
JitBuilder 2.0
Mark Stoodley

2020-03-12

• Improve usability
• Dual mental model (JitBuilder, OMR compiler) can be difficult for users
• Logging/debugging/analysis with JitBuilder concepts would be nicer

• Improve extensibility
• Make it easier to add new types and operations
• Operate on JitBuilder as an IR before it flows to code generation

• Easier experimentation path for new compiler concepts
• More freedom to try new things outside existing OMR compiler framing
• (Wild n Crazy) evolutionary path from OMR compiler IL to something “else”?

• Decoupling from OMR compiler (don’t get upset!)
• More freedom to ”play” without OMR compiler and dependencies
• Easier to have “client” and “compiler”
• Easier to bring JitBuilder to other languages?
• Distinct from OpenJ9 so fewer constraints on how it evolves forward

JitBuilder 2.0 Goals and Motivation

Prototype Exploration

• What follows describes a prototype (incomplete) implementation I
primarily wrote over the 2019 Christmas holidays
• Completely independent of OMR (but only because I didn’t write the code

generator yet)
• Implements enough of JitBuilder for MatrixMultiply
• Includes some rudimentary logging (including pretty printing JitBuilder “IL”)
• Demonstrates some ”dialect reducing”

• E.g. translating ForLoopUp into lower level operations like IfCmpGreaterThan

• Roughly demonstrated adding a Complex type and ConstCompex operation
• Then a transformer to reduce all operations from Complex to Double operations

JitBuilder 2.0 Key Elements
• Familiar stuff (some with twists):

• Builder (a.k.a. IlBuilder)
• FunctionBuilder (a.k.a MethodBuilder)
• Other builder types

• Type (a.k.a. IlType)
• TypeDictionary
• Value

• Lots of new stuff
• Config
• Dialect
• Operation (using Action enum)

• Add, Sub, etc.
• Symbol

• ParameterSymbol
• TypeGraph
• Visitor - PrettyPrinter
• Transformer - DialectReducer

JitBuilder 2.0 Key Elements
• Familiar stuff (some with twists):

• Builder (a.k.a. IlBuilder)
• FunctionBuilder (a.k.a MethodBuilder)
• Other builder types

• Type (a.k.a. IlType)
• TypeDictionary
• Value

• Lots of new stuff
• Config
• Dialect
• Operation (using Action enum)

• Add, Sub, etc.
• Symbol

• ParameterSymbol
• TypeGraph
• Visitor - PrettyPrinter
• Transformer - DialectReducer

Some general improvements/changes

• Everything is a data structure
• Values, Types, Symbols, Operations, Builders, etc.
• Every instance has an ID and potentially a name (often “”)

• Everything can be queried and traversed
• op.getOperand(i), op.getResult(i), value.getType(), …

• Aimed for “backwards compatibility”
• Some of the names changed, mostly just search and replace
• Used references rather than pointers in prototype (may change)
• Removing “double pointer” arguments that allocate IlBuilders automatically
• Kept everything in OMR::JitBuilder namespace
• Expecting client API generation to get simpler

• Maybe even become a first class part of using JitBuilder
• Implementation objects become “code generation”

OMR::JitBuilder::Value is some kind of data
public:

uint64_t id() const { return _id; }

Type & type() const { return _type; }

bool usedBeyondParent() const { return _usedBeyondParent; }

• Cannot create a value directly (no public constructor or factory)
• Only Builder gets this privilege currently
• Helps maintain correctness as nothing user can do to get it “wrong”

• Type “categorizes” legal data

• New in this prototype: you can ask for a Value’s Type
• Previously, you could really only ask for a primitive type (a.k.a. OMR compiler’s TR::DataType)
• Operations compute the result Value’s new Type based on the Type of the operands

• Open question: immutability of Value

OMR::JitBuilder::Operation does something
• Abstract base class for operations using Action enum

• enum Action { aAdd, aSub, aLoad, aStoreAt, aIfThenElse, aForLoopUp … }
Action action() const

• Has a parent builder where this operation resides
Builder & parent() const

• Defines virtual getters and setters for generic characteristics of an Operation
e.g. int32_t numOperands(), Value *operand(i)

int32_t numResults(), Value *result(i)
int32_t numTypes(), Type * type(i)
float getLiteralFloat() and other primitive types

• Iterators too:
e.g. ValueIterator OperandsBegin(), OperandsEnd()

ValueIterator ResultsBegin(), ResultsEnd()
TypeIterator TypesBegin(), TypesEnd()
BuilderIterator BuildersBegin(), BuildersEnd()

• Concrete subclasses for each kind of action
• Add, Sub, Load, StoreAt, IfThenElse, ForLoopUp, etc.

OMR::JitBuilder::Builder is a sequence of operations
• Basically a label and a sequence of operations
• Call operations on a builder object to append to its sequence

• Has a containing FunctionBuilder
• May be bound to an operation
• Bound means control to and from builder is determined by the operation
• E.g. IfCmpGreaterThan() branches to an unbound builder (no implicit merge back)
• E.g. IfThenElse() uses two bound builders (because IfThenElse creates merge)
• More abstract operations more likely to use bound builders

• Operations are validated as they are added
• Uses TypeGraph which maps operand Types + Action to result Type(s*)
• Every Operation class registers valid combinations
• Creating a PointerTo(type) registers valid addressing for the resulting type

FunctionBuilder is a callable Builder object

• Previously known as “MethodBuilder”
• Has a name
• Can take parameters which have Types
• Can return one (or more, in principle) Values

TypeGraph ensures valid operations

• TypeGraph object is part of TypeDictionary
• Initializes itself and must ask all Operations to initialize their type ”productions”

• E.g.
void
OMR::JitBuilder::Add::initializeTypeProductions(TypeDictionary & types, TypeGraph &
graph)

{
Type & I8 = types.Int8; graph.registerValidOperation(I8, aAdd, I8, I8);
graph.registerValidOperation(types.Int16 , aAdd, types.Int16 , types.Int16);
graph.registerValidOperation(types.Int32 , aAdd, types.Int32 , types.Int32);
graph.registerValidOperation(types.Int64 , aAdd, types.Int64 , types.Int64);
graph.registerValidOperation(types.Float , aAdd, types.Float , types.Float);
graph.registerValidOperation(types.Double, aAdd, types.Double, types.Double);

graph.registerValidOperation(types.Address, aAdd, types.Address, types.Word);
}

TypeDictionary adds pointer types to TypeGraph
void

OMR::JitBuilder::TypeDictionary::registerPointerType(PointerType & pointerType)

{

_graph.registerType(pointerType);

Type & baseType = pointerType.BaseType();

_graph.registerValidOperation(pointerType, aAdd, pointerType, Word);

_graph.registerValidOperation(Word, aSub, pointerType, pointerType);

_graph.registerValidOperation(pointerType, aIndexAt, pointerType, Word);

_graph.registerValidOperation(baseType, aLoadAt, pointerType);

_graph.registerValidOperation(NoType, aStoreAt, pointerType, baseType);

}

Some very basic traversal support: Visitor

• Visitor:
// subclass Visitor and override these functions as needed

virtual void visitFunctionBuilderPreOps(FunctionBuilder & fb) { }

virtual void visitFunctionBuilderPostOps(FunctionBuilder & fb) { }

virtual void visitBuilderPreOps(Builder & b) { }
virtual void visitBuilderPostOps(Builder & b) { }
virtual void visitOperation(Operation & op) { }

Example Visitor: PrettyPrinter
• 450 lines in header and source to produce JitBuilder logs, e.g.

[FunctionBuilder MB0 "matmult"
[types td0]
[origin MatMult.cpp::40]
[returnType t0]
[parameter "C" t8 0]
[parameter "A" t8 1]
[parameter "B" t8 2]
[parameter "N" t3 3]
[local "sum" t6]
[local "i" t3]
[local "j" t3]
[local "k" t3]
[operations

op0: v0 = Load "A"
op1: v1 = Load "B"
op2: v2 = Load "C"
op3: v3 = Load "N"
op4: v4 = ConstInt32 0
op5: v5 = ConstInt32 1
op6: ForLoopUp "i" : v4 to v3 by v5 body B1 ""
op31: Return nil

]
….

]

Some very basic traversal support: Transformer

• Transformer:
// To implement any transformation, subclass Transformer

// and override the virtual functions below as needed

// called once on each FunctionBuilder before any other processing

virtual void transformFunctionBuilder(FunctionBuilder & fb) { }

// called once each Builder object before its operations are processed
virtual void transformBuilderBeforeOperations(Builder & b) { }

// called once on each operation

// the operation will be replaced by the contents of any non-NULL Builder object returned

virtual Builder * transformOperation(Operation & op) { return NULL; }

// called once each Builder object after its operations are processed

virtual void transformBuilderAfterOperations(Builder & b) { }

Example Transformer: AppendBuilderInliner
class AppendBuilderInliner : public Transformer

{
public:

AppendBuilderInliner(FunctionBuilder &fb)
: Transformer(fb)
{
}

protected:
virtual Builder * transformOperation(Operation & op)

{
if (op.action() != aAppendBuilder || op.builder(0)->isTarget())

// ignore anything but AppendBuilder and AppendBuilders that are targets of branches
return NULL;

// replace AppendBuilder operation with the operations from the appended builder
return op.getBuilder(0);
}

};

Debugging

• Logs can be produced
• Visitor and Transformer can log what they do
• Transformer supports “performTransformation()”
• FunctionBuilder counts transformations
• Automatically prints before and after trees

ForLoopUp reduction transformer

• (2) Transformation:
• op12: ForLoopUp "k" : v4 to v3 by v5 body B3 ""
• [Builder B12 "" notTarget
• [operations
• op52: Store "k" v4
• op53: v33 = Load "k"
• op54: IfCmpGreaterOrEqual v33 v3 then B15 ""
• op60: AppendBuilder B13 ""
• op61: AppendBuilder B15 "" (Label)
•]
•]

What else?

• Implemented a Complex Type on top of JitBuilder
• Added an operation called “ConstComplex R,I”

• Modified Matrix Multiply in terms of Complex
• Changed Double to Complex
• Changed ConstDouble 0.0 to ConstComplex 0,0

• Write a ComplexReducer transformer
• Replaces all Complex Values with two Double values
• Maps all operations with Complex operands to two Double operations

What next?

• Write up an issue
• Push my current code to a git repo for
• Get feedback
• Keep going J

