
Team Name: Orcalearns

App Name: Orcalearns

Proposed Level of Achievement: Apollo 11

Motivation

It would be nice to learn coding from a young age, and be interested in further learning
as well. Many have come to learn that coding can be very difficult to pick up in our later
ages, and that it would have been better to start from a young age.

Many younger children nowadays are also enrolling in centers outside school to learn some
programming, mainly as an extracurricular activity, so lessons would only be around 1.5
hours per week. These centers charge rather high fees for classes as well. Therefore, it
would be advantageous to have an app that allows these students to learn and practice at
home for free to further solidify their learning. However, as our target users are mainly
young students, we would need to make our app exciting for them through gamification,
or else they would quickly get bored and stop using the app.

Aim

We hope to facilitate children’s learning of programming using an engaging gamified app.

User Stories

1. As a young student learning coding, I want an interesting platform so studying is not
boring.

2. As the parent of a young child who wants my child to learn some coding, I want to
be able to track their progress.

3. As a student or parent, I want to be able to ask questions in a forum if I need any
clarifications on certain topics.

4. As an administrator who wants to help answer the aforementioned forum questions
and help students in general, I want to be able to answer the questions in a timely
and concise manner, as well as police the forums for inappropriate content.

Scope of Project

Basic gamified learning programme for Arduino, with proper pacing, achievements and
advancements based on levels completed.

Difference from Similar Platforms

● Duolingo
○ Only teaches spoken languages, does not teach coding languages
○ Lack of forum for students to help each other and for certified teachers to

assist in issues

● Coursemology
○ Lacks a mobile app, so it is not suitable for students who are looking to learn

on the go
○ Only accessible by students taking certain computer science modules in NUS,

not for anyone interested in programming

Tech Stack Choices & Rationale

Front-end:

1. Framework - Flutter

a. Flutter is Google’s free and open-source UI framework for building natively
compiled applications for mobile, web, desktop, and embedded devices from a
single codebase.

b. Flutter supports a wide range of fully-customizable widgets that incorporate
all critical platform differences such as scrolling, navigation, icons and fonts,
which results in fast rendering and flexible designs, which we felt would be

suitable in the implementation of our application. Flutter’s Hot Reload function
also allows for faster development, which we figured would save us a lot of
valuable time during our application development stage. The stability of
Flutter code (unaffected by iOS or Android system updates as well as version
compatibility with previous Flutter versions) were also appealing to us as it
would greatly help simplify the development as well as maintenance of our
app in the long run. As Flutter has been rapidly gaining popularity for mobile
app-building, even beating our React Native in 2021 with over 109,600 stars
on Github, we also felt that learning this new relevant technology would be
useful for us in the future.

2. Language - Dart

a. Dart is Google’s client-optimized language for fast apps on any platform, and
it is the programming language used to code Flutter apps.

b. We mainly chose Dart as it is the language used in conjunction with Flutter.
However, it has its own fair share of advantages. Dart is optimized for
building user interfaces, with features such as sound null safety, the spread
operator for expanding collections, and collection if for customizing UI for
each platform. As we wanted to develop an app that would be aesthetically
pleasing and simple for users to use, we felt that a programming language
that was optimised specifically for the user experience would be the best fit.
In addition, Dart is described as a language that is incredibly easy to learn,
especially for programmers who are already familiar with languages such as
Java, Javascript, as the language itself is very straightforward, and
well-documented in a detailed, clear and organised manner, which was good
for us as we did not have much programming experience before NUS. Finally,
using Dart meant we could develop our app for both Android and iOS
simultaneously.

3. User Interface Library - Material

a. Material Design is an adaptable system of guidelines, components, and tools
that support user interface design. Backed by open-source code, Material
Design streamlines collaboration between designers and developers, and
helps teams to quickly build beautiful products.

b. We decided to use the Material Library in Flutter for the UI of our application.
This refers to readily available Flutter widgets that implement Material Design,
such as the Appbar or BottomNavigationBar. This is to help speed up the
development of our application, as we would not have to spend time
designing our own components to use. These components are quite

aesthetically pleasing as well, and allow room for customisation should we
wish to make any changes.

Back-end:

1. Firebase

a. Firebase is a platform developed by Google for creating iOS, Android and web
applications. It provides tools for tracking analytics, reporting and fixing app
crashes, and also a real-time database, as well as user authentication.

b. We decided to use Firebase as it manages all data real-time in the database,
so the exchange of data to and fro from the database is easy and quick,
essential for a mobile application that provides good user experience. It is
also free, so no extra money is required for a backend server. In fact, no
backend server is required. Additional features such as analytics and crash
reports are also available.

