diff --git a/x-pack/plugins/ml/common/util/__tests__/anomaly_utils.js b/x-pack/plugins/ml/common/util/__tests__/anomaly_utils.js index d966d7d5a06a4..627413e2232c0 100644 --- a/x-pack/plugins/ml/common/util/__tests__/anomaly_utils.js +++ b/x-pack/plugins/ml/common/util/__tests__/anomaly_utils.js @@ -14,6 +14,7 @@ import { getMultiBucketImpactLabel, getEntityFieldName, getEntityFieldValue, + getEntityFieldList, showActualForFunction, showTypicalForFunction, isRuleSupported, @@ -349,6 +350,52 @@ describe('ML - anomaly utils', () => { }); + describe('getEntityFieldList', () => { + it('returns an empty list for a record with no by, over or partition fields', () => { + expect(getEntityFieldList(noEntityRecord)).to.be.empty(); + }); + + it('returns correct list for a record with a by field', () => { + expect(getEntityFieldList(byEntityRecord)).to.eql([ + { + fieldName: 'airline', + fieldValue: 'JZA', + fieldType: 'by' + } + ]); + }); + + it('returns correct list for a record with a partition field', () => { + expect(getEntityFieldList(partitionEntityRecord)).to.eql([ + { + fieldName: 'airline', + fieldValue: 'AAL', + fieldType: 'partition' + } + ]); + }); + + it('returns correct list for a record with an over field', () => { + expect(getEntityFieldList(overEntityRecord)).to.eql([ + { + fieldName: 'clientip', + fieldValue: '37.157.32.164', + fieldType: 'over' + } + ]); + }); + + it('returns correct list for a record with a by and over field', () => { + expect(getEntityFieldList(rareEntityRecord)).to.eql([ + { + fieldName: 'clientip', + fieldValue: '173.252.74.112', + fieldType: 'over' + } + ]); + }); + }); + describe('showActualForFunction', () => { it('returns true for expected function descriptions', () => { expect(showActualForFunction('count')).to.be(true); diff --git a/x-pack/plugins/ml/common/util/__tests__/job_utils.js b/x-pack/plugins/ml/common/util/__tests__/job_utils.js index 12711a8d02960..0af5b64c9724e 100644 --- a/x-pack/plugins/ml/common/util/__tests__/job_utils.js +++ b/x-pack/plugins/ml/common/util/__tests__/job_utils.js @@ -11,7 +11,8 @@ import { calculateDatafeedFrequencyDefaultSeconds, isTimeSeriesViewJob, isTimeSeriesViewDetector, - isTimeSeriesViewFunction, + isSourceDataChartableForDetector, + isModelPlotChartableForDetector, getPartitioningFieldNames, isModelPlotEnabled, isJobVersionGte, @@ -158,47 +159,145 @@ describe('ML - job utils', () => { }); - describe('isTimeSeriesViewFunction', () => { - - it('returns true for expected functions', () => { - expect(isTimeSeriesViewFunction('count')).to.be(true); - expect(isTimeSeriesViewFunction('low_count')).to.be(true); - expect(isTimeSeriesViewFunction('high_count')).to.be(true); - expect(isTimeSeriesViewFunction('non_zero_count')).to.be(true); - expect(isTimeSeriesViewFunction('low_non_zero_count')).to.be(true); - expect(isTimeSeriesViewFunction('high_non_zero_count')).to.be(true); - expect(isTimeSeriesViewFunction('distinct_count')).to.be(true); - expect(isTimeSeriesViewFunction('low_distinct_count')).to.be(true); - expect(isTimeSeriesViewFunction('high_distinct_count')).to.be(true); - expect(isTimeSeriesViewFunction('metric')).to.be(true); - expect(isTimeSeriesViewFunction('mean')).to.be(true); - expect(isTimeSeriesViewFunction('low_mean')).to.be(true); - expect(isTimeSeriesViewFunction('high_mean')).to.be(true); - expect(isTimeSeriesViewFunction('median')).to.be(true); - expect(isTimeSeriesViewFunction('low_median')).to.be(true); - expect(isTimeSeriesViewFunction('high_median')).to.be(true); - expect(isTimeSeriesViewFunction('min')).to.be(true); - expect(isTimeSeriesViewFunction('max')).to.be(true); - expect(isTimeSeriesViewFunction('sum')).to.be(true); - expect(isTimeSeriesViewFunction('low_sum')).to.be(true); - expect(isTimeSeriesViewFunction('high_sum')).to.be(true); - expect(isTimeSeriesViewFunction('non_null_sum')).to.be(true); - expect(isTimeSeriesViewFunction('low_non_null_sum')).to.be(true); - expect(isTimeSeriesViewFunction('high_non_null_sum')).to.be(true); - expect(isTimeSeriesViewFunction('rare')).to.be(true); - }); - - it('returns false for expected functions', () => { - expect(isTimeSeriesViewFunction('freq_rare')).to.be(false); - expect(isTimeSeriesViewFunction('info_content')).to.be(false); - expect(isTimeSeriesViewFunction('low_info_content')).to.be(false); - expect(isTimeSeriesViewFunction('high_info_content')).to.be(false); - expect(isTimeSeriesViewFunction('varp')).to.be(false); - expect(isTimeSeriesViewFunction('low_varp')).to.be(false); - expect(isTimeSeriesViewFunction('high_varp')).to.be(false); - expect(isTimeSeriesViewFunction('time_of_day')).to.be(false); - expect(isTimeSeriesViewFunction('time_of_week')).to.be(false); - expect(isTimeSeriesViewFunction('lat_long')).to.be(false); + describe('isSourceDataChartableForDetector', () => { + + const job = { + analysis_config: { + detectors: [ + { function: 'count' }, // 0 + { function: 'low_count' }, // 1 + { function: 'high_count' }, // 2 + { function: 'non_zero_count' }, // 3 + { function: 'low_non_zero_count' }, // 4 + { function: 'high_non_zero_count' }, // 5 + { function: 'distinct_count' }, // 6 + { function: 'low_distinct_count' }, // 7 + { function: 'high_distinct_count' }, // 8 + { function: 'metric' }, // 9 + { function: 'mean' }, // 10 + { function: 'low_mean' }, // 11 + { function: 'high_mean' }, // 12 + { function: 'median' }, // 13 + { function: 'low_median' }, // 14 + { function: 'high_median' }, // 15 + { function: 'min' }, // 16 + { function: 'max' }, // 17 + { function: 'sum' }, // 18 + { function: 'low_sum' }, // 19 + { function: 'high_sum' }, // 20 + { function: 'non_null_sum' }, // 21 + { function: 'low_non_null_sum' }, // 22 + { function: 'high_non_null_sum' }, // 23 + { function: 'rare' }, // 24 + { function: 'count', 'by_field_name': 'mlcategory', }, // 25 + { function: 'count', 'by_field_name': 'hrd', }, // 26 + { function: 'freq_rare' }, // 27 + { function: 'info_content' }, // 28 + { function: 'low_info_content' }, // 29 + { function: 'high_info_content' }, // 30 + { function: 'varp' }, // 31 + { function: 'low_varp' }, // 32 + { function: 'high_varp' }, // 33 + { function: 'time_of_day' }, // 34 + { function: 'time_of_week' }, // 35 + { function: 'lat_long' }, // 36 + { function: 'mean', 'field_name': 'NetworkDiff' }, //37 + ] + }, + datafeed_config: { + script_fields: { + hrd: { + script: { + inline: 'return domainSplit(doc["query"].value, params).get(1);', + lang: 'painless' + } + }, + NetworkDiff: { + script: { + source: 'doc["NetworkOut"].value - doc["NetworkIn"].value', + lang: 'painless' + } + } + } + } + }; + + it('returns true for expected detectors', () => { + expect(isSourceDataChartableForDetector(job, 0)).to.be(true); + expect(isSourceDataChartableForDetector(job, 1)).to.be(true); + expect(isSourceDataChartableForDetector(job, 2)).to.be(true); + expect(isSourceDataChartableForDetector(job, 3)).to.be(true); + expect(isSourceDataChartableForDetector(job, 4)).to.be(true); + expect(isSourceDataChartableForDetector(job, 5)).to.be(true); + expect(isSourceDataChartableForDetector(job, 6)).to.be(true); + expect(isSourceDataChartableForDetector(job, 7)).to.be(true); + expect(isSourceDataChartableForDetector(job, 8)).to.be(true); + expect(isSourceDataChartableForDetector(job, 9)).to.be(true); + expect(isSourceDataChartableForDetector(job, 10)).to.be(true); + expect(isSourceDataChartableForDetector(job, 11)).to.be(true); + expect(isSourceDataChartableForDetector(job, 12)).to.be(true); + expect(isSourceDataChartableForDetector(job, 13)).to.be(true); + expect(isSourceDataChartableForDetector(job, 14)).to.be(true); + expect(isSourceDataChartableForDetector(job, 15)).to.be(true); + expect(isSourceDataChartableForDetector(job, 16)).to.be(true); + expect(isSourceDataChartableForDetector(job, 17)).to.be(true); + expect(isSourceDataChartableForDetector(job, 18)).to.be(true); + expect(isSourceDataChartableForDetector(job, 19)).to.be(true); + expect(isSourceDataChartableForDetector(job, 20)).to.be(true); + expect(isSourceDataChartableForDetector(job, 21)).to.be(true); + expect(isSourceDataChartableForDetector(job, 22)).to.be(true); + expect(isSourceDataChartableForDetector(job, 23)).to.be(true); + expect(isSourceDataChartableForDetector(job, 24)).to.be(true); + }); + + it('returns false for expected detectors', () => { + expect(isSourceDataChartableForDetector(job, 25)).to.be(false); + expect(isSourceDataChartableForDetector(job, 26)).to.be(false); + expect(isSourceDataChartableForDetector(job, 27)).to.be(false); + expect(isSourceDataChartableForDetector(job, 28)).to.be(false); + expect(isSourceDataChartableForDetector(job, 29)).to.be(false); + expect(isSourceDataChartableForDetector(job, 30)).to.be(false); + expect(isSourceDataChartableForDetector(job, 31)).to.be(false); + expect(isSourceDataChartableForDetector(job, 32)).to.be(false); + expect(isSourceDataChartableForDetector(job, 33)).to.be(false); + expect(isSourceDataChartableForDetector(job, 34)).to.be(false); + expect(isSourceDataChartableForDetector(job, 35)).to.be(false); + expect(isSourceDataChartableForDetector(job, 36)).to.be(false); + expect(isSourceDataChartableForDetector(job, 37)).to.be(false); + }); + }); + + describe('isModelPlotChartableForDetector', () => { + const job1 = { + analysis_config: { + detectors: [ + { function: 'count' } + ] + } + }; + + const job2 = { + analysis_config: { + detectors: [ + { function: 'count' }, + { function: 'info_content' } + ] + }, + model_plot_config: { + enabled: true + } + }; + + it('returns false when model plot is not enabled', () => { + expect(isModelPlotChartableForDetector(job1, 0)).to.be(false); + }); + + it('returns true for count detector when model plot is enabled', () => { + expect(isModelPlotChartableForDetector(job2, 0)).to.be(true); + }); + + it('returns true for info_content detector when model plot is enabled', () => { + expect(isModelPlotChartableForDetector(job2, 1)).to.be(true); }); }); diff --git a/x-pack/plugins/ml/common/util/anomaly_utils.js b/x-pack/plugins/ml/common/util/anomaly_utils.js index cc4d78de3066d..371d1d176394a 100644 --- a/x-pack/plugins/ml/common/util/anomaly_utils.js +++ b/x-pack/plugins/ml/common/util/anomaly_utils.js @@ -173,6 +173,40 @@ export function getEntityFieldValue(record) { return undefined; } +// Returns the list of partitioning entity fields for the source record as a list +// of objects in the form { fieldName: airline, fieldValue: AAL, fieldType: partition } +export function getEntityFieldList(record) { + const entityFields = []; + if (record.partition_field_name !== undefined) { + entityFields.push({ + fieldName: record.partition_field_name, + fieldValue: record.partition_field_value, + fieldType: 'partition' + }); + } + + if (record.over_field_name !== undefined) { + entityFields.push({ + fieldName: record.over_field_name, + fieldValue: record.over_field_value, + fieldType: 'over' + }); + } + + // For jobs with by and over fields, don't add the 'by' field as this + // field will only be added to the top-level fields for record type results + // if it also an influencer over the bucket. + if (record.by_field_name !== undefined && record.over_field_name === undefined) { + entityFields.push({ + fieldName: record.by_field_name, + fieldValue: record.by_field_value, + fieldType: 'by' + }); + } + + return entityFields; +} + // Returns whether actual values should be displayed for a record with the specified function description. // Note that the 'function' field in a record contains what the user entered e.g. 'high_count', // whereas the 'function_description' field holds a ML-built display hint for function e.g. 'count'. diff --git a/x-pack/plugins/ml/common/util/job_utils.js b/x-pack/plugins/ml/common/util/job_utils.js index becc93a1ee9a2..b29739ba6b6e9 100644 --- a/x-pack/plugins/ml/common/util/job_utils.js +++ b/x-pack/plugins/ml/common/util/job_utils.js @@ -31,14 +31,10 @@ export function calculateDatafeedFrequencyDefaultSeconds(bucketSpanSeconds) { // Returns a flag to indicate whether the job is suitable for viewing // in the Time Series dashboard. export function isTimeSeriesViewJob(job) { - // TODO - do we need another function which returns whether to enable the - // link to the Single Metric dashboard in the Jobs list, only allowing single - // metric jobs with only one detector with no by/over/partition fields - // only allow jobs with at least one detector whose function corresponds to // an ES aggregation which can be viewed in the single metric view and which // doesn't use a scripted field which can be very difficult or impossible to - // invert to a reverse search. + // invert to a reverse search, or when model plot has been enabled. let isViewable = false; const dtrs = job.analysis_config.detectors; @@ -55,38 +51,68 @@ export function isTimeSeriesViewJob(job) { // Returns a flag to indicate whether the detector at the index in the specified job // is suitable for viewing in the Time Series dashboard. export function isTimeSeriesViewDetector(job, dtrIndex) { - // Check that the detector function is suitable for viewing in the Time Series dashboard, - // and that the partition, by and over fields are not using mlcategory or a scripted field which - // can be very difficult or impossible to invert to a reverse search of the underlying metric data. - let isDetectorViewable = false; + return isSourceDataChartableForDetector(job, dtrIndex) || + isModelPlotChartableForDetector(job, dtrIndex); +} +// Returns a flag to indicate whether the source data can be plotted in a time +// series chart for the specified detector. +export function isSourceDataChartableForDetector(job, detectorIndex) { + let isSourceDataChartable = false; const dtrs = job.analysis_config.detectors; - if (dtrIndex >= 0 && dtrIndex < dtrs.length) { - const dtr = dtrs[dtrIndex]; - isDetectorViewable = (isTimeSeriesViewFunction(dtr.function) === true) && + if (detectorIndex >= 0 && detectorIndex < dtrs.length) { + const dtr = dtrs[detectorIndex]; + const functionName = dtr.function; + + // Check that the function maps to an ES aggregation, + // and that the partitioning field isn't mlcategory + // (since mlcategory is a derived field which won't exist in the source data). + // Note that the 'function' field in a record contains what the user entered e.g. 'high_count', + // whereas the 'function_description' field holds an ML-built display hint for function e.g. 'count'. + isSourceDataChartable = (mlFunctionToESAggregation(functionName) !== null) && (dtr.by_field_name !== 'mlcategory') && (dtr.partition_field_name !== 'mlcategory') && (dtr.over_field_name !== 'mlcategory'); + // If the datafeed uses script fields, we can only plot the time series if + // model plot is enabled. Without model plot it will be very difficult or impossible + // to invert to a reverse search of the underlying metric data. const usesScriptFields = _.has(job, 'datafeed_config.script_fields'); - if (isDetectorViewable === true && usesScriptFields === true) { + if (isSourceDataChartable === true && usesScriptFields === true) { // Perform extra check to see if the detector is using a scripted field. const scriptFields = usesScriptFields ? _.keys(job.datafeed_config.script_fields) : []; - isDetectorViewable = scriptFields.indexOf(dtr.field_name) === -1 && + isSourceDataChartable = ( + scriptFields.indexOf(dtr.field_name) === -1 && scriptFields.indexOf(dtr.partition_field_name) === -1 && scriptFields.indexOf(dtr.by_field_name) === -1 && - scriptFields.indexOf(dtr.over_field_name) === -1; + scriptFields.indexOf(dtr.over_field_name) === -1); } - } - return isDetectorViewable; + } + return isSourceDataChartable; } -// Returns a flag to indicate whether a detector with the specified function is -// suitable for viewing in the Time Series dashboard. -export function isTimeSeriesViewFunction(functionName) { - return mlFunctionToESAggregation(functionName) !== null; +// Returns a flag to indicate whether model plot data can be plotted in a time +// series chart for the specified detector. +export function isModelPlotChartableForDetector(job, detectorIndex) { + let isModelPlotChartable = false; + + const modelPlotEnabled = _.get(job, ['model_plot_config', 'enabled'], false); + const dtrs = job.analysis_config.detectors; + if (detectorIndex >= 0 && detectorIndex < dtrs.length && modelPlotEnabled === true) { + const dtr = dtrs[detectorIndex]; + const functionName = dtr.function; + + // Model plot can be charted for any of the functions which map to ES aggregations, + // plus varp and info_content functions. + isModelPlotChartable = (mlFunctionToESAggregation(functionName) !== null) || + (['varp', 'high_varp', 'low_varp', 'info_content', + 'high_info_content', 'low_info_content'].includes(functionName) === true); + } + + return isModelPlotChartable; + } // Returns the names of the partition, by, and over fields for the detector with the @@ -117,7 +143,7 @@ export function isModelPlotEnabled(job, detectorIndex, entityFields) { // Check if model_plot_config is enabled. let isEnabled = _.get(job, ['model_plot_config', 'enabled'], false); - if (isEnabled === true) { + if (isEnabled === true && entityFields !== undefined && entityFields.length > 0) { // If terms filter is configured in model_plot_config, check supplied entities. const termsStr = _.get(job, ['model_plot_config', 'terms'], ''); if (termsStr !== '') { diff --git a/x-pack/plugins/ml/public/components/anomalies_table/anomalies_table_columns.js b/x-pack/plugins/ml/public/components/anomalies_table/anomalies_table_columns.js index fcd6a7c5828d6..856e89f144128 100644 --- a/x-pack/plugins/ml/public/components/anomalies_table/anomalies_table_columns.js +++ b/x-pack/plugins/ml/public/components/anomalies_table/anomalies_table_columns.js @@ -51,7 +51,7 @@ function renderTime(date, aggregationInterval) { function showLinksMenuForItem(item) { const canConfigureRules = (isRuleSupported(item) && checkPermission('canUpdateJob')); return (canConfigureRules || - item.isTimeSeriesViewDetector || + item.isTimeSeriesViewRecord || item.entityName === 'mlcategory' || item.customUrls !== undefined); } diff --git a/x-pack/plugins/ml/public/components/anomalies_table/anomaly_details.test.js b/x-pack/plugins/ml/public/components/anomalies_table/anomaly_details.test.js index 44428d21c0c22..b24e328ee96d5 100644 --- a/x-pack/plugins/ml/public/components/anomalies_table/anomaly_details.test.js +++ b/x-pack/plugins/ml/public/components/anomalies_table/anomaly_details.test.js @@ -53,7 +53,7 @@ const props = { typicalSort: 0.012071679592192066, metricDescriptionSort: 82.83851409101328, detector: 'count by mlcategory', - isTimeSeriesViewDetector: false + isTimeSeriesViewRecord: false }, examples: [ 'Actual Transaction Already Voided / Reversed;hostname=dbserver.acme.com;physicalhost=esxserver1.acme.com;vmhost=app1.acme.com', diff --git a/x-pack/plugins/ml/public/components/anomalies_table/links_menu.js b/x-pack/plugins/ml/public/components/anomalies_table/links_menu.js index e780f1e3196bb..5276a344286a0 100644 --- a/x-pack/plugins/ml/public/components/anomalies_table/links_menu.js +++ b/x-pack/plugins/ml/public/components/anomalies_table/links_menu.js @@ -395,7 +395,7 @@ export const LinksMenu = injectI18n(class LinksMenu extends Component { }); } - if (showViewSeriesLink === true && anomaly.isTimeSeriesViewDetector === true) { + if (showViewSeriesLink === true && anomaly.isTimeSeriesViewRecord === true) { items.push( { + const obj = { + success: true, + results: {} + }; + + return mlResultsService.getModelPlotOutput( + jobId, + detectorIndex, + criteriaFields, + range.min, + range.max, + interval + ) + .then((resp) => { + // Return data in format required by the explorer charts. + const results = resp.results; + Object.keys(results).forEach((time) => { + obj.results[time] = results[time].actual; + }); + resolve(obj); + }) + .catch((resp) => { + reject(resp); + }); + + }); + } + } // Query 2 - load the anomalies. @@ -346,13 +419,18 @@ export function explorerChartsContainerServiceFactory(callback) { // Aggregate by job, detector, and analysis fields (partition, by, over). const aggregatedData = {}; _.each(anomalyRecords, (record) => { - // Only plot charts for metric functions, and for detectors which don't use categorization - // or scripted fields which can be very difficult or impossible to invert to a reverse search. + // Check if we can plot a chart for this record, depending on whether the source data + // is chartable, and if model plot is enabled for the job. const job = mlJobService.getJob(record.job_id); - if ( - isTimeSeriesViewDetector(job, record.detector_index) === false || - FUNCTION_DESCRIPTIONS_TO_PLOT.includes(record.function_description) === false - ) { + let isChartable = isSourceDataChartableForDetector(job, record.detector_index); + if (isChartable === false) { + // Check if model plot is enabled for this job. + // Need to check the entity fields for the record in case the model plot config has a terms list. + const entityFields = getEntityFieldList(record); + isChartable = isModelPlotEnabled(job, record.detector_index, entityFields); + } + + if (isChartable === false) { return; } const jobId = record.job_id; diff --git a/x-pack/plugins/ml/public/explorer/explorer_utils.js b/x-pack/plugins/ml/public/explorer/explorer_utils.js index a828aed127e07..d8b77d9c2dc2f 100644 --- a/x-pack/plugins/ml/public/explorer/explorer_utils.js +++ b/x-pack/plugins/ml/public/explorer/explorer_utils.js @@ -11,7 +11,8 @@ import { chain, each, get, union, uniq } from 'lodash'; import { parseInterval } from 'ui/utils/parse_interval'; -import { isTimeSeriesViewDetector } from '../../common/util/job_utils'; +import { getEntityFieldList } from '../../common/util/anomaly_utils'; +import { isSourceDataChartableForDetector, isModelPlotEnabled } from '../../common/util/job_utils'; import { ml } from '../services/ml_api_service'; import { mlJobService } from '../services/job_service'; import { mlResultsService } from 'plugins/ml/services/results_service'; @@ -495,7 +496,17 @@ export async function loadAnomaliesTableData( // Add properties used for building the links menu. // TODO - when job_service is moved server_side, move this to server endpoint. - anomaly.isTimeSeriesViewDetector = isTimeSeriesViewDetector(mlJobService.getJob(jobId), anomaly.detectorIndex); + const job = mlJobService.getJob(jobId); + let isChartable = isSourceDataChartableForDetector(job, anomaly.detectorIndex); + if (isChartable === false) { + // Check if model plot is enabled for this job. + // Need to check the entity fields for the record in case the model plot config has a terms list. + // If terms is specified, model plot is only stored if both the partition and by fields appear in the list. + const entityFields = getEntityFieldList(anomaly.source); + isChartable = isModelPlotEnabled(job, anomaly.detectorIndex, entityFields); + } + anomaly.isTimeSeriesViewRecord = isChartable; + if (mlJobService.customUrlsByJob[jobId] !== undefined) { anomaly.customUrls = mlJobService.customUrlsByJob[jobId]; } diff --git a/x-pack/plugins/ml/public/timeseriesexplorer/timeseriesexplorer.html b/x-pack/plugins/ml/public/timeseriesexplorer/timeseriesexplorer.html index c475a86247b11..418f58d7419af 100644 --- a/x-pack/plugins/ml/public/timeseriesexplorer/timeseriesexplorer.html +++ b/x-pack/plugins/ml/public/timeseriesexplorer/timeseriesexplorer.html @@ -71,7 +71,8 @@ is-loading="loading === true" /> -
+
+
+
+
+
+
+
+
@@ -189,7 +208,7 @@ i18n-id="xpack.ml.timeSeriesExplorer.annotationsTitle" i18n-default-message="Annotations" > - + { return entity.fieldValue.length > 0; }); $scope.criteriaFields = [{ @@ -289,6 +293,18 @@ module.controller('MlTimeSeriesExplorerController', function ( 'fieldValue': detectorIndex } ].concat(nonBlankEntities); + if ($scope.modelPlotEnabled === false && + isSourceDataChartableForDetector($scope.selectedJob, detectorIndex) === false && + nonBlankEntities.length > 0) { + // For detectors where model plot has been enabled with a terms filter and the + // selected entity(s) are not in the terms list, indicate that data cannot be viewed. + $scope.hasResults = false; + $scope.loading = false; + $scope.dataNotChartable = true; + $scope.$applyAsync(); + return; + } + // Calculate the aggregation interval for the context chart. // Context chart swimlane will display bucket anomaly score at the same interval. $scope.contextAggregationInterval = calculateAggregationInterval(bounds, CHARTS_POINT_TARGET, CHARTS_POINT_TARGET); diff --git a/x-pack/plugins/ml/public/util/__tests__/chart_utils.js b/x-pack/plugins/ml/public/util/__tests__/chart_utils.js index 0949605e9599d..a6a26f3fed8ff 100644 --- a/x-pack/plugins/ml/public/util/__tests__/chart_utils.js +++ b/x-pack/plugins/ml/public/util/__tests__/chart_utils.js @@ -12,11 +12,13 @@ import expect from '@kbn/expect'; import { chartLimits, filterAxisLabels, + getChartType, numTicks, showMultiBucketAnomalyMarker, showMultiBucketAnomalyTooltip, } from '../chart_utils'; -import { MULTI_BUCKET_IMPACT } from 'plugins/ml/../common/constants/multi_bucket_impact'; +import { MULTI_BUCKET_IMPACT } from '../../../common/constants/multi_bucket_impact'; +import { CHART_TYPE } from '../../explorer/explorer_constants'; describe('ML - chart utils', () => { @@ -139,6 +141,82 @@ describe('ML - chart utils', () => { }); + describe('getChartType', () => { + + const singleMetricConfig = { + metricFunction: 'avg', + functionDescription: 'mean', + fieldName: 'responsetime', + entityFields: [], + }; + + const multiMetricConfig = { + metricFunction: 'avg', + functionDescription: 'mean', + fieldName: 'responsetime', + entityFields: [ + { + fieldName: 'airline', + fieldValue: 'AAL', + fieldType: 'partition', + } + ], + }; + + const populationConfig = { + metricFunction: 'avg', + functionDescription: 'mean', + fieldName: 'http.response.body.bytes', + entityFields: [ + { + fieldName: 'source.ip', + fieldValue: '10.11.12.13', + fieldType: 'over', + } + ], + }; + + const rareConfig = { + metricFunction: 'count', + functionDescription: 'rare', + entityFields: [ + { + fieldName: 'http.response.status_code', + fieldValue: '404', + fieldType: 'by', + } + ], + }; + + const varpModelPlotConfig = { + metricFunction: null, + functionDescription: 'varp', + fieldName: 'NetworkOut', + entityFields: [ + { + fieldName: 'instance', + fieldValue: 'i-ef74d410', + fieldType: 'over', + } + ], + }; + + it('returns single metric chart type as expected for configs', () => { + expect(getChartType(singleMetricConfig)).to.be(CHART_TYPE.SINGLE_METRIC); + expect(getChartType(multiMetricConfig)).to.be(CHART_TYPE.SINGLE_METRIC); + expect(getChartType(varpModelPlotConfig)).to.be(CHART_TYPE.SINGLE_METRIC); + }); + + it('returns event distribution chart type as expected for configs', () => { + expect(getChartType(rareConfig)).to.be(CHART_TYPE.EVENT_DISTRIBUTION); + }); + + it('returns population distribution chart type as expected for configs', () => { + expect(getChartType(populationConfig)).to.be(CHART_TYPE.POPULATION_DISTRIBUTION); + }); + + }); + describe('numTicks', () => { it('returns 10 for 1000', () => { diff --git a/x-pack/plugins/ml/public/util/chart_utils.js b/x-pack/plugins/ml/public/util/chart_utils.js index 8a68fc489b23d..5b097cb1f2c8a 100644 --- a/x-pack/plugins/ml/public/util/chart_utils.js +++ b/x-pack/plugins/ml/public/util/chart_utils.js @@ -140,6 +140,7 @@ const POPULATION_DISTRIBUTION_ENABLED = true; // get the chart type based on its configuration export function getChartType(config) { + if ( EVENT_DISTRIBUTION_ENABLED && config.functionDescription === 'rare' && @@ -149,7 +150,8 @@ export function getChartType(config) { } else if ( POPULATION_DISTRIBUTION_ENABLED && config.functionDescription !== 'rare' && - config.entityFields.some(f => f.fieldType === 'over') + config.entityFields.some(f => f.fieldType === 'over') && + config.metricFunction !== null // Event distribution chart relies on the ML function mapping to an ES aggregation ) { return CHART_TYPE.POPULATION_DISTRIBUTION; }