B-S Method 8/7/89 2:12 PM

The Bulirsch-Stoer Method

Numerical Integration of Smooth
Functions
This is some notes to help decipher the discussion of the

Bulirsch-Stoer O.D.E. integration method discussed in Numerical
Recipies section §15.4.

& Strategy

The Bulirsch-Stoer method provides a numerical
approximation for f(x0+H) given f(x0) and a way to calculate
f'(x,y) for any x and y (also known as the right-hand-side, or

rhs(x,y).)

The strategy is to first integrate from x to x+H using a smaller
stepsize, h=H/n, and an inexpensive, second order method.
This gives an estimate for f(x+H).

Then we iteratively increase n and obtain more estimates,
using smaller sub-step sizes. The goal is to extrapolate to an
estimate using a sub-step size of zero. This is done by fitting
the (h,f(x+H)) pairs to a rational function and evaluating at h
equal to zero.

2l Modified Midpoint Method

The second order method used in Bulirsch-Stoer integration is
the modified midpoint method.

The modified midpoint method estimates z[i] = f(xO + i h) for
i=0...n, where h=H/n, to produce an estimate of f(xO0 + H). The
given value of f(x0) is used as z[0], to prime the pump.

H

{h == -, z ==y[x0]}
n 0

B-S Method 8/7/89 2:12 PM

The modified in modified midpoint comes from the fact that
the first and last guesses are calculated differently from the
others. The first is a simple first order guess to x+h.

z == h rhs[x0, z] + =z
1 0 0]

To step accross an interval of 2h, we use the estimate at the
left end plus 2h times the slope at the midpoint.
z[1] == z[i-2] + 2 h rhs[x+(i-1)h,z[1-1]]

z == 2 hrhs[x +h (-1 + i), =z] + 2z
i -1+ 1 -2 + i

And the final estimate is an average of z[n] and
z[n-1] + h rhs(x+H,z[n]).

h rhs[H + x0, z] + 2 + z

B-S Method 8/7/89 2:12 PM

H Code for mmid

This code implements the above algorithm for any number
of ODEs in parallel. It's taken from Numerical Recipies §15.3,
but it returns all of the (x+ih,z[i]) pairs plus (x+H,f(x+H)) in a
list.

(* Modified Midpoint ODE integrator *)

mmid[y , (* List of Initial Conditions *)
dydx , (* List of Initial Slopes *)
X8 , (* Left end of X interval *)
htot , (* size of X interval ¥*)
nstep , (* number of steps *)
derivs (* derviative routine *)
] :=

Block[{n, x, swap, h2,h,ym, yn, yout,

nvar=Length[y], result},

h=htot/nstep;

ym=y; (* ym and yn play leapfrog across the interval *)

yn=y + h*dydx; (* yn starts as a 1lst order guess *)

result={{xs,First[ym]}}; (* save the first point *)
x=xsth;

yout = derivs[x,yn]:

h2=2*h;

Do[AppendTo[result, {x,First[yn]}]; (* save the point *)
swap=ym + h2*yout; (* go 2h using the midpoint's slope *)
ym=yn;
yn=swap;

X += h;
yout = derivs(x,yn];
,{n, 2, nstep}l:

AppendTo[result, {x,First([yn]}]:

yout = (ym + yn + h*yout) / 2; (* average for the last one *)

AppendTo[result, {x,First[yout]}]:

result // N (* return a numerical approximation *)

1:

B Case Study: x' = Al Cos[wt] + A2 Sin[wt]

Suppose we know that the velocity given time and
displacement is described by...

rhs=Function[{t,x},3 Cos[3 t] + 4 Sin[3 t]];

Let's look at an interval from t=0 to 2 using 1 large step and
8 substeps, and say x(0)=0.

B-S Method 8/7/89 2:12 PM

zPolints =
mmid{ {0}, (* List of Initial Conditions ¥*)

{rhs[0,0]}, (* Initial Slopes *)
0, (* Left end of interval *)

2, (* slze of interval *)

8, (* number of steps *)

rhs (* derviative routine *)

]
{{0., 0.}, {0.25, 0.75}, {0.5, 2.46081}, {0.75, 2.8511},

{1., 3.0747}, {1.25, 1.64835}, {1.5, 0.700735},

{1.75, -0.622907}, {2., -0.249006}, {2., -0.2156}}

Remember that the y value at t=2 is the result of the mmid
calculation. The intermediate points are irrelevant.

