diff --git a/torchvision/prototype/transforms/functional/_color.py b/torchvision/prototype/transforms/functional/_color.py index 742b344cf71..3ad65493f70 100644 --- a/torchvision/prototype/transforms/functional/_color.py +++ b/torchvision/prototype/transforms/functional/_color.py @@ -188,7 +188,7 @@ def _hsv_to_rgb(img: torch.Tensor) -> torch.Tensor: h, s, v = img.unbind(dim=-3) h6 = h * 6 i = torch.floor(h6) - f = (h6) - i + f = h6 - i i = i.to(dtype=torch.int32) p = (v * (1.0 - s)).clamp_(0.0, 1.0) @@ -210,9 +210,6 @@ def adjust_hue_image_tensor(image: torch.Tensor, hue_factor: float) -> torch.Ten if not (-0.5 <= hue_factor <= 0.5): raise ValueError(f"hue_factor ({hue_factor}) is not in [-0.5, 0.5].") - if not (isinstance(image, torch.Tensor)): - raise TypeError("Input img should be Tensor image") - c = get_num_channels_image_tensor(image) if c not in [1, 3]: @@ -258,9 +255,6 @@ def adjust_hue(inpt: features.InputTypeJIT, hue_factor: float) -> features.Input def adjust_gamma_image_tensor(image: torch.Tensor, gamma: float, gain: float = 1.0) -> torch.Tensor: - if not (isinstance(image, torch.Tensor)): - raise TypeError("Input img should be Tensor image") - if gamma < 0: raise ValueError("Gamma should be a non-negative real number") @@ -337,10 +331,6 @@ def solarize(inpt: features.InputTypeJIT, threshold: float) -> features.InputTyp def autocontrast_image_tensor(image: torch.Tensor) -> torch.Tensor: - - if not (isinstance(image, torch.Tensor)): - raise TypeError("Input img should be Tensor image") - c = get_num_channels_image_tensor(image) if c not in [1, 3]: diff --git a/torchvision/prototype/transforms/functional/_meta.py b/torchvision/prototype/transforms/functional/_meta.py index 50d7c9bbf60..5e017848415 100644 --- a/torchvision/prototype/transforms/functional/_meta.py +++ b/torchvision/prototype/transforms/functional/_meta.py @@ -183,12 +183,8 @@ def clamp_bounding_box( return convert_format_bounding_box(xyxy_boxes, BoundingBoxFormat.XYXY, format) -def _split_alpha(image: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: - return image[..., :-1, :, :], image[..., -1:, :, :] - - def _strip_alpha(image: torch.Tensor) -> torch.Tensor: - image, alpha = _split_alpha(image) + image, alpha = torch.tensor_split(image, indices=(-1,), dim=-3) if not torch.all(alpha == _FT._max_value(alpha.dtype)): raise RuntimeError( "Stripping the alpha channel if it contains values other than the max value is not supported." @@ -237,7 +233,7 @@ def convert_color_space_image_tensor( elif old_color_space == ColorSpace.GRAY_ALPHA and new_color_space == ColorSpace.RGB: return _gray_to_rgb(_strip_alpha(image)) elif old_color_space == ColorSpace.GRAY_ALPHA and new_color_space == ColorSpace.RGB_ALPHA: - image, alpha = _split_alpha(image) + image, alpha = torch.tensor_split(image, indices=(-1,), dim=-3) return _add_alpha(_gray_to_rgb(image), alpha) elif old_color_space == ColorSpace.RGB and new_color_space == ColorSpace.GRAY: return _rgb_to_gray(image) @@ -248,7 +244,7 @@ def convert_color_space_image_tensor( elif old_color_space == ColorSpace.RGB_ALPHA and new_color_space == ColorSpace.GRAY: return _rgb_to_gray(_strip_alpha(image)) elif old_color_space == ColorSpace.RGB_ALPHA and new_color_space == ColorSpace.GRAY_ALPHA: - image, alpha = _split_alpha(image) + image, alpha = torch.tensor_split(image, indices=(-1,), dim=-3) return _add_alpha(_rgb_to_gray(image), alpha) elif old_color_space == ColorSpace.RGB_ALPHA and new_color_space == ColorSpace.RGB: return _strip_alpha(image) diff --git a/torchvision/prototype/transforms/functional/_misc.py b/torchvision/prototype/transforms/functional/_misc.py index 3a1d8575cd0..f8dc313c56f 100644 --- a/torchvision/prototype/transforms/functional/_misc.py +++ b/torchvision/prototype/transforms/functional/_misc.py @@ -69,9 +69,9 @@ def normalize( return normalize_image_tensor(inpt, mean=mean, std=std, inplace=inplace) -def _get_gaussian_kernel1d(kernel_size: int, sigma: float) -> torch.Tensor: +def _get_gaussian_kernel1d(kernel_size: int, sigma: float, dtype: torch.dtype, device: torch.device) -> torch.Tensor: lim = (kernel_size - 1) / (2 * math.sqrt(2) * sigma) - x = torch.linspace(-lim, lim, steps=kernel_size) + x = torch.linspace(-lim, lim, steps=kernel_size, dtype=dtype, device=device) kernel1d = torch.softmax(-x.pow_(2), dim=0) return kernel1d @@ -79,8 +79,8 @@ def _get_gaussian_kernel1d(kernel_size: int, sigma: float) -> torch.Tensor: def _get_gaussian_kernel2d( kernel_size: List[int], sigma: List[float], dtype: torch.dtype, device: torch.device ) -> torch.Tensor: - kernel1d_x = _get_gaussian_kernel1d(kernel_size[0], sigma[0]).to(device, dtype=dtype) - kernel1d_y = _get_gaussian_kernel1d(kernel_size[1], sigma[1]).to(device, dtype=dtype) + kernel1d_x = _get_gaussian_kernel1d(kernel_size[0], sigma[0], dtype, device) + kernel1d_y = _get_gaussian_kernel1d(kernel_size[1], sigma[1], dtype, device) kernel2d = kernel1d_y.unsqueeze(-1) * kernel1d_x return kernel2d