
In this document, we describe the theoretical basis for
EXTRACT. Specifically, we show that the objective function
in the paper is a MAP estimate of the true pattern under
particular assumptions about the generative model producing
the data. We also describe connections between our objective
and compression.

To build the reader’s intuition, we first consider a concrete
and simpler problem. We then detail how this can be applied
to time series and explore the aforementioned connections.

I. INTUITION

Suppose that a gang of robbers has stolen something from
your institution. Police have identified a group of suspects, but
this group contains both robbers and random civilians (drawn
iid from the general population in your city). As the local data
scientist, it is up to you to determine who the robbers are. You
cannot assume a certain number of robbers or anything about
their characteristics (e.g., they do not necessarily have criminal
records or other obvious features to look for). You can assume,
however, that there are many more robbers in the group than
would be expected by chance if you only sampled iid from
the general population.

A priori, this is not necessarily solvable. If the robbers have
nothing in particular that distinguishes them, then there can
be little hope of identifying them. However, it is probable that
fellow robbers will have some sort of distinguishing features.
For example, if several of the suspects all happen to have
played on the same football team in high school, it is unlikely
that this would happen in iid civilians, and so you might
suspect that these are the robbers. If you can determine what
these features are, then, you can recognize the robbers. So
how could you identify these features? The above example
seems sensible enough, but what is it about a given feature
that makes it useful?

One rule is that the feature must be distinguishing—i.e., not
common in the general populace. “Has brown hair” is probably
a poor feature.

However, it is not enough for a feature to be unusual.
Indeed, any person in the group is likely to have a number
of features that are not just unusual, but unique. We cannot
simply lock up, say, the one redhead.

However, if multiple people have the same unusual feature,
we might suspect that this is not a coincidence. For example,
if three of our suspects happen to be from the same neigh-
borhood, or work for a particular company, this is unlikely
under the assumption that they’re innocents drawn from the
general population. This becomes even more unlikely the more
suspects there are who have this trait in common—two people
may work for a certain company by chance, but five almost
certainly do not.

Further, if this same set of individuals has other features in
common (e.g., graduating from the same high school, being
the same age), this bolsters our conviction.

In short, we seek features with three properties:

1. Rare in general
2. Common in a certain subset of the people (whom we

suspect are the robbers)
3. Shared across many (suspected) robbers

II. OBJECTIVE FUNCTION

Formally, you are given a set X of feature descriptions
of individuals, xi, where xji is the jth feature of the ith
individual. Your task is to return the most probable set of
robbers, I∗, and distinguishing features, F ∗. There are N
individuals, at least two robbers (|I∗| ≥ 2), and D = |xi|
features. Your objective function is defined as follows:

I∗, F ∗ = argmax
I,F

∏
i∈I

∏
j∈F

p(xji |zi = 1)

p(xji |zi = 0)
(1)

where z is an indicator variable describing whether i ∈ I ,
and different distributions are associated with each value
of z. In words, we want to find a set of individuals and
features such that the probability of getting all of those
features across all of those individuals is much higher if the
individuals are pulled from a shared “robber” distribution than
the “random” general populace distribution. We will describe
the family of distributions we use in solving our particular
problem in following sections, but all that is required for
the above objective to be sensible is that the “robber” and
“random” distributions not be identical. Of course, for it to
be meaningful, the “robber” distribution ought to vary with I
and F and the “random” distribution ought to reflect statistics
about the general populace.

This is a simplification of the time series problem in that
there is no “overlap” among the xi as there is with sliding
windows in a time series. There is also no question regarding
the “length” or boundaries of the xi, since they are supplied
directly as fixed-sized vectors.

III. OBJECTIVE FUNCTION DERIVATION

The above objective function yields the maximum a pos-
teriori (MAP) estimate of the set of robbers and their distin-
guishing features given a few simple assumptions.

