From 9a83ff1cfc54df8fef8e1f7c3b1483d754bb5fad Mon Sep 17 00:00:00 2001 From: Andreas Eisenbarth Date: Thu, 13 Jun 2024 23:28:16 +0200 Subject: [PATCH 1/3] Add test case for image with output metadata and image without --- tests/notebooks/metadata_image_output.ipynb | 77 +++++++++++++++++++ tests/test_render_outputs.py | 19 +++++ .../test_metadata_image_output.xml | 21 +++++ 3 files changed, 117 insertions(+) create mode 100644 tests/notebooks/metadata_image_output.ipynb create mode 100644 tests/test_render_outputs/test_metadata_image_output.xml diff --git a/tests/notebooks/metadata_image_output.ipynb b/tests/notebooks/metadata_image_output.ipynb new file mode 100644 index 00000000..a398a85b --- /dev/null +++ b/tests/notebooks/metadata_image_output.ipynb @@ -0,0 +1,77 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Output metadata" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": ["skip-execution"] + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "image/jpeg": "/9j/4RB6RXhpZgAATU0AKgAAAAgABwESAAMAAAABAAEAAAEaAAUAAAABAAAAYgEbAAUAAAABAAAAagEoAAMAAAABAAIAAAExAAIAAAAkAAAAcgEyAAIAAAAUAAAAlodpAAQAAAABAAAArAAAANgACvyAAAAnEAAK/IAAACcQQWRvYmUgUGhvdG9zaG9wIENDIDIwMTUgKE1hY2ludG9zaCkAMjAxNToxMjoxNyAxMDo1OTo0NQAAAAADoAEAAwAAAAH//wAAoAIABAAAAAEAAAFyoAMABAAAAAEAAAD+AAAAAAAAAAYBAwADAAAAAQAGAAABGgAFAAAAAQAAASYBGwAFAAAAAQAAAS4BKAADAAAAAQACAAACAQAEAAAAAQAAATYCAgAEAAAAAQAADzwAAAAAAAAASAAAAAEAAABIAAAAAf/Y/+0ADEFkb2JlX0NNAAH/7gAOQWRvYmUAZIAAAAAB/9sAhAAMCAgICQgMCQkMEQsKCxEVDwwMDxUYExMVExMYEQwMDAwMDBEMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMAQ0LCw0ODRAODhAUDg4OFBQODg4OFBEMDAwMDBERDAwMDAwMEQwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAz/wAARCABuAKADASIAAhEBAxEB/90ABAAK/8QBPwAAAQUBAQEBAQEAAAAAAAAAAwABAgQFBgcICQoLAQABBQEBAQEBAQAAAAAAAAABAAIDBAUGBwgJCgsQAAEEAQMCBAIFBwYIBQMMMwEAAhEDBCESMQVBUWETInGBMgYUkaGxQiMkFVLBYjM0coLRQwclklPw4fFjczUWorKDJkSTVGRFwqN0NhfSVeJl8rOEw9N14/NGJ5SkhbSVxNTk9KW1xdXl9VZmdoaWprbG1ub2N0dXZ3eHl6e3x9fn9xEAAgIBAgQEAwQFBgcHBgU1AQACEQMhMRIEQVFhcSITBTKBkRShsUIjwVLR8DMkYuFygpJDUxVjczTxJQYWorKDByY1wtJEk1SjF2RFVTZ0ZeLys4TD03Xj80aUpIW0lcTU5PSltcXV5fVWZnaGlqa2xtbm9ic3R1dnd4eXp7fH/9oADAMBAAIRAxEAPwDrQklCcKq2FJBPCSSFJ0gnhJK0JKUJJKWhOnAJMASToAFjZ/1jqqsdj4DW5FrTtfcdamuH0mV7f6Q9v53u9H/jUkwhKZqIt2Elz1ef1O3V+Q8eTA1g+5gCu052W0Dc71R3Fn/k2+5DiDJLBMdQXUTQo03MuZubII+k08gqaTEdNCxSUoTQipZMnSSUsmUkySn/0OuTpgnVVsLpJJ0lKAUMnKxsSsW5VrKGOMNLzG4j82to99n9hqD1PqNXTcJ+VY3e+RXRTMepa76Fc/ue31Ln/wChYuZqbdlXnKzHm7Is0Nh0AHautv0aam/mVMSZcWEz1JqI/Hyeg/bvTyfZ6rx+8K4H/gjmP/6Ks42diZLgymwGw8VuBa8/1Wu+n/1tYuNVS+tr63h7X6te2C0g9w5v0kS7DbZWQZDhq08EEatLT+a5N4tV5w49gSPFN9aOoWYmCzGocWX5xczeOW0tj7Q5v7r7d7KGf9dXHHrXTen3Nx37pbAeWNltY/l6j/wPernUM/L6je11p/T4tYxhZzucHWP+0OZ/pH+oz1G/v1qhR9W8V1L6bC51rvcbz9Pdzu/8xU0RCvX+DIIZMcBGAjxamUjt4RenofV6XrFzW1hu82Ejbtjdv3fR2bfzlDpv1k6H1DN+w41xfd/g3OYWssOriyl7vc6zaPz2V+r/AIH1Esb6vYeT0irpeQ61+OwNBcHbXO2nc3cf3f5Cfqv1Xwb8KqjBDcG/DIfg3MBmt4Pqe92tljHWe+z8/wBT9KowMetk76HoP6yzJKRNCv5fou3TDL2bfz5Yfu3N/wCk1W1l25+PRl1es6CN1ha0STA+ixv8ux3tUX9ayLJNNTamAge6bHa/5jP+imxOjHLFORBA0rd1klm09QzDq8MsHhG38WK7RksvBgFj2/SrdyB+80/nsRsLJQlHf8EiZSKZFasmTpklP//R64KShKkFVbC6cJQpMDS4B2jZ9x8B+ckh5L6yZZv623FaZrwKw2P+FuAuuP8AW9L7PUsv6wZP2fotwk7rQKmgfyj7v/A2vTY2S7MyL8+zQ5Vr7j8HuLq2/wBlmxqPXl/V7qf6rffRaA4E12nZ7gfbt9X09/8AYTwKkDRIjV03iBHEIWIkxIH94up0an7J0nEZH6Oqhrj/AJvrO/6pB+qF1+R0JuRfY62y+655LyTEu9rGz+YtoUMvpdXEte0tO391w26Fqh0/p2P0vAowccOFFQIa55lxJJse57vb7tz1GZAxlfzSIP8A0rYidR0AsV/i8Lx2XRZfRnNqdssste1rhpEH/wAxXP153VsCz0fWuoeP8G73D+z6u9rm/wBVdbgt9Wued1r3fe5y1z03EyaxXkVMtaOz2h2vkpY5hC4yjxBk5nHxEESMZDTR5DH+uHXqgALKXgDh9TTPzqdWit+t31ozLxi4Yqdc4wG1Ujd/Wc611ra2t/Psf9BdL/zY6BvDjhVz4e4D+03ftcr/ANlxMHH2Y1TKK2g+2toaNP6v0v7aJzYumMX4gU14453rM/Td5rN6p9mpys/I22WsLaWNbIa5zRtOyfo1+r6tn/FofQ/rFlX9QZh9QxxUckb6HtkaxLWua/d7XbVmdUeR07GvLd7G3Cx7TwZ9Qt3fydxTfVtuX1Tr2Pk3HfXhu9R7wAGtgO9Klsfv2O/rpwxx9uRI769q+VlzzkMogCf0fSB+j+kbd63L611HreT03peU3Brwa2vfbsD3WPdt2s2un9Hud/6sWn9X+q5eb9oxs6puP1bprw28M0Y4O3enY1v5u/a5lrPofzdlf85srxvrR9Xuo+vd1Tpm97clgZmUVSLIaG+9rWHddXZsZ6lTPerP1I6XnYrMrMzKn0nJbXXU22RY5rC5znOY/wB9df7nqe+z+omSEDisEbRr9/j/AEmLiPFVHr/d4ej2bXB7Wvbw4SPmkh4jpx2nwLx9znIqiYzoSOyyZOmRU//S66E4CSSqs7IKl13JOL0PPvBh4ocxh/l2xjM/6VyuBYX14v8AT6NTROuVlVtI8W1NfkO/8EbSjEWQuiLlEeLz3S2bag1o+iIC5bOxfs+ZfjPbAa4lo7Frvewj+TtXZ9Ka0tH4K7m9AwOpVtGSwh7B7LGHa9s8jd+7/IepIZhCZvYtrmYCcQNiNnz+va1hYyGNI922RwfJdr9TMG3F6VkZjmuY3McH0Mcea2A7Ldv0f0tj3+m78+lGwfqZ0aiwWWMfkkahtztzNON9LQxlm3+WtvNJZiWGddhM/JLPzAnHhjeu5LBixGMhZB6aPOdEBdi0k9xJ+a3W+0DwCwOiWj7NRH7jfyLce520Qwkd+FXn8xbeXWQTscDMoHU3xh2dvaUmPAA3S3ycIVTreSG4dmvLeyEdwFsY+sebidMYy/CZVY0Pa5oBaRIIK3+mY+PRSGUMaysSQGQBP530VgdHJbRSeJY1Gqx+pdIyLMjp1Zy8G8my7D3Fr2PPudZivdLfd/olNIWSLrsDsV2XYGtx03evpcNnw4VRnVsWzrFnSK5ffTT9oueI2s9zGCp//Cu9VtixR9chaPs3T8DIf1B/trruaGsa46B9m0lz2Nd/Jr/4SytaXQOh/snGtfcRdn5TjZl38lzid/ptd/o9x3/8ammHCDxaH9EftavXR2sP+Yjwe78s/wAUZAwz7LB4On7x/wCYo6A2DHL5isUycpIof//T69JJOqrYXC5L/GFfsd0iomA92S/5tbjsb/1bl1oXEf4yKrMnL6dTV9Oqi20ax9OxrP8A0Qn4vnF+P5KF2DEWRqy6Y5oY1w1HdaL+sdOx8rHw7r2tyckgVV6mSTtZuc0Fte93tr9RcLjdY6hgE1X1y4NOzcIM/ml0e17Fu/U7Axcu2zqeRkjJ6m4ucaiWudW0+z1HVfS3fm/6Oir9Gjkw1xSkdOnD1bJzxmQBv+lxfoj/AL57Fha4SDwhdQsa3AusOobW4/gUZlLQ0AOI+EKj9Ya3fsnL2OOlL/Dw8VXA1HmqNcQ83D6LhOGNUJEbG6Ok9l0FWMAwRtafIH+JWf0yG0sH8kAfILUaeAjORJNsuWRuuzJtVgmXjXyWN9YcY/ZjsdOhnTVbjeNeVm9bH6o8eX8EoGpBZjJ4w4HSB+q0eTR+C6OjVrZ08Byuc6O4HErHhP5St7Hs9oaDqB+Cdk+Y+bLPWI8nUrdrzM6fIdkYFcXn/XDN6Xnvx7+ngUhx9F5sLXWNH+ErJY+r3fuK9j/X7ob6nPvbkY72N3bHMD9x/crtqc5n/b3oI+zkoERsHt6mpKUbIvUd/T/0np8VzfWtrn3bWPjyl7JVlc39U8nqHUczM6xl0/ZqMqmurApPIpY91rrXcb/UfZ/O/wCF/wAH+h9NdIlXDp2YpGzfdZJOmSU//9Tr04TBOqrOyC4360P9T6yhn+gxaGfN5tv/APRrV2LZOg5OgXBZ2QMr6wdRyG6sOQamf1aQ3Fb/AOeU6PXyZsAuf0c36yYz3YVdrBIqdNnkCNs/2XIn1Z+r+B1KqvN9fIpvoeW2ClwYQ4fQdVbt9Svew7lvVYlWRS6uwB1djS1zT3B0crXQukY/ScM41Bc/c71LHvPuLjp/V2tYic1YzEEiV/gvyYx7nFodNj+867Ce/Kp9dn9i5sf6B/5FcaRCp9d/5Gzf+If/ANSVXjuPNEfmHmHN6b/NM8gIWmD37cLK6a4ekyfALUadBPxRO5ZsnzFsNPZZ/WBOM8eM/kV31ADE8qh1gxiPB7g/kSjuFkPnDzXSRZ6DC3UbnCO/0neC3KBaPBsCQC4z/wBFZPQHA40HX3P/AOqcuio9sdhyIUmU+o+bMZekeQed+tHUX0NqwmUm7JytWNeze0Aez9HU5rn2X7voLFo6XkdP6t05ufWGNssousZaW6Mfbs2WVe73e33sXoX2eh+QzIfWw21z6dhaC9s/T9Ow+5m7+Ssj6x/Vmzq+TjZOM9tVzHNZc95OtQdvljfo+pU4vd/wqkxZogCB9IN8UmpliZHi3quGP5vT0h4yRvMkhzT8Yn/vqtKqX/p2P4mwaf1jt/78rJUMdlk9/opMkmTlr//V64JwmCdVWda/Jbh412Y76OLU+4/9ba6wf9Jq846Qw7Bv1edXHzOr/wDpLtvrQbR9XOoek3cTW0WeVRfX9os/s1blx3S43/PXwT4/LJs8tuS9HhtG1saDwV4TEKnifRH+vZWpdt4nVVyvnu2GOlVOt69Hzv8AiLP+pKPUXQNPyKr1sv8A2TmwNPQs/wCpKMdx5rAPUPNzuntAqZqeAVoB54PGuqzOnmw1s0jQROvZXnetIiPMnT8m9GW5Z8g13bVRP8VR60SKHjxB80Wn7UHEEA6nWT/cqvWDYMZ0iTGvA/8AMko/MFsRUxqHE6A6KTrw94/6UrpaXAgeELl+h7tjo/0j/wAq6bFnaJ4T83zHzSfkj5Butj+5HYJ17qrWTuOmistJnjw5UTDJnZo0O/dLXfcQVecNT8VRtj03btBBn7ldE7Ru0dAkecap0erFPosUykUyesf/2f/tGdpQaG90b3Nob3AgMy4wADhCSU0EBAAAAAAAPxwBWgADGyVHHAFaAAMbJUccAVoAAxslRxwBWgADGyVHHAFaAAMbJUccAVoAAxslRxwBWgADGyVHHAIAAAIAAAA4QklNBCUAAAAAABCQadng9equgfESqXOgJChYOEJJTQQ6AAAAAADlAAAAEAAAAAEAAAAAAAtwcmludE91dHB1dAAAAAUAAAAAUHN0U2Jvb2wBAAAAAEludGVlbnVtAAAAAEludGUAAAAAQ2xybQAAAA9wcmludFNpeHRlZW5CaXRib29sAAAAAAtwcmludGVyTmFtZVRFWFQAAAABAAAAAAAPcHJpbnRQcm9vZlNldHVwT2JqYwAAAAwAUAByAG8AbwBmACAAUwBlAHQAdQBwAAAAAAAKcHJvb2ZTZXR1cAAAAAEAAAAAQmx0bmVudW0AAAAMYnVpbHRpblByb29mAAAACXByb29mQ01ZSwA4QklNBDsAAAAAAi0AAAAQAAAAAQAAAAAAEnByaW50T3V0cHV0T3B0aW9ucwAAABcAAAAAQ3B0bmJvb2wAAAAAAENsYnJib29sAAAAAABSZ3NNYm9vbAAAAAAAQ3JuQ2Jvb2wAAAAAAENudENib29sAAAAAABMYmxzYm9vbAAAAAAATmd0dmJvb2wAAAAAAEVtbERib29sAAAAAABJbnRyYm9vbAAAAAAAQmNrZ09iamMAAAABAAAAAAAAUkdCQwAAAAMAAAAAUmQgIGRvdWJAb+AAAAAAAAAAAABHcm4gZG91YkBv4AAAAAAAAAAAAEJsICBkb3ViQG/gAAAAAAAAAAAAQnJkVFVudEYjUmx0AAAAAAAAAAAAAAAAQmxkIFVudEYjUmx0AAAAAAAAAAAAAAAAUnNsdFVudEYjUHhsQFIAAAAAAAAAAAAKdmVjdG9yRGF0YWJvb2wBAAAAAFBnUHNlbnVtAAAAAFBnUHMAAAAAUGdQQwAAAABMZWZ0VW50RiNSbHQAAAAAAAAAAAAAAABUb3AgVW50RiNSbHQAAAAAAAAAAAAAAABTY2wgVW50RiNQcmNAWQAAAAAAAAAAABBjcm9wV2hlblByaW50aW5nYm9vbAAAAAAOY3JvcFJlY3RCb3R0b21sb25nAAAAAAAAAAxjcm9wUmVjdExlZnRsb25nAAAAAAAAAA1jcm9wUmVjdFJpZ2h0bG9uZwAAAAAAAAALY3JvcFJlY3RUb3Bsb25nAAAAAAA4QklNA+0AAAAAABAASAAAAAEAAQBIAAAAAQABOEJJTQQmAAAAAAAOAAAAAAAAAAAAAD+AAAA4QklNBA0AAAAAAAQAAAAeOEJJTQQZAAAAAAAEAAAAHjhCSU0D8wAAAAAACQAAAAAAAAAAAQA4QklNJxAAAAAAAAoAAQAAAAAAAAABOEJJTQP1AAAAAABIAC9mZgABAGxmZgAGAAAAAAABAC9mZgABAKGZmgAGAAAAAAABADIAAAABAFoAAAAGAAAAAAABADUAAAABAC0AAAAGAAAAAAABOEJJTQP4AAAAAABwAAD/////////////////////////////A+gAAAAA/////////////////////////////wPoAAAAAP////////////////////////////8D6AAAAAD/////////////////////////////A+gAADhCSU0EAAAAAAAAAgApOEJJTQQCAAAAAACGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4QklNBDAAAAAAAEMBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBADhCSU0ELQAAAAAABgABAAAANjhCSU0ECAAAAAAATAAAAAEAAAJAAAACQAAAAAwAAAAAAQAAQgAB//+cAAAAACJAAQAAH8AB///KQAD//84AAP///EAAAAAAAAAAAC5AAP//x4AB///9gAE4QklNBB4AAAAAAAQAAAAAOEJJTQQaAAAAAANjAAAABgAAAAAAAAAAAAAA/gAAAXIAAAAXADEAMgAuADEANQAtAGgAbwBtAGUAcABhAGcAZQAtAGMAdQByAGEAdABpAG8AbgAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAABcgAAAP4AAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAQAAAAAAAG51bGwAAAACAAAABmJvdW5kc09iamMAAAABAAAAAAAAUmN0MQAAAAQAAAAAVG9wIGxvbmcAAAAAAAAAAExlZnRsb25nAAAAAAAAAABCdG9tbG9uZwAAAP4AAAAAUmdodGxvbmcAAAFyAAAABnNsaWNlc1ZsTHMAAAABT2JqYwAAAAEAAAAAAAVzbGljZQAAABIAAAAHc2xpY2VJRGxvbmcAAAAAAAAAB2dyb3VwSURsb25nAAAAAAAAAAZvcmlnaW5lbnVtAAAADEVTbGljZU9yaWdpbgAAAA1hdXRvR2VuZXJhdGVkAAAAAFR5cGVlbnVtAAAACkVTbGljZVR5cGUAAAAASW1nIAAAAAZib3VuZHNPYmpjAAAAAQAAAAAAAFJjdDEAAAAEAAAAAFRvcCBsb25nAAAAAAAAAABMZWZ0bG9uZwAAAAAAAAAAQnRvbWxvbmcAAAD+AAAAAFJnaHRsb25nAAABcgAAAAN1cmxURVhUAAAAAQAAAAAAAG51bGxURVhUAAAAAQAAAAAAAE1zZ2VURVhUAAAAAQAAAAAABmFsdFRhZ1RFWFQAAAABAAAAAAAOY2VsbFRleHRJc0hUTUxib29sAQAAAAhjZWxsVGV4dFRFWFQAAAABAAAAAAAJaG9yekFsaWduZW51bQAAAA9FU2xpY2VIb3J6QWxpZ24AAAAHZGVmYXVsdAAAAAl2ZXJ0QWxpZ25lbnVtAAAAD0VTbGljZVZlcnRBbGlnbgAAAAdkZWZhdWx0AAAAC2JnQ29sb3JUeXBlZW51bQAAABFFU2xpY2VCR0NvbG9yVHlwZQAAAABOb25lAAAACXRvcE91dHNldGxvbmcAAAAAAAAACmxlZnRPdXRzZXRsb25nAAAAAAAAAAxib3R0b21PdXRzZXRsb25nAAAAAAAAAAtyaWdodE91dHNldGxvbmcAAAAAADhCSU0EKAAAAAAADAAAAAI/8AAAAAAAADhCSU0EFAAAAAAABAAAANc4QklNBAwAAAAAD1gAAAABAAAAoAAAAG4AAAHgAADOQAAADzwAGAAB/9j/7QAMQWRvYmVfQ00AAf/uAA5BZG9iZQBkgAAAAAH/2wCEAAwICAgJCAwJCQwRCwoLERUPDAwPFRgTExUTExgRDAwMDAwMEQwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwBDQsLDQ4NEA4OEBQODg4UFA4ODg4UEQwMDAwMEREMDAwMDAwRDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDP/AABEIAG4AoAMBIgACEQEDEQH/3QAEAAr/xAE/AAABBQEBAQEBAQAAAAAAAAADAAECBAUGBwgJCgsBAAEFAQEBAQEBAAAAAAAAAAEAAgMEBQYHCAkKCxAAAQQBAwIEAgUHBggFAwwzAQACEQMEIRIxBUFRYRMicYEyBhSRobFCIyQVUsFiMzRygtFDByWSU/Dh8WNzNRaisoMmRJNUZEXCo3Q2F9JV4mXys4TD03Xj80YnlKSFtJXE1OT0pbXF1eX1VmZ2hpamtsbW5vY3R1dnd4eXp7fH1+f3EQACAgECBAQDBAUGBwcGBTUBAAIRAyExEgRBUWFxIhMFMoGRFKGxQiPBUtHwMyRi4XKCkkNTFWNzNPElBhaisoMHJjXC0kSTVKMXZEVVNnRl4vKzhMPTdePzRpSkhbSVxNTk9KW1xdXl9VZmdoaWprbG1ub2JzdHV2d3h5ent8f/2gAMAwEAAhEDEQA/AOtCSUJwqrYUkE8JJIUnSCeEkrQkpQkkpaE6cAkwBJOgAWNn/WOqqx2PgNbkWtO19x1qa4fSZXt/pD2/ne70f+NSTCEpmoi3YSXPV5/U7dX5Dx5MDWD7mAK7TnZbQNzvVHcWf+Tb7kOIMksEx1BdRNCjTcy5m5sgj6TTyCppMR00LFJShNCKlkydJJSyZSTJKf/Q65OmCdVWwukknSUoBQycrGxKxblWsoY4w0vMbiPza2j32f2GoPU+o1dNwn5Vjd75FdFMx6lrvoVz+57fUuf/AKFi5mpt2VecrMebsizQ2HQAdq62/Rpqb+ZUxJlxYTPUmoj8fJ6D9u9PJ9nqvH7wrgf+COY//oqzjZ2JkuDKbAbDxW4Frz/Va76f/W1i41VL62vreHtfq17YLSD3Dm/SRLsNtlZBkOGrTwQRq0tP5rk3i1XnDj2BI8U31o6hZiYLMahxZfnFzN45bS2PtDm/uvt3soZ/11ccetdN6fc3HfulsB5Y2W1j+XqP/A96udQz8vqN7XWn9Pi1jGFnO5wdY/7Q5n+kf6jPUb+/WqFH1bxXUvpsLnWu9xvP093O7/zFTREK9f4MghkxwEYCPFqZSO3hF6eh9XpesXNbWG7zYSNu2N2/d9HZt/OUOm/WTofUM37DjXF93+Dc5hayw6uLKXu9zrNo/PZX6v8AgfUSxvq9h5PSKul5DrX47A0Fwdtc7adzdx/d/kJ+q/VfBvwqqMENwb8Mh+DcwGa3g+p73a2WMdZ77Pz/AFP0qjAx62Tvoeg/rLMkpE0K/l+i7dMMvZt/Plh+7c3/AKTVbWXbn49GXV6zoI3WFrRJMD6LG/y7He1Rf1rIsk01NqYCB7psdr/mM/6KbE6McsU5EEDSt3WSWbT1DMOrwyweEbfxYrtGSy8GAWPb9Kt3IH7zT+exGwslCUd/wSJlIpkVqyZOmSU//9HrgpKEqQVVsLpwlCkwNLgHaNn3HwH5ySHkvrJlm/rbcVpmvArDY/4W4C64/wBb0vs9Sy/rBk/Z+i3CTutAqaB/KPu/8Da9NjZLszIvz7NDlWvuPwe4urb/AGWbGo9eX9Xup/qt99FoDgTXadnuB9u31fT3/wBhPAqQNEiNXTeIEcQhYiTEgf3i6nRqfsnScRkfo6qGuP8Am+s7/qkH6oXX5HQm5F9jrbL7rnkvJMS72sbP5i2hQy+l1cS17S07f3XDboWqHT+nY/S8CjBxw4UVAhrnmXEkmx7nu9vu3PUZkDGV/NIg/wDStiJ1HQCxX+LwvHZdFl9Gc2p2yyy17WuGkQf/ADFc/XndWwLPR9a6h4/wbvcP7Pq72ub/AFV1uC31a553Wvd97nLXPTcTJrFeRUy1o7PaHa+SljmELjKPEGTmcfEQRIxkNNHkMf64deqAAspeAOH1NM/Op1aK363fWjMvGLhip1zjAbVSN39ZzrXWtra38+x/0F0v/NjoG8OOFXPh7gP7Td+1yv8A2XEwcfZjVMoraD7a2ho0/q/S/tonNi6YxfiBTXjjnesz9N3ms3qn2anKz8jbZawtpY1shrnNG07J+jX6vq2f8Wh9D+sWVf1BmH1DHFRyRvoe2RrEta5r93tdtWZ1R5HTsa8t3sbcLHtPBn1C3d/J3FN9W25fVOvY+Tcd9eG71HvAAa2A70qWx+/Y7+unDHH25Ejvr2r5WXPOQyiAJ/R9IH6P6Rt3rcvrXUet5PTel5TcGvBra99uwPdY923aza6f0e53/qxaf1f6rl5v2jGzqm4/VumvDbwzRjg7d6djW/m79rmWs+h/N2V/zmyvG+tH1e6j693VOmb3tyWBmZRVIshob72tYd11dmxnqVM96s/UjpedisyszMqfScltddTbZFjmsLnOc5j/AH11/uep77P6iZIQOKwRtGv3+P8ASYuI8VUev93h6PZtcHta9vDhI+aSHiOnHafAvH3OciqJjOhI7LJk6ZFT/9LroTgJJKqzsgqXXck4vQ8+8GHihzGH+XbGMz/pXK4FhfXi/wBPo1NE65WVW0jxbU1+Q7/wRtKMRZC6IuUR4vPdLZtqDWj6IgLls7F+z5l+M9sBriWjsWu97CP5O1dn0prS0fgrub0DA6lW0ZLCHsHssYdr2zyN37v8h6khmEJm9i2uZgJxA2I2fP69rWFjIY0j3bZHB8l2v1MwbcXpWRmOa5jcxwfQxx5rYDst2/R/S2Pf6bvz6UbB+pnRqLBZYx+SRqG3O3M0430tDGWbf5a280lmJYZ12Ez8ks/MCceGN67ksGLEYyFkHpo850QF2LST3En5rdb7QPALA6JaPs1EfuN/Itx7nbRDCR34VefzFt5dZBOxwMygdTfGHZ29pSY8ADdLfJwhVOt5Ibh2a8t7IR3AWxj6x5uJ0xjL8JlVjQ9rmgFpEggrf6Zj49FIZQxrKxJAZAE/nfRWB0cltFJ4ljUarH6l0jIsyOnVnLwbybLsPcWvY8+51mK90t93+iU0hZIuuwOxXZdga3HTd6+lw2fDhVGdWxbOsWdIrl99NP2i54jaz3MYKn/8K71W2LFH1yFo+zdPwMh/UH+2uu5oaxrjoH2bSXPY138mv/hLK1pdA6H+yca19xF2flONmXfyXOJ3+m13+j3Hf/xqaYcIPFof0R+1q9dHaw/5iPB7vyz/ABRkDDPssHg6fvH/AJijoDYMcvmKxTJykih//9Pr0kk6qthcLkv8YV+x3SKiYD3ZL/m1uOxv/VuXWhcR/jIqsycvp1NX06qLbRrH07Gs/wDRCfi+cX4/koXYMRZGrLpjmhjXDUd1ov6x07HysfDuva3JySBVXqZJO1m5zQW173e2v1FwuN1jqGATVfXLg07Nwgz+aXR7XsW79TsDFy7bOp5GSMnqbi5xqJa51bT7PUdV9Ld+b/o6Kv0aOTDXFKR06cPVsnPGZAG/6XF+iP8AvnsWFrhIPCF1CxrcC6w6htbj+BRmUtDQA4j4QqP1hrd+ycvY46Uv8PDxVcDUeao1xDzcPouE4Y1QkRsbo6T2XQVYwDBG1p8gf4lZ/TIbSwfyQB8gtRp4CM5Ek2y5ZG67Mm1WCZeNfJY31hxj9mOx06GdNVuN415Wb1sfqjx5fwSgakFmMnjDgdIH6rR5NH4Lo6NWtnTwHK5zo7gcSseE/lK3sez2hoOoH4J2T5j5ss9YjydSt2vMzp8h2RgVxef9cM3pee/Hv6eBSHH0XmwtdY0f4Sslj6vd+4r2P9fuhvqc+9uRjvY3dscwP3H9yu2pzmf9vegj7OSgRGwe3qakpRsi9R39P/SenxXN9a2ufdtY+PKXslWVzf1TyeodRzMzrGXT9moyqa6sCk8ilj3Wutdxv9R9n87/AIX/AAf6H010iVcOnZikbN91kk6ZJT//1OvThME6qs7ILjfrQ/1PrKGf6DFoZ83m2/8A9GtXYtk6Dk6BcFnZAyvrB1HIbqw5BqZ/VpDcVv8A55To9fJmwC5/RzfrJjPdhV2sEip02eQI2z/ZcifVn6v4HUqq8318im+h5bYKXBhDh9B1Vu31K97DuW9ViVZFLq7AHV2NLXNPcHRytdC6Rj9JwzjUFz9zvUse8+4uOn9Xa1iJzVjMQSJX+C/JjHucWh02P7zrsJ78qn12f2Lmx/oH/kVxpEKn13/kbN/4h/8A1JVeO480R+YeYc3pv80zyAhaYPftwsrprh6TJ8AtRp0E/FE7lmyfMWw09ln9YE4zx4z+RXfUAMTyqHWDGI8HuD+RKO4WQ+cPNdJFnoMLdRucI7/Sd4LcoFo8GwJALjP/AEVk9AcDjQdfc/8A6py6Kj2x2HIhSZT6j5sxl6R5B5360dRfQ2rCZSbsnK1Y17N7QB7P0dTmufZfu+gsWjpeR0/q3Tm59YY2yyi6xlpbox9uzZZV7vd7fexehfZ6H5DMh9bDbXPp2FoL2z9P07D7mbv5KyPrH9WbOr5ONk4z21XMc1lz3k61B2+WN+j6lTi93/CqTFmiAIH0g3xSamWJkeLeq4Y/m9PSHjJG8ySHNPxif++q0qpf+nY/ibBp/WO3/vyslQx2WT3+ikySZOWv/9XrgnCYJ1VZ1r8luHjXZjvo4tT7j/1trrB/0mrzjpDDsG/V51cfM6v/AOku2+tBtH1c6h6TdxNbRZ5VF9f2iz+zVuXHdLjf89fBPj8smzy25L0eG0bWxoPBXhMQqeJ9Ef69lal23idVXK+e7YY6VU63r0fO/wCIs/6ko9RdA0/IqvWy/wDZObA09Cz/AKkox3HmsA9Q83O6e0Cpmp4BWgHng8a6rM6ebDWzSNBE69led60iI8ydPyb0ZblnyDXdtVE/xVHrRIoePEHzRaftQcQQDqdZP9yq9YNgxnSJMa8D/wAySj8wWxFTGocToDopOvD3j/pSulpcCB4QuX6Hu2Oj/SP/ACrpsWdonhPzfMfNJ+SPkG62P7kdgnXuqtZO46aKy0mePDlRMMmdmjQ790td9xBV5w1PxVG2PTdu0EGfuV0TtG7R0CR5xqnR6sU+ixTKRTJ6x//ZOEJJTQQhAAAAAABdAAAAAQEAAAAPAEEAZABvAGIAZQAgAFAAaABvAHQAbwBzAGgAbwBwAAAAFwBBAGQAbwBiAGUAIABQAGgAbwB0AG8AcwBoAG8AcAAgAEMAQwAgADIAMAAxADUAAAABADhCSU0EBgAAAAAABwAGAAAAAQEA/+Ea52h0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC8APD94cGFja2V0IGJlZ2luPSLvu78iIGlkPSJXNU0wTXBDZWhpSHpyZVN6TlRjemtjOWQiPz4gPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iQWRvYmUgWE1QIENvcmUgNS42LWMwNjcgNzkuMTU3NzQ3LCAyMDE1LzAzLzMwLTIzOjQwOjQyICAgICAgICAiPiA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPiA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIiB4bWxuczp4bXA9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC8iIHhtbG5zOmRjPSJodHRwOi8vcHVybC5vcmcvZGMvZWxlbWVudHMvMS4xLyIgeG1sbnM6cGhvdG9zaG9wPSJodHRwOi8vbnMuYWRvYmUuY29tL3Bob3Rvc2hvcC8xLjAvIiB4bWxuczp4bXBNTT0iaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wL21tLyIgeG1sbnM6c3RFdnQ9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9zVHlwZS9SZXNvdXJjZUV2ZW50IyIgeG1sbnM6c3RSZWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9zVHlwZS9SZXNvdXJjZVJlZiMiIHhtcDpDcmVhdGVEYXRlPSIyMDE1LTEwLTA4VDEyOjM4OjExLTA0OjAwIiB4bXA6TW9kaWZ5RGF0ZT0iMjAxNS0xMi0xN1QxMDo1OTo0NS0wNTowMCIgeG1wOk1ldGFkYXRhRGF0ZT0iMjAxNS0xMi0xN1QxMDo1OTo0NS0wNTowMCIgeG1wOkNyZWF0b3JUb29sPSJBZG9iZSBQaG90b3Nob3AgQ0MgMjAxNSAoTWFjaW50b3NoKSIgZGM6Zm9ybWF0PSJpbWFnZS9qcGVnIiBwaG90b3Nob3A6Q29sb3JNb2RlPSIzIiBwaG90b3Nob3A6SUNDUHJvZmlsZT0iVkEyNzAzIFNlcmllcyBDYWxpYnJhdGVkIiB4bXBNTTpJbnN0YW5jZUlEPSJ4bXAuaWlkOmUyYmQwYjU5LTU2YjEtNDNiZi1iN2UyLTMyNzQzYjFhOTNjMCIgeG1wTU06RG9jdW1lbnRJRD0iYWRvYmU6ZG9jaWQ6cGhvdG9zaG9wOjk2MWFlZWE0LWU1NjUtMTE3OC04NGExLWVmNTVlNWVmOTVhZiIgeG1wTU06T3JpZ2luYWxEb2N1bWVudElEPSJ4bXAuZGlkOjY1MjRlZTYyLTQwNDAtNDQ4Ni05NzMwLWNjNDgyZDBiNmRjNCI+IDxwaG90b3Nob3A6VGV4dExheWVycz4gPHJkZjpCYWc+IDxyZGY6bGkgcGhvdG9zaG9wOkxheWVyTmFtZT0iUG9wdWxhciBJbGx1c3RyYXRpb24gQ2F0ZWdvcmllcyIgcGhvdG9zaG9wOkxheWVyVGV4dD0iUG9wdWxhciBJbGx1c3RyYXRpb24gQ2F0ZWdvcmllcyIvPiA8cmRmOmxpIHBob3Rvc2hvcDpMYXllck5hbWU9IlBvcHVsYXIgVmVjdG9yIENhdGVnb3JpZXMiIHBob3Rvc2hvcDpMYXllclRleHQ9IlBvcHVsYXIgVmVjdG9yIENhdGVnb3JpZXMiLz4gPHJkZjpsaSBwaG90b3Nob3A6TGF5ZXJOYW1lPSJQb3B1bGFyIFBob3RvIENhdGVnb3JpZXMiIHBob3Rvc2hvcDpMYXllclRleHQ9IlBvcHVsYXIgUGhvdG8gQ2F0ZWdvcmllcyIvPiA8cmRmOmxpIHBob3Rvc2hvcDpMYXllck5hbWU9IkJpZ3N0b2NrIFBpY2tzIiBwaG90b3Nob3A6TGF5ZXJUZXh0PSJCaWdzdG9jayBQaWNrcyIvPiA8cmRmOmxpIHBob3Rvc2hvcDpMYXllck5hbWU9IldpbnRlciBDb2xsZWN0aW9uIiBwaG90b3Nob3A6TGF5ZXJUZXh0PSJXaW50ZXIgQ29sbGVjdGlvbiIvPiA8cmRmOmxpIHBob3Rvc2hvcDpMYXllck5hbWU9IkJpZ3N0b2NrIFZpZGVvIiBwaG90b3Nob3A6TGF5ZXJUZXh0PSJCaWdzdG9jayBWaWRlbyIvPiA8cmRmOmxpIHBob3Rvc2hvcDpMYXllck5hbWU9IkltYWdlcyBhbmQgVmlkZW8gZm9yIGV2ZXJ5b25lLiIgcGhvdG9zaG9wOkxheWVyVGV4dD0iSW1hZ2VzIGFuZCBWaWRlbyBmb3IgZXZlcnlvbmUuIi8+IDxyZGY6bGkgcGhvdG9zaG9wOkxheWVyTmFtZT0iT3ZlciAzMCBtaWxsaW9uIHN0b2NrIHBob3RvcywgdmlkZW9zLCBhbmQgdmVjdG9ycy4iIHBob3Rvc2hvcDpMYXllclRleHQ9Ik92ZXIgMzAgbWlsbGlvbiBzdG9jayBwaG90b3MsIHZpZGVvcywgYW5kIHZlY3RvcnMuIi8+IDwvcmRmOkJhZz4gPC9waG90b3Nob3A6VGV4dExheWVycz4gPHBob3Rvc2hvcDpEb2N1bWVudEFuY2VzdG9ycz4gPHJkZjpCYWc+IDxyZGY6bGk+MjMzOEI4RTQxMjc0MDA4QTkwQzhCRDI1NDc5NjBCQjM8L3JkZjpsaT4gPHJkZjpsaT4yREU0NDA2QzEwQjczNDIyQjRFRTZEOEIwRDMyNUZBODwvcmRmOmxpPiA8cmRmOmxpPjMxOTc2NTBFRTkzRjc5OEQ2QTJCQUYyMUFENjIyNzJCPC9yZGY6bGk+IDxyZGY6bGk+M0YyOTgxMzJFRjVERjdCRDFFN0U3OUM1MjVDMENBODY8L3JkZjpsaT4gPHJkZjpsaT41QUFBMDQ2RjFCRUQ1NTA3QjRGRTU4MkVEMTI1OTFBNDwvcmRmOmxpPiA8cmRmOmxpPjY1NjUzQUYxMEE1MUQ5MEZBMDdFQ0U2MzMyNjA4NEFBPC9yZGY6bGk+IDxyZGY6bGk+NzZFNDE3RTVFNDAxN0Q3ODU4MkI3OTFCOTYzQzlGM0I8L3JkZjpsaT4gPHJkZjpsaT44RjQwMDNDMUU1MzE4REU2MzVDODM0OTBENTE0ODMwQTwvcmRmOmxpPiA8cmRmOmxpPkExNDc0Q0I1QTEwRTM2RDQ2ODcwRjA0NDZFMDdEM0UwPC9yZGY6bGk+IDxyZGY6bGk+QTRENUQzQzczOTc4NTBERkZDQThDNjM2QTZEMkFBOUU8L3JkZjpsaT4gPHJkZjpsaT5BODE4NjdBREIyRDIwMzc2Q0FGMjNDNkM0NDU1QTYxRjwvcmRmOmxpPiA8cmRmOmxpPkMzMDkzMjZBRjJEMkUzQTE1QThBMjI0RUUwMjQ2NDQyPC9yZGY6bGk+IDxyZGY6bGk+QzRBQUJERDU3MUY5NkU5MjQ1QUYzMjU1REFDQkU5MDI8L3JkZjpsaT4gPHJkZjpsaT5DNTk3RkREMkRGMjlDRUUzQTA4OTA2REVGODIzNUZBMzwvcmRmOmxpPiA8cmRmOmxpPkQwRTQxMTkzRDBEODdBQkY2OUQzQTI3NDM1RkQ5Q0U2PC9yZGY6bGk+IDxyZGY6bGk+RDQ5M0IzODIwMDhERDAyMDA1ODk0Rjg0QUI4QUNEQTU8L3JkZjpsaT4gPHJkZjpsaT5EQjFBQzlEMjZCMUY0MEM5QTVBMTFCN0E2QURDM0ExMjwvcmRmOmxpPiA8cmRmOmxpPkU2NEU5NTJBQ0UyOTAwMkVCNjhGMUJDRDAxQjg5MTFCPC9yZGY6bGk+IDxyZGY6bGk+RTY4ODU2ODVDQkRGMjMyNEU3MTE1OEJGMjE3NkUxRkU8L3JkZjpsaT4gPHJkZjpsaT5GNUU3NTc3QTZCM0EzNDFBNTFDQUFBQzVFM0E1OUIxMTwvcmRmOmxpPiA8cmRmOmxpPkZEMUQ3RTMxQzc1MTJCRTBBODkxQ0RBQTVDNzdERTk1PC9yZGY6bGk+IDxyZGY6bGk+eG1wLmRpZDo2NDk0NmNiOC00MTFhLTRiMDAtOTk2MS1jODJkZmZjNTQ2NGM8L3JkZjpsaT4gPC9yZGY6QmFnPiA8L3Bob3Rvc2hvcDpEb2N1bWVudEFuY2VzdG9ycz4gPHhtcE1NOkhpc3Rvcnk+IDxyZGY6U2VxPiA8cmRmOmxpIHN0RXZ0OmFjdGlvbj0ic2F2ZWQiIHN0RXZ0Omluc3RhbmNlSUQ9InhtcC5paWQ6NjUyNGVlNjItNDA0MC00NDg2LTk3MzAtY2M0ODJkMGI2ZGM0IiBzdEV2dDp3aGVuPSIyMDE1LTEwLTMwVDE0OjI2OjM1LTA0OjAwIiBzdEV2dDpzb2Z0d2FyZUFnZW50PSJBZG9iZSBQaG90b3Nob3AgQ0MgMjAxNSAoTWFjaW50b3NoKSIgc3RFdnQ6Y2hhbmdlZD0iLyIvPiA8cmRmOmxpIHN0RXZ0OmFjdGlvbj0iY29udmVydGVkIiBzdEV2dDpwYXJhbWV0ZXJzPSJmcm9tIGltYWdlL3BuZyB0byBhcHBsaWNhdGlvbi92bmQuYWRvYmUucGhvdG9zaG9wIi8+IDxyZGY6bGkgc3RFdnQ6YWN0aW9uPSJkZXJpdmVkIiBzdEV2dDpwYXJhbWV0ZXJzPSJjb252ZXJ0ZWQgZnJvbSBpbWFnZS9wbmcgdG8gYXBwbGljYXRpb24vdm5kLmFkb2JlLnBob3Rvc2hvcCIvPiA8cmRmOmxpIHN0RXZ0OmFjdGlvbj0ic2F2ZWQiIHN0RXZ0Omluc3RhbmNlSUQ9InhtcC5paWQ6NjQ5NDZjYjgtNDExYS00YjAwLTk5NjEtYzgyZGZmYzU0NjRjIiBzdEV2dDp3aGVuPSIyMDE1LTEwLTMwVDE0OjI2OjM1LTA0OjAwIiBzdEV2dDpzb2Z0d2FyZUFnZW50PSJBZG9iZSBQaG90b3Nob3AgQ0MgMjAxNSAoTWFjaW50b3NoKSIgc3RFdnQ6Y2hhbmdlZD0iLyIvPiA8cmRmOmxpIHN0RXZ0OmFjdGlvbj0ic2F2ZWQiIHN0RXZ0Omluc3RhbmNlSUQ9InhtcC5paWQ6NjM0NGY3MWMtNDhiZC00MGU4LWFhM2YtZjcyYTEwNmJjZTlhIiBzdEV2dDp3aGVuPSIyMDE1LTEyLTE3VDEwOjU5OjQ1LTA1OjAwIiBzdEV2dDpzb2Z0d2FyZUFnZW50PSJBZG9iZSBQaG90b3Nob3AgQ0MgMjAxNSAoTWFjaW50b3NoKSIgc3RFdnQ6Y2hhbmdlZD0iLyIvPiA8cmRmOmxpIHN0RXZ0OmFjdGlvbj0iY29udmVydGVkIiBzdEV2dDpwYXJhbWV0ZXJzPSJmcm9tIGFwcGxpY2F0aW9uL3ZuZC5hZG9iZS5waG90b3Nob3AgdG8gaW1hZ2UvanBlZyIvPiA8cmRmOmxpIHN0RXZ0OmFjdGlvbj0iZGVyaXZlZCIgc3RFdnQ6cGFyYW1ldGVycz0iY29udmVydGVkIGZyb20gYXBwbGljYXRpb24vdm5kLmFkb2JlLnBob3Rvc2hvcCB0byBpbWFnZS9qcGVnIi8+IDxyZGY6bGkgc3RFdnQ6YWN0aW9uPSJzYXZlZCIgc3RFdnQ6aW5zdGFuY2VJRD0ieG1wLmlpZDplMmJkMGI1OS01NmIxLTQzYmYtYjdlMi0zMjc0M2IxYTkzYzAiIHN0RXZ0OndoZW49IjIwMTUtMTItMTdUMTA6NTk6NDUtMDU6MDAiIHN0RXZ0OnNvZnR3YXJlQWdlbnQ9IkFkb2JlIFBob3Rvc2hvcCBDQyAyMDE1IChNYWNpbnRvc2gpIiBzdEV2dDpjaGFuZ2VkPSIvIi8+IDwvcmRmOlNlcT4gPC94bXBNTTpIaXN0b3J5PiA8eG1wTU06RGVyaXZlZEZyb20gc3RSZWY6aW5zdGFuY2VJRD0ieG1wLmlpZDo2MzQ0ZjcxYy00OGJkLTQwZTgtYWEzZi1mNzJhMTA2YmNlOWEiIHN0UmVmOmRvY3VtZW50SUQ9ImFkb2JlOmRvY2lkOnBob3Rvc2hvcDpjYTc1NGM2MC1iZmMwLTExNzgtYjgwYy1lNWFjMmFiZWU0MjgiIHN0UmVmOm9yaWdpbmFsRG9jdW1lbnRJRD0ieG1wLmRpZDo2NTI0ZWU2Mi00MDQwLTQ0ODYtOTczMC1jYzQ4MmQwYjZkYzQiLz4gPC9yZGY6RGVzY3JpcHRpb24+IDwvcmRmOlJERj4gPC94OnhtcG1ldGE+ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPD94cGFja2V0IGVuZD0idyI/Pv/iKWhJQ0NfUFJPRklMRQABAQAAKVhhcHBsAhAAAG1udHJSR0IgWFlaIAffAAkACgAPABcAGGFjc3BBUFBMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD21gABAAAAANMtYXBwbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEWRlc2MAAAFQAAAAc2RzY20AAAHEAAAATGNwcnQAAAIQAAAAI3d0cHQAAAI0AAAAFHJYWVoAAAJIAAAAFGdYWVoAAAJcAAAAFGJYWVoAAAJwAAAAFHJUUkMAAAKEAAAIDGFhcmcAAAqQAAAAIHZjZ3QAAAqwAAAGEm5kaW4AABDEAAAYPmNoYWQAACkEAAAALG1tb2QAACkwAAAAKGJUUkMAAAKEAAAIDGdUUkMAAAKEAAAIDGFhYmcAAAqQAAAAIGFhZ2cAAAqQAAAAIGRlc2MAAAAAAAAAGVZBMjcwMyBTZXJpZXMgQ2FsaWJyYXRlZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbWx1YwAAAAAAAAABAAAADGVuVVMAAAAwAAAAHABWAEEAMgA3ADAAMwAgAFMAZQByAGkAZQBzACAAQwBhAGwAaQBiAHIAYQB0AGUAZHRleHQAAAAAQ29weXJpZ2h0IEFwcGxlIEluYy4sIDIwMTUAAFhZWiAAAAAAAADz2AABAAAAARYIWFlaIAAAAAAAAGwPAAA4qQAAApdYWVogAAAAAAAAYjYAALdyAAAR/1hZWiAAAAAAAAAokQAAD+UAAL6XY3VydgAAAAAAAAQAAAAABQAKAA8AFAAZAB4AIwAoAC0AMgA2ADsAQABFAEoATwBUAFkAXgBjAGgAbQByAHcAfACBAIYAiwCQAJUAmgCfAKMAqACtALIAtwC8AMEAxgDLANAA1QDbAOAA5QDrAPAA9gD7AQEBBwENARMBGQEfASUBKwEyATgBPgFFAUwBUgFZAWABZwFuAXUBfAGDAYsBkgGaAaEBqQGxAbkBwQHJAdEB2QHhAekB8gH6AgMCDAIUAh0CJgIvAjgCQQJLAlQCXQJnAnECegKEAo4CmAKiAqwCtgLBAssC1QLgAusC9QMAAwsDFgMhAy0DOANDA08DWgNmA3IDfgOKA5YDogOuA7oDxwPTA+AD7AP5BAYEEwQgBC0EOwRIBFUEYwRxBH4EjASaBKgEtgTEBNME4QTwBP4FDQUcBSsFOgVJBVgFZwV3BYYFlgWmBbUFxQXVBeUF9gYGBhYGJwY3BkgGWQZqBnsGjAadBq8GwAbRBuMG9QcHBxkHKwc9B08HYQd0B4YHmQesB78H0gflB/gICwgfCDIIRghaCG4IggiWCKoIvgjSCOcI+wkQCSUJOglPCWQJeQmPCaQJugnPCeUJ+woRCicKPQpUCmoKgQqYCq4KxQrcCvMLCwsiCzkLUQtpC4ALmAuwC8gL4Qv5DBIMKgxDDFwMdQyODKcMwAzZDPMNDQ0mDUANWg10DY4NqQ3DDd4N+A4TDi4OSQ5kDn8Omw62DtIO7g8JDyUPQQ9eD3oPlg+zD88P7BAJECYQQxBhEH4QmxC5ENcQ9RETETERTxFtEYwRqhHJEegSBxImEkUSZBKEEqMSwxLjEwMTIxNDE2MTgxOkE8UT5RQGFCcUSRRqFIsUrRTOFPAVEhU0FVYVeBWbFb0V4BYDFiYWSRZsFo8WshbWFvoXHRdBF2UXiReuF9IX9xgbGEAYZRiKGK8Y1Rj6GSAZRRlrGZEZtxndGgQaKhpRGncanhrFGuwbFBs7G2MbihuyG9ocAhwqHFIcexyjHMwc9R0eHUcdcB2ZHcMd7B4WHkAeah6UHr4e6R8THz4faR+UH78f6iAVIEEgbCCYIMQg8CEcIUghdSGhIc4h+yInIlUigiKvIt0jCiM4I2YjlCPCI/AkHyRNJHwkqyTaJQklOCVoJZclxyX3JicmVyaHJrcm6CcYJ0kneierJ9woDSg/KHEooijUKQYpOClrKZ0p0CoCKjUqaCqbKs8rAis2K2krnSvRLAUsOSxuLKIs1y0MLUEtdi2rLeEuFi5MLoIuty7uLyQvWi+RL8cv/jA1MGwwpDDbMRIxSjGCMbox8jIqMmMymzLUMw0zRjN/M7gz8TQrNGU0njTYNRM1TTWHNcI1/TY3NnI2rjbpNyQ3YDecN9c4FDhQOIw4yDkFOUI5fzm8Ofk6Njp0OrI67zstO2s7qjvoPCc8ZTykPOM9Ij1hPaE94D4gPmA+oD7gPyE/YT+iP+JAI0BkQKZA50EpQWpBrEHuQjBCckK1QvdDOkN9Q8BEA0RHRIpEzkUSRVVFmkXeRiJGZ0arRvBHNUd7R8BIBUhLSJFI10kdSWNJqUnwSjdKfUrESwxLU0uaS+JMKkxyTLpNAk1KTZNN3E4lTm5Ot08AT0lPk0/dUCdQcVC7UQZRUFGbUeZSMVJ8UsdTE1NfU6pT9lRCVI9U21UoVXVVwlYPVlxWqVb3V0RXklfgWC9YfVjLWRpZaVm4WgdaVlqmWvVbRVuVW+VcNVyGXNZdJ114XcleGl5sXr1fD19hX7NgBWBXYKpg/GFPYaJh9WJJYpxi8GNDY5dj62RAZJRk6WU9ZZJl52Y9ZpJm6Gc9Z5Nn6Wg/aJZo7GlDaZpp8WpIap9q92tPa6dr/2xXbK9tCG1gbbluEm5rbsRvHm94b9FwK3CGcOBxOnGVcfByS3KmcwFzXXO4dBR0cHTMdSh1hXXhdj52m3b4d1Z3s3gReG54zHkqeYl553pGeqV7BHtje8J8IXyBfOF9QX2hfgF+Yn7CfyN/hH/lgEeAqIEKgWuBzYIwgpKC9INXg7qEHYSAhOOFR4Wrhg6GcobXhzuHn4gEiGmIzokziZmJ/opkisqLMIuWi/yMY4zKjTGNmI3/jmaOzo82j56QBpBukNaRP5GokhGSepLjk02TtpQglIqU9JVflcmWNJaflwqXdZfgmEyYuJkkmZCZ/JpomtWbQpuvnByciZz3nWSd0p5Anq6fHZ+Ln/qgaaDYoUehtqImopajBqN2o+akVqTHpTilqaYapoum/adup+CoUqjEqTepqaocqo+rAqt1q+msXKzQrUStuK4trqGvFq+LsACwdbDqsWCx1rJLssKzOLOutCW0nLUTtYq2AbZ5tvC3aLfguFm40blKucK6O7q1uy67p7whvJu9Fb2Pvgq+hL7/v3q/9cBwwOzBZ8Hjwl/C28NYw9TEUcTOxUvFyMZGxsPHQce/yD3IvMk6ybnKOMq3yzbLtsw1zLXNNc21zjbOts83z7jQOdC60TzRvtI/0sHTRNPG1EnUy9VO1dHWVdbY11zX4Nhk2OjZbNnx2nba+9uA3AXcit0Q3ZbeHN6i3ynfr+A24L3hROHM4lPi2+Nj4+vkc+T85YTmDeaW5x/nqegy6LzpRunQ6lvq5etw6/vshu0R7ZzuKO6070DvzPBY8OXxcvH/8ozzGfOn9DT0wvVQ9d72bfb794r4Gfio+Tj5x/pX+uf7d/wH/Jj9Kf26/kv+3P9t//9wYXJhAAAAAAADAAAAAmZmAADypwAADVkAABPQAAAKDnZjZ3QAAAAAAAAAAAADAQAAAgAAAJQA4gFvAgICsANEA9gEdgUOBbEGVwb/B6EIRwjtCZcKRgrvC5sMSwz7Da8OYQ8TD8kQghE6EfISrRNoFCUU4xWkFmYXJxftGLAZehpDGwsb2BylHXUeRB8YH+sgwSGYInIjSyQpJQkl6SbLJ64olCl7KmQrTyw8LSouGy8ML/4w8jHnMt4z1TTMNcQ2vDe0OK05qDqkO6E8oD2hPqM/p0CtQbVCvkPKRNdF5kb4SAxJIUo4S1JMbk2LTqxPzlDzUhlTQ1RvVZ1WzVgAWTVabFumXOBeHl9dYJ1h32MhZGRlqGbtaDBpdWq4a/xtPW59b7tw+HIyc2l0nnXQdv14KHlOenJ7kHysfcN+1X/kgO6B9oL8hACFBIYGhweIB4kGigOLAIv8jPiN8o7sj+WQ3ZHWks2TxZS7lbKWqZefmJWZi5qBm3ecbp1knlufUqBJoUGiOqMzpCylJqYhpx2oGqkYqherFqwYrRuuH68lsC2xNrJCs0+0XbVstnu3i7idua66wLvTvOe9+78QwCbBPcJUw2vEhMWcxrbH0MjqygbLIcw+zVrOd8+V0LPR0tLx1BDVMNZQ13HYktmz2tXb9t0Y3jrfXOB/4aHixOPn5QrmLudT6HfpnOrC6+jtD+4371/wiPGy8t30CPU19mP3kvjC+fP7Jvxa/Y/+xv//AAAAlAEiAa8CQgLwA6UEQgTyBagGXQcPB78IdwkzCe0KqgtnDCQM5w2mDmgPKQ/uELYReRJCEwoT0xSfFWsWNRcDF9MYohlyGkMbFRvrHMAdkx5rH0MgGSDyIc0ipyOEJF8lPiYdJvwn3Ci/KaAqgytmLEotMS4XLv0v5TDOMbcyoDOKNHU1YDZNNzk4JDkQOf466zvYPMU9sz6hP45AfUFsQltDSkQ7RS1GIEcUSAlI/0n3SvBL7EzqTelO6k/wUPhSA1MSVCVVPFZTV21Yh1mjWsBb31z/Xh9fQWBkYYhirGPSZPdmHmdDaGlpkWq3a91tBG4pb09wc3GWcrhz2XT5dhd3NHhPeWh6f3uUfKd9uH7If9eA54H2gwWEFIUjhjGHP4hNiVuKaYt2jISNko6fj6yQuJHFktKT3pTrlfiXBJgQmRyaKJs0nECdTJ5Xn2Ogb6F6ooajkaSdpaimtKe/qMqp1qrhq+ys+K4Drw+wGrEmsjGzPLRGtU+2VrdduGO5aLpsu3C8c712vnm/e8B+wYDCg8OFxInFjMaQx5TImcmgyqbLrsy3zcHOzc/b0OrR+9MO1CPVO9ZV13PYk9m42t3cAt0n3k3fdOCb4cLi6uQU5T7maueX6MXp9eso7Fvtke7J8ATxQvKC88b1DvZZ96r4/vpY+7f9Hf6K//8AAACUASIBrwJBAvADhAQtBNYFfwYtBtwHjAhBCPMJqgphCxYL1AyNDUUOCA7DD4cQQxEJEccSjhNTFBsU4hWpFnIXPhgIGNYZpBpzG0UcFRzoHbsekB9mID4hFiHuIsojpSSDJV8mPicfJ/8o4inEKqgrjyx0LVwuQy8sMBYxATHsMtkzxTSyNaE2jjd+OGw5XDpLOzw8Lj0hPhM/Bz/+QPRB7ELlQ95E2UXVRtNH0EjQSdBK0kvVTNlN3U7kT+xQ9FH+UwlUFVUiVjBXP1hQWWFac1uHXJpdr17FX9tg8WIHYx9kN2VPZmZnf2iWaa5qxWvdbPNuCW8ecDNxR3JZc2t0e3WKdpd3pHivebd6vnvEfMh9zH7Pf9OA1YHYgtuD3ITehd+G4IfhiOKJ4orji+OM443jjuOP45DjkeKS4pPilOKV4pbil+KY4pnjmuSb5Zzmneie6Z/roO6h8KL0o/ek+6YApwWoC6kRqhirIKwprTKuO69FsE+xWLJfs2a0brV0tnq3gbiGuYy6kruYvJ+9pb6sv7TAvMHFws/D2sTlxfLHAMgQySHKNMtJzGDNes6Vz7PQ1dH50yHUTdV91rHX5tkc2lHbiNy+3fbfLuBn4aHi3eQa5Vnmmufc6SLqaeu07QLuU++p8QLyYfPE9S72nvgW+Zb7Hvyx/lH//wAAbmRpbgAAAAAAABg2AACjgAAAVsAAAE8AAACegAAAKAAAAA8AAABQQAAAVEAAAeryAAHqcgABzcYAAwQAAAIAAAAAAAAAAQACAAMABAAFAAcACAAKAAwADwARABQAFwAaAB0AIQAlACkALQAxADYAOgA/AEUASgBPAFUAWwBhAGgAbgB1AHwAgwCKAJIAmQChAKkAsgC6AMMAzADVAN4A5wDxAPsBBQEPARkBJAEuATkBRAFQAVsBZwFzAX8BiwGXAaQBsAG9AcoB1wHlAfICAAIOAhwCKgI5AkcCVgJlAnQCgwKSAqICsgLBAtEC4gLyAwIDEwMkAzUDRgNXA2gDegOMA54DsAPCA9QD5gP5BAwEHgQxBEQEWARrBH8EkgSmBLoEzgTiBPYFCwUfBTQFSQVeBXMFiAWdBbMFyAXeBfQGCgYgBjYGTAZjBnkGkAamBr0G1AbrBwIHGgcxB0gHYAd4B5AHpwe/B9gH8AgICCAIOQhSCGoIgwicCLUIzgjnCQEJGgk0CU0JZwmBCZsJtQnPCekKAwoeCjgKUwptCogKowq+CtkK9AsPCyoLRgthC30LmQu1C9AL7AwJDCUMQQxeDHoMlwyzDNAM7Q0KDScNRQ1iDX8NnQ27DdgN9g4UDjMOUQ5vDo4OrA7LDuoPCQ8oD0cPZw+GD6YPxg/mEAYQJhBGEGcQhxCoEMgQ6REKESsRSxFtEY4RrxHQEfESExI0ElYSeBKZErsS3RL/EyETQxNlE4gTqhPME+8UERQ0FFcUeRScFL8U4hUFFSgVSxVuFZIVtRXYFfwWHxZDFmYWihauFtIW9hcZFz0XYheGF6oXzhfyGBcYOxhfGIQYqBjNGPIZFhk7GWAZhRmqGc8Z9BoZGj4aYxqIGq0a0xr4Gx0bQxtoG44bsxvZG/4cJBxKHHAclRy7HOEdBx0tHVMdeR2fHcUd7B4SHjgeXh6FHqse0R74Hx4fRR9rH5IfuR/fIAYgLSBTIHogoSDIIO8hFiE9IWQhiyGyIdkiACInIk4idiKdIsQi7CMTIzojYiOJI7Ej2CQAJCgkTyR3JJ8kxyTvJRclPyVnJY8ltyXfJgcmLyZYJoAmqCbRJvknIidKJ3MnnCfFJ+0oFig/KGgokSi7KOQpDSk2KWApiSmzKd0qBiowKloqhCquKtgrAissK1crgSusK9YsASwsLFcsgiytLNgtAy0uLVothS2xLd0uCS41LmEujS65LuYvEi8/L2wvmS/GL/MwITBOMHwwqjDXMQYxNDFiMZExvzHuMh0yTDJ7Mqsy2jMKMzozajObM8sz/DQtNF40jzTBNPI1JDVWNYg1uzXtNiA2UzaHNro27jciN1Y3izfAN/U4KjhfOJU4yzkBOTg5bjmlOd06FDpMOoQ6vTr2Oy87aDuiO9w8FjxRPIs8xz0CPT49ej23PfQ+MT5vPq0+6z8qP2k/qT/oQClAaUCqQOtBLEFtQa9B8UIzQnVCuEL7Qz5DgUPERAhETESQRNRFGUVeRaNF6EYuRnNGuUcAR0ZHjUfTSBtIYkipSPFJOUmBScpKEkpbSqRK7Us3S4FLy0wVTF9Mqkz0TT9Ni03WTiJObk66TwZPUk+fT+xQOVCGUNRRIlFvUb5SDFJaUqlS+FNHU5ZT5lQ2VIZU1lUmVXZVx1YYVmlWulcMV11Xr1gBWFNYpVj4WUpZnVnwWkRal1rrWz5bklvmXDpcj1zjXThdjV3iXjdejV7iXzhfjl/kYDpgkGDnYT1hlGHrYkJimWLxY0hjoGP3ZE9kp2T/ZVhlsGYJZmFmumcTZ2xnxWgeaHho0WkraYRp3mo4apJq7GtHa6Fr+2xWbLBtC21mbcFuHG53btJvLW+Ib+RwP3CbcPZxUnGucglyZXLBcx1zeXPVdDF0jXTpdUZ1onX+dlp2t3cTd3B3zHgpeIV44nk+eZt593pUerB7DXtpe8Z8Inx/fNx9OH2VffF+Tn6qfwZ/Y3+/gBuAeIDUgTGBjYHqgkeCpIMBg16Du4QYhHWE0oUwhY2F64ZIhqaHBIdih8CIHoh8iNqJOImXifWKVIqyixGLcIvPjC6MjYzsjUuNqo4JjmmOyI8oj4eP55BHkKeRB5FnkceSJ5KIkuiTSJOplAqUapTLlSyVjZXulk+WsJcSl3OX1Jg2mJiY+Zlbmb2aH5qBmuObRZuonAqcbJzPnTKdlJ33nlqevZ8gn4Of5qBKoK2hEaF0odiiPKKgowOjZ6PMpDCklKT4pV2lwaYmpoum76dUp7moHqiEqOmpTqm0qhmqf6rkq0qrsKwWrHys4q1Jra+uFa58ruOvSa+wsBewfrDlsUyxtLIbsoKy6rNSs7m0IbSJtPG1WbXCtiq2krb7t2S3zLg1uJ65B7lwudq6Q7qsuxa7f7vpvFO8vb0nvZG9+75mvtC/O7+mwBDAe8DmwVHBvcIowpPC/8Nrw9fEQ8SvxRvFh8X0xmDGzcc6x6bIE8iAyO7JW8nIyjbKo8sRy3/L7cxbzMnNN82mzhTOg87xz2DPz9A+0K3RHNGL0frSatLZ00nTuNQo1JjVCNV41ejWWNbI1znXqdga2IrY+9ls2dzaTdq+2y/boNwR3IPc9N1l3dfeSN663yzfneAP4IHg8+Fl4dfiSeK74y3joOQS5ITk9+Vp5dzmTubB5zTnpugZ6Izo/+ly6eXqWOrL6z7rsewk7JftCu197fHuZO7X70vvvvAx8KXxGPGM8f/yc/Lm81rzzfRB9LX1KPWc9g/2g/b392r33vhS+MX5Ofmt+iD6lPsI+3v77/xi/Nb9Sv29/jH+pP8Y/4v//wAAAAAAAAABAAEAAgADAAQABQAHAAgACgAMAA4AEAASABUAGAAbAB4AIQAkACgAKwAvADMANwA8AEAARQBKAE8AVABZAF8AZABqAHAAdgB8AIMAiQCQAJcAngClAK0AtAC8AMQAzADUANwA5QDuAPYA/wEIARIBGwElAS8BOQFDAU0BVwFiAWwBdwGCAY4BmQGkAbABvAHIAdQB4AHsAfkCBgISAh8CLQI6AkcCVQJjAnECfwKNApsCqgK4AscC1gLlAvQDBAMTAyMDMwNDA1MDYwN0A4QDlQOmA7cDyAPZA+oD/AQOBB8EMQREBFYEaAR7BI0EoASzBMYE2QTtBQAFFAUoBTwFUAVkBXgFjQWhBbYFywXgBfUGCgYgBjUGSwZhBncGjQajBrkG0AbmBv0HFAcrB0IHWgdxB4gHoAe4B9AH6AgACBgIMQhJCGIIewiUCK0IxgjgCPkJEwktCUYJYAl7CZUJrwnKCeQJ/woaCjUKUApsCocKowq+CtoK9gsSCy4LSwtnC4QLoAu9C9oL9wwVDDIMTwxtDIsMqQzHDOUNAw0iDUANXw1+DZ0NvA3bDfoOGg46DlkOeQ6ZDroO2g76DxsPPA9dD34Pnw/AD+IQAxAlEEcQaRCLEK4Q0BDzERYROBFcEX8RohHGEekSDRIxElUSehKeEsIS5xMMEzETVhN7E6ATxhPrFBEUNxRdFIMUqRTQFPYVHRVDFWoVkRW4Fd8WBhYuFlUWfRakFswW9BccF0QXbBeVF70X5RgOGDcYXxiIGLEY2hkDGSwZVRl/GagZ0Rn7GiQaThp3GqEayxr1Gx4bSBtyG5wbxhvwHBocRBxvHJkcwxztHRcdQh1sHZYdwB3qHhUePx5pHpMevh7oHxIfPB9mH5Afuh/kIA4gOCBiIIwgtiDhIQshNSFgIYohtSHgIgoiNSJgIositiLhIwwjNyNjI44juSPlJBAkPCRoJJMkvyTrJRclQyVvJZslxyX0JiAmTSZ5JqYm0ib/JywnWSeGJ7Mn4CgNKDsoaCiVKMMo8CkeKUwpeimoKdYqBCoyKmAqjyq9KuwrGitJK3grpyvWLAUsNCxjLJMswizyLSItUS2BLbEt4S4SLkIuci6jLtMvBC81L2Yvly/IL/kwKzBcMI4wwDDxMSMxVjGIMbox7TIfMlIyhTK4MuszHjNSM4UzuTPtNCE0VTSJNL408jUnNVw1kTXGNfs2MTZnNpw20jcJNz83dTesN+M4GjhROIg4wDj4OTA5aDmgOdk6ETpKOoM6vTr2OzA7ajukO948GTxTPI48yT0FPUA9fD24PfU+MT5uPqs+6D8mP2Q/oj/gQB5AXUCcQNtBGkFZQZlB2EIYQlhCl0LYQxhDWEOZQ9lEGkRbRJxE3UUfRWBFokXkRiZGaEaqRuxHL0dyR7RH90g6SH5IwUkFSUhJjEnQShRKWEqdSuFLJktrS7BL9Uw6TH9MxU0LTVBNlk3cTiNOaU6wTvZPPU+ET8tQE1BaUKFQ6VExUXlRwVIJUlJSmlLjUyxTdVO+VAdUUVSaVORVLlV4VcJWDFZXVqFW7Fc3V4JXzVgZWGRYsFj7WUdZk1nfWixaeFrFWxJbXlurW/lcRlyTXOFdL119XcteGV5nXrZfBV9TX6Jf8WBAYJBg32EvYX9hz2IfYm9iv2MQY2FjsWQCZFNkpWT2ZUhlmWXrZj1mj2bhZzRnhmfZaCxof2jSaSVpeGnMaiBqdGrHaxxrcGvEbBlsbWzCbRdtbG3CbhdubW7Cbxhvbm/EcBtwcXDHcR5xdXHMciNyenLScylzgXPZdDF0iXThdTp1knXrdkR2nXb2d093qHgCeFx4tXkPeWl5xHoeenl603sue4l75Hw/fJt89n1Sfa5+CX5lfsJ/Hn96f9eANICRgO6BTIGqggiCZoLEgyODgoPhhEGEoYUBhWGFwYYihoOG5IdGh6eICYhriM2JMImTifaKWYq8iyCLg4vojEyMsI0VjXqN345EjqmPD491j9uQQZCnkQ6RdZHckkOSqpMRk3mT4ZRJlLGVGZWCleqWU5a8lyWXjpf3mGGYy5k0mZ6aCJpzmt2bR5uynB2ch5zynV2dyZ40np+fC592n+KgTqC6oSahkqH+omqi1qNDo6+kHKSIpPWlYaXOpjumqKcVp4Kn76hcqMmpNqmjqhCqfqrrq1irxawzrKCtDa17reiuVa7CrzCvnbAKsHew5bFSsb+yLLKZswazc7PgtE20ubUmtZO1/7Zstti3RbexuB24ibj1uWG5zbo5uqS7ELt7u+a8Uby8vSe9kr38vme+0b87v6XADsB4wOLBTMG2wiDCisL1w1/DysQ1xKDFC8V2xeHGTMa3xyPHjsf6yGbI0ck9yanKFcqByu3LWsvGzDLMn80LzXjN5c5Rzr7PK8+Y0AXQctDf0UzRudIm0pPTANNt09vUSNS11SPVkNX91mvW2NdF17PYINiO2PvZadnW2kPasdse24zb+dxm3NTdQd2u3hveid7232Pf0OA94KrhF+GE4fHiXuLK4zfjpOQQ5H3k6eVW5cLmLuaa5wbncufe6Enotekh6Yzp9+pj6s7rOeuj7A7seezj7U7tuO4i7ozu9e9f78nwMvCb8QTxbfHV8j7ypvMO83bz3vRG9K31FPV79eL2SPav9xX3e/fh+Eb4q/kQ+XX52vo++qL7Bvtp+838MPyT/PX9V/25/hv+fP7d/z7/n///AAAAAAAAAAEAAQACAAMABAAGAAcACQAKAAwADwARABQAFgAZABwAHwAjACYAKgAuADIANgA7AD8ARABJAE4AUwBZAF4AZABqAHAAdgB9AIMAigCRAJgAnwCnAK8AtgC+AMYAzwDXAOAA6QDyAPsBBAENARcBIQErATUBPwFJAVQBXwFqAXUBgAGLAZcBowGvAbsBxwHTAeAB7AH5AgYCEwIgAi4COwJJAlcCZQJzAoICkAKfAq4CvQLMAtsC6gL6AwoDGgMqAzoDSgNaA2sDfAONA54DrwPAA9ID4wP1BAcEGQQrBD0EUARiBHUEiASbBK4EwQTVBOgE/AUQBSQFOAVMBWAFdQWJBZ4FswXIBd0F8wYIBh0GMwZJBl8GdQaLBqEGuAbOBuUG/AcTByoHQQdZB3AHiAefB7cHzwfnB/8IGAgwCEkIYQh6CJMIrAjGCN8I+AkSCSwJRQlfCXkJlAmuCcgJ4wn9ChgKMwpOCmkKhQqgCrsK1wrzCw8LKwtHC2MLgAucC7kL1QvyDA8MLAxKDGcMhAyiDMAM3gz8DRoNOA1WDXUNlA2yDdEN8A4QDi8OTg5uDo4OrQ7NDu0PDg8uD08Pbw+QD7EP0g/zEBUQNhBYEHkQmxC9EN8RAREkEUYRaBGLEa4R0BHzEhYSORJdEoASoxLHEusTDhMyE1YTehOeE8MT5xQLFDAUVRR5FJ4UwxToFQ0VMxVYFX0VoxXJFe4WFBY6FmAWhhatFtMW+RcgF0YXbReUF7sX4hgJGDAYVxh/GKYYzhj1GR0ZRRltGZUZvRnlGg0aNRpeGoYarxrYGwAbKRtSG3sbpBvOG/ccIBxKHHMcnRzHHPAdGh1EHW4dmB3DHe0eFx5CHmwelx7CHu0fFx9CH20fmR/EH+8gGiBGIHEgnSDJIPQhICFMIXghpCHRIf0iKSJWIoIiryLbIwgjNSNiI48jvCPpJBckRCRyJJ8kzST6JSglViWEJbIl4SYPJj0mbCaaJskm+CcmJ1UnhCezJ+MoEihBKHEooSjQKQApMClgKZApwCnxKiEqUiqCKrMq5CsVK0YrdyuoK9osCyw9LG4soCzSLQQtNy1pLZstzi4ALjMuZi6ZLswvAC8zL2cvmi/OMAIwNjBqMJ8w0zEIMTwxcTGmMdsyETJGMnwysjLnMx4zVDOKM8Ez9zQuNGU0nDTTNQs1QjV6NbI16jYjNls2lDbNNwY3Pzd4N7I36zglOF84mjjUOQ85SjmFOcA5+zo3OnM6rzrrOyg7ZDuhO948HDxZPJc81T0TPVI9kT3QPg8+Tj6OPs4/Dj9OP48/0EARQFJAlEDWQRdBWUGcQd5CIUJjQqZC6UMsQ3BDs0P3RDtEf0TDRQdFTEWRRdZGG0ZgRqVG60cxR3ZHvEgDSElIkEjWSR1JZEmrSfNKOkqCSspLEktaS6NL60w0TH1Mxk0PTVhNok3rTjVOf07JTxRPXk+pT/RQP1CKUNVRIFFsUbhSBFJQUpxS6FM1U4JTz1QcVGlUtlUEVVFVn1XtVjtWiVbYVyZXdVfEWBNYYliyWQFZUVmhWfBaQVqRWuFbMluCW9NcJFx1XMddGF1qXbteDV5fXrFfBF9WX6lf/GBOYKFg9WFIYZth72JDYpZi6mM/Y5Nj52Q8ZJBk5WU6ZY9l5GY6Zo9m5Wc7Z5Bn5mg9aJNo6WlAaZZp7WpEaptq8mtJa6Fr+GxQbKds/21Xba9uCG5gbrhvEW9qb8JwG3B0cM1xJ3GAcdlyM3KNcuZzQHOac/R0T3SpdQN1XnW4dhN2bnbJdyR3f3faeDV4kXjseUh5pHn/elt6t3sTe297y3wofIR84H09fZp99n5TfrB/DX9qf8eAJICBgN+BPYGbgfmCV4K2gxWDdIPThDKEkoTyhVKFsoYThnOG1Ic1h5eH+IhaiLuJHYmAieKKRYqniwqLbYvQjDSMl4z7jV+Nw44njoyO8I9Vj7qQH5CEkOqRT5G1khqSgJLmk02Ts5QZlICU55VNlbSWG5aDluqXUZe5mCGYiJjwmViZwJoompGa+Zthm8qcMpybnQSdbZ3Wnj+eqJ8Rn3qf46BNoLahH6GJofKiXKLGoy+jmaQDpGyk1qVApaqmFKZ+puinUae7qCWoj6j5qWOpzao3qqGrC6t0q96sSKyyrRutha3vrliuwq8sr5Wv/rBosNGxOrGjsgyydbLes0ezsLQZtIG06rVStbq2IraKtvK3WrfCuCm4kLj4uV+5xrotupO6+rtgu8a8LLySvPi9Xb3Cvii+jL7xv1a/usAewILA5sFLwa/CFMJ4wt3DQsOnxAzEccTXxTzFocYHxm3G0sc4x57IBMhqyNDJNsmdygPKacrQyzbLncwDzGrM0c04zZ/OBc5sztPPOs+h0AjQcNDX0T7RpdIM0nPS29NC06nUEdR41N/VRtWu1hXWfNbk10vXstgZ2IHY6NlP2bbaHdqE2uvbUtu53CDch9zu3VXdu94i3one799W37zgIuCI4O/hVeG74iHihuLs41Ljt+Qd5ILk5+VM5bHmFuZ75t/nROeo6AzocejU6TjpnOn/6mPqxusp64zr7uxR7LPtFe137dnuOu6c7v3vXu+/8B/wf/Dg8T/xn/H+8l7yvfMb83rz2PQ29JT08fVP9av2CPZk9sH3HPd499P4LviJ+OP5PfmX+fD6Sfqi+vv7U/ur/AL8Wfyw/Qb9XP2y/gf+XP6x/wX/Wf+s//8AAHNmMzIAAAAAAAELtwAABZb///NXAAAHKQAA/df///u3///9pgAAA9oAAMD2bW1vZAAAAAAAAFpjAABiKgAAAADNiQqAAAAAAAAAAAAAAAAAAAAAAP/uAA5BZG9iZQBkQAAAAAH/2wCEAAICAgICAgICAgIDAgICAwQDAgIDBAUEBAQEBAUGBQUFBQUFBgYHBwgHBwYJCQoKCQkMDAwMDAwMDAwMDAwMDAwBAwMDBQQFCQYGCQ0KCQoNDw4ODg4PDwwMDAwMDw8MDAwMDAwPDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDP/AABEIAP4BcgMBEQACEQEDEQH/3QAEAC//xAGiAAAABwEBAQEBAAAAAAAAAAAEBQMCBgEABwgJCgsBAAICAwEBAQEBAAAAAAAAAAEAAgMEBQYHCAkKCxAAAgEDAwIEAgYHAwQCBgJzAQIDEQQABSESMUFRBhNhInGBFDKRoQcVsUIjwVLR4TMWYvAkcoLxJUM0U5KismNzwjVEJ5OjszYXVGR0w9LiCCaDCQoYGYSURUaktFbTVSga8uPzxNTk9GV1hZWltcXV5fVmdoaWprbG1ub2N0dXZ3eHl6e3x9fn9zhIWGh4iJiouMjY6PgpOUlZaXmJmam5ydnp+So6SlpqeoqaqrrK2ur6EQACAgECAwUFBAUGBAgDA20BAAIRAwQhEjFBBVETYSIGcYGRMqGx8BTB0eEjQhVSYnLxMyQ0Q4IWklMlomOywgdz0jXiRIMXVJMICQoYGSY2RRonZHRVN/Kjs8MoKdPj84SUpLTE1OT0ZXWFlaW1xdXl9UZWZnaGlqa2xtbm9kdXZ3eHl6e3x9fn9zhIWGh4iJiouMjY6Pg5SVlpeYmZqbnJ2en5KjpKWmp6ipqqusra6vr/2gAMAwEAAhEDEQA/APoWD2Gwzkrt6JUqwXqB4Vwpdv0G/hTBau69QK98IQ3v9OFV67jELTu3jj5K2O46+JxUKg7V3PcfwxSupvT9fbFDdNwe9OpxS4AgkeHf54FVB06bdzirdPoxVo9vDFK3iCfl3xQup3798Urt6/Ptiq9R44qvAGFC4L7YFt1N8Vdxw0i2+OK2uAwLa0jfrU4aVqmBLdP7RhVoUINNjgVo1rUbj2xVogb/AIYqtI6b/OuFVu/WmJChaQO344pWEffigtU3rXfvioaNa74Vb2ONq0BTptTwxVskH+GKFp3NNz4YLS0fAEfL2xVqnT8MVaIHc74qtp7UA64ULa06H5DFWqnI7q//0PoQCCR7dPfOPD0dKm9QB8qZMFaX8SO3ywrTYFd6Yobptv27YVXDpih3an37YpXADbtiFXjriq8V6eA74pXUJ6df4YquANad8CuH+YGKW9z2+eKGwN6nbFK6nX9WKuC7UH0YShulP64quAP3dsCqgH9oOKF1MUW4DCtup49sVtcRii3UxW3UxW2qYrbVMU20RvgS6mKtccVtaRSoxStIP4YVWEdPwwKp07fhhpLdMUNAb08MSrivcdsAVr+J74UraHw6d8bQ6nTw8cVdx+ivQ4FaA26b+GFDR8d9un9cVW9/nioU/GvXFWt/8z+OFD//0foOqkCh3OcgA9EqjpTtkgqoDSh6nvt+GFNrh18MJpFrqe/TfCrar4dsCrqA0PjiVXhfHtilulO22Kt+O5Pt/XAq/j9IGFWwCev04qupTt0wK3QdtqbjFK4LTqNjhQ3T6RXAq8DFXUA/hiq4D+3ChumKF2KHe+NKuUFiFUFmPRQK4oKUar5g0DQttZ1uy02SlRBPMolI9owS34YDMDmW3Fp8ub6Ik+4MOl/NvyDG3CPV5bo9Kw27sNvc0yBzRHQufHsbVy/gr4q1t+aPku7cRrfXERbdTJAwB+kVwePHzRPsfVR34ftZdp+s6RqyhtO1KC6J39MNR/8AgWocnHJGXIuFlwZMX1xITOhGxFPEZJpaOLK2v1YFap/t4q1/WuKVrD7+2G0rKf7eKrCPwwJW06++FDVKb038TirRrTrTxwJaoCad+3hih1O2Kt7bV64q3T8O+FWuIPzxVaQPffriqwjp28KYq1x6nv2xRTXAeI6Uw2l//9L6HONvGh3GckRu9G4D3pSm2SWl4HevUb4oXKPHtiEKnE7EDp1xSvA6Htiq6g+fvilsDt95wK14+3QYquA2pXp2xVeB/bhVUA3FcVXKv04ob47n36jFNrwDtiUN0xW26YodTFW6YotumGkW7FWLecfO3ljyBpI1nzVqa2FtKStjaoPUubqQfsQQjdvc9B3ODyHNydJo8uqnwYhZ69w95fGHm/8A5yB85eb5ZbPQQ3lDQGJUQWzcr6VfGacbgkfspthOM9S9toPZzDh9WT1y8/pHw/WwCwtXnkaaaVrmdmJlnmJkkr4s7VJO+QlQ5O94IwFAV7mdWFhDtzD+Pwmg9j9OY8iXFySI5MusbaEOeKnid15Ecq5UQeTh5JHqyW3jjjAaFjGy05SL1H6sgYuJOJlsWdaJ541fTGWHUK6pYCnIOf3yg90fv8jlkM0oeYdVquyseTeHpP2PZNP1Cz1W0ivrCcT28nfoyt3V17EZmRmJCw87lxSxS4ZCii8kwawK6mFLRxtK2n+1iq0j7sCVnGu+FWiMVWcdvD3xV38MVdv06jvirh92Kt0xVaMVd+quKra+O/zxQt8dt/DFVnH3xpX/0/oi1GNc5J6NsDauSVvj3psPDGkL1Fdh098VCoAab7UxVeB0p364pXbU98SrqbYFWGta9xTFVw8e+KqijpU/RhSrKMShVHTFiXUxW3e+KG8VdipbphpDf8MaVsDDSvOPzU/M7Q/yo8sPr+qoL7UrstB5b0ANxe+uQKkE9VjStXbw2G5wiJkeEc/xu53Z+gnrcvBHYDme4fr7n5lav5j8wef/ADHcea/N1899qV2SEiqVgtYQfhggjJ4oi9BTr33zIMRjFD5976ZotFj0uMQxih+OfeWWaPp6M3IvQCnQUPtmLOTkTlQei2ECx7gfDGQrAGpqOwI6/fmOd3EmbZjp8aOEAjUbnelaHvXKjbh5SR1ZVbWCng/wqqjZFBA/pkC4cslJqtoFUKqAsKVoP86++Bq8S0fHaySqFQcgN1Wn4V64CGmUgE50m9utBvEvrUMYHIW/tTssqd9ulR2OMJGBsOFqcMc8eE8+h7nt0UsVxDFcQOJIJ0EkMg7q24zYg2LeZlExJB5hfiq3/OuBLWKXD/bwodTAlb9JphSsI8MCraeH0YVWkfrxVqn44q6m39MCu3G2HkrR6+GKrfbGlcfHtiqxtvlihrb28euKX//U+ivEDYGo7E5yj0a5RWgP+3gQ3x8OvbwwquCjf32xVeo+jwGKrx1+WKW/n9+KrWOxA3p3wKt8Nj7nCq9QNsCqoXFVYDChUwgMHYq2AT0BPyxVd6cn8jfdgRawg/LFk7CELxTv0GFV0stvawXF5eTraWVnE9xeXT7LHDEpeRyT4KDidgoBkQBuTs/Ib8xvP+p/m7561DzPdrJHoluWs/Kum9rawjY8NunOT7bHuT7ZmQh4cfM/ivg+m9l6AaPCIdTvI95/Z0daxpAig8TShqdz7gZSbLsuLdn+mzwRRrWJG5AVJPw8aVFSP1V3yiQLVkEub0DTZEmVSWCqep4027Cpp934DMeQcTISGY20cRVGgV35bPKnU7bclIyunElI9WS6enosC4PqdAx2NPZaD6TTbAQ4eWdswtokkRZSnwufhLDbpWnKm5yB5uFKRCbwwKQQyryNCWG1fpwNRmqS2QMRavw78h0FfEeGBjx7sn8m3BfTriwcjlpsxVB/xXJ8Q+41zK0xuJHc6vtGFZBL+cPtZbl7r7axS19GBLeFXeGKFpB7bYGSzoMVWnw6nEpWnw7Yqt7/AIYbV1MCtb1Hbxwq1irXzOKtVxW1hr2pvipap/TphpD/AP/V+i3anf2zlHol4pStMUtg9QfpxRbfhXFW61+eKV+9fnviq7t/HFVtB169sVbC+HTtiq4L9/jiquoxQqDFiUh80+a/LnknSJNc81atDpGnoP3Rc8pp26cIIR8cjV/lFPHDfTq26bTZNTPgxxs/jn3PlrW/+cpNQv5Wt/JHlIWsJbhHqmssWkPg628RoPkTjKJ6mvter0vsoOeefwj+thlx+Zf5na0Q+oeaZ7aKU0+q2Ma28f8Awgr+OUyo+btcfY2jxcoX5ndXtdU8zxj1k1/UqsNmWeRiPciuVEBMtJgO3BH5Mw078wPPenGP0dblvUC/3V4izKaeJIBFfng3HIuDl7I02T+Gvc9K8v8A546XJNFYecLI6HdPsupwAvZk9uYPxJ89xlsch67un1fs/kgOLCeMd3X9r3m2khuYILq2ljubW5QSW9zEweORD0KsKgjMgG9w89IGJo7EPnH/AJyw82v5e/LBPL1pOYb/AM93gsH4n4vqMAE1yNugf4VrlmONzHlv+Pi732c0vjanjI2gL+J2D87NNMduOiqFHJ3FaAD3/VmVIcT6FI0KeF/mZ+b9/p0smgeWpkjuWDfXNTADNErdRH+yG9+o65utD2dEjjn8nifaD2knp5HBpyOLrLnXkPP7ngui+d/NmhatHrmna/efpJSS7XEzzRTAmpSaNm4sppv09qZtsmnx5I8EoinitP2rqtPl8aGSXF5kyB94L9OfyY892f5g+X7PV0hSG6UmHU7MsSYpkA5gDb4T1X2P38V2jozp8nD06HyfT9F2jHW6YZobXsR3SHP9j6PW5is7d5ZW4RRr6ilypVVApWvRQB92awRstRuZ2fFP5rf85f3GlahceX/y5t7K8lt2aPUNevEZolkXZljhPFWoR1bY7FTnTaDsHjHFmJ8gP0l5ztPtzHppeHhAnMcyfpj7u8/Y+dfLv/OQ/wCdXlrzQ3m6Lzld6jfXkVbrStXX1rC6tS/JV+rmiotfsSR7rWtWGbrL2RpMmPw+AADqOYPv/QXQDtnVifFOVg/wkVEjy/QQ/YL8mvzW0H84PJtn5w0ONrRxKbLXNFk3lsb6NQ0kJPdSDyRu6nxBzhNfo56PKcc9+oPeO/8AX3F6LFmhngJ4+R+YPcfd9r13nRGFKIy7/wCZzC5M6srvJcn+5jWYgTSS3jcgneqvQbfI5bpj6j7nH7TH7uB8y9GIzNdM1TBStYKW3UwgJt2BDWKVNgPDAyCnTqMKWiD06b4Fap+GFW/wPfFVu1aHocVaNf7MVW/L7sVW+AwKtPT5HCrW+KH/1vosDU0zleT0Qb5bH/J74FVAKU/jiVbYVH664pbFBSpxQvH+ZxSuHh94xVo0r3P8cVXjf5eOKqoHQHFBXgUxQS8i/OP84NK/KXRLaQwR6v5t1wMPLPl5mIVwuzXVyV3WFDt4ufhHc5OEDM0P7HYdmdmz12ShtEcz+geb8/rm58x+fdefzN5x1aXWdYmrweQ8YoEr/c28Y+GJB4KPnkpSjAVF9G0ukx6THwYxQ+1num6OFVB6YG1fA09j2+nMWU0yyBl+mWfCUEw8WUn05G+E7fs7+OUyk4+WW3NlsOn8COUcifCSDSq7nv8AOu2Quw4JyWjUtBKWANaDiwRSBUeI3+WRtiZ0lGqeXjNDIDRF3Lr13psK/wBMlGVNuLU0Ul8j/mff/lNr1vYaozXXkPWLlI9Uhdif0e8jcfrUA/ZC1+NehG/XMzHZFjn9/wC1h2n2PHX4zOG2UDb+l5H9BYx/zlzr51T819K8vwyrLZeWNAt3UoQyPJqNbguD4FONDmXpwCDLv2avZTTGOmMzzlI/7HZ8afmF5mufLflWaGwjf9Jak3o27xryZajcgdeXYfec22gwDLluXINntDrp6XTkw+o7DyeDeTPy2v8AzFKdX1uOaOGWUvFA54NMwNWZqitCdgO+bnU6uOL0x5/c8b2P2BPVk5s9gE3XWXeT5feyrz7+Teo21qNe8v2DXEcSD9IadCPiMfaWNR1INKgdcp0vaEZHgmacvtv2ckP3unFkc4j7x5+T2n/nELyv5x0/W/N8mp2Vxp+kGK1jjs7mIxh7vdxKjN2EZoaV6iu+2a7t/NjlCABBO/LoP7Wz2c0uo0sc3igxia9JHX+cPhs+xPzW8g+c/OPki+8v+UbmGzv9TiMc88jlS0JPxxbI5o4qC1R4Drmj0GfHhzCeQWB+PsdpqMnHinCMuGRFA/f9j58/Kb/nBy65Wes/mXcq0VjciWDytbghLlYSQhunP7JoG4IdxsTm71ntDYMcI5/xHp7nmtN2RgwEHKeMg8h9PlfX4cn0P+b/AOQHl7z95cex+pQWWs2KFtC1S2jVDbsq/CilAKI23w0oR2GarRdpZNNPiBsHmO/9vm77KMWuh4eYbdD/ABQPQjyHWPKtnx7/AM4r6/5s/Kb8/Jvyu8ywGzTzsjafqunuw4NeW8TS6fdwt0PMKyVH2geJ3GbztuGLV6MZ4b8G49x2kC83oMeXR6qWmy85D4H+bIeUg/WSadjEvFeoJXemw6n2oc4gh3oG6J/L+X6xrursN/Ts1Dn3L7DLtN9R9zjdrCsUfe9ZkVYonnldYYIwTJPIQiKPdjQDM07B0Q3NDmwPUPzJ8jac7xvr0d7MmzQWKNO1fCqin45Ucsfe7DF2XqcnKBA89kkf83PLQI4WOovGdvU4oPwLZA5x3FyB2LnPUJvZfmP5VvGVGnuLJn6GeI8R82UmmI1EerTk7K1EOgPuLMbW7tL+EXFjdRXkJ39SFgw+mm4+nLRIS5buBOEoGpCir4aYrSMDIFZSuBNrD1+f04UrTgVwwq138fHFVpP6sSq3FVp77V98CrD/ALWFDsVf/9f6JKSdumcpzehVB32qT1GNJBVRtt08MVX96Yq3TtvtildTFV4Hf78Va418Tiq8D+3FVVRTFBSHzb5q0XyN5Y1vzh5hlMekaDbmedFPxzSH4YbeLxeVyFX7+2EAk0OZZ4ME8+QY4cz+LflJda/r35kebdY87+Y/j1TW5Q0FkGJjtIF+GC1hr0SNdgANzU98yclYo8IP7X07QaWGlwiEf7e8/F6hpGni29OkRZid9iwBHsMwJytunK3oVk68CWHpMSGENKh6eBHYfTTucppwpizQ3ZbpEthKPWgmgmhFf34bkCwPimxPyyEo1zcLPxDZltuY3qnDgWFWcA0PagFci4MrVo4EMo9P4VUfu+wJHtuSMSni23RBt0NAfirXem2/UEU7e2BiZPnP84NKjhsbtzEoVo27clNR+v55m6WXqek7HycZAfKWiXV3qs0t5fXk1/dBEhE8zl39OFfTjSp34oigAdgM20gIihs7KcIwutufJP4NHtry8hNzAkslspMTSgNw59xXsQPnhGYxG3Vxc0I7EgbMpt9KhibiFDg0ZvhoFPcqfn18BXKpZCWsPQdN0q3nsyBEAFXkQ1CoLbBj4V9vFq9MxZ5C45lwyt6z5RsIYOAQiP01qvPoxJPb7/kA3iMxckrcHWTJG/4/H6numjW0ZCM37xafCCPbqV2Fabnso2ysF5/PLp+Px97MuMUadBGHTlSgBK9ztsR4EdMk4YslJri3haoZQSqnkcFuREl5Rqf5Y+StX846F531PQYbrzP5WLfoHVBVXi5AmjU+1wryWv2T0y0anLHHLHGVRlzHe5UpCXCSAZRuieYvuZN5g1i30mzuLieX0hEhJ5UqNq8fxzEPNt02A5ZgBgvlD83tO0Xy7rV5p6rf+atYuxFZwuh9C2t1FTPK3RjU0VB1PXbL4ROO+8uXr+xJ580RLbFEWT1J7h+th2s+YvM3miWVtc1a7vIl39Bn4xJv+zGtF+8YOfPdzdPosGmrgiAft+auYnjtIZYIeAXjz2FSvTf54E3EyopvFBDcRx/uijMB8I7+HTsci0EmJPVkNtpxCiNugNaDpkXGnktMYoLuxlW5067msLpW+G4jYqafR1+RwHyaZcMxUwCHp/lrzzLcTJpnmVEtrpiFttVUcYpCeglHRWPj08cux6jepfN0ms7N4Bx4tx1HUe56UQRUH6cyXUgraYGVqZGFK2njilaR+vpiq018N/HFXb9/pGBVlT/TFWj+vriqw/dQ4VW09vx7Yof/0PokDT6M5R6JUBO3bFBVVG3uMUqgqPb2xpLY9xiq8eP3jFVwBA/hirY64quFfxwKqjEMC/Pz/nLbzy2u+bdG/K/T7r/cX5UCaj5oRD8Mup3C/uYXPf6vEa0PRmzLwRoGfwH6f1PXezej9JzEbnYe79ryjQLa3txb8EG2zHYcRSp6fhmNkJkXrZbh6nazwRQJKrlUchWFQGPLvQgj8PkDmPRJcOVk1T5O/wCcmPzL1/QYtK8v+X7t7B9fhvItVuIWkEklvwEXAUO+5pvU+wzouw9FDITOYvhqve877TdoZdFhhDGaOTivvAqtvPfm9t/5xJuNSl/KbSxqx/dxXdzDo3NlY/VoyADsX41bl8Jof8nMPt+MRqTw8yBfva+x55JaGBnvzr3dH1jFMGBkUu3EU4geHsTU0zR8LlyFPl780f8AnJ5Py8/MXQvJMehvrNpObdtclhkEVxGZpOMaQLRlLcdyrj4iQOQzeaHsU6nDLIZVzruNd7g6zX4tJlhikLMxz/m2aHvfZkKmaJZGjdXkVJBFMvGVOQFFcAtRgNiATv8AZY9M0VN0tjXd+Px9ve8M/OeH/nX7yQMCVjcsRtX4a75dpvrDvuwz+8fFXkqJhZxyiq8682puST+ObrNzp3svot5t+ZH5raj5M1qLSNCs4GvJII5ruecc1CMf7sp/lAHeu3bNnoez45o8UyaeK9pPaCehyRwYogyoEk/dXmOqH0T/AJyPg9eRde0Ce3tgAYJrKQSlRsCHRuJP0dtjluXsfb0S+brcHtljMj4uIgd8Tf2bPedB/wCcjPy4uYlMuqNprK+0N1Cyc+oEjABhRjvSvjmtydi5wdhfuLsMftDocu5nw+8EPojyh+ZvkLUI4HsPOGkXMLqpEguo4y3JV+0JGUjpQg+PvmszaLNA+qB+TdLU4c4uE4n4h9B6H5q0e7oLLV7C9IUs4t7mGXoGcg8HOx475hnFKPMH5Ouy4Sdwy99Zh4hZJ4gDujPItCw+0RUilRtQbdMi0DCedJPd+YdPtUaW61GzhRAWEklzCgPDYmrMOlPnh4SeQLkRwksLP5m+RZ7210Sy83aVf6vdzG2t9Ps7pJpHmHxMn7ssAaU3JplktNlAsxIHfTKELPMfMdP1PB/zg8zXOoXul+XLGQmbVJT9bCtukCfExHzrjggN5no9d2PphjgchHLkgtOso7SGCMKI0FEVB8IPhSuRJJZZspNskutRtLc26jgWfj6lG6UPSg6jEYyXCgCbLPbdmubRIwOYmo3pRipIp7+3Wm2Vyi64yEZWn0FkhRa1jZKKCAF7bGu+ARaJZSGP+YfzC8p+SlebzBrVvpduGCJJcNQyyU+wgAJdj7D5kDMnDpMmY1CNsZgRhxzIiPNA+R/z2/Krz7fXOkaH5ptYtVtkEi2F8Vs3mUnifS9VqMVP2gDUddxvlmp7L1GAcU47d43cOOaGSXDCYke4Hf8Ab8HsUmmCdDE60A2Ioe/UEHNaYsxmMSznyhrM3L/D+oSGSWFSdKumO8ka9YST1Kj7Ptt2zIwZP4T8HU6/TAfvYcjzHce9ndMyHWrT7j6MDJbTritrD3qB9OFK0j8cVcQKYqp9yPuwK0R12qcUrSOm304oa/z6n78CX//R+iNT2zlHoVVBXFKuBTauKV5FemKtgf7WKt16/qxVeP44q4ffjSqi+PXFVl3qFno1jf61qDLHp+jWs1/fMxoPSto2lYGviFpj0YiJmREcyafirbaze+a9d1rzTfyF7/zLqNxqd16n2i1xIXA9uKkL9GbXJAQiI9wfUtFgGKAiOQFPYtEictF6fGkXQ9Adq9Dsaf59s1ky5U9huzgmKGBmkNCwPM/zd6qx+yT0J602G+UxG7ikEnZ+cn57eYF1n8ypISzKum20WnNcI6hY+bcpBHyIVQAaHkfckZ3HZOLw9OD3m3zv2r1AnrhjHKEQL/rGy/Sb8mdHNh+XvlaO2IkibT4nEvNGHGWrKRJEkSkUPw7AHsp6nkO0Z8eeZPe9ZDhhhxwHIRFcj9wAPvA+L2IGZIpU4iOHgeCmiMPcktHT7swwGuVEjff8e9+Vutta+b/+cpjHeT+tYHzZZ2gBA4H6jwZVEzS+mTyWm0iE/sntnbYQcPZ23PgJ+by+p4c/bIBO0SB/pRdfP+x+xVu3wtxAAcsWQg9W67EBhWm+1fH4qE8EXezsk3+Px+Nngn56sV8rapOWKRC3lbbcn4T+Nf45dpBeUO/7EIEzfc+VPINlXR7dyac4QfY7VqT2p45ttROpu6magHzx+dPk6/vJz5isbf1hYoY7uKIEuY03LAd+Hh1pm97L1IA4CefJ4P2v7LnmrUYxZiPUBzrv+D5yjkjZCKhx9pDWh5HYkEdaDsc3j52CCEas1siRIJVogqCEDFCTzpv1PLAkJpbTxOziJPWEgeQj0+VKhnZ2BFKL1qO2LIUibK2tl43ETS2plljtpvqLmKUiQSpI1BQHZxTv1HfCTexZR23Br3fFPU1fVFgaQeYNQMqLwt7cGZwZP3aSD1GYlKCNGodmoKZHgj/NDdHUZQNpn7fx0DGrm8e4jET3E83pyeoscsjsoYAivxEkH3yYppllkRVn5lnn5W6X5j8zeb7DR/LoGnzOyz6hrSK9LSCNgzSsY9wTxCqBSp+WYXaGWGLEZT3HQd5dt2JhzarUCGOh1Mu4d/6AOr7atbs6x5/1W8kqbbSkisLUbVpQFqAewHTOLyR4cYHfu+y5PRir4/NKPzw/M+byBpEFrpKs2uakjw2ctRS2+GpmoKkkA7eJzK7J7PGpncvpH2+TyPbPa35HBxDeczUfL+kfd974avPzT8+Xd5FczeaLxXhIMaowCqO1VUAff7+OdZHR4YihAPBz7d1spcRyl9r/APON/wDzkJres6sfLHnQjUp5QradryqsbEk0EE6bAt/vvgvtxA+LNB2t2VDHHxMW3eP0j9Lvuy+0smtvHk+obgjb4Ed/ufcOvasul6Xd6q8tPq0LOoXcigJZgAG2zncePilXe7fBESkInk/ISzPmj/nIH817TRZNUngbUry5EM8nH0rHT42ZpGjjXgOZHUqasSK1pneHw9BpzIDkB8S8fkyZO1NZwmREQTX9GEf0vYPzV/5xOvfJmjtrvku5ufMEFhF6upaZcqPrg9MVM1q8YWpA3KUBp9k5h6HtsZZcOQAX1HL3Fy9V2DDh4tMSZD+Enc+cSOvl8ntX/OIX/OQeuajqVh+U/ny/l1WPU4Sn5eeYJ/ilDxDk1hPMd5AwBERO6EFG2Ipg9u9lQhE58QqvqH++H6fmx7O108x4Mm56HvrmD5v0Ou7aThFcwt6dzaus1tKKji67ipzk5CnawkNweRen6bqEeqWFtqEQ4i4Wskf8simjr9BzMhLiFuky4jimYnojPHJMVp/HtilacUrafqwK0dsVWYVW+/0YFWmg7dDiVap7dqY0Ff/S+iH6znKPRLw1DiqJBqNqmm4rilep79fHFVQD+3FW6V64q6n9nviq8dPfFVRR0xQXzt/zlj5nby3+R/mG1gk4X3nK7tPL9qO5inf1bkj5RRn78yNLDiyx8t/k7DsfCcmpB/m7/qfm/wCVrM8IwigMo3rWmw6HMvUS3fS8NcO72zRVVYkQtQ1+M/sgbnc/RU/2DNbNcie30TtCQEINaFSKhf5qgGpNOwO2y+JyOM7tECARfJ+ZNz5O8z+YPzNuvLh02afW9W1hoUmMTzQxl5AyzleIDIFIoDRf9iM72Gox49OMl+kR/A975Zqez9Rn7SnjlE3KZ9RBMQOfFy3iB8Oj9s/K+jSWOlafasE9O2to46ICi1VQH4hNxyp2+JvELTPO8k+KRPe9hqcoMzX4/R+gJ1qVs0dnPwjflGp2jDAoeposRVVPzZj44IFrwSByRs8z+Of7H4/flVaS+Zf+ch9HhjCzz3/me7kuJmkFUEUjyNsy9WUfYlUqx2DDrnfa0jFoT5RDzOlkZ9qyl3SkT5Ae5+06WrCI16H7LGoAA7b7j28OnYZ54di7/wASy+cv+ciTHb+SNUrUEwsBy3/vKL9575kaIfvYu/7FNykfJ8/+ULJotEgjNSBEBQUGxWn3HM3PP1l3ucbgI5NAhvyY/SHF2Pqo3tUdutf7MEc/DvbjZCQ8w85f84y6V5iD6jo0jaJqirUhEU20jbf3igeG1V/jm20nbcoemY4h9ryHanYOm1RMo+ifeOR94/SHzXrf5HfmH5elrP5dk1C3QUS9siJUYhSzUC7gChFSM3uLtLT5OUq97yWfsDWYj9HEO+O7EbvQ/Mlt6kcumXMcDSHdraUekSk4CE8QAFVGYjp0OZUckDyIdfPSZ4fVCQ+B81G3t7qaeG1jsJZLkykR2QBMroTI6lRs3PZwPh/lOWGgL6MIwkSAIm+7qyLRvKXmjzHeWtloXlzVtTv9XiimsnghkRZUnJ9GV2I4NC9GNSRxcEDbK8mox4gTKQAHNyMOhzZSBCErIvu27+6vuL6M8s/84d+e9VihbzBcReXLa4QNNzKT3KgEEKqoaKzCoJLbHqM02ft/DD6Bxfc7vB7PAj97OvduX13Z/lt5Y/KvyfcWflbTja81U6hdyAfWbogEj1pO/QkL9kds5rUazJqZ3M+7uHuex7KwYschixxAj9p8yer568muWs9R1Nt/rl9LMrKdwqsVUD+GX6j6gO4PTZi+VPzevb/zR+ZF/pkAEskHoWemRJ0NV5FxvsCx/DOq7MxjHpwe/cvkftHOeo7QOIdKEfjvfzesaH+XGiad5b1CwmgW6L27/XrslSWcr9upBPwt0FKCmYmTWSlkBD0Gl7Lw4sBxUDYNnqfP9T518j6tceW/Ovl7UbVpHmt9Tito+LMgIllEZ5UILBu4JAP7R7ZtdRjGTFKJ5EPE6DMdPqYSHSVfM0/Yv8wdLur38vtfWCL6zOdKmd4VUOSVWpC1Ug7eC7+GcHpJAZo+8Pd+JUpR94fmR/zjP5msvKf5safc3jJHY6pHcWMk78Qy8quoVqoASRQ+Odn2tgOXTkDmN3juxMohqTH+cCP0h9y+Zf8AnLD8qNKvZ9DBvdfRVjVNS0yNWg+MkSKeZShjPgN857D2JqZxvaPv5u7ydpafDMDjs+W9fF8BXev6PafnBpvmXya7Ppg8zWOo6NZ3MTKEmluU9WIxIeQBNd03NajOnGKR0px5OfCQfk6PUZ8R1wyYTsZA8up+rZ+9kjc2etSSdhWvXtX+JzzTo7+QolOPJcpCaxYndbe4SaI9qSr8X4rl+A7EOH2hHeMu8fczXLy69YcWTXhiq0gfdilaaUxVb/DAq3/OuK2tPt37Yq1QeGKX/9P6HE0G/wA85I8nomkavywRKUSHr9PWmSC2qqfxwqiFH4Yqqcf9vCh1Pb54Erx0xQvAxDEl+c//ADm/5pe783/l75Cgf91omnza7qEYOwuL5/RgLD2ijP35stBDaUz7v0l6T2fx1xT7zXyeBeXIS3pCIM1d2Yjiqmn3nI5j3vc46EXsmmKsbqr0IUJyUCm1K13zXz3apnbZllrDCwCT0VCBWNt0UVqNh9o9Ad98rcWcidwzHQPLOni/i1MWkLXrRmOS54jm0fLdAR+yW23/AMojtglkkRV7ODqNVIRMfx+Ovye2aYsaoAKjqQ+1TWlfvNPw8MoIdFlu0Vf6ct3A0bqhV1K8SobkOlFUmgX8Tkxsxx5jA28M/L//AJx18j+RPOl/+YGjRzyaxe201tp9rM/qW9ol29bkxcvjPrUCkOSU/ZO+bDUdp5s+EYpHYH51y+SJRxRyyyxjUpcz99e/m+g5WZY+PHnyFRyGzDY7/Qa/fmqkmIBL5N/5ycnCeUEtwOJu5Yoozv8AaaQVr3qcyezx++D1HYUbM/c8t8vwU0qNakKqUk6Cm3Svv39vnl2WXqd3m2mzHRtODcOG/qbLWgoa7fjmNKbh5p972HTtNWO3IETPxX92woKmhO/bsBlMZl0WWdnuTSDy+s8cn+jwkMzKCwrTcjt3rk/Epx5ZuE8yiH8qWpjKyWNtPExY8D1J6ioIpurN9GSjmI5MRqZd5QsXkPy3LeQ3d15f02W+h5rFqBii9QVAWgkK8lLAAj3y4aidcNmu61lnlz6+7dm2m6PbWMIitbWO3iSipBGoVKVrQKoAUg7lSKV3XKZS6lx55ZS2J/H4/ajbuzSCE0CuhJA4bgE+x674DJjjlZeB/nPdJa+VtRkDmKZLdnQgkHkV2B9qHLtN6sgD0XY0T4vk+RPK/OLy7YlagvEruUWu7VaoJ8Dm0y/W7qdmnybeavBoX5leYtW1Afu4HlEBHxF3anClRXfuR07Z1eKHHgjEdz5JqtTHT9qZckuQJr9DEvMPnvzJ5ivGmbULiytQB6FjBIUUUFAzcSOTHvXLceCGMUA67W9q59VKzIxHQA0P2lO/yp8uXPnD8y/JOgRKQBqUV5fu3xCOC1b1pHYe3H7zletzDDgnM932nZj2XgOfVY49xs+6O5fu+NMiuNNNrIPVimRg0ZAoQRQg/wAfxzzwEh66Uz4nF5vxy/Or8mvM35XeYNVvX0l4/KV/qs3+F9XUKFkWX96sPwtVWWpFD1pt4Z3/AGb2jDUwAv1gbj9LzfaXZ8sMjkhXATtXS+n45vACeTlzHxBFGCnoQabZsnSXZet/lHbPf/mb5QgtbX9Lahc30UWmacqowmmLV5NzrQRCsh27Zg9oGtPOzQrc/jv5O57KMfzUSd+4fr7q5v3gSIwRLG0pkMSBS5oC1BuxpUCvU55uXoSQSjvJ1xXzDqkO49WwSQj3SQfwOTwfV8HH7Qj+6ifN6Wf15kupWnAlbTw+jClaT1/Vilb1riq3374qt8PuOBVprue2Ku/r4Yrb/9T6Gdf4jOSp6JoDidsjySrKfw6ZMIRKGpB+/ClFDFVWv0YobAxW1wH0YoVEUuyooqzEBQPE4QxL8avz78xjzd/zkF+Yd+kvq2Wk6hHomnvUEejpsaw/CelOfPNxpo8GAd5s/N7fsbGYYogj8FN9Ct5FRWQq1GqQ6lgH7eB+7MHKbL05FBiP5pfmH5i8kaSupWfo/XWugvqSRs0br1ZOIoOR8e33Zl9n6OGonUrqnUdt9ofkdL4kK4rAoi3kGgf85XeerHU4rnW9E03WNKVl9aztkNvOoAALJKSyk7dGFPwza5OwcJjUCQe/n9jxWP2uzmX7zHEx7hsfgf1vp/yb/wA5j/lpezw22v2mq+Uy9Q97dwie3WgpV5ICaErX9nq2arN2BnjvEiX2H7XMh29pM2x4oHzFj5h9IaF/zkJ+Ump20U1l+Y2iNJOp4JNcei1eHqlaSBdwCNj4ZrcnZepgTeOXybhmwZK4ckSPf+vyer235geUHtV1BfM2kfU/sxXRvrdUZAqj4WLjcqcxzp8gNcJv3FicRPUb+aTf8ro/Ke2uTaXH5j+XFlZxHHCL6N3Z3bhQcCwJYUI+WWfks5FjHL5FhUeXEL94Z9+kLHUbWO70+9hv7SUn07m2kWWMlWKvxdCVNGqDTodsw8gIO+zdGJiaPN8hf85RXitpWhQhSPrGqwKu+3wkt9nx265l9nC8hPkXqew41GXw+9iHluOR7NIzUcvs969Cae3+fbBm2Lt9TQlb1XQbBCyNyVRFQkGoLDwGYGSbqdRk+16pYw8ECAs1dqt+yShXfxrxysF0+SV7sljaMngr8XrUuNxvTenjWmStxTE9UQqOJOSUNR/dk0r14g/iuEFjt1UwGqqrH8QWijiGJX+U1607jr3GSjKmwBNbOaNU/eMVNQCWr1HYMdj8juMlzapwPRvUmHpkU4KtKcTRTsdqeAGBGIUXyF/zkHrCxeXb225fF9XYkg7nrt9A3OZ+gheQF6rsjHwiU+4H7ngvlpK6Fo68QFe3iIahJqVGx9sz8pqZdid4g+QfJH50+W7vSfNd9rLJNJYasRKWZCFhLr8MRYfDUBf8znUdnZhPEI9R9vm+Ue1Oili1JzbmM+tbA91/c8lsbae+urfT9Pt5L2+uXAgt4FMkjbjdVWpIFak5nEiIs7B5vHCWSQjAWT0G5fpR/wA4z/klceT6eadet+Pme9jaM27DkLWB3DFf8p3AWp7dM5HtjtEZv3cD6B9p/UH0DsrsoaDFx5P72Qo/0R3e89fk/QzSV5JFHJuKAlaVr/k+/sOgGc9e7HMK5Kfm7yN5f89aPf6B5jsItRsb5aG1dASpU8lZGAA5Kd/HwOX4c88UxKBohx4yoURcTzB5H8d789fO3/OCOu3HmG6uvIvmfT7Hy9c8ZFstUWeS4tX/AGwroD6iHqtaN2JNM6bTe0YEKyxJkOoqj+p1Wo7IxZJ8WOfAD0IJr4vpj8jf+cY/Kf5Qka3Iw8z+d5OS/wCJZ4+AtUkXi8VpHU8Aw6sasfEZp+0e1sur9P0w/m9/v7/uczT6TDph6N5HnI8/cO4PpyRG4SmgPw0Ck9x3zUFvCG8ncz5wuST8K6bKtD3+Nd8nh+r4MO0P7ge961mSXSreuLJb1xStIwKtP6sUqZp/t4lXfRTFWjhVb9GBX//V+h5XOTIeib40+nGlVFQ/dhVEIKdsUqy/q6YqvB+jFVUbfPFBVMWKF1HVYNB0vVtfuWCW+g2F1qMznoBawtL+JWmHmKTCHHIR7zT8E9Dnl1O9m1K4JM2rXMt/ck1JElzI0z1B67tm/wAo4Y13bPouhxAChyfRuhqHWFlFeAA49AKD6e/jmoyc3bS5POfz00xdV8m6hzC1tFE9uSSOJT4iWI7ADp3PHNj2RPhyjzdD7QYBl0OSJ5jcfD8fEvgu3UNExI4l/hAbrnXB8lCvNbNIuycufLYg7ijDY/MUwkLTMLBNOllYvN6hujcD11bjIGlh9FE6EEcgK7dOuDccnIiIk/P7qRWo3Vhcx2Nx9Wja4ulgSSGIEIyiAQMnFiwO6nfYqfbCLGzKUgQD3/qpCXOnXMQ09qLbI7MYp0VaF4x6R5cegBArX54mVsTAijy/Y/XX/nFXR7vRfyf0yWS+jubHX7q61XSLeE1git7qSrBFJJWsoetT9Gef9uZBPUnaiAAfeHttNARww3BuzY/pb18HnX/OS10o1LybYNQV1BpixPwn01/aP07ZR2cPrPk9j2NXBfmPsUfLQpbRGvKiBnXuK7bZTm5uw1PMvZNCgaZWFDwj3d/GoP6u+a+Z3dLqZAF6Jb1jRBx4ns3Xieu/uD+GAcnVy3KYW7spLkGrEhl6bEdK+46dumEsZBEmUseIZqgbjqDXrt3B7jqDigRR9u6yVDAuad/ibb7q0+8YWEhSLgZQx4OxAJJBq2/clTQn2rXDbGYQOoSxFJCFCkj0o2X4QANzt2rhZY4m3wz/AM5DTONPvgsjFBHxcMQ25/jv/DNx2YBxB6zSbaaR8iwXyXIG0vTYzVTHbR1XxFOgPTL9SPUXKr0D3M81Py3Y61HHFfxJcrKyLNbuoZJFU1TmtCKqSRXKsWoljOxp1s8cTYkAR3HcJ75L/LHy1ok0N3Y6XaWl2xMT3EMYDDjWi8hvQdBvvkdRrsmQUSSHCOPFgJOKAia5gUafSWi2ENvGgVGWjAFDuBX7Qr881s5WXX5chLNbFTG6lmPNSdgehqBsPpyPMuHkNhm9pykjNHKgj4krtsdqDxp38csG7gToFUkRdx1qa0HU98WNIAvFBKsYIHLeh7nAWVWLXOBIp703RvevUZWkBL/KvJfN69hJaXAb3NAR/XJ4D6ka8fuPiHrJzMLo1pwMneOKrCK7jAlYQKdMKVPqcVdSmAq0cKtb4KV//9b6K8Nx4nvnKPQrwvXbCqqF+/rgSuFPpHTFK7p8vDFV4PfpiqqDvgVUBwsC8F/5yk8wjy5+QP5hzJKYrnXbaDQbJgaEyahMqNQ/8Y1bMjSx4ssB538t3M7PxmeePlu/JLy9D+9iWNgqqP2v2qeGbfOdn0PSR5AF795dhmZUZXIVqcmUkfIn9eajKaLsMhFJp5o8v/pTSbuxuFMkc8Rjofi5c9uR+RI29slps/BMEOFkjHLExlyOz8yNY0e68t6/faFqSmG60q69Jhy34cgVau/VCDndYsgyxExyL41q9LLS5pYp84n7Oh+S2MowhlZk+0pchiWoCrFuPjSuXW46NgkhNvc1ki5fDHIoYrOeql12I4qyqSPfG2Q5FMrY2sNuJPQWd5gXjkjZkkCgH61bcd14sKMCRXtXAS2RAAv8eYehflh5B8zfm55si8maM7S2dwqv5n1YgCGzshRXmPgWQBU4ivL6cw9bq4aTHxy59B3nu/S52h00tVMxv0j6j3D9vJ+2mmaRZaBpFhpOnWkdjpek2sdtZWUKhFjjiURoAo8eNTnm2WcpkyluSbL19gnb4e58Nf8AORSs3nLydG0m0lzM4qTQKI9gBmy7NPom9b2Z/dw/rfoZX5XhVIIFVdigLU/rmFmlu5WpO5L2vQYjGCo5KtQCgFa7dKHtvmCTbo9TKyzROHpcT9utQo6e1D4jFwOrZk9NQCN+jLWh/HpXw6YWQFlYs4WtWLcRUIftfIjoTiz4LTnTpTIiOwHx7cf2iK9KNsfvxacsaOyNacM/7r42p8I2JJ+TbinzwtYj3pXqRKwsaFaf3Zr8NepoT06ZJsx83wZ/zkHeA6ZeUTkGNQf2jv3HtWubvsuPqeoieDSzPPZhvkyQx29vHQlI41oB8h0Pt1y/VCyXLjQxgPdtPUPHDEHbd1eWuwZiKUHcfPNZLm4eTYkvQtEeCKd7VpUUW5/fRbVBNHFR7jcZVIHm67PuLD1jShUA8uEexCLvufGuVSdRmKeQykScUBBZvhZup+IYQGkjZmFlIfTPEkBaduvcE18RQ4hw5iyjZ7iNR6hIUUBNfADr+GSDVw9H58f85a/85DXvlGKPyH5E1X0PNN5Gtzrmo245S2FtWqRgnYSTgb+C/POh7E7LGc+JkHoGwHef1D72rtDW/kcYEf72W468Me+u89Pm+wvyu1HUdZ/LXyLqurmJ9S1TQbS5u5oHZ42d0HxKzbmopX3rmg1cBDNOMeQkQ5cjxG++j5bi2X6DSPzVpTc6mRZk++M5ThPrDXq98Evg9YzNdC1ilrxwJW/j4YUqZNeu/h4YEqfhvhVv2I28cCqZH04q1X3wq//X+jnhUVzlHom/lvTFLde9e2KtjwxVofRUYqvBIONKqqfoI74qrjFgXwx/znnrwg8lfl15STebXden1S4AJqINOg4IaDqDJNmw7OjeQnuH3u27HxmWQnup8O+W7ZyYkYhgxq1aduxPvmRnk+haegNy+hfLloypDxjDBTQdjQjtmoyyTkl3vTDpBuY4wyBOKgPUV+JgaCncDl9+YwycLrzlALwT84vyAtPO1vLe6ZGLLzDZrIbC9QDhMwKtxuKCpUitD1Gbzs3tU4DUt49R3e50/avZmLtGFn05Byl+iXePtfCfmP8AL7zp5RurvSdY8vXiLbXRhguYkLxXDoDIBFINm5RsfpHjnWYNZhzRuMh311+Lw2p7I1enkYmBIvYjcH3JRbaF5j1u6K6foWo6ndDg0qwWz8ixXiGpxFFdBsf5hls8sICzID4uPj0WozSqOORPuL3T8vP+cdPzN8+3Gnzfoibyzo8skQvfMOoxhAsSE8ZkhJDvIoBVlIAPc5rtX2xp9ODvxHuH6+jtNN2HmnRyfux58z7h3+9+p35R/lJ5U/Kfy9+hfLUPK5uHEmu6zLQ3N3PTZ3PQKKkKq/CAfpzjNdrsmqnxTPuHQB3sMUMEeDGKj9pPefxs9bu/3du1WFFXiG+jbrmtlJnEWX56fn5cet+YflOBqFYRO8Yr0YgCvj3za9nD91MvadmgRhD3n7mZeXJQqoindAKHoCR/k5h5RbfqAXtOiyqYUYULO3xAE1365gmO7o843ZsqhIwQBUCpQECteoAbbJOBdlCXkiiPoKfaC8T23pvWv0YKpuxRNoSOVCVjLqvrHl6Q+Ko9lO9MW4xrdN4ZOIVAV4bipLJv9IphaJDqndpIrIYmYbilOSkj78XFyijbH9ZuY4llqeWxRG2pSlSdjSgGScjDEl8Af85AX6zW0sa/EpqdtiSPYUzoOyo7vR5fRpJeaV+WTSysZOfxemhCjboBQVyefmXLxD0h7npE7GOByCGI3WlamtSB2qM1sxu4mWL5B/NfzV+YP5b/AJoP5otJZH8v6wsMSwyM8trK8DMWRqUMb7/BTttvnT9nYMGp03hn6hfv36vE9ua3WdnauOeG+GQAo8rHMH+bLu8n3p+UX5r6V+YHlrT9W06txKEWO+tUPx28oqOLg0Ne4r2zndbopabIYke7zdjCePVYxmxH0y+YPce4vetPuILr0+UckRFVYOCBy5UBNPcDfMKQpx8gMfNm0Mw9JZKmNTQcgtR1NVYdxXp4HAHAPOnkn52/mXp35aeRtW8wTXiRXaxNFocMo4i4u3HwoqHduPXb6czNFpTqcoxj4+QZ45wxA5cv0x39/cPeS/Kn8mfyl1/89/PF4ddvbp7R5TqHmjzLJG0jGKR/7oufh9WQAqgpQdegzsu0NdDQYgIAXyiP0+4Oi0mllrJyz5yau/fv9N+Q6dz9r7SytbCytdNtYVittPgitbW3GwSOFAiKAKdFA6Z5/OybPMu64rNoS0m9DXtFnKkLFdKrsetHqn09chA1IM80eLDMeT2EihI7g0zYPOrcCXfwxVYfuxZKLdfn1wJW9z3GKru22KVM7fRihqvz64Uv/9D6N17/AIZyj0TZ8B1xVofSKYq2DX2xVcv4HFKpStMVVVHauKq4GLAvy0/5zh1xdR/OLyp5fWSkflXyvG06jf8AealO0527Hiq5tuzo1CR7z9wei7EjUb7y8T8s7pGeJABqW70+Q7ZHPze3wVT6M8rBDFElAjEfaPUbbnwzS5mvM9dsYmf0Ca0G/Eb7ChO/gAcxRJ1UyBbME00cgTGaqoJ4/wCQOLjfxU9MIm4RyKN35Z068DC5tYrhWKs/qorqHQVU0IIJoAQfnk45iDYLKOokNrUbLydpNvIJbfS4I5WQxgRoAeJb1OCsOh5fEuTOeXeznq5kbyP4/G7PbKyRYzUB6/FGwFBXuw9/5hlJm4E5Wfx+Pcn1naKnJgeq0/yQD2U06H8MjbTkkl+qMFhkUqa02FO9e/vkCWeIWQ/Nz88ZDH+Zvl81MqelcME8CStSO+bzs4DwJPZ6I7Y/izfy/PI3pmMkbBVL7jYddupzEyhy80RT2jy7fF2aiSStEADuNj2pmDkjXJ0mqx/B6F9fMkLqtnK7p2IU7nwrlW7rhio2SGLzao0Dur28luqE834NVSdx9k9MkA7CGASHO1S01yyab053RTKPhZgSanp1FfxwkFcmmmBYZLFLaOFMEwYAkuolIB+QNciHDlGY5j7E1W6qpZSreI9Sv0dMkHGlGj+xhHmLUkEE3qbEj4Wod28KUHbLIC3P0uM2Kfnx+d196y3CV+GnwGtQCOtM6fsyFO17Tlw6Qg9U68srXTLCtfhhjLt4kKPHp1ynP9RczDtjj7g9q0FisMaliWFDudhTt7dM1uRqzd6beZfI+k+cdJvdM1W2juNP1CLhNyPxEL8Q4sKEMGBII3ByWn1UsEhKJoh1eeOPNA4skeKMtiPxy8nxddflp+a/5MeYv8R/l7qF1e6fG6sHtgZJCjNUreWxFJUFKkj8M6vHrtNrYcGYAHz/AEHo8Zn7E1nZ0zk0cjOHd/F7pR5SHmN3uHlH/nM+8sIB/jLydzeNljuJdMnCNVCFdzBNTiAKtsfHwzCz+z174p/P9YYw7dxzFZsZietfqO70vUP+c3/JUWm3Euh+XtZ1S7SRYzb3CR28URmQmOSduRJjMo9Jyu6tv0ocxoez2cyqUogfP8bbpl2ppKscUjttVff0vYvnqZfzL/5yX886dNq8S3UlpFzttLtFmFnYxU5OkbzfBVf2mDMZO22ba8HZmE8PM9TVn8fYwx4p62UTlqMI77XX7T5730fpf+U/5Zad+W/lmx0a0Ba7KifVZStDLO1C1Cew7ZyGs1MtRkM5fD3OwzZQQIRFRHL9fxen3benxYLTj9oN09tx3zClJrgGP3zmIxXAofTmjkYHqOLA1B9sgdm6IsEeT29iGYuOj/ED7HcZs+bzIWfhgS4/fioUz8q4sgpt9wxSFnjTAq76a++FVpGx8cVW7+GBNv8A/9H6NVpTb55yj0TfcV+jFWiP7cVpeBX59MUrx49/HFVwBJPtiqsgxQVcfrwgMC/Ff/nJzUm1L/nJX802edZV0y8tNNiVeipa2kQ4HxIJNc3+ijWmj5kn7XpOyiAAPJKfKxEJVw1Fc8eFamvUbf1zE1It7TTkU+h/LNQnwcitQoPYV61Pf55p8wZZQHumiMBGnLizqf3e9Gou1DypWo75ryXS6gbs1tLlgKmQ0DfZFa1HQ/F37Ed8HJwZ4wm0TLPvt6bGnEkgA1rQHtvuK9MbaiOFFxLRd40ZW2QbEmh+e/iKdMbQUZbyhGMci8mrUdjUeI2J+eNsTHqnUMqqNjy5VNff3PQ420SjaQ6x8SPxHIBTQdTX+mBuw7F+Y3/OQs0ll+ZnltmrV0uC5BrtRe4650fZI4sE/g9Rhy0cFf0vuDI/K+pK8VukVxwdkAdjuPEbHMXPjo7h3mWFh7doep3tq6GO09VKAuAKgHMCcQerp9TjjLYmnplnrVxMQf0TKuwHIigB+YzHIp1k9PGP8YThizglrbjT9l1qa+3tgtqG3Iok2NioV5IERgQeIG4r4Hri1+LPoVYaNBNz9CSWF1HwMBUfM98Jix/NEcwCl88F7Z0pdIVINSev302OEBmMkJdHmHnK/uYraSN+JdiQlCeR+YPc5kYBcna6KAuw/P782buSW4uh9hwppEegzqtBGgEdt5CMVDueo+UZOWkaeXOxt4iadyVA6ZrtSPWXZ4STjjfcPues6IiGSGOrAEgujGhFP9qlMwJlOXYPadEsrOQSIqcxFTlUV696fPwzDMjduk1E5D4p/JpVtKwEsfLiQFbiaHb6OwycZuKMsgNnl/mP/nGvyH5zunvdS08W13Mf3txp5+ryS7EAMQeLA8mBqP2s2WDtjPgFRlt3HdxNVDTajfNjEj38j15172BaZ/zhd5fTVjIfMmoCwhVQsdUW4cqAOTSCiurUHNCu5GZp9ospjXCLcH+TdFjqQEvn9562+x/y4/Lfy1+Xdhc6d5bsFs47qT17yRjweZySebgDhtWg40FM0up1M85uZspzTEgBEADuHe9XQqFZq1rTr4ZjW4pBU54+UTNQHkKEfwyJ3TE7sQ1SAmzkNSf3bE7Vp9GQcuEvU9ispPWsrGX/AH5bQtt7oM2UfpDzWQVIjzKIxYtHFKke1cWS0/PAlYe4+/FVw+/FVh8B1wq1ir//0vo2B3P0ZyhehdQGgrv44pXAe+KWxtTb6MULh92KVVev8e2NqrjFiUVbIJLiCM/tyKv3kDJMH8/n5iay2s/nf+cd5KVMknnbV0Za8qejOYloe+yZ1WLHw6bGP6Idx2Vn4pkdxp6R5OUTon8rjc0oQK9af1zUarZ7rSS9NvofRylusaxBvTLA8akksO5I8OwGaXILbZHieu6ZfhjCOCsCmykg0HfY+H35hEU6zLBl8c1Lf95VkAAZT8dfA0O+Bw+uyZ2VxG5CMrsTsJCGH0chufkRtkS15IkMpjkik4qtKcd1NCSB/ktT7xkQ4u4RJiT4KmtACV7e1FbcfQcKBJXjY8yNuIA2P9orixPJC6mqi3cg1cDfwA+eK4zZfmb+eIGrfmro9vGhmNvazuyjanxha0PjnQ9mHh08j3l6/Sw/uvIE/cyHy7oV+zRrDarWq+pUg0HapAzHz5Y9S7bJmgI2S9t0ey1y3aM/VY2iXcRoagke58MwZGBdLnnile72HTItYmUBIlBYKVLEUBr0oPAZQQ6TJLFHqmFxo2rsTxaMGtWFeINP8rrgphj1OMIB7DVVUokUSMhBXmxIb5bE5EN3i4+ZJTmwstVjhHP0pGf4lFTsT1FemTcXLlxE7WpyaFNcGdru+cd+Aota/sgmmSCPzMRXCHkHn/RtRisi0K25t4o2LSipkZiD9o+IGwrl+CQB3dxoNRAne7L86vzQ02dJbuS4uPVcr9ldqeA+jOr0UwQKZ9tQ48ZNvVfJLB9H0wVr/o0YHEkUAUdc1mqHrPvdrppXhjXcPuewaOvxgmpVCPhUdT1qcwMnJOSWz23Q7p/q6xwRN6khryIAA8T8jmDIkF0+oxi7J2Zl6bkRhgEIJCk1LCu+56eOIcCwyq1RhEgDgE1BFO/+fX2yHE4kyL3TuFVjagUsOfIPsCpGxNex9+hw8TSd0/gbgoG4NKUoRt9FRjbTIIkjlSuwr1NNx4b4sVQszKfhFK9uu2AsaCQaltFOhBAZGFSNt64GyJ3eg+W5vrHl3Qp6U9Syj28ONV/hmwx/QHSakVlkPNOck0rTilY22LJZ3r+GBLVN64VbIoMVWHfFVu3j3/HHdX//0/o6u4zlXoWzUkfrwJd+B9sVb8dvY4pbpTY7YrSsvYYqrKe2LEpjptP0hZEmgE8ZJPQAMN8ZcixD+X3UNfaD8yvPN3LP6sOo+aNZkMyE0Zm1CcqwJ3oc72GO8MR/RH3OLpdT4Ock8if0vo/yTr0avETOFAoHU1I3Ph3323zRazCT0fS+ztRGcRu+oNE1O2mQL9aQylaxtUU26bDOfyYyOjsTs9CsNaltFblHHLUdY/hah+/pmPLFbTkxiT5I/Pj/AJyb8waXM3k78v7hLLVIiG1nzVbyi4e0ANRb2/VPUYfbJrxGw3zouyuw4yHiZhY6R7/M+Xc8n272xHSS8HTEGf8AFLY8PkOnF393vZ5/ziD+Yv5h+YNO80f42uLzWNAtZoYvK+rXZYzfWKsbmFJd3dVBBJatDtXMb2h0uDFKJxgRkfqA7uhbewcmq1mCc8puINRkas/zh513/B98WOr82ROMrgrUMAZKfLkv4ZzBDm5NPQtk0dx8PFfUou/F4yakjrVen3ZFxTFdb3E8srFlBjQ0Xifp6HCicQAl+tXiJaSkE/CKmu2w8MU4IEyfm35rnXUvznu2NJDZ2cadagc5CWU0+/OgwenS+8va6YAUOoh95fQPli2YyRgKKj4uNaAjNRmls4uplQL1vTY3+AlOPKlFK7UPU5QC6fKQzWxLx8l5KKbAHYU/jhtwMgtMhcK7Big2NEAcr02Na1GLVwUi+UXEEuRXqaCn3jDbWQbVIrgRMxWpYVoCqt19skJUxMbQ9xPI1NmYvy2Ma7CgrgMrZRiHmHnKFrqzkj6EjkDxp8/bplmM0XZ6M8Mrfn1+cVpEn1gCOh+0KDam4pnSdnyd7q/XgKa+QTJNpOmNGR/vPGDXblQdvuzH1gqZ97kaeYliifIPatHmKExheFGASvh3rXb7s10xa5Q9c8uNG49QMVKVWQKfwr2O2YWTYur1VhmMbh3KmNkVaEtyJ471rT/PbAS4XJkUN3HEoPOoRhtux36b+HgcjbjyhacR3CvwarfEpCgHjU+HfC0mJDI7eRSgotezAkbfjhcYpkklKAKAPAFfvxtrIVi4A+wR3LdqffhYMc1m6hjt39STgtKkONh41wAFniiZS2XfkL5rt/Ov5S+WfMFr/cvcapYVrUcrHUJ4DQnqDxBB6Zt8uA4JcB6V9oBdPqpieaUhyv7tv0PXMpaGj/mcUhTPy+jFk14dsVa3G9cUtH7sVW/T70xVbjav/9T6OrTw69TnKvQ7O/jil3gD26YFb6YpXjcfPFVVcVV16bYsCv8AWFrHcXbfZtIJrg/KKNnP6sZfSVjzHvfyxeZbKSPUr/UDvDql7c3K7dDNM8nbb9rPQcJ9AHcB9zga3AceQnoSU08vee9X0B4hxS9t42B9N/hen+t3+nIZdPHJzcnQ9sZtJsPUO4/rfTnkL84NL1aeO0FvJbzVrJBLxFCf5QN2r2zTars2QF3b3HZ3b+HVnhFiXca+zvUvzd/Oi+tLSfyv5YlS0v7yALd6jCSj20Mo+Je9JGU7eHXJdn9lC/En06OD272/+XBwYT6yNz/NB/3x+x4/+Tn5J+ZvzU1V7bTJTa+XdMK/p7VY6sQHP9zCWHEzN1JOy9Tmy7Q7Qjo42d5HkP0nyeU7J7K/Oz9R4cQ+qXX3R75fdzfsR5D8mJ5N0DT9C07Q49PstLiS3goCQFQVDsykkkkksepPXPP9VnnmmZyNkveTlhjGMMZqERQH46vV7LTtTeMPFf28yMK0iBH3dMxSHEnlx9YlFS2WtlxwkVwNgVbjwHft0yNFYzxUilsNSgT1CiNtuxc1Y/dvg4TzapZIS2efebn1j6s8ccIjYoWlKnc+FARkRz3djohiuyX516ZI91+bfmyeYMZIZYY6nalF3C/LOkyCtLEB6jCB4mTyEfufW3llJB8Sksqp+0ATXrvnP5nX6qqer2r8Y0ruSEAoa0J+eUg7OlkN0/idfVPJqUoWBHSvgO5ybQRsrghxU0qS7MenQ++AFHJHxEOoFSFFCAADi1EUjYYlp6jAOwU0Xj8Qp2w21yPRDygDgenLnwoOxFe/TG1DBPMjj6nIripNUjoOh3O/jlsHO00fU+Afzpt2jN6Bx4kBQeu5XtTbOh7OPJ6LJvpz7lP8tJfU0PTGrVY4I0avUnxpkNcKmfez0p/cwrue3adGoZWP7wMDXcUr03HyzXTLOVvRdGmkiKxKAFJBLbAkDrt4gZiTAu3CzgEWziGcoQsbH7NSwrUjxyADr5AF1/5k0/R7G81PVLuHTrCxhaS/v5nVI4YlFS8jGgUfPrk8eKUjwgWT0YHFW5Ow332ed2H/ADkZ+T000Vmv5jaL9YJqoe5CVrTerAL0I75nS7K1QF+HL5OLLUaaUqGaBP8AWe6eX/NWn6zCk+nXcOo27gtDcWsiyhvfnEWGYOTGYGpCvfsxy6YgWNx5bhnFvdiVV/eCgHQMrVH05F18tkU1woLsWXj7r+AIOERay+H/APnK/wD5yLsvIemX/kLyzcJeed9asmQmHiRpUMgI9e4BOzkfYTr+1m/7G7LOokMkh+7B/wBN5Dy7y0avWx0cP9sI2H83+kf0Dq98/wCcG7ea0/5xf/LuCcylpZNRu09U8jwurp5Fp4A9ae+PakxLV5fIgfYHVY4cOKF9Y38yX1hmAyawJWnr7eGKVvTFLWKrT9+KVp+7FVm3j7Yq/wD/1fo50zlXoWyNtvHr44q34U38MVbA/X0xSvAA/hilVUbYFVhiwLGPPeoppHkHz7qsk31ePT/LeqzNP/IfqkgB+8jJAcRA7yPvZ4Rc4jzfz86Z5Vh1rSLWC6QfFEhq38/Hck751stR4ctnffyfHUY6kwnWvyn1i2WW40v/AEqFalYDXlt2BzKxa2EtjsXRansDLCzj9Q7urzBobuxuAsiSWd1C1fiqjqw712OZnN0UoyhKjYI+BCuZZbmUyXF2PUnkrPeNykerdXYdWphGzGRMjudzzL9Qf+cefzX/ACk0jR9J8o2vm6z065TgIbKYDT/Wnk2Z2lmCrI7nrvtnH9q6LUzyHKYkjy32e70ur0ksUMOGY9I5HYk/HqX3rYycgGihlRmIKO04rQgbiuw9s5uR3bZitj9zKIAacmkgVgPiLL8f0lTTKyLaL96KiZq/vLxG3qAqb06AYAfNMh5IqSXgvFJPUYilCu39mG2sC+YYR5hiubiGQqFUUNW6+3ftkC5mmlGJ3fmraWi2n5r+eI+Rl43q8pCOtV3zfylemh7nt8G4ke8R+59PaHRIQ8b8JGQECtNiO5zR5XAz7l6PpsgmjLcqnnGCpFO1ajKC6rNHhLKQVr6jNstNv1EZNxN+StA3MoASBzYb9+uAIkKCZRxhPi4qQamlDt75ItRlabRMCUHEciDvQgk4GiShJ8KId2K8jxNe43wJ5lgvmEK1tdAABipKSNvuaUplsHN09gh8CfnOtIFZ3PMhz12J8Qc6Hs/m9JIjwixn8r5iNHsGKluKkL1rVWO9Ms149RRoSfAj7nv9k7sVDOhTkWAp0ruCKfxzVFukzKyuokFGkq6mjlQfv+7KJRJceYLNNKuTcScORUqtCzV6Dw+eQlsHCzR4Rbzb88PI2o/mJ5B1/wAsaVcw295qEcX1aedmEXqQyrIEl4g/CaUzN7M1cdNnjkkLAcPWaf8AM6XJgvhMhsTy735NeavIvmjyNqL6T5o0j6lOFDRTRFZraZSaVjkpxb5bEeGd/p9Tjzx4sZsfb8Q+c67s3No5cOaNXyPOJ9x/RzSbTr3UtGmSbSNSvdEljasUllNPalWBBBHouB1y2URPaQB94txseWeL6JGPuJD6K8qf85Yfn35ZeAHzrb+aLRHLPZa9BFcOwqKqZuMci+xDbZqsvYejyco8J/omvs5Oxx9samP1ETHmN/mKer+Z/wDnOLz9r/lyTStE8sWvlLzDPUT6/DIb2KKAg1aCJgCsngzVA7Zi4fZ3FCdzkZR7uW/n5OVPtz0fu4cM+8niA+Hf79nkP5J/kd5v/PLzH+k7lbiLygLs3Pm7zvfRu8l26mssFtI5rNNIdmI2TqT0GZ3aXaePQw4Y1x16Yjp5nuH3uHodDPVz8TJfBe5POXkP18g/dP8AKTTLHQ/Ko0PTLZbHTtIaG20+xT7EMMcKqqL8gu/vnD4pmZlKRsk2fe7ftIATjQoV9z07LXXtYErT3xStOKVvy2HcHFVpIxSt7HbG1a+jv+OK0//W+jY9+nbOVehC6nt88VXUxSuGKqqiv9cVVF/zOBV42/pixLxb/nJPUm0r/nH/APN26QhZJfL72cZ673U0cPT5Mcv0w4s0B/SDdpReUPyM8pWcJht1JQqEFBT4QFHSg7nNtqJ7l7bT4xQetw2VtIsyywBkeKsZHQfDvXMDxCHI8Hns+Zvz10uGxs9Jmiskja6l9Iy8eTBQKrRl2FffOh7LyGVi3kvabCIY4yrrV/tfNVvHJPOIEbhI54qSQorTYE5tnjox4jQ6oy60bVoC0F9pV1GYbdZZop4XIWJzxVyCKBWJoDjGY5gtk9NkjYlA8r5dO99o/wDOPH5o/wDORWj695a8s2XlvUfPPkxpPql3pGoWixfVLKJlikmg1CQhkFvWvFiwNOOc92to9DKEskpCE+djqfOPm9J2fl7QJjDJCUsY2s+nhA/pda7jdv14tZeUVFmqoaicUpyBOxNfEZwxOztJRqSdFeHIgMT/ADGi7e+LC7aAJkIoaLQCpqSOuI5oPJLNUSM20gJ3KGgPapOJZY/qfmI0iv8Am757KLIF/SHBVJoa8Fr0/DN7/wAhYe573Tf3fPoPufSGjxmaKLbh6Ea8qbmnb7+mabIacHKeEvSNLAVFQLx4shUA/FTt9GYxNl1ec2WUPIqqKnkS3QdO++WuIBapAy0oFIDPx3PjiESCdRSfbBr9khj36b0Hfpi45CaxVrD8XwrtxIqem1MHVql1UJxxhQg0ryPuOvUHGlHNgmtUe2uZAy816N4mgoKZZEOdhFEB8G/nSIyLgcQ5DHYdansB8833ZpL0lXh79nnP5bzq2ixryI9KVq9jsxO5r07Zma0VNj2d6sA/HV7vpN67SBY3iIZQEUdansf4ZqskQBu5coimcWk9yisTGp2q1TSnyp1zHIBcTJTL9Ovb9HRvShLsvTqGp4U6UyqYFOLOEZd7J/0jd+iztpplUggqj1oR2IyqLjHFG/qeO+d9J8ueZLJ7LzL5cj1C0uAQ9rcQll5deQcUII8Qa5stHlyY5XCVFyJ6aGbGceSpx7i/Pn81/LX5a+VLqSx0C1vxqxaotILtpLeFT3k5hivhx652ehy58seKfL3bvCdu6LQaQ8GMHjPQGwPf3e7m8SWQMSEV2bsrgNTwqds2NvMPoT/nGj8vdA/Mj807Dy/5x0yTUNDOm3l++nRStbm4ltuHFGMZDFN6svcZq+2NVk02nM8ZqVgX3W7TsnTQzZiMgsCJPx2+fuftlpdlpmjada2FjDFZWFnEsFlp9sgSKKMCgREQADYds8+lMkkk2T9r00hKRZh5FcifV7erFWihnAb9k8mSn3ZZpjuXC7RjtE+8PQTmWXWBroflgZNVpiqwn3rilYTv0xStqNyeoxV1enYYq76Bir//1/o2CD/nTOUeiVF6fLvirfT39sKrh9OBKoOo8MUKo/28ULhir5Y/5zS1EWX5AavZiQpNruvaPYwxgbyATmZ1/wCBjrmZoBeePlZ+xy+z4mWXbufnH5UV4oIW4SFTCVq37Nagmp6DMvUcy9xgGz2fTrT4yhU1Wz5KtR/J1JOa2UvvcoxofF4X+fHlo6x5XF3bq6tpTi6j+Fn5DZXCxpQk0770zc9kZ+HJR67Oh9otGc+kJHOB4u/37Dq+I/SaC5nQ8o5IlbiQpR1JXY0PTrnTvmxiQa5F+pf5B32hefvy+8uvfWFvLd2pfStbtmjRy0tqAAGc1qGFGAIzie2Iz0+oNE0dx8X0jsvVHUaOM+oHCfePxb7K0DRbLTbO1sdOto7WCNGWOCLiihQ1TRQPEk++aHJkMzZ3KMuUkm2dW8SJHTYkyirEmoA3zHLiSNlM1kOxCGhYcjTAjhV+Y9RgqhT8IpT2r+rDe7Ctkv1Tk1tdGlKL+7oKnfwHtXpiU46sPy/bn/ytz8wCYxyXVeBatOiqPv8AfOg/5DQ9z3ulowJ5bD7n0h5eZuCns6FRXYfCa1zS5Q4Go3eoWD83jK19P4aSADelcxwOrqsorZP6rI3AVK1+W/cjJuPyX8ljLAkovMNvuCTT/OmFFWnYlWIhlXkHDJyU9yD49MS4/CSmEM4It2LKjinIb02GRa5R5tSzOIV4yKhSN2615HcEVyYUR3YLrTN9XlalV49FHcr1yTnYRu+HPznQCxmCxciXZg9OhY0p1rWnXN72bzeiu8R67PIfy5tGudNEgCho55F4E9QWO3t9OZ+tlUmvs3+7B62fve16XZm2kAiuQpQ7Ls7Gu43G+azJLiHJzyb5s+srbV7+DlEfSIf4uSnkQB4ZiExiXHyGEDuznTvL19PBbPPqAjuEIZANqfPKZZRewcGeqjEmo7IuKOO2uZ1vNUll+Gv2go2O2/jgErAoJkTOI4Yh8pf85Ifnjqflazg8o+Wo1g1XW4JJZNXkqTZ26n0y0QPWVz0PQDfrnR9i9nRynxJ8h07z+p53t/tCXZ8Ywh/eZATf80crHn3dz8/bCX6zfQRyrdatd31wA1nE7Ge7kkNOPLdiznvnXWALOwHyD5/EGc6oykTy6yL2vz1+VXmXyN5c8rzz6TONS1y4k+uRKheOElA6W6Ej42UdT3PTMLS6+GonIRO0fxbutf2RLSYIHnOR9QG9bbD9r0b/AJxE0+90/wDPTy7LfXkFq89nqFhFaGYesXuITxKilKVQg71GYfbwMtHKu8H7UdjQMM5Mv5p26v2dtrBY4I0j9NHqPUlY8m3zgiNneSyWd008qxfVNcuI3r611aPzqa1Ebhl6bd8s0+0/g42ulxYx3AvQzmY6sKZJBwM1pPvhVZXsPuxVo9tsVWH/AG8VbrX5Yq39J/z7YKQ//9D6Mg/50zlHoVT5fR/bilvFVwPTt4YUqg/264qqKa4FVBixL4O/5zz1tU8u/ld5RU/vNX1m71adR19KzhEKU+bynM/s6N5JS7o/eXa9kwuZPuH6Xx/5ehJt7d+Z5LCw4y1+GjDYHLM53ezwR5PYLFBI8Y9MSn0QuzU+0KEk+I75riW+QKLudCgv7c2klsLmCZfTl+M78hxZaE7VHWmThlMDd0Ws0dj1fnN+b/kuXyb5w1O2jtTbaZeyyPpKGUzEwqQu7U7dOudpoNT4+ESuyOfvfNO3tB+V1JIFQnvHq+xP+cG7GS8j81XhjmhtY/QE37l0t5JIlKCRHOzuwIDUHbOf9p5C8Y67+93Hs+eHSTO/qkBy22HMHqe9+lNgyc1qOJVCAa9d96HORJc7INk4iq8ioQCA7NWtOwABpkOrX0TAxlKE0BLfEQCaU3wlHErxjkzspGwqdt67Cm+ABgSg9ScLbyU+FqihHXc5IlMNy/L+4Ev/ACtvz801Vf8ASrngd/hKrTbrtm//AOQ0Pc99pd8V+Q+59F6BIqxQhiQkZDMAw2B26eOabK6/Ucy9L014VBWvEA1Reh2NaZj+91eXiZAjRkkxPQVqzV6muSaKPVVZRI6fEpBj3IO9fGmHoxBoMhEaqgXhRQvJVJDbkd+/fEuNe6KtVUJDKzB6cVVdj8XfY4gMZnmFszFT+wgZXq1OlT08MIYxYdrXCTTm48g9aEdR032yTmYbE/J8LfnNKwjmgMZAapVqdADUD6c33Zw6vSRH7ovO/wAokjn08xyDlzupNu1VfcnxzJ7RNS+DV2cf3F+Z+99Oafp0EUhmgtkjdQKsF2PvmmlMnYthnYpm2nWM0pZJblYUSoJVdyD8+nXMWcg42WYjyG7KdO0GzilKPI9xH25Odh45GUr5uHk1MiNhTLV0TTfq8oisldqlqEBhU9ftb4iVFwjqMhO8nw1/zkH/AM4+eePzM8waLq3lOTSuFnG8FzFes1uyxMeQflxYNRuw3zpeyu1sOlgY5L3N7buB2z2fPXjGYSAMbBvuPd+p71+R3/OPnlT8vdE01r/RrPWPNVnK11JrtwqtL67KY2aKtfTAUkKB2365ha/taepkdyI93l597HHpcejgIY9yOcq3J7/Lup5H/wA5vXl9ZeW/J4s4bnhHq7yLcW6B1hMMBZS71BXrUEeGbH2co5Z/1f0uF2txDSggEniHIcqB3Pc+JPy0846tbfmr+WuszapPeXdj5jsVimuVU1jnlVHq5PVgxBrnR63FGWmyRqriXR6HUTlqcZJvet+4v39VeDsAOAiY0JAG1c8yskPRnm1Yym38xaM3La4kkt2PtKhp+IyWE1MNeaN4peW70g/dmc6oKR64slh3/twqt+jcd8VWkn6O2KuOBWq/24VdyPifHFX/0fowKjOVehteMCeS4EAGuKtj5/LxxVfXvXfFKoppiqsN8UPyq/5zc19dY/Ovy/5ejk9SHyT5bhjuIuwuNSka5ddu/AJm37OjWKUu8/c7zsnHQB8y8v8ALzsoEUgooipRwCdztSnY9zlOcPY4YEvbNFWOWa0aikSRE0YcVooK02+WazIatlIEAhnelaUZWhNF9MkFQVr1+fXplJydHEy5KBYr52/JvR/zBtNPg1GMRtb3fqI4qhCt/eKAvTlSnXbMnS9pT0pJj1DiamGHUR4MosDf8F7Z5D8naX5G0ez0HQbYWemWiuwto1qoLsWbiBXavvmFqdRLPMzmbJcSXAIiMQIxHIDkHqFvIivEWFfhAJOxqf1Zinm4sominVuwLGUVoWIB6L16b9/fIg721kbUjndmJIFQOpByRNsBsrxj4C1BXjUCviem2FBO6W6ryMB2HFDua0pvXYYCyxn1Py0upv8AkL/n4B9o9UcV61oqim/bOhA/wWHue60srgfID7n0Z5dkVPSbgFAKq4IqaV75psocTU7vVrK5URsyuSyEgNSpABHj2zHdROO6f2zMWY0ogY0NBQnvTC1HkixMheL46niyqKUNB2GLCk6PqBo/iR1oAfmf6YGgUsSfiIFZFf4viFetK9SaUwhJjdlUlfkyEMNqj06noT4GoyYawKYnrXKO0leE0O5O/cbZJysFGW74T/OV5TFcMw+yPhoaipY0A75vezg9JywmnnH5NzMtm7ftC+mFK0qTTMrtQb/Bx+yt9Of6xfXmlTckJKvVqLxFK/D136Zz82eSNFm1vHJJCZUj4lCCjnoTUCgGY2zimQumXWBWQxVbi55IR2qtCD+ORcLKKtlEMgBQUNHUbH3+eNuIYoC1snLh6EgNsoJACk7164bbJy2ZJDAkaMBRdtiR4e474LcSRYN+YHlSz80aFqunT2sV0Lm0uIkV1BHKSJkrQ9OvbMjT5jjmJA8i5GmycNxPKWx9xfk75E/5x68/H82PLvlXVtNbSY7Gcavba2bd57OeHTpo5Qiy/CtX2A5dPfO61XbGA6aWSBu9q5H1fqeZw9g5cOqAybQjchIbg1yHkT5v3IRjJIZSpUOORQ9j1IrnnwFB2kjZKWXc31W/0u4IqI72JloegLAH6N8MfqCeHihIeT1+QUZh2BIzZF0UVA1wM1h/zOKrDt17YqtJ/HFWvp+7CrRNO334oK3lir//0vopUeO3fOVehpUUj7umKhfUdfHAlum/zxVVptt9OKV/SgxVFW6CWWKMmgZgCx7Ancn5DASgvwp/MjzRF52/OX8yPNUMnO11fzBciwZzube2YW8f0ER7DOhwQMNPGJ519+71XZ+PhqPkzHRfTZg2/Jl4MoY0NN+3UeAzAzPT4h1ezeW5GS4tPSiYAw/CzCpPWopvmty1unIBwkeb2jSlKi1ZwVKxildzWu1D075gSlZdVm3JZhZW+6SkHiZGY8tgtP8AJyFuJOXRk1pGVFaCvEGlOA3PUYHFnJM1b+748ObuAKL95Pc9MiWukxgV+QDbk/ZZj3JrvgAa5EI9ixRkLdTTarH2p2GGmARoosar0pSi9CMlyY80o1IM1pOFYDjxr9/XBTOH1B+Xuqqq/m9+YYDVVdUPE7b/AAJ4frzoYf4rD3PcaM+gk9w+579opYRR0+Kifuydj0Boc1ORx870nTrhiPsH7e6vt2rmMRTrMkQGa25+GMrQkOB0Pcb0pgcKR3VIZ1WKUAtJ6cjgJSvUd9u2KTGyixfBjGEPE8OXp8ainSu2KPDWM1ySVURlQQw3Pc9OmLICIThEaNCXmUlgCAVr17bYXEmbOwYP5jmYxP6TAFSeRUdge+/jkwHN00d93wv+ckzmFlKMGC/tAAEjpXOg7Ni73JtiLzT8nbh1sryMlAov3BWlT8VK0965ldpx3HucXsUk4Tf84vrnQJHaKMH4+ZIRga7L0Aznsopzsw3epaK7NbCp+INvyP2a/a/VmJIbuszipJ/ayskjPUFUJoPxqcg0TjYTyOUuF+KpRtvcVrTFo4aTMOEjcqP2qEHY0PUVwtNWU1hlaUxRqa/Cwlp8qg5GTVKNWjDwHwsCpYBTUjfbp+OEFrq1XTrZY414/ZO1Kbbdsld7sMsjyT7mvBaKKNTfoake+EtFMc8xCliZKBzE6SKOlOJByLbh3NPaVf1EilG4ljRwf9ZQf45s+joOWyxhscUrDhStIpsegwKpHxxVae/6sVa/qcKuofH264q//9P6IAnOUt6FeDU9NyMNoKqp38cDIK2xp74qqDFK8DpirDvzK80p5F/Lfz35wk66Bod3PbjxneMxQgf7NxhhDjkId5AbMMOOYD8KfLMDGWNp2DySAetICKs7bsSPc1rnSZzs9ho49S+hNEt4k4PCgUBaKxp4b0HgexzTZZd7vMZvbo9q0G3WkTIh5LCBxPbvWvjmsyyYZJU9TsISZ4iEZVVKfarQV2+WYZddklszexhdUj2LBRIeBNW3/DFwMh3TZW9SjK7AoihQd/vwNVUiPVHrxjkxRSW5fZA7GpHX6MBCOHZOLaSLkjA/ZYr3avgRgaZApn67F1iKkChJDEL09slbUArLyKlWJ5fzbCo8dsBDHkll6wNrKpHIGvJjvWp2GLOH1PzE1K3aT83vzBj5CPjqjEqOoPBaf7WdDA1pYe57nSH0fAfc950K14JBVmd3UHjUkEkdvo3zVZC4+aXN6ZpUfABQZmVule5G23jmM6vMb32ZDb3RjDB3ZDzUqTTavz74Ru48oWri6hkE7ets7leGxoe52wEbWx4SK2UvXCvbhSHcLQngTXavUfKmNNlXdp7E/KNf3pAKgkMABkS0EeSYy8CnNJHVU+3RwdgOnTC0gG3nfmJ444Jz8TOdgOX2ga7mm22WQdhpwSQ+HvzfmkaCjrxJUsu/UA9xnRdnjd22Y/ui8t/KOVxFqUITmi3vPidqVUdG65l9pDkfJw+wpVjmOnE+wdDaVIIA0YARm7g0qaggDOcnVuyygEvVtLkL249Pk1eqKNifDxGYUhu6zKPVuyG2X1Cq0AY0NSR0PWoyLjz2ZHarF6chBDAKODjf7PX5dMDiyJtH26pKCCORIpT5dPwxYyNJrCI4vTkVmB5LWp7EEHA1GzsUenCR1LkElgVrsem2NNZ2CYRhk9MAgIW6g96+GSaTumaozRCr7q3h3rh5sLSXW7cPZ3EY3JWniT7ZEhnil6npujSeroukSVrzs4t/dVC/wzZQ+kOkyiskveUwP+3k2Cz5DbvgSpkdvwwqsI6E/QMCrT40xVrx/mwq6g8MVf/U+h+5zk7t6GlTwp2yS2uFRT9WBVZTXrilWU1riqsu9ffFL5R/5zW8yz6D+SD6PazmCfzvrlnpM1ACXtIuVzcxmvZgig0zM0EOLML6Wf1OXoI8WS+4fe/LXQ19OaNwVWmwr+qgzbZjYeu0sKe96BG0kca8WPGpdRWn0n55psxou52D23RIhzpUH4VCt8qEmnfNdkcfITT1fT+PFeJK8qBXHUGtd8w3WZLZpbAcVJ+0Izy5Hbf9eLhSRypRuSoXHwqz0qK8aUA+WJYK6iP13c7mNAvFjyFQK9B0yKLPCrxOQxLMxVqEUIAr09sUSCaxuoJJUA926mo98NtBCMElNyagDr0r3piwpBXTs9sBwBBJ+Hw+eFlEep+Z1/6zfnF+Ykki0pqlaVHxHiv+3m+BH5aHue30g/d+VD7nv2jMFNtIpBITdR1qBsabUzVZOVOPlFgs7tJnpFQCjD4iPehGY/J1+SPNNApqUJVizowY/EVqOlfHJxDQSqxNJBHLyB2lJ5bD/MDJAINEhFQz1duLEc16cuIJpSuVk9yeDZObB5GLiU0RlHFSQeg6iuRtpyADkm7RsI+bGoajcFADeOEOPxC6eXebmmXmsaI/NR6xICgciaVHf3OZGOnZaQB8U/myZVjmJRAFVipO+1TSmdBoHZZT+6LyT8pZCJdY7st0pQDoPh6H55mdpDYe5wfZ82Ml/wA79D660m7jMI9QSKrSqUUjoxHt0Gc3ki7rJHd6lpFwkUciBiXJqq79z0+W+Ykw63NEmmX2bRpIjAcTWrP1rv3ylw52QyWCYNGx4laGhIAHfFxTFNYGAVWC0+KjHv8AEOpwMCEdBwO7EMEA+Gng2LCQKdwkEqiKpUFaEdCu4xcaXeUxiHNZAKj4gabAVrtvhaijFWQA/CBVqk1/hgKdihdRRmiYN0p9kDw8TiUR5st8oyiXy3poDV9H1Yfl6cjCn3Zn4D6A6vWCs0mRUH9cucdZ4jFKxuv6hiqmfuxVb9GBWvu9/fFWq+3bDaH/1fogBXOU5vQlUpvWtcKF6kUP+ZxSF1aEYpVkO3vilEL4YCh+dn/OfGuGW/8Ayn8oBwYYodR125iB39R2S1iJA3FAGpmz7MG85eQH6XadmYwSSe98R6VCyyh0iLU29OvWvjmblOz1mCPk998sF2WEOhAKqJFB+yOtNuuafO7KQ23e5aMIhK/BAVZKb7Gh718ds1eXk4mXk9LsUKRwemgo0u6g+2xOY7rpmyWYRERsqgbNHuaU6dt8XFO6YQOHRq7nkCpNSR92AtUhuoFgGlYGnI1Pbp44hsHREWssZHE0JNT1+IAb4SwmCniOhWoP+qDTvuci45tEc122BVmIqenh1OSpiAUrv7lVjKeoACGpXr4fThbMcd7fmvq10P8AlcP5gyqTwbUl4vvt+7UVp9Gb+Ef8Fh7ns9IDwUe4fc9w0e7gKRu5BqAHf38ae+avJGmGTGXoGnXlqECvcKoUclWoFajMUguDlxy6BkX163mUOsgYKADSgBC9t6YjZwzikOYSz9Iwq08Ypz5n1GCgkLXoeuTra2wYiaUJddSO4tQo4xkFPiAqOhGQMC3w0xMSySw1X1mE4cOitTjxNa9iPDIUXFy4OHZN7jU+I4VWr78qCo96DwyQcYYrYPr93ZvBOVY+q0ZLkgsWIP4Dfpl+NzMGOVh8WfmpIX+tuaxqylVVd/EmudFoHYZ41iPueQflc4S415g3FjLH8WwFCKdPbM7tAbRdf2DV5PeH1voJf0EbkGKqp4tsD47eNM5rKN3e5CHpujTKzOzIHUoOJJ3J+WYmR12aPJ6BaSJ6MTFWRA3xU6b9K++UkOBIbshoEVwzNxZfh+R26ZFx11rMr0ikYycQG361RtjiQykOoZTBxoXpXnUV8BscXDkmSlpJImC0Vgak7EGvhi1cgUwgKApt+zvv8JoceTWQU1FWQ/DSgB6/qwMEJdxs6yDiAOPTvTAQkGk58jyEabf2Zpysr5+3aVQ2ZumNxcDtAfvAe8MyJzJtwlhP+ZxSsJoffxxVTPy+jAq2owq14k99z8sCt7/hir//1vointnKRehVlptkkN7V/wA64Eubrviqqnv198Uota06YFL8i/8AnMt9Rb/nILU/0jDJHax6BpCaHVqrJahGLOlNhWUsCOtRm77O/uTXPiP4+Tuuz6EB+Orw7RaepUE8eXxrv1pk83J6jT89nunlg/HF8I5cVB5E1+ZzUZ3PL2uxLCnFSW+DiCduNfuzXTceVdXqGlszQqHjaM892qCPalCcxXV5hR2ZPIWHp81cuF2Jpv8Aji0RbQzAEhSzVrQdKeHWnzxTshZpLngoS3YihBYkUpXc9cDKIF80ysmlEIpGWYEdCor4U3wtcwL5p1bPcVWsJ6HhQjrTvviHHmB3ornJ6YPpNzqtQSKU+dcWFC+bH79ivMxxmScLuCaA770r/DFyIfY/NfU5L4/m555LQcJDqfxgsDQ8FpTelKZ02MD8tD3PU6SuIjpQr5PbNEM/E8QAlNx7U3rmryVbdlqnpVo2lK0DSpHJLQFY2NF+RJ2zElxODLjINI4taPDMsEUMQY0MjMTx8CAta/RkaNi2upAiySl1nZWi3N036ZaQgpWOOGVa1HxfEykinyy6R25MpZJ0Lh9oQF1a237kpqhFx67cFEUpNK7blR2wX5OVinL+btXeE60+2laRK6hNHAX/AHpRHJBr7KRlZ4WjLMVtEX8GYW1uizr/AKe0jenWnpmvKvT4gO2VB12WZI+mvixjzbPcLHIlvYh4gh/fM6BjUbbBq7fLMrH5tujjHmT974d/MkXha4ed+MZXeEVIA+dKZ0mhqtnO1392e6nnP5YcvreukA8PXhqDT+U0zK7Q5R+LrOwLvL7x9z6q0IUVjWRyY0JXpSv2RU+HtnPZney8nrehi551jepI6ECgT9n6cwclU4Wfhrdn+ntPwoIxwqPUYkfaBPQA98x3X5QGS3RcxniqpGR8Xen2afj4YHFx1aHtS3JOIG/MMV6jbrtgLbLkyu2M4ANGeq/GDsOhr7YuJKkxVpyF+DgQwpU1rtvTwxDVQRlrX1l48qfH17ff74OrCfLdPYeXDcGtPi8MWiVKktd+g+E8q9aYliifJhk+va8FX/R6Qkv29Xeo+dMydLe/c4uuqod+/wAmdn7szHXhae23y8MCrD+OFKkaVP4YqsatN/pxQt8dvn44q74sC7v/2Q==", + "text/plain": [ + "" + ] + }, + "metadata": { + "image/jpeg": { + "height": 100, + "width": 500 + } + }, + "execution_count": 1 + } + ], + "source": [ + "# Outputs included with width/height in output metadata,\n", + "# cell is not executed\n", + "from IPython.display import Image\n", + "Image(filename=\"./example.jpg\", width=500, height=100)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# No outputs, cell is executed, image should have original size (370, 254)\n", + "from IPython.display import Image\n", + "Image(filename=\"./example.jpg\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "mystnb": { + "execution_mode": "force" + }, + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/tests/test_render_outputs.py b/tests/test_render_outputs.py index 29a3be0c..1b58e181 100644 --- a/tests/test_render_outputs.py +++ b/tests/test_render_outputs.py @@ -2,6 +2,7 @@ import pytest from myst_nb.core.render import EntryPointError, load_renderer +from sphinx.util.fileutil import copy_asset_file def test_load_renderer_not_found(): @@ -116,6 +117,24 @@ def test_metadata_image(sphinx_run, clean_doctree, file_regression): ) +@pytest.mark.sphinx_params( + "metadata_image_output.ipynb", + conf={"nb_execution_mode": "force"}, +) +def test_metadata_image_output( + sphinx_run, clean_doctree, file_regression, get_test_path +): + """Test configuring image attributes to be rendered from cell metadata.""" + asset_path = get_test_path("example.jpg") + copy_asset_file(str(asset_path), str(sphinx_run.app.srcdir)) + sphinx_run.build() + assert sphinx_run.warnings() == "" + doctree = clean_doctree(sphinx_run.get_resolved_doctree("metadata_image_output")) + file_regression.check( + doctree.pformat().replace(".jpeg", ".jpg"), extension=".xml", encoding="utf-8" + ) + + @pytest.mark.sphinx_params( "metadata_figure.ipynb", conf={"nb_execution_mode": "off", "nb_cell_metadata_key": "myst"}, diff --git a/tests/test_render_outputs/test_metadata_image_output.xml b/tests/test_render_outputs/test_metadata_image_output.xml new file mode 100644 index 00000000..c6f25f5e --- /dev/null +++ b/tests/test_render_outputs/test_metadata_image_output.xml @@ -0,0 +1,21 @@ + +
+ + Output metadata + <container cell_index="1" cell_metadata="{'tags': ['skip-execution']}" classes="cell tag_skip-execution" exec_count="1" nb_element="cell_code"> + <container classes="cell_input" nb_element="cell_code_source"> + <literal_block language="ipython3" linenos="False" xml:space="preserve"> + # Outputs included with width/height in output metadata, + # cell is not executed + from IPython.display import Image + Image(filename="./example.jpg", width=500, height=100) + <container classes="cell_output" nb_element="cell_code_output"> + <image candidates="{'*': '_build/jupyter_execute/a4c9580c74dacf6f3316a3bd2e2a347933aa4463834dcf1bb8f20b4fcb476ae1.jpg'}" height="100" uri="_build/jupyter_execute/a4c9580c74dacf6f3316a3bd2e2a347933aa4463834dcf1bb8f20b4fcb476ae1.jpg" width="500"> + <container cell_index="2" cell_metadata="{}" classes="cell" exec_count="1" nb_element="cell_code"> + <container classes="cell_input" nb_element="cell_code_source"> + <literal_block language="ipython3" linenos="False" xml:space="preserve"> + # No outputs, cell is executed, image should have original size (370, 254) + from IPython.display import Image + Image(filename="./example.jpg") + <container classes="cell_output" nb_element="cell_code_output"> + <image candidates="{'*': '_build/jupyter_execute/a4c9580c74dacf6f3316a3bd2e2a347933aa4463834dcf1bb8f20b4fcb476ae1.jpg'}" uri="_build/jupyter_execute/a4c9580c74dacf6f3316a3bd2e2a347933aa4463834dcf1bb8f20b4fcb476ae1.jpg"> From 431b437bea7438f15e7da8a0eaf4f51414f5f99e Mon Sep 17 00:00:00 2001 From: Andreas Eisenbarth <andreas.eisenbarth@embl.de> Date: Thu, 13 Jun 2024 23:36:17 +0200 Subject: [PATCH 2/3] Make a copy of cell config before modifying --- myst_nb/core/render.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/myst_nb/core/render.py b/myst_nb/core/render.py index 51a31051..14b82816 100644 --- a/myst_nb/core/render.py +++ b/myst_nb/core/render.py @@ -660,7 +660,7 @@ def render_image(self, data: MimeData) -> list[nodes.Element]: # TODO backwards-compatible re-naming to image_options? image_options = self.renderer.get_cell_level_config( "render_image_options", data.cell_metadata, line=data.line - ) + ).copy() # Overwrite with metadata stored in output image_options.update( { From 4f67321101825c7232cf62001d4e58cd25e9449a Mon Sep 17 00:00:00 2001 From: "Philipp A." <flying-sheep@web.de> Date: Tue, 7 May 2024 10:54:07 +0200 Subject: [PATCH 3/3] Fix image metadata --- tests/notebooks/complex_outputs.ipynb | 4 ++++ tests/test_parser/test_complex_outputs.xml | 4 ++-- tests/test_render_outputs/test_complex_outputs.xml | 4 ++-- tests/test_render_outputs/test_complex_outputs_latex.xml | 4 ++-- 4 files changed, 10 insertions(+), 6 deletions(-) diff --git a/tests/notebooks/complex_outputs.ipynb b/tests/notebooks/complex_outputs.ipynb index c5e9bb6a..ce0e7781 100644 --- a/tests/notebooks/complex_outputs.ipynb +++ b/tests/notebooks/complex_outputs.ipynb @@ -280,6 +280,10 @@ ] }, "metadata": { + "image/png": { + "width": 432, + "height": 288 + }, "needs_background": "light" }, "output_type": "display_data" diff --git a/tests/test_parser/test_complex_outputs.xml b/tests/test_parser/test_complex_outputs.xml index b1caf0f8..86559fb3 100644 --- a/tests/test_parser/test_complex_outputs.xml +++ b/tests/test_parser/test_complex_outputs.xml @@ -130,7 +130,7 @@ <container classes="cell_output" nb_element="cell_code_output"> <container nb_element="mime_bundle"> <container mime_type="image/png"> - <image candidates="{'*': '_build/jupyter_execute/16832f45917c1c9862c50f0948f64a498402d6ccde1f3a291da17f240797b160.png'}" height="400" uri="_build/jupyter_execute/16832f45917c1c9862c50f0948f64a498402d6ccde1f3a291da17f240797b160.png"> + <image candidates="{'*': '_build/jupyter_execute/16832f45917c1c9862c50f0948f64a498402d6ccde1f3a291da17f240797b160.png'}" height="288" uri="_build/jupyter_execute/16832f45917c1c9862c50f0948f64a498402d6ccde1f3a291da17f240797b160.png" width="432"> <container mime_type="text/plain"> <literal_block classes="output text_plain" language="myst-ansi" xml:space="preserve"> <Figure size 432x288 with 1 Axes> @@ -244,7 +244,7 @@ <container classes="cell_output" nb_element="cell_code_output"> <container nb_element="mime_bundle"> <container mime_type="image/png"> - <image candidates="{'*': '_build/jupyter_execute/8c43e5c8cccf697754876b7fec1b0a9b731d7900bb585e775a5fa326b4de8c5a.png'}" height="400" uri="_build/jupyter_execute/8c43e5c8cccf697754876b7fec1b0a9b731d7900bb585e775a5fa326b4de8c5a.png"> + <image candidates="{'*': '_build/jupyter_execute/8c43e5c8cccf697754876b7fec1b0a9b731d7900bb585e775a5fa326b4de8c5a.png'}" uri="_build/jupyter_execute/8c43e5c8cccf697754876b7fec1b0a9b731d7900bb585e775a5fa326b4de8c5a.png"> <container mime_type="text/latex"> <math_block classes="output text_latex" nowrap="False" number="True" xml:space="preserve"> \displaystyle \left(\sqrt{5} i\right)^{\alpha} \left(\frac{1}{2} - \frac{2 \sqrt{5} i}{5}\right) + \left(- \sqrt{5} i\right)^{\alpha} \left(\frac{1}{2} + \frac{2 \sqrt{5} i}{5}\right) diff --git a/tests/test_render_outputs/test_complex_outputs.xml b/tests/test_render_outputs/test_complex_outputs.xml index e4415584..a3fbfb1d 100644 --- a/tests/test_render_outputs/test_complex_outputs.xml +++ b/tests/test_render_outputs/test_complex_outputs.xml @@ -123,7 +123,7 @@ plt.ylabel(r'a y label with latex $\alpha$') plt.legend(); <container classes="cell_output" nb_element="cell_code_output"> - <image candidates="{'*': '_build/jupyter_execute/16832f45917c1c9862c50f0948f64a498402d6ccde1f3a291da17f240797b160.png'}" height="400" uri="_build/jupyter_execute/16832f45917c1c9862c50f0948f64a498402d6ccde1f3a291da17f240797b160.png"> + <image candidates="{'*': '_build/jupyter_execute/16832f45917c1c9862c50f0948f64a498402d6ccde1f3a291da17f240797b160.png'}" height="288" uri="_build/jupyter_execute/16832f45917c1c9862c50f0948f64a498402d6ccde1f3a291da17f240797b160.png" width="432"> <section ids="tables-with-pandas" names="tables\ (with\ pandas)"> <title> Tables (with pandas) @@ -208,7 +208,7 @@ f = y(n)-2*y(n-1/sym.pi)-5*y(n-2) sym.rsolve(f,y(n),[1,4]) <container classes="cell_output" nb_element="cell_code_output"> - <image candidates="{'*': '_build/jupyter_execute/8c43e5c8cccf697754876b7fec1b0a9b731d7900bb585e775a5fa326b4de8c5a.png'}" height="400" uri="_build/jupyter_execute/8c43e5c8cccf697754876b7fec1b0a9b731d7900bb585e775a5fa326b4de8c5a.png"> + <image candidates="{'*': '_build/jupyter_execute/8c43e5c8cccf697754876b7fec1b0a9b731d7900bb585e775a5fa326b4de8c5a.png'}" uri="_build/jupyter_execute/8c43e5c8cccf697754876b7fec1b0a9b731d7900bb585e775a5fa326b4de8c5a.png"> <container cell_index="25" cell_metadata="{}" classes="cell" exec_count="7" nb_element="cell_code"> <container classes="cell_input" nb_element="cell_code_source"> <literal_block language="ipython3" linenos="False" xml:space="preserve"> diff --git a/tests/test_render_outputs/test_complex_outputs_latex.xml b/tests/test_render_outputs/test_complex_outputs_latex.xml index b8d27477..980dbdf1 100644 --- a/tests/test_render_outputs/test_complex_outputs_latex.xml +++ b/tests/test_render_outputs/test_complex_outputs_latex.xml @@ -123,7 +123,7 @@ plt.ylabel(r'a y label with latex $\alpha$') plt.legend(); <container classes="cell_output" nb_element="cell_code_output"> - <image candidates="{'*': '_build/jupyter_execute/16832f45917c1c9862c50f0948f64a498402d6ccde1f3a291da17f240797b160.png'}" height="400" uri="_build/jupyter_execute/16832f45917c1c9862c50f0948f64a498402d6ccde1f3a291da17f240797b160.png"> + <image candidates="{'*': '_build/jupyter_execute/16832f45917c1c9862c50f0948f64a498402d6ccde1f3a291da17f240797b160.png'}" height="288" uri="_build/jupyter_execute/16832f45917c1c9862c50f0948f64a498402d6ccde1f3a291da17f240797b160.png" width="432"> <section ids="tables-with-pandas" names="tables\ (with\ pandas)"> <title> Tables (with pandas) @@ -168,7 +168,7 @@ f = y(n)-2*y(n-1/sym.pi)-5*y(n-2) sym.rsolve(f,y(n),[1,4]) <container classes="cell_output" nb_element="cell_code_output"> - <image candidates="{'*': '_build/jupyter_execute/8c43e5c8cccf697754876b7fec1b0a9b731d7900bb585e775a5fa326b4de8c5a.png'}" height="400" uri="_build/jupyter_execute/8c43e5c8cccf697754876b7fec1b0a9b731d7900bb585e775a5fa326b4de8c5a.png"> + <image candidates="{'*': '_build/jupyter_execute/8c43e5c8cccf697754876b7fec1b0a9b731d7900bb585e775a5fa326b4de8c5a.png'}" uri="_build/jupyter_execute/8c43e5c8cccf697754876b7fec1b0a9b731d7900bb585e775a5fa326b4de8c5a.png"> <container cell_index="25" cell_metadata="{}" classes="cell" exec_count="7" nb_element="cell_code"> <container classes="cell_input" nb_element="cell_code_source"> <literal_block language="ipython3" linenos="False" xml:space="preserve">