Resources (Documentations):

Dart Documentation
Flutter Documentation
Material Design Documentation
Firebase Documentation

Project Management

We implemented the Scrum Agile Framework for our project management. This framework
focuses on advancing the project through short-term blocks of work called sprints, which
are usually two weeks long. The scrum framework is heuristic, as it is based on constant
learning and improvement to the project as new unknown factors come into play. It is
described as a framework that acknowledges that the team does not know everything at the
start of the project and will evolve through experience.

Our reasons for selecting this framework as opposed to other Agile frameworks are:

1. This framework is suitable for small self-organising teams (which are all Orbital
teams), as opposed to large hierarchical ones.

2. The short period of the sprints means that we can quickly adapt to any changes that
need to be made to our development plans, such as fixing certain parts of our
application based on feedback or bugs.

https://dart.dev/guides
https://flutter.dev/docs
https://flutter.dev/docs/development/ui/widgets/material
https://firebase.google.com/docs

3. The frequency of the sprints also serves to keep us on track throughout the 3
months of our Orbital project, as we will always have new goals to work towards and
a clear deadline to ensure we do not procrastinate on our work. We will also be
accountable to each other. Our sprints can also be said to lead up to the bigger and
more important Orbital Milestones at the end of each month.

4. We can quickly provide feedback to one another and bring up any issues about each
other’s work during our meetings.

5. This framework is simple and easy to understand, removing ambiguities in the
development process. Therefore, we felt that this was a good framework to
implement to increase our productivity throughout our Orbital journey.

Below is a diagram representing each sprint cycle, as well as how we implemented this
framework in our application development:

1. Product Backlog - an overall list of all the tasks that need to be done for the entire
project. In our case this would be the list of features we have planned for our whole
application, as shown in our README. We make changes to our planned features as
required throughout the course of these 3 months, for instance changing the plan for
our game implementation due to feedback from past evaluations.

2. Sprint Backlog - the list of things to accomplish within the current sprint. We would
discuss during each sprint meeting what the features we wanted to accomplish by
the next sprint meeting were so that we could keep on track with our application
development and complete it by the Orbital deadlines. (Sprint Planning)

3. Increment - usable end-product from a sprint. During each sprint meeting, we would
show each other what we had accomplished since our last meeting, and discuss if
there were any issues present in our work as well provide suggestions on possible
improvements. If we failed to produce the desired increment during the sprint
period, we would have to justify why we were unable to do so, such as perhaps time
constraints or struggles with the coding, and we would help each other if possible.
We would also discuss how to improve our application overall. (Sprint Review &
Retro)

4. Sprint - The actual period of time for us to individually work on our current sprint
backlogs. Though sprints normally last two weeks in typical work environments, due
to the time period of Orbital we decided to have week-long sprints instead. We also
texted at least once a day to keep each other updated on our current programming
activities or to ask for help. (Daily Scrum)

Features

Features done by Milestone 1:

1. Login page

a. Text boxes for users to input their email and password (TextField)
b. Email address keyboard for email box, hidden text for password box

(keyboardType and obscureText)
c. Forgot Password button to help users reset their password if they forget

(TextButton)

d. Login button that leads to the Home page (TextButton with boxDecoration)
e. Sign Up button that leads to the Register Page for new users (TextButton)

2. Home page with tabs

a. Tabs include Play, Profile, Achievements, Leaderboard and Forum
(BottomNavigationBar)

b. Icons to better indicate the different tabs (Flutter Icons)
c. Clicking on the different tabs brings users to different features in our

application, with the current active tab clearly highlighted in blue (onTap)

Features done by Milestone 2:

1. Register page

a. Text boxes for users to input their details (name, username, email, password)
and create a new account (TextField)

b. Email address keyboard for email box, hidden text for password box
(keyboardType and obscureText)

c. Successful registration of an account brings users to the Home page upon
clicking on the Register button (TextButton with boxDecoration)

d. Linked page to Firebase to store new registered user accounts
e. Sign In button that leads to the Login Page for existing users (TextButton)

2. Profile

a. Display player’s details (name, username, profile photo, level), stats (streak,
total EXP earned) and friends with scroll view (ListView)

b. Add friends button (add friends icon) to bring users to Find Friends page
(IconButton)

c. Find Friends page contains a search bar for users to search for friends to
follow by their usernames

d. Settings button (gear icon) leads to Settings page (IconButton)
i. Displays their current details (name, username, email, password) in

the text boxes with the password as hidden text (TextField,
obscureText)

ii. Allows players to change their name, username, or email by clicking
and typing in the text box and clicking on the Save button (TextField,
TextButton with boxDecoration)

iii. Clicking on the password text box to change it leads to a special
Change Password page (TextButton) where users can type in their new
password in text boxes with hidden text (TextField, obscureText) and
save the new password by clicking on the Save button (TextButton
with boxDecoration)

iv. Log Out button allows users to log out of their current account and
return to the Login page (TextButton with BoxDecoration)

