diff --git a/tutorials/ieee_workshop.ipynb b/tutorials/ieee_workshop.ipynb
new file mode 100644
index 000000000..3d7d1f96b
--- /dev/null
+++ b/tutorials/ieee_workshop.ipynb
@@ -0,0 +1,2083 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "slide"
+ }
+ },
+ "source": [
+ "# Quantum Cloud, Near-Time Compute, and Qiskit Runtime\n",
+ "
\n",
+ "
\n",
+ "\n",
+ "jessieyu@us.ibm.com"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "slide"
+ }
+ },
+ "source": [
+ "You can find a copy of this presentation at\n",
+ "\n",
+ "https://github.com/Qiskit-Partners/qiskit-runtime/tree/main/tutorials/ieee_workshop.ipynb"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "slide"
+ }
+ },
+ "source": [
+ "## Agenda\n",
+ "\n",
+ "- Introduction to Qiskit\n",
+ "- Introduction to IBM Quantum\n",
+ "- Variational Quantum Algorithms\n",
+ "- What is Qiskit Runtime\n",
+ "- Running a Qiskit Runtime program\n",
+ "- Uploading a Qiskit Runtime program\n",
+ "- Invoking Qiskit Runtime API directly\n",
+ "- Exercise"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "slide"
+ }
+ },
+ "source": [
+ "## Introduction to Qiskit\n",
+ "\n",
+ "Qiskit is a Python-based, open source software development toolkit (SDK) for working with quantum computers. It can be used at the level of circuits, algorithms, and application modules.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ "### Installing Qiskit\n",
+ "\n",
+ "*Command:* `pip install Qiskit`\n",
+ "\n",
+ "*Python version:* 3.6+\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ "### Typical Qiskit Workflow\n",
+ "\n",
+ "**Build**: Design a quantum circuit(s) that represents the problem you are considering.\n",
+ "\n",
+ "**Compile**: Compile circuits for a specific quantum backend, e.g., a quantum system or classical simulator.\n",
+ "\n",
+ "**Run**: Run the compiled circuits on the specified quantum backend.\n",
+ "\n",
