diff --git a/examples/mms/README.md b/examples/mms/README.md index 8685a8bff2..093facc600 100644 --- a/examples/mms/README.md +++ b/examples/mms/README.md @@ -6,16 +6,6 @@ You can find details in the paper [Scaling Speech Technology to 1000+ languages] An overview of the languages covered by MMS can be found [here](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html). - -## Pretrained models - -| Model | Link -|---|--- -MMS-300M | [download](https://dl.fbaipublicfiles.com/mms/pretraining/base_300m.pt) -MMS-1B | [download](https://dl.fbaipublicfiles.com/mms/pretraining/base_1b.pt) - -Example commands to finetune the pretrained models can be found [here](https://github.com/facebookresearch/fairseq/tree/main/examples/wav2vec#fine-tune-a-pre-trained-model-with-ctc). - ## Finetuned models ### ASR @@ -56,7 +46,7 @@ cd /path/to/fairseq-py/ python examples/mms/asr/infer/mms_infer.py --model "/path/to/asr/model" --lang lang_code \ --audio "/path/to/audio_1.wav" "/path/to/audio_2.wav" "/path/to/audio_3.wav" ``` -We also provide an Ipython notebook example in inside `asr/tutorial` folder [ipynb](https://github.com/facebookresearch/fairseq/blob/androstj-patch-1/examples/mms/asr/tutorial/MMS_ASR_Inference_Colab.ipynb) or [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/facebookresearch/fairseq/blob/main/examples/mms/asr/tutorial/MMS_ASR_Inference_Colab.ipynb) +We also provide an Ipython notebook example inside `asr/tutorial` folder [ipynb](https://github.com/facebookresearch/fairseq/blob/main/examples/mms/asr/tutorial/MMS_ASR_Inference_Colab.ipynb) or [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/facebookresearch/fairseq/blob/main/examples/mms/asr/tutorial/MMS_ASR_Inference_Colab.ipynb) For more advance configuration and calculate CER/WER, you could prepare manifest folder by creating a folder with this format: @@ -160,6 +150,17 @@ $ PYTHONPATH='.' python3 examples/mms/lid/infer.py /path/to/dict/l126/ --path ``` The above command assumes there is a file named `dict.lang.txt` in `/path/to/dict/l126/`. `/predictions.txt` will contain the predictions from the model for the audio files in `manifest.tsv`. +We also provide an Ipython notebook example inside `lid/tutorial` folder [ipynb](https://github.com/facebookresearch/fairseq/blob/main/examples/mms/lid/tutorial/MMS_LID_Inference_Colab.ipynb) or [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/facebookresearch/fairseq/blob/main/examples/mms/lid/tutorial/MMS_LID_Inference_Colab.ipynb) + + +## Pretrained models + +| Model | Link +|---|--- +MMS-300M | [download](https://dl.fbaipublicfiles.com/mms/pretraining/base_300m.pt) +MMS-1B | [download](https://dl.fbaipublicfiles.com/mms/pretraining/base_1b.pt) + +Example commands to finetune the pretrained models can be found [here](https://github.com/facebookresearch/fairseq/tree/main/examples/wav2vec#fine-tune-a-pre-trained-model-with-ctc). ## Forced Alignment Tooling diff --git a/examples/mms/lid/tutorial/MMS_LID_Inference_Colab.ipynb b/examples/mms/lid/tutorial/MMS_LID_Inference_Colab.ipynb new file mode 100644 index 0000000000..59d8cf9e3d --- /dev/null +++ b/examples/mms/lid/tutorial/MMS_LID_Inference_Colab.ipynb @@ -0,0 +1,389 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "gpuType": "T4" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + }, + "accelerator": "GPU", + "gpuClass": "standard" + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# Running MMS-LID inference in Colab" + ], + "metadata": { + "id": "Rhm7khm6GskV" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Step 1: Clone fairseq-py and install latest version" + ], + "metadata": { + "id": "2GfxksHDGyJv" + } + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Cj2x80SegRzr", + "outputId": "c81e367d-ec5f-4b17-b375-6980d6291c43" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "fatal: destination path 'fairseq' already exists and is not an empty directory.