By definition, the most probable set of objects and features
is given by:

argmax
I,F

p(I, F |X) (2)

Using Bayes Theorem and dropping the denominator (since it
does not affect the argmax), we see that this is equivalent to:

argmax
I,F

p(X|I, F )p(I, F ) (3)

Now suppose that our priors regarding the set of people and
set of features are independent. We then have:

argmax
I,F

p(X|I, F )p(I)p(F ) (4)

The first of these probabilities, p(X|I, F ) can be simplified
further given a few reasonable assumptions. First, since we



consider each object to have been drawn iid, we have:

p(X|I, F ) =
N∏
i=1

p(xi|I, F ) (5)

Now, we introduce the latent indicator variable z, where zi =
1 ⇐⇒ i ∈ I , to encapsulate the conditioning of xi on I .
This allows us to rewrite the previous equation as:

p(X|I, F ) =
∏
i∈I

p(xi|F, z = 1)
∏
i/∈I

p(xi|F, z = 0) (6)

=
∏
i∈I

p(xi|F, z = 1)

p(xi|F, z = 0)

N∏
i=1

p(xi|F, z = 0) (7)

where we have multiplied in
∏

i∈I p(xi|F, z = 0) to get the
second equation. Now let us define:

p(xi|F, z = 0) = p(xi|z = 0) (8)

This reflects the idea that the probability of getting xi from
the “random” distribution is not dependent on which features
we select as relevant for the “robber” distribution. E.g., if we
determine that the robbers are likely to be from New York,
this has no bearing on the probability that a random person
is from New York. This definition renders the second product
in (6) independent of both I and F , allowing us to drop it
without affecting our original argmax:

p(X|I, F ) ∝
∏
i∈I

p(xi|F, z = 1)

p(xi|z = 0)
(9)

We can reasonably make another assumption to simplify this
even further. If only the features j ∈ F are determined by
an object’s status as a robber, and others are determined by
whatever processes produce the features of the general popu-
lation, then one could reasonably factor the overall probability
of an object into the probability of the robber and non-robber
features. That is, we can define:

p(x|F, z) ≡ p(xF |z)p(x−F |z) (10)

p(x−F |z = 1) ≡ p(x−F |z = 0) (11)

where xF and x−F are the features of x in and outside of
the set F , respectively. I.e., xF = 〈xj〉, j ∈ F and x−F =
〈xj〉, j /∈ F . Intuitively, this means that if brown hair has
nothing to do with being a robber, then the probability of
having brown hair is the same for robbers and non-robbers.
Further, the relevant and irrelevant features are independent of
one another conditioned on whether an individual is a robber.
Using these properties, we can simplify 9 into:

p(X|I, F ) ∝
∏
i∈I

p(xFi |z = 1)

p(xFi |z = 0)

p(x−Fi |z = 1)

p(x−Fi |z = 0)
(12)

=
∏
i∈I

p(xFi |z = 1)

p(xFi |z = 0)
(13)

Now consider what happens if we assume that p(xFi |z)
factorizes—i.e., that the individual features are independent

when conditioned on z. This gives us:

p(X|I, F ) ∝
∏
i∈I

∏
j∈F

p(xji |z = 1)

p(xji |z = 0)
(14)

This yields the final objective function:

I∗, F ∗ = argmax
I,F

p(I)p(F )
∏
i∈I

∏
j∈F

p(xji |z = 1)

p(xji |z = 0)
(15)

If we assume uniform priors p(I) and p(F ), so that these terms
do not affect the argmax, we recover the original objective
function in 1. Thus, this objective is a MAP estimate (or,
ignoring the priors entirely, a maximum likelihood estimate).

IV. BINARY CASE

The above analysis works for any distributions satisfying
the stated independence assumptions. To identify the robbers,
however, we must select distributions to fit to the data.
Throughout the rest of this work, we will use Bernoulli
distributions and binary features.

Specifically, we define p(xji |z = 0) ∼ Bernoulli(θ0j)
and p(xji |z = 1) ∼ Bernoulli(θ1j), where θ0 is any set of
parameters computed independent of I and F , and θ1 is the
optimal set of parameters (in this case, simply the maximum
likelihood estimate) for {xji |i ∈ I}. We also drop p(F ) and
p(I) for now—the latter will be relevant when we generalize
to time series. Taken together, these changes give the objective
function:

I∗, F ∗ = argmax
I,F

∏
i∈I

∏
j∈F

p(xji |θ1j)
p(xji |θ0j)

(16)

Expanding the two cases for each feature, we have:

argmax
I,F

∏
i∈I

∏
j∈F

θ
I{xj

i=1}
1j (1− θ1j)I{x

j
i=0}

θ
I{xj

i=1}
0j (1− θ0j)I{x

j
i=0}

(17)

Letting cj denote the number of times feature j is 1,
∑

i∈I x
j
i ,

and k denote |I|, this can be rewritten as:

argmax
I,F

∏
j∈F

θ
cj
1j(1− θ1j)(k−cj)

θ
cj
0j(1− θ0j)(k−cj)

(18)

Now, let us take the log of this objective function (which yields
the same argmax, since the log is a monotonic function of its
argument):

argmax
I,F

∑
j∈F

[cj log(θ1j) + (k − cj)log(1− θ1j)] (19)

−
∑
j∈F

[cj log(θ0j) + (k − cj)log(1− θ0j)] (20)

Simplifying, this becomes:

argmax
I,F

∑
j∈F

[cj(log(θ1j)− log(θ0j)) (21)

+(k − cj)(log(1− θ1j)− log(1− θ0j))] (22)



Another simplification is possible if the data is sparse. In
this case, it is not meaningful for a feature to be absent. E.g.,
if a feature is only present in 10% of the population, the fact
that it is not present in three robbers is not a robust indication
that being a robber affects it. For example, if none of the three
robbers have been to Greenland, we should not take failure to
visit this country as a sign of being a robber. This is crucial,
since one could enumerate countless features of this nature
and incorporating them would almost certainly drown out the
features that were meaningful.1 Dropping the term for feature
absence in the above equation, we have:

argmax
I,F

∑
j∈F

cj(log(θ1j)− log(θ0j)) (23)

This equation says that we would like to find robbers xi and
features j such that xji happens both many times (so that cj is
large) and much more often than would occur by chance (so
that log(θ1j)−log(θ0j) is large). This is the objective function
given in the problem definition section of the paper.

V. RELATIONSHIP TO COMPRESSION

The binary objective is closely related to the problem of
compression. Suppose that θ0 is set to the empirical probabil-
ities across the whole dataset, so that θ0j = p(xj). Suppose
further than we can only select features that are always present,
so that cj = |I| and θ1 = 1. Then the objective becomes:

argmax
I,F

∑
j∈F
−|I| ∗ log(θ0j) (24)

=argmax
I,F

∑
j∈F
−|I| ∗ log(p(xj)) (25)

This is the number of bits to encode k occurrences of all
features j, with codeword length determined by the empirical
probability p(xj). In other words, if each feature j would
otherwise be encoded at a cost of log(p(xj)) when present, this
is the number of bits saved by substituting for 1s in xFi , i ∈ I a
symbol composed of ones at the indices F . Thus, this objective
is maximized when we find the largest set of ones that occur
together the most times throughout the data.

VI. GENERALIZING TO MULTIPLE MODELS

The analysis so far has considered only distinguishing
between two models: a “robber” model and a “random” model.
This can be generalized to many models. Specifically, while
we are still interested only in identifying the robbers, non-
robbers may be drawn from many distributions, rather than a
naive aggregate one. This is a more realistic setup, but a more
challenging one mathematically. It requires us to ensure that
suspected robbers not only fail to appear random, but fail to
resemble any competing distribution as well.

1Note that it is not the fact that the feature is absent per se that causes us
to ignore it, but that, given a sparse feature set, absence is far more common
in the general populace. For particular features where this is not true and
that may be predictive (e.g., lacking the “has a high school diploma” feature
may be associated with being a robber), one could invert the feature in order
to include it in the objective. I.e., one could encode a “lacks a high school
diploma” feature.

Formally, let M = {ml} be some set of possible models,
and θ1 continue to be the robber model. For ease of reference,
further define XI ≡ {xi, i ∈ I} and X−I ≡ {xi, i /∈ I}. We
seek to find:

argmax
I,F

p(I)p(F )
p(X|I, F, θ1)∑

m∈M p(X|I, F,m)p(m)
(26)

= argmax
I,F

p(I)p(F )
∏
i∈I

p(xi|I, F, θ1)∑
m∈M p(xi|I, F,m)p(m)

(27)

Since there can be many models, this quantity is challenging
to optimize. Therefore, we will approximate it as follows,
using the intuition that one model likely assigns XI much
greater probability than the others:2

argmax
I,F

min
m∈M

p(I)p(F )
∏
i∈I

p(xi|I, F, θ1)
p(xi|I, F,m)

(28)

That is, we approximate the sum with the maximum element
and set its prior p(m) = 1.

We must now define the set M. One could use any
number of possible sets of models, but we will use a simple
instance-based approach. In our robber-finding example there
are reasonable alternatives, since the general populace is large
and one could learn a set of models for it. However, when
generalizing to time series, we will assume limited data, and so
it will be impossible to learn a set of parametric distributions
(or even how many such distributions there should be) with
accuracy.

