2023/03/16

Joosung Yoon

00 Summary
7

()

MetaOf|A Z20St LLaMAR} Self-Instruct Z& S 2 Bl L2 instruction tuning model Alpaca 7H&

)

|-+t 600% O[5t= 2HE

52K Instruction -> $500

Q)

O

3 hours 8 80GB A100s -> $100

Q)

HFZ FSDP Al 7B R &

)
w)
Q
<
-
o
o
o
w
o
>
olr
=
>

o)

safetyLt 7|Et O|sr= EXHOHK|

o)

CIojH ZETY SHOM H2ECE HEL

https://crfm.stanford.edu/2023/03/13/alpaca.html

https://crfm.stanford.edu/2023/03/13/alpaca.html

AT,

01 Introduction
~

GPT-3.5, ChatGPT, Claude, Bing Chats Cta%t Instruction-following 22 =0]| LIZ

L

L

2> Sl ZSHorE EXE BXITH academias Y12} &l X| BACH
eX) closed-source models such as OpenAl’s text-davinci-003.

Q)

mha|= Xt ELISHA Ol="H OI=EHS
LLaMA 7BXE|2 T F'FollM Alpacazt=H TSRS self-instructOl|AM= 1F davinci (GPT3) AR

_ 52K instruction-following demonstrations generated in the style of self-instruct using text-davinci-003.

o Lt Stanford £ -
8 text-davinci-0030|&F dS5H|=s Alpaca @3
Enter your instruction and press enter
- H)
- InteraCtlon demOE _IO_JH Tell me something about alpacas. ®
[Genera te] Zalof

Stanford-Alpaca-7B: An Instruction-Following Language Model

Alpacas are species of camelids from South America related to llamas
and vicunas. They are typically bred for their fiber, which is used to

Upvote response Downvote response

https://alpaca-ai-custom6.ngrok.io/

AT,

Introduction

o 4
Qe

V-

> Alpaca& academic research0f| SHg5HA] AFR2}s, commercial use= X[&
8 First, Alpaca is based on LLaMA, which has a non-commercial license

e Second, the instruction data is based on OpenAl's text-davinci-003, whose terms of use prohibit
developing models that compete with OpenAl.

OpenAl terms of use closedAl

William Falcon 4

2. Usage Requirements GPT-4 paper:

(a) Use of Services. You may access, and we grant you a non-exclusive right
to use, the Services in accordance with these Terms. You will comply with
these Terms and all applicable laws when using the Services. We and our
affiliates own all rights, title, and interest in and to the Services.

Let me save you the trouble:

GPT-4 Technical Report
(b) Feedback. We appreciate feedback, comments, ideas, proposals and G o

suggestions for improvements. If you provide any of these things, we may
use it without restriction or compensation to you.

(c) Restrictions. You may not (i) use the Services in a way that infringes,
misappropriates or violates any person’s rights; (ii) reverse assemble,
reverse compile, decompile, translate or otherwise attempt to discover the
source code or underlying components of models, algorithms, and systems
of the Service: B xcept to the extent such restrictions are contrary to
ETelellfe=1e] (RENTDR (ili) use output from the Services to develop models that
einlECRTIG RN (iv) except as permitted through the AP, use any

02 Training recipe

N
@ Meta

LLaMA 7B
Text-davinci-003

WV

N Supervised
’ 52K Finetuning Alpaca 7B
175 Self- Modified Self-instruct Instruction-following
Instruct Instruction Generation examples
seed tasks
Example seed task Example Generated task
Instruction: Brainstorm a list of Instruction: Brainstorm creative
possible New Year's resolutions. ideas for designing a conference
Output: Loer:
- Lose weight Output:
- Exercise more ... incorporating flexible
- Eat healthier components, such as moveable
walls and furniture ...

AT,

02 Training recipe -&. £,
J s

. seed tasks

Example seed task Example Generated task

Supervised
Finetuning

52K Alpaca 7B
Modified Self-instruct Instruction-following

Instruction Generation examples

Instruction: Brainstorm a list of Instruction: Brainstorm creative
possible New Year's resolutions. ideas for designing a conference

Output: foon.

> Data Generation Process Sl

- Eat healthier components, such as moveable

(self-Instruct& Ttheet M ALE)

We used text-davinci-003 to generate the instruction data instead of davinci.