3. Achievements

a. All possible achievements to be attained by a player displayed with scroll view
(ListView)

b. Uncompleted achievement: black and white icon, progress bar showing
player’s progress towards attaining the achievement
(LinearProgressIndicator)

c. Completed achievement: coloured icon, progress bar disappears (conditional
statements for when the achievement is completed vs not completed yet)

d. Popup when a new achievement is attained (image shown is from when users
complete level 1)

4. Leaderboard

a. Displays current top players (rank, profile photo, username, EXP) with scroll
view, listed in order of EXP (ListView)

5. Forum

a. Displays all questions, clicking on one of them brings players to the question
thread

b. Button on the top right to create a new thread by posting a question, takes
player to New Question page

c. Question Thread
i. Displays all comments with the number of votes/ likes
ii. Button on the top right to post a new comment to the question thread,

takes player to New Comment page

Features done by Milestone 3:

1. Proper game levels

a. Level select menu to allow users to navigate between the different levels
easily by clicking on each level icon (FlatButton)

b. Introductory game levels to begin teaching users programming basics. Each
game level has the same goal of bringing the sprite from the initial point to
the end point, as marked by the flag. Game levels gradually increase in
difficulty (Images shown above are Levels 1, 7 and 9 in order from left to
right)

c. 4 buttons in each level (Move Forward, Turn Right, Turn Left, Move Backward)
that allow users to navigate the sprite around to reach the finish line
(TextButton), designed to appear more like coding blocks for users get to feel
more like they are actually coding (boxDecoration)

d. Sprite that moves in real time as users press the correct buttons so users can
better visualise the effect of their code (constantly updating the value of a
variable as users click on the different buttons and displaying the
corresponding images at each variable value through conditional statements)

e. Blocks (similar to Scratch or mBlock) automatically built at the bottom of the
screen as users click on the correct buttons, so they get to experience
building real functioning programs while they complete the levels (using
conditional statements to display the corresponding images depending on the
value of the variable, similarly to the sprite movement)

f. Clear indication of when each level is completed so users are aware that they
can move on to the next level, through the text “Correct! Good Job!” as well
as Retry and Next buttons that only appear once the level is completed
(conditional statements)

g. Retry button resets the level back to its initial state, while Next button brings
users to the immediate next level (TextButtons with boxDecoration)

h. Actual teaching materials included at the start of certain levels to facilitate the
learning of users as they play the game (Text)

2. Data-storage (Firebase)
a. Prevent non-users from logging in (based on UID)
b. Store and retrieve the profile details of each player to be displayed in the

Profile page, and store any updates made through the Settings page
c. Store and update each player’s current achievement progress to be displayed

on the Achievements page as the player does various tasks in the app
d. Store forum questions, answers and likes

Future developments:

1. Increased game levels - more levels to further the teaching of programming. As of
now, the first 9 levels implemented are mostly just introductory levels to get users
familiarised with the logic and movement of sprites. Only moving and turning blocks
have been introduced, as well as the starting block. Following the syllabus used to
teach students in DuinoCode (where we work as part-time teachers), future levels
would teach the following concepts in order:

a. Turning in degrees - Currently all left and right turns are set to the default 90
degrees, but it would be good to teach students how to change how much
their sprite turns by changing the number of degrees. It is understandable
that as our target users are young children, some of them may not have yet
learnt the concept of degrees in school. However, it is still worth teaching
them that at least increasing and decreasing the number of degrees would
make their sprite turn more or less respectively, as well as recognising
important angles such as 45 degrees, 90 degrees and 180 degrees.

b. Moving for a certain number of seconds / a certain distance - Currently
moving forward or backward will move the sprite as far as we need it to move
to reach the destination, but in the future we could add the element of time
or distance to the Move Forward and Move Backward blocks so users could
change the values on their own to control how far the sprite would move. This
is more aligned to robotics in real life.

c. Wait block - We could teach users how to use this block to make their sprite
stay still for a certain number of seconds before resuming its actions.

d. Repeat block - Instead of repeating the same code over and over again (for
instance to make the sprite move in a square), users should instead learn
how to use the repeat block to increase the efficiency and readability of their
code. It will help save them a lot of time as well. Users should also learn to
determine how many times exactly they need to repeat their code, or which
parts of their code they should be repeating.

