-
Notifications
You must be signed in to change notification settings - Fork 6.3k
/
compaction.cc
899 lines (808 loc) · 31.8 KB
/
compaction.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "db/compaction/compaction.h"
#include <cinttypes>
#include <vector>
#include "db/column_family.h"
#include "rocksdb/compaction_filter.h"
#include "rocksdb/sst_partitioner.h"
#include "test_util/sync_point.h"
#include "util/string_util.h"
namespace ROCKSDB_NAMESPACE {
const uint64_t kRangeTombstoneSentinel =
PackSequenceAndType(kMaxSequenceNumber, kTypeRangeDeletion);
int sstableKeyCompare(const Comparator* user_cmp, const InternalKey& a,
const InternalKey& b) {
auto c = user_cmp->CompareWithoutTimestamp(a.user_key(), b.user_key());
if (c != 0) {
return c;
}
auto a_footer = ExtractInternalKeyFooter(a.Encode());
auto b_footer = ExtractInternalKeyFooter(b.Encode());
if (a_footer == kRangeTombstoneSentinel) {
if (b_footer != kRangeTombstoneSentinel) {
return -1;
}
} else if (b_footer == kRangeTombstoneSentinel) {
return 1;
}
return 0;
}
int sstableKeyCompare(const Comparator* user_cmp, const InternalKey* a,
const InternalKey& b) {
if (a == nullptr) {
return -1;
}
return sstableKeyCompare(user_cmp, *a, b);
}
int sstableKeyCompare(const Comparator* user_cmp, const InternalKey& a,
const InternalKey* b) {
if (b == nullptr) {
return -1;
}
return sstableKeyCompare(user_cmp, a, *b);
}
uint64_t TotalFileSize(const std::vector<FileMetaData*>& files) {
uint64_t sum = 0;
for (size_t i = 0; i < files.size() && files[i]; i++) {
sum += files[i]->fd.GetFileSize();
}
return sum;
}
void Compaction::SetInputVersion(Version* _input_version) {
input_version_ = _input_version;
cfd_ = input_version_->cfd();
cfd_->Ref();
input_version_->Ref();
edit_.SetColumnFamily(cfd_->GetID());
}
void Compaction::GetBoundaryKeys(
VersionStorageInfo* vstorage,
const std::vector<CompactionInputFiles>& inputs, Slice* smallest_user_key,
Slice* largest_user_key, int exclude_level) {
bool initialized = false;
const Comparator* ucmp = vstorage->InternalComparator()->user_comparator();
for (size_t i = 0; i < inputs.size(); ++i) {
if (inputs[i].files.empty() || inputs[i].level == exclude_level) {
continue;
}
if (inputs[i].level == 0) {
// we need to consider all files on level 0
for (const auto* f : inputs[i].files) {
const Slice& start_user_key = f->smallest.user_key();
if (!initialized ||
ucmp->Compare(start_user_key, *smallest_user_key) < 0) {
*smallest_user_key = start_user_key;
}
const Slice& end_user_key = f->largest.user_key();
if (!initialized ||
ucmp->Compare(end_user_key, *largest_user_key) > 0) {
*largest_user_key = end_user_key;
}
initialized = true;
}
} else {
// we only need to consider the first and last file
const Slice& start_user_key = inputs[i].files[0]->smallest.user_key();
if (!initialized ||
ucmp->Compare(start_user_key, *smallest_user_key) < 0) {
*smallest_user_key = start_user_key;
}
const Slice& end_user_key = inputs[i].files.back()->largest.user_key();
if (!initialized || ucmp->Compare(end_user_key, *largest_user_key) > 0) {
*largest_user_key = end_user_key;
}
initialized = true;
}
}
}
std::vector<CompactionInputFiles> Compaction::PopulateWithAtomicBoundaries(
VersionStorageInfo* vstorage, std::vector<CompactionInputFiles> inputs) {
const Comparator* ucmp = vstorage->InternalComparator()->user_comparator();
for (size_t i = 0; i < inputs.size(); i++) {
if (inputs[i].level == 0 || inputs[i].files.empty()) {
continue;
}
inputs[i].atomic_compaction_unit_boundaries.reserve(inputs[i].files.size());
AtomicCompactionUnitBoundary cur_boundary;
size_t first_atomic_idx = 0;
auto add_unit_boundary = [&](size_t to) {
if (first_atomic_idx == to) return;
for (size_t k = first_atomic_idx; k < to; k++) {
inputs[i].atomic_compaction_unit_boundaries.push_back(cur_boundary);
}
first_atomic_idx = to;
};
for (size_t j = 0; j < inputs[i].files.size(); j++) {
const auto* f = inputs[i].files[j];
if (j == 0) {
// First file in a level.
cur_boundary.smallest = &f->smallest;
cur_boundary.largest = &f->largest;
} else if (sstableKeyCompare(ucmp, *cur_boundary.largest, f->smallest) ==
0) {
// SSTs overlap but the end key of the previous file was not
// artificially extended by a range tombstone. Extend the current
// boundary.
cur_boundary.largest = &f->largest;
} else {
// Atomic compaction unit has ended.
add_unit_boundary(j);
cur_boundary.smallest = &f->smallest;
cur_boundary.largest = &f->largest;
}
}
add_unit_boundary(inputs[i].files.size());
assert(inputs[i].files.size() ==
inputs[i].atomic_compaction_unit_boundaries.size());
}
return inputs;
}
// helper function to determine if compaction is creating files at the
// bottommost level
bool Compaction::IsBottommostLevel(
int output_level, VersionStorageInfo* vstorage,
const std::vector<CompactionInputFiles>& inputs) {
int output_l0_idx;
if (output_level == 0) {
output_l0_idx = 0;
for (const auto* file : vstorage->LevelFiles(0)) {
if (inputs[0].files.back() == file) {
break;
}
++output_l0_idx;
}
assert(static_cast<size_t>(output_l0_idx) < vstorage->LevelFiles(0).size());
} else {
output_l0_idx = -1;
}
Slice smallest_key, largest_key;
GetBoundaryKeys(vstorage, inputs, &smallest_key, &largest_key);
return !vstorage->RangeMightExistAfterSortedRun(smallest_key, largest_key,
output_level, output_l0_idx);
}
// test function to validate the functionality of IsBottommostLevel()
// function -- determines if compaction with inputs and storage is bottommost
bool Compaction::TEST_IsBottommostLevel(
int output_level, VersionStorageInfo* vstorage,
const std::vector<CompactionInputFiles>& inputs) {
return IsBottommostLevel(output_level, vstorage, inputs);
}
bool Compaction::IsFullCompaction(
VersionStorageInfo* vstorage,
const std::vector<CompactionInputFiles>& inputs) {
size_t num_files_in_compaction = 0;
size_t total_num_files = 0;
for (int l = 0; l < vstorage->num_levels(); l++) {
total_num_files += vstorage->NumLevelFiles(l);
}
for (size_t i = 0; i < inputs.size(); i++) {
num_files_in_compaction += inputs[i].size();
}
return num_files_in_compaction == total_num_files;
}
Compaction::Compaction(
VersionStorageInfo* vstorage, const ImmutableOptions& _immutable_options,
const MutableCFOptions& _mutable_cf_options,
const MutableDBOptions& _mutable_db_options,
std::vector<CompactionInputFiles> _inputs, int _output_level,
uint64_t _target_file_size, uint64_t _max_compaction_bytes,
uint32_t _output_path_id, CompressionType _compression,
CompressionOptions _compression_opts, Temperature _output_temperature,
uint32_t _max_subcompactions, std::vector<FileMetaData*> _grandparents,
bool _manual_compaction, const std::string& _trim_ts, double _score,
bool _deletion_compaction, bool l0_files_might_overlap,
CompactionReason _compaction_reason,
BlobGarbageCollectionPolicy _blob_garbage_collection_policy,
double _blob_garbage_collection_age_cutoff)
: input_vstorage_(vstorage),
start_level_(_inputs[0].level),
output_level_(_output_level),
target_output_file_size_(_target_file_size),
max_compaction_bytes_(_max_compaction_bytes),
max_subcompactions_(_max_subcompactions),
immutable_options_(_immutable_options),
mutable_cf_options_(_mutable_cf_options),
input_version_(nullptr),
number_levels_(vstorage->num_levels()),
cfd_(nullptr),
output_path_id_(_output_path_id),
output_compression_(_compression),
output_compression_opts_(_compression_opts),
output_temperature_(_output_temperature),
deletion_compaction_(_deletion_compaction),
l0_files_might_overlap_(l0_files_might_overlap),
inputs_(PopulateWithAtomicBoundaries(vstorage, std::move(_inputs))),
grandparents_(std::move(_grandparents)),
score_(_score),
bottommost_level_(
// For simplicity, we don't support the concept of "bottommost level"
// with
// `CompactionReason::kExternalSstIngestion` and
// `CompactionReason::kRefitLevel`
(_compaction_reason == CompactionReason::kExternalSstIngestion ||
_compaction_reason == CompactionReason::kRefitLevel)
? false
: IsBottommostLevel(output_level_, vstorage, inputs_)),
is_full_compaction_(IsFullCompaction(vstorage, inputs_)),
is_manual_compaction_(_manual_compaction),
trim_ts_(_trim_ts),
is_trivial_move_(false),
compaction_reason_(_compaction_reason),
notify_on_compaction_completion_(false),
enable_blob_garbage_collection_(
_blob_garbage_collection_policy == BlobGarbageCollectionPolicy::kForce
? true
: (_blob_garbage_collection_policy ==
BlobGarbageCollectionPolicy::kDisable
? false
: mutable_cf_options()->enable_blob_garbage_collection)),
blob_garbage_collection_age_cutoff_(
_blob_garbage_collection_age_cutoff < 0 ||
_blob_garbage_collection_age_cutoff > 1
? mutable_cf_options()->blob_garbage_collection_age_cutoff
: _blob_garbage_collection_age_cutoff),
penultimate_level_(
// For simplicity, we don't support the concept of "penultimate level"
// with `CompactionReason::kExternalSstIngestion` and
// `CompactionReason::kRefitLevel`
_compaction_reason == CompactionReason::kExternalSstIngestion ||
_compaction_reason == CompactionReason::kRefitLevel
? Compaction::kInvalidLevel
: EvaluatePenultimateLevel(vstorage, immutable_options_,
start_level_, output_level_)) {
MarkFilesBeingCompacted(true);
if (is_manual_compaction_) {
compaction_reason_ = CompactionReason::kManualCompaction;
}
if (max_subcompactions_ == 0) {
max_subcompactions_ = _mutable_db_options.max_subcompactions;
}
// for the non-bottommost levels, it tries to build files match the target
// file size, but not guaranteed. It could be 2x the size of the target size.
max_output_file_size_ =
bottommost_level_ || grandparents_.empty() ||
!_immutable_options.level_compaction_dynamic_file_size
? target_output_file_size_
: 2 * target_output_file_size_;
#ifndef NDEBUG
for (size_t i = 1; i < inputs_.size(); ++i) {
assert(inputs_[i].level > inputs_[i - 1].level);
}
#endif
// setup input_levels_
{
input_levels_.resize(num_input_levels());
for (size_t which = 0; which < num_input_levels(); which++) {
DoGenerateLevelFilesBrief(&input_levels_[which], inputs_[which].files,
&arena_);
}
}
GetBoundaryKeys(vstorage, inputs_, &smallest_user_key_, &largest_user_key_);
// Every compaction regardless of any compaction reason may respect the
// existing compact cursor in the output level to split output files
output_split_key_ = nullptr;
if (immutable_options_.compaction_style == kCompactionStyleLevel &&
immutable_options_.compaction_pri == kRoundRobin) {
const InternalKey* cursor =
&input_vstorage_->GetCompactCursors()[output_level_];
if (cursor->size() != 0) {
const Slice& cursor_user_key = ExtractUserKey(cursor->Encode());
auto ucmp = vstorage->InternalComparator()->user_comparator();
// May split output files according to the cursor if it in the user-key
// range
if (ucmp->CompareWithoutTimestamp(cursor_user_key, smallest_user_key_) >
0 &&
ucmp->CompareWithoutTimestamp(cursor_user_key, largest_user_key_) <=
0) {
output_split_key_ = cursor;
}
}
}
PopulatePenultimateLevelOutputRange();
}
void Compaction::PopulatePenultimateLevelOutputRange() {
if (!SupportsPerKeyPlacement()) {
return;
}
// exclude the last level, the range of all input levels is the safe range
// of keys that can be moved up.
int exclude_level = number_levels_ - 1;
penultimate_output_range_type_ = PenultimateOutputRangeType::kNonLastRange;
// For universal compaction, the penultimate_output_range could be extended if
// all penultimate level files are included in the compaction (which includes
// the case that the penultimate level is empty).
if (immutable_options_.compaction_style == kCompactionStyleUniversal) {
exclude_level = kInvalidLevel;
penultimate_output_range_type_ = PenultimateOutputRangeType::kFullRange;
std::set<uint64_t> penultimate_inputs;
for (const auto& input_lvl : inputs_) {
if (input_lvl.level == penultimate_level_) {
for (const auto& file : input_lvl.files) {
penultimate_inputs.emplace(file->fd.GetNumber());
}
}
}
auto penultimate_files = input_vstorage_->LevelFiles(penultimate_level_);
for (const auto& file : penultimate_files) {
if (penultimate_inputs.find(file->fd.GetNumber()) ==
penultimate_inputs.end()) {
exclude_level = number_levels_ - 1;
penultimate_output_range_type_ =
PenultimateOutputRangeType::kNonLastRange;
break;
}
}
}
GetBoundaryKeys(input_vstorage_, inputs_,
&penultimate_level_smallest_user_key_,
&penultimate_level_largest_user_key_, exclude_level);
}
Compaction::~Compaction() {
if (input_version_ != nullptr) {
input_version_->Unref();
}
if (cfd_ != nullptr) {
cfd_->UnrefAndTryDelete();
}
}
bool Compaction::SupportsPerKeyPlacement() const {
return penultimate_level_ != kInvalidLevel;
}
int Compaction::GetPenultimateLevel() const { return penultimate_level_; }
// smallest_key and largest_key include timestamps if user-defined timestamp is
// enabled.
bool Compaction::OverlapPenultimateLevelOutputRange(
const Slice& smallest_key, const Slice& largest_key) const {
if (!SupportsPerKeyPlacement()) {
return false;
}
const Comparator* ucmp =
input_vstorage_->InternalComparator()->user_comparator();
return ucmp->CompareWithoutTimestamp(
smallest_key, penultimate_level_largest_user_key_) <= 0 &&
ucmp->CompareWithoutTimestamp(
largest_key, penultimate_level_smallest_user_key_) >= 0;
}
// key includes timestamp if user-defined timestamp is enabled.
bool Compaction::WithinPenultimateLevelOutputRange(const Slice& key) const {
if (!SupportsPerKeyPlacement()) {
return false;
}
if (penultimate_level_smallest_user_key_.empty() ||
penultimate_level_largest_user_key_.empty()) {
return false;
}
const Comparator* ucmp =
input_vstorage_->InternalComparator()->user_comparator();
return ucmp->CompareWithoutTimestamp(
key, penultimate_level_smallest_user_key_) >= 0 &&
ucmp->CompareWithoutTimestamp(
key, penultimate_level_largest_user_key_) <= 0;
}
bool Compaction::InputCompressionMatchesOutput() const {
int base_level = input_vstorage_->base_level();
bool matches =
(GetCompressionType(input_vstorage_, mutable_cf_options_, start_level_,
base_level) == output_compression_);
if (matches) {
TEST_SYNC_POINT("Compaction::InputCompressionMatchesOutput:Matches");
return true;
}
TEST_SYNC_POINT("Compaction::InputCompressionMatchesOutput:DidntMatch");
return matches;
}
bool Compaction::IsTrivialMove() const {
// Avoid a move if there is lots of overlapping grandparent data.
// Otherwise, the move could create a parent file that will require
// a very expensive merge later on.
// If start_level_== output_level_, the purpose is to force compaction
// filter to be applied to that level, and thus cannot be a trivial move.
// Check if start level have files with overlapping ranges
if (start_level_ == 0 && input_vstorage_->level0_non_overlapping() == false &&
l0_files_might_overlap_) {
// We cannot move files from L0 to L1 if the L0 files in the LSM-tree are
// overlapping, unless we are sure that files picked in L0 don't overlap.
return false;
}
if (is_manual_compaction_ &&
(immutable_options_.compaction_filter != nullptr ||
immutable_options_.compaction_filter_factory != nullptr)) {
// This is a manual compaction and we have a compaction filter that should
// be executed, we cannot do a trivial move
return false;
}
if (start_level_ == output_level_) {
// It doesn't make sense if compaction picker picks files just to trivial
// move to the same level.
return false;
}
if (compaction_reason_ == CompactionReason::kChangeTemperature) {
// Changing temperature usually requires rewriting the file.
return false;
}
// Used in universal compaction, where trivial move can be done if the
// input files are non overlapping
if ((mutable_cf_options_.compaction_options_universal.allow_trivial_move) &&
(output_level_ != 0) &&
(cfd_->ioptions()->compaction_style == kCompactionStyleUniversal)) {
return is_trivial_move_;
}
if (!(start_level_ != output_level_ && num_input_levels() == 1 &&
input(0, 0)->fd.GetPathId() == output_path_id() &&
InputCompressionMatchesOutput())) {
return false;
}
// assert inputs_.size() == 1
if (output_level_ + 1 < number_levels_) {
std::unique_ptr<SstPartitioner> partitioner = CreateSstPartitioner();
for (const auto& file : inputs_.front().files) {
std::vector<FileMetaData*> file_grand_parents;
input_vstorage_->GetOverlappingInputs(output_level_ + 1, &file->smallest,
&file->largest,
&file_grand_parents);
const auto compaction_size =
file->fd.GetFileSize() + TotalFileSize(file_grand_parents);
if (compaction_size > max_compaction_bytes_) {
return false;
}
if (partitioner.get() != nullptr) {
if (!partitioner->CanDoTrivialMove(file->smallest.user_key(),
file->largest.user_key())) {
return false;
}
}
}
}
// PerKeyPlacement compaction should never be trivial move.
if (SupportsPerKeyPlacement()) {
return false;
}
return true;
}
void Compaction::AddInputDeletions(VersionEdit* out_edit) {
for (size_t which = 0; which < num_input_levels(); which++) {
for (size_t i = 0; i < inputs_[which].size(); i++) {
out_edit->DeleteFile(level(which), inputs_[which][i]->fd.GetNumber());
}
}
}
bool Compaction::KeyNotExistsBeyondOutputLevel(
const Slice& user_key, std::vector<size_t>* level_ptrs) const {
assert(input_version_ != nullptr);
assert(level_ptrs != nullptr);
assert(level_ptrs->size() == static_cast<size_t>(number_levels_));
if (bottommost_level_) {
return true;
} else if (output_level_ != 0 &&
cfd_->ioptions()->compaction_style == kCompactionStyleLevel) {
// Maybe use binary search to find right entry instead of linear search?
const Comparator* user_cmp = cfd_->user_comparator();
for (int lvl = output_level_ + 1; lvl < number_levels_; lvl++) {
const std::vector<FileMetaData*>& files =
input_vstorage_->LevelFiles(lvl);
for (; level_ptrs->at(lvl) < files.size(); level_ptrs->at(lvl)++) {
auto* f = files[level_ptrs->at(lvl)];
if (user_cmp->Compare(user_key, f->largest.user_key()) <= 0) {
// We've advanced far enough
// In the presence of user-defined timestamp, we may need to handle
// the case in which f->smallest.user_key() (including ts) has the
// same user key, but the ts part is smaller. If so,
// Compare(user_key, f->smallest.user_key()) returns -1.
// That's why we need CompareWithoutTimestamp().
if (user_cmp->CompareWithoutTimestamp(user_key,
f->smallest.user_key()) >= 0) {
// Key falls in this file's range, so it may
// exist beyond output level
return false;
}
break;
}
}
}
return true;
}
return false;
}
bool Compaction::KeyRangeNotExistsBeyondOutputLevel(
const Slice& begin_key, const Slice& end_key,
std::vector<size_t>* level_ptrs) const {
assert(input_version_ != nullptr);
assert(level_ptrs != nullptr);
assert(level_ptrs->size() == static_cast<size_t>(number_levels_));
assert(cfd_->user_comparator()->CompareWithoutTimestamp(begin_key, end_key) <
0);
if (bottommost_level_) {
return true /* does not overlap */;
} else if (output_level_ != 0 &&
cfd_->ioptions()->compaction_style == kCompactionStyleLevel) {
const Comparator* user_cmp = cfd_->user_comparator();
for (int lvl = output_level_ + 1; lvl < number_levels_; lvl++) {
const std::vector<FileMetaData*>& files =
input_vstorage_->LevelFiles(lvl);
for (; level_ptrs->at(lvl) < files.size(); level_ptrs->at(lvl)++) {
auto* f = files[level_ptrs->at(lvl)];
// Advance until the first file with begin_key <= f->largest.user_key()
if (user_cmp->CompareWithoutTimestamp(begin_key,
f->largest.user_key()) > 0) {
continue;
}
// We know that the previous file prev_f, if exists, has
// prev_f->largest.user_key() < begin_key.
if (user_cmp->CompareWithoutTimestamp(end_key,
f->smallest.user_key()) <= 0) {
// not overlapping with this level
break;
} else {
// We have:
// - begin_key < end_key,
// - begin_key <= f->largest.user_key(), and
// - end_key > f->smallest.user_key()
return false /* overlap */;
}
}
}
return true /* does not overlap */;
}
return false /* overlaps */;
};
// Mark (or clear) each file that is being compacted
void Compaction::MarkFilesBeingCompacted(bool mark_as_compacted) {
for (size_t i = 0; i < num_input_levels(); i++) {
for (size_t j = 0; j < inputs_[i].size(); j++) {
assert(mark_as_compacted ? !inputs_[i][j]->being_compacted
: inputs_[i][j]->being_compacted);
inputs_[i][j]->being_compacted = mark_as_compacted;
}
}
}
// Sample output:
// If compacting 3 L0 files, 2 L3 files and 1 L4 file, and outputting to L5,
// print: "3@0 + 2@3 + 1@4 files to L5"
const char* Compaction::InputLevelSummary(
InputLevelSummaryBuffer* scratch) const {
int len = 0;
bool is_first = true;
for (auto& input_level : inputs_) {
if (input_level.empty()) {
continue;
}
if (!is_first) {
len +=
snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len, " + ");
len = std::min(len, static_cast<int>(sizeof(scratch->buffer)));
} else {
is_first = false;
}
len += snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len,
"%" ROCKSDB_PRIszt "@%d", input_level.size(),
input_level.level);
len = std::min(len, static_cast<int>(sizeof(scratch->buffer)));
}
snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len,
" files to L%d", output_level());
return scratch->buffer;
}
uint64_t Compaction::CalculateTotalInputSize() const {
uint64_t size = 0;
for (auto& input_level : inputs_) {
for (auto f : input_level.files) {
size += f->fd.GetFileSize();
}
}
return size;
}
void Compaction::ReleaseCompactionFiles(Status status) {
MarkFilesBeingCompacted(false);
cfd_->compaction_picker()->ReleaseCompactionFiles(this, status);
}
void Compaction::ResetNextCompactionIndex() {
assert(input_version_ != nullptr);
input_vstorage_->ResetNextCompactionIndex(start_level_);
}
namespace {
int InputSummary(const std::vector<FileMetaData*>& files, char* output,
int len) {
*output = '\0';
int write = 0;
for (size_t i = 0; i < files.size(); i++) {
int sz = len - write;
int ret;
char sztxt[16];
AppendHumanBytes(files.at(i)->fd.GetFileSize(), sztxt, 16);
ret = snprintf(output + write, sz, "%" PRIu64 "(%s) ",
files.at(i)->fd.GetNumber(), sztxt);
if (ret < 0 || ret >= sz) break;
write += ret;
}
// if files.size() is non-zero, overwrite the last space
return write - !!files.size();
}
} // namespace
void Compaction::Summary(char* output, int len) {
int write =
snprintf(output, len, "Base version %" PRIu64 " Base level %d, inputs: [",
input_version_->GetVersionNumber(), start_level_);
if (write < 0 || write >= len) {
return;
}
for (size_t level_iter = 0; level_iter < num_input_levels(); ++level_iter) {
if (level_iter > 0) {
write += snprintf(output + write, len - write, "], [");
if (write < 0 || write >= len) {
return;
}
}
write +=
InputSummary(inputs_[level_iter].files, output + write, len - write);
if (write < 0 || write >= len) {
return;
}
}
snprintf(output + write, len - write, "]");
}
uint64_t Compaction::OutputFilePreallocationSize() const {
uint64_t preallocation_size = 0;
for (const auto& level_files : inputs_) {
for (const auto& file : level_files.files) {
preallocation_size += file->fd.GetFileSize();
}
}
if (max_output_file_size_ != std::numeric_limits<uint64_t>::max() &&
(immutable_options_.compaction_style == kCompactionStyleLevel ||
output_level() > 0)) {
preallocation_size = std::min(max_output_file_size_, preallocation_size);
}
// Over-estimate slightly so we don't end up just barely crossing
// the threshold
// No point to preallocate more than 1GB.
return std::min(uint64_t{1073741824},
preallocation_size + (preallocation_size / 10));
}
std::unique_ptr<CompactionFilter> Compaction::CreateCompactionFilter() const {
if (!cfd_->ioptions()->compaction_filter_factory) {
return nullptr;
}
if (!cfd_->ioptions()
->compaction_filter_factory->ShouldFilterTableFileCreation(
TableFileCreationReason::kCompaction)) {
return nullptr;
}
CompactionFilter::Context context;
context.is_full_compaction = is_full_compaction_;
context.is_manual_compaction = is_manual_compaction_;
context.column_family_id = cfd_->GetID();
context.reason = TableFileCreationReason::kCompaction;
return cfd_->ioptions()->compaction_filter_factory->CreateCompactionFilter(
context);
}
std::unique_ptr<SstPartitioner> Compaction::CreateSstPartitioner() const {
if (!immutable_options_.sst_partitioner_factory) {
return nullptr;
}
SstPartitioner::Context context;
context.is_full_compaction = is_full_compaction_;
context.is_manual_compaction = is_manual_compaction_;
context.output_level = output_level_;
context.smallest_user_key = smallest_user_key_;
context.largest_user_key = largest_user_key_;
return immutable_options_.sst_partitioner_factory->CreatePartitioner(context);
}
bool Compaction::IsOutputLevelEmpty() const {
return inputs_.back().level != output_level_ || inputs_.back().empty();
}
bool Compaction::ShouldFormSubcompactions() const {
if (cfd_ == nullptr) {
return false;
}
// Round-Robin pri under leveled compaction allows subcompactions by default
// and the number of subcompactions can be larger than max_subcompactions_
if (cfd_->ioptions()->compaction_pri == kRoundRobin &&
cfd_->ioptions()->compaction_style == kCompactionStyleLevel) {
return output_level_ > 0;
}
if (max_subcompactions_ <= 1) {
return false;
}
if (cfd_->ioptions()->compaction_style == kCompactionStyleLevel) {
return (start_level_ == 0 || is_manual_compaction_) && output_level_ > 0;
} else if (cfd_->ioptions()->compaction_style == kCompactionStyleUniversal) {
return number_levels_ > 1 && output_level_ > 0;
} else {
return false;
}
}
bool Compaction::DoesInputReferenceBlobFiles() const {
assert(input_version_);
const VersionStorageInfo* storage_info = input_version_->storage_info();
assert(storage_info);
if (storage_info->GetBlobFiles().empty()) {
return false;
}
for (size_t i = 0; i < inputs_.size(); ++i) {
for (const FileMetaData* meta : inputs_[i].files) {
assert(meta);
if (meta->oldest_blob_file_number != kInvalidBlobFileNumber) {
return true;
}
}
}
return false;
}
uint64_t Compaction::MinInputFileOldestAncesterTime(
const InternalKey* start, const InternalKey* end) const {
uint64_t min_oldest_ancester_time = std::numeric_limits<uint64_t>::max();
const InternalKeyComparator& icmp =
column_family_data()->internal_comparator();
for (const auto& level_files : inputs_) {
for (const auto& file : level_files.files) {
if (start != nullptr && icmp.Compare(file->largest, *start) < 0) {
continue;
}
if (end != nullptr && icmp.Compare(file->smallest, *end) > 0) {
continue;
}
uint64_t oldest_ancester_time = file->TryGetOldestAncesterTime();
if (oldest_ancester_time != 0) {
min_oldest_ancester_time =
std::min(min_oldest_ancester_time, oldest_ancester_time);
}
}
}
return min_oldest_ancester_time;
}
uint64_t Compaction::MinInputFileEpochNumber() const {
uint64_t min_epoch_number = std::numeric_limits<uint64_t>::max();
for (const auto& inputs_per_level : inputs_) {
for (const auto& file : inputs_per_level.files) {
min_epoch_number = std::min(min_epoch_number, file->epoch_number);
}
}
return min_epoch_number;
}
int Compaction::EvaluatePenultimateLevel(
const VersionStorageInfo* vstorage,
const ImmutableOptions& immutable_options, const int start_level,
const int output_level) {
// TODO: currently per_key_placement feature only support level and universal
// compaction
if (immutable_options.compaction_style != kCompactionStyleLevel &&
immutable_options.compaction_style != kCompactionStyleUniversal) {
return kInvalidLevel;
}
if (output_level != immutable_options.num_levels - 1) {
return kInvalidLevel;
}
int penultimate_level = output_level - 1;
assert(penultimate_level < immutable_options.num_levels);
if (penultimate_level <= 0) {
return kInvalidLevel;
}
// If the penultimate level is not within input level -> output level range
// check if the penultimate output level is empty, if it's empty, it could
// also be locked for the penultimate output.
// TODO: ideally, it only needs to check if there's a file within the
// compaction output key range. For simplicity, it just check if there's any
// file on the penultimate level.
if (start_level == immutable_options.num_levels - 1 &&
(immutable_options.compaction_style != kCompactionStyleUniversal ||
!vstorage->LevelFiles(penultimate_level).empty())) {
return kInvalidLevel;
}
bool supports_per_key_placement =
immutable_options.preclude_last_level_data_seconds > 0;
// it could be overridden by unittest
TEST_SYNC_POINT_CALLBACK("Compaction::SupportsPerKeyPlacement:Enabled",
&supports_per_key_placement);
if (!supports_per_key_placement) {
return kInvalidLevel;
}
return penultimate_level;
}
} // namespace ROCKSDB_NAMESPACE