-
Notifications
You must be signed in to change notification settings - Fork 24
/
evaluation_denoise.lua
55 lines (45 loc) · 1.49 KB
/
evaluation_denoise.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
require 'torch'
require 'image'
require 'sys'
require 'cunn'
require 'cutorch'
require 'cudnn'
imgPath = '/mnt/codes/reflection/testdata_denoise_BSDS500'
savePath = '/mnt/codes/reflection/models/data'
model = torch.load('/mnt/codes/reflection/models/CEILNet_denoise.net')
model = model:cuda()
model:training()
model_edge = nn.computeEdge(100)
files = {}
for file in paths.files(imgPath) do
if string.find(file,'-input.png') then
table.insert(files, paths.concat(imgPath,file))
end
end
for _,inputFile in ipairs(files) do
local inputImg = image.load(inputFile)
local height = inputImg:size(2)
local width = inputImg:size(3)
local input = torch.CudaTensor(1, 3, height, width)
input[1] = inputImg:cuda()
input = input * 255
local inputs = torch.CudaTensor(1, 4, height, width)
inputs[{{},{1,3},{},{}}] = input
inputs[{{},{4},{},{}}] = model_edge:forward(input)
inputs = inputs - 115
local inputs = {inputs,input}
local inputC = input:clone()
local predictions = model:forward(inputs)
local pred_b = predictions[2]
for m = 1,3 do
local numerator = torch.dot(pred_b[1][m], inputC[1][m])
local denominator = torch.dot(pred_b[1][m], pred_b[1][m])
local alpha = numerator/denominator
pred_b[1][m] = pred_b[1][m] * alpha
end
local savColor = string.gsub(inputFile,imgPath,savePath)
pred_b = pred_b/255
local sav = string.gsub(savColor,'input.png','predict.png')
image.save(sav,pred_b[1])
::done::
end