e. Forever block - Based on our personal experience, even young children are
able to grasp the concept of “forever” quite easily, so we just need to teach
them that a forever block is essentially a repeat block that repeats their code
infinitely as opposed to a certain number of times.

f. If-then and If-then-else block - A very important element of actual
programming, it would be very useful for users to learn the proper meaning
and use of these two similar blocks. More levels would be needed to properly
teach younger children about these blocks, as they tend to get quite confused
between where to put their code when the “if” condition is satisfied or
unsatisfied. They also find it difficult to differentiate when the If-then-else
block is needed from when the If-then block is sufficient. These blocks have

many potential applications as well, such as getting users to check if there is
an obstacle blocking the path of their sprite and moving out of the way if this
is the case.

g. Making their own variables - As users reach higher levels, they can also learn
more advanced programming topics such as creating their own variables,
setting their initial values, and updating the values.

h. Making their own blocks (functions) - Even more advanced users can learn
how to make their own functions in the form of blocks, and how to utilise
these self-made functions in later parts of their code to further simplify their
code and increase the efficiency of their programmes. As this is a rather
high-level topic for young children to learn, we would have to ensure that we
implement simple game levels to slowly introduce this concept to them.

There are of course many other programming concepts that we could further add on
for future levels, but these are our plans for future levels as of now.

2. Improved user profile page and friend settings - more information stored on the
profile page that other users will be able to view. Increased interaction between
users as they are able to track their friends’ progress. This also allows for healthy
competition to engage users and encourage their learning

a. Be able to display achievements of each users on their profile page
b. Be able to view friends’ achievements and level progress

3. Improved login and register pages:
a. Currently, logging in with registered username and email does not give rise to

an error message, this will be fixed as soon as possible to ensure each user is
unique.

b. Currently, logging in with an unregistered account does not give rise to an
error message, this will be fixed as soon as possible. We will still explore the
possibility of guest accounts being available for use

4. Improved forum page:
a. At the moment, the thumbs up and down features for comments and threads

has not been enabled, so voting and sorting of comments by votes has not
been enabled. This feature will be enabled to ensure that users are more able
to view and sort and search for comments

Program Flow

Testing

Heuristics Testing

We carried out heuristics testing on some potential users (our peers, family members, as
well as students) to judge the usability of our app for our target users and the user
experience, based on the Nielsen Heuristics (Heuristics for User Interface Design) as
developed by Jacob Nielsen in 1995:

1. Visibility of System Status (users should know the system status at all times and get

feedback on interactions with it);

2. Match between system and the real world (the system should resemble the

experiences that users already had);

3. User control and freedom (users should be able to reverse their action if done by

mistake);

4. Consistency and standard (similar system elements should look similar)

5. Error prevention (minimize the likelihood of making mistakes);

6. Recognition rather than recall (users should be able to interact with the system

without prior information or context;

7. Flexibility and efficiency of use (both new and experienced users should be able to

efficiently use the system);

8. An aesthetic and minimalist design (declutter as much as possible, less is more);

9. Help users recognize, diagnose, and recover from errors (make error messages

understandable, and suggest ways to fix an error);

10.Help and documentation (if a user has a hard time interacting with your app, make

sure there’s help that’s easily accessible).

1. Regarding the System Status, users have feedbacked that there is no transition

between levels, and no loading spinner icon. It would be possible to add a spinner

icon in the future to showcase that the app is loading between screens. However, at

the moment, it does not take any time to transition between screens, so it was not

deemed a priority. It will be included in future developments.

2. The User Interface (UI) is simple enough to understand, with icons and words to

describe where the icon brings you to. The icon is also intuitive for users that have

tried the app. Some have said that icons for features such as the “add friends”

feature might not be intuitive, as it is just a ‘+’ icon next to the silhouette of a

person. To combat this, if they long press the icon, the words “Add Friend” pops up,

to inform them of what the button does.

3. Users are able to edit their profile however they wish, with custom usernames,

profile pictures, and friends list. They are able to also remove friends. Therefore,

there is a high level of customization for user profiles that they can make use of.

Users have feedback that they enjoy the fact that they can customise their profiles

should they wish to do so.

4. We have used a consistent colour scheme and font, as well as font style and size. As

a result, we have not received any complaints from users regarding this matter, as

there is nothing difficult to read or understand, with similar themes. However, some

older users have feedback that some words are too small for them to read. We made

the font slightly bigger, to the best of our abilities without hindering design. The

issue has been more or less resolved as a result.

5. The user interface is simple enough to understand that we have received no

feedback regarding error prevention. We believe that the design should be

minimalistic to ensure that everyone understands the functions of each design.

