-
Notifications
You must be signed in to change notification settings - Fork 1
/
elucidated_imagen.py
882 lines (641 loc) · 33.5 KB
/
elucidated_imagen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
from math import sqrt
from random import random
from functools import partial
from contextlib import contextmanager, nullcontext
from typing import List, Union
from collections import namedtuple
from tqdm.auto import tqdm
import torch
import torch.nn.functional as F
from torch import nn, einsum
from torch.cuda.amp import autocast
from torch.nn.parallel import DistributedDataParallel
import torchvision.transforms as T
import kornia.augmentation as K
from einops import rearrange, repeat, reduce
from einops_exts import rearrange_many
from imagen_pytorch3D import (
GaussianDiffusionContinuousTimes,
Unet,
NullUnet,
first,
exists,
identity,
maybe,
default,
cast_tuple,
cast_uint8_images_to_float,
eval_decorator,
check_shape,
pad_tuple_to_length,
resize_image_to,
calc_all_frame_dims,
safe_get_tuple_index,
right_pad_dims_to,
module_device,
normalize_neg_one_to_one,
unnormalize_zero_to_one,
)
from imagen_video import (
Unet3D,
resize_video_to
)
from t5 import t5_encode_text, get_encoded_dim, DEFAULT_T5_NAME
# constants
Hparams_fields = [
'num_sample_steps',
'sigma_min',
'sigma_max',
'sigma_data',
'rho',
'P_mean',
'P_std',
'S_churn',
'S_tmin',
'S_tmax',
'S_noise'
]
Hparams = namedtuple('Hparams', Hparams_fields)
# helper functions
def log(t, eps = 1e-20):
return torch.log(t.clamp(min = eps))
# main class
class ElucidatedImagen(nn.Module):
def __init__(
self,
unets,
*,
image_sizes, # for cascading ddpm, image size at each stage
text_encoder_name = DEFAULT_T5_NAME,
text_embed_dim = None,
channels = 3,
cond_drop_prob = 0.1,
random_crop_sizes = None,
temporal_downsample_factor = 1,
lowres_sample_noise_level = 0.2, # in the paper, they present a new trick where they noise the lowres conditioning image, and at sample time, fix it to a certain level (0.1 or 0.3) - the unets are also made to be conditioned on this noise level
per_sample_random_aug_noise_level = False, # unclear when conditioning on augmentation noise level, whether each batch element receives a random aug noise value - turning off due to @marunine's find
condition_on_text = True,
auto_normalize_img = True, # whether to take care of normalizing the image from [0, 1] to [-1, 1] and back automatically - you can turn this off if you want to pass in the [-1, 1] ranged image yourself from the dataloader
dynamic_thresholding = True,
dynamic_thresholding_percentile = 0.95, # unsure what this was based on perusal of paper
only_train_unet_number = None,
lowres_noise_schedule = 'linear',
num_sample_steps = 32, # number of sampling steps
sigma_min = 0.002, # min noise level
sigma_max = 80, # max noise level
sigma_data = 0.5, # standard deviation of data distribution
rho = 7, # controls the sampling schedule
P_mean = -1.2, # mean of log-normal distribution from which noise is drawn for training
P_std = 1.2, # standard deviation of log-normal distribution from which noise is drawn for training
S_churn = 80, # parameters for stochastic sampling - depends on dataset, Table 5 in apper
S_tmin = 0.05,
S_tmax = 50,
S_noise = 1.003,
):
super().__init__()
self.only_train_unet_number = only_train_unet_number
# conditioning hparams
self.condition_on_text = condition_on_text
self.unconditional = not condition_on_text
# channels
self.channels = channels
# automatically take care of ensuring that first unet is unconditional
# while the rest of the unets are conditioned on the low resolution image produced by previous unet
unets = cast_tuple(unets)
num_unets = len(unets)
# randomly cropping for upsampler training
self.random_crop_sizes = cast_tuple(random_crop_sizes, num_unets)
assert not exists(first(self.random_crop_sizes)), 'you should not need to randomly crop image during training for base unet, only for upsamplers - so pass in `random_crop_sizes = (None, 128, 256)` as example'
# lowres augmentation noise schedule
self.lowres_noise_schedule = GaussianDiffusionContinuousTimes(noise_schedule = lowres_noise_schedule)
# get text encoder
self.text_encoder_name = text_encoder_name
self.text_embed_dim = default(text_embed_dim, lambda: get_encoded_dim(text_encoder_name))
self.encode_text = partial(t5_encode_text, name = text_encoder_name)
# construct unets
self.unets = nn.ModuleList([])
self.unet_being_trained_index = -1 # keeps track of which unet is being trained at the moment
for ind, one_unet in enumerate(unets):
assert isinstance(one_unet, (Unet, Unet3D, NullUnet))
is_first = ind == 0
one_unet = one_unet.cast_model_parameters(
lowres_cond = not is_first,
cond_on_text = self.condition_on_text,
text_embed_dim = self.text_embed_dim if self.condition_on_text else None,
channels = self.channels,
channels_out = self.channels
)
self.unets.append(one_unet)
# determine whether we are training on images or video
is_video = any([isinstance(unet, Unet3D) for unet in self.unets])
self.is_video = is_video
self.right_pad_dims_to_datatype = partial(rearrange, pattern = ('b -> b 1 1 1' if not is_video else 'b -> b 1 1 1 1'))
self.resize_to = resize_video_to if is_video else resize_image_to
# unet image sizes
self.image_sizes = cast_tuple(image_sizes)
assert num_unets == len(self.image_sizes), f'you did not supply the correct number of u-nets ({len(self.unets)}) for resolutions {self.image_sizes}'
self.sample_channels = cast_tuple(self.channels, num_unets)
# cascading ddpm related stuff
lowres_conditions = tuple(map(lambda t: t.lowres_cond, self.unets))
assert lowres_conditions == (False, *((True,) * (num_unets - 1))), 'the first unet must be unconditioned (by low resolution image), and the rest of the unets must have `lowres_cond` set to True'
self.lowres_sample_noise_level = lowres_sample_noise_level
self.per_sample_random_aug_noise_level = per_sample_random_aug_noise_level
# classifier free guidance
self.cond_drop_prob = cond_drop_prob
self.can_classifier_guidance = cond_drop_prob > 0.
# normalize and unnormalize image functions
self.normalize_img = normalize_neg_one_to_one if auto_normalize_img else identity
self.unnormalize_img = unnormalize_zero_to_one if auto_normalize_img else identity
self.input_image_range = (0. if auto_normalize_img else -1., 1.)
# dynamic thresholding
self.dynamic_thresholding = cast_tuple(dynamic_thresholding, num_unets)
self.dynamic_thresholding_percentile = dynamic_thresholding_percentile
# temporal interpolations
temporal_downsample_factor = cast_tuple(temporal_downsample_factor, num_unets)
self.temporal_downsample_factor = temporal_downsample_factor
assert temporal_downsample_factor[-1] == 1, 'downsample factor of last stage must be 1'
assert all([left >= right for left, right in zip((1, *temporal_downsample_factor[:-1]), temporal_downsample_factor[1:])]), 'temporal downssample factor must be in order of descending'
# elucidating parameters
hparams = [
num_sample_steps,
sigma_min,
sigma_max,
sigma_data,
rho,
P_mean,
P_std,
S_churn,
S_tmin,
S_tmax,
S_noise,
]
hparams = [cast_tuple(hp, num_unets) for hp in hparams]
self.hparams = [Hparams(*unet_hp) for unet_hp in zip(*hparams)]
# one temp parameter for keeping track of device
self.register_buffer('_temp', torch.tensor([0.]), persistent = False)
# default to device of unets passed in
self.to(next(self.unets.parameters()).device)
def force_unconditional_(self):
self.condition_on_text = False
self.unconditional = True
for unet in self.unets:
unet.cond_on_text = False
@property
def device(self):
return self._temp.device
def get_unet(self, unet_number):
assert 0 < unet_number <= len(self.unets)
index = unet_number - 1
if isinstance(self.unets, nn.ModuleList):
unets_list = [unet for unet in self.unets]
delattr(self, 'unets')
self.unets = unets_list
if index != self.unet_being_trained_index:
for unet_index, unet in enumerate(self.unets):
unet.to(self.device if unet_index == index else 'cpu')
self.unet_being_trained_index = index
return self.unets[index]
def reset_unets_all_one_device(self, device = None):
device = default(device, self.device)
self.unets = nn.ModuleList([*self.unets])
self.unets.to(device)
self.unet_being_trained_index = -1
@contextmanager
def one_unet_in_gpu(self, unet_number = None, unet = None):
assert exists(unet_number) ^ exists(unet)
if exists(unet_number):
unet = self.unets[unet_number - 1]
devices = [module_device(unet) for unet in self.unets]
self.unets.cpu()
unet.to(self.device)
yield
for unet, device in zip(self.unets, devices):
unet.to(device)
# overriding state dict functions
def state_dict(self, *args, **kwargs):
self.reset_unets_all_one_device()
return super().state_dict(*args, **kwargs)
def load_state_dict(self, *args, **kwargs):
self.reset_unets_all_one_device()
return super().load_state_dict(*args, **kwargs)
# dynamic thresholding
def threshold_x_start(self, x_start, dynamic_threshold = True):
if not dynamic_threshold:
return x_start.clamp(-1., 1.)
s = torch.quantile(
rearrange(x_start, 'b ... -> b (...)').abs(),
self.dynamic_thresholding_percentile,
dim = -1
)
s.clamp_(min = 1.)
s = right_pad_dims_to(x_start, s)
return x_start.clamp(-s, s) / s
# derived preconditioning params - Table 1
def c_skip(self, sigma_data, sigma):
return (sigma_data ** 2) / (sigma ** 2 + sigma_data ** 2)
def c_out(self, sigma_data, sigma):
return sigma * sigma_data * (sigma_data ** 2 + sigma ** 2) ** -0.5
def c_in(self, sigma_data, sigma):
return 1 * (sigma ** 2 + sigma_data ** 2) ** -0.5
def c_noise(self, sigma):
return log(sigma) * 0.25
# preconditioned network output
# equation (7) in the paper
def preconditioned_network_forward(
self,
unet_forward,
noised_images,
sigma,
*,
sigma_data,
clamp = False,
dynamic_threshold = True,
**kwargs
):
batch, device = noised_images.shape[0], noised_images.device
if isinstance(sigma, float):
sigma = torch.full((batch,), sigma, device = device)
padded_sigma = self.right_pad_dims_to_datatype(sigma)
net_out = unet_forward(
self.c_in(sigma_data, padded_sigma) * noised_images,
self.c_noise(sigma),
**kwargs
)
out = self.c_skip(sigma_data, padded_sigma) * noised_images + self.c_out(sigma_data, padded_sigma) * net_out
if not clamp:
return out
return self.threshold_x_start(out, dynamic_threshold)
# sampling
# sample schedule
# equation (5) in the paper
def sample_schedule(
self,
num_sample_steps,
rho,
sigma_min,
sigma_max
):
N = num_sample_steps
inv_rho = 1 / rho
steps = torch.arange(num_sample_steps, device = self.device, dtype = torch.float32)
sigmas = (sigma_max ** inv_rho + steps / (N - 1) * (sigma_min ** inv_rho - sigma_max ** inv_rho)) ** rho
sigmas = F.pad(sigmas, (0, 1), value = 0.) # last step is sigma value of 0.
return sigmas
@torch.no_grad()
def one_unet_sample(
self,
unet,
shape,
*,
unet_number,
clamp = True,
dynamic_threshold = True,
cond_scale = 1.,
use_tqdm = True,
inpaint_images = None,
inpaint_masks = None,
inpaint_resample_times = 5,
init_images = None,
skip_steps = None,
sigma_min = None,
sigma_max = None,
**kwargs
):
# video
is_video = len(shape) == 5
frames = shape[-3] if is_video else None
resize_kwargs = dict(target_frames = frames) if exists(frames) else dict()
# get specific sampling hyperparameters for unet
hp = self.hparams[unet_number - 1]
sigma_min = default(sigma_min, hp.sigma_min)
sigma_max = default(sigma_max, hp.sigma_max)
# get the schedule, which is returned as (sigma, gamma) tuple, and pair up with the next sigma and gamma
sigmas = self.sample_schedule(hp.num_sample_steps, hp.rho, sigma_min, sigma_max)
gammas = torch.where(
(sigmas >= hp.S_tmin) & (sigmas <= hp.S_tmax),
min(hp.S_churn / hp.num_sample_steps, sqrt(2) - 1),
0.
)
sigmas_and_gammas = list(zip(sigmas[:-1], sigmas[1:], gammas[:-1]))
# images is noise at the beginning
init_sigma = sigmas[0]
images = init_sigma * torch.randn(shape, device = self.device)
# initializing with an image
if exists(init_images):
images += init_images
# keeping track of x0, for self conditioning if needed
x_start = None
# prepare inpainting images and mask
has_inpainting = exists(inpaint_images) and exists(inpaint_masks)
resample_times = inpaint_resample_times if has_inpainting else 1
if has_inpainting:
inpaint_images = self.normalize_img(inpaint_images)
inpaint_images = self.resize_to(inpaint_images, shape[-1], **resize_kwargs)
inpaint_masks = self.resize_to(rearrange(inpaint_masks, 'b ... -> b 1 ...').float(), shape[-1]).bool()
# unet kwargs
unet_kwargs = dict(
sigma_data = hp.sigma_data,
clamp = clamp,
dynamic_threshold = dynamic_threshold,
cond_scale = cond_scale,
**kwargs
)
# gradually denoise
initial_step = default(skip_steps, 0)
sigmas_and_gammas = sigmas_and_gammas[initial_step:]
total_steps = len(sigmas_and_gammas)
for ind, (sigma, sigma_next, gamma) in tqdm(enumerate(sigmas_and_gammas), total = total_steps, desc = 'sampling time step', disable = not use_tqdm):
is_last_timestep = ind == (total_steps - 1)
sigma, sigma_next, gamma = map(lambda t: t.item(), (sigma, sigma_next, gamma))
for r in reversed(range(resample_times)):
is_last_resample_step = r == 0
eps = hp.S_noise * torch.randn(shape, device = self.device) # stochastic sampling
sigma_hat = sigma + gamma * sigma
added_noise = sqrt(sigma_hat ** 2 - sigma ** 2) * eps
images_hat = images + added_noise
self_cond = x_start if unet.self_cond else None
if has_inpainting:
images_hat = images_hat * ~inpaint_masks + (inpaint_images + added_noise) * inpaint_masks
model_output = self.preconditioned_network_forward(
unet.forward_with_cond_scale,
images_hat,
sigma_hat,
self_cond = self_cond,
**unet_kwargs
)
denoised_over_sigma = (images_hat - model_output) / sigma_hat
images_next = images_hat + (sigma_next - sigma_hat) * denoised_over_sigma
# second order correction, if not the last timestep
has_second_order_correction = sigma_next != 0
if has_second_order_correction:
self_cond = model_output if unet.self_cond else None
model_output_next = self.preconditioned_network_forward(
unet.forward_with_cond_scale,
images_next,
sigma_next,
self_cond = self_cond,
**unet_kwargs
)
denoised_prime_over_sigma = (images_next - model_output_next) / sigma_next
images_next = images_hat + 0.5 * (sigma_next - sigma_hat) * (denoised_over_sigma + denoised_prime_over_sigma)
images = images_next
if has_inpainting and not (is_last_resample_step or is_last_timestep):
# renoise in repaint and then resample
repaint_noise = torch.randn(shape, device = self.device)
images = images + (sigma - sigma_next) * repaint_noise
x_start = model_output if not has_second_order_correction else model_output_next # save model output for self conditioning
images = images.clamp(-1., 1.)
if has_inpainting:
images = images * ~inpaint_masks + inpaint_images * inpaint_masks
return self.unnormalize_img(images)
@torch.no_grad()
@eval_decorator
def sample(
self,
texts: List[str] = None,
text_masks = None,
text_embeds = None,
cond_images = None,
inpaint_images = None,
inpaint_masks = None,
inpaint_resample_times = 5,
init_images = None,
skip_steps = None,
sigma_min = None,
sigma_max = None,
video_frames = None,
batch_size = 1,
cond_scale = 1.,
lowres_sample_noise_level = None,
start_at_unet_number = 1,
start_image_or_video = None,
stop_at_unet_number = None,
return_all_unet_outputs = False,
return_pil_images = False,
use_tqdm = True,
device = None,
):
device = default(device, self.device)
self.reset_unets_all_one_device(device = device)
cond_images = maybe(cast_uint8_images_to_float)(cond_images)
if exists(texts) and not exists(text_embeds) and not self.unconditional:
assert all([*map(len, texts)]), 'text cannot be empty'
with autocast(enabled = False):
text_embeds, text_masks = self.encode_text(texts, return_attn_mask = True)
text_embeds, text_masks = map(lambda t: t.to(device), (text_embeds, text_masks))
if not self.unconditional:
assert exists(text_embeds), 'text must be passed in if the network was not trained without text `condition_on_text` must be set to `False` when training'
text_masks = default(text_masks, lambda: torch.any(text_embeds != 0., dim = -1))
batch_size = text_embeds.shape[0]
if exists(inpaint_images):
if self.unconditional:
if batch_size == 1: # assume researcher wants to broadcast along inpainted images
batch_size = inpaint_images.shape[0]
assert inpaint_images.shape[0] == batch_size, 'number of inpainting images must be equal to the specified batch size on sample `sample(batch_size=<int>)``'
assert not (self.condition_on_text and inpaint_images.shape[0] != text_embeds.shape[0]), 'number of inpainting images must be equal to the number of text to be conditioned on'
assert not (self.condition_on_text and not exists(text_embeds)), 'text or text encodings must be passed into imagen if specified'
assert not (not self.condition_on_text and exists(text_embeds)), 'imagen specified not to be conditioned on text, yet it is presented'
assert not (exists(text_embeds) and text_embeds.shape[-1] != self.text_embed_dim), f'invalid text embedding dimension being passed in (should be {self.text_embed_dim})'
assert not (exists(inpaint_images) ^ exists(inpaint_masks)), 'inpaint images and masks must be both passed in to do inpainting'
outputs = []
is_cuda = next(self.parameters()).is_cuda
device = next(self.parameters()).device
lowres_sample_noise_level = default(lowres_sample_noise_level, self.lowres_sample_noise_level)
num_unets = len(self.unets)
cond_scale = cast_tuple(cond_scale, num_unets)
# handle video and frame dimension
assert not (self.is_video and not exists(video_frames)), 'video_frames must be passed in on sample time if training on video'
# determine the frame dimensions, if needed
all_frame_dims = calc_all_frame_dims(self.temporal_downsample_factor, video_frames)
# initializing with an image or video
init_images = cast_tuple(init_images, num_unets)
init_images = [maybe(self.normalize_img)(init_image) for init_image in init_images]
skip_steps = cast_tuple(skip_steps, num_unets)
sigma_min = cast_tuple(sigma_min, num_unets)
sigma_max = cast_tuple(sigma_max, num_unets)
# handle starting at a unet greater than 1, for training only-upscaler training
if start_at_unet_number > 1:
assert start_at_unet_number <= num_unets, 'must start a unet that is less than the total number of unets'
assert not exists(stop_at_unet_number) or start_at_unet_number <= stop_at_unet_number
assert exists(start_image_or_video), 'starting image or video must be supplied if only doing upscaling'
prev_image_size = self.image_sizes[start_at_unet_number - 2]
img = self.resize_to(start_image_or_video, prev_image_size)
# go through each unet in cascade
for unet_number, unet, channel, image_size, frame_dims, unet_hparam, dynamic_threshold, unet_cond_scale, unet_init_images, unet_skip_steps, unet_sigma_min, unet_sigma_max in tqdm(zip(range(1, num_unets + 1), self.unets, self.sample_channels, self.image_sizes, all_frame_dims, self.hparams, self.dynamic_thresholding, cond_scale, init_images, skip_steps, sigma_min, sigma_max), disable = not use_tqdm):
if unet_number < start_at_unet_number:
continue
assert not isinstance(unet, NullUnet), 'cannot sample from null unet'
context = self.one_unet_in_gpu(unet = unet) if is_cuda else nullcontext()
with context:
lowres_cond_img = lowres_noise_times = None
shape = (batch_size, channel, *frame_dims, image_size, image_size)
resize_kwargs = dict()
if self.is_video:
resize_kwargs = dict(target_frames = frame_dims[0])
if unet.lowres_cond:
lowres_noise_times = self.lowres_noise_schedule.get_times(batch_size, lowres_sample_noise_level, device = device)
lowres_cond_img = self.resize_to(img, image_size, **resize_kwargs)
lowres_cond_img = self.normalize_img(lowres_cond_img)
lowres_cond_img, *_ = self.lowres_noise_schedule.q_sample(x_start = lowres_cond_img, t = lowres_noise_times, noise = torch.randn_like(lowres_cond_img))
if exists(unet_init_images):
unet_init_images = self.resize_to(unet_init_images, image_size, **resize_kwargs)
shape = (batch_size, self.channels, *frame_dims, image_size, image_size)
img = self.one_unet_sample(
unet,
shape,
unet_number = unet_number,
text_embeds = text_embeds,
text_mask = text_masks,
cond_images = cond_images,
inpaint_images = inpaint_images,
inpaint_masks = inpaint_masks,
inpaint_resample_times = inpaint_resample_times,
init_images = unet_init_images,
skip_steps = unet_skip_steps,
sigma_min = unet_sigma_min,
sigma_max = unet_sigma_max,
cond_scale = unet_cond_scale,
lowres_cond_img = lowres_cond_img,
lowres_noise_times = lowres_noise_times,
dynamic_threshold = dynamic_threshold,
use_tqdm = use_tqdm
)
outputs.append(img)
if exists(stop_at_unet_number) and stop_at_unet_number == unet_number:
break
output_index = -1 if not return_all_unet_outputs else slice(None) # either return last unet output or all unet outputs
if not return_pil_images:
return outputs[output_index]
if not return_all_unet_outputs:
outputs = outputs[-1:]
assert not self.is_video, 'automatically converting video tensor to video file for saving is not built yet'
pil_images = list(map(lambda img: list(map(T.ToPILImage(), img.unbind(dim = 0))), outputs))
return pil_images[output_index] # now you have a bunch of pillow images you can just .save(/where/ever/you/want.png)
# training
def loss_weight(self, sigma_data, sigma):
return (sigma ** 2 + sigma_data ** 2) * (sigma * sigma_data) ** -2
def noise_distribution(self, P_mean, P_std, batch_size):
return (P_mean + P_std * torch.randn((batch_size,), device = self.device)).exp()
def forward(
self,
images, # rename to images or video
unet: Union[Unet, Unet3D, NullUnet, DistributedDataParallel] = None,
texts: List[str] = None,
text_embeds = None,
text_masks = None,
unet_number = None,
cond_images = None,
**kwargs
):
if self.is_video and images.ndim == 4:
images = rearrange(images, 'b c h w -> b c 1 h w')
kwargs.update(ignore_time = True)
assert images.shape[-1] == images.shape[-2], f'the images you pass in must be a square, but received dimensions of {images.shape[2]}, {images.shape[-1]}'
assert not (len(self.unets) > 1 and not exists(unet_number)), f'you must specify which unet you want trained, from a range of 1 to {len(self.unets)}, if you are training cascading DDPM (multiple unets)'
unet_number = default(unet_number, 1)
assert not exists(self.only_train_unet_number) or self.only_train_unet_number == unet_number, 'you can only train on unet #{self.only_train_unet_number}'
images = cast_uint8_images_to_float(images)
cond_images = maybe(cast_uint8_images_to_float)(cond_images)
assert images.dtype == torch.float, f'images tensor needs to be floats but {images.dtype} dtype found instead'
unet_index = unet_number - 1
unet = default(unet, lambda: self.get_unet(unet_number))
assert not isinstance(unet, NullUnet), 'null unet cannot and should not be trained'
target_image_size = self.image_sizes[unet_index]
random_crop_size = self.random_crop_sizes[unet_index]
prev_image_size = self.image_sizes[unet_index - 1] if unet_index > 0 else None
hp = self.hparams[unet_index]
batch_size, c, *_, h, w, device, is_video = *images.shape, images.device, (images.ndim == 5)
frames = images.shape[2] if is_video else None
all_frame_dims = tuple(safe_get_tuple_index(el, 0) for el in calc_all_frame_dims(self.temporal_downsample_factor, frames))
ignore_time = kwargs.get('ignore_time', False)
target_frame_size = all_frame_dims[unet_index] if is_video and not ignore_time else None
prev_frame_size = all_frame_dims[unet_index - 1] if is_video and not ignore_time and unet_index > 0 else None
frames_to_resize_kwargs = lambda frames: dict(target_frames = frames) if exists(frames) else dict()
check_shape(images, 'b c ...', c = self.channels)
assert h >= target_image_size and w >= target_image_size
if exists(texts) and not exists(text_embeds) and not self.unconditional:
assert all([*map(len, texts)]), 'text cannot be empty'
assert len(texts) == len(images), 'number of text captions does not match up with the number of images given'
with autocast(enabled = False):
text_embeds, text_masks = self.encode_text(texts, return_attn_mask = True)
text_embeds, text_masks = map(lambda t: t.to(images.device), (text_embeds, text_masks))
if not self.unconditional:
text_masks = default(text_masks, lambda: torch.any(text_embeds != 0., dim = -1))
assert not (self.condition_on_text and not exists(text_embeds)), 'text or text encodings must be passed into decoder if specified'
assert not (not self.condition_on_text and exists(text_embeds)), 'decoder specified not to be conditioned on text, yet it is presented'
assert not (exists(text_embeds) and text_embeds.shape[-1] != self.text_embed_dim), f'invalid text embedding dimension being passed in (should be {self.text_embed_dim})'
lowres_cond_img = lowres_aug_times = None
if exists(prev_image_size):
lowres_cond_img = self.resize_to(images, prev_image_size, **frames_to_resize_kwargs(prev_frame_size), clamp_range = self.input_image_range)
lowres_cond_img = self.resize_to(lowres_cond_img, target_image_size, **frames_to_resize_kwargs(target_frame_size), clamp_range = self.input_image_range)
if self.per_sample_random_aug_noise_level:
lowres_aug_times = self.lowres_noise_schedule.sample_random_times(batch_size, device = device)
else:
lowres_aug_time = self.lowres_noise_schedule.sample_random_times(1, device = device)
lowres_aug_times = repeat(lowres_aug_time, '1 -> b', b = batch_size)
images = self.resize_to(images, target_image_size, **frames_to_resize_kwargs(target_frame_size))
# normalize to [-1, 1]
images = self.normalize_img(images)
lowres_cond_img = maybe(self.normalize_img)(lowres_cond_img)
# random cropping during training
# for upsamplers
if exists(random_crop_size):
aug = K.RandomCrop((random_crop_size, random_crop_size), p = 1.)
if is_video:
images, lowres_cond_img = rearrange_many((images, lowres_cond_img), 'b c f h w -> (b f) c h w')
# make sure low res conditioner and image both get augmented the same way
# detailed https://kornia.readthedocs.io/en/latest/augmentation.module.html?highlight=randomcrop#kornia.augmentation.RandomCrop
images = aug(images)
lowres_cond_img = aug(lowres_cond_img, params = aug._params)
if is_video:
images, lowres_cond_img = rearrange_many((images, lowres_cond_img), '(b f) c h w -> b c f h w', f = frames)
# noise the lowres conditioning image
# at sample time, they then fix the noise level of 0.1 - 0.3
lowres_cond_img_noisy = None
if exists(lowres_cond_img):
lowres_cond_img_noisy, *_ = self.lowres_noise_schedule.q_sample(x_start = lowres_cond_img, t = lowres_aug_times, noise = torch.randn_like(lowres_cond_img))
# get the sigmas
sigmas = self.noise_distribution(hp.P_mean, hp.P_std, batch_size)
padded_sigmas = self.right_pad_dims_to_datatype(sigmas)
# noise
noise = torch.randn_like(images)
noised_images = images + padded_sigmas * noise # alphas are 1. in the paper
# unet kwargs
unet_kwargs = dict(
sigma_data = hp.sigma_data,
text_embeds = text_embeds,
text_mask = text_masks,
cond_images = cond_images,
lowres_noise_times = self.lowres_noise_schedule.get_condition(lowres_aug_times),
lowres_cond_img = lowres_cond_img_noisy,
cond_drop_prob = self.cond_drop_prob,
**kwargs
)
# self conditioning - https://arxiv.org/abs/2208.04202 - training will be 25% slower
# Because 'unet' can be an instance of DistributedDataParallel coming from the
# ImagenTrainer.unet_being_trained when invoking ImagenTrainer.forward(), we need to
# access the member 'module' of the wrapped unet instance.
self_cond = unet.module.self_cond if isinstance(unet, DistributedDataParallel) else unet
if self_cond and random() < 0.5:
with torch.no_grad():
pred_x0 = self.preconditioned_network_forward(
unet.forward,
noised_images,
sigmas,
**unet_kwargs
).detach()
unet_kwargs = {**unet_kwargs, 'self_cond': pred_x0}
# get prediction
denoised_images = self.preconditioned_network_forward(
unet.forward,
noised_images,
sigmas,
**unet_kwargs
)
# losses
losses = F.mse_loss(denoised_images, images, reduction = 'none')
losses = reduce(losses, 'b ... -> b', 'mean')
# loss weighting
losses = losses * self.loss_weight(hp.sigma_data, sigmas)
# return average loss
return losses.mean()