JitBuilder 2.0

Mark Stoodley
2020-03-12

JitBuilder 2.0 Goals and Motivation

* Improve usability
e Dual mental model (JitBuilder, OMR compiler) can be difficult for users
* Logging/debugging/analysis with JitBuilder concepts would be nicer

* Improve extensibility
* Make it easier to add new types and operations
* Operate on JitBuilder as an IR before it flows to code generation

 Easier experimentation path for new compiler concepts
* More freedom to try new things outside existing OMR compiler framing
e (Wild n Crazy) evolutionary path from OMR compiler IL to something “else”?

* Decoupling from OMR compiler (don’t get upset!)
* More freedom to "play” without OMR compiler and dependencies
* Easier to have “client” and “compiler”
e Easier to bring JitBuilder to other languages?
* Distinct from Openl9 so fewer constraints on how it evolves forward

Prototype Exploration

* What follows describes a prototype (incomplete) implementation |
primarily wrote over the 2019 Christmas holidays

 Completely independent of OMR (but only because | didn’t write the code
generator yet)

* Implements enough of JitBuilder for MatrixMultiply
* Includes some rudimentary logging (including pretty printing JitBuilder “IL”)

* Demonstrates some “dialect reducing”
e E.g. translating ForLoopUp into lower level operations like IfCmpGreaterThan

* Roughly demonstrated adding a Complex type and ConstCompex operation
* Then a transformer to reduce all operations from Complex to Double operations

JitBuilder 2.0 Key Elements

e Familiar stuff (some with twists):

* Builder ()

* FunctionBuilder ()
e Other builder types

* Type ()
* TypeDictionary
* Value

* Lots of new stuff

e Config

* Dialect

e Operation (using Action enum)
* Add, Sub, etc.

e Symbol
e ParameterSymbol

* TypeGraph

* Visitor - PrettyPrinter

* Transformer - DialectReducer

JitBuilder 2.0 Key Elements

e Familiar stuff (some with twists):

Builder ()

* FunctionBuilder ()
e Other builder types

* Type ()
* TypeDictionary

Value

e Lots of new stuff

Config
Dialect

Operation (using Action enum)
* Add, Sub, etc.

Symbol
e ParameterSymbol

TypeGraph
Visitor - PrettyPrinter
Transformer - DialectReducer

Some general improvements/changes

* Everything is a data structure
* Values, Types, Symbols, Operations, Builders, etc.
* Every instance has an ID and potentially a name (often

(l”)

* Everything can be queried and traversed
* op.getOperand(i), op.getResult(i), value.getType(), ...

* Aimed for “backwards compatibility”
* Some of the names changed, mostly just search and replace
Used references rather than pointers in prototype (may change)
Removing “double pointer” arguments that allocate IIBuilders automatically
Kept everything in OMR::JitBuilder namespace

Expecting client APl generation to get simpler
* Maybe even become a first class part of using JitBuilder

* Implementation objects become “code generation”

OMR::JitBuilder::Value is some kind of data

public:
uint64 t 1d() const { return 1id; }
Type & type () const { return type; }

bool usedBeyondParent () const { return usedBeyondParent; }

Cannot create a value directly (no public constructor or factory)

* Only Builder gets this privilege currently
e Helps maintain correctness as nothing user can do to get it “wrong”

Type “categorizes” legal data

New in this prototype: you can ask for a Value’s Type
* Previously, you could really only ask for a primitive type (a.k.a. OMR compiler’s TR::DataType)
* Operations compute the result Value’s new Type based on the Type of the operands

Open question: immutability of Value

OMR::JitBuilder::Operation does something

e Abstract base class for operations using Action enum

 enum Action { aAdd, aSub, aLoad, aStoreAt, alfThenElse, aForLoopUp ... }
Action action() const

* Has a parent builder where this operation resides
Builder & parent() const

e Defines virtual getters and setters for generic characteristics of an Operation

e.g. int32 t numOperands (), Value *operand(i)

int32 t numResults (), Value *result (1)
int32 t numTypes (), Type * type (1)
float getLiteralFloat () andother primitive types

* |terators too:

e.g. Valuelterator OperandsBegin (), OperandsEnd ()
Valuelterator ResultsBegin(), ResultsEnd()
Typelterator TypesBegin (), TypesEnd ()
BuilderIterator BuildersBegin (), BuildersEnd()

e Concrete subclasses for each kind of action
e Add, Sub, Load, StoreAt, IfThenElse, ForLoopUp, etc.