6. Users have mentioned that everything was intuitive and easy to understand. Refer to

points 2. and 5.

7. Our users were all new users who understood fundamentally what each tab in the

main UI does, even without prompting. Therefore, we believe that users are able to

properly interact with the system without prior information or context.

8. Users have told us that our design is easy to understand and easy on the eyes as

well, there were no complaints regarding clutter and aesthetics.

9. The levels are simple enough to complete, as they are meant for young students and

entry-level learners to learn basic programming methodology. As a result, the levels

are relatively easy to complete, with the levels resetting each time there’s a mistake.

Therefore, it is easy for users to recognise exactly which step they failed to do

correctly. Furthermore, no users have encountered an error message. With that

being said, we do have a catcherror function in our code that displays the error

message in the event that one occurs, so we believe this to be a non-issue.

10.At the moment, there is no tutorial, as we believe that the levels are already in the

form of a tutorial, with each level being only slightly more difficult than the previous

to aid in step-by-step learning. Users have not mentioned any troubles with using

the application, and as a result there is no help section as of yet. However, when

introducing new mechanics in levels in the future, we will inform users of how to

make use of said mechanic, which we believe can aid in helping the users learn

better.

Testing with Potential Users

Using the same group of people we implemented our heuristics testing with, we also asked
them to help us evaluate how useful our game was in accomplishing our aim of teaching
young children programming as well as how engaging our game was, as the game is the
important feature of our application so we felt that it required extra attention and testing.

This was the first iteration of our game (no input needed to go from the first image to the
second):

Our first game level initially had a sprite that automatically moved up and down the screen.
Players could click on any part of the screen to stop the sprite from moving. Clicking on the
screen again would make the sprite start moving once more. Our intention was to first
familiarise players with simple movements such as up, down, left and right to begin their
programming learning.

However, the feedback we received from many was that they could not see how this level
would help to teach programming in any way, as it was not obvious what we were trying to
show exactly through the moving sprite. It did not really feel like a game level either, as
there was no clear objective other than just clicking on the screen and observing the
movement of the sprite. It might not be engaging to young children using our app.

Taking this input into account, we decided to revamp our game levels entirely. We scrapped
the idea of having automatically moving sprites and changed it so the sprite would only
move when players clicked on the correct buttons. We also designed each level to have a
goal of bringing the sprite from the starting point to the end point so there was a clear

objective for players to accomplish, which would hopefully make our app more interesting
for players.

Our second iteration of the game looked like this (the “Move Forward” button was pressed
to get from the first image to the second, third image is the start of Level 2):

This version of the game received more positive reviews. With a clear objective to clear the
level and an indication of when players had completed the level, it was said that this version
felt more like an actual game. The short notes at the beginning of certain levels (such as in
the third image) also helped to teach our players as they played the game.

However, we also received feedback that it was rather ambiguous which direction the sprite
would move in. This is because the orca we used (from our logo) was side-facing to the
right. Therefore, technically clicking on “Move Forward” should make the sprite move to the
right of the screen as opposed to upwards as we intended. This would lead to undesired
confusion for our players.

Therefore, we made the unfortunate decision to use another different front-facing orca as
our sprite for the game levels instead of our Orcalearns logo orca, to avoid any confusion.
This was our third game iteration (the “Move Forward” button was pressed to get from the
first image to the second):

The feedback we received for this version was mostly that the game levels were good. The
sprite on the screen helped players visualise the movements the sprite would take as they
pressed the correct buttons, and helped to make the game more appealing to children.
There was no ambiguity in the direction the sprite would move in with this orca.

However, some indicated that the link between our game and teaching programming was
still unclear; it was not apparent how teaching players to navigate their sprite to the end
point using the given buttons was explicitly programming. They stated that though our
game was educational, it seemed to teach more logic as compared to actual coding. They
suggested incorporating actual blocks into each level so players could at least see their code
being built as if they were using online platforms such as Scratch or mBlock.

Following this advice, our final iteration of the game looked like this (the “Move Forward”
button was pressed to get from the first image to the second):

In this version, the buttons themselves were made to look more like the blocks that players
should add to their code to complete the level, and clicking on the correct block would
automatically add the block to their code below. In this way, it would feel to the player as if
they are clicking on the blocks to add it to their own code. At the end of each level, the
player would have finished building their own code to bring the sprite from the start point to
the end point, as shown in the second image above.

The common consensus was that this version made the link between our game and teaching
programming basics more clear, as it was as if players were actually building their own code
as they completed levels of the game. This was the final version of the game we decided to
go with.

Self/ Manual Testing
We also carried out self/ manual testing on our application to check for the correctness of
our application, or in other words any problems with the implemented features. Below is the
full testing documentation showing all the features we have tested along with whether or
not they behaved as expected. If not, we included a description of the problem as well as
how we fixed it.

Full Testing Documentation:

Feature Tested Passed? (Description of issue and solution if test failed)

LOGIN

Users can type in their email and
password in the text boxes

Yes

Clicking on the text box changes
the phone keyboard to the email
address keyboard

Yes

Text is censored when typing in the
password text box

Yes

Clicking on “Sign up” brings users
to the Signup page

Yes

Clicking on “Forgot Password?”
allows users to reset their password
through their email

Yes

Logging in with a registered account
works when Login button is pressed

Yes

Logging in with an unregistered
account gives rise to an error
message when Login button is
pressed

No. Lack of time

App logo is displayed Yes

Proper navigation between Login
page and Register page

No. Clicking “Sign up” on Login page and “Sign in”/Register button on
Register page one after the other creates more and more Login and
Register pages, adding more pages to the current route. Pressing the
back button multiple times then brings users back through many
alternating Login and Register pages

Solution: Navigator.pushReplacement changed to Navigator.pop for
both buttons on Register page so the initial page of the app is the Login
page and the Register page only allows navigation back to this initial
page

No backward navigation from Login
page

No. Back button appears when Login page is accessed through Log Out
button in Settings page, and brings users back to the Settings page
when it is clicked, therefore returning them to their previously signed-in
account

Solution: automaticallyImplyLeading set to false for the Login page app
bar so the appBar never displays any back button

REGISTER

Users can type in their details
(name, username, email and
password) in the text boxes

Yes

Clicking on the text box changes
the phone keyboard to the email
address keyboard

Yes

Text is censored when typing in the
password text box

Yes

Clicking on “Sign in” brings users to
the Sign in page

Yes

Registering an account saves the
new user details onto firebase when
the Register button is pressed

Yes

Registering an account with an
email address that is already
registered in the database gives rise
to an error message

No. Lack of time

Registering an account with a
username that is already used by
another user gives rise to an error
message

No. Lack of time

Clicking on the back button returns
user back to the initial Login page

Yes

GAME

Clicking the level icon brings users
to the corresponding level

Yes

Back button on every level leads
back to level select menu

No. Back button led back to the previous level if the current level is
accessed through the Next button in the previous level

Solution: Navigator.push changed to Navigator.pushReplacement for
Next button in every level

Retry button resets level to initial
state without creating the page
again

Yes

Next button brings user to the next
level

Yes

Retry and Next buttons only appear
after a user has completed each
level

Yes

Pressing the correct navigation
buttons in each level updates the
orca on the screen (moves in
accordingly)

Yes

Pressing the wrong button resets
the level back to its initial state
without creating the page again

Yes

Next button brings user back to
level select menu for the final level
only

No. Next button brought user back to level select menu by creating a
new level select menu page, not the original page on the home screen
(meaning the bottom navigation bar was missing and users had to
press the back button once to return to the real level select menu)

Solution: Navigator.pushReplacement changed to Navigator.pop for
Next button of last level only

Level 1 works as expected Yes

Level 2 works as expected Yes

Level 3 works as expected No. Though the level clearly indicates that the sprite should take right
turns to move in a square (as per our intention and seen from the
image on the screen), clicking “Turn Right” is registered as a mistake.
Instead, clicking “Turn Left” is seen as correct. The sprite moves
properly (taking right turns) and the blocks also appear correctly (with
“Turn Right” blocks included) when we complete the level by replacing
every instance of “Turn Right” with “Turn Left”

Solution: This problem suggested that the codes for the “Turn Right”
and “Turn Left” buttons in our code were switched, so we just switched
them back

Level 4 works as expected Yes

Level 5 works as expected Yes

Level 6 works as expected Yes

Level 7 works as expected Yes

Level 8 works as expected Yes

Level 9 works as expected No. The block code does not correspond to the current state of the Orca
on the screen. For instance, when the level first starts the block “Move
Forward” is already present even before the user has clicked on the
“Move Forward” button

Solution: Our code was correct, but we had forgotten to save the first
image that was supposed to be displayed, resulting in the level always
displaying the next image instead of the current intended image. We
added the missing image to our app Assets file accordingly

PROFILE

User’s name, username, level,
display picture displayed

Yes

User’s stats(streak days, total EXP
earned) displayed

Yes

User’s list of followed users shown Yes

User’s list of followers shown Yes

Clicking on the add friends icon
leads to Find Friends page

Yes

Find Friends page: search bar
allows users to search for other
users to follow using their
usernames

Yes

Saving new password saves the
updated password into the database
and returns user to the previous
screen (Settings)

No. User is returned to Settings screen by creating a new Settings
page, adds more pages to current route so back button does not work
properly (returns back to Password Change page)

Solution: Navigator.pushReplacement changed to Navigator.pop for
Save button on Change Password page

Clicking on the gear icon on the
Profile page brings users to Settings
page

Yes

Saving changes to settings saves
the updated settings into the
database and returns user to the
previous screen (Profile)

No. User is returned to Profile screen by creating a new Profile page,
adds more pages to current route so back button does not work
properly (returns back to Settings page)

Solution: Navigator.pushReplacement changed to Navigator.pop for
Save button on Settings page

Clicking on the name, username or
email boxes allows users to type in

Yes

their new details

Clicking on the password box brings
users to a special Change Password
page

Yes

Log Out button is the only way
users can return to the Login page
once they are signed into their
account, otherwise they are
automatically logged in each time
they launch the app

No. Back buttons at each tab on the Home page lead the user back to
the Login page

Solution: Set automaticallyImplyLeading of the appBar to false for all 5
of the Home page tabs

ACHIEVEMENTS

All achievements are displayed with
their name, description and icon
regardless of whether or not they
have been completed

Yes

Uncompleted achievements have
black and white icons

Yes

Progress bar showing the progress
of the user towards completing each
uncompleted achievement is
present

Yes

Completed achievements have
coloured icons

Yes

Progress bar disappears after an
achievement is completed

Yes

Achievement progress is accurately
updated as user completes various
tasks in other parts of the app

Yes

LEADERBOARD

Top 10 users by total EXP are
displayed

Yes

Users are displayed with their rank,
display picture, username and total
EXP

Yes

Leaderboard is accurately updated Yes

as users gain EXP

FORUM

All submitted questions displayed
along with their respective number
of comments:

Yes

Clicking on the new question icon
leads to New Question page

Yes

Users can type in their question in a
text box

Yes

Post Question button posts the new
question onto the Forum page and
brings user back to the Forum page

No. User is returned to the Forum page by creating a new Forum page
instead of returning to the forum tab on the Home page (meaning the
bottom navigation bar was missing), and the back button was no longer
present so users were unable to navigate out of the new Forum page

Solution: Navigator.pushReplacement changed to Navigator.pop for
Post Question button

Clicking on one of the questions
posted on the forum brings users to
the corresponding forum thread

Yes

Forum question displayed on forum
thread

Yes

Whether or not question has been
answered at least once shown on
question thread

Yes

All responses to the thread question
shown on question thread along
with the responder display photos,
usernames and time comment was
posted

Yes

Number of likes/votes for each
response shown on question thread

Yes

Clicking on the thumbs up icon adds
a like/vote to the comment on
question thread

No. Lack of time

Clicking on the thumbs up icon for No. Lack of time

a second time removes the
like/vote from the comment

Clicking on the add comment icon
brings users to New Comment page

Yes

Users can type in their comment in
a text box

Yes

Post Comment button posts the new
comment onto the current thread
and brings user back to the current
Thread page

No. User is returned to the Thread page by creating a new Thread page
instead of returning to the previously accessed thread, adds more
pages to current route so back button does not work properly (returns
back to New Comment page)

Solution: Navigator.pushReplacement changed to Navigator.pop for
Post Comment button

Main Problems & Solutions

1. Navigation - the biggest problem we found throughout our app during our testing
was the navigation between the different pages of the app. We had only used
Navigator.push to move from one page to the next, which meant that each time we
wanted to move from one page to the next, a brand new page would be created.
This would add more and more pages to the current thread, making the back button
behave unexpectedly (more details in the table above). This is consistent with what
we reported in our Milestone 2 README.

SOLUTION: We did some research and found other functions such as
Navigator.pushReplacement or Navigator.pop that were more suited for our app, and
made changes accordingly. Now the back button only allows users to navigate
backwards to pages that make sense logically.

2. Engagingness of our game - We found that our initial implementation of the game
was not appealing to our target users of children as it did not feel like a real game,
so we had to brainstorm on how to improve our game so children would actually
want to play it.

SOLUTION: We decided that we had to add explicit goals to each level so players
would actually feel like they were completing objectives in a game, as the main
problem was that players did not really know what they were supposed to do in our
game or what the point of our level was. We ended up remaking our game
implementation completely. More details can be found in the Testing With Potential
Users section.

3. Usefulness of our game in teaching programming - Through our testing, we found
that our initial implementation of the game did not seem to teach any programming.
Simply starting and stopping the automatic up and down movement of a sprite on
the screen did not seem to be related to programming in any way.

SOLUTION: We went through many iterations of our game in our efforts to make our
game more educational in terms of programming. At first we revamped the entire
game so players could click on the correct buttons to move the sprite on the screen
as required, instead of the sprite moving on its own. Then we incorporated blocks
into our levels so players would feel more as if they were building actual code (such
as with Scratch and mBlock) as they completed the levels. More details can be found
in the Testing With Potential Users section.

How to Install and Run Our App

Click here to download our apk file!

On Android Devices (recommended):

1. Download our apk file onto your phone using the link above.

2. If your phone does not automatically give you the option to open the file after
downloading, you can access and open the apk file through the Downloads folder on
your device.

3. Install the app using package installer (If the app requires any permissions, please
allow them all).

4. Our app should appear together with all your other device apps. Guiding images
(obtained from lifewire.com) are shown below.

https://drive.google.com/file/d/1WvKN9NcvmEEQQObUF5jSBN68XtQm7pQI/view?usp=sharing

On Desktop

1. Install and set up Android Studio onto your device.

2. Boot up your virtual device (an Android phone).

3. Download our apk file from the link above and drop the file directly into the tools
folder in your SDK directory.

4. Type “adb install filename.apk” on the command prompt.

5. Our app should appear with all the other apps on the virtual device.

Project Log

S/N Task Date Orbitee 1
Felicia
Ivane
Pranoto
(hrs)

Orbitee 2
Aaron
Lee Wei
Qi
(hrs)

Remarks

1 Liftoff Day 1 09/05/2021 2 2 1) First meeting with
adviser

2) Discussion

2 Logo creation 10/05/2021 5 5 Drew the Orcalearns logo

4 Liftoff Day 2 12/05/2021 8 8 1) Work on poster
submission

2) Work on video
submission

5 Team meeting and initial
planning

13/05/2021 4 4 1) Planning on the
overall project

2) Split tasks

6 Team meeting:
Implementation details and
initial project structure

14/05/2021 5 5 Discussed details of UI
(such as appearance and
features for users)

7 Self learning Flutter and Dart 15/05/2021 -
25/05/2021

20 20 Install and learn flutter
online

8 Programming at home:
Application UI

26/05/2021 5 5 Created Login page

9 Programming at home:
Application UI

27/05/2021 5 5 Created Home page with
bottom navigation bar

10 Programming at home:
Application UI

28/05/2021 2 2 Linked Login page and
Home page

11 Mission Control 29/05/2021 2 2 Attended the Flutter + Dart
workshop in Mission Control
#3

12 Team meeting 30/05/2021 5 5 Worked on Milestone #1

13 Team meeting 05/06/2021 2 2 Evaluated other teams

14 Team meeting 06/06/2021 3 3 Went through our peer
evaluations, discussed
improvements to make to
our app and README for
Milestone 2

15 Programming at home:
Application UI

10/06/2021 8 0 Created Achievements page

16 Programming at home:
Application UI

14/06/2021 10 0 Created Profile page
(including Settings page and
Change Passwords page)

17 Programming at home:
Application UI

18/06/2021 6 0 Created Forum

18 Programming at home:
Application UI

20/06/2021 1 0 Created Register page

19 Programming at home:
Data Storage

21/06/2021 2 7 Linked Login and Register
pages to a database to store
user accounts

20 Programming at home:
Game

12/06/2021 -
26/06/2021

0 20 Created first few game
levels

21 Programming at home:
Application UI

23/06/2021 4 0 Created Leaderboard page

22 Team meeting 28/06/2021 4 4 Worked on Milestone 2

23 Team meeting 01/07/2021 2 2 Evaluated other teams

24 Team meeting 05/07/2021 3 3 Went through our peer
evaluations, discussed
improvements to make to
our app and README for
Milestone 3

25 Programming at home: New
game levels (inc testing with
potential users)

07/07/2021 -
23/07/2021

30 0 Reworked the game levels
with feedback from potential
users

26 Programming at home:
Testing and bug fixing

12/07/2021 -
17/07/2021

8 0 Self testing and fixing
application navigation

27 Programming at home:
Achievements database

08/07/2021 -
18/07/2021

0 20 Include achievements and
store in database for each
user

28 Programming at home:
Forum database

19/07/2021 -
24/07/2021

0 10 Attempt to include forum
database for each user

29 Team Meetings 22/07/2021 -
26/07/2021

14 14 Worked on Milestone 3

Total Hours Orbittee 1 Orbittee 2

202 161 149

