObSIde3NrAHZR9tTulrFzDiMU6SJEmSJK0AMtPFxcXFxcXFxcXFxcXFxcXFZYoW4CeUAJDOZa8x1Fuvs82ydcN2D+jlcy3beFCLbawNvA34e5fvcTXwGeD2HestafjckpbfY1PgfylBMd32503AMcB/AYuGub8ok4OfAfypS/03A0cA9+mxvoOG0IcOHVH/PrpWz9Ed7wWwP3AcsHSOdjUea8okw/2AT1Imf833/ZZWx/0VwLotv8us/Vx7/w7AIZRJlHO14wLgjcDaLeo/Z5BjVu3vdzW06TLgAUM63qtRJn92bv/3Q9juaxvavfc862wAvA44pcdz4GbgD8AHKJP+YhTnxJDPpzbLAW36V3W+HTfPOXbCfMelz+/7aOC7wJXzfKd/Ah8DtmpRx5KG7S3pYb2D6uvV3t8N+BYl6K+pzQeNoH/MWQdlgvdBlMCrufbj5cChtLhXmG8/AlsBH6FM1m6q++ge61kfeAPwW+a+biRwC/Ab4HnAqj1s98Etz6f/jB997Kt9gcOBq+bZ5vnVPtuyxfF4W7f2Uca471ACKJrqfkOP9WxLOffOnue7XAv8CHhIi++yQ8P2ntTx/hrAgXS/v7we+Dqw3ZDOtTWBlwC/okxE7/bdlwInAW8FtmlZ387A5+h+/iYl0PMbwK7D+J5D2E/3Br5Guc/o1u5/AB+nx7Fnjj7R77L5EL7f84bQjh/Pse131vtw7f3tgM9TAonm2va/KPdBaw7peI78fK/quaC2vU+07BOd48SmwLspwbpNbT5tBP3/K93qoGTl/gVzX8tuptxHzDluUYKQn0n335VXAR8GNmz5PRYB9wPeQ7mu3txDvz4XeB99XL9GeT7NUd9IxnHKNam+/mtqx+zZwKld6ruJ8repvsfy+c6FPvf/5h3vb1H1oyu6tPuSqp+06mu19uwIfJMynsxV3z8ovxHX7Fiv69jp4uLi4uLi4uLi4uLi4uKycJZFSJIkSZIkado0ZWS63dhbsQBFxIMoE45eT5mQPZe1gWcBf46Ipw+x/tUi4i3A34DXUJ6G3s1iykTlLwF/rDItDKMdW1KCvA4G7trlo6sADwKOi4i3D6PuaVNlKjoa+CIli1T0se5LKJMpvwU8hzIhdd7VKMf9vcDfI+IxfTZ5vja9kBLsdQAlW9BcNgPeTOnjdxxmG7qJiDUok0JfVXvr78AemXnUMOrJzBsp502ne0TEPQbcdH08+BdlkmKjiHg8cAbwdkoGnl6sQpn491LKebp9/81ceCJig4g4nHK+3afbRymZHX4QEZ+LiMUD1HmviDiOEoj1aEogUTe3Bp4P/DUi3hERE/s3mIhYNSI+AvyaEsC2+qTaMiMidqUEJb6JklVgLutTzrVTqnF2WPU/C/gL8EJKtsA224iIeDnlOv5WSiaJbteNRZQMIR8HTo+I+7epd5gi4j4RcQLwbeBRlAyO3WxB2WdnRsRbh9Gvq/75ccoYtw8lgLbNdjaIiE9Sjuvzga3nWWVN4GHATyPiqIi4TZt6G9qxIyUI4d10v79cHXgcpW8/Y8A6X0QJRvkgsCclm0nXVYCdKEGEZ0bEI/qoa8uI+Col+PBpdD9/oWRzeSxwYkR8PSLW77WuYYqIzSLim8DxwOMpwdHdbEkJBDg9It5bZV7RHCLiZcDJwFMpgR9z2ZxyH3RyRNx+gPqm4nxvKyL2ozy44UBKUNZERcQaEfF54IeUIKe5rmWrUO4j/hgRj23Yzm0pgUSfpfvvynWAF1HGv17viWfqeDAl4OUXwCsp19VVelj1tsDLgbMi4o1VRrKpMc5xvFbv7Sjj4qcomaXmshjYCzghIt7Ypq5hioj/opz/L6JcZ+ZyK0o/OS0idmlZ1yoR8R5KhvrHUMaTuWwJvIPyu3oof6+RJEmSJEkrDoOxJEmSJEmSps8FDWVPGHsrFpiIeCRlslm3SbJ1awGHRsTzhlD/rYCfAv+PEuzVr7sCv46IRw3Yjm0ok69263PV10XE2wape9pExObAsZQJiG3sRPeJYPPZEPhGRLxmgG38R0S8g5K9pNuE2LqtgWPGMUE1IjYGfs7s8ex3lOxrpw65ykMaylpPfo+I3ZkdGPX5zLxljs//N/BVYJO2daqIiI0oE337Hf+eRsmw1KbO/YFf0j3way6rUZ6Qf3hEzBfoMnQRsQolK80L6SPAdJQi4p7AUZSJ0b1aC/jgMK49EXEgJeNltyDV+baxJiWr0fsoE337dXvgZxHxzLZtGFREPJUymf1eLVZfnTIB/NsR0eY+ZqYNiymBYAPdW1X3M8dRgqHbBF0uoQQLtZqo3dGO3SlBj9v2sdpi4LPV8ei3vrUi4muUzCCb9bv+zGaYP7h0pr5dgBMp1+4248njKEH927RYt7WI2I7SP9oEva9GyWD6o4gY5D5vwYqI9wPvp79A320p95x9ByJNy/neVkQ8jZJdZ76AwLGoAg2/Rwmk69UawFci4oEd29mGMv7187vy1sCRff722JYSGNzWapSHUHx9koHyM8Y9jtfq3o6SQfaefdb15oh4Q7/1DUsVnP8l+vvtvSlwVIvgv8VVXa+kt6C/GdsAvzIgS5IkSZKklUvrJ0JKkiRJkiRpZI6lTDTr9OCIeHFmfniE9f6x4/+3ZfmAoWuAM3vYxo1DbdGQRMRulAlw9SfcJyUw6YeUp23fTHmy8UMpATozk28+ArxugPo3oExU26Hh7T9TJkafAlxelW1KmdS2N8tPslqHMolsj8z8XYumrAv8CJiZ/JaU/nYEcC5wNSVwZA/KE9DrQT2vjYjvZeYJc2z/Apb1o3WAO9TeP6uqo5tz53l/WBYBX6NMmprxN+AHwGnAxcBGlMnzj+txm6dTvv9fKBmTrqKcE+tSggB3ojxdvPPJ2gG8IyL+lJk/aPtlIuK5lOCPGf+mHOvfVP+/BuW83o/ZGdk2BT4JPLJt/T20b1vKeVbPwvV94EmZec2w68zM30fEH4DObFj7R8QrM/OmFps8oKGsKeBrZqLjR5g9cf064EjKcfk75XxYTJlYeGvKsdmV+bM9TNqZLJtQvDmzJ5L+kfld2mNdM4EbndkWfk/JSPY3yrh5K+DelEn39QwsT46I72TmN3qsj4h4PvCxhreuAX5GOX4z5/j6lH79EGDn2ucfQQkG63UMGZa3UDJ5zbiUZePBRZQxaEvg4ZTrwKhtAHyH5e8rfg8cTjkPbqBclx5ULfV/u3p9RFySmR9oWf9elGyUM26gBIYdTbluzVz7780cWaKqietHALs3vH1mtb2Tgcuq7W1COZf3Bjbu+OyqwGci4oLM/GHDtq5i9vmzY+31BZSsjE1unqN8JgNH033k1ZR+/VuW79fbUfZdPaPgoykZUJ40V13zeDvl3JhxCaV//pZl/fO2dOmf1TXlOJbftzOOo9zbnEEZH1ajTOLfg5Ilp/NecAvghxGxU2b+s8V32ZoyVsz07ZtY1rf+SelrtwYeSOkLnUEAAXw4Io7MzPN7qSwiVqcENTcFid5C2Yc/p9zTXkLZlxsDd6f076b70G717U7pG/Ugxlso967HU7K6XFF95rbA/Snft/O73omSrXDXzJzvPnBgEbEFJetaUzD0uZQMi6dTxsbNKPdn+zI7Y94DgZ9ExP3muG+4ntnn611Yfgy7BDivS3Pb3I/UXdzRjtWZfZz/zrLfGHM5q9fKqqCIl3UUXUA5h0+i3HOuSbkuPqahLVtQzpmer4tTdL63tTMl2+nMPeHNlADzn1PGiesp18Cd6fMcHcCHgAd3vD6Fck9+JnAlZV/fj/K7oXMfLqY8qGQHyu/k77MsyHopJYh9Zgy6gXJt3Rt4QK3+zYD/o2TQa+OflIc5/IXSv68CrqWMxZtRxryHMbvPPBY4COiW5Wmk59O4x/GaDYAfs+y+PSlj5c8pY+M1lN+F96WMifW/nbwpIn6Qmb8foA1t7At03gNeTvkex1PuGxZTrsePZnaQ2brAIRGx+1wP0GjwEZofhnQV5ffscZRxb+2q3kew7DfAepSMuq1/10uSJEmSpBVMZrq4uLi4uLi4uLi4uLi4uLi4TNFCmTh4LWVyTH05HNhzDG04ulbv0QNs64CG77F1y23Vt3NQD+usTpmoVV/3dGD3LuvdnTIZaubzTcdkSY/t/nbDur8G7j3PehtQMnAsra17NrBui/11Xcf/Hw/s3GXdrSmT3Orb+HGP33lJ2/01pj59c8f/X0x5MnzMsW4AqzeUH0KZAPpsYMse27EO8CbKBMXO9lwErNnjNg7qcmxvpAQdrNHlu7yYMtmvvo379Fj/ObX1Dp3n87tTJufW6/sosMqIj/v/NNT7mBbbWZMy2Xy5c7jL5z/TUO9hwCY91ndnykTR84AdJnXetO2PA26v3r86x63TgQd2WXcTyuTM+r7/Sx/136vh/Ly2Oq/Wm2fd+1MmMtfrf3EP9S5pWG9Jm/3PsvHtZkpg1tpd1m8cKwY8ht2uPecBe3dZd3vKuNq0je1b7sfO8f4bwG373R/VeFXf7p+AB8/TnrUowdw31da9BLhND99ncUO9b2hxTHajXB86t3MNcCDz3E9QJtH/raEdz++h3rc1rDdz/bm56r9r9XM8KMHFv2/Y7reA7eZpz22ArzSsewxz3AN0rLvDPH37u8A2XdbfmTK5vr6ND/ZxHD/dsH5SsjBu28P621X7/CJKIHS3z27c0N6llODtrvc8VT1HNrTzi/323RZ9fRElsKBe99XAi4BFc6y3NmWyf/2eO4H/7aP+C2rrfmLU37mHftr1WM+zvXc2nL8z18jrKRnEZt0jdxyLV8yxT+/RY/0TOd/bHss59n/nNehndLmWMZprcn0fXN/x/xfQ5b6Yck1uuq95GfCpjtfHAzt22c6jWX68nFl26vE7PA/4K+Ve7C49rrMYeDoleLneh+8+ifOp2uZYxvHq3Ol2zTpmnmN2B0qQeX0b3xnlvquO9VztXgr8L13ux4EnM/s+PoF9e2z3XnMcn4OBW3VZ7yGUv9HMfL7+t6PrBz2XXVxcXFxcXFxcXFxcXFxcpnOZeBp2SZIkSZIkLS8z/015Gm+TRwG/iojzIuLgiHh2ROwYEWZAn9urmf0E6b8Ae2TmsXOtlJknUybWz3xmzbk+201EPIfyNOdOH6ME1c2VYWqmDZdn5iuAZ9Xe2hp4QYvmzGS6+j5lkv9JXeo+hzKpqJ594yERsVWLuqfNTNazC4H7ZeZhmZlNH8zihoa3XpqZu2fmpzOzW9aDzm1dnZlvpjxBuzODySaUgLC21qBMPHt4Zr4zM6+fo/7MkmHv/zW8/d8D1N8oIh5PmRTd+WT6BF6VmS/M3p9Q3tYXmZ2x74AW23kM5UnnnQ7p8vl9aq+PAp5Wje/zysxTM/MtlHP9b702coGaGbd+A+yWmUfO9cFq/+5DyTjYaYeI2HO+iqpsBV9l+UwAF1ECZ9+ZmVd2Wz8zfwHsQpm82ulNEbF2wyqjsgplwup/ZeYbs0vmubnGiiGbOYb/pIy3TRmhZtpzOiUbzdEN22jKVtaLmfH+w8DjM/MfXeqftT8iYm9mX3O/BeySmUd0qzgzr83Md1AmoneO+bdi+WxdIxMRa1Am46/aUXwhcK/MfE9mXtVt/cw8itKv6+fVmyOizb3RIspk+Cdk5kGZeW2Xupv65zuYna3rZZn5mMw8o1vFmXl+Zj4JeFftrT1YPptcr2b69ocpE73nHK+re669KNfqTk+txp6uImJfZl+nl1KCPZ+YmfNmsM3MMzLzIOB2lOtSN5+iZLWZcRPlmD13vnue6jg8GPhy7a39I6J+7IbtAMoY0ulaShDoRzJzadNKmXlNZr4MeEnD26+KiLsNt5krrEWUa+R1wF6Z+b457pHJzKWZ+T5KUGZdr/ec03S+tzVzDfoy5T799Lk+OKZr8sx4cx7l9/C3urTndMpvlnoGt9ex7Bj+FHhAZs6ZFTUzD6cEQ9Y9o8c2f4kSfPfOzDyllxUy8+bM/BwlA1VnJrRFlExlYzeBcbxu5pr1LcrDDbods7Mo4/gltbceERGb91nvoNag7KcnZeZru92PZ+YXgec3vDXvmBMRi2i+13xHZj4zM+fM6puZP6NkFJu5D2j1tyNJkiRJkrTiMRhLkiRJkiRpOr0ROK7L+7ehTF76FPAH4KqIOCEi/i8iHhcRm42jkdMuIlZl9mScm4DHZubF861fTWB/DHB5y/oXUyardfpxFYTSGPgzRzsOoWTa6fSyXibvNjgHeEovk/2qCUdvrhUvogRpLRT/nZmntlkxM69oW2k1gf+D9ba03V7lwMz8eY+ffQ9wfq3soQPWv5yIOJAS2LJGR/H1lMnc7xlmXXPJzEuA79WKH95ijKxPFr2W8t1miYh1WT74DOAz/ZzzM6qJpPVgspXR5cDjuk2CnFFNCn9Vw1u99O+nUQLgZiwF9svMP/XSyKr+K4D9WD4IcCNGEOw4jw9k5tfHXOd8ntwtWGVGdX16HLMnAD8wIu7asu4TKRP4+z4PKdkMO/2BMiG453MzM3/E7ICEZ0XEJi3a069nAJ1B1EuBfXqd0A6QmZdR+nXnhPxNgGe2bNN7uwUAzCUiNqVkzej0wcysX0/n81rgl7WytsFxv6LHvpWZf6Fklup0K+CePdTTFER9UGbO9QCHbu24LjPrwfb/UQUe7VcrPjAzv9FHHUspfe+s2luv7rmh7bysoeylmVk/3o2qgPVDa8WL5tjuyuwlve5T4O2UDKmd5r0mT+n53taZwLMy8+Z5PzkeSfk9WD8/Z3+wBGQdVivemJJt9wJg/8y8roc6D2b2AwYe3sN6ZOaVLa/fZObZlEy5nfaPiLXabG9AYxvHu/gr8PRe7mEy8yLK+dtpMfCgFvUO6p2Z+bVePpiZBzP7wQgP6uEBRg+nZATr9IvMfH2P9Z4H7E+5z5IkSZIkSSsJg7EkSZIkSZKmUDUReW9mBxHMZQ3gXsCLga8D/4qIoyPimVVGhJXVvkD9yc0fqSbD9qSa5PTWlvU/ifLU6v9sjnKM2nhLtf6MzYDdWmznzX0GEX2FksGi0y4t6p1GR2Xm9ydY/+drr3caYGLg34CP9vrhzLyJ2cFEW1YTXwcSEatExMeBd1Mmas64GHhQP5O5h+Tg2uvF9JGFrMoEV8+y8Y0u2WTWbSirB5WoPx/KzHP7+PxPmT3xu+u4FREBHFgr/mJ2yaA4lyrgqD5xuR7YMEpXAQeNsb5efDMzj+71w1Ug5UENb9Un5vfqwGyRiS8illDurzq9pBpD+/VeoDNL2ZoMOQi2rsry8Mpa8edynsycTaqMHV+qFbfp11dQ7mna+B+WzzZxGfCGfjdSTeqv39vdp2W2j1f12be+0FA23/j0EGDnWvFJlKxBo1APmDqNkv2rL1Vw7DtrxY8cVUbf6nytB2z+ltkPNJjPgcDVtbL9I+JWLZu20JxGH/u06gf14OA7RMT686w6jed7W6/vMWBpXH6QJZtnr745R/l7quv1vKrjUA/CvUNE1DPPjsJ3KdeeGavTWxDs0ExgHJ/LGzOzPr5180WW/xsEjP9vAZfS/36qX2vXAO48zzrPaSjrK4tadX9Vv1eSJEmSJEkLmMFYkiRJkiRJUyozLwf2oWTqOLPP1QO4P/BZ4PSIePKQm7eiaHra9qdbbOdQls9y0qvH1V4fXU1m7ltm/gOoZ2e5f5+buYY+JwdV2TD+Wivevs96p9VnJ1x/fb8upv3EwIOrLBT9OLGhbKBjGxHrAIczO2DiTGD3NoEtQ/AT4J+1sgP6WP/pLB9UBnBIl89fyuxJi3v2UZ9m62vcrgIjflcrnq9v7wjcsVbW7wT+Tj+ovb53y2yGbXy1z4m249Dm2vt5Sja9Tj1l0aj5ax8ZXOrq1/HW26qybdYnv/d7He/XzsA2tbJh9uvdqiyk/fhyZl7bsv768fhKtV/b+AXLB8dB/8fjz5l5fJ/r/IHZ95TzjU+Pbih7X5sAw/lUgVL71IoPaXGPMaPeZ9ZhdBP5mzK3fqLfjDpV9tx6BpbVgfu2ba9siGUAACAASURBVNgC0ybbZ/2eM4Dt5lln2s73ti4FvjOmunrV72+g3zeULaX7/XAv2+mlHwysykh2Tq34PqOut2Zs43gXlwF9PRSjyo7191rxuP8W8KUW535fv3OrhzIsqRWflJl/6LNemPzfGCRJkiRJ0hgZjCVJkiRJkjTFsjgMuBPwKODLwJV9bmYr4AsRccgYJ4JPi/okq9P6yYo1IzMvBY7uZ51qQk990uaggShn117v1Of6x2dmm6Cys2qv53uS/YriqGFurMoItWdEvCgiPhkRh0fEURHx24j4Q30BmiZwb9Wy+n6ebj+jflxhgGMbEVsAv6Rk9et0HLBbZtaDz8aimuRYz1J0l4jYtcdNPL32+m902d9VZsOTa8WvjIjH9liflndWZp7fZr3a6/n6dn1S9i00T+TsVX28XoNyLR+HoY5tQ3A1cES/K2XmlcDPa8XbRMQmfW7q6H7r7lDvF5O+jver3v6bKJmC2qq3fy36n5Tdqn9GxGYNdbU+HlV2s/Nqxf0ej76vvVW9/6gVzzc+Lam9vo4+J9T3YRdKwFSnQfbzv5gdVDmqfr9HvXpmZ+LpVT0Yq2n7K6uR33NO6fne1q9b/v4apV/18+HqPK5nhDylemhHP85pKNugz20AEBF3r7KAfzAivh0RR0TEiU2/uarfXfWA+7a/udpaUns9ynF8LsdWgWn9mvTfAsbxO/fOQD1L2w9b1AulvXNlUJYkSZIkSQvM4kk3QJIkSZIkSfOrJs18H/h+RKwC3IOSaeWelKwH2wOrzLOZA4C1gSeMrqXTIyLWAnaoFdczpfTjd8BefXz+TsCtamVPj4hHDtCG+qSxjftcv20wzBW11wshGOuizKxnS2olIjYHXgM8CdhswM21mpBIu2NbP67Q8thGxN0o2S9uW3vrG8BTqwClSToYeHWt7ADgN91Wioj7AXeoFR/aQ0aIQ4APdrxeA/hGRBwPfA74fmbWJwWr2bjGraZJ/MeXuNpWVmso63fMbuukMdXTqz8OkPnhJOARtbJdgB/3uY2+RcQGwF1qxQ+rJnW3deva61H3iabgkRMH6NdNQf39foe2/bPpuxwUEa9suT2Yfc2auvuqiFiX2f3wtyMM7mjaz5+KiEHqq/979Kj6/c6112e1CBaZ0XR/UN/+ymoc95zTeL63NW3X5Msy85IW613F8r9t22R7bgpQ6fm3R0SsCbyEcg8/aHamtr+5+jaBcXwuK+rfAsYx5tytoazVuZuZGRF/xMzIkiRJkiStFAzGkiRJkiRJWsFUE5p/R0dgURV4dG/gAcDjmR2ENOPxEfHizPzwyBs6eZsA9dnGpw+wvdP6/PyWc5Q1lbe1UZ+fv7RlPfUnoa/acjvT5MJhbCQingO8h9lP0m6r7eS2Nse2flyh3bHdGTiG2fvg/cArewhcGrnMPCMijgV27yj+r4h4eWbe0GXVZ9ReL6UEU83nE8D+wL1q5feplo9HxJmU/fbb6r8nT8O+mkLDGrfm+/eQ+ti8GNixZd1z6XfMbuuiMdXTq2Ffezftcxtt98cWzL6P2IzBg247jbpP1Pv1qky+X7c9Hk33T/Vg2UFN433Vpszuh39qWW8vmvbzsLP6Db3fR8RqwLq14r6z4c7IzEsj4kKWP9/HFbwzzW6h/yzN0P895zSe721N2zW5bYBi/Ri22U7r3x4RsYTysIOtW9TbZJwBReMex+eyov4tYBy/c5vGg3Na1DvjbAzGkiRJkiRppbBo0g2QJEmSJEnS4DLz2sw8KjPfmJl3Ah4GnDLHx99QBW8tdE1Pu256QnKv+l13HBP81uzz802TklZWbSaSLiciXgV8kuEFYkHLyW2ZOcljezdm74MPZuYrpiy46JDa6w2Bfeb6cESsDTyuVvzzzDx3voqqAK9HAEd0+di2lCf7fwT4A3BxRBwWEXtHhH+7X2ZcfXsax+y2Bh7fhmzY195+s1m03R8LoU9M23dImjOj9GLavguMZ3yqZ1mF9sEUvZjG/dyLDRvKLh9wm/X93HQsVjY3j+nebkXth02m7Zo8rHFrbL89IuKhwI8YXiAWjDegaNzj+FxW1L8FjKPdTdeQcf7tSJIkSZIkraD8B11JkiRJkqQFKDN/AuxKmbRUtynw6PG2aCLqT8cHuGaA7fW7btOEHk2PmwdZOSL2BN7V8NY1wJeAFwBLKAE3GwJrAYsyMzqXQdowRZr25TMj4r5jb0l3XwWurZXVM191ejywTq2sHtA1p8y8GNgLeCIdmQy7uBXwFOAHwKkR8dhe69JQLJgxOzMHGt9GYNjX3qbrezdt98dC6BPT9h2WDhDIMW3fZVyaAr6vHmF9K+p+HvZ9f9P6/Y49am9F7YdNpu2avEKJiI2BLwNr1N66hfK3jlcDDwXuTAniWxtYpeE31wljbHbduMdx9W/1hrIbB9het8zLkiRJkiRpAVk86QZIkiRJkiRpNDLzuoh4EnAWsHHt7QcBXxl/q8aqKfPC2gNsr991r2so2zczvztAGzQ9PtBQdijwsszsKRNDRNQnFa6oZsaSp3SUrQf8OCL2y8yfTqBNs2TmVRHxDeBpHcV7RcRtMvP8hlXqgVqXA9/us84EvgZ8LSLuBOwN3B/Yne5ZH7YHvhERnwBeMGUZxhaq+pj9h8zcaSItWXiGfe1tm1mpX03X8Rdl5kfHVP8wXMfyQQ2/zcxdJ9WYATUdjx0y8/Sxt2S8mrLq1AOFh6m+nxNYOzOb9v80GfZ9f9P64xp7tPKe75rtTcwOzjsOeEpm/q2P7YwrE1qTcY/j6l9TJqtBAnCHmTlbkiRJkiRNMTNjSZIkSZIkLWCZeSUlQKRu+zE3ZWARsWqfqzQFxKw/QBP6XffihrLbD1C/pkREbAvcs1b8vcx8Rq+BWJVuwTgrklsoAU6fqJWvBXwvIvYdf5PmVM9stQh4av1DEbENUM/s9eXMvL5txZn5l8x8X2Y+OjM3BrYDngUcRvN4AfA84HVt61Rf6sfA8Xp4hn3t7WecHcRCuI4vpH69EI5HG5c0lI0ya1B9PwdwuxHWNyyXNZRtMOA26+tfOuD21LuV9XxXh4hYRMkw2+lsYK8+A7GgZKCdlHGP4+pf0zVkkN/qC+V3viRJkiRJmofBWJIkSZIkSQvfiQ1l9UxZo3RTQ1m/gVXQ/4SWf1Oe5t9pkCC0Hfr8/IUNZXcfoH5Nj4c0lL2lxXa2GbQh0yKL5wPvrb21GvD1iNh/As1q8gugPnnzgIbPHUCZgN6pHsg1kMz8a2YenJlPAzYHHgX8puGjr4uIcY7ZK6v6mL1+RGw1kZYsPNsNsG7TdfuiAbbXj4VwHa9/h40iYouJtGRwC+F4tHERs+9nR/m9V8j9nJk3Mjv7zJ3abi8iNqRcmzvNFTit4Vsh+6GGbkdgk1rZ+zPz6n42EhFrMvt8Hqdxj+Pq3z8ayu42wPY8vpIkSZIkrSQMxpIkSZIkSVr4rmgou3mM9dcnRgKs12I72/bz4cy8FjitVrxLi3rbrnsyUM+i87AB6tf0uG3t9fWZ+dsW29ltGI2ZJpl5IPCmWvFi4LCIePYEmrSczExmZwvcPiL+cywiIiiZvjqdkplNgVLDatctmfl9YHfgR7W318KxYxyaApcfPvZWLEz3iIhVWq7bdO393SCN6VVm/hM4r1Z8v4hYaxz1D8lC6tcL6bv0rAo6+FOt+J4RsdqIqlyR9/NJtdd3iIi22bF2bSgby9gjYMXuhxqe+m8ugF+12M6ulN8jEzGBcVz9O5HZAXP3abOh6iEadxi4RZIkSZIkaYVgMJYkSZIkSdLCt1lDWdPTxjvVg7XaTqIGuLyhrE1GoPu3WOf42usdIqLfDFczT8fvq/7MvB44plZ864h4UL/1r6CaAv4G6UfTpJ6l6NKW23nCoA2ZRpn5FuDlteJFwKci4mUTaFLd54CltbJndPz/A4Hb1d4/eKQtqmTmzcBrG96a5qerzzrXBwi8maSfNZQ9ZeytWJjWAfq+9kXEepTzsdPfMvPfQ2lVb46ovV4dePwY6x/UgunXmXkaszNX7BkRW4+/NWN3dO31GoyuH/4SuKFWtk9ErDui+obp2NrrAB7bcltN+7e+/Wm0IO6/V/LzXcs0ZYZt87vriS3rH+b5dHTt9SjHcfUpMy8HTq8V71tlVevX/szOsCxJkiRJkhYog7EkSZIkSZIWvvpEZoCz5lnnqtrrdQaovz6pBeBe/Wygmtj/zBZ11zPMALTJzvN0ygTsfn23oeygFttZEdX7EAzWj6bJNbXXG0ZEX39rjYj7M1imtqmWmR8AnsPsoKf3R8T/m0CT/iMzzwV+Xit+YsdkuwNq790MfGHU7epQz+gHsP4Y6+/XQjnXT2B2oPKeEfHgSTRmAWpz7X0qUJ8E23RdH6Wm6/gbImJiGTb6dBxQD15bEhFLJtCWYTi89nox8IZJNGTMvt1Q9vJRBL5WmWXrQYgbAi8Zdl0j8JOGsudWGS97FhEbMTt443pKoNq0WyjXZFh5z3ctU//NBc0BWnOqshTVM972apjn09jGcbX21drr9YDn9rOBiFgdePHQWiRJkiRJkqaewViSJEmSJElTJiIeFRG3H9K27kBz9p3vz7PqZbXXt+93IuOMzLwIOK9W/IQ+Jx69kHbZtL7D7Mn1L4qI7XvdQERsAryxRd0AnwUuqJXtGRGvbrm9FUm9D0G7YziN/lV7vSZw315Xjoi1gE8NtUVTKDM/TcnAUn+q/Fsi4l0TaFKnQ2qv1wMeU2XieUztvR9U49i43LqhbJyZgPq1IM71KitZU7/8bHUd0GAeFxH36/XDVUbKgxre+uTQWtSb7wJ/qpVtC3xgzO1oJTNvBN7T8NYhVcDJiubdwI21smdGxL6TaMy4ZObRlIDRTjsDrxtRlW9rKHtDRPT1MIVxy8xfMvt83ZXls1/24l1APRPYFzOz6Xo3bS4Hsla2wl2TKyvl+a7l1H9zAezV5zY+TvsAqqGdTxMYx9W/T9P8u7WfY/5myn2iJEmSJElaSRiMJUmSJEmSNH0eAZwREYdExA5tNxIRW1CewLxW7a1/M/uJ93X1iYzrA7u3bQuzM1lsBby0lxUj4kGUyXh9y8ybgI/VilcDvtnLJOQqaOZblIwAbeq/Dnh7w1vviIgXtdlm1a6HRUT9e02bfwBX1Mr2nkRDRuBXDWVvj4hV51sxItYAvg5sN/RWTaHM/DLwWOCG2luvioiPtQ3yHIJvUyZYdnoGJRNGfcw8uJ8NR8TuEfGSiKhP5O5VU/aRP85T50ERkbXl0Jb196t+vYAV91z/OLODh7cCfhQRW7bZYERsEhFvi4iHDNy6Fd8XI2Lr+T5UZRX4OrOzXxyVmU39bWQyM2kOyH5RRLy136yIMyJij4gYV8a9jzJ7QvvWlH59mzYbjIhNI+IdEdGUfXVkqsyGn643BzgsIh7VZpsRsTginhwRBw3avhF7S0PZQRHxwn43FBFrRsRmc72fmccDP6gVrw4cHhG79VtfVecaEfGCQe5/e9QUKPmhXtsdEc8HnlUrXgp8cNCGjUNm3gD8tVb88Aneb7W2kp/vKn5DyUrX6RURsXkvK0fE24HHta18BOfT2MZx9S8zz2f27751gSMjYt4Aq4h4DbAyPHRHkiRJkiR1MBhLkiRJkiRpOi0GDgD+EhHHR8SLIqIpW8osEbFWRDwP+D1wt4aPHJiZ9UlNdcc2lB0cEQ9oOfH4Mw1l74qI5841mamatPlqSiDX6syeiNWrdwOn18ruAhwTEfeZa6WIuCtwNLBnVXRdy/o/Ssms0WkR8OGI+HZE7NjLRiLi9hHx6og4mbJPes4wMgnVBPbjasUPjoj/jYhNJ9GmIToR+HutbA/gWxFRDx74j4jYlRLINROocuVomjddMvNw4JHAtbW3ng8c2meWvGG16Xrgy7XiBwCvqJVdBPywz81vSpm0fV5EfCIi9uoxUG+dKmNYPVD1CubPZjhJf2Z2X35tRBwQEWtOokFtVf3iCcwOHtwFOKm6Fs/7nSJitYh4ZER8njJWvJ4S1Lyymrl+bwn8KiIeOtcHI2I74OfAgxq28YLRNK+7zPwOJVCv7g3AzyNiz4b3ZomILSLifyLieOAYyrg4cpl5LaVf1zPM7Erp1y+oAoW7iojVI+LRVRDZ34HXUrIKjturgD/UytYBvluNuVv3spGI2LGaqH8m8AXgrsNs5LBl5g+Z3Q8XAR+JiC9HyYbbVURsGxFvBM6hXPO6eRYlsL7TZsDRvd7LRbFbRHyQ0mc+SgkEHKVDKWNIp3WAn8zzu2OtiHgvpY1178rMPw+3mSNV/x13N+ATbYOKJ2ylPN9VVA82qd8Db0K59t55rvUi4rYR8XWWzzp1VctmDO18msA4rv4dyOxr3+2Ak6sg/OUeqFLdGz0iIn4J/G9VnMDxo2+qJEmSJEmaBosn3QBJkiRJkiTN697V8uGIOAc4ATgVuBi4hDLZYz3KJJG7UyYwrz3Htr6WmZ+br8LMPCEiTgU6JzltBxwJXBcR5zE7sAJg78z8Z8P2ToyI7wL7dBSvAnwCeGFEfJsyOe5GygSrXSgBK50TPV9afb4vmXl9RDyDEli1WsdbOwDHRsSxlGCLf1CefH8bYC9gSdVGgFuANwPvbFF/RsRTKBOv64FX+wL7RsQfq/b9lXJMATagZAW5O2V/bNNv3VPgYOBhtbLXAK+JiH8BlwI3194/PDObspBMjcy8JSLezOwnZz8SOCcivkmZgHUxZcLoVsDDgXtRnug/40XA50ff4snLzCMiYi9Kpo3OoJSnAWtFxP5VJrtxOoQSEDZjEbB97TOHZWa9j/ZqPeC51XJVRJxECZI9m5KV6xpgDUqAys7AQ2kO2HllNRl1KmXmTVVwRmegzNqU/fuZiPgHZQLs0tqqb6wC9aZKZh4XEc+hTOjvPF83AT4MvDUifkE5xy+iBKKtQxmzt6aM1zsx93V4ZfRJ4PHAFpT+/uOI+B3wPcpk4hsp194HAg8GmoIXX5eZp42ltc3+B7gjpX2dllACzE6jXMdPpVzbbqL0iY0oAeC7UMaXiWSnycxjqow/n6m1YVNK8Mnbav36Kpb169uzrF/XMweOXWZeGxH7UNra+aCCoIy3/x0RJwK/oAQAXUr599ANKd93J8r32WKc7R6Sl1LuC/eolT8JeHz1vY+k3NNeSrnGbEwJPLkXfQSgZOaF1X7+JaUvzFiNci/3suoe+lfA+cBllIcnbEg5LjtT9vOcQeqjUN13P40SwLNJx1vrUn5HvCYivkV5UMPl1Wd2AvYDbtWwyROAN4200cN3MOWhHp2eAzwnIi6i3J/W77l+nZl9Z+cZtZX8fFfxFsr52fnwhjtTgmN+BBxFGYNWpRznJZS/h3T+7v8YpR/cu0X9wz6fxjaOq3+ZeWVEPBH4Kctf+9akBOG/ISIuAy6k3BNtzvJ9DUqGxpuAzgf/3DKyRkuSJEmSpIkyGEuSJEmSJGnFsjXtnyj/OcpT7nv1YsoklHrWmjUpE5Kb1CeidHoeJQtDfTLc3WjO4NXpPZn5yYjoOxgL/jO5/rHAN2ttDMpEqPpkqLoXA39pU3dV/9URcV9KcMJjGz6yI7MDtRaCb9Kc4QTKhMqmbG/1p99Ppcw8JCIeAvxX7a21KQFGT5tnE2/PzMOqzDkrhcz8dUQ8EPgJy0/OfhwlIOuxPWTtG2Z7fhMRf6b7pMZDhlTdusD9q6UfH8jMpsyC0+atwGMoExI7rcLc16ymSe9TITM/HxGXAIdRJnR32oASWLzPrBU1l8spwcdHsSxIbZdq6cU7MvMDo2hYrzLz5oh4BPAhyv1M3Q7VMrUy8+CI+DclCHiD2tsbUgWIj71hLWTmuVW2ya8Du9XeXqUqq5ev8DLzxiqw+XOUa2enoX/vzPx9RNwL+Baz+/fqlKwsU5eZJTP/WWWs+zElmLDT1sDLe9zUUcB+EwgWH0hm/ioivszse1QoAUpNWc0uGG2r2ltZz3cVmfmniHgFJetsp1UoD8KYL8vkjykBUL9qWf9Qz6dxj+PqX/W3o4dSHtjT9KCMDZn9+2DG5ynZtd5dK18pMmJLkiRJkrQyWjTpBkiSJEmSJGmWw4AvUiYvD8PfgH0y84DM7PmJvJl5JOUp1BcOoxGZeQGwJyUDVq9upGSFedUQ6v8+8AjKU6Z7dR3wrMz8+BDqvyozH0fJxHP+gJs7l+EFiYxMZi6lTDL70qTbMiLPoGQZ6cf1wP9k5htG0J6pl5knUQKS/lV7a2/ghxGxzuy1RqrbeXRiZp7SYptXUI7zIC6mjD29ThifqGp8fyDwu0m3ZVgy8weUYKFvUzJQtnUz8H3g5GG0a0WVmb+hBOb2c/27FnhZZr5+NK3qT2bemJnPB55IyWQ5iAuBge8t+pWZ3wPuCXyXwfv194A/DaNdbWTm+ZTryZsZ/J75FEoA+dTLzGuBJ1ACii6Z5+NzuZmScaWX+v5Cycbyf5T74kGcQAnIHrnMPAPYnTKG9+tG4P3AwzLziqE2bHyeRRljBjnPp8bKer6ryMwPUQKq+slWm5RseI8eQkDlUM+ncY/j6l9mHkt5YEevY8XlwAsz8+nV30DqwVor6rVEkiRJkiTNw2AsSZIkSZKkKZOZv87Mp1Cesvwg4C3AkcDVfWzmQkpA1yOA7TPz8JZt+R7lCfJPAD4LnEh50vM1tJiMlJlnA3cHXsfsYIxONwJfBXbKzPf1W0+X+o8A7gy8ne5BWddRnlZ9t8w8eFj1V234BLAN8GzgCMpk8/ksBX4PvIeSgWDrYe6XUcrMyzPzyZSMCgdRghLOAi4DVqhMA3WZeUNmPptynv16no9fAXwSuEtmfnjkjZtimXkqcF/gnNpbDwB+FhFzPWl8FL7A3P2wVcBjZh4FbETJnPQxSra3XgNhfwe8Eth22GPPqFUT9nelTJb+ICWjyHmUJ8H3HAg8TTLz7Mx8DHAXyoTes3pc9VLK5M3nAVtm5qOqwICVWmaeQNmX7wD+3eWjV1KuwXfNzHomjInLzK9RrmlPAn5A79kOTqUEtOxN6RevHU0Lu8vMszJzX0pW0k9SgvZ7cQnwDeC5wBaZ+ejM7PWcGInMvCkzDwJuB7wKOJbe7i1uAo6h3Jfskpl3zcwvj6qdw5bFByhZn14L/JZyr9jNLcBxlHvw22bmT/uo76rMfAnlN8FbgZN6qA/K/fQRwGuAHTLzPpn5s17rHVRmXlCN4btRsirNNxn+fMpYv0NmviIzbxx1G0clM6/LzBewrI98BziDcn1aIb/Xynq+q6gCsu5JuQ51C8q6kdLf98zM5w8js90ozqdxj+PqX2aeVz1MZ0fgbcDxlL8h3Uj5G87ZlOD25wFbZebHOlavZws2cE6SJEmSpAUqMhfEA7EkSZIkSZIWvIgI4DbAHYGtgPWAdSlBUVcCV1ECnP5UZSmZehFxd8rklo2BtSiTJE8HjsvMfoLP2tQdlAld2wG3BlajTJI5DTghMwd9+n+v7ViNkn1lS8p+2JAywewqSnacM4AzxtUetRcRmwF7AFsAGwA3UAIj/wL8PjP7eZq7FpCIWJsydm9DmZy3LrAqJcj2CkrGwJNX4AwcK42I2JJl162NgDUpx/FKStbC06oMHiutiKj/w9Obqwn0nZ9ZBOxECQjaDAjKeHkucExm3jCGpg5FRKwC3IMSqLJRtSylXMcvo2TROm3U9zWDiIjbUvr1TPtX2H5djbe7UsbajVh2Pb6K0sdOB84cxgT9aRIRG1G+96bAJsAalGN4KeVe8tTMvGqI9W3QUd9GlN8l11L28z8p+/nsfrLyjlpELKa0+XaUfbQu5Rz9N3B6Zk4s05vaWVnP95VdlUl3D0og060o19xLKNfb32TmNRNsXmvjHsc1OhHxb8pvhRmfzsznTKo9kiRJkiRpdAzGkiRJkiRJkiRJ0lD0EowlSZIkLTQRcR9KBrNOz87Mz0yiPZIkSZIkabQWTboBkiRJkiRJkiRJkiRJkrQCe1VD2S/H3gpJkiRJkjQWBmNJkiRJkiRJkiRJkiRJUgsR8RRgv1rxLzLzjEm0R5IkSZIkjZ7BWJIkSZIkSZIkSZIkSZJWWhFx14h4YUSs3ed6LwQObnjrw8NpmSRJkiRJmkYGY0mSJEmSJEmSJEmSJElamW0MfAQ4PyK+EBFPjIjbR0TUP1iVPysifl+ts2rtI9/LzG+Ooc2SJEmSJGlCFk+6AZIkSZIkSZIkSZIkSZI0BdYHnlwtANdExMXAVcDawEbAel3WPwd45igbKEmSJEmSJs9gLEmSJEmSJEmSJEmSJEmabe1q6cWvgcdk5sUjbI8kSZIkSZoCiybdAEmSJEmSJEmSJEmSJEmaoH8AxwBLW6z7d+CFwAMz86KhtkqSJEmSJE0lM2NJkiRJkiRJkiRJkiRJWmll5lnAfSNiM2AJsBtwJ2BrYGNKdqxVgCuAS4HzKJmwfgEcnZk3j7/VkiRJkiRpUiIzJ90GSZIkSZIkSZIkSZIkSZIkSZIkSZp6iybdAEmSJEmSJEmSJEmSJEmSJEmSJElaERiMJUmSJEmSJEmSJEmSJEmSJEmSJEk9MBhLkiRJkiRJkiRJkiRJkiRJkiRJknpgMJYkSZIkSZIkSZIkSZIkSZIkSZIk9cBgLEmSJEmSJEmSJEmSJEmSJEmSJEnqgcFYkiRJkiRJkiRJkiRJkiRJkiRJktQDg7EkSZIkSZIkSZIkSZIkSZIkSZIkqQcGY0mSJEmSJEmSJEmSJEmSJEmSJElSDwzGkiRJkiRJkiRJkiRJkiRJkiRJkqQeGIwlSZIkSZIkSZIkSZIkSZIkSZIkST0wGEuSJEmSJEmSJEmSJEmSJEmSJEmSemAwliRJkiRJkiRJkiRJkiRJkiRJkiT1YPGkG6AVS0SsD9y/o+gfwI0Tao4kSZIkSZIkSZIkSZL+P3t3HlZ1mf9//HUQZBFxQdQExX03FTHELWsyNZvG1BpTqJI+AQAAIABJREFUS0z7muJWLjn5y61xUls1l7IayZl0ykwr7Spz1FJBcMkdAVMEFQ2QTZT9/P7w8oyH9XMEPGbPx3V5Xdz3574/9/t8lhN/8OoGAAAAAAD4Y6kqqeEt7Z/MZnPanVqcMBZs9aCkr+1dBAAAAAAAAAAAAAAAAAAAAAAAACDpL5K+uVOLOdyphQAAAAAAAAAAAAAAAAAAAAAAAADg94wwFgAAAAAAAAAAAAAAAAAAAAAAAAAY4GjvAvC7E39rY/PmzWrevLm9agEAAAAAAAAAAAAAAAAAAAAAAMAfyOnTpzVo0KBbu+JLGlsZCGPBVjm3Npo3b6527drZqxYAAAAAAAAAAAAAAAAAAAAAAAD8seWUPaTiONzJxQAAAAAAAAAAAAAAAAAAAAAAAADg94owFgAAAAAAAAAAAAAAAAAAAAAAAAAYQBgLAAAAAAAAAAAAAAAAAAAAAAAAAAwgjAUAAAAAAAAAAAAAAAAAAAAAAAAABhDGAgAAAAAAAAAAAAAAAAAAAAAAAAADCGMBAAAAAAAAAAAAAAAAAAAAAAAAgAGEsQAAAAAAAAAAAAAAAAAAAAAAAADAAMJYAAAAAAAAAAAAAAAAAAAAAAAAAGAAYSwAAAAAAAAAAAAAAAAAAAAAAAAAMIAwFgAAAAAAAAAAAAAAAAAAAAAAAAAYQBgLAAAAAAAAAAAAAAAAAAAAAAAAAAwgjAUAAAAAAAAAAAAAAAAAAAAAAAAABhDGAgAAAAAAAAAAAAAAAAAAAAAAAAADCGMBAAAAAAAAAAAAAAAAAAAAAAAAgAGO9i4AMMJsNqugoEBms9nepQAAAJSLyWSSg4ODTCaTvUsBAAAAAAAAAAAAAAAAAACAjQhj4a6Un5+vzMxMZWRkKDMzU/n5+fYuCQAAoEJVrVpV1atXV/Xq1eXi4kI4CwAAAAAAAAAAAAAAAAAA4HeAMBbuKvn5+UpISFBGRoa9SwEAAKhUOTk5Sk5OVnJyspycnNSgQQO5ubnZuywAAAAAAAAAAAAAAAAAAACUwsHeBQA35ebm6ty5cwSxAADAH05ubq7i4uJ07do1e5cCAAAAAAAAAAAAAAAAAACAUhDGwl0hOztbsbGxys7OtncpAAAAdmE2mwlkAQAAAAAAAAAAAAAAAAAA3OUc7V0AIEmXL19WXl6eVZ/JZJKbm5uqV68uV1dXValSRSaTyU4VAgAAVAyz2azc3FxdvXpV6enpys3NtTp28eJFNWvWjN97AAAAAAAAAAAAAAAAAAAA7kKEsWB3ubm5yszMtOqrWrWqGjZsqKpVq9qpKgAAgMrj5OQkNzc3eXl56cKFC8rIyLAcy83NVXZ2tlxcXOxYIQAAAAAAAAAAAAAAAAAAAIrjYO8CgLS0NKu2g4ODfH19CWIBAIB7nslkkre3t5ycnKz609PT7VQRAAAAAAAAAAAAAAAAAAAASkMYC3ZXOIzl4eEhR0c2bQMAAH8MJpNJHh4eVn237pQFAAAAAAAAAAAAAAAAAACAuwdhLNiV2WxWTk6OVV/hP0YGAAC417m7u1u1c3JyZDab7VQNAAAAAAAAAAAAAAAAAAAASkIYC3ZVUFBQpM/JyckOlQAAANhPcbuCFvd7EgAAAAAAAAAAAAAAAAAAAOyLMBbsqrgdHxwceCwBAMAfS3G//7AzFgAAAAAAAAAAAAAAAAAAwN2H1AsAAAAAAAAAAAAAAAAAAAAAAAAAGEAYCwAAAAAAAAAAAAAAAAAAAAAAAAAMIIwFAAAAAAAAAAAAAAAAAAAAAAAAAAYQxgIAAAAAAAAAAAAAAAAAAAAAAAAAAwhjAQAAAAAAAAAAAAAAAAAAAAAAAIABhLEAAAAAAAAAAAAAAAAAAAAAAAAAwADCWAAAAAAAAAAAAAAAAAAAAAAAAABgAGEsAAAAAAAAAAAAAAAAAAAAAAAAADCAMBYAoEKZTCbLvz59+ti7HLtq3Lix5Vo0btzY3uWgkD59+lg9rwAAAAAAAAAAAAAAAAAAAABQFsJYAAAAAAAAAAAAAAAAAAAAAAAAAGAAYSwA+J2JjY212s0nKCjI3iXhHjNv3jyrZ2zXrl32LgkVLCQkxOoeh4SE2LskAAAAAAAAAAAAAAAAAAAA4HeBMBYAAAAAAAAAAAAAAAAAAAAAAAAAGEAYCwAAAAAAAAAAAAAAAAAAAAAAAAAMIIwFAAAAAAAAAAAAAAAAAAAAAAAAAAYQxgIAAAAAAAAAAAAAAAAAAAAAAAAAAwhjAQAAAAAAAAAAAAAAAAAAAAAAAIABjvYuAAAqitlsVkREhE6fPq0LFy7IwcFBzZo1U58+fVSrVq1S5167dk179uzRqVOnlJGRoVq1aqlVq1bq3bu3nJycbrumK1eu6OTJk4qJidGVK1eUlZUlDw8PeXp6qlOnTmrTpo1MJtNtn7+iZWRkKCwsTBcvXlRSUpJyc3Pl4eGhJk2aqEOHDmrYsGG514iPj9f+/ft1/vx5Xb9+XXXq1FGHDh3k7+8vB4fyZ4SzsrIUFhamuLg4JSYmymw2y8vLS82bN1e3bt3k6Fj+//QdPXpUR44cUUJCglxdXeXt7a3OnTurSZMm5T53eVy+fFmHDx/WmTNnlJ6erry8PLm6usrT01O+vr5q166dvLy87FrjnXD69GlFRETo4sWLcnR0lLe3t9q3b682bdpU+Fp5eXmKiIjQmTNnlJiYqOzsbHl5ealx48bq0aOHXFxcKnS9pKQkhYaG6vz580pLS5Onp6dat26twMDAcn1XldfVq1d15MgRnTp1Sqmpqbp+/bpcXFzk4eGhRo0aqWXLlmratKnd6gMAAAAAAAAAAAAAAAAAAAAqCmEsAL8bu3bt0kMPPWRpz507V/PmzVNOTo7effddffDBB4qNjS0yz9nZWS+88ILeeOMNubu7Wx1LSkrS3LlzFRISomvXrhWZW6tWLc2ZM0eTJ082HBQKDw/XF198oR9//FHHjx+X2Wwucaynp6fGjh2rqVOnqn79+qWet3Hjxjp37lyR/k8//VSffvppifPWrFmjoKCgEo8XFBRo48aNeu+99xQREaG8vLwSx7Zo0UKDBw/W//3f/9kcrAgNDdXcuXO1Y8cOFRQUFDler149zZ49W8HBwbcVygoPD9fChQu1fft2Xb9+vdgxHh4eeuaZZzRnzhw1aNDA5jXWr1+vefPmKTo6usgxk8mkXr166W9/+5v69+9v87nLY+PGjXr33XcVGhpa6vMmSc2aNdPAgQM1ZcoUq3tY+P26VUn9NxVec968eZo/f76lvXPnTvXp06eMT3FDbGysVaht1KhRCgkJMTT3xx9/1KxZs3To0KFij/v5+enll1/WiBEjDJ2vNJGRkfr73/+uLVu2KD09vdgxrq6ueuKJJ7RgwQK1bNnS0Hlvfc99fX0t32mRkZF69dVXtXXrVuXm5haZ5+HhoWnTpmnGjBlydXUt9tyFr+2tRo8erdGjR5dY19mzZ9W4ceMi/YcPH9brr7+urVu3Kjs7u9TP5uXlpUceeUTjxo3Tgw8+WOpYAAAAAAAAAAAAAAAAAAAA4G5V/i1IAMCOkpOT1bt3b82aNavYIJYkZWdna/ny5erVq5dSU1Mt/b/88os6duyolStXFhvEkqSUlBS99NJLCgoKKjZAVNhXX32lbt266Z133tGxY8fKDMYkJydr8eLFat++vX788ccyz1/RoqOj5efnp6efflqhoaGlBrEkKSYmRosXL9aCBQtsWucf//iHevfure3bt5d4HS9fvqzJkydr6NChysnJMXzua9euafjw4erWrZu+/fbbEoNYkpSenq4PP/xQLVq00Jdffml4jZycHA0ePFjDhw8vNogl3Qgk/fzzzxowYIBmzZpl+NzlkZ2draFDh2ro0KHau3dvmc+bJP36669atmyZduzYcQcqvDPMZrMmTZqkRx99tMQgliQdOnRII0eO1MiRI8t81kuSn5+vl156Se3bt9e6detKDGJJ0vXr1/X555+rXbt2Wrp06W2tJ90IVPr7+2vz5s3FBrGkG8/23Llz1bdvX6vvucq0ZMkSdenSRV999VWZQSxJSkxM1Pr16/XRRx/dgeoAAAAAAAAAAAAAAAAAAACAysHOWMAdcuh8qj4Oj9PhC+m6mpMn96qO6uTtobEBjeTnU9Pe5f0u5eTkaODAgQoPD5d0YxeagIAA1a9fX9euXdOBAwd08eJFy/jDhw9r9OjR2rRpk2JiYvSnP/1JKSkpkm7sUNW1a1fVrl1bycnJCg0NVUZGhmXuv/71L/n5+Wnq1Kml1lQ4aFSlShW1aNFCTZo0kYeHh0wmk5KTk3Xs2DFdunTJMi45OVkDBw7UTz/9pMDAwHJfGyN27dqlQYMGKS0tzarf0dFRnTt3lre3t9zc3JSamqqoqCidOXPGUNinsLfeekuzZ8+2tFu1aqVWrVqpWrVqSkhI0L59+5SVlWU5vmnTJr322mtavHhxmedOTExU//79iwRwXF1d1blzZzVo0EBVqlRRfHy89u/fbwmyXLt2TU8//bQ+/vhjPf/886WuUVBQoMGDB2vr1q1W/U5OTgoICJC3t7euXr2qo0ePKj4+XpK0ePFi1alTp8z6y2vixInauHGjVZ+Li4s6duwoHx8fubq6KjMzU8nJyYqMjFRiYmKl12QPEyZM0AcffGDV5+DgIH9/f/n6+ionJ0eRkZGWIN1nn32mmjVt/969fv26Bg0apG3btln1Ozk5qVOnTvLx8ZGzs7MuXbqkiIgIS8gzLy9PU6dOVUpKiubNm2fTmhs2bNCYMWMs756vr6/at2+vGjVqKDExUfv27bP6rtq7d6/GjRunzz//3ObPZ4vPPvtMr7zyilWfyWRSu3bt1LRpU3l4eCg7O1tpaWmKiopSXFzcbX1/AAAAAAAAAAAAAAAAAAAAAHcbwlhAJTsQn6pJm45r37mUIsfCzqVoVeg5BfrW0rIn28u/IaEsW3zwwQdKSUmRs7Oz5s+fr0mTJsnNzc1y3Gw2a/Xq1Zo4caJlF5zNmzdr+/btmj59ulJSUuTj46N3331XgwcPloPD/zYLzMzM1PTp060CHq+99prGjBmj6tWrl1pXzZo1NXLkSP35z39W79695eLiUuy4sLAwzZ49Wzt37pQk5ebmatiwYYqJiVHVqlWLjN+zZ4/y8vJ0/vx59erVy9I/ZMgQvfXWWyXWU1wo6MyZMxo8eLBVEMvT01OzZ8/WmDFj5OHhUWROUlKSNm3apH/+858lf/hCjh07pt27d0uSBg0apDfeeEOtW7e2GpOSkqKXX35ZISEhlr63335b48ePV+PGjUs8d0FBgZ555hmrIFaDBg3097//XcOHD5ezs7PV+NTUVC1ZskSLFy9WQUGBzGazgoOD1aVLF3Xs2LHEdd5++22rIJbJZNKUKVM0Z84c1apVy9JvNpu1bds2TZgwQWfOnNHs2bPl5ORU6vUpj1OnTunjjz+2tN3c3LRo0SKNGTPG6j241dmzZ/Xdd99pzZo1RY5169ZNZ8+elSS99957Vjs5rV+/Xt26davgT1AxvvzyyyJBrBEjRmjJkiVq0KCBVX94eLjGjx+vX375RStWrLC6f0YEBwdbBbFq1KihefPmFfu9cP36da1cuVL/7//9P0vYcMGCBQoICNCAAQMMrZeUlKRRo0bJbDard+/eeuutt9S1a9ci6yxYsECLFi2y9H3xxReaOHGi1feEJPn4+Fju8ZdffqkZM2ZYjr355psaOnRoibX4+PhYfi4oKNDMmTOtjk+cOFGzZ89W/fr1i51/5coVbdu2TevXr1eVKlXK+OQAAAAAAAAAAAAAAAAAAADA3YswFlCJtpy8rKc+PaCsvIJSx4WdS1Gv5Xu1YZS/Hm9b7w5V9/uXkpIiJycnfffdd3r44YeLHDeZTBo3bpzS0tKsdnB5+umnlZKSoiZNmmjPnj1FAhuSVK1aNa1atUpxcXH67rvvJElXr17VF198oTFjxpRY04MPPqgLFy6UGIa5VWBgoP773/9qzJgxlnBMXFyc1q1bp6CgoCLjbw1D3Mrd3b3U0FJxnn32WcuuYJLUunVrff/99/L19S1xTp06dfTCCy/ohRdesNrVqzRXrlyRJM2cObPEna5q1aqlNWvWKCUlRV9//bUkKT8/X5988olef/31Es/99ttv67///a+l7efnp23btsnT07PY8TVr1tQ//vEP+fn56emnn5bZbFZWVpZeeukl7dixo9g5Fy5c0Jw5c6z6Vq5cqRdffLHIWJPJpH79+iksLEy9evVSdHS0cnJySqy/vL755hur9ooVK4p9bm7VpEkTBQcHKzg42Go3MunGjlo3n6PCu0bVr1/f5mfsTrh+/bqCg4Ot+l555RWrYNKtAgICtHv3bj366KMKDQ21egfKsmHDBqsQm6+vr3bt2lXidXF1ddW0adMUGBioP/3pT8rKypLZbNbkyZMVFRVlFf4sSWZmpiRp+PDh+vTTT+XoWPTXNldXV73xxhu6fv26VYBu9erVRcJYjo6OlnoLhzTr1Klj+B4X3nVw1KhRev/990udU7t2bQ0bNkzDhg3T9evXDa0DAAAAAAAAAAAAAAAAAAAA3I3K/ktgALflQHyqoSDWTVl5BXrq0wM6EJ9ayZXdW2bPnl1sEOtWkyZNkru7u6V9M4Cxdu3aYoNYt7o1xCXJKvxTHC8vL0NBrJtMJpOWL1+uunXrWvo+++wzw/Nvx48//qjQ0FBL293dXd9++22pQazCStr9pjg9e/bUG2+8Uea4hQsXWrVLCkhJN0I4b775pqVdo0YNbdmypcQg1q2GDh2q8ePHW9o7d+602l3rVh9++KFVaGnIkCHFBrFuVbduXf373/82FLYpj3Pnzlm1S9vVqDgl7dj2e7J+/Xr99ttvlnbXrl31j3/8o9Q51apV0/r161WtWjXD65jNZi1YsMDSdnR01DfffGMovNS9e3eruadPn9bmzZsNr928eXN9/PHHxQaxbjVnzhyrHfVKe3/Kq7zPnqura0WWAwAAAAAAAAAAAAAAAAAAANxRhLGASjJp03HDQaybsvIKNHnT8Uqq6N7j5uamKVOmlDnO1dVVPXr0sOrr2bOnevbsWebcnj17WgUHDh8+bHuhZXBzc9OAAQMs7fDwcBUU2Pbs2GLVqlVW7WnTpql58+aVtt7s2bMNBZPatWtnFW4p7VqvX79eiYmJlvbUqVN13333Ga5p2rRpVu3Cu0zdtHbtWqv2/PnzDZ2/a9eueuKJJwzXUxFuDSX9URS+P/PmzTP0rDVq1EgvvPCC4XV27typ48f/9908YsQI3X///YbnBwcHW4XfSnreijNt2jRD4aXatWure/fulvbFixfv2DPxR3z2AAAAAAAAAAAAAAAAAAAA8MdFGAuoBAfjU7XvXMptzQ07l6JD59kdy4jAwEDVrFnT0NgWLVpYtfv3729onoODg5o1a2ZpX7582XiBhWRlZSkxMVHnzp1TbGys1b/q1atbxmVkZOj8+fO3vU5pCgoKtGvXLqu+cePGVcpa0o0gXFk7l92qTZs2lp+vXbumq1evFjvuxx9/tGr/9a9/tamupk2bqlGjRpb27t27i4w5f/681Q5A999/v9q1a2d4jREjRthUk61at25t1Z4+fbpyc3Mrdc27SW5uriIiIizt2rVrq1+/fobn23J/yvu8ubm56YEHHrC0i3veSjJw4EDDY299f6TKC0kVfvbeeOMNXbp0qVLWAgAAAAAAAAAAAAAAAAAAAO42jvYuALgXfRIRV7754fHy8zEWMvojKxw8KE2NGjUqZG56errheeHh4dqwYYPCwsJ04sQJpaWlGZ6bkpJiFRaqKJGRkUpJ+V9QsFWrVjbtKGWrZs2aqWrVqobH16pVy6qdlpYmd3f3IuP27Nlj+blq1apydnZWbGysTbXVrl1bcXE33tVff/21yPEDBw5YtQMCAmw6v63jbTV48GDNmDFD2dnZkqRNmzapdevWGjt2rP7yl7+obdu2lbq+vZ04cULXr1+3tLt06aIqVaoYnt+pUyc5Oztbrl9pbn3epBvPjq3Pm4eHh+Xn2NhYFRQUlLmLl7u7uxo2bGh4jeLen8rQoUMHdejQQceOHZMknT59Wq1bt1ZQUJCGDh2qbt26ydGRXzEBAAAAAAAAAAAAAAAAAABwb+IvZYFKcPiC8cBOsfMvVs4f0N9rCgcPSlM4GGB0R63Cc/Py8socf/z4cQUHB+vnn382vEZhlRWiSEhIsGrbstPT7bDlHkmSk5OTVbu4nZ4KCgp08eJFSzsnJ8dq97LbceXKlSJ9hXdBK7y7WlkaNmwoFxcXZWVllau2knh7e2vx4sWaOnWqpe/MmTN69dVX9eqrr6pu3brq3r27unfvrl69esnf3/+eCsiU9/44OjqqSZMmOnXqVJlj4+PjrdrdunWzaa3CCgoKlJqaqtq1a5c6rjLen4qyevVqPfTQQ5bnOy0tTUuXLtXSpUtVrVo1BQQEKDAwUD179lSPHj2sdv8DAAAAAAAAAAAAAAAAAAAAfs9K35IBwG25mlN2YKc0Gdnlm/9HUdauMpU1tzR79uxR9+7dyxXEkm6ENSpDcnKyVdvWsIetKuM6p6SkVPj1ycjIKHadW926s5FRhXdkq2hTpkzRunXrit3d7LffftPmzZs1c+ZMBQYGqn79+ho3bpyioqIqtaY75U7en8LvTUUo7pkrrLK+pypCt27dtHfvXnXu3LnIsczMTO3YsUMLFy7UgAED5OXlpUGDBmn79u12qBQAAAAAAAAAAAAAAAAAAACoWHfvX/kCv2PuVcu3+0x153tn95o/kvT0dD399NNWIYsaNWpo3LhxWr9+vX755RddvnxZmZmZys/Pl9lstvybO3euXWo2mUx2Wbc8cnJy7LLu3XqtnnnmGf36669au3atnnjiiRIDdsnJyVq9erXatm2rWbNmVVrgz14q8/5UxjNnNpsr/Jx3mp+fnw4ePKht27Zp9OjRatSoUbHjsrOz9fXXX6tv3756/PHHKyXcBgAAAAAAAAAAAAAAAAAAANwpJD6AStDJ20Nh51LKHljS/AaVu5sOKscHH3yghIQESzsgIEDffvutvLy8ypybnp5emaVZ1KlTx6p95cqVO7JuRfL09LRqt2zZslJ2eyocakpLS7P5HLcz53a4urrq2Wef1bPPPquCggJFRkYqLCxMe/bs0bZt26yey4KCAi1evFg5OTl655137kh9tsjPzzc07k7enzp16ujixYuSJBcXF127du2uDefdaSaTSX379lXfvn0lSfHx8dq3b592796tHTt26MSJE1bjt27dqscee0x79+6VoyO/hgIAAAAAAAAAAAAAAAAAAOD3h52xgEowNqD43UGMGhPQsIIqwZ309ddfW342mUxat26doSCWJEvQo7Ldd999Vu2TJ0/ekXUrUtWqVa2COGfPnlVubm6Fr1OvXj2rdkxMjE3z4+PjlZWVVZElGeLg4KB27dpp7NixCgkJ0YULF/Tzzz/r0UcftRq3dOnSSgmxSSoSssnLyzM8NyXFWJC1vPcnLy9PZ8+etXmtrKwsxcXF2bTWH0nDhg311FNPadmyZTp+/Liio6MVHBwsB4f//coZERGhkJAQ+xUJAAAAAAAAAAAAAAAAAAAAlANhLKAS+PnUVDffWmUPLEagby35+dSs4IpwJ9waBmnTpo2aNm1qeG5YWJjhseXZkadNmzaqXbu2pR0VFaVLly7d9vnspXv37pafc3NztWvXrgpfw9/f36q9b98+m+aHh4dXZDm3zWQyqVevXvr+++/1+OOPW/oLCgr0zTfflDinPDw8PKzaqamphucW3kmpJO3atZOrq6ulffDgQZtCX4cPH1Z2drahsbc+b5K0bds2w+vcre7Uzl4tWrTQ8uXLtWjRIqv+TZs23ZH1AQAAAAAAAAAAAAAAAAAAgIpGGAuoJO8/2V4ujra9Yi6ODlr2ZPtKqgiV7dbASY0aNQzP27Fjh0077Tg7O1u1jQZKpBsBjIcfftjSNpvNWr16teH5d4t+/fpZtT/66KMKX8PHx0e+vr6W9rFjxwwHhSTps88+q/CaysNkMmn06NFWfSXtDFWeZ0yS6tata9W2ZQe2rVu3Ghrn5OSkBx54wNK+cuWKfvjhB8Pr2HJ/Cj9vH3/8seG5d6vy3mNbjRkzxqptdFcyAAAAAAAAAAAAAAAAAAAA4G5DGAuoJP4Na2rDKH/DgSwXRwdtGOUv/4bsivV7VavW/3ZDi4mJUUFBQZlzcnNz9be//c2mdWrWtH5GEhISbJofHBxs1X777bd15swZm85hb88++6zVddiwYYP++9//Vvg6zz33nFV77ty5hubt37+/xF2n7MnR0dGqXTiQc1N5nzE/Pz+r9rfffmto3okTJ/TVV18ZXqfw/Zk/f76h9y4uLs6mAN+AAQPUrFkzSzsiIkL//Oc/Dc+/G5X3HtvK6LMHAAAAAAAAAAAAAAAAAAAA3O0IYwGV6PG29bR7Yg8F+tYqdVygby3tnthDj7etd4cqQ2Xo2LGj5eekpKQyd8/Jz8/XuHHjFBERYdM6Li4uaty4saW9f/9+q125ytKnTx/17t3b0k5PT9cTTzyh+Ph4w+e4dOmS4bGVoWbNmpoxY4ZV39ChQ7Vnzx6bzpOfn6+vvvpKV65cKfb4uHHj5OLiYmlv3LhRH374Yann/O233zRy5EhDoaDy+PDDD23aUU2S1q5da9Vu06ZNseMK92/bts2mdVq0aKGGDRta2gcOHNDmzZtLnXP58mU99dRTys/PN7zOM888Y7UL1/79+zV79uxS51y7dk3PPPOMMjMzDa/j6OioBQsWWPWNHz/epuDYTdu3b78rwo/lucdff/219u/fb9N6Rp89AAAAAAAAAAAAAAAAAMD/HDqfqgkbj6r7sj26/61d6r5sjyZsPKpD543/3SgAoOIRxgIDI4WhAAAgAElEQVQqmX/Dmgqd3FMHX+qlCd0bq3vjWupwX3V1b1xLE7o31sGXeil0ck92xLoH/PWvf7VqT5w4UcuWLVNOTk6Rsfv379fDDz+sNWvWSJK8vLxsWuuhhx6y/Hzt2jX1799fn3/+uY4fP66zZ88qNjbW8u/q1atF5q9du1aenp6W9okTJ9SlSxctW7ZMGRkZxa55M2AWGBioWbNm2VRvZZg5c6YeffRRSzs1NVV9+vRRcHCwoqKiSpyXm5ur0NBQvfLKK2rWrJmGDBmi9PT0Ysd6e3sXCeFMmDBB06ZNU0pKSpHx27ZtU/fu3RUdHa2qVauqWrVqt/npyrZq1So1bdpUf/7zn7VmzZpSdzaKi4vTc889p40bN1r6qlWrpiFDhhQ73t/fX+7u7pb2f/7zH02aNEk7duxQdHS01fMVGxtbZL7JZNLYsWOt+kaOHKn169cXGZufn68NGzbogQceUGRkpNUOc2VxdXXV8uXLrfoWLVqkZ599VhcvXiwyPiIiQr169VJoaKikortDlWb48OF6/vnnLe2cnBwNGTJEI0aM0MGDB0ucl5+fr19++UXz589X27Zt1bdvX5tDdJXB19dXTZs2tbTDwsI0YsQIff/994qKiipyj/Py8ixjd+7cqQceeEBdu3bVkiVLdOrUKZnN5mLXycjI0KJFi/Tyyy9b9Y8aNapyPhgAAAAAAAAAAAAAAAAA3AMOxKcqcNkedXl3t1aFnlPYuRQdS8hQ2LkUrQo9py7v7lb3ZXt0IJ5QFgDYg6O9CwD+KPx8asrPh8DVvWzUqFFatmyZjh49KulG6GfKlCmaN2+eAgIC5OnpqbS0NB0/ftwqwPLggw+qZ8+eWrhwoeG1Jk+erH/961+WgER4eLiGDRtW7Ng1a9YoKCjIqs/X11dfffWV/vKXv1h21UpMTNSUKVM0bdo0+fn5ydvbW66urkpNTVV0dLR+/fVXS+CiVatWhmutLI6Ojvriiy/02GOPWcI1+fn5WrlypVauXClvb2+1b99etWvXVkFBgdLT03X+/HmdOnVKubm5htd5+eWX9dNPP2nr1q2SpIKCAr3zzjt6//331a1bN3l7eyszM1NHjhyxCtm8/vrrWrlypU07MNkqPz9fW7Zs0ZYtWyRJ9913n1q3bq3atWvL1dVVV69eVXR0tCIjI4uEZZYuXWoVyLtVtWrVNG7cOL399tuSJLPZrOXLlxcJPt1UXBDn5ZdfVkhIiM6ePStJyszM1PDhwzVjxgz5+/urWrVqSkpK0v79+y3BNnd3d3388cclhsSK89RTT+nFF1/UBx98YOn797//rXXr1qlr167y9fVVTk6OTp48qejoaMuY8ePH6+TJk/rpp58Mr/XBBx8oJSVFmzZtsvStW7dO69atk5eXlzp27ChPT085ODgoPT1dFy9eVGRkpLKysgyvcSe99NJLmjRpkqV987MU5+zZs1Y78kk3djw7cOCAXnnlFXl4eKh9+/by8vJS9erVlZWVpbi4OB0+fLhIIHXkyJHq169fhX8eAAAAAAAAAAAAAAAAALgXbDl5WU99ekBZeQWljgs7l6Jey/dqwyh/Pd623h2qDgAgEcYCgArj6Oiob7/9Vg8//LB+/fVXS39KSoq+//77Yuc88sgj2rhxo9555x2b1urUqZNWr16tCRMm3HbQo3fv3tq3b5+GDBmiEydOWPrz8vIUERFxW+e802rUqKFdu3Zp1qxZWrp0qfLz8y3HLly4oAsXLpR5Djc3Nzk7O5d4vEqVKtq4caOGDRumzZs3W/pzc3O1e/fuYudMmzZNM2fO1MqVK234NOWXkJBQ6g5Z0o3dpJYtW6YxY8aUOm7hwoWKiYnRN998c1u1uLu7a/PmzerXr58uXbpk6S/pvtSpU0ebNm2Sj4+PzWutXLlSDg4OVte7oKBA4eHhCg8PLzL+r3/9q5YtW6ZHHnnEpnWcnJy0ceNGvfnmm5o7d67Vu5eYmKjt27cbOkdl7phmi+DgYJ04ccIqyHa70tPTLaHI0rz44ot6//33y70eAAAAAAAAAAAAAAAAANyLDsSnGgpi3ZSVV6CnPj2g3RN7yL8hm0YAwJ3iYO8CAOBe0qhRIx06dEiTJ0+Wm5tbieM6d+6sDz/8UD/88IM8PDxua63Ro0fr1KlTWrBggR555BH5+PioWrVqMplMhs/RqlUrHTlyRGvXrpW/v3+Zc9u0aaPXXntNCxYsuK2aK4OTk5PefvttRUdHa/z48apXr+z/u4Onp6cGDx6skJAQXb58Wffdd1+p452dnbVp0yZ99tlnatmyZYnjunfvrm+//VZvvfWWzZ/DVuvXr9fixYv18MMPy93dvczxdevWVXBwsKKiojR27Ngyxzs7O+vrr7/W9u3b9X//93/q0qWLPD09VbVqVcM13n///Tpw4IBGjRolR8fi898eHh4aN26cjh07pp49exo+961MJpNWrFihH374QX5+fiWO69ixo0JCQvSf//ynxHqMrDVz5kydPXtWs2bNkq+vb5lzqlevrscee0wrVqxQQkKCunbteltrVzSTyaRVq1YpPDxcU6ZMUWBgoOrWrSsXF5dS5/3tb3/TRx99pMGDBxt631xdXTVkyBCFhYVp1apVt33tAQAAAAAAAAAAAAAAAOBeN2nTccNBrJuy8go0edPxSqoIAFAck9lstncN+B0xmUztJFn+a338+HG1a9futs+Xl5enmJgYq74WLVrwh9q4J2RmZio0NFRRUVFKT09XjRo1VL9+fXXs2FHNmze3d3nFSkpKUlhYmBISEpScnCyTyaQaNWqoSZMm6tixY5mhpbtFZGSkjh49quTkZKWmpsrR0VEeHh5q2LChWrduraZNm9oUWivsyJEjOnz4sC5duiRXV1c1aNBAfn5+atq0aQV+CuPy8/MVFRWlmJgYnT9/XhkZGcrPz5e7u7vq1aun9u3bq02bNqpSpYpd6pNu7Jz0888/KzY2Vunp6fLy8lKjRo3Uu3dvubq6VuhaMTExioiIUEJCghwcHOTt7a327duX679XpTl79qwOHTqkxMREpaSkyMHBQdWrV1eDBg3UunVrtWjRwq7XvrKdO3dOUVFROnfunFJTU5WdnS03NzfVrl1bbdq0UYcOHUoNp+IGficCAAAAAAAAAAAAAAAA/tgOxqfK/73dtz//pV7y82F3LAB/DCdOnFD79u1v7WpvNptP3Kn1CWPBJoSxAAAAKh6/EwEAAAAAAAAAAAAAAAB/bBM2HtWq0HO3P797Y60Y0qECKwKAu5e9w1gOd2ohAAAAAAAAAAAAAAAAAAAAAABQ1OEL6eWbfzGtgioBAJSFMBYAAAAAAAAAAAAAAAAAAAAAAHZ0NSevXPMzsss3HwBgHGEsAAAAAAAAAAAAAAAAAAAAAADsyL2qY7nmV3cu33wAgHGEsQAAAAAAAAAAAAAAAAAAAAAAsKNO3h7lm9+gRgVVAgAoC2EsAAAAAAAAAAAAAAAAAAAAAADsaGxAo3LNHxPQsIIqAQCUhTAWAAAAAAAAAAAAAAAAAAAAAAB25OdTU918a93W3EDfWvLzqVnBFQEASkIYCwAAAAAAAAAAAAAAAAAAAAAAO3v/yfZycbTtT/xdHB207Mn2lVQRAKA4hLEAAAAAAAAAAAAAAAAAAAAAALAz/4Y1tWGUv+FAloujgzaM8pd/Q3bFAoA7iTAWAAAAAAAAAAAAAAAAAAAAAAB3gcfb1tPuiT0U6Fur1HGBvrW0e2IPPd623h2qDABwk6O9CwAAAAAAAAAAAAAAAAAAAAAAADf4N6yp0Mk9deh8qj4Jj9fhi2nKyM5TdWdHdWpQQ2MCGsrPh92wAMBeCGMBAAAAAAAAAAAAAAAAAAAAAHCX8fOpSegKAO5CDvYuAAAAAAAAAAAAAAAAAAAAAAAAAAB+DwhjAQAAAAAAAAAAAAAAAAAAAAAAAIABhLEAAAAAAAAAAAAAAAAAAAAAAAAAwADCWAAAAAAAAAAAAAAAAAAAAAAAAABgAGEsAAAAAAAAAAAAAAAAAAAAAAAAADCAMBYAAAAAAAAAAAAAAAAAAAAAAAAAGEAYCwAAAAAAAAAAAAAAAAAAAAAAAAAMIIwFAAAAAAAAAAAAAAAAAAAAAAAAAAYQxgIAAAAAAAAAAAAAAAAAAAAAAAAAAwhjAQAAAAAAAAAAAAAAAAAAAAAAAIABhLEAAAAAAAAAAAAAAAAAAAAAAAAAwADCWAAAAAAAAAAAAAAAAAAAAAAAAABgAGEsAAAAAAAAAAAAAAAAAAAAAAAAADCAMBYAAAAAAAAAAAAAAAAAAAAAAAAAGEAYCwAAAAAAAAAAAAAAAAAAAAAAAAAMIIwFAAAAAAAAAAAAAAAAAAAAAAAAAAYQxgIAAAAAAAAAAAAAAAAAAAAAAAAAAwhjAQBQil27dslkMln+zZs3z94l2U1sbKzVtQgKCrJ3SSjk1vvTp08fe5cDAAAAAAAAAAAAAAAAAAAA3HMIYwEAAAAAAAAAAAAAAAAAAAAAAACAAYSxAAB2FxISYrWjT0hIiL1Lwj2mT58+Vs8Y7j1BQUFW9zg2NtbeJQEAAAAAAAAAAAAAAAAAAOAeRBgLAAAAAAAAAAAAAAAAAAAAAAAAAAwgjAUAAAAAAAAAAAAAAAAAAAAAAAAABhDGAgAAAAAAAAAAAAAAAAAAAAAAAAADCGMBAAAAAAAAAAAAAAAAAAAAAAAAgAGO9i4AuJeFxOxX7NUrhsc3dq+toBZdK7EiAAAAAAAAAAAAAAAAAAAAAAAA3C7CWEAlCjm9Xz9dOmN4/IP1mxLG+p1ISkpSaGiozp8/r7S0NHl6eqp169YKDAyUk5NTha2TlZWl3bt3Kz4+XpcvX5abm5vat2+vXr16qWrVqqXOvXz5svbu3auzZ88qJydHXl5e8vPzk5+fX7lqio+PV2RkpM6cOaP09HTl5+erVq1aqlu3rgICAuTt7V2u81e0ixcvKiIiQomJiUpOTpaDg4Nq1qypli1bqlOnTqpZs2a51zh69KhOnDihCxcuyGQyqW7dugoMDFTz5s0r4BNIV65cUWhoqC5duqSkpCS5uLjIy8tLnTp1Urt27cp9/vz8fO3Zs0cxMTFKTEyUp6envL291aNHjwq5PuVx+vRpHT16VBcuXFBGRoZMJpPc3NxUr149NWnSRB06dJCbm5tda6xsZrNZERERioyM1OXLl1W9enV5e3srICBA9evXr/D1rl69qr179+rixYtKTExUlSpVVLduXbVp00Z+fn5ycKjYjVWjo6N15MgRnT9/Xnl5efLy8lKXLl3UoUOHCl3HVpcvX9bhw4ct33V5eXlydXWVp6enfH191a5dO3l5edm1RgAAAAAAAAAAAAAAAAAAANx5hLEA/G7MmzdP8+fPt7R37typPn36GJobGxurJk2aWNqjRo1SSEhIieMbN26sc+fOSZJ8fX0VGxsrSYqMjNSrr76qrVu3Kjc3t8g8Dw8PTZs2TTNmzJCrq+ttf6bffvtN8+bN07p165SWllZkXp06dTR37lxNnDixyLFjx47p1Vdf1XfffaeCgoIix1u2bKmlS5eqf//+ZdYnSTk5Ofrhhx+0ceNG7dixQ/Hx8aWOb9mypaZMmaLnn39eLi4uJY4rfE9uNXr0aI0ePbrEuWfPnlXjxo1LPJ6ZmamVK1fqk08+UVRUVInjHBwc5O/vr+HDhysoKEg1atQocWxxPv30U7311ls6fvx4scc7duyoRYsWGb7WtzKbzfr888/13nvvaf/+/cXeS0ny9vbWpEmTNHnyZEPP3K2ys7O1aNEiLV++XElJSUWOOzs7a9CgQZo/f75atWpl82e4XdnZ2Vq2bJk++ugjxcTElDq2SpUq6tSpkwYNGqSXX37ZKphV+P26lclkKvGcDz74oHbt2mXV16dPH/3000+WttlsNvBJbggJCbF6ntesWaOgoKAy5xUUFGjlypVasmRJse9dlSpV1K9fP82ZM0cBAQGG6ynJDz/8oMWLF2vPnj3Ffr9JN757xowZo1deeUW1atUq85ylffdu2bJFCxcu1L59+4qd27RpUy1YsEAjRowo8fyFr+2tSvp+kay/1wvbuHGj3n33XYWGhpZ5n5s1a6aBAwdqypQpatq0aaljAQAAAAAAAAAAAAAAAAAAcG+o2K0NAOAetmbNGvn7+2vz5s0lBhXS09M1d+5c9e3bV6mpqbe1zsGDB3X//fdr1apVxQaxpBs7c02aNEnPP/+8Vf/atWvVtWtXbdmypcTwTnR0tB577DF9+OGHhuqZPn26nnjiCX366adlBrFunj84OFjdunXTmTPGd4arKFu3blXjxo01c+bMUoNY0o2wS0REhKZOnapNmzYZXiMzM1NPPfWUgoKCSgxiSdKRI0c0YMAALVmyxPC5JenMmTPq0qWLnnnmGYWHh5d4LyXpwoULmjVrltq2basTJ04YXiM+Pl6dOnXSvHnzig1iSTdCUZ9//rk6d+5s0/Upj/j4eHXu3FkzZ84sM4gl3djV6+DBg3rttdd08eLFO1DhnZGamqrevXtr0qRJJb53+fn5+u6779S9e3etWLHittdKSkpS37591b9/f+3cubPE77ebYxcvXqwWLVro559/vq318vPzNWnSJP35z38uMYgl3XgPRo4cqYkTJ9oUfrtd2dnZGjp0qIYOHaq9e/caWvPXX3/VsmXLtGPHjkqvDwAAAAAAAAAAAAAAAAAAAHcHdsYCAAM2bNigMWPGWP4439fXV+3bt1eNGjWUmJioffv2KSMjwzJ+7969GjdunD7//HOb1jlz5oxmzpyp5ORkSTd2oenatatq1qyppKQkhYWF6erVq5bxa9asUceOHTVlyhR98cUXCgoKstTYrFkztW3bVu7u7oqLi1N4eLjy8vIk3djVJzg4WP7+/urSpUupNRUOArm5ualNmza677775OHhoZycHF26dElHjhyxugZHjhzRQw89pF9++UW1a9e26TrcrnfeeUczZswoUrO7u7v8/PxUr149mUwmJScn6/jx47p8+bLNaxQUFGj48OH65ptvJN3YnahLly5q2LChqlSpotOnT+uXX36xCnK88sor6tChgwYMGFDm+SMiIjRw4MAiASlPT0917txZderUUXZ2tmJiYqyCYLGxserRo4d27dqlTp06lbpGQkKC+vTpUyQsV7NmTT3wwAPy9PRUUlKSIiIilJaWpuvXr2vYsGFas2ZNmfWXR05Ojvr376/IyEir/tq1a6tDhw6qV6+enJyclJGRoYSEBJ08eVKZmZmVWpM9ZGZmqm/fvjpw4IBVv5ubmwICAlS/fn2lpKTo0KFD+u2331RQUKCJEyeqbt26Nq91+vRp9evXr8izUL16dXXp0kX16tVTfn6+YmNjdejQIcu7lZycrL59++qbb75Rv379bFpzypQplvCYyWTS/fffr6ZNm8rZ2Vnnzp3T/v37Ld9VkrRixQq1a9dO48ePt/nz2WLixInauHGjVZ+Li4s6duwoHx8fubq6KjMzU8nJyYqMjFRiYmKl1gMAAAAAAAAAAAAAAAAAAIC7E2EsAChDUlKSRo0aJbPZrN69e+utt95S165drcZcv35dCxYs0KJFiyx9X3zxhSZOnKhevXoZXmv69OlKSUmRj4+P3nvvPT355JNycPjfJoZXr17VtGnTtHr1akvfnDlz9NBDD+n555+X2WxW9+7dtXTpUvn7+1udOy4uTsOHD9fevXsl3didZtq0adq1a1eZdTVr1kzPPfecBg4cqM6dO1vVdFNubq42b96sWbNmWYIdcXFxmjBhgv7zn/8UGe/j46OzZ89Kkr788kvNmDHDcuzNN9/U0KFDS6zHx8enSN+mTZs0ffp0qxBU27Zt9fe//12PP/64nJycisyJjo7Wl19+aXiXMElatWqVkpKSVKVKFc2YMUPTp0+Xp6en1ZioqCg999xzioiIsPRNnjxZ0dHRMplMJZ770qVLGjRokFUQKyAgQK+//roeeeSRInNPnz6tGTNmaPPmzZKktLQ0Pf300zp48KCqV69e4jovvPCCVfjGw8NDS5Ys0ejRo1W1alVLf3Z2tj7++GPNmjVLV69e1cSJE8u4OuWzZs0anTx50tJu3LixVqxYof79+xf7zJnNZh08eFBbtmzRJ598UuT41KlTFRQUJEkaNmyYwsPDLcduPnvFcXFxKcenKL+ZM2daBbGcnZ01Z84cTZkyRdWqVbP05+fna8OGDZoyZYp+++03vfjiizatc+3aNT355JNWz0KrVq20cOFCDRo0SFWqVLEan5CQoLlz5+qjjz6SdCM8N3LkSB0+fFje3t6G1ty6davl+R47dqzmzv3/7N17uJVlnT/+9wMbAUFARlFUBBEPqIOmlCKamg2WWTl4qExrGv3pNE5gMWrD99JyxnT011hSaZKThzHN8YRl5bFfCqmMaDp5xgOICCpnEDlsWL8/iP3da3N6Fmz25vB6Xde+Lj73uu/n/uy1nrXYf6z3dX9nlffz1KlTc/bZZ+e3v/1tw9i3v/3tfOUrX6n6/ZPk5JNPztFHH51kxedn4zDV2LFjV/tZkSR1ddV/Ar/88su5/vrrG+ptt902//7v/54zzzwz22677Wqv8eabb+a3v/3tRg8pAgAAAAAAAAAAALBpEcYCWIeVJ++cdtppuemmm1b5En+SdOzYMZdffnk+/PDDXH311Q3jo0ePrimMNXv27PTu3Tvjxo1bbYigc+fOue666zJlypT87ne/S5LMmzcvRx99dD744IOccMIJueuuu6oCNSvtvvvu+e1vf5t99tkn06dPT5I8+uijee2119KvX7819nTBBRdk1KhRqw3DNNauXbuccsop+eQnP5lPfOITefbZZ5OsOFXssssuS9++favm19XVpU+fPklWnADW2A477NDwWBkzZsyoOhUsSYYOHZpbbrklHTt2XOO6vffeOyNHjswFF1yQOXPmlN6rbdu2GTNmTE444YTVztlnn33y0EMP5YADDsiUKVOSrAhO/f73v8+xxx67xmufeeaZmTZtWlV93XXXrRKKWalfv3655557Mnz48IwaNSpJMnHixPzgBz/IxRdfvNo1d999d37zm9801J07d87DDz+8SsAwWRECOvfcc3PQQQdlyJAhmT179hp7bw733ntvw7/r6ury0EMPrfXeLIoiAwcOzMCBA3PRRRetciJat27d0q1btySrBqxqub9a0oQJE3Lttdc21HV1dbnzzjtXe6+1bds2X/ziF/ORj3wkH//4x/Pee+/VtNf5559fdbrapz/96dx1111rfM/07Nkzo0ePzr777psRI0YkWfF+uOiii/Lzn/+81J4rg1jXXHPNGk+62nXXXXPvvffmsMMOy9NPP51kxefcL3/5y5x55plVczt37pzOnTs3/Lux3XbbrfTrvPKku5V+8pOfNAT51mSPPfbIueeem3PPPTeLFi0qtQ8AAAAAAAAAAAAAm7+1f7MegCQrQi/XX3/9aoNYjV188cVVQajf//73Ne910003rfE0l5X+5V/+paqePXt2dtxxx9x8882rDWKt1KVLl1UCEOvqcffdd19nEKux7bffvuqEmeXLl+e2224rvX59/OAHP8i8efMa6gMPPDC33nrrWoNYjdXV1a0SCFubCy+8cI1BrJW6dOmSCy+8sGpsbc/1hAkTqk4CGjRoUEaPHr3GIFZjV111VQYMGNBQ//jHP87ixYtXO/eHP/xhVX355ZevNojV2ODBg/Ov//qv6+xjQ02ePLnh3wceeOBag1hNtW3bdrWnn21uRo0aVRUqHD58+DrvtX322SfXXHNNTfu88847Ve/TPn365M477yz1nvnWt76V448/vqH+xS9+0RDwLOO0005bYxBrpbq6ulxyySVVY+vzeVpW43svyVpP5lud1j5NDQAAAAAAAAAAAICWI4wFUMKIESNKhRS6d++eww8/vKF+5513ajqt5vDDD89RRx21znmDBw9epZ9zzjkn22+//TrXDhkypKpeeYJVczrkkEPSu3fvhvrxxx9v9j1WWr58ea677rqqsR/+8Idp3779RtmvY8eODacCrUvTEM2f/vSnNc5debLVSpdddlnpEFzbtm0zfPjwhvr999/PE088scq8SZMmZezYsQ31zjvvvM5QzErDhg3LjjvuWGpuc6j1lKctwaJFi3LHHXc01O3bt8/IkSNLrT3ppJNy0EEHld7rpz/9aZYsWdJQf+c738m2225ben3j98CSJUty//33l1570UUXlZo3ZMiQqnDp2t4/zW1rvP8AAAAAAAAAAAAAKEcYC6CEz3zmM6Xn9u/fv6qu5Uv9n/70p0vNa9OmTfbcc8+qsU996lOl1u61115V9bvvvluuuSYqlUoWLFiQadOmZdKkSav8NA7uvPTSS+u1RxnPPfdcZs6c2VDvs88+OfroozfafoMGDUr37t1Lze3du3dVwGVt98LDDz/c8O+dd965VCivsWOOOaaqbhy6WmncuHFV9amnnlrq5K0kadeuXU499dSaeqrVvvvu2/DvKVOm5Pvf//5G3W9TM2HChCxatKihPu6440rfa0ny5S9/ufTchx56qOHfbdu2rfkkqCOOOKLqpMDV3W+r07dv36rXeW3atWtX9Tm3MQNSTXv653/+5yxdunSj7QcAAAAAAAAAAADA5qtu3VMAtm6dO3dOr169Ss9vejrV3LlzS69tGuRam65du67X2qbr5s2bV2rdkiVL8uCDD+buu+/OM888k5dffjmLFy8utXb27Nml5q2PpqdubcwgVpLst99+Nc3v1q1bFi5cmGTN98Lrr7+eadOmNdT9+vXL5MmTa9qn8SlHK6/Z1IQJE6rqQw89tKY9Dj300PzkJz+paU0tTjvttNx9990N9fnnn58xY8bka1/7Wo4//vj07Nlzo+29KWiO16eMRYsW5emnn26oe/XqlYZ8LeAAACAASURBVBkzZmTGjBk17detW7eGNau731an1vdP48/TWj5LazV06NCcf/75DZ9p99xzT/bdd9+cddZZ+fznP19z3wAAAAAAAAAAAABsuYSxANahabhqXdq1a1dV13K6Si17NT6VJlkRjFifdWX6u/fee/PNb34zb775Zun+GtuYIYrGIaYk2X///TfaXsmG3Q9req6nTJlSVY8bNy577LFH7c01MmvWrFXGmp6C1vSUtHXZe++9N6indRk6dGiGDh1aFcj64x//mD/+8Y9JVoTUDj/88AwePDhHHnlkTeHFzUFLvT7Tp0+vuhcnTZq0Ue631dmQ9099fX1Na2ux66675oorrsh5553XMPbGG29k5MiRGTlyZHr06JHDDz88hx9+eI488sgMHDhwlc9SAAAAAAAAAAAAALYObVq7AYBNXZs2LfdRuSF7baw+f/jDH+bEE09c7yBWklQqlWbsqNrMmTOr6lrDHrXaGM9z09+hOcyfP3+VsaYnlHXp0qWmazY9Va25FUWR22+/PSNHjkyHDh1Wefy1117LzTffnHPOOSf77bdf9tprr1xyySWlg0CbupZ6fVrqfludlvw8rdXw4cNz6623rvYEtvfeey9jxozJBRdckEGDBmXnnXfOOeeck1deeaUVOgUAAAAAAAAAAACgNW2634gFoNWNHz8+I0aMqBrr06dPRo4cmfvuuy8vvvhiZs2alQ8//DDLly9PpVJp+DnqqKNapeeiKFpl3w2xZMmSZr9mmQDcpvhc1dXV5Xvf+14mTZqU73//+znyyCPTvn371c597bXX8t3vfjd9+/bN7bff3sKdbny1vj5l57fW/bY5+NKXvpTXX389N998cz73uc+tMdw5c+bMjB49Ovvtt1++/e1vZ/ny5S3cKQAAAAAAAAAAAACtpa61GwBoCcuWLWvtFjZLl1xySVXI4Oyzz85PfvKT1NWt+7+PefPmbczWGuywww5V9eZ4SlLT3+Hss8/Odddd1+z7NA2WzJ07t6b1tc7fEDvttFNGjBiRESNGZPHixXnmmWfy+OOPZ+zYsXnkkUeyYMGCqr6+9KUvpX379jnxxBNbrMeyyn7+bOjrM2fOnFLzmt5vQ4YMyQMPPFDTXluyjh075owzzsgZZ5yR5cuX56WXXsoTTzyRcePG5cEHH8y0adMa5i5fvjxXXHFFlixZkquuuqoVuwYAAAAAAAAAAACgpTgZC9hsNA0A1dfXl147e/bs5m5ni/fBBx/kkUceaaj79u1bOoiVpCqwsDH17Nmzqn7xxRdbZN/mtNNOO1XVr776aovsM3HixJrWb6y+1qV9+/YZNGhQRowYkTFjxmTmzJn55S9/mb333rthTqVSybBhwzbaCUUt8fnTUq9PS91vW4I2bdpk//33z1lnnZUbb7wxU6dOzWOPPZYhQ4ZUzbv66qvzyiuvtFKXAAAAAAAAAAAAALQkYSxgs9GlS5equuwpMEnywgsvNHc7W7zJkydnyZIlDfWnPvWp0kGsN954I9OnTy+9V1EUNfe30uDBg6vqRx99dL2v1Vr233//dO3ataF+4oknMn/+/GbfZ+DAgVX1k08+WdP68ePHN2c7622bbbbJF77whYwfPz677rprw/iUKVPy9NNPr3bNhtxjSct8/rTU69OlS5fsv//+DfWkSZNqDn5tijb0NS67x5FHHpn7778/J5xwQsP48uXL86tf/Wqj7w8AAAAAAAAAAABA6xPGAjYbPXr0qKprOQHpN7/5TXO3s8VrGjZpHBZalxtvvLGmvdq3b19VL168uPTaAQMGZMcdd2yoX3rppTz22GM17d/a2rZtm2OPPbahXrx4cf7rv/6r2fc54ogjquo77rgjy5YtK7V26dKl+e///u9m72lDdOvWLUOHDq0ae/PNN1c7d0PusWT9P3+WLl2ahx56qNTcgQMHpkOHDg31Aw88kFmzZpXu8Re/+EXpuccdd1xV/bOf/az02k3Vhr7GtSiKIl/72teqxtZ07wEAAAAAAAAAAACwZRHGAjYbBx98cFX961//utS6F154IXfffffGaGmLtv3221fVL7/8cql1kydPzqhRo2raq1u3blX1tGnTSq8tiiL/+I//WDV23nnnVZ3qtTn4xje+UVVfcsklNT0PZfTp0ydHHnlkQz19+vRce+21pdaOGjUq77//frP20xyantbWNJCz0obcY8n6f/78/Oc/z9SpU0vN7dChQ0455ZSGesmSJbnssstKrb3rrrvy7LPPlpqbJF//+ternrsf/ehHm/0Jghv6Gteq7L0HAAAAAAAAAAAAwJZFGAvYbOy1117p1atXQz1hwoSMGTNmrWvefffdnHLKKaVP/+H/2nPPPdO5c+eG+r777svzzz+/1jUzZszI0KFDM3fu3Jr26t+/f1X94IMP1rR+2LBhVUGMP/3pTzn99NNLn4xTX1+fGTNm1LRnczv66KPzN3/zNw31e++9l+OPPz5vv/12TdeZP39+br311jU+Pnz48Kp65MiRmTBhwlqv+fjjj+fiiy+uqY9aLVy4MD/60Y8yf/780msWLFiwStCy6b20pvFa77FPfOITVfV1112XKVOmrHXNk08+mW9961s17TNs2LAURdFQX3311bnvvvvWuubVV19dJZC4Lv369as62WnRokU5/vjjazpxMFlx+lStJ+FtLBvyGl933XV56623atrv5ptvXuv+AAAAAAAAAAAAAGyZhLGAzUZRFDnrrLOqxk4//fTcdtttq8xdtmxZ7rjjjnzsYx/LSy+9tMopT6zbNttskxNPPLGhXrp0aY477rjcf//9q8xdtmxZ7rrrrnz0ox/NM888k6Io8ld/9Vel9+rdu3f69u3bUD/xxBP58pe/nPvvvz+vvPJKJk2aVPVTX19ftb579+65+eabq0Isd9xxRz760Y/mV7/61SrzV5o4cWIuv/zy9OvXb52Bl5Zw0003Zbfddmuon3322QwYMCBXXnnlWsNi8+fPz69+9auceeaZ2XXXXTNy5Mg1zj3ppJNy/PHHV6395Cc/mdGjR69ymtiSJUtyzTXX5FOf+lQWLly4Ud9HS5YsybBhw7Lbbrvl7//+7/PrX/96rcGs//mf/8mxxx6byZMnN4wddthh2XvvvVc7/5hjjqmqzz///Fx55ZV58skn89prr1XdX9OnT19lfb9+/aquMX/+/Bx77LF56qmnVpm7YMGCXHnllTnmmGNqft4GDhyYr3/96w11fX19Tj755Fx++eVZuHBh1dxly5bl9ttvz5FHHpn33nuv5tfnqquuyoABAxrqt956KwMHDsz/+T//Z61Bsw8//DAPP/xwhg0bll69elWFulrTUUcdVfUZ8B//8R+56KKLMm7cuEycOLHqNW4acrz22mvTt2/ffPazn80NN9yw1lO13nrrrXzlK1/JXXfd1TDWqVOnnHTSSc3/SwEAAAAAAAAAAACwyalr7QYAavGtb30rN954Y958880kyQcffJDTTjst559/fgYOHJhOnTplxowZeeqppzJ79uwkSefOnXP99df7ovx6+O53v5sxY8ZkwYIFSZJ33nknn/70p9O7d+985CMfybbbbrvK852sOG1p3LhxefTRR0vv9c1vfjPf+MY3Gupbb711jSc8vfnmm+nTp0/V2Gc/+9lcddVVGTFiRJYvX54k+fOf/5zPf/7z2W677XLIIYekR48eKYoiM2fOzJ///Oe8++67pftrCT179sx9992X448/Pu+8806SZPbs2bnwwgvz7W9/O/3790/fvn3TtWvXLF68OHPmzMnrr7+eSZMmpVKpNFyne/fua93n+uuvz+DBgxveR3Pnzs0555yTCy+8MIceemi6d++emTNnZvz48Q2nnLVr1y6jRo3KGWecsZF++xXmzZuXG264ITfccEOKoki/fv3St2/fdOvWLXV1dZk5c2aef/75VcI02267bUaPHr3G63784x/PwIEDG04BmzdvXi688MLVzj3qqKPyhz/8YZXxH/zgB/noRz+apUuXJlkR5vvYxz6WAw44IPvuu2/atm2bqVOn5qmnnmo4la1///4555xzct5555V+Dq688sqMHz8+Tz/9dJIVp0+NHDkyl156aQ477LDstNNOmTt3biZMmJD33nuvYd21116bL37xi6X36dy5c+67774MGTIkL7/8cpIVQavLLrssl112Wfr27Zt999033bp1S319febOnZtJkybltdde2yRPG+zTp0+GDh3aEJJasmRJLr300lx66aWrzO3du3cmTZpUNbZs2bLcd999DcHMnj17Zt9990337t3TsWPHLFiwIK+++mpeeumlqvdbsuIEs1oCqAAAAAAAAAAAAABsvoSxgM1K586dM2bMmBx33HFVp9dMnTo1U6dOXWX+DjvskHvuuafqtCHK23PPPXPnnXfm5JNPbghkJcnkyZOrTiRq7Pzzz8+ll16ao48+uqa9zj333Lzwwgv56U9/ut79nnfeeenbt2++9rWvZdasWQ3j8+fPX224ZlN04IEH5k9/+lPOOOOMPPjggw3jlUolL774Yl588cV1XmNdJyT17Nkzf/jDHzJkyJC88sorDeNz5szJAw88sMr89u3b55ZbbsnAgQNr+E02XKVSycSJEzNx4sS1ztt1111z991356//+q/XOu/222/PZz7zmYbgUa0OPPDA3Hjjjfm7v/u7hkBWkjz//PN5/vnnV5l/8MEH59e//nXV61hGp06d8vDDD+czn/lMHn/88YbxhQsX5ve///0q89u0aZOrrroqX/jCF2oKYyVJr1698tRTT+Uf/uEf8otf/KLqsTfeeCNvvPHGOq/RrVu3mvbcmEaPHp133nknTzzxxAZfa9q0aWs9IStJOnbsmFGjRuXMM8/c4P0AAAAAAAAAAAAA2Dy0ae0GAGo1YMCATJgwIV/96ldTV7f6TGmXLl1yzjnn5M9//nOOOOKIFu5wy3LcccdlwoQJ+fznP5+iKFY7p66uLscdd1weeeSRXHnlleu1T1EUufbaazN+/PgMHz48gwYNSo8ePdKhQ4earvO5z30ukyZNyr/9279ljz32WOvcurq6DB48ONdee+0mdXJajx498sADD+Sxxx7LiSeemE6dOq1zzR577JGzzjorv/vd7xpOf1qb3XffPc8991y+853vZIcddljtnG222SYnnXRSnn766Zx88sk1/x616Nq1ax599NFccMEFOeSQQ9b43m5sn332yWWXXZZXX301H/vYx9Y5v2/fvnn22Wdzyy235NRTT03//v3TtWvXUnutdNppp2XcuHE56qij1jhn9913z/e+9708/vjj2WWXXUpfu7Fu3bpl7NixGTVq1BrDpG3bts2QIUMyduzYDB8+fL32SVaEXG+55ZY899xzOf3009cZ5kuSXXbZJV/+8pdzxx13VAVjW1v37t0zduzYjBkzJl/5ylcyYMCAdO/ePe3atVvruttuuy1XXHFFPvGJT6Rz587r3KdHjx4599xz88orr+Sss85qrvYBAAAAAAAAAAAA2AwUlUqltXtgM1IUxf5JGo7/eP7557P//vuv9/Xq6+tXOfFkr732qumL8Zuyo393TR6dvu5TRVY6aue++cOn/3EjdrTlmTdvXh577LFMmjQp8+bNy4477pjdd989H//4x9OxY8fWbm+L8+6772bcuHF566238uGHH2bHHXdMz549c9hhh60x0NPaXn/99Tz99NN5//33M2fOnGyzzTbp3r179tprrxx00EHp0qVLa7e4TvX19ZkwYUJee+21zJw5M/Pnz8+2226brl27pm/fvunfv3923nnnDbr+uHHjMnHixMyYMSPbb799dt111xxxxBGlgjkbw4cffpgXXnghr7/+eqZPn54PPvggRVGkS5cu2X333TNgwID07t27VXpbaerUqRk7dmymTZuWJUuWpGfPnunXr18GDRq0xuDi+qhUKhk/fnxefPHFvPfee9luu+2yyy675LDDDkvPnj2bbZ+Vli9fnv/93//Niy++mFmzZmXOnDnp0KFDunTpkj59+qR///7p1atXs++7qVi2bFleeeWVTJw4MW+//Xbmz5+fZcuWpXPnztlpp51ywAEHpH///mnbtm2z7rul/00EAAAAAAAAAAAA0FxeeOGFHHDAAY2HDqhUKi+01P7CWNREGKs2N058KpMWzCo9v0/n7vm7vT66ETsCADZFW/rfRAAAAAAAAAAAAADNpbXDWL7dCRuRYBUAAAAAAAAAAAAAAMCWo01rNwAAAAAAAAAAAAAAAACwORDGAgAAAAAAAAAAAAAAAChBGAsAAAAAAAAAAAAAAACgBGEsAAAAAAAAAAAAAAAAgBKEsQAAAAAAAAAAAAAAAABKEMYCAAAAAAAAAAAAAAAAKEEYCwAAAAAAAAAAAAAAAKAEYSwAAAAAAAAAAAAAAACAEoSxAAAAAAAAAAAAAAAAAEoQxgIAAAAAAAAAAAAAAAAoQRgLAAAAAAAAAAAAAAAAoARhLAAAAAAAAAAAAAAAAIAShLEAAAAAAAAAAAAAAAAAShDGolUVRbHKWKVSaYVOAABaz+r+/lnd30kAAAAAAAAAAAAAtC5hLFpVmzar3oL19fWt0AkAQOtZtmzZKmOr+zsJAAAAAAAAAAAAgNblG560qqIoUldXVzX2wQcftFI3AACtY+HChVV127ZtnYwFAAAAAAAAAAAAsAkSxqLVde7cuaqeP39+K3UCANA6FixYUFU3/fsIAAAAAAAAAAAAgE2DMBatrkuXLlX1okWLVvlCMgDAlmrJkiWrnIwljAUAAAAAAAAAAACwaRLGotVtu+22adu2bdXY22+/LZAFAGzx6uvrM2XKlFQqlarxTp06tVJHAAAAAAAAAAAAAKxNXWs3AEVRpGvXrpk1a1bDWKVSyZQpU9KhQ4dst9126dSpU9q2bZs2beQHAYDN2/Lly7N06dLMmzcv8+bNy/Lly6se32677VYJqgMAAAAAAAAAAACwaRDGYpPQo0eP1NfXZ968eVXjixYtyqJFi/L++++3UmcAAC2nffv26dmzZ2u3AQAAAAAAAAAAAMAaOGaITUJRFNlll13SpUuX1m4FAKBVtGvXLr169XIqFgAAAAAAAAAAAMAmzMlYbDJWBrLq6uoyd+7cLFu2rLVbAgBoEZ06dcpOO+2Udu3atXYrAAAAAAAAAAAAAKyFMBablKIostNOO6VHjx5ZuHBh5s2blwULFqS+vr61WwMAaDZFUaRdu3bp2rVrunbtKoQFAAAAAAAAAAAAsJkQxmKTVBRFOnXqlE6dOiVJKpVKli9fnkql0sqdAQBsmDZt2qQoihRF0dqtAAAAAAAAAAAAAFAjYSw2C0VRpG3btq3dBgAAAAAAAAAAAAAAAFuxNq3dAAAAAAAAAAAAAAAAAMDmQBgLAAAAAAAAAAAAAAAAoARhLAAAAAAAAAAAAAAAAIAShLEAAAAAAAAAAAAAAAAAShDGAgAAAAAAAAAAAAAAAChBGAsAAAAAAAAAAAAAAACgBGEsAAAAAAAAAAAAAAAAgBKEsQAAAAAAAAAAAAAAAABKEMYCAAAAAAAAAAAAAAAAKEEYCwAAAAAAAAAAAAAAAKAEYSwAAAAAAAAAAAAAAACAEoSxAAAAAAAAAAAAAAAAAEoQxgIAAAAAAAAAAAAAAAAoQRgLAAAAAAAAAAAAAAAAoARhLAAAAAAAAAAAAAAAAIAShLEAAAAAAAAAAAAAAAAAShDGAgAAAAAAAAAAAAAAAChBGAsAAAAAAAAAAAAAAACgBGEsAAAAAAAAAAAAAAAAgBKEsQAAAAAAAAAAAAAAAABKEMYCAAAAAAAAAAAAAAAAKEEYCwAAAAAAAAAAAAAAAKAEYSwAAAAAAAAAAAAAAACAEoSxAAAAAAAAAAAAAAAAAEoQxgIAAAAAAAAAAAAAAAAoQRgLAAAAAAAAAAAAAAAAoARhLAAAAAAAAAAAAAAAAIAShLEAAAAAAAAAAAAAAAAAShDGAgAAAAAAAAAAAAAAAChBGAsAAAAAAAAAAAAAAACgBGEsAAAAAAAAAAAAAAAAgBKEsQAAAAAAAAAAAAAAAABKEMYCAAAAAAAAAAAAAAAAKEEYCwAAAAAAAAAAAAAAAKAEYSwAAAAAAAAAAAAAAACAEoSxAAAAAAAAAAAAAAAAAEoQxgIAAAAAAAAAAAAAAAAoQRgLAAAAAAAAAAAAAAAAoARhLAAAAAAAAAAAAAAAAIAShLEAAAAAAAAAAAAAAAAAShDGAgAAAAAAAAAAAAAAAChBGAsAAAAAAAAAAAAAAACgBGEsAAAAAAAAAAAAAAAAgBKEsQAAAAAAAAAAAAAAAABKEMYCAAAAAAAAAAAAAAAAKEEYCwAAAAAAAAAAAAAAAKAEYSwAAAAAAAAAAAAAAACAEoSxAAAAAAAAAAAAAAAAAEoQxgIAAAAAAAAAAAAAAAAooa61GyApiqJjkoOS9E+yfZIOSeYleS/JM0leq1QqldbrEAAAAAAAAAAAAAAAABDGakVFUQxKcl6SE5Nss5apU4ui+M8kV1cqlVkt0hwAAAAAAAAAAAAAAABQpU1rN7A1KoqiriiKHyf5Y5JTs/YgVpLsmuTiJC8WRfGpjd0fAAAAAAAAAAAAAAAAsConY7WwoiiKJLclOXk1D7+c5KUkHybZMcnAJNs3enynJPcWRfH5SqVy/8buFQAAAAAAAAAAAAAAAPi/hLFa3llZNYj1WJJzK5XK840Hi6KoS3JGkh8k6fqX4W2S3FQUxd6VSmXuxm4WAAAAAAAAAAAAAAAAWKFNazewFRrZpH4sySebBrGSpFKp1FcqlRuSfDLJ4kYP9UjyDxuvRQAAAAAAAAAAAAAAAKApYawWVBTFXyfp02R4WKVSWbq2dZVKZUKSnzUZ/mwztgYAAAAAAAAAAAAAAACsQ11rN7CV6duknlKpVJ4rufbeJP/UqN6reVoCAAAAAAAAAAAAAGBNnnl7Tq4f/1aenTovC5bUp/M2dTlo1y4569Ddc/Bu3Vq7PQBamDBWy+rUpH67hrVTmtTbb2AvAAAAAAAAAAAAAACswYQpc/KNe57Pk5Nnr/LYE5Nn59rHJ2dQ7+0z6m8PyMBeQlkAW4s2rd3AVmZ6k7pDDWubzp21gb0AAAAAAAAAAAAAALAa9734bo788R9XG8Rq7InJs3Pkj/+Y+158t4U6A6C1CWO1rKeSLG5U9y+KomPJtYes5loAAAAAAAAAAAAAADSjCVPm5JSbJmRR/fJS8xfVL88pN03IhClzNnJnAGwKhLFaUKVSmZ/k5kZDHZKcua51RVG0TfJPTYZvasbWAAAAAAAAAAAAAABI8o17ni8dxFppUf3yDLvn+Y3UEQCbEmGslvftJJMa1VcWRfHJNU0uiqJdktFJPtJo+PdJ7too3QEAAAAAAAAAAAAAbKWenjInT06evV5rn5g8O8+87XQsgC1dXWs3sLWpVCqziqI4JsndWRGw6pjkgaIo7kxyZ5KXk3yYZIckg5Kck2SfRpf4nyQnVyqVyob2UhRFjyQ71rhszw3dFwAAAAAAAAAAAABgU/Sf//PWhq0fPyUH79atmboBYFMkjNUKKpXKpKIoDk3yd0nOTnJIklP/8rMmM5NcleT/rVQqS5uplX9M8p1muhYAAAAAAAAAAAAAwGbt2anzNmz9O3ObqRMANlXCWK2n7V9+FiepJCnWMndKkouT/LIZg1gAAAAAAAAAAAAAADSyYEn9Bq2fv3jD1gOw6WvT2g1sjYqiGJzkpSTXJhmcdb8OvZLckOStoijO2sjtAQAAAAAAAAAAAABslTpvs2HnnWzX3nkpAFs6n/QtrCiKY5Pcl6RDo+GpSX6U5IEkbyZZmKR7koOSfCnJl7Pitdoxyc+KovhYknMqlUplA9u5JskdNa7ZM8m9G7gvAAAAAAAAAAAAAMAm56Bdu+SJybPXf/0uXZuxGwA2RcJYLagoih2T3JbqINavk5xeqVTmNZn+blaEsx4oiuKnWRHg+qu/PPb/JHk9yRUb0k+lUnkvyXu1rCmKYkO2BAAAAAAAAAAAAADYZJ116O659vHJ673+zEN7NWM3AGyK2rR2A1uZb2XF6VYrvZzk1NUEsapUKpUnk3yhyfB3iqLo0cz9AQAAAAAAAAAAAABstQ7erVsO6739eq0d1Hv7HLxbt2buCIBNjTBWyzqlSX1FpVJZVGZhpVJ5JMnYRkMdk3yxuRoDAAAAAAAAAAAAACD50d8ekA51tX3VvkNdm4z62wM2UkcAbEqEsVpIURSdkuzZZPiRGi/zcJP60PXvCAAAAAAAAAAAAACApgb26pY7vjqwdCCrQ12b3PHVgRnYy6lYAFsDYayWs7r/WafXeI2m83dYz14AAAAAAAAAAAAAAFiDE/bbKWP/aXAG9d5+rfMG9d4+Y/9pcE7Yb6cW6gyA1lbX2g1sReasZqzTGsbXpHOTesH6twMAAAAAAAAAAAAAwJoM7NUtjw87Is+8PSf/OX5Knn1nbuYvrs927ety0C5dc+ahvXLwbk7DAtjaCGO1kEql8kFRFPOSdGk0/JEk/18NlzmkSV3ryVoAAAAAAAAAAAAAANTg4N26CV0B0KBNazewlflDk/rssguLotg5yeeaDI/d0IYAAAAAAAAAAAAAAACAcoSxWtbtTeovFEVx+roWFUXRPsl/JencaHhBkgeasTcAAAAAAAAAAAAAAABgLYSxWtYvkzzXqC6S3FwUxdVFUfRc3YKiKI5J8mSSTzZ56IpKpTJ747QJAAAAAAAAAAAAAAAANFXX2g1sTSqVyvKiKE5O8sckPf4yXCQZluSfiqL43yRvJPkwSfckH0my82ou9dskV2z8jgEAAAAAAAAAAAAAAICVhLFaWKVSea0oiqOS/FeSgY0eapPkoL/8rHF5kp8lOa9SqSzdeF0CAAAAAAAAAAAAAAAATbVpH7is0QAAIABJREFU7Qa2RpVK5eUkg5J8NckTWRGyWpsPk/wiyeGVSuWcSqXy4UZuEQAAAAAAAAAAAAAAAGjCyVitpFKp1Ce5OcnNRVF0zYpTsvZI0i1J+yTzk8xO8nySP/9lPgAAAAAAAAAAAAAAANBKhLE2AZVKZW6SR1q7DwAAAAAAAAAAAAAAAGDN2rR2AwAAAAAAAAAAAAAAAACbA2EsAAAAAAAAAAAAAAAAgBKEsQAAAAAAAAAAAAAAAABKEMYCAAAAAAAAAAAAAAAAKEEYCwAAAAAAAAAAAAAAAKAEYSwAAAAAAAAAAAAAAACAEoSxAAAAAAAAAAAAAAAAAEoQxgIAAAAAAAAAAAAAAAAoQRgLAAAAAAAAAAAAAAAAoARhLAAAAAAAAAAAAAAAAIAShLEAAAAAAAAAAAAAAAAAShDGAgAAAAAAAAAAAAAAAChBGAsAAAAAAAAAAAAAAACgBGEsAAAAAAAAAAAAAAAAgBKEsQAAAAAAAAAAAAAAAABKEMYCAAAAAAAAAAAAAAAAKEEYCwAAAAAAAAAAAAAAAKAEYSwAAAAAAAAAAAAAAACAEoSxAAAAAAAAAAAAAAAAAEoQxgIAAAAAAAAAAAAAAAAoQRgLAAAAAAAAAAAAAAAAoARhLAAAAAAAAAAAAAAAAIAShLEAAAAAAAAAAAAAAAAAShDGAgAAAAAAAAAAAAAAAChBGAsAAAAAAAAAAAAAAACgBGEsAAAAAAAAAAAAAAAAgBKEsQAAAAAAAAAAAAAAAABKEMYCAAAAAAAAAAAAAAAAKEEYCwAAAAAAAAAAAAAAAKAEYSwAAAAAAAAAAAAAAACAEoSxAAAAAAAAAAAAAAAAAEoQxgIAAAAAAAAAAAAAAAAoQRgLAAAAAAAAAAAAAAAAoARhLAAAAAAAAAAAAAAAAIAShLEAAAAAAAAAAAAAAAAAShDGAgAAAAAAAAAAAAAAAChBGAsAAAAAAAAAAAAAAACgBGEsAAAAAAAAAAAAAAAAgBKEsQAAAAAAAAAAAAAAAABKEMYCAAAAAAAAAAAAAAAAKEEYCwAAAAAAAAAAAAAAAKAEYSwAAAAAAAAAAAAAAACAEoSxAAAAAAAAAAAAAAAAAEoQxgIAAAAAAAAAAAAAAAAoQRgLAAAAAAAAAAAAAAAAoARhLAAAAAAAAAAAAAAAAIAShLEAAAAAAAAAAAAAAAAAShDGAgAAAAAAAAAAAAAAAChBGAsAAAAAAAAAAAAAAACgBGEsAAAAAAAAAAAAAAAAgBKEsQAAAAAAAAAAAAAAAABKEMYCAAAAAAAAAAAAAAAAKEEYCwAAAAAAAAAAAAAAAKAEYSwAAAAAAOD/Z+9uYywt6zuO/65lYAF52IUKVXZZrU1aCArdbqUrUgqYVI2xoZbahzRotTElAi28qGls9EVbbYJtKtg1jbDR2JAWW97Y+kJMmyAs6ErRUkiItC4LlIfCLg/bAi579cXM6tnD7PifPTPnzM58Pslkzn2f6zr3f7Ov7uR85wYAAAAAAACgQIwFAAAAAAAAAAAAAAAAUCDGAgAAAAAAAAAAAAAAACgQYwEAAAAAAAAAAAAAAAAUiLEAAAAAAAAAAAAAAAAACsRYAAAAAAAAAAAAAAAAAAViLAAAAAAAAAAAAAAAAIACMRYAAAAAAAAAAAAAAABAgRgLAAAAAAAAAAAAAAAAoECMBQAAAAAAAAAAAAAAAFAgxgIAAAAAAAAAAAAAAAAoEGMBAAAAAAAAAAAAAAAAFIixAAAAAAAAAAAAAAAAAArEWAAAAAAAAAAAAAAAAAAFYiwAAAAAAAAAAAAAAACAAjEWAAAAAAAAAAAAAAAAQIEYCwAAAAAAAAAAAAAAAKBAjAUAAAAAAAAAAAAAAABQIMYCAAAAAAAAAAAAAAAAKBBjAQAAAAAAAAAAAAAAABSIsQAAAAAAAAAAAAAAAAAKxFgAAAAAAAAAAAAAAAAABWIsAAAAAAAAAAAAAAAAgAIxFgAAAAAAAAAAAAAAAECBGAsAAAAAAAAAAAAAAACgQIwFAAAAAAAAAAAAAAAAUCDGAgAAAAAAAAAAAAAAACgQYwEAAAAAAAAAAAAAAAAUiLEAAAAAAAAAAAAAAAAACsRYAAAAAAAAAAAAAAAAAAViLAAAAAAAAAAAAAAAAIACMRYAAAAAAAAAAAAAAABAgRgLAAAAAAAAAAAAAAAAoECMBQAAAAAAAAAAAAAAAFAgxgIAAAAAAAAAAAAAAAAoEGMBAAAAAAAAAAAAAAAAFIixAAAAAAAAAAAAAAAAAArEWAAAAAAAAAAAAAAAAAAFYiwAAAAAAAAAAAAAAACAAjEWAAAAAAAAAAAAAAAAQIEYCwAAAAAAAAAAAAAAAKBAjAUAAAAAAAAAAAAAAABQIMYCAAAAAAAAAAAAAAAAKBBjAQAAAAAAAAAAAAAAABSIsQAAAAAAAAAAAAAAAAAKxFgAAAAAAAAAAAAAAAAABWIsAAAAAAAAAAAAAAAAgAIxFgAAAAAAAAAAAAAAAECBGAsAAAAAAAAAAAAAAACgQIwFAAAAAAAAAAAAAAAAUCDGAgAAAAAAAAAAAAAAACgQYwEAAAAAAAAAAAAAAAAUiLEAAAAAAAAAAAAAAAAACsRYAAAAAAAAAAAAAAAAAAViLAAAAAAAAAAAAAAAAIACMRYAAAAAAAAAAAAAAABAgRgLAAAAAAAAAAAAAAAAoECMBQAAAAAAAAAAAAAAAFAgxgIAAAAAAAAAAAAAAAAoEGMBAAAAAAAAAAAAAAAAFIixAAAAAAAAAAAAAAAAAArEWAAAAAAAAAAAAAAAAAAFYiwAAAAAAAAAAAAAAACAAjEWAAAAAAAAAAAAAAAAQIEYCwAAAAAAAAAAAAAAAKBAjAUAAAAAAAAAAAAAAABQIMYCAAAAAAAAAAAAAAAAKBBjAQAAAAAAAAAAAAAAABSIsQAAAAAAAAAAAAAAAAAKxFgAAAAAAAAAAAAAAAAABWIsAAAAAAAAAAAAAAAAgAIxFgAAAAAAAAAAAAAAAECBGAsAAAAAAAAAAAAAAACgQIwFAAAAAAAAAAAAAAAAUCDGAgAAAAAAAAAAAAAAACgQYwEAAAAAAAAAAAAAAAAUiLEAAAAAAAAAAAAAAAAACsRYAAAAAAAAAAAAAAAAAAViLAAAAAAAAAAAAAAAAIACMRYAAAAAAAAAAAAAAABAgRgLAAAAAAAAAAAAAAAAoECMBQAAAAAAAAAAAAAAAFAgxgIAAAAAAAAAAAAAAAAoEGMBAAAAAAAAAAAAAAAAFIixAAAAAAAAAAAAAAAAAArEWAAAAAAAAAAAAAAAAAAFYiwAAAAAAAAAAAAAAACAAjEWAAAAAAAAAAAAAAAAQIEYCwAAAAAAAAAAAAAAAKBAjAUAAAAAAAAAAAAAAABQIMYCAAAAAAAAAAAAAAAAKBBjAQAAAAAAAAAAAAAAABSIsQAAAAAAAAAAAAAAAAAKxFgAAAAAAAAAAAAAAAAABWIsAAAAAAAAAAAAAAAAgAIxFgAAAAAAAAAAAAAAAECBGAsAAAAAAAAAAAAAAACgQIwFAAAAAAAAAAAAAAAAUCDGAgAAAAAAAAAAAAAAACgQYwEAAAAAAAAAAAAAAAAUiLEAAAAAAAAAAAAAAAAACsRYAAAAAAAAAAAAAAAAAAViLAAAAAAAAAAAAAAAAIACMRYAAAAAAAAAAAAAAABAgRgLAAAAAAAAAAAAAAAAoECMBQAAAAAAAAAAAAAAAFAgxgIAAAAAAAAAAAAAAAAoEGMBAAAAAAAAAAAAAAAAFIixAAAAAAAAAAAAAAAAAArEWAAAAAAAAAAAAAAAAAAFYiwAAAAAAAAAAAAAAACAAjEWAAAAAAAAAAAAAAAAQIEYCwAAAAAAAAAAAAAAAKBAjAUAAAAAAAAAAAAAAABQIMYCAAAAAAAAAAAAAAAAKBBjAQAAAAAAAAAAAAAAABSIsQAAAAAAAAAAAAAAAAAKxFgAAAAAAAAAAAAAAAAABWIsAAAAAAAAAAAAAAAAgAIxFgAAAAAAAAAAAAAAAECBGAsAAAAAAAAAAAAAAACgQIwFAAAAAAAAAAAAAAAAUCDGAgAAAAAAAAAAAAAAACgQYwEAAAAAAAAAAAAAAAAUiLEAAAAAAAAAAAAAAAAACsRYAAAAAAAAAAAAAAAAAAViLAAAAAAAAAAAAAAAAIACMRYAAAAAAAAAAAAAAABAgRgLAAAAAAAAAAAAAAAAoECMBQAAAAAAAAAAAAAAAFAgxgIAAAAAAAAAAAAAAAAoEGMBAAAAAAAAAAAAAAAAFIixAAAAAAAAAAAAAAAAAArEWAAAAAAAAAAAAAAAAAAFYiwAAAAAAAAAAAAAAACAAjEWAAAAAAAAAAAAAAAAQIEYCwAAAAAAAAAAAAAAAKBAjAUAAAAAAAAAAAAAAABQIMYCAAAAAAAAAAAAAAAAKBBjAQAAAAAAAAAAAAAAABSIsQAAAAAAAAAAAAAAAAAKxFgAAAAAAAAAAAAAAAAABWIsAAAAAAAAAAAAAAAAgAIxFgAAAAAAAAAAAAAAAECBGAsAAAAAAAAAAAAAAACgQIwFAAAAAAAAAAAAAAAAUCDGAgAAAAAAAAAAAAAAACgQYwEAAAAAAAAAAAAAAAAUiLEAAAAAAAAAAAAAAAAACsRYAAAAAAAAAAAAAAAAAAViLAAAAAAAAAAAAAAAAIACMRYAAAAAAAAAAAAAAABAgRgLAAAAAAAAAAAAAAAAoECMBQAAAAAAAAAAAAAAAFAgxgIAAAAAAAAAAAAAAAAoEGMBAAAAAAAAAAAAAAAAFIixAAAAAAAAAAAAAAAAAArEWAAAAAAAAAAAAAAAAAAFYiwAAAAAAAAAAAAAAACAAjEWAAAAAAAAAAAAAAAAQIEYCwAAAAAAAAAAAAAAAKBAjAUAAAAAAAAAAAAAAABQIMYCAAAAAAAAAAAAAAAAKBBjAQAAAAAAAAAAAAAAABSIsQAAAAAAAAAAAAAAAAAKxFgAAAAAAAAAAAAAAAAABWIsAAAAAAAAAAAAAAAAgAIxFgAAAAAAAAAAAAAAAECBGAsAAAAAAAAAAAAAAACgQIwFAAAAAAAAAAAAAAAAUCDGAgAAAAAAAAAAAAAAACgQYwEAAAAAAAAAAAAAAAAUiLEAAAAAAAAAAAAAAAAACsRYAAAAAAAAAAAAAAAAAAViLAAAAAAAAAAAAAAAAIACMRYAAAAAAAAAAAAAAABAgRgLAAAAAAAAAAAAAAAAoECMBQAAAAAAAAAAAAAAAFAgxgIAAAAAAAAAAAAAAAAoEGMBAAAAAAAAAAAAAAAAFIixAAAAAAAAAAAAAAAAAArEWAAAAAAAAAAAAAAAAAAFYiwAAAAAAAAAAAAAAACAAjEWAAAAAAAAAAAAAAAAQIEYCwAAAAAAAAAAAAAAAKBAjAUAAAAAAAAAAAAAAABQIMYCAAAAAAAAAAAAAAAAKBBjAQAAAAAAAAAAAAAAABSIsQAAAAAAAAAAAAAAAAAKxFgAAAAAAAAAAAAAAAAABWIsAAAAAAAAAAAAAAAAgAIxFgAAAAAAAAAAAAAAAECBGAsAAAAAAAAAAAAAAACgQIwFAAAAAAAAAAAAAAAAUCDGAgAAAAAAAAAAAAAAACgQYwEAAAAAAAAAAAAAAAAUiLEAAAAAAAAAAAAAAAAACsRYAAAAAAAAAAAAAAAAAAViLAAAAAAAAAAAAAAAAIACMRYAAAAAAAAAAAAAAABAgRgLAAAAAAAAAAAAAAAAoECMBQAAAAAAAAAAAAAAAFAgxgIAAAAAAAAAAAAAAAAoEGMBAAAAAAAAAAAAAAAAFIixAAAAAAAAAAAAAAAAAArEWAAAAAAAAAAAAAAAAAAFYiwAAAAAAAAAAAAAAACAAjEWAAAAAAAAAAAAAAAAQIEYCwAAAAAAAAAAAAAAAKBAjAUAAAAAAAAAAAAAAABQIMYCAAAAAAAAAAAAAAAAKBBjAQAAAAAAAAAAAAAAABSIsQAAAAAAAAAAAAAAAAAKxFgAAAAAAAAAAAAAAAAABWIsAAAAAAAAAAAAAAAAgAIxFgAAAAAAAAAAAAAAAEDB1KQH4ECttZ9OcnaSdUmOSfJCkieSfDfJt3vveyY4HgAAAAAAAAAAAAAAAKxYYqwloLV2YpLfT/L+JBvmWPpya+2eJF/qvX9yLMMBAAAAAAAAAAAAAAAAScRYE9dauzTJliQnF5YfkeRnM/3ULDEWAAAAAAAAAAAAAAAAjJEYa4Jaax9L8vFZ3nooyQNJnkxydJLXJHljkleNbTgAAAAAAAAAAAAAAADgAGKsCWmtXZNXhlg3JflE7/3fZ1m/KsnmJO9J8kuLPiAAAAAAAAAAAAAAAABwADHWBLTWzk7yyYFT30/ym733Lx1sT+99X5Lbk9zeWvP/BgAAAAAAAAAAAAAAAGO2atIDrDQzIdWNOTCE+9BcIdaw3vveBR8MAAAAAAAAAAAAAAAAmJMYa/wuTbJx4PhrvfetkxoGAAAAAAAAAAAAAAAAqJn60UtYYB8aOv6ziUwBAAAAAAAAAFB098O787m7Hso9jzyb51/am+OOmso5p52QD557ejauWzPp8QAAAFhA7gEB5ibGGqPW2k8muWDg1PeS/MtkpgEAAAAAAAAAmNv2nbtzxS335s4du17x3rYdu7Lljh3ZvGFtPn3JWdm03hfyAAAADmfuAQFqVk16gBXmwqHjr/Xe+0QmAQAAAAAAAACYw5fvezznX3/7rF/CG7Rtx66cf/3t+fJ9j49pMgAAABaae0CAOjHWeL156HhbkrRpb2utbW2t3ddae6a1tqe1tqO1dmtr7SOttdeNfVoAAAAAAAAAYEXavnN3Lv389rywd19p/Qt79+XSz2/P9p27F3kyAAAAFpp7QID5EWON16ah4/tnIqtbk3w1yfuSnJHkhCTHJjk9ycVJPpHkgdbaZ1prx45rWAAAAAAAAABgZbrilnvLX8Lb74W9+3LlLfcu0kQAAAAsFveAAPMjxhqv1wwdH5vkm0kuKuw9MsnlSb7eWhv+HAAAAAAAAACABfGtnbtz545dh7R3245dufthfxkdAADgcOEeEGD+piY9wAqzZuh4a5Ifm3m9J8lnk3wlycNJXpXk7CS/k+StA3t+Jsk/tNYu6L1/f5RhWmunJHn1PLe9YZRrAgAAAAAAAABL2w3feGi0/XftzMZ1w1+RAAAAYClyDwgwf2KsMWmtrU6yeuj0upnf9yV5e+9959D7dyfZ2lq7Jsm1A+c3J/nDJH8y4liXJ/nYiJ8BAAAAAAAAACwj9zzy7Gj7H31mgSYBAABgsbkHBJi/VZMeYAU54iDnn8nsIdYP9N4/leQvh07/QWvtuIUaDgAAAAAAAAAgSZ5/ae9I+597cbT9AAAAjI97QID5E2ONSe/9f5Psm+Wtv5grxBrwx5kOt/Y7Kck7FmI2AAAAAAAAAID9jjtqaqT9x68ebT8AAADj4x4QYP7EWOO1Z5ZzX6hs7L3vSfKPQ6d/ccR5/jrJWfP8+eURrwkAAAAAAAAALGHnnHbCaPtfe+ICTQIAAMBicw8IMH8y1PHaneT4gePHe+/fm8f+O5O8f+D4jFGG6b0/keSJ+exprY1ySQAAAAAAAABgifvguadnyx07Dnn/B85dv4DTAAAAsJjcAwLMnydjjdcDQ8f/Pc/9jw4dnzzCLAAAAAAAAAAAr7Bx3Zr8/Ia1h7R384a12bhuzQJPBAAAwGJxDwgwf2Ks8fqPoeMX57l/eP3RI8wCAAAAAAAAADCr6y45K0dPze9rJUdPrcqnLzlrkSYCAABgsbgHBJgfMdZ4fWfoeL4Z8PD6p0aYBQAAAAAAAABgVpvWr8nNl20qfxnv6KlVufmyTdm03l9EBwAAONy4BwSYHzHWeH0lSR84/onW2nyebjWcDj88+kgAAAAAAAAAAK/0rjNPzW0fPi+bN6ydc93mDWtz24fPy7vOPHVMkwEAALDQ3AMC1E1NeoCVpPf+aGttW5K3zJw6MsnFSf6p+BFvHzq+baFmAwAAAAAAAAAYtmn9mtxx5Vtz98O7c8NdO3PPo8/kuRf35vjVUznntSfmA+euz8Z1/hI6AADAcuAeEKBGjDV+W/PDGCtJrk4hxmqtnZ/kzQOn9iX554UdDQAAAAAAAADglTauW+MLdwAAACuEe0CAua2a9AAr0NYk9w8cX9Rau3quDa21U2b2Dfr73vuDCz0cAAAAAAAAAAAAAAAAMDsx1pj13l9OclWmn2y136daa3/VWls7vL619rYktyd5w8DpXUn+aFEHBQAAAAAAAAAAAAAAAA4wNekBVqLe+1dba1cluW7g9JVJfq+1dmeSR5Ick+ScJBuGtr+U5Dd67/81lmEBAAAAAAAAAAAAAACAJGKsiem9X99aeznJtUmOnTl9ZJLz59j2eJJf6b3fsdjzAQAAAAAAAAAAAAAAAAdaNekBVrLe+5Ykb0ryxSTPzbH0sSQfT/JTQiwAAAAAAAAAAAAAAACYDE/GmrDe+4NJfru1dkyS85KsS/LjSV5K8mSSb/fevzPBEQEAAAAAAAAAAAAAAICIsZaM3vv/Jbl10nMAAAAAAAAAAAAAAAAAs1s16QEAAAAAAAAAAAAAAAAADgdiLAAAAAAAAAAAAAAAAIACMRYAAAAAAAAAAAAAAABAgRgLAAAAAAAAAAAAAAAAoECMBQAAAAAAAAAAAAAAAFAgxgIAAAAAAAAAAAAAAAAoEGMBAAAAAAAAAAAAAAAAFIixAAAAAAAAAAAAAAAAAArEWAAAAAAAAAAAAAAAAAAFYiwAAAAAAAAAAAAAAACAgqlJD3AwrbUbF/DjepLnkjyT5LEk30pyT+/9pQW8BgAAAAAAAAAAAAAAALCMLdkYK8n7Mh1RLZYXWmt/l+S63vu/LeJ1AAAAAAAAAAAAAAAAgGVg1aQHKGpDP/NZO7x+/7ljklyW5ButtT9trR2xoBMDAAAAAAAAAAAAAAAAy8pSj7EGY6o+8DNbcHWwtZnl/Qy8d0SSjyTZuij/AgAAAAAAAAAAAAAAAGBZmJr0AHN4/czvNyW5IcnJmY6pvpvk5iTfTPJQkmeTHJXkpCRvTHJhknfPnOtJbkry0SSrk6xJcmaSX0hyaaafjrU/7vqt1tpdvffPjOHfBgAAAAAAAAAAAAAAABxmlmyM1Xvf0Vp7Z6ZjqmOSPJXkqt77TXNs+3qSLa21U5Ncl+RXk/x6klcneWfvfW+SO5Pc2Fq7OsmWTEdZ+4Osj7bWPtd7f3Gx/l0AAAAAAAAAAAAAAADA4WnVpAc4mNba65L8bZJjk/xPkgt+RIj1A733x3vvv5bpIKsluTjJtUNrnu69vzfJF2fWJMkpSd6zEPMDAAAAAAAAAAAAAAAAy8uSjbGS/HmSEzP91Kqre+/3H8JnXJPk/kzHVle01s6YZc3lSZ6euU6SXHgI1wEAAAAAAAAAAAAAAACWuSUZY7XW1iR598zh00lKT8Qa1nvfm+RvBk5dNsua55N8IT98OtbPHcq1AAAAAAAAAAAAAAAAgOVtScZYSd6SZHWmn1a1vfe+b4TP2jbw+qKDrPnXmd8tySkjXAsAAAAAAAAAAAAAAABYppZqjHXawOunRvyspw/yuYMeGni9dsTrAQAAAAAAAAAAAAAAAMvQUo2xTj7I60Nx0szvNvB62HMDr9uI1wMAAAAAAAAAAAAAAACWoaUaYz0587sl2dRaG2XOzQOvD/aUreMGXu8Z4VoAAAAAAAAAAAAAAADAMrVUY6z/HHh9UpL3HsqHtNaOSPK7M4c9yYMHWbphYM1jh3ItAAD+n707f7LsLO8D/n2aFjsSEkKyWASYzQhDALNFxiwBgoulYpYyhAIrKi8EiqqkwOBycEVGEBNskxATA6mA2eyQGANFgEoMdlgkISCygySQwhKMZCyzKGi3I0bMkx/uac9VMz19u6dnzum+n0/VqfPec9/z3O/9A771AgAAAAAAAAAAAMDeNtUy1jlJrs6sHFVJ/m1V3Wcbc34zyWlznz+8wb5HzK03KmwBAAAAAAAAAAAAAAAAS2ySZazuvinJ72VWxOokJyU5t6qevcj7VXViVf1+kn8+vJ8k1yd5zwav/Mzc+oJthQYAAAAAAAAAAAAAAAD2tNWxAxzCryd5XpJTcqCQ9YdV9ZUk78usNHVZkuuS3DLJ8UkelOQJSf5RkltlVubK8P5Z3f3t9T9SVY9K8sAcKG196sj8HQAAAAAAAAAAAAAAAGA3m2wZq7uvr6qnJPlEkjtlVpaqJPdP8qpNXl87UWvtnbd09xs32HvW3DtXJjnnMKMDAAAAAAAAAAAAAAAAe9DK2AEOpbu/lOSnkvxZbl6wyvD5YFdyoIS1L8mvdvdLD/EbT+3uleE6qbv3H5E/AwAAAAAAAAAAAAAAAOxqky5jJUl3fznJo5O8JMkluXnp6mAqyY1J3pXkod39+iMeEgAAAAAAAAAAAAAAANjzVscOsIjhtKq3JnlrVT0oyelJ/l6SE5PcMbPy1VVJLkvy2STndvc1I8UFAAAAAAAAAAAAAAAA9qBdUcaa190XJ7l47BwAAAAAAAAAAAAAAADAclkZOwAAAAAAAAAAAAAAAADAbqCMBQAAAAAAAAAAAAAAALAAZSwAAAAAAAAAAAAAAACABShjAQAAAAAAAAAAAAAAACxgdewAW1FV907y0CQnJTkuyTFbndHdZ+90LgAAAAAAAAAAAAAAAGDvm3wZq6puk+RlSX4hyak7MFIZCwAAAAAAAAAAAAAAANiySZexqurHk3wwyY8mqXVf91bHbeMdAAAAAAAAAAAAAAAAgCQTLmNV1V2S/HGSU4ZHa0WqWncHAAAAAAAAAAAAAAAAOOImW8ZK8huZFbHmS1gXJPlIkkuTXJVk3zjRAAAAAAAAAAAAAAAAgGUzyTJWVd0hyfMzK2JVkhuSvKC7PzRqMACbGWitAAAgAElEQVQAAAAAAAAAAAAAAGBpTbKMleSxOZCtk/ySIhYAAAAAAAAAAAAAAAAwppWxA2zgHnPrK7r7vaMlAQAAAAAAAAAAAAAAAMh0y1jHDvdOcsGYQQAAAAAAAAAAAAAAAACS6ZaxvjO3vmG0FAAAAAAAAAAAAAAAAACDqZaxLptbnzhaCgAAAAAAAAAAAAAAAIDBVMtY5ya5OkkleXhV1ch5AAAAAAAAAAAAAAAAgCU3yTJWd9+Y5A+Gj8cn+ZkR4wAAAAAAAAAAAAAAAABMs4w1+LUklw/rN1TVCWOGAQAAAAAAAAAAAAAAAJbbZMtY3X1Nkp9NclWSeyb5RFXdb9RQAAAAAAAAAAAAAAAAwNJaHTvARqrq1CTfSvKPk/xBkgclubiq3p/ko0kuyayotX8rc7v78s13AQAAAAAAAAAAAAAAANzcZMtYSb6RpNc9OybJc4drOzrT/s8AAAAAAAAAAAAAAADARO2GYlJlVqLqdc8AAAAAAAAAAAAAAAAAjprdUMZKlK8AAAAAAAAAAAAAAACAkU25jPWusQMAAAAAAAAAAAAAAAAArJlsGau7zxw7AwAAAAAAAAAAAAAAAMCalbEDAAAAAAAAAAAAAAAAAOwGylgAAAAAAAAAAAAAAAAAC1DGAgAAAAAAAAAAAAAAAFiAMhYAAAAAAAAAAAAAAADAApSxAAAAAAAAAAAAAAAAABagjAUAAAAAAAAAAAAAAACwgNUxfrSq/se6R93dT9xkz074od8BAAAAAAAAAAAAAAAAWMQoZawkj0/Sw7rm1hvt2Qkb/Q4AAAAAAAAAAAAAAADAplbGDgAAAAAAAAAAAAAAAACwG4x1MlYyO6lqJ/YAAAAAAAAAAAAAAAAAHHGjlLG6e9MTuRbZAwAAAAAAAAAAAAAAAHC0KDwBAAAAAAAAAAAAAAAALEAZCwAAAAAAAAAAAAAAAGABylgAAAAAAAAAAAAAAAAAC1DGAgAAAAAAAAAAAAAAAFiAMhYAAAAAAAAAAAAAAADAApSxAAAAAAAAAAAAAAAAABawOnaARVXV7ZI8OslDk5yU5Lgkx2xxTHf3z+90NgAAAAAAAAAAAAAAAGDvm3wZq6p+JMlrkjwvyW0PZ1SSTqKMBQAAAAAAAAAAAAAAAGzZpMtYVfX4JH+U5PjMylTJrFAFAAAAAAAAAAAAAAAAcFRNtoxVVfdP8qEkdxgedWaFrNrwJQAAAAAAAAAAAAAAAIAjZLJlrCSvz6yItXYS1v4kH0zykSSXJrkqyb5xogEAAAAAAAAAAAAAAADLZpJlrKo6MckzcuA0rO8keVp3/9mowQAAAAAAAAAAAAAAAIClNckyVpLHZlbCSmaFrBcqYgEAAAAAAAAAAAAAAABjWhk7wAbuOtw7yde7++NjhgEAAAAAAAAAAAAAAACYahnrtnPrC0dLAQAAAAAAAAAAAAAAADCYahnrW3PrG0dLAQAAAAAAAAAAAAAAADCYahnr63Prk0dLAQAAAAAAAAAAAAAAADCYahnrvMxOx6okj6yq1ZHzAAAAAAAAAAAAAAAAAEtukmWs7t6f5O3Dx9sl+bkR4wAAAAAAAAAAAAAAAABMs4w1eG2SizM7HetfV9U9R00DAAAAAAAAAAAAAAAALLXJlrG6+8Ykz07yF0lOTHJuVf2DcVMBAAAAAAAAAAAAAAAAy2p1jB+tqsduYfuvJHlzkrsk+XhVfS7JR5NckuSqJPu38tvd/emt7AcAAAAAAAAAAAAAAABIRipjJflkkt7iO52kkjxquLajM95/BgAAAAAAAAAAAAAAAHaxsYtJteC+Xndf9D0AAAAAAAAAAAAAAACAHTFmGWsrhSrlKwAAAAAAAAAAAAAAAGBUY5WxXj3S7wIAAAAAAAAAAAAAAABsyyhlrO5WxgIAAAAAAAAAAAAAAAB2lZWxAwAAAAAAAAAAAAAAAADsBspYAAAAAAAAAAAAAAAAAAtQxgIAAAAAAAAAAAAAAABYgDIWAAAAAAAAAAAAAAAAwAJWxw6wkaqqJHefe/St7v7+FmfcKsnJa5+7+/IdigcAAAAAAAAAAAAAAAAsmSmfjPWcJH8xXBclufU2ZtwqycVrc6rq6TsXDwAAAAAAAAAAAAAAAFgmUy5jnZGkhvU7u/varQ4Y3nnnMKeSnLlj6QAAAAAAAAAAAAAAAIClMskyVlXdMskT5h7958MY99659ZOq6haHMQsAAAAAAAAAAAAAAABYUpMsYyV5cJLbDOvru/uzhzHrc0muG9a3H2YDAAAAAAAAAAAAAAAAbMlUy1gPGO6d5MLDGdTdneSiuUc/djjzAAAAAAAAAAAAAAAAgOU01TLWnefW396Bed+aW5+0A/MAAAAAAAAAAAAAAACAJTPVMtat59Y37sC8+Rm324F5AAAAAAAAAAAAAAAAwJKZahnrqrn1iTsw705z6+t3YB4AAAAAAAAAAAAAAACwZKZaxvq/w72SPGgH5s3PuHIH5gEAAAAAAAAAAAAAAABLZqplrIvn1j9SVQ/b7qDh3bvMPfrf204FAAAAAAAAAAAAAAAALK1JlrG6+9Ik307Sw6NfP4xxZ82tv9fdf34YswAAAAAAAAAAAAAAAIAlNcky1uCPktRwPa2qfnmrA6rqZUmekVmpq5O8f0cTAgAAAAAAAAAAAAAAAEtjymWs1yf5fmYlqkry+qr691V1+81erKrbVdXvJPmtuff3JXndEcwLAAAAAAAAAAAAAAAA7GGrYwfYSHd/s6pem+TsHChUvTjJC6rqPyX5ZJIvJblq+P6EJKcleXyS5yc5dngnw/f/qrsvO4p/AQAAAAAAAAAAAAAAANhDJlvGSpLufm1VPSTJs3KgkHVskhcN10bmS1iV5H3d/ZojmRUAAAAAAAAAAAAAAADY21bGDrCA5yZ5U2alqh6uDJ8PdmXdnjdkdlIWAAAAAAAAAAAAAAAAwLZNvozV3T/o7n+W5KeTnJ+bl66Smxe0Mvf9p5I8sbtf0d37j1ZeAAAAAAAAAAAAAAAAYG9aHTvAorr7Y0k+VlUPSvLEJKcnOSXJnYYtVyb56yTnJfmT7r5klKAAAAAAAAAAAAAAAADAnrRrylhruvviJBcneePYWQAAAAAAAAAAAAAAAIDlsTJ2AAAAAAAAAAAAAAAAAIDdQBkLAAAAAAAAAAAAAAAAYAGrYwfYSFV9fVh2kp/q7iu2OeeuSc5Zm9Xd996JfAAAAAAAAAAAAAAAAMBymWwZK8k9h3vn8HKurpsFAAAAAAAAAAAAAAAAsGUrYwcAAAAAAAAAAAAAAAAA2A2UsQAAAAAAAAAAAAAAAAAWsAxlrGPm1vtGSwEAAAAAAAAAAAAAAADsastQxjp5bn3daCkAAAAAAAAAAAAAAACAXW0ZylhPGe6d5JtjBgEAAAAAAAAAAAAAAAB2r9Uxf7yqTl1w612raiujb5XklCT/MMnL555/YStDAAAAAAAAAAAAAAAAANaMWsZK8o3MTqw6lEpy7mH8xnyL6wOHMQcAAAAAAAAAAAAAAABYYmOXsdZsduzVlo7FmtPDVUnOT/KRbc4BAAAAAAAAAAAAAAAAltzK2AGOsLUS1/uTPKO7NzuFCwAAAAAAAAAAAAAAAOCgxj4Z612H+O6M4d5JPpDk+gVndpIbk1yd5NIkn+ruy7adEAAAAAAAAAAAAAAAACAjl7G6+8yNvquqMzIrViXJy7v78qOTCgAAAAAAAAAAAAAAAOCHrYwdYBM1dgAAAAAAAAAAAAAAAACAZOSTsTYxf2rWlaOlAAAAAAAAAAAAAAAAAMiEy1jd/a6xMwAAAAAAAAAAAAAAAACsWRk7AAAAAAAAAAAAAAAAAMBuoIwFAAAAAAAAAAAAAAAAsABlLAAAAAAAAAAAAAAAAIAFrI4dYCuq6u8nOT3JA5Icn+S4bK1Q1t39xCORDQAAAAAAAAAAAAAAANjbdkUZq6p+Kckrkvzo4YxJ0juTCAAAAAAAAAAAAAAAAFg2ky5jVdVtk7w3ydMzK1MlBwpVNbf1YCWrzb4HAAAAAAAAAAAAAAAAWNiky1hJ3pbkGcO6MytYrS9lJTcvXmXd97XB9wAAAAAAAAAAAAAAAAALWxk7wEaq6mlJnpdZqaqTXJvkl5PcK8l9M1ey6u6VJMcleUCSn09yTg4UsL6T5Ke7e6W7b3E0/wMAAAAAAAAAAAAAAACwd0y2jJXkFcO9klyX5HHd/W+6+7IkN63f3N3XdfeXu/sd3f24JM9McnWSOyf5cFU982gFBwAAAAAAAAAAAAAAAPaeSZaxqurYJI/JgVOxzu7ui7Yyo7s/lOQpSf4myTFJ3lNV99rprAAAAAAAAAAAAAAAAMBymGQZK8mjMstWSfYleft2hnT3BUleM3y8TZJf25F0AAAAAAAAAAAAAAAAwNKZahnr1OHeSb7Y3dccanNVrR7i699NcmNmxa5nVdUtdyYiAAAAAAAAAAAAAAAAsEymWsY6fm79jYN8f9O6z7feaFB335Dk88PHY5P85GElAwAAAAAAAAAAAAAAAJbSVMtY8ydd3XCQ769b9/nOm8y7Ym59t20lAgAAAAAAAAAAAAAAAJbaVMtY82Wr2x/k++uT7J/7fPdN5tXc+uTthgIAAAAAAAAAAAAAAACW11TLWN+cW5+4/svu3p/k63OPHr7JvPvPv34YuQAAAAAAAAAAAAAAAIAlNdUy1peHeyU5bYM9F82tn73RoKr6sSQPzoES1rcPOx0AAAAAAAAAAAAAAACwdKZcxrp6WJ9QVfc4yJ6PDvdK8uiqesH6DVV1myRvH/bU8PizO5wVAAAAAAAAAAAAAAAAWAKTLGN1dyf59Nyjpx5k2weTXJ/ZiVeV5J1V9XtV9eyqelJVvTTJ/0ry6GFPJ/nz7v7akU0PAAAAAAAAAAAAAAAA7EWTLGMNPjS3ft76L7v76iS/kVkRqzP7L2ck+cMkf5zk3yW537B9bc+rjmBeAAAAAAAAAAAAAAAAYA+bchnrg0m+mOSSJMdX1akH2fObSd6fA2WrDOuae1bD83/Z3R87ookBAAAAAAAAAAAAAACAPWt17AAbGU6+evAme/ZX1fOSvCzJv0hy3LotleSyJK/s7vcdkaAAAAAAAAAAAAAAAADAUphsGWtR3f2DJL9VVW9M8rgk901yxyRXJbkwyee6e/+IEQEAAAAAAAAAAAAAAIA9YNeXsdZ0974kfzJcAAAAAAAAAAAAAAAAADtqZewAAAAAAAAAAAAAAAAAALuBMhYAAAAAAAAAAAAAAADAApSxAAAAAAAAAAAAAAAAABagjAUAAAAAAAAAAAAAAACwgNWxA2xFVd0nyUOSnJzk2CTHbHVGd5+907kAAAAAAAAAAAAAAACAvW/yZayqul2Slyc5M8mpOzBSGQsAAAAAAAAAAAAAAADYskmXsarqJ5J8IMndktS6r3ur47bxDgAAAAAAAAAAAAAAAECSCZexqup+ST6e5I7Do87NC1nry1kAAAAAAAAAAAAAAAAAR8xky1hJ3pRZEWv+NKtPJPlYkq8muSbJTSPkAgAAAAAAAAAAAAAAAJbQJMtYVXX3JE/OgdOw/jrJM7v786MGAwAAAAAAAAAAAAAAAJbWytgBNvDY4V6ZFbKeo4gFAAAAAAAAAAAAAAAAjGmqZaxThnsn+WJ3nz9mGAAAAAAAAAAAAAAAAICplrHmc106WgoAAAAAAAAAAAAAAACAwVTLWFfMraeaEQAAAAAAAAAAAAAAAFgiUy06fX5ufa/RUgAAAAAAAAAAAAAAAAAMJlnG6u6vJLkwSSV5SFWdMnIkAAAAAAAAAAAAAAAAYMlNsow1OGu4ryR5zZhBAAAAAAAAAAAAAAAAACZbxuru/5rkLZmdjnVmVb1y5EgAAAAAAAAAAAAAAADAEptsGWvw0iRvzqyQ9bqq+u9V9fiqusXIuQAAAAAAAAAAAAAAAIAlszp2gEPp7k7y0qr6ZJL/kOTJw/W3VfW1JFcn2b/FkU/c8aAAAAAAAAAAAAAAAADAnjfpMlaSVNXDkrw4yfFJOrNTsm6b5MHD54VHbXE/AAAAAAAAAAAAAAAAwN+ZdBmrqs5M8tbMcq4VqRSqAAAAAAAAAAAAAAAAgKNusmWsqnpCkv+YZGV4tHYqFgAAAAAAAAAAAAAAAMBRN9kyVpLfyayItVbC+naSNyf5eJKvJrmmu38wXjwAAAAAAAAAAAAAAABgmUyyjFVVD0vywMyKWElyXpKndfe146UCAAAAAAAAAAAAAAAAltnK2AE28PDhXkluSvJ8RSwAAAAAAAAAAAAAAABgTFMtY91puHeSz3f3X44ZBgAAAAAAAAAAAAAAAGCqZayr5taXj5YCAAAAAAAAAAAAAAAAYDDVMtZfza1vO1oKAAAAAAAAAAAAAAAAgMFUy1jnJ9k3rE8bMwgAAAAAAAAAAAAAAABAMtEyVndfmeS/Jakk96mqh4wcCQAAAAAAAAAAAAAAAFhykyxjDc7KgdOx3lRVx4wZBgAAAAAAAAAAAAAAAFhuky1jdfeFSV6UpJOcnuT9VXXHcVMBAAAAAAAAAAAAAAAAy2qyZawk6e53Jnl2kquTPC3JV6rq7Ko6vaqOHzUcAAAAAAAAAAAAAAAAsFRWxw6wkar6wfpHSU5M8qrhSlVtdWx392T/MwAAAAAAAAAAAAAAADBdUy4mzTeterjWPwcAAAAAAAAAAAAAAAA4KlbGDrCJ+QLW2nU4cwAAAAAAAAAAAAAAAAC2ZconY306SlQAAAAAAAAAAAAAAADAREy2jNXdjx87AwAAAAAAAAAAAAAAAMCalbEDAAAAAAAAAAAAAAAAAOwGylgAAAAAAAAAAAAAAAAAC1DGAgAAAAAAAAAAAAAAAFiAMhYAAAAAAAAAAAAAAADAApSxAAAAAAAAAAAAAAAAABagjAUAAAAAAAAAAAAAAACwAGUsAAAAAAAAAAAAAAAAgAUoYwEAAAAAAAAAAAAAAAAsQBkLAAAAAAAAAAAAAAAAYAHKWAAAAAAAAAAAAAAAAAALUMYCAAAAAAAAAAAAAAAAWIAyFgAAAAAAAAAAAAAAAMAClLEAAAAAAAAAAAAAAAAAFqCMBQAAAAAAAAAAAAAAALAAZSwAAAAAAAAAAAAAAACABYxSxqqqHwzXTVV16hgZAAAAAAAAAAAAAAAAALZirJOxau46+AaFLQAAAAAAAAAAAAAAAGBCVkf87d7k+w2LWgAAAAAAAAAAAAAAAABH21gnY3UOlK0OVbrarLAFAAAAAAAAAAAAAAAAcFSMVca6dm59wiH2OR0LAAAAAAAAAAAAAAAAmISxylhXzK0fN1IGAAAAAAAAAAAAAAAAgIWNVcb6/HCvJGdV1bOqavUQ+/soZAIAAAAAAAAAAAAAAADY0KEKUEfS7yc5I7OS1XFJ3pdkX1V9N8m+g+w/r6pu2oHf7e6+9w7MAQAAAAAAAAAAAAAAAJbMKGWs7v7TqvpIkqdnVsiqJLdMcteDbK8kd9upn96hOQAAAAAAAAAAAAAAAMCSWRnxt5+f2YlYNfes565s8Hy7FwAAAAAAAAAAAAAAAMC2jXIyVpJ09/VJnltVr0vys0kenuTkJLfPrCR2j7WtSa5IctMYOQEAAAAAAAAAAAAAAACSEctYa7r7C0m+sP55Ve2f+/iT3X350UsFAAAAAAAAAAAAAAAAcHMrYwfYRI8dAAAAAAAAAAAAAAAAACCZfhmrxg4AAAAAAAAAAAAAAAAAkCSrYwc4hFfPra8eLQUAAAAAAAAAAAAAAABAJlzG6u5Xb74LAAAAAAAAAAAAAAAA4OhYGTsAAAAAAAAAAAAAAAAAwG4w2ZOxNlNVd0hyUpITknSSq5J8t7uvHTUYAAAAAAAAAAAAAAAAsCftqjJWVT0myT9J8pgk991gz1eTnJvkXd19ztFLBwAAAAAAAAAAAAAAAOxlu6KMVVU/nuRtSR6x9ugQ2++XWVHrzKq6IMkvdPfFRzgiAAAAAAAAAAAAAAAAsMetjB1gM1X1giSfy6yItVbC6rkrGzyr4Z3PVdUZRyctAAAAAAAAAAAAAAAAsFdN+mSsqnp6knckuUUOFK3WClnXJvlKkmuGz8dldiLWccPntVLWrZO8raq+190fPhq5AQAAAAAAAAAAAAAAgL1nsmWsqjohyXtyoIhVSW5I8pYk7+7uL27w3gOT/FySFye5/fDuLZK8u6ru3d3fOwrxAQAAAAAAAAAAAAAAgD1mZewAh/CrmZ1ytVbE+myS07r7lRsVsZKku7/U3b+S5LQk5+fASVrHDjMBAAAAAAAAAAAAAAAAtmzKZawXZlbESpKLkjypu/9y0Ze7+5tJnpzkwhwodL1wp0MCAAAAAAAAAAAAAAAAy2GSZayqemiSk3LgVKsXd/ffbHXO8M5L5ubcuaoetjMpAQAAAAAAAAAAAAAAgGUyyTJWkgcM907yf7r7/O0OGt792kFmAwAAAAAAAAAAAAAAACxsqmWsk+bWl+zAvC/Nre+8A/MAAAAAAAAAAAAAAACAJTPVMtat5tZ/uwPz/t8GswEAAAAAAAAAAAAAAAAWMtUy1nfn1nffgXl3m1tfuQPzAAAAAAAAAAAAAAAAgCUz1TLWXw33SvKIqrrTdgdV1QlJHnWQ2QAAAAAAAAAAAAAAAAALm2oZ67wk+5J0ktUkZx3GrLOGGRlmnnN40QAAAAAAAAAAAAAAAIBlNMkyVndfn+QTmZ2MVUleUlUv2eqcqvqnSV6aWamrk3yyu2/YyawAAAAAAAAAAAAAAADAcphkGWtw9nDvzHK+qar+S1XdZ7MXq+reVfXeJL+79mjdTAAAAAAAAAAAAAAAAIAtWR07wEa6+zNV9Y4kZ2ZWyKokz0nynKr6n0k+k+QrSa4Zvj8uyf2SnJ7kkcOYyoFTsd7d3Z85qn8CAAAAAAAAAAAAAAAA2DMmW8YavCjJ3ZM8KbNCVTIrWD0yySMO8d58CauS/GmSXzxyMQEAAAAAAAAAAAAAAIC9bmXsAIfS3TcleWqS3x4ezZes1j7PX3/36tznNyR56jALAAAAAAAAAAAAAAAAYFsmXcZKZoWs7n5lkocmeU+S7+eHy1dr1p5/f9j7E939iu7ed7TyAgAAAAAAAAAAAAAAAHvT6tgBFtXdFyU5o6p+Mckjkjw8yUlJjs+sgPW9JN9JckGSC7r7xrGyAgAAAAAAAAAAAAAAAHvPriljrenu7yc5b7gAAAAAAAAAAAAAAAAAjoqVsQMAAAAAAAAAAAAAAAAA7AbKWAAAAAAAAAAAAAAAAAALUMYCAADg/7N378GWlfWZgN+vOQIil25QUOjmIt6gW0VEEZWKeBlzcZJCIwmVTDTiJJmpaDKJSRzjNZkkk8mtxEycmogTa6bURCKaIU4Sc9EwEVAgRLuJomKg8YJyaUBQtOU3f5x9phdNn9Nn99l91jp7P0/Vrv2tddb6ztvbr9baUv32AgAAAAAAAAAAAJZBGQsAAAAAAAAAAAAAAABgGZSxAAAAAAAAAAAAAAAAAJZBGQsAAAAAAAAAAAAAAABgGZSxAAAAAAAAAAAAAAAAAJZBGQsAAAAAAAAAAAAAAABgGZSxAAAAAAAAAAAAAAAAAJZBGQsAAAAAAAAAAAAAAABgGZSxAAAAAAAAAAAAAAAAAJZBGQsAAAAAAAAAAAAAAABgGZSxAAAAAAAAAAAAAAAAAJZBGQsAAAAAAAAAAAAAAABgGZSxAAAAAAAAAAAAAAAAAJZBGQsAAAAAAAAAAAAAAABgGeb6DjCu1trxSc5OcnKSI5McliRVdUGfuQAAAAAAAAAAAAAAAIDptibKWK21luRHkrwmyRN3/3GSSvKgMlZr7dwkrxpt3l5VP7g/c05Ka+29SX5ot903VtWJPcQBAAAAAAAAAAAAAAAAsgbKWK21Y5O8J8mzF3aN3qszXsxlSd6d5KAk1Vp7ZlV9bL8EnZDW2vfnwUUsAAAAAAAAAAAAAAAAoGfr+g6wlFER64rMF7F2L14tPBFrUVV1a5JLOrvOm2jACWutrU/y9r5zAAAAAAAAAAAAAAAAAA822DJWa+2AJJcm2djZ/bUkv5rkuUlekL0/GStJPtAZP39iAfeP30ly7Gh8d59BAAAAAAAAAAAAAAAAgAcabBkrySuSnJZdT796f5KTq+pNVfWRJJ9b5jwfHr23JKe01jZMNOWEtNaen/k/c5LsTPLGHuMAAAAAAAAAAAAAAAAAuxlyGes1nfFlSc6rqnvGnaSq7khyc2fXKSsNNmmttYcl+cPOrt9Ncm1PcQAAAAAAAAAAAAAAAIA9mOs7wJ601k5K8tjOrp+pqvtXMOX1STaOxo9J8rEVzLU//EaSE0fjG5K8OcmZfYUBAAAAAAAAgLXkmpt35B1X3pRrv3hXvv6tnTn0wLmcdtzheeWZx+f0jev7jscaZE2tDp8zk9bXmrKWARbnGgmMwzUDWCtaVfWd4UFaa+cleW+SSvLZqnrCHo45IckXRptVVQcsMd/FSV48mu/nquqtk0+9b1prz8z8k78WnlL2gqr669bac5L8XefQG6vqxFWO9yCttc1Jti5sb926NZs3b+4xEQAAAAAAAACz6qrtO/KqS7bmihvvWPSYs07YkAvP3ZIzNvlLW+ydNbU6fM5MWl9ryloGWJxrJDAO1wxgXNu2bcuWLVu6u7ZU1bbV+v3r9n5IL47ujK+bwHz3dsYPm8B8E9FaOyjJO7Prf4d3VdVf9xgJAAAAAAAAANaES6+7JWf//j8s+Re1kuTyG+/I2b//D7n0ultWKRlrlTW1OnzOTFpfa8paBlicayQwDtcMYC0aahnr0M74ngnMd/iE55uUNyd5/Gj8tSQ/318UAAAAAAAAAFgbrtq+Iy9911X55s77l3X8N3fen5e+66pctX3Hfk7GWmVNrQ6fM5PW15qylgEW5xoJjMM1A1irhlrGuq0zPnIC8x2/yE4izQ0AACAASURBVNy9aa2dnuQ1nV0/W1WDyAYAAAAAAAAAQ/aqS7Yu+y9qLfjmzvvz6ku27qdErHXW1OrwOTNpfa0paxlgca6RwDhcM4C1aqhlrK+O3luSJ69kotbaoUme2Nl140rmm4TW2lySdyaZG+36i6p6d4+RAAAAAAAAAGBNuHr7jlxx4x37dO7lN96Ra272r2fzQNbU6vA5M2l9rSlrGWBxrpHAOFwzgLVsqGWsKzvjR7XWnrqCuX40yQGj8X27zd2X12ZXyeyeJP+ujxCttaNba5vHeSU5uY+sAAAAAAAAAJAkF338ppWdf+X2CSVhWlhTq8PnzKT1taasZYDFuUYC43DNANayub0fsvqq6iuttU9l1xOt3pLkRePO01pbn+R1SWq067Kq+tZkUu6b1tqpSV7f2fWGqvqXnuL8+yRv6ul3AwAAAAAAAMDYrv3iXSs7/0t3TigJ08KaWh0+ZyatrzVlLQMszjUSGIdrBrCWDfXJWEny9s74e1prr1/0yD1orR2S5E+SbEzSRrvfOqFs+6S1ti7JRUkOGu26OsmF/SUCAAAAAAAAgLXl69/auaLz775vZeczfayp1eFzZtL6WlPWMsDiXCOBcbhmAGvZkMtY70jyhdG4JXlLa+3drbUT9nZia+27k3w8yfMy/1SsSnJVVX1of4Vdpp9J8ozReGeSV1bVd3rMAwAAAAAAAABryqEHzq3o/MMOWtn5TB9ranX4nJm0vtaUtQywONdIYByuGcBaNtgyVlXtTHJekm9kvkzVkvxQks+31i5P8uvd41trv9Rau6i1dlOSP09y6sKPktyZ5PzVyr4nrbVHJ/lPnV2/W1XX9pVn5A+SbBnz9QO9JAUAAAAAAACAJKcdd/jKzj/2iAklYVpYU6vD58yk9bWmrGWAxblGAuNwzQDWssGWsZKkqq5O8sNJ7s18ISuZz/z00f4FLfPlrJcn2TjaXihw3ZXkpVV1w+qkfrDWWkvyh0kOGe26Icmb+8qzoKq+WlXbxnkl+XzfuQEAAAAAAACYXa888/gVnX/BmZsmlIRpYU2tDp8zk9bXmrKWARbnGgmMwzUDWMsGXcZKkqq6NMmZSa7LfLnqAT/uvFpnX0bbn07yzKr6m1WIupR/m+S5ne2frKpv9BUGAAAAAAAAANaq0zeuzzNO2LBP5551woacvnH9hBOx1llTq8PnzKT1taasZYDFuUYC43DNANaywZexkqSqrkvypCTnJbksyc7Ml626r3Ter0nyiiRbRuf27S2d8YeSfK61duJSrySP3G2OuT0cd+Bq/QEAAAAAAAAAYCjedu6WHDw33l95OHhuXS48d8t+SsRaZ02tDp8zk9bXmrKWARbnGgmMwzUDWKvWRBkrSWrexVX1XUk2JHl+kh9P8pokr0vyE0l+IMkxVXVGVf1RVd3fX+IHeGhn/L1JvrCM13t2m+O4PRxz6n5NDQAAAAAAAAADdMam9Xnfy85Y9l/YOnhuXd73sjNyxib/ajZ7Zk2tDp8zk9bXmrKWARbnGgmMwzUDWKtaVfWdYeq11nYkOWI/TP2Uqrp2P8y7qNba5iRbF7a3bt2azZs3r2YEAAAAAAAAAEiSXLV9R159ydZcfuMdix5z1gkbcuG5W/xFLZbFmlodPmcmra81ZS0DLM41EhiHawYwrm3btmXLlgc8JW9LVW1brd+vjLUKlLEAAAAAAAAAYP+55uYduejK7bn2S3fm7vt25rCD5nLasUfkgjM35fSN/pIW47OmVofPmUnra01ZywCLc40ExuGaASyXMhZ71Fp7TpK/6+y6sapO7CfNLspYAAAAAAAAAAAAAAAA9KXvMta61fpFAAAAAAAAAAAAAAAAAGvZXN8BFtNaOynJGzq7XltVXx1zjmOS/EZn1xur6uZJ5AMAAAAAAAAAAAAAAABmy2DLWEl+IsnLk1SSK8YtYiVJVd3SWntCkjNHu25M8paJJQQAAAAAAAAAAAAAAABmxrq+AyzhxZ3xO1cwzzuTtNHrpStKBAAAAAAAAAAAAAAAAMysQZaxWmsbkzx2tFlJLlnBdJeM5kiSU1prx6wkGwAAAAAAAAAAAAAAADCbBlnGSvLE0XsluaGqbt/XiarqtiSf7+x68kqCAQAAAAAAAAAAAAAAALNpru8AizipM/7MBOa7Pslj9jD3YFXVR5K0vnMAAAAAAAAAAAAAAAAA84b6ZKzDO+MdE5ivO8cRE5gPAAAAAAAAAAAAAAAAmDFDLWN9uzM+ZALzPbQz9rQpAAAAAAAAAAAAAAAAYGxDLWPd2hkfN4H5unPcNoH5AAAAAAAAAAAAAAAAgBkz1DLWl0bvLclTWmuH7utEo3NP7+z68kqCAQAAAAAAAAAAAAAAALNpqGWsy5PsTFJJ5pK8YgVz/fhojozmu3xl0QAAAAAAAAAAAAAAAIBZNMgyVlV9PcnHM/9krJbk9a21jePOMzrn9ZkvYVWSq6vq9klmBQAAAAAAAAAAAAAAAGbDIMtYI28dvVeShyf5i9baScs9ubV2YpIPJXlE5gtdSXLhBPMBAAAAAAAAAAAAAAAAM2TIZayLk3xyNK4kpya5trX2htbaMYud1Fo7urX2+iT/mGRzdj0Va1uSd+/fyAAAAAAAAAAAAAAAAMC0mus7wGKqqlpr5yW5MsnhmS9UHZbkzUne3Fr7TOYLVneMfnZk5gtbj8/8k7DaaH8bHfOSqqpV/mMAAAAAAAAAAAAAAAAAU2KwZawkqarrW2vnJvnTJOuzq1yVJE/IfPGqq3VPH23fluTFVfXZ/RwXAAAAAAAAAAAAAAAAmGLr+g6wN1X1kSRPS3JFdpWtavR60OGd/S3J3yd5alVdtp9jAgAAAAAAAAAAAAAAAFNu8GWsJKmqG6rqWUlemOSSJDsyX7ba0+uOJBcnOaeqnlNVN/WTGgAAAAAAAAAAAAAAAJgmc30HGEdVfTjJh1trLckpSR6V5KjRj29N8uWq+ue+8gEAAAAAAAAAAAAAAADTa02VsRZUVSW5bvQCAAAAAAAAAAAAAAAA2O/W9R0AAAAAAAAAAAAAAAAAYC1QxgIAAAAAAAAAAAAAAABYBmUsAAAAAAAAAAAAAAAAgGVQxgIAAAAAAAAAAAAAAABYhrm+AyxXa+2cJM9N8pQkRyc5IslDxpymqurkSWcDAAAAAAAAAAAAAAAApt/gy1ittRcmuTDJY7q793G6WnkiAAAAAAAAAAAAAAAAYBat6zvAUlprv5DkQ5kvYnULWLUPLwAAAAAAAAAAAAAAAIB9NtgnY42eiPWbo82FQtVCIeveJDuSfLuHaAAAAAAAAAAAAAAAAMAMGmwZK8l/Hr0vlLC2Z76cdWlV3dRbKgAAAAAAAAAAAAAAAGAmDbKM1Vo7OcmTM1/ESpIrk/yrqrq7v1QAAAAAAAAAAAAAAADALFvXd4BFnDV6b5kvZP2YIhYAAAAAAAAAAAAAAADQp6GWsY4evVeSf6yqz/YZBgAAAAAAAAAAAAAAAGCoZazWGX+utxQAAAAAAAAAAAAAAAAAI0MtY32xMz6gtxQAAAAAAAAAAAAAAAAAI0MtY23rjDf1lgIAAAAAAAAAAAAAAABgZJBlrKr6VJKtSVqSp7bWNvQcCQAAAAAAAAAAAAAAAJhxgyxjjfzO6P2AJD/fZxAAAAAAAAAAAAAAAACAwZaxqupdSf4080/H+sXW2vf0HAkAAAAAAAAAAAAAAACYYYMtY428LMmfJZlL8sHW2q+01tb3nAkAAAAAAAAAAAAAAACYQXN9B1hMa+2No+E/JXlmkocn+eUkP9dauzzJdUnuSHL/OPNW1a9MMicAAAAAAAAAAAAAAAAwGwZbxkry5iTV2a4kLckhSZ47eu0LZSwAAAAAAAAAAAAAAABgbOv6DjCmygMLWuNokwwCAAAAAAAAAAAAAAAAzJYhPxkrUaACAAAAAAAAAAAAAAAABmLIZaxz+g4AAAAAAAAAAAAAAAAAsGCwZayq+mjfGQAAAAAAAAAAAAAAAAAWrOs7AAAAAAAAAAAAAAAAAMBaoIwFAAAAAAAAAAAAAAAAsAzKWAAAAAAAAAAAAAAAAADLoIwFAAAAAAAAAAAAAAAAsAxzfQcYR2vtIUnOSnJ2kpOTHJnksCSpquf1GA0AAAAAAAAAAAAAAACYcmuijNVae1iS/5Dkp5M8YvcfJ6lFzjs/ya+NNm9P8rSq2uOxAAAAAAAAAAAAAAAAAEtZ13eAvWmtPSnJ1UnekuTozJevlut/JzkqyYlJnpLkBZPOBwAAAAAAAAAAAAAAAMyGQZexWmunJvloksfmgU/AallGKauqvp7kfZ1dL5l0RgAAAAAAAAAAAAAAAGA2DLaM1Vo7OMmlSY7o7P5UkguSPDrJKVneU7I+2Bk/b2IBAQAAAAAAAAAAAAAAgJky13eAJbw6yYnZ9TSsC5P8XFXdnySttROWOc/fjeZoSU5qrR1dVV+dcFYAAAAAAAAAAAAAAABgyg32yVhJXpVdRawPVNXPLhSxxlFVX0/yL51dp0wgGwAAAAAAAAAAAAAAADBjBlnGaq2dmuS4zD/NKkl+YYVTfr4zfvQK5wIAAAAAAAAAAAAAAABm0CDLWElOG71Xkq1VdcMK59vRGR+xwrkAAAAAAAAAAAAAAACAGTTUMtYjOuPPTmC++zrjQyYwHwAAAAAAAAAAAAAAADBjhlrGOrgzvm/Ro5av+zSsuycwHwAAAAAAAAAAAAAAADBjhlrGurUzfvgE5nt0Z3zbBOYDAAAAAAAAAAAAAAAAZsxQy1hfGb23JE9ZyUSttaOSnNLZ9bmVzAcAAAAAAAAAAAAAAADMpqGWsT6W5P7R+KjW2nNXMNcrMl/qSpJ7kly1kmAAAAAAAAAAAAAAAADAbBpkGauq7kjyic6uX22ttcWOX0xr7bgkr01So9eHq+r+pc8CAAAAAAAAAAAAAAAAeLBBlrFG3toZPyPJfxvn5NbaMUn+LMmG7Hoy1u9OJhoAAAAAAAAAAAAAAAAwawZbxqqq9ya5drTZkryytXZZa+3spc5rrT2stfZTo3NPy66nYv1VVf3D/swMAAAAAAAAAAAAAAAATK+5vgPsxQ8muSLJUaPtZyX5SGvtK0k+1z2wtfb2JI9LclaSgzJf4KrR+xeT/JtVygwAAAAAAAAAAAAAAABMoUGXsarqhtbai5JckuRR2VWuelSSR3YObUl+ojNO59ibk7yoqm5dldAAAAAAAAAAAAAAAADAVFrXd4C9qaqPJzk9yf/JA4tWC+/V2e7+rCX5cJKnV9UnVyEqAAAAAAAAAAAAAAAAMMUGX8ZKkqq6paq+L8nTkvyvJF/JfNlqT6+7krw/yTlV9cKq+ko/qQEAAAAAAAAAAAAAAIBpMtd3gHFU1dVJfixJWmuPTrIpyVFJDkxya5Jbkmyrqvt7CwkAAAAAAAAAAAAAAABMpTVVxuqqqhuS3NB3DgAAAAAAAAAAAAAAAGA2DLKM1Vp7ZJKnd3b936q6va88AAAAAAAAAAAAAAAAAIMsYyV5cZK3jcb3Jnlkj1kAAAAAAAAAAAAAAAAABlvGWp+kjcafqKp7+gwDAAAAAAAAAAAAAAAAsK7vAIu4ffReSb7cZxAAAAAAAAAAAAAAAACAZLhlrG4B62G9pQAAAAAAAAAAAAAAAAAYGWoZ6x8z/1SsJHlcn0EAAAAAAAAAAAAAAAAAkoGWsarqpiRXJGlJHt9aU8gCAAAAAAAAAAAAAAAAejXIMtbIby0yBgAAAAAAAAAAAAAAAFh1gy1jVdUHkrwz80/HelFr7b+21uZ6jgUAAAAAAAAAAAAAAADMqMGWsUZ+MslbM1/I+qkk17bWfry1dlS/sQAAAAAAAAAAAAAAAIBZM9gnTbXW/razeXeSw5KcmuQdo5/fnOSro58tV1XV8yYWEgAAAAAAAAAAAAAAAJgZgy1jJXlOkupsV+afkNVG25tGr8rytDGOBQAAAAAAAAAAAAAAAHiAIZex9kSZCgAAAAAAAAAAAAAAAOjF0MtYbe+HAAAAAAAAAAAAAAAAAOx/gy1jVdW6vjMAAAAAAAAAAAAAAAAALFB4AgAAAAAAAAAAAAAAAFgGZSwAAAAAAAAAAAAAAACAZVDGAgAAAAAAAAAAAAAAAFgGZSwAAAAAAAAAAAAAAACAZVDGAgAAAAAAAAAAAAAAAFiGub4DjKO1dlqS709ydpKTkxyZ5LAkVVUP+rO01tYnOXy0eV9V3bJaWQEAAAAAAAAAAAAAAIDpsibKWK21Jyb5vSTndHcv49Rzklw8Gt/TWntkVd076XwAAAAAAAAAAAAAAADA9FvXd4C9aa29PMkVmS9W7V7Aqr2c/sEkN43Oe1iSl0w6HwAAAAAAAAAAAAAAADAbBl3Gaq29JMlFSR7a3Z1ke5Jrs5enY1XV/Un+uLPr+yedEQAAAAAAAAAAAAAAAJgNgy1jtdYeleRdo82FJ2D9QZKTq+rEJC9e5lQfXJgyyXdNLCAAAAAAAAAAAAAAAAAwU+b6DrCENyY5ZDT+TpIfrqo/7fy8HnzKHn0iybeTPCTJUa21k6rqC5OLCQAAAAAAAAAAAAAAAMyCQT4Zq7V2QJLzM1+4qiS/uVsRa9mqameST3d2PWHlCQEAAAAAAAAAAAAAAIBZM8gyVpJnJDk8Scv8U63+ywrnu7kz3rTCuQAAAAAAAAAAAAAAAIAZNNQy1mNG75XkE1V11wrn655/+ArnAgAAAAAAAAAAAAAAAGbQUMtYj+iMt09gvvs747kJzAcAAAAAAAAAAAAAAADMmKGWsaozPmAC8x3ZGe+YwHwAAAAAAAAAAAAAAADAjBlqGetrnfGxE5hvS2d82wTmAwAAAAAAAAAAAAAAAGbMUMtYN43eW5KntNYesq8TtdYel+S4zq5PriQYAAAAAAAAAAAAAAAAMJuGWsa6PMk3klSShyY5fwVzvbozvqWqPrOSYAAAAAAAAAAAAAAAAMBsGmQZq6ruS/I3mX8yVkvya6219ePO01p7VpKfzHypq5K8f5I5AQAAAAAAAAAAAAAAgNkxyDLWyK+N3ivJcUn+qrV29HJPbq2dk+TPMv9nbEm+k+S3Jx0SAAAAAAAAAAAAAAAAmA2DLWNV1ZVJ3pv5IlUlOSPJp1trb2itPT57yN5aO6C19rzW2nuT/HWSDZ3z31pV/7Ja+QEAAAAAAAAAAAAAAIDpMtd3gL24IMnjkzwl84Wq9UnePHp9q3tga+2fk5yU5CELu0bntCQfS/La1QgMAAAAAAAAAAAAAAAATKfBPhkrSarqG0lemORvs6tcldH4oN22H5/kwNE42VXE+qsk31dV31ml2AAAAAAAAAAAAAAAAMAUGnQZK0mq6tYkL0jyS0luzQPLVgvv3VdGx9yZ5JczX8S6a9UCAwAAAAAAAAAAAAAAAFNpru8Ay1FVleS3WmtvS3J+5stZz05ybB5YKLsjyceS/GWS/1lVd652VgAAAAAAAAAAAAAAAGA6rYky1oKq+maS/zF6pbXWkmxIcmCS26rq2z3GAwAAAAAAAAAAAAAAAKZYL2Ws1tqPdTYvrqp792We0ROzbp9MKgAAAAAAAAAAAAAAAIDF9fVkrD9KUqPxR5LctPsBkypsAQAAAAAAAAAAAAAAAExCX2WsJGnZVcjakz/KXgpbAAAAAAAAAAAAAAAAAKtlXd8B9qL1HQAAAAAAAAAAAAAAAAAg6a+M9e3O+CE9ZQAAAAAAAAAAAAAAAABYtr7KWHd0xpt6ygAAAAAAAAAAAAAAAACwbH2Vsa7vjF/RUwYAAAAAAAAAAAAAAACAZZvr6fd+NMmzR+Mfaa1tSHJxkpuTfHsPxz+jtXbiJH5xVf39JOYBAAAAAAAAAAAAAAAAZktfZaz/nuQ1SQ5M0pJ87+i1Jy3Jeyb0eyv9/ZkBAAAAAAAAAAAAAACANWxdH7+0qrYnefXC5ui97fbq2v1nK3kBAAAAAAAAAAAAAAAAjK2XMlaSVNUfJvnXSbZGSQoAAAAAAAAAAAAAAAAYuLk+f3lVfSjJh1prj0tyRpJjkhya+ZLYmxYOS3Jhkh29hAQAAAAAAAAAAAAAAABIz2WsBVV1fZLru/taa2/qbP5eVd20uqkAAAAAAAAAAAAAAAAAdlnXd4C9qL4DAAAAAAAAAAAAAAAAACTDL2O1vgMAAAAAAAAAAAAAAAAAJMlc3wGWcFJn/MXeUgAAAAAAAAAAAAAAAABkwGWsqrqx7wwAAAAAAAAAAAAAAAAAC9b1HQAAAAAAAAAAAAAAAABgLRjsk7EW01o7PsnZSU5OcmSSw5Kkqi7oMxcAAMAsuebmHXnHlTfl2i/ela9/a2cOPXAupx13eF555vE5feP6vuMBMAPciwBg+rnfAwDA0nxnBsbhmsG0sJYBGIJWVX1n2KvWWkvyI0lek+SJu/84SVXVAXs479wkrxpt3l5VP7hfg86A1trmJFsXtrdu3ZrNmzf3mAgAAFhNV23fkVddsjVX3HjHosecdcKGXHjulpyxyX/kBGDy3IsAYPq53wMAwNJ8ZwbG4ZrBtLCWAejatm1btmzZ0t21paq2rdbvH3wZq7V2bJL3JHn2wq7Re3XHi5SxHp5ke5KDRsefXVUf27+Jp5syFgAAzK5Lr7slL33XVfnmzvv3euzBc+vyvpedkRedeswqJANgVrgXAcD0c78HAICl+c4MjMM1g2lhLQOwu77LWOtW6xfti1ER64rMF7Ha7j/OfMFqUVV1a5JLOrvOm2hAAACAGXHV9h3L/g+bSfLNnffnpe+6Kldt37GfkwEwK9yLAGD6ud8DAMDSfGcGxuGawbSwlgEYosGWsVprByS5NMnGzu6vJfnVJM9N8oI8uKC1Jx/ojJ8/sYAAAAAz5FWXbF32f9hc8M2d9+fVl2zd+4EAsAzuRQAw/dzvAQBgab4zA+NwzWBaWMsADNFgy1hJXpHktOx6+tX7k5xcVW+qqo8k+dwy5/nw6L0lOaW1tmGiKQEAAKbc1dt35Iob79incy+/8Y5cc7N/bQqAlXEvAoDp534PAABL850ZGIdrBtPCWgZgqIZcxnpNZ3xZkvOq6p5xJ6mqO5Lc3Nl1ykqDAQAAzJKLPn7Tys6/cvuEkgAwq9yLAGD6ud8DAMDSfGcGxuGawbSwlgEYqkGWsVprJyV5bGfXz1TVeM+XfKDrO+PHrGAeAACAmXPtF+9a2flfunNCSQCYVe5FADD93O8BAGBpvjMD43DNYFpYywAM1SDLWEmeNnqvJJ+tqn9a4XzdZ0xuWOFcAAAAM+Xr39q5ovPvvm9l5wOAexEATD/3ewAAWJrvzMA4XDOYFtYyAEM11DLW0Z3xdROY797O+GETmA8AAGBmHHrg3IrOP+yglZ0PAO5FADD93O8BAGBpvjMD43DNYFpYywAM1VDLWId2xvdMYL7DJzwfAADAzDjtuMP3ftBS5x97xISSADCr3IsAYPq53wMAwNJ8ZwbG4ZrBtLCWARiqoZaxbuuMj5zAfMcvMjcAAAB78cozj9/7QUu44MxNE0oCwKxyLwKA6ed+DwAAS/OdGRiHawbTwloGYKiGWsb66ui9JXnySiZqrR2a5ImdXTeuZD4AAIBZc/rG9XnGCRv26dyzTtiQ0zeun3AiAGaNexEATD/3ewAAWJrvzMA4XDOYFtYyAEM11DLWlZ3xo1prT13BXD+a5IDR+L7d5gYAAGAZ3nbulhw8N97/hTx4bl0uPHfLfkoEwKxxLwKA6ed+DwAAS/OdGRiHawbTwloGYIgGWcaqqq8k+VRn11v2ZZ7W2vokr0tSo9dlVfWtlScEAACYLWdsWp/3veyMZf8HzoPn1uV9LzsjZ2zyr0wBMBnuRQAw/dzvAQBgab4zA+NwzWBaWMsADNEgy1gjb++Mv6e19vpxTm6tHZLkT5JsTNJGu986oWwAAAAz50WnHpPLfvpZOeuEDUsed9YJG3LZTz8rLzr1mFVKBsCscC8CgOnnfg8AAEvznRkYh2sG08JaBmBoWlX1nWGPWmtzST6T5MTMl6kqyR8n+Y9VdWNr7YQkXxgdXlV1QOfc707y20lO6Ux5VVWduRrZp1lrbXOSrQvbW7duzebNm3tMBAAA9OGam3fkoiu359ov3Zm779uZww6ay2nHHpELztyU0zf616UA2P/ciwBg+rnfAwDA0nxnBsbhmsG0sJYBSJJt27Zly5Yt3V1bqmrbav3+wZaxkqS19tQkH03y0OwqZFWSTyS5Icn5o0MryeuSPC7JC5Ic1zm+JdmR5IyqumE1808jZSwAAAAAAAAAAAAAAAD60ncZa261ftG+qKqrW2s/nOQ9SQ4Z7V6X5Omj14KW5Nc742RXEeuuJC9VxAIAAAAAAAAAAAAAAABWYl3fAfamqi5NcmaS67KraPX/f9x5dUtYGW1/Oskzq+pvViEqAAAAAAAAAAAAAAAAMMUGX8ZKkqq6LsmTkpyX5LIkOzNftuq+0nm/JskrMv+YsetWNy0AAAAAAAAAAAAAAAAwjeb6DrBcVVVJLk5ycWvtkCTPSLIpyVFJDkxya5JbklxeVbf2FhQAAAAAAAAAAAAAAACYSmumjNVVVfcm+du+cwAAAAAAAAAAAAAAAACzY5BlrNbaYUlO6uz6fFXd01ceAAAAAAAAAAAAAAAAgEGWsZKcn+Tto/G3kxybRBkLAAAAAAAAAAAAAAAA6M1Qy1gPT9JG409U1e19hgEAAAAAAAAAAAAAAABY13eARdw5eq8kN/cZBAAAAAAAAAAAAAAAACAZbhnry53xgb2lAAAAAAAAAAAAAAAAABgZahlra2d8Um8pAAAAAAAAAAAAAAAAAEYGWcaqquuTfDJJS/Kk1tpxPUcCAAAAAAAAAAAAAAAAZtwgy1gjbxu9tyS/0mcQAAAAAAAAAAAAAAAAgMGWsarqoiR/nvky1stba7/YcyQAAAAAAAAAAAAAAABghg22jDVyfpJLowhdIwAAIABJREFUMl/I+o3W2l+21s7pORMAAAAAAAAAAAAAAAAwg+b6DrCY1to7R8O7ktyd5LAkz0/y/Nba3Un+KclXRz9brqqqCyYaFAAAAAAAAAAAAAAAAJgJgy1jJXl5kupsV/4fe/cfYtl513H880yHdIv5sSvalGaTVC2lzY42bLemoWmlUKXFhZi2sQhq/khQsE3+EEVU0P8sCCLUtlZoCynYgkFWMPVHo1BaqkkZ0yAz9Y9SMNmkJLW60zTKJt3m8Y/dNXfGZPd79/44M3NeL7jM3LPnzPOce+8zc4ad98zZv5CVJFcmuWXKj9fOfQwxFgAAAAAAAAAAAAAAADC13RxjvZh+8V0AAAAAAAAAAAAAAAAA5m+3x1jt4rsAAAAAAAAAAAAAAAAALN5ujrF+ZOgJAAAAAAAAAAAAAAAAAJy3a2Os3vujQ88BAAAAAAAAAAAAAAAA4LyVoScAAAAAAAAAAAAAAAAAsBeIsQAAAAAAAAAAAAAAAAAKxFgAAAAAAAAAAAAAAAAABatDT2BSa+2NSX4myQ1Jfujc5m8n+bckD/TevzrU3AAAAAAAAAAAAAAAAIBx2xUxVmvtaJI/TnLLBXb7UGvty0l+vfe+vpyZAQAAAAAAAAAAAAAAAJy1MvQEWmu3JvlSzoZYbeL2f7tM3G5J8sXW2s8te54AAAAAAAAAAAAAAADAuA0aY7XWXp/ks0lekbOxVT93S7ZHWX3idiDJZ1prb1jubAEAAAAAAAAAAAAAAIAxWx14/I/nbFw1GWB9L8l6kpPn7h9O8qYkl2V7kPVnSd6+5PkCAAAAAAAAAAAAAAAAIzVYjNVaW8vZmKrnhb+K9UdJ/qD3fmrHvgeT/HaS35jY/NbW2k/03v91SVMGAAAAAAAAAAAAAAAARmxlwLHfe+7t+RDrnt77b+4MsZKk977Ve/+tJB+Y2D9J3rOUmQIAAAAAAAAAAAAAAACjN2SM9eZzb3uSB3vvH73YAb33jyf5cs4GWUnykwuaGwAAAAAAAAAAAAAAAMA2Q8ZYb5h4/94pjvv0xPuvn9NcAAAAAAAAAAAAAAAAAC5oyBjr4MT7D09x3Pl9246PAQAAAAAAAAAAAAAAALAwQ8ZYV028/59THHdq4v0r5jQXAAAAAAAAAAAAAAAAgAsaMsaaHPv7Uxw3ue+Q8wcAAAAAAAAAAAAAAABGRMwEAAAAAAAAAAAAAAAAUCDGAgAAAAAAAAAAAAAAACgQYwEAAAAAAAAAAAAAAAAUrA48fj/39i2ttdcUj3nV5J3W2tuStPKAvX+xui8AAAAAAAAAAAAAAADAeUPHWMnZkOqzMxz7hSn279kd5wwAAAAAAAAAAAAAAADsMbshTOqZ4i9bTRxz3rTHAgAAAAAAAAAAAAAAAExtN8RYyfa4alHHirYAAAAAAAAAAAAAAACASzZkjPVYZouwAAAAAAAAAAAAAAAAAJZmsBir9/6aocYGAAAAAAAAAAAAAAAAmNbK0BMAAAAAAAAAAAAAAAAA2AvEWAAAAAAAAAAAAAAAAAAFYiwAAAAAAAAAAAAAAACAAjEWAAAAAAAAAAAAAAAAQIEYCwAAAAAAAAAAAAAAAKBAjAUAAAAAAAAAAAAAAABQIMYCAAAAAAAAAAAAAAAAKBBjAQAAAAAAAAAAAAAAABSIsQAAAAAAAAAAAAAAAAAKxFgAAAAAAAAAAAAAAAAABWIsAAAAAAAAAAAAAAAAgAIxFgAAAAAAAAAAAAAAAECBGAsAAAAAAAAAAAAAAACgQIwFAAAAAAAAAAAAAAAAUCDGAgAAAAAAAAAAAAAAACgQYwEAAAAAAAAAAAAAAAAUiLEAAAAAAAAAAAAAAAAACsRYAAAAAAAAAAAAAAAAAAViLAAAAAAAAAAAAAAAAIACMRYAAAAAAAAAAAAAAABAgRgLAAAAAAAAAAAAAAAAoECMBQAAAAAAAAAAAAAAAFAgxgIAAAAAAAAAAAAAAAAoEGMBAAAAAAAAAAAAAAAAFIixAAAAAAAAAAAAAAAAAArEWAAAAAAAAAAAAAAAAAAFYiwAAAAAAAAAAAAAAACAAjEWAAAAAAAAAAAAAAAAQIEYCwAAAAAAAAAAAAAAAKBAjAUAAAAAAAAAAAAAAABQIMYCAAAAAAAAAAAAAAAAKBBjAQAAAAAAAAAAAAAAABSIsQAAAAAAAAAAAAAAAAAKxFgAAAAAAAAAAAAAAAAABWIsAAAAAAAAAAAAAAAAgAIxFgAAAAAAAAAAAAAAAECBGAsAAAAAAAAAAAAAAACgQIwFAAAAAAAAAAAAAAAAUCDGAgAAAAAAAAAAAAAAACgQYwEAAAAAAAAAAAAAAAAUiLEAAAAAAAAAAAAAAAAACsRYAAAAAAAAAAAAAAAAAAViLAAAAAAAAAAAAAAAAIACMRYAAAAAAAAAAAAAAABAgRgLAAAAAAAAAAAAAAAAoECMBQAAAAAAAAAAAAAAAFAgxgIAAAAAAAAAAAAAAAAoEGMBAAAAAAAAAAAAAAAAFIixAAAAAAAAAAAAAAAAAArEWAAAAAAAAAAAAAAAAAAFYiwAAAAAAAAAAAAAAACAAjEWAAAAAAAAAAAAAAAAQIEYCwAAAAAAAAAAAAAAAKBAjAUAAAAAAAAAAAAAAABQIMYCAAAAAAAAAAAAAAAAKBBjAQAAAAAAAAAAAAAAABSIsQAAAAAAAAAAAAAAAAAKxFgAAAAAAAAAAAAAAAAABWIsAAAAAAAAAAAAAAAAgAIxFgAAAAAAAAAAAAAAAECBGAsAAAAAAAAAAAAAAACgQIwFAAAAAAAAAAAAAAAAUCDGAgAAAAAAAAAAAAAAACgQYwEAAAAAAAAAAAAAAAAUiLEAAAAAAAAAAAAAAAAACsRYAAAAAAAAAAAAAAAAAAViLAAAAAAAAAAAAAAAAIACMRYAAAAAAAAAAAAAAABAgRgLAAAAAAAAAAAAAAAAoECMBQAAAAAAAAAAAAAAAFAgxgIAAAAAAAAAAAAAAAAoEGMBAAAAAAAAAAAAAAAAFIixAAAAAAAAAAAAAAAAAArEWAAAAAAAAAAAAAAAAAAFYiwAAAAAAAAAAAAAAACAAjEWAAAAAAAAAAAAAAAAQIEYCwAAAAAAAAAAAAAAAKBAjAUAAAAAAAAAAAAAAABQIMYCAAAAAAAAAAAAAAAAKBBjAQAAAAAAAAAAAAAAABSIsQAAAAAAAAAAAAAAAAAKxFgAAAAAAAAAAAAAAAAABatDT2CsWmsvS/LaJDckeXWSq5I8m+RUkm8kWe+9//dwMwQAAAAAAAAAAAAAAAAmibGWqLV2XZL3JHlnkrclufICu3+/tfZAko/03j+3jPkBAAAAAAAAAAAAAAAAL02MtSSttc8k+YUpDnlZkncleVdr7f4kd/Xen1rI5AAAAAAAAAAAAAAAAICLEmMtz+teYvsTSb6e5KmcfT5+NMkbk6xM7HM8yRdbaz/Ve39yobMEAAAAAAAAAAAAAAAAXpQYaxhfTfKpJH/be//Gzn9srV2T5PeS/MrE5tclua+19vbee1/ONAEAAAAAAAAAAAAAAIDzVi6+C3PSk3wuyZt770d77x95sRArSXrvT/TefzXJB3b80y1J3r/geQIAAAAAAAAAAAAAAAAvQoy1PLf33o/33terB/TeP5bkL3ds/qX5TgsAAAAAAAAAAAAAAACoWB16AmPRe//3Szz0o0neO3H/HbPPBgAAAAAAANgtHn58K5946LE88sTTeea5M7n8stXceM2Vueum63L08MF9Ny4wG2sXAGA+XFfBbKwhAMas9d6HngMX0Fo7mOTUjs2Heu9bA83nSJKN8/c3NjZy5MiRIaYCAAAAAAAAe9r6ya3cfWIjDz66878DX3Dz9Yfy4dvWcuza+f0Q01DjArOxdgEA5sN1FczGGgJgN9jc3Mza2trkprXe++ayxhdj7XKttcuTfHfH5qt7798aaD5iLAAAAAAAAJjR/V97Krffu57TZ56/6L4HVldy3x3HcvyGq/fsuMBsrF0AgPlwXQWzsYYA2C2GjrFWljUQl+y1O+6fSfLtISYCAAAAAAAAzG795Fb5B5eS5PSZ53P7vetZP7m1J8cFZmPtAgDMh+sqmI01BAAvEGPtfu/bcX+99167igEAAAAAAAB2nbtPbJR/cOm802eezz0nNvbkuMBsrF0AgPlwXQWzsYYA4AVirF2stXZ5kjt3bD4xxFwAAAAAAACA2f3Lya08+OipSzr2nx89lYcfv7TfJj3UuMBsrF0AgPlwXQWzsYYAYLvVoSfABX0oyasm7m8l+cS8Pnhr7ZVJfnjKw35sXuMDAAAAAADA2HzyK4/NdvxDJ3P08ME9My4wG2sXAGA+XFfBbKwhANhOjLVLtdZuS/LBHZt/t/f+X3Mc5teS/P4cPx4AAAAAAABwAY888fRsx3/zO3tqXGA21i4AwHy4roLZWEMAsN3K0BPg/2utvTHJp3ds/nySPx1gOgAAAAAAAMCcPPPcmZmO/+6zl3b8UOMCs7F2AQDmw3UVzMYaAoDtxFi7TGvtuiSfS3L5xOZHk/xi770PMysAAAAAAABgHi6/bHWm4694+aUdP9S4wGysXQCA+XBdBbOxhgBgOzHWLtJae2WSB5JcM7H5ySQ/3Xv/jwUM+bEka1Pebl3APAAAAAAAAGAUbrzmytmOf/VVe2pcYDbWLgDAfLiugtlYQwCwnRhrl2it/WCSf0jyuonN307yzt771xcxZu/9W733zWluSb6xiLkAAAAAAADAGNx103UzHX/nTdfuqXGB2Vi7AADz4boKZmMNAcB2YqxdoLV2VZLPJ/nxic2ncvYvYm0OMysAAAAAAABg3o4ePpi3XH/oko69+fpDOXr44J4aF5iNtQsAMB+uq2A21hAAbCfGGlhr7Yokf5fkTRObn07yrt77I8PMCgAAAAAAAFiUP7ltLQdWp/uv2gOrK/nwbWt7clxgNtYuAMB8uK6C2VhDAPACMdaAWms/kORvkrxlYvMzSd7de//KMLMCAAAAAAAAFunYtQdz3x3Hyj/AdGB1JffdcSzHrp3tt0gPNS4wG2sXAGA+XFfBbKwhAHiBGGsgrbVXJLk/yS0Tm/8nyc/23v9pmFkBAAAAAAAAy3D8hqvzpQ++NTdff+iC+918/aF86YNvzfEbrt7T4wKzsXYBAObDdRXMxhoCgLNa733oOYxOa+1Akr9O8s6JzaeTHO+9/+Mws6pprR1JsnH+/sbGRo4cOTLgjAAAAAAAAGBve/jxrXzyoZN55JvfyXefPZMrXr6aG199Ve686docPby43x491LjAbKxdAID5cF0Fs7GGABjS5uZm1tbWJjet9d43lzW+GGvJWmuXJfmrJO+e2Pxsklt7738/zKzqxFgAAAAAAAAAAAAAAAAMZegYa2VZA5G01laT/EW2h1jfS/K+vRBiAQAAAAAAAAAAAAAAwJiJsZaktfayJH+e5NaJzWeSvL/3fv8wswIAAAAAAAAAAAAAAACqVoeewIh8KsnP79j2O0m+2lp7zZQf68ne++l5TAoAAAAAAAAAAAAAAACoEWMtzy+/yLY/PHeb1juSfGGm2QAAAAAAAAAAAAAAAABTWRl6AgAAAAAAAAAAAAAAAAB7gRgLAAAAAAAAAAAAAAAAoGB16AmMRe+9DT0HAAAAAAAAAAAAAAAA4NL5y1gAAAAAAAAAAAAAAAAABWIsAAAAAAAAAAAAAAAAgAIxFgAAAAAAAAAAAAAAAECBGAsAAAAAAAAAAAAAAACgQIwFAAAAAAAAAAAAAAAAUCDGAgAAAAAAAAAAAAAAACgQYwEAAAAAAAAAAAAAAAAUiLEAAAAAAAAAAAAAAAAACsRYAAAAAAAAAAAAAAAAAAViLAAAAAAAAAAAAAAAAIACMRYAAAAAAAAAAAAAAABAgRgLAAAAAAAAAAAAAAAAoECMBQAAAAAAAAAAAAAAAFAgxgIAAAAAAAAAAAAAAAAoEGMBAAAAAAAAAAAAAAAAFIixAAAAAAAAAAAAAAAAAArEWAAAAAAAAAAAAAAAAAAFYiwAAAAAAAAAAAAAAACAAjEWAAAAAAAAAAAAAAAAQIEYCwAAAAAAAAAAAAAAAKBAjAUAAAAAAAAAAAAAAABQIMYCAAAAAAAAAAAAAAAAKBBjAQAAAAAAAAAAAAAAABSIsQAAAAAAAAAAAAAAAAAKxFgAAAAAAAAAAAAAAAAABWIsAAAAAAAAAAAAAAAAgAIxFgAAAAAAAAAAAAAAAECBGAsAAAAAAAAAAAAAAACgQIwFAAAAAAAAAAAAAAAAUCDGAgAAAAAAAAAAAAAAACgQYwEAAAAAAAAAAAAAAAAUiLEAAAAAAAAAAAAAAAAACsRYAAAAAAAAAAAAAAAAAAViLAAAAAAAAAAAAAAAAIACMRYAAAAAAAAAAAAAAABAgRgLAAAAAAAAAAAAAAAAoECMBQAAAAAAAAAAAAAAAFAgxgIAAAAAAAAAAAAAAAAoEGMBAAAAAAAAAAAAAAAAFIixAAAAAAAAAAAAAAAAAArEWAAAAAAAAAAAAAAAAAAFYiwAAAAAAAAAAAAAAACAAjEWAAAAAAAAAAAAAAAAQIEYCwAAAAAAAAAAAAAAAKBAjAUAAAAAAAAAAAAAAABQIMYCAAAAAAAAAAAAAAAAKBBjAQAAAAAAAAAAAAAAABSIsQAAAAAAAAAAAAAAAAAKxFgAAAAAAAAAAAAAAAAABWIsAAAAAAAAAAAAAAAAgAIxFgAAAAAAAAAAAAAAAECBGAsAAAAAAAAAAAAAAACgQIwFAAAAAAAAAAAAAAAAUCDGAgAAAAAAAAAAAAAAACgQYwEAAAAAAAAAAAAAAAAUiLEAAAAAAAAAAAAAAAAACsRYAAAAAAAAAAAAAAAAAAViLAAAAAAAAAAAAAAAAIACMRYAAAAAAAAAAAAAAABAgRgLAAAAAAAAAAAAAAAAoECMBQAAAAAAAAAAAAAAAFAgxgIAAAAAAAAAAAAAAAAoEGMBAAAAAAAAAAAAAAAAFIixAAAAAAAAAAAAAAAAAArEWAAAAAAAAAAAAAAAAAAFYiwAAAAAAAAAAAAAAACAAjEWAAAAAAAAAAAAAAAAQIEYCwAAAAAAAAAAAAAAAKBAjAUAAAAAAAAAAAAAAABQIMYCAAAAAAAAAAAAAAAAKBBjAQAAAAAAAAAAAAAAABSIsQAAAAAAAAAAAAAAAAAKxFgAAAAAAAAAAAAAAAAABWIsAAAAAAAAAAAAAAAAgAIxFgAAAAAAAAAAAAAAAECBGAsAAAAAAAAAAAAAAACgQIwFAAAAAAAAAAAAAAAAUCDGAgAAAAAAAAAAAAAAACgQYwEAAAAAAAAAAAAAAAAUiLEAAAAAAAAAAAAAAAAACsRYAAAAAAAAAAAAAAAAAAViLAAAAAAAAAAAAAAAAIACMRYAAAAAAAAAAAAAAABAgRgLAAAAAAAAAAAAAAAAoECMBQAAAAAAAAAAAAAAAFAgxgIAAAAAAAAAAAAAAAAoEGMBAAAAAAAAAAAAAAAAFIixAAAAAAAAAAAAAAAAAArEWAAAAAAAAAAAAAAAAAAFYiwAAAAAAAAAAAAAAACAAjEWAAAAAAAAAAAAAAAAQIEYCwAAAAAAAAAAAAAAAKBAjAUAAAAAAAAAAAAAAABQIMYCAAAAAAAAAAAAAAAAKBBjAQAAAAAAAAAAAAAAABSIsQAAAAAAAAAAAAAAAAAKxFgAAAAAAAAAAAAAAAAABWIsAAAAAAAAAAAAAAAAgAIxFgAAAAAAAAAAAAAAAECBGAsAAAAAAAAAAAAAAACgQIwFAAAAAAAAAAAAAAAAUCDGAgAAAAAAAAAAAAAAACgQYwEAAAAAAAAAAAAAAAAUiLEAAAAAAAAAAAAAAAAACsRYAAAAAAAAAAAAAAAAAAViLAAAAAAAAAAAAAAAAIACMRYAAAAAAAAAAAAAAABAgRgLAAAAAAAAAAAAAAAAoECMBQAAAAAAAAAAAAAAAFAgxgIAAAAAAAAAAAAAAAAoEGMBAAAAAAAAAAAAAAAAFIixAAAAAAAAAAAAAAAAAArEWAAAAAAAAAAAAAAAAAAFYiwAAAAAAAAAAAAAAACAAjEWAAAAAAAAAAAAAAAAQIEYCwAAAAAAAAAAAAAAAKBAjAUAAAAAAAAAAAAAAABQIMYCAAAAAAAAAAAAAAAAKBBjAQAAAAAAAAAAAAAAABSIsQAAAAAAAAAAAAAAAAAKxFgAAAAAAAAAAAAAAAAABWIsAAAAAAAAAAAAAAAAgAIxFgAAAAAAAAAAAAAAAECBGAsAAAAAAAAAAAAAAACgQIwFAAAAAAAAAAAAAAAAUCDGAgAAAAAAAAAAAAAAAChYHXoCAOw/Dz++lU889FgeeeLpPPPcmVx+2WpuvObK3HXTdTl6+ODQ0wOAfWVsX3fHdr5DGepxHmJcr6n9bWzP79jOl8Ub22tqbOc7NmN6fsd0LTckjzMwjbGt3bGdL+wXY1u7rucWb0znyvJYu8A0fM4AABap9d6HngN7SGvtSJKN8/c3NjZy5MiRAWcE7CbrJ7dy94mNPPjoqZfc5+brD+XDt63l2LW+sQSAWYzt6+7YzncoQz3OQ4zrNbW/je35Hdv5snhje02N7XzHZkzP75iu5YbkcQamMba1O7bzhf1ibGvX9dzijelcWR5rF5iGzxkAMA6bm5tZW1ub3LTWe99c1vhiLKYixgJeyv1feyq337ue02eev+i+B1ZXct8dx3L8hquXMDMA2H/G9nV3bOc7lKEe5yHG9Zra38b2/I7tfFm8sb2mxna+YzOm53dM13JD8jgD0xjb2h3b+cJ+Mba163pu8cZ0riyPtQtMw+cMABiPoWOslWUNBMD+tX5yq/zNZJKcPvN8br93PesntxY8MwDYf8b2dXds5zuUoR7nIcb1mtrfxvb8ju18WbyxvabGdr5jM6bnd0zXckPyOAPTGNvaHdv5wn4xtrXrem7xxnSuLI+1C0zD5wwAYJnEWADM7O4TG+VvJs87feb53HNi4+I7AgDbjO3r7tjOdyhDPc5DjOs1tb+N7fkd2/myeGN7TY3tfMdmTM/vmK7lhuRxBqYxtrU7tvOF/WJsa9f13OKN6Vz/l737i7X0KusA/H7DoR3olE4rDFhmGCiFAOfE1HHIUDWRhAvQGEwNBWKiU1MS40Q08cqYCGeiiXpjIpjRCxqKN0qGBIheGBNNjH/aQhmbeA4S+WeZoQUG6AxTpS0jywsY3T1lOmvP3nut/e33eZJe7D3nO+9617fW+jbZ/GZox94FpuHMAABaEsYCYCafOn0u7n/4sau69r6HH4tTZ/wNHwBQK9tzN1u/vfSa5x51ranVlu3+ZuuXxcu2prL1m02m+5vps1xP5hmYRra9m61fWBXZ9q7Pc4uXqVfasXeBaTgzAIDWhLEAmMk9n/jSbNc/cHpOIwGA1ZftuZut3156zXOPutbUast2f7P1y+JlW1PZ+s0m0/3N9FmuJ/MMTCPb3s3WL6yKbHvX57nFy9Qr7di7wDScGQBAa8JYAMzkoS9/a7brHzk/p5EAwOrL9tzN1m8vvea5R11rarVlu7/Z+mXxsq2pbP1mk+n+Zvos15N5BqaRbe9m6xdWRba96/Pc4mXqlXbsXWAazgwAoDVhLABm8vhTF2e6/sKTs10PAJlke+5m67eXXvPco641tdqy3d9s/bJ42dZUtn6zyXR/M32W68k8A9PItnez9QurItve9Xlu8TL1Sjv2LjANZwYA0JowFgAz2XPN2kzXX3/tbNcDQCbZnrvZ+u2l1zz3qGtNrbZs9zdbvyxetjWVrd9sMt3fTJ/lejLPwDSy7d1s/cKqyLZ3fZ5bvEy90o69C0zDmQEAtCaMBcBMbnvpC2a7/uYb5jQSAFh92Z672frtpdc896hrTa22bPc3W78sXrY1la3fbDLd30yf5Xoyz8A0su3dbP3Cqsi2d32eW7xMvdKOvQtMw5kBALQmjAXATN515GUzXX/3kQNzGgkArL5sz91s/fbSa5571LWmVlu2+5utXxYv25rK1m82me5vps9yPZlnYBrZ9m62fmFVZNu7Ps8tXqZeacfeBabhzAAAWhPGAmAmh/bvjTccvPGqrr394I1xaP/eOY8IAFZXtudutn576TXPPepaU6st2/3N1i+Ll21NZes3m0z3N9NnuZ7MMzCNbHs3W7+wKrLtXZ/nFi9Tr7Rj7wLTcGYAAK0JYwEws/ffsRG716Z7pOxe2xXvu2NjQSMCgNWV7bmbrd9ees1zj7rW1GrLdn+z9cviZVtT2frNJtP9zfRZrifzDEwj297N1i+simx71+e5xcvUK+3Yu8A0nBkAQEvCWADM7PCBvXHy6OHq/1G5e21XnDx6OA4f8Dd7AMC0sj13s/XbS6957lHXmlpt2e5vtn5ZvGxrKlu/2WS6v5k+y/VknoFpZNu72fqFVZFt7/o8t3iZeqUdexeYhjMDAGjpOZubm73HwIgcP358X0Qcu/T62LFjsW/fvo4jApbFq1+0J97ymn2x9eiFOHP+icv+3O0Hb4yTRw/HG299YcPRAcBqyfbczdZvL73muUdda2q1Zbu/2fpl8bKtqWz9ZpPp/mb6LNeTeQamkW3vZusXVkW2vevz3OJl6pV27F1gGs4MAMjj7NmzceLEicm3Tmxubp5tVX8opbSqxQoYhmE9IrYuvd7a2or19fWOIwKW0akz5+KeB07HQ4+cjwtPXozrr12L226+Ie4+ciAO7fc3egDAPGV77mbrt5de89yjrjW12rLd32z9snjZ1lS2frPJdH8zfZbryTwD08i2d7P1C6si2971eW7xMvVKO/YuMA1nBgCstu3t7djY2Jh8a6OUst2qvjAWUxHGAgAAAAAAAAAAAAAAoJfeYaxdrQoBAAAAAAAAAAAAAAAAjJkwFgAAAAAAAAAAAAAAAEAFYSwAAAAAAAAAAAD+XJYZAAAgAElEQVQAAACACsJYAAAAAAAAAAAAAAAAABWEsQAAAAAAAAAAAAAAAAAqCGMBAAAAAAAAAAAAAAAAVBDGAgAAAAAAAAAAAAAAAKggjAUAAAAAAAAAAAAAAABQQRgLAAAAAAAAAAAAAAAAoIIwFgAAAAAAAAAAAAAAAEAFYSwAAAAAAAAAAAAAAACACsJYAAAAAAAAAAAAAAAAABWEsQAAAAAAAAAAAAAAAAAqCGMBAAAAAAAAAAAAAAAAVBDGAgAAAAAAAAAAAAAAAKggjAUAAAAAAAAAAAAAAABQQRgLAAAAAAAAAAAAAAAAoIIwFgAAAAAAAAAAAAAAAEAFYSwAAAAAAAAAAAAAAACACsJYAAAAAAAAAAAAAAAAABWEsQAAAAAAAAAAAAAAAAAqCGMBAAAAAAAAAAAAAAAAVBDGAgAAAAAAAAAAAAAAAKggjAUAAAAAAAAAAAAAAABQQRgLAAAAAAAAAAAAAAAAoIIwFgAAAAAAAAAAAAAAAEAFYSwAAAAAAAAAAAAAAACACsJYAAAAAAAAAAAAAAAAABWEsQAAAAAAAAAAAAAAAAAqCGMBAAAAAAAAAAAAAAAAVBDGAgAAAAAAAAAAAAAAAKggjAUAAAAAAAAAAAAAAABQQRgLAAAAAAAAAAAAAAAAoIIwFgAAAAAAAAAAAAAAAEAFYSwAAAAAAAAAAAAAAACACsJYAAAAAAAAAAAAAAAAABWEsQAAAAAAAAAAAAAAAAAqCGMBAAAAAAAAAAAAAAAAVBDGAgAAAAAAAAAAAAAAAKggjAUAAAAAAAAAAAAAAABQQRgLAAAAAAAAAAAAAAAAoIIwFgAAAAAAAAAAAAAAAEAFYSwAAAAAAAAAAAAAAACACsJYAAAAAAAAAAAAAAAAABWEsQAAAAAAAAAAAAAAAAAqCGMBAAAAAAAAAAAAAAAAVBDGAgAAAAAAAAAAAAAAAKggjAUAAAAAAAAAAAAAAABQQRgLAAAAAAAAAAAAAAAAoIIwFgAAAAAAAAAAAAAAAEAFYSwAAAAAAAAAAAAAAACACsJYAAAAAAAAAAAAAAAAABWEsQAAAAAAAAAAAAAAAAAqCGMBAAAAAAAAAAAAAAAAVBDGAgAAAAAAAAAAAAAAAKggjAUAAAAAAAAAAAAAAABQQRgLAAAAAAAAAAAAAAAAoIIwFgAAAAAAAAAAAAAAAEAFYSwAAAAAAAAAAAAAAACACsJYAAAAAAAAAAAAAAAAABWEsQAAAAAAAAAAAAAAAAAqCGMBAAAAAAAAAAAAAAAAVBDGAgAAAAAAAAAAAAAAAKggjAUAAAAAAAAAAAAAAABQQRgLAAAAAAAAAAAAAAAAoIIwFgAAAAAAAAAAAAAAAEAFYSwAAAAAAAAAAAAAAACACsJYAAAAAAAAAAAAAAAAABWEsQAAAAAAAAAAAAAAAAAqCGMBAAAAAAAAAAAAAAAAVBDGAgAAAAAAAAAAAAAAAKggjAUAAAAAAAAAAAAAAABQQRgLAAAAAAAAAAAAAAAAoIIwFgAAAAAAAAAAAAAAAEAFYSwAAAAAAAAAAAAAAACACsJYAAAAAAAAAAAAAAAAABWEsQAAAAAAAAAAAAAAAAAqCGMBAAAAAAAAAAAAAAAAVBDGAgAAAAAAAAAAAAAAAKggjAUAAAAAAAAAAAAAAABQQRgLAAAAAAAAAAAAAAAAoIIwFgAAAAAAAAAAAAAAAEAFYSwAAAAAAAAAAAAAAACACsJYAAAAAAAAAAAAAAAAABWEsQAAAAAAAAAAAAAAAAAqCGMBAAAAAAAAAAAAAAAAVBDGAgAAAAAAAAAAAAAAAKggjAUAAAAAAAAAAAAAAABQQRgLAAAAAAAAAAAAAAAAoIIwFgAAAAAAAAAAAAAAAEAFYSwAAAAAAAAAAAAAAACACsJYAAAAAAAAAAAAAAAAABWEsQAAAAAAAAAAAAAAAAAqCGMBAAAAAAAAAAAAAAAAVBDGAgAAAAAAAAAAAAAAAKggjAUAAAAAAAAAAAAAAABQQRgLAAAAAAAAAAAAAAAAoIIwFgAAAAAAAAAAAAAAAEAFYSwAAAAAAAAAAAAAAACACsJYAAAAAAAAAAAAAAAAABWEsQAAAAAAAAAAAAAAAAAqCGMBAAAAAAAAAAAAAAAAVBDGAgAAAAAAAAAAAAAAAKggjAUAAAAAAAAAAAAAAABQQRgLAAAAAAAAAAAAAAAAoIIwFgAAAAAAAAAAAAAAAEAFYSwAAAAAAAAAAAAAAACACsJYAAAAAAAAAAAAAAAAABWEsQAAAAAAAAAAAAAAAAAqCGMBAAAAAAAAAAAAAAAAVBDGAgAAAAAAAAAAAAAAAKggjAUAAAAAAAAAAAAAAABQQRgLAAAAAAAAAAAAAAAAoIIwFgAAAAAAAAAAAAAAAEAFYSwAAAAAAAAAAAAAAACACsJYAAAAAAAAAAAAAAAAABWEsQAAAAAAAAAAAAAAAAAqCGMBAAAAAAAAAAAAAAAAVBDGAgAAAAAAAAAAAAAAAKggjAUAAAAAAAAAAAAAAABQQRgLAAAAAAAAAAAAAAAAoIIwFgAAAAAAAAAAAAAAAEAFYSwAAAAAAAAAAAAAAACACsJYAAAAAAAAAAAAAAAAABWEsQAAAAAAAAAAAAAAAAAqCGMBAAAAAAAAAAAAAAAAVFjrPQC+ZxiGV0TEbRFxc0TsiYhHI+LhiPiXUsp3eo4NAAAAAAAAAAAAAAAAEMbqbhiGt0XEb0bE7Zf5kW8Ow/DhiHhPKeXr7UYGAAAAAAAAAAAAAAAATNrVewBZDcOwZxiGv4iIk3H5IFZExE0R8asRsTUMw5ubDA4AAAAAAAAAAAAAAAB4BmGsDoZheE5EfDgi3rnjj85GxN/G9wJapyKiTPzZiyPi48Mw/GSTQQIAAAAAAAAAAAAAAABPI4zVxx9ExM9MvP5ORLw7IvaXUt5cSnl7KeXHImIjIu6b+LlrI+JjwzD8cLuhAgAAAAAAAAAAAAAAABHCWM0Nw3BLRPzGjrfvLKX8SSnlqck3Symfjog3xdMDWT8UEe9d7CgBAAAAAAAAAAAAAACAnYSx2ntvRDx34vW9pZSPX+6HSynfjoi7ImIyqHX390NdAAAAAAAAAAAAAAAAQCPCWA0Nw/C8iHjbjrf/8ErXlVL+IyI+NvHWWkT8whyHBgAAAAAAAAAAAAAAAFzBWu8BJPPmiHj+xOv7Simfqbz2gxHx9onXPx8RvzevgUFrp86ciw888KV46Mvfisefuhh7rlmL2176gnjXkZfFof171R153V6yzXOmupl6VVdddcdZs2dd2rCumLdsayrbWtbv6vZrD7Wh39VeV5nub6ZeezLPbWSb52z99uA51Ea2fnsxz8ybNQWMgbOqjUzftWZjngGWj7MZmNZQSuk9hjSGYfiziPiVibd+v5Ty25XXXhcR5+LpAbqXlFK+Osch1oxjPSK2Lr3e2tqK9fX1lkNg5B48fS7e/dGtuP/hxy77M7cfvDHed8dGHD4wvw8v6rap20u2ec5UN1Ov6qqr7jhr9qxLG9YV85ZtTWVby/p9plXp1x5qQ7/PtErrKtP9zdRrT+a5jWzznK3fHjyH2sjWby/mmXmzpoAxcFa1kem71mzMM8DycTbDeG1vb8fGxsbkWxullO1W9YWxGhqG4Z8i4icm3nprKeWvprj+VET86MRbbyql/P28xlc5BmEsrtpff/qrceeHHownLn73ij+7e21XnDx6OH72dS9WdyR1e8k2z5nqZupVXXXVdWawnKwr5i3bmsq2lvV7eWPv1x5qQ7+XtwrrKtP9zdRrT+a5jWzznK3fHjyH2sjWby/mmXmzpoAxcFa1kem71mzMM8DycTbDuPUOY+1qVYiIiHjtjtefm/L6z+94/boZxgJNPXj6XPUHloiIJy5+N+780IPx4Olz6o6gbi/Z5jlT3Uy9qquuus4MlpN1xbxlW1PZ1rJ+n92Y+7WH2tDvsxv7usp0fzP12pN5biPbPGfrtwfPoTay9duLeWberClgDJxVbWT6rjUb8wywfJzNwKyEsRoZhuGmiLhpx9tfmvLX7Pz5V139iKCtd390q/oDyyVPXPxu/PpHt678g+p2r9tLtnnOVDdTr+qqq64zg+VkXTFv2dZUtrWs3ysba7/2UBv6vbIxr6tM9zdTrz2Z5zayzXO2fnvwHGojW7+9mGfmzZoCxsBZ1Uam71qzMc8Ay8fZDMxKGKudvTte/3cp5b+m/B1f2/H6hhnGA8186vS5uP/hx67q2vsefixOnbm6FLm6ber2km2eM9XN1Ku66qo7e91MvdKOdcW8ZVtT2dayfuuNrV97qA391hvjusp0fzP12pN5biPbPGfrtwfPoTay9duLeWberClgDJxVbWT6rjUb8wywfJzNwDwIY7WzZ8frb1/F79h5zfVXOZaIiBiGYd8wDOvT/BcRr5ylJjnd84lp/xG4Hdc/cFrdJa7bS7Z5zlQ3U6/qqqvu7HUz9Uo71hXzlm1NZVvL+p3y+hH1aw+1od8prx/Zusp0fzP12pN5biPbPGfrtwfPoTay9duLeWberClgDJxVbWT6rjUb8wywfJzNwDys9R5AIjvDWE9cxe/YGcba+TundSwi3jvj74AreujL35rt+kfOq7vEdXvJNs+Z6mbqVV111Z29bqZeace6Yt6yralsa1m/U14/on7toTb0O+X1I1tXme5vpl57Ms9tZJvnbP324DnURrZ+ezHPzJs1BYyBs6qNTN+1ZmOeAZaPsxmYB/8yVj+l0TXQ3eNPXZzp+gtPXt316rap20u2ec5UN1Ov6qqr7ux1M/VKO9YV85ZtTWVby/qdzpj6tYfa0O90xrauMt3fTL32ZJ7byDbP2frtwXOojWz99mKemTdrChgDZ1Ubmb5rzcY8AywfZzMwD8JY7Ty+4/XzruJ37Lxm5++EpbTnmtn+Eb7rr72669VtU7eXbPOcqW6mXtVVV93Z62bqlXasK+Yt25rKtpb1O50x9WsPtaHf6YxtXWW6v5l67ck8t5FtnrP124PnUBvZ+u3FPDNv1hQwBs6qNjJ915qNeQZYPs5mYB6EsdpZxjDWiYjYmPK/n5uxJgnd9tIXzHb9zTeou8R1e8k2z5nqZupVXXXVnb1upl5px7pi3rKtqWxrWb9TXj+ifu2hNvQ75fUjW1eZ7m+mXnsyz21km+ds/fbgOdRGtn57Mc/MmzUFjIGzqo1M37VmY54Blo+zGZgHYax2zu94/fxhGK6b8nfs2/H63AzjiVLK10op29P8FxGfn6UmOb3ryMtmuv7uIwfUXeK6vWSb50x1M/Wqrrrqzl43U6+0Y10xb9nWVLa1rN/pjKlfe6gN/U5nbOsq0/3N1GtP5rmNbPOcrd8ePIfayNZvL+aZebOmgDFwVrWR6bvWbMwzwPJxNgPzIIzVSCnlGxHx2I63pz3JD+54/dmrHxG0c2j/3njDwRuv6trbD94Yh/bvVXeJ6/aSbZ4z1c3Uq7rqqjt73Uy90o51xbxlW1PZ1rJ+642tX3uoDf3WG+O6ynR/M/Xak3luI9s8Z+u3B8+hNrL124t5Zt6sKWAMnFVtZPquNRvzDLB8nM3APAhjtfXvO17fOuX1t1zh98HSev8dG7F7bbojZ/farnjfHRvqjqBuL9nmOVPdTL2qq666zgyWk3XFvGVbU9nWsn6vbKz92kNt6PfKxryuMt3fTL32ZJ7byDbP2frtwXOojWz99mKemTdrChgDZ1Ubmb5rzcY8AywfZzMwK2GstrZ2vL699sJhGK6LiB+5wu+DpXX4wN44efRw9QeX3Wu74uTRw3H4wGzpcXXb1O0l2zxnqpupV3XVVdeZwXKyrpi3bGsq21rW77Mbc7/2UBv6fXZjX1eZ7m+mXnsyz21km+ds/fbgOdRGtn57Mc/MmzUFjIGzqo1M37VmY54Blo+zGZjVczY3N3uPIY3jx48/NyLeMfHW2ubm5j2V174pIn5p4q1/LaX80RyHV+X48eP7IuLYpdfHjh2Lffv2tR4GI/XqF+2Jt7xmX2w9eiHOnH/isj93+8Eb4+TRw/HGW1+o7ojq9pJtnjPVzdSruuqq68xgOVlXzFu2NZVtLev3B1uFfu2hNvT7g63Kusp0fzP12pN5biPbPGfrtwfPoTay9duLeWberClgDJxVbWT6rjUb8wywfJzNMG5nz56NEydOTL51YnNz82yr+kMppVWt9IZheH5EfD0injfx9mtLKZ+puPYv4+lBrveUUn53zkO8omEY1mPiX+Ta2tqK9fX11sNgBZw6cy7ueeB0PPTI+bjw5MW4/tq1uO3mG+LuIwfi0P7FpcbVbVO3l2zznKlupl7VVVfdcdbsWZc2rCvmLduayraW9bu6/dpDbeh3tddVpvubqdeezHMb2eY5W789eA61ka3fXswz82ZNAWPgrGoj03et2ZhngOXjbIbx2d7ejo2Njcm3Nkop263qC2M1NgzDn0fEL068dW8p5ZevcM2rI+LfIuKa7791MSJeU0r5/GJG+axjEcYCAAAAAAAAAAAAAACgi95hrF2tCvF/NiPiOxOv7xqG4a2X++FhGHZHxAfj/4NYERH39AhiAQAAAAAAAAAAAAAAQGbCWI2VUr4QEX+84+2PDMPwa8MwTAauYhiG10bE30XEj0+8/Y2IOL7YUQIAAAAAAAAAAAAAAAA7rfUeQFK/FRHrEfHT33/93Ih4f0T8zjAMpyLiQkTcEhGHImKYuO6piLijlPJow7ECAAAAAAAAAAAAAAAAIYzVRSnlf4ZheHtEfCAi3jHxR/si4i2XuexrEXG0lPKPix4fAAAAAAAAAAAAAAAA8Ey7eg8gq1LK46WUd0bEnRFx/7P86Dcj4k8jYqOU8jdNBgcAAAAAAAAAAAAAAAA8g38Zq7NSykci4iPDMLwiIg5FxM0RcV1EfCUiHo6Ify6lPNVxiAAAAAAAAAAAAAAAAEAIYy2NUsoXI+KLvccBAAAAAAAAAAAAAAAA/GC7eg8AAAAAAAAAAAAAAAAAYAyEsQAAAAAAAAAAAAAAAAAqCGMBAAAAAAAAAAAAAAAAVBDGAgAAAAAAAAAAAAAAAKggjAUAAAAAAAAAAAAAAABQQRgLAAAAAAAAAAAAAAAAoIIwFgAAAAAAAAAAAAAAAEAFYSwAAAAAAAAAAAAAAACACsJYAAAAAAAAAAAAAAAAABWEsQAAAAAAAAAAAAAAAAAqCGMBAAAAAAAAAAAAAAAAVBDGAgAAAAAAAAAAAAAAAKggjAUAAAAAAAAAAAAAAABQQRgLAAAAAAAAAAAAAAAAoIIwFgAAAAAAAAAAAAAAAEAFYSwAAAAAAAAAAAAAAACACsJYAAAAAAAAAAAAAAAAABWEsQAAAAAAAAAAAAAAAAAqCGMBAAAAAAAAAAAAAAAAVBDGAgAAAAAAAAAAAAAAAKggjAUAAAAAAAAAAAAAAABQQRgLAAAAAAAAAAAAAAAAoIIwFgAAAAAAAAAAAAAAAEAFYSwAAAAAAAAAAAAAAACACsJYAAAAAAAAAAAAAAAAABWEsQAAAAAAAAAAAAAAAAAqCGMBAAAAAAAAAAAAAAAAVBDGAgAAAAAAAAAAAAAAAKggjAUAAAAAAAAAAAAAAABQQRgLAAAAAAAAAAAAAAAAoIIwFgAAAAAAAAAAAAAAAEAFYSwAAAAAAAAAAAAAAACACsJYAAAAAAAAAAAAAAAAABWEsQAAAAAAAAAAAAAAAAAqCGMBAAAAAAAAAAAAAAAAVBDGAgAAAAAAAAAAAAAAAKggjAUAAAAAAAAAAAAAAABQQRgLAAAAAAAAAAAAAAAAoIIwFgAAAAAAAAAAAAAAAEAFYSwAAAAAAAAAAAAAAACACsJYAAAAAAAAAAAAAAAAABWEsQAAAAAAAAAAAAAAAAAqCGMBAAAAAAAAAAAAAAAAVBDGAgAAAAAAAAAAAAAAAKggjAUAAAAAAAAAAAAAAABQQRgLAAAAAAAAAAAAAAAAoMJa7wEAAAAAAAAAAMAl9372k/Gfj3+z+udfvuemuOtVr1/giGBc7CFgDJxVMDv7CMap197NVhcWTRgLAAAAAAAAAIClce/nPhn/8JUvVP/8T73kFv9HLZhgDwFj4KyC2dlHME699m62urBou3oPAAAAAAAAAAAAAAAAAGAMhLEAAAAAAAAAAAAAAAAAKghjAQAAAAAAAAAAAAAAAFQQxgIAAAAAAAAAAAAAAACoIIwFAAAAAAAAAAAAAAAAUEEYCwAAAAAAAAAAAAAAAKCCMBYAAAAAAAAAAAAAAABABWEsAAAAAAAAAAAAAAAAgArCWAAAAAAAAAAAAAAAAAAVhLEAAAAAAAAAAAAAAAAAKghjAQAAAAAAAAAAAAAAAFQQxgIAAAAAAAAAAAAAAACoIIwFAAAAAAAAAAAAAAAAUEEYCwAAAAAAAAAAAAAAAKCCMBYAAAAAAAAAAAAAAABABWEsAAAAAAAAAAAAAAAAgArCWAAAAAAAAAAAAAAAAAAVhLEAAAAAAAAAAAAAAAAAKghjAQAAAAAAAAAAAAAAAFQQxgIAAAAAAAAAAAAAAACoIIwFAAAAAAAAAAAAAAAAUEEYCwAAAAAAAAAAAAAAAKCCMBYAAAAAAAAAAAAAAABAhbXeAwAAAAAAAAAAgEvuuvX18caXvLL651++56YFjgbGxx4CxsBZBbOzj2Cceu3dbHVh0YZSSu8xMCLDMKxHxNal11tbW7G+vt5xRAAAAAAAAAAAAAAAAGSxvb0dGxsbk29tlFK2W9Xf1aoQAAAAAAAAAAAAAAAAwJgJYwEAAAAAAAAAAAAAAABUEMYCAAAAAAAAAAAAAAAAqCCMBQAAAAAAAAAAAAAAAFBBGAsAAAAAAAAAAAAAAACggjAWAAAAAAAAAAAAAAAAQAVhLAAAAAAAAAAAAAAAAIAKwlgAAAAAAAAAAAAAAAAAFYSxAAAAAAAAAAAAAAAAACoIYwEAAAAAAAAAAAAAAABUEMYCAAAAAAAAAAAAAAAAqCCMBQAAAAAAAAAAAAAAAFBBGAsAAAAAAAAAAAAAAACggjAWAAAAAAAAAAAAAAAAQAVhLAAAAAAAAAAAAAAAAIAKwlgAAAAAAAAAAAAAAAAAFYSxAAAAAAAAAAAAAAAAACoIYwEAAAAAAAAAAAAAAABUEMYCAAAAAAAAAAAAAAAAqCCMBQAAAAAAAAAAAAAAAFBBGAsAAAAAAAAAAAAAAACggjAWAAAAAAAAAAAAAAAAQAVhLAAAAAAAAAAAAAAAAIAKwlgAAAAAAAAAAAAAAAAAFYSxAAAAAAAAAAAAAAAAAP6XvTuP1/Wc78X/+WYekAghCIkIRWsIImL4SSRV2lNBo2roEaeGU6ctLaqt9oi2qrS02oO2VNAaG1ONUTFPRc1TSUgQkogMJCKT7++P59k8685ae93PXtMe3u/X63ntdV33Na397P1a33Xd9/e5RpCMBQAAAAAAAAAAAAAAADCCZCwAAAAAAAAAAAAAAACAESRjAQAAAAAAAAAAAAAAAIwgGQsAAAAAAAAAAAAAAABgBMlYAAAAAAAAAAAAAAAAACNIxgIAAAAAAAAAAAAAAAAYQTIWAAAAAAAAAAAAAAAAwAiSsQAAAAAAAAAAAAAAAABGkIwFAAAAAAAAAAAAAAAAMIJkLAAAAAAAAAAAAAAAAIARJGMBAAAAAAAAAAAAAAAAjCAZCwAAAAAAAAAAAAAAAGAEyVgAAAAAAAAAAAAAAAAAI0jGAgAAAAAAAAAAAAAAABhBMhYAAAAAAAAAAAAAAADACJKxAAAAAAAAAAAAAAAAAEaQjAUAAAAAAAAAAAAAAAAwgmQsAAAAAAAAAAAAAAAAgBEkYwEAAAAAAAAAAAAAAACMIBkLAAAAAAAAAAAAAAAAYATJWAAAAAAAAAAAAAAAAAAjSMYCAAAAAAAAAAAAAAAAGEEyFgAAAAAAAAAAAAAAAMAIkrEAAAAAAAAAAAAAAAAARpCMBQAAAAAAAAAAAAAAADCCZCwAAAAAAAAAAAAAAACAESRjAQAAAAAAAAAAAAAAAIwgGQsAAAAAAAAAAAAAAABgBMlYAAAAAAAAAAAAAAAAACNIxgIAAAAAAAAAAAAAAAAYQTIWAAAAAAAAAAAAAAAAwAiSsQAAAAAAAAAAAAAAAABGkIwFAAAAAAAAAAAAAAAAMMIuG70Atjm7zRZOO+20jVoHAAAAAAAAAAAAAAAAO5hFcll2W6zdWqnuXs/52MZV1f2SvGmj1wEAAAAAAAAAAAAAAABJjuvuf1+vyXZar4kAAAAAAAAAAAAAAAAAtmWSsQAAAAAAAAAAAAAAAABGqO7e6DWwDamqfZLcc6bqm0ku36DlsO27WZI3zZSPS3L6Bq0FAGBbJq4CAFgd4ioAgNUhrgIAWB3iKgCAlRNTbZ92S3LjmfL7uvui9Zp8l/WaiO3D9B/nv2/0Otg+VNWw6vTu/sJGrAUAYFsmrgIAWB3iKgCA1SGuAgBYHeIqAICVE1Nt1z61URPvtFETAwAAAAAAAAAAAAAAAGxLJGMBAAAAAAAAAAAAAAAAjCAZCwAAAAAAAAAAAAAAAGAEyVgAAAAAAAAAAAAAAAAAI0jGAgAAAAAAAAAAAAAAABhBMhYAAAAAAAAAAAAAAADACJKxAAAAAAAAAAAAAAAAAEaQjAUAAAAAAAAAAAAAAAAwgmQsAAAAAAAAAAAAAAAAgBEkYwEAAAAAAAAAAAAAAACMIBkLAAAAAAAAAAAAAAAAYIRdNnoBwA7tu0mePigDADA/cRUAwOoQVwEArA5xFQDA6hBXAQCsnJiKVVfdvdFrAAAAAAAAAAAAAAAAANjq7bTRCwAAAAAAAAAAAAAAAADYFkjGAgAAAAAAAAAAAAAAABhBMhYAAAAAAAAAAAAAAADACJKxAAAAAAAAAAAAAAAAAEaQjAUAAAAAAAAAAAAAAAAwgmQsAAAAAK4H9bUAACAASURBVAAAAAAAAAAAgBEkYwEAAAAAAAAAAAAAAACMIBkLAAAAAAAAAAAAAAAAYATJWAAAAAAAAAAAAAAAAAAjSMYCAAAAAAAAAAAAAAAAGEEyFgAAAAAAAAAAAAAAAMAIkrEAAAAAAAAAAAAAAAAARthloxcA7Liq6qZJbp/khkmukeQ7Sc5M8uHuvmIj1wYAsF6qauckhya5dSZx0T5JLktyQZLTk3yiuy9Z5Tn3SnK3JAcmuX6SC5OcleTj3X32as4FALC9qqpdM4mpbpLkBkkuTvLtJJ/q7jM2cGkAAKuuqm6Z5HaZ7CftmeRHSc5NclqSz6xk/0pcBQBs76pqz0yekbpVkmsn2SPJ9zOJpz6Z5LTu7lWYZ6ckRyQ5JJP7jpdncg/wC939pZWODwCwrVnPfSfPxe94ahVieIC5VNXxSX4vyZFLNDk/yWuS/N/uPm/dFgYAsE6q6iZJHpjk2CT3SHKtzTS/Ksl/JPl/3f3WFc570yR/muQBSfZeYq53J3lmd79nJXMBAGxNqurVSR48qD6zuw/egrH2T/L06Xj7LdHsw0me292vm3d8AICtRVXtk+QJSR6Z5KDNNL0qyaeTnNzdfznH+OIqAGC7VlVHZhJP3T/JbptpelaSf07yvO4+fwvmuUaSP07y65k8/LuYzyZ5fpIXrUbiFwDAlqiqQ5IcnuRO0z/vkOSaM0226P7dIvOs276T5+J3XJKxgHUz/cX/RUl+bWSXc5I8ortPWbtVAQCsr6p6ZZKHbGH3tyR5VHefswXznpDk7zP55JXldJK/TfLk7r5q3rkAALYmVXW/JG9a5NLcN3Oq6r5JXprkeiO7vCLJY1f7pFMAgLVWVQ9K8sIk15mj2zndfcDI8cVVAMB2q6p2yeRe2+OS1Bxdz0lyQne/Y4657pzkVZmchjXGfyR5eHefO8e6AAC2WFUdleQPM0nAWioxapMVJ2Ot176T5+KRjAWsi6raOcm/J/nFwaXvJvlUkouS3CzJYVm4CXFZkmO7+4PrsU4AgLVWVZ9IcsdFLp2V5KuZ/OK9SyY3TG6XZKdBu68kuWd3nz3HnA9N8q9ZGGddmeTjSb6ZZP/pmoYndL2gu//P2HkAALY2VbVvki9k8U8EnutmzvRG0SlZ+CnGneSTSb6WZN9M9rauO+j65iT37+4fj144AMAGqqqnJTlxkUvfyGRv6rtJ9khygyS3yU9PYB+VjCWuAgC2Z1VVSV6b5PhFLn85yZeSXJrJ/bk7Jbn2oM3lSY4bk5BVVbdO8qFM4qdZn0/y30n2SnLbJDcaXP9EJvcbf7jcHAAAK1VVT0jyNyObrygZa732nTwXT3L1h/oA1spfZuEPnCuS/HaSA7v7F7r7V7v7jkl+LslHZtrtnuSNVXWD9VsqAMC6+VQmMdGh3X1gdx/d3b/W3cd39x2S3CTJPw363CLJv01v5Cyrqu6Q5KQs/MX+TUkO6e67dveDu/teSQ5M8oxB98dV1WO24PsCANhaPCc/TcT6wZYOUlUHJnl9Ft64+VCSn+3uO033tu6dSUz1+Ez2vjb55SR/vqVzAwCsp6p6Yq6eiPWqJLft7oO6++e7+6Hd/cDuPjKTD/e5eyYP1HxvxPjiKgBge/eoXD0R6/1JbtPdt5rGUQ+bxjzXS/K/MnlYd5PdkrysqvbZ3CRVtXeSt2ZhItaXkxzR3beZ3m/8xSQHJXlYFu6N3SnJi7fgewMAWE2XJTl9tQZb530nz8XjZCxg7VXVIZn8sr/rTPX9u/tNS7TfM8mpSY6cqf7H7v7fa7dKAID1UVUfz+T0qxO7+xMj+zwuyfMH1Q/p7leP6PuuJMfMVJ2c5MFLfZJLVT0+yd/OVH03yc26e4sfXgYA2AhVdWyS/5gWr0zy5Cz81L3Rn6xXVf+cyYMxm3w4yTHd/aMl2t8/yRtmqi5L8jPdfea41QMArL+qul0mpyTsMq26IslDu/vkkf136e4rl2kjrgIAtmtV9fUkB89UvT+T0w+uWLxHUlV3SvLBTB7O3eQPuvtZm+nzJ0n+dKbqtEwSsc5fov3hmTyMPPv81l27+yOLtQcAWC3Tk7GeneQLmew9fXz65+eS3C3Je2aab/HJWOu17+S5eDZxMhawHp6WhT9wXrrUD5wk6e5Lk5yQybHbm/zG9IcXAMC27kHd/T/GJmIlSXe/IMnrBtW/vly/qjo6CxOxzkvyv5c5Uvvvkrx3prx/kt8dt1IAgK3D9JOBXzRT9dwkn97CsW6e5BEzVZcnOWGpGzdJ0t1vTPKymardM9kjAwDYKlXVLklekp8mYiXJY8cmYiXJiEQscRUAsF2rqttkYSJWkvzO5hKxkmR63/BFg+pf3sw8+yZ50qD6UUslYk3n+HiSvxhUP2Nz6wIAWCUvS3Kt7j6sux/d3f/U3Z9cLkaaxzrvO3kuniSSsYA1Ns3mHR69veSntmzS3V9J8saZql2SPHQVlwYAsCG6+4wt7Do8GevoEX3+56D84u7+3uY69OT45GcvMw4AwNbumfnpgy9fS3LiCsZ6aJKdZ8qv7+6vjug33AP71araYwXrAABYSw9KcoeZ8qndfdIqzyGuAgC2d8MHar/Z3Z8Z2Xf4AO/NN9P2uCTXmil/tLvfN2KO5yWZfSD56Kq68cj1AQBske6+YHNJUatkXfadPBfPLMlYwFr7hSR7zZQ/0t1fHtl3eIPngauzJACAbdKnBuU9p596t6iq2jlX/8S8sQ/QnJLkOzPlm1XVbUf2BQDYUFV11yT/Z6bqsdNPnNtSDxiUR8VU3f2lJP85U7V3knuvYB0AAGvpsYPy8NSE1SCuAgC2d3sPyt+ao+83B+Vrb6btlsZVF+TqSV/DsQAAtkXrte/kuXh+QjIWsNbuMyi/d46+H0hy5Uz5sKq6/opXBACwbbpykbrdNtP+8CTXmSl/Z/opK8vq7h8nef+g+r5j+gIAbKSq2j3JS/LTve+Xdfe7VjDeAUluN1N1ZZIPzTHEewdlMRUAsNWpqkOT3HOm6owk71nlOcRVAMCO4OxBeZ7TPIdtz1+sUVXtlOTnB9XvnWOeYVtxFQCwTVvnfSfPxfMTkrGAtfZzg/JHxnbs7kuSfG5Q/bMrXhEAwLbp0EH5yiTnbab9FsdhUx8elMVhAMC24MQkPzP9+rtJnrjC8YYx1Wene1ZjiakAgG3B0YPyqd3dqzyHuAoA2BF8PMllM+VbVdWeI/vecZGxFnNIFp7GcP7YD2ScElcBANub9dx38lw8PyEZC1hrtxqUT5uz/+mD8q1XsBYAgG3Z8YPyJ6YnWC1lGDeJwwCA7VpV3SHJk2aqntDd31vhsGIqAGBHcOdB+SNJUhPHVtVJVfXFqrqoqi6pqjOr6l1V9QdVdfDIOcRVAMB2r7t/kOTlM1V7JPmN5fpV1c5JfmtQ/bIlmq92XHXjqrrmnGMAAGxN1nPfyXPx/IRkLGDNVNV+SfYbVH9jzmGG7W++5SsCANg2VdU1cvUbNW9YptvwJC1xGACw3aqqXZK8JMku06p3dPcrV2HolcZUZw7K16mqa69gPQAAa+FOg/KXpklW70ryH0lOyORBk2tlcgrDTZIck+SZSb5SVc+vqr2yeeIqAGBH8QdJzpgpP7uqjl2qcVXtmuSfkhw2U/3uJK9bosuK4qrpiQznLzMmAMC2ZF32nTwXz5BkLGAt7Tso/3DOYx+T5NxBeZ8VrAcAYFv1zCQHzJQvTPLiZfoMY7FhXLWcYftrVpXfIQGArdUfJLnd9OtLkvzmKo27opiquy9O8qNBtf0tAGBrc4NBea8kH09yrxF9d03yuCQfrKrhOLPEVQDADqG7z09ydJJPTav2THJKVb2mqh5UVbepqkOr6i5V9btJPpfkf80M8bEkx3d3LzHFSu8BLtZHXAUAbMvWa9/Jc/EssMvyTQC22DUG5Uu3YIxhH8diAwA7lKp6QJLfGlQ/dXojZ3NWGosN21eSvZP8YM5xAADWVFXdOskfz1T9SXefsUrDr9b+1h4zZftbAMDWZvggyUlJrjv9+pIk/5Dk7Um+lcn+0O0yeWD47jN9Dkvyuqq6Z3dfscgc4ioAYIfR3WdU1RGZnDD6mCR3TPKr09dSvpfkuUn+aol4ahPPYwEALLRe+07iMBbwqebAWhr+0BlmDY8x/KEzHBMAYLtVVbdL8vJB9TuTvHBE95XGYottGIjFAICtyvTkzn9Osvu06r+S/N0qTmF/CwDYrlXV7vlpLLXJgdM/v5jkVt39pO4+tbv/u7s/2d0ndfc9kjxp0O/IJE9ZYipxFQCwo9l5+rosyVKnXG3yzUxiq+cuk4iViKsAAIbWKz4Sh7GAZCxgPS23sbBafQAAtnlVdZMkb83CX7rPTPLw7l6PuEocBgBsCx6f5C7Tr69M8qjuvmoN57O/BQBsb3Zeov6iJPfp7m8u1bG7n5PkbwbVv1tVYx4iEVcBANutqrpbki9l8gGLd8vyz2neOJPTSb9RVY+aczpxFQDAQusVH4nDdnCSsYC1dPGgvOcWjDHsMxwTAGC7U1XXS/IfSW40U312kp/v7u+OHGalsdhi7cViAMBWo6oOSfLnM1XP7e5Pr/I09rcAgO1ad/8wyY8XufTczSVizfiTTBK3NtkvyX0XaSeuAgB2CFV1TJJ3JTl4pvqsJH+Q5LAk+ybZLckBSe6T5GWZfMhQkuyf5EVV9U9VVUtMIa4CAFhoveIjcRgLSMYC1pIfOgAAc6qq/TK5QXOLmerzkhzb3V+dY6i1SMa6ZM4xAADWxPRhlBcl2Wta9bUkJ67BVPa3AIAdwWJ7Pi8f07G7L0ny+kH1UYs0FVcBANu9qto/yauS7DFT/eYkt+7uZ3X3p7v7ou6+orvP6e5TuvuEJPdI8r2ZPo9O8vtLTCOuAgBYSDIWG0IyFrCWLhqU96qqvecc43qD8oUrWA8AwFatqvZJ8s4kt5mpviCTE7G+MOdww1hs/zn7D+Ow73f3Yp+SDACwER6d5F4z5cd296VrMM+KYqqqukauflPF/hYAsLUZxifndPcZc/T/6KB8q0XaiKsAgB3B72VhnPPlJL/a3d/fXKfu/miSBw+qn1ZVw/t1ycrvASaexwIAti/rte/kuXgWkIwFrJnu/l4mDw/Pusmcwxw0KM9zGgQAwDajqq6Z5B1J7jhT/f0k9+nuT2/BkMO4aRhXLUccBgBszZ4+8/XbkpxWVQdv7pXkgMEYuyzSbrdBm9WOqc7v7uF+GQDARvvKoPydOft/e1C+ziJtxFUAwI7gQYPys7r7R2M6dvepST4wU7Vnkl9bpOmK4qqq2itXj9dOm2cMAICtzLrsO3kunqFdNnoBwHbvS0nuOlM+dFo31iGLjAcAsF2ZfkrK25LcZab64iT37e6PbeGww7jp0Dn7i8MAgK3Z7KfT/WKSr2/BGDdapN9hSWYT4Vc7pvrinP0BANbDF5IcM1O+bM7+w/Z7LNJGXAUAbNem9/tuNqg+dc5h3pXkHjPlIxZpM4yrhnMuZ9j+W939gznHAADYmqznvpPn4vkJJ2MBa+3zg/KRYztONyluu8x4AADbtKraM8lbktx9pvqHSX6puz+8gqG3OA6butsy4wEA7AiGMdBtp58ePJaYCgDYFnx2UN53zv7D9t9bpI24CgDY3i0WQ5095xjD9tddpM3XMrmXuMl1quoWc8whrgIAtjfrue/kuXh+QjIWsNbeMSgfNUffe2ThCX6f6u5zVrwiAICtRFXtkeTfszBG+lGS+3X3+1c4/MeTnD9TvsHYGzFVtVMWfupekrx9hesBANjmdPd3svDh5F2yMIl+OUcNymIqAGBr9PYkPVM+ZLpvNdbPDcrfGjYQVwEAO4ALF6nbe84xrjEoXzxs0N1XZXKC1qyj5phj2FZcBQBs09Z538lz8fyEZCxgrZ2S5NKZ8pFVdcuRfU8YlN+wKisCANgKVNVuSV6f5NiZ6suS3L+7T13p+N19ZZI3D6ofObL7vZPccKZ8encPPyEZAGDDdPe+3V3zvJIcPRjmzEXafXqR6YZ7UqNiquke2BEzVZckeefobxIAYJ1097eTfGSmatckx8wxxH0G5Q8s0U5cBQBst7r7kiTfH1QfNucwdxyUlzpZa0vjqmsnud+g+o1j+gIAbOXWa9/Jc/H8hGQsYE119w+TnDyofspy/aanNjxgpurKJK9cxaUBAGyYqtolyWuT3Hem+ookx3f3Kas41csH5UdV1XVG9Pv9ZcYBANiRvCLJVTPlB1bVzUf0G+6Bvba7f7R6ywIAWFUnDcq/N6ZTVd0jyZ1nqn6c5G1LNBdXAQDbu/cOyo8Z27GqDsjVE6WWSnJ/YxYmft2lqu45YprfSbLnTPk93f2NsWsEANiKrcu+k+fimSUZC1gPJ2bycPEmJ1TVcPPgJ6pqj0xu+Ow2U/3P3X362iwPAGD9VNXOmWwAHDdTfWWSB3f3W1Zzru5+d5J3z1RdN8k/VNWSvwtW1e9k4akR5yX5m9VcFwDAtqS7v5rkZTNVuyV56XQPa1FVdVwWfrrd5UmeviYLBABYHScl+dJM+V5VtdmErKq6Xq6exPXape7piasAgB3AawblB1fVw5frVFW7J/mXJNeYqb44k5MXrqa7L0zy14PqF09PvlpqjsOT/NGg+qnLrQ0AYFuwzvtOJ8Zz8UQyFrAOuvtrSZ43qD65qn6rqmZ/sKSqbpXk1CR3nan+XtxUAQC2Hy9J8quDuj9K8qmqOnjO15IbBjOenMlmwSbHJ3ldVd14tlFVXbOq/izJ3w76P7W7fzDn9wgAsL15WpILZsp3TfKuqrrlbKOq2r2qfjvJvw36P6e7z1zjNQIAbLHuvirJ4zM52WqT51TV8xZ7qLeqjk3yoSQ3m6m+IFd/wHdIXAUAbM9eneQzM+VK8vJpTHWDxTpU1dFJPprk2MGlZ3X3BYt02eS5Sc6YKR+a5MPTpKvZ8Xeqqodk8jzW7HNar+ruj2zumwEAWC1VdeBizz4lOWDQdJfNPCd13WWmWZd9J8/Fs0l190avAdgBTE+AeHOS+w4unZvkk0l+kOSQJHfIZCNik8uTHNvdSx27DQCwTamq1fwl7Ojufu+IOR+W5F8H1Vcm+ViSb2ZyYtbhSa41aPPC7n7cKqwTAGDDVdVRSd4zU3Vmdx88Z/9TsvChlU7yX0m+lmSfTPa29h90fUuS+08fcAYA2KpV1W8l+ftB9RWZPCB8VpI9k9w+yUGDNpcnuV93L3p6w2COoyKuAgC2U1V1aCZJ69cbXPpxks9mEu9cmmS/JIfl6g8gJ8nbMol7rljk2uxct07y4Uzip1mfS/KVJHskuV2SAwfXP5Hknt39w+W+HwCA1VBVZ+Tq+0nzell3n7DMPEdlHfadPBdPIhkLWEdVdY0kL07y4JFdzk3yiO5+x9qtCgBgfW1EMtZ03kcm+bsk1xjRvKdtn+jhFgBge7HSZKzpGL+Y5KW5+g2apbwqyaO7+5J55gEA2EhV9ZtJ/jrJXiO7nJPkgd394TnmEFcBANut6ekL/5LkTnN27SQvSvKE7r505FxHJHllJg/7jvGuJA/r7nPnXBsAwBZbr2Ss6Vzrsu/kuXh22ugFADuO7r64u38tyYMy+fS8pZyf5IVJfs4PHACA1dHdJ2XyyXevSLLU5sGPM7kBc0x3P0EiFgDAQt39tiQ/l+QfklywmaYfTXJ8dz/UA8MAwLamu1+Y5LaZnLT+g800PTvJiUl+Zp5ErOkc4ioAYLvV3V9OcmSSRyT5SCZJVptzaSb38O7a3Y8dm4g1nes/M7kH+Kwk39lM088leWySe0vEAgC2Z+u17+S5eJyMBWyYqrppJscv3jDJ3pncsDkzyYe6+/KNXBsAwPasqvZOcvckBya5XpILk3w7yce6e3M3aQAAmKqq3ZLcLZNP8Tsgk4T3s5J8qru/vpFrAwBYLVW1ZyYxz4GZxDyXJ/luks9092dXaQ5xFQCwXauqfTI5JeumSfZNsnsmSe8XJPl8ks9195WrMM9OSe6SySlZN8wkdvt2ks939xdXOj4AwLZmPfedPBe/45GMBQAAAAAAAAAAAAAAADDCThu9AAAAAAAAAAAAAAAAAIBtgWQsAAAAAAAAAAAAAAAAgBEkYwEAAAAAAAAAAAAAAACMIBkLAAAAAAAAAAAAAAAAYATJWAAAAAAAAAAAAAAAAAAjSMYCAAAAAAAAAAAAAAAAGEEyFgAAAAAAAAAAAAAAAMAIkrEAAAAAAAAAAAAAAAAARpCMBQAAAAAAAAAAAAAAADCCZCwAAAAAAAAAAAAAAACAESRjAQAAAAAAAAAAAAAAAIwgGQsAAAAAAAAAAAAAAABgBMlYAAAAAAAAAAAAAAAAACNIxgIAAAAAAAAAAAAAAAAYQTIWAAAAAAAAAAAAAAAAwAiSsQAAAAAAAAAAAAAAAABGkIwFAAAAAAAAAAAAAAAAMIJkLAAAAAAAAAAAAAAAAIARJGMBAAAAAAAAAAAAAAAAjCAZCwAAAAAAAAAAAAAAAGAEyVgAAAAAAAAAAAAAAAAAI0jGAgAAAAAAAAAAAAAAABhBMhYAAAAAAAAAAAAAAADACJKxAAAAAAAAAAAAAAAAAEaQjAUAAAAAAAAAAAAAAAAwwi4bvQAAAAAAAIAdXVXtneQOSQ5Nsm+SvZP8KMkPknwryRlJvtLdV2zUGrdWVXVGkoOmxTO7++CNWw07qqrqmeL7uvuojVoLAAAAAACwtiRjAQAAAAAAbICq2inJg5M8Osk9k+y0TJfLquqzSd6f5JQk7+/uy9Z2lQAAAAAAAMCs5W7qAQAAAAAAsMqq6lZJPpLklUmOzrh7NrsnOTzJE5O8M8l9l5njpVXVM6+DV7RotjpVdeLgPT5qo9cEAAAAAACwvXMyFgAAAAAAwDqqqtsnOTXJfoNLP07y1enr+0l2m7a5ZZIbrucaAQAAAAAAgMVJxgIAAAAAAFgnVbV3kjdnYSLW95M8K8lLuvvsJfodkOTeSR6QyYlYu6/xUgEAAAAAAIBFSMYCAAAAAABYP7+f5MCZ8rlJjuruL22u0zRJ6+VJXl5V+yd5TJLz1myVAAAAAAAAwKIkYwEAAAAAAKyfhw7Kv7dcItZQd383yTNWb0kAAAAAAADAWDtt9AIAAAAAAAB2BFV1gySHzlRdkeTkDVoOAAAAAAAAsAWcjAUAAAAAALA+bjgon9fdl23ISrYBVXXbJLdLcoMklyY5K8mnuvvrazDXHkmOTHKTJPsnqSTfTXJako9295WrPN+Nkxye5MAkeyY5L8nnknyiu3+8mnNthKo6KMlhmbx3+yW5MMkbuvvbm+lz/SS3TnKzJPsm2W3a77wk/9Xdp6/BOivJnZPcPJP/n5cnOTvJB7v7W6s9HwAAAAAAsH2QjAUAAAAAALA+hvdl9qmqnbv7qtWaoKpOSHLSEpe/Psk9WdSZ3X3wYKyXJnnETNVNu/uMkes4Ksl7Zqqe3t0njuz7kCQnJrnFIpe7qj6Q5Jnd/Y4x4y0z1xFJnprk2EySohbz/ap6VZI/3Vwy0WDcnim+r7uPmtbfNcnTk9wryU6LdD2nqp6R5PlLJWUt8nc76z2beY/T3UtfnMNmvr/7J/n9JHfJJKFt1llJ3jgzxs5J7pnk+Ez+/m++zJzfSvKCJC/o7otGrvOELPz/8MjufmlV7ZTkCUl+K8lNl+j7gSRP7u7/HDPXlqiq3ZO8OMnDZ6rPTnK/7v74Ws0LAAAAAACszGI3eQAAAAAAAFh95w7Ke2WShEKSqtqtql6f5JVZPBErmST4/H9J3l5Vf7mCufaqqlcm+WiSX87SiVhJcq0kj03y1ao6fgVz/lGS92fyni91j+76Sf4uyclVtduWzrXeqmqXqnpxkjdkcsLYmKSvxyc5NclvZplErKkDk/xFkk9X1R1WsNbrJXl3kudkiUSsqXsk+UBVPXRL51pmHddN8q4sTMT6XJIjJGIBAAAAAMDWzclYAAAAAAAA66C7v15VZyc5YKb6H6vqvt39pY1a19ZgelLR65P80uDSFUn+M5NTla6R5LZJbjy99pSqOm8L5to/yTuSDBN6Lk3yqSTfTnLVdJ7Dk+w6vb5XktdW1aO6+yVzzvmkJM+Yqfrv6euSJDfI5CSpPWauPyDJnyV5yjzzbKC/TvIbM+X/TvKV/PT7O3yRPsOEtMuTfDnJt5JclGTnJPsnuV2S/WbaHZzk3VV1x+4+fc517pnkLTPruSzJJzL597VzklslufVM+12TvLSqPt/dn51zriVV1S2TvDXJITPVb0/y4O7+wWrNAwAAAAAArA3JWAAAAAAAAOvnX5M8aaZ8UCYn/fxbklcneW93X7yC8U9O8t7p13+d5Fdmrt0jk0SXxVy5gjlXwxOzMBGrkzwvyZ929wWbKquqktw7yQsySWR5RiYJW6NMk75elYWJWN9O8sdJXtndlw3a75vk9zNJitopkxOfnl9V/9Xdnxk57W0y+btPkjcm+cPu/vJgnmsneW6SE2aqn1hVL+zuMwbjfTQ/PdHpCZmcMLXJQ6bX19Mdktxz+vVbkzx5mFxYVddMsvsifc9O8rJMEqQ+2t1X+3c4fc+OTfKXSQ6bVu+T5BWZJLHN40+TXDeTxLunJXlBd18ymO/O07EPnVbtmuRvkhwz51yLqqpjMvl/uu9M9fOTPL67r1qNOQAAAAAAgLUlGQsAAAAAAGD9PCuThJkbzdTtluRh09dVVfWFJB9L8vFMEms+390/HjP4NJHr4iSpqmFS17cWSezZcFV1o0ySZGY9rrv/Ydi2uzvJKVV1ZJIPJLlFJn9/Yz0xC5NqPpnk3t39vcUad/eFSf6oqj6Z5LWZJGPtkUlyzr1GzrnpVKdnd/eiJ11NE84eOU3KOm5avXMmp039yaDtj5KckSRVdeFgqLM34D2+5vTPf0zym9P3aIHpaU/DE59emeR53b3ZZLrpv/13VtX7krwpyS9MLx1RVUd13eo7nQAADZZJREFU93vnWOt1Mzmt6+ju/vgS831smjD1+fz0ezu6qg7t7tPmmOtqqurRmSQSbrpHe1WSJ3b381YyLgAAAAAAsL522ugFAAAAAAAA7Ci6+7xMToA6a4kmOye5bZJHZZLc8pkk51XVv1XVcVW16/qsdF09NpMEp01et1gi1qzuPjfJw5OMSlJLkqraM8mTZ6ouSvI/lkrEGsx3cpIXzlQdXVV3WKr9Ij6Y5A9HtHvqoDw24WujfSnJ7yyWiLWU7v72colYg/aXJXlkFp6E9rDxS/yJ310qEWtmrm9k8v9vk0py9BbMNelctVNV/VWSf8pPE7EuTnKcRCwAAAAAANj2SMYCAAAAAABYR939mSSHJXlxkitHdLl2kuOTvDHJF6vqAWu4vI3wPwflp43pNE2o+fc55nlIkv1nyn/b3d+Zo/9zBuX7zdH3GWNON+vuL2R66tXU7eeYYyM9t7svX+tJpu/Xh2eq7jrnEGclOWlk27cMyofNOVeSpKr2TvL6JE+aqf5mkrt191u3ZEwAAAAAAGBjScYCAAAAAABYZ9393e5+dJKbJfmjJJ/MuFOeDk3y+qr6u6ra5u/zVNWBSQ6aqfrsNCFprFfM0fbnB+XXzNE33f21JN+YqbrHyK6XJnn3HFN9aebrvarqGnP03ShvWs3Bqmqvqrp+VR1UVQfPvpJcMNP0llVVcwx9SnePSYBMFr4PSXK9OeZJklTVjZK8P8lxM9WfSHJEd3923vEAAAAAAICtwy4bvQAAAAAAAIAdVXd/I8kzkzyzqvZJcmSSO2ZyCs8RSQ5coutvJ/l+kj9ej3WuoTsNyv85Z/952t995uvLk1w2Te6Zx/lJbjL9+mYj+5w+56lRFwzK+yS5eI7+6+1b3f3dLe08TSo8KpPT3w5Pcuske43svlOSayW5aGT7L86xtMXeh9Gq6rAkb05yo5nq1yf59e7+4TxjAQAAAAAAWxfJWAAAAAAAAFuB7r4oyTumryRJVR2a5MGZJF9df9DlD6vqld09T4LJ1mb4PX11ns7d/c2q+lGSPTbXbprwc8OZqt2SnD7PXIvYb2S7YVLPcq4YlHeds/96O3dLO1bVPZL8vyS3XcH8+2R8Mtbo96K7rxgcujXP+/AzST6QZO+Zur9K8pTu7jnGAQAAAAAAtkI7bfQCAAAAAAAAWFx3n9bdz0hyaJLXDi7vlOR3139Vq+rag/L3t2CMMYk4187q3xe75sh2P17lebc2P9iSTlV1fJJTs7JErGS+93W93osDsjAR62tJniERCwAAAAAAtg+SsQAAAAAAALZy3X1xkocl+a/BpXtvwHLW0lolq+y2RuOyBarqoCQvy8LTps5N8jdJHphJgtZ1k+yVZKfurk2vab+t3ZeTnDZTPiTJe6tqeBIcAAAAAACwDZKMBQAAAAAAsA3o7iuTPG9QfZOq2nMj1rOMnUe2u2BQ3mcL5hrT53uD8ldmE3y29LUFa2XiKZkkWm3y5iSHdPfvdfcbuvtz3f297r50kdOkrrV+y9xi5yS5e5LPzNTdPskHpoloAAAAAADANkwyFgAAAAAAwLbj04vUXXuN5rpyUN5ljr5j13TOoHzzOeZIVd04yR7Ltevuy7Mw8eumVbXrUu1Zc8fNfH1xkod39yUj+95wDdaz6rr7nCT3TPLBmeqbJ/lQVd1qY1YFAAAAAACsBslYAAAAAAAA246rFqm7aIm2wxOF5vX9QXnfOfr+7Mh2nxiU7zLHHElyxBxtPzzz9a5Jjppzrq3RSt/jdVdVe2VhQtX7u3v4b22pvnskOWxNFrYGuvuiJPdO8vaZ6htlckLW4RuzKgAAAAAAYKUkYwEAAAAAAGw7bj0oX7SZE4UuG5R3n3Ouc5eZe3N+cUyj7v5WkjNnqm5TVWMTuZLkYXO0PWVQfvQcfbdWK32PN8IwqW+pZMLFPDTJbqu4ljXX3ZdmchLYq2eqr5Pk1Kq618asCgAAAAAAWAnJWAAAAAAAAOugqq5ZVYeucJjHDMrv3kzbCwflG8w51ycH5V8e06mqfiHJneeY5+WD8tNHznN4kvvNMc+/ZOHfyYOq6pg5+m+NVvoeb4QLBuVbjulUVfsk+ZPVX87a6+4rMkkcfOFM9TWTvK2qjtuYVQEAAAAAAFtKMhYAAAAAAMD6uE6SL1fVy+c8/SlJUlUnJvn5QfUrN9PlS4Pyveec8iNJfjhTfkBV3WlzHarq5kleNuc8/5jkRzPlX6mqxy4zz/WS/GvmuNfV3Rcm+atB9clVdfexY0zn3rmqHlhV+83Tb42s9D1ed9OTor46U3VYVW123VW1VyYnSx28hktbU9394+5+XJK/mKnePcnrquoRG7QsAAAAAABgC0jGAgAAAAAAWD87J/n1JJ+vqo9X1e9U1c9WVS3WeJr4c0xVnZrkaYPL7+vukzcz1/uS9Ez5iVX1Z1V196q6eVUdPPM6cNi5u3+Q5DWDtb91scSZqtqtqh6d5KNJrp+rn360pO4+K8n/HVS/oKqeU1XXXmSueyf5cJJbJLk8ySVj50ry7CTvnCnvm+S9VfX8qvqZpTpV1a5VddeqelaS05O8Lsm15ph3rXwiycUz5V+rqr+vqntV1S0G7/HBG7PERb1mUP63qnpYVS24d1kTx2aSGHifafV312OBa6W7n5rkifnp/82dk5xUVU/YuFUBAAAAAADzqO5evhUAAAAAAAArMk2G+foSly/K5JSj85JcmGTPJAckuU0WT/r5YpJjuvvsZeY8OcmvjFjemd198CL9b5Tk85kkLc06Lclnk1yWSfLVEUn2nl47O8lTsvCErKd394mbWefOSd6U5JcGl67IJMHrrOn4t0tyk5nrT0nyuCQHbe77GMy1T5K3JbnrIpfPyuT7PT+TDzW8VpIDk9wyya6Dtjft7jOWmGP2Btz7uvuoza1p0PelSWZPSlpynmn7v84kuWdZ3b1o0t+8VvL9Tfvvm+QLSW44uHR2JglmFyXZL8ntk9xg5vorklyZkX8/VXVCkpNmqh7Z3S+dY52jv895/06q6pFJXpRJMtYmf97dfzJ2fQAAAAAAwMbYZaMXAAAAAAAAsIP4YZJvZGEy0Sb7JLnLyHFekeQJ3X3eiLaPySTh5ciRYy/Q3WdV1a8keWOSa85cOnT6Gvp6JglV159znqum87w6yf1nLu2a5B5LdHtOdz+7qh4351wXVdVRSf4yyeOzMBnmRtPXcn6YSSLa1uCp+f/bu5uXS+cwgOPfezZK0hQxCyFF2SCLWSkby/G2sGJhLyuW8g/4A8hGTWTHVikbsvJSNmQxJWLGyzRNSpi6LM6jnqaGX9PozOTzWZ5z7vO7Oufefu+r7q4e2/cgq2bm3LZtJ6r3qlsOvXWsOnGJy96q/g6Yrnkz88a2beeqt6vrDl5+6WAb3PPjiZoAAAAAAHDVOrLvAQAAAAAAAP4PZubHmbmjerB6uXq/Or94+c/Va9XxmXlmMcRqZs62i5meqE6222Z1tt3GqdW5P6iOt9tcdalA5KfqleqBmfly9bsvOuf3mXmyerr6+h8++nH16My8eDnnHJz158y8UN1TvVqdWbjsl+qd6tnq1pn54XLPv5IOfrfHq0eq16tP2836x14H+xcz83m7zVcnu/T9ONVH1VMH9/3yfXstmJl328WLvx56+bnqzW3bPFQTAAAAAACuUpuHqgEAAAAAAOzHtm1HqjvbbTa6vbqxur7d5qXz1enqi5n5Zl8zHrZt283Vw9Vt7eY8024b1oczc+EKn3V/u1jnWPVb9X312cycupLnHDrv3uq+6qbqaHWh3X/wbfVVdcq2ov/Gtm1Hq4equ6ob2gWDp6tPZua7fc4GAAAAAABwMTEWAAAAAAAAAAAAAAAAwIIj+x4AAAAAAAAAAAAAAAAA4FogxgIAAAAAAAAAAAAAAABYIMYCAAAAAAAAAAAAAAAAWCDGAgAAAAAAAAAAAAAAAFggxgIAAAAAAAAAAAAAAABYIMYCAAAAAAAAAAAAAAAAWCDGAgAAAAAAAAAAAAAAAFggxgIAAAAAAAAAAAAAAABYIMYCAAAAAAAAAAAAAAAAWCDGAgAAAAAAAAAAAAAAAFggxgIAAAAAAAAAAAAAAABYIMYCAAAAAAAAAAAAAAAAWCDGAgAAAAAAAAAAAAAAAFggxgIAAAAAAAAAAAAAAABYIMYCAAAAAAAAAAAAAAAAWCDGAgAAAAAAAAAAAAAAAFggxgIAAAAAAAAAAAAAAABYIMYCAAAAAAAAAAAAAAAAWCDGAgAAAAAAAAAAAAAAAFggxgIAAAAAAAAAAAAAAABYIMYCAAAAAAAAAAAAAAAAWCDGAgAAAAAAAAAAAAAAAFggxgIAAAAAAAAAAAAAAABYIMYCAAAAAAAAAAAAAAAAWCDGAgAAAAAAAAAAAAAAAFggxgIAAAAAAAAAAAAAAABYIMYCAAAAAAAAAAAAAAAAWCDGAgAAAAAAAAAAAAAAAFggxgIAAAAAAAAAAAAAAABYIMYCAAAAAAAAAAAAAAAAWCDGAgAAAAAAAAAAAAAAAFggxgIAAAAAAAAAAAAAAABYIMYCAAAAAAAAAAAAAAAAWCDGAgAAAAAAAAAAAAAAAFggxgIAAAAAAAAAAAAAAABYIMYCAAAAAAAAAAAAAAAAWPAXLCShxXjLvLMAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAADWMAAAcqCAYAAACpX5a4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd7gsVZWw8XddLjlLMqCCgqiYA2IEE2ZREfMo6OiY05idz8HsjDo4Y8IEKIZxRDFn5aIiYkIRCYqIgAFEcgZZ3x+7jvStU92nurpPd59z3t/z1AO9u6v27q7au6rO3atWZCaSJEmSJEmSJEmSJEmSJEmSJEmSpMFWTbsBkiRJkiRJkiRJkiRJkiRJkiRJkrQUGIwlSZIkSZIkSZIkSZIkSZIkSZIkSS0YjCVJkiRJkiRJkiRJkiRJkiRJkiRJLRiMJUmSJEmSJEmSJEmSJEmSJEmSJEktGIwlSZIkSZIkSZIkSZIkSZIkSZIkSS0YjCVJkiRJkiRJkiRJkiRJkiRJkiRJLRiMJUmSJEmSJEmSJEmSJEmSJEmSJEktGIwlSZIkSZIkSZIkSZIkSZIkSZIkSS0YjCVJkiRJkiRJkiRJkiRJkiRJkiRJLRiMJUmSJEmSJEmSJEmSJEmSJEmSJEktGIwlSZIkSZIkSZIkSZIkSZIkSZIkSS0YjCVJkiRJkiRJkiRJkiRJkiRJkiRJLRiMJUmSJEmSJEmSJEmSJEmSJEmSJEktGIwlSZIkSZIkSZIkSZIkSZIkSZIkSS0YjCVJkiRJkiRJkiRJkiRJkiRJkiRJLRiMJUmSJEmSJEmSJEmSJEmSJEmSJEktGIwlSZIkSZIkSZIkSZIkSZIkSZIkSS0YjCVJkiRJkiRJkiRJkiRJkiRJkiRJLRiMJUmSJEmSJEmSJEmSJEmSJEmSJEktGIwlSZIkSZIkSZIkSZIkSZIkSZIkSS0YjCVJkiRJkiRJkiRJkiRJkiRJkiRJLRiMJUmSJEmSJEmSJEmSJEmSJEmSJEktGIwlSZIkSZIkSZIkSZIkSZIkSZIkSS0YjCVJkiRJkiRJkiRJkiRJkiRJkiRJLRiMJUmSJEmSJEmSJEmSJEmSJEmSJEktGIwlSZIkSZIkSZIkSZIkSZIkSZIkSS0YjCVJkiRJkiRJkiRJkiRJkiRJkiRJLRiMJUmSJEmSJEmSJEmSJEmSJEmSJEktGIwlSZIkSZIkSZIkSZIkSZIkSZIkSS0YjCVJkiRJkiS1FBF7RkTWlj2n3S5p0iLi9Fo/OHTabdLysVKPL88xWkhErI6Ix0bERyLi+Ig4JyKuajhutph2W6WVbDn01YhYU2vrmmm3aRIiYoeG/bTftNsltTXt68mI2K+h/h0mVb8kSZIkSdIkrZ52AyRJkiRJkjS8iFgN3Bq4FbBFtawDXApcApwFnA6cnplXTqmZkiRJGoOIuCfwcWCHKTdF0gD2VUmSJEmSJElaGQzGkiRJkiRJWiIiYn3g0cDTgXsBG7ZY7eqIOAH4CXAU8M3MPHfxWilJkqRxioj7At/Ef9eTZpp9VZIkSZIkSZJWjlXTboAkSZIkSZIWFhGPBE4FPgU8kHaBWADrAncEngV8Ajg7Iv6nZZ1rIiJ7ljXDt1wrWUTsWTuGMiL2nHa7JI1XRBxQ7+vTbpO0XETEhsAnaQ7uOBs4Afhlbfn7xBooCZh+X42I/Rquu3cY1/allcT+JEmSJEmSpDZ8KpckSZIkSdIMi4gA3gs8Z0ybXAXcZEzbkiRJ0uJ6CnD9WtmXgZdm5m+n0B5JzeyrkiRJkiRJkrSCGIwlSZIkSZI02w6iZLVqcgbwXeDXwF+BS4FNgC2BnYE7A7cH1l/8ZkqSJGkRPKr2+kxg38y8YhqNkdSXfVWSJEmSJEmSVhCDsSRJkiRJkmZURDyK5kCsnwOvAL6bmbnANjYCHgw8ulo2Hnc7JUnS6DJzDRDTbodmzm61118wuEOaSfbVZSAzT8dzsdRZZh4KHDrlZkiSJEmSJE2EwViSJEmSJEkzKCICOLDhrc8BT8rMK9tsJzMvq9b5XERsDuwP3GhsDZUkSdKiiIgNga1rxadMoy2S+rOvSpIkSZIkSdLKYzCWJEmSJEnSbLoHsEOt7I/Afm0Dseoy80LgXSO2S5IkSZOxeUPZpRNvhaSF2FclSZIkSZIkaYVZNe0GSJIkSZIkqdFDGsoOzcyLJ94SSZIkTcMGDWU58VZIWoh9VZIkSZIkSZJWGDNjSZIkSZIkzaabNpT9bOKtWOYiIoA7AzsDNwTWBc4DTgZ+nJlXTKgd2wO3B7aplgT+CvwZ+FFmXjSBNuxM+S1uBKwP/A34E/CDzDx/seufJRGxLXAXYEdKpoMEzgWOyMxzW6y/JXBLynG1JbAJcBnl2Dqbcmydtzitn9eWDYHdq/ZsCVxOObZOAH6ZmU4UnrCI2I7S328KbAZsCFxBOUb+ApwO/CYzL5lWG5eKiLgxcFfKb7kR1/WxozPz7EWqc13K+HBjyni9OXABpV+dmJm/Xox6xyEiNgJ2o4xN16P8G9GFwJHTaHd1Dr4DcDtgW2AdynnvDOCHXTOBDlH/OlX9twa2owRTXAocn5nfGWI7Uz+Hj6I6T+wG3ICyHzahXAP8lXKe+N0E2rAFpS/fHNiC8jDJ84CvZeYfWm5jFXBHSmbZbSjH+EWU73EqcFxmXjv2xq/dhnUpv+Wtga2Bq6v6f0M59/99kerdhnINt01V70bAxZRrl1OAkzLzsjHVtSTHwGr8uxvlen8bSn//K3AO5dg4a4rNW9Kq42934GaU8eNCyu96bNv+26HOqff3riJiPUof2oXSX9entP3YzDx2Sm3aGbgTsD2lb1wEnAQck5mtMrxV5/TbV8vcOf1s4ETK+De2e45Zutcal0mO4z11rqLs99tS9tncPe9plOuwq8ZZ37hExOaUMWdnyjnoEkrf/3lmnrwI9W3LdeePrSnH2hnAzzLz9HHXJ0mSJEmSlpjMdHFxcXFxcXFxcXFxcXFxcXGZsQX4BmUyTO+y1wTqrdfZZdmhYbv7tflcxzYe0GEbGwNvAv4w4HtcAnwY2LFnvT0bPrdnx++xLfBWSlDMoN/zauAHwBOBVeP8vSiTnfcHfjWg/muAbwO7t6zvgDEcQ4cu0vG9plbPmp73AngScAxwbZ92Ne5ryqTFRwMfoEyWW+j7XVvt938FNu34Xeb9zrX3bw4cQgks6NeOvwCvAzbuUP/po+yz6vf+j4Y2nQ/cd0z7ez3KhMLe7R83hu2+uqHdD11gnS2A1wC/btkHrgF+ARwI3BOIxegTY+5PXZb9uhxfVX87ZoE+duxC+2XI7/tI4AuUCcqDvtOfgPcBN+lQx54N29uzxXoH1NervX934HOUoL+mNh+wCMdH3zqATas2/3nA73gBcCgdrhUW+h2BmwDvoUzabqp7TYs6FuUcTvP10jDL6S1/o1XAPwHfpATpDtrmacDbgK077ItDB7WPkgn2W5Qxr/UYUdvGvYH/pQSQDfoefwMOA27d4Xs07Zcdet6/PvCu6rjtV//5lDF9qzH1sesDbwF+Sf/rlrnlSuC7wIuB63Wsb9HHwMVYgH2r47zf+De3nEAZlzYb4ZgYe1/t0Me6LAf02faa2ufW1N7fs/pt/z5g278GnsyYrmOYTH/foWF7+3U8JnboeX9X4KOUe8ymNh+6CMf/6f3qoARL/Qsl6Krf73gx8D8MGDco5/TXAWcN2M5fKPc9qzt+j4nca7GI/alPfYsyjrPwddBmwOur/dKvvkso95I37rC/BvaFIX7/02vv3wE4HLhqQLtPB14ArDuG/vNI4Ej6X6MkcBzleip61ltT+8yacfdtFxcXFxcXFxcXFxcXFxeX2VlWIUmSJEmSpFnUlJHpphNvxTIUEfenPKH7tZQJ2f1sDDwDOCEinjbG+teLiDdQJje/ijIxb5DVlGCMTwK/jIjbjakd21MmiB8M3GbAR9cB7g8cExFvHkfds6bKVLQG+ATlKdsxxLovojyB/XPAs4BbtFmNst/fAfwhIh4zZJMXatPzKBMQ96M8Vb2f7SgT8U6onog/ERGxAWUi7Stqb/0BuGdmHjmOerI8zf2TteI7RMQdRtx0fTz4MyWAtlFE7EvJivJmSraUNtahZBZ4MaWf7jJ8M5efiNgiIr5I6W+7D/ooJTvNVyLioxGxeoQ6d4uIYyhBCI+kTDoe5AbAc4DfRsRbqqwDUxER60bEe4CjKZOY159WW+ZExF0pk/P/nTIJuZ/NKX3t19U4O676n0GZeP48SjaNYdefiXP4KCLiwZQg7I8BD6RMch9kR+CVwGnj2hcRsUlEHA58FXgAZcwbdhu3iIivAt8DHk/JjDPI9YCnAL+KiA9X56KRRcQ+lGPqRZTjtp8tKGP6KRExaPxaqL6NIuKdlGPw1ZTMcgtdt6wH3JcSDPaniLjhEPUtyTEwIu4UET8G/o9ynC80/u1KGZd+FxH/stjtW8oiYv2I+BAlSOGBMHC+wa2BjwNfj4iNR6hzJvp7VxHxb5Qg+6dS7jGnqhoDjgYOomSY6mcTSmBL4/krIu5Bued4PSW7cj/bUe57flBlQhymrTN3rzWqSY/jtbrvQ/lbyOso+6WfjSn3kqdExCO71DUuEbEqIt4I/BTYh5LNvJ+bUgIIj60yWnWpb6uI+DzlvLcng69R7kC5nvpuRGzdpT5JkiRJkrS0GYwlSZIkSZI0m/7SUPa4ibdimYmIh1Mm/g4KwqrbCDg0Ip49hvqvR3mC/P+j20S82wBHR8QjRmzHzYAfUbKlDOM1EfGmUeqeNRFxfeCHwH06buKOlKeLd7UlcHhEvGqEbfxDRLyFkvFlmEmnO1AmRw6aRDkW1SS17zB/PPsZJfvaiWOu8pCGsv27bqyadFoPjPpYZv69z+f/Gfg0sE3XOlVExFbA94Fhx7+nUp6036XOJ1EmfncJnFiPMsH2ixGxSZf6RxER61CyBzyPIQJMF1NE3IUyef/GQ6y2EfCucZx7IuLllIyXg4JUB60/E+fwUUTEy4Cv0D4wtNemlH3x4REDHDemnAf2GWEb96dkv3tIh9VXUYLtj6qCsTurrg0/Qwm0amsr4NtdAoMj4iaUAN2XAhsOu35lfcr41Ka+JTkGRsRDKO2+a4fVtwYOioj/nmYw7ayqgpq+BvzzkKvuBXy1OjcNW+dM9PeuqqDoN1KCc6euJxDrbkOstj3wzYj4x/k7IvaiZE8e5r76bpTAvGF+i5m61xrVpMfxWt0Pp+yzYe75NgQ+WwVyT1w1Dn8M+DeGC9y+I/C9Yc8/Pfeqew+zHiVo63sRMXSgvyRJkiRJWtpm4o9+kiRJkiRJmueHlCc/93pARLwgM9+9iPX+suf/d2LtycaXAqe22MZVY23RmETE3YHPMn/iUlICk74KnAlcQ5lw9iBKgM7cpJ/3AK8Zof4tKBPfmp4+fgJwFCVbyAVV2baUYKmHsnYWgk2Az0TEPTPzZx2asillEuXcJKykHG/fBs4ALqEEjtyTkkmlHtTz6oj4UmYe22f7f+G642gT4Oa1939X1THIGQu8Py6rKBkTbtZTdhplovrJwLmUSdM7Ao9tuc1TKN//JErGpIspfWJTymTFO1ImpPZOvgvgLRHxq8z8StcvU2VyeHVP0V8p+/on1f9vQOnXj2Z+NpdtgQ8AD+9af4v27UTpZ/UsXF8GnpCZl467zsw8LiJ+QXlq+ZwnRcTLMvPqDpvcr6GsKeCLiLgFZdyoB8JcDnyXsl/+QOkPqykTTW9A2Td3pQTJzbJTuS4A4frMf7r+L1nYeS3rWg0cwdpZ/I6jZCQ7jTJuXo8yyfcxzM9O8+SI+HxmHt6yPiLiOcD7Gt66FPgWZf/N9fHNKcf1A4E71T7/MEowWNsxZFzeQMliM+c8rhsPzqGMQdtTJrfnBNqzBfB51r6uOA74IqUfXEk5L92/Wur/fvXaiPhbZh7Ysf69KJms5lxJCQxbQzlvzZ3770Y5d61lgufw81i776wH3Kr2mTPp33f+1KeciHgbJcNVU53fogTFngNcRtlfuwIPZn4A6jMo3/Nl/epawAcpmet62/xV4Piq/s0omS0aM3FUwWyfZX5mjKsoY+uxlN/oQsrvvQNwP+Detc/vBnw+Iu7T8XzwENYe4y+kBOv9sPoeq6q6H878oIeNgUMi4q6ZeU2byqoJ/D+mOZPJ5ZRg1e9RMshcSDnurk+57rgHMFQWlaU6BkbEfSnjStO/gf+yeu90ym92A2APyjV/PXPWCyn3AM/vU9Wi9dUhndHTjusxP9j1JBa+N2t6CEg/B1Oy88w5hXJuOZnyXTenHHP7MP9YvQ/wEkq2olZmqL939UxKUPScSyj952hKX11FOffcF2gM7B+z1ZRz8Q7V66SMHd+i/I5XVu15MOVc3Gs7Siath0XErSgB33P3M5dTxr/vUY6ndSj3gI9l/j3H3SjHwds7fofFvNda1P406XG85g7AW7muL11OCTqa22fXUL7vXszf96uBD0fErpl54Qht6OLNwJN7Xp9JuVf/FeVefRPK2LsP5Z691y7A2+g/jq+lChL8GiU7cd2fKX3nhKre61Xb37un3ltRAsckSZIkSdJKkpkuLi4uLi4uLi4uLi4uLi4uLjO2UIJhLqNMkKovXwTuNYE2rKnVu2aEbe3X8D126Lit+nYOaLHO+pTJU/V1TwHuMWC92wE/7fl80z7Zs2W7j2hY92jgbgustwXwTuDa2rq/Bzbt8Htd3vP/PwLuNGDdHSiTs+vb+HrL77xn199rQsf0NT3/fy7wT0D0WTeA9RvKD6FMvH4msH3LdmwC/DtlwmNve84BNmy5jQMG7NurKEEHGwz4Li+gTPqsb2P3lvWfXlvv0AU+fw9KQFi9vvcC6yzyfn9hQ72P6bCdDSkTI9fqwwM+/+GGeg8DtmlZ362B1wFnAbecVr/pejyOuL368dU7bp0C3G/AutsAX2/47U8aov7dGvrnZVW/2myBdfegBKrV639Bi3r3bFhvzy6/P9eNb9dQArM2HrB+41gx4j4cdO45C3jogHV3oYyrTdvYpePv2DveHw7ceJjfg+mdw3doqHe/Dvvj0Q3bOY8S+N93/1POF4+mTAyvr//IFvUeOmA/XAa8CFi37b6gTHg+v7bNq4H/ZIGxlTIR/acN3+OdLb7HfgOO6WspwSVbDFh/31ofmFue0HL/rU8Jfqqvf2X13bdcYP2gBAe+v2rHDgt8fipj4KgLZXL8WQ11/wF48ID1tqcEhtfXS2DvlnWPpa+O+P2bjtOB+3qB7a3pc8wnJTDhsQPW3QT4aEN7zqf9te60+nunfdnn9+8d894PbDVg/cU4F59ea88VPf//c+DOA9Z9ECV4rP6d7l2tO/f6U8AN+mxjFfDahm1cMMRxcAjTudcad3+a2DhO83VQb//9WL99Vq2/B/C3hm28ajF/O+ZfM1zJdddPF1XHQON9IyXI7K19+uCNWrb7dQ3rX0V52EnjtUq1X55NCQqcW6f+N6M14+7bLi4uLi4uLi4uLi4uLi4us7OsQpIkSZIkSTMnM/9Kedp+k0cA34+IsyLi4Ih4ZkTcvnqSr5q9kvnZLE4C7pmZP+y3UmYeT5mMNPeZDft9dpCIeBbwqFrx+yhBdf0yTM214YLM/FdKJopeOwDP7dCcuUxXX6ZM8v/5gLpPp2Q5OLv21gOrJ3svdXNZz84G7pOZh2VmNn0wiysb3npxZt4jMz+UmWe1qTQzL8nM11OyRfRmxNiGEhDW1QaUSWsPycy3ZeYVferPLBn2/l/D2/88Qv2NImJfypPXt+5tBvCKzHxeZi52JoBPMP8p9vt12M5jKBlbeh0y4PN7114fCTy1Gt8XlJknZuYbKH39tLaNXKbmxq2fAHfPzO/2+2D1++5NeXJ9r1tGxL0Wqigi1gc+zdpZFM+hBN28LTMvGrR+Zh4F3JmS5afXv0fExg2rLJZ1KBNYn5iZr8sBmef6jRVjNrcP/0QZb786oD2nUDKbrGnYRlOmnjbmxvt3A/tm5pkD6l/r95ixc/jQImJb5o9VvwVul5kfHLT/q/PFEcBdKEEuvd4aEfXMfwuZ2w+XUoJj/jsHZKlpaNsnuC4jH5QJzw/KzFcsNLZm5i8ogcHfqr31goioZz9pYwPKuexpmfmyzLyg3wcz8zPMPwag/Tn39ZR90OtCym/4isw8f9DK1X48JjOfQ8k6dk6/zy7xMfBtXJf5dc7vKdf7X++3UnX99gjg4w1vfygiOl3/L0Nz4/hplOD9vtkmM/MSyrXWN2pvbUHJYNPGLPX3rubGvH/NzOdk5t/6fXBC5+K5DHDfo5yL+2ZZzsxvUIJf6g6nZGoCeHtmPjEz/9xnG9dm5pspDyjotTkl0LeNWbrXGsXExvE+5vrv/8vMp/bbZ1VdR1GyU9bvi5vOY4tpPUqw03nAvatjoPG+MTOvzsxXAx+qvbUOsP9CFVXjwmtrxddQgqbf2u9apdovB1Eyoc5da3vOkCRJkiRpBTEYS5IkSZIkaXa9DjhmwPs3okws+SDwC+DiiDg2Iv4nIh4bEdtNopGzLiLWBZ5TK74a2Cczz11o/WoC+2MoT/DuUv9q4DW14q9XQSiNgT992nEI8yeyvaSaNDus04GntJn0l5nnUSaP9VpFCdJaLv45M0/ssmJmXti10sz8NvCuelu6bq/y8sz8TsvPvh34Y63sQSPWv5aIeDllUvcGPcVXAI/LzLePs65+qomvX6oVP6TDGFmfyHcZ5bvNExGbsnbwGcCHh+nzczLzmsysB5OtRBdQsnCct9AHq8DJVzS81eb4fiolUGbOtcCjM/NXbRpZ1X8hZZJx737bikUIdlzAgVUQyCx5cmYuGFxYnZ8eS8nM0Ot+EXGbjnX/GHjJMP1wRs/hw3oRZeL7nMsok79bTWoHqILXnlArvjVlsnYXr8rM7w2zQkQ8kJIVpNfTBwVn1lVj6b6UbJhz1gVeOkxbehyYmYe1rPuTlGOw1x4RsUHT5+dExPWA59U3RzmPHtm6pde145zMvGzAR5bkGBgRWzM/yOLvlOv9BY/1qj/vD9S/5zSDN2bR1ZRj7w8LfbD6TZv61oLn4hnt7119NjP/a8J1DvI3SoDJJQt9MDM/Bfy6Vrxt9d+jKNny2vh3yljS6yFtVpzBe62hTWEc7+dzmfmmlnUcDdSvIXeKiJt3qHdU+2fmL1t+9lWUe81eba7/n8XaQchQMul9rk2lmfl9SgYtSZIkSZK0whiMJUmSJEmSNKOqicgPZX4QQT8bALsBL6BMnPlzRKyJiKcvNNFzmXsUcP1a2Xsy86S2G8jMs4E3dqz/CZSnV/9jc5R91MUbWPsJ1dsxf6JiG68fcmLb/1ImtPa6c4d6Z9GRmfnlKdb/sdrrO0bERh23dRrw3rYfrp7wXQ8m2r7KojKSiFgnIt4P/CflieZzzgXuPyibwiI5uPZ6NUNMrq4ywd2vVnx4Zl7cZ5VNG8r6ZkNQK/+dmWcM8flvAvXMGQPHrSrLz8trxZ/IARkU+6kCjupBGm2zQIzDxcABE6yvjc9m5pq2H64CKQ9oeOvZHet/eb+MCgPM4jm8tYjYhPkZuN7ZJiCurpqYXQ/27XJM/44hzlU9Xll7/f3MbAyIHaS6/vnvWnGX73Ex84PVF1LPvLQauN0C6zwP2KRW9sHM/OaQdS9oiY+B/8zagd8AH8jM49puIDOvobl/P3+Uhi0znxyUTamuethBPQtvm3uIWevvXV0LvGyC9bVx4KCsSA36BaO8JjPrAVaNMvNPXJdpes6dhmjDKMZ5r9XVxMbxAa6l+UEFgzRlC5z03wCOyswvtv1w9dCGevbVO0RE33lR1Xv1IL3zKNdtw3gvcMqQ60iSJEmSpCXOYCxJkiRJkqQZlpkXAHtTnlJ/6pCrB7AH8BHglIh48pibt1Q0PXX7Qx22cyhrP+G/rcfWXq/JzGH3JfCPzBT1J/bvMeRmLgU+OWS95wO/rRXvMmS9s+ojU66//ruuBu7ScVsHt50U2aOepQNG3LfV5P8vMj9g4lTgHl0mdY/BN4A/1cr2G2L9p7F2UBnAIQM+fx5rB10A3GuI+jTfUON2FXRTnzC+0LF9e2DnWlk9m9EwvlJ7fbcJZUIC+HSbrBcT1uXc+zHmZzholU2j5rfDZmKqzNo5fFgPALaolY1y3qsf013af8iwWQKrrCL1gNhx9s2bRsRNGz/Z36cz86Ih1+lyzq1nH0vgHUPW29ZSHgObMra+f9iNZOZRzM8EdNuIqD/YYaXqMo7Xj/tbDPrwjPb3rr6bmadPqK626g8oWEhTQOPJHa7n69sZeByM0Tjvtbqa5Djez3cz83dDrnNsQ9mk/wYwjjFnE0pW+X5uxfyH9/zvsNnHqvvwQ4dZR5IkSZIkLX0GY0mSJEmSJM24LA6jTBJ5BPApYNjJnzcBPh4Rh0xwIvis2L32+uRhsmLNqZ6yvGaYdaoMA/euFY8aiPL72us7Drn+jzKzS1BZffLW5h22MYuOHOfGqoxQ94qI50fEByLiixFxZET8NCJ+UV+AHzVs5iYdqz+qwzpNk/I679uIuCHwPUpWv17HAHfPzPqEyImoAnPqGTp2jYi7ttzE02qvT2PA711lNjy+VvyyiNinZX1a2+8y849d1qu9XujYrgeW/J3m4Im26uP1BpRz+SSMdWwbg0uAbw+7UhXsUs/GdLOI2GbITa0Ztu4ZPYcPq35M/zEz/zDC9urt3yEi6sFeC+lybN6b+QGxo+yL+veA4ffFop9zI2Iz5rfrmK4BgS0syTEwItahZAfudXJmntBxk59pKLtHx20tJ5fT7XioH/frVIH7/cxif+9q1s7Fvx0yKxZA0znj+x3qPr32evUCx0GjKd9rDW0K43g/Q5+zMvMcyoNcek36bwCTuL+t/70I5mfXamuaGbclSZIkSdIUrJ52AyRJkiRJktROZl5Dmdzx5WrS4R0omVbuAtyJ8pTidRbYzH7AxsDjFq+lsyMiNgJuWSuuZ0oZxs+AvYb4/K2A69XKnhYRDx+hDfXJY1sPuX7XYJgLa6+XQzDWOZlZz5bUSZUx4VXAE4DtRtzcsBPb53TZt/X9Ch33bUTclpJ94Ma1tw4H/h6KsZcAACAASURBVKkKUJqmg4FX1sr2A34yaKWIuA9w81rxoS0yuxwCvKvn9QbA4RHxI+CjwJcz86yFGi1gcuPWPWuvE/hRicnpZL2GsmHH7K5+PqF62vplFRTZxc+Bh9XK7gx8fchtDGsWz+HDqh/TW1aT07tqmji/NXBBy/UT6FJ//XsAfDYihsqwtYBJXE81PUxh0Li0G/Ov7Y/uUG9bS3UM3IX5x+ZPR9he03XBnYDPjbDN5eAPmXl1h/X6XWv2y944i/29q1k7F3cJALp4Ebcz6DhYy4zca3Ux6XG8n1GupTfueT3JvwFc0fFeadj729s2lHXtuydTMrpu0HF9SZIkSZK0xBiMJUmSJEmStARVE5p/Rk9gURV4dDfgvsC+zA9CmrNvRLwgM9+96A2dvm2Y/2T1U0bY3slDfn77PmVN5V1tNeTnz+tYT33y5bodtzNLzh7HRiLiWcDbgc3GsT26T3Lrsm+bJtV22bd3An7A/N/gv4CXtQhcWnSZ+ZuI+CFrZ7d4YkS8NDOvHLDq/rXX11KCqRZyEPAk5mfr2L1a3h8Rp1J+t59W/z1+Fn6rGTSucWuhfxOpj82rgdt3rLufYcfsrs6ZUD1tjfvcu+2Q2+jye8ziOXxY9bZuxOIc020n5l+SmZd1qKPpN79dh+0MsujXU5l5VUNg06BzblPAwa+GrXcIS3UMbAqsGToLbo8TW9ax0ozrXAyDj/tZ7O9dzdq5+PwO6zTtv3Ftp9U9xwzda3Ux6XG8n6X4N4BJjTn18eCqDhnkgPIApYg4E9i5y/qSJEmSJGnpWTXtBkiSJEmSJGk8MvOyzDwyM1+XmbcCHgz8us/H/60K3lrump563fSk5LaGXXcSE/02HPLzXZ5ov1w1ZagYSkS8AvgA45scCB0nuXXMVjAut2X+b/CuzPzXGQsuOqT2ektg734fjoiNgcfWir+TmWcsVFEV4PUw4NsDPrYTJTvXeyjZYs6NiMMi4qER4d/vrzOpY3sWx+yuRh7fxmzc595hs1p0+T2Ww/FQz+y1GIb5Dl2Py1ncF5MYl5r2X5cgiLZm8XduY8uGsrbZ2po0/caT6EuzznPx8GbtXDyufTixe45ZutfqaNLjeD9L8W8Ak2pz/RwyyjXrONaXJEmSJElLiP+YK0mSJEmStExl5jeAuwJfa3h7W+CRk23RVGzaUHbpCNsbdt2myaGaHdeMsnJE3Av4j4a3LgU+CTwX2JMScLMlJSPJqsyM3mWUNsyQpt/y6RFx74m3ZLBPA/WsLPXMV732BTapldUDuvrKzHOBvYDH05PJcIDrAU8BvgKcGBH7tK1LY7FsxuzMHGl8WwTjPvc2nd8H6fJ7LOnjoQq6X3/a7ajpelwu6X0xgqbgg0sWsb6l+jtP4np/2DFH3S3V47DJrJ2Ll5Rlcq816XFcw6tfK1014vYGZVyWJEmSJEnLzOppN0CSJEmSJEmLJzMvj4gnAL8Dtq69fX/gfyffqom6uKFs4xG2N+y6lzeUPSozvzBCGzQ7DmwoOxR4SWa2ysgQERuMtUXTMzeWPKWnbDPg6xHx6Mz85hTaNE9mXhwRhwNP7SneKyJulJl/bFilHqh1AXDEkHUm8H/A/0XErYCHAnsA92Bw9oddgMMj4iDguTOWYWy5qo/Zv8jMO06lJcvPuM+9Tef3cVvq5/ArgGtZ+8GMn8/MR0+pPaOo74sLMnM5BWz005RVpx4gPE5LdQycxPX+JMYcFSu1v2u+5XCvNelxXMOrZ7IaNfh2nFncJEmSJEnSjDMzliRJkiRJ0jKXmRdRJi3V7TLhpowsItYdcpWmSVqbj9CEYdc9t6FsxxHq14yIiJ2Au9SKv5SZ+7edHFgZFIyzlPydEuB0UK18I+BLEfGoyTepr3pmq1XAP9U/FBE3A+qZvT6VmVd0rTgzT8rMd2bmIzNza+AWwDOAw2geLwCeDbyma50aSn0fOF6Pz7jPvcOMs10t6XN4Zl7L/N9pybS/pr4vtoiILabSksn6W0PZYgalLNUx8PyGslGOj6Z1zxthexrOSu3v6rGM7rUmPY5rePVzyKYRsd4I25v2MSdJkiRJkibIYCxJkiRJkqSV4ccNZfVMWYvp6oayYQOrYPiJLX8F6tlkRglCu+WQnz+7oex2I9Sv2fHAhrI3dNjOzUZtyKzI4jnAO2pvrQd8JiKeNIVmNTkKOK1Wtl/D5/YDolZWD+QaSWb+NjMPzsynAtcHHgH8pOGjr4mISY7ZK1V9zN48Im4ylZYsP7cYYd2m8/Y5I2yvreVwDq9/h1tExPpTaclolsO+6OIvDWWL+b2X6hj414ayW42wvVs3lPULmNb4rdT+rrUtl3utSY/jGt6ZtdcB7NplQxGxFXDDkVskSZIkSZKWDIOxJEmSJEmSVoYLG8qumWD9FzWUbdZhOzsN8+HMvAw4uVZ85w71dl33eKCeRefBI9Sv2XHj2usrMvOnHbZz93E0ZpZk5suBf68VrwYOi4hnTqFJa8nMZH62wF0i4h/7IiKCkumr168zsylQalzt+ntmfhm4B/C12tsb4dgxCU2Byw+ZeCuWpztExDod12069/5slMa0tBzO4fVjekNgzym0Y1QrtW/+hPnX6/dcxPqW6u/8G+CSWlk9o84w7tpQNokxR8VSPQ41XsvlXmvS47iG1zTm7N5xW13XkyRJkiRJS5TBWJIkSZIkSSvDdg1lTU8d71WfNNR1EjXABQ1lXZ5SvUeHdX5Ue33LiBg2wxURseWw9WfmFcAPasU3iIj7D1v/EtUU8DfKcTRL6lmKzuu4nceN2pBZlJlvAF5aK14FfDAiXjKFJtV9FLi2VrZ/z//fD7hp7f2DF7VFlcy8Bnh1w1uz/BT9eX19hMCbafpWQ9lTJt6K5WkTYOhzX0RsRumPvU7LzKZMOGO1TM7hy+WYbvoej4+I1RNvyQRl5sXAz2vFu0fEzotU5ZI8XjLz78yfTH/LiOiU2QTYt6Hshx23NUnL5bp7RfZ3zTPte62x9KcpjOMa3rHMz6beNaPzk0dsiyRJkiRJWmIMxpIkSZIkSVoZ6hOZAX63wDoX115vMkL9pzSU7TbMBqqJ/U/vUHc9wwxAl+w8TwPW77DeFxrKDuiwnaWofgzBaMfRLLm09nrLiBjq760RsQejZWqbaZl5IPAs5gc9/VdE/L8pNOkfMvMM4Du14sdHxIbV/+9Xe+8a4OOL3a4e9Yx+AJtPsP5hLZe+fizzA5XvFREPmEZjlqEu595/omRz6tV0Xl8sS/0c/g3mZ/d6YkTsMo3GdJWZf2R+ZqIdmT9WL0dH1F4H8LJFqmspj4HfaCh79rAbiYh7A7epFR+fmQs9xGIWLItz8Qrv77rOtO+1xtmfJjmOa0iZeT7wzVrxvXqzJrcRETcHHjO2hkmSJEmSpCXBYCxJkiRJkqQZFBGPiIgdx7Stm9P8ROgvL7Dq+bXXO0ZEdGlDZp4DnFUrftyQmVOeR7dsWp9n/sTS5w8zETkitgFe16FugI8Af6mV3SsiXtlxe0tJ/RiCbvtwFv259npD4N5tV46IjYAPjrVFMygzP0TJqlF/uvwbIuI/ptCkXofUXm8GPKbKxFOfSPeVahyblBs0lC16JqARLIu+XmUlazouP1KdBzSax0bEfdp+uMpIeUDDWx8YW4sWtqTP4Zl5LvPPNesAn+wJPl0q3txQ9o6IuMXEWzJZ7wcuqpU9MyL2GndFS3wMPJj5gYfPjojWWSWrzEvvbnirqWwWLYtzcWWl9nddZ9r3WuPsTxMbx9XZ+xvKDqqOowVV548P0O3hPZIkSZIkaQkzGEuSJEmSJGk2PQz4TUQcEhG37LqRiLgh5UnM9UkkfwW+vcDqv6q93hy4R9e2MD+TxU2AF7dZMSLuD/xnl0oz82rgfbXi9YDPRsRWLereCPgcsGXH+i+neULhWyLi+V22WbXrwRFR/16z5kzgwlrZQ6fRkEXw/YayN0fEugutGBEbAJ8BVsSE0sz8FLAPcGXtrVdExPu6BnmOwRHABbWy/YHHM3/MPHiYDUfEPSLiRRGxace2vaih7JcL1HlARGRtObRj/cOqny9g6fb19zM/ePgmwNciYvsuG4yIbSLiTRHxwJFbt/R9IiJ2WOhDEbE+ZZzcuvbWkZnZdLwtimVyDn8r8zOM3Ak4ogp4G1pE3DQi3h0R9QxCiyYzjwB+WivenNI3d+2yzYjYNCJeHhFPGbmBiyQzLwT+u1YcwKcjYs9htxcR2y4wuXxJjoFV4OHHasWrKdf7TQHOa6muRT4M3L721jlMNjPmKE5oKFuS5+KV2t+1lmnfa42tP01hHNfwvgz8vFZ2O+BLETEwO3F1vH0cuP8itU2SJEmSJM0wg7EkSZIkSZJm12pgP+CkiPhRRDy/zWRCKAFEEfFs4Djgtg0feXlm1p8eX/fDhrKDI+K+EdHl70ofbij7j4j4l37BGBGxQZV94muUpwwv1OZ+/hM4pVa2K/CDiNi930rVJOM1wL2qoss71v9e4Au1slXAuyPiiIioT/zs154dI+KVEXE85TdpnWFkGjIzgWNqxQ+IiLdGxLbTaNMY/Rj4Q63snsDnIqIePPAPEXFXyuTCucl89aekL0uZ+UXg4cBltbeeAxw6ZJa8cbXpCuBTteL7Av9aKzsH+OqQm98WeBdwVkQcFBF7tZw8ukmVMaweqHohC2cznKYTmH8svzoi9ltq2Xeq4+JxzA8evDPw8+pcvOB3ioj1IuLhEfExyljxWspE8pVq7vy9PfD9iHhQvw9WmU++w/xJrVcAz12c5g20pM/hmfkX4GlA1t56EPCziHhKldFhoIjYOCIeHxGfA04Fng9sMPYGD/ZE4Lxa2c2AYyPitQtNmAaIiFXVtexBwBmUa8Trj7+pY/Um4Ee1si2Ab0TE29oE1UXEblUA4OmUc1SjJT4Gvpr5gWQ7AUdHxAP6rRQRN6L08ac1vP2sFvdMMyEzzwNOrhXvHxEvadM3ZtBK7e8qpnqvtQj9aWLjuIaXmX+nPJTj6tpb9wNOjojn1v9+ERFbRMTTKPdBj6+KL2D+cSNJkiRJkpaxBf9xRZIkSZIkSTPhbtXy7og4HTgWOBE4F/gbZYLtZsBNKU/wvT+wcZ9t/V9mfnShCjPz2Ig4Ebh1T/EtgO8Cl0fEWcwPrAB4aGb+qWF7P46ILwB79xSvAxwEPC8ijqBM7r0K2IYy6fOhrD3R6MXV54eSmVdExP6UwKr1et66JfDDiPghJdjiTOBa4EbAXsCeVRsB/g68Hnhbh/qzegr7D5j/xP1HAY+KiF9W7fstZZ9CmaC1NWWf3pkyAXGpORh4cK3sVcCrIuLPlEmW19Te/2Jmvm4SjesqM/8eEa9nfsakhwOnR8RnKRPuzgU2oWSVeAiwG+VJ6HOez/xMDstSZn47IvYCvsLaE7KfCmwUEU+qMtlN0iGUgLA5q4Bdap85LDPrx2hbmwH/Ui0XR8TPKUGyv6dM1ruUEsywPSVTzYNonqz+sipDz0zKzKsj4uOsHSizMeX3/XBEnAlcTBlfe72uCtSbKZl5TEQ8CziUtfvrNsC7gTdGxFGUPn4OZaLvJpQxewfKeH1H+p+HV6IPAPsCN6Qc71+PiJ8BX6JMKr6Kcu69H/AAoCl48TWZOfEJrsvhHJ6Zn42I1wFvrL21I3AY8I6IWEPJRPNXyti0GeU77ATchfI91p9Um5tk5qkR8TjKNVvv9dzGlInur46IHwBHA3+mjLMbUb7HjSnj7J2q10tGZl4VEftSghN6H8ywHvBK4IXVmPR94C+UMWlTYDvgDpTMtjceor4lOQZm5nkR8VTgm6z9b+A7At+qzsFzY84VlN/yPpTr1KbAwvdmZj0Qc9YdzNrZhNcB/gt4Z3XvdiHlnqbXQZk59P3VYlup/V3FjNxrja0/TXoc1/Ay8/goWU8PYu1j6PqUwPz3RMQ5lOu8LSl/p+p9oEgCz6bcW/Zmt68fI5IkSZIkaRkxGEuSJEmSJGnp2aFauvgo8IwhPv8CyoTGetaaDYGd+6yzXp9yKJNT7kqZjN3rtjRn8Or19sz8QPVk86FVE0v3AT5ba2NQnrJ9zwU28QLgpC51V/VfEhH3pgQn7NPwkdszf5L3cvBZmjOcQJmI1pTt7ReL2qIxycxDIuKBlCf399qYEmD01AU28ebMPKzKGrEiZObREXE/4BuUIIU5j6UEZO0zyQwUmfmTiDgBuM2Ajx0ypuo2BfaolmEcmJlNmQVnzRuBxzA/48Q69D9nXW8xGzSKzPxYRPyNEqhSz1awBSWweO95K6qfCyiBS0dyXYDGnauljbdk5oGL0bA2lsM5PDPfFBF/okworgeebEfJ6vD4eSvOmMz8TrUvDmf+xPSNKUGtfTOvLVWZeVZE3I0STFQ/1jakBBTVg99HqW9JjoGZeWREPBL4DPODweaCc9p4N/OzVC4F76Vk+Nq1Vh6U/tIUzDGzmaJWan9XMQP3WmPtT5MexzW8zPxgRCQlIKueDT4o10vbNa0KvDgzPx0RL6i9tyIyYUuSJEmStFLV/4AgSZIkSZKk2XAY8AnK5OVxOA3YOzP3y8zWT+bNzO8CjwbOHkcjMvMvwL0oGbDauoqSFeYVY6j/y8DDKBmw2roceEZmvn8M9V+cmY+lPC35jyNu7gzGFySyaDLzWkqgzSen3ZZFsj8wbKDMFcALM/PfFqE9My8zf04JSPpz7a2HAl+NiE0m3KRB/ejHmfnrDtu8kLKfR3EuZex56YjbmYhqfL8f8LNpt2VcMvMrlGChIyiTLLu6BvgycPw42rVUZeZPKIG5w5z/LgNekpmvXZxWtbcczuGZeTBwd0qW01FcAfwv5XtMXGb+mBJUcwgwSkbFpGQ0+/4YmrXoMvNMysMD3g1c2XEzF9Hy/LRUx8DM/Bol49VPO6z+N+A5mfnC6hp2ScnMyyjBSd+adlvGZaX2d/3D1O61FqM/TXoc1/Ay80OUrPRt72lOAx6cmf9Tva4HMF84rrZJkiRJkqTZYzCWJEmSJEnSDMrMozPzKcC2lInLb6BMnL1kiM2cTQnoehiwS2Z+sWNbvkTJavI44CPAj4G/AJfSYWJmZv4euB3wGuYHY/S6Cvg0cMfMfOew9Qyo/9vArYE3Mzgo63JKJrHbVpOXxyYzDwJuBjwT+DZlsvlCrgWOA94O3BfYYZy/y2LKzAsy88nALYEDKBNyfwecz2iTKqcuM6/MzGdS+tnRC3z8QuADwK6Z+e5Fb9wMy8wTgXsDp9feui/wrYioT2JbTB+n/3HYKVgiM48EtqJkDXkfJdtb20DYnwEvA3Ya99iz2DLzJEr2wz2Ad1GyIJ1FmTTaOhB4lmTm7zPzMZSsCAdRxq42zqNkBnw2sH1mPiIzf7NIzVwyMvNYym/5FuCvAz56EeUcfJvMfNck2tbWUj+HZ+YvMvP+wO7Axyh9tI0/U8bLpwHXz8wnZuY5i9TMBWXmuZn5dGAn4B3Ar2l3XXox8BXgJcCOmXnf6rhcEjLz0sx8ISVD7YHAb1usdhnwNcoxe8MqeLZtfUtyDKwCv3ejZHv7NgsHPZxIud+6edXHl6zM/GNm7kUJpHsbJRvp6ZSHfFwzxaZ1tlL7u6Z/r7UY/WnS47iGl5k/pZxD7sd193JnU/b5xZRzxmGUh87cIjO/2bN6PTvaeYveYEmSJEmSNDWROcqDzCRJkiRJkjRJERHAjSgTd24CbAZsSpmMdhFlYsifgV8tlQk6EXE74PbA1sBGlElUpwDHZOYwwWdd6g7gLsAtgBsA61Emy5wMHJuZly9m/T3tWI8ywWt7yu+wJddN9DkX+A3wm0m1R91FxHaUp53fENiCMvn3bOAk4LjMXJKTYDW6iNiYMnbfjDJJb1NgXUqQ7YWUjIHHZ6ZPT59xEbE91523tgI2pOzHiyiZgk7OzFEzJy1pEVH/x6fXZ+YBtc+sAu4I3BbYDgjKeHkG8IPM7JoxYqKWwzk8InaiBKpvVS3rcd3Y9HvKMT21wKu2ImIbyr7YhvI9NqE8POBiStDZycAfcpn942hE3JQyJs1973Uo3/lsyjX1yZl51RjrW3JjYHUO3p1yvb8t5Rg/FziHcn02TNZczYCV2t9XuuV6rzXpcVyLIyJ2plz39XrGUnvAhiRJkiRJas9gLEmSJEmSJEmSJI1Nm2AsSZIkabmIiBdTsp31um1mnjCN9kiSJEmSpMW3atoNkCRJkiRJkiRJkiRJkqSlpsqU+qJa8bnAiVNojiRJkiRJmhCDsSRJkiRJkiRJkiRJkiRpeAcCO9TKPpKZ106hLZIkSZIkaUIMxpIkSZIkSZIkSZIkSZK0IkXEIyLiMRGxzhDrrBcR7wOeW3vrGuCgsTZQkiRJkiTNnNXTboAkSZIkSZIkSZIkSZIkTcmuwFuBsyLiCOCrwHGZeXbvhyJiFXAb4CHA84HtG7Z1QGaevrjNlSRJkiRJ02YwliRJkiRJkiRJkiRJkqSVbnvgBdVCRFwAnAdcBmwGbANsOGD9b1GCuiRJkiRJ0jJnMJYkSZIkSZIkSZIkSZIkrW2LamnjYOA5mXntIrZHkiRJkiTNiFXTboAkSZIkSZIkSZIkSZIkTclxwIkd1/0xsHdmPiMzrxpjmyRJkiRJ0gwzM5YkSZIkSZIkSZIkSZKkFSkzvwHsGhE7A/cBdgd2Bm4KbAlsBCRwPnAe8Dvg+8CRmfmTqTRakiRJkiRNVWTmtNsgSZIkSZIkSZIkSZIkSZIkSZIkSTNv1bQbIEmSJEmSJEmSJEmSJEmSJEmSJElLgcFYkiRJkiRJkiRJkiRJkiRJkiRJktSCwViSJEmSJEmSJEmSJEmSJEmSJEmS1ILBWJIkSZIkSZIkSZIkSZIkSZIkSZLUgsFYkiRJkiRJkiRJkiRJkiRJkiRJktSCwViSJEmSJEmSJEmSJEmSJEmSJEmS1ILBWJIkSZIkSZIkSZIkSZIkSZIkSZLUgsFYkiRJkiRJkiRJkiRJkiRJkiRJktSCwViSJEmSJEmSJEmSJEmSJEmSJEmS1ILBWJIkSZIkSZIkSZIkSZIkSZIkSZLUgsFYkiRJkiRJkiRJkiRJkiRJkiRJktSCwViSJEmSJEmSJEmSJEmSJEmSJEmS1MLqaTdAS0tEbA7s0VN0JnDVlJojSZIkSZIkSZIkSZIkSZIkSZKklWU94MY9r4/KzAsnVbnBWBrWHsAXpt0ISZIkSZIkSZIkSZIkSZIkSZIkCdgb+OKkKls1qYokSZIkSZIkSZIkSZIkSZIkSZIkaSkzGEuSJEmSJEmSJEmSJEmSJEmSJEmSWlg97QZoyTmz98XnP/95dtppp2m1RZIkSZIkSZIkSZIkSZIkSZIkSSvIqaeeyqMe9ajeojP7fXYxGIylYV3V+2KnnXZi1113nVZbJEmSJEmSJEmSJEmSJEmSJEmStLJdtfBHxmfVJCuTJEmSJEmSJEmSJEmSJEmSJEmSpKXKYCxJkiRJkiRJkiRJkiRJkiRJkiRJasFgLEmSJEmSJEmSJEmSJEmSJEmSJElqwWAsSZIkSZIkSZIkSZIkSZIkSZIkSWrBYCxJkiRJkiRJkiRJkiRJkiRJkiRJasFgLEmSJEmSJEmSJEmSJEmSJEmSJElqwWAsSZIkSZIkSZIkSZIkSZIkSZIkSWrBYCxJkiRJkiRJkiRJkiRJkiRJkiRJasFgLEmSJEmSJEmSJEmSJEmSJEmSJElqwWAsSZIkSZIkSZIkSZIkSZIkSZIkSWrBYCxJkiRJkiRJkiRJkiRJkiRJkiRJasFgLEmSJEmSJEmSJEmSJEmSJEmSJElqwWAsSZIkSZIkSZIkSZIkSZIkSZIkSWrBYCxJkiRJkiRJkiRJkiRJkiRJkiRJamH1tBsgtZGZXHvttWTmtJsiSZL+P3t3HhZ1uf9//DUssogIIi6Bgpo7piKG4JJ1MjU7HVPrmFlq1LFCpdzTX26dStsl9+yInpNWZlqp3zKPWSoILmlqqJiiqKiAbKLs8/vDyzkM64yAmD0f1+V1cd9z35/7PTOfmfiDV2/cNIPBIBsbGxkMhpouBQAAAAAAAAAAAAAAAAAAADeBMBZuSwUFBcrKylJmZqaysrJUUFBQ0yUBAABUGVtbW9WuXVt16tRR7dq1ZWtrW9MlAQAAAAAAAAAAAAAAAAAAwAKEsXBbKSgoUGJiojIzM2u6FAAAgGpTUFCgjIwMZWRkSJLq1Kmjxo0bE8oCAAAAAAAAAAAAAAAAAAC4zRHGwm0jLy9PCQkJysnJqelSAAAAbqnMzEzl5uaqSZMmsre3r+lyAAAAAAAAAAAAAAAAAAAAUAabmi4AkKScnBzFx8cTxAIAAH9a/D4EAAAAAAAAAAAAAAAAAABw+6MzFm4LFy9eVH5+vtmcwWCQs7Oz6tSpIycnJ9na2spgMNRQhQAAAJVnNBpVUFCga9euKTMzU1evXpXRaDQ9np+fr4sXL6pp06Y1WCUAAAAAAAAAAAAAAAAAAADKQhgLNS4vL09ZWVlmc7Vq1VKTJk1Uq1atGqoKAACgetjb28vR0VHu7u7Kzc1VQkKCcnNzTY9nZWUpLy9P9vb2NVglAAAAAAAAAAAAAAAAAAAASmNT0wUA6enpZmMbGxv5+PgQxAIAAHe8WrVqycfHRzY25r+WF//9CAAAAAAAAAAAAAAAAAAAALcHwlioccX/2NjV1VV2djRtAwAAfw52dnZydXU1myOMBQAAAAAAAAAAAAAAAAAAcHsijIUaZTQalZubazZX/I+RAQAA7nTFf//Jy8uT0WisoWoAAAAAAAAAAAAAAAAAAABQFsJYqFGFhYUl5uzt7WugEgAAgJpT/Pcfo9FIGAsAAAAAAAAAAAAAAAAAAOA2RBgLNaq0PzK2seG2BAAAfy6l/f5TWmgdAAAAAAAAAAAAAAAAAAAANYvUCwAAAAAAAAAAAAAAAAAAAAAAAABYgDAWAAAAAAAAAAAAAAAAAAAACFFo6gAAIABJREFUAAAAAFiAMBYAAAAAAAAAAAAAAAAAAAAAAAAAWIAwFgAAAAAAAAAAAAAAAAAAAAAAAABYgDAWAAAAAAAAAAAAAAAAAAAAAAAAAFiAMBYAAAAAAAAAAAAAAAAAAAAAAAAAWIAwFgAAAAAAAAAAAAAAAAAAAAAAAABYgDAWAAAAAAAAAAAAAAAAAAAAAAAAAFiAMBYAoEoZDAbTv969e9d0OTXK19fX9Fr4+vrWdDkopnfv3mb3KwAAAAAAAAAAAAAAAAAAAABUhDAWAAAAAAAAAAAAAAAAAAAAAAAAAFiAMBYA/MHEx8ebdfMZOXJkTZeEO8ysWbPM7rHt27fXdEmoYhEREWbvcURERE2XBAAAAAAAAAAAAAAAAAAAAPwhEMYCAAAAAAAAAAAAAAAAAAAAAAAAAAsQxgIAAAAAAAAAAAAAAAAAAAAAAAAACxDGAgAAAAAAAAAAAAAAAAAAAAAAAAALEMYCAAAAAAAAAAAAAAAAAAAAAAAAAAsQxgIAAAAAAAAAAAAAAAAAAAAAAAAAC9jVdAEAUFWMRqNiYmJ04sQJnTt3TjY2NmrRooV69+4td3f3cvdevXpVO3fu1NGjR5WZmSl3d3e1bt1avXr1kr29/U3XdPnyZf3222+Ki4vT5cuXlZ2dLVdXV3l4eKhTp05q27atDAbDTV+/qmVmZioqKkrnz59XcnKy8vLy5OrqqmbNmqlDhw5q0qRJpc9ISEjQnj17dPbsWV27dk3169dXhw4dFBAQIBubymeEs7OzFRUVpTNnzigpKUlGo1Genp66++671a1bN9nZVf4/fb/++qsOHjyoxMREOTk5ycvLS507d1azZs0qfe3KuHjxog4cOKCTJ08qIyND+fn5cnJykoeHh3x8fNS+fXt5enrWaI23wokTJxQTE6Pz58/Lzs5OXl5e8vPzU9u2bav8rPz8fMXExOjkyZNKSkpSTk6OPD095evrq+7du8vR0bFKz0tOTlZkZKTOnj2r9PR0eXh4qE2bNgoKCqrUd1VlXblyRQcPHtTRo0eVlpama9euydHRUa6urmratKlatWql5s2b11h9AAAAAAAAAAAAAAAAAAAAQFUhjAXgD2P79u26//77TeOZM2dq1qxZys3N1QcffKAlS5YoPj6+xD4HBwc9//zzeuutt+Ti4mL2WHJysmbOnKmIiAhdvXq1xF53d3fNmDFD48aNszgoFB0drS+++EI//PCDDh8+LKPRWOZaDw8PPffcc3r55ZfVqFGjcq/r6+ur06dPl5hfuXKlVq5cWea+FStWaOTIkWU+XlhYqHXr1unDDz9UTEyM8vPzy1zbsmVLDRo0SP/4xz+sDlZERkZq5syZ2rZtmwoLC0s83rBhQ02fPl2hoaE3FcqKjo7WG2+8oa1bt+ratWulrnF1ddWTTz6pGTNm6K677rL6jDVr1mjWrFk6fvx4iccMBoN69uypV199Vf369bP62pWxbt06ffDBB4qMjCz3fpOkFi1aaMCAAQoLCzN7D4t/vooqa/6G4mfOmjVLs2fPNo1//PFH9e7du4JncV18fLxZqG3EiBGKiIiwaO8PP/ygqVOnav/+/aU+7u/vr/Hjx+upp56y6HrliY2N1T//+U9t3LhRGRkZpa5xcnLSo48+qjlz5qhVq1YWXbfo59zHx8f0nRYbG6tp06Zp06ZNysvLK7HP1dVVEyZM0KRJk+Tk5FTqtYu/tkWNGjVKo0aNKrOuU6dOydfXt8T8gQMH9Prrr2vTpk3Kyckp97l5enrqwQcf1OjRo3XfffeVuxYAAAAAAAAAAAAAAAAAAAC4XVW+BQkA1KCUlBT16tVLU6dOLTWIJUk5OTlasGCBevbsqbS0NNP8L7/8oo4dO2rRokWlBrEkKTU1Va+88opGjhxZaoCouK+++krdunXT+++/r0OHDlUYjElJSdG8efPk5+enH374ocLrV7Xjx4/L399fTzzxhCIjI8sNYklSXFyc5s2bpzlz5lh1zptvvqlevXpp69atZb6OFy9e1Lhx4zRkyBDl5uZafO2rV69q2LBh6tatm7799tsyg1iSlJGRoaVLl6ply5b68ssvLT4jNzdXgwYN0rBhw0oNYknXA0k///yz+vfvr6lTp1p87crIycnRkCFDNGTIEO3atavC+02Sfv/9d4WHh2vbtm23oMJbw2g0auzYsXrooYfKDGJJ0v79+zV8+HANHz68wnu9LAUFBXrllVfk5+en1atXlxnEkqRr167p888/V/v27TV//vybOk+6HqgMCAjQhg0bSg1iSdfv7ZkzZ6pPnz5m33PV6e2331aXLl301VdfVRjEkqSkpCStWbNGH3/88S2oDgAAAAAAAAAAAAAAAAAAAKgedMYCbpH9Z9O0PPqMDpzL0JXcfLnUslMnL1c9F9hU/t5uNV3eH1Jubq4GDBig6OhoSde70AQGBqpRo0a6evWq9u7dq/Pnz5vWHzhwQKNGjdL69esVFxenv/zlL0pNTZV0vUNV165dVa9ePaWkpCgyMlKZmZmmvf/+97/l7++vl19+udyaigeNbG1t1bJlSzVr1kyurq4yGAxKSUnRoUOHdOHCBdO6lJQUDRgwQD/99JOCgoIq/dpYYvv27Ro4cKDS09PN5u3s7NS5c2d5eXnJ2dlZaWlpOnbsmE6ePGlR2Ke4d999V9OnTzeNW7durdatW6t27dpKTEzU7t27lZ2dbXp8/fr1eu211zRv3rwKr52UlKR+/fqVCOA4OTmpc+fOuuuuu2Rra6uEhATt2bPHFGS5evWqnnjiCS1fvlzPPvtsuWcUFhZq0KBB2rRpk9m8vb29AgMD5eXlpStXrujXX39VQkKCJGnevHmqX79+hfVX1pgxY7Ru3TqzOUdHR3Xs2FHe3t5ycnJSVlaWUlJSFBsbq6SkpGqvqSa89NJLWrJkidmcjY2NAgIC5OPjo9zcXMXGxpqCdJ9++qnc3Kz/3r127ZoGDhyoLVu2mM3b29urU6dO8vb2loODgy5cuKCYmBhTyDM/P18vv/yyUlNTNWvWLKvOXLt2rUJCQkyfPR8fH/n5+alu3bpKSkrS7t27zb6rdu3apdGjR+vzzz+3+vlZ49NPP9WUKVPM5gwGg9q3b6/mzZvL1dVVOTk5Sk9P17Fjx3TmzJmb+v4AAAAAAAAAAAAAAAAAAAAAbjeEsYBqtjchTWPXH9bu06klHos6narFkacV5OOu8Mf8FNCEUJY1lixZotTUVDk4OGj27NkaO3asnJ2dTY8bjUYtW7ZMY8aMMXXB2bBhg7Zu3aqJEycqNTVV3t7e+uCDDzRo0CDZ2PyvWWBWVpYmTpxoFvB47bXXFBISojp16pRbl5ubm4YPH66//vWv6tWrlxwdHUtdFxUVpenTp+vHH3+UJOXl5Wno0KGKi4tTrVq1SqzfuXOn8vPzdfbsWfXs2dM0P3jwYL377rtl1lNaKOjkyZMaNGiQWRDLw8ND06dPV0hIiFxdXUvsSU5O1vr16/Wvf/2r7CdfzKFDh7Rjxw5J0sCBA/XWW2+pTZs2ZmtSU1M1fvx4RUREmObee+89vfjii/L19S3z2oWFhXryySfNglh33XWX/vnPf2rYsGFycHAwW5+Wlqa3335b8+bNU2FhoYxGo0JDQ9WlSxd17NixzHPee+89syCWwWBQWFiYZsyYIXd3d9O80WjUli1b9NJLL+nkyZOaPn267O3ty319KuPo0aNavny5aezs7Ky5c+cqJCTE7HNQ1KlTp7R582atWLGixGPdunXTqVOnJEkffvihWSenNWvWqFu3blX8DKrGl19+WSKI9dRTT+ntt9/WXXfdZTYfHR2tF198Ub/88osWLlxo9v5ZIjQ01CyIVbduXc2aNavU74Vr165p0aJF+n//7/+ZwoZz5sxRYGCg+vfvb9F5ycnJGjFihIxGo3r16qV3331XXbt2LXHOnDlzNHfuXNPcF198oTFjxph9T0iSt7e36T3+8ssvNWnSJNNj77zzjoYMGVJmLd7e3qafCwsLNXnyZLPHx4wZo+nTp6tRo0al7r98+bK2bNmiNWvWyNbWtoJnDgAAAAAAAAAAAAAAAAAAANy+CGMB1Wjjbxf1+Mq9ys4vLHdd1OlU9VywS2tHBOiRdg1vUXV/fKmpqbK3t9fmzZv1wAMPlHjcYDBo9OjRSk9PN+vg8sQTTyg1NVXNmjXTzp07SwQ2JKl27dpavHixzpw5o82bN0uSrly5oi+++EIhISFl1nTffffp3LlzZYZhigoKCtJ///tfhYSEmMIxZ86c0erVqzVy5MgS64uGIYpycXEpN7RUmqefftrUFUyS2rRpo++++04+Pj5l7qlfv76ef/55Pf/882Zdvcpz+fJlSdLkyZPL7HTl7u6uFStWKDU1VV9//bUkqaCgQJ988olef/31Mq/93nvv6b///a9p7O/vry1btsjDw6PU9W5ubnrzzTfl7++vJ554QkajUdnZ2XrllVe0bdu2UvecO3dOM2bMMJtbtGiRXnjhhRJrDQaD+vbtq6ioKPXs2VPHjx9Xbm5umfVX1jfffGM2XrhwYan3TVHNmjVTaGioQkNDzbqRSdc7at24j4p3jWrUqJHV99itcO3aNYWGhprNTZkyxSyYVFRgYKB27Nihhx56SJGRkWafgYqsXbvWLMTm4+Oj7du3l/m6ODk5acKECQoKCtJf/vIXZWdny2g0aty4cTp27JhZ+LMsWVlZkqRhw4Zp5cqVsrMr+Wubk5OT3nrrLV27ds0sQLds2bISYSw7OztTvcVDmvXr17f4PS7edXDEiBH66KOPyt1Tr149DR06VEOHDtW1a9csOgcAAAAAAAAAAAAAAAAAAAC4HVX8l8AAbsrehDSLglg3ZOcX6vGVe7U3Ia2aK7uzTJ8+vdQgVlFjx46Vi4uLaXwjgLFq1apSg1hFFQ1xSTIL/5TG09PToiDWDQaDQQsWLFCDBg1Mc59++qnF+2/GDz/8oMjISNPYxcVF3377bblBrOLK6n5Tmh49euitt96qcN0bb7xhNi4rICVdD+G88847pnHdunW1cePGMoNYRQ0ZMkQvvviiafzjjz+addcqaunSpWahpcGDB5caxCqqQYMG+s9//mNR2KYyTp8+bTYur6tRacrq2PZHsmbNGl26dMk07tq1q958881y99SuXVtr1qxR7dq1LT7HaDRqzpw5prGdnZ2++eYbi8JLwcHBZntPnDihDRs2WHz23XffreXLl5caxCpqxowZZh31yvv8VFZl7z0nJ6eqLAcAAAAAAAAAAAAAAAAAAAC4pQhjAdVk7PrDFgexbsjOL9S49YerqaI7j7Ozs8LCwipc5+TkpO7du5vN9ejRQz169Khwb48ePcyCAwcOHLC+0Ao4Ozurf//+pnF0dLQKC627d6yxePFis/GECRN09913V9t506dPtyiY1L59e7NwS3mv9Zo1a5SUlGQav/zyy2rcuLHFNU2YMMFsXLzL1A2rVq0yG8+ePdui63ft2lWPPvqoxfVUhaKhpD+L4u/PrFmzLLrXmjZtqueff97ic3788UcdPvy/7+annnpK99xzj8X7Q0NDzcJvZd1vpZkwYYJF4aV69eopODjYND5//vwtuyf+jPceAAAAAAAAAAAAAAAAAAAA/rwIYwHVYF9CmnafTr2pvVGnU7X/LN2xLBEUFCQ3NzeL1rZs2dJs3K9fP4v22djYqEWLFqbxxYsXLS+wmOzsbCUlJen06dOKj483+1enTh3TuszMTJ09e/amzylPYWGhtm/fbjY3evToajlLuh6Eq6hzWVFt27Y1/Xz16lVduXKl1HU//PCD2fjvf/+7VXU1b95cTZs2NY137NhRYs3Zs2fNOgDdc889at++vcVnPPXUU1bVZK02bdqYjSdOnKi8vLxqPfN2kpeXp5iYGNO4Xr166tu3r8X7rXl/Knu/OTs769577zWNS7vfyjJgwACL1xb9/EjVF5Iqfu+99dZbunDhQrWcBQAAAAAAAAAAAAAAAAAAANxu7Gq6AOBO9EnMmcrtj06Qv7dlIaM/s+LBg/LUrVu3SvZmZGRYvC86Olpr165VVFSUjhw5ovT0dIv3pqammoWFqkpsbKxSU/8XFGzdurVVHaWs1aJFC9WqVcvi9e7u7mbj9PR0ubi4lFi3c+dO08+1atWSg4OD4uPjraqtXr16OnPm+mf1999/L/H43r17zcaBgYFWXd/a9dYaNGiQJk2apJycHEnS+vXr1aZNGz333HP629/+pnbt2lXr+TXtyJEjunbtmmncpUsX2draWry/U6dOcnBwML1+5Sl6v0nX7x1r7zdXV1fTz/Hx8SosLKywi5eLi4uaNGli8RmlfX6qQ4cOHdShQwcdOnRIknTixAm1adNGI0eO1JAhQ9StWzfZ2fErJgAAAAAAAAAAAAAAAAAAAO5M/KUsUA0OnLM8sFPq/vPV8wf0d5riwYPyFA8GWNpRq/je/Pz8CtcfPnxYoaGh+vnnny0+o7jqClEkJiaaja3p9HQzrHmPJMne3t5sXFqnp8LCQp0/f940zs3NNetedjMuX75cYq54F7Ti3dUq0qRJEzk6Oio7O7tStZXFy8tL8+bN08svv2yaO3nypKZNm6Zp06apQYMGCg4OVnBwsHr27KmAgIA7KiBT2ffHzs5OzZo109GjRytcm5CQYDbu1q2bVWcVV1hYqLS0NNWrV6/cddXx+akqy5Yt0/3332+6v9PT0zV//nzNnz9ftWvXVmBgoIKCgtSjRw91797drPsfAAAAAAAAAAAAAAAAAAAA8EdWfksGADflSm7FgZ3yZOZUbv+fRUVdZaprb3l27typ4ODgSgWxpOthjeqQkpJiNrY27GGt6nidU1NTq/z1yczMLPWcoop2NrJU8Y5sVS0sLEyrV68utbvZpUuXtGHDBk2ePFlBQUFq1KiRRo8erWPHjlVrTbfKrXx/in9uqkJp91xx1fU9VRW6deumXbt2qXPnziUey8rK0rZt2/TGG2+of//+8vT01MCBA7V169YaqBQAAAAAAAAAAAAAAAAAAACoWrfvX/kCf2AutSrXfaaOw53TvebPJCMjQ0888YRZyKJu3boaPXq01qxZo19++UUXL15UVlaWCgoKZDQaTf9mzpxZIzUbDIYaObcycnNza+Tc2/W1evLJJ/X7779r1apVevTRR8sM2KWkpGjZsmVq166dpk6dWm2Bv5pSne9PddxzRqOxyq95q/n7+2vfvn3asmWLRo0apaZNm5a6LicnR19//bX69OmjRx55pFrCbQAAAAAAAAAAAAAAAAAAAMCtQuIDqAadvFwVdTq14oVl7b+rervpoHosWbJEiYmJpnFgYKC+/fZbeXp6Vrg3IyOjOkszqV+/vtn48uXLt+TcquTh4WE2btWqVbV0eyoeakpPT7f6Gjez52Y4OTnp6aef1tNPP63CwkLFxsYqKipKO3fu1JYtW8zuy8LCQs2bN0+5ubl6//33b0l91igoKLBo3a18f+rXr6/z589LkhwdHXX16tXbNpx3qxkMBvXp00d9+vSRJCUkJGj37t3asWOHtm3bpiNHjpit37Rpkx5++GHt2rVLdnb8GgoAAAAAAAAAAAAAAAAAAIA/HjpjAdXgucDSu4NYKiSwSRVVglvp66+/Nv1sMBi0evVqi4JYkkxBj+rWuHFjs/Fvv/12S86tSrVq1TIL4pw6dUp5eXlVfk7Dhg3NxnFxcVbtT0hIUHZ2dlWWZBEbGxu1b99ezz33nCIiInTu3Dn9/PPPeuihh8zWzZ8/v1pCbJJKhGzy8/Mt3puaalmQtbLvT35+vk6dOmX1WdnZ2Tpz5oxVZ/2ZNGnSRI8//rjCw8N1+PBhHT9+XKGhobKx+d+vnDExMYqIiKi5IgEAAAAAAAAAAAAAAAAAAIBKIIwFVAN/bzd183GveGEpgnzc5e/tVsUV4VYoGgZp27atmjdvbvHeqKgoi9dWpiNP27ZtVa9ePdP42LFjunDhwk1fr6YEBwebfs7Ly9P27dur/IyAgACz8e7du63aHx0dXZXl3DSDwaCePXvqu+++0yOPPGKaLyws1DfffFPmnspwdXU1G6elpVm8t3gnpbK0b99eTk5OpvG+ffusCn0dOHBAOTk5Fq0ter9J0pYtWyw+53Z1qzp7tWzZUgsWLNDcuXPN5tevX39LzgcAAAAAAAAAAAAAAAAAAACqGmEsoJp89JifHO2s+4g52tko/DG/aqoI1a1o4KRu3boW79u2bZtVnXYcHBzMxpYGSqTrAYwHHnjANDYajVq2bJnF+28Xffv2NRt//PHHVX6Gt7e3fHx8TONDhw5ZHBSSpE8//bTKa6oMg8GgUaNGmc2V1RmqMveYJDVo0MBsbE0Htk2bNlm0zt7eXvfee69pfPnyZX3//fcWn2PN+1P8flu+fLnFe29XlX2PrRUSEmI2trQrGQAAAAAAAAAAAAAAAAAAAHC7IYwFVJOAJm5aOyLA4kCWo52N1o4IUEATumL9Ubm7/68bWlxcnAoLCyvck5eXp1dffdWqc9zczO+RxMREq/aHhoaajd977z2dPHnSqmvUtKefftrsdVi7dq3++9//Vvk5zzzzjNl45syZFu3bs2dPmV2napKdnZ3ZuHgg54bK3mP+/v5m42+//daifUeOHNFXX31l8TnF35/Zs2db9Lk7c+aMVQG+/v37q0WLFqZxTEyM/vWvf1m8/3ZU2ffYWpbeewAAAAAAAAAAAAAAAAAAAMDtjjAWUI0eaddQO8Z0V5CPe7nrgnzctWNMdz3SruEtqgzVoWPHjqafk5OTK+yeU1BQoNGjRysmJsaqcxwdHeXr62sa79mzx6wrV0V69+6tXr16mcYZGRl69NFHlZCQYPE1Lly4YPHa6uDm5qZJkyaZzQ0ZMkQ7d+606joFBQX66quvdPny5VIfHz16tBwdHU3jdevWaenSpeVe89KlSxo+fLhFoaDKWLp0qVUd1SRp1apVZuO2bduWuq74/JYtW6w6p2XLlmrSpIlpvHfvXm3YsKHcPRcvXtTjjz+ugoICi8958sknzbpw7dmzR9OnTy93z9WrV/Xkk08qKyvL4nPs7Ow0Z84cs7kXX3zRquDYDVu3br0two+VeY+//vpr7dmzx6rzLL33AAAAAAAAAAAAAAAAAAD/s/9sml5a96uCw3fqnne3Kzh8p15a96v2n7X870YBAFWPMBZQzQKauClyXA/te6WnXgr2VbCvuzo0rqNgX3e9FOyrfa/0VOS4HnTEugP8/e9/NxuPGTNG4eHhys3NLbF2z549euCBB7RixQpJkqenp1Vn3X///aafr169qn79+unzzz/X4cOHderUKcXHx5v+XblypcT+VatWycPDwzQ+cuSIunTpovDwcGVmZpZ65o2AWVBQkKZOnWpVvdVh8uTJeuihh0zjtLQ09e7dW6GhoTp27FiZ+/Ly8hQZGakpU6aoRYsWGjx4sDIyMkpd6+XlVSKE89JLL2nChAlKTU0tsX7Lli0KDg7W8ePHVatWLdWuXfsmn13FFi9erObNm+uvf/2rVqxYUW5nozNnzuiZZ57RunXrTHO1a9fW4MGDS10fEBAgFxcX0/izzz7T2LFjtW3bNh0/ftzs/oqPjy+x32Aw6LnnnjObGz58uNasWVNibUFBgdauXat7771XsbGxZh3mKuLk5KQFCxaYzc2dO1dPP/20zp8/X2J9TEyMevbsqcjISEklu0OVZ9iwYXr22WdN49zcXA0ePFhPPfWU9u3bV+a+goIC/fLLL5o9e7batWunPn36WB2iqw4+Pj5q3ry5aRwVFaWnnnpK3333nY4dO1biPc7Pzzet/fHHH3Xvvfeqa9euevvtt3X06FEZjcZSz8nMzNTcuXM1fvx4s/kRI0ZUzxMDAAAAAAAAAAAAAAAAgDvA3oQ0BYXvVJcPdmhx5GlFnU7VocRMRZ1O1eLI0+rywQ4Fh+/U3gRCWQBQE+xqugDgz8Lf203+3gSu7mQjRoxQeHi4fv31V0nXQz9hYWGaNWuWAgMD5eHhofT0dB0+fNgswHLfffepR48eeuONNyw+a9y4cfr3v/9tCkhER0dr6NChpa5dsWKFRo4caTbn4+Ojr776Sn/7299MXbWSkpIUFhamCRMmyN/fX15eXnJyclJaWpqOHz+u33//3RS4aN26tcW1Vhc7Ozt98cUXevjhh03hmoKCAi1atEiLFi2Sl5eX/Pz8VK9ePRUWFiojI0Nnz57V0aNHlZeXZ/E548eP108//aRNmzZJkgoLC/X+++/ro48+Urdu3eTl5aWsrCwdPHjQLGTz+uuva9GiRVZ1YLJWQUGBNm7cqI0bN0qSGjdurDZt2qhevXpycnLSlStXdPz4ccXGxpYIy8yfP98skFdU7dq1NXr0aL333nuSJKPRqAULFpQIPt1QWhBn/PjxioiI0KlTpyRJWVlZGjZsmCZNmqSAgADVrl1bycnJ2rNnjynY5uLiouXLl5cZEivN448/rhdeeEFLliwxzf3nP//R6tWr1bVrV/n4+Cg3N1e//fabjh8/blrz4osv6rffftNPP/1k8VlLlixRamqq1q9fb5pbvXq1Vq9eLU9PT3Xs2FEeHh6ysbFRRkaGzp8/r9jYWGVnZ1t8xq30yiuvaOzYsabxjedSmlOnTpl15JOudzzbu3evpkyZIldXV/n5+cnT01N16tRRdna2zpw5owMHDpQIpA4fPlx9+/at8ucDAAAAAAAAAAAAAAAAAHeCjb9d1OMr9yo7v7DcdVGnU9VzwS6tHRGgR9o1vEXVAQAkwlgAUGXs7Oz07bff6oEHHtDvv/9umk9NTdV3331X6p4HH3xQ69at0/vvv2/VWZ06ddKyZcv00ksv3XTQo1evXtq9e7cGDx6sI0eOmObz8/MVExNzU9e81erWravt27dr6tSpmj9/vgoKCkyPnTt3Tudba1zuAAAgAElEQVTOnavwGs7OznJwcCjzcVtbW61bt05Dhw7Vhg0bTPN5eXnasWNHqXsmTJigyZMna9GiRVY8m8pLTEwst0OWdL2bVHh4uEJCQspd98YbbyguLk7ffPPNTdXi4uKiDRs2qG/fvrpw4YJpvqz3pX79+lq/fr28vb2tPmvRokWysbExe70LCwsVHR2t6OjoEuv//ve/Kzw8XA8++KBV59jb22vdunV65513NHPmTLPPXlJSkrZu3WrRNaqzY5o1QkNDdeTIEbMg283KyMgwhSLL88ILL+ijjz6q9HkAAAAAAAAAAAAAAAAAcCfam5BmURDrhuz8Qj2+cq92jOmugCY0jQCAW8WmpgsAgDtJ06ZNtX//fo0bN07Ozs5lruvcubOWLl2q77//Xq6urjd11qhRo3T06FHNmTNHDz74oLy9vVW7dm0ZDAaLr9G6dWsdPHhQq1atUkBAQIV727Ztq9dee01z5sy5qZqrg729vd577z0dP35cL774oho2rPj/7uDh4aFBgwYpIiJCFy9eVOPGjctd7+DgoPXr1+vTTz9Vq1atylwXHBysb7/9Vu+++67Vz8Naa9as0bx58/TAAw/IxcWlwvUNGjRQaGiojh07pueee67C9Q4ODvr666+1detW/eMf/1CXLl3k4eGhWrVqWVzjPffco71792rEiBGysys9/+3q6qrRo0fr0KFD6tGjh8XXLspgMGjhwoX6/vvv5e/vX+a6jh07KiIiQp999lmZ9Vhy1uTJk3Xq1ClNnTpVPj4+Fe6pU6eOHn74YS1cuFCJiYnq2rXrTZ1d1QwGgxYvXqzo6GiFhYUpKChIDRo0kKOjY7n7Xn31VX388ccaNGiQRZ83JycnDR48WFFRUVq8ePFNv/YAAAAAAAAAAAAAAAAAcKcbu/6wxUGsG7LzCzVu/eFqqggAUBqD0Wis6RrwB2IwGNpLMv3X+vDhw2rfvv1NXy8/P19xcXFmcy1btuQPtXFHyMrKUmRkpI4dO6aMjAzVrVtXjRo1UseOHXX33XfXdHmlSk5OVlRUlBITE5WSkiKDwaC6deuqWbNm6tixY4WhpdtFbGysfv31V6WkpCgtLU12dnZydXVVkyZN1KZNGzVv3tyq0FpxBw8e1IEDB3ThwgU5OTnprrvukr+/v5o3b16Fz8JyBQUFOnbsmOLi4nT27FllZmaqoKBALi4uatiwofz8/NS2bVvZ2trWSH3S9c5JP//8s+Lj45WRkSFPT081bdpUvXr1kpOTU5WeFRcXp5iYGCUmJsrGxkZeXl7y8/Or1H+vynPq1Cnt379fSUlJSk1NlY2NjerUqaO77rpLbdq0UcuWLWv0ta9up0+f1rFjx3T69GmlpaUpJydHzs7Oqlevntq2basOHTqUG07FdfxOBAAAAAAAAAAAAAAAAPy57UtIU8CHO25+/ys95e9NdywAfw5HjhyRn59f0Sk/o9F45FadTxgLViGMBQAAUPX4nQgAAAAAAAAAAAAAAAD4c3tp3a9aHHn65vcH+2rh4A5VWBEA3L5qOoxlc6sOAgAAAAAAAAAAAAAAAAAAAAAAJR04l1G5/efTq6gSAEBFCGMBAAAAAAAAAAAAAAAAAAAAAFCDruTmV2p/Zk7l9gMALEcYCwAAAAAAAAAAAAAAAAAAAACAGuRSy65S++s4VG4/AMByhLEAAAAAAAAAAAAAAAAAAAAAAKhBnbxcK7f/rrpVVAkAoCKEsQAAAAAAAAAAAAAAAAAAAAAAqEHPBTat1P6QwCZVVAkAoCKEsQAAAAAAAAAAAAAAAAAAAAAAqEH+3m7q5uN+U3uDfNzl7+1WxRUBAMpCGAsAAAAAAAAAAAAAAAAAAAAAgBr20WN+crSz7k/8He1sFP6YXzVVBAAoDWEsAAAAAAAAAAAAAAAAAAAAAABqWEATN60dEWBxIMvRzkZrRwQooAldsQDgViKMBQAAAAAAAAAAAAAAAAAAAADAbeCRdg21Y0x3Bfm4l7suyMddO8Z01yPtGt6iygAAN9jVdAEAAAAAAAAAAAAAAAAAAAAAAOC6gCZuihzXQ/vPpumT6AQdOJ+uzJx81XGwU6e76ioksIn8vemGBQA1hTAWAAAAAAAAAAAAAAAAAAAAAAC3GX9vN0JXAHAbsqnpAgAAAAAAAAAAAAAAAAAAAAAAAADgj4AwFgAAAAAAAAAAAAAAAAAAAAAAAABYgDAWAAAAAAAAAAAAAAAAAAAAAAAAAFiAMBYAAAAAAAAAAAAAAAAAAAAAAAAAWIAwFgAAAAAAAAAAAAAAAAAAAAAAAABYgDAWAAAAAAAAAAAAAAAAAAAAAAAAAFiAMBYAAAAAAAAAAAAAAAAAAAAAAAAAWIAwFgAAAAAAAAAAAAAAAAAAAAAAAABYgDAWAAAAAAAAAAAAAAAAAAAAAAAAAFiAMBYAAAAAAAAAAAAAAAAAAAAAAAAAWIAwFgAAAAAAAAAAAAAAAAAAAAAAAABYgDAWAAAAAAAAAAAAAAAAAAAAAAAAAFiAMBYAAAAAAAAAAAAAAAAAAAAAAAAAWIAwFgAAAAAAAAAAAAAAAAAAAAAAAABYgDAWAAAAAAAAAAAAAAAAAAAAAAAAAFiAMBYAAAAAAAAAAAAAAAAAAAAAAAAAWIAwFgAAAAAAAAAAAAAAAAAAAAAAAABYgDAWAADl2L59uwwGg+nfrFmzarqkGhMfH2/2WowcObKmS0IxRd+f3r1713Q5AAAAAAAAAAAAAAAAAAAAwB2HMBYAAAAAAAAAAAAAAAAAAAAAAAAAWIAwFgCgxkVERJh19ImIiKjpknCH6d27t9k9hjvPyJEjzd7j+Pj4mi4JAAAAAAAAAAAAAAAAAAAAdyDCWAAAAAAAAAAAAAAAAAAAAAAAAABgAcJYAAAAAAAAAAAAAAAAAAAAAAAAAGABwlgAAAAAAAAAAAAAAAAAAAAAAAAAYAHCWAAAAAAAAAAAAAAAAAAAAAAAAABgAbuaLgC4k0XE7VH8lcsWr/d1qaeRLbtWY0UAAAAAAAAAAAAAAAAAAAAAAAC4WYSxgGoUcWKPfrpw0uL19zVqThjrDyI5OVmRkZE6e/as0tPT5eHhoTZt2igoKEj29vZVdk52drZ27NihhIQEXbx4Uc7OzvLz81PPnj1Vq1atcvdevHhRu3bt0qlTp5SbmytPT0/5+/vL39+/UjUlJCQoNjZWJ0+eVEZGhgoKCuTu7q4GDRooMDBQXl5elbp+VTt//rxiYmKUlJSklJQU2djYyM3NTa1atVKnTp3k5uZW6TN+/fVXHTlyROfOnZPBYFCDBg0UFBSku+++uwqegXT58mVFRkbqwoULSk5OlqOjozw9PdWpUye1b9++0tcvKCjQzp07FRcXp6SkJHl4eMjLy0vdu3evktenMk6cOKFff/1V586dU2ZmpgwGg5ydndWwYUM1a9ZMHTp0kLOzc43WWN2MRqNiYmIUGxurixcvqk6dOvLy8lJgYKAaNWpU5edduXJFu3bt0vnz55WUlCRbW1s1aNBAbdu2lb+/v2xsqrax6vHjx3Xw4EGdPXtW+fn58vT0VJcuXdShQ4cqPcdaFy9e1IEDB0zfdfn5+XJycpKHh4d8fHzUvn17eXp61miNAAAAAAAAAAAAAAAAAAAAuPUIYwH4w5g1a5Zmz55tGv/444/q3bu3RXvj4+PVrFkz03jEiBGKiIgoc72vr69Onz4tSfLx8VF8fLwkKTY2VtOmTdOmTZuUl5dXYp+rq6smTJigSZMmycnJ6aaf06VLlzRr1iytXr1a6enpJfbVr19fM2fO1JgxY0o8dujQIU2bNk2bN29WYWFhicdbtWql+fPnq1+/fhXWJ0m5ubn6/vvvtW7dOm3btk0JCQnlrm/VqpXCwsL07LPPytHRscx1xd+TokaNGqVRo0aVuffUqVPy9fUt8/GsrCwtWrRIn3zyiY4dO1bmOhsbGwUEBGjYsGEaOXKk6tatW+ba0qxcuVLvvvuuDh8+XOrjHTt21Ny5cy1+rYsyGo36/PPP9eGHH2rPnj2lvpeS5OXlpbFjx2rcuHEW3XNF5eTkaO7cuVqwYIGSk5NLPO7g4KCBAwdq9uzZat26tdXP4Wbl5OQoPDxcH3/8seLi4spda2trq06dOmngwIEaP368WTCr+OerKIPBUOY177vvPm3fvt1srnfv3vrpp59MY6PRaMEzuS4iIsLsfl6xYoVGjhxZ4b7CwkItWrRIb7/9dqmfO1tbW/Xt21czZsxQYGCgxfWU5fvvv9e8efO0c+fOUr/fpOvfPSEhIZoyZYrc3d0rvGZ5370bN27UG2+8od27d5e6t3nz5pozZ46eeuqpMq9f/LUtqqzvF8n8e724devW6YMPPlBkZGSF73OLFi00YMAAhYWFqXnz5uWuBQAAAAAAAAAAAAAAAAAAwJ2halsbAMAdbMWKFQoICNCGDRvKDCpkZGRo5syZ6tOnj9LS0m7qnH379umee+7R4sWLSw1iSdc7c40dO1bPPvus2fyqVavUtWtXbdy4sczwzvHjx/Xwww9r6dKlFtUzceJEPfroo1q5cmWFQawb1w8NDVW3bt108qTlneGqyqZNm+Tr66vJkyeXG8SSroddYmJi9PLLL2v9+vUWn5GVlaXHH39cI0eOLDOIJUkHDx5U//799fbbb1t8bUk6efKkunTpoieffFLR0dFlvpeSdO7cOU2dOlXt2rXTkSNHLD4jISFBnTp10qxZs0oNYknXQ1Gff/65OnfubNXrUxkJCQnq3LmzJk+eXGEQS7re1Wvfvn167bXXdP78+VtQ4a2RlpamXr16aezYsWV+7goKCrR582YFBwdr4cKFN31WcnKy+vTpo379+unHH38s8/vtxtp58+apZcuW+vnnn2/qvIKCAo0dO1Z//etfywxiSdc/B8OHD9eYMWOsCr/drJycHA0ZMkRDhgzRrl27LDrz999/V3h4uLZt21bt9QEAAAAAAAAAAAAAAAAAAOD2QGcsALDA2rVrFRISYvrjfB8fH/n5+alu3bpKSkrS7t27lZmZaVq/a9cujR49Wp9//rlV55w8eVKTJ09WSkqKpOtdaLp27So3NzclJycrKipKV65cMa1fsWKFOnbsqLCwMH3xxRcaOXKkqcYWLVqoXbt2cnFx0ZkzZxQdHa38/HxJ17v6hIaGKiAgQF26dCm3puJBIGdnZ7Vt21aNGzeWq6urcnNzdeHCBR08eNDsNTh48KDuv/9+/fLLL6pXr55Vr8PNev/99zVp0qQSNbu4uMjf318NGzaUwWBQSkqKDh8+rIsXL1p9RmFhoYYNG6ZvvvlG0vXuRF26dFGTJk1ka2urEydO6JdffjELckyZMkUdOnRQ//79K7x+TEyMBgwYUCIg5eHhoc6dO6t+/frKyclRXFycWRAsPj5e3bt31/bt29WpU6dyz0hMTFTv3r1LhOXc3Nx07733ysPDQ8nJyYqJiVF6erquXbumoUOHasWKFRXWXxm5ubnq16+fYmNjzebr1aunDh06qGHDhrK3t1dmZqYSExP122+/KSsrq1prqglZWVnq06eP9u7dazbv7OyswMBANWrUSKmpqdq/f78uXbqkwsJCjRkzRg0aNLD6rBMnTqhv374l7oU6deqoS5cuatiwoQoKChQfH6/9+/ebPlspKSnq06ePvvnmG/Xt29eqM8PCwkzhMYPBoHvuuUfNmzeXg4ODTp8+rT179pi+qyRp4cKFat++vV588UWrn581xowZo3Xr1pnNOTo6qmPHjvL29paTk5OysrKUkpKi2NhYJSUlVWs9AAAAAAAAAAAAAAAAAAAAuD0RxgKACiQnJ2vEiBEyGo3q1auX3n33XXXt2tVszbVr1zRnzhzNnTvXNPfFF19ozJgx6tmzp8VnTZw4UampqfL29taHH36oxx57TDY2/2tieOXKFU2YMEHLli0zzc2YMUP333+/nn32WRmNRgUHB2v+/PkKCAgwu/aZM2c0bNgw7dq1S9L17jQTJkzQ9u3bK6yrRYsWeuaZZzRgwAB17tzZrKYb8vLytGHDBk2dOtUU7Dhz5oxeeuklffbZZyXWe3t769SpU5KkL7/8UpMmTTI99s4772jIkCFl1uPt7V1ibv369Zo4caJZCKpdu3b65z//qUceeUT29vYl9hw/flxffvmlxV3CJGnx4sVKTk6Wra2tJk2apIkTJ8rDw8NszbFjx/TMM88oJibGNDdu3DgdP35cBoOhzGtfuHBBAwcONAtiBQYG6vXXX9eDDz5YYu+JEyc0adIkbdiwQZKUnp6uJ554Qvv27VOdOnXKPOf55583C9+4urrq7bff1qhRo1SrVi3TfE5OjpYvX66pU6fqypUrGjNmTAWvTuWsWLFCv/32m2ns6+urhQsXql+/fqXec0ajUfv27dPGjRv1ySeflHj85Zdf1siRIyVJQ4cOVXR0tOmxG/deaRwdHSvxLCpv8uTJZkEsBwcHzZgxQ2FhYapdu7ZpvqCgQGvXrlVYWJguXbqkF154wapzrl69qscee8zsXmjdurXeeOMNDRw4ULa2tmbrExMTNXPmTH388ceSrofnhg8frgMHDsjLy8uiMzdt2mS6v5977jnNnDmzxOf53Llz+sc//qHNmzeb5qZOnapnnnnG7PlL0pAhQ9S7d29J178/i4apduzYUep3hSTZ2Zn/Cnz06FEtX77cNHZ2dtbcuXMVEhIiZ2fnUq9x6tQpbd68udpDigAAAAAAAAAAAAAAAAAAALi9EMYCgArc6LwzbNgwrVy5ssQf8UuSk5OT3nrrLV27dk3z5883zS9btsyqMFZqaqp8fHy0c+fOUkMELi4uWrp0qRISEvR///d/kqSMjAz17t1bWVlZeuSRR7Ru3TqzQM0NTZs21ebNm9W6dWtduHBBkvTTTz/pxIkTuvvuu8usafLkyQoPDy81DFOUvb29Hn/8cT344IN64IEHdODAAUnXu4q9+eabat68udl6Ozs7+fr6SrreAayo+vXrmx6zRHJysllXMEkaNGiQ/vOf/8jJyanMfa1atdK0adM0efJkpaWlWXyWra2tNmzYoEceeaTUNa1bt9YPP/wgPz8/JSQkSLoenNq2bZv+8pe/lHntkJAQJSYmmo2XLl1aIhRzw913363169crLCxM4eHhkqS4uDh98MEHmjFjRql7vvrqK23atMk0dnFx0datW0sEDKXrIaDQ0FB16tRJDz30kFJTU8usvSp8/fXXpp/t7Oz0ww8/lHtvGgwGBQQEKCAgQK+99lqJjmhubm5yc3OTVDJgZc39dSvt3btXixcvNo3t7Oz05Zdflnqv2draaujQoercubN69eqlS5cuWXXWpEmTzLqr9e/fX+vWrSvzM9O4cWMtW7ZMbdq00YQJEyRd/zy89tpr+te//mXRmTeCWIsWLSqz05WXl5e+/vprdevWTfv27ZN0/Xvus88+U0hIiNlaFxcXubi4mH4uytvb2+L3+UanuxsWLlxoCvKVpVmzZgoNDVVoaKiys7MtOgcAAAAAAAAAAAAAAAAAAAB/fOX/ZT0AQNL10Mvy5ctLDWIVNWPGDLMg1LZt26w+a+XKlWV2c7nh1VdfNRunpqbK09NTq1atKjWIdYOrq2uJAERFNTZt2rTCIFZR7u7uZh1mCgsLtWbNGov334wPPvhAGRkZpnHHjh21evXqcoNYRdnZ2ZUIhJVnypQpZQaxbnB1ddWUKVPM5sp7rffu3WvWCSgoKEjLli0rM4hV1Pvvv6977rnHNF6wYIFycnJKXfvhhx+ajd96661Sg1hFde/eXXPmzKmwjso6ffq06eeOHTuWG8QqztbWttTuZ3804eHhZqHCsLCwCu+11q1ba9GiRVadc/78ebPPqa+vr7788kuLPjPjx4/Xww8/bBp/+umnpoCnJYYNG1ZmEOsGOzs7zZ4922zuZr5PLVX03pNUbme+0tR0NzUAAAAAAAAAAAAAAAAAAADcOoSxAMACEyZMsCikUK9ePQUHB5vG58+ft6pbTXBwsO67774K13Xv3r1EPaNHj5a7u3uFex966CGz8Y0OVlWpS5cu8vHxMY0jIyOr/IwbCgsLtXTpUrO5Dz/8UA4ODtVynpOTk6krUEWKh2h++eWXMtfe6Gx1w5tvvmlxCM7W1lZhYWGmcVJSkqKiokqsi4+P144dO0zjRo0aVRiKuWHcuHHy9PS0aG1VsLbL050gOztba9euNY0dHBw0bdo0i/YOHjxYnTp1svisJUuW6P+zd6dRVlV3/vC/B0pBwAJpRVERRTSiNjGKAypRYxqMJtF2SschiS1P7ExoYhuz6JXB1cYs/aftjumE1qRbY4yJbVSi9NNqtJ8oOBDRaIs44AAijsyFyFBwnxfG+nOL6VyoqlvA57NWrcVv373P/lWdcy/1or5rL1++vKX+7ne/mx49epRev/p7YPny5bn77rtLr/32t79dat7IkSOrwqXre/+0ta3x+QMAAAAAAAAAAACgHGEsgBJOOumk0nOHDBlSVdfyR/2f+MQnSs3r0qVL9t5776qxE044odTaffbZp6p+6623yjXXSqVSyeLFi/PGG29kxowZa3ytHtx59tlnN2qPMp566qnMnTu3pf7Qhz6UY489tt32Gz58ePr27Vtq7sCBA6sCLut7Fu67776Wf++yyy6lQnmrO+6446rq1UNXH5g0aVJVfeaZZ5Y6eStJttlmm5x55pk19VSr/fbbr+Xfs2bNyg9/+MN23a+zmTJlSpYuXdpSjxo1qvSzliRnn3126bm///3vW/7dtWvXmk+COvroo6tOClzb87Y2gwYNqrrP67PNNttUfc61Z0CqdU9///d/nxUrVrTbfgAAAAAAAAAAAABsvho2PAVg69arV68MGDCg9PzWp1MtXLiw9NrWQa716d2790atbb1u0aJFpdYtX7489957b26//fY88cQTee6557Js2bJSa+fPn19q3sZofepWewaxkmT//fevaX6fPn2yZMmSJOt+Fl566aW88cYbLfXgwYMzc+bMmvZZ/ZSjD67Z2pQpU6rqww8/vKY9Dj/88PzkJz+paU0tzjrrrNx+++0t9SWXXJLx48fnvPPOy4knnpj+/fu3296dQVvcnzKWLl2axx9/vKUeMGBA5syZkzlz5tS0X58+fVrWrO15W5ta3z+rf57W8llaq1NPPTWXXHJJy2faHXfckf322y+jR4/OySefXHPfAAAAAAAAAAAAAGy5hLEANqB1uGpDttlmm6q6ltNVatlr9VNpkveDERuzrkx/v/vd7/L1r389r7zySun+VteeIYrVQ0xJcsABB7TbXsmmPQ/r+lnPmjWrqp40aVL22muv2ptbzbx589YYa30KWutT0jZk33333aSeNuTUU0/NqaeeWhXIeuihh/LQQw8leT+kduSRR+aoo47KiBEjagovbg466v68+eabVc/ijBkz2uV5W5tNef80NzfXtLYWu+22W6688spcdNFFLWMvv/xyxo4dm7Fjx6Zfv3458sgjc+SRR2bEiBEZNmzYGp+lAAAAAAAAAAAAAGwdutS7AYDOrkuXjvuo3JS92qvPf/mXf8kpp5yy0UGsJKlUKm3YUbW5c+dW1bWGPWrVHj/n1t9DW2hqalpjrPUJZY2NjTVds/Wpam2tKIrccsstGTt2bLp3777G6y+++GJuvPHGXHDBBdl///2zzz775LLLLisdBOrsOur+dNTztjYd+XlaqwsvvDA333zzWk9ge/vttzN+/Ph885vfzPDhw7PLLrvkggsuyPPPP1+HTgEAAAAAAAAAAACop877F7EA1N3kyZNz8cUXV43tueeeGTt2bCZMmJBp06Zl3rx5ee+997Jq1apUKpWWr2OOOaYuPRdFUZd9N8Xy5cvb/JplAnCd8WfV0NCQ73//+5kxY0Z++MMfZsSIEenWrdta57744ov53ve+l0GDBuWWW27p4E7bX633p+z8ej1vm4PPfvazeemll3LjjTfm05/+9DrDnXPnzs11112X/fffP9/61reyatWqDu4UAAAAAAAAAAAAgHppqHcDAB1h5cqV9W5hs3TZZZdVhQy++MUv5ic/+UkaGjb838eiRYvas7UWO+64Y1W9OZ6S1Pp7+OIXv5hrr722zfdpHSxZuHBhTetrnb8pdt5551x88cW5+OKLs2zZsjzxxBN5+OGHM3HixNx///1ZvHhxVV+f/exn061bt5xyyikd1mNZZT9/NvX+LFiwoNS81s/byJEjc88999S015Zsu+22y7nnnptzzz03q1atyrPPPptHHnkkkyZNyr333ps33nijZe6qVaty5ZVXZvny5bn66qvr2DUAAAAAAAAAAAAAHcXJWMBmo3UAqLm5ufTa+fPnt3U7W7x33303999/f0s9aNCg0kGsJFWBhfbUv3//qnratGkdsm9b2nnnnavqF154oUP2mT59ek3r26uvDenWrVuGDx+eiy++OOPHj8/cuXPzm9/8Jvvuu2/LnEqlkjFjxrTbCUUd8fnTUfeno563LUGXLl1ywAEHZPTo0bnhhhsye/bsPPjggxk5cmTVvB/96Ed5/vnn69QlAAAAAAAAAAAAAB1JGAvYbDQ2NlbVZU+BSZJnnnmmrdvZ4s2cOTPLly9vqU844YTSQayXX345b775Zum9iqKoub8PHHXUUVX1Aw88sNHXqpcDDjggvXv3bqkfeeSRNDU1tfk+w4YNq6offfTRmtZPnjy5LdvZaNtuu20+85nPZPLkydltt91axmfNmpXHH398rWs25RlLOubzp6PuT2NjYw444ICWesaMGTUHvzqjTb3HZfcYMWJE7r777nzyk59sGV+1alXuvPPOdt8fAAAAAAAAAAAAgPoTxgI2G/369auqazkB6b/+67/aup0tXuuwyephoQ254YYbatqrW7duVfWyZctKrx06dGh22mmnlvrZZ5/Ngw8+WL3u8b4AACAASURBVNP+9da1a9ccf/zxLfWyZcvyy1/+ss33Ofroo6vqW2+9NStXriy1dsWKFfnP//zPNu9pU/Tp0yennnpq1dgrr7yy1rmb8owlG//5s2LFivz+978vNXfYsGHp3r17S33PPfdk3rx5pXv81a9+VXruqFGjquqf/exnpdd2Vpt6j2tRFEXOO++8qrF1PXsAAAAAAAAAAAAAbFmEsYDNxsEHH1xV33XXXaXWPfPMM7n99tvbo6Ut2g477FBVP/fcc6XWzZw5M9dcc01Ne/Xp06eqfuONN0qvLYoiX/7yl6vGLrrooqpTvTYHX/va16rqyy67rKafQxl77rlnRowY0VK/+eabGTduXKm111xzTd5555027acttD6trXUg5wOb8owlG//58x//8R+ZPXt2qbndu3fPGWec0VIvX748V1xxRam1t912W5588slSc5PkS1/6UtXP7sc//vFmf4Lgpt7jWpV99gAAAAAAAAAAAADYsghjAZuNffbZJwMGDGipp0yZkvHjx693zVtvvZUzzjij9Ok//F977713evXq1VJPmDAhU6dOXe+aOXPm5NRTT83ChQtr2mvIkCFV9b333lvT+jFjxlQFMf70pz/lnHPOKX0yTnNzc+bMmVPTnm3t2GOPzV/91V+11G+//XZOPPHEvPbaazVdp6mpKTfffPM6X7/wwgur6rFjx2bKlCnrvebDDz+c73znOzX1UaslS5bkxz/+cZqamkqvWbx48RpBy9bP0rrGa33GPvaxj1XV1157bWbNmrXeNY8++mi+8Y1v1LTPmDFjUhRFS/2jH/0oEyZMWO+aF154YY1A4oYMHjy46mSnpUuX5sQTT6zpxMHk/dOnaj0Jr71syj2+9tpr8+qrr9a034033rje/QEAAAAAAAAAAADYMgljAZuNoigyevToqrFzzjknv/71r9eYu3Llytx666057LDD8uyzz65xyhMbtu222+aUU05pqVesWJFRo0bl7rvvXmPuypUrc9ttt+XQQw/NE088kaIo8hd/8Rel9xo4cGAGDRrUUj/yyCM5++yzc/fdd+f555/PjBkzqr6am5ur1vft2zc33nhjVYjl1ltvzaGHHpo777xzjfkfmD59en7wgx9k8ODBGwy8dIRf/OIX2X333VvqJ598MkOHDs1VV1213rBYU1NT7rzzzpx//vnZbbfdMnbs2HXOPe2003LiiSdWrf34xz+e6667bo3TxJYvX56f/vSnOeGEE7JkyZJ2fR8tX748Y8aMye67756//du/zV133bXeYNYf//jHHH/88Zk5c2bL2BFHHJF99913rfOPO+64qvqSSy7JVVddlUcffTQvvvhi1fP15ptvrrF+8ODBVddoamrK8ccfn8cee2yNuYsXL85VV12V4447ruaf27Bhw/KlL32ppW5ubs7pp5+eH/zgB1myZEnV3JUrV+aWW27JiBEj8vbbb9d8f66++uoMHTq0pX711VczbNiw/MM//MN6g2bvvfde7rvvvowZMyYDBgyoCnXV0zHHHFP1GfBP//RP+fa3v51JkyZl+vTpVfe4dchx3LhxGTRoUD71qU/l+uuvX++pWq+++mo+97nP5bbbbmsZ69mzZ0477bS2/6YAAAAAAAAAAAAA6HQa6t0AQC2+8Y1v5IYbbsgrr7ySJHn33Xdz1lln5ZJLLsmwYcPSs2fPzJkzJ4899ljmz5+fJOnVq1d+/vOf+0P5jfC9730v48ePz+LFi5Mkr7/+ej7xiU9k4MCB+chHPpIePXqs8fNO3j9tadKkSXnggQdK7/X1r389X/va11rqm2++eZ0nPL3yyivZc889q8Y+9alP5eqrr87FF1+cVatWJUmefvrpnHzyydl+++1zyCGHpF+/fimKInPnzs3TTz+dt956q3R/HaF///6ZMGFCTjzxxLz++utJkvnz5+fSSy/Nt771rQwZMiSDBg1K7969s2zZsixYsCAvvfRSZsyYkUql0nKdvn37rnefn//85znqqKNa3kcLFy7MBRdckEsvvTSHH354+vbtm7lz52by5Mktp5xts802ueaaa3Luuee203f/vkWLFuX666/P9ddfn6IoMnjw4AwaNCh9+vRJQ0ND5s6dm6lTp64RpunRo0euu+66dV73ox/9aIYNG9ZyCtiiRYty6aWXrnXuMccckz/84Q9rjP/zP/9zDj300KxYsSLJ+2G+ww47LAceeGD222+/dO3aNbNnz85jjz3WcirbkCFDcsEFF+Siiy4q/TO46qqrMnny5Dz++ONJ3j99auzYsbn88stzxBFHZOedd87ChQszZcqUvP322y3rxo0bl7/5m78pvU+vXr0yYcKEjBw5Ms8991yS94NWV1xxRa644ooMGjQo++23X/r06ZPm5uYsXLgwM2bMyIsvvtgpTxvcc889c+qpp7aEpJYvX57LL788l19++RpzBw4cmBkzZlSNrVy5MhMmTGgJZvbv3z/77bdf+vbtm+222y6LFy/OCy+8kGeffbbq/Za8f4JZLQFUAAAAAAAAAAAAADZfwljAZqVXr14ZP358Ro0aVXV6zezZszN79uw15u+444654447qk4bory99947v/3tb3P66ae3BLKSZObMmVUnEq3ukksuyeWXX55jjz22pr2+8pWv5Jlnnsm//du/bXS/F110UQYNGpTzzjsv8+bNaxlvampaa7imM/rwhz+cP/3pTzn33HNz7733toxXKpVMmzYt06ZN2+A1NnRCUv/+/fOHP/whI0eOzPPPP98yvmDBgtxzzz1rzO/WrVtuuummDBs2rIbvZNNVKpVMnz4906dPX++83XbbLbfffnv+8i//cr3zbrnllpx00kktwaNaffjDH84NN9yQL3zhCy2BrCSZOnVqpk6dusb8gw8+OHfddVfVfSyjZ8+eue+++3LSSSfl4YcfbhlfsmRJ/ud//meN+V26dMnVV1+dz3zmMzWFsZJkwIABeeyxx/J3f/d3+dWvflX12ssvv5yXX355g9fo06dPTXu2p+uuuy6vv/56HnnkkU2+1htvvLHeE7KSZLvttss111yT888/f5P3AwAAAAAAAAAAAGDz0KXeDQDUaujQoZkyZUo+//nPp6Fh7ZnSxsbGXHDBBXn66adz9NFHd3CHW5ZRo0ZlypQpOfnkk1MUxVrnNDQ0ZNSoUbn//vtz1VVXbdQ+RVFk3LhxmTx5ci688MIMHz48/fr1S/fu3Wu6zqc//enMmDEj//iP/5i99tprvXMbGhpy1FFHZdy4cZ3q5LR+/frlnnvuyYMPPphTTjklPXv23OCavfbaK6NHj85///d/t5z+tD577LFHnnrqqXz3u9/NjjvuuNY52267bU477bQ8/vjjOf3002v+PmrRu3fvPPDAA/nmN7+ZQw45ZJ3v7dV96EMfyhVXXJEXXnghhx122AbnDxo0KE8++WRuuummnHnmmRkyZEh69+5daq8PnHXWWZk0aVKOOeaYdc7ZY4898v3vfz8PP/xwdt1119LXXl2fPn0yceLEXHPNNesMk3bt2jUjR47MxIkTc+GFF27UPsn7IdebbropTz31VM4555wNhvmSZNddd83ZZ5+dW2+9tSoYW299+/bNxIkTM378+Hzuc5/L0KFD07dv32yzzTbrXffrX/86V155ZT72sY+lV69eG9ynX79++cpXvpLnn38+o0ePbqv2AQAAAAAAAAAAANgMFJVKpd49sBkpiuKAJC3Hf0ydOjUHHHDARl+vubl5jRNP9tlnn5r+ML4zO/a/f5oH3tzwqSIfOGaXQfnDJ77cjh1teRYtWpQHH3wwM2bMyKJFi7LTTjtljz32yEc/+tFst9129W5vi/PWW29l0qRJefXVV/Pee+9lp512Sv/+/XPEEUesM9BTby+99FIef/zxvPPOO1mwYEG23Xbb9O3bN/vss08OOuigNDY21rvFDWpubs6UKVPy4osvZu7cuWlqakqPHj3Su3fvDBo0KEOGDMkuu+yySdefNGlSpk+fnjlz5mSHHXbIbrvtlqOPPrpUMKc9vPfee3nmmWfy0ksv5c0338y7776boijS2NiYPfbYI0OHDs3AgQPr0tsHZs+enYkTJ+aNN97I8uXL079//wwePDjDhw9fZ3BxY1QqlUyePDnTpk3L22+/ne233z677rprjjjiiPTv37/N9vnAqlWr8r//+7+ZNm1a5s2blwULFqR79+5pbGzMnnvumSFDhmTAgAFtvm9nsXLlyjz//POZPn16XnvttTQ1NWXlypXp1atXdt555xx44IEZMmRIunbt2qb7bum/EwEAAAAAAAAAAAC0lWeeeSYHHnjg6kMHViqVZzpqf2EsaiKMVZsbpj+WGYvnlZ6/Z6+++cI+h7ZjRwBAZ7Sl/04EAAAAAAAAAAAA0FbqHcby153QjgSrAAAAAAAAAAAAAAAAthxd6t0AAAAAAAAAAAAAAAAAwOZAGAsAAAAAAAAAAAAAAACgBGEsAAAAAAAAAAAAAAAAgBKEsQAAAAAAAAAAAAAAAABKEMYCAAAAAAAAAAAAAAAAKEEYCwAAAAAAAAAAAAAAAKAEYSwAAAAAAAAAAAAAAACAEoSxAAAAAAAAAAAAAAAAAEoQxgIAAAAAAAAAAAAAAAAoQRgLAAAAAAAAAAAAAAAAoARhLAAAAAAAAAAAAAAAAIAShLEAAAAAAAAAAAAAAAAAShDGAgAAAAAAAAAAAAAAAChBGIu6KopijbFKpVKHTgAA6mfVqlVrjK3t9yQAAAAAAAAAAAAA6ksYi7rq0mXNR7C5ubkOnQAA1M/KlSvXGFvb70kAAAAAAAAAAAAA1Je/8KSuiqJIQ0ND1di7775bp24AAOqj9e8/DQ0NTsYCAAAAAAAAAAAA6ISEsai7Xr16VdVNTU116gQAoD5a//7T+vcjAAAAAAAAAAAAADoHYSzqrrGxsapeunRpFi9eXKduAAA61uLFi7N06dKqsda/HwEAAAAAAAAAAADQOQhjUXc9evRI165dq8Zee+01gSwAYIu3ePHivPbaa1VjXbt2TY8ePerUEQAAAAAAAAAAAADr01DvBqAoivTu3Tvz5s1rGatUKpk1a1a6d++e7bffPj179kzXrl3TpYv8IACw+Vq1alVWrlyZd999N01NTWuciJUkvXv3TlEUdegOAAAAAAAAAAAAgA0RxqJT6NevX5qbm7No0aKq8aVLl2bp0qV555136tQZAEDHaWxsTL9+/erdBgAAAAAAAAAAAADr4JghOoWiKLLrrrumsbGx3q0AANRFY2Njdt11V6diAQAAAAAAAAAAAHRiTsai0/ggkNXQ0JCFCxdm5cqV9W4JAKDdde3aNb17906/fv0EsQAAAAAAAAAAAAA6OWEsOpWiKLLzzjunX79+WbJkSRYtWpTFixenubm53q0BALSZhoaG9OrVK42NjenRo4cQFgAAAAAAAAAAAMBmQhiLTqkoivTs2TM9e/ZMklQqlaxatSqVSqXOnQEAbLyiKNKlSxfhKwAAAAAAAAAAAIDNlDAWm4WiKNK1a9d6twEAAAAAAAAAAAAAAMBWrEu9GwAAAAAAAAAAAAAAAADYHAhjAQAAAAAAAAAAAAAAAJQgjAUAAAAAAAAAAAAAAABQgjAWAAAAAAAAAAAAAAAAQAnCWAAAAAAAAAAAAAAAAAAlCGMBAAAAAAAAAAAAAAAAlCCMBQAAAAAAAAAAAAAAAFCCMBYAAAAAAAAAAAAAAABACcJYAAAAAAAAAAAAAAAAACUIYwEAAAAAAAAAAAAAAACUIIwFAAAAAAAAAAAAAAAAUIIwFgAAAAAAAAAAAAAAAEAJwlgAAAAAAAAAAAAAAAAAJQhjAQAAAAAAAAAAAAAAAJQgjAUAAAAAAAAAAAAAAABQgjAWAAAAAAAAAAAAAAAAQAnCWAAAAAAAAAAAAAAAAAAlCGMBAAAAAAAAAAAAAAAAlCCMBQAAAAAAAAAAAAAAAFCCMBYAAAAAAAAAAAAAAABACcJYAAAAAAAAAAAAAAAAACUIYwEAAAAAAAAAAAAAAACUIIwFAAAAAAAAAAAAAAAAUIIwFgAAAAAAAAAAAAAAAEAJwlgAAAAAAAAAAAAAAAAAJQhjAQAAAAAAAAAAAAAAAJQgjAUAAAAAAAAAAAAAAABQgjAWAAAAAAAAAAAAAAAAQAnCWAAAAAAAAAAAAAAAAAAlCGMBAAAAAAAAAAAAAAAAlCCMBQAAAAAAAAAAAAAAAFCCMBYAAAAAAAAAAAAAAABACcJYAAAAAAAAAAAAAAAAACUIYwEAAAAAAAAAAAAAAACUIIwFAAAAAAAAAAAAAAAAUIIwFgAAAAAAAAAAAAAAAEAJwlgAAAAAAAAAAAAAAAAAJQhjAQAAAAAAAAAAAAAAAJQgjAUAAAAAAAAAAAAAAABQgjAWAAAAAAAAAAAAAAAAQAnCWAAAAAAAAAAAAAAAAAAlCGMBAAAAAAAAAAAAAAAAlCCMBQAAAAAAAAAAAAAAAFCCMBYAAAAAAAAAAAAAAABACcJYAAAAAAAAAAAAAAAAACUIYwEAAAAAAAAAAAAAAACUIIwFAAAAAAAAAAAAAAAAUIIwFgAAAAAAAAAAAAAAAEAJwlgAAAAAAAAAAAAAAAAAJTTUuwGSoii2S3JQkiFJdkjSPcmiJG8neSLJi5VKpVK/DgEAAAAAAAAAAAAAAABhrDoqimJ4kouSnJJk2/VMnV0Uxb8n+VGlUpnXIc0BAAAAAAAAAAAAAAAAVbrUu4GtUVEUDUVR/GuSh5KcmfUHsZJktyTfSTKtKIoT2rs/AAAAAAAAAAAAAAAAYE1OxupgRVEUSX6d5PS1vPxckmeTvJdkpyTDkuyw2us7J/ldURQnVyqVu9u7VwAAAAAAAAAAAAAAAOD/EsbqeKOzZhDrwSRfqVQqU1cfLIqiIcm5Sf45Se8/D2+b5BdFUexbqVQWtnezAAAAAAAAAAAAAAAAwPu61LuBrdDYVvWDST7eOoiVJJVKpblSqVyf5ONJlq32Ur8kf9d+LQIAAAAAAAAAAAAAAACtCWN1oKIo/jLJnq2Gx1QqlRXrW1epVKYk+Vmr4U+1YWsAAAAAAAAAAAAAAADABjTUu4GtzKBW9axKpfJUybW/S/LV1ep92qYlAAAAAAAAAAAAAADW5YnXFuTnk1/Nk7MXZfHy5vTatiEH7daY0YfvkYN371Pv9gDoYMJYHatnq/q1GtbOalXvsIm9AAAAAAAAAAAAAACwDlNmLcjX7piaR2fOX+O1R2bOz7iHZ2b4wB1yzV8fmGEDhLIAthZd6t3AVubNVnX3Gta2njtvE3sBAAAAAAAAAAAAAGAtJkx7KyP+9aG1BrFW98jM+Rnxrw9lwrS3OqgzAOpNGKtjPZZk2Wr1kKIotiu59pC1XAsAAAAAAAAAAAAAgDY0ZdaCnPGLKVnavKrU/KXNq3LGL6ZkyqwF7dwZAJ2BMFYHqlQqTUluXG2oe5LzN7SuKIquSb7aavgXbdgaAAAAAAAAAAAAAABJvnbH1NJBrA8sbV6VMXdMbaeOAOhMhLE63reSzFitvqooio+va3JRFNskuS7JR1Yb/p8kt7VLdwAAAAAAAAAAAAAAW6nHZy3IozPnb9TaR2bOzxOvOR0LYEvXUO8GtjaVSmVeURTHJbk97westktyT1EUv03y2yTPJXkvyY5Jhie5IMmHVrvEH5OcXqlUKpvaS1EU/ZLsVOOyvTd1XwAAAAAAAAAAAACAzujf//jqpq2fPCsH796njboBoDMSxqqDSqUyoyiKw5N8IckXkxyS5Mw/f63L3CRXJ/k/lUplRRu18uUk322jawEAAAAAAAAAAAAAbNaenL1o09a/vrCNOgGgsxLGqp+uf/5alqSSpFjP3FlJvpPkN20YxAIAAAAAAAAAAAAAYDWLlzdv0vqmZZu2HoDOr0u9G9gaFUVxVJJnk4xLclQ2fB8GJLk+yatFUYxu5/YAAAAAAAAAAAAAALZKvbbdtPNOtu/mvBSALZ1P+g5WFMXxSSYk6b7a8OwkP05yT5JXkixJ0jfJQUk+m+TsvH+vdkrys6IoDktyQaVSqWxiOz9NcmuNa/ZO8rtN3BcAAAAAAAAAAAAAoNM5aLfGPDJz/sav37V3G3YDQGckjNWBiqLYKcmvUx3EuivJOZVKZVGr6W/l/XDWPUVR/FveD3D9xZ9f+3+SvJTkyk3pp1KpvJ3k7VrWFEWxKVsCAAAAAAAAAAAAAHRaow/fI+MenrnR688/fEAbdgNAZ9Sl3g1sZb6R90+3+sBzSc5cSxCrSqVSeTTJZ1oNf7coin5t3B8AAAAAAAAAAAAAwFbr4N375IiBO2zU2uEDd8jBu/dp444A6GyEsTrWGa3qKyuVytIyCyuVyv1JJq42tF2Sv2mrxgAAAAAAAAAAAAAASH781weme0Ntf2rfvaFLrvnrA9upIwA6E2GsDlIURc8ke7cavr/Gy9zXqj584zsCAAAAAAAAAAAAAKC1YQP65NbPDysdyOre0CW3fn5Yhg1wKhbA1kAYq+Os7X/WN2u8Ruv5O25kLwAAAAAAAAAAAAAArMMn9985E796VIYP3GG984YP3CETv3pUPrn/zh3UGQD11lDvBrYiC9Yy1nMd4+vSq1W9eOPbAQAAAAAAAAAAAABgXYYN6JOHxxydJ15bkH+fPCtPvr4wTcuas323hhy0a++cf/iAHLy707AAtjbCWB2kUqm8WxTFoiSNqw1/JMn/V8NlDmlV13qyFgAAAAAAAAAAAAAANTh49z5CVwC06FLvBrYyf2hVf7HswqIodkny6VbDEze1IQAAAAAAAAAAAAAAAKAcYayOdUur+jNFUZyzoUVFUXRL8sskvVYbXpzknjbsDQAAAAAAAAAAAAAAAFgPYayO9ZskT61WF0luLIriR0VR9F/bgqIojkvyaJKPt3rpykqlMr992gQAAAAAAAAAAAAAAABaa6h3A1uTSqWyqiiK05M8lKTfn4eLJGOSfLUoiv9N8nKS95L0TfKRJLus5VL/b5Ir279jAAAAAAAAAAAAAAAA4APCWB2sUqm8WBTFMUl+mWTYai91SXLQn7/WuTzJz5JcVKlUVrRflwAAAAAAAAAAAAAAAEBrXerdwNaoUqk8l2R4ks8neSTvh6zW570kv0pyZKVSuaBSqbzXzi0CAAAAAAAAAAAAAAAArTgZq04qlUpzkhuT3FgURe+8f0rWXkn6JOmWpCnJ/CRTkzz95/kAAAAAAAAAAAAAAABAnQhjdQKVSmVhkvvr3QcAAAAAAAAAAAAAAACwbl3q3QAAAAAAAAAAAAAAAADA5kAYCwAAAAAAAAAAAAAAAKAEYSwAAAAAAAAAAAAAAACAEoSxAAAAAAAAAAAAAAAAAEoQxgIAAAAAAAAAAAAAAAAoQRgLAAAAAAAAAAAAAAAAoARhLAAAAAAAAAAAAAAAAIAShLEAAAAAAAAAAAAAAAAAShDGAgAAAAAAAAAAAAAAAChBGAsAAAAAAAAAAAAAAACgBGEsAAAAAAAAAAAAAAAAgBKEsQAAAAAAAAAAAAAAAABKEMYCAAAAAAAAAAAAAAAAKEEYCwAAAAAAAAAAAAAAAKAEYSwAAAAAAAAAAAAAAACAEoSxAAAAAAAAAAAAAAAAAEoQxgIAAAAAAAAAAAAAAAAoQRgLAAAAAAAAAAAAAAAAoARhLAAAAAAAAAAAAAAAAIAShLEAAAAAAAAAAAAAAAAAShDGAgAAAAAAAAAAAAAAAChBGAsAAAAAAAAAAAAAAACgBGEsAAAAAAAAAAAAAAAAgBKEsQAAAAAAAAAAAAAAAABKEMYCAAAAAAAAAAAAAAAAKEEYCwAAAAAAAAAAAAAAAKAEYSwAAAAAAAAAAAAAAACAEoSxAAAAAAAAAAAAAAAAAEoQxgIAAAAAAAAAAAAAAAAoQRgLAAAAAAAAAAAAAAAAoARhLAAAAAAAAAAAAAAAAIAShLEAAAAAAAAAAAAAAAAAShDGAgAAAAAAAAAAAAAAAChBGAsAAAAAAAAAAAAAAACgBGEsAAAAAAAAAAAAAAAAgBKEsQAAAAAAAAAAAAAAAABKEMYCAAAAAAAAAAAAAAAAKEEYCwAAAAAAAAAAAAAAAKAEYSwAAAAAAAAAAAAAAACAEoSxAAAAAAAAAAAAAAAAAEoQxgIAAAAAAAAAAAAAAAAoQRgLAAAAAAAAAAAAAAAAoARhLAAAAAAAAAAAAAAAAIAShLEAAAAAAAAAAAAAAAAAShDGAgAAAAAAAAAAAAAAAChBGAsAAAAAAAAAAAAAAACgBGEsAAAAAAAAAAAAAAAAgBKEsQAAAAAAAAAAAAAAAABKEMYCAAAAAAAAAAAAAAAAKEEYCwAAAAAAAAAAAAAAAKAEYSwAAAAAAAAAAAAAAACAEoSxAAAAAAAAAAAAAAAAAEoQxgIAAAAAAAAAAAAAAAAoQRgLAAAAAAAAAAAAAAAAoARhLAAAAAAAAAAAAAAAAIAShLEAAAAAAAAAAAAAAAAAShDGAgAAAAAAAAAAAAAAAChBGAsAAAAAAAAAAAAAAACgBGEsAAAAAAAAAAAAAAAAgBKEsQAAAAAAAAAAAAAAAABKEMYCAAAAAAAAAAAAAAAAKEEYCwAAAAAAAAAAAAAAAKAEYSwAAAAAAAAAAAAAAACAEoSxAAAAAAAAAAAAAAAAAEoQxgIAAAAAAAAAAAAAAAAoQRgLAAAAAAAAAAAAAAAAoARhLAAAAAAAAAAAAAAAAIAShLEAAAAAAAAAAAAAAAAAShDGAgAAAAAAAAAAAAAAAChBGAsAAAAAAAAAAAAAAACgBGEsAAAAAAAAAAAAAAAAgBKEsQAAAAAAAAAAAAAAAABKEMYCAAAAAAAAAAAAAAAAKEEYCwAAAAAAAAAAAAAAAKAEYSz4/9m7/xjLyvqO459nHH6Kuis/LLILWm2tBApuNyIq2qqJ/HfCUwAAIABJREFUmhrRNsRo0mqVBKUIVZPWNGmkSVNtq7YqlaapJRppU7WQNlabiDGphYUKBK2uCS3CsvwoWLsLSAVc9ukfc7dcLrPjd/beuXd25vVKJveeM89zzneyf53kvvcCAAAAAAAAAAAAAABAgRgLAAAAAAAAAAAAAAAAoECMBQAAAAAAAAAAAAAAAFAgxgIAAAAAAAAAAAAAAAAoEGMBAAAAAAAAAAAAAAAAFIixAAAAAAAAAAAAAAAAAArEWAAAAAAAAAAAAAAAAAAFYiwAAAAAAAAAAAAAAACAAjEWAAAAAAAAAAAAAAAAQIEYCwAAAAAAAAAAAAAAAKBAjAUAAAAAAAAAAAAAAABQIMYCAAAAAAAAAAAAAAAAKBBjAQAAAAAAAAAAAAAAABSIsQAAAAAAAAAAAAAAAAAKxFgAAAAAAAAAAAAAAAAABWIsAAAAAAAAAAAAAAAAgAIxFgAAAAAAAAAAAAAAAECBGAsAAAAAAAAAAAAAAACgQIwFAAAAAAAAAAAAAAAAUCDGAgAAAAAAAAAAAAAAACgQYwEAAAAAAAAAAAAAAAAUiLEAAAAAAAAAAAAAAAAACsRYAAAAAAAAAAAAAAAAAAViLAAAAAAAAAAAAAAAAIACMRYAAAAAAAAAAAAAAABAgRgLAAAAAAAAAAAAAAAAoECMBQAAAAAAAAAAAAAAAFAgxgIAAAAAAAAAAAAAAAAoEGMBAAAAAAAAAAAAAAAAFIixAAAAAAAAAAAAAAAAAArEWAAAAAAAAAAAAAAAAAAFYiwAAAAAAAAAAAAAAACAAjEWAAAAAAAAAAAAAAAAQIEYCwAAAAAAAAAAAAAAAKBAjAUAAAAAAAAAAAAAAABQIMYCAAAAAAAAAAAAAAAAKBBjAQAAAAAAAAAAAAAAABSIsQAAAAAAAAAAAAAAAAAKxFgAAAAAAAAAAAAAAAAABWIsAAAAAAAAAAAAAAAAgAIxFgAAAAAAAAAAAAAAAECBGAsAAAAAAAAAAAAAAACgQIwFAAAAAAAAAAAAAAAAUCDGAgAAAAAAAAAAAAAAACgQYwEAAAAAAAAAAAAAAAAUiLEAAAAAAAAAAAAAAAAACsRYAAAAAAAAAAAAAAAAAAViLAAAAAAAAAAAAAAAAIACMRYAAAAAAAAAAAAAAABAgRgLAAAAAAAAAAAAAAAAoECMBQAAAAAAAAAAAAAAAFAgxgIAAAAAAAAAAAAAAAAoEGMBAAAAAAAAAAAAAAAAFIixAAAAAAAAAAAAAAAAAArEWAAAAAAAAAAAAAAAAAAFYiwAAAAAAAAAAAAAAACAAjEWAAAAAAAAAAAAAAAAQIEYCwAAAAAAAAAAAAAAAKBAjAUAAAAAAAAAAAAAAABQIMYCAAAAAAAAAAAAAAAAKBBjAQAAAAAAAAAAAAAAABSIsQAAAAAAAAAAAAAAAAAKxFgAAAAAAAAAAAAAAAAABWIsAAAAAAAAAAAAAAAAgAIxFgAAAAAAAAAAAAAAAECBGAsAAAAAAAAAAAAAAACgQIwFAAAAAAAAAAAAAAAAUCDGAgAAAAAAAAAAAAAAACgQYwEAAAAAAAAAAAAAAAAUiLEAAAAAAAAAAAAAAAAACsRYAAAAAAAAAAAAAAAAAAViLAAAAAAAAAAAAAAAAIACMRYAAAAAAAAAAAAAAABAgRgLAAAAAAAAAAAAAAAAoECMBQAAAAAAAAAAAAAAAFAgxgIAAAAAAAAAAAAAAAAoEGMBAAAAAAAAAAAAAAAAFIixAAAAAAAAAAAAAAAAAArEWAAAAAAAAAAAAAAAAAAFYiwAAAAAAAAAAAAAAACAAjEWAAAAAAAAAAAAAAAAQIEYCwAAAAAAAAAAAAAAAKBAjAUAAAAAAAAAAAAAAABQIMYCAAAAAAAAAAAAAAAAKBBjAQAAAAAAAAAAAAAAABSIsQAAAAAAAAAAAAAAAAAKxFgAAAAAAAAAAAAAAAAABWIsAAAAAAAAAAAAAAAAgAIxFgAAAAAAAAAAAAAAAECBGAsAAAAAAAAAAAAAAACgQIwFAAAAAAAAAAAAAAAAUCDGAgAAAAAAAAAAAAAAACgQYwEAAAAAAAAAAAAAAAAUiLEAAAAAAAAAAAAAAAAACsRYAAAAAAAAAAAAAAAAAAViLAAAAAAAAAAAAAAAAIACMRYAAAAAAAAAAAAAAABAgRgLAAAAAAAAAAAAAAAAoECMBQAAAAAAAAAAAAAAAFAgxgIAAAAAAAAAAAAAAAAoEGMBAAAAAAAAAAAAAAAAFIixAAAAAAAAAAAAAAAAAArEWAAAAAAAAAAAAAAAAAAFYiwAAAAAAAAAAAAAAACAAjEWAAAAAAAAAAAAAAAAQIEYCwAAAAAAAAAAAAAAAKBAjAUAAAAAAAAAAAAAAABQIMYCAAAAAAAAAAAAAAAAKBBjAQAAAAAAAAAAAAAAABSIsQAAAAAAAAAAAAAAAAAKxFgAAAAAAAAAAAAAAAAABWIsAAAAAAAAAAAAAAAAgAIxFgAAAAAAAAAAAAAAAECBGAsAAAAAAAAAAAAAAACgQIwFAAAAAAAAAAAAAAAAUCDGAgAAAAAAAAAAAAAAACgQYwEAAAAAAAAAAAAAAAAUiLEAAAAAAAAAAAAAAAAACsRYAAAAAAAAAAAAAAAAAAViLAAAAAAAAAAAAAAAAIACMRYAAAAAAAAAAAAAAABAgRgLAAAAAAAAAAAAAAAAoECMBQAAAAAAAAAAAAAAAFAgxgIAAAAAAAAAAAAAAAAoEGMBAAAAAAAAAAAAAAAAFIixAAAAAAAAAAAAAAAAAArEWAAAAAAAAAAAAAAAAAAFYiwAAAAAAAAAAAAAAACAAjEWAAAAAAAAAAAAAAAAQIEYCwAAAAAAAAAAAAAAAKBAjAUAAAAAAAAAAAAAAABQIMYCAAAAAAAAAAAAAAAAKBBjAQAAAAAAAAAAAAAAABSIsQAAAAAAAAAAAAAAAAAKxFgAAAAAAAAAAAAAAAAABWIsAAAAAAAAAAAAAAAAgAIxFgAAAAAAAAAAAAAAAECBGAsAAAAAAAAAAAAAAACgQIwFAAAAAAAAAAAAAAAAUCDGAgAAAAAAAAAAAAAAACgQYwEAAAAAAAAAAAAAAAAUiLEAAAAAAAAAAAAAAAAACsRYAAAAAAAAAAAAAAAAAAViLAAAAAAAAAAAAAAAAIACMRYAAAAAAAAAAAAAAABAgRgLAAAAAAAAAAAAAAAAoECMBQAAAAAAAAAAAAAAAFAgxgIAAAAAAAAAAAAAAAAoEGMBAAAAAAAAAAAAAAAAFIixAAAAAAAAAAAAAAAAAArEWAAAAAAAAAAAAAAAAAAFYiwAAAAAAAAAAAAAAACAAjEWAAAAAAAAAAAAAAAAQIEYCwAAAAAAAAAAAAAAAKBAjAUAAAAAAAAAAAAAAABQIMYCAAAAAAAAAAAAAAAAKBBjAQAAAAAAAAAAAAAAABSIsQAAAAAAAAAAAAAAAAAKxFgAAAAAAAAAAAAAAAAABWIsAAAAAAAAAAAAAAAAgAIxFgAAAAAAAAAAAAAAAECBGAsAAAAAAAAAAAAAAACgQIwFAAAAAAAAAAAAAAAAUCDGAgAAAAAAAAAAAAAAACgQYwEAAAAAAAAAAAAAAAAUiLEAAAAAAAAAAAAAAAAACsRYAAAAAAAAAAAAAAAAAAViLAAAAAAAAAAAAAAAAIACMRYAAAAAAAAAAAAAAABAgRgLAAAAAAAAAAAAAAAAoECMBQAAAAAAAAAAAAAAAFAgxgIAAAAAAAAAAAAAAAAoEGMBAAAAAAAAAAAAAAAAFIixAAAAAAAAAAAAAAAAAArEWAAAAAAAAAAAAAAAAAAFYiwAAAAAAAAAAAAAAACAAjEWAAAAAAAAAAAAAAAAQIEYCwAAAAAAAAAAAAAAAKBAjAUAAAAAAAAAAAAAAABQIMYCAAAAAAAAAAAAAAAAKBBjAQAAAAAAAAAAAAAAABSIsQAAAAAAAAAAAAAAAAAKxFgAAAAAAAAAAAAAAAAABWIsAAAAAAAAAAAAAAAAgAIxFgAAAAAAAAAAAAAAAECBGAsAAAAAAAAAAAAAAACgQIwFAAAAAAAAAAAAAAAAUCDGAgAAAAAAAAAAAAAAACgQYwEAAAAAAAAAAAAAAAAUiLEAAAAAAAAAAAAAAAAACsRYAAAAAAAAAAAAAAAAAAViLAAAAAAAAAAAAAAAAIACMRYAAAAAAAAAAAAAAABAgRgLAAAAAAAAAAAAAAAAoECMBQAAAAAAAAAAAAAAAFAgxgIAAAAAAAAAAAAAAAAomJ/1ADxea+3nkpyWZFOSI5I8lOTeJP+Z5Ju99wdnOB4AAAAAAAAAAAAAAACsW2KsVaC1tiHJRUnenuTEJZY+2lq7KckXeu8fmspwAAAAAAAAAAAAAAAAQBIx1sy11s5JcmmSowvLn5TkF7LwrVliLAAAAAAAAAAAAAAAAJgiMdYMtdY+kOTiRX51e5Kbk3w/yeFJjk9yapInT204AAAAAAAAAAAAAAAA4HHEWDPSWntfnhhi/W2SD/be/32R9XNJzkzyq0leveIDAgAAAAAAAAAAAAAAAI8jxpqB1tppST40dOrHSd7Se//C/vb03vcmuTrJ1a01/24AAAAAAAAAAAAAAAAwZXOzHmC9GYRUf53Hh3DnLRVijeq975n4YAAAAAAAAAAAAAAAAMCSxFjTd06SLUPHX+29XzarYQAAAAAAAAAAAAAAAICa+Z+8hAk7b+T4D2cyBQAAAAAAAABA0Y137M5fXXd7brrz/vzwkT056tD5nH7CU3PuGSdmy6YNsx4PAACACfIMCLA0MdYUtdaem+TlQ6duS/K12UwDAAAAAAAAALC063fuzruv/Hau3bHrCb/btmNXLr1mR848aWM+/sZTsnWzD+QBAAAczDwDAtTMzXqAdeaXRo6/2nvvM5kEAAAAAAAAAGAJX9x+T8665OpFP4Q3bNuOXTnrkqvzxe33TGkyAAAAJs0zIECdGGu6XjhyvC1J2oJXtdYua61tb63d11p7sLW2o7V2VWvt/a21Z019WgAAAAAAAABgXbp+5+6c8+nr89CevaX1D+3Zm3M+fX2u37l7hScDAABg0jwDAiyPGGu6to4cf3cQWV2V5CtJ3pbk+UmemuTIJCcmeWWSDya5ubX25621I6c1LAAAAAAAAACwPr37ym+XP4S3z0N79ubCK7+9QhMBAACwUjwDAiyPGGu6jh85PjLJN5K8orD3kCTnJ/nX1trodQAAAAAAAAAAJuKGnbtz7Y5dB7R3245dufEO/zM6AADAwcIzIMDyzc96gHVmw8jxZUmOGbx/MMlfJPlykjuSPDnJaUnenuSlQ3tekOTvW2sv773/eJxhWmvHJTl2mdueM849AQAAAAAAAIDV7VP/dvt4+6/bmS2bRj8iAQAAwGrkGRBg+cRYU9JaOyzJYSOnNw1etyd5Te9958jvb0xyWWvtfUk+PHT+zCS/k+QPxhzr/CQfGPMaAAAAAAAAAMAactOd94+3/677JjQJAAAAK80zIMDyzc16gHXkSfs5f18WD7H+X+/9I0n+dOT0e1prR01qOAAAAAAAAACAJPnhI3vG2v/Aw+PtBwAAYHo8AwIsnxhrSnrv/5tk7yK/+uhSIdaQ38tCuLXP05O8dhKzAQAAAAAAAADsc9Sh82Ptf8ph4+0HAABgejwDAiyfGGu6Hlzk3GcqG3vvDya5YuT0L445zyeTnLLMn7PHvCcAAAAAAAAAsIqdfsJTx9v/zKdNaBIAAABWmmdAgOWToU7X7iRPGTq+p/d+2zL2X5vkN4aOnz/OML33e5Pcu5w9rbVxbgkAAAAAAAAArHLnnnFiLr1mxwHvf8cZmyc4DQAAACvJMyDA8vlmrOm6eeT47mXuv2vk+OgxZgEAAAAAAAAAeIItmzbkRSdtPKC9Z560MVs2bZjwRAAAAKwUz4AAyyfGmq7vjBw/vMz9o+sPH2MWAAAAAAAAAIBFfeKNp+Tw+eV9rOTw+bl8/I2nrNBEAAAArBTPgADLI8aarm+NHC83Ax5d/4MxZgEAAAAAAAAAWNTWzRvy+bduLX8Y7/D5uXz+rVuzdbP/ER0AAOBg4xkQYHnEWNP15SR96PinW2vL+Xar0XT4jvFHAgAAAAAAAAB4oted/Ix8/YKX5MyTNi657syTNubrF7wkrzv5GVOaDAAAgEnzDAhQNz/rAdaT3vtdrbVtSV48OHVIklcm+afiJV4zcvz1Sc0GAAAAAAAAADBq6+YNuebCl+bGO3bnU9ftzE133ZcHHt6Tpxw2n9Of+bS844zN2bLJ/4QOAACwFngGBKgRY03fZXksxkqS96YQY7XWzkrywqFTe5N8abKjAQAAAAAAAAA80ZZNG3zgDgAAYJ3wDAiwtLlZD7AOXZbku0PHr2itvXepDa214wb7hn2u937LpIcDAAAAAAAAAAAAAAAAFifGmrLe+6NJLsrCN1vt85HW2sdaaxtH17fWXpXk6iTPGTq9K8nvruigAAAAAAAAAAAAAAAAwOPMz3qA9aj3/pXW2kVJPjF0+sIk72qtXZvkziRHJDk9yUkj2x9J8ube+61TGRYAAAAAAAAAAAAAAABIIsaamd77Ja21R5N8OMmRg9OHJDlriW33JPmV3vs1Kz0fAAAAAAAAAAAAAAAA8Hhzsx5gPeu9X5rk55N8NskDSyz9ryQXJ3meEAsAAAAAAAAAAAAAAABmwzdjzVjv/ZYkv9ZaOyLJS5JsSvJTSR5J8v0k3+y9f2uGIwIAAAAAAAAAAAAAAAARY60avfcfJblq1nMAAAAAAAAAAAAAAAAAi5ub9QAAAAAAAAAAAAAAAAAABwMxFgAAAAAAAAAAAAAAAECBGAsAAAAAAAAAAAAAAACgQIwFAAAAAAAAAAAAAAAAUCDGAgAAAAAAAAAAAAAAACgQYwEAAAAAAAAAAAAAAAAUiLEAAAAAAAAAAAAAAAAACsRYAAAAAAAAAAAAAAAAAAViLAAAAAAAAAAAAAAAAIACMRYAAAAAAAAAAAAAAABAwfysB9if1tqJE7xcT/JAkvt6732C1wUAAAAAAAAAAAAAAADWiVUbYyW5LQsR1US11v47yQ1JtiX5bO/91knfAwAAAAAAAAAAAAAAAFh75mY9QEGb8M+xSV6d5OIk/9Fau6K1dvz0/hwAAAAAAAAAAAAAAADgYLTaY6w29L4v8jOqumbfteeSnJ3kW621F09oZgAAAAAAAAAAAAAAAGANmp/1AEv4TB4Lp345ydGD9y3JniTbk9ye5P4khyZ5epJTkhw3WLdv71VJ7kxyRJINSU5OsmloTRtc+x9aa2f03r+3Qn8PAAAAAAAAAAAAAAAAcBBbtTFW7/1trbUjk/xlkmMGp7+T5ENJrui9/2ixfa21k5Ocl+SdWfj7Tkvyx733q4bWPCvJ+UkuTHJIHguy/izJ61fgzwEAAAAAAAAAAAAAAAAOcnOzHuAnuDzJm7PwDVafTPKC3vvl+wuxkqT3vr33flGSFya5J8mxSb7YWts6tOa23vtvJ3lRkh9k6Bu4WmunrMyfAgAAAAAAAAAAAAAAABzMVm2M1Vp7Z5KzB4dX9N4v6L3vqe7vvX8zyWuT7ElyaJK/a60dNrLmpizEXi2PBVlnBwAAAAAAAAAAAAAAAGDEqo2xkvzW4LUnee+BXGAQZH1mcPisJG9YZM1Xk3wtC0FWkrzsQO4FAAAAAAAAAAAAAAAArG2rMsZqrW1J8rNZCLFu6r3vHONyVw69f0thzXPHuBcAAAAAAAAAAAAAAACwRq3KGCsLIdY+3xvzWrcOvX/eftbcOHhtSZ4+5v0AAAAAAAAAAAAAAACANWi1xlgnDL1vE7pmS/LM/fzuB0Pvj5rQ/QAAAAAAAAAAAAAAAIA1ZLXGWI8OvX/2mNca3r+3sP6hMe8HAAAAAAAAAAAAAAAArEGrNca6e/DakpzeWts8xrXesMh1Rx0zeO1Jdo9xLwAAAAAAAAAAAAAAAGCNWq0x1rbBa89CkPUnB3KR1tqpSd46uE4fuu6oU4fe334g9wIAAAAAAAAAAAAAAADWtlUZY/Xeb0/yjcFhS3JOa+2jrbXyvK21k5N8KcmTBtdIks/tZ/nLht5vX+a4AAAAAAAAAAAAAAAAwDqwKmOsgfdnIaLa9+1YFyW5obX2ptbaYfvb1Fp7Xmvtw0luSHLC4HRP8i+9939eZP1RSV4/WJMk10zuTwAAAAAAAAAAAAAAAADWivlZD7A/vfevtdY+loUIa1+QdVqSv0ny49ba9iQ7kjyQ5NAkG5OcmuQZg0sMh1z3Jjl3P7d6V5IjB+/3JnlCsAUAAAAAAAAAAAAAAACwamOsJOm9v6e1Np/kN/PYN1e1LMRXp2chzhrW9m3NYyHW3Ule03u/ZT+3eTDJ7w/e/0/v/e4JjQ8AAAAAAAAAAAAAAACsIas6xkqS3vu7W2tfSXJJkk37Tu9v+eC1ZeFbri5PclHvfdcS1//kpGYFAAAAAAAAAAAAAAAA1q65WQ9Q0Xv/xyTPTvKmJFcmuScLwdXoz6NJbkzyR0l+pvf+60uFWAAAAAAAAAAAAAAAAABVq/6bsfbpvT+a5PODn7TWjktyTJINSR5OsivJXb33h2Y2JAAAAAAAAAAAAAAAALBmHTQx1qje+71J7p31HAAAAAAAAAAAAAAAAMD6MDfrAQAAAAAAAAAAAAAAAAAOBmIsAAAAAAAAAAAAAAAAgAIxFgAAAAAAAAAAAAAAAECBGAsAAACA/2Pv/p9tq8v7gL+f41EU9AKiosYYIFE0FsEYxxqNX5uatJYqpqmjY2prYpvCmLamTaYqipnRfG1TW6dNa9GYJk2UDmlLDK0ZIYiIGGs0ihqLo4ihQfBC5Gu48vSHvU7O5noPd59zz71rnbNfr5k167PWXutZ7/0HvOcDAAAAAAAAAAAsYHXsAIuoqgcleVmS5yd5SpJHJDk2m8/f3b0j/jMAAAAAAAAAAAAAAAAwLZMvJlXVP0zyc0n2rN0aMQ4AAAAAAAAAAAAAAACwpCZdxqqqtyc5O+sFrB6OZHOlrN7k8wAAAAAAAAAAAAAAAAD3MtkyVlW9PMk5w+VamaqS/EWSa5LsTXL3OOkAAAAAAAAAAAAAAACAZTPZMlaStwzntSLWx5O8Kcn/7u59o6UCAAAAAAAAAAAAAAAAltIky1hV9VeSnJJZEStJfjfJi7v7m+OlAgAAAAAAAAAAAAAAAJbZytgBNvDU4VxJ9iV5jSIWAAAAAAAAAAAAAAAAMKaplrEePpw7yce6+/oxwwAAAAAAAAAAAAAAAABMtYy1b2795dFSAAAAAAAAAAAAAAAAAAymWsa6bm591GgpAAAAAAAAAAAAAAAAAAZTLWN9cm59ymgpAAAAAAAAAAAAAAAAAAaTLGN19xeSXJmkkjy5qh49ciQAAAAAAAAAAAAAAABgyU2yjDV463CuJOeOGQQAAAAAAAAAAAAAAABgsmWs7r4oyTsyK2P9eFW9ZuRIAAAAAAAAAAAAAAAAwBKbbBlr8JNZL2T9+6p6T1U9fuRMAAAAAAAAAAAAAAAAwBJaHTvARqrq/LnLG5M8LMkrkryiqr6Y5Ooke5Pcs4mx3d2v3r6UAAAAAAAAAAAAAAAAwLKYbBkryauS9Nx1Z7ZDVpJ8Z5JTNjmvhhnKWAAAAAAAAAAAAAAAAMCmTbmMdSB98EcAAAAAAAAAAAAAAAAAtt/Uy1h18EcAAAAAAAAAAAAAAAAADr8pl7FOHjsAAAAAAAAAAAAAAAAAwJrJlrG6+8tjZwAAAAAAAAAAAAAAAABYszJ2AAAAAAAAAAAAAAAAAICdQBkLAAAAAAAAAAAAAAAAYAHKWAAAAAAAAAAAAAAAAAALUMYCAAAAAAAAAAAAAAAAWIAyFgAAAAAAAAAAAAAAAMACVsf4aFU9e/973X3ZwZ7ZDvt/BwAAAAAAAAAAAAAAAGARo5SxklyapOeuO9+aZf9ntsOBvgMAAAAAAAAAAAAAAABwUGMXk2qbngEAAAAAAAAAAAAAAAA4rFZG/LYiFgAAAAAAAAAAAAAAALBjjLUz1nnb9AwAAAAAAAAAAAAAAADAETFKGau7D1q0WuQZAAAAAAAAAAAAAAAAgCNlZewAAAAAAAAAAAAAAAAAADuBMhYAAAAAAAAAAAAAAADAApSxAAAAAAAAAAAAAAAAABagjAUAAAAAAAAAAAAAAACwAGUsAAAAAAAAAAAAAAAAgAWsjh1gK6rq6CTHJrn/Zt/t7mu3PxEAAAAAAAAAAAAAAACw2+2IMlZVPTbJq5M8P8kZSY7e4qjODvnPAAAAAAAAAAAAAAAAwLRMuphUVatJfjbJ65Lcb+32eIkAAAAAAAAAAAAAAACAZTXZMlZVVZLfTvLirBewejgUsgAAAAAAAAAAAAAAAIAjarJlrCRnJ3lJ7l3AqiRfSvLZJHuT3D1WOAAAAAAAAAAAAAAAAGC5TLKMNeyK9frcexes/57k9d199WjBAAAAAAAAAAAAAAAAgKU1yTJWku9NcmLWd8V6d3e/etxIAAAAAAAAAAAAAAAAwDJbGTvABk4bzpXkziT/bMQsAAAAAAAAAAAAAAAAAJMtYz1sOHeSK7v7ljHDAAAAAAAAAAAAAAAAAEy1jHXH3Pr60VIAAAAAAAAAAAAAAAAADKZaxrpubn3MaCkAAAAAAAAAAAAAAAAABlMtY30syT3D+tQxgwAAAAAAAAAAAAAAAAAkEy1jdfd1SS5JUklOrarHjxwJAAAAAAAAAAAAAAAAWHKTLGMN3pTkm8P6rWMGAQAAAAAAAAAAAAAAAJhsGau7r8iskFVJXlJVClkAAAAAAAAAAAAAAADAaCZbxkqS7n5rkn+epJP8dFVdWlU/UFWrI0cDAAAAAAAAAAAAAAAAlswopaaq+uAmX7k5yUOTfH+Si5PcUVXXJNmb5J5NzOnufsEmvw0AAAAAAADFeJ37AAAgAElEQVQAAAAAAAAwThkryXMz2+1qMzpJDeujk5y2yRm1hW8CAAAAAAAAAAAAAAAAJBmvjLVVylQAAAAAAAAAAAAAAADAKMYsY9XBHwEAAAAAAAAAAAAAAACYhlHKWN29MsZ3AQAAAAAAAAAAAAAAALZKKQoAAAAAAAAAAAAAAABgAcpYAAAAAAAAAAAAAAAAAAtQxgIAAAAAAAAAAAAAAABYgDIWAAAAAAAAAAAAAAAAwAKUsQAAAAAAAAAAAAAAAAAWsDp2gI1U1clJ3jh362e6+4ZNzjgxydvmbp3b3ddtRz4AAAAAAAAAAAAAAABguUy2jJXkNUlelaSTXLnZIlaSdPefVdUTkjx9uPXlJOdtW0IAAAAAAAAAAAAAAABgaayMHeA+nDW3Pv8Q5pyfpIbj7xxSIgAAAAAAAAAAAAAAAGBpTbKMVVWPSfK44bKTXHgI4y4cZiTJE6vqxEPJBgAAAAAAAAAAAAAAACynSZaxkpw2nDvJF7v761sd1N03Jblm7tbphxIMAAAAAAAAAAAAAAAAWE5TLWOdPLf+/DbM+5MNZgMAAAAAAAAAAAAAAAAsZKplrD1z65u3Yd78jGO3YR4AAAAAAAAAAAAAAACwZKZaxrp7bn30Nsx70Ny6tmEeAAAAAAAAAAAAAAAAsGSmWsa6cW79bdswb37GTdswDwAAAAAAAAAAAAAAAFgyUy1j/elwriRPqaoHb3XQ8O73zN26/lCCAQAAAAAAAAAAAAAAAMtpqmWsjyTZl6STrCb5B4cw6+8PMzLM+8ihRQMAAAAAAAAAAAAAAACW0STLWN19a5KrMtsZq5K8oaoes9k5wztvyKyE1Uk+3t1f386sAAAAAAAAAAAAAAAAwHKYZBlr8G+Gcyd5WJKLq+rkRV+uqpOSvD/JwzMrdCXJ27cxHwAAAAAAAAAAAAAAALBEplzGuiDJp4Z1J/nuJH9UVW+sqhM3eqmqHlFVb0jyiSRPyvquWJ9J8puHNzIAAAAAAAAAAAAAAACwW62OHWAj3d1V9SNJPppkT2aFqockeXOSN1fV5zMrWO0dfntoZoWtUzPbCauG+zU889Lu7iP8NwAAAAAAAAAAAAAAAIBdYrJlrCTp7j+pqpck+W9Jjst6uSpJnpBZ8Wpezb8+XN+U5Kzu/sJhjgsAAAAAAAAAAAAAAADsYitjBziY7r40ydOSXJn1slUPx7c8Pne/klyW5Knd/aHDHBMAAAAAAAAAAAAAAADY5SZfxkqS7v5idz8zyQuTXJjk5szKVgc69ia5IMnzuvu53X3tOKkBAAAAAAAAAAAAAACA3WR17ACb0d0fSPKBqqokT0zyqCQnDD/fmOT67v7sWPkAAAAAAAAAAAAAAACA3WtHlbHWdHcnuXo4AAAAAAAAAAAAAAAAAA67lbEDAAAAAAAAAAAAAAAAAOwEk90Zq6p+dO7ygu6+fYtzjkny0rXr7n7PoWYDAAAAAAAAAAAAAAAAls9ky1hJ3p2kh/WlSa7d4pyH7TdLGQsAAAAAAAAAAAAAAADYtJWxAxxETXQWAAAAAAAAAAAAAAAAsGSmXsYCAAAAAAAAAAAAAAAAmIRlKGPN74jVo6UAAAAAAAAAAAAAAAAAdrRlKGMdM7e+fbQUAAAAAAAAAAAAAAAAwI62DGWsJ82t946WAgAAAAAAAAAAAAAAANjRdnUZq6r2JPmnw2Un+dyIcQAAAAAAAAAAAAAAAIAdbHXMj1fV+Qs++ktVdesmRh+V5FFJnpbk6Ln7l21iBgAAAAAAAAAAAAAAAMBfGrWMleRVme1YdV8qyUu3OL/m5t+Z5D1bnAMAAAAAAAAAAAAAAAAsuZWxAxxmnVkha1+Sf9zdXxk5DwAAAAAAAAAAAAAAALBDjb0zVjIrS23HMwfypSSXJHl7d39yizMAAAAAAAAAAAAAAAAARi9jnbzB/UryxWHdSZ6d5LoFZ3aSu5Lc3N13HVo8AAAAAAAAAAAAAAAAgJlRy1jd/eWNfquqZFasSpKvdPe1RyQUAAAAAAAAAAAAAAAAwAGMvTPWfbk262WsfWMGAQAAAAAAAAAAAAAAAJhsGau7Txo7AwAAAAAAAAAAAAAAAMCalbEDAAAAAAAAAAAAAAAAAOwEylgAAAAAAAAAAAAAAAAAC1DGAgAAAAAAAAAAAAAAAFjA6tgBtqKqHpPk+CTHZpOFsu6+7LCEAgAAAAAAAAAAAAAAAHa1HVHGqqrVJC9P8ookT0/ykC2O6uyQ/wwAAAAAAAAAAAAAAABMy+SLSVX19CS/leSxa7dGjAMAAAAAAAAAAAAAAAAsqUmXsarqryW5KMn9Myth9dzP8+va4P7+vwEAAAAAAAAAAAAAAABsyWTLWFV1YpL/muQBWS9YfS3J7yX5RpJzhnud5Lwke5I8Oskzsr6LVie5Icl/TPLNIxIcAAAAAAAAAAAAAAAA2JUmW8ZK8k+SnJD1Ita7kpzT3XdU1XdkvYyV7j5v/sWqen6StyV5WpKHJ3lWkjO7+9YjERwAAAAAAAAAAAAAAADYfVbGDnAffizrRaxLuvvV3X3HIi929weTPDPJu5NUkuckueBwhAQAAAAAAAAAAAAAAACWwyTLWFX1xMx2xarh1us3O6O792VW6PrQMOcHqurV2xYSAAAAAAAAAAAAAAAAWCqTLGMlOWNu/f+6+6NbGdLd9yT5qblbP3FIqQAAAAAAAAAAAAAAAIClNdUy1gnDuZP88QF+7/mLqnrgRoO6+2NJvpTZ7lhPqapTtikjAAAAAAAAAAAAAAAAsESmWsbaM7e+6QC/377f9YMPMu/Tc+vTt5QIAAAAAAAAAAAAAAAAWGpTLWPdObeuA/z+jf2uH32QebfMrR+5pUQAAAAAAAAAAAAAAADAUptqGevrc+s9+//Y3Xfl3gWrJxxk3glz62MPIRcAAAAAAAAAAAAAAACwpKZaxvrC3PrkDZ75zNz6uRsNqqr7J3n63K0/33osAAAAAAAAAAAAAAAAYFlNtYx1dZJOUkkeV1UPOMAzHxnOleRlVfXQDWb9oyTHz11/fttSAgAAAAAAAAAAAAAAAEtjkmWs7t6b5NPD5f2SPPsAj71v7fEkxyb5n1X1HfMPVNWPJfml4ZkkuT3JFdseGAAAAAAAAAAAAAAAANj1JlnGGnxgbv2i/X/s7quSfGju1jOSXFNVf1xVl1fVnyX51ST3z2z3rE7yzu6+4zBmBgAAAAAAAAAAAAAAAHapKZex3jucK8krq+qBB3jm7CS3DuvO7P88KbNi1sOzXsJKkmuSvPGwpQUAAAAAAAAAAAAAAAB2tdWxA2yku6+qqpdmvTB2TJI793vm01X1NzMrbj1y7fbcuYbjU0n+VnffGgAAAAAAAAAAAAAAAIAtmGwZK0m6+8IFnrm8qk5N8hNJzkzyuCTHJdmb5JNJfjvJr3X3Nw9nVgAAAAAAAAAAAAAAAGB3m3QZa1Hd/Y0kvzAcAAAAAAAAAAAAAAAAANtuZewAAAAAAAAAAAAAAAAAADuBMhYAAAAAAAAAAAAAAADAApSxAAAAAAAAAAAAAAAAABagjAUAAAAAAAAAAAAAAACwAGUsAAAAAAAAAAAAAAAAgAWsjh1gEVV1TJIfSfKCJGckOTHJnmw+f3f3jvjPAAAAAAAAAAAAAAAAwLRMvphUVa9N8rNJHrx2a8Q4AAAAAAAAAAAAAAAAwJKabBmrqirJu5K8MusFrB6OZHOlrN7k8wAAAAAAAAAAAAAAAAD3MtkyVpLXJvnRYb1WpqokdyS5JsktSfaNEw0AAAAAAAAAAAAAAABYNpMsY1XVapJzc+8S1vuT/HySy7u77+N1AAAAAAAAAAAAAAAAgG03yTJWkmcnOT6zMlYn+Q/dffa4kQAAAAAAAAAAAAAAAIBltjJ2gA2cOpwryTeS/NSIWQAAAAAAAAAAAAAAAAAmW8Y6fjh3kiu6+44xwwAAAAAAAAAAAAAAAABMtYz1jbn1TaOlAAAAAAAAAAAAAAAAABhMtYz1ubn1Q0dLAQAAAAAAAAAAAAAAADCYahnr8iS3J6kkTxs5CwAAAAAAAAAAAAAAAMA0y1jdfUeSXxsuT6iql4yZBwAAAAAAAAAAAAAAAGCSZazBuUmuH9a/UlUnjhkGAAAAAAAAAAAAAAAAWG6TLWN1901JXpTk5iTfnuTyqnrGuKkAAAAAAAAAAAAAAACAZbU6doD70t2fqKq/muR9SZ6cWSHr8iQXJ/lsZkWtezY587JtDwoAAAAAAAAAAAAAAADsepMuYyVJd3+hql6X5L1Jjk/yrOHY0rjsgP8MAAAAAAAAAAAAAAAATM+ki0lVtSfJu5K8eLjVaz+NkwgAAAAAAAAAAAAAAABYVpMtY1XVMUkuSXJGZuUrRSwAAAAAAAAAAAAAAABgNJMtYyV5W5KnZFbC6sxKWLcm+XCSLyS5Jcm+0dIBAAAAAAAAAAAAAAAAS2WSZayqOi7Jj2e9hLUvyeuT/NvuvnPMbAAAAAAAAAAAAAAAAMBymmQZK8lzkxyV9V2xzu7u/zRqIgAAAAAAAAAAAAAAAGCprYwdYAPfOZwryZ8qYgEAAAAAAAAAAAAAAABjm2oZay1XJ/nDMYMAAAAAAAAAAAAAAAAAJNMtY311bn37aCkAAAAAAAAAAAAAAAAABlMtY/3fufUjR0sBAAAAAAAAAAAAAAAAMJhkGau7r0rypSSV5OlV9cBxEwEAAAAAAAAAAAAAAADLbpJlrMGvDucHJTlnzCAAAAAAAAAAAAAAAAAAUy5j/askV2W2O9Zbquo5I+cBAAAAAAAAAAAAAAAAlthky1jdfXeSv5Hko0kemOR/VdUbqmrPuMkAAAAAAAAAAAAAAACAZbQ6doCNVNW5w/KDSR6f5Pgk5yX56ar6SJLPJtmb5J7NzO3ut2xnTgAAAAAAAAAAAAAAAGA5TLaMleTNSXruupNUkmOSvGA4tkIZCwAAAAAAAAAAAAAAANi0lbEDbFLn3gWtzajtDAIAAAAAAAAAAAAAAAAslynvjJUoUAEAAAAAAAAAAAAAAAATMeUy1vPGDgAAAAAAAAAAAAAAAACwZrJlrO7+g7EzAAAAAAAAAAAAAAAAAKxZGTsAAAAAAAAAAAAAAAAAwE6gjAUAAAAAAAAAAAAAAACwAGUsAAAAAAAAAAAAAAAAgAUoYwEAAAAAAAAAAAAAAAAsQBkLAAAAAAAAAAAAAAAAYAHKWAAAAAAAAAAAAAAAAAALUMYCAAAAAAAAAAAAAAAAWIAyFgAAAAAAAAAAAAAAAMAClLEAAAAAAAAAAAAAAAAAFqCMBQAAAAAAAAAAAAAAALAAZSwAAAAAAAAAAAAAAACABShjAQAAAAAAAAAAAAAAACxAGQsAAAAAAAAAAAAAAABgAcpYAAAAAAAAAAAAAAAAAAtYHeOjVXXu3OWvdPefj5EDAAAAAAAAAAAAAAAAYFGjlLGSvDlJD+t3J/mWMpbCFgAAAAAAAAAAAAAAADAlY5WxkqSyXsg6kDfnIIUtAAAAAAAAAAAAAAAAgCNlZewAB1FjBwAAAAAAAAAAAAAAAABIxitj3TW3fsBIGQAAAAAAAAAAAAAAAAAWNlYZa+/c+rtGygAAAAAAAAAAAAAAAACwsLHKWJ+ZW59TVTVSDgAAAAAAAAAAAAAAAICFrI703d9P8oJh/UNJPlFVFya5LsndB3j+h6vqxu34cHe/ZzvmAAAAAAAAAAAAAAAAAMtlrDLWO5P8TJI9w/WTk5y2wbOV5Be38dvKWAAAAAAAAAAAAAAAAMCmrYzx0e6+KcnfS/IXmZWtevip5o55dYhH8q0zAQAAAAAAAAAAAAAAABY2ShkrSbr7fyR5RpKLktyTw1uWUsQCAAAAAAAAAAAAAAAADsnqmB/v7j9KcmZVHZ3kjCQnJnlwkvslOX/tsST/IsmNo4QEAAAAAAAAAAAAAAAAyMhlrDXdfXuSK+bvVdX5c5fv6+5rj2wqAAAAAAAAAAAAAAAAgHUrYwc4iB47AAAAAAAAAAAAAAAAAEAykZ2x7kONHQAAAAAAAAAAAAAAAAAgmXAZq7unvmsXAAAAAAAAAAAAAAAAsEQUngAAAAAAAAAAAAAAAAAWoIwFAAAAAAAAAAAAAAAAsIDVsQNsVlV9e5JnJnlakkckeWiSTrI3yQ1JPpbkw939ldFCAgAAAAAAAAAAAAAAALvOjiljVdUPJXldkuct+PwlSX65u3/vsAYDAAAAAAAAAAAAAAAAlsLK2AEOpqoeXFW/nuSizIpYNRwbvjIcz09yUVX9RlU95PAnBQAAAAAAAAAAAAAAAHazSe+MVVXHJLkkyfdkVrDq4ThYIavXRiR5WZJTq+o53X3bYYwLAAAAAAAAAAAAAAAA7GKTLmMl+Y0kT829S1h3JfndJFck+VySW4Znj01yapLvS/KiJEfNvfOUJL+Z5G8fwewAAAAAAAAAAAAAAADALjLZMlZVvTDJmVnf5aqTvCPJm7p77wavvT/Jv66q45Kcl+TstXFJXlRVP9jdFx/G2AAAAAAAAAAAAAAAAMAutTJ2gPvw+uFcSfYleXl3v/Y+ilh/qbtv7u6fTPKy4d21HbL+5eEKCwAAAAAAAAAAAAAAAOxukyxjVdXxSb4vsxJVJ/n57n7vZud09wVJfi6zIlaSPGOYDQAAAAAAAAAAAAAAALApkyxjJXlmZtkqyV1JfuEQZv1ikjuH9cowGwAAAAAAAAAAAAAAAGBTplrGetRw7iRXdvetWx00vHvlAWYDAAAAAAAAAAAAAAAALGyqZawT5tbXb8O8+RknbPgUAAAAAAAAAAAAAAAAwAamWsa6bW69ZxvmPWSD2QAAAAAAAAAAAAAAAAALmWoZ62vDuZKcvg3zzphb37gN8wAAAAAAAAAAAAAAAIAlM9Uy1qfm1t9WVS/c6qCq+utJHjN365NbTgUAAAAAAAAAAAAAAAAsrUmWsbr76iRfSdKZ7Y71jqo6YbNzhnf+3TAnSb46zAYAAAAAAAAAAAAAAADYlEmWsQb/ObMiVic5JckfVNVpi75cVU9KcmmS75qb887tjwkAAAAAAAAAAAAAAAAsgymXsX45yQ3DupN8d5KPV9WvV9UPVtWx+79QVXuq6oVV9Z4k/2d4Z21XrBuGmQAAAAAAAAAAAAAAAACbtjp2gI10921VdVaS309yVGalqtUkLx+OVNXXktwy/HZskkfMjVjbDauS3Jnkh7v7tiP2BwAAAAAAAAAAAAAAAIBdZco7Y6W7r0hyVpK9WS9XZVhXZuWrxyV5fJIT5+4n60WsvZkVsT585JIDAAAAAAAAAAAAAAAAu82ky1hJ0t0XJzk9ye9kvWCVYX2gI1kvbv1OktO7+/1HMjMAAAAAAAAAAAAAAACw+6yOHWAR3f3VJGdV1SlJXpnkWUm+N8mx+z16S5I/THJ5kv/S3dcc0aAAAAAAAAAAAAAAAADArrUjylhruvuLSc5bu66q+yc5PrOdsL7e3XePlQ0AAAAAAAAAAAAAAADY3XZUGWt/Q/nqhrFzAAAAAAAAAAAAAAAAALvfytgBAAAAAAAAAAAAAAAAAHYCZSwAAAAAAAAAAAAAAACABShjAQAAAAAAAAAAAAAAACxAGQsAAAAAAAAAAAAAAABgAcpYAAAAAAAAAAAAAAAAAAtQxgIAAAAAAAAAAAAAAABYgDIWAAAAAAAAAAAAAAAAwAKUsQAAAAAAAAAAAAAAAAAWoIwFAAAAAAAAAAAAAAAAsABlLAAAAAAAAAAAAAAAAIAFKGMBAAAAAAAAAAAAAAAALEAZCwAAAAAAAAAAAAAAAGABylgAAAAAAAAAAAAAAAAAC1DGAgAAAAAAAAAAAAAAAFiAMhYAAAAAAAAAAAAAAADAAlbHDnAoquq4JA9JUt197dh5AAAAAAAAAAAAAAAAgN1rR5WxqurFSc5M8v1JTsr6zl6dA/yXqjopyWOHy9u6++OHPeQ2qKrfSvJ397v95e4+aYQ4AAAAAAAAAAAAAAD/n717D7fsrOsD/v2dnCSD5Eq4GTIkisplBgxpJFw1CFKtlBottljbgKA+VcAqoNIiN0VLC9oGvLQWSrD1BkixSi3iDcQkGGOEGS62gLlwCQRmckFznV//OPt09gxzZs6Zs+esdc7+fJ5nPfvda9Z6z3c277PWJs98zwIAsknKWFX195NckuSrlnet8tQHJfn9LJW17qiqM7t7zzGIODNV9bR8aRELAAAAAAAAAAAAAAAAGNjCkQ8ZVlW9NMnvZqmIdXAJqw93bnf/QZIPT847ISMvOVXVaUl+cegcAAAAAAAAAAAAAAAAwJcadRmrqp6f5OU5MOftSd6T5Heyuidk/cbU+FtnFu7YeG2SMyfjW4YMAgAAAAAAAAAAAAAAABxotGWsqvrqJK/J0tOvOkslrB9NckZ3X5jkeauc6reXp0zyhKpaTYFrw1XVk5N8z+TtXUleOmAcAAAAAAAAAAAAAAAA4CCLQwc4jFdmf76/S/Lk7r7sKOb5QJLbkmxLcnKSr07y1zNJOCNVdc8kvzy162eTXD1QHAAAAAAAAAAAAAAAAOAQRlnGqqoTkzwtS0/ESpKXHGURK929r6o+nOSRk10PycjKWEl+Jsk5k/HHk7w8yQVDhQEAAAAAAACAzeSq6/fmv1xxba7+5M259Y67ctIJizn3AafkORc8MOedddrQ8diErKmN4XNm1oZaU9YywMpcI4G1cM0ANovq7iMftcGq6huTvHvy9otJ7t3dtx90zNlJPjF529193GHm+59JvjVL5a4f7O5fmn3qo1NVj03y3iQLk13f1N3vrqoLk/zR1KHXdPc5GxzvS1TVjiS7lt/v2rUrO3bsGDARAAAAAAAAAPPqyuv25nlv35XLr9mz4jGPOfv0XHLRzpy/3T/a4sisqY3hc2bWhlpT1jLAylwjgbVwzQDWavfu3dm5c+f0rp3dvXujfv7CkQ8ZxDmT107y/oOLWEfh5qnxyeuca2YmTwB7Y/b/73Bpd7/7MKcAAAAAAAAAAEl+50M35Amvf99h/6FWklx2zZ484fXvy+986IYNSsZmZU1tDJ8zszbUmrKWAVbmGgmshWsGsBmNtYx1n6nxZ2Yw38IK46G9PMmDJ+PPJXnBcFEAAAAAAAAAYHO48rq9efqlV+a2u/at6vjb7tqXp196Za68bu8xTsZmZU1tDJ8zszbUmrKWAVbmGgmshWsGsFmNqZg0bfpJWCfOYL4zpsaHr8xukKo6L8kLp3b9q+7+/FB5AAAAAAAAAGCzeN7bd636H2otu+2ufXn+23cdo0RsdtbUxvA5M2tDrSlrGWBlrpHAWrhmAJvVWMtYn5sanzWD+b52hbkHUVWLSd6YZHGy6/e6+1cHjAQAAAAAAAAAm8JfXLc3l19zdL+H9bJr9uSq6/32bA5kTW0MnzOzNtSaspYBVuYaCayFawawmY21jPXxyWslObeq7nm0E02eQHWfqV1XrSfYjPx49hfEvpjkXw4RoqruW1U71rIledAQWQEAAAAAAAAgSd7w/mvXd/4V180oCVuFNbUxfM7M2lBryloGWJlrJLAWrhnAZrZ45EMG8f4kNyc5OcnxSb4nyeuOcq4fmRpf093XrDPbulTVw5K8ZGrXT3T33wwU5weSvGygnw0AAAAAAAAAa3b1J29e3/mfumlGSdgqrKmN4XNm1oZaU9YywMpcI4G1cM0ANrNRPhmru+9O8rtZejJWJXlFVW1f6zxVdVGS70rSk+3XZpnzKPIsJHlDkhMnu/4iySXDJQIAAAAAAACAzeXWO+5a1/m33L6+89l6rKmN4XNm1oZaU9YywMpcI4G1cM0ANrNRlrEmfjLJviyVqE5L8sdVtWO1J1fVM5P86uT8SnJbkv84+5hr8kNJHj0Z35XkOZPiGQAAAAAAAACwCiedsLiu808+cX3ns/VYUxvD58ysDbWmrGWAlblGAmvhmgFsZqMtY3X3R5K8LktFqk7yFUmuqqo3VNXfT3Lfg8+pqu1V9eyquiz7n0C1fP7LuvuzG/YX+NJsX5nkp6Z2/Wx3Xz1UnolfSLJzjds/GiQpAAAAAAAAACQ59wGnrO/8M0+dURK2CmtqY/icmbWh1pS1DLAy10hgLVwzgM1stGWsiRck+f3sL1Qdn+SZSd6Z5PLJviRJVX0xyd8k+c9JHjV1TpK8vbtfs1GhD1ZVleSXk3zZZNfHk7x8qDzLuvuz3b17LVuSjw2dGwAAAAAAAID59ZwLHriu8599wfYZJWGrsKY2hs+ZWRtqTVnLACtzjQTWwjUD2MxGXcbq7n1ZehLTm3JguaomW6b23eOg/cvHvTHJPz3WWY/ge5N849T77+/uvxsqDAAAAAAAAABsVueddVoeffbpR3XuY84+PeedddqME7HZWVMbw+fMrA21pqxlgJW5RgJr4ZoBbGajLmMlSXff1t3fk+SfJNmdA8tWBxyaA8taH0vyz7r7Od1917FPelivmBq/M8n/rapzDrcluf9Bcywe4rgTNuovAAAAAAAAAABj8bqLdmbb4tr+ycO2xYVcctHOY5SIzc6a2hg+Z2ZtqDVlLQOszDUSWAvXDGCzGn0Za1l3v6W7H5HkSUn+bZI/TXJtki8muTPJp5NcneTnkzwtyUO6+9cGinuwe0yN/0GST6xiOzj7Aw5xzMOOaWoAAAAAAAAAGKHzt5+Wt1x8/qr/wda2xYW85eLzc/52vzWbQ7OmNobPmVkbak1ZywArc40E1sI1A9isqruPfBTrUlV7k5x6DKZ+ZHdffQzmXVFV7Uiya/n9rl27smPHjo2MAAAAAAAAAABJkiuv25vnv31XLrtmz4rHPObs03PJRTv9Qy1WxZraGD5nZm2oNWUtA6zMNRJYC9cMYK12796dnTsPeErezu7evVE/XxlrAyhjAQAAAAAAAMCxc9X1e/OGK67L1Z+6KbfcfldOPnEx5555ap59wdKPMj8AACAASURBVPacd5Z/pMXaWVMbw+fMrA21pqxlgJW5RgJr4ZoBrJYyFodUVRcm+aOpXdd09znDpNlPGQsAAAAAAAAAAAAAAIChDF3GWtioHwQAAAAAAAAAAAAAAACwmS0OHWAlVVVJtk/t+kx337HGOU5Mcr/l99197YziAQAAAAAAAAAAAAAAAHNmzE/G+sdJPjHZPpBk21HMcWKSDy7PU1VPnV08AAAAAAAAAAAAAAAAYJ6MuYx1cZKajN/U3TevdYLJOW+azFNJnjWzdAAAAAAAAAAAAAAAAMBcGWUZq6pOSPLEqV2/vo7pfm1q/OSqOm4dcwEAAAAAAAAAAAAAAABzapRlrCSPSHKPyfjW7r58HXNdkeSWyfikydwAAAAAAAAAAAAAAAAAazLWMtZDJ6+d5K/WM1F3d5IPTO16yHrm2yjd/cfdXVPbOUNnAgAAAAAAAAAAAAAAgHk21jLWfabGN8xgvs9Mje87g/kAAAAAAAAAAAAAAACAOTPWMta2qfHtM5hveo57zmA+AAAAAAAAAAAAAAAAYM6MtYy1Z2p87xnMd8bU+NYZzAcAAAAAAAAAAAAAAADMmbGWsT4/ea0kD5/BfNNz3DiD+QAAAAAAAAAAAAAAAIA5M9Yy1genxvevqvOOdqLJuWdO7frIUacCAAAAAAAAAAAAAAAA5tYoy1jd/eEkNyTpya6Xr2O6l02Nv9DdV61jLgAAAAAAAAAAAAAAAGBOjbKMNfHWJDXZvrWqXrjWCarqR5L8wyyVujrJ22aaEAAAAAAAAAAAAAAAAJgbYy5jvTrJHVkqUVWSV1fV66vqpCOdWFX3rKpLkvz7qfPvTPIzxzAvAAAAAAAAAAAAAAAAsIUtDh1gJd19fVX9VJJXZn+h6l8m+e6q+tUkf5xkd5I9kz+/V5KHJbkwyXclOWVyTiZ//qruvmYD/woAAAAAAAAAAAAAAADAFjLaMlaSdPdPVdW5Sb49+wtZpyT5/sm2kukSViV5S3f/5LHMCgAAAAAAAAAAAAAAAGxtC0MHWIV/kuR1WSpV9WTL5P2hthx0zGuz9KQsAAAAAAAAAAAAAAAAgKM2+jJWd9/d3T+U5JuTXJYDS1fJgQWtTP35nyR5Une/qLv3bVReAAAAAAAAAAAAAAAAYGtaHDrAanX3u5K8q6oenuRJSR6b5MuTnDE55MYkn07yviTv7u4PDRIUAAAAAAAAAAAAAAAA2JI2TRlrWXd/MMkHk/yHobMAAAAAAAAAAAAAAAAA82Nh6AAAAAAAAAAAAAAAAAAAm4EyFgAAAAAAAAAAAAAAAMAqKGMBAAAAAAAAAAAAAAAArIIyFgAAAAAAAAAAAAAAAMAqLA4dYC2q6sQkD09y3ySnJjl+rXN095tnnQsAAAAAAAAAAAAAAADY+jZFGauq/lmS70vy6Kw/szIWAAAAAAAAAAAAAAAAsGajLmNV1QOS/EaSxyzvOsqpenJuzyIXAAAAAAAAAAAAAAAAMH9GW8aqqtOS/H6SB2d/kWq5VLXm6WYYDQAAAAAAAAAAAAAAAJhDoy1jJXlZkofkwBLWZ5L8XpIPJ9mT5M7B0gEAAAAAAAAAAAAAAABzZZRlrKraluT7s7+EdXeSFyZ5fXffPWQ2AAAAAAAAAAAAAAAAYD6NsoyV5PFJtmX/U7Fe0N2XDBsJAAAAAAAAAAAAAAAAmGcLQwdYwYMmr5Xk80leP2AWAAAAAAAAAAAAAAAAgNGWsU6fvHaSK7p735BhAAAAAAAAAAAAAAAAAMZaxvrC1HjvYCkAAAAAAAAAAAAAAAAAJsZaxrpuanz6ikcBAAAAAAAAAAAAAAAAbJCxlrHem+RvJ+PzhgwCAAAAAAAAAAAAAAAAkIy0jNXdtyZ5W5JKcr+qeuLAkQAAAAAAAAAAAAAAAIA5N8oy1sSLk3x+Mn5tVd1jyDAAAAAAAAAAAAAAAADAfBttGau7P5Xk4iR3JPnaJL9dVfceNhUAAAAAAAAAAAAAAAAwr0ZbxkqS7n5nkidl6QlZ35jko1X1qqp6XFWdPmw6AAAAAAAAAAAAAAAAYJ4sDh1gJVV198G7kpye5McnW6pqrdN2d4/27wwAAAAAAAAAAAAAAACM15iLSdNNq55sB+8HAAAAAAAAAAAAAAAA2BALQwc4gukC1vK2nnkAAAAAAAAAAAAAAAAAjsqYn4z1nihRAQAAAAAAAAAAAAAAACMx2jJWd184dAYAAAAAAAAAAAAAAACAZQtDBwAAAAAAAAAAAAAAAADYDJSxAAAAAAAAAAAAAAAAAFZBGQsAAAAAAAAAAAAAAABgFZSxAAAAAAAAAAAAAAAAAFZhcegAR6OqFpOcmeReSU5OUt39nmFTAQAAAAAAAAAAAAAAAFvZpiljVdU9k3xvkqcluSDJtqk/7hzi71JV5yZ5xOTtTd39jmOdEwAAAAAAAAAAAAAAANiaNkUZq6q+N8mrk5y6vGuVp56Q5E1ZKmvtq6oHdvenZ58QAAAAAAAAAAAAAAAA2OoWhg5wJFX1xiS/lOS0Q/xxH+7c7n5/kj/PUnlrIckzZh4QAAAAAAAAAAAAAAAAmAujLmNV1auTPDNLZaqevF6b5M1ZKmit5glZb5kaf8uMIwIAAAAAAAAAAAAAAABzYrRlrKr6e0lemKUSVif5QpLv7O6v6O5nJnn1Kqf6n8tTJnlsVS3OOisAAAAAAAAAAAAAAACw9Y22jJXklVkqUFWSPUke291vXesk3f3RJLdO3m5L8uCZJQQAAAAAAAAAAAAAAADmxijLWFV1UpInZ/9TsV7Q3f9nHVN+aGqsjAUAAAAAAAAAAAAAAACs2SjLWEken+T4LD0V66Ykv7LO+T47Nb7/OucCAAAAAAAAAAAAAAAA5tBYy1hnTV47yfu7e98657t5anzyOucCAAAAAAAAAAAAAAAA5tBYy1j3nhp/bgbzHT81Xm+xCwAAAAAAAAAAAAAAAJhDYy1jfXFqfM8ZzHefqfEXZjAfAAAAAAAAAAAAAAAAMGfGWsaafhrWOeuZqKoqySOndn12PfMBAAAAAAAAAAAAAAAA82msZayPTl4rycOr6ox1zPX1SU6dev/+dcwFAAAAAAAAAAAAAAAAzKlRlrG6+y+T3Jiks5TxB9Yx3Y9NjT/a3TesJxsAAAAAAAAAAAAAAAAwn0ZZxpp4W5aejFVJXlxVj1jrBFX1g0m+efK2k1w6u3gAAAAAAAAAAAAAAADAPBlzGetVSW7PUolqW5I/rKqnrObEqjqhql6e5JLJ+Ulyc5JfOAY5AQAAAAAAAAAAAAAAgDmwOHSAlXT39ZNC1c9kqVB1ryT/q6r+JMlvJPns9PFVdd8kD07ylCT/PMn2LD1VK5Pzn9fdt2xMegAAAAAAAAAAAAAAAGCrGW0ZK0m6+9VV9dAk/yJLhapK8g2TbVol+fRB7zN1zuu7+78d47gAAAAAAAAAAAAAAADAFrYwdIBVeFaSV2SpWLWsJltPbcv7ctCxL+vuH9qAnAAAAAAAAAAAAAAAAMAWNvoyVi95RZLHJXln9heukgMLWAfv+5MkT+jun9yQoAAAAAAAAAAAAAAAAMCWtjh0gNXq7iuSPLWqvjLJk5M8Psn2JGckOSHJjUluSPJnSf53d+8aKisAAAAAAAAAAAAAAACw9WyaMtay7v54kv882QAAAAAAAAAAAAAAAAA2xCjLWFX1hCQ/PLXrX3X3tUPlAQAAAAAAAAAAAAAAABhlGSvJo5J8W5JOco0iFgAAAAAAAAAAAAAAADC0haEDrOC4qfGHBksBAAAAAAAAAAAAAAAAMDHWMtYNU+O9g6UAAAAAAAAAAAAAAAAAmBhrGeuTU+N7D5YCAAAAAAAAAAAAAAAAYGKsZaw/TXJrkkrydVVVA+cBAAAAAAAAAAAAAAAA5twoy1jdfVuSd0zenpbkOwaMAwAAAAAAAAAAAAAAADDOMtbEi5PsnYxfW1VfPmQYAAAAAAAAAAAAAAAAYL6NtozV3dcn+Z4kdyTZnuQ9VfXYYVMBAAAAAAAAAAAAAAAA82px6AArqaoHJrkqycVJfjnJg5K8t6rel+R/JPnLJJ9Ncsta5u3ua2ccFQAAAAAAAAAAAAAAAJgDoy1jJfmbJD31vpNUksdNtqPRGfffGQAAAAAAAAAAAAAAABipzVBMquwvZfXUPgAAAAAAAAAAAAAAAIANsxnKWInyFQAAAAAAAAAAAAAAADCwMZexLh06AAAAAAAAAAAAAAAAAMCy0ZaxuvtZQ2cAAAAAAAAAAAAAAAAAWLYwdAAAAAAAAAAAAAAAAACAzUAZCwAAAAAAAAAAAAAAAGAVlLEAAAAAAAAAAAAAAAAAVkEZCwAAAAAAAAAAAAAAAGAVFocOcDSq6qwkX5nkXklOTlLd/eZhUwEAAAAAAAAAAAAAAABb2aYpY1XV2Ul+OMnTkpx9iEO+pIxVVU9I8sTJ2z3d/bpjlxAAAAAAAAAAAAAAAADYykZfxqqqhSQ/meRFSY5LUoc4rFc4/cYkL1/+86p6Z3d/7BjEBAAAAAAAAAAAAAAAALa4haEDHE5VHZ/k95L8eA5dHFuphLX0h90fTvJH2V/g+q6ZBgQAAAAAAAAAAAAAAADmxqjLWEnekOTJk3FnqVT13iSvTPKSHPopWQd729T4KTNNBwAAAAAAAAAAAAAAAMyN0ZaxqupJSb47+0tYH0vyqO7+hu5+eZL/vsqpfnd5yiRfV1XbZp0VAAAAAAAAAAAAAAAA2PpGW8ZK8rLJayW5Jslju/vKtU7S3dck2Tt5e3ySh8wmHgAAAAAAAAAAAAAAADBPRlnGqqp7JXlslp6K1Ul+qLtvXMeUH5oaf816sgEAAAAAAAAAAAAAAADzaZRlrCSPz1K2SvK57v7tdc43XeS67zrnAgAAAAAAAAAAAAAAAObQWMtYXz557SRXzmC+W6bGJ81gPgAAAAAAAAAAAAAAAGDOjLWMda+p8Z4ZzHePqfGdM5gPAAAAAAAAAAAAAAAAmDNjLWPdPDU+eQbz3W9q/IUZzAcAAAAAAAAAAAAAAADMmbGWsT43Nf7q9UxUVccleeTUrk+vZz4AAAAAAAAAAAAAAABgPo21jPXByWsleXBVnbWOub4lyZdNxp3k8vUEAwAAAAAAAAAAAAAAAObTKMtY3f3hJJ+cvK0kLziaeapqIcm/Xp42yV919971JwQAAAAAAAAAAAAAAADmzSjLWBP/ffJaSZ5bVd90FHP8dJJHT73/5XWnAgAAAAAAAAAAAAAAAObSmMtY/y7JzVl6otVxSd5RVd+3mhOr6t5V9aYkL5qcnySfSfLGY5ATAAAAAAAAAAAAAAAAmAOLQwdYSXd/oaqen+RNWSpUbUvyi1X1oiRvTfKp6eOr6lFJHpzkKUmeluSkLD1VK0nuTvKs7r5jY9IDAAAAAAAAAAAAAAAAW81oy1hJ0t1vrqqvSvKSLBWyKsmDkvzoQYdWkssOet9T57y4u9917BMDAAAAAAAAAAAAAAAAW9XC0AGOpLtfmuRZSW5b3jV5nS5cLZeuauqYSnJHkou7+zUbFhgAAAAAAAAAAAAAAADYkkZfxkqS7r40yUOT/EKWSlnLpavKgSWs5X37krw5yUO7+1c2MCoAAAAAAAAAAAAAAACwRS0OHWC1uvvaJM+tqh9N8vjJtj3JGUlOSHJjkhuS/FmSP+juvUNlBQAAAAAAAAAAAAAAALaeTVPGWtbdf5vkXZMNAAAAAAAAAAAAAAAAYEMMUsaqqj+cDDvJM7r7s0PkAAAAAAAAAAAAAAAAAFitoZ6MdWGWilhJsu1QByhsAQAAAAAAAAAAAAAAAGMyVBkrSSr7C1mHcmGOUNgCAAAAAAAAAAAAAAAA2CgLQwc4gho6AAAAAAAAAAAAAAAAAEAyXBnri1Pjew6UAQAAAAAAAAAAAAAAAGDVhipj3Tg1PnegDAAAAAAAAAAAAAAAAACrNlQZ66qp8U9U1f0HygEAAAAAAAAAAAAAAACwKosD/dx3JLloMn5wkk9U1eVJrk9y5yGOf01V3TqDn9vd/ewZzAMAAAAAAAAAAAAAAADMmaHKWL+e5MVJvmby/sQkX7/CsZXkO2bwMytJJ1HGAgAAAAAAAAAAAAAAANZsYYgf2t13JPm2JJ/I/pIUAAAAAAAAAAAAAAAAwGgNUsZKku7+aJJzk7wwyRVJ7shSMWt5m1Yz2AAAAAAAAAAAAAAAAACO2uKQP7y7b03ys0l+tqoWkpya5KQkxyX5+PJhSb4+yfWDhAQAAAAAAAAAAAAAAADIwGWsad29L8meyZaqSpaKWElyXXdfO1A0AAAAAAAAAAAAAAAAgCwMHeAIaugAAAAAAAAAAAAAAAAAAMmInox1CO/J/idj3TZkEAAAAAAAAAAAAAAAAIDRlrG6+8KhMwAAAAAAAAAAAAAAAAAsWxg6AAAAAAAAAAAAAAAAAMBmoIwFAAAAAAAAAAAAAAAAsAqLQwdYi6o6N8nTkjwhyYOS3CvJyUm6u7/k71JVpyU5ZfL29u6+YaOyAgAAAAAAAAAAAAAAAFvLpihjVdXDk/xckidO717FqU9M8tbJ+ItVdf/u/ttZ5wMAAJg3V12/N//limtz9Sdvzq133JWTTljMuQ84Jc+54IE576zTho4HwBbnPgQA88E9HwAADs93ZmAtXDPYKqxlAMagunvoDIdVVc9M8vNJtmWpgLUceHlcWXoy1nGHOHchyceSnD059pnd/SsbEHvLqqodSXYtv9+1a1d27NgxYCIAAGAjXXnd3jzv7bty+TV7VjzmMWefnksu2pnzt/uPnADMlvsQAMwH93wAADg835mBtXDNYKuwlgGYtnv37uzcuXN6187u3r1RP3/UZayq+o4kv5kDi1dJcm2SLyQ5d/L+kGWsyRz/NsmPTs7/re5++jENvcUpYwEAwPz6nQ/dkKdfemVuu2vfEY/dtriQt1x8fp76sPttQDIA5oH7EADMB/d8AAA4PN+ZgbVwzWCrsJYBONjQZayFjfpBa1VVX57k0snb5cbYLyR5UHefk+TbVznVO5anTPINMwsIAAAwR668bu+q/8Nmktx21748/dIrc+V1e49xMgDmgfsQAMwH93wAADg835mBtXDNYKuwlgEYo9GWsZK8NMmXZalEtS/Jd3b3c7v7E5M/X+0jvf48yZ2T8RlV9RWzjQkAALD1Pe/tu1b9HzaX3XbXvjz/7buOfCAAHIH7EADMB/d8AAA4PN+ZgbVwzWCrsJYBGKNRlrGq6rgkz8hS4aqTvLq733Y0c3X3XUk+MrXrIetPCAAAMD/+4rq9ufyaPUd17mXX7MlV1/ttUwAcPfchAJgP7vkAAHB4vjMDa+GawVZhLQMwVqMsYyV5dJJTsvRUrDuT/Lt1znf91Hj7OucCAACYK294/7XrO/+K62aUBIB55D4EAPPBPR8AAA7Pd2ZgLVwz2CqsZQDGaqxlrK+avHaSP+/um9c53/T5p6xzLgAAgLly9SfX93/Jrv7UTTNKAsA8ch8CgPngng8AAIfnOzOwFq4ZbBXWMgBjNdYy1n2mxrOoJO+bGi/OYD4AAIC5cesdd63r/FtuX9/5AMw39yEAmA/u+QAAcHi+MwNr4ZrBVmEtAzBWYy1j9dT4uBnMd6+p8d4ZzAcAADA3Tjphfb/T4uQT/U4MAI6e+xAAzAf3fAAAODzfmYG1cM1gq7CWARirsZaxPjc1PnMG8+2cGn9+BvMBAADMjXMfcMr6zj/z1BklAWAeuQ8BwHxwzwcAgMPznRlYC9cMtgprGYCxGmsZ69rJayV5ZFUdf7QTVdXXJHnA1K4PrCcYAADAvHnOBQ9c1/nPvmD7jJIAMI/chwBgPrjnAwDA4fnODKyFawZbhbUMwFiNtYx1WZK/S9JJ7pHkGeuY6/lT4xu6+6PrCQYAADBvzjvrtDz67NOP6tzHnH16zjvrtBknAmCeuA8BwHxwzwcAgMPznRlYC9cMtgprGYCxGmUZq7tvT/IHWXoyViV5VVWt+W5YVY9L8v1ZKnV1kt+aZU4AAIB58bqLdmbb4tr+L+S2xYVcctHOY5QIgHniPgQA88E9HwAADs93ZmAtXDPYKqxlAMZolGWsiVdNXjvJA5K8q6ruu9qTq+qJSX47S3/HSnJ3ktfMOiQAAMA8OH/7aXnLxeev+j9wbltcyFsuPj/nb/dbpgBYP/chAJgP7vkAAHB4vjMDa+GawVZhLQMwRqMtY3X3FUl+PUtFqk5yfpKPVNVPVNWDc4jsVXVcVT2pqn49ybuTnD51/n/s7r/ZqPwAAABbzVMfdr+897mPy2POPv2wxz3m7NPz3uc+Lk992P02KBkA88B9CADmg3s+AAAcnu/MwFq4ZrBVWMsAjE1199AZVlRV90jyp0kemaVC1XKxKknuSHLiZNxJ/jrJVyQ5fvn0qXPel+TC7r57Y5JvXVW1I8mu5fe7du3Kjh07BkwEAAAM4arr9+YNV1yXqz91U265/a6cfOJizj3z1Dz7gu057yy/XQqAY8t9CADmg3s+AAAcnu/MwFq4ZrBVWMsAJMnu3buzc+fO6V07u3v3Rv38UZexkqSq7p2lJ2R9Y/YXsWry2lPjadPHvSvJd3b3zccy57xQxgIAAAAAAAAAAAAAAGAoQ5exFjbqBx2t7r4xyTcl+bEkN+bAItby6/SWyTE3Jfk3Sb5VEQsAAAAAAAAAAAAAAABYr8WhA6xGLz2+699X1euSPCNL5azHJzkzBxbK9iT5syT/O8mvdPdNG50VAAAAAAAAAAAAAAAA2Jo2RRlrWXffluS/TrZUVSU5PckJST7f3XcOGA8AAAAAAAAAAAAAAADYwkZZxqqqr07yLVO7frO7P3PwcZMnZn1hw4IBAAAAAAAAAAAAAAAAc2uUZawk35zk5ybjPUl+ccAsAAAAAAAAAAAAAAAAAFkYOsAKTkpSk/FfdvedQ4YBAAAAAAAAAAAAAAAAGGsZ68ap8Q2DpQAAAAAAAAAAAAAAAACYGGsZ69NT41MGSwEAAAAAAAAAAAAAAAAwMdYy1hVJ7p6Mdw4ZBAAAAAAAAAAAAAAAACAZaRmruz+X5I+TVJKzq+r8YRMBAAAAAAAAAAAAAAAA826UZayJVybZNxn/XFUtDhkGAAAAAAAAAAAAAAAAmG+jLWN193uT/HSWno712CRvrarThk0FAAAAAAAAAAAAAAAAzKvRlrGSpLtfmuSHk9yd5B8m+UhVvaKqzvOkLAAAAAAAAAAAAAAAAGAjjbbQVFUfn3p7Z5ay3jfJSybb3VV1U5Jb1jBtd/eDZpcSAAAAAAAAAAAAAAAAmBejLWMlOSdJT71fHtfkdTHJGZNttfrIhwAAAAAAAAAAAAAAAAB8qTGXsVZytIWqOvIhAAAAAAAAAAAAAAAAAIc25jLWtfEkKwAAAAAAAAAAAAAAAGAkRlvG6u5zhs4AAAAAAAAAAAAAAAAAsGxh6AAAAAAAAAAAAAAAAAAAm4EyFgAAAAAAAAAAAAAAAMAqKGMBAAAAAAAAAAAAAAAArMLi0AGmVdXXJnlKkoclufdk941JPpzk97v7L4fKBgAAAAAAAAAAAAAAAMy3UZSxquq8JD+X5PGHOexnqup9SX6ku6/cmGQAAAAAAAAAAAAAAAAASxaGDlBV/yjJe7NUxKqp7f8fMrU9Psl7qurbNjonAAAAAAAAAAAAAAAAMN8GLWNV1UOS/FqSe2SpbNWTLTmwlNVT27Ykv1pVD93YtAAAAAAAAAAAAAAAAMA8Wxz45/9SlspV0wWsO5NcmeS6yfuzkvy9JCfkwELWf0ry9RucFwAAAAAAAAAAAAAAAJhTg5WxqmpnlspUnf1PxXptkp/u7j0HHXtakhcneeHU7sdV1SO6+wMbFBkAAAAAAAAAAAAAAACYYwsD/uzvmLwuF7Ge390vOriIlSTdvbe7fyzJD04dnyTfviFJAQAAAAAAAAAAAAAAgLk3ZBnr6yavneTy7v75I53Q3b+U5H1ZKmQlyaOOUTYAAAAA/h97d/dj13XWAfjdzig1wklsRJ0qseMKqqhkBjUyRo7VFqhUpFRYqgINFRLgi0QghaZ/AEiQXiFxmZZw01ZKJUDCQkYi5aMFqWolmlRumouZ3lSVcJyUpinY+QA5wc3iIrVybBLnPd7n7DVz3ueRrMzZOWv2evfaa++1j+c3BgAAAAAAAAAALtMzjPVzM18/Oke7L8x8/d4F9QUAAAAAAAAAAAAAAADgqnqGsfbOfP3kHO0uvXe44nsAAAAAAAAAAAAAAAAALE3PMNZNM1//5xztzs18fcOC+gIAAAAAAAAAAAAAAABwVT3DWLP7/tEc7Wbf27P/AAAAAAAAAAAAAAAAQCHCTAAAAAAAAAAAAAAAAAAJwlgAAAAAAAAAAAAAAAAACcJYAAAAAAAAAAAAAAAAAAlrnffffvzfu4ZheHeyzbtmXwzD8MGIGNI7bO2r2fcCAAAAAAAAAAAAAAAAXNI7jBXxepDqr0e0/coc72+xPWoGAAAAAAAAAAAAAAAAdpjtEExqMce/bDXT5pJ52wIAAAAAAAAAAAAAAADMbTuEsSIuD1ctq63QFgAAAAAAAAAAAAAAAHDNeoaxno5xISwAAAAAAAAAAAAAAACAyXQLY7XW3t1r3wAAAAAAAAAAAAAAAADz2tW7AwAAAAAAAAAAAAAAAAA7gTAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIw/wVkOQAAIABJREFUFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAwlrvDlQ1DMN1EfGeiLgjIm6JiJsi4pWIOBcR342I0621/+7XQwAAAAAAAAAAAAAAAGCWMNaEhmG4LSJ+PSI+HBEfjIgbr/L2Hw3D8OWI+Exr7YtT9A8AAAAAAAAAAAAAAAB4a8JYExmG4a8i4rfmaHJdRNwdEXcPw/BYRNzfWntuKZ0DAAAAAAAAAAAAAAAA3pYw1nRuf4vtz0bEdyLiuXh9PH4mIt4XEbtm3nM8Ir46DMMvt9a+v9ReAgAAAAAAAAAAAAAAAG9KGKuPb0XE5yPiH1tr373yfw7DcGtE/HFE/N7M5tsj4uQwDL/UWmvTdBMAAAAAAAAAAAAAAAC4ZNfbv4UFaRHxxYj4xdba4dbaZ94siBUR0Vp7trX2+xHxB1f8rw9ExMeX3E8AAAAAAAAAAAAAAADgTQhjTefe1trx1trpbIPW2iMR8bdXbP6dxXYLAAAAAAAAAAAAAAAAyFjr3YEqWmv/fo1N/zwifmPm9YfG9wYAAAAAAADYLp585nx89omn46lnX4yXX70Ye65fiztvvTHuP3pbHD6wd+X2C4xj7gIALIZ1FYxjDgFQ2dBa690HrmIYhr0Rce6Kzftaa+c79Wc9IjYvvd7c3Iz19fUeXQEAAAAAAIAd7fTZ8/Hgqc14/MyVfx34hmOH9sXD92zEkYOL+yGmXvsFxjF3AQAWw7oKxjGHANgOtra2YmNjY3bTRmtta6r9C2Ntc8Mw7ImIl67YfHNr7Qed+iOMBQAAAAAAACM99u3n4t5HT8eFi6+97Xt3r+2KkyeOxPE7bt6x+wXGMXcBABbDugrGMYcA2C56h7F2TbUjrtl7rnh9MSJ+2KMjAAAAAAAAwHinz55P/+BSRMSFi6/FvY+ejtNnz+/I/QLjmLsAAIthXQXjmEMA8AZhrO3vY1e8Pt1ay61iAAAAAAAAgG3nwVOb6R9cuuTCxdfik6c2d+R+gXHMXQCAxbCugnHMIQB4gzDWNjYMw56IuO+Kzad69AUAAAAAAAAY75tnz8fjZ85dU9uvnzkXTz5zbb9Nutd+gXHMXQCAxbCugnHMIQC43FrvDnBVfxoR75p5fT4iPruobz4Mw/6IeOeczX52UfsHAAAAAACAaj73jafHtX/ibBw+sHfH7BcYx9wFAFgM6yoYxxwCgMsJY21TwzDcExGfuGLzH7XW/muBu3kgIv5kgd8PAAAAAAAAuIqnnn1xXPvvvbCj9guMY+4CACyGdRWMYw4BwOV29e4A/98wDO+LiC9csflLEfEXHboDAAAAAAAALMjLr14c1f6lV66tfa/9AuOYuwAAi2FdBeOYQwBwOWGsbWYYhtsi4osRsWdm85mI+O3WWuvTKwAAAAAAAGAR9ly/Nqr9De+4tva99guMY+4CACyGdRWMYw4BwOWEsbaRYRj2R8SXI+LWmc3fj4hfba09v4RdPhIRG3P++egS+gEAAAAAAAAl3HnrjePa33LTjtovMI65CwCwGNZVMI45BACXE8baJoZh+KmI+JeIuH1m8w8j4sOtte8sY5+ttR+01rbm+RMR311GXwAAAAAAAKCC+4/eNqr9fUcP7qj9AuOYuwAAi2FdBeOYQwBwOWGsbWAYhpsi4ksR8fMzm8/F6/8i1lafXgEAAAAAAACLdvjA3rjr0L5ranvs0L44fGDvjtovMI65CwCwGNZVMI45BACXE8bqbBiGGyLinyLiF2Y2vxgRd7fWnurTKwAAAAAAAGBZPn3PRuxem++vanev7YqH79nYkfsFxjF3AQAWw7oKxjGHAOANwlgdDcPwkxHxDxFx18zmlyPiI621b/TpFQAAAAAAALBMRw7ujZMnjqR/gGn32q44eeJIHDk47rdI99ovMI65CwCwGNZVMI45BABvEMbqZBiGn4iIxyLiAzOb/ycifq219m99egUAAAAAAABM4fgdN8fXPvH+OHZo31Xfd+zQvvjaJ94fx++4eUfvFxjH3AUAWAzrKhjHHAKA1w2ttd59KGcYht0R8fcR8eGZzRci4nhr7V/79CpnGIb1iNi89HpzczPW19c79ggAAAAAAAB2tiefOR+fe+JsPPW9F+KlVy7GDe9YiztvuSnuO3owDh9Y3m+P7rVfYBxzFwBgMayrYBxzCICetra2YmNjY3bTRmtta6r9C2NNbBiG6yPi7yLiIzObX4mIj7bW/rlPr/KEsQAAAAAAAAAAAAAAAOildxhr11Q7ImIYhrWI+Ju4PIj1vxHxsZ0QxAIAAAAAAAAAAAAAAIDKhLEmMgzDdRHxlxHx0ZnNFyPi4621x/r0CgAAAAAAAAAAAAAAAMha692BQj4fEb95xbY/jIhvDcPw7jm/1/dbaxcW0SkAAAAAAAAAAAAAAAAgRxhrOr/7Jtv+7Md/5vWhiPjKqN4AAAAAAAAAAAAAAAAAc9nVuwMAAAAAAAAAAAAAAAAAO4EwFgAAAAAAAAAAAAAAAEDCWu8OVNFaG3r3AQAAAAAAAAAAAAAAALh2/mUsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgIS13h0AYPU8+cz5+OwTT8dTz74YL796MfZcvxZ33npj3H/0tjh8YG/v7gHASql2361Wby89jnOvsXVOrbZq41utXpav2jlVrd5Kqo2tddU0HGdgHtXmbrV6YVVUm7uVPgPtpVq9TMOzGDAP1wwAYJmG1lrvPrCDDMOwHhGbl15vbm7G+vp6xx4B28nps+fjwVOb8fiZc2/5nmOH9sXD92zEkYMeLAFgjGr33Wr19tLjOPcaW+fUaqs2vtXqZfmqnVPV6q2k2thaV03DcQbmUW3uVqsXVkW1uVvpM9BeqtXLNDyLAfNwzQCAGra2tmJjY2N200ZrbWuq/QtjMRdhLOCtPPbt5+LeR0/HhYuvve17d6/tipMnjsTxO26eoGcAsHqq3Xer1dtLj+Pca2ydU6ut2vhWq5flq3ZOVau3kmpja101DccZmEe1uVutXlgV1eZupc9Ae6lWL9PwLAbMwzUDAOroHcbaNdWOAFhdp8+eTz9MRkRcuPha3Pvo6Th99vySewYAq6fafbdavb30OM69xtY5tdqqjW+1elm+audUtXorqTa21lXTcJyBeVSbu9XqhVVRbe5W+gy0l2r1Mg3PYsA8XDMAgCkJYwEw2oOnNtMPk5dcuPhafPLU5tu/EQC4TLX7brV6e+lxnHuNrXNqtVUb32r1snzVzqlq9VZSbWytq6bhOAPzqDZ3q9ULq6La3K30GWgv1eplGp7FgHm4ZgAAUxLGAmCUb549H4+fOXdNbb9+5lw8+Yzf8AEAWdXuu9Xq7aXHce41ts6p1VZtfKvVy/JVO6eq1VtJtbG1rpqG4wzMo9rcrVYvrIpqc7fSZ6C9VKuXaXgWA+bhmgEATE0YC4BRPveNp8e1f+LsgnoCAKuv2n23Wr299DjOvcbWObXaqo1vtXpZvmrnVLV6K6k2ttZV03CcgXlUm7vV6oVVUW3uVvoMtJdq9TINz2LAPFwzAICpCWMBMMpTz744rv33XlhQTwBg9VW771art5cex7nX2DqnVlu18a1WL8tX7ZyqVm8l1cbWumoajjMwj2pzt1q9sCqqzd1Kn4H2Uq1epuFZDJiHawYAMDVhLABGefnVi6Pav/TKuPYAUEm1+261envpcZx7ja1zarVVG99q9bJ81c6pavVWUm1sraum4TgD86g2d6vVC6ui2tyt9BloL9XqZRqexYB5uGYAAFMTxgJglD3Xr41qf8M7xrUHgEqq3Xer1dtLj+Pca2ydU6ut2vhWq5flq3ZOVau3kmpja101DccZmEe1uVutXlgV1eZupc9Ae6lWL9PwLAbMwzUDAJiaMBYAo9x5643j2t9y04J6AgCrr9p9t1q9vfQ4zr3G1jm12qqNb7V6Wb5q51S1eiupNrbWVdNwnIF5VJu71eqFVVFt7lb6DLSXavUyDc9iwDxcMwCAqQljATDK/UdvG9X+vqMHF9QTAFh91e671ertpcdx7jW2zqnVVm18q9XL8lU7p6rVW0m1sbWumobjDMyj2tytVi+simpzt9JnoL1Uq5dpeBYD5uGaAQBMTRgLgFEOH9gbdx3ad01tjx3aF4cP7F1wjwBgdVW771art5cex7nX2DqnVlu18a1WL8tX7ZyqVm8l1cbWumoajjMwj2pzt1q9sCqqzd1Kn4H2Uq1epuFZDJiHawYAMDVhLABG+/Q9G7F7bb5byu61XfHwPRtL6hEArK5q991q9fbS4zj3Glvn1GqrNr7V6mX5qp1T1eqtpNrYWldNw3EG5lFt7larF1ZFtblb6TPQXqrVyzQ8iwHzcM0AAKYkjAXAaEcO7o2TJ46kHyp3r+2KkyeOxJGDfrMHAMyr2n23Wr299DjOvcbWObXaqo1vtXpZvmrnVLV6K6k2ttZV03CcgXlUm7vV6oVVUW3uVvoMtJdq9TINz2LAPFwzAIApXffQQw/17gM7yKc+9an9EfHApdcPPPBA7N+/v2OPgO3i9nfuibvfuz82/+OleOaFC2/5vmOH9sXJE0fiV97z0xP2DgBWS7X7brV6e+lxnHuNrXNqtVUb32r1snzVzqlq9VZSbWytq6bhOAPzqDZ3q9ULq6La3K30GWgv1eplGp7FgHm4ZgBAHc8//3w88sgjs5seeeihh56fav9Da22qfbEChmFYj4jNS683Nzdjff3/2Lu7WEuvsg7gzxoOtNAp/VAHLC2F8hHhnItmGFJLTCTxgmqM2oQC8aZNSmJsRBMv1JgIM9FEvTKCqV7QCDcqaWMhMcGYcGGIlkotTTwHjXyWKZ8FOqUFShlZXtBJNpuZzrNn773Wfvf6/ZK52O+c9zzrefZ6194Q/sxuxxUBm+jBR07FXfefjIe+9Hg88b3TcelFO3H9VZfF7TdcE0ev9v/oAQCrNNrn7mj99tJjzr3eW3tqu432/o7WL+s32p4ard+RjPbe+l7VhjkDixjt2R2tX9gWoz27I/13oL2M1i9t+M9iwCKcGQCw3Q4ODmJvb2/20l6t9aBVfWEsFiKMBQAAAAAAAAAAAAAAQC+9w1iHWhUCAAAAAAAAAAAAAAAAmDJhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAADPZp/SAAAgAElEQVQAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACABGEsAAAAAAAAAAAAAAAAgARhLAAAAAAAAAAAAAAAAIAEYSwAAAAAAAAAAAAAAACAhJ3eCyCilPLyiLg+Iq6KiMMR8eWIeDgi/r3W+v2eawMAAAAAAAAAAAAAAAB+SBiro1LKmyPidyPixnP8yDdLKR+IiHfWWr/ebmUAAAAAAAAAAAAAAADAvEO9FzCiUsrhUsrfR8Tdce4gVkTElRHxmxGxX0p5U5PFAQAAAAAAAAAAAAAAAGcljNVYKeU5EfGBiHjb3F89GhH/Ej8MaD0YEXXm714UER8qpfxck0UCAAAAAAAAAAAAAAAAP0YYq70/i4hfmnn9/Yh4R0RcXWt9U631LbXW10XEXkTcN/NzF0XEB0spP91uqQAAAAAAAAAAAAAAAMAZwlgNlVKui4jfmbt8S631r2qtT89erLV+MiJ+IX40kPUTEfGu9a4SAAAAAAAAAAAAAAAAOBthrLbeFRHPnXn9vlrrh871w7XW70bEbRExG9S6/ZlQFwAAAAAAAAAAAAAAANDQTu8FjKKU8vyIePPc5T8/33211v8tpXwwIt7yzKWdiPj1iPiT1a4Q2nrwkVPx3vu/EA998Vvx5NOn4/DzduL6l7ww3n7DS+Po1ZerO/G6vYw25x51R+pVXXXVnWbNEevShn3Fqo22p0bby/rd3n49Q23od7v31Ujv70i99mTObYw055F67cnnUBuj9duDGbMO9hUwBc6q9fOdebuZM8DmcTYDiyq11t5rGEIp5dci4t6ZS/fVWt+QvPemiPjwzKVP1FqPrnJ9WaWU3YjYP/N6f38/dnd3eyyFiXrg5Kl4x7378bGHHzvnz9x47RXx7pv34tg1q/vyom6bur2MNucedUfqVV111Z1mzRHr0oZ9xaqNtqdG28v6/XHb0q9nqA39/rht2lcjvb8j9dqTObcx0pxH6rUnn0NtjNZvD2bMOthXwBQ4q9bPd+btZs4Am8fZDNN1cHAQe3t7s5f2aq0HreoLYzVSSvmbiPiNmUt/Wmv9w+S9l0TEqfjRf8nsxbXWr65wiSnCWCzjnz751bjl/Q/EU6d/cN6fvXjnUNx967H45de+SN2J1O1ltDn3qDtSr+qqq64zYyp1acO+YtVG21Oj7WX9ntvU+/UMtaHfc9uGfTXS+ztSrz2ZcxsjzXmkXnvyOdTGaP32YMasg30FTIGzav18Z95u5gyweZzNMG29w1iHWhUi9uZe35e9sdb67Yj4r7nLElBMygMnT6W/sEREPHX6B3HL+x+IB06eUncCdXsZbc496o7Uq7rqquvMmEpd2rCvWLXR9tRoe1m/z27K/XqG2tDvs5v6vhrp/R2p157MuY2R5jxSrz35HGpjtH57MGPWwb4CpsBZtX6+M283cwbYPM5mYFnCWO28Zu71pxe8/zNzr1+7xFqguXfcu5/+wnLGU6d/EL997/75f1Dd7nV7GW3OPeqO1Ku66qrrzJhKXdqwr1i10fbUaHtZv+c31X49Q23o9/ymvK9Gen9H6rUnc25jpDmP1GtPPofaGK3fHsyYdbCvgClwVq2f78zbzZwBNo+zGViWMFYDpZQrI+LKuctfWPDXzP/8qy58RdDWf548FR97+LELuve+hx+LBx+5sBS5um3q9jLanHvUHalXddVVd/m6I/Xasy5t2Fes2mh7arS9rN+8qfXrGWpDv3lT3Fcjvb8j9dqTObcx0pxH6rUnn0NtjNZvD2bMOthXwBQ4q9bPd+btZs4Am8fZDKyCMFYbl8+9/k6t9dsL/o6vzb2+bIn1REREKeVIKWV3kT8R8Ypl6zKeu/5j0ezh3P33n1R3g+v2Mtqce9QdqVd11VV3+boj9dqzLm3YV6zaaHtqtL2s3wXvn1C/nqE29Lvg/RPbVyO9vyP12pM5tzHSnEfqtSefQ22M1m8PZsw62FfAFDir1s935u1mzgCbx9kMrMJO7wUM4vDc6+9ewO+Yv+fSC1zLrDsi4l0r+D3wrB764reWu/9Lj6u7wXV7GW3OPeqO1Ku66qq7fN2Reu1ZlzbsK1ZttD012l7W74L3T6hfz1Ab+l3w/ontq5He35F67cmc2xhpziP12pPPoTZG67cHM2Yd7CtgCpxV6+c783YzZ4DN42wGVsG/jNXGfBjrqQv4HfNhrPnfCRvryadPL3X/E9+7sPvVbVO3l9Hm3KPuSL2qq666y9cdqdeedWnDvmLVRttTo+1l/S5mSv16htrQ72Kmtq9Gen9H6rUnc25jpDmP1GtPPofaGK3fHsyYdbCvgClwVq2f78zbzZwBNo+zGVgFYaw+aqN7YCMcft5y/wjfpRdd2P3qtqnby2hz7lF3pF7VVVfd5euO1GvPurRhX7Fqo+2p0fayfhczpX49Q23odzFT21cjvb8j9dqTObcx0pxH6rUnn0NtjNZvD2bMOthXwBQ4q9bPd+btZs4Am8fZDKyCMFYbT869fv4F/I75e+Z/54W4MyL2Fvzzqyuoy2Cuf8kLl7v/qsvU3eC6vYw25x51R+pVXXXVXb7uSL32rEsb9hWrNtqeGm0v63fB+yfUr2eoDf0ueP/E9tVI7+9IvfZkzm2MNOeReu3J51Abo/XbgxmzDvYVMAXOqvXznXm7mTPA5nE2A6sgjNXGRoaxaq1fq7UeLPInIj6zbF3G8/YbXrrU/bffcI26G1y3l9Hm3KPuSL2qq666y9cdqdeedWnDvmLVRttTo+1l/S5mSv16htrQ72Kmtq9Gen9H6rUnc25jpDmP1GtPPofaGK3fHsyYdbCvgClwVq2f78zbzZwBNo+zGVgFYaw2Hp97/YJSyiUL/o4jc69PLbEeaOro1ZfHz157xQXde+O1V8TRqy9Xd4Pr9jLanHvUHalXddVVd/m6I/Xasy5t2Fes2mh7arS9rN+8qfXrGWpDv3lT3Fcjvb8j9dqTObcx0pxH6rUnn0NtjNZvD2bMOthXwBQ4q9bPd+btZs4Am8fZDKyCMFYDtdZvRMRjc5cXjdReO/f6Uxe+ImjvPTfvxcU7ix05F+8cinffvKfuBOr2Mtqce9QdqVd11VXXmTGVurRhX7Fqo+2p0fayfs9vqv16htrQ7/lNeV+N9P6O1GtP5tzGSHMeqdeefA61MVq/PZgx62BfAVPgrFo/35m3mzkDbB5nM7AsYax2/nvu9SsXvP+68/w+2GjHrrk87r71WPqLy8U7h+LuW4/FsWuWS4+r26ZuL6PNuUfdkXpVV111nRlTqUsb9hWrNtqeGm0v6/fZTblfz1Ab+n12U99XI72/I/Xakzm3MdKcR+q1J59DbYzWbw9mzDrYV8AUOKvWz3fm7WbOAJvH2Qws6znHjx/vvYYhnDhx4oaIeN3Mpc8fP378I5l7SymXRMRfxI+G537v+PHj317hElNOnDhxJCLuOPP6jjvuiCNHjrReBhP16p86HDf9zJHY//IT8cjjT53z52689oq4+9Zj8cZX/qS6E6rby2hz7lF3pF7VVVddZ8ZU6tKGfcWqjbanRtvL+j27bejXM9SGfs9uW/bVSO/vSL32ZM5tjDTnkXrtyedQG6P124MZsw72FTAFzqr18515u5kzwOZxNsO0Pfroo3HnnXfOXrrz+PHjj7aqX2qtrWoNrZRyc0T848yl+2qtb0jee1NEfHjm0idqrUdXub6sUspuROyfeb2/vx+7u7s9lsLEPfjIqbjr/pPx0Jcejye+dzouvWgnrr/qsrj9hmvi6NXrS42r26ZuL6PNuUfdkXpVV111p1lzxLq0YV+xaqPtqdH2sn63t1/PUBv63e59NdL7O1KvPZlzGyPNeaRee/I51MZo/fZgxqyDfQVMgbNq/Xxn3m7mDLB5nM0wPQcHB7G3tzd7aa/WetCqvjBWI6WUF0TE1yPi+TOXX1Nr/Z/Evf8QEW+dufTOWusfr3iJKcJYAAAAAAAAAAAAAAAA9NI7jHWoVaHR1Vq/ExH3zF3+/fPdV0p5dUTcPHPpdET83QqXBgAAAAAAAAAAAAAAACQIY7V1PCK+P/P6tlLKr5zrh0spF0fE30bE82Yu31Vr/cx6lgcAAAAAAAAAAAAAAACcizBWQ7XWz0bEX85dvqeU8lullNnAVZRSXhMRH4mIN8xc/kZEnFjvKgEAAAAAAAAAAAAAAICz2em9gAH9QUTsRsQvPvP6uRHxnoj4o1LKgxHxRERcFxFHI6LM3Pd0RNxca/1yw7UCAAAAAAAAAAAAAAAAzxDGaqzW+n+llLdExHsj4q0zf3UkIm46x21fi4hba60fXff6AAAAAAAAAAAAAAAAgLM71HsBI6q1PllrfVtE3BIRH3uWH/1mRPx1ROzVWv+5yeIAAAAAAAAAAAAAAACAs/IvY3VUa70nIu4ppbw8Io5GxFURcUlEfCUiHo6If6u1Pt1xiQAAAAAAAAAAAAAAAMAzhLE2QK31cxHxud7rAAAAAAAAAAAAAAAAAM7tUO8FAAAAAAAAAAAAAAAAAEyBMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAECCMBYAAAAAAAAAAAAAAABAgjAWAAAAAAAAAAAAAAAAQIIwFgAAAAAAAAAAAAAAAEDCTu8FAAAAAAAAAADAGe/71Mfj809+M/3zLzt8Zdz2qtevcUUwLZ4hYAqcVbAczxBMV4/nt9eZ4aximwljAQAAAAAAAACwMd736Y/Hv37ls+mf//kXX+d/rAUzPEPAFDirYDmeIZiuHs9vrzPDWcU2O9R7AQAAAAAAAAAAAAAAAABTIIwFAAAAAAAAAAAAAAAAkCCMBQAAAAAAAAAAAAAAAJAgjAUAAAAAAAAAAAAAAACQIIwFAAAAAAAAAAAAAAAAkCCMBQAAAAAAAAAAAAAAAJAgjAUAAAAAAAAAAAAAAACQIIwFAAAAAAAAAAAAAAAAkCCMBQAAAAAAAAAAAAAAAJAgjAUAAAAAAAAAAAAAAACQIIwFAAAAAAAAAAAAAAAAkCCMBQAAAAAAAAAAAAAAAJAgjAUAAAAAAAAAAAAAAACQIIwFAAAAAAAAAAAAAAAAkCCMBQAAAAAAAAAAAAAAAJAgjAUAAAAAAAAAAAAAAACQIIwFAAAAAAAAAAAAAAAAkCCMBQAAAAAAAAAAAAAAAJAgjAUAAAAAAAAAAAAAAACQIIwFAAAAAAAAAAAAAAAAkCCMBQAAAAAAAAAAAAAAAJAgjAUAAAAAAAAAAAAAAACQIIwFAAAAAAAAAAAAAAAAkLDTewEAAAAAAAAAAHDGba98fbzxxa9I//zLDl+5xtXA9HiGgClwVsFyPEMwXT2e315nhrOKbVZqrb3XwISUUnYjYv/M6/39/djd3e24IgAAAAAAAAAAAAAAAEZxcHAQe3t7s5f2aq0HreofalUIAAAAAAAAAAAAAAAAYMqEsQAAAAAAAAAAAAAAAAAShLEAAAAAAAAAAAAAAAAAEoSxAAAAAAAAAAAAAAAAABKEsQAAAAAAAAAAAAAAAAAShLEAAAAAAAAAAAAAAAAAEoSxAAAAAAAAAAAAAAAAABKEsQAAAAAAAAAAAAAAAAAShLEAAAAAAAAAAAAAAAAAEoSxAAAAAAAAAAAAAAAAABKEsQAAAAAAAAAAAAAAAAAShLEAAAAAAAAAAAAAAAAAEoSxAAAAAAAAAAAAAAAAABKEsQAAAAAAAAAAAAAAAAAShLEAAAAAAAAAAAAAAAAAEoSxAAAAAAAAAAAAAAAAABKEsQAAAAAAAAAAAAAAAAAShLEAAAAAAAAAAAAAAAAAEoSxAAAAAAAAAAAAAAAAABKEsQAAAAAAAAAAAAAAAAAShLEAAAAAAAAAAAAAAAAAEoSxAAAAAAAAAAAAAAAAABKEsQAAAAAAAAAAAAAAAAAShLEAAAAAAAAAAAAAAAAAEoSxAAAAAAAAAAAAAAAAABKEsQAAAAAAAAAAAAAAAAAShLEAAAAAAAAAAAAAAAAAEoSxAAAAAAAAAAAAAAAAABKEsQAAAAAAAAAAAAAAAAAShLEAAAAAAAAAAAAAAAAAEoSxAAAAAAAAAAAAAAAAABKEsQAAAAAAAAAAAAAAAAAShLEAAAAAAAAAAAAAAAAAEoSxAAAAAAAAAAAAAAAAABKEsQAAAAAAAAAAAAAAAAAShLEAAAAAAAAAAAAAAAAAEoSxAAAAAAAAAAAAAAAAABKEsQAAAAAAAAAAAAAAAAAShLEAAAAAAAAAAAAAAAAAEoSxAAAAAAAAAAAAAAAAABKEsQAAAAAAAAAAAOD/2bvzMEur8l7Yv6eZQWVwQiWKCEaME844fIISoxlEjcZEPcfhaPziMUcTTcws5sQ4JJpjcoyZQRPH4BRnI8ZZEwecMYoKKgYERBBEJp/zx94tu16qut/dXUNX1X1fV11da+213rWqd/fVT+/9/vYCAACAEYSxAAAAAAAAAAAAAAAAAEYQxgIAAAAAAAAAAAAAAAAYQRgLAAAAAAAAAAAAAAAAYARhLAAAAAAAAAAAAAAAAIARhLEAAAAAAAAAAAAAAAAARhDGAgAAAAAAAAAAAAAAABhBGAsAAAAAAAAAAAAAAABgBGEsAAAAAAAAAAAAAAAAgBGEsQAAAAAAAAAAAAAAAABGEMYCAAAAAAAAAAAAAAAAGEEYCwAAAAAAAAAAAAAAAGAEYSwAAAAAAAAAAAAAAACAEYSxAAAAAAAAAAAAAAAAAEYQxgIAAAAAAAAAAAAAAAAYYfe13gDrzp6zjdNPP32t9gEAAAAAAAAAAAAAAMAms0iWZc/Fxq2U6u7VXI91rqoelORNa70PAAAAAAAAAAAAAAAASHJ8d//Lai22ZbUWAgAAAAAAAAAAAAAAAFjPhLEAAAAAAAAAAAAAAAAARqjuXus9sI5U1f5J7jPT9Y0kl6/Rdlj/bpHkTTPt45N8ZY32AgCwnqmrAACWh7oKAGB5qKsAAHaemgoAYHmoqzamPZP82Ez7fd194WotvvtqLcTGMP3D+S9rvQ82hqoadn2luz+/FnsBAFjP1FUAAMtDXQUAsDzUVQAAO09NBQCwPNRVG9qpa7XwlrVaGAAAAAAAAAAAAAAAAGA9EcYCAAAAAAAAAAAAAAAAGEEYCwAAAAAAAAAAAAAAAGAEYSwAAAAAAAAAAAAAAACAEYSxAAAAAAAAAAAAAAAAAEYQxgIAAAAAAAAAAAAAAAAYQRgLAAAAAAAAAAAAAAAAYARhLAAAAAAAAAAAAAAAAIARhLEAAAAAAAAAAAAAAAAARhDGAgAAAAAAAAAAAAAAABhBGAsAAAAAAAAAAAAAAABghN3XegPApnZukmcP2gAAzE9dBQCwPNRVAADLQ10FALDz1FQAAMtDXcWyq+5e6z0AAAAAAAAAAAAAAAAA7PK2rPUGAAAAAAAAAAAAAAAAANYDYSwAAAAAAAAAAAAAAACAEYSxAAAAAAAAAAAAAAAAAEYQxgIAAAAAAAAAAAAAAAAYQRgLAAAAAAAAAAAAAAAAYARhLAAAAAAAAAAAAAAAAIARhLEAAAAAAAAAAAAAAAAARhDGAgAAAAAAAAAAAAAAABhBGAsAAAAAAAAAAAAAAABgBGEsAAAAAAAAAAAAAAAAgBGEsQAAAAAAAAAAAAAAAABGEMYCAAAAAAAAAAAAAAAAGGH3td4AsHlV1c2T3CHJjZNcK8l/JTkzyYe7+4q13BsAwGqpqt2SHJ7k1pnURfsnuSzJBUm+kuTj3X3JMq+5R5J7JrlpkhsluTjJt5Kc2t1nLOdaAAAbkXoKANhsqupWSW6f5JAk+yT5QZJvJzk9yad35vUrtRUAsNFV1T6Z3CN1ZJIDk+yd5KJM6qlPJjm9u3sZ1lFXAQDMWM36yH3xm08tQw0PMJeqeliSX09y9BJDvpPkNUn+oLvPW7WNAQCskqq6aZKHJjkuyb2TXGcbw69K8q9J/m93v3Un171+kmcneUSSg5YY9uEkL+ru1+3MWgAAu4qqenUm9c+sM7v70B24lnoKANg0quqAJE9N8vhMblhZylVJPpXk5O5+3hzXV1sBABtaVR2d5GlJHpxkz20MPSvJ3yd5cXd/ZwfWUVcBAOtCVR2W5C5J7jz99Y5Jrj0zZIfew1tknVWrj9wXv3kJYwGrpqquleRvk/ziyCnnJHlMd79z5XYFALC6quqVSX5pB6e/JckTuvucHVj3gUlOSnKDkVNekeRJy30qFwDAaqqqByV50yIPzf1GjnoKANhMqurhSV6a5LpzTDunuw8eeX21FQCwYVXV7kn+T5InJ6k5pp6T5LHd/Y451lJXAQC7tKo6JslvZxLAWioYtdVOh7FWqz5yXzzCWMCqqKrdkvxLkp8ePHRuklOTXJjkFkmOysIXIS5Lclx3f3A19gkAsNKq6uNJ7rTIQ2cl+XIm//HePclhSW6fZMtg3JeS3Ke7z55jzWOSvDMLP3Gvk3wyyVeTHJBJHXa9wdQ3J3lwd/9w7FoAALuK6UkOn09y40UenuuNHPUUALCZVNWzkpywyENfz+S1qXOT7J3kRklum2S/6eOjwlhqKwBgI6uqSvLaJA9b5OEvJjktyaVJrp/JDckHDsZcnuT4MYEsdRUAsB5U1dOS/NnI4TsVxlqt+sh98STXvKkPYKU8Lwv/wbkiya8mOaS7f6q7f6G775TkNkk+MjNuryRvrKobrd5WAQBWzamZ1ESHd/ch3X1sd/9idz+su++Y5KZJ/mYw55ZJ/nn6Rs52VdUhSV6fhS8yfCjJT3T3nad12P2THJLkqZnUaVv9XJI/2qGfDABg7b0wVwexvrejF1FPAQCbSVU9PdcMYr0qye26+2bd/ZPd/cjufmh3H53kOknulckNNeePuL7aCgDY6J6Qawax3p/ktt195LSOetS05rlBksdncrPuVnsmeVlV7b+tRdRVAMAGcFmSryzXxVa5PnJfPE7GAlZeVR2WySe77DHT/eDuftMS4/dJckqSo2e6/7q7//+V2yUAwOqoqo9lcvrVCd398ZFznpzkJYPuX+ruV4+Y+/eZvImz1YeT3K+7f7DE+AcnecNM12VJfry7zxyzVwCAXUFVHZfkX6fNK5P8RhZ+4t7oT9VTTwEAm0VV3T7JxzM5tT2Z3ETyyO4+eeT83bv7yu2MUVsBABtaVX0tyaEzXe/P5PSDKxafkVTVnZN8MJObc7f6re5+/jbmqKsAgHVhejLWC5J8Pmow9LgAACAASURBVJPXnj42/fWzSe6Z5N9mhu/wyVirVR+5L56thLGAFVdVL0vy32e6Turux21nzi0z+Ud2azr5ykz+gfvqyuwSAGB1VNWh3X3GDsw7OcnPz3S9rbt/ZjtzjkhyWpLdpl2XJ7lNd395O/NOSvKYma4Tu/vxSwwHANilVNV+ST6Xq296eUGSt2cH3shRTwEAm0VV7Z7k35Pccab78d194jKuobYCADa0qrptks8Muu/Q3Z8eMfcvkjxlputD3X2vJcaqqwCAdaOqDkxy6WKhqKo6JssQxlrN+sh98Wy1Za03AGxs0zTv8OjtJT+1Zavu/lKSN8507Z7kkcu4NQCANbEjQayp4clYx46Y88hc/SJDkrx+ey8yTA3rtV+oqr1HzAMA2BU8N1cHsb6a5ISduJZ6CgDYLB6ehUGsU5YziDWltgIANrrDBu1vjAliTQ1PUjhiG2PVVQDAutHdFyx1OtUyWpX6yH3xzBLGAlbaTyXZd6b9ke7+4si5wzd4Hro8WwIAWJdOHbT3qaoDtjPnIYP2qBtouvu0TD4Jeav9ktx/zFwAgLVUVfdI8j9nup7U3ZfuxCXVUwDAZvGkQfuPV2ANtRUAsNHtN2h/c4653xi0D9zGWHUVAMBCq1UfuS+eHxHGAlbaAwbt984x9wOZHMO41VFVdcOd3hEAwPp05SJ9ey7SlySpqoOT3H4w/0NzrPfeQfuBc8wFAFh1VbVXkn/I1a97v6y7370T11NPAQCbQlUdnuQ+M11nJPm3ZV5DbQUAbAZnD9rznDo1HPudxQapqwAAFlrl+sh98fyIMBaw0m4zaH9k7MTuviTJZwfdP7HTOwIAWJ8OH7SvTHLeNsYP67DPTOursT48aKvDAIBd3QlJfnz6/blJnr6T11NPAQCbxbGD9ind3cu8htoKANgMPpbkspn2kVW1z8i5d1rkWotRVwEALLSa9ZH74vkRYSxgpR05aJ8+5/yvDNq33om9AACsZw8btD/e3T/cxvhh3aQOAwA2rKq6Y5JnzHQ9rbvP38nLqqcAgM3iroP2R5KkJo6rqhOr6gtVdWFVXVJVZ1bVu6vqt6rq0JFrqK0AgA2vu7+X5OUzXXsn+R/bm1dVuyV5yqD7ZUsMV1cBACy0mvWR++L5EWEsYMVU1UFJDhp0f33OywzHH7HjOwIAWJ+q6lq55hs1b9jOtOFJWvPWYWcO2tetqgPnvAYAwIqrqt2T/EOS3add7+juVy7DpdVTAMBmcedB+7RpyOrdSf41yWMzudHkOkn2TXLTJPdL8twkX6qql1TVvttZQ20FAGwWv5XkjJn2C6rquKUGV9UeSf4myVEz3e9J8rolpqirAAAWWpX6yH3xDAljASvpgEH7+3Me+5gk3x6099+J/QAArFfPTXLwTPu7Sf5uO3OGtdiwrtqm7r44yQ8G3WoxAGBX9FtJbj/9/pIkv7JM11VPAQCbxY0G7X2TfCzJfUfM3SPJk5N8sKqG15mltgIANoXu/k6SY5OcOu3aJ8k7q+o1VfXwqrptVR1eVXevql9L8tkkj5+5xH8keVh39xJLqKsAABZarfrIffEssPv2hwDssGsN2pfuwDWGc669g3sBAFiXquohSZ4y6P7d6Rs527JctdjeM221GACwS6mqWyf5vZmu3+/uM5bp8uopAGCzGN5IcmKS602/vyTJXyV5e5JvJtkvkyD845Pca2bOUUleV1X36e4rFllDbQUAbBrdfUZV3S2TE0Z/OcmdkvzC9Gsp5yd5UZI/WaKe2kpdBQCw0GrVR+6LZwEnYwErafiPzjA1PMbwH53hNQEANqyqun2Slw+635XkpSOmq8UAgA2tqrYk+fske027PpHkz5dxCfUUALDhVdVeubqe2uqQ6a9fSHJkdz+ju0/p7v/s7k9294ndfe8kzxjMOzrJM5dYSm0FAGw2u02/Lkuy1ClXW30jk9rqRdsJYiXqKgCAodWqj9RhLCCMBaym7b2wsFxzAADWvaq6aZK3ZuF/us9M8ujuXq26Si0GAOzKnprk7tPvr0zyhO6+agXXU08BABvRbkv0X5jkAd39jaUmdvcLk/zZoPvXqmrMTSRqKwBgw6qqeyY5LZMPWLxntn+f5o9lcjrp16vqCXMup64CAFhoV76vSh22gQhjASvp4kF7nx24xnDO8JoAABtOVd0gyb8muclM99lJfrK7zx15GbUYALBhVdVhSf5oputF3f2pZV5GPQUAbHjd/f0kP1zkoRdtK4g14/czCW5tdVCSBy4yTm0FAGwKVXW/JO9OcuhM91lJfivJUUkOSLJnkoOTPCDJyzL5oKEkuX6Sv62qv6mqWmIJdRUAwEKrVR+pw1hAGAtYSf7RAQCYU1UdlMkbNLec6T4vyXHd/eU5LqUWAwA2pOmNKH+bZN9p11eTnLACS6mnAIDN4pJF+l4+ZmJ3X5Lk9YPuYxYZqrYCADa8qrp+klcl2Xum+81Jbt3dz+/uT3X3hd19RXef093v7O7HJrl3kvNn5jwxyW8usYy6CgBgIWEs1oQwFrCSLhy0962q/ea8xg0G7e/uxH4AAHZpVbV/knclue1M9wWZnIj1+TkvN6zFrj/nXq6Va74AoBYDAHYFT0xy35n2k7r70hVYRz0FAGwWwxrlnO4+Y475Hx20j1xkjNoKANgMfj0L65wvJvmF7r5oW5O6+6NJHjHoflZVDe+bStRVAABDq1UfuS+eBYSxgBXT3edncvPwrJvOeZmbDdrznAYBALBuVNW1k7wjyZ1mui9K8oDu/tQOXHJYNw3rqu0Zjv9Odw9rOwCAtfDsme/fluT0qjp0W19JDh5cY/dFxu05GKOeAgA2iy8N2v815/xvDdrXXWSM2goA2AwePmg/v7t/MGZid5+S5AMzXfsk+cVFhqqrAAAWWpX6yH3xDO2+1hsANrzTktxjpn34tG+swxa5HgDAhjL9lJS3Jbn7TPfFSR7Y3f+xg5cd1k2Hzzl/WId9YQf3AQCw3GY/me6nk3xtB65xk0XmHZVkNgSvngIANovPJ7nfTPuyOecPx++9yBi1FQCwoU3f77vFoPuUOS/z7iT3nmnfbZEx6ioAgIVWsz5yXzw/4mQsYKV9btA+euzE6YsUt9vO9QAA1rWq2ifJW5Lca6b7+0l+prs/vBOXHtZNt6uqfeeYf8/tXA8AYKNTTwEAm8VnBu0D5pw/HH/+ImPUVgDARrdYDXX2nNcYjr/eImPUVQAAC61mfeS+eH5EGAtYae8YtI+ZY+69s/AEv1O7+5yd3hEAwC6iqvZO8i9ZWCP9IMmDuvv9O3Pt7v6vLLyRZvcsDHxtzzGD9tt3Zj8AAOuNegoA2ETenqRn2odNX7ca6zaD9jeHA9RWAMAm8N1F+vab8xrXGrQvHg5QVwEALLTK9ZH74vkRYSxgpb0zyaUz7aOr6lYj5z520H7DsuwIAGAXUFV7Jnl9kuNmui9L8uDuPmWZlhnWT48bubdbJbnbTNclSd61THsCANgp3X1Ad9c8X0mOHVzmzEXGfWqR5dRTAMCG193fSvKRma49ktxvjks8YND+wBLj1FYAwIbV3ZckuWjQfdScl7nToL3UyVrqKgCAhVarPnJfPD8ijAWsqO7+fpKTB93P3N68qrplkofMdF2Z5JXLuDUAgDVTVbsneW2SB850X5HkYd39zmVc6hVJrpppP7Sqjhgxb1ivvba7f7B82wIAWDfUUwDAZnHioP3rYyZV1b2T3HWm64dJ3rbEcLUVALDRvXfQ/uWxE6vq4CQPGnQvFXJXVwEALLQq9ZH74pkljAWshhMyubl4q8dW1fDFgx+pqr0zecNnz5nuv+/ur6zM9gAAVk9V7ZbJCwDHz3RfmeQR3f2W5Vyru7+c5GUzXXsmOWlaby21v+Oz8JNYLk/y7OXcFwDAeqGeAgA2kROTnDbTvm9VbTOQVVU3yDVDXK9d6j09tRUAsAm8ZtB+RFU9enuTqmqvJP+Y5Foz3RdncvLCNairAAAWWuX66IS4L54IYwGroLu/muTFg+6Tq+opVTX7D0uq6sgkpyS5x0z3+fGffwBg4/iHJL8w6PudJKdW1aFzfi35gsGMZyW5YKZ9jyTvHh6RXVV7VdWvJvnnwfwXdveZc/6MAAAbiXoKANjwuvuqJE/N5GSrrV5YVS+uqgOH46vquCQfSnKLme4LMnmda1vUVgDARvbqJJ+eaVeSl09rqhstNqGqjk3y0STHDR56fndfsMiUrdRVAMC6UVWHLHbvU5KDB0N338Z9UtfbzjKrUh+5L56tqrvXeg/AJjA9AeLNSR44eOjbST6Z5HtJDktyx0xeiNjq8iTHdfdSx24DAKwrVbWc/wk7trvfO2LNYzL55LzZ//B3kk8k+WqS/TOpw64/mPqWJA+e3owDALBuTeuhf5vpOrO7D51zvnoKANjwquopSf5i0H1FJjcIn5VknyR3SHKzwZjLkzyouxc9vWGwxjFRWwEAG1RVHZ5JaP0Gg4d+mOQzmdQ7lyY5KMlRueYNyEnytkzqnisWeWx2rWOirgIA1oGqOiPXfD1pXi/r7sduZ51jsgr1kfviSYSxgFVUVddK8ndJHjFyyreTPKa737FyuwIAWF1rEcaarvvTSU7KNV9MWMqrkjyxuy/Zsa0BAOw6djaMNb2GegoA2BSq6leS/GmSfUdOOSfJQ7v7w3OsobYCADas6ekL/5jkznNO7SR/m+Rp3X3pyLXUVQDALm+1wljTtValPnJfPFvWegPA5tHdF3f3LyZ5eCafnreU7yR5aZLb+AcHAGB5dPfbktwmyV9l4ZHcQx9N8rDufqQ3YQAArqaeAgA2i+5+aZLbJfmnTD7FdylnJzkhyY/PE8SarqG2AgA2rO7+YpKjkzwmyUcyCVlty6VJXpHkHt39pLFBrOla6ioAgBmrVR+5Lx4nYwFrpqpunsnxizdOsl8mb9icmeRD3X35Wu4NAGAjq6o9k9wzk0+cOTjJJUnOSnJqd39tLfcGALAeqKcAgM2iqvbJpO45JJO65/Ik5yb5dHd/ZpnWUFsBABtaVe2fySlZN09yQJK9Mgm9X5Dkc0k+291XLsM66ioAgBmrWR+5L37zEcYCAAAAAAAAAAAAAAAAGGHLWm8AAAAAAAAAAAAAAAAAYD0QxgIAAAAAAAAAAAAAAAAYQRgLAAAAAAAAAAAAAAAAYARhLAAAAAAAAAAAAAAAAIARhLEAAAAAAAAAAAAAAAAARhDGAgAAAAAAAAAAAAAAABhBGAsAAAAAAAAAAAAAAABgBGEsAAAAAAAAAAAAAAAAgBGEsQAAAAAAAAAAAAAAAABGEMYCAAAAAAAAAAAAAAAAGEEYCwAAAAAAAAAAAAAAAGAEYSwAAAAAAAAAAAAAAACAEYSxAAAAAAAAAAAAAAAAAEYQxgIAAAAAAAAAAAAAAAAYQRgLAAAAAAAAAAAAAAAAYARhLAAAAAAAAAAAAAAAAIARhLEAAAAAAAAAAAAAAAAARhDGAgAAAAAAAAAAAAAAABhBGAsAAAAAAAAAAAAAAABgBGEsAAAAAAAAAAAAAAAAgBGEsQAAAAAAAAAAAAAAAABGEMYCAAAAAAAAAAAAAAAAGEEYCwAAAAAAAAAAAAAAAGAEYSwAAAAAAAAAAAAAAACAEYSxAAAAAAAAAAAAAAAAAEbYfa03AAAAAAAAsNlV1X5J7pjk8CQHJNkvyQ+SfC/JN5OckeRL3X3FWu1xV1VVZyS52bR5Zncfuna7YbOqqp5pvq+7j1mrvQAAAAAAACtLGAsAAAAAAGANVNWWJI9I8sQk90myZTtTLquqzyR5f5J3Jnl/d1+2srsEAAAAAAAAZm3vTT0AAAAAAACWWVUdmeQjSV6Z5NiMe89mryR3SfL0JO9K8sDtrHFSVfXM16E7tWl2OVV1wuA5Pmat9wQAAAAAALDRORkLAAAAAABgFVXVHZKckuSgwUM/TPLl6ddFSfacjrlVkhuv5h4BAAAAAACAxQljAQAAAAAArJKq2i/Jm7MwiHVRkucn+YfuPnuJeQcnuX+Sh2RyItZeK7xVAAAAAAAAYBHCWAAAAAAAAKvnN5McMtP+dpJjuvu0bU2ahrRenuTlVXX9JL+c5LwV2yUAAAAAAACwKGEsAAAAAACA1fPIQfvXtxfEGuruc5M8Z/m2BAAAAAAAAIy1Za03AAAAAAAAsBlU1Y2SHD7TdUWSk9doOwAAAAAAAMAOcDIWAAAAAADA6rjxoH1ed1+2JjtZB6rqdklun+RGSS5NclaSU7v7ayuw1t5Jjk5y0yTXT1JJzk1yepKPdveVy7zejyW5S5JDkuyT5Lwkn03y8e7+4XKutRaq6mZJjsrkuTsoyXeTvKG7v7WNOTdMcuskt0hyQJI9p/POS/KJ7v7KCuyzktw1yRGZ/P28PMnZST7Y3d9c7vUAAAAAAICNQRgLAAAAAABgdQzfl9m/qnbr7quWa4GqemySE5d4+GuT7MmizuzuQwfXOinJY2a6bt7dZ4zcxzFJ/m2m69ndfcLIub+U5IQkt1zk4a6qDyR5bne/Y8z1trPW3ZL8bpLjMglFLeaiqnpVkj/cVphocN2eab6vu4+Z9t8jybOT3DfJlkWmnlNVz0nykqVCWYv83s76t208x+nupR+cwzZ+vgcn+c0kd88k0DbrrCRvnLnGbknuk+Rhmfz+H7GdNb+Z5C+T/GV3Xzhyn4/Nwr8Pj+vuk6pqS5KnJXlKkpsvMfcDSX6ju/99zFo7oqr2SvJ3SR490312kgd198dWal0AAAAAAGDnLPYmDwAAAAAAAMvv24P2vpmEUEhSVXtW1euTvDKLB7GSScDn/0vy9qp63k6stW9VvTLJR5P8XJYOYiXJdZI8KcmXq+phO7Hm7yR5fybP+VLv0d0wyZ8nObmq9tzRtVZbVe1eVX+X5A2ZnDA2JvT11CSnJPmVbCeINXVIkj9O8qmquuNO7PUGSd6T5IVZIog1de8kH6iqR+7oWtvZx/WSvDsLg1ifTXI3QSwAAAAAANi1ORkLAAAAAABgFXT316rq7CQHz3T/dVU9sLtPW6t97QqmJxW9PsnPDB66Ism/Z3Kq0rWS3C7Jj00fe2ZVnbcDa10/yTuSDAM9lyY5Ncm3klw1XecuSfaYPr5vktdW1RO6+x/mXPMZSZ4z0/Wf069Lktwok5Ok9p55/CFJ/neSZ86zzhr60yT/Y6b9n0m+lKt/vrssMmcYSLs8yReTfDPJhUl2S3L9JLdPctDMuEOTvKeq7tTdX5lzn/skecvMfi5L8vFM/nztluTIJLeeGb9HkpOq6nPd/Zk511pSVd0qyVuTHDbT/fYkj+ju7y3XOgAAAAAAwMoQxgIAAAAAAFg9/5TkGTPtm2Vy0s8/J3l1kvd298U7cf2Tk7x3+v2fJvn5mcfunUnQZTFX7sSay+HpWRjE6iQvTvKH3X3B1s6qqiT3T/KXmQRZnpNJYGuUaejrVVkYxPpWkt9L8sruvmww/oAkv5lJKGpLJic+vaSqPtHdnx657G0z+b1Pkjcm+e3u/uJgnQOTvCjJY2e6n15VL+3uMwbX+2iuPtHpaZmcMLXVL00fX013THKf6fdvTfIbw3BhVV07yV6LzD07ycsyCUh9tLuv8edw+pwdl+R5SY6adu+f5BWZhNjm8YdJrpdJ8O5ZSf6yuy8ZrHfX6bUPn3btkeTPktxvzrUWVVX3y+Tv6QEz3S9J8tTuvmo51gAAAAAAAFaWMBYAAAAAAMDqeX4mgZmbzPTtmeRR06+rqurzSf4jyccyCdZ8rrt/OObi0yDXxUlSVcNQ1zcXCfasuaq6SSYhmVlP7u6/Go7t7k7yzqo6OskHktwyk9+/sZ6ehaGaTya5f3efv9jg7v5ukt+pqk8meW0mYay9Mwnn3HfkmltPdXpBdy960tU0cPa4aSjr+Gn3bpmcNvX7g7E/SHJGklTVdweXOnsNnuNrT3/96yS/Mn2OFpie9jQ88emVSV7c3dsM003/7L+rqt6X5E1Jfmr60N2q6pjufu8ce71eJqd1HdvdH1tivf+YBqY+l6t/tmOr6vDuPn2Ota6hqp6YSZBw63u0VyV5ene/eGeuCwAAAAAArK4ta70BAAAAAACAzaK7z8vkBKizlhiyW5LbJXlCJuGWTyc5r6r+uaqOr6o9Vmenq+pJmQSctnrdYkGsWd397SSPTjIqpJYkVbVPkt+Y6bowyc8uFcQarHdykpfOdB1bVXdcavwiPpjkt0eM+91Be2zga62dluR/LRbEWkp3f2t7QazB+MuSPC4LT0J71Pgt/sivLRXEmlnr65n8/duqkhy7A2tNJldtqao/SfI3uTqIdXGS4wWxAAAAAABg/RHGAgAAAAAAWEXd/ekkRyX5uyRXjphyYJKHJXljki9U1UNWcHtr4b8P2s8aM2kaqPmXOdb5pSTXn2n/n+7+rznmv3DQftAcc58z5nSz7v58pqdeTd1hjjXW0ou6+/KVXmT6fH14pusec17irCQnjhz7lkH7qDnXSpJU1X5JXp/kGTPd30hyz+5+645cEwAAAAAAWFvCWAAAAAAAAKusu8/t7icmuUWS30nyyYw75enwJK+vqj+vqnX/Pk9VHZLkZjNdn5kGksZ6xRxjf3LQfs0cc9PdX03y9Zmue4+cemmS98yx1Gkz3+9bVdeaY+5aedNyXqyq9q2qG1bVzarq0NmvJBfMDL1VVdUcl35nd48JQCYLn4ckucEc6yRJquomSd6f5PiZ7o8nuVt3f2be6wEAAAAAALuG3dd6AwAAAAAAAJtVd389yXOTPLeq9k9ydJI7ZXIKz92SHLLE1F9NclGS31uNfa6gOw/a/z7n/HnG32vm+8uTXDYN98zjO0luOv3+FiPnfGXOU6MuGLT3T3LxHPNX2ze7+9wdnTwNFR6Tyelvd0ly6yT7jpy+Jcl1klw4cvwX5tjaYs/DaFV1VJI3J7nJTPfrk/y37v7+PNcCAAAAAAB2LcJYAAAAAAAAu4DuvjDJO6ZfSZKqOjzJIzIJX91wMOW3q+qV3T1PwGRXM/yZvjzP5O7+RlX9IMne2xo3DfzceKZrzyRfmWetRRw0ctww1LM9Vwzae8w5f7V9e0cnVtW9k/zfJLfbifX3z/gw1ujnoruvGBy6Nc/z8ONJPpBkv5m+P0nyzO7uOa4DAAAAAADsgras9QYAAAAAAABYXHef3t3PSXJ4ktcOHt6S5NdWf1fL6sBB+6IduMaYIM6BWf73xa49ctwPl3ndXc33dmRSVT0sySnZuSBWMt/zulrPxcFZGMT6apLnCGIBAAAAAMDGIIwFAAAAAACwi+vui5M8KsknBg/dfw22s5JWKqyy5wpdlx1QVTdL8rIsPG3q20n+LMlDMwloXS/Jvkm2dHdt/ZrO29V9McnpM+3Dkry3qoYnwQEAAAAAAOuQMBYAAAAAAMA60N1XJnnxoPumVbXPWuxnO3YbOe6CQXv/HVhrzJzzB+0vzQZ8dvRrB/bKxDMzCVpt9eYkh3X3r3f3G7r7s919fndfushpUtdZvW3usHOS3CvJp2f67pDkA9MgGgAAAAAAsI4JYwEAAAAAAKwfn1qk78AVWuvKQXv3OeaO3dM5g/YRc6yRqvqxJHtvb1x3X56Fwa+bV9UeS41nxR0/8/3FSR7d3ZeMnHvjFdjPsuvuc5LcJ8kHZ7qPSPKhqjpybXYFAAAAAAAsB2EsAAAAAACA9eOqRfouXGLs8ESheV00aB8wx9yfGDnu44P23edYI0nuNsfYD898v0eSY+Zca1e0s8/xqquqfbMwUPX+7h7+WVtq7t5JjlqRja2A7r4wyf2TvH2m+yaZnJB1l7XZFQAAAAAAsLOEsQAAAAAAANaPWw/aF27jRKHLBu295lzr29tZe1t+esyg7v5mkjNnum5bVWODXEnyqDnGvnPQfuIcc3dVO/scr4VhqG+pMOFiHplkz2Xcy4rr7kszOQns1TPd101ySlXdd212BQAAAAAA7AxhLAAAAAAAgFVQVdeuqsN38jK/PGi/Zxtjvzto32jOtT45aP/cmElV9VNJ7jrHOi8ftJ89cp27JHnQHOv8Yxb+njy8qu43x/xd0c4+x2vhgkH7VmMmVdX+SX5/+bez8rr7ikyCgy+d6b52krdV1fFrsysAAAAAAGBHCWMBAAAAAACsjusm+WJVvXzO05+SJFV1QpKfHHS/chtTThu07z/nkh9J8v2Z9kOq6s7bmlBVRyR52Zzr/HWSH8y0f76qnrSddW6Q5J8yx3td3f3dJH8y6D65qu419hrTtXerqodW1UHzzFshO/scr7rpSVFfnuk6qqq2ue+q2jeTk6UOXcGtraju/mF3PznJH89075XkdVX1mDXaFgAAAAAAsAOEsQAAAAAAAFbPbkn+W5LPVdXHqup/VdVPVFUtNnga/LlfVZ2S5FmDh9/X3SdvY633JemZ9tOr6n9X1b2q6oiqOnTm65Dh5O7+XpLXDPb+1sWCM1W1Z1U9MclHk9ww1zz9aEndfVaSPxh0/2VVvbCqDlxkrfsn+XCSWya5PMklY9dK8oIk75ppH5DkvVX1kqr68aUmVdUeVXWPqnp+kq8keV2S68yx7kr5eJKLZ9q/WFV/UVX3rapbDp7jQ9dmi4t6zaD9z1X1qKpa8N5lTRyXSTDwAdPuc1djgyulu383ydNz9d/N3ZKcWFVPW7tdAQAAAAAA86ju3v4oAAAAAAAAdso0DPO1JR6+MJNTjs5L8t0k+yQ5OMlts3jo5wtJ7tfdZ29nzZOT/PyI7Z3Z3YcuMv8mST6XSWhp1ulJPpPkskzCV3dLst/0sbOTPDMLT8h6dnefsI197pbkTUl+ZvDQFZkEvM6aXv/2SW468/gzkzw5yc229XMM1to/yduS3GORh8/K5Of9TiYfanidJIckuVWSPQZjb97dZyyxxuwbcO/r7mO2tafB3JOSzJ6UtOQ60/F/mkm4Z7u6e9HQ37x2ohNAvAAABM5JREFU5uebzj8gyeeT3Hjw0NmZBMwuTHJQkjskudHM469IcmVG/v5U1WOTnDjT9bjuPmmOfY7+Oef9PamqxyX520zCWFv9UXf//tj9AQAAAAAAa2P3td4AAAAAAADAJvH9JF/PwjDRVvsnufvI67wiydO6+7wRY385k8DL0SOvvUB3n1VVP5/kjUmuPfPQ4dOvoa9lEqi64ZzrXDVd59VJHjzz0B5J7r3EtBd29wuq6slzrnVhVR2T5HlJnpqFYZibTL+25/uZBNF2Bb+b5IgkD1rrjYzV3d+tqp9N8o4kN5h56OAkP7vEtFck2RpgWve6+8Sq+m6SVyXZa9r9e9PT4H61faImAAAAAADssras9QYAAAAAAAA2g+7+dnffLMkdk/xBkn9NctHI6ecl+askd+3uR48MYqW7v5NJmOnBSV6eyWlW38nkxKmx+35PkrtmcnLVUgGRc5P8SZI7dPdpY689WOey7n5Ikkcl+dI2hn44yc919zN2ZJ3pWld099OT3DLJS5OcM2La+Ulen+SxSW7Y3f+1o+svp+nv2/FJjkvyN0k+kcleL1/TjW1Hd5+ayclXL8/Sfx47yQeTPHz65370n9v1oLvfkEl48eKZ7v+Z5J+qyodqAgAAAADALqp8qBoAAAAAAMDaqKotSQ7N5GSjmya5TpJ9Mzl56aIkZyf5THefuVZ7nFVV10tynySHZLLPczI5DesD3X3lMq91+0zCOgcnuTTJt5J8sru/upzrzKx3ZJLbJblukgOSXJnJc/CNJF9M8lWnFa2Mqjogyb2SHJbkWpkEBs9O8vHu/uZa7g0AAAAAAGBIGAsAAAAAAAAAAAAAAABghC1rvQEAAAAAAAAAAAAAAACA9UAYCwAAAAAAAAAAAAAAAGAEYSwAAAAAAAAAAAAAAACAEYSxAAAAAAAAAAAAAAAAAEYQxgIAAAAAAAAAAAAAAAAYQRgLAAAAAAAAAAAAAAAAYARhLAAAAAAAAAAAAAAAAIARhLEAAAAAAAAAAAAAAAAARhDGAgAAAAAAAAAAAAAAABhBGAsAAAAAAAAAAAAAAABgBGEsAAAAAAAAAAAAAAAAgBGEsQAAAAAAAAAAAAAAAABGEMYCAAAAAAAAAAAAAAAAGEEYCwAAAAAAAAAAAAAAAGAEYSwAAAAAAAAAAAAAAACAEYSxAAAAAAAAAAAAAAAAAEYQxgIAAAAAAAAAAAAAAAAYQRgLAAAAAAAAAAAAAAAAYARhLAAAAAAAAAAAAAAAAIARhLEAAAAAAAAAAAAAAAAARhDGAgAAAAAAAAAAAAAAABhBGAsAAAAAAAAAAAAAAABgBGEsAAAAAAAAAAAAAAAAgBGEsQAAAAAAAOD/tW8HAgAAAACC/K1XGKA8AgAAAAAAgEHGAgAAAAAAAAAAAAAAABhkLAAAAAAAAAAAAAAAAIBBxgIAAAAAAAAAAAAAAAAYZCwAAAAAAAAAAAAAAACAQcYCAAAAAAAAAAAAAAAAGGQsAAAAAAAAAAAAAAAAgEHGAgAAAAAAAAAAAAAAABhkLAAAAAAAAAAAAAAAAIBBxgIAAAAAAAAAAAAAAAAYZCwAAAAAAAAAAAAAAACAQcYCAAAAAAAAAAAAAAAAGGQsAAAAAAAAAAAAAAAAgCEhkJ7s6Zx0GgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1834,7 +1834,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.7" + "version": "3.7.6" } }, "nbformat": 4, From 5208d6b3e0393253c7c82d4ac3814919ef59a23b Mon Sep 17 00:00:00 2001 From: Henry Wilde Date: Wed, 15 Jul 2020 04:58:08 +0100 Subject: [PATCH 15/18] Update classes in README --- README.rst | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/README.rst b/README.rst index 4ece2b7..f83d15b 100644 --- a/README.rst +++ b/README.rst @@ -97,11 +97,11 @@ The ``Matching`` object +++++++++++++++++++++++ This matching is not a standard Python dictionary, though it does largely look -and behave like one. It is in fact an instance of the ``Matching`` class: +and behave like one. It is in fact an instance of the ``SingleMatching`` class: >>> matching = game.matching >>> type(matching) - + This dictionary-like object is primarily useful as a teaching device that eases the process of manipulating a matching after a solution has been found. @@ -116,9 +116,9 @@ Despite passing dictionaries of strings here, the matching displays instances of >>> matching = game.matching >>> for suitor in matching: ... print(type(suitor)) - - - + + + This is because ``create_from_dictionaries`` creates instances of the appropriate player classes first and passes them to the game class. Using From 79f4f25e20b0e19e5aaaeafb797d75a678a05c13 Mon Sep 17 00:00:00 2001 From: Henry Wilde Date: Fri, 30 Oct 2020 15:35:06 +0000 Subject: [PATCH 16/18] Format codebase with black>19 --- docs/conf.py | 7 +- docs/tutorials/hospital_resident/data.py | 8 +-- docs/tutorials/project_allocation/data.py | 27 ++++---- src/matching/algorithms/hospital_resident.py | 6 +- src/matching/algorithms/stable_marriage.py | 2 +- src/matching/algorithms/stable_roommates.py | 16 ++--- src/matching/algorithms/student_allocation.py | 6 +- src/matching/algorithms/util.py | 4 +- src/matching/base.py | 56 +++++++-------- src/matching/games/hospital_resident.py | 50 +++++++------- src/matching/games/stable_marriage.py | 22 +++--- src/matching/games/stable_roommates.py | 18 ++--- src/matching/games/student_allocation.py | 68 +++++++++---------- src/matching/matchings.py | 4 +- src/matching/players/hospital.py | 10 +-- src/matching/players/player.py | 6 +- src/matching/players/project.py | 18 ++--- src/matching/players/supervisor.py | 12 ++-- tests/base/test_game.py | 8 +-- tests/base/test_matching.py | 15 ++-- tests/base/test_player.py | 20 +++--- tests/base/util.py | 4 +- tests/hospital_resident/test_algorithm.py | 12 ++-- tests/hospital_resident/test_examples.py | 7 +- tests/hospital_resident/test_solver.py | 56 +++++++-------- tests/players/test_hospital.py | 4 +- tests/players/test_player.py | 4 +- tests/players/test_project.py | 12 ++-- tests/players/test_supervisor.py | 7 +- tests/stable_marriage/params.py | 8 +-- tests/stable_marriage/test_algorithm.py | 8 +-- tests/stable_marriage/test_examples.py | 4 +- tests/stable_marriage/test_solver.py | 31 ++++----- tests/stable_roommates/test_algorithm.py | 12 ++-- tests/stable_roommates/test_examples.py | 8 +-- tests/stable_roommates/test_solver.py | 22 +++--- tests/student_allocation/params.py | 7 +- tests/student_allocation/test_algorithm.py | 12 ++-- tests/student_allocation/test_solver.py | 68 +++++++++---------- tests/test_matchings.py | 18 ++--- 40 files changed, 343 insertions(+), 344 deletions(-) diff --git a/docs/conf.py b/docs/conf.py index fcbe58e..c9936e9 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -20,6 +20,8 @@ import os import sys +import matching + sys.path.insert(0, os.path.abspath(".")) # -- General configuration ------------------------------------------------ @@ -66,12 +68,11 @@ # built documents. # # The short X.Y version. -exec(open("../src/matching/version.py", "r").read()) -version = __version__ +version = matching.__version__ if version.count(".") > 1: version = ".".join(version.split(".")[:-1]) # The full version, including alpha/beta/rc tags. -release = __version__ +release = version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. diff --git a/docs/tutorials/hospital_resident/data.py b/docs/tutorials/hospital_resident/data.py index 38dede9..1ca304b 100644 --- a/docs/tutorials/hospital_resident/data.py +++ b/docs/tutorials/hospital_resident/data.py @@ -22,8 +22,8 @@ def create_resident_to_preferences_map(): - """ Create a map from resident names to an ordered subset of the hospital - names. """ + """Create a map from resident names to an ordered subset of the hospital + names.""" resident_to_preference_size = { resident: np.random.randint(1, len(hospital_names) + 1) @@ -46,8 +46,8 @@ def create_resident_to_preferences_map(): def create_hospital_to_preferences_map(resident_to_preferences): - """ Create a map from hospital names to a permutation of all those residents - who ranked them. """ + """Create a map from hospital names to a permutation of all those residents + who ranked them.""" hospital_to_residents = defaultdict(set) for resident, hospitals in resident_to_preferences.items(): diff --git a/docs/tutorials/project_allocation/data.py b/docs/tutorials/project_allocation/data.py index 0f004e5..abf92b8 100644 --- a/docs/tutorials/project_allocation/data.py +++ b/docs/tutorials/project_allocation/data.py @@ -24,10 +24,10 @@ def create_supervisor_to_projects_map(): - """ Create a dictionary mapping supervisor names to their projects. + """Create a dictionary mapping supervisor names to their projects. To do this, first sample the number of projects that each supervisor will have from the discretised triangular distribution with mode - ``.75 * MAX_SUPERVISOR_PROJECTS``. """ + ``.75 * MAX_SUPERVISOR_PROJECTS``.""" mode = MAX_SUPERVISOR_PROJECTS * 0.75 @@ -54,8 +54,8 @@ def create_supervisor_to_projects_map(): def create_player_to_capacity_maps(supervisor_to_projects): - """ Create dictionaries mapping supervisor names and project codes to their - respective capacities. """ + """Create dictionaries mapping supervisor names and project codes to their + respective capacities.""" supervisor_to_capacity, project_to_capacity = {}, {} for supervisor, projects in supervisor_to_projects.items(): @@ -71,8 +71,8 @@ def create_player_to_capacity_maps(supervisor_to_projects): def get_all_projects(supervisor_to_projects): - """ Get all of the project codes available using the supervisor to projects - map. """ + """Get all of the project codes available using the supervisor to projects + map.""" return ( project @@ -82,10 +82,10 @@ def get_all_projects(supervisor_to_projects): def create_student_to_choices_map(projects): - """ Create a dictionary mapping student names to their choices of the + """Create a dictionary mapping student names to their choices of the available projects. To do so, first sample the number of choices each student makes from the discretised right-triangular distribution with - a maximum of ``MAX_STUDENT_CHOICES``. """ + a maximum of ``MAX_STUDENT_CHOICES``.""" students_number_of_choices = ( np.random.triangular( @@ -109,8 +109,8 @@ def create_student_to_choices_map(projects): def create_student_dataframe(student_to_choices): - """ Create a dataframe detailing the students' choices and assign them each - a rank. """ + """Create a dataframe detailing the students' choices and assign them each + a rank.""" choice_columns = list(range(MAX_STUDENT_CHOICES)) df_students = pd.DataFrame(columns=["name"] + choice_columns) @@ -146,8 +146,7 @@ def create_supervisor_dataframe(supervisor_to_capacity): def create_project_dataframe(project_to_capacity, supervisor_to_projects): - """ Create a dataframe detailing the projects' capacities and supervisor. - """ + """Create a dataframe detailing the projects' capacities and supervisor.""" df_project_capacities = pd.DataFrame.from_dict( project_to_capacity, orient="index", columns=["capacity"] @@ -181,8 +180,8 @@ def save_dataframes(student_dataframe, supervisor_dataframe, project_dataframe): def main(): - """ Create the required maps to form the player dataframes, and then save - them. """ + """Create the required maps to form the player dataframes, and then save + them.""" np.random.seed(SEED) print("Seed set:", SEED) diff --git a/src/matching/algorithms/hospital_resident.py b/src/matching/algorithms/hospital_resident.py index 8d49f0a..8ab3d63 100644 --- a/src/matching/algorithms/hospital_resident.py +++ b/src/matching/algorithms/hospital_resident.py @@ -11,7 +11,7 @@ def unmatch_pair(resident, hospital): def hospital_resident(residents, hospitals, optimal="resident"): - """ Solve an instance of HR using an adapted Gale-Shapley algorithm + """Solve an instance of HR using an adapted Gale-Shapley algorithm :cite:`Rot84`. A unique, stable and optimal matching is found for the given set of residents and hospitals. The optimality of the matching is found with respect to one party and is subsequently the worst stable matching for the @@ -43,7 +43,7 @@ def hospital_resident(residents, hospitals, optimal="resident"): def resident_optimal(residents, hospitals): - """ Solve the instance of HR to be resident-optimal. The algorithm is as + """Solve the instance of HR to be resident-optimal. The algorithm is as follows: 0. Set all residents to be unmatched, and all hospitals to be totally @@ -90,7 +90,7 @@ def resident_optimal(residents, hospitals): def hospital_optimal(hospitals): - """ Solve the instance of HR to be hospital-optimal. The algorithm is as + """Solve the instance of HR to be hospital-optimal. The algorithm is as follows: 0. Set all residents to be unmatched, and all hospitals to be totally diff --git a/src/matching/algorithms/stable_marriage.py b/src/matching/algorithms/stable_marriage.py index b24bfb3..364c18c 100644 --- a/src/matching/algorithms/stable_marriage.py +++ b/src/matching/algorithms/stable_marriage.py @@ -11,7 +11,7 @@ def unmatch_pair(suitor, reviewer): def stable_marriage(suitors, reviewers, optimal="suitor"): - """ An extended version of the original Gale-Shapley algorithm which makes + """An extended version of the original Gale-Shapley algorithm which makes use of the inherent structures of SM instances. A unique, stable and optimal matching is found for any valid set of suitors and reviewers. The optimality of the matching is with respect to one party and is subsequently the worst diff --git a/src/matching/algorithms/stable_roommates.py b/src/matching/algorithms/stable_roommates.py index 5560c55..0e0992e 100644 --- a/src/matching/algorithms/stable_roommates.py +++ b/src/matching/algorithms/stable_roommates.py @@ -9,8 +9,8 @@ def forget_pair(player, other): def forget_successors(players): - """ Make each player forget those players that they like less than their - current proposal. """ + """Make each player forget those players that they like less than their + current proposal.""" for player in players: if player.matching: @@ -23,7 +23,7 @@ def forget_successors(players): def stable_roommates(players): - """ Irving's algorithm :cite:`Irv85` that finds stable solutions to + """Irving's algorithm :cite:`Irv85` that finds stable solutions to instances of SR if one exists. Otherwise, an incomplete matching is found. Parameters @@ -46,10 +46,10 @@ def stable_roommates(players): def first_phase(players): - """ Conduct the first phase of the algorithm where one-way proposals are + """Conduct the first phase of the algorithm where one-way proposals are made, and unpreferable pairs are forgotten. This phase terminates when either all players have been proposed to, or if one player has been rejected - by everyone leaving their preference list empty. """ + by everyone leaving their preference list empty.""" proposed_to = set() for player in players: @@ -78,7 +78,7 @@ def first_phase(players): def locate_all_or_nothing_cycle(player): - """ Locate a cycle of (least-preferable, second-choice) pairs to be removed + """Locate a cycle of (least-preferable, second-choice) pairs to be removed from the game.""" lasts = [player] @@ -102,9 +102,9 @@ def locate_all_or_nothing_cycle(player): def second_phase(players): - """ Conduct the second phase of the algorithm where all or nothing cycles + """Conduct the second phase of the algorithm where all or nothing cycles (rotations) are located and removed from the game. These reduced preference - lists form a matching. """ + lists form a matching.""" player_with_second_preference = next(p for p in players if len(p.prefs) > 1) while True: diff --git a/src/matching/algorithms/student_allocation.py b/src/matching/algorithms/student_allocation.py index 04b7544..7810c28 100644 --- a/src/matching/algorithms/student_allocation.py +++ b/src/matching/algorithms/student_allocation.py @@ -11,7 +11,7 @@ def unmatch_pair(student, project): def student_allocation(students, projects, supervisors, optimal="student"): - """ Solve an instance of SA by treating it as a bi-level HR. A unique, + """Solve an instance of SA by treating it as a bi-level HR. A unique, stable and optimal matching is found for the given set of students, projects and supervisors. The optimality of the matching is found with respect to one party and is subsequently the worst stable matching for the other. @@ -46,7 +46,7 @@ def student_allocation(students, projects, supervisors, optimal="student"): def student_optimal(students, projects): - """ Solve the instance of SA to be student-optimal. The algorithm is as + """Solve the instance of SA to be student-optimal. The algorithm is as follows: 0. Set all students to be unassigned, and every project (and supervisor) @@ -123,7 +123,7 @@ def student_optimal(students, projects): def supervisor_optimal(projects, supervisors): - """ Solve the instance of SA to be supervisor-optimal. The algorithm is as + """Solve the instance of SA to be supervisor-optimal. The algorithm is as follows: 0. Set all students to be unassigned, and every project (and supervisor) diff --git a/src/matching/algorithms/util.py b/src/matching/algorithms/util.py index 1dffe6f..187f8de 100644 --- a/src/matching/algorithms/util.py +++ b/src/matching/algorithms/util.py @@ -2,8 +2,8 @@ def delete_pair(player, successor): - """ Make a player forget one its "successors", effectively deleting the pair - from further further consideration in the game. """ + """Make a player forget one its "successors", effectively deleting the pair + from further further consideration in the game.""" player.forget(successor) successor.forget(player) diff --git a/src/matching/base.py b/src/matching/base.py index a161e8c..b590f47 100644 --- a/src/matching/base.py +++ b/src/matching/base.py @@ -6,7 +6,7 @@ class BasePlayer: - """ An abstract base class to represent a player within a matching game. + """An abstract base class to represent a player within a matching game. Parameters ---------- @@ -62,48 +62,48 @@ def set_prefs(self, players): self._original_prefs = players[:] def forget(self, other): - """ Forget another player by removing them from the player's preference - list. """ + """Forget another player by removing them from the player's preference + list.""" prefs = self.prefs[:] prefs.remove(other) self.prefs = prefs def prefers(self, player, other): - """ Determines whether the player prefers a player over some other - player. """ + """Determines whether the player prefers a player over some other + player.""" prefs = self._original_prefs return prefs.index(player) < prefs.index(other) @abc.abstractmethod def get_favourite(self): - """ A placeholder function for getting the player's favourite, feasible - player. """ + """A placeholder function for getting the player's favourite, feasible + player.""" @abc.abstractmethod def match(self, other): - """ A placeholder function for assigning the player to be matched to - some other player. """ + """A placeholder function for assigning the player to be matched to + some other player.""" @abc.abstractmethod def unmatch(self, other): - """ A placeholder function for unassigning the player from its match - with some other player. """ + """A placeholder function for unassigning the player from its match + with some other player.""" @abc.abstractmethod def get_successors(self): - """ A placeholder function for getting the logically feasible - 'successors' of the player. """ + """A placeholder function for getting the logically feasible + 'successors' of the player.""" @abc.abstractmethod def check_if_match_is_unacceptable(self): - """ A placeholder for chacking the acceptability of the current - match(es) of the player. """ + """A placeholder for chacking the acceptability of the current + match(es) of the player.""" class BaseGame(metaclass=abc.ABCMeta): - """ An abstract base class for facilitating various matching games. + """An abstract base class for facilitating various matching games. Parameters ---------- @@ -120,7 +120,7 @@ class BaseGame(metaclass=abc.ABCMeta): After checking the stability of the game instance, a list of any pairs that block the stability of the matching is found here. Otherwise, :code:`None`. - """ + """ def __init__(self, clean=False): @@ -129,8 +129,8 @@ def __init__(self, clean=False): self.clean = clean def _remove_player(self, player, player_party, other_party): - """ Remove a player from the game instance as well as any relevant - player preference lists. """ + """Remove a player from the game instance as well as any relevant + player preference lists.""" party = vars(self)[player_party][:] party.remove(player) @@ -140,9 +140,9 @@ def _remove_player(self, player, player_party, other_party): other.forget(player) def _check_inputs_player_prefs_unique(self, party): - """ Check that each player in :code:`party` has not ranked another + """Check that each player in :code:`party` has not ranked another player more than once. If so, and :code:`clean` is :code:`True`, then - take the first instance they appear in the preference list. """ + take the first instance they appear in the preference list.""" for player in vars(self)[party]: unique_prefs = [] @@ -160,9 +160,9 @@ def _check_inputs_player_prefs_unique(self, party): player.set_prefs(unique_prefs) def _check_inputs_player_prefs_all_in_party(self, party, other_party): - """ Check that each player in :code:`party` has ranked only players in + """Check that each player in :code:`party` has ranked only players in :code:`other_party`. If :code:`clean`, then forget any extra - preferences. """ + preferences.""" players = vars(self)[party] others = vars(self)[other_party] @@ -180,9 +180,9 @@ def _check_inputs_player_prefs_all_in_party(self, party, other_party): player.forget(other) def _check_inputs_player_prefs_nonempty(self, party, other_party): - """ Make sure that each player in :code:`party` has a nonempty + """Make sure that each player in :code:`party` has a nonempty preference list of players in :code:`other_party`. If :code:`clean`, - remove any such player. """ + remove any such player.""" for player in vars(self)[party]: @@ -209,7 +209,7 @@ def check_validity(self): class BaseMatching(dict, metaclass=abc.ABCMeta): - """ An abstract base class for the storing and updating of a matching. + """An abstract base class for the storing and updating of a matching. Attributes ---------- @@ -253,8 +253,8 @@ def _check_player_in_keys(self, player): raise ValueError(f"{player} is not a key in this matching.") def _check_new_valid_type(self, new, types): - """ Raise an error is :code:`new` is not an instance of one of - :code:`types`. """ + """Raise an error is :code:`new` is not an instance of one of + :code:`types`.""" if not isinstance(new, types): raise ValueError(f"{new} is not one of {types} and is not valid.") diff --git a/src/matching/games/hospital_resident.py b/src/matching/games/hospital_resident.py index 1114592..ca3f029 100644 --- a/src/matching/games/hospital_resident.py +++ b/src/matching/games/hospital_resident.py @@ -14,7 +14,7 @@ class HospitalResident(BaseGame): - """ A class for solving instances of the hospital-resident assignment + """A class for solving instances of the hospital-resident assignment problem (HR). In this case, a blocking pair is any resident-hospital pair that satisfies @@ -68,10 +68,10 @@ def __init__(self, residents, hospitals, clean=False): def create_from_dictionaries( cls, resident_prefs, hospital_prefs, capacities, clean=False ): - """ Create an instance of :code:`HospitalResident` from two preference + """Create an instance of :code:`HospitalResident` from two preference dictionaries and capacities. If :code:`clean=True` then remove players from the game and/or player preferences if they do not satisfy the - conditions of the game. """ + conditions of the game.""" residents, hospitals = _make_players( resident_prefs, hospital_prefs, capacities @@ -81,8 +81,8 @@ def create_from_dictionaries( return game def solve(self, optimal="resident"): - """ Solve the instance of HR using either the resident- or - hospital-oriented algorithm. Return the matching. """ + """Solve the instance of HR using either the resident- or + hospital-oriented algorithm. Return the matching.""" self.matching = MultipleMatching( hospital_resident(self.residents, self.hospitals, optimal) @@ -109,8 +109,8 @@ def check_validity(self): return True def _check_for_unacceptable_matches(self, party): - """ Check that no player in `party` is matched to an unacceptable - player. """ + """Check that no player in `party` is matched to an unacceptable + player.""" issues = [] for player in vars(self)[party]: @@ -134,8 +134,8 @@ def _check_for_oversubscribed_players(self, party): return issues def check_stability(self): - """ Check for the existence of any blocking pairs in the current - matching, thus determining the stability of the matching. """ + """Check for the existence of any blocking pairs in the current + matching, thus determining the stability of the matching.""" blocking_pairs = [] for resident in self.residents: @@ -151,9 +151,9 @@ def check_stability(self): return not any(blocking_pairs) def check_inputs(self): - """ Give out warnings if any of the conditions of the game have been + """Give out warnings if any of the conditions of the game have been broken. If the :code:`clean` attribute is :code:`True`, then remove any - such situations from the game. """ + such situations from the game.""" self._check_inputs_player_prefs_unique("residents") self._check_inputs_player_prefs_unique("hospitals") @@ -172,8 +172,8 @@ def check_inputs(self): self._check_inputs_player_capacity("hospitals", "residents") def _check_inputs_player_prefs_all_reciprocated(self, party): - """ Make sure that each player in :code:`party` has ranked only those - players that have ranked it. """ + """Make sure that each player in :code:`party` has ranked only those + players that have ranked it.""" for player in vars(self)[party]: @@ -188,8 +188,8 @@ def _check_inputs_player_prefs_all_reciprocated(self, party): player.forget(other) def _check_inputs_player_reciprocated_all_prefs(self, party, other_party): - """ Make sure that each player in :code:`party` has ranked all those - players in :code:`other_party` that have ranked it. """ + """Make sure that each player in :code:`party` has ranked all those + players in :code:`other_party` that have ranked it.""" players = vars(self)[party] others = vars(self)[other_party] @@ -209,9 +209,9 @@ def _check_inputs_player_reciprocated_all_prefs(self, party, other_party): other.forget(player) def _check_inputs_player_capacity(self, party, other_party): - """ Check that each player in :code:`party` has a capacity of at least + """Check that each player in :code:`party` has a capacity of at least one. If the :code:`clean` attribute is :code:`True`, remove any hospital - that does not have such a capacity from the game. """ + that does not have such a capacity from the game.""" for player in vars(self)[party]: if player.capacity < 1: @@ -228,8 +228,8 @@ def _check_mutual_preference(resident, hospital): def _check_resident_unhappy(resident, hospital): - """ Determine whether a resident is unhappy because they are unmatched, or - they prefer the hospital to their current match. """ + """Determine whether a resident is unhappy because they are unmatched, or + they prefer the hospital to their current match.""" return resident.matching is None or resident.prefers( hospital, resident.matching @@ -237,9 +237,9 @@ def _check_resident_unhappy(resident, hospital): def _check_hospital_unhappy(resident, hospital): - """ Determine whether a hospital is unhappy because they are + """Determine whether a hospital is unhappy because they are under-subscribed, or they prefer the resident to at least one of their - current matches. """ + current matches.""" return len(hospital.matching) < hospital.capacity or any( [hospital.prefers(resident, match) for match in hospital.matching] @@ -247,8 +247,8 @@ def _check_hospital_unhappy(resident, hospital): def _make_players(resident_prefs, hospital_prefs, capacities): - """ Make a set of residents and hospitals from the dictionaries given, and - add their preferences. """ + """Make a set of residents and hospitals from the dictionaries given, and + add their preferences.""" resident_dict, hospital_dict = _make_instances( resident_prefs, hospital_prefs, capacities @@ -269,8 +269,8 @@ def _make_players(resident_prefs, hospital_prefs, capacities): def _make_instances(resident_prefs, hospital_prefs, capacities): - """ Create ``Player`` (resident) and ``Hospital`` instances for the names in - each dictionary. """ + """Create ``Player`` (resident) and ``Hospital`` instances for the names in + each dictionary.""" resident_dict, hospital_dict = {}, {} for resident_name in resident_prefs: diff --git a/src/matching/games/stable_marriage.py b/src/matching/games/stable_marriage.py index 4068a50..3da0cd3 100644 --- a/src/matching/games/stable_marriage.py +++ b/src/matching/games/stable_marriage.py @@ -7,7 +7,7 @@ class StableMarriage(BaseGame): - """ A class for solving instances of the stable marriage problem (SM). + """A class for solving instances of the stable marriage problem (SM). Parameters ---------- @@ -48,8 +48,8 @@ def create_from_dictionaries(cls, suitor_prefs, reviewer_prefs): return game def solve(self, optimal="suitor"): - """ Solve the instance of SM using either the suitor- or - reviewer-oriented Gale-Shapley algorithm. Return the matching. """ + """Solve the instance of SM using either the suitor- or + reviewer-oriented Gale-Shapley algorithm. Return the matching.""" self.matching = SingleMatching( stable_marriage(self.suitors, self.reviewers, optimal) @@ -73,8 +73,8 @@ def check_validity(self): return True def check_stability(self): - """ Check for the existence of any blocking pairs in the current - matching, thus determining the stability of the matching. """ + """Check for the existence of any blocking pairs in the current + matching, thus determining the stability of the matching.""" blocking_pairs = [] for suitor in self.suitors: @@ -113,8 +113,8 @@ def _check_for_players_not_in_matching(self): return issues def _check_for_inconsistent_matches(self): - """ Check that the game matching is consistent with those of the - players. """ + """Check that the game matching is consistent with those of the + players.""" issues = [] for suitor, reviewer in self.matching.items(): @@ -127,8 +127,8 @@ def _check_for_inconsistent_matches(self): return issues def check_inputs(self): - """ Raise an error if any of the conditions of the game have been - broken. """ + """Raise an error if any of the conditions of the game have been + broken.""" self._check_num_players() for suitor in self.suitors: @@ -160,8 +160,8 @@ def _check_player_ranks(self, player): def _make_players(suitor_prefs, reviewer_prefs): - """ Make a set of ``Player`` instances each for suitors and reviewers from - the dictionaries given. Add their preferences. """ + """Make a set of ``Player`` instances each for suitors and reviewers from + the dictionaries given. Add their preferences.""" suitor_dict, reviewer_dict = _make_instances(suitor_prefs, reviewer_prefs) diff --git a/src/matching/games/stable_roommates.py b/src/matching/games/stable_roommates.py index 2409437..f9c60fa 100644 --- a/src/matching/games/stable_roommates.py +++ b/src/matching/games/stable_roommates.py @@ -7,7 +7,7 @@ class StableRoommates(BaseGame): - """ A class for solving instances of the stable roommates problem (SR). + """A class for solving instances of the stable roommates problem (SR). Parameters ---------- @@ -39,15 +39,15 @@ def create_from_dictionary(cls, player_prefs): return game def solve(self): - """ Solve the instance of SR using Irving's algorithm. Return the - matching. """ + """Solve the instance of SR using Irving's algorithm. Return the + matching.""" self.matching = SingleMatching(stable_roommates(self.players)) return self.matching def check_validity(self): - """ Check whether the current matching is valid. Raise `MatchingError` - detailing the issues if not. """ + """Check whether the current matching is valid. Raise `MatchingError` + detailing the issues if not.""" issues = [] for player in self.players: @@ -61,9 +61,9 @@ def check_validity(self): return True def check_stability(self): - """ Check for the existence of any blocking pairs in the current + """Check for the existence of any blocking pairs in the current matching. Then the stability of the matching holds when there are no - blocking pairs and all players have been matched. """ + blocking pairs and all players have been matched.""" if None in self.matching.values(): return False @@ -98,8 +98,8 @@ def check_inputs(self): def _make_players(player_prefs): - """ Make a set of ``Player`` instances from the dictionary given. Add their - preferences. """ + """Make a set of ``Player`` instances from the dictionary given. Add their + preferences.""" player_dict = {} for player_name in player_prefs: diff --git a/src/matching/games/student_allocation.py b/src/matching/games/student_allocation.py index d3f319b..2de6548 100644 --- a/src/matching/games/student_allocation.py +++ b/src/matching/games/student_allocation.py @@ -15,7 +15,7 @@ class StudentAllocation(HospitalResident): - """ A class for solving instances of the student-allocation problem (SA) + """A class for solving instances of the student-allocation problem (SA) using an adapted Gale-Shapley algorithm. In this case, a blocking pair is defined as any student-project pair that @@ -80,8 +80,8 @@ def __init__(self, students, projects, supervisors, clean=False): self.check_inputs() def _remove_player(self, player, player_party, other_party=None): - """ Remove players from the game normally unless the player is a - supervisor. """ + """Remove players from the game normally unless the player is a + supervisor.""" if player_party == "supervisors": self.supervisors.remove(player) @@ -104,8 +104,8 @@ def create_from_dictionaries( supervisor_capacities, clean=False, ): - """ Create an instance of SA from two preference dictionaries, - affiliations and capacities. """ + """Create an instance of SA from two preference dictionaries, + affiliations and capacities.""" students, projects, supervisors = _make_players( student_prefs, @@ -119,8 +119,8 @@ def create_from_dictionaries( return game def solve(self, optimal="student"): - """ Solve the instance of SA using either the student- or - supervisor-optimal algorithm. """ + """Solve the instance of SA using either the student- or + supervisor-optimal algorithm.""" self.matching = MultipleMatching( student_allocation( @@ -130,8 +130,8 @@ def solve(self, optimal="student"): return self.matching def check_validity(self): - """ Check whether the current matching is valid. Raise a `MatchingError` - detailing the issues if not. """ + """Check whether the current matching is valid. Raise a `MatchingError` + detailing the issues if not.""" unacceptable_issues = ( self._check_for_unacceptable_matches("students") @@ -152,8 +152,8 @@ def check_validity(self): return True def check_stability(self): - """ Check for the existence of any blocking pairs in the current - matching, thus determining the stability of the matching. """ + """Check for the existence of any blocking pairs in the current + matching, thus determining the stability of the matching.""" blocking_pairs = [] for student in self.students: @@ -169,9 +169,9 @@ def check_stability(self): return not any(blocking_pairs) def check_inputs(self): - """ Give out warnings if any of the conditions of the game have been + """Give out warnings if any of the conditions of the game have been broken. If the :code:`clean` attribute is :code:`True`, then remove any - such situations from the game. """ + such situations from the game.""" self._check_inputs_player_prefs_unique("students") self._check_inputs_player_prefs_unique("projects") @@ -199,8 +199,8 @@ def check_inputs(self): self._check_inputs_supervisor_capacities_necessary() def _check_inputs_player_prefs_all_reciprocated(self, party): - """ Check that each player in :code:`party` has ranked only those - players that have ranked it, directly or via a project. """ + """Check that each player in :code:`party` has ranked only those + players that have ranked it, directly or via a project.""" if party == "supervisors": for supervisor in self.supervisors: @@ -224,8 +224,8 @@ def _check_inputs_player_prefs_all_reciprocated(self, party): super()._check_inputs_player_prefs_all_reciprocated(party) def _check_inputs_player_reciprocated_all_prefs(self, party, other_party): - """ Check that each player in :code:`party` has ranked all those players - in :code:`other_party` that ranked it, directly or via a project. """ + """Check that each player in :code:`party` has ranked all those players + in :code:`other_party` that ranked it, directly or via a project.""" if party == "supervisors": for supervisor in self.supervisors: @@ -260,8 +260,8 @@ def _check_inputs_player_reciprocated_all_prefs(self, party, other_party): ) def _check_inputs_supervisor_capacities_sufficient(self): - """ Check that each supervisor has the capacity to support its largest - project(s). """ + """Check that each supervisor has the capacity to support its largest + project(s).""" for supervisor in self.supervisors: @@ -279,8 +279,8 @@ def _check_inputs_supervisor_capacities_sufficient(self): project.capacity = supervisor.capacity def _check_inputs_supervisor_capacities_necessary(self): - """ Check that each supervisor has at most the necessary capacity for - all of their projects. """ + """Check that each supervisor has at most the necessary capacity for + all of their projects.""" for supervisor in self.supervisors: @@ -302,8 +302,8 @@ def _check_inputs_supervisor_capacities_necessary(self): def _check_student_unhappy(student, project): - """ Determine whether ``student`` is unhappy either because they are - unmatched or because they prefer ``project`` to their current matching. """ + """Determine whether ``student`` is unhappy either because they are + unmatched or because they prefer ``project`` to their current matching.""" return student.matching is None or student.prefers( project, student.matching @@ -311,13 +311,13 @@ def _check_student_unhappy(student, project): def _check_project_unhappy(project, student): - """ Determine whether ``project`` is unhappy because either: - - they and their supervisor are under-subscribed; - - they are under-subscribed, their supervisor is full, and either - ``student`` is in the supervisor's matching or the supervisor prefers - ``student`` to their worst current matching; - - ``project`` is full and their supervisor prefers ``student`` to the - worst student in the matching of ``project``. + """Determine whether ``project`` is unhappy because either: + - they and their supervisor are under-subscribed; + - they are under-subscribed, their supervisor is full, and either + ``student`` is in the supervisor's matching or the supervisor prefers + ``student`` to their worst current matching; + - ``project`` is full and their supervisor prefers ``student`` to the + worst student in the matching of ``project``. """ supervisor = project.supervisor @@ -354,9 +354,9 @@ def _make_players( project_capacities, supervisor_capacities, ): - """ Make a set of ``Player``, ``Project`` and ``Supervisor`` instances, + """Make a set of ``Player``, ``Project`` and ``Supervisor`` instances, respectively for the students, projects and supervisors from the - dictionaries given, and add their preferences. """ + dictionaries given, and add their preferences.""" student_dict, project_dict, supervisor_dict = _make_instances( student_prefs, @@ -386,8 +386,8 @@ def _make_instances( project_capacities, supervisor_capacities, ): - """ Create ``Player``, ``Project`` and ``Supervisor`` instances for the - names in each dictionary. """ + """Create ``Player``, ``Project`` and ``Supervisor`` instances for the + names in each dictionary.""" student_dict, project_dict, supervisor_dict = {}, {}, {} diff --git a/src/matching/matchings.py b/src/matching/matchings.py index fd47d60..ada55e3 100644 --- a/src/matching/matchings.py +++ b/src/matching/matchings.py @@ -4,7 +4,7 @@ class SingleMatching(BaseMatching): - """ A dictionary-like object for storing and updating a matching with + """A dictionary-like object for storing and updating a matching with singular matches such as those in an instance of SM or SR. Parameters @@ -31,7 +31,7 @@ def __setitem__(self, player, new): class MultipleMatching(BaseMatching): - """ A dictionary-like object for storing and updating a matching with + """A dictionary-like object for storing and updating a matching with multiple matches such as those in an instance of HR or SA. Parameters diff --git a/src/matching/players/hospital.py b/src/matching/players/hospital.py index 68e04e2..86df557 100644 --- a/src/matching/players/hospital.py +++ b/src/matching/players/hospital.py @@ -4,7 +4,7 @@ class Hospital(BasePlayer): - """ A class to represent a hospital in an instance of HR. Also used as a + """A class to represent a hospital in an instance of HR. Also used as a parent class to ``Project`` and ``Supervisor``. Parameters @@ -47,8 +47,8 @@ def oversubscribed_message(self): ) def get_favourite(self): - """ Get the hospital's favourite resident with whom they are not - currently matched. If no such resident exists, return ``None``. """ + """Get the hospital's favourite resident with whom they are not + currently matched. If no such resident exists, return ``None``.""" for player in self.prefs: if player not in self.matching: @@ -70,8 +70,8 @@ def unmatch(self, resident): self.matching = matching def get_worst_match(self): - """ Get the player's worst current match. This assumes that the matching - is in order of preference. """ + """Get the player's worst current match. This assumes that the matching + is in order of preference.""" return self.matching[-1] diff --git a/src/matching/players/player.py b/src/matching/players/player.py index f27af83..d0929a7 100644 --- a/src/matching/players/player.py +++ b/src/matching/players/player.py @@ -4,7 +4,7 @@ class Player(BasePlayer): - """ A class to represent a player within the matching game. + """A class to represent a player within the matching game. Parameters ---------- @@ -47,8 +47,8 @@ def get_successors(self): return self.prefs[idx + 1 :] def check_if_match_is_unacceptable(self, unmatched_okay=False): - """ Check the acceptability of the current match, with the stipulation - that being unmatched is okay (or not). """ + """Check the acceptability of the current match, with the stipulation + that being unmatched is okay (or not).""" other = self.matching diff --git a/src/matching/players/project.py b/src/matching/players/project.py index f825e9f..d886110 100644 --- a/src/matching/players/project.py +++ b/src/matching/players/project.py @@ -4,7 +4,7 @@ class Project(Hospital): - """ A class to represent a project in an instance of SA. + """A class to represent a project in an instance of SA. Parameters ---------- @@ -33,24 +33,24 @@ def __init__(self, name, capacity): self.supervisor = None def set_supervisor(self, supervisor): - """ Set the project's supervisor and add the project to their list - of active projects. """ + """Set the project's supervisor and add the project to their list + of active projects.""" self.supervisor = supervisor if self not in supervisor.projects: supervisor.projects.append(self) def match(self, student): - """ Match the project to ``student``, and update the project - supervisor's matching to include ``student``, too. """ + """Match the project to ``student``, and update the project + supervisor's matching to include ``student``, too.""" self.matching.append(student) self.matching.sort(key=self.prefs.index) self.supervisor.match(student) def unmatch(self, student): - """ Break the matching between the project and ``student``, and the - matching between ``student`` and the project supervisor. """ + """Break the matching between the project and ``student``, and the + matching between ``student`` and the project supervisor.""" matching = self.matching[:] matching.remove(student) @@ -58,8 +58,8 @@ def unmatch(self, student): self.supervisor.unmatch(student) def forget(self, student): - """ Remove ``student`` from the preference list of the project and its - supervisor. """ + """Remove ``student`` from the preference list of the project and its + supervisor.""" if student in self.prefs: prefs = self.prefs[:] diff --git a/src/matching/players/supervisor.py b/src/matching/players/supervisor.py index ddca04a..f7fab4a 100644 --- a/src/matching/players/supervisor.py +++ b/src/matching/players/supervisor.py @@ -4,7 +4,7 @@ class Supervisor(Hospital): - """ A class to represent a supervisor in an instance of SA. + """A class to represent a supervisor in an instance of SA. Parameters ---------- @@ -34,8 +34,8 @@ def __init__(self, name, capacity): self.projects = [] def set_prefs(self, students): - """ Set the preference of the supervisor, and pass those on to its - projects. """ + """Set the preference of the supervisor, and pass those on to its + projects.""" self.prefs = students self._pref_names = [student.name for student in students] @@ -48,8 +48,8 @@ def set_prefs(self, students): project.set_prefs(acceptable) def forget(self, student): - """ Only forget ``student`` if it is not ranked by any of the - supervisor's projects. """ + """Only forget ``student`` if it is not ranked by any of the + supervisor's projects.""" if student in self.prefs and not any( [student in project.prefs for project in self.projects] @@ -59,7 +59,7 @@ def forget(self, student): self.prefs = prefs def get_favourite(self): - """ Find the supervisor's favourite student that it is not currently + """Find the supervisor's favourite student that it is not currently matched to, but has a preference of, one of the supervisor's under-subscribed projects. Also return the student's favourite under-subscribed project. If no such student exists, return ``None``. diff --git a/tests/base/test_game.py b/tests/base/test_game.py index dfd2b52..2c910e1 100644 --- a/tests/base/test_game.py +++ b/tests/base/test_game.py @@ -76,8 +76,8 @@ def test_check_inputs_player_prefs_unique(player_others, clean): @given(player_others=player_others(), clean=booleans()) def test_check_inputs_player_prefs_all_in_party(player_others, clean): - """" Test that a game can verify its players have only got preferences in - the correct party. """ + """ " Test that a game can verify its players have only got preferences in + the correct party.""" player, others = player_others @@ -102,8 +102,8 @@ def test_check_inputs_player_prefs_all_in_party(player_others, clean): @given(player_others=player_others(), clean=booleans()) def test_check_inputs_player_prefs_nonempty(player_others, clean): - """" Test that a game can verify its players have got nonempty preference - lists. """ + """ " Test that a game can verify its players have got nonempty preference + lists.""" player, others = player_others diff --git a/tests/base/test_matching.py b/tests/base/test_matching.py index 5d42d51..8b5497e 100644 --- a/tests/base/test_matching.py +++ b/tests/base/test_matching.py @@ -6,7 +6,12 @@ from matching import BaseMatching DICTIONARIES = given( - dictionary=dictionaries(keys=text(), values=text(), min_size=1, max_size=3,) + dictionary=dictionaries( + keys=text(), + values=text(), + min_size=1, + max_size=3, + ) ) @@ -66,8 +71,8 @@ def test_getitem(dictionary): @DICTIONARIES def test_setitem_check_player_in_keys(dictionary): - """ Check that a `ValueError` is raised if trying to add a new item to a - matching. """ + """Check that a `ValueError` is raised if trying to add a new item to a + matching.""" key = list(dictionary.keys())[0] matching = BaseMatching(dictionary) @@ -79,8 +84,8 @@ def test_setitem_check_player_in_keys(dictionary): @DICTIONARIES def test_setitem_check_new_valid_type(dictionary): - """ Check that a `ValueError` is raised if a new match is not one of the - provided types. """ + """Check that a `ValueError` is raised if a new match is not one of the + provided types.""" val = list(dictionary.values())[0] matching = BaseMatching(dictionary) diff --git a/tests/base/test_player.py b/tests/base/test_player.py index bbb8881..13611e8 100644 --- a/tests/base/test_player.py +++ b/tests/base/test_player.py @@ -21,8 +21,8 @@ def test_init(name): @given(name=text()) def test_repr(name): - """ Test that a Player instance is represented by the string version of - their name. """ + """Test that a Player instance is represented by the string version of + their name.""" player = BasePlayer(name) assert repr(player) == name @@ -33,8 +33,8 @@ def test_repr(name): @given(name=text()) def test_unmatched_message(name): - """ Test that a Player instance can return a message saying they are - unmatched. This is could be a lie. """ + """Test that a Player instance can return a message saying they are + unmatched. This is could be a lie.""" player = BasePlayer(name) @@ -45,9 +45,9 @@ def test_unmatched_message(name): @given(player_others=player_others()) def test_not_in_preferences_message(player_others): - """ Test that a Player instance can return a message saying they are matched + """Test that a Player instance can return a message saying they are matched to another player who does not appear in their preferences. This could be a - lie. """ + lie.""" player, others = player_others @@ -73,8 +73,8 @@ def test_set_prefs(player_others): @given(player_others=player_others()) def test_keep_original_prefs(player_others): - """ Test that a Player instance keeps a record of their original preference - list even when their preferences are updated. """ + """Test that a Player instance keeps a record of their original preference + list even when their preferences are updated.""" player, others = player_others @@ -103,8 +103,8 @@ def test_forget(player_others): @given(player_others=player_others()) def test_prefers(player_others): - """ Test that a Player instance can compare its preference between two - players. """ + """Test that a Player instance can compare its preference between two + players.""" player, others = player_others diff --git a/tests/base/util.py b/tests/base/util.py index 1aaf301..5998e75 100644 --- a/tests/base/util.py +++ b/tests/base/util.py @@ -12,8 +12,8 @@ def player_others( min_size=1, max_size=10, ): - """ A custom strategy for creating a player and a set of other players, all - of whom are `BasePlayer` instances. """ + """A custom strategy for creating a player and a set of other players, all + of whom are `BasePlayer` instances.""" size = draw(integers(min_value=min_size, max_value=max_size)) player = BasePlayer(draw(player_name_from)) diff --git a/tests/hospital_resident/test_algorithm.py b/tests/hospital_resident/test_algorithm.py index 167c190..c88cccb 100644 --- a/tests/hospital_resident/test_algorithm.py +++ b/tests/hospital_resident/test_algorithm.py @@ -13,8 +13,8 @@ @given(players=players()) def test_hospital_resident(players): - """ Test that the hospital-resident algorithm produces a valid solution - for an instance of HR. """ + """Test that the hospital-resident algorithm produces a valid solution + for an instance of HR.""" residents, hospitals = players @@ -31,8 +31,8 @@ def test_hospital_resident(players): @given(players=players()) def test_resident_optimal(players): - """ Test that the resident-optimal algorithm produces a solution that is - indeed resident-optimal. """ + """Test that the resident-optimal algorithm produces a solution that is + indeed resident-optimal.""" residents, hospitals = players @@ -55,8 +55,8 @@ def test_resident_optimal(players): @given(players=players()) def test_hospital_optimal(players): - """ Verify that the hospital-optimal algorithm produces a solution that is - indeed hospital-optimal. """ + """Verify that the hospital-optimal algorithm produces a solution that is + indeed hospital-optimal.""" _, hospitals = players diff --git a/tests/hospital_resident/test_examples.py b/tests/hospital_resident/test_examples.py index 31b669a..fc190ef 100644 --- a/tests/hospital_resident/test_examples.py +++ b/tests/hospital_resident/test_examples.py @@ -32,8 +32,7 @@ def test_readme_example(): def test_example_in_issue(): - """ Verify that the matching found is consistent with the example in #67. - """ + """Verify that the matching found is consistent with the example in #67.""" group_prefs = { "Group 1": ["Intellectual property", "Privacy"], @@ -60,8 +59,8 @@ def test_example_in_issue(): def test_resident_loses_all_preferences(): - """ An example that forces a resident to be removed from the game as all of - their preferences have been forgotten. """ + """An example that forces a resident to be removed from the game as all of + their preferences have been forgotten.""" resident_prefs = {"A": ["X"], "B": ["X", "Y"]} hospital_prefs = {"X": ["B", "A"], "Y": ["B"]} diff --git a/tests/hospital_resident/test_solver.py b/tests/hospital_resident/test_solver.py index 1e38277..3cde2cf 100644 --- a/tests/hospital_resident/test_solver.py +++ b/tests/hospital_resident/test_solver.py @@ -20,8 +20,8 @@ @given(players=players(), clean=booleans()) def test_init(players, clean): - """ Test that an instance of HospitalResident is created correctly when - passed a set of players. """ + """Test that an instance of HospitalResident is created correctly when + passed a set of players.""" residents, hospitals = players @@ -43,8 +43,8 @@ def test_init(players, clean): @given(connections=connections(), clean=booleans()) def test_create_from_dictionaries(connections, clean): - """ Test that HospitalResident is created correctly when passed a set of - dictionaries for each party. """ + """Test that HospitalResident is created correctly when passed a set of + dictionaries for each party.""" resident_prefs, hospital_prefs, capacities = connections @@ -79,9 +79,9 @@ def test_check_inputs(game): @given(game=games()) def test_check_inputs_resident_prefs_all_hospitals(game): - """ Test that every resident has only hospitals in its preference list. If + """Test that every resident has only hospitals in its preference list. If not, check that a warning is caught and the player's preferences are - changed. """ + changed.""" resident = game.residents[0] resident.prefs = [Resident("foo")] @@ -98,9 +98,9 @@ def test_check_inputs_resident_prefs_all_hospitals(game): @given(game=games()) def test_check_inputs_hospital_prefs_all_residents(game): - """ Test that every hospital has only residents in its preference list. If + """Test that every hospital has only residents in its preference list. If not, check that a warning is caught and the player's preferences are - changed. """ + changed.""" hospital = game.hospitals[0] hospital.prefs = [Resident("foo")] @@ -117,9 +117,9 @@ def test_check_inputs_hospital_prefs_all_residents(game): @given(game=games()) def test_check_inputs_hospital_prefs_all_reciprocated(game): - """ Test that each hospital has ranked only those residents that have ranked + """Test that each hospital has ranked only those residents that have ranked it. If not, check that a warning is caught and the hospital has forgotten - any such players. """ + any such players.""" hospital = game.hospitals[0] resident = hospital.prefs[0] @@ -137,9 +137,9 @@ def test_check_inputs_hospital_prefs_all_reciprocated(game): @given(game=games()) def test_check_inputs_hospital_reciprocated_all_prefs(game): - """ Test that each hospital has ranked all those residents that have ranked + """Test that each hospital has ranked all those residents that have ranked it. If not, check that a warning is caught and any such resident has - forgotten the hospital. """ + forgotten the hospital.""" hospital = game.hospitals[0] resident = hospital.prefs[0] @@ -159,8 +159,8 @@ def test_check_inputs_hospital_reciprocated_all_prefs(game): @given(game=games()) def test_check_inputs_resident_prefs_all_nonempty(game): - """ Test that every resident has a non-empty preference list. If not, check - that a warning is caught and the player has been removed from the game. """ + """Test that every resident has a non-empty preference list. If not, check + that a warning is caught and the player has been removed from the game.""" resident = game.residents[0] resident.prefs = [] @@ -176,8 +176,8 @@ def test_check_inputs_resident_prefs_all_nonempty(game): @given(game=games()) def test_check_inputs_hospital_prefs_all_nonempty(game): - """ Test that every hospital has a non-empty preference list. If not, check - that a warning is caught and the player has been removed from the game. """ + """Test that every hospital has a non-empty preference list. If not, check + that a warning is caught and the player has been removed from the game.""" hospital = game.hospitals[0] hospital.prefs = [] @@ -193,9 +193,9 @@ def test_check_inputs_hospital_prefs_all_nonempty(game): @given(game=games()) def test_check_inputs_hospital_capacity(game): - """ Test that each hospital has enough space to accommodate their largest + """Test that each hospital has enough space to accommodate their largest project, but does not offer a surplus of spaces from their projects. - Otherwise, raise an Exception. """ + Otherwise, raise an Exception.""" hospital = game.hospitals[0] capacity = hospital.capacity @@ -239,8 +239,8 @@ def test_solve(game, optimal): @given(game=games()) def test_check_validity(game): - """ Test that HospitalResident finds a valid matching when the game is - solved. """ + """Test that HospitalResident finds a valid matching when the game is + solved.""" game.solve() assert game.check_validity() @@ -248,8 +248,8 @@ def test_check_validity(game): @given(game=games()) def test_check_for_unacceptable_matches_residents(game): - """ Test that HospitalResident recognises a valid matching requires each - resident to have a preference of their match, if they have one. """ + """Test that HospitalResident recognises a valid matching requires each + resident to have a preference of their match, if they have one.""" resident = game.residents[0] hospital = Hospital(name="foo", capacity=1) @@ -271,8 +271,8 @@ def test_check_for_unacceptable_matches_residents(game): @given(game=games()) def test_check_for_unacceptable_matches_hospitals(game): - """ Test that HospitalResident recognises a valid matching requires each - hospital to have a preference of each of its matches, if any. """ + """Test that HospitalResident recognises a valid matching requires each + hospital to have a preference of each of its matches, if any.""" hospital = game.hospitals[0] resident = Resident(name="foo") @@ -294,8 +294,8 @@ def test_check_for_unacceptable_matches_hospitals(game): @given(game=games()) def test_check_for_oversubscribed_hospitals(game): - """ Test that HospitalResident recognises a valid matching requires all - hospitals to not be oversubscribed. """ + """Test that HospitalResident recognises a valid matching requires all + hospitals to not be oversubscribed.""" hospital = game.hospitals[0] hospital.matching = range(hospital.capacity + 1) @@ -315,8 +315,8 @@ def test_check_for_oversubscribed_hospitals(game): def test_check_stability(): - """ Test that HospitalResident can recognise whether a matching is stable or - not. """ + """Test that HospitalResident can recognise whether a matching is stable or + not.""" residents = [Resident("A"), Resident("B"), Resident("C")] hospitals = [Hospital("X", 2), Hospital("Y", 2)] diff --git a/tests/players/test_hospital.py b/tests/players/test_hospital.py index 24bdc28..926090b 100644 --- a/tests/players/test_hospital.py +++ b/tests/players/test_hospital.py @@ -87,8 +87,8 @@ def test_get_worst_match(name, capacity, pref_names): @given(name=text(), capacity=capacity, pref_names=pref_names) def test_get_successors(name, capacity, pref_names): - """ Check that a hospital can get the successors to its worst current match. - """ + """Check that a hospital can get the successors to its worst current + match.""" hospital = Hospital(name, capacity) others = [Resident(other) for other in pref_names] diff --git a/tests/players/test_player.py b/tests/players/test_player.py index 5172a4e..319c0a1 100644 --- a/tests/players/test_player.py +++ b/tests/players/test_player.py @@ -43,8 +43,8 @@ def test_unmatch(name, pref_names): @given(name=text(), pref_names=lists(text(), min_size=1)) def test_get_successors(name, pref_names): - """ Test that the correct successors to another player in a player's - preference list are found. """ + """Test that the correct successors to another player in a player's + preference list are found.""" player = Player(name) others = [Player(other) for other in pref_names] diff --git a/tests/players/test_project.py b/tests/players/test_project.py index b70f337..d2929f5 100644 --- a/tests/players/test_project.py +++ b/tests/players/test_project.py @@ -24,8 +24,8 @@ def test_init(name, capacity): @given(name=text(), capacity=integers()) def test_set_supervisor(name, capacity): - """ Check that a project can update its supervisor member and that it is added - to the supervisor's project list. """ + """Check that a project can update its supervisor member and that it is added + to the supervisor's project list.""" project = Project(name, capacity) supervisor = Supervisor("foo", capacity) @@ -37,8 +37,8 @@ def test_set_supervisor(name, capacity): @given(name=text(), capacity=integers(), pref_names=lists(text(), min_size=1)) def test_match(name, capacity, pref_names): - """ Check that a project can match to a student, and match its supervisor to - them, too. """ + """Check that a project can match to a student, and match its supervisor to + them, too.""" project = Project(name, capacity) supervisor = Supervisor("foo", capacity) @@ -59,8 +59,8 @@ def test_match(name, capacity, pref_names): @given(name=text(), capacity=integers(), pref_names=lists(text(), min_size=1)) def test_unmatch(name, capacity, pref_names): - """ Check that a project can break a matching with a student, and break that - matching for their supervisor member, too. """ + """Check that a project can break a matching with a student, and break that + matching for their supervisor member, too.""" project = Project(name, capacity) supervisor = Supervisor("foo", capacity) diff --git a/tests/players/test_supervisor.py b/tests/players/test_supervisor.py index f28b90c..0eddf5f 100644 --- a/tests/players/test_supervisor.py +++ b/tests/players/test_supervisor.py @@ -9,8 +9,7 @@ @given(name=text(), capacity=integers()) def test_init(name, capacity): - """ Make an instance of Supervisor and check their attributes are correct. - """ + """Make an instance of Supervisor and check their attributes are correct.""" supervisor = Supervisor(name, capacity) @@ -25,8 +24,8 @@ def test_init(name, capacity): @given(name=text(), capacity=integers(), pref_names=lists(text(), min_size=1)) def test_set_prefs(name, capacity, pref_names): - """ Test that a Supervisor can set its preferences correctly, and the - preferences of its project(s). """ + """Test that a Supervisor can set its preferences correctly, and the + preferences of its project(s).""" supervisor = Supervisor(name, capacity) projects = [Project(i, capacity) for i in range(3)] diff --git a/tests/stable_marriage/params.py b/tests/stable_marriage/params.py index 2fde9d6..452c055 100644 --- a/tests/stable_marriage/params.py +++ b/tests/stable_marriage/params.py @@ -9,8 +9,8 @@ @composite def get_player_names(draw, suitor_pool, reviewer_pool): - """ A custom strategy for drawing lists of suitor and reviewer names of - equal size from their respective pools. """ + """A custom strategy for drawing lists of suitor and reviewer names of + equal size from their respective pools.""" suitor_names = draw( lists( @@ -50,8 +50,8 @@ def make_players(player_names, seed): def make_prefs(player_names, seed): - """ Given some names, make a valid set of preferences for each the suitors - and reviewers. """ + """Given some names, make a valid set of preferences for each the suitors + and reviewers.""" np.random.seed(seed) suitor_names, reviewer_names = player_names diff --git a/tests/stable_marriage/test_algorithm.py b/tests/stable_marriage/test_algorithm.py index d1f62b8..12aada0 100644 --- a/tests/stable_marriage/test_algorithm.py +++ b/tests/stable_marriage/test_algorithm.py @@ -7,8 +7,8 @@ @STABLE_MARRIAGE def test_suitor_optimal(player_names, seed): - """ Verify that the suitor-optimal algorithm produces a valid, - suitor-optimal matching for an instance of SM. """ + """Verify that the suitor-optimal algorithm produces a valid, + suitor-optimal matching for an instance of SM.""" suitors, reviewers = make_players(player_names, seed) matching = stable_marriage(suitors, reviewers, optimal="suitor") @@ -26,8 +26,8 @@ def test_suitor_optimal(player_names, seed): @STABLE_MARRIAGE def test_reviewer_optimal(player_names, seed): - """ Verify that the reviewer-optimal algorithm produces a valid, - reviewer-optimal matching for an instance of SM. """ + """Verify that the reviewer-optimal algorithm produces a valid, + reviewer-optimal matching for an instance of SM.""" suitors, reviewers = make_players(player_names, seed) matching = stable_marriage(suitors, reviewers, optimal="reviewer") diff --git a/tests/stable_marriage/test_examples.py b/tests/stable_marriage/test_examples.py index fd32f2d..257cf75 100644 --- a/tests/stable_marriage/test_examples.py +++ b/tests/stable_marriage/test_examples.py @@ -5,9 +5,9 @@ def test_pride_and_prejudice(): - """ Verify that the matching found is consistent with the one adapted from + """Verify that the matching found is consistent with the one adapted from Jane Austen's Pride and Prejudice. Also used in - `docs/discussion/stable_marriage/example.rst`. """ + `docs/discussion/stable_marriage/example.rst`.""" suitors = [ Player(name="Bingley"), diff --git a/tests/stable_marriage/test_solver.py b/tests/stable_marriage/test_solver.py index e06ad82..a18588f 100644 --- a/tests/stable_marriage/test_solver.py +++ b/tests/stable_marriage/test_solver.py @@ -10,8 +10,8 @@ @STABLE_MARRIAGE def test_init(player_names, seed): - """ Test that the StableMarriage solver takes two sets of preformed players - correctly. """ + """Test that the StableMarriage solver takes two sets of preformed players + correctly.""" suitors, reviewers = make_players(player_names, seed) game = StableMarriage(suitors, reviewers) @@ -30,8 +30,8 @@ def test_init(player_names, seed): @STABLE_MARRIAGE def test_create_from_dictionaries(player_names, seed): - """ Test that the StableMarriage solver can take two preference dictionaries - correctly. """ + """Test that the StableMarriage solver can take two preference dictionaries + correctly.""" suitor_prefs, reviewer_prefs = make_prefs(player_names, seed) game = StableMarriage.create_from_dictionaries(suitor_prefs, reviewer_prefs) @@ -49,8 +49,8 @@ def test_create_from_dictionaries(player_names, seed): @STABLE_MARRIAGE def test_inputs_num_players(player_names, seed): - """ Test StableMarriage raises a ValueError when a different number of - suitors and reviewers are passed. """ + """Test StableMarriage raises a ValueError when a different number of + suitors and reviewers are passed.""" suitors, reviewers = make_players(player_names, seed) game = StableMarriage(suitors, reviewers) @@ -65,8 +65,8 @@ def test_inputs_num_players(player_names, seed): @STABLE_MARRIAGE def test_inputs_player_ranks(player_names, seed): - """ Test StableMarriage raises a ValueError when a player has not ranked all - members of the opposing party. """ + """Test StableMarriage raises a ValueError when a player has not ranked all + members of the opposing party.""" suitors, reviewers = make_players(player_names, seed) game = StableMarriage(suitors, reviewers) @@ -82,8 +82,7 @@ def test_inputs_player_ranks(player_names, seed): @STABLE_MARRIAGE def test_solve(player_names, seed): - """ Test that StableMarriage can solve games correctly when passed players. - """ + """Test that StableMarriage can solve games correctly when passed players.""" for optimal in ["suitor", "reviewer"]: suitors, reviewers = make_players(player_names, seed) @@ -120,8 +119,8 @@ def test_check_validity(player_names, seed): @STABLE_MARRIAGE def test_check_for_unmatched_players(player_names, seed): - """ Test that StableMarriage recognises a valid matching requires all - players to be matched as players. """ + """Test that StableMarriage recognises a valid matching requires all + players to be matched as players.""" suitors, reviewers = make_players(player_names, seed) game = StableMarriage(suitors, reviewers) @@ -138,8 +137,8 @@ def test_check_for_unmatched_players(player_names, seed): @STABLE_MARRIAGE def test_check_for_players_not_in_matching(player_names, seed): - """ Test that StableMarriage recognises a valid matching requires all - players to be matched in the matching. """ + """Test that StableMarriage recognises a valid matching requires all + players to be matched in the matching.""" suitors, reviewers = make_players(player_names, seed) game = StableMarriage(suitors, reviewers) @@ -156,8 +155,8 @@ def test_check_for_players_not_in_matching(player_names, seed): @STABLE_MARRIAGE def test_matching_consistent(player_names, seed): - """ Test that StableMarriage recognises a valid matching requires there to - be consistency between the game's matching and its players'. """ + """Test that StableMarriage recognises a valid matching requires there to + be consistency between the game's matching and its players'.""" suitors, reviewers = make_players(player_names, seed) diff --git a/tests/stable_roommates/test_algorithm.py b/tests/stable_roommates/test_algorithm.py index 63f8340..b9473da 100644 --- a/tests/stable_roommates/test_algorithm.py +++ b/tests/stable_roommates/test_algorithm.py @@ -13,8 +13,8 @@ @given(players=players()) def test_first_phase(players): - """ Verify that the first phase of the algorithm produces a valid set of - reduced preference players. """ + """Verify that the first phase of the algorithm produces a valid set of + reduced preference players.""" players = first_phase(players) @@ -25,8 +25,8 @@ def test_first_phase(players): @given(players=players()) def test_locate_all_or_nothing_cycle(players): - """ Verify that a cycle of (least-preferred, second-choice) players can be - identified from a set of players. """ + """Verify that a cycle of (least-preferred, second-choice) players can be + identified from a set of players.""" player = players[-1] cycle = locate_all_or_nothing_cycle(player) @@ -37,8 +37,8 @@ def test_locate_all_or_nothing_cycle(players): @given(players=players()) def test_second_phase(players): - """ Verify that the second phase of the algorithm produces a valid set of - players with appropriate matches. """ + """Verify that the second phase of the algorithm produces a valid set of + players with appropriate matches.""" try: players = second_phase(players) diff --git a/tests/stable_roommates/test_examples.py b/tests/stable_roommates/test_examples.py index 5146e6c..fec4a5e 100644 --- a/tests/stable_roommates/test_examples.py +++ b/tests/stable_roommates/test_examples.py @@ -5,8 +5,8 @@ def test_original_paper(): - """ Verify that the matching found is consistent with the example in the - original paper. """ + """Verify that the matching found is consistent with the example in the + original paper.""" players = [Player(name) for name in ("A", "B", "C", "D", "E", "F")] a, b, c, d, e, f = players @@ -23,8 +23,8 @@ def test_original_paper(): def test_example_in_issue(): - """ Verify that the matching found is consistent with the example provided - in #64. """ + """Verify that the matching found is consistent with the example provided + in #64.""" players = [ Player(name) diff --git a/tests/stable_roommates/test_solver.py b/tests/stable_roommates/test_solver.py index e88ad8a..68b5423 100644 --- a/tests/stable_roommates/test_solver.py +++ b/tests/stable_roommates/test_solver.py @@ -11,8 +11,8 @@ @given(players=players()) def test_init(players): - """ Test that the StableRoommates solver has the correct attributes at - instantiation. """ + """Test that the StableRoommates solver has the correct attributes at + instantiation.""" game = StableRoommates(players) @@ -25,8 +25,8 @@ def test_init(players): @given(preferences=connections()) def test_create_from_dictionary(preferences): - """ Test that StableRoommates solver can take a preference dictionary - correctly. """ + """Test that StableRoommates solver can take a preference dictionary + correctly.""" game = StableRoommates.create_from_dictionary(preferences) @@ -39,8 +39,8 @@ def test_create_from_dictionary(preferences): @given(players=players()) def test_check_inputs(players): - """ Test StableRoommates raises a ValueError when a player has not ranked - all other players. """ + """Test StableRoommates raises a ValueError when a player has not ranked + all other players.""" players[0].prefs = players[0].prefs[:-1] @@ -50,8 +50,7 @@ def test_check_inputs(players): @given(game=games()) def test_solve(game): - """ Test that StableRoommates can solve games correctly. - """ + """Test that StableRoommates can solve games correctly.""" matching = game.solve() assert isinstance(matching, SingleMatching) @@ -69,8 +68,8 @@ def test_solve(game): @given(game=games()) def test_check_validity(game): - """ Test that StableRoommates can raise a ValueError if any players are left - unmatched. """ + """Test that StableRoommates can raise a ValueError if any players are left + unmatched.""" matching = game.solve() if None in matching.values(): @@ -82,8 +81,7 @@ def test_check_validity(game): def test_stability(): - """ Test that StableRoommates can recognise whether a matching is stable. - """ + """Test that StableRoommates can recognise whether a matching is stable.""" players = [Player("A"), Player("B"), Player("C"), Player("D")] a, b, c, d = players diff --git a/tests/student_allocation/params.py b/tests/student_allocation/params.py index 17e3039..1ed4685 100644 --- a/tests/student_allocation/params.py +++ b/tests/student_allocation/params.py @@ -13,8 +13,8 @@ def get_possible_prefs(players): - """ Generate the list of all possible non-empty preference lists made from a - list of players. """ + """Generate the list of all possible non-empty preference lists made from a + list of players.""" all_ordered_subsets = { tuple(set(sub)) for sub in it.product(players, repeat=len(players)) @@ -88,8 +88,7 @@ def make_game( def make_connections( student_names, project_names, supervisor_names, capacities, seed ): - """ Make a valid set of preferences and affiliations given a set of names. - """ + """Make a valid set of preferences and affiliations given a set of names.""" np.random.seed(seed) project_supervisors = {} diff --git a/tests/student_allocation/test_algorithm.py b/tests/student_allocation/test_algorithm.py index 9950ba9..3807fec 100644 --- a/tests/student_allocation/test_algorithm.py +++ b/tests/student_allocation/test_algorithm.py @@ -14,8 +14,8 @@ def test_student_allocation( student_names, project_names, supervisor_names, capacities, seed, clean ): - """ Verify that the student allocation algorithm produces a valid solution - to an instance of SA. """ + """Verify that the student allocation algorithm produces a valid solution + to an instance of SA.""" np.random.seed(seed) students, projects, supervisors = make_players( @@ -37,8 +37,8 @@ def test_student_allocation( def test_student_optimal( student_names, project_names, supervisor_names, capacities, seed, clean ): - """ Verify that the student-optimal algorithm produces a solution that is - indeed student-optimal. """ + """Verify that the student-optimal algorithm produces a solution that is + indeed student-optimal.""" np.random.seed(seed) students, projects, _ = make_players( @@ -65,8 +65,8 @@ def test_student_optimal( def test_supervisor_optimal( student_names, project_names, supervisor_names, capacities, seed, clean ): - """ Verify that the supervisor-optimal algorithm produces a solution that is - indeed supervisor-optimal. """ + """Verify that the supervisor-optimal algorithm produces a solution that is + indeed supervisor-optimal.""" np.random.seed(seed) students, projects, supervisors = make_players( diff --git a/tests/student_allocation/test_solver.py b/tests/student_allocation/test_solver.py index af75081..c79fd09 100644 --- a/tests/student_allocation/test_solver.py +++ b/tests/student_allocation/test_solver.py @@ -20,8 +20,8 @@ def test_init( student_names, project_names, supervisor_names, capacities, seed, clean ): - """ Test that an instance of StudentAllocation is created correctly when - passed a set of players. """ + """Test that an instance of StudentAllocation is created correctly when + passed a set of players.""" students, projects, supervisors, game = make_game( student_names, project_names, supervisor_names, capacities, seed, clean @@ -58,8 +58,8 @@ def test_init( def test_create_from_dictionaries( student_names, project_names, supervisor_names, capacities, seed, clean ): - """ Test that StudentAllocation is created correctly when passed - dictionaries of preferences and affiliations for each party. """ + """Test that StudentAllocation is created correctly when passed + dictionaries of preferences and affiliations for each party.""" stud_prefs, sup_prefs, proj_sups, proj_caps, sup_caps = make_connections( student_names, project_names, supervisor_names, capacities, seed @@ -89,8 +89,8 @@ def test_create_from_dictionaries( def test_remove_supervisor_and_projects( student_names, project_names, supervisor_names, capacities, seed, clean ): - """ Test that a supervisor and its projects can be removed from an instance - of SA. """ + """Test that a supervisor and its projects can be removed from an instance + of SA.""" _, _, _, game = make_game( student_names, project_names, supervisor_names, capacities, seed, clean @@ -143,9 +143,9 @@ def test_check_inputs( def test_check_inputs_project_prefs_all_reciprocated( student_names, project_names, supervisor_names, capacities, seed, clean ): - """ Test that each project has ranked only those students that have ranked + """Test that each project has ranked only those students that have ranked it. If not, check that a warning is caught and the project has forgotten any - such students. """ + such students.""" _, _, _, game = make_game( student_names, project_names, supervisor_names, capacities, seed, clean @@ -169,9 +169,9 @@ def test_check_inputs_project_prefs_all_reciprocated( def test_check_inputs_supervisor_prefs_all_reciprocated( student_names, project_names, supervisor_names, capacities, seed, clean ): - """ Test that each supervisor has ranked only those students that have + """Test that each supervisor has ranked only those students that have ranked it. If not, check that a warning is caught and the supervisor and - its projects have forgotten any such students. """ + its projects have forgotten any such students.""" _, _, _, game = make_game( student_names, project_names, supervisor_names, capacities, seed, clean @@ -202,9 +202,9 @@ def test_check_inputs_supervisor_prefs_all_reciprocated( def test_check_inputs_project_reciprocated_all_prefs( student_names, project_names, supervisor_names, capacities, seed, clean ): - """ Test that each project has ranked all those students that have ranked + """Test that each project has ranked all those students that have ranked it. If not, check that a warning is caught and any such student has - forgotten the project. """ + forgotten the project.""" _, _, _, game = make_game( student_names, project_names, supervisor_names, capacities, seed, clean @@ -228,9 +228,9 @@ def test_check_inputs_project_reciprocated_all_prefs( def test_check_inputs_supervisor_reciprocated_all_prefs( student_names, project_names, supervisor_names, capacities, seed, clean ): - """ Test that each supervisor has ranked all those students that have ranked + """Test that each supervisor has ranked all those students that have ranked at least one of its projects. If not, check that a warning is caught and any - such student has forgotten all projects belonging to that supervisor. """ + such student has forgotten all projects belonging to that supervisor.""" _, _, _, game = make_game( student_names, project_names, supervisor_names, capacities, seed, clean @@ -260,9 +260,9 @@ def test_check_inputs_supervisor_reciprocated_all_prefs( def test_check_inputs_supervisor_capacities_sufficient( student_names, project_names, supervisor_names, capacities, seed, clean ): - """ Test that each project has a capacity no larger than its supervisor. If + """Test that each project has a capacity no larger than its supervisor. If not, check that a warning is caught and that their capacity is updated to - their supervisor's. """ + their supervisor's.""" _, _, _, game = make_game( student_names, project_names, supervisor_names, capacities, seed, clean @@ -287,9 +287,9 @@ def test_check_inputs_supervisor_capacities_sufficient( def test_check_inputs_supervisor_capacities_necessary( student_names, project_names, supervisor_names, capacities, seed, clean ): - """ Test that each project does not have a higher capacity than the sum of + """Test that each project does not have a higher capacity than the sum of its projects. If not, check that a warning is caught and that their capacity - is updated to the sum of its projects. """ + is updated to the sum of its projects.""" _, _, _, game = make_game( student_names, project_names, supervisor_names, capacities, seed, clean @@ -314,8 +314,8 @@ def test_check_inputs_supervisor_capacities_necessary( def test_solve( student_names, project_names, supervisor_names, capacities, seed, clean ): - """ Test that StudentAllocation can solve games correctly when passed a set - of players. """ + """Test that StudentAllocation can solve games correctly when passed a set + of players.""" for optimal in ["student", "supervisor"]: students, projects, _, game = make_game( @@ -357,8 +357,8 @@ def test_solve( def test_check_validity( student_names, project_names, supervisor_names, capacities, seed, clean ): - """ Test that StudentAllocation finds a valid matching when the game is - solved. """ + """Test that StudentAllocation finds a valid matching when the game is + solved.""" _, _, _, game = make_game( student_names, project_names, supervisor_names, capacities, seed, clean @@ -372,8 +372,8 @@ def test_check_validity( def test_check_for_unacceptable_matches_students( student_names, project_names, supervisor_names, capacities, seed, clean ): - """ Test that StudentAllocation recognises a valid matching requires each - student to have a preference of their match, if they have one. """ + """Test that StudentAllocation recognises a valid matching requires each + student to have a preference of their match, if they have one.""" _, _, _, game = make_game( student_names, project_names, supervisor_names, capacities, seed, clean @@ -396,8 +396,8 @@ def test_check_for_unacceptable_matches_students( def test_check_for_unacceptable_matches_projects( student_names, project_names, supervisor_names, capacities, seed, clean ): - """ Test that StudentAllocation recognises a valid matching requires each - project to have a preference of each of their matches, if they have any. """ + """Test that StudentAllocation recognises a valid matching requires each + project to have a preference of each of their matches, if they have any.""" _, _, _, game = make_game( student_names, project_names, supervisor_names, capacities, seed, clean @@ -420,9 +420,9 @@ def test_check_for_unacceptable_matches_projects( def test_check_for_unacceptable_matches_supervisors( student_names, project_names, supervisor_names, capacities, seed, clean ): - """ Test that StudentAllocation recognises a valid matching requires each + """Test that StudentAllocation recognises a valid matching requires each supervisor to have a preference of each of their matches, if they have - any. """ + any.""" _, _, _, game = make_game( student_names, project_names, supervisor_names, capacities, seed, clean @@ -445,8 +445,8 @@ def test_check_for_unacceptable_matches_supervisors( def test_check_for_oversubscribed_projects( student_names, project_names, supervisor_names, capacities, seed, clean ): - """ Test that StudentAllocation recognises a valid matching requires all - projects to not be over-subscribed. """ + """Test that StudentAllocation recognises a valid matching requires all + projects to not be over-subscribed.""" _, _, _, game = make_game( student_names, project_names, supervisor_names, capacities, seed, clean @@ -468,8 +468,8 @@ def test_check_for_oversubscribed_projects( def test_check_for_oversubscribed_supervisors( student_names, project_names, supervisor_names, capacities, seed, clean ): - """ Test that StudentAllocation recognises a valid matching requires all - supervisors to not be over-subscribed. """ + """Test that StudentAllocation recognises a valid matching requires all + supervisors to not be over-subscribed.""" _, _, _, game = make_game( student_names, project_names, supervisor_names, capacities, seed, clean @@ -488,8 +488,8 @@ def test_check_for_oversubscribed_supervisors( def test_check_stability(): - """ Test that StudentAllocation can recognise whether a matching is stable - or not. """ + """Test that StudentAllocation can recognise whether a matching is stable + or not.""" students = [Student("A"), Student("B"), Student("C")] projects = [Project("P", 2), Project("Q", 2)] diff --git a/tests/test_matchings.py b/tests/test_matchings.py index 605446b..351468a 100644 --- a/tests/test_matchings.py +++ b/tests/test_matchings.py @@ -8,8 +8,8 @@ @composite def singles(draw, names_from=text(), min_size=2, max_size=5): - """ A custom strategy for generating a matching for `SingleMatching` out of - Player instances. """ + """A custom strategy for generating a matching for `SingleMatching` out of + Player instances.""" size = draw(integers(min_value=min_size, max_value=max_size)) players = [Player(draw(names_from)) for _ in range(size)] @@ -31,7 +31,7 @@ def multiples( min_players=10, max_players=20, ): - """ A custom strategy for generating a matching for `MultipleMatching` out + """A custom strategy for generating a matching for `MultipleMatching` out of `Hospital` and lists of `Player` instances.""" num_hosts = draw(integers(min_value=min_hosts, max_value=max_hosts)) @@ -52,8 +52,8 @@ def multiples( @given(dictionary=singles()) def test_single_setitem_none(dictionary): - """ Test that a player key in a `SingleMatching` instance can have its - value set to `None`. """ + """Test that a player key in a `SingleMatching` instance can have its + value set to `None`.""" matching = SingleMatching(dictionary) key = list(dictionary.keys())[0] @@ -65,8 +65,8 @@ def test_single_setitem_none(dictionary): @given(dictionary=singles()) def test_single_setitem_player(dictionary): - """ Test that a player key in a `SingleMatching` instance can have its - value set to another player. """ + """Test that a player key in a `SingleMatching` instance can have its + value set to another player.""" matching = SingleMatching(dictionary) key = list(dictionary.keys())[0] @@ -80,8 +80,8 @@ def test_single_setitem_player(dictionary): @given(dictionary=multiples()) def test_multiple_setitem(dictionary): - """ Test that a host player key in a `MultipleMatching` instance can have - its value set to a sublist of the matching's values. """ + """Test that a host player key in a `MultipleMatching` instance can have + its value set to a sublist of the matching's values.""" matching = MultipleMatching(dictionary) host = list(dictionary.keys())[0] From de29deb188be2309896e7ca213da4e37fe38246c Mon Sep 17 00:00:00 2001 From: Henry Wilde Date: Tue, 3 Nov 2020 09:45:00 +0000 Subject: [PATCH 17/18] Add first phase check to SR. --- tests/stable_roommates/test_algorithm.py | 3 +++ 1 file changed, 3 insertions(+) diff --git a/tests/stable_roommates/test_algorithm.py b/tests/stable_roommates/test_algorithm.py index 8d8191f..96606ad 100644 --- a/tests/stable_roommates/test_algorithm.py +++ b/tests/stable_roommates/test_algorithm.py @@ -18,6 +18,9 @@ def test_first_phase(players): players = first_phase(players) + player_matched = {player: player.matching is not None for player in players} + assert sum(player_matched.values()) >= len(players) - 1 + for player in players: if player.matching is None: assert player.prefs == [] From c0615a3ea3d790fcffd7188efe544edfcc19d7a0 Mon Sep 17 00:00:00 2001 From: Henry Wilde Date: Tue, 3 Nov 2020 19:45:15 +0000 Subject: [PATCH 18/18] Fix (now-outdated) logic in tests. --- tests/stable_roommates/test_algorithm.py | 13 +++++++------ 1 file changed, 7 insertions(+), 6 deletions(-) diff --git a/tests/stable_roommates/test_algorithm.py b/tests/stable_roommates/test_algorithm.py index 582ecf9..af40928 100644 --- a/tests/stable_roommates/test_algorithm.py +++ b/tests/stable_roommates/test_algorithm.py @@ -81,7 +81,7 @@ def test_second_phase(players): for player in players: if player.prefs: - assert player.prefs == [player.matching] + assert player.prefs[0] == player.matching else: assert player.matching is None @@ -92,9 +92,10 @@ def test_stable_roommates(players): matching = stable_roommates(players) - for player, other in matching.items(): - if other is None: - assert player.prefs == [] + assert isinstance(matching, dict) + + for player, match in matching.items(): + if match is None: + assert not player.prefs else: - assert player.prefs == [other] - assert other.matching == player + assert match == player.prefs[0]