Modified Midpoint Method (8 pts)
vs Actual inegration

B-S Method 8/7/89

2:13 PM

B Modified Midpoint at work

In practice, mmid is called with increasing values of n, and
the results are analyzed. This is a typical sequence for n:

nseqg={2,4,6,8,12,16,24,32,48, 64, 96};

Now we'll generate some data using the first seven sizes.

mmdata=Table [

mmid[{0},

(* Initial Conditions *)

{rhs[0,0]}, (* Initial Slopes *)

0, (* Left end of X interval¥)
2, (* size of X interval *)
nseq[[i]], (* number of steps *)

rhs (* derviative routine *)

1, {i,1,7}]1:

Let's see what it's done...

-1 4+

i Rational

Successive MMID Tries

Extrapolation

B-S Method 8/7/89 2:14 PM

Each time mmid produces an estimate using a given stepsize,
we then extrapolate to the estimate corresponding to a
stepsize of zero.

The extrapolation algorithm also produces an error estimate.
We stop when the error estimate is within a given tolerance.

The Bulirsch-Stoer rational function extrapolation is based on
a recurrence, similar to Neville's for polynomial extrapolation.

It's well known that given a set of n (xi,yi) pairs, we can find
the n-1 degree polynomial that passes through them. Neville's
recurrence computes the n-1 degree polynomial in terms of
the n-2 degree polynomial and the nth point.

Computationally, all we care about is the value of the
polynomial at some x value (zero, in the case of
Bulirsch-Stoer). The value of the zero-degree polynomial
passing through (x1,y1), is just yl everywhere.

There is a recurrence, derived from Neville's, which gives the
value of the n-1 degree polynomial at x in terms of the nth
point and the value of the n-2 degree polynomial at x. In
other words, each time we get a new point, we just add some
offset to the previously computed value.

Estimate vs. stepsize”2

-0.12¢

-0.14¢

-0.167

-0.18¢

-0.22¢

B-S Method 8/7/89 2:15 PM

Let R[i,j] be the rational function passing through points i
through j evaluated at x. For example R[1,2] is the value at x
of the line passing through (x1,yl) and (x2,y2). The difference
between Rli,i+m] and R[i,i+m-1] is called C[m,i]. For example
C[2,1] is the difference between R[1,2] and R[1,3]. D[m,i] is the
up-left connection from R[i+1,i+m] to R[i,i+m].

Ria
/\
Rz Roa
N /)
Ria Roz Ray

N\ /]

Ri1Ry2 Ry3R33R4y

C == R - R
m,i i,i+m i,-1 + i +m

D == R ~- R
m,i i,i + m l1+4i,i+m

The first generation (C[0,i], D[0,i]) are set to the y(i) values.
Successive generations are given by the following
reverse-derivation. It looks obtuse, but it models the
Numerical Recipies algorithm.

dl = d[m+1,i] = c[m,i+1]*dd

D = dd C
1 +mi m,1+ 1

(* now substitute *)
d2 =dl /. dd -> w/ddd

w C

B-S Method 8/7/89 2:15 PM

d3 =d2 /. ddd -> t-c[m,i+1]
w C

m,1 + i

w C
m,1 + i
D e
1+ m,i (-=x +x) D
i m, i
-(C) ¥ e
m,1 + i h
d5 = d4 /. h->x[1+m+1]-x
w C
m,1 + i
D =D mmmm e e e e
1l 4+m,i (-=x + x) D
i m,i
-(C) + e
m,1 + 1 -x + x
1 +i+m
(C -D) C
m,1 + 1 m,i m,1 + 1
D BN e e e e e e e e e e e
1l +mi (-x +x) D
i m,i
-(C) ¥ e
m,1 + i -Xx + x
l1+31i+m

The above equation follows directly from the recurrence
equation (see Numerical Recipies) and the definition of C and
D. And similarly for C...

B-S Method 8/7/89 2:16 PM

Hl Code for ratint

The following code copies the ya to the ¢ and d, then sets y to
the y value corresponding to the closest x. Then it computes
the successive adjustments (c's and d's) and updates y
accordingly.

