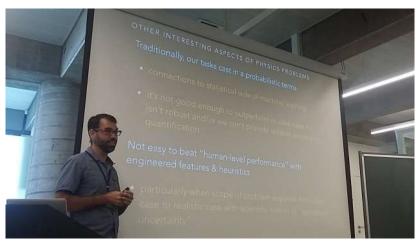
Teaching machines to discover particles

Gilles Louppe



Catch-up session for Kyle's yersterday talk

Background

A few words about myself

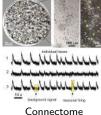
Background:

- Training in computer science
- PhD in machine learning
 - Contributions to random forests (interpretation, randomness, scalability, etc)

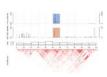
Machine learning for Science:

As a PhD, I grew an interest for scientific applications of ML.

Recognition algorithms for biomedical images



Connectome reconstruction algorithms



Genome-wide associations studies with ML

Postdoc'ing at CERN + NYU

- Joined CERN, and then NYU, as a postdoc with the goal of applying ML to particle physics data.
- Switched gears in terms of research:
 - Contributions in likelihood-free inference, adversarial learning, domain adaptation, ...
 - Driven by particle physics applications.
- Team work with physicists and researchers in ML.

Physics jargon vs. ML lingo

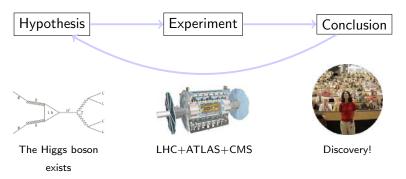
Physicists and machine learning researchers do not speak the same language.

- Due/thanks to its large collaborations, particle physics has often siloed itself and (re-)developed its own tools.
- This results in a barrier between physicists and outsiders, despite sometime using the same underlying concepts.

Disclaimer. Ask if things are unclear!

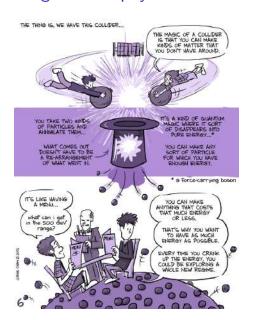
Particle Physics 101

The scientific method

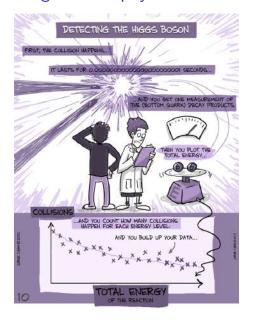


- The scientific method = recurrence over the sequence "hypothesis, experiment and conclusion".
- Conclusions are routinely automated through statistical inference, in which machine learning methods are embedded.
- Hypothesis and experiments are usually left for the scientists to decide.

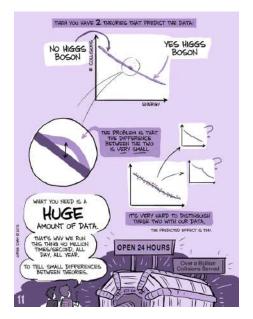
Testing for new physics

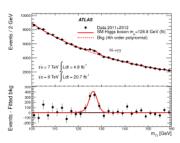


Testing for new physics



Testing for new physics





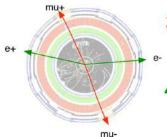
Hypothesis test based on the likelihood ratio

 $\frac{p(\mathbf{x}|\mathsf{background})}{p(\mathbf{x}|\mathsf{background} + \mathsf{signal})}$

The Standard Model

We begin with Quantum Field Theory

Theory gives detailed prediction for highenergy collisions



The interaction of outgoing particles with the detector is simulated.

>100 million sensors

Finally, we run particle identification and feature extraction algorithms on the simulated data as if they were from real collisions.

~ 10-30 features describe interesting part

The uniqueness of particle physics lies in its highly precise and compact model.

Machine learning ∩ Particle physics

The players

$$oldsymbol{ heta} := (oldsymbol{\mu}, oldsymbol{
u})$$
 Parameters

Forward modeling
Generation
Simulation

Prediction

 $oldsymbol{\mu}$ Parameters of interest

 $p(\mathbf{x}|\boldsymbol{\theta})$

uNuisance parameters

 \mathbf{Z}

Latent variables

Inference

Inverse problem
Unfolding
Measurement
Parameter search

from Nature

 $\mathbf{x} \sim p_r(\mathbf{x})$ Observations drawn

 $\mathbf{x} \sim p(\mathbf{x}|\boldsymbol{\theta})$ Simulated data (a lot!)

12 / 37

Likelihood-free assumptions

Operationally,

$$\mathbf{x} \sim p(\mathbf{x}|\boldsymbol{\theta}) \equiv \mathbf{z} \sim p(\mathbf{z}|\boldsymbol{\theta}), \mathbf{x} = g(\mathbf{z};\boldsymbol{\theta})$$

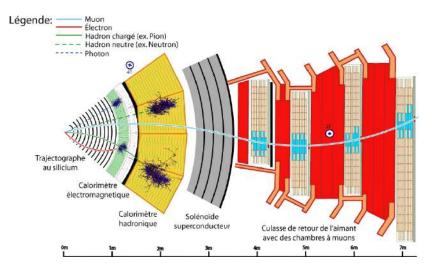
where

- z provides a source of randomness;
- g is a non-differentiable deterministic function (e.g. a computer program).

Accordingly, the density $p(\mathbf{x}|\boldsymbol{\theta})$ can be written as

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int_{\{\mathbf{z}: g(\mathbf{z}; \boldsymbol{\theta}) = \mathbf{x}\}} p(\mathbf{z}|\boldsymbol{\theta}) \mu(d\mathbf{z})$$

Evaluating the integral is often intractable.



Determining and evaluating all possible execution paths and all **z** that lead to the observation **x** is not tractable.

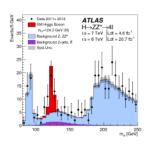
(And even less, normalizing that thing!)

Testing hypothesis (Inference)

Formally, physicists usually test a null $heta= heta_0$ by constructing the likelihood ratio test statistic

$$\Lambda(\mathcal{D}; \boldsymbol{\theta}_0) = \prod_{\mathbf{x} \in \mathcal{D}} \frac{p(\mathbf{x}|\boldsymbol{\theta}_0)}{\sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} p(\mathbf{x}|\boldsymbol{\theta})}$$

- Most measurements and searches for new particles are based on the distribution of a single variable $\mathbf{x} \in \mathbb{R}$.
- The likelihood $p(\mathbf{x}|\boldsymbol{\theta})$ is approximated using 1D histograms. (Physicists love histograms!)
- Choosing a good variable x tailored for the goal of the experiment is the physicist's job.



See Glen's talk today!

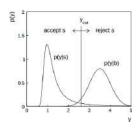
Supervised learning (Inference)

Setup:

- Training data $\{(\mathbf{x}_i,y_i)\in\mathcal{X}\times\mathcal{Y}|\mathbf{x}_i\sim p(\mathbf{x}|\pmb{\mu}=y_i)\}_{i=1}^N$
- Learn a function $f: \mathcal{X} \to \mathcal{Y}$.

In particle physics:

- Part of a larger analysis
- To recognize signal from background events and build a test statistic in the region of acceptance (e.g., "cut-and-count" analysis).
- To compress the data into a 1D value (more later).

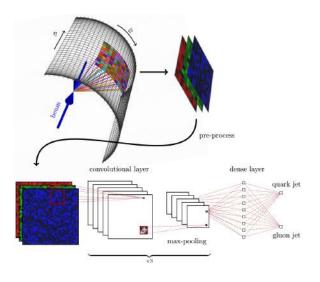


 Domain knowledge is traditionally incorporated as engineered features.

- **New paradigm:** Recent successes with deep learning models built on raw data is tickling physicists' curiosity.
 - How to recast physics problems into well-studied ML problems?
 - How to incorporate domain knowledge?
 - Can we learn what these models have learned? (See Daniel's talk tomorrow)

Images: 1612.01551

Particle physics detector as a camera

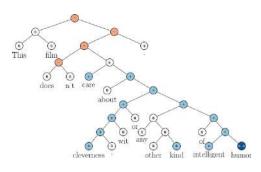


Challenges:

- 3D volume of pixels
- Non-uniform geometry
- Mostly sparse

Credits: 1702.00748

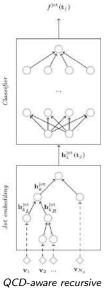
Collision events as text paragraphs



Analogy:

- word → particle
- sentence \rightarrow jet
- parsing \rightarrow jet algorithm
- $paragraph \rightarrow event$

Domain knowledge is used to template the structure of the network, on a per-event basis.



networks

Domain adaptation, Transfer learning ()

Setup:

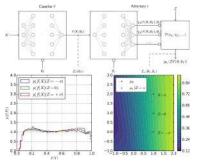
- Test data $\{\mathbf x_i \sim p_r(\mathbf x)\}_{i=1}^N$
- $p_r(\mathbf{x}) \neq p(\mathbf{x}|\boldsymbol{\theta})$

In particle physics:

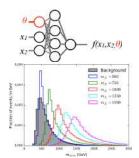
- How does one build a model from simulated data that transfers well-enough to the true data distribution?
- How does one ensure the model does not exploit simulation artefacts?

Attend Michael's talk on Saturday!

- Despite the precision of the SM, we still have to deal with:
 - statistical uncertainties (inherent fluctuations)
 - systematic uncertainties (the known unknowns of the model)
- Uncertainty is usually formulated as nuisance parameters ν .



With adversarial training, force the model to be independent of ν .



Add ν as an input to the model and profile it out later.

When to use one strategy over the other?

Given observations $\mathbf{x} \sim p_r(\mathbf{x})$, we seek:

$$\theta^* = \arg\max_{\theta} p(\mathbf{x}|\theta)$$

- Histogramming $p(\mathbf{x}|\boldsymbol{\theta})$ does not scale to high dimensions.
- Can we automate or bypass the physicist's job of thinking about a good and compact representation for x, without losing information?
- Hint: We do not need to know $p(\mathbf{x}|\boldsymbol{\theta})$ to find $\boldsymbol{\theta}^*$.

Credits: 1506.02169

Approximating likelihood ratios with classifiers

The likelihood ratio $r(\mathbf{x})$ is invariant under the change of variable $u = s(\mathbf{x})$, provided $s(\mathbf{x})$ is monotonic with $r(\mathbf{x})$:

$$r(\mathbf{x}) = \frac{p(\mathbf{x}|\boldsymbol{\theta}_0)}{p(\mathbf{x}|\boldsymbol{\theta}_1)} = \frac{p(s(\mathbf{x})|\boldsymbol{\theta}_0)}{p(s(\mathbf{x})|\boldsymbol{\theta}_1)}$$

A classifier s trained to distinguish $\mathbf{x} \sim p(\mathbf{x}|\theta_0)$ from $\mathbf{x} \sim p(\mathbf{x}|\theta_1)$ satisfies the condition above.

This gives an automatic procedure for learning a good and compact representation for \mathbf{x} !

Credits: 1506.02169

Therefore,

$$\begin{aligned} \boldsymbol{\theta}^* &= \arg \max_{\boldsymbol{\theta}} p(\mathbf{x}|\boldsymbol{\theta}) \\ &= \arg \max_{\boldsymbol{\theta}} \frac{p(\mathbf{x}|\boldsymbol{\theta})}{p(\mathbf{x}|\boldsymbol{\theta}_1)} \\ &= \arg \max_{\boldsymbol{\theta}} \frac{p(s(\mathbf{x};\boldsymbol{\theta},\boldsymbol{\theta}_1)|\boldsymbol{\theta})}{p(s(\mathbf{x};\boldsymbol{\theta},\boldsymbol{\theta}_1)|\boldsymbol{\theta}_1)} \end{aligned}$$

where θ_1 is fixed and $s(\mathbf{x}; \boldsymbol{\theta}, \boldsymbol{\theta}_1)$ is a family of classifiers trained to distinguish between $\boldsymbol{\theta}$ and $\boldsymbol{\theta}_1$.

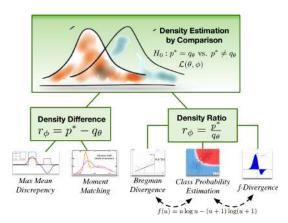
Credits: 1610.03483

Learning in implicit generative models

Likelihood-free inference can be cast into the framework of "implicit generative models".

This framework ties together:

- Approximate Bayesian computation
- Density estimation-bycomparison algorithms (two sample testing, density ratio, density difference estimation)
- Generative adversarial networks
- Variational inference



ICML 2017 Workshop on Implicit Models

Workshop: 10 August, Room: Parkside 1

Workshop Aims

Probablists models are an important tool in machine learning. They form the basis for models that generate relatist data, unover hidden structure, and make predictions. Traditionally, probabilists models in machine learning have focused on prescribed models. Prescribed models specify a joint density ower observed and hidden variables that can be easily evaluated. The requirement of a machine density simplifies their learning but Initis their flootility:—several real world phenomena are better described by simulators that of ont admit a tractable density. Probabilistic models defined only full the similations they produce are called implicit models.

Arguably starting with generative adversarial networks, research on implicit models in machine learning has exploded in recent years. This workshop's aim is to foster a discussion around the recent developments and future directions of implicit models.

implict models have many applications. They are used in explicy where models simulate animal populations over time; they are used in phylogony, where simulations produce hypothetical ancastry trees; they are used in physics to generate particle simulations for high energy processes. Recently, implicit models have been used to improve the state-of-the-ort in image and content generation. Part of the workshop's focus is to discuss the commonalities among applications of limition thanks.

Of particular interest at this workshop is to unite fields that work on implicit models. For example:

- Generative adversarial networks (a RIPS 2016 workshop) are implicit models with an adversarial training scheme.
- Recent advances in variational inference (a NIPS 2015 and 2016 workshop) have leveraged implicit models for more accurate approximations.
- Approximate Bayesian computation (a NIPS 2015 workshop) focuses on posterior inference for models with implicit Relihoods.
- Learning implicit models is deeply connected to two sample testing, density ratio and density difference estimation.

We hope to bring together these different views on implicit models, identifying their core challenges and combining their innovations.

Hot topic in machine learning!

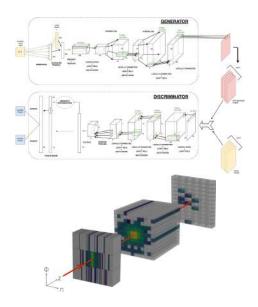
Fast simulation (Prediction)

- Half the LHC computing power (300000 cores) is dedicated to producing simulated data.
- Huge savings (in time and \$) if simulations can be made faster.
- Hand-made fast simulators are being developed by physicists, trading-off precision for speed.

Can we learn to generate data? (i.e. can we build a fast proxy for $\mathbf{x} \sim p(\mathbf{x}|\boldsymbol{\theta})$?)

Credits: 1701.05927, 1705.02355

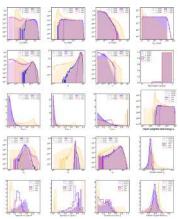
Learning generative models (Prediction)



Challenges:

- How to ensure physical properties?
- Non-uniform geometry
- Mostly sparse
- GANs vs. VAE vs. Normalizing Flows?

How to evaluate generative models?



Physics: Evaluate well-known physical variates

ML: Look at generated images

This is not satisfying.

Can't we do better from a methodological standpoint?

(Some first steps at 1511.01844)

Outlooks

(a thought experiment)

Automating the scientific process

Most efforts are focused on automating the analysis of experimental results to draw conclusions, assuming the hypothesis and experiment are fixed.

Can we also automate the steps of hypothesis and experiments?

Optimal experimental desgin

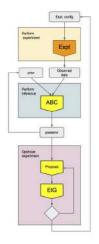
Parameters θ of the (standard) model are known with uncertainty $H[\theta]$. How to best reduce the uncertainty $H[\theta]$?

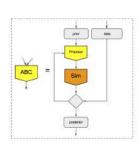
- 1. Assume an experiment with parameters ϕ can be simulated.
- 2. Simulate the expected improvement $\Delta(\phi) = H[\theta] \mathbb{E}_{\mathsf{data}|\phi}[H[\theta|\mathsf{data}]].$
 - This embeds the full likelihood-free inference procedure.
- 3. Find $\phi^* = \arg \max_{\phi} \Delta(\phi)$
 - Computationally (super) heavy.

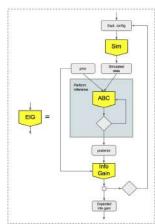
Connections to:

- Bayesian optimization
- Optimal experimental design
- Reinforcement learning (for a sequence of experiments)

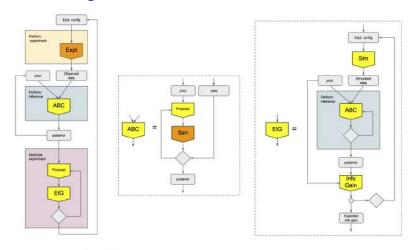
Active sciencing







Active sciencing



Danilo J. Rezende @DeepSpiker · 3m

Replying to @KyleCranmer @glouppe @lukasheinrich_

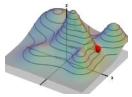
You have the full loop of the scientific method in a python notebook :)

Exploring the theory space

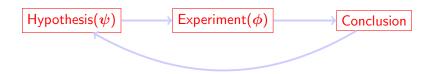
The Standard model admits several extensions.

Can we explore the space of theories and find the envelope that agree with the data?

- Assume a generative model of theories, indexed by ψ .
- Assume the experiment design ϕ is fixed.
- Find $\{\psi | \rho(p_r(\mathbf{x}|\phi), p(\mathbf{x}|\psi, \phi, \theta^*)) < \epsilon\}.$



Al recipe for understanding Nature



$$\operatorname{Find}\left\{\boldsymbol{\psi}|\rho(p_r(\mathbf{x}|\boldsymbol{\phi}),p(\mathbf{x}|\boldsymbol{\psi},\boldsymbol{\phi},\boldsymbol{\theta}^*))<\epsilon,\forall\boldsymbol{\phi}\right\}$$

Summary

Why collaborating with physicists?

• Contribute to the understanding of the Universe.

Open methodological challenges.

 Test bed for developing ambitious ML/AI methods, as enabled by the precise mechanistic understanding of physical processes.

 Core problems in particle physics transfer to other fields of science (likelihood-free inference, domain adaptation, optimization, etc).