-
Notifications
You must be signed in to change notification settings - Fork 3
/
persist_test.cc
1221 lines (1033 loc) · 35.7 KB
/
persist_test.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**
* A stand-alone binary which doesn't depend on the system,
* used to test the current persistence strategy
*/
#include <cassert>
#include <iostream>
#include <cstdint>
#include <random>
#include <vector>
#include <set>
#include <atomic>
#include <thread>
#include <sstream>
#include <unistd.h>
#include <sys/uio.h>
#include <sys/types.h>
#include <fcntl.h>
#include <getopt.h>
#include <time.h>
#include <lz4.h>
#include "macros.h"
#include "circbuf.h"
#include "amd64.h"
#include "record/serializer.h"
#include "util.h"
using namespace std;
using namespace util;
struct tidhelpers {
// copied from txn_proto2_impl.h
static const uint64_t NBitsNumber = 24;
static const size_t CoreBits = NMAXCOREBITS; // allow 2^CoreShift distinct threads
static const size_t NMaxCores = NMAXCORES;
static const uint64_t CoreMask = (NMaxCores - 1);
static const uint64_t NumIdShift = CoreBits;
static const uint64_t NumIdMask = ((((uint64_t)1) << NBitsNumber) - 1) << NumIdShift;
static const uint64_t EpochShift = CoreBits + NBitsNumber;
static const uint64_t EpochMask = ((uint64_t)-1) << EpochShift;
static inline
uint64_t CoreId(uint64_t v)
{
return v & CoreMask;
}
static inline
uint64_t NumId(uint64_t v)
{
return (v & NumIdMask) >> NumIdShift;
}
static inline
uint64_t EpochId(uint64_t v)
{
return (v & EpochMask) >> EpochShift;
}
static inline
uint64_t MakeTid(uint64_t core_id, uint64_t num_id, uint64_t epoch_id)
{
// some sanity checking
static_assert((CoreMask | NumIdMask | EpochMask) == ((uint64_t)-1), "xx");
static_assert((CoreMask & NumIdMask) == 0, "xx");
static_assert((NumIdMask & EpochMask) == 0, "xx");
return (core_id) | (num_id << NumIdShift) | (epoch_id << EpochShift);
}
static uint64_t
vecidmax(uint64_t coremax, const vector<uint64_t> &v)
{
uint64_t ret = NumId(coremax);
for (size_t i = 0; i < v.size(); i++)
ret = max(ret, NumId(v[i]));
return ret;
}
static string
Str(uint64_t v)
{
ostringstream b;
b << "[core=" << CoreId(v) << " | n="
<< NumId(v) << " | epoch="
<< EpochId(v) << "]";
return b.str();
}
};
//static void
//fillstring(std::string &s, size_t t)
//{
// s.clear();
// for (size_t i = 0; i < t; i++)
// s[i] = (char) i;
//}
template <typename PRNG>
static inline void
fillkey(std::string &s, uint64_t idx, size_t sz, PRNG &prng)
{
s.resize(sz);
serializer<uint64_t, false> ser;
ser.write((uint8_t *) s.data(), idx);
}
template <typename PRNG>
static inline void
fillvalue(std::string &s, uint64_t idx, size_t sz, PRNG &prng)
{
uniform_int_distribution<uint32_t> dist(0, 10000);
s.resize(sz);
serializer<uint32_t, false> s_uint32_t;
for (size_t i = 0; i < sz; i += sizeof(uint32_t)) {
if (i + sizeof(uint32_t) <= sz) {
const uint32_t x = dist(prng);
s_uint32_t.write((uint8_t *) &s[i], x);
}
}
}
/** simulate global database state */
static const size_t g_nrecords = 1000000;
static const size_t g_ntxns_worker = 1000000;
static const size_t g_nmax_loggers = 16;
static vector<uint64_t> g_database;
static atomic<uint64_t> g_ntxns_committed(0);
static atomic<uint64_t> g_ntxns_written(0);
static atomic<uint64_t> g_bytes_written[g_nmax_loggers];
static size_t g_nworkers = 1;
static int g_verbose = 0;
static int g_fsync_background = 0;
static size_t g_readset = 30;
static size_t g_writeset = 16;
static size_t g_keysize = 8; // in bytes
static size_t g_valuesize = 32; // in bytes
/** simulation framework */
// all simulations are epoch based
class database_simulation {
public:
static const unsigned long g_epoch_time_ns = 30000000; /* 30ms in ns */
database_simulation()
: keep_going_(true),
epoch_thread_(),
epoch_number_(1), // start at 1 so 0 can be fully persistent initially
system_sync_epoch_(0)
{
// XXX: depends on g_nworkers to be set by now
for (size_t i = 0; i < g_nworkers; i++)
per_thread_epochs_[i]->store(1, memory_order_release);
for (size_t i = 0; i < g_nmax_loggers; i++)
for (size_t j = 0; j < g_nworkers; j++)
per_thread_sync_epochs_[i].epochs_[j].store(0, memory_order_release);
}
virtual ~database_simulation() {}
virtual void
init()
{
epoch_thread_ = move(thread(&database_simulation::epoch_thread, this));
}
virtual void worker(unsigned id) = 0;
virtual void logger(const vector<int> &fd,
const vector<vector<unsigned>> &assignments) = 0;
virtual void
terminate()
{
keep_going_->store(false, memory_order_release);
epoch_thread_.join();
}
static bool
AssignmentsValid(const vector<vector<unsigned>> &assignments,
unsigned nfds,
unsigned nworkers)
{
// each worker must be assigned exactly once in the assignment
// there must be <= nfds assignments
if (assignments.size() > nfds)
return false;
set<unsigned> seen;
for (auto &assignment : assignments)
for (auto w : assignment) {
if (seen.count(w) || w >= nworkers)
return false;
seen.insert(w);
}
return seen.size() == nworkers;
}
protected:
void
epoch_thread()
{
while (keep_going_->load(memory_order_acquire)) {
struct timespec t;
t.tv_sec = g_epoch_time_ns / ONE_SECOND_NS;
t.tv_nsec = g_epoch_time_ns % ONE_SECOND_NS;
nanosleep(&t, nullptr);
// make sure all threads are at the current epoch
const uint64_t curepoch = epoch_number_->load(memory_order_acquire);
retry:
bool allthere = true;
for (size_t i = 0;
i < g_nworkers && keep_going_->load(memory_order_acquire);
i++) {
if (per_thread_epochs_[i]->load(memory_order_acquire) < curepoch) {
allthere = false;
break;
}
}
if (!keep_going_->load(memory_order_acquire))
return;
if (!allthere) {
nop_pause();
goto retry;
}
//cerr << "bumping epoch" << endl;
epoch_number_->store(curepoch + 1, memory_order_release); // bump it
}
}
aligned_padded_elem<atomic<bool>> keep_going_;
thread epoch_thread_;
aligned_padded_elem<atomic<uint64_t>> epoch_number_;
aligned_padded_elem<atomic<uint64_t>> per_thread_epochs_[NMAXCORES];
// v = per_thread_sync_epochs_[i].epochs_[j]: logger i has persisted up
// through (including) all transactions <= epoch v on core j. since core =>
// logger mapping is static, taking:
// min_{core} max_{logger} per_thread_sync_epochs_[logger].epochs_[core]
// yields the entire system's persistent epoch
struct {
atomic<uint64_t> epochs_[NMAXCORES];
CACHE_PADOUT;
} per_thread_sync_epochs_[g_nmax_loggers] CACHE_ALIGNED;
// conservative estimate (<=) for:
// min_{core} max_{logger} per_thread_sync_epochs_[logger].epochs_[core]
aligned_padded_elem<atomic<uint64_t>> system_sync_epoch_;
};
struct logbuf_header {
uint64_t nentries_; // > 0 for all valid log buffers
uint64_t last_tid_; // TID of the last commit
} PACKED;
struct pbuffer {
bool io_scheduled_; // has the logger scheduled IO yet?
size_t curoff_; // current offset into buf_, either for writing
// or during the dep computation phase
size_t remaining_; // number of deps remaining to compute
std::string buf_; // the actual buffer, of size g_buffer_size
inline uint8_t *
pointer()
{
return (uint8_t *) buf_.data() + curoff_;
}
inline logbuf_header *
header()
{
return (logbuf_header *) buf_.data();
}
inline const logbuf_header *
header() const
{
return (const logbuf_header *) buf_.data();
}
};
class onecopy_logbased_simulation : public database_simulation {
public:
static const size_t g_perthread_buffers = 64; // 64 outstanding buffers
static const size_t g_buffer_size = (1<<20); // in bytes
static const size_t g_horizon_size = (1<<16); // in bytes, for compression only
static circbuf<pbuffer, g_perthread_buffers> g_all_buffers[NMAXCORES];
static circbuf<pbuffer, g_perthread_buffers> g_persist_buffers[NMAXCORES];
protected:
virtual const uint8_t *
read_log_entry(const uint8_t *p, uint64_t &tid,
std::function<void(uint64_t)> readfunctor) = 0;
virtual uint64_t
compute_log_record_space() const = 0;
virtual void
write_log_record(uint8_t *p,
uint64_t tidcommit,
const vector<uint64_t> &readset,
const vector<pair<string, string>> &writeset) = 0;
virtual void
logger_on_io_completion() {}
virtual bool
do_compression() const = 0;
pbuffer *
getbuffer(unsigned id)
{
// block until we get a buf
pbuffer *ret = g_all_buffers[id].deq();
ret->io_scheduled_ = false;
ret->buf_.assign(g_buffer_size, 0);
ret->curoff_ = sizeof(logbuf_header);
ret->remaining_ = 0;
return ret;
}
public:
void
init() OVERRIDE
{
database_simulation::init();
for (size_t i = 0; i < g_nworkers; i++) {
for (size_t j = 0; j < g_perthread_buffers; j++) {
struct pbuffer *p = new pbuffer;
g_all_buffers[i].enq(p);
}
}
}
private:
inline size_t
inplace_update_persistent_info(
vector<pair<uint64_t, uint64_t>> &outstanding_commits,
uint64_t cursyncepoch)
{
size_t ncommits_synced = 0;
// can erase all entries with x.first <= cursyncepoch
size_t idx = 0;
for (; idx < outstanding_commits.size(); idx++) {
if (outstanding_commits[idx].first <= cursyncepoch)
ncommits_synced += outstanding_commits[idx].second;
else
break;
}
// erase entries [0, idx)
// XXX: slow
outstanding_commits.erase(outstanding_commits.begin(),
outstanding_commits.begin() + idx);
return ncommits_synced;
}
inline pbuffer *
ensure_buffer_with_space(unsigned id, pbuffer *cur, size_t space_needed)
{
if (!cur) {
cur = getbuffer(id);
} else if (g_buffer_size - cur->curoff_ < space_needed) {
g_persist_buffers[id].enq(cur);
cur = getbuffer(id);
}
INVARIANT(cur);
INVARIANT(g_buffer_size - cur->curoff_ >= space_needed);
return cur;
}
/**
* write the horizon from [p, p+sz) into cur, assuming that cur has enough
* space. space needed is at least:
* sizeof(uint32_t) + LZ4_compressBound(sz)
*
* also updates the buffer's headers and offset to reflect the write
*
* returns the compressed size of the horizon
*/
inline uint64_t
write_horizon(void *lz4ctx,
const uint8_t *p, uint64_t sz,
uint64_t nentries, uint64_t lasttid,
pbuffer *cur)
{
#ifdef CHECK_INVARIANTS
const uint64_t needed = sizeof(uint32_t) + LZ4_compressBound(sz);
INVARIANT(g_buffer_size - cur->curoff_ >= needed);
#endif
const int ret = LZ4_compress_heap(
lz4ctx,
(const char *) p,
(char *) cur->pointer() + sizeof(uint32_t),
sz);
INVARIANT(ret >= 0);
serializer<uint32_t, false> s_uint32_t;
s_uint32_t.write(cur->pointer(), ret);
cur->curoff_ += sizeof(uint32_t) + ret;
cur->header()->nentries_ += nentries;
cur->header()->last_tid_ = lasttid;
return ret;
}
protected:
void
worker(unsigned id) OVERRIDE
{
const bool compress = do_compression();
uint8_t horizon[g_horizon_size]; // LZ4 looks at 65kb windows
// where are we in the window, how many elems in this window?
size_t horizon_p = 0, horizon_nentries = 0;
uint64_t horizon_last_tid = 0; // last committed TID in the horizon
double cratios = 0.0;
unsigned long ncompressions = 0;
void *lz4ctx = nullptr; // holds a heap-allocated LZ4 hash table
if (compress)
lz4ctx = LZ4_create();
mt19937 prng(id);
// read/write sets are uniform for now
uniform_int_distribution<unsigned> dist(0, g_nrecords - 1);
vector<uint64_t> readset(g_readset);
vector<pair<string, string>> writeset(g_writeset);
for (auto &pr : writeset) {
pr.first.reserve(g_keysize);
pr.second.reserve(g_valuesize);
}
struct pbuffer *curbuf = nullptr;
uint64_t lasttid = 0,
ncommits_currentepoch = 0,
ncommits_synced = 0;
vector<pair<uint64_t, uint64_t>> outstanding_commits;
for (size_t i = 0; i < g_ntxns_worker; i++) {
// update epoch info
const uint64_t lastepoch = per_thread_epochs_[id]->load(memory_order_acquire);
const uint64_t curepoch = epoch_number_->load(memory_order_acquire);
if (lastepoch != curepoch) {
// try to sync outstanding commits
INVARIANT(curepoch == (lastepoch + 1));
const size_t cursyncepoch = system_sync_epoch_->load(memory_order_acquire);
ncommits_synced +=
inplace_update_persistent_info(outstanding_commits, cursyncepoch);
// add information about the last epoch
outstanding_commits.emplace_back(lastepoch, ncommits_currentepoch);
ncommits_currentepoch = 0;
per_thread_epochs_[id]->store(curepoch, memory_order_release);
}
for (size_t j = 0; j < g_readset; j++)
readset[j] = g_database[dist(prng)];
const uint64_t idmax = tidhelpers::vecidmax(lasttid, readset);
// XXX: ignore future epochs for now
const uint64_t tidcommit = tidhelpers::MakeTid(id, idmax + 1, curepoch);
lasttid = tidcommit;
for (size_t j = 0; j < g_writeset; j++) {
auto idx = dist(prng);
g_database[idx] = lasttid;
fillkey(writeset[j].first, idx, g_keysize, prng);
fillvalue(writeset[j].second, idx, g_valuesize, prng);
}
const uint64_t space_needed = compute_log_record_space();
if (compress) {
if (horizon_p + space_needed > g_horizon_size) {
// need to compress and write horizon
curbuf = ensure_buffer_with_space(id, curbuf,
sizeof(uint32_t) + LZ4_compressBound(horizon_p));
const uint64_t compsz =
write_horizon(lz4ctx, &horizon[0], horizon_p,
horizon_nentries, horizon_last_tid,
curbuf);
const double cratio = double(horizon_p) / double(compsz);
cratios += cratio;
ncompressions++;
// can reset horizon
horizon_p = horizon_nentries = horizon_last_tid = 0;
}
write_log_record(&horizon[0] + horizon_p, tidcommit, readset, writeset);
horizon_p += space_needed;
horizon_nentries++;
horizon_last_tid = tidcommit;
ncommits_currentepoch++;
} else {
curbuf = ensure_buffer_with_space(id, curbuf, space_needed);
uint8_t *p = curbuf->pointer();
write_log_record(p, tidcommit, readset, writeset);
//cerr << "write tidcommit=" << tidhelpers::Str(tidcommit) << endl;
curbuf->curoff_ += space_needed;
curbuf->header()->nentries_++;
curbuf->header()->last_tid_ = tidcommit;
ncommits_currentepoch++;
}
}
if (compress) {
if (horizon_nentries) {
curbuf = ensure_buffer_with_space(id, curbuf,
sizeof(uint32_t) + LZ4_compressBound(horizon_p));
const uint64_t compsz =
write_horizon(lz4ctx, &horizon[0], horizon_p,
horizon_nentries, horizon_last_tid,
curbuf);
const double cratio = double(horizon_p) / double(compsz);
cratios += cratio;
ncompressions++;
horizon_p = horizon_nentries = horizon_last_tid = 0;
}
LZ4_free(lz4ctx);
}
if (curbuf) {
// XXX: hacky - an agreed upon future epoch for all threads to converge
// on upon finishing
const uint64_t FutureEpoch = 100000;
const uint64_t waitfor = tidhelpers::EpochId(
curbuf->header()->last_tid_);
INVARIANT(per_thread_epochs_[id]->load(memory_order_acquire) == waitfor);
ALWAYS_ASSERT(waitfor < FutureEpoch);
curbuf->header()->last_tid_ =
tidhelpers::MakeTid(id, 0, FutureEpoch);
g_persist_buffers[id].enq(curbuf);
outstanding_commits.emplace_back(waitfor, ncommits_currentepoch);
//cerr << "worker " << id << " waitfor epoch " << waitfor << endl;
// get these commits persisted
while (system_sync_epoch_->load(memory_order_acquire) < waitfor)
nop_pause();
ncommits_synced +=
inplace_update_persistent_info(outstanding_commits, waitfor);
ALWAYS_ASSERT(outstanding_commits.empty());
}
if (g_verbose && compress)
cerr << "Average compression ratio: " << cratios / double(ncompressions) << endl;
g_ntxns_committed.fetch_add(ncommits_synced, memory_order_release);
}
private:
void
fsyncer(unsigned id, int fd, one_way_post<int> &channel)
{
for (;;) {
int ret;
channel.peek(ret);
if (ret == -1)
return;
ret = fdatasync(fd);
if (ret == -1) {
perror("fdatasync");
exit(1);
}
channel.consume(ret);
}
}
void
writer(unsigned id, int fd, const vector<unsigned> &assignment)
{
vector<iovec> iovs(g_nworkers * g_perthread_buffers);
vector<pbuffer *> pxs;
struct timespec last_io_completed;
one_way_post<int> *channel =
g_fsync_background ? new one_way_post<int> : nullptr;
uint64_t total_nbytes_written = 0,
total_txns_written = 0;
bool sense = false; // cur is at sense, prev is at !sense
uint64_t nbytes_written[2], txns_written[2], epoch_prefixes[2][g_nworkers];
memset(&nbytes_written[0], 0, sizeof(nbytes_written));
memset(&txns_written[0], 0, sizeof(txns_written));
memset(&epoch_prefixes[0], 0, sizeof(epoch_prefixes[0]));
memset(&epoch_prefixes[1], 0, sizeof(epoch_prefixes[1]));
clock_gettime(CLOCK_MONOTONIC, &last_io_completed);
thread fsync_thread;
if (g_fsync_background) {
fsync_thread = move(thread(
&onecopy_logbased_simulation::fsyncer, this, id, fd, ref(*channel)));
fsync_thread.detach();
}
while (keep_going_->load(memory_order_acquire)) {
// don't allow this loop to proceed less than an epoch's worth of time,
// so we can batch IO
struct timespec now, diff;
clock_gettime(CLOCK_MONOTONIC, &now);
timespec_utils::subtract(&now, &last_io_completed, &diff);
if (diff.tv_sec == 0 && diff.tv_nsec < long(g_epoch_time_ns)) {
// need to sleep it out
struct timespec ts;
ts.tv_sec = 0;
ts.tv_nsec = g_epoch_time_ns - diff.tv_nsec;
nanosleep(&ts, nullptr);
}
clock_gettime(CLOCK_MONOTONIC, &last_io_completed);
size_t nwritten = 0;
nbytes_written[sense] = txns_written[sense] = 0;
for (auto idx : assignment) {
INVARIANT(idx >= 0 && idx < g_nworkers);
g_persist_buffers[idx].peekall(pxs);
for (auto px : pxs) {
INVARIANT(px);
INVARIANT(!px->io_scheduled_);
iovs[nwritten].iov_base = (void *) px->buf_.data();
iovs[nwritten].iov_len = px->curoff_;
nbytes_written[sense] += px->curoff_;
px->io_scheduled_ = true;