Concretely, we take each object X−I as the “centroid” of
a model m. This means that the probability of a suspected
robber xi coming from a distribution other than the robber
distribution is based on its similarity to the most similar non-
robber object. For ease of reference, we term this object the
nearest enemy, and the suspected robber xi the query.

But what defines this similarity, and how do we get a
probability from it? One approach would be to have a kernel
function that, say, returned a probability between 0 and 1
depending on the Hamming distance between the query and
nearest enemy. This could work, but we would have to learn
the mapping of distances to probabilities. We would also
consider differences in all features equally significant3, while
in reality, some features may be more variable than others.

What we do instead is recycle the learned distribution for
the robbers, described by θ1. Specifically, letting xk denote

2This need not be true, but it is reasonable to think the robbers might
resemble, e.g., an “unmarried males” distribution much more than any other.

In the time series case, this approximation is even more likely to work well.
Because our competing distributions will be based on other regions in the
data and there is limited data, there are relatively few competing distributions
possible. If there are k such distributions, then their summed probability is
at most k times as great as that of the maximum probability in the worst
case. This small factor is dominated by the differences in likelihood across
distributions that arise from the presence of dozens or hundreds of features
per object.

3Assuming we don’t learn the kernel, which, again, would add complexity
and be challenging to do accurately with limited data



the nearest enemy, we define:

p(xi|I, F,mk) ≡ p(xk|I, F, θ1) (29)

In words, we approximate the probability of the query
coming from the distribution of the neareset enemy with the
probability of the nearest enemy coming from the distribution
of the query (i.e., the robber distribution). This yields the
objective:

argmax
I,F

min
k/∈I

p(I)p(F )
∏
i∈I

p(xi|I, F, θ1)
p(xk|I, F, θ1)

(30)

(31)

Taking the log, this becomes:

argmax
I,F

min
k/∈I

log(p(I)) + log(p(F ))

− |I| log(p(xk|I, F, θ1))

+
∑
i∈I

log(p(xi|I, F, θ1))

In the binary case (using the previously described approxi-
mations and independencies), we have:

argmax
I,F

min
k/∈I

log(p(I)) + log(p(F ))

+
∑
j∈F

(cj − |I|xjk) log(θ1j)

Unfortunately, this objective is degenerate—since log(θ1j)
is always negative, it is maximized when I = F = {}. Thus,
we instead maximize:

argmax
I,F

min
k/∈I

log(p(I)) + log(p(F )) (32)

+
∑
j∈F

(cj − |I|xjk) log(θ1j − θ0j) (33)

In other words, we continue looking for features that are
better explained by the robber distribution than the noise
distribution, but exclude those that are present in the nearest
enemy distribution.

To handle the case when all objects are suspected of
being robbers (and thus there is no object eligible to be
the enemy), we add to the dataset a “dummy” enemy xk
such that xjk = E[θ0]. This object represents the “expected”
enemy given features drawn from the “noise” distribution.
Empirically, this object may also be chosen as the nearest
enemy if the other possible enemies are extremely sparse or
otherwise share few features with the suspected robbers.

VII. GENERALIZING TO TIME SERIES

The above objective and analysis can be applied to time
series via a straightforward reduction. Namely, instead of
having each object xi be a binary feature representation
of an individual, it is a binary feature representation of a
region (a, b) of the time series. This makes no difference
mathematically—it simply changes what each object repre-
sents.

However, one mathematical alteration is necessary for the
results to be meaningful. Namely, we use the prior p(I) to
prevent overlapping, excessively long, or excessively short
regions. That is:
• Given a minimum spacing Mspace between the starts of

regions, p(I) = 0 if |a1 − a2| < Mspace for any regions
(a1, b1), (a2, b2) ∈ I . In practice we set Mspace =Mmin.

• Given minimum and maximum region lengths Mmin and
Mmax, p(I) = 0 if |b1 − a1| < Mmin ∨ |b1 − a1| > Mmax

for any (a1, b1) ∈ I .
• p(I) is otherwise uniform.

This yields the final objective (without enemies):

argmax
I,F

log(p(I)) +
∑
j∈F

cj(log(θ1j)− log(θ0j)) (34)

With enemies, this becomes:

argmax
I,F

min
k/∈I

log(p(I)) +
∑
j∈F

(cj − |I|xjk) log(θ1j − θ0j)

(35)


