Skip to content

evolveDB/LearnedRewrite

Folders and files

NameName
Last commit message
Last commit date

Latest commit

e3b1de1 · Jul 1, 2023

History

14 Commits
Jun 5, 2022
Jun 5, 2022
Jun 5, 2022
Jan 4, 2023
Jun 5, 2022
Jun 5, 2022
Jul 1, 2023
Jun 7, 2022
Jun 7, 2022
Jun 5, 2022
May 27, 2022
Jun 5, 2022
Jun 5, 2022
Jun 5, 2022
Jun 5, 2022
Jun 5, 2022
Jun 5, 2022

Repository files navigation

A Demo of SQL Rewrite.


OverviewInstallationDatasetsIssuesCitation

version

What's New?

  • May 2022: First Commit

Overview

evolveRewrite is a learned SQL transformation tool, which takes as input a SQL query and corresponding statistics (e.g., schema, #-table rows), finds the optimal rewrite sequence and outputs an optimized rewritten query. Currently evolveRewrite is developled based on Calcite.

Installation

Note: 仅需要安装JAVA环境就可运行项目,早期的JDK版本在Calcite上有编码问题,所以建议使用JDK11以上版本。 点击查看安装文档

What Can You Do via evolveRewrite?

Code Usage

  • 可在Interllij IDEA等IDE中直接运行test。
  • 当前测试数据基于TPCH,如需修改为其它测试数据可修改src/main/schema.json中json格式的schema
  • 修改src/test文件中的testSql进行语句测试

demo

Use Api

项目中带了HttpServer,可直接运行nohup /root/jdk-15/bin/java -jar {{输入项目路径}}/rewriter_java.jar --server.port=6336 &,端口为6336

  • api: /rewriter POST {sql: "select....", schema: {....}}

demo

Datasets

For the online version, we support datasets with different legal schema. By default we adopt TPC-H schema in evolveRewrite.

Issues

Major improvement/enhancement in future.

  • add custom rules
  • update the RA2SQL script (e.g., avoiding useless changes from the origin SQL)
  • support cost models of mainstream databases
  • verify rewriting equivalence
  • add more rewriting information in the front-end pages
  • test under more real scenarios (welcome to contact us:))

Citation

Please cite our paper if you use SQL-Rewriter in your work

@article{DBLP:journals/pvldb/ZhouLCF21,
  author    = {Xuanhe Zhou and
               Guoliang Li and
               Chengliang Chai and
               Jianhua Feng},
  title     = {A Learned Query Rewrite System using Monte Carlo Tree Search},
  journal   = {Proc. {VLDB} Endow.},
  volume    = {15},
  number    = {1},
  pages     = {46--58},
  year      = {2021},
}

Contributors

We thank all the contributors to this project, more contributors are welcome!

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages