-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathift6758
executable file
·50 lines (40 loc) · 1.53 KB
/
ift6758
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#!/usr/bin/env python
import argparse
import os
import xml.etree.ElementTree as ET
from sklearn.externals import joblib
from utils.data_processing import parse_input, parse_output
model_path = "trained_models/final.pkl"
TEAM_NAME = "user17"
def evaluate(test_data_dir, results_output_dir):
"""
Generates evaluation results as xml files
:param test_data_dir: Root test data folder path
:param results_output_dir: Output path to save xml results
:return:
"""
os.makedirs(results_output_dir, exist_ok=True)
model = joblib.load(model_path)
test_data = parse_input(test_data_dir, is_train=False)
pred_df = model.predict(test_data)
pred_df = parse_output(pred_df)
for user_id in test_data['user_id']:
pred = {}
pred["id"] = str(user_id)
pred.update(dict(pred_df.loc[user_id]))
users_root = ET.Element('user', attrib=pred)
xml_string_data = ET.tostring(users_root, encoding="unicode")
xml_file = open(os.path.join(results_output_dir,
"{}.xml".format(user_id)), "w")
xml_file.write(xml_string_data)
if __name__ == "__main__":
"""
Evaluation script that generates predictions and save them as xml files
"""
parser = argparse.ArgumentParser()
parser.add_argument('-i', type=str, default=None,
help='Data input directory')
parser.add_argument('-o', type=str, default=None,
help='Output directory')
args = parser.parse_args()
evaluate(args.i, args.o)