The error estimate returned is the last y adjustment.

ratint[xa , ya] :=
Block[{m,i,ns=1, TINY=1.0 10~-17, y, yerr,

w,t,h,dd, c,d, n=Length[xal},

c=ya:

d=c + TINY;

y=yal[ns--1];

Do[Do[w=c[[i+1]]-d[[i]];
h=xa[[i+m]];
t=xal[[1]1*d[([i]]/h;
dd=t-c[[i+1]1]:
If[dd==0,

Print [Message[ratint::polel]l}:
dd=w/dd;
dl[1]]=c[[i+1]]*dd;
c[[i]]1=t*dd;
,{1,n-m}];
y += (yerr =
If[2 ns < (n-m), c[[ns+1l]],
dl[ns--=111);
{m,n=-1}]1;
{y, yerr}]

B-S Method 8/7/89 2:16 PM

M Rational Extrapolation Example

Here is a plot of (stepsizeA2,estimate) from the modified
midpoint data:

Estimate vs. stepsize”2
-0.12¢%

-0.14¢
-0.167

-0.18¢

0. 0.2 0.3 0.4 0.5 0.6
~0.221

Now extrapolate to stepsize zero. This gives the final y and
the error estimate. The estimate is the size of the last
correction made in the interpolation algorithm.

~-14
{-0.226309, 3.10064 10 }

Let's see it on the graph...

-14
{-0.226309, 3.10064 10 }

-0.19¢%

0.2 0.25

-0.21y

-0.22¢

- 10 -

B-S Method 8/7/89 2:17 PM

Putting it All Together

The actual BSSTEP routine just tries successively higher
values of n until the extrapolation error is within tolerance.

After 10 or 12 tries, if there is still too much error, it will
decrease the total stepsize, H, and try again.

It also suggests the stepsize to use next.

Here is some Fortran code that makes the whole thing work...

o NONOINININONONONe

ju

+

+ 4+ + +

+

SUBROUTINE BSSTEP (Y,DYDX, NV, X, HTRY,
EPS, YSCAL, HDID, HNEXT, DERIVS)

DESCRIPTION: Bulirsch-Stoer step with monitoring of local

truncation error to ensure accuracy and adjust stepsize.

BEFORE: Y is an array of the values of the NV functions

at X. DYDX is the values of the derivatives.

HTRY 1s the stepsize to try

EPS 1s the desired accuracy, relative to YSCAL

DERIVS (X, y,dydx) computes dydx at x and y

AFTER: Y 1s the estimated solution at X+HTRY

HNEXT is the next stepsize to use, HDID is the one used.

EXTERNAL: RZEXTR, MMID

PARAMETER (NMAX = 10, ! maximum number of equasions

IMAX=11, ! maximum mmid-ratint iterations
NUSE=7, ! max gty of points to for ratint
ONE=1.EQ,

GROW=1.2EQ) ! amount to increase the stepsize
DIMENSION Y (NV),DYDX (NV), YSCAL (NV),
YERR (NMAX) , YSAV (NMAX) , DYSAV (NMAX) , YSEQ (NMAX) , NSEQ (IMAX)
DATA NSEQ /2,4,6,8,12,16,24,32,48,64,96/

Save input parameters
H=HTRY
XSAV=X
DO I=1,NV
YSAV (I)=Y(I)
DYSAV (I)=DYDX (I)
END DO

Iterate over stepsize-breakdowns
DO I=1,IMAX
Estimate y (x+H)
CALL MMID (YSAV,DYSAV,NV,XSAV, H,NSEQ(I), YSEQ, DERIVS)
XEST=(H/NSEQ(I))**2

- 11 -

B-S Method 8/7/89 2:17 PM

Oaoaooa0o0o000000000a0

Q

Fit (stepsize”2, y-est) and extrapolate
CALL RZEXTR(I,XEST,YSEQ,Y,YERR,NV,NUSE)
Compute the biggest resulting error
ERRMAX=0.
DO J=1,NV
ERRMAX=MAX (ERRMAX, ABS (YERR (J) /YSCAL (J)))
END DO
ERRMAX = ERRMAX/EPS
If error 1s small enough...
IF (ERRMAX.LT.ONE) THEN
X=X+H
HDID=H
Guess at next stepsize
IF (I.EQ.NUSE) THEN
HNEXT=H*SHRINK
ELSE IF (I.EQ.NUSE-1) THEN
HNEXT=H*GROW
ELSE
HNEXT= (H*NSEQ (NUSE-1))} /NSEQ (I)
END IF
RETURN
END IF
END DO
Went through all substep sizes, have to decrease H.
H=0.25%H/2** ((IMAX-NUSE) /2)
IF (X+H.EQ.X) PAUSE 'Step size underflow.'’
GOTO 1
END

SUBROUTINE RZEXTR(IEST,XEST,YEST,YZ,DY,NV,NUSE)
DESCRIPTION: Rational extrapolation to zero.

This is a modification of the normal RatInt routine
from Numerical Recipies. It's different because it
gets its points one at a time in stead of all at once.
Plus, it fits several equations in parallel, for use
with multiple O.D.E.s.

BEFORE: IEST tells how many points we now have.

XEST is the x coordinate of the new point.

YEST is a vector of the new Y coords.

NV 1s the size of YEST

NUSE is the maximum number of generations of rational

functions to compute. See equations above.

AFTER: YEST is an array of the extrapolation of the

equasions to x=0.

YZ is an error estimate, the last correction added to

get the YZs,

max data points, max equations, max generations

PARAMETER (IMAX=11,NMAX=10,NCOL=7)
DIMENSION X (IMAX),YEST(NV),YZ(NV),

12 =

B-S Method 8/7/89 2:18 PM

+ DY (NV),D (NMAX,NCOL) , FX (NCOL)

X (TEST)=XEST !save latest data point
IF (IEST.EQ.1)THEN ! fitting to just one point
DO J=1,NV

YZ (J)=YEST (J)
D (J,1)=YEST (J)
DY (J) =YEST (J)
END DO
ELSE
M1=MIN (IEST,NUSE) ! actual number of points to use
o save ?7?7?
DO K=1,M1-1
FX (K+1)=X (IEST-K) /XEST
END DO
c Iterate over equasions.
DO J=1,NV
YY=YEST (J) ! first guess taken from data
I find the rest of this code completely inscrutible.
C I trust it implements the equations described above.
V=D (J,1)
C=YY
D(J,1)=YY
DO K=2,M1
B1=FX (K) *V
B=B1-C
IF(B.NE.O) THEN
B=(C-V) /B
DDY=C*B
C=B1*B
ELSE
DDY=V
END IF
IF (K.NE.Ml) V=D (J,K)
F (J,K)=DDY
YY=YY+DDY
END DO
DY (J)=DDY
YZ (J) =YY
END DO
END IF
RETURN
END

Q

=13 =

B-S Method 8/7/89 2:18 PM

Qoo aaan

@]

SUBROUTINE MMID (Y,DYDX,NVAR, XS, HTOT,NSTEP, YOUT, DERIVS)
DESCRIPTION: Modified Midpoint O.D.E. integrator
BEFORE: Y is the values of the equations at XS
DYDX is the values of the derivatives
NVAR is the size of the above
HTOT is the size of the interval to integrate over
NSTEP is the number of substeps to break it into
DERIVS (X, Y,DXDY) computes DXDY from X and Y
AFTER: YOUT is the estimated value of Y (XS+HTOT)

This code exactly parallels the notes above.

PARAMETER (NMAX=10)
DIMENSION Y (NVAR) ,DYDX (NVAR) , YOUT (NVAR) , YM (NMAX) , YN (NMAX)
H=HTOT/NSTEP
DO I=1,NVAR
YM(I)=Y (I)
YN (I)=Y(I)+H*DYDX (I)
END DO
X=XS+H
CALL DERIVS (X, YN, YOUT)
H2=2.*H
DO N=2,NSTEP
DO I=1,NVAR
SWAP=YM(I)+H2*YOUT (I)
YM(I)=YN(I)
YN (I)=SWAP
END
X=X+H
CALL DERIVS (X, YN, YOUT)
END DO
DO I=1,NVAR
YOUT (I)=.5* (YM(I)+YN(I)+H*YOUT (I))
END DO
RETURN
END

- 14 -

