
Introducing a New Option 
Processing Mechanism for the 

OMR Compiler
Nazim Uddin Bhuiyan

github: nbhuiyan

1



Some motivations behind this rework…

• The OMR::Options class a giant confusing mess doing a lot more than 
its name would suggest
• Adding a new option was not straightforward, often required making 

changes in multiple locations
• Many downstream options exist within OMR
• and many more…

2



Initial contribution: PR #3675

• OMR PR #3675 Introduces the main components of the new option 
processing mechanism
• Only implements boolean options that were previously using flags 

with the help of enum CompilationOptions to identify the options
• First of a number of PRs to come that will add more option processing 

capabilities (eg, setting non-boolean options, option set handling, etc)

3



Some major design decisions made in the 
new option processing mechanism …
• Boolean options are not stored in a single array using option flags, 

instead, each option gets a boolean field
• Members to store options data, member initializer list, as well as the 

option table are generated by a python script at build time. Data to 
generate these files are obtained from .json files
• Option table used for matching command-line/env option strings is a 

hash table that is laid out at build time

4



The OMR::Options::_options[] field
• OMR::Options uses option flags defined in enum CompilationOptions

to operate on the _options[] field
• Every boolean option needs a spot within enum CompilationOptions’s

fixed range of values
• Adding a new boolean option would require finding an available spot 

in the enum
• The current implementation forces downstream projects to add their 

project-specific options in this enum. This is problematic because 
there is a maximum limit for the number of options that can exist in 
this enum (about 830)
• Querying boolean options from this array using bitwise operations is 

expensive compared to looking up boolean fields

5



Using boolean fields instead…

• No limit on the number of boolean options a compiler project can 
have
• Enables a mechanism for allowing project-specific options to stay out 

of OMR
• 2-3x faster querying of boolean fields vs bitwise operations to extract 

options from OMR::Options::_options[]. This comparison was made 
by making 1 billion queries of different options in the 2 different 
implementations
• Individual boolean fields increase the size of the options object, but 

this is justified because querying the fields require fewer instructions

6



Components of the new Option processing 
framework being introduced in PR #3675
• OMROptions.json
• options-gen
• Generated option entries table
• OptionProcessors
• OptionsBuilder
• CompilerOptions
• CompilerOptionsManager

7



OMROptions.json

• Contains all the OMR compiler options as an array of JSON objects
• Downstream projects will have their own .json file for their options
• Entries in this file gets processed at build time
• A new option can be added by simply making a new entry in this file 

and re-building
• Allows us to specify default values for options to reduce the number 

of options that are always set to the same value at runtime

8



OMROptions.json

Here is how an entry in OMROptions.json looks like

9



options-gen

• A python script that runs at build time
• Responsible for processing the JSON data
• Generates multiple .inc files that are included in CompilerOptions and 

CompilerOptionsManager classes:
• Options.inc
• OptionInitializerList.inc
• OptionTableEntries.inc
• OptionTableProperties.inc
• OptionCharMap.inc

10



options-gen

• A python script that runs at build time
• Responsible for processing the JSON data
• Generates multiple .inc files that are included in CompilerOptions and 

CompilerOptionsManager classes:
• Options.inc
• OptionInitializerList.inc
• OptionTableEntries.inc
• OptionTableProperties.inc
• OptionCharMap.inc

11

Used for building the CompilerOptions class



options-gen

• A python script that runs at build time
• Responsible for processing the JSON data
• Generates multiple .inc files that are included in CompilerOptions and 

CompilerOptionsManager classes:
• Options.inc
• OptionInitializerList.inc
• OptionTableEntries.inc
• OptionTableProperties.inc
• OptionCharMap.inc

12

Used for building the option 
entries table



New Option Table

• The new option table design is different from the existing one, where 
matching option strings to the entries are done by a hash function
• The generated hash table is a 2d array of struct OptionTableItem, with 

every row representing a bucket in the hash table
• The generated file OptionTableEntries.inc contains braced initializer 

list of the table entries

13



New Option Table

14

• The hash table is not perfect or minimal
• Attempts were made to get close to that, trying to 

implement gperf’s perfect hash function generating 
algorithm

• This was abandoned due to the build time added by 
the script trying to generate a perfect hash table, and 
the fact that the resulting table was very sparsely 
populated



New Option Table

15

• The hashed table is indexed into when processing 
options by hashing the option string, which gets us the 
bucket

• The bucket could contain multiple options that hash to 
the same index, so a string comparison is needed

• Theoretically, retrieving an entry in this new table 
design should be faster than the old design on average



OptionProcessors

• An extensible class containing a set of option processing functions 
that process options from command-line/env
• OMR will provide a set of basic processing functions (eg, setTrue, 

setFalse, setInt32, etc.)
• Downstream projects can extend this class to process their options

16



OptionsBuilder

• This class is used during the initialization of options
• Handles parsing command line options, env options, etc

17



CompilerOptions

• The class containing all the option members
• It includes the generated Options.inc file

18



CompilerOptionsManager

• An extensible class managing the different components of options 
processing
• Handles initialization of options, option table lookup, 

CompilerOptions object lookup, etc

19



Integrating with OMR

• Unfortunately, replacing the existing OMR::Options class in a single PR 
is not possible
• The new framework is going to be off by default, and would need to 

be explicitly turned on
• Macro functions can handle a dual implementation of querying 

boolean options without any runtime overhead

20



Integrating with OMR

21



Upcoming PRs…

• Support for non-Boolean option types
• Support option sets
• Support setting options in feBase (ie, JitConfig)
• Add support for using the new options in OpenJ9
• Migrate OpenJ9-specific options to Options.json in OpenJ9
• And more…

22



Questions?

23


