diff --git a/.github/workflows/release.yml b/.github/workflows/release.yml index c5cc33596..4ef94ab47 100644 --- a/.github/workflows/release.yml +++ b/.github/workflows/release.yml @@ -10,10 +10,14 @@ jobs: steps: - name: Checkout uses: actions/checkout@v4 + - name: Set up Python + uses: actions/setup-python@v5 + with: + python-version: "3.12" - name: Install dependencies - run: python3 -m pip --break-system-packages install flit + run: python -um pip install flit - name: Build package - run: python3 -m flit build + run: python -um flit build - name: Publish package to PyPI uses: pypa/gh-action-pypi-publish@v1.1.0 with: diff --git a/.github/workflows/test.yaml b/.github/workflows/test.yaml index 2a4109bba..937ddc46e 100644 --- a/.github/workflows/test.yaml +++ b/.github/workflows/test.yaml @@ -19,15 +19,19 @@ jobs: steps: - name: Checkout uses: actions/checkout@v4 + - name: Set up Python + uses: actions/setup-python@v5 + with: + python-version: "3.12" - name: Install build dependencies - run: python3 -m pip install --break-system-packages flit + run: python -um pip install flit - name: Build package id: build run: | # To make the wheels reproducible, set the timestamp of the (files in # the) generated wheels to the date of the commit. export SOURCE_DATE_EPOCH=`git show -s --format=%ct` - python3 -m flit build + python -um flit build echo wheel=`echo dist/*.whl` >> $GITHUB_OUTPUT - name: Upload package artifacts uses: actions/upload-artifact@v4 @@ -181,12 +185,16 @@ jobs: steps: - name: Checkout uses: actions/checkout@v4 + - name: Set up Python + uses: actions/setup-python@v5 + with: + python-version: "3.12" - name: Install dependencies run: | - python3 -um pip install --break-system-packages setuptools wheel - python3 -um pip install --break-system-packages --upgrade --upgrade-strategy eager .[docs] + python -um pip install setuptools wheel + python -um pip install --upgrade --upgrade-strategy eager .[docs] - name: Build docs - run: python3 -m sphinx -n -W --keep-going docs build/sphinx/html + run: python -um sphinx -n -W --keep-going docs build/sphinx/html build-and-test-container-image: name: Build container image needs: build-python-package diff --git a/examples/adaptivity.py b/examples/adaptivity.py index 9716cfee2..71d468e1c 100644 --- a/examples/adaptivity.py +++ b/examples/adaptivity.py @@ -69,10 +69,10 @@ def main(etype: str = 'square', ns.du = 'u - uexact' sqr = domain.boundary['corner'].integral('u^2 dS' @ ns, degree=degree*2) - cons = System(sqr, trial='u').optimize(droptol=1e-15) + cons = System(sqr, trial='u').solve_constraints(droptol=1e-15) sqr = domain.boundary.integral('du^2 dS' @ ns, degree=7) - cons = System(sqr, trial='u').optimize(droptol=1e-15, constrain=cons) + cons = System(sqr, trial='u').solve_constraints(droptol=1e-15, constrain=cons) res = domain.integral('∇_k(v) ∇_k(u) dV' @ ns, degree=degree*2) args = System(res, trial='u', test='v').solve(constrain=cons) diff --git a/examples/cahnhilliard.py b/examples/cahnhilliard.py index 4f21df762..7d55fdfde 100644 --- a/examples/cahnhilliard.py +++ b/examples/cahnhilliard.py @@ -114,7 +114,7 @@ def main(size: Length = parse('10cm'), For this reason, the `stab` enum in this script defines the stabilizing term `δψ`, rather than `f`, allowing Nutils to construct the residuals through - automatic differentiation using the `optimize` method. + symbolic differentiation. Parameters ---------- diff --git a/examples/cylinderflow.py b/examples/cylinderflow.py index 0821a9e7d..7e6ec1b01 100644 --- a/examples/cylinderflow.py +++ b/examples/cylinderflow.py @@ -129,7 +129,7 @@ def main(nelems: int = 99, ns.uwall_i = 'rotation ε_ij x_j' # clockwise positive rotation sqr = domain.boundary['inflow'].integral('Σ_i (u_i - uinf_i)^2 dS' @ ns, degree=degree*2) - cons = System(sqr, trial='u').optimize(droptol=1e-15) # constrain inflow boundary to unit horizontal flow + cons = System(sqr, trial='u').solve_constraints(droptol=1e-15) # constrain inflow boundary to unit horizontal flow sqr = domain.integral('(.5 Σ_i (u_i - uinf_i)^2 - ∇_k(u_k) p) dV' @ ns, degree=degree*2) args = System(sqr, trial='u,p').solve(constrain=cons) # set initial condition to potential flow diff --git a/examples/drivencavity.py b/examples/drivencavity.py index 0009bbf22..c110924af 100644 --- a/examples/drivencavity.py +++ b/examples/drivencavity.py @@ -118,12 +118,12 @@ def main(nelems: int = 32, # strong enforcement of non-penetrating boundary conditions sqr = domain.boundary.integral('(u_k n_k)^2 dS' @ ns, degree=degree*2) - cons = System(sqr, trial='u').optimize(droptol=1e-15) + cons = System(sqr, trial='u').solve_constraints(droptol=1e-15) if strongbc: # strong enforcement of tangential boundary conditions sqr = domain.boundary.integral('(ε_ij n_i (u_j - uwall_j))^2 dS' @ ns, degree=degree*2) - tcons = System(sqr, trial='u').optimize(droptol=1e-15) + tcons = System(sqr, trial='u').solve_constraints(droptol=1e-15) cons['u'] = numpy.choose(numpy.isnan(cons['u']), [cons['u'], tcons['u']]) else: # weak enforcement of tangential boundary conditions via Nitsche's method diff --git a/examples/elasticity.py b/examples/elasticity.py index 0091e42e9..7cc82879a 100644 --- a/examples/elasticity.py +++ b/examples/elasticity.py @@ -51,7 +51,7 @@ def main(nelems: int = 24, ns.q_i = '-δ_i1' sqr = domain.boundary['top'].integral('u_k u_k dS' @ ns, degree=degree*2) - cons = System(sqr, trial='u').optimize(droptol=1e-15) + cons = System(sqr, trial='u').solve_constraints(droptol=1e-15) # solve for equilibrium configuration energy = domain.integral('(E - u_i q_i) dV' @ ns, degree=degree*2) diff --git a/examples/finitestrain.py b/examples/finitestrain.py index 7cf4de8f0..058d5bd6b 100644 --- a/examples/finitestrain.py +++ b/examples/finitestrain.py @@ -58,7 +58,7 @@ def main(nelems: int = 20, sqr = domain.boundary['left'].integral('u_k u_k dS' @ ns, degree=degree*2) sqr += domain.boundary['right'].integral('((u_0 - X_1 sin(2 angle) - cos(angle) + 1)^2 + (u_1 - X_1 (cos(2 angle) - 1) + sin(angle))^2) dS' @ ns, degree=degree*2) - cons = System(sqr, trial='u').optimize(droptol=1e-15) + cons = System(sqr, trial='u').solve_constraints(droptol=1e-15) energy = domain.integral('energy dV' @ ns, degree=degree*2) args0 = System(energy, trial='u').solve(constrain=cons) diff --git a/examples/laplace.py b/examples/laplace.py index d9d75284f..0c52ddfbc 100644 --- a/examples/laplace.py +++ b/examples/laplace.py @@ -72,7 +72,7 @@ def main(nelems: int = 10, sqr = domain.boundary['left'].integral('u^2 dS' @ ns, degree=degree*2) sqr += domain.boundary['top'].integral('(u - cosh(1) sin(x_0))^2 dS' @ ns, degree=degree*2) - cons = System(sqr, trial='u').optimize(droptol=1e-15) + cons = System(sqr, trial='u').solve_constraints(droptol=1e-15) # The unconstrained entries of `u` are to be such that the residual # evaluates to zero for all possible values of `v`. The resulting array `u` diff --git a/examples/platewithhole.py b/examples/platewithhole.py index 088b61ef2..5f8845858 100644 --- a/examples/platewithhole.py +++ b/examples/platewithhole.py @@ -137,10 +137,10 @@ def main(mode: Union[FCM, NURBS] = NURBS(), log.info('hole radius exact up to L2 error {:.2e}'.format(radiuserr)) sqr = topo.boundary['sym'].integral('(u_i n_i)^2 dS' @ ns, degree=degree*2) - cons = System(sqr, trial='u').optimize(droptol=1e-15) + cons = System(sqr, trial='u').solve_constraints(droptol=1e-15) sqr = topo.boundary['far'].integral('du_k du_k dS' @ ns, degree=20) - cons = System(sqr, trial='u').optimize(droptol=1e-15, constrain=cons) + cons = System(sqr, trial='u').solve_constraints(droptol=1e-15, constrain=cons) res = topo.integral('∇_j(v_i) σ_ij dV' @ ns, degree=degree*2) args = System(res, trial='u', test='v').solve(constrain=cons) diff --git a/examples/poisson.py b/examples/poisson.py index c88c8d188..10081a1d0 100644 --- a/examples/poisson.py +++ b/examples/poisson.py @@ -25,7 +25,7 @@ def main(nelems: int = 32): J = function.J(x) sqr = topo.boundary.integral(u**2 * J, degree=2) - cons = System(sqr, trial='u').optimize(droptol=1e-12) + cons = System(sqr, trial='u').solve_constraints(droptol=1e-12) energy = topo.integral((g @ g / 2 - u) * J, degree=1) args = System(energy, trial='u').solve(constrain=cons) diff --git a/nutils/__init__.py b/nutils/__init__.py index 27809816f..6a3bf251f 100644 --- a/nutils/__init__.py +++ b/nutils/__init__.py @@ -1,4 +1,4 @@ 'Numerical Utilities for Finite Element Analysis' -__version__ = version = '9a37' +__version__ = version = '9a38' version_name = 'jook-sing' diff --git a/nutils/evaluable.py b/nutils/evaluable.py index 8d4355173..2eff1a2e5 100644 --- a/nutils/evaluable.py +++ b/nutils/evaluable.py @@ -691,16 +691,21 @@ def _compile_with_out(self, builder, out, out_block_id, mode): return NotImplemented +def assert_equal(a, b): + return a if a == b else AssertEqual(a, b) + + +def assert_equal_tuple(A, B): + assert len(A) == len(B) + return tuple(map(assert_equal, A, B)) + + class AssertEqual(Array): 'Confirm arrays equality at runtime' a: Array b: Array - @classmethod - def map(cls, A, B): - return tuple(map(cls, A, B)) - def __post_init__(self): assert not _certainly_different(self.a, self.b) @@ -710,7 +715,7 @@ def dtype(self): @cached_property def shape(self): - return self.map(self.a.shape, self.b.shape) + return assert_equal_tuple(self.a.shape, self.b.shape) def _intbounds_impl(self): lowera, uppera = self.a._intbounds_impl() @@ -718,8 +723,15 @@ def _intbounds_impl(self): return max(lowera, lowerb), min(uppera, upperb) def _simplified(self): - if self.a == self.b: - return self.a + unique = [] + queue = [self.a, self.b] + for item in queue: + if isinstance(item, AssertEqual): + queue.append(item.a) + queue.append(item.b) + elif item not in unique: + unique.append(item) + return functools.reduce(AssertEqual, unique) @property def dependencies(self): @@ -1442,7 +1454,7 @@ def dtype(self): @cached_property def shape(self): func1, func2 = self.funcs - return AssertEqual.map(func1.shape, func2.shape) + return assert_equal_tuple(func1.shape, func2.shape) @property def _factors(self): @@ -1629,7 +1641,7 @@ def dtype(self): @cached_property def shape(self): func1, func2 = self.funcs - return AssertEqual.map(func1.shape, func2.shape) + return assert_equal_tuple(func1.shape, func2.shape) @cached_property def _inflations(self): @@ -1775,7 +1787,7 @@ def __post_init__(self): for idx, arg in zip(self.args_idx, self.args): for i, length in zip(idx, arg.shape): n = lengths.get(i) - lengths[i] = length if n is None else AssertEqual(length, n) + lengths[i] = length if n is None else assert_equal(length, n) try: self.shape = tuple(lengths[i] for i in self.out_idx) except KeyError(e): @@ -2101,7 +2113,7 @@ class Pointwise(Array): def __post_init__(self): self.shape = self.dependencies[0].shape for dep in self.dependencies[1:]: - self.shape = AssertEqual.map(self.shape, dep.shape) + self.shape = assert_equal_tuple(self.shape, dep.shape) def _newargs(self, *args): ''' diff --git a/nutils/solver.py b/nutils/solver.py index 20760e383..b7838b850 100644 --- a/nutils/solver.py +++ b/nutils/solver.py @@ -237,14 +237,22 @@ def __init__(self, residual: Union[evaluable.AsEvaluableArray,Tuple[evaluable.As self.trialshapes = dict(zip(self.trials, evaluable.compile(tuple(argobjects[t].shape for t in self.trials))())) self.__trial_offsets = numpy.cumsum([0] + [numpy.prod(self.trialshapes[t], dtype=int) for t in self.trials]) - value = functional if self.is_symmetric else evaluable.constant(numpy.nan) + value = functional if self.is_symmetric else () block_vector = [evaluable._flat(res) for res in residuals] block_matrix = [[evaluable._flat(evaluable.derivative(res, argobjects[t]).simplified, 2) for t in self.trials] for res in block_vector] - self.__eval = evaluable.compile((tuple(tuple(map(evaluable.as_csr, row)) for row in block_matrix), tuple(block_vector), value)) self.is_linear = not any(arg.name in self.trials for row in block_matrix for col in row for arg in col.arguments) - self.is_constant = self.is_linear and not any(col.arguments for row in block_matrix for col in row) - self.__matrix_cache = None + if self.is_linear: + z = {t: evaluable.zeros_like(argobjects[t]) for t in self.trials} + block_vector = [evaluable.replace_arguments(vector, z).simplified for vector in block_vector] + if self.is_symmetric: + value = evaluable.replace_arguments(value, z).simplified + + self.__eval = evaluable.compile((tuple(tuple(map(evaluable.as_csr, row)) for row in block_matrix), tuple(block_vector), value)) + + self.is_constant_matrix = self.is_linear and not any(col.arguments for row in block_matrix for col in row) + self.is_constant = self.is_constant_matrix and not any(vec.arguments for vec in block_vector) and not (self.is_symmetric and value.arguments) + self.__mat_vec_val = None, None, None @property def __nutils_hash__(self): @@ -252,14 +260,24 @@ def __nutils_hash__(self): @log.withcontext def assemble(self, arguments: Dict[str, numpy.ndarray]): - mat_blocks, vec_blocks, val = self.__eval(**arguments) - vec = numpy.concatenate(vec_blocks) - if self.__matrix_cache is not None: - mat = self.__matrix_cache - else: - mat = matrix.assemble_block_csr(mat_blocks) + mat, vec, val = self.__mat_vec_val + if vec is None: + mat_blocks, vec_blocks, maybe_val = self.__eval(**arguments) + if mat is None: + mat = matrix.assemble_block_csr(mat_blocks) + vec = numpy.concatenate(vec_blocks) + val = self.dtype(maybe_val) if self.is_symmetric else None if self.is_constant: - self.__matrix_cache = mat + vec.flags.writeable = False + self.__mat_vec_val = mat, vec, val + elif self.is_constant_matrix: + self.__mat_vec_val = mat, None, None + if self.is_linear: + x = numpy.concatenate([arguments[t].ravel() for t in self.trials]) + matx = mat @ x + if self.is_symmetric: + val += vec @ x + .5 * (x @ matx) # val(x) = val(0) + vec(0) x + .5 x mat x + vec = vec + matx # vec(x) = vec(0) + mat x return mat, vec, val def prepare_solution_vector(self, arguments: Dict[str, numpy.ndarray], constrain: Dict[str, numpy.ndarray]): @@ -389,14 +407,22 @@ def step(self, *, timestep: float, timetarget: str, historysuffix: str, argument @cache.function @log.withcontext - def optimize(self, *, droptol: Optional[float], arguments: Dict[str, numpy.ndarray] = {}, constrain: Dict[str, numpy.ndarray] = {}, linargs: Dict[str, Any] = {}) -> Tuple[Dict[str, numpy.ndarray], float]: - '''Optimize singular system. + def solve_constraints(self, *, droptol: Optional[float], arguments: Dict[str, numpy.ndarray] = {}, constrain: Dict[str, numpy.ndarray] = {}, linargs: Dict[str, Any] = {}) -> Tuple[Dict[str, numpy.ndarray], float]: + '''Solve for Dirichlet constraints. - This method is similar to ``solve``, but specific to symmetric linear - systems, with the added ability to solve a limited class of singular - systems. It does so by isolating the subset of arguments that - contribute to the functional and solving the corresponding submatrix. - The remaining argument values are returned as NaN (not a number). + This method is similar to ``solve``, but with two key differences. + + The method is limited to linear systems, but adds the ability to solve + a limited class of singular systems. It does so by isolating the subset + of arguments that contribute (up to droptol) to the residual, and + solving the corresponding submatrix. The remaining argument values are + returned as NaN (not a number). + + The second key difference with solve is that the returned dictionary + is augmented with the remaining _constrain_ items, rather than those + from _arguments_, reflecting the method's main utility of forming + Dirichlet constraints. This allows for the aggregation of constraints + by calling the method multiple times in series. Parameters ---------- @@ -414,19 +440,23 @@ def optimize(self, *, droptol: Optional[float], arguments: Dict[str, numpy.ndarr participate in the optimization problem. ''' - log.info(f'optimizing for argument {self._trial_info} with drop tolerance {droptol:.0e}') + log.info(f'{"optimizing" if self.is_symmetric else "solving"} for argument {self._trial_info} with drop tolerance {droptol:.0e}') if not self.is_linear: - raise SolverError('system is not linear') - if not self.is_symmetric: - raise SolverError('system is not symmetric') + raise ValueError('system is not linear') x, iscons, arguments = self.prepare_solution_vector(arguments, constrain) jac, res, val = self.assemble(arguments) - nosupp = ~jac.rowsupp(droptol) - dx = -jac.solve(res, constrain=iscons | nosupp, **_copy_with_defaults(linargs, symmetric=self.is_symmetric)) - log.info(f'optimal value: {val+.5*(res@dx):.1e}') # val(x + dx) = val(x) + res(x) dx + .5 dx jac dx + data, colidx, _ = jac.export('csr') + mycons = numpy.ones_like(iscons) + mycons[colidx[abs(data) > droptol]] = False # unconstrain dofs with nonzero columns + mycons |= iscons + dx = -jac.solve(res, constrain=mycons, **_copy_with_defaults(linargs, symmetric=self.is_symmetric)) + if self.is_symmetric: + log.info(f'optimal value: {val+.5*(res@dx):.1e}') # val(x + dx) = val(x) + res(x) dx + .5 dx jac dx x += dx - x[nosupp & ~iscons] = numpy.nan - return arguments + for trial, i, j in zip(self.trials, self.__trial_offsets, self.__trial_offsets[1:]): + log.info(f'constrained {j-i-mycons[i:j].sum()} degrees of freedom of {trial}') + x[mycons & ~iscons] = numpy.nan + return dict(constrain, **{t: arguments[t] for t in self.trials}) @dataclass(eq=True, frozen=True) @@ -492,11 +522,11 @@ class Minimize: failrelax: float = -10. def __str__(self): - return 'newton' + return 'minimize' def __call__(self, system, *, arguments: Dict[str, numpy.ndarray] = {}, constrain: Dict[str, numpy.ndarray] = {}, linargs: Dict[str, Any] = {}) -> System.MethodIter: if not system.is_symmetric: - raise SolverError('problem is not symmetric') + raise ValueError('problem is not symmetric') x, iscons, arguments = system.prepare_solution_vector(arguments, constrain) jac, res, val = system.assemble(arguments) linargs = _copy_with_defaults(linargs, rtol=1-3, symmetric=system.is_symmetric) @@ -889,7 +919,7 @@ def optimize(target, functional: evaluable.asarray, *, tol: float = 0., argument raise TypeError('unexpected keyword arguments: {}'.format(', '.join(kwargs))) system = System(functional, *_split_trial_test(target)) if droptol is not None: - return system.optimize(arguments=arguments, constrain=constrain or {}, linargs=linargs, droptol=droptol) + return system.solve_constraints(arguments=arguments, constrain=constrain or {}, linargs=linargs, droptol=droptol) method = None if system.is_linear else Newton() if linesearch is None else LinesearchNewton(strategy=linesearch, relax0=relax0, failrelax=failrelax) return system.solve(arguments=arguments, constrain=constrain or {}, linargs=linargs, method=method, tol=tol) diff --git a/tests/test_solver.py b/tests/test_solver.py index 110c97db3..2841768ce 100644 --- a/tests/test_solver.py +++ b/tests/test_solver.py @@ -333,6 +333,125 @@ def test_cranknicolson(self): self.check(solver.cranknicolson, theta=0.5) +class System(TestCase): + + def test_constant(self): + domain, geom = mesh.rectilinear([9]) + u = function.dotarg('u', domain.basis('std', 1)) + v = function.dotarg('v', domain.basis('std', 1)) + f = domain.integral(v * (1 + u) * function.J(geom), degree=2) + sys = solver.System(f, trial='u', test='v') + self.assertTrue(sys.is_linear) + self.assertFalse(sys.is_symmetric) + self.assertTrue(sys.is_constant) + self.assertTrue(sys.is_constant_matrix) + self.assertEqual(sys.trialshapes, {'u': (10,)}) + args = {'u': numpy.arange(10, dtype=float)} + mat, vec, val = sys.assemble(arguments=args) + self.assertAllAlmostEqual(mat.export('dense'), function.eval(f.derivative('v').derivative('u'), **args)) + self.assertAllAlmostEqual(vec, f.derivative('v').eval(**args)) + self.assertAlmostEqual(val, None) + newargs = {'u': numpy.ones(10)} + mat_, vec_, val_ = sys.assemble(arguments=newargs) + self.assertIs(mat_, mat) + self.assertAllAlmostEqual(vec_, f.derivative('v').eval(**newargs)) + + def test_constant_symmetric(self): + domain, geom = mesh.rectilinear([9]) + u = function.dotarg('u', domain.basis('std', 1)) + f = domain.integral((1 + u - u**2) * function.J(geom), degree=2) + sys = solver.System(f, trial='u') + self.assertTrue(sys.is_linear) + self.assertTrue(sys.is_symmetric) + self.assertTrue(sys.is_constant) + self.assertTrue(sys.is_constant_matrix) + self.assertEqual(sys.trialshapes, {'u': (10,)}) + args = {'u': numpy.arange(10, dtype=float)} + mat, vec, val = sys.assemble(arguments=args) + self.assertAllAlmostEqual(mat.export('dense'), function.eval(f.derivative('u').derivative('u'), **args)) + self.assertAllAlmostEqual(vec, f.derivative('u').eval(**args)) + self.assertAlmostEqual(val, f.eval(**args)) + newargs = {'u': numpy.ones(10)} + mat_, vec_, val_ = sys.assemble(arguments=newargs) + self.assertIs(mat_, mat) + self.assertAllAlmostEqual(vec_, f.derivative('u').eval(**newargs)) + self.assertAlmostEqual(val_, f.eval(**newargs)) + + def test_constant_matrix(self): + domain, geom = mesh.rectilinear([9]) + u = function.dotarg('u', domain.basis('std', 1)) + v = function.dotarg('v', domain.basis('std', 1)) + t = function.dotarg('t') + f = domain.integral(v * (t + u) * function.J(geom), degree=2) + sys = solver.System(f, trial='u', test='v') + self.assertTrue(sys.is_linear) + self.assertFalse(sys.is_symmetric) + self.assertFalse(sys.is_constant) + self.assertTrue(sys.is_constant_matrix) + self.assertEqual(sys.trialshapes, {'u': (10,)}) + args = {'u': numpy.arange(10, dtype=float), 't': 5} + mat, vec, val = sys.assemble(arguments=args) + self.assertAllAlmostEqual(mat.export('dense'), function.eval(f.derivative('v').derivative('u'), **args)) + self.assertAllAlmostEqual(vec, f.derivative('v').eval(**args)) + self.assertAlmostEqual(val, None) + newargs = {'u': numpy.ones(10), 't': -1} + mat_, vec_, val_ = sys.assemble(arguments=newargs) + self.assertIs(mat_, mat) + self.assertAllAlmostEqual(vec_, f.derivative('v').eval(**newargs)) + + def test_linear(self): + domain, geom = mesh.rectilinear([9]) + u = function.dotarg('u', domain.basis('std', 1)) + v = function.dotarg('v', domain.basis('std', 1)) + t = function.dotarg('t') + f = domain.integral(v * (u * t + 1) * function.J(geom), degree=2) + sys = solver.System(f, trial='u', test='v') + self.assertTrue(sys.is_linear) + self.assertFalse(sys.is_symmetric) + self.assertFalse(sys.is_constant) + self.assertFalse(sys.is_constant_matrix) + self.assertEqual(sys.trialshapes, {'u': (10,)}) + args = {'u': numpy.arange(10, dtype=float), 't': 5} + mat, vec, val = sys.assemble(arguments=args) + self.assertAllAlmostEqual(mat.export('dense'), function.eval(f.derivative('v').derivative('u'), **args)) + self.assertAllAlmostEqual(vec, f.derivative('v').eval(**args)) + self.assertAlmostEqual(val, None) + + def test_nonlinear(self): + domain, geom = mesh.rectilinear([9]) + u = function.dotarg('u', domain.basis('std', 1)) + v = function.dotarg('v', domain.basis('std', 1)) + t = function.dotarg('t') + f = domain.integral(v * (u**2 + t) * function.J(geom), degree=2) + sys = solver.System(f, trial='u', test='v') + self.assertFalse(sys.is_linear) + self.assertFalse(sys.is_symmetric) + self.assertFalse(sys.is_constant) + self.assertFalse(sys.is_constant_matrix) + self.assertEqual(sys.trialshapes, {'u': (10,)}) + args = {'u': numpy.arange(10, dtype=float), 't': 5} + mat, vec, val = sys.assemble(arguments=args) + self.assertAllAlmostEqual(mat.export('dense'), function.eval(f.derivative('v').derivative('u'), **args)) + self.assertAllAlmostEqual(vec, f.derivative('v').eval(**args)) + self.assertAlmostEqual(val, None) + + def test_nonlinear_symmetric(self): + domain, geom = mesh.rectilinear([9]) + u = function.dotarg('u', domain.basis('std', 1)) + f = domain.integral(numpy.exp(u) * function.J(geom), degree=2) + sys = solver.System(f, trial='u') + self.assertFalse(sys.is_linear) + self.assertTrue(sys.is_symmetric) + self.assertFalse(sys.is_constant) + self.assertFalse(sys.is_constant_matrix) + self.assertEqual(sys.trialshapes, {'u': (10,)}) + args = {'u': numpy.arange(10, dtype=float)} + mat, vec, val = sys.assemble(arguments=args) + self.assertAllAlmostEqual(mat.export('dense'), function.eval(f.derivative('u').derivative('u'), **args)) + self.assertAllAlmostEqual(vec, f.derivative('u').eval(**args)) + self.assertAlmostEqual(val, f.eval(**args)) + + class system_finitestrain(TestCase): def setUp(self):