
ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER

EIP-150 REVISION (96131ca - 2017-10-19)

DR. GAVIN WOOD
FOUNDER, ETHEREUM & ETHCORE

GAVIN@ETHCORE.IO

Abstract. The blockchain paradigm when coupled with cryptographically-secured transactions has demonstrated its
utility through a number of projects, not the least being Bitcoin. Each such project can be seen as a simple application
on a decentralised, but singleton, compute resource. We can call this paradigm a transactional singleton machine with
shared-state.

Ethereum implements this paradigm in a generalised manner. Furthermore it provides a plurality of such resources,
each with a distinct state and operating code but able to interact through a message-passing framework with others.
We discuss its design, implementation issues, the opportunities it provides and the future hurdles we envisage.

1. Introduction

With ubiquitous internet connections in most places
of the world, global information transmission has become
incredibly cheap. Technology-rooted movements like Bit-
coin have demonstrated, through the power of the default,
consensus mechanisms and voluntary respect of the social
contract that it is possible to use the internet to make
a decentralised value-transfer system, shared across the
world and virtually free to use. This system can be said
to be a very specialised version of a cryptographically se-
cure, transaction-based state machine. Follow-up systems
such as Namecoin adapted this original “currency appli-
cation” of the technology into other applications albeit
rather simplistic ones.

Ethereum is a project which attempts to build the gen-
eralised technology; technology on which all transaction-
based state machine concepts may be built. Moreover it
aims to provide to the end-developer a tightly integrated
end-to-end system for building software on a hitherto un-
explored compute paradigm in the mainstream: a trustful
object messaging compute framework.

1.1. Driving Factors. There are many goals of this
project; one key goal is to facilitate transactions be-
tween consenting individuals who would otherwise have
no means to trust one another. This may be due to
geographical separation, interfacing difficulty, or perhaps
the incompatibility, incompetence, unwillingness, expense,
uncertainty, inconvenience or corruption of existing legal
systems. By specifying a state-change system through a
rich and unambiguous language, and furthermore archi-
tecting a system such that we can reasonably expect that
an agreement will be thus enforced autonomously, we can
provide a means to this end.

Dealings in this proposed system would have several
attributes not often found in the real world. The incor-
ruptibility of judgement, often difficult to find, comes nat-
urally from a disinterested algorithmic interpreter. Trans-
parency, or being able to see exactly how a state or judge-
ment came about through the transaction log and rules
or instructional codes, never happens perfectly in human-
based systems since natural language is necessarily vague,

information is often lacking, and plain old prejudices are
difficult to shake.

Overall, I wish to provide a system such that users can
be guaranteed that no matter with which other individ-
uals, systems or organisations they interact, they can do
so with absolute confidence in the possible outcomes and
how those outcomes might come about.

1.2. Previous Work. Buterin [2013a] first proposed the
kernel of this work in late November, 2013. Though now
evolved in many ways, the key functionality of a block-
chain with a Turing-complete language and an effectively
unlimited inter-transaction storage capability remains un-
changed.

Dwork and Naor [1992] provided the first work into the
usage of a cryptographic proof of computational expendi-
ture (“proof-of-work”) as a means of transmitting a value
signal over the Internet. The value-signal was utilised here
as a spam deterrence mechanism rather than any kind
of currency, but critically demonstrated the potential for
a basic data channel to carry a strong economic signal,
allowing a receiver to make a physical assertion without
having to rely upon trust. Back [2002] later produced a
system in a similar vein.

The first example of utilising the proof-of-work as a
strong economic signal to secure a currency was by Vish-
numurthy et al. [2003]. In this instance, the token was
used to keep peer-to-peer file trading in check, provid-
ing “consumers” with the ability to make micro-payments
to “suppliers” for their services. The security model af-
forded by the proof-of-work was augmented with digital
signatures and a ledger in order to ensure that the histor-
ical record couldn’t be corrupted and that malicious ac-
tors could not spoof payment or unjustly complain about
service delivery. Five years later, Nakamoto [2008] in-
troduced another such proof-of-work-secured value token,
somewhat wider in scope. The fruits of this project, Bit-
coin, became the first widely adopted global decentralised
transaction ledger.

Other projects built on Bitcoin’s success; the alt-coins
introduced numerous other currencies through alteration
to the protocol. Some of the best known are Litecoin and
Primecoin, discussed by Sprankel [2013]. Other projects
sought to take the core value content mechanism of the
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protocol and repurpose it; Aron [2012] discusses, for ex-
ample, the Namecoin project which aims to provide a de-
centralised name-resolution system.

Other projects still aim to build upon the Bitcoin net-
work itself, leveraging the large amount of value placed in
the system and the vast amount of computation that goes
into the consensus mechanism. The Mastercoin project,
first proposed by Willett [2013], aims to build a richer
protocol involving many additional high-level features on
top of the Bitcoin protocol through utilisation of a num-
ber of auxiliary parts to the core protocol. The Coloured
Coins project, proposed by Rosenfeld [2012], takes a sim-
ilar but more simplified strategy, embellishing the rules
of a transaction in order to break the fungibility of Bit-
coin’s base currency and allow the creation and tracking of
tokens through a special “chroma-wallet”-protocol-aware
piece of software.

Additional work has been done in the area with discard-
ing the decentralisation foundation; Ripple, discussed by
Boutellier and Heinzen [2014], has sought to create a “fed-
erated” system for currency exchange, effectively creating
a new financial clearing system. It has demonstrated that
high efficiency gains can be made if the decentralisation
premise is discarded.

Early work on smart contracts has been done by Szabo
[1997] and Miller [1997]. Around the 1990s it became clear
that algorithmic enforcement of agreements could become
a significant force in human cooperation. Though no spe-
cific system was proposed to implement such a system,
it was proposed that the future of law would be heavily
affected by such systems. In this light, Ethereum may
be seen as a general implementation of such a crypto-law
system.

For a list of terms used in this paper, refer to Appendix
A.

2. The Blockchain Paradigm

Ethereum, taken as a whole, can be viewed as a
transaction-based state machine: we begin with a gene-
sis state and incrementally execute transactions to morph
it into some final state. It is this final state which we ac-
cept as the canonical “version” of the world of Ethereum.
The state can include such information as account bal-
ances, reputations, trust arrangements, data pertaining
to information of the physical world; in short, anything
that can currently be represented by a computer is admis-
sible. Transactions thus represent a valid arc between two
states; the ‘valid’ part is important—there exist far more
invalid state changes than valid state changes. Invalid
state changes might, e.g., be things such as reducing an
account balance without an equal and opposite increase
elsewhere. A valid state transition is one which comes
about through a transaction. Formally:

(1) σt+1 ≡ Υ(σt, T )

where Υ is the Ethereum state transition function. In
Ethereum, Υ, together with σ are considerably more pow-
erful then any existing comparable system; Υ allows com-
ponents to carry out arbitrary computation, while σ al-
lows components to store arbitrary state between trans-
actions.

Transactions are collated into blocks; blocks are
chained together using a cryptographic hash as a means of

reference. Blocks function as a journal or ledger, recording
a series of transactions together with the previous block
and an identifier for the final state (though blocks do not
store the final state itself—that would be far too big).
They also punctuate the transaction series with incentives
for nodes to mine. This incentivisation takes place as a
state-transition function, adding value to a nominated ac-
count.

Mining is the process of dedicating effort (working) to
bolster one series of transactions (a block) over any other
potential competitor block. It is achieved thanks to a
cryptographically secure proof. This scheme is known as
a proof-of-work and is discussed in detail in section 11.5.

Formally, we expand to:

σt+1 ≡ Π(σt, B)(2)

B ≡ (..., (T0, T1, ...))(3)

Π(σ, B) ≡ Ω(B,Υ(Υ(σ, T0), T1)...)(4)

Where Ω is the block-finalisation state transition func-
tion (a function that rewards a nominated party); B is
this block, which includes a series of transactions amongst
some other components; and Π is the block-level state-
transition function.

This is the basis of the blockchain paradigm, a model
that forms the backbone of not only Ethereum, but all de-
centralised consensus-based transaction systems to date.

2.1. Value. In order to incentivise computation within
the network, there needs to be an agreed method for trans-
mitting value. To address this issue, Ethereum has an in-
trinsic currency, Ether, known also as ETH and sometimes
referred to by the Old English D̄. The smallest subdenom-
ination of Ether, and thus the one in which all integer val-
ues of the currency are counted, is the Wei. One Ether is
defined as being 1018 Wei. There exist other subdenomi-
nations of Ether:

Multiplier Name

100 Wei
1012 Szabo
1015 Finney
1018 Ether

Throughout the present work, any reference to value,
in the context of Ether, currency, a balance or a payment,
should be assumed to be counted in Wei.

2.2. Which History? Since the system is decentralised
and all parties have an opportunity to create a new block
on some older pre-existing block, the resultant structure is
necessarily a tree of blocks. In order to form a consensus as
to which path, from root (the genesis block) to leaf (the
block containing the most recent transactions) through
this tree structure, known as the blockchain, there must
be an agreed-upon scheme. If there is ever a disagree-
ment between nodes as to which root-to-leaf path down
the block tree is the ‘best’ blockchain, then a fork occurs.

This would mean that past a given point in time
(block), multiple states of the system may coexist: some
nodes believing one block to contain the canonical transac-
tions, other nodes believing some other block to be canoni-
cal, potentially containing radically different or incompat-
ible transactions. This is to be avoided at all costs as the
uncertainty that would ensue would likely kill all confi-
dence in the entire system.
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The scheme we use in order to generate consensus is a
simplified version of the GHOST protocol introduced by
Sompolinsky and Zohar [2013]. This process is described
in detail in section 10.

Sometimes, a path follows a new protocol from a par-
ticular height. This document describes one version of
the protocol. In order to follow back the history of a
path, one might need to reference multiple versions of this
document. The Ethereum protocol underwent a Byzan-
tium hard fork, the first phase of Metropolis, at block
4370000 on Oct 16 2017 (Eth [2017a], Cod [2017], Eth
[2017c]). Thus, this document version is currently not the
current implementation of the Ethereum protocol, and it
will be updated soon. For further information about pre-
vious protocol release revisions, see Eth [2017b] and Eth
[2015].

3. Conventions

I use a number of typographical conventions for the
formal notation, some of which are quite particular to the
present work:

The two sets of highly structured, ‘top-level’, state val-
ues, are denoted with bold lowercase Greek letters. They
fall into those of world-state, which are denoted σ (or a
variant thereupon) and those of machine-state, µ.

Functions operating on highly structured values are
denoted with an upper-case greek letter, e.g. Υ, the
Ethereum state transition function.

For most functions, an uppercase letter is used, e.g.
C, the general cost function. These may be subscripted
to denote specialised variants, e.g. CSSTORE, the cost func-
tion for the SSTORE operation. For specialised and possibly
externally defined functions, I may format as typewriter
text, e.g. the Keccak-256 hash function (as per the win-
ning entry to the SHA-3 contest, rather than later releases
(Bertoni et al. [2017]) is denoted KEC (and generally re-
ferred to as plain Keccak). Also KEC512 is referring to the
Keccak 512 hash function.

Tuples are typically denoted with an upper-case letter,
e.g. T , is used to denote an Ethereum transaction. This
symbol may, if accordingly defined, be subscripted to re-
fer to an individual component, e.g. Tn, denotes the nonce
of said transaction. The form of the subscript is used to
denote its type; e.g. uppercase subscripts refer to tuples
with subscriptable components.

Scalars and fixed-size byte sequences (or, synony-
mously, arrays) are denoted with a normal lower-case let-
ter, e.g. n is used in the document to denote a transaction
nonce. Those with a particularly special meaning may be
greek, e.g. δ, the number of items required on the stack
for a given operation.

Arbitrary-length sequences are typically denoted as a
bold lower-case letter, e.g. o is used to denote the byte
sequence given as the output data of a message call. For
particularly important values, a bold uppercase letter may
be used.

Throughout, we assume scalars are positive integers
and thus belong to the set P. The set of all byte sequences
is B, formally defined in Appendix B. If such a set of se-
quences is restricted to those of a particular length, it is
denoted with a subscript, thus the set of all byte sequences

of length 32 is named B32 and the set of all positive in-
tegers smaller than 2256 is named P256. This is formally
defined in section 4.3.

Square brackets are used to index into and reference
individual components or subsequences of sequences, e.g.
µs[0] denotes the first item on the machine’s stack. For
subsequences, ellipses are used to specify the intended
range, to include elements at both limits, e.g. µm[0..31]
denotes the first 32 items of the machine’s memory.

In the case of the global state σ, which is a sequence of
accounts, themselves tuples, the square brackets are used
to reference an individual account.

When considering variants of existing values, I follow
the rule that within a given scope for definition, if we
assume that the unmodified ‘input’ value be denoted by
the placeholder � then the modified and utilisable value
is denoted as �′, and intermediate values would be �∗,
�∗∗ &c. On very particular occasions, in order to max-
imise readability and only if unambiguous in meaning, I
may use alpha-numeric subscripts to denote intermediate
values, especially those of particular note.

When considering the use of existing functions, given
a function f , the function f∗ denotes a similar, element-
wise version of the function mapping instead between se-
quences.

I define a number of useful functions throughout. One
of the more common is `, which evaluates to the last item
in the given sequence:

(5) `(x) ≡ x[‖x‖ − 1]

4. Blocks, State and Transactions

Having introduced the basic concepts behind
Ethereum, we will discuss the meaning of a transaction, a
block and the state in more detail.

4.1. World State. The world state (state), is a map-
ping between addresses (160-bit identifiers) and account
states (a data structure serialised as RLP, see Appendix
B). Though not stored on the blockchain, it is assumed
that the implementation will maintain this mapping in a
modified Merkle Patricia tree (trie, see Appendix D). The
trie requires a simple database backend that maintains a
mapping of bytearrays to bytearrays; we name this under-
lying database the state database. This has a number of
benefits; firstly the root node of this structure is crypto-
graphically dependent on all internal data and as such its
hash can be used as a secure identity for the entire sys-
tem state. Secondly, being an immutable data structure,
it allows any previous state (whose root hash is known) to
be recalled by simply altering the root hash accordingly.
Since we store all such root hashes in the blockchain, we
are able to trivially revert to old states.

The account state comprises the following four fields:

nonce: A scalar value equal to the number of trans-
actions sent from this address or, in the case
of accounts with associated code, the number of
contract-creations made by this account. For ac-
count of address a in state σ, this would be for-
mally denoted σ[a]n.

balance: A scalar value equal to the number of Wei
owned by this address. Formally denoted σ[a]b.
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storageRoot: A 256-bit hash of the root node of a
Merkle Patricia tree that encodes the storage con-
tents of the account (a mapping between 256-bit
integer values), encoded into the trie as a map-
ping from the Keccak 256-bit hash of the 256-bit
integer keys to the RLP-encoded 256-bit integer
values. The hash is formally denoted σ[a]s.

codeHash: The hash of the EVM code of this
account—this is the code that gets executed
should this address receive a message call; it is
immutable and thus, unlike all other fields, can-
not be changed after construction. All such code
fragments are contained in the state database un-
der their corresponding hashes for later retrieval.
This hash is formally denoted σ[a]c, and thus the
code may be denoted as b, given that KEC(b) =
σ[a]c.

Since I typically wish to refer not to the trie’s root hash
but to the underlying set of key/value pairs stored within,
I define a convenient equivalence:

(6) TRIE
(
L∗I(σ[a]s)

)
≡ σ[a]s

The collapse function for the set of key/value pairs in
the trie, L∗I , is defined as the element-wise transformation
of the base function LI , given as:

(7) LI

(
(k, v)

)
≡
(
KEC(k), RLP(v)

)
where:

(8) k ∈ B32 ∧ v ∈ P

It shall be understood that σ[a]s is not a ‘physical’
member of the account and does not contribute to its later
serialisation.

If the codeHash field is the Keccak-256 hash of the
empty string, i.e. σ[a]c = KEC

(
()
)
, then the node repre-

sents a simple account, sometimes referred to as a “non-
contract” account.

Thus we may define a world-state collapse function LS :

(9) LS(σ) ≡ {p(a) : σ[a] 6= ∅}

where

(10) p(a) ≡
(
KEC(a), RLP

(
(σ[a]n,σ[a]b,σ[a]s,σ[a]c)

))
This function, LS , is used alongside the trie function

to provide a short identity (hash) of the world state. We
assume:

(11) ∀a : σ[a] = ∅ ∨ (a ∈ B20 ∧ v(σ[a]))

where v is the account validity function:

(12) v(x) ≡ xn ∈ P256∧xb ∈ P256∧xs ∈ B32∧xc ∈ B32

4.2. The Transaction. A transaction (formally, T ) is a
single cryptographically-signed instruction constructed by
an actor externally to the scope of Ethereum. While it is
assumed that the ultimate external actor will be human in
nature, software tools will be used in its construction and
dissemination1. There are two types of transactions: those
which result in message calls and those which result in
the creation of new accounts with associated code (known
informally as ‘contract creation’). Both types specify a
number of common fields:

nonce: A scalar value equal to the number of trans-
actions sent by the sender; formally Tn.

gasPrice: A scalar value equal to the number of
Wei to be paid per unit of gas for all computa-
tion costs incurred as a result of the execution of
this transaction; formally Tp.

gasLimit: A scalar value equal to the maximum
amount of gas that should be used in executing
this transaction. This is paid up-front, before any
computation is done and may not be increased
later; formally Tg.

to: The 160-bit address of the message call’s recipi-
ent or, for a contract creation transaction, ∅, used
here to denote the only member of B0 ; formally
Tt.

value: A scalar value equal to the number of Wei to
be transferred to the message call’s recipient or,
in the case of contract creation, as an endowment
to the newly created account; formally Tv.

v, r, s: Values corresponding to the signature of the
transaction and used to determine the sender of
the transaction; formally Tw, Tr and Ts, respec-
tively. This is expanded in Appendix F.

Additionally, a contract creation transaction contains:

init: An unlimited size byte array specifying the
EVM-code for the account initialisation proce-
dure, formally Ti.

init is an EVM-code fragment; it returns the body,
a second fragment of code that executes each time the
account receives a message call (either through a trans-
action or due to the internal execution of code). init is
executed only once at account creation and gets discarded
immediately thereafter.

In contrast, a message call transaction contains:

data: An unlimited size byte array specifying the
input data of the message call, formally Td.

(13)

Lt(T ) ≡

{
(Tn, Tp, Tg, Tt, Tv, Ti, Tw, Tr, Ts) if Tt = ∅
(Tn, Tp, Tg, Tt, Tv, Td, Tw, Tr, Ts) otherwise

Here, we assume all components are interpreted by the
RLP as integer values, with the exception of the arbitrary
length byte arrays Ti and Td.

(14) Tn ∈ P256 ∧ Tv ∈ P256 ∧ Tp ∈ P256 ∧
Tg ∈ P256 ∧ Tw ∈ P5 ∧ Tr ∈ P256 ∧
Ts ∈ P256 ∧ Td ∈ B ∧ Ti ∈ B

where

(15) Pn = {P : P ∈ P ∧ P < 2n}

The address hash Tt is slightly different: it is either a
20-byte address hash or, in the case of being a contract-
creation transaction (and thus formally equal to ∅), it is
the RLP empty byte sequence and thus the member of B0:

(16) Tt ∈

{
B20 if Tt 6= ∅
B0 otherwise

1Notably, such ‘tools’ could ultimately become so causally removed from their human-based initiation—or humans may become so
causally-neutral—that there could be a point at which they rightly be considered autonomous agents. e.g. contracts may offer bounties to
humans for being sent transactions to initiate their execution.
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4.3. The Block. The block in Ethereum is the collec-
tion of relevant pieces of information (known as the block
header), H, together with information corresponding to
the comprised transactions, T, and a set of other block
headers U that are known to have a parent equal to the
present block’s parent’s parent (such blocks are known as
ommers2). The block header contains several pieces of
information:

parentHash: The Keccak 256-bit hash of the par-
ent block’s header, in its entirety; formally Hp.

ommersHash: The Keccak 256-bit hash of the om-
mers list portion of this block; formally Ho.

beneficiary: The 160-bit address to which all fees
collected from the successful mining of this block
shall be transferred; formally Hc.

stateRoot: The Keccak 256-bit hash of the root
node of the state trie, after all transactions are
executed and finalisations applied; formally Hr.

transactionsRoot: The Keccak 256-bit hash of the
root node of the trie structure populated with
each transaction in the transactions list portion
of the block; formally Ht.

receiptsRoot: The Keccak 256-bit hash of the root
node of the trie structure populated with the re-
ceipts of each transaction in the transactions list
portion of the block; formally He.

logsBloom: The Bloom filter composed from in-
dexable information (logger address and log top-
ics) contained in each log entry from the receipt of
each transaction in the transactions list; formally
Hb.

difficulty: A scalar value corresponding to the dif-
ficulty level of this block. This can be calculated
from the previous block’s difficulty level and the
timestamp; formally Hd.

number: A scalar value equal to the number of an-
cestor blocks. The genesis block has a number of
zero; formally Hi.

gasLimit: A scalar value equal to the current limit
of gas expenditure per block; formally Hl.

gasUsed: A scalar value equal to the total gas used
in transactions in this block; formally Hg.

timestamp: A scalar value equal to the reasonable
output of Unix’s time() at this block’s inception;
formally Hs.

extraData: An arbitrary byte array containing
data relevant to this block. This must be 32 bytes
or fewer; formally Hx.

mixHash: A 256-bit hash which proves combined
with the nonce that a sufficient amount of compu-
tation has been carried out on this block; formally
Hm.

nonce: A 64-bit hash which proves combined with
the mix-hash that a sufficient amount of compu-
tation has been carried out on this block; formally
Hn.

The other two components in the block are simply a list
of ommer block headers (of the same format as above),
Bu, and a series of the transactions, Bt. Formally, we can

refer to a block B:

(17) B ≡ (BH , Bt, Bu)

4.3.1. Transaction Receipt. In order to encode informa-
tion about a transaction concerning which it may be use-
ful to form a zero-knowledge proof, or index and search,
we encode a receipt of each transaction containing certain
information from concerning its execution. Each receipt,
denoted Br[i] for the ith transaction, is placed in an index-
keyed trie and the root recorded in the header as He.

The transaction receipt, R, is a tuple of four items com-
prising the post-transaction state, Rσ, the cumulative gas
used in the block containing the transaction receipt as of
immediately after the transaction has happened, Ru, the
set of logs created through execution of the transaction, Rl

and the Bloom filter composed from information in those
logs, Rb:

(18) R ≡ (Rσ, Ru, Rb, Rl)

The function LR trivially prepares a transaction receipt
for being transformed into an RLP-serialised byte array:

(19) LR(R) ≡ (TRIE(LS(Rσ)), Ru, Rb, Rl)

thus the post-transaction state, Rσ is encoded into a trie
structure, the root of which forms the first item.

We assert Ru, the cumulative gas used is a positive in-
teger and that the logs Bloom, Rb, is a hash of size 2048
bits (256 bytes):

(20) Ru ∈ P ∧ Rb ∈ B256

The log entries, Rl, is a series of log entries, termed,
for example, (O0, O1, ...). A log entry, O, is a tuple of a
logger’s address, Oa, a series of 32-bytes log topics, Ot and
some number of bytes of data, Od:

(21) O ≡ (Oa, (Ot0, Ot1, ...), Od)

(22) Oa ∈ B20 ∧ ∀t∈Ot : t ∈ B32 ∧ Od ∈ B

We define the Bloom filter function, M , to reduce a log
entry into a single 256-byte hash:

(23) M(O) ≡
∨

t∈{Oa}∪Ot

(
M3:2048(t)

)
where M3:2048 is a specialised Bloom filter that sets

three bits out of 2048, given an arbitrary byte sequence.
It does this through taking the low-order 11 bits of each
of the first three pairs of bytes in a Keccak-256 hash of
the byte sequence.3 Formally:

M3:2048(x : x ∈ B) ≡ y : y ∈ B256 where:(24)

y = (0, 0, ..., 0) except:(25)

∀i∈{0,2,4} : Bm(x,i)(y) = 1(26)

m(x, i) ≡ KEC(x)[i, i+ 1] mod 2048(27)

where B is the bit reference function such that Bj(x)
equals the bit of index j (indexed from 0) in the byte array
x.

2ommer is the most prevalent (which is not saying much, as it is not a well-known word) gender-neutral term to mean “sibling of
parent”; see http://nonbinary.org/wiki/Gender_neutral_language#Family_Terms

311 bits = 22048, and the low-order 11 bits is the modulo 2048 of the operand, which is in this case is “each of the first three pairs of
bytes in a Keccak-256 hash of the byte sequence”.

http://nonbinary.org/wiki/Gender_neutral_language#Family_Terms
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4.3.2. Holistic Validity. We can assert a block’s validity if
and only if it satisfies several conditions: it must be in-
ternally consistent with the ommer and transaction block
hashes and the given transactions Bt (as specified in sec
11), when executed in order on the base state σ (derived
from the final state of the parent block), result in a new
state of the identity Hr:
(28)
Hr ≡ TRIE(LS(Π(σ, B))) ∧
Ho ≡ KEC(RLP(L∗H(Bu))) ∧
Ht ≡ TRIE({∀i < ‖Bt‖, i ∈ P : p(i, Lt(Bt[i]))}) ∧
He ≡ TRIE({∀i < ‖Br‖, i ∈ P : p(i, LR(Br[i]))}) ∧
Hb ≡

∨
r∈Br

(
rb
)

where p(k, v) is simply the pairwise RLP transforma-
tion, in this case, the first being the index of the trans-
action in the block and the second being the transaction
receipt:

(29) p(k, v) ≡
(
RLP(k), RLP(v)

)
Furthermore:

(30) TRIE(LS(σ)) = P (BH)H r

Thus TRIE(LS(σ)) is the root node hash of the Merkle
Patricia tree structure containing the key-value pairs of
the state σ with values encoded using RLP, and P (BH)
is the parent block of B, defined directly.

The values stemming from the computation of transac-
tions, specifically the transaction receipts, Br, and that de-
fined through the transaction’s state-accumulation func-
tion, Π, are formalised later in section 11.4.

4.3.3. Serialisation. The function LB and LH are the
preparation functions for a block and block header respec-
tively. Much like the transaction receipt preparation func-
tion LR, we assert the types and order of the structure for
when the RLP transformation is required:

LH(H) ≡ ( Hp, Ho, Hc, Hr, Ht, He, Hb, Hd,
Hi, Hl, Hg, Hs, Hx, Hm, Hn )

(31)

LB(B) ≡
(
LH(BH), L∗t (Bt), L

∗
H(Bu)

)
(32)

With L∗t and L∗H being element-wise sequence transfor-
mations, thus:
(33)
f∗
(
(x0, x1, ...)

)
≡
(
f(x0), f(x1), ...

)
for any function f

The component types are defined thus:

(34) Hp ∈ B32 ∧ Ho ∈ B32 ∧ Hc ∈ B20 ∧
Hr ∈ B32 ∧ Ht ∈ B32 ∧ He ∈ B32 ∧
Hb ∈ B256 ∧ Hd ∈ P ∧ Hi ∈ P ∧
Hl ∈ P ∧ Hg ∈ P ∧ Hs ∈ P256 ∧
Hx ∈ B ∧ Hm ∈ B32 ∧ Hn ∈ B8

where

(35) Bn = {B : B ∈ B ∧ ‖B‖ = n}

We now have a rigorous specification for the construc-
tion of a formal block structure. The RLP function RLP

(see Appendix B) provides the canonical method for trans-
forming this structure into a sequence of bytes ready for
transmission over the wire or storage locally.

4.3.4. Block Header Validity. We define P (BH) to be the
parent block of B, formally:

(36) P (H) ≡ B′ : KEC(RLP(B′H)) = Hp

The block number is the parent’s block number incre-
mented by one:

(37) Hi ≡ P (H)H i + 1

The canonical difficulty of a block of header H is de-
fined as D(H):
(38)

D(H) ≡

{
D0 if Hi = 0

max
(
D0, P (H)Hd + x× ς2 + ε

)
otherwise

where:

(39) D0 ≡ 131072

(40) x ≡
⌊
P (H)Hd

2048

⌋

(41) ς2 ≡ max

(
1−

⌊
Hs − P (H)H s

10

⌋
,−99

)
(42) ε ≡

⌊
2bHi÷100000c−2

⌋
Note that D0 is the difficulty of the genesis block. The

difficulty parameter ς2 is designed to affect a dynamic
homeostasis of time between blocks, as the time between
blocks varies, as discussed below. ε results in the dif-
ficulty increasing every 10000 blocks. This is necessary
to stabilise the time difference between blocks as compu-
tation power becomes more efficient, with Moore’s Law
(Thompson and Parthasarathy [2006]).

The canonical gas limit Hl of a block of header H must
fulfil the relation:

Hl < P (H)H l +

⌊
P (H)H l

1024

⌋
∧(43)

Hl > P (H)H l −
⌊
P (H)H l

1024

⌋
∧(44)

Hl > 125000(45)

Hs is the timestamp of block H and must fulfil the
relation:

(46) Hs > P (H)H s

This mechanism enforces a homeostasis in terms of the
time between blocks; a smaller period between the last two
blocks results in an increase in the difficulty level and thus
additional computation is required, lengthening the likely
next period. Conversely, if the period is too large, the
difficulty, and expected time to the next block, is reduced.

The nonce of a block, Hn, must satisfy the relations:

(47) n 6
2256

Hd
∧ m = Hm

with (n,m) = PoW(Hn, Hn,d).
Where Hn is the new block’s header H, but without the

nonce and mix-hash block components, d being the cur-
rent DAG, a large data set needed to compute the mix-
hash, and PoW is the proof-of-work function (see section
11.5): this evaluates to an array with the first item be-
ing the mix-hash, to prove that a correct DAG has been
used, and the second item being a pseudo-random num-
ber cryptographically dependent on H and d. Given an
approximately uniform distribution in the range [0, 264),
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the expected time to find a solution is proportional to the
difficulty, Hd.

This is the foundation of the security of the blockchain
and is the fundamental reason why a malicious node can-
not propagate newly created blocks that would otherwise
overwrite (“rewrite”) history. Because the block nonce
must satisfy this requirement, and because its satisfaction
depends on the contents of the block and in turn its com-
posed transactions, creating new, valid, blocks is difficult
and, over time, requires approximately the total compute
power of the trustworthy portion of the mining peers.

Thus we are able to define the block header validity
function V (H):

V (H) ≡ n 6
2256

Hd
∧m = Hm ∧(48)

Hd = D(H) ∧(49)

Hg ≤ Hl ∧(50)

Hl < P (H)H l +

⌊
P (H)H l

1024

⌋
∧(51)

Hl > P (H)H l −
⌊
P (H)H l

1024

⌋
∧(52)

Hl > 125000 ∧(53)

Hs > P (H)H s ∧(54)

Hi = P (H)H i + 1 ∧(55)

‖Hx‖ ≤ 32(56)

where (n,m) = PoW(Hn, Hn,d)
Noting additionally that extraData must be at most

32 bytes.

5. Gas and Payment

In order to avoid issues of network abuse and to side-
step the inevitable questions stemming from Turing com-
pleteness, all programmable computation in Ethereum is
subject to fees. The fee schedule is specified in units of
gas (see Appendix G for the fees associated with var-
ious computation). Thus any given fragment of pro-
grammable computation (this includes creating contracts,
making message calls, utilising and accessing account stor-
age and executing operations on the virtual machine) has
a universally agreed cost in terms of gas.

Every transaction has a specific amount of gas associ-
ated with it: gasLimit. This is the amount of gas which
is implicitly purchased from the sender’s account balance.
The purchase happens at the according gasPrice, also
specified in the transaction. The transaction is considered
invalid if the account balance cannot support such a pur-
chase. It is named gasLimit since any unused gas at the
end of the transaction is refunded (at the same rate of pur-
chase) to the sender’s account. Gas does not exist outside
of the execution of a transaction. Thus for accounts with
trusted code associated, a relatively high gas limit may be
set and left alone.

In general, Ether used to purchase gas that is not re-
funded is delivered to the beneficiary address, the address
of an account typically under the control of the miner.
Transactors are free to specify any gasPrice that they
wish, however miners are free to ignore transactions as
they choose. A higher gas price on a transaction will there-
fore cost the sender more in terms of Ether and deliver a
greater value to the miner and thus will more likely be

selected for inclusion by more miners. Miners, in general,
will choose to advertise the minimum gas price for which
they will execute transactions and transactors will be free
to canvas these prices in determining what gas price to
offer. Since there will be a (weighted) distribution of min-
imum acceptable gas prices, transactors will necessarily
have a trade-off to make between lowering the gas price
and maximising the chance that their transaction will be
mined in a timely manner.

6. Transaction Execution

The execution of a transaction is the most complex part
of the Ethereum protocol: it defines the state transition
function Υ. It is assumed that any transactions executed
first pass the initial tests of intrinsic validity. These in-
clude:

(1) The transaction is well-formed RLP, with no ad-
ditional trailing bytes;

(2) the transaction signature is valid;
(3) the transaction nonce is valid (equivalent to the

sender account’s current nonce);
(4) the gas limit is no smaller than the intrinsic gas,

g0, used by the transaction;
(5) the sender account balance contains at least the

cost, v0, required in up-front payment.

Formally, we consider the function Υ, with T being a
transaction and σ the state:

(57) σ′ = Υ(σ, T )

Thus σ′ is the post-transactional state. We also define
Υg to evaluate to the amount of gas used in the execution
of a transaction and Υl to evaluate to the transaction’s
accrued log items, both to be formally defined later.

6.1. Substate. Throughout transaction execution, we
accrue certain information that is acted upon immediately
following the transaction. We call this transaction sub-
state, and represent it as A, which is a tuple:

(58) A ≡ (As, Al, Ar)

The tuple contents include As, the self-destruct set: a
set of accounts that will be discarded following the trans-
action’s completion. Al is the log series: this is a series
of archived and indexable ‘checkpoints’ in VM code exe-
cution that allow for contract-calls to be easily tracked by
onlookers external to the Ethereum world (such as decen-
tralised application front-ends). Finally there is Ar, the
refund balance, increased through using the SSTORE in-
struction in order to reset contract storage to zero from
some non-zero value. Though not immediately refunded,
it is allowed to partially offset the total execution costs.

For brevity, we define the empty substate A0 to have
no self-destructs, no logs and a zero refund balance:

(59) A0 ≡ (∅, (), 0)
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6.2. Execution. We define intrinsic gas g0, the amount
of gas this transaction requires to be paid prior to execu-
tion, as follows:

g0 ≡
∑

i∈Ti,Td

{
Gtxdatazero if i = 0

Gtxdatanonzero otherwise
(60)

+

{
Gtxcreate if Tt = ∅
0 otherwise

(61)

+Gtransaction(62)

where Ti, Td means the series of bytes of the trans-
action’s associated data and initialisation EVM-code,
depending on whether the transaction is for contract-
creation or message-call. Gtxcreate is added if the transac-
tion is contract-creating, but not if a result of EVM-code.
G is fully defined in Appendix G.

The up-front cost v0 is calculated as:

(63) v0 ≡ TgTp + Tv

The validity is determined as:

(64) S(T ) 6= ∅ ∧
σ[S(T )] 6= ∅ ∧

Tn = σ[S(T )]n ∧
g0 6 Tg ∧
v0 6 σ[S(T )]b ∧
Tg 6 BH l − `(Br)u

Note the final condition; the sum of the transaction’s
gas limit, Tg, and the gas utilised in this block prior, given
by `(Br)u, must be no greater than the block’s gasLimit,
BH l.

The execution of a valid transaction begins with an
irrevocable change made to the state: the nonce of the ac-
count of the sender, S(T ), is incremented by one and the
balance is reduced by part of the up-front cost, TgTp. The
gas available for the proceeding computation, g, is defined
as Tg − g0. The computation, whether contract creation
or a message call, results in an eventual state (which may
legally be equivalent to the current state), the change to
which is deterministic and never invalid: there can be no
invalid transactions from this point.

We define the checkpoint state σ0:

σ0 ≡ σ except:(65)

σ0[S(T )]b ≡ σ[S(T )]b − TgTp(66)

σ0[S(T )]n ≡ σ[S(T )]n + 1(67)

Evaluating σP from σ0 depends on the transaction
type; either contract creation or message call; we define
the tuple of post-execution provisional state σP , remain-
ing gas g′ and substate A:
(68)

(σP , g
′, A) ≡


Λ(σ0, S(T ), To,

g, Tp, Tv, Ti, 0) if Tt = ∅
Θ3(σ0, S(T ), To,

Tt, Tt, g, Tp, Tv, Tv, Td, 0) otherwise

where g is the amount of gas remaining after deducting
the basic amount required to pay for the existence of the
transaction:

(69) g ≡ Tg − g0
and To is the original transactor, which can differ from the
sender in the case of a message call or contract creation

not directly triggered by a transaction but coming from
the execution of EVM-code.

Note we use Θ3 to denote the fact that only the first
three components of the function’s value are taken; the
final represents the message-call’s output value (a byte
array) and is unused in the context of transaction evalua-
tion.

After the message call or contract creation is processed,
the state is finalised by determining the amount to be re-
funded, g∗ from the remaining gas, g′, plus some allowance
from the refund counter, to the sender at the original rate.

(70) g∗ ≡ g′ + min{
⌊Tg − g′

2

⌋
, Ar}

The total refundable amount is the legitimately remain-
ing gas g′, added to Ar, with the latter component being
capped up to a maximum of half (rounded down) of the
total amount used Tg − g′.

The Ether for the gas is given to the miner, whose ad-
dress is specified as the beneficiary of the present block
B. So we define the pre-final state σ∗ in terms of the
provisional state σP :

σ∗ ≡ σP except(71)

σ∗[S(T )]b ≡ σP [S(T )]b + g∗Tp(72)

σ∗[m]b ≡ σP [m]b + (Tg − g∗)Tp(73)

m ≡ BHc(74)

The final state, σ′, is reached after deleting all accounts
that appear in the self-destruct set:

σ′ ≡ σ∗ except(75)

∀i ∈ As : σ′[i] ≡ ∅(76)

And finally, we specify Υg, the total gas used in this
transaction and Υl, the logs created by this transaction:

Υg(σ, T ) ≡ Tg − g′(77)

Υl(σ, T ) ≡ Al(78)

These are used to help define the transaction receipt.

7. Contract Creation

There are a number of intrinsic parameters used when
creating an account: sender (s), original transactor (o),
available gas (g), gas price (p), endowment (v) together
with an arbitrary length byte array, i, the initialisation
EVM code and finally the present depth of the message-
call/contract-creation stack (e).

We define the creation function formally as the func-
tion Λ, which evaluates from these values, together with
the state σ to the tuple containing the new state, remain-
ing gas and accrued transaction substate (σ′, g′, A), as in
section 6:

(79) (σ′, g′, A) ≡ Λ(σ, s, o, g, p, v, i, e)

The address of the new account is defined as being the
rightmost 160 bits of the Keccak hash of the RLP encod-
ing of the structure containing only the sender and the
nonce. Thus we define the resultant address for the new
account a:

(80) a ≡ B96..255

(
KEC
(
RLP
(

(s,σ[s]n − 1)
)))

where KEC is the Keccak 256-bit hash function, RLP is
the RLP encoding function, Ba..b(X) evaluates to binary
value containing the bits of indices in the range [a, b] of
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the binary data X and σ[x] is the address state of x or ∅ if
none exists. Note we use one fewer than the sender’s nonce
value; we assert that we have incremented the sender ac-
count’s nonce prior to this call, and so the value used
is the sender’s nonce at the beginning of the responsible
transaction or VM operation.

The account’s nonce is initially defined as zero, the
balance as the value passed, the storage as empty and the
code hash as the Keccak 256-bit hash of the empty string;
the sender’s balance is also reduced by the value passed.
Thus the mutated state becomes σ∗:

(81) σ∗ ≡ σ except:

σ∗[a] ≡
(
0, v + v′, TRIE(∅), KEC

(
()
))

(82)

σ∗[s]b ≡ σ[s]b − v(83)

where v′ is the account’s pre-existing value, in the event
it was previously in existence:

(84) v′ ≡

{
0 if σ[a] = ∅
σ[a]b otherwise

Finally, the account is initialised through the execution
of the initialising EVM code i according to the execution
model (see section 9). Code execution can effect several
events that are not internal to the execution state: the
account’s storage can be altered, further accounts can be
created and further message calls can be made. As such,
the code execution function Ξ evaluates to a tuple of the
resultant state σ∗∗, available gas remaining g∗∗, the ac-
crued substate A and the body code of the account o.

(85) (σ∗∗, g∗∗, A,o) ≡ Ξ(σ∗, g, I)

where I contains the parameters of the execution environ-
ment as defined in section 9, that is:

Ia ≡ a(86)

Io ≡ o(87)

Ip ≡ p(88)

Id ≡ ()(89)

Is ≡ s(90)

Iv ≡ v(91)

Ib ≡ i(92)

Ie ≡ e(93)

Id evaluates to the empty tuple as there is no input
data to this call. IH has no special treatment and is de-
termined from the blockchain.

Code execution depletes gas, and gas may not go below
zero, thus execution may exit before the code has come
to a natural halting state. In this (and several other)
exceptional cases we say an out-of-gas (OOG) exception
has occurred: The evaluated state is defined as being the
empty set, ∅, and the entire create operation should have
no effect on the state, effectively leaving it as it was im-
mediately prior to attempting the creation.

If the initialization code completes successfully, a fi-
nal contract-creation cost is paid, the code-deposit cost,
c, proportional to the size of the created contract’s code:

(94) c ≡ Gcodedeposit × |o|

If there is not enough gas remaining to pay this, i.e.
g∗∗ < c, then we also declare an out-of-gas exception.

The gas remaining will be zero in any such exceptional
condition, i.e. if the creation was conducted as the recep-
tion of a transaction, then this doesn’t affect payment of
the intrinsic cost of contract creation; it is paid regardless.
However, the value of the transaction is not transferred to
the aborted contract’s address when we are out-of-gas.

If such an exception does not occur, then the remain-
ing gas is refunded to the originator and the now-altered
state is allowed to persist. Thus formally, we may specify
the resultant state, gas and substate as (σ′, g′, A) where:

g′ ≡

{
0 if F

g∗∗ − c otherwise
(95)

σ′ ≡


σ if F

σ∗∗ except:

σ′[a]c = KEC(o) otherwise

(96)

where

F ≡
(
σ∗∗ = ∅ ∨ g∗∗ < c ∨ |o| > 24576

)
(97)

The exception in the determination of σ′ dictates that
o, the resultant byte sequence from the execution of the
initialisation code, specifies the final body code for the
newly-created account. Note that the 24576 byte limit
for o exists because a contract creation call can trigger
O(n) cost in terms of reading the code from disk, prepro-
cessing the code for VM execution, and also adding O(n)
data to the Merkle proof for the block’s proof-of-validity.
With higher gas limits that can be caused by dynamic gas
limit rules, this is a greater concern, and is especially in-
convenient with light clients verifying proofs of validity or
invalidity.

Note that the intention is that the result is either a
successfully created new contract with its endowment, or
no new contract with no transfer of value.

7.1. Subtleties. Note that while the initialisation code
is executing, the newly created address exists but with
no intrinsic body code. Thus any message call received
by it during this time causes no code to be executed. If
the initialisation execution ends with a SELFDESTRUCT

instruction, the matter is moot since the account will be
deleted before the transaction is completed. For a normal
STOP code, or if the code returned is otherwise empty,
then the state is left with a zombie account, and any re-
maining balance will be locked into the account forever.

8. Message Call

In the case of executing a message call, several param-
eters are required: sender (s), transaction originator (o),
recipient (r), the account whose code is to be executed (c,
usually the same as recipient), available gas (g), value (v)
and gas price (p) together with an arbitrary length byte
array, d, the input data of the call and finally the present
depth of the message-call/contract-creation stack (e).

Aside from evaluating to a new state and transaction
substate, message calls also have an extra component—the
output data denoted by the byte array o. This is ignored
when executing transactions, however message calls can
be initiated due to VM-code execution and in this case
this information is used.

(98) (σ′, g′, A,o) ≡ Θ(σ, s, o, r, c, g, p, v, ṽ,d, e)
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Note that we need to differentiate between the value that
is to be transferred, v, from the value apparent in the ex-
ecution context, ṽ, for the DELEGATECALL instruction.

We define σ1, the first transitional state as the orig-
inal state but with the value transferred from sender to
recipient:

(99) σ1[r]b ≡ σ[r]b + v ∧ σ1[s]b ≡ σ[s]b − v

unless s = r.
Throughout the present work, it is assumed that if

σ1[r] was originally undefined, it will be created as an ac-
count with no code or state and zero balance and nonce.
Thus the previous equation should be taken to mean:

(100) σ1 ≡ σ′1 except:

(101) σ1[s]b ≡ σ′1[s]b − v

(102) and σ′1 ≡ σ except:

(103)

{
σ′1[r] ≡ (v, 0, KEC(()), TRIE(∅)) if σ[r] = ∅
σ′1[r]b ≡ σ[r]b + v otherwise

The account’s associated code (identified as the frag-
ment whose Keccak hash is σ[c]c) is executed according to
the execution model (see section 9). Just as with contract
creation, if the execution halts in an exceptional fashion
(i.e. due to an exhausted gas supply, stack underflow, in-
valid jump destination or invalid instruction), then no gas
is refunded to the caller and the state is reverted to the
point immediately prior to balance transfer (i.e. σ).

σ′ ≡

{
σ if σ∗∗ = ∅
σ∗∗ otherwise

(104)

g′ ≡

{
0 if σ∗∗ = ∅
g∗∗ otherwise

(105)

(σ∗∗, g∗∗, A,o) ≡



ΞECREC(σ1, g, I) if r = 1

ΞSHA256(σ1, g, I) if r = 2

ΞRIP160(σ1, g, I) if r = 3

ΞID(σ1, g, I) if r = 4

Ξ(σ1, g, I) otherwise

(106)

Ia ≡ r(107)

Io ≡ o(108)

Ip ≡ p(109)

Id ≡ d(110)

Is ≡ s(111)

Iv ≡ ṽ(112)

Ie ≡ e(113)

Let KEC(Ib) = σ[c]c(114)

It is assumed that the client will have stored the pair
(KEC(Ib), Ib) at some point prior in order to make the de-
termination of Ib feasible.

As can be seen, there are four exceptions to the usage
of the general execution framework Ξ for evaluation of the
message call: these are four so-called ‘precompiled’ con-
tracts, meant as a preliminary piece of architecture that
may later become native extensions. The four contracts
in addresses 1, 2, 3 and 4 execute the elliptic curve public
key recovery function, the SHA2 256-bit hash scheme, the

RIPEMD 160-bit hash scheme and the identity function
respectively.

Their full formal definition is in Appendix E.

9. Execution Model

The execution model specifies how the system state is
altered given a series of bytecode instructions and a small
tuple of environmental data. This is specified through a
formal model of a virtual state machine, known as the
Ethereum Virtual Machine (EVM). It is a quasi-Turing-
complete machine; the quasi qualification comes from the
fact that the computation is intrinsically bounded through
a parameter, gas, which limits the total amount of com-
putation done.

9.1. Basics. The EVM is a simple stack-based architec-
ture. The word size of the machine (and thus size of stack
item) is 256-bit. This was chosen to facilitate the Keccak-
256 hash scheme and elliptic-curve computations. The
memory model is a simple word-addressed byte array. The
stack has a maximum size of 1024. The machine also has
an independent storage model; this is similar in concept
to the memory but rather than a byte array, it is a word-
addressable word array. Unlike memory, which is volatile,
storage is non volatile and is maintained as part of the
system state. All locations in both storage and memory
are well-defined initially as zero.

The machine does not follow the standard von Neu-
mann architecture. Rather than storing program code in
generally-accessible memory or storage, it is stored sepa-
rately in a virtual ROM interactable only through a spe-
cialised instruction.

The machine can have exceptional execution for several
reasons, including stack underflows and invalid instruc-
tions. Like the out-of-gas exception, they do not leave
state changes intact. Rather, the machine
hyperlinkzhalthalts immediately and reports the issue to
the execution agent (either the transaction processor or,
recursively, the spawning execution environment) which
will deal with it separately.

9.2. Fees Overview. Fees (denominated in gas) are
charged under three distinct circumstances, all three as
prerequisite to the execution of an operation. The first
and most common is the fee intrinsic to the computation
of the operation (see Appendix G). Secondly, gas may be
deducted in order to form the payment for a subordinate
message call or contract creation; this forms part of the
payment for CREATE, CALL and CALLCODE. Finally, gas
may be paid due to an increase in the usage of the memory.

Over an account’s execution, the total fee for memory-
usage payable is proportional to the smallest multiple of
32 bytes that is required such that all memory indices
(whether for read or write) are included in the range. This
is paid for on a just-in-time basis; as such, referencing an
area of memory at least 32 bytes greater than any previ-
ously indexed memory will certainly result in an additional
memory usage fee. Due to this fee it is highly unlikely
addresses will ever go above 32-bit bounds. That said,
implementations must be able to manage this eventuality.

Storage fees have a slightly nuanced behaviour—to in-
centivise minimisation of the use of storage (which corre-
sponds directly to a larger state database on all nodes),
the execution fee for an operation that clears an entry in
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the storage is not only waived, a qualified refund is given;
in fact, this refund is effectively paid up-front since the
initial usage of a storage location costs substantially more
than normal usage.

See Appendix H for a rigorous definition of the EVM
gas cost.

9.3. Execution Environment. In addition to the sys-
tem state σ, and the remaining gas for computation g,
there are several pieces of important information used in
the execution environment that the execution agent must
provide; these are contained in the tuple I:

• Ia, the address of the account which owns the code
that is executing.

• Io, the sender address of the transaction that orig-
inated this execution.

• Ip, the price of gas in the transaction that origi-
nated this execution.

• Id, the byte array that is the input data to this
execution; if the execution agent is a transaction,
this would be the transaction data.

• Is, the address of the account which caused the
code to be executing; if the execution agent is a
transaction, this would be the transaction sender.

• Iv, the value, in Wei, passed to this account as
part of the same procedure as execution; if the
execution agent is a transaction, this would be
the transaction value.

• Ib, the byte array that is the machine code to be
executed.

• IH , the block header of the present block.
• Ie, the depth of the present message-call or

contract-creation (i.e. the number of CALLs or
CREATEs being executed at present).

The execution model defines the function Ξ, which can
compute the resultant state σ′, the remaining gas g′, the
accrued substate A and the resultant output, o, given
these definitions. For the present context, we will defined
it as:

(115) (σ′, g′, A,o) ≡ Ξ(σ, g, I)

where we will remember that A, the accrued substate
is defined as the tuple of the suicides set s, the log series
l and the refunds r:

(116) A ≡ (s, l, r)

9.4. Execution Overview. We must now define the Ξ
function. In most practical implementations this will be
modelled as an iterative progression of the pair comprising
the full system state, σ and the machine state, µ. For-
mally, we define it recursively with a function X. This
uses an iterator function O (which defines the result of a
single cycle of the state machine) together with functions
Z which determines if the present state is an exceptional
halting state of the machine and H, specifying the output
data of the instruction if and only if the present state is a
normal halting state of the machine.

The empty sequence, denoted (), is not equal to the
empty set, denoted ∅; this is important when interpreting
the output of H, which evaluates to ∅ when execution is to
continue but a series (potentially empty) when execution

should halt.

Ξ(σ, g, I) ≡ (σ′,µ′g, A,o)(117)

(σ,µ′, A, ...,o) ≡ X
(
(σ,µ, A0, I)

)
(118)

µg ≡ g(119)

µpc ≡ 0(120)

µm ≡ (0, 0, ...)(121)

µi ≡ 0(122)

µs ≡ ()(123)

(124)

X
(
(σ,µ, A, I)

)
≡


(
∅,µ, A0, I, ()

)
if Z(σ,µ, I)

O(σ,µ, A, I) · o if o 6= ∅
X
(
O(σ,µ, A, I)

)
otherwise

where

o ≡ H(µ, I)(125)

(a, b, c, d) · e ≡ (a, b, c, d, e)(126)

Note that, when we evaluate Ξ, we drop the fourth
element I ′ and extract the remaining gas µ′g from the re-

sultant machine state µ′.
X is thus cycled (recursively here, but implementations

are generally expected to use a simple iterative loop) until
either Z becomes true indicating that the present state is
exceptional and that the machine must be halted and any
changes discarded or until H becomes a series (rather than
the empty set) indicating that the machine has reached a
controlled halt.

9.4.1. Machine State. The machine state µ is defined as
the tuple (g, pc,m, i, s) which are the gas available, the
program counter pc ∈ P256 , the memory contents, the ac-
tive number of words in memory (counting continuously
from position 0), and the stack contents. The memory
contents µm are a series of zeroes of size 2256.

For the ease of reading, the instruction mnemonics,
written in small-caps (e.g. ADD), should be interpreted
as their numeric equivalents; the full table of instructions
and their specifics is given in Appendix H.

For the purposes of defining Z, H and O, we define w
as the current operation to be executed:

(127) w ≡

{
Ib[µpc] if µpc < ‖Ib‖
STOP otherwise

We also assume the fixed amounts of δ and α, specify-
ing the stack items removed and added, both subscript-
able on the instruction and an instruction cost function C
evaluating to the full cost, in gas, of executing the given
instruction.

9.4.2. Exceptional Halting. The exceptional halting func-
tion Z is defined as:

(128) Z(σ,µ, I) ≡ µg < C(σ,µ, I) ∨
δw = ∅ ∨
‖µs‖ < δw ∨
(w ∈ {JUMP, JUMPI} ∧
µs[0] /∈ D(Ib)) ∨
‖µs‖ − δw + αw > 1024

This states that the execution is in an exceptional halt-
ing state if there is insufficient gas, if the instruction is in-
valid (and therefore its δ subscript is undefined), if there
are insufficient stack items, if a JUMP/JUMPI destination
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is invalid or the new stack size would be larger then 1024.
The astute reader will realise that this implies that no in-
struction can, through its execution, cause an exceptional
halt.

9.4.3. Jump Destination Validity. We previously used D
as the function to determine the set of valid jump desti-
nations given the code that is being run. We define this
as any position in the code occupied by a JUMPDEST in-
struction.

All such positions must be on valid instruction bound-
aries, rather than sitting in the data portion of PUSH

operations and must appear within the explicitly defined
portion of the code (rather than in the implicitly defined
STOP operations that trail it).

Formally:

(129) D(c) ≡ DJ(c, 0)

where:
(130)

DJ(c, i) ≡


{} if i > |c|
{i} ∪DJ(c, N(i, c[i])) if c[i] = JUMPDEST

DJ(c, N(i, c[i])) otherwise

where N is the next valid instruction position in the
code, skipping the data of a PUSH instruction, if any:
(131)

N(i, w) ≡

{
i+ w − PUSH1 + 2 if w ∈ [PUSH1,PUSH32]

i+ 1 otherwise

9.4.4. Normal Halting. The normal halting function H is
defined:
(132)

H(µ, I) ≡


HRETURN(µ) if w = RETURN

() if w ∈ STOP, SELFDESTRUCT

∅ otherwise

The data-returning halt operation, RETURN, has a
special function HRETURN. Note also the difference be-
tween the empty sequence and the empty set as discussed
here.

9.5. The Execution Cycle. Stack items are added or
removed from the left-most, lower-indexed portion of the
series; all other items remain unchanged:

O
(
(σ,µ, A, I)

)
≡ (σ′,µ′, A′, I)(133)

∆ ≡ αw − δw(134)

‖µ′s‖ ≡ ‖µs‖+ ∆(135)

∀x ∈ [αw, ‖µ′s‖) : µ′s[x] ≡ µs[x−∆](136)

The gas is reduced by the instruction’s gas cost and
for most instructions, the program counter increments on
each cycle, for the three exceptions, we assume a function
J , subscripted by one of two instructions, which evaluates
to the according value:

µ′g ≡ µg − C(σ,µ, I)(137)

µ′pc ≡


JJUMP(µ) if w = JUMP

JJUMPI(µ) if w = JUMPI

N(µpc, w) otherwise

(138)

In general, we assume the memory, self-destruct set and
system state don’t change:

µ′m ≡ µm(139)

µ′i ≡ µi(140)

A′ ≡ A(141)

σ′ ≡ σ(142)

However, instructions do typically alter one or several
components of these values. Altered components listed by
instruction are noted in Appendix H, alongside values for
α and δ and a formal description of the gas requirements.

10. Blocktree to Blockchain

The canonical blockchain is a path from root to leaf
through the entire block tree. In order to have consensus
over which path it is, conceptually we identify the path
that has had the most computation done upon it, or, the
heaviest path. Clearly one factor that helps determine the
heaviest path is the block number of the leaf, equivalent
to the number of blocks, not counting the unmined genesis
block, in the path. The longer the path, the greater the
total mining effort that must have been done in order to
arrive at the leaf. This is akin to existing schemes, such
as that employed in Bitcoin-derived protocols.

Since a block header includes the difficulty, the header
alone is enough to validate the computation done. Any
block contributes toward the total computation or total
difficulty of a chain.

Thus we define the total difficulty of block B recur-
sively as:

Bt ≡ B′t +Bd(143)

B′ ≡ P (BH)(144)

As such given a block B, Bt is its total difficulty, B′ is
its parent block and Bd is its difficulty.

11. Block Finalisation

The process of finalising a block involves four stages:

(1) Validate (or, if mining, determine) ommers;
(2) validate (or, if mining, determine) transactions;
(3) apply rewards;
(4) verify (or, if mining, compute a valid) state and

nonce.

11.1. Ommer Validation. The validation of ommer
headers means nothing more than verifying that each om-
mer header is both a valid header and satisfies the rela-
tion of Nth-generation ommer to the present block where
N ≤ 6. The maximum of ommer headers is two. Formally:

(145) ‖Bu‖ 6 2
∧

U∈Bu

V (U) ∧ k(U,P (BH)H , 6)

where k denotes the “is-kin” property:
(146)

k(U,H, n) ≡


false if n = 0

s(U,H)

∨ k(U,P (H)H , n− 1) otherwise

and s denotes the “is-sibling” property:
(147)
s(U,H) ≡ (P (H) = P (U) ∧ H 6= U ∧ U /∈ B(H)u)

where B(H) is the block of the corresponding header H.
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11.2. Transaction Validation. The given gasUsed
must correspond faithfully to the transactions listed: BHg,
the total gas used in the block, must be equal to the ac-
cumulated gas used according to the final transaction:

(148) BHg = `(R)u

11.3. Reward Application. The application of rewards
to a block involves raising the balance of the accounts of
the beneficiary address of the block and each ommer by a
certain amount. We raise the block’s beneficiary account
by Rb; for each ommer, we raise the block’s beneficiary by
an additional 1

32
of the block reward and the beneficiary of

the ommer gets rewarded depending on the block number.
Formally we define the function Ω, the block-finalisation
state transition function (a function that rewards a nom-
inated party):

Ω(B,σ) ≡ σ′ : σ′ = σ except:(149)

σ′[BHc]b = σ[BHc]b + (1 +
‖Bu‖

32
)Rb(150)

∀U∈Bu :(151)

σ′[Uc]b = σ[Uc]b + (1 +
1

8
(Ui −BH i))Rb

If there are collisions of the beneficiary addresses be-
tween ommers and the block (i.e. two ommers with the
same beneficiary address or an ommer with the same bene-
ficiary address as the present block), additions are applied
cumulatively.

We define the block reward as 5 Ether:

(152) Let Rb = 5× 1018

11.4. State & Nonce Validation. We may now define
the function, Γ, that maps a block B to its initiation state:
(153)

Γ(B) ≡

{
σ0 if P (BH) = ∅
σi : TRIE(LS(σi)) = P (BH)H r otherwise

Here, TRIE(LS(σi)) means the hash of the root node of a
trie of state σi; it is assumed that implementations will
store this in the state database, which is trivial and effi-
cient since the trie is by nature an immutable data struc-
ture. And finally we define Φ, the block transition func-
tion, which maps an incomplete block B to a complete
block B′:

Φ(B) ≡ B′ : B′ = B∗ except:(154)

B′n = n : x 6
2256

Hd
(155)

B′m = m with (x,m) = PoW(B∗n, n,d)(156)

B∗ ≡ B except: B∗r = r(Π(Γ(B), B))(157)

With d being a dataset as specified in appendix J.
As specified at the beginning of the present work, Π is

the state-transition function, which is defined in terms of
Ω, the block finalisation function and Υ, the transaction-
evaluation function, both now well-defined.

As previously detailed, R[n]σ, R[n]l and R[n]u are the
nth corresponding states, logs and cumulative gas used af-
ter each transaction (R[n]b, the fourth component in the
tuple, has already been defined in terms of the logs). The
former is defined simply as the state resulting from apply-
ing the corresponding transaction to the state resulting

from the previous transaction (or the block’s initial state
in the case of the first such transaction):

(158) R[n]σ =

{
Γ(B) if n < 0

Υ(R[n− 1]σ, Bt[n]) otherwise

In the case of Br[n]u, we take a similar approach defin-
ing each item as the gas used in evaluating the correspond-
ing transaction summed with the previous item (or zero,
if it is the first), giving us a running total:

(159) R[n]u =


0 if n < 0

Υg(R[n− 1]σ, Bt[n])

+R[n− 1]u otherwise

For R[n]l, we utilise the Υl function that we conve-
niently defined in the transaction execution function.

(160) R[n]l = Υl(R[n− 1]σ, Bt[n])

Finally, we define Π as the new state given the block
reward function Ω applied to the final transaction’s resul-
tant state, `(Br)σ:

(161) Π(σ, B) ≡ Ω(B, `(R)σ)

Thus the complete block-transition mechanism is de-
fined, except for PoW, the proof-of-work function.

11.5. Mining Proof-of-Work. The mining proof-of-
work (PoW) exists as a cryptographically secure nonce
that proves beyond reasonable doubt that a particular
amount of computation has been expended in the deter-
mination of some token value n. It is utilised to enforce
the blockchain security by giving meaning and credence
to the notion of difficulty (and, by extension, total dif-
ficulty). However, since mining new blocks comes with
an attached reward, the proof-of-work not only functions
as a method of securing confidence that the blockchain
will remain canonical into the future, but also as a wealth
distribution mechanism.

For both reasons, there are two important goals of the
proof-of-work function; firstly, it should be as accessible as
possible to as many people as possible. The requirement
of, or reward from, specialised and uncommon hardware
should be minimised. This makes the distribution model
as open as possible, and, ideally, makes the act of mining a
simple swap from electricity to Ether at roughly the same
rate for anyone around the world.

Secondly, it should not be possible to make super-linear
profits, and especially not so with a high initial barrier.
Such a mechanism allows a well-funded adversary to gain
a troublesome amount of the network’s total mining power
and as such gives them a super-linear reward (thus skew-
ing distribution in their favour) as well as reducing the
network security.

One plague of the Bitcoin world is ASICs. These are
specialised pieces of compute hardware that exist only to
do a single task (Smith [1997]). In Bitcoin’s case the
task is the SHA256 hash function (Courtois et al. [2014]).
While ASICs exist for a proof-of-work function, both goals
are placed in jeopardy. Because of this, a proof-of-work
function that is ASIC-resistant (i.e. difficult or economi-
cally inefficient to implement in specialised compute hard-
ware) has been identified as the proverbial silver bullet.

Two directions exist for ASIC resistance; firstly make
it sequential memory-hard, i.e. engineer the function such
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that the determination of the nonce requires a lot of mem-
ory and bandwidth such that the memory cannot be used
in parallel to discover multiple nonces simultaneously. The
second is to make the type of computation it would need
to do general-purpose; the meaning of “specialised hard-
ware” for a general-purpose task set is, naturally, general
purpose hardware and as such commodity desktop com-
puters are likely to be pretty close to “specialised hard-
ware” for the task. For Ethereum Frontier and Homestead
we have chosen the first path.

More formally, the proof-of-work function takes the
form of PoW:
(162)

m = Hm ∧ n 6
2256

Hd
with (m,n) = PoW(Hn, Hn,d)

Where Hn is the new block’s header but without the
nonce and mix-hash components; Hn is the nonce of the
block header; d is a large data set needed to compute the
mixHash and Hd is the new block’s difficulty value (i.e.
the block difficulty from section 10). PoW is the proof-of-
work function which evaluates to an array with the first
item being the mixHash and the second item being the
block nonce, a pseudo-random number cryptographically
dependent on H and d. The underlying algorithm is called
Ethash and is described below.

11.5.1. Ethash. Ethash is the PoW algorithm for
Ethereum Frontier and Homestead. It is the latest ver-
sion of Dagger-Hashimoto, introduced by Buterin [2013b]
and Dryja [2014], although it can no longer appropriately
be called that since many of the original features of both
algorithms were drastically changed with R&D from Feb-
ruary 2015 until May 4 2015 (Jentzsch [2015]). The gen-
eral route that the algorithm takes is as follows:

There exists a seed which can be computed for each
block by scanning through the block headers up until that
point. From the seed, one can compute a pseudorandom
cache, Jcacheinit bytes in initial size. Light clients store
the cache. From the cache, we can generate a dataset,
Jdatasetinit bytes in initial size, with the property that each
item in the dataset depends on only a small number of
items from the cache. Full clients and miners store the
dataset. The dataset grows linearly with time.

Mining involves grabbing random slices of the dataset
and hashing them together. Verification can be done with
low memory by using the cache to regenerate the specific
pieces of the dataset that you need, so you only need to
store the cache. The large dataset is updated once ev-
ery Jepoch blocks, so the vast majority of a miner’s effort
will be reading the dataset, not making changes to it. The
mentioned parameters as well as the algorithm is explained
in detail in appendix J.

12. Implementing Contracts

There are several patterns of contracts engineering that
allow particular useful behaviours; two of these that I will
briefly discuss are data feeds and random numbers.

12.1. Data Feeds. A data feed contract is one which pro-
vides a single service: it gives access to information from
the external world within Ethereum. The accuracy and
timeliness of this information is not guaranteed and it is
the task of a secondary contract author—the contract that

utilises the data feed—to determine how much trust can
be placed in any single data feed.

The general pattern involves a single contract within
Ethereum which, when given a message call, replies with
some timely information concerning an external phenom-
enon. An example might be the local temperature of
New York City. This would be implemented as a contract
that returned that value of some known point in storage.
Of course this point in storage must be maintained with
the correct such temperature, and thus the second part
of the pattern would be for an external server to run an
Ethereum node, and immediately on discovery of a new
block, creates a new valid transaction, sent to the contract,
updating said value in storage. The contract’s code would
accept such updates only from the identity contained on
said server.

12.2. Random Numbers. Providing random numbers
within a deterministic system is, naturally, an impossible
task. However, we can approximate with pseudo-random
numbers by utilising data which is generally unknowable
at the time of transacting. Such data might include the
block’s hash, the block’s timestamp and the block’s benefi-
ciary address. In order to make it hard for malicious miner
to control those values, one should use the BLOCKHASH

operation in order to use hashes of the previous 256 blocks
as pseudo-random numbers. For a series of such numbers,
a trivial solution would be to add some constant amount
and hashing the result.

13. Future Directions

The state database won’t be forced to maintain all past
state trie structures into the future. It should maintain an
age for each node and eventually discard nodes that are
neither recent enough nor checkpoints. Checkpoints, or a
set of nodes in the database that allow a particular block’s
state trie to be traversed, could be used to place a maxi-
mum limit on the amount of computation needed in order
to retrieve any state throughout the blockchain.

Blockchain consolidation could be used in order to re-
duce the amount of blocks a client would need to download
to act as a full, mining, node. A compressed archive of the
trie structure at given points in time (perhaps one in every
10,000th block) could be maintained by the peer network,
effectively recasting the genesis block. This would reduce
the amount to be downloaded to a single archive plus a
hard maximum limit of blocks.

Finally, blockchain compression could perhaps be con-
ducted: nodes in state trie that haven’t sent/received a
transaction in some constant amount of blocks could be
thrown out, reducing both Ether-leakage and the growth
of the state database.

13.1. Scalability. Scalability remains an eternal con-
cern. With a generalised state transition function, it be-
comes difficult to partition and parallelise transactions
to apply the divide-and-conquer strategy. Unaddressed,
the dynamic value-range of the system remains essentially
fixed and as the average transaction value increases, the
less valuable of them become ignored, being economically
pointless to include in the main ledger. However, several
strategies exist that may potentially be exploited to pro-
vide a considerably more scalable protocol.
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Some form of hierarchical structure, achieved by either
consolidating smaller lighter-weight chains into the main
block or building the main block through the incremen-
tal combination and adhesion (through proof-of-work) of
smaller transaction sets may allow parallelisation of trans-
action combination and block-building. Parallelism could
also come from a prioritised set of parallel blockchains,
consolidating each block and with duplicate or invalid
transactions thrown out accordingly.

Finally, verifiable computation, if made generally avail-
able and efficient enough, may provide a route to allow the
proof-of-work to be the verification of final state.

14. Conclusion

I have introduced, discussed and formally defined the
protocol of Ethereum. Through this protocol the reader
may implement a node on the Ethereum network and join
others in a decentralised secure social operating system.
Contracts may be authored in order to algorithmically
specify and autonomously enforce rules of interaction.
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Appendix A. Terminology

External Actor: A person or other entity able to interface to an Ethereum node, but external to the world of
Ethereum. It can interact with Ethereum through depositing signed Transactions and inspecting the blockchain
and associated state. Has one (or more) intrinsic Accounts.

Address: A 160-bit code used for identifying Accounts.
Account: Accounts have an intrinsic balance and transaction count maintained as part of the Ethereum state.

They also have some (possibly empty) EVM Code and a (possibly empty) Storage State associated with them.
Though homogenous, it makes sense to distinguish between two practical types of account: those with empty
associated EVM Code (thus the account balance is controlled, if at all, by some external entity) and those with
non-empty associated EVM Code (thus the account represents an Autonomous Object). Each Account has a
single Address that identifies it.
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Transaction: A piece of data, signed by an External Actor. It represents either a Message or a new Autonomous
Object. Transactions are recorded into each block of the blockchain.

Autonomous Object: A notional object existent only within the hypothetical state of Ethereum. Has an intrinsic
address and thus an associated account; the account will have non-empty associated EVM Code. Incorporated
only as the Storage State of that account.

Storage State: The information particular to a given Account that is maintained between the times that the
Account’s associated EVM Code runs.

Message: Data (as a set of bytes) and Value (specified as Ether) that is passed between two Accounts, either
through the deterministic operation of an Autonomous Object or the cryptographically secure signature of the
Transaction.

Message Call: The act of passing a message from one Account to another. If the destination account is associated
with non-empty EVM Code, then the VM will be started with the state of said Object and the Message acted
upon. If the message sender is an Autonomous Object, then the Call passes any data returned from the VM
operation.

Gas: The fundamental network cost unit. Paid for exclusively by Ether (as of PoC-4), which is converted freely
to and from Gas as required. Gas does not exist outside of the internal Ethereum computation engine; its price
is set by the Transaction and miners are free to ignore Transactions whose Gas price is too low.

Contract: Informal term used to mean both a piece of EVM Code that may be associated with an Account or an
Autonomous Object.

Object: Synonym for Autonomous Object.
App: An end-user-visible application hosted in the Ethereum Browser.
Ethereum Browser: (aka Ethereum Reference Client) A cross-platform GUI of an interface similar to a simplified

browser (a la Chrome) that is able to host sandboxed applications whose backend is purely on the Ethereum
protocol, which is known as Mist since 8 July 2016 (Vogelsteller et al.).

Ethereum Virtual Machine: (aka EVM) The virtual machine that forms the key part of the execution model
for an Account’s associated EVM Code.

Ethereum Runtime Environment: (aka ERE) The environment which is provided to an Autonomous Object
executing in the EVM. Includes the EVM but also the structure of the world state on which the EVM relies for
certain I/O instructions including CALL & CREATE.

EVM Code: The bytecode that the EVM can natively execute. Used to formally specify the meaning and rami-
fications of a message to an Account.

EVM Assembly: The human-readable form of EVM-code.
LLL: The Lisp-like Low-level Language, a human-writable language used for authoring simple contracts and general

low-level language toolkit for trans-compiling to.

W

Appendix B. Recursive Length Prefix

This is a serialisation method for encoding arbitrarily structured binary data (byte arrays).
We define the set of possible structures T:

T ≡ L ∪ B(163)

L ≡ {t : t = (t[0], t[1], ...) ∧ ∀n<‖t‖ t[n] ∈ T}(164)

B ≡ {b : b = (b[0],b[1], ...) ∧ ∀n<‖b‖ b[n] ∈ O}(165)

Where O is the set of bytes. Thus B is the set of all sequences of bytes (otherwise known as byte-arrays, and a leaf if
imagined as a tree), L is the set of all tree-like (sub-)structures that are not a single leaf (a branch node if imagined as
a tree) and T is the set of all byte-arrays and such structural sequences.

We define the RLP function as RLP through two sub-functions, the first handling the instance when the value is a
byte array, the second when it is a sequence of further values:

(166) RLP(x) ≡

{
Rb(x) if x ∈ B
Rl(x) otherwise

If the value to be serialised is a byte-array, the RLP serialisation takes one of three forms:

• If the byte-array contains solely a single byte and that single byte is less than 128, then the input is exactly
equal to the output.

• If the byte-array contains fewer than 56 bytes, then the output is equal to the input prefixed by the byte equal
to the length of the byte array plus 128.

• Otherwise, the output is equal to the input prefixed by the minimal-length byte-array which when interpreted
as a big-endian integer is equal to the length of the input byte array, which is itself prefixed by the number of
bytes required to faithfully encode this length value plus 183.
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Formally, we define Rb:

Rb(x) ≡


x if ‖x‖ = 1 ∧ x[0] < 128

(128 + ‖x‖) · x else if ‖x‖ < 56(
183 +

∥∥BE(‖x‖)
∥∥) · BE(‖x‖) · x otherwise

(167)

BE(x) ≡ (b0, b1, ...) : b0 6= 0 ∧ x =

n<‖b‖∑
n=0

bn · 256‖b‖−1−n(168)

(a) · (b, c) · (d, e) = (a, b, c, d, e)(169)

Thus BE is the function that expands a positive integer value to a big-endian byte array of minimal length and the
dot operator performs sequence concatenation.

If instead, the value to be serialised is a sequence of other items then the RLP serialisation takes one of two forms:

• If the concatenated serialisations of each contained item is less than 56 bytes in length, then the output is equal
to that concatenation prefixed by the byte equal to the length of this byte array plus 192.

• Otherwise, the output is equal to the concatenated serialisations prefixed by the minimal-length byte-array
which when interpreted as a big-endian integer is equal to the length of the concatenated serialisations byte
array, which is itself prefixed by the number of bytes required to faithfully encode this length value plus 247.

Thus we finish by formally defining Rl:

Rl(x) ≡

{
(192 + ‖s(x)‖) · s(x) if ‖s(x)‖ < 56(
247 +

∥∥BE(‖s(x)‖)
∥∥) · BE(‖s(x)‖) · s(x) otherwise

(170)

s(x) ≡ RLP(x0) · RLP(x1)...(171)

If RLP is used to encode a scalar, defined only as a positive integer (P or any x for Px), it must be specified as the
shortest byte array such that the big-endian interpretation of it is equal. Thus the RLP of some positive integer i is
defined as:

(172) RLP(i : i ∈ P) ≡ RLP(BE(i))

When interpreting RLP data, if an expected fragment is decoded as a scalar and leading zeroes are found in the byte
sequence, clients are required to consider it non-canonical and treat it in the same manner as otherwise invalid RLP
data, dismissing it completely.

There is no specific canonical encoding format for signed or floating-point values.

Appendix C. Hex-Prefix Encoding

Hex-prefix encoding is an efficient method of encoding an arbitrary number of nibbles as a byte array. It is able to
store an additional flag which, when used in the context of the trie (the only context in which it is used), disambiguates
between node types.

It is defined as the function HP which maps from a sequence of nibbles (represented by the set Y) together with a
boolean value to a sequence of bytes (represented by the set B):

HP(x, t) : x ∈ Y ≡

{
(16f(t), 16x[0] + x[1], 16x[2] + x[3], ...) if ‖x‖ is even

(16(f(t) + 1) + x[0], 16x[1] + x[2], 16x[3] + x[4], ...) otherwise
(173)

f(t) ≡

{
2 if t 6= 0

0 otherwise
(174)

Thus the high nibble of the first byte contains two flags; the lowest bit encoding the oddness of the length and the
second-lowest encoding the flag t. The low nibble of the first byte is zero in the case of an even number of nibbles and the
first nibble in the case of an odd number. All remaining nibbles (now an even number) fit properly into the remaining
bytes.

Appendix D. Modified Merkle Patricia Tree

The modified Merkle Patricia tree (trie) provides a persistent data structure to map between arbitrary-length binary
data (byte arrays). It is defined in terms of a mutable data structure to map between 256-bit binary fragments and
arbitrary-length binary data, typically implemented as a database. The core of the trie, and its sole requirement in terms
of the protocol specification is to provide a single value that identifies a given set of key-value pairs, which may be either
a 32 byte sequence or the empty byte sequence. It is left as an implementation consideration to store and maintain the
structure of the trie in a manner that allows effective and efficient realisation of the protocol.

Formally, we assume the input value I, a set containing pairs of byte sequences:

(175) I = {(k0 ∈ B, v0 ∈ B), k1 ∈ B, v1 ∈ B), ...}
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When considering such a sequence, we use the common numeric subscript notation to refer to a tuple’s key or value,
thus:

(176) ∀I∈II ≡ (I0, I1)

Any series of bytes may also trivially be viewed as a series of nibbles, given an endian-specific notation; here we
assume big-endian. Thus:

y(I) = {(k′0 ∈ Y, v0 ∈ B), (k′1 ∈ Y, v1 ∈ B), ...}(177)

∀n ∀i:i<2‖ kn‖ k′n[i] ≡

{
bkn[i÷ 2]÷ 16c if i is even

kn[bi÷ 2c] mod 16 otherwise
(178)

We define the function TRIE, which evaluates to the root of the trie that represents this set when encoded in this
structure:

(179) TRIE(I) ≡ KEC(c(I, 0))

We also assume a function n, the trie’s node cap function. When composing a node, we use RLP to encode the
structure. As a means of reducing storage complexity, for nodes whose composed RLP is fewer than 32 bytes, we store
the RLP directly; for those larger we assert prescience of the byte array whose Keccak hash evaluates to our reference.
Thus we define in terms of c, the node composition function:

(180) n(I, i) ≡


() if I = ∅
c(I, i) if ‖c(I, i)‖ < 32

KEC(c(I, i)) otherwise

In a manner similar to a radix tree, when the trie is traversed from root to leaf, one may build a single key-value
pair. The key is accumulated through the traversal, acquiring a single nibble from each branch node (just as with a
radix tree). Unlike a radix tree, in the case of multiple keys sharing the same prefix or in the case of a single key having
a unique suffix, two optimising nodes are provided. Thus while traversing, one may potentially acquire multiple nibbles
from each of the other two node types, extension and leaf. There are three kinds of nodes in the trie:

Leaf: A two-item structure whose first item corresponds to the nibbles in the key not already accounted for by the
accumulation of keys and branches traversed from the root. The hex-prefix encoding method is used and the
second parameter to the function is required to be true.

Extension: A two-item structure whose first item corresponds to a series of nibbles of size greater than one that
are shared by at least two distinct keys past the accumulation of the keys of nibbles and the keys of branches
as traversed from the root. The hex-prefix encoding method is used and the second parameter to the function
is required to be false.

Branch: A 17-item structure whose first sixteen items correspond to each of the sixteen possible nibble values for
the keys at this point in their traversal. The 17th item is used in the case of this being a terminator node and
thus a key being ended at this point in its traversal.

A branch is then only used when necessary; no branch nodes may exist that contain only a single non-zero entry. We
may formally define this structure with the structural composition function c:
(181)

c(I, i) ≡



RLP

((
HP(I0[i..(‖I0‖ − 1)], true), I1

))
if ‖I‖ = 1 where ∃I : I ∈ I

RLP

((
HP(I0[i..(j − 1)], false), n(I, j)

))
if i 6= j where j = arg maxx : ∃l : ‖l‖ = x : ∀I∈I : I0[0..(x− 1)] = l

RLP

(
(u(0), u(1), ..., u(15), v)

)
otherwise where u(j) ≡ n({I : I ∈ I ∧ I0[i] = j}, i+ 1)

v =

{
I1 if ∃I : I ∈ I ∧ ‖I0‖ = i

() otherwise

D.1. Trie Database. Thus no explicit assumptions are made concerning what data is stored and what is not, since
that is an implementation-specific consideration; we simply define the identity function mapping the key-value set I
to a 32-byte hash and assert that only a single such hash exists for any I, which though not strictly true is accurate
within acceptable precision given the Keccak hash’s collision resistance. In reality, a sensible implementation will not
fully recompute the trie root hash for each set.

A reasonable implementation will maintain a database of nodes determined from the computation of various tries
or, more formally, it will memoise the function c. This strategy uses the nature of the trie to both easily recall the
contents of any previous key-value set and to store multiple such sets in a very efficient manner. Due to the dependency
relationship, Merkle-proofs may be constructed with an O(logN) space requirement that can demonstrate a particular
leaf must exist within a trie of a given root hash.

Appendix E. Precompiled Contracts

For each precompiled contract, we make use of a template function, ΞPRE, which implements the out-of-gas checking.

(182) ΞPRE(σ, g, I) ≡

{
(∅, 0, A0, ()) if g < gr

(σ,g − gr, A
0,o) otherwise
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The precompiled contracts each use these definitions and provide specifications for the o (the output data) and gr,
the gas requirements.

For the elliptic curve DSA recover VM execution function, we also define d to be the input data, well-defined for an
infinite length by appending zeroes as required. Importantly in the case of an invalid signature (ECDSARECOVER(h, v, r, s) =
∅), then we have no output.

ΞECREC ≡ ΞPRE where:(183)

gr = 3000(184)

|o| =

{
0 if ECDSARECOVER(h, v, r, s) = ∅
32 otherwise

(185)

if |o| = 32 :(186)

o[0..11] = 0(187)

o[12..31] = KEC
(
ECDSARECOVER(h, v, r, s)

)
[12..31] where:(188)

d[0..(|Id| − 1)] = Id(189)

d[|Id|..] = (0, 0, ...)(190)

h = d[0..31](191)

v = d[32..63](192)

r = d[64..95](193)

s = d[96..127](194)

The two hash functions, RIPEMD-160 and SHA2-256 are more trivially defined as an almost pass-through operation.
Their gas usage is dependent on the input data size, a factor rounded up to the nearest number of words.

ΞSHA256 ≡ ΞPRE where:(195)

gr = 60 + 12
⌈ |Id|

32

⌉
(196)

o[0..31] = SHA256(Id)(197)

ΞRIP160 ≡ ΞPRE where:(198)

gr = 600 + 120
⌈ |Id|

32

⌉
(199)

o[0..11] = 0(200)

o[12..31] = RIPEMD160(Id)(201)

(202)

For the purposes here, we assume we have well-defined standard cryptographic functions for RIPEMD-160 and SHA2-
256 of the form:

SHA256(i ∈ B) ≡ o ∈ B32(203)

RIPEMD160(i ∈ B) ≡ o ∈ B20(204)

Finally, the fourth contract, the identity function ΞID simply defines the output as the input:

ΞID ≡ ΞPRE where:(205)

gr = 15 + 3
⌈ |Id|

32

⌉
(206)

o = Id(207)

Appendix F. Signing Transactions

The method of signing transactions is similar to the ‘Electrum style signatures’ as defined by Arnaud et al. [2017],
heading “Managing styles with Radium” in the bullet point list. This method utilises the SECP-256k1 curve as described
by Courtois et al. [2014], and is implemented similarly to as described by Gura et al. [2004] on p. 9 of 15, para. 3.

It is assumed that the sender has a valid private key pr, which is a randomly selected positive integer (represented as
a byte array of length 32 in big-endian form) in the range [1, secp256k1n− 1].

We assert the functions ECDSAPUBKEY, ECDSARECOVER and ECDSASIGN. These are formally defined in the literature, e.g.
by Johnson et al. [2001].

ECDSAPUBKEY(pr ∈ B32) ≡ pu ∈ B64(208)

e ≡ h(T )(209)

ECDSASIGN(e ∈ B32, pr ∈ B32) ≡ (v ∈ B1, r ∈ B32, s ∈ B32)(210)

ECDSARECOVER(e ∈ B32, v ∈ B1, r ∈ B32, s ∈ B32) ≡ pu ∈ B64(211)

Where pu is the public key, assumed to be a byte array of size 64 (formed from the concatenation of two positive
integers each < 2256) and pr is the private key, a byte array of size 32 (or a single positive integer in the aforementioned
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range). It is assumed that v is the ‘recovery id’, a 1 byte value specifying the sign and finiteness of the curve point; this
value is in the range of [27, 30], however we declare the upper two possibilities, representing infinite values, invalid.

We declare that a signature is invalid unless all the following conditions are true:

0 < r < secp256k1n(212)

0 < s < secp256k1n÷ 2 + 1(213)

v ∈ {27, 28}(214)

where:

secp256k1n = 115792089237316195423570985008687907852837564279074904382605163141518161494337(215)

For a given private key, pr, the Ethereum address A(pr) (a 160-bit value) to which it corresponds is defined as the
right most 160-bits of the Keccak hash of the corresponding ECDSA public key:

(216) A(pr) = B96..255
(
KEC
(
ECDSAPUBKEY(pr)

))
The message hash, h(T ), to be signed is the Keccak hash of the transaction without the latter three signature

components, formally described as Tr, Ts and Tw:

LS(T ) ≡

{
(Tn, Tp, Tg, Tt, Tv, Ti) if Tt = 0

(Tn, Tp, Tg, Tt, Tv, Td) otherwise
(217)

h(T ) ≡ KEC(LS(T ))(218)

The signed transaction G(T, pr) is defined as:

G(T, pr) ≡ T except:(219)

(Tw, Tr, Ts) = ECDSASIGN(h(T ), pr)(220)

Where the output of ECDSASIGN is also defined previously. Thus:

Tw = v(221)

Tr = r(222)

Ts = s(223)

We may then define the sender function S of the transaction as:

(224) S(T ) ≡ B96..255

(
KEC
(
ECDSARECOVER(h(T ), Tw, Tr, Ts)

))
The assertion that the sender of a signed transaction equals the address of the signer should be self-evident:

(225) ∀T : ∀pr : S(G(T, pr)) ≡ A(pr)
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Appendix G. Fee Schedule

The fee schedule G is a tuple of 31 scalar values corresponding to the relative costs, in gas, of a number of abstract
operations that a transaction may effect.

Name Value Description*

Gzero 0 Nothing is paid for operations of the set Wzero.
Gbase 2 This is the amount of gas to pay for operations of the set Wbase.
Gverylow 3 This is the amount of gas to pay for operations of the set Wverylow.
Glow 5 This is the amount of gas to pay for operations of the set Wlow.
Gmid 8 This is the amount of gas to pay for operations of the set Wmid.
Ghigh 10 This is the amount of gas to pay for operations of the set Whigh.
Gextcode 700 This is the amount of gas to pay for operations of the set Wextcode.
Gbalance 400 This is the amount of gas to pay for a BALANCE operation.
Gsload 200 This is paid for an SLOAD operation.
Gjumpdest 1 This is paid for a JUMPDEST operation.
Gsset 20000 This is paid for an SSTORE operation when the storage value is set to non-zero from zero.
Gsreset 5000 This is the amount for an SSTORE operation when the storage value’s zeroness remains un-

changed or is set to zero.
Rsclear 15000 This is the refund given (added into the refund counter) when the storage value is set to zero

from non-zero.
Rselfdestruct 24000 This is the refund given (added into the refund counter) for self-destructing an account.
Gselfdestruct 5000 This is the amount of gas to pay for a SELFDESTRUCT operation.
Gcreate 32000 This is paid for a CREATE operation.
Gcodedeposit 200 This is paid per byte for a CREATE operation to succeed in placing code into the state.
Gcall 700 This is paid for a CALL operation.
Gcallvalue 9000 This is paid for a non-zero value transfer as part of the CALL operation.
Gcallstipend 2300 This is a stipend for the called contract subtracted from Gcallvalue for a non-zero value transfer.

Gnewaccount 25000 This is paid for a CALL or for a SELFDESTRUCT operation which creates an account.
Gexp 10 This is a partial payment for an EXP operation.
Gexpbyte 50 This is a partial payment when multiplied by dlog256(exponent)e for the EXP operation.
Gmemory 3 This is paid for every additional word when expanding memory.
Gtxcreate 32000 This is paid by all contract-creating transactions after the Homestead transition.
Gtxdatazero 4 This is paid for every zero byte of data or code for a transaction.
Gtxdatanonzero 68 This is paid for every non-zero byte of data or code for a transaction.
GGtransaction 21000 This is paid for every transaction.
Glog 375 This is a partial payment for a LOG operation.
Glogdata 8 This is paid for each byte in a LOG operation’s data.
Glogtopic 375 This is paid for each topic of a LOG operation.
Gsha3 30 This is paid for each SHA3 operation.
Gsha3word 6 This is paid for each word (rounded up) for input data to a SHA3 operation.
Gcopy 3 This is a partial payment for *COPY operations, multiplied by the number of words copied,

rounded up.
Gblockhash 20 This is a payment for a BLOCKHASH operation.

Appendix H. Virtual Machine Specification

When interpreting 256-bit binary values as integers, the representation is big-endian.
When a 256-bit machine datum is converted to and from a 160-bit address or hash, the rightwards (low-order for BE)

20 bytes are used and the left most 12 are discarded or filled with zeroes, thus the integer values (when the bytes are
interpreted as big-endian) are equivalent.

H.1. Gas Cost. The general gas cost function, C, is defined as:
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(226)

C(σ,µ, I) ≡ Cmem(µ′i)−Cmem(µi)+



CSSTORE(σ,µ) if w = SSTORE

Gexp if w = EXP ∧ µs[1] = 0

Gexp +Gexpbyte × (1 + blog256(µs[1])c) if w = EXP ∧ µs[1] > 0

Gverylow +Gcopy × dµs[2]÷ 32e if w = CALLDATACOPY ∨ CODECOPY

Gextcode +Gcopy × dµs[3]÷ 32e if w = EXTCODECOPY

Glog +Glogdata × µs[1] if w = LOG0

Glog +Glogdata × µs[1] +Glogtopic if w = LOG1

Glog +Glogdata × µs[1] + 2Glogtopic if w = LOG2

Glog +Glogdata × µs[1] + 3Glogtopic if w = LOG3

Glog +Glogdata × µs[1] + 4Glogtopic if w = LOG4

CCALL(σ,µ) if w = CALL ∨ CALLCODE ∨ DELEGATECALL

CSELFDESTRUCT(σ,µ) if w = SELFDESTRUCT

Gcreate if w = CREATE

Gsha3 +Gsha3wordds[1]÷ 32e if w = SHA3

Gjumpdest if w = JUMPDEST

Gsload if w = SLOAD

Gzero if w ∈Wzero

Gbase if w ∈Wbase

Gverylow if w ∈Wverylow

Glow if w ∈Wlow

Gmid if w ∈Wmid

Ghigh if w ∈Whigh

Gextcode if w ∈Wextcode

Gbalance if w = BALANCE

Gblockhash if w = BLOCKHASH

(227) w ≡

{
Ib[µpc] if µpc < ‖Ib‖
STOP otherwise

where:

(228) Cmem(a) ≡ Gmemory · a+
⌊ a2

512

⌋
with CCALL, CSELFDESTRUCT and CSSTORE as specified in the appropriate section below. We define the following subsets

of instructions:
Wzero = {STOP, RETURN}
Wbase = {ADDRESS, ORIGIN, CALLER, CALLVALUE, CALLDATASIZE, CODESIZE, GASPRICE, COINBASE,

TIMESTAMP, NUMBER, DIFFICULTY, GASLIMIT, POP, PC, MSIZE, GAS}
Wverylow = {ADD, SUB, NOT, LT, GT, SLT, SGT, EQ, ISZERO, AND, OR, XOR, BYTE, CALLDATALOAD,

MLOAD, MSTORE, MSTORE8, PUSH*, DUP*, SWAP*}
Wlow = {MUL, DIV, SDIV, MOD, SMOD, SIGNEXTEND}
Wmid = {ADDMOD, MULMOD, JUMP}
Whigh = {JUMPI}
Wextcode = {EXTCODESIZE}
Note the memory cost component, given as the product of Gmemory and the maximum of 0 & the ceiling of the number

of words in size that the memory must be over the current number of words, µi in order that all accesses reference valid
memory whether for read or write. Such accesses must be for non-zero number of bytes.

Referencing a zero length range (e.g. by attempting to pass it as the input range to a CALL) does not require memory
to be extended to the beginning of the range. µ′i is defined as this new maximum number of words of active memory;
special-cases are given where these two are not equal.

Note also that Cmem is the memory cost function (the expansion function being the difference between the cost before
and after). It is a polynomial, with the higher-order coefficient divided and floored, and thus linear up to 724B of memory
used, after which it costs substantially more.

While defining the instruction set, we defined the memory-expansion for range function, M , thus:

(229) M(s, f, l) ≡

{
s if l = 0

max(s, d(f + l)÷ 32e) otherwise
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Another useful function is “all but one 64th” function L defined as:

(230) L(n) ≡ n− bn/64c

H.2. Instruction Set. As previously specified in section 9, these definitions take place in the final context there. In
particular we assume O is the EVM state-progression function and define the terms pertaining to the next cycle’s state
(σ′,µ′) such that:

(231) O(σ,µ, A, I) ≡ (σ′,µ′, A′, I) with exceptions, as noted

Here given are the various exceptions to the state transition rules given in section 9 specified for each instruction,
together with the additional instruction-specific definitions of J and C. For each instruction, also specified is α, the
additional items placed on the stack and δ, the items removed from the stack, as defined in section 9.

0s: Stop and Arithmetic Operations
All arithmetic is modulo 2256 unless otherwise noted. The zero-th power of zero 00 is defined to be one.

Value Mnemonic δ α Description

0x00 STOP 0 0 This operation halts execution.

0x01 ADD 2 1 This is the addition operation.
µ′s[0] ≡ µs[0] + µs[1]

0x02 MUL 2 1 This is the multiplication operation.
µ′s[0] ≡ µs[0]× µs[1]

0x03 SUB 2 1 This is the subtraction operation.
µ′s[0] ≡ µs[0]− µs[1]

0x04 DIV 2 1 This is the integer division operation.

µ′s[0] ≡

{
0 if µs[1] = 0

bµs[0]÷ µs[1]c otherwise

0x05 SDIV 2 1 This is the signed integer division operation (truncated).

µ′s[0] ≡


0 if µs[1] = 0

−2255 if µs[0] = −2255 ∧ µs[1] = −1

sgn(µs[0]÷ µs[1])b|µs[0]÷ µs[1]|c otherwise

Where all values are treated as two’s complement signed 256-bit integers.
Note the overflow semantic when −2255 is negated.

0x06 MOD 2 1 This is the modulo remainder operation.

µ′s[0] ≡

{
0 if µs[1] = 0

µs[0] mod µs[1] otherwise

0x07 SMOD 2 1 This is the signed modulo remainder operation.

µ′s[0] ≡

{
0 if µs[1] = 0

sgn(µs[0])(|µs[0]| mod |µs[1]|) otherwise

Where all values are treated as two’s complement signed 256-bit integers.

0x08 ADDMOD 3 1 This is the modulo addition operation.

µ′s[0] ≡

{
0 if µs[2] = 0

(µs[0] + µs[1]) mod µs[2] otherwise

All intermediate calculations of this operation are not subject to the 2256 modulo.

0x09 MULMOD 3 1 This is the modulo multiplication operation.

µ′s[0] ≡

{
0 if µs[2] = 0

(µs[0]× µs[1]) mod µs[2] otherwise

All intermediate calculations of this operation are not subject to the 2256 modulo.

0x0a EXP 2 1 This is the exponential operation.

µ′s[0] ≡ µs[0]µs[1]

0x0b SIGNEXTEND 2 1 Extend the length of a two’s complement signed integer.

∀i ∈ [0..255] : µ′s[0]i ≡

{
µs[1]t if i 6 t where t = 256− 8(µs[0] + 1)

µs[1]i otherwise

µs[x]i gives the ith bit (counting from zero) of µs[x]
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10s: Comparison & Bitwise Logic Operations
Value Mnemonic δ α Description

0x10 LT 2 1 This is the less-than comparison.

µ′s[0] ≡

{
1 if µs[0] < µs[1]

0 otherwise

0x11 GT 2 1 This is the greater-than comparison.

µ′s[0] ≡

{
1 if µs[0] > µs[1]

0 otherwise

0x12 SLT 2 1 This is the signed less-than comparison.

µ′s[0] ≡

{
1 if µs[0] < µs[1]

0 otherwise

Where all values are treated as two’s complement signed 256-bit integers.

0x13 SGT 2 1 This is the signed greater-than comparison.

µ′s[0] ≡

{
1 if µs[0] > µs[1]

0 otherwise

Where all values are treated as two’s complement signed 256-bit integers.

0x14 EQ 2 1 This is the equality comparison.

µ′s[0] ≡

{
1 if µs[0] = µs[1]

0 otherwise

0x15 ISZERO 1 1 This is the logical negation operation, also called the logical complement or the NOT
operation.

µ′s[0] ≡

{
1 if µs[0] = 0

0 otherwise

0x16 AND 2 1 This is the bitwise AND operation.
∀i ∈ [0..255] : µ′s[0]i ≡ µs[0]i ∧ µs[1]i

0x17 OR 2 1 This is the bitwise OR operation.
∀i ∈ [0..255] : µ′s[0]i ≡ µs[0]i ∨ µs[1]i

0x18 XOR 2 1 This is the bitwise XOR operation.
∀i ∈ [0..255] : µ′s[0]i ≡ µs[0]i ⊕ µs[1]i

0x19 NOT 1 1 This is the bitwise NOT operation.

∀i ∈ [0..255] : µ′s[0]i ≡

{
1 if µs[0]i = 0

0 otherwise

0x1a BYTE 2 1 Retrieve a single byte from a word.

∀i ∈ [0..255] : µ′s[0]i ≡

{
µs[1](i+8µs[0])

if i < 8 ∧ µs[0] < 32

0 otherwise

For the Nth byte, we count from the left (i.e. N = 0 would be the most significant in
big endian).

20s: SHA3

Value Mnemonic δ α Description

0x20 SHA3 2 1 Compute a Keccak-256 hash.
µ′s[0] ≡ Keccak(µm[µs[0] . . . (µs[0] + µs[1]− 1)])
µ′i ≡M(µi,µs[0],µs[1])
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30s: Environmental Information

Value Mnemonic δ α Description

0x30 ADDRESS 0 1 Get the address of the currently executing account.
µ′s[0] ≡ Ia

0x31 BALANCE 1 1 Get the balance of the given account.

µ′s[0] ≡

{
σ[µs[0]]b if σ[µs[0] mod 2160] 6= ∅
0 otherwise

0x32 ORIGIN 0 1 Get the address that the execution originated from.
µ′s[0] ≡ Io
This is the sender of the original transaction; it is never an account with non-
empty associated code.

0x33 CALLER 0 1 Get the caller address.
µ′s[0] ≡ Is
This is the address of the account that is directly responsible for this execution.

0x34 CALLVALUE 0 1 Get the deposited value by the instruction/transaction responsible for this exe-
cution.
µ′s[0] ≡ Iv

0x35 CALLDATALOAD 1 1 Get the input data of the current environment.
µ′s[0] ≡ Id[µs[0] . . . (µs[0] + 31)] with Id[x] = 0 if x > ‖Id‖
This pertains to the input data passed with the message call instruction or trans-
action.

0x36 CALLDATASIZE 0 1 Get the size of the input data in the current environment.
µ′s[0] ≡ ‖Id‖
This pertains to the input data passed with the message call instruction or trans-
action.

0x37 CALLDATACOPY 3 0 Copy the input data in the current environment to memory.

∀i∈{0...µs[2]−1}µ
′
m[µs[0] + i] ≡

{
Id[µs[1] + i] if µs[1] + i < ‖Id‖
0 otherwise

The additions in µs[1] + i are not subject to the 2256 modulo.
µ′i ≡M(µi,µs[0],µs[2])
This pertains to the input data passed with the message call instruction or trans-
action.

0x38 CODESIZE 0 1 Get the size of code running in the current environment.
µ′s[0] ≡ ‖Ib‖

0x39 CODECOPY 3 0 Copy code running in the current environment to memory.

∀i∈{0...µs[2]−1}µ
′
m[µs[0] + i] ≡

{
Ib[µs[1] + i] if µs[1] + i < ‖Ib‖
STOP otherwise

µ′i ≡M(µi,µs[0],µs[2])
The additions in µs[1] + i are not subject to the 2256 modulo.

0x3a GASPRICE 0 1 Get the price of gas in the current environment.
µ′s[0] ≡ Ip
This is the gas price specified by the originating transaction.

0x3b EXTCODESIZE 1 1 Get the size of an account’s code.
µ′s[0] ≡ ‖σ[µs[0] mod 2160]c‖

0x3c EXTCODECOPY 4 0 Copy an account’s code to memory.

∀i∈{0...µs[3]−1}µ
′
m[µs[1] + i] ≡

{
c[µs[2] + i] if µs[2] + i < ‖c‖
STOP otherwise

where c ≡ σ[µs[0] mod 2160]c
µ′i ≡M(µi,µs[1],µs[3])
The additions in µs[2] + i are not subject to the 2256 modulo.
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40s: Block Information

Value Mnemonic δ α Description

0x40 BLOCKHASH 1 1 Get the hash of one of the 256 most recent complete blocks.
µ′s[0] ≡ P (IHp ,µs[0], 0)
where P is the hash of a block of a particular number, up to a maximum age. 0 is left
on the stack if the looked for block number is greater than the current block number
or more than 256 blocks behind the current block.

P (h, n, a) ≡


0 if n > Hi ∨ a = 256 ∨ h = 0

h if n = Hi

P (Hp, n, a+ 1) otherwise

and we assert that the reason why the header H can be determined is because its
hash is the parent hash in the block following it.

0x41 COINBASE 0 1 Get the block’s beneficiary address.
µ′s[0] ≡ IHc

0x42 TIMESTAMP 0 1 Get the block’s timestamp.
µ′s[0] ≡ IH s

0x43 NUMBER 0 1 Get the block’s number.
µ′s[0] ≡ IH i

0x44 DIFFICULTY 0 1 Get the block’s difficulty.
µ′s[0] ≡ IHd

0x45 GASLIMIT 0 1 Get the block’s gas limit.
µ′s[0] ≡ IH l
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50s: Stack, Memory, Storage and Flow Operations

Value Mnemonic δ α Description

0x50 POP 1 0 Remove the top, first item from the stack.

0x51 MLOAD 1 1 Load the first word from memory.
µ′s[0] ≡ µm[µs[0] . . . (µs[0] + 31)]
µ′i ≡ max(µi, d(µs[0] + 32)÷ 32e)
The addition in the calculation of µ′i is not subject to the 2256 modulo.

0x52 MSTORE 2 0 Save the first word (which is the first item in the stack) to memory.
µ′m[µs[0] . . . (µs[0] + 31)] ≡ µs[1]
µ′i ≡ max(µi, d(µs[0] + 32)÷ 32e)
The addition in the calculation of µ′i is not subject to the 2256 modulo.

0x53 MSTORE8 2 0 Save the first byte to memory.
µ′m[µs[0]] ≡ (µs[1] mod 256)
µ′i ≡ max(µi, d(µs[0] + 1)÷ 32e)
The addition in the calculation of µ′i is not subject to the 2256 modulo.

0x54 SLOAD 1 1 Load the first word from storage.
µ′s[0] ≡ σ[Ia]s[µs[0]]

0x55 SSTORE 2 0 Save the first word to storage.
σ′[Ia]s[µs[0]] ≡ µs[1]

CSSTORE(σ,µ) ≡

{
Gsset if µs[1] 6= 0 ∧ σ[Ia]s[µs[0]] = 0

Gsreset otherwise

A′r ≡ Ar +

{
Rsclear if µs[1] = 0 ∧ σ[Ia]s[µs[0]] 6= 0

0 otherwise

0x56 JUMP 1 0 Alter the program counter.
JJUMP(µ) ≡ µs[0]
This has the effect of writing said value to µpc. See equation 138.

0x57 JUMPI 2 0 Conditionally alter the program counter.

JJUMPI(µ) ≡

{
µs[0] if µs[1] 6= 0

µpc + 1 otherwise

This has the effect of writing said value to µpc. See section 138.

0x58 PC 0 1 Get the value of the program counter prior to the increment corresponding to this
instruction.
µ′s[0] ≡ µpc

0x59 MSIZE 0 1 Get the size of active memory in bytes.
µ′s[0] ≡ 32µi

0x5a GAS 0 1 Get the amount of available gas, including the corresponding reduction for the cost of
this instruction.
µ′s[0] ≡ µg

0x5b JUMPDEST 0 0 Mark a valid destination for jumps.
This operation has no effect on the machine state during execution.
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60s & 70s: Push Operations

Value Mnemonic δ α Description

0x60 PUSH1 0 1 Place a 1 byte item on the stack.
µ′s[0] ≡ c(µpc + 1)

where c(x) ≡

{
Ib[x] if x < ‖Ib‖
0 otherwise

The bytes are read in line from the program code’s bytes array.
The function c ensures the bytes default to zero if they extend past the limits.
The byte is right-aligned (i.e. it takes the lowest significant place and the last, highest
address, which is the big-endian interpretation).

0x61 PUSH2 0 1 Place a 2-byte item on the stack.
µ′s[0] ≡ c

(
(µpc + 1) . . . (µpc + 2)

)
with c(x) ≡ (c(x0), ..., c(x‖x‖−1)) with c as defined as above.
Similarly, the bytes are right-aligned (i.e. they take the lowest significant place and the
last, highest address, which is the big-endian interpretation).

...
...

...
...

...

0x7f PUSH32 0 1 Place 32-byte (full word) item on stack.
µ′s[0] ≡ c

(
(µpc + 1) . . . (µpc + 32)

)
where c is defined as above.
Similarly, the bytes are right-aligned (i.e. they take the lowest significant place and the
last, highest address, which is the big-endian interpretation).

80s: Duplication Operations

Value Mnemonic δ α Description

0x80 DUP1 1 2 Duplicate the 1st stack item.
µ′s[0] ≡ µs[0]

0x81 DUP2 2 3 Duplicate the 2nd stack item.
µ′s[0] ≡ µs[1]

...
...

...
...

...

0x8f DUP16 16 17 Duplicate the 16th stack item.
µ′s[0] ≡ µs[15]

90s: Exchange Operations

Value Mnemonic δ α Description

0x90 SWAP1 2 2 Exchange the 1st and the 2nd stack items.
µ′s[0] ≡ µs[1]
µ′s[1] ≡ µs[0]

0x91 SWAP2 3 3 Exchange the 1st and the 3rd stack items.
µ′s[0] ≡ µs[2]
µ′s[2] ≡ µs[0]

...
...

...
...

...

0x9f SWAP16 17 17 Exchange the 1st and the 17th stack items.
µ′s[0] ≡ µs[16]
µ′s[16] ≡ µs[0]
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a0s: Logging Operations

For all logging operations, the state change is to append an additional log entry on to the substate’s log series:
A′l ≡ Al · (Ia, t,µm[µs[0] . . . (µs[0] + µs[1]− 1)])
and to update the memory consumption counter:
µ′i ≡M(µi,µs[0],µs[1])
The entry’s topic series, t, differs accordingly:

Value Mnemonic δ α Description

0xa0 LOG0 2 0 Append the log record with no topics.
t ≡ ()

0xa1 LOG1 3 0 Append the log record with one topic.
t ≡ (µs[2])

...
...

...
...

...

0xa4 LOG4 6 0 Append the log record with four topics.
t ≡ (µs[2],µs[3],µs[4],µs[5])
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f0s: System operations

Value Mnemonic δ α Description

0xf0 CREATE 3 1 Create a new account with associated code.
i ≡ µm[µs[1] . . . (µs[1] + µs[2]− 1)]

(σ′,µ′g, A
+) ≡

{
Λ(σ∗, Ia, Io, L(µg), Ip,µs[0], i, Ie + 1) if µs[0] 6 σ[Ia]b ∧ Ie < 1024(
σ,µg,∅

)
otherwise

σ∗ ≡ σ except σ∗[Ia]n = σ[Ia]n + 1
A′ ≡ A dA+ which implies: A′s ≡ As ∪A+

s ∧ A′l ≡ Al ·A+
l ∧ A′r ≡ Ar +A+

r

µ′s[0] ≡ x
where x = 0 if the code execution for this operation failed due to an exceptional halting:
Z(σ∗,µ, I) = > or Ie = 1024
(the maximum call depth limit is reached) or µs[0] > σ[Ia]b (the balance of the caller
is too low to fulfil the value transfer); and otherwise x = A(Ia,σ[Ia]n), the address of
the
newly created account.
µ′i ≡M(µi,µs[1],µs[2])
Thus the operand order is: value, input offset, input size.

0xf1 CALL 7 1 Message-call into an account.
i ≡ µm[µs[3] . . . (µs[3] + µs[4]− 1)]

(σ′, g′, A+,o) ≡


Θ(σ, Ia, Io, t, t,

CCALLGAS(µ), Ip,µs[2],µs[2], i, Ie + 1)

if µs[2] 6 σ[Ia]b ∧
Ie < 1024

(σ, g,∅, ()) otherwise

n ≡ min({µs[6], |o|})
µ′m[µs[5] . . . (µs[5] + n− 1)] = o[0 . . . (n− 1)]
µ′g ≡ µg + g′

µ′s[0] ≡ x
A′ ≡ A dA+

t ≡ µs[1] mod 2160

where x = 0 if the code execution for this operation failed due to an exceptional halting
Z(σ,µ, I) = > or if
µs[2] > σ[Ia]b (not enough funds) or Ie = 1024 (call depth limit reached); x = 1
otherwise.
µ′i ≡M(M(µi,µs[3],µs[4]),µs[5],µs[6])
Thus the operand order is: gas, to, value, in offset, in size, out offset, out size.
CCALL(σ,µ) ≡ CGASCAP(σ,µ) + CEXTRA(σ,µ)

CCALLGAS(σ,µ) ≡

{
CGASCAP(σ,µ) +Gcallstipend if µs[2] 6= 0

CGASCAP(σ,µ) otherwise

CGASCAP(σ,µ) ≡

{
min{L(µg − CEXTRA(σ,µ)),µs[0]} if µg ≥ CEXTRA(σ,µ)

µs[0] otherwise

CEXTRA(σ,µ) ≡ Gcall + CXFER(µ) + CNEW(σ,µ)

CXFER(µ) ≡

{
Gcallvalue if µs[2] 6= 0

0 otherwise

CNEW(σ,µ) ≡

{
Gnewaccount if σ[µs[1] mod 2160] = ∅
0 otherwise

0xf2 CALLCODE 7 1 Message-call into this account with an alternative account’s code.
Exactly equivalent to CALL except:

(σ′, g′, A+,o) ≡


Θ(σ∗, Ia, Io, Ia, t,

CCALLGAS(µ), Ip,µs[2],µs[2], i, Ie + 1)

if µs[2] 6 σ[Ia]b ∧
Ie < 1024

(σ, g,∅, ()) otherwise

Note the change in the fourth parameter to the call Θ from the 2nd stack value µs[1]
(as in CALL) to the present address Ia. This means that the recipient is in fact the
same account as at present, simply that the code is overwritten.

0xf3 RETURN 2 0 Halt execution returning output data.
HRETURN(µ) ≡ µm[µs[0] . . . (µs[0] + µs[1]− 1)]
This has the effect of halting the execution at this point with output defined.
µ′i ≡M(µi,µs[0],µs[1])
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0xf4 DELEGATECALL 6 1 Message-call into this account with an alternative account’s code, but persisting
the current values for sender and value. Compared with CALL, DELEGATECALL

takes one fewer arguments. The omitted argument is µs[2]. As a result, µs[3], µs[4],
µs[5] and µs[6] in the definition of CALL should respectively be replaced with µs[2],
µs[3], µs[4] and µs[5]. Otherwise it is exactly equivalent to CALL except:

(σ′, g′, A+,o) ≡


Θ(σ∗, Is, Io, Ia, t,

µs[0], Ip, 0, Iv, i, Ie + 1)
if Iv 6 σ[Ia]b ∧ Ie < 1024

(σ, g,∅, ()) otherwise

Note the changes (in addition to that of the fourth parameter) to the second and
ninth parameters to the call Θ. This means that the recipient is in fact the same
account as at present, simply that the code is overwritten and the context is almost
entirely identical.

0xfe INVALID ∅ ∅ Designated invalid instruction.

0xff SELFDESTRUCT 1 0 Halt execution and register account for later deletion.
A′s ≡ As ∪ {Ia}
σ′[µs[0] mod 2160]b ≡ σ[µs[0] mod 2160]b + σ[Ia]b
σ′[Ia]b ≡ 0

A′r ≡ Ar +

{
Rselfdestruct if Ia /∈ As

0 otherwise

CSELFDESTRUCT(σ,µ) ≡ Gselfdestruct +

{
Gnewaccount if σ[µs[0] mod 2160] = ∅
0 otherwise

Appendix I. Genesis Block

The genesis block is 15 items, and is specified thus:

(232)
((

0256, KEC
(
RLP
(
()
))
, 0160, stateRoot, 0, 0, 02048, 2

17, 0, 0, 3141592, time, 0, 0256, KEC
(
(42)

))
, (), ()

)
Where 0256 refers to the parent hash, a 256-bit hash which is all zeroes; 0160 refers to the beneficiary address, a 160-bit

hash which is all zeroes; 02048 refers to the log bloom, a 2048-bit sequence of all zeros; 217 refers to the difficulty; the
transaction trie root, receipt trie root, gas used, block number and extradata are all 0 (listed in the order of decimal
zeros in the above sequence), being equivalent to the empty byte array. The sequences of both ommers and transactions
are empty and represented by (). KEC

(
(42)

)
refers to the Keccak hash of a byte array of length one whose first and only

byte is of value 42, used for the nonce. KEC
(
RLP
(
()
))

value refers to the hash of the ommer lists in RLP, both empty
lists.

The proof-of-concept series includes a development premine, making the state root hash some value stateRoot. Also
time will be set to the initial timestamp of the genesis block. The latest documentation should be consulted for those
values.

Appendix J. Ethash

J.1. Definitions. We employ the following definitions:

Name Value Description

Jwordbytes 4 This is the bytes in a word.
Jdatasetinit 230 This is the bytes in the dataset at genesis.
Jdatasetgrowth 223 This is the dataset growth per epoch.
Jcacheinit 224 This is the bytes in the cache at genesis.
Jcachegrowth 217 This is the cache growth per epoch.
Jepoch 30000 This is the blocks per epoch.
Jmixbytes 128 This is the mix length in bytes.
Jhashbytes 64 This is the hash length in bytes.
Jparents 256 This is the number of parents of each dataset element.
Jcacherounds 3 This is the number of rounds in cache production.
Jaccesses 64 This is the number of accesses in a hashimoto loop.

J.2. Size of dataset and cache. The size for Ethash’s cache c ∈ B and dataset d ∈ B depend on the epoch, which in
turn depends on the block number.

(233) Eepoch(Hi) =

⌊
Hi

Jepoch

⌋
The size of the dataset growth is Jdatasetgrowth bytes, and the size of the cache growth is Jcachegrowth bytes, where the
growth of each occurs every epoch. In order to avoid regularity leading to cyclic behavior, the size must be a prime
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number. Therefore the size is reduced by a multiple of Jmixbytes, for the dataset, and Jhashbytes for the cache. Let
dsize = ‖d‖ be the size of the dataset. Which is calculated using:

(234) dsize = Eprime(Jdatasetinit + Jdatasetgrowth · Eepoch − Jmixbytes, Jmixbytes)

The size of the cache, csize, is calculated using

(235) csize = Eprime(Jcacheinit + Jcachegrowth · Eepoch − Jhashbytes, Jhashbytes)

(236) Eprime(x, y) =

{
x if x/y ∈ P
Eprime((x− 1) · y, y) otherwise

J.3. Dataset generation. In order the generate the dataset we need the cache c, which is an array of bytes. It depends
on the cache size csize and the seed hash s ∈ B32.

J.3.1. Seed hash. The seed hash is different for every epoch. For the first epoch it is the Keccak-256 hash of a series of
32 bytes of zeros. For every other epoch it is always the Keccak-256 hash of the previous seed hash:

(237) s = Cseedhash(Hi)

(238) Cseedhash(Hi) =

{
KEC(032) if Eepoch(Hi) = 0

KEC(Cseedhash(Hi − Jepoch)) otherwise

With 032 being 32 bytes of zeros.

J.3.2. Cache. The cache production process involves using the seed hash to first sequentially fill up csize bytes of memory,
then performing Jcacherounds passes of the RandMemoHash algorithm created by Lerner [2014]. The initial cache c′, being
an array of arrays of single bytes, will be constructed as follows.

We define the array ci, consisting of 64 single bytes, as the ith element of the initial cache:

(239) ci =

{
KEC512(s) if i = 0

KEC512(ci−1) otherwise

Therefore c′ can be defined as

(240) c′[i] = ci ∀ i < n

(241) n =

⌊
csize

Jhashbytes

⌋
The cache is calculated by performing Jcacherounds rounds of the RandMemoHash algorithm to the inital cache c′:

(242) c = Ecacherounds(c
′, Jcacherounds)

(243) Ecacherounds(x, y) =


x if y = 0

ERMH(x) if y = 1

Ecacherounds(ERMH(x), y − 1) otherwise

Where a single round modifies each subset of the cache as follows:

(244) ERMH(x) =
(
Ermh(x, 0), Ermh(x, 1), ..., Ermh(x, n− 1)

)
(245) Ermh(x, i) = KEC512(x′[(i− 1 + n) mod n]⊕ x′[x′[i][0] mod n])

with x′ = x except x′[j] = Ermh(x, j) ∀ j < i

J.3.3. Full dataset calculation. Essentially, we combine data from Jparents pseudorandomly selected cache nodes, and
hash that to compute the dataset. The entire dataset is then generated by a number of items, each Jhashbytes bytes in
size:

(246) d[i] = Edatasetitem(c, i) ∀ i <

⌊
dsize

Jhashbytes

⌋
In order to calculate the single item we use an algorithm inspired by the FNV hash (Fowler et al. [1991]) in some cases
as a non-associative substitute for XOR.

(247) EFNV(x,y) = (x · (0x01000193⊕ y)) mod 232

The single item of the dataset can now be calculated as:

(248) Edatasetitem(c, i) = Eparents(c, i,−1,∅)

(249) Eparents(c, i, p,m) =

{
Eparents(c, i, p+ 1, Emix(m, c, i, p+ 1)) if p < Jparents − 2

Emix(m, c, i, p+ 1) otherwise



ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER EIP-150 REVISION (96131ca - 2017-10-19) 34

(250) Emix(m, c, i, p) =

{
KEC512(c[i mod csize]⊕ i) if p = 0

EFNV

(
m, c[EFNV(i⊕ p,m[p mod bJhashbytes/Jwordbytesc]) mod csize]

)
otherwise

J.4. Proof-of-work function. Essentially, we maintain a “mix” Jmixbytes bytes wide, and repeatedly sequentially fetch
Jmixbytes bytes from the full dataset and use the EFNV function to combine it with the mix. Jmixbytes bytes of sequential
access are used so that each round of the algorithm always fetches a full page from RAM, minimizing translation lookaside
buffer misses which ASICs would theoretically be able to avoid.

If the output of this algorithm is below the desired target, then the nonce is valid. Note that the extra application
of KEC at the end ensures that there exists an intermediate nonce which can be provided to prove that at least a small
amount of work was done; this quick outer PoW verification can be used for anti-DDoS purposes. It also serves to
provide statistical assurance that the result is an unbiased, 256 bit number.

The PoW-function returns an array with the compressed mix as its first item and the Keccak-256 hash of the
concatenation of the compressed mix with the seed hash as the second item:
(251)
PoW(Hn, Hn,d) = {mc(KEC(RLP(LH(Hn))), Hn,d), KEC(sh(KEC(RLP(LH(Hn))), Hn) + mc(KEC(RLP(LH(Hn))), Hn,d))}

With Hn being the hash of the header without the nonce. The compressed mix mc is obtained as follows:

(252) mc(h,n,d) = Ecompress(Eaccesses(d,

nmix∑
i=0

sh(h,n), sh(h,n),−1),−4)

The seed hash being:

(253) sh(h,n) = KEC512(h + Erevert(n))

Erevert(n) returns the reverted bytes sequence of the nonce n:

(254) Erevert(n)[i] = n[‖n‖ − i]
We note that the “+”-operator between two byte sequences results in the concatenation of both sequences.

The dataset d is obtained as described in section J.3.3.
The number of replicated sequences in the mix is:

(255) nmix =

⌊
Jmixbytes

Jhashbytes

⌋
In order to add random dataset nodes to the mix, the Eaccesses function is used:

(256) Eaccesses(d,m, s, i) =

{
Emixdataset(d,m, s, i) if i = Jaccesses − 2

Eaccesses(Emixdataset(d,m, s, i), s, i+ 1) otherwise

(257) Emixdataset(d,m, s, i) = EFNV(m, Enewdata(d,m, s, i)

Enewdata returns an array with nmix elements:
(258)

Enewdata(d,m, s, i)[j] = d[EFNV(i⊕ s[0],m[i mod

⌊
Jmixbytes

Jwordbytes

⌋
]) mod

⌊
dsize

Jhashbytes
nmix

⌋
· nmix + j] ∀ j < nmix

The mix is compressed as follows:

(259) Ecompress(m, i) =

{
m if i > ‖m‖ − 8

Ecompress(EFNV(EFNV(EFNV(m[i+ 4],m[i+ 5]),m[i+ 6]),m[i+ 7]), i+ 8) otherwise

Appendix K. List of mathematical symbols

Symbol Latex Command Description∨
\bigvee This is the least upper bound, supremum, or join of all elements operated on. Thus it is

the greatest element of such elements (Davey and Priestley [2002]).
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