\n", + "/content\n", + "/content/fairseq\n", + "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", + "Obtaining file:///content/fairseq\n", + " Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", + " Checking if build backend supports build_editable ... \u001b[?25l\u001b[?25hdone\n", + " Getting requirements to build editable ... \u001b[?25l\u001b[?25hdone\n", + " Preparing editable metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + "Requirement already satisfied: cffi in /usr/local/lib/python3.10/dist-packages (from fairseq==0.12.2) (1.15.1)\n", + "Requirement already satisfied: cython in /usr/local/lib/python3.10/dist-packages (from fairseq==0.12.2) (0.29.34)\n", + "Requirement already satisfied: hydra-core<1.1,>=1.0.7 in /usr/local/lib/python3.10/dist-packages (from fairseq==0.12.2) (1.0.7)\n", + "Requirement already satisfied: omegaconf<2.1 in /usr/local/lib/python3.10/dist-packages (from fairseq==0.12.2) (2.0.6)\n", + "Requirement already satisfied: numpy>=1.21.3 in /usr/local/lib/python3.10/dist-packages (from fairseq==0.12.2) (1.22.4)\n", + "Requirement already satisfied: regex in /usr/local/lib/python3.10/dist-packages (from fairseq==0.12.2) (2022.10.31)\n", + "Requirement already satisfied: sacrebleu>=1.4.12 in /usr/local/lib/python3.10/dist-packages (from fairseq==0.12.2) (2.3.1)\n", + "Requirement already satisfied: torch>=1.13 in /usr/local/lib/python3.10/dist-packages (from fairseq==0.12.2) (2.0.1+cu118)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from fairseq==0.12.2) (4.65.0)\n", + "Requirement already satisfied: bitarray in /usr/local/lib/python3.10/dist-packages (from fairseq==0.12.2) (2.7.3)\n", + "Requirement already satisfied: torchaudio>=0.8.0 in /usr/local/lib/python3.10/dist-packages (from fairseq==0.12.2) (2.0.2+cu118)\n", + "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (from fairseq==0.12.2) (1.2.2)\n", + "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from fairseq==0.12.2) (23.1)\n", + "Requirement already satisfied: antlr4-python3-runtime==4.8 in /usr/local/lib/python3.10/dist-packages (from hydra-core<1.1,>=1.0.7->fairseq==0.12.2) (4.8)\n", + "Requirement already satisfied: PyYAML>=5.1.* in /usr/local/lib/python3.10/dist-packages (from omegaconf<2.1->fairseq==0.12.2) (6.0)\n", + "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from omegaconf<2.1->fairseq==0.12.2) (4.5.0)\n", + "Requirement already satisfied: portalocker in /usr/local/lib/python3.10/dist-packages (from sacrebleu>=1.4.12->fairseq==0.12.2) (2.7.0)\n", + "Requirement already satisfied: tabulate>=0.8.9 in /usr/local/lib/python3.10/dist-packages (from sacrebleu>=1.4.12->fairseq==0.12.2) (0.8.10)\n", + "Requirement already satisfied: colorama in /usr/local/lib/python3.10/dist-packages (from sacrebleu>=1.4.12->fairseq==0.12.2) (0.4.6)\n", + "Requirement already satisfied: lxml in /usr/local/lib/python3.10/dist-packages (from sacrebleu>=1.4.12->fairseq==0.12.2) (4.9.2)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch>=1.13->fairseq==0.12.2) (3.12.0)\n", + "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.13->fairseq==0.12.2) (1.11.1)\n", + "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.13->fairseq==0.12.2) (3.1)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.13->fairseq==0.12.2) (3.1.2)\n", + "Requirement already satisfied: triton==2.0.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.13->fairseq==0.12.2) (2.0.0)\n", + "Requirement already satisfied: cmake in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch>=1.13->fairseq==0.12.2) (3.25.2)\n", + "Requirement already satisfied: lit in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch>=1.13->fairseq==0.12.2) (16.0.5)\n", + "Requirement already satisfied: pycparser in /usr/local/lib/python3.10/dist-packages (from cffi->fairseq==0.12.2) (2.21)\n", + "Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->fairseq==0.12.2) (1.10.1)\n", + "Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->fairseq==0.12.2) (1.2.0)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->fairseq==0.12.2) (3.1.0)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.13->fairseq==0.12.2) (2.1.2)\n", + "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.13->fairseq==0.12.2) (1.3.0)\n", + "Building