OMR::JitBuilder::Builder is a sequence of operations

* Basically a label and a sequence of operations
* Call operations on a builder object to append to its sequence

* Has a containing FunctionBuilder

* May be bound to an operation
* Bound means control to and from builder is determined by the operation
e E.g. IfCmpGreaterThan() branches to an unbound builder (no implicit merge back)
* E.g. IfThenElse() uses two bound builders (because IfThenElse creates merge)
* More abstract operations more likely to use bound builders

* Operations are validated as they are added
* Uses TypeGraph which maps operand Types + Action to result Type(s™*)
* Every Operation class registers valid combinations
* Creating a PointerTo(type) registers valid addressing for the resulting type

FunctionBuilder is a callable Builder object

* Previously known as “MethodBuilder”
* Has a hame
* Can take parameters which have Types

e Can return one (or more, in principle) Values

TypeGraph ensures valid operations

* TypeGraph object is part of TypeDictionary

* |nitializes itself and must ask all Operations to initialize their type “productions”

* E.8.
void
OMR: :JitBuilder::Add::initializeTypeProductions (TypeDictionary & types, TypeGraph &
graph)
{
Type & I8 = types.Int8; graph.registerValidOperation (I8, aAdd, I8, I8);

graph.registerValidOperation (types.Intl6 , aAdd, types.Intl6e , types.Intl6)

types.Int32 , aAdd, types.Int32 , types.Int32)

types.Int6d4 , aAdd, types.Int64d , types.Intoed);
)
)

14

graph.registerValidOperation

~

graph.registerValidOperation

~

~

types.Float , aAdd, types.Float , types.Float
types.Double, aAdd, types.Double, types.Double

graph.registerValidOperation
graph.registerValidOperation

14

—_~ o~ o~ o~

graph.registerValidOperation (types.Address, aAdd, types.Address, types.Word):;
}

TypeDictionary adds pointer types to TypeGraph

void

OMR: :JitBuilder::TypeDictionary::registerPointerType (PointerType & pointerType)

{

_graph.

Type &
_graph.
_graph.

_graph.
_graph.
_graph.
}

registerType (pointerType) ;

baseType = pointerType.BaseType () ;
registerValidOperation (pointerType, aAdd, pointerType, Word);
registerValidOperation (Word, aSub, pointerType, pointerType);

registerValidOperation (pointerType, alndexAt, pointerType, Word);
registerValidOperation (baseType, alLoadAt, pointerType);
registerValidOperation (NoType, aStoreAt, pointerType, baseType);

Some very basic traversal support: Visitor

* Visitor:
// subclass Visitor and override these functions as needed

virtual void visitFunctionBuilderPreOps (FunctionBuilder & fb)

virtual void visitFunctionBuilderPostOps (FunctionBuilder & fb)

virtual void visitBuilderPostOps (Builder & Db)

e e e

{
{
virtual void visitBuilderPreOps (Builder & b) {
{
{

virtual void visitOperation (Operation & op)

Example Visitor: PrettyPrinter

* 450 lines in header and source to produce JitBuilder logs, e.g.
[FunctionBuilder MBO "matmult"
[types td0]
[origin MatMult.cpp::40]
[returnType t0]
[parameter "C"t8 0]
[parameter "A" 18 1]
[parameter "B" t8 2]
[parameter "N" t3 3]
[local "sum" t6]
[local "i" t3]
[local "j" t3]
[local "k" t3]
[operations
op0: vO = Load "A"
opl:vl =Load "B"
op2:v2 =Load "C"
op3:v3 =Load "N"
op4: v4 = Constint32 0
op5: v5 =Constint32 1
op6: ForLoopUp "i" : v4 to v3 by v5 body B1 "
op31: Return nil

Some very basic traversal support: Transformer

* Transformer:

// To implement any transformation, subclass Transformer

// and override the virtual functions below as needed

// called once on each FunctionBuilder before any other processing

virtual void transformFunctionBuilder (FunctionBuilder & fb) { }

// called once each Builder object before its operations are processed

virtual void transformBuilderBeforeOperations (Builder & b) { }

// called once on each operation
// the operation will be replaced by the contents of any non-NULL Builder object returned

virtual Builder * transformOperation (Operation & op) { return NULL; }

// called once each Builder object after its operations are processed

virtual void transformBuilderAfterOperations (Builder & b) { }

Example Transformer: AppendBuilderinliner

class AppendBuilderInliner : public Transformer
{
public:
AppendBuilderInliner (FunctionBuilder &fb)
Transformer (fb)
{
}

protected:
virtual Builder * transformOperation (Operation & op)
{
if (op.action() !'= aAppendBuilder || op.builder (0)->isTarget())
// ignore anything but AppendBuilder and AppendBuilders that are targets of branches
return NULL;

// replace AppendBuilder operation with the operations from the appended builder
return op.getBuilder (0);
}

Y

Debugging

* Logs can be produced
e Visitor and Transformer can log what they do

* Transformer supports “performTransformation()”
* FunctionBuilder counts transformations
e Automatically prints before and after trees

ForLoopUp reduction transtformer

(2)
opl2:
[

Transformation:
ForLoopUp "k" : v4 to v3 by v5 body B3 ""
Builder B12 "" notTarget
[operations
opb2: Store "k" v4
op53: v33 = Load "k"
opb4: IfCmpGreaterOrEqual v33 v3 then B15
op60: AppendBuilder B13 ""

opb6bl:

AppendBuilder B15

LANA

(Label)

mwn

What else?

* Implemented a Complex Type on top of JitBuilder
* Added an operation called “ConstComplex R,I”

* Modified Matrix Multiply in terms of Complex
* Changed Double to Complex
* Changed ConstDouble 0.0 to ConstComplex 0,0

* Write a ComplexReducer transformer
* Replaces all Complex Values with two Double values
* Maps all operations with Complex operands to two Double operations

What next?

* Write up an issue
* Push my current code to a git repo for
* Get feedback

* Keep going ©

