diff --git a/doc/tutorials/dask.rst b/doc/tutorials/dask.rst index 3bb0c8a66a4e..a9a8b0837dd9 100644 --- a/doc/tutorials/dask.rst +++ b/doc/tutorials/dask.rst @@ -37,7 +37,6 @@ illustrates the basic usage: output = xgb.dask.train(client, {'verbosity': 2, - 'nthread': 1, 'tree_method': 'hist'}, dtrain, num_boost_round=4, evals=[(dtrain, 'train')]) @@ -76,6 +75,32 @@ Another set of API is a Scikit-Learn wrapper, which mimics the stateful Scikit-L interface with ``DaskXGBClassifier`` and ``DaskXGBRegressor``. See ``xgboost/demo/dask`` for more examples. +******* +Threads +******* + +XGBoost has built in support for parallel computation through threads by the setting +``nthread`` parameter (``n_jobs`` for scikit-learn). If these parameters are set, they +will override the configuration in Dask. For example: + +.. code-block:: python + + with LocalCluster(n_workers=7, threads_per_worker=4) as cluster: + +There are 4 threads allocated for each dask worker. Then by default XGBoost will use 4 +threads in each process for both training and prediction. But if ``nthread`` parameter is +set: + +.. code-block:: python + + output = xgb.dask.train(client, + {'verbosity': 1, + 'nthread': 8, + 'tree_method': 'hist'}, + dtrain, + num_boost_round=4, evals=[(dtrain, 'train')]) + +XGBoost will use 8 threads in each training process. ***************************************************************************** Why is the initialization of ``DaskDMatrix`` so slow and throws weird errors