diff --git a/element_array_ephys/probe.py b/element_array_ephys/probe.py index 497f1792..1d517cf3 100644 --- a/element_array_ephys/probe.py +++ b/element_array_ephys/probe.py @@ -1,10 +1,10 @@ """ Neuropixels Probes """ -from __future__ import annotations - import datajoint as dj -import numpy as np + +from .readers import probe_geometry +from .readers.probe_geometry import build_electrode_layouts schema = dj.schema() @@ -96,60 +96,23 @@ def create_neuropixels_probe(probe_type: str = "neuropixels 1.0 - 3A"): For electrode location, the (0, 0) is the bottom left corner of the probe (ignore the tip portion) - Electrode numbering is 1-indexing + Electrode numbering is 0-indexing """ - neuropixels_probes_config = { - "neuropixels 1.0 - 3A": dict( - site_count_per_shank=960, - col_spacing=32, - row_spacing=20, - white_spacing=16, - col_count_per_shank=2, - shank_count=1, - shank_spacing=0, - ), - "neuropixels 1.0 - 3B": dict( - site_count_per_shank=960, - col_spacing=32, - row_spacing=20, - white_spacing=16, - col_count_per_shank=2, - shank_count=1, - shank_spacing=0, - ), - "neuropixels UHD": dict( - site_count_per_shank=384, - col_spacing=6, - row_spacing=6, - white_spacing=0, - col_count_per_shank=8, - shank_count=1, - shank_spacing=0, - ), - "neuropixels 2.0 - SS": dict( - site_count_per_shank=1280, - col_spacing=32, - row_spacing=15, - white_spacing=0, - col_count_per_shank=2, - shank_count=1, - shank_spacing=250, - ), - "neuropixels 2.0 - MS": dict( - site_count_per_shank=1280, - col_spacing=32, - row_spacing=15, - white_spacing=0, - col_count_per_shank=2, - shank_count=4, - shank_spacing=250, - ), - } + npx_probes_config = probe_geometry.M + npx_probes_config["neuropixels 1.0 - 3A"] = npx_probes_config["3A"] + npx_probes_config["neuropixels 1.0 - 3B"] = npx_probes_config["NP1010"] + npx_probes_config["neuropixels UHD"] = npx_probes_config["NP1100"] + npx_probes_config["neuropixels 2.0 - SS"] = npx_probes_config["NP2000"] + npx_probes_config["neuropixels 2.0 - MS"] = npx_probes_config["NP2010"] probe_type = {"probe_type": probe_type} - electrode_layouts = build_electrode_layouts( - **{**neuropixels_probes_config[probe_type["probe_type"]], **probe_type} + probe_params = dict(zip( + probe_geometry.geom_param_names, + npx_probes_config[probe_type["probe_type"]] + )) + electrode_layouts = probe_geometry.build_npx_probe( + **{**probe_params, **probe_type} ) with ProbeType.connection.transaction: ProbeType.insert1(probe_type, skip_duplicates=True) @@ -205,60 +168,3 @@ class Electrode(dj.Part): -> master -> ProbeType.Electrode """ - - -def build_electrode_layouts( - probe_type: str, - site_count_per_shank: int, - col_spacing: float = None, - row_spacing: float = None, - white_spacing: float = None, - col_count_per_shank: int = 1, - shank_count: int = 1, - shank_spacing: float = None, - y_origin="bottom", -) -> list[dict]: - """Builds electrode layouts. - - Args: - probe_type (str): probe type (e.g., "neuropixels 1.0 - 3A"). - site_count_per_shank (int): site count per shank. - col_spacing (float): (um) horizontal spacing between sites. Defaults to None (single column). - row_spacing (float): (um) vertical spacing between columns. Defaults to None (single row). - white_spacing (float): (um) offset spacing. Defaults to None. - col_count_per_shank (int): number of column per shank. Defaults to 1 (single column). - shank_count (int): number of shank. Defaults to 1 (single shank). - shank_spacing (float): (um) spacing between shanks. Defaults to None (single shank). - y_origin (str): {"bottom", "top"}. y value decrements if "top". Defaults to "bottom". - """ - row_count = int(site_count_per_shank / col_count_per_shank) - x_coords = np.tile( - np.arange(0, (col_spacing or 1) * col_count_per_shank, (col_spacing or 1)), - row_count, - ) - y_coords = np.repeat(np.arange(row_count) * (row_spacing or 1), col_count_per_shank) - - if white_spacing: - x_white_spaces = np.tile( - [white_spacing, white_spacing, 0, 0], int(row_count / 2) - ) - x_coords = x_coords + x_white_spaces - - shank_cols = np.tile(range(col_count_per_shank), row_count) - shank_rows = np.repeat(range(row_count), col_count_per_shank) - - return [ - { - "probe_type": probe_type, - "electrode": (site_count_per_shank * shank_no) + e_id, - "shank": shank_no, - "shank_col": c_id, - "shank_row": r_id, - "x_coord": x + (shank_no * (shank_spacing or 1)), - "y_coord": {"top": -y, "bottom": y}[y_origin], - } - for shank_no in range(shank_count) - for e_id, (c_id, r_id, x, y) in enumerate( - zip(shank_cols, shank_rows, x_coords, y_coords) - ) - ] diff --git a/element_array_ephys/readers/probe_geometry.py b/element_array_ephys/readers/probe_geometry.py new file mode 100644 index 00000000..11e3ae99 --- /dev/null +++ b/element_array_ephys/readers/probe_geometry.py @@ -0,0 +1,213 @@ +from __future__ import annotations + +import numpy as np +import pandas as pd + +""" +Geometry definition for Neuropixels probes +The definition here are all from Jennifer Colonell +See: +https://github.com/jenniferColonell/SGLXMetaToCoords/blob/main/SGLXMetaToCoords.py + +A better approach is to pip install and use as a package +Unfortunately, the GitHub repo above is not yet packaged and pip installable + +Better yet, full integration with ProbeInterface and the probes' geometry + from Jennifer Colonell - this is in the making! + +Latest update: 07-26-2023 +""" + +# many part numbers have the same geometry parameters ; +# define those sets in lists +# [nShank, shankWidth, shankPitch, even_xOff, odd_xOff, horizPitch, vertPitch, rowsPerShank, elecPerShank] +geom_param_names = [ + "nShank", + "shankWidth", + "shankPitch", + "even_xOff", + "odd_xOff", + "horizPitch", + "vertPitch", + "rowsPerShank", + "elecPerShank", +] + +# offset and pitch values in um +np1_stag_70um = [1, 70, 0, 27, 11, 32, 20, 480, 960] +nhp_lin_70um = [1, 70, 0, 27, 27, 32, 20, 480, 960] +nhp_stag_125um_med = [1, 125, 0, 27, 11, 87, 20, 1368, 2496] +nhp_stag_125um_long = [1, 125, 0, 27, 11, 87, 20, 2208, 4416] +nhp_lin_125um_med = [1, 125, 0, 11, 11, 103, 20, 1368, 2496] +nhp_lin_125um_long = [1, 125, 0, 11, 11, 103, 20, 2208, 4416] +uhd_8col_1bank = [1, 70, 0, 14, 14, 6, 6, 48, 384] +uhd_8col_16bank = [1, 70, 0, 14, 14, 6, 6, 768, 6144] +np2_ss = [1, 70, 0, 27, 27, 32, 15, 640, 1280] +np2_4s = [4, 70, 250, 27, 27, 32, 15, 640, 1280] +NP1120 = [1, 70, 0, 6.75, 6.75, 4.5, 4.5, 192, 384] +NP1121 = [1, 70, 0, 6.25, 6.25, 3, 3, 384, 384] +NP1122 = [1, 70, 0, 6.75, 6.75, 4.5, 4.5, 24, 384] +NP1123 = [1, 70, 0, 10.25, 10.25, 3, 3, 32, 384] +NP1300 = [1, 70, 0, 11, 11, 48, 20, 480, 960] +NP1200 = [1, 70, 0, 27, 11, 32, 20, 64, 128] +NXT3000 = [1, 70, 0, 53, 53, 0, 15, 128, 128] + +""" +Electrode coordinate system - from Bill Karsh +(https://github.com/billkarsh/SpikeGLX/blob/master/Markdown/Metadata_30.md) + +The X-origin is the left edge of the shank +The Y-origin is the center of the bottom-most elecrode row (closest to the tip) +""" + + +M = dict( + [ + ("3A", np1_stag_70um), + ("PRB_1_4_0480_1", np1_stag_70um), + ("PRB_1_4_0480_1_C", np1_stag_70um), + ("NP1010", np1_stag_70um), + ("NP1011", np1_stag_70um), + ("NP1012", np1_stag_70um), + ("NP1013", np1_stag_70um), + ("NP1015", nhp_lin_70um), + ("NP1016", nhp_lin_70um), + ("NP1017", nhp_lin_70um), + ("NP1020", nhp_stag_125um_med), + ("NP1021", nhp_stag_125um_med), + ("NP1030", nhp_stag_125um_long), + ("NP1031", nhp_stag_125um_long), + ("NP1022", nhp_lin_125um_med), + ("NP1032", nhp_lin_125um_long), + ("NP1100", uhd_8col_1bank), + ("NP1110", uhd_8col_16bank), + ("PRB2_1_4_0480_1", np2_ss), + ("PRB2_1_2_0640_0", np2_ss), + ("NP2000", np2_ss), + ("NP2003", np2_ss), + ("NP2004", np2_ss), + ("PRB2_4_2_0640_0", np2_4s), + ("PRB2_4_4_0480_1", np2_4s), + ("NP2010", np2_4s), + ("NP2013", np2_4s), + ("NP2014", np2_4s), + ("NP1120", NP1120), + ("NP1121", NP1121), + ("NP1122", NP1122), + ("NP1123", NP1123), + ("NP1300", NP1300), + ("NP1200", NP1200), + ("NXT3000", NXT3000), + ] +) + + +def build_npx_probe( + nShank: int, + shankWidth: float, + shankPitch: float, + even_xOff: float, + odd_xOff: float, + horizPitch: float, + vertPitch: float, + rowsPerShank: int, + elecPerShank: int, + probe_type: str = "neuropixels", +): + row_offset = np.tile([even_xOff, odd_xOff], int(rowsPerShank / 2)) + + elec_pos_df = build_electrode_layouts( + probe_type=probe_type, + site_count_per_shank=elecPerShank, + col_spacing=horizPitch, + row_spacing=vertPitch, + row_offset=row_offset, + col_count_per_shank=int(elecPerShank / rowsPerShank), + shank_count=nShank, + shank_spacing=shankPitch, + y_origin="bottom", + as_dataframe=True, + ) + + return elec_pos_df + + +def to_probeinterface(electrodes_df): + from probeinterface import Probe + + probe_df = electrodes_df.copy() + probe_df.rename( + columns={ + "electrode": "contact_ids", + "shank": "shank_ids", + "x_coord": "x", + "y_coord": "y", + }, + inplace=True, + ) + probe_df["contact_shapes"] = "square" + probe_df["width"] = 12 + + return Probe.from_dataframe(probe_df) + + +def build_electrode_layouts( + probe_type: str, + site_count_per_shank: int, + col_spacing: float = None, + row_spacing: float = None, + row_offset: list = None, + col_count_per_shank: int = 1, + shank_count: int = 1, + shank_spacing: float = None, + y_origin="bottom", + as_dataframe=False, +) -> list[dict]: + """Builds electrode layouts. + + Args: + probe_type (str): probe type (e.g., "neuropixels 1.0 - 3A"). + site_count_per_shank (int): site count per shank. + col_spacing (float): (um) horizontal spacing between sites. Defaults to None (single column). + row_spacing (float): (um) vertical spacing between columns. Defaults to None (single row). + row_offset (list): (um) per-row offset spacing. Defaults to None. + col_count_per_shank (int): number of column per shank. Defaults to 1 (single column). + shank_count (int): number of shank. Defaults to 1 (single shank). + shank_spacing (float): (um) spacing between shanks. Defaults to None (single shank). + y_origin (str): {"bottom", "top"}. y value decrements if "top". Defaults to "bottom". + as_dataframe (bool): if True, returns as pandas DataFrame, otherwise as list of dict + """ + row_count = int(site_count_per_shank / col_count_per_shank) + x_coords = np.tile( + np.arange(0, (col_spacing or 1) * col_count_per_shank, (col_spacing or 1)), + row_count, + ) + y_coords = np.repeat(np.arange(row_count) * (row_spacing or 1), col_count_per_shank) + + if row_offset is None: + row_offset = np.zeros_like(x_coords) + else: + assert len(row_offset) == row_count + row_offset = np.tile(row_offset, col_count_per_shank) + x_coords = x_coords + row_offset + + shank_cols = np.tile(range(col_count_per_shank), row_count) + shank_rows = np.repeat(range(row_count), col_count_per_shank) + + electrode_layout = [ + { + "probe_type": probe_type, + "electrode": (site_count_per_shank * shank_no) + e_id, + "shank": shank_no, + "shank_col": c_id, + "shank_row": r_id, + "x_coord": x + (shank_no * (shank_spacing or 1)), + "y_coord": {"top": -y, "bottom": y}[y_origin], + } + for shank_no in range(shank_count) + for e_id, (c_id, r_id, x, y) in enumerate( + zip(shank_cols, shank_rows, x_coords, y_coords) + ) + ] + + return pd.DataFrame(electrode_layout) if as_dataframe else electrode_layout diff --git a/element_array_ephys/readers/spikeglx.py b/element_array_ephys/readers/spikeglx.py index 565db852..819b7b1a 100644 --- a/element_array_ephys/readers/spikeglx.py +++ b/element_array_ephys/readers/spikeglx.py @@ -293,12 +293,20 @@ def __init__(self, meta_filepath): "Probe Serial Number not found in" ' either "imProbeSN" or "imDatPrb_sn"' ) + # Get probe part number + self.probe_PN = self.meta.get("imDatPrb_pn", "3A") + # Parse channel info self.chanmap = ( self._parse_chanmap(self.meta["~snsChanMap"]) if "~snsChanMap" in self.meta else None ) + self.geommap = ( + self._parse_geommap(self.meta["~snsGeomMap"]) + if "~snsGeomMap" in self.meta + else None + ) self.shankmap = ( self._parse_shankmap(self.meta["~snsShankMap"]) if "~snsShankMap" in self.meta @@ -310,6 +318,9 @@ def __init__(self, meta_filepath): else None ) + if self.shankmap is None and self.geommap is not None: + self.shankmap = self._transform_geom_to_shank() + # Channels being recorded, exclude Sync channels - basically a 1-1 mapping to shankmap self.recording_channels = np.arange(len(self.imroTbl["data"]))[ self.get_recording_channels_indices(exclude_sync=True) @@ -370,6 +381,39 @@ def _parse_shankmap(raw): return res + @staticmethod + def _parse_geommap(raw): + """ + The shankmap contains details on the shank info + for each electrode sites of the sites being recorded only + Parsing from the `~snsGeomMap` (available with SpikeGLX 20230202-phase30 and later) + + https://github.com/billkarsh/SpikeGLX/blob/master/Markdown/Metadata_30.md + Parse shank map header structure. Converts: + + '(x,y,z)(a:b:c:d)...(a:b:c:d)' + a: zero-based shank # + b: x-coordinate (um) of elecrode center + c: z-coordinate (um) of elecrode center + d: 0/1 `used` flag (included in spatial average or not) + e.g: + + '(1,2,480)(0:0:192:1)...(0:1:191:1)' + + into dict of form: + + {'shape': [x,y,z], 'data': [[a,b,c,d],...]} + """ + res = {"header": None, "data": []} + + for u in (i.rstrip(")") for i in raw.split("(") if i != ""): + if "," in u: + res["header"] = [d for d in u.split(",")] + else: + res["data"].append([int(d) for d in u.split(":")]) + + return res + @staticmethod def _parse_imrotbl(raw): """ @@ -400,6 +444,36 @@ def _parse_imrotbl(raw): return res + def _transform_geom_to_shank(self): + if self.geommap is None: + raise ValueError("Geometry Map not available") + + from . import probe_geometry + + probe_params = dict( + zip( + probe_geometry.geom_param_names, + probe_geometry.M[self.probe_PN] + ) + ) + probe_params["probe_type"] = self.probe_PN + elec_pos_df = probe_geometry.build_npx_probe(**probe_params) + + res = {"shape": self.geommap["header"], "data": []} + for shank, x_coord, y_coord, is_used in self.geommap["data"]: + # offset shank pitch + x_coord += probe_params["shankPitch"] * shank + matched_elec = elec_pos_df.query( + f"x_coord=={x_coord} & y_coord=={y_coord} & shank=={shank}" + ) + shank_col, shank_row = ( + matched_elec.shank_col.iloc[0], + matched_elec.shank_row.iloc[0], + ) + res["data"].append([shank, shank_col, shank_row, is_used]) + + return res + def get_recording_channels_indices(self, exclude_sync=False): """ The indices of recorded channels (in chanmap)