From e8cc77a7d5918327d2fa353761d1f39b905a63e6 Mon Sep 17 00:00:00 2001 From: James Ray <16969914+jamesray1@users.noreply.github.com> Date: Fri, 26 Jan 2018 12:50:48 +1100 Subject: [PATCH 1/3] Replace all _(\{[A-Z]+\b)([^\}]) with _{mathbf$1}$2... ...using Libre Open Office with match case and regular expressions ticked as options. --- Paper.tex | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/Paper.tex b/Paper.tex index c834c995..54766bda 100644 --- a/Paper.tex +++ b/Paper.tex @@ -1075,7 +1075,7 @@ \subsection{Ommer Validation} The validation of ommer headers means nothing more than verifying that each ommer header is both a valid header and satisfies the relation of $N$th-generation ommer to the present block where $N \leq 6$. The maximum of ommer headers is two. Formally: \begin{equation} -\lVert B_\mathbf{U} \rVert \leqslant 2 \bigwedge_{U \in B_\mathbf{U}} V(U) \; \wedge \; k(U, P(B_H)_H, 6) +\lVert B_\mathbf{U} \rVert \leqslant 2 \bigwedge_{mathbf{U} \in B_\mathbf{U}} V(U) \; \wedge \; k(U, P(B_H)_H, 6) \end{equation} where $k$ denotes the ``is-kin'' property: @@ -1108,7 +1108,7 @@ \subsection{Reward Application} \\ \nonumber \Omega(B, \boldsymbol{\sigma}) & \equiv & \boldsymbol{\sigma}': \boldsymbol{\sigma}' = \boldsymbol{\sigma} \quad \text{except:} \\ \qquad\boldsymbol{\sigma}'[{B_H}_c]_b & = & \boldsymbol{\sigma}[{B_H}_c]_b + (1 + \frac{\lVert B_\mathbf{U}\rVert}{32})R_b \\ -\qquad\forall_{U \in B_\mathbf{U}}: \\ \nonumber +\qquad\forall_{mathbf{U} \in B_\mathbf{U}}: \\ \nonumber \boldsymbol{\sigma}'[U_c] & = & \begin{cases} \varnothing &\text{if}\ \boldsymbol{\sigma}[U_c] = \varnothing\ \wedge\ R = 0 \\ \mathbf{a}' &\text{otherwise} @@ -1383,7 +1383,7 @@ \section{Modified Merkle Patricia Tree}\label{app:trie} When considering such a sequence, we use the common numeric subscript notation to refer to a tuple's key or value, thus: \begin{equation} -\forall_{I \in \mathfrak{I}} I \equiv (I_0, I_1) +\forall_{mathbf{I} \in \mathfrak{I}} I \equiv (I_0, I_1) \end{equation} Any series of bytes may also trivially be viewed as a series of nibbles, given an endian-specific notation; here we assume big-endian. Thus: @@ -1421,7 +1421,7 @@ \section{Modified Merkle Patricia Tree}\label{app:trie} \begin{equation} c(\mathfrak{I}, i) \equiv \begin{cases} \texttt{\small RLP}\Big( \big(\texttt{\small HP}(I_0[i .. (\lVert I_0\rVert - 1)], true), I_1 \big) \Big) & \text{if} \quad \lVert \mathfrak{I} \rVert = 1 \quad \text{where} \; \exists I: I \in \mathfrak{I} \\ -\texttt{\small RLP}\Big( \big(\texttt{\small HP}(I_0[i .. (j - 1)], false), n(\mathfrak{I}, j) \big) \Big) & \text{if} \quad i \ne j \quad \text{where} \; j = \arg \max_x : \exists \mathbf{l}: \lVert \mathbf{l} \rVert = x : \forall_{I \in \mathfrak{I}}: I_0[0 .. (x - 1)] = \mathbf{l} \\ +\texttt{\small RLP}\Big( \big(\texttt{\small HP}(I_0[i .. (j - 1)], false), n(\mathfrak{I}, j) \big) \Big) & \text{if} \quad i \ne j \quad \text{where} \; j = \arg \max_x : \exists \mathbf{l}: \lVert \mathbf{l} \rVert = x : \forall_{mathbf{I} \in \mathfrak{I}}: I_0[0 .. (x - 1)] = \mathbf{l} \\ \texttt{\small RLP}\Big( (u(0), u(1), ..., u(15), v) \Big) & \text{otherwise} \quad \text{where} \begin{array}[t]{rcl} u(j) & \equiv & n(\{ I : I \in \mathfrak{I} \wedge I_0[i] = j \}, i + 1) \\ v & = & \begin{cases} From 5b60d755c1c08e7fb5b9f3dfdc869ec3320d3ffb Mon Sep 17 00:00:00 2001 From: James Ray <16969914+jamesray1@users.noreply.github.com> Date: Tue, 30 Jan 2018 12:19:28 +1100 Subject: [PATCH 2/3] Add a missing forward slash --- Paper.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/Paper.tex b/Paper.tex index 54766bda..4b7d658d 100644 --- a/Paper.tex +++ b/Paper.tex @@ -1075,7 +1075,7 @@ \subsection{Ommer Validation} The validation of ommer headers means nothing more than verifying that each ommer header is both a valid header and satisfies the relation of $N$th-generation ommer to the present block where $N \leq 6$. The maximum of ommer headers is two. Formally: \begin{equation} -\lVert B_\mathbf{U} \rVert \leqslant 2 \bigwedge_{mathbf{U} \in B_\mathbf{U}} V(U) \; \wedge \; k(U, P(B_H)_H, 6) +\lVert B_\mathbf{U} \rVert \leqslant 2 \bigwedge_{\mathbf{U} \in B_\mathbf{U}} V(U) \; \wedge \; k(U, P(B_H)_H, 6) \end{equation} where $k$ denotes the ``is-kin'' property: From 34b9991f4d4692a6da379208f6b7bbd12f65413c Mon Sep 17 00:00:00 2001 From: James Ray <16969914+jamesray1@users.noreply.github.com> Date: Tue, 30 Jan 2018 12:24:04 +1100 Subject: [PATCH 3/3] Add missing forward slashes before mathbfs --- Paper.tex | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/Paper.tex b/Paper.tex index 4b7d658d..6ce11a88 100644 --- a/Paper.tex +++ b/Paper.tex @@ -1108,7 +1108,7 @@ \subsection{Reward Application} \\ \nonumber \Omega(B, \boldsymbol{\sigma}) & \equiv & \boldsymbol{\sigma}': \boldsymbol{\sigma}' = \boldsymbol{\sigma} \quad \text{except:} \\ \qquad\boldsymbol{\sigma}'[{B_H}_c]_b & = & \boldsymbol{\sigma}[{B_H}_c]_b + (1 + \frac{\lVert B_\mathbf{U}\rVert}{32})R_b \\ -\qquad\forall_{mathbf{U} \in B_\mathbf{U}}: \\ \nonumber +\qquad\forall_{\mathbf{U} \in B_{\mathbf{U}}}: \\ \nonumber \boldsymbol{\sigma}'[U_c] & = & \begin{cases} \varnothing &\text{if}\ \boldsymbol{\sigma}[U_c] = \varnothing\ \wedge\ R = 0 \\ \mathbf{a}' &\text{otherwise} @@ -1383,7 +1383,7 @@ \section{Modified Merkle Patricia Tree}\label{app:trie} When considering such a sequence, we use the common numeric subscript notation to refer to a tuple's key or value, thus: \begin{equation} -\forall_{mathbf{I} \in \mathfrak{I}} I \equiv (I_0, I_1) +\forall_{\mathbf{I} \in \mathfrak{I}} I \equiv (I_0, I_1) \end{equation} Any series of bytes may also trivially be viewed as a series of nibbles, given an endian-specific notation; here we assume big-endian. Thus: @@ -1421,7 +1421,7 @@ \section{Modified Merkle Patricia Tree}\label{app:trie} \begin{equation} c(\mathfrak{I}, i) \equiv \begin{cases} \texttt{\small RLP}\Big( \big(\texttt{\small HP}(I_0[i .. (\lVert I_0\rVert - 1)], true), I_1 \big) \Big) & \text{if} \quad \lVert \mathfrak{I} \rVert = 1 \quad \text{where} \; \exists I: I \in \mathfrak{I} \\ -\texttt{\small RLP}\Big( \big(\texttt{\small HP}(I_0[i .. (j - 1)], false), n(\mathfrak{I}, j) \big) \Big) & \text{if} \quad i \ne j \quad \text{where} \; j = \arg \max_x : \exists \mathbf{l}: \lVert \mathbf{l} \rVert = x : \forall_{mathbf{I} \in \mathfrak{I}}: I_0[0 .. (x - 1)] = \mathbf{l} \\ +\texttt{\small RLP}\Big( \big(\texttt{\small HP}(I_0[i .. (j - 1)], false), n(\mathfrak{I}, j) \big) \Big) & \text{if} \quad i \ne j \quad \text{where} \; j = \arg \max_x : \exists \mathbf{l}: \lVert \mathbf{l} \rVert = x : \forall_{\mathbf{I} \in \mathfrak{I}}: I_0[0 .. (x - 1)] = \mathbf{l} \\ \texttt{\small RLP}\Big( (u(0), u(1), ..., u(15), v) \Big) & \text{otherwise} \quad \text{where} \begin{array}[t]{rcl} u(j) & \equiv & n(\{ I : I \in \mathfrak{I} \wedge I_0[i] = j \}, i + 1) \\ v & = & \begin{cases}