
Desktop Agent Bridging

Topologies vs. Discovery, Auth & Message Routing



confidential &
 proprietary • slide 2 

Composition of a Desktop Agent Bridging proposal

A bridging proposal must include protocols that allow a DA to:

• Locating other agents to connect to
• via configuration or discovery

• Connecting securely to other agents
• & re-establish connections if they drop for any reason

• Interacting with other agents across the connection
• & handle failures, timeouts etc.

The topology of the connected Desktop Agents affects the complexity of 
the solution for each aspect…



confidential &
 proprietary • slide 3 

The different topologies we could use

Clients & Servers
Each Desktop Agent:

• Implements Client behavior
• Forward requests to servers, 
• Await responses from servers
• Receive requests from servers

• May implement Server behavior
• Receive requests from clients
• Route requests to clients
• Await responses from clients
• Route responses to client

DA 1
client

DA 4
client

DA 2
client

DA 3
client & 
server

DA 5
server



confidential &
 proprietary • slide 4 

The different topologies we could use

Peer-to-Peer
Each Desktop Agent: 

• Implements 'peer' behavior:
• Forward requests to peers
• Await responses from peers
• Receive requests from peers

DA 1
peer

DA 3
peer

DA 2
peer

DA 4
peer



confidential &
 proprietary • slide 5 

The different topologies we could use

Standalone bridge
Each Desktop Agent:

• Implements Client behavior
• Forward requests to bridge, 
• Await response from bridge
• Receive requests from bridge

The Bridge (not a Desktop Agent):

• Implements 'Server' behavior:
• Receive requests from clients
• Route requests to clients
• Route responses to client

DA 1
client

DA 2
client

DA 3
client

DA 4
client

Bridge



confidential &
 proprietary • slide 6 

How the topology affects: Locating

Clients & Servers
• Discovery 

via a Service registry
• Polling for discovery
• Topology might change

OR

• Config (per agent)
• Polling for connections

• Multiple roles to 
implement/pick from

• Uses S websockets/ports
• Port conflicts

Peer-to-Peer
• Discovery 

via a Service registry
• Polling for discovery / 

Return connections

OR

• Config (per agent)
• Polling for connections / 

Return connections

• Single role to implement

• Uses N websockets/ports
• Port conflicts

Standalone bridge
• Discovery 

via known port

OR

• Config (all same)

• Single role to implement

• Uses 1 websocket/port

💔

💛

💔

💚

💛

💚💛

💚

💚



confidential &
 proprietary • slide 7 

How the topology affects: Connecting

Clients & Servers
• Authentication:

• Clients => servers OR
• Creds exchanged OR
• SSO (hard to standardise)

• Servers are multiple points 
of failure 
• restart = failure
• topology might change 

on reconnect

• DA IDs applied by servers, 
clashes possible

Peer-to-Peer
• Authentication:

• Credentials exchanged
• Requires configuration: 

every DA against the 
others (many sets of creds)

OR
• SSO (hard to standardise)

• No individual point of 
failure

• DAs set own names, clashes 
possible

Standalone bridge
• Authentication

• Clients auth against 
bridge

• Allows for simpler auth 
schemes (e.g. access keys)

• Bridge is single point of 
failure
• Simple system service less 

likely to fail/restart

• Bridge sets DA names 
(name can be requested)

💚💛💛

💔

💚 💚

💛

💔 💛 💚



confidential &
 proprietary • slide 8 

How the topology affects: Interacting

Clients & Servers
• Complex message 

propagation logic

• Loops and alternate 
routes

• Need message paths

• Multiple roles for DAs to 
implement
• can change at runtime

• Moderate to implement 
multi-machine

• Hard to implement ACLs

Peer-to-Peer
• Simple message 

propagation
• Only need 

source/destination
• Aggregate responses

• Single role for DAs to 
implement

• Hard to implement 
multi-machine

• Easy to implement ACLs

Standalone bridge
• Simple message 

propagation
• Only need 

source/destination
• Aggregate responses (in 

bridge OR DAs)

• Single for role DAs to 
implement

• Bridge to be implemented 

• Easy to implement 
multi-machine and ACLs

💛

💚💔 💚

💚

💚💚

💚💔

💔

💔
💛



confidential &
 proprietary • slide 9 

Summary

Clients & Servers
• Locate:

1 💔 2 💛
• Connect:

2 💔 1 💛
• Interact:

3 💔 1 💛

Peer-to-Peer
• Locate:

1 💔 1 💛 1 💚
• Connect:

2 💛 1 💚
• Interact:

3 💔 1 💚

Standalone bridge
• Locate:

3 💚
• Connect:

0-1 💛 2-3 💚
• Interact:

1 💛 3 💚

Scoring 💔 = 0 💛 = 1 💚 = 2 

Score = 4/20 Score = 9/20 Score = 18.5/20



confidential &
 proprietary • slide 10 

The case for a standalone bridge

• We probably don't need complex topologies on the desktop
• message paths become trivial

• Uses less websockets/ports

• Simpler to configure than peer-to-peer

• Easier to handle multi-machine use-cases

• Can move some of the message routing complexity to a bridge implementation

• Bridge implementation can be relatively simple, it is responsible for:
• Name assignments
• Message routing
• Maybe channel state or aggregating responses


