
1

z

From Statics to
DI

2

z

Part 1: Reusing
code

A reflection on why we separate code in
collaborators, and what we want to achieve

As software grows beyond a couple of lines of code, we tend to group chunks of it
together, be it by separating them with simple comments or encapsulating them first
in a separate method, then possibly in a separate class, then abstracting away the
implementation by defining a contract (interface)

3

z

Extracting code
§ Why do we separate chunks of code in functions, or in separate classes?

§ Naming procedures/Grouping ideas together

§ "These lines of code try to achieve this"

§ Reuse/sharing

§ These instructions are often used, might as well avoid rewriting them all the times
(maintainability)

§ Break down behavior, to be assembled in different ways – depending on the need of the
moment

§ Separation of concerns/delegation

§ I don't want to think about how you do it, it's enough to know you do it for me

§ I don't care WHO is doing the job, as long as we agree on a general contract (substitutability of
collaborators)

4

z
Static class/method != Separation

§ Static methods are a good way to share code, but in the end it's
nothing more than a syntactic trick to avoid code duplication

§ Once compiled, the code is hard linked exactly as if it had been
written in the same class

§ Changing the behavior of static code requires recompiling –
there is no easy way to override, alter, or mock static code

§ Furthermore, if a static collaborator requires some other
collaborators in turn, the only option is to have a net/graph of
other static objects

The fact that it is a separate class should not fool you. The only way to build this class
is through the static "getInstance()" method – which means it cannot be replaced.
https://williamdurand.fr/2013/07/30/from-stupid-to-solid-code/

5

z
THIS is the same as a static method

https://williamdurand.fr/2013/07/30/from-stupid-to-solid-code/

Sometimes referred to as an Anti-Pattern – because of its limitation and initial lure,
which seems to solve the coupling problem in the short term
Actually an excellent solution to begin moving old coupled code towards a
dependency inversion-based solution, as long as it is used as a stepping stone and not
as a final solution

6

z
Enter Locator

§ Pro:

§ Decouples consumer from
collaborators

§ Cons:

§ Consumers are painfully aware of
the Locator

§ Leads to inline invocation

§ Not always easy to mock the locator
itself for testing (more on this later)

https://blog.stackademic.com/understanding-the-difference-between-dependency-
inversion-and-dependency-injection-in-c-c9934ee7f6f5
https://www.freecodecamp.org/news/a-quick-intro-to-dependency-injection-what-it-
is-and-when-to-use-it-7578c84fa88f/
https://medium.com/@mena.meseha/dependency-injection-complete-guide-
14b5ee4e47eb

7

z
The better pattern: dependency injection

§ Dependency Injection is a
design pattern that externalizes
the composition/configuration of
application’s components.

§ It involves supplying a class’s
dependencies from the outside
rather than creating them
internally. This promotes loose
coupling and easier testing.

https://blog.stackademic.com/understanding-the-difference-between-dependency-
inversion-and-dependency-injection-in-c-c9934ee7f6f5
https://www.freecodecamp.org/news/a-quick-intro-to-dependency-injection-what-it-
is-and-when-to-use-it-7578c84fa88f/
https://medium.com/@mena.meseha/dependency-injection-complete-guide-
14b5ee4e47eb

8

z
The better pattern: dependency injection (II)

§ With dependency injection, you don’t know, nor care, where your collaborators come
from, nor how they are built. You just expect that someone provides them to you

§ Most of the times, collaborators are passed via the class’ constructor. Other times,
they can be injected after class construction.

§ This requires something else to put together the pieces – usually a dependency
injection framework. The most common are:

§ Spring

§ Guice

§ HK2

§ Yes, we use them all (sic!)

It promotes component’s interchangeably

9

z
Dependency Inversion

Dependency Inversion is one
of the SOLID principles and
focuses on the relationship
between high-level modules
and low-level modules. It
suggests that high-level
modules should not depend
on low-level modules directly,
but both should depend on
abstractions.

10

z
Dependency inversion != Dependency injection

§ D. Inversion is the idea of “Let’s agree on a shared contract, then I don’t
need to care about HOW you do it, I’ll just trust WHAT you will do for me

§ Main benefits are stability and improved separation of concerns (design by
contract)

§ D. Injection is the Hollywood Principle (don’t call us, we’ll call you). It
allows for components to be assembled in different ways

§ Focuses on separating what an object does from how it is initialized

§ Main benefit is code reuse and testability

§ They work really well together, but have independent value on their own!

11

z
Configuration modules overview

Spring (XML/JavaConfig):

Guice:

HK2 inverse syntax:

12

z

Our Locator(s)

§ Production-wise, the only implementation of any
relevance is GuiceLocatorImpl

§ Which scans for a “locator.xml” file in the
src/main/resources folder

§ From that file, it gets a list of packages to
scan (and/or to ignore)

§ Within such packages, it scans for classes
extending
org.eclipse.kapua.commons.core.AbstractKa
puaModule

§ which in turn extend form Guice’s
com.google.inject.AbstractModule

§ And builds the guice Injector

13

z
Locator != Dependency injection

§ Locator is the first step to gain the benefits of Dependency
Inversion, but without all the benefits of Dependency Injection

§ I still need to know “where” to find my collaborator, even if most
of the building and caching is delegated to the Locator

§ In a locator, mocking components is still very difficult

§ At the very least, you must have a Locator infrastructure running

§ Often you still end up having to instantiate the entire
environment just to test a class

14

z

Part 2: reasons
for change

With a brief digression on testing

https://medium.com/att-israel/should-you-avoid-using-static-ae4b58ca1de5

https://pangin.pro/posts/computation-in-static-initializer

15

z
Static issues

§ Static Initialization

§ Harmful

§ unpredictable

§ Manual handling of object lifecycle (singletons, boilerplate)

https://medium.com/att-israel/should-you-avoid-using-static-ae4b58ca1de5

16

z
DI makes collaborators obvious

§ Static references to collaborators are often hidden within
hundreds of lines of code

§ Dependency injection encourages visibility, by making you
declare each collaborator as an instance variable

§ Thus making the list of needed collaborator obvious

§ Even mandatory, if constructor-injection is used

https://ramj2ee.blogspot.com/2018/07/what-is-difference-between-
constructor_9.html

17

z
Constructor Injection vs Property Injection

Testing in isolation. Each component is tested in a void, to see if it reacts correctly to
external stimuli. ALL external collaborators are mocked, or closely manipulated to
behave in piloted ways.

19

z

z

Unit Testing

Two or more components are put together in order to see how they behave together.
The focus here is in the interaction between components - not the specific internals
of each component.

20

z

z Integration
Testing

We test the system in a close-to-production environment, with all components
working together. Testing should focus on the overall behaviour of the system –
testing all the paths is pretty much impossible at this point.

21

z

z

Acceptance/System Testing

https://testing.googleblog.com/2010/12/test-sizes.html

22

z

zSame story,
different

names

https://www.youtube.com/watch?v=hBVJbzAagfs

25

z

z

Part 3:
Understanding
GUICE

Quick view of the main features of guice, used in the
refactorings described later

https://jivimberg.io/blog/2019/02/08/guice-at-a-glance/

26

z

https://github.com/google/guice/wiki/MentalModel

27

z Guice Bindings
§ Guice can be seen as a huge key-value map

§ The key is the combination of a type (be that a class or
interface) and zero or more annotations

§ The value is a provider that returns an instance

§ It can be a singleton instance

§ Or a new instance for every request (default)

§ Most of the times, the provider is implicit

https://github.dev/dseurotech/understanding-guice

28

z
Many binding methods

§ Components are either wired explicitly in a Module in many different ways, or automatically
built if required by another component. The latter applies only if components either:

§ Have a parameterless, public constructor

§ Have a constructor marked with @Inject

§ By default, components are built every time they are required

§ But they can be instantiated as singletons, if an appropriate scope is referenced

§ Via @Singleton annotation on the class

§ Via @Singleton annotation on the providing method

§ .in(Singleton.class) at the end of the binding chain within configure()

While implicit declaration (just rely on @Inject and do not declare the wiring) might
seem desirable, it reduces visibility, and makes debugging the injection phase
impossible.

29

z

Provisioning equivalence1) Given:

2) These four à

3) Are all equivalent to:

+

While implicit declaration (just rely on @Inject and do not declare the wiring) might
seem desirable, it reduces visibility, and makes debugging the injection phase
impossible.

30

z

Binding vs provision method
bind(X.class).to(Y.class) bind(X).toInstance(new

Y())
@Provides
X yyy(){return new Y();}

Z implements
Provider<X>

Pros:
• Very compact
• Avoids arguments

repetition

Cons:
• Requires the “pollute”

the class with @Inject
• Less explicit
• Requires all arguments

to be identifiable, or to
pollute with further
annotations (e.g.:
@Named), which
reduce reusability

Pros:
• Implicit Singleton
• Can wire external

classes (potentially not
DI-aware)

Cons:
• Implicit Singleton
• Very simple initialization

logic can be used (but it
can easily get messy)

• Hard to collect other
collaborators, if needed

Pros:
• Good flexibility
• Easier to debug
• Simple logic allowed
• Can wire external

classes (potentially not
DI-aware)

Cons:
• Arguments repetition

Pros:
• True factory method
• Allows for complex logic
• Can wire external

classes (potentially not
DI-aware)

Cons:
• One more class
• Jump around between

modules and providers
to get the big picture

No wiring at all (rely on auto-create): Near-zero effort, but you have NO control, and you don’t benefit from
startup validation (see PRODUCTION Stage), and has all the cons of bind().to()

https://commons.wikimedia.org/wiki/File:W3sDesign_Dependency_Injection_Design
_Pattern_UML.jpg

31

z
The dependency graph

§ As per any other Dependency Injection Framework, at startup Guice analyses all the
modules and creates internally a dependencies graph, making sure its acyclic.

§ From that, it determines the order in which components need to be instantiated

https://github.com/google/guice/wiki/BindingAnnotations

32

z Binding Annotations

§ The vast majority of bindings associate an type (key) to a the provider of a
concrete class.

§ When another component requires an instance of that type as a collaborator,
the provider is called and the instance passed to the component

§ Normally you can’t bind a Key to multiple implementations

§ If I need multiple instances of the same type (e.g.: multiple Strings, each
representing a configuration parameter), they can be distinguished using
specific annotation, @Named being the most common one

https://github.com/google/guice/wiki/Multibindings

33

zMultibindings

§ Sometimes I want multiple instances of the same type, all at once

§ Very common in sponsor-selector design pattern, allowing modularity and extensibility

§ When injecting, I require a set (or a map) of collaborators of that type, instead of a single instance

§ Already used in develop in a couple of places

https://github.com/google/guice/wiki/Scopes#eager-singletons
https://www.technowizardry.net/2022/05/best-practices-for-working-with-google-
guice/

All of Kapua’s components now start with Stage.PRODUCTION

Most of EC components do, too.

34

z Guice Stages
Guice defines two main startup Stages: Develop and Production

Production mode is a little slower to startup, but it reveals
initialization problems sooner, and reduces elaboration time

A new System property and an environment property have been defined –
they can be configured to determine the startup Stage

35

z

Part 4:
Major changes
introduced

Finally, let’s see some of the most important changes
introduced by this PR

https://lindbakk.com/blog/utility-and-helper-classes-a-code-smell

Originally marked as: //TODO: FIXME: promote from static utility to injectable
collaborator

36

z
Doubled bindings

§ Number of edges (bindings) in the dependency graph (project res-api):

§ Develop: 692

§ PR: 1422

§ The vast majority of those are not NEW relationships – just existing
relationships between components which have been made explicit instead of
being static imports!

§ Which means gained flexibility and decoupling

37

z
GetComponent trumps getService and

getFactory

Introduced a new method called “getComponent”, which is capable of
returning ANY wired component

§ Because not all collaborators are Services or Factories

§ Because not all collaborators are Kapua’s classes

§ Works with both implementations and interfaces

§ Can de-facto replace getService and getFactory

Originally marked as: //TODO: FIXME: singletons should not be handled manually, we
have DI for that

38

z
“Manual” Singletons removed

• We should never have to
care about the object
lifecycle’s within the object
itself

• DI allows to override the
class in tests

• or to wrap it with a
caching layer

• or to change its
behaviour

• without changing the
consumers of this
collaborator

https://lindbakk.com/blog/utility-and-helper-classes-a-code-smell

Originally marked as: //TODO: FIXME: promote from static utility to injectable
collaborator

39

z
Static Utilities to injectable collaborators

§ As a result, many classes that previously were static utilities were converted to
injectable collaborators. Some examples:

§ CryptoUtil

§ RandomUtils

§ JmsUtil

§ … and many others

§ Some were hidden behind an interface, some others were just injected instead of
being instantiated manually or retrieved via the KapuaLocator

§ Once again, this allows for better isolation, the ability to replace them in tests, and
helps to separate concerns

§ “Util”classes and packages are a known code smell, anyway

40

z
Guice-to-hk2 bridge

As the name suggests, bridges
between Guice wiring and hk2’s
one, allowing components defined
in the former to be used in the latter

This allows wiring of kapua’s
components even where normally
we would not have control, as in
jersey resources (for example)

41

z
Guice-to-spring bridge (manual)

§ In the past, spring components (@Beans) were configured in isolation, and used
to consume kapua’s collaborators either via the Locator, or via singleton’s access.

§ Now the two wiring’s graphs have been connected directly, allowing Guice-
defined bindings to be used as spring’s @Beans

§ Unfortunately, at the moment this require manual bridging

42

z
Guice-to-spring bridge (manual) II

Notice that the name of the method annotated with @Bean is also the id of the bean,
to be referenced in the xml configuration:

Side note: Xml configuration should really be removed in favour of java config for spring
components, but that’s for another refactoring

43

z
Locator has been added to kapua's

artemis

§ Needed to be added to allow injection in the Plugins

§ Partially cherry-picked by Riccardo, already integrated in
develop

44

z

zUnwrapping
elasticsearch

services
(before)

45

z

zUnwrapping
elasticsearch

services
(after)

46

z
ServiceEventBusManager

§ Removed overengineered ServiceEventBusManager – which
was managing a single implementation of
ServiceEventBusDriver (JMSServiceEventBus)

§ If more ServiceEventBusDriver need to be coordinated in the
future, that can be done via the proven @ProvidesIntoSet wiring,
which allows to group together collaborators implementing the
same interface, injecting all of them at once

https://google.github.io/guice/api-
docs/5.1.0/javadoc/com/google/inject/util/Modules.html#override(com.google.injec
t.Module...)

47

z
Override modules

Replacing one of kapua’s implementations with your own is now
easier: just annotate a module with the @OverridingModule annotation.

§ Any binding defined within this module will overlay kapua’s binding
with the same “key” (type/annotations)

§ Based on the Modules.override feature of Guice

§ Reduces the need to exclude packages in custom extensions of
kapua

§ There is no need to extend kapua’s module, just redefine the single
binding!

