Introducing a New Option
Processing Mechanism for the
OMR Compiler

Nazim Uddin Bhuiyan

github: nbhuiyan

Some motivations behind this rework...

* The OMR::Options class a giant confusing mess doing a lot more than
its name would suggest

* Adding a new option was not straightforward, often required making
changes in multiple locations

* Many downstream options exist within OMR

* and many more...

Initial contribution: PR #3675

* OMR PR #3675 Introduces the main components of the new option
processing mechanism

* Only implements boolean options that were previously using flags
with the help of enum CompilationOptions to identify the options

* First of a number of PRs to come that will add more option processing
capabilities (eg, setting non-boolean options, option set handling, etc)

Some major design decisions made in the
new option processing mechanism ...

* Boolean options are not stored in a single array using option flags,
instead, each option gets a boolean field

* Members to store options data, member initializer list, as well as the

option table are generated by a python script at build time. Data to
generate these files are obtained from .json files

* Option table used for matching command-line/env option strings is a
hash table that is laid out at build time

he OMR::Options:: options|] field

* OMR::Options uses option flags defined in enum CompilationOptions
to operate on the _options|] field

* Every boolean option needs a spot within enum CompilationOptions’s
fixed range of values

* Adding a new boolean option would require finding an available spot
in the enum

* The current implementation forces downstream projects to add their
project-specific options in this enum. This is problematic because
there is a maximum limit for the number of options that can exist in
this enum (about 830)

* Querying boolean options from this array using bitwise operations is
expensive compared to looking up boolean fields

Using boolean fields instead...

* No limit on the number of boolean options a compiler project can
have

* Enables a mechanism for allowing project-specific options to stay out
of OMR

 2-3x faster querying of boolean fields vs bitwise operations to extract
options from OMR::Options:: _options[]. This comparison was made
by making 1 billion queries of different options in the 2 different
implementations

* Individual boolean fields increase the size of the options object, but
this is justified because querying the fields require fewer instructions

Components of the new Option processing
framework being introduced in PR #3675

* OMROptions.json
* options-gen

* Generated option entries table
* OptionProcessors

* OptionsBuilder

* CompilerOptions

* CompilerOptionsManager

OMROptions.json

* Contains all the OMR compiler options as an array of JSON objects
* Downstream projects will have their own .json file for their options
* Entries in this file gets processed at build time

* A new option can be added by simply making a new entry in this file
and re-building

* Allows us to specify default values for options to reduce the number
of options that are always set to the same value at runtime

OMROptions.json
Here is how an entry in OMROptions.json looks like

"name": "x86UseMFENCE",

"category": "M",

"desc": "Enable to use mfence to handle volatile store",
"option-member": "TR_X86UseMFENCE",

"type": "bool",

"default": "false",

"processing-fn": "setTrue",

"subsettable": "no"

options-gen

* A python script that runs at build time
* Responsible for processing the JSON data

* Generates multiple .inc files that are included in CompilerOptions and
CompilerOptionsManager classes:
* Options.inc
OptionlinitializerList.inc
OptionTableEntries.inc
OptionTableProperties.inc
OptionCharMap.inc

options-gen

* A python script that runs at build time
* Responsible for processing the JSON data

* Generates multiple .inc files that are included in CompilerOptions and
CompilerOptionsManager classes:

) Opt?ons.i.n.c . o } Used for building the CompilerOptions class

OptionlnitializerList.inc

OptionTableEntries.inc

OptionTableProperties.inc

OptionCharMap.inc

options-gen

* A python script that runs at build time
* Responsible for processing the JSON data

* Generates multiple .inc files that are included in CompilerOptions and
CompilerOptionsManager classes:

* Options.inc
OptionlinitializerList.inc
OptionTableEntries.inc
OptionTableProperties.inc —— ysed for building the option
OptionCharMap.inc entries table

—_

New Option Table

* The new option table design is different from the existing one, where
matching option strings to the entries are done by a hash function

* The generated hash table is a 2d array of struct OptionTableltem, with
every row representing a bucket in the hash table

* The generated file OptionTableEntries.inc contains braced initializer
list of the table entries

New Option Table

OLD DESIGN:

R e The hash table is not perfect or minimal
isg;: e Attempts were made to get close to that, trying to
- implement gperf’s perfect hash function generating
} NULL algorithm
* This was abandoned due to the build time added by
I the script trying to generate a perfect hash table, and
{ {{aa}},

{{ab}, {ba}}, the fact that the resulting table was very sparsely

{},
e populated

{}
}

14

New Option Table

OLD DESIGN:

{ {aa},
{ab},
{ad},
{ba},

NULL
}

NEW DESIGN:

{ {{aa}},

{{ab},{ba}},

{},
{{ad}},
{}

}

 The hashed table is indexed into when processing
options by hashing the option string, which gets us the
bucket

* The bucket could contain multiple options that hash to
the same index, so a string comparison is needed

* Theoretically, retrieving an entry in this new table
design should be faster than the old design on average

15

OptionProcessors

* An extensible class containing a set of option processing functions
that process options from command-line/env

* OMR will provide a set of basic processing functions (eg, setTrue,
setFalse, setInt32, etc.)

* Downstream projects can extend this class to process their options

OptionsBuilder

* This class is used during the initialization of options
* Handles parsing command line options, env options, etc

17

CompilerOptions

* The class containing all the option members
* It includes the generated Options.inc file

18

CompilerOptionsManager

* An extensible class managing the different components of options
processing

* Handles initialization of options, option table lookup,
CompilerOptions object lookup, etc

19

Integrating with OMR

* Unfortunately, replacing the existing OMR::Options class in a single PR
IS not possible

* The new framework is going to be off by default, and would need to
be explicitly turned on

* Macro functions can handle a dual implementation of querying
boolean options without any runtime overhead

Integrating with OMR

defined (NEW_OPTIONS_DEBUG
fine COMPARE_COMP_OPTIONS(x,0
TR_ASSERT getOption

alled equality
COMPARE_COMP_OPTIONS (x,0
fined (NEW_OPTIONS

fine GET_COMP_OPTION(x,0
getNewOptions 0

fine GET_COMP_OPTION(x,0
getOption
i

getNewOptions
3 z optlo

COMPARE_COMP_OPTIONS (codeGen->comp(), TR_EnableOSR)

osrEnabled

GET_COMP_OPTION(codeGen->comp(), TR_EnableOSR);

21

Upcoming PRs...

e Support for non-Boolean option types

e Support option sets

e Support setting options in feBase (ie, JitConfig)

* Add support for using the new options in OpenlJ9

* Migrate OpenlJ9-specific options to Options.json in OpenlJ9
 And more...

Questions?

23

