
MiniJava Compiler (mjc)
DD2488 – Project Report

Daniel Månsson
dmans@kth.se

Elvis Stansvik
stansvik@kth.se

15 May 2014

Abstract

In this brief report we introduce mjc, a compiler for the MiniJava
language targeting the Java Virtual Machine (JVM). The compiler was
built as part of the course DD2488 Compiler Construction at KTH. We
begin the report with a description of the compiler design, followed by
instructions for building and running the compiler, and conclude with
some thoughts on possible future improvements.

Contents
1 Introduction 2

2 Compiler Design 2
2.1 Lexical Analysis and Parsing 3
2.2 Semantic Analysis . 3
2.3 Code Generation . 6

3 Using the Compiler 6
3.1 Building . 6
3.2 Running . 6

4 Future Improvements 7

References 7

1 Introduction
MiniJava is a subset1 of the Java programming language presented in [1] The
original language supports the built-in types int, int[] and boolean as well
as user defined class types. There is no support for inheritance or method
overloading. Operators +, -, * and < are defined on integers. Operators &&
and ! are defined on booleans.

mjc is a compiler for a slightly modified and extended version of MiniJava
[3], adding support for operators <=, >, >= on integers; operators == and !=
on integers, booleans and references; operator || on booleans; if statements
without an else clause; array bounds checks and nested blocks with new
variable declarations. The compiler targets the Java Virtual Machine (JVM)
by producing Jasmin [4] pseudo-assembly code as output.

We begin this report with an overview of the design of mcj, followed by
some instructions for building and running the compiler. We conclude with
some thoughts on possible future improvements.

2 Compiler Design
The compilation process in mjc proceeds in four phases. The process begins
with the input of MiniJava source code and ends with the output of Jasmin
assembly code. Each intermediate phase takes its input from the preced-
ing phase and gives as output the input for the next. Figure 1 shows an
illustration of the compilation phases.

Lexical
Analysis

Parsing

Seman�c
Analysis

Code
Genera�on

Jasmin
Assembly
Code

MiniJava
Source
Code

Figure 1: Compilation phases in mjc.

In the following subsections, we’ll briefly go through each compilation
phase and explain it in general terms. We’ll also explain design decisions we
made and any challenges we faced in constructing mjc.

1Not exactly true: A Java compiler checks that variables are initialized before use,
while in MiniJava this is simply undefined run-time behavior.

2

2.1 Lexical Analysis and Parsing
Compilation begins by breaking the input byte stream into a stream of
terminal symbols (tokens) and parsing the resulting token stream into an
abstract syntax tree (AST). The lexical analyzer (lexer) must check that
the input consists of valid MiniJava tokens. The parser must check that
the resulting token stream is part of the formal language described by the
MiniJava grammar.

We decided to use the SableCC [2] parser generator for lexical analysis
and parsing in mjc. SableCC takes as input a file containing a set of regular
expressions describing valid tokens, and an LALR grammar describing the
input language. The output is a complete lexer and parser, along with some
abstract visitor classes for traversing the AST.

Codifying the provided MiniJava grammar as a SableCC input file was
fairly straightforward. To simplify later stages of compilation, a depth first
traversal of the AST should correspond to the precedence rules of Mini-
Java operators. This took some careful composition of the productions for
expressions.

We also wanted the parser to reject input such as new int x[2][1]
instead of interpreting it as the creation of an integer array followed by
an access of its second element. To accomplish this we had to introduce
an additional production for primary expressions, one that excluded array
creation expressions, and use that in the production for array accesses.

2.2 Semantic Analysis
Past lexical analysis and parsing, we know that the input program is lexi-
cally and syntactically correct. But other errors such as uses of undeclared
identifiers and type errors may still exist in the program. During semantic
analysis, the compiler traverses the AST looking for such errors.

Figure 2: Type class hierarchy.

To represent built-in types int, int[] and boolean as well as user de-
fined class types, we came up with the class hierarchy shown in figure 2.
The abstract base class Type specifies methods such as isAddableTo(Type)
to be implemented by subclasses. Each of int, int[] and boolean is rep-

3

resented by a static instance of BuiltInType. UnsupportedType is used for
the void and String[] “types”. These exist grammatically in MiniJava but
lack meaningful semantics. UndefinedType will be explained shortly.

Figure 3: Symbol table class composition.

Semantic analysis begins with the construction of a symbol table. For
each class name, method name and identifier found in the program, the
symbol table stores information such as the name and type of the symbol as
well as the source code location where it was declared. Figure 3 shows the
composition of the classes we used to represent the symbol table.

MethodInfo deserves some special mention. To handle the adding and
look-up of local variables, which may be declared in nested blocks, MethodInfo
has an enterBlock()/leaveBlock() API which is used in conjunction with
addLocal(..)/getLocal(..) to control the scoping of local variables.

Local variables are kept in a multimap, since two variables may have the
same name if the block in which the first one is declared is closed at the point
of the second declaration. Blocks inside a method are numbered 0, 1, . . . in
the order in which they are opened. Internally MethodInfo maintains a
stack of currently open blocks. enterBlock() pushes the next block (taken
from a counter) on the stack, while leaveBlock() pops the stack.

Each VariableInfo holds the number of the block in which the vari-
able was declared. addLocal(..) sets the block number of the added
VariableInfo to the current block (top of the stack). getLocal(..) per-
forms a look-up by first consulting the multimap for all variables with the
requested name, and then for each such VariableInfo, checking if the vari-
able is in scope by searching for its block number on the stack. The first
VariableInfo with a block number currently on the stack is considered a
match. This essentially makes local variable look-up an O(nm) operation in
the worst case, where n is the number of local variables in the method and
m is the maximum block nesting depth.

Figure 4 shows a simplified illustration of local variables being added to
the MethodInfo for a small MiniJava method. The mappings in the figure
only show the block number for the variable, not the full VariableInfo.

4

 Action Stack Multimap

 empty empty

 1 public int f() { enterBlock() 0 empty

 2 int a; addLocal(..) 0 (a,0)

 3 { enterBlock() 01 (a,0)

 4 int b; addLocal(..) 01 (a,0),(b,1)

 5 { enterBlock() 012 (a,0),(b,1)

 6 int c; addLocal(..) 012 (a,0),(b,1),(c,2)

 7 } leaveBlock() 01 (a,0),(b,1),(c,2)

 8 } leaveBlock() 0 (a,0),(b,1),(c,2)

 9 { enterBlock() 03 (a,0),(b,1),(c,2)

10 int b; addLocal(..) 03 (a,0),(b,1),(c,2),(b,3)

11 b = 3; 03 (a,0),(b,1),(c,2),(b,3)

12 } leaveBlock() 0 (a,0),(b,1),(c,2),(b,3)

13 return a; 0 (a,0),(b,1),(c,2),(b,3)

13 } leaveBlock() empty (a,0),(b,1),(c,2),(b,3)

Figure 4: Adding of local variables to a MethodInfo.

The figure only shows the adding of local variables, but as an example,
when the symbol b in b = 3; on line 11 is looked up, getLocal(..) will
find the mappings (b,1) and (b,3) in the multimap, and determine that
the second one is the one in scope, since its block value (3) is currently on
the stack (which contains blocks 0 and 3 at that point).

With these data structures in place, we built a class SymbolTableBuilder
which traverses the AST in two passes to build the symbol table. In the
first pass, information about declared classes is entered into the table. In
the second pass the builder goes deeper, adding information about declared
fields, methods, parameters and local variables. The reason for the separate
passes is that MiniJava allows forward-references to not yet declared classes.

If the declared type of a field, method, parameter or local variable is an
undeclared class type, an error is printed and the symbol is entered with
the UndefinedType type. This type acts as a “chameleon” type in that it is
compatible with all other types. This is done to let the type-checker proceed
despite the declaration error.

If multiple declarations of the same symbol is encountered, an error is
printed. If the re-declared symbol is a class or method, a new unique name
is generated for the offending declaration and the AST is updated with the
new name. This is done to let the type-checker proceed with type-checking
inside the offending class/method.

With the symbol table constructed, the analysis proceeds with type-
checking. This involves looking for uses of undeclared identifiers and making
sure expressions have the correct types. For this we built a class TypeChecker
that takes as input the AST and symbol table and visits every such language
construct to perform the necessary checks.

5

The type-checker tries to recover from errors as much as possible. For in-
stance, if an expression has an unexpected type, an error is printed, but the
type-checking will proceed as if it had the expected type. If it cannot deduce
which type was intended, it will assume the UndefinedType, effectively sup-
pressing any further errors involving the expression. This hopefully lets the
user focus on the real error without being bothered with secondary errors.

2.3 Code Generation
In the final phase, the compiler generates Jasmin code. For this, we wrote a
class JasminGenerator which takes the AST, the symbol table and a class
implementing the JasminHandler interface as input. For each generated
class, the handle(...) method of the passed in JasminHandler is called
with the name of the class and the resulting Jasmin code as parameters.

JasminGenerator visits each node in the AST and outputs the appropri-
ate Jasmin statements. Since the JVM was originally designed for the Java
language, many convenient instructions were available to us, such as new,
newarray and arraylength, which all map directly to MiniJava constructs.

Since JVM is a stack-based machine, all operations work with values
on the stack. Apart from generating the necessary Jasmin instructions,
JasminGenerator also keeps track of the current stack size in the currently
generated method, to be able to set an appropriate maximum stack size for
the method with the .limit stack directive.

3 Using the Compiler
3.1 Building
The compiler uses Apache Ant as build system. The default Ant target, in-
voked by running ant in the top-level project directory, builds the compiler,
executes the unit tests and produces the compiler JAR file mjc.jar. See
ant -projecthelp for other available Ant targets.

3.2 Running
The compiler is invoked by running the mjc shell script in the top-level
project directory. The default action is to compile the given input file to
Jasmin code files, one for each class, in the current working directory, fol-
lowed by an invocation of Jasmin on the output to produce .class files.

The script accepts the following command line options:

usage: mjc <infile> [options]
-S only output Jasmin assembly code
-p print abstract syntax tree
-g print abstract syntax tree in GraphViz format
-h show help message

6

4 Future Improvements
Our original goal with this project was to create a compiler that targets the
ARM architecture, and which uses an intermediate representation (IR) to
increase the portability of the compiler. Unfortunately, due to time con-
straints, we were not able to complete this compiler, and had to go with
the simpler JVM target. A possible future improvement to the compiler is
then naturally to continue this work. Other possible improvements include
adding support for class inheritance and the long integer type.

For those wishing to do further work on the compiler, the source code,
including full JavaDoc documentation, is available from the project website
at http://estan.github.io/mjc/. The code is organized as follows:

• mjc.types contains classes for representing MiniJava types.

• mjc.symbol contains the symbol table classes.

• mjc.analysis contains visitor classes for the semantic analysis.

• mjc.jasmin contains the Jasmin assembly code generator.

• mjc.error contains a couple of classes related to error reporting.

• mjc.JVMMain is the compiler main program.

References
[1] Andrew W. Appel. Modern Compiler Implementation in Java. 2nd ed.

Cambridge University Press, 2002. isbn: 978-1-139-43496-6.
[2] Étienne Gagnon. SableCC. url: http://sablecc.org/.
[3] Torbjörn Granlund and Andrew W. Appel. Context-free grammar for

Minijava variant. url: http://www.csc.kth.se/utbildning/kth/
kurser/DD2488/komp14/project/grammar14v1b.pdf.

[4] Jon Meyer and Troy Downing. Jasmin – Assembler for the Java Virtual
Machine. url: http://jasmin.sourceforge.net/.

7

http://estan.github.io/mjc/
http://sablecc.org/
http://www.csc.kth.se/utbildning/kth/kurser/DD2488/komp14/project/grammar14v1b.pdf
http://www.csc.kth.se/utbildning/kth/kurser/DD2488/komp14/project/grammar14v1b.pdf
http://jasmin.sourceforge.net/

	Introduction
	Compiler Design
	Lexical Analysis and Parsing
	Semantic Analysis
	Code Generation

	Using the Compiler
	Building
	Running

	Future Improvements
	References