48

z
Removed nearly all usages of
ServiceLoader

Among others
changes, this

massively simplified
the configuration of

OpenIDProvider (now
OpenIDLocator) – see

next slide

Now relying on guice’s @ProvidesIntoSet feature

Removed nearly all
usages of

ServiceLoader

ServiceLoader is a less powerful version of a Dependency Injection
•Without all the power of customizing object creation
•Without all the power to inject and coordinate multiple collaborators

49

z
OpenIdProvider Refactoring

Before

After

50

z
Removed ”false” extension points

§ Classes configured by name in configuration

§ In a couple of cases, the implementation of a specific interface was configured via
configuration parameters, and instantiated manually

§ E.g.: DatastoreElasticsearchClientSettingsKey.PROVIDER

§ They can be configured much more efficiently using guice, and overridden where
necessary

§ Even injecting other collaborators, which was impossible at the moment

//TODO: FIXME: REMOVE: A collaborator in a data class? Behaviour should not be
part of a data class!

51

z
Extracted behaviour out of data classes

A number of data classes (stored in the database, or exchanged via rest apis)
used static collaborators. This is an implementation error for several reasons:

1. Such classes are instantiated by external frameworks (e.g.: JPA, Jaxb),
which know nothing of your ecosystem//DI framework

2. It forces a specific implementation//business logic on top of data classes
that could be used in different ways, depending on the need

§ Examples:

§ ScopeId, extracted ScopeIdParamConverter

§ PermissionImpl: mapping to shiro extracted into PermissionMapper

52

z
Simplified hierarchies

§ AbstractEntityCacheFactory, an abstract class extended when
needed just to provide the cache name, has been made
concrete. Its instantiations are now configured at wiring-level

§ Same for AbstractNamedEntityCacheFactory

53

z
Service Event Bus Manager removed

§ ServiceEventBusManagerwas another class which tried to deal with
having multiple implementations, indexed by type

§ There was no known real use case at the moment for such
extensibility

§ Should a use case emerge in the future, this can be handled by
guice’s @ProvidesIntoMap in a much more simple way

54

z
Standardized db initialization

§ There were many different ways to inizialize the database driver
and to execute Liquibase

§ They have been aligned, using appropriate wiring techniques

§ If your class initialization depends on the database being
initialized (sic! e.g.: because it needs Liquibase to seed some
values, like sys users), just declare the bean as a dependency
(even if not used):

55

z
*Domains classes removed

§ Just static references to new *Domain()

56

z
Where we could not reach

It was not possible to get out of using the KapuaLocator for JAXB classes:

§ XmlAdapters

§ *XmlRegistry

Because Jaxb is not meant to work with DI.

Data classes should not depend directly on collaborators (also called: the case
for DTOs)

Static initialization was altered to be non-static, but that’s all (this applies to a few
non-jaxb collaborators too)

TODO: add why change

57

z
DeviceManagementRegistryManagerService

§ Interface with a lot of default methods, relying on interface fields

§ Effectively the same as a fully-static class

58

z
DI with Jbatch

Created a custom Factory Service, configured in batch-services.properties

KapuaLocatorInjector scans for fields marked with @Inject and sets their value,
allowing (rudimentary) dependency injection in objects created by JBatch

59

z

Part 5:
Conclusions

So, where are we?

60

z
Side Improvements?

60

STATICS = Production
occurrences of 'static(
final)?
(?![String|Logger|double|Ma
p])\w+ \w+ = (?!GWT)' in
Project with mask '!Gwt*'

274

488

254

392

28

324

STATICS KAPUALOCATOR.GETINSTANCE()

Quality Metrics

Expe rim ent s/re vised di Ref acto ring s/re po sitor y pa tter n Exte rmin ate sta tics

Still a lot of references
to KapuaLocator, mainly
due to all the JAXB
classes

61

z
What next?

Potential next steps:

§ Review JAXB usage to avoid the need from the locator there

§ Separating DTOs and BOs would have other benefits as well

§ Wire Quartz and Guice

§ To be able to inject in scheduler classes

§ Move spring’s xml configurations to JavaConfig

§ For better clarity and refactor-resilience

§ Use Guice Servlets directly

§ to benefit from @RequestScoped and other features

§ Review tests

§ Unit tests are much more accessible now