wheels for collected packages: fairseq\n", + " Building editable for fairseq (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for fairseq: filename=fairseq-0.12.2-0.editable-cp310-cp310-linux_x86_64.whl size=9219 sha256=b6289e3715902d34fd7c54490679210a5be155dd4416754f0e8c376f193b5ac4\n", + " Stored in directory: /tmp/pip-ephem-wheel-cache-o62sj_ry/wheels/c6/d7/db/bc419b1daa8266aa8de2a7c4d29f62dbfa814e8701fe4695a2\n", + "Successfully built fairseq\n", + "Installing collected packages: fairseq\n", + " Attempting uninstall: fairseq\n", + " Found existing installation: fairseq 0.12.2\n", + " Uninstalling fairseq-0.12.2:\n", + " Successfully uninstalled fairseq-0.12.2\n", + "Successfully installed fairseq-0.12.2\n", + "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", + "Requirement already satisfied: tensorboardX in /usr/local/lib/python3.10/dist-packages (2.6)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from tensorboardX) (1.22.4)\n", + "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from tensorboardX) (23.1)\n", + "Requirement already satisfied: protobuf<4,>=3.8.0 in /usr/local/lib/python3.10/dist-packages (from tensorboardX) (3.20.3)\n" + ] + } + ], + "source": [ + "import os\n", + "\n", + "!git clone https://github.com/pytorch/fairseq\n", + "\n", + "# Change current working directory\n", + "!pwd\n", + "%cd \"/content/fairseq\"\n", + "!pip install --editable ./ \n", + "!pip install tensorboardX\n" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## 2. Download MMS-LID model\n", + "\n" + ], + "metadata": { + "id": "cyk4JvZOHSw3" + } + }, + { + "cell_type": "code", + "source": [ + "available_models = [\"l126\", \"l256\", \"l512\", \"l1024\", \"l2048\", \"l4017\"]\n", + "\n", + "# We will use L126 model which can recognize 126 languages \n", + "model_name = available_models[0] # l126\n", + "print(f\"Using model - {model_name}\")\n", + "print(f\"Visit https://dl.fbaipublicfiles.com/mms/lid/mms1b_{model_name}_langs.html to check all the languages supported by this model.\")\n", + "\n", + "! mkdir -p /content/models_lid\n", + "!wget -P /content/models_lid/{model_name} 'https://dl.fbaipublicfiles.com/mms/lid/mms1b_{model_name}.pt'\n", + "!wget -P /content/models_lid/{model_name} 'https://dl.fbaipublicfiles.com/mms/lid/dict/l126/dict.lang.txt'\n", + "\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "3uZ9WG85gZId", + "outputId": "93f456ab-7aa1-47ac-a054-c0e3417b2e5e" + }, + "execution_count": 5, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Using model - l126\n", + "Visit https://dl.fbaipublicfiles.com/mms/lid/mms1b_l126_langs.html to check all the languages supported by this model.\n", + "--2023-05-25 18:18:45-- https://dl.fbaipublicfiles.com/mms/lid/mms1b_l126.pt\n", + "Resolving dl.fbaipublicfiles.com (dl.fbaipublicfiles.com)... 52.84.251.15, 52.84.251.114, 52.84.251.27, ...\n", + "Connecting to dl.fbaipublicfiles.com (dl.fbaipublicfiles.com)|52.84.251.15|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 3856229421 (3.6G) [binary/octet-stream]\n", + "Saving to: ‘/content/models_lid/l126/mms1b_l126.pt’\n", + "\n", + "mms1b_l126.pt 100%[===================>] 3.59G 198MB/s in 24s \n", + "\n", + "2023-05-25 18:19:09 (155 MB/s) - ‘/content/models_lid/l126/mms1b_l126.pt’ saved [3856229421/3856229421]\n", + "\n", + "--2023-05-25 18:19:09-- https://dl.fbaipublicfiles.com/mms/lid/dict/l126/dict.lang.txt\n", + "Resolving dl.fbaipublicfiles.com (dl.fbaipublicfiles.com)... 52.84.251.15, 52.84.251.114, 52.84.251.27, ...\n", + "Connecting to dl.fbaipublicfiles.com (dl.fbaipublicfiles.com)|52.84.251.15|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 882 [text/plain]\n", + "Saving to: ‘/content/models_lid/l126/dict.lang.txt’\n", + "\n", + "dict.lang.txt 100%[===================>] 882 --.-KB/s in 0s \n", + "\n", + "2023-05-25 18:19:09 (183 MB/s) - ‘/content/models_lid/l126/dict.lang.txt’ saved [882/882]\n", + "\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## 3. Prepare manifest files\n", + "Create a folder on path '/content/audio_samples/' and upload your .wav audio files that you need to recognize e.g. '/content/audio_samples/abc.wav' , '/content/audio_samples/def.wav' etc...\n", + "\n", + "Note: You need to make sure that the audio data you are using has a sample rate of 16kHz You can easily do this with FFMPEG like the example below that converts .mp3 file to .flac and fixing the audio sample rate\n", + "\n", + "Here, we use three examples - one audio file from English, Hindi, Chinese each. " + ], + "metadata": { + "id": "3p5-TQvKHXjO" + } + }, + { + "cell_type": "code", + "source": [ + "! mkdir -p /content/audio_samples/\n", + "for key in [\"en_us\", \"hi_in\", \"cmn_hans_cn\"]:\n", + " !wget -O /content/audio_samples/tmp.mp3 https://datasets-server.huggingface.co/assets/google/fleurs/--/{key}/train/0/audio/audio.mp3\n", + " !ffmpeg -hide_banner -loglevel error -y -i /content/audio_samples/tmp.mp3 -ar 16000 /content/audio_samples/{key}.wav\n", + "\n", + "! mkdir -p /content/audio_samples/\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cnim4bokprbB", + "outputId": "89026a92-0518-49c2-9c84-98f0966caeac" + }, + "execution_count": 6, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "--2023-05-25 18:19:09-- https://datasets-server.huggingface.co/assets/google/fleurs/--/en_us/train/0/audio/audio.mp3\n", + "Resolving datasets-server.huggingface.co (datasets-server.huggingface.co)... 34.200.186.24, 44.197.252.161, 54.165.66.147, ...\n", + "Connecting to datasets-server.huggingface.co (datasets-server.huggingface.co)|34.200.186.24|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 20853 (20K) [audio/mpeg]\n", + "Saving to: ‘/content/audio_samples/tmp.mp3’\n", + "\n", + "/content/audio_samp 100%[===================>] 20.36K 92.8KB/s in 0.2s \n", + "\n", + "2023-05-25 18:19:11 (92.8 KB/s) - ‘/content/audio_samples/tmp.mp3’ saved [20853/20853]\n", + "\n", + "--2023-05-25 18:19:12-- https://datasets-server.huggingface.co/assets/google/fleurs/--/hi_in/train/0/audio/audio.mp3\n", + "Resolving datasets-server.huggingface.co (datasets-server.huggingface.co)... 34.200.186.24, 44.197.252.161, 54.165.66.147, ...\n", + "Connecting to datasets-server.huggingface.co (datasets-server.huggingface.co)|34.200.186.24|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 26361 (26K) [audio/mpeg]\n", + "Saving to: ‘/content/audio_samples/tmp.mp3’\n", + "\n", + "/content/audio_samp 100%[===================>] 25.74K 116KB/s in 0.2s \n", + "\n", + "2023-05-25 18:19:13 (116 KB/s) - ‘/content/audio_samples/tmp.mp3’ saved [26361/26361]\n", + "\n", + "--2023-05-25 18:19:13-- https://datasets-server.huggingface.co/assets/google/fleurs/--/cmn_hans_cn/train/0/audio/audio.mp3\n", + "Resolving datasets-server.huggingface.co (datasets-server.huggingface.co)... 34.200.186.24, 44.197.252.161, 54.165.66.147, ...\n", + "Connecting to datasets-server.huggingface.co (datasets-server.huggingface.co)|34.200.186.24|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 23877 (23K) [audio/mpeg]\n", + "Saving to: ‘/content/audio_samples/tmp.mp3’\n", + "\n", + "/content/audio_samp 100%[===================>] 23.32K 105KB/s in 0.2s \n", + "\n", + "2023-05-25 18:19:14 (105 KB/s) - ‘/content/audio_samples/tmp.mp3’ saved [23877/23877]\n", + "\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "! mkdir -p /content/manifest/\n", + "import os\n", + "with open(\"/content/manifest/dev.tsv\", \"w\") as ftsv, open(\"/content/manifest/dev.lang\", \"w\") as flang:\n", + " ftsv.write(\"/\\n\")\n", + "\n", + " for fl in os.listdir(\"/content/audio_samples/\"):\n", + " if not fl.endswith(\".wav\"):\n", + " continue\n", + " audio_path = f\"/content/audio_samples/{fl}\"\n", + " # duration should be number of samples in audio. For inference, using a random value should be fine. \n", + " duration = 1234 \n", + " ftsv.write(f\"{audio_path}\\t{duration}\\n\")\n", + " flang.write(\"eng\\n\") # This is the \"true\" language for the audio. For inference, using a random value should be fine. \n" + ], + "metadata": { + "id": "C2QcjRT-BArW" + }, + "execution_count": 7, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "# 4: Run Inference and transcribe your audio(s)\n" + ], + "metadata": { + "id": "44UvHjmMI28Z" + } + }, + { + "cell_type": "code", + "source": [ + "import os\n", + "\n", + "os.environ[\"PYTHONPATH\"] = \"/content/fairseq\"\n", + "os.environ[\"PREFIX\"] = \"INFER\"\n", + "os.environ[\"HYDRA_FULL_ERROR\"] = \"1\"\n", + "os.environ[\"USER\"] = \"mms_lid_user\"\n", + "\n", + "!python3 examples/mms/lid/infer.py /content/models_lid/{model_name} --path /content/models_lid/{model_name}/mms1b_l126.pt \\\n", + " --task audio_classification --infer-manifest /content/manifest/dev.tsv --output-path /content/manifest/" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "J8N1RKtBiw5V", + "outputId": "09d3fe43-26a4-4f9b-c56d-d38b6d45cdab" + }, + "execution_count": 8, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2023-05-25 18:19:19.545731: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", + "To enable the following instructions: AVX2 AVX512F FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", + "2023-05-25 18:19:21.567795: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n", + "| loading model from /content/models_lid/l126/mms1b_l126.pt\n", + "2023-05-25 18:19:29 | INFO | fairseq.tasks.audio_classification | Using dict_path : /content/models_lid/l126/dict.lang.txt\n", + "2023-05-25 18:19:29 | INFO | root | === Number of labels = 126\n", + "2023-05-25 18:20:01 | INFO | fairseq.data.audio.raw_audio_dataset | loaded 3, skipped 0 samples\n", + "2023-05-25 18:20:01 | INFO | fairseq.tasks.fairseq_task | can_reuse_epoch_itr = True\n", + "2023-05-25 18:20:01 | INFO | fairseq.tasks.fairseq_task | reuse_dataloader = True\n", + "2023-05-25 18:20:01 | INFO | fairseq.tasks.fairseq_task | rebuild_batches = True\n", + "2023-05-25 18:20:01 | INFO | fairseq.tasks.fairseq_task | batches will be rebuilt for each epoch\n", + "2023-05-25 18:20:01 | INFO | fairseq.tasks.fairseq_task | creating new batches for epoch 1\n", + "/usr/local/lib/python3.10/dist-packages/torch/utils/data/dataloader.py:560: UserWarning: This DataLoader will create 4 worker processes in total. Our suggested max number of worker in current system is 2, which is smaller than what this DataLoader is going to create. Please be aware that excessive worker creation might get DataLoader running slow or even freeze, lower the worker number to avoid potential slowness/freeze if necessary.\n", + " warnings.warn(_create_warning_msg(\n", + "3it [00:07, 2.61s/it]\n", + "Outputs will be located at - /content/manifest//predictions.txt\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "print(\"----- INPUT FILES -----\")\n", + "! tail -n +2 /content/manifest/dev.tsv\n", + "\n", + "print(\"\\n----- TOP-K PREDICTONS WITH SCORE -----\")\n", + "! cat /content/manifest//predictions.txt" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5f7FROqiC-2z", + "outputId": "3a28ceee-dbb7-4810-f9ca-d11b14a8340b" + }, + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "----- INPUT FILES -----\n", + "/content/audio_samples/hi_in.wav\t1234\n", + "/content/audio_samples/en_us.wav\t1234\n", + "/content/audio_samples/cmn_hans_cn.wav\t1234\n", + "\n", + "----- TOP-K PREDICTONS WITH SCORE -----\n", + "[[\"hin\", 0.9931250810623169], [\"urd\", 0.005808886140584946], [\"snd\", 0.0005312535213306546]]\n", + "[[\"eng\", 0.9989539980888367], [\"fas\", 0.00036296260077506304], [\"haw\", 7.031611312413588e-05]]\n", + "[[\"cmn\", 0.9996059536933899], [\"bod\", 0.0002111078501911834], [\"kor\", 9.211552242049947e-05]]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "TzHHmno5DZC4" + }, + "execution_count": null, + "outputs": [] + } + ] +}