+ "**Analyze**: Compute summary statistics and visualize the results of the experiments.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ "#### Step 1: Build the Circuit"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "slideshow": {
+ "slide_type": "fragment"
+ }
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
┌───┐ ┌─┐ \n",
+ "q_0: ┤ H ├──■──┤M├───\n",
+ " └───┘┌─┴─┐└╥┘┌─┐\n",
+ "q_1: ─────┤ X ├─╫─┤M├\n",
+ " └───┘ ║ └╥┘\n",
+ "c: 2/═══════════╩══╩═\n",
+ " 0 1
"
+ ],
+ "text/plain": [
+ " ┌───┐ ┌─┐ \n",
+ "q_0: ┤ H ├──■──┤M├───\n",
+ " └───┘┌─┴─┐└╥┘┌─┐\n",
+ "q_1: ─────┤ X ├─╫─┤M├\n",
+ " └───┘ ║ └╥┘\n",
+ "c: 2/═══════════╩══╩═\n",
+ " 0 1 "
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "from qiskit import QuantumCircuit\n",
+ "\n",
+ "# Create a quantum circuit with 2 qubits and 2 classical bits\n",
+ "circuit = QuantumCircuit(2, 2)\n",
+ "\n",
+ "# Add a Hadamard gate on qubit 0\n",
+ "circuit.h(0)\n",
+ "\n",
+ "# Add a CX (CNOT) gate on control qubit 0 and target qubit 1\n",
+ "circuit.cx(0, 1)\n",
+ "\n",
+ "# Measure qubits 0 and 1 onto classical bits 0 and 1\n",
+ "circuit.measure([0, 1], [0, 1])\n",
+ "\n",
+ "# Draw the circuit\n",
+ "circuit.draw()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ "#### Step 2: Compile the Circuit"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "slideshow": {
+ "slide_type": "fragment"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "from qiskit import transpile\n",
+ "from qiskit.providers.aer import AerSimulator\n",
+ "\n",
+ "# Use a local simulator\n",
+ "simulator = AerSimulator()\n",
+ "\n",
+ "# Compile the circuit down to low-level instructions supported by the backend\n",
+ "compiled_circuit = transpile(circuit, simulator)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ "#### Step 3: Run the Circuit"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "slideshow": {
+ "slide_type": "fragment"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# Execute the circuit on the qasm simulator\n",
+ "# shots defines the number of executions\n",
+ "job = simulator.run(compiled_circuit, shots=1000)\n",
+ "\n",
+ "# Grab results from the job\n",
+ "result = job.result()\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ "#### Step 4: Analyze and Visualize the Result"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "slideshow": {
+ "slide_type": "fragment"
+ }
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc0AAAE8CAYAAACii+qhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAhvklEQVR4nO3df5yWdZ3v8dcHZh1xgQIUkB8GKFBAjuK4OIrgdkIe2ZHHZrm2p7Jy1ZN2NDMfu/U4atkpt067+SNPp41af+2P3LItt7bSrQUOOqHDbCRgwMaPAPkRP1ohcZDxc/64b2gcZ4ZrYOaeYXg9H4/7Mff9vb7XdX9ux3veXN/re11XZCaSJOnw+vV0AZIkHSsMTUmSCjI0JUkqyNCUJKkgQ1OSpIIMTUmSCjI0JUkqqOKhGRHXR8S6iHgpIpZGxIWH6X9CRHy6vE5TRPwqIm5s1eedEbGyvHxlRLyjez+FJOl4VFXJN4uIK4B7gOuBxeWfP4iIKZn5q3ZW+wYwBrgWWAOMAAa02GYd8AjwSeDbwGXANyPigsxc0lE9J598co4bN+6oPpMkqW9ZunTpjsw8pa1lUckrAkXEEuDnmXlNi7Y1wLcy8xNt9L8Y+CZwembuaGebjwBDM3NOi7Z/BX6dmX/SUT21tbXZ0NBwZB9GktQnRcTSzKxta1nFhmcj4gTgHODxVoseB85vZ7U/Ap4Bbo6ITRGxJiLujYiBLfrUtbHNH3WwTUmSjkglh2dPBvoD21q1bwPe2s46E4CZQBPwTuD1wJeAUcC7yn1GtrPNkW1tMCKupTTUy6hRo1iwYEHpjSZMYNCgQSxbtgyAYcOGMXXqVBYtWgRAVVUVM2fOpLGxkRdeeAGA2tpatm3bxsaNGwGYOHEi1dXVLF++HIDhw4czadIkFi9eDEB1dTV1dXU0NDSwd+9eAGbMmMGmTZvYvHkzAJMnT6Z///6sXLmy9OFGjmT8+PHU19cDMGDAAGbMmMGSJUvYt28fAHV1daxbt46tW7cCMGXKFJqbm1m1ahUAo0ePZsyYMSxZUhqtHjhwILW1tdTX19PU1ATAzJkzWb16Ndu3bwdg2rRpNDU1sWbNGgDGjh3LiBEjOLhnPnjwYKZPn87ixYs5cOAAALNmzWLFihXs3LkTgJqaGvbs2cPatWsBGDduHEOHDqWxsRGAIUOGUFNTw8KFC8lMIoLZs2ezbNkydu/eDcD06dPZtWsX69ev9/fk78nfk7+nivyeOlKx4dmIGAVsBmZn5qIW7bcD78nMyW2s8zhwITAyM/+z3HYxpT3JkZm5LSL2A1dn5kMt1rsSmJ+Z1R3V5PCsJKm1XjE8C+wAmilN5GlpBLC1nXW2AJsPBmbZc+Wfp5V/bu3kNiVJOiIVC83M3A8sBea0WjQHeKqd1Z4ERrU6hjmp/HND+Wd9J7cpSdIRqfR5ml8EPhARV0fEmyLiHkrHJ78CEBEPRcRDLfr/PbATuD8ipkbEBZROWflWZm4v97kHeEtEfDwi3hgRnwD+ELi7Qp9JknScqOh5mpn5SEQMA24FTgWWA5dk5sG9xtNa9d8bEW+lNPnnGWA38B3g4y36PBUR7wY+A3wa+CVwxeHO0ZQkqbMqep5mb+NEIElSa71lIpAkScc0Q1OSpIIMTUmSCjI0JUkqyNCUJKkgQ1OSpIIMTUmSCjI0JUkqyNCUJKkgQ1OSpIIMTUmSCjI0JUkqyNCUJKkgQ1OSpIIMzePcD3/4QyZPnswZZ5zB5z73udcsf+CBBzjllFM466yzOOuss/ja1752aNmDDz7IxIkTmThxIg8++OCh9v3793PttdcyadIk3vjGN/Loo49W5LNIUner6E2o1bs0Nzfz4Q9/mCeeeIIxY8Zw7rnnMm/ePKZMmfKqfldccQX33Xffq9p27drFHXfcQUNDAxHBOeecw7x58xgyZAif/exnGT58OKtXr+aVV15h165dlfxYktRt3NM8jj399NOcccYZTJgwgRNOOIF3v/vdfPe73y207o9+9CPmzJnD0KFDGTJkCHPmzOGHP/whAH/zN3/DJz7xCQD69evHySef3G2fQZIqydA8jm3evJmxY8ceej1mzBg2b978mn6PPvooZ555Ju9617vYuHFjh+v+5je/AeC2225j+vTpXH755Wzbtq17P4gkVYihqQ5deumlrF+/np///OfMmTOH97///R32P3DgAJs2beL888+nsbGRuro6brnllgpVK0ndy9A8jo0ePfrQniPApk2bGD169Kv6DBs2jOrqagCuvvpqli5d2uG6w4YN46STTuKyyy4D4PLLL6exsbG7P4okVYSheRw799xzWbNmDevWrWP//v184xvfYN68ea/qs2XLlkPPH3vsMd70pjcBMHfuXB5//HF2797N7t27efzxx5k7dy4RwaWXXsqCBQsA+PGPf/yaiUWSjszhZrsf9OijjxIRNDQ0AKUZ7R/84Ad585vfTE1NzaHvZ0vz5s1j2rRp3VV6n+Hs2eNYVVUV9913H3PnzqW5uZmrrrqKqVOncvvtt1NbW8u8efO49957eeyxx6iqqmLo0KE88MADAAwdOpTbbruNc889F4Dbb7+doUOHAvD5z3+e973vfdx0002ccsop3H///T31EaU+o+hs9z179nDPPfcwY8aMQ23z588H4Nlnn2X79u287W1v45lnnqFfv9J+07e//W0GDhxYuQ9zLMvM4/ZxzjnnpCQdC5566qm8+OKLD72+8847884773xNv4985CP5ve99L2fPnp3PPPNMZmZef/31+dBDDx3q85a3vCWXLFmSmZl79uzJCy64IFesWJFTp07t5k9xbAAasp3ccHhWko4BRWa7NzY2snHjRt7+9re/qr2mpobHHnuMAwcOsG7dOpYuXXpoTsJtt93Gxz72MU466aTu/xB9gMOzktQHvPLKK9x8882HDqG0dNVVV/Hcc89RW1vLG97wBs4//3z69+/Pz372M375y19y1113sX79+orXfCwyNCXpGHC42e579uxh+fLlXHTRRQBs3bqVefPm8dhjj1FbW8tdd911qO/555/PpEmTWLhwIQ0NDYwbN44DBw6wfft2LrroojYnCqnE4VlJOgYcbrb76173Onbs2MH69etZv34955133qHAfPHFF/ntb38LwBNPPEFVVRVTpkzhuuuu4/nnn2f9+vUsXryYSZMmGZiH4Z6mJB0Disx2b8/27duZO3cu/fr1Y/To0Tz88MMVrLxvidJEoeNTbW1tHjyPSZIkgIhYmpm1bS1zeFaSpIIMTUmSCjI0JUkqyNCUJKkgQ1OSpIIMTUmSCvI8zS5wzd09XYG6w/yberoCSb2Ne5qSJBVkaEqSVJChKUlSQYamJEkFORFI0nHHyXt9UyUm77mnKUlSQYamJEkFGZqSJBVkaEqSVJChKUlSQYamJEkFGZqSJBVkaEqSVJChKUlSQYamJEkFGZqSJBVkaEqSVJChKUlSQYamJEkFGZqSJBVU8dCMiOsjYl1EvBQRSyPiwoLrzYyIAxGxvFX7ByIi23ic2D2fQJJ0vKpoaEbEFcA9wJ3A2cBTwA8i4rTDrDcEeAj4cTtdXgRObfnIzJe6qm5JkqDye5o3Aw9k5vzMfC4zbwC2ANcdZr2vAw8C9e0sz8zc2vLRhTVLkgRUMDQj4gTgHODxVoseB87vYL3rgRHAZzrY/ICI2BARmyLiexFx9lEXLElSK1UVfK+Tgf7Atlbt24C3trVCRLwZ+CRwXmY2R0Rb3VYBVwHLgEHAR4AnI6ImM9e0sc1rgWsBRo0axYIFCwCYMGECgwYNYtmyZQAMGzaMqVOnsmjRIgCqqqqYOXMmjY2NvPDCCwDU1taybds24PSi/w10DGloaGDv3r0AzJgxg02bNrF582YAJk+eTP/+/Vm5ciUAI0eOZPz48dTXlwZDBgwYwIwZM1iyZAn79u0DoK6ujnXr1rF1a2kgZMqUKTQ3N7Nq1SoARo8ezZgxY1iyZAkAAwcOpLa2lvr6epqamgCYOXMmq1evZvv27QBMmzaNpqYm1qwp/a8+duxYRowYQUNDAwCDBw9m+vTpLF68mAMHDgAwa9YsVqxYwc6dOwGoqalhz549rF27FoBx48YxdOhQGhsbARgyZAg1NTUsXLiQzCQimD17NsuWLWP37t0ATJ8+nV27drF+/Xrg6L5PGzduBGDixIlUV1ezfHlpGsPw4cOZNGkSixcvBqC6upq6uroj+j1BdSf/b9CxYMuWLV3yfepIZGY3foQWbxQxCtgMzM7MRS3abwfek5mTW/WvBv4d+IvMfLjc9ingXZk5rYP36Q/8DPi3zLyxo5pqa2vz4B+Xo3HN3Ue9CfVC82/q6QrUXfzO9k1d9Z2NiKWZWdvWskruae4AmikNtbY0AmjrGOSpwJuA+yPi/nJbPyAi4gBwSWa2HuqlvEfaAEzsssolSaKCxzQzcz+wFJjTatEcSrNoW9sMvBk4q8XjK8B/lJ+3tQ5RGsM9k9IEI0mSukwl9zQBvgg8HBFPA08CHwJGUQpDIuIhgMy8MjNfBlqfk7kdaMrM5S3aPgn8FFgDDAZupBSah5uRK0lSp1Q0NDPzkYgYBtxKafh1OaVh1g3lLh2er9mO1wNfBUYC/0npOOiszHz66CuWJOl3Kr2nSWZ+GfhyO8suOsy6nwI+1arto8BHu6Y6SZLa57VnJUkqyNCUJKkgQ1OSpIIMTUmSCjI0JUkqyNCUJKkgQ1OSpIIMTUmSCjI0JUkqyNCUJKkgQ1OSpIIMTUmSCjI0JUkqyNCUJKkgQ1OSpIIMTUmSCjI0JUkqyNCUJKkgQ1OSpII6FZoR0S8i+rV4PTIiro6IC7q+NEmSepfO7ml+H7gBICIGAg3AF4AFEXFlF9cmSVKv0tnQrAV+Un5+GfACMBy4BrilC+uSJKnX6WxoDgR+U35+MfBPmfkypSA9vQvrkiSp1+lsaP4KuCAifh+YCzxRbh8KvNiVhUmS1NtUdbL/F4GHgb3ABmBRuX0W8GwX1iVJUq/TqdDMzL+OiKXAWOCJzHylvOiXwG1dXZwkSb1JZ/c0ycwGSrNmW7Z9v8sqkiSpl+r0xQ0i4vqIWBERL0bEhHLbn0fEH3d9eZIk9R6dvbjBTcCtwFeBaLHoeeB/dF1ZkiT1Pp3d0/wQcE1m3gMcaNHeCEztsqokSeqFOhuabwCWt9H+MjDg6MuRJKn36mxorgWmt9F+CbDy6MuRJKn36uzs2b8E7ouIkygd06yLiPcBfwZc1dXFSZLUm3T2PM37I6IKuBM4idKFDp4HbszMR7qhPkmSeo0jOU9zPjA/Ik4G+mXm9q4vS5Kk3qfToXlQZu7oykIkSertDhuaEfFzYHZm7o6IZ4Fsr29mntmVxUmS1JsU2dN8FGhq8bzd0JQkqS87bGhm5h0tnn+qW6uRJKkX6+xl9H4SEa9vo31wRPyky6qSJKkX6uzFDS4CTmij/UTgwqOuRpKkXqzQ7NmIaHkVoDMjYleL1/2BucDmrixMkqTepugpJw2UJgAl8Hgby/cBN3RVUZIk9UZFQ3M8pcvmrQX+APh1i2X7ge2Z2dzFtUmS1KsUCs3M3FB+2umbVkuS1FcUubjBZcA/Z+bL5eftysxvd1llkiT1MkX2NL8FjAS2l5+3JylNCpIkqU8qcnGDfm09lyTpeGMISpJUUNFjmoV4TFOS1JcVPaZZhMc0JUl9WqeOaUqSdDwzECVJKsjzNCVJKsjzNCVJKsjzNCVJKqjiIRgR10fEuoh4KSKWRkS79+GMiNkR8VRE7IyIfRHxi4i4pY1+74yIlRHRVP75ju79FJKk41GnQzMipkfEQxHRUH483Op+mx2tewVwD3AncDbwFPCDiDitnVX2AvcCs4ApwGeAOyLi+hbbrAMeAf4OOKv885sRMaOzn02SpI50KjQj4j3AM8CpwL+UHyOApyPivQU2cTPwQGbOz8znMvMGYAtwXVudM3NpZn4jM1dk5rrM/FvgR0DLvdObgH/LzM+Wt/lZYEG5XZKkLtPZPc3PArdl5pzMvL38uBi4jdJeYLsi4gTgHF57E+vHgfOLvHlEnF3uu7BFc10b2/xR0W1KklRU0ZtQH3QK8I9ttH+TUnB25GRKs2u3tWrfBry1oxUjYlP5vauAOzLzKy0Wj2xnmyPb2da1wLUAo0aNYsGCBQBMmDCBQYMGsWzZMgCGDRvG1KlTWbRoEQBVVVXMnDmTxsZGXnjhBQBqa2vZtm0bcHpH5esY1dDQwN69ewGYMWMGmzZtYvPmzQBMnjyZ/v37s3LlSgBGjhzJ+PHjqa+vB2DAgAHMmDGDJUuWsG/fPgDq6upYt24dW7duBWDKlCk0NzezatUqAEaPHs2YMWNYsmQJAAMHDqS2tpb6+nqampoAmDlzJqtXr2b79u0ATJs2jaamJtasWQPA2LFjGTFiBA0NDQAMHjyY6dOns3jxYg4cOADArFmzWLFiBTt37gSgpqaGPXv2sHbtWgDGjRvH0KFDaWxsBGDIkCHU1NSwcOFCMpOIYPbs2Sxbtozdu3cDMH36dHbt2sX69euBo/s+bdy4EYCJEydSXV3N8uXLARg+fDiTJk1i8eLFAFRXV1NXV3dEvyeo7uT/DToWbNmypUu+Tx2JzCxcUER8D/hOZn6tVfvVwDsz820drDsK2AzMzsxFLdpvB96TmZM7WHc8MBA4D/g88JHMfLi8bD9wdWY+1KL/lcD8zOzwm1FbW5sH/7gcjWvuPupNqBeaf1NPV6Du4ne2b+qq72xELM3M2raWdfaC7T8A/iIiaoGfltvOAy4DPnWYTe0AmikdA21pBLC1oxUzc1356bMRMaL8Xg+X27YeyTYlSeqsI71g+6Ehzha+BHy5vY1k5v6IWArMoTSce9Ac4NECdRzUj1ePrdSXt/GFVtt8qhPblCTpsCp9wfYvAg9HxNPAk8CHgFHAVwAi4qHye15Zfn0DsA5YVV5/FnALrw7ne4BFEfFx4DvAO4A/BGZ2Yd2SJHV6ItBRycxHImIYcCul01aWA5dk5oZyl9bna/andAxzHHAA+CXwccohW97mUxHxbkqzdz9d7nNFZi7pxo8iSToOdTo0I2II8DZKAXdCy2WZ+enDrZ+ZX6adYdzMvKjV67uBuwts81sUv++nJElHpFOhGRHnAd8HmiidArKZ0h5jE7Ce0p6eJEl9UmePV36B0mXqRgMvAW+htMfZQGkYVZKkPquzoXkmcF+WTu5sBqozcxvw5xz+lBNJko5pnQ3N/S2ebwPeUH6+l9IsWEmS+qzOTgRqBM4FVlO6KPpnyhcbeC/w864tTZKk3qWze5r/E3i+/PxW4NeULmowhNde7ECSpD6lU3uamdnQ4vmvKZ16IknSceGILm4QEacDbyq/XJmZa7uuJEmSeqfOnqc5DPg6MA945XfN8T3gqszc2cX1SZLUa3T2mObXgDOAC4ETy49ZwHhgfteWJklS79LZ4dm5wH/JzPoWbU9GxH8H/rXrypIkqffp7J7mr4HfttH+IuDQrCSpT+tsaH4auDsiRh9sKD//K7zurCSpjzvs8GxEPAtki6bxwPqI2Fx+ffA6tMMpHfOUJKlPKnJM01tuSZJEgdDMzDsqUYgkSb3dkV7c4C3AFErDtisyc0FXFiVJUm/U2YsbjAb+CTiH312DdlRENADvyMzn211ZkqRjXGdnz95L6T6aZ2Tm2MwcC0wst93b1cVJktSbdHZ4dg5wUWauO9iQmWsj4kbgx11amSRJvUxn9zTh1aefdNQmSVKf0tnQ/DHwpYgYe7AhIk4D7sY9TUlSH9fZ0LwR+H1gbURsiIgNwC/LbTd2dXGSJPUmnT2muRP4A+Ai4I3ltucy04u1S5L6vMKhGRH9gf8EajLzCeCJbqtKkqReqPDwbGY2AxuAE7qvHEmSeq/OHtP8X8DnIuLk7ihGkqTerLPHNG+hdJeTzRGxiVb31szMM7uqMEmSepvOhua3KJ2TGd1QiyRJvVqh0IyIk4AvAH8E/B6lczJvyMwd3VeaJEm9S9FjmncAHwC+D/wD8Fbg/3ZTTZIk9UpFh2cvA/40M78BEBF/BzwZEf3Ls2olSerziu5pjgX+38EXmfk0cAAY1R1FSZLUGxUNzf7A/lZtBzjCm1hLknQsKhp6AfxtRDS1aDsRmB8RLx5syMx5XVmcJEm9SdHQfLCNtr/tykIkSertCoVmZn6wuwuRJKm3O5KbUEuSdFwyNCVJKsjQlCSpIENTkqSCDE1JkgoyNCVJKsjQlCSpIENTkqSCDE1JkgoyNCVJKsjQlCSpIENTkqSCDE1JkgoyNCVJKsjQlCSpIENTkqSCDE1JkgoyNCVJKsjQlCSpIENTkqSCKh6aEXF9RKyLiJciYmlEXNhB31Mj4u8j4hcR0RwRD7TR5wMRkW08TuzWDyJJOu5UNDQj4grgHuBO4GzgKeAHEXFaO6tUAzuAzwFLOtj0i8CpLR+Z+VJX1S1JElR+T/Nm4IHMnJ+Zz2XmDcAW4Lq2Omfm+sy8MTMfAHZ1sN3MzK0tH11fuiTpeFdVqTeKiBOAc4C/bLXoceD8o9z8gIjYAPQHfgbclpn/3k4d1wLXAowaNYoFCxYAMGHCBAYNGsSyZcsAGDZsGFOnTmXRokUAVFVVMXPmTBobG3nhhRcAqK2tZdu2bcDpR1m+eqOGhgb27t0LwIwZM9i0aRObN28GYPLkyfTv35+VK1cCMHLkSMaPH099fT0AAwYMYMaMGSxZsoR9+/YBUFdXx7p169i6tfRvuilTptDc3MyqVasAGD16NGPGjGHJktKgysCBA6mtraW+vp6mpiYAZs6cyerVq9m+fTsA06ZNo6mpiTVr1gAwduxYRowYQUNDAwCDBw9m+vTpLF68mAMHDgAwa9YsVqxYwc6dOwGoqalhz549rF27FoBx48YxdOhQGhsbARgyZAg1NTUsXLiQzCQimD17NsuWLWP37t0ATJ8+nV27drF+/Xrg6L5PGzduBGDixIlUV1ezfPlyAIYPH86kSZNYvHgxANXV1dTV1R3R76k0iKW+ZsuWLV3yfepIZGY3foQWbxQxCtgMzM7MRS3abwfek5mTD7P+94AdmfmBVu11wCRgGTAI+AhwCVCTmWs62mZtbW0e/ONyNK65+6g3oV5o/k09XYG6i9/ZvqmrvrMRsTQza9taVrE9ze6SmfVA/cHXEfEUpb3NG4Abe6gsSVIfVMljmjuAZmBEq/YRQJcdg8zMZqABmNhV25QkCSoYmpm5H1gKzGm1aA6lWbRdIiICOJPSBCNJkrpMpYdnvwg8HBFPA08CHwJGAV8BiIiHADLzyoMrRMRZ5aeDgVfKr/dn5sry8k8CPwXWlPvcSCk025yRK0nSkapoaGbmIxExDLiV0vmUy4FLMnNDuUtb52u2ngV7KbABGFd+/Xrgq8BI4D/L/Wdl5tNdWrwk6bhX8YlAmfll4MvtLLuojbY4zPY+Cny0S4qTJKkDXntWkqSCDE1JkgoyNCVJKsjQlCSpIENTkqSCDE1JkgoyNCVJKsjQlCSpIENTkqSCDE1JkgoyNCVJKsjQlCSpIENTkqSCDE1JkgoyNCVJKsjQlCSpIENTkqSCDE1JkgoyNCVJKsjQlCSpIENTkqSCDE1JkgoyNCVJKsjQlCSpIENTkqSCDE1JkgoyNCVJKsjQlCSpIENTkqSCDE1JkgoyNCVJKsjQlCSpIENTkqSCDE1JkgoyNCVJKsjQlCSpIENTkqSCDE1JkgoyNCVJKsjQlCSpIENTkqSCDE1JkgoyNCVJKsjQlCSpIENTkqSCDE1JkgoyNCVJKsjQlCSpIENTkqSCDE1JkgoyNCVJKsjQlCSpIENTkqSCDE1JkgoyNCVJKsjQlCSpoIqHZkRcHxHrIuKliFgaERcepv/scr+XImJtRHzoaLcpSdKRqGhoRsQVwD3AncDZwFPADyLitHb6jwf+pdzvbOAvgC9FxDuPdJuSJB2pSu9p3gw8kJnzM/O5zLwB2AJc107/DwHPZ+YN5f7zgQeBW45im5IkHZHIzMq8UcQJwIvAn2TmN1u0/x9gWmbObmOdRcCzmfnhFm2XA38PnATEEWzzWuDa8svJwKou+HjHk5OBHT1dhKTC/M523hsy85S2FlRVsIiTgf7Atlbt24C3trPOSOBf2+hfVd5edHabmflV4KuFq9arRERDZtb2dB2SivE727WcPStJUkGV3NPcATQDI1q1jwC2trPO1nb6HyhvL45gm5IkHZGK7Wlm5n5gKTCn1aI5lGa8tqW+nf4NmfnyEW5TR8ehbenY4ne2C1VsIhAcOj3kYeB64ElKs2P/FJiamRsi4iGAzLyy3H88sByYD/w1cAHwZUoTfx4tss2KfThJUp9XyeFZMvORiBgG3AqcSikQL2kRbqe16r8uIi4B7qJ0CsnzwI0HA7PgNiVJ6hIV3dOUJOlY5uxZSZIKMjQlSSrI0JQkqaCKTgTSsSkixgBnUDov9hVgVWZ6Hqyk444TgdShiLgOuAqoAX4L/AewCfgp8J3MXBUR/TLzlR4sU5IqwuFZtat8Ks+dwHcpnc5TR+kuM83AlcC9ETElM1+JiOi5SiWpMtzTVLsi4gbgvZk5o41lMynd33Q08AeZ6V0UpB4WEb8HjAc2ZGZTT9fTF7mnqY7sBwZFxDSAiKgu3+KNzFwMvAd4Cbi450qU1MKHgX8HvhIRl0bEyIjo37JDRAyOiLeVA1adZGiqI9+iNPHnpogYlJlNmbk/IvoBZOavgN8AY3qwRkm/cwXwNKWJe9+hdP3uL0TEzIh4XbnPfwM+mZkv90yJxzZDU20qH6PcRenyhHOA5yPi6xFxTnn5aRHxXuDNwD/2XKWSACLiFOBlYH5mXgi8Afg68F+BRcBPIuLPgZuAJT1V57HOY5rqUES8ntI1gc8H3kHpovlQuvVaAA9n5qd6pDhJh0TEqcC7gZWZ+aNWy84Gri4vHwKMzczNla/y2Gdo6jUiYjjwPuBjlO5buo/SMOxiSqea/B6l4Z8fZubqHipTUisRMQDIzHyp5Yz2LP+hj4jPUrqhxdk9VeOxztDUa0TEA8BU4J8pDdEOpTQMOwnYDtyamQ7vSL1QRES28Yc9Ik4CGoH7M/Pzla+sbzA09Srlf53uofSv0UUt2k4DZlAa4pkA/HFmNvZYoZIOiYjBwJ62wrJFnxMpTRT6h8zcX7Hi+hgnAqm1KcA6SqebAKWhnczckJn/CFxKaaj28p4pT1IbvgBcFRFvLgdoW07MzAcNzKNjaKq1tZSGYO+KiIkHTy85qHzC9IPA23qiOEmvFhF/AlwD/BWlq3d9ISLeERGnl49xHjzW+eDBc6515Bye1WtExHnAVyhNAPpr4MfA7szcWz4u8hDwUma+twfLlARExHxKl7b838BlwPuB04FVwL9Q+v5OBu7JzBN6qs6+wtBUm8r/Ir0NmEfpQu31wK+BtwJbgKsz89meq1BSRFQBfwYMzsyPt2ifSmnv813AicDrgQcz8097os6+xNBUh8qnn7wd+CNKl8xbDnwzM3/Rk3VJKomIIcCIzPxF+TKXL7ecEBQRVwD/AEzPzJ/1UJl9hqGpwrwFmHRsKM9FiMxsjohrKA3NntTTdfUF3oRahRmY0rGh1Xd1EPDJnqqlr3FPU5L6sPLdTJr9R2/XMDQlSSrI8zQlSSrI0JQkqSBDU5KkggxNSZIKMjQlSSro/wMeb81AwU1OAQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "