-
Notifications
You must be signed in to change notification settings - Fork 2
/
index.html
339 lines (327 loc) · 13.6 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
<!DOCTYPE html>
<html lang="en">
<head>
<!-- Required meta tags -->
<meta charset="utf-8" />
<meta
name="viewport"
content="width=device-width, initial-scale=1, shrink-to-fit=no"
/>
<!-- Bootstrap Imports -->
<!-- <link
href="https://cdn.jsdelivr.net/npm/bootstrap@5.0.2/dist/css/bootstrap.min.css"
rel="stylesheet"
/>
<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.0.2/dist/js/bootstrap.bundle.min.js"></script> -->
<link rel="stylesheet" href="https://unpkg.com/aos@2.3.4/dist/aos.css" />
<link rel="stylesheet" href="./style.css" />
<link rel="stylesheet" href="./infostyle.css" />
<link href="prism.css" rel="stylesheet" />
<link rel="icon" href="./logos/eq.ico" type="image/x-icon" />
<!-- <script src="scripts/require.js" data-main="./scripts/app.js"></script> -->
<script src="svg-inject.min.js"></script>
<script src="./scripts/prism.js"></script>
<link
rel="stylesheet"
href="https://use.fontawesome.com/releases/v6.4.0/css/all.css"
crossorigin="anonymous"
/>
<link
id="jupyter_light"
rel="stylesheet"
href="/modals/notebooks/templates/lab_custom/static/theme.css"
/>
<style>
.logo-image-container {
position: relative;
width: 100%;
padding-bottom: 100%; /* Maintain a square aspect ratio */
}
.logo-image-container img {
position: absolute;
width: 100%;
height: 100%;
object-fit: contain;
max-width: 100%;
max-height: 100%;
}
</style>
<!-- jQuery -->
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.6.4/jquery.min.js"></script>
<!-- smoothstate -->
<script src="https://cdn.jsdelivr.net/npm/smoothstate@0.7.2/jquery.smoothState.min.js"></script>
<meta property="og:site_name" content="equadratures" />
<meta property="og:type" content="website" />
<link rel="image_src" href="https://equadratures.org/logos/figure.png" />
<meta
property="og:image"
content="https://equadratures.org/logos/figure.png"
/>
<meta
property="og:image:url"
content="https://equadratures.org/logos/figure.png"
/>
<meta
property="og:image:secure_url"
content="https://equadratures.org/logos/figure.png"
/>
<meta
property="twitter:image"
content="https://equadratures.org/logos/figure.png"
/>
<meta property="og:url" content="https://equadratures.org/" />
<meta
property="og:title"
content="Learn continuous structure | equadratures"
/>
<meta
property="og:description"
content="equadratures is an open-source python framework for fitting models to data. It may be used for polynomial regression, sparse polynomial approximation, subspace-based dimension reduction, polynomial chaos, and more recently for kernel-based learning. Underneath the hood it leverages numerical quadrature and orthogonal polynomials."
/>
<meta property="og:image" content="./icons/logo_new.png" />
<meta property="og:image:url" content="./icons/logo_new.png" />
<meta property="og:image:secure_url" content="./icons/logo_new.png" />
<meta name="twitter:card" content="summary_large_image" />
<meta
name="twitter:description"
content="equadratures is an open-source python framework for fitting models to data. It may be used for polynomial regression, sparse polynomial approximation, subspace-based dimension reduction, polynomial chaos, and more recently for kernel-based learning. Underneath the hood it leverages numerical quadrature and orthogonal polynomials."
/>
<meta name="twitter:site" content="@equadratures" />
<meta
name="twitter:title"
content="Learn Continuous Structure | equadratures"
/>
<meta name="twitter:creator" content="@equadratures" />
<meta name="twitter:url" content="https://twitter.com/equadratures" />
<meta name="Generator" content="Drupal 8 (https://www.drupal.org)" />
<title>Learn Continuous Structure | equadratures</title>
<meta
name="description"
content="equadratures is an open-source python framework for fitting models to data. It may be used for polynomial regression, sparse polynomial approximation, subspace-based dimension reduction, polynomial chaos, and more recently for kernel-based learning. Underneath the hood it leverages numerical quadrature and orthogonal polynomials."
/>
<meta
name="keywords"
content="data science, machine learning, polynomial chaos, uncertainty quantification, model auditing, Pranay Seshadri"
/>
</head>
<body class="body light-mode">
<div id="header"></div>
<main>
<div
id="mainDiv"
class="d-flex flex-column mx-1 mx-sm-3 px-1 px-sm-3"
style="margin-top: 62px"
data-aos="fade-up"
>
<div id="introContent">
<div class="row">
<div class="col">
<center>
<div
class="tilt-elements"
data-tilt
data-tilt-max="15"
data-tilt-gyroscope="false"
style="width: max(45vh, 45vw)"
>
<img
class="svg_content"
id="infographic"
src="imgs/circular_5_opt_2.svg"
onload="SVGInject(this)"
/>
</div>
</center>
</div>
<div class="col">
<h1>Learn Continuous Structure</h1>
<h2>
equadratures is an open-source python framework for fitting
models to data. It may be used for polynomial regression, sparse
polynomial approximation, subspace-based dimension reduction,
polynomial chaos, and more recently for kernel-based learning.
Underneath the hood it leverages numerical quadrature and
orthogonal polynomials. To learn more about what else you can do
with equadratures, click one of the topics on the wheel.
</h2>
<h1>DOWNLOAD & RUN</h1>
<h2>
To install equadratures, you can either use pip via
<br />
<br />
<pre style="white-space: pre-line">
<code class="language-python">pip install equadratures</code>
</pre>
or you can directly download the latest package from
<a href="https://github.com/equadratures/equadratures">Github</a
>. To build your first model, try the following:
<br />
<br />
<pre style="white-space: pre-line">
<code class="language-python"># Let us fit a polynomial to 5sin(10*x1) + 3cos(10*x2)</code>
<code class="language-python">import equadratures as eq</code>
<code class="language-python">x = eq.Parameter(lower=-1, upper=1, order=5)</code>
<code class="language-python">basis = eq.Basis('tensor-grid')</code>
<code class="language-python">poly = eq.Poly([x,x], basis, method='numerical-integration')</code>
<code class="language-python">poly.set_model(lambda x: 5*np.sin(10*x[0]) + 3*np.cos(10*x[1]))</code>
<code class="language-python"></code>
<code class="language-python"># For computing moments</code>
<code class="language-python">poly.get_mean_and_variance()</code>
<code class="language-python"># ..and to get 1st order Sobol' indices</code>
<code class="language-python">poly.get_sobol_indices(order=1)</code>
</pre>
<br />
</h2>
</div>
<br />
<br />
</div>
<br />
<br />
<div class="row">
<div class="col">
<h1>CODE USAGE & IMPACT</h1>
<h2>
Many organisations have and continue to use equadratures for a
variety of tasks. If your organisation would like to learn more
about equadratures, please do drop us a message at mail [at]
equadratures.org. Additionally, feel free to check out some of
the case studies above.
</h2>
</div>
<div class="col">
<div class="container">
<div class="row">
<div class="col-11 col-sm-6 col-md-4 col-lg-3 col-xxl-2">
<div class="logo-image-container">
<img src="logos/cranfield.png" />
</div>
</div>
<div class="col-11 col-sm-6 col-md-4 col-lg-3 col-xxl-2">
<div class="logo-image-container">
<img src="logos/rr.png" />
</div>
</div>
<div class="col-11 col-sm-6 col-md-4 col-lg-3 col-xxl-2">
<div class="logo-image-container">
<img src="logos/ukaea.png" />
</div>
</div>
<div class="col-11 col-sm-6 col-md-4 col-lg-3 col-xxl-2">
<div class="logo-image-container">
<img src="logos/arrival.png" />
</div>
</div>
<div class="col-11 col-sm-6 col-md-4 col-lg-3 col-xxl-2">
<div class="logo-image-container">
<img src="logos/airbus.png" />
</div>
</div>
<div class="col-11 col-sm-6 col-md-4 col-lg-3 col-xxl-2">
<div class="logo-image-container">
<img src="logos/safran.png" />
</div>
</div>
<div class="col-11 col-sm-6 col-md-4 col-lg-3 col-xxl-2">
<div class="logo-image-container">
<img src="logos/mclaren.png" />
</div>
</div>
<div class="col-11 col-sm-6 col-md-4 col-lg-3 col-xxl-2">
<div class="logo-image-container">
<img src="logos/cambridge.png" />
</div>
</div>
<div class="col-11 col-sm-6 col-md-4 col-lg-3 col-xxl-2">
<div class="logo-image-container">
<img src="logos/usgs.png" />
</div>
</div>
<div class="col-11 col-sm-6 col-md-4 col-lg-3 col-xxl-2">
<div class="logo-image-container">
<img src="logos/siemens.png" />
</div>
</div>
<div class="col-11 col-sm-6 col-md-4 col-lg-3 col-xxl-2">
<div class="logo-image-container">
<img src="logos/turing.png" />
</div>
</div>
<div class="col-11 col-sm-6 col-md-4 col-lg-3 col-xxl-2">
<div class="logo-image-container">
<img src="logos/icl.png" />
</div>
</div>
</div>
</div>
</div>
</div>
<br />
<br />
<!--
<div class="row justify-content-center p-5 video-container">
<video id="videoAboutEQ" muted controls>
<source src="videos/about_equadratures.webm" type="video/webm" />
<source src="videos/about_equadratures.mp4" type="video/mp4" />
<source src="videos/about_equadratures.ogg" type="video/ogg" />
# Comment this! <source src="path_to_video/video.mp4" type="video/mp4">
# Comment this! Add additional source elements for other video formats if needed
Your browser does not support the video tag.
</video>
</div>
--></div>
</div>
<div id="jupyterNotebook"></div>
<!-- Trust-region optimisation -->
<!-- <input type="hidden" id="modal_s1" html_file=""> -->
<!-- Bayesian polynomial regression -->
<!-- <input type="hidden" id="modal_s2" html_file=""> -->
<!-- Active subspace -->
<input
type="hidden"
id="modal_s1"
html_file="modals/notebooks/polynomials-over-subspaces.html"
/>
<input
type="hidden"
id="modal_s3"
html_file="modals/notebooks/polynomial-gradients.html"
/>
<!-- Sensitivity analysis -->
<!-- <input type="hidden" id="modal_s4" html_file=""> -->
<!-- Numerical integration -->
<!-- <input type="hidden" id="modal_s5" html_file=""> -->
<!-- Polynomial choas -->
<input
type="hidden"
id="modal_s6"
html_file="modals/notebooks/polynomial_chaos.html"
/>
<!-- <input type="hidden" id="modal_s6" html_file=""> -->
<!-- Ridge approximation -->
<!-- <input type="hidden" id="modal_s7" html_file=""> -->
<!-- Polynomial on graphs -->
<!-- <input type="hidden" id="modal_s8" html_file=""> -->
<input
type="hidden"
id="modal_s7"
html_file="modals/notebooks/polynomial-integration.html"
/>
<input
type="hidden"
id="modal_s8"
html_file="modals/notebooks/polynomials-over-cubes.html"
/>
</main>
<div id="footer"></div>
<!-- partial -->
<script src="https://unpkg.com/aos@2.3.4/dist/aos.js"></script>
<script src="./script.js"></script>
<script>
loadHeader();
loadFooter();
</script>
<script type="text/javascript" src="scripts/vanilla-tilt.min.js"></script>
<script src="./scripts/modal.js"></script>
</body>
</html>