L

Q)

We wrote a new prompt (prompt.txt) that explicitly gave the requirement of instruction generation to
text-davinci-003. (ZEZE E MMSHY requirementsE &

L

We adopted much more aggressive batch decoding, i.e., generating 20 instructions at once, which
significantly reduced the cost of data generation.

()

We simplified the data generation pipeline by discarding the difference between classification and
non-classification instructions. (£&Lf OfL|L L25t=H AtH|[EL)

We only generated a single instance for each instruction, instead of 2 to 3 instances as in LLaMA.

L

https://github.com/tatsu-lab/stanford_alpaca/blob/main/prompt.txt

Training recipe

@ Overview Documentation Examples Playground 4 Upgrade @Help .Pevsonal

Get started X Playground ‘ Load a preset... v Save View code Share e

Enter an instruction or select a preset,

and watch the API respond with a Mode
completion that attempts to match the You are asked to come up with a set of 20 diverse task instructions. These task instructions will be given to a GPT model and we =
context or pattern you provided. will evaluate the GPT model for completing the instructions. & Complete
You can control which model completes . Model
your request by changing the model. Here are the requirements: -
1. Try not to repeat the verb for each instruction to maximize diversity. ‘ text-davinci-003
KEEP IN MIND 2.The language used for the instruction also should be diverse. For example, you should combine questions with imperative
; 5 Temperature 0.7
<¢ Use good judgment when sharing . . . i :
outputs, and attribute them to your 3. The type of instructions should be diverse. The list should include diverse types of tasks like open-ended generation,
name or company. Learn more. classification, editing, etc. Maximum length 256
) _ 2. A GPT language model should be able to complete the instruction. For example, do not ask the assistant to create any visual or)
A Requests submitted to our APT will 3 E h le.d K th g K i b X f o
not be-usad to train or improve future audio output. For another example, do not ask the assistant to wake you up at 5pm or set a reminder because it cannot perform
models. Learn more. any action. Stop sequences

Enter sequence and press Tab

£ Our default models' training data 3. The instructions should be in English.
cuts off in 2021, so they may not have 4. The instructions should be 1to 2 sentences long. Either an imperative sentence or a question is permitted.
knowledge of current events. 5. You should generate an appropriate input to the instruction. The input field should contain a specific example provided for the
instruction. It should involve realistic dafa and should not contain simple placeholders. The input should provide substantial Top P 1
content to make the instruction challenging but should ideally not exceed 100 words.
6. Not all instructions require input. For example, when a instruction asks about some general information, "what is the highest

peak in the world", it is not necssary to provide a specific context. In this case, we simply put "<noinput>" in the input field. Frequency panafty 0
7. The output should be an appropriate response to the instruction and the input. Make sure the output is less than 100 words.

Presence penalty 0
List of 20 tasks:
#itH
1. Instruction: Is there anything I can eat for a breakfast that doesn't include eggs, yet includes protein, and has roughly 700- Best of 1
1000 calories?
1. Input: <noinput> Inject start text
1. Output: Yes, you can have 1oatmeal banana protein shake and & strips of bacon. The oatmeal banana protein shake may
contain 1/2 cup oatmeal, 60 grams whey protein powder, 1/2 medium banana, 1tbsp flaxseed oil and 1/2 cup watter, totalling ! ‘
about 550 calories. The & strips of bacon contains about 200 calories. 2

Inject restart text
it = ‘
2. Instruction: What is the relation between the given pairs? T @ ‘ ‘

2 Tnnut: Niaht - Dav - Riaht - | eft
Show probabilities

@ Looking for ChatGPT? Try it now g2 X

‘ off v

Training recipe

@ Overview Documentation Examples Playground 4 Upgrade @Help . Personal

Get started X Playground § Load a preset... v 1 Save Viewcode Share -

Enter an instruction or select a preset,

and watch the API respond with a Mode
completion that attempts to match the 207H2] ChFSt task instruction MEE ZHst2ts @3S YHALICE 02§ task instruction® GPT 20fl B 2E|0{ instructionS 22317| 9laf ¢ —
context or pattern you provided. GPT 2YS myjatL|ct & Complete o ‘
You can control which model completes il 2 Model
your request by changing the model. 27 A2 33 ZaLch —

1. CHIAN S 2eHE1517]| $I8 21 instructionO] T3 SALS ¥HESHR| OHIA|Q. ‘ text-davinci-003 ‘
KEEP IN MIND 2.instruction0f| AF8E|= Q0= Cr&iof BiL|CE Ol 2 S0, B instruction?t 2R S ZEtsHof guict

3. instruction| ZF 7t CtYal0f Bt SZ0i|= open-ended 44, 7, HE Sat 22 Cist Q@ o| 20| ZEHE|0{0F Bh|ct. Temperature 0.7

<¢ Use good judgment when sharing

outputs, and attribute them to your 2. GPT 2] L2 instruction 2R & = RAC{0} ELICE 0| S0 HAIAHEAH AL, AL, O|0|X] £ 2C|2 Z=3{3 2HAE instruction Y 0
name or company. Learn more. J5HX| OHAIR. £ CHE 0|2 S HA|AB Eo|A| 2% 5A0] T2t QAL O Zs £33 £ 97| W20 0]2] LS HHSIX| oA, Maximum length Pek
A Requests submitted to our APT will 3. Instructiont= 2012 24 #j0F ALICL 3
ok e eacin isror bopaarfulie 4. instruction® 1~2@0/0{0} BILICt Ha® RROILH WLl SiBELICH h
models. Learn more. 5. instruction0f| CHEF X Z3t 22 AdaHof &iL|ct 22 LEOE instructionf| CH3 RIS E &4 0|7 EEHE|0{0F ghL|C #AX QI C|O|E{S ZEts] Stop sequences
_— OF 5101 Tt Kt2) HAIKHE EaH8IALE oF ELICH 2121 I instruction O{EIH 1S 4 Sl ARXOl LIS MZ810} 51XI2t O|NH 2100 oy o e 3
[y Our default models' training data Eioim & sdwixiol
cuts off in 2021, so they may not have CHO1E ZISHX| QEOfOF BLICh
knowledge of current events. 6. 2E instructionti| 2J210| L8t 22 OL|CE Ol E 04, instruction0| "MIAIGIM 7H £ 2 E22lE SAYLITI? o 22 LEHH QI F ol chah
BE 4 Y UYAEE NS LRI AUELICE 0] 22 Y3 L0 "<noinput>"S 7|0t 321 EL|CH Top P 1
7. Z4 2 instruction} 210j| ChEt MHEH SE0|0{0F EHLICE £2{0] 100CH O|2HIX| 211G A|L.
207 Task instruction S5: VFrequencv penalty 0
#iH E
1. Instruction: 7|2t0| Z&tE|X| @1 CHYZEIO| ZEH%|0] 2 700-1000L 22|2| OFE AALE Y2 4= QU= 20| ABLIMN? Presence penalty 0
1. Input: <noinput> -
1. Output: 0|, 2EZ HHLIL} CHHUE 4]0| 3 1702 #|O|2 4B S S & £ USLICL LEL HILILL CHIZ! 40|30l LEY 1/28, F8 T 82 60g,
Z2H 37| viLiLE1/27H, OlobR 12 &, B 1/220| S50{ 20 & Z22|E 2 550Z 22| L|Ch W01 420l = 2 200H 22|17t S ASLICH Best of 1

#i#
2. Instruction: FO{ZI 4 ALO|2] 22| = 2AILIMt?
2. Input: Night : Day :: Right : Left

Inject start text

2. Output: Z01E 4 Atole] B2l TS0 whceke Heluic | |
| I Inject restart text
ve 2 |

Show probabilities
@ Looking for ChatGPT? Try it now 2 X

‘Oﬂ‘ V‘

Submit U7 s LD 2,231

AT,

L

O

Q)

Q)

Q)

02 Training recipe -&. £,

~

Supervised
52K Finetuning Alpaca 7B
175 Self- Modified Self-instruct Instruction-following
Instruct Instruction Generation examples
seed tasks
Example seed task Example Generated task
Instruction: Brainstorm a list of Instruction: Brainstorm creative
possible New Year's resolutions. ideas for designing a conference
room.
]] u Output:
52K unique instruction -> $500

- Exercise more ... incorporating flexible
- Eat healthier components, such as moveable

walls and furniture ...

fine-tuned the LLaMA models using Hugging Face’s training framework, taking advantage of techniques
like Fully Sharded Data Parallel(FSDP) and mixed precision training.

For our initial run, fine-tuning a 7B LLaMA model took 3 hours on 8 80GB A100s, which costs less than
$1 OO On mOSt CIOUd Compute pI'OVIderS torchrun ——nproc_per_node=4 —--master_port=<your_random_port> train.py \

——model_name_or_path <your_path_to_hf_converted_1llama_ckpt_and_tokenizer> \
——data_path ./alpaca_data.json \
—bf16 True \

OI'EHE PythOn 31 O *l-'g', ——output_c!ir <your_output_dir> \
47| GPUs + FSDP full_shard mode A2 Cf|A| B

—per_device_eval_batch_size 4 \
——gradient_accumulation_steps 8 \
— ——evaluation_strategy "no" \
3 epOCh’ ze 5 Ir -—save_strategy "steps" \
——-save_steps 2000 \
[o ——save_total_limit 1 \

FYI) InstructGPT= 16 epochd s .. Sl
—weight_decay 0. \
——warmup_ratio 0.03 \
—1r_scheduler_type "cosine" \
—logging_steps 1 \
—fsdp "full_shard auto_wrap" \
—fsdp_transformer_layer_cls_to_wrap 'LLaMADecoderLayer' \
—1tf32 True

A
03 Preliminary evaluation

g

o)

-~
~

L

4

conduct human evaluation (by the 5 student authors) on the inputs from the self-
instruct evaluation set.

self-instructOf|Aq] human ™@W2}& st 251712] O|0|E{All0] /U (diverse list of user-oriented instructions
including email writing, social media, and productivity tools.)

SI0IE HAEZ Wotst A= H|=% (90:89 = alpaca:davinci-003)
® blind pairwise comparison between text-davinci-003 and Alpaca 7B

% Alpaca wins 90 versus 89 comparisons against text-davinci-003.

MAME| 210|7t ChatGPTEL} B2 H, text-davinci-0030| BAH| AiM8F7| uf20|Ct2 F%&t

AT,

03
~

Preliminary
evaluation

Enter your instruction and press enter

What is an alpaca? How is it different from a llama?

Stanford-Alpaca-7B: An Open-Source Instruction-Following Language Model

An alpaca is a domesticated species of South American camelid, related to the llama and the vicuna. It is smaller than
a llama, and has finer and softer fleece. Alpacas are raised for their fleece, which is used to make knitted and woven

garments.

Enter your instruction and press enter
Write an e-mail to congratulate new Stanford admits and mention that you are exited about meeting all of them in
person.

Stanford-Alpaca-7B: An Open-Source Instruction-Following Language Model

Dear Stanford Admits,

Congratulations on your admission to Stanford! | am so excited to meet all of you in person. As a current student at
Stanford, | am looking forward to welcoming you to the Stanford community and showing you all that the university
has to offer.

| wish you all the best in your future endeavors and | can't wait to see you on campus!

Sincerely,
[Your Name]

AT,

g

Q)

Q)

Q)

04

Assets released
J o

"instruction": "Give three tips for staying healthy.",
n input " : nn A
"output": "l.Eat a balanced diet and make sure to include plenty ¢

keep your body active and strong. \n3. Get enough sleep and maintain a coi

Yo
Demo: An interactive demo for {
everyone to try out Alpaca. .
{

Data: 52K demonstrations used to

"instruction": "What are the three primary colors?",

inputs SN

"output": "The three primary colors are red, blue, and yellow."
"instruction": "Describe the structure of an atom.",

“input™s "4,

"output": "An atom is made up of a nucleus, which contains proton:

orbits around the nucleus. The protons and neutrons have a positive chargs

fine-tune Alpaca. g

Data generation process: the code for
generating the data.

Hyperparameters: for fine-tuning the
model using the Hugging Face API.

in an overall neutral atom. The number of each particle determines the at«

Hyperparameter Value
Batch size 128
Learning rate 2e-5
Epochs 3
Max length 512

Weight decay 0

AT,

04 Assets released
~

® Model weights: We have reached out
to Meta to obtain guidance on
releasing the Alpaca model weights,
both for the 7B Alpaca and for fine-
tuned versions of the larger LLaMA
models.
9 Training code: our code uses the o T
Hugging Face interface to LLaMA. As el SRS
of now, the effort to support LLaMA IS 7’ .00 e ecese the data by toxentzing.
still ongoing and not stable. We will A B Mo sl B TG IO L
give the exact training commands Foel e e e
once Hugging Face supports LLaMA " [irente © gy ™ <o tonisesictontons
OffICIa”y return dict(input_ids=input_ids, labels=labels) .

AT,

05 Future directions
~

)

Evaluation: We need to evaluate Alpaca more rigorously. We will start with HELM
(Holistic Evaluation of Language Models)

Q)

Safety: We would like to further study the risks of Alpaca and improve its safety
using methods such as automatic red teaming, auditing, and adaptive testing.

Q)

Understanding: We hope to better understand how capabilities arise from the
training recipe. What properties of a base model do you need? What happens
when you scale up? What properties of instruction data is needed? What are
alternatives to using self-instruct on text-davinci-003?

def generate_instruction_following_data(
. output_dir="./",

seed_tasks_path="./seed_tasks.jsonl",
num_instructions_to_generate=100,
model_name="text-davinci-003",

[)
num_prompt_instructions=3,
request_batch_size=5,
temperature=1.0,

top_p=1.0,
num_cpus=16,

seed_instruction_data = [
{"instruction": t["instruction"], "input": t["instances"][0]["input"], "output": t["instances"][@]["ot
for t in seed_tasks

‘ seed_tasks = [json.loads(l) for 1 in open(seed_tasks_path, "r")]

]
print(f"Loaded {len(seed_instruction_data)} human-written seed instructions")

4 D ata g e n e rati O n s n i p pets os.makedirs(output_dir, exist_ok=True)

request_idx = 0
load the LM-generated instructions
machine_instruction_data = []

def encode_prompt(prompt_instructions): if os.path.exists(os.path.join(output_dir, "regen.json")):
"""Encode multiple prompt instructions into a single string.""" machine_instruction_data = utils.jload(os.path.join(output_dir, "regen.json"))
prompt = open("./prompt.txt").read() + "\n" print(f"Loaded {len(machine_instruction_data)} machine-generated instructions")
y)))) # similarities = {}
for idx, task_dict in enumerate(prompt_instructions): scorer = rouge_scorer.RougeScorer(["rougelL"], use_stemmer=False)
(instruction, input, output) = task_dict["instruction"], task_dict["input"], task_dict["output"]
instruction = re.sub(r"\s+", " ", instruction).strip().rstrip(":") # now let's generate new instructions!
input = "<noinput>" if input.lower() == "" else input progress_bar = tgdm.tgdm(total=num_instructions_to_generate)

if machine_instruction_data:

—_ " "
prompt += FUa##\N progress_bar.update(len(machine_instruction_data))

prompt += f"{idx + 1}. Instruction: {instruction}\n"

prompt += f"{idx + 1}. Input:\n{input}\n" # first we tokenize all the seed instructions and generated machine instructions
prompt += f"{idx + 1}. Output:\n{output}\n" all_instructions = [d["instruction"] for d in seed_instruction_data] + [
prompt += f"###\n"] d["instruction"] for d in machine_instruction_data

prompt += f"{idx + 2}. Instruction:"

all_instruction_tokens = [scorer._tokenizer.tokenize(inst) for inst in all_instructions]
return prompt

while len(machine_instruction_data) < num_instructions_to_generate:
request_idx += 1

batch_inputs = []
for _ in range(request_batch_size):
only sampling from the seed tasks
prompt_instructions = random.sample(seed_instruction_data, num_prompt_instructions)
prompt = encode_prompt(prompt_instructions)
batch_inputs.append(prompt)
decoding_args = utils.OpenAIDecodingArguments(
temperature=temperature,

n=1,
max_tokens=3072, # hard-code to maximize the length. the requests will be automatically adjusted
top_p=top_p,

stop=["\n20", "20.", "20."],

EEEEEEEEEEEEEEEEEE

Thank You!

Do you have any questions?

