From 56c5f05695f9d178a16f77261a909a84047b21b9 Mon Sep 17 00:00:00 2001 From: Chao Peng Date: Wed, 17 May 2023 13:20:17 -0500 Subject: [PATCH] update material scan script for testing the imported geometry --- scripts/subdetector_tests/material_scan.py | 97 ++++++++++++++++++++-- 1 file changed, 91 insertions(+), 6 deletions(-) diff --git a/scripts/subdetector_tests/material_scan.py b/scripts/subdetector_tests/material_scan.py index dd1afe3ee..148b35ed1 100644 --- a/scripts/subdetector_tests/material_scan.py +++ b/scripts/subdetector_tests/material_scan.py @@ -1,7 +1,7 @@ # SPDX-License-Identifier: LGPL-3.0-or-later # Copyright (C) 2023 Chao Peng ''' - A script to scan the materials thickness (X0 or Lambda) over eta + A script to scan the materials thickness (X0 or Lambda) by detectors over eta It uses dd4hep::rec::MaterialManager::placementsBetween to check the material layers, and then uses the detector alignment to transform world coordinates to local coordiantes, and then assigns the materials to a detector based @@ -34,6 +34,7 @@ COLORS = ['royalblue', 'indianred', 'forestgreen', 'gold', 'darkviolet', 'orange', 'darkturquoise'] # a specified color for Others, this should not be included in COLORS OTHERS_COLOR = 'silver' +MAX_N_MATS = 50 # FIXME: this is a work-around to an issue of dd4hep::rec::MaterialManager::placementsBetween @@ -156,6 +157,10 @@ def material_scan(desc, start, end, epsilon, int_dets=None, thickness_corrector= dest='compact', help='Top-level xml file of the detector description.' ) + parser.add_argument( + '-o', default='.', dest='outdir', + help='Output directory.' + ) parser.add_argument( '--path-r', type=float, default=400., # 120., help='R_xy (cm) where the scan stops.' @@ -188,6 +193,10 @@ def material_scan(desc, start, end, epsilon, int_dets=None, thickness_corrector= '--value-type', default='X0', help='Choose one in {}.'.format(list(ALLOWED_VALUE_TYPES.keys())) ) + parser.add_argument( + '--groupby-materials', action='store_true', + help='Enable it to group the results by materials instead of by detectors.' + ) parser.add_argument( '--detectors', # default='all', @@ -205,6 +214,8 @@ def material_scan(desc, start, end, epsilon, int_dets=None, thickness_corrector= print('Cannot find value {}, choose one in {}'.format(args.value_type, list(ALLOWED_VALUE_TYPES.keys()))) exit(-1) + os.makedirs(args.outdir, exist_ok=True) + # scan parameters path_r = args.path_r phi = args.phi @@ -246,12 +257,86 @@ def material_scan(desc, start, end, epsilon, int_dets=None, thickness_corrector= th_corr.scan_missing_thickness(desc, start_point, np.array(start_point) + np.array([100., 50., 0.]), dz=0.0001, epsilon=args.epsilon) + # value-type + vt = ALLOWED_VALUE_TYPES[args.value_type] + + # material-based scan + if args.groupby_materials: + vals = np.zeros(shape=(len(etas), MAX_N_MATS)) + mats = [] + for i, eta in enumerate(etas): + if i % PROGRESS_STEP == 0: + print('Scanned {:d}/{:d} for {:.2f} <= eta <= {:.2f}'.format(i, len(etas), etas[0], etas[-1]), + end='\r', flush=True) + # scan material layers + end_x = path_r*np.cos(phi/180.*np.pi) + end_y = path_r*np.sin(phi/180.*np.pi) + end_z = path_r*np.sinh(eta) + # print('({:.2f}, {:.2f}, {:.2f})'.format(end_x, end_y, end_z)) + dfr = material_scan(desc, start_point, (end_x, end_y, end_z), epsilon=args.epsilon, int_dets=dets, thickness_corrector=th_corr) + + # aggregated values for detectors + x0_vals = dfr.groupby('material')[vt[0]].sum().to_dict() + # update material list + for mat in x0_vals.keys(): + if mat not in mats: + mats.append(mat) + # save material scan results + for j, mat in enumerate(mats): + vals[i, j] = x0_vals.get(mat, 0.) + print('Scanned {:d}/{:d} lines for {:.2f} < eta < {:.2f}'.format(len(etas), len(etas), etas[0], etas[-1])) + + # aggregated data for plots + dfa = pd.DataFrame(data=vals[:, :len(mats)], columns=mats, index=etas) + # sort by total thickness + smats = [d for d in dfa.sum().sort_values(ascending=False).index] + dfa.to_csv(os.path.join(args.outdir, 'material_scan_agg.csv')) + + # plot material scan + fig, ax = plt.subplots(figsize=(16, 8), dpi=160, + gridspec_kw={'top': 0.9, 'bottom': 0.2, 'left': 0.08, 'right': 0.98}) + + # group some materials into "Others" if there're no enough colors + plot_mats = smats + if len(smats) > len(COLORS): + group_mats = smats[len(COLORS):] + dfa.loc[:, OTHERS_NAME] += dfa.loc[:, group_mats].sum(axis=1) + print('Materials {} are grouped into {} due to limited number of colors.'.format(group_mats, OTHERS_NAME)) + plot_mats = sdets[:len(COLORS)] + + bottom = np.zeros(len(dfa)) + width = np.mean(np.diff(dfa.index)) + for col, c in zip(plot_mats, COLORS): + ax.fill_between(dfa.index, bottom, dfa[col].values + bottom, label=col, step='mid', color=c) + bottom += dfa[col].values + # only plot Others if there are any + if OTHERS_NAME in dfa.columns and dfa[OTHERS_NAME].sum() > 0.: + ax.fill_between(dfa.index, bottom, dfa[OTHERS_NAME].values + bottom, label=OTHERS_NAME, step='mid', color=OTHERS_COLOR) + + # formatting + ax.tick_params(which='both', direction='in', labelsize=22) + ax.set_xlabel('$\eta$', fontsize=22) + ax.set_ylabel('{} ($R_{{xy}} \leq {:.1f}$ cm)'.format(vt[1], args.path_r), fontsize=22) + ax.xaxis.set_major_locator(MultipleLocator(0.5)) + ax.xaxis.set_minor_locator(MultipleLocator(0.1)) + ax.yaxis.set_major_locator(MultipleLocator(vt[2])) + ax.yaxis.set_minor_locator(MultipleLocator(vt[3])) + ax.grid(ls=':', which='both') + ax.set_axisbelow(False) + ax.set_xlim(args.eta_min, args.eta_max) + ax.set_ylim(0., ax.get_ylim()[1]*1.1) + ax.legend(bbox_to_anchor=(0.0, 0.9, 1.0, 0.1), ncol=2, loc="upper center", fontsize=22, + borderpad=0.2, labelspacing=0.2, columnspacing=0.6, borderaxespad=0.05, handletextpad=0.4) + # ax.set_yscale('log') + fig.savefig(os.path.join(args.outdir, 'material_scan.png')) + exit(0) + + # detector-based scan # array for detailed data # number of materials cannot be pre-determined, so just assign a large number to be safe - vals = np.zeros(shape=(len(etas), len(dets) + 1, 50)) + vals = np.zeros(shape=(len(etas), len(dets) + 1, MAX_N_MATS)) dets2 = dets + [OTHERS_NAME] det_mats = {d: [] for d in dets2} - vt = ALLOWED_VALUE_TYPES[args.value_type] for i, eta in enumerate(etas): if i % PROGRESS_STEP == 0: @@ -286,10 +371,10 @@ def material_scan(desc, start, end, epsilon, int_dets=None, thickness_corrector= if sort_dets: sdets = [d for d in dfa.sum().sort_values(ascending=False).index if d != OTHERS_NAME] dfa = dfa[sdets + [OTHERS_NAME]] - dfa.to_csv('material_scan_agg.csv') + dfa.to_csv(os.path.join(args.outdir, 'material_scan_agg.csv')) # plots - pdf = matplotlib.backends.backend_pdf.PdfPages('material_scan_details.pdf') + pdf = matplotlib.backends.backend_pdf.PdfPages(os.path.join(args.outdir, 'material_scan_details.pdf')) fig, ax = plt.subplots(figsize=(16, 8), dpi=160, gridspec_kw={'top': 0.9, 'bottom': 0.2, 'left': 0.08, 'right': 0.98}) @@ -326,7 +411,7 @@ def material_scan(desc, start, end, epsilon, int_dets=None, thickness_corrector= ax.legend(bbox_to_anchor=(0.0, 0.9, 1.0, 0.1), ncol=4, loc="upper center", fontsize=22, borderpad=0.2, labelspacing=0.2, columnspacing=0.6, borderaxespad=0.05, handletextpad=0.4) # ax.set_yscale('log') - fig.savefig('material_scan.png') + fig.savefig(os.path.join(args.outdir, 'material_scan.png')) pdf.savefig(fig) plt.close(fig)