Teaching machines to discover particles
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Catch-up session for Kyle's yersterday talk
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A few words about myself
Background:

e Training in computer science

e PhD in machine learning
m Contributions to random forests
(interpretation, randomness, scalability, etc)

Machine learning for Science:

e As a PhD, | grew an interest for scientific

B e
S 2 A bl
Recognition Connectome
algorithms for reconstruction
biomedical images algorithms

applications of ML.

Genome-wide
associations studies
with ML
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Postdoc’ing at CERN + NYU

e Joined CERN, and then NYU, as a postdoc with the goal of
applying ML to particle physics data.

e Switched gears in terms of research:

B Contributions in likelihood-free inference, adversarial learning, domain
adaptation, ...

m Driven by particle physics applications.

e Team work with physicists and researchers in ML.
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Physics jargon vs. ML lingo

Physicists and machine learning researchers
do not speak the same language.

® Due/thanks to its large collaborations, particle physics has often siloed itself and
(re-)developed its own tools.

® This results in a barrier between physicists and outsiders, despite sometime
using the same underlying concepts.

Disclaimer. Ask if things are unclear!
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Particle Physics 101
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The scientific method

Hypothesis Conclusion
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The Higgs boson LHC+ATLAS+CMS Discovery!

exists

o The scientific method = recurrence over the sequence “hypothesis,
experiment and conclusion”.

e Conclusions are routinely automated through statistical inference, in
which machine learning methods are embedded.

e Hypothesis and experiments are usually left for the scientists to
decide.
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Credits: Jorge Cham, PHD comics

Testing for new physics

THE THHG 15, WE dAhvE THS COLLTER..,

9/37


http://phdcomics.com/comics/archive.php?comicid=1489

Credits: Jorge Cham, PHD comics

Testing for new physics

DETECTING THE HIGGS BOSON
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http://phdcomics.com/comics/archive.php?comicid=1489

Credits: Jorge Cham, PHD comics

Testing for new physics
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Hypothesis test based on
the likelihood ratio

p(x|background)
p(x|background -+ signal)
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http://phdcomics.com/comics/archive.php?comicid=1489

Credits: Kyle Cranmer

The Standard Model
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3) The interaction of outgoing particles
with the detector is simulated.

=100 million sensors

) Finally, we run particle identification and
feature extraction algorithms on the simulated
data as if they were from real collisions.

features describe interesting part

The uniqueness of particle physics lies

in its highly precise and compact model. o



Machine learning N Particle physics
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The players

6 := (p,v)

Parameters

7

Parameters of interest

1 4
Nuisance parameters

Z
Latent variables

Forward modeling
Generation
Simulation

p(x|0)

< Inference

Inverse problem
Unfolding
Measurement
Parameter search

X ~ pr(X)

Observations drawn

from Nature

x ~ p(x|6)
Simulated data
(a lot!)
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Likelihood-free assumptions
Operationally,
x ~ p(x|0) =z ~ p(z|6),x = g(z;0)

where
e 7 provides a source of randomness;

e g is a non-differentiable deterministic function (e.g. a
computer program).

Accordingly, the density p(x|@) can be written as

pixio)= [ plalon(in

Evaluating the integral is often intractable.
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Légende: — Muor
= Electron

Hadron chargé (ex. Fion)
— — = — Hadron neutre (ex. Neutron)

Trajectographe
au silicium

#lectromagnetique

Calorimétre Soléncide £

hadronique  superconducteur Culasse de retour de I'simant

avec des chambres a muons LB
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Determining and evaluating all possible execution paths and all z
that lead to the observation x is not tractable.

(And even less, normalizing that thing!)
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Testing hypothesis (<@=)
Formally, physicists usually test a null @ = 8y by constructing the
likelihood ratio test statistic

AD;60) = ]

x€eD

p(x]6o)
supgce P(x(0)

e Most measurements and searches for
new particles are based on the
distribution of a single variable x € R.

e The likelihood p(x|@) is approximated
using 1D histograms. (Physicists love
histograms!)

e Choosing a good variable x tailored
for the goal of the experiment is the
physicist’s job.

See Glen'’s talk today!

15 /37



Credits: 1012.3589

Supervised learning (<@=1)

Setup:
e Training data {(x;,y:) € X x Y|x; ~ p(x|p = y;)}
e Learn a function f: X — ).

N
=1

In particle physics:

e Part of a larger analysis 5 ;

e To recognize signal from background ps| oS < et
events and build a test statistic in the ) M
region of acceptance (e.g., I|' \ z___,.-.:"“‘
“cut-and-count” analysis). = .'l I\"\ , X

e To compress the data into a 1D value S ;

(more later).
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https://arxiv.org/abs/1012.3589

e Domain knowledge is traditionally incorporated as engineered

features.

e New paradigm: Recent successes with deep learning models

built on raw data is tickling physicists' curiosity.
m How to recast physics problems into well-studied ML problems?

m How to incorporate domain knowledge?
m Can we learn what these models have learned? (See Daniel’s

talk tomorrow)
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Images: 1612.01551

Particle physics detector as a camera

Challenges:
® 3D volume of pixels
— ® Non-uniform
geometry
® Mostly sparse

pre-process
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https://arxiv.org/abs/1612.01551

Collision events as text paragraphs
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Analogy:
® word — particle
® sentence — jet
® parsing — jet algorithm
°

paragraph — event

Domain knowledge is used to template the structure of

the network, on a per-event basis.

Credits: 1702.00748

Classifier
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QCD-aware recursive
networks
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https://arxiv.org/abs/1702.00748

Domain adaptation, Transfer learning (<&==)

Setup:
o Test data {x; ~ p, (%)},
° pr(X> 7& p(X’0>

In particle physics:
e How does one build a model from simulated data that
transfers well-enough to the true data distribution?

e How does one ensure the model does not exploit simulation
artefacts?

Attend Michael’s talk on Saturday!
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Credits: 1611.01046, 1601.07913

Learning under uncertainty (<@=)

e Despite the precision of the SM, we still have to deal with:

m statistical uncertainties (inherent fluctuations)
m systematic uncertainties (the known unknowns of the model)

e Uncertainty is usually formulated as nuisance parameters v.

Jixnxe )

- o - i
=L0-05% 00 05 10 L5 23 Mg | Gatv]

With adversarial training, force the model Add v as an i”P}’t to the model and profile
to be independent of v. it out later.

When to use one strategy over the other?
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https://arxiv.org/abs/1611.01046
https://arxiv.org/abs/1601.07913

Likelihood-free inference (<)

Given observations x ~ p,(x), we seek:

0" = arg m;ixp(x\e)

e Histogramming p(x|@) does not scale to high dimensions.

e Can we automate or bypass the physicist's job of thinking
about a good and compact representation for x, without
losing information?

e Hint: We do not need to know p(x|@) to find 8*.



Credits: 1506.02169

Approximating likelihood ratios with classifiers

The likelihood ratio r(x) is invariant under the change of variable
u = s(x), provided s(x) is monotonic with 7(x):
p(x[60) _ p(s(x)[60)
r(x) = =
%)= 8~ psol6)

A classifier s trained to distinguish x ~ p(x|6p) from x ~ p(x|6;)
satisfies the condition above.

This gives an automatic procedure for learning a good and
compact representation for x!
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https://arxiv.org/abs/1506.02169

Credits: 1506.02169

Therefore,

0" = arg m@axp(x\@)

p(x]6)

p(x(61)

= arg max p(s(x;6,6,)|6)
S D(s(x; 0,61)]61)

= arg max
0

where 0 is fixed and s(x; 0, 60;) is a family of classifiers trained to
distinguish between 0 and 6.
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https://arxiv.org/abs/1506.02169

Credits: 1610.03483

Learning in implicit generative models

Likelihood-free inference can be cast into the framework of
“implicit generative models”.

- Density Estimation
by Comparison
Hy:p"=qevs. p" £

L8, d)

This framework ties together:

® Approximate Bayesian
computation

® Density estimation-by-

comparison algorithms / \

(two sample testing,
density ratio, density Density Difference Density Ratio

difference estimation) Te =D — s Ty = Eé-
® Generative adversarial —= 7 ’ — %i "

networks
® Variational inference Mar Mean " Moment Bregman  Clasy Probabitity
Discrepency Marching Divergence Estimation f-Divergence
* - v A ~— o
flul=uwlogu — (u+ 1) loglu + 1}
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https://arxiv.org/abs/1610.03483

ICML201T Implicit Models

ICML 2017 Workshop on
Implicit Models

Workshop: 10 August, Room: Parkside 1

Workshop Aims

wargy procoss

generation. Part

Generative adversarial networks (2 N@
sheme

axy; i warlational inferente
ore accurato appraximatans.

= Approximate Bayeslan computation (a
Hikhcds

+ twe sample testing, dersity ratle and density difference

Wao hops to bring togetnar these difforent wews on implictt modols, idoretfying thair cors challanges and
camhire

Hot topic in machine learning!



Fast simulation (E=>)

e Half the LHC computing power (300000 cores) is dedicated to
producing simulated data.

e Huge savings (in time and $) if simulations can be made
faster.

e Hand-made fast simulators are being developed by physicists,
trading-off precision for speed.

Can we learn to generate data?
(i.e. can we build a fast proxy for x ~ p(x|0)?)
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Learning generative models (E=>)

* i

Credits: 1701.05927, 1705.02355
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Challenges:

® How to ensure
physical properties?

® Non-uniform
geometry

Mostly sparse

® GANs vs. VAE vs.
Normalizing Flows?
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https://arxiv.org/abs/1701.05927
https://arxiv.org/abs/1705.02355

Credits: 1705.02355, 1704.00028

How to evaluate generative models?

DOGAN LSGAN WOAN iclippingl  WGAN-GP i)
Taseboe (15 DOGAN, D, DCGAN)
= o

Physics: Ev.

physical
variates ML: Look at generated images

This is not satisfying.
Can't we do better from a methodological standpoint?
(Some first steps at 1511.01844)
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https://arxiv.org/abs/1511.01844
https://arxiv.org/abs/1705.02355
https://arxiv.org/abs/1704.00028

Outlooks
(a thought experiment)
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Automating the scientific process

Conclusion

Most efforts are focused on automating the analysis of
experimental results to draw conclusions, assuming the hypothesis
and experiment are fixed.

Can we also automate
the steps of hypothesis and experiments?




Optimal experimental desgin

Experiment(¢p) Conclusion

Parameters 0 of the (standard) model are known with uncertainty
HI[O]. How to best reduce the uncertainty H[0]?

1. Assume an experiment with parameters ¢ can be simulated.
2. Simulate the expected improvement
A(¢) = H[O] — Eqara) [ H [0|data]].
m This embeds the full likelihood-free inference procedure.
3. Find ¢* = argmaxg A(¢)

m Computationally (super) heavy.

Connections to:
® Bayesian optimization
® Optimal experimental design
® Reinforcement learning (for a sequence of experiments)
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Credits: cranmer/active_sciencing

Active sciencing

& |
= |
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https://github.com/cranmer/active_sciencing

Credits: cranmer/active_sciencing

Active sciencing

¥, Danilo ). Rezende @DeepSpiker - 3m
Replying to @KyleCranmer @glouppe @lukasheinrich_
You have the full loop of the scientific method in a python noteboak 1)
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https://github.com/cranmer/active_sciencing

Exploring the theory space

Hypothesis() Conclusion

The Standard model admits several extensions.

Can we explore the space of theories and find
the envelope that agree with the data?

e Assume a generative model of theories,
indexed by .

o Assume the experiment design ¢ is fixed.

o Find {4|p(p,(x|0), p(x|2h, $,0%)) < €}.
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Al recipe for understanding Nature

Hypothesis(ﬂ Experiment(¢) Conclusion

Find {4|p(p,(x|@), p(x|¢, $,0")) < €,V}
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Summary
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Why collaborating with physicists?

Contribute to the understanding of the Universe.

Open methodological challenges.

Test bed for developing ambitious ML/Al methods, as enabled
by the precise mechanistic understanding of physical processes.

Core problems in particle physics transfer to other fields of
science (likelihood-free inference, domain adaptation,
optimization, etc).
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