px->curoff_ = sizeof(logbuf_header);
px->remaining_ = px->header()->nentries_;
txns_written[sense] += px->header()->nentries_;
nwritten++;
INVARIANT(tidhelpers::CoreId(px->header()->last_tid_) == idx);
INVARIANT(epoch_prefixes[sense][idx] <=
tidhelpers::EpochId(px->header()->last_tid_));
INVARIANT(tidhelpers::EpochId(px->header()->last_tid_) > 0);
epoch_prefixes[sense][idx] =
tidhelpers::EpochId(px->header()->last_tid_) - 1;
}
}
if (!nwritten) {
// XXX: should probably sleep here
nop_pause();
if (!g_fsync_background || !channel->can_post()) {
//cerr << "writer skipping because no work to do" << endl;
continue;
}
}
//cerr << "writer " << id << " nwritten " << nwritten << endl;
const ssize_t ret =
nwritten ? writev(fd, &iovs[0], nwritten) : 0;
if (ret == -1) {
perror("writev");
exit(1);
}
bool dosense;
if (g_fsync_background) {
// wait for fsync from the previous write
if (nwritten)
channel->post(0, true);
else
INVARIANT(channel->can_post());
dosense = !sense;
} else {
int ret = fdatasync(fd);
if (ret == -1) {
perror("fdatasync");
exit(1);
}
dosense = sense;
}
// update metadata from previous write
for (size_t i = 0; i < g_nworkers; i++) {
const uint64_t x0 =
per_thread_sync_epochs_[id].epochs_[i].load(memory_order_acquire);
const uint64_t x1 = epoch_prefixes[dosense][i];
if (x1 > x0)
per_thread_sync_epochs_[id].epochs_[i].store(
x1, memory_order_release);
}
total_nbytes_written += nbytes_written[dosense];
total_txns_written += txns_written[dosense];
// bump the sense
sense = !sense;
// return all buffers that have been io_scheduled_ - we can do this as
// soon as write returns
for (auto idx : assignment) {
pbuffer *px;
while ((px = g_persist_buffers[idx].peek()) &&
px->io_scheduled_) {
g_persist_buffers[idx].deq();
g_all_buffers[idx].enq(px);
}
}
}
g_bytes_written[id].store(total_nbytes_written, memory_order_release);
g_ntxns_written.fetch_add(total_txns_written, memory_order_release);
}
inline void
advance_system_sync_epoch(const vector<vector<unsigned>> &assignments)
{
uint64_t min_so_far = numeric_limits<uint64_t>::max();
for (size_t i = 0; i < assignments.size(); i++)
for (auto j : assignments[i])
min_so_far =
min(per_thread_sync_epochs_[i].epochs_[j].load(memory_order_acquire), min_so_far);
#ifdef CHECK_INVARIANTS
const uint64_t syssync = system_sync_epoch_->load(memory_order_acquire);
INVARIANT(syssync <= min_so_far);
#endif
system_sync_epoch_->store(min_so_far, memory_order_release);
}
public:
void
logger(const vector<int> &fds,
const vector<vector<unsigned>> &assignments_given) OVERRIDE
{
// compute thread => logger assignment
vector<thread> writers;
vector<vector<unsigned>> assignments(assignments_given);
if (assignments.empty()) {
// compute assuming homogenous disks
if (g_nworkers <= fds.size()) {
// each thread gets its own logging worker
for (size_t i = 0; i < g_nworkers; i++)
assignments.push_back({(unsigned) i});
} else {
// XXX: currently we assume each logger is equally as fast- we should
// adjust ratios accordingly for non-homogenous loggers
const size_t threads_per_logger = g_nworkers / fds.size();
for (size_t i = 0; i < fds.size(); i++) {
assignments.emplace_back(
MakeRange<unsigned>(
i * threads_per_logger,
((i + 1) == fds.size()) ?
g_nworkers :
(i + 1) * threads_per_logger));
}
}
}
INVARIANT(AssignmentsValid(assignments, fds.size(), g_nworkers));
timer tt;
for (size_t i = 0; i < assignments.size(); i++)
writers.emplace_back(
&onecopy_logbased_simulation::writer,
this, i, fds[i], ref(assignments[i]));
if (g_verbose)
cerr << "assignments: " << assignments << endl;
while (keep_going_->load(memory_order_acquire)) {
// periodically compute which epoch is the persistence epoch,
// and update system_sync_epoch_
struct timespec t;
t.tv_sec = g_epoch_time_ns / ONE_SECOND_NS;
t.tv_nsec = g_epoch_time_ns % ONE_SECOND_NS;
nanosleep(&t, nullptr);
advance_system_sync_epoch(assignments);
}
for (auto &t : writers)
t.join();
if (g_verbose) {
cerr << "current epoch: " << epoch_number_->load(memory_order_acquire) << endl;
cerr << "sync epoch : " << system_sync_epoch_->load(memory_order_acquire) << endl;
const double xsec = tt.lap_ms() / 1000.0;
for (size_t i = 0; i < writers.size(); i++)
cerr << "writer " << i << " " <<
(double(g_bytes_written[i].load(memory_order_acquire)) /
double(1UL << 20) /
xsec) << " MB/sec" << endl;
}
}
protected:
vector<pbuffer *> pxs_; // just some scratch space
};
circbuf<pbuffer, onecopy_logbased_simulation::g_perthread_buffers>
onecopy_logbased_simulation::g_all_buffers[NMAXCORES];
circbuf<pbuffer, onecopy_logbased_simulation::g_perthread_buffers>
onecopy_logbased_simulation::g_persist_buffers[NMAXCORES];
class explicit_deptracking_simulation : public onecopy_logbased_simulation {
public:
/** global state about our persistence calculations */
// contains the latest TID inclusive, per core, which is (transitively)
// persistent. note that the prefix of the DB which is totally persistent is
// simply the max of this table.
static uint64_t g_persistence_vc[NMAXCORES];
protected:
bool do_compression() const OVERRIDE { return false; }
const uint8_t *
read_log_entry(const uint8_t *p, uint64_t &tid,
std::function<void(uint64_t)> readfunctor) OVERRIDE
{
serializer<uint8_t, false> s_uint8_t;
serializer<uint64_t, false> s_uint64_t;
uint8_t readset_sz, writeset_sz, key_sz, value_sz;
uint64_t v;
p = s_uint64_t.read(p, &tid);
p = s_uint8_t.read(p, &readset_sz);
INVARIANT(size_t(readset_sz) == g_readset);
for (size_t i = 0; i < size_t(readset_sz); i++) {
p = s_uint64_t.read(p, &v);
readfunctor(v);
}
p = s_uint8_t.read(p, &writeset_sz);
INVARIANT(size_t(writeset_sz) == g_writeset);
for (size_t i = 0; i < size_t(writeset_sz); i++) {
p = s_uint8_t.read(p, &key_sz);
INVARIANT(size_t(key_sz) == g_keysize);
p += size_t(key_sz);
p = s_uint8_t.read(p, &value_sz);
INVARIANT(size_t(value_sz) == g_valuesize);
p += size_t(value_sz);
}
return p;
}
uint64_t
compute_log_record_space() const OVERRIDE
{
// compute how much space we need for this entry
uint64_t space_needed = 0;
// 8 bytes to indicate TID
space_needed += sizeof(uint64_t);
// one byte to indicate # of read deps
space_needed += 1;
// each dep occupies 8 bytes
space_needed += g_readset * sizeof(uint64_t);
// one byte to indicate # of records written
space_needed += 1;
// each record occupies (1 + key_length + 1 + value_length) bytes
space_needed += g_writeset * (1 + g_keysize + 1 + g_valuesize);
return space_needed;
}
void
write_log_record(uint8_t *p,
uint64_t tidcommit,
const vector<uint64_t> &readset,
const vector<pair<string, string>> &writeset) OVERRIDE
{
serializer<uint8_t, false> s_uint8_t;
serializer<uint64_t, false> s_uint64_t;
p = s_uint64_t.write(p, tidcommit);
p = s_uint8_t.write(p, readset.size());
for (auto t : readset)
p = s_uint64_t.write(p, t);
p = s_uint8_t.write(p, writeset.size());
for (auto &pr : writeset) {
p = s_uint8_t.write(p, pr.first.size());
memcpy(p, pr.first.data(), pr.first.size()); p += pr.first.size();
p = s_uint8_t.write(p, pr.second.size());
memcpy(p, pr.second.data(), pr.second.size()); p += pr.second.size();
}
}
void
logger_on_io_completion() OVERRIDE
{
ALWAYS_ASSERT(false); // currently broken
bool changed = true;
while (changed) {
changed = false;
for (size_t i = 0; i < NMAXCORES; i++) {
g_persist_buffers[i].peekall(pxs_);
for (auto px : pxs_) {
INVARIANT(px);
if (!px->io_scheduled_)
break;
INVARIANT(px->remaining_ > 0);
INVARIANT(px->curoff_ < g_buffer_size);
const uint8_t *p = px->pointer();
uint64_t committid;
bool allsat = true;
//cerr << "processing buffer " << px << " with curoff_=" << px->curoff_ << endl
// << " p=" << intptr_t(p) << endl;
while (px->remaining_ && allsat) {
allsat = true;
const uint8_t *nextp =
read_log_entry(p, committid, [&allsat](uint64_t readdep) {
if (!allsat)
return;
const uint64_t cid = tidhelpers::CoreId(readdep);
if (readdep > g_persistence_vc[cid])
allsat = false;
});
if (allsat) {
//cerr << "committid=" << tidhelpers::Str(committid)
// << ", g_persistence_vc=" << tidhelpers::Str(g_persistence_vc[i])
// << endl;
INVARIANT(tidhelpers::CoreId(committid) == i);
INVARIANT(g_persistence_vc[i] < committid);
g_persistence_vc[i] = committid;
changed = true;
p = nextp;
px->remaining_--;
px->curoff_ = intptr_t(p) - intptr_t(px->buf_.data());
g_ntxns_committed++;
} else {
// done, no further entries will be satisfied
}
}
if (allsat) {
INVARIANT(px->remaining_ == 0);
// finished entire buffer
struct pbuffer *pxcheck = g_persist_buffers[i].deq();
if (pxcheck != px)
INVARIANT(false);
g_all_buffers[i].enq(px);
//cerr << "buffer flused at g_persistence_vc=" << tidhelpers::Str(g_persistence_vc[i]) << endl;
} else {
INVARIANT(px->remaining_ > 0);
break; // cannot process core's list any further
}
}
}
}
}
};
uint64_t explicit_deptracking_simulation::g_persistence_vc[NMAXCORES] = {0};
class epochbased_simulation : public onecopy_logbased_simulation {
public:
epochbased_simulation(bool compress)
: compress_(compress)
{
}
protected:
bool do_compression() const OVERRIDE { return compress_; }
protected: