From 162b5a0143203fc73a12fa3da32ebcc6602a1606 Mon Sep 17 00:00:00 2001 From: James Ray <16969914+jamesray1@users.noreply.github.com> Date: Thu, 8 Feb 2018 15:13:06 +1100 Subject: [PATCH] \hyperlink{rlp}{RLP} etc. and grammar --- Paper.tex | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/Paper.tex b/Paper.tex index 63f02da4..41860e28 100644 --- a/Paper.tex +++ b/Paper.tex @@ -679,12 +679,12 @@ \section{Contract Creation}\label{ch:create}\hypertarget{endow}{} (\boldsymbol{\sigma}', g', A, z, \mathbf{o}) \equiv \Lambda(\boldsymbol{\sigma}, s, o, g, p, v, \mathbf{i}, e, w) \end{equation} -The address of the new account is defined as being the rightmost 160 bits of the Keccak hash of the RLP encoding of the structure containing only the sender and the nonce. Thus we define the resultant address for the new account $a$: +The address of the new account is defined as being the rightmost 160 bits of the Keccak hash of the \hyperlink{rlp}{RLP} encoding of the structure containing only the sender and the \hyperlink{account nonce}{account nonce}. Thus we define the resultant address for the new account $a$: \begin{equation} a \equiv \mathcal{B}_{96..255}\Big(\mathtt{\tiny KEC}\Big(\mathtt{\tiny RLP}\big(\;(s, \boldsymbol{\sigma}[s]_{\mathrm{n}} - 1)\;\big)\Big)\Big) \end{equation} -where $\mathtt{\tiny KEC}$ is the Keccak 256-bit hash function, $\mathtt{\tiny RLP}$ is the RLP encoding function, $\mathcal{B}_{a..b}(X)$ evaluates to binary value containing the bits of indices in the range $[a, b]$ of the binary data $X$ and $\boldsymbol{\sigma}[x]$ is the address state of $x$ or $\varnothing$ if none exists. Note we use one fewer than the sender's nonce value; we assert that we have incremented the sender account's nonce prior to this call, and so the value used is the sender's nonce at the beginning of the responsible transaction or VM operation. +where $\mathtt{\tiny KEC}$ is the Keccak 256-bit hash function, $\mathtt{\tiny RLP}$ is the RLP encoding function, $\mathcal{B}_{a..b}(X)$ evaluates to a binary value containing the bits of indices in the range $[a, b]$ of the binary data $X$, and $\boldsymbol{\sigma}[x]$ is the address state of $x$, or $\varnothing$ if none exists. Note we use one fewer than the sender's nonce value; we assert that we have incremented the sender account's nonce prior to this call, and so the value used is the sender's nonce at the beginning of the responsible transaction or VM operation. The account's nonce is initially defined as one, the balance as the value passed, the storage as empty and the code hash as the Keccak 256-bit hash of the empty string; the sender's balance is also reduced by the value passed. Thus the mutated state becomes $\boldsymbol{\sigma}^*$: \begin{equation}