diff --git a/examples/object-detection/experiment/const.yaml b/examples/object-detection/experiment/const.yaml index 8ef7fc6..4306e4b 100644 --- a/examples/object-detection/experiment/const.yaml +++ b/examples/object-detection/experiment/const.yaml @@ -15,20 +15,21 @@ profiling: begin_on_batch: 0 end_after_batch: null hyperparameters: - lr: 0.02 + lr: .0004261457 momentum: 0.9 global_batch_size: 16 weight_decay: 1.0e-4 gamma: 0.1 warmup: linear warmup_iters: 200 - warmup_ratio: 0.001 + warmup_ratio: 0.724677 # The fraction between 0-1 that defines the percentage of lr you want to start the lr at pretrained_model: "https://storage.googleapis.com/ai-at-scale-pdk-assets/sample-data/pdk-object-detection/pretrained-model/frcnn_xview.pth" #finetune_ckpt: "/lus/aiholus1/disk/andrew.mendez/model_479.pth" step1: 504 # 14 epochs: 14*36 == 504 step2: 540 # 15 epochs: 15*36 == 540 model: fasterrcnn_resnet50_fpn num_workers: 4 + #device: cuda environment: image: mendeza/obj-det-pdk-train-env:0.0.2 environment_variables: @@ -38,15 +39,15 @@ environment: scheduling_unit: 400 min_validation_period: - batches: 36 # For training + batches: 5 # For training searcher: name: single metric: mAP smaller_is_better: true max_length: - batches: 2 # 1*(579/16) = 1*36 -records_per_epoch: 32 # 32 records / 16 + batches: 10 # 1*(9/16) = 1*1 +records_per_epoch: 9 # 9 records / 16 resources: slots_per_trial: 1 resource